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Florio, Hongyu Cheng, Dorothy Fremder, Darren Fremder, Zhiqiang Li, Ben
Cambon, Ryland Deemer and all the gang at MSRI from the fall’18 program.

And last but not the least,I thank to my Alma Mater, the UNAM.

4



Introducción

El presente trabajo es un estudio de un modelo de transporte autoconsistente
caótico conocido como modelo discreto de una onda (single wave map model)
o mapeo autoconsistente (self-consistent map), introducido en la Ref. [1]. El
objetivo principal de este trabajo fue entender como funciona el fenomeno
del transporte caótico desde el punto de vista un sistema dinámico discreto.
En particular, se tomó en consideración las similaridades del modelo discreto
con el bien conocido y estudiado mapeo estándar.

El mapeo autoconsistente ha sido estudiado antes en la literatura, donde
los trabajos más cercanos al enfoque de este manuscrito pueden encontrarse
en las referencias [2, 3] (como mapeo) y en la referencia [4] (como un sistema
continuo de EDO’s). Una importante diferencia respecto a estas primeras dos
referencias radica en que ambas usaron una versión modificada del modelo
discreto original, añadiendo un harmónico extra a la perturbación en [2]
o cambiando por una perturbación non-twist en [3]. El modelo de EDP’s
original data de principio de los 70’s por O’Neil et.al. (vease Ref. [5]) y
originó una amplia variedad de trabajos yendo desde lo experimental hasta
lo anaĺıtico. En las Refs. [6, 7] este modelo fue generalizado y derivado siste-
máticamente del sistema de Vlasov-Poisson usando expansiones asintóticas
y teoŕıa no lineal débil.

El cuerpo principal de este trabajo proviene de los recientes trabajos en
las Refs. [8, 9] y un manuscrito en proceso, escritos por el autor en colabo-
ración con Diego del-Castillo-Negrete, Arturo Olvera y Renato Calleja. Los
resultados empujaron este trabajo hacia el estudio de tipos más generales de
mapeos simplécticos y al uso de métodos viejos y nuevos, como el método de
superposición de Chirikov (Chirikov’s overlap method) [10] y el más reciente
método de la parametrización (parameterization method) [11, 12, 13, 14].

El manuscrito esta organizado de la siguiente manera. El Caṕıtulo 1
introduce el mapeo autoconsistente y presenta una derivación corta par-
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tiendo de un modelo Hamiltoniano de campo medio (2N + 2)-dimensional
de EDO’s. Este caṕıtulo también introduce conceptos clave como transporte
y estructuras coherentes, presenta simulaciones caracteŕısticas del mapeo y
presenta un estudio de casos de baja dimensión para luego contrastarlos
una solución exacta del modelo continuo original. El Caṕıtulo 2 da una
resumen de los resultados matemáticos que serán usados en el resto del tra-
bajo. El Caṕıtulo 3 contiene un estudio de órbitas periódicas del modelo y
enfoca su atención en una variedad particular de órbitas periódicas con el
uso de formas normales. El Caṕıtulo 4 introduce un modelo reducido de un
mapeo no-autónomo (NASM) que intenta imitar el comportamiento oscila-
torio observado en el modelo discreto original. En este caṕıtulo, la atención
está centrada en el caso dos-periódico del NASM, usando sobre este todas
las herramientas disponibles. Para extender los resultados del NASM dos-
periódico y caracterizar mejor el comportamiento cŕıtico de mapeos similares,
el Caṕıtulo 5 presenta un nuevo método para calcular órbitas periódicas en
mapeos no reversibles y en el Caṕıtulo 6 se usa este método para estudiar
órbitas periódicas en dos ejemplos en un regimen cŕıtico. Las conclusiones
se presentan en el Caṕıtulo 7 junto con algunas propuestas de trabajo futuro
no mencionadas en caṕıtulos previos.
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Introduction

The present work is a study of a discrete model of chaotic self-consistent
transport known as single wave map model or self-consistent map, introduced
in Ref. [1]. The main goal of this work was to use it to understand how does
the chaotic transport phenomenon work from the discrete dynamical system
point of view. In particular, it was taken into account the similarities of the
map model with the very well known and studied standard map.

The self-consistent map has been studied before in the literature, where
the closest approaches to the present work can be found in references [2, 3]
(as a map) and reference [4] (as continuous ODE system). An important
difference in the approaches of the first two references is that both used
a modified versions of the original map model, adding one extra harmonic
perturbation in Ref. [2] and adding the a non-twist perturbation in Ref. [3].
The original PDE model dates from early 70’s by O’Neil et.al. (see Ref. [5])
and it originated a wide variety of works from experimental to analytic.
In Refs. [6, 7], this model was generalized and systematically derived from
the Vlasov-Poisson system using a weakly nonlinear matched asymptotic
expansion.

The main body of this work comes from the recent works Refs. [8, 9] and a
manuscript in process, co-written by the author in collaboration with Diego
del-Castillo-Negrete, Arturo Olvera and Renato Calleja. The results have
pushed the work in the direction to study a more general type of simplectic
maps and to use old and new methods, like Chirikov’s overlap method [10]
and the more recent parameterization method [11, 12, 13, 14].

The manuscript is organized in the following manner. Chapter 1 intro-
duces the self-consistent map and presents a short derivation of it from a
mean-field Hamiltonian (2N + 2)-dimensional ODE model. The chapter also
introduces key concepts like transport and coherent structures, presents char-
acteristic simulations of the map and studies two low dimensional cases of the
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map model to then contrast them with an exact solution of the original con-
tinuous model. Chapter 2 reviews the mathematical background that would
be used in the rest of the work. Chapter 3 contains a study of periodic orbits
of the model and focus the attention on a particular symmetrical kind of pe-
riodic orbits with the use of normal forms. Chapter 4 introduces a reduced
non-autonomous map model (NASM) that attempts to mimic the oscillatory
behavior previously observed in the model. In this chapter, the attention was
focused in the period-two case of NASM, using over it all the mathematical
tools that were available. To expand the findings on the two-periodic NASM
and to better characterize the critical behavior of similar maps, the Chapter
5 presents a new method to compute periodic orbits in non-reversible maps
and Chapter 6 use this method to characterize the critical behavior of peri-
odic orbits on two examples. Conclusions are presented in Chapter 7 along
a few suggestions of future work not mentioned in the previous chapters.
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Chapter 1

The physical model

The model of interest of this work is the so-called self-consistent map model
or single wave map model, for which one of its most popular forms is the
following map,

xn+1
k = xnk + yn+1

k , (1.1a)

yn+1
k = ynk + κn+1 sin(xnk − θn) (1.1b)

κn+1 =
√

(κn)2 + (ηn)2 + ηn , (1.1c)

θn+1 = θn − Ω +
1

κn+1

∂ηn

∂θn
, (1.1d)

where k = 1, 2, ..., N , Ω is a given real constant and the auxiliar variable ηn

is defined as,

ηn =
N∑
l=1

γl sin(xnl − θn) , (1.2)

and γk are also given real constants.
This chapter has as its main objective to put in context this map model

by giving a short derivation to help understand the physical meaning of its
variables. And to complement this, some of the general properties of this
model are also presented. A more complete derivation of the model can be
found in Refs. [6, 7] for the reduction of the PDE model and in Ref. [1] the
successive discretizations that lead to the map (1.1).
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1.1 Origin of the model

The map model (1.1) is the result of a symplectic (are preserving) discretiza-
tion of the evolution equations of this 2N+2 dimensional hamiltonian system,

dxk
dt

=
∂H
∂pk

,
dpk
dt

= − ∂H
∂xk

, (1.3a)

dθ

dt
=
∂H
∂J

,
dJ

dt
= −∂H

∂θ
, (1.3b)

where k = 1, 2, ..., N and the hamiltonian is given by,

H =
N∑
l=1

[
1

2Γl
p2
l − 2Γl

√
J cos(xl − θ)

]
− UJ , (1.4)

where U and Γj are given real constants. More explicitly, the ODE system
(1.3) is written,

dxk
dt

=
pk
Γk

, (1.5a)

dpk
dt

= −2Γk
√
J sin(xk − θ) , (1.5b)

dθ

dt
= −U − 1√

J

N∑
l=1

Γl cos(xl − θ) , (1.5c)

dJ

dt
= 2
√
J

N∑
l=1

Γl sin(xl − θ) . (1.5d)

The system of Eqs. (1.3)-(1.4) can represent N non linear oscillators (xk, pk)
coupled by a mean field (θ, J). That is, the interaction between the oscillators
is given by a field which depends at the same time of a weighted average Ξ,
of the difference between each xk and the phase of the mean-field θ, where

Ξ =
N∑
l=1

Γl e
i(xl−θ) . (1.6)

It must be clarified that the term “oscillator” is used only in the sense that
Eqs. (1.5a)-(1.5b) resemble to the equations of a physical pendulum. The
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intermediate step to reduce the system (1.3) to (1.1), is to transform the
derivatives to a symplectic (area preserving) discretization by a first order
implicit Euler integrator,

xn+1
k = xnk +

τ

Γk
pn+1
k , (1.7a)

pn+1
k = pnk − 2τΓk

√
Jn+1 sin(xnk − θn) , (1.7b)

θn+1 = θn − Uτ − τ√
Jn+1

N∑
l=1

Γl cos(xnl − θn) , (1.7c)

Jn+1 = Jn + 2τ
√
Jn+1

N∑
l=1

Γl sin(xnl − θn) . (1.7d)

Then the system (1.1) follows from the definitions:

ynk =
τ

Γk
pnk , γk = 2τ 3Γk , Ω = Uτ (1.8)

κn = 2τ 2
√
Jn , ηn =

N∑
l=1

γl sin(xnl − θn) , (1.9)

and the algebraic manipulation of (1.7d) to make the evolution of κn+1

explicit. However, as stated in subsection 1.2.1, this change of variables
(Jn → κn) does not preserve the symplectic structure of the system of equa-
tions.

The relevance of this type of hamiltonian system lies in its mean-field
coupling, which considerably simplifies the interaction between its main com-
ponents compared with other cases like the N-body problem or the dynamo
problem. Yet, the interaction of the particles exist and is not a given func-
tion like in passive transport problems, so the system can be considered an
intermediate model.

This self-consistent dependency is a trace of the original physical model,
a Vlasov-Poisson system, which models a problem of active transport.

1.1.1 The transport problem

Transport is the the general term to refer to any phenomena were the spatial
distribution of substance A changes in time due the action of an external field
F . The study of transport is a problem of common interest to fluid dynamics
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and plasma physics. A few examples of some of these problems include
the dispersion of pollutants in the atmosphere and oceans, the magnetic
confinement of fusion plasmas, and more. Broadly speaking it is possible
to distinguish two different types of transport: passive and active. The
first refers to the study of passive scalars which are transported by the flow
without affecting it (like the dispersion of a drop of ink in a glass of water),
and the later, the study of active scalars that modify the flow while been
transported. The prototypical equation to model these type of transport for
continuous media is an advection-diffusion equation of the form,

∂tC + v · ∇C = D∇2C, (1.10)

where C is the transported scalar, D the diffusivity and v the velocity field.
In the passive transport problem v is assumed independent of C while in
the active, they are related by a dynamical self-consistency constraint of the
form F(C,v) = 0, involving an integral and/or differential operator.

1.1.2 The original physical problem

The original problem from which systems (1.1) and (1.5) are reduced, cor-
responds to two different physical problems of active transport: the single
wave model from plasma physics and a particular case of the vorticity defect
problem from fluid mechanics. The active transport problem is the following,

∂tf + u∂xf + (∂xφ)∂uf = 0 , (1.11)

with a dynamical self-consistency constraint of a Poisson problem,

− ∂2

∂x2
φ(x, t) =

∫ ∞
−∞

f(x, u, t)du , (1.12)

that can be rewritten in Fourier space as,

k2φ̃(k, t) =

∫ ∞
−∞

f̃(k, u, t)du , (1.13)

where the tilde correspond to Fourier transform.
The physical model of interest studies the growth of a localized1 small2

perturbation of fin = F0 + δF immersed in a fout = F0 constant. For phys-
ical reasons and actual experimental observations, the hamiltonian function

1For u ∈ (u0 − ε, u0 + ε).
2δF = O(ε)
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relevant for this model only considers one (principal) mode,

ψ = −1

2
u2 + φ = −1

2
u2 + a(t) eix + a∗(t)e−ix , (1.14)

where φ = 0 in the outer region. The known relations between the hamil-
tonian function (streamfunction) and the original variables: v = (u, ∂xφ) =
ẑ ×∇ψ and f = ∇2ψ let a matched asymptotic expansion between a inner
(φ = O(1)) and outer (φ = O(ε2)) regions to be computed, leading to a
reduced equation for the dynamical constraint,

da

dt
− iUa =

i

2π

∫ ∞
−∞

∫ 2π

0

e−ixf(x, u, t)dxdu , (1.15)

where U is a given real constant (see Ref. [7]). The system formed by the
equations (1.11), (1.14) and (1.15) is often referred as the single wave model
(SWM).

Although it is not of capital importance to understand mathematical
manipulations done over the equations of the SWM for the rest of this work,
a more concise of the physical meaning of the quantities (t, x, u, f, φ) may
help to understand better the results found or at least picture them in a
physical frame.

In the original plasma physics problem from which the SWM was pro-
posed in the 70’s in Ref. [5], f corresponds to the perturbation δF∗ over
electron probability distribution F∗ of a (one dimensional) beam interacting
with a cold plasma, (x, u) corresponded to the relative position and velocity
of the electrons and φ to the electrostatic potential. The SWM in plasma
physics is a phenomenological model to describe the observed behavior of a
marginally stable plasma that responds in a linear 3 manner away from the
linear regimen of the system.

In Refs. [6, 7] using a critical layer approximation (matched asymptotic
expansions), it was possible to give a derivation of the SWM from a Vlasov-
Possion system (see figure 1.1). For this derivation to work it was critical
to assume a scaling between the growth rate λ of the electrical potential
φ and the distance ε from the localized instability boundary. The right
scaling, corresponded to the trapping scaling φ ∼ ε2, which is supported by
experimental and numerical studies of the beam-plasma instability [15, 16,
17].

3For the dispersion relation of f in the plasma interaction, not an ODE linear response.
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Figure 1.1: Sketch of a localized perturbation δF∗ on a marginally stable
equilibrium F∗.

The fluid mechanics interpretation of the model was first introduced in
Ref. [1], as the vorticity defect model (see figure 1.2). In this approach, f
is labeled ζ and corresponds to the vorticity of a two-dimensional inviscid,
incompressible fluid, (x, u) now correspond to the cartesian coordinates (x, y)
of the fluid, and φ corresponds to a perturbation in the streamfunction ψ of
a plane Couette flow. Also in this scheme, Eq. (1.11) corresponds to taking
the curl of the Navier-Stokes equation, while Eq. (1.13) corresponds to the
dynamical constraint or self-consistency condition ζ = z·∇×v, the definition
of the vorticity scalar, rewritten in terms of ψ. In this interpretation, the
SWM describes in the weak instability regime the evolution of a localized
small perturbation on the constant vorticity field.

1.2 Symmetries and conserved quantities

The system (1.1) inherits several properties from the continuous model (1.3),
some of them can be written in a shorter form for the implicit version (1.7)
and for that reason they are presented for the later map.

First it is interesting to find that there exist a symplectic structure for
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Figure 1.2: Sketch of a localized vorticity perturbation or “defect”, ζ, em-
bedded in a constant vorticity shear flow.

the map (1.7) due the discretization procedure that was used, see Ref. [2].
Introducing the canonical conjugated variables: q = (x1, ..., xN , θ) and p =
(p1, ..., pN , J), the map (q,p)n → (q,p)n+1 can be obtained from a generating
function, S = S(qn,pn+1) according to,

qn+1 =
∂S

∂pn+1
, pn =

∂S

∂qn
, (1.16)

where S can be written as,

S = Sp + Sf + Si (1.17)

where Sp determines the evolution of the N -oscillators in absence of the mean
field,

Sp =
N∑
k=1

[
xnkp

n+1
k +

τ

2Γk
(pn+1
k )2

]
, (1.18)

Sf determines the uncoupled evolution of the field,

Sf = θnJn+1 − UτJn+1 , (1.19)
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Si determines the interaction of the mean-field with the particles,

Si = −2τ
N∑
k=1

√
Jn+1Γk cos(xnk − θn) . (1.20)

The map (1.7) has several symmetries and invariants. A first symme-
try corresponds to the fact that for any δ the map is invariant under the
transformation,

(x1, x2, ..., xN , θ)→ (x1 + δ, x2 + δ, ..., xN + δ, θ + δ) . (1.21)

Which is a consequence of the definition of ψ in the single wave model,

ψ = −y
2

2
+ a(t)eix + a∗(t)e−ix

= −y
2

2
+
√
J(t) cos(x− θ(t)) ,

where it is always possible to redefine the position of the origin on x and the
phase.

Another relevant symmetry of the map (1.7), in the case with U = 0 is,

(xk, pk, θ,Γk)→ (−xk,−pk,−θ,−Γk) . (1.22)

This symmetry has been used in the continuous system [4] to describe sym-
metric configurations that represent a dipole, a pair of particles with opposite
charge (Γ2 = −Γ1), affected by a mean field. Because of this particular in-
terpretation, a configuration of the system will be called symmetric if its
invariant under the transformation Eq. (1.22). It is straightforward to show
that the symmetric states are preserved by the map.

In an analog way to the continuous system’s momentum and total energy,
it is possible to define two quantities,

Pn =
N∑
k=1

pnk + Jn , (1.23)

Hn =
N∑
k=1

[
(pnk)2

2Γk
− 2Γk

√
Jn cos(xnk − θn)

]
− UJn , (1.24)
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and show that,
Pn+1 = Pn , (1.25)

Hn+1 = Hn +O(Γτ 2) +O(τ 3) . (1.26)

As it is usually the case, the energy conservation breaks down even if the
discretization is symplectic. However, the conservation of linear momentum
holds.

1.2.1 An explicit symplectic standard mean-field map

The map (1.1) is not symplectic and the simplest way of showing this is by
computing the determinant of the Jacobian,

∆ = |DT | = κn

κn+1
6= 1 . (1.27)

On each iteration, the volume of the phase space will vary.
A way to fix this, at the expense of having a more cumbersome expression,

is to solve (1.7d) for
√
Jn+1, finding,

√
Jn+1 = A+

√
A2 + Jn (1.28)

and,
Jn+1 = Jn + 2A2 + 2A

√
A2 + Jn , (1.29)

where A = τ Im(Ξn) and Ξn is defined as,

Ξn =
N∑
l=1

Γl e
i(xnl −θ

n) . (1.30)

A sympliectic version of the single wave map model is,

xn+1
k = xnk +

τ

Γk
pn+1
k , (1.31a)

pn+1
k = pnk − 2τΓk(A+

√
A2 + Jn) sin(xnk − θn) , (1.31b)

θn+1 = θn − Uτ − τRe(Ξn)

A+
√
A2 + Jn

, (1.31c)

Jn+1 = Jn + 2A2 + 2A
√
A2 + Jn . (1.31d)
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The Jacobian matrix of this map is,

(DT)−1 JDT = J , (1.32)

where T is the map in (1.31) written (ordered) in Darboux coordinates:
(x1, .., , xN , θ, p1, ..., pn, J), and J is the usual symplectic matrix,

J =

(
0 I
−I 0

)
. (1.33)

However, for actual computation of the map, (1.1) and (1.31) are equiv-
alent. Constants aside, the evolution equation for Jn+1 in (1.31) is just the
square of the evolution of equation of κn+1 from (1.1).

1.3 Coherent structures and transport

Despite its relative mathematical simplicity, the SWM is able to capture im-
portant dynamics of the full Navier-Stokes equation. In particular, as Fig. 1.4
from Ref. [1] shows, the SWM exhibit the standard Kelvin-Helmholtz insta-
bility leading to the formation of the familiar cats’ eyes vorticity structure
found in unstable shear flows. The result in Fig. 1.4 was obtained from
the direct numerical integration of Eqs. (1.11) and (1.15) with D = 0.001,
U = −1, and initial condition:

ζ(x, y, t = 0) = e−y
2/2 [1− 0.2 y cos(x)]. (1.34)

The evolution of the self-consistent map in Eqs. (1.1) has been studied
for different initial conditions. Figures 1.4 and 1.5 show the results of a
simulation of N = 13, 440 coupled maps with initial conditions {(x0

k, y
0
k)}

uniformly distributed on the region [0, 2π] × [−0.3, 0.3] in the (x, y) plane
and γk = 3 × 10−6 for k = 1, . . . N . The initial condition of the mean-field
was κ0 = 10−4 and θ0 = 0, and we assumed Ω = 0.

The simulations show that the self-consistent map reproduces the coher-
ent structures observed in the single wave model (Figure 1.3). In particular
for this kind of initial conditions with the particles (xk, yk) originally clumped
together around y = 0, it was observed a big portion of particles would stay
trapped, clustered in the center of the cat’s eye while particles closer to the
instantaneous separatrix present a strong dispersion.
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Figure 1.3: Cat’s eye formation and vorticity mixing in the single wave model,
Eqs. (1.11), (1.14) and (1.15), with initial conditions in Eq. (1.34). The gray
scale denotes the vorticity values with white corresponding to ζ = 1 and dark
gray corresponding to ζ = 0 [After Ref. [1]].

The evolution of the mean field is represented by the variables (κn, θn),
which are shown in Fig. 1.5. The behavior of κn starts with a fast growth
until it achieves a maximum value, after that, the κn oscillates around a
mean value κ̄ and the amplitude of oscillation is bounded by ∆κ. A similar
situation is observed with the behavior of ϑn+1 = θn+1 − θn.

Different types of dynamics, including cases in which the magnitude κn

of mean field decays to zero or saturates at a constant fixed value can be
found in Refs. [2, 3] for similar self-consistent maps.

A particular observation from Fig. 1.5, is that κn does not reach κG =
0.971635406, the critical value for the standard map. Although it is reviewed
in the next chapter, the main implication of this remark is that if κn were
constant, then for any κ < κG there can not be global diffusion (i.e. un-
bounded evolution on yk of any initial condition) because of the existence of
invariant circles, topological barriers in the phase space, see Ref. [18].

The existence or non-existence of global diffusion in the self-consistent
map depends in a nontrivial way on the dynamics of κn. On a more fun-
damental level, the observed rapid growth of κn for a given initial condition
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Figure 1.4: Time evolution of the self-consistent map in Eq. (1.1) with N =
13440 initial conditions uniformly distributed in [0, 2π] × [−0.3, 0.3] with
κ0 = 10−4, γk = 3 × 10−6, θ0 = 0 and Ω = 0. The frames show the
instantaneous coordinates of the N initial conditions, at n = 2, 6, 12, 20 and
66 in the region [0, 2π]× [−0.8, 0.8] of the (x, y) plane. The colors label the
y-coordinate of the initial condition, with red denoting y0

k close to y = 0 and
blue further away.

is closely related to the linear stability properties of the corresponding ini-
tial condition in the single wave model. In particular, Ref. [6] presents the
necessary and sufficient conditions for the linear stability (i.e., exponential
growth of the mean field amplitude) of a given initial condition in the con-
text of the continuous, N → ∞ limit. These ideas might help understand
the conditions for the growth of κn. However, one must be careful before
drawing conclusions as the self-consistent map model discussed here is ob-
tained by simplifying drastically the single wave model by approximating the
continuous limit when N →∞.

Alternatively, the evolution pictured in Fig. 1.4 and 1.5 can be pictured
together as in Fig. 1.6, where the instantaneous hyperbolic invariant stable

24



(a) (b)

Figure 1.5: Time evolution of the mean-field variables in the self-consistent
map in Eq. (1.1) with initial conditions taken in a uniform grid in [0, 2π] ×
[−0.3, 0.3] with N = 13440, κ0 = 10−4, γk = 3× 10−6, θ0 = 0 and Ω = 0. κn

is shown in (a) and ϑn+1 = θn+1 − θn in (b).

and unstable manifolds are drawn on top of the projected phase space co-
ordinates (xk, yk). Here instantaneous means that the hyperbolic invariant
manifolds drawn correspond to the fixed hyperbolic point in standard map
computed with perturbation parameter equal to the value of κn and then
displaced on x by the value of θn.

Perhaps contrary to the intuition, it was observed in these simulations
that map (1.1) shows global diffusion even when κ̄ < κG. It is also worth
mentioning that when the instantaneous coordinates (xnk , y

n
k ) of each degree-

of-freedom are plotted on the same plane like in Fig. 1.4, the amplitude
and shape of the cat’s eye structure is in good agreement with the invariant
manifolds emanating from the hyperbolic fixed point of the standard map
calculated with a perturbation parameter equal to the instantaneous value
of κn+1. This gives rise to the following question: What is the mechanism that
allows the diffusion across the invariant curves on the self-consistent map?
In Figure 1.6, it can be observed the formation, for relatively small times, of
the macro particle coherent structure trapped around the elliptic fixed point,
and at the same time can be seen the formation of the heteroclinic tangle
responsible for the high mixing region around the separatrix of the cat’s eye.
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Figure 1.6: Plot of the projected phase space coordinates (xi, yi) on the (x, y)-
plane of a simulation of the self-consistent map in Eq. (1.1) in the oscillatory
κ regimen. Also shown in black is the heteroclinic tangle generated by the
unstable invariant manifold of the hyperbolic fixed point of the standard map
with perturbation parameter equal to κn. The initial conditions are the same
as those in Fig. 1.4, except that to enhance the heteroclinic tangle the higher
values κ0 = 0.005 and γ = 0.0005 were used.

1.4 Low N cases

An approach that mimics the work from Refs. [1, 4, 19] to explain the appar-
ent existence of coherent structures in a high dimensional dynamical system
such as map (1.1) consists in the study of lower dimensional cases of the
system that reduces to robust integrable systems. If these integrable cases
are robust enough (as in Ref. [4]) then sets of particles with initial conditions
(x0

j , y
0
j ) clustered around the stable regions (macroparticles) may persist in

a coherent fashion. Again, following these two references, the easiest and
simplest reduced cases of self-consistent map to study correspond to the
N = 1 and N = 2. To simplify the algebra and facilitate the comparison
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with results from Refs. [1] and [4], the implicit version of the self-consistent
map, Eqs. (1.7), was chosen. The use the explicit symplectic version from
Eqs. (1.31) yield similar results.

1.4.1 N = 1 Single wave map

For N = 1 the dimension of the map is D = 4,

xn+1 =xn +
τ

Γ
pn+1 (1.35a)

pn+1 =pn − 2τΓ
√
Jn+1 sin (xn − θn) (1.35b)

θn+1 =θn − τU − τΓ√
Jn+1

cos (xn − θn) (1.35c)

Jn+1 =Jn + 2τΓ
√
Jn+1 sin (xn − θn) . (1.35d)

Introducing the symplectic change of coordinates (see Sec. 2.2.1) given by,

φ = x− θ , ψ = x+ θ (1.36)

u =
p− J

2
, w =

p+ J

2
, (1.37)

the system transforms into:

φn+1 =φn +
τ

Γ
un+1 + C+ +

τΓ√
w0 − un+1

cos (φn) , (1.38a)

un+1 =un − 2τΓ
√
w0 − un+1 sin (φn) , (1.38b)

ψn+1 =ψn +
τ

Γ
un+1 + C− − τΓ√

w0 − un+1
cos (φn) , (1.38c)

wn+1 =wn . (1.38d)

where C± = τ
(
w0

Γ
± U

)
. The Eqs. (1.38a)-(1.38b) constitute a 2-D map

that preserves area, while (1.38c) is just a function of the map: ψn+1 =
ψn+F(φn, un+1) and wn is a constant of motion (half of the total momentum
P).

And it is possible to write a generating function for the 2-D map (1.38a)-
(1.38b):

S(φn, un+1) = (φn + C+)un+1 +
τ

2Γ

(
un+1

)2 − 2τΓ
√
w0 − un+1 cos (φn) .

(1.39)
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In Fig. 1.7 is possible to appreciate the phase space of the 2-D map
(1.38a)-(1.38b) for different values of the parameters, while in Fig. 1.8 shows
the 3-D dynamics of map (1.38).

Period one periodic orbits

A natural macroparticle state that intuitively should approximate the behav-
ior observed in Fig. 1.3 and 1.4, should be around the linear elliptic stable
period one periodic orbit. And because of this is worth assessing when it
turns unstable. The period one periodic orbits from the 2-D map (1.38a)-
(1.38b) are given by

φ∗ = mπ, m = 0, 1 , (1.40)

and roots of,

τ

Γ
u∗ + C+ +

(−1)mτΓ√
w0 − u∗

= 2`π , ` ∈ Z , (1.41)

which may have zero, one or two roots for each resonance ` depending on the
values of the parameters: τ , Γ, C+ and w0, see Fig. 1.9. For φ∗ = 0 there is
always one root, however for φ∗ = π there is a bifurcation. Defining,

wcrit =

(
9

32
Γ4

)1/3

− Γ

2
U , (1.42)

there will be two period one orbits if w > wcrit, none if w < wcrit and only
one if w = wcrit, for the ` = 0 resonance4.

The linear stability of the period one orbits is determined by Greene’s
residue (see Sec. 2.6), which in this case is,

R = τ 2
√
w0 − u∗

(
(−1)m +

Γ2

2(w0 − u∗)3/2

)
. (1.43)

where

0 < R < 1 → stable

R < 0 or R > 1 → unstable

With this criteria, the orbit for φ∗ = 0 is always stable for small values of

4Here C+ has been replaced for its definition in term of w and U to avoid inconsistencies.
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Figure 1.7: Samples of the phase space for the 2-D map (φ, u) from (1.38a)-
(1.38b) for different values of w0, τ and Γ, with U = 0.
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Figure 1.8: Phase space for the 3-D map (φ, ψ, u) from (1.38a)-(1.38c) and
a detail on the elliptic regime. Note that the orientation is not the same; it
was changed for appreciation purposes.

Figure 1.9: Possible roots in Eq. 1.41 in case ` = 0, where the intersection
between the solid line and the dashed curve always happens while the dot-
dashed branch may have zero, one or two intersections.
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Figure 1.10: Phase space of the 2-D map (φ, u) from (1.38a)-(1.38b) for values
of Γ around the bifurcation of the ` = 0 resonance (with U = 0). Note that
4
√

32/9 ∼ 1.373178...

τ and Γ. While for φ∗ = π, R = 0 for the critical value wcrit and R = ±ε
for the w > wcrit, in other words one point is stable while the other one is
unstable. This can be appreciated from the third panel in Fig. 1.7 and in
Fig. 1.10.

It should be noted that as |`| increase (and so
√
w − u∗) the linear stability

of the fixed point given by the residue in Eq. (1.43) will tend to make the
fixed points unstable. Which is consistent with the appreciation that the map
(1.38a)-(1.38b) should behave as a standard map with high perturbation
parameter for high values of −u. This means that the map turns more
“stochastic” as u decreases. This can be appreciated from the fourth panel
in Fig. 1.7.

Macroparticle simulations

Inspired by Refs. [1] and [4], it may be physically relevant to find if a coher-
ent structure that approximates the stable solutions for N = 1 can persist
in the context of the single wave map model (1.1). The coherent struc-
ture that seems appropriate for the symmetry, is a set of initial conditions
(x0

1, y
0
1, ...x

0
N , y

0
N , κ

0, θ0) clustered around a (x0, y0, κ0, θ0) equivalent to a sta-
ble fixed point of the 2-D map (1.38a)-(1.38b). The specific set of initial
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conditions and parameters used, referred as macroparticle, consist in N pairs
{(x0

i , y
0
i )}i∈[1,N ] with a 2-D Gaussian distribution,

f(x, y;x0, y0, σ1, σ2) =
1

2πσ1σ2

exp

(
−1

2

(
x− x0

σ1

)2

− 1

2

(
y − y0

σ2

)2
)
,

(1.44)
and

κ0 = 2τ 2
√
w0 − u0 , θ0 = 0 , (1.45)

with
γk = 2τ 3Γ/N x0 = φ0 y0 =

τ

Γ

(
u0 + w0

)
. (1.46)

Where τ and Γ are parameters from the 2-D map (1.38a)-(1.38b) and (φ0, u0)
correspond to the coordinates of a period 1 (elliptic) fixed point.

The election of γk in (1.46) guaranties that the total intensity (vorticity)
Γ and initial amplitude of mean field κ (J) are the same in their respective
units for maps (1.1) and (1.38a)-(1.38b). In Ref. [4] the parameters between
the different equivalent systems were chosen in a way that the total energy
was the same, this could not be translated entirely to the present case since
both maps do not preserve energy and may change it at different rates.

With the scheme in (1.44)-(1.46) is possible to translate a given set of
values of the parameters (w0, τ,Γ) and fixed point (φ0, u0) from map (1.38a)-
(1.38b) to initial conditions and parameters for (1.1). However this may
not guaranty that the initial state persist in a coherent fashion. There are
two main scenarios which may lead to deformation or destruction of the
macroparticle state: an off centered initial distribution and big ratio between
τ and Γ.

To illustrate them, we consider the map (1.38a)-(1.38b) for values of
the parameters w0 = 1/

√
2 ∼ 0.707, τ = Γ = 0.2 and the first elliptic

point (φ0, u0) = (0,−1/
√

2), see Fig. 1.11. This election of values for the
parameters yield thorough (1.44)-(1.46) a macroparticle centered in the origin
(x0, y0) = (0, 0) that after the iteration seems stable, as it can be appreciated
in Figs. 1.12 and 1.13. However, when the macroparticle is not centered in
the origin, it tends to be deformed even for small values of (σ1, σ2), as it can
be seen in Fig. 1.14.
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Figure 1.11: Phase space for the 2-D map (1.38a)-(1.38b) with values of the
parameters (w, τ,Γ).
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Figure 1.12: Evolution of the self-consistent map in Eq. (1.1) for macropar-
ticle initial conditions (1.44) with N = 13440, κ0 = 0.113136, γk =
1.0714 × 10−6, θ0 = Ω = x0 = y0 = 0, σ1 = 0.444 and σ2 = 0.2. The
frames show the instantaneous coordinates of the N initial conditions , at
n = 0, 8, 24, 32, 48, 80, 104, 138 and 192 in the region [−π, π] × [−0.9, 0.9] of
the (x, y) plane. Superposed on each frame it is plotted the instantaneous
stable and unstable invariant manifolds of the hyperbolic fixed point. The
colors represent the density of (x, y) points, with purple low density and red
high density.
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Figure 1.13: Evolution of the mean field (κ, θ) corresponding to Fig. 1.12 for
the first 200 iterations.
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Figure 1.14: Evolution of the self-consistent map in Eq. (1.1) for almost
identical macroparticle initial conditions to those in Fig. 1.12, only changing
y0 = 0.1. The frames show the instantaneous coordinates of the N initial con-
ditions , at n = 0, 8, 12, 16, 20, 28, 40 and 72 in the region [−π, π]× [−0.9, 0.9]
of the (x, y) plane.
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Figure 1.15: Evolution of the mean field (κ, θ) corresponding to Fig. 1.14 for
the first 200 iterations.

The data obtained from phase space of the 2D map (1.38a)-(1.38b) served
to find the parameter values for which the macroparticle remained coherent.
However an extra criteria was needed to chose adequate values of τ and Γ
since their ratio could impact directly on the values of κ0 and γk, which cause
the macroparticle to be destroyed in just a few iterations, as in Fig. 1.16. The
values of {κ0, γk} of Fig. 1.16 were chosen to be analogous to the parameter
values {w, τ,Γ} of first frame in Fig. 1.7, which does not look too dissimilar
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to Fig. 1.11.
Additionally Fig. 1.16 shows that it is possible to find initial conditions

that lead to the filamentation of the macroparticle observed in Ref. [4].

Figure 1.16: Evolution of the self-consistent map in Eq. (1.1) for the
macroparticle initial conditions from Fig. 1.12 just varying x0 = −0.1,
κ0 = 1.1314×10−3 and γk = 3.57×10−10. The frames show the instantaneous
coordinates of the N initial conditions, at n = 0, 8, 16, 24, 32, 40, 48, 100 and
172 in the region [−π, π]× [−0.25, 0.25] of the (x, y) plane.
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Figure 1.17: Evolution of the mean field (κ, θ) corresponding to Fig. 1.16 for
the first 200 iterations.
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1.4.2 N = 2 Standard mean-field map

For N = 2 the mean-field map becomes the 6-D map

xn+1
1 =xn1 +

τ

Γ1

pn+1
1 (1.47a)

xn+1
2 =xn2 +

τ

Γ2

pn+1
2 (1.47b)

pn+1
1 =pn1 − 2τΓ1

√
Jn+1 sin (xn1 − θn) (1.47c)

pn+1
2 =pn − 2τΓ2

√
Jn+1 sin (xn2 − θn) (1.47d)

θn+1 =θn − τU − τ√
Jn+1

[Γ1 cos (xn1 − θn) + Γ2 cos (xn2 − θn)] (1.47e)

Jn+1 =Jn + 2τ
√
Jn+1 [Γ1 sin (xn1 − θn) + Γ2 sin (xn2 − θn)] . (1.47f)

This map has one more degree of freedom and can not be reduced as
in the N = 1 case, but it is possible to do it for the symmetrical case, as
in Ref. [4]. The symmetry involved corresponding to the one in Eq. 1.22,
warrants that if the initial conditions and parameters are chosen as,

x0
2 = −x0

1 , p0
2 = −p0

1 , θ0 = 0 ,

Γ2 = −Γ1 , U = 0 .

then (xn2 , p
n
2 ) = −(xn1 , p

n
1 ) for all n. So the real dimension of the problem is

reduced from 6 to 4.
It would be a natural choice for the reader to just substitute the symmetric

case initial conditions and parameters in map (1.47) and then work with
the reduced independent equations of the map, however this may lead to
significant confusion about the properties or lack of them in the resultant 2-D
map, since the reduced variables are not symplectic conjugates. Instead, the
procedure chosen is to first modify through symplectic changes of coordinates
the map (1.47) and then substitute the symmetric states conditions. The first
change of coordinates for (1.47) proposed is,

ϕ =
x1 − x2

2
, µ =

x1 + x2

2
, (1.48)

u = p1 − p2 , m = p1 + p2 , (1.49)
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where ϕ (µ) is the symplectic conjugate of u (m). The resulting map is,

ϕn+1 =ϕn +
τ

4Γ1

(
mn+1 + un+1

)
− τ

4Γ2

(
mn+1 − un+1

)
(1.50a)

un+1 =un − 2τ
√
Jn+1 [Γ1 sin (µn + ϕn − θn)− Γ2 sin (µn − ϕn − θn)]

(1.50b)

µn+1 =µn +
τ

4Γ1

(
mn+1 + un+1

1

)
+

τ

4Γ2

(
mn+1 − un+1

)
(1.50c)

mn+1 =mn − 2τ
√
Jn+1 [Γ1 sin (µn + ϕn − θn) + Γ2 sin (µn − ϕn − θn)]

(1.50d)

θn+1 =θn − τU − τ√
Jn+1

[Γ1 cos (µn + ϕn − θn) + Γ2 cos (µn − ϕn − θn)]

(1.50e)

Jn+1 =Jn + 2τ
√
Jn+1 [Γ1 sin (µn + ϕn − θn) + Γ2 sin (µn − ϕn − θn)]

(1.50f)

Imposing the conditions: Γ1 = −Γ2 = Γ and U = 0, the map reduces to,

ϕn+1 =ϕn +
τ

2Γ
mn+1 (1.51a)

un+1 =un − 2τΓ
√
Jn+1 [sin (µn + ϕn − θn) + sin (µn − ϕn − θn)] (1.51b)

µn+1 =µn +
τ

2Γ
un+1 (1.51c)

mn+1 =mn − 2τΓ
√
Jn+1 [sin (µn + ϕn − θn)− sin (µn − ϕn − θn)] (1.51d)

θn+1 =θn − τΓ√
Jn+1

[cos (µn + ϕn − θn)− cos (µn − ϕn − θn)] (1.51e)

Jn+1 =Jn + 2τΓ
√
Jn+1 [sin (µn + ϕn − θn)− sin (µn − ϕn − θn)] (1.51f)

From the expressions of (1.51d) and (1.51f), can be noted that: P = Jn+1 +
mn+1 = Jn + mn. So it is natural to introduce a new change of variables
with a momentum variable proportional to that sum (P),

ρ = θ + µ , σ = µ− θ , (1.52)

r =
J +m

2
, s =

m− J
2

, (1.53)
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And the system reduces again to,

ϕn+1 = ϕn +
τ

2Γ

(
rn+1 + sn+1

)
, (1.54a)

un+1 = un − 2τΓ
√
rn+1 − sn+1 [sin (σn + ϕn) + sin (σn − ϕn)] , (1.54b)

σn+1 = σn +
τ

2Γ
un+1 +

τΓ√
rn+1 − sn+1

[cos (σn + ϕn)− cos (σn − ϕn)] ,

(1.54c)

sn+1 = sn − 2τΓ
√
r0 − sn+1 [sin (σn + ϕn)− sin (σn − ϕn)] , (1.54d)

ρn+1 = ρn +
τ

2Γ
un+1 − τΓ√

rn+1 − sn+1
[cos (σn + ϕn)− cos (σn − ϕn)] ,

(1.54e)

rn+1 = rn . (1.54f)

And finally, the symmetric case initial conditions are imposed, which in
these coordinates are: u0 = σ0 = ρ0 = 0. So the map reduces to,

ϕn+1 = ϕn +
τ

2Γ

(
r0 + sn+1

)
, (1.55a)

un+1 = un = 0 , (1.55b)

σn+1 = σn = 0 , (1.55c)

sn+1 = sn − 4 τΓ
√
r0 − sn+1 sin (ϕn) , (1.55d)

ρn+1 = ρn = 0 , (1.55e)

rn+1 = r0 . (1.55f)

This is a 2-D map on (ϕ, s) with parameters: (r0, τ,Γ), that do not preserve
area. This apparent contradiction is easily explained since these 2 variables
are not symplectic conjugates. The effect of this lack of area-preserving can
be observed in Figs. 1.18 and 1.19.

Furthermore, rewriting Eq. (1.54d) to be explicit for sn+1, gives,

sn+1 = sn − 8A2 − 4A
√

16A2 + r − sn , (1.56)

where,
A = τΓ sin(ϕn) . (1.57)

This perturbation function V ′ = 8A2 + 4A
√

16A2 + r − sn does not have in
general average zero, so a drag is expected to be observed. In particular for
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Figure 1.18: Sample of the phase space for the 2-D map (ϕ, s) from map
(1.55a) and (1.55d) for different number N of iterations. The orbits with ini-
tial conditions taken between resonances display a monotonous drag towards
negative values of s, while orbits with initial conditions inside the resonances
behave as an stable focus.

the case r − sn � 1, the perturbation function has the form,

V ′ ≈ 8τ 2Γ2

(
1− cos(2ϕn)

2

)
+ 4τΓ

√
r − sn sin(ϕn) , (1.58)

that clearly does not have zero average, making this map dissipative for
certain regions of the phase space.

The Jacobian matrix of this map is,

DT =

(
1 + τ

2Γ
a τ

2Γ
b

a b

)
, (1.59)

where,

a =
∂sn+1

∂ϕn
=
−4τΓ(r − sn+1) cos(ϕn)√
r − sn+1 − 2τΓ sin(ϕn)

, (1.60)

b =
∂sn+1

∂sn
=

√
r − sn+1

√
r − sn+1 − 2τΓ sin(ϕn)

. (1.61)
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Figure 1.19: Detail of the structure inside the resonances ` = 1 (first panel)
` = 0 (second, third and forth panels) from figure 1.18 for different number
of iterations N .
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Curiously, there is an additional orbit for map (1.55a)-(1.55d) not present
in previous section for map (1.38a)-(1.38b), the orbit corresponding to sn =
r0. This orbit in the 2-D map (1.55a)-(1.55d) behaves as a standard orbit
from the integrable map. The Jacobian matrix, DT , around the orbit sn = r0

has the form,

DT =

(
1 τ

2Γ

0 1

)
, (1.62)

so the area is preserved (locally).

Period one periodic orbits, case N = 2 symmetric

The period one periodic orbits from the 2-D map (1.55a)-(1.55d) are given
by,

ϕ∗ = mπ , m = 0, 1 , (1.63)

and

s∗ = −r0 +
2Γ

τ
2nπ , n = 0, 1, 2, ... . (1.64)

The stability of these orbits can not be obtained from the Greene’s residue
since the map is not area preserving, however it is possible to obtain certain
information around the fixed points. It is easy to show that the area around
any of the fixed points is conserved since,

|DT (ϕ∗, s∗)| = ∂sn+1

∂sn

∣∣∣
(ϕ∗,s∗)

= 1 . (1.65)

After performing simulations for different values of the parameters, it
was observed that the iteration of this map cause to any initial condition
outside a resonance to monotonically decrease sn and transitioning (jumping)
the resonances through the hyperbolic point (m = 1). The behavior inside
the resonances is more complicate, any initial condition inside a resonance
tends to fall to the elliptic point (m = 0) but not in an increasing slow yet
monotonous manner.

Dipole simulations

As in the case of the macroparticle in last subsection and taking Ref. [4] as
a guiding example, it may be physically relevant and insightful to find if a
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coherent structure that approximates the stable solutions for N = 2 can also
persist in the context of the single wave map model (1.1).

The initial conditions used are of two identical symmetric macroparti-
cles with opposite charge γ and θ0 = 0. More in detail, these initial con-
ditions consist of two set of N identical particles described by N points
{(xk, yk)}k=1,...,N with γk = γ and {(x̃k, ỹk)}k=1,...,N with γ̃k = −γ, each
following a Gaussian distribution (1.44) with the same width (σ1, σ2) but
opposite centers (x0, y0) = (−x̃0,−ỹ0). Additionally the mean field initial
values (κ0, θ0) and (γ, x0, y0) are set as,

κ0 = τ 2
√

8r0 , θ0 = 0 , (1.66)

γ = 2τ 3Γ/N x0 = ϕ0 + ε y0 =
τ

Γ
s0 , (1.67)

where r0, τ and Γ are parameters from the 2-D map (1.55a)-(1.55d) and
(ϕ0, s0) are the coordinates of a period 1 fixed point. Due the symmetry of
the problem, it is necessary to add an small parameter ε to x0 to ensure that
both macroparticles are not overlapping, at least initially.

A typical evolution of a dipole around the (x, y)-origin can be appreciated
in Fig. 1.20. As in Fig. 1.14, each macroparticle tends to be deformed even
for small values of (σ1, σ2).

1.5 A true macroparticle: the Water-Bag mode

The coherent macroparticle simulation in Figs. 1.12 and 1.13, suggest that
a gaussian macroparticle is an stable structure. To contrast this further, a
different integrable limit is considered in the continuous case, that is the limit
N → ∞. The original PDE system of the single wave has exact solutions
called Bernstein-Greene-Kruskal (BGK) modes [20] and they can be obtained
(see Ref. [7]) in context of deduction of single wave model sketched here in
Sec. 1.1.2. The ansatz to obtain the BGK modes is to propose the distribution
f as a function of the hamiltonian (streamfunction) in the form,

fBGK(ξ, v) = e−H , (1.68)

where ξ = x− ct,

H(ξ, v) =
1

2
(v − c)2 + 2ρ cos(ξ) , (1.69)
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Figure 1.20: Evolution of the self-consistent map in Eq. (1.1) for dipole ini-
tial conditions with N1 = N2 = 6720, κ0 = 0.113136, Γ = 0.032, θ0 = Ω = 0,
x0 = 0.1, y0 = 0.2, σ1 = 0.444 and σ2 = 0.2. The frames show the instanta-
neous coordinates of the N initial conditions at n = 0, 4, 8, 12, 16, 20, 24, 38
and 82 in the region [−π, π] × [−0.9, 0.9] of the (x, y) plane. Overposed on
each frame it is plotted the instantaneous stable and unstable invariant man-
ifolds of the hyperbolic fixed point. The colors represent the the density of
points.

and a = ρeiθe−ict. This leads to a particular condition for the value of c in
terms of ρ (see Refs. [7, 19]). The shape of the BGK mode, fBGK , and the
contour plot of H can be appreciated in Figs. 1.21 and 1.22, respectively.

The constant c corresponds to a Galilean change of coordinates, but in
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the context of (1.15), it correspond to an specific value5 of U to make fBGK
an actual solution of the PDE single wave model (1.11)-(1.15).

Figure 1.21: f corresponding to a BGK mode as a function of H: f(ξ, v) =
e−αH , as in (1.68), with c = 0, ρ = 1 and α = 0.15 for appreciation purposes.

In principle it is possible to test the BGK modes using the map (1.7) to
numerically solve (1.3) as a point vortex representation of the PDE SWM
(1.11)-(1.15). However the kind of initial state f of interest here is one

5Refs. [7] and [19] use slightly different definitions for the U used in this chapter,
however in all cases U ∝ c.
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Figure 1.22: Contour plot of the function H from (1.69) for c = 0 and ρ = 1.

with compact support, similar to the discrete Gaussian macroparticle from
previous section. A distribution f more appropriate to this end is the so
called Water-Bag modes [21], that instead of Eq. (1.68), f(H) is defined by,

fWB(ξ, v) =


r , H(ξ, v) ≤ h0 ,

0 , H(ξ, v) > h0 ,
(1.70)

where h0 is a fixed value in the range of H that has a single connected
boundary, h0 ∈ [−2ρ, 2ρ) and r is fixed real number. The shape of fWB can
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be appreciated in Fig. 1.23.

Figure 1.23: Plot of a Water-Bag mode fWB defined as in (1.70) for h0 =
−0.1, ρ = 1 and r = 1.2.

Any function f = f(H) solves trivially (1.11) since the PDE equation is
equivalent to the Poisson bracket {f(H), H}, which is always zero. However
(1.15) can only be satisfied by a specific value of U = U∗. The computation
of (1.15) for fWB with a(t) = ρe−ict yields,

2πU∗ρ = 8r
√
ρI1(χ) , (1.71)
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Figure 1.24: Shape of a Water-Bag mode fWB defined as in (1.70) for h0 =
−0.1, ρ = 1 and r = 1.2.

where

I1(χ) =

∫ cos−1(χ)

−π
cos(η)

√
χ− cos(η)dη = −1

2

∫ 1

−χ

√
1− u2

√
χ+ u

du , (1.72)

where χ = h0/2ρ, so χ ∈ [−1, 1).
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1.5.1 Numerical implementation of the Water-Bag modes

The use of the map (1.7) to simulate the Water-Bag modes requires to intro-
duce a discretization of fWB. Using the one suggested by Ref. [1],

f(x, y, t) =
N∑
j=1

Γjδ[x− xj(t)]δ[y − yj(t)] , (1.73)

bridge the gap between the PDE system and the hamiltonian ODE system
(1.3), however to ensure that both represent exactly the same system it is
necessary Γj values are chosen such that the integral in (1.15) yield the same
values for (1.70) and (1.73). The easiest way to ensure this is to make Γj = Γ
and,

Area(ρ, χ) = 8
√
ρI2(χ) =

N∑
j=1

Γj = NΓ , (1.74)

where

I2(χ) =

∫ cos−1(χ)

−π

√
χ− cos(η)dη . (1.75)

Nevertheless this is impractical because the values of Γ are relatively small
and this forces to decrease τ to the same order to avoid introducing numerical
error due the integrator6. So instead of choosing U∗ as a function of ρ, r and
h0 like in (1.71), it is more convenient to introduce γ = rΓ/2π an independent
value fixed a priori and find U via numerical (Monte Carlo) integration, that
is the following sum,

U∗ =
τγ

ρ2

N∑
j=1

{
(y0
j )

2

2
− 2ρ cos(x0

j)

}
. (1.76)

where ρ = 2τ
√
J0 and

{
(x0

j , y
0
j )
}
j=1,...,N

are points following an uniform dis-

tribution inside the water bag shape S,

S =

{
(x, y)

∣∣∣y2

2
− 2ρ cos(x) ≤ h0

}
. (1.77)

Eqs. (1.76) and (1.77) are written for c = 0 to simplify the coding, leading to
stationary Water-Bag modes. If the interest were to find moving Water-Bag
modes, it is only need to add c̃ to U∗ and c̃τ to the right hand side of (1.7a)
(or (1.31a)).

6The ratio of τ/Γ in (1.7a) has a direct impact in the accuracy of the simulation.
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1.5.2 Numerical Water-Bag modes

The numerical integration of the Water-Bag mode by the iteration of map
(1.7) (or (1.31)) with the (x0

j , y
0
j )-initial conditions of (1.77), θ0 = 0 and

U = U∗ from (1.76) yield stable coherent states, as it can be appreciated in
Figs. 1.25-1.30 for the different values of the free parameters: τ , γ and J0.

The first two cases presented in Figs. 1.25-1.28, both with χ = −0.8,
display the stationary Water-Bag mode predicted. The amplitude of the
mean field J oscillates with an small (≤ 10%) amplitude, much like the case
of the stable macroparticle from Sec. 1.4, mean while the phase of the mean
field θ oscillates with a small amplitude around θ = 0.

The third case in Fig. 1.29-1.30, for χ = −0.4, displays a coherent Water-
Bag mode of bigger relative area,

Area(ρ,−0.4)

Area(ρ,−0.8)
=
I2(−0.4)

I2(−0.8)
=

2.779104

0.900123
= 3.0874714 , (1.78)

with a drift on the phase that does not seem to affect the shape of the
state. An hypothesis of the existence of this drift is that the point vortex
representation (1.73) is not as good approximation to the fWB (1.70) as
χ increases. Additionally, Fig. 1.30 shows an unexpected decrease of the
frequency of oscillation of the mean field variables that can be associated to
the size of the water bag mode.

Additionally to illustrate the option in the model to describe a moving
water-bag mode, a forth case is presented in Fig. 1.31, where c̃τ = 0.05 is
introduced.
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Figure 1.25: Iteration of a Water-Bag mode fWB for N = 13440, χ = −0.8,
τ = γ = 0.005 and J0 = 1. Left frame corresponds to the initial state and
right frame to the 100th iteration of the map (1.31), in the region [−π, π]×
[−0.5, 0.5] of the (x, y) plane. The colors denote the relative density of points.

Figure 1.26: Evolution of the mean field (J, θ) corresponding to Fig. 1.25 for
the first 200 iterations.
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Figure 1.27: Iteration of a Water-Bag mode fWB for N = 13440, χ = −0.8,
τ = γ = 0.01 and J0 = 2. Left frame corresponds to the initial state and
right frame to the 100th iteration of the map (1.31), in the region [−π, π]×
[−0.9, 0.9] of the (x, y) plane. The colors denote the relative density of points.

Figure 1.28: Evolution of the mean field (J, θ) corresponding to Fig. 1.27 for
the first 200 iterations.
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Figure 1.29: Iteration of a Water-Bag mode fWB for N = 26880, χ = −0.4,
τ = γ = 0.0015 and J0 = 1. Left frame corresponds to the initial state and
right frame to the 100th iteration of the map (1.31), in the region [−π, π]×
[−0.6, 0.6] of the (x, y) plane. The colors denote the relative density of points.

Figure 1.30: Evolution of the mean field (J, θ) corresponding to Fig. 1.29 for
the first 200 iterations.
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Figure 1.31: Iteration of a Water-Bag mode fWB for N = 13440, χ = −0.8,
τ = γ = 0.03, J0 = 1 and c̃τ = 0.05. The frames show the instantaneous
coordinates of the N initial conditions at n = 0, 10, 20, 30, 40, 50, 60, 70 and
80 in the region [−π, π] × [−0.5, 0.5] of the (x, y) plane. The colors denote
the relative density of points.
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Chapter 2

Hamiltonian flows and
dynamical systems

This chapter reviews the mathematical concepts, definitions and theorems
that are used in the present work. The discussion has a bias toward the
use of maps as a tool to study the behavior of solutions of a particular kind
of differential equations: the near-integrable hamiltonian dynamical systems.
Although it is assumed certainly familiarity on these topics from the reader,
a more detailed exposition of the content of this chapter can be found in
Refs. [22], [23] and [24].

2.1 Dynamical systems

A dynamical system consist of a phase space that describes the allowed states
of the system and a rule that defines the evolution of such states. The evo-
lution can be continuous, as in the case of differential equations, or discrete,
as the case of maps. All physical phenomena are in principle susceptible
to be modeled by a dynamical system of some sort and moreover, many of
the fundamental models in physics are Hamiltonian dynamical systems1, and
from this particular kind is where the symplectic maps are inspired and/or
obtained. The canonical example is the map defined by the hamiltonian flow
applied to an initial condition x(0) and the final state x(t) is achieve after a
finite time t, this is a sympletic map (see figure 2.1). More examples of sym-

1In particular at astronomical and microscopic scales, where friction is non-existent or
negligible.
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plectic maps obtained from Hamiltonian dynamical systems can be found in
Ref. [22, 23, 25].

(a) (b)

Figure 2.1: Example of a symplectic map T constructed from the hamiltonian
flow: xn+1 = T (xn) = Fτ (xn).

Maps can be useful in many cases since they are easier to study than a
differential equation and in principle, all numerical solution involves a map.

Two of the typical questions that arise in the study of dynamical systems
are: the stability of the orbits for longer times and to determine the accessible
regions of movement. Both questions can be approached using maps.

2.2 Hamiltonian flow and symplectic maps

A hamiltonian flow is described by a function H(p,q, t) and a set of differ-
ential equations:

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

(2.1)

where qi correspond to the configuration coordinates and pi to the canonical
momenta, i = 1, 2, ...N , for a system of N degrees of freedom. A more
compact form of write (2.1) is using the Poisson bracket as,

ż = {z,H} , (2.2)

where z = (q1, ..., qN , p1, ..., pN) and {, } is defined as,

{f, g} =
2N∑

m,n=1

∂f

∂zm
Jmn

∂g

∂zn
=

N∑
k=1

( ∂f
∂qk

∂g

∂pk
− ∂g

∂qk

∂f

∂pk

)
, (2.3)
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where J, the symplectic matrix, a 2n× 2n matrix that in the Darboux coor-
dinates has the form,

J =

(
0 I
−I 0

)
, (2.4)

where I is the n× n identity matrix.
The hamiltonian flow can also be obtained from a variational principle.

Let γ = {(q(t),p(t))| t0 < t < t1} be a test trajectory in the phase space
that connects (q0,p0) with (q1,p1). The functional action of such trajectory
is defined as,

S[γ] =

∫ t1

t0

[p · q̇−H(p,q, t)]dt . (2.5)

The hamiltonian flow is the one that minimizes the action, i.e. δS = 0.
Using this definition of hamiltonian flow and the Stoke’s theorem, it is easy
to prove the Poincaré integral invariant : the action of a loop is an invariant
for Hamiltonian flow, see Ref. [22]. For the particular case when H is inde-
pendent of t, the action of a (closed) loop L contractable to a point reduces
to,

S[L] =

∮
L

p · dq =

∫
A
dp ∧ dq . (2.6)

By Stokes theorem, last term in the equality implies that the invariance of
the action of a loop is equivalent to the preservation of the symplectic area,
the sum of the areas obtained by the projection of L onto each canonical
plane (pi, qi).

For example, the area of a parallelogram with sides made of vectors δz
and δz̄ is given by,

ω(δz, δz̄) = δp · δq̄− δq · δp̄ = δziωijδz̄
j . (2.7)

The antisymmetric form ω is called the symplectic form. In Darboux coor-
dinates, it is represented by the matrix,

ω =

(
0 −I
I 0

)
(2.8)

which is the inverse of J.
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2.2.1 Symplectic maps

A map is a transformation in the phase space (z = (q,p)),

z′ = T (z) . (2.9)

and an orbit is a sequence,

{..., zn, zn+1, ...} (2.10)

such that zn+1 = T (zn) .
A map T is symplectic if it preserves the loop action integral (2.6),

S[L′] = S[T (L)] = S[L] . (2.11)

From this definition it follows a local (differential) definition with the use
of the symplectic form ω, a map T is locally symplectic or exact symplectic
if,

[DT ]tωDT = ω (2.12)

where DT is the Jacobian matrix of T ,

(DT )i,j =
∂z′i
∂zj

. (2.13)

2.3 Twist maps

A twist map (with twist to the right) is a particular case of a symplectic two
dimensional map with a phase space (x, y) homeomorfic to a cylinder, such
that it fulfills the twist condition,

dx′

dy

∣∣∣
x

≥ K ≥ 0 (2.14)

where x corresponds to the angular coordinate. The condition implies that
x′ is a monotonic growing function of y, see Fig. 2.2.

The twist condition has a natural physical interpretation: y is the coor-
dinate that represents the linear momentum and the twist condition implies
that as y grows bigger, the displacement x will be longer, because its velocity
will be higher. However in generalized hamiltonian systems, like in the one
of streamfunctions, this may not hold true since y can be unrelated to ẋ.
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(a) (b)

Figure 2.2: Geometric interpretation of the twist condition (2.14), in carte-
sian (a) and polar (b) coordinates.

It must be noted that even if a map T is twist, its iteration T 2 will not
necessarily be too. However, its inverse T −1 is a twist map, with left twist.
The composition of (positive) twist maps is denoted as positive tilt map[26]
in the literature. Although, tilt maps share many features with twist maps
it is easy to see that in general tilt maps in general are not twist.

Commonly it is assumed that twist maps are particular cases of symplectic
maps, even though it is possible to have two-dimensional maps that are only
twist. To avoid confusion, the twist maps that are symplectics are named
area preserving twist maps (or APTM). An important result on these maps
is the following,

Theorem 2.1. (Birkhoff 1920; Herman 1983; Mather 1984)
Suppose T is a C1 APTM on the cylinder. Let U be an open invariant set
homeomorphic to the cylinder such that there are a < b satisfying

{x, y : y < a} ⊂ U ⊂ {x, y : y < b}

then the boundary of U (∂U)is the graph {x, Y (x)} of some continuous func-
tion Y .

Proof : See Ref. [22].

63



2.4 Near-integrability results

The systems described in previous sections have been subject of study since
times of Newton if not before and to study them several classifications have
been introduced, the most useful one between integrable and non-integrable
systems. Paraphrasing Ref. [22], a system is called integrable when the mo-
tion is “simple” in some way. Among the many different definitions of inte-
grability, the notion used in this work is the integrability in sense of Liouville.

An integral is a function of the 2N -dimensional phase space I(z), which is
invariant under the dynamics of the system (a hamiltonian flow or the map),

I(T (z)) = I(z) . (2.15)

To exclude trivial numerical constants, it is assumed∇I 6= 0 ∀z. This implies
I =constant defines a 2N − 1-dimensional surfaces in the phase space. A set
of N integrals are independent if their gradients span an N−dimensional
vector space at each point in the phase space and the set is in involution if
all mutual Poisson brackets vanish,

{Ij, Ik} :=
N∑
`=1

[
∂Ij

∂q`

∂Ik

∂p`
− ∂Ij

∂p`

∂Ik

∂q`

]
= 0 . (2.16)

A map is integrable in the sense of Liouville if it satisfies the following
theorem.

Theorem 2.2. (Arnol’d-Liouville)
If there are N independent integrals in involution, then the motion lies on a
nested family of N-dimensional tori, and there exist angle coordinates θ such
that the map can be written in the form,

I ′ = I , (2.17)

θ′ = θ + Ω(I) . (2.18)

Proof : See Refs. [22] and [23].

Although integral systems are present in some relatively simple physical
models, they are not the norm. Nevertheless many systems susceptible to
be studied can be written as a special kind of non-integrable systems, the
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near-integrable systems. The later are in most cases systems that depend on
one or more parameters such that for some ranges of values, the systems are
integrable. The perturbed map Tε is written,

I ′ = I + fε(I, θ) , (2.19a)

θ′ = θ + Ω(I) + gε(I, θ) , (2.19b)

and for simplicity we can consider that for ε = 0 the map (2.19) becomes
integrable.

A useful definition to characterize and label orbits of a map on a cylin-
der is the rotation number, originally intrduced by Poincaré for orientation
preserving homeomorphisms of the circle[99].

Definition 1. Let T be map in the cylinder, T : S×R→ S×R. The lift of
T is the map T : R2 → R2 such that T = T ◦ h, where h is just the mod 1
function in the first variable, the angle variable for T .

Definition 2. The rotation number ω of an orbit is defined as the limit

lim
n→∞

φn − φ0

n
, (2.20)

where φ is the lift of the angle variable. When the limit exist, it is indepen-
dent of the choice of the starting point φ0.

It can be proved that if the map is twist, then for all orbits for which the
limit exist, are labeled and ordered by this quantity. An obvious remark is
that all periodic orbits that may exist in a twist map have ω ∈ Q.

Theorem 2.3. (Birkhoff 1927; Berry 1978)
Suppose Tε is a APTM on the cylinder such that Tε|ε=0 = T0 is an integrable
map. Let C and invariant circle with rotation number ω = p/q (p ad q
prime relatives) for T0. Then for a sufficient small ε, there will exist an
even number: 2kq, k ∈ N of fixed points for the map (Tε)q, where half of the
fixed points will have elliptic linear stability and the other hyperbolic linear
stability.

Proof : See Ref. [24].

This theorem gives a picture of the shape of the phase space near the
periodic orbits, however, as illustrated in Fig. 2.3, there are many ways to
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Figure 2.3: Illustration of different ways to connect the points of a periodic
orbit of a APTM.

connect the hyperbolic points. The structures around the periodic orbit
points is called “resonance” and one of the few possible ways to analitically
characterize its shape is by asympthotic tools like the normal forms (discussed
in chapter 3).

One more definition is needed to state the last result,

Definition 3. An irrational number ω is said to be Diophantine if for a given
τ there is a constant ν such that,

|ω · q − p| ≥ ν|q|−τ , p ∈ Z, q ∈ Z \ {0}.

We will denote the set of all numbers satisfying Definition 3 by D(ν, τ).

Theorem 2.4. (Moser, 1973)
Let Tε be a 1-parameter family of Cj twist maps of the form of (2.19), then
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there is a ε > 0 such that if f(I, θ) has zero average,∫ 1

0

f(I, θ)dθ = 0 , (2.21)

with

sup
m+n<j

∣∣∣ ∂m+nf

∂Im∂θn

∣∣∣+ sup
m+n<j

∣∣∣ ∂m+ng

∂Im∂θn

∣∣∣ < εKν2 (2.22)

have rotational2 invariant circles for all rotation numbers that satisfy a Dio-
phantine condition with

1 < τ <
j − 1

2
. (2.23)

Proof : See Ref. [22].
This theorem implies among many things, that all the rotation circles

with rational rotation number are “destroyed” as soon as ε 6= 0. There are
however examples non C1 maps in which this does not happen, however these
are not a generic kind of maps [27].

2.5 The standard map

The standard map or Chirikov-Taylor map is a locally symplectic map defined
by

xn+1 = xn + yn+1 , (2.24a)

yn+1 = yn + εV ′(xn) , (2.24b)

where xn ∈ S1, yn ∈ R and V ′ : S1 → R is a function with zero average:∫ 2π

0

V ′(x) dx = 0 . (2.25)

One of the most popular choices of potential is V (x) = cos(x) (or V (x) =
1

(2π)2
cos(2πx) for a different scaling), which yields,

xn+1 = xn + yn+1 , (2.26a)

yn+1 = yn − ε sin(xn) . (2.26b)

2Circles in the cylinder not homotopic to points.
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For notation purposes, the map (2.24) will be referred as the standard map
and the specific form of the map (2.26) as the Chirikov-Taylor map.

This map can be obtained from different physical system models (see
Ref. [22, 25]), but what gives it the surname of “standard” is the fact that
it is usually the result of the linearization almost any twist map around a
resonance.

The main relevance of this map is that it is a very simple model that
displays very clearly the behavior of near integrable systems. For ε = 0, the
map (2.26) is integrable, which in this case means that its evolution from
any initial condition and the general structure of its phase space is know at
all times. And for ε � 1, all theorems from previous sections apply and
additionally others results, like the Aubry-Mather theory.

2.6 Greene residue

J. Greene developed a criteria (Ref. [18]) to predict the (existence/persistence)
of invariant circles that is closely related to the renormalization group theory.
It start with the definition of the (Greene’s) residue.

The linear stability around the fixed point of periodic orbit ω = m/n of
a given twist map T can be determined by the behavior of the eigenvalues
of the iterated map T q around each point,

δz =

[
d

dz0

T (T (· · · (T (z0)))

]
δz0

= M(zn−1)M(zn−2) · · ·M(z0)δz0

= Mnδz0 . (2.27)

whereM(z) is the Jacobian matrix. SinceM(z) is symplectic, so isM(z)n,
which implies that if λ is an eigenvalue, then so is λ−1, which implies that
det(Mn) = 1. From the characteristic polynomial λ2−λTr(Mn) + 1 = 0, we
obtain,

λ =
1

2

{
Tr(Mn) +

√
(Tr(Mn))2 − 4

}
. (2.28)

The possible stability properties are shown in table 2.1, in which it has been
introduced the (Greene’s) residue, defined as,

R =
1

4
[2− Tr(Mn)] . (2.29)
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Stability λ R Tr(Mn)

hyperbolic > 0 < 0 > 2
elliptic e2πiω (0,1) (−2, 2)

reflection
hyperbolic

< 0 > 1 < −2

Table 2.1: Stability classification.

With this classification, the only (neutral) stable case is the elliptic. And
from this Greene developed a method for determining the existence of an
invariant circle by looking at the stability of nearby periodic orbits. The
conjecture is that if there is an infinite set of periodic orbits ordered by their
period whose rotation numbers {ωi}i∈I limit on the invariant circle,

lim
i→∞

ωi → ω , (2.30)

and which have residues between zero and 1, then the invariant circle will
exist. The “residue conjecture” has been proved in some cases [28] and used
in many many works in the past. However this method requires to be able to
compute periodic orbits of very high order (n & 105) as in Ref. [29], which can
only be done efficiently on maps with symmetries (more of this on chapter
5). This method gives rise to the introduction of renormalization theory in
symplectic maps and the finding of universal critical exponents related to
critical invariant circles.

2.7 Other methods: converse KAM theory

There exist other methods to prove that a certain invariant circle no longer
exist. Many of them are based in the converse KAM theory: for a sufficient
high value of the perturbation parameter ε in Thm. 2.4, there will not exist
any invariant circle3. It is possible to use the Thm. 2.1 to find cases when
KAM theory as stated on Thm. 2.4 is no longer valid.

3From here on, the term invariant circle will always be used for an invariant circle not
homotopic to a point, which is the same as the rotation invariant circle (RIC) used in
Ref. [22].
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2.7.1 Resonances overlap method

The first method called Chirikov’s overlap method[10] or climbing orbits
argument[22] or simply brute force by some experts in the field. The ar-
gument is that if an orbit can climb arbitrary far up in the cylinder, then
there are no invariant circles. The reason for this, is the incompatibility be-
tween the invariance of the circles and the area preserving property of the
map for climbing orbits. If an orbit has one point bellow and down and
another above an invariant circle it would imply that the image of any open
compact set containing the first point would contain the second point. But
if any of those sets contains a point from the invariant circle it implies that
the other set and all iterations contain also a point of the circle, which can
not happen.

In practice this method is very hard to implement efficiently for a couple of
reasons. The first is that the map needs to have some symmetry to guarantee
that a displacement on the y-axis is enough to consider that the orbit can
climb arbitrary on the cylinder. The second is related with Aubry-Mather
theory’s result: when a change on the parameters cause a critical invariant
circle to cease to exist, it transform into an orbit with Cantor structure and
the transit through it may require an exponential number iterations as the
perturbation parameter approaches a critical value. This has been associated
with the observed algebraic convergence of the method to estimate critical
values[22, 9], which translates in the need of an immense amount of iterations
as the perturbation parameter gets close to a critical value. And lastly this
method requires the use of a generic set of initial conditions that guaranties
that not all of them are trapped inside resonances.

The concept of this method is illustrated on Fig. 2.4 and an example of
the phase space of map

2.7.2 Obstruction method

Another method relevant for the discussion of this work is the obstruction
method [30], related with the heteroclinic connection argument in Ref. [22]
and the overlap criterion given by Chirikov[10]. The main idea, proved in
Lemma 1 of Ref. [30], is that if there exist two hyperbolic periodic points
(HPP) x0 and x1 with rotation numbers ω0 and ω1, such that the unstable
invariant manifold (W ux0) of x0 has a non empty intersection with the stable
invariant manifold (W sx1) of x1 (i.e. there exist heteroclinic points), then
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Figure 2.4: Illustration of the crossing method. The left picture depicts
the case of the arbitrary iteration of a generic compact set of initial con-
ditions (red dots) for a perturbation parameter value bellow critical, which
is bounded by a topological barrier, and invariant circle. The right picture
depicts the complementary case.

Figure 2.5: Example of the crossing method. Both figures show 3 × 106

iterations of the same single initial condition on a symplectic map (studied
in chapter 4) for similar values of the parameters (κ1, κ2): (−0.69, 0.525) on
left and (−0.73, 0.525) on right.
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there is no invariant circle in between (with rotation number ω ∈ (ω0, ω1)).
This idea is illustrated in Fig. 2.6.

Figure 2.6: Illustration of the obstruction method. Any invariant circle (with
irrational rotation number ω) that may exist between two periodic orbits
(ω1 = p/q and ω2 = p′/q′) will be destroyed if the invariant manifolds of
different hyperbolic points cross.

This method can give upper bounds for critical values of the perturbation
parameter for the destruction of a given invariant circle and also rescaling
relations related to the invariant circle. However the method also requires
to compute periodic orbits of the map and then compute the stable and
unstable invariant manifolds of the hyperbolic points.

2.7.3 Cone-crossing criterion

The Lipschitz criteria[22], later refined in Refs. [31, 32, 33] and sometimes
called (MacKay) cone-crossing criterion, consist in the use of Lipschitz bounds
on slopes. It can be proved that the function Y (x) from theorem 2.1 is
Lipschitz[32], which implies that if an orbit of (T, DT),

(T, DT)(z, v) = (T(z), DTzv) where

{
z = (x, y)
v = (δx, δy)

(2.31)

has the n-iteration a change of sign on δx, then the orbit of z is not on an
invariant circle. This is illustrated in Fig. 2.7.

This method and its refinements have been used to give upper bounds
for the critical value of perturbation parameter for the standard map (2.26),
with the best estimate of ε∗ = 63/64 = 0.984375, close to the optimal value
calculated by Greene[18], κG = 0.971635406....
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Although this method can give rigorous analytic bounds for the destruc-
tion of invariant circles of a given map, the computation can turn cumbersome
for even for simple maps.

Figure 2.7: Illustration of an impossible situation in cone-crossing criterion.
The x-component of a tangent vector to a point of an invariant circle can
not change the sign if there exist a Lipschitz uniform bound for the invariant
circle.

2.8 The parameterization method

This section describes the numerical implementation of the computation and
continuation of invariant circles for a given twist map T by the so called
parameterization method. Most of the technical details are omitted and the
discussion is done over the tools that are used. For further mathematical
details (e.g. function spaces, geometric preliminaries, and Diophantine prop-
erties) the reader is referred to Ref. [34, 13, 35, 11].
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2.8.1 The goal

The goal of the method is to find invariant circles of T on which the dynamics
is conjugated to a rigid rotation by a fixed Diophantine rotation number ω,
Rω.

The rationale of the method is best understood in the constructive proof
of the KAM theorem in Ref. [35], which relies among other things on a
Newton iteration in the spirit of Nash-Moser theory, see Ref. [36]. A second
ingredient for the particular implementation described here is related with
the area preserving properties of the type of map considered that allows the
use of a symplectic change of coordinates, referred in Ref. [35] as automatic
reducibility.

Nash-Moser techniques can be used in algorithms that allow to continue
smooth functions K : S1 → S1 × R satisfying the invariance equation,

T ◦K(θ) = K(θ + ω) , (2.32)

where T : S1 × R → S1 × R is a given twist map and ω is a Diophantine
number, an irrational real number such that for a given τ there is a constant
ν such that,

|ω · q − p| ≥ ν|q|−τ , p ∈ Z, q ∈ Z \ {0} . (2.33)

Starting from the integrable case of the map T , the continuation moves
the parameter as close to the breakdown of analyticity of the invariant circles
as possible. The criterion of breakdown in Ref. [13] is used to determine
when the invariant circle ceases to exist. This criterion states that close to
the breakdown of analyticity the derivatives of the solution K start to blow
up at points of K(S1), in the sense that all the Sobolev || · ||Hn norms diverge.

Continuation methods like the one presented here have already been used
in several contexts. See for instance, Ref. [37, 12], for models in statistical
mechanics, Ref. [38, 39, 40] for examples in symplectic maps, Ref. [41, 42] for
conformally symplectic models, and Ref. [43] for volume preserving maps.

2.8.2 The method

The main idea of the method is to start from an approximate solution of
the invariance equation applied to T and then produce a “better” approxi-
mate solution by adding a small correction. K0 is said to be approximately
invariant if

e0(θ) = T ◦K0(θ)−K0(θ + ω) , (2.34)
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where ‖e0‖ is a small function with respect to the norm ‖ · ‖ of the Banach
space of smooth functions.

An approximate solution is said to be “better” if it approximates the
invariance equation (2.32) with a smaller error. The idea is to add a periodic
function ∆ : S1 → R× S1 so that K1(θ) = K0(θ) + ∆(θ) has an error

e1(θ) = T ◦K1(θ)−K1(θ + ω) (2.35)

with ‖e1‖ ≈ ‖e0‖2.
This is possible according to Nash-Moser theory, adding an appropriate

correction ∆ can provide an error satisfying the quadratic property above.
The correction ∆ that could be used, would solve the Newton step equation,

DT (K0(θ))∆(θ)−∆(θ + ω) = −e0(θ) , (2.36)

which, if we were able to solve for ∆ from equation (2.36), then the norm of
the new error, ‖e1‖ will be of order ‖e0‖2.

In principle, one could try to solve numerically the Newton equation in
(2.36) for ∆, but this would require O(n3) operations, where n is the number
of points that one uses to represent the invariant circle. The alternative
to follow is to reduce the Newton step equation (2.36) by introducing a
symplectic change of coordinates around the approximate solutions. The
implementation will yield methods that require O(n log n) operations.

The change of coordinates is done around an approximate solutions K0

is given by a 2 by 2 matrix composed of two column vectors. The first 2
by 1 column is the vector u0 = DK0(θ) representing the tangent bundle
to the approximate solution with base at every point K(θ). The second
column vector v0(θ) is a symplectic conjugate bundle which in this case of
one dimensional circles reduces to a vector orthogonal to the tangent bundle,
namely v0(θ) = J−1DK0(θ)N0(θ), where J is the matrix representation of
the symplectic form Ω and

N0(θ): = [DK0(θ)tDK0(θ)]−1 . (2.37)

So the matrix can be written as follows,

M0(θ) =
(
DK0(θ)

∣∣∣ J−1DK0(θ)N0(θ)
)
. (2.38)

This change of coordinates is symplectic and transforms approximately
the matrix DF (K0(θ)) into an upper triangular matrix with ones along the
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Figure 2.8: Illustration of the main components in the symplectic change of
coordinates used in the implementation of parameterization method.

diagonal, namely,

DF (K0(θ))M0(θ) = M0(θ + ω)

(
1 S0(θ)
0 1

)
, (2.39)

where

S0(θ) = N0(θ + ω)DKT
0 (θ + ω)DF (K0(θ))DK0(θ)N0(θ) . (2.40)

And this is consequence of the automatic reducibility : the map T preserves
area and u0 approximately is preserved, then v0 must satisfy,

DF (K0(θ))v0(θ) = v0(θ + ω) + S0(θ)u0(θ) . (2.41)

The function S0(θ) is related to the local twist condition on the invariant
circle K0. It is possible to apply the change of coordinates to the Newton
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step, ∆(θ) = M0(θ)W (θ), to reduce approximately the Newton step equation.
The new Newton step now requires to solve the equation,(

1 S0(θ)
0 1

)(
W1(θ)
W2(θ)

)
−
(
W1(θ + ω)
W2(θ + ω)

)
= −M−1

0 (θ + ω)e0(θ) . (2.42)

Now, spliting the equation (2.42) into components there are two cohomolog-
ical equations to be solved, namely

W2(θ)−W2(θ + ω) = −[M−1
0 (θ + ω)e0(θ)]2 (2.43)

and

W1(θ)−W1(θ + ω) = −[M−1
0 (θ + ω)e0(θ)]1 − S(θ)W2(θ). (2.44)

To solve the functional system of equations (2.43)-(2.44) in the Fourier
space a necessary condition is that the right hand side on both equations
have average zero (or of the order of O(‖e0‖2). This can be done easily for
(2.44) if the map is twist since average of W2 is free parameter that can
be adjusted as needed4, however for the right hand side of (2.43) needs to
introduce extra properties. The case of interest in the present work is when
T is exact, because it can be shown that in that case by Lemma 9 from
Ref. [35], ∫

S1
[M−1

0 (θ + ω)e0(θ)]2 dθ = O(‖e0‖2) . (2.45)

Therefore, it is possible to solve for ∆ for (2.42) by following the algorithm
described below.

Algorithm 2.1.

1) Let e0(θ) = T ◦K0(θ)−K0(θ + ω)

2) Compute the matrix M(θ) from equation (2.38).

3) Solve for W2(θ) from (2.43).

4) Choose the average
∫
S1 W2(θ)dθ so that −[M−1

0 (θ+ω)e0(θ)]1−S0(θ)W2(θ)
has an average close to zero.

5) Solve for W1(θ) from (2.44).

4If the map were not twist, it could be the case that S0(θ) = 0.
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6) Compute the step ∆,

∆(θ) = M0(θ)W (θ)

7) Obtain the new parameterization K1,

K1(θ) = K0(θ) + ∆(θ)

8) Set K0(θ) = K1(θ) and go to step 1).
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Chapter 3

Periodic orbits and normal
forms

A general first step to characterize a dynamical system is the study of its
periodic orbits. The knowledge gained from periodic orbits can lead to under-
stand existence and stability of quasi-periodic and more generic type of orbits,
and in some cases to find very significant relations between the parameters
of the complete system. In particular for the case of study, the map displays
after a transient and for a particular kind of initial conditions, an oscillatory
bounded evolution in its variables, see figure 1.5(a). It could be relevant
for this particular behavior to know if there exist periodic orbits with the
period displayed in the evolution and if these are correlated. Even if the
behavior were to be quasi-periodic, the knowledge about the periodic orbits
that approximate the orbit could give a hint of the stability and dependence
on the initial conditions and parameters.

One of the original purposes of the present work was to determine values of
the parameters for which the self-consistent map would display global trans-
port, i.e. unbouded evolution of some coordinate yk. With the approach on
this chapter, it was possible to determine the asymptotic value of κ̄ and ∆κ
for an special kind of initial conditions and parameter values. To do this, the
specific form of the mean field auxiliary variable ηn in Eq. (1.2) is taken into
account to try to discriminate sets of initial conditions that let ηn to start
and stay with very small values, and thus perturbing just a little the initial
configuration.

One of the two approaches used to study this type of configurations was
an asymptotic method known as normal form. The normal form of system
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is in general the result of change of variables done over a system with the
purpose of simplifying it in some way [44]. The type of normal form used in
this chapter have as its final purpose to find relations between the systems
dynamics and the parameters and to allow a better understanding of the
dynamics of the system at different scales. This kind of parameter relations
can also be found by performing a high number of simulations and performing
parameters correlations, but this type of analysis can be very time consuming
and often not as accurate as the results of an asymptotic method.

This chapter reviews the results from Ref. [8], in which a normal form was
introduced to study the existence of certain type of discrete choreography1-
like periodic orbits named sequential periodic orbits (SPO’s).

3.1 Periodic orbits

In general, the structure of periodic solutions help determining the behavior
of a dynamical system. Our goal is to show that periodic orbits are closely
related to the mean-field variables (in particular κ̄ and ∆κ) and the choice
of values of the parameters (γk, Ω). However, finding periodic orbits for
high dimensional maps is a complex problem and numerical simulation is in
principle the only procedure to estimate the values of the mean field variables.
The use of simulations to study a system has the implicit problem to predict
or associate the results to the initial conditions, which usually requires a
large number of iterations to give substantial evidence. In the case of study,
the dimension of the self-consistent map (1.1) has to be rather big (of order
104) and very small time steps2 so the system can achieve similar patterns
to that of the continuous single-wave model. In practice it is not possible to
approach this problem in general using analytic or asymptotic tools.

One way to reduce the complexity of finding periodic orbits is to use
symmetries or doing numerical continuation over a known periodic solution.

In the case of low-dimensional maps, the use of symmetries can greatly
simplify the search of periodic orbits [46]. For the self-consistent map, the
problem simplifies by assuming γk = γ constant, for k = 1, . . . , N in (1.1c)
which implies the following properties:

1In the sense of the choreographic orbits found in celestial mechanics by Chenciner and
Montgomery [45].

2Which translates to a very large number of map iterations.
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1. Let z be a periodic orbit of map (1.1) with dimension 2N + 2. If the
initial condition of this orbit is,

z0 = (x0
1, y

0
1, x

0
2, y

0
2, . . . , x

0
N , y

0
N , κ

0, θ0) , (3.1)

then any permutation of the pairs (x0
i , y

0
i ), for i = 1, . . . , N , produces a

new periodic orbit with the same period. This is because the term that
couples the standard maps only depends on the average of the variables
xi.

2. For any periodic orbit z of the map (1.1) with dimension 2N + 2, it
is possible to increase the dimension of the solution by replicating the
orbit z and reducing the strength of γ by one half. Thus, for any z
given in (3.1), a new periodic solution of dimension 2N is generated
with the form,

z0 = (x0
1, y

0
1, x

0
2, y

0
2, . . . , x

0
N , y

0
N︸ ︷︷ ︸

2N

, x0
1, y

0
1, x

0
2, y

0
2, . . . , x

0
N , y

0
N︸ ︷︷ ︸

2N

, κ0, θ0) ,

with the strength of vorticity equal to γ/2. The dimension of this new
orbit is 4N + 2 and the period of the orbits is the same as (3.1). In
this case, since γ is rescaled by a factor of 1/2, the function η in (1.2)
preserves the value given when it is calculated at the orbit (3.1) since
the N terms twice are summed twice.

With these two properties, it is possible to generate a large set of periodic
orbits: starting with low dimensional map corresponding to N = 1 and
a strength parameter γ, periodic orbits of period M can be found. Using
the property 2, the orbit can be replicated s times, such that an orbit of
dimension 2s is obtained for a reduced strength in the parameter γ′ = γ/2s.

Another possibility is to construct a periodic orbit by imposing that the
iteration of each oscillator pair (xn+1

i , yn+1
i ) almost coincides with the next

point in the orbit of the previous pair. This is, if (xni , y
n
i ) are the values of the

i-th oscillator for the n-th iteration and (xni+1, y
n
i+1) is the next point in the

periodic orbit, then (xn+1
i , yn+1

i ) ≈ (xni+1, y
n
i+1). This kind of periodic orbits

will be referred as sequential periodic orbits (SPO’s). To generate this kind
of orbits, a periodic orbit of period τ of the standard map was computed for
a fixed value of κ∗ and θ∗. The iterations of this orbit give the following set
of pairs of coordinates:

(x0, y0) (x1, y1) . . . (xτ−1, yτ−1) . (3.2)
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With this sequence of points, a periodic orbit of dimension 2τ + 2 with period
τ for the map (1.1) is constructed, giving as its initial condition,

z0 = (x0, y0, x1, y1, . . . , xi−1, yi−1︸ ︷︷ ︸
i−th

, . . . , xτ−1, yτ−1, κ
∗, θ∗) . (3.3)

For γ = 0, this orbit follows a sequential pattern, the i-th pair (xi, yi) are
shifted to the position i− 1 in a cyclic way, for each iteration of the map.

z1 = (x1, y1, x2, y2, . . . , xi, yi︸︷︷︸
i−th

, . . . , x0, y0, κ
∗, θ∗) .

It is clear that this is not a periodic orbit for γ 6= 0 because the mean-field
variables, κ and θ, are going to change while the orbit is iterated. Never-
theless, this is a good guess for finding a periodic orbit using numerical or
asymptotical procedures for small values of γ.

Based on the previous ideas, the numerical procedure used to find a peri-
odic orbit of (1.1) with period τ and dimension 2τ + 2 consists of the following
steps:

Algorithm 3.1.

1. For given values of θ∗ and κ∗, a symmetric periodic orbit of period τ of
the standard map is found using the symmetry lines of the map [18].

2. With this orbit, a sequential periodic orbit (3.2) is formed. For γ = 0
this is a periodic orbit of the self-consistent map (1.1), as in (3.3).

3. Using a continuation method, the sequential periodic orbit is computed
for small values of γ [47] and continued for large values of γ.

4. The dimension of the orbit is then increased using the replication prop-
erty of the map (1.1). For each replication, the strength parameter γ
is divided by two.

Note that the value of the auxiliary variable ηn is small in all iterations
due the almost equidistribution on the angular variables xni . Following this
procedure, it is possible to compute periodic solutions for small periods.
The convergence of the continuation–method requires adjusting the value of
the parameter Ω in (1.1d), otherwise the variable θ might not converge to
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a value. After some numerical experiments, it was concluded that for the
method to converge, Ω should be a function of κ0. Therefore, the parameter
Ω was included in the numerical method as a free parameter which has to be
determined by the continuation process.

In a similar way, a perturbative method was used to determine periodic
orbits. The idea was to compute a sequential periodic orbit in an asymptotic
way. Begin the process with an integrable map, in this case, map is (1.1)
with the parameter γ and the variable κn are zero. For this integrable case,
the periodic solution with period q is:

z0 = (x0
1, y

0
1, x

0
2, y

0
2, . . . , x

0
j , y

0
j︸ ︷︷ ︸

j−th

, . . . , x0
q, y

0
q , κ

0, θ0)

= (ρ, ρ, 2ρ, ρ, . . . , jρ, ρ︸︷︷︸
j−th

, . . . , qρ, ρ, 0, θ0) . (3.4)

where ρ = 2πp/q, p, q ∈ Z+ and θ0 is a constant. The iteration of this initial
orbit has simple dynamics: xji → xj+1

i = xji+1, yji = yj+1
i , κj = 0 and θj = θ0,

where the variables x and θ are defined in the interval [0, 2π). The integrable
periodic orbit (3.4) is the initial point of the asymptotic procedure. The
small parameter in the method is γ and the variable κj has to be small as
well. κj is also set to be of order O(γ).

3.2 Normal Forms

As mentioned before, the normal form of system is generally speaking, the re-
sult of change of variables done over a system with the purpose of simplifying
it in some way [44]. The concept of normal form goes back to Poincaré and
for this reason, there are many different approaches for different problems
[48]. The type of normal form used in this chapter have as its final purpose
to find relations between the systems dynamics and the parameters. The
particular normal form approach used on this work, is the one from Ref. [49].
The proposed change of variables is written as an infinite series such that
the initial evolution equations are rewritten as a Poincaré-Lindstedt system
ordered by a small parameter. In this case of study, the small parameter
corresponds to the initial value of ε = κ0, where γ is also assumed small.
Of course, this choice is arbitrary since the objects of interest are periodic
orbits. Therefore it is always possible to take a different choice, for instance
κ1.
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A big difference with [49] is that instead of introducing a single change
of variables for a 2-dimensional map, for the 2N + 2-dimensional map, a
change of variables is proposed for each oscillator (xk, yk) with the a priori
condition that all the oscillators and the mean field (κ, θ) have the same
rational winding number ω = 2πp/q, p/q ∈ Q. The reason of this condition
is that the effective number of variables needed is decreased and it avoids the
introduction of an extra change of variables for the mean field map. In order
to prepare the map (1.1) in a suitable form, equations (1.1a) and (1.1b) are
rewritten in a Lagrangian form,

xn+1
k − 2xnk + xn−1

k = −κn+1 sin(xnk − θn) (3.5a)

κn+1 =
√

(κn)2 + (ηn)2 + ηn (3.5b)

θn+1 = θn − Ω +
1

κn+1

∂ηn

∂θn
(3.5c)

The proposed change of variables for each oscillator is

xk = ζ + ωk + g(ζ + ωk, κ0), (3.6)

where ω is a given winding number and g(φ, ε) is given by

g(φ, ε) =
∞∑
j=0

εj
∑
m∈Z

gj,m e
imφ. (3.7)

Substituting (3.6)-(3.7) in (3.5a) yields for each oscillator the same ho-
mological equation3:

∞∑
j=0

(κn)j
∑
m∈Z

gj,m e
imζnk cm =

√
(κn)2 + (ηn)2 + ηn

2i
{ei(xnk−θn) − e−i(xnk−θn)} ,

(3.8)
where

cm := 2(1− cos(2πmp/q)), (3.9)

ηn =
γ

2

N∑
k′=1

{
exp

(
i(xnk′ − θn)

)
+ exp

(
− i(xnk′ − θn)

)}
. (3.10)

3The equation still depends on the label k of each oscillator, but it can be absorbed
in the angular variable: ζk := ζ + ωk
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To solve (3.8), a relation between the two small parameters (γ and κ0)
is imposed 4 so the homological equation can be organized hierarchically in
terms of a single variable ε = κ0, as in the Poincaré-Lindstedt method. This
relation is added in order to have a well ordered set of equations for the
perturbation analysis, and it is not a physical constraint that the system
must necessarily obey. The lowest order at which the problem can be solved
is: γ ∝ κ0 or γ = ακ0, α ∈ R. Also, for (3.10) to be summable at order O(1),
the mean value of g must be zero on each change of variables.

From (3.9), it is obvious that there will be cases were (3.8) will not be
solvable. The terms on the right hand side that can not be eliminated, give
the normal resonant form of (3.5a). In general the normal form has the
following structure,

xn+1
k −2xnk+xn−1

k =
∞∑
`=q

(
κ0
)` {

c+
` (α) ei`(ζ

n
k−θ

n) + c−` (α) e−i`(ζ
n
k−θ

n)
}
. (3.11)

The next step is to substitute the computed g(φ, ε) in the map to find
the needed initial conditions and additional parameters to have these p/q-
periodic orbits, will be referred as sequential periodic orbits (SPO’s).

After such substitution on the map and its next q iterations, it was found
that for given κ0 and α small, the sequential periodic orbits exist only for a
certain value of the parameter Ω = Ω(κ0, α), if the initial conditions of the
oscillators are taken near the fixed points5: hyperbolic, elliptic or a mixed
type.

3.2.1 Normal form compared with numerical continu-
ation

In order to compare the results from normal forms with a numerical con-
tinuation procedure (based in a Newton method), the two different kinds
(hyperbolic and elliptic) of initial conditions were computed for period three
SPO, that is period τ = 2π/3. Appendix 3.A contains the detailed calcula-
tions from the normal form for this period. The most significant results are

4For the perturbation analysis to work, it must be assumed that both parameters are
small. Notice that this assumption is consistent since both parameters can be traced back
to the perturbation parameter of the standard map.

5Actually fixed points for the map iterated q times.
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the change of variables6,

g(ζ0, κ0) =
κ0

3
sin(φ0) +

(κ0)2

18
sin(2φ0) +

(κ0)3

216
sin(φ0)

+
α(κ0)3

48

(
cos(2φ0)− cos(4φ0)

)
+O((κ0)4) , (3.12)

the resonant normal form,

ζ1 − 2ζ0 + ζ−1 = −(κ0)3

24
sin(3φ0) +O((κ0)4), (3.13)

and relations among the parameters for the existence of the SPO’s

Ω =
ακ0

2
− α(κ0)2

8
+
α(κ0)3

324
+O(α(κ0)4), (3.14)

for the SPO around the linear elliptic fixed points of the standard map and

Ω =
ακ0

2
+
α(κ0)2

8
+
α(κ0)3

324
+O(α(κ0)4), (3.15)

for the SPO around the linear hyperbolic fixed points.
A numerical continuation method, based in a Newton method, was used

to compute the previous sequential periodic orbits. Following Algorithm 3.1
a periodic orbit with the same rotation number as the sequential periodic
orbit was computed for the standard map (2.26) with value of the parameter
ε = κ0 and θ∗ = 0. However, in order to have convergence in the Newton
method, it was necessary to define Ω as a free parameter. So in this way, the
numerical procedure converges for a specific value of Ω.

The results from normal forms and the continuation method matched to
machine precision, in particular, as it can be appreciated in Figures 3.1 and
3.2, there was a very good agreement in the relations between κ0 and Ω for
the existence of the computed SPO’s.

A conclusion obtained of the use of normal forms is that the existence of
this particular kind of periodic orbits, the SPO’s, is tied to specific values of
one parameter Ω as function of γ and κ0, depending on the type of initial
conditions. Nevertheless due the periodicity of the orbits, the same can be

6Where: φk := ζk − θk.

86



Figure 3.1: The figure displays in red the values of Ω for a given κ0 (with
α = 1

100
) found by using numerical continuation of a sequential periodic

orbit with winding number ω = 2π
3

, that started from the linear elliptic fixed
points. The overlapped green line correspond to parameter relation (3.14)
found with normal forms.

said for any iteration of the orbit. However, it is possible to calculate the
first variation on κn:

∆κ = κ1 − κ0 ' α2(κ0)4

64
. (3.16)

This implies that κ0 and ∆κ can be calculated as functions of the parameters
Ω and γ, and so κ̄ (average of κn). This is evidence that a simple oscilla-
tory behavior of the mean field variable κ is tied to a relation between the
parameter values and critical value κ0.

In a more general dynamics, the oscillatory evolution of the variable κ
(as the observed in Fig. 1.5) can be pictured as if it is driven by a set of
orbits close to periodic orbits, periodic orbits associated to particular ratios
of the parameters of the evolution and the variable κ. Due this hypothesis,
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Figure 3.2: The figure displays in red the values of Ω for a given κ0 (with
α = 1

100
) found by using numerical continuation of a sequential periodic orbit

with winding number ω = 2π
3

, that started from the linear hyperbolic fixed
points. The overlapped green line correspond to parameter relation (3.15)
found with normal forms.

a study on the frequency space of κ for long times is deemed relevant. It will
be presented in a future chapter...

Appendix 3.A

As an example in detail of how is the homological equation solved, this ap-
pendix contains the steps to compute the first terms of the change of variables
g(φ, ε), the resonant normal form and the corresponding dependence of Ω(κ0)
for the sequential periodic orbit with period τ = 2π/3.

1. Write the zeroth order of the homological equation (3.8), substituting
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(γ = ακ0)7, ∑
m∈Z

g0,m e
imζ0cm = 0, (3.17)

where for this case is,

ck =


0, k=3m
3, k=3m+1
3, k=3m+2

, m ∈ Z (3.18)

and the sub-index k on ζnk has been omitted since the value of ζ does
not change with k in this case. There exist several free parameters
that can be used later, but for the moment let assume them all to zero,
meaning

g0,m = 0 ∀m ∈ Z. (3.19)

2. Write the next order, (κ0) of the homological equation,∑
k∈Z

g1,ke
ikζ0ck =

1

2i

(
ei(ζ

0−θ0) − e−i(ζ0−θ0)
)
. (3.20)

From which, by orthogonality of the functions, it is obtained,

g1,1 =
1

6i
e−iθ

0

, g1,−1 =
−1

6i
eiθ

0

. (3.21)

and set the remaining g1,m to 0.

3. Repeat the process for the following orders.

Up to order ((κ0)3), compute,

g2,2 =
1

36i
e−i2θ

0

, g2,−2 =
−1

36i
ei2θ

0

, (3.22)

g3,±4 = − α

96
e∓4iθ0 , g3,±2 =

α

96
e∓2iθ0 , g3,±1 = ∓ 1

432i
e∓iθ

0

. (3.23)

At this order appears the first resonant terms,

c3

∣∣∣
0
g3,±3 = ± 1

48i
e∓3iθ0 (3.24)

7It is important to remind that the upper index 0 is just a reference, the value of γ
will not change from iteration to iteration even though the change of variables g and the
normal form are used to evaluate iterations of the map.
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4. Adding these results gives the change of variables8,

g(ζ0, κ0) =
κ0

3
sin(φ0) +

(κ0)2

18
sin(2φ0) +

(κ0)3

216
sin(φ0)

+
α(κ0)3

48

(
cos(2φ0)− cos(4φ0)

)
+O((κ0)4), (3.25)

and the resonant normal form,

ζ1 − 2ζ0 + ζ−1 = −(κ0)3

24
sin(3φ0) +O((κ0)4). (3.26)

5. Substituting (3.25) and (3.26) in the map (3.5), it is possible to solve the
mean field or, in other words, to establish the needed initial conditions
and the parameters to have the same period for the variables κ and θ.

(a) κn: Substitute (3.25) into map in (3.5b), to obtain,

κ1 = κ0
(

1 +
α(κ0)2

6
sin(3φ0) +O((κ0)4)

)
, (3.27)

and then substitute in the following iterates,

κ3 = κ0 +
α(κ0)3

6

(
sin(3φ0) + sin(3φ1) + sin(3φ2)

)
+O((κ0)5)

(3.28)
So, the condition to have period 3 in κn is,

sin(3φ0) + sin(3φ1) + sin(3φ2) = O((κ0)2). (3.29)

(b) (xn, yn): After substituting (3.26) into (3.5a) and imposing ζ3 −
ζ0 − 2π = 0, a similar condition is found,

sin(3φ0) + sin(3φ1) + sin(3φ2) = O(κ0). (3.30)

(c) θn: Substituting (3.25) and the results for κn into the map in
(1.1d), yields a different condition9,

θ3 = θ0 − 3Ω +
3

2
ακ0 − α(κ0)2

8

[ 2∑
j=0

c(3φj) +
1

2

2∑
j=0

s(3φj)
]

+
3α(κ0)3

324
+
α2(κ0)3

24
[4s(3φ0) + 3s(3φ1)− s(3φ2)] +O(α(κ0)4) .

(3.31)
8Where: φk := ζk − θk.
9Where s(φ) ≡ sin(φ) and c(φ) ≡ cos(φ).
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The conditions (3.29), (3.30) and (3.31) can only be solved in the gen-
eral case when restricted to the fixed points (of the map iterated q

times). After the change of variables, φ = 2nπ
3

(φ = (2n+1)π
3

) corre-
sponds to the linear elliptic (hyperbolic) fixed points at least at order
κ0.

Then (3.29) and (3.30) are satisfied and (3.31) yields,

Ω =
ακ0

2
− α(κ0)2

8
+
α(κ0)3

324
+O(α(κ0)4), (3.32)

for linear elliptic fixed points and

Ω =
ακ0

2
+
α(κ0)2

8
+
α(κ0)3

324
+O(α(κ0)4), (3.33)

for linear hyperbolic fixed points.

If κ1 =
√

(κ0)2 + (η0)2 + η0 ' κ0 + η0 + O((η0)2/κ0), it is possible to
expand η0 = γ

∑
sin(x0

k − θ0), from which after substituting x0
k from

(3.6), it is obtained

κ1 − κ0 ' α2(κ0)4

64
. (3.34)

Table 3.1 shows the change of variables, normal resonant form and Ω(κ0)
relations for two kinds of initial conditions (elliptic and hyperbolic fixed
points) for given rotation numbers.

The three examples show that the relation of the asymptotic value of the
mean field variables with the parameters of the self–consistent map (1.1). For
each rotation number of the sequential periodic orbit it is obtained a specific
value of the average of κ and the amplitude of its oscillation. Table 3.1 shows
these values for rotation numbers 1/2, 1/3 and 1/6. The main point is the
relation between Ω and κ0. Fixing the values of the parameters γ and Ω, the
average value of kappa can be found, where κ̄ = κ0 by using equations (3.14)
and (3.15) and the relation γ = ακ0. The amplitude of the variation of κ is
given by ∆κ = max|κi − κ0|, for i = 1, . . . , N , which first approximation is
written in (3.16). This method can be used for any sequential periodic orbits
of period τ .
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1/q

1/2

g(ζ0, κ0) = κ0

4
sin(φ0) + α(κ0)2

32
(cos(φ0)− cos(3φ0))− (3−α2)(κ0)3

512
sin(φ0)

+ (1+α2)(κ0)3

512
sin(3φ0)− α2(κ0)3

512
sin(5φ0) +O((κ0)4)

ζ1 − 2ζ0 + ζ−1 = − (κ0)2

a
sin(2φ0) + α(κ0)3

32
(cos(4φ0)− 1) +O((κ0)4)

Elliptic: Ω = O((κ0)4)

Hyperbolic: Ω = ακ0

2
− α(κ0)2

64
(1 + α2) + 3α(κ0)3

128
+O(α(κ0)4)

1/3

g(ζ0, κ0) = κ0

3
sin(φ0) + (κ0)2

18
sin(2φ0) + (κ0)3

216
sin(φ0)

+α(κ0)3

48

(
cos(2φ0)− cos(4φ0)

)
+O((κ0)4)

ζ1 − 2ζ0 + ζ−1 = − (κ0)3

24
sin(3φ0) +O((κ0)4)

Elliptic: Ω = ακ0

2
− α(κ0)2

8
+ α(κ0)3

324
+O(α(κ0)4)

Hyperbolic: Ω = ακ0

2
− α(κ0)2

8
+ α(κ0)3

324
+O(α(κ0)4)

1/6

g(ζ0, κ0) = κ0 sin(φ0) + (κ0)2

6
sin(2φ0)− 7(κ0)3

24
sin(3φ0) + (κ0)3

96
sin(3φ0)

−43(κ0)4

576
sin(2φ0) + 17(κ0)4

576
sin(4φ0) + 25(κ0)5

288
sin(φ0)

−185(κ0)5

1152
sin(3φ0) + 51(κ0)5

384
sin(5φ0) + 211(κ0)6

864
sin(2φ0)

−4227(κ0)6

34560
sin(4φ0) + 1077α(κ0)6

3840
(cos(7φ0)− cos(5φ0))

+O((κ0)7)

ζ1 − 2ζ0 + ζ−1 = −1077(κ0)6

3840
sin(6φ0) +O((κ0)7)

Elliptic: Ω = ακ0 + 9
24
α(κ0)3 − 379

1151
α(κ0)5 + 1077

3840
α(κ0)5 +O((κ0)7)

Hyperbolic: Ω = ακ0 + 9
24
α(κ0)3 − 379

1151
α(κ0)5 − 1077

3840
α(κ0)5 +O((κ0)7)

Table 3.1: Normal forms for some sequential periodic orbits with ration
rotation numbers. The table displays: (i) the change of variables g, (ii)
the resonant normal form and needed parameter relations for (iii)elliptic and
(iv)hyperbolic fixed points.
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Chapter 4

A non-autonomous standard
map

The oscillatory behavior of the mean field variable κ in Fig. 1.5(a) and the
observation that the cat’s eye structure is contained in the instantaneous
invariant stable and unstable manifolds of the hyperbolic point lead to further
study the relation of an oscillatory perturbation parameter in the standard
map and the possible critical global transport. For this reason an even simpler
map model of transport is considered in this chapter. The results presented
are discussed in detail in Ref. [9].

4.1 Map definition.

The starting point is the nonautonomous standard map (NASM), defined as

x̂n+1 = x̂n + ŷn+1 mod (1), (4.1a)

ŷn+1 = ŷn +
κn
2π

sin(2πx̂n) . (4.1b)

where κn is a function of n. The change in the scaling of the definition of
map (2.26) and the change of sign is done to simplify some calculations.

Motivated by the asymptotic dynamics of the single wave map (Sec.1.3)
the case of interest in this chapter is κn a periodic function of n. The peri-
odic case always allows to give an autonomous representation of the nonau-
tonomous map in Eq. (4.1) as the consecutive iteration of a whole period. A
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high period variation of κn could allow to mimic more complex models and
establish hierarchy of relevance between the parameters. However there ex-
ist evidence that adding one more parameter cause a transcendental change
in the critical global transport problem[1, 8]. The properties and relations
between the nonautonomous map (4.1) and the autonomous version are pre-
sented for the simplest periodic case in this section.

As a first step, a “triangular wave” periodic dependence is considered in
which κn can only take two values:

κn =


κ1 if n is odd,

κ2 if n is even.
(4.2)

The map Tκ1κ2 is defined such that its iterates (xn, yn) n = 1, 2, ... coincide
with the even iterations of (4.1), i.e.,

(xn, yn) = (x̂2n, x̂2n) . (4.3)

By construction, the map Tκ1κ2 is autonomous and can be written as,

xn+1 = xn + 2yn + F1(xn, yn;κ1, κ2) mod (1) (4.4a)

yn+1 = yn + F2(xn, yn;κ1, κ2) (4.4b)

where the functions F1 and F2 are defined as,

F1(x, y;κ1, κ2) =
κ1

2π
sin(2πx) + F2 , (4.5a)

F2(x, y;κ1, κ2) =
κ1

2π
sin(2πx)

+
κ2

2π
sin
{

2π
[
x+ y +

κ1

2π
sin(2πx)

]}
. (4.5b)

It should be noted that this new autonomous map preserves orientation and
depends of an infinite number of harmonics when the term sin[a + sin(b)] is
expanded in Bessel functions and because of this, the map is not reducible
to the extensively studied Refs. [50, 51, 12, 41] two frequency standard map.

As Fig. 4.1(c) shows, due to its non autonomous nature, the map in (4.1)
exhibits self-intersection of trajectories, something that as Fig. 4.1(a) and
Fig. 4.1(b) illustrates, never happens in autonomous maps. Fig. 4.1(d) shows,
the non autonomous dynamics of an initial condition inside an island of (4.1)
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Figure 4.1: Comparison between the phase space of maps (4.4) and (4.1).
(a) and (b) correspond to (4.4) with (κ1, κ2): (0.35, 0.5) and (0.5, 0.35) re-
spectively, and (c) corresponds to map (4.1) with the same parameters. (d)
shows to the time series of the initial condition z0 = (0, 0.55), where blue
(red) corresponds to the even (odd) iterates of map (4.1).

alternates between (0, 1/2) elliptic point of Tκ1κ2 and (1/2, 1/2) elliptic point
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of Tκ2κ1 .
The map in Eq. (4.4) is equivalent to the composition of two standard

maps, i.e., Tκ1κ2 ≡ Sκ2 ◦ Sκ1 , where Sε denotes the standard map with per-
turbation parameter ε from Sec. 2.5 in the form,

Sε
(
x
y

)
=

(
x+ y + ε

2π
sin(2πx)

y + ε
2π

sin(2πx)

)
. (4.6)

with (x, y) ∈ S1 × R. The composition of (positive) twist maps is denoted
as positive tilt map[26] in the literature. Although, tilt maps share many
features with twist maps it is easy to see that in general tilt maps are not
twist. It is straightforward to show that Tκ1κ2 and Tκ2κ1 are diffeomorphic,
since,

S−1
κ2
◦ T nκ1κ2 ◦ Sκ2 = T nκ2κ1 . (4.7)

where S−1
ε denotes the inverse of the standard map,

S−1
ε

(
x
y

)
=

(
x− y

y − ε
2π

sin(2π(x− y))

)
. (4.8)

Note that, as shown in Fig. 4.1, the two autonomous representations
have the same invariant sets. This important remark, that results from the
conjugacy in Eq. (4.7), is discussed in Secs. 4.2.2 and 4.5.1 where it is proved
that if an invariant circle exists in one of the representations then an invariant
circle with the same rotation number exists in the other representation.

This implies that if there exist an invariant circle in any of the autonomous
representations, then there exists a barrier for the transport in the nonau-
tonomous map (4.1), since the autonomous representations are also strobo-
scopic maps of (4.1). By invariance, the invariant circles of Tκ1κ2 and Tκ2κ1
limit the vertical displacement (drift) of any orbit in the map, so, if there
is no unbounded drift in any of the stroboscopic maps, there is not for the
whole map, even if in general there is not a defined invariant circle for map
(4.1), as it is required in the argument in Ref. [52].

The twist of Tκ1κ2 is given by,

∂xn+1

∂yn

∣∣∣∣
xn

= 2 + κ2 cos
{

2π
[
xn + yn +

κ1

2π
sin(2πxn)

]}
. (4.9)

and the twist condition ∂xn+1

∂yn

∣∣∣
xn
> 0, is satisfied in the whole cylinder when

|κ2| < 2. Based on this, the twist region in the parameter space is defined
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as the square: {(κ1, κ2) : |κi| < 2, i = 1, 2}, where both Tκ1κ2 and Tκ2κ1
are twist. It must be noted that, if the map is twist for small values of
the parameters, the Moser’s Twist Theorem [53] guarantees the existence of
invariant circles well ordered with the rotation number.

Let Ω = dy∧dx be a symplectic form on the cylinder, then it is clear that
Tκ1κ2 is symplectic with respect to Ω since each one of the standard maps is
symplectic. In particular,

(Tκ1κ2)∗Ω = (Sκ2 ◦ Sκ1)∗Ω = S∗κ1S
∗
κ2

Ω = Ω , (4.10)

where (F)∗ is the pullback via a function F. It can also be noted that since
both Sκ2 and Sκ2 are exact, then Tκ1κ2 is also exact. Notice that if dα = Ω,
then

S∗κiα− α = dPi i = 1, 2

where Pi is the generating functions of Sκi . The simple computation is as
follows (see Ref. [54]).

T ∗κ1κ2α = (Sκ2 ◦ Sκ1)∗α = S∗κ1S
∗
κ2
α = S∗κ1(α + dP2)

= α + d(P1 + S∗κ1P2) (4.11)

Therefore Tκ1κ2 is exact with generating function P = P1 + S∗κ1P2. Using
Mather’s conjunction operation[55] it is possible to give an implicit expression
for this generating function P as,

P = P1 ∗ P2 , (4.12)

where ∗ stands for,

P1 ∗ P2(x, x′) = min
ξ

(P1(x, ξ) + P2(ξ, x′)). (4.13)

In this case, the ξ that minimizes the conjunction is the unique solution to
the equation,

ξ =
x+ x′

2
+
κ2

4π
sin(2πξ) . (4.14)

And this last expression has clearly only one solution whenever |κ2| < 2,
which as mentioned before corresponds to the region in the parameter space
where the twist condition is satisfied.

97



4.2 Symmetries.

The symmetries of the NASM, help to reduce different possible cases and
to infer the existence of invariant circles and their rotation numbers from
the existence of invariant circle with different parameter values. Since the
autonomous representation of the NASM in (4.4) is the composition of two
standard maps (4.6), it is expected to have the symmetries of the standard
map. However there are other symmetries of Tκ1κ2 .

The functions Fi in Eqs. (4.5a) and (4.5b) have the following symmetries.

P1. Fi(−x,−y;κ1, κ2) = −Fi(x, y;κ1, κ2). (4.15)

P2. Fi(x+ n, y +m;κ1, κ2) = Fi(x, y;κ1, κ2),

for n,m ∈ Z. (4.16)

P3. Fi(x, y;κ1;κ2) = Fi(x+ 1/2, y;−κ1,−κ2). (4.17)

P4. Fi(x, y;κ1;κ2) = Fi(x, y + 1/2;κ1,−κ2). (4.18)

Whereas Eqs. (4.15) and (4.16) are coordinate symmetries directly inherited
from the standard map, Eqs. (4.17) and (4.18) are symmetries of the non-
autonomous map that involve both coordinates and parameter transforma-
tions. From, (4.17) and (4.18) it follows that,

Fi(x, y;κ1;κ2) = Fi(x+ 1/2, y + 1/2;−κ1;κ2). (4.19)

In the remaining of this section, (x, y) denotes the variables of the lift of
map (4.4). In other words, x ∈ R.

4.2.1 Orbit symmetries.

Let xn(x0, y0;κ1, κ2) and yn(x0, y0;κ1, κ2) denote the x and y coordinates of
the n-th iterate of the NASM with parameters (κ1, κ2) and initial condition
(x0, y0). Then, from the properties of Fi, it follows that the orbits exhibit
the following symmetries (see Fig. 4.2).

1. Coordinate reflection [from Eq. (4.15)],

xn(−x0,−y0;κ1, κ2) = −xn(x0, y0;κ1, κ2) , (4.20a)

yn(−x0,−y0;κ1, κ2) = −yn(x0, y0;κ1, κ2) . (4.20b)
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2. Coordinate translation [from Eq. (4.16)],

xn(x0 + r, y0 + s;κ1, κ2) = xn(x0, y0;κ1, κ2) + r + 2ns , (4.21a)

yn(x0 + r, y0 + s;κ1, κ2) = yn(x0, y0;κ1, κ2) + s , (4.21b)

for r, s ∈ Z.

3. Coordinate translation and reflection [from Eqs. (4.20)-(4.21)],

xn(1− x0, 1− y0;κ1, κ2) = 1− xn(x0, y0;κ1, κ2) + 2n , (4.22a)

yn(1− x0, 1− y0;κ1, κ2) = 1− yn(x0, y0;κ1, κ2) . (4.22b)

4. Coordinate translation and parameter reflexion twice [from Eq. (4.17)],

xn(x0 + 1/2, y0;−κ1,−κ2) = xn(x0, y0;κ1, κ2) + 1/2 , (4.23a)

yn(x0 + 1/2, y0;−κ1,−κ2) = yn(x0, y0;κ1, κ2) . (4.23b)

5. Coordinate translation and parameter reflexion [from Eq. 4.18],

xn(x0, y0 + 1/2;κ1,−κ2) = xn(x0, y0;κ1, κ2) + n , (4.24a)

yn(x0, y0 + 1/2;κ1,−κ2) = yn(x0, y0;κ1, κ2) + 1/2 . (4.24b)

6. Coordinate translation and parameter reflexion [from Eq. 4.19],

xn(x0 + 1/2, y0 + 1/2;−κ1, κ2) = xn(x0, y0;κ1, κ2)

+ 1/2 + n , (4.25a)

yn(x0 + 1/2, y0 + 1/2;−κ1, κ2) = yn(x0, y0;κ1, κ2) + 1/2 . (4.25b)

Note that property P3 in (4.17) implies that if there is an invariant circle
above the line y = 0.5, then there is an invariant circle corresponding to its
reflected image bellow y = 0.5. This same property exists in the standard
map, so its invariant circle γ has a reflected image (with rotation number
1− γ) in the lower half of the cell, and both break up for the same value of
the parameter κG = 0.971635406...
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Figure 4.2: Phase space of the map (4.4) for different values of the parameters
(κ1, κ2): (a) (0.5, 0.7) ,(b) (−0.5,−0.7), (c) (−0.5, 0.7) and (d) (0.5,−0.7),
related by the symmetries P3 and P4, in Eq. (4.17) and (4.18) respectively.

4.2.2 Rotation number symmetries.

The rotation number of an orbit of the map (4.4) with parameters (κ1, κ2) is
defined as,

ω(x0, y0;κ1, κ2) = lim
n→∞

xn(x0, y0;κ1, κ2)− x0

n
, (4.26)
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whenever the limit exist.
Then from Eqs. (4.23a), (4.24a) and (4.25a), respectively, it follows that

ω(x0 + 1/2, y0;−κ1,−κ2) = ω(x0, y0;κ1, κ2) ,

(4.27)

ω(x0, y0 + 1/2;κ1,−κ2) = ω(x0, y0;κ1, κ2) + 1 ,

(4.28)

ω(x0 + 1/2, y0 + 1/2;−κ1, κ2) = ω(x0, y0;κ1, κ2) + 1 .

. (4.29)

Therefore, for each invariant circle passing through (x0, y0) with rotation
number ω in the NASM with parameters (κ1, κ2), there exist up to three other
associated invariant circles: one with rotation number ω + 1 for (−κ1, κ2)
passing through (x0 + 1/2, y0 + 1/2), one also with rotation number ω + 1
for (κ1,−κ2) passing through (x0, y0 + 1/2), and one with rotation number
ω for (−κ1,−κ2) passing through (x0 + 1/2, y0).

In addition, for a given (κ1, κ2), from Eq. (4.22) it can be shown that,

ω(1− x0, 1− y0;κ1, κ2) = 2− ω(x0, y0;κ1, κ2) , (4.30)

which is a property that also applies to the standard map (4.6), but with a
different shift1.

Finally from Eq. (4.7) and the definition of rotation number in (4.26), it
follows that,

ω(Sκ2(z0);κ2, κ1) = ω(z0;κ1, κ2) , (4.31)

where z0 = (x0, y0)T .

4.3 Periodic orbits.

The periodic orbits are sets that in many cases offer information that can
be used to characterize maps, approximate invariant sets and study linear
stability. For these reasons, it is important to study them in the case of the
NASM.

The close relationship between Tκ1κ2 and Tκ2κ1 reflects on the fact that
if z = (x, y)T is an n-periodic orbit, on the lift of the map2 with rotation

11 instead of 2 on the right hand side of Eq. (4.30).
2To the universal cover of S1 × R.
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number m/n of Tκ1κ2 , that is,

T nκ1κ2(z) = z + (m, 0)T , (4.32)

then from Eq. (4.7) it follows that,

w = S−1
κ2

z , (4.33)

is an m/n-periodic orbit of Tκ2κ1 , i.e.

T nκ2κ1(w) = w + (m, 0)T . (4.34)

Note that the linear stability properties of z and w are the same because
the trace of a product of matrices is invariant under the product commuta-
tion.

4.3.1 Period-one orbits

There are six primary period-one orbits. By primary it must be understood
that they exist for any values of κ1 and κ2. In addition there are bifurcated
period-one orbits that exist only for certain values of κ1 and κ2. The primary
orbits are

P1 = {(1/2, 0) , (0, 0) , (0,±1/2) , (1/2,±1/2)} . (4.35)

The stability of these orbits is determined by the residue

R =
1

4
[2− Tr (∇Tκ1κ2)] , (4.36)

where Tr denotes the trace, and ∇Tκ1κ2 is the derivative of the map evaluated
at the fixed point. A fixed point (x∗, y∗) is stable if and only if 0 < R < 1.
From this it follows that,

I. (0, 0) is stable iff 0 < −κ1 − κ2 −
κ1κ2

2
< 2 , (4.37)

II.
(

1
2
, 0
)

is stable iff 0 < κ1 + κ2 −
κ1κ2

2
< 2 , (4.38)

III.
(
0,±1

2

)
is stable iff 0 < κ2 − κ1 +

κ1κ2

2
< 2 , (4.39)

IV.
(

1
2
,±1

2

)
is stable iff 0 < κ1 − κ2 +

κ1κ2

2
< 2 . (4.40)
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Figure 4.3: Stability of primary period-one fixed points. Red regions cor-
respond to stable orbits. As expected, the stability diagrams satisfy the
symmetry relations in Eqs. (4.15)-(4.18).
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Figure 4.3 shows the stability regions of the primary period-one fixed points
in the (κ1, κ2) space, according to (4.37)-(4.40). As expected, the results in
Fig. 4.3 are consistent with the symmetries in (4.15)-(4.18).

The secondary period-one orbits (x∗, y∗) are solutions to the system,

2y∗ = −κ1

2π
sin(2πx∗) mod(1) , (4.41a)

κ1 sin(2πx∗) = −κ2 sin
(

2πx∗ +
κ1

2
sin(2πx∗)

)
. (4.41b)

A Taylor expansion of (4.41b) around the elliptic point (1/2, 0), neglecting
fifth order terms, around |z∗| = |2πx∗ − π| � 1, allows to estimate z∗ as

z2
∗ =

6κ1 + 6κ2 + 3κ1κ2

κ1 − κ1κ2
2

+ κ2

(
1− κ1

2

)3 +O(z4
∗) . (4.42)

Figure 4.4 shows the region in the positive quadrant of the parameter space
where it is possible to find these associated periodic orbits of period 1 around
the primary period-one fixed point

(
1
2
, 0
)
. It should be noted that the limiting

curve in the figure coincides with the limiting curve in Fig. 4.3 for the same
point. These secondary families of periodic orbits appear after a pitchfork
bifurcation of the primary fixed point

(
1
2
, 0
)
. The value of Greene’s residue

evaluated at the orbits correspond to the region shaded in red tells us that
these orbits are stable.

4.4 Transport barriers: known limit cases and

direct computation.

Our goal is to find the critical parameter values of the map (4.4) for which
global transport occurs. We will say that there is global transport when
there exists at least one initial condition (x0, y0) such that the y variable is
unbounded. We have observed in (4.9)-(4.11) that the map in (4.4) is sym-
plectic, exact and twist for small values of the parameters. It is established,
see Ref. [56], that for twist maps of the cylinder the only barriers to global
transport are invariant circles that are not homotopic to a point. Because of
these properties, Moser’s Twist Theorem guarantees the existence invariant
circles for sufficiently small values of the parameters κi in a neighborhood
in parameter space of the origin which corresponds to the case in which the
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Figure 4.4: Region of existence of the secondary period 1 periodic orbits
around the elliptic point

(
1
2
, 0
)

in the positive quadrant of the parameter
space. The light green shaded region corresponds to values of the parameters
where the secondary periodic orbits do not exist. The figure displays in red
the increasing values of the absolute error of the approximate value of z∗ from
(4.42), when substituted into (4.41b). The red colored region also coincides
with values of the Greene’s residue, Eq. (4.36), for when the orbits are stable.

map is integrable. Then it is reasonable to compute the critical boundaries
(CB) in the parameter space for the onset of global transport (CBgt) and for
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the destruction of invariant circles with a fixed rotation number, ω, (CBω).
By CB we mean the boundary of the open region R in the parameter space
(assumed to be simply connected) such that for (κ1, κ2) values in R there
is not global transport in the case of (CBgc) or a given invariant circle with
rotation number ω exists in the case of (CBω).

We propose three different approaches to find these transport barriers:
analytical reductions of the map for particular values of the parameters,
direct numerical iteration for a range of values of the parameters which gives
upper bounds, and a continuation method over invariant circles with an
a priori chosen rotation number in the parameter space which gives lower
bounds to global transport.

4.4.1 Known limit cases.

In the standard map, the term critical parameter value, κc, is established in
the literature[18] as the value for with any further increment |κ| > |κc| there
are no invariant curves. We call critical invariant curve to such invariant
curve that exist for κ = κc and cease to exist after the critical value. It is a
known conjecture[18] that for the standard map, the rotation number of the

critical invariant curve is equal to the golden mean γ =
√

5−1
2

.
We present some particular cases of map (4.4).

1. (κ1, κ2) = (κ1, 0), κ1 ≥ 0.

In this case the map (4.4) reduces to,

xn+1 = xn + 2yn +
2κ1

2π
sin(2πxn) (4.43a)

yn+1 = yn +
κ1

2π
sin(2πxn) (4.43b)

which upon the change of coordinates: {X = x, Y = 2y}, becomes the
standard map (4.6) with ε = 2κ1. And it is well known in this case
that the critical invariant circle has rotation number equal to the golden
mean γ and breaks at the critical value κG ≈ 0.971635406 [18, 22]. This
implies that the critical invariant circle for the case (κ1, κ2) = (κ1, 0)
has rotation number ωc = γ and breaks for κ1c = κG/2. Applying
Eq. (4.30) to the standard map reduction and the NASM, it follows
that there are also three more critical invariant circles with rotation
numbers: 1− γ, 2− γ and γ + 1.
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2. (κ1, κ2) = (0, κ2), κ2 ≥ 0.

In this case the map (4.4) reduces to,

xn+1 = xn + 2yn +
κ2

2π
sin(2π (xn + yn)), (4.44a)

yn+1 = yn +
κ2

2π
sin(2π (xn + yn)). (4.44b)

As before, with the change of coordinates: {X = x + y, Y = 2y}, the
map reduces to the standard map (4.6) with perturbation parameter
ε = 2κ2. Therefore the critical invariant circle has rotation number
ωc = γ and breaks for κ2c = κG/2. From Eq. (4.30), there are three
more critical invariant circles: 1−γ , 2−γ and γ+1. This case can also
be considered a consequence of the Eq. (4.31) applied to the previous
case.

3. (κ1, κ2) = (κ, κ), κ ≥ 0.

In this case the map reduces to the standard map iterated twice, which
that the critical invariant circle of map (4.4), has rotation number
ωc = 2γ and breaks at κc = κG. By the symmetry (4.30), there exists
also the invariant circle with rotation number: ωc2 = 2− 2γ.

Furthermore, applying the results of section III.B we can give the ro-
tation numbers of the critical circles in the other quadrants. For ex-
ample, for (−κ, κ), the critical invariant circles are: ωc1 = 2γ − 1 and
ωc2 = 3− 2γ for κc = εc.

It should be noted that the change of variables used in the first two cases
are homotopic to the identity, so the barriers in the cylinder for the standard
map reductions are barriers for the NASM as well.

4.4.2 Direct computation.

We formally define a barrier to global transport as an invariant circle not
homotopic to a point, which geometrically are circles that go around the
cylinder S1×R. An invariant circle of this kind, when it exists, always divides
the phase space in two unbounded invariant regions, due to its invariance and
the continuity of the map. This method is basically a modified version of the
overlap method introduced by Chirikov[10].

The numerical computation of the threshold to global transport is based
on the following criteria:
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Proposition 4.1. (Global transport criterion)
If for a set value of the parameters (κ1, κ2), there is an initial condition
(x0, y0) with y0 ∈ (0, 1), for which |yn − y0| > 2 for some n and all the
invariant circles of the map have an amplitude3 A < 1, then the map has
global transport.

Proof. Lets assume that for the map with (κ1, κ2), there exists an initial
condition (x0, y0) such that |yn − y0| > 2 for a certain n but there still
exists an invariant circle fully contained in the cell [0, 1] × (Q,Q + 1) for
Q ∈ R. By the orbit symmetry property in Eq. (4.21), using r = 0 and
s = −bQc := −max{m ∈ Z|m ≤ Q}, there exists a copy of the invariant
circle in [0, 1] × [0, 2]. Then, either the invariant circle or one of its copies
(s = −bQc ± 1) lies between y0 and yn. Which is a contradiction because y0

and yn must be in the same connected component of the cylinder.
�

Numerical evidence, see e.g. Fig. 4.2(a), shows that at least for parameter
values |κi| < 1, the hypothesis, A < 1, holds. A different argument to
support the hypothesis is that the invariant stable and unstable manifolds
of the hyperbolic fixed point around (0, 0) obstruct the path of the invariant
curve, and so do its integer translates in the y-direction.

We performed several series of N -iterations of the map (4.4) on M initial
conditions taken uniformly distributed in the rectangle [0, 1]× [0, 0.3] to de-
termine, using the proposed transport criteria (Proposition 1) when the map
displayed global transport for a wide range of the parameters (κ1, κ2) inside
the twist region. Different number of initial conditions, M , were used, finding
M = 104 to be a reasonable balance between the computing capabilities and
the consistency of the results. The procedure was repeated for an increasing
number of iterations N . The convergence of the method is shown in Figure
4.7. Figures 4.5 and 4.6 show the critical boundary for the global transport
(CB gt) found with these calculations, i.e. the locus of points in parameter
space for which no critical invariant curves were detected.

In all the cases studied, the CB gt in the upper half plane of the parameter
space were symmetric (up to machine precision) on the right (left) quadrant
with respect to the line κ2 = κ1 (κ2 = −κ1), Fig. 4.6.

The slope of the adjusted line to the convergence data obtained with
the direct method for a variable number of iterations N , Fig. 4.7, suggests

3Where A is the height difference between the highest and lowest point of the invariant
circle.
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Figure 4.5: Critical boundary for global transport (CB gt) in the non-
autonomous standard map in Eq. (4.4), in the positive quadrant. The area
outside the “horn” corresponds to parameter values for which there is global
transport, in the sense that at least one of 104 initial condition uniformly
distributed on the rectangle [0, 1] × [0, 0.3] exhibited a displacement with:
y > 0.3 + 2 or y < −2 after 105 (green triangles), 5 × 105 (red circles) and
106 (blue squares) iterations of the map.

that the convergence of the method is algebraic: (κN − κG) ∝ N−1/η, with
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Figure 4.6: Critical boundary for global transport (CB gt) in the non-
autonomous standard map in Eq. (4.4) in the upper half plane of parameter
space, obtained by the direct method with M = 104 and N = 106. As in Fig-
ure 4.5, the area outside the “horns” corresponds to global transport, for the
same conditions as in Fig. 4.5. The insets are images of the cell [0, 1]×[0, 1] of
the phase space (x, y) obtained from the iteration (N = 3×106) of the NASM
for the initial condition (0.5, 0.44) for parameter values close the computed
boundary: (0.526, 0.69), (0.526, 0.73), (−0.69, 0.525) and (−0.73, 0.525).

η = 2.681 (and η = 3.322 for large N), which is close to the value,η = 3.012,
reported in literature[22] for transport in the standard map.

4.5 Transport barriers: continuation method.

This section reviews the numerical implementation of the parameterization
method presented in Sec. 2.8 to do the numerical continuation of invariant
circles of the map in Eq. (4.4).

The main idea of the method is, as stated previously, to start from an
approximate solution of the invariance equation applied to Tκ1κ2 ,

e0(θ) = Tκ1κ2 ◦K0(θ)−K0(θ + ω) , (4.45)
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Figure 4.7: Convergence of the critical parameter value κc as function of
the number of iterates N , observed using the direct method at the cusp of
the horn, along the diagonal (κ1, κ2) = (κ, κ). To better display the results,
the plotted quantity on the vertical axis is κN − κG.

where ‖e0‖ is small. And then “improve” the approximate solution by adding
a periodic function ∆ : S1 → R × S1 so that K1(θ) = K0(θ) + ∆(θ) has an
error

e1(θ) = Tκ1κ2 ◦K1(θ)−K1(θ + ω) , (4.46)

with ‖e1‖ ≈ ‖e0‖2. Which according to Nash-Moser theory is possible.
Instead of solving numerically the Newton equation in (4.46) for ∆, the

method opts for a symplectic change of coordinates that reduces the Newton
step equation (4.46) with the benefit to have an implementation that require
only O(n log n) operations, where n is the number of points that one uses to
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represent the invariant circle.
The proposed change of coordinates applied to the Newton step, ∆(θ) =

M0(θ)W (θ), reduces approximately the Newton step equation to,

W2(θ)−W2(θ + ω) = −[M−1
0 (θ + ω)e0(θ)]2 , (4.47)

W1(θ)−W1(θ + ω) = −[M−1
0 (θ + ω)e0(θ)]1 − S(θ)W2(θ) , (4.48)

that are the system of Eqs.(2.43)-(2.44) discussed at end of Sec. 2.8. An this
time, because equation (4.11) guaranties that Tκ1κ2 is exact, the right hand
side of (4.47) has average zero, so both homological equations can be solved.

The algorithm to solve for ∆ from the reduced Newton equation is again
described below.

Algorithm 4.1.

1) Let e0(θ) = Tκ1κ2 ◦K0(θ)−K0(θ + ω)

2) Compute the matrix M(θ) from equation (2.38).

3) Solve for W2(θ) from (2.43).

4) Choose the average
∫
S1 W2(θ)dθ so that −[M−1

0 (θ+ω)e0(θ)]1−S0(θ)W2(θ)
has an average close to zero.

5) Solve for W1(θ) from (2.44).

6) Compute the step ∆,

∆(θ) = M0(θ)W (θ)

7) Obtain the new parameterization K1,

K1(θ) = K0(θ) + ∆(θ)

8) Set K0(θ) = K1(θ) and go to step 1).

Remark. In order to implement the computations in step 5, one has to make
sure that the twist condition is satisfied, so S0(θ) 6= 0. Verifying the twist
condition might be a drawback when the algorithm is applied to maps that do
not have a uniform twist condition. However in the present case, it is only
required to perform the continuation in parameter regions where the maps
satisfied the twist condition uniformly.
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Remark. One can verify that all the operations required to implement algo-
rithm 4.1, are either diagonal in Fourier space or in real space. To trans-
form from real space to Fourier space one can use a Fast Fourier Transform
(FFT), which is the most expensive operation in the Algorithm 4.1 in terms of
arithmetic operations. Therefore, the cost of implementing Algorithm 4.1 is
O(n log n) operations with O(n) storage requirements, where n is the number
of points used to represent the circle.

between the parameterization method exposed here and the symmetries
that were introduced in Section 4.2.

4.5.1 Symmetries of the parameterization of an invari-
ant circle

This subsection presents some of the symmetries discussed in Section 4.2 from
the point of view of the parameterization method. The goal is to rewrite the
symmetries in terms of compositions of functions. In this way, the com-
position formulation can be used to rewrite the invariance equation that a
parameterization of a circle with a certain symmetry should satisfy. This
way if a map has an invariant circle, then it is possible to use the parameter-
ization function, K, and transform it using the composition operators with
respect to a given symmetry. In this way, a new parameterization can be
constructed such that it satisfies the invariance equation of a new map with
the given symmetry. The starting point is to verify that the invariant circles
of the map Tκ1,κ2 are expected to exist and to have the rotation numbers
found in Section 4.4.1.

First, let the map T has an invariant circle with rotation number ω,
whenever Eq. (2.32) is satisfied. For instance, if Sκ in Eq. (4.6), has an
invariant circle of rotation number ω, with graph K, then Tκκ will have an
invariant torus with rotation number 2ω as described above. Since,

Sκ ◦K(θ) = K(θ + ω)

and
Sκ ◦K(θ + ω) = K(θ + 2ω),

then
Sκ ◦ Sκ ◦K(θ) = Sκ ◦K(θ + ω) = K(θ + 2ω). (4.49)
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It can be noticed that by defining the rigid rotation the following function
for φ ∈ R,

Rφ(x, y) = (x+ φ mod 1, y) ,

then the standard map (4.4) satisfies that,

Sε ◦R− 1
2

= R− 1
2
◦ S−ε, (4.50)

for any ε. There exist one more symmetry of the parameterization that will
be important. To see this, the components of the parameterization K is
rewritten as follows. Let u(θ) be a 1-periodic function of S1, then

K(θ) =

(
θ + u(θ)

ω + u(θ)− u(θ − ω)

)
. (4.51)

It is clear from (4.51) and the periodicity of u, that

R−1 ◦K(θ) = K(θ − 1). (4.52)

In particular, if K is the parameterization of an invariant circle of Sκ◦R− 1
2

then by the property (4.49) of the square of a map above, we have that

Sκ ◦R− 1
2
◦ Sκ ◦R− 1

2
◦K(θ) = K(θ + 2ω).

So by the symmetry property in (4.50) of the standard map together with
the symmetry (4.52) of the invariant circle, we have that

Sκ ◦ S−κ ◦R−1 ◦K(θ) = K(θ + 2ω)

=⇒ Sκ ◦ S−κ ◦K(θ − 1) = K(θ + 2ω)

This is equivalent to saying that K is an invariant circle of Sκ ◦ S−κ with
rotation number 2ω + 1, where K is the invariant circle of Sκ ◦ R− 1

2
with

rotation number ω, which is the same as the symmetry in Eq. (4.28).
It is possible to verify the properties formulated in Section 4.4 that state

that the maps Tκ10 and T0κ2 can be rescaled to standard maps with twice the
perturbation parameter.

If we define the transformation

Pξ(x, y) = (x mod 1, ξy),
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a simple computation tells us that

Tκ10 = S0 ◦ Sκ1 = P1/2 ◦ S2κ1 ◦ P2

So if S2κ1 has an invariant circle, then the invariance equation is

S2κ1 ◦K(θ) = K(θ + ω).

We immediately know that P1/2◦K(θ) is an invariant circle for Tκ10. Namely,

P2 ◦ S0 ◦ Sκ1 ◦ P1/2 ◦K(θ) = K(θ + ω),

is equivalent to

Tκ10 ◦ P1/2 ◦K(θ) = P1/2 ◦K(θ + ω).

The case of the map T0κ1 is obtained for the above since when we use (4.7), we
have that T0κ1 = S−1

0 ◦Tκ10◦S0. Then, it is clear that the circle S−1
0 ◦P1/2◦K

is invariant for T0κ1 . In fact, from Eq. 4.7 it is easy to see that if Tκ1κ2 has
an invariant circle with rotation number ω, then Tκ2κ1 has an invariant circle
with the same rotation number. This result was also stated in Eq. (4.31).

4.5.2 Results from the parameterization method

The parameterization method was applied using the rotation numbers ob-
tained from section 4.4: γ, γ + 1, 2γ and 2γ + 1 and also with 5γ+6

4γ+5
and

γ+1
4γ+5

which were found heuristically. The method produced in all the cases
as critical boundaries between the existence and breaking of a given invari-
ant circles with rotation number ω, (CBω), a two horn-shaped asymmetrical
curve in the upper plane of the parameter space (κ1, κ2). The points obtained
in the CBω correspond to the blow-up of the Sobolev norms of the param-
eterization function K. The critical boundaries are displayed in Figure 4.8
with the addition of the a curve of the first method to contrast the results.
All the critical boundaries agree with the results from section 4.4 and are
contained in the tightest curve from previous subsection. Notice that the
CB corresponding to γ is related to the one of γ + 1 and the CB of 2γ is
related to the one of 2γ + 1 by a reflection with respect to the κ2-axis.

Additionally to the rotation numbers that were predicted to be of im-
portance in section 4.4.1, the parameterization method was applied to two
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Figure 4.8: Critical boundaries for the existence of four KAM tori (CBω)
{γ, γ+1, 2γ, 2γ+1, 5γ+6

4γ+5
and γ+1

4γ+5
} found with the parameterization method

contrasted with the critical boundary (CB gt) found via direct simulation of
the NASM.

Figure 4.9: Details on the intersection between the critical boundaries {γ,
2γ and 5γ+6

4γ+5
} from Fig. 4.8.
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additional ones: 5γ+6
4γ+5

and γ+1
4γ+5

. These numbers were obtained empirically
by iterating the map close to the invariant circle, obtaining a few digits by
approximating the limit in (4.26) and then adding a tail of ones to the contin-
ued fraction. Neither of these two numbers correspond to a known reduced
case of the map (4.4), however the results displayed on Figure 4.8 show that
the corresponding CBω’s give reasonable lower bounds to the CB gt found
by direct method in some regions of the parameter space. There exist more
robust numerical methods[57, 58] to estimate rotation numbers of invariant
sets, however at the time the concern was in corroborating the consistency
of the previous analytic and numeric results. A numerical characterization
of the rotation number of the most robust invariant circle as function of the
parameters may be leaved to a further publication.

4.6 Discussion and conclusions

In section 4.4 was founded from the direct computation a horn shaped critical
boundary for global transport, CB gt, giving the threshold between bounded
evolution of a set of initial conditions and global transport. Using the pa-
rameterization method in Sec. 4.5 was founded that the critical boundaries
for the existence of invariant curves with given rotation numbers, the CBω’s.
All the CBω were found to be fully contained inside the CB gt. It is expected
that the CB gt is minimal envelope of all the CBω associated to the invariant
circles that exist for the map Tκ1κ2 .

CB ’s were also computed using a Greene’s residue method in Ref. [59]
for the 3D map,

Fk,∆k

 x
y
φ

 =

 x+ y + k′

2π
sin(2πx) mod 1

y + k′

2π
sin(2πx)

φ+ Ω mod 1

 , (4.53)

where k′ = κ̄ + ∆κ cos(2πφ), which corresponds to a more general (quasi-
periodic) variation of κ than the one in Eq. (4.2). In the case Ω = 1/2, the
map (4.53) is equivalent to the map in Eq. (4.1) with the appropriate choice
of parameters. If the initial value of φ is 0 and Ω = 1/2, the parameters
of the map (4.53) and map (4.1) are related by:κ̄ = κ1+κ2

2
, ∆κ = κ2−κ1

2
.

Additionally in the special case when the initial value of φ is 1/4, the map
reduce to the Chirikov-Taylor map (4.6). In Ref. [59] the CB displayed
correspond to the critical values of the Greene’s residue[18] in the parameter
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space (κ̄,∆κ) for map (4.53) for different periodic orbits with rotation vectors
that approximate a two dimensional invariant torus. These CB ’s have a
diamond shape similar to the curves obtained in Sec. 4.4 in (κ̄,∆κ) parameter
variables (see Fig. 4.10), which represent the threshold of global transport
and disappearance of all invariant one dimensional tori for map (4.53) with
rotation vectors of the form (ω, 1/2). In figure 4.11 we compare our CB gt

with one of the CB from Ref. [59] corresponding to the periodic orbit with
rotation vector (1705

3136
, 2631

3136
) with period 3136, that approximates a golden

rotation vector. The critical curve is contained inside ours except for a few
points that do not belong inside the region we computed.

To explore the phenomenon of the protruding regions in the parameter
space that possibly exist for non autonomous maps with periods greater than
two, we have studied map (4.53) with Ω = 1/3, which correspond to a κn
variation for map (4.1) with three values. Finding also critical boundaries
that surpassed in a small region the one found for map (4.4).

Reference [60] computed the CB for a given rotation number in a driven
standard map similar to Eq.(53). As in the previous case, the results are
consistent with ours. In particular, they also found a diamond shaped CB
in the (κ̄,∆κ) parameter space.

It is important to remark that in map (4.53) the two dimensional and
the one dimensional tori are topological barriers to global transport due the
uncoupled variation of φ with respect to (x, y). In general, Fig. 4.11 suggests
that the destruction of the one dimensional tori implies the breaking of the
two dimensional ones except for a few peaks that stand outside of our curve
in the parameter space. It remains to study why are the two dimensional tori
more robust that the one dimensional ones in these peak regions. Numerical
evidence leads us to think that the critical boundary for global transport in
the map (4.53) with Ω = p/q might fully contain the ones in Ref. [59].

118



Figure 4.10: Plot in the (κ̄,∆κ) parameter variables of the CBω of four KAM
tori {γ, γ + 1, 2γ, 2γ + 1, 5γ+6

4γ+5
and γ+1

4γ+5
} found with the parameterization

method and the CB gt found via direct simulation of the NASM. The extension
to the whole parameter space is obtained using the Eq. (4.27).
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Figure 4.11: Critical boundary curve (CB gt) found via direct simulation of
the NASM (red) compared with one of the CB for a periodic orbit with
rotation vector (1705

3136
, 2631

3136
) for map (4.53) (blue) taken directly from Ref. [59]

[Exp. Math. 5(3):211-230,1996].
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Chapter 5

Periodic orbits in twist maps

As mentioned before in chapter 3, the study of periodic orbits gives an in-
sightful first approach to dynamical systems that can provide fundamental
understanding of the behavior of many systems. Low order periodic orbits
are usually the easiest to recognize structures in the phase space of any twist
map but the high order ones (order > 103) are the ones that may give the
most useful information. Since the early 60’s with works from Newel[61],
Greene[18], Ford[62, 63], Chirikov[10], the study of periodic orbits allowed
to introduce powerful frameworks as the renormalization theory. Periodic
orbits have been used to many ends, some of the most noticeable are: to
determine the existence of an invariant circle as function of the parameter
values[18], to determine the topology and dynamic of invariant sets[22, 24],
to prove the existence of universal properties on maps close to critical[64, 24],
to study the behavior of invariant sets with rotation numbers with a periodic
structure in their continued fraction expansion (PACSE)[65], to give bounds
for the gaps in invariant circles turned in cantori[22] and more. Notwith-
standing the many results and applications, the search of periodic orbits
of high order period has been always restricted to problems with symme-
tries that help to reduce the dimension of the search space, in particular
reversible maps. Extension or mere corroboration of some of universal prop-
erties for maps without symmetries has not been possible due the inability to
compute high order periodic orbits. The approach proposed in this chapter
describes a compound method that modifies the parameterization method
from Secs. 2.8 and 4.5 to estimate periodic orbits of high order (102 − 106)
and then use a 2D-Newton algorithm to improve the accuracy. The original
motivation to develop this new method is to apply it to maps like (4.4), for
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which there are no known useful symmetries that help to simplify the search
of periodic orbits. By doing this, it would possible to round up the previous
chapter having a tool to study and verify properties not guarantied to exist
by the renomalization theory in tilt maps. The proposed method does not
require any additional symmetry and in principle can be applied to any area
preserving twist map (APTM).

5.1 Some results with periodic orbits

Although periodic orbits appear in many results in dynamical systems, their
calculation is not always included in the theory. Even in more general (2-D)
results like Mather theory, it is not proved if the symmetric periodic orbits
that can be actually computed are the same monotone orbits predicted to
exist by the theory. The first kind could be just a subset of the second.

The monotonicity and existence of periodic orbits (Birkhoff’s theorem)
are used in KAM results like Moser’s Theorem (Thm. 2.4) to describe prop-
erties or prove the persistence of invariant circles for sufficient enough small
values of the parameters, where among other hypothesis, a series of periodic
orbits with rotation numbers {pi/qi}i∈N such that pi/qi → ω can be establish,
this is illustrated in Fig. 5.1(a). This analytic perturbative result should be
contrasted with the conjecture given by Green[18], mentioned in Chap. 2,
that works outside the small parameter regime. Both use the existence of
periodic orbits in twist maps but the second use a residue (a quantity com-
puted over the periodic orbit points) to give numerical bounds to parameter
values for the existence of an invariant circle. Greene’s method uses a scaling
rule of the residue and bifurcation of the stability of periodic orbits that can
be only appreciated for high order periodic orbits with the critical behavior
of invariant circle.

A complementary result, when pi/qi → P/Q, found by Katok[66] and
MacKay[67], affirm that the periodic orbits close to the monotonous inter-
section of the stable and unstable manifolds of the hyperbolic points of the
P/Q resonance, not the P/Q-periodic orbit itself. This result too was cor-
roborated by the computation of high order periodic orbits.

One more remarkable result of periodic orbits, treated in detail in next
chapter, is the self similar behavior of critical invariant circles found by
Shenker and Kadanoff[64, 68] which was the numerical evidence to back the
introduction of renormalization theory by MacKay [67, 69] to twist maps.

122



Figure 5.1: Illustration of the periodic orbits uses in (a) KAM theory and
(b) Katok-Mather result.

From renormalization theory, the critical behavior observed for the stan-
dard map is found to be universal behavior of invariant circles with rotation
number ω in area preserving twist maps for critical parameter values and
it is related to a critical point in the renormalization group. And again,
the computation of self-similar universal bounds for twist maps require the
computation of high-order periodic orbits.

One last result that is worth mentioning due to its importance and novelty
is the Principle of Approximate Combination of Scaling Exponents (PACSE),
Ref. [65], that basically found, through computation of high order periodic
orbits, numerical evidence of relations between critical exponents and rota-
tion numbers with periodic structure in their continuous fraction expansion.

The computation of high order periodic orbits have been restricted a
very limited set of twist and non-twist maps, namely the reversible maps.
There has been no attempt to study the properties of periodic orbits in non-
reversible maps due the lack of reliable methods to compute them. In the
following section will describe the nature of reversible maps.

5.2 Reversible maps

A map T is called reversible[70, 71, 46] if it can be written as the composition,
T = I2 ◦ I1, of two functions I1 and I2 with the property,

Ik ◦ Ik = Id , k = 1, 2 , (5.1)
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where Id is the identity. Functions that fulfill this property are called invo-
lutions. A list of properties of reversible maps can be found in Ref. [72] and
further properties of involutions in Refs. [73, 74].

The invariant sets of involutions are called symmetry lines1. It can be
proved (see Refs. [24, 68, 73]) that for any periodic orbit2 of a reversible map
with rotation number ω = p/q, at least two points of the orbit lay on the
symmetry lines.

The existence of symmetry lines allows to reduce the search of periodic
orbits of a reversible twist map [18, 29] and non twist map [75] from a 2-D
problem to a 1-D search on the symmetry line. In 1-D there are plenty of
methods to search for zeros of a equation and in particular the quasi-Newton
methods are efficient and well behaved [76]. This is why it is possible to
find periodic orbits of high order period, q ∼ 106 − 107. The only limit for
their computation is the machine precision and not the complexity of the
perturbation function presented, as it can be appreciated in Ref. [29] for
different (reversible) maps.

The work done by Greene on twist (reversible) maps was extended to
non-twist maps [75, 77, 78] and other more general cases [29] but always in
problems with symmetries for which it is possible to reduce the search of
periodic orbits to one dimension.

Studies of the same kind for maps in higher dimensions (like Refs. [46, 79])
or two dimensional maps without symmetry lines have to search the periodic
orbits in at least two dimensions, where the basin of attraction more often
than not have a very complicate (fractal) structure[80] which makes methods
like a 2D-Newton very unstable and sometimes unreliable unless the seed is
already very close to the periodic orbit, see Fig. 5.2. Additionally we men-
tion that the problem of the computation of periodic orbits via continuation
methods over a newton-like method can be very complex[80, 79] due adjacent
invariant structures like invariant manifolds.

This problem has been sometimes approached by reducing the search
to orbits with some kind of symmetry, as in chapter 3 with the sequential
periodic orbits (SPO’s), but the results rarely are as general as in the work
of Greene.

1In Ref. [73] a more general definition is used for symmetry lines.
2At least periodic orbits that approximate invariant circles not homotopic to a point.

124



Figure 5.2: Basin of attraction around a hyperbolic periodic point (x∗, y∗) of
the 34/55-periodic orbit of the Chirikov-Taylor map (4.6) with κ = 0.9707.
The colors reflects the number of iterates of a 2D-Newton of a given point
would persist around the region. Yellow indicates that the point stays in the
region (basin).

5.2.1 The case of the standard map

In Ref. [18], heavily inspired by deVogelaere[81] work on flows, Greene gave
to the Chirikov-Taylor map Eqs. (4.6)3, a decomposition in two involutions
I1 and I2, Sκ = I2 ◦ I1, defined as,

I1

(
x
y

)
=

(
−x

y − κ
2π

sin(2πx)

)
, I2

(
x
y

)
=

(
y − x
y

)
. (5.2)

3In this chapter considered with the opposite sign, κ = −ε respect the definition in
Eqs. (4.6).
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Considering that x is an angular variable (x ∈ [0, 1)), the symmetry lines for
I1 are: x = 0 and x = 1/2, and for I2: x = y

2
and x = y+1

2
. These lines can be

appreciated in Fig. 5.3 superposed over the phase space of Chirikov-Taylor
map for κ = 0.97. In the same figure a few of the low order periodic orbits are
signaled by colored O and X marks for linear elliptic and hyperbolic stability,
respectively. It can be appreciated that the line x = 0 contains only linear
elliptic periodic points and for this reason is called the dominant symmetry
line[64], although sometimes the name is also used also for the x = 1/2 line.

5.3 Non-reversible maps

In the present work, a non-reversible map refers to any map for which there
is no known decomposition into two involutions. It is an open problem
to characterize when it is possible to write a map as a composition of two
involutions.

The study of periodic orbits in non-reversible maps is not a purely aca-
demic exercise, in the literature very often the dynamical system (not just
symplectic maps) have no known symmetries to simplify their analysis. In
particular, twist maps of the form of Eq. (2.19) in which the perturbation
functions depend on both variables, it seems to be impossible to write them
as the composition of two involutions. There exist a collocation-like method
[82] that can be used for general symplectic maps but it has not been yet
published.

5.4 A new method to find periodic orbits: the

compound method

The parameterization method in the spirit of Ref. [83, 12, 13, 11, 37] and the
works of Percival[84] and MacKay[85] use Fourier series to asymptotically
find quasi-periodic rotation circles, namely KAM tori. This approach does
not require the use of symmetry lines, however by its construction, it can only
approximate continuous objects never discrete structures like periodic orbits.
The norm of parametrization function K blows-up when the invariant circle
ceases to exist (as a continuous object) breaks into a cantorus, a feature used
extensively in Sec. 4.5.2 to obtain the Figs. 4.8 and 4.9. However in twist
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Figure 5.3: Example of symmetry lines and periodic orbits in the Chirikov-
Taylor map (4.6) with κ = 0.97. The purple lines correspond to the symmetry
lines of I1 and green lines to I2. Low order periodic orbits are signaled by
colored O and X marks for linear elliptic and hyperbolic stability respectively,
corresponding to rotation numbers: 1/5, 2/7, 3/8, 2/5, 1/2, 3/5, 5/8, 2/3,
5/7 and 4/5.

maps, the monotone periodic orbits always exist for all values of the param-
eters (Birkhoff theorem 2.3 and Aubry-Mather theory[22]). The discussion
in this section omits to review the material on the parameterization method
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from Sec. 2.8 and proceeds to expose the problems to adapt the scheme to
the search of periodic orbits.

If one naively attempts to apply the parameterization method to a non-
diophantine rotation number the result will not converge due the “small
denominators” problem and it is worse for rational rotation numbers, where
there is a “zero denominators” problem. To be more clear on what “zero
denominators” means, lets review how to solve a reduced invariant equation
like (2.43) and (2.44). The kind of homological equation to solve is the
following,

W (θ)−W (θ + ω) = ẽ(θ) , (5.3)

where ẽ has zero average. On a Fourier series representation,

W (θ) =
∞∑

k=−∞

ake
2πikθ , ẽ(θ) =

∞∑
k=−∞

bke
2πikθ , (5.4)

the problem reduces to find ak as function of bk with a0 is a free parameter
and b0 = 0. This can be done for almost all coefficients by,

ak =
bk

1− e2πıωk
, if e2πiωk 6= 1 . (5.5)

However to ensure the convergence of the series is needed the Diophantine
hypothesis of ω.

If ω = P/Q, there exists a zero denominators problem for every ak with
k = mQ, m ∈ Z, this is a resonance. The problem is similar to finding the
periodic orbit with the resonant normal form in Sec. 3.2, although now it is
not clear what would be the meaning of a resonant approximate parameteri-
zation.

There are two possible ways to avoid this: a blunt approach to find θ̃ such
that,

ẽ(θ̃) =
∞∑

m=−∞

bmQe
2πimQθ̃ = 0 , (5.6)

which can be very complicate and may not be well posed problem because
the frame of work is an approximate solution. A second approach would be
setting a priori all coefficients bmQ ≡ 0. This is, eliminating the resonance
eliminates the denominator zero. This transforms the goal of parameteriza-
tion method to find a continuous parametric curve K(θ) that contains all
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the periodic points (hyperbolic and elliptic) from the monotone periodic or-
bit ω = P/Q up to an error of O(||ẽ||). However this does not guaranty the
convergence of the series.

A quantitative aspect not explicitly mentioned in Secs. 2.8 and 4.5 is
that the number of Fourier modes considered is for practical reasons always
finite. However it is guarantied by the theory behind the parametererization
method that for a fixed upper bound for the error of the approximate solu-
tion, ||ẽ1|| < ε̃ there is an optimal maximum number of Fourier coefficients
N(ε̃) to be considered so the norm of the remaining tail of harmonics can
always be safely included inside the error of the approximate solution[13]. A
proof in the convergence of the new method is still pending so there is not
a clear argument of how many harmonics is convenient to use. If the num-
ber of harmonics N∗ is fixed a priori, then the method, when it converges,
should give an optimal trigonometric polynomial of degree N∗ such that the
parametric curve pass close to the points of the periodic orbit. And even if
the method does not converge and gives an approximate value of a point of
the periodic orbit with a bounded error, it may suffice to be used as seed for
2-D methods. So a convergence theorem may not be needed at this point for
the implementation of the method.

For obvious reasons, if this curve K exists, it can not be an invariant
subset of the phase space of the map. The curve has no dynamical meaning
for the map except for the points of it that approximate the points of the
periodic orbit of the corresponding rotation number. Only these points can
be considered as approximating an invariant object. Extra conditions must
added to find where are the periodic orbits approximately embedded in the
curve. However, it must be kept in mind that a good approximation of a
periodic orbit point can be used as a seed for a 2D root finder to improve the
error. As in any other numerical implementation, the use of a finite number
of terms in the approximations, a finite number of Fourier modes in this case,
and the machine rounding error guaranties that the computed curve K will
yield only approximate results.

Although the hypothesis of the existence of KP/Q does not seem unrea-
sonable for maps like the standard map (2.26) or the period two NASM (4.4)
and probably any locally twist map, it is an open problem to prove its exis-
tence. The numerical evidence indicates that it should be possible to write
a theorem to prove this, nevertheless for now this chapter focus only on the
implementation of the hybrid method and presenting the numerical evidence.

If an existence theorem is proven or if its error can be bounded, an in-
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teresting question would be to relate properties such as the regularity of the
parametric curves KPn/Qn to a Kω, when {Pn/Qn}n∈N is a sequence that
converge to a Diophantine rotation number ω. A different approach could
be to use an a-posteriori theorem (like the one in Appendix 2) to prove the
existence and uniqueness of these periodic orbit points.

5.4.1 Phase tracking

The method described in last section yields a parametric curve KP/Q that
in some sense is “close” to the periodic orbit that we are looking for. The
problem now turns into finding the correct phase, a value θ̃ ∈ [0, 1/2qn) such
that,

TQ(KP/Q(θ̃)) ≈ KP/Q(θ̃) . (5.7)

Because theorem 2.3, there must exist at least 2Q equidistant values of θ̃ in
[0, 2π) that satisfy (5.7), but in most of cases4 it is only needed to find two
independent θ̃1 and θ̃2, since if KP/Q(θ̃1) is a periodic point then KP/Q(θ̃1 +
nP/Q), n = 1, 2, ..., Q are also periodic points of the same orbit, see Fig. 5.4.

There are two candidates to find the correct phases θ̃: the error of the
approximate periodic point,

E(θ) = ||TQ(K(θ))−K(θ)|| (5.8)

and the (Greene’s) residue R(θ) (Sec. 2.6),

R(θ) =
1

4

[
2− Tr

(
DTQ(K(θ))

)]
. (5.9)

for θ ∈ [0, 2π], however it is enough to restrict the search for θ ∈ [0, P/Q].
Both present problems in their computation and the residue in particular
has a very well known unstable behavior when computed not close enough
of a periodic orbit, see Fig. 5.6. Nevertheless the underlying idea behind the
parameterization method is that the exact dynamic of the map T is conju-
gated to a rigid rotation over a parametric curve K. So it is expected that

4There are cases in which there can be more than one set of elliptic (hyperbolic) fixed
points connected by iteration of the map, like the map (4.4) for the case κ1 = κ2. When
the Aubry-Mather theory is applicable, it is guarantied that there can only exist two
monotone orbits for a fixed rotation number, one minimal orbit and one minimax orbit,
see Ref. [22].
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Figure 5.4: Illustration of the components of the modified parameterization
method, for which the parameterization Kp/q is only dynamically consistent
with the map F for periodic orbits points.

for the current case that for values of θ for which KP/Q(θ) is close to a fixed
periodic point the dynamic will be also approximated by the conjugation,

T (KP/Q(θ)) ≈ KP/Q(θ + P/Q) , (5.10)

while for other values of θ the dynamic may radically differ. However the
later points of the parametric curve KP/Q are not relevant for the search of
periodic orbits and the dynamic of T can be interchanged with the one of
the conjugation KP/Q(θ + `P/Q) for the present case. The benefit of using
the dynamic of the conjugation (KP/Q ◦ R`

P/Q) is to compute approximate
versions E and R is that both will be computed over smooth functions over
bounded (compact) domains, so both are expected be also regular. So we
define,

Ẽ(φ) = ||KP/Q(θ + P )−KP/Q(θ)|| (5.11)

R̃(θ) =
1

4
[2− Tr(M̃Q(θ))] , (5.12)

where M̃Q(θ) is computed as,

M̃Q(θ) = DT [KP/Q(θ + (Q− 1)P/Q)] · · ·DT [KP/Q(θ)] , (5.13)
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Fig. 5.5 illustrates the difference between computing DT over an exact iterate
of the map T `(KP/Q(θ)) and over the KP/Q(θ + `P/Q), as in (5.13). The
acumulative error of using a bad approximation of the periodic point to
compute R can be appreciated in Fig. 5.6. This is the main reason of why
the residue is not usually used as an estimator, the iterates may diverge
exponentially if the seed is not close enough to the exact value and their
subsequent evaluation in DT only make the calculation more inexact.

Figure 5.5: Illustration of the difference of using the parameterization K over
the map T to estimate the iterate of an approximate periodic orbit point.

Ẽ(θ) and R̃(θ) are expected to be more regular than their exact counter-
parts E(θ) and R(θ), since the first ones are computed in a bounded domain
and K and M = DT have some regularity. However the numerical im-
plementation of (5.11) is also not a good option because for high values of
Q ∼ 105, it can yield values close to the machine precision5. So instead, the
following two error estimators are used,

Ê1(θ) =

Q−1∑
n=0

|T ◦K(θ + nP/Q)−K[θ + (n+ 1)P/Q]| , (5.14)

Ê2(θ) =

{
Q−1∑
n=0

{T ◦K(θ + nP/Q)−K[θ + (n+ 1)P/Q]}2

}1/2

.(5.15)

These error functions are also regular for the same reason as Ẽ but yield
not too small values thanks to the sum over all the iterates, see Fig. 5.7.

5We are working with quadruple precision.
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Figure 5.6: Greene residue |R(zn)| , Eq. (4.36), of 55 iterates zk = T k(z0)
k = 0, 1, ..., 54 of two approximations of a point of the 34/55-periodic orbit
in the Chirikov-Taylor map for κ = 0.9700. The “exact” point has an error
of 7.5809× 10−09 and residue 2.278622× 10−01 that remains constant on all
iterates. The “shifted” point has an initial error of 1.1591 × 10−02 and a
residue varies on every iterate.

Although in the numeric calculations of high order periods (Q & 103), Ê1 is
better behaved for values close to machine precision.

The regularity of the function R̃ and the fact that it should be positive
(negative) close to the elliptic (hyperbolic) periodic points, guaranties that
R̃ is an oscillatory function with mean close to zero, as it can be appreciated
in Fig. 5.8.

As it can be appreciated in Figs. 5.7 and 5.8, it was found for all the
computed cases that the minima {θ(min)

n }n=1,...,2Q of Ê1 are placed always in

the vicinity of the maxima and minima {θ(crit)
n }n=1,...,2Q of R̃. The numerical

evidence consistently suggest that there exist an analytic relation between
the critical points of R̃ and the minima of Ê1 but there is not yet a com-
plete proof to this fact. The numerical evidence is in agreement with an
a-posteriori Newton-Kantorovich theorem that relates the critical points of
the approximate residue R̃ with the existence of periodic orbits, the detailed
statement of the theorem can be found in Appendix 2. The a-posteriori the-
orem guaranties the existence of a unique fixed point (a periodic orbit point
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Figure 5.7: Error Ê1 of the approximated solution for the 55/89-periodic
orbit of the rational harmonic map (5.23) with the values of the parameters:
κ = 0.4, pa = 2.5 and pm = 0.37.

for G(x) = TQ(x) − x = 0) in an open ball Br(x̄) around of a given x̄, if
some bounds hold and a polynomial function of these bounds on r admits
negative values for r > 0. Restricting the theorem to the present case, the
polynomial function have the form,

p(r) = Z2(r)r2 − r + Y0 , (5.16)

where Z2(r) is a positive function of r and Y0 is positive real constant that in
their definition appear the modulus of the residue R dividing. So it is more
likely for p(r) to be negative in an interval (0, r̃) for x̄ = KP/Q(θ) around the

critical points of R̃(θ) for which Z2 and Y0 are smaller. This not a proof but
an argument that will be addressed in a future work.

Although there is not yet a complete explanation of this “numerical co-
incidence”, it is convenient to use the critical points of R̃ as an estimator of
the position θ̃n of the periodic points in KP/Q(θ) when Ê1 is unreliable due
to numerical error.
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Figure 5.8: Regularized residue R̃ of the approximated solution for the 55/89-
periodic orbit of the rational harmonic map (5.23) with the values of the
parameters: κ = 0.4, pa = 2.5 and pm = 0.37. The blue horizontal lines
correspond to the exact value residue for the hyperbolic (−5.253 × 10−19)
and elliptic (5.254× 10−19) orbits.

Table 5.1 displays data from a few periodic orbits of the Chirikov-Taylor
map, in which it is possible to observe the agreement between the minima of
Ê1 and the critical points of R̃.

5.4.2 Refining the results

There are several sources of error in the method previously described, however
in almost of the cases tested it has yielded a reasonable approximation of the
periodic orbit (E ∼ O(10−8) for Q ∼ O(103) with R̃ . O(10−1)). A natural
step to refine the results of the modified parameterization method is to use a
2-D root finder such as a 2-D Newton method. Even if the Newton basin is
irregular or fractal, if the initial guess is close enough6 the method converge.

6Inside an open convex set containing the zero, see theorem 5.2.1 from Ref. [76].
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P
Q

Ê1,min xmin R̃c xc

5
8

(h) 1.689× 10−10 0.000× 10−00 2.520× 10−01 0.000× 10−00

(e) 1.689× 10−10 6.250× 10−02 −2.573× 10−01 6.250× 10−02

55
89

(h) 3.118× 10−08 0.000× 10−00 2.133× 10−01 0.000× 10−00

(e) 3.079× 10−08 5.595× 10−03 −2.172× 10−01 5.618× 10−03

377
610

(h) 6.762× 10−10 0.000× 10−00 8.328× 10−02 0.000× 10−00

(e) 6.404× 10−10 8.098× 10−04 −8.391× 10−02 8.197× 10−04

987
1597

(h) 2.015× 10−11 0.000× 10−00 1.380× 10−02 0.000× 10−00

(e) 1.909× 10−11 3.093× 10−04 −1.381× 10−02 3.131× 10−04

Table 5.1: Comparison of the localization in the angular variable x of a
local minimum of Ê1 and a critical point of R̃ for a few periodic orbits of
the Chirikov-Taylor map (4.6) with ε = 0.9700, computed by the modified
parameterization method.

In 2-D, the Newton method reduces to iterating the following contracting
map, (

xn+1

yn+1

)
=

(
xn
yn

)
− λ ·

(
DG

)−1
(
xn
yn

)
· G

(
xn
yn

)
, (5.17)

where λ = 1, DG is the Jacobian matrix G, defined as,

G

(
x
y

)
= TQ

(
x
y

)
−
(
x
y

)
, (5.18)

where T is the map assumed to have a point of the P/Q periodic orbit close
to (x0, y0), a point obtained by the modified parameterization method.

Due the quadratic convergence of the Newton method, with a few iter-
ations of (5.17) is possible to reduce the initial error of order O(10−8) to
O(10−32), the machine error for quadruple precision. However in most of
cases it seems necessary to use a pseudo-Newton method, assigning a con-
stant value λ < 1 (or a function λ(n) ≤ 1) to improve the chance of conver-
gence from the seed data at the cost of reducing a little the rate convergence.
Some of the functions λ(n) tested are shown in figure 5.9.

It should be remarked to the reader that if the seed data is not suffi-
ciently close enough to the root, even damped pseudo-Newton method can
yield unwanted results like local minima. There exist many other strategies
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Figure 5.9: Example of a few λ(n) used in implementations of pseudo-Newton
algorithm.

that may help to improve the rate of convergence of a pseudo-Newton algo-
rithm: Armijo’s rule, quadratic backtracking, steepest descent method, etc.
Some specialized texts to consult on the subject are Refs. [76] and [86]. An
alternative to a Newton method is the method developed by Haro[82] but
the work is not yet published.

5.4.3 The compound method

Summarizing the method described in this section and taking into account
the numerical evidence given by earlier implementations, the original algo-
rithm 2.1 for the parameterization method is modified into the following
algorithm described below.

Algorithm 5.1.

1) Let e0(θ) = T ◦K0(θ)−K0(θ + P/Q).
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2) Find θ̃ such that R̃(θ̃) is a local minimum.

3) Compute the matrix M(θ̃) from equation (2.38).

4) Solve for W2(θ̃) from (2.43), after eliminating all resonant terms of the

Fourier series of e0 and W2, that is the terms of the form cnQe
±inQθ̃.

5) Choose the average
∫
S1 W2(θ)dθ so that −[M−1

0 (θ+ω)e0(θ)]1−S0(θ)W2(θ)
has an average close to zero.

6) Solve for W1(θ̃0) from (2.44), eliminating all the resonant terms.

7) Compute the step ∆,

∆(θ̃) = M0(θ̃)W (θ̃)

8) Obtain the new parameterization K1,

K1(θ) = K0(θ) + ∆(θ)

9) Set K0(θ) = K1(θ) and go to step 1) until an a priori fixed bound
|min e0(θ)| < T is satisfied.

10) Find two adjacent local minimum and maximum
{
θ̃1, θ̃2

}
of e0(θ).

11) Apply the contracting map (5.17) to (x0, y0) = K0(θ̃k), k = 1, 2 to
obtain a point from each one of the hyperbolic and elliptic periodic
orbits.

The steps 1)− 9) from algorithm 5.1 will be called the modified parame-
terization method and the 10)− 11) the 2D-Newton method.

5.5 Implementation of the compound method

5.5.1 Error and residue behavior

To test the capabilities of the compound method as a continuation method to
obtain periodic orbits from an integrable case, the modified parameterization
method was used alone to make the continuation on the Chirikov-Taylor
map. From earlier tests of the code it was found the need to perform the
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computations with quadruple precision (O ∼ 10−30), particularly in the FFT
computation. Figure 5.10 shows the error Ẽ1 as function of the perturbation
parameter κ. Notice that the horizontal lines in the figure are close to the
machine error (O ∼ 10−30) and should be considered spurious.

Figure 5.10: Global minimum of the error E of the approximated solution for
the Chirikov-Taylor map (4.6) as function of the parameter κ, for different
rotation numbers using only the modified parameterization method.

A first observation from Fig. 5.10 is that the error of E grows as a power
of κ to a given exponent. This is to be expected since the modified parameter-
ization method is attempting to approximate with a smooth continuous curve
a periodic orbit that tends to have a self-similar (fractal) structure as κ→ κG
and Q increase. The next feature appreciable in the figure and in the table
5.2, that seems counterintuitive, is that for κ < κG the error reduces as the
period of the orbit increase. Although this is easily explained by considering
that the stability of the periodic orbit, given by the residue, modulates the
behavior of the error (Fig. 5.11). It can also be appreciated from Fig. 5.10
that working in quadruple precision, the modified parameterization method
gives reasonable good estimates of the periodic orbits for values of κ away
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P
Q

Ẽ1 E R̃ R

5
8

6.0450× 10−08 5.3007× 10−09 −2.3412× 10−01 −2.3637× 10−01

8
13

3.6744× 10−09 7.2300× 10−10 −2.12062× 10−01 −2.13982× 10−01

13
21

1.7126× 10−08 1.7767× 10−10 −1.9657× 10−01 −1.9822× 10−01

21
34

5.1154× 10−09 1.9298× 10−08 −1.64352× 10−01 −1.6552× 10−01

34
55

3.3095× 10−09 1.5404× 10−08 −1.2680× 10−01 −1.2751× 10−01

55
89

1.6056× 10−09 1.9979× 10−08 −8.2585× 10−02 −8.2893× 10−02

89
144

9.3009× 10−10 1.2959× 10−08 −4.1153× 10−02 −4.1232× 10−02

144
233

1.7206× 10−10 6.9020× 10−09 −1.3033× 10−02 −1.3042× 10−02

233
377

4.5521× 10−11 5.6428× 10−11 −2.0967× 10−03 −2.0969× 10−03

377
610

8.5157× 10−12 9.8185× 10−12 −1.0800× 10−04 −1.0798× 10−04

610
987

5.1989× 10−25 5.1215× 10−23 −8.9148× 10−07 −8.9147× 10−07

987
1597

3.5981× 10−26 1.6107× 10−23 −3.7914× 10−10 −3.7914× 10−10

Table 5.2: Progression of the errors (Ẽ1, E) and residues (R̃, R) for the first
P/Q hyperbolic periodic orbits that approximate the golden mean invariant
circle in the Chirikov-Taylor map (4.6) for κ = 0.9600, computed by the
modified parameterization method alone.

from the critical. The 2D-Newton method may only be required, depending
of the precision needs, for calculations with κ near critical.

As a complement to the error behavior, the amplitude of the approximate
residue R̃ of the computed periodic orbits behaves as expected. Fig. 5.11
displays the amplitude of the approximate residue R̃ of the same periodic
orbits from Fig. 5.10. Even for the unrefined periodic orbit data, the four
lowest order periodic orbits that incidentally have the lowest error near the
critical region, cross at κ ≈ 0.971 and max |R̃| ≈ 0.25.
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Figure 5.11: Amplitude of R̃ of the approximated solution for the Chirikov-
Taylor map (4.6) as function of the parameter κ, for different rotation num-
bers using only the modified parameterization method.

5.5.2 An a-posteriori argument

There exist a-posteriori Newton-like theorems that have been used in the
literature to validate the existence and uniqueness of solutions found numer-
ically [87, 88, 89, 90, 91].

Applying an a-posteriori Newton-Kantorovich theorem in a radii polyno-
mial approach[91, 89] (see Appendix 2) to the problem of finding an approx-
imated periodic orbit from the modified parameterization method reduces
after some algebra to finding a positive real constant Y0 and a positive real
function Z2(r) such that,

1

|4R|

∣∣∣((DTQ)−1 − Id
)
F (x̄)

∣∣∣
X
≤ Y0 , (5.19)

sup
x∈Br(x̄)

1

|4R|

∣∣∣((DTQ)−1 − Id
)(
DF (x̄)−DF (x)

)∣∣∣
B(X)

≤ Z2(r)r , (5.20)
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Figure 5.12: Detail of figure 5.11 around κ ≈ 0.971 and max |R̃| ≈ 0.26.

where R is the Greene’s residue, | · |X is the distance in the cylinder, | · |B(X)

is an adequate matrix norm and F is defined as,

F (x) = TQ(x)− x . (5.21)

And then determine if there exist r > 0 such that the polynomial,

p(r) = Z2(r)r2 − r + Y0 , (5.22)

is negative.
It is still a work in progress to find appropriate bounds for the contents of

the norms in (5.19) and (5.20) although for the analytic maps T considered
in this chapter, does not seem to be an insurmountable challenge.
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The observation that can be made from (5.19)-(5.22) is that if |R| has a
bigger value then bounds Y0 and Z2(r) can be taken smaller which implies
that the polynomial p(r) is more likely to be negative for r in an interval
[0, r̃].

5.6 Results of the compound method

The compound method was tested for three symplectic maps: the standard
map (4.6) (in the Chirikov-Taylor map case), a three parameter analytic
map (5.23) with no known useful decomposition into two involutions and the
two-periodic NASM (4.4). The results are presented in this section.

Additionally invoking the renormalization theory, we had the following
hypothesis about the critical behavior or periodic orbits in general area pre-
serving twist maps (APTM’s).

Claim 1. For twist maps of the form (2.19), the residues of the set of periodic
orbits with rotation numbers {Pn/Qn}n∈N such that Pn/Qn → ω, n → ∞,
follow an scaling rule as function of the perturbation parameter ε. Addition-
ally the residues Rp/q(ε) cross at the same critical values of the residue Rc

and εc.

The first part of claim 1, the scaling rule in terms of ε is a well stablish
behavior of this kind of maps[22] but the unique critical value of the residue
has been dosumented only in the Chirikov-Taylor map (4.6) with |Rc| ≈ 0.25
for ω = γ, see Ref. [18]. The critical value of the residue is known to be a
periodic series of values and not unique for the standard non-twist map [92],
so it is a non trivial assertion.

5.6.1 On the standard map

The first test of the compound method was done over the Chirikov-Taylor
map Eq. (4.6) to compare with the orbits obtained by symmetry lines. The
test allowed to identify some initial problems of the code and discover the
surprising agreement between the critical points of R̃ and the minima of Ê.
Also it was possible to compare the difference between using different number
N∗ of harmonics in the approximation. For small values of Q, the total
number of harmonics N∗ was taken as 2Q, while for larger values N∗ ∼ 4Q.
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Increasing the value of N∗ over 4Q did not reflect in a better convergence of
the method and in some cases increase it since the extra terms were spurious.

The results of performing a first numerical continuation by the modified
parameterization method and then using the data as seed for the 2D-Newton
method are contained in table 5.3 and in a more complete form in table 5.6
in the appendix at the end of chapter.

P
Q

Orbit

x
E R

5
8

1.04262381263415710544× 10−01 1.7776× 10−33 −2.3618× 10−01

8
13

7.2292421040641022513× 10−02 3.8240× 10−45 −2.1396× 10−01

13
21

5.06992260762055879603× 10−02 1.4227× 10−30 −1.9779× 10−01

21
34

3.5022447826195364453× 10−02 3.0469× 10−30 −1.6521× 10−01

34
55

2.4048789198498598295× 10−02 1.5432× 10−29 −1.2748× 10−01

55
89

1.62171825022147208409× 10−02 2.8721× 10−32 −8.2110× 10−02

89
144

1.0731773004662365072× 10−02 6.7440× 10−52 −4.0823× 10−02

144
233

6.9344882456917456713× 10−03 5.2130× 10−55 −1.3101× 10−02

233
377

4.39068507873134101191× 10−03 1.9267× 10−32 −2.0969× 10−03

377
610

2.74217144026659842688× 10−03 9.5578× 10−30 −1.0800× 10−04

610
987

1.70222914399736324091× 10−03 9.8163× 10−45 −8.9147× 10−07

987
1597

1.05402094177906953965× 10−03 6.5275× 10−46 −3.7914× 10−10

Table 5.3: Angular component x of the closest point to x = 0 of the first few
golden mean approximates P/Q hyperbolic periodic orbits of the Chirikov-
Taylor map (4.6) for κ = 0.9600, computed by the modified parameterization
method (table 5.2) and then refined by a 2D-Newton method up to |E| <
10−28.

As mentioned before in Sec. 5.4.2, the convergence of the pseudo-Newton
method can be sometimes troublesome. Last row on table 5.3 is an example
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of this, the error of the seed had to be taken very low (10−26) so the method
converge to the lower bound (< 10−28). To improve this scenario a first step
is to use the whole compound method to do the continuation, that means
not using the 2D-(pseudo)-Newton method at the end but every time the
modified parameterization method’s error reach a fixed threshold. Neverthe-
less there are cases in which the pseudo-Newton method need a very fine
tuning to ensure its convergence, which may be caused by multiple causes: a
seed close to the fractal boundary of the basin, multiple local minima in the
neighborhood, etc. Additionally, to improve the chances of convergence of all
the 2D-pseudo-Newton implemented variations were coded using an octuple
precision (O ∼ 10−64) library in C + +. This was observed to be useful for
p/q-periodic orbits of periods of order q & F19 = 6765.

5.6.2 On the rational harmonic map

A more interesting case to test the compound method is a standard-like map,

xn+1 = xn + yn+1 , (5.23a)

yn+1 = yn +
κ

2π
V ′(xn) , (5.23b)

with the perturbation function,

V ′(x) = f(x)−
∫ 1

0

f(s)ds , (5.24)

where,

f(x) =
sin(2πx+ pa)

1− pm cos(2πx)
. (5.25)

This map is known to be reversible for pa = nπ, n ∈ Z and thus in these
cases can be written as the product of involutions,

In1

(
x
y

)
=

(
−x

y − (−1)r κ
2π

sin(2πx)
1−(−1)rpm cos(2πx)

)
, In2

(
x
y

)
=

(
y − x
y

)
.

(5.26)
Note also that for pm 6= 0 the perturbation function V ′(x) can be expressed
as an infinite series of Fourier harmonics and is singular at pm = 1. This
perturbation function was studied before by [93] and [29] to test different
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kind twist maps universality results. Recently it was possible to find a generic
two involutions decomposition of this map following Ref. [94], however the
invariant sets of this generic involutions are not useful to compute periodic
orbits, so for all the intended purposes this map is treated as non-reversible.
The numerical continuation for this map in Ref. [29] was found to be very
sensitive to the variation of parameters pa and pm, this can be appreciate in
Fig. 5.13. For notation purposes this map is called rational harmonic map
due the form of the pertubation function.

Figure 5.13: Examples of the phase space (x, y) in the unitary cell [0, 1]2 of
the rational harmonic map (5.23)-(5.25) for (κ, pm) = (1.4, 0.4) and different
values of pa, from left to right: 2.6, 2.7, 2.8, 2.9, 3.0, and 3.1.

This map can help to study the role of reversibility and persistence of
symmetry lines in twist maps and we believe it has not been studied in
detail in the past due its apparent lack of symmetries. This map has the
symmetry

(x, y;κ, pa, pm) 7→ (x− 1/2, y;κ, pa + π,−pm) , (5.27)

which can be used to reduce the search in the parameter space from R3 to
R2 × R+. To better characterize the map and know where in the parameter
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space would be more profitable to compute periodic orbits, the modified
parameterization method (MPM) was applied as a continuation method over
the parameter κ starting from the integrable case κ = 0 over an uniform
mesh in (pa, pm) for 987/1597-periodic orbit, stopping at |R̃| ∼ 0.25. The
results can be appreciated in Fig. 5.14. The stopping criterion comes from
Claim 1, that was found numerically to be true for the rational harmonic
map for periodic orbits with rotation numbers of the from Fn−1/Fn for all
the values of the parameters (pa, pm) used.

Figure 5.14: Critical manifold on the parameter space for the 987/1597-
periodic orbit of the rational harmonic map (5.23)-(5.25), obtained by con-
tinuation over parameter κ and fixed values of (pa, pm), starting from the
integrable case κ = 0. The points on the manifold are marked by + colored
as function of κ. The red dot correspond to the case of the standard map.

Extra computations performed for rotation numbers of the form Fn−1/Fn,
found that the shape of Fig. 5.14 unchanged and thus agreeing with the
renormalization theory and Claim 1.

From Fig. 5.14, the behavior of the critical value of κ as function of pm
seems to agree with what could be expected from the perturbation function
(5.25), bigger values of pm should yield lower values of κ∗. However for pa ∼ π
there appear irregularities that suggest that the critical surface may have
folds around which the κ∗ rise to values bigger than the κ∗ = κG, the standard
map critical parameter value to which the map reduces in (pa, pm) = (0, 0).
Because of this observation, it seemed insightful to compute periodic orbits
for (pa, pm) = (3.0, 0.4), parameter values close to a fold but not in a trivial
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Figure 5.15: Superimpose of the critical manifold on the parameter space
for the 144/233-periodic orbit (magenta X) of the rational harmonic map
(5.23)-(5.25) over the manifold from Fig.5.14, for the same values of (pa, pm).

reversible case. Some of the computed orbits are presented in table 5.4 and
in a more complete form in table 5.8 at the appendix.

A surprising benefit not originally considered in the implementation of
this method, is that it is possible to continue the periodic orbits beyond
the breaking of the invariant circle. It is increasingly difficult for high order
periodic orbits, but it is possible to compute them and in cases like the
present map can yield new information about the resurgence of invariant
circles. This can be appreciated in Fig. 5.16.

5.6.3 On the two periodic NASM

The two periodic NASM in its two parameter autonomous reduction, Eq. (4.4)
is another good candidate to test the method. This map does not have sym-
metry lines for a general election of the parameters, so the only possible
validation of the found periodic orbit was the direct iteration of the points.

The periodic orbits found by the compound method are in table 5.5 and
in a more complete form in table 5.9 in the appendix at the end of chapter.

The results found are similar to the previous case, although it was needed
to prove with several different damping functions to ensure the converge of
the 2D-pseudo-Newton method. This can be appreciated on the error of
377/610-periodic orbit, which have a considerable lower value thanks to a
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P
Q

Orbit
x

E R

8
13

9.84400324333751592206× 10−01 1.5314× 10−04 −2.1690× 10−01

9.84194430418146115882× 10−01 4.8935× 10−39 −2.1777× 10−01

21
34

9.97753743054888484767× 10−01 1.3827× 10−05 −1.8059× 10−01

9.97722363363172234098× 10−01 1.6284× 10−47 −1.8095× 10−01

55
89

4.35066410514029663774× 10−04 2.8190× 10−03 −2.8817× 10−01

4.42076348408883988105× 10−04 1.8242× 10−37 −1.0589× 10−01

144
223

4.09885888135278521212× 10−04 8.3211× 10−11 −1.3204× 10−01

4.54519288406945185848× 10−04 8.2324× 10−29 −2.5599× 10−02

377
610

4.54770852734730605323× 10−04 8.6265× 10−05 −2.5479× 10−02

5.10890552501945729879× 10−04 1.2373× 10−29 −6.2363× 10−04

987
1597

2.18102889348964055253× 10−04 9.4507× 10−11 −9.2787× 10−08

2.88969724223810721485× 10−04 9.5395× 10−31 −4.0099× 10−08

2584
4181

5.70931653171076079438× 10−03 1.1379× 10−24 −3.2521× 10−19

5.70811191353601822914× 10−03 1.1872× 10−31 −3.2944× 10−19

6765
10946

1.236939703348994242120533777× 10−02 3.1733× 10−28 −8.6237× 10−24

1.236939703348994242120533769× 10−02 9.5204× 10−29 −2.0985× 10−24

Table 5.4: Angular component x of the point closets to x = 0 of a few P/Q
hyperbolic periodic orbits found for the rational harmonic map (5.23) with
(κ, pa, pm) = (1.7150, 3.0, 0.4), computed by the modified parameterization
method (white rows) and then refined by a 2-D Newton method (gray rows)
until E < 10−28.

fortuitous converge of the non-damped Newton method. A possible reason
for the increased difficulty of convergence is due characteristics of the map,
this is addressed in the discussion at end of the chapter.

The numerical evidence proved Claim 1 to be true for the two period
NASM (4.4) for periodic orbits which rotation number were obtained from
the continuous fraction expansion of γ and 2γ7. Plots illustrating this
finding are in Figs. 5.17 and 5.18.

Using the Claim 1 it was possible to verify the most part of the critical
bounds for the existence of the invariant circles of rotation γ and 2γ found
in Sec. 4.5.2, see Fig.5.19. There was a systematic error in the calculation of

7The claim was found to be false if the rational rotation numbers are not obtained from
the continuous fraction.
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Figure 5.16: Residue of periodic orbits as function of the parameter κ in the
rational harmonic map (5.23)-(5.25) for (pa, pm) = (3.0, 0.4).

the critical parameter values near the “tips” of the graphs of the CBω. The
value displayed on the diagonal for Fig. 5.19 correspond to the last value for
which the continuation with the compound method converged, not critical
parameter values near the reported values of |Rc| for ω = γ or 2γ. A more
accurate implementation of the compound method near critical regions of
the parameters may be required to improve the results.

5.7 Discussion and conclusions

The method presented in this chapter was used successfully to find periodic
orbits for different non-reversible maps. For parameter close to criticality
the error in the modified parameterization method (MPM) seems to grow
and the use of a 2D-(pseudo)-Newton method is necessary. The convergence
of the later method is not optimal for high order periodic orbits and the im-
plementation of different “line search algorithms” or more complex “descent
methods” (see Refs. [76, 86]) may be needed to improve the results.

There is also a possible unwanted complexity in our implementation of
the MPM for maps with multiple sets of periodic orbits, like in the case of
the two periodic NASM, Eq. (4.4), for even-period periodic orbits. Although
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P
Q

Orbit
x

E R

8
13

9.28474979533394032586× 10−01 1.1092× 10−04 −2.0267× 10−01

9.28282103136275594876× 10−01 1.9774× 10−47 −2.0242× 10−01

21
34

3.43315315162867085860× 10−02 3.3857× 10−05 −1.3650× 10−01

3.42428358234278121403× 10−02 7.4463× 10−33 −1.3778× 10−01

55
89

9.845994366358192656317× 10−01 9.8675× 10−08 −5.0321× 10−02

9.845604550754948539836× 10−01 1.7139× 10−44 −5.0358× 10−02

144
223

6.40268038613412254345× 10−02 1.5581× 10−07 −3.5953× 10−03

6.38468012310526810880× 10−02 2.2965× 10−45 −3.6373× 10−03

377
610

9.97522710673880868038× 10−01 6.9444× 10−11 −3.7328× 10−06

9.97515492433739096197× 10−01 9.3468× 10−29 −3.7721× 10−06

987
1597

9.54696825841002350864× 10−04 3.7585× 10−19 −5.7485× 10−14

9.52145748283865826621× 10−04 1.3876× 10−30 −5.8138× 10−14

2584
4181

1.39055807882423202186× 10−03 1.4745× 10−28 −6.7894× 10−24

1.39055807882415784826× 10−03 9.8595× 10−29 −4.5398× 10−25

6765
10946

3.440081918286905245686575473× 10−03 1.0906× 10−27 −1.3708× 10−23

3.440081918286905245686575080× 10−03 9.5496× 10−29 −1.2003× 10−24

Table 5.5: Angular component x of the point closest to x = 0 of a few
P/Q hyperbolic periodic orbits found for the two periodic NASM (4.4) for
κ1 = 0.5350 and κ2 = 0.2000, computed by the modified parameterization
method (white rows) and then refined by a 2D-Newton method (gray rows).

it is mentioned in the Birkhoff theorem 2.3, that the periodic orbits have “an
even number: 2kq, k ∈ N” of points, in most of the available examples in the
literature, maps display only two sets (k = 1) of points. This complexity can
be appreciated in Fig. 5.20 for the periodic orbit with rotation number 1/2.
Further study on of these phantom curves containing the periodic orbits may
help to clarify this point.

The search for higher order periodic orbits than F23 = 46368 and for
parameters values close to critical would help to obtain better bounds for
Kadanoff’s coefficients.
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Figure 5.17: Log-Log plot around (0.5432,0.25) of the absolute residue |R|
versus parameter κ2 for fixed κ1 = 0.2, for different periodic orbits that
approximate invariant circle γ for map (4.4).
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Figure 5.18: Log-Log plot around (0.5016,0.18) of the absolute residue |R|
versus parameter κ2 for fixed κ1 = 0.2, for different periodic orbits that
approximate invariant circle 2γ for map (4.4).
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Figure 5.19: Comparison of the critical boundaries for the existence of KAM
tori (CBω) {γ, 2γ} from Fig. 4.8 and the critical parameter values obtained
by computation of periodic orbits for map (4.4). The dashed line represent
the continuation trajectory used for the computation of Figs. 5.17 and 5.18.
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Figure 5.20: Phase space (x, y) of the map (4.4) for (κ1, κ2) = (0.77, 0.74)
around the 1/2-resonance. In both frames there are 11 initial conditions
iterated 5000 times, taken uniformly over a segment of a vertical line: (up)
{x0 = 0} and (down) {x0 = 0.2}.
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Appendix 2: Newton-Kantorovich theorem

The Newton-Kantorovich theorem is a classical result in nonlinear analysis
giving information about the convergence behaviour of the Newton iteration.
The original version of the theorem can found in Refs. [95] and [76], however
the version of interest here is a more general one used by Mireles-James and
Lessard in various papers[88, 89, 90, 91] for computer assisted proofs, in the
the tradition of Ref. [87].

Theorem 5.1. (a-posteriori Newton-Kantorovich theorem, radii polynomial
approach [91, 89])
Let (X, || · ||X) and (Y, || · ||Y ) be Banach spaces and F : X → Y a Fréchet
differentiable mapping. Let B(X, Y ) be the space of bounded linear operators
from X to Y with the operator norm || · ||B(X). Consider x̄ ∈ X, A† ∈
B(X, Y ), and A ∈ B(Y,X), with A one-to-one. Let Y0, Z0, Z1 be positive
constants, and Z2 : [0,∞) → [0,∞) be a positive function, all satisfying the
following conditions:

• ||AF (x̄)||X ≤ Y0, (small defect/a-posteriori error)

• ||Id− AA†||B(X) ≤ Z0, (approximate inverse)

• ||A(A† −DF (x̄))||B(X) ≤ Z1, (approximate derivative)

• supx∈Br(x̄) ||A(DF (x̄)−DF (x))||B(X) ≤ Z2(r)r, (local control)

Define the function p(r) = Z2(r)r2 − (1− Z0 − Z1)r + Y0. If there is an
r > 0, so that p(r) < 0, then there exist a unique x̃ ∈ Br(x̄) so that

F (x̃) = 0 .

Applied to modified parameterization method for the search of periodic
orbit of period q on a twist map T , then X = Y = S× R and,

F (x) = T q(x)− x . (5.28)

Using the exact derivative A = DF and inverse A† = (DF )−1, we have the
expressions,

A = DT q − Id , A† =
1

4R

[
(DT q)−1 − Id

]
,
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where R is the (Greene’s) residue (2.29) and Id is the identity. Also the
coefficients Z0 and Z1 in the theorem are identically zero. So the polynomial
p(r) now reduce to,

p(r) = Z2(r)r2 − r + Y0 ,

where the remaining coefficients now are,

1

|4R|

∣∣∣∣∣∣((DT q)−1 − Id
)
F (x̄)

∣∣∣∣∣∣
X
≤ Y0 , (5.29)

sup
x∈Br(x̄)

1

|4R|

∣∣∣∣∣∣((DT q)−1 − Id
)(
DF (x̄)−DF (x)

)∣∣∣∣∣∣
B(X)

≤ Z2(r)r , (5.30)

where now || · ||X is the distance in the cylinder. Considering that we have
an appropriate 2 × 2-matrix norm definition for || · ||B(X), it is clearly more
likely that the polynomial p(r) can be negative for an interval (0, r̃) if the
modulus of the residue |R| is as big as possible. Restricting the search of
periodic orbits to the parametric curve KP/Q and using the definition of R̃
(5.12) in terms of the parameterization, the more likely values of θ for which
there may be periodic orbit points is around the critical points of R̃.
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Chapter 6

Critical behavior of periodic
orbits

The behavior of invariant circles in twist maps for critical values of the param-
eters has been a topic of interest for many years. Many names like Poincaré
[96], Denjoy[97], Arnold[98], Herman[99], Mather[100], MacKay[101] among
others worked on the subject and its applications [102]. Since the work from
Greene [18] and subsequent works on renormalization theory like the ones
from MacKay [67, 69, 85], it is clear that universal properties arise on in-
variant circles of twist maps around critical values of the parameters, that
is, before the invariant circle cease to exist and becomes a Cantor set (can-
torus) for any small variation of the parameters values. One of the first
numerical observations of these universal properties are the universal critical
exponents or coefficients (depending on the definition) was found by Kadanoff
and Shenker for the Chirikov-Taylor map in Refs. [64, 68]. These universal
critical coeffients or universal scaling factors characterize point-wise the self-
similar behavior of critical invariant circles from twist maps around certain
points, usually points lying in symmetry lines. The scaling factors can be
appreciated and estimated only from high order periodic orbits. The goal of
this chapter is to describe the procedure to find numerical bounds to these
universal critical exponents mentioned in Sec. 2.6 to non-reversible maps like
the two periodic NASM (4.4) studied in Chp. 4, maps for which there is no
known decomposition into two involutions. These coefficients can be esti-
mated using periodic orbits, so the use of the compound method introduced
in previous chapter is of primordial importance, although some considera-
tions must be done to choose critical values for the parameters and to find
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suitable points to compute them.

6.1 Kadanoff’s geometrical coefficients

In Refs. [64, 68], Kadanoff and Shenker computed a pair of geometrical co-
efficients (α0, β0) for the standard map Sκ, Eq. (4.6), that characterizes the
self-similar behavior of the golden invariant circle around a symmetry line
and for a parameter value close to the critical breaking, κG = 0.971635406...,
a behavior predicted by the renormalization theory. The scaling law found
is,

SFn
κG

(
x
y

)
= β−n0 S∗

(
αn0 x
βn0 y

)
, (6.1)

where Fn is the n-element in the Fibonacci sequence1 and S∗ describe the
behavior near the dominant symmetry line at x = 0. In the context of the
parameterization method, where S(x, y) = S(K(θ)) = K(θ+ω), Eq. (6.1) is
equivalent to,(

αn0Kx(t+ τn)
βn0 (Ky(t+ τn)−Ky(t))

)
=

(
αn+1

0 Kx(t+ τn+1)
βn+1

0 (Ky(t+ τn+1)−Ky(t))

)
, (6.2)

where Kx(t) = 0, and τn ≡ qnω − pn is a geometrically decreasing sequence

(pn/qn → ω). In the case of the Chirikov-Taylor map: ω = γ =
√

5−1
2

and
pn/qn = Fn−1/Fn.

Similar coefficients (α1, β1) were found for the other dominant symmetry
line at x = 0.5, although the exact coefficients (α3, β3) are found by a “step-3”
scaling (see Ref. [29]),(

αn3 (Kx(t̃+ τn)− 0.5)
βn3 (Ky(t̃+ τn)−Ky(t̃))

)
=

(
αn+1

3 (Kx(t̃+ τn+3)− 0.5)
βn+1

3 (Ky(t̃+ τn+3)−Ky(t̃))

)
, (6.3)

where now Kx(t̃) = 0.5. The values of Kadanoff’s coefficients computed for
the Chirikov-Taylor map reported in the literature[29] are presented in table
6.1.

The self-similar behavior of the continuous torus and its neighboring pe-
riodic orbits is illustrated on figure 6.1. Actual figures of the self-similar
behavior and scaling of periodic orbits for a more complicate case (“step-6”
scaling) can found in Ref. [92]. It should be noted that there are different

1{Fn}n∈N such that Fn+1 = Fn + Fn−1, F0 = F1 = 1.
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Map
xrar α0 β0

xden α3 β3

Chirikov- Taylor
0.0000 −1.414836 −3.0668882

0.5000 −4.84581 −16.8597

Table 6.1: Kadanoff’s geometrical coefficients reported in the literature[29]
for the Chirikov-Taylor map.

Figure 6.1: Illustration of the geometrical coefficients around a symmetry
line for two successive approximants.

definitions in the literature for these geometric coefficients which may lead
to confusions. For example the author in Ref. [24] define them as exponents:
α0 = γx0 and β0 = γy0 .

It is important to remind that in the integrable case, for pn/qn → ω,
the distance between a point z0 = (x0, y0) of the invariant circle Cω and its
qn-iterate decreases monotonically,

||zqn − z0|| = |xqn − x0| = τn , (6.4)

and this continues to happen for big enough n in the perturbed non-critical
regime while Cω is an analytic curve, see Ref. [24]. And also in the non-critical
regime, the separation between consecutive points of high order periodic
orbits is also smooth, with the scaling rules2,

|xi+1 − xi| ∼ (qn)−1 , |yi+1 − yi| ∼ (qn)−2 . (6.5)

Just in the critical case, κ = κG for the Chirikov-Taylor map, these regular
separation breaks into the self-similar scaling described in this section.

2These scaling rules imply that the estimation of α and β in the non-critical regime for
the golden mean invariant circle give: α ∼ γ−1 and β ∼ γ−2.
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Although Kadanoff’s coefficients are a quantitative local analysis of the
self-similar behavior on two points of a critical torus, they can be used to
give bounds over global properties such as the regularity. In Ref. [29] a point-
wise Holder norm was used to characterize the regularity of the limiting curve
(invariant torus) and found interesting relations between their results and the
numerical bounds given by Kadanoff’s coefficients. It should be mentioned
that the methods in Ref. [29] also required to compute periodic orbits of high
order period (Q ∼ 106) to give accurate estimations.

On the other hand the discovery of these coefficients inspired important
analytic results as the earlier works on renormalization in area-preserving
maps [67, 69] from MacKay. Another consequence of the scaling properties
of periodic orbits is the proof the existence of hyperbolicity beyond the stable
manifold of the critical point of the renormalization group [103].

In the particular frame of the present work, the main motivation to look
for a new method to find periodic orbits was to determine the coefficients
(α, β) for different rotation numbers for the map (4.4) to help to characterize
better the topological barriers in the non-autonomous transport.

6.2 Strategies to compute the coefficients

There exist several ways to compute the values of the (α0, β0) coefficients,
with the use of the parameterization Kω(θ) as the most direct one. However
the big drawback is that the values of Kx(0) = 0 and Kx(θ̃) = 0.5 will be
different for non-reversible maps. The use of periodic orbits to compute the
coefficients may help to solvent this inconvenience. But before addressing
where, lets review how to compute them. Assuming there are symmetry
lines to discriminate two convenient points, two strategies to compute the
coefficients are the following:

• Strategy #1: compute many periodic orbits
Find and order, in such manner that the component xj is monotonous,
the periodic orbits that passes through a symmetry line,

{(x0, y0), (x1, y1), ..., (xqn−1, yqn−1) }ωn
(6.6)

corresponding to the rotation numbers {ωn = pn/qn}n∈N that converge
to the rotation number ω of the critical invariant circle for a value of
the parameter close to the critical. Let (xm, ym) be the point in the
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orbit that lies in the symmetry line and (x∗, y∗) the closest point in the
orbit to it. Then the estimation of the coefficients consists in comparing
the ratios of x∗− xm of successive (or “step-n”) rotation numbers. For
example,

[x∗ − xm]ωn

[x∗ − xm]ωn+1

≈
[x∗ − xm]ωn+1

[x∗ − xm]ωn+2

≈ · · · → α0 , (6.7)

[y∗ − ym]ωn

[y∗ − ym]ωn+1

≈
[y∗ − ym]ωn+1

[y∗ − ym]ωn+2

≈ · · · → β0 . (6.8)

• Strategy #2: compute a large periodic orbit
Use a large period periodic orbit to approximate the dynamic on the
invariant circle. If the periodic orbits with rotation numbers {ωn =
pn/qn}n∈N approximate the invariant circle with rotation number ω,
then, around a principal symmetry line x = xs, the qm-iteration of
the map over the point (xs, y0) from the pn/qn-periodic orbit (n > m)
should approximate T qm(xs, y∗) if (xs, y∗) is a point of the invariant ω.
The algorithm to do this for the golden mean invariant circle consist in
reorder a Fn−1/Fn-periodic orbit of large n so (x0, y0) is the point that
pass through the symmetry line and the following points are an iterate
of the previous, (xn+1, yn+1) = F (xn, yn). This is,(x0, y0), . . . , (xF4 , yF4)︸ ︷︷ ︸

5th iterate

, . . . , (xFm , yFm)︸ ︷︷ ︸
Fmth iterate

, . . . , (xFn−1 , yFn−1)


ωn

. (6.9)

then the coefficients are computed by comparing the ratios of xFm −x0

(yFm − y0) of successive (or “step-n”) Fm’s. For example,

x5 − x0

xF21 − x0

≈ xFm − x0

xFm+3 − x0

≈ · · · → α3 , (6.10)

y5 − y0

yF21 − y0

≈ yFm − y0

yFm+3 − y0

≈ · · · → β3 . (6.11)

Following this method may produce good estimates on the coefficients
only for intermediate Fm’s, as Fm → Fn the approximation of the
dynamic on the invariant circle by the Fn-periodic orbit will diminish
since the periodic orbit has to close: xFn − x0 = 0 6= F Fn(x0)− x0, this
is illustrated in Fig. 6.2.
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• Strategy #3: compute an approximate conjugation K for the critical
invariant circle
Compute Kadanoff’s α and β using directly the parameterization K :
S→ S× R using the Eqs. (6.1) and (6.2),

xFm − x0

xFm+1 − x0

=
Kx(θ0 + Fmω)−Kx(θ0)

Kx(θ0 + Fm+1ω)−Kx(θ0)
−→ α0 , (6.12)

yFm − y0

yFm+1 − y0

=
Ky(θ0 + Fmω)−Ky(θ0)

Ky(θ0 + Fm+1ω)−Ky(θ0)
−→ β0 , (6.13)

where Kx(θ0) is in the symmetry line.

Figure 6.2: Illustration of the dynamic of qn-iteration of a map S (Sn ≡ Sqn)
for the 3/5-periodic orbit and the golden mean torus.

6.3 Implementation on non-reversible maps

Kadanoff’s geometrical coefficients can be computed from the periodic orbits
obtained from the compound method for critical values of the parameters for
the different maps. There are however two considerations to take first to be
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able to compute them for non-reversible maps: criticality of the parameters
values and symmetry lines substitutes.

6.3.1 Critical parameters

Greene’s method (Sec. 2.6) conjecture implies that the parameters (κ∗1, κ
∗
2, ...)

are critical when the series of stable (elliptic) periodic orbits of rotation
numbers ωn that approximate an invariant circle of rotation number ω cease
to exist for minor variation of the values. Directly prove that all the elliptic
periodic orbits change their stability is an impossible task, instead what it is
used is the observation made by Greene[18] that residue of all the computable
periodic orbits as function of the perturbation parameter is monotonous and
follow an scaling rule around a critical value of the perturbation parameter,
so the behavior of high period periodic orbits can be determined. In the case
of the the Chirikov-Taylor map, it is observed that for κG = 0.971635406...
the residue of all elliptic (hyperbolic) periodic orbits with rotation numbers
Fn−1/Fn cross around R ∼ 0.2505 (R ∼ −0.2505) following an scaling rule
of the form,

R ∼ |κ− κG|Fn . (6.14)

This is one of the fundamental contributions made by Greene to base the
existence of a renormalization process that determines the dynamic in the
critical point. Using results from the renormalization theory, these bounds of
the residue should be universal for all two dimensional twist maps, varying
only as function of the rotation number of the invariant circle ω. Then, for
periodic orbits with rotation numbers Fn−1/Fn, it should be reasonable to
say that the parameter values of a given twist map are close to critical if the
residue of the elliptic (hyperbolic) orbit is close to 0.25 (−0.25). And this
critical residue value is expected to vary for any rotation number ω different
from the golden mean γ; in principle it could be not a fixed value but a
periodic set of values as it is the case in the standard non-twist map [92].

6.3.2 Symmetry lines substitutes

The election by Kadanoff and Shenker to use the dominant symmetry lines
of the Chirikov-Taylor map {x = 0, 0.5} as the reference point to compute
of the scalings α and β was for practical reasons. Their computation was
based on the use of periodic orbits and, as mentioned before, it is easier
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to find them on reversible map and also there is always a convenient point
of every periodic orbit in the symmetry line from which make comparisons.
In later works like Ref. [67] it was established and then used [104, 29] that
the universal scalings α and β of the critical invariant circle Cγ exist in
neighborhoods of certain points of circle. The numerical evidence shows that
these points are in the neighborhood with the most and least density of points
in the x-axis, see Fig. 6.3. This behavior of the density of points is consistent
with an anti-integrable theory argument used in Ref. [94] that involves the
Frenkel-Kontorova potential (the integral of the perturbation function V ′

from (2.24)). However the potential argument can not be applied to all the
maps considered since it is not possible to establish V for the two-period
NASM even though it presents the same behavior, see Fig. 6.5.

Figure 6.3: Density of points a long the x coordinate for cell of size 0.005 of
the elliptic periodic orbit with rotation number 46368/75025 of the Chirikov-
Taylor map (4.6) for the parameter values κ = 0.97163.

In principle, due the self-similarity of the critical invariant circle, the
computation of the coefficients can be done with points of other regions of
the circle but the values will vary since they are local estimates of the self-
similarity.

For the particular election of sign for the Chirikov-Taylor map in (4.6), the
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value around which the iterates of map SκG are the most rarefied is xrar = 0,
mean while the most dense is xden = 0.5. The, invoking the renormalization
theory, the best points of the periodic orbits over which the computation
of Kadanoff’s coefficient should recover the reported values of the universal
scalings of the standard map are the points with the least (xrar) and most
(xden) density of points in their neighborhood. Typical histograms of the
density of points in a high order periodic orbit close to critical parameter
values can be appreciated in Fig. 6.4 and 6.5, note that the fractal structure
is present.

Figure 6.4: Density of points a long the x coordinate for cell of size 0.001
of the elliptic periodic orbit with rotation number 28657/46368, of the ra-
tional harmonic map (5.23)-(5.25) for the parameter values (κ, pa, pm) =
(1.73353335146, 3.0, 0.4).

It is worth mentioning that the similarities between Figs. 6.3 and 6.5 sug-
gest the persistence of the dominant symmetry lines from the Chirikov-Tayor
map (4.6) on the two-period NASM (4.4), even if at the present moment we
are unable to find a decomposition into involutions for the later map.

Additionally preliminary numerical evidence found by the compound method
shows that it may be possible to skip the statistical analysis of the points
in a periodic orbit by plotting the inverse of the derivative of Kx (the radial
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Figure 6.5: Density of points a long the x coordinate for cell of size
0.0005 of an elliptic periodic orbit with rotation number 6765/10946,
of the two periodic NASM (4.4) for the parameter values (κ1, κ2) =
(0.542853638894466, 0.2).

component of the parameterization K), see Fig. 6.6.

6.4 Renormalization theory results on non-

reversible maps

The renormalization theory applies to all twist maps around any critical in-
variant circle and makes no distinction if the map is reversible or not. Yet,
there are no examples in the literature that verifies this. The original param-
eterization method described in Sec. 2.8 can be used (strategy #3, Sec.6.2)
to compute properties of the critical invariant circle such as the Kadanoff’s
coefficients that can verify results from the renormalization theory, although
considerations like the ones in the past section are required.

At the present moment, the compound method can compute reliably pe-
riodic orbits of periods equal or lower than 46368 for critical values of the
parameters for the maps considered. This upper bound on the period causes
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Figure 6.6: Comparison between the density of points from Fig. 6.4 and
the inverse of derivative of the x-component of the parameterization DKx

for the elliptic periodic orbit with rotation number 28657/46368 of the ra-
tional harmonic map (5.23)-(5.25) for the parameter values (κ, pa, pm) =
(1.73353335146, 3.0, 0.4).
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that the computation of Kadanoff’s coefficients via the strategy #2 to not
be as accurate as desirable due a short amount of data to do the statistic.

6.4.1 Results

The process to of estimating the values of α0 and α3 for the 28657/46368-
periodic orbit of rational harmonic map (5.23)-(5.25) for the parameter values
(κ, pa, pm) = (1.73353335146, 3.0, 0.4) following the strategy #2 can be ap-
preciated in Fig. 6.7. The figure shows the quotients obtained for each one
of the Fm’s computable for this orbit (Fm < F23 = 46368) over xrar and xden,
respectively. The variables in α̂(1,m) and α̂(3,m) in the figure correspond
to the quotients definitions3,

α̂(n,m) ≡ xFm − x0

xFm+n − x0

, β̂(n,m) ≡ yFm − y0

yFm+n − y0

. (6.15)

The strategy #2 works optimally when it is computed over the actual
quasi-periodic invariant circle. If a p/q-periodic orbit is used instead, the
convergence of α̂(n,m) and β̂(n,m) will happen as long the m is not close
to the period q of the orbit, at that point the dynamic of the periodic orbit
is a bad approximation of the quasi-periodic curve. Nevertheless it can be
appreciated in Fig. 6.7 this phenomenon of partial convergence when m is less
than 6765. To improve these bounds, higher order (& 106) periodic orbits
must be computed for critical values of the parameters.

It can be appreciated in the figure, that the series computed on the xden
found for this orbit does not yield yet the desired precision. This is explain-
able by due the “step-3” scaling, α̂(3,m) depends in a bigger range of Fm.
A higher order periodic orbit may be needed to compute better bounds for
α3 and β3.

Following the previous considerations, Kadanoff’s coefficients: α0, β0, α3

and β3, were computed for different maps using the corresponding periodic
orbit 28657/46368 for critical values of the parameters. The results are dis-
played 4 in Table 6.2, although the data is insufficient to make the statistic of
the reported values trustworthy. There is a need to find higher order periodic
orbits for parameters closer to critical in all the cases reported.

3Note that with this notation, α̂(1,m) (β̂(1,m)) should converge as m→∞ to α0 (β0)
if (x0, y0) is a point with most rarefaction.

4For display purposes the Chirikov-Taylor map (4.6) is labeled as “standard”.
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Figure 6.7: Values of α̂1(m) and α̂3(m) computed using the strategy #2 from
Sec. 6.1 for the 28657/46368-periodic orbit of the rational harmonic map
(5.23)-(5.25) with parameter values (κ, pa, pm) = (1.73353335146, 3.0, 0.4).

It should be addressed that there is no a priori “most rarefied” or “most
dense” point in a given orbit. Many points need to be tested around the
“most dense” and “most rarefied” regions to find one that best reproduce
the universal bounds. Since the structure of the periodic orbit tends to be
fractal, it is common to find points in locally rarefied (or dense) regions that
also reproduce the bounds but with the same number of digits.

6.5 Discussion and remarks

The computation of high order periodic orbits around critical values is a
challenging problem even with the new compound method. It is almost guar-
antied that the parameterization curve K found by the modified parameter-
ization method will be not optimal to contain in an approximate manner
points with a self-similar distribution and the basins of attraction for the
2D pseudo-Newton are smaller (slimmer) as the order of the period increase.
And on top of that there are free parameters like the numerical continuation
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Map Par.
xrar |R| α0

xden α3

Standard κ 0.97160
0.00000000000× 10−00

2.5× 10−01
−1.414

5.00000000000× 10−01 −4.846

NASM
κ1 0.54299 1.225371559785× 10−05

5.3× 10−14
−1.428

κ2 0.20000 5.000011030386× 10−01 −4.845

Rational
harmonic

κ 1.73353 6.793464641760× 10−01

3.7× 10−02
−1.428

pa 3.0 pm 0.4 5.148782114378× 10−02 −4.855

Table 6.2: Kadanoff’s geometrical coefficients α0 and α3 computed for the
points xden and xrar found for a periodic orbit 28657/46368 with the |R| close
to 0.25 for the different maps via the compound method.

step size or the maximum number of harmonics, whose election may affect
the success of the search.

However it was possible to corroborate for the rational harmonic map
(5.23) and the period-two NASM (4.4), up to the order of the orbits that
where computed, the universal self-similar behavior of predicted by the renor-
malization theory. Although the results are not optimal, this is the first evi-
dence that renormalization theory results are valid for non-reversible maps.

Aside from computing higher order periodic orbits, it is still pending to
compute the Kadanoff’s coefficients for the period-two NASM using periodic
orbits whose rotation numbers pi/qi approximate the double of the golden
mean 2γ =

√
5−1 = [1; 4, 4, 4, ...] = 1.236067977.... This can be unexpectedly

challenging since the numbers in the sequence given by the continued fraction
grows faster than the Fibonacci sequence,

[1;4, 0, 0, 0, 0, 0, . . .] = 1 + 1
5

= 1.2000000 . . .

[1;4, 4, 0, 0, 0, 0, . . .] = 1 + 5
21

= 1.2380952 . . .

[1;4, 4, 4, 0, 0, 0, . . .] = 1 + 21
89

= 1.2359551 . . .

[1;4, 4, 4, 4, 0, 0, . . .] = 1 + 89
377

= 1.2360743 . . .

[1;4, 4, 4, 4, 4, 0, . . .] = 1 + 377
1597

= 1.2360676 . . .
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Chapter 7

Conclusions and future work

This work presented a Hamiltonian mean-field dynamical system related to
a plasma physics model of chaotic transport. Because of the similarities of
the equations it can also be interpreted as a fluid dynamics model that de-
scribes the growth of a perturbation embedded in a plane Couette flow in
a point-vortex representation. The results and simulations from Chapter 1,
showed consistently with Ref. [1] that the model reproduces at least a quali-
tative level the behavior of the continuous model and allowed to consider the
transport problem from the point of view of dynamical systems, particularly
as a symplectic map. For this kind of maps, after considering the material
reviewed in Chapter 2, it is natural to consider structures like the KAM tori
natural topological barriers for the transport, understood as the unbound
evolution in the momentum variable (y is most of cases) of a given set of
initial conditions.

The reduced cases studied in Chapter 1 for low N -particle cases helped
to picture in a discrete frame the behavior of “monopole” (or “macroparti-
cle”) and “dipole” states studied before in the continuous in Refs. [1] and [4],
respectively. The reduced maps permitted to obtain parameter values and
initial conditions that yielded coherent “macroparticle” states and evidence
that the “dipole” states are not stable in the map model. Additionally it was
possible to recreate the exact solution of a “Water-Bag mode” as coherent
state in the map model. Although the existence of this last state is intrinsi-
cally tied to the velocity value of the Galilean frame of reference (U or Ω),
just as in the continuous case, see Ref. [7].

The oscillatory state of the mean field variables was probed in Chapter 3,
trying to relate it with periodic orbits of the model. General properties of the
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periodic orbits were found and with the use of normal forms, an specific set of
symmetric periodic orbits were computed. Although the results did not seem
to directly relate with the observed oscillatory state, the fine tuning required
added further evidence of the critical dynamical impact of the velocity value
of the Galilean frame of reference and its relation with specific types of initial
conditions.

After a not entirely successful search in the literature for results that
could help to determine the persistence of invariant circles in similar models,
a new simpler map was considered. Taking into account the obvious similar-
ities between the original model and the Chirikov-Taylor map, the proposed
new map was constructed to mimic the oscillatory state of the original map
model and help to determine in a concrete case if an small and non-random
“oscillation” of the perturbation parameter in the Chirikov-Taylor map could
produce or not global transport. The literature offered a few entries to this
problem, Refs. [59, 105, 60], but not a procedure to find numerical bounds to
the parameters and from this work point of view, all these works were more
focused in the general study quasi-periodic oscillation. The new further re-
duced map model proposed was named a “non-autonomous standard map”
(NASM) and the two-periodic case was studied in Chapter 4 from different
angles: symmetries, low order periodic orbits, global critical transport and
KAM invariant circles. The last approach was done by the implementation
of one the newest and state of art method in dynamical systems: the pa-
rameterization method. The sum of efforts on the two-periodic NASM gave
quantitative values to determine the region in the parameter space for which
there was no global transport. Comparing these results with the literature
[59, 60], the bounds found are also surprisingly good bounds for the global
critical transport for a quasi-periodic NASM case or, in context of these
works, the existence of 2D-tori for a 3D-map.

To give answers to open questions about the behavior of the two-periodic
NASM for parameter values close to critical, a new method to estimate peri-
odic orbits for non reversible maps was proposed and implemented in Chap-
ter 5. The main goal was to compute the self-similar coefficients find by
Kadanoff and Shenker [64, 68] that appear in the Chirikov-Taylor map for
perturbation parameter values close the critical. The new method consisted
in a modified parameterization method (MPM) that attempted to find a
parametric curve that passed over the points of an a priori fixed periodic
orbit and 2D-pseudo-Newton algorithm to refine the results. An unexpected
correspondence between a regularized error and Greene’s residue helped to
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optimize the approximation of the MPM, although the error in the computa-
tion of high order periodic orbits grows near critical values of the parameters.
Three maps were considered to test the method: the Chirikov-Taylor map,
the two-periodic NASM and three parameter rational harmonic map . The
compound method allowed to compute periodic orbits for the three maps,
although further study is required to use the method to find periodic orbits
of higher order close to critical parameter values. The bounds of Kadanoff’s
coefficients are not yet optimal, but they are expected improve as higher
order periodic orbits are computed. The results reproduced the known be-
havior of Chirikov-Taylor map and the apparent existence of symmetry lines
on the two-periodic NASM, even though it has not been possible to rewrite
it as a composition of involutions. For the rational harmonic map, this study
allowed to give a better characterization of it, finding a 2D-manifold with
folds in the parameter space for the critical values of the parameters. But
possibly the most unexpected observation is that this new method may help
to find seed data for the standard parameterization method for invariant
circles that may resurge along a given trajectory on the parameter space,
however further study is need to transform this observation to an algorithm.

Ideas for future work

Some unexplored topics that were not explicit mentioned in previous chapters
and that could lead to to improve or generalize results of this work are
presented in this last section.

I Critical rotation numbers and critical exponents

The work presented in Sec. 4.5.2, specifically Figs. 4.8 and 4.9 can be im-
proved. A study over the rotation number of most “robust” invariant tori as
function of the parameters (κ1, κ2) can lead to further understanding the sym-
metry break between the locally “robust” invariant tori γ = [0; 1, 1, ...] and
2γ = [0; 4, 4, ...]. Further study may help to improve or deny the hypothesis
that the most robust invariant tori always are usually constant type numbers,
golden numbers with a tail of 1’s in their continuous fraction expansion1.

1Note that the rotation number 2γ = [0; 4, 4, ...] is a counterexample of this hypothesis,
hence the use of “usually”.
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Also the use of the hybrid method described in chapter 5 can lead to
determining the critical geometrical scaling coefficients (α, β) (see Ref. [64])
of the map (4.1) for the critical parameter values (blue curve in Fig. 4.8).

I A more faithful non-autonomous standard map

A different map to study that could mimic better the oscillatory behavior
of the map (1.1) as seen in Fig. 1.4 and 1.5 than the (4.1) map, would be a
non-autonomous map of the form,

x̂n+1 = x̂n + ŷn+1 mod (1), (7.1a)

ŷn+1 = ŷn +
κn
2π

sin(2πx̂n + nδ) , (7.1b)

a map that has a constant drag δ in the angle as the evolution observed
for θn. Nevertheless, an immediate complication of this map is that the
autonomous reduction analogous to the one done for (4.1) in Sec. 4.1, would
be significantly harder to study even for the two periodic case. The two
periodic reduction have the form,

xn+2 = xn + 2yn + G1(xn, yn, n;κ1, κ2, δ) mod (1) (7.2a)

yn+2 = yn + G2(xn, yn, n;κ1, κ2, δ) (7.2b)

where G1 and G2 are defined as,

G1(x, y, n;κ1, κ2, δ) =
κ1

2π
sin(2πx+ δn) + G2 , (7.3a)

G2(x, y, n;κ1, κ2, δ) =
κ1

2π
sin(2πx+ δn)

+
κ2

2π
sin
{

2π
[
x+ y +

κ1

2π
sin(2πx+ δn)

]
+ δ(n+ 1)

}
. (7.3b)

The complication is not just the map (7.2) has more parameters than Eq. (4.4),
but it also have an explicit dependence on the iterate number n. Because of
this, there would be the need to modify the implementation of parameteri-
zation method among others.
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[73] E. Piña and L. Jiménez-Lara. On the symmetry lines of the standard
mapping. Physica D: Nonlinear Phenomena, 26(1-3):369–378, 1987.

[74] J.A.G. Roberts and G.R.W. Quispel. Chaos and time-reversal symme-
try. order and chaos in reversible dynamical systems. Physics Reports,
216(2-3):63–177, 1992.

[75] D. del-Castillo-Negrete, J.M. Greene, and P.J. Morrison. Area preserv-
ing nontwist maps: periodic orbits and transition to chaos. Physica D:
Nonlinear Phenomena, 91(1):1–23, 1996.

[76] J.E. Dennis Jr and R.B. Schnabel. Numerical methods for uncon-
strained optimization and nonlinear equations, volume 16. SIAM, 1996.

[77] A. Apte, R. de la Llave, and N.P. Petrov. Regularity of critical invariant
circles of the standard nontwist map. 2005.

[78] K. Fuchss, A. Wurm, A. Apte, and P.J. Morrison. Breakup of shear-
less meanders and “outer” tori in the standard nontwist map. Chaos,
16(3):033120, 2006.

187



[79] A. Olvera and C. Vargas. A continuation method to study peri-
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