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Abstract

There are biological systems which show spontaneous pattern formation occur-
ing at nonequilibrium conditions. One example is the cell migration patterns
and motion observed during the life cycle of the social amoeba Dictyostelium
discoideum, which is an unicellular amoeba that enters into a multicellular
developmental program when facing conditions of low or no nutrients, mak-
ing it of great interest for research in different branches of human knowledge.
The gathering of cells into a multicellular complex is mediated, among other
factors, by the chemotactic response to 3’ -5’ cyclic adenosine monophosphate
(cAMP), which is synthetised, recognized, and relayed by D. discoideum. This
is a complex phenomena, far from equilibrium and of great interest to study
with reliable tools that can provide exact measurements.

This thesis concerns with the implementation of an automated stage to
study the aggregation process of D. discoideum through microscopies tech-
niques that included phase contrast and epifluorescence. Automated microscopy
was used to increase the observable region of interest and thus available statis-
tics of different parameters like the velocity and chemotactic response of the
cells while preserving a spatial high resolution.

Image processing was used to segment and analyze the data, creating a se-
quence of algorithms that were able to follow the paths of different cells during
the aggregation stage and quantify the velocity and angular distribution with
respect to the aggregation center. The goal was to develop tools to extract
value parameters as the concentration and signal shape of cAMP waves in
an attempt to adapt the obtained results to an already established model for
stochastic description of D.discoideum. This tools try to solve some problems
found in existing programs for cell tracking and a comparison between them
and the developed methods in this work are discussed. A quantification of
these properties was succesfully done while the stochastic model adapted to
this system is still missing.

An algorithm workflow was written so it can be used for similar problems
by the scientific community. This algorithm workflow was written in Matlab

xi
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for several reasons: the program’s computational power to process data in
parallel looping, its extensive functions library which provides versatility for
plotting and other tasks, and the possibility of tracking cells whose fluorescent
signal can be lost.



Chapter 1

Introduction

Collective cell migration is often described as a process where groups of cells
move to new regions in order to perform specific biological tasks and it is a key
component in the developement of living organisms. It plays a significant role
in organogenesis, immune reactions (Negulescu et al. (1996)), tumor metasta-
sis (Condeelis and Segall (2003)), and the development of the nervous system
(O’Rourke et al. (1992)). This movement is controled by chemotaxis, which
is defined as the response of a cell towards or away from a chemical stimulus.
Dictyostelium discoideum is a social amoeba of great interest as a model or-
ganism for the study of collective motion, cell motility, chemotactic response,
phagocytosis, cell adhesion, and pattern formation, among many other appli-
cations (Kessin (2001)). This is explained by the interesting life cycle of D.
discoideum where, upon starving conditions, relinquishes its amoeboid state
to form a multicellular organism within its developmental life cycle (see Figure
1.1).

1.1 Dictyostelium discoideum

Amoebas are micro-organisms that belong to the Protista kingdom of the
Eukaryota domain, which is composed of unicellular living beings that can
live separated from each other or in a colonial-way stacked together in large
bodies but without forming tissues or complex multicellular bodies. They have
a similar structure to that of animal cells and have 10-100 times the diameter
of bacterias Jeon (2012).

D. discoideum is an amoeba that lives in forest soil as a single cell, feeding
on bacteria and reproducing until starving conditions become present and halt
its life cycle. The amoeba is able to take immediate action upon this nutrient
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2 CHAPTER 1. INTRODUCTION

shortage by induction of genes in order to stop metabolic processes like cell
growth and start the synthesis of a signal molecule that guides itself the for-
mation of multicellular aggregates. During this process, cells stream toward a
central domain referred to as the aggregation center. This results in the forma-
tion of a mound which further grows to form a finger. If the extended finger
falls, it will form a phototactic migration slug, a stage that does not occur
always. At the final stages the finger or slug give rise to a fruiting body sup-
porting a spore head containing spores. These spores have a higher tolerance
to different environmental conditions than the amoeba and can germinate into
the latter ones, completing the life cycle Kessin (2001). A short sketh showing
some stages of D. discoideum morphogenesis is given in Figure 1.1.

Figure 1.1: Phase contrast images of selected stages from D. discoideum social morphogen-
esis. The amoeba phase is shown in (a), where the signaling of cAMP is not still present.
(b) shows the first stages of aggregation with directed movement. (c) is the streaming phase
where cells can move along each other together. (d) shows the formation of a slug, which
does not occur always and the life cycle can progress directly to the fruiting body in (e),
with a drawing to clarify the microscope image. Scale bars, 200 µm in (a), (b), (c), and 50
µm in (d), (e).

The main chemical mediator that orchestrates the formation of aggregates
and consecutive multicellular stages is 3’ ,5’ -cyclic monophosphate (cAMP).
This is produced by cells in some areas until a high concentration is reached and
cells excite themselves and neighbours to start producing and secreting more
cAMP, in an autocrine signal (Gerisch et al. (1979), Tomchik and Devreotes
(1981)). This molecule has extracellular and intracellular functions: extra-
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cellularly as a ligand for G-protein-coupled receptors, while intracellularly it
activates cAMP-dependent protein kinase (Chisholm and Firtel (2004)). The
life cycle can be studied by removing nutrient sources and placing cells on agar
as a layer, where they start to synthetise and secrete cAMP three to four hours
after undernourished conditions (Fey et al. (2007)). At the aggregation stage
D. discoideum can move as fast as 10-15 µm/min (Varnum and Soll (1984)).
They perceive increasing and decreasing gradients of cAMP that can differ
between the front and back parts of the cell by discrepancies of only a 2%
(Devreotes et al. (1979)).

1.1.1 Chemotactic response

The directed motion towards or away from a chemical stimulus is known as
chemotaxis. The chemotactic response of D. discoideum to the cAMP molecule
mediates the aggregation stage of the developmental life cycle. Three main
steps describe the whole chemotactic process: sensing, polarization, and mi-
gration.

On the first step the cells sense and recognize gradients of cAMP through
transmembrane receptors (cAR1), getting to know the direction with higher
concentration of cAMP. These receptor proteins are also G-protein coupled
receptors and are in charge of switching on the signal to activate a downstream
cascade of chemical processes through the cell. This cascade is turned on as
the cAMP bounds to its receptor, which then dissociates the G-protein and
therefore activates different GTPases. On the other side of the cell, an opposite
reaction is mediated by the phosphatase PTEN, which translates the outer
cAMP gradient into an internal gradient.

After the directional sensing the cell polarizes and adopts an elongated
shape prior to migration. A stable leading edge forms in the direction with
steeper cAMP gradient, while the rear of the cell forms at the side with lower
concentration. A complete picture of the chemotactic response is still missing
because different signaling mechanisms have been discovered.

An increase in actin filaments at the front creates a protrusion. It is still
not clear wether the cell movement is mediated through the inner gradient, as
previously explained, or if it is directed through a bias created by the chemoat-
tractant. In the second approach, called pseudopod-centered, the chemoattrac-
tant creates a weight in the pseudopod formation and its lifetime, making it
shorter for the rear and causing a faster retraction of that part (Andrew and
Insall (2007)). The rear contracts thanks to myosin motors located on the
actin network, consisting of a crosslinked network of actin fibers.
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1.1.2 cAMP waves

The production, secretion and signal relay of cAMP by D. discoideum cells
forms complex patterns with far from linear behaviour. The dynamics of the
cAMP waves can be calculated from optical density techniques during the
aggregation stage. It has being reported that waves propagate fast at the
initial stages (600 µm min−1) with a low frequency (once every 6-8 minutes
Rietdorf et al. (1996)). Binding of cAMP to its specific receptor triggers two
competing processes: an earlier activation of adenylate cyclase (ACA) and
synthesis of cAMP, and a slow adaptation that results in an inhibition of
ACA Fisher (1991). The cells adapt and stop producing cAMP because of
autocatalytic feedback produced by the binding of cAMP secreted by the same
cell (inhibition by product). As the cells secrete cAMP phosphodiesterase that
degrades cAMP the concentration of cAMP will fall, as adaptation is present.
The De-adaptation occurs by a fall of extracellular cAMP concentration. This
adaptative process is the one responsible for the cAMP waves propagating
outwards as cells that just relayed the signal are refractory to stimulation.
The cells respond to the steeper gradients of cAMP and stop moving as the
concentration decreases, which prevents that they follow the wave once the
signal has passed Futrelle (1982). All this chemotactic response results on the
periodic movement of the cells toward the aggregation center because of the
outward propagating waves.

1.2 Phase contrast microscopy

The human eye is uniquely sensitive to differences in amplitude of light (dis-
tinguished as brightness) and wavelength (color), while differences in phase
are not distinguishable to it. Many objects can cause changes in the phase
of incident light by modifying the optical path length, either by differences in
thickness or refractive index. The PCM is a technique that phase shifts the
zero-order beam (visualized as the central maximum in a diffraction pattern)
in the microscope such that a contrast in intensity is formed as the shifted
beam recombines with the following orders. To achieve this, an annulus con-
denser is used to impact only the zero-order of the illumination light with a
phase shift induced later on by the phase plate as shown in Figure 1.2.

1.3 Fluorescence microscopy

Fluorescence and phosphorescence are two physical phenomena in which an
organic or inorganic specimen emits radiation after being excited with light
of a specific wavelength, usually of higher energy (lower frequency) than the



1.3. FLUORESCENCE MICROSCOPY 5

Figure 1.2: Phase contrast microscope optical train. The light coming from the collector
lens goes through the condenser annulus to let the zero-order beam pass. The light is further
diffracted in the specimen by differences in thickness and refractive index (n). The phase
plate makes a shift in phase which can be then captured by a camera. Image taken from
http://www.microscopyu.com, Nikon.

emitted. The difference between excitation and emission wavelengths is known
as the Stokes shift and it was named after the british scientist who in 1852 saw
the emission of red light in the mineral fluorspar after exciting the compound
with ultraviolet light. The absorption and emission of light occur almost si-
multaneously within a time range of nanoseconds. When the persistence of the
emitted light is longer, then the phenomenon is refered to as phosphorescence.
(Lichtman and Conchello (2005)). Fluorophores are molecules that exhibit
this behaviour.

From the physical point of view, fluorescence occurs when excitation pho-
tons transfer energy to the molecule making changes in electronic, vibrational
and rotational states. This process originates transitions of the electrons in
the outermost orbital from a ground state to an excited state. Molecules with
some degree of conjugated double bonds can fluoresce with smaller Stokes
shift because of the electron distribution on them. These compounds have
ring structures very often (aromatic molecules) with pi bonds that have a
large area in which the outer electrons are.

Jablonski diagrams are used to depict the energy states of a fluorophore.
Figure 1.3 shows a Jablonski diagram with the energy states and possible path-
ways during the absorption of light. Electrons are excited by light and climb to
higher energy levels. Electrons spin, and hence the total angular momentum,
can also change during this process. The total angular momentum is given
by 2S + 1, where S is the total spin. For singlet states with antiparallel spins
of 1/2 and −1/2 this is 1, and when an intersystem crossing occurs then the
excited electron also changes its spin and hence the total angular momentum
will be 3, triplet state. Because of the exclusion principle of Pauli the excited
electron on the triplet state can not go back to the same ground state until it
changes its spin again. This reason explains why phosphorescence has a higher
lifetime than fluorescence.

http://www.microscopyu.com
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Figure 1.3: Jablonski diagram with the energy states of a molecule and the possible processes
that can occur. Fluorescence occurs when the singlet state emits the energy previously
transferred in the form of light. Intersystem crossing changes an excited electron spin and
generates a triplet state which phosphoresces when the electron falls down to the ground
state.

The main approach in fluorescence microscopy is to excite with light fluo-
rophores, who have ligands that can attach to specific molecules or compart-
ments in the cells, and observe the emitted light produced by the transition of
electrons to a lower state.

1.4 Image processing

Like all the human senses the vision is highly developed and because of this
reason images play an important role in perception. Although we can only see
in a short range of the electromagnetic spectrum, the development of machines
has abled the possibility to see beyond our capabilities, from X-rays, to ultra-
sound and microwaves. Digital image processing has become an important
research area and a lot of work in this field is being made to address problems
like image coding, image restoration, 3D image processing, feature extraction
and analysis, moving object detection, and face recognition Jensen and Lulla
(1987). In biophysics it has been widely used to make quantitative studies of
cell migration.

A digital image can be defined mathematically as a function f(x, y) with
the domain in a two dimensional space. Each coordinate of (x, y) represents
the location of a point and the amplitude f defines the intensity or gray level
at that position. All of these values are discrete quantities and are referred to
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as pixels (Gonzalez et al. (2002)).

The motivation for using image processing is to extract the data of interest
for studying D. discoideum’s life cycle. The required information is comprised
of the distinction from individual cells between them and from background.
This is a challenging task because of the large number of cells in the visual
area and the possibility of merging between them (when two or more cells
stack together), but it is a crucial step in order to correctly quantify different
parameters as the motion, velocities and directionality. Figure 1.4 shows two
different observations with a time gap of 2 hours between them; how can we
describe the transition in time of all the elements from Figure 1.4(a) to 1.4(b)?
The next sections will discuss how the location of single cells was asigned and
the methods used for it.

(a) (b)

Figure 1.4: D. discoideum at different stages of its life cycle. (a) shows a set of cells after 1
hour of starving conditions while in (b) the same population was observed after 2 hours.

1.4.1 K-clustering

Clustering is a technique used to assign a cluster or center from the set C =
c1, c2, ...ck to each data point from a set P = x1, x2, ..., xn. The assignment is
done by finding how similar are the data points to each of the cluster centers
through the definition of some metric between both sets. A very common
metric used is the typical euclidean distance and with this the assignment is
performed by minimizing:

k∑
i=1

∑
x∈P

‖x− ci‖2. (1.1)
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(a) (b)

(c) (d)

Figure 1.5: General procedure for k-means clustering. (a) shows random generated data
with three different weights. Cluster centers are initialized randomly in (b), assigning each
data point to its closest center as shown with different colors. (c) New centers are defined
by averaging the obtained data points from each cluster and making a new assignmet. (d)
Loop is runed until a minimum of the metric sum between data points and cluster centers
is found.

The position of the centers is randomly initialized and changed until a
minimum is achieved. At each loop in the algorithm a new center is defined by
taking the average of the points already assigned to it and running the whole
process of assignment again. The algorithm can proceed as marked by the
following points (Spath (1985)):

• Select k initial clusters randomly.

• Compute the distance given by a specific metric from each data point to
each cluster.

• Update the batch: reassign points to their nearest cluster centroid by
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iterations and recalculating cluster centroids.

• Obtain k new cluster locations by the averages obtained.

• Repeat until cluster assignments stop changing, which means that the
minimum was reached, or stop after a certain maximum value of itera-
tiones is reached.

This technique is used in image segmentation to separate different objects
and be able to distinguish a specific collection or part of interest from a sample.
The data point set and cluster centers set can be defined by the pixel intensity
values, obtaining thresholds for the different objects. Clustering of cells was
efficient because of the microscopy tecnhiques used. There is a big difference
in the intensity of cells and background both in phase contrast and fluores-
cence, which allows an optimal performance of the algorithm. Interestingly,
mammals use a similar mechanism called lateral inhibitition where a neuron
can reduce the activity of its neighbours under some stimuli, increasing the
contrast in stimulation Ungerer and Schmid (2013). K-means clustering was
used here to differentiate pixels corresponding to cells and those belonging to
the background.

1.4.2 Spatial convolution

Convolution is a fundamental mathematical operation used for many image
processing operations like filtering. It consists of scanning an input image with
some specified kernel (given as a matrix of smaller size) which multiplies and
adds the values of the input submatrix at which the kernel is superimposing
to give a new image.

The kernel can have different values and this also defines the purpose it
has. The Gaussian convolution is used to remove detail and noise with the
kernel being represented by an origin-centered 2D Gaussian function g(x, y) =

1
2πσ2 e

−x
2+y2

2σ2 . This kernel gives more weight at the central pixels and less to the
neighbors; the farther away the neighbours, the smaller the weight. Figure 1.6
represents the effect of this kernel for a standard deviation of σ = 3.
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(a) (b)

Figure 1.6: Effect of Gaussian filter with standard deviation of σ = 3. (a) Input image
before convolution. (b) filtered image with blury effect.

1.4.3 Filters

A mask or kernel in a convolution is the same concept as that of a filter in
the frequency domain. A blurring kernel, like the Gaussian described before,
reduces the edge content of an image (Figure 1.6) and it corresponds to a low
pass filter. A mask that enhances edges, on the other hand, corresponds to a
high pass filter.



Chapter 2

Aims of thesis and objectives

2.1 Aims

• The automatization process can help to reveal more accurate value pa-
rameters on the aggregation stage of the biological model organism Dic-
tyosteilum discoideum. This high accuracy will be obtained from scan-
ning broader areas while maintaining a high resolution.

• It is possible to write an algorithm pipeline that can track cell trajectories
even when photobleaching occurs.

• Chemotactic response and parameter values of Dictyosteilum discoideum
life cycle can be extracted with computational tools.

2.2 Objectives

• Write a complete pipeline of algorithms that will merge the data ob-
tained from the frames of the automated stage, process the images to
distinguish the position of individual elements, track the displacements
in time and quantify the aggregation stage of Dictyosteilum discoideum
morphogenesis.

• Get an estimation of values like the concentration and variation of cAMP
during the aggregation stage using a tracking algorithm that can provide
high quality data from the processed images.

• Study distinct features of the D. discoideum aggregation stage like the
velocity, chemotactic response, pattern formation, and wave signaling.

11
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• Obtain values of cAMP concentration and see the relationship of these
with cell movement.

• Compare the algorithm pipeline with other available tools for image anal-
ysis and cell tracking.



Chapter 3

Material and Methods

Experiments consisted in the observation of harvested cells moving and thereby
aggregating in agar inside glass bottom dishes. The starting time was around
one hour after starving conditions and it lasted approximately 20 hours. The
PCM and fluorescence microscopy techniques collected the data to 50 MHz
and with a time gap of 1.014 s between subsequent images. The automated
stage moved such that 16 or 25 adjacent images for each microscopy channel
were obtained. PCM was used to achieve high contrast between the cells
membrane and background due to the transparency of cells while fluorescence
was used to track the displacements of a minor population in order to reduce
the combinatoric task of the algorithm.

3.1 Cell culture

The culture of Dictyostelium discoideum was maintained in HL5 medium at
22 ºC in a Petri dish until its harvesting for experiments and before it was
stored at -80 ºC either as cells or spores for an extended period. The cells were
frozen in HL-5 medium (14 g/L peptone, 7 g/L yeast extract, 13.5 g/L glucose,
0.5 g/L KH2PO4, 0.5 g/L Na2HPO4 from Formedium) with an additional
20% Dimethyl sulfoxid (DMSO, Calbiochem) and 40% Fetal calf serum (FCS,
Invitrogen) and spores were frozen in liquid nitrogen.

3.1.1 Cell harvesting

The following protocol was carried out prior to all experiments:

1. Removal of medium and floating cells from Petri dishes.

13



14 CHAPTER 3. MATERIAL AND METHODS

2. Mixed the cells attached to the bottom of two Petri dishes with 10 ml of
phosphate buffer (PB).

3. The cell suspension was centrifuged at 4◦C to 1000 rpm for 3 minutes
(first wash).

4. For two consecutive runs the supernatant was again removed leaving only
a pellet of cells at the bottom of the tube and repeating the last step.
10 ml of PB were used for the final cellular suspension.

5. 300 µl were distributed over MatekTM glass bottom dishes with a layer of
1.2% agar. The cells were distributed with vertical and horizontal plane
movements and left with the lift open for 5-10 minutes to let the excess
of PB evaporate.

3.1.2 Labeling with Cell TrackerTM

Cell Tracker Green CMFDA Cat. C7025 and Cell Tracker Red CMTPX Cat.
C34552 (Thermo Fischer Scientific, Massachusetts, USA) were used to stain
approximately 2.5% of the total population with a specific fluorescent label.
The dyes bind to the microtubuli inside the cells. After harvesting the cells,
two or three tubes of 1 ml were filled with the obtained cell suspension (2 for
one fluorescent stain and 3 for two stains). The cells to be stained were mixed
with 2 µl of 10mM Cell TrackerTM Red and Green, which have an absorption
maxima of 577, 492 nm, and excitation maxima of 602 and 517 nm, respec-
tively. All tubes were shaken for 45 minutes at 22 ◦C and 300 rpm. 950 µl of
the control (unstained) cells were mixed with 25 or 50 µl of the stained cells
(always 25 µl for each label). Cells stained with Cell Tracker were kept in dark
to prevent photodamage.

3.2 Experimental set-up

Control of microscope and stage through the Micro-Manager open software.
Sets of PC and fluorescent (red dye) images were recorded for 20 hours with
the automated stage to 0.16 Hz frequency (1 minute) between subsequent sets
using an Olympus IX81 inverted microscope (3.1) and 10X LCPLN (Olympus)
objective with 0.25 numerical aperture. Each set consisted of 16 or 25 frames
(4 rows and 4 columns for the 16 frames sets and 5 rows and 5 columns for
the other case) and was recorded with both PCM and fluorescence microscopy
and a 10% overlap between neighbouring images. The 10% overlap was done
such that the images could be aligned and overlayed using cross-correlation.
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Figure 3.1: Microscope arrangement with an automated stage mounted on an inverted
Olympus IX81 microscope. The Burner is the source of a high-intensity light (mercucry arc
lamp). The stage controller operates the speed and movement of the stage and the shutter
driver is used to create digital images of the observed specimen.

Each PC and fluorescent image was captured using a Hamamatsu CCD
camera with an exposure time of 400 ms and a spatial resolution of 1344 ×
1024 pixels (1 pixel = 0.6465 µm). The time gap between subsequent frames of
one set was of 1.098 s, with the automated stage movement as the one shown
in Figure 3.2. The microscope and automated stage were controlled through a
Python GUI connected to the core of a Micro Manager open source software
program developed by the UCSF (Edelstein et al. (2014)).

3.3 Image processing

This section presents the workflow of algorithms used to segment, denoise, fil-
ter, and detect the data such that the displacements of cells could be tracked
and analyzed. First, images were recorded with a 10% overlap such that they
could be aligned and overlayed by subsequent cross correlation. Afterwards a
binarization of the images was done using k-means clustering to recognize cells
from background signals. As only the movement of single cells was of interest,
further processing was done to detect circular shapes between a size interval,
thus avoiding the measurement of groups of membrane attached organisms.
The tracks of cells were reconstructed from the merged-binarized images by
finding the centroids of all positions from a determined set of frames and min-
imizing the mean square displacement of all the possible trajectories between
centroids of subsequent frames in a given set. Angles and velocities of the
tracks were calculated. The main steps are the following:
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Figure 3.2: Single phase contrast images showing the automated stage movement. There is
a 10% overlay between subsequent images. The time interval between each adjacent position
is of 1.014 s. Scale bar equals 200 µm.

• Assembly.

• Binarization.

• Cell tracking.

• Angle and velocity calculation.

3.3.1 Correlation and merging

In order to merge the individual images obtained from the automated stage (see
fig. 3.2) into a whole frame (fig. 3.3), a correlation algorithm was implemented
to localize the exact position of the offset area. This last one made use of
the built-in ’normxcorr2’ function of MATLAB to calculate the correlation
between consecutive images. The cross-correlation was calculated in the spatial
domain, considering each image as a 2D function f(x, y), the array of pixels
and pixel intensity as the domain and codomain, respectively ((Lewis (1995),
Haralick and Shapiro (1992)). The correlation coefficients were obtained by
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precomputing running sums (means) and normalizing. This is represented
with equation 3.1, where f is the image, t the template, and the evaluation
over (u, v) is on the template region. Means are represented with upper hats.

γ(u, v) =

∑
x,y

[
f(x, y)− f̄u,v

]
[t(x− u, y − v)− t̄](∑

x,y

[
f(x, y)− f̄u,v

]2∑
x,y

[t(x− u, y − v)− t̄]2
)0.5 (3.1)

The maximum of this value will show the region where the maximum cor-
relation was found. The alignment vectors obtained were used to align the
respective frames of the fluorescent images. This method showed to have an
error below 2% for the superposition of cells in adjacent frames.

Figure 3.3: Combined frame created by aligning the individual frames from Figure 3.2 with
the coordinates found with the maximum correlation between offset regions of subsequent
images. Scale bar equals to 200 µm.

3.3.2 Image binarization

Data points of interest had to fulfill some requirements. The first one was
to have a high pixel intensity value in order to discard noisy points present-
ing photobleaching or background signal. Rod-like shaped objects were also
excluded to avoid the detection of bundles of cells.
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A binarization of the foreground pixels (the cells) and the background was
performed by doing k-means clustering of the pixel amplitude with the goal
to determine whether a pixel belonged to the background set, or if it was
member of the foreground set. Figure 3.4 shows the normalized pixel intensity
histogram from (c) of Figure 3.5. A Gaussian shaped distribution is obtained
for the pixel values from the background, while the foreground values can not
be distinguished. Only objects with a bigger count of 10 connected pixels were
classified as being part of the cells group. Cells had a size between 5 and 10
µm in diameter and this corresponds to groups of 10 to 50 pixels.

Figure 3.4: Pixel intensities normalized histogram. The values obtained were used for the
k-means clustering algorithm to determine if a pixel belongs to a cell of interest or if it
will be treated as background. The cluster centers for this example were: C1=259.51 and
C2=500.82

A morphological disk structuring element was used to convolve with the
cell clusters and achieve better defined borders and shapes. The pixels with
no signal contained in these disk-shaped cells were changed for pixels that
corresponded to cell signal. THis was done to get completely connected clusters
and take into account points within the cells where signal intensity was low
and not detected as belonging to the cell.

Figure 3.5 shows images before and after the binarization. 3.5 (a) is the
whole 4x4 merged analysed image and the result is shown in 3.5 (b). 3.5 (c) is
a zoomed region of 3.5(a) with arrows showing objects that are not considered
for the tracking analysis since they are not bright enough, do not have a circular
shape or have a radius below .
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(a) (b)

(c) (d)

Figure 3.5: Input and output of image processing method where thresholding, dilation,
erosion, and filling are applied. In (a) are the 4X4 aligned images prior to the process
showing the result in (b). Detailed areas of (a) and (b) are shown in (c) and (d) respectively.
Elongated, small, and dim objects as the ones shown by the arrows in (c) are not detected
or discarded and thus not seen on the final binarized mask showing the same region in (d).
Scale bars equal 200 µm in all images.

3.3.3 Filtering and centroid calculation

This section describes how the center of a cell is calculated to pixel level accu-
racy. The binarized images were smoothed using a real-space band pass filter
from Blair and Dufresne (1997), which also suppresses long-wavelength image
variations and retains objects information of a characteristic size. The band-
pass is obtained by substracting an image convolved with a boxcar kernel from
an image convolved with a Gaussian kernel. The Gaussian filtering performs a
lowpassed version of the original image, while the boxcar filtering sharpens the
edges of objects and makes a highpass filter. This results in sharply peaked
circular objects.

The local maxima were obtained in a two step process using algorithms
developed by Blair and Dufresne (1997) and based on ideas from Crocker
and Grier (1996). First, pixels above a specified threshold (which depends
on brightness of objects) are extracted. The brightest pixel is found within
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connected pixel clusters and an image with all this peaks is formed. To avoid
the detection of peaks related to the same cell, a second search of local maxima
is done for each peak within a specified kernel size given by the average cell
size which was of 31 pixels (20 µm radius). The second step of the center
localization corresponds to a sub-pixel accuracy calculation (Crocker and Grier
(1996)).

3.3.4 Positions over time

The centroid calculation gave the approximate positions of cells with respect
to time, the tracking of this array listing of scrambled coordinates works as
following: having n positions of data points at time t(i) and m positions at
time t(i+1), all the possible connections between points of succecive times are
calculated, choosing those which have the minimal total square displacement.
A parameter of maximal dispersion is defined as the maximal number of time
frames in which a particle can disappear an appear again (this was observed
to happen across all observations). This can also penalize the waging function
by a factor of max.disp2 in order to avoid identification of new points which
correspond to previous trayectories.

3.4 Aggregation statistics

In order to quantify the way in which the cells responded to the signal from
the AgC, a chemotactic angle, θ, was defined as the angle between the vector
pointing to the aggregation center from the current cell position and the dis-
placement vector after a time step, as depicted in Figure 3.6. The aggregation
center was chosen by observations of the streaming phase, where a center of
aggregation was possible to visualize.

3.5 cAMP waves

An indirect method to measure the cAMP concentration with respect to dis-
tance from aggregation center for different times was developed to show a
possible application of the cell tracking and analysis. Figure 3.7 shows this
idea pictorially. The velocity means of cells located in one of subsequent rings
with center at the AgC were related to the concentration of cAMP, as cells
can distinguish between cAMP values (Devreotes et al. (1979)).
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Figure 3.6: Coordinate system showing the meaning of the different quantities to be cal-
culated. Aggregation center was chosen at the end of the streaming phase when a clear
circular shaped organism was formed by the aggregation. The angle θ was defined as the
chemotactic angle and it is defined as the difference of angle between a straight walk to the
aggregation center and the next step made by the cell.

Figure 3.7: Method on which cAMP concentration profile was estimated for different dis-
tances from aggregation center. The idea was to use the velocity information from groups
of cells within each of the concentric rings. Arrows in the image show this idea: where the
cAMP gradient is bigger then the mean of the velocities within that region will be higher
from regions with a loss cAMP gradient. Distance between subsequent rings varied from 50
to 70 µm.
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Chapter 4

Results

Here are shown the quantitative results from tracking the movement of the
fluorescent images from the merged frames during different stages of the mul-
ticellular developemental cycle. Cells trajectories are shown in Figure 4.1.

Figure 4.1: Individual trajectories from fluorescence observations with initial point trans-
lated to the x-y plane origin and rotated towards the relative direction of the aggregation
center in the positive x-axis. Each color represents a different cell trajectory in a 50 minute
time window after 2 hours of starvation.

TrackMate is an open ImageJ plug-in widely used for automatic and semi-
automatic tracking(Tinevez et al. (2017)). Although this program can register
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trajectories of cells very efficiently, it presented errors at the moment of im-
plementation for the present study. First, it assigned false trajectories to cells
due to the high cell density. This can be corrected manually but it would be
time consuming because of the extensive amount of data. From here came the
motivation for tracking a fraction of the total population which was labelled
with fluorescent dyes. TrackMate also failed when tracking a smaller fraction
because of bleaching. The program had errors to reasign a trajectory for cells
that disappeared for some number of frames as was observed to happen. Figure
4.1 shows that these problems were solved by the algorithm pipeline written.
The initial point of each trajectory was translated to the origin and all were
rotated by the angle made between the first displacement an the aggregation
center towards the positive x-axis, as the aggregation center lies in the (200,0)
point. All cell trajectories plotted were a continuous curve and assignment of
different cells to the same trajectory would be represented as discontinuous
curves with an initial point not placed at the origin.

4.1 Time evolution

The time evolution of tracked D. discoideum cells is shown in Figure 4.2 for
different time stages of aggregation in the same life cycle. The time step
between subsequent frames is of one minute and the frame 51 in Figure 4.2 (a)
was recorded approximately two hours after starving conditions were present.
The segmenting, filtering and tracking process was performed in groups of 50
frames and the aggregation center is shown as a small circle with center in
(2259,2400).

The Figure 4.2(a) shows short displacements over time with no apparent
sense of direction. The panel (b) from the same figure shows longer displace-
ments over time but still lacks of a general defined direction of motion for
the next 50 minute window of observation, as seen in (a) of the same figure.
Despite this, there are zones where some cells start to follow a direction of
motion (as seen on the lower area from the aggregation center). The plot (c)
shows the evolution of movement as the final aggregation, when the center
appears. A clear directed motion towards this point with longer displacements
was observed for this set of frames (Figure 4.2). Some cells were seen to follow
a different direction but still with directed motion (upper left part). The final
stages of aggregation are depicted in (d), where groups of cells are already
co-localized in the aggregation center and other groups are still streaming to-
wards the AgC.

Definition of the aggregation center could only be made manually. The
problem faced is shown in Figure 4.3, where a group of cells started moving
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(a) (b)

(c) (d)

Figure 4.2: Surface plots of displacement’s time evolution for red fluorescent stained cells.
Experiment started after 1.5 hours of starving conditions, having frame 1 as the initial time.
Each frame recording lasted 1 minute, so each figure shows the developement of cells in a 50
minutes window time. (a) shows short tracks with no directed movement (2 hrs 20 min into
life cycle like in Figure 1.1). (b) The cells have longer displacements but no directionality
as well (4 hrs). (c) shows part of the aggregation stage with the cells moving towards the
aggregation center (8 hrs 10 min). Streaming phase shown in (d) where cells merge together
(11 hrs 30 min). The time reported in each frames set (figure) correspond to final time of
the acquisition.

towards the right (Figure4.3(a)) in what appeared to be the AgC. However,
the directionality is lost at some point in time during the set frames from
(b). Then the movement starts again in direction of the point in (2100,100)
in (c) and at the end of the process two centers in close proximity can be
distinguished from each other in panel (d). There is no explanation yet of why
this happens and it is an open topic of research.
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(a) (b)

(c) (d)

Figure 4.3: Problem faced for defining an AgC. Panel (a) shows directed motion towards a
point which did not present an AgC in that location. The directionality is lost afterwards
as shown in panel (b) and then recovered during the frames observed in panel (c). The last
panel, (d), shows two apparent centers of aggregation in close proximity.

4.2 Chemotactic angle

The chemotactic angle (CA) evolution over time is shown in Figures 4.4 and
4.5 for the same experiment of last section.

Figure 4.4(a) shows the frames set before overall aggregation starts, with
the CA distribution taking all values randomly. The corresponding histogram
of the angle distribution is shown in (b) with the angle interval [-180◦,180◦]
divided by 18 steps. The chemotactic angles had similar frequencies across all
the values from the selected interval. Same distributions are shown in Figure
4.5 for a later time. Both the heat map and histogram show differences where
the angle values become more frequent for numbers close to 0◦, while the least
frequent values were those close to 180◦, corresponding to a directed movement
away from the aggregation center. Negative values do not correspond to the
same as their positive counterpart.
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(a) (b)

Figure 4.4: Time evolution of chemotactic angle for the same experiment type that was
described in Figure 4.2. Random angle distribution is seen in (a) as a surface plot of the
positions at a given time and more quantitatively in the corresponding histogram (b).

(a) (b)

Figure 4.5: Time evolution of chemotactic angle as in Figure 4.4 but around 3 hours after-
wards. The panel (a) shows the surface plot of chemotactic angles for each time displacement
where values appear to be close to 0◦. In (b) the angle histogram that shows quantittive
directed motion of cells is present as the angle hisotgram is no longer randomly distributed.

Histograms like the one in Figure 4.5(b) were observed across different
experiments were there was a clear AgC. On the other hand, no clear results
could be obtained for cases like the one discussed in Figure 4.3. The underlying
mechanism of how the final AgC is defined between two points close in space
still needs to be adressed. One way of doing this could be by comparing
histograms of multiple AgC with single ones. The angle distribution could
point in an specific orientation above some threshold to know if cells around
a circle will aggregate or not to an specific point.



28 CHAPTER 4. RESULTS

4.3 Velocity

Velocities were also measured during different times of the life cycle. The
respective surface plots and histograms of the same set of frames treated in
previous sections can be seen in Figures 4.6 and 4.7. This values were obtained
by dividing the spatial displacement with the time between those points. A
measure of the velocity components with respect to the AgC was done as well.
However, this appeared to give no useful information as the component heat
maps and histograms looked the same. This represents a problem since a
clear distribution was expected for the x-component of the velocities (the one
pointing towards the AgC, see Figure 4.1). A reason for this behaviour could
be that the time gap interval for the velocity calculation was taken too short,
which does not allow to appreciate velocity changes over longer time intervals.

(a) (b)

Figure 4.6: Evolution of cells speed with time. (a) Surface plot of velocity with respect to
position for a 50 minute interval. (b) corresponding histogram.

The velocity histograms had no appreciable differences between them, un-
like the angle distributions previously presented. The most frequent values
were between 0.6-1.2 µ/min in both cases. Maximal speeds of 19.2 µ/min
were recorded.

4.4 Passing waves

An estimation of cAMP relative concentration and gradient shape with respect
to distance is shown in Figure 4.8 for different time gaps. Mean velocities are
given in function of mean cells positions from AgC at each graph. Measure-
ments were done for a 10 min time interval starting with the data obtained
after 1.7 hours of no nutrient conditions (corresponding to frames 151-201 from
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(a) (b)

Figure 4.7: Evolution of cells speed with time. (a) Surface plot of velocity with respect to
position for a 50 minute interval. (b) corresponding histogram.

previous sections). Although it is difficult to know the exact shape because of
the error values, smooth periodic oscillations can be observed at some graphs
like in (b), (c), and (f) of the Figure 4.8. These oscillations can not be visu-
alized so easily at other time gaps like in (a), (d), and (e), although it could
argue that some oscillatory behaviour is present.

Then it would be possible to determine the relative amount of chemoa-
tractant molecules by analyzing the movement of cells. A maximum would
be assigned to the greatest velocity. This would be a relative process with
concentration values ranging from 0 to 1. Better values could be achieved by
using longer time intervals to get better distributions of the velocities. It is
important to note that other methods used to determine the cAMP gradient
rely only on microscopy observations (Dormann et al. (2001), Ponsioen et al.
(2004)). The velocity of the wave can be determined by dividing the distance
between two maxima by one minute, which was the duration of each experi-
ment shown in Figure 4.8. Wave values were in the range of 500 to 650 µm. A
further approach could be to make a 2D color map showing the gradients shape
by the relative concentration using the fact that it is possible to calculate the
velocities.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Velocity for cells within annular regions of 129.3 µm during a time gap of 10
minutes. Panel (a) contains the first set which started at 1.5 hours after starving conditions
and there is a time gap of 1 hour between plots.
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Conclusions

In summary, a method for studying multicellular aggregates was developed.
Using an automated stage it was possible to visualize broader areas while
having a 10X magnification. This method can be used for a broad variety of
studies or to get data with higher statistics. As en example, it could improve
similar experiments as in McCann et al. (2010) and Wang et al. (2014). Same
observations and values were obtained for multiple experiments of multicellular
aggregation, showing just two of the most representatives. Undoubtedly a
bigger number of experiments would help improving the quality of data and
the parameter values extracted.

Real-time imaging with both phase contrast and fluorescence microscopy
allows this detection method to be quantitative. The time intervals and pat-
terns observed fall in agreement with those known for D. discoideum life cycle
Kessin (2001). A sequence of Matlab scripts were written so that they could
be applied with relative ease for future studies of particle tracking. The ran-
domness in (a) of Figure 4.2 could be explained by the early presence of cAMP
gradients. Local aggregation centers come up in (b) from the same figure with
local directed movement.

The histogram of (a) in Figure 4.4 shows no visible mean or shape and
therefore represents a random variable. CA of collective migration is apreciated
in (a) of Figure 4.5 where the color map has most of the values approaching
to 0◦. This can also be seen by the histogram in (d) where a mean over the
0◦ value is formed. This shows a directed motion of the displacement over
a big number of the cells popullation. This also makes possible to identify
quantitatively the exact point in time for aggregation.

Values up to 19.2 µm/min were observed and agree with previous estima-
tions of D. discoideum speed, reported to be up to 20 µm/min (Takagi et al.
(2008)). The velocity histograms were similar across different stages of the
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life cycle, however, the earlier stage had a smaller count of values closer to
0.3µm/s. This could be explained by the increase in velocity originated by
a steeper cAMP gradients as the aggregation stage evolves. The similarity
between histograms could be explained by different factors like the refraction
period of the cells or the different cAMP wave shapes at unequal stages.

Movement of D. discoideum has been studied and reported for example in
Siegert et al. (1994). However, the algorithms developed here can do a tracking
of cells for longer periods of time and with a broader area of observation.

A possible method for calculation of relative cAMP gradients was proposed
using the velocities measurements obtained and the fact that cell speed and
cAMP gradients are directly related, as already mentioned in section 1.1.2 of
the introduction from Futrelle (1982). This method consists on assigning the
relative concentration value in function of the cells velocities. This was applied
for gradients within concentric regions away from the aggregation center as de-
picted in Figure 3.7. The wave velocities for these regions ranged from 500 µm
to 650 µm, which is in accordance with reported values of 600 µm for initial
stages of cAMP secretion Rietdorf et al. (1996). This method could lead to
a new way to describe chemoatractant molecule gradients and concentrations
without the necessity of using fluorescence microscopy (Ponsioen et al. (2004))
or darkfield methods(Dormann et al. (2001)). A future project would be to
change the algorithm in order to measure cAMP gradient and concentration
by patched regiones instead of concentric rings.

All the algorithms written are provided in the appendix section, they can
be used with the proper citations.
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Appendix A

Analysis list

1 %% Path in fo rmat ion
2

3 path ( path , ’ /Users /Desktop/Des i r ed_fo lder / ’ )
4

5 %% Assemble c e l l t r a c k e r data s e t s
6

7 Assembly ( ’ 2018−04−19 ’ , ’ 002 ’ ) ;
8 % Algorithm used to merge mul t ip l e frames .
9

10 % Images and al ignment saved to s p e c i f i e d f o l d e r .
11 %% Binar i z e c e l l t r a c k e r data s e t s
12

13 Binar i z e_ce l lTracke r ( ’ 2018−04−19 ’ , 2 , 250 ,2 , 3 ) ;
14

15 % Bina r i z a t i on made to i d e n t i f y ac tua l c e l l s from
background .

16 %% Obtain t r a ck s from b ina r i z ed masks
17

18 obtainTracks ( ’ 2018−05−30 ’ , ’ ch3 ’ , 1 ,401) % red
19

20 %% Calcu la te ang le and v e l o c i t y from the obta ined t ra ck s
21

22 datename = ’2018−05−30 ’ ; % s t r i n g
23 chName = ’ ch3 ’ ; % s t r i n g
24 l e a s t = 6 ; % in t e g e r
25 s ea r ch rad iu s = 30 ; % in t e g e r ( in px un i t s )
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26 cen te r = ( [3636 354 ] ) ; % point (x , y ) ( in px un i t s )
27 rad iu s = 800 ; % in t e g e r ( in px un i t s )
28 s c a l e = 100/154 .67 ; %100 micrometers per 154 .67 p i x e l s .
29

30 ve l_angle_extract ion ( datename , chName , l e a s t , s ea rchrad ius ,
center , rad ius , s c a l e )

31

32 %% Plot t r a ck s
33

34 datename = ’2018−05−30 ’ ; % s t r i n g
35 chName = ’ ch3 ’ ; % s t r i n g
36 nr = 1 ; % In t eg e r
37 p l o t f i e l d = ’v_x ’ ; % s t r i ng , P o s s i b i l i t i e s : ’ t racks t ’ , ’

v_x ’ , ’ v_y ’ , ’ v e l o c i t y ’ , ’ angle_beta ’ , ’ angle_gamma ’ , ’
angle_abs ’

38

39 plot_tracks ( datename , chName , nr , p l o t f i e l d )
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Assembly

1 f unc t i on Assembly ( datename )
2 %func t i on Assembly ( datename , expnr )
3

4 %expnr : experiment number
5

6 loadpath1 = [ ’ /Volumes/ Sebi / ’ , datename , ’ / ’ , ] ;
7 % Folder from where to load data .
8

9 Dmax = d i r ( [ loadpath1 , ’ ∗ . t i f ’ ] ) ;
10 ntot = st r2doub l e (Dmax( end ) . name ( 2 : 5 ) ) ;
11 nch = st r2doub l e (Dmax( end ) . name (8) ) ;
12

13 savepath_mat = [ ’ /Volumes/ Sebi / ’ , datename , ’ _Testing ’ ] ;
14 % Folder to save path .
15

16 i f e x i s t ( savepath_mat , ’ d i r ’ ) == 0
17 mkdir ( savepath_mat )
18 end
19

20 Fsearch = ’F0001 ’ ;
21 Smax = d i r ( [ loadpath1 , Fsearch , ’ ch1_S∗ ’ ] ) ;
22 Smax = numel (Smax) ;%Number o f array e lements .
23

24 switch Smax
25 case 16
26 Nrows = 4 ;
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27 pos ru l e = [ 1 , 2 , 3 , 4 ; . . .
28 8 , 7 , 6 , 5 ; . . .
29 9 , 1 0 , 1 1 , 1 2 ; . . .
30 16 , 1 5 , 1 4 , 1 3 ] ;
31 case 25
32 Nrows = 5 ;
33 pos ru l e = [ 1 , 2 , 3 , 4 , 5 ; . . .
34 1 0 , 9 , 8 , 7 , 6 ; . . .
35 1 1 , 1 2 , 1 3 , 1 4 , 1 5 ; . . .
36 2 0 , 1 9 , 1 8 , 1 7 , 1 6 ; . . .
37 21 , 22 , 23 , 24 , 25 ] ;
38 end
39

40 cmat = d i r ( [ savepath_mat , ’ ∗ch ∗ .mat ’ ] ) ;
41

42 i f isempty ( cmat )
43

44 Alignvecx = ze ro s ( s i z e ( po s ru l e ) ) ;
45 Alignvecy = ze ro s ( s i z e ( po s ru l e ) ) ;
46

47 f o r a = 1 : Nrows
48

49 Lvec = pos ru l e ( a , : ) ;
50

51 f o r l = 2 : l ength ( Lvec )
52 D = d i r ( [ loadpath1 , Fsearch , ’ ch1_S ’ , num2str (

Lvec ( l −1) ) , ’_∗ ’ ] ) ;
53 I1 = imread ( [ loadpath1 ,D(1) . name ] ) ;
54 D = d i r ( [ loadpath1 , Fsearch , ’ ch1_S ’ , num2str (

Lvec ( l ) ) , ’_∗ ’ ] ) ;
55 I2 = imread ( [ loadpath1 ,D(1) . name ] ) ;
56

57 pattern = I2 ( : , 1 : 1 0 0 ) ;
58 Cx = normxcorr2 ( pattern , I1 ) ;%computes the

normal ized
59 %cross−c o r r e l a t i o n
60 %of the matr i ce s template and A. The
61 %r e s u l t i n g matr ic conta in s the
62 %co r r e l a t i o n c o e f f i c i e n t s .
63

64 %To skeep value
65 [~ , imax ] = max( abs (Cx ( : ) ) ) ;
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66 [ ypeak , xpeak ] = ind2sub ( s i z e (Cx) , imax (1 ) ) ;
67 c o r r_o f f s e t = [ ( xpeak−s i z e ( pattern , 2 ) )
68 ( ypeak−s i z e ( pattern , 1 ) ) ] ;
69

70 xbegin = co r r_o f f s e t (1 ) + 1 ;
71 ybegin = co r r_o f f s e t (2 ) + 1 ;
72

73 Alignvecx (a , l ) = xbegin ;
74 Alignvecy (a , l ) = ybegin ;
75

76 end
77 end
78

79 Alignvecx = Alignvecx + 1 ;
80 Alignvecy = Alignvecy + 1 ;
81

82 Alignvecx = cumsum( Alignvecx , 2 ) ;
83 Alignvecy = cumsum( Alignvecy , 2 ) ;
84

85 Of f s e tx = ze ro s (Nrows−1 ,1) ;
86 Of f s e ty = ze ro s (Nrows−1 ,1) ;
87

88 f o r a = 1 : Nrows−1
89

90 i f mod(a , 2 ) == 1
91 L1 = pos ru l e ( a+1,end ) ;
92 L2 = pos ru l e ( a , end ) ;
93 e l s e
94 L1 = pos ru l e ( a+1 ,1) ;
95 L2 = pos ru l e ( a , 1 ) ;
96 end
97

98 D = d i r ( [ loadpath1 , ’ ∗ch1_S ’ , num2str (L1) , ’_∗ ’ ] ) ;
99 I1 = imread ( [ loadpath1 ,D(1) . name ] ) ;

100 D = d i r ( [ loadpath1 , ’ ∗ch1_S ’ , num2str (L2) , ’_∗ ’ ] ) ;
101 I2 = imread ( [ loadpath1 ,D(1) . name ] ) ;
102

103 pattern = I1 ( 1 : 1 0 0 , : ) ;
104 Cx = normxcorr2 ( pattern , I2 ) ;
105

106 [~ , imax ] = max( abs (Cx ( : ) ) ) ;
107 [ ypeak , xpeak ] = ind2sub ( s i z e (Cx) , imax (1 ) ) ;
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108 c o r r_o f f s e t = [ ( xpeak−s i z e ( pattern , 2 ) )
109 ( ypeak−s i z e ( pattern , 1 ) ) ] ;
110

111 sIm = s i z e ( I1 ) ;
112

113 xbegin = co r r_o f f s e t (1 ) + 1 ;
114 ybegin = co r r_o f f s e t (2 ) + 1 ;
115

116 Of f s e tx ( a ) = xbegin ;
117 Of f s e ty ( a ) = ybegin ;
118 end
119

120 Of f s e tx = cumsum( Offsetx , 1 ) ;
121 Of f s e ty = cumsum( Offsety , 1 ) ;
122

123 f o r a = 2 : s i z e ( Alignvecx , 1 )
124 Alignvecx (a , : ) = Alignvecx (a , : ) + Of f s e tx (a−1) ;
125 Alignvecy (a , : ) = Alignvecy (a , : ) + Of f s e ty (a−1) ;
126 end
127

128 i f min ( Al ignvecx ( : ) ) < 0
129 Alignvecx = Alignvecx + abs (min ( Al ignvecx ( : ) ) ) +

1 ;
130 e l s e i f min ( Al ignvecx ( : ) ) == 0
131 Alignvecx = Alignvecx + 1 ;
132 end
133

134 i f min ( Al ignvecy ( : ) ) < 0
135 Alignvecy = Alignvecy + abs (min ( Al ignvecy ( : ) ) ) +

1 ;
136 e l s e i f min ( Al ignvecy ( : ) ) == 0
137 Alignvecy = Alignvecy + 1 ;
138 end
139

140 e l s e
141 M = load ( [ savepath_mat , cmat (1 ) . name ] ) ;
142

143 D = d i r ( [ loadpath1 , ’ ∗ch1_S ’ , num2str (1 ) , ’_∗ ’ ] ) ;
144 I1 = imread ( [ loadpath1 ,D(1) . name ] ) ;
145

146 Alignvecx = M. Alignvecx ;
147 Alignvecy = M. Alignvecy ;
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148 end
149

150 sim1 = max( Al ignvecx ( : ) ) + s i z e ( I1 , 2 ) ;
151 sim2 = max( Al ignvecy ( : ) ) + s i z e ( I1 , 1 ) ;
152

153 Fullmat = ze ro s ( sim2 , sim1 ) ;
154

155 f o r j = 1 : nch
156 f o r i = 1 : ntot
157

158 d i s p l a y s t r i n g = [ ’ Channel ’ , num2str ( j ) , ’ / ’ ,
num2str ( nch ) , ’ | | Image ’ , num2str ( i ) , ’ / ’ ,
num2str ( ntot ) ] ;

159 di sp ( d i s p l a y s t r i n g )
160

161 Fsearch = s p r i n t f ( ’%.4d ’ , i ) ;
162 imgpath = [ savepath_mat , ’ ch ’ , num2str ( j ) , ’ / ’ ] ;
163

164 i f e x i s t ( imgpath , ’ d i r ’ ) == 0
165 mkdir ( imgpath )
166 end
167

168 imgname = [ imgpath , s p r i n t f ( ’%.4d ’ , i ) , ’ . t i f ’ ] ;
169

170 i f e x i s t ( imgname , ’ f i l e ’ ) == 0
171

172 f o r a = 1 : Nrows
173 Lvec = pos ru l e ( a , : ) ;
174 f o r l = 1 : l ength ( Lvec )
175 D = d i r ( [ loadpath1 , ’F ’ , Fsearch , ’ ch ’ ,

num2str ( j ) , ’_S ’ , num2str ( Lvec ( l ) ) ,
’_∗ ’ ] ) ;

176 i f ~ isempty (D)
177 I = imread ( [ loadpath1 ,D(1) . name

] ) ;
178 xpos = [ Al ignvecx (a , l ) , Al ignvecx

(a , l ) + s i z e ( I , 2 ) − 1 ] ;
179 ypos = [ Al ignvecy (a , l ) , Al ignvecy

(a , l ) + s i z e ( I , 1 ) − 1 ] ;
180 Fullmat ( ypos (1 ) : ypos (2 ) , xpos (1 ) :

xpos (2 ) ) = I ;
181 end
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182 end
183 end
184

185 imwrite ( u int16 ( Fullmat ) , imgname , ’ Compression
’ , ’ none ’ )

186 end
187 end
188 end
189

190 savename = [ savepath_mat , ’ Alignement .mat ’ ] ;
191 save ( savename , ’ Al ignvecx ’ , ’ Al ignvecy ’ , ’ sim1 ’ , ’ sim2 ’ , ’

datename ’ )
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Binarization

1 f unc t i on B inar i z e_ce l lTracke r ( datename , chnr , in i t img , kmin
, kmax)

2

3 % datename −> the f o l d e r name
4 % chnr −> Number o f the channel to be eva luated ( i n t e g e r

)
5 % in i t img −> Number o f the image , used f o r the i n i t i a l

th r e sho ld e s t imat ion
6 % kmin −> lower kmeans th r e sho ld (2−3)
7 % kmax −> upper kmeans th r e sho ld ( mostly 3)
8

9 % Example :
10 % Binar i z e_ce l lTracke r ( ’2018−05−30 ’ ,3 ,250 ,2 ,3) ;
11

12 loadpath1 = [ ’ /Volumes/ Sebi / ’ , datename , ’ /ch ’ , num2str (
chnr ) , ’ / ’ ] ;

13 % path used f o r prev ious func t i on
14 savepath1 = [ ’ /Volumes/ Sebi /Mask/ ’ , datename , ’ /ch ’ ,

num2str ( chnr ) , ’ / ’ ] ;
15 % des i r ed path to save in s p e c i f i e d f o l d e r
16

17 i f e x i s t ( savepath1 , ’ d i r ’ ) == 0
18 mkdir
19 mkdir ( savepath1 )
20 end
21

47
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22 D = d i r ( [ loadpath1 , ’ ∗ . t i f ’ ] ) ;
23

24 dbI = double ( imread ( [ loadpath1 ,D( in i t img ) . name ] ) ) ; %
apply kmeans c l u s t e r i n g on the s e l e c t e d image

25 idx_in = f i nd ( dbI ) ;%get r i d o f borders with no data
26 K_in = dbI ( idx_in ) ;
27

28 opts1 = s t a t s e t ( ’ Display ’ , ’ o f f ’ , ’ U s ePa ra l l e l ’ , 1 ) ;
29 [~ ,C] = kmeans ( double (K_in) ,2 , ’ Rep l i c a t e s ’ , 4 , ’ opt i ons ’ ,

opts1 ) ;
30 S t a r t s e t = C; % th i s i s the s t a t s e t to be used on a l l

other frames
31 opts1 = s t a t s e t ( ’ Display ’ , ’ o f f ’ , ’ U s ePa ra l l e l ’ , 0 ) ;
32

33 ntot = numel (D) ;
34

35 pa r f o r i = 1 : ntot % pa r a l l i z e d the data ana l y s i s
36 savename = [ savepath1 ,D( i ) . name ] ;
37

38 i f e x i s t ( savename , ’ f i l e ’ ) == 0
39 d i s p l a y s t r i n g = [ ’ B ina r i z i ng image nr ’ , num2str

( i ) , ’ o f f ’ , num2str ( ntot ) ] ;
40 di sp ( d i s p l a y s t r i n g )
41

42 dbI = double ( imread ( [ loadpath1 ,D( i ) . name ] ) ) ; %
read frame

43 idx_in = f i nd ( dbI ) ;
44 K_in = dbI ( idx_in ) ;
45

46 [ ik ,C] = kmeans ( double (K_in) ,2 , ’ S ta r t ’ , S ta r t s e t
, ’ opt i ons ’ , opts1 ) ;

47 % apply kmeans , but t h i s time not with a random
s t a r t p o i n t but the

48 % measured s t a t s from the i n i t i a l frame
49

50 [~ , Fsort ] = so r t (C, ’ ascend ’ ) ;
51 idx = ismember ( ik , Fsort ( kmin : kmax) ) ;
52 % s e l e c t the va lue s to be part o f the

b i n a r i z a t i o n
53

54 BW = zero s ( s i z e ( dbI ) ) ;
55 BW( idx_in ( idx ) ) = 1 ;
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56 BW = BW > 0;
57 BW = bwareaopen (BW,10 ) ; % de l e t e a l l ob j e c t s

sma l l e r than 10 px
58

59 %st = s t r e l ( ’ disk ’ , 2 , 0 ) ;%con 3?
60 s t = s t r e l ( ’ d i sk ’ , 4 , 0 ) ;
61 closeBW = imc lo se (BW, s t ) ;
62 BWf = im f i l l ( closeBW , ’ ho l e s ’ ) ;
63

64 imwrite ( u int8 (BWf) ∗255 , savename )
65 end
66 end
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Obtain Tracks

1 f unc t i on obtainTracks ( datename , chName , s tar t f rame ,
l a s t f r ame )

2

3 % Example :
4 % star t f r ame = 1 ; % intege r , f i r s t frame to be eva luated
5 % las t f r ame = 401 ; % in tege r , l a s t frame to be eva luated
6 % datename = ’2018−05−30 ’; % s t r i n g
7 % chName = ’ ch3 ’ ; % s t r i n g
8 % obtainTracks ( datename , chName , s tar t f rame , l a s t f r ame )
9

10 %%% of course other parameters l i k e count (now ct ) and
the minimal and

11 %%% maximal s i z e o f the regarded r eg i on s could be a
parameter parsed to

12 %%% the func t i on
13

14 % Veloc i ty and ang le c a l c u l a t i o n f o r p r ev i ou s l y f i l t e r e d
masks .

15

16 loadpath1 = [ ’ /Volumes/ Sebi / ’ , datename , chName , ’ / ’ ] ;
17 savepath1 = ’ /Volumes/ Sebi /Tracks/ ’ ;
18 D = d i r ( [ loadpath1 , ’ ∗ . t i f ’ ] ) ;
19 ct = 50 ;
20

21 %%% I n i t i a l frame i s not necessary , r a the r a range in
which the a lgor i thm

51
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22 %%% can be app l i ed . So here a vec to r o f numbers
r e f e r e n c i n g the image

23 %%% ranges has to be eva luated
24

25 Fvec = sta r t f r ame : ct : l a s t f r ame ;
26 T r a c k l i s t c e l l = c e l l ( l ength ( Fvec ) ,1 ) ; %%% th i s c e l l w i l l

c o l l e c t a l l xys
27 %%% In the f o r loop 1 xys i s c r ea ted f o r each 50 frames

between 1 and 401
28

29 Dnames = c e l l ( numel (D) ,1 ) ; %%% the va r i ab l e D w i l l be
s l i c e d to use i t in

30 % pa r a l l e l p r o c e s s i ng
31

32 f o r d = 1 : numel (Dnames)
33 Dnames{d} = [ loadpath1 ,D(d) . name ] ;
34 end
35

36 f o r k = 1 : l ength ( Fvec )−1
37

38 img l i s t = Fvec (k ) : Fvec (k+1) ; %%% the l i s t o f images
to be eva luated

39

40 %%% ! ! ! ! Attent ion : the pa r f o r loop eva lua t e s in
p a r a l l e l and t h e r e f o r e

41 %%% needs enough RAM. I f t h i s i s not the case j u s t
exchange " pa r f o r " by

42 %%% " f o r " .
43

44 %%% The va r i a b l e s are s l i c e d and c o l l e c t e d in a c e l l
dur ing the

45 %%% independent pa r f o r l oops
46

47 c n t c e l l = c e l l ( l ength ( img l i s t ) , 1 ) ;
48 Subnames = Dnames( img l i s t ) ;
49

50 %%% you can i n i t i a l i z e the p a r a l l e l pool by parpool (
x ) , with x being

51 %%% the number o f c o r e s . But that obv ious ly depends
on the number o f

52 %%% core s on your machine
53
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54 %%% I f you do not i n i t i a l i z e i t , then the computer
w i l l i n i t i a l i z e i t

55 %%% here with the d e f au l t s e t t i n g s ( can be changed
under Pr e f e r enc e s )

56

57 pa r f o r i = 1 : l ength ( img l i s t )
58

59 d i s p l a y s t r i n g = [ ’ Evaluat ing image : ’ , num2str (
img l i s t ( i ) ) , ’ in segment k : ’ , num2str ( k ) ] ;

60 di sp ( d i s p l a y s t r i n g )
61

62 BWf = imread (Subnames{ i }) ;
63 BWf_wo_s = bwareaopen (BWf, 4 0 ) ;
64 R = reg ionprops (BWf_wo_s, ’ Area ’ ) ;
65 F = f ind ( [R. Area ]<200) ;
66 BW = ismember ( bwlabel (BWf_wo_s) ,F) ;
67

68 BWbp = bpass (BW,1 , 3 1 ) ;
69 pk = pkfnd (BWbp, 0 . 5 , 3 1 ) ;
70 cnt = cntrd (BWbp, pk , 3 1 ) ;
71

72 c n t c e l l { i } = cnt ;
73 end
74

75 %%% the i t e r a t i v e way in which the c e l l t r a c k s are
a l igned , f o r b i d s

76 %%% usage in the pa r f o r loop ( in which the loops
have to be independent )

77 %%% so the pa r f o r loop cover s the computat iona l ly
i n t e n s i v e part and

78 %%% the r e s t i s f a s t enough anyway
79

80 xys = [ ] ;
81

82 f o r i = 1 : l ength ( img l i s t )
83

84 cnt = c n t c e l l { i } ; %%% Uns l i c i ng o f the va r i ab l e
85

86 l en = length ( cnt ) ;
87 z1 = ones ( len , 1 ) ;
88 z2 = [ cnt ( : , 1 ) cnt ( : , 2 ) ( z1+i ) ] ;
89 xys = [ xys ; z2 ] ;
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90 end
91

92 T r a c k l i s t c e l l {k} = xys ; %%% So T r a c k l i s t c e l l now
c o l l e c t s xys f o r each

93 %%% 50 frames long i n t e r v a l
94

95 end
96

97 savename = [ savepath1 , datename , ’_’ ,chName , ’ _tracks . mat ’
] ;

98 save ( savename , ’ T r a c k l i s t c e l l ’ , ’ img l i s t ’ , ’ Fvec ’ , ’Dnames ’ )



Appendix E

Velocity and Angle Calculation

1 f unc t i on ve l_angle_extract ion ( datename , chName , l e a s t ,
s ea rchrad ius , center , rad ius , s c a l e )

2

3 % Example
4

5 % datename = ’2018−05−30 ’; % s t r i n g
6 % chName = ’ ch3 ’ ; % s t r i n g
7 % l e a s t = 6 ; % in t e g e r
8 % sea r ch rad iu s = 30 ; % in t e g e r ( in px un i t s )
9 % cente r = ( [ 3636 354 ] ) ; % point (x , y ) ( in px un i t s )

10 % rad iu s = 800 ; % in t e g e r ( in px un i t s )
11 % sc a l e = 100/154 .67 ; %100 micrometers per 154 .67 p i x e l s

.
12

13 % vel_angle_extract ion ( datename , chName , l e a s t ,
s ea rchrad ius , center , r ad iu s )

14

15 %%% Load mat f i l e c r ea ted by obtainTracks f i r s t
16

17 loadpath1 = ’ /Volumes/ Sebi /Tracks/ ’ ;
18 loadname = [ loadpath1 , datename , ’_ ’ ,chName , ’ _tracks . mat ’

] ;
19 M = load ( loadname ) ;
20

21 %%% th i s one i s now looped over a l l the xys obta ined
from the i nd i v i dua l

55



56 APPENDIX E. VELOCITY AND ANGLE CALCULATION

22 %%% 50 frame long i n t e r v a l s
23

24 Track eva l c e l l = c e l l ( s i z e (M. T r a c k l i s t c e l l ) ) ;
25

26 f o r mx = 1 : s i z e (M. T r a c k l i s t c e l l , 1 )
27

28 xys = M. T r a c k l i s t c e l l {mx} ;
29

30 i f ~isempty ( xys )
31

32 paramstr .mem = 0 ;
33 paramstr . qu i e t = 1 ;
34 paramstr . good = l e a s t ;
35 paramstr . dim = length ( xys ( 1 , : ) )−1;
36

37 t r a ck s = trackxys ( xys , s ea rchrad ius , paramstr ) ;
38 t r a ck s z = ze ro s ( s i z e ( t racks , 1 ) , 1 ) ;
39 %%% add a z (= 0) coord inate to use MATLAB’ s

po intc loud
40 ptCloud = pointCloud ( [ t r a ck s ( : , 1 : 2 ) t r a ck s z ] ) ;
41 [ idx , ~ ] = f indNeighborsInRadius ( ptCloud , [ c en t e r

0 ] , r ad iu s ) ;
42 Fidx = unique ( t r a ck s ( idx , 4 ) ) ;
43 %%% f i nd s a l l t r a c k l a b e l s which are with in the

s ea r ch rad iu s
44

45 [T, Tin ] = annotate_tracks ( t racks , Fidx , s c a l e ) ;
46 %%% check annotate_tracks on how to s o r t the

t ra ck s
47 %%% T conta in s a l l t racks , Tin only the t r a ck s

in the s ea r ch rad iu s
48 %%% from here on a l l t r a ck s are in micrometers
49 % add f i e ldnames to s t r u c tu r e
50

51 f ie ld_names = { ’ tracksxmid ’ , ’ tracksymid ’ , ’
t rackszmid ’ , ’v_x ’ , ’v_y ’ , ’ v e l o c i t y ’ , ’ angle_abs
’ , ’ angle_alpha ’ , ’ angle_beta ’ , ’ angle_gamma ’ } ;

52 empty_cel ls = repmat ( c e l l ( 1 ) ,1 , numel ( f ie ld_names
) ) ;

53 e n t r i e s = { fie ld_names { :} ; empty_cel ls { : } } ;
54 s = s t r u c t ( e n t r i e s { : } ) ;
55 s = repmat ( s , numel (Tin ) ,1 ) ;
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56 Tin = ca t s t r u c t (Tin , s ) ;
57

58 f o r t = 1 : numel (Tin )
59 %%% run through a l l t r a ck s with in the rad iu s
60

61 % Track to be eva luated
62

63 x = Tin ( t ) . t racksx ;
64 y = Tin ( t ) . t racksy ;
65

66 % middle po int o f t r a j e c t o r y
67 % ( a l l l a t e r p l o t t i n g va lue s w i l l be

a s s i gned to t h i s p o s i t i o n )
68

69 xmid = (x ( 1 : end−1)+x ( 2 : end ) ) /2 ;
70 ymid = (y ( 1 : end−1)+y ( 2 : end ) ) /2 ;
71

72 % Veloc i ty ( c a l c u l a t ed f o r each time step )
73

74 v_x = d i f f ( x ) . / 6 0 ;
75 v_y = d i f f ( y ) . / 6 0 ;
76 ve l = (v_x.^2 + v_y.^2) .^(1/2) ;
77 %%% the un i t here i s micrometer / second
78

79 %%% Started with the abso lu t e ang le and
80 %%% the r e l a t i v e ang l e s f o r ang le

c a l c u l a t i o n .
81

82 % abso lu t e d i s t anc e o f each po int from the
aggregat i on cent e r

83

84 abs_dist = sq r t ( ( c en t e r (1 )−x ) .^2 + ( cente r
(2 )−y ) .^2) ;

85

86 % Absolute ang le
87 %%% th i s the ang le with r e sp e c t to the

aggregat i on cent e r
88 %%% i t i s c a l c u l a t ed f o r each po int and

toge the r with the d i s t anc e i t would g ive
89 %%% the po s i t i o n o f the c e l l in po la r

coo rd ina t e s
90
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91 abs_angle = ze ro s ( l ength (x ) ,1 ) ;
92

93 f o r m = 1 : l ength (x )
94

95 x2 = x(m) − cen te r (1 ) ;
96 y2 = y(m) − c en te r (2 ) ;
97 f = [ x2 , y2 ] ;
98 g = [ 1 , 0 ] ;
99

100 i f f ( 2 ) < 0
101 ang = 360 − acosd ( dot ( f , g ) /(norm( f ) ∗

norm( g ) ) ) ;
102 e l s e i f f ( 2 ) > 0
103 ang = acosd ( dot ( f , g ) /(norm( f )∗norm( g

) ) ) ;
104 e l s e
105 i f f ( 1 ) < 0
106 ang = 180 ;
107 e l s e
108 ang = 0 ;
109 end
110 end
111

112 abs_angle (m) = ang ;
113 end
114

115 % Rela t i v e ang l e s ( alpha , beta and gamma)
116 %%% alpha i s +180 degree s to the abs_angle

(1 )
117 %%% i . e . i t i s the abso lu te ang le from the

f i r s t t rack segment to the aggregat i on
cente r

118

119 ang_alpha = wrapTo360 ( abs_angle (1 ) + 180) ; %
%% c i r c u l a r quant i ty has to be wrapped
around

120

121 %%% beta i s the ang le between each
i nd i v i dua l t rack segments

122 %%% gamma i s the d i f f e r e n c e between alpha
and beta

123 %%% beta and gamma are ve c t o r s o f l ength (x )
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− 1
124

125 ang_beta = ze ro s ( l ength (x )−1 ,1) ;
126

127 f o r m = 1 : l ength (x )−1
128

129 a = x(m:m+1) ;
130 b = y(m:m+1) ;
131 x2 = a (2) − a (1 ) ;
132 y2 = b (2) − b (1) ;
133

134 f = [ x2 , y2 ] ;
135 g = [ 1 , 0 ] ;
136

137 i f f ( 2 ) < 0
138 ang = 360 − acosd ( dot ( f , g ) /(norm( f ) ∗

norm( g ) ) ) ;
139 e l s e i f f ( 2 ) > 0
140 ang = acosd ( dot ( f , g ) /(norm( f )∗norm( g

) ) ) ;
141 e l s e
142 i f f ( 1 ) < 0
143 ang = 180 ;
144 e l s e
145 ang = 0 ;
146 end
147 end
148

149 ang_beta (m) = ang ;
150 end
151

152 ang_gamma = wrapTo360 ( ang_alpha − ang_beta ) ;
153

154 % f i l l s t r u c tu r e
155

156 Tin ( t ) . tracksxmid = xmid ;
157 Tin ( t ) . tracksymid = ymid ;
158 Tin ( t ) . trackszmid = ze ro s (1 , l ength ( xmid ) ) ;
159 Tin ( t ) . v_x = v_x ;
160 Tin ( t ) . v_y = v_y ;
161 Tin ( t ) . v e l o c i t y = ve l ;
162 Tin ( t ) . angle_abs = abs_angle ;
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163 Tin ( t ) . angle_alpha = ang_alpha ;
164 Tin ( t ) . angle_beta = ang_beta ;
165 Tin ( t ) . angle_gamma = ang_gamma ;
166

167 end
168

169 % F i l l i n to c e l l
170

171 Track eva l c e l l {mx} = Tin ;
172 end
173 end
174

175 % Read out s i z e o f image ( w i l l be only nece s sa ry f o r
l a t e r p l o t t i n g )

176

177 mask = imread (M.Dnames{1}) ;
178 s i z e img = s i z e (mask ) ;
179 Fvec = M. Fvec ;
180

181 savename = [ loadpath1 , datename , ’_ ’ ,chName , ’_vel_ang .mat ’
] ;

182 save ( savename , ’ T r a ck eva l c e l l ’ , ’ c en t e r ’ , ’ r ad iu s ’ , ’ s c a l e ’ ,
’ s i z e img ’ , ’ Fvec ’ )
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