

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN

Uso de fuentes alternas y convencionales de energía como procedimiento para tener masa constante: Determinación del número de moles de agua en algunos cloruros metálicos hidratados.

TESIS QUE PARA OBTENER EL TÍTULO DE LICENCIADA EN QUÍMICA

PRESENTA: KARLA CECILIA LAGUNES JIMÉNEZ

Asesor: M en C. Marina Lucía Morales Galicia

Coasesor: Dr. Julio César Botello Pozos

CUAUTITLÁN IZCALLI, ESTADO DE MÉXICO, 2019

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN SECRETARÍA GENERAL DEPARTAMENTO DE EXÁMENES PROFESIONALES

ASUNTO: VOTO APROBATORIO

M. en C. JORGE ALFREDO CUÉLLAR ORDAZ DIRECTOR DE LA FES CUAUTITLAN PRESENTE

DEPARTAMENTO DE STÂMENES PROFESSORALES

ATN: I.A. LAURA MARGARITA CORTAZAR FIGUEROA Jefa del Departamento de Exámenes Profesionales de la FES Cuautitlán.

Con base en el Reglamento General de Exámenes, y la Dirección de la Facultad, nos permitimos comunicar a usted que revisamos el: <u>Trabajo de Tesis</u>

Uso de fuentes alternas y convencionales de energía como procedimiento para tener masa constante: Determinación del número de moles de agua en algunos cloruros metálicos hidratados.

Que presenta la pasante: Karla Cecilia Lagunes Jiménez

Con número de cuenta: 308242924 para obtener el Título de la carrera: Licenciatura en Química

Considerando que dicho trabajo reúne los requisitos necesarios para ser discutido en el **EXAMEN PROFESIONAL** correspondiente, otorgamos nuestro **VOTO APROBATORIO**.

ATENTAMENTE

"POR MI RAZA HABLARÁ EL ESPÍRITU"

Cuautitlán Izcalli, Méx. a 22 de Enero de 2019.

PROFESORES QUE INTEGRAN EL JURADO

PRESIDENTE Dr. René Miranda Ruvalcaba

VOCAL Dr. Adolfo Eduardo Obaya Valdivia

SECRETARIO M. en C. Marina Lucia Morales Galicia

1er. SUPLENTE Dra. Ana María Velázquez Sánchez

2do. SUPLENTE Q.F.B. Claudia Pérez Garrido

Claudia Pérez Garrido

NOTA: los sinodales suplentes están obligados a presentarse el día y hora del Examen Profesional (art. 127).

LMCF/cga*

Agradecimientos

Se agradece al PIAPIME 2.12.16.17 y al proyecto DGPA PAPIME PE 201818 por el apoyo financiero al presente proyecto.

El siguiente trabajo se llevó a cabo bajo la dirección de la Mtra. Marina Lucía Morales Galicia y el Dr. Julio César Botello Pozos.

Se agradece a la Sección Ciencia Básica del Departamento de Ciencias Químicas por permitir la realización del trabajo experimental en el L-113 y proporcionar el material y equipos necesarios.

Se agradece al Técnico Académico Draucin Jiménez Celi, del Taller de Soplado de Vidrio, por el apoyo para la elaboración del material de vidrio de contención.

Este trabajo fue presentado en el 52° Congreso Mexicano de Química y el 36° Congreso Nacional de Educación Química de la Sociedad Química de México, Puerto Vallarta 2017.

A la Facultad de Estudios Superiores Cuautitlán por su excelente nivel académico, y forjar tan bueno científicos

Se agradece a la UNAM por ser alma mater y brindarme todo para poder ser una exitosa universitaria.

DEDICATORIA

Dedico el presente trabajo...

A mis padres Rafael y Beatriz Cecilia que me brindaron su apoyo incondicional desde que inició hasta el día en que termino, alentándome en cada uno de los obstáculos, que además sin ellos no habría sido posible culminar mis estudios, son la base de todo lo que soy y gracias a eso pude concluir orgullosamente esta meta. Me brindaron todo lo que les fue posible y este es el fruto de su esfuerzo, trabajo, fe y esmero ya que al ponerlo en mi logre lo que no creía posible, en verdad gracias.

A mis abues Conchita, Gogo y Maris por mostrarme el lado amable de la vida, por ser los pilares de hermosa familia que ha sido mi soporte incondicional.

A mis tíos por haber confiado en mí hasta el final y valorar mis esfuerzos hasta ver el resultado.

A Fati, espero que a pesar de las circunstancias aprendas que el esfuerzo es la base para obtener lo que quieras, ojalá esto te motive.

A mi asesora Marina por dedicarme tiempo y esfuerzo, compartir sus conocimientos y mostrarme que es posible si uno quiere, gracias por su dedicación a los alumnos, a la enseñanza y a la docencia. Por ser tan buena persona conmigo, gracias.

A mi coasesor Julio, por ayudarme durante la realización de este trabajo, darme sus consejos, apoyarme con su conocimiento y su disponibilidad.

A Dabyeli por estar siempre para mí y mostrarme que con paciencia todo se puede.

A Francisco, por tu apoyo constante a pesar de las circunstancias me ayudo a no darme por vencida, gracias por animarme siempre y encontrar la forma de hacer que continúe, eres un pilar en mi trayectoria académica, gracias por brindarme lo mejor de ti.

LISTADO DE SIGLAS

bM baño María

DER Desviación Estándar Relativa

DS Desarrollo Sostenible

EA Educación Ambiental

EDS Educación para el Desarrollo Sostenible

IB Informe Brundtland

MA Medio Ambiente

MC Masa Constante

m.m.c método de mínimos cuadrados

M.M Masa Molar

ONU Organización de las Naciones Unidas

QV Química Verde

QA Química Ambiental

SO Síntesis Orgánica

TMC Técnica de Masa Constante

DER Desviación Estándar Relativa

DE Desviación estándar

CT Conductividad Térmica

M/c Mechero/crisol

Hμ/v Horno de microondas/vaso

IR/v IR/vaso

IR/c IR/crisol

Hμ/c Horno de microondas/crisol

E/v Estufa/vaso

E/c Estufa/crisol

IR Infrarrojo

Índice

1		RESUMEN	11
2	•	PLANTEAMIENTO DEL PROBLEMA	12
3		INTRODUCCIÓN	13
4		OBJETIVO GENERAL	17
	4.1.	OBJETIVOS PARTICULARES	17
5		HIPÓTESIS	18
6		JUSTIFICACIÓN	19
7		ANTECEDENTES	21
8		MARCO TEÓRICO	24
	8.1.	Medio ambiente	24
	8.2.	Desarrollo sostenible	25
	8.3.	Química Verde	28
	8.4.	Educación ambiental	31
	8.5.	Educación para el desarrollo sostenible	32
	8.6.	Macroescala, miniescala y microescala	34
	8.7.	Energías renovables y limpias	36
	8.8.	Formas comunes de calentamiento	37
	8.8.1.	Estufa de secado	38
	8.8.2.	Mechero de Bunsen	39
	8.8.3.	Mufla u horno de secado	40
	8.9.	Formas alternas de calentamiento	41
	8.10.	Microondas	42
	8.11.	Horno de irradiación infrarroja.	47
	8.12.	Técnica de masa constante	49
	8.13.	Vidrio y porcelana	51
	8.14.	Sales hidratadas	52
	8.15.	Estadística básica	53

	9.	DESARROLLO EXPERIMENTAL	54
	9.1.	Equipos	54
	9.2.	Reactivos	54
	9.3.	Materiales de laboratorio	54
	9.4.	Metodología	55
	9.4.1.	Técnica de masa constante empleando diversas formas de calentamiento	55
	9.4.1.1	. Horno de microondas convencional	55
		Horno de irradiación infrarroja	55
		. Estufa	56
	9.4.1.4	Mechero de Bunsen	56
	9.4.2.	Técnica de masa constante aplicada al material de contención	57
	9.4.2.1	. Secado de material de laboratorio (crisol de porcelana) con estufa	57
	9.4.3.	Deshidratación de las sales	57
	9.4.4.	Secado de la sal	58
	9.4.5.	Repetición del procedimiento	58
	9.4.6.	Cálculos químicos para obtención del número de moles de sal hidratada y agua	58
1	0.	RESULTADOS Y DISCUSIÓN DE RESULTADOS	61
1	0.1.	Secado de material: Crisol de porcelana	61
1	0.2.	Modo de calentamiento: estufa de secado	61
1	0.3.	Deshidratación de cloruro de níquel (II) hexahidratado	66
1	0.4.	Determinación del número de moles de agua y cloruro de níquel. Cálculos químicos	71
1	0.4.1.	Moles de cloruro de níquel	71
1	0.4.2.	Moles de agua	72
1	0.5.	Discusión de resultados	78
1	0.5.1.	Tipo de calentamiento y tiempo óptimo para conseguir masa constante	78
1	0.5.2.	Análisis Tabular	78
1	0.5.2.1.	Masa constante	78
1	0.5.2.2.	Determinación de las masas de sal hidratada y el agua liberada	79
1	0.5.3.	Análisis gráfico y estadístico	79

	Análisis y comparación de las cuatro formas de calentamiento y los dos tipos de atorio empleados.	
	. Estufa de secado, vasos y crisoles	
	•	
10.5.4.2	. Horno de microondas convencional, vasos y crisoles	82
10.5.4.3	. Horno de IR, vasos y crisoles	83
10.5.4.4	. Mechero de Bunsen, vasos y crisoles	84
10.6.	Eficiencia energética	85
	Análisis gráfico y estadístico de la determinación del número de moles de agua p de níquel usando mechero de Bunsen para la deshidratación previa obtención de M es formas de calentamiento.	IC con
tetrahidr	Resultados de la obtención de masa constante con cuatro formas de calentamient material. Obtención del número de moles de cuatro sales (cloruro de manganeso ratado, cloruro de cobre dihidratado, cloruro de bario dihidratado y clorro de estañ	0
dihidrata	ado)	93
10.9.	Acercamiento a la Química Verde	94
11.	CONCLUSIONES	97
12.	REFERENCIAS	99
13.	ANEXOS	103
13.1.	Anexo 1 cloruro de níquel hexahidratado (NiCl ₂ ·6H ₂ O)	103
13.2.	Anexo 2 cloruro de bario dihidratado (BaCl ₂ ·2H ₂ O)	103
13.3.	Anexo 3 cloruro de manganeso tetrahidratado (MnCl ₂ ·4H ₂ O)	103
13.4.	Anexo 4 cloruro de cobre dihidratado (CuCl ₂ ·2H ₂ O)	103
13.5.	Anexo 5 cloruro de estroncio hexahidratado (SrCl ₂ ·6H ₂ O)	103

ÍNDICE DE TABLAS

Tabla 1.Composición química del vidrio y porcelana, propiedades	52
Tabla 2. Materiales y tipos de calentamiento utilizados	58
Tabla 3. Masa molar para cada reactivo	59
Tabla 4. Tiempo óptimo de calentamiento y número de repeticiones para estufa de secado	61
Tabla 5. Resultados de la primera medición para llevar crisoles a MC, calentamiento por est	ufa de
secado	62
Tabla 6. Resultados de la segunda medición para llevar crisoles a MC, calentamiento por est	tufa de
secado	63
Tabla 7. Resultados de la tercera medición para llevar crisoles a MC, calentamiento por estu	ıfa de
secado	64
Tabla 8. Promedio de MC de tres mediciones.	65
Tabla 9. Determinación de masa de NiCl ₂ . Modo de calentamiento: estufa de secado	66
Tabla 10. Determinación de masa de NiCl ₂ . Modo de calentamiento: estufa de secado	67
Tabla 11. Determinación de masa de NiCl2. Modo de calentamiento: estufa de secado. Terce	era
medición	68
Tabla 12. Cálculo para la obtención de la masa de H ₂ O. Primera medición	69
Tabla 13. Cálculo para la obtención de la masa de H ₂ O. Segunda medición	70
Tabla 14. Cálculo para la obtención de la masa de H ₂ O. Tercera medición	71
Tabla 15. Moles de NiCl ₂ y H ₂ O. Primera medición	73
Tabla 16. Moles de NiCl ₂ y H ₂ O. Segunda medición	74
Tabla 17. Moles de NiCl ₂ y H ₂ O. Tercera medición	75
Tabla 18. Promedio de moles de H ₂ O y NiCl ₂	76
Tabla 19. Tiempo óptimo de calentamiento	80
Tabla 20. Requerimiento energético de los métodos de calentamiento	85
Tabla 21. Consumo de energía eléctrica	86
Tabla 22. Cantidad total de energía (J)	88
Tabla 23. Parámetros estadísticos del m.m.c	92
Tabla 24. Parámetros estadísticos del m.m.c para cada sal. Crisoles	94
Tabla 25. Parámetros estadísticos del m.m.c para cada sal. Vasos	94

ÍNDICE DE FIGURAS

Figura 1. Ámbitos para lograr un DS	26
Figura 2. Circuito eléctrico de la estufa	39
Figura 3. Temperaturas de las zonas de calentamiento del mechero de Bunsen	40
Figura 4. Espectro electromagnético	44
Figura 5. Componentes de un horno de microondas doméstico.	45
Figura 6. Comportamiento de las ondas electromagnéticas	46
Figura 7. Modos vibracionales de los enlaces	48
Figura 8. Componentes del horno IR	49
Figura 9. Diagrama de flujo, metodología para llevar a masa constante	60
Figura 10. Fragmento del recibo de luz emitido por la CFE indicando el costo actual de kWh	85
Figura 11. Diagrama de flujo, acercamiento a la química verde	96
ÍNDICE DE GRÁFICOS	
Gráfico 1. m.m.c para crisoles mediante calentamiento por estufa	77
Gráfico 2. Consumo energético para crisoles	87
Gráfico 3. Consumo energético para vasos	87
Gráfico 4. Requerimiento energético para crisoles	89
Gráfico 5. Requerimiento energético para vasos	90
Gráfico 6. m.m.c. de la determinación de moles de cloruro de níquel por medio de crisoles	91
Gráfico 7. m.m.c. de la determinación de moles de cloruro de níquel por medio de vasos	

1. RESUMEN

La técnica de masa constante es utilizada en docencia y en la industria química, sobre todo al aplicar métodos analíticos como gravimetría. Para lograr resultados aceptables por este método, el procedimiento a seguir es riguroso y debe llevarse a cabo paso a paso.

Esta técnica es conocida comúnmente, como peso constante y se refiere a obtener la masa de algunos materiales de laboratorio de vidrio o porcelana con una mínima variación (prácticamente despreciable de acuerdo al instrumento de medición empleado).

En las carreras de las áreas de ciencias químicas y biológicas, la técnica de masa constante se utiliza para cuantificaciones, preparación de patrones primarios, llevar a sequedad ciertos reactivos, materiales de vidriería y porcelana, así como, preparación de algunas formas farmacéuticas, entre otras.

Se sugiere que en los laboratorios de docencia parte del tiempo asignado se emplee para el análisis y discusión de resultados con la finalidad de favorecer el carácter formativo de los procesos de enseñanza y de aprendizaje con el propósito de desarrollar la capacidad de interpretar, analizar, evaluar, hacer inferencias, explicar y clarificar significados al mismo tiempo que adquiere el conocimiento. Por lo que, es necesario implementar otros tipos de modelos de enseñanza, usar estrategias para privilegiar el aprendizaje, emplear otras metodologías experimentales, con la consecuente inversión de tiempo en el laboratorio.

El presente trabajo muestra una modificación que está relacionada con el uso de formas alternas de calentamiento empleadas para llevar a masa constante material de vidriería y porcelana y por otro lado, la reducción de las cantidades de reactivo analítico y la prevención de los residuos en el procedimiento para la determinación del número de moléculas de agua para algunos cloruros metálicos hidratados.

Este trabajo se presenta como una forma de transitar entre la química utilizada cotidianamente y la Química Verde, para contribuir al aprendizaje de los estudiantes.

2. PLANTEAMIENTO DEL PROBLEMA

El trabajo experimental en los laboratorios de docencia está cada vez más enfocado al desarrollo de habilidades, aptitudes, valores y conocimientos sin merma del aprendizaje de las técnicas que se emplean en éste. Es por ello que siempre es importante tener la apertura para modificar, cambiar o variar aquellas técnicas de laboratorio que podrían ser susceptibles de cumplir o transitar hacia alguno o algunos de los doce principios de la QV.

Un ejemplo de ello es el trabajo realizado en el LCB-1, en el experimento Comportamiento Químico respecto a la utilización de microescala y formas de calentamiento alterno, que ha tenido impacto positivo al hacer posible que dos principios de la QV se utilicen en este experimento. Los resultados obtenidos han sido presentados en el 35° Congreso Nacional de Química de la SQM octubre 2016, de manera que de 3 mL de volumen total para llevar a cabo la reacción se ha reducido a 3 gotas y del tiempo de calentamiento en un intervalo de 5 a 7 min en bM, se redujo a 7 s con calentamiento en horno de microondas convencional.

Otro de los principios de la QV corresponde al uso de fuentes alternas de energía como son el horno de microondas químico, ultrasonido, infrarrojo directo, entre otros, considerados como equipos que acortan el tiempo de reacción, eliminan el empleo de fuentes de energía no renovables, ahorro de energía eléctrica y eliminación de riesgo al analista (García, 2005).

Los equipos de laboratorio que tradicionalmente se han empleado para calentamiento (mechero de Bunsen, lámpara de alcohol, estufa de secado o mufla), difieren en los parámetros anteriormente mencionados, debido a que algunos de ellos requieren de tiempos mayores de 30 min, utilizan combustibles fósiles o bien cantidades altas de energía eléctrica, así como riesgo para el analista.

Dado que los equipos recientes para calentamiento, como el horno de microondas químico, resultan difíciles de ser asequibles, el presente proyecto propone la variación en la forma de calentamiento para conseguir MC, con el empleo de las irradiaciones de microondas e infrarroja, para minimizar tiempo y dedicar otro mayor al estudio o al análisis de los resultados y lo que derive de la experimentación previo a la TMC.

3. INTRODUCCIÓN

Desde la antigüedad la química ha tenido una presencia importante en el bienestar de las personas, se han encontrado enormes progresos; como ejemplo se tiene la explotación y uso del petróleo, el uso de las energías renovables o limpias. Esto ha dado pauta a que la industria química crezca a gran escala en las diferentes actividades económicas y técnicas de transformación que existen porque se ve implicado al menos en un proceso de esta área (Meléndez, C. O.,2008).

Una de las implicaciones al llevar a cabo cualquier proceso industrial es la generación de residuos y en ciertos casos productos contaminantes. Como consecuencia surgió una conciencia ecológica la cual introdujo la preocupación sobre la producción y el tratamiento de residuos generados. El mayor impacto que ha tenido la generación desmedida de residuos, ya sean emisiones contaminantes sólidas y/o líquidas, es el calentamiento global; el cual a pesar de ser un hecho de gran preocupación por las consecuencias que éste ha tenido y tendrá, aún no se ha logrado contrarrestar y mucho menos controlar.

Sin duda alguna, en las dos últimas décadas ha habido una gran inquietud por los temas ambientales, lo que ha provocado que recientemente se manifieste todo un enfoque dentro de la química cuyo objetivo es prevenir o minimizar la contaminación desde su origen, tanto a nivel industrial como en los laboratorios de investigación y de carácter docente. El enfoque se conoce como Química Verde, que a través de doce principios desarrollados por Anastas y Warner (1998), trata de evitar la formación de desechos contaminantes y propiciar la economía de tiempo y recursos.

Al estudiar una licenciatura en cualquiera de las áreas de las ciencias químicas se adquieren habilidades, destrezas y capacidades tanto cognitivas como de carácter procedimental las cuales se verán potenciadas al emplear otras metodologías, caso particular, el uso de formas de calentamiento diferentes a las convencionales para procedimientos de laboratorio. Un caso concreto es la TMC, que implica someter a calentamiento el material que se utilizará para eliminar humedad. Este procedimiento tradicionalmente se lleva a cabo por medio de equipo convencional de laboratorio como estufa de secado, mufla o mechero de Bunsen; la modificación que se presenta en este trabajo

es llevar a cabo este calentamiento, además del ya mencionado, por medio de horno de microondas convencional e IR.

El caso particular que se presenta como actividad experimental adicional y que hace uso de la TMC es para la determinación del número de moles de agua en sales como cloruros hidratados. Este tipo de compuestos pertenecen a lo que se conoce como sales hidratadas o hidratos. Son sustancias químicas que tienen agua unida a su estructura química.

El agua en las sales puede estar enlazada a un núcleo metálico o cristalizada con el complejo metálico. Generalmente es liberada cuando el hidrato es sometido a alta temperatura, rompiéndose la red cristalina.

En la TMC tradicional empleada en laboratorios, se utiliza estufa de secado, mufla y/o mechero de Bunsen, como ya se ha comentado. Dependiendo del modelo, marca y la tecnología de los equipos, los tiempos destinados al calentamiento difieren de manera considerable (Manual de mantenimiento para equipo de laboratorio, 2005).

Para el caso específico de estufas de secado y muflas utilizadas en los laboratorios de docencia los parámetros de calentamiento requeridos en éstos pueden ser un impedimento para llegar a temperaturas de 100 °C debido a que se requieren tiempos extensos, además que la pérdida de humedad se lleva a cabo de forma lenta; es decir, el tiempo de calentamiento para secado en estos equipos, suelen ser mínimo de 1.00 h sin contar el tiempo de enfriamiento en el desecador, seguido de la posterior medición de la masa del material que se está secando. Además, al tener que mantener la puerta de la estufa o de la mufla abierta, para introducir o sacar los materiales, la temperatura alcanzada se abate debido a que el calor se pierde.

La diferencia del calentamiento con el mechero de Bunsen, con respecto a los otros mencionados es que es rápido, pero el tiempo de enfriamiento de los materiales es mayor debido a que se alcanza alta temperatura, otra desventaja que presenta esta forma de calentamiento es que se puede calentar sólo un vaso, cápsula y crisol de porcelana o material a la vez; comparativamente al uso de la estufa de secado y mufla, se tiene la ventaja de calentar múltiples materiales al mismo tiempo, y por otro

lado en el caso del mechero de Bunsen no es posible el control de la temperatura. Además, cuando se utiliza la TMC para conseguir MC de algún compuesto obtenido en papel filtro, esta técnica no se puede utilizar, debido a que podría calcinarse el compuesto.

Actualmente, existen equipos de calentamiento que permiten llegar a temperaturas de más de 100°C de forma rápida y eficiente al permitir calentar simultáneamente diferentes materiales que se quieran secar; algunos de estos equipos son: horno de microondas e IR (horno de convección).

Estos equipos al ser utilizados para el secado de materiales de laboratorio para contención y utilizarlos en la TMC presentan la ventaja, primeramente, en cuanto al tiempo requerido de calentamiento ya disminuye significativamente obteniendo así una mayor eficiencia en el proceso y, en segundo lugar, es posible colocar un mayor número de materiales al interior de estos instrumentos de trabajo.

Se aprecia que esta ventaja detectada orienta a que el empleo de estos equipos sea cada día más común pues el tiempo en las sesiones experimentales es de suma importancia por lo que un ahorro de tiempo durante estas actividades puede reflejarse en el desarrollo y mejora de los conocimientos adquiridos, incluso repetir el experimento si fuese necesario, pero sobre todo dedicar un periodo mayor a la actividad de comprensión de la práctica, experimento o proyecto, sobre todo aquélla relacionada al análisis de los resultados.

La utilización de formas alternas de energía conlleva a la disminución del gasto energético necesario para llevar a cabo la técnica de masa constante, para ello se implementó el uso de los hornos de microondas e infrarrojo, los cuales representan un papel importante al contribuir con la cantidad necesaria de energía para llevar a masa constante vasos y crisoles repercutiendo significativamente en la reducción del gasto energético comparativamente con el uso de mufla, estufa o mechero de Bunsen, haciendo que una técnica con un alto índice de gasto energético llegue a transitar hacia la química verde y sea amigable con el medio ambiente; al tiempo que contribuye al aprendizaje y apreciación de los alumnos sobre la importancia que tiene el ahorro de energía mediante el cambio de los equipos utilizados en los procedimientos experimentales comúnmente utilizados en el laboratorio de docencia e investigación. Además, es necesario que las nuevas

generaciones de alumnos en al área de la química conozcan la importancia de la implementación de los principios de la Química Verde desde el nivel básico hasta procesos industriales, para así obtener un cambio significativo en la disminución de residuos, así como minimizar el impacto de la química en el medio ambiente.

Además de lo mencionado anteriormente la utilización de las irradiaciones de microondas e infrarrojo para la obtención de masa constante genera un ahorro en el tiempo necesario para llevar a cabo esta técnica, siendo un factor importante en la enseñanza al aprovecharse este tiempo en otras actividades propias del laboratorio. Es necesario mencionar que es la primera vez que se implementan las fuentes alternas de energía como lo son el horno de microondas e infrarrojo para la obtención de masa constante.

4. OBJETIVO GENERAL

Determinar experimentalmente que el empleo de métodos alternos de calentamiento para el procedimiento de masa constante, como la radiación de microondas e infrarroja, como un procedimiento previo a la determinación del número de moles de agua en algunos cloruros hidratados, logra transitar de la Química común hacia la Química Verde.

4.1. OBJETIVOS PARTICULARES

- Determinar el tiempo de calentamiento y enfriamiento óptimos al emplear dos formas de calentamiento diferentes a las tradicionales para el procedimiento de masa constante.
- Comparar los métodos de calentamiento convencionales empleados en los laboratorios con los propuestos.
- Reducir las cantidades de reactivo analítico utilizadas.
- Determinar mediante estadística básica y experimentalmente, el número de moles de agua en algunos cloruros: BaCl₂·2H₂O, CuCl₂·2H₂O, MnCl₂·4H₂O, NiCl₂·6H₂O y SrCl₂·2H₂O.

		,			
5.	HI	PC	T(ESI	S

El empleo de horno de microondas convencional y de irradiación infrarroja permitirá realizar la técnica de masa constante en un menor tiempo y con una disminución en gastos energéticos.

6. JUSTIFICACIÓN

La química se encuentra presente en el planeta desde su inicio hasta la actualidad, por lo que es necesario encontrar un camino que una a la química con la recuperación y sostenibilidad del MA, una herramienta podría ser la EA.

Sin embargo, también se le ha catalogado como tóxica, contaminante y peligrosa, debido a los grandes problemas ambientales que ha generado su utilización a nivel industrial como una consecuencia de la generación de residuos y productos que afectan al MA (Sierra, 2014).

Debido a la aparición de otras metodologías, la enseñanza experimental se ha mantenido en desarrollo constante al propiciar la mejora e implementación de diferentes técnicas experimentales. Una de éstas es la utilización de diferentes tipos de calentamiento, debido a que su uso ha realizado cambios notables en la química; algunos de ellos son: disminución en tiempos de calentamiento ya sea para llevar a cabo reacciones químicas sin disolventes, solubilidad. etc.

Una técnica analítica que requiere de un tiempo considerable de experimentación es la de llevar a MC algún material de laboratorio, dado que requiere de varias repeticiones, así como la utilización de equipos como estufa de secado o mufla los cuales alcanzan temperaturas mayores a 100°C. El procedimiento es tardado, por lo que se hace necesario incursionar en nuevas metodologías como son: el horno de microondas y de irradiación infrarroja convencionales, los cuales disminuyen el tiempo de calentamiento de los materiales que se requieren llevar a MC y el tiempo necesario para su posterior enfriamiento.

Lo anterior, lleva al uso más eficiente de la energía. Entre los diferentes tipos de calentamiento se encuentran irradiaciones de microondas e infrarroja, ambas han dado resultados exitosos (Franco, 1996), al disminuir considerablemente el tiempo requerido para llegar a la temperatura que se necesita dependiendo del proceso o reacción que se desee llevar a cabo.

La modificación de la TMC mediante la utilización de estos dos tipos de calentamiento alternos ayudará a que el tiempo en el que se lleva a cabo una práctica o experimento donde se requiera

llevar a MC disminuyéndolo significativamente, lo que tendrá un impacto positivo en la enseñanza al aprovecharse este tiempo en una explicación a fondo de lo que se está realizando, así como que el alumno o analista lleve a cabo el procedimiento con tranquilidad, seguridad y paso a paso.

7. ANTECEDENTES

En la industria se consideraba que los recursos eran inagotables así que en los procesos químicos industriales no se escatimaba en las cantidades de materiales y compuestos requeridos y por ende en la cantidad y tipo de residuos generados en el entorno, lo cual provocó que no existiera ningún tipo de regulación para ningún proceso; pero conforme avanzó el desarrollo de la industria el impacto de éstos sobre el MA fue negativo, por lo que la química aun cuando su utilización es de suma importancia para la sostenibilidad de la vida cotidiana, representó para la sociedad algo impactante y peligrosa.

Con el paso del tiempo la preocupación por el MA comenzó a desarrollarse como un tema importante y a la vez controversial, debido a que su cuidado implicaba llevar a cabo diversos cambios en la industria desde la selección de materias primas hasta la producción. Esto tiene una alta repercusión económica, que no siempre refleja un desarrollo económico inmediato; por lo que al no generar ganancias a mediano plazo resulta poco o nada importante para las empresas.

El surgimiento de la QV se da a raíz del impacto ambiental que causan los procesos químicos no regulados y que deterioran el entorno. El objetivo fundamental de la QV es el ahorro económico, de ahí el significado de verde, al hacer referencia al color del dólar, enfocándose en el ahorro de materias primas, materiales, reactivos químicos, así como el evitar o disminuir la producción de residuos.

La definición de Anastas y Warner (Anastas, Warner, 1998), para QV es la utilización de un conjunto de principios que reduce o elimina el uso o la generación de sustancias peligrosas en el diseño, fabricación y aplicación de productos químicos.

De acuerdo con el principio seis de la QV, eficiencia energética, es importante reducir en lo posible la cantidad de energía requerida, algunas de las formas en que se ha logrado es mediante la utilización de fuentes alternas de energía.

Las radiaciones electromagnéticas infrarroja y microondas empleadas en aparatos de uso convencional, han sido utilizadas como fuente de energía alterna en SO, algunos trabajos de tesis en la FESC, que se han realizado con respecto a este tema: Alternativas para la síntesis a nivel micro escala de 2,3-difenilquinoxalina utilizando diferentes catalizadores y formas de calentamiento dentro del marco de la química verde (Campos, 2015); Polimerización de acrilatos mediante el contexto de la Química Verde, y empleando microondas como fuente de activación; Preparación de polímero floculante N-óxido polidimetilaminoetil metacrilato (Saavedra, 2007); Síntesis, purificación y caracterización de 2-aril-1-arilmetil-1H-benzimidazoles mediante el empleo de energía infrarroja (Jiménez, 2014), por mencionar algunas. Sin embargo, hasta el momento no se ha reportado el empleo de estas energías en la TMC.

Existen diferentes tipos de SO en las que se han realizado cambios en la forma de calentamiento, siendo el caso, del empleo de fuentes de energía diferentes a las comúnmente utilizadas para llevar a cabo la reacción, algunas de ellas son: síntesis de benzimidazoles, indoles, lactamas, compuestos organometálicos, extracciones de compuestos químicos, reacciones de cicloadición, reacciones de sustitución nucleofílica aromática.

A nivel docencia existen diversas investigaciones en las cuales la incorporación de energía de infrarrojo y microondas representa una mejora en los procesos o reacciones que se llevan a cabo. Por ejemplo, en SO la utilización de radiaciones infrarrojo y microondas es un factor importante al reducir los tiempos de reacción (Mendoza, 2017) y permitir utilizar diferentes reactivos para obtener rendimientos de reacción altos (Martínez, 2013 y Rodríguez, 2017). Además, que algunas de ellas, por el uso de este tipo de energías, permiten que la reacción se lleve a cabo sin disolvente (Noguez, 2014).

El uso de fuentes de energía diferentes a las convencionales, en química, ha propiciado que se obtenga un enfoque de la QV, para que, al efectuarse los procesos químicos, éstos transiten en alguno o algunos de sus principios. Es importante señalar que estas fuentes aún no han sido empleadas en la TMC, la cual se ocupa comúnmente como un procedimiento para cuantificaciones, ya sea en análisis gravimétricos, SO, cuantificación de productos, electrodeposiciones, volatilizaciones, entre otros.

El método para obtención de MC, descrito en Harris (2007) indica un tiempo considerable, así como el uso de equipo tradicional de laboratorio para eliminar la humedad que contienen los materiales a utilizar o los productos que se quieren llevar a secado. Este método se utiliza comúnmente en docencia y en investigación, aunque hasta ahora no se ha considerado la implementación de fuentes de calentamiento alternas que disminuyan el tiempo requerido para llevar a MC y al mismo tiempo implique un ahorro de energía.

8. MARCO TEÓRICO

8.1. Medio ambiente

La química y el progreso de la sociedad están conectadas directamente, ya que la utilización y desarrollo de productos químicos representa una parte importante en la vida cotidiana de los seres humanos. Es indispensable asegurar que la elaboración de productos químicos, materiales y energía sean sostenibles.

Al hacer mención de la palabra sostenible se refiere a la utilización de los recursos de forma que éstos se mantengan intactos, no se alteren ni se mueva su estructura alterna. Esto quiere decir que, refiriéndose al MA y la elaboración de productos químicos, materiales y energía por medio de los recursos que brinda, debe ser de forma en la que al obtenerlos no se dañe el ciclo de regeneración del MA, y logre mantenerse sin alteración (Reyes, 2012).

La química forma parte esencial para llevar a cabo una limpieza del planeta de contaminantes ya existentes, así como la mínima producción de residuos tóxicos para él (Royal Society of Chemistry, 2017). La conservación del patrimonio natural y el MA han hecho que se desarrollen acciones para resolver los problemas ambientales que se han generado en el planeta, como el calentamiento global, contaminación del aire y agua, deforestación, deterioro de la capa de ozono, erosión, extinción de especies, entre otras. La mayoría de los problemas ambientales se forman por el uso irracional de recursos naturales, el poco o nulo tratamiento a los residuos y procesos químicos (Pájaro y Olivero, 2011).

Se entiende como MA al conjunto de todas las cosas vivas que habitan simultáneamente, sobre los cuales el ser humano puede actuar. Del MA se obtiene agua, comida, combustibles y materias primas que sirven para fabricar las cosas que se utilizan diariamente. Por lo que su explotación irracional llevará, sin duda alguna, a la extinción de todos y cada uno de los recursos que brinda. Es importante entender que el concepto de buen uso o manejo de los recursos que brinda el MA involucra varias controversias, contradicciones y problemas por resolver; debido a que depende del criterio de los ciudadanos si el cuidado del MA es relevante o no; al considerar varios aspectos

como son: ecológico, DS, impacto ambiental, urbanismo, sociológico, político, económico, educativo, por mencionar algunos.

Existen diferentes ramas que estudian el deterioro, sostenibilidad y equilibrio del MA, algunas de ellas son: la QA, Ecología y QV.

La QA es la aplicación de la química al estudio del deterioro y conservación del MA. Estudia los procesos naturales que se llevan a cabo en ríos, lagos, océanos, suelos, atmósfera, o los procesos causados por los seres humanos, así como su impacto en el MA. Esta rama de la química es de suma importancia debido a que su principal objetivo es el estudio del efecto que tienen los problemas ocasionados por el hombre en el MA (Baird, 2012). Esta área está enfocada a la eliminación de los daños causados al MA y las consecuencias que éstos puedan tener.

La Ecología estudia el cómo se desarrollan e interactúan los organismos entre sí, su distribución, abundancia en la Tierra y los factores que los afectan. Es importante ya que rige el equilibrio que existe entre la relación de los seres vivos con su entorno. Se encarga de relacionar y analizar las consecuencias que tienen los cambios en el MA sobre las relaciones que existen entre los organismos, la interacción con el entorno y como se ve afecta al equilibrio entre las diversas especies que viven en él.

8.2. Desarrollo sostenible

El IB establece que "El desarrollo sostenible satisface las necesidades de la generación presente sin comprometer la capacidad de las generaciones futuras para satisfacer sus propias necesidades" (Gómez, B. R., 1987). La explotación de los recursos que se ha llevado a cabo a lo largo del desarrollo humano ha comprometido la idea de llegar a un DS, sin embargo, existen métodos, acuerdos e ideas que tienen como objetivo lograr un cambio para disminuir y detener el impacto ambiental que ha causado el ser humano en el MA.

Para llegar a un DS es necesario que tres ámbitos coincidan; estos son: social, económico y MA.

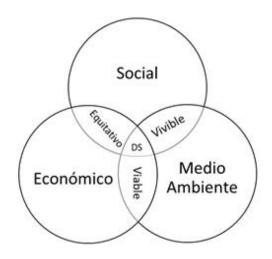


Figura 1. Ámbitos para lograr un DS. Fuente: Unesco, 2019

Como se puede observar en la Figura 1, cuando sólo dos de éstos coinciden se obtienen diferentes formas de desarrollo. Si el ámbito económico y el MA son los únicos ámbitos que se relacionan, el desarrollo que se obtiene es viable, debido a que, aunque se cuida el MA sin afectar la economía, omite el desarrollo del ámbito social, por lo tanto, la sociedad quedaría inconforme, por no llegar a un común acuerdo.

Si los ámbitos social y económico se relacionan, se obtiene un desarrollo equitativo, al beneficiarse ambos, pero el MA se afecta al no pensarse en él, sólo se cubren las necesidades de la sociedad y del ámbito económico, sin importar el impacto que esto tendrá en el MA tanto a corto, mediano o largo plazo.

Cuando el MA y lo social se relacionan se obtiene un desarrollo vivible pero la economía se ve afectada, ya que los recursos obtenidos del MA pueden ser menos de los esperados. Debido a esto es de suma importancia la colaboración de los tres ámbitos puesto que entre ellos se establece una relación que al estar en equilibrio se obtiene el DS lo cual resulta benéfico para todos sin causar daños al MA.

La actividad económica se ve sustentada por la explotación de la productividad del ecosistema, que, aunque propician el desarrollo humano influyen directamente en el MA, debido a que la generación

en exceso de residuos tóxicos sin su posterior tratamiento, provoca la alteración de los procesos biológicos que se llevan a cabo en los ecosistemas, y da como resultado problemas ambientales que influyen directamente en el DS (Cortés, 2015).

Tomando en cuenta que el deterioro ambiental progresa día a día, es necesario hablar sobre el efecto a mediano y corto plazo sobre las generaciones venideras, esto se debe a que la recuperación y mantenimiento del MA definirá su calidad de vida y desarrollo.

El desafío para lograr un DS es lograr desarrollar tecnologías y procesos indispensables para el impulso de la sociedad inocuos para el MA y los humanos (Reyes, 2012). Este desafío puede superarse a través del diseño verde el cual busca la generación de productos con mayor efectividad y con el menor impacto sobre el MA.

De acuerdo con la UNESCO, en la Declaración de Río, se establecen 27 principios que abarcan los conceptos, ideales y principios necesarios para el DS. Algunos de estos son: (UNESCO, 2012).

- El derecho al desarrollo debe ejercerse en forma tal que responda equitativamente a las necesidades ambientales y de desarrollo de las generaciones actuales y futuras.
- Erradicar la pobreza y reducir las disparidades en los niveles de vida en los distintos pueblos del mundo es indispensable para el desarrollo sostenible.
- Los seres humanos tienen derecho a una vida saludable y productiva en armonía con la naturaleza.
- Comprender que las decisiones individuales de los consumidores afectan y dan origen a la extracción de recursos y a procesos de manufactura en lugares distantes.
- Para alcanzar el desarrollo sostenible y una mejor calidad de vida para todas las personas, los Estados deberán reducir y eliminar las modalidades de producción y consumo insostenibles y fomentar políticas demográficas apropiadas.
- Saber que la tecnología y la ciencia por sí solas no pueden resolver nuestros problemas.

Es necesario contemplar que éstos son sólo algunos de los principios del DS, pero es posible plantear una idea de la necesidad de la colaboración de todos los habitantes del planeta para lograr salvar el futuro de las nuevas generaciones.

8.3. Química Verde

La QV es una forma de pensar sobre el cómo hacer química al unificar la protección y cuidado de la economía, los seres vivos y su entorno. Es una disciplina que se auxilia de las Ciencias Ambientales, Química, Ingeniería y Toxicología y a través de todas ellas, Anastas y Warner dieron a conocer doce principios para establecer cuán verde es un producto químico, una reacción o un proceso (Meléndez, 2008).

Tiene como objetivos aumentar la eficiencia de recursos materiales y energéticos, el establecimiento de los principios para la síntesis y aplicación de productos y procesos químicos que reduzcan o eliminen completamente el uso y producción de materiales que sean dañinos para el medio ambiente y establecer una relación íntima con la reducción ya sea de costos, materiales, daños, riesgos y energía (Anastas y Warner, 2002).

Es importante entender la diferencia entre QA y QV, ambas son de suma importancia y son herramientas para modificar los procesos químicos; la primera es precautoria, su objetivo es prevenir el impacto ambiental y la segunda tiene por objetivo la eliminación de éste.

Los doce principios que establece la QV son: (Anastas., Warner, 1998; Pájaro., Olivero, 2011).

1. Prevenir la generación de residuos

Es preferible evitar la producción de un residuo que tratarlo o limpiarlo después de que se haya producido.

2. Maximizar la economía atómica

Los métodos sintéticos deberán diseñarse para maximizar la incorporación de todos los materiales utilizados en el proceso.

3. Realizar síntesis química menos peligrosa

Los métodos de síntesis deberán diseñarse para utilizar y generar sustancias que tengan poca o ninguna toxicidad, tanto para el hombre como para el medio ambiente.

4. Diseño de productos y compuestos químicos menos peligrosos

Los productos químicos deberán ser diseñados de manera que mantengan su eficacia con una toxicidad mínima.

5. Utilizar disolventes y condiciones seguras de reacción

Se evitará, en lo posible, el uso de sustancias auxiliares (disolventes, reactivos de separación, etcétera), y en el caso de que se utilicen deben ser inocuas y reducirlas al mínimo.

6. Diseño para la eficiencia energética

Los requerimientos energéticos serán catalogados por su impacto medioambiental y económico, reduciéndolos al máximo. Intentando llevar a cabo los métodos de síntesis a temperatura y presión ambiente.

7. Utilizar materias primas renovables

La materia prima debe de ser preferiblemente renovable en lugar de agotable, siempre que sea técnica y económicamente viable.

8. Evitar derivados químicos

Se evitará en lo posible la formación de derivados (grupos de bloqueo, de protección/desprotección, modificación temporal de procesos físicos/químicos), evitar pasos extras y reducir desechos.

9. Catálisis

Deben emplearse catalizadores lo más selectivos y reutilizables posibles en vez de reactivos estequiométricos.

10. Diseñar productos fácilmente degradables al final de su vida útil

Los productos químicos se diseñarán de tal manera que al finalizar su función no persistan en el medio ambiente, sino que se transformen en productos de degradación inocuos o biodegradables.

11. Análisis y monitoreo en tiempo real para la prevención de la contaminación.

Las metodologías analíticas serán desarrolladas mediante sistemas de control y monitoreo continuos en tiempo real del proceso, para evitar la formación de sustancias peligrosas durante éstos.

Química inherente más segura para la prevención de accidentes.
 Se diseñarán los procesos químicos empleando sustancias y métodos que minimicen el

potencial de accidentes químicos, incluidas las emanaciones, explosiones e incendios.

Para valorar qué tanto acercamiento verde presenta un producto químico, una reacción o un proceso es importante que cumpla un mayor número de esos principios, aunque aún no existe un proceso que cumpla con los doce principios (Morales, 2011).

Una de las ramas en donde más se ha logrado un desarrollo de la QV, es en SO, algunos ejemplos de esto son los que a continuación se mencionan (Meléndez, C. O., 2008; Pájaro., Olivero, 2011).

- 1. Oxidación de un grupo alcohol lo cual ha dejado de generar una gran cantidad de residuos peligrosos mediante la aplicación de los principios uno, tres y siete.
- 2. El empleo de catalizadores de paladio en reacciones de alquilación alílica que utilizaron Trost y sus colaboradores haciendo que la economía atómica se maximice.
- 3. La síntesis de macrolactonas aplicando el principio seis, a partir de ácido carboxílico y un catalizador de paladio a temperatura ambiente con un 100% de economía atómica.
- 4. La aplicación de los principios cuatro, seis y diez en la síntesis catalítica polímero poliaspartato térmico para sintetizar el ácido poliacrílico.
- 5. La determinación del poder catalítico de un suelo a través de su estudio fisicoquímico se lleva a cabo mediante la utilización de los principios uno, seis y siete (Trejo, 2009).
- 6. El empleo de la QV ha hecho posible llevar a cabo la extracción verde de α-β-amirina, mediante la utilización de sonicación, microondas y fluidos supercríticos (Ramírez, 2016).

- 7. La QV ha sido una innovación en la síntesis de nanoestructuras, mediante la utilización de fluidos supercríticos y el ultrasonido mejorando la eficiencia energética (Salinas, 2012).
- 8. Se ha desarrollado una metodología analítica verde para determinar cadmio en sedimentos, dando pauta a la aplicación de un nuevo concepto llamado Química Analítica Verde (Quintas, 2015).

A pesar de todas las ramas de la ciencia que existen para el estudio, conservación y desarrollo del MA, así como todos los esfuerzos por diversas organizaciones mundiales y regionales, diferentes países, comunidades, tratados, conferencias, líneas de estudio entre otros; ninguno ha logrado el DS, ni algún avance realmente significativo en materia de cuidado ambiental. Lo que se ha logrado es el desarrollo de experimentos, procesos y su introducción en la docencia.

8.4. Educación ambiental

La EA es una herramienta que proporciona nuevos conocimientos y criterios que favorece el hacer frente a los problemas ambientales. La EA se deriva de los efectos perceptibles de la industrialización y el uso de diferentes tecnologías; haciendo que surjan aspectos ecológicos que busquen establecer una relación ser humano-biósfera tolerable. Se centra en unir la relación humano-MA sin hacer a un lado los problemas y necesidades de la sociedad, al integrar el desarrollo humano y los problemas ambientales.

Uno de los ejemplos en los que se basa la EA es la preservación de la naturaleza, establecida en los ciclos de vida, la evolución de los seres, el equilibrio en el que coexisten los ecosistemas al generar su propio alimento, el tratar cada residuo generado y aprovechar toda la materia, mediante procesos de producción efectivos.

La EA es una contribución de diversas disciplinas que se suman a las ya mencionadas, ésta apoya el conocimiento y comprensión del MA a través de experimentos educativos que proveen de conocimientos y establecen una relación docencia-cuidado y preservación del MA-DS (UNESCO, 1980).

La EA pretende difundir el concepto del arte de vivir en armonía con la naturaleza por medio de la correcta distribución de sus materias primas. Estimula la formación de sociedades socialmente justas y ecológicamente equilibradas, se basa en el profesionalismo y disposición de los docentes para entablar una relación con la teoría y práctica de sociedades sostenibles (Novo, 2009).

8.5. Educación para el desarrollo sostenible

A raíz de la necesidad de tener un impacto lo suficientemente enérgico para generar conciencia en los humanos sobre el deterioro que causan sus acciones sobre el MA surge la EDS. Su objetivo general es lograr que todos generen un pensamiento consciente mediante la adquisición de conocimientos, habilidades, actitudes y valores en el que se logre satisfacer las necesidades de las generaciones actuales sin comprometer las de las generaciones futuras viviendo de forma sostenible (Achi-Nagoya, 2014).

Hoy en día, la única forma para establecer recursos que lleven a la solución de los problemas ambientales es la educación, debido a que los conocimientos adquiridos por los habitantes del planeta no han sido suficientemente conscientes en materia ambiental, cambios climáticos, sostenibilidad y DS, no se ha logrado un progreso en la implementación de las medidas necesarias para el avance armónico de la sociedad, MA y economía.

Debido a que todos y cada uno de los habitantes del planeta tienen responsabilidad sobre el DS ya que sus decisiones tienen un alto impacto sobre él es necesario que cada ciudadano tenga consciencia de los daños o mejoras que pueden lograr con un conocimiento basto en EDS, ya que es la mejor herramienta para lograr satisfacer las necesidades propias sin comprometer las necesidades de las generaciones futuras; mientras mayor número de personas tengan conocimientos amplios y buenas bases sobre sus derechos y responsabilidades, ambientales, sociales y económicas mejor será el panorama para la reconstrucción y mantenimiento de los recursos ambientales.

Con lo anteriormente expuesto se entiende que la EDS reside en educar para crear sociedades sostenibles por medio de la evolución social para generar un futuro sostenible. La EDS se basa en cuatro ejes, estos son: (UNESCO, 2012).

I. Mejorar el acceso y la retención en educación básica de calidad.

Matricular y retener a niñas y niños en educación básica de calidad es importante tanto para su propio bienestar a lo largo de sus vidas como para la sociedad en la que viven. La educación básica se centra en ayudar a los estudiantes a obtener conocimientos, habilidades, valores y perspectivas que fomenten medios de subsistencia sostenibles y en ayudar a los ciudadanos a llevar vidas sostenibles.

II. Reorientar los programas educativos existentes para lograr la sostenibilidad

Reorientar la educación exige su revisión desde el cuidado de los preescolares hasta la educación superior. Se debe reevaluar qué se enseña, cómo se enseña y qué se evalúa, teniendo en cuenta la sostenibilidad como tema central. Este proceso se orienta al futuro, puesto que los estudiantes de hoy tendrán que enfrentar los desafíos del mañana, lo que requiere creatividad y habilidades de análisis y de solución de problemas.

III. Aumentar la comprensión y conciencia pública en relación con la sostenibilidad

Para alcanzar los objetivos del DS es necesario contar con ciudadanos que estén informados acerca de la sostenibilidad y de las acciones diarias necesarias para alcanzar los objetivos de ésta a nivel comunitario y nacional. Es preciso educar a la comunidad en general y contar con medios de comunicación responsables que estén comprometidos con alentar a un pueblo, informado y activo, a aprender a lo largo de la vida.

IV. Proporcionar formación a todos los sectores de la fuerza laboral

Todos los sectores de la fuerza laboral pueden contribuir a la sostenibilidad local, regional y nacional. Tanto los empleados del sector público como del sector privado deben recibir formación vocacional y profesional continua, de modo que todos los miembros de la fuerza laboral puedan acceder al conocimiento y a las habilidades necesarias para tomar decisiones y trabajar de manera sostenible.

Es notable que el centro de la EDS es la educación, ya sea informal o formal, pero considera que la solución implacable para lograr un DS es crecer con los conocimientos bastos en materia de EA, DS, sostenibilidad, responsabilidad y derechos ambientales.

La EDS es una forma de enseñanza que genera un aprendizaje permanente mediante el cual contribuye a la participación enérgica de adultos, niños, niñas y ancianos para lograr un crecimiento mediante un equilibrio económico, social y ambiental del desarrollo sostenible; mejorando la calidad de vida de todos a corto y largo plazo (Achi-Nagoya, 2014).

8.6. Macroescala, miniescala y microescala

En el trabajo experimental de la química es importante hacer la distinción en cuanto a las cantidades requeridas de reactivos para llevar a cabo una reacción química, a saber: i) macroescala, se refiere a utilizar grandes cantidades, ii) microescala, se refiere a utilizar la mínima cantidad, iii) miniescala o semimicro en el que se utilizan pequeñas cantidades. Estas dos últimas implican una disminución en la generación de residuos (Ibarguengoitia, 2004; Arnaíz, F., 1999).

La miniescala o semimicro ha representado una forma de trabajo transitoria entre la macroescala y la microescala. Debido a que en algunos procesos, reacciones químicas o experimentos se dificulta utilizar la microescala ya sea por la detección de los equipos a utilizar, la estequiometría de la reacción, la rapidez de reacción, el material o equipos adecuados para medir pequeñas cantidades, entre otras.

Tanto la miniescala como la microescala, pretenden minimizar la utilización de materiales que impacten negativamente al medio ambiente. Ambas representan muchas ventajas, como lo son: mayor control sobre las reacciones químicas lo que implica mayor seguridad, menor generación de residuos, ahorro económico, menor tiempo invertido en la realización de la experimentación, menor espacio de almacenaje, por mencionar algunas (Slater, A., 2014).

Las ventajas de utilizar tanto microescala como miniescala, además de la mínima o nula generación de residuos, han sido estudiadas por Slater (2014) y Carrillo (2002), las cuales se exponen a continuación:

- 1. El alumno o analista tiene un mayor control de la reacción, de manera que el análisis de las reacciones o procesos químicos se lleva a cabo de mejor forma.
- Los espacios de almacenaje de disoluciones, reactivos y materiales a utilizar, así como equipos es menor al ser de tamaño pequeño el espacio ocupado y la cantidad de reactivos requeridos es menor.
- 3. La limpieza del material y equipos utilizados es más rápida.
- 4. La rapidez con la que se lleva a cabo un experimento o proceso aumenta y de ser necesario es fácilmente repetible debido a que los sistemas son de rápida preparación.
- 5. Los volúmenes del tipo de agua que se utilice para llevar a cabo la práctica disminuyen notoriamente.
- 6. El tiempo invertido por el profesor o analista para la preparación de la sesión experimental es menor.

Aunque se obtienen muchos beneficios del trabajo a micro y miniescala también tiene algunas desventajas como lo son:

- El no contar con equipos que puedan medir cantidades del orden de 0.0001g, conlleva a la preparación de altos volúmenes de disolución o la preparación de disoluciones a partir de una solución con concentración mayor.
- ❖ La transición de una forma de trabajo rutinaria como la macroescala al momento de aprender a trabajar con cantidades pequeñas, suele no ser tan fácil.
- Existen experimentos o reacciones que no dan resultados positivos si no se utilizan cantidades por encima de la miniescala.

La manera en que el presente trabajo pretende introducirse transitar en la QV, sin dejar de lado la química comúnmente utilizada, son la utilización de fuentes alternas de calentamiento, uso de miniescala y la prevención de residuos.

8.7. Energías renovables y limpias

Se conoce como energía a la capacidad para producir un trabajo: trabajo mecánico, emisión de luz, generación de calor. Existen diferentes formas en que la energía puede manifestarse, por ejemplo: química, cinética, potencial, radiante, nuclear, magnética, etc.

Una de las clasificaciones de las fuentes de energía es: energías renovables y no renovables.

Energías renovables son aquéllas en las cuales su fuente de obtención es inagotable por la cantidad de energía que tienen y además se alimentan de fuerzas naturales, haciéndolas capaces de regenerarse por medios naturales más rápido de lo que las consumimos; la energía solar, eólica, hidráulica, biomasa geotérmica y oceánicas son ejemplos de energías renovables.

Energías no renovables existen en la naturaleza en una cantidad limitada, son incapaces de regenerarse a corto plazo consumiéndolas rápidamente, lo que genera que se agoten; el carbón, petróleo, uranio y el gas natural son fuentes de las cuales se obtienen energías no renovables.

Las energías no renovables son las principales fuentes de energía que se utilizan. En México en el año 2012, la dependencia de las energías fósiles (no renovables) fue del 92% y 6.8% de las energías renovables (Larios, 2014). La sustitución de las energías no renovables por las renovables es de suma importancia, al dejar de lado el impacto ambiental ya mencionado pronto su producción será más costosa, haciéndola poco rentable y difícil de obtener, y con base en la demanda progresiva al consumo de los derivados de petróleo su producción se verá comprometida debido a que la industria petrolera va en declive, por lo que es importante utilizar energías renovables y limpias para dejar de depender de la producción de energía eléctrica por medio de la quema de combustibles obtenidos del petróleo (Conant y Fadem, 2018).

Existen fuentes de energía que se han desarrollado para sustituir a las energías no renovables; energía renovable y energía limpia. La energía limpia no genera residuos al utilizarse o producirse, en cierta forma es poco común encontrar una energía que no produzca algún residuo, pero si existen las que generan cantidades mínimas.

Las energías limpias y renovables suelen confundirse, aunque ambas son energías de fuentes inagotables, existen algunas que producen residuos haciéndolas poco o nada limpias. Un ejemplo es el gas natural, es una energía limpia debido a que las emisiones que produce son mínimas, pero es no renovable puesto que su fuente de obtención es agotable.

La biomasa es una energía renovable pero no limpia al producir emisiones contaminantes.

Las energías eólicas, solares, oceánicas entre otras se consideran energías limpias y renovables al generar emisiones contaminantes mínimas y ser inagotables.

8.8. Formas comunes de calentamiento

Las formas de calentamiento convencionales corresponden a las que la fuente de calor se encuentra en contacto directo con el material en el que se realiza la reacción. El calentamiento puede llevarse a cabo por medio de parrilla eléctrica, Mechero de Bunsen, Baño María, baño de arena y lámpara de alcohol.

El calor que se aplica a los materiales tenderá a pasar de la zona con mayor temperatura a la zona de menor temperatura para llegar a un equilibrio, está transferencia de calor puede suceder de tres formas: conducción, convección y radiación.

La forma en la que el calor se transmite cuando la fuente de calor se encuentra en contacto directo con el material es por medio de conducción, esto es debido a que el calentamiento de las paredes del material utilizado es directo, se alcanza una temperatura alta por lo que los electrones y moléculas que se encuentran libres en el sólido se excitan y chocan entre ellos, de forma que vibran con mayor intensidad que las moléculas que se encuentran en regiones donde la temperatura es menor, generando choques entre la transferencia de energía de las moléculas excitadas a las moléculas menos excitadas aumentando la velocidad vibratoria de estas de forma que se genera calor; por lo que la temperatura del contenido del recipiente es igual o menor al material, pero no mayor (Nahle, 2006).

Mediante el anterior proceso químico, el calor que se emite, en primera instancia tiene contacto con el recipiente y a través de él llega hasta la sustancia que se desea calentar, por lo que el calentamiento no es de forma directa, es decir, primero el recipiente se calienta y posteriormente pasa por las paredes hasta finalmente llegar al contenido; este fenómeno se conoce como intercambio de calor, este depende de la temperatura a la que se encuentren los materiales.

La velocidad con la que el intercambio de calor se lleve a cabo dependerá de la conductividad y difusividad térmicas del material siendo directamente proporcionales contribuyen a que el calor atraviese las paredes del recipiente de forma lenta o rápida; dando como resultado malos y buenos conductores térmicos. Los buenos conductores térmicos permiten que el calor pase a través de ellos de forma rápida al ser capaces de propagar el calor sin sufrir alteraciones (Carslaw, 1959).

El material del que se conforman los recipientes a utilizar para someter a calentamiento alguna sustancia, disolvente o mezcla de reacción depende de la temperatura que se quiera alcanzar, así como el tiempo y la cantidad de veces que se requiera calentar, por lo que esto representa un factor determinante para el rendimiento y durabilidad de los materiales de laboratorio.

8.8.1. Estufa de secado

Es un equipo el cual al generar calor es utilizado para secar y esterilizar material de laboratorio, puede llegar hasta 350°C dependiendo el modelo. Consta de dos cámaras, interna y externa; el material del que está compuesta la cámara interna es aluminio o acero inoxidable por ser buenos conductores de calor, la cámara externa se compone de material aislante para mantener el calor dentro de la estufa de secado retardando la transferencia de calor de la parte interna hacia la externa.

Consta de distintos anaqueles de acero inoxidable en los cuales se colocan los materiales a esterilizar o calentar, de forma que se pueden colocar un número considerable de materiales y un panel de control mediante el cual se controla la cantidad de calor generada por las resistencias.

El calor es producido por medio de resistencias que transfieren la energía térmica a la cámara interior de la estufa de secado, el calor se distribuye mediante convección natural. El propósito de la

estufa de secado en el laboratorio es la pérdida de humedad mediante el calentamiento de los materiales de vidrio o porcelana.

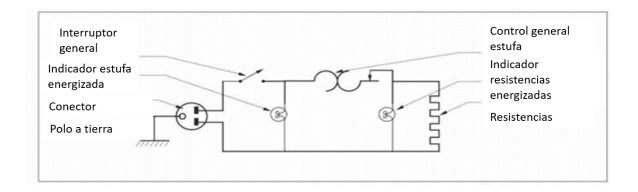


Figura 2. Circuito eléctrico de la estufa VILLAMIL, 2005

El uso de la estufa es una forma de calentamiento común que se ha utilizado durante un tiempo considerable para calentar o secar reactivos o material de laboratorio en docencia e investigación. No obstante, debido al tiempo necesario para alcanzar la temperatura deseada, la utilización de la estufa de secado implica una seria inversión de tiempo para lograr resultados positivos (Villamil, 2005).

8.8.2. Mechero de Bunsen

El mechero de Bunsen se utiliza como fuente de calor en el laboratorio para: acelerar los procesos de reacción, llevar a sequedad, esterilización de muestras, entre otras cosas; es un método de calentamiento que utiliza la quema de gases como el propano/butano o gas natural.

Es de mucha utilidad debido a que proporciona una flama constante y sin residuos de hollín. Debe su nombre a Robert Wilhelm Bunsen, que perfeccionó el modelo de quemador de gas de William Faraday. Su funcionamiento consiste en hacer fluir el gas mediante la base hasta el tubo vertical, el gas atraviesa un orificio y un anillo metálico mediante el cual se controla el suministro de oxígeno debido al efecto Venturi, que al dejar pasar mayor cantidad de oxígeno la llama arde a mayor

temperatura, teniendo un color azul; si el paso de oxígeno es poco o nulo y el gas sólo se combina con el oxígeno que se encuentra en el ambiente por lo tanto la llama arderá con menor eficacia.

Al ser un dispositivo de calentamiento fácil de utilizar se ha convertido en una forma habitual del mismo, pero tiene sus desventajas debido a que la exposición al calor que genera es mayor y la cantidad de muestras, material de laboratorio o sistemas que se requieran calentar es mínima (Bernal, 2008), además de lo peligroso que resulta su manipulación.

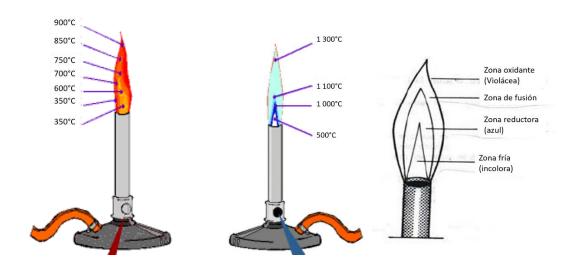


Figura 3. Temperaturas de las zonas de calentamiento del mechero de Bunsen a) entrada de aire cerrada, b) entrada de aire abierta y c) zonas de oxidación y reducción

8.8.3. Mufla u horno de secado

La mufla es un horno que se utiliza en el laboratorio para la fundición de metales, calcinación de sustancias, secado de sustancias y cocción de materiales cerámicos. Consiste de una cámara interna conformada de alúmina y sílice, estos materiales hacen que resista a las altas temperaturas, en la parte frontal tiene una puerta por la que se introducen los materiales a calentar y en la parte superior consta de un orificio por el cual se verifica la temperatura y se emiten los gases que se generan durante el calentamiento.

La temperatura que puede alcanzar es hasta los 1200°C, si son eléctricas y mayores a los 1200°C si son de combustibles, la diferencia entre ellas es el medio mediante el cual generan calor, las muflas de combustibles queman propano/butano o gas natural y las eléctricas mediante el calentamiento de resistencias con el evidente consumo eléctrico, la capacidad de ambas es corta basado en el pequeño espacio interior.

La ventaja que presentan estos equipos es que se alcanzan temperaturas suficientemente altas utilizadas para la fundición y purificación de metales, sin que se contaminen.

Cuentan con un panel de control para establecer la temperatura a la cual se quiere llegar, alcanzan altas temperaturas en tiempos considerablemente bajos, pero el posterior enfriamiento de los materiales que se calienten es alto, además que se debe controlar la temperatura pues al ser tan altas se pueden obtener otros productos de reacción, el material podría no soportarlo o podría quemarse el material y los reactivos (Villamil, 2005).

8.9. Formas alternas de calentamiento

Las formas alternas de calentamiento en química se refieren a la utilización de equipos de calentamiento que tengan principios de funcionamiento diferentes a los convencionales y su vez presenten mejoras.

Los métodos de calentamiento aceleran los procesos que se requiere llevar a cabo, reflejándose en la disminución considerable del tiempo requerido. Esto se debe al tipo de calentamiento empleado, el cual puede ser por medio de convección o radiación.

El calentamiento mediante convección es el flujo de calor a través de un líquido o gas, el cual al someterse a temperaturas altas ocasiona que sus moléculas se dispersen haciéndolo menos denso por lo que se desplazará a la región más fría en donde se encuentra el volumen del fluido más frío y denso, éste se moverá en sentido opuesto haciendo que el fluido circule transfiriendo calor del volumen con mayor temperatura al de menor temperatura (Nahle.2006).

La radiación térmica es la transferencia de calor mediante ondas electromagnéticas, en este método de calentamiento no se requiere un medio de propagación del calor para aumentar la temperatura, porque se propagan como la luz, es decir, la transferencia de calor se realiza mediante ondas a través del vacío, haciendo que el calentamiento sea directo y rápido (Nahle.2006 y Martínez, 1992).

Algunas formas alternas de calentamiento empleadas son: uso de microondas e infrarrojo, entre otras. Su utilización comenzó en la SO al reducir los tiempos para la obtención de productos de reacción (dependiendo de la reacción de síntesis que se esté efectuando), son muy largos, lo que implica un gasto energético alto, debido a esto se buscaron metodologías novedosas mediante las cuales las reacciones químicas se podrían llevar a cabo en menor tiempo (Martínez, 2013).

La influencia de la QV sobre la SO ha sido de gran impacto por lo que se han modificado reacciones comúnmente utilizadas en docencia, experimentación, investigación y procesos industriales, etc. de forma significativa.

8.10. Microondas

El uso de fuentes alternas de energía se ha utilizado como herramientas para minimizar el tiempo de experimentación en docencia o investigación pues el tiempo que se requiere para llevar a cabo la experimentación es reducido.

El calentamiento con microondas se ha vuelto una herramienta útil no sólo en su uso inicial como el de descongelar, calentar y cocinar alimentos, sino también a nivel de investigación y docente, para llevar a cabo reacciones químicas, al mostrar la bondad de reducir el tiempo de reacción y contribuir al uso de energías limpias.

Las microondas se descubrieron en 1946 por medio de un accidente mientras se realizaba una investigación sobre el radar y como consecuencia se descubrieron las microondas. Percy Spencer en Raythenon, realizaba experimentos con un magnetrón cuando detectó que el chocolate que traía en el bolsillo se derritió porque se encontraba cerca del magnetrón; esto le llevó a especular que el magnetrón irradiaba ondas por lo que decidió colocar semillas de maíz junto a éste obteniendo

como resultado que el maíz se calentara y se cocinara, lo mismo ocurrió cuando expuso un huevo junto al magnetrón (Restrepo, 2013).

Finalmente concluyó que, al exponer alimentos a las radiaciones de las microondas de baja intensidad, éstos se calentaban. Posteriormente, diseñó una caja metálica a través de la cual hizo pasar la radiación del magnetrón, colocó diferentes alimentos los cuales se calentaban y cocinaban; toda vez que el prototipo fue mejorado, Raythenon obtuvo la patente creándose así el primer horno de microondas utilizado en la cocción de alimentos.

Se han desarrollado microondas que se utilizan a nivel industrial, ya sea para llevar a cabo pasteurizaciones, secado, esterilizado, descongelado y freído entre otras; su uso se ha explotado al darle diferentes usos algunos de estos son: la obtención de frutos secos, tueste de café, deshidratación de verduras, secado de corcho, cuero, fibras textiles, lápices, flores, libros húmedos y el curado de uretano, nylon y hule (Cano, 2008, González, 1996 y Pérez, 2013).

En 1951 se utilizó el primer horno de microondas en un restaurante, fue hasta 1960 que se empleó el primer microondas casero debido a que se necesitó modificar su tamaño y a partir de este hecho se fue renovando conforme se le añadió más tecnología.

A partir de los 80's se comenzó a dar nuevas aplicaciones al microondas como su uso en la industria química para disolver muestras geológicas, obtención de reactivos anhidros, llevar a cabo reacciones químicas de forma rápida, tratamiento de cáncer y piel, inactivación de enzimas, preparación de radiofármacos de corta vida y aceleración de procesos químicos por mencionar algunas (San Román, 2014).

Las microondas se refieren al intervalo de frecuencia, $3x10^8$ Hz a $3x10^{11}$ Hz, en el espectro electromagnético.

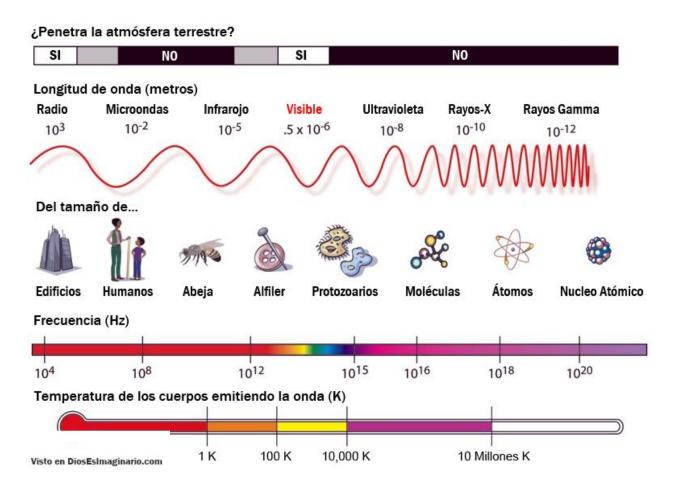


Figura 4. Espectro electromagnético. Fuente (Michael, 1997)

Existen cuatro frecuencias en MHz utilizadas en los hornos de microondas para uso científico e industrial, 915 ± 25 , 2450 ± 13 , 5800 ± 75 y 2225 ± 125 . La frecuencia que se utiliza comúnmente en los hornos de microondas de uso doméstico es la de 2450 MHz.

El horno de microondas convencional usual consta de seis partes.

- 1. Generador de microondas (magnetrón)
- 2. Guía de onda
- 3. Cavidad del horno de microondas
- 4. Agitador
- 5. Circulador
- 6. Base giratoria

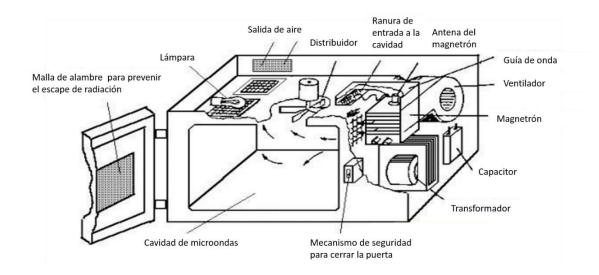


Figura 5. Componentes de un horno de microondas doméstico. (Fuente: Michael, 1997).

La utilidad de las microondas es su capacidad para propagarse. El calentamiento por medio de esta radiación ocurre a través de la absorción de la energía en los materiales con cierto contenido de agua. El hecho de que este método de calentamiento sea muy versátil hace que se pueda utilizar como una forma de calentamiento amigable con el medio ambiente y la vez minimiza costos (Martínez, 2013).

Las microondas al ser ondas electromagnéticas tienen campos eléctricos y magnéticos los cuales son perpendiculares entre sí y a la dirección de propagación de la onda, por lo que estás oscilan desde un valor de cero amplitud de onda hasta el máximo en la dirección positiva; este comportamiento se muestra en la siguiente figura.

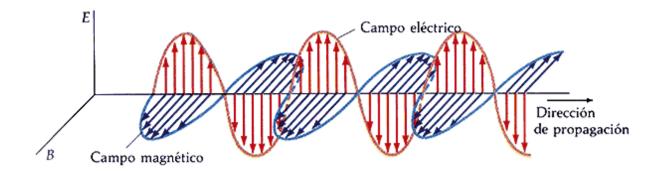


Figura 6. Comportamiento de las ondas electromagnéticas. (FUENTE FONTAL, 2005)

El calentamiento con microondas se comenzó a utilizar en química debido a que tiene ventajas como (González, 1996; Cano, 2008):

- Calentamiento simultáneo de diversos sistemas.
- Calentamiento rápido de los sistemas debido a que la energía que aporta es alta.
- Disminución en el tiempo requerido de calentamiento.
- Permite obtener un calentamiento homogéneo en el aumento de la temperatura.
- Bajo costo de mantenimiento

Aunque sus desventajas en su uso son significativas, éste depende del tipo de material que se emplee, puede o no llevarse a cabo la reacción

- Si el material a utilizar es metal, las microondas se ven reflejadas por lo que no absorben su energía.
- El material es el que establece en qué grado se absorberán las microondas.
- Los materiales poco conductores son transparentes a las microondas, es decir, no absorben las microondas, sólo pasan a través de ellos.

8.11. Horno de irradiación infrarroja.

Infrarrojo es la parte de la región del espectro electromagnético en la que la longitud de onda es

mayor que la región visible y menor que la región de microondas.

Es un tipo de emisión energética electromagnética, la radiación infrarroja es absorbida por

moléculas que tienen diferencias entre los estados vibracionales y rotatorios, los cuales se ven

afectados al absorber este tipo de radiación (Jiménez, 2014).

Existen tres zonas en el infrarrojo: cercano, medio y lejano. Como su nombre lo dice el infrarrojo

cercano es el que se encuentra próximo al espectro infrarrojo y lejano se refiere a región cercana al

microondas,

Infrarrojo lejano: 25 a1000μm

> Infrarrojo medio: 2.5 a 25μm

> Infrarrojo cercano: 0.75 a 2.5μm

La absorción de la radiación infrarroja se debe a la diferencia de energía que existe entre los estados

vibracionales y rotatorios de las moléculas. Una excitación pronunciada y equivalente a la energía

de disociación del enlace puede llegar a producir la ruptura de éstos. No todas las moléculas

absorben la radiación infrarroja si el enlace es simétrico y el momento dipolar es cero el campo

eléctrico no interacciona con el enlace, por lo que incluso cuando se alargan y estiran los enlaces no

hay cambios en la molécula (González, 2016, Barrera, 2016).

Los diferentes tipos de enlaces que constituyen a las moléculas, al absorber radiación infrarroja

presentan diferentes tipos de oscilación, estos pueden ser: simétrico, asimétrico, balanceo, tijereteo,

aleteo y torsión. A continuación, se muestran los diferentes tipos de oscilaciones entre los enlaces.

47

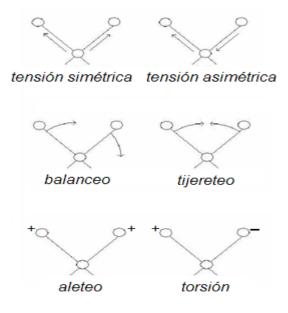


Figura 7. Modos vibracionales de los enlaces

El horno de irradiación IR cuenta con un ventilador que hace que el aire caliente circule de forma uniforme, calentando todo el contenido de forma rápida e igual, consta de un temporizador que mide el tiempo de calentamiento y un termostato que indica la temperatura que se quiere alcanzar. Genera el calor mediante una resistencia de halógeno y una lámpara de infrarrojo, de forma que el calor se produce de forma rápida y poco riesgosa, lo cual al combinarse con el ventilador hace que los materiales que se calienten por este medio alcancen rápidamente una temperatura mayor.

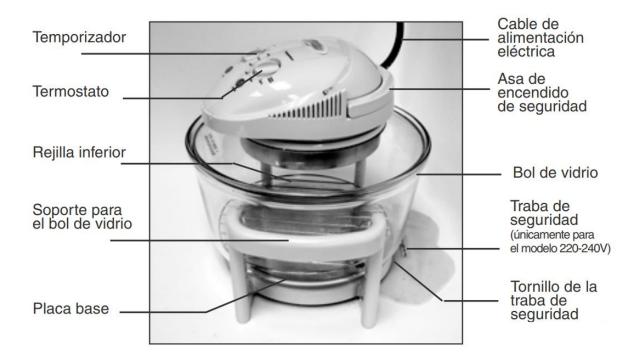


Figura 8. Componentes del horno IR

8.12. Técnica de masa constante

La TMC es un método cuantitativo utilizado en gravimetría para la determinación de la cantidad de producto obtenido, puesto que la exactitud en los métodos cuantitativos es de suma importancia.

La gravimetría es un método analítico mediante el cual se determina la cantidad de analito obtenida en una reacción química; existen dos tipos de determinaciones gravimétricas, dependiendo de la forma en que se lleve a cabo la separación del analito.

Métodos directos. También se conocen como métodos de precipitación directa, en éstos la solubilidad del analito, obtenido mediante una reacción química, es utilizada para su separación, al no ser soluble en el medio, se separa por medio de filtración y su posterior secado.

La obtención del analito de estudio para su posterior medición de masa puede ser:

- a) Obteniendo el analito en un compuesto químico que lo contenga y sus condiciones de medición de masa sean mejores.
- b) Mediante la relación estequiométrica del analito con otro compuesto obtenido (cuantificación por retroceso).
- c) Tal cual se obtuvo el analito

Las condiciones de reacción, naturaleza química de los reactivos y productos definirá la forma en la que se lleve a cabo la cuantificación.

Métodos indirectos. Son métodos en los cuales existe una pérdida de algún elemento o molécula mediante su volatilización o evaporación.

Los métodos indirectos consisten en la determinación de la masa perdida del analito después de someterlo a calentamiento y mediante el cálculo de la diferencia de masa se puede conocer la cantidad que se evaporó.

El término de humedad se refiere a la cantidad de agua contenida en ciertos materiales, compuestos, cuerpos, alimentos, fármacos, entre otros. En lo que respecta a la atmósfera se refiere a la cantidad de vapor de agua que ésta contiene.

Debido a que la humedad es un factor que influye en el comportamiento químico de los materiales, sustancias, compuestos, entre otros, se han desarrollado distintos métodos para determinar la cantidad de humedad o mejor dicho agua contenida.

Existen diversos métodos para la determinación de la humedad contenida, algunos de éstos son: extracción con disolventes, mediante agentes desecantes, calentamiento, entre otros. La utilización de cuál técnica ocupar depende de la muestra o analito y el fin por el que se requiere conocer o eliminar la cantidad de humedad contenida en éstos.

La técnica de masa constante se basa en eliminar la mayor cantidad de humedad que pueda contener los materiales de laboratorio a utilizar para llevar a cabo una cuantificación con el menor error posible. Esta técnica consiste en medir la masa inicialmente de los materiales a utilizar, calentarlos,

dejar enfriar a temperatura ambiente en un desecador, medir la masa y repetir el procedimiento hasta que su masa cambie en un intervalo de 0.001g hasta 0.0003g. (Harris, 2007). El tiempo invertido para llevar los materiales utilizados a masa constante depende de la composición química del material, (Luzardo, 2011).

Los métodos de calentamiento comúnmente utilizados para llevar a MC son mediante mechero de Bunsen, estufa de secado y mufla pues dichos equipos alcanzan temperaturas mayores a los 100°C por lo que es posible evaporar la cantidad de agua contenida.

Una de las aplicaciones del uso de la TMC es el secado de material de porcelana o de vidrio previo a la determinación de la cantidad de moles de agua que contiene una sal. Esta se determina de forma cuantitativa mediante el método gravimétrico. Éste consiste en la volatilización del agua que contiene una sal sometiéndola a calentamiento, posteriormente se utiliza el valor las masas obtenidas antes y después del proceso de calentamiento, se calcula la diferencia entre éstas y se determina la masa del agua perdida (Cantú, 2016).

8.13. Vidrio y porcelana

El vidrio y la porcelana son materiales que por las características que presentan se han utilizado a lo largo de la historia para la creación de utensilios, materiales de contención, ventanas, cubiertas, aisladores, entre otros.

En lo que respecta al vidrio, éste es catalogado dependiendo de su composición química, por lo que existen diferentes clasificaciones de los vidrios, con base en su origen, composición, estructura química y aplicación. De acuerdo a sus características el tipo de vidrio utilizado para fabricar materiales de laboratorio es el vidrio pyrex o vicor, debido a su composición química resiste el ataque de la mayoría de los compuestos químicos y cambios bruscos de temperatura. Está composición es la que le brinda propiedades químicas que influyen en su utilización para el análisis químico.

La porcelana es un producto cerámico que ha sido fabricado desde la antigüedad, es un material que presenta superficie rugosa y propiedades únicas las cuales son de gran utilidad en diferentes ramas

de la ciencia. Al igual que los vidrios se clasifican por: su composición origen, uso, propiedades químicas, etc.

A continuación, se muestra la composición química de los vidrios pyrex y la porcelana utilizada para la fabricación de materiales de contención para fines químicos.

Tabla 1.Composición química del vidrio y porcelana, propiedades (Fernández, 2003)

Composición	Na ₂ O	K ₂ O	CaO	MgO	Al_2O_3	SiO ₂	Fe ₂ O ₃	TiO ₂
Vidrio (Laboratorio Vycor, Pyrex)	0.5-5	0.4-1	0.3- 0.8	0.1-0.8	0.4-3.1	80-97		
Porcelana	1.84	0.87	0.38	0.14	25.29	63.00	0.32	0.10

8.14. Sales hidratadas

Los hidratos o sales hidratadas son sustancias químicas que tienen un determinado número de moles de agua unidas en su estructura química, pueden estar ligadas a un núcleo metálico o cristalizadas con el complejo metálico. Las moles de agua que contienen estas sales son liberadas cuando el hidrato es sometido a temperaturas mayores de 100°C, rompiéndose la red cristalina y perdiendo las moles de agua que contienen.

Una molécula de sal que no está ligada a ninguna molécula de agua es una sal anhidra, y una molécula de sal que está ligada a moléculas de agua es una sal hidratada. La hidratación se produce en la cristalización de sólidos disueltos o por la exposición de un anhidro al aire húmedo.

El agua puede estar presente en una sustancia de dos formas: agua esencial y agua no esencial (Luzardo, 2011).

El agua esencial, está presente en un material como parte de su composición estequiométrica, es decir, forma parte de la fórmula química de los compuestos. A su vez puede encontrase como agua de hidratación, es decir, forma parte de la fórmula química del reactivo, por ejemplo: cloruro de

manganeso tetrahidratado MnCl₂·4H₂O. El agua de constitución es la que se forma como un producto de reacción al someterse a calentamiento.

8.15. Estadística básica

La DE es una medida acerca de la precisión de la cercanía de los datos de mediciones repetidas alrededor de la media, en el cálculo de la DE se involucran los errores que se cometen a lo largo de la obtención de resultados. Se define como error a la diferencia entre una medición experimental y su valor aceptado; existen diferentes tipos de errores; algunos de estos son:

Error aleatorio, que se debe a la incertidumbre dada por variables que no se pueden controlar, el error cambia sin orden, es decir, no cumple con algún patrón.

Error sistemático en el cual los errores que alteran los resultados obtenidos son conocidos y pueden ser explicados, además de presentarse en cada uno de los resultados (Skoog, 2001).

Estos errores deben tomarse en cuenta debido a la precisión y exactitud con la que se lleva a cabo una experimentación. Se define precisión a la diferencia entre un valor y otro en las repeticiones realizadas para conocer la reproducibilidad de los resultados obtenidos mediante el mismo procedimiento. La definición de exactitud es la cercanía o parecido de los valores con el verdadero o aceptado, determinando la veracidad o credibilidad de los resultados obtenidos. Ambas sirven para determinar que tanto afectan los errores cometidos durante la recolección de datos para así demostrar que los valores obtenidos son precisos y exactos. En el caso de un método gravimétrico por lo tanto analítico, los errores aleatorios y sistemáticos tienen un impacto considerable sobre los resultados obtenidos, éstos deben ser confiables, reproducibles y veraces.

9. DESARROLLO EXPERIMENTAL

9.1. Equipos

Estufa de secado marca: ab-Line Insruments, Inc. modelo: 3511; 120 V, 50/60 Hz, 6.67 A y 800 W.

- ❖ Flavor time convencional marca: Kitchen Miracle, modelo AOT-F902, 120 V, 1350 W, 60 Hz.
- Horno de microondas convencional marca: LG modelo: intelowave 120 V, 60 Hz y frecuencia de 2450 MHz.
- ❖ Balanza analítica Ohaus Explorer
- ❖ Termómetro digital infrarrojo marca Extech: modelo: Hendheld non-comtact IR/Type K thermometer Z5093388-1EA.

9.2. Reactivos

- cloruro de manganeso tetrahidratado marca: J.T. Baker grado analítico
- cloruro de bario dihidratado marca: J.T. Baker grado analítico
- cloruro de níquel hexahidratado marca: J.T. Baker grado analítico
- cloruro de cobre dihidratado marca: J.T. Baker grado analítico
- cloruro de estroncio tetrahidratado marca: Merck grado analítico

9.3. Materiales de laboratorio

- Vasos de precipitado 5 mL
- Crisoles de porcelana 5 mL
- Mechero de Bunsen
- Pinzas para crisol
- Espátula
- Desecador

9.4. Metodología

9.4.1. Técnica de masa constante empleando diversas formas de calentamiento

Para este trabajo en específico se utilizaron vasos de vidrio y crisoles de porcelana para la obtención de MC, no cualquier material se puede utilizar debido a que al someter los materiales a temperaturas altas y su posterior enfriamiento es necesario que soporten estos cambios y al mismo tiempo funjan como materiales de contención, por lo que, si se requiere la utilización de otros materiales es necesario realizar una investigación sobre las propiedades físicas y químicas y con base en esto realizar pruebas para determinar si son aptas para utilizarse en la metodología mencionada a continuación.

9.4.1.1. Horno de microondas convencional

Se colocó el horno de microondas en una superficie sólida, se conectó a la corriente eléctrica, una vez medida la masa y etiquetados los materiales de contención se colocaron cuidadosamente con ayuda de unas pinzas para crisol en el interior del horno, se programó un calentamiento de 5 min*, se dejaron temperar en un desecador y se midió la masa de nuevo; el anterior proceso se repitió hasta que alcanzaran MC. Es importante destacar que el horno de microondas convencional se dejó enfriar con la puerta abierta y desconectado entre calentamiento y calentamiento.

9.4.1.2. Horno de irradiación infrarroja

Se colocó el horno de IR sobre una superficie sólida, se conectó a la corriente eléctrica toda vez que se determinó la masa inicial de los materiales de contención, se colocaron dentro del tazón de vidrio, se colocó la tapa, cerciorarse que el asa se encuentre de forma horizontal para que el seguro se desactive e inicie el calentamiento, posteriormente se programó el temporizador a 5 min* a una temperatura de 120°C**, se dejaron temperar en un desecador y se midió la masa de nuevo toda vez que se terminó de utilizar el horno de IR, se dejó enfriar la tapa y se guardó.

9.4.1.3. Estufa

Se colocó el termómetro sobre la ranura que se encuentra en la superficie de la estufa, de forma que una parte de éste quede dentro para poder medir la temperatura de forma continua, el termostato se giró a la marca de 150°C** lo cual se alcanzó en aproximadamente una hora. Posteriormente se colocaron dentro los materiales de contención a utilizar cuya masa se midió previamente y se comenzó a tomar el tiempo a partir de que se alcanzaron de nuevo los 100°C, los materiales de contención se calentaron durante 20min y se dejaron temperar en un desecador, se determinó nuevamente la masa. El anterior proceso se repitió 4 veces de forma que se alcanzó MC.

9.4.1.4. Mechero de Bunsen

Se conectó la manguera de hule a la conexión de gas, se dejó pasar el gas a través del mechero, se encendió la flama con un encendedor y cuidadosamente se calentaron uno a uno los materiales de contención utilizados durante 1 min* y se dejaron temperar en el desecador, al anterior proceso se repitió 3 veces hasta alcanzar MC.

^{*}Los tiempos utilizados se determinaron previamente a través de la experimentación para determinar cuál es el tiempo necesario para un buen calentamiento sin exceder tiempos ni gasto de energía.

^{**}La temperatura se determinó basado en la temperatura necesaria para que el agua pase a estado gaseoso, por otra parte, la metodología así lo establece (Harris, 2007).

9.4.2. Técnica de masa constante aplicada al material de contención

9.4.2.1. Secado de material de laboratorio (crisol de porcelana) con estufa

Se midió individualmente la masa de ocho crisoles de porcelana en la balanza analítica, se registró la masa inicial de cada uno. Posteriormente, se calentaron en la estufa durante 20 min y se dejaron enfriar a temperatura ambiente en el desecador durante 15min, se midió la masa de cada uno de ellos nuevamente y se registraron para establecer la diferencia con la masa inicial, este proceso se llevó a cabo hasta que la masa tuviera una diferencia en un rango de 0.001 g hasta 0.0003 g.

El procedimiento anterior se repitió de la misma manera con cada una de las formas de calentamiento: horno de IR, horno de microondas convencional y mechero de Bunsen. Es importante señalar que tanto la forma de calentamiento como el comportamiento químico del material con el que están fabricados crisoles de porcelana y vasos de precipitado de vidrio influyen en el tiempo de calentamiento y enfriamiento, así como el número de repeticiones requeridas para llegar a MC. Por ello fue necesario realizar pruebas para determinar el tiempo óptimo de calentamiento y enfriamiento para cada una de ellos, con el fin de conseguir la MC de estos materiales.

9.4.3. Deshidratación de las sales

Toda vez que los crisoles se llevaron a MC, se colocaron 0.1 gramos en el crisol etiquetado previamente como uno, 0.2 gramos en el crisol 2 y así sucesivamente hasta llegar al crisol 8 donde se colocaron 0.8 gramos.ñ Las cantidades medidas se registraron y posteriormente, cada sal se deshidrató al someterlas a calentamiento por medio del Mechero de Bunsen en la zona reductora (parte inferior de la flama), para evaporar el agua unida a la sal (evitar llegar al punto de fusión de la sal), el cambio de color de la sal, la ebullición de agua y su posterior desprendimiento en forma de vapor, son indicadores de que se ha perdido el agua de hidratación. Evitar el ennegrecimiento de la sal y el contacto directo de ésta con la flama, debido a que la sal se proyecta provocando chispas que podrían ocasionar quemaduras al analista. Se dejó enfriar el crisol y su contenido a temperatura ambiente dentro del desecador durante 15 min y se determinó la masa total.

9.4.4. Secado de la sal

Con el propósito de verificar que el reactivo no absorbe más humedad del medio ambiente durante el proceso de enfriamiento, se llevó de nuevo a calentamiento en la estufa por 20 min. Se deja enfriar en el desecador y se mide nuevamente la masa, para verificar que durante el proceso de calentamiento-enfriamiento no hubo variación de masa.

9.4.5. Repetición del procedimiento

El procedimiento se realizó por triplicado para cada material de laboratorio y forma de calentamiento, así como para las cinco sales utilizadas. La siguiente tabla muestra los materiales de laboratorio y los tipos de calentamiento utilizados para conseguir MC.

Tabla 2. Materiales y tipos de calentamiento utilizados

Material de laboratorio	Tipo de calentamiento		
	Estufa de calentamiento		
Crisol	Horno de microondas convencional		
	IR		
	Mechero		
	Estufa de calentamiento		
Voca de precipitado	Horno de microondas convencional		
Vaso de precipitado	IR		
	Mechero		

9.4.6. Cálculos químicos para obtención del número de moles de sal hidratada y agua

El secado de cada crisol, la deshidratación de la sal y el enfriamiento a temperatura ambiente se realizó por triplicado para evitar errores en la medición.

Para conocer la cantidad de agua perdida de la sal, en moles, se realizó la diferencia de la masa del crisol seco con respecto a la masa del crisol con la sal deshidratada.

De los datos obtenidos en el proceso de secado y del número de moles de agua perdida se determinaron: el promedio de la MC, la DE y el % DER de cada repetición. Para facilitar el cálculo se empleó el programa Excel. Se utilizó el método de m.m.c para conocer, a través del valor de la pendiente, el número de moles de agua por mol de sal. Para el cálculo de la masa molar de la sal se empleó la tabla de masas molares propuesta por Chang (2002).

Tabla 3. Masa molar para cada reactivo (Chang, 2002)

Reactivo	M.M (g/mol)
H_2O	18.016
NiCl ₂	129.59
BaCl ₂	208.2
CuCl ₂	134.45
MnCl ₂	125.84
SrCl ₂	158.2

Para el cálculo del número de moles de agua y sal deshidratada se utilizó el siguiente factor de conversión.

$$gramos\ sal\ deshidratada \left(\frac{mol\ de\ sal\ deshidratada}{g\ sal\ deshidratada}\right) = mol\ de\ sal\ deshidratada$$

El siguiente diagrama muestra la metodología mencionada anteriormente.

Figura 9. Diagrama de flujo, metodología para llevar a masa constante

10. RESULTADOS Y DISCUSIÓN DE RESULTADOS

A continuación, se presentan los resultados obtenidos del proceso para la obtención de MC, cálculo de las moles de agua que cada sal contiene, su análisis estadístico y el tratamiento de estos resultados.

10.1. Secado de material: Crisol de porcelana

Para el secado de material se requirió establecer el tiempo óptimo y el número de repeticiones de calentamiento para cada material de laboratorio. La siguiente tabla muestra los resultados de los dos parámetros mencionados.

Tabla 4. Tiempo óptimo de calentamiento y número de repeticiones para estufa de secado

Material	Número y tipo	Tiempo óptimo de	Número
de	de	calentamiento	de
laboratorio	calentamiento	(min)	repeticiones
Crisol	I. Estufa de secado	20	4

10.2. Modo de calentamiento: estufa de secado

A continuación, se muestran los resultados de la obtención de MC para el material de laboratorio empleado, así como el uso de la estufa de secado como forma de calentamiento.

Tabla 5. Resultados de la primera medición para llevar crisoles a MC, calentamiento por estufa de secado.

Número de medición de la masa del crisol

(g)

Crisol	Masa crisol inicial (g)	1	2	3	Promedio de las mediciones (g)	DE	%DER
1	24.9849	24.9827	24.9835	24.9838	24.9837	0.0009	0.0036
2	26.7587	26.7588	26.7585	26.7588	26.7587	0.0001	0.0005
3	28.0531	28.0516	28.0516	28.0517	28.0520	0.0007	0.0026
4	28.4924	28.4913	28.4906	28.4905	28.4912	0.0009	0.0031
5	23.8058	23.8024	23.8051	23.8051	23.8046	0.0015	0.0063
6	41.8762	41.8748	41.8746	41.8743	41.8749	0.0008	0.0020
7	28.1629	28.1620	28.1623	28.1626	28.1625	0.0004	0.0014
8	27.9009	27.8994	27.8994	27.8993	27.8998	0.0008	0.0028

Tabla 6. Resultados de la segunda medición para llevar crisoles a MC, calentamiento por estufa de secado.

Número de medición de la masa del crisol

(g)

Crisol	Masa crisol inicial (g)	1	2	3	Promedio de las mediciones	DE	%DER
1	24.984	24.9828	24.9839	24.9835	24.9836	0.0005	0.0022
2	26.7585	26.7584	26.7580	26.758	26.7582	0.0003	0.0010
3	28.0526	28.0518	28.0519	28.0519	28.0521	0.0004	0.0013
4	28.493	28.4929	28.4928	28.4928	28.4929	0.0001	0.0003
5	23.805	23.8048	23.8046	23.8045	23.8047	0.0002	0.0009
6	41.8764	41.8763	41.8762	41.8763	41.8763	0.0001	0.0020
7	28.1629	28.1625	28.1625	28.1624	28.1626	0.0002	0.0008
8	27.9001	27.8999	27.8998	27.9001	27.8999	0.0001	0.0005

Tabla 7. Resultados de la tercera medición para llevar crisoles a MC, calentamiento por estufa de secado.

Número de medición de la masa del crisol

(g)

Crisol	Masa crisol inicial (g)	1	2	3	Promedio de las mediciones (g)	DE	%DER
	(8)				\ \\\		
1	24.9843	24.9842	24.9839	24.9834	24.9840	0.0004	0.0016
2	26.7589	26.7586	26.7585	26.7583	26.7586	0.0003	0.0009
3	28.0529	28.0527	28.0525	28.0525	28.05270	0.0020	0.0007
4	28.492	28.4915	28.4917	28.492	28.4918	0.0002	0.0009
5	23.8048	23.8046	23.8046	23.8044	23.8046	0.0002	0.0007
6	41.877	41.8768	41.8765	41.8762	41.8766	0.0004	0.0008
7	28.1635	28.1629	28.1628	28.1626	28.1630	0.0004	0.0014
8	27.9005	27.9003	27.9003	27.9001	27.9003	0.0002	0.0006

Tabla 8. Promedio de MC de tres mediciones.

		Prome	dio de med	iciones			
Crisol	Masa promedio inicial crisol (g)	1	2	3	Promedio	DE	% DER
1	24.9844	24.9838	24.9835	24.9834	24.9835	0.0002	0.0010
2	26.7587	26.7588	26.7580	26.7583	26.7583	0.0001	0.0006
3	28.0528	28.0517	28.0519	28.0525	28.0520	0.0000	0.0000
4	28.4924	28.4905	28.4928	28.4920	28.4917	0.0001	0.0004
5	23.8052	23.8051	23.8045	23.8044	23.8046	0.0004	0.0018
6	41.8765	41.8743	41.8763	41.8762	41.8756	0.0001	0.0003
7	28.1631	28.1626	28.1624	28.1626	28.1625	0.0000	0.0002
8	27.9005	27.8993	27.9001	27.9001	27.8998	0.0000	0.0000

Una vez que el crisol se llevó a MC se midió la masa de diferentes cantidades del reactivo, en este caso NiCl₂·6H₂O, para determinar por medio del m.m.c y el valor de la pendiente el número de moles de agua que contenía la sal.

10.3. Deshidratación de cloruro de níquel (II) hexahidratado

Tabla 9. Determinación de masa de NiCl₂. Modo de calentamiento: estufa de secado. Primera medición

Crisol	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del crisol y NiCl ₂ * (g)	Diferencia del crisol con NiCl ₂ y crisol a MC	Masa NiCl ₂ (g)
1	0.1057	25.0422	25.0422-24.9838	0.0584
2	0.2029	26.8712	26.8712-26.7588	0.1124
3	0.3036	28.2221	28.0517-28.2221	0.1704
4	0.4046	28.7174	28.7174-28.4905	0.2269
5	0.5018	24.0797	24.0797-23.8052	0.2746
6	0.6174	42.2217	42.2217-41.8765	0.3474
7	0.7058	28.5517	28.5517-28.1631	0.3891
8	0.8085	28.3503	28.3503-27.9005	0.4510

Tabla 10. Determinación de masa de $NiCl_2$. Modo de calentamiento: estufa de secado. Segunda medición

Crisol	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del crisol y NiCl ₂ * (g)	Diferencia del crisol con NiCl ₂ y crisol a MC (g)	Masa NiCl ₂ (g)
1	0.1522	25.0684	25.0684-24.9835	0.0848
2	0.2179	26.8787	26.8787-26.7580	0.1207
3	0.3039	28.2205	28.2205-28.0519	0.1688
4	0.4141	28.723	28.7230-28.4928	0.2301
5	0.5071	24.0867	24.0867-23.8045	0.2817
6	0.6001	42.2087	42.2087-41.8763	0.3325
7	0.7101	28.5514	28.5514-28.1624	0.3892
8	0.8224	28.3524	28.3524-27.9001	0.4526

Tabla 11. Determinación de masa de NiCl₂. Modo de calentamiento: estufa de secado. Tercera medición

Crisol	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del crisol y NiCl ₂ *	Diferencia del crisol con NiCl ₂ y crisol a MC	Masa NiCl ₂ (g)
1	0.1009	25.0398	25.0398-24.9834	0.0564
2	0.2529	26.9000	26.9000-26.7583	0.1417
3	0.3236	28.2295	28.2295-28.0525	0.1770
4	0.4203	28.7278	28.7278-28.492	0.2358
5	0.5113	24.0857	24.0857-23.8044	0.2813
6	0.6057	42.2115	42.2115-41.8762	0.3353
7	0.7058	28.5522	28.5522-28.1626	0.3896
8	0.8025	28.3507	28.3507-27.9001	0.4506

^{*} Los datos representan la segunda medición de MC del crisol y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 12. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Primera medición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O (g)
0.1057 - 0.0584	0.0473
0.2029 - 0.1124	0.0905
0.3036 - 0.1704	0.1332
0.4046 - 0.2269	0.1777
0.5018 - 0.2746	0.2272
0.6174 - 0.3474	0.2700
0.7058 - 0.3891	0.3167
0.8085 - 0.4510	0.3575

Tabla 13. Cálculo para la obtención de la masa de H_2O . Segunda medición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O
0.1522-0.0848	0.0674
0.2179-0.1207	0.0972
0.3039-0.1688	0.1351
0.4141-0.2301	0.184
0.5071-0.2817	0.2254
0.6001-0.3325	0.2676
0.7101-0.3892	0.3209
0.8224-0.4526	0.3698

Tabla 14. Cálculo para la obtención de la masa de H₂O. Tercera medición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O (g)
0.1009-0.0564	0.0445
0.2529-0.1417	0.1112
0.3236-0.1770	0.1466
0.4203-0.2358	0.1845
0.5113-0.2813	0.2300
0.6057-0.3353	0.2704
0.7058-0.3896	0.3162
0.8025-0.4506	0.3519

10.4. Determinación del número de moles de agua y cloruro de níquel. Cálculos químicos

10.4.1. Moles de cloruro de níquel

Tomando los datos de la Tabla 9, en la columna de masa de NiCl₂, a manera de ejemplo se muestra el cálculo para la muestra de esta sal.

$$0.0584g\ NiCl_{2}\left(\frac{1\ mol\ NiCl_{2}}{129.59\ g\ NiCl_{2}}\right) = 0.00045\ mol\ NiCl_{2}$$

De manera sucesiva se realizó el mismo cálculo para cada una de las muestras de cloruros metálicos hidratados.

10.4.2. Moles de agua

De igual manera se consideran los datos de la Tabla 12, en la columna de masa H₂O para el cálculo de número de moles de H₂O.

$$0.0473g \ H_2O\left(\frac{1 \ mol \ H_2O}{18.016 \ g \ H_2O}\right) = 0.00262 \ mol \ H_2O$$

El mismo cálculo se realizó para cada una de las muestras (1-8) y otras dos repeticiones Anexo 13.1.1. La Tabla 15 muestra los datos obtenidos para la primera repetición y la Tabla 16 el promedio de las tres repeticiones.

Tabla 15. Moles de $NiCl_2$ y H_2O . Primera medición

Crisol	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0026
2	0.0009	0.0050
3	0.0013	0.0074
4	0.0018	0.0099
5	0.0021	0.0126
6	0.0029	0.0150
7	0.0030	0.0176
8	0.0035	0.0198

Tabla 16. Moles de NiCl₂ y H₂O. Segunda medición

Crisol	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0007	0.0037
2	0.0009	0.0054
3	0.0013	0.0075
4	0.0018	0.0102
5	0.0022	0.0125
6	0.0026	0.0149
7	0.0030	0.0178
8	0.0035	0.0205

Tabla 17. Moles de Ni Cl_2 y H_2O . Tercera medición

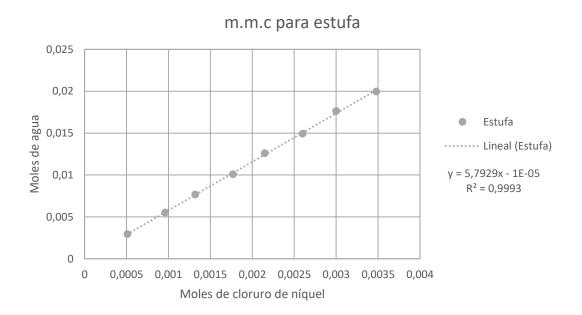

Crisol	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0025
2	0.0011	0.0062
3	0.0017	0.0081
4	0.0018	0.0102
5	0.0022	0.0128
6	0.0026	0.0150
7	0.0030	0.0176
8	0.0035	0.0195

Tabla 18. Promedio de moles de H_2O y $NiCl_2$

Crisol	Moles NiCl ₂	Moles H ₂ O
1	0.0005	0.0029
2	0.0010	0.0055
3	0.0013 0.007	
4	0.0018	0.0101
5	0.0022	0.0126
6	0.0026	0.0149
7	0.0030	0.0176
8	0.0035	0.0200

La siguiente figura representa tanto el gráfico de dispersión (puntos sólidos) como la linealización de los puntos de la tabla anterior, siguiendo el método de m.m.c.

Gráfico 1. m.m.c para crisoles mediante calentamiento por estufa

10.5. Discusión de resultados

10.5.1. Tipo de calentamiento y tiempo óptimo para conseguir masa constante

De acuerdo a la Tabla 4, el tiempo de calentamiento por cada medición y cada repetición para eliminar la humedad del material de laboratorio fue de 20 min; sin embargo, es importante resaltar que previamente la estufa de secado se tuvo que llevar a un precalentamiento de aproximadamente 60 min hasta ser visible en el termómetro la temperatura de 120° C, con esta fuente de calor se debe ser cuidadoso en el control de la temperatura para evitar se incremente demasiado.

10.5.2. Análisis Tabular

10.5.2.1. Masa constante

En la Tabla 4, se aprecia que la variación de masa en la primera medición con respecto a la medición de la masa inicial, por ejemplo, para el crisol 1 es de 0.0022 g, con respecto a la segunda medición es de 0.0008 g y finalmente para la tercera medición es de 0.0003 g, por lo tanto, la última medición se encuentra en el rango establecido por Harris (2007).

Lo mismo se observa para el crisol 6 en la primera medición con respecto a la medición de la masa inicial es de 0.0014 g, con respecto a la segunda medición es de 0.0002 g y finalmente para la tercera medición es de 0.0003 g, y de igual manera se encuentra en el intervalo establecido.

Con respecto a la DE, los valores indican para los ejemplos descritos anteriormente que la diferencia entre los valores obtenidos para MC difiere entre sí en un valor de 9.1 x 10⁻³ y 8.4 x 10⁻³ respectivamente, en relación al promedio de cada una de las mediciones, lo que significa que los datos en cada una de las mediciones se encuentran cercanos al valor promedio 24.98372 y 41.87497, respectivamente.

El %DER involucra los errores sistemáticos y aleatorios, como el actuar del analista, calidad del material y de reactivos; temperatura y humedad.

Para los ejemplos descritos (crisoles 1 y 6), los errores cometidos durante la experimentación fueron mínimos, es decir, la dispersión de los valores respecto a la media crisol 1: 24.9835 g y crisol 6: 41.8756 g (ver Tabla 5) fueron cercanos a cero: crisol 1: 0.00100 y crisol 6: 0.00300, por lo tanto se podría establecer que en las tres repeticiones realizadas los valores siguen siendo pequeños (igual o aproximadamente cero), por lo tanto, en el método gravimétrico seguido, el error analítico es aceptable y por ende el método es confiable.

10.5.2.2. Determinación de las masas de sal hidratada y el agua liberada

Los resultados (Tablas 8 y 11), demuestran el trabajo realizado para la obtención tanto de la masa de la sal hidratada y deshidratada y a su vez la cantidad en gramos de agua liberada después del calentamiento con mechero de Bunsen. Se observa claramente que a medida que aumenta progresivamente la masa de la sal hidratada también hay un aumento progresivo en la masa de sal deshidratada y por tanto agua liberada. Para el crisol 1 y el crisol 6 se obtienen los gramos de sal y agua: 0.0584g, 0.0473g y 0.3474g, 0.2700g, respectivamente.

10.5.3. Análisis gráfico y estadístico

De acuerdo a la Gráfica 1, las variables mol de la sal y mol de agua, reflejan una relación directamente proporcional.

El valor de la ordenada al origen (b= 1x 10⁻⁵) significa que para cero moles de cloruro de níquel había 1x 10⁻⁵ moles de agua, lo cual podría considerarse incorrecto, sin embargo, este valor tiene implícito los errores cometidos en la experimentación.

El valor de la pendiente (m= 5.7929) indicada por la siguiente expresión:

$$m=5.7929 \frac{mol\ de\ H_2O}{mol\ de\ NiCl_2}$$

Significa que por cada mol de sal hay 5.7929 mol de agua, muy cercano al valor de 6 que corresponde al número de moles de agua de la sal de acuerdo al marbete del reactivo.

El valor del coeficiente de correlación de Pearson, r, tiene un valor de 0.9995, lo que indica que, entre ambas variables, moles de agua por mol de sal, existe una correlación positiva fuerte.

El valor de r^2 = 99.93%, demuestra que los cambios en el número de moles de agua que se asocia al cambio de las moles de sal, resulta que un 0.07% de variabilidad no es explicada por el m.m.c.

A partir de la información analizada en las tres mediciones y tres repeticiones para el método de calentamiento por estufa y empleando crisol como material de laboratorio, se pudo determinar con precisión, experimentalmente, el número de moles de agua por mol de sal (NiCl₂). Esto significa que los datos son confiables al tener un %DER menor a uno.

10.5.4. Análisis y comparación de las cuatro formas de calentamiento y los dos tipos de material de laboratorio empleados.

La siguiente tabla muestra los dos tipos de materiales de laboratorio empleados y que se llevaron a MC, así como los cuatro tipos de calentamiento, el tiempo que se requirió para conseguir MC, así como el tiempo óptimo para alcanzarla.

Tabla 19. Tiempo óptimo de calentamiento

Material de laboratorio	Número y tipo de calentamiento	Temperatura máxima de calentamiento (°C)	Tiempo óptimo de calentamiento (min)	Tiempo óptimo de enfriamiento (min)	Número de mediciones
	I. Estufa de secado	110-120	20	15	4
Crisol	II. Horno de microondas convencional		5	10	3
	III. IR		5	8	3
	IV. Mechero	1300	1	20	3
	I. Estufa de secado	110-120	20	6	3
Vaso	II. Horno de microondas convencional		5	5	2
	III. IR		5	5	2
	IV. Mechero	1300	1	15	2

Para eliminar la humedad se determinaron los tiempos óptimos para cada forma de calentamiento y material de laboratorio utilizado caso particular vasos de vidrio y crisoles de porcelana. De acuerdo a la Tabla 17, el tiempo de calentamiento para crisoles y vasos es el mismo, sin embargo, el número de mediciones para alcanzar MC disminuye en una unidad para vasos, debido a que las características físicas del vidrio contribuyen a que la pérdida de humedad se lleve a cabo de forma rápida, comparativamente con la porcelana.

10.5.4.1. Estufa de secado, vasos y crisoles

Al calentar crisoles y vasos mediante estufa de secado, la energía térmica que se transmite aumenta la energía cinética de las moléculas del material y ésta pasa a las moléculas de agua presentes, si se comparan los valores de CT (W/m K): vidrio: 0.96-1.7 y porcelana: 5.49 x 10⁻³ (Donald, 2016), como el vidrio tiene una mayor CT provoca que se evaporen más rápidamente las moléculas de agua y el tiempo de enfriamiento disminuya. Con respecto al uso de la porcelana su pequeña CT requiere un mayor número de veces de calentamiento para retirar el agua del material, sin embargo, al ser un material refractario retiene el calor por mayor tiempo (Askeland y Wright, 2016) y se enfría más lentamente que el vidrio. Con base en esto, se podría inferir que el uso del vaso de vidrio y la estufa es una buena manera de conseguir MC pues el tiempo de enfriamiento es menor, así como el número de mediciones.

Sin embargo, el uso de la estufa presenta desventajas considerables: 1) El termostato de ninguna manera indica la temperatura que se alcanza, 2) Se requiere un termómetro para medir la temperatura y un tapón monohoradado, en la parte superior tiene unos orificios que al no cerrar bien la tapa implica pérdida de calor, 3) Tarda mucho tiempo en alcanzar la temperatura deseada (alrededor de 60 min), 4) Si por alguna causa el termostato se gira en una unidad más, la temperatura en el termómetro rebasa la del valor deseado entonces se tiene que girar la perilla del termostato de manera inversa y poco a poco, 5) Al abrir la puerta para introducir los materiales de contención la temperatura desciende significativamente, lo que implica un atraso en el tiempo que se establece para conseguir MC, 6) Se requiere una medición más para alcanzar MC para el material de porcelana que para el de vidrio, porque el crisol retiene

10.5.4.2. Horno de microondas convencional, vasos y crisoles.Cuando el calentamiento es mediante horno de microondas, la energía electromagnética aumenta la energía cinética del agua adsorbida por el material sea vidrio o porcelana.

Las microondas generan un campo eléctrico oscilante que atrae a las moléculas de agua en una dirección forzándolas a orientarse, pero un momento después cambia de sentido y las hace girar y orientarse en sentido opuesto y así una y otra, y otra vez obligando a las moléculas de agua a oscilar varias veces por segundo esto se debe a que las microondas cambian de sentido muy rápido (2.45 GHZ) (García, s/f). Las moléculas de agua al encontrarse en movimiento generan energía cinética que se transforma en energía térmica y provoca la evaporación del agua que contiene el material. Debido a que la constante dieléctrica del agua es elevada (78.5) y la de la porcelana (5.7-6.8) y el vidrio (5.4-10) es menor, es el agua la que presenta la tendencia a polarizarse ante la aplicación del campo eléctrico de las microondas (Askeland, 2016).

Una ventaja de apreciar en este tipo de horno de microondas convencional, es que al cerrar la puerta, el analista no tiene ningún contacto con la radiación emitida; dado que tiene una malla conductora que impide el paso de las microondas porque la dimensión de los orificios que ésta tiene es menor a la de la longitud de onda de la radiación de microondas (12 cm); además tiene un mecanismo conocido como guía de onda, que consiste en una jaula metálica que mantiene las microondas en la cámara de calentamiento, evitando que se escapen (Fontal, 2005).

No obstante, a pesar de la seguridad que implica trabajar con esta forma de calentamiento es importante mencionar que presenta algunas desventajas: 1) La energía emitida es multimodo lo cual denota que la radiación es dirigida hacia todos lados, por lo tanto, no necesariamente hay calentamiento y pérdida de agua en los materiales de forma uniforme, 2) Se debe evitar colocar material al centro del plato debido a un sobrecalentamiento, 3) Algunos materiales podrían no resistir las ondas electromagnéticas (10⁻² m), por ser son ondas que generan bastante energía 4) Después de dos calentamientos continuos se precisa desconectar y abrir la puerta para que se enfríe.

De acuerdo con estos resultados podría considerarse que la obtención de MC empleando, como medio de calentamiento, el horno de microondas convencional y vaso de vidrio sugieren ser una mejor alternativa frente a la estufa de secado.

10.5.4.3. Horno de IR, vasos y crisoles

Al emplear IR como forma de calentamiento se observa que para cada uno de los materiales de contención para obtener MC el tiempo de calentamiento es el mismo (5 min). Sin embargo, para el tiempo de enfriamiento se observa una diferencia menor en 3 min para el vaso de vidrio (Tabla 15), así como una disminución apreciable para este mismo material al alcanzar MC con tan sólo dos mediciones.

El horno de IR está constituido por una lámpara de halógeno, que consta de un filamento de tungsteno que al ser calentado por el paso de la corriente eléctrica alcanza una temperatura de 2200°C, a esta temperatura, gran parte de la radiación infrarroja que se emite es de onda corta, 760 – 1500 nm, (Martín, 2008). En este intervalo de longitud de onda el aire circundante absorbe la luz infrarroja la cual se re-irradia en otras direcciones aumentando la temperatura del sistema.

Debido a la presencia del ventilador, el aire transfiere el calor a los materiales de contención (vasos de vidrio y crisoles de porcelana), provocando una convección forzada o asistida (F. Incopera, 1999).

El calor transferido del aire a los materiales de contención se transforma en energía térmica, cuya temperatura es igual o mayor que la temperatura a la que el agua se evapora. La temperatura en el termostato es de 120°C, aunque en el interior es capaz de alcanzar una temperatura de 260°C. El aire caliente baja hacia la base del horno y ocupa el lugar del aire frío, éste asciende, se calienta, formando y provocando transferencia de calor.

En el presente experimento es pertinente mostrar las ventajas que tiene el usar el Flavor Time para alcanzar MC, 1) El tiempo de calentamiento y enfriamiento son es cortos, 2) Es posible someter a calentamiento hasta 16 vasos de precipitados de 5 mL, 3) La radiación al ser de arriba hacia abajo y la presencia del ventilador permite que la convección fluya de forma inversa, 4) El horno tiene un

sistema de seguridad que evita el funcionamiento en caso de que el seguro no esté colocado correctamente, 5) Permite calentamientos continuos sin que haya sobrecalentamiento.

Por lo anteriormente comentado el uso de IR presenta grandes ventajas con respecto al empleo de la estufa y el horno de microondas convencional, así como el uso de vasos de precipitados.

10.5.4.4. Mechero de Bunsen, vasos y crisoles

El calentamiento mediante mechero de Bunsen se llevó a cabo por medio de la aplicación de energía calorífica de forma directa sobre los vasos de vidrio y crisoles de porcelana, mediante la exposición de los materiales de laboratorio a la flama se transfiere energía térmica, esto conlleva al aumento de temperatura y consecuentemente la pérdida de agua. Este proceso se realizó de forma semejante al de la estufa.

En la Tabla 14 se observa que el tiempo para efectuar el procedimiento de MC en ambos materiales es de 1 min, un tiempo mucho menor que el empleado en las otras formas de calentamiento, esto se debe a que el material (porcelana y vidrio) fue sometido a la flama directa en la zona de reducción (1300°C). El número de repeticiones es similar al de las empleadas con los hornos de microondas y el Flavor Time. Sin embargo, el calentamiento con mechero Bunsen presenta los siguientes inconvenientes: 1) el tiempo de enfriamiento es mucho mayor que el invertido con los hornos convencionales (20 min para crisol y 15 min para vaso), 2) Sólo se puede calentar un sistema a la vez 3) El analista queda expuesto a la flama directa, 4) Al menor descuido el material si se calienta en exceso puede proyectarse, 5) Se requiere para su funcionamiento gas propano/butano, 6) El material de contención al quedar sujeto por unas pinzas para crisol y al ser éstas metálicas se calientan exponiendo al analista a posibles quemaduras.

El uso de este tipo de calentamiento presenta grandes desventajas comparativamente con los otros tres métodos de calentamiento mencionados.

10.6. Eficiencia energética

La siguiente gráfica revela el consumo energético que cada una de las formas de calentamiento que requieren de electricidad emplea en su totalidad para que los materiales de contención lleguen a MC, es decir, las tres mediciones y tres repeticiones de ocho sistemas. Para calcularlo se empleó el siguiente factor de conversión. Se tomó como ejemplo el requerimiento energético de la estufa de secado, la etiqueta para este equipo marca que consumen 1250 W:

Tabla 20. Requerimiento energético de los métodos de calentamiento

Método de calentamiento	Potencia (W)
Estufa	1250
Horno de microondas	1000
IR	1350

$$1250 W \frac{1 kW}{1000 W} x \frac{1 h}{60 min} x 240 min = 5 kWh$$

El costo actual de kilowatt por hora corresponde a \$ 0.793, se utilizó el valor del consumo básico para el cálculo (Recibo de la Comisión Federal de Electricidad, 2018) por lo tanto, para el consumo requerido por la estufa:

$$5 \, kWh \, \frac{\$ \, 0.793}{1 \, kWh} = \$ \, 3.965$$

Figura 10. Fragmento del recibo de luz emitido por la CFE indicando el costo actual de kWh

	Lectura actual Medida 😥 Estinada 💿	Lectura anterior Medida ● Estimada ●	Total periodo	Precio (MXN)	Subtotal (MXN)
Energía (kWh)	02994	02715			
Básico			150	0.793	118.95
Intermedio			129	0.956	123.32
Suma			279		242.27

Tabla 21. Consumo de energía eléctrica

Material de laboratorio	Número y tipo de calentamiento	Cantidad de energía de entrada (W)	Tiempo óptimo de calentamiento total (min)	Gasto energético total (kW/h)	Consumo (\$)
	I. Estufa de secado	1250	240	5	3.96500
Crisol	II. Horno de microondas convencional	1000	135	0.75	0.59475
	III. IR	1350	135	1.0125	0.80291
	I. Estufa de secado	1250	180	3.75	2.97375
Vaso	II. Horno de microondas convencional	1000	5	0.5	0.39650
	III. IR	1350	5	0.675	0.53527

La tabla muestra que, tanto en el horno de microondas como en IR, el requerimiento energético es menor comparado con la estufa de secado. A pesar de que el consumo del IR es ligeramente mayor respecto al horno de microondas, indudablemente sugiere que al llevar a cabo el calentamiento mediante la irradiación con infrarrojo se minimiza la pérdida de energía en comparación con la radiación con microondas al someterse a calentamiento hasta dieciséis sistemas, lo cual significa un menor impacto ambiental, económico y energético. Lo anterior queda demostrado con el siguiente gráfico.

Gráfico 2. Consumo energético para crisoles

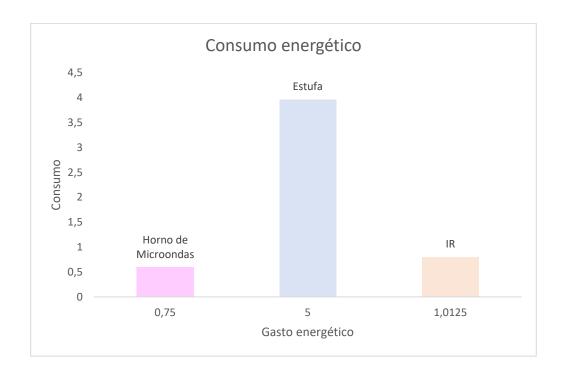
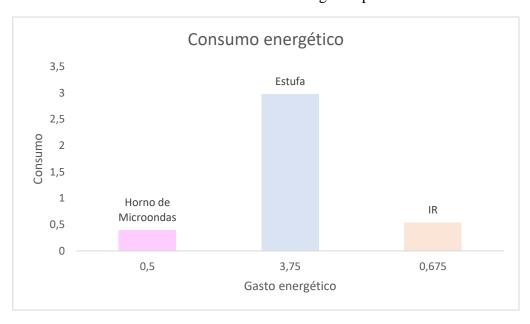



Gráfico 3. Consumo energético para vasos

Los resultados obtenidos de las cuatro formas de calentamiento para conseguir MC y el empleo de vasos de precipitados, demuestran que el uso del IR exhibe características propicias para utilizarlo en un grupo de laboratorio de enseñanza a nivel licenciatura, dado que los tiempos destinados son cortos y las actividades experimentales extensas, sería conveniente el uso de esta forma de calentamiento y tipo de material.

Otro factor de suma importancia es la cantidad total de energía consumida (reportada en Joules) por cada equipo, la cual se calcula mediante la siguiente fórmula:

$$1J = W * s$$

Para el caso particular de la estufa se emplearon 240 min, es decir, desde el inicio del calentamiento hasta llegar a MC, lo cual queda especificado a continuación.

240 min
$$\frac{60 \text{ s}}{1 \text{ min}} x \ 1250 \text{ W} = 1.8 \times 10^7 J$$

Tabla 22. Cantidad total de energía (J)

Material de laboratorio	Número y tipo de calentamiento	Cantidad de energía de entrada (W)	Tiempo óptimo de calentamiento total (s)	Gasto energético total (J)
	I. Estufa de secado	1250	1440	1.8 x 10 ⁷
Crisol	II. Horno de microondas convencional	1000	2700	2.7 x 10 ⁶
	III. IR	1350	2700	3.65×10^6
	I. Estufa de secado	1250	10800	1.35 x 10 ⁵
Vaso	II. Horno de microondas convencional	1000	1800	1.80 x 10 ⁴
	III. IR	1350	1800	2.43×10^4

Como se puede observar en la tabla el gasto energético es directamente proporcional al requerimiento energético total necesario para llevar a cabo la TMC propuesta, y al calcular la cantidad de energía requerida para estufa es notorio que es mayor comparada con la necesaria al utilizar horno de microondas y horno de IR por lo que este factor se suma a las razones por las cuales el uso de estos equipos representa una mejora significativa en la obtención de MC.

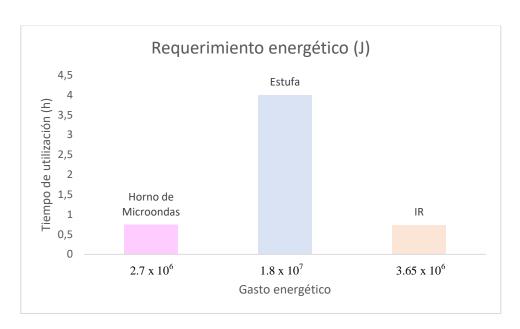


Gráfico 4. Requerimiento energético para crisoles

Gráfico 5. Requerimiento energético para vasos

La cantidad de energía requerida para cada una de las cuatro formas de calentamiento para conseguir MC y el empleo de vasos de precipitados, demuestran que el uso del IR muestra peculiaridades que lo favorecen para utilizarlo en un grupo de laboratorio de docencia experimental a nivel licenciatura, puesto que de esta forma se genera un ahorro significativo de la energía gastada enseñando a los alumnos la importancia del uso de energías no convencionales.

10.7. Análisis gráfico y estadístico de la determinación del número de moles de agua para el cloruro de níquel usando mechero de Bunsen para la deshidratación previa obtención de MC con diferentes formas de calentamiento.

A continuación, se muestran las Gráfica 4 y 5, así como la Tabla 20 con los valores estadísticos del m.m.c para determinar el número de moles de agua.

Gráfico 6. m.m.c. de la determinación de moles de cloruro de níquel por medio de crisoles

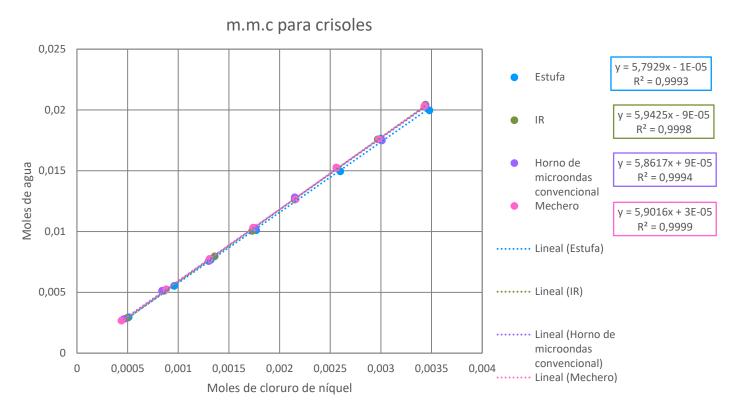


Gráfico 7. m.m.c. de la determinación de moles de cloruro de níquel por medio de vasos

Tabla 23. Parámetros estadísticos del m.m.c

Tipo de calentamient	Tipo de	Tipo de calentamiento	Númer o de	m	h	b r	Tiempo (min)	
o para MC	material	para deshidratar	moles*	***				$ ig egin{array}{c} abla $
Estufa (E)				6.0717	2 x 10-4	0.9997	20	6
Mechero (M)	Vaco			5.7593	3 x 10-4	0.9994	1	15
Horno de microondas (Hµ)	Vaso			5.9696	7 x 10-5	0.9998	5	5
IR		Mechero	6.0	5.8040	1 x 10-4	0.9997	5	5
Estufa (E)	Crisol	Mechero	0.0	5.7929	1 x 10-5	0.9996	20	15
Mechero (M)				5.9016	3 x 10-5	0.9999	1	20
Horno de microondas (Hµ)				5.8617	9 x 10-5	0.9994	5	10
IR				5.9425	9 x 10-5	0.9997	5	8

^{*}Reportado en el marbete del reactivo

Los resultados registrados en la Tabla 20, reúnen los dos tipos de material empleados, así como los tipos de calentamiento y tiempo necesario para llevar a cabo éste y su posterior enfriamiento. Con el propósito de establecer la comparación entre los factores que influyen en la obtención de MC se seguirá el siguiente orden.

En cuanto al valor de la pendiente es importante comentar que cuando la MC se obtiene con crisol e IR el resultado es 5.8947 y cuando se trabaja con horno de microondas y vasos de precipitados el resultado es 5.9696, este valor como se ha comentado representa el número de moles de agua presentes en la sal de cloruro de níquel (NiCl·6H₂O), muy cercano al valor real.

Los valores de la ordenada al origen tanto para IR como para horno de microondas, vasos de precipitados y crisol son del orden de 10⁻⁵ y estadísticamente representa la cantidad de agua que aún estaba presente en el material a pesar del secado.

En lo referente a r, se presenta una diferencia en la cuarta cifra significativa (\pm 1, 0.9997); se obtiene un mejor resultado para horno de microondas y vasos ($H\mu/v$), seguido de IR y crisol (IR/c), así como de IR y vaso (IR/v), el valor más bajo es para horno de microondas y crisol ($H\mu/c$).

$$0.9999 > 0.9998 > 0.9997 \sim 0.9997 > 0.9996 > 0.9994$$
 M/c H μ /v IR/v IR/c E/c H μ /c

En resumen, una vez más se constata que el uso de IR y vasos y el tiempo de calentamientoenfriamiento es consistente con el análisis de MC. En cuanto a estufa y mechero Bunsen aunque los resultados son buenos, debido a las desventajas que han sido comentadas (sección 11.5.4) se sugiere que se evite en la medida de lo posible utilizar esas formas como medios de calentamiento para obtención de MC. Sin embargo y sin duda alguna el uso de mechero de Bunsen provee valores correctos en la obtención del número de moles de agua presentes en la sal al ser el único método para obtener la deshidratación.

10.8. Resultados de la obtención de masa constante con cuatro formas de calentamiento y dos tipos de material. Obtención del número de moles de cuatro sales (cloruro de manganeso tetrahidratado, cloruro de cobre dihidratado, cloruro de bario dihidratado y cloruro de estaño dihidratado).

Los resultados para el número de moles de cada sal, después de la obtención de MC, se muestran en la siguiente tabla, (la obtención de MC, cálculo de masa de la sal y masa del agua, así como la determinación del número de moles en cada repetición se encuentran en los anexos 13.1 al 13.5, incluidos en el disco compacto adjunto). Calentamiento para la obtención de MC por estufa

Tabla 24. Parámetros estadísticos del m.m.c para cada sal. Crisoles

Tipo de calentamiento para MC	Tipo de calentamiento para deshidratar	Número de moles*	m	b	r
BaCl ₂ · 2H ₂ O		2	2.0053	0.00004	0.9998
CuCl ₂ · 2H ₂ O	Mechero	2	2.0216	0.00020	0.9968
MnCl ₂ · 4H ₂ O		4	3.8980	0.00005	0.9946
SrCl ₂ · 6H ₂ O		6	6.2131	0.0002	0.9997

^{*}Reportado en el marbete

Tabla 25. Parámetros estadísticos del m.m.c para cada sal. Vasos

Tipo de calentamiento para MC	Tipo de calentamiento para deshidratar	Número de moles*	m	b	r
BaCl ₂ · 2H ₂ O	Mechero	2	1.9460	0.00008	0.9981
$CuCl_2 \cdot 2H_2O$		2	2.0820	0.00020	0.9956
$MnCl_2 \cdot 4H_2O$		4	3.8813	0.000005	0.9984
SrCl ₂ · 6H ₂ O		6	5.9449	0.0000005	0.9996

^{*}Reportado en el marbete

10.9. Acercamiento a la Química Verde

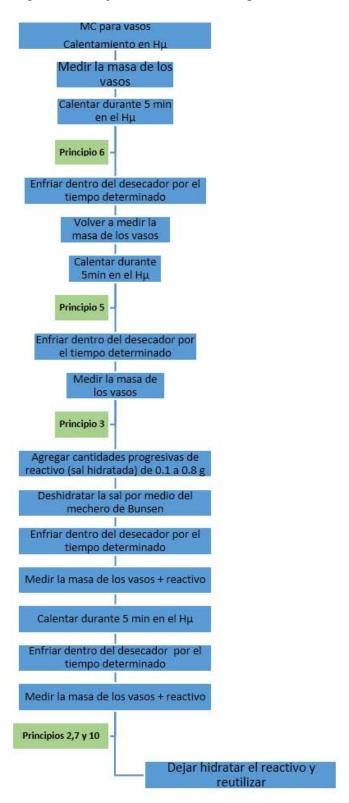
Dado que el desarrollo experimental se llevó a cabo dentro del contexto de la QV, en este sentido se hace adecuado resaltar los siguientes principios abarcados durante la experimentación. Se presenta el caso particular del m.m.c. para las cuatro formas de calentamiento, dos materiales de contención, así como la obtención del número de moles de agua para el cloruro de níquel.

Los principios de la QV en los que subyace el presente experimento son los siguientes:

Principio 6. Diseño para la eficiencia energética porque al emplear las irradiaciones de microondas e IR en la consecución de la MC hay un menos gasto de energía comparado con el uso de la estufa y del mechero.

Principio 5. Utilizar disolventes y condiciones seguras de reacción, en ningún momento se emplea disolventes y las condiciones seguras de reacción obedecen a que se emplea el horno de microondas y la estufa de convección

Principio 3. Realizar síntesis química menos peligrosa, aunque precisamente no se trata de una síntesis al emplear cantidades pequeñas no se genera toxicidad.


Principio 2. Maximizar la economía atómica, todos los materiales durante la deshidratación de la sal se incorporan todo el reactivo colocado en el material de contención.

Principio 7. Utilizar materias primas renovables, la sal hidratada empleada toda vez deshidratada se deja expuesta a la intemperie y parte de ella se puede hidratar o bien reutilizar como reactivo.

Principio 10. Diseñar productos fácilmente degradables al final de su vida útil, al finalizar la experimentación los reactivos químicos empleados no persisten en el ambiente y siempre quedan a resguardo para su reúso.

Principio 1. Prevenir la generación de residuos, en todo momento se evita la formación de residuos porque el reactivo utilizado se deja hidratar o se reutiliza. El siguiente diagrama muestra en forma resumida lo anteriormente comentado

Figura 11. Diagrama de flujo, acercamiento a la química verde

11. CONCLUSIONES

En este trabajo se propusieron dos nuevas formas de calentamiento para obtener MC de material de contención, horno de microondas convencional e IR, ambas se evaluaron y compararon con formas de calentamiento tradicionalmente empleadas en un laboratorio experimental (estufa y mechero de Bunsen) y finalmente esos materiales se utilizaron para la determinación de agua en cloruros hidratados. Al analizar los resultados se confirma que se logró determinar el tiempo que se requiere para llevar a MC los materiales de contención, vasos y crisoles, reduciendo de forma importante el tiempo necesario para la obtención de MC, sin comprometer la calidad de los resultados obtenidos.

Mediante el análisis de resultados se concluye que es posible llevar a cabo la TMC transitando en la QV, pues ambas formas de calentamiento alternas utilizadas microondas e IR representan menos riesgos para el analista, debido a que la exposición a la energía generada es mínima, por lo que es posible llevar a cabo el análisis de forma adecuada y con seguridad.

Se encontraron alternativas amigables con el MA, sin comprometer la calidad y veracidad de los resultados obtenidos, y se demostró que la utilización de IR es la mejor alternativa para obtener MC de los vasos de vidrio y crisol, en comparación con el horno de microondas, estufa y mechero de Bunsen con vasos de vidrio y crisol.

Para el caso particular de la determinación de moléculas de agua contenidas en los cloruros metálicos analizados se logró cuantificar las moléculas de agua sin generar residuos con el uso del mechero de Bunsen, previa utilización de la obtención de la MC tanto de los materiales de contención como de la sal mediante los hornos de convección y microondas convencionales de manera que el gasto energético implicado se disminuyó considerablemente respecto al requerido con la utilización de estufa y mechero de Bunsen para el mismo procedimiento.

Las moléculas de agua enlazadas a las sales se cuantificaron a través del m.m.c, debido a que de la pendiente que se obtiene de la regresión lineal indica la cantidad de moles agua que se tienen por cada mol de sal.

Este experimento representa un claro ejemplo de cómo es posible avanzar o transitar hacía una QV que tiene como premisa la prevención de residuos esto se confirma al lograr reducir las cantidades de reactivo utilizadas obteniendo los mismos resultados desde 0.1 g hasta 0.8 g, teniendo cantidades menores de residuos los cuales además son fáciles de tratar ya que se pueden rehidratar y reutilizar dependiendo del tipo de sal utilizada.

Se logró calcular la cantidad de moléculas de agua enlazadas en los cloruros hidratados utilizados mediante regresión lineal, corroborando que el método es confiable al corresponder con el número de moles reportado en el marbete.

12. REFERENCIAS

- I. Anastas, P.T., Warner, J. C., (1998). *Green Chemistry: Theory and Practice*. Oxford University Press, N. Y.
- II. Carrillo, Ch. M., González, M. R., Hernández, M. G., (2002). *Microescala. Química General.*, *Manual de Laboratorio*. Cuarta edición. México. Prentice-Hall/Pearson.
- III. Morales, G., Martínez J., Reyes L., Martín O., Arroyo G., Obaya A., Miranda R. *Educ. quím.*, 22(3), 240-248, 2011.
- IV. Harris, D.C., (2007). Análisis Químico Cuantitativo. Sexta edición. España. Reverté.
- V. Meléndez, C. O., Camacho, A. A. Química Verde, La Química del Nuevo Milenio. *Synthesis* 45. *Aventuras del Pensamiento*. Facultad de Ciencias Químicas. Universidad de Chihuahua., 2008.
- VI. Baird, C., Cann, M., (2012). Química Ambiental. Segunda edición. España. Reverté.
- VII. Gómez, B. R., (1987). Del Desarrollo Sostenible Según Bruntland a la Sostenibilidad Como Biomesis. Universidad del País Vasco. Hegoa,
- VIII. Slater, A. (2014). *Ciencia a Pequeña Escala*. Primera edición. Green teacher. Education for planet earth.
- IX. Sierra, A., Meléndez, L., Ramírez, A., Arroyo, M., (2014). La Química Verde y El Desarrollo Sustentable. *RIDE*, *5*(9).
- X. Royal Society of Chemistry (2017). Royal Society of Chemistry: Green chemistry. Cambridge, UK.: Thomas Graham House. Recuperado el 24 de noviembre de 2017 de: http://www.rsc.org/journals-books-databases/about-journals/green-chemistry/
- XI. Luzardo, M., (2011). Química Analítica UNEXPO. México. Recuperado el 24 de noviembre de 2017 de: https://analiticaunexpo.wordpress.com/2011/11/05/guia-de-la-prof-marisela-luzardo/
- XII. Cantú, L., y Cruz, B, R., (2016). Fundamentos de la Práctica en el Laboratorio de Química Inorgánica. Primera edición. México. Universidad Autónoma de México.
- XIII. Arnaíz, F., Pike, R., Microescala en los Laboratorios de Química. Una solución Imparable. *Laboratorio de Química. Anales de la Real Sociedad Española de Química.*45. 1999.
- XIV. Pájaro, N., Olivero, J. QUÍMICA VERDE: UN NUEVO RETO. *Ciencia e Ingeniería Neogranadina*. 21 (2): 169-182, 2011. [Fecha de consulta: 4 de enero de 2018]. Disponible en: http://www.redalyc.org/articulo.oa?id=91123440009 http://www.redalyc.org/pdf/911/91123440009.pdf
- XV. UNESCO. (1980). La educación ambiental. Las grandes orientaciones de la Conferencia de Tbilisi. Primera edición. París. Imprimirie des Presses
- XVI. Novo, M., (2009). La Educación ambiental, una genuina educación para el desarrollo sostenible. UNED.

- XVII. González, M., (1996). Obtención del espinel MgAl₂O₄ utilizando Microondas como Fuente de Energía. (tesis de maestría). Universidad Autónoma de Nuevo León, Nuevo León, México.
- XVIII. Michael, D., Mingos, P. y Baghrust, R. Applications of microwave dielectric heating effects to synthetic problems in chemistry. *Chem. Soc.Rev.* 20, 1-47. 1991.
 - XIX. Cano, A., Montiel. (2008). Uso de Microondas para el calentamiento de alimentos. *Temas selectos de Ingeniería en alimentos*. 2. 58-65. 2008.
 - XX. García, F., (2005). Síntesis de 3,3'-Diindolilmetano empleando una arcilla bentonitica y diferentes fuentes de energía (microondas, infrarrojo y ultrasonido). (tesis de licenciatura). UNAM.FESC México.
- XXI. Jiménez, E., (2014). Síntesis, purificación y caracterización de 2-Aril-1-Arilmetil-1H-Benzimidazoles mediante el empleo de energía infrarroja. (tesis de licenciatura). UNAM.FESC, México
- XXII. Larios, A. La energía renovable en México. *Economía Informa*. 385, 90-99. 2014.
- XXIII. González, E., (2016). Síntesis de compuestos derivados del piridinildiindolilmetano empleando diferentes fuentes de energía. (tesis de licenciatura). UNAM.FESC.
- XXIV. Trejo, Y., (2009). Estudio fisicoquímico y determinación del poder catalítico de un suelo originario de Ciudad Delicias, Chihuahua. Una contribución al acervo de la Química Verde. (tesis de licenciatura). UNAM.FESC.
- XXV. Ramírez, D., (2016). Extracción de α-,β-amirina,un posible ingrediente funcional para alimentos, de Taraxacum offinale empleando un método de Química verde. (tesis de licenciatura). UNAM. Facultad de Química.
- XXVI. Salinas, P. y Sánchez E., La química verde en la síntesis de nanoestructuras. *Ingenierías*, 54, 7-16, Facultad de ciencias físico-matemáticas, UANL, 2012.
- XXVII. Quintas, L. (2015). *Metodología analítica verde para determinar Cadmio en Sedimentos*. (tesis de licenciatura). Universidad de Coruña. Facultad de Ciencias.
- XXVIII. Campos, O., (2015). Alternativas para la síntesis a nivel micro escala de 2,3-difenilquinoxalina utilizando diferentes catalizadores y formas de calentamiento dentro del marco de la química verde. (tesis de licenciatura). UNAM. Facultad de Ouímica.
 - XXIX. Saavedra, Y. y González, S. (2007). Polimerización de acrilatos mediante el contexto de la Química Verde, y empleando microondas como fuente de activación; preparación de polímero floculante N-óxido polidimetilaminoetil metacrilato. (tesis de Licenciatura). UNAM. FESC.
 - XXX. Jiménez, E. (2014). Síntesis, purificación y caracterización de 2-Aril-1-Arilmetil-1H-Benzimidazoles mediante el empleo de energía infrarroja. (tesis de licenciatura). UNAM. FESC.
 - XXXI. UNESCO. (2012). Education for Sustainable Development Sourcebook. Primera edición. Francia. UNESCO.
- XXXII. Barrera, F. (2016). Síntesis de 2-aril-1arilmetil-1H-benzimidazoles mediante el empleo simultáneo de energías de infrarrojo y ultrasonido. (tesis de licenciatura). UNAM. FESC.

- XXXIII. Martínez, J. (2013). Síntesis de heterociclos derivados de Boro, mediante el protocolo de la Química Verde y su evaluación farmacológica. (tesis de doctorado). UNAM. FESC.
- XXXIV. Villamil, J., (2005), Manual de mantenimiento para equipo de laboratorio. Primera Edición. Washington. Organización Panamericana de la Salud.
- XXXV. Bernal, J., Beyhart, A., Correa, A., Gutiérrez, M., Serna, A. y Valdez, M., (2008). *Manual de Prácticas de Química I y II*. México. Universidad Autónoma de Aguascalientes.
- XXXVI. Pérez, E. y Reyes. (2013). Mecanismos de transferencia de calor que ocurren en tratamientos térmicos de alimentos. *Temas selectos de Ingeniería en alimentos*. 7-1. 37-47. 2013.*
- XXXVII. Nahle, N. TRANSFERENCIA DE CALOR. *Biology Cabinet*. 2006. [Fecha de consulta: 8 de abril de 2018]. Disponible en: http://www.biocab.org/Transferencia_Calor.html
- XXXVIII. Carlsaw, H. S. y Jaeger, L.C. (1959). *Conduction of Heat in Solids*. Sexta edición. Oxford University Press. Amen House. London.
 - XXXIX. Martínez, I. (1992). Termodinámica clásica y aplicada. Primera edición. España. Dossat.
 - XL. San Román, E., Castillo, P., González, F., y Zenteno, E. (2014). *Aplicaciones y Teoría de Ingeniería de Microondas*. Primera edición. Proyecto LATIn.
 - XLI. Rouhi, M. Green Chemistry for Pharma. *Tecnología científica*. 80 (16): 30-33, 2002. [Fecha de consulta: 17 de junio de 2018]. Disponible en: http://pubs.acs.org/cen/government/83/8016sci1.html
 - XLII. Askeland, D. y Wright, W. (2016). Ciencia e ingeniería de materiales. Séptima edición. México.
 - XLIII. Chang, R. y College, W. (2002). *Química*. Séptima edición. México.
 - XLIV. Restrepo, V. y Cadavid A., (2013). Horno de microondas, su funcionamiento, mitos y realidades, y una medida de la velocidad de la luz. *Research Gate*. Universidad de Antoquia. Colombia.
 - XLV. Fernández, M., (2003), El vidrio. Tercera edición. España.
 - XLVI. García, V., Galindo, H., Torres, T. y Rondón, R. (s/f). La molécula de agua y el efecto microondas. Departamento de Física. Universidad de los Andes.
 - XLVII. Diez, V. (s/f). Arcillas minerales y pastas cerámicas. Ficha técnica.
 - XLVIII. Reyes, L. (2012). Aporte de la Química Verde a la construcción de una ciencia socialmente responsable. *Educ. quím.*, 23(2), 222-229, 2012.
 - XLIX. Cortés H. y Peña J. (2015). De la sostenibilidad a la sustentabilidad. Modelo de desarrollo sustentable para su implementación en políticas y proyectos. *Revista Escuela de Administración*

- de Negocios [en linea], 78, 40-54, 2015. [Fecha de consulta: 5 de octubre de 2018] Disponible en: http://www.redalyc.org/articulo.oa?id=20640430004
- L. Ibarguengoitia, Martha., Ibáñez, G. y García, E. (2004). Química en microescala. *Educ. quím.*, 17(2), 184-186, 2004.
- LI. Skoog, D., West, D., Holler, F. y Crouch, S. (2001). *Química Analítica*. Séptima Edición. México.
- LII. Fontal, B. (2005), El espectro electromagnético y sus aplicaciones. Primera edición. Venezuela.
- LIII. Manual de mantenimiento para equipo de laboratorio. (2005). Washington, DC.
- LIV. Rouhi, M. (2002). Green Chemistry for Pharma. Science & Technology., 80(16), 30-33, 2002.
- LV. Franco, K., Penieres, G., García, O., Hernández, O y Álvarez, C. (1996). A modification to the Hantzsch method to obtain pyridines in one por reaction: use of a bentonitic clay in a dry medium. *Heterocyclic comunications*. Atlanta. Georgia.
- LVI. Martínez, O. (2013). Síntesis de heterociclos derivados de boro, mediante el protocolo de la química verde y su evaluación farmacológica. (tesis de maestría). UNAM. FESC.
- LVII. Noguéz, O. (2014). Síntesis de ésteres de Bis-Biginelli, Biginelli-Hantzsch y Bis-Meldrum, con un enfoque de química verde. (tesis de doctorado). UNAM. FESC.
- LVIII. Rodríguez, A. (2017). Formación de derivados de capsaicina con posible actividad farmacológica, empleando estrategias verdes. (tesis de licenciatura). UNAM. FESC.
- LIX. Mendoza, P. (2017). Estudio comparativo para la extracción de perezona de Acourtia cordata empleando fuentes alternativas de activación. (tesis de licenciatura). UNAM. FESC.
- LX. Miranda. R. (2010). *Prácticas de laboratorio de Química Orgánica Verde*. Primera edición. México.
- LXI. Conant, J. y Faden, P. (2011). *Guía comunitaria para la salud ambiental*. Primera edición. Hesperian health guides. EE. UU.
- LXII. Martín, C. (2008). Agentes Físicos Terapéuticos. Primera Edición. Cuba.
- LXIII. Unesco, (2019). [Fecha de consulta: 26 de enero de 2019]. Disponible en: https://es.unesco.org/
- LXIV. UNESCO, (2014). Educación para el Desarrollo Sostenible 2014. Conferencia Mundial, Aichi-Nagoya. Japon.

- 13. ANEXOS
- 13.1. Anexo 1 cloruro de níquel hexahidratado (NiCl₂·6H₂O)
- 13.2. Anexo 2 cloruro de bario dihidratado ($BaCl_2 \cdot 2H_2O$)
- 13.3. Anexo 3 cloruro de manganeso tetrahidratado (MnCl₂·4H₂O)
- 13.4. Anexo 4 cloruro de cobre dihidratado (CuCl₂·2H₂O)
- 13.5. Anexo 5 cloruro de estroncio hexahidratado (SrCl₂·6H₂O)

Anexos correspondientes al disco compacto asociado a la tesis

Anexo 1 cloruro de níquel hexahidratado (NiCl₂·6H₂O)

Calentamiento por IR para llevar crisoles a MC.

Tabla 1. Resultados de la primera repetición para llevar crisoles a MC, calentamiento por horno de convección.

Número de

		medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.9848	24.9838	24.9843	24.9843	0.0005	0.0020
2	26.7586	26.7579	26.7574	26.7580	0.0006	0.0022
3	28.0530	28.0528	28.0526	28.0528	0.0002	0.0007
4	28.4926	28.4919	28.4914	28.4920	0.0006	0.0021
5	23.8062	23.8053	23.8048	23.8054	0.0007	0.0029
6	41.8763	41.8756	41.8754	41.8758	0.0005	0.0011
7	28.1629	28.1620	28.1612	28.1620	0.0009	0.0030
8	27.9011	27.9009	27.9100	27.9040	0.0052	0.0186

Tabla 2. Resultados de la segunda repetición para llevar crisoles a MC, calentamiento por horno de convección.

Número de				
medición de la				
masa del crisol				

Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.9340	24.9331	24.9331	24.9334	0.0005	0.0020
2	26.7044	26.7039	26.7033	26.7039	0.0006	0.0021
3	27.9955	27.9947	27.9948	27.9950	0.0004	0.0015
4	28.4347	28.4333	28.4335	28.4338	0.0008	0.0026
5	23.7574	23.7565	23.7567	23.7569	0.0005	0.0020
6	41.7912	41.7907	41.7907	41.7909	0.0003	0.0007
7	28.1059	28.1046	28.1049	28.1051	0.0007	0.0024
8	27.8439	27.8429	27.8429	27.8432	0.0006	0.0020

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por horno de convección.

Número de				
medición de la				
masa del crisol				

Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.9856	24.9848	24.9839	24.9848	0.0009	0.0034
2	26.7595	26.7579	26.7578	26.7584	0.0001	0.0036
3	28.0529	28.0519	28.0519	28.0522	0.0006	0.0020
4	28.4919	28.4916	28.4912	28.4916	0.0004	0.0012
5	23.8346	23.8242	23.8239	23.8276	0.0061	0.0256
6	41.8754	41.8751	41.8753	41.8753	0.0002	0.0004
7	28.1621	28.1619	28.1620	28.1620	0.0001	0.0003
8	27.9005	27.9003	27.9000	27.9003	0.0003	0.0009

Tabla 4. Determinación de masa de $NiCl_2$. Modo de calentamiento: horno de convección Primera repetición

Crisol	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del crisol y NiCl ₂ * (g)	Diferencia del crisol con NiCl ₂ y crisol a MC (g)	Masa NiCl ₂ (g)
1	0.1007	25.0407	25.0407- 24.9843	0.0564
2	0.2015	26.8679	26.8679- 26.7574	0.1105
3	0.3283	28.2361	28.2361- 28.0526	0.1835
4	0.4106	28.7222	28.7222- 28.4914	0.2308
5	0.5056	24.0865	24.0865- 23.8048	0.2817
6	0.6035	42.2106	42.2106- 41.8754	0.3352
7	0.7003	28.5402	28.5402- 28.1612	0.3790
8	0.8152	28.3518	28.3518- 27.9100	0.4418

Tabla 5. Determinación de masa de $NiCl_2$. Modo de calentamiento: horno de convección Segunda repetición

Crisol	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del crisol y NiCl ₂ * (g)	Diferencia del crisol con NiCl ₂ y crisol a MC (g)	Masa NiCl ₂ (g)
1	0.1170	24.9983	24.9983-24.9331	0.0652
2	0.2033	26.8138	26.8138-26.7033	0.1105
3	0.3183	28.1701	28.1701-27.9948	0.1753
4	0.4011	28.6541	28.6541-28.4335	0.2206
5	0.5023	24.0322	24.0322-23.7567	0.2755
6	0.6029	42.1198	42.1198-41.7907	0.3291
7	0.7006	28.4966	28.4966-28.1049	0.3917
8	0.8174	28.3017	28.3017-27.8429	0.4588

Tabla 6. Determinación de masa de $NiCl_2$. Modo de calentamiento: horno de convección Tercera repetición

Crisol	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del crisol y NiCl ₂ * (g)	Diferencia del crisol con NiCl ₂ y crisol a MC (g)	Masa NiCl ₂ (g)
1	0.1301	25.0545	25.0545- 24.9839	0.0706
2	0.2111	26.8756	26.8756- 26.7578	0.1178
3	0.3154	28.2244	28.2244- 28.0519	0.1725
4	0.4068	28.7145	28.7145- 28.4912	0.2233
5	0.5142	24.1063	24.1063- 23.8239	0.2824
6	0.6194	42.2154	42.2154- 41.8753	0.3401
7	0.7054	28.5471	28.5471- 28.1620	0.3851
8	0.8142	28.3415	28.3415- 27.9000	0.4415

^{*} Los datos representan la segunda medición de MC del crisol y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O (g)
0.1007-0.0564	0.0443
0.2015-0.1105	0.0910
0.3283-0.1835	0.1448
0.4106-0.2308	0.1798
0.5056-0.2817	0.2239
0.6035-0.3352	0.2683
0.7003-0.3790	0.3213
0.8152-0.4418	0.3734

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O (g)
0.1170-0.0652	0.0518
0.2033-0.1105	0.0928
0.3183-0.1753	0.1430
0.4011-0.2206	0.1805
0.5023-0.2755	0.2268
0.6029-0.3291	0.2738
0.7006-0.3917	0.3089
0.8174-0.4588	0.3586

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O (g)
0.1301-0.0706	0.0595
0.2111-0.1178	0.0933
0.3154-0.1725	0.1429
0.4068-0.2233	0.1835
0.5142-0.2824	0.2318
0.6194-0.3401	0.2793
0.7054-0.3851	0.3203
0.8142-0.4415	0.3727

Tabla 10. Promedio de MC de tres repeticiones

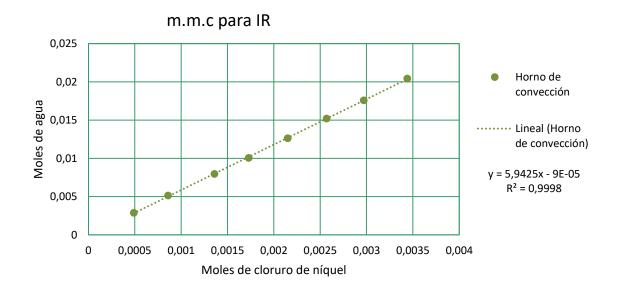
Crisol	Masa inicial crisol (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	24.9681	24.9672	24.9671	24.9675	0.0006	0.0022
2	26.7408	26.7399	26.7395	26.7401	0.0007	0.0025
3	28.0338	28.0331	28.0331	28.0333	0.0004	0.0014
4	28.4731	28.4723	28.4720	28.4725	0.0005	0.0019
5	23.7994	23.7953	23.7951	23.7966	0.0024	0.0101
6	41.8476	41.8471	41.8471	41.8473	0.0003	0.0007
7	28.1436	28.1428	28.1427	28.1431	0.0005	0.0018
8	27.8818	27.8814	27.8843	27.8825	0.0016	0.0056

Tabla 11. Moles de NiCl₂ y H₂O. Primera repetición.

Crisol	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0025
2	0.0009	0.0051
3	0.0014	0.0080
4	0.0019	0.0100
5	0.0022	0.0124
6	0.0026	0.0149
7	0.0029	0.0178
8	0.0034	0.0207

Tabla 12. Moles de $NiCl_2$ y H_2O . Segunda repetición.

Crisol	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0029
2	0.0009	0.0052
3	0.0014	0.0079
4	0.0017	0.0100
5	0.0021	0.0126
6	0.0025	0.0152
7	0.0030	0.0171
8	0.0035	0.0199


Tabla 13. Moles de NiCl $_2$ y H_2O . Tercera repetición.

Crisol	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0033
2	0.0009	0.0051
3	0.0013	0.0079
4	0.0017	0.0101
5	0.0022	0.0129
6	0.0026	0.0155
7	0.0030	0.0178
8	0.0034 0.0207	

Tabla 14. Promedio de moles de H_2O y $NiCl_2$ de las tres repeticiones

Crisol	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0029
2	0.0009	0.0051
3	0.0014	0.0080
4	0.0017	0.0101
5	0.0022	0.0126
6	0.0026	0.0152
7	0.0030	0.0176
8	0.0034	0.0204

Gráfica 1. m.m.c para crisoles calentamiento mediante IR

Calentamiento por horno de microondas para llevar crisoles a MC

Tabla 1. Resultados de la primera repetición para llevar crisoles a MC, calentamiento por horno de microondas.

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.9847	24.983	24.9831	24.9836	0.0010	0.0038
2	31.9085	31.9063	31.9066	31.9071	0.0012	0.0037
3	28.0525	28.0512	28.0516	28.0518	0.0007	0.0024
4	28.4922	28.4917	28.4914	28.4918	0.0004	0.0014
5	23.8039	23.8033	23.8031	23.8034	0.0004	0.0017
6	41.8767	41.8746	41.8748	41.8754	0.0012	0.0028
7	28.1637	28.1614	28.1619	28.1623	0.0012	0.0043
8	27.9007	27.8999	27.8996	27.9001	0.0006	0.0020

Tabla 2. Resultados de la segunda repetición para llevar crisoles a MC, calentamiento por horno de microondas.

Número de
medición de la
masa del crisol

Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.5768	24.5732	24.5732	24.5744	0.0021	0.0085
2	26.1057	26.1013	26.1013	26.1028	0.0025	0.0097
3	24.8684	24.8651	24.8655	24.8663	0.0018	0.0072
4	28.4922	28.4898	28.4894	28.4905	0.0015	0.0053
5	28.0526	28.0499	28.0504	28.0510	0.0014	0.0051
6	28.1627	28.1601	28.1605	28.1611	0.0014	0.0050
7	24.5259	24.5237	24.5239	24.5245	0.0012	0.0050
8	27.9008	27.8984	27.8983	27.8992	0.0014	0.0051

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por horno de microondas.

Número de				
medición de la				
masa del crisol				

Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.5770	24.5732	24.5732	24.5745	0.0022	0.0089
2	26.1060	26.1013	26.1014	26.1029	0.0027	0.0103
3	24.8696	24.8646	24.8651	24.8664	0.0028	0.0111
4	28.4922	28.4897	28.4896	28.4905	0.0015	0.0052
5	28.0527	28.0499	28.0501	28.0509	0.0016	0.0056
6	28.1630	28.1601	28.1604	28.1612	0.0016	0.0057
7	24.5262	24.5239	24.5238	24.5246	0.0014	0.0055
8	27.9002	27.8985	27.8987	27.8991	0.0009	0.0033

Tabla 4. Determinación de masa de NiCl₂. Modo de calentamiento: horno de microondas Primera repetición

Crisol	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del crisol y NiCl ₂ * (g)	Diferencia del crisol con NiCl ₂ y crisol a MC (g)	Masa NiCl ₂ (g)
1	0.1175	25.0480	25.0480-24.9831	0.0646
2	0.2070	32.0197	32.0197-31.9066	0.1131
3	0.3057	28.2215	28.2215-28.0516	0.1695
4	0.4192	28.7214	28.7214-28.4914	0.2298
5	0.5265	24.0920	24.0920-23.8031	0.2888
6	0.6181	42.2169	42.2169-41.8748	0.3423
7	0.7016	28.6000	28.6000-28.1619	0.3876
8	0.8360	28.3617	28.3617-27.8996	0.4623

Tabla 5. Determinación de masa de $NiCl_2$. Modo de calentamiento: horno de microondas Segunda repetición

Crisol	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del crisol y NiCl ₂ * (g)	Diferencia del crisol con NiCl ₂ y crisol a MC (g)	Masa NiCl ₂ (g)
1	0.1163	24.6369	24.6369-24.5732	0.0637
2	0.2014	26.2101	26.2101-26.1013	0.1088
3	0.3050	25.0343	25.0343-24.8655	0.1688
4	0.4036	28.7136	28.7136-28.4894	0.2242
5	0.5013	28.3258	28.3258-28.0504	0.2754
6	0.6040	28.4947	28.4947-28.1605	0.3342
7	0.7048	24.9101	24.9101-24.5239	0.3862
8	0.8061	28.3430	28.3430-27.8983	0.4447

Tabla 6. Determinación de masa de NiCl₂. Modo de calentamiento: horno de microondas

Tercera repetición

Crisol	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del crisol y NiCl ₂ * (g)	Diferencia del crisol con NiCl ₂ y crisol a MC (g)	Masa NiCl ₂ (g)
1	0.1004	24.6280	24.6280-24.5732	0.0548
2	0.2002	26.2102	26.2102-26.1014	0.1088
3	0.3063	25.0348	25.0348-24.8651	0.1697
4	0.4192	28.7212	28.7212-28.4896	0.2316
5	0.5061	28.3271	28.3271-28.0501	0.2770
6	0.6021	28.4838	28.4838-28.1604	0.3234
7	0.7101	24.9215	24.9215-24.5238	0.3977
8	0.8011	28.3334	28.3334-27.8987	0.4347

^{*} Los datos representan la segunda medición de MC del crisol y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O (g)
0.1175-0.0646	0.0529
0.2070-0.1131	0.0939
0.3057-0.1695	0.1362
0.4192-0.2298	0.1894
0.5265-0.2888	0.2377
0.6181-0.3423	0.2758
0.7016-0.3876	0.3140
0.8360-0.4623	0.3737

Tabla 8. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Segunda repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O (g)
0.1163-0.0637	0.0526
0.2014-0.1088	0.0926
0.3050-0.1688	0.1362
0.4036-0.2242	0.1794
0.5013-0.2754	0.2259
0.6040-0.3342	0.2698
0.7048-0.3862	0.3186
0.8061-0.4447	0.3614

Tabla 9. Cálculo para la obtención de la masa de H₂O. Tercera repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O (g)
0.1004-0.0548	0.0456
0.2002-0.1088	0.0914
0.3063-0.1697	0.1366
0.4192-0.2316	0.1876
0.5061-0.2770	0.2291
0.6021-0.3234	0.2787
0.7101-0.3977	0.3124
0.8011-0.4347	0.3664

Tabla 10. Promedio de MC de tres repeticiones

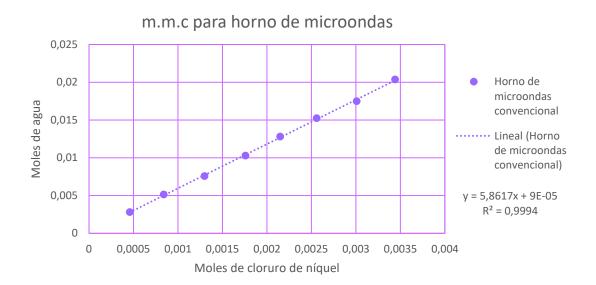
Crisol	Masa inicial crisol (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	24.7128	24.7098	24.7098	24.7108	0.0017	0.0070
2	28.0401	28.0363	28.0364	28.0376	0.0021	0.0076
3	25.9302	25.9270	25.9274	25.9282	0.0017	0.0067
4	28.4922	28.4904	28.4901	28.4909	0.0011	0.0039
5	26.6364	26.6344	26.6345	26.6351	0.0011	0.0042
6	32.7341	32.7316	32.7319	32.7325	0.0014	0.0042
7	25.7386	25.7363	25.7365	25.7372	0.0013	0.0049
8	27.9006	27.8989	27.8989	27.8995	0.0010	0.0034

Tabla 11. Moles de $NiCl_2$ y H_2O . Primera repetición.

Crisol	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0029	0.0005
2	0.0052	0.0009
3	0.0076	0.0013
4	0.0105	0.0018
5	0.0132	0.0022
6	0.0153	0.0026
7	0.0174	0.0030
8	0.0207	0.0036

Tabla 12. Moles de NiCl₂ y H₂O. Segunda repetición.

Crisol	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0029	0.0005
2	0.0051	0.0008
3	0.0076	0.0013
4	0.0100	0.0017
5	0.0125	0.0021
6	0.0150	0.0026
7	0.0177	0.0030
8	0.0201	0.0034


Tabla 13. Moles de $NiCl_2$ y H_2O . Tercera repetición.

Crisol	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0025	0.0004
2	0.0051	0.0008
3	0.0076	0.0013
4	0.0104	0.0018
5	0.0127	0.0021
6	0.0155	0.0025
7	0.0173	0.0031
8	0.0203	0.0034

Tabla 14. Promedio de moles de H₂O y NiCl₂ de las tres repeticiones

Crisol	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0028
2	0.0008	0.0051
3	0.0013	0.0076
4	0.0018	0.0103
5	0.0022	0.0128
6	0.0026	0.0152
7	0.0030	0.0175
8	0.0034	0.0204

Gráfica 1. m.m.c para crisoles calentamiento mediante horno de microondas

Calentamiento por mechero de Bunsen para llevar crisoles a MC

Tabla 1. Resultados de la primera repetición para llevar crisoles a MC, calentamiento por mechero de Bunsen

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.9823	24.9821	24.9828	24.9824	0.0004	0.0014
2	26.7564	26.7567	26.7572	26.7568	0.0004	0.0015
3	28.0502	28.0496	28.0516	28.0505	0.0010	0.0037
4	28.4901	28.4891	28.4906	28.4899	0.0008	0.0027
5	23.8028	23.8013	23.8033	23.8025	0.0010	0.0044
6	41.8733	41.8715	41.8740	41.8729	0.0013	0.0031
7	28.1610	28.1598	28.1602	28.1603	0.0006	0.0022
8	27.8984	27.8973	27.8985	27.8981	0.0007	0.0024

Tabla 2. Resultados de la segunda repetición para llevar crisoles a MC, calentamiento por mechero de Bunsen

Número de			
medición de la			
masa del crisol			

Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.9843	24.9823	24.9829	24.9832	0.0010	0.0041
2	26.7580	26.7571	26.7574	26.7575	0.0005	0.0017
3	28.0525	28.0512	28.0514	28.0517	0.0007	0.0025
4	28.4920	28.4914	28.4912	28.4915	0.0004	0.0015
5	23.8046	23.8036	23.8036	23.8039	0.0006	0.0024
6	41.8761	41.8758	41.8756	41.8758	0.0003	0.0006
7	28.1632	28.1623	28.1620	28.1625	0.0006	0.0022
8	27.9007	27.8997	27.8997	27.9000	0.0006	0.0021

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por mechero de Bunsen

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.9843	24.9835	24.9838	24.9839	0.0004	0.0016
2	26.7587	26.7573	26.7579	26.7580	0.0007	0.0026
3	28.0531	28.0524	28.0523	28.0526	0.0004	0.0016
4	28.4921	28.4919	28.4918	28.4919	0.0002	0.0005
5	23.8050	23.8043	23.8044	23.8046	0.0004	0.0016
6	41.8772	41.8762	41.8762	41.8765	0.0006	0.0014
7	28.1632	28.1629	28.1628	28.1630	0.0002	0.0007
8	27.9010	27.8997	27.9001	27.9003	0.0007	0.0024

Tabla 4. Determinación de masa de NiCl₂. Modo de calentamiento: horno de microondas Primera repetición

Crisol	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del crisol y NiCl ₂ * (g)	Diferencia del crisol con NiCl ₂ y crisol a MC (g)	Masa NiCl ₂ (g)
1	0.1138	25.0458	25.0458-24.9828	0.0630
2	0.2110	26.8739	26.8739- 26.7572	0.1167
3	0.3031	28.2200	28.2200- 28.0516	0.1684
4	0.4179	28.7209	28.7209- 28.4906	0.2303
5	0.5040	24.0812	24.0812- 23.8033	0.2779
6	0.6088	42.2072	42.2072- 41.8740	0.3332
7	0.7038	28.5464	28.5464- 28.1602	0.3862
8	0.8165	28.3455	28.3455- 27.8985	0.4470

Tabla 5. Determinación de masa de NiCl₂. Modo de calentamiento: horno de microondas Segunda repetición

Crisol	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del crisol y NiCl ₂ * (g)	Diferencia del crisol con NiCl ₂ y crisol a MC (g)	Masa NiCl ₂ (g)
1	0.1067	25.0411	25.0411- 24.9829	0.0582
2	0.2166	26.8761	26.8760- 26.7574	0.1187
3	0.3201	28.2270	28.2271- 28.0514	0.1756
4	0.4041	28.7110	28.7112- 28.4912	0.2198
5	0.5134	24.0878	24.0877- 23.8036	0.2842
6	0.6059	42.2073	42.2076- 41.8756	0.3317
7	0.7004	28.5483	28.5488- 28.1620	0.3863
8	0.8058	28.3440	28.3445- 27.8997	0.4443

Tabla 6. Determinación de masa de NiCl₂. Modo de calentamiento: horno de microondas

Tercera repetición

Crisol	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del crisol y NiCl ₂ * (g)	Diferencia del crisol con NiCl ₂ y crisol a MC (g)	Masa NiCl ₂ (g)
1	0.1007	24.9838	25.0393- 24.9838	0.0555
2	0.2023	26.7579	26.8686- 26.7579	0.1107
3	0.3096	28.0523	28.2217- 28.0523	0.1694
4	0.4141	28.4918	28.7199- 28.4918	0.2281
5	0.5093	23.8044	24.0851- 23.8044	0.2807
6	0.6075	41.8762	42.2083-41.8762	0.3321
7	0.7064	28.1628	28.5503-28.1628	0.3875
8	0.8136	27.9001	28.3463- 27.9001	0.4462

^{*} Los datos representan la segunda medición de MC del crisol y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O (g)
0.1138- 0.0630	0.0508
0.2110- 0.1167	0.0943
0.3031- 0.1684	0.1347
0.4179- 0.2303	0.1876
0.5040- 0.2779	0.2261
0.6088- 0.3332	0.2756
0.7038- 0.3862	0.3176
0.8165- 0.4470	0.3695

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O (g)
0.1067- 0.0582	0.0485
0.2166- 0.1187	0.0979
0.3201- 0.1756	0.1445
0.4041- 0.2198	0.1843
0.5134- 0.2842	0.2292
0.6059- 0.3317	0.2742
0.7004- 0.3863	0.3141
0.8058- 0.4443	0.3615

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O (g)
0.1007- 0.0555	0.0452
0.2023- 0.1107	0.0916
0.3096- 0.1694	0.1402
0.4141- 0.2281	0.1860
0.5093- 0.2807	0.2286
0.6075- 0.3321	0.2754
0.7064- 0.3875	0.3189
0.8136- 0.4462	0.3674

Tabla 10. Promedio de MC de tres repeticiones

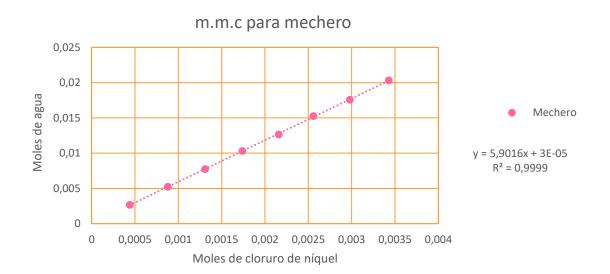
Crisol	Masa inicial crisol (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	24.9823	24.9821	24.9828	24.9824	0.0004	0.0014
2	26.7564	26.7567	26.7572	26.7568	0.0004	0.0015
3	28.0502	28.0496	28.0516	28.0505	0.0010	0.0037
4	28.4901	28.4891	28.4906	28.4899	0.0008	0.0027
5	23.8028	23.8013	23.8033	23.8025	0.0010	0.0044
6	41.8733	41.8715	41.8740	41.8729	0.0013	0.0031
7	28.1610	28.1598	28.1602	28.1603	0.0006	0.0022
8	27.8984	27.8973	27.8985	27.8981	0.0007	0.0024

Tabla 11. Moles de NiCl₂ y H₂O. Primera repetición.

Crisol	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0028
2	0.0009	0.0052
3	0.0013	0.0075
4	0.0018	0.0104
5	0.0021	0.0125
6	0.0026	0.0153
7	0.0030	0.0176
8	0.0034	0.0205

Tabla 12. Moles de $NiCl_2$ y H_2O . Segunda repetición.

Crisol	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0027
2	0.0009	0.0054
3	0.0014	0.0080
4	0.0017	0.0102
5	0.0022	0.0127
6	0.0026	0.0152
7	0.0030	0.0174
8	0.0034	0.0201


Tabla 13. Moles de NiCl $_2$ y H_2O . Tercera repetición.

Crisol	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0025
2	0.0009	0.0051
3	0.0013	0.0079
4	0.0018	0.0103
5	0.0022	0.0127
6	0.0026	0.0153
7	0.0030	0.0177
8	0.0034	0.0204

Tabla 14. Promedio de moles de H_2O y $NiCl_2$ de las tres repeticiones

Crisol	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0027
2	0.0009	0.0052
3	0.0013	0.0078
4	0.0017	0.0103
5	0.0022	0.0126
6	0.0026	0.0153
7	0.0030	0.0176
8	0.0034	0.0203

Gráfica 1. m.m.c para crisoles calentamiento mediante mechero de Bunsen

Calentamiento por estufa de secado para llevar vasos a MC.

Tabla 1. Resultados de la primera repetición para llevar vasos a MC, calentamiento por estufa de secado.

•
Número de
medición de la
masa del vaso
(g)

			3 /			
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.6769	10.6767	10.6764	10.6767	0.0003	0.0023
2	10.6434	10.6429	10.6434	10.6432	0.0003	0.0026
3	10.4877	10.4877	10.4877	10.4877	0.0000	0.0000
4	11.3711	11.3709	11.3705	11.3708	0.0003	0.0026
5	10.7071	10.7061	10.7062	10.7065	0.0006	0.0051
6	10.6304	10.6301	10.6299	10.6301	0.0003	0.0024
7	10.2120	10.2112	10.2114	10.2115	0.0004	0.0040
8	10.7447	10.7443	10.7443	10.7444	0.0002	0.0021

Tabla 2. Resultados de la segunda repetición para llevar vasos a MC, calentamiento por estufa de secado.

Número de				
medición de la				
masa del vaso				
(g)				

			5 /			
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.6241	10.6235	10.6233	10.6236	0.0004	0.0039
2	10.6490	10.6480	10.6480	10.6483	0.0006	0.0054
3	10.6326	10.6325	10.6321	10.6324	0.0003	0.0024
4	10.7475	10.7468	10.7467	10.7470	0.0004	0.0040
5	10.8747	10.8735	10.8748	10.8743	0.0007	0.0066
6	10.9477	10.9471	10.9469	10.9472	0.0004	0.0037
7	10.6102	10.6097	10.6098	10.6099	0.0003	0.0025
8	10.2104	10.2092	10.2094	10.2097	0.0006	0.0063

Tabla 3. Resultados de la tercera repetición para llevar vasos a MC, calentamiento por estufa de secado.

Número de				
medición de la				
masa del vaso				
(g)				

Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.6247	10.6246	10.6247	10.6247	0.0001	0.0005
2	10.7074	10.7067	10.7071	10.7071	0.0004	0.0033
3	10.4917	10.4913	10.4910	10.4913	0.0004	0.0033
4	10.7483	10.7473	10.7477	10.7478	0.0004	0.0047
5	10.8748	10.8742	10.8739	10.8743	0.0005	0.0041
6	10.9471	10.9469	10.9468	10.9469	0.0002	0.0014
7	10.6093	10.6092	10.6091	10.6092	0.0001	0.0008
8	10.2113	10.2110	10.2107	10.2110	0.0003	0.0029

Tabla 4. Determinación de masa de NiCl₂. Modo de calentamiento: estufa. Primera repetición

Vaso	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del vaso y NiCl ₂ * (g)	Diferencia del vaso con NiCl ₂ y vaso a MC (g)	Masa NiCl ₂ (g)
1	0.1014	10.7333	10.7333-10.6764	0.0569
2	0.2103	10.7588	10.7588-10.6434	0.1154
3	0.3072	10.6568	10.6568-10.4877	0.1691
4	0.4068	11.5942	11.5942-11.3705	0.2237
5	0.5086	10.9822	10.9822-10.7062	0.2760
6	0.6074	10.9612	10.9612-10.6299	0.3313
7	0.7052	10.5978	10.5978-10.2114	0.3864
8	0.8046	11.1801	11.1801-10.7443	0.4358

Tabla 5. Determinación de masa de NiCl₂. Modo de calentamiento: estufa de secado. Segunda repetición

Vaso	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del vaso y NiCl ₂ * (g)	Diferencia del vaso con NiCl ₂ y vaso a MC (g)	Masa NiCl ₂ (g)
1	0.1108	10.6835	10.6835-10.6233	0.0602
2	0.2007	10.7582	10.7582-10.6480	0.1102
3	0.3008	10.7945	10.7945-10.6321	0.1624
4	0.4028	10.9688	10.9688-10.7467	0.2221
5	0.5001	11.1508	11.1508-10.8748	0.2760
6	0.6080	11.2804	11.2804-10.9469	0.3335
7	0.7046	11.0013	11.0013-10.6098	0.3915
8	0.8050	10.6536	10.6536-10.2094	0.4442

Tabla 6. Determinación de masa de NiCl₂. Modo de calentamiento: estufa de secado. Tercera repetición

Vaso	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del vaso y NiCl ₂ * (g)	Diferencia del vaso con NiCl ₂ y vaso a MC (g)	Masa NiCl ₂ (g)
1	0.1321	10.6970	10.6970-10.6247	0.0723
2	0.2099	10.8228	10.8228-10.7071	0.1157
3	0.3139	10.6639	10.6639-10.4910	0.1729
4	0.4063	10.9715	10.9715-10.7477	0.2238
5	0.5012	11.1514	11.1514-10.8739	0.2775
6	0.6068	11.2773	11.2773-10.9468	0.3305
7	0.7063	10.9786	10.9786-10.6091	0.3695
8	0.8385	10.6645	10.6645-10.2107	0.4538

^{*} Los datos representan la segunda medición de MC del vaso y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O
0.1014-0.0569	0.0445
0.2103-0.1154	0.0949
0.3072-0.1691	0.1381
0.4068-0.2237	0.1831
0.5086-0.2760	0.2326
0.6074-0.3313	0.2761
0.7052-0.3864	0.3188
0.8046-0.4358	0.3688

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O	
0.1108-0.0602	0.0506	
0.2007-0.1102	0.0905	
0.3008-0.1624	0.1384	
0.4028-0.2221	0.1807	
0.5001-0.2760	0.2241	
0.6080-0.3335	0.2745	
0.7046-0.3915	0.3131	
0.8050-0.4442	0.3608	

Tabla 9. Cálculo para la obtención de la masa de H₂O. Tercera repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O (g)
0.1321-0.0723	0.0598
0.2099-0.1157	0.0942
0.3139-0.1729	0.1410
0.4063-0.2238	0.1825
0.5012-0.2775	0.2237
0.6068-0.3305	0.2763
0.7063-0.3695	0.3368
0.8385-0.4538	0.3847

Tabla 10. Promedio de MC de tres repeticiones

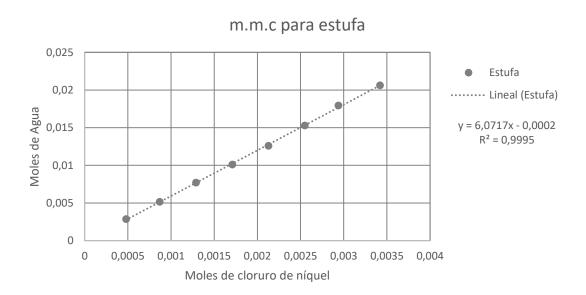
Vaso	Masa inicial vaso (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	10.6419	10.6416	10.6415	10.6417	0.0002	0.0021
2	10.6666	10.6659	10.6662	10.6662	0.0004	0.0035
3	10.5373	10.5372	10.5369	10.5371	0.0002	0.0019
4	10.9556	10.9550	10.9550	10.9552	0.0004	0.0034
5	10.8189	10.8179	10.8183	10.8184	0.0005	0.0043
6	10.8417	10.8414	10.8412	10.8414	0.0003	0.0025
7	10.4772	10.4767	10.4768	10.4769	0.0003	0.0024
8	10.3888	10.3882	10.3881	10.3884	0.0004	0.0036

Tabla 11. Moles de NiCl $_2$ y H_2O . Primera repetición.

Vaso	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0026
2	0.0009	0.0050
3	0.0013	0.0074
4	0.0017	0.0099
5	0.0021	0.0126
6	0.0027	0.0150
7	0.0030	0.0176
8	0.0035	0.0198

Tabla 12. Moles de $NiCl_2$ y H_2O . Segunda repetición.

Vaso	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0028
2	0.0009	0.0050
3	0.0013	0.0077
4	0.0017	0.0100
5	0.0021	0.0124
6	0.0026	0.0152
7	0.0030	0.0174
8	0.0034	0.0201


Tabla 13. Moles de $NiCl_2$ y H_2O . Tercera repetición.

Vaso	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0028
2	0.0009	0.0050
3	0.0013	0.0077
4	0.0017	0.0100
5	0.0021	0.0124
6	0.0026	0.0152
7	0.0030	0.0174
8	0.0034	0.0201

Tabla 14. Promedio de moles de H_2O y $NiCl_2$ de las tres repeticiones

Vaso	Moles NiCl ₂	Moles H ₂ O
1	0.0005	0.0029
2	0.0009	0.0052
3	0.0013	0.0077
4	0.0017	0.0101
5	0.0021	0.0126
6	0.0026	0.0153
7	0.0029	0.0179
8	0.0034	0.0206

Gráfica 1. m.m.c para vasos calentamiento mediante estufa

Calentamiento porIR para llevar vasos a MC

Tabla 1. Resultados de la primera repetición para llevar vasos a MC, calentamiento por horno de convección.

		Número de medición de la masa del vaso				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.6242	10.6236	10.6239	10.6239	0.0003	0.0028
2	10.6486	10.6483	10.6484	10.6484	0.0002	0.0014
3	10.6326	10.6319	10.632	10.6322	0.0004	0.0036
4	11.3767	11.3724	11.3723	11.3738	0.0025	0.0221
5	10.8779	10.8778	10.8777	10.8778	0.0001	0.0009
6	10.9444	10.9438	10.9436	10.9439	0.0004	0.0038
7	10.6112	10.6100	10.6102	10.6105	0.0006	0.0061
8	10.2122	10.2118	10.2122	10.2121	0.0002	0.0023

Tabla 2. Resultados de la segunda repetición para llevar vasos a MC, calentamiento por horno de convección.

Número de			
medición de la			
masa del vaso			

Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.6547	10.654	10.6543	10.65433	0.0004	0.0033
2	10.6865	10.6854	10.6857	10.68586	0.0006	0.0053
3	10.4705	10.4698	10.4699	10.47006	0.0004	0.0036
4	11.3524	11.3511	11.3515	11.35166	0.0007	0.0059
5	10.8532	10.8522	10.8523	10.85256	0.0006	0.0051
6	10.9255	10.9251	10.9251	10.92523	0.0002	0.0021
7	10.5885	10.5878	10.5882	10.58816	0.0004	0.0033
8	10.1919	10.1908	10.1909	10.19120	0.0006	0.0060

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por horno de convección.

Número de

10.6300

10.7429

7

8

10.6291

10.7421

		medición de la masa del vaso				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.6748	10.6747	10.6747	10.674	0.0001	0.0005
2	10.7011	10.7006	10.7011	10.7009	0.0003	0.0027
3	10.2088	10.2083	10.2087	10.2086	0.0003	0.0026
4	11.3688	11.3683	11.3688	11.3686	0.0003	0.0025
5	10.6412	10.6409	10.6411	10.6411	0.0002	0.0014
6	10.6068	10.6062	10.6067	10.6066	0.0003	0.0030

10.6299

10.7426

10.6297

10.7425

0.0005

0.0004

0.0046

0.0038

Tabla 4. Determinación de masa de $NiCl_2$. Modo de calentamiento: horno de convección Primera repetición

Vaso	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del vaso y NiCl ₂ * (g)	Diferencia del vaso con NiCl ₂ y crisol a MC (g)	Masa NiCl ₂ (g)
1	0.1129	10.6864	10.6864- 10.6239	0.0625
2	0.2014	10.7594	10.7594- 10.6484	0.1110
3	0.3088	10.8021	10.8021- 10.6320	0.1701
4	0.4064	11.5988	11.5988- 11.3723	0.2265
5	0.5512	11.1814	11.1814- 10.8777	0.3037
6	0.6157	11.2833	11.2833- 10.9436	0.3397
7	0.7011	11.0008	11.0008- 10.6102	0.3906
8	0.8088	10.6615	10.6615- 10.2122	0.4493

Tabla 5. Determinación de masa de $NiCl_2$. Modo de calentamiento: horno de convección Segunda repetición

Vaso	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del vaso y NiCl ₂ * (g)	Diferencia del vaso con NiCl ₂ y crisol a MC (g)	Masa NiCl ₂ (g)
1	0.1248	10.7244	10.7244-10.6543	0.0701
2	0.2111	10.8017	10.8017-10.6857	0.1160
3	0.3038	10.6369	10.6369-10.4699	0.1670
4	0.4016	11.5724	11.5724-11.3515	0.2209
5	0.5001	11.1289	11.1289-10.8523	0.2766
6	0.6034	11.2571	11.2571-10.9251	0.3320
7	0.7136	10.9857	10.9857-10.5882	0.3975
8	0.8110	10.6390	10.6390-10.1909	0.4481

Tabla 6. Determinación de masa de $NiCl_2$. Modo de calentamiento: horno de convección Tercera repetición

Vaso	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del vaso y NiCl ₂ * (g)	Diferencia del vaso con NiCl ₂ y crisol a MC (g)	Masa NiCl ₂ (g)
1	0.1023	10.7301	10.7301- 10.6747	0.0554
2	0.2102	10.8157	10.8157- 10.7011	0.1146
3	0.3037	10.3751	10.3751- 10.2087	0.1664
4	0.4049	11.5894	11.5894- 11.3688	0.2206
5	0.5142	10.9231	10.9231- 10.6411	0.2820
6	0.6131	10.9403	10.9403- 10.6067	0.3336
7	0.7104	11.0219	11.0219- 10.6299	0.3920
8	0.8153	11.1915	11.1915- 10.7426	0.4489

^{*} Los datos representan la segunda medición de MC del vaso y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O (g)
0.1129- 0.0625	0.0504
0.2014- 0.1110	0.0904
0.3088- 0.1701	0.1387
0.4064- 0.2265	0.1799
0.5512- 0.3037	0.2475
0.6157- 0.3397	0.2760
0.7011- 0.3906	0.3105
0.8088- 0.4493	0.3595

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O
0.1248- 0.0701	0.0547
0.2111- 0.1160	0.0951
0.3038- 0.1670	0.1368
0.4016- 0.2209	0.1807
0.5001- 0.2766	0.2235
0.6034- 0.3320	0.2714
0.7136- 0.3975	0.3161
0.8110- 0.4481	0.3629

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O (g)
0.1023- 0.0554	0.0469
0.2102- 0.1146	0.0956
0.3037-0.1664	0.1373
0.4049- 0.2206	0.1843
0.5142- 0.2820	0.2322
0.6131- 0.3336	0.2795
0.7104- 0.3920	0.3184
0.8153-0.4489	0.3664

Tabla 10. Promedio de MC de tres repeticiones

Vaso	Masa inicial vaso (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	10.6512	10.6508	10.6510	10.6510	0.0002	0.0022
2	10.6787	10.6781	10.6784	10.6784	0.0003	0.0029
3	10.4373	10.4367	10.4369	10.4369	0.0003	0.0031
4	11.3660	11.3639	11.3642	11.3647	0.0011	0.0097
5	10.7908	10.7903	10.7904	10.7905	0.0003	0.0023
6	10.8256	10.8250	10.8251	10.8252	0.0003	0.0026
7	10.6099	10.6090	10.6094	10.6094	0.0005	0.0043
8	10.3823	10.3816	10.3819	10.3819	0.0004	0.0037

Tabla 11. Moles de NiCl₂ y H₂O. Primera repetición.

Vaso	NiCl ₂ (mol)	H ₂ O (mol)	
1	0.0005	0.0028	
2	0.0009	0.0050	
3	0.0013	0.0077	
4	0.0017	0.0100	
5	0.0023	0.0137	
6	0.0026	0.0153	
7	0.0030	0.0172	
8	0.0035	0.0200	

Tabla 12. Moles de $NiCl_2$ y H_2O . Segunda repetición.

Vaso	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0030
2	0.0009	0.0053
3	0.0013	0.0076
4	0.0017	0.0100
5	0.0021	0.0124
6	0.0026	0.0151
7	0.0031	0.0175
8	0.0035	0.0201

Tabla 13. Moles de NiCl $_2$ y H_2O . Tercera repetición.

Vaso	NiCl ₂ (mol)	H ₂ O (mol)	
1	0.0004	0.0026	
2	0.0009	0.0053	
3	0.0013	0.0076	
4	0.0017	0.0102	
5	0.0022	0.0129	
6	0.0026	0.0155	
7	0.0030	0.0177	
8	0.0035	0.0203	

Tabla 14. Promedio de moles de H_2O y $NiCl_2$ de las tres repeticiones

Vaso	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0028
2	0.0009	0.0052
3	0.0013	0.0076
4	0.0017	0.0101
5	0.0022	0.0130
6	0.0026	0.0153
7	0.0030	0.0175
8	0.0035	0.0201

Gráfica 1. m.m.c para vasos calentamiento mediante IR

Calentamiento por horno de microondas para llevar vasos a MC

Tabla 1. Resultados de la primera repetición para llevar vasos a MC, calentamiento por horno de microondas.

Número de
medición de la
masa del vaso

Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	9.0754	9.0748	9.0743	9.0748	0.0006	0.0061
2	9.1912	9.1896	9.1895	9.1901	0.0010	0.0104
3	8.8037	8.8030	8.8031	8.8033	0.0004	0.0043
4	9.1353	9.1343	9.1346	9.1347	0.0005	0.0056
5	10.7454	10.7438	10.7440	10.7444	0.0009	0.0081
6	11.3727	11.3681	11.3686	11.3698	0.0025	0.0222
7	10.6252	10.6232	10.6232	10.6239	0.0012	0.0109
8	10.2092	10.2086	10.2089	10.2089	0.0003	0.0029

Tabla 2. Resultados de la segunda repetición para llevar vasos a MC, calentamiento por horno de microondas.

Número de
medición de la
masa del vaso

Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.6241	10.6240	10.6242	10.6241	0.0001	0.0009
2	10.6748	10.6747	10.6747	10.6747	0.0001	0.0005
3	10.2127	10.2120	10.2121	10.2123	0.0004	0.0037
4	10.4874	10.4872	10.4871	10.4872	0.0002	0.0015
5	10.8743	10.8742	10.8743	10.8743	0.0001	0.0005
6	10.7436	10.7435	10.7436	10.7436	0.0001	0.0005
7	10.6319	10.6317	10.6318	10.6318	0.0001	0.0009
8	11.3703	11.3701	11.3700	11.3701	0.0002	0.0013

Tabla 3. Resultados de la tercera repetición para llevar vasos a MC, calentamiento por horno de microondas.

Número de				
medición de la				
masa del vaso				

Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.9387	10.9375	10.938	10.9381	0.0006	0.0055
2	8.8699	8.8690	8.8690	8.8693	0.0005	0.0059
3	9.4104	9.4080	9.4083	9.4089	0.0013	0.0139
4	9.3123	9.3096	9.3101	9.3107	0.0014	0.0154
5	8.5922	8.5912	8.5917	8.5917	0.0005	0.0058
6	10.4877	10.4864	10.4869	10.4870	0.0007	0.0063
7	10.6078	10.6065	10.6069	10.6071	0.0007	0.0063
8	10.6304	10.6290	10.6296	10.6297	0.0007	0.0066

Tabla 4. Determinación de masa de $NiCl_2$. Modo de calentamiento: horno de microondas Primera repetición

Vaso	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del vaso y NiCl ₂ * (g)	Diferencia del vaso con NiCl ₂ y crisol a MC (g)	Masa NiCl ₂ (g)
1	0.1086	10.6839	10.6839-10.6242	0.0597
2	0.2121	10.7921	10.7921-10.6747	0.1174
3	0.3016	10.3808	10.3808-10.2121	0.1687
4	0.4059	10.7111	10.7111-10.4871	0.2240
5	0.5170	11.1601	11.1601-10.8743	0.2858
6	0.6037	11.0771	11.0771-10.7436	0.3335
7	0.7151	11.0245	11.0245-10.6318	0.3927
8	0.8053	11.8135	11.8135-11.3700	0.4435

Tabla 5. Determinación de masa de NiCl₂. Modo de calentamiento: horno de microondas Segunda repetición

Vaso	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del vaso y NiCl ₂ * (g)	Diferencia del vaso con NiCl ₂ y vaso a MC (g)	Masa NiCl ₂ (g)
1	0.1081	9.1328	9.1328-9.0743	0.0585
2	0.2075	9.3063	9.3063-9.1895	0.1168
3	0.2998	8.9695	8.9695-8.8031	0.1664
4	0.4032	9.3567	9.3567-9.1346	0.2221
5	0.5046	11.0203	11.0203-10.7440	0.2763
6	0.6006	11.7001	11.7001-11.3686	0.3315
7	0.7154	11.0131	11.0131-10.6232	0.3899
8	0.8057	10.6489	10.6489-10.2089	0.4400

Tabla 6. Determinación de masa de NiCl₂. Modo de calentamiento: horno de microondas

Tercera repetición

Vaso	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del vaso y NiCl ₂ * (g)	Diferencia del vaso con NiCl ₂ y vaso a MC (g)	Masa NiCl ₂ (g)
1	0.1042	10.9937	10.9937-10.938	0.0557
2	0.2070	8.9822	8.9822-8.8690	0.1132
3	0.3029	9.5729	9.5729-9.4083	0.1646
4	0.4096	9.5341	9.5341-9.3101	0.2240
5	0.5150	8.8731	8.8731-8.5917	0.2814
6	0.6042	10.8180	10.818-10.4869	0.3311
7	0.7210	11.0001	11.0001-10.6069	0.3932
8	0.8039	11.0679	11.0679-10.6296	0.4383

^{*} Los datos representan la segunda medición de MC del vaso y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O (g)
0.1086-0.0597	0.0489
0.2121-0.1174	0.0947
0.3016-0.1687	0.1329
0.4059-0.2240	0.1819
0.517-0.2858	0.2312
0.6037-0.3335	0.2702
0.7151-0.3927	0.3224
0.8053-0.4435	0.3618

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O (g)
0.1081-0.0585	0.0496
0.2075-0.1168	0.0907
0.2998-0.1664	0.1334
0.4032-0.2221	0.1811
0.5046-0.2763	0.2283
0.6006-0.3315	0.2691
0.7154-0.3899	0.3255
0.8057-0.4400	0.3657

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O (g)
0.1042-0.0557	0.0485
0.2070-0.1132	0.0938
0.3029-0.1646	0.1383
0.4096-0.2240	0.1856
0.5150-0.2814	0.2336
0.6042-0.3311	0.2731
0.7210-0.3932	0.3278
0.8039-0.4383	0.3656

Tabla 10. Promedio de MC de tres repeticiones

Vaso	Masa inicial vaso (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	10.2127	10.2121	10.2122	10.2123	0.0003	0.0032
2	9.5786	9.5778	9.5777	9.5780	0.0005	0.00532
3	9.4756	9.4743	9.4745	9.4748	0.0007	0.00717
4	9.6450	9.6437	9.6439	9.6442	0.0007	0.00715
5	10.0706	10.0697	10.0700	10.0701	0.0005	0.00456
6	10.8680	10.8660	10.8664	10.8668	0.0011	0.00975
7	10.6216	10.6205	10.6206	10.6209	0.0006	0.00593
8	10.7366	10.7359	10.7362	10.7362	0.0004	0.00335

Tabla 11. Moles de NiCl₂ y H₂O. Primera repetición.

Vaso	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0027
2	0.0009	0.0053
3	0.0013	0.0074
4	0.0017	0.0101
5	0.0022	0.0128
6	0.0026	0.0150
7	0.0030	0.0179
8	0.0034	0.0201

Tabla 12. Moles de $NiCl_2$ y H_2O . Segunda repetición.

Vaso	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0028
2	0.0009	0.0050
3	0.0013	0.0074
4	0.0017	0.0101
5	0.0021	0.0127
6	0.0026	0.0149
7	0.0030	0.0181
8	0.0034	0.0203


Tabla 13. Moles de NiCl $_2$ y H_2O . Tercera repetición.

Vaso	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0027
2	0.0009	0.0052
3	0.0013	0.0077
4	0.0017	0.0103
5	0.0022	0.0130
6	0.0026	0.0152
7	0.0030	0.0182
8	0.0034	0.0203

Tabla 15. Promedio de moles de H_2O y $NiCl_2$ de las tres repeticiones

Vaso	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0027
2	0.0009	0.0052
3	0.00130	0.0075
4	0.0017	0.0101
5	0.0022	0.0128
6	0.0026	0.0150
7	0.0030	0.0180
8	0.0034	0.0202

Gráfica 1. m.m.c para vasos calentamiento mediante horno de microondas

Calentamiento por mechero de Bunsen para llevar vasos a MC

Tabla 1. Resultados de la primera repetición para llevar vasos a MC, calentamiento por mechero de Bunsen

		Número de medición de la masa del vaso				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.6762	10.6750	10.6750	10.6754	0.0007	0.0065
2	10.7076	10.7066	10.7067	10.7070	0.0006	0.0051
3	10.4918	10.4906	10.4911	10.4912	0.0006	0.0057
4	11.3751	11.3740	11.3742	11.3744	0.0006	0.0052
5	10.8741	10.8733	10.8737	10.8737	0.0004	0.0037
6	10.6484	10.6472	10.6474	10.6477	0.0006	0.0060
7	10.6397	10.6311	10.6316	10.6341	0.0048	0.0454
8	10.2096	10.2090	10.2091	10.2092	0.0003	0.0031

Tabla 2. Resultados de la segunda repetición para llevar vasos a MC, calentamiento por mechero de Bunsen

		Número de medición de la masa del vaso				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.6771	10.6767	10.6767	10.6768	0.0002	0.0022
2	10.7031	10.7027	10.7028	10.7029	0.0002	0.0019
3	10.6091	10.6080	10.6085	10.6085	0.0006	0.0052
4	11.3748	11.3740	11.3739	11.3742	0.0005	0.0043
5	10.7438	10.7423	10.7429	10.7430	0.0008	0.0070
6	10.6448	10.6447	10.6446	10.6447	0.0001	0.0009
7	10.6319	10.6303	10.6308	10.6310	0.0008	0.0077
8	10.8734	10.8728	10.8728	10.8730	0.0003	0.0032

Tabla 3. Resultados de la tercera repetición para llevar vasos a MC, calentamiento por mechero de Bunsen

		medicio	ero de ón de la lel vaso			
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.6242	10.6235	10.6236	10.6238	0.0004	0.0036
2	10.6429	10.6424	10.6422	10.6425	0.0004	0.0034
3	10.2100	10.2096	10.2099	10.2098	0.0002	0.0020
4	10.4859	10.4851	10.4855	10.4855	0.0004	0.0038
5	10.8729	10.8718	10.8722	10.8723	0.0006	0.0051
6	10.6080	10.6076	10.6079	10.6078	0.0002	0.0020
7	10.7029	10.7023	10.7024	10.7025	0.0003	0.0030
8	10.9411	10.9404	10.9407	10.9407	0.0004	0.0032

Tabla 4. Determinación de masa de $NiCl_2$. Modo de calentamiento: horno de microondas Primera repetición

Vaso	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del vaso y NiCl ₂ * (g)	Diferencia del vaso con NiCl ₂ y vaso a MC (g)	Masa NiCl ₂ (g)
1	0.1142	10.7381	10.7381- 10.6750	0.0631
2	0.2006	10.8171	10.8171- 10.7067	0.1104
3	0.3054	10.6603	10.6603- 10.4911	0.1692
4	0.4162	11.6019	11.6019- 11.3742	0.2277
5	0.5040	11.1489	11.1489- 10.8737	0.2752
6	0.6001	10.9767	10.9767- 10.6474	0.3293
7	0.7095	11.0211	11.0211- 10.6316	0.3895
8	0.8079	10.6590	10.6590- 10.2091	0.4499

Tabla 5. Determinación de masa de $NiCl_2$. Modo de calentamiento: horno de microondas Segunda repetición

Vaso	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del vaso y NiCl ₂ * (g)	Diferencia del vaso con NiCl ₂ y vaso a MC (g)	Masa NiCl ₂ (g)
1	0.1072	10.7361	10.7361- 10.6767	0.0594
2	0.2049	10.8161	10.8161- 10.7028	0.1133
3	0.3027	10.7755	10.7755- 10.6085	0.1670
4	0.4035	11.6008	11.6008- 11.3739	0.2269
5	0.5154	11.0313	11.0313- 10.7429	0.2884
6	0.6033	10.9719	10.9719- 10.6446	0.3273
7	0.7117	11.0301	11.0301- 10.6308	0.3993
8	0.8173	11.3270	11.3270- 10.8728	0.4542

Tabla 6. Determinación de masa de NiCl₂. Modo de calentamiento: horno de microondas

Tercera repetición

Vaso	Masa de NiCl ₂ ·6 H ₂ O (g)	Masa del vaso y NiCl ₂ * (g)	Diferencia del vaso con NiCl ₂ y vaso a MC (g)	Masa NiCl ₂ (g)
1	0.1023	10.6794	10.6794- 10.6236	0.0558
2	0.2015	10.7529	10.7529- 10.6422	0.1107
3	0.3026	10.3755	10.3755- 10.2099	0.1656
4	0.4018	10.7053	10.7053- 10.4855	0.2198
5	0.5117	11.1542	11.1542- 10.8722	0.2820
6	0.6120	10.9517	10.9517- 10.6079	0.3438
7	0.7060	11.1001	11.1001- 10.7024	0.3977
8	0.8033	11.3922	11.3922- 10.9407	0.4515

^{*} Los datos representan la segunda medición de MC del vaso y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O (g)
0.1142- 0.0631	0.0511
0.2006- 0.1104	0.0902
0.3054- 0.1692	0.1362
0.4162- 0.2277	0.1885
0.5040- 0.2752	0.2288
0.6001- 0.3293	0.2708
0.7095- 0.3895	0.3200
0.8079- 0.4499	0.3580

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O (g)
0.1072- 0.0594	0.0478
0.2049-0.1133	0.0916
0.3027- 0.1670	0.1357
0.4035- 0.2269	0.1766
0.5154- 0.2884	0.2270
0.6033- 0.3273	0.2760
0.7117- 0.3993	0.3124
0.8173- 0.4542	0.3631

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de NiCl ₂ ·6 H ₂ O y NiCl ₂ (g)	Masa H ₂ O (g)
0.1023- 0.0558	0.0465
0.2015- 0.1107	0.0908
0.3026- 0.1656	0.1370
0.4018- 0.2198	0.1820
0.5117- 0.2820	0.2297
0.6120-0.3438	0.2682
0.7060-0.3977	0.3083
0.8033-0.4515	0.3518

Tabla 10. Promedio de MC de tres repeticiones

Vaso	Masa inicial vaso (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	10.6592	10.6584	10.6584	10.6587	0.0004	0.0040
2	10.6845	10.6839	10.6839	10.6841	0.0004	0.0034
3	10.4370	10.4361	10.4365	10.4365	0.0005	0.0043
4	11.0786	11.0777	11.0779	11.0781	0.0005	0.0043
5	10.8303	10.8291	10.8296	10.8297	0.0006	0.0052
6	10.6337	10.6332	10.6333	10.6334	0.0003	0.0027
7	10.6582	10.6546	10.6549	10.6559	0.0020	0.0186
8	10.6747	10.6741	10.6742	10.6743	0.0003	0.0031

Tabla 11. Moles de NiCl₂ y H₂O. Primera repetición.

Vaso	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0027
2	0.0009	0.0053
3	0.0013	0.0074
4	0.0017	0.0101
5	0.0022	0.0128
6	0.0026	0.0150
7	0.0030	0.0179
8	0.0034	0.0201

Tabla 12. Moles de $NiCl_2$ y H_2O . Segunda repetición.

Vaso	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0028
2	0.0009	0.0050
3	0.0013	0.0074
4	0.0017	0.0101
5	0.0021	0.0128
6	0.0026	0.0149
7	0.0030	0.0181
8	0.0034	0.0203

Tabla 13. Moles de NiCl $_2$ y H_2O . Tercera repetición.

Vaso	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0027
2	0.0009	0.0052
3	0.0013	0.0077
4	0.0017	0.0103
5	0.0022	0.0130
6	0.0026	0.0152
7	0.0030	0.0182
8	0.0034	0.0203

Tabla 14. Promedio de moles de H_2O y $NiCl_2$ de las tres repeticiones

Vaso	NiCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0027
2	0.0009	0.0052
3	0.0013	0.0075
4	0.0017	0.0101
5	0.0022	0.0128
6	0.0026	0.0150
7	0.0030	0.0180
8	0.0034	0.0202

Gráfica 1. m.m.c para vasos calentamiento mediante mechero de Bunsen

Anexo 1 cloruro de bario dihidratado ($BaCl_2 \cdot 2H_2O$)

Calentamiento por estufa de secado para llevar crisoles a MC.

Tabla 1. Resultados de la primera repetición para llevar crisoles a MC, calentamiento por estufa de secado.

		Número de medición de la masa del crisol (g)					
Crisol	Masa crisol inicial (g)	1	2	3	Promedio de las mediciones (g)	DE	%DER
1	23.8029	23.8009	23.8007	23.8007	23.8013	0.0011	0.0045
2	28.0521	28.0504	28.0500	28.0498	28.0506	0.0010	0.0037
3	24.9841	24.9829	24.9825	24.9823	24.9830	0.0008	0.0032
4	28.1624	28.1611	28.1607	28.1605	28.1612	0.0009	0.0030
5	28.4917	28.4903	28.4899	28.4900	28.4905	0.0008	0.0029
6	27.8999	27.8982	27.8984	27.8985	27.8988	0.0008	0.0028
7	40.8809	40.8788	40.8783	40.8786	40.8792	0.0012	0.0029
8	31.9086	31.9066	31.9062	31.9064	31.9070	0.0011	0.0035

Tabla 2. Resultados de la segunda repetición para llevar crisoles a MC, calentamiento por estufa de secado.

		Número de medición de la masa del crisol (g)					
Crisol	Masa crisol inicial (g)	1	2	3	Promedio de las mediciones (g)	DE	%DER
1	23.8029	23.8009	23.8007	23.8007	23.8013	0.0011	0.0045
2	28.0521	28.0504	28.0500	28.0498	28.0506	0.0010	0.0037
3	24.9841	24.9829	24.9825	24.9823	24.9830	0.0008	0.0032
4	28.1624	28.1611	28.1607	28.1605	28.1612	0.0009	0.0030
5	28.4917	28.4903	28.4899	28.4900	28.4905	0.0008	0.0029
6	27.8999	27.8982	27.8984	27.8985	27.8988	0.0008	0.0028
7	40.8809	40.8788	40.8783	40.8786	40.8792	0.0012	0.0029
8	31.9086	31.9066	31.9062	31.9064	31.9070	0.0011	0.0035

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por estufa de secado.

		Número de medición de la masa del crisol (g)					
Crisol	Masa crisol inicial (g)	1	2	3	Promedio de las mediciones (g)	DE	%DER
1	23.8036	23.7982	23.7984	23.7988	23.7998	0.0026	0.0108
2	28.0530	28.0485	28.0488	28.0488	28.0498	0.0022	0.0077
3	24.9839	24.981	24.9810	24.9809	24.9817	0.0015	0.0059
4	28.1624	28.1593	28.1600	28.1602	28.1605	0.0013	0.0048
5	27.8999	28.8975	28.8976	27.8976	28.3982	0.5767	2.0306
6	28.4931	28.4893	28.4891	28.4890	28.4901	0.0020	0.0070
7	40.8800	40.8762	40.8769	40.8772	40.8776	0.0017	0.0041
8	31.9088	31.9041	31.9048	31.9052	31.9057	0.0021	0.0066

Tabla 4. Determinación de masa de $BaCl_2$. Modo de calentamiento: estufa. Primera repetición

Crisol	Masa de BaCl ₂ ·2 H ₂ O (g)	Masa del crisol y BaCl ₂ * (g)	Diferencia del crisol con BaCl ₂ y crisol a MC (g)	Masa BaCl ₂ (g)
1	0.1028	23.8890	23.8890-23.8014	0.0876
2	0.2015	28.2236	28.2236-28.0507	0.1729
3	0.3151	25.2529	25.2529-24.9826	0.2703
4	0.4308	28.5292	28.5292-28.1613	0.3679
5	0.5027	28.9206	28.9206-28.4902	0.4304
6	0.6064	28.4170	28.4170-27.9000	0.5170
7	0.7055	41.4830	41.4830-40.8794	0.6036
8	0.8257	32.6133	32.6133-31.9070	0.7063

Tabla 5. Determinación de masa de $BaCl_2$. Modo de calentamiento: estufa de secado. Segunda repetición

Crisol	Masa de BaCl ₂ ·2 H ₂ O (g)	Masa del crisol y BaCl ₂ * (g)	Diferencia del crisol con BaCl ₂ y crisol a MC (g)	Masa BaCl ₂ (g)
1	0.1341	23.9130	23.9130-23.8007	0.1123
2	0.2060	28.2241	28.2241-28.0498	0.1743
3	0.3074	25.2421	25.2421-24.9823	0.2598
4	0.4058	28.5048	28.5048-28.1605	0.3443
5	0.5239	28.9341	28.9341-28.4900	0.4441
6	0.6044	28.4124	28.4124-27.8985	0.5139
7	0.7056	41.4780	41.4780-40.8786	0.5994
8	0.8059	32.5905	32.5905-31.9064	0.6841

Tabla 6. Determinación de masa de $BaCl_2$. Modo de calentamiento: estufa de secado. Tercera repetición

Crisol	Masa de BaCl ₂ ·2 H ₂ O (g)	Masa del crisol y BaCl ₂ * (g)	Diferencia del crisol con BaCl ₂ y crisol a MC (g)	Masa BaCl ₂ (g)
1	0.1011	23.8839	23.8839-23.7988	0.0851
2	0.2107	28.2282	28.2282-28.0488	0.1794
3	0.3020	25.2380	25.2380-24.9809	0.2571
4	0.4092	28.5071	28.5071-28.1602	0.3469
5	0.5033	28.3258	28.3258-27.8976	0.4282
6	0.6001	28.9982	28.9982-28.4890	0.5092
7	0.7013	41.4721	41.4721-40.8772	0.5949
8	0.8008	32.5872	32.5872-31.9052	0.6820

^{*} Los datos representan la segunda medición de MC del crisol y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Primera repetición

Diferencia de la masa de BaCl ₂ ·2 H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1028-0.0876	0.0152
0.2015-0.1729	0.0286
0.3151-0.2703	0.0448
0.4308-0.3679	0.0629
0.5027-0.4304	0.0723
0.6064-0.5170	0.0894
0.7055-0.6036	0.1019
0.8257-0.7063	0.1194

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de BaCl ₂ ·2 H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1341-0.1123	0.0218
0.2060-0.1743	0.0317
0.3074-0.2598	0.0476
0.4058-0.3443	0.0615
0.5239-0.4441	0.0798
0.6044-0.5139	0.0905
0.7056-0.5994	0.1062
0.8059-0.6841	0.1218

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de BaCl ₂ ·2 H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1011-0.0851	0.0160
0.2107-0.1794	0.0313
0.3020-0.2571	0.0449
0.4092-0.3469	0.0623
0.5033-0.4282	0.0751
0.6001-0.5092	0.0909
0.7013-0.5949	0.1064
0.8008-0.6820	0.1188

Tabla 10. Promedio de MC de tres repeticiones

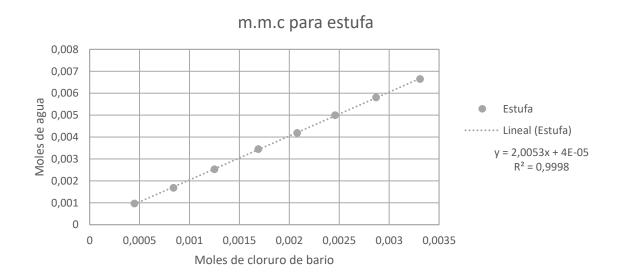
Crisol	Masa inicial crisol (g)	Medición 1	Medición 2	Medición 3	Promedio	DE	% DER
1	23.8032	23.8000	23.8002	23.8003	23.8009	0.0015	0.0064
2	28.0527	28.0497	28.0498	28.0498	28.0505	0.0015	0.0053
3	24.9862	24.9825	24.9820	24.9819	24.9831	0.0020	0.0082
4	28.1620	28.1606	28.1607	28.1607	28.1610	0.0007	0.0025
5	28.2944	28.6261	28.6260	28.2926	28.4598	0.1920	0.6746
6	28.0977	28.0957	28.0958	28.0958	28.0963	0.0010	0.0034
7	40.8807	40.8782	40.8782	40.8784	40.8789	0.0012	0.0030
8	31.9089	31.9058	31.9059	31.9062	31.9067	0.0015	0.0047

Tabla 11. Moles de $BaCl_2$ y H_2O . Primera repetición.

Crisol	BaCl ₂ (mol)	H ₂ O (mol)
1	0.00042	0.00084
2	0.00083	0.00158
3	0.00129	0.00248
4	0.00176	0.00349
5	0.00206	0.00401
6	0.00248	0.00496
7	0.00289	0.00565
8	0.00339	0.00662

Tabla 12. Moles de $BaCl_2$ y H_2O . Segunda repetición.

Crisol	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0012
2	0.0008	0.0018
3	0.0012	0.0026
4	0.0017	0.0034
5	0.0021	0.0044
6	0.0025	0.0050
7	0.0029	0.0060
8	0.0033	0.0068


Tabla 13. Moles de BaCl₂ y H₂O. Tercera repetición.

Crisol	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0009
2	0.0009	0.0017
3	0.0012	0.0025
4	0.0017	0.0035
5	0.0021	0.0042
6	0.0024	0.0050
7	0.0029	0.0059
8	0.0033	0.0066

Tabla 14. Promedio de moles de H_2O y $BaCl_2$ de las tres repeticiones

Crisol	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0010
2	0.0008	0.0017
3	0.0013	0.0025
4	0.0017	0.0035
5	0.0021	0.0042
6	0.0025	0.0050
7	0.0029	0.0058
8	0.0033	0.0067

Gráfica 1. m.m.c para crisoles calentamiento mediante estufa

Calentamiento por IR para llevar crisoles a MC.

Tabla 1. Resultados de la primera repetición para llevar crisoles a MC, calentamiento por horno de convección.

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.9846	24.9827	24.9834	24.98356	0.0010	0.0038
2	26.7586	26.7575	26.7573	26.7578	0.0007	0.0026
3	28.0529	28.0517	28.051	28.05186	0.0010	0.0034
4	28.4922	28.4914	28.4912	28.4916	0.0005	0.0018
5	23.804	23.802	23.8025	23.80283	0.0010	0.0044
6	41.8766	41.8733	41.8725	41.87413	0.0022	0.0052
7	28.1631	28.1621	28.1622	28.16246	0.0006	0.0020
8	27.9009	27.8985	27.8998	27.89973	0.0012	0.0043

Tabla 2. Resultados de la segunda repetición para llevar crisoles a MC, calentamiento por horno de convección.

Número de		
medición de la		
masa del crisol		

Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	23.8033	23.8015	23.8016	23.8021	0.0010	0.0042
2	28.9527	28.0517	28.0515	28.3520	0.5203	1.8350
3	24.984	24.9837	24.9836	24.9838	0.0002	0.0008
4	28.1629	28.1613	28.1618	28.1620	0.0008	0.0029
5	28.4917	28.4911	28.4912	28.4913	0.0003	0.0011
6	27.9004	27.8996	27.8996	27.8999	0.0005	0.0016
7	40.8811	40.8793	40.8798	40.8801	0.0009	0.0023
8	31.9088	31.907	31.9078	31.9079	0.0009	0.0028

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por horno de convección.

Número de		
medición de la		
masa del crisol		

Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	23.8055	23.800	23.7996	23.8017	0.0033	0.0001
2	28.0524	28.0496	28.0493	28.0504	0.0017	0.0001
3	24.9846	24.9819	24.9819	24.9828	0.0016	0.0001
4	28.1645	28.1600	28.1599	28.1615	0.0026	0.0001
5	28.4922	28.4893	28.4894	28.4903	0.0016	0.0001
6	27.9009	27.8976	27.8986	27.8990	0.0017	0.0001
7	40.8817	40.9773	40.8779	40.9123	0.0563	0.0014
8	31.9094	31.9051	31.9060	31.9068	0.0023	0.0001

Tabla 4. Determinación de masa de $BaCl_2$. Modo de calentamiento: horno de convección Primera repetición

Crisol	Masa de BaCl ₂ ·2 H ₂ O (g)	Masa del crisol y BaCl ₂ * (g)	Diferencia del crisol con BaCl ₂ y crisol a MC (g)	Masa BaCl ₂ (g)
1	0.1054	25.0724	25.0724-24.9834	0.0890
2	0.2325	26.9547	26.9547-26.7573	0.1974
3	0.3032	28.3092	28.3092-28.051	0.2582
4	0.4320	28.8583	28.8583-28.4912	0.3671
5	0.5353	24.2575	24.2575-23.8025	0.4550
6	0.6028	42.3872	42.3872-41.8725	0.5147
7	0.7121	28.7679	28.7679-28.1622	0.6057
8	0.8046	28.5837	28.5837-27.8998	0.6839

Tabla 5. Determinación de masa de $BaCl_2$. Modo de calentamiento: horno de convección Segunda repetición

Crisol	Masa de BaCl ₂ ·2 H ₂ O (g)	Masa del crisol y BaCl ₂ * (g)	Diferencia del crisol con BaCl ₂ y crisol a MC (g)	Masa BaCl ₂ (g)
1	0.1090	23.9080	23.9080-23.8016	0.1064
2	0.2063	28.2345	28.2345-28.0515	0.1830
3	0.3088	25.2452	25.2452-24.9836	0.2616
4	0.4080	28.5134	28.5134-28.1618	0.3516
5	0.5065	28.9216	28.9216-28.4912	0.4304
6	0.6005	28.4265	28.4265-27.8996	0.5269
7	0.7103	41.4787	41.4787-40.8798	0.5989
8	0.8037	32.5925	32.5925-31.9078	0.6847

Tabla 6. Determinación de masa de BaCl₂. Modo de calentamiento: horno de convección Tercera repetición

Crisol	Masa de BaCl ₂ ·6 H ₂ O (g)	Masa del crisol y BaCl ₂ * (g)	Diferencia del crisol con BaCl ₂ y crisol a MC (g)	Masa BaCl ₂ (g)
1	0.1090	23.8912	23.8912-23.7996	0.0916
2	0.2063	28.2243	28.2243-28.0493	0.1750
3	0.3088	25.2445	25.2445-24.9819	0.2626
4	0.4080	28.5079	28.5079-28.1599	0.3480
5	0.5065	28.9203	28.9203-28.4894	0.4309
6	0.6005	28.4099	28.4099-27.8986	0.5113
7	0.7103	41.4833	41.4833-40.8779	0.6054
8	0.8037	32.5891	32.5891-31.906	0.6831

^{*} Los datos representan la segunda medición de MC del crisol y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de BaCl ₂ ·6 H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1054-0.0890	0.0443
0.2325-0.1974	0.0910
0.3032-0.2582	0.1448
0.432-0.3671	0.1798
0.5353-0.455	0.2239
0.6028-0.5147	0.2683
0.7121-0.6057	0.3213
0.8046-0.6839	0.3734

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de BaCl ₂ ·6 H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1258-0.1064	0.0194
0.2163-0.1830	0.0333
0.3071-0.2616	0.0455
0.4125-0.3516	0.0609
0.5059-0.4304	0.0755
0.6181-0.5269	0.0912
0.7030-0.5989	0.1041
0.8039-0.6847	0.1192

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de BaCl ₂ ·6 H ₂ O y BaCl ₂ (g)	Masa H ₂ O
0.1090-0.0916	0.0174
0.2063-0.1750	0.0313
0.3088-0.2626	0.0462
0.4080-0.3480	0.0600
0.5065-0.4309	0.0756
0.6005-0.5113	0.0892
0.7103-0.6054	0.1049
0.8037-0.6831	0.1206

Tabla 10. Promedio de MC de tres repeticiones

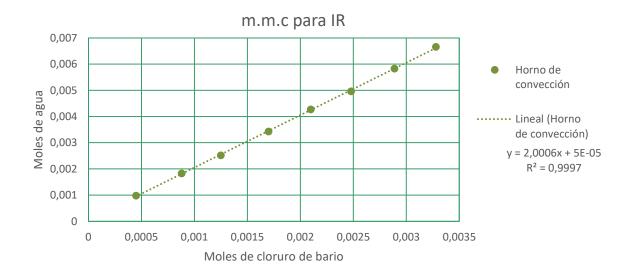
Crisol	Masa inicial crisol (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	24.1978	24.1947	24.1949	24.1958	0.0017	0.0072
2	27.9212	27.6200	27.6194	27.7201	0.1742	0.6285
3	26.0072	26.0058	26.0055	26.0061	0.0009	0.0034
4	28.2732	28.2710	28.2710	28.2717	0.0013	0.0046
5	26.9293	26.9275	26.9277	26.9282	0.0010	0.0037
6	32.5593	32.5568	32.5569	32.5577	0.0014	0.0043
7	36.6420	36.6729	36.6400	36.6516	0.0185	0.0504
8	30.5730	30.5702	30.5712	30.5715	0.0014	0.0047

Tabla 11. Moles de $BaCl_2$ y H_2O . Primera repetición.

Crisol	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0009
2	0.0009	0.0019
3	0.0012	0.0025
4	0.0018	0.0036
5	0.0022	0.0045
6	0.0025	0.0049
7	0.0030	0.0060
8	0.0033	0.0067

Tabla 12. Moles de BaCl₂ y H₂O. Segunda repetición.

Crisol	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0011
2	0.0009	0.0018
3	0.0013	0.0025
4	0.0017	0.0034
5	0.0021	0.00420
6	0.0025	0.0051
7	0.0029	0.0058
8	0.0033	0.0066


Tabla 13. Moles de BaCl₂ y H₂O. Tercera repetición.

Crisol	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0010
2	0.0008	0.0017
3	0.0013	0.0026
4	0.0017	0.0033
5	0.0021	0.0042
6	0.0025	0.0050
7	0.0029	0.0058
8	0.0033	0.0067

Tabla 14. Promedio de moles de H_2O y $BaCl_2$ de las tres repeticiones

Crisol	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0010
2	0.0009	0.0018
3	0.0013	0.0025
4	0.0017	0.0034
5	0.0021	0.0043
6	0.0025	0.0050
7	0.0029	0.0058
8	0.0033	0.0067

Gráfica 1. m.m.c para crisoles calentamiento mediante IR

Calentamiento por horno de microondas para llevar crisoles a MC

Tabla 1. Resultados de la primera repetición para llevar crisoles a MC, calentamiento por horno de microondas.

		medicio	ero de ón de la el crisol			
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	23.8037	23.8012	23.8008	23.8019	0.0016	0.0066
2	28.0528	28.0515	28.0520	28.0521	0.0007	0.0023
3	24.9844	24.9825	24.9828	24.9832	0.0010	0.0041
4	28.1630	28.1610	28.1621	28.1620	0.0010	0.0036
5	28.4922	28.4914	28.4912	28.4916	0.0005	0.0018
6	27.9006	27.8990	27.8990	27.8995	0.0009	0.0033
7	40.8812	40.879	40.8799	40.8800	0.0011	0.0027
8	31.9091	31.9079	31.9077	31.9082	0.0008	0.0024

Tabla 2. Resultados de la segunda repetición para llevar crisoles a MC, calentamiento por horno de microondas.

Número de				
medición de la				
masa del crisol				

Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	23.8072	23.8007	23.8002	23.8027	0.0039	0.0164
2	28.0523	28.0498	28.0499	28.0507	0.0014	0.0050
3	24.9843	24.9815	24.9815	24.9824	0.0016	0.0064
4	28.1628	28.1608	28.1609	28.1615	0.0011	0.0040
5	28.4923	28.4898	28.4902	28.4908	0.0013	0.0047
6	27.9005	27.8987	27.8986	27.8993	0.0011	0.0038
7	40.8814	40.8781	40.8788	40.8794	0.0017	0.0042
8	31.9092	31.9063	31.9066	31.9074	0.0016	0.0050

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por horno de microondas.

Número de				
medición de la				
masa del crisol				

Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	23.8029	23.7997	23.7997	23.8008	0.0018	0.0001
2	28.0524	28.0491	28.0495	28.0503	0.0018	0.0001
3	24.9845	24.9815	24.9814	24.9825	0.0018	0.0001
4	28.1627	28.1599	28.1602	28.1609	0.0015	0.0001
5	28.4919	28.4885	28.4889	28.4898	0.0019	0.0001
6	27.9005	27.898	27.8983	27.8989	0.0014	0.0000
7	40.8817	40.8773	40.8788	40.8793	0.0022	0.0001
8	27.9095	31.9072	31.9078	30.5748	2.3082	0.0755

Tabla 4. Determinación de masa de $BaCl_2$. Modo de calentamiento: horno de microondas Primera repetición

Crisol	Masa de BaCl ₂ ·2 H ₂ O (g)	Masa del crisol y BaCl ₂ * (g)	Diferencia del crisol con BaCl ₂ y crisol a MC (g)	Masa BaCl ₂ (g)
1	0.1391	23.9199	23.9199-23.8008	0.1191
2	0.2064	28.2267	28.2267-28.052	0.1747
3	0.3223	25.2566	25.2566-24.9828	0.2738
4	0.4096	28.5112	28.5112-28.1621	0.3491
5	0.5038	28.9204	28.9204-28.4912	0.4292
6	0.6066	28.4169	28.4169-27.8990	0.5179
7	0.7086	41.4839	41.4839-40.8799	0.604
8	0.8116	32.6003	32.6003-31.9077	0.6926

Tabla 5. Determinación de masa de $BaCl_2$. Modo de calentamiento: horno de microondas Segunda repetición

Crisol	Masa de BaCl ₂ ·2 H ₂ O (g)	Masa del crisol y BaCl ₂ * (g)	Diferencia del crisol con BaCl ₂ y crisol a MC (g)	Masa BaCl ₂ (g)
1	0.1245	23.9068	23.9068-23.8002	0.1066
2	0.2265	28.245	28.245-28.0499	0.1951
3	0.3003	25.2374	25.2374-24.9815	0.2559
4	0.4033	28.5042	28.5042-28.1609	0.3433
5	0.5009	28.9162	28.9162-28.4902	0.4260
6	0.6008	28.4107	28.4107-27.8986	0.5121
7	0.7010	41.4778	41.4778-40.8788	0.5990
8	0.8154	32.6026	32.6026-31.9066	0.6960

Tabla 6. Determinación de masa de BaCl₂. Modo de calentamiento: horno de microondas

Tercera repetición

Crisol	Masa de BaCl ₂ ·2 H ₂ O (g)	Masa del crisol y BaCl ₂ * (g)	Diferencia del crisol con BaCl ₂ y crisol a MC (g)	Masa BaCl ₂ (g)
1	0.1067	23.8914	23.8914-23.7997	0.0917
2	0.2035	28.2218	28.2218-28.0495	0.1723
3	0.3174	25.2527	25.2527-24.9814	0.2713
4	0.4001	28.5017	28.5017-28.1602	0.3415
5	0.5003	28.911	28.911-28.4889	0.4221
6	0.6049	28.4119	28.4119-27.8983	0.5136
7	0.7114	41.4857	41.4857-40.8788	0.6069
8	0.8234	32.6086	32.6086-31.9078	0.7008

^{*} Los datos representan la segunda medición de MC del crisol y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de BaCl ₂ ·2 H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1391-0.1191	0.0200
0.2064-0.1747	0.0317
0.3223-0.2738	0.0485
0.4096-0.3491	0.0605
0.5038-0.4292	0.0746
0.6066-0.5179	0.0887
0.7086-0.6040	0.1046
0.8116-0.6926	0.1190

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de BaCl ₂ ·2 H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1245-0.1066	0.0179
0.2265-0.1951	0.0314
0.3003-0.2559	0.0444
0.4033-0.3433	0.0600
0.5009-0.4260	0.0749
0.6008-0.5121	0.0887
0.7010-0.5990	0.1020
0.8154-0.6960	0.1194

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de BaCl ₂ ·2 H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1067-0.0917	0.0150
0.2035-0.1723	0.0312
0.3174-0.2713	0.0461
0.4001-0.3415	0.0586
0.5003-0.4221	0.0782
0.6049-0.5136	0.0913
0.7114-0.6069	0.1045
0.8234-0.7008	0.1226

Tabla 10. Promedio de MC de tres repeticiones

Crisol	Masa inicial crisol (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	23.8046	23.8005	23.8002	23.8018	0.0024	0.0103
2	28.0525	28.0501	28.0505	28.0510	0.0013	0.0046
3	24.9844	24.9818	24.9819	24.9827	0.0015	0.0058
4	28.1628	28.1606	28.1611	28.1615	0.0012	0.0042
5	28.4921	28.4899	28.4901	28.4907	0.0012	0.0043
6	27.9005	27.8986	27.8986	27.8992	0.0011	0.0040
7	40.8814	40.8781	40.8792	40.8796	0.0017	0.0041
8	30.5759	31.9071	31.9074	31.4635	0.7686	2.4429

Tabla 11. Moles de $BaCl_2$ y H_2O . Primera repetición.

Crisol	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0011
2	0.0008	0.0018
3	0.0013	0.0027
4	0.0017	0.0034
5	0.0021	0.0041
6	0.0025	0.0049
7	0.0029	0.0058
8	0.0033	0.0066

Tabla 12. Moles de BaCl₂ y H₂O. Segunda repetición.

Crisol	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0010
2	0.0009	0.0017
3	0.0012	0.0025
4	0.0016	0.0033
5	0.0020	0.0042
6	0.0025	0.0049
7	0.0029	0.0057
8	0.0033	0.0066

Tabla 13. Moles de BaCl₂ y H₂O. Tercera repetición.

Crisol	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0008
2	0.0008	0.0017
3	0.0013	0.0026
4	0.0016	0.0033
5	0.0020	0.0043
6	0.0025	0.0051
7	0.0029	0.0058
8	0.0034	0.0068

Tabla 14. Promedio de moles de H₂O y BaCl₂ de las tres repeticiones

Crisol	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0010
2	0.0009	0.0017
3	0.0013	0.0026
4	0.0017	0.0033
5	0.0020	0.0042
6	0.0025	0.0050
7	0.0029	0.0058
8	0.0033	0.0067

Gráfica 4. m.m.c para crisoles calentamiento mediante horno de microondas

Calentamiento por mechero de Bunsen para llevar crisoles a MC

Tabla 1. Resultados de la primera repetición para llevar crisoles a MC, calentamiento por mechero de Bunsen

		Núme medició masa de	ón de la			
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	23.8034	23.7999	23.7995	23.8009	0.0021	0.0090
2	28.0525	28.0513	28.051	28.0516	0.0008	0.0028
3	24.9829	24.9818	24.9814	24.9820	0.0008	0.0031
4	28.1625	28.159	28.1594	28.1603	0.0019	0.0066
5	28.4919	28.4888	28.4883	28.4897	0.0020	0.0068
6	27.9007	27.8972	27.8965	27.8981	0.0023	0.0081
7	40.8819	40.8764	40.8752	40.8778	0.0036	0.0087
8	31.904	31.9037	31.9041	31.9039	0.0002	0.0006

Tabla 2. Resultados de la segunda repetición para llevar crisoles a MC, calentamiento por mechero de Bunsen

Número de medición de la masa del crisol						
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	23.8028	23.8014	23.8008	23.8017	0.0010	0.0043
2	28.0522	28.0499	28.0513	28.0511	0.0012	0.0041
3	24.9841	24.9831	24.9829	24.9834	0.0006	0.0026
4	28.1623	28.1599	28.1618	28.1613	0.0013	0.0045
5	28.4914	28.4898	28.4913	28.4908	0.0009	0.0031
6	27.9	27.8978	27.8994	27.8991	0.0011	0.0041
7	40.8806	40.879	40.8799	40.8798	0.0008	0.0020
8	31.9084	31.9073	31.9074	31.9077	0.0006	0.0019

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por mechero de Bunsen

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	23.8036	23.7998	23.7998	23.8011	0.0022	0.0001
2	28.0523	28.0492	28.0498	28.0504	0.0016	0.0001
3	24.9832	24.981	24.9816	24.9819	0.0011	0.0000
4	28.1617	28.1588	28.1607	28.1604	0.0015	0.0001
5	28.4917	28.4889	28.4899	28.4902	0.0014	0.0000
6	27.8996	27.8967	27.8984	27.8982	0.0015	0.0001
7	40.8807	40.8762	40.8785	40.8785	0.0023	0.0001
8	31.9097	31.9046	31.9043	31.9062	0.0030	0.0001

Tabla 4. Determinación de masa de $BaCl_2$. Modo de calentamiento: horno de microondas Primera repetición

Crisol	Masa de BaCl ₂ ·2 H ₂ O (g)	Masa del crisol y BaCl ₂ * (g)	Diferencia del crisol con BaCl ₂ y crisol a MC (g)	Masa BaCl ₂ (g)
1	0.1079	23.8919	23.8919-23.7995	0.0924
2	0.2289	28.2448	28.2448-28.0510	0.1938
3	0.3357	25.2677	25.2677-24.9814	0.2863
4	0.4086	28.5086	28.5086-28.1594	0.3492
5	0.5037	28.9192	28.9192-28.4883	0.4309
6	0.6195	28.4246	28.4246-27.8965	0.5281
7	0.7133	41.4850	41.4850-40.8752	0.6098
8	0.8312	32.6126	32.6126-31.9041	0.7085

Tabla 5. Determinación de masa de $BaCl_2$. Modo de calentamiento: horno de microondas Segunda repetición

Crisol	Masa de BaCl ₂ ·2 H ₂ O (g)	Masa del crisol y BaCl ₂ * (g)	Diferencia del crisol con BaCl ₂ y crisol a MC (g)	Masa BaCl ₂ (g)
1	0.1056	23.8918	23.8918-23.8008	0.091
2	0.2015	28.2230	28.2230-28.0513	0.1717
3	0.3036	25.2428	25.2428-24.9829	0.2599
4	0.4003	28.5069	28.5069-28.1618	0.3451
5	0.5018	28.9195	28.9195-28.4913	0.4282
6	0.6065	28.4259	28.4259-27.8993	0.5266
7	0.7129	41.5022	41.5022-40.8797	0.6225
8	0.8174	32.6143	32.6143-31.9074	0.7069

Tabla 6. Determinación de masa de BaCl₂. Modo de calentamiento: horno de microondas Tercera repetición

Crisol	Masa de BaCl ₂ ·2 H ₂ O (g)	Masa del crisol y BaCl ₂ * (g)	Diferencia del crisol con BaCl ₂ y crisol a MC (g)	Masa BaCl ₂ (g)
1	0.1409	23.9184	23.9184-23.7998	0.1186
2	0.2133	28.2305	28.2305-28.0498	0.1807
3	0.3282	25.2600	25.2600-24.9816	0.2784
4	0.4179	28.515	28.5150-28.1607	0.3543
5	0.5057	28.9187	28.9187-28.4899	0.4288
6	0.6114	28.4176	28.4176-27.8984	0.5192
7	0.7197	41.4861	41.4861-40.8785	0.6076
8	0.8090	32.5921	32.5921-31.9043	0.6878

^{*} Los datos representan la segunda medición de MC del crisol y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de BaCl ₂ ·2H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1079-0.0924	0.0155
0.2289-0.1938	0.0351
0.3357-0.2863	0.0494
0.4086-0.3492	0.0594
0.5037-0.4309	0.0728
0.6195-0.5281	0.0914
0.7133-0.6098	0.1035
0.8312-0.7085	0.1227

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de BaCl ₂ ·2H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1056-0.0910	0.0910
0.2015-0.1717	0.1717
0.3036-0.2599	0.2599
0.4003-0.3451	0.3451
0.5018-0.4282	0.4282
0.6065-0.5266	0.5266
0.7129-0.6225	0.6225
0.8174-0.7069	0.1105

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de BaCl ₂ ·2H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1409-0.1186	0.0223
0.2133-0.1807	0.0326
0.3282-0.2784	0.0498
0.4179-0.3543	0.0636
0.5057-0.4288	0.0769
0.6114-0.5192	0.0922
0.7197-0.6076	0.1121
0.8090-0.6878	0.1212

Tabla 10. Promedio de MC de tres repeticiones

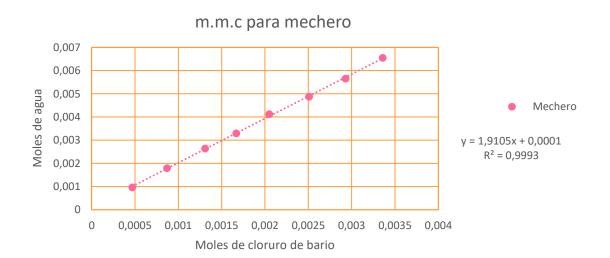
Crisol	Masa inicial crisol (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	23.8033	23.8004	23.8000	23.8012	0.0018	0.0074
2	28.0523	28.0501	28.0507	28.0511	0.0011	0.0041
3	24.9834	24.9820	24.9820	24.9824	0.0008	0.0033
4	28.1622	28.1592	28.1606	28.1607	0.0015	0.0052
5	28.4917	28.4892	28.4898	28.4902	0.0013	0.0045
6	27.9001	27.8972	27.8981	27.8985	0.0015	0.0053
7	40.8811	40.8772	40.8778	40.8787	0.0021	0.0051
8	31.9074	31.9052	31.9053	31.9059	0.0012	0.0039

Tabla 11. Moles de $BaCl_2$ y H_2O . Primera repetición.

Crisol	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0009
2	0.0009	0.0019
3	0.0014	0.0027
4	0.0017	0.0033
5	0.0021	0.0040
6	0.0025	0.0051
7	0.0029	0.0057
8	0.0034	0.0068

Tabla 12. Moles de BaCl₂ y H₂O. Segunda repetición.

Crisol	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0008
2	0.0008	0.0017
3	0.0012	0.0024
4	0.0017	0.0031
5	0.0021	0.0041
6	0.0025	0.0044
7	0.0030	0.0050
8	0.0034	0.0061


Tabla 13. Moles de BaCl₂ y H₂O. Tercera repetición.

Crisol	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0012
2	0.0009	0.0018
3	0.0013	0.0028
4	0.0017	0.0035
5	0.0021	0.0043
6	0.0025	0.0051
7	0.0029	0.0062
8	0.0033	0.0067

Tabla 14. Promedio de moles de H_2O y $BaCl_2$ de las tres repeticiones

Crisol	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0010
2	0.0009	0.0018
3	0.0013	0.0026
4	0.0017	0.0033
5	0.0021	0.0041
6	0.0025	0.0049
7	0.0029	0.0057
8	0.0034	0.0066

Gráfica 1. m.m.c para crisoles calentamiento mediante mechero de Bunsen

Calentamiento por estufa de secado para llevar vasos a MC.

Tabla 1. Resultados de la primera repetición para llevar vasos a MC, calentamiento por estufa de secado.

Número de		
medición de la		
masa del vaso		
(g)		

	Masa vaso			Promedio de las		
Vaso	inicial (g)	1	2	mediciones (g)	DE	%DER
1	10.6254	10.6251	10.6246	10.6250	0.0004	0.0038
2	10.6749	10.6746	10.6740	10.6745	0.0005	0.0042
3	10.2134	10.2133	10.2131	10.2133	0.0002	0.0015
4	11.3707	11.3705	11.3700	11.3704	0.0004	0.0032
5	10.8777	10.8768	10.8767	10.8771	0.0006	0.0051
6	10.6089	10.6084	10.6084	10.6086	0.0003	0.0026
7	10.6319	10.6306	10.6305	10.6310	0.0008	0.0073
8	10.7058	10.7052	10.7053	10.7054	0.0003	0.0030

Tabla 2. Resultados de la segunda repetición para llevar vasos a MC, calentamiento por estufa de secado.

Número de medición
de la masa del vaso
(g)

Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.9402	10.9393	10.9399	10.9398	0.0005	0.0041
2	10.7446	10.7436	10.7436	10.7439	0.0006	0.0053
3	10.6762	10.6751	10.6753	10.6755	0.0006	0.0054
4	10.4863	10.4860	10.4858	10.4860	0.0003	0.0024
5	11.3708	11.37696	11.3703	11.3727	0.0037	0.0325
6	10.6081	10.6074	10.6077	10.6077	0.0004	0.0033
7	10.6308	10.6305	10.6302	10.6305	0.0003	0.0028
8	10.2113	10.2107	10.2102	10.2107	0.0006	0.0054

Tabla 3. Resultados de la tercera repetición para llevar vasos a MC, calentamiento por estufa de secado.

Número de		
medición de la		
masa del vaso		
(g)		

Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.9397	10.9384	10.9384	10.9388	0.0008	0.0069
2	10.6487	10.6468	10.6472	10.6476	0.0010	0.0094
3	10.6801	10.6792	10.679	10.6794	0.0010	0.0054
4	10.4942	10.4908	10.4902	10.4917	0.0022	0.0205
5	11.3721	11.3687	11.3692	11.3700	0.0018	0.0161
6	10.6083	10.6065	10.6071	10.6073	0.0009	0.0086
7	10.6348	10.632	10.6323	10.6330	0.0015	0.0144
8	10.2148	10.2128	10.2125	10.2134	0.0013	0.0122

Tabla 4. Determinación de masa de $BaCl_2$. Modo de calentamiento: estufa. Primera repetición

Vaso	Masa de BaCl ₂ ·2 H ₂ O (g)	Masa del vaso y BaCl ₂ *	Diferencia del vaso con BaCl ₂ y vaso a MC (g)	Masa BaCl ₂ (g)
1	0.1421	10.7447	10.7447- 10.6246	0.1201
2	0.2489	10.886	10.886- 10.6740	0.212
3	0.3186	10.4841	10.4841- 10.2131	0.2710
4	0.4019	11.7112	11.7112- 11.3700	0.3412
5	0.5134	11.3142	11.3142- 10.8767	0.4375
6	0.6147	11.1327	11.1327- 10.6084	0.5243
7	0.7130	11.2379	11.2379- 10.6305	0.6074
8	0.8412	11.4225	11.4225- 10.7053	0.7172

Tabla 5. Determinación de masa de $BaCl_2$. Modo de calentamiento: estufa de secado. Segunda repetición

Vaso	Masa de BaCl ₂ ·2 H ₂ O (g)	Masa del vaso y BaCl ₂ *	Diferencia del vaso con BaCl ₂ y vaso a MC (g)	Masa BaCl ₂ (g)
1	0.1099	11.0323	11.0323-10.9399	0.0924
2	0.2003	10.9126	10.9126-10.7436	0.1690
3	0.3041	10.9335	10.9335-10.6753	0.2582
4	0.4012	10.8273	10.8273-10.4858	0.3415
5	0.5322	11.8246	11.8246-11.3703	0.4543
6	0.6164	11.1330	11.1330-10.6077	0.5253
7	0.7088	11.2341	11.2341-10.6302	0.6039
8	0.8028	10.8940	10.8940-10.2102	0.6838

Tabla 6. Determinación de masa de $BaCl_2$. Modo de calentamiento: estufa de secado. Tercera repetición

Vaso	Masa de BaCl ₂ ·2 H ₂ O (g)	Masa del vaso y BaCl ₂ * (g)	Diferencia del vaso con BaCl ₂ y vaso a MC (g)	Masa BaCl ₂ (g)
1	0.1114	11.0344	11.0344-10.9384	0.0960
2	0.2017	10.8197	10.8197-10.6472	0.1725
3	0.3092	10.9431	10.9431- 10.679	0.2641
4	0.4103	10.8403	10.8403-10.4902	0.3501
5	0.5020	11.7990	11.7990-11.3692	0.4298
6	0.6037	11.1227	11.1227-10.6071	0.5156
7	0.7000	11.2420	11.2420-10.6323	0.6097
8	0.8103	10.9036	10.9036-10.2125	0.6911

^{*} Los datos representan la segunda medición de MC del vaso y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de BaCl ₂ ·2 H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1421- 0.1201	0.0220
0.2489- 0.2124	0.0365
0.3186- 0.2710	0.0476
0.4019- 0.3414	0.0605
0.5134- 0.4375	0.0759
0.6147- 0.5243	0.0904
0.7130- 0.6076	0.1054
0.8412- 0.7172	0.1240

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de BaCl ₂ ·2 H ₂ O y BaCl ₂ (g)	Masa H ₂ O
0.1099- 0.0922	0.0177
0.2003- 0.1688	0.0315
0.3041- 0.258	0.0461
0.4012- 0.3415	0.0597
0.5322- 0.4545	0.0777
0.6164- 0.5253	0.0911
0.7088- 0.6039	0.1049
0.8028- 0.6838	0.1190

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de BaCl ₂ ·2 H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1114-0.096	0.0154
0.2017-0.1725	0.0292
0.3092-0.2641	0.0451
0.4103-0.3501	0.0602
0.5020-0.4298	0.0722
0.6037-0.5156	0.0881
0.7000-0.6097	0.0903
0.8103-0.6911	0.1192

Tabla 10. Promedio de MC de tres repeticiones

Vaso	Masa inicial vaso (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	10.8351	10.8343	10.8343	10.8346	0.0005	0.0043
2	10.6894	10.6883	10.6883	10.6887	0.0006	0.0059
3	10.5232	10.5225	10.5225	10.5227	0.0004	0.0040
4	10.7837	10.7824	10.7820	10.7827	0.0009	0.0083
5	11.2069	11.2075	11.2054	11.2066	0.0011	0.0095
6	10.6084	10.6074	10.6077	10.6079	0.0005	0.0048
7	10.6325	10.6310	10.6310	10.6315	0.0009	0.0080
8	10.3773	10.3762	10.3760	10.3765	0.0007	0.0066

Tabla 11. Moles de BaCl $_2$ y H_2O . Primera repetición.

Vaso	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0012
2	0.0010	0.0020
3	0.0013	0.0026
4	0.0016	0.0034
5	0.0021	0.0042
6	0.0025	0.0050
7	0.0029	0.0059
8	0.0034	0.0069

Tabla 12. Moles de $BaCl_2$ y H_2O . Segunda repetición.

Vaso	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0010
2	0.0008	0.0017
3	0.0012	0.0026
4	0.0016	0.0033
5	0.0022	0.0043
6	0.0025	0.0051
7	0.0029	0.0058
8	0.0033	0.0066


Tabla 13. Moles de BaCl₂ y H₂O. Tercera repetición.

Vaso	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0009
2	0.0008	0.0016
3	0.0013	0.0025
4	0.0017	0.0033
5	0.0021	0.0040
6	0.0025	0.0049
7	0.0029	0.0050
8	0.0033	0.0066

Tabla 14. Promedio de moles de H_2O y $BaCl_2$ de las tres repeticiones

Vaso	Moles BaCl ₂	Moles H ₂ O
1	0.0005	0.0010
2	0.0009	0.0018
3	0.0013	0.0026
4	0.0017	0.0033
5	0.0021	0.0042
6	0.0025	0.0050
7	0.0029	0.0056
8	0.0033	0.0067

Gráfica 1. m.m.c para vasos calentamiento mediante estufa

Calentamiento porIR para llevar vasos a MC

Tabla 1. Resultados de la primera repetición para llevar vasos a MC, calentamiento por horno de convección.

Número de

		medición de la masa del vaso				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.6241	10.6238	10.6236	10.6238	0.0003	0.0024
2	10.643	10.6428	10.6429	10.6429	0.0001	0.0009
3	10.2113	10.2105	10.2109	10.2109	0.0004	0.0038
4	10.4869	10.4867	10.4865	10.4867	0.0002	0.0019
5	10.8742	10.8739	10.8737	10.8739	0.0003	0.0023
6	10.6104	10.6099	10.6097	10.6100	0.0004	0.0034
7	10.7027	10.7028	10.7027	10.7027	0.0001	0.0005
8	10.9411	10.9405	10.9408	10.9408	0.0003	0.0027

Tabla 2. Resultados de la segunda repetición para llevar vasos a MC, calentamiento por horno de convección.

Númo		
medicio		
masa d	lel vaso	
		Pron
1	2	de
1	4	modia

Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.9399	10.9396	10.9398	10.9398	0.0002	0.0014
2	10.745	10.7455	10.7448	10.7451	0.0004	0.0034
3	10.6756	10.675	10.6751	10.6752	0.0003	0.0030
4	10.4887	10.4888	10.4883	10.4886	0.0003	0.0025
5	11.3703	11.3694	11.3699	11.3699	0.0005	0.0040
6	10.6083	10.6077	10.6079	10.6080	0.0003	0.0028
7	10.6407	10.6298	10.6304	10.6336	0.0061	0.0576
8	10.2109	10.2100	10.2103	10.2104	0.0005	0.0044

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por horno de convección.

Número de	
medición de la	
masa del vaso	

Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.9397	10.9392	10.9386	10.9392	0.0006	0.0050
2	10.6434	10.643	10.6428	10.6431	0.0003	0.0028
3	10.6759	10.6752	10.6755	10.6755	0.0004	0.0033
4	10.4867	10.4868	10.4866	10.4867	0.0001	0.0010
5	10.888	10.879	10.8795	10.8822	0.0051	0.0464
6	10.7045	10.7044	10.7045	10.7045	0.0001	0.0005
7	10.6297	10.6300	10.6297	10.6298	0.0002	0.0016
8	10.2117	10.2123	10.2123	10.2121	0.0003	0.0033

Tabla 4. Determinación de masa de $BaCl_2$. Modo de calentamiento: horno de convección Primera repetición

Vaso	Masa de BaCl ₂ ·2 H ₂ O (g)	Masa del vaso y BaCl ₂ * (g)	Diferencia del vaso con BaCl ₂ y crisol a MC (g)	Masa BaCl ₂ (g)
1	0.1044	10.7122	10.7122- 10.6236	0.0886
2	0.2043	10.8166	10.8166- 10.6429	0.1737
3	0.3034	10.4695	10.4695- 10.2109	0.2586
4	0.4060	10.8321	10.8321- 10.4865	0.3456
5	0.5199	11.3171	11.3171- 10.8737	0.4434
6	0.6148	11.1330	11.133- 10.6097	0.5233
7	0.7142	11.3108	11.3108- 10.7027	0.6081
8	0.8156	11.6347	11.6347- 10.9408	0.6939

Tabla 5. Determinación de masa de $BaCl_2$. Modo de calentamiento: horno de convección Segunda repetición

Vaso	Masa de BaCl ₂ ·2 H ₂ O (g)	Masa del vaso y BaCl ₂ * (g)	Diferencia del vaso con BaCl ₂ y crisol a MC (g)	Masa BaCl ₂ (g)
1	0.1088	11.032	11.032- 10.9398	0.0922
2	0.2099	10.9223	10.9223- 10.7448	0.1775
3	0.3020	10.9325	10.9325- 10.6751	0.2574
4	0.4004	10.8291	10.8291- 10.4883	0.3408
5	0.5070	11.8019	11.8019- 11.3699	0.4320
6	0.6033	11.1234	11.1234- 10.6079	0.5155
7	0.8074	11.3182	11.3182- 10.6304	0.6878
8	0.8262	10.9141	10.9141- 10.2103	0.7038

Tabla 6. Determinación de masa de BaCl₂. Modo de calentamiento: horno de convección Tercera repetición

Vaso	Masa de BaCl ₂ ·2 H ₂ O (g)	Masa del vaso y BaCl ₂ * (g)	Diferencia del vaso con BaCl ₂ y crisol a MC (g)	Masa BaCl ₂ (g)
1	0.1042	11.0268	11.0268-10.9386	0.0882
2	0.2067	10.8185	10.8185-10.6428	0.1757
3	0.3036	10.9343	10.9343-10.6755	0.2588
4	0.4046	10.8307	10.8307-10.4866	0.3441
5	0.5192	11.3205	11.3205-10.8795	0.441
6	0.6245	11.2364	11.2364-10.7045	0.5319
7	0.7155	11.2404	11.2404-10.6297	0.6107
8	0.8016	10.8962	10.8962-10.2123	0.6839

^{*} Los datos representan la segunda medición de MC del vaso y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de BaCl ₂ ·2 H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1044-0.0886	0.0158
0.2043-0.1737	0.0306
0.3034-0.2586	0.0448
0.4060-0.3456	0.0604
0.5199-0.4434	0.0765
0.6148-0.5233	0.0915
0.7142-0.6081	0.1061
0.8156-0.6939	0.1217

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de BaCl ₂ ·2 H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1088-0.0922	0.0166
0.2099-0.1775	0.0324
0.3020-0.2574	0.0446
0.4004-0.3408	0.0596
0.5070-0.432	0.0750
0.6033-0.5155	0.0878
0.8074-0.6878	0.1196
0.8262-0.7038	0.1224

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de BaCl ₂ ·2 H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1042-0.0882	0.0160
0.2067-0.1757	0.0310
0.3036-0.2588	0.0448
0.4046-0.3441	0.0605
0.5192-0.4410	0.0782
0.6245-0.5319	0.0926
0.7155-0.6107	0.1048
0.8016-0.6839	0.1177

Tabla 10. Promedio de MC de tres repeticiones

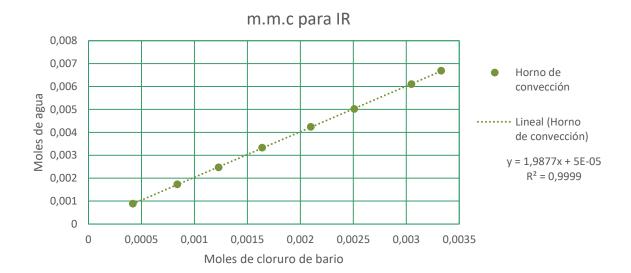
Vaso	Masa inicial vaso (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	10.8346	10.8342	10.8340	10.8343	0.0003	0.0026
2	10.6771	10.6771	10.6768	10.6770	0.0002	0.0015
3	10.5209	10.5202	10.5205	10.5206	0.0004	0.0033
4	10.4874	10.4874	10.4871	10.4873	0.0002	0.0016
5	11.0442	11.0408	11.0410	11.0420	0.0019	0.0170
6	10.6411	10.6407	10.6407	10.6408	0.0002	0.0021
7	10.6577	10.6542	10.6543	10.6554	0.0020	0.0188
8	10.4546	10.4543	10.4545	10.4544	0.0002	0.0014

Tabla 11. Moles de BaCl $_2$ y H_2O . Primera repetición.

Vaso	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0009
2	0.0008	0.0017
3	0.0012	0.0025
4	0.0017	0.0034
5	0.0021	0.0042
6	0.0025	0.0051
7	0.0029	0.0059
8	0.0033	0.0068

Tabla 12. Moles de BaCl₂ y H₂O. Segunda repetición.

Vaso	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0009
2	0.0009	0.0018
3	0.0012	0.0025
4	0.0016	0.0033
5	0.0021	0.0042
6	0.0025	0.0049
7	0.0033	0.0066
8	0.0034	0.0068


Tabla 13. Moles de BaCl₂ y H₂O. Tercera repetición.

Vaso	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0009
2	0.0008	0.0017
3	0.0012	0.0025
4	0.0017	0.0034
5	0.0021	0.0043
6	0.0026	0.0051
7	0.0029	0.0058
8	0.0032	0.0065

Tabla 14. Promedio de moles de H_2O y $BaCl_2$ de las tres repeticiones

Vaso	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0009
2	0.0008	0.0017
3	0.0012	0.0025
4	0.0016	0.0033
5	0.0021	0.0042
6	0.0025	0.0050
7	0.0031	0.0061
8	0.0033	0.0067

Gráfica 1. m.m.c para vasos calentamiento mediante IR

Calentamiento por horno de microondas para llevar vasos a MC

Tabla 1. Resultados de la primera repetición para llevar vasos a MC, calentamiento por horno de microondas.

		Núme medicio masa d	ón de la			
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.9402	10.9395	10.9397	10.9398	0.0004	0.0033
2	10.6470	10.6463	10.646	10.6464	0.0005	0.0048
3	10.2143	10.2137	10.2139	10.21396	0.0003	0.0029
4	10.4888	10.4885	10.4881	10.48846	0.0004	0.0033
5	10.8774	10.8771	10.8771	10.8772	0.0002	0.0016
6	10.6092	10.6089	10.6086	10.6089	0.0003	0.0028
7	10.6313	10.6312	10.6316	10.6314	0.0002	0.0019
8	10.7057	10.7058	10.7056	10.7057	0.0001	0.0008

Tabla 2. Resultados de la segunda repetición para llevar vasos a MC, calentamiento por horno de microondas.

Número de			
medición de la			
masa del vaso			

Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.6248	10.6236	10.6239	10.6241	0.0006	0.0058
2	10.6457	10.6451	10.6449	10.6452	0.0004	0.0039
3	10.6762	10.675	10.6752	10.6755	0.0006	0.0060
4	10.487	10.4854	10.4857	10.4860	0.0009	0.0081
5	10.8751	10.875	10.8754	10.8752	0.0002	0.0018
6	10.7024	10.7014	10.7019	10.7019	0.0005	0.0047
7	10.6307	10.63	10.6303	10.6303	0.0004	0.0033
8	10.2103	10.2094	10.2099	10.2099	0.0005	0.0044

Tabla 3. Resultados de la tercera repetición para llevar vasos a MC, calentamiento por horno de microondas.

Número de				
medición de la				
masa del vaso				

Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.624	10.6238	10.6236	10.6238	0.0002	0.0019
2	10.6434	10.643	10.6432	10.6432	0.0002	0.0018
3	10.6759	10.6758	10.6756	10.6758	0.0002	0.0014
4	10.4856	10.4868	10.4849	10.4858	0.0010	0.0092
5	11.3698	11.3698	11.3698	11.3698	0.0000	0.0000
6	10.6078	10.6074	10.6073	10.6075	0.0003	0.0025
7	10.6299	10.6294	10.6293	10.6295	0.0003	0.0030
8	10.2132	10.2123	10.2123	10.2126	0.0005	0.0050

Tabla 4. Determinación de masa de $BaCl_2$. Modo de calentamiento: horno de microondas Primera repetición

Vaso	Masa de BaCl ₂ ·2 H ₂ O (g)	Masa del vaso y BaCl ₂ * (g)	Diferencia del vaso con BaCl ₂ y crisol a MC (g)	Masa BaCl ₂ (g)
1	0.1101	11.0332	11.0332-10.9397	0.0935
2	0.2159	10.8296	10.8296-10.6460	0.1836
3	0.3109	10.4784	10.4784-10.2139	0.2645
4	0.4168	10.8429	10.8429-10.4881	0.3548
5	0.5044	11.3068	11.3068-10.8771	0.4297
6	0.6017	11.1217	11.1217-10.6086	0.5131
7	0.7048	11.2314	11.2314-10.6316	0.5998
8	0.8333	11.4172	11.4172-10.7056	0.7116

Tabla 5. Determinación de masa de $BaCl_2$. Modo de calentamiento: horno de microondas Segunda repetición

Vaso	Masa de BaCl ₂ ·2 H ₂ O (g)	Masa del vaso y BaCl ₂ * (g)	Diferencia del vaso con BaCl ₂ y crisol a MC (g)	Masa BaCl ₂ (g)
01	0.1083	10.7158	10.7158-10.6239	0.0919
2	0.2242	10.8328	10.8328-10.6449	0.1879
3	0.3005	10.9308	10.9308-10.6752	0.2556
4	0.4042	10.8301	10.8301-10.4857	0.3444
5	0.5072	11.3074	11.3074-10.8754	0.4320
6	0.6178	11.2284	11.2284-10.7019	0.5265
7	0.7036	11.2296	11.2296-10.6303	0.5993
8	0.8606	10.9430	10.9430-10.2099	0.7331

Tabla 6. Determinación de masa de BaCl₂. Modo de calentamiento: horno de microondas

Tercera repetición

Vaso	Masa de BaCl ₂ ·2 H ₂ O (g)	Masa del vaso y BaCl ₂ * (g)	Diferencia del vaso con BaCl ₂ y crisol a MC (g)	Masa BaCl ₂ (g)
1	0.1121	10.7182	10.7182-10.6236	0.0946
2	0.2293	10.8384	10.8384-10.6432	0.1952
3	0.3197	10.9471	10.9471-10.6756	0.2715
4	0.4016	10.8357	10.8357-10.4849	0.3508
5	0.5005	11.7956	11.7956-11.3698	0.4258
6	0.6092	11.1269	11.1269-10.6073	0.5196
7	0.7009	11.2263	11.2263-10.6293	0.5970
8	0.8047	10.8962	10.8962-10.2123	0.6839

^{*} Los datos representan la segunda medición de MC del vaso y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de BaCl ₂ ·2 H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1101-0.0935	0.0166
0.2159-0.1836	0.0323
0.3109-0.2645	0.0464
0.4168-0.3548	0.0620
0.5044-0.4297	0.0747
0.6017-0.5131	0.0886
0.7048-0.5998	0.1050
0.8333-0.7116	0.1217

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de BaCl ₂ ·2 H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1083-0.0919	0.0164
0.2242-0.1879	0.0363
0.3005-0.2556	0.0449
0.4042-0.3444	0.0598
0.5072-0.432	0.0752
0.6178-0.5265	0.0913
0.7036-0.5993	0.1043
0.8606-0.7331	0.1275

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de BaCl ₂ ·2 H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1121-0.0946	0.0175
0.2293-0.1952	0.0341
0.3197-0.2715	0.0482
0.4016-0.3508	0.0508
0.5005-0.4258	0.0747
0.6092-0.5196	0.0896
0.7009-0.5970	0.1039
0.8047-0.6839	0.1208

Tabla 10. Promedio de MC de tres repeticiones

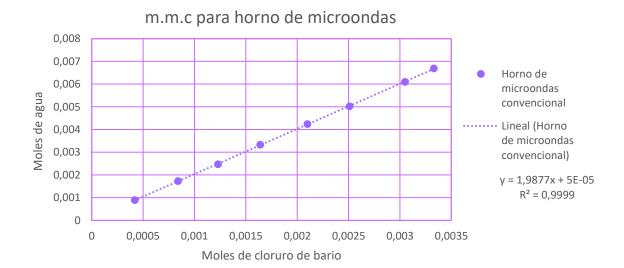
Vaso	Masa inicial vaso (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	10.7297	10.7290	10.7291	10.7292	0.0004	0.0034
2	10.6454	10.6448	10.6447	10.6450	0.0004	0.0033
3	10.5221	10.5215	10.5216	10.5217	0.0003	0.0032
4	10.4871	10.4869	10.4862	10.4868	0.0005	0.0044
5	11.0408	11.0406	11.0408	11.0407	0.0001	0.0006
6	10.6398	10.6392	10.6393	10.6394	0.0003	0.0030
7	10.6306	10.6302	10.6304	10.6304	0.0002	0.0020
8	10.3764	10.3758	10.3759	10.3761	0.0003	0.0029

Tabla 11. Moles de $BaCl_2$ y H_2O . Primera repetición.

Vaso	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0009
2	0.0009	0.0018
3	0.0013	0.0026
4	0.0017	0.0034
5	0.0021	0.0041
6	0.0025	0.0049
7	0.0029	0.0058
8	0.0034	0.0068

Tabla 12. Moles de BaCl₂ y H₂O. Segunda repetición.

Vaso	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0009
2	0.0009	0.0020
3	0.0012	0.0025
4	0.0017	0.0033
5	0.0021	0.0042
6	0.0025	0.0051
7	0.0029	0.0058
8	0.0035	0.0071


Tabla 13. Moles de $BaCl_2$ y H_2O . Tercera repetición.

Vaso	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0010
2	0.0009	0.0019
3	0.0013	0.0027
4	0.0017	0.0028
5	0.0020	0.0041
6	0.0025	0.0050
7	0.0029	0.0058
8	0.0033	0.0067

Tabla 14. Promedio de moles de H_2O y $BaCl_2$ de las tres repeticiones

Vaso	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0009
2	0.0009	0.0019
3	0.0013	0.0026
4	0.0017	0.0032
5	0.0021	0.0042
6	0.0025	0.0050
7	0.0029	0.0058
8	0.0034	0.0068

Gráfica 1. m.m.c para vasos calentamiento mediante horno de microondas

Calentamiento por mechero de Bunsen para llevar vasos a MC

Tabla 1. Resultados de la primera repetición para llevar vasos a MC, calentamiento por mechero de Bunsen

Número de medición de la masa del vaso						
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.6254	10.6239	10.6237	10.6243	0.0009	0.0087
2	10.6782	10.6737	10.6742	10.6754	0.0025	0.0230
3	10.215	10.2122	10.2126	10.2133	0.0015	0.0148
4	11.372	11.3698	11.3693	11.3704	0.0014	0.0126
5	10.8797	10.8762	10.8765	10.8775	0.0019	0.0177
6	10.6087	10.6084	10.6082	10.6084	0.0003	0.0024
7	10.6305	10.63	10.6307	10.6304	0.0004	0.0034
8	10.7062	10.7041	10.7043	10.7049	0.0012	0.0107

Tabla 2. Resultados de la segunda repetición para llevar vasos a MC, calentamiento por mechero de Bunsen

	Número de medición de la masa del vaso					
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.9403	10.939	10.9392	10.9395	0.0007	0.0064
2	10.644	10.6424	10.6434	10.6433	0.0008	0.0075
3	10.6769	10.6763	10.6762	10.6765	0.0004	0.0035
4	10.487	10.4869	10.4867	10.4869	0.0002	0.0014
5	10.8796	10.8786	10.8792	10.8791	0.0005	0.0046
6	10.7050	10.7037	10.7043	10.7043	0.0007	0.0061
7	10.6320	10.6309	10.6314	10.6314	0.0006	0.0051
8	10.2125	10.2119	10.2123	10.2122	0.0003	0.0029

Tabla 3. Resultados de la tercera repetición para llevar vasos a MC, calentamiento por mechero de Bunsen

		medicio	ero de ón de la lel vaso			
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.9442	10.9388	10.9386	10.9405	0.0032	0.0290
2	10.6489	10.6472	10.6475	10.6479	0.0009	0.0085
3	10.681	10.6791	10.6794	10.6798	0.0010	0.0096
4	10.4913	10.4899	10.4899	10.4904	0.0008	0.0076
5	10.8817	10.8761	10.8759	10.878	0.0033	0.0302
6	10.7064	10.7035	10.7035	10.7045	0.0017	0.0156
7	10.6380	10.6371	10.6369	10.6373	0.0009	0.0055
8	10.2120	10.2114	10.2114	10.2116	0.0003	0.0033

Tabla 4. Determinación de masa de BaCl₂. Modo de calentamiento: mechero de Bunsen

Primera repetición

Vaso	Masa de BaCl₂·6 H₂O (g)	Masa del vaso y BaCl ₂ * (g)	Diferencia del vaso con BaCl ₂ y vaso a MC (g)	Masa BaCl ₂ (g)
1	0.1125	10.7202	10.7202-10.6237	0.0965
2	0.2254	10.8657	10.8657-10.6742	0.1915
3	0.3055	10.4728	10.4728-10.2126	0.2602
4	0.4128	11.7212	11.7212-11.3693	0.3519
5	0.5072	11.3087	11.3087-10.8765	0.4322
6	0.6068	11.1263	11.1263-10.6082	0.5181
7	0.7115	11.2365	11.2365-10.6307	0.6058
8	0.8125	11.3966	11.3966-10.7043	0.6923

Tabla 5. Determinación de masa de BaCl₂. Modo de calentamiento: mechero de Bunsen Segunda repetición

Vaso	Masa de BaCl ₂ ·6 H ₂ O (g)	Masa del vaso y BaCl ₂ * (g)	Diferencia del vaso con BaCl ₂ y vaso a MC (g)	Masa BaCl ₂ (g)
1	0.1212	11.0437	11.0437-10.9392	0.1045
2	0.2051	10.8169	10.8169-10.6434	0.1735
3	0.3013	10.9324	10.9324-10.6762	0.2562
4	0.4005	10.8282	10.8282-10.4867	0.3415
5	0.5009	11.3068	11.3068-10.8792	0.4276
6	0.6047	11.2188	11.2188-10.7043	0.5145
7	0.7209	11.2443	11.2443-10.6314	0.6129
8	0.8077	10.9011	10.9011-10.2123	0.6888

Tabla 6. Determinación de masa de BaCl₂. Modo de calentamiento: mechero de Bunsen

Tercera repetición

Vaso	Masa de BaCl ₂ ·6 H ₂ O (g)	Masa del vaso y BaCl ₂ * (g)	Diferencia del vaso con BaCl ₂ y vaso a MC (g)	Masa BaCl ₂ (g)
1	0.1064	11.0288	11.0288-10.9386	0.0902
2	0.2187	10.8256	10.8256-10.6475	0.1781
3	0.3079	10.9424	10.9424-10.6794	0.2630
4	0.4157	10.8438	10.8438-10.4899	0.3539
5	0.5091	11.3097	11.3097-10.8759	0.4338
6	0.6001	11.2150	11.2150-10.7035	0.5115
7	0.7147	11.2445	11.2445-10.6369	0.6076
8	0.808	10.9006	10.9006-10.2114	0.6892

^{*} Los datos representan la segunda medición de MC del vaso y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de BaCl ₂ ·2 H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1125-0.0965	0.0160
0.2254-0.1915	0.0339
0.3055-0.2602	0.0453
0.4128-0.3519	0.0609
0.5072-0.4322	0.0750
0.6068-0.5181	0.0887
0.7115-0.6058	0.1057
0.8125-0.6923	0.1202

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de BaCl ₂ ·2 H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1212-0.1045	0.0167
0.2051-0.1735	0.0316
0.3013-0.2562	0.0451
0.4005-0.3415	0.0590
0.5009-0.4276	0.0733
0.6047-0.5145	0.0902
0.7209-0.6129	0.1080
0.8077-0.6888	0.1189

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de BaCl ₂ ·2 H ₂ O y BaCl ₂ (g)	Masa H ₂ O (g)
0.1064-0.0902	0.0162
0.2187-0.1781	0.0406
0.3079-0.263	0.0449
0.4157-0.3539	0.0618
0.5091-0.4338	0.0753
0.6001-0.5115	0.0886
0.7147-0.6076	0.1071
0.8080-0.6892	0.1188

Tabla 10. Promedio de MC de tres repeticiones

Vaso	Masa inicial vaso (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	10.8366	10.8340	10.8338	10.8348	0.0016	0.0147
2	10.6570	10.6544	10.6550	10.6555	0.0014	0.0128
3	10.5243	10.5225	10.5227	10.5232	0.0010	0.0091
4	10.7834	10.7822	10.7820	10.7825	0.0008	0.0072
5	10.8803	10.8770	10.8772	10.8782	0.0019	0.0173
6	10.6734	10.6719	10.6720	10.6724	0.0008	0.0077
7	10.6335	10.6327	10.6330	10.6331	0.0004	0.0039
8	10.3769	10.3758	10.3760	10.3762	0.0006	0.0056

Tabla 11. Moles de BaCl $_2$ y H_2O . Primera repetición.

Vaso	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0009
2	0.0009	0.0019
3	0.0012	0.0025
4	0.0017	0.0034
5	0.0021	0.0042
6	0.0025	0.0049
7	0.0029	0.0059
8	0.0033	0.0067

Tabla 12. Moles de BaCl₂ y H₂O. Segunda repetición.

Vaso	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0009
2	0.0008	0.0018
3	0.0012	0.0025
4	0.0016	0.0033
5	0.0021	0.0041
6	0.0025	0.0050
7	0.0029	0.0060
8	0.0033	0.0066

Tabla 13. Moles de $BaCl_2$ y H_2O . Tercera repetición.

Vaso	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0009
2	0.0009	0.0023
3	0.0013	0.0025
4	0.0017	0.0034
5	0.0021	0.0042
6	0.0025	0.0049
7	0.0029	0.0059
8	0.0033	0.0066

Tabla 14. Promedio de moles de H_2O y $BaCl_2$ de las tres repeticiones

Vaso	BaCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0009
2	0.0009	0.0020
3	0.0012	0.0025
4	0.0017	0.0034
5	0.0021	0.0041
6	0.0025	0.0049
7	0.0029	0.0059
8	0.0033	0.0066

Gráfica 1. m.m.c para vasos calentamiento mediante mechero de Bunsen

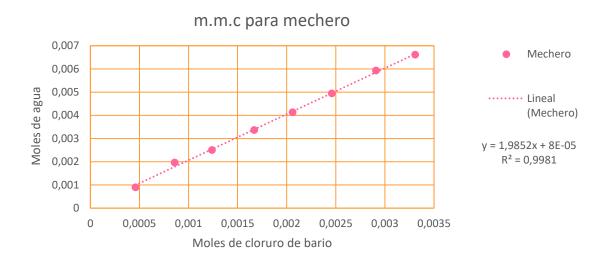


Gráfico 1. m.m.c. de la determinación de moles de cloruro de bario para los cuatro tipos de calentamiento por medio de crisoles

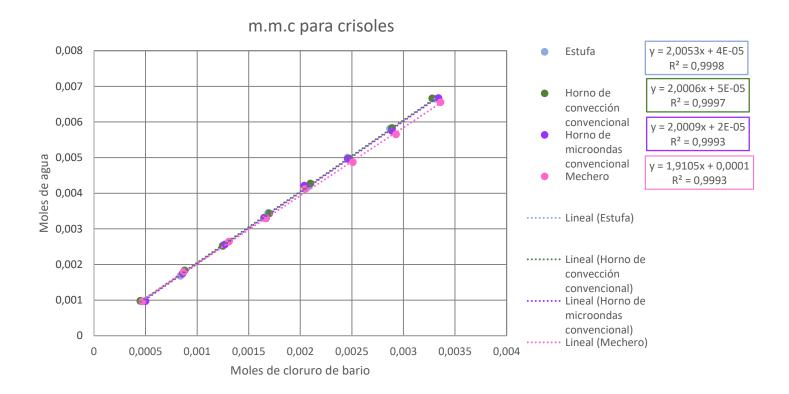


Gráfico 2. m.m.c. de la determinación de moles de cloruro de bario para los cuatro tipos de calentamiento por medio de vasos

Anexo 3 cloruro de manganeso tetrahidratado (MnCl₂·4H₂O)

Calentamiento por estufa de secado para llevar crisoles a MC.

Tabla 1. Resultados de la primera repetición para llevar crisoles a MC, calentamiento por estufa de secado.

			o de medic nasa del cri (g)				
Crisol	Masa crisol inicial (g)	1	2	3	Promedio de las mediciones (g)	DE	%DER
1	23.8035	23.7998	23.7988	23.7989	23.8003	0.0022	0.0093
2	28.0525	28.0507	28.0483	28.0486	28.0500	0.0020	0.0070
3	24.9845	24.9825	24.9817	24.9818	24.9826	0.0013	0.0052
4	28.1629	28.1615	28.1606	28.1600	28.1613	0.0013	0.0045
5	28.4921	28.4894	28.4892	28.4897	28.4901	0.0013	0.0047
6	27.9005	27.8989	27.8986	27.8982	27.8991	0.0010	0.0036
7	40.8822	40.8784	40.8791	40.8794	40.8798	0.0017	0.0041
8	31.9094	31.9066	31.9068	31.9063	31.9073	0.0014	0.0045

Tabla 2. Resultados de la segunda repetición para llevar crisoles a MC, calentamiento por estufa de secado.

		Número de medición de la masa del crisol (g)					
Crisol	Masa crisol inicial (g)	1	2	3	Promedio de las mediciones (g)	DE	%DER
1	23.8034	23.7982	23.7988	23.8001	23.8001	0.0023	0.0098
2	28.0524	28.0483	28.0495	28.0492	28.0499	0.0018	0.0063
3	24.9847	24.9842	24.9835	24.9838	24.9841	0.0005	0.0021
4	28.1632	28.159	28.1606	28.1609	28.1609	0.0017	0.0061
5	28.4923	28.489	28.4915	28.4911	28.4910	0.0014	0.0049
6	27.9004	27.8975	27.8982	27.8981	27.8986	0.0013	0.0046
7	40.8814	40.8783	40.8791	40.8788	40.8794	0.0014	0.0034
8	31.9091	31.8971	31.9068	31.9061	31.9048	0.0053	0.0165

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por estufa de secado.

		Número de medición de la masa del crisol (g)					
Crisol	Masa crisol inicial (g)	1	2	3	Promedio de las mediciones (g)	DE	%DER
1	23.8031	23.7976	23.7964	23.7967	23.7986	0.0031	0.0132
2	28.0523	28.0468	28.0473	28.0472	28.0484	0.0026	0.0093
3	24.9842	24.9832	24.9807	24.9809	24.9823	0.0017	0.0070
4	28.1627	28.1586	28.1596	28.1597	28.1602	0.0018	0.0063
5	28.4917	28.4893	28.4892	28.4896	28.4900	0.0012	0.0041
6	27.8998	27.8967	27.8976	27.8978	27.8980	0.0013	0.0049
7	40.881	40.8782	40.8778	40.8774	40.8786	0.0016	0.0040
8	31.9086	31.906	31.9058	31.9052	31.9064	0.0015	0.0047

Tabla 4. Determinación de masa de $MnCl_2$. Modo de calentamiento: estufa. Primera repetición

Crisol	Masa de MnCl ₂ ·4 H ₂ O (g)	Masa del crisol y MnCl ₂ * (g)	Diferencia del crisol con MnCl ₂ y crisol a MC (g)	Masa MnCl ₂ (g)
1	0.1173	23.8755	23.8755-23.7989	0.0766
2	0.2115	28.1879	28.1879-28.0486	0.1393
3	0.3025	25.1811	25.1811-24.9818	0.1993
4	0.4073	28.4354	28.4354-28.1600	0.2754
5	0.5054	28.8090	28.8090-28.4897	0.3193
6	0.6070	28.3017	28.3017-27.8982	0.4035
7	0.7033	41.34250	41.3425-40.8794	0.4631
8	0.8089	32.4352	32.4352-31.9063	0.5289

Tabla 5. Determinación de masa de $MnCl_2$. Modo de calentamiento: estufa de secado. Segunda repetición

Crisol	Masa de MnCl ₂ ·4 H ₂ O (g)	Masa del crisol y MnCl ₂ * (g)	Diferencia del crisol con MnCl ₂ y crisol a MC (g)	Masa MnCl ₂ (g)
1	0.1413	23.8897	23.8897-23.8001	0.0896
2	0.2042	28.1813	28.1813-28.0492	0.1321
3	0.3034	25.1769	25.1769-24.9838	0.1931
4	0.4178	28.4321	28.4321-28.1609	0.2712
5	0.5051	28.8134	28.8134-28.4911	0.3223
6	0.6149	28.2925	28.2925-27.8981	0.3944
7	0.7111	41.3184	41.3184-40.8788	0.4396
8	0.8057	32.4219	32.4219-31.9061	0.5158

Tabla 6. Determinación de masa de $MnCl_2$. Modo de calentamiento: estufa de secado. Tercera repetición

Crisol	Masa de MnCl ₂ ·4 H ₂ O (g)	Masa del crisol y MnCl ₂ * (g)	Diferencia del crisol con MnCl ₂ y crisol a MC (g)	Masa MnCl ₂ (g)
1	0.1201	23.8710	23.8710-23.7967	0.0743
2	0.2241	28.1886	28.1886-28.0472	0.1414
3	0.3063	25.1774	25.1774-24.9809	0.1965
4	0.4082	28.4257	28.4257-28.1597	0.2660
5	0.5194	28.8219	28.8219-28.4896	0.3323
6	0.6008	28.2865	28.2865-27.8978	0.3887
7	0.7036	41.3172	41.3172-40.8774	0.4398
8	0.8032	32.4207	32.4207-31.9052	0.5155

^{*} Los datos representan la segunda medición de MC del crisol y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Primera repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O (g)
0.1173-0.0766	0.0407
0.2115-0.1393	0.0722
0.3025-0.1993	0.1032
0.4073-0.2754	0.1319
0.5054-0.3193	0.1861
0.6070-0.4035	0.2035
0.7033-0.4631	0.2402
0.8089-0.5289	0.2800

Tabla 9. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O (g)
0.1413-0.0896	0.0517
0.2042-0.1321	0.0721
0.3034-0.1931	0.1103
0.4178-0.2712	0.1466
0.5051-0.3223	0.1828
0.6149-0.3944	0.2205
0.7111-0.4396	0.2715
0.8057-0.5158	0.2899

Tabla 10. Cálculo para la obtención de la masa de H₂O. Tercera repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O (g)
0.1201-0.0743	0.0458
0.2241-0.1414	0.0827
0.3063-0.1965	0.1098
0.4082-0.266	0.1422
0.5194-0.3323	0.1871
0.6008-0.3887	0.2121
0.7036-0.4398	0.2638
0.8032-0.5155	0.2877

Tabla 10. Promedio de MC de tres repeticiones

Crisol	Masa inicial crisol (g)	Medición 1	Medición 2	Medición 3	Promedio	DE	% DER
1	23.8033	23.7985	23.7980	23.7986	23.7996	0.0025	0.0105
2	28.0524	28.0486	28.0484	28.0483	28.0494	0.0020	0.0071
3	24.9845	24.9833	24.9820	24.9822	24.9830	0.0012	0.0046
4	28.1629	28.1597	28.1603	28.1602	28.1608	0.0015	0.0052
5	28.4920	28.4892	28.4900	28.4901	28.4903	0.0012	0.0042
6	27.9002	27.8977	27.8981	27.8980	27.8985	0.0012	0.0041
7	40.8815	40.8783	40.8787	40.8785	40.8793	0.0015	0.0037
8	31.9090	31.9032	31.9065	31.9058	31.9061	0.0024	0.0075

Tabla 11. Moles de $MnCl_2$ y H_2O . Primera repetición.

Crisol	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0407	0.0010
2	0.0722	0.0011
3	0.1032	0.0016
4	0.1319	0.0022
5	0.1861	0.0025
6	0.2035	0.0032
7	0.2402	0.0037
8	0.2800	0.0042

Tabla 12. Moles de $MnCl_2$ y H_2O . Segunda repetición.

Crisol	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0517	0.0007
2	0.0721	0.0010
3	0.1103	0.0015
4	0.1466	0.0022
5	0.1828	0.0026
6	0.2205	0.0031
7	0.2715	0.0035
8	0.2899	0.0041


Tabla 13. Moles de $MnCl_2$ y H_2O . Tercera repetición.

Crisol	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0458	0.0006
2	0.0827	0.0011
3	0.1098	0.0016
4	0.1422	0.0021
5	0.1871	0.0026
6	0.2121	0.0031
7	0.2638	0.0035
8	0.2877	0.0041

Tabla 14. Promedio de moles de H_2O y $MnCl_2$ de las tres repeticiones

Crisol	Moles MnCl ₂	Moles H ₂ O
1	0.0006	0.0026
2	0.0011	0.0042
3	0.0016	0.0060
4	0.0021	0.0078
5	0.0026	0.0103
6	0.0031	0.0118
7	0.0036	0.0143
8	0.0041	0.0159

Gráfica 1. m.m.c para crisoles calentamiento mediante estufa

Calentamiento por IR n para llevar crisoles a MC.

Tabla 1. Resultados de la primera repetición para llevar crisoles a MC, calentamiento por horno de convección.

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	23.8038	23.799	23.7994	23.8007	0.0027	0.0112
2	28.0532	28.0484	28.0491	28.0502	0.0026	0.0092
3	24.9851	24.9825	24.9820	24.9830	0.0017	0.0066
4	28.1622	28.1598	28.1597	28.1606	0.0014	0.0050
5	28.4928	28.4901	28.4906	28.4912	0.0014	0.0050
6	27.8999	27.8992	27.8992	27.8994	0.0004	0.0014
7	40.8817	40.8795	40.8791	40.8801	0.0014	0.0034
8	31.9087	31.9067	31.9062	31.9072	0.0013	0.0041

Tabla 2. Resultados de la segunda repetición para llevar crisoles a MC, calentamiento por horno de convección.

Número de		
medición de la		
masa del crisol		

Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	23.8003	23.8001	23.8	23.8001	0.0002	0.0006
2	28.0502	28.0496	28.0494	28.0497	0.0004	0.0015
3	24.9817	24.9812	24.9815	24.9815	0.0003	0.0010
4	28.1602	28.1604	28.1601	28.1602	0.0002	0.0005
5	28.4898	28.4885	28.4888	28.4890	0.0007	0.0024
6	27.8983	27.899	27.8989	27.8987	0.0004	0.0013
7	40.8775	40.8783	40.8781	40.8780	0.0004	0.0010
8	31.9065	31.9067	31.9064	31.9065	0.0002	0.0005

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por horno de convección.

Número de		
medición de la		
masa del crisol		

Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	23.8039	23.8008	23.8011	23.8019	0.0017	0.0001
2	28.053	28.0506	28.0505	28.0514	0.0014	0.0001
3	24.9845	24.9833	24.9831	24.9836	0.0008	0.0000
4	28.1629	28.1618	28.1617	28.1621	0.0007	0.0000
5	28.4923	27.4904	28.4908	28.1578	0.5780	0.0205
6	27.9008	27.8996	27.8996	27.9000	0.0007	0.0000
7	40.8815	40.8795	40.8799	40.8803	0.0011	0.0000
8	31.9093	31.9083	31.908	31.9085	0.0007	0.0000

Tabla 4. Determinación de masa de MnCl₂. Modo de calentamiento: horno de convección Primera repetición

Crisol	Masa de MnCl ₂ ·4 H ₂ O (g)	Masa del crisol y MnCl ₂ * (g)	Diferencia del crisol con MnCl ₂ y crisol a MC (g)	Masa MnCl ₂ (g)
1	0.1065	23.868	23.8680- 23.7994	0.0686
2	0.2016	28.1771	28.1771- 28.0491	0.1280
3	0.3108	25.1821	25.1821- 24.9820	0.2001
4	0.4004	28.4240	28.4240- 28.1597	0.2643
5	0.5075	28.8213	28.8213- 28.4906	0.3307
6	0.6004	28.2917	28.2917- 27.8992	0.3925
7	0.7072	41.3444	41.3444- 40.8791	0.4653
8	0.8021	32.4372	32.4372- 31.9062	0.5310

Tabla 5. Determinación de masa de MnCl₂. Modo de calentamiento: horno de convección Segunda repetición

Crisol	Masa de MnCl ₂ ·4 H ₂ O (g)	Masa del crisol y MnCl ₂ * (g)	Diferencia del crisol con MnCl ₂ y crisol a MC (g)	Masa MnCl ₂ (g)
1	0.1176	23.8747	23.8747- 23.8000	0.0747
2	0.2158	28.1861	28.1861- 28.0494	0.1367
3	0.3034	25.1743	25.1743- 24.9815	0.1928
4	0.4078	28.4221	28.4221- 28.1601	0.2620
5	0.5145	28.8235	28.8235- 28.4888	0.3347
6	0.6086	28.2878	28.2878- 27.8989	0.3889
7	0.7092	41.3325	41.3325- 40.8781	0.4544
8	0.8067	32.4207	32.4207- 31.9064	0.5143

Tabla 6. Determinación de masa de MnCl₂. Modo de calentamiento: horno de convección Tercera repetición

Crisol	Masa de MnCl ₂ ·4 H ₂ O (g)	Masa del crisol y MnCl ₂ * (g)	Diferencia del crisol con MnCl ₂ y crisol a MC (g)	Masa MnCl ₂ (g)
1	0.1129	23.8712	23.8712-23.8011	0.0701
2	0.2193	28.1861	28.1861-28.0505	0.1356
3	0.3005	25.1671	25.1671- 24.9831	0.1840
4	0.4089	28.4151	28.4151- 28.1617	0.2534
5	0.5002	28.7988	28.7988- 28.4908	0.3080
6	0.6050	28.2727	28.2727- 27.8996	0.3731
7	0.7056	41.3192	41.3192- 40.8799	0.4393
8	0.8038	32.4098	32.4098- 31.9080	0.5018

^{*} Los datos representan la segunda medición de MC del crisol y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O (g)
0.1065- 0.0686	0.0379
0.2016- 0.128	0.0736
0.3108- 0.2001	0.1107
0.4004- 0.2643	0.1361
0.5075- 0.3307	0.1768
0.6004- 0.3925	0.2079
0.7072- 0.4653	0.2419
0.8021- 0.531	0.2711

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O
0.1176- 0.0747	0.0429
0.2158- 0.1367	0.0791
0.3034- 0.1928	0.1106
0.4078- 0.2620	0.1458
0.5145- 0.3347	0.1798
0.6086- 0.3889	0.2197
0.7092- 0.4544	0.2548
0.8067- 0.5143	0.2924

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O (g)
0.1129- 0.0701	0.0428
0.2193- 0.1356	0.0837
0.3005- 0.1840	0.1165
0.4089- 0.2534	0.1555
0.5002- 0.3080	0.1922
0.6050- 0.3731	0.2319
0.7056- 0.4393	0.2663
0.8038- 0.5018	0.3020

Tabla 10. Promedio de MC de tres repeticiones

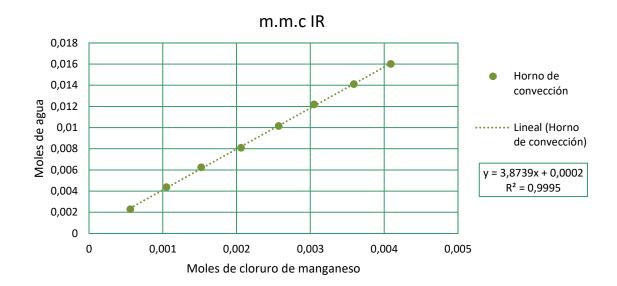
Crisol	Masa inicial crisol (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	23.8027	23.8000	23.8002	23.8009	0.0015	0.0063
2	28.0521	28.0495	28.0497	28.0504	0.0015	0.0052
3	24.9838	24.9823	24.9822	24.9828	0.0009	0.0034
4	28.1618	28.1607	28.1605	28.1610	0.0007	0.0024
5	28.4916	28.1563	28.4901	28.3793	0.1931	0.6805
6	27.8997	27.8993	27.8992	27.8994	0.0002	0.0009
7	40.8802	40.8791	40.8790	40.8795	0.0008	0.0016
8	31.9082	31.9072	31.9069	31.9074	0.0007	0.0021

Tabla 11. Moles de $MnCl_2$ y H_2O . Primera repetición.

Crisol	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0021
2	0.0010	0.0041
3	0.0016	0.0061
4	0.0021	0.0076
5	0.0026	0.0098
6	0.0031	0.0115
7	0.0037	0.0134
8	0.0042	0.0150

Tabla 12. Moles de MnCl₂ y H₂O. Segunda repetición.

Crisol	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0024
2	0.0011	0.0044
3	0.0015	0.0061
4	0.0021	0.0081
5	0.0027	0.0100
6	0.0031	0.0122
7	0.0036	0.0141
8	0.0041	0.0162


Tabla 13. Moles de $MnCl_2$ y H_2O . Tercera repetición.

Crisol	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0024
2	0.0011	0.0046
3	0.0015	0.0065
4	0.0020	0.0086
5	0.0024	0.0107
6	0.0030	0.0129
7	0.0035	0.0148
8	0.0040	0.0168

Tabla 14. Promedio de moles de H_2O y $MnCl_2$ de las tres repeticiones

Crisol	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0023
2	0.0011	0.0044
3	0.0015	0.0062
4	0.0021	0.0081
5	0.0026	0.0102
6	0.0031	0.0122
7	0.0036	0.0141
8	0.0041	0.0160

Gráfica 1. m.m.c para crisoles calentamiento mediante IR

Calentamiento por horno de microondas para llevar crisoles a MC

Tabla 1. Resultados de la primera repetición para llevar crisoles a MC, calentamiento por horno de microondas.

Número de
medición de la
masa del crisol

Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	23.8031	23.7991	23.7992	23.8005	0.0023	0.0096
2	28.0527	28.0499	28.0497	28.0508	0.0017	0.0060
3	24.984	24.9827	24.9823	24.9830	0.0009	0.0035
4	28.1627	28.1596	28.1604	28.1609	0.0016	0.0057
5	28.4916	28.4902	28.49	28.4906	0.0009	0.0031
6	27.9002	27.8987	27.8982	27.8990	0.0010	0.0037
7	40.8809	40.8782	40.878	40.8790	0.0016	0.0039
8	31.9093	31.9051	31.9072	31.9072	0.0021	0.0066

Tabla 2. Resultados de la segunda repetición para llevar crisoles a MC, calentamiento por horno de microondas.

Número de		
medición de la		
masa del crisol		

Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	23.803	23.7974	23.7972	23.7992	0.0033	0.0138
2	28.0522	28.0474	28.0484	28.0493	0.0025	0.0090
3	24.984	24.9812	24.981	24.9821	0.0017	0.0067
4	28.1628	28.1596	28.1597	28.1607	0.0018	0.0064
5	28.4918	28.4899	28.4892	28.4903	0.0013	0.0047
6	27.9001	27.897	27.8977	27.8983	0.0016	0.0058
7	40.8812	40.8775	40.8770	40.8786	0.0023	0.0056
8	31.9093	31.9051	31.9058	31.9067	0.0023	0.0071

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por horno de microondas.

Número de		
medición de la		
masa del crisol		

Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	23.8053	23.8000	23.8008	23.8020	0.0029	0.0001
2	28.0526	28.0502	28.0507	28.05116	0.0013	0.00004
3	24.9864	24.9827	24.9828	24.9840	0.0021	0.0001
4	28.1667	28.1616	28.1615	28.1633	0.0030	0.0001
5	28.4983	28.4901	28.4912	28.4932	0.0045	0.0002
6	27.9019	27.8994	27.8997	27.9003	0.0014	0.0000
7	40.8825	40.8808	40.8807	40.8813	0.0010	0.0000
8	31.9106	31.9087	31.9088	31.9094	0.0011	0.0000

Tabla 4. Determinación de masa de MnCl₂. Modo de calentamiento: horno de microondas Primera repetición

Crisol	Masa de MnCl ₂ ·4H ₂ O (g)	Masa del crisol y MnCl ₂ * (g)	Diferencia del crisol con MnCl ₂ y crisol a MC (g)	Masa MnCl ₂ (g)
1	0.1047	23.8658	23.8658- 23.7992	0.0666
2	0.2042	28.1757	28.1757- 28.0497	0.1260
3	0.3113	25.1827	25.1827- 24.9823	0.2004
4	0.4071	28.4153	28.4153- 28.1604	0.2549
5	0.5030	28.8012	28.8012- 28.4900	0.3112
6	0.6203	28.2929	28.2929- 27.8982	0.3947
7	0.7099	41.3347	41.3347- 40.8780	0.4567
8	0.8203	32.4371	32.4371- 31.9072	0.5299

Tabla 5. Determinación de masa de MnCl₂. Modo de calentamiento: horno de microondas Segunda repetición

Crisol	Masa de MnCl ₂ ·4H ₂ O (g)	Masa del crisol y MnCl ₂ * (g)	Diferencia del crisol con MnCl ₂ y crisol a MC (g)	Masa MnCl ₂ (g)
1	0.1004	23.8622	23.8622- 23.7972	0.0650
2	0.2125	28.1854	28.1854- 28.0484	0.1370
3	0.3003	25.1737	25.1737- 24.9810	0.1927
4	0.4090	28.4188	28.4188- 28.1597	0.2591
5	0.5121	28.8147	28.8147- 28.4892	0.3255
6	0.6011	28.2786	28.2786- 27.8977	0.3809
7	0.7147	41.3190	41.3190- 40.8770	0.4420
8	0.8096	32.4191	32.4191- 31.9058	0.5133

Tabla 6. Determinación de masa de MnCl₂. Modo de calentamiento: horno de microondas Tercera repetición

Crisol	Masa de MnCl ₂ ·4H ₂ O (g)	Masa del crisol y MnCl ₂ * (g)	Diferencia del crisol con MnCl ₂ y crisol a MC (g)	Masa MnCl ₂ (g)
1	0.1005	23.8631	23.8631- 23.8008	0.0623
2	0.2151	28.1840	28.1840- 28.0507	0.1333
3	0.3038	25.1712	25.1712- 24.9828	0.1884
4	0.4100	28.4153	28.4153- 28.1615	0.2538
5	0.5021	28.8006	28.8006- 28.4912	0.3094
6	0.6135	28.2894	28.2894- 27.8997	0.3897
7	0.7152	41.3320	41.3320- 40.8807	0.4513
8	0.8011	32.4090	32.4090- 31.9088	0.5002

^{*} Los datos representan la segunda medición de MC del crisol y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O (g)
0.1047- 0.0666	0.0381
0.2042- 0.1260	0.0782
0.3113- 0.2004	0.1109
0.4071- 0.2549	0.1522
0.5030- 0.3112	0.1918
0.6203- 0.3947	0.2256
0.7099- 0.4567	0.2532
0.8203- 0.5299	0.2904

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O (g)
0.1004- 0.0650	0.0354
0.2125- 0.1370	0.0755
0.3003- 0.1927	0.1076
0.4090- 0.2591	0.1499
0.5121- 0.3255	0.1866
0.6011- 0.3809	0.2202
0.7147- 0.4420	0.2727
0.8096- 0.5133	0.2963

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O (g)
0.1005- 0.0623	0.0382
0.2151- 0.1333	0.0818
0.3038- 0.1884	0.1154
0.4100- 0.2538	0.1562
0.5021- 0.3094	0.1927
0.6135- 0.3897	0.2238
0.7152- 0.4513	0.2639
0.8011- 0.5002	0.3009

Tabla 10. Promedio de MC de tres repeticiones

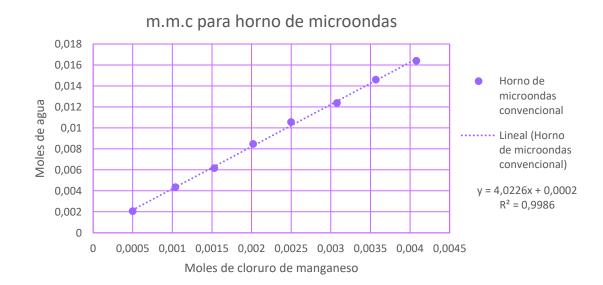
Crisol	Masa inicial crisol (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	23.8038	23.7988	23.7991	23.8006	0.0028	0.0118
2	28.0525	26.7158	28.0496	27.6060	0.7709	2.7925
3	24.9848	24.9822	24.9820	24.9830	0.0016	0.0062
4	28.1641	28.1603	28.1605	28.1616	0.0021	0.0075
5	28.4939	28.4901	28.4901	28.4914	0.0022	0.0077
6	27.9007	27.8984	27.8985	27.8992	0.0013	0.0047
7	40.8815	40.8788	40.8786	40.8796	0.0016	0.0040
8	31.9097	31.9063	31.9073	31.9078	0.0018	0.0055

Tabla 11. Moles de $MnCl_2$ y H_2O . Primera repetición.

Crisol	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0021
2	0.0010	0.0043
3	0.0016	0.0062
4	0.0020	0.0084
5	0.0025	0.0106
6	0.0031	0.0125
7	0.0036	0.0141
8	0.0042	0.0161

Tabla 12. Moles de MnCl₂ y H₂O. Segunda repetición.

Crisol	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0020
2	0.0011	0.0042
3	0.0015	0.0060
4	0.0021	0.0083
5	0.0026	0.0104
6	0.0030	0.0122
7	0.0035	0.0151
8	0.0041	0.0164


Tabla 13. Moles de $MnCl_2$ y H_2O . Tercera repetición.

Crisol	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0021
2	0.0011	0.0045
3	0.0015	0.0064
4	0.0020	0.0087
5	0.0025	0.0107
6	0.0031	0.0124
7	0.0036	0.0146
8	0.0040	0.0167

Tabla 14. Promedio de moles de H_2O y $MnCl_2$ de las tres repeticiones

Crisol	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0021
2	0.0010	0.0044
3	0.0015	0.0062
4	0.0020	0.0085
5	0.0025	0.0106
6	0.0031	0.0124
7	0.0036	0.0146
8	0.0041	0.0164

Gráfica 1. m.m.c para crisoles calentamiento mediante horno de microondas

Calentamiento por mechero de Bunsen para llevar crisoles a MC

Tabla 1. Resultados de la primera repetición para llevar crisoles a MC, calentamiento por mechero de Bunsen

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.3389	10.3368	10.3367	10.3380	0.0012	0.0120
2	28.0525	28.0488	28.0484	28.0499	0.0023	0.0081
3	24.9846	24.9808	24.9804	24.9819	0.0023	0.0092
4	28.1629	28.1592	28.1589	28.1603	0.0022	0.0079
5	28.4922	28.4894	28.4890	28.4902	0.0017	0.0061
6	27.9002	27.8974	27.8970	27.8982	0.0017	0.0062
7	31.9119	31.9047	31.9048	31.9071	0.0041	0.0129
8	40.8807	40.8764	40.8762	40.8778	0.0025	0.0062

Tabla 2. Resultados de la segunda repetición para llevar crisoles a MC, calentamiento por mechero de Bunsen

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.3389	10.3367	10.3363	10.3373	0.0014	0.0135
2	28.0520	28.0486	28.0486	28.0497	0.0020	0.0070
3	24.9843	24.9807	24.9808	24.9819	0.0021	0.0082
4	28.1627	28.1598	28.1601	28.1609	0.0016	0.0056
5	28.4917	28.4892	28.4887	28.4899	0.0016	0.0056
6	27.9000	27.8976	27.8972	27.8983	0.0015	0.0054
7	40.8811	40.8775	40.8773	40.8786	0.0021	0.0052
8	31.909	31.9062	31.9064	31.9070	0.0016	0.0049

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por mechero de Bunsen

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.3389	10.3367	10.3363	10.3373	0.0014	0.0001
2	28.0525	28.0488	28.0490	28.0501	0.0021	0.0001
3	24.9846	24.9808	24.9818	24.9824	0.0020	0.0001
4	28.1629	28.1592	28.1600	28.1607	0.0019	0.0001
5	28.4922	28.4894	28.4898	28.4905	0.0015	0.0001
6	27.9002	27.8974	27.8987	27.8988	0.0014	0.0001
7	40.8814	40.8785	40.8789	40.8796	0.0016	0.0000
8	31.9091	31.9047	31.9068	31.9068	0.0022	0.0001

Tabla 4. Determinación de masa de MnCl₂. Modo de calentamiento: horno de microondas Primera repetición

Crisol	Masa de MnCl ₂ ·4H ₂ O (g)	Masa del crisol y MnCl ₂ * (g)	Diferencia del crisol con MnCl ₂ y crisol a MC (g)	Masa MnCl ₂ (g)
1	0.1163	10.4106	10.4106-10.3367	0.0739
2	0.2158	28.1869	28.1869-28.0484	0.1385
3	0.3052	25.1756	25.1756-24.9804	0.1952
4	0.4090	28.4151	28.4151-28.1589	0.2562
5	0.5050	28.8112	28.8112-28.4890	0.3222
6	0.6019	28.2804	28.2804-27.8970	0.3834
7	0.7021	32.4179	32.4179-31.9048	0.5131
8	0.8073	41.3231	41.3231-40.8762	0.4469

Tabla 5. Determinación de masa de MnCl₂. Modo de calentamiento: horno de microondas Segunda repetición

Crisol	Masa de MnCl ₂ ·4H ₂ O (g)	Masa del crisol y MnCl ₂ * (g)	Diferencia del crisol con MnCl ₂ y crisol a MC (g)	Masa MnCl ₂ (g)
1	0.1002	10.3999	10.3999-10.3367	0.0632
2	0.2107	28.1840	28.1840-28.0486	0.1354
3	0.3160	25.1837	25.1837-24.9808	0.2029
4	0.4049	28.4188	28.4188-28.1601	0.2587
5	0.5027	28.8034	28.8034-28.4887	0.3147
6	0.6059	28.2768	28.2768-27.8972	0.3796
7	0.7065	41.3913	41.3913-40.8773	0.5140
8	0.8099	32.3621	32.3621-31.9064	0.4557

Tabla 6. Determinación de masa de MnCl₂. Modo de calentamiento: horno de microondas Tercera repetición

Crisol	Masa de MnCl ₂ ·4H ₂ O (g)	Masa del crisol y MnCl ₂ * (g)	Diferencia del crisol con MnCl ₂ y crisol a MC (g)	Masa MnCl ₂ (g)
1	0.1001	10.4004	10.4004-10.3363	0.0641
2	0.2103	28.1864	28.1864-28.0490	0.1374
3	0.3083	25.1798	25.1798-24.9818	0.1980
4	0.4033	28.4148	28.4148-28.1600	0.2548
5	0.5059	28.8068	28.8068-28.4898	0.3170
6	0.6110	28.2762	28.2762-27.8987	0.3775
7	0.7261	41.3862	41.3862-40.8789	0.5073
8	0.8039	32.3722	32.3722-31.9068	0.4654

^{*} Los datos representan la segunda medición de MC del crisol y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de $\mathrm{H}_2\mathrm{O}$. Primera repetición

Diferencia de la masa de MnCl ₂ ·4H ₂ O y MnCl ₂ (g)	Masa H ₂ O (g)
0.1163-0.0739	0.0424
0.2158-0.1385	0.0773
0.3052-0.1952	0.1100
0.4090-0.2562	0.1528
0.5050-0.3222	0.1828
0.6019-0.3834	0.2185
0.7021-0.5131	0.2942
0.8073-0.4469	0.2552

Tabla 8. Cálculo para la obtención de la masa de H_2O . Segunda repetición

Diferencia de la masa de MnCl ₂ ·4H ₂ O y MnCl ₂ (g)	Masa H ₂ O (g)
0.1002-0.0632	0.037
0.2107-0.1354	0.0753
0.3160-0.2029	0.1131
0.4049-0.2587	0.1462
0.5027-0.3147	0.188
0.6059-0.3796	0.2263
0.7065-0.5140	0.2959
0.8099-0.4557	0.2508

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de MnCl ₂ ·4H ₂ O y MnCl ₂ (g)	Masa H ₂ O (g)
0.1001-0.0641	0.0360
0.2103-0.1374	0.0729
0.3083-0.1980	0.1103
0.4033-0.2548	0.1485
0.5059-0.3170	0.1889
0.6110-0.3775	0.2335
0.7261-0.5073	0.2966
0.8039-0.4654	0.2607

Tabla 10. Promedio de MC de tres repeticiones

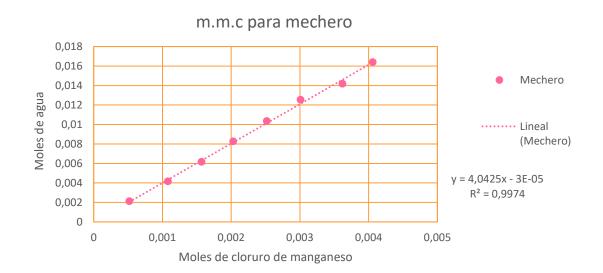
Crisol	Masa inicial crisol (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	10.3390	10.3367	10.3366	10.3374	0.0014	0.0134
2	28.0523	28.0487	28.0487	28.0499	0.0021	0.0075
3	24.9845	24.9808	24.9810	24.9821	0.0021	0.0084
4	28.1628	28.1594	28.1597	28.1606	0.0019	0.0067
5	28.4920	28.4893	28.4892	28.4902	0.0016	0.0057
6	27.9002	27.8976	27.8976	27.8985	0.0015	0.0054
7	37.8915	37.8869	37.8870	37.8885	0.0026	0.0069
8	34.9000	34.8958	34.8965	34.8973	0.0020	0.0058

Tabla 11. Moles de $MnCl_2$ y H_2O . Primera repetición.

Crisol	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0024
2	0.0011	0.0043
3	0.0016	0.0061
4	0.0020	0.0085
5	0.0026	0.0101
6	0.0030	0.0121
7	0.0041	0.0163
8	0.0036	0.0142

Tabla 12. Moles de MnCl₂ y H₂O. Segunda repetición.

Crisol	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0021
2	0.0011	0.0042
3	0.0016	0.0063
4	0.0021	0.0081
5	0.0025	0.0104
6	0.0030	0.0126
7	0.0041	0.0164
8	0.00362	0.01392


Tabla 13. Moles de $MnCl_2$ y H_2O . Tercera repetición.

Crisol	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0020
2	0.0011	0.0040
3	0.0016	0.0061
4	0.0020	0.0082
5	0.0025	0.0105
6	0.0030	0.0130
7	0.0040	0.0165
8	0.0037	0.0145

Tabla 14. Promedio de moles de H_2O y $MnCl_2$ de las tres repeticiones

Crisol	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0021
2	0.0011	0.0042
3	0.0016	0.0062
4	0.0020	0.0083
5	0.0025	0.0104
6	0.0030	0.0125
7	0.0041	0.0164
8	0.0036	0.0142

Gráfica 1. m.m.c para crisoles calentamiento mediante mechero de Bunsen

Calentamiento por estufa de secado para llevar vasos a MC.

Tabla 1. Resultados de la primera repetición para llevar vasos a MC, calentamiento por estufa de secado.

Número de				
medición de la				
masa del vaso				
(g)				

Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.6236	10.6235	10.6234	10.6235	0.0001	0.0008
2	11.3644	11.3683	11.3690	11.3672	0.0025	0.0217
3	10.6413	10.6405	10.6410	10.6409	0.0004	0.0038
4	10.2094	10.2092	10.2095	10.2097	0.0002	0.0015
5	10.8739	10.8735	10.8736	10.8737	0.0002	0.0018
6	10.7429	10.7415	10.7419	10.7421	0.0007	0.0067
7	10.6740	10.6741	10.6741	10.6741	0.0001	0.0005
8	10.9375	10.936	10.9365	10.9367	0.0008	0.0069

Tabla 2. Resultados de la segunda repetición para llevar vasos a MC, calentamiento por estufa de secado.

Número de medición de la masa del vaso
(g)

Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.6234	10.6224	10.6214	10.6224	0.0010	0.0094
2	11.3693	11.3683	11.3675	11.3684	0.0009	0.0079
3	10.6412	10.6413	10.641	10.6412	0.0002	0.0014
4	10.2094	10.2092	10.2089	10.2092	0.0003	0.0024
5	10.8901	10.8713	10.8706	10.8773	0.0111	0.1017
6	10.6295	10.6284	10.6293	10.6291	0.0006	0.0055
7	10.6764	10.6745	10.6741	10.6750	0.0012	0.0114
8	10.9369	10.9359	10.9353	10.9360	0.0008	0.0073

Tabla 3. Resultados de la tercera repetición para llevar vasos a MC, calentamiento por estufa de secado.

Número de				
medición de la				
masa del vaso				
(g)				

Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	8.8973	8.8933	8.8949	8.8951	0.0020	0.0226
2	9.1769	9.1763	9.1764	9.1765	0.0003	0.0035
3	8.8035	8.8043	8.8035	8.8038	0.0005	0.0052
4	10.6224	10.6219	10.6222	10.6222	0.0003	0.0024
5	10.7423	10.7414	10.7421	10.7419	0.0005	0.0044
6	11.369	11.3687	11.3689	11.3689	0.0002	0.0013
7	10.6417	10.6419	10.6415	10.6417	0.0002	0.0018
8	10.9361	10.9367	10.9365	10.9364	0.0003	0.0027

Tabla 4. Determinación de masa de $MnCl_2$. Modo de calentamiento: estufa. Primera repetición

Vaso	Masa de MnCl ₂ ·2 H ₂ O (g)	Masa del vaso y MnCl ₂ *	Diferencia del vaso con MnCl ₂ y vaso a MC (g)	Masa MnCl ₂ (g)
1	0.1006	10.6871	10.6871-10.6234	0.0637
2	0.2036	11.4968	11.4968-11.3690	0.1278
3	0.3064	10.8431	10.8431-10.6410	0.2021
4	0.4185	10.4864	10.4864-10.2095	0.2769
5	0.5124	11.2119	11.2119-10.8736	0.3383
6	0.6055	11.1368	11.1368-10.7419	0.3949
7	0.7132	11.1361	11.1361-10.6741	0.4620
8	0.8128	11.4662	11.4662-10.9365	0.5297

Tabla 5. Determinación de masa de $MnCl_2$. Modo de calentamiento: estufa de secado. Segunda repetición

Vaso	Masa de MnCl ₂ ·4H ₂ O (g)	Masa del vaso y MnCl ₂ * (g)	Diferencia del vaso con MnCl ₂ y vaso a MC (g)	Masa MnCl ₂ (g)
1	0.1154	10.6949	10.6949-10.6214	0.0735
2	0.2130	11.5023	11.5023-11.3675	0.1348
3	0.3005	10.8331	10.8331-10.641	0.1921
4	0.4147	10.4741	10.4741-10.2089	0.2652
5	0.5084	11.1963	11.1963-10.8706	0.3257
6	0.6062	11.0163	11.0163-10.6293	0.3870
7	0.7064	11.1201	11.1201-10.6741	0.4460
8	0.8053	11.4428	11.4428-10.9353	0.5075

Tabla 6. Determinación de masa de $MnCl_2$. Modo de calentamiento: estufa de secado. Tercera repetición

Vaso	Masa de MnCl ₂ ·4 H ₂ O (g)	Masa del vaso y MnCl ₂ * (g)	Diferencia del vaso con MnCl ₂ y vaso a MC (g)	Masa MnCl ₂ (g)
1	0.1185	8.9690	8.9690-8.8949	0.0741
2	0.2080	9.3055	9.3055-9.1764	0.1291
3	0.3019	9.0005	9.0005-8.8035	0.1970
4	0.4161	10.8844	10.8844-10.6222	0.2622
5	0.5166	11.0704	11.0704-10.7421	0.3283
6	0.6047	11.7542	11.7542-11.3689	0.3853
7	0.7046	11.1039	11.1039-10.6415	0.4624
8	0.8081	11.4476	11.4476-10.9365	0.5111

^{*} Los datos representan la segunda medición de MC del vaso y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O
0.1006-0.0637	0.0369
0.2036-0.1278	0.0758
0.3064-0.2021	0.1043
0.4185-0.2769	0.1416
0.5124-0.3383	0.1741
0.6055-0.3949	0.2106
0.7132-0.4620	0.2512
0.8128-0.5297	0.2831

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O
0.1154-0.0735	0.0419
0.2130-0.1348	0.0782
0.3005-0.1921	0.1084
0.4147-0.2652	0.1495
0.5084-0.3257	0.1827
0.6062-0.3870	0.2192
0.7064-0.4460	0.2604
0.8053-0.5075	0.2978

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O
0.1185-0.0741	0.0444
0.2080-0.1291	0.0789
0.3019-0.1970	0.1049
0.4161-0.2622	0.1539
0.5166-0.3283	0.1883
0.6047-0.3853	0.2194
0.7046-0.4624	0.2422
0.8081-0.5111	0.2970

Tabla 10. Promedio de MC de tres repeticiones

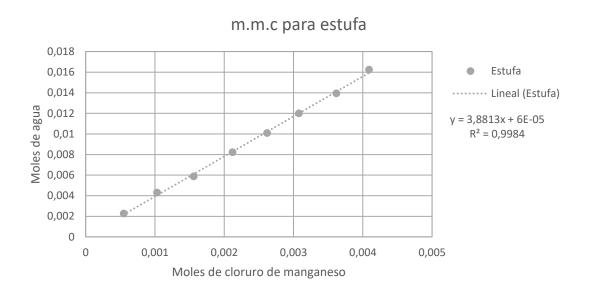
Vaso	Masa inicial vaso (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	10.0481	10.0464	10.0466	10.0470	0.0009	0.0093
2	10.6369	10.6376	10.6376	10.6374	0.0004	0.0041
3	10.0287	10.0287	10.0285	10.0286	0.0001	0.0010
4	10.3471	10.3468	10.3469	10.3469	0.0002	0.0014
5	10.8354	10.8287	10.8288	10.8310	0.0039	0.0355
6	10.9138	10.9129	10.9134	10.9133	0.0005	0.0043
7	10.6640	10.6635	10.6632	10.6636	0.0004	0.0038
8	10.9368	10.9362	10.9361	10.9364	0.0004	0.0036

Tabla 11. Moles de $MnCl_2$ y H_2O . Primera repetición.

Vaso	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0020
2	0.0010	0.0042
3	0.0016	0.0058
4	0.0022	0.0079
5	0.0027	0.0097
6	0.0031	0.0117
7	0.0037	0.0139
8	0.0042	0.0157

Tabla 12. Moles de $MnCl_2$ y H_2O . Segunda repetición.

Vaso	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0023
2	0.0011	0.0043
3	0.0015	0.0060
4	0.0021	0.0083
5	0.0026	0.0101
6	0.0031	0.0122
7	0.0035	0.0145
8	0.0040	0.0165


Tabla 13. Moles de $MnCl_2$ y H_2O . Tercera repetición.

Vaso	MnCl ₂ (mol)	H ₂ O (mol)
1	0.00058	0.0025
2	0.0010	0.0044
3	0.0016	0.0058
4	0.0021	0.0085
5	0.0026	0.0105
6	0.0031	0.0122
7	0.0037	0.0134
8	0.0041	0.0165

Tabla 14. Promedio de moles de H_2O y $MnCl_2$ de las tres repeticiones

Vaso	Moles MnCl ₂	Moles H ₂ O
1	0.0006	0.0023
2	0.0010	0.0043
3	0.0016	0.0059
4	0.0021	0.0082
5	0.0026	0.0101
6	0.0031	0.0120
7	0.0036	0.0139
8	0.0041	0.0162

Gráfica 1. m.m.c para vasos calentamiento mediante estufa

Calentamiento por horno de convección para llevar vasos a MC

Tabla 1. Resultados de la primera repetición para llevar vasos a MC, calentamiento por horno de convección.

		Número de medición de la masa del vaso				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.6241	10.6234	10.6233	10.6236	0.0004	0.0040
2	11.372	11.3613	11.3706	11.3680	0.0058	0.0511
3	10.6413	10.6405	10.6409	10.6409	0.0004	0.0037
4	10.2094	10.2092	10.4881	10.3022	0.1610	1.5624
5	10.8739	10.8726	10.607	10.7845	0.1537	1.4254
6	10.7029	10.7415	10.7423	10.7289	0.0225	0.2099
7	10.6740	10.6731	10.6742	10.6738	0.0006	0.0054
8	10.9375	10.936	10.6297	10.8344	0.1773	1.6362

Tabla 2. Resultados de la segunda repetición para llevar vasos a MC, calentamiento por horno de convección.

Número de
medición de la
masa del vaso

Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.6232	10.6235	10.6232	10.6233	0.0002	0.0016
2	11.3693	11.3679	11.3683	11.3685	0.0007	0.0063
3	10.6418	10.6403	10.641	10.6410	0.0008	0.0070
4	10.4858	10.4842	10.4848	10.4849	0.0008	0.0076
5	10.6078	10.6065	10.6066	10.6070	0.0007	0.0068
6	10.7028	10.7415	10.7418	10.7287	0.0224	0.2091
7	10.9369	10.9355	10.936	10.9361	0.0007	0.0064
8	10.675	10.6734	10.674	10.6741	0.0008	0.0075

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por horno de convección.

Número de
medición de la
masa del vaso

Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	8.8698	8.8669	8.8668	8.8678	0.0017	0.0192
2	8.5921	8.5896	8.5895	8.5904	0.0015	0.0171
3	9.4091	9.4072	9.4074	9.4079	0.0010	0.0111
4	9.3106	9.3096	9.3095	9.3099	0.0006	0.0064
5	9.0754	9.0742	9.074	9.07453	0.0008	0.0083
6	10.872	10.8704	10.8705	10.8710	0.0009	0.0082
7	10.2099	10.2077	10.2072	10.2083	0.0014	0.0140
8	10.629	10.6267	10.6269	10.6275	0.0013	0.0120

Tabla 4. Determinación de masa de MnCl₂. Modo de calentamiento: horno de convección Primera repetición

Vaso	Masa de MnCl ₂ ·4H ₂ O (g)	Masa del vaso y MnCl ₂ * (g)	Diferencia del vaso con MnCl ₂ y crisol a MC (g)	Masa MnCl ₂ (g)
1	0.1094	10.6928	10.6928- 10.6233	0.0695
2	0.2029	11.5018	11.5018- 11.3706	0.1312
3	0.3023	10.84	10.8400- 10.6409	0.1991
4	0.4064	10.7501	10.7501- 10.4881	0.262
5	0.5149	10.9402	10.9402- 10.6070	0.3332
6	0.6024	11.1368	11.1368- 10.7423	0.3945
7	0.7061	11.1215	11.1215- 10.6742	0.4473
8	0.8017	11.1501	11.1501- 10.6297	0.5204

Tabla 5. Determinación de masa de MnCl₂. Modo de calentamiento: horno de convección Segunda repetición

Vaso	Masa de MnCl ₂ ·4H ₂ O (g)	Masa del vaso y MnCl ₂ * (g)	Diferencia del vaso con MnCl ₂ y crisol a MC (g)	Masa MnCl ₂ (g)
1	0.1052	10.6878	10.6878- 10.6232	0.0646
2	0.2126	11.5124	11.5124- 11.3683	0.1441
3	0.3029	10.8334	10.8334- 10.6410	0.1924
4	0.4034	10.7416	10.7416- 10.4848	0.2568
5	0.5097	10.9335	10.9335- 10.6066	0.3269
6	0.6042	11.1297	11.1297- 10.7418	0.3879
7	0.7064	11.3808	11.3808- 10.9360	0.4448
8	0.8062	11.2002	11.2002- 10.6740	0.5262

Tabla 6. Determinación de masa de MnCl₂. Modo de calentamiento: horno de convección Tercera repetición

Vaso	Masa de MnCl ₂ ·4H ₂ O (g)	Masa del vaso y MnCl ₂ * (g)	Diferencia del vaso con MnCl ₂ y crisol a MC (g)	Masa MnCl ₂ (g)
1	0.1138	8.9373	8.9373-8.8668	0.0705
2	0.2003	8.7172	8.7172-8.5895	0.1277
3	0.3021	9.6003	9.6003-9.4074	0.1929
4	0.4078	9.5709	9.5709-9.3095	0.2614
5	0.5066	9.3937	9.3937-9.0740	0.3197
6	0.6106	11.2653	11.2653-10.8705	0.3948
7	0.7189	10.6607	10.6607-10.2072	0.4535
8	0.8119	11.1402	11.1402-10.6269	0.5133

^{*} Los datos representan la segunda medición de MC del vaso y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O (g)
0.1094-0.0695	0.0399
0.2029-0.1312	0.0717
0.3023-0.1991	0.1032
0.4064-0.2620	0.1444
0.5149-0.3332	0.1817
0.6024-0.3945	0.2079
0.7061-0.4473	0.2588
0.8017-0.5204	0.2813

Tabla 8. Cálculo para la obtención de la masa de H_2O . Segunda repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O
0.1052-0.0646	0.0406
0.2126-0.1441	0.0685
0.3029-0.1924	0.1105
0.4034-0.2568	0.1466
0.5097-0.3269	0.1828
0.6042-0.3879	0.2163
0.7064-0.4448	0.2616
0.8062-0.5262	0.2800

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O (g)
0.1138-0.0705	0.0433
0.2003-0.1277	0.0726
0.3021-0.1929	0.1092
0.4078-0.2614	0.1464
0.5066-0.3197	0.1869
0.6106-0.3948	0.2158
0.7189-0.45350	0.2654
0.8119-0.5133	0.2986

Tabla 10. Promedio de MC de tres repeticiones

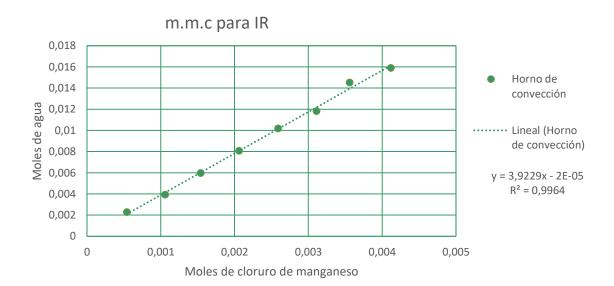
Vaso	Masa inicial vaso (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	10.0390	10.0379	10.0378	10.0382	0.0007	0.0068
2	10.44446	10.4396	10.4428	10.4423	0.0025	0.0237
3	10.23073	10.2293	10.2298	10.2299	0.0007	0.0069
4	10.00193	10.0010	10.0941	10.0324	0.0535	0.5333
5	10.1857	10.1844	10.0959	10.1553	0.0515	0.5071
6	10.75923	10.7845	10.7849	10.7769	0.0147	0.1362
7	10.6069	10.6054	10.6058	10.6061	0.0008	0.0074
8	10.7472	10.7454	10.6435	10.7120	0.0593	0.5537

Tabla 11. Moles de $MnCl_2$ y H_2O . Primera repetición.

Vaso	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0022
2	0.0010	0.0040
3	3 0.0016	
4	0.0021	0.0080
5	0.0026	0.0101
6	0.0031	0.0115
7	0.0036	0.0144
8	0.0041	0.0156

Tabla 12. Moles de MnCl₂ y H₂O. Segunda repetición.

Vaso	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0023
2	0.0011	0.0038
3	0.0015	0.0061
4	0.0020	0.0081
5	0.0026	0.0101
6	0.0031	0.0120
7	0.0035	0.0145
8	0.0042	0.0155


Tabla 13. Moles de $MnCl_2$ y H_2O . Tercera repetición.

Vaso	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0024
2	0.0010	0.0040
3	3 0.0015 0.00	
4	0.0021	0.0081
5	0.0025	0.0104
6	0.0031	0.0120
7	0.0036	0.0147
8	0.0041	0.0166

Tabla 14. Promedio de moles de H_2O y $MnCl_2$ de las tres repeticiones

Vaso	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0023
2	0.0011	0.0039
3	0.0015	0.0060
4	0.0021	0.0081
5	0.0026	0.0102
6	0.0031	0.0118
7	0.0036	0.0145
8	0.0041	0.0159

Gráfica 1. m.m.c para vasos calentamiento mediante IR

Calentamiento por horno de microondas para llevar vasos a MC

Tabla 1. Resultados de la primera repetición para llevar vasos a MC, calentamiento por horno de microondas.

		Número de medición de la masa del vaso				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	8.8963	8.8955	8.8957	8.8958	0.0004	0.0046
2	9.1774	9.1776	9.177	9.1773	0.0003	0.0033
3	8.8036	8.803	8.8031	8.8032	0.0003	0.0036
4	10.6224	10.6216	10.622	10.6220	0.0004	0.0037
5	10.7427	10.742	10.7421	10.7423	0.0004	0.0034
6	10.6303	10.6295	10.6298	10.6299	0.0004	0.0038
7	10.6078	10.607	10.6072	10.6073	0.0004	0.0039
8	10.4853	10.4847	10.4846	10.4849	0.0004	0.0035

Tabla 2. Resultados de la segunda repetición para llevar vasos a MC, calentamiento por horno de microondas.

Número de
medición de la
masa del vaso

Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	8.8960	8.8957	8.8961	8.8959	0.0002	0.0022
2	9.1773	9.1767	9.1770	9.1770	0.0003	0.0033
3	8.8036	8.8031	8.8032	8.8033	0.0003	0.0030
4	10.6224	10.6219	10.6218	10.6220	0.0003	0.0030
5	10.7426	10.7420	10.7423	10.7423	0.0003	0.0027
6	10.6200	10.6295	10.6293	10.6263	0.0054	0.0510
7	10.6073	10.6069	10.6070	10.6071	0.0002	0.0019
8	10.4855	10.485	10.4853	10.4853	0.0003	0.0024

Tabla 3. Resultados de la tercera repetición para llevar vasos a MC, calentamiento por horno de microondas.

		Número de medición de la masa del vaso				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	8.8965	8.8954	8.8954	8.8958	0.0006	0.0071
2	9.1775	9.1767	9.1769	9.1770	0.0004	0.0045
3	8.8038	8.8029	8.8036	8.8034	0.0005	0.0053
4	10.6227	10.6215	10.6218	10.6220	0.0006	0.0058
5	8.5922	8.5916	8.5919	8.5919	0.0003	0.0035
6	10.4853	10.4843	10.4849	10.4848	0.0005	0.0048
7	10.2096	10.2090	10.2089	10.2092	0.0004	0.0036
8	10.9367	10.9360	10.9361	10.9363	0.0004	0.0034

Tabla 4. Determinación de masa de MnCl₂. Modo de calentamiento: horno de microondas Primera repetición

Vaso	Masa de MnCl ₂ ·4 H ₂ O (g)	Masa del vaso y MnCl ₂ * (g)	Diferencia del vaso con MmCl ₂ y crisol a MC (g)	Masa MnCl ₂ (g)
1	0.0664	8.9621	8.9621-8.8957	0.1047
2	0.1303	9.3073	9.3073-9.1770	0.2053
3	0.1985	9.0016	9.0016-8.8031	0.3137
4	0.2572	10.8792	10.8792-10.6220	0.4065
5	0.3270	11.0691	11.0691-10.7421	0.5118
6	0.3918	11.0216	11.0216-10.6298	0.6157
7	0.4526	11.0598	11.0598-10.6072	0.7094
8	0.5135	10.9981	10.9981-10.4846	0.8045

Tabla 5. Determinación de masa de MnCl₂. Modo de calentamiento: horno de microondas Segunda repetición

Vaso	Masa de MnCl ₂ ·4 H ₂ O (g)	Masa del vaso y MnCl ₂ * (g)	Diferencia del vaso con MmCl ₂ y crisol a MC (g)	Masa MnCl ₂ (g)
1	0.1053	8.9621	8.9621-8.8961	0.0660
2	0.2083	9.3073	9.3073-9.1770	0.1303
3	0.3033	8.9935	8.9935-8.8032	0.1903
4	0.4120	10.8833	10.8833-10.6218	0.2615
5	0.5147	11.0771	11.0771-10.7423	0.3348
6	0.6068	11.0132	11.0132-10.6293	0.3839
7	0.7199	11.0648	11.0648-10.6070	0.4578
8	0.8033	10.9942	10.9942-10.4853	0.5089

Tabla 6. Determinación de masa de MnCl₂. Modo de calentamiento: horno de microondas

Tercera repetición

Vaso	Masa de MnCl ₂ ·2 H ₂ O (g)	Masa del vaso y MnCl ₂ * (g)	Diferencia del vaso con MmCl ₂ y crisol a MC (g)	Masa MnCl ₂ (g)
1	0.1028	8.9602	8.9602-8.8954	0.0648
2	0.2006	9.3046	9.3046-9.1769	0.1277
3	0.3083	8.9976	8.9976-8.8036	0.194
4	0.4046	10.8772	10.8772-10.6218	0.2554
5	0.5049	8.9095	8.9095-8.5919	0.3176
6	0.6100	10.8798	10.8798-10.4849	0.3949
7	0.7043	10.6541	10.6541-10.2089	0.4452
8	0.8021	11.44389	11.4438-10.9361	0.5077

^{*} Los datos representan la segunda medición de MC del vaso y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O (g)
0.1047-0.0664	0.0383
0.2053-0.1303	0.0750
0.3137-0.1985	0.1152
0.4065-0.2572	0.1493
0.5118-0.3270	0.1848
0.6157-0.3918	0.2239
0.7094-0.4526	0.2568
0.8045-0.5135	0.2910

Tabla 8. Cálculo para la obtención de la masa de H_2O . Segunda repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O (g)
0.1053-0.0660	0.0393
0.2083-0.1303	0.0780
0.3033-0.1903	0.1130
0.4120-0.2615	0.1505
0.5147-0.3348	0.1799
0.6068-0.3839	0.2229
0.7199-0.4578	0.2621
0.8033-0.5089	0.2944

Tabla 9. Cálculo para la obtención de la masa de H₂O. Tercera repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O (g)
0.1028-0.0648	0.0380
0.2006-0.1277	0.0729
0.3083-0.1940	0.1143
0.4046-0.2554	0.1492
0.5049-0.3176	0.1873
0.6100-0.3949	0.2151
0.7043-0.4452	0.2591
0.8021-0.50779	0.2943

Tabla 10. Promedio de MC de tres repeticiones

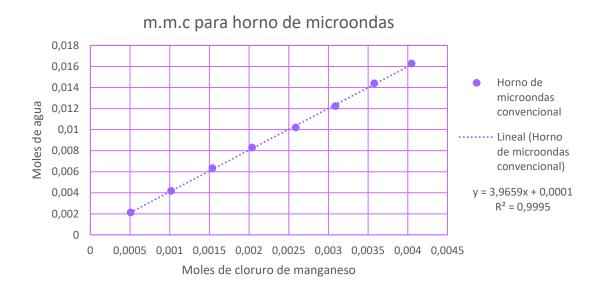
Vaso	Masa inicial vaso (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	8.8963	8.8955	8.8957	8.8958	0.0004	0.0042
2	9.1774	9.1770	9.1770	9.1771	0.0002	0.0026
3	8.8037	8.8030	8.8033	8.8033	0.0003	0.0037
4	10.6225	10.6217	10.6219	10.6220	0.0004	0.0040
5	10.0258	10.0252	10.0254	10.0255	0.0003	0.0031
6	10.5785	10.5811	10.5813	10.5803	0.0016	0.0146
7	10.4749	10.4743	10.4744	10.4745	0.0003	0.0032
8	10.6358	10.6352	10.6353	10.6355	0.0003	0.0030

Tabla 11. Moles de BaCl $_2$ y H_2O . Primera repetición.

Vaso	MnCl ₂ (mol)	H ₂ O (mol)	
1	0.0383	0.0005	
2	0.0750	0.0010	
3	0.1152	0.0016	
4	0.1493	0.0020	
5	0.1848	0.0026	
6	0.2239	0.0031	
7	0.2568	0.0036	
8	0.2910	0.0041	

Tabla 12. Moles de MnCl₂ y H₂O. Segunda repetición.

Vaso	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0393	0.0005
2	0.0780	0.0010
3	0.1130	0.0015
4	0.1505	0.0021
5	0.1799	0.0027
6	0.2229	0.0031
7	0.2621	0.0036
8	0.2944	0.0040


Tabla 13. Moles de $MnCl_2$ y H_2O . Tercera repetición.

Vaso	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0380	0.0005
2	0.0729	0.0010
3	0.1143	0.0015
4	0.1492	0.0020
5	0.1873	0.0025
6	0.2151	0.0031
7	0.2591	0.0035
8	0.2943	0.0040

Tabla 14. Promedio de moles de H_2O y $MnCl_2$ de las tres repeticiones

Vaso	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0021
2	0.0010	0.0042
3	0.0015	0.0063
4	0.0020	0.0083
5	0.0026	0.0102
6	0.0031	0.0122
7	0.0036	0.0144
8	0.0041	0.0163

Gráfica 1. m.m.c para vasos calentamiento mediante horno de microondas

Calentamiento por mechero de Bunsen para llevar vasos a MC

Tabla 1. Resultados de la primera repetición para llevar vasos a MC, calentamiento por mechero de Bunsen

		Número de medición de la masa del vaso				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	9.0752	9.0744	9.0746	9.0747	0.0004	0.0045
2	8.8693	8.8684	8.8689	8.8689	0.0006	0.0051
3	9.4089	9.4078	9.4084	9.4084	0.0006	0.0058
4	9.3105	9.3094	9.3099	9.3099	0.0006	0.0059
5	8.5920	8.5918	8.5914	8.5917	0.0003	0.0035
6	11.3691	11.3678	11.3683	11.3684	0.0007	0.0057
7	10.208	10.2089	10.2090	10.2086	0.0006	0.0054
8	10.9361	10.9358	10.9357	10.9359	0.0002	0.0018

Tabla 2. Resultados de la segunda repetición para llevar vasos a MC, calentamiento por mechero de Bunsen

		Número de medición de la masa del vaso				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	8.8964	8.8956	8.8960	8.8960	0.0004	0.0044
2	9.1774	9.1768	9.1770	9.1771	0.0003	0.0033
3	8.8036	8.8030	8.8031	8.8032	0.0003	0.0036
4	10.6225	10.6216	10.6219	10.6220	0.0005	0.0042
5	8.5923	8.5917	8.5915	8.59183	0.0004	0.0048
6	10.4853	10.4839	10.4845	10.4846	0.0007	0.0067
7	10.2098	10.2087	10.2091	10.2092	0.0006	0.0054
8	10.9367	10.9356	10.936	10.9361	0.0006	0.0050

Tabla 3. Resultados de la tercera repetición para llevar vasos a MC, calentamiento por mechero de Bunsen

		medicio	ero de ón de la lel vaso			
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	9.0755	9.0744	9.0745	9.0748	0.0006	0.0066
2	8.8695	8.8690	8.8690	8.8692	0.0003	0.0032
3	9.4087	9.4085	9.4086	9.4086	0.0001	0.0010
4	9.3108	9.3095	9.3099	9.3101	0.0007	0.0071
5	8.5920	8.5910	8.5913	8.5914	0.0005	0.0059
6	11.3754	11.3686	11.3683	11.3708	0.0040	0.0353
7	10.2088	10.2088	10.2083	10.2086	0.0003	0.0027
8	10.9361	10.935	10.9354	10.9355	0.0006	0.0050

Tabla 4. Determinación de masa de MnCl₂. Modo de calentamiento: horno de microondas Primera repetición

Vaso	Masa de MnCl₂·6 H₂O (g)	Masa del vaso y MnCl ₂ * (g)	Diferencia del vaso con MnCl ₂ y vaso a MC (g)	Masa MnCl ₂ (g)
1	0.1039	9.1421	9.1421- 9.0746	0.0675
2	0.2023	8.9970	8.9970- 8.8689	0.1281
3	0.3020	9.5990	9.5990- 9.4084	0.1906
4	0.4079	9.5688	9.5688- 9.3099	0.2589
5	0.5039	8.9114	8.9114- 8.5914	0.3200
6	0.6033	11.7663	11.7663- 11.3683	0.3980
7	0.7023	10.6927	10.6927- 10.2090	0.4837
8	0.8020	11.4441	11.4441- 10.9357	0.5084

Tabla 5. Determinación de masa de MnCl₂. Modo de calentamiento: horno de microondas Segunda repetición

Vaso	Masa de MnCl₂·6 H₂O (g)	Masa del vaso y MnCl ₂ * (g)	Diferencia del vaso con MnCl ₂ y vaso a MC (g)	Masa MnCl ₂ (g)
1	0.1062	8.9635	8.9635- 8.8960	0.0675
2	0.2017	9.3028	9.3028- 9.1770	0.1258
3	0.3029	8.9942	8.9942- 8.8031	0.1911
4	0.4068	10.8882	10.8882- 10.6219	0.2663
5	0.5177	8.9176	8.9176- 8.5915	0.3261
6	0.6165	10.8692	10.8692- 10.4845	0.3847
7	0.7118	10.7198	10.7198- 10.2091	0.5107
8	0.8049	11.3882	11.3882- 10.9360	0.4522

Tabla 6. Determinación de masa de MnCl₂. Modo de calentamiento: horno de microondas Tercera repetición

Vaso	Masa de MnCl ₂ ·6 H ₂ O (g)	Masa del vaso y MnCl ₂ * (g)	Diferencia del vaso con MnCl ₂ y vaso a MC (g)	Masa MnCl ₂ (g)
1	0.1031	9.1385	9.1385- 9.0745	0.0640
2	0.2035	8.9975	8.9975- 8.8690	0.1285
3	0.3029	9.6011	9.6011- 9.4086	0.1925
4	0.4058	9.5679	9.5679- 9.3099	0.2580
5	0.5057	8.9099	8.9099- 8.5913	0.3186
6	0.6211	11.7626	11.7626- 11.3683	0.3943
7	0.7200	10.7379	10.7379- 10.2083	0.5296
8	0.8047	11.3894	11.3894- 10.9354	0.4540

^{*} Los datos representan la segunda medición de MC del vaso y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de $\mathrm{H}_2\mathrm{O}$. Primera repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O (g)
0.1039- 0.0675	0.0364
0.2023- 0.1281	0.0742
0.3020- 0.1906	0.1114
0.4079- 0.2589	0.1490
0.5039- 0.3200	0.1839
0.6033- 0.3980	0.2053
0.7023- 0.5180	0.2840
0.8020- 0.5084	0.1939

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O (g)
0.1062- 0.0675	0.0387
0.2017- 0.1258	0.0759
0.3029- 0.1911	0.1118
0.4068- 0.2663	0.1405
0.5177- 0.3261	0.1916
0.6165- 0.3847	0.2318
0.7118- 0.5107	0.2942
0.8049- 0.4522	0.2596

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de MnCl ₂ ·4 H ₂ O y MnCl ₂ (g)	Masa H ₂ O (g)
0.1031- 0.0640	0.0391
0.2035- 0.1285	0.0750
0.3029- 0.1925	0.1104
0.4058- 0.2580	0.1478
0.5057- 0.3186	0.1871
0.6211- 0.3943	0.2268
0.7200- 0.5296	0.2751
0.8047- 0.4540	0.2660

Tabla 10. Promedio de MC de tres repeticiones

Vaso	Masa inicial vaso (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	9.1526	9.1526	9.1523	9.1523	0.0003	0.0027
2	9.2441	9.2432	9.2435	9.2436	0.0005	0.0052
3	8.8236	8.8228	8.8230	8.8231	0.0004	0.0046
4	10.2891	10.2862	10.2864	10.2872	0.0016	0.0156
5	9.4033	9.4028	9.4027	9.4029	0.0003	0.0035
6	10.2440	10.2428	10.2433	10.2433	0.0006	0.0059
7	9.4009	9.4003	9.40025	9.4005	0.0004	0.0039
8	11.1529	11.1517	11.1522	11.1523	0.0006	0.0054

Tabla 11. Moles de $MnCl_2$ y H_2O . Primera repetición.

Vaso	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0020
2	0.0010	0.0041
3	0.0015	0.0062
4	0.0021	0.0083
5	0.0025	0.0102
6	0.0032	0.0114
7	0.0041	0.0158
8	0.0040	0.0108

Tabla 12. Moles de MnCl₂ y H₂O. Segunda repetición.

Vaso	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0021
2	0.0010	0.0042
3	0.0015	0.0062
4	0.0021	0.0078
5	0.0026	0.0106
6	0.0031	0.0129
7	0.0041	0.0163
8	0.0036	0.0144

Tabla 13. Moles de $MnCl_2$ y H_2O . Tercera repetición.

Vaso	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0022
2	0.0010	0.0042
3	0.0015	0.0061
4	0.0021	0.0082
5	0.0025	0.0104
6	0.0031	0.0126
7	0.0042	0.0153
8	0.0036	0.0148

Tabla 14. Promedio de moles de H_2O y $MnCl_2$ de las tres repeticiones

Vaso	MnCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0021
2	0.0010	0.0042
3	0.0015	0.0062
4	0.0022	0.0081
5	0.0026	0.0104
6	0.0031	0.0123
7	0.0040	0.0164
8	0.0037	0.0133

Gráfica 1. m.m.c para vasos calentamiento mediante mechero de Bunsen

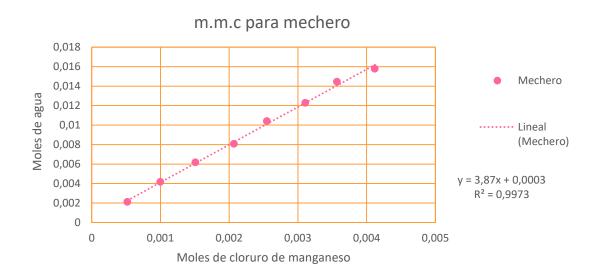


Gráfico 1. m.m.c. de la determinación de moles de cloruro de manganeso para los cuatro tipos de calentamiento por medio de crisoles

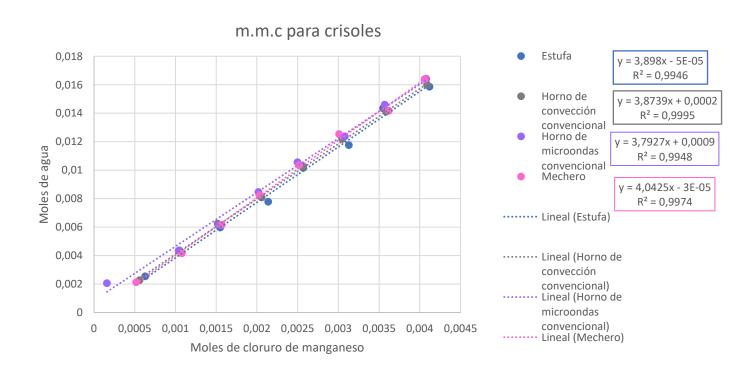



Gráfico 2. m.m.c. de la determinación de moles de cloruro de manganeso para los cuatro tipos de calentamiento por medio de vasos

Anexo 4 cloruro de cobre dihidratado ($CuCl_2 \cdot 2H_2O$)

Calentamiento por estufa de secado para llevar crisoles a MC.

Tabla 1. Resultados de la primera repetición para llevar crisoles a MC, calentamiento por estufa de secado.

		Número de medición de la masa del crisol (g)					
Crisol	Masa crisol inicial (g)	1	2	3	Promedio de las mediciones (g)	DE	%DER
1	24.5781	24.5762	24.5753	24.575	24.5762	0.0014	0.0057
2	26.1052	26.1044	26.1037	26.1033	26.1042	0.0008	0.0032
3	24.8674	24.8669	24.8665	24.8664	24.8668	0.0004	0.0018
4	28.4922	28.4916	28.4903	28.491	28.4913	0.0008	0.0029
5	28.0528	28.0519	28.0506	28.0511	28.0516	0.0010	0.0034
6	28.1629	28.1615	28.1617	28.1617	28.1620	0.0006	0.0023
7	24.5262	24.5257	24.5254	24.5255	24.5257	0.0004	0.0015
8	27.9001	27.8998	27.8995	27.9994	27.9247	0.0498	0.1783

Tabla 2. Resultados de la segunda repetición para llevar crisoles a MC, calentamiento por estufa de secado.

		Número de medición de la masa del crisol (g)					
Crisol	Masa crisol inicial (g)	1	2	3	Promedio de las mediciones (g)	DE	%DER
1	24.578	24.5727	24.5731	24.5736	24.5744	0.0025	0.0100
2	26.1072	26.1016	26.1014	26.1016	26.1030	0.0028	0.0109
3	24.869	24.8648	24.8658	24.8657	24.8663	0.0018	0.0074
4	28.4927	28.4887	28.4895	28.4897	28.4902	0.0018	0.0062
5	28.0532	28.0495	28.0501	28.0505	28.0508	0.0016	0.0058
6	28.1634	28.1599	28.1605	28.1608	28.1612	0.0015	0.0055
7	24.5268	24.5238	24.5247	24.5243	24.5249	0.0013	0.0054
8	27.9011	27.899	27.8984	27.8989	27.8994	0.0012	0.0043

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por estufa de secado.

		Número de medición de la masa del crisol (g)					
Crisol	Masa crisol inicial (g)	1	2	3	Promedio de las mediciones (g)	DE	%DER
1	24.5770	24.5704	24.5723	24.573	24.5732	0.0028	0.0113
2	24.8681	24.8632	24.8645	24.8648	24.8652	0.0021	0.0084
3	26.1045	26.098	26.1021	26.1018	26.1016	0.0027	0.0103
4	28.4924	28.4869	28.4883	28.4894	28.4893	0.0023	0.0082
5	28.0533	28.0480	28.0490	28.0500	28.0501	0.0023	0.0082
6	28.1829	28.1829	28.1595	28.1601	28.1714	0.0133	0.0473
7	24.5248	24.5224	24.5237	24.5237	24.5237	0.0010	0.0040
8	27.9007	27.8973	27.8968	27.8967	27.8979	0.0019	0.0068

Tabla 4. Determinación de masa de $CuCl_2$. Modo de calentamiento: estufa. Primera repetición

Crisol	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del crisol y CuCl ₂ * (g)	Diferencia del crisol con CuCl ₂ y crisol a MC (g)	Masa CuCl ₂ (g)
1	0.101	24.6539	24.6539- 24.5750	0.0789
2	0.2264	26.2785	26.2785- 26.1033	0.1752
3	0.305	25.1041	25.1041- 24.8664	0.2377
4	0.4067	28.8064	28.8064- 28.4910	0.3154
5	0.5003	28.4436	28.4436- 28.0511	0.3925
6	0.6006	28.6293	28.6293- 28.1617	0.4676
7	0.7012	25.0720	25.0720- 24.5255	0.5465
8	0.8117	28.6313	28.6313- 27.9994	0.6319

Tabla 5. Determinación de masa de $CuCl_2$. Modo de calentamiento: estufa de secado. Segunda repetición

Crisol	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del crisol y CuCl ₂ * (g)	Diferencia del crisol con CuCl ₂ y crisol a MC (g)	Masa CuCl ₂ (g)
1	0.1204	24.6664	24.6664- 24.5736	0.0928
2	0.2017	26.2539	26.2539- 26.1016	0.1523
3	0.329	25.1247	25.1247- 24.8657	0.259
4	0.4093	28.8112	28.8112- 28.4897	0.3215
5	0.5045	28.4461	28.4461- 28.0505	0.3956
6	0.6015	28.6293	28.6293- 28.1608	0.4685
7	0.7011	25.0903	25.0903- 24.5243	0.566
8	0.8154	28.5391	28.5391- 27.8989	0.6402

Tabla 6. Determinación de masa de $CuCl_2$. Modo de calentamiento: estufa de secado. Tercera repetición

Crisol	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del crisol y CuCl ₂ * (g)	Diferencia del crisol con CuCl ₂ y crisol a MC (g)	Masa CuCl ₂ (g)
1	0.1107	24.6593	24.6593- 24.573	0.0863
2	0.2011	25.0195	25.0195- 24.8648	0.1547
3	0.3016	26.3395	26.3395- 26.1018	0.2377
4	0.4105	28.812	28.8120- 28.4894	0.3226
5	0.5092	28.4475	28.4475- 28.0500	0.3975
6	0.6105	28.6333	28.6333- 28.1601	0.4732
7	0.7033	25.0731	25.0731- 24.5237	0.5494
8	0.8022	28.5264	28.5264- 27.8967	0.6297

^{*} Los datos representan la segunda medición de MC del crisol y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de CuCl ₂ ·2 H ₂ O y CuCl ₂ (g)	Masa H ₂ O (g)
0.1010- 0.0789	0.0221
0.2264-0.1752	0.0512
0.3050-0.2377	0.0673
0.4067-0.3154	0.0913
0.5003-0.3925	0.1078
0.6006-0.4676	0.133
0.7012-0.5465	0.1547
0.8117-0.6319	0.1798

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de CuCl ₂ ·2 H ₂ O y CuCl ₂ (g)	Masa H ₂ O (g)
0.1204-0.0928	0.0276
0.2017-0.1523	0.0494
0.3290-0.2590	0.0700
0.4093-0.3215	0.0878
0.5045-0.3956	0.1089
0.6015-0.4685	0.1330
0.7011-0.5660	0.1351
0.8154-0.6402	0.1752

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de CuCl ₂ ·2 H ₂ O y CuCl ₂ (g)	Masa H ₂ O (g)
0.1107-0.0863	0.0244
0.2011-0.1547	0.0464
0.3016-0.2377	0.0639
0.4105-0.3226	0.0879
0.5092-0.3975	0.1117
0.6105-0.4732	0.1373
0.7033-0.5494	0.1539
0.8022-0.6297	0.1725

Tabla 10. Promedio de MC de tres repeticiones

Crisol	Masa inicial crisol (g)	Medición 1	Medición 2	Medición 3	Promedio	DE	% DER
1	24.5777	24.5731	24.5736	24.5739	24.5746	0.0021	0.0086
2	25.6935	25.6897	25.6899	25.6899	25.6907	0.0018	0.0071
3	25.2803	25.2766	25.2781	25.2780	25.2782	0.0015	0.0061
4	28.4924	28.4891	28.4894	28.4900	28.4902	0.0015	0.0053
5	28.0531	28.0498	28.0499	28.0505	28.0508	0.0015	0.0055
6	28.1697	28.1681	28.1606	28.1609	28.1648	0.0048	0.0170
7	24.5259	24.5240	24.5246	24.5245	24.5247	0.0008	0.0034
8	27.9006	27.8987	27.8982	27.9317	27.9073	0.0163	0.0583

Tabla 11. Moles de $CuCl_2$ y H_2O . Primera repetición.

Crisol	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0012
2	0.0013	0.0028
3	0.0018	0.0037
4	0.0023	0.0051
5	0.0029	0.0060
6	0.0035	0.0074
7	0.0041	0.0086
8	0.0047	0.0100

Tabla 12. Moles de CuCl₂ y H₂O. Segunda repetición.

Crisol	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0007	0.0015
2	0.0011	0.0027
3	0.0019	0.0039
4	0.0024	0.0048
5	0.0029	0.0060
6	0.0035	0.0074
7	0.0042	0.0075
8	0.0048	0.0097


Tabla 13. Moles de CuCl₂ y H₂O. Tercera repetición.

Crisol	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0014
2	0.0012	0.0026
3	0.0018	0.0035
4	0.0024	0.0049
5	0.0030	0.0062
6	0.0035	0.0076
7	0.0041	0.0085
8	0.0047	0.0096

Tabla 14. Promedio de moles de H_2O y $CuCl_2$ de las tres repeticiones

Crisol	Moles CuCl ₂	Moles H ₂ O
1	0.0006	0.0014
2	0.0012	0.0027
3	0.0018	0.0037
4	0.0024	0.0049
5	0.0029	0.0061
6	0.0035	0.0075
7	0.0041	0.0082
8	0.0047	0.0098

Gráfica 1. m.m.c para crisoles calentamiento mediante estufa

Calentamiento por horno de convección para llevar crisoles a MC.

Tabla 11. Resultados de la primera repetición para llevar crisoles a MC, calentamiento por horno de convección.

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.5776	24.5742	24.5746	24.5755	0.0019	0.0075
2	26.1060	26.1033	26.1023	26.1039	0.0019	0.0073
3	24.8680	24.8659	24.8657	24.8665	0.0013	0.0051
4	28.4925	28.4899	28.4903	28.4909	0.0014	0.0049
5	28.0526	28.0507	28.0508	28.0514	0.0011	0.0038
6	28.1634	28.1607	28.1615	28.1619	0.0014	0.0049
7	24.5267	24.5244	24.5248	24.5253	0.0012	0.0050
8	27.9008	27.8985	27.8991	27.8995	0.0012	0.0043

Tabla 2. Resultados de la segunda repetición para llevar crisoles a MC, calentamiento por horno de convección.

Número de		
medición de la		
masa del crisol		

		masa aci ci isoi		masa del el isol		
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.5383	24.5347	24.5347	24.5359	0.0021	0.0084
2	26.0646	26.0615	26.0611	26.0624	0.0019	0.0073
3	24.8294	24.8265	24.8264	24.8274	0.0017	0.0068
4	28.4477	28.4442	28.4451	28.4457	0.0018	0.0064
5	28.0088	28.0064	28.0066	28.0073	0.0013	0.0047
6	28.1189	28.1169	28.1169	28.1176	0.0012	0.0041
7	24.4876	24.4852	24.4856	24.4861	0.0013	0.0052
8	27.8566	27.8546	27.8550	27.8554	0.0011	0.0038

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por horno de convección.

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.5726	24.5721	24.5724	24.5724	0.0003	0.0000
2	26.1013	26.1012	26.1013	26.1013	0.0001	0.0000
3	24.8659	24.8657	24.8658	24.8658	0.0001	0.0000
4	28.4891	28.4890	28.4890	28.4890	0.0001	0.0000
5	28.0497	28.0496	28.0497	28.0497	0.0001	0.0000
6	28.1600	28.1602	28.1607	28.1603	0.0004	0.0000
7	24.5234	24.5236	24.5236	24.5235	0.0001	0.0000
8	27.898	27.8979	27.8984	27.8981	0.0003	0.0000

Tabla 4. Determinación de masa de $CuCl_2$. Modo de calentamiento: horno de convección Primera repetición

Crisol	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del crisol y CuCl ₂ * (g)	Diferencia del crisol con CuCl ₂ y crisol a MC (g)	Masa CuCl ₂ (g)
1	0.1258	24.6755	24.6755- 24.5746	0.1009
2	0.2025	26.2629	26.2629- 26.1023	0.1606
3	0.3076	25.1060	25.1060- 24.8657	0.2403
4	0.4037	28.8027	28.8027- 28.4903	0.3124
5	0.5011	28.4385	28.4385- 28.0508	0.3877
6	0.6001	28.6315	28.6315- 28.1615	0.4700
7	0.7040	25.0886	25.0886- 24.5248	0.5638
8	0.8018	28.5163	28.5163- 27.8991	0.6172

Tabla 5. Determinación de masa de $CuCl_2$. Modo de calentamiento: horno de convección Segunda repetición

Crisol	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del crisol y CuCl ₂ * (g)	Diferencia del crisol con CuCl ₂ y crisol a MC (g)	Masa CuCl ₂ (g)
1	0.1044	24.6162	24.6162-24.5347	0.0815
2	0.2113	26.2285	26.2285-26.0611	0.1674
3	0.3156	25.0786	25.0786-24.8264	0.2522
4	0.4091	28.7633	28.7633-28.4451	0.3182
5	0.5100	28.4013	28.4013-28.0066	0.3947
6	0.6158	28.6037	28.6037-28.1169	0.4868
7	0.7049	25.0316	25.0316-24.4856	0.5460
8	0.8051	28.4724	28.4724-27.8550	0.6174

Tabla 6. Determinación de masa de $CuCl_2$. Modo de calentamiento: horno de convección Tercera repetición

Crisol	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del crisol y CuCl ₂ * (g)	Diferencia del crisol con CuCl ₂ y crisol a MC (g)	Masa CuCl ₂ (g)
1	0.1087	24.6592	24.6592-24.5724	0.0868
2	0.2089	26.2656	26.2656-26.1013	0.1643
3	0.3040	25.1046	25.1046-24.8658	0.2388
4	0.4119	28.8127	28.8127-28.4890	0.3237
5	0.5004	28.4427	28.4427-28.0497	0.3930
6	0.6018	28.6402	28.6402-28.1607	0.4795
7	0.7045	25.0790	25.0790-24.5236	0.5554
8	0.8160	28.5476	28.5476-27.8984	0.6492

^{*} Los datos representan la segunda medición de MC del crisol y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Primera repetición

Diferencia de la masa de CuCl ₂ · 2H ₂ O y CuCl ₂ (g)	Masa H ₂ O (g)
0.1258-0.1009	0.0249
0.2025-0.1606	0.0419
0.3076-0.2403	0.0673
0.4037-0.3124	0.0913
0.5011-0.3877	0.1134
0.6001-0.4700	0.1301
0.7040-0.5638	0.1402
0.8018-0.6172	0.1846

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de CuCl ₂ · 2H ₂ O y CuCl ₂ (g)	Masa H ₂ O (g)
0.1044-0.0815	0.0229
0.2113-0.1674	0.0439
0.3156-0.2522	0.0634
0.4091-0.3182	0.0909
0.5100-0.3947	0.1153
0.6158-0.4868	0.1290
0.7049-0.5460	0.1589
0.8051-0.6174	0.1877

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de CuCl ₂ · 2H ₂ O y CuCl ₂ (g)	Masa H ₂ O (g)
0.1087-0.0868	0.0219
0.2089-0.1643	0.0446
0.3040-0.2388	0.0652
0.4119-0.3237	0.0882
0.5004-0.3930	0.1074
0.6018-0.4795	0.1223
0.7045-0.5554	0.1491
0.8160-0.6492	0.1668

Tabla 10. Promedio de MC de tres repeticiones

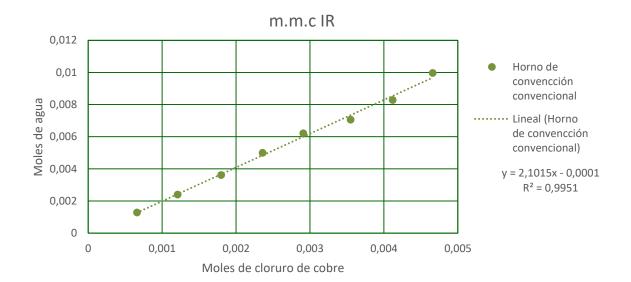
Crisol	Masa inicial crisol (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	24.5628	24.5603	24.5606	24.5612	0.0014	0.0056
2	26.0906	26.0887	26.0882	26.0892	0.0013	0.0049
3	24.8544	24.8527	24.8526	24.8533	0.0010	0.0041
4	28.4764	28.4744	28.4748	28.4752	0.0011	0.0038
5	28.0370	28.0356	28.0357	28.0361	0.0008	0.0029
6	28.1474	28.1459	28.1464	28.1466	0.0008	0.0027
7	24.5126	24.5111	24.5113	24.5117	0.0008	0.0032
8	27.8851	27.8837	27.8842	27.8843	0.0007	0.0027

Tabla 11. Moles de $CuCl_2$ y H_2O . Primera repetición.

Crisol	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0008	0.0014
2	0.0012	0.0023
3	0.0018	0.0037
4	0.0023	0.0051
5	0.0029	0.0063
6	0.0035	0.0072
7	0.0042	0.0078
8	0.0046	0.0102

Tabla 12. Moles de $CuCl_2$ y H_2O . Segunda repetición.

Crisol	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0013
2	0.0012	0.0024
3	0.0019	0.0035
4	0.0024	0.0050
5	0.0029	0.0064
6	0.0036	0.0072
7	0.0041	0.0088
8	0.0046	0.0104


Tabla 13. Moles de $CuCl_2$ y H_2O . Tercera repetición.

Crisol	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0012
2	0.0012	0.0025
3	0.0018	0.0036
4	0.0024	0.0049
5	0.0029	0.0060
6	0.0036	0.0068
7	0.0041	0.0083
8	0.0048	0.0093

Tabla 14. Promedio de moles de H_2O y $CuCl_2$ de las tres repeticiones

Crisol	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0007	0.0013
2	0.0012	0.0024
3	0.0018	0.0036
4	0.0024	0.0050
5	0.0029	0.0062
6	0.0036	0.0071
7	0.0041	0.0083
8	0.0047	0.0010

Gráfica 1. m.m.c para crisoles calentamiento mediante IR

Calentamiento por horno de microondas para llevar crisoles a MC

Tabla 1. Resultados de la primera repetición para llevar crisoles a MC, calentamiento por horno de microondas.

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.5764	24.5728	24.5724	24.5739	0.0022	0.0090
2	26.1044	26.1008	26.1013	26.1022	0.0020	0.0075
3	24.8681	24.8646	24.8651	24.8659	0.0019	0.0076
4	28.4922	28.4887	28.4894	28.4901	0.0019	0.0065
5	28.0525	28.0497	28.0503	28.0508	0.0015	0.0052
6	28.1625	28.1598	28.1606	28.1610	0.0014	0.0049
7	24.5252	24.5231	24.5238	24.5240	0.0011	0.0043
8	27.9002	27.8984	27.8987	27.8991	0.0010	0.0034

Tabla 2. Resultados de la segunda repetición para llevar crisoles a MC, calentamiento por horno de microondas.

Número de

		medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.5772	24.5724	24.5720	24.5739	0.0029	0.0118
2	26.1056	26.1003	26.1000	26.1020	0.0032	0.0121
3	24.8685	24.8638	24.8638	24.8654	0.0027	0.0109
4	28.4918	28.4886	28.4885	28.4896	0.0019	0.0066
5	28.0529	28.0486	28.0490	28.0502	0.0024	0.0084
6	28.1630	28.1596	28.1597	28.1608	0.0019	0.0069
7	24.5260	24.5226	24.5229	24.5238	0.0019	0.0077
8	27.9005	27.8989	27.8981	27.8992	0.0012	0.0044

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por horno de microondas.

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.5771	24.5726	24.5724	24.5740	0.0027	0.0001
2	26.1064	26.1001	26.1005	26.1023	0.0035	0.0001
3	24.8687	24.8642	24.8648	24.8659	0.0024	0.0001
4	28.4921	28.4897	28.4890	28.4903	0.0016	0.0001
5	28.0526	28.0497	28.0501	28.0508	0.0016	0.0001
6	28.1627	28.1601	28.1605	28.1611	0.0014	0.0000
7	24.5260	24.5243	24.5242	24.5248	0.0010	0.0000
8	27.9005	27.8988	27.8989	27.8994	0.0010	0.0000

Tabla 4. Determinación de masa de $CuCl_2$. Modo de calentamiento: horno de microondas Primera repetición

Crisol	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del crisol y CuCl ₂ * (g)	Diferencia del crisol con CuCl ₂ y crisol a MC (g)	Masa CuCl ₂ (g)
1	0.1019	24.6530	24.6530-24.5724	0.0806
2	0.2031	26.2604	26.2604-26.1013	0.1591
3	0.3082	25.0972	25.0972-24.8651	0.2321
4	0.4084	28.8006	28.8006-28.4894	0.3112
5	0.5094	28.4469	28.4469-28.0503	0.3966
6	0.6019	28.6289	28.6289-28.1606	0.4683
7	0.7074	25.0718	25.0718-24.5238	0.5480
8	0.8044	28.5236	28.5236-27.8987	0.6249

Tabla 5. Determinación de masa de $CuCl_2$. Modo de calentamiento: horno de microondas Segunda repetición

Crisol	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del crisol y CuCl ₂ * (g)	Diferencia del crisol con CuCl ₂ y crisol a MC (g)	Masa CuCl ₂ (g)
1	0.1060	24.6542	24.6542-24.5720	0.0822
2	0.2008	26.2576	26.2576-26.1000	0.1576
3	0.3102	25.1092	25.1092-24.8638	0.2454
4	0.4088	28.8167	28.8167-28.4885	0.3282
5	0.5037	28.4457	28.4457-28.0490	0.3967
6	0.6118	28.6328	28.6328-28.1597	0.4731
7	0.7015	25.0702	25.0702-24.5229	0.5473
8	0.8038	28.5344	28.5344-27.8981	0.6363

Tabla 6. Determinación de masa de CuCl₂. Modo de calentamiento: horno de microondas Tercera repetición

Crisol	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del crisol y CuCl ₂ * (g)	Diferencia del crisol con CuCl ₂ y crisol a MC (g)	Masa CuCl ₂ (g)
1	0.1227	24.6702	24.6702-24.5724	0.0978
2	0.2015	26.2578	26.2578-26.1005	0.1573
3	0.3010	25.0980	25.0980-24.8648	0.2332
4	0.3999	28.8021	28.8021-28.4890	0.3131
5	0.6235	28.5402	28.5402-28.0501	0.4901
6	0.5001	28.5509	28.5509-28.1605	0.3904
7	0.7096	25.0691	25.0691-24.5242	0.5449
8	0.8067	28.5308	28.5308-27.8989	0.6319

^{*} Los datos representan la segunda medición de MC del crisol y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Primera repetición

Diferencia de la masa de CuCl ₂ ·2 H ₂ O y CuCl ₂ (g)	Masa H ₂ O (g)
0.1019-0.0806	0.0213
0.2031-0.1591	0.0440
0.3082-0.2321	0.0761
0.4084-0.3112	0.0972
0.5094-0.3966	0.1128
0.6019-0.4683	0.1336
0.7074-0.5480	0.1594
0.8044-0.6249	0.1795

Tabla 8. Cálculo para la obtención de la masa de H_2O . Segunda repetición

Diferencia de la masa de CuCl ₂ ·2 H ₂ O y CuCl ₂ (g)	Masa H ₂ O
0.1060-0.0822	0.0238
0.2008-0.1576	0.0432
0.3102-0.2454	0.0648
0.4088-0.3282	0.0806
0.5037-0.3967	0.1070
0.6118-0.4731	0.1387
0.7015-0.5473	0.1542
0.8038-0.6363	0.1675

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de CuCl ₂ ·2 H ₂ O y CuCl ₂ (g)	Masa H ₂ O (g)
0.1227-0.0978	0.0249
0.2015-0.1573	0.0442
0.3010-0.2332	0.0678
0.3999-0.3131	0.0868
0.6235-0.4901	0.1334
0.5001-0.3904	0.1097
0.7096-0.5449	0.1647
0.8067-0.6319	0.1748

Tabla 10. Promedio de MC de tres repeticiones

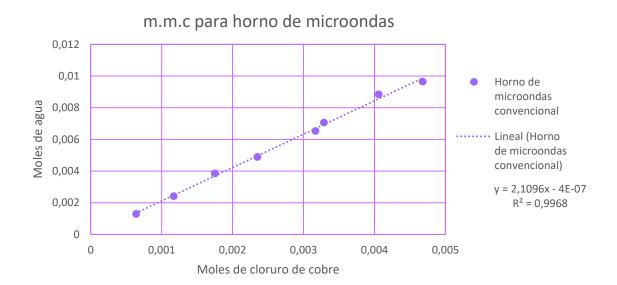
Crisol	Masa inicial crisol (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	24.5769	24.5726	24.5723	24.5739	0.0026	0.0105
2	26.1055	26.1004	26.1006	26.1022	0.0029	0.0110
3	24.8684	24.8642	24.8646	24.8657	0.0023	0.0094
4	28.4920	28.4890	28.4890	28.4900	0.0018	0.0062
5	28.0527	28.0493	28.0498	28.0506	0.0018	0.0064
6	28.1627	28.1598	28.1603	28.1609	0.0016	0.0055
7	24.5257	24.5233	24.5236	24.5242	0.0013	0.0053
8	27.9004	27.8987	27.8986	27.8992	0.0010	0.0037

Tabla 11. Moles de $CuCl_2$ y H_2O . Primera repetición.

Crisol	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0012
2	0.0012	0.0024
3	0.0017	0.0042
4	0.0023	0.0054
5	0.0029	0.0063
6	0.0035	0.0074
7	0.0041	0.0088
8	0.0046	0.0100

Tabla 12. Moles de CuCl₂ y H₂O. Segunda repetición.

Crisol	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0013
2	0.0012	0.0024
3	0.0018	0.0036
4	0.0024	0.0045
5	0.0030	0.0059
6	0.0035	0.0077
7	0.0041	0.0086
8	0.0047	0.0093


Tabla 13. Moles de $CuCl_2$ y H_2O . Tercera repetición.

Crisol	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0007	0.0014
2	0.0012	0.0025
3	0.0017	0.0038
4	0.0023	0.0048
5	0.0036	0.0074
6	0.0029	0.0061
7	0.0041	0.0091
8	0.0047	0.0097

Tabla 14. Promedio de moles de H_2O y $CuCl_2$ de las tres repeticiones

Crisol	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0013
2	0.0012	0.0024
3	0.0018	0.0039
4	0.0024	0.0049
5	0.0032	0.0065
6	0.0033	0.0071
7	0.0041	0.0088
8	0.0047	0.0097

Gráfica 1. m.m.c para crisoles calentamiento mediante horno de microondas

Calentamiento por mechero de Bunsen para llevar crisoles a MC

Tabla 1. Resultados de la primera repetición para llevar crisoles a MC, calentamiento por mechero de Bunsen

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.5767	24.5741	24.5736	24.5748	0.0017	0.0068
2	26.1951	26.1017	26.1015	26.1328	0.0540	0.2066
3	24.8681	24.8653	24.8656	24.8663	0.0015	0.0062
4	28.4920	28.4893	28.4891	28.4901	0.0016	0.0057
5	28.0524	28.0497	28.0506	28.0509	0.0014	0.0049
6	28.1626	28.1600	28.1596	28.1607	0.0016	0.0058
7	24.5255	24.5230	24.5240	24.5242	0.0013	0.0051
8	27.9003	27.8979	27.8987	27.8990	0.0012	0.0044

Tabla 2. Resultados de la segunda repetición para llevar crisoles a MC, calentamiento por mechero de Bunsen

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.5767	24.573	24.5741	24.5746	0.0019	0.0077
2	26.106	26.1013	26.1015	26.1029	0.0027	0.0102
3	24.8688	24.8645	24.8646	24.8660	0.0025	0.0099
4	28.4937	28.4886	28.4888	28.4904	0.0029	0.0101
5	28.0523	28.0493	28.0498	28.0505	0.0016	0.0057
6	28.1627	28.159	28.1599	28.1605	0.0019	0.0068
7	24.5258	24.5229	24.5229	24.5239	0.0017	0.0068
8	27.9005	27.8976	27.8978	27.8986	0.0016	0.0058

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por mechero de Bunsen

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las medicion es (g)	DE	%DER
1	24.5770	24.5743	24.5736	24.5750	0.0018	0.0001
2	26.1057	26.1023	26.1024	26.1035	0.0019	0.0001
3	24.8684	24.8657	24.8659	24.8667	0.0015	0.0001
4	28.4923	28.4896	28.4899	28.4906	0.0015	0.0001
5	28.0529	28.0503	28.0511	28.0514	0.0013	0.0000
6	28.1633	28.1617	28.1615	28.1622	0.0010	0.0000
7	24.5262	24.5244	24.5243	24.5250	0.0011	0.0000
8	27.9013	27.8983	27.8993	27.8996	0.0015	0.0001

Tabla 4. Determinación de masa de CuCl₂. Modo de calentamiento: mechero de Bunsen

Primera repetición

Crisol	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del crisol y CuCl ₂ * (g)	Diferencia del crisol con CuCl ₂ y crisol a MC (g)	Masa CuCl ₂ (g)
1	0.1132	24.6614	24.6614- 24.5739	0.0878
2	0.2068	26.2637	26.2637- 26.1022	0.1622
3	0.3038	25.0970	25.0970- 24.8659	0.2314
4	0.4041	28.8120	28.8120- 28.4901	0.3229
5	0.5018	28.4409	28.4409- 28.0507	0.3903
6	0.6052	28.6340	28.6340- 28.1613	0.4744
7	0.7007	25.0667	25.0667- 24.5240	0.5427
8	0.8005	28.5282	28.5282- 27.8988	0.6295

Tabla 5. Determinación de masa de CuCl₂. Modo de calentamiento: mechero de Bunsen Segunda repetición

Crisol	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del crisol y CuCl ₂ * (g)	Diferencia del crisol con CuCl ₂ y crisol a MC (g)	Masa CuCl ₂ (g)
1	0.1201	24.6678	24.6678-24.5739	0.0937
2	0.2155	26.2729	26.2729-26.1013	0.1714
3	0.3006	25.1027	25.1027-24.8648	0.2381
4	0.4003	28.8043	28.8043-28.4894	0.3155
5	0.5004	28.4408	28.4408-28.0505	0.3910
6	0.6114	28.6429	28.6429-28.1604	0.4830
7	0.7062	25.0779	25.0779-24.5232	0.5550
8	0.8029	28.5280	28.5280-27.8988	0.6302

Tabla 6. Determinación de masa de CuCl₂. Modo de calentamiento: horno de microondas

Tercera repetición

Crisol	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del crisol y CuCl ₂ * (g)	Diferencia del crisol con CuCl ₂ y crisol a MC (g)	Masa CuCl ₂ (g)
1	0.1069	24.6566	24.6566-24.5739	0.0830
2	0.2071	26.2600	26.2600-26.1025	0.1576
3	0.3188	25.1091	25.1091-24.8661	0.2432
4	0.4094	28.7989	28.7989-28.4904	0.3090
5	0.5062	28.4375	28.4375-28.0512	0.3864
6	0.6002	28.6231	28.6231-28.1613	0.4616
7	0.7084	25.0854	25.0854-24.5244	0.5611
8	0.8017	28.5220	28.5220-27.8995	0.6227

^{*} Los datos representan la segunda medición de MC del crisol y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de $\mathrm{H}_2\mathrm{O}$. Primera repetición

Diferencia de la masa de CuCl ₂ ·2H ₂ O y CuCl ₂ (g)	Masa H ₂ O (g)
0.1132-0.0878	0.0014
0.2068-0.1622	0.0025
0.3038-0.2314	0.0040
0.4041-0.3229	0.0045
0.5018-0.3903	0.0062
0.6052-0.4744	0.0073
0.7007-0.5427	0.0088
0.8005-0.6295	0.00949

Tabla 8. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Segunda repetición

Diferencia de la masa de CuCl ₂ ·2H ₂ O y CuCl ₂ (g)	Masa H ₂ O (g)
0.1201-0.0937	0.0264
0.2155-0.1714	0.0441
0.3006-0.2381	0.0625
0.4003-0.3155	0.0848
0.5004-0.3910	0.1094
0.6114-0.4830	0.1284
0.7062-0.5550	0.1512
0.8029-0.6302	0.1727

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de CuCl ₂ ·2H ₂ O y CuCl ₂ (g)	Masa H ₂ O (g)
0.1069-0.0830	0.0239
0.2071-0.1576	0.0495
0.3188-0.2432	0.0756
0.4094-0.3090	0.1004
0.5062-0.3864	0.1198
0.6002-0.4616	0.1386
0.7084-0.5611	0.1473
0.8017-0.6227	0.1790

Tabla 10. Promedio de MC de tres repeticiones

Crisol	Masa inicial crisol (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	24.5768	24.5738	24.5738	24.5748	0.0017	0.0071
2	26.1356	26.1018	26.1018	26.1131	0.0195	0.0748
3	24.8684	24.8652	24.8654	24.8663	0.0018	0.0074
4	28.4927	28.4892	28.4893	28.4904	0.0020	0.0070
5	28.0525	28.0498	28.0505	28.0509	0.0014	0.0051
6	28.1629	28.1602	28.1603	28.1611	0.0015	0.0053
7	24.5258	24.5234	24.5237	24.5243	0.0013	0.0053
8	27.9007	27.8979	27.8986	27.8991	0.0014	0.0052

Tabla 11. Moles de $CuCl_2$ y H_2O . Primera repetición.

Crisol	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0007	0.0014
2	0.0012	0.0025
3	0.0017	0.0040
4	0.0024	0.0045
5	0.0029	0.0062
6	0.0035	0.0073
7	0.0040	0.0088
8	0.0047	0.0095

Tabla 12. Moles de CuCl₂ y H₂O. Segunda repetición.

Crisol	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0007	0.0015
2	0.0013	0.0024
3	0.0018	0.0035
4	0.0023	0.0047
5	0.0029	0.0061
6	0.0036	0.0071
7	0.0041	0.0084
8	0.0047	0.0096

Tabla 13. Moles de CuCl₂ y H₂O. Tercera repetición.

Crisol	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0013
2	0.0012	0.0027
3	0.0018	0.0042
4	0.0023	0.0056
5	0.0029	0.0066
6	0.0034	0.0077
7	0.0042	0.0082
8	0.0046	0.0099

Tabla 14. Promedio de moles de H₂O y CuCl₂ de las tres repeticiones

Crisol	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0007	0.0014
2	0.0012	0.0026
3	0.0018	0.0039
4	0.0023	0.0049
5	0.0029	0.0063
6	0.0035	0.0074
7	0.0041	0.0084
8	0.0047	0.0097

Gráfica 1. m.m.c para crisoles calentamiento mediante mechero de Bunsen

Calentamiento por estufa de secado para llevar vasos a MC.

8

10.6304

10.6299

Tabla 1. Resultados de la primera repetición para llevar vasos a MC, calentamiento por estufa de secado.

	medicio masa d	ón de la lel vaso			
Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
9.0755	9.0752	9.0753	9.0753	0.0002	0.0017
8.8703	8.8695	8.8699	8.8699	0.0004	0.0044
9.4089	9.4086	9.4085	9.4087	0.0002	0.0021
9.3101	9.3101	9.3105	9.3102	0.0002	0.0025
8.5928	8.5917	8.5919	8.5921	0.0006	0.0068
11.3694	11.3689	11.3692	11.3692	0.0003	0.0022
10.6077	10.6071	10.6073	10.6074	0.0003	0.0028
	vaso inicial (g) 9.0755 8.8703 9.4089 9.3101 8.5928 11.3694	Masa vaso inicial (g) 9.0755 9.0752 8.8703 8.8695 9.4089 9.4086 9.3101 9.3101 8.5928 8.5917 11.3694 11.3689	vaso inicial (g) 1 2 9.0755 9.0752 9.0753 8.8703 8.8695 8.8699 9.4089 9.4086 9.4085 9.3101 9.3101 9.3105 8.5928 8.5917 8.5919 11.3694 11.3689 11.3692	Masa vaso inicial (g) 1 2 Promedio de las mediciones (g) 9.0755 9.0752 9.0753 9.0753 8.8703 8.8695 8.8699 8.8699 9.4089 9.4086 9.4085 9.4087 9.3101 9.3101 9.3105 9.3102 8.5928 8.5917 8.5919 8.5921 11.3694 11.3689 11.3692 11.3692	Masa vaso inicial (g) 1 2 Promedio de las mediciones (g) DE 9.0755 9.0752 9.0753 9.0753 0.0002 8.8703 8.8695 8.8699 8.8699 0.0004 9.4089 9.4086 9.4085 9.4087 0.0002 9.3101 9.3101 9.3105 9.3102 0.0002 8.5928 8.5917 8.5919 8.5921 0.0006 11.3694 11.3689 11.3692 11.3692 0.0003

10.6298

10.6300

0.0003

0.0030

Tabla 2. Resultados de la segunda repetición para llevar vasos a MC, calentamiento por estufa de secado.

Número de medició de la masa del vaso	
(g)	

	(0)					
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	8.8976	8.896	8.8967	8.8968	0.0008	0.0090
2	9.1907	9.1889	9.1901	9.1899	0.0009	0.0099
3	8.8044	8.8032	8.8036	8.8037	0.0006	0.0069
4	9.1355	9.1342	9.135	9.1349	0.0007	0.0071
5	10.7459	10.7449	10.7453	10.7454	0.0005	0.0047
6	10.489	10.4872	10.4881	10.4881	0.0009	0.0086
7	10.6249	10.6237	10.6242	10.6243	0.0006	0.0056
8	10.2097	10.2087	10.209	10.2091	0.0005	0.0050

Tabla 3. Resultados de la tercera repetición para llevar vasos a MC, calentamiento por estufa de secado.

Número de			
medición de la			
masa del vaso			
(g)			

		\⊕/				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	9.0755	9.0749	9.0746	9.0750	0.0005	0.0050
2	9.1906	9.1904	9.1903	9.1904	0.0002	0.0016
3	8.8053	8.803	8.8034	8.8039	0.0012	0.0139
4	9.135	9.1352	9.1348	9.1350	0.0002	0.0021
5	11.3698	11.3696	11.3699	11.3698	0.0002	0.0013
6	10.7456	10.7452	10.7452	10.7453	0.000	0.0021
7	10.6243	10.6238	10.6238	10.6240	0.0003	0.0026
8	10.2093	10.209	10.2091	10.2091	0.0002	0.0015

Tabla 4. Determinación de masa de $CuCl_2$. Modo de calentamiento: estufa. Primera repetición

Vaso	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del vaso y CuCl ₂ * (g)	Diferencia del vaso con CuCl ₂ y vaso a MC (g)	Masa CuCl ₂ (g)
1	0.1015	9.1584	9.1584-9.0753	0.0831
2	0.2097	9.0316	9.0316-8.8699	0.1617
3	0.3145	9.6556	9.6556-9.4085	0.2471
4	0.4018	9.6258	9.6258-9.3105	0.3153
5	0.5006	8.9816	8.9816-8.5919	0.3897
6	0.606	11.8547	11.8547-11.3692	0.4855
7	0.7007	11.1553	11.1553-10.6073	0.5480
8	0.8151	11.2572	11.2572-10.6298	0.6274

Tabla 5. Determinación de masa de $CuCl_2$. Modo de calentamiento: estufa de secado. Segunda repetición

Vaso	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del vaso y CuCl ₂ * (g)	Diferencia del vaso con CuCl ₂ y vaso a MC (g)	Masa CuCl ₂ (g)
1	0.1014	8.9781	8.9781-8.8967	0.0814
2	0.2027	9.3573	9.3573-9.1901	0.1672
3	0.3111	9.0473	9.0473-8.8036	0.2437
4	0.4013	9.4639	9.4639-9.1350	0.3289
5	0.5024	11.1395	11.1395-10.7453	0.3942
6	0.6034	10.9582	10.9582-10.4881	0.4701
7	0.7065	11.1786	11.1786-10.6242	0.5544
8	0.8115	10.8466	10.8466-10.2090	0.6376

Tabla 6. Determinación de masa de CuCl_2 . Modo de calentamiento: estufa de secado. Tercera repetición

Vaso	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del vaso y CuCl ₂ * (g)	Diferencia del vaso con CuCl ₂ y vaso a MC (g)	Masa CuCl ₂ (g)
1	0.1021	9.1547	9.1547-9.0746	0.0801
2	0.2186	9.3689	9.3689-9.1903	0.1786
3	0.3047	9.0373	9.0373-8.8034	0.2339
4	0.4173	9.4576	9.4576-9.1348	0.3228
5	0.5036	11.7582	11.7582-11.3699	0.3883
6	0.6181	11.2362	11.2362-10.7452	0.4910
7	0.7050	11.1834	11.1834-10.6238	0.5596
8	0.8172	10.857	10.857-10.2091	0.6479

^{*} Los datos representan la segunda medición de MC del vaso y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de CuCl ₂ ·2 H ₂ O y CuCl ₂ (g)	Masa H ₂ O
0.1015-0.0831	0.0184
0.2097-0.1617	0.0480
0.3145-0.2471	0.0674
0.4018-0.3153	0.0865
0.5006-0.3897	0.1109
0.6060-0.4855	0.1205
0.7007-0.5480	0.1527
0.8151-0.6274	0.1877

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de CuCl ₂ ·2 H ₂ O y CuCl ₂ (g)	Masa H ₂ O
0.1014-0.0814	0.0200
0.2027-0.1672	0.0355
0.3111-0.2437	0.0674
0.4013-0.3289	0.0724
0.5024-0.3942	0.1082
0.6034-0.4701	0.1333
0.7065-0.5544	0.1521
0.8115-0.6376	0.1739

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de CuCl ₂ ·2 H ₂ O y CuCl ₂ (g)	Masa H ₂ O
0.1021-0.0801	0.0220
0.2186-0.1786	0.0400
0.3047-0.2339	0.0708
0.4173-0.3228	0.0945
0.5036-0.3883	0.1153
0.6181-0.4910	0.1271
0.7050-0.5596	0.1454
0.8172-0.6479	0.1693

Tabla 10. Promedio de MC de tres repeticiones

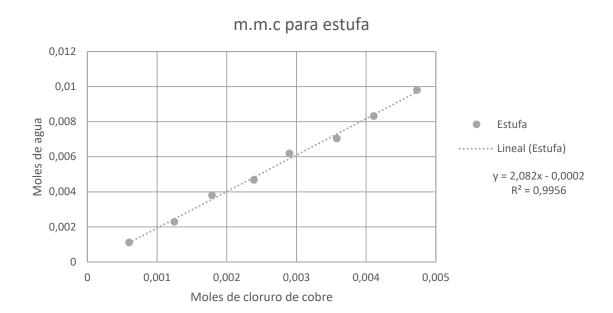
Vaso	Masa inicial vaso (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	9.0162	9.0154	9.0155	9.0157	0.0004	0.0049
2	9.08386	9.0829	9.0834	9.0834	0.0005	0.0051
3	9.0062	9.0049	9.0052	9.0054	0.0007	0.0074
4	9.1935	9.1932	9.1934	9.1934	0.0002	0.0021
5	10.2362	10.2354	10.2357	10.2358	0.0004	0.0037
6	10.8680	10.8671	10.8675	10.8675	0.0005	0.0041
7	10.6190	10.6182	10.6184	10.6185	0.0004	0.0036
8	10.3498	10.3492	10.3493	10.3494	0.0003	0.0031

Tabla 11. Moles de $CuCl_2$ y H_2O . Primera repetición.

Vaso	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0010
2	0.0012	0.0027
3	0.0018	0.0037
4	0.0023	0.0048
5	0.0029	0.0062
6	0.0036	0.0067
7	0.0041	0.0085
8	0.0047	0.0104

Tabla 12. Moles de CuCl₂ y H₂O. Segunda repetición.

Vaso	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0011
2	0.0012	0.0020
3	0.0018	0.0037
4	0.0024	0.0040
5	0.0029	0.0060
6	0.0035	0.0074
7	0.0041	0.0084
8	0.0047	0.0097


Tabla 13. Moles de CuCl₂ y H₂O. Tercera repetición.

Vaso	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0012
2	0.0013	0.0022
3	0.0017	0.0039
4	0.0024	0.0052
5	0.0029	0.0064
6	0.0037	0.0071
7	0.0042	0.0081
8	0.0048	0.0094

Tabla 13. Promedio de moles de H_2O y $CuCl_2$ de las tres repeticiones

Vaso	Moles CuCl ₂	Moles H ₂ O
1	0.0006	0.0011
2	0.0013	0.0023
3	0.0018	0.0038
4	0.0024	0.0047
5	0.0029	0.0062
6	0.0036	0.0070
7	0.0041	0.0083
8	0.0047	0.0098

Gráfica 1. m.m.c para vasos calentamiento mediante estufa

Calentamiento por horno de convección para llevar vasos a MC

Tabla 1. Resultados de la primera repetición para llevar vasos a MC, calentamiento por horno de convección.

		Número de medición de la masa del vaso				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	8.8974	8.8974	8.8969	8.8972	0.0003	0.0031
2	9.1916	9.1901	9.1904	9.1907	0.0008	0.0086
3	8.8053	8.8035	8.8040	8.8043	0.0009	0.0104
4	9.1354	9.1345	9.1347	9.1349	0.0005	0.0051
5	10.7470	10.7453	10.7460	10.7461	0.0009	0.0079
6	10.4905	10.4886	10.4886	10.4892	0.0011	0.0104
7	10.6263	10.6250	10.6254	10.6256	0.0007	0.0062
8	10.209	10.2089	10.2091	10.2090	0.0001	0.0009

Tabla 2. Resultados de la segunda repetición para llevar vasos a MC, calentamiento por horno de convección.

Número de
medición de la
masa del vaso

Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	9.0756	9.0745	9.0747	9.0749	0.0006	0.0064
2	8.8701	8.8687	8.8691	8.8693	0.0007	0.0081
3	9.4092	9.4078	9.4082	9.4084	0.0007	0.0077
4	9.3110	9.3096	9.3101	9.3102	0.0007	0.0075
5	8.5925	8.5911	8.5916	8.5917	0.0007	0.0081
6	11.3698	11.3689	11.3691	11.3693	0.0005	0.0041
7	10.6080	10.607	10.6073	10.6074	0.0005	0.0048
8	10.6305	10.6297	10.6299	10.6300	0.0004	0.0039

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por horno de convección.

Número de
medición de la
masa del vaso

Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	9.0754	9.0750	9.0746	9.0750	0.0004	0.0043
2	8.8701	8.8694	8.8692	8.8696	0.0005	0.0053
3	9.4092	9.4085	9.4084	9.4087	0.0004	0.0046
4	9.3128	9.3100	9.3103	9.3110	0.0015	0.0164
5	8.5931	8.5915	8.5917	8.5921	0.0009	0.0101
6	11.3698	11.3687	11.369	11.3692	0.0006	0.0049
7	10.6074	10.6069	10.6072	10.6072	0.0003	0.0024
8	10.6203	10.6296	10.6298	10.6266	0.0054	0.0510

Tabla 4. Determinación de masa de $CuCl_2$. Modo de calentamiento: horno de convección Primera repetición

Vaso	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del vaso y CuCl ₂ * (g)	Diferencia del vaso con CuCl ₂ y vaso a MC (g)	Masa CuCl ₂ (g)
1	0.1030	8.9747	8.9747-8.8969	0.0778
2	0.2060	9.3496	9.3496-9.1904	0.1592
3	0.3051	9.0413	9.0413-8.8040	0.2373
4	0.4031	9.4638	9.4638-9.1347	0.3291
5	0.5062	11.1403	11.1403-10.7460	0.3943
6	0.6141	10.9646	10.9646-10.4886	0.4760
7	0.7009	11.1775	11.1775-10.6254	0.5521
8	0.8077	10.8380	10.8380-10.2091	0.6289

Tabla 5. Determinación de masa de $CuCl_2$. Modo de calentamiento: horno de convección Segunda repetición

Vaso	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del vaso y CuCl ₂ * (g)	Diferencia del vaso con CuCl ₂ y vaso a MC (g)	Masa CuCl ₂ (g)
1	0.1067	9.1585	9.1585-9.0747	0.0838
2	0.2069	9.0307	9.0307-8.8691	0.1616
3	0.3146	9.6535	9.6535-9.4082	0.2453
4	0.4029	9.6280	9.6280-9.3101	0.3179
5	0.5127	9.0030	9.0030-8.5916	0.4114
6	0.6002	11.8399	11.8399-11.3691	0.4708
7	0.7001	11.1568	11.1568-10.6073	0.5495
8	0.8076	11.2553	11.2553-10.6299	0.6254

Tabla 6. Determinación de masa de $CuCl_2$. Modo de calentamiento: horno de convección Tercera repetición

Vaso	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del vaso y CuCl ₂ * (g)	Diferencia del vaso con CuCl ₂ y vaso a MC (g)	Masa CuCl ₂ (g)
1	0.1105	9.1601	9.1601-9.0746	0.0855
2	0.2008	9.0284	9.0284-8.8692	0.1592
3	0.3152	9.6626	9.6626-9.4084	0.2542
4	0.4009	9.6344	9.6344-9.3103	0.3241
5	0.5075	8.9916	8.9916-8.5917	0.3999
6	0.6077	11.8426	11.8426-11.3690	0.4736
7	0.7022	11.1670	11.1670-10.6072	0.5598
8	0.8159	11.2702	11.2702-10.6298	0.6404

^{*} Los datos representan la segunda medición de MC del vaso y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de CuCl ₂ ·2 H ₂ O y CuCl ₂ (g)	Masa H ₂ O
0.1030-0.0778	0.0252
0.2060-0.1592	0.0468
0.3051-0.2373	0.0678
0.4031-0.3291	0.074
0.5062-0.3943	0.1119
0.6141-0.4760	0.1381
0.7009-0.5521	0.1488
0.8077-0.6289	0.1788

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de CuCl ₂ ·2 H ₂ O y CuCl ₂ (g)	Masa H ₂ O
0.1067-0.0838	0.0229
0.2069-0.1616	0.0453
0.3146-0.2453	0.0693
0.4029-0.3179	0.0850
0.5127-0.4114	0.1013
0.6002-0.4708	0.1294
0.7001-0.5495	0.1506
0.8076-0.6254	0.1822

Tabla 9. Cálculo para la obtención de la masa de H₂O. Tercera repetición

Diferencia de la masa de CuCl ₂ ·2 H ₂ O y CuCl ₂ (g)	Masa H ₂ O (g)
0.1105-0.0855	0.0250
0.2008-0.1592	0.0416
0.3152-0.2542	0.0610
0.4009-0.3241	0.0768
0.5075-0.3999	0.1076
0.6077-0.4736	0.1341
0.7022-0.5598	0.1424
0.8159-0.6404	0.1755

Tabla 10. Promedio de MC de tres repeticiones

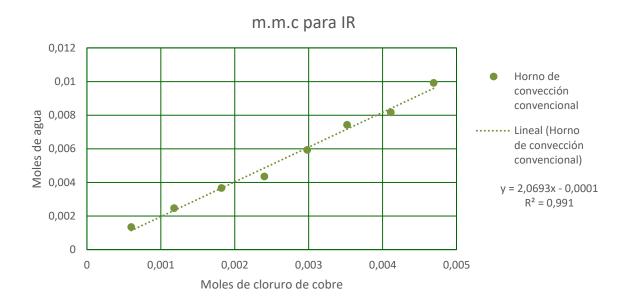
Vaso	Masa inicial vaso (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	9.0161	9.0156	9.0154	9.0157	0.0004	0.0041
2	8.9773	8.9761	8.9762	8.9765	0.0006	0.0071
3	9.2079	9.2066	9.2069	9.2071	0.0007	0.0074
4	9.2531	9.2514	9.2517	9.2520	0.0009	0.0096
5	9.3109	9.3093	9.3098	9.3100	0.0008	0.0086
6	11.0767	11.0754	11.0756	11.0759	0.0007	0.0063
7	10.6139	10.6130	10.6133	10.6134	0.0005	0.0044
8	10.4866	10.4894	10.4896	10.4885	0.0017	0.0159

Tabla 11. Moles de $CuCl_2$ y H_2O . Primera repetición.

Vaso	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0014
2	0.0012	0.0026
3	0.0018	0.0038
4	0.0024	0.0041
5	0.0029	0.0062
6	0.0035	0.0077
7	0.0041	0.0083
8	0.0047	0.0099

Tabla 12. Moles de $CuCl_2$ y H_2O . Segunda repetición.

Vaso	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0013
2	0.0012	0.0025
3	0.0018	0.0038
4	0.0024	0.0047
5	0.0031	0.0056
6	0.0035	0.0072
7	0.0041	0.0084
8	0.0047	0.0101


Tabla 13. Moles de CuCl₂ y H₂O. Tercera repetición.

Vaso	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0014
2	0.0012	0.0023
3	0.0019	0.0034
4	0.0024	0.0043
5	0.0023	0.0060
6	0.0035	0.0074
7	0.0042	0.0079
8	0.0048	0.0097

Tabla 14. Promedio de moles de H_2O y $CuCl_2$ de las tres repeticiones

Vaso	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0013
2	0.0012	0.0025
3	0.0018	0.0037
4	0.0024	0.0044
5	0.0030	0.0059
6	0.0035	0.0074
7	0.0041	0.0082
8	0.0047	0.0099

Gráfica 1. m.m.c para vasos calentamiento mediante IR

Calentamiento por horno de microondas para llevar vasos a MC

Tabla 1. Resultados de la primera repetición para llevar vasos a MC, calentamiento por horno de microondas.

Número de

			ero de ón de la lel vaso			
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	8.8974	8.8974	8.8969	8.8972	0.0003	0.0031
2	9.1916	9.1901	9.1904	9.1907	0.0008	0.0086
3	8.8053	8.8035	8.8040	8.8043	0.0009	0.0104
4	9.1354	9.1345	9.1347	9.1349	0.0005	0.0051
5	10.7470	10.7453	10.7460	10.7461	0.0009	0.0079
6	10.4905	10.4886	10.4886	10.4892	0.0011	0.0104
7	10.6263	10.6250	10.6254	10.6256	0.0007	0.0062
8	10.2090	10.2089	10.2091	10.2090	0.0001	0.0009

Tabla 2. Resultados de la segunda repetición para llevar vasos a MC, calentamiento por horno de microondas.

		Número de medición de la masa del vaso				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	9.0756	9.0745	9.0747	9.0749	0.0006	0.0064
2	8.8701	8.8687	8.8691	8.8693	0.0007	0.0081
3	9.4092	9.4078	9.4082	9.4084	0.0007	0.0077
4	9.3110	9.3096	9.3101	9.3102	0.0007	0.0075
5	8.5925	8.5911	8.5916	8.5917	0.0007	0.0081
6	11.3698	11.3689	11.3691	11.3693	0.0005	0.0041
7	10.6080	10.607	10.6073	10.6074	0.0005	0.0048
8	10.6305	10.6297	10.6299	10.6300	0.0004	0.0039

Tabla 3. Resultados de la tercera repetición para llevar vasos a MC, calentamiento por horno de microondas.

		medicio	ero de ón de la lel vaso			
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	9.0754	9.0750	9.0746	9.0750	0.0004	0.0043
2	8.8701	8.8694	8.8692	8.8697	0.0005	0.0053
3	9.4092	9.4085	9.4084	9.4087	0.0004	0.0046
4	9.3128	9.3100	9.3103	9.3110	0.0015	0.0164
5	8.5931	8.5915	8.5917	8.5921	0.0009	0.0101
6	11.3698	11.3687	11.369	11.3692	0.0006	0.0049
7	10.6074	10.6069	10.6072	10.6072	0.0003	0.0024
8	10.6203	10.6296	10.6298	10.6267	0.0054	0.0510

Tabla 4. Determinación de masa de CuCl₂. Modo de calentamiento: horno de microondas Primera repetición

Vaso	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del vaso y CuCl ₂ * (g)	Diferencia del vaso con CuCl ₂ y crisol a MC (g)	Masa CuCl ₂ (g)
1	0.1105	9.1477	9.1477-9.0604	0.0873
2	0.2172	9.3495	9.3495-9.1757	0.1738
3	0.3014	9.6281	9.6281-9.3936	0.2345
4	0.4081	9.6163	9.6163-9.2956	0.3207
5	0.5007	11.1234	11.1234-10.7284	0.3950
6	0.6084	11.8314	11.8314-11.3517	0.4797
7	0.7101	11.1817	11.1817-10.6076	0.5741
8	0.8034	11.2590	11.2590-10.6133	0.6457

Tabla 5. Determinación de masa de CuCl₂. Modo de calentamiento: horno de microondas

Segunda repetición

Vaso	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del vaso y CuCl ₂ * (g)	Diferencia del vaso con CuCl ₂ y crisol a MC (g)	Masa CuCl ₂ (g)
1	0.1048	9.1555	9.1555-9.0748	0.0807
2	0.2062	9.3511	9.3511-9.191	0.1601
3	0.3191	9.0512	9.0512-8.8036	0.2476
4	0.4035	9.4435	9.4435-9.1346	0.3089
5	0.5095	11.1349	11.1349-10.7439	0.3910
6	0.6161	11.8599	11.8599-11.3686	0.4913
7	0.7020	11.1696	11.1696-10.6235	0.5461
8	0.8021	10.8444	10.8444-10.2089	0.6355

Tabla 6. Determinación de masa de CuCl₂. Modo de calentamiento: horno de microondas

Tercera repetición

Vaso	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del vaso y CuCl ₂ * (g)	Diferencia del vaso con CuCl ₂ y crisol a MC (g)	Masa CuCl ₂ (g)
1	0.1099	8.9840	8.9840-8.8963	0.0877
2	0.2083	9.0356	9.0356-8.8698	0.1658
3	0.3031	9.6570	9.6570-9.4084	0.2486
4	0.4074	9.6436	9.6436-9.3101	0.3335
5	0.5024	8.9826	8.9826-8.5915	0.3911
6	0.6037	11.0809	11.0809-10.6074	0.4735
7	0.7048	11.0602	11.0602-10.4869	0.5733
8	0.8031	11.2590	11.2590-10.6298	0.6292

^{*} Los datos representan la segunda medición de MC del vaso y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de CuCl ₂ ·2 H ₂ O y CuCl ₂ (g)	Masa H ₂ O (g)
0.1105-0.0873	0.0232
0.2172-0.1738	0.0434
0.3014-0.2345	0.0669
0.4081-0.3207	0.0874
0.5007-0.3950	0.1057
0.6084-0.4797	0.1287
0.7101-0.5741	0.1360
0.8034-0.6457	0.1577

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de CuCl ₂ ·2 H ₂ O y CuCl ₂ (g)	Masa H ₂ O (g)
0.1048-0.0807	0.0241
0.2062-0.1601	0.0461
0.3191-0.2476	0.0715
0.4035-0.3089	0.0946
0.5095-0.3910	0.1185
0.6161-0.4913	0.1248
0.7020-0.5461	0.1559
0.8021-0.6355	0.1666

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de CuCl ₂ ·2 H ₂ O y CuCl ₂ (g)	Masa H ₂ O (g)
0.1099-0.0877	0.0222
0.2083-0.1658	0.0425
0.3031-0.2486	0.0545
0.4074-0.3335	0.0739
0.5024-0.3911	0.1113
0.6037-0.4735	0.1302
0.7048-0.5733	0.1315
0.8031-0.6292	0.1739

Tabla 10. Promedio de MC de tres repeticiones

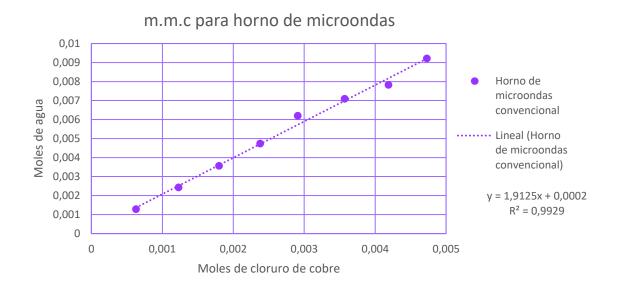
Vaso	Masa inicial vaso (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	9.0117	9.0103	9.0105	9.0108	0.0007	0.0080
2	9.0788	9.0787	9.0788	9.0788	0.0001	0.0010
3	9.2025	9.2014	9.2019	9.2019	0.0006	0.0060
4	9.2476	9.2431	9.2468	9.2458	0.0024	0.0255
5	10.0221	10.0210	10.0213	10.0215	0.0006	0.0059
6	11.1095	11.1088	11.1092	11.1092	0.0004	0.0032
7	10.5732	10.5692	10.5727	10.5717	0.0022	0.0208
8	10.4847	10.4837	10.4840	10.4841	0.0005	0.0048

Tabla 11. Moles de $CuCl_2$ y H_2O . Primera repetición.

Vaso	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0013
2	0.0013	0.0024
3	0.0017	0.0037
4	0.0024 0.0049	
5	0.0029	0.0059
6	0.0036	0.0071
7	0.0043	0.0075
8	0.0048	0.0088

Tabla 12. Moles de $CuCl_2$ y H_2O . Segunda repetición.

Vaso	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0013
2	0.0012	0.0026
3	0.0018	0.0040
4	0.0023	0.0051
5	0.0029	0.0066
6	0.0037	0.0069
7	0.0041	0.0087
8	0.0047	0.0092


Tabla 13. Moles de CuCl₂ y H₂O. Tercera repetición.

Vaso	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0007	0.0012
2	0.0012	0.0024
3	0.0018	0.0030
4	0.0025	0.0041
5	0.0029	0.0062
6	0.0035	0.0072
7	0.0043	0.0073
8	0.0047	0.0097

Tabla 14. Promedio de moles de H_2O y $CuCl_2$ de las tres repeticiones

Vaso	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0013
2	0.0012	0.0024
3	0.0018	0.0036
4	0.0024	0.0047
5	0.0029	0.0062
6	0.0036	0.0071
7	0.0042	0.0078
8	0.0047	0.0092

Gráfica 1. m.m.c para vasos calentamiento mediante horno de microondas

Calentamiento por mechero de Bunsen para llevar vasos a MC

Tabla 1. Resultados de la primera repetición para llevar vasos a MC, calentamiento por mechero de Bunsen

		medició	ero de ón de la lel vaso			
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	8.8974	8.8964	8.8960	8.8966	0.0007	0.0081
2	8.8699	8.869	8.8688	8.8692	0.0006	0.0065
3	9.4086	9.4087	9.4082	9.4085	0.0003	0.0028
4	9.3104	9.3100	9.3101	9.3102	0.0002	0.0021
5	8.5918	8.5914	8.5917	8.5916	0.0002	0.0023
6	10.4879	10.4875	10.4876	10.4877	0.0002	0.0019
7	10.6074	10.6069	10.6070	10.6071	0.0003	0.0025
8	10.6296	10.6291	10.6294	10.6294	0.0003	0.0024

Tabla 2. Resultados de la segunda repetición para llevar vasos a MC, calentamiento por mechero de Bunsen

		medició	ero de ón de la lel vaso			
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	9.0754	9.0746	9.0747	9.0749	0.0004	0.0047
2	9.1905	9.1899	9.1903	9.1902	0.0003	0.0033
3	8.8041	8.8035	8.8037	8.8038	0.0003	0.0034
4	9.1352	9.1347	9.1348	9.1349	0.0003	0.0028
5	10.7452	10.7445	10.7444	10.7447	0.0004	0.0040
6	11.3692	11.3687	11.3688	11.3689	0.0003	0.0023
7	10.2094	10.2084	10.2094	10.2091	0.0006	0.0056
8	10.6246	10.6235	10.6239	10.6240	0.0006	0.0052

Tabla 3. Resultados de la tercera repetición para llevar vasos a MC, calentamiento por mechero de Bunsen

		medició	ero de ón de la lel vaso			
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	8.8975	8.8962	8.8963	8.8967	0.0007	0.0081
2	8.8702	8.8686	8.8691	8.8693	0.0008	0.0091
3	9.4089	9.4078	9.4082	9.4083	0.0006	0.0058
4	9.3106	9.3095	9.31	9.3100	0.0006	0.0059
5	8.5922	8.5910	8.5916	8.59160	0.0006	0.0070
6	10.4879	10.4865	10.4869	10.4871	0.0007	0.0069
7	10.6072	10.6063	10.6069	10.6068	0.0005	0.0042
8	10.6299	10.6289	10.6494	10.6361	0.0116	0.1086

Tabla 4. Determinación de masa de CuCl₂. Modo de calentamiento: mechero de Bunsen

Primera repetición

Vaso	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del vaso y CuCl ₂ * (g)	Diferencia del vaso con CuCl ₂ y vaso a MC (g)	Masa CuCl ₂ (g)
1	0.1014	8.9792	8.9792-8.896	0.0832
2	0.2056	9.0366	9.0366-8.8688	0.1678
3	0.2998	9.6428	9.6428-9.4082	0.2346
4	0.4031	9.6222	9.6222-9.3101	0.3121
5	0.5017	8.9782	8.9782-8.5917	0.3865
6	0.6064	10.9581	10.9581-10.4876	0.4705
7	0.7019	11.1577	11.1577-10.6070	0.5507
8	0.8036	11.2518	11.2518-10.6294	0.6224

Tabla 5. Determinación de masa de CuCl₂. Modo de calentamiento: mechero de Bunsen Segunda repetición

Vaso	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del vaso y CuCl ₂ * (g)	Diferencia del vaso con CuCl ₂ y vaso a MC (g)	Masa CuCl ₂ (g)
1	0.1056	9.1578	9.1578-9.0747	0.0831
2	0.2100	9.3525	9.3525-9.1903	0.1622
3	0.3182	9.0526	9.0526-8.8037	0.2489
4	0.4058	9.4534	9.4534-9.1348	0.3186
5	0.5104	11.1376	11.1376-10.7444	0.3932
6	0.6053	11.8363	11.8363-11.3688	0.4675
7	0.6984	10.7503	10.7503-10.2094	0.5409
8	0.8097	11.2939	11.2939-10.6239	0.6700

Tabla 6. Determinación de masa de CuCl₂. Modo de calentamiento: mechero de Bunsen

Tercera repetición

Vaso	Masa de CuCl ₂ ·2 H ₂ O (g)	Masa del vaso y CuCl ₂ * (g)	Diferencia del vaso con CuCl ₂ y vaso a MC (g)	Masa CuCl ₂ (g)
1	0.1091	8.9823	8.9823-8.8963	0.0860
2	0.2068	9.0312	9.0312-8.8691	0.1621
3	0.3044	9.6466	9.6466-9.4082	0.2384
4	0.4043	9.6302	9.6302-9.3100	0.3202
5	0.5174	8.9978	8.9978-8.5916	0.4062
6	0.6068	10.9643	10.9643-10.4869	0.4774
7	0.7055	11.1607	11.1607-10.6069	0.5538
8	0.8128	11.2787	11.2787-10.6494	0.6293

^{*} Los datos representan la segunda medición de MC del vaso y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de $\mathrm{H}_2\mathrm{O}$. Primera repetición

Diferencia de la masa de CuCl ₂ ·2 H ₂ O y CuCl ₂ (g)	Masa H ₂ O (g)
0.1014-0.0832	0.0182
0.2056-0.1678	0.0378
0.2998-0.2346	0.0652
0.4031-0.3121	0.091
0.5017-0.3865	0.1152
0.6064-0.4705	0.1359
0.7019-0.5507	0.1512
0.8036-0.6224	0.1812

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de CuCl ₂ ·2 H ₂ O y CuCl ₂ (g)	Masa H ₂ O (g)
0.1056-0.0831	0.0225
0.2100-0.1622	0.0478
0.3182-0.2489	0.0693
0.4058-0.3186	0.0872
0.5104-0.3932	0.1172
0.6053-0.4675	0.1378
0.6984-0.5409	0.1575
0.8097-0.6700	0.1397

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de CuCl ₂ ·2 H ₂ O y CuCl ₂ (g)	Masa H ₂ O (g)
0.1091-0.086	0.0231
0.2068-0.1621	0.0447
0.3044-0.2384	0.066
0.4043-0.3202	0.0841
0.5174-0.4062	0.1112
0.6068-0.4774	0.1294
0.7055-0.5538	0.1517
0.8128-0.6293	0.1835

Tabla 10. Promedio de MC de tres repeticiones

Vaso	Masa inicial vaso (g)	Medición 1	Medición 2	Promedi 0	DE	% DER
1	8.9568	8.9557	8.9557	8.9561	0.0006	0.0068
2	8.9769	8.9758	8.9761	8.9763	0.0005	0.0060
3	9.2070	9.2067	9.2067	9.2069	0.0003	0.0033
4	9.2521	9.2514	9.2513	9.2517	0.0003	0.0036
5	9.3097	9.3090	9.3092	9.3093	0.0004	0.0042
6	10.7817	10.7810	10.781	10.7812	0.0004	0.0036
7	10.4747	10.4739	10.4744	10.4743	0.0004	0.0039
8	10.6280	10.6272	10.6342	10.6298	0.0039	0.0362

Tabla 11. Moles de $CuCl_2$ y H_2O . Primera repetición.

Vaso	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0010
2	0.0012	0.0021
3	0.0017	0.0036
4	0.0023	0.0051
5	0.0029	0.0064
6	0.0035	0.0075
7	0.0041	0.0084
8	0.0046	0.0101

Tabla 12. Moles de $CuCl_2$ y H_2O . Segunda repetición.

Vaso	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0012
2	0.0012	0.0027
3	0.0019	0.0038
4	0.0024	0.0048
5	0.0029	0.0065
6	0.0035	0.0076
7	0.0040	0.0087
8	0.0050	0.0078

Tabla 13. Moles de CuCl₂ y H₂O. Tercera repetición.

Vaso	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0013
2	0.0012	0.0025
3	0.0018	0.0037
4	0.0024	0.0047
5	0.0030	0.0062
6	0.0036	0.0072
7	0.0041	0.0084
8	0.0047	0.0102

Tabla 14. Promedio de moles de H₂O y CuCl₂ de las tres repeticiones

Vaso	CuCl ₂ (mol)	H ₂ O (mol)
1	0.0006	0.0012
2	0.0012	0.0024
3	0.0018	0.0037
4	0.0024	0.0049
5	0.0029	0.0064
6	0.0035	0.0075
7	0.0041	0.0085
8	0.0048	0.0093

Gráfica 1. m.m.c para vasos calentamiento mediante mechero de Bunsen

Gráfico 1. m.m.c. de la determinación de moles de cloruro de cobre para los cuatro tipos de calentamiento por medio de crisoles

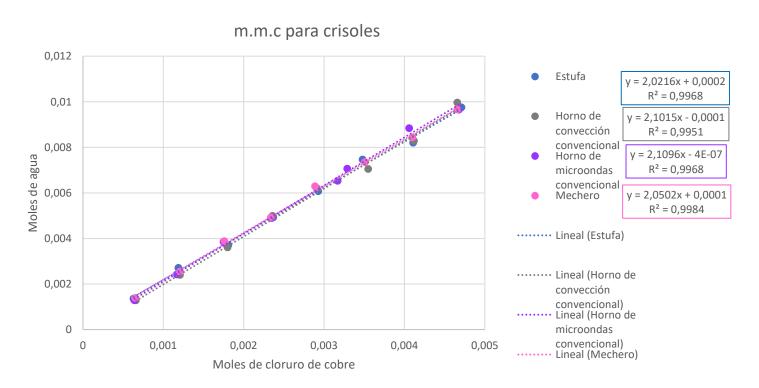
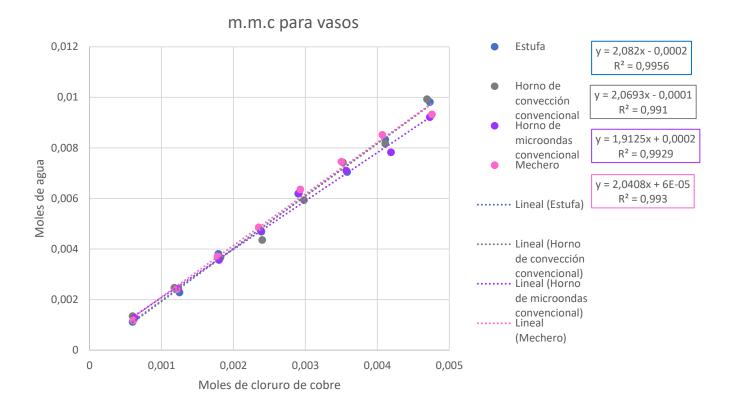



Gráfico 2. m.m.c. de la determinación de moles de cloruro de cobre para los cuatro tipos de calentamiento por medio de vasos

Anexo 5 cloruro de estroncio hexahidratado (SrCl₂·6H₂O)

Calentamiento por estufa de secado para llevar crisoles a MC.

Tabla 1. Resultados de la primera repetición para llevar crisoles a MC, calentamiento por estufa de secado.

		Número de medición de la masa del crisol (g)					
Crisol	Masa crisol inicial (g)	1	2	3	Promedio de las mediciones (g)	DE	%DER
1	10.3390	10.3366	10.3371	10.3372	10.3375	0.0011	0.0102
2	28.0522	28.0470	28.0477	28.0479	28.0487	0.0024	0.0084
3	24.9851	24.9812	24.9817	24.9815	24.9824	0.0018	0.0073
4	28.1625	28.1584	28.1589	28.1592	28.1598	0.0019	0.0066
5	28.4917	28.4885	28.4887	28.4889	28.4896	0.0015	0.0053
6	27.9000	27.8974	27.8986	27.8982	27.8986	0.0011	0.0039
7	31.9091	31.9070	31.9071	31.9069	31.9075	0.0011	0.0033
8	40.8813	40.8745	40.8768	40.8772	40.8775	0.0028	0.0069

Tabla 2. Resultados de la segunda repetición para llevar crisoles a MC, calentamiento por estufa de secado.

		Número de medición de la masa del crisol (g)					
Crisol	Masa crisol inicial (g)	1	2	3	Promedio de las mediciones (g)	DE	%DER
1	10.3374	10.3363	10.3365	10.3362	10.3366	0.0005	0.0053
2	28.0531	28.0503	28.0505	28.0497	28.0509	0.0015	0.0054
3	24.9845	24.9821	24.9822	24.9817	24.9826	0.0013	0.0051
4	28.1634	28.1619	28.1619	28.1611	28.1621	0.0010	0.0034
5	28.4923	28.4907	28.4902	28.4896	28.4907	0.0012	0.0041
6	27.8995	27.8988	27.8987	27.8982	27.899	0.0005	0.0019
7	40.8812	40.8781	40.8780	40.8784	40.8789	0.0015	0.0037

31.9074

31.9080

0.0008

0.0025

8

31.9092

31.9078

31.9077

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por estufa de secado.

		1 (022202	o de medic nasa del cri (g)	1011 00 100			
Crisol	Masa crisol inicial (g)	1	2	3	Promedio de las mediciones (g)	DE	%DER
1	10.3376	10.3369	10.3366	10.3363	10.3369	0.0006	0.0054
2	28.0516	28.0484	28.0486	28.0491	28.0494	0.0015	0.0053
3	24.9854	24.9815	24.9813	24.9817	24.9825	0.0020	0.0078
4	28.1626	28.1601	28.1598	28.1597	28.1606	0.0014	0.0049
5	28.4908	28.4899	28.4897	28.4903	28.4902	0.0005	0.0017
6	27.9004	27.8986	27.8984	27.8983	27.8989	0.0010	0.0036
7	40.8833	40.8797	40.8791	40.8790	40.8803	0.0020	0.0050
8	31.9094	31.9072	31.9078	31.9074	31.9080	0.0010	0.0031

Tabla 4. Determinación de masa de $SrCl_2$. Modo de calentamiento: estufa. Primera repetición

Crisol	Masa de SrCl ₂ ·6 H ₂ O (g)	Masa del crisol y SrCl ₂ * (g)	Diferencia del crisol con SrCl ₂ y crisol a MC (g)	Masa SrCl ₂ (g)
1	0.1028	10.3977	10.3977-10.3372	0.0605
2	0.2072	28.1736	28.1736-28.0479	0.1257
3	0.3017	25.1561	25.1561-24.9815	0.1746
4	0.4067	28.3962	28.3962-28.1592	0.2370
5	0.5098	28.7839	28.7839-28.4889	0.2950
6	0.6095	28.2533	28.2533-27.8982	0.3551
7	0.7050	32.3160	32.3160-31.9069	0.4091
8	0.8070	41.3461	41.3461-40.8772	0.4689

Tabla 5. Determinación de masa de SrCl₂. Modo de calentamiento: estufa de secado. Segunda repetición

Crisol	Masa de SrCl ₂ ·6 H ₂ O (g)	Masa del crisol y SrCl ₂ * (g)	Diferencia del crisol con SrCl ₂ y crisol a MC (g)	Masa SrCl ₂ (g)
1	0.1042	10.3977	10.3977-10.3362	0.0615
2	0.2032	28.1708	28.1708-28.0497	0.1211
3	0.3076	25.1621	25.1621-24.9817	0.1804
4	0.4018	28.4009	28.4009-28.1611	0.2398
5	0.5079	28.7939	28.7939-28.4896	0.3043
6	0.6025	28.2572	28.2572-27.8982	0.3590
7	0.7019	41.2953	41.2953-40.8784	0.4169
8	0.8048	32.3848	32.3848-31.9074	0.4774

Tabla 6. Determinación de masa de $SrCl_2$. Modo de calentamiento: estufa de secado. Tercera repetición

Crisol	Masa de SrCl ₂ ·6 H ₂ O (g)	Masa del crisol y SrCl ₂ * (g)	Diferencia del crisol con SrCl ₂ y crisol a MC (g)	Masa SrCl ₂ (g)
1	0.1130	10.4048	10.4048-10.3363	0.0685
2	0.2062	28.1748	28.1748-28.0491	0.1257
3	0.3035	25.1668	25.1668-24.9817	0.1851
4	0.4054	28.4014	28.4014-28.1597	0.2417
5	0.5077	28.7892	28.7892-28.4903	0.2989
6	0.6012	28.2561	28.2561-27.8983	0.3578
7	0.7077	41.2978	41.2978-40.8790	0.4188
8	0.8018	32.3801	32.3801-31.9074	0.4727

^{*} Los datos representan la segunda medición de MC del crisol y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de SrCl ₂ ·6 H ₂ O y SrCl ₂ (g)	Masa H ₂ O (g)
0.1028-0.0605	0.0423
0.2072-0.1257	0.0815
0.3017-0.1746	0.1271
0.4067-0.2370	0.1697
0.5098-0.2950	0.2148
0.6095-0.3551	0.2544
0.7050-0.4091	0.2959
0.8070-0.4689	0.3381

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de SrCl ₂ ·6 H ₂ O y SrCl ₂ (g)	Masa H ₂ O
0.1042-0.0615	0.0427
0.2032-0.1211	0.0821
0.3076-0.1804	0.1272
0.4018-0.2398	0.1620
0.5079-0.3043	0.2036
0.6025-0.359	0.2435
0.7019-0.4169	0.2850
0.8048-0.4774	0.3274

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de SrCl ₂ ·6 H ₂ O y SrCl ₂ (g)	Masa H ₂ O (g)
0.1130-0.0685	0.0445
0.2062-0.1257	0.0805
0.3035-0.1851	0.1184
0.4054-0.2417	0.1637
0.5077-0.2989	0.2088
0.6012-0.3578	0.2434
0.7077-0.4188	0.2889
0.8018-0.4727	0.3291

Tabla 10. Promedio de MC de tres repeticiones

Crisol	Masa inicial crisol (g)	Medición 1	Medición 2	Medición 3	Promedio	DE	% DER
1	10.3380	10.3366	10.3367	10.3366	10.3370	0.0007	0.0066
2	28.0523	28.0486	28.0489	28.0489	28.0497	0.0018	0.0062
3	24.9850	24.9816	24.9817	24.9816	24.9825	0.0017	0.0067
4	28.1628	28.1601	28.1602	28.1600	28.1608	0.0014	0.0048
5	28.4916	28.4897	28.4895	28.4896	28.4901	0.0010	0.0035
6	27.9000	27.8983	27.8986	27.8982	27.8988	0.0008	0.0029
7	37.8912	37.8883	37.8881	37.8881	37.8889	0.0015	0.0040
8	34.9000	34.8965	34.8974	34.8973	34.8978	0.0015	0.0043

Tabla 11. Moles de $SrCl_2$ y H_2O . Primera repetición.

Crisol	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0023
2	0.0008	0.0045
3	0.0011	0.0071
4	0.0015	0.0094
5	0.0019	0.0119
6	0.0022	0.0141
7	0.0026	0.0164
8	0.0030	0.0188

Tabla 12. Moles de $SrCl_2$ y H_2O . Segunda repetición.

Crisol	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0024
2	0.0008	0.0046
3	0.0011	0.0071
4	0.0015	0.0090
5	0.0019	0.0113
6	0.0023	0.0135
7	0.0026	0.0158
8	0.0030	0.0182

Tabla 13. Moles de $SrCl_2$ y H_2O . Tercera repetición.

Crisol	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0025
2	0.0008	0.0045
3	0.0012	0.0066
4	0.0015	0.0091
5	0.0019	0.0116
6	0.0023	0.0135
7	0.0026	0.0160
8	0.0030	0.0183

Tabla 14. Promedio de moles de H_2O y $SrCl_2$ de las tres repeticiones

Crisol	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0024
2	0.0008	0.0045
3	0.0011	0.0069
4	0.0015	0.0092
5	0.0019	0.0116
6	0.0023	0.0137
7	0.0026	0.0161
8	0.0030	0.0184

Gráfica 1. m.m.c para crisoles calentamiento mediante estufa

Calentamiento por horno de convección para llevar crisoles a MC.

Tabla 1. Resultados de la primera repetición para llevar crisoles a MC, calentamiento por horno de convección.

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.3382	10.337	10.3371	10.3374	0.0007	0.0064
2	28.0526	28.0512	28.0510	28.0516	0.0009	0.0031
3	24.9845	24.9843	24.9842	24.9843	0.0002	0.0006
4	28.1624	28.1612	28.1610	28.1615	0.0008	0.0027
5	28.4917	28.4902	28.4904	28.4908	0.0008	0.0028
6	27.9000	27.8991	27.8990	27.8994	0.0006	0.0020
7	40.8815	40.8785	40.8786	40.8795	0.0017	0.0042
8	31.9091	31.9093	31.9068	31.9084	0.0014	0.0043

Tabla 2. Resultados de la segunda repetición para llevar crisoles a MC, calentamiento por horno de convección.

Número de				
medición de la				
masa del crisol				

Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER	
1	10.3222	10.3224	10.3201	10.3216	0.0013	0.0123	
2	28.0088	28.0067	28.0052	28.0069	0.0018	0.0064	
3	24.9455	24.9433	24.9427	24.9438	0.0015	0.0059	
4	28.119	28.1171	28.1161	28.1174	0.0015	0.0052	
5	28.4479	28.4477	28.4461	28.4472	0.0010	0.0034	
6	27.8572	27.8563	27.8549	27.8561	0.0012	0.0041	
7	40.8179	40.8169	40.8156	40.8168	0.0012	0.0028	
8	31.8598	31.8584	31.8576	31.8586	0.0011	0.0035	

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por horno de convección.

Número de

			ón de la el crisol			
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	10.3380	10.3365	10.3369	10.3371	0.0008	0.0001
2	8.5795	8.5791	8.5790	8.5792	0.0003	0.0000
3	14.8544	14.8544	14.8548	14.8545	0.0002	0.0000
4	28.4923	28.4881	28.4897	28.4900	0.0021	0.0001
5	28.0529	28.0498	28.0511	28.0513	0.0016	0.0001
6	28.1636	28.1605	28.1607	28.1616	0.0017	0.0001
7	40.8815	40.8872	40.8803	40.8830	0.0037	0.0001
8	27.8999	27.8984	27.8986	27.8990	0.0008	0.0000

Tabla 4. Determinación de masa de $SrCl_2$. Modo de calentamiento: horno de convección Primera repetición

Crisol	Masa de SrCl2·6 H2O (g)	Masa del crisol y SrCl ₂ * (g)	Diferencia del crisol con SrCl ₂ y crisol a MC (g)	Masa SrCl ₂ (g)
1	0.1002	10.3962	10.3962-10.3371	0.0591
2	0.2035	28.1726	28.1726-28.0510	0.1216
3	0.3020	25.1692	25.1692-24.9842	0.1850
4	0.4014	28.3999	28.3999-28.1610	0.2389
5	0.5018	28.7907	28.7907-28.4904	0.3003
6	0.6020	28.2528	28.2528-27.8990	0.3538
7	0.7016	41.2926	41.2926-40.8786	0.4140
8	0.8055	32.3831	32.3831-31.9068	0.4763

Tabla 5. Determinación de masa de $SrCl_2$. Modo de calentamiento: horno de convección Segunda repetición

Crisol	Masa de SrCl2·6 H2O (g)	Masa del crisol y SrCl ₂ * (g)	Diferencia del crisol con SrCl ₂ y crisol a MC (g)	Masa SrCl ₂ (g)
1	0.1020	10.3789	10.3789-10.3201	0.0588
2	0.2115	28.1277	28.1277-28.0052	0.1225
3	0.3055	25.1195	25.1195-24.9427	0.1768
4	0.4032	28.3504	28.3504-28.1161	0.2343
5	0.5012	28.7366	28.7366-28.4461	0.2905
6	0.6006	28.2046	28.2046-27.8549	0.3497
7	0.7009	41.2215	41.2215-40.8156	0.4059
8	0.8136	32.3260	32.3260-31.8576	0.4684

Tabla 6. Determinación de masa de SrCl₂. Modo de calentamiento: horno de convección Tercera repetición

Crisol	Masa de SrCl2·6 H2O (g)	Masa del crisol y SrCl ₂ * (g)	Diferencia del crisol con SrCl ₂ y crisol a MC (g)	Masa SrCl ₂ (g)
1	0.1080	10.3996	10.3996-10.3369	0.0627
2	0.2038	8.6981	8.6981-8.5790	0.1191
3	0.3020	15.0369	15.0369-14.8548	0.1821
4	0.4017	28.7246	28.7246-28.4897	0.2349
5	0.5068	28.3469	28.3469-28.0511	0.2958
6	0.6103	28.5194	28.5194-28.1607	0.3587
7	0.7117	41.2913	41.2913-40.8803	0.4110
8	0.8003	28.3680	28.3680-27.8986	0.4694

^{*} Los datos representan la segunda medición de MC del crisol y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Primera repetición

Diferencia de la masa de SrCl ₂ · 6H ₂ O y SrCl ₂ (g)	Masa H ₂ O (g)
0.1002-0.0591	0.0411
0.2035-0.1216	0.0819
0.3020-0.1850	0.1170
0.4014-0.2389	0.1625
0.5018-0.3003	0.2015
0.6020-0.3538	0.2482
0.7016-0.4140	0.2876
0.8055-0.4763	0.3292

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de SrCl ₂ · 6H ₂ O y SrCl ₂ (g)	Masa H ₂ O (g)
0.1020-0.0588	0.0432
0.2115-0.1225	0.0890
0.3055-0.1768	0.1287
0.4032-0.2343	0.1689
0.5012-0.2905	0.2107
0.6006-0.3497	0.2509
0.7009-0.4059	0.2950
0.8136-0.4684	0.3452

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de SrCl ₂ · 6H ₂ O y SrCl ₂ (g)	Masa H ₂ O (g)
0.1080-0.0627	0.0453
0.2038-0.1191	0.0847
0.3020-0.1821	0.1199
0.4017-0.2349	0.1668
0.5068-0.2958	0.2110
0.6103-0.3587	0.2516
0.7117-0.4110	0.3007
0.8003-0.4694	0.3309

Tabla 10. Promedio de MC de tres repeticiones

Crisol	Masa inicial crisol (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	10.3328	10.3320	10.3314	10.3320	0.0007	0.0070
2	21.54696	21.5457	21.5451	21.5459	0.0010	0.0045
3	21.5948	21.5940	21.5939	21.5942	0.0005	0.0023
4	28.2579	28.2555	28.2556	28.2563	0.0014	0.0048
5	28.33083	28.3292	28.3292	28.3298	0.0009	0.0033
6	27.9736	27.9720	27.9715	27.9724	0.0011	0.0039
7	40.8603	40.8609	40.8582	40.8598	0.0014	0.0034
8	30.55626	30.5554	30.5543	30.5553	0.0010	0.0031

Tabla 11. Moles de $SrCl_2$ y H_2O . Primera repetición.

Crisol	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0023
2	0.0008	0.0045
3	0.0012	0.0065
4	0.0015	0.0090
5	0.0019	0.0112
6	0.0022	0.0138
7	0.0026	0.0160
8	0.0030	0.0183

Tabla 12. Moles de $SrCl_2$ y H_2O . Segunda repetición.

Crisol	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0024
2	0.0008	0.0049
3	0.0011	0.0071
4	0.0015	0.0094
5	0.0018	0.0117
6	0.0022	0.0139
7	0.0026	0.0164
8	0.0030	0.0192

Tabla 13. Moles de SrCl₂ y H₂O. Tercera repetición.

Crisol	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0025
2	0.0008	0.0047
3	0.0012	0.0067
4	0.0015	0.0093
5	0.0019	0.0117
6	0.0023	0.0140
7	0.0026	0.0167
8	0.0030	0.0184

Tabla 14. Promedio de moles de H₂O y CuCl₂ de las tres repeticiones

Crisol	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0024
2	0.0008	0.0047
3	0.0011	0.0068
4	0.0015	0.0092
5	0.0019	0.0115
6	0.0022	0.0139
7	0.0026	0.0163
8	0.0030	0.0186

Gráfica 1. m.m.c para crisoles calentamiento mediante IR

Calentamiento por horno de microondas para llevar crisoles a MC

Tabla 1. Resultados de la primera repetición para llevar crisoles a MC, calentamiento por horno de microondas.

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.5770	24.5738	24.5754	24.5754	0.0016	0.0065
2	26.1053	26.1025	26.1004	26.1027	0.0025	0.0094
3	24.8685	24.8655	24.8670	24.8670	0.0015	0.0060
4	28.4912	28.4908	28.4897	28.49056	0.0008	0.0027
5	28.0528	28.0501	28.0526	28.0518	0.0015	0.0053
6	27.1629	28.1609	28.1615	27.8284	0.5764	2.0711
7	24.5263	24.5250	24.5254	24.5256	0.0007	0.0027
8	27.9009	27.8985	27.8988	27.8994	0.0013	0.0047

Tabla 2. Resultados de la segunda repetición para llevar crisoles a MC, calentamiento por horno de microondas.

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.5768	24.5735	24.5736	24.5746	0.0019	0.0076
2	26.1053	26.102	26.1024	26.1032	0.0018	0.0069
3	24.8673	24.8655	24.8656	24.8661	0.0010	0.0041
4	28.4918	28.4892	28.4904	28.4905	0.0013	0.0046
5	28.0524	28.052	28.0523	28.0522	0.0002	0.0007
6	28.1627	28.1608	28.1606	28.1614	0.0012	0.0041
7	24.5267	24.5254	24.5251	24.5257	0.0009	0.0035
8	27.9006	27.8986	27.8993	27.8995	0.0010	0.0036

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por horno de microondas.

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.5760	24.5731	24.573	24.5740	0.0017	0.0001
2	26.1048	26.1021	26.1024	26.1031	0.0015	0.0001
3	24.8676	24.8654	24.8657	24.8662	0.0012	0.0000
4	28.4915	28.4896	28.4899	28.4903	0.0010	0.0000
5	28.0525	28.0504	28.0506	28.0512	0.0012	0.0000
6	28.1628	28.1613	28.1615	28.1619	0.0008	0.0000
7	27.9007	27.8996	27.8997	27.9000	0.0006	0.0000
8	24.5254	24.5244	24.5248	24.5249	0.0005	0.0000

Tabla 4. Determinación de masa de SrCl₂. Modo de calentamiento: horno de microondas Primera repetición

Crisol	Masa de SrCl ₂ ·6 H ₂ O (g)	Masa del crisol y SrCl ₂ * (g)	Diferencia del crisol con SrCl ₂ y crisol a MC (g)	Masa SrCl ₂ (g)
1	0.1089	24.6392	24.6392-24.5754	0.0638
2	0.2078	26.2245	26.2245-26.1004	0.1241
3	0.3120	25.0494	25.0494-24.8670	0.1824
4	0.4009	28.7266	28.7266-28.4897	0.2369
5	0.5057	28.3486	28.3486-28.0526	0.2960
6	0.6097	28.5213	28.5213-28.1615	0.3598
7	0.7089	24.9419	24.9419-24.5254	0.4165
8	0.8031	28.3726	28.3726-27.8988	0.4738

Tabla 5. Determinación de masa de $SrCl_2$. Modo de calentamiento: horno de microondas Segunda repetición

Crisol	Masa de SrCl ₂ ·6 H ₂ O (g)	Masa del crisol y SrCl ₂ * (g)	Diferencia del crisol con SrCl ₂ y crisol a MC (g)	Masa SrCl ₂ (g)
1	0.1072	24.6385	24.6385-24.5736	0.0649
2	0.2042	26.2248	26.2248-26.1024	0.1224
3	0.3084	25.0490	25.0490-24.8656	0.1834
4	0.4075	28.7323	28.7323-28.4904	0.2419
5	0.5042	28.3483	28.3483-28.0523	0.2960
6	0.6064	28.5196	28.5196-28.1606	0.3590
7	0.7030	24.9415	24.9415-24.5251	0.4164
8	0.8102	28.3785	28.3785-27.8993	0.4792

Tabla 6. Determinación de masa de SrCl₂. Modo de calentamiento: horno de microondas

Tercera repetición

Crisol	Masa de SrCl ₂ ·6 H ₂ O (g)	Masa del crisol y SrCl ₂ * (g)	Diferencia del crisol con SrCl ₂ y crisol a MC (g)	Masa SrCl ₂ (g)
1	0.1040	24.6333	24.6333-24.5730	0.0603
2	0.2194	26.2300	26.2300-26.1024	0.1276
3	0.3104	25.0469	25.0469-24.8657	0.1812
4	0.4051	28.7272	28.7272-28.4899	0.2373
5	0.5015	28.3466	28.3466-28.0506	0.2960
6	0.6125	28.5318	28.5318-28.1615	0.3703
7	0.7079	28.3219	28.3219-27.8997	0.4222
8	0.8068	24.9949	24.9949-24.5248	0.4701

^{*} Los datos representan la segunda medición de MC del crisol y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de SrCl ₂ ·6 H ₂ O y SrCl ₂ (g)	Masa H ₂ O (g)
0.1089-0.0638	0.0451
0.2078-0.1241	0.0837
0.3120-0.1824	0.1296
0.4009-0.2369	0.1640
0.5057-0.2960	0.2097
0.6097-0.3598	0.2499
0.7089-0.4165	0.2924
0.8031-0.4738	0.3293

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de SrCl ₂ ·6 H ₂ O y SrCl ₂ (g)	Masa H ₂ O (g)
0.1072-0.0649	0.0423
0.2042-0.1224	0.0818
0.3084-0.1834	0.1250
0.4075-0.2419	0.1656
0.5042-0.2960	0.2082
0.6064-0.3590	0.2474
0.7030-0.4164	0.2866
0.8102-0.4792	0.3310

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de SrCl ₂ ·6 H ₂ O y SrCl ₂ (g)	Masa H ₂ O (g)
0.1040-0.0603	0.0437
0.2194-0.1276	0.0918
0.3104-0.1812	0.1292
0.4051-0.2373	0.1678
0.5015-0.2960	0.2055
0.6125-0.3703	0.2422
0.7079-0.4222	0.2857
0.8068-0.4701	0.3367

Tabla 10. Promedio de MC de tres repeticiones

Crisol	Masa inicial crisol (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	24.5766	24.5739	24.5740	24.5748	0.0015	0.0062
2	26.1051	26.1022	26.1017	26.1030	0.0018	0.0070
3	24.8678	24.8655	24.8661	24.8665	0.0012	0.0048
4	28.4915	28.4899	28.4900	28.4905	0.0009	0.0032
5	28.0526	28.0508	28.0518	28.0517	0.0009	0.0031
6	27.8295	28.1610	28.1612	28.0506	0.1915	0.6826
7	25.6512	25.6500	25.6501	25.6504	0.0007	0.0027
8	26.7756	26.7738	26.7743	26.7746	0.0009	0.0035

Tabla 11. Moles de $SrCl_2$ y H_2O . Primera repetición.

Crisol	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0025
2	0.0008	0.0046
3	0.0012	0.0072
4	0.0015	0.0091
5	0.0019	0.0116
6	0.0023	0.0139
7	0.0026	0.0162
8	0.0030	0.0183

Tabla 12. Moles de SrCl₂ y H₂O. Segunda repetición.

Crisol	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0023
2	0.0008	0.0045
3	0.0012	0.0069
4	0.0015	0.0092
5	0.0019	0.0116
6	0.0023	0.0137
7	0.0026	0.0159
8	0.0030	0.0184

Tabla 13. Moles de SrCl₂ y H₂O. Tercera repetición.

Crisol	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0024
2	0.0008	0.0051
3	0.0011	0.0072
4	0.0015	0.0093
5	0.0019	0.0114
6	0.0023	0.0134
7	0.0027	0.0159
8	0.0030	0.0187

Tabla 14. Promedio de moles de H₂O y SrCl₂ de las tres repeticiones

Crisol	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0024
2	0.0008	0.0048
3	0.0011	0.0071
4	0.0015	0.0092
5	0.0019	0.0115
6	0.0023	0.0137
7	0.0026	0.0160
8	0.0030	0.0184

Gráfica 1. m.m.c para crisoles calentamiento mediante horno de microondas

Calentamiento por mechero de Bunsen para llevar crisoles a MC

Tabla 1. Resultados de la primera repetición para llevar crisoles a MC, calentamiento por mechero de Bunsen

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.5770	24.5774	24.5779	24.5774	0.0005	0.0018
2	26.1025	26.1004	26.1008	26.1012	0.0011	0.0043
3	14.8555	14.8540	14.8544	14.8546	0.0008	0.0052
4	28.4921	28.4892	28.4892	28.4902	0.0017	0.0059
5	28.0525	28.0499	28.0499	28.0508	0.0015	0.0053
6	28.1635	28.1590	28.1607	28.1611	0.0023	0.0081
7	40.8811	40.8789	40.8784	40.8795	0.0014	0.0035
8	27.8998	27.8991	27.8994	27.8994	0.0004	0.0013

Tabla 2. Resultados de la segunda repetición para llevar crisoles a MC, calentamiento por mechero de Bunsen

		Número de medición de la masa del crisol				
Crisol	Masa crisol inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	24.5775	24.5743	24.5753	24.5757	0.0016	0.0066
2	26.1062	26.1022	26.1020	26.1035	0.0024	0.0090
3	24.8686	24.8652	24.8658	24.8665	0.0018	0.0073
4	28.4920	28.4890	28.4898	28.4903	0.0016	0.0054
5	28.0523	28.0499	28.0510	28.0511	0.0012	0.0043
6	28.1626	28.1610	28.1611	28.1616	0.0009	0.0032
7	24.5276	24.5254	24.5255	24.5262	0.0012	0.0051
8	27.9005	27.8989	27.8989	27.8994	0.0009	0.0033

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por mechero de Bunsen

		medició	ero de ón de la el crisol			
Crisol	Masa crisol inicial (g)	1	2	Promedio de las medicion es (g)	DE	%DER
1	24.5759	24.5741	24.5740	24.5747	0.0011	0.0000
2	26.1055	26.1027	26.1023	26.1035	0.0017	0.0001
3	24.8675	24.8664	24.8662	24.8667	0.0007	0.0000
4	28.4922	28.4892	28.4895	28.4903	0.0017	0.0001
5	28.0525	28.0505	28.0504	28.0511	0.0012	0.0000
6	28.1626	28.1607	28.1606	28.1613	0.0011	0.0000
7	27.9007	27.8986	27.8988	27.8994	0.0012	0.0000
8	24.5266	24.5249	24.5252	24.5256	0.0009	0.0000

Tabla 4. Determinación de masa de SrCl₂. Modo de calentamiento: mechero de Bunsen

Primera repetición

Crisol	Masa de SrCl ₂ ·6 H ₂ O (g)	Masa del crisol y SrCl ₂ * (g)	Diferencia del crisol con SrCl ₂ y crisol a MC (g)	Masa SrCl ₂ (g)
1	0.1029	24.6394	24.6394-24.5779	0.0615
2	0.2034	26.2251	26.2251-26.1008	0.1243
3	0.3048	15.0369	15.0369-14.8544	0.1825
4	0.4104	28.7323	28.7323-28.4892	0.2431
5	0.5031	28.3482	28.3482-28.0499	0.2983
6	0.6067	28.5206	28.5206-28.1607	0.3599
7	0.7005	41.2934	41.2934-40.8784	0.415
8	0.8055	28.3748	28.3748-27.8994	0.4754

Tabla 5. Determinación de masa de $SrCl_2$. Modo de calentamiento: mechero de Bunsen Segunda repetición

Crisol	Masa de SrCl ₂ ·6 H ₂ O (g)	Masa del crisol y SrCl ₂ * (g)	Diferencia del crisol con SrCl ₂ y crisol a MC (g)	Masa SrCl ₂ (g)
1	0.1262	24.6501	24.6501-24.5753	0.0748
2	0.2039	26.2253	26.2253-26.1020	0.1233
3	0.3025	25.0462	25.0462-24.8658	0.1804
4	0.4034	28.7282	28.7282-28.4898	0.2384
5	0.5017	28.3478	28.3478-28.0510	0.2968
6	0.6079	28.5219	28.5219-28.1611	0.3608
7	0.7190	24.9520	24.9520-24.5255	0.4265
8	0.8097	28.3801	28.3801-27.8989	0.4812

Tabla 6. Determinación de masa de SrCl₂. Modo de calentamiento: horno de microondas

Tercera repetición

Crisol	Masa de SrCl ₂ ·6 H ₂ O (g)	Masa del crisol y SrCl ₂ * (g)	Diferencia del crisol con SrCl ₂ y crisol a MC (g)	Masa SrCl ₂ (g)
1	0.1120	24.6398	24.6398-24.5740	0.0658
2	0.2208	26.2329	26.2329-26.1023	0.1306
3	0.3016	25.0484	25.0484-24.8662	0.1822
4	0.4048	28.7262	28.7262-28.4895	0.2367
5	0.5027	28.3489	28.3489-28.0504	0.2985
6	0.6066	28.5190	28.5190-28.1606	0.3584
7	0.7015	28.3152	28.3152-27.8988	0.4164
8	0.8095	25.0018	25.0018-24.5252	0.4766

^{*} Los datos representan la segunda medición de MC del crisol y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de SrCl ₂ ·6H ₂ O y SrCl ₂ (g)	Masa H ₂ O (g)
0.1029-0.0615	0.0414
0.2034-0.1243	0.0791
0.3048-0.1825	0.1223
0.4104-0.2431	0.1673
0.5031-0.2983	0.2048
0.6067-0.3599	0.2468
0.7005-0.4150	0.2855
0.8055-0.4754	0.3301

Tabla 8. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Segunda repetición

Diferencia de la masa de SrCl ₂ ·6H ₂ O y SrCl ₂ (g)	Masa H ₂ O (g)
0.1262-0.0748	0.0514
0.2039-0.1233	0.0806
0.3025-0.1804	0.1221
0.4034-0.2384	0.165
0.5017-0.2968	0.2049
0.6079-0.3608	0.2471
0.7190-0.4265	0.2925
0.8097-0.4812	0.3285

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de SrCl ₂ ·6H ₂ O y SrCl ₂ (g)	Masa H ₂ O (g)
0.1120-0.0658	0.0462
0.2208-0.1306	0.0902
0.3016-0.1822	0.1194
0.4048-0.2367	0.1681
0.5027-0.2985	0.2042
0.6066-0.3584	0.2482
0.7015-0.4164	0.2851
0.8095-0.4766	0.3329

Tabla 10. Promedio de MC de tres repeticiones

Crisol	Masa inicial crisol (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	24.5768	24.5753	24.5757	24.5759	0.0008	0.0032
2	26.1047	26.1018	26.1017	26.1027	0.0017	0.0066
3	21.5305	21.5285	21.5288	21.5293	0.0011	0.0050
4	28.4921	28.4891	28.4895	28.4902	0.0016	0.0057
5	28.0524	28.0501	28.0504	28.0510	0.0013	0.0045
6	28.1629	28.1602	28.1608	28.1613	0.0014	0.0050
7	31.1031	31.1010	31.1009	31.1017	0.0013	0.0041
8	26.7756	26.7743	26.7745	26.7748	0.0007	0.0027

Tabla 11. Moles de $SrCl_2$ y H_2O . Primera repetición.

Crisol	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0023
2	0.0008	0.0044
3	0.0012	0.0068
4	0.0015	0.0093
5	0.0019	0.0114
6	0.0023	0.0137
7	0.0026	0.0158
8	0.0030	0.0183

Tabla 12. Moles de $SrCl_2$ y H_2O . Segunda repetición.

Crisol	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0005	0.0029
2	0.0008	0.0045
3	0.0011	0.0068
4	0.0015	0.0092
5	0.0019	0.0114
6	0.0023	0.0137
7	0.0027	0.0162
8	0.0030	0.0182

Tabla 13. Moles de $SrCl_2$ y H_2O . Tercera repetición.

Crisol	SrCl ₂ H ₂ O (mol) (mol)	
1	0.0004	0.0026
2	0.0008	0.0050
3	0.0012	0.0066
4	0.0015	0.0093
5	0.0019	0.0113
6	0.0023	0.0138
7	0.0026	0.0158
8	0.0030	0.0185

Tabla 14. Promedio de moles de H_2O y $SrCl_2$ de las tres repeticiones

Crisol	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0026
2	0.0008	0.0046
3	0.0011	0.0067
4	0.0015	0.0093
5	0.0019	0.0114
6	0.0023	0.0137
7	0.0026	0.0160
8	0.0030	0.0183

Gráfica 1. m.m.c para crisoles calentamiento mediante mechero de Bunsen

Calentamiento por estufa de secado para llevar vasos a MC.

Tabla 1. Resultados de la primera repetición para llevar vasos a MC, calentamiento por estufa de secado.

		Número de medición de la masa del vaso (g)				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	9.0752	9.0744	9.0745	9.0747	0.0004	0.0047
2	8.8694	8.8686	8.8691	8.8690	0.0004	0.0045
3	9.4089	9.4084	9.4086	9.4086	0.0003	0.0027
4	10.6223	10.6217	10.6219	10.6220	0.0003	0.0028
5	10.7426	10.7418	10.7419	10.7421	0.0004	0.0040
6	11.3693	11.3685	11.3683	11.3687	0.0005	0.0046
7	10.6417	10.6411	10.6411	10.6413	0.0003	0.0032
8	10.2101	10.2093	10.2094	10.2096	0.0004	0.0042

Tabla 2. Resultados de la segunda repetición para llevar vasos a MC, calentamiento por estufa de secado.

Número de medición de la masa del vaso
(g)

-						_
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	9.0753	9.0746	9.0745	9.0748	0.0004	0.0047
2	8.8697	8.8697	8.8694	8.8696	0.0002	0.0019
3	9.4096	9.4088	9.4085	9.40896	0.0006	0.0060
4	10.6225	10.6214	10.6219	10.6219	0.0006	0.0052
5	10.7425	10.7424	10.7223	10.7357	0.0116	0.1083
6	11.3681	11.3692	11.3686	11.3686	0.0006	0.0048
7	10.6075	10.6074	10.6069	10.6073	0.0003	0.0030
8	10.2095	10.2084	10.2087	10.2089	0.0006	0.0055

Tabla 3. Resultados de la tercera repetición para llevar vasos a MC, calentamiento por estufa de secado.

Número de
medición de la
masa del vaso
(g)

		(8)				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	8.8962	8.8962	8.8958	8.8961	0.0002	0.0026
2	9.1775	9.1769	9.1763	9.1769	0.0006	0.0065
3	8.8048	8.8032	8.8037	8.8039	0.0008	0.0092
4	9.3107	9.3091	9.3096	9.3098	0.0008	0.0087
5	8.5929	8.5924	8.5921	8.5925	0.0004	0.0047
6	10.9369	10.9362	10.9364	10.9365	0.0004	0.0033
7	10.4857	10.4857	10.4853	10.4856	0.0002	0.0022
8	10.6305	10.6300	10.6299	10.6301	0.0003	0.0030

Tabla 4. Determinación de masa de $SrCl_2$. Modo de calentamiento: estufa. Primera repetición

Vaso	Masa de SrCl ₂ ·6 H ₂ O (g)	Masa del vaso y SrCl ₂ *	Diferencia del vaso con SrCl ₂ y vaso a MC (g)	Masa SrCl ₂ (g)
1	0.1005	9.1331	9.1331-9.0745	0.0586
2	0.2111	8.9935	8.9935-8.8691	0.1244
3	0.3084	9.5906	9.5906-9.4086	0.182
4	0.4097	10.8631	10.8631-10.6219	0.2412
5	0.5024	11.0403	11.0403-10.7419	0.2984
6	0.604	11.7245	11.7245-11.3683	0.3562
7	0.7135	11.0644	11.0644-10.6411	0.4233
8	0.8300	10.6999	10.6999-10.2094	0.4905

Tabla 5. Determinación de masa de SrCl₂. Modo de calentamiento: estufa de secado. Segunda repetición

Vaso	Masa de SrCl ₂ ·6 H ₂ O (g)	Masa del vaso y SrCl ₂ * (g)	Diferencia del vaso con SrCl ₂ y vaso a MC (g)	Masa SrCl ₂ (g)
1	0.1014	9.1360	9.1360-9.0745	0.0615
2	0.2086	8.9941	8.9941-8.8694	0.1247
3	0.3021	9.5902	9.5902-9.4085	0.1817
4	0.4138	10.8696	10.8696-10.6219	0.2477
5	0.5106	11.0301	11.0301-10.7223	0.3078
6	0.6010	11.7317	11.7317-11.3686	0.3631
7	0.7053	11.0317	11.0317-10.6069	0.4248
8	0.8067	10.6966	10.6966-10.2087	0.4879

Tabla 6. Determinación de masa de $SrCl_2$. Modo de calentamiento: estufa de secado. Tercera repetición

Vaso	Masa de SrCl ₂ ·6 H ₂ O (g)	Masa del vaso y SrCl ₂ * (g)	Diferencia del vaso con SrCl ₂ y vaso a MC (g)	Masa SrCl ₂ (g)
1	0.1055	8.9598	8.9598-8.8958	0.0640
2	0.2051	9.2972	9.2972-9.1763	0.1209
3	0.3005	8.9807	8.9807-8.8037	0.1770
4	0.4048	9.5500	9.5500-9.3096	0.2404
5	0.5049	8.89814	8.89814-8.5921	0.3060
6	0.6003	11.2911	11.2911-10.9364	0.3547
7	0.7050	10.8995	10.8995-10.4853	0.4142
8	0.8041	11.1063	11.1063-10.6299	0.4764

^{*} Los datos representan la segunda medición de MC del vaso y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de SrCl ₂ ·6 H ₂ O y srCl ₂ (g)	Masa H ₂ O
0.1005-0.0586	0.0419
0.2111-0.1244	0.0867
0.3084-0.1820	0.1264
0.4097-0.2412	0.1685
0.5024-0.2984	0.2040
0.6040-0.3562	0.2478
0.7135-0.4233	0.2902
0.8300-0.4905	0.3395

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de SrCl ₂ ·6 H ₂ O y srCl ₂ (g)	Masa H ₂ O
0.1014-0.0615	0.0399
0.2086-0.1247	0.0839
0.3021-0.1817	0.1204
0.4138-0.2477	0.1661
0.5106-0.3078	0.2028
0.6010-0.3631	0.2379
0.7053-0.4248	0.2805
0.8067-0.4879	0.3188

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de SrCl ₂ ·6 H ₂ O y srCl ₂ (g)	Masa H ₂ O (g)
0.1055-0.0640	0.0415
0.2051-0.1209	0.0842
0.3005-0.1770	0.1235
0.4048-0.2404	0.1644
0.5049-0.3060	0.19886
0.6003-0.3547	0.2456
0.7050-0.4142	0.2908
0.8041-0.4764	0.3277

Tabla 10. Promedio de MC de tres repeticiones

Vaso	Masa inicial vaso (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	9.0156	9.0151	9.0149	9.0152	0.0003	0.0037
2	8.9722	8.9717	8.9716	8.9718	0.0003	0.0035
3	9.2078	9.2068	9.2069	9.2072	0.0005	0.0056
4	10.1852	10.1841	10.1844	10.1846	0.0006	0.0054
5	10.0260	10.0255	10.0188	10.0234	0.0041	0.0404
6	11.2248	11.2246	11.2244	11.2246	0.0002	0.0014
7	10.5783	10.5781	10.5778	10.5780	0.0003	0.0026
8	10.3500	10.3492	10.3493	10.3495	0.0004	0.0042

Tabla 11. Moles de $SrCl_2$ y H_2O . Primera repetición.

Vaso	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0023
2	0.0008	0.0048
3	0.0012	0.0070
4	0.0015	0.0094
5	0.0019	0.0113
6	0.0023	0.0138
7	0.0027	0.0161
8	0.0031	0.0188

Tabla 12. Moles de $SrCl_2$ y H_2O . Segunda repetición.

Vaso	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0022
2	0.0008	0.0047
3	0.0011	0.0067
4	0.0016	0.0092
5	0.0019	0.0113
6	0.0023	0.0132
7	0.0027	0.0156
8	0.0031	0.0177

Tabla 13. Moles de SrCl₂ y H₂O. Tercera repetición.

Vaso	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0023
2	0.0008	0.0047
3	0.0011	0.0069
4	0.0015	0.0091
5	0.0019	0.0110
6	0.0022	0.0136
7	0.0026	0.0161
8	0.0030	0.0182

Tabla 13. Promedio de moles de H_2O y $SrCl_2$ de las tres repeticiones

Vaso	Moles SrCl ₂	Moles H ₂ O
1	0.00038	0.0023
2	0.0008	0.0047
3	0.0011	0.0068
4	0.0015	0.0092
5	0.0019	0.0112
6	0.0023	0.0135
7	0.0027	0.0159
8	0.0031	0.0182

Gráfica 1. m.m.c para vasos calentamiento mediante estufa

Calentamiento por horno de convección para llevar vasos a MC

Tabla 1. Resultados de la primera repetición para llevar vasos a MC, calentamiento por horno de convección.

		Número de medición de la masa del vaso				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	8.8964	8.8956	8.8966	8.8962	0.0005	0.0056
2	9.1771	9.1768	9.1768	9.1769	0.0001	0.0010
3	8.8034	8.8026	8.8031	8.8030	0.0004	0.0045
4	9.3102	9.3103	9.3104	9.3103	0.0000	0.0000
5	8.5916	8.5916	8.5919	8.5917	0.0001	0.0011
6	10.9368	10.9368	10.9361	10.9365	0.0004	0.0036
7	10.4858	10.485	10.4852	10.4853	0.0004	0.0038
8	10.6304	10.6295	10.6305	10.6301	0.0006	0.0052

Tabla 2. Resultados de la segunda repetición para llevar vasos a MC, calentamiento por horno de convección.

Número de

		medición de la masa del vaso				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	9.0755	9.0748	9.0752	9.0751	0.0003	0.0033
2	8.8697	8.8691	8.8699	8.8695	0.0004	0.0045
3	9.4084	9.4086	9.4083	9.4084	0.0001	0.0010
4	10.6219	10.6213	10.6219	10.6217	0.0003	0.0028
5	10.7423	10.7417	10.742	10.7420	0.0003	0.0027
6	11.3684	11.3684	11.3671	11.3679	0.0007	0.0061
7	10.6076	10.6073	10.6075	10.6074	0.0001	0.0009
8	10.2097	10.2092	10.209	10.2093	0.0003	0.0029

Tabla 3. Resultados de la tercera repetición para llevar crisoles a MC, calentamiento por horno de convección.

		Número de medición de la masa del vaso				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	8.8953	8.8945	8.8941	8.8946	0.0006	0.0067
2	9.1779	9.1764	9.1765	9.1769	0.0008	0.0087
3	8.8029	8.8027	8.8032	8.8029	0.0002	0.0022
4	9.3114	9.3109	9.3108	9.3110	0.0003	0.0032
5	8.5928	8.5909	8.5911	8.5916	0.0010	0.0116
6	10.9364	10.9364	10.9371	10.9366	0.0004	0.0036
7	10.4864	10.4844	10.4853	10.4853	0.0010	0.0095

10.6296

0.0000

10.6297

0.0000

10.6298

8

10.6297

Tabla 4. Determinación de masa de $SrCl_2$. Modo de calentamiento: horno de convección Primera repetición

Vaso	Masa de SrCl ₂ ·6 H ₂ O (g)	Masa del vaso y SrCl ₂ * (g)	Diferencia del vaso con SrCl ₂ y vaso a MC (g)	Masa SrCl ₂ (g)
1	0.1074	8.9605	8.9605-8.8966	0.0639
2	0.2006	9.2965	9.2965-9.1768	0.1197
3	0.3045	8.9850	8.9850-8.8031	0.1819
4	0.4078	9.5543	9.5543-9.3104	0.2439
5	0.5021	8.8921	8.8921-8.5919	0.3002
6	0.6053	11.2979	11.2979-10.9361	0.3618
7	0.7044	10.9047	10.9047-10.4852	0.4195
8	0.8046	11.1110	11.1110-10.6309	0.4801

Tabla 5. Determinación de masa de $SrCl_2$. Modo de calentamiento: horno de convección Segunda repetición

Vaso	Masa de SrCl ₂ ·6 H ₂ O (g)	Masa del vaso y SrCl ₂ * (g)	Diferencia del vaso con SrCl ₂ y vaso a MC (g)	Masa SrCl ₂ (g)
1	0.1078	9.1389	9.1389-9.0752	0.0637
2	0.2070	8.9930	8.9930-8.8699	0.1231
3	0.3082	9.5909	9.5909-9.4083	0.1826
4	0.4065	10.8637	10.8637-10.6219	0.2418
5	0.5087	11.0472	11.0472-10.7420	0.3052
6	0.6009	11.7259	11.7259-11.3671	0.3588
7	0.7101	11.0335	11.0335-10.6075	0.426
8	0.8024	10.6902	10.6902-10.2090	0.4812

Tabla 6. Determinación de masa de $SrCl_2$. Modo de calentamiento: horno de convección Tercera repetición

Vaso	Masa de SrCl ₂ ·6 H ₂ O (g)	Masa del vaso y SrCl ₂ * (g)	Diferencia del vaso con SrCl ₂ y vaso a MC (g)	Masa SrCl ₂ (g)
1	0.1033	8.9574	8.9574-8.8941	0.0633
2	0.2006	9.2995	9.2995-9.1765	0.1230
3	0.3060	8.9841	8.9841-8.8032	0.1809
4	0.4070	9.5538	9.5538-9.3108	0.2430
5	0.5024	8.8897	8.8897-8.5911	0.2986
6	0.6109	11.3008	11.3008-10.9371	0.3637
7	0.7005	10.8997	10.8997-10.4853	0.4144
8	0.8036	11.1044	11.1044-10.6296	0.4748

^{*} Los datos representan la segunda medición de MC del vaso y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Primera repetición

Diferencia de la masa de SrCl ₂ ·6 H ₂ O y SrCl ₂ (g)	Masa H ₂ O (g)
0.1074-0.0639	0.0435
0.2006-0.1197	0.0809
0.3045-0.1819	0.1226
0.4078-0.2439	0.1639
0.5021-0.3002	0.2019
0.6053-0.3618	0.2435
0.7044-0.4195	0.2849
0.8046-0.4801	0.3245

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de SrCl ₂ ·6 H ₂ O y SrCl ₂ (g)	Masa H ₂ O
0.1078-0.0637	0.0441
0.2070-0.1231	0.0839
0.3082-0.1826	0.1256
0.4065-0.2418	0.1647
0.5087-0.3052	0.2035
0.6009-0.3588	0.2421
0.7101-0.4260	0.2841
0.8024-0.4812	0.3212

Tabla 9. Cálculo para la obtención de la masa de H₂O. Tercera repetición

Diferencia de la masa de SrCl ₂ ·6 H ₂ O y SrCl ₂ (g)	Masa H ₂ O (g)
0.1033-0.0633	0.0400
0.2006-0.1230	0.0776
0.3060-0.1809	0.1251
0.4070-0.2430	0.1640
0.5024-0.2986	0.2038
0.6109-0.3637	0.2472
0.7005-0.4144	0.2861
0.8036-0.4748	0.3288

Tabla 10. Promedio de MC de tres repeticiones

Vaso	Masa inicial vaso (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	8.9557	8.9549	8.9553	8.9553	0.0003	0.0033
2	9.0749	9.0741	9.0744	9.0744	0.0004	0.0044
3	9.0049	9.0046	9.0048	9.0047	0.0001	0.0011
4	9.7478	9.7475	9.7477	9.7476	0.0001	0.0010
5	9.3089	9.3080	9.3083	9.3084	0.0004	0.0042
6	11.0805	11.0805	11.0801	11.0803	0.0002	0.0018
7	10.5266	10.5255	10.5260	10.5260	0.0005	0.0047
8	10.4900	10.4896	10.4898	10.4898	0.0002	0.0019

Tabla 11. Moles de $SrCl_2$ y H_2O . Primera repetición.

Vaso	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0024
2	0.0007	0.0044
3	0.0011	0.0068
4	0.0015	0.0090
5	0.0018	0.0112
6	0.0022	0.0135
7	0.0026	0.0158
8	0.0030	0.0180

Tabla 12. Moles de $SrCl_2$ y H_2O . Segunda repetición.

Vaso	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0024
2	0.0007	0.0046
3	0.0011	0.0069
4	0.0015	0.0091
5	0.0019	0.0112
6	0.0022	0.0134
7	0.0026	0.0157
8	0.0030	0.0178


Tabla 13. Moles de SrCl₂ y H₂O. Tercera repetición.

Vaso	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0022
2	0.0007	0.0043
3	0.0011	0.0069
4	0.0015	0.0091
5	0.0018	0.0113
6	0.0022	0.0137
7	0.0026	0.0158
8	0.0030	0.0182

Tabla 14. Promedio de moles de H_2O y $SrCl_2$ de las tres repeticiones

Vaso	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0023
2	0.0007	0.0044
3	0.0011	0.0068
4	0.0015	0.0090
5	0.0018	0.0112
6	0.0022	0.0135
7	0.0026	0.0157
8	0.0030	0.0180

Gráfica 1. m.m.c para vasos calentamiento mediante IR

Calentamiento por horno de microondas para llevar vasos a MC

Tabla 1. Resultados de la primera repetición para llevar vasos a MC, calentamiento por horno de microondas.

		Núme medicie masa d				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	8.8966	8.8956	8.8955	8.8959	0.0006	0.0067
2	9.1774	9.1766	9.1768	9.1769	0.0004	0.0045
3	8.8036	8.8030	8.8033	8.8033	0.0003	0.0033
4	9.3106	9.3100	9.3103	9.3103	0.0003	0.0032
5	8.5921	8.5916	8.5920	8.5919	0.0003	0.0030
6	10.9369	10.9362	10.9365	10.9365	0.0004	0.0032
7	10.4863	10.4864	10.4858	10.4862	0.0003	0.0031
8	10.6304	10.6295	10.6305	10.6301	0.0006	0.0052

Tabla 2. Resultados de la segunda repetición para llevar vasos a MC, calentamiento por horno de microondas.

Número de	
medición de la	
masa del vaso	

Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	8.8964	8.8957	8.8959	8.8960	0.0004	0.0040
2	9.1775	9.1769	9.1770	9.1771	0.0003	0.0035
3	8.8039	8.8032	8.8031	8.8034	0.0004	0.0049
4	9.3105	9.3096	9.3096	9.3099	0.0005	0.0055
5	8.5922	8.5910	8.5915	8.5916	0.0006	0.0070
6	10.9366	10.9355	10.9363	10.9361	0.0006	0.0051
7	10.4855	10.4845	10.4853	10.4851	0.0005	0.0050
8	10.6302	10.6290	10.6296	10.6296	0.0006	0.0056

Tabla 3. Resultados de la tercera repetición para llevar vasos a MC, calentamiento por horno de microondas.

		medicio	ero de ón de la lel vaso			
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	9.0756	9.0741	9.0748	9.0748	0.0008	0.0083
2	8.8693	8.8689	8.8688	8.8690	0.0003	0.0029
3	10.6232	10.6208	10.6214	10.6218	0.0012	0.0117
4	9.4087	9.4080	9.4077	9.40813	0.0005	0.0054
5	10.7425	10.7412	10.7417	10.7418	0.0007	0.0061
6	11.369	11.3675	11.3687	11.3684	0.0008	0.0069
7	10.6408	10.6405	10.6404	10.6406	0.0002	0.0019
8	10.2097	10.2095	10.2101	10.2098	0.0003	0.0029

Tabla 4. Determinación de masa de SrCl₂. Modo de calentamiento: horno de microondas Primera repetición

Vaso	Masa de SrCl ₂ ·6H ₂ O (g)	Masa del vaso y SrCl ₂ * (g)	Diferencia del vaso con SrCl ₂ y crisol a MC (g)	Masa SrCl ₂ (g)
1	0.1156	8.9635	8.9635-8.8955	0.0680
2	0.2056	9.2971	9.2971-9.1768	0.1203
3	0.3011	8.9801	8.9801-8.8033	0.1768
4	0.4085	9.5495	9.5495-9.3103	0.2392
5	0.5024	8.8900	8.8900-8.5920	0.2980
6	0.6024	11.2908	11.2908-10.9365	0.3543
7	0.7056	10.9011	10.9011-10.4858	0.4153
8	0.8239	11.1161	11.1161-10.6305	0.4856

Tabla 5. Determinación de masa de SrCl₂. Modo de calentamiento: horno de microondas Segunda repetición

Vaso	Masa de SrCl ₂ ·6H ₂ O (g)	Masa del vaso y SrCl ₂ * (g)	Diferencia del vaso con SrCl ₂ y crisol a MC (g)	Masa SrCl ₂ (g)
1	0.1149	8.9630	8.9630-8.8959	0.0671
2	0.2139	9.3030	9.3030-9.1770	0.1260
3	0.3134	8.9861	8.9861-8.8031	0.1830
4	0.4083	9.5508	9.5508-9.3096	0.2412
5	0.5065	8.8923	8.8923-8.5915	0.3008
6	0.6093	11.3023	11.3023-10.9363	0.3660
7	0.7059	10.9105	10.9105-10.4853	0.4252
8	0.8004	11.1075	11.1075-10.6296	0.4779

Tabla 6. Determinación de masa de SrCl₂. Modo de calentamiento: horno de microondas

Tercera repetición

Vaso	Masa de SrCl ₂ ·6H ₂ O (g)	Masa del vaso y SrCl ₂ * (g)	Diferencia del vaso con SrCl ₂ y crisol a MC (g)	Masa SrCl ₂ (g)
1	0.1015	9.1341	9.1341-9.0748	0.0593
2	0.2093	8.9910	8.9910-8.8688	0.1222
3	0.3031	10.7971	10.7971-10.6214	0.1757
4	0.4080	9.6476	9.6476-9.4077	0.2399
5	0.5010	11.0350	11.0350-10.7417	0.2933
6	0.6018	11.7241	11.7241-11.3687	0.3554
7	0.7015	11.0567	11.0567-10.6404	0.4163
8	0.8091	10.6857	10.6857-10.2101	0.4756

^{*} Los datos representan la segunda medición de MC del vaso y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de SrCl ₂ · 6H ₂ O y SrCl ₂ (g)	Masa H ₂ O
0.1156- 0.0680	0.0476
0.2056- 0.1203	0.0853
0.3011- 0.1768	0.1243
0.4085- 0.2392	0.1693
0.5024- 0.2980	0.2044
0.6024-0.3543	0.2481
0.7056- 0.4153	0.2903
0.8239- 0.4856	0.3383

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de SrCl ₂ · 6H ₂ O y SrCl ₂ (g)	Masa H ₂ O (g)
0.1149- 0.0671	0.0241
0.2139- 0.1260	0.0461
0.3134- 0.1830	0.0715
0.4083- 0.2412	0.0946
0.5065-0.3008	0.1185
0.6093- 0.3660	0.1248
0.7059- 0.4252	0.1559
0.8004- 0.4779	0.1666

Tabla 9. Cálculo para la obtención de la masa de H₂O. Tercera repetición

Diferencia de la masa de SrCl ₂ · 6H ₂ O y SrCl ₂ (g)	Masa H ₂ O (g)
0.1015- 0.0593	0.0422
0.2093- 0.1222	0.0871
0.3031- 0.1757	0.1274
0.4080- 0.2399	0.1681
0.5010-0.2933	0.2077
0.6018- 0.3554	0.2464
0.7015- 0.4163	0.2852
0.8091- 0.4756	0.3335

Tabla 10. Promedio de MC de tres repeticiones

Vaso	Masa inicial vaso (g)	Medición 1	Medición 2	Promedio	DE	% DER
1	8.9562	8.9551	8.9554	8.9556	0.0006	0.0061
2	9.0747	9.0741	9.0742	9.0744	0.0003	0.0035
3	9.4102	9.4090	9.4093	9.4095	0.0006	0.0068
4	9.3433	9.3425	9.3425	9.3428	0.0004	0.0045
5	9.3089	9.3079	9.3084	9.3084	0.0005	0.0054
6	11.0808	11.0797	11.0805	11.0804	0.0006	0.0051
7	10.5375	10.5371	10.5372	10.5373	0.0002	0.0021
8	10.4901	10.4893	10.4901	10.4898	0.0004	0.0041

Tabla 11. Moles de $SrCl_2$ y H_2O . Primera repetición.

Vaso	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0026
2	0.0008	0.0047
3	0.0011	0.0069
4	0.0015	0.0094
5	0.0019	0.0113
6	0.0022	0.0138
7	0.0026	0.0161
8	0.0031	0.0188

Tabla 12. Moles de $SrCl_2$ y H_2O . Segunda repetición.

Vaso	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0027
2	0.0008	0.0049
3	0.0012	0.0072
4	0.0015	0.0093
5	0.0019	0.0114
6	0.0023	0.0135
7	0.0027	0.0156
8	0.0030	0.0179

Tabla 13. Moles de SrCl₂ y H₂O. Tercera repetición.

Vaso	SRCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0023
2	0.0008	0.0048
3	0.0011	0.0071
4	0.0015	0.0093
5	0.0019	0.0115
6	0.0022	0.0137
7	0.0026	0.0158
8	0.0030	0.0185

Tabla 14. Promedio de moles de H₂O y SrCl₂ de las tres repeticiones

Vaso	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0025
2	0.0007	0.0048
3	0.0011	0.0070
4	0.0015	0.0093
5	0.0018	0.0114
6	0.0022	0.0136
7	0.0026	0.0158
8	0.0030	0.0183

Gráfica 1. m.m.c para vasos calentamiento mediante horno de microondas

Calentamiento por mechero de Bunsen para llevar vasos a MC

Tabla 1. Resultados de la primera repetición para llevar vasos a MC, calentamiento por mechero de Bunsen

		Número de medición de la masa del vaso				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	9.0758	9.0747	9.0742	9.0749	0.0008	0.0088
2	8.8698	8.8688	8.8691	8.8692	0.0005	0.0056
3	9.4101	9.4078	9.4081	9.4086	0.0012	0.0127
4	9.3118	9.3097	9.3101	9.3105	0.0011	0.0118
5	8.5923	8.5911	8.5915	8.5916	0.0006	0.0069
6	11.3696	11.3687	11.3689	11.369	0.0004	0.0035
7	10.6082	10.6066	10.6076	10.6074	0.0008	0.0075
8	10.6309	10.6288	10.6294	10.6297	0.0010	0.0094

Tabla 2. Resultados de la segunda repetición para llevar vasos a MC, calentamiento por mechero de Bunsen

		Número de medición de la masa del vaso				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	9.0754	9.0746	9.0747	9.0749	0.0004	0.0047
2	9.1905	9.1899	9.1903	9.1902	0.0003	0.0033
3	8.8041	8.8035	8.8037	8.8038	0.0003	0.0034
4	9.1352	9.1347	9.1348	9.1349	0.0003	0.0028
5	10.7452	10.7445	10.7444	10.7447	0.0004	0.0040
6	11.3692	11.3687	11.3688	11.3689	0.0003	0.0023
7	10.2094	10.2084	10.2094	10.2091	0.0006	0.0056
8	10.6246	10.6235	10.6239	10.6240	0.0006	0.0052

Tabla 3. Resultados de la tercera repetición para llevar vasos a MC, calentamiento por mechero de Bunsen

		Número de medición de la masa del vaso				
Vaso	Masa vaso inicial (g)	1	2	Promedio de las mediciones (g)	DE	%DER
1	8.8975	8.8962	8.8963	8.8967	0.0007	0.0081
2	8.8702	8.8686	8.8691	8.8693	0.0008	0.0091
3	9.4089	9.4078	9.4082	9.4083	0.0006	0.0058
4	9.3106	9.3095	9.3100	9.3100	0.0006	0.0059
5	8.5922	8.5910	8.5916	8.59160	0.0006	0.0070
6	10.4879	10.4865	10.4869	10.4871	0.0007	0.0069
7	10.6072	10.6063	10.6069	10.6068	0.0005	0.0042
8	10.6299	10.6289	10.6494	10.6361	0.0116	0.1086

Tabla 4. Determinación de masa de $SrCl_2$. Modo de calentamiento: mechero de Bunsen Primera repetición

Vaso	Masa de SrCl ₂ · 6H ₂ O (g)	Masa del vaso y SrCl ₂ * (g)	Diferencia del vaso con SrCl ₂ y vaso a MC (g)	Masa SrCl ₂ (g)
1	0.1005	9.134	9.1340-9.0742	0.0598
2	0.2111	8.9930	8.9930-8.8691	0.1239
3	0.3084	9.5876	9.5876-9.4081	0.1795
4	0.4097	9.5594	9.5594-9.3101	0.2493
5	0.5024	8.8946	8.8946-8.5915	0.3031
6	0.6040	11.7267	11.7267-11.3689	0.3578
7	0.7135	11.0211	11.0211-10.6076	0.4135
8	0.8300	11.1142	11.1142-10.6294	0.4848

Tabla 5. Determinación de masa de $SrCl_2$. Modo de calentamiento: mechero de Bunsen Segunda repetición

Vaso	Masa de SrCl ₂ · 6H ₂ O (g)	Masa del vaso y SrCl ₂ * (g)	Diferencia del vaso con SrCl ₂ y vaso a MC (g)	Masa SrCl ₂ (g)
1	0.1052	8.9575	8.9575-8.8956	0.0619
2	0.2084	9.2997	9.2997-9.1766	0.1231
3	0.3146	8.9888	8.9888-8.8032	0.1856
4	0.4071	10.8623	10.8623-10.6220	0.2403
5	0.5063	11.0417	11.0417-10.7411	0.3006
6	0.6081	11.2971	11.2971-10.9362	0.3609
7	0.7113	10.9057	10.9057-10.4851	0.4206
8	0.8106	10.6885	10.6885-10.2093	0.4792

Tabla 6. Determinación de masa de SrCl₂. Modo de calentamiento: mechero de Bunsen Tercera repetición

Vaso	Masa de SrCl ₂ · 6H ₂ O (g)	Masa del vaso y SrCl ₂ * (g)	Diferencia del vaso con SrCl ₂ y vaso a MC (g)	Masa SrCl ₂ (g)
1	0.1011	9.1338	9.1338-9.0746	0.0592
2	0.2107	8.9931	8.9931-8.8686	0.1245
3	0.3020	9.5880	9.5880-9.4083	0.1797
4	0.4092	9.5516	9.5516-9.3109	0.2407
5	0.5033	8.8973	8.8973-8.5915	0.3058
6	0.6001	11.7273	11.7273-11.3689	0.3584
7	0.7013	11.0207	11.0207-10.6067	0.414
8	0.8008	11.1027	11.1027-10.6301	0.4726

^{*} Los datos representan la segunda medición de MC del vaso y reactivo deshidratado para asegurar la ausencia de humedad.

Tabla 7. Cálculo para la obtención de la masa de H₂O. Primera repetición

Diferencia de la masa de SrCl ₂ ·6H ₂ O y SrCl ₂ (g)	Masa H ₂ O (g)
0.1005-0.0598	0.0407
0.2111-0.1239	0.0872
0.3084-0.1795	0.1289
0.4097-0.2493	0.1604
0.5024-0.3031	0.1993
0.6040-0.3578	0.2462
0.7135-0.4135	0.3000
0.8300-0.4848	0.3452

Tabla 8. Cálculo para la obtención de la masa de H₂O. Segunda repetición

Diferencia de la masa de SrCl ₂ ·6H ₂ O y SrCl ₂ (g)	Masa H ₂ O (g)
0.1052- 0.0619	0.0433
0.2084- 0.1231	0.0853
0.3146- 0.1856	0.1290
0.4071- 0.2403	0.1668
0.5063- 0.3006	0.2057
0.6081- 0.3609	0.2472
0.7113- 0.4206	0.2907
0.8106- 0.4792	0.3314

Tabla 9. Cálculo para la obtención de la masa de ${\rm H}_2{\rm O}$. Tercera repetición

Diferencia de la masa de SrCl ₂ ·6H ₂ O y SrCl ₂ (g)	Masa H ₂ O (g)
0.1011- 0.0592	0.0419
0.2107- 0.1245	0.0862
0.3020- 0.1797	0.1223
0.4092- 0.2407	0.1685
0.5033- 0.3058	0.1975
0.6001- 0.3584	0.2417
0.7013- 0.4140	0.2873
0.8008- 0.4726	0.3282

Tabla 10. Promedio de MC de tres repeticiones

Vaso	Masa inicial vaso (g)	Medición 1	Medición 2	Promedi 0	DE	% DER
1	9.0158	9.0149	9.0148	9.0151	0.0005	0.0055
2	8.9722	8.9713	8.9714	8.9716	0.0004	0.0044
3	9.2073	9.2060	9.2065	9.2066	0.0006	0.0065
4	9.7482	9.7471	9.7476	9.7476	0.0005	0.0051
5	9.3089	9.3080	9.3080	9.3083	0.0005	0.0053
6	11.2253	11.224	11.2246	11.2246	0.0006	0.0053
7	10.5670	10.5660	10.5664	10.5664	0.0005	0.0047
8	10.4901	10.4891	10.4896	10.4896	0.0004	0.0038

Tabla 11. Moles de $SrCl_2$ y H_2O . Primera repetición.

Vaso	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0023
2	0.0008	0.0048
3	0.0011	0.0072
4	0.0016	0.0089
5	0.0019	0.0111
6	0.0023	0.0137
7	0.0026	0.0167
8	0.0031	0.0192

Tabla 12. Moles de $SrCl_2$ y H_2O . Segunda repetición.

Vaso	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0004	0.0024
2	0.0008	0.0047
3	0.0012	0.0072
4	0.0015	0.0093
5	0.0019	0.0114
6	0.0023	0.0137
7	0.0027	0.0161
8	0.0030	0.0184

Tabla 13. Moles de SrCl₂ y H₂O. Tercera repetición.

Vaso	SrCl ₂ (mol)	H ₂ O (mol)
1	0.004	0.0023
2	0.0008	0.0048
3	0.0011	0.0068
4	0.0015	0.0094
5	0.0019	0.0110
6	0.0023	0.0134
7	0.0026	0.0159
8	0.0030	0.0182

Tabla 14. Promedio de moles de H₂O y SrCl₂ de las tres repeticiones

Vaso	SrCl ₂ (mol)	H ₂ O (mol)
1	0.0003	0.0023
2	0.0007	0.0047
3	0.0011	0.0070
4	0.0015	0.0091
5	0.0019	0.0111
6	0.0022	0.0135
7	0.0026	0.0162
8	0.0030	0.0185

Gráfica 1. m.m.c para vasos calentamiento mediante mechero de Bunsen

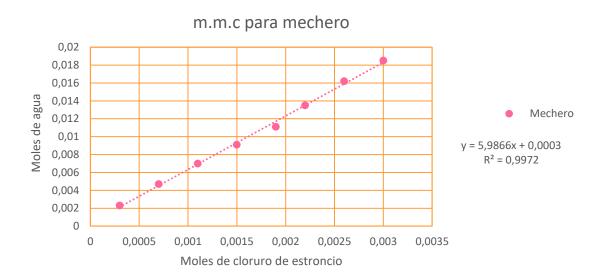
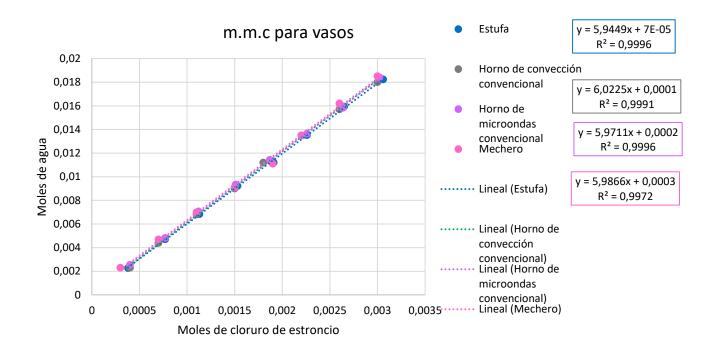



Gráfico 1. m.m.c. de la determinación de moles de cloruro de estroncio para los cuatro tipos de calentamiento por medio de crisoles

Gráfico 2. m.m.c. de la determinación de moles de cloruro de estroncio para los cuatro tipos de calentamiento por medio de vasos

