

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIAS BIOLÓGICAS

FACULTAD DE CIENCIAS

REVISIÓN TAXONÓMICA DEL GÉNERO CHRYSOMETA SIMON 1894 (ARANEAE, TETRAGNATHIDAE) PARA MÉXICO

TESIS

QUE PARA OPTAR POR EL GRADO DE:

DOCTOR EN CIENCIAS

PRESENTA:

FRANCISCO JAVIER SALGUEIRO SEPÚLVEDA

TUTOR PRINCIPAL DE TESIS: DR. FERNANDO ÁLVAREZ PADILLA FACULTAD DE CIENCIAS, UNAM COMITÉ TUTOR: DR. JUAN BIBIANO MORALES MALACARA FACULTAD DE CIENCIAS, UNAM COMITÉ TUTOR: DRA. TILA MARÍA PÉREZ ORTIZ INSTITUTO DE BIOLOGÍA, UNAM

CD. MX., FEBRERO 2019

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIAS BIOLÓGICAS

FACULTAD DE CIENCIAS

REVISIÓN TAXONÓMICA DEL GÉNERO *CHRYSOMETA* SIMON 1894 (ARANEAE, TETRAGNATHIDAE) PARA MÉXICO

TESIS

QUE PARA OPTAR POR EL GRADO DE:

DOCTOR EN CIENCIAS

PRESENTA:

FRANCISCO JAVIER SALGUEIRO SEPÚLVEDA

TUTOR PRINCIPAL DE TESIS: DR. FERNANDO ÁLVAREZ PADILLA FACULTAD DE CIENCIAS, UNAM COMITÉ TUTOR: DR. JUAN BIBIANO MORALES MALACARA FACULTAD DE CIENCIAS, UNAM COMITÉ TUTOR: DRA. TILA MARÍA PÉREZ ORTIZ INSTITUTO DE BIOLOGÍA, UNAM

MÉXICO, CD. MX., febrero, 2019.

P V

Ciencias Biológicas

COORDINACIÓN

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIAS BIOLÓGICAS FACULTAD DE CIENCIAS DIVISIÓN ACADÉMICA DE INVESTIGACIÓN Y POSGRADO

OFICIO FCIE/DAIP/0085/2019

ASUNTO: Oficio de Jurado

M. en C. Ivonne Ramírez Wence Directora General de Administración Escolar, UNAM Presente

Me permito informar a usted que en la reunión ordinaria del Comité Académico del Posgrado en Ciencias Biológicas, celebrada el día 26 de noviembre de 2018, se aprobó el siguiente jurado para el examen de grado de DOCTOR EN CIENCIAS del alumno SALGUEIRO SEPÚLVEDA FRANCISCO JAVIER con número de cuenta 512027869 con la tesis titulada: "Revisión taxonómica del género *Chrysometa* Simon 1894 (Araneae, Tetragnathidae) para México", realizada bajo la dirección del DR. FERNANDO ÁLVAREZ PADILLA:

Presidente:	DR. ALEJANDRO FRANCISCO OCEGUERA FIGUEROA
Vocal:	DR. EDMUNDO GONZÁLEZ SANTILLÁN
Secretario:	DR. JUAN BIBIANO MORALES MALACARA
Suplente:	DR. HUGO HARLAN MEJÍA MADRID
Suplente:	DR. SANTIAGO ZARAGOZA CABALLERO

Sin otro particular, me es grato enviarle un cordial saludo.

A T E N T A M E N T E "POR MI RAZA HABLARA EL ESPIRITU" Ciudad Universitaria, Cd. Mx., a 28 de enero de 2019

DR. ADOLFO GERARDO NAVARRO SIGÜENZA COORDINADOR DEL PROGRAMA

AGNS/VMVA/ASR/grf*

Unidad de Posgrado - Coordinación del Posgrado en Ciencias Biológicas Edificio D. Ler. Piso, Circuito de Posgrados Cd. Universitaria Delegación Coyoncán C.P. 04510 México, D.F. Tel. 5623 7002 http://pcbiol.posgrado.unam.mx

AGRADECIMIENTOS

AI POSGRADO EN CIENCIAS BIOLÓGICAS, UNAM.

A **CONACYT:** Consejo Nacional de Ciencia y Tecnología, por la beca otorgada durante mis estudios de doctorado.

A los siguientes proyectos y apoyos otorgados para realizar el trabajo de campo y estancias de investigación durante este estudio:

PROYECTOS UNAM-DGAPA-PAPIIT **IN213612** e **IN214916**. APOYOS **PAEP 2016**. AMERICAN MUSEUM OF NATURAL HISTORY **Collection Study Grant**.

A LOS MIEMBROS DEL COMITÉ TUTORAL:

Dr. Fernando Álvarez Padilla Dr. Juan Bibiano Morales Malacara Dra. Tila María Pérez Ortiz

AGRADECIMIENTOS A TÍTULO PERSONAL

Al Dr. Fernando Álvarez Padilla por ser un excelente padre académico.

Al Dr. Juan Bibiano Morales Malacara y a la Dra. Tila María Pérez Ortiz por ser parte de mi comité tutoral, por las revisiones, aportaciones, comentarios y correcciones en los tutorales semestrales y en la escritura de la tesis.

Al Dr. Juan Bibiano Morales Malacara, al Dr. Edmundo González Santillán, al Dr. Alejandro Oceguera Figueroa, al Dr. Hugo Harlan Mejía Madrid y al Dr. Santiago Zaragoza Caballero por aceptar ser parte del jurado y por realizar revisiones y comentarios objetivos a la tesis.

Al Dr. Alejandro Oceguera Figueroa, Ofelia Delgado Hernández, Andrea Jiménez Marín y Laura Márquez Valdelamar por su apoyo, asistencia y dirección con el trabajo molecular en el Laboratorio de Biología Molecular del departamento de Zoología-LANABIO del Instituto de Biología de la UNAM.

Al Dr. Gustavo hormiga por sus valiosos consejos de ilustración científica y por su ayuda durante la estancia de investigación en su laboratorio.

A los integrantes de las salidas al campo: Francisco A. Rivera Quiroz, Uriel Garcilazo Cruz, Dulce F. Piedra Jiménez, Mariana Servin Pastor, Ricardo Raña Mendoza, Miguel A. Hernández Patricio, Facundo M. Labarque, Daniele Polotow, Thiago Silva Moreira, Maira Montejo Cruz, Diana E. Álvarez Martínez y Rigel S. González Contreras y a los encargados del Parque Nacional Pico de Orizaba y a todas las personas de la comunidad de Atotonilco y Xamaticpac por la asistencia brindada en campo, en especial al señor Isidoro, señor Nicolás, señora Mercedes y señora Nohemí.

A mi madre y mis hermanos por su apoyo incondicional

A mis amigos Caro, LuzMa, Richie y Carmen por estar más en las malas que en las buenas.

DEDICATORIA

Dedico esta tesis con mucho cariño al Laboratorio de Aracnología de la Facultad de Ciencias de la UNAM y a todos sus integrantes por ser la familia adoptiva más disfuncional y divertida que pude tener.

ÍNDICE

Resumen	1
Abstract	2
INTRODUCCIÓN	3
OBJETIVOS	15
MATERIALES Y MÉTODOS	16
Trabajo taxonómico	16
Matriz morfológica	17
Matriz molecular	
Trabajo molecular	19
Análisis filogenético	20
Morfología	20
Moléculas	20
Abreviaciones usadas en el texto y figuras	21
CONSIDERACIONES	22
SECCIÓN I	23
RESULTADOS	23
Colecciones nacionales	23
Colecciones internacionales	59
SECCIÓN II	75
RESULTADOS	75
Análisis filogenético con datos morfológicos	75
Análisis filogenético con datos moleculares	75
DISCUSIÓN	80
CONCLUSIONES	84
LITERATURA CITADA	85
APÉNDICES	92
Apéndice 1	92
Apéndice 2	97

Apéndice 3	
Apéndice 4	110
Apéndice 5	111

LISTA DE FIGURAS

Figura 1. Arreglo de las hileras anteriores en los tres subórdenes de Araneae. Modificado de Foelix
(2011)
Figura 2. Hipótesis filogenética del análisis concatenado de seis marcadores obtenida con Máxima
Verosimilitud que muestra la clasificación actual del suborden Araneomorphae. Modificado de Wheeler
et al. (2017)
Figura 3. Triplete en las hileras posteriores laterales de Mysmena sp. Dos fúsulas agregadas (AG)
flanqueando una fúsula flageliforme (FL). Modificado de Griswold et al. (1998)6
Figura 4. Hipótesis de relación filogenética donde se obtuvo a Tetragnathidae como grupo hermano de
Arkyidae. En los rectángulos se muestra el clado "Tetragnathoids". Modificado de Kallal et al.
(2018)
Figura 5. Caracteres diagnósticos de Tetragnathidae. Modificado de Álvarez-Padilla y Hormiga (2011)9
Figura 6. Subfamilias de Tetragnathidae. Modificado de Kallal y Hormiga (2018) 10
Figura 7. Figura 7. Caracteres diagnósticos de Chrysometa. Modificado de Álvarez-Padilla y Hormiga
(2011). CD: ducto de copulación; CEBP: proceso ectobasal del cimbio; CEMP: proceso ectomedio del
cimbio; FD: ducto de fertilización; GO: abertura genital; P: paracimbio; S: espermateca
Figura 8. Hipótesis filogenéticas basadas en A) morfología y B) moléculas donde el género Allende se
obtuvo como grupo hermano del género Chrysometa. Modificado de Álvarez-Padilla et al. (2009)
Figura 9. Chrysometa sp01. Male. a) Habitus dorsal (20x). b) Habitus lateral (20x). c) Habitus ventral
(20x). d) Prosoma anterior (50x). e) Pedipalp ventral view (80x). f) Pedipal pretrolateral view (80x)61
Figura 10. Chrysometa sp02. Male. a) Habitus dorsal (20x). b) Habitus dorsal (20x). c) Habitus dorsal
(20x). d) Prosoma anterior (40x). e) Pedipalp ventral view (80x). f) Pedipalp retrolateral view (80x)63
Figura 11. Chrysometa sp03. Female. a) Habitus dorsal (10x). b) Habitus lateral (10x). c) Habitus
ventral (10x). d) Prosoma anterior (40x). e) Epyginum ventral view (80x). f) Epyginum posterior view
(80x)
Figura 12. Chrysometa sp04. Male. a) Habitus dorsal (20x). b) Habitus lateral (20x). c) Habitus ventral
(20x). d) Prosoma anterior (40x). e) Pedipalp ventral view (80x). f) Pedipalp retrolateral view (80x)

Figura 13. Chrysometa GH2506. Female. a) Habitus dorsal (15x). b) Habitus lateral (15x). c) Habitus ventral (15x). d) Prosoma anterior (30x). e) Epyginum ventral view (80x). f) Epyginum posterior view Figura 14. Chrysometa GH2507. Female. a) Habitus dorsal (30x). b) Habitus lateral (30x). c) Habitus ventral (30x). d) Prosoma anterior (40x). e) Epyginum ventral view (80x). f) Epyginum posterior view Figura 15. Chrysometa GH2508. Female. a) Habitus dorsal (10x). b) Habitus lateral (10x). c) Habitus ventral (10x). d) Prosoma anterior (30x). e) Epyginum ventra lview (80x). f) Epyginum posterior view Figura 16. Chrysometa GH2509. Male. a) Habitus dorsal (20x). b) Habitus lateral (20x). c) Habitus ventral (20x). d) Prosoma anterior (40x). e) Pedipalp ventral view (80x). f) Pedipalp retrolateral view Figura 17. Chrysometa GH2510. Male. a) Habitus dorsal (20x). b) Habitus lateral (20x). c) Habitus ventral (20x). d) Prosoma anterior (40x). e) Pedipalp ventral view (80x). f) Pedipalp retrolateral view Figura 18. Hipótesis de relaciones filogenéticas del consenso estricto de 57 árboles de 1,135 pasos (CI=0.26, RI=0.69), obtenida al analizar 223 caracteres morfológicos con pesos iguales utilizando como criterio de optimización parsimonia. Las ramas del árbol filogenético muestran los valores de 1,000 Figura 19. Hipótesis de relaciones filogenéticas obtenida al analizar tres marcadores genéticos nucleares y tres mitocondriales. La matriz molecular incluye 218 taxa y 6,688 pares de bases. El criterio de optimización que se utilizó fue Máxima Verosimilitud. Las ramas del árbol filogenético muestran los valores de 1,000 réplicas de Bootstrap......78 Figura 20. Hipótesis de relaciones filogenéticas obtenida al analizar tres marcadores genéticos nucleares y tres mitocondriales. La matriz molecular incluye 218 taxa y 6,688 pares de bases. El criterio de optimización que se utilizó fue Bayesiano. Las ramas del árbol filogenético muestran los valores de Figura 21. Vista retrolateral del pedipalpo izquierdo de las familias Malkaridae, Mimetidae, Arkyidae y Tetragnathidae, mostrando las similitudes del paracimbio. A) Malkara loricata (modificado de Schütt,

LISTA DE TABLAS

Tabla 1. Lista de especies nuevas de Chrysometa encontradas en las colecciones nacionales	23
Tabla 2. Ejemplares de Chrysometa revisados en las colecciones internacionales	59
Tabla 3. Lista de morfoespecies de Chrysometa para México de las colecciones internacionales	59
Tabla 4. Lista de morfoespecies de Chrysometa para Centro América de la colecciones de GWU	59

Resumen

Se presenta la revisión taxonómica del género Chrysometa para México. Con este objetivo se revisaron colecciones nacionales e internaciones donde están depositados especímenes de este género. Se realizó un análisis filogenético con estos especímenes basado en morfología (70 especies y 223 caracteres) y con datos moleculares (218 especies y 6,688 caracteres) para evaluar la monofilia del género, sus relaciones dentro de la familia y su posible origen en el continente. Los resultados obtenidos incluyen la descripción de siete especies nuevas de Chrysometa para México encontradas en las colecciones nacionales y cuatro especies en las colecciones internacionales, además se presentan cinco registros más para Centro América. Los análisis filogenéticos evidenciaron la monofilia del género con un alto soporte (Bootstrap 94%). Los resultados moleculares sugieren que el grupo hermano de Chrysometa es el género Allende, mientras que los datos morfológicos sugieren a la subfamilia Nanometinae. Las relaciones de estos taxones aún son inestables y presentan bajo soporte en la mayoría de los métodos analíticos. Sin embargo, ambos taxones son candidatos para ser el grupo hermano de Chrysometa. Allende y Nanometinae tienen un origen chileno y australiano respectivamente, por lo tanto, se propone un origen gondwánico en América del Sur y con uno o varios eventos de colonización hacia el norte del continente donde Chrysometa diversificó. Para las especies mexicanas descritas en encinares se proponen dos eventos de colonización, ambos con especies ancestrales en Centro América; sin embargo, tomando en cuenta la gran riqueza especifica de este género (146 especies), se recomienda una muestra taxonómica más amplia y mayor codificación de caracteres para someter a prueba estas hipótesis. Finalmente, las especies descritas en este estudio están documentadas imágenes digitales de alta resolución disponibles con en www.unamfcaracnolab.com.

Abstract

This study presents a taxonomic revision of the genus Chrysometa for Mexico. With this objective, national and international collections where specimens of this taxon are deposited were reviewed. A phylogenetic analysis was made with these specimens based on morphology (70 species and 223 characters) and with molecular data (218 species and 6,688 characters) to evaluate the monophyly of the genus, its relationships within the family and its possible origin in the continent. The results obtained include the description of seven new species of Chrysometa for Mexico found in national collections and four species in international collections, plus five additional records for Central America. The phylogenetic analyzes recovered the monophyly of this genus with high support (Bootstrap 94%). The molecular results suggest that the sister group of Chrysometa is the genus Allende, while the morphological data suggest the subfamily Nanometinae. The relationships of these taxa are still unstable and have low support in most analytical methods. However, both taxa are candidates to be the sister group of Chrysometa. Allende and Nanometinae have a Chilean and Australian origin respectively, therefore an origin in South America is proposed for Chrysometa, with one or several colonization events towards the north of the continent. For the Mexican species described in oak forests, two colonization events are proposed, both with an ancestral species in Central America; however, considering the great specific richness of this genus (146 species), a wider taxonomic sample and more characters are recommended to test these hypotheses. Finally, the species described in this study are documented with high resolution digital images available at www.unamfcaracnolab.com.

INTRODUCCIÓN

Las arañas son uno de los grupos más diversos del planeta (Coddington y Levi, 1991) y ocupan el séptimo lugar en número de especies descritas después de los cinco órdenes de insectos más diversos (Coleoptera, Hymenoptera, Lepidoptera, Diptera, Hemiptera) y la Subclase Acari entre los arácnidos (Parker, 1982; Coddington y Colwell, 2002). Las arañas se distribuyen en todas las regiones del planeta excepto la Antártida y ocupan nichos en todos los ecosistemas terrestres (Foelix, 2011). Actualmente el número de especies de arañas descritas es de 47,622 divididas en tres Subórdenes: Mesothelae con 166, Mygalomorphae con 2,971 y Araneomorphae con 44,485 especies respectivamente (WSC, 2018); y se estima que el número total oscila entre 76,000 y 120,000 (Platnick, 1999; Coddington y Levi, 1991; Agnarsson et al., 2013). Los fósiles más antiguos que se conocen datan del Carbonífero (355-295 mda) (Dunlop et al., 2016), siendo estas arañas similares anatómicamente a las especies del Suborden Mesothelae que tiene representantes actuales en el trópico asiático (Foelix, 2011; WSC, 2018).

El Orden Araneae se diferencia de otros órdenes de arácnidos por la presencia de tres características fácilmente reconocibles: presencia de glándulas productoras de seda asociadas a hileras (homólogas a apéndices locomotores) en el abdomen, tarso (último segmento) del pedipalpo del macho modificado para la cópula y separado de las gónadas y glándulas de veneno asociadas a los quelíceros. Este Orden esta actualmente dividido en tres subórdenes (Fig. 1). El suborden Mesothelae representado por la familia Liphistiidae, que es el linaje más primitivo de arañas y se caracteriza por tener el abdomen segmentado, cuatro pares de hileras ubicados en la posición media ventral del opistosoma y los ojos proyectados en un tubérculo ocular. Las arañas del suborden Mygalomorphae son comúnmente llamadas tarántulas y se caracterizan por la pérdida o reducción de la línea anterior de hileras, por la presencia de dos pares de libros pulmonares y la posición de los colmillos paralelos a la línea media del cuerpo (Foelix, 2011).

El suborden Araneomorphae se caracteriza por presentar generalmente tres pares de hileras en la parte posterior del abdomen y un cuarto par modificado en una estructura llamada cribelo, ubicado en la posición anterior media. El cribelo es homólogo a las hileras anteriores medias de los lifístidos y se usa para la producción de seda seca, fibrosa y pegajosa cuyos mecanismos de adhesión se dan mediante fuerzas higroscópicas y de Van der Waals. También presentan el segundo par de libros pulmonares y sus apodemas asociados modificados en un sistema traqueal; esta característica aún está presente en los grupos más basales como Hipochillidae, Austrochilidae y Filistatidae. Por último la posición labidognatha de los colmillos de los quelíceros, perpendiculares al eje del cuerpo, característica aún presente en Filistatidae (Coddington et al., 2004; Foelix, 2011).

Figura 1. Arreglo de las hileras anteriores en los tres subórdenes de Araneae. Modificado de Foelix (2011).

El suborden Araneomorphae está dividido en varios grupos monofiléticos (Fig. 2) (Wheeler et al., 2017). Entre estos se encuentra el clado Synspermiata que incluye a todas las arañas haplóginas no cribeladas como las superfamilias Dysderoidea y Scytodoidea. Otro ejemplo es Palpimanoidea, que incluye sólo cinco familias que se diferencian principalmente por tener en los quelíceros dientes en forma de gancho, los cuales se cree que son homólogos a sedas, y glándulas quelicerales. Wheeler et al. (2017) encontraron que el grupo clado anteriormente conocido como Haplogynae es parafilético, ya que la presencia de sólo un conducto en la genitalia femenina por donde se realiza la inseminación y fertilización es un caracter simplesiomórfico para Araneomorphae. El clado Entelegynae está soportado por la presencia de un sistema genital femenino con ductos de copulación y fertilización diferentes.

Figura 2. Hipótesis filogenética del análisis concatenado de seis marcadores obtenida con Máxima Verosimilitud que muestra la clasificación actual del suborden Araneomorphae. Modificado de Wheeler et al. (2017).

La mayor parte de la diversidad de Araneomorphae está en Entelegynae que incluye al "*RTA clade*" caracterizado por la presencia de una apófisis retrolateral en la tibia del pedidalpo del macho e incluye a Amaurobidae, Agelenidae, Hahniidae (*"Marronoid clade"*) y otros clados como Dionycha, en el que se encuentran Anyphaenidae, Gnaphosidae, Corinnidae, Salticidae, etc. El otro clado con gran diversidad dentro de Entelegynae es Araneoidea, que se caracteriza por tener un triplete conformado por una fúsula flageliforme y dos fúsulas agregadas en las hileras posteriores laterales (Fig. 3). La glándula flageliforme produce un hilo axial y las glándulas agregadas lo recubren son seda líquida pegajosa, la cual es una característica diagnóstica y sinapomórfica para Araneoidea (Eberhard, 1982; Coddington, 1989; Griswold et al., 1998; Dimitrov et al., 2012).

Figura 3. Triplete en las hileras posteriores laterales de *Mysmena* sp. Dos fúsulas agregadas (AG) flanqueando una fúsula flageliforme (FL). Modificado de Griswold et al. (1998)

Esta sinapomorfía ha permitido la inclusión de muchos grupos bien soportados dentro de la superfamilia como Mimetidae, Arkyidae, Malkaridae, Oarcidae, entre otros. Estas familias estaban agrupadas en Palpimanoidea debido a que presentan un triplete de fúsulas, pero su estado de caracter es vestigial en vez de bien desarrollado y funcional; y a que cazan a otras arañas directamente. Estas familias perdieron en su historia evolutiva la capacidad para hacer telarañas (Schütt, 2000; 2003; Benavides et al., 2017; Dimitrov y Hormiga, 2011; Hormiga, 2017; Wheeler et al., 2017). La superfamilia

Palpimanoidea fue propuesta con base en dos caracteres del quelícero, consideradas autopomorfías: la presencia de dientes en forma de gancho y poros glandulares (Forster y Platnick, 1984), sin embargo estas características se encuentran en otros araneoideos (Platnick y Shadab, 1993). Otros caracteres que permitieron la inclusión de estas familias dentro de Araneoidea, anteriormente clasificadas dentro de Palpimanoidea son: la cutícula y estructura de las sedas, posición de los ojos, forma del labium, el patrón del pedipalpo del macho como la presencia y forma del paracimbio, además de la presencia del triplete araneoideo (Schütt, 2000; 2003).

Orbiculariae, que incluía a la superfamilia Araneoidea, era considerado un grupo monofilético dentro del suborden. Sin embargo, análisis con datos genómicos han demostrado con alto soporte la parafilia del clado, posicionando a Deinopoidea dentro del *"RTA clade"* como grupo hermano de Eresoidea en vez de ubicar a los deinópidos junto con los demás orbicularios (Fernández et al., 2014; Bond et al., 2014; Dimitrov et al., 2017; Wheeler et al., 2017; Fernández et al., 2018). Esto sugiere dos hipótesis con respecto a la evolución de las telas orbiculares: que son convergentes en Araneoidea y Deinopoidea, o que el caracter es ancestral para Entelegynae, estando presente en Araneoidea y Deinopoidea y con subsecuentes pérdidas dentro del *"RTA clade"* (Fernández et al., 2014). Independientemente de estas hipótesis, en todos estos estudios Araneoidea fue recuperada como grupo monofilético.

Araneoidea incluye a más de 11,000 especies agrupadas en 19 familias (Dimitrov et al., 2012; WSC, 2018), de las cuales 11 se distribuyen en México: Anapidae, Araneidae, Linyphiidae, Mimetidae, Mysmenidae, Nephilidae, Nesticidae, Symphytognathidae Tetragnathidae, Theridiidae y Theridiosomatidae (Dimitrov et al., 2012; Francke, 2014; WSC, 2018). El resto de las familias son principalmente de distribución Paleártica (Hormiga y Griswold, 2014). Las relaciones filogenéticas de algunas de estas familias han sido estudiadas con datos morfológicos, moleculares y genómicos (Levi, 1980; Coddington, 1990; Hormiga et al., 1995; Scharff y Coddington, 1997; Kuntner et al., 2008; Álvarez-Padilla et al., 2009; Blackledge et al., 2009; Dimitrov et al., 2012; Fernández et al., 2014; Bond et al., 2014; Dimitrov et al., 2017; Wheeler et al., 2017; Fernández et al., 2018), ubicando a Tetragnathidae como grupo hermano de Arkvidae y a Tetragnathidae+Arkvidae como grupo hermano de Mimetidae+Malkaridae. Las familias Arkyidae, Mimetidae y Malkaridae, considerados anteriormente palpimanoideos, junto con Tetragnathidae, se agrupan dentro del clado "Tetragnathoids" (Dimitrov et al., 2017; Hormiga, 2017; Fernández et al., 2018; Kallal y Hormiga, 2018) (Figs. 4, 6). Tomando en cuenta estas relaciones filogenéticas se puede proponer que el ancestro de Tetragnathidae probablemente fue una araña que no hacía telas y depredaba a otras arañas.

C. Wheeler et al. (2016)

Figura 4. Hipótesis de relación filogenética donde se obtuvo a Tetragnathidae como grupo hermano de Arkyidae. En los rectángulos se muestra el clado "*Tetragnathoids*". Modificado de Kallal et al. (2018).

La familia Tetragnathidae se distribuye en todo el mundo y es particularmente diversa en ecosistemas tropicales y subtropicales (Álvarez-Padilla y Hormiga, 2011) y se estima que data del Cretácico temprano (135 mda) (Selden, 1990; Dimitrov et al., 2012). Se han descrito 1,030 especies de esta familia agrupadas en 48 géneros (WSC, 2018). Tetragnathidae se caracteriza por la construcción de telarañas de forma *típica* orbicular con un marco radial que soporta una espiral de seda pegajosa para atrapar presas (Fig. 5A). Otras familias como Araneidae y Symphytognathidae construyen

telarañas similares. Presentan las patas I y II más largas que las III y IV (Fig. 5B) y exhiben comportamientos de construcción de telarañas diferentes a otros familias de Araneoidea, por ejemplo, la mayoría de los tetragnátidos usan el segundo par de patas para colocar la espiral pegajosa en la telaraña.

Tetragnathidae difiere de otras familias de Araneoidea por los evidentes quelíceros robustos y armados con dientes (Fig. 5C), por la reducción de fúsulas aciniformes en la superficie posterior de las hileras posteriores medias (Fig. 5D), por el epigino aplanado de las hembras (Fig. 5E), porque el pedipalpo de los machos presenta sólo una apófisis tegular simple y porque por lo general el conductor y el émbolo se enrollan juntos (Fig. 5F) (Levi, 1986; Álvarez-Padilla y Hormiga, 2011).

Figura 5. Caracteres diagnósticos de Tetragnathidae. Modificado de Álvarez-Padilla y Hormiga (2011).

Las relaciones filogenéticas dentro de Tetragnathidae y su posición dentro de Araneoidea han sido objeto de algunos estudios y con el incremento de la muestra taxonómica y métodos cada vez más sofisticados, actualmente se ha alcanzado estabilidad para cuatro subfamilias combinando datos morfológicos y moleculares: Tetragnathinae, Leucauginae, Nanometinae y Metainae (Levi, 1980; Hormiga et al., 1995; Álvarez-Padilla, 2007; Álvarez-Padilla et al., 2009; Álvarez-Padilla y Hormiga 2011; Hormiga, 2017; Kallal y Hormiga, 2018). Desafortunadamente, las relaciones de algunos géneros carecen de soporte y son muy sensibles a variación de parámetros en los análisis filogenéticos; dentro de estos géneros encontramos a *Chrysometa*. Aun más resaltante, los géneros *Allende, Azilia* y

Chrysometa no han podido estabilizarse dentro de ninguna subfamilia y sus relaciones causan bajo soporte e inestabilidad en la topología resultante (Álvarez-Padilla et al., 2009; Dimitrov y Hormiga, 2011; Hormiga, 2017; Kallal y Hormiga, 2018) (Fig. 6).

Figura 6. Subfamilias de Tetragnathidae. Modificado de Kallal y Hormiga (2018).

Chrysometa es un género de arañas neotropicales de tamaño medio, endémico de América, distribuido principalmente en bosques tropicales y subtropicales desde México hasta Chile (Levi, 1986; Nogueira et al., 2011; Simó et al., 2016, WSC, 2018). Este género es el tercero más diverso de la familia con 146 especies descritas (Levi, 1986; WSC, 2018) y se puede distinguir porque presenta el abdomen cubierto con parches de guanina plateados (Fig. 7B). Aunque esta característica también es compartida por otros géneros neotropicales como *Leucauge* (White 1841), *Mecynometa* Simon 1894 y algunas especies de *Tetragnatha* Latreille 1804 (Álvarez-Padilla y Hormiga, 2011: figs. 1A, 1E, 2A),

Chrysometa tiene un sistema genital femenino entelégino (Fig. 78C, D) y su fémur carece de tricobotrias. El habitus de algunas especies de *Chrysometa* también se puede confundir con miembros del género *Metabus* O. Pickard-Cambridge, 1899 y *Azilia* Keyserling 1881 (Álvarez-Padilla y Hormiga, 2011: fig. 12B), pero estos dos géneros difieren porque tejen telarañas horizontales completas y poseen ojos laterales en un solo tubérculo, además de que *Chrysometa* se asocia mayormente a cuerpos de agua y *Azilia* a contrafuertes de árboles (Levi, 1980: placa 8; Álvarez-Padilla, 2007: fig. 10D). Las telarañas de *Chrysometa* tienen un sector abierto sin espiral pegajosa en la parte superior (Fig. 7A), similar a los de *Allende* (Levi, 1986: placa 1, Álvarez-Padilla, 2007: fig. 10A); pero como la mayoría de los tetragnátidos y al contrario de *Allende*, *Chrysometa* presenta un epigino plano (Fig. 7C) y carece de dentículos en los procesos cimbiales (Fig. 7E) (Álvarez-Padilla, 2007: figs. 5B–C).

Figura 7. Caracteres diagnósticos de *Chrysometa*. Modificado de Álvarez-Padilla y Hormiga (2011). CD: ducto de copulación; CEBP: proceso ectobasal del cimbio; CEMP: proceso ectomedio del cimbio; FD: ducto de fertilización; GO: abertura genital; P: paracimbio; S: espermateca.

El cimbio de *Chrysometa* tiene un proceso ectobasal y ectomedio homólogos a los de *Meta* C. L. Koch1836, *Metellina* Chamberlin e Ivie 1941 y *Dolichognatha* O. Pickard-Cambridge 1869, entre otros géneros. Sin embargo, la presencia de una articulación membranosa del paracimbio y la presencia de apófisis separan a *Chrysometa* de estos géneros (Fig. 7E). *Meta* y *Metellina* presentan paracimbios no articulados y sin apófisis. Las características únicas que diferencían a *Chrysometa* del resto de los géneros de Tetragnathidae son: placa epiginal con un septo entre las aberturas genitales (Fig. 7C) que en la mayoría de las especies tiene una forma de T invertida (Levi, 1986: figs. 13–15), paracimbio con varias apófisis ubicadas en ambos extremos (Fig. 7E) (Levi 1986: figs. 16–17) y un proceso basal embólico que se enrolla junto el émbolo (Álvarez-Padilla y Hormiga, 2011: figs. 22A–B).

La posición del género *Chrysometa* dentro de la familia aún no está definida. En la mayoría de los análisis filogenéticos las relaciones de los géneros problemáticos, incluido *Chrysometa*, presentan bajo soporte y cambian su posición dependiendo de los parámetros utilizados para el análisis. La posición de *Chrysometa* con otros géneros sigue siendo inestable, pero análisis morfológicos y moleculares han sugerido a *Allende* (Fig. 8) (Álvarez-Padilla, 2007; Álvarez-Padilla et al., 2009; Dimitrov y Hormiga, 2011) o al grupo *Azilia+Allende*, como grupo hermano pero con bajo soporte (Kallal y Hormiga, 2018; Salgueiro-Sepúlveda y Álvarez-Padilla, 2018); estos géneros se agrupan cerca de la subfamilia Nanometinae, un clado más grande y estable. Sin embargo, la monofilia de *Chrysometa* se ha recuperado en todos los análisis (Kallal y Hormiga, 2018).

Figura 8. Hipótesis filogenéticas basadas en A) morfología y B) moléculas donde el género *Allende* se obtuvo como grupo hermano del género *Chrysometa*. Modificado de Álvarez-Padilla et al. (2009).

En estos estudios Álvarez-Padilla (2007) incluyó seis especies de Chrysometa y como resultado encontró tres sinapomorfías para este género referentes al inicio y orientación de los conductos de fertilización. Recientemente, Salgueiro-Sepúlveda y Álvarez-Padilla (2018) construyeron una hipótesis de relación filogenética utilizando como criterio de optimización Máxima Verosimilitud para establecer la identidad taxonómica y el emparejamiento de sexos de siete especies nuevas de Chrysometa utilizando un fragmento del gen mitocondrial citocromo oxidasa subunidad I (COI), en la cual se recuperó la monofilia del género. Aunque se obtuvieron valores de Bootstrap bajos para dicha relación se sugirió que esto se debe a que sólo se analizó un fragmento de un gen y a que se incluyó en el análisis una muestra taxonómica subóptima ya que el diseño experimental tenía como objetivo separar especies y asociar sexos. A pesar de lo anterior, hasta la fecha esta ha sido la muestra taxonómica del género más extensa que se ha utilizado para un análisis filogenético, pero se sugiere que es necesario incluir los genes tradicionalmente usados en filogenias de arañas (Rix et al., 2008; Blackledge et al., 2009; Miller et al., 2010; Lopardo et al., 2011; Agnarsson et al., 2012; Dimitrov et al., 2012; Miller et al., 2012; Wood et al., 2012; Bayer y Schönhofer, 2013; Dimitrov et al., 2013; Moradmand et al., 2014; Lopardo y Hormiga, 2015; Polotow et al., 2015; Dimitrov et al., 2017; Wheeler et al., 2017; Kallal y Hormiga, 2018) y una muestra de especies de Chrysometa más grande para representar adecuadamente la diversidad del género. Lo anterior con miras de entender mejor la evolución del género, corroborar su monofilia y sus relaciones dentro de la familia y cuál fue su origen en el continente.

Dada la singularidad anatomía de *Chrysometa* en cuanto a su genitalia, por ejemplo, el enrollamiento del émbolo y su apófisis basal, el arreglo de las apófisis paracimbiales y la dirección de los conductos de fertilización a lo largo de la longitud de las espermatecas (Álvarez-Padilla y Hormiga, 2011: figs. 21C–D; 22B–D; Salgueiro-Sepúlveda y Álvarez-Padilla, 2018), se prevee que los análisis filogenéticos puedan recuperar monofilético a este género. Además, el generar una hipótesis filogenética robusta para las especies de *Chrysometa* sería el siguiente paso en la investigación del género, proporcionando un marco evolutivo en el cuál se someta a prueba la hipótesis de evolución de su anatomía y comportamiento y permita la delimitación y definición de muchas nuevas especies (Salgueiro-Sepúlveda y Álvarez-Padilla, 2018).

El conocimiento actual de la diversidad y distribución del género *Chrysometa* se debe a la única revisión del género, donde se describieron 94 especies nuevas para América, se aportó una clave de determinación para 127 especies y se revisaron todos los nombres y la literatura previa a 1985 (Levi,

1986), por lo que es la contribución taxonómica más importante para la familia. Posterior a la revisión del Dr. Levi, se han descrito 19 especies adicionales: tres especies para Chile (Álvarez-Padilla, 2007), una especie para Uruguay (Simó et al., 2016), ocho especies para Brasil (Nogueira et al., 2011) y siete especies para México (Salgueiro-Sepúlveda y Álvarez-Padilla, 2018).

A la fecha se conocen 15 especies de este género en el país (WSC, 2018), de las cuales ocho se incluyen en la revisión de Levi (1986). En esta revisión, se menciona que existen más especies por describir en colecciones que no fueron incluidas. Álvarez-Padilla (com. pers.) encontró que existen especímenes de *Chrysometa* para México depositados en el AMNH y CAS que no fueron incluidas en la revisión de Levi (1986). Finalmente, se identificaron once morfoespecies de *Chrysometa* para encinares del Pico de Orizaba de las que siete representan especies nuevas (Salgueiro-Sepúlveda y Álvarez-Padilla, 2018). Estas morfoespecies son parte del primer inventario estandarizado de arañas en encinares para México (Álvarez-Padilla et al., in prep.). Los únicos registros de *Chrysometa* que se conocían para el país, previos a la revisión de Levi (1986) y a las especies recientemente publicadas era el primer catálogo de Araneae para México (Hoffmann, 1976). Hoffmann (1976) reportó 1,598 especies y documentó su distribución geográfica a nivel estatal y reportó 42 especies correspondientes a la familia Tetragnathidae, de las cuales sólo dos especies pertenecen a *Chrysometa*.

El bajo número de especies de *Chrysometa* descritas para el país refleja la falta de estudios faunísticos e inventarios enfocados a arañas y estudios taxonómicos en estos ecosistemas, lo cual genera un desconocimiento de la diversidad; por ejemplo, en cuatro hectáreas se encontraron siete especies nuevas de *Chrysometa* (Salgueiro-Sepúlveda y Álvarez-Padilla, 2008). El presente proyecto incrementará y actualizará el conocimiento de las arañas del género *Chrysometa* para México y América. Para esto se revisaron colecciones biológicas nacionales e internacionales con el objeto de describir especies nuevas y ampliar los registros geográficos para las especies ya descritas. Además se realizó un análisis filogenético basado en morfología y datos moleculares para poner a prueba la monofilia del género *Chrysometa*, obtener la posición de las especies mexicanas dentro del género, para buscar la circunscripción del género dentro de la familia y el posible origen de *Chrysometa* en el continente Americano.

14

OBJETIVOS

General:

Hacer una revisión taxonómica del género Chrysometa (Araneae, Tetragnathidae) para México.

Particulares:

- 1. Revisar las colecciones nacionales e internacionales donde estén depositados especímenes del género *Chrysometa*.
- 2. Describir las especies nuevas para México que se encuentren en estas colecciones y redescribir las especies Mexicanas de *Chrysometa* que lo requieran.
- 3. Actualizar la distribución geográfica de las especies de Chrysometa para México.
- 4. Realizar un análisis filogenético basado en morfología para someter a prueba la monofilia de las especies Mexicanas de *Chrysometa*.
- 5. Realizar un análisis filogenético basado en datos moleculares para investigar la posición filogenética de *Chrysometa* dentro de Tetragnathidae.

MATERIALES Y MÉTODOS

Trabajo taxonómico:

Se visitaron y revisaron las colecciones nacionales e internacionales donde están depositados especímenes del género *Chrysometa*.

Nacionales:

- Laboratorio de Acarología de la Facultad de Ciencias de la UNAM.
- Laboratorio de Aracnología de la Facultad de Ciencias de la UNAM.
- CNAN-IBUNAM: Colección Nacional de Arácnidos del Instituto de Biología de la UNAM.

Internacionales:

- AMNH: Colección Arachnida: Araneae del American Museum of Natural History, Manhattan, Nueva York.
- MCZ: Colección Arachnida y Myriapoda del Museum of Comparative Zoology de la Universidad de Harvard, Cambridge, Massachusetts.
- NMNH:Colección USNM Arachnida del National Museum of Natural History del Smithsonian Institution, Washington, D.C.
- GWU: Laboratorio del Dr. Gustavo Hormiga de la George Washington University, Washington, D. C.

El trabajo de laboratorio para los especímenes encontrados en las colecciones nacionales se hizo en el laboratorio de Aracnología de la Facultad de Ciencias de la UNAM. Los especímenes de colecciones internacionales se analizaron *in situ*.

Las especies nuevas y las especies ya descritas que así lo requirieron se documentaron con imágenes de fotografía digital compuesta e ilustraciones. Para las especies nuevas de las colecciones nacionales, la genitalia interna de las hembras fue disectada usando el protocolo de Álvarez-Padilla y Hormiga (2007) y observadas usando preparaciones semipermanentes siguiendo a Grandjean (1949) y Coddington (1983). La anatomía externa se observó con un microscopio estereoscópico Nikon SMZ1000 y la genitalia aclarada con un Nikon E200. Las fotografías se tomaron con una cámara Nikon DS-Fi2 y capturadas con el programa NIS Elements 4.0. Los montajes se hicieron mediante el programa Helicon Focus (v.5.3.14). Las ilustraciones se realizaron con el respectivo tubo de dibujo para cada microscopio. Las imágenes de microscopía electrónica se tomaron con un microscopio JEOL JSM-

5310LV usando el protocolo estándar en el Laboratorio de Microscopía Electrónica de Barrido de la Facultad de Ciencias, UNAM. Las medidas usadas en el texto se tomaron con un ocular micrométrico y están expresadas en milímetros.

Para las especies nuevas de las colecciones internacionales, los especímenes fueron examinados utilizando un estereomicroscopio Leica MZ16A o un M205. Las fotografías fueron obtenidas utilizando un microscopio digital Leica DFC500 y DFC425. Las imágenes digitales fueron tomadas a diferentes distancias focales con el paquete Leica Application Suite (LAS) v.3.8 y se ensamblaron usando el paquete de software Helicon Focus (v.6.7.1).

Todas las imágenes de alta resolución están disponibles página en la www.unamfcaracnolab.com (Álvarez-Padilla Laboratory, 2018). El material tipo de las especies nuevas encontradas en las colecciones nacionales está depositado en la Colección Nacional de Arácnidos (CNAN) en el Instituto de Biología (IBUNAM) y para las especies nuevas encontradas en las colecciones internacionales, los tipos se depositarán en sus respectivos museos una vez se finalice su descripción y publicación.

Matriz morfológica

Para los datos morfológicos se seleccionaron los caracteres relevantes para *Chrysometa* en la matriz de Álvarez-Padilla y Hormiga (2011). Además se codificaron todos los caracteres posibles tomando en cuenta la disposición de especímenes y los caracteres que se pudieron codificar de las descripciones e ilustraciones de Levi (1986).

La matriz de datos morfológica incluyó un total de 70 taxa (Apéndice 1). La familia Tetragnathidae estuvo representada por 48 taxa, incluyendo 23 especies de *Chrysometa* como grupo interno. La muestra taxonómica de los tetragnátidos utilizados como grupo externo se basó en Hormiga et al. (1995) y Álvarez-Padilla (2007). Las especies tipo se escogieron para representar con un criterio taxonómico los géneros de tetragnátidos incluidos en el análisis (Yeates, 1995; Prendini, 2000). La superfamilia Araneoidea estuvo representada por 15 aranéidos, *Linyphia triangularis* (Clerck, 1757) (Linyphiidae), *Nesticus cellulanus* (Clerck, 1757) (Nesticidae), *Epeirotypus* brevipes O. P.- Cambridge, 1894 (Theridiosomatidae), *Parasteatoda tepidariorum* (Koch, 1841) y *Asagena americana* (Emerton, 1882) (Theridiidae). La selección de los representantes de Araneoidea se basó en la hipótesis de Griswold et al. (1998) y Lopardo y Hormiga (2008). Se incluyó a *Uloborus glomosus* (Walckenaer, 1841)

representando a la familia Uloboridae y Oncodamus *decipiens* Harvey, 1995 (Nicodamidae) como raíz. La familia Nicodamidae, agrupada en la superfamilia Nicodamoidea, se usó como raíz debido a que Nicodamoidea se posiciona como grupo hermano de Araneoidea (Wheeler et al., 2017; Fernández et al., 2018). La matriz morfológica constó de 223 caracteres, 181 binarios y 42 multiestados no ordenados, de los cuales dos fueron polimórficos (Apéndice 2). Se extrajeron 213 caracteres de Álvarez-Padilla y Hormiga (2011), diez caracteres fueron adicionales y cuatro modificados. Los sistemas de caracteres usados comprendieron: 66 del pedipalpo del macho, 32 del sistema reproductivo femenino, 43 del cefalotórax de ambos sexos, 28 de comportamiento, 22 de las hileras, 15 del abdomen y 17 de las patas. Los caracteres de comportamiento incluidos en este trabajo, son los que se han usado previamente en sistemática de Tetragnathidae (Eberhard, 1982; Hormiga et al., 1995; Griswold et al., 1998; Kuntner et al., 2008, entre otros).

Matriz molecular

Para los datos moleculares se amplificaron y secuenciaron seis fragmentos de genes por taxón, tres nucleares: 18S de ARNr (1,800 pb), 28S de ARNr (2,500 pb) e Histona H3 (327 pb) y tres mitocondriales: 12S de ARNr (340 pb), 16S de ARNr (450 pb) y Citocromo c Oxidasa I (COI) (657 pb) (Alvarez-Padilla et al., 2009). Las matrices de datos se organizaron en el programa Mesquite versión 2.75 (Maddison y Maddison, 2011).

La matriz molecular incluyó 218 taxa (Apéndice 3) y 6,688 pares de bases. Para esta matriz se utilizaron 698 fragmentos de los genes 12S, 16S, 18S, 28S, COI y H3 disponibles en Genbank, además de 73 fragmentos secuenciados en este estudio para las especies de *Chrysometa*. La muestra taxonómica utilizada se basó en la delimitación del clado "*Tetragnathoids*" y constó exclusivamente de representantes de Araneoidea. La familia Tetragnathidae se representó por 119 taxa, de los cuáles se incluyeron 19 especies de *Chrysometa* como grupo interno. El resto de "*tetragnathoids*" estuvieron representados por 24 especies de la familia Malkaridae, 28 especies de la familia Mimetidae y nueve especies de la familia Arkyidae. Se incluyeron también las familias Mysmenidae con 20 especies, y se enraizó el cladograma con la familia Anapidae, representada por las especies *Maxanapis bartle* (COI, 16S, 18S y 28S), *Anapis* sp. (12S) y *Anapisona kethleyi* (H3). La selección de Mysmenidae y Anapidae fue basada en la hipótesis de Fernández et al. (2018), en la cual se obtuvo a Mysmenidae como grupo

hermano del clado "*Tetragnathoids*" y a Anapidae como el grupo más ancestral dentro de la superfamilia Araneoidea.

Inicialmente, se llevó a cabo una búsqueda en el GenBank para localizar todos los taxa para todas las especies del clado "*Tetragnathoids*". En esta primera etapa se obtuvieron aproximadamente 5,000 fragmentos de los genes mencionados con aproximadamente 400 especies disponibles hasta agosto del 2018. De esta muestra taxonómica se seleccionaron las 218 especies utilizadas en la matriz final, tomando en cuenta los siguientes cuatro criterios: (1) calidad de los cromatogramas evaluada con Geneious (versión 10) (Kearse et al., 2012), (2) superposición entre las secuencias alineadas con el programa MAFFT, (3) cobertura de por lo menos dos genes de los seis utilizados e (4) importancia taxonómica de la especie. Sin embargo, debido a que el objetivo de este estudio fue probar la monofilia del género *Chrysometa* y la ubicación de sus especies mexicanas dentro del género, todas las especies de *Chrysometa* fueron incluidas a pesar de que algunas especies sólo contaban con el gen COI.

Trabajo molecular

Se usaron una o dos patas de cada ejemplar para la extracción de ADN y el resto se del cuerpo se designó como voucher. El ADN genómico total se extrajo con el kit Qiagen DNeasy Tissue y se purificó usando el kit de purificación de PCR QIAquick, siguiendo las especificaciones del fabricante. El ADN purificado se utilizó para el protocolo de reacción en cadena de la polimerasa (PCR) para amplificar los fragmentos de los genes usando los siguientes pares de primers. **COI:** LCO1490-HCO2198 (Folmer et al., 1994), VF1d-VR1d (Ivanova et al., 2006), J1751-N2191 (Simon et al., 1991);**18S:**18Srd1a-18Sb y 18Sa-18Srd5b (Whiting et al., 1997);**28S**: 28Srd4.8a-28Srd7b1 (Schwendinger y Giribet, 2005); **H3:** H3aF y H3aR (Colgan et al., 1998); **12S:** 12Sai-12Sbi (Kocher et al., 1989); **16S**: 16Sar-16Sb (Xiong y Kocher, 1991).

La amplificación del fragmento del COI se realizó en el Laboratorio de Biología Molecular del departamento de Zoología-LANABIO del Instituto de Biología de la UNAM. El mix de reacción incluyó 3 µL de templado de ADN, 0.25 µL de cada primer, 0.5 µL de MgCl2, 0.12 µL de polimerasa Taq y 3.5 µL de buffer 5x (Mg con ddNTPs). El protocolo de amplificación de la PCR se hizo con los siguientes pasos: un paso inicial de desnaturalización durante 3 min a 94 °C seguido de 35 ciclos que incluyen desnaturalización a 94 °C durante 45s, alineación durante 1 min a 47 °C y extensión a 72 °C durante 1 min, con un paso de extensión final a 72 °C durante 7 min. Los productos de la PCR se visualizaron en

gel de agarosa al 1.5% mediante electroforesis. La secuenciación se realizó con los mismos pares de primers utilizados para la amplificación en el Laboratorio de Secuenciación Genómica de la Biodiversidad y la Salud del IBUNAM. Las secuencias se editaron utilizando Geneious (versión 10) (Kearse et al., 2012).

La amplificación y secuenciación del resto de genes se realizó en el laboratorio del Dr. Gustavo Hormiga en la Universidad George Washington. El mix de reacción incluyó incluyó 2 µL de templado de ADN, 1 µL de cada primer, 2 µL de MgCl2, 0.125 µL de polimerasa Taq, 5 µL de buffer 5x, 0.5 µL y 13.4 de agua. El protocolo de amplificación de la PCR se hizo con los siguientes pasos: un paso inicial de desnaturalización durante 3 min a 94 °C seguido de 35 ciclos que incluyen desnaturalización a 94 °C durante 30s, alineación durante 1 min a 45 °C y extensión a 72 °C durante 45s, con un paso de extensión final a 72 °C durante 7 min.

Análisis filogenético

Morfología

El análisis de los datos morfológicos se realizó usando el criterio de parsimonia con pesos iguales en el programa TNT v.1.1 (Goloboff et al., 2003). Para la búsqueda de árboles se utilizaron las siguientes estrategias: random seed 1, 5,000 réplicas de adición aleatoria de taxa RAS (random stepwise addition of taxa) usando el algoritmo TBR (tree bisection and reconnection) y reteniendo 100 árboles por réplica.). Se utilizó el consenso estricto para colapsar los árboles generados. Los valores de soporte de Bootstrap se calcularon realizando 1,000 repeticiones, cada repetición con 100 RAS usando el algoritmo TBR y guardando 50 árboles por réplica.

Moléculas

Para los datos moleculares, las secuencias se alinearon con el programa MAFFT: programa para alineamientos de secuencias múltiples v.6.233 (Katoh y Toh, 2010) usando la configuración estándar. Los alineamientos generados se analizaron bajo los criterios de optimización de Máxima Verosimilitud con el programa RAxLM v.8.2.10 (Stamatakis, 2014) en el CIPRES Science Gateway v.3.3 usando el modelo de evolución GTRGAMMA y 1,000 replicas de Bootstrap y el criterio de optimización Bayesiano con el programa Mr. Bayes v.3.2.6 (Ronquist et al., 2013) en el CIPRES Science

Gateway v.3.3. Para el análisis Bayesiano se seleccionaron los mejores modelos de evolución molecular para cada una de los genes usados a partir del valor obtenido del criterio de información Akaike (AIC) en el programa jModelTest v.2.1.6 (Darriba et al., 2012) (Apéndice 4) y se usaron los siguientes parámetros: nruns=2, nchains=4, nst=6, nucmodel=4x4, rates=inv y gamma (dependiendo el modelo de evolución), ngen=1,000,000, burningfrac=0.25 y consenso majority rule=50%.

Abreviaciones usadas en el texto y figuras

La nomenclatura anatómica y el formato de descripción de especies se hizo de acuerdo a Levi (1986), Álvarez-Padilla (2007) y Nogueira et al. (2011). Las abreviaciones usadas en el texto y figuras son: ALE-ojos laterales anteriores, AME-ojos anteriores medios, CD-conducto de copulación, CEBP-proceso ectobasal del cimbio, CEMP-proceso ectomedio del cimbio, CO-abertura de copulación, E-émbolo, EBA-apófisis basal embólica, FD-conducto de fertilización, LP-placa lateral, LwP-punta inferior del paracimbio, ML-lóbulo medio, PM-placa media, P-paracimbio, PLE-ojos laterales posteriores, PME-ojos posteriores medios, S-espermateca, St-septo, Tb-barra transversa, UpP-punta superior del paracimbio.

CONSIDERACIONES

Los resultados del presente proyecto se organizaron en dos secciones diferentes. La primera sección incluye los resultados de las revisiones de las colecciones y la descripción de especies nuevas (objetivos particulares 1, 2 y 3) y la segunda sección incluye los resultados de los análisis filogenéticos (objetivos particulares 4 y 5).

SECCIÓN I: se presenta el artículo correspondiente a la descripción de especies nuevas de las colecciones nacionales ya publicado (el formato y la numeración de las figuras es independiente al del resto del texto) y las láminas y descripciones de las especies nuevas de las colecciones internacionales (artículo aún no publicado debido a que las ilustraciones están en proceso).

SECCIÓN II: se presentan los resultados de los análisis de la matriz morfológica (parsimonia) y de la matriz molecular (Máxima Verosimilitud y Bayesiano).

Posteriormente se presentan la discusión y conclusiones del trabajo.

SECCIÓN I

RESULTADOS

Colecciones nacionales

Se revisaron un total de 399 ejemplares adultos de *Chrysometa* encontrados en las colecciones nacionales. Se identificaron diez morfoespecies, dos de las cuales ya estaban descritas para el país: *C. brevipes* Levi, 1986 y *C. chipinque* Levi, 1986. De las ochos morfoespecies restantes siete resultaron especies nuevas y la última es la descripción correcta de la hembra de *C. chipinque* (ya descritas y publicadas, se incluye el manuscrito) (Tabla 1). La identidad de las especies y el emparejamiento de sexos se evaluaron con un fragmento de COI.

Los nombres científicos presentados a continuación tienen validez taxonómica porque ya están publicados.

Tabla 1. Lista de especies nuevas de Chrysometa encontradas en las colecciones nacionales.

Ya descritas		Nuevas	
C. alboguttata C. brevipes C. chipinque C. flava C. palenque C. poas C. puebla C. rincon	O. P. Cambridge, 1889 O. P. Cambridge, 1889 Levi, 1986 O. P. Cambridge, 1889 Levi, 1986 Levi, 1986 Levi, 1986 Levi, 1986	C.citlaltepetl C.triangulosa C.sagicuta C.rosarium C. atotonilco C. xamaticpac C. puya	Salgueiro-Sepúlveda y Álvarez-Padilla, 2018 Salgueiro-Sepúlveda y Álvarez-Padilla, 2018

A continuación se presenta el artículo descriptivo publicado en la revista zootaxa: https://doi.org/10.11646/zootaxa.4450.3.1
New species of the orb-weaving spider genus *Chrysometa* (Araneae, Tetragnathidae) from oak forests near of the Pico de Orizaba National Park (Veracruz, Mexico)

F. JAVIER SALGUEIRO-SEPÚLVEDA¹ & FERNANDO ÁLVAREZ-PADILLA^{1,2}

¹Laboratorio de Aracnología, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Distrito Federal, México Ciudad Universitaria, México D. F. Del. Coyoacán, C.P. 04510, México.

E-mail: fjsalgueiro39@gmail.com

² Corresponding author. Email: fap@ciencias.unam.mx

Abstract

Seven new species of the genus *Chrysometa* Simon are described: *C. citlaltepetl* n. sp., *C. triangulosa* n. sp., *C. rosarium* n. sp., *C. atotonilco* n. sp., *C. xamaticpac* n. sp. *C. puya* n. sp. and *C. sagicuta* n. sp. Species identities were evaluated and sexes for each species matched with a fragment of the cytochrome c oxidase subunit I. These data were analyzed with Máxima Verosimilitud and the resulting cladograms separated all species with high support values (95–100) and an average distance of 0.093 %. The genetic signal also agreed with the diagnostic morphological features used to separate these taxa. The sex matching results discovered that the female of *C. chipinque* Levi actually belongs to *C. puya* n. sp.; the correct female of *C. chipinque* is here described for the first time. A redescription of the male of *C. chipinque* and the female of *C. puya* is also provided. All species were collected as part of a faunistic inventory from two oak forests near Pico de Orizaba Volcano National Park. A total of 399 adult specimens, 209 females and 195 males, were sorted and identified. Most individuals were collected from medium height vegetation by beating trays and from high vegetation by direct col- lecting at night. High resolution images for all species are available at www.unamfcaracnolab.com. Finally, the functional anatomy of the epigynum for the species described here is discussed.

Key words: taxonomy, Neotropical, COI, DNA barcoding, Species identities, diagnostic morphology

Introduction

Chrysometa Simon, 1894 is a genus of mid size neotropical orb-weaving spiders endemic to America, distributed mainly in tropical and subtropical forests from Mexico to Chile (Levi 1986; Nogueira *et al.* 2011; Simó & Laborda 2016, World Spider Catalog 2017). This genus was revised by Levi (1986), describing the majority of known species, mentioning that several new taxa remain to be discovered and that the species richness increases at higher elevations. *Chrysometa* is the third most diverse genus of the family Tetragnathidae with 139 described species (World Spider Catalog 2017) and can be distinguished by the abdomen covered with silvery guanine patches, this feature is also shared by other Neotropical genera such as *Leucauge* (White 1841), *Mecynometa* Simon 1894 and some *Tetragnatha* Latreille 1804 species (Álvarez-Padilla and Hormiga 2011: figs. 1A, 1E, 2A); however, unlike these genera *Chrysometa* has an entelegynae female genital system and their femora lack trichobothria. The habitus of some *Chrysometa* species can also be confused with members of the genus *Metabus* O. Pickard-Cambridge, 1899 and *Azilia* Keyserling 1881 (Álvarez-Padilla & Hormiga 2011: figs. 12B); however, these two genera differ by having

horizontal webs with a complete orb (Levi 1980: plate 8; Álvarez-Padilla 2007: fig. 10D) and the lateral eyes on a single tubercle. The webs of *Chrysometa* have an open sector at the top without sticky spiral, similar to those of *Allende* (Levi 1986: plate 1, Álvarez-Padilla 2007: fig: 10A); but like most tetragnathids and unlike *Allende Chrysometa* has a flat epigynum and lacks cymbial processes denticles (Álvarez-Padilla 2007: figs 5B–C). The cymbium of *Chrysometa* has an ectobasal and an ectomedian process homologous to those of *Meta* C. L. Koch 1836, *Metellina* Chamberlin & Ivie 1941 and *Dolichognatha* O. Pickard-Cambridge 1869 (among other genera); however, the membranous paracymbium articulation separates *Chrysometa* from these genera with homologous processes. Unique features further separate *Chrysometa* are: epyginal plate with a septum between the genital openings that in most species has an inverted T-shape (Levi 1986: figs. 13–15), paracymbium with several apophyses located at both ends (Levi 1986: figs. 16–17) and an embolic basal process that coils with the embolus (Álvarez-Padilla & Hormiga 2011: fig: 22A–B).

The only phylogenetic analysis including this genus included six species and no molecular data, finding *Chrysometa* monophyletic and supported by three synapomorphies concerning the origin and orientation of the fertilization ducts (Álvarez-Padilla 2007). This study also found *Allende* Álvarez-Padilla 2007 as the sister taxon to *Chrysometa*, but the author mentioned that these results needed to be tested with a larger taxonomic sample (Álvarez-Padilla 2007). Recent studies that incorporated molecular data have found that there is considerable instability regarding the *Chrysometa* sister group (Dimitrov & Hormiga 2011).

Only eight species of this genus have been described from Mexico (Levi 1986; World Spider Catalog 2017). This paper describes seven new species of *Chrysometa* from two oak forests near the Pico de Orizaba National Park. In addition, the description of the correct female of *C. chipinque* Levi, 1986 and a more detailed description of the male of *C. chipinque* and the female of *C. puya* are provided. The species identities and sex matching for each species were evaluated using a fragment of the protein-coding cytochrome c oxidase subunit I (COI).

DNA barcoding in animals is a method for molecular species identification (Hebert *et al.* 2003) and species delimitation (Pons *et al.* 2006; Cummings *et al.* 2008; Masters *et al.* 2011) using a short region of COI. Several studies with spiders have used COI as a DNA barcode to identify, delimit and investigate phylogenetic relationships among species. These studies have shown that for spiders, COI works adequately because its variation among populations is lower than between closely related species (Barrett & Hebert 2005; Astrin *et al.* 2006; Blagoev *et al.* 2009; Blagoev *et al.* 2013; Hamilton *et al.* 2014; Lopardo & Uhl 2014; Castalanelli *et al.* 2014; Blagoev *et al.* 2016).

The spider fauna in oak forests has been studied mostly in European ecosystems (Urones *et al.* 1990; Espuny *et al.* 1993; Koponen 1996; Cardoso *et al.* 2008a, b) and in America the only spider inventory was done in fragmented patches of this vegetation community (Barnes 1953). It is important to mention that Mexico is ranked the second in diversity of oaks, having 25% of the species of *Quercus* L. (1753) described (Rzedowski 1978; Gonzalez 1993; Valencia 2004; Nixon 2006), of which 47 are endemic (Valencia 2004). These *Quercus* species are distributed mainly in the "Zona de Transición Mexicana" (ZTM), which belongs to the Mesoamerican biodiversity hotspot, presenting great endemism and diverse ecosystems (Myers *et al.* 2000; Morrone 2006). Pico de Orizaba National Park is found in the eastern portion of the ZTM and is a protected area only for forests of *Pinus* L. (1753) and *Abies* Mill. (1754) (CONANP 2015), not for *Quercus*.

The seven species of *Chrysometa* described here are part of the first spider inventory in *Quercus* forests for Mexico (Álvarez-Padilla *et al.* in prep.). To date there are 15 species of *Chrysometa* from this country, including the seven taxa described here and the eight species already known (Levi 1986, World Spider Catalog 2017). It is important to mention that those newly described here represent almost 50% of

all species of *Chrysometa* described for Mexico. We hope that this and similar studies that document the biodiversity of this ecosystem will be taken into account for protecting Mexican oak forests.

Material and methods

All species were collected in a spider inventory from two oak forests fragments approximately 15 km away from Pico de Orizaba Volcano, Veracruz, Mexico. Both forest fragments were inside Calcahualco municipality in the towns of Atotonilco and Xamaticpac.Three expeditions were conducted during a one year period: from May 2012 to February 2013 in Atotonilco and from April 2013 to February 2014 in Xamaticpac forest fragments. Two one- hectare plots were established per locality and sampled using standardized protocols (Coddington *et al.* 1991; Scharff *et al.* 2003). The central coordinates and elevations from the Atotonilco forest fragment are: Plot I 19° 08' 30.2" N, 97° 12' 21.5" W at 2,238 m.; Plot II 19° 08' 17.4" N, 97° 12' 16.2" W at 2,300 m., and from the Xamaticpac forest fragment: Plot I 19° 07' 32.5" N, 97° 4' 3.2" W at 1,700 m. (Fig. 19).

Taxonomic methods. Specimens were collected and preserved in 96% ethanol and processed in the Laboratorio de Aracnología of the Facultad de Ciencias, UNAM. The internal genitalia of the females were dissected and digested using the protocol of Álvarez-Padilla & Hormiga (2007) and observed using semipermanent slide preparations following Grandjean (1949) and Coddington (1983). External anatomy was observed with a Nikon SMZ1000 Stereomicroscope and cleared genitalia with a Nikon E200 Microscope. Photographs were taken with a Nikon DS-Fi2 camera and captured using Nikon software (NIS Elements 4.0). The photo-montages were done with Helicon Focus (v. 5.3.14). The illustrations were done with the respective drawing tubes for both microscopes. Scanning Electron Microscope images were taken with a JEOL JSM-5310LV scanning microscope using standard protocols in the Laboratorio de Microscopía Electrónica de Barrido of the Facultad de Ciencias, UNAM. Measurements used in the text were taken with a micrometric ocular and are expressed in millimeters. All high resolution images are available at the website www.unamfcaracnolab.com (Álvarez-Padilla Laboratory 2017). All type material is deposited in the Colección Nacional de Arácnidos (CNAN) at the Instituto de Biología (IBUNAM).

Anatomical nomenclature and the description format follow Levi (1986), Álvarez-Padilla (2007) and Nogueira *et al.* (2011). Abbreviations used in text and figures: ALE-anterior lateral eyes, AME-anterior median eyes, CD- copulatory duct, CEBP-cymbial ectobasal process, CEMP-Cymbial ectomedian process, CO-copulatory opening, E-embolus, EBA-Embolic basal apophysis, FD-fertilization duct, LP-lateral plate, LwP-lower prong of paracymbium, ML-median lobe, MP-median plate, P-Paracymbium, PLE-posterior lateral ayes, PME-posterior median eyes, S-spermatheca, St-Septum, Tb-Transverse bar, UpP-upper prong of paracymbium.

Molecular methods. Two legs of preserved specimens were used for extraction of DNA using the Qiagen DNeasy Blood & Tissue Kit (Qiagen, Valencia, CA). Purified DNA was used as a template for the polymerase chain reaction (PCR) to amplify a fragment of the mitochondrial protein-encoding gene COI with the following four pairs of primers: 1) LCO1490 (5'-ggtcaacaaatcataaagatattgg-3') and HCO2198 (5'-taaacttcagggtgaccaaaaatca-3') (Folmer *et al.* 1994), 2) VF1d (5'-ttctcaaccaaccacaargayatygg-3') and VR1d (5'- tagacttctgggtggccraaraayca-3') (Ivanova *et al.* 2006), 3) J1751 (5'-ggatcacctgatatagcattccc-3') and N2191 (5'- cccggtaaaattaaaattaaaattc-3') (Simon *et al.* 1991) and 4) J1718 (5'-ggaggatttggaaattgattagttcc-3') and N2191 (Simon *et al.* 1991). The reaction mix included 3 μ L of template DNA, 0.25 μ L of each primer, 0.5 μ L of MgCl₂, 0.12 μ L Taq DNA polymerase and 3.5 μ L of buffer 5x (Mg with ddNTPs). The PCR amplification protocol followed these successive steps: an initial denaturation step during 3 min at 94° C followed by 35 cycles including denaturation at 94° C for 45 s, annealing for 1 min at 47° C, and extension at 72°C for 1 min, with a final extension step at 72° C for 7 min. The PCR products were

visualized in 1.5% agarose gel by electrophoresis. The sequencing was done with the same primer pairs used for amplification at the Laboratorio de Secuenciación Genómica de la Biodiversidad y de la Salud of the IBUNAM. The sequences were edited using Geneious (version 10) (Kearse *et al.* 2012).

Phylogenetic analysis. A total of 53 terminals were analyzed including nine outgroups and rooting with the genus *Tetragnatha* Latreille, 1804 (HQ924654.1). The Genbank accession numbers for the outgroup taxa are: *Allende* (GU129635.1), *Azilia* Keyserling, 1881 (EU003280.1, GU129625.1, GU129624.1), *Leucauge* White, 1841 (KX053803.1, KT620214.1, KU836874.1) and *Meta* C. L. Koch, 1836 (KY270255.1, KY269651.1). The ingroup included 43 COI fragments from the *Chrysometa* species described here (Table 1). All sequences were aligned with MAFFT online server version 7 (available at http://mafft.cbrc.jp/alignment/software/) using auto settings. The aligned sequences were analyzed with RaxML GUI version 1.5 (Michalak 2012) using the GTR-GAMMA model and 1,000 rapid Bootstrap replicates (Stamatakis *et al.* 2008).

Taxonomy

Family Tetragnathidae Menge, 1866 Genus Chrysometa Simon, 1895

Type species: Tetragnatha tenuipes Keyserling, 1864

Chrysometa citlaltepetl new species

Figures 1, 2, 19

Type material. Holotype (CNAN-T1178). Female from Pico de Orizaba National Park, Atotonilco Calcahualco, Veracruz, Mexico. Plot I: 19° 8' 17.4" N, 97° 12' 16.2" W, 2,300 m. February 15–24, 2013. Allotype (CNAN- T1179). Male from Pico de Orizaba National Park, Atotonilco Calcahualco, Veracruz, Mexico. Plot II: 19° 8' 30.2" N, 97° 12' 21.5" W, 2,388 m. February 15–24, 2013. Paratypes. 52 females and 41 males. Types are deposited in the Colección Nacional de Arácnidos (CNAN) at the Instituto de Biología (IBUNAM).

Etymology. The species epithet is a noun in apposition that refers to the náhuatl name of the Pico de Orizaba volcano.

Diagnosis. Females of *C. citlaltepetl* can be distinguished from *C. brevipes* Levi, 1986, *C. puebla* Levi, 1986 and all sympatric species by the following features: copulatory opening depression with a median sclerotized lip and transverse bar longer than in the other species (Figs. 1D, 2D). *Chrysometa brevipes* females have an anterior lip forming a rectangular depression and *C. puebla* females have the distal part of the transverse bar lobed-shaped. Males of *C. citlaltepetl* are distinguished from *C. puebla* and all sympatric species by the following features: thin paracymbium in L-shape with the paracymbium upper prong in ventral view large, rectangular and straight and the paracymbium lower prong with a rounded tip (Figs. 1I, 2A). *Chrysometa puebla* males have a thicker paracymbium upper prong and a pointed paracymbium lower prong.

FIGURE 1. *Chrysometa citlaltepetl* **n. sp.**, female. A, habitus dorsal view. B, lateral view. C, ventral view. D, epigynum ventral view. E, epigynum ventral view (cleared). F, dorsal view (cleared). G, prosoma anterior view. Male. H, prosoma anterior view. I, pedipalp ventral view. Scale bars, A, B, C, 1.0 mm; D, E, F, I, 0.2 mm; G, H, 0.5 mm.

Description. Female. Total length 5.1. Cephalothorax: length 2.1, width 1.8. Carapace pale-yellow, black patterns over the cephalic region narrowing in the middle and towards the fovea. Ocular area darkbrown below the median eyes and pale-yellow bellow the lateral eyes (Fig. 1A, B, G). Eyes subequal in size (Fig. 1G). AME diameter 0.12, PME 0.15, ALE and PLE 0.15. Chelicerae yellow, dark-brown on the anterior part and brighter on sides, black patterns on the posterior part, with few scattered setae (Fig. 1B, C, G). Endites longer than wide, dark- yellow, brighter on the tips, internal margins pale-yellow. Labium wider than long, dark brown, pale-yellow on the posterior part. Sternum dark-brown, wider between the first and second legs (Fig. 1C). Abdomen: brown, dorsally covered with guanine silvery patches, lateral and anterior part darker with a Y-shape pattern from the middle to the spinnerets, with transversal dark-brown lines (Fig. 1A, B); ventrally brown, with guanine patches concentrated in four spots forming a central darkbrown pattern between the spinnerets and the epigynum, one yellow spot on each side of spinnerets (Fig. 1C). Leg lengths: I 11.3, II 8.4, III 4.5 and IV 6.3. Legs yellow darker on joints, with ventral and dorsal darkbrown spots. Tarsi dark-brown. All segments tips dark-brown. Epigynum: epigynal plate rectangular, wider than long; transverse bar with the anterior portion wider, septum well sclerotized with thick margins. Copulatory openings in sclerotized depressions with a middle lip (Figs. 1D, 2D). Spermathecae, copulatory ducts and fertilization ducts as shown in Figure 1E, F.

Male. As in female except as noted. Total length 3.5. Cephalothorax: length 1.9, width 1.4. Carapace: dorsal coloration brighter. AME diameter 0.1, PME 0.14, ALE and PLE 0.11. Chelicerae brown, rugose, larger and narrower, setae bases enlarged and more abundant at cheliceral base; retrolateral cuticle less rugose towards the ventral and apical surfaces (Fig. 1H). Abdomen: dorsal and lateral patterns weaker than in female. Ventrally darker, with larger guanine patches. Leg lengths: I 13.1, II 8.9, III 4 and IV 5.8. Pedipalp: CEBP triangular, curved anteriorly. CEMP rectangular and flattened, pointed retrolaterally (Figs. 1I, 2A, B, C). Thin paracymbium, L- shaped in ventral view (Fig. 1I). UpP enlarged, wider than LwP on ventral view. LpP rounded (Figs. 1I, 2A). Embolus thin, with tubular shape and supported by the conductor; EBA shorter than embolus and curved in apical region (Figs. 1I, 2A, B, C). Conductor, embolus and EBA in ventral view as in Figures 2I, 3A.

Variation. Female total length 4.1–5.8, cephalothorax length 1.6–2.4, cephalothorax width 1.3–1.9. Male total length 3.5–4.1, cephalothorax length 19–2.1, cephalothorax width 1.4–1.6.

Material examined. N=95. Mexico: Veracruz, Atotonilco Calcahualco, six females, one male Plot I: 19° 8' 17.4" N, 97° 12' 16.2" W, 2,300 m., four females Plot II: 19° 8' 30.2" N, 97° 12' 21.5" W, 2,388 m., May 21–30, 2012; six females, one male Plot I: 19° 8' 17.4" N, 97° 12' 16.2" W, 2,300 m., seven females, one male Plot II: 19°8' 30.2" N, 97° 12' 21.5" W, 2,388 m., October 4–14, 2012; 19 females, 22 males Plot I: 19° 8' 17.4" N, 97° 12'16.2" W, 2,300 m., ten females, 17 males Plot II: 19° 8' 30.2" N, 97° 12' 21.5" W, 2,388 m., February 15–24, 2013.Colección Nacional de Arácnidos (CNAN) at the Instituto de Biología (IBUNAM).

Distribution. Veracruz, Mexico. Known only from the type locality (Fig. 19).

Biology. Specimens were collected in a *Quercus* forest fragment with secondary plant growth. Specimens were found in both Plots during all three expeditions (expedition I: May 21–30, 2012; expedition II: October 4–14, 2012 and expedition III: February 15–24, 2013). Most specimens were captured by direct collecting at night followed by beating vegetation; only five specimens were found by cryptic searching.

FIGURE 2. *Chrysometa citlaltepetl* **n. sp.**, male. A, pedipalp ventral view, B retrolateral view. C, dorsal view. Female. D, epigynum ventral view. E, posterior view. Scale bars, 0.2 mm.

Chrysometa triangulosa new species

Figures 3, 4, 19

Type material. Holotype (CNAN-T1180). Female from Pico de Orizaba National Park, Atotonilco Calcahualco, Veracruz, Mexico. Plot I: 19° 8' 17.4" N, 97° 12' 16.2" W, 2,300 m., May 21–30, 2012. Allotype (CNAN-T1181). Male from same locality. Paratypes. Seven females and two males. Types are deposited in the Colección Nacional de Arácnidos (CNAN) at the Instituto de Biología (IBUNAM).

Etymology. The species epithet is from the Latin noun triangulum (triangle) and refers to the form of the septum and the transverse bar.

Diagnosis. Females of *C. triangulosa* can be distinguished from all sympatric species by the following features: transverse bar without arms, septum and transverse bar triangular in shape and copulatory openings located at sides of the transverse bar (Figs. 3D, 4D). Males of *C. triangulosa* are distinguished from *C. brevipes*, *C. puebla* and all sympatric species by the following features: large and triangular cymbial ectobasal process orientated ventrally, cymbial ectomedian process square and small and a large spoon-shaped conductor (Figs. 3I, 4A, B, C). *Chrysometa brevipes* and *C. puebla* males have a smaller cymbial ectobasal process, a rectangular cymbial ectomedian process and a smaller and pointed paracymbium lower prong.

FIGURE 3. *Chrysometa triangulosa* **n. sp.**, female. A, habitus dorsal view. B, lateral view. C, ventral view. D, epigynum ventral view (cleared). F, dorsal view (cleared). G, prosoma anterior view. Male. H, prosoma anterior view. I, pedipalp ventral view. Scale bars, A, B, C, 1.0 mm; D, E, F, 0.2 mm; G, H, I, 0.5 mm.

FIGURE 4. *Chrysometa triangulosa* **n. sp.**, male. A, pedipalp ventral view, B retrolateral view. C, dorsal view. Female. D, epigynum ventral view. E, posterior view. Scale bars, 0.2 mm.

Description. Female. Total length 5.4. Cephalothorax: length 2.1, width 1.6. Carapace pale-yellow, dark brown patterns over the cephalic region narrowing in the middle and towards the fovea (Fig. 3A). Ocular area dark- brown below the median eyes and pale yellow below the lateral eyes. Eyes subequal in size (Fig. 3G). AME diameter 0.12, PME 0.14, ALE and PLE 0.12. Chelicerae brown, darker in the tips and brighter on sides, with few scattered setae and cuticle smooth (Fig. 3B, G). Endites longer than wide, dark-brown, brighter in the tip, internal margins pale-yellow. Labium wider than long, same color as the endites. Sternum dark-brown, wider between the first and second legs (Fig. 3C). Abdomen: brown, dorsally covered with guanine silvery patches, lateral and anterior part darker with a Y-shape pattern from the middle to the spinnerets, surrounded by patches of guanine (Fig. 3A, B); ventrally brown, guanine patches concentrated in four spots forming a central rectangle between spinnerets and epigynum, one yellow spot on each side of spinnerets (Fig. 3C). Leg lengths: I 11, II 7.6, III 4.5 and IV 6.1. Legs pale-yellow, darker on joints, with ventral and dorsal dark-brown spots. First pair considerably larger. Tarsi dark-brown. All segments tips dark-brown. Epigynum: epigynal plate oval, wider than long, transverse bar and septum in triangular shape, with margins well sclerotized and darker; transverse bar with the anterior area wider, septum dark-brown and sclerotized. Copulatory openings located at the sides of the transverse bar, in sclerotized depressions (Figs. 3D, 4D). Spermathecae, copulatory ducts and fertilization ducts as shown in Figure 3E, F.

Male. As in female except as noted. Total length 3.8. Cephalothorax: length 2, width 1.6. Carapace:

dorsal coloration darker, without dark brown patterns over the cephalic region. Ocular area brown below the median eyes and yellow below the lateral eyes. Eyes subequal in size (Fig. 3H). AME diameter 0.1, PME 0.14, ALE and PLE 0.11. Chelicerae dark-brown, larger and narrower, cuticle rugose, setae bases enlarged and more abundant at base (Fig. 3H). Abdomen: anterior dorsal part with a darker rectangular pattern, longer than wide, ventrally darker, patterns weaker than in female. Leg lengths: I 14.8, II 9.4, III 4.6 and IV 6.8. Pedipalp: CEBP shaped as a long triangular wedge, curved anteriorly, distal portion detached from the cymbium (Figs. 3I, 4A, B, C). Paracymbium C-shaped in retrolateral view, (Fig. 4B). UpP larger and wider than LwP in ventral view (Figs. 3I, 4A). LwP wedge-shaped, curved anteriorly (Figs. 3I, 4A, B). Embolus thin and short, tubular; EBA short and curved in apical region, conductor large spoon-shaped (Figs. 3I, 4A, B, C). Conductor and EBA in ventral view as in Figures 3I, 4A.

Variation. Female total length 3.9–5.4, cephalothorax length 2–2.3, cephalothorax width 1.4–1.8. Male total length 3.8–4.4, cephalothorax length 2–2.1.

Material examined. N=11. Mexico: Veracruz, Atotonilco Calcahualco, eight females, three males Plot I: 19° 8' 17.4" N, 97° 12' 16.2" W, 2,300 m., May 21–30, 2012. Colección Nacional de Arácnidos (CNAN) at the Instituto de Biología (IBUNAM).

Distribution. Veracruz, Mexico. Known only from the type locality (Fig. 19).

Biology. Specimens were collected in a *Quercus* forest with secondary plant growth. All specimens were found only in the plot I of the first expedition (May 21–30, 2012). Most specimens were captured by direct collecting at night; only three specimens were caught by beating over vegetation.

Chrysometa rosarium new species

Figures 5, 6, 19

Type material. Holotype (CNAN-T1189). Female from Pico de Orizaba National Park, Atotonilco Calcahualco, Veracruz, Mexico. Plot I: 19° 8' 17.4" N, 97° 12' 16.2" W, 2,300 m., October 4–14, 2012. Allotype (CNAN-T1190). Male from same locality. Paratypes. 23 females and 70 males. Types are deposited in the Colección Nacional de Arácnidos (CNAN) at the Instituto de Biología (IBUNAM).

Etymology. The species epithet is from the Latin noun rosarium (rosary). This species is named in honor of Ms. Rosario, mother of the first author.

Diagnosis. Females of *C. rosarium* can be distinguished from all sympatric species by the following features: transverse bar with thin, short and deep arms and copulatory openings completely rounded and protruding over the transverse bar (Figs. 5D, 6D). Males of *C. rosarium* are distinguished from *C. puya* and all sympatric species by the following features: globular and membranous paracymbium median prong, short and rounded lower prong and thin and large triangular cymbial ectomedian process apophysis (Figs. 5I, 6A, B, C). *Chrysometa puya* males have a thinner and larger paracymbium median prong, pointed lower prong and a shorter and wider cymbial ectomedian process apophysis.

Description. Female. Total length 3.4. Cephalothorax: length 1.6, width 1.3. Carapace pale-yellow, brown rectangular pattern over the cephalic region narrowing towards the fovea, with darker margins (Fig. 5A). Ocular area pale-yellow. Eyes subequal in size (Fig. 5G). AME diameter 0.08, PME 0.1, ALE and PLE 0.1. Chelicerae pale-yellow, with few scattered setae and smooth cuticle (Fig. 5G). Endites longer than wide, pale-yellow. Labium wider than long, same color as the endites. Sternum white, wider between the first and second legs (Fig. 5C). Abdomen: dorsally greenish yellow, covered with guanine silvery patches, uniformly distributed and without pattern defined (Fig. 5A, B); ventrally gray, without guanine patches, darker between spinnerets and epigynum (Fig. 5C). Leg lengths: I 8.9, II 6.4, III 3.5 and IV 5. Legs pale-yellow, white femur in the second pair and darker in other segments. Tarsi brown. Epigynum: epigynal plate

oval, wider than long, transverse bar with thin, short and deep arms, rectangular septum. Copulatory openings completely rounded and protruding over the transverse bar, with sclerotized margins (Figs. 5D, 6D). Spermathecae, copulatory ducts and fertilization ducts as shown in Figure 5E, F.

FIGURE 5. *Chrysometa rosarium* **n. sp.**, female. A, habitus dorsal view. B, lateral view. C, ventral view. D, epigynum ventral view. E, epigynum ventral view (cleared). F, dorsal view (cleared). G, prosoma anterior view. Male. H, prosoma anterior view. I, pedipalp ventral view. Scale bars, A, B, C, 1.0 mm; D, I, 0.2 mm; E, F, 0.1 mm; G, H, 0.5 mm.

FIGURE 6. *Chrysometa rosarium* **n. sp.**, male. A, pedipalp ventral view, B retrolateral view. C, dorsal view. Female. D, epigynum ventral view. E, posterior view. Scale bars, 0.2 mm.

Male. As in female except as noted. Total length 2.9. Cephalothorax: length 1.5, width 1.1. Carapace: dorsal coloration dark-yellow, with the pattern extended to the pedicel. Ocular area brown below the eyes. Eyes subequal in size, same as female (Fig. 5H). Chelicerae yellow, larger and narrower, with large teeth. Cuticle rugose, setae bases enlarged and more abundant at cheliceral base (Fig. 5H). Abdomen: bright-yellow, with few small separated guanine patches, laterally larger and more abundant. Ventrally bright gray, with few guanine patches. Leg lengths: I 9.3, II 7.9, III 3.4 and IV 4.9. Leg I completely brown, leg II darker. Pedipalp: CEBP small and triangular, curved prolaterally. CEMP large and flattened, with a thin and large apophysis. Paracymbium straight, small and wide with a large, globular and membranous median prong (Figs. 5I, 6A, B, C); upper prong rectangular, lower prong rounded. Embolus thin and short, tubular; EBA short and curved in apical region, conductor small and flattened (Figs. 5I, 6A, B, C). Conductor, embolus and EBA in ventral view as in Figures 5I, 6A.

Variation. Female total length 3.1–3.8, cephalothorax length 1.5–1.6, cephalothorax width 1.1–1.3. Male total length 2.8–3.5, cephalothorax length 1.4–1.8, cephalothorax width 1.1–1.4.

Material examined. N=95. Mexico: Veracruz, Atotonilco Calcahualco, three males Plot I: 19° 8' 17.4" N, 97° 12' 16.2" W, 2,300 m., May 21–30, 2012; 19 females, 47 males Plot I: 19° 8' 17.4" N, 97° 12' 16.2" W, 2,300 m., October 4–14, 2012; five females, 21 males Plot I: 19° 8' 17.4" N, 97° 12' 16.2" W, 2,300 m., February 15–24, 2013. Colección Nacional de Arácnidos (CNAN) at the Instituto de Biología (IBUNAM).

Distribution. Veracruz, Mexico. Known only from the type locality (Fig. 19).

Biology. Specimens were collected in a *Quercus* forest with secondary plant growth. All specimens were found only in plot I during all three expeditions (expedition I: May 21–30, 2012; expedition II: October 4–14 2012 and expedition III: February 15–24 2013). Most specimens were captured by direct collecting at night followed by beating vegetation; only six specimens were found in cryptic search.

Chrysometa atotonilco new species

Figures 7, 8, 19

Type material. Holotype (CNAN-T1185). Female from Pico de Orizaba National Park, Atotonilco Calcahualco, Veracruz, Mexico. Plot I: 19° 8' 17.4" N, 97° 12' 16.2" W, 2,300 m. October 4–14, 2012. Allotype (CNAN-T1186). Male from Pico de Orizaba National Park, Atotonilco Calcahualco, Veracruz, Mexico. Plot II: 19° 8' 30.2" N, 97° 12' 21.5" W, 2,388 m. May 21–30, 2012. Paratypes. 14 females and 11 males. Types are deposited in the Colección Nacional de Arácnidos (CNAN) at the Instituto de Biología (IBUNAM).

Etymology. The species epithet is a noun in apposition and refers to the type locality.

Diagnosis. Females of *C. atotonilco* can be distinguished from *C. brevipes*, *C. puebla* and all sympatric species by the following features: small and shallow copulatory openings and thick and rectangular transverse bar (Figs. 7D, 8D). *Chrysometa brevipes* females have large, rectangular copulatory openings and a transverse bar with oval arms. *Chrysometa puebla* females have the transverse bar arms rounded. Males of *C. atotonilco* are distinguished from *C. brevipes* and all sympatric species by the following features: long and completely curved lower prong, orientated retrolaterally (Figs. 7I, 8A, B). *Chrysometa brevipes* males have a horizontal and more pointed lower prong.

Description. Female. Total length 4.9. Cephalothorax: length 2, width 1.5. Carapace pale-yellow, brown patterns over the cephalic region narrowing in the middle and towards the fovea (Fig. 7A). Ocular area dark-yellow below the median eyes and pale-yellow below the lateral eyes. Eyes subequal in size (Fig. 7G). AME diameter 0.1, PME 0.14, ALE and PLE 0.12. Chelicerae yellow, brown on the anterior part, black patterns of circles on the posterior part, with few scattered setae (Fig. 7G). Endites longer than wide, dark-yellow, brighter in the tip, internal margins pale-yellow. Labium wider than long, brown, yellow on the posterior part and the margins. Sternum brown, with a posterior yellow mark, wider between the first and second legs (Fig. 7C). Abdomen: dorsally covered with few, small guanine silvery patches, lateral and anterior part darker with a V-shape pattern (Fig. 7A, B); ventrally brown, with guanine patches concentrated in two lines forming a central brown pattern between the spinnerets and the epigynum, one yellow spot on each side of spinnerets (Fig. 7C). Leg lengths: I 11, II 7.5, III 4 and IV 6. Coxae-femora pale-yellow, patellae-tarsi yellow with brown rings, darker on joints, with ventral and dorsal brown spots. Epigynum: epigynal plate small and oval, wider than long; transverse bar thick and rectangular with short arms, septum thin with thick margins, well sclerotized. Copulatory openings very small and shallow (Figs. 7D, 8D). Spermathecae, copulatory ducts and fertilization ducts as shown in Figure 7E, F.

Male. As in female except as noted. Total length 3.3. Cephalothorax: length 1.6, width 1.3. Carapace: dorsal patterns wicker. Eyes subequal in size. AME diameter 0.08, PME 0.1, ALE and PLE 0.1. Chelicerae dark-yellow, retrolateral cuticle rugose, larger and narrower, setae bases enlarged and more abundant at base. Abdomen: dorsal and ventral patterns weaker than in female. Ventral guanine patches larger. Leg lengths: I 15, II 8.4, III 3.9 and IV5.8. Pedipalp: CEBP triangular, curved anteriorly. CEMP rectangular and flattened, pointed retrolaterally. Paracymbium thin, upper prong enlarged, wider than lower prong in retrolateral view (Figs. 7I, 8A, B, C), long lower prong completely curved ventrally and protruding over the

paracymbium (Figs. 7I, 8A). Embolus thin, long and curved apically, tubular and supported by the conductor; EBA shorter than embolus (Figs. 7I, 8A, B, C). Conductor, embolus and EBA in ventral view as in Figures 7I, 8A.

FIGURE 7. *Chrysometa atotonilco* **n. sp.**, female. A, habitus dorsal view. B, lateral view. C, ventral view. D, epigynum ventral view. E, epigynum ventral view (cleared). F, dorsal view (cleared). G, prosoma anterior view. Male. H, prosoma anterior view. I, pedipalp ventral view. Scale bars, A, B, C, 1.0 mm; D, 0.2 mm; E, F, I, 0.1 mm; G, H, 0.5 mm.

Variation. Female total length 3.5–4.9, cephalothorax length 1.6–2, cephalothorax width 1.3–1.5. Male total length 2.8–3.3, cephalothorax length 1.4–1.6, cephalothorax width 1.1–1.3.

Material examined. N=27. Mexico: Veracruz, Atotonilco Calcahualco, two males Plot I: 19° 8' 17.4" N, 97° 12' 16.2" W, 2,300 m., May 21–30, 2012; 15 females, ten males Plot I: 19° 8' 17.4" N, 97° 12' 16.2" W, 2,300 m.,October 4–14, 2012; 1 female, Plot I: 19° 8' 17.4" N, 97° 12' 16.2" W, 2,300 m., February 15–24, 2013. Colección Nacional de Arácnidos (CNAN) at the Instituto de Biología (IBUNAM).

Distribution. Veracruz, Mexico. Known only from the type locality (Fig. 19).

Biology. Specimens were collected in a *Quercus* forest with secondary plant growth. All specimens were found only in plot I during all three expeditions (expedition I: May 21–30, 2012; expedition II: October 4–14, 2012 and expedition III: February 15–24, 2013). Most specimens were captured by direct collecting at night followed by beating vegetation.

Chrysometa xamaticpac new species Figures 9, 10, 19

Type material. Holotype (CNAN-T1187). Female from Pico de Orizaba National Park, Xamaticpac, Calcahualco, Veracruz, Mexico. Plot II: 19° 7' 32.5" N, 97° 4' 3.2" W, 1,700 m. April 19–27, 2013. Allotype (CNAN-T1188). Male from same locality. Paratypes. Four females and nine males. Types are deposited in the Colección Nacional de Arácnidos (CNAN) at the Instituto de Biología (IBUNAM).

Etymology. The species epithet is a noun in apposition and refers to the type locality.

Diagnosis. Females of *C. xamaticpac* can be distinguished from all sympatric species by the following features: epigynum transverse bar very short with small and thin arms and protruding over the septum (Figs. 9D, 10D). Males of *C. xamaticpac* are distinguished by the following features: large and thin embolus, Ç-shaped paracymbium in ventral view with a very short lower prong with a square tip (Figs. 9I, 10A, B, C).

Description. Female. Total length 4. Cephalothorax: length 2, width 1.5. Carapace pale-yellow, darkyellow pattern over the cephalic region narrowing towards the fovea (Fig. 9A). Ocular area pale-yellow. Eyes subequal in size (Fig. 9G). AME diameter 0.1, PME 0.14, ALE and PLE 0.14. Chelicerae yellow, with few scattered setae (Fig. 9G). Endites longer than wide, yellow, internal margins pale-yellow. Labium wider than long, dark brown, pale- yellow on the posterior part. Sternum dark-yellow, wider between the first and second legs (Fig. 9C). Abdomen: pale-brown, dorsally covered with small guanine silvery patches, with four transversal black lines (Fig. 9A, B); ventrally dark-yellow, with two lines of guanine patches forming a central brown rectangle between the spinnerets and the epigynum, one yellow spot on each side of spinnerets (Fig. 9C). Leg lengths: I 12, II 6.9, III 4 and IV 5.8. Legs pale-yellow, the first segments yellow, darker on joints, with ventral and dorsal black spots. Tarsi dark-brown. Epigynum: epigynal plate trapezoidal, wider than long; transverse bar very short, without arms and protruding over the septum. Septum with thick margins and well sclerotized. Copulatory openings small, not sclerotized (Figs. 9D, 10D). Spermathecae, copulatory ducts and fertilization ducts as shown in Figure 9E, F.

Male. As in female except as noted. Total length 3.6. Cephalothorax: length 1.9, width 1.4. Carapace: dorsal coloration darker, pattern weaker. Eyes subequal in size. AME diameter 0.08, PME 0.1, ALE and PLE 0.11. Chelicerae dark-yellow, rugose, larger and narrower, setae bases enlarged and more abundant at base; retrolateral cuticle less rugose towards the apical surfaces (Fig. 9H). Abdomen: dorsal and ventral coloration brighter than in female. Leg lengths: I 12, II 7.5, III 4.3 and IV 5.9. Pedipalp: CEBP triangular, curved anteriorly. CEMP small, rectangular and flattened, pointed retrolaterally. Paracymbium Ç-shaped in ventral view. Upper prong enlarged, wider than lower prong. Lower prong square and short. Embolus large and thin, tubular shape; EBA shorter than embolus and curved in apical region (Figs. 9I, 10A, B, C). Conductor, embolus and EBA in ventral view as in Figures 9I, 10A.

Variation. Female total length 3.8–4.5, cephalothorax length 1.6–2, cephalothorax width 1.2–1.5. Male total length 3.1–4.1, cephalothorax length 1.4–1.9, cephalothorax width 1.3–1.6. Females can vary in the pattern of the cephalic region and the dorsal surface of the abdomen. The external and internal epigynum can be more sclerotized and the transverse bar can present very short and thin arms.

Material examined. N=15. Mexico: Veracruz, Xamaticpac, Calcahualco. One female, ten males Plot II: 19° 7' 32.5" N, 97° 4' 3.2" W, 1,700 m., April 19–27, 2013. Two females Plot I: 19 7' 34.1" N, 97 4' 1.5" W, 1,710 m.; two females Plot II: 19 7' 32.5" N, 97 4' 3.2" W, 1,700 m., October 2–11, 2013. Colección Nacional de Arácnidos (CNAN) at the Instituto de Biología (IBUNAM).

Distribution. Veracruz, Mexico. Known only from the type locality (Fig. 19).

Biology. Specimens were collected in a *Quercus* forest with secondary plant growth. All specimens were found in both plots but only during the first and second expeditions (expedition I: May 21–30, 2012;

expedition II: October 4–14, 2012). Most specimens were captured by direct collecting at night; only two were caught by beating vegetation.

FIGURE 9. *Chrysometa xamaticpac* **n. sp.**, female. A, habitus dorsal view. B, lateral view. C, ventral view. D, epigynum ventral view. E, epigynum ventral view (cleared). F, dorsal view (cleared). G, prosoma anterior view. Male. H, prosoma anterior view. I, pedipalp ventral view. Scale bars, A, B, C, 1.0 mm; D, I, 0.2 mm; E, F, 0.1 mm; G, H, 0.5 mm.

FIGURE 10. *Chrysometa xamaticpac* **n. sp.**, male. A, pedipalp ventral view, B retrolateral view. C, dorsal view. Female. D, epigynum ventral view. E, posterior view. Scale bars, 0.2 mm.

Chrysometa puya new species

Figures 11, 13, 19

Taxonomic note: The female of *C. puya* n. sp. was previously described as *C. chipinque* Levi 1986; however the female of *C. chipinque* belongs to this new species taking into account the COI analyses (Fig. 16). Therefore the female of *C. chipinque* described by Levi is a misidentification.

Type material. Holotype (CNAN-T1191). Male from Pico de Orizaba National Park, Xamaticpac, Calcahualco, Veracruz, Mexico. Plot II: 19° 7' 32.5" N, 97° 4' 3.2" W, 1,700 m. October 2-11, 2013. Paratypes. One female and one male. Types are deposited in the Colección Nacional de Arácnidos (CNAN) at the Instituto de Biología (IBUNAM).

Etymology. The species epithet is from the Spanish word puya (spur) and refers to the sharp projection of the cymbial ectomedian process in dorsal view.

Diagnosis. Females of *C. puya* can be distinguished from *C. palenque* and all sympatric species by the following features: epigynum transverse bar with curved arms and oval septum with convex sides protruding over the transverse bar (Figs. 11D). *Chrysometa palenque* females have a shorter transverse bar with wide and rounded ends and straight sides of the septum. Males of *C. puya* can be distinguished from *C. alboguttata* and all sympatric species by the following features: paracymbium large and thick with three upper prong lobes and two lower prong apophyses and a large and triangular cymbial ectomedian process

(Figs. 11G, 13A, B, C). *Chrysometa alboguttata* males have a bifurcated paracymbium with lower prong without apophyses and the cymbial ectomedian process flat and smaller.

Description. Female. Total length 3.7. Cephalothorax: length 2, width 1.4. Carapace pale-yellow, dark pattern over the cephalic region narrowing towards the fovea (Fig. 11A). Ocular area pale-yellow. Eyes subequal in size (Fig. 11E). AME diameter 0.11, PME 0.14, ALE and PLE 0.14. Chelicerae yellow, darker on sides and tips, few scattered setae (Fig. 11E). Endites longer than wide, brown, internal margins brighter. Labium wider than long, dark brown. Sternum yellow, darker sides, wider between the first and second legs (Fig. 11C). Abdomen: brown, brighter on the center, dorsally covered with small guanine silvery patches, with transversal black patterns on the posterior part (Fig. 11A, B); ventrally gray, with guanine patches on sides of the epigynum (Fig. 11C). Leg lengths: I 8.1, II 6.7, III 4 and IV 5.5. Legs pale-yellow, darker on joints, with ventral and dorsal brown spots. Tarsi dark- brown. Epigynum: epigynal plate trapezoidal, wider than long; transverse bar more narrow below the septum, with curves arms. Septum oval with convex sides protruding over the transverse bar. margins well sclerotized. Copulatory openings small, on sides of the posterior part of the septum, not sclerotized (Figs. 11D).

Male. As in female except as noted. Total length 3.4. Cephalothorax: length 1.8, width 1.5. Carapace brighter, brown rectangular pattern over the cephalic region, with darker margins. Ocular area darker. Chelicerae larger and narrower, with large teeth. Cuticle rugose, setae bases enlarged and more abundant at base (Fig. 11D). Sternum pale-yellow. Abdomen: dorsally bright yellow, covered with guanine silvery patches uniformly distributed and without pattern defined; ventrally dark-gray, without guanine patches. Leg lengths: I 11, II 8.3, III 4.6 and IV 5.9. First pair darker. Tarsi brown. Pedipalp: CEBP large and thin, pointing retrolaterally and spoon-shaped in retrolateral view. CEMP large and triangular, rugose in ectal view. Paracymbium large and thick, with a large rounded three-lobed UpP and a small LwP with two apophysis in retrolateral view. Embolus thin and short, EBA short and curved in apical region; large, flattened and curved conductor (Figs. 11G, 13A, B, C). Conductor, embolus and EBA in ventral view as in Figures 11G, 13A.

Variation. Male total length 3.4–3.6, cephalothorax length 1.8–1.9.

Material examined. N=3. Mexico: Veracruz, Xamaticpac, Calcahualco. Two males and one female, Plot II: 19° 7' 32.5" N, 97° 4' 3.2" W, 1,700 m. October 2–11, 2013. Colección Nacional de Arácnidos (CNAN) at the Instituto de Biología (IBUNAM).

Distribution. Mexico to Guatemala (Levi 1986). Male known only from the type locality (Fig. 19).

Biology. Specimens were collected in a *Quercus* forest with secondary plant growth. All specimens were found only in the Plot II of the second expedition (October 4–14 2012) by direct collecting at night.

FIGURE 11. *Chrysometa puya* **n. sp.**, female. A, habitus dorsal view. B, lateral view. C, ventral view. D, epigynum ventral view. E, prosoma anterior view. Male. F, prosoma anterior view. G, pedipalp ventral view. Scale bars, A, B, C, 1.0 mm; D, G, 0.2 mm; E, F, 0.5 mm.

FIGURE 12. *Chrysometa sagicuta* **n. sp.**, female. A, habitus dorsal view. B, lateral view. C, ventral view. D, prosoma anterior view. E, epigynum ventral view. F, epigynum dorsal view (cleared). Scale bars, A, B, C, 1.0 mm; D, 0.5 mm; E, F, 0.2 mm.

Chrysometa sagicuta new species

Figures 12, 13, 19

Type material. Holotype (CNAN-T1182). Female from Pico de Orizaba National Park, Atotonilco, Calcahualco, Veracruz, Mexico. Plot II: 19° 8' 30.2" N, 97° 12' 21.5" W, 2,388 m. May 21–30, 2012. Paratypes. Two females. Types are deposited in the Colección Nacional de Arácnidos (CNAN) at the Instituto de Biología (IBUNAM).

Etymology. The species epithet is a combination of the Latin noun sagitta (arrow) and the adjective acutus (sharp) and refers to the thin and large septum.

Diagnosis. Females of *C. sagicuta* can be distinguished from all sympatric species by the following features: epigynum with a thin and short transverse bar with triangular and pointed arms, large triangular septum and deep and wide copulatory openings (Figs. 12E, 13D).

Description. Female. Total length 5. Cephalothorax: length 2.3, width 1.6. Carapace pale-yellow, dark

brown patterns over the cephalic region narrowing in the middle and in arrow-shape towards the fovea (Fig. 12A). Ocular area dark-brown below the eyes with patterns of small circles on sides of the lateral eyes. Eyes subequal in size (Fig. 12D). AME diameter 0.11, PME 0.15, ALE and PLE 0.12. Chelicerae dark-brown, with few scattered setae and cuticle smooth. Patterns of small circles on the posterior part (Figs. 12B, D). Endites longer than wide, dark- brown, dark yellow in the tip and the margins. Labium rectangular, wider than long, same color as the endites. Sternum dark-brown, wider between the first and second legs (Fig. 12C). Abdomen: dorsally covered with big guanine silvery patches, central and anterior part darker with a rectangular pattern from the middle to the spinnerets, surrounded by large patches of guanine (Fig. 12A); ventrally black, four large guanine patches forming a rectangle between the spinnerets and the epigynum, one yellow spot on each side of spinnerets (Fig. 12C). Leg lengths: I 11.5, II 8.3, III 4.6 and IV 6.5. Legs yellow, brown on joints, with ventral and dorsal dark-brown spots. Tarsi black. All segment tips dark-brown. Epigynum: epigynal plate rectangular, slightly wider than long and well sclerotized; thin and short transverse bar with triangular pointed arms, large triangular septum wider on the anterior portion, sclerotized margins; deep and wide copulatory openings, in large, sclerotized depressions (Figs. 12E, 13D). Spermathecae, copulatory ducts and fertilization ducts as shown in Figure 12F.

Variation. Total length 4.6–5.5, cephalothorax width 1.6–1.7.

Material examined. N=3. Mexico: Veracruz, Atotonilco Calcahualco, three females, Plot II: 19° 8' 30.2" N, 97° 12' 21.5" W, 2,300 m. May 21–30, 2012. Colección Nacional de Arácnidos (CNAN) at the Instituto de Biología (IBUNAM).

Distribution. Veracruz, Mexico. Known only from the type locality (Fig. 19).

Biology. Specimens were collected in a *Quercus* forest with secondary plant growth. Specimens were found only in plot II during the first expedition (May 21–30, 2012) by direct collecting at night.

Chrysometa chipinque Levi, 1986

Figures 14, 15, 19

Taxonomic note: The female previously described as *C. chipinque* by Levi (1986) was incorrectly associated to this species and it belongs to *C. puya* n. sp. based on our COI data. The correct female of *C. chipinque* is described here for the first time.

Type material. Allotype (CNAN-T1183). Female from Pico de Orizaba National Park, Xamaticpac, Calcahualco, Veracruz, Mexico. Plot I: 19° 7' 34.1" N, 97° 4' 1.5" W, 1,710 m. February 4–17, 2014. Paratypes. Ten females, 24 males. Types are deposited in the Colección Nacional de Arácnidos (CNAN) at the Instituto de Biología (IBUNAM).

Diagnosis. Females of *C. chipinque* can be distinguished from all sympatric species by the following features: epigynum with globular transverse bar without arms protruding over the epigynal plate and deep copulatory openings (Figs. 14D, 15D). Males of *C. chipinque* are distinguished from *C. rosarium* and all sympatric species by the following features: paracymbium with large and membranous median prong, short and pointed lower prong and thin and short triangular cymbial ectomedian process apophysis (Figs. 14I, 15, A, B, C). *Chrysometa rosarium* males have a shorter and more triangular paracymbium median prong, a rounded lower prong and a thinner and larger cymbial ectomedian process apophysis.

Description. Female. Total length 3.5. Cephalothorax: length 1.6, width 1.2. Carapace pale-yellow, brown rectangular pattern over the cephalic region narrowing towards the fovea, with darker margins (Fig. 14A). Ocular area whitish. Eyes subequal in size (Fig. 14G). AME diameter 0.08, PME 0.1, ALE and PLE 0.1. Chelicerae pale- yellow, with few scattered setae and smooth cuticle (Fig. 14G). Endites longer than wide, pale-yellow. Labium wider than long, same color as the endites. Sternum white, wider between the

first and second legs (Fig. 14C). Abdomen: dorsally bright yellow, covered with guanine silvery patches uniformly distributed and without pattern defined (Fig. 14A); ventrally gray, with lateral guanine patches (Fig. 14C). Leg lengths: I 7.3, II 5.8, III 3.4 and IV5. Legs pale-yellow. First pair with brown spots, white femur in the second pair and darker in other segments. Tarsi brown. Epigynum: epigynal plate rectangular, wider than long, globular transverse bar without arms protruding over the epigynal plate, small rectangular septum; deep copulatory openings with sclerotized margins (Figs. 14D, 15D). Spermathecae, copulatory ducts and fertilization ducts as shown in Figure 14E, F.

FIGURE 13. Chrysometa puya **n. sp.**, male. A, pedipalp ventral view. B, retrolateral view. C, dorsal view. Chrysometa sagicuta n. sp. Female. D, epigynum ventral view. E, posterior view. Scale bars, 0.2 mm.

FIGURE 14. *Chrysometa chipinque*, female. A, habitus dorsal view. B, lateral view. C, ventral view. D, epigynum ventral view. E, epigynum ventral view (cleared). F, dorsal view (cleared). G, prosoma anterior view. Male. H, prosoma anterior view. I, pedipalp ventral view. Scale bars, A, B, C, 1.0 mm; D, I, 0.2 mm; E, F, 0.1 mm; G, H, 0.5 mm.

FIGURE 15. *Chrysometa chipinque*, male. A, pedipalp ventral view, B retrolateral view. C, dorsal view. Female. D, epigynum ventral view. E, posterior view. Scale bars, 0.2 mm.

Male. As in female except as noted. Total length 3.4. Cephalothorax: length 1.8, width 1.3. Carapace: dorsal coloration dark-yellow, with the pattern extended to the pedicel. Ocular area same color. Eyes subequal in size (Fig. 14H). AME diameter 0.11, PME 0.12, ALE and PLE 0.12. Chelicerae dark-yellow, larger and narrower, with large teeth. Cuticle rugose, setae bases enlarged and more abundant at base (Fig. 14H). Abdomen: dorsally brighter, with few small separated guanine patches, laterally smaller. Ventrally pale gray, without guanine patches. Leg lengths: I 10.3, II 7.9, III 3.9 and IV 4.5. Leg I completely brown, leg II–IV darker. Pedipalp: CEBP triangular, curved ventrally. CEMP large and flattened, with a thin and small apophysis. Paracymbium straight, small and wide, with a large, triangular and membranous median prong; upper prong rectangular, lower prong triangular. Embolus thin and short, tubular; EBA short and curved in apical region, conductor small and flattened (Figs. 14I, 15A, B, C). Conductor, embolus and EBA in ventral view as in Figures 14I, 15A.

Variation. Female total length 2.8–3.9, cephalothorax length 1.5–1.8, cephalothorax width 1.1–1.4. Male total length 2.8–3.4, cephalothorax length 1.3–1.8, cephalothorax width 1–1.3.

Material examined. N=35. Mexico: Veracruz, Xamaticpac, Calcahualco. Two males Plot I: 19 7' 34.1" N, 97 4' 1.5" W, 1,710 m.; two males Plot II: 19 7' 32.5" N, 97 4' 3.2" W, 1,700 m., April 19–27, 2013. One female, fourmales Plot I: 19 7' 34.1" N, 97 4' 1.5" W, 1,710 m.; eight females, 13 males Plot II: 19 7' 32.5" N, 97 4' 3.2" W, 1,700 m., October 2–11, 2013. One female, two males Plot I: 19 7' 34.1" N, 97 4' 1.5"

W, 1,710 m.; one female, onemale Plot II: 19 7' 32.5" N, 97 4' 3.2" W, 1,700 m., February 4–14, 2014. Colección Nacional de Arácnidos (CNAN) at the Instituto de Biología (IBUNAM).

Distribution. Mexico (Levi 1986). Female known only from the type locality (Fig. 19).

Biology. Specimens were collected in a *Quercus* forest with secondary plant growth. Specimens were found in both Plots during all three expeditions (expedition I: May 21–30, 2012; expedition II: October 4–14 2012 and expedition III: February 15–24 2013). Most specimens were captured by direct collecting at night followed by beating vegetation; only three were found by cryptic search.

Specimen	Sex	GenBank	Specimen	Sex	GenBank
Chrysometa brevipes	F	MF782391	Chrysometa xamaticpac	F	MF782382
	F	MF782393		F	MF782387
	F	MF782396		F	MF782388
	М	MF782392		F	MF782389
	М	MF782394		F	MF782390
	М	MF782395		М	MF782383
Chrysometa citlaltepetl	F	MF782400		М	MF782384
	F	MF782401		М	MF782385
	F	MF782402		М	MF782386
	М	MF782403	Chrysometa puya	F	MF782416
	М	MF782404		F	MF782417
	М	MF782405		F	MF782419
Chrysometa triangulosa	F	MF782409		М	MF782418
	F	MF782411		М	MF782420
	F	MF782412		М	MF782421
	М	MF782410	Chrysometa sagicuta	F	MF782406
	М	MF782413		F	MF782407
Chrysometa rosarium	F	MF782422		F	MF782408
	F	MF782423	Chrysometa chipinque	F	MF782397
	F	MF782424		М	MF782398
Chrysometa atotonilco	М	MF782414		М	MF782399
	М	MF782415			

TABLE 1. GenBank accession numbers for the Chrysometa specimens used.

Results and discussion

Sixty-two exemplars of *Chrysometa* were processed for COI isolation, of which only 43 were amplified and sequenced successfully (including *C. brevipes* and the female of *C. chipinque*) (Table 1). The length of the amplified fragments varied between 218 and 771 bases. The sequences retrieved from GenBank varied from 436 to 815 bases. The complete aligned data matrix used in the phylogenetic analysis included 53 terminals (nine outgroups and the root) and comprised 312 informative positions.

The topology of the Máxima Verosimilitud analysis recovered as separate clades the seven new species described here: *C. citlaltepetl* **n. sp.**, *C. triangulosa* **n. sp.**, *C. rosarium* **n. sp.**, *C. atotonilco* **n. sp.**, *C. xamaticpac* **n. sp.**, *C. puya* **n. sp.**, and *C. sagicuta* **n. sp.** and *C. brevipes*. These species were also recovered with high Bootstrap support values (95–100) and an average interspecies distance of 0.093 %.

Sexes for each species were matched using these COI data, discovering that the female originally described for *C. chipinque* actually belongs to *C. puya* n. sp. and therefore the correct female of *C. chipinque* is described for the first time. It is important to mention that the genetic signal agreed with the diagnostic morphological features used to separate these species (Fig. 16).

FIGURE 16. Phylogeny based on Máxima Verosimilitud analysis of the COI fragment gene of *Chrysometa* species. Values on branches indicate the Bootstrap support. Branch length is proportional to nucleotide substitution rates.

The internal structures of *Chrysometa* epigyna have been previously described (Levi 1986; Álvarez-Padilla 2007; Nogueira *et al.* 2011; Kallal & Hormiga 2016; Simó & Laborda 2016); however, the functional anatomy of these organs has only been studied for *C. alajuela* Levi 1986 (Álvarez-Padilla & Hormiga 2011). The fertilization ducts of *C. alajuela* were described as being well sclerotized, originating on the anterior surface of the spermatheca and with their path crossing over this organ. The copulatory ducts were described also as being well sclerotized and slightly longer than the spermatheca length.

The pattern described by these authors applies only for a few *Chrysometa* species and differs considerably from all the species described here. The following features of the new species differ in: the copulatory ducts are weakly sclerotized and surrounded by a membranous sack, supported internally by several apodemes and a conspicuous sclerotized lobe (SI) (Figs. 17A, C [indicated by arrow], 18A, C); after the copulatory opening (Co) each copulatory duct (Cd) develops into a thin tube that crosses the posterior edge of the sclerotized lobe (SI) and continues its path coiling over the fertilization duct (Figs. 17B, D, 18A–D) and enters the spermatheca on its ventral median surface (Fig. 17A, C); the fertilization ducts are highly sclerotized, originate from the spermatheca ventral surface (under the copulatory ducts entrance) and follow a C-shaped path to the uterus externus (Fig. 17A, C). It is important to mention that this epigynum pattern, as depicted in the illustrations in Levi (1986), is also shared by other species with similar

geographic distribution and could represent a species group within *Chrysometa*; however more data are required to test this hypothesis. The species with similar internal epigynum anatomy are: *C. brevipes, C. chipinque, C. rincon* Levi 1986, *C. puebla* Levi 1986, *C. flava* O. Pickard-Cambridge 1894, *C. poas* Levi 1986, *C. palenque* Levi 1986 and *C. albogutatta* O. Pickard-Cambridge 1889 (Levi 1986). Finally, the male pedipalp anatomy is similar in all *Chrysometa* and the species diagnostic features are concentrated in the cymbial processes and the shape of the paracymbium and its apophyses.

FIGURE 17. Epigyna internal anatomy. *Chrysometa sagicuta* **n. sp.**, female. A, epigynum ventral view (cleared). B, dorsal view. *Chrysometa xamaticpac* **n. sp.**, female. C, epigynum ventral view (cleared). D, dorsal view. Scale bars, 0.2 mm.

The genus *Chrysometa* although recovered as monophyletic (Fig. 16) it is unsupported with a Bootstrap value of 39%. This low support is because only one gene fragment was analyzed, instead of including COI with the genes traditionally used in spider phylogenetics(Rix *et al.* 2008; Blackledge *et al.* 2009; Miller *et al.* 2010; Lopardo *et al.* 2011; Agnarsson *et al.* 2012; Dimitrov *et al.* 2012; Miller *et al.* 2012; Bayer & Schönhofer 2013; Dimitrov *et al.* 2013; Moradmand *et al.* 2014; Lopardo & Hormiga 2015; Polotow *et al.* 2015; Dimitrov *et al.* 2016; Wheeler *et al.* 2017); and because of the small taxonomic sample designed only to separate the species described here and establish their sex associations. It is recommended to include more genes and a considerably larger sample of *Chrysometa* species to test thoroughly the monophyly of this genus; however it is expected that *Chrysometa* will be recovered as monophyletic taking into account the uniqueness of its genital anatomy in features such as: the coiling together of the embolus and its basal apophysis, the arrangement of the paracymbial apophyses and the path of the fertilization ducts along the spermathecae length (Álvarez-Padilla & Hormiga 2011: figs. 21C, D;

22B, D) Finally producing a robust phylogenetic hypothesis for *Chrysometa* species would be the next step in the research of this genus, providing the evolutionary framework in which to test hypothesis about its anatomy or behavior, and assisting in the placement of the many new species waiting to be discovered.

FIGURE 18. Epigyna internal anatomy. *Chrysometa brevipes*, female. A, epigynum ventral view. B, apical view. *Chrysometa citlaltepetl* **n. sp.**, female. C, epigynum ventral view. D, apical view. Scale bars, A, C, D, 100 μm; B, 10 μm.

FIGURE 19. Species Distribution Map. Atotonilco Locality: Chrysometa citlaltepetl, C. triangulosa, C. rosarium, C. atotonilco and C. sagicuta.. Xamaticpac Locality: C. xamaticpac, C. puya and C. chipinque.

Acknowledgments

We would like to thank Dr. Alejandro Oceguera-Figueroa (IBUNAM) for his support with the molecular work at the Laboratorio de Biología Molecular del Departamento de Zoología-LANABIO. In

addition, we thank Ofelia Delgado-Hernández, Andrea Jiménez-Marín and Laura Márquez-Valdelamar for their assistance and direction during the molecular work and Silvia Espinosa-Matías for her help with the SEM images. We thank Dr. Gustavo Hormiga for his valuable advice regarding scientific illustration and his help during a research visit to his lab. Also, we would like to acknowledge Dr. Charles Griswold for revising this manuscript. We also thank to the following field participants: Francisco A. Rivera-Quiroz, Uriel Garcilazo-Cruz, Dulce F. Piedra-Jimenez, Mariana Servin- Pastor, Miguel A. Hernandez-Patricio, Facundo M. Labarque, Daniele Polotow, Thiago Silva-Moreira, Maira Montejo-Cruz, Leonel Perez-Miguel, Diana E. Álvarez-Martinez and Rigel S. Gonzalez-Contreras; in particular, we thank Mr. Isidoro Contreras and Mr. Nicolas and their families for the field assistance provided in Atotonilco and Xamaticpac respectively. We would like to thank Dr. Robert J. Kallal for his comments on an earlier version of this paper. Funding was provided by the projects UNAM-DGAPA-PAPIIT IN213612 and IN214916. In addition, the first author was supported by the Graduate Student Scholarship from CONACyT Becas Nacionales 2014, Posgrado de Ciencias Biológicas PAEP travel grant and the AMNH Collection Study Grant. All specimens described here were collected under permit SGPA/DGVS/02403/12 issued by SEMARNAT.

References

Agnarsson, I., Gregoric, M., Blackledge, T.A. & Kuntner, M. (2012) The phylogenetic placement of Psechridae within Entelegynae and the convergent origin of orb-like spider webs. *Journal of Zoological Systematics and Evolutionary Research*, 51, 100–106.

https://doi.org/10.1111/jzs.12007

- Álvarez-Padilla Laboratory (2017) Araneomorphae of Mexico, a Digital Images Catalog. Facultad de Ciencias UNAM. Available from: http://www.unamfcaracnolab.com (accessed 1 May 2017)
- Álvarez-Padilla, F. (2007) Systematics of the spider genus Metabus O.P-Cambridge, 1899 (Araneoidea: Tetragnathidae) with additions to the tetragnathid fauna of Chile and comments of the phylogeny of Tetragnathidae. Zoological Journal of the Linnean Society, 151, 285–335. https://doi.org/10.1111/j.1096-3642.2007.00304.x
- Álvarez-Padilla, F. & Hormiga, G. (2007) A protocol for digesting internal soft tissues and mounting spiders for scanning electron microscopy. *Journal of Arachnology*, 35, 538–542. https://doi.org/10.1636/Sh06-55.1
- Álvarez-Padilla, F., Dimitrov, D., Giribet, G. & Hormiga, G. (2009) Phylogenetic relationships of the spider family Tetragnathidae (Araneae, Araneoidea) based on morphological and DNA sequence data. *Cladistics*, 25, 109– 146. https://doi.org/10.1111/j.1096-0031.2008.00242.x
- Álvarez-Padilla, F. & Hormiga, G. (2011) Morphological and phylogenetic atlas of the orb-weaving spider family Tetragnathidae (Araneae: Araneoidea). *Zoological Journal of the Linnean Society*, 162, 713–879. https://doi.org/10.1111/j.1096-3642.2011.00692.x
- Astrin, J.J., Huber, B.A., Misof, B. & Klütsch, C.F.C. (2006) Molecular taxonomy in pholcid spiders (Pholcidae, Araneae): Evaluation of species identification methods using CO1 and 16S rRNA. *Zoologica Scripta*, 35, 441–457. https://doi.org/10.1111/j.1463-6409.2006.00239.x
- Barnes, R.D. (1953) The ecological distribution of spiders in non-forest maritime communities at Beaufort, North Carolina. Ecological Monographs, 23, 315–337.

https://doi.org/10.1111/j.14636409.2006.00x

Barrett, R.D.H. & Hebert, P.D.N. (2005) Identifying spiders through DNA barcodes. Canadian Journal of Zoology, 83, 481–491.

https://doi.org/10.1139/z05-024

Bayer, S. & Schönhofer, A.L. (2013) Phylogenetic relationships of the spider family Psechridae inferred from molecular data, with comments on the Lycosoidea (Arachnida: Araneae). *Invertebrate Systematics*, 27, 53–80. https://doi.org/10.1071/IS12017

- Blackledge, T.A., Scharff, N., Coddington, J.A., Szüts, T., Wenzel, J.W., Hayashi, C.Y. & Agnarsson, I. (2009) Reconstructing web evolution and spider diversification in the molecular era. *Proceedings of the National Academy of Sciences, USA*, 106, 5229–5234. https://doi.org/10.1073/pnas.0901377106
- Blagoev, G., Hebert, P., Adamowicz, S. & Robinson, E. (2009) Prospects for using DNA barcoding to identify spiders in species-rich genera. *ZooKeys*, 16, 27–46. https://doi.org/10.3897/zookeys.16.239
- Blagoev, G.A., DeWaard, J.R., Ratnasingham, S., DeWaard, S.L., Lu, L., Robertson, J., Telfer, A.C. & Hebert, P.D.N. (2016) Untangling taxonomy: A DNA barcode reference library for Canadian spiders. *Molecular Ecology Resources*, 16, 325–341.

https://doi.org/10.1111/1755-0998.12444

- Blagoev, G.A., Nikolova, N.I., Sobel, C.N., Hebert, P.D.N. & Adamowicz, S.J. (2013) Spiders (Araneae) of Churchill, Manitoba: DNA barcodes and morphology reveal high species diversity and new Canadian records. BMC ecology, 13, 44. https://doi.org/10.1186/1472-6785-13-44
- Cardoso, P., Gaspar, C., Pereira, L.C., Silva, I., Henriques, S.S., da Silva, R.R. & Sousa, P. (2008b) Assessing spider species richness and composition in Mediterranean cork oak forests. *Acta Oecologica*, 33, 114–127. https://doi.org/10.1016/j.actao.2007.10.003
- Cardoso, P., Scharff, N., Gaspar, C., Henriques, S.S., Carvalho, R., Castro, P.H., Schmidt, J.B., Silva, I., Szüts, T., de Castro, A. & Crespo, L.C. (2008a) Rapid biodiversity assessment of spiders (Araneae) using semi-quantitative sampling: a case study in a Mediterranean forest. *Insect Conservation and Diversity*, 1, 71–84. https://doi.org/10.1111/j.1752-4598.2007.00008.x
- Castalanelli, M.A., Teale, R., Rix, M.G., Kennington, W.J. & Harvey, M.S. (2014) Barcoding of mygalomorph spiders (Araneae: Mygalomorphae) in the Pilbara bioregion of Western Australia reveals a highly diverse biota. *Invertebrate Systematics*, 28, 375–385.
- Coddington, J. (1983) A temporary slide mount allowing precise manipulation of small structures. Verhandlungen des naturwissenschaftlichen Vereins Hamburg, 26, 291–292.
- Coddington, J.A., Griswold, C.E., Silva-Dávila, D., Peñaranda, E. & Larcher, S.F. (1991) Designing and testing sampling protocols to estimate biodiversity in tropical ecosystems. *In*: Dudley, E.C. (Ed.), The Unity of Evolutionary Biology. *Proceedings of the Fourth International Congress of Systematic and Evolutionary Biology*, 1991, pp. 44–60.
- CONANP (2015) Programa de manejo Parque Nacional El Pico de Orizaba. Comisión Nacional de Áreas Naturales Protegidas, 2015, 1–192. [in Spanish]
- Cummings, M.P., Neel, M.C. & Shaw, K.L. (2008) A genealogical approach to quantifying lineage divergence. *Evolution*, 62, 2411–2422.
 - https://doi.org/10.1111/j.1558-5646.2008.00442.x
- Dimitrov, D. & Hormiga, G. (2011) An extraordinary new genus of spiders from Western Australia with an expanded hypothesis on the phylogeny of Tetragnathidae (Araneae). *Zoological Journal of the Linnean Society*, 161, 735–768. https://doi.org/10.1111/j.1096-3642.2010.00662.x
- Dimitrov, D., Astrin, J.J. & Huber, B.A. (2013) Pholcid spider molecular systematics revisited, with new insights into the biogeography and the evolution of the group. *Cladistics*, 29, 132–146. https://doi.org/10.1111/j.1096-0031.2012.00419.x
- Dimitrov, D., Benavides, L.R., Arnedo, M.A., Giribet, G., Griswold, C.E., Scharff, N. & Hormiga, G. (2017) Rounding up the usual suspects: a standard target-gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orb- weaving spiders with a new family-rank classification (Araneae, Araneoidea). *Cladistics*, 33, 221–250. https://doi.org/10.1111/cla.12165
- Dimitrov, D., Lopardo, L., Giribet, G., Arnedo, M.A., Alvarez-Padilla, F. & Hormiga, G. (2012) Tangled in a sparse spider web: single origin of orb weavers and their spinning work unraveled by denser taxonomic sampling. *Proceedings of the Royal Society of London B*, 279, 1341–1350. https://doi.org/10.1098/rspb.2011.2011

- Espuny, A., Barrientos, J.A. & Ascaso, C. (1993) Arañas de un encinar montano (Montseny, Barcelona, España). Resultados faunísticos. *Bollettino Accademia Gioenia Scienze Naturali*, 26, 93–105.
- Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. *Molecular Marine Biology and Biotechnology*, 3, 294–299.
- González, R. (1993) La diversidad de los encinos mexicanos. *Revista de la Sociedad Mexicana de Historia Natural*, 44, 125–142.
- Grandjean, F. (1949) Observation et conservation des très petits arthropodes. Bulletin du Muséum National d'Histoire naturelle, 21, 363–370.
- Hamilton, C.A., Hendrixson, B.E., Brewer, M.S. & Bond, J.E. (2014) An evaluation of sampling effects on multiple DNA barcoding methods leads to an integrative approach for delimiting species: A case study of the North American tarantula genus Aphonopelma (Araneae, Mygalomorphae, Theraphosidae). Molecular Phylogenetics and Evolution, 71, 79–93. https://doi.org/10.1016/j.ympev.2013.11.007
- Hebert, P.D.N., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003a) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B, Biological Sciences, 270, 313–321. https://doi.org/10.1098/rspb.2002.2218
- Ivanova, N.V., deWaard, J.R. & Hebert, P.D.N. (2006) An inexpensive, automation-friendly protocol for recovering high- quality DNA. *Molecular Ecology Resources*, 6, 998–1002. https://doi.org/10.1111/j.1471-8286.2006.01428.x
- Kallal, R.J. & Hormiga, G. (2016) Redescription of the Jamaican orb-weaving spider *Chrysometa pecki* Levi, 1986 (Araneae, Tetragnathidae), including the first description of the male. *Zootaxa*, 4066 (1), 95–100. https://doi.org/10.11646/zootaxa.4066.1.11
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P. & Drummond, A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics*, 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
- Koponen, S. (1996) Spiders (Araneae) on trunks and large branches of oak (*Quercus robur*) in SW Finland. *Revue Suisse de Zoologie*, Hors Série, 335–340.
- Levi, H. (1986) The Neotropical orb-weaver genera *Chrysometa* and *Homalometa* (Araneae: Tetragnathidae). *Bulletin* of the Museum of Comparative Zoology, 151, 91–215.
- Lopardo, L., Giribet, G. & Hormiga, G. (2011) Morphology to the rescue: molecular data and the signal of morphological characters in combined phylogenetic analyses—a case study from mysmenid spiders (Araneae, Mysmenidae), with comments on the evolution of web architecture. *Cladistics*, 27, 278–330. https://doi.org/10.1111/j.1096-0031.2010.00332.x
- Lopardo, L. & Hormiga, G. (2015) Out of the twilight zone: phylogeny and evolutionary morphology of the orb-weaving spider family Mysmenidae, with a focus on spinneret spigot morphology in symphytognathoids (Araneae, Araneoidea). *Zoological Journal of the Linnean Society*, 173, 527–786. https://doi.org/10.1111/zoj.12199
- Lopardo, L. & Uhl, G. (2014) Testing mitochondrial marker efficacy for DNA barcoding in spiders: A test case using the dwarf spider genus *Oedothorax* (Araneae: Linyphiidae: Erigoninae). *Invertebrate Systematics*, 28, 501–521. https://doi.org/10.1071/IS14017
- Masters, B. C., Fan, V. & Ross, H. A. (2011) Species Delimitation–a geneious plugin for the exploration of species boundaries. Molecular Ecology Resources, 11, 154–157.
 - https://doi.org/10.1111/j.1755-0998.2010.02896.x
- Michalak, S. (2012) RaxmlGUI version 1.5: a graphical front-end for RAxML. *Organisms Diversity and Evolution*, 12, 335–337.

https://doi.org/10.1007/s13127-011-0056-0

Miller, J.A., Carmichael, A., Ramírez, M.J., Spagna, J.C., Haddad, C.R., Rezac, M., Johannesen, J., Kral, J., Wang, X. & Griswold, C.E. (2010) Phylogeny of entelegyne spiders: affinities of the family Penestomidae (new rank),

generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae). *Molecular Phylogenetics and Evolution*, 55, 786–804. https://doi.org/10.1016/j.ympev.2010.02.021

- Miller, J.A., Griswold, C.E., Scharff, N., Rezac, M., Szuts, T. & Marharbai, M. (2012) The velvet spiders: an atlas of the Eresidae (Arachnida, Araneae). *ZooKeys*, 195, 1–144. https://doi.org/10.3897/zookeys.195.2342
- Moradmand, M., Schönhofer, A.L. & Jäger, P. (2014) Molecular phylogeny of the spider family Sparassidae with focus on the genus *Eusparassus* and notes on the RTA-clade and 'Laterigradae'. *Molecular Phylogenetics and Evolution*, 74, 48–65. https://doi.org/10.1016/j.ympev.2014.01.021
- Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. *Nature*, 403, 853–858. https://doi.org/10.1038/35002501
- Nixon, K.C. (2006) Global and Neotropical distribution and diversity of oak (genus *Quercus*) and oak forests ecological studies. *In*: Kappelle, M. (Ed.), *Ecology and Conservation of Neotropical Montane Oak Forests*. Springer, Berlin, pp. 3–13.

https://doi.org/10.1007/3-540-28909-7_1

- Nogueira, A.A., Pena-Barbosa, J.P.P., Venticinque, E.M. & Brescovit, A.D. (2011) The spider genus *Chrysometa* (Araneae, Tetragnathidae) from the Pico da Neblina and Serra do Tapirapecó mountains (Amazonas, Brazil): new species, new records, diversity and distribution along two altitudinal gradients. *Zootaxa*, 2772, 33–51.
- Polotow, D., Carmichael, A. & Griswold, C.E. (2015) Total evidence analysis of the phylogenetic relationships of Lycosoidea spiders (Araneae, Entelegynae). *Invertebrate Systematics*, 29, 124–163. https://doi.org/10.1071/IS14041
- Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., Kamoun, S., Sumlin, W.D. & Vogler, A.P. (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. *Systematic Biology*, 55, 595609.

https://doi.org/10.1080/10635150600852011

- Rix, M.G., Harvey, M. & Roberts, J. (2008) Molecular phylogenetics of the spider family Micropholcommatidae (Araneae: Araneae) using nuclear rRNA genes (18S and 28S). *Molecular Phylogenetics and Evolution*, 46, 1031–1048. https://doi.org/10.1016/j.ympev.2007.11.001
- Rzedowski, J. (1978) La vegetación de México. Limusa, Mexico City, 432 pp.
- Scharff, N., Coddington, J.A., Griswold, C.E., Hormiga, G. & Bjørn, P. de P. (2003) When to quit? Estimating spider species richness in a Northern European deciduous forest. *The journal of Arachnology*, 31, 246–273. https://doi.org/10.1636/0161-8202(2003)031[0246:WTQESS]2.0.CO;2
- Simó, M., Álvarez, L. & Laborda, Á. (2016) The orb-weaving spider genus Chrysometa in Uruguay: distribution and description of a new species (Araneae, Tetragnathidae). Zootaxa, 4067 (5), 589–593. https://doi.org/10.11646/zootaxa.4067.5.7
- Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994) Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers. *Annals of the Entomological Society of America*, 87, 651–701. https://doi.org/10.1093/aesa/87.6.651
- Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A Rapid Bootstrap Algorithm for the RAxML Web Servers. Systematics Biology, 57, 758–771.

https://doi.org/10.1080/10635150802429642

- Urones, C., Jerardino, M. & Fernández, J.L. (1990) Estudio ecológico de las arañas epigeas (Araneae) en un encinar adehesado de *Quercus ilex* subsp. *ballota* (Desf.) Samp. (provincia de Salamanca, España). *Boletín de la Asociación Española de Entomología*, 14, 185–197.
- Valencia, S. (2004) Diversidad del género *Quercus* (Fagaceae) en México. *Boletín de la Sociedad Botánica de México*, 75, 33–53.
- Wheeler, W.C., Coddington, J.A., Crowley, L.M., Dimitrov, D., Goloboff, P.A., Griswold, C.E., Hormiga, G., Prendini, L., Ramírez, M.J., Sierwald, P., Almeida-Silva, L., Alvarez-Padilla, F., Arnedo, M. A., Benavides Silva, L.R., Benjamin,

S.P., Bond, J.E., Grismado, C.J., Hasan, E., Hedin, M., Izquierdo, M.A., Labarque, F.M., Ledford, J., Lopardo, L., Maddison, W.P., Miller, J.A., Piacentini, L.N., Platnick, N.I., Polotow, D., Silva-Dávila, D., Scharff, N., Szüts, T., Ubick, D., Vink, C.J., Wood, H.M. & Zhang, J. (2017) The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. *Cladistics*, 33, 574–616. https://doi.org/10.1111/cla.12182

Wood, H.M., Griswold, C.E. & Gillespie, R. (2012) Phylogenetic placement of pelican spiders (Archaeidae, Araneae), with insight into evolution of the "neck" and predatory behaviors of the superfamily Palpimanoidea. *Cladistics*, 28, 598–626. https://doi.org/10.1111/j.1096-0031.2012.00411.x

World Spider Catalog (2017) World Spider Catalog. Version 18. Natural History Museum Bern. Available from: http://wsc.nmbe.ch (accessed 1 May 2017)

Colecciones internacionales

Se revisaron un total de 1,685 ejemplares adultos de 108 especies de *Chrysometa* encontrados en las colecciones internacionales (Tabla 2). Se encontraron cuatro morfoespecies nuevas para México, dos en el MCZ y dos en el AMNH (Tabla 3) (Figs. 8-11). Además, como producto de la estancia de investigación en la universidad George Washington, se encontraron cinco especies nuevas para Centro América (Tabla 4) (Figs. 12-16). Estas morfoespecies ya se encuentran descritas y en proceso de publicación.

Tabla 2. Ejemplares de Chrysometa revisados en las colecciones internacionales.

Colección	Especímenes	Especies	Especies nuevas
MCZ	714	50	2
AMNH	345	27	2
Smithsonian	136	12	0
GWU	490	19	0

Tabla 3. Lista de morfoespecies de Chrysometa para México de las colecciones internacionales.

Colección	Morfoespecie	Localidad
MCZ	C. sp01	North America: Mexico: Chiapas Mpio. Coapilla, 2.5 km NW Jct. Rds.
		Tapalapa/Ocotepec.
MCZ	C. sp02	North America: Mexico: Veracruz: near Xalapa; 1200m.
AMNH	C. sp03	North America: Mexico: Nayarit: Tepic.
AMNH	C. sp04	North America: Mexico: San Luís Potosí: Tamazunchale.

Tabla 4. Lista de morfoespecies de Chrysometa para Centro América de la colecciones de GWU.

Colección	Morfoespecie	Localidad
GWU	C. GH2506	Central America: Dominican Republic: Duarte Prov. San Francisco de
		Macorís, Reserva Científica Loma Quita Espuela.
GWU	C. GH2507	Central America: Dominican Republic: Barahona Prov. Paraíso, Reserva Natural Cachote.
GWU	C. GH2508	Central America: Panama: Provincia Chiriquí. Reserva Forestal Fortuna, Quebrada Honda.
GWU	C. GH2509	Central America: Dominican Republic: Barahona Prov. Paraíso, Reserva Natural Cachote
GWU	C. GH2510	Central America: Panama: Parque Nacional Altos de Campana.
Chrysometa sp01 n. sp.

Figure 9

Type material. Holotype (79789). Male from Municipio de Coapilla, Chiapas, Mexico. Mayo, 2008. Types are deposited in the Museum of Comparative Zoology at the Harvard University (MCZ).

Diagnosis. Males of *C.* sp01 can be distinguished from *C. Citlaltepetl* Salgueiro-Sepúlveda and Álvarez-Padilla, 2018, *C. puebla* Levi, 1986 and all sympatric species by the following features: large, thin and flatten paracymbium lower prong and ectobasal cimbial process flatten and bifurcated (Fig. 9e, f). *C. Citlaltepetl* and *C. puebla* males have an square lower prong males have a thicker paracymbium lower prong and the ectobasal cambial process is not bifurcated.

Description. Male. Total length 3.6. Cephalothorax: length 1.9, width 1.3. Carapace paleyellow, black patterns over the cephalic region narrowing in the middle and towards the fovea. Ocular area same coloration (Fig. 9a, b, d). Eyes subequal in size (Fig. 9d). AME diameter 0.1, PME 0.14, ALE and PLE 0.11. Chelicerae light brown, dark-brown on the anterior part and brighter on sides, black patterns on the posterior part, with few scattered setae (Fig. 9b, c, d). Endites longer than wide, darkyellow, brighter on the tips, internal margins pale-yellow. Labium wider than long, dark brown, paleyellow on the posterior part. Sternum pale yellow, wider between the first and second legs (Fig. 9c). Abdomen: gray, dorsally covered with guanine silvery patches, lateral and anterior part darker with a rectangular pattern from the middle to the spinnerets, with transversal dark-brown lines (Fig. 8a, b); ventrally brighter, with guanine patches concentrated in four spots forming a central dark-brown pattern between (Fig. 9c). Leg lengths: I 13, II 8.9, III 4 and IV 5.7. Legs yellow darker on joints, with ventral and dorsal dark-brown spots. Tarsi dark-brown. All segments tips dark-brown. Pedipalp: CEBP flat and bifurcated, curved anteriorly. CEMP rectangular and flattened, pointed retrolaterally (Figs. 9e, f). Thin paracymbium, L-shaped in ventral view (Fig. 9e). UpP enlarged, wider than LwP. LwP large, thin and flatten (Figs. 9e, f). Embolus thin, with tubular shape and supported by the conductor; EBA shorter than embolus and curved in apical region (Figs. 9e, f). Conductor, embolus and EBA in ventral view as in Figures 9e.

Material examined. N=1. Mexico: Chipas, Municipio de Coapilla, one male. Museum of Comparative Zoology at the Harvard University (MCZ).

Distribution. Chiapas, Mexico. Known only from the type locality.

Figura 9. *Chrysometa* sp01. Male. a) Habitus dorsal (20x). b) Habitus lateral (20x). c) Habitus ventral (20x). d) Prosoma anterior (50x). e) Pedipalp ventral view (80x). f) Pedipalp retrolateral view (80x).

Chrysometa sp02 n. sp.

Figure 10

Type material. Holotype (48838). Male from Veracruz, near Xalapa, Mexico. 2008. Types are deposited in the Museum of Comparative Zoology at the Harvard University (MCZ).

Diagnosis. Males of *C.* sp02 can be distinguished from *C. puya* Salgueiro-Sepúlveda and Álvarez-Padilla, 2018, *C. chipinque* Levi, 1986 and all sympatric species by the following features: paracymbium upper prong with two protuberances and paracymbium lower prong with one in retrolateral view (Fig. 10f). *C. chipinque* males have no protuberances in the paracymbium prongs and *C. puya* have the lower prong bifurcated.

Description. Male. Total length 3.9. Cephalothorax: length 1.8, width 1.4. Carapace brightorange, patterns darker over the cephalic region narrowing in the middle and towards the fovea. Ocular area same coloration (Fig. 10a, b, d). Eyes subequal in size (Fig. 10d). AME diameter 0.1, PME 0.13, ALE and PLE 0.1. Chelicerae same coloration, darker on sides, with few scattered setae (Fig. 10b, c, d). Endites longer than wide, same coloration, brighter on the tips, internal margins same coloration. Labium wider than long, darker than endites. Sternum brighter than cephalotorax, wider between the first and second legs (Fig. 10c). Abdomen: gray, dorsally covered with guanine silvery patches, paired brown spots from the middle toward the fovea (Fig. 10a, b); ventrally brown, with guanine patches concentrated in two spots in the middle (Fig. 10c). Leg lengths: I 12, II 8.5, III 4 and IV 5.6. Legs pale yellow. Tarsi dark-brown. All segments tips darker. Pedipalp: CEBP flat and square, curved anteriorly. CEMP rectangular and flattened, pointed retrolaterally (Figs. 10e, f). Thick paracymbium, rounded in the middle, protruding ventrally (Fig. 10e, f). UpP enlarged and square, wider than LwP. LwP triangular and straight, with rounded tip (Figs. 10e, f). Embolus thin and very short, supported by the conductor; EBA larger than embolus and curved in apical region (Figs. 10e, f). Conductor, embolus and EBA in ventral view as in Figures 10e.

Material examined. N=1. Mexico: Veracruz, Near Xalapa, one male. Museum of Comparative Zoology at the Harvard University (MCZ).

Distribution. Veracruz, Mexico. Known only from the type locality.

Figura 10. *Chrysometa* sp02. Male. a) Habitus dorsal (20x). b) Habitus dorsal (20x). c) Habitus dorsal (20x). d) Prosoma anterior (40x). e) Pedipalp ventral view (80x). f) Pedipalp retrolateral view (80x).

Chrysometa sp03 n. sp.

Figure 11

Type material. Holotype (AMNH01). Female from Tepic, Nayarit, Mexico. 1959. Types are deposited in the American Museum of Natural History (AMNH).

Diagnosis. Females of *C*. sp03 can be distinguished from all sympatric species by the following features: epigynum without transverse bar, septum very small and triangular (Figs. 11e, fd).

Description. Female. Total length 4. Cephalothorax: length 2, width 1.5. Carapace dark-yellow, dark-yellow pattern over the cephalic region narrowing towards the fovea (Fig. 11a). Ocular area pale-yellow. Eyes subequal in size (Fig.11d). AME diameter 0.1, PME 0.14, ALE and PLE 0.14. Chelicerae

dark-yellow, with few scattered setae (Fig. 11d). Endites longer than wide, brown, internal margins brighter. Labium wider than long, dark brown, dark- yellow on the posterior part. Sternum dark-yellow, wider between the first and second legs (Fig. 11c). Abdomen: pale-brown, dorsally covered with small guanine silvery patches, with longitudinal pair of brown spots (Fig. 11a, b); ventrally dark-brown, with four spots of guanine patches between the spinnerets and the epigynum, (Fig. 11c). Leg lengths: I 12, II 6.9, III 4 and IV 5.8. Legs dark-brown, darker on joints. Tarsi dark-brown. Epigynum: epigynal plate trapezoidal and small, wider than long without transverse bar, septum very small and triangular. Septum with thick margins and well sclerotized. Copulatory openings small and deep (Figs. 11e, f).

Figura 11. *Chrysometa* sp03. Female. a) Habitus dorsal (10x). b) Habitus lateral (10x). c) Habitus ventral (10x). d) Prosoma anterior (40x). e) Epyginum ventral view (80x). f) Epyginum posterior view (80x).

Material examined. N=1. Mexico: Nayarit, Tepic, one female. 1959. American Museum of Natural History (AMNH).

Distribution. Nayarit, Mexico. Known only from the type locality.

Chrysometa sp04 n. sp.

Figure 12

Type material. Holotype (AMNH02). Male from Tamazanchale, San Luis Potosí, Mexico. 1956. Types are deposited in the American Museum of Natural History (AMNH).

Diagnosis. Males of *C.* sp03 can be distinguished from *C. puya* Salgueiro-Sepúlveda and Álvarez-Padilla, 2018, *C. chipinque* Levi, 1986 and all sympatric species by the following features: paracymbium lower prong big and square, protruding ventrally forming three 'arms' in retrolateral view (Fig. 12e, f). *C. chipinque* and *C. puya* males have no protruding paracymbium lower prong.

Description. Male. Total length 3.8. Cephalothorax: length 1.7, width 1.4. Carapace brightorange, patterns darker over the cephalic region narrowing in the middle and towards the fovea. Ocular area same coloration (Fig. 12a, b, d). Eyes subequal in size (Fig. 12d). AME diameter 0.1, PME 0.13, ALE and PLE 0.1. Chelicerae darker, with few scattered setae (Fig. 12b, c, d). Endites longer than wide, brown, brighter on the tips, internal margins same coloration. Labium wider than long, same coloration than endites. Sternum brighter than cephalotorax, wider between the first and second legs (Fig. 12c). Abdomen: gray, without guanine silvery patches (Fig. 12a, b); ventrally same coloration (Fig. 12c). Leg lengths: I 11.9, II 8.4, III 4.1 and IV 5.5. Legs pale yellow. Tarsi dark-brown. All segments tips darker. Pedipalp: CEBP rounded and short, curved anteriorly. CEMP triangular and small, pointed retrolaterally (Figs. 12e, f). Thick paracymbium, rounded in the middle, protruding ventrally (Fig. 12e, f). UpP enlarged and rounded, wider than LwP, big and square, protruding ventrally forming three 'arms' in retrolateral view (Fig. 12e, f).. Embolus thin and very short, supported by the conductor; EBA curved in apical region (Figs. 12e, f). Conductor, embolus and EBA in ventral view as in Figures 12e.

Material examined. N=1. Mexico: San Luis Potosí, Tamazanchale, one male, 1956. American Museum of Natural History (AMNH).

Distribution. San Luis Potosí, Mexico. Known only from the type locality.

Figura 12. *Chrysometa* sp04. Male. a) Habitus dorsal (20x). b) Habitus lateral (20x). c) Habitus ventral (20x). d) Prosoma anterior (40x). e) Pedipalp ventral view (80x). f) Pedipalp retrolateral view (80x).

Chrysometa GH2506 n. sp.

Figure 13

Type material. Holotype (GH2506). Female from San Francisco de Macarís, Duarte Province, Dominican Republic. 2005. Types are deposited in the George Washington University (AMNH).

Diagnosis. Females of *C*. GH2506 can be distinguished from all sympatric species by the following features: reduced transverse bar and septum triangular, flat and protruding over the copulatory openings (Figs. 13e, 13d).

Figura 13. *Chrysometa* GH2506. Female. a) Habitus dorsal (15x). b) Habitus lateral (15x). c) Habitus ventral (15x). d) Prosoma anterior (30x). e) Epyginum ventral view (80x). f) Epyginum posterior view (80x).

Description. Female. Total length 4.2. Cephalothorax: length 2.1, width 1.6. Carapace pale-yellow, darker pattern over the cephalic region narrowing towards the fovea (Fig. 13a). Ocular area dark-yellow. Eyes subequal in size (Fig.13d). AME diameter 0.1, PME 0.14, ALE and PLE0.14. Chelicerae dark-yellow, darker on sides, with few scattered setae (Fig. 13d). Endites longer than wide, brown, internal margins brighter. Labium wider than long, dark brown, dark- yellow on the posterior part. Sternum brown, wider between the first and second legs (Fig. 13c). Abdomen: gray, dorsally covered with small guanine silvery patches, with longitudinal brown spots from the pedicel to the spinnerets (Fig. 13a, b); ventrally darker, with three lines of guanine patches forming un square between the spinnerets and the epigynum, (Fig. 13c). Leg lengths: I 11, II 6.7, III 3.9 and IV 5.6. Legs pale yellow, darker on joints. Tarsi dark-brown. Epigynum: epigynal plate oval and small, wider than long with reduced transverse bar and

septum triangular, flat and protruding over the copulatory openings (Figs. 13e, 13d).

Material examined. N=1. Dominican Republic: Duarte Province, San Francisco de Macorís, one female. 2005. George Washington University (GWU).

Distribution. Duarte Province, Dominican Republic. Known only from the type locality.

Chrysometa GH25067 n. sp.

Figure 14

Type material. Holotype (GH25067). Female from Barahona Province, Dominican Republic. 2005. Types are deposited in the George Washington University (AMNH).

Diagnosis. Females of *C*. GH2507 can be distinguished from all sympatric species by the following features: septum large and oval, tubular-shaped without transverse bar (Figs. 14e, 14d).

Description. Female. Total length 3.9. Cephalothorax: length 1.9, width 1.4. Carapace dark-yellow, brown small pattern over the cephalic region narrowing towards the fovea (Fig. 14a). Ocular area darker. Eyes subequal in size (Fig.14d). AME diameter 0.11, PME 0.15, ALE and PLE 0.15. Chelicerae light-brown, darker on sides and the anterior surface, with few scattered setae (Fig. 14d). Endites longer than wide, brown, internal margins brighter. Labium wider than long, dark brown, dark-yellow on the posterior part. Sternum brown, wider between the first and second legs (Fig. 14c). Abdomen: dark brown, dorsally covered with a few small guanine silvery patches, with darker longitudinal patterns from the middle to the spinnerets, forming a square, brighter on sides (Fig. 14a, b); ventrally brown, with two small silvery patches (Fig. 14c). Leg lengths: I 11, II 6.5, III 3.4 and IV 5.5. Legs light brown, darker on joints. Tarsi dark-brown. Epigynum: epigynal plate oval and small, wider than long without transverse bar, septum large and oval in tubular-shaped (Figs. 14e, 14d).

Material examined. N=1. Dominican Republic: Barahona Province, one female. 2005. George Washington University (GWU).

Distribution. Barahona Province, Dominican Republic. Known only from the type locality.

Figura 14. *Chrysometa* GH2507. Female. a) Habitus dorsal (30x). b) Habitus lateral (30x). c) Habitus ventral (30x). d) Prosoma anterior (40x). e) Epyginum ventral view (80x). f) Epyginum posterior view (80x).

Chrysometa GH2508 n. sp.

Figure 15

Type material. Holotype (GH2508). Female from Chiriquí Province, Panama. 2007 Types are deposited in the George Washington University (AMNH).

Diagnosis. Females of *C*. GH2508 can be distinguished from all sympatric species by the following features: septum large and rectangular, with reduced transverse bar, forming an inverted T (Figs. 15e, 15f).

Figura 15. *Chrysometa* GH2508. Female. a) Habitus dorsal (10x). b) Habitus lateral (10x). c) Habitus ventral (10x). d) Prosoma anterior (30x). e) Epyginum ventral view (80x). f) Epyginum posterior view (80x).

Description. Female. Total length 4. Cephalothorax: length 1.8, width 1.4. Carapace greenishyellow, dark brown big pattern over the cephalic region narrowing towards the fovea (Fig. 15a). Ocular area bright-brown. Eyes subequal in size (Fig.15d). AME diameter 0.12, PME 0.15, ALE and PLE 0.15. Chelicerae light-brown, darker on sides and the anterior surface, with few scattered setae (Fig. 15d). Endites longer than wide, light-brown, internal margins brighter. Labium wider than long, dark brown, darkyellow on the posterior part. Sternum greenish, wider between the first and second legs (Fig. 15c). Abdomen: dark brown, dorsally covered with a few small guanine silvery patches, with darker longitudinal patterns from the middle to the spinnerets, forming a square, brighter on sides (Fig. 15a, b); ventrally brown, with two small silvery patches (Fig. 15c). Leg lengths: I 11, II 6.4, III 3. 5 and IV 5.4. Legs greenish, darker on joints, with brown bands. Tarsi dark-brown. Epigynum: epigynal plate triangular, wider than long septum large and rectangular, with reduced transverse bar, forming an inverted T (Figs. 15e, 15f).

Material examined. N=1. Panama: Chiriquí Province, one female. 2007. George Washington University (GWU).

Distribution. Chiriquí Province, Panama. Known only from the type locality.

Chrysometa GH2509 n. sp.

Figure 16

Type material. Holotype (GH2509). Male from Barahona Province, Dominican Republic. 2007 Types are deposited in the George Washington University (GWU).

Diagnosis. Males of C. GH2509 can be distinguished from all sympatric species by the thin and large C-shape paracymbium (Fig. 16e, f).

Description. Male. Total length 3.6. Cephalothorax: length 1.6, width 1.3. Carapace pale yellow, patterns brown over the cephalic region narrowing in the middle and towards the fovea. Ocular area brown (Fig. 16a, b, d). Eyes subequal in size (Fig. 16d). AME diameter 0.1, PME 0.13, ALE and PLE 0.1. Chelicerae brown, with few scattered setae (Fig. 16b, c, d). Endites longer than wide, brown, brighter on the tips, internal margins same coloration. Labium wider than long, same coloration than endites. Sternum brighter than cephalotorax, wider between the first and second legs (Fig. 16c). Abdomen: dark brown, dorsally covered with a few small guanine silvery patches, with darker longitudinal patterns from the middle to the spinnerets, forming a square, brighter on sides (Fig. 16a, b); ventrally brown, without silvery patches (Fig. 16c). Leg lengths: I 11, II 8.5, III 4 and IV 5.3. Legs pale yellow with brown bands. Tarsi dark-brown. All segments tips darker. Pedipalp: CEBP triangular short, curved prolateraly. CEMP triangular, large and thin, pointed retrolaterally (Figs. 16e, f). Thin and large paracymbium, C-shaped in retrolateral view (Fig. 16e, f). UpP rounded, wider than LwP (Fig. 16e, f). Embolus thin and very short, supported by the conductor; EBA curved in apical region (Figs. 16e, f). Conductor, embolus and EBA in ventral view as in Figure 16e.

Figura 16. *Chrysometa* GH2509. Male.a) Habitus dorsal (20x). b) Habitus lateral (20x). c) Habitus ventral (20x). d) Prosoma anterior (40x). e) Pedipalp ventral view (80x). f) Pedipalp retrolateral view (80x).

Material examined. N=1. Dominican Republic: Barahona Province, one male, 2007. George Washington University (GWU).

Distribution. Barahona Province, Dominican Republic. Known only from the type locality.

Chrysometa GH2510 n. sp.

Figure 17

Type material. Holotype (GH2510). Male from Parque Nacional Altos de Campana, Panama. 2007. Types are deposited in the George Washington University (GWU).

Diagnosis. Males of *C*. GH2510 can be distinguished from all sympatric species by the following features: thick and big paracymbium, square UpP with two ventral projections and CEMP triangular, large and flatten in the tip, curved prolateraly (Figs. 17e, f).

Description. Male. Total length 3.5. Cephalothorax: length 1.6, width 1.3. Carapace pale yellow, patterns darker over the cephalic region narrowing in the middle and towards the fovea. Ocular area brown (Fig. 17a, b, d). Eyes subequal in size (Fig. 17d). AME diameter 0.1, PME 0.13, ALE and PLE 0.1. Chelicerae light-brown, with few scattered setae (Fig. 17b, c, d). Endites longer than wide, brown, brighter on the tips, internal margins same coloration. Labium wider than long, same coloration than endites. Sternum brighter than cephalotorax, wider between the first and second legs (Fig. 17c). Abdomen: pale yellow, dorsally covered with a few small guanine silvery patches, with darker longitudinal patterns from the middle to the spinnerets (Fig. 17a, b); ventrally same color, without silvery patches (Fig. 17c). Leg lengths: I 12, II 8.7, III 4 and IV 5.5. Legs pale yellow. Tarsi brown. All segments tips darker. Pedipalp: CEBP triangular short, curved prolateraly. CEMP triangular, large and flatten in the tip, curved prolateraly. Thick and big paracymbium, square UpP with two ventral projections, narrow than LwP. Embolus, conductor and EBA very short (Figs. 17e, f). Conductor, embolus and EBA in ventral view as in Figures 17e.

Material examined. N=1. Panama: Parque Nacional Altos de Campana, one male, 2007. George Washington University (GWU).

Distribution. Panama. Known only from the type locality.

Figura 17. *Chrysometa* GH2510. Male. a) Habitus dorsal (20x). b) Habitus lateral (20x). c) Habitus ventral (20x). d) Prosoma anterior (40x). e) Pedipalp ventral view (80x). f) Pedipalp retrolateral view (80x).

SECCIÓN II

RESULTADOS

Análisis filogenético con datos morfológicos

Los resultados del análisis de parsimonia se presentan en la figura 18. Se obtuvieron un total de 57 árboles igualmente parsimoniosos de 1,135 pasos con un índice de consistencia (CI) de 0.26 y un índice de retención (RI) de 0.69. El consenso estricto de estos cladogramas colapsó todos los nodos dentro de Tetragnathidae y recuperó la monofilia del género *Chrysometa* en todas las topologías generadas con un soporte de Bootstrap de 86%. A pesar de que el género se recupera monofilético, las relaciones entre las especies resultan ambiguas (Apéndice 5), debido principalmente a que algunas especies están representadas por un sólo sexo, por lo que carecen de suficiente información para una correcta optimización de caracteres. Es necesaria una mayor muestra taxonómica y de ser posible investigar otros sistemas de caracteres, como por ejemplo ecológicos, de comportamiento, moleculares y genómicos; para elucidar las relaciones intraespecíficas de *Chrysometa*. Todas las subfamilias de Tetragnathidae se recuperaron monofiléticos con un Bootstrap >80%, excepto Metainae.

El género se posiciona como grupo hermano de un clado de especies pertenecientes a la subfamilia Nanometinae, esta relación cercana se ha observado en algunas filogenias de la familia (Hormiga, 2017; Kallal y Hormiga, 2018). A pesar de que el género *Allende* se postuló como el grupo hermano de *Chrysometa* (Álvarez-Padilla et al., 2009; Dimitrov y Hormiga, 2011; Hormiga, 2017), en el presente análisis morfológico *Allende* se agrupó con especies de la subfamilia Metainae. En estos análisis previos *Allende, Chrysometa* y *Azilia* se recuperaron dentro del mismo clado pero mal soportados y con relaciones intrafamiliares poco claras. En los resultados presentados aquí, *Azilia* se posiciona junto con *Allende* dentro de la subfamilia Metainae.

Análisis filogenético con datos moleculares

Se obtuvieron en total 117 secuencias de 17 especies de *Chrysometa*: 43 para COI (nueve especies), 23 para el 18S (nueve especies), 32 para el 28S (17 especies), 13 para la H3 (seis especies) y seis para el 12S (tres especies), de las cuales sólo se utilizaron 42 en la matriz molecular.

En el análisis de Máxima Verosimilitud (Fig. 19) el género *Chrysometa* se recuperó monofilético con un soporte de Bootstrap de 94%. Todas las especies mexicanas presentan un soporte >80%, excepto una especie nueva encontrada en las colecciones internacionales, que se agrupa con las especies nuevas de Centro América, esto debido a que sólo están representadas por un gen. Se aprecia que las especies de *Chrysometa* de distribución exclusiva para México se agrupan en uno de los dos clados dentro del género. El resto de especies, de distribución en Centro y Sudamérica, se agrupan en otro clado junto con especies mexicanas de distribución al sur del país. Esto sugiere una hipótesis del origen, la diversificación y colonización del género en el continente (ver discusión).

Allende se posiciona como el grupo hermano de *Chrysometa* con un soporte de 43%, sin embargo este género está representado sólo por dos especies en el análisis por lo que una mayor muestra taxonómica representará mejor sus relaciones. *Chrysometa* junto con *Allende* y *Azilia* son de los géneros que no han logrado estabilizarse en algunas de las subfamilias (Alvarez-Padilla, 2007; Álvarez-Padilla et al., 2009; Dimitrov y Hormiga, 2011; Hormiga, 2017). En este análisis, el clado *Chrysometa*+*Allende* se coloca como grupo hermano de Nanometinae pero débilmente soportado. Resultados parecidos se han observado en algunos trabajos, en los cuáles dependiendo el tipo de análisis *Chrysometa* se agrupa con el género *Azilia* (Kallal y Hormiga, 2018). En estos resultados, este género se posiciona como grupo hermano de la subfamilia Leucauginae pero con un soporte de Bootstrap muy bajo, corroborando su inestabilidad. Tetragnathidae se recupera monofilética con un soporte de 100%. Sólo las subfamilias Nanometinae y Leucauginae se recuperaron monofiléticas con un soporte de 100% y Mimetidae se encuentra como grupo hermano de la familia con un soporte de 100% y Mimetidae se encuentra como grupo hermano de la familia con un soporte de 100% y Mimetidae se necuentra como grupo hermano de la familia con un soporte de 100% y Mimetidae se encuentra como grupo hermano de la familia con un soporte de 100% y Mimetidae se encuentra como grupo hermano de la familia con un soporte de 100% y Mimetidae se encuentra como grupo hermano del clado Tetragnathidae+Arkyidae con un soporte de 98%, corroborando el resultado de estudios previos (Dimitrov et al., 2017; Fernández et al., 2018; Kallal y Hormiga, 2018).

En el análisis Bayesiano se observaron resultados parecidos que en el análisis de Máxima Verosimilitud (Fig. 20). Se recuperó la monofilia del género *Chrysometa* con una probabilidad posterior de 68%. Se observa nuevamente que las especies mexicanas de *Chrysometa* se agrupan en dos clados diferenciados por su distribución geográfica con una probabilidad posterior de 64%, sugiriendo de nuevo la hipótesis del origen y colonización del género. El grupo hermano de *Chrysometa* resulta el género *Allende* con una probabilidad posterior de 66%, agrupados junto con la subfamilia Nanometinae pero con mayor soporte que en el análisis de Máxima Verosimilitud. También se observa inestabilidad

en el género *Azilia*, ya que se agrupa con la subfamilia Metainae, resultado observado también en el análisis morfológico. Tetragnathidae se recupera monofilética con una probabilidad posterior de 100%. Las subfamilias Nanometinae y Tetragnathinae se recuperaron monofiléticas con una probabilidad posterior de 100% y 88%, respectivamente. Arkyidae se recuperó como grupo hermano de Tetragnathidae con una probabilidad posterior de 76% y Mimetidae se encuentra como grupo hermano del clado Tetragnathidae+Arkydae con una probabilidad posterior de 80%, resultados que corroboran lo observado en filogenias previas (Dimitrov et al., 2017; Fernández et al., 2018; Kallal y Hormiga, 2018).

Figura. 18. Hipótesis de relaciones filogenéticas del consenso estricto de 57 árboles de 1,135 pasos (CI=0.26, RI=0.69), obtenida al analizar 223 caracteres morfológicos con pesos iguales utilizando como criterio de optimización parsimonia. Las ramas del árbol filogenético muestran los valores de 1,000 réplicas de Bootstrap.

Figura. 19. Hipótesis de relaciones filogenéticas obtenida al analizar tres marcadores genéticos nucleares y tres mitocondriales. La matriz molecular incluye 218 taxa y 6,688 pares de bases. El criterio de optimización que se utilizó fue Máxima Verosimilitud. Las ramas del árbol filogenético muestran los valores de 1,000 réplicas de Bootstrap.

Figura. 20. Hipótesis de relaciones filogenéticas obtenida al analizar tres marcadores genéticos nucleares y tres mitocondriales. La matriz molecular incluye 218 taxa y 6,688 pares de bases. El criterio de optimización que se utilizó fue Bayesiano. Las ramas del árbol filogenético muestran los valores de probabilidad posterior.

DISCUSIÓN

Las revisiones taxonómicas y el examen detallado de especímenes de colecciones biológicas permiten contribuir al conocimiento de la biodiversidad mediante las descripciones y publicaciones de especies nuevas. A pesar del aporte invaluable a la taxonomía del género (Levi, 1986), aún quedan muchas especies de *Chrysometa* por describir. De 1986 a la fecha, sólo se han descrito 19 especies nuevas: tres especies para Chile (Álvarez-Padilla, 2007), una especie para Uruguay (Simó et al., 2016), ocho especies para Brasil (Nogueira et al., 2011) y siete especies para México (Salgueiro-Spúlveda y Álvarez-Padilla, 2018), las cuales pertenecen a regiones específicas y cuya distribución precisa es desconocida. Sin embargo, trabajos similares a este ayudarán a contribuir enormemente al conocimiento de la fauna de arañas, tanto del país como de otras regiones del mundo. El presente estudio hace un gran aporte a la taxonomía del género con siete especies nuevas mexicanas ya publicadas (Salgueiro-Sepúlveda y Álvarez-Padilla, 2018) y otras cuatro especies más que se encuentran en proceso de publicación junto con cinco aportaciones para Centro América (Figs. 9-17).

No existen análisis fillogenéticos específicos para el género *Chrysometa*. Los estudios en los que se reportan hipótesis sobre las relaciones de estas arañas presentan una muestra taxonómica inapropiada o carecen de suficiente evidencia morfológica y molecular, por lo que nunca se había probado la monofilia de este género *per se* y el soporte de estas relaciones había sido bajo (Álvarez-Padilla et al., 2009; Dimitrov y Hormiga, 2011; Hormiga, 2017; Kallal y Hormiga, 2018). Todos estos autores concuerdan en la necesidad de incluir más taxa y más caracteres a las filogenias de la familia Tetragnathidae. A pesar que existen varios estudios en arañas con transcriptómica y metagenómica, estos se enfocan a linajes más inclusivos y a resolver preguntas sistemáticas y filogenéticas más complejas y específicas (Fernández et al., 2014; Bond et al., 2014; Ballesteros y Hormiga, 2018; Fernández et al., 2018). Aquí se presenta el análisis filogenético del género usando caracteres morfológicos y moleculares con la muestra taxonómica más extensa hasta el momento.

La monofilia del género ha sido comprobada, pero su posición dentro de Tetragnathidae sigue siendo materia de debate (Álvarez-Padilla et al., 2009; Dimitrov y Hormiga, 2011; Hormiga, 2017; Kallal y Hormiga, 2018). Este estudio tuvo como objetivo comprobar la monofilia del género y sus relaciones dentro de la familia. Tanto el análisis de parsimonia con morfología (Fig. 18) como los análisis de Máxima Verosimilitud y Bayesiano (Figs. 19 y 20) recuperaron al género *Chrysometa* monofilético con

buen soporte. Sin embargo, los análisis morfológicos proponen a Nanometinae como grupo hermano de *Chrysometa*, mientras que los análisis moleculares proponen al género *Allende*. Las relaciones del género dentro de la familia no se han podido esclarecer del todo, por lo que es necesario que se lleve a cabo un análisis de evidencia total que esclarezca las sinapomorfías del género y aporte más evidencia para la familia, presentando una muestra taxonómica más grande, como en este estudio y con suficiente evidencia morfológica y molecular.

La inclusión de taxa de otros "*Tetragnathoids*" como las familias Arkyidae, Mimetidae y Malkaridae y una mayor cantidad de caracteres morfológicos (sexuales y anatómicos) permitirán establecer correctamente las relaciones dentro de la familia. Sin embargo, los caracteres sexuales de estas familias se mantienen en discusión porque es difícil establecer homologías de los escleritos del pedipalpo y apófisis del paracimbio (Hormiga et al., 1995; Schütt, 2000; 2003). Un análisis de homología dinámica permitirá generar hipótesis sobre la evolución de estas estructuras. Algunos malkáridos y la familia Mimetidae por ejemplo, presentan un paracimbio claramente desarrollado (Fig. 21) pero otros tetragnatoideos muestran órganos de copulación simplificados, por lo que la presencia de un paracimbio se convierte en un carácter simplesiomórfico para el clado (Schütt, 2000; 2003). Algunas características morfológicas de estas familias se asemejan a la subfamilia Metainae; como el largo de los quelíceros, la forma del paracimbio de los mimétidos es similar al de los géneros *Meta* y *Metellina* (Fig. 20), el género *Dyphia* tiene espinas en el primer y segundo par de patas que asemejan el patrón de espinación de Mimetidae; por lo que Arkyidae y Mimetidae siempre se recuperan cercanas a Tetragnathidae (Schütt, 2000; 2003; Benavides et al., 2017; Dimitrov y Hormiga, 2011; Hormiga, 2017; Wheeler et al., 2017).

Chrysometa es un género endémico de América y se distribuye de México a Chile. La mayor cantidad de especies descritas corresponden a Centro y Sudamérica, considerando que es donde se han llevado a cabo la mayoría de los estudios descriptivos (Levi, 1986, Álvarez-Padilla, 2007; Simó et al., 2016; Nogueira et al., 2011). Para México se han reportado cuatro especies que se distribuyen hasta el norte de Centro América (Levi, 1986; WSC, 2018), por lo que la distribución real de las especies mexicanas puede ser aún desconocida. Además, Levi (1986) menciona que a mayor altitud la diversidad del género es mayor, lo que concuerda con la distribución neártica de la mayoría de las especies del centro y sur de América.

Figura. 21. Vista retrolateral del pedipalpo izquierdo de las familias Malkaridae, Mimetidae, Arkyidae y Tetragnathidae, mostrando las similitudes del paracimbio. A) *Malkara loricata* (modificado de Schütt, 2000), B) *Ero cambridgei* (modificado de Schütt, 2000), C) *Demadiana cerula* (modificado de Framenau et al., 2010) y D) *Meta menardi* (modificado de Álvarez-Padilla y Hormiga, 2011).

Los resultados de los análisis de Máxima Verosimilitud y Bayesiano dividen a las especies de *Chrysometa* en dos grupos bien definidos y bien soportados (Figs. 19, 20): un grupo de especies de distribución principalmente al sur de México más especies que se distribuyen en Centro América y un grupo de especies de distribución exclusiva para Centro y Sudamérica más otras al sur de México. Geográficamente, Centro América y el sur de México se localizan en la Zona de Transición Mexicana que pertenece al punto principal de biodiversidad de Mesoamérica, presentando una gran cantidad de nichos y ecosistemas que propician el endemismo (Myers et al., 2000; Morrone, 2006).

Con base en la evidencia presentada anteriormente, el ancestro común de Chrysometa está compartido con Nanometinae (morfología) o Allende (moléculas). Estos clados tienen un origen

Gondwánico con una distribución actual en Australia, Nueva Zelanda y Papúa Nueva Guinea y en Chile respectivamente (Álvarez-Padilla, 2007). Por lo tanto se propone un origen de *Chrysometa* en América del Sur, particularmente en Chile, y con su posterior colonización y diversificación hacia el Norte. Considerando nuestros resultados, también es posible hipotetizar que el origen y diversificación del género en México proviene de las regiones altas del sur de América, presentando por lo menos dos eventos de colonización independientes en el país (Figs. 19 y 20). Esta hipótesis está basada en los resultados de estudios previos en los que *Allende* se recupera como grupo hermano de *Chrysometa,* debido a que *Allende* tiene un origen Gondgwánico y se distribuye exclusivamente en Chile. Sin embargo, no existen estudios que traten de documentar el origen y edad del género *Chrysometa.* Es necesario analizar registros fósiles, usar relojes moleculares y datar el origen de las especies de la ZTM y junto con la información morfológica, molecular e incluso genómica, armar el rompecabezas del origen, diversificación y parentesco de este género dentro de su familia. Finalmente un análisis filogenético que incluya mayor representación de las especies del norte de Sudamérica (Colombia, Venezuela, etc.) someterá a prueba estas hipótesis respecto al origen de las especies Mexicanas.

CONCLUSIONES

- Se encontraron siete especies nuevas del género Chrysometa para México en las colecciones nacionales. Se documentaron con imágenes digitales compuestas e ilustraciones científicas para su posterior publicación.
- Se encontraron cuatro especies nuevas del género Chrysometa para México en las colecciones internacionales. Actualmente se encuentran en proceso de publicación junto con cinco especies de Centro América provenientes de la Universidad George Washington.
- 3. La familia Tetragnathidae se recupera monofilética y como grupo hermano de la familia Arkyidae.
- Chrysometa es un género monofilético considerando el alto soporte de los resultados morfológicos y moleculares aquí presentados.
- No se pudo comprobar el grupo hermano de *Chrysometa* ni sus relaciones filogenéticas dentro de la familia. Se propone al género *Allende* como su grupo hermano y con relaciones más cercanas a la subfamilia Nanometinae.
- 6. Se propone que el género *Chrysometa* se originó en América del Sur y que posteriormente presentó un evento de colonización y diversificación hacia el norte del continente.

LITERATURA CITADA

- Agnarsson, I., Gregoric, M., Blackledge, T. A. y M. Kuntner. 2012. The phylogenetic placement of Psechridae within Entelegynae and the convergent origin of orb-like spider webs. Journal of Zoological Systematics and Evolutionary Research. 51: 100-106.
- Agnarsson, I., Coddington, J. A. y M. Kuntner. 2013. Systematics progress in the study of spider diversity and evolution (p. 58-111). In Penney, D. (ed.). Spider Research in the 21st Century. Siri Cientific Press, Manchester, U. K.
- Álvarez-Padilla, F. 2007. Taxonomic revision of the spider genus *Metabus* (Araneae: Tetragnathidae) with comments on the tetragnathid fauna of Chile and the phylogeny of Tetragnathidae. Zoological Journal of the Linnean Society. 151: 285–335.
- Álvarez-Padilla Laboratory. 2018. Araneomorphae of Mexico, a Digital Images Catalog. Facultad de Ciencias UNAM. Available from: http://www.unamfcaracnolab.com (accessed 1 May 2018).
- Álvarez-Padilla, F., Dimitrov, D., Giribet, G. y G. Hormiga. 2009. Phylogenetic relationships of the spider family Tetragnathidae (Araneae, Araneoidea) based on morphological and DNA sequence data. Cladistics. 25: 109–146.
- Álvarez-Padilla, F. y G. Hormiga. 2011. Morphological and phylogenetic atlas of the orb-weaving spider family Tetragnathidae (Araneae: Araneoidea). Zoological Journal of the Linnean Society. 162: 713–879.
- Bayer, S. y A. L. Schönhofer. 2013. Phylogenetic relationships of the spider family Psechridae inferred from molecular data, with comments on the Lycosoidea (Arachnida: Araneae). Invertebrate Systematics. 27: 53–80.
- Benavides, L. R., Giribet, G. y G. Hormiga. 2016. Molecular phylogenetic analysis of "pirate spiders" (Araneae, Mimetidae) with the description of a new African genus and the first report of maternal care in the family. Cladistics. 33: 375–405.
- Blackledge, T., Scharff, N., Coddington, J., Szüts, T., Wenzel, J., Hayashi, C. e I. Agnarsson. 2009. Reconstructing web evolution and spider diversification in the molecular era. Proceedings of the National Academy of Sciences. 106: 5229–5234.

- Bond, J. E., Garrison, N. L., Hamilton, C. A., Godwin, R. L., Hedin, M. e I. Agnarsson. 2014. Phylogenomics Resolves a Spider Backbone Phylogeny and Rejects a Prevailing Paradigm for Orb Web Evolution. Current Biology. 24: 1765-1771.
- Coddington, J. 1983. A temporary slide mount allowing precise manipulation of small structures. Verhandlungen des naturwissenschaftlichen Vereins Hamburg. 26: 291-292.
- Coddington, J. A. 1989. Spinneret silk morphology: evidence for the monophyly of orb-weaving spiders, Cyrtophorinae (Araneidae), and the group Theridiidae plus Nesticidae.Journal of Arachnology 17: 71–95.
- Coddington, J. A. 1990. Ontogeny and homology in the male palpus of orb-weaving spiders and their relatives, with comments on phylogeny (Araneoclada: Araneoidea, Deinopoidea). Smithsonian Contributions to Zoology. 496: 1-52.
- Coddington, J. A. y H. W. Levi. 1991. Systematics and Evolution of Spiders (Araneae). Annual Review of Ecology and Systematics. 22: 565-592.
- Coddington, J. A., Giribet, G., Harvey, M. S., Prendini, L. y D. E. Walter. 2004. Arachnida. pp. 296-318. En: Cracraft, J. y M. J. Donoghue (eds.). Assembling the Tree of Life. Oxford University Press.
- Coddington, J. A. y R. K. Colwell. 2002. Arachnids. En: Levin, S. A. Encyclopedia of Biodiversity. Vol. I. Academic Press, San Diego, California. pp. 199-218.
- Colgan, D. J., Mc Lauchlan, A., Wilson, G. D. F., Livingston, S. P., Edgecombe, G. D., Macaranas, J., Cassis, G. y M. R. Gray. 1998. Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology. 46: 419–437.
- Darriba, D., Taboada, G. L., Doallo .R. y D. Posada. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods. 9: 772.
- Dimitrov, D., Astrin, J. J. y B. A. Huber. 2013. Pholcid spider molecular systematics revisited, with new insights into the biogeography and the evolution of the group. Cladistics. 29: 132-146.
- Dimitrov, D., Benavides, L. R., Arnedo, M. A., Giribet, G., Griswold, C. E., Scharff, N. y G. Hormiga. 2017. Rounding up the usual suspects: a standard target-gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orb-weaving spiders with a new family-rank classification (Araneae, Araneoidea). Cladistics 33, 221–250.

- Dimitrov, D., Lopardo, L., Giribet, G., Arnedo, M. A., Álvarez-Padilla, F. y G. Hormiga. 2012. Tangled in a sparse spider web: single origin of orb weavers and their spinning work unravelled by denser taxonomic sampling. Proceedings of the Royal Society. 279: 1341-1350.
- Dimitrov, D. y G. Hormiga. 2011. An extraordinary new genus of tetragnathid spiders from Western Australia with an expanded phylogenetic hypothesis for the generic relationships of Tetragnathidae (Araneae). Zoological Journal of the Linnean Society 161: 725–768.
- Dunlop, J. A., Penney, D. y D. Jekel. 2016. A summary list of fossil spiders and their relatives. En: World Spider Catalog. Natural History Museum Bern, online at http://wsc.nmbe.ch, version 17.0, accessed on {Marzo, 2016}.
- Eberhard, W. G. 1982. Behavioral characters for the higher classification of orb-weaving spiders. Evolution 36: 1067–1095.
- Fernández, R., Hormiga, G. y G. Giribet. 2014. Phylogenomic Analysis of Spiders Reveals Nonmonophyly of Orb Weavers. Current Biology. 24: 1772–1777.
- Fernández, R., Kallal, R. J., Dimitrov, D., Ballesteros, J. A., Arnedo, M. A., Giribet, G. y G. Hormiga, G. 2018. Phylogenomics, lineage diversification dynamics and comparative transcriptomics across the Spider Tree of life. Curr. Biol.
- Foelix, R. F. 2011. Biology of Spiders 3ed. Oxford University press. Oxford, New York. 419 p.
- Folmer, O., Black, M., Hoeh, W., Lutz, R. y R. Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology. 3: 294–299.
- Forster, R. R. y N. I. Platnick. 1984. A review of the archaeid spiders and their relatives, with notes on the limits of the superfamily Palpimanoidea (Arachnida, Araneae). Bulletin of the American Museum of Natural History. 178: 1–106.
- Francke, B. O. F. 2014. Biodiversidad de Arthopoda (Chelicerata: Arachnida ex Acari) en México. Revista Mexicana de Biodiversidad. 85: 408-418.
- Goloboff, P. A., Farris, J. S. y K. Nixon. 2003. TNT version 1.1. Tree analysis using new technology. http://www.lillo.org.ar/phylogeny/tnt/
- Grandjean, F. 1949. Observation et conservation des très petits arthropodes. Bulletin du Muséum National d'Histoire naturelle. 21: 363-370.

- Griswold, C. E., Coddington, J. A., Hormiga, G. y N. Scharff. 1998. Phylogeny of the orb-web building spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea). Zoological Journal of the Linnean Society. 123: 1-99.
- Hoffmann, A. 1976. Relación bibliográfica preliminar de las arañas de México (Arachnida: Araneae). Instituto de Biología, UNAM. 3: 1-117.
- Hormiga, G. 2017. The discovery of the spider orb-weaving genus *Pinkfloydia* (Araneae, Tetragnathidae) in eastern Australia with description of a new species from New South Wales and comments on the phylogeny of Nanometinae. Zootaxa 4311: 480–490.
- Hormiga, G. y C. E. Griswold. 2014. Systematics, Phylogeny, and Evolution of Orb-weaving Spiders. Annual Review of Entomology. 59: 487-512.
- Hormiga, G., Eberhard, W. G. y J. A. Coddington. 1995. Web-construction behavior in Australian *Phonognatha* and the phylogeny of nephiline and tetragnathid spiders (Araneae: Tetragnathidae). Australian Journal of Zoology. 43: 313-364.
- Ivanova, N. V., de Waard, J. R. y P. D. N. Hebert. 2006. An inexpensive, automation-friendly protocol for recovering high- quality DNA. Molecular Ecology Resources. 6: 998-1002.
- Kallal, R. J y G. Hormiga. 2018. An expanded molecular phylogeny of metaine spiders (Araneae, Tetragnathidae) with description of new taxa from Taiwan and the Philippines. Invertebrate Systematics. 32: 400-422.
- Katoh, K y H. Toh. 2010. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics. 26: 1899-1900.
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P. A. Drummond. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28: 1647-1649.
- Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Pääbo, S., Villablanca, F. X. y A. C. Wilson.
 1989. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences. USA. 86: 6196–6200.
- Kuntner, M., Coddington, J. A. y G. Hormiga. 2008. Phylogeny of extant nephilid orb-weaving spiders (Araneae, Nephilidae): testing morphological and ethological homologies. Cladistics. 24: 147-217.

- Levi, H. W. 1980. The orb-weaver genus *Mecynogea*, the subfamily Metinae and the genera *Pachygnatha*, *Glenognata* and *Azilia* of the subfamily Tetragnathinae north of Mexico (Araneae: Araneidae). Bulletin of the Museum of Comparative Zoology. 149: 1-74.
- Levi, H. W. 1986. The Neotropical orb-weaver genera *Chrysometa* and *Homalometa* (Araneae: Tetragnathidae). Bulletin of the Museum of Comparative Zoology. 151: 91–215.
- Lopardo, L., Giribet, G. y G. Hormiga. 2011. Morphology to the rescue: molecular data and the signal of morphological characters in combined phylogenetic analyses–a case study from mysmenid spiders (Araneae, Mysmenidae), with comments on the evolution of web architecture. Cladistics. 27: 278-330.
- Lopardo, L. y G. Hormiga. 2015. Out of the twilight zone: phylogeny and evolutionary morphology of the orb-weaving spider family Mysmenidae, with a focus on spinneret spigot morphology in symphytognathoids (Araneae, Araneoidea). Zoological Journal of the Linnean Society. 173: 527–786.
- Maddison, W. P. y D. R. Maddison. 2011. Mesquite version 2.75. A modular system for evolutionary analysis. http://mesquiteproject.org/mesquite/mesquite.html
- Miller, J. A., Carmichael, A., Ramírez, M. J., Spagna, J. C., Haddad, C. R., Rezac, M., Johannesen, J., Kral, J., Wang, X. y C. E. Griswold. 2010. Phylogeny of entelegyne spiders: affinities of the family Penestomidae (new rank), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae). Molecular Phylogenetics and Evolution. 55: 786–804.
- Miller, J. A., Griswold, C. E., Scharff, N., Rezac, M., Szuts, T. y M. Marharbai. 2012. The velvet spiders: an atlas of the Eresidae (Arachnida, Araneae). ZooKeys. 195: 1–144.
- Moradmand, M., Schönhofer, A .L. y P. Jäger. 2014. Molecular phylogeny of the spider family Sparassidae with focus on the genus *Eusparassus* and notes on the RTA-clade and 'Laterigradae'. Molecular Phylogenetics and Evolution. 74: 48–65.
- Morrone, J. 2006. Biogeographic Areas and Transition Zones of Latin America and the Caribbean Islands Based on Panbiogeographic and Cladistic Analyses of the Entomofauna. Annual Review of Entomology. 51:467–94.
- Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca G. A. B. y J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature. 403: 853–858.

- Nogueira, A. A., Pena-Barbosa, J. P. P., Venticinque, E. M. y A. D. Brescovit. 2011. The spider genus *Chrysometa* (Araneae, Tetragnathidae) from the Pico da Neblina and Serra do Tapirapecó mountains (Amazonas, Brazil): new species, new records, diversity and distribution along two altitudinal gradients. Zootaxa. 2772: 33–51.
- Parker, S. P. 1982. Synopsis and Classification of Living Organisms. McGraw-Hill. New York. 2424 p.
- Platnick, N. I. 1999. Dimensions of Biodiversity: Targeting megadiverse groups. En: Cracraft, J. y F. T. Grifo (eds.). The living planet crisis, Biodiversity scene and policy. Columbia University Press, New York.
- Platnick, N. I. y M. U. Shadab. 1993. A review of the pirate spiders (Araneae, Mimetidae) of Chile. American Museum Novitates. 3074: 1–30.
- Polotow, D., Carmichael, A. y C. E. Griswold. 2015. Total evidence analysis of the phylogenetic relationships of Lycosoidea spiders (Araneae, Entelegynae). Invertebrate Systematics. 29: 124–163.
- Prendini, L. 2000. Phylogeny and Classification of the Superfamily Scorpionoidea Latreille 1802 (Chelicerata, Scorpiones): An Exemplar Approach. Cladistics. 16: 1–78.
- Rix, M. G., Harvey, M. y J. Roberts. 2008. Molecular phylogenetics of the spider family Micropholcommatidae (Araneae: Araneae) using nuclear rRNA genes (18S and 28S). Molecular Phylogenetics and Evolution. 46: 1031–1048.
- Ronquist, F. y J. P. Huelsenbeck. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 19: 1572–1574.
- Salgueiro–Sepúlveda, F. J. y F. Álvarez–Padilla. (2018). New species of the orb–weaving spider genus *Chrysometa* (Araneae, Tetragnathidae) from oak forests near of the Pico de Orizaba National Park (Veracruz, Mexico). Zootaxa 4450(3): 301–330.
- Scharff, N. y J. A. Coddington. 1997. A phylogenetic analysis of the orb-weaving spider family Araneidae (Arachnida, Araneae). Zoological Journal of the Linnean Society. 120: 355–434.
- Schütt, K. 2000. The limits of the Araneoidea (Arachnida : Araneae). Australian Journal of Zoology. 48: 135–153.
- Schütt, K. 2003. Limits and Phylogeny of the Araneoidea (Arachnida: Araneae). Dissertation. de–Verlag im Internet GmbH, Berlin.

- Schwendinger, P. J. y G. Giribet. 2005. The systematics of the southeast Asian genus *Fangensis Rambla* (Opiliones : Cyphophthalmi : Stylocellidae). Invertebrate Systematics. 19: 297–323.
- Selden, P. A. 1990. Lower Cretaceous spiders from the Sierra del Montsech, north-east Spain. Palaeontology. 33: 257–285.
- Simó, M., Álvarez, L. y Á. Laborda. 2016 The orb-weaving spider genus *Chrysometa* in Uruguay: distribution and description of a new species (Araneae, Tetragnathidae). Zootaxa. 4067: 589–593.
- Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. y P. Flook. 1994. Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers. Annals of the Entomological Society of America. 87: 651– 701.
- Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post–analysis of large phylogenies. Bioinformatics 30. 1312–1313.
- Wheeler, W. C., Coddington, J. A., Crowley, L. M., Dimitrov, D., Goloboff, P. A., Griswold, C. E., Hormiga, G., Prendini, L., Ramírez, M. J., Sierwald, P., Almeida–Silva, L., Alvarez–Padilla, F., Arnedo, M. A., Benavides–Silva, L. R., Benjamin, S. P., Bond, J. E., Grismado, C. J., Hasan, E., Hedin, M., Izquierdo, M. A., Labarque, F. M., Ledford, J., Lopardo, L., Maddison, W. P., Miller, J. A., Piacentini, L. N., Platnick, N. I., Polotow, D., Silva–Dávila, D., Scharff, N., Szüts, T., Ubick, D., Vink, C.J., Wood, H. M. y J. Zhang. 2017. The spider tree of life: phylogeny of Araneae based on target–gene analyses from an extensive taxon sampling. Cladistics. 33: 574–616.
- Whiting, M. F., Carpenter, J. M., Wheeler, Q. D. y W. C. Wheeler. 1997. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematics Biology. 46: 1–68.
- Wood, H. M., Griswold, C. E. y R. Gillespie. 2002. Phylogenetic placement of pelican spiders (Archaeidae, Araneae), with insight into evolution of the "neck" and predatory behaviors of the superfamily Palpimanoidea. Cladistics. 28: 598–626.
- WSC. 2018. World Spider Catalog. Natural History Museum Bern, online at http://wsc.nmbe.ch, v. 17.0.
- Xiong, B. y T. D. Kocher. 1991. Comparison of the mitochondrial DNA sequences of seven morphospecies of black flies (Diptera: Simuliidae). Genome. 34: 306–311.

Yeates, D. K. 1995. Ground plans and exemplars: paths to the tree of life. Cladistics. 11: 343–357.

APÉNDICES

Apéndice 1

Matriz morfológica. Caracteres del 1 al 110 (el '*' indica polimorfismo de 0/1.)

Oncodamus decipiens	0011111010	0010001000	0000001100	1010101110	1201010000	0000000001	1100001120	20021000?1	0000101010	0000001000	010000030
Parasteatoda tepidariorum	1010000011	0110001000	0010000101	0010100111	0110101000	2010000000	0110110120	010111210?	1300102100	0000000110	0010100000
Allende nigrohumeralis	0110001010	0111000100	0010101210	0001111100	1100000010	1011010111	0020100000	0001111000	0111011011	1120?10011	1320100100
Araneus marmoreus	0011010100	0111100001	0010000001	1100000000	1001101110	0010010200	2001111110	0011101101	1010111011	2001000001	0000000010
Argiope argentata	0011010100	0111100001	0010000000	1100000000	1001101110	1010010002	1211100001	1111101000	2111112200	1300012000	0000000000
Asagena americana	1010000011	0111001010	000000100	0010111111	1010111100	0110000000	0110110120	110121200?	1300110000	000000100	0010100210
Azilia affinis	0111010101	0011000001	0001000000	1100000011	000000011	0020100000	1101110000	1000000101	10?1201101	101000000	1000010000
Clitaetra episinoides	0111000101	0011100001	0001000000	1120000112	0000001010	2311001001	2000001101	0001001100	20020120?1	0000100010	0000?01001
Cyclosa conica	0111010100	0111100001	0010000000	1100000000	1001101110	1001010200	1101011100	0111011011	0001111111	0?13000010	0000000000
Cyrtognatha espaniola	0110001010	0110000011	1011000010	1111100110	0000010001	2100110021	2000010011	2000010001	1011110011	0011002011	0102012000
Deliochus sp	0101100101	0011000???	??0?000000	1131000000	0010010002	2110110011	1000001111	0110110001	0101101?00	0003201011	0001200110
Diphya spinifera	0110001010	0110000010	0010010000	0011001101	000000100	0210101100	2120000000	1111000112	000010100?	1001116201	0000011200
Dolichognatha pentagona	0110001010	0110001010	0010110001	1110000011	0100001010	1201011110	200000000	1001121000	1100000201	00?1001110	2010000010
Epeirotypus brevipes	1110000010	0110000000	000000001	1200000000	1011011101	1010100021	1000001100	1011001100	10101100?1	3000060000	0000000000
Gasteracantha cancriformis	0011000101	0111101???	??10000000	1120000000	1001101110	0010010000	1001000001	1001101101	211121121?	0000010010	0000??1001
Glenognatha foxi	0110001110	0110000001	1011000010	1111100100	0000010002	2000110001	2000010011	2000001101	0111100?00	1110200000	0110200002
Herennia multipuncta	0011000101	0111100001	0001000000	1120000112	0000001011	2311001001	2000001101	0001101110	20001020?1	0000111010	0?000011?0
Larinioides cornutus	0011010100	0111100001	001000000	1100000000	1001101110	0010010200	2101111110	0011001101	1010111011	20?1000001	0010000000
Leucauge argyra	0110001010	0111000101	0010001010	0110000001	2101000101	0221101101	1100000110	1110000101	0110101100	?121100510	1010001110
Leucauge venusta	0110001010	0111000101	001000000	1000000111	0100010102	2110110111	0000011011	1000010102	1011100011	2110151000	0000001000
Linyphia triangularis	1010000110	0111000010	000000001	1412000120	1000000113	0012020000	0000210000	1202101011	0001101100	2001000010	2000011100
Mangora gibberosa	0111010100	0111100101	001000000	1100000000	1001101110	0000010200	2000101110	0011101101	0000111011	20?1100012	0000000000
Mecynogea lemniscata	0*11010100	0111100001	0010000000	1100000000	1001101110	0000010200	1101001100	0111111010	0021110121	0?13000011	000000001
Mesida argentiopunctata	0110001010	0111000101	1010001100	0110000001	2101000101	0221101101	1100000110	1120000101	0110111101	?120111020	1010101120

Meta menardi	0011010101	0011100000	0001011110	0000110000	0110101001	0101101011	1102000000	0001001121	0001110110	111110?120	1101211000
Metabus ocellatus	0110001010	0111000101	1010001110	0110000001	1101000101	0221101101	1100000110	1121000101	0110111020	?120111620	100000010
Metellina segmentata	0110001010	0111001010	0010110001	1111000011	0100001010	1101011110	200000000	0011110001	1101101111	10?1001111	201000000
Metepeira labyrinthea	0011010100	0111100101	0010000001	1100000000	1001101110	0010010200	2001101110	0011101101	0001111111	20?1100001	1110000000
Nanometine sp	0110001010	0111000000	0010101110	0011000000	1100000010	0011010110	0012000000	0111110011	1001011111	0?10011102	0100100112
Metleucauge eldorado	0110001010	0111000000	0010010010	0011120010	0111010001	0102211011	010000000	0011210101	0102101111	20?1201111	2010010011
Micrathena gracilis	0011000101	0111101010	001000000	1110010000	1001101110	0010010200	2100100010	0011001101	1112111011	20?1400003	0010000000
Mollemeta edwardsi	0010001010	0111000010	0010111000	0001500000	1101000010	1012110110	001000000	0111001011	1011011121	0?10011081	010000001
Nanometa sp	0110001010	0111001010	0010101100	0001000000	1100000010	0011010110	0012000000	0111010011	1011011100	0?00111010	1001000110
Neoscona domiciliorum	0011010100	0111100001	0010000000	1100000000	1001101110	0000010200	2000111100	0011111101	1001111011	20?1100002	000000000

Matriz morfológica. Caracteres del 1 al 110 (continuación)

Nephila clavipes	0011000101	0111100001	0101000000	1120000112	0000001010	2311001001	2000001101	0001101110	2101?1121?	1000012011	000000210
Nephilengys malabarensis	0011000101	0111100001	000000001	1200001110	0000010112	3110010012	0000011010	0011011102	10101121?1	2000020010	0000002101
Nesticus cellulanus	1010000011	011000????	?0?000001	1110110120	1001111110	0010110000	0100000100	0111100120	110111200?	1000100100	01?0010100
Opadometa sp	0110001010	011100????	?010001100	1110001001	0111000101	0220101101	1100000001	1100101010	110111110?	1201011201	0100001201
Orsinome cf vethi	0110001010	0111000100	0010001000	1110001001	0101000101	0221101101	1100000110	1121010101	0010111020	?120111320	1100100020
Orsinome sarasini	0110001010	0110000000	0010101110	0001110010	1100000010	0011010110	0012000000	0111110011	1011011100	0?13011112	0100100011
Pachygnatha autumnalis	0110001100	0000001101	1000010111	1110110000	0010002201	0110001200	0010011210	0011102010	1010113011	0020110010	?010000020
Phonognatha graeffei	0001100101	0011000000	0001000001	01310000*1	0100001000	2211011000	2200000001	1101101100	010111111?	1300003201	0100011200
Tetragnatha versicolor	0110001010	011000?010	0011000010	1111010110	0000010002	2010110001	2000010011	2100010102	0000120112	0110020110	0121020000
Tylorida striata	0110001010	011100010?	0010001000	0112001001	1101000101	0221001101	1100000110	1120000101	00101?1000	?120111320	000000010
Uloborus glomosus	0111111001	0010000000	0000000000	1011101110	0010010000	020000001	1001001100	20010120?1	300000000	000000100	0110000100
Zygiella x notata	0011100101	0011000001	001000000	110000000	1011101110	0010010200	2000111110	0011101101	1000111111	20?1100007	1010100001
Chrysometa alajuela	0110001010	0110000010	0010111000	0011611110	1300000010	0011110111	1020200000	0000111000	0111001011	1110?10011	1420100100
Chrysometa brevipes	0110001010	0110000010	0010111000	0011611010	1100000010	0011110111	1021200000	0000111000	0111001011	1110?10011	1420100100
Chrysometa citlaltepetl	0010001010	0110000010	0010111000	0011611010	1100000010	0011110111	1021200000	0000111000	0111001011	1110?10011	1420100100
Chrysometa triangulosa	0010001010	0110000010	0010111000	0011611010	1100000010	0011110111	1021200000	0000111000	0111001011	1110?10011	1420100100
Chrysometa rosarium	0010001010	0110000010	0010112000	0011611010	1100000010	0011110111	1021200000	0000111000	0111001011	1110?10011	1420100100
Chrysometa atotonilco	0010001010	0110000010	0010111000	0011611010	1100000010	0011110111	1021200000	0000111000	0111001011	1110?10011	1420100100
Chrysometa xamaticpac	0010001010	0110000010	0010111000	0011611010	1100000010	0011110111	1021200000	0000111000	0111001011	1110?10011	1420100100

Chrysometa puya	0010001010	0110000010	0010111000	0011611110	130000010	0011110111	1020200000	0000111000	0111001011	1110?10011	1420100100
Chrysometa sagicuta	0010001010	0110000010	0?????????	???????????	???????????????????????????????????????	????????????	???????????????????????????????????????	???????11	1000011100	10111110?1	001114?0??
Chrysometa chipinque	0010001010	0110000010	0010112000	0011611010	1100000010	0011110111	1021200000	0000111000	0111001011	1110?10011	1420100100
Chrysometa acinosa	0010001010	0110000010	00?1101000	0011611010	1100000010	0011?1011?	?020000000	0000??????	?1?1001011	?????1?011	??2?100100
Chrysometa cornuta	0010001010	0110000010	00?0121000	0011611010	??00000010	0011110111	1021200000	0000111000	0111001011	1110?10011	1?2?????00
Chrysometa levii	0010001010	0110000010	01?1111000	0111001010	1100000010	0011110111	1021200000	0000??????	?1?1001011	?????1?011	??2?100100
Chrysometa maitae	0010001010	0110000010	0?????????	????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????11	1000011100	10111110?1	101114?0??
Chrysometa rincon	0010001010	0110000010	0?????????	???????????	???????????????????????????????????????	????????????	???????????????????????????????????????	???????11	1000011100	10111110?1	101114?0??
Chrysometa GH2506	0010001010	0110000010	0?????????	????????????	???????????????????????????????????????	???????????????????????????????????????	???????????????????????????????????????	???????11	1000011100	10111110?1	001114?0??
Chrysometa GH2507	0010001010	0110000010	0?????????	???????????	???????????????????????????????????????	????????????	???????????????????????????????????????	???????11	1000011100	10111110?1	001114?0??
Chrysometa GH2508	0010001010	0110000010	0?????????	???????????	???????????????????????????????????????	????????????	???????????????????????????????????????	???????11	1000011100	10111110?1	101114?0??
Chrysometa GH2509	0010001010	0110000010	00?0112000	0011611010	1100000010	0011110111	1021200000	0000??????	?1?1001011	?????1?011	??2?100100
Chrysometa GH2510	0010001010	0110000010	00?0111010	0011611110	130000010	0011110111	1021200000	0000??????	?1?1001011	?????1?011	??2?100100
Chrysometa sp01	0010001010	0110000010	00?0111000	0011611010	1100000010	0011110111	1021200000	0000??????	?1?1001011	?????1?011	??2?100100
Chrysometa sp02	0010001010	0110000010	00?0111000	0011611110	130000010	0011110111	1021200000	0000??????	?1?1001011	?????1?011	??2?100100
Chrysometa sp03	0010001010	0110000010	0?????????	????????????	???????????????????????????????????????	???????????	???????????	???????11	1000011100	10111110?1	101114?0??
Chrysometa sp04	0010001010	0110000010	00?0111?00	??00116111	1013000000	?100011110	1111021200	000000???	?????1001	011?????1?	011??2?100

Matriz morfológica. Caracteres del 111 al 223

Oncodamus decipiens	000000023	0200000000	0000250001	1000000000	0100000?0	???????????????????????????????????????	???????????????????????????????????????	???????????	????????????	???????????????????????????????????????	??????
Parasteatoda tepidariorum	0000010100	3020000000	00000500?	000000010	000100121?	11???00?0?	???????????????????????????????????????	???????????	????????????	???????????????????????????????????????	??????
Allende nigrohumeralis	0110000110	1011300000	101000000	0110100000	0000111000	0100001211	0010??????	1?0?????00	?0??????0?	10300030??	??????
Araneus marmoreus	0121011011	1102100100	100000200	0000000001	140????000	0001101200	0101001010	0010000010	0000100000	0101000???	??????
Argiope argentata	1111010001	0010011000	101000000	000110100?	100000011	0010000010	0111000100	0001000000	0010010000	0?????????	??????
Asagena americana	0000010101	2020000000	000005000	1000000001	0001000121	11101100?0	???????????????????????????????????????	???????????	????????????	???????????????????????????????????????	??????
Azilia affinis	0100000110	1020001000	1100000000	0011100001	0??0011010	0100000?0	1010001001	0?10???0?1	00000?????	???????????????????????????????????????	??????
Clitaetra episinoides	0100001100	0000100000	010000000	0000140101	000000100	010000010?	?010???1??	???????????	???0?0000?	???????????????????????????????????????	??????
Cyclosa conica	1210110011	0023001001	0000202000	000000101	402000000	0110120001	0100111000	?0?000?000	0?20???0?1	01000?????	??????
Cyrtognatha espaniola	0021011102	0001100101	4010110001	1011?00001	0110010000	0001?0?00?	?00?0?0???	0?104000??	????????????	???????????????????????????????????????	??????
Deliochus sp	0000010000	1110002021	0000000000	015011100?	000000101	00010??010	0????02??1	0???11??01	???????????????????????????????????????	???????????????????????????????????????	??????
Diphya spinifera	001000003	0000011002	0000000000	0000014000	100000000	0100000???	????????????	???????????	???0?11200	020???????	??????

Dolichognatha pentagona	2000010010	1100000000	0000010000	0000001014	0001000001	0000011000	1001000?01	0100010010	110???0?11	1000??????	??????
Epeirotypus brevipes	0110002100	0001101102	0001000000	0000005011	0000000000	1000001011	0100010100	010010001?	00?0000???	???????????????????????????????????????	??????
Gasteracantha cancriformis	1001100110	0000010000	101000000	01010050?0	110?000010	000000100	101000?010	0010000?0?	??0?0000??	???????????????????????????????????????	??????
Glenognatha foxi	0010000010	2001010010	0151??1101	0010000000	1001000000	000?000100	100???0?10	0000??????	???????????????????????????????????????	???????????????????????????????????????	??????
Herennia multipuncta	1101100020	0010100002	020000000	0011100001	1100000100	010?000100	1010?00101	110??21?20	???1?0000?	???????????????????????????????????????	??????
Larinioides cornutus	0021011011	1002000100	1000030200	000000001	140????000	0101000200	010100101?	0????000?0	000??????0	?100000???	??????
Leucauge argyra	0001100001	3000011001	1110000011	1010000140	1111000111	1110000111	100100?001	01?0?00??0	0?0?0???0?	110000????	??????
Leucauge venusta	0101000000	0001100111	0011001110	1000010011	1100011111	1000012110	0100000101	1010001001	0100000110	1000??????	??????
Linyphia triangularis	0100000000	0012020011	000000005	00?0000000	0000011001	1111101?00	?0000?????	???????????	???????????????????????????????????????	???????????????????????????????????????	??????
Mangora gibberosa	0000011001	1111000100	1000020200	000000100	1502110000	0001101100	0101001010	0010000010	00000???0?	100000????	??????
Mecynogea lemniscata	0000111101	1000000110	0030100000	0000011140	010000001	1001000001	011001?0?0	000??00?1?	????0?100	000???????	??????
Mesida argentiopunctata	0001010000	0000011001	0100110011	1010000040	1111000111	1100000101	100100???0	01?0?00??0	0?0?0???0?	103000????	??????
Meta menardi	0001100001	1010110000	0000100000	0001101000	0114?????0	0001000011	1100100001	0011010001	0010100000	011000010?	??????
Metabus ocellatus	0001011010	0000011001	0100110011	1010000040	0011000010	0001211001	00?00??1?0	??0?????0?	????0?110	000???????	??????
Metellina segmentata	1000010000	1100000000	1020000011	000000014	0011000001	0000111000	1000010011	0100??00?0	?0???0?103	000???????	??????
Metepeira labyrinthea	1000111011	1000100100	1000020200	000000001	1002010000	0001101200	0001011011	?0?0?000?0	000?21???0	?101000???	??????
Nanometine sp	0000100000	0300000101	0121210000	0010000041	?111001010	0000111011	00?0?001?0	?00??00?0?	????0?100	00020?????	??????
Metleucauge eldorado	1000010000	0030000110	1100011000	000000004	0011000001	0000121100	10??00001?	0?00??00??	?????0?10	11000020??	??????
Micrathena gracilis	1000111011	0001000100	1000010100	0000001012	0500011001	000001000	0010010100	1?01000100	00?0???0?1	10000?????	??????
Mollemeta edwardsi	0000100110	0013000001	0102001000	100000010	4000110000	1000012110	0100?010?0	?1000??00?	0?????0?1	041020020?	??????
Nanometa sp	0010000001	0000010101	2121000000	1000004101	0001000000	000001100?	00001?0?00	??00?0?0??	?0?1000002	0?????????	??????
Neoscona domiciliorum	0100011011	0101000100	1000030200	000000101	1400010000	0001?01200	0101001010	00?0?000?0	000??????0	?100000???	??????
Nephila clavipes	1111110111	0000010000	0010000000	0000113???	??1000?110	0010000010	1111110000	01101121?0	1?1000000?	???????????	??????

Matriz morfológica. Caracteres del 111 al 223 (continuación)

Nephilengys malabarensis	1100100000	0010100002	020000000	0001120000	0100000100	0100000101	1011?00101	1101121010	1??1010100	0?????????	??????
Nesticus cellulanus	1011100210	0000010???	?201001100	000?00000?	???0?00?00	1001?00012	111??10001	02000?????	????????????	???????????????????????????????????????	??????
Opadometa sp	0110100100	0000110011	1001100111	000010140?	?110?01111	1110000111	00100?0100	1?0?00??00	?0??????0?	101000????	??????
Orsinome cf vethi	1001011000	3000011001	1120100011	1010000040	?110000111	1010000101	100100?000	01?0?00??0	0?0?0???0?	110000????	??????
Orsinome sarasini	0000100?00	0300000100	0121210000	000000040	?111001010	0000111011	0?????????	???????????????????????????????????????	?????0?100	00010?????	??????

95
Pachygnatha autumnalis	0100011000	0001001000	50?1100101	0000100000	010000???0	?112000???	????????????	???????????????????????????????????????	???????????	???????????????????????????????????????	??????
Phonognatha graeffei	1010000001	0000011100	0000000000	0000004001	110000000	0111000100	1011000100	10?1121021	1?00?0000?	???????????	??????
Tetragnatha versicolor	0210110111	1000000110	000140????	0001000000	0001211001	0000000110	1000100101	01?0011130	00????????	???????????????????????????????????????	??????
Tylorida striata	0001010000	0000011001	1100110011	1010010050	1111000100	1000000101	100100?000	01?0?00??0	0?0??????0	?11110100?	??????
Uloborus glomosus	000000001	0210000000	0010141???	?000000000	000001000	1001000000	0000000?00	?0????????	????????????	???????????????????????????????????????	??????
Zygiella x notata	1000011000	010000010	0001020000	000000104	0201000000	0110020000	0100?0100?	?0?00??000	0?????0?1	00000?????	??????
Chrysometa alajuela	0121010100	0001000000	1010120200	1100110000	0500010000	0100001000	00100?010?	1?0?00??00	?0?10???0?	1201030020	??????
Chrysometa brevipes	0121011100	0001000000	1010121210	2102010000	0100010000	0100001111	00100?010?	1?0?00??00	?0?10???0?	1111020011	??????
Chrysometa citlaltepetl	0121011100	0001000000	1010121210	2102010000	0100010000	0100001111	00100?010?	1?0?00??00	?0?10???0?	1111000011	??????
Chrysometa triangulosa	0121011100	0001000000	1010121210	2102010000	0100010000	0100001111	00100?010?	1?0?00??00	?0?10???0?	1111020021	??????
Chrysometa rosarium	0121011100	0001000000	1010121210	2102010000	0500010000	0100001111	00100?010?	1?0?00??00	?0?10???0?	1011001211	??????
Chrysometa atotonilco	0121011100	0001000000	1010121210	2102010000	0100010000	0100001111	00100?010?	1?0?00??00	?0?10???0?	1111020021	??????
Chrysometa xamaticpac	0121011100	0001000000	1010121210	2102010000	0100010000	0100001111	00100?010?	1?0?00??00	?0?10???0?	1111010011	??????
Chrysometa puya	0121011100	0001000000	1010121210	2102010000	0300010000	0100001010	00100?010?	1?0?00??00	?0?10???0?	1301220121	??????
Chrysometa sagicuta	???????????	?100000100	0000101012	1210210201	0000020001	0???01000?	?????100?	010?1?0?00	??00?0?10?	???????????????????????????????????????	0??1??
Chrysometa chipinque	0121011100	0001000000	1010121210	2102010000	0500010000	0100001111	00100?010?	1?0?00??00	?0?10???0?	1011021211	??????
Chrysometa acinosa	0?????????	???????????????????????????????????????	????????????	????????????	????00010	0000??0001	01100100?0	10?1?0?00?	?00?0?10??	?0?1130001	??????
Chrysometa cornuta	0????1100	0001000000	10????1020	0?10001000	0010001000	001000????	???100?010	?1?0?00??0	0?0?10???0	?111102002	0?????
Chrysometa levii	0?????????	???????????	????????????	???????????	????00010	0000??0001	11100100?0	10?1?0?00?	?00?0?10??	?0?1131010	12????
Chrysometa maitae	???????????	?100000100	0000101012	0200010001	0010050001	0???01000?	?????100?	010?1?0?00	??00?0?10?	???????????????????????????????????????	???0??
Chrysometa rincon	???????????	?100000100	000010????	2121021020	1000003000	10???01000	??????100	?010?1?0?0	0??00?0?10	???????????????????????????????????????	????1?
Chrysometa GH2506	???????????	?10000010?	????????????	????0?????	1000003000	10???01000	??????100	?010?1?0?0	0??00?0?10	???????????????????????????????????????	??????
Chrysometa GH2507	???????????	?10000010?	????????????	????0?????	1000005000	10???01000	??????100	?010?1?0?0	0??00?0?10	???????????????????????????????????????	??????
Chrysometa GH2508	???????????	?10000010?	????????????	????0?????	1000001000	10???01000	??????100	?010?1?0?0	0??00?0?10	???????????	??????
Chrysometa GH2509	0?????????	???????????????????????????????????????	????????????	????????????	????00010	0000??0001	11100100?0	10?1?0?00?	?00?0?10??	?0?1100002	??????
Chrysometa GH2510	0?????????	???????????????????????????????????????	????????????	????????????	????00010	0000??0001	01000100?0	10?1?0?00?	?00?0?10??	?0?1221110	13????
Chrysometa sp01	0?????????	???????????	????????????	???????????	????00010	0000??0001	21100100?0	10?1?0?00?	?00?0?10??	?0?1111020	01????
Chrysometa sp02	0?????????	???????????????????????????????????????	????????????	????????????	????00010	0000??0001	01000100?0	10?1?0?00?	?00?0?10??	?0?1201120	02????
Chrysometa sp03	???????????	?10000010?	????????????	????0?????	1000002000	1?0??01000	??????100	?010?1?0?0	0??00?0?10	???????????????????????????????????????	??????
Chrysometa sp04	1000??????	???????????	????????????	???????????	???????00	0100000??0	0010100010	0?010?1?0?	00??00?0?1	0???0?1201	02002?

Lista de caracteres utilizados en la matriz morfológica (Álvarez–Padilla y Hormiga, 2011).

Anatomía de fúsulas e hileras: caracteres del 1 al 22; características del pedipalpo del macho: caracteres del 23 al 79; anatomía del cefalotorax de macho y hembra: caracteres del 80 al 122: Anatomía del epigino: caracteres del 123 al 153; sistema traqueal y otras características abdominales: caracteres del 154 al 168; características de la pata cuatro y otros apéndices: de los caracteres 169 al 185; caracteres de comportamiento: caracteres del 186 al 213. Los siguientes códigos son usados como referencia los caracteres presentados en análisis previos: Levi, 1980; = L80; Coddington, 1990 = C90; Hormiga, 1994a,b; = H94; Hormiga et al., 1995; = H95; Scharff y Coddington, 1997; = S97; Griswold et al., 1998; = G98; Tanikawa, 2001; = T01; Agnarsson, 2004; = A04; Griswold et al., 2005; = G05; Kuntner, 2005, 2006; Kuntner et al., 2008; = K07; Álvarez-Padilla, 2007a,b = A07 y Dimitrov y Hormiga, 2009 = DIP.

1. ALS piriform spigot bases height: (0) higher than 1/4 of the spigot shaft; (1) lower. (H95, S97, G98, A04, G05, K07, A07, DIP).

2. ALS piriform spigot bases distal edge: (0) tightly wrapping column base; (1) separated from the column base leaving a torus (G05).

3. ALS piriform field perimeter: (0) notched; (1) uniform.

4. PMS anterior surface: (0) without aciniform spigots; (1) with aciniform spigots (H94, H95, S97, G98, A04, G05, K07, A07, DIP).

5. PMS aciniform anterior spigots: (0) 20 or less AC spigots; (1) more than 20 spigots (H94, H95, S97, G98, A04, G05, K07, A07, DIP).

6. PMS cylindrical spigots number: (0) one; (1) two (G98, G07).

7. PMS nubbin: (0) absent; (1) present (H95, S97, G98, A04, G05, K07, A07, DIP).

8. PLS cylindrical spigot bases: (0) same size; (1) mesal larger than the more distal spigot base (H94, H95, G98, A04, A07, DIP).

9. PLS cylindrical spigot position: (0) central; (1) peripheral (H95, G98, G05, K07, A07, DIP).

10. PLS aggregate gland spigots: (0) approximately the same size as the distal cylindrical spigot; (1) enlarged (H95, G98, A04, K07, A07, DIP).

11. PLS distal aciniform spigots: (0) not extending beyond the triplet area; (1) extending beyond the triplet area.

12. Aggregate spigots: (0) absent; (1) present (H95, G98, G05, A07, DIP).

13. Flagelliform spigots: (0) absent; (1) present (G98, A04, G05).

14. Flagelliform spigot position: (0) near the aggregate spigots; (1) apart.

15. AG-flagelliform triad: (0) aggregate spigots distal end apart from flagelliform spigot; (1) distal end of the aggregate spigots embracing the distal end of the flagelliform spigot (H95, K07, A07, DIP).

16. Spinnerets cuticle: (0) squamose; (1) rugose (G98, G05).

17. Sclerotized ring around spinnerets: (0) absent; (1) present (S97, G98, A04, G05, A07, DIP).

18. Epiandrous fusules arrangement: (0) one transverse line; (1) two main clusters (A04, G05).

19. Épiandrous fusules line: (0) leveled with the surrounding cuticle; (1) within a groove.

20. Epiandrous fusules pits: (0) absent; (1) present.

21. Epiandrous fusule base distal margin: (0) sharp edge; (1) round edge.

22. Epiandrous plate posterior edge: (0) as the upper edge; (1) swollen.

23. Cymbium orientation: (0) dorsal; (1) mesal (H95, S97, G98, K07, A07, DIP).

24. Cymbial tarsal organ diameter: (0) as the surrounding macrosetal base diameter; (1) larger (A04).

25. Cymbium median width: (0) not constricted; (1) constricted.

26. Cymbial ecto-basal process (CEBP): (0) absent; (1) present (L80, H95, A07, DIP).

27. CEBP shape: (0) longer than wide; (1) cuticular fold (A07, DIP).

28. Cymbial ecto-median process (CEMP): (0) absent; (1) present (A07, DIP).

29. CEMP macrosetae: (0) absent; (1) as in the cymbium (A07, DIP).

30. CEMP length: (0) less than half the cymbial width; (1) more than half the cymbial width (A07, DIP).

31. Cymbial dorso-basal process (CDBP): (0) absent; (1) present (A07, DIP).

32. CDBP length: (0) shorter than the cymbial width; (1) longer than the cymbial width (A07, DIP).

33. CDBP orientation: (0) perpendicular in relation to the cymbial longitudinal axis; (1) parallel (A07, DIP).

34. Cymbium–bulb lock mechanism: (0) absent; (1) present (G98, A04, A07, DIP).

35. Cymbium length: (0) shorter than two times its width; (1) longer (K07, A07, DIP).

36. Cymbium ectal margin sclerotization: (0) sclerotized as cymbium; (1) transparent (K07).

37. Paracymbium: (0) absent; (1) present (L80, C90, H94, H95, S97, G98, T01, A04, G05, A07, DIP).

38. Paracymbium morphology: (0) hook shaped;
(1) cylindrical, longer than wide; (2) rectangular;
(3) rim following tegular margin; (4) U–shaped;

(5) conical; (6) with protuberances (H94, H95, G98, A04, K07, A07, DIP).

39. Paracymbium length: (0) shorter than half the cymbial length; (1) longer (A07, DIP).

40. Paracymbium articulation: (0) integral; (1) articulated; (2) intersegmental (L80, C90, H94, H95, S97, G98, K07, A07, DIP).

41. Paracymbium distal part: (0) not swollen; (1) swollen (K07, A07, DIP).

42. Paracymbium basal apophyses: (0) absent; (1) present (H95, K07, DIP. A07).

43. Paracymbium margin fold: (0) absent; (1) present (H95, K07, A07, DIP).

44. Paracymbium setae: (0) absent; (1) present (K07, DIP).

45. Paracymbium setae distribution: (0) only on the tip; (1) evenly distributed; (2) only at the base; (3) only on the margins (K07, DIP).

46. Subtegulum position: (0) under the tegulum;(1) mesally displaced (A07, DIP).

47. Tegulum shape: (0) spherical to oval; (1) disk-shaped (K07).

48. Tegulum ectal surface: (0) same as mesal; (1) swollen (A07, DIP).

49. Tegulum–subtegulum size: (0) larger than subtegulum; (1) smaller than subtegulum (A04, K07, A07, DIP).

50. Tegular sclerites insertion: (0) apical; (1) subterminal (C90, H95, S97, G98, A07, DIP).

51. Median apophysis: (0) absent; (1) present (L80, C90, H94, H95, S97, G98, G05, A04, K07, A07, DIP).

52. Median apophysis and sperm duct: (0) duct loop inside MA; (1) apart (A04, K07, A07, DIP).

53. Conductor: (0) absent; (1) present (L80, C90, H94, H95, S97, G98, T01, A04, G05, A07, DIP).

54. Conductor and embolus: (0) coiled with embolus; (1) separated (L80, C90, H95, S97, G98, G05, T01, G05, K07, A07, DIP).

55. Conductor tegular origin: (0) center; (1) lateral edges (G05, A07, DIP).

56. Conductor end: (0) straight; (1) sigmoid (H95, K07, A07, DIP).

57. Conductor area covering the embolus: (0) one-third or less; (1) one side of the embolus; (2) all embolus (A07, DIP).

58. Conductor path: (0) parallel to tegular margin; (1) curving with tegular margin; (2) apically distended; (3) ventrally distended (A07, DIP).

59. Conductor tegulum attachment: (0) solid; (1) membranous (A04, A07, DIP).

60. Conductor size: (0) shorter than half of the bulb longitudinal axis; (1) longer (K07, DIP).

61. Theridiid tegular apophysis: (0) absent; (1) present (C90, H95, G98, A04, K07, A07, DIP).

62. Embolus tegulum orientation: (0) 90°; (1) parallel (G95, G98, K07, DIP).

63. Embolus tegulum membrane: (0) absent; (1) present (C90, H95, S97, G98, K07, A07, DIP).

64. Embolic basal apophyses: (0) absent; (1) metine embolic apophysis; (2) araneid basal apophyses; (3) linyphiid embolic apophyses (C90, H95, S97, G98, T01, AO4, K07, A07, DIP).

65. Embolic apophyses attachment: (0) membranous; (1) sclerotized (A07, DIP).

66. Embolic base length: (0) shorter than or equal to 2 times its width; (1) longer.

67. Embolus shape: (0) tubular embolus; (1) flagelliform embolus; (2) lamelliform embolus (A04, K07, DIP).

68. Embolus length: (0) less than half cymbium length; (1) from 0.5 to 1.5 cymbium length; (2) > 1.5 cymbium length (K07, DIP).

69. Embolus path: (0) less than half a circumference of curvature; (1) more than half but less than a complete circumference; (2) more than a complete circumference.

70. Embolus tip: (0) cylindrical; (1) with caps or hooks (A04, K07, DIM).

71. Radix: (0) absent; (1) araneid radix; (2) linyphiid radix (C90, H94, H95, S97, G98, K07, A07, DIP).

72. Stipes: (0) absent; (1) present (H95, S97, K07, A07, DIP).

73. Distal hematodocha: (0) absent; (1) present (H95, S97, A07, DIP).

74. Terminal apophysis: (0) absent; (1) present (S97, A07, DIP).

75. Subterminal apophysis: (0) absent; (1) present (S97, A07, DIP).

76. Sperm reservoir diameter: (0) constant; (1) medially enlarged (C90, H95, G98, A07, DIP).

77. Sperm duct path: (0) spiral; (1) with switchbacks (C90, H95, T01, A04, K07, A07, DIP).

78. Sperm turns or switchbacks: (0) less than two switchbacks; (1) more than two (A07, DIP).

79. Sperm duct embolus joint: (0) enters the embolus through the base; (1) duct joins embolus via a pars pendula (K07, DIP).

80. Female cheliceral boss: (0) absent; (1) present (C90, A04, K07, DIP).

81. Female cheliceral boss cuticle: (0) striated; (1) as the paturon (H95, G98, K07, A07, DIP).

82. Female cheliceral length: (0) shorter than clypeal width; (1) same length; (2) longer.

83. Female chelicerae width: (0) width longer than half the paturon length; (1) shorter (K07, DIP).

84. Female cheliceral denticles: (0) absent; (1) present (C90, H95, S97, A04, K07, A07, DIP).

85. Female chillum: (0) absent; (1) present (G05, K07, DIP).

86. Cheliceral promargin: (0) toothed; (1) without teeth (A04).

87. Cephalothorax supra-cheliceral lobe: (0) absent; (1) present (K07, DIP).

88. Female ocular area height: (0) ALE are below the coxal margin; (1) higher.

89. Clypeus height: (0) less than one AME diameter; (1) between one and two AME diameters; (2) more than two AME diameters (L80, H95, S97, G98, T01, A07, DIP).

90. Separation between the lateral and median eyes: (0) less than the PME area length, (1) more (S97, K07, DIP).

91. PME separation: (0) less than the PME diameter; (1) equal to the PME diameter; (2) more than the PME diameter (K07, DIP).

92. PME canoe-shaped tapeta: (0) absent; (1) present (L80, C90, S97, G98, G05, K07, DIP).

93. PME canoe-shaped tapetum: (0) broad; (1) narrow (L80, S97, G98).

94. PLE canoe-shaped tapetum: (0) absent; (1) present (L80, C90, S97, H95, G98, G05, K07, A07, DIP).

95. PLE size relative to PME: (0) smaller than PME; (1) same as PME; (2) larger than PME (K07, DIP).

96. Female lateral eyes: (0) separated; (1) together on a single tubercle (K07, DIP).

97. Female posterior eye row: (0) straight; (1) procurved; (2) recurved (S97, K07, DIP).

98. Female cephalothorax seta: (0) covering < 10%; (1) covering more than 10% but< 50%; (2) covering more than 50% of its surface (S97, K07, DIP).

99. Female carapace shape: (0) piriform; (1) oval (S97, A04, K07, DIP).

100. Female anterior gut caeca: (0) absent; (1) present (L80, H95, G98, G05, A07, DIP).

101. Cephalothorax fovea: (0) absent; (1) present (K07, DIP).

102. Female fovea shape: (0) transversely elongated; (1) longitudinally elongated; (2) two deep transverse pits; (3) shallow oval depression; (4) single deep hole (K07, DIP).

103. Carapace pits: (0) absent; (1) present.

104. Labium edge: (0) slightly swollen; (1) folding back.

105. Labium shape: (0) pentagonal; (1) trapezoidal.

106. Female sternum: (0) longer than wide; (1) as wide as or wider than long (K07, DIP).

107. Female sternal surface: (0) flat; (1) tubercles I to IV present; (2) tubercles I to III; (3) tubercles I, III, and IV; (4) tubercles III and IV; (5) tubercles I and II; (6) only tubercle I; (7) tubercle only III; (8) only tubercle IV (K07, DIP).

108. Male cheliceral length: (0) cheliceral length less the clypeal width; (1) chelicera same length as the clypeal width; (2) chelicerae longer (A07, DIP).

109. Female frontal sternal tubercle: (0) absent; (1) present (K07, DIP).

110. Male cheliceral boss: (0) absent; (1) present.

111. Male cheliceral distal curvature: (0) straight, less than two times the clypeus width; (1) larger.

112. Male cheliceral macroseta bases: (0) as in the clypeal area; (1) bases larger.

113. Male ectal cheliceral cuticle: (0) as in the anterior surface; (1) rugose.

114. Male cheliceral meso-median apophysis: (0) absent; (1) present (DIP).

115. Male cheliceral distal apophysis: (0) absent; (1) present (DIP).

116. Male paturon basal tubercle: (0) absent; (1) present (K07, DIP).

117. Cheliceral cuticle sexual dimorphism: (0) same texture in male and females; (1) different.

118. Cheliceral length sexual dimorphism: (0) male chelicerae smaller; (1) same length; (2) male chelicerae larger.

119. Carapace shape sexual dimorphism: (0) same shape in male and females; (1) cephalic region narrower in males.

120. Ocular area height sexual dimorphism: (0) same height in male and females; (1) male ocular area higher; (2) male ocular area lower.

121. Fovea shape sexual dimorphism: (0) same in male and females; (1) different.

122. Body size sexual dimorphism: (0) male less than half of the female body length; (1) male more than half of the female body length (H95, S97, G98, K07, A07, DIP).

123. Epigynum: (0) absent; (1) present (H95, S97, A04, G07, A07, DIP).

124. Epigynal plate height: (0) same height as the surrounding cuticle; (1) projected at least one third of the epigynal plate width (A07, DIP).

125. Epigynal plate atrium: (0) absent; (1) present.

126. Cuticular area anterior to the epigynum: (0) flat or rounded; (1) excavated (K07, DIP).

127. Scape: (0) absent; (1) present (H94, S97, A07, DIP).

128. Scape cuticle texture: (0) smooth; (1) wrinkled (S97).

129. Scape apex: tapering towards the end; (1) with a pocket (S97).

130. Genital openings shape: (0) resembling pits; (1) longitudinal grooves; (2) transverse groves.

131. Genital openings orientation: (0) ventral; (1) posterior (C90, A04, K07, DIP).

132. Copulatory opening: (0) never plugged; (1) plugged with broken embolus; (2) plugged with embolus and conductor; (3) plugged with secretions (K07, A04, DIP).

133. Uterus externus modified with an enlarged chamber: (0) absent; (1) present (DIP).

134. Posterior sac: (0) absent; (1) present (DIP).

135. Epigynal plate: (0) apart from the spermatheca; (1) enclosing the spermatheca.

136. Epigynal sclerotized arch: (0) absent; (1) present (K07, DIP).

137. Spermatheca sclerotization: (0) sclerotized; (1) not sclerotized (T01, A07, DIP).

138. Spermathecae separation: (0) separated more than two spermatheca diameters apart; (1) closer (K07, DIP).

139. Spermathecae chambers: (0) one single chamber; (1) two chambers (A04, K07, DIP).

140. Accessory gland distribution: (0) isolated; (1) grouped (C90).

141. Accessory gland base diameter: (0) < 1.5 times the flagella diameter; (1) thicker.

142. Accessory gland base shape: (0) tubular; (1) acorn-shaped.

143. Accessory glands distribution: (0) evenly over the spermatheca; (1) clustered near the fertilization duct; (2) clustered near the copulatory ducts.

144. Copulatory ducts path: (0) path curved less than half a circumference; (1) path curved more than half a circumference but less than a complete turn; (2) coiled more than one turn (A04, K07).

145. Copulatory ducts shape: (0) cylindrical; (1) modified as a sack (A07, DIP).

146. Copulatory ducts length: (0) less than half the spermathecae length; (1) more than half the spermathecae length but less than its total length; (2) longer than the spermathecae length. 147. Copulatory ducts cuticle: (0) well sclerotized; (1) membranous. 148. Female genitalia: (0) entelegyne; (1) haplogyne (L80, C90, H95, S97, G98, G05, A07, DIP).

149. Fertilization ducts origin: (0) posterior; (1) anterior (A07, DIP).

150. Fertilization ducts length: (0) shorter than the spermatheca width; (1) longer (A07, DIP).

151. Fertilization ducts path: (0) curved; (1) coiled.

152. Fertilization duct and copulatory ducts paths: (0) separated; (1) fertilization ducts coiled around the copulatory ducts.

153. Fertilization duct path and spermathecae:(0) separated; (1) crossing over.

154. Female abdominal dorsal surface: (0) without guanine silver patches; (1) with guanine silver patches.

155. Female abdominal spines: (0) absent; (1) present (S97, A07, DIP).

156. Female micro-sculpture abdominal cuticle:(0) made of scales; (1) made of cylinders.

157. Female anterior abdominal tubercles: (0) absent; (1) present (K07, DIP).

158. Female booklung surface: (0) flat; (1) grooved (H95, S97, G98, T01, K07, A07, DIP).

159. Female abdominal tip color: (0) as the sub–apical part; (1) with paired white dots around spinnerets; (2) lighter than the sub–apical part (K07).

160. Female light pigmented pattern form on abdominal venter: (0) one central white area; (1) transverse lines; (2) four large spots; (3) numerous spots; (4) longitudinal line; (5) same pattern as lateral sides (K07).

161. Median tracheal morphology: (0) cylindrical; (1) tracheal trunk divided in thick tracheoles; (2) tracheal trunk divided in several small tracheoles (G05).

162. Median trachea tip morphology: (0) leaf-shaped; (1) round; (2) bifurcated.

163. Median trachea length: (0) shorter than half the lateral trachea length; (1) longer.

164. Tracheal atrium glands: (0) absent; (1) present.

165. Tracheal glands abundance: (0) less than four on each side; (1) more.

166. Male abdominal scutum: (0) absent; (1) present (H95, G98, K07, A07, DIP).

167. Male micro-sculpture abdominal cuticle:(0) made of scales; (1) made of cylinders.

168 Male booklung stridulatory groove: (0) absent; (1) present.

169. Femur IV trichobothria: (0) absent; (1) present (L80, H95, S97, G98, T01, A07, DIP).

170. Femoral trichobothria position: (0) dorsal; (1) ectal (A07, DIP).

171. Femur IV trichobothria organization: (0) one irregular line; (1) two parallel rows (A07, DIP).

172. Femur IV trichobothria distribution: (0) less than one-third of femur; (1) more than one third of femur (A07, DIP).

173. Trichobothrium flagellum morphology: (0) smooth; (1) branched (A07, DIP).

174. Female femur IV mesal surface: (0) with setae; (1) without seta.

175. Female IV tibia: (0) without bristles; (1) with bristles (K07, A07, DIP).

176. Sustentaculum: (0) absent; (1) present (H95, S97, G98, K07, A07, DIP).

177. Sustentaculum tip: (0) straight; (1) bent.

178. Tarsus IV theridiid comb: (0) absent; (1) present (C90, H95, G98, A04, A07, DIP).

179. Male tibia II macrosetae: (0) as in tibia I; (1) thicker (S97).

180. Male palpal patella macrosetae: (0) none; (1) one; (2) two (H95, S97, T01, A07, DIP).

181. Male palpal tibia length: (0) approximately as long as the widest point of the tibia; (1) approximately two times the greatest width of the tibia; (2) three or more times the greatest width of the tibia.

182. Male palpal femur length: (0) less than four times its width; (1) longer.

183. Male palpal trochanter length: (0) less than twice its width; (1) more (K07, DIP).

184. Male I coxal hook: (0) absent; (1) present (S97).

185. Male coxa IV mesal surface: (0) smooth; (1) with denticles (A07, DIP).

186. Web: (0) absent; (1) present.

187. Web architecture: (0) orbicular; (1) as a sheet; (2) gum foot (C90, H95, S97, G98, A04, K07, A07, DIP).

188. Web frame: (0) two dimensional; (1) three dimensional.

189. Web posture: (0) legs I and II extended; (1) flexed (L80, C90, H95, S97, G98, K07, A07, DIP).

190. Stabilimentum: (0) absent; (1) present (K07, DIP).

191. Orb-web angle: (0) horizontal; (1) vertical (K07, DIP).

192. Barrier web: (0) absent; (1) present (K07, DIP).

193. Partial web renewal: (0) new web build each day or after damage; (1) webs repaired (K07, DIP).

194. Hub: (0) closed; (1) open (L80, C90, H95, G98, K07, A07, DIP).

195. Hub bite-out: (0) absent; (1) present (C90, H95, G98, K07, A07, DIP).

196. Hub against substrate: (0) absent; (1) present (K07, DIP).

197. Hub loop–no sticky spiral shift: (0) gradual; (1) abrupt (H95, K07, A07, DIP).

198. Hub cup: (0) absent; (1) present (K07, DIP).

199. Hub relative position on the web: (0) central; (1) displaced up; (2) displaced down (K07, DIP).

200. Radii construction: (0) radii singly attached; (1). radii attached twice (C90, H95, G98, K07, A07, DIP).

201. Radii construction: (0) radii not cut and reeled; (1) radii cut and reeled (C90, H95, G98, K07, A07, DIP).

202. Secondary split radii: (0) absent; (1) present (K07, DIP).

203. Tertiary split radii: (0) absent; (1) present (K07, DIP).

204. Sticky spiral location: (0) leg one pointing outside the hub; (1) internal leg one; (2) leg four

pointing outside the hub (L80, C90, H95, S97, G98, K07, A07, DIP).

205. Non sticky spiral: (0) removed from finished web; (1) (H95, S97, G98, K07, A07, DIP).

206. Non sticky spiral contacts 1st sticky spiral construction: (0) absent; (1) present.

207. Retreat: (0) absent; (1) off web; (2) in web (K07, DIP).

208. Retreat form: (0) silken tube; (1) utilization of a leaf (K07, DIP).

209. Wrap-bite attack: (0) the spider first bites the prey then wraps it; (1) the spider first wraps the prey with silk (C90, H95, G98, A04, K07, A07, DIP).

210. Wrap bite silk: (0) dry; (1) sticky (G98, A04, K07, DIP).

211. Body shake: (0) absent; (1) present (K07, DIP).

212. Bulbus detachment: (0) absent; (1) present (A04, K07, DIP).

213. Cheliceral clasp: (0) absent; (1) present (K07, DIP).

Lista de caracteres añadidos a la matriz original de Álvarez–Padilla y Hormiga (2011).

Características del pedipalpo del macho: caracteres del 214 al 222; anatomía del epigino: caracter 223.

214. Paracymbium UpProng: (0) absent; (1) present.

215. UpProng protuberances: (0) none; (1) one; (2) two; (3) three.

216. UpProng shape: (0) rounded; (1) square;(2) hook–shape; (3) oval; (4) triangular.

217. Paracymbium LwProng: (0) absent; (1) present.

218. LwProng protuberancias: (0) none; (1) one; (2) two.

219. LwProng shape: (0) rounded; (1) square;(2) triangular; (3) forked.

220. Paracymbium MdProng: (0) absent; (1) membranous.

221. CEMP protuberances: (0) absent; (1) rounded; (2) membranous.

222. CEMP shape: (0) rounded; (1) square; (2) triangular; (3) hook–shaped.

223. Copulatory ducts origin relative to opening:(0) sclerotized continuous; (1) membranous.

Números de acceso de GenBank de las secuencias utilizadas.

Anapidae	<i>Diphya</i> sp1	Maymena ambita	<i>Mysmena</i> spa
GU456919.1	KT002726.1	GU456733.1	GU456862.1
KM486166.1	KT002825.1	GU456746.1	GU456905.1
KM486212.1	KT002924.1	GU456765.1	Mysmena tasmaniae
KM486310.1	KT003022.1	GU456824.1	HM030414.2
KM486378.1	KT003115.1	GU456876.1	HM030424.2
KY017568.1	Diphya spinifera	GU456921.1	HM030434.2
Allende nigohumeralis	GU129584.1	Maymena mayana	HM030440.1
EU003271.1	GU129611.1	HM030403.1	Mysmeninae sp4
EU003368.1	GU129626.1	HM030411.2	GU456754.1
EU003396.1	GU129643.1	HM030421.2	GU456898.1
Allende sp2	Dolichognatha incanescens	KY018315.1	GU456950.1
GU129574.1	MF668702.1	Maymena sp1	Mysmeninae sp7
GU129635.1	MF668710.1	GU456771.1	GU456751.1
GU129649.1	MF668718.1	GU456829.1	GU456892.1
Antillognatha lucida	MF674518.1	GU456926.1	Mysmeninae sp9
GU129576.1	MF681790.1	Maymena sp2	GU456735.1
GU129603.1	Dolichognatha longiceps1	GU456772.1	GU456752.1
GU129631.1	MF668703.1	GU456830.1	GU456896.1
GU129647.1	MF668711.1	GU456880.1	Nanometa sp0
Arkys cornutus	MF681791.1	GU456927.1	EU003331.1
FJ607448.1	Dolichognatha longiceps2	Mesida gemmea	EU003391.1
FJ607482.1	GU129578.1	KU836879.1	Nanometa sp1
FJ607521.1	GU129605.1	KU836910.1	KM486175.1
FJ607556.1	GU129632.1	Mesida sp1	KM486245.1
FJ607595.1	GU129648.1	GU129590.1	KM486317.1
Arkys cornutus1	Dolichognatha pentagona	GU129615.1	KM486387.1
KY015314.1	MF668704.1	GU129650.1	KM486458.1
KY015749.1	MF668712.1	<i>Mesida</i> spD	Nanometa sp2
KY016327.1	MF668720.1	KR526440.1	KM486176.1
KY016938.1	MF674519.1	KR526482.1	KM486246.1
KY018125.1	MF681792.1	KR526575.1	KM486318.1
Arkys lancearius1	Dolichognatha sp1	KR526615.1	KM486388.1
KM486218.1	EU003285.1	Mesida yini1	KM486459.1
KM486279.1	EU003317.1	KU836880.1	Nanometa sp3
KM486346.1	EU003346.1	KU836912.1	KM486177.1

Arkys sp1	EU153165.1	Mesida yini2	KM486247.1
KM486131.1	Dolichognatha sp2	KU836881.1	KM486319.1
KM486219.1	KY015600.1	KU836913.1	KM486389.1
KM486422.1	KY016147.1	Meta manchurica	KM486460.1
KM486474.1	KY016736.1	JN816499.1	KM486505.1
Arkys sp2	KY017395.1	JN816721.1	Opadometa grata
KM486220.1	KY017952.1	JN816930.1	KU836883.1
KM486423.1	Ero japonica	JN817133.1	KU836915.1
KM486475.1	JN816665.1	Meta menardi1	Opadometa kuchingensis
Arkys sp3	JN817077.1	EU003268.1	KU836884.1
KM486127.1	Ero sp1	EU003325.1	KU836916.1
KM486275.1	KP271539.1	EU003353.1	<i>Opadometa</i> sp0
KM486342.1	KP271605.1	EU153173.1	KU836882.1
KM486476.1	KP271664.1	KY269872.1	KU836914.1
Arkys sp4	KP271739.1	Meta menardi2	<i>Opadometa</i> sp1
KM486128.1	KP271867.1	KC848954.1	EU003266.1
KM486276.1	Ero sp2	KC848996.1	EU003304.1
Arkys sp5	KP271543.1	KC849037.1	EU003336.1
KM486221.1	KP271608.1	KC849121.1	EU003361.1
KM486282.1	KP271668.1	KY270076.1	EU003423.1
KM486349.1	KP271743.1	Meta ovalis	<i>Opadometa</i> sp2
KM486424.1	KP271808.1	FJ607460.1	KC848955.1
KM486477.1	KP271870.1	FJ607497.1	KC849016.1
Arkys sp6	Ero sp3	FJ607609.1	KC849057.1
KM486278.1	KP271540.1	KP653374.1	KC849101.1
KM486345.1	KP271606.1	Meta rufolineata	KC849142.1
Australomimetus pseudomaculosus	KP271665.1	KM486173.1	Orsinome megaloverpa
EU302918.1	KP271740.1	KM486244.1	KM486203.1
EU302966.1	KP271868.1	KM486316.1	KM486413.1
Australomimetus sp1	Ero spinipes	KM486385.1	Orsinome sp1
KP271597.1	KY015964.1	KM486456.1	EU003267.1
KP271656.1	KY017193.1	KM486503.1	EU003305.1
KP271859.1	KY018305.1	<i>Meta</i> sp2	EU003337.1
Australomimetus sp2	Eryciniolia purpurapunctata	KY016148.1	EU003362.1
KP271530.1	KM486146.1	KY016739.1	EU153181.1
KP271653.1	KM486295.1	KY017398.1	Pachygnatha clercki1
KP271728.1	KM486362.1	Metabus ebanoverde	JN816501.1
KP271798.1	Gelanor sp1	EU003265.1	JN816723.1
KP271855.1	KP271674.1	EU003296.1	JN816932.1
Australomimetus sp3	KP271814.1	EU003326.1	Pachygnatha clercki2

KP271531.1 KP271654.1 KP271729.1 KP271799.1 KP271856.1 Australomimetus sp4 KP271532.1 KP271655.1 KP271730.1 Australomimetus sp5 KP271529.1 KP271596.1 KP271727.1 Azilia guatemalensis EU003232.1 EU003262.1 EU003280.1 FU003313.1 EU003371.1 EU003399.1 Azilia sp1 GU129570.1 GU129581.1 GU129606.1 GU129624.1 GU129641.1 Azilia sp2 GU129582.1 GU129607.1 GU129625.1 GU129642.1 Carathea parawea KY015948.1 KY016532.1 KY018289.1 Carathea sp1 KM486135.1 KM486429.1 KM486479.1 Carathea sp2

KP271876.1 Gelanor sp2 KP271548.1 KP271613.1 KP271878.1 Gelanor sp4 KP271551.1 KP271615.1 Gelanor sp5 KP271678.1 KP271750.1 KP271817.1 Gelanor sp6 KP271680.1 KP271751.1 Gelanor sp7 KP271618.1 KP271754.1 Glenognatha sp1 GU129586.1 GU129612.1 GU129644.1 MF467688.1 Hispanognatha guttata GU129588.1 GU129613.1 GU129633.1 GU129652.1 Leucauge argentina1 KU836867.1 KU836898.1 Leucauge argentina2 KU836868.1 KU836899.1 Leucauge argentina3 KU836869.1 KU836901.1 Leucauge argentina4 KU836866.1 KU836900.1

EU003354.1 EU003414.1 Metainae sp0 GU129591.1 GU129616.1 Metainae sp1 GU129592.1 GU129617.1 Metainae sp2 GU129595.1 GU129619.1 GU129639.1 Metainae sp3 KM486314.1 KM486501.1 Metellina marianae EU003270.1 EU003297.1 EU003328.1 EU003356.1 EU153176.1 Metellina mengei KY268394.1 MF668706.1 MF668714.1 MF668722.1 Metellina segmentata1 KY015601.1 KY016149.1 KY016740.1 KY017399.1 KY018456.1 KY268470.1 Metellina segmentata2 FJ607461.1 FJ607536.1 FJ607610.1 KY268374.1 Metinae sp4 EU003272.1

KT204360.1 KY467189.1 KY467335.1 Pachygnatha degeeri1 EU003261.1 EU003338.1 EU003363.1 EU153182.1 Pachygnatha degeeri2 KT002871.1 KT003063.1 KT003158.1 KT204361.1 KY467192.1 Pachygnatha sp1 KY015602.1 KY016150.1 KY016741.1 KY017400.1 KY018457.1 Pachygnatha sp2 KY016742.1 KY017401.1 KY018458.1 Perissopmeros sp1 KM486185.1 KM486396.1 KM486512.1 Perissopmeros sp2 KM486186.1 KM486255.1 KM486325.1 KM486397.1 Perissopmeros sp3 KM486187.1 KM486256.1 KM486326.1 KM486398.1 KM486464.1

Pinkfloydia harveii

EU302919.1 EU302967.1 Chilenodes australis1 KY015949.1 KY016533.1 KY017175.1 KY018290.1 Chilenodes australis2 KM486138.1 KM486227.1 KM486286.1 KM486354.1 KM486430.1 Chilenodes australis3 KM486139.1 KM486226.1 KM486287.1 KM486355.1 KM486431.1 KM486480.1 Chilenodes australis4 KM486140.1 KM486228.1 KM486356.1 KM486432.1 KM486481.1 Chrysometa alboguttata EU003314.1 FU003389.1 EU153160.1 KY015598.1 KY016145.1 Chrysometa atotonilco1 MF782415 Chrysometa atotonilco2 MF782414 Chrysometa brevipes1 MF782391 Chrysometa brevipes2 MF782394

Leucauge argyra1 KY016737.1 KY017396.1 KY018454.1 Leucauge argyra2 EU003264.1 EU003339.1 EU003364.1 EU003427.1 Leucauge blanda JN816495.1 JN816717.1 JN816926.1 KY467181.1 Leucauge celebesiana JN816497.1 JN816719.1 JN816928.1 JN817131.1 Leucauge decorata KU836874.1 KU836905.1 Leucauge magnifica JN816496.1 JN816718.1 JN816927.1 JN817130.1 Leucauge sp1 KY016738.1 KY017397.1 KY017953.1 KY018455.1 Leucauge sp2 KU836875.1 KU836907.1 Leucauge sp3 AB917958.1 AB917971.1 Leucauge tessellata KU836876.1

EU003299.1 EU003357.1 EU153177.1 Metleucauge sp1 GU129599.1 GU129621.1 GU129636.1 Metleucauge yunohamensis JN816500.1 JN816722.1 JN816931.1 JN817134.1 Mettelina ornata JN816498.1 JN816720.1 JN816929.1 JN817132.1 Microdipoena guttata1 KY015976.1 KY017206.1 KY018316.1 Microdipoena guttata2 GU456747.1 GU456766.1 GU456825.1 GU456877.1 GU456922.1 Microdipoena nyungwe GU456748.1 GU456767.1 GU456826.1 GU456878.1 GU456923.1 Microdipoena sp1 HM030397.1 HM030404.1 HM030412.2 HM030422.2 HM030432.2 HM030439.1

GU129571.1 GU129602.1 GU129628.1 GU129640.1 Pinkfloydia sp1 KM486190.1 KM486328.1 KM486401.1 KM486515.1 Tetragnatha extensa JN816493.1 JN816714.1 JN816923.1 KC502807.1 Tetragnatha mandibulata AY230987.1 AY231069.1 KY467162.1 KY467310.1 Tetragnatha maxillosa AY164673.1 AY425723.1 AY671971.1 KX054955.1 KY467317.1 Tetragnatha pinicola JN816494.1 JN816715.1 JN816924.1 KX537339.1 Tetragnatha sp1 HM030399.1 HM030407.1 HM030416.1 HM030427.2 Tetragnatha squamata JN816716.1 JN816925.1 KY467178.1 KY467324.1

Chrysometa chipingue2 MF782417 Chrysometa chipinque3 MF782418 Chrysometa chipinque4 MF782420 Chrysometa citlaltepetl1 MF782400 Chrysometa citlaltepetl2 MF782404 Chrysometa poas MF668700.1 MF668708.1 MF668716.1 MF674516.1 MF681788.1 Chrysometa puya1 MF782398 Chrysometa puya2 MF782399 Chrysometa puya3 MF782397 Chrysometa rosarium1 MF782423 Chrysometa rosarium2 MF782422 Chrysometa rosarium3 MF782424 Chrysometa sagicuta1 MF782406 Chrysometa sagicuta2 MF782408 Chrysometa triangulosa1 MF782412 Chrysometa triangulosa2 MF782413 Chrysometa triangulosa3 MF782410 Chrysometa xamaticpac1 MF782387

KU836909.1 Leucauge venusta1 EU003238.1 EU003263.1 EU003322.1 EU003350.1 EU153169.1 Leucauge venusta2 FJ525341.1 FJ525356.1 FJ525374.1 FJ525393.1 Malkara loricata1 KY016534.1 KY017176.1 KY018291.1 Malkara loricata2 KM486150.1 KM486440.1 KM486487.1 Malkara sp1 KY015950.1 KY017177.1 Malkara sp2 KM486155.1 KM486235.1 KM486369.1 KM486443.1 KM486489.1 Malkara sp3 KM486152.1 KM486488.1 Malkara sp4 KM486153.1 KM486442.1 Malkara sp5 KM486157.1 KM486370.1 KM486491.1 Malkara sp6

Microdipoena sp2 GU456797.1 GU456895.1 GU456948.1 Mimetidae sp1 KP271563.1 KP271627.1 KP271692.1 KP271763.1 KP271830.1 KP271894.1 Mimetidae sp2 KP271564.1 KP271628.1 KP271693.1 KP271764.1 KP271831.1 KP271895.1 Mimetidae sp3 KP271565.1 KP271694.1 KP271765.1 KP271832.1 KP271896.1 Mimetidae sp4 KP271560.1 KP271623.1 KP271758.1 KP271828.1 KP271889.1 Mimetus banksi GU129600.1 GU129622.1 GU129637.1 GU129651.1 Mimetus sp1 KP271708.1 KP271843.1 KP271911.1

Mimetus sp2

Tetragnatha versicolor1 EU003394.1 EU153185.1 Tetragnatha versicolor2 FJ525336.1 FJ525350.1 FJ525369.1 FJ525387.1 KF368893.1 Tetragnathidae sp3 HM070300.1 HM070337.1 Tetragnathidae sp4 KM486202.1 KM486271.1 KM486334.1 KM486412.1 KM486524.1 Trogloneta granulum HM030418.2 HM030429.2 Trogloneta sp2 GU456791.1 GU456848.1 GU456890.1 GU456944.1 Trogloneta sp5 GU456750.1 GU456792.1 GU456849.1 GU456891.1 GU456945.1 Tylorida sp1 KY016744.1 KY017402.1 KY018460.1 Tylorida sp2 KM486206.1 KM486416.1 Tylorida striata1

Chrysometa xamaticpac2 MF782388 Chrysometa xamaticpac3 MF782383 Chrysometa xamaticpac4 MF782383 Chrysometa zelotypa MF668701.1 MF668709.1 MF668717.1 MF674517.1 MF681789.1 Cyrtognatha espanola EU003283.1 EU003344.1 EU153162.1 Cyrtognatha sp1 KY015599.1 KY016146.1 KY016735.1 KY017394.1 KY017951.1 KY018453.1 Cyrtognatha sp2 GU129609.1 GU129630.1 GU129645.1 Cyrtognatha sp3 GU129610.1 GU129629.1 GU129646.1

KM486366.1 KM486441.1 Malkara sp7 KM486302.1 KM486444.1 KM486490.1 Malkaridae sp1 KM486159.1 KM486372.1 KM486447.1 KM486493.1 Malkaridae sp2 KM486160.1 KM486238.1 KM486373.1 KM486494.1 Malkaridae sp4 KM486163.1 KM486240.1 KM486308.1 Malkaridae sp5 KM486236.1 KM486304.1 KM486371.1 KM486446.1 KM486492.1 Malkaridae sp6 KM486162.1 KM486239.1 KM486375.1 KM486449.1 KM486495.1

KP271709.1 KP271781.1 KP271912.1 Mimetus sp4 KP271572.1 KP271632.1 KP271904.1 Mimetus sp5 KP271574.1 KP271704.1 Mimetus sp6 KP271585.1 KP271642.1 KP271717.1 Mimetus sp7 KP271643.1 KP271789.1 Mollemeta edwardsi EU003269.1 EU003330.1 EU003374.1 EU003419.1 GU129634.1 Mysmena sp2 GU456749.1 GU456930.1 Mysmena sp8 GU456860.1 GU456903.1 Mysmena sp9 GU456861.1 GU456904.1

KY016745.1 KY017403.1 KY018461.1 Tylorida striata2 EU003309.1 EU003365.1 EU153186.1 Tylorida tianlin KU836885.1 KU836917.1 Tylorida ventralis1 KM486417.1 KM486526.1 Tylorida ventralis3 KU836890.1 KU836922.1 Zhinu manmiaoyangi1 MF668707.1 MF668715.1 MF668723.1 MF674521.1 MF681794.1 Zhinu manmiaoyangi2 KM486172.1 KM486243.1 KM486384.1 KM486502.1

Particiones y modelos de evolución implementados.

Análisis RaxML	Gen 12S 18S 28S H3 COI	Modelo GTR+G GTR+G GTR+G GTR+G GTR+G
Mr. Bayes	12S 18S 28S H3 COI	TN93+G K2+G T92+G T92+G+I K2+I

Hipótesis de relaciones filogenéticas del consenso estricto de 57 árboles de 1,135 pasos (CI=0.26, RI=0.69), obtenida al analizar 223 caracteres morfológicos con pesos iguales utilizando como criterio de optimización parsimonia. Las ramas del árbol filogenético muestran los valores de 1,000 réplicas de Bootstrap.