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Introduction.

The concept of a mathematical graph was not yet defined by 1852. Nonethe-
less, it was in this year that, after colouring a map of the counties of England,
a British mathematician (Francis Guthrie) came across what we can now con-
sider the first partition problem in graph theory; the four colour problem.
Francis asked whether or not any map drawn in the plane may have its re-
gions coloured with four colours, in such a way that any two regions with a
common boarder have different colours.

This particular problem remained unsolved for over a hundred years.
When translated to graph theoretical language, the query asks if it is true
that any planar graph admits a proper 4-coloring of its vertices. In general,
partition problems of our interest ask if we can split the set of vertices of a
graph in such a way that certain restrictions over the classes of vertices are
satisfied. The aim of the first chapter is to familiarize the reader with this
kind of problems, by giving several results in this area of graph theory.

The partition problems studied throughout this dissertation are stated in
the converse way to the four colour problem; can we find a characterization
for the graphs that admit a given partition? It is in Chapters two, three and
four that we propose and solve three of this kind of problems.

In a similar way to how bipartite graphs are those graphs with no odd
cycles, in Chapter five we introduce an original way of characterizing classes
of graphs that are defined by admitting a given partition. This technique
can be used in general to find a characterization of any hereditary property.
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Chapter 1

Preliminaries.

Whenever a mathematician starts studying a new mathematical object, the
most basic question will always arise: how can we tell whenever two of these
are essentially the same?

Of course the concept of being “essentially the same” will depend on the
kind of objects we are dealing with. And though as innocent and simple this
query might seem, in most cases it turns out to be a really hard question
to answer. From this simple question, many more will usually arise. For
instance, if two objects are not essentially then we can ask ourselves the
following questions: if we are given objects A and B, can we “fit” object A
into object B? or can we “squeeze” object A onto object B? And so, we will
stumble upon many more of these, and a vast amount of theory developed
around them.

In order to give a simple example, let us go back to our basic algebra
courses. The first object we encounter as mathematicians are sets. For our
own luck as first semester students, these questions will be trivial to answer as
long as we know the cardinality of the sets we are dealing with; given two sets
A and B, we can “fit” set A into set B if there are at most as many elements
in A as in B. Nevertheless a really tough question to answer does come up if
we are curious enough: is there a set that can be fitted into the real numbers,
and that the natural numbers fit in it, but it is not essentially the same to
neither of them? In other words, is there a set A such that |N| < |A| < R?
This is called the continuum hypothesis, and it was interesting enough to be
one of the 23 Hilbert’s problems (a list of unsolved problems by 1900 that
strongly influenced the mathematics of the last century).



2 Preliminaries.

1.1 Definitions and examples.

The mathematical objects we will be dealing with throughout this work will
be simple graphs and digraphs (we will only call them graph and digraph
respectively). A graph G, is an orderer pair (VG, EG) where the elements of
VG are called vertices, and the element of EG are unordered pairs of vertices
called edges. Similar to a graph, a digraph D, is an orderer pair (VD, AD)
where the elements of VG are also called vertices, and the element of EG are
ordered pairs of vertices, a = xy called arcs, where x is the tail of a and y
the head of a.

Once we have the notion of graphs and digraphs, let us move on to a
fundamental definition for this thesis.

Consider two graphs G and H, we will say that there is a homomorphism
from G to H if there is a function ϕ : VG → VH such that for any two vertices
x, y ∈ VG, if xy ∈ EG then ϕ(x)ϕ(y) ∈ EH .

In order to keep notation as simple as possible, we will write the homo-
morphism as ϕ : G → H. If the homomorphism also satisfies that for any
two vertices x, y ∈ VG, if ϕ(x)ϕ(y) ∈ EH then xy ∈ EG, we will call ϕ a
full-homomorphism. If ϕ happens to be a bijective full-homomorphism, we
will say that ϕ is an isomorphism.

In favor of tying up loose ends allow us to say that a graph G fits into
graph H if there is an injective full-homomorphism ϕ : G → H, if ϕ is now
surjective then G squeezes onto H. And finally, if it is an isomorphism then
G and H are “essentially the same”. Having stated that, let us now leave
our early vocabulary aside, and stick to proper mathematical language.

Example 1.1.1. Consider the 5-cycle C5 = ({v0, v1, v2, v3, v4}, {v0v1, v1v2, v2v3
, v3v4, v4v0}), the path on five vertices P5 = ({w0, w1, w2, w3, w4}, {w0w1, w1w2,
w2w3, w3w4}) and the functions,

• ϕ1 : VP5 → VC5 such that ϕ1(wi) = vi,

• ϕ2 : VP5 → VC5 such that ϕ2(wi) = v(i mod 2),

• ϕ3 : VC5 → VC5 such that ϕ3(vi) = v(i+1 mod 5) and

• ϕ4 : VC5 → VC5 such that ϕ4(vi) = vi for i 6= 4 and ϕ4(v4) = v2.

While ϕ1, ϕ2, ϕ3 induce homomorphisms, ϕ4 does not since v0v4 ∈ EC5 but
ϕ4(v0)ϕ4(v4) = v0v2 6∈ EC5 . More over, ϕ1 and ϕ2 are not full-homomorphims
but ϕ3 is, and since it is bijective it is an isomorphism.
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For the following section, will use a quite recent and thorough survey
written by Pavol Hell [13] as guideline for introducing several results and
some problems from which this dissertation thrives.

1.2 M-Partitions.

For a given graph H, the H-homomorphism problem addresses the question
of whether or not a graph G is homomorphic to H.

With motive of illustrating a strong dichotomy amongst homomorphism
problems consider the following problems:

• The bipartition problem: is a given graph G bipartite?

• The 3-colouring problem: can a given graph G be coloured with 3
colours?

At first glimpse neither of them might seem as homomorphism problems.
But in this scenario, since we are dealing with simple graphs, the first prob-
lem is equivalent to the K2-homomorphism problem (2-colouring problem)
whereas the second one is equivalent to the K3-homomorphism problem. The
dichotomy of the k-colouring problem, lies in the computational complexity;
every k-colouring problem belongs to P or to NP-complete, but to no other
class inbetween. For instance, the bipartition problem is polynomial time
solvable, while for 3-colouring problem is NP-complete. In fact, Hell and
Nesetril proved the following theorem in [17].

Theorem 1.2.1. If H is bipartite, then the H-homomorphism problem is
polynomial time solvable. Otherwise the H-homomorphism problem is NP-
complete.

Since graphs can be seen as symmetric digraphs, we may think of a gener-
alized version of Theorem 1.2.1 for digraphs. It turns out that the dichotomy
problem for digraph homomorphisms is equivalent to a conjecture published
over two decades ago. It is called the Feder-Vardi conjecture which was finally
proved independently by Bulatov [2] and Zhuk [8] last year.

By definition, the k-colouring problem is a partition problem. One may
also see the H-homomorphism problem as a partition problem: a graph G
is homomorphic to a graph H if and only if VG admits a partition VG =⋃

v∈VH
Sv such that for any four vertices x, y ∈ VH , u ∈ Sx and w ∈ Sy,
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if uw ∈ EG then xy ∈ EH . In a similar manner one can think of the full-
homomorphism problem as a partition problem. It is clear then that in both
cases, every class Sv of the partition will be an independent set of vertices.

What happens now if we would like to find partitions of vertices where
some of the classes form a clique? For example let us consider the class of
graphs satisfying that their set of vertices can be partitioned into an inde-
pendent set and a clique. If a graph belongs to this class it is called a split
graph. The problem of deciding whether or not a graph is a split graph,
turns out to be linear time solvable [19]. Since we are dealing with loopless
graphs, it is clear that the split graph recognition problem it is different to
any H-homomorphism or full-homomorphism problem. Nonetheless there is
a broader class of problems that include all of them.

Consider an m ×m matrix M over {0, 1, ∗}. A partition S1, S2, . . . , Sm

of VG induces an M -partition of the graph G if for any two vertices v ∈ Si

and u ∈ Sj the following hold true:

• uv ∈ EG if M(i, j) = 1,

• uv 6∈ EG if M(i, j) = 0,

• if M(i, j) = ∗, u and v may or may not be adjacent.

The M -partition problem consists of deciding whether or not a graph
G admits an M -partition. While working with symmetric matrices we can
restrict the problem to graphs with no loss of generality, but if M is not sym-
metric the M -partition problem will be bounded to non symmetric digraphs.

Example 1.2.2. One can easily verify that the problems early stated are
equivalent to the M -partition problem associated to the following matrices:

bipartition problem MB =

(
0 ∗
∗ 0

)
, 3-colouring problem M3 =

0 ∗ ∗
∗ 0 ∗
∗ ∗ 0


and split graph recognition problem MS =

(
0 ∗
∗ 1

)
.

In general the k-colouring problem will be equivalent to the M -partition
problem where M is a k× k matrix with 0’s over the diagonal and ∗’s every-
where else. On the other hand, if MH is the adjacency matrix of the graph H
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then, the MH-partition problem is equivalent to the H-full-homomorphism
problem. And finally, it is not hard to notice that if we replace every 1 in MH

by an ∗ then, theMH partition problem corresponds to theH-homomorphism
problem. As stated before, the M -partition problem wraps a wider class of
problems than the H- homomorphism and full-homomorphism problems. All
we have to do in order to convince ourselves that the previous statement is
true, is to consider a matrix either with a non 0 diagonal, or a matrix with
both 1’s and ∗’s off the diagonal.

It is worth mentioning that in our definition of an M -partition, we do
not require for all parts Si to have at least one element. The version of the
M -partition problem where we want for all parts Si to be non empty is called
the surjective version. Throughout this dissertation we will work with the
general case, so we refer the interested reader to the survey [13] for results
on the surjective version.

In contrast with the surjective version, whenever we have a matrix M
with an asterisk on the diagonal, the M -partition problem becomes trivial;
we can map every vertex to Si where M(i, i) = ∗. Hence we will consider
that our matrices will have diagonal entries over {0, 1}.

In the same way that the H-homomorphism problem belongs to a larger
class of problems (the M -partition problems). The property of admitting an
M -partition belongs to a broader class of properties, hereditary properties.
We say that a graph property P is hereditary, if for any graph G ∈ P , L ∈ P
for every induced subgraph L of G. We will denote that L is a induced
subgraph of G by L < G. If L 6< G we will say that G is L-free. Moreover,
if L 6< G for any L in a set of graphs A, we will say that G is A-free.

Although we are not going any further into hereditary properties, consid-
ering the property PM (the class of graphs that admit an M -partition) as a
hereditary property will give us a valuable tool to attack the problem.

Since a single vertex will always belong to PM for any matrix M then,
it makes sense to define a minimal obstruction to M -partition as a graph G
that does not admit an M -partition but every proper induced subgraph of
G does. Now, the set

FM = {the set of minimal obstructions to M -partition}

characterizes the M -partitionable graphs in the sense that a graph G admits
an M -partition if and only if it is FM -free.

Example 1.2.3. Going back to two of our first examples, and remembering
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our first course in graph theory we know that FMB
= {Cn : n is odd}, while

in [19] they prove that FMS
= {2K2, C4, C5}.

Again, we find a dichotomy that leads to an open problem called The
Characterization Problem:

Problem 1.2.4. Which matrices M have the property that cardinality of the
set of minimal obstructions to M-partition is finite?

By executing a brute force algorithm, one can verify if a graph with k
vertices is an induced subgraph of a graph with n vertices in k2k!

(
n
k

)
time.

Which is polynomial time solvable for fixed k. Hence for any other matrix
M with a finite set of minimal obstructions, the M -partition problem will
be polynomial time solvable. On the contrary, not necessarily all matrices
M such that the M -partition problem is polynomial time solvable will have
a finite set of minimal obstructions. We can draw upon one of our previous
examples to notice this, theMB-partition problem is polynomial time solvable
while there are an infinite amount of minimal obstructions to it. Which leaves
us with our second open problem called The Complexity Problem:

Problem 1.2.5. Which matrices M have the property that the M-partition
problem can be solved in polynomial time?

Most of the research done around the M -partition problem stems from
these problems.

In order to mention some results regarding The Characterization Prob-
lem, let us introduce some notation. Consider a square matrix M over
{0, 1, ∗}, we will denote by kM the amount of 0’s in the main diagonal and
by lM the amount of 1’s. The matrix obtained by replacing the 0’s by 1’s
and viceversa will be indicated by M .

Though the following proposition is a quite obvious observation, it allows
us to assume without loss of generality that lM ≥ kM whenever comes in
hand.

Proposition 1.2.6. A partition of V(G) is an M-partition of G if and only
if it is an M-partition of G

Going back to The Characterization Problem, it is proved in [20] that
for any {0, 1}-matrix M , there is a finite amount of minimal obstructions.
Furthermore, in [21] we can find the following bound for the size of minimal
obstructions.
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Theorem 1.2.7. Let M be a symmetric {0,1}-matrix, then all minimal ob-
structions to M-partition have at most (kM + 1)(lM + 1) vertices, and there
are at most two minimal obstructions with exactly (kM + 1)(lM + 1) vertices.
Moreover, if both kM > 0 and lM > 0 then there is at most one minimal
obstruction with (kM + 1)(lM + 1) vertices.

Actually, this bound cannot be improved.

Example 1.2.8. ([13]) Consider the following matrices,

MbC =

(
0 1
1 0

)
and N =

0 1 1
1 1 0
1 0 1


The MbC-partition problem is known as the biclique recognition problem.

In this case lMbC
= 2 and kMbC

= 0, so (lMbC
+ 1)(kMbC

+ 1) = 3 and there
are exactly two minimal obstructions of this size (K3 and K1 ∪K2). In our
second matrix we have lN = 1 > 0, kN = 2 > 0 and there is exactly one
minimal obstruction of size (lN + 1)(kN + 1) = 6, namely K3,3.

It was later proved in [15] that we do not need a symmetric matrix for
the result to be true.

Theorem 1.2.9. Let M be a {0,1}-matrix, then all digraph minimal obstruc-
tions to M-partition have at most (kM + 1)(lM + 1) vertices, and this bound
is best posible.

Before getting to the last results with respect to The Characterization
Problem allow us to introduce one more definition. We will say that a matrix
M is unfriendly if Mii = Mjj 6= ∗ and Mij = Mji = ∗, for some i and j;
otherwise we say that M is friendly. Going back to our early examples we
have two unfriendly matrices MB and M3, while MbC and MS are friendly.

In [15], they study The Characterization Problem for small matrices, and
we can find the following result.

Theorem 1.2.10. Let M be a symmetric matrix over {0, 1, ∗} of size at
most five. Then there is finite set of minimal obstructions to M if and only
if M is friendly.

A similar result for non symmetric matrices is proved in [16] by finding
the set of minimal obstruction for all 2×2 matrices.
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Proposition 1.2.11. The set of minimal obstructions to a 2×2 matrix M
is infinite if and only if M = MB or M = MB

For the moment these are all the results we are visiting regarding The
Characterization Problem. Concerning The Complexity Problem, we already
have a result for the class of matrices that represent a Homomorphism Prob-
lem in graphs (Theorem 1.2.1). The following, is a similar result for small
matrices proved in [15].

Theorem 1.2.12. Let M be a symmetric {0, 1, ∗}-matrix of size at most
four. If M contains, as a principal submatrix, the pattern of 3-colouring, or
its complement, then the M-partition problem is NP -complete. Otherwise,
the M-partition problem is polynomial time solvable.

As we can see, in order to find a dichotomy in the complexity of the M -
partition problem, and to relax the hypotheses of M representing a graph
homomorphism problem, there is a high prize to pay; the result now needs
forneighbour M to be of size at most four. Which strongly suggests that the
general problem is a really hard problem to tackle. Thus, the tactic now is
to find results in restricted graph classes, for which we refer the interested
reader again to [13].

1.3 Forbidden Subpatterns.

A pattern, G≤ = (V≤, E), is a graph G whose set of vertices is linearly ordered
by ≤. For any xy ∈ E such that x ≤ y, we say that x is a left neighbour
of y and y is a right neighbour of x. In order to distinguish when a set is
linearly ordered we will write 〈 and 〉, instead of { and } respectively. For
instance A = 〈a, b, c〉 and B = 〈b, a, c〉 are the same as sets, but are different
as linearly ordered sets.

We say that a pattern L≤1 occurs in G≤2 if there is an injective order
preserving function ϕ : VL → VG such that it induces a full-homomorphism
ϕ : L → G; otherwise G≤2 is L≤1-free. Consider a set of patterns FP and
a graph G, we say that G admits an FP -free ordering if there is a pattern
G≤ such that for any L< ∈ FP , G≤ if L<-free. Whenever the induced graph
of the edges of a pattern (V≤, E) contains all vertices V , we will denote the
pattern by only the set of edges E. The decision problem that asks whether
or not a graph G admits an FP -free ordering is denoted by ORD(FP ).



1.3 Forbidden Subpatterns. 9

Example 1.3.1. Consider the following patterns,

• G<1 = (〈v0, v1, v2, v3〉, {v0v1, v1v2, v2v3, v0v3}),

• H<2 = (〈v0, v1, v2, v3〉, {v0v1, v1v2, v2v3}), and

• L<3 = (〈v0, v1, v2〉, {v0v1, v1v2}).

Note that G<1 is the ordered cycle on four vertices, while H<2 and L<3 are
the ordered paths on four and three vertices respectively. Whenever the set
of vertices of a pattern are ordered according to the indices of the vertices
(i.e. vi ≤ vj if and only if i ≤ j), we can describe the pattern only by
specifying the adjacencies. For instance, we may also write the patterns in
this example as G<1 = {v0v1, v1v2, v2v3}, H<2 = {v0v1, v1v2, v2v3, v0v3}, and
L<3 = {v0v1, v1v2}. Finally we can see that H<2 is G<1-free since v0v3 6∈
EG<1

,while L<3 does occur in H<2 .

Recall that any hereditary property P is characterized through a set of
minimal obstructions FP . By considering the set O(FP) = {G≤ : G ∈ FP
and ≤ is a linear ordering of VG}, we notice that for any hereditary property
P , there is at least one set FP such that for any graph G, G ∈ P if and
only if G admits an FP -free ordering. A set of forbidden subpatterns for
a property P is any set of patterns FP such that G ∈ P if and only if
G admits an FP -free ordering. It is clear that if P admits a finite set of
minimal obstructions FP then there is a finte set of forbidden subpatterns
for P , namely O(FP). On the contrary, can we find a finite set of forbidden
subpatterns for P when FP is infinite? Though it is an easy question to
answer, let us first convince ourselves that there are hereditary properties
with a non trivial set of forbidden subpatterns. The trivial set being O(FP).

An easy example would be split graphs. In this case FP = {2K2, C4, C5},
so O(FP) would have around 2(4!)+5! (minus symmetries) patterns, nonethe-
less we have the following proposition.

Proposition 1.3.2. Let G be a graph then, G is a split graph if and only if G
admits a FPS-free ordering. Where FPS = {(〈v1, v2, v3〉, {v1v2}), {v1v2, v1v3}}.

Proof. Suppose G = (I,K) is a split graph where I is an independent set,
and K is a clique. Let < be any linear ordering of VG such that, if v ∈ I and
u ∈ K then, v < u. It is not hard to see that G< is FPS-free. On the other
hand, if G≤ is an FPS-free ordering of G, let I = {x ∈ VG : x has no left
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neighbours} and K = VG \ I. It is easy to verify that I is an independent
set. Now, let x, y ∈ K and suppose x ≤ y, since x 6∈ I then x has a left
neighbour z. Since G≤ is FPS-free, we conclude that xy ∈ EG. �

Now that we have convinced ourselves that in fact, there are properties
for which there is a set of forbidden subpatterns different from O(FP), let us
study bipartite graphs.

Proposition 1.3.3. Let G be a graph then, G is bipartite if and only if G
admits a FPB-free ordering. Where FPB = {{v1v2, v2v3}, {v1v2, v1v3, v2v3}}.

Proof. Consider a bipartite graph G = (X, Y ) and any linear ordering, ≤,
of VG such that, if x ∈ X and y ∈ Y then x ≤ y. It is not hard to notice
that G = (X, Y )≤ is {v1v2, v2v3}-free, and since it is bipartite then is triangle
free. Suppose now that H< is FPB-free and with out lost of generality we
can assume that H has no isolated vertices. The bipartition of H will be
X = {v ∈ VH : v is the right end of an edge in <} and Y = {v ∈ VH : v
is the left end of an edge in <}. Since H< is {v1v2, v2v3}-free, proving that
X ∪ Y = VH and that both, X and Y , are independent sets it straight
forward. �

This is our first example of a property with an infinite set of minimal
obstructions but with a finite set of forbidden subpatterns. Furthermore, in
[14], within the proof of another proposition, the next result is proved. Before
mentioning it, we introduce a useful notation used in set theory. Consider a
set A, we will denote by A[k] the subsets of A with k elements.

Proposition 1.3.4. Let G be a graph then, G is k-colourable if and only
if G admits an FPk-free ordering. Where FPk = {H< : H< = {v1v2, v2v3,
. . . , vkvk+1} ∪ E ′, E ′ ⊆ {v1, v2, . . . , vk+1}[2]}.

In fact, one of our problems generalizes Propositions 1.3.2 and 1.3.4 using
a very similar proof to the one in [14] that proves the later proposition.

Allow us to give another example where there is an infinite set of minimal
obstructions and a finite set of forbidden subpatterns.

Example 1.3.5. A chordal graph is one with no induced cycles of length 4
or more. Of course then, the property of being a chordal graph CH has a
minimal obstruction set FCH = {Cn : n ≥ 4}. It is well known that a graph
is chordal if and only if it has a perfect elimination ordering. In other words,
a graph G is chordal if and only if, it admits a {v1v2, v2v3}-free ordering.
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The complement Gc
< of a pattern G<, is the pattern G<. The dual H∗<

of the pattern H< will be the pattern H<∗ , where <∗ is the inverse order of
<. In order to give a list of characterizations by forbidden subpatterns of
different families, let us introduce some notation for eight patterns on three
vertices,

• ch = {v1v2, v1v3},

• cp = {v1v2, v2v3},

• cl = {v1v2, v2v3, v1v3}.

With the previous definitions, the symbols chc, ch∗, chc∗, cpc and clc are clear
now.

Having introduced this notation, we have the following examples from a
theorem found in [12].

Example 1.3.6. The following sets of forbidden supatterns characterize the
graph families on the right.

{ch} Chordal graphs
{cp} Comparability graphs
{ch, cp} Arborescence comparability graphs
{ch, cl} Forests
{ch, chc} Threshold graphs
{ch, cpc} Interval graphs
{ch, chc∗} Split graphs
{cp, cl} Bipartite graphs

A graph G, is a comparability graph if there is an orientation of the edges
AG such that if xy, yz ∈ AG then xz ∈ AG. An arborescence comparability
graph is graph G that admits an orientation of the edges AG such that if
xy, yz ∈ AG then xz ∈ AG, and if xy, zy ∈ AG then xz ∈ EG. A graph G is
a threshold graph is there is a real number S, and for every vertex v ∈ VG
there is a real weight av such that vu ∈ EG if and only if av + au ≥ S. And
finally, an interval graph, is a graph whose set of vertices represent intervals
of the real line, and there is an edge between two vertices if and only if, the
corresponding intervals intersect.

Proving that these sets in fact characterize the corresponding graph classes
is not a hard task, therefore the interested reader may use it as an exercise
to familiarize with characterization through forbidden subpatterns.
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Contrary to the relation between the cardinality of the set of minimal
obstructions of a property P , and the complexity of the decision problem
associated. A finite set of forbidden subpatterns does not guaranty that the
decision problem can be solved in polynomial time (recall that there are n!
possible ordering of a graph on n vertices!). Nonetheless a really neat result
is proven [14], where they define the family Fk = {H< : |VH | = k}.

Proposition 1.3.7. Let P be a property characterized by a set of forbidden
subpatterns FP ⊆ F3, then the decision problem associated to P is polynomial
time solvable.

They actually find a master algorithm that for any graph H, and a set of
forbidden supatterns FP ⊆ F3, returns an FP -free pattern H<, or reports
that such pattern does not exist. Furthermore, they prove that this result
cannot be extended to larger sizes of forbidden patterns, which can be seen
as a corollary to Proposition 1.3.4: for every k ≥ 4 there is a set FP ⊆ Fk

such that ORD(FP) is NP-complete; namely {v1v2, v2v3, . . . , vk−1vk}.



Chapter 2

A small problem on
full-homomorphisms.

This chapter will address the Cn-full-homomorphism and Pn-full-homomorphism
problems. We will do so by finding the corresponding sets of minimal ob-
structions, let us denote them by FCn and FPn respectively. In fact, for any
graph H allow us to denote by FH the set of minimal obstructions to the
H-full-homomorphism problem.

It was not until we found the sets of minimal obstructions, that we also
found a closely related result by Ball, Nesetril and Pultr in [18]. Fortunately
for us, they found the connected minimal obstructions in FCn , and they gave
a recursive formula for the disconnected graphs in FPn . Since we include the
disconnected graphs in FCn , and we find an exact formula for the discon-
nected obstructions in FPn , we consider that our results complete theirs.

A standard way to denote when a graph H is homomorphic to a graph G,
isH → G. Throughout this chapter we are only studying full-homomorphims.
Thus, for a pair of graphs G,H we will write H → G if there is a full-
homomorphism that maps H to G, and H 6→ G otherwise.

2.1 Full-homomorphisms and points determin-

ing graphs.

In [6] Sumner defined a point determining graph as a graph for which non
adjacent vertices have distinct neighbourhoods. We will strongly use this
concept throughout this section, for instance we have the following results.
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Proposition 2.1.1. Let G be a graph, and let H be a point determining
graph. If ϕ : H → G is a full-homomorphism then, ϕ is injective.

Proof. Suppose ϕ in not injective. Consider distinct vertices u, v ∈ VH such
that ϕ(u) = ϕ(v). Let G0 = ϕ[H], since ϕ is a full-homomorphism then,
ϕ−1[NG0(ϕ(x))] = NH(x) for every x ∈ VH . Thus NH(u) = NH(v), and since
ϕ(u) = ϕ(v), uv 6∈ EH . Therefore H is not point determining. �

Given an equivalence relation r on the vertices of graph G. The quotient

graph is defined as G�r = (V ′, E ′), where V ′ = VG�r and [x]r[y]r ∈ E ′ if and
only if there are w ∈ [x], z ∈ [y] such that wz ∈ E.

Consider an arbitrary graph G and let us define the following relation on
VG,

x ∼ y if and only if N(x) = N(y) and xy 6∈ E

It is not hard to notice that ∼ is an equivalence relation. So we can consider

the quotient graph G�∼. It is also clear to see that the equivalence classes

in ∼ are independent sets, and G�∼ is a point determining graph.
Let us now consider a set XG = {x1, x2, . . . , xk} of representatives for the

equivalence classes of ∼, and define the following functions,

φXG
: G�∼ → G

[xi] 7→ xi

ΦG : G→ G�∼
v 7→ [v]∼.

Remark 2.1.2. By doing an exhaustive search over the vertices, one can find
the equivalence classes of the relation ∼ in polynomial time, and therefore,

for given any graph H one can find H�∼ again in polynomial time.

Lemma 2.1.3. Let G be a graph then, φXG
and ΦG are full-homomorphisms.

Once again, the statement is directly inferred from the definition of G�∼
and the relation ∼. And since the composition of full-homomorphisms is a
full homomorphism then, from the previous lemma we obtain the following
result.

Proposition 2.1.4. For any two graphs G,H the following are equivalent:
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• there is a full-homomorphism ϕ1 : H → G,

• there is a full-homomorphism ϕ2 : H�∼ → G,

• there is a full-homomorphism ϕ3 : H → G�∼ and

• there is a full-homomorphism ϕ4 : H�∼ → G�∼.

As a direct corollary we have the following.

Corollary 2.1.5. For any graph G we have the equality, FG = FG�∼

Suppose that H 6→ G and H is not point determining, from Propo-

sition 2.1.4, H�∼ 6→ G. Consider now L = φXH

[H�∼] for any set of

representatives XH . Since H�∼ is point determining and φXH
is a full-

homomorphism, then L is point determining and L < H. Moreover, from

Proposition 2.1.1, φXH
: H�∼ → L is an isomorphism. Hence L 6→ G and,

since H is not point determining L 6= H. So L is a proper induced subgraph
of H that does not admit a full-homomorphism to G. Therefore H is not a
minimal obstruction to the G-full-homomorphism problem. Hence, we have
the following proposition.

Proposition 2.1.6. If a graph H is such that H ∈ FG for any graph G then,
H is point determining.

Propositions 2.1.4 and 2.1.6, and Corollary 2.1.5, give us enough argu-
ments to focus on the full-homomorphisms problem restricted to point de-
termining graphs. Thus, from now on we will work with point determining
graphs, unless stated otherwise.

In [6] the following proposition is proved.

Proposition 2.1.7. For every non trivial point determining graph G there
is a vertex v ∈ VG such that G − v is point determining. Moreover, if G is
connected then, there are two distinct vertices with that property.

Later in [7] the nucleus of a graph is defined as: Go := {v ∈ VG : G− v is
point determining}.

Proposition 2.1.8. Let H be a point determining graph. If H is k-regular,
then Ho = H.
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Proof. Proceeding by contrapositive, suppose that Ho 6= H and set x ∈
VH such that H − x is not point determining. Let r, s ∈ VH−x such that
NH−x(s) = NH−x(r). Since H is point determining, we can assume without
loss of generality that xr ∈ EH and xs /∈ EH . Hence, dH(s) = dH−x(s) =
dH−x(r) = dH(r)− 1. Thus, H is not k-regular. �

Proposition 2.1.9. If H ∈ FG for some graph G. Then, |VH | ≤ |VG|+ 1.

Proof. Recall that the set of minimal obstructions FG consists of point
determining graphs (Proposition 2.1.6). Consider H ∈ FG and x ∈ VH such
that H − x is point determining. Since H is a minimal obstruction, then
there is a full-homomorphism ϕ : H − x → G. From Proposition 2.1.1 ϕ is
injective and therefore |VH−x| ≤ |VG|. �

For a graphG we will use the following notation, M(G) = {H ∈ FG : |VH | =
|VG|+ 1}. In [21] the following proposition is proved.

Proposition 2.1.10. For any graph G, |M(G)| ≤ 2.

Proposition 2.1.11. Let H ∈ M(G) for some graph G. Then there is a
vertex v ∈ VH such that H − x ∼= G.

Proof. Since H is point determining, then Ho is not empty. Consider any
v ∈ Ho and the full-homomorphism ϕ : (H − v) → G. Since ϕ is injective
and |VH−v| = |VG| then ϕ is an isomorphism. �

In order to distinguish a vertex such that H − x ∼= G we will write
H = G � x. In favor of simplifying the following proof, but with no loss of
reliablity, allow us to write H − x = G instead of H − x ∼= G.

Lemma 2.1.12. If G is a k-regular connected graph and k ≥ 2 then,

M(G) ⊆ {H = G�x : NH(x)− y = NH(y)−x, xy ∈ EH , for some y ∈ VG}.

Proof. Consider H = G � x ∈ M(G). Since G is connected, if d(x) > 0
then H is connected. By Proposition 2.1.7, |Ho| ≥ 2 and therefore there is
a vertex y ∈ G ∩Ho. Since H − y is point determining, then H − y ∼= G, so
dH−y(v) = k for any vertex v ∈ VH−y. Also, dG−y(v) = k − 1 if and only if
v ∈ NG(y) = NH−x(y). On the other hand, k− 1 = dH−y(v)− 1 = dG−y(v) if
and only if v ∈ NH−y(x). Hence, v ∈ NH−y(x) if and only if v ∈ NH−x(y) for
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any v ∈ V(H−{x,y}). Thus, NH(x) − y = NH−y(x) = NH−x(y) = NH(y) − x,
and since H is point determining then xy ∈ EH .

Let us now see that in fact d(x) > 0. Since G is k regular, and k ≥ 2,
G has no leafs. Let v ∈ VG and ϕ : H − v → G be a full-homomorphism.
From Proposition 2.1.8, G − v is point determining and therefore ϕ�G−v

is
injective. So let L = ϕ[G − v], then |VL| = |VG| − 1. Since G is connected
then ϕ(x) must have a neighbour in L or belong to L. But L has no isolated
vertices because L ∼= G− v and G has no leafs. Therefore ϕ(x) must have a
neighbour in L. And since ϕ is a full-homomorphism, then x cannot be and
isolated vertex. �

Proposition 2.1.13. Let G be a k-regular connected graph and k ≥ 2 then:

M(G) =

{
{Kn+1} if G ∼= Kn,

∅ otherwise.

Proof. It is not hard to see thatKn+1 ∈M(Kn), hence due to Lemma 2.1.12,
{Kn+1} = M(Kn). Suppose that H ∈ M(G) and G is not complete. By
Lemma 2.1.12, H = G�x and there is a vertex y ∈ VG such that NH(x)−y =
NH(y) − x and xy ∈ EH . Since G is not complete, there is a vertex z ∈ VG
such that zy /∈ EG. Therefore yz, xz /∈ EH , and there is a full-homomorphism
ϕ : H − z → G. Given that G is k-regular, and dH−z(x) = dH−z(y) = k + 1,
we can find two vertices r, s ∈ NH−z(y) such that ϕ(r) = ϕ(s). Hence
NH−z(r) = NH−z(s), so NG−z(r) = NH−z−x(r) = NH−z−x(s) = NG−z(s).
Therefore G−z is not point determining, contradicting the Proposition 2.1.8.
Thus M(G) = ∅. �

Theorem 2.1.14. Let H ∈M(G) for some graph G. Then,

FH = (FG \ {H}) ∪M(H).

Proof. Let us first prove that FG \ {H} ∪M(H) ⊆ FH . By definition of
M(H) we only have to prove that FG\{H} ⊆ FH . If there is a graph L ∈ FG

such that L → H, since H ∈ FG then L = H, otherwise, H would not be
a minimal obstruction. Consider now L1 < L and the full homomorphism
ϕ : L1 → G. From Proposition 2.1.11, G < H and therefore L1 → H. So
each minimal obstruction from G that is not H, is a minimal obstruction of
H. Let us now prove the opposite inclusion. Since H = G � x, then every
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graph A such that A→ G also A→ H. Hence, every minimal obstruction of
H is an obstruction of G. All we have to prove now is that if L ∈ FH \M(H),
and L1 < L then L1 → G. Consider the full-homomorphism ϕ : L1 → H.
Since |VL| ≤ |VH |, then |Vϕ[L1]| < |VH | so ϕ[L1]→ G, and therefore L1 → G.
�

Corollary 2.1.15. Consider two graphs G,G′ such that M(G)∩M(G′) 6= ∅
then G ∼= G′. Equivalently if G 6∼= G′, then M(G) ∩M(G′) = ∅.

Corollary 2.1.16. If H ∈M(G) for some graph G, then

|{L ∈ FH : |VL| = |VH |}| ≤ 1.

Proof. Set S = {L ∈ FH : |VL| = |VH |}. By Theorem 2.1.14, FH = (FG \
{H}) ∪M(H). Hence, S = M(G) \ {H}. So by Proposition 2.1.10 |S| ≤ 1.
�

Recall that the orbit of a vertex y ∈ VH is the set of vertices x ∈ VH
such that there is an automorphism ϕ ∈ A(H) such that ϕ(y) = x, and it
is denoted by o(y). If x ∈ o(y) for some pair of vertices x, y ∈ VH then,
H − x ∼= H − y.

Lemma 2.1.17. Let H be a non complete vertex transitive graph, then FH =
FH−x \ {H} for any vertex x ∈ VH .

Proof. Since H is vertex transitive then H − x ∼= H − y for any pair of
vertices x, y ∈ VH . So L → H − x for any L < H. And since H is point
determining then H 6→ H − x. So H ∈ M(H − x). By Proposition 2.1.8,
M(H) = ∅. Then, Theorem 2.1.14 allows us to conclude the proof. �

Proposition 2.1.18. Let Cn be the cycle graph on n vertices with n ≥ 5
then:

FCn = FPn−1 \ {Cn}.

Proof. All we have to do is notice that, for any vertex x ∈ VCn , Cn − x ∼=
Pn−1 and then conclude using Lemma 2.1.17. �
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2.2 Pn-full-homomorphism.

We now proceed to find the minimal obstructions for the n path. For a
positive integer k ≥ 3, fix Ck := {Cm : 3 ≤ m ≤ k,m 6= 4}. Following the
notation used in [18], let us define the following graphs,

• T0 = ({v0, v1, v2, v3, v4, v5}, {v0v1, v1v2, v2v3, v3v4, v2v5}),

• A = ({v0, v1, v2, v3, v4, v5}, {v0v1, v1v2, v2v3, v3v4, v4v5, v1v4}),

• and B = ({v0, v1, v2, v3, v4, v5}, {v0v1, v1v2, v2v3, v3v4, v4v5, v1v4, v0v5}).

v0 v1 v2 v3 v4

v5

Graph T0

v0 v1 v2

v3v4v5

Graph A

v0 v1 v2

v3v4v5

Graph B

For a path on n vertices we define LF (n) as the set of linear forest that
belongs to FPn . We first find the elements in FPn \ LF (n).

Proposition 2.2.1. The set of minimal obstructions to the Pn-full-homomorphism
is,

FPn = LF (n) ∪ Cn+1 ∪ L(n).

Where L(n) is defined as follows,

• T0 ∈ L(n) if n ≥ 7,

• A ∈ L(n) if n ≥ 6

• and B ∈ L(n) if n ≥ 5.

Proof. It is not hard two notice either of the following,

• FP1 = {P2},

• FP2 = {K3, P1 + P2},
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• FP3 = FP2 (since P3 is not point determining and PD(P3 = P2)),

• FP4 = {P4 + P1, 2P2, K3, C5},

• and if n ≥ 5, LF (n) ∪ Cn+1 ∪ L(n) ⊆ FPn .

Hence, all is left to prove is that FPn ⊆ LF (n) ∪ Cn+1 ∪ L(n) for all n ≥ 5.
Consider a graph H ∈ FPn , if it has no induced cycles of order k ≤ n + 1,
since |VH | ≤ n + 1 (Proposition 2.1.9), H must be a forest. Let T < H
be a connected component of H and consider P = (v0, . . . , vr−1) < T a
path of maximum length in T . If r ∈ {1, 2} then T = P . Suppose that
there is a vertex x ∈ VT \ VP such that v1x ∈ ET . Since P is a path
of maximum length, then x and v0 must both be leaves. Then NH(x) =
NT (x) = {v1} = NT (v0) = NH(v0) which contradicts the fact that H is
point determining (Corollary 2.1.6). Analogously we can prove that vr−2
cannnot have neighbours outside P . Since T is a connected component of
H, if P 6= T , then there must be a vertex x ∈ VT \ VP such that xv2 ∈ ET

and r ≥ 5. It is not hard to see that if n ∈ {5, 6} then 2P2 + P1 ∈ FPn

and 2P2 + P1 < H[{v0, v1, v2, v3, v4, x}]. Thus no such vertices can exist and
then T must be a path. But if n ≥ 7 then H[{v0, v1, v2, v3, v4, x}] ∼= T0,
and because H is a minimal obstruction, then H ∼= T0 or T is a path,
thus H is a linear forest. Consider now the case where H has an induce
cycle. Since H has at most n + 1 vertices, if H has an induced cycle of
order k 6= 4, then H ∈ Cn+1. Suppose then that C4 = (v0, v1, v2, v3) < H.
Since H is point determining, there must be vertices x, y ∈ VH such that
x ∈ N(v1) \ N(v3) and y ∈ N(v2) \ N(v0). Since H is triangle free then
H[{v0, v1, v2, v3, x, y}] ∼= A or H[{v0, v1, v2, v3, x, y}] ∼= B. Hence, if n ≥ 6,
H ∈ L(n). Of course then, n ≥ 5 since |VH | ≥ 6. All is left to prove is that
if n = 5 then H[{v0, v1, v2, v3, x, y}] ∼= B. For which one only has to notice
that P4 + P1 ∈ FP5 and P4 + P1 < A. Therefore FPn ⊆ LF (n)∪ Cn+1 ∪L(n)
for all n ≥ 5. �

In order to complete the characterization of FPn let us study the set
LF (n). Consider a path P = (v0, v1, . . . , vn−1), if m < n and 0 ≤ r we will
denote by P[r,m] the subpath induced by {vr, vr+1, . . . , vm}.
Lemma 2.2.2. Let L =

∑m
k=1 Pnk

be a linear forest then, there is an injective
full-homomorphism

ϕ : L→ Pn if and only if, (m− 1) +
m∑
k=1

nk ≤ n.
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Proof. If m = 1 it is trivial that if (m− 1) +
∑m

k=1 nk = n1 ≤ n, then there
is an injective full-homomorphism ϕ : Pn1 → Pn. Proceeding by induction
suppose the implication holds for m− 1. If

(m− 1) +
m∑
k=1

nk ≤ n then, (m− 1)− 1 +
m−1∑
k=1

nk ≤ n− nk − 1.

Hence, there is an injective full-homomorphism ϕ : L − Pnm → P[0,n−nk−2].
And by mapping Pnm to P[n−nk,n−1] we get an injective full-homomorphism
from L to Pn.

Consider now an injective full-homomorphism ϕ : L → Pn. It is clear
that ϕ[Pnk

] = P[ik,ik+nk−1] for some ik ∈ {0, . . . , n− nk − 1}. Define the sets,

ϕ(Pnk
) =

{
{vi, . . . , vi+nk−1}, if i+ nk − 1 = n,

{vi, . . . , vi+nk
}, else.

Since ϕ is an injective full-homomorphism, then ϕ(Pnk
)∩ϕ(Pnl

) = ∅ for any
k 6= j. Then

n ≥
m∑
k=1

|ϕ(Pnk
)| ≥ (m− 1) +

m∑
k=1

nk.

�

A trained eye is not needed to notice that for a linear forest L =
∑m

k=1 Pnk
,

the variables in (m − 1) +
∑m

k=1 nk are the connected components of L,
m = c(L), and the order of L, |VL| =

∑m
k=1 nk.

Notice that for a linear forest L and x ∈ VL. If x is an isolated vertex
then c(L− x) = c(L)− 1, else c(L) ≤ c(L− x) ≤ c(L) + 1.

Lemma 2.2.3. Suppose L =
∑m

k=1 Pnk
∈ LF (n) for some path Pn. Then,

n+ 1 ≤ (m− 1) +
m∑
k=1

nk = (m− 1) + |VL| ≤ n+ 2.

Moreover, if L has no isolated vertices then, (m− 1) + |VL| = n+ 1.

Proof. By Lemma 2.2.2, if (m − 1) +
∑m

k=1 nk ≤ n then L → Pn. To
prove the second inequality, recall that by Proposition 2.1.7 there is a vertex
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x ∈ VL such that L − x is point determining. Then, there is an injective
full-homomorphism ϕ : L− x→ Pn. Again, by Lemma 2.2.2,

c(L− x)− 1 + |VL| − 1 = c(L− x)− 1 + |VL−x| ≤ n.

From the observation previous to this lemma, c(L) − 1 ≤ c(L − x) then,
c(L)−1+ |VL| ≤ n+2. But if L has no isolated vertices then c(L) ≤ c(L−x)
thus, c(L)− 1 + |VL| ≤ n+ 1. �

Consider a linear forest L =
∑m

k=1 Pnk
, in order to simplify writing, we

define mi = |{k ∈ {1, . . . ,m} : nk = i}|. Note that mi = 0 for all i ≥ m.

Lemma 2.2.4. If L =
∑m

k=1 Pnk
∈ LF (n) for some path Pn then the follow-

ing hold,

• nk ∈ {1, 2, 4} for all k ∈ {1, . . . ,m},

• m1 ≤ 1,

• and if nk = 4 for some k then, m1 = 1.

Proof. Since P3 is not point determining then nk 6= 3 for al k ∈ {1, . . . ,m}.
If Pnk

= (v0, . . . , vnk−1) where nk = 5 or nk ≥ 7 for some k ∈ {1, . . . ,m}
then, L− v2 is point determining and c(L− v2) = c(L) + 1 thus,

|VL−v2|+ c(L− v2)− 1 = |VL| − 1 + (c(L) + 1)− 1 = |VL|+ c(L)− 1.

By Lemma 2.2.3, |VL|+ c(L)−1 ≥ n+ 1, so |VL−v2 |+ (c(L−v2)−1) ≥ n+ 1.
Hence by Lemma 2.2.2 we conclude that L − v2 6→ Pn, contradicting the
fact that L is a minimal obstruction. Before proving that nk 6= 6 for any
k ∈ {1, · · · } we need to prove the third statement of the proposition. Now,
if L is a linear forest with two copies of P1 it would not be point determining
so L 6∈ LF (n) for any n ∈ N.

Suppose that Pnk
= (v0, . . . , vnk−1) with nk ∈ {4, 6} for some k ∈ {1 . . . ,m}

and L ∈ LF (n) for some path Pn. Then, Pnk
−v1 must be point determining.

Thus, Pnj
= P1 for some nj ∈ {1 . . . ,m}; otherwise L− v1 6→ Pn.

And finally, suppose that Pnk
= (v0, . . . , v5). From the last paragraph

we know that Pnj
= P1 for some j ∈ {1, . . . ,m}. Then, from Lemma 2.2.3,

(m − 1) + |VL| = n + 2. With some simple calculations one can see that
c(L − v5) − 1 + |VL−v5| = n + 1, and L − v5 is point determining. From
Lemma 2.2.2 we conclude that L−v5 6→ Pn, which contradicts the fact that L
is a minimal obstruction for the Pn full-homomorphism. Hence nk ∈ {1, 2, 4}
for al k ∈ {1, . . . ,m}. �
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Almost as a Corollary of these technical Lemmas, we get the following
Proposition.

Proposition 2.2.5. Let L =
∑m

k=1 Pnk
be a linear forest then, L ∈ LF (n)

for the path Pn, if and only if, either of the following hold,

• |VL|+m− 1 = n+ 1 and nk = 2 for all k ∈ {1, . . . ,m},

• or, |VL|+m− 1 = n+ 2, nk ∈ {1, 2, 4} with m1 = 1.

Proof. Suppose L =
∑m

k=1 Pnk
∈ LF (n) and |VL| + m − 1 = n + 1. Due

to Lemma 2.2.3, L has no isolated vertices. Using Lemma 2.2.4 we conclude
that nk = 2 for all k ∈ {1, . . . ,m}. By Lemma 2.2.3, if |VL|+m− 1 6= n+ 1
then, |VL|+m− 1 = n+ 2. Then again, by Lemma 2.2.4 nk ∈ {1, 2, 4} with
m1 ≤ 1 and if m4 ≥ 1 then m1 = 1. In order to prove that m1 = 1, all we
have to observe is that there must exist k ∈ {1 . . . ,m} such that nk 6= 2. We
will proceed by contradiction, asume nk = 2 for all k ∈ {1, . . . ,m}. Then,
for all vertices x ∈ VL, c(L−x) = c(L). Hence c(L−x)− 1 + |VL−x| = n+ 1.
By using Lemma 2.2.2 we notice that L − x 6→ Pn, contradicting the fact
that L ∈ LF (n).

In order to prove the remaining implication, let us first suppose that
|VL|+m−1 = n+1 and nk = 2 for all k ∈ {1, . . . ,m}. It is clear that the linear
forest L =

∑m
k=1 Pnk

is then point determining and for any vertex x ∈ VL,
c(L−x) = c(L). Hence c(L−x)− 1 + |VL−x| = 1. By using Lemma 2.2.2 we
conclude that L 6→ Pn but L−x→ Pn for any x ∈ VL therefore, L ∈ LF (n).
We now suppose that |VL| + m − 1 = n + 2, nk ∈ {1, 2, 4} with m1 = 1.
Clearly, L is point determining, and because of Lemma 2.2.2, L 6→ Pn. Now
we have to prove that L− x→ Pn for any x ∈ VL.

Claim 2.2.6. For any vertex x ∈ VL, |VPD(L−x)|+ c(PD(L− x))− 1 ≤ n.

If the claim is true, from Lemma 2.2.2, PD(L− x) → Pn for any vertex
x. Then, by Proposition 2.1.4, we would conclude that L− x→ Pn, and we
would be done.

We have three cases when proving the claim:

• if x is an isolated vertex then, c(L− x) = c(L)− 1 and L− x is point
determining. Hence PD(L−x) ∼= L−x and |VL−x|+ c(L−x)− 1 = n.
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• If x belongs to a copy of P2 or is a cut-vertex of a copy of P4 then,
we would have two isolated vertices in L− x so |VPD(L−x)| ≤ |VL| − 2,
and c(PD(L− x)) ≤ c(L). Therefore |VPD(L−x)|+ c(PD(L− x))− 1 ≤
|VL| − 2 + c(L)− 1 = n.

• Finally, consider the case where x is the initial (or final) vertex of a
copy of P4 and suppose nl = 4. Then, by removing x from Pnl

we
are left with a copy of P3, Pn′l

= (x1, x2, x3). Hence x1 and x3 have
the same neighbourhood; namely {x2}. Thus, x1 and x3 belong to the
same equivalence class in PD(L − x). Therefore |V (PD(L − x))| ≤
|VL| − 2, and since x was not a cut vertex in L, c(L) ≥ c(PD(L)).
Thus, |VPD(L−x)|+ c(PD(L− x))− 1 ≤ |VL| − 2 + c(L)− 1 = n.

�

The following Proposition is basically a rephrasing of Proposition 2.2.5,
but it gives us a better insight of the structure of the linear forests in LF (n).

Proposition 2.2.7. Consider a linear forest L then, L ∈ LF (n) if and only
if either of the following hold,

• L = m2P2 where 3m2 = n+ 2 and m2 ∈ Z+,

• or L = P1+m2P2+m4P4 where m2 and m4 are positive integer solutions
to the equation 3m2 + 5m3 = n+ 2.

Proof. Consider a linear forest L =
∑m

k=1 Pnk
. All we have to do is use

Proposition 2.2.5 and notice that |VL|+(m−1) =
∑m

i=1 imi+
(∑m

i=1mi

)
−1.

�

We have now explicitly found the set of minimal obstruction to the Pn-
full-homomorphism problem, and with Proposition 2.1.18 we also know the
structure of FCn .



Chapter 3

A small problem on
homomorphisms.

Though there is only a subtle difference in the definitions of full-homomorphism
and homomorphism, and every full-homomorphism is a homomorphism, the
corresponding associated decision problems turn out to be completely differ-
ent. For instance, from Proposition 2.1.9 we know that for any graph H, the
H-full-homomrphism problem has a finite amount of minimal obstructions
hence, is polynomial time solvable. While from Proposition 1.2.1 we know
that the H-homomorphism problem is polynomial time solvable when H is
bipartite and NP -complete otherwise. In fact let us start with a proposition
that proves that the H-homomorphism problem is polynomial time solvable
when H is bipartite.

Proposition 3.0.8. Let H be a non-empty bipartite graph then, there is a
homomorphism ϕ : G→ H is and only if G is bipartite.

Proof. Obviously, if G is bipartite, there is a homomorphism ϕ1 : G→ K2.
Since H is not an empty graph, then there is an edge xy ∈ EH . Hence we can
map G to xy. On the other hand, consider a graph G and a homomorphism
ϕ : G→ H. Since H is bipartite, consider the homomorphism ϕb : H → K2.
Then, ϕb ◦ ϕ : G → K2 is a graph homomorphism, so G must be bipartite.
�

Clearly then, if H is a bipartite graph, the H-homomorphism problem is
polynomial time solvable.
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As in chapter one, we could set the task to give a characterization of the
graphs that admit a homomorphism to the n-path, and of those that admit
a homomorphism to the n-cycle. Since the n-path and every even-cycle are
bipartite graphs, the task becomes trivial because of Proposition 3.0.8. So
we are focusing on the odd-cycle homomorphism.

If there was a way of describing the structure of the minimal obstruc-
tions to the C2n+1-homomorphism-problem, we could likely be able to find a
polynomial time algorithm that solves C2n+1-homomorphism-problem. Since
we believe this thesis will not prove that P = NP , the purpose of this
chapter will be to find a finite set of forbidden subpatterns to the C2n+1-
homomorphism, FPC2n+1 .

For a given pattern G< = (VG, EG), we define the following set SP(G<) =
{H< = (VG, E

′) : VG has the same linear order in H< as in G<, and EG ⊆ E ′}.
In other words, SP(G<) is the set of super-patterns of G< whose underlying
graph contain G as a spanning subgraph, and their vertices have the same
ordering.

Example 3.0.9. Consider the ordered path on k vertices Pk<. The charac-
terization of k-partite graphs given in Proposition 1.3.4 can be rewritten as:
let G be a graph then, G is k-colourable (partite) if and only if G admits an
FPk-free ordering. Where FPk = SP(P(k+1)<).

Note that any two orderings of K3 are the same, so we will denote an
ordering of K3 as K3 whenever there ir no ambiguity. Also, since the 3-cycle
is K3, FPC3 = SP(P4<). So we will be working with the odd cycles on more
than four vertices (we will not repeat this assumption unless needed).

For an odd cycle C2n+1 = (v0, . . . , v2n) we define the alternating ordering
of C2n+1, as:

〈vn, vn+2, vn−2, vn+4, vn−4, . . . , v2n−1, v1, v0, v2n, v2, v2n−2, v4, . . . , vn−1, vn+1〉

if n ≡ 1 (mod 2), and

〈vn+1, vn−1, vn+3, vn−3, . . . , v2n−1, v1, v0, v2n, v2, v2n−2, v4, . . . , vn−2, vn+2, vn〉

if n ≡ 0 (mod 2). In both cases we will denote it by C2m+1,al.

With the previous pattern definition, we define S(2n+1) = {C2m+1,al : 1 ≤
m < n}, the set of alternating orderings of odd cycles on at most 2n − 1
vertices. And allow us to define one more set, for n ≥ 2 we define PL(2n +
1) = {P< : P = Pl = (v1, v2, . . . vl), 6 ≤ l < 2n + 1, v1 < v2 < v3 and
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vl−2 < vl−1 < vl}. So PL(2n+ 1) is a set of patterns whose underlying graph
is a path on l vertices, where 6 ≤ l ≤ 2n + 1, and the three inicial vertices
are ordered from smaller to larger index, so as the last three vertices of the
path.

v0v1

v2

v3 v4

v5

v6≤ ≤

≤
≤

≤
≤

S(7) = 〈v3, v5, v1, v0, v6, v2, v4〉.

v0v1

v2

v3

v4v2n−3

v2n−2

v2n−1

v2n≤ ≤

≤
≤

≤
...

≤
≤

≤

...

The “top end” of S(2n+ 1).

v1 ≤ v2 ≤ v3

vl−2 ≤ vl−1 ≤ vl

A general element P< ∈ PL(2n+ 1).

Proposition 3.0.10. For any n ≥ 2, a graph G admits a C2n+1-homomorphism
if and only if it admits FPC2n+1-free ordering. Where

FPC2n+1 = S(2n+ 1) ∪ PL(2n+ 1) ∪ SP(P4<) ∪ {K3}.

Proof. We will assume without loss of generality that the graphs considered
do not have isolated vertices.

Let ϕ : G → C2n+1 be a graph homomorphism. Consider the ordering
of VG obtained by choosing an arbitrary linear order for the vertices inside
each ϕ−1(vi), i ∈ {0, . . . , 2n}, and for vertices with different images, x and
y, x ≤ y if and only if ϕ(x) ≤ ϕ(y) in the alternating ordering of C2n+1
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(C2n+1,al). Let us name this ordering G≤. Using the fact that the partition
of VG induced by ϕ is cyclical, it becomes trivial to notice that G≤ must then
be S(2n + 1)-free. By noticing that the longest ordered path in C2n+1,al is
of length three, and every ϕ−1(vi), i ∈ {0, . . . , 2n} is an independent set, we
conclude that G≤ is SP(P4<)-free. And finally, combining the fact that ϕ
induces a cyclical partition, and that the longest ordered path in C2n+1,al is
of length three, it is not hard to observe that G≤ is also a PL(2n + 1)-free
ordering.

Now, suppose there is an ordering G< = 〈v1, . . . , vn〉 of the vertices in
G without seeing any forbidden pattern in FC2n+1 . Let us now define the
partition that will induce a C2n+1-homomorphism.

• Let X0 be the set of vertices vj, 1 ≤ j ≤ n that have left and right
neighbours;

• let X1 (Y1) be the set of vertices vj, 1 ≤ j ≤ n having a right (left)
neighbour in X0;

• let Xi+1 = {v ∈ VG \
(⋃i

j=1Xj

)
: v has a right neighbour in Yi};

• let Yi+1 = {v ∈ VG \
(⋃i

j=1 Yj
)

: v has a left neighbour in Xi};

• and let Xn (Yn) be the set of vertices vl, 1 ≤ j ≤ n, in VG \
(⋃n−1

j=1 Xj

)
(in VG \

(⋃n−1
j=1 Yj

)
) having no right (left) neighbours.

If it happened that X0 = ∅, G would be SP(P3<)-free. Hence, by Propo-
sition 1.3.3 we could map G to any edge of C2n+1. So we will assume that
X0 is not an empty set.

We affirm that (X0, X1, Y2, X3, . . . , Xn, Yn, Xn−1, Yn−2, . . . , Y1) is a cycli-
cal partition of G, and hence, it induces a homomorphism to the 2n + 1-
cycle. Note that if n ≡ 0(mod 2), the partition would look as follows,
(X0, X1, Y2, X3, . . . , Yn, Xn, Yn−1, Xn−2, . . . , Y1). Since both cases are anal-
ogous, we will only work with the first case, which happens if n ≡ 1(mod 2)
(fact which is never used throughout the proof).

We start by proving that (X0, X1, Y2, X3, . . . , Xn, Yn, Xn−1, Yn−2, . . . , Y1)
is indeed a partition of the vertex set of G. Since all the vertices with left
and right neighbours belong to X0, every vertex not in X0 fails to have either
left neighbours or right neighbours, and hence,

⋃n
i=1(Xi ∪ Yi) = V (G). By

definition of sets Xi’s and Yi’s, it is not hard to verify that Xi ∩ Xj = ∅,
Xi ∩ Yj = ∅, X0 ∩Xj = ∅ and X0 ∩ Yj = ∅ for each i, j, 1 ≤ i < j ≤ n.
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Since every vertex in Xi (Yi), 1 ≤ i ≤ n have no left (right) neighbours
they are all independent sets. Assume now that X0 is not an independent
set, then there are two vertices vi, vj ∈ X0 such that vivj ∈ EG. Suppose
with no loss of generality that vi is a left neighbour of vj, and consider
the vertices vk, vl that are a left neighbour of vi and a right neighbour of
vj, respectively. This leads to a contradiction since the induced subpattern
by (vk, vi, vj, vl) is an element of SP (P4<), and G< is SP (P4<)-free. Thus,
(X0, X1, Y2, X3, . . . , Xn, Yn, Xn−1, Yn−2, . . . , Y1) is a partition of VG into inde-
pendent sets.

We now want to verify the desired non-adjacencies. For the same reason
that Xi (Yi), 1 ≤ i ≤ n are independent sets, there cannot be an edge between
any two sets Xi and Xj (Yi and Yj), 1 ≤ i, j ≤ n. Actually, by definition of
the Xi’s and Yi’s there can only be edges between the following sets: X1 or
Y1 and X0; Yi and Xi ,Xi+1 or Xi−1, 1 ≤ i ≤ n. In order to conclude our
proof we only have to verify that there will be no edges between sets Xi and
Yi for any 1 ≤ i < n. Suppose for a contradiction that xy ∈ EG with x ∈ Xi

and y ∈ Yi with 1 ≤ i < n. By construction of each of the Xi’s and Yi’s, we
can find two internally disjoint paths Tx and Ty such that Tx is an xx0-path
and Ty is a yy0-path, where x0, y0 ∈ X0. Let zy be a left neighbour of y0 and
zx a right neighbour of x0, and y1 (x1) be the right (left) neighbour of y0 (x0)
in Ty (Tx). We now have two cases:

• if {zy, y0, y1} ∩ {x1, x0, zx} = ∅, consider the subpattern induced by
zyy0TyyxTxx0zx, Q2i+1. Since Q2i+1 is an ordering of the path on 2i+1
vertices with 6 ≤ 2i + 1 < 2n + 1, and zy < y0 < y1 and x1 < x0 < zx
then Q2i+1 ∈ PL(2n+ 1). Which leads to a contradiction because G<

is PL(2n+ 1)-free.

• On the other hand, if {zy, y0, y1}∩{x1, x0, zx} 6= ∅ by joining Tx and Ty
through a common vertex in {zy, y0, y1} and {x1, x0, zx}, and the edge
xy we assumed existed, we would have either an alternating ordering
of C2i+1 or K3. In both cases we end up with a contradiction.

Therefore, (X0, X1, Y2, X3, . . . , Xn, Yn, Xn−1, Yn−2, . . . , Y1) is a cyclic parti-
tion of G.

�
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Chapter 4

A small problem on
M-partitions.

A natural question that arises when studying the M -partition problem is, if
we know some information about the N -partition problem, for some princi-
pal submatrix N of M , what can we tell about the M -partition problem?
For example, we know that if N is the matrix associated to the 3-colouring
problem, or its complement, then the N -partition problem is NP -complete.
Theorem 1.2.12 tells us that if M is a symmetric {0, 1, ∗}-matrix of size at
most four and contains N as a principal submatrix then, the M -partition
problem is also NP -complete.

It would be ideal to figure out a way of finding the elements in FM , if we
knew those in FN for all, or some, principal submatrices N of M (distinct to
M). Or the same question but now asking for a set of forbidden subpatterns.
The main result of this chapter is to answer the last question in a particular
case.

Consider two square matrices M,N over {0, 1, ∗}. We define the ∗-sum
of M and N as,

M ∗N :=

[
M ∗
∗ N

]
Our result constructs a set of forbidden subpatterns for the (M ∗ N)-

partition problem, given the forbidden patterns of the M - and N -partition
problem.

Example 4.0.11. If Mk is the matrix of the k-colouring problem then, Mk ∗
Ml = Ml+k. This is why we say our result generalizes Hell’s, Mohar’s and
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Rafies’s observation made in [14].

In order to gain a different perspective on the (M ∗N)-partition problem
allow us to introduce some definitions. Consider hereditary properties P and
Q, a (P ,Q)-colouring of a graph G, is partition of VG = (A,B) such that
G[A] ∈ P and G[B] ∈ Q. We say that a graph G belongs to the class P ◦ Q
if G is (P ,Q)-colourable.

Remark 4.0.12. Recall that the class of graphs that admit an M -partition
is denoted by PM . A graph admits an (M ∗ N)-partition if and only if is
(PM ,PN)-colourable.

The complexity of the (P ,Q)-colouring problem has been well studied.
For example, Kratochv́ıl and Schiermeyer conjectured in [9] that if P and Q
are also additive graph properties, recognizing graphs in P ◦ Q is NP -hard,
which was later proved by Farrugia in [3]. Other particular cases have been
studied in [11], [4] and [1].

Let us now proceed to our work. In order to simplify notation, whenever
we have a graph G = (V,E) and a subset of vertices U ⊆ V we will write
indifferently (U,E) or (U,EG[U ]). Same notation will be used when talking
about ordered graphs. Throughout this chapter the set of vertices of any
pattern is ordered by the indices of its vertices; for any vi, vj ∈ V vi ≤ vj if
and only if i ≤ j.

Proposition 4.0.13. Let M and N be two square matrices over {0, 1, ∗}
with forbidden subpatterns FPM and FPN respectively. Then, the set

FP = {({v1, v2, . . . , vr, vr+1, . . . , vs}, E) : ({v1, v2, . . . , vr}, E) ∈ FPM and
({vr, vr+1, . . . , vs}, E) ∈ FPN}

characterizes the ∗-sum of M and N by forbidden subpatterns.

Proof. Let us first consider a graph G that admits an (M ∗ N)-partition.
It is clear to see that VG = VM ∪ VN where VM ∩ VN = ∅ and G[VM ], G[VN ]
admit an M and N partition respectively. Consider now the ordering of G,
G≤ = ({v1, v2, . . . , vm, vm+1, . . . , vn}, E) where ({v1, v2, . . . , vm)}, E) is FPM -
free and ({vm, vm+1, . . . , vn}, E) is FPN -free. We can suppose that there
is a subpattern, H≤ = ({u1, u2, . . . , ur, ur+1, . . . , us}, E) of G≤ such that
({u1, u2, . . . , ur}, E) ∈ FPM , otherwise G≤ would already be FP -free and
there would be nothing left to prove. Since ({v1, v2, . . . , vm}, E) is FPM -free
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then we have that ur ≥ vm so ({ur, ur+1, . . . , us}, E) ⊆ ({vm, vm+1, . . . , vn}, E)
which is FPN -free, allowing us to conclude that H≤ 6∈ FP . Therefore G≤ is
FP -free.

Let G≤ = ({v1, v2, . . . , vn}, E) be an ordered FP -free graph. We have
to find a partition (VM , VN) of VG such that G[VM ] and G[VN ] admit an M
and N partition respectively. In order to do this, let us define the following
assignment for an ordered graph H≤ = ({w1, w2, . . . , wl}, D),

m(H≤) = max{k ∈ N : ({w1, . . . , wk}, D) is FPM − free}.

Using this function, we propose the following recursive definition:

• G0 = G≤, U0 = {v1, . . . , vm(G0)} and W0 = {vm(G0)+1};

• Gl+1 = G≤−{Wl}, Ul+1 = {v1, . . . , vm(Gl+1)} andWl+1 = Wl∪{vm(Gl+1+1)}.

Suppose that the recursion stops at time t. By definition of the assignment
m, it is not hard to notice the Ut is FPM -free. Let us proceed by contradiction
and suppose that Wt is not FPN -free, and let {u1, u2, . . . , ul} be a subset of
Wt such that ({u1, u2, . . . , ul}, E) ∈ FPN . Let a be the minimum integer such
that u1 ∈ Wa. By definition of Wa, we can find a subset {w1, . . . , wk} ⊆ Ua

that satisfies that ({w1, . . . , wk, u1}, E) ∈ FPM . But then, by definition of
FP ,

({w1, . . . , wk, u1, u2, . . . , ul}, E) ∈ FP.

But ({w1, . . . , wk, u1, u2, . . . , ul}, E) is a subpattern of G≤, which leads to a
contradiction since G≤ is FP -free. �

Exactly the same proof can be made for finding a set of forbidden sub-
patterns for the (P ,Q)-colouring problem if we know the ones for P and Q,
we have the following theorem.

Theorem 4.0.14. Let P and Q be two properties characterized through sets
of forbidden subpatterns FPP and FPQ respectively. Then, the set

FP = {({v1, v2, . . . , vr, vr+1, . . . , vs}, E) : ({v1, v2, . . . , vr}, E) ∈ FPP and
({vr, vr+1, . . . , vs}, E) ∈ FPQ}

characterizes the (P ,Q)-colouring problem by forbidden subpatterns.
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Chapter 5

A little extra.

The idea of characterizing hereditary properties through sets of minimal ob-
structions detaches from the definition of hereditary property itself. Further-
more, with a small observation one can notice that hereditary properties can
be characterized through sets of forbidden subpatterns. In the same way that
this happens, we introduce a new way of characterizing hereditary properties.

5.1 First definitions and observations.

We say that GO is an orientation of the graph G, if GO is an oriented graph
(digraph) whose underlying graph is G. If an orientation HO is an induced
oriented subgraph of another oriented graph GO, we say that HO occurs in
GO; otherwise GO is HO-free. We can naturally extend the later definition
to sets of oriented graphs, consider a set of digraphs H, we say a graph G
admits an H-free orientation if there is an orientation GO such that HO does
not occur in GO for any HO ∈ H.

Let P be hereditary property. A set of oriented graphs FOP such that
for any graph G, G ∈ P if and only if G admits an FOP-free orientation,
will be called a set of forbidden oriented graphs for P .

Example 5.1.1. Let P be a hereditary, property and consider the set

TO(P) = {HO : HO an orientation of H,H ∈ FP}.

It is clear then that for any graph G, G ∈ P is and only if, G admits an
TO(P)-free orientation. This set is called the trivial set of forbidden oriented
graphs for P .
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As in the case of forbidden subpatterns, if P is characterized with a finite
set of minimal obstructions then, there is at least one finite set of forbidden
oriented graphs for P , namely TO(P). The following Propositions give two
examples of properties with an infinite set of minimal obstructions, but a
finite set of forbidden oriented graphs.

Proposition 5.1.2. The set FO = {
−→
P3} ∪ o(K3), where

−→
P3 is the directed

path on 3 vertices, and o(K3) is the set of the two possible oriented tourna-
ments with 3 vertices, characterizes PB through forbidden oriented graphs.

Proof. If G = (X, Y ) is a bipartite graph, turn all the edges to an arc with
tail in X and head in Y . It is easy to verify that the obtained orientation is
FO-free. Now, suppose that there is an FO-free orientation HO for a graph
H. Suppose that H has no isolated vertices, and set X = {v ∈ VH : there
is a vertex u ∈ VH such that vu ∈ A(HO)} and Y = {v ∈ VH : there is a
vertex u ∈ VH such that uv ∈ A(HO)}. It is clear to see that X and Y are
independent sets. �

If we now take a look at FO = {P 0
3 }∪ o(K3), where P 0

3 is the orientation
of P3 where the middle vertex has indegree 2, we have the following result.

Proposition 5.1.3. Let Pu be the class of triangle-free graphs where each
connected component has at most one cycle then, FO = {P 0

3 } ∪ o(K3) is a
set of forbidden oriented graphs for Pu.

Proof. Without loss of generality, we can assume that G is a connected
graph. For any G ∈ Pu and any orientation GO of G, GO is o(K3)-free. If G
is a cycle, it suffices to orient it in a cyclic way. If G is a tree, we can set an
arbitrary vertex v to root the tree on v, and orient the edges from father to
son. If G is neither a cycle nor a tree, we can orient the only cycle C in G in
a cyclic way. Then we can contract C to a single vertex; since G is unicyclic,
the resulting graph G/C is a tree. Root G/C in the vertex corresponding
to C and orient the edges from father to son. Since EG = EC ∪ EG/C , the
combination of the previous orientations induce an orientation of G, which
we can easily verify is a P 0

3 -free orientation of G. Consider now a graph G
that does not belong to Pu.

Suppose that G is a connected graph with at least two cycles. Consider
any orientation GO of G, it suffices to prove that GO has a vertex that is
the head of two arcs and then GO cannot be FO-free. Let C be a cycle in
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G. Then C must be oriented in a cyclic way, otherwise GO is not P 0
3 -free.

If there is a path T between two vertices x, y ∈ VC , we can assume without
loss of generality that T is internally disjoint to C. Each x and y are either
the head or the tail of one and only arc of T . If they were both the tail,
then some vertex z in T must be the head of two arc which would lead to a
contradiction. Hence, we assume that y is the head of its corresponding arc
in T . Since T has no internal vertex in C then y is the head of two arcs, one
in C and one in T , hence GO is not P 0

3 -free. On the other hand, if C has no
internal paths, there must be another cycle C ′. If |VC ∩ VC′ | > 1 we can find
a cycle with an internal path. If |VC ∩ VC′| = 1 then, since C ′ must also be
oriented in a cyclic way, the intersecting vertex x must then be the head of
two arcs. Finally, suppose VC ∩ VC′ = ∅, in the same way as previous cases
C ′ must be oriented in a cyclic way, and since G is connected, there must be
a CC ′-path T . If T is not oriented in a directed way, then there is a vertex
x ∈ VT that is a head of two arcs. Suppose then that T is oriented from C
to C ′, then the meeting vertex of T and C ′ is the head of two arcs. �

We now know the relation between sets of forbidden subpatterns and
minimal obstructions, and sets of forbidden oriented graphs and minimal
obstructions. But what about the relation between sets of forbidden subpat-
terns of forbidden oriented graphs;

• is there a property P that admits a finite set of forbidden subpatterns
but no finite set of finite forbidden oriented graphs?

• Is there a property P that admits a finite set of forbidden oriented
graphs but no finite set of finite subpatterns?

Unfortunately we have not been able to answer the second question. In fact,
we do not know if there is a property that does not admit a characterization
by finite set of forbidden subpatterns. On the other hand, the remainder of
the chapter is dedicated to answer the first query. Two very important tools
we use are Symbolic Dynamics and Königs infinite tree Lemma.

5.2 Symbolic Dynamics and Königs infinite

tree Lemma.

Symbolic Dynamics object of study are Shift Spaces. Though these spaces
result to be really interesting structures to study, we will only mention basic
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definitions and results that are needed for this dissertation. We refer the
interested reader to [10] for a deeper study of Shift Spaces.

In this context, an alphabet is a finite set A whose elements are called
symbols (equivalently letters). The full A-shift is the set

AZ = {x : x : Z→ A}.

A more intuitive way to think of the elements in AZ is to consider them as
bi-infinite sequences of symbols in A; each of these elements is called a point
of the full shift. A block (or word) over A is a finite sequence of symbols from
A. The length of a word u is the number of symbols it contains. Thus, we
denote by An the set of words over A of length n. The set of all blocks over
A is A∗ =

⋃
n≥0An, where the only word with no symbols is the empty word

denoted by ε. A subword of a word u = u1 . . . uk, is a block v = ulul+1 . . . uj
where 1 ≤ l ≤ j ≤ k.

If x is a point in AZ, we denote the coordinates of x from i to j by
x[i,j] = x(i) . . . x(j), where i ≤ j. This definition is extended to denote by
x[i,∞] = x(i)x(i+ 1) . . . , the right-infinite sequence of x from position i.

We now have an idea of where the word “Symbolic” in Symbolic Dynamics
comes from, let us now take a look at the Dynamics in this shift spaces.

The shift map σ on the full shift AZ is the function,

σ : AZ → AZ

σ(y)i = yi−1.

The composition of σ with itself k times is denoted by σk. A periodic
point x ∈ AZ is a point such that σk(x) = x for some k ∈ N. Is such k exists,
we say that x has period k. If x fails to be periodic, we say that x is an
aperiodic point.

Example 5.2.1. Consider the full shift over the alphabet {−1, 1}. The
constant functions xi = 1 and yi = −1 for all i ∈ Z are periodic points
of period one. Points with such period are called fixed points. The point
zi = −1 if i is odd and zi = 1 otherwise, is a point of period two. The point
wi = −1 for all i 6= 0 and w0 = 1 is an aperiodic point.

Anyone who has studied dynamical systems, knows that in most cases dy-
namic occurs in a space with some structure; a topological space, an algebraic
structure, a vector space. This will not be the exception.
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Consider two points x, y in the full shift. Define n(x, y) = min{k ∈
N : xk 6= yk or x−k 6= y−k}, and

d(x, y) =
1

2n(x,y)
.

In Chapter 6 of [10] following results are proven.

Theorem 5.2.2. Let AZ be a full shift then, the following are true,

• (AZ, d) is a compact metric space,

• the shift σ is a continuous function,

• the neighbourhood of a point x in the topology induced by d, have the
structure V (x, k) = {y ∈ AZ : y[−k,k] = x[−k,k]}

From a heuristically point of view, the metric d tells us that two points
of AZ are close if they agree on a large window around 0.

A shift space X, is a closed metric subspace of AZ such that σ[X] ⊆ X.
On the other hand, consider a set of blocks F and consider the set XF =
{x ∈ AZ : is b if a subword of x, b 6∈ F}. Again, in Chapter 6 of [10] the
following Theorem is proven.

Theorem 5.2.3. For every shift space X ⊆ AZ there is a set of words F
such that X = XF .

This Theorem is of special interest to us since it gives a combinatorial
perspective to a topologically defined object. And given this Theorem we
can define a Shift of Finite Type (SFT) as a shift space X ⊆ AZ such that
X = XF for some finite set F .

Consider two shift spaces (X, σ1) and (Y, σ2). An homomorphism between
X and Y , is a continuous function φ : X → Y such that φ(σ1(x)) = σ2(φ(x)).
If φ is a surjective function, we say that X is a factor.

A sofic shift, is a shift X such that there is a factor φY → X, where Y is
a SFT. Obviously every SFT is a sofic shift.

One can also find combinatorial characterizations of SFT, sofic shifts and
shift homomorphisims in [10]. For now, let us give two more (and final)
results for shift spaces (also proven in [10]).

Proposition 5.2.4. Let {Xi}i∈S be a family of sofic shifts. If S is a finite
set then the shifts

⋃
i∈S

Xi and
⋂

i∈S
Xi are both sofic shifts.
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Proposition 5.2.5. The set of periodic points of a sofic shift X, is dense in
X.

Finally, we mention Königs infinite tree Lemma which is proven in [5].

Theorem 5.2.6 (Königs infinite tree Lemma). If a denumerable point set
of an infinite graph splits into denumerably many sets E1, E2, . . . which are
finite and non-empty and such that every point of En+1, n ∈ N, is joined
with a point of En by an edge, then there is, in the graph, an infinite path
a1, a2, . . . that contains from each set En a point an. Note that it is not
necessary that the sets En be disjoint.

5.3 Main result.

Remark 5.3.1. Consider a hereditary property P with set of minimal ob-
structions FP . If FO characterizes P through forbidden oriented graphs
then, for any D ∈ FO, there is a graph H ∈ FP such that the underlying
graph of D is an induced subgraph of H.

Let QO = ({v1, v2, . . . , vn}, A) be an orientation of the path Pn. If
there are two positive integers, k and l, such that QO[{vk−l, . . . , vk}] ∼=
QO[{vk, . . . , vk+l}], we will say that the orientation QO contains a square
of the oriented path QO[{vk−l, . . . , vk}]. If no such integers exists, we say
that QO is square-free for any subpath.

Lemma 5.3.2. Let P be a hereditary property such that FP = {Cn : n ∈ NP}
where NP ⊆ N. Consider a finite set of forbidden oriented graphs FO for P.
If max{m ∈ N : there is an orientation of Cm in FO} = k0 ∈ N then, any
FO-free orientation of a path Q is square-free for any subpath of size l, for
l ∈ {m ∈ N : m > k0 + 1,m− 1 ∈ NP}.

Proof. Let us proceed by contradiction. Consider an FO-free orientation,
QO, of the path on n vertices. Suppose now that QO[{vk−l+1, . . . , vk}] ∼=
QO[{vk, . . . , vk+l−1}] for some l > k0 + 1 and l − 1 ∈ NP . Let CO =
(u0, . . . , ul−1 = u0) be the cycle on l − 1 vertices with the following orienta-
tion: uiui+1 ∈ A(CO) if vk+ivk+i+1 ∈ A(QO) otherwise, ui+1ui ∈ A(CO) for
0 ≤ i ≤ l−2. Since l−1 ∈ NP then Cl−1 6∈ P thus, CO is not FO-free. Now,
l > k0+1 so l−1 > k0 and then CO 6∈ FO. Hence there is a proper suborienta-
tion HO < CO such that HO ∈ FO. Consider a vertex u−i ∈ V (CO) \V (HO)
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where 0 ≤ i ≤ l − 2, and the subpath R = CO[{u−i+1, . . . , u−i+(l−2)}] where
indices are taken mod(l−1). Clearly HO < R. Finally, consider the function

ϕ : V (R)→ V (QO)

ϕ(u−i+j) = vk−i+j for all 1 ≤ j ≤ l − 2.

It is not hard to notice that ϕ : VR → VQO
is a well defined injective function

with ϕ[V (R)] ⊆ V (QO)[{vk−l+1, . . . , vk+l−1}]. Moreover, sinceQO[{vk−l+1, . . . ,
vk}] ∼= QO[{vk, . . . , vk+l−1}] and because of the construction of CO, ϕ induces
an injective full-homomorphism of oriented graphs ϕ : R → QO. Hence
HO
∼= ϕ[HO] < QO therefore, QO is not FO-free. �

Consider the set of minimal obstructions FP for the hereditary property
P , we will say that a graphG contains an overlap of FP if there is a graphH ∈
FP such that for every connected component Hi of H, Hi < G. Otherwise,
we will say that G is FP-overlap-free.

Remark 5.3.3. Note that if G is FP-overlap-free then G is FP-free, and if
FP consists of connected graphs, then G is FP-overlap-free if and only if G
is FP-free.

Suppose now that FO characterizes P through forbidden oriented graphs.
We say that a graph G admits an FO-overlap-free orientation if there is an
orientation GO such that GO is FO-overlap-free as a digraph.

Proposition 5.3.4. Let P be a hereditary property closed under disjoint
unions of graphs. Then, the following hold:

• FP consists of connected graphs,

• G is FP-free if and only if it is FP-overlap-free,

• G admits an FO free orientation if and only if, G admits an FO-
overlap free orientation.

Proof. We will prove the first statement by contrapositive. Assume that
there is a disconnected graph H = (H1, H2) ∈ FP , where there are no edges
between H1 and H2. Then H1,H2 ∈ P but H1 + H2 6∈ P . Hence, by
Remark 5.3.3, G is FP-free if and only if, it is FP-overlap-free. Let us prove
the contrapositive of the last statement. Since every oriented graph D, free
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of a connected oriented graph D′, D is D′ overlap-free, we may assume that
FO consists of disconnected oriented graphs. Suppose there is a graph G
that admits an FO-free orientation, but not an FO-overlap-free orientation.
Clearly then, G ∈ P . Let FOG = {LO ∈ FO : |V (LO)| ≤ |V (G)|}, k =
|FOG|, and l = max{n ∈ N : there is an oriented graph LO ∈ FOG with
n connected components}. Consider the graph H = Glk =

∑lk
i=1G, and

any orientation of it, HO. Then, every connected component of HO, is an
orientation of G. Thus, every connected component of HO contains and
FOG-overlap. Think of the elements in FOG as the pigeonholes, and of each
connected component of HO as a pigeon. Hence, there must be an element
LO ∈ FOG that occurs as an overlap in l orientated copies of G in HO.
Since LO has at most l connected components, then LO occurs in HO. Thus,
H 6∈ P . �

Before proceeding to further results allow us to introduce some notation
and definitions. Let us denote by Q and QO the set of non trivial paths and
orientations of non trivial paths respectively. Consider now the following
function,

c : QO → {−1, 1}∗

QO = ({v1, . . . , vm}, A) 7→ a1a2 . . . am−1

where ai =

{
1 if vivi+1 ∈ A
−1 if vi+1vi ∈ A.

In order to simplify notation, whenever there is no ambiguity, we will
drop the O subscript notation that differentiates oriented from non oriented
graphs.

Consider l =
∑m

k=1Q
k an orientation of a linear forest and let us define

the shift space

Xl =
m⋃
k=1

Xc(Qk), where Xc(Qk) ⊆ {−1, 1}Z is the c(Qk)-free subshift.

Suppose that P is a hereditary property for which FP is a family of cycles.
Then, by Remark 5.3.1, if FO defines P through forbidden oriented graphs
we can assume that FO = LF ∪ C where LF is a family of oriented linear
forests, and the elements of C are oriented cycles. Thus, for such a property,
let us define the subshift XP =

⋂
l∈LF Xl.
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Lemma 5.3.5. Let P be a hereditary property whose minimal obstructions
are cycles. If there is a finite set of forbidden oriented graphs FO = LF ∪C
that characterizes P then, XP is a non empty sofic shift.

Proof. For each l ∈ LF the shift Xl is a finite union of shifts of finite type
(SFT), since SFT are sofic shifts, then by Proposition 5.2.4, each Xl is a sofic
shift. By hypothesis |LF | ∈ N, again by Proposition 5.2.4 we conclude that
XP is a sofic shift.

Let Q′O be the set of FO-overlap-free orientations of odd order paths, and
consider the function

ϕ : Q′O → {−1, 1}Z

Q = (v1, . . . , v2n+1) 7→ x, where

xi = −1, i ∈ Z \ {−n, . . . , n} and x[−n,n] = c(Q)

For i ∈ Z+, consider the following set, Si = {ϕ(Qi) : Qi is an FO-overlap
free orientation of the path on 2i+1 vertices}. By Proposition 5.3.4, for each
i ≥ 1, Si is not an empty set. Define now the infinite graph G = (

⋃
i≥1 Si, E)

where xy ∈ E if and only if x ∈ Si, y ∈ Si+1 and x[−2i,2i] = y[−2i,2i]. It is
important to notice that the vertices of G are points of the full shift {−1, 1}Z.

Claim 5.3.6. For any y ∈ Si+1 there is a point x ∈ Si such that xy ∈ E.

Proof. Since Qy = c−1(y[−2(i+1),2(i+1)]) is an FO-overlap-free orientation of
the path on 2(i+ 1) + 1 vertices, and Q′y = c−1(y[−2i,2i]) < Qy then, Q′y is an
FO-overlap-free orientation of the path on 2i+ 1 vertices. Thus ϕ(Q′y) ∈ Si

and ϕ(Q′y)[−2i,2i] = y[−2i,2i]. Therefore ϕ(Q′y)y ∈ E �

Using König’s Lema (Theorem 5.2.6), we can find an infinite path R =
{xn}n≥1 in G. By definition of the graph G, R induces a sequence in {−1, 1}Z
such that xn[−n,n] = xm[−n,n] for any m ≥ n ≥ 1. Hence, R is a convergent
sequence in the full shift, and since ({−1, 1}Z, d), is a compact metric space
(Theorem 5.2.2),

limn→∞xn = xp ∈ {−1, 1}Z.
We now want to prove that xp ∈ XP . Suppose the opposite, then there

is a linear forest l =
∑m

k=1Q
k ∈ LF such that xp 6∈ Xl. Then there is

an integer r such that for all Qk, c(Qk) appears as a subword of xp[−r,r].
Since xn[−n,n] = xm[−n,n] for any m ≥ n ≥ 1, and limn→∞xn = xp then,
xn[−r,r] = xp[−r,r] for any n ≥ r. Which contradicts the fact that c−1(xn[−n,n])
is an FO-overlap-free orientation of the path on 2n+ 1 vertices.

Therefore XP is a non empty sofic shift. �
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Lemma 5.3.7. Let P be a hereditary property such that FP = {Cn : n ∈ NP}
where NP ⊆ N is such that for any positive integer m there is km ∈ N such
that mkm ∈ NP . If FO is a set of forbidden oriented graphs for P with
|FO| ∈ N then there is an aperiodic shift space Y , such that XP ⊆ Y .

Proof. Consider the fullshift X = {−1, 1}Z, and let k0 = max{m ∈ N : there
is an orientation of Cm in FO}. Consider the set of words F2 = {ww : |w| ∈
NP and |w| > k0 + 1}, and the shift Y = XF2 . Recall that XP =

⋂
l∈LF Xl,

where Xl =
⋃m

k=1Xc(Qk) and l =
∑m

k=1Q
k. Consider a point x ∈ XP . By

definition of XP , c−1(x[−l,l]) is an FO-free orientation of the path on 2l + 1
vertices for any l > 0. Hence, by Lemma 5.3.2, c−1(x[−l,l]) is square-free for
any subpath of size t, for t ∈ {m > k0 + 1 : m ∈ NP}. Thus, x[−l,l] is F2 free
for any l ≥ 1. And since x[0] ∈ {−1, 1} we conclude that x ∈ Y .

Consider a periodic point x ∈ {−1, 1}Z with period m and km ∈ N
such that mkm ∈ NP . Then x[1,mkm] = x[mkm+1,2mkm], so x[1,2mkm] ∈ F2 and
therefore x /∈ Y . Concluding that XP ⊆ Y , where Y is an aperiodic subshift.
�

Theorem 5.3.8. Let P be a hereditary property with set of minimal ob-
structions, FP = {Cn : n ∈ NP}, where NP ⊆ N is such that for any positive
integer m there exists km ∈ N such that mkm ∈ NP . If FO characterizes P
through forbidden oriented graphs then, |FO| = ℵ0.

Proof. Once again, we will prove the statement by contradiction. Suppose
there is a finite set of forbidden oriented graphs, FO, that characterizes P .
By Lemma 5.3.5 XP is a non empty sofic shift. By Lemma 5.3.7 XP ⊆ Y
where Y is an aperiodic shift. But periodic points in sofic subshifts are a dense
set (Proposition 5.2.5), since XP 6= ∅ there is a periodic point x ∈ XP ⊆ Y
which is our final contradiction. �

Example 5.3.9. A property with an infinite set of minimal obstructions
FP = {Cn : n ∈ NP} such that there is an integer m, whose set of multiples
Mm ∩ NP = ∅ is the class of bipartite graphs PB. Which from Proposi-
tion 5.1.2 we already know has a finite set of forbidden oriented graphs.

Corollary 5.3.10. For neither of the properties, forests, chordal graphs,
evenhole-free graphs there is a finite set of forbidden oriented graphs
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Remark 5.3.11. If P is a property such that FP = GP ∪ C, where GP is a
finite set of minimal obstructions, and C is a family of cycles that satisfies
the hypothesis of Theorem 5.3.8, one can do a little modification to Lem-
mas 5.3.2, 5.3.5, 5.3.7 and Proposition 5.3.4, to conclude that FP cannot be
characterized with a finite set of forbidden oriented graphs. For example,
there is no set, FO, of forbidden oriented graphs such that |FO| ∈ N and
FO characterizes the property of being a linear forest.

Proposition 5.3.12. There are properties that can be characterized through
a finite set of forbidden subpatterns but with no finite set of forbidden oriented
graphs.

Proof. From Example 1.3.6 we know that forests and chordal graphs can
be characterized with a finite set of forbidden subpatterns. But neither of
these can be characterized with a finite set of forbidden oriented graphs
(Corollary 5.3.10). �
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