

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE POSGRADO EN ASTROFÍSICA

Instituto de Radioastronomía y Astrofísica

"Estudio de la Interacción de Flujos Múltiples de Fuentes Astrofísicas, Aplicada a los Proplyds Clásicos de la Nebulosa de Orión"

PARA OPTAR POR EL GRADO DE DOCTOR EN CIENCIAS (ASTROFÍSICA)

$\label{eq:pressure} \begin{array}{c} P \ R \ E \ S \ E \ N \ T \ A \\ JORGE \ ALEJANDRO \ TARANGO \ YONG \end{array}$

Director de Tesis: Dr. William J. Henney

Morelia, Michoacán. 10 de diciembre de 2018

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Índice general

		Agradecimientos	4		
		Resumen	5		
		Abstract	5		
1.	La I	Nebulosa de Orión	7		
	1.1.	Características Generales	7		
	1.2.	Proplyds	8		
		1.2.1. Descubrimiento	8		
	1.2.2. ¿Qué es un proplyd? Breve introducción (Johnstone				
		et al., 1998)	10		
		1.2.3. Mecanismos de fotoevaporación (Johnstone et al., 1998)	12		
2 Chaques de Prop					
4.	2 1	Dronlyda	16		
	2.1.	Objetes II	10		
	2.2. 9.3	Estrollas "Frantos"	19 91		
	2.3.	Estrellas ACP y Supergraphica Deira	21		
	2.4.	Estienas AGD y Supergigantes Rojas	29		
3.	Con	ceptos fundamentales	33		
	3.1.	Parámetros Fundamentales	34		
3.2. Planitud y "Alatud"		Planitud y "Alatud"	36		
	3.3.	Cuádricas de Revolución	38		
	3.4. Proyección en el Plano del Cielo				
		3.4.1. Vectores normal y tangente a la superficie	43		
		3.4.2. Línea tangente	43		
		3.4.3. Planitud y Alatud proyectadas: caso general	45		
		3.4.4. Aplicación a las Cuádricas de Revolución	46		

4.	Modelo de Capa Delgada		
	4.1.	Cantidades conservadas en un flujo hipersónico de capa delgada	53
	4.2.	Interacción de Dos Vientos	55
		4.2.1. Interacción con un viento esférico isotrópico	57
		4.2.2. Interacción de un viento esférico isotrópico con un	
		viento plano–paralelo (Choques Wilkinoides) \ldots .	60
	4.3.	Forma Verdadera	61
	4.4.	Forma Aparente	65
5.	Res	ultados Obtenidos	79
	5.1.	Metodología para la medición de la forma aparente.	79
		5.1.1. Medición de incertidumbres	81
	5.2.	Comparación con el Modelo de Capa Delgada	81
	5.3.	Obtención de la Presión de Equilibrio	90
6.	Res	umen y Conclusiones	101
	6.1.	Trabajo a Futuro	105
Bi	bliog	grafía	107
А.	Reg	iones H II	111
	A.1.	Esfera de Strömgren (Stahler & Palla, 2004)	111
	A.2.	Flujos de Champaña	113
	A.3.	Características de la emisión	113
в.	Cho	oques y Frentes de Ionización	117
	B.1.	Choques (condiciones de salto)	117
	B.2.	Frentes de Ionización	121
C.	Rad	lio de Curvatura	25
	C.1.	Caso General	125
	C.2.	Polinomio Grado $2n$	127
D.	Par	aboloide 1	L 29
Е.	Mat	trices de Rotación	131

F. Derivación de Radios Característicos							
F.1. R_0	133						
F.2. Alatud	134						
F.3. Planitud	135						
F.4. Planitud Wilkinoides	138						
G. Otros modelos donde se forman arcos similares 13							
H. True Versus Apparent Shapes of Bowshocks							
Índice de figuras							
Índice de tablas	171						

Agradecimientos

Primero que nada debo agradecer al Instituto de Radioastronomía y Astrofísica por haberme dado el priviligio de formar parte del Posgrado en Astrofísica para obtener el título de Doctor en Astrofísica. La dedicación, la disciplina y el pensamiento crítico son algunas de las habilidades que adquirí durante la estancia de esta magnífica institución.

En segunda agradezco al Consejo Nacional de Ciencia y Tecnología (CONACyT) por haberme asignado una beca nivel Nacional, del año 2013 al 2017, mi número CVU es 378230.

También quiero agredecer a mi asesor Will por su paciencia, sus buenos consejos y por todo lo que pude aprender de él tanto en la maestría como en el doctorado, y por la oportunidad que me dio de presentar mi trabajo en aquel congreso en Grecia.

A Karin por su amistad y por la ayuda que nos proporcionó durante todo en posgrado. A Rafa también por su amistad y por toda la trayectoria en materia de divulgación que tuve durante mi estancia en el instituto.

Mis padres también tienen una parte especial de mí: ellos me ayudaron cuando terminó el contrato de mi beca CONACyT: de no ser por su ayuda, esta tesis hubiera tomado aún más tiempo terminarla. También sus consejos y su cariño han sido fundamentales para poder llegar a ser quien soy el día de hoy.

Por último y no menos importante, a mi familia: mi amada esposa Betty y mi hija Carmen. Por ellas es por quienes tengo fuerzas todas las mañanas de levantarme y seguir adelante, aunque el resto de mi cuerpo y mi mente me digan lo contrario. A veces parece que no es así, pero nunca estaré arrepentido de que estén a mi lado, y nunca me rendiré para que podamos salir adelante, no importa el tiempo que tome.

Resumen

Los choques de proa astrofísicos son un resultado común de la interacción de flujos de gas desplazándose a velocidades supersónicas, tales como vientos de estrellas jóvenes o jets de pequeña o grande escala (desde estrellas jóvenes hasta AGNs), en el capítulo 2 mencionamos algunos ejemplos de escenarios donde se producen choques de proa. En el capítulo 3 desarrollamos una teoría general para estudiar los efectos de proyección en su forma aparente, proponemos una nueva clasificación para su forma basándonos en dos parámetros adimensionales medibles a partir de imágenes observacionales: la *planitud* del ápex del choque, y la apertura de las alas, al que llamamos alatud. También calculamos la distribución esperada en el diagrama planitudalatud para modelos físicos y geométricos simples: cuádricas de revolución y en el capítulo 4 las soluciones a la forma de los choques del modelo de capa delgada de Cantó et al. (1996) bajo determinadas suposiciones acerca de la simetría y distribuciones de densidad de los vientos en interacción. Por último, comparamos estos modelos con observaciones de los choques de proa observados en las proximidades del Trapecio, en la Gran Nebulosa de Orión.

Esta tesis también cuenta con apéndices donde explicamos a detalle conceptos importantes para esta tesis así como el artículo en que se basa gran parte de esta tesis.

Abstract

Astrophysical bow shocks are a common result of the interaction of supersonic gas flows, such as winds generated by young stars or jets from small to large scale (from young stars to AGNs), in chapter 2 we mention some expmples where bow shocks are produced. In chapter 3 we develop a general theory for the projection effects on the apparent shape, we propose a new classification scheme based in two dimensionless parameters that can be estimated from observational images: the *planitude* of the bow's apex and the openess of the wings, which we term *alatude*. We calculate the expected distribution in the planitude-alatude diagram for simple geometrical and physical models: quadrics of revolution and for the solutions of the thin shell model in chapter 4 under certain assumptions about the symmetry

Esta tesis no la hice solo, recibí un poco de ayuda.

and density distribution of the interacting winds. Finally, we compare these models with observations of the bow shocks observed near the Trapezium, in the Great Orion Nebula.

This thesis also contains some appendices where whe explain with some detail important concepts as well as the article which this thesis is mostly based.

Capítulo 1

La Nebulosa de Orión: La Fotoevaporación de Discos Protoplanetarios como una Forma de Feedback Estelar

1.1. Características Generales

La Nebulosa de Orión (ON por sus siglas en inglés, figura 1.1), ubicada a ~ 414 pc (Menten et al., 2007), es probablemente la región H II mejor estudiada del cielo (ver apéndice A). Forma parte de la nube molecular gigante de Orión, de donde se distinguen dos sub-unidades, llamadas Orión A y Orión B. ON forma parte de Orión A. El cúmulo de estrellas masivas que se formó y que es responsable de la región H II se conoce como asociación OB Ori Id, cuyos miembros más prominentes son un grupo de cuatro estrellas conocidas como el "Trapecio". La más masiva de éstas es θ^1 Ori C, de clasificación espectral O6 aproximadamente (ver tabla A.1), tiene una luminosidad de $4 \times 10^5 L_{\odot}$ y una temperatura de 4×10^4 K. Sin embargo, éste cúmulo posee además cientos de estrellas de baja masa en formación, que no son visibles con telescopios pequeños. Muchas de ellas, con forma cometaria, son conocidas como *proplyds*, y de las cuales hablaremos en la siguiente sección a detalle. Cuando la región H II se encuentra embebida en

Figura 1.1: Izquierda: La nebulosa de Orion tomada con el Telescopio Espacial Hubble (hubblesite.org). Derecha: La Nebulosa de Orión observada por el VLA en la banda L ($\lambda = 20 \,\mathrm{cm}$, $\nu = 1.4 \,\mathrm{GHz}$, Yusef-Zadeh (1990)). La región observada en esta imagen corresponde aproximadamente al recuadro mostrado en la imagen de la izquierda. Créditos: NASA, ESA, NRAO.

el gas molecular, no puede ser visible en el rango óptico del espectro. En el caso de ON, que se ubica cerca del borde de la nube molecular Orion A, el gas ionizado caliente, que posee una presión mayor que el gas molecular frío, se escapa hacia el gas adyacente de la nube molecular en forma de "flujo de champaña", de modo que el gas ionizado se acerca a nosotros a una velocidad de ~ $3 \,\mathrm{km \, s^{-1}}$, mientras que ON se aleja a una velocidad de ~ $10 \,\mathrm{km \, s^{-1}}$ (Stahler & Palla (2004), ver figura 1.2). De esta manera el gas ionizado puede ser visible por medio de diferentes líneas espectrales, tanto de hidrógeno como de otros elementos.

1.2. Proplyds

1.2.1. Descubrimiento

Observaciones en óptico de la región del Trapecio en filtros de banda angosta de diferentes líneas de emisión tales como H α , H β , [O III], [N II], [S II] y continuo, revelaron la existencia de objetos puntuales visibles notablemente en líneas de alta ionización (H α , H β y [O III]) que fueron inicialmente

Figura 1.2: Izquierda: Representación esquemática de la Asociación Ori Id y su ubicación dentro de la nube molecular gigante Orión A. La región BN-KL es una región de formación estelar muy activa donde se observan entre otras cosas, máseres de agua, SiO y flujos moleculares (Stahler & Palla, 2004). Derecha: Línea espectral H85 α de hidrógeno de ONC. El eje horizontal corresponde a la frecuencia en MHz, mientras que el eje vertical representa la temperatura de antena. El espectro muestra un corrimiento al azul que muesta que el gas se acerca a una velocidad de ~ 3 km s⁻¹ (Stahler & Palla, 2004; Gordon & Churchwell, 1970)

denominados como "condensaciones nebulares" (Laques & Vidal, 1979). Hasta ese momento no se sabía con certeza si esas "condensaciones nebulares" eran en realidad condensaciones nebulares (regiones donde la densidad de la nebulosa es inusualmente alta o bien esferas de gas molecular cuya envolvente fue ionizada y que la radiación de la estrella central la está "erosionando") o si se trataba de protoestrellas de baja masa cuyo disco protoplanetario estaba siendo fotoevaporado por la estrella central (Churchwell et al., 1987). No fue sino hasta que se contó con observaciones de alta resolución con el Telescopio Espacial Hubble (HST) que se se pudo determinar la verdadera naturaleza de estos objetos (O'Dell et al., 1993) y la razón por la que se les denominó "proplyds" (PROtoPLanetarY DiskS). A su vez se encontraron por primera vez arcos delgados y otras estructuras de gran interés.

1.2.2. ¿Qué es un proplyd? Breve introducción (Johnstone et al., 1998)

Las imágenes del HST de la Nebulosa de Orión mostraron imágenes de discos alrededor de estrellas jóvenes de baja masa. Algunos se ven como siluetas oscuras que contrastan con la nebulosa, y otros casos son visibles en líneas de emisión de líneas de alta ionización. Un proplyd típico tiene forma cometaria, con una cabeza brillante que apunta hacia la fuente de radiación ionizante, y una cola que se extiende en dirección contraria a ésta. (ver figura 1.3). La explicación a esta forma es que se trata de estrellas T-Tauri que quedaron embebidas por la región HII en expansión y el disco protoplanetario está siendo fotoevaporado por la radiación ionizante de una estrella masiva (θ^1 Ori C en caso de la Nebulosa de Orión), la cabeza es un frente de ionización cuyo radio escala como $R_{\rm IF} \propto D^{2/3}$, donde D es la distancia a la estrella masiva. La forma de la cola se debe a radiación difusa, producto de dispersión por polvo y por recombinaciones. Churchwell et al. (1987) ya había notado que la tasa de pérdida de masa observada en el gas ionizado implicaba que la fuente de este gas debía oscurecer a la protoestrella huésped, a menos que proviniera de un disco circunestelar. De la emisión de radio observada, se estima que la densidad electrónica máxima en el IF es de $n_e \sim 10^6 \,\mathrm{cm}^{-3}$ y la tasa de pérdida de masa es de $\dot{M} \sim 10^{-7} \,\mathrm{M_{\odot} \, yr^{-1}}.$

Figura 1.3: Representación esquemática de la formación de un frente de ionización hemisférico y de una cola de gas fotoevaporado detrás del disco en proceso de fotoevaporación (Johnstone et al., 1998). La línea gruesa exterior representa la interfaz donde existe equilibrio entre ionizaciones y recombinaciones en el flujo fotoevaporado. $r_{\rm IF}$ y r_w representan el radio del frente de ionización en las direcciones de los ejes x e y, respectivamente. I_y representa el campo de radiación difusa. Por detrás del disco, la radiación difusa calienta el gas del disco provocando otro flujo fotoevaporado. Δy es la diferencia entre la forma actual del frente de ionización por detrás del disco y una forma cilíndrica, y determina la forma de la cola. En esta interfaz debe de haber balance entre ionizaciones provocadas por el flujo $F_y \simeq \pi I_y$ y recombinaciones en el flujo fotoevaporado, y como la densidad de este flujo disminuye al alejarse del disco a lo largo del eje x, entonces la zona donde se da el equilibrio de ionización ocurre cada vez más cerca del eje x. Johnstone et al. (1998) muestra que la forma de la cola es tal que $\Delta y \propto x^4$, donde x es la distancia al disco a lo largo del eje x. Por otro lado, también se muestra que la cola termina cuando $\Delta y = r_w$ y esta condición se da cuando $x \sim 3r_w$.

Figura 1.4: Geometría del flujo fotoevaporado de un disco protoplanetario de radio r_d bajo un flujo de fotones ultravioleta provenientes de una fuente puntual lejana. Inicialmente el disco impone una geometría cilíndrica para el flujo, pero los gradientes de presíon en el ambiente convierten rápidamente la geometría del flujo en esférica. El gas que se encuentra a distancias menores a r_g de la estrella central (ecuación 1.1) es retenido por la gravedad de ésta (Johnstone et al., 1998).

1.2.3. Mecanismos de fotoevaporación (Johnstone et al., 1998)

El principal mecanismo de fotoevaporación es el campo de radiación de la estrella masiva, en la parte ultravioleta del espectro electromagnético. Según la masa de esta estrella, podemos tener dos clases de flujo radiativo: Dominado por el ultravioleta lejano (FUV, $h\nu < 13.6 \text{ eV}$) o dominado por el ultravioleta extremo (EUV, $h\nu \ge 13.6 \text{ eV}$). En general, el FUV se encarga de disociar moléculas y de calentar el gas de la región de fotodisociación (PDR) hasta temperaturas de 100 - 1000 K, mientras que el EUV puede ionizar el gas y elevar su temperatura hasta 10^4 K. El EUV no puede atravesar el frente de ionización (IF) pero el FUV sí. Inicialmente la forma del disco impone una geometría cilíndrica en el flujo fotoevaporado, pero eventualmente los gradientes de presión tornan esta geometría en esférica, como se muestra en la figura 1.4.

En el caso de que el flujo sea dominado por el EUV, la presión térmica del flujo fotoevaporado es determinada por la fotoionización, la PDR producida por el FUV es delgada. El gas calentado por el FUV se mueve de manera subsónica $(v_I \propto r^{-2})$ hasta llegar al IF, donde alcanza una velocidad de $0.5 \,\mathrm{km \, s^{-1}}$ y la tasa de pérdida de masa depende de la tasa de ionización inducida por el EUV.

Si el flujo está dominado por el FUV, la presión térmica depende del calentamiento por el FUV. El gas tibio se expande como un viento que empuja el IF lejos del disco que alcanza velocidades supersónicas, pero luego atraviesa un choque isotérmico que lo desacelera y llega al frente de ionizacion a $0.5 \,\mathrm{km \, s^{-1}}$. La tasa de pérdida de masa la determina la temperatura de la PDR, el flujo FUV y la opacidad del polvo a las longitudes de onda del FUV. Este caso y el anterior se muestran en la figura 1.5.

Las ecuaciones de continuidad de la masa y el momento restringen la velocidad del flujo neutro antes de alcanzar el IF. Mas allá de éste, la presión del gas hace que éste se expanda a velocidades del orden de una a dos veces la velocidad del sonido, que es de $c_{\rm I} \sim 3 \,\rm km \, s^{-1}$ para el gas neutro, y de $c_{\rm II} \sim 10 \,\rm km \, s^{-1}$ para el gas ionizado. Para el gas neutro dentro del IF hay dos posibles soluciones: si el gas neutro es supersónico entonces el IF será de baja densidad (Tipo R) con bajo contraste de densidad entre gas neutro y gas ionizado. O si el gas neutro es subsónico se formará un IF tipo D con un gran contraste de densidad entre el gas neutro y el gas ionizado (Apéndice B.2). Sin embargo, ya mostramos que sin importar qué tipo de radiación domina la fotoevaporación, el gas neutro permanece a velocidades subsónicas al llegar al IF (figura 1.5), por lo que dicho frente será tipo D.

Sin importar el tipo de mecanismo de fotoevaporación dominante, el flujo fotoevaporado existe solo si la presión térmica supera a la gravedad de la protoestrella. Entonces, el flujo fotoevaporado solo existe a partir de un radio crítico r_g , donde este radio se estima a partir del balance entre la energía necesaria para escapar de una órbita kepleriana y la energía térmica:

$$r_g = \frac{GM_*}{c^2} \tag{1.1}$$

Donde M_* es la masa de la protoestrella y c es la velocidad del sonido del gas. Para las protoestrellas típicas del Trapecio la masa típica es de $M_* = 0.2 \,\mathrm{M_{\odot}}$. Utilizando las velocidades del sonido para el gas neutro e ionizado, encontramos que el radio gravitacional para un flujo dominado por el EUV es de $r_{\rm gII} \sim 2 \,\mathrm{AU}$ y para un flujo dominado por el FUV es de $r_{\rm gI} \sim 20 \,\mathrm{AU}$.

Figura 1.5: Representación esquemática de las regiones del flujo fotoevaporado de un proplyd. Izquierda: Cuando el flujo es dominado por el FUV, se acelera a velocidades supersónicas pero atraviesa un choque isotérmico que lo desacelera a velociades subsónicas. Derecha: Flujo dominado por EUV, que llega a velocidades subsónicas al frente de ionización (Johnstone et al., 1998).

Capítulo 2

Choques de Proa en el Medio Interestelar

En general, un choque de proa se forma cuando un fluido interactua con un objeto moviéndose a velocidades supersónicas. A continuación enumeramos algunos ejemplos astrofísicos que se pueden encontrar en el medio interestelar:

- Superficies de trabajo de jets
- Interacción de magnetósfera con el viento solar
- Choques de proa estelares
 - Estrellas AGB
 - Estrellas O
 - Proplyds
 - Estrellas T Tauri
 - Estrellas de Neutrones

La morfología general de un choque de proa se ilustra en la figura 2.1. La región donde la distancia entre el choque y la estrella (en el caso de un choque de proa *estelar*) es la mínima, se denomina cabeza o *ápex*, mientras que las regiones más alejadas son denominadas las *alas*. En el caso ideal los choques de proa son cilíndricamente simétricos.

Figura 2.1: Terminología de un choque de Proa estelar.

2.1. Proplyds

Observaciones en mediano infrarrojo y en líneas de emisión de H α y [O III] (Robberto et al. (2005); Bally et al. (1998, 2000), ver figura 2.2) muestran de manera clara la presencia de arcos que rodean varios proplyds y otros objetos en la ON cerca y lejos de la región del Trapecio. Hayward et al. (1994) abren por primera vez la discusión acerca de la naturaleza de estos arcos (enfocándose en la región del Trapecio), sugiriendo que la presión de radiación y el viento estelar de θ^1 Ori C interactúan con el flujo de gas proveniente de cada proplyd individual.

Asimismo, en Robberto et al. (2005) se hicieron mediciones de la forma de estos arcos, utilizando el radio aparente en el ápex R_0/D y el radio perpendicular a éste R_{90}/D (la alatud en este trabajo, excepto que normalizada con la distancia D a θ^1 Ori C, ver §3.2) para los proplyds LV1-LV5 y la nebulosa Ney-Allen, y los compararon con el modelo de capa delgada (Cantó et al., 1996) (figura 2.3). Encontraron que aunque los proplyds LV1, LV4 y posiblemente LV5 ajustan a dicho modelo, pero el resto se aleja mucho de las curvas teóricas. Ésto no se puede atribuir a las limitaciones de la aproximación algebraica hecha por Cantó et al. (1996), debido a que aun con todas las simplificaciones que conlleva, ajusta bien con modelos hidro-

Figura 2.2: La región del trapecio en $10 \,\mu\text{m}$. θ^1 Ori C es la fuente débil al centro de la imagen. Dentro de este campo además se encuentran los proplyds LV1-LV5 con sus respectivos arcos. Al noreste se encuentra una fuente extensa llamada la Nebulosa Ney Allen (NA). El norte es encuentra hacia arriba y el este a la izquierda. El tamaño del campo es de aproximadamente $1' \times 1'$ (Robberto et al., 2005).

Figura 2.2 (cont.): La región del trapecio en mosaico de colores con imágenes de la Cámara Planetaria de Campo Ancho 2 (WPC2) del ciclo 4 del Telescopio Espacial Hubble (HST). El color rojo corresponde al [N II], el verde al H $_{\alpha}$ y el azul es [O III] (Bally et al., 1998).

dinámicos más complejos (ver por ejemplo García-Arredondo et al. (2001), figura 2.4). El trabajo de Robberto et al. (2005) es en parte la inspiración para esta tesis, ya que para explicar la discrepancia en la figura 2.3 con los proplyds restantes nos llevó a extender el modelo de Cantó et al. (1996) al caso donde el viento interior no es isotrópico. En la figura 2.5 se explica el modelo general para explicar éstos choques de proa: el flujo fotoevaporado de un proplyd, ya sea isotrópico o anisotrópico, interactúa con el viento estelar de θ^1 Ori C, formando dos choques separados por una discontinuidad de contacto. El frente de ionización del proplyd es tipo D (ver $\S1.2.3$), por lo que la velocidad del flujo fotoevaporado es cercano a la velocidad del sonido y se acelera máximo hasta $M \sim 3$, donde $M \equiv v_w/c_s$ es el número de Mach, v_w es la velocidad del flujo y c_s es la velocidad del sonido. Y la densidad electrónica del flujo fotoevaporado es de $n_e \sim 10^6 \,\mathrm{cm}^{-3}$ (ver §1.2.2). Por otro lado, el viento de θ^1 Ori C ha alcanzado su velocidad terminal, que es de M > 100 con una tasa de pérdida de masa de $\dot{M} \simeq 4 \times 10^{-7} \,\mathrm{M_{\odot} \, vr^{-1}}$ (Gagné et al., 2005). Bajo estas condiciones, el choque exterior es poco denso v extenso y el choque interior es más denso y angosto. Por tanto, el enfriamiento en el choque interior es más eficiente y consideramos que este choque es radiativo mientras que el choque exterior no.

2.2. Choques de Proa "In Situ": Objetos LL'

El arquetipo de esta clase de objetos es LL Ori (LL1 de aquí en adelante), son llamados también choques "in situ" (Kobulnicky et al., 2016), donde el choque se da cuando viento de una estrella interactúa con un flujo tal como un flujo de champaña. Sin embargo, no es del todo claro el tipo de flujo interno proveniente de la estrella central (figura 2.6). Gutiérrez-Soto (2015) hizo un catálogo de objetos dentro de ON en los que se observan choques de proa, algunos de ellos no habían sido identificados previamente. En la figura 2.9 mostramos el mapa de estos objetos. A su vez se realizaron mediciones de la forma de cada objeto (ver figura 2.7). Por último, en la figura 2.8 mostramos algunos ejemplos de este catálogo.

Figura 2.3: Comparación entre los radios característicos aparentes R_{90}/D y R_0/D para los proplyds LV1-LV5 y para la Nebulosa Ney-Allen y las soluciones al modelo de capa delgada de (Cantó et al., 1996). Las mediciones de los radios característicos de los proplyds se muestran con puntos y sus respectivas incertidumbres. Las soluciones al modelo de capa delgada se muestran con diametes abiertos unidos con línea continua o de puntos, y cada curva representa un valor diferente para el cociente de las tasas de momentos del viento del flujo fotoevaporado del proplyd al viento estelar de θ^1 Ori C, denotado por β (definido en la §3.1, ecuación 3.4). Dichos valores, de izquierda a derecha son $\beta = [0.001, 0.002, 0.004, 0.01, 0.02, 0.1]$. Por otro lado, a lo largo de una misma curva varía la orientación del choque respecto al plano del cielo, medida por un ángulo llamado *inclinación*, denotado como θ en esta figura, pero en este trabajo se denota con *i* (ver §3.4)) y que en esta figura incrementa en intervalos de 15° a partir de 0° (choque visto de canto) hasta el valor máximo que puede adoptar este ángulo para un choque dado. Algunos ejemplos se señalan explícitamente (Robberto et al., 2005).

Figura 2.4: Resultado de una simulación hidrodinámica de la interacción de un flujo fotoevaporado de un proplyd con un viento estelar. Las flechas indican la velocidad de los flujos (negro para el viento estelar y blanco para el flujo fotoevaporado del proplyd) y la escala gris representa el logaritmo de la densidad. Los ejes están en coordenadas cilíndricas (r, z) en unidades del radio del IF. El arco negro representa la solución de la posición de la discontinuidad de contacto del modelo de capa delgada de Cantó et al. (1996), donde la densidad del viento interior varía con el ángulo polar θ como $n \propto \cos^{1/2}$ y cuyo cociente de tasas de momentos es de $\beta = 0.002$ (García-Arredondo et al., 2001).

2.3. Estrellas "Errantes"

Otro tipo de choques de proa estelares ocurren cuando los vientos de estrellas *errantes* (runaway stars), usualmente de tipos espectrales OB, con velocidades mayores a $30 \,\mathrm{km \, s^{-1}}$ interactúan con el medio interestelar (Kobulnicky et al., 2016). Estas estrellas adquieren estas velocidades cuando sufren encuentros dinámicos cercanos dentro del cúmulo donde se formaron o bien cuando forman parte de un sistema binario cerrado y uno de los miembros explota como supernova.

En la figura 2.10 se muestran algunos ejemplos típicos de choques de proa producidos por estrellas errantes. Los colores en cada imagen representan a la banda de 24 μ m del Telescopio Espacial Spitzer, o bien la de 22 μ m del catálogo WISE para el color rojo, para el color verde puede ser la banda de 8 μ m de Spitzer o la de 12 μ m de WISE, y al color azul le corresponde la banda de 4.5 μ m de Spitzer o WISE y los objetos mostrados son, de arriba a abajo y de izquierda a derecha: ζ Oph, AE Aur, HD136003, HD150898, HD155755 y HD143275, y por último, la flecha blanca indica la magnitud y

Figura 2.5: Esquema del choque de proa de un proplyd: el viento rápido proveniente de una estrella masiva interactúa con el flujo fotoevaporado de un proplyd que puede ser isotrópico o anisotrópico. Se forman dos choques separados por una discontinuidad de contacto, y dependiendo de la velocidad y densidad de los vientos, dichos choques pueden ser radiativo o no. En el caso de los proplyds más cercanos al trapecio, solo el choque interno es radiativo (Henney & Tarango-Yong, 2017).

Figura 2.6: Posibles escenarios para los flujos en interacción de los choques de pro
a en ON. Izquierda: Un flujo de champaña transónico interactúa ya se
a con el flujo fotoevaporado de un proplyd o con un viento estelar, este caso aplica para los arcos más alejados de
 θ^1 Ori C. Derecha: El viento estelar proveniente de una estrella tipo O interactúa con el flujo fotoevaporado de un proplyd. Aplica para los proplyd
s más cercanos a θ^1 Ori C.

Figura 2.7: Metodología para la medición de la forma del choque de proa. Para un arco dado, se traza la posición de las dos cáscaras utilizando marcas con el programa DS9 para imágenes astronómicas (las cruces en la figura). Posteriormente, con un ajuste de mínimos cuadrados se ajusta un círculo a las marcas de cada cáscara para obtener el radio de curvatura aparente R_c (línea roja rayada). El radio en el ápex R_0 se obtiene como la distancia mínima entre la posición de la estrella y el ajuste circular y por último el grosor H se obtiene como la diferencia entre ambas mediciones de R_0 , suponiendo que estén disponibles. PA es el ángulo de orientación de la línea que conecta la estrella central con el centro de curvatura del choque, medido a parir del norte en sentido contrario a las manecillas del reloj (hacia el este). La definición de R_0 y R_c es tratada a más profundidad en §3.2.

Figura 2.8: Ejemplos de objetos LL obtenidos del catálogo de Gutiérrez-Soto (2015). A la derecha de cada panel se observa el objeto con las mediciones superpuestas de los radios característicos (R'_0, R'_c) para las cáscaras exterior e interior o solo para una dependiendo del objeto. La escala de grises muestra el brillo, la barra amarilla indica la escala del objeto y las etiquetas mestran el nombre del objeto, el instrumento que se utilizó para obtener la imagen y la fecha en que se obtuvo.

Figura 2.8 (cont.)

Figura 2.9: Mapa de objetos del catálogo de Gutiérrez-Soto (2015) dentro de ON. Las flechas de colores contienen la línea que une la posición del objeto central con el eje de curvatura de cada cáscara. Los puntos rojos representan objetos que no tienen un choque de proa visible. En el recuadro blanco se muestra el ID de cada objeto, siguiendo la nomenclatura de O'Dell & Wen (1994). La zona marcada con el cuadrado amarillo se encuentra amplificada en la continuación de esta figura.

Figura 2.9 (cont.)

Clase	Descripción	Forma
Ι	Fermata	\frown
II	Ojos	\odot
III	Anillos	ullet
IV	Irregulares	

Tabla 2.1: Clasificación morfológica de choques de proa estelares de estrellas AGB y supergigantes (Cox et al., 2012).

dirección del movimiento propio de la estrella.

2.4. Estrellas AGB y Supergigantes Rojas

Otro tipo de choques de proa estelares se forma cuando estrellas en sus fases evolutivas finales, tales como estrellas AGB y supergigantes rojas pierden material a través de fuertes vientos ($\sim 10^{-9} - 10^{-4} \,\mathrm{M_{\odot} \, yr^{-1}}$, Prialnik (2000)) que producen choques al interaccionar con el Medio Interestelar (Cox et al., 2012).

En la figura 2.11 se muestran ejemplos de estrellas AGB y supergigantes en infrarrojo lejano que forman parte del programa MESS (Mass-loss of Evolved StarS, Groenewegen et al. (2011)) que utilizan el instrumento PACS (Photodetector Array Camera Spectrometer), donde se usan los filtros de 70 μ m y 160 μ m, y que muestran choques tipo "fermata". Otras formas que se observan son tipo "ojos", "anillos" e "irregulares" (ver tabla 2.1).

Figura 2.10: Ejemplos de choques de pro
a en infrarrojo producidos por estrellas errantes, tomados por el telescopio espacial Spitzer o del catálogo WISE. Los colores representan las bandas de 24 μ m de Spitzer o 22 μ m de WISE (rojo), 8 μ m de Spitzer o 12 μ m de WISE (verde) y 4.5 μ m de de Spitzer o WISE (azul). Los objetos mostrados son:
 ζ Oph (G006.2812+23.5877; arriba izquierda), AE Aur (G172.0813-02.2592; arriba derecha), HD136003 (G322.6802+00.9060; centro izquierda), HD150898 (G329.9790-08.4736; centro derecha), HD155755 (G348.7967+00.1455; abajo izquierda) y HD143275 (G350.0969+22.4904; abajo derecha). La magnitud y dirección del movimiento propio se muestra con las flechas blancas (Kobulnicky et al., 2016).

Figura 2.11: Interacciones tipo "fermata" de los objetos R Scl, NML Tau, W Ori, W Pic y α Ori tomadas con PACS en los filtros de 70 μ m (izquierda) y 160 μ m (derecha). La barra blanca mide 1' en la imagen, así como su respectivo tamaño físico. En todos los páneles el norte se ubica hacia arriba y el este a la izquierda. La línea negra indica la velocidad y dirección de la velocidad espacial de la estrella, adoptando una escala tal que 1 km s corresponde a 1" en la imagen (Cox et al., 2012). Nota adicional. R Scl tiene una cáscara esférica interna no visible en la imagen.

Capítulo 3

Conceptos fundamentales

Para este trabajo consideramos en general tres modelos de interacción de vientos en estado estacionario, actualmente publicado (Tarango Yong & Henney, 2018), y anexado en esta tesis en el apéndice H. Sin embargo, solamente la sección 3.1 está basada en Cantó et al. (1996). La suposición de estado estacionario es buena siempre y cuando las variaciones temporales de alguno de los vientos en interacción ocurran por lo menos en escalas de tiempo suficientemente largas como para que no haya cambios notables en la forma de los choques a lo largo de diferentes épocas. Dicho esto, los modelos considerados en este trabajo se describen brevemente a continuación:

- Una fuente localizada en el origen que emite un viento esférico supersónico con densidad isotrópica (figura 3.1, esquina superior izquierda) no acelerado que interactúa con el viento esférico supersónico e isotrópico de otra fuente que se encuentra a una distancia D de la primera (figura 3.2a). A los choques de proa resultantes se conocen como "Cantoides"¹.
- Una fuente localizada en el origen que emite un viento esférico supersónico no acelerado cuya densidad varía como una ley de potencias de $\cos \theta$, cuyo índice denotamos como k, y θ es el ángulo polar de las coordenadas esféricas (figura 3.1, esquina superior derecha y páneles inferiores), que interactúa con el viento esférico supersónico e

¹En referencia a J. Cantó, quien encontró la solución al problema de dos vientos en la aproximación de capa delgada en Cantó et al. (1996)
isotrópico de otra fuente que se encuentra a una distancia D de la primera (figura 3.2a). A los choques de proa resultantes se conocen como "Ancantoides"².

 Una fuente localizada en el origen que emite un viento esférico supersónico, isotrópico y no acelerado que interactúa con un viento plano paralelo supersónico, no acelerado y densidad constante (figura 3.2b). Los choques resultantes en este caso se conocen como "Wilkinoides"³.

Para caracterizar al choque de proa utilizaremos coordenadas esféricas, siguiendo la simetría del viento interior. La forma del choque de proa medido a partir del origen es $R(\theta, \phi)$, donde θ y ϕ son el ángulo polar y azimutal, respectivamente. Asumiendo simetría cilíndrica en el sistema, esta función se simplifica a $R(\theta)$, y la forma del choque se puede representar con una curva bidimensional, donde el ángulo azimutal ϕ es constante. De esta manera, la forma del choque en coordenadas cartesianas se obtiene mediante la conocida tranformación de coordenadas polares a cartesianas:

$$x = R(\theta)\cos\theta \tag{3.1}$$

$$y = R(\theta)\sin\theta \tag{3.2}$$

3.1. Parámetros Fundamentales

El valor mínimo de $R(\theta)$, bajo las condiciones ya mencionadas, ocurre en el ápex ($\theta = 0$), y lo denotamos como R_0 . Bajo la condición de estado estacionario, la condición de equilibrio de presión ram entre ambos vientos implica que:

$$\frac{R_0}{D} = \frac{\beta^{1/2}}{1 + \beta^{1/2}} \tag{3.3}$$

²En inglés Ancantoid, abreviación de "Anisotropic Cantoid"

 $^{^{3}}$ En referencia a F.P. Wilkin, quien en Wilkin (1996) resolvió el problema de dos vientos entre un viento esférico isotrópico y un viento plano-paralelo de densidad uniforme en la aproximación de capa delgada. El término fue acuñado en Cox et al. (2012) y en este trabajo fue adoptado.

Figura 3.1: Representación esquemática de vientos con diferentes anisotropías: Arriba izquierda: Viento isotrópico esférico. Arriba derecha: viento isotrópico hemisférico. Abajo: Vientos anisotrópicos donde el parámetro k indica el grado de anisotropía (ver capítulo 4). $\xi = \frac{2}{k+2}$ es un parámetro introducido por conveniencia en el apéndice F.2.

Figura 3.2: Representación esquemática del problema de interacción de dos vientos: (a) Dos fuentes separadas por una distancia D emiten un viento radial que forma un choque de proa a una distancia R del origen. El sistema tiene geometría cilíndrica siendo el eje z el eje de simetría. La forma del choque es función únicamente del ángulo polar θ , medido a partir del origen. Otro ángulo que es de utilidad es θ_1 , que corresponde al ángulo polar medido a partir de la posición de la otra fuente. Cuando el viento interior tiene densidad constante y es esférico, denominamos al choque resultante como "cantoide", mientras que si su densidad sigue una ley de potencias de $\cos \theta$, con índice k, será un choque "ancantoide". b) Representación esquemática de la interacción de un choque esférico e isotrópico con una corriente plano-paralela de densidad y velocidad constantes. El choque resultante es en este caso de tipo "wilkinoide".

Donde β es el cociente de la tasa de momentos entre los vientos en interacción. La tasa de pérdida de masa del viento interior es \dot{M}_w y su velocidad terminal es v_w y para el viento exterior estas cantidades son \dot{M}_{w1} y v_{w1} . De esta forma, la tasa de momentos suponiendo que ambos vientos sean esféricos e isotrópicos es:

$$\beta = \frac{M_w v_w}{\dot{M}_{w1} v_{w1}} \tag{3.4}$$

En el caso de que el viento exterior sea una corriente plano-paralela (wilkinoide), puede verse como el límite donde $D \to \infty$, lo que implica que a su vez se trata del límite donde $\beta \to 0$.

3.2. Planitud y "Alatud"

 R_0 nos indica la escala del choque de proa, pero para caracterizar su forma utilizamos parámetros adicionales, mostrados en la figura 3.3. El radio perpendicular R_{90} se obtiene evaluando la función $R(\theta)$ en $\theta = \pi/2$, mientras R_c es el radio de curvatura medido en la posición del ápex. En el apéndice C mostramos que en el caso general en coordenadas cartesianas el radio de curvatura de una curva plana genérica $\vec{\sigma}(t)$ continua y derivable cuyas componentes son (x(t), y(t)) viene dado por:

$$R_c(t) = \frac{\left(\dot{x}^2 + \dot{y}^2\right)^{3/2}}{|\ddot{x}\dot{y} - \ddot{y}\dot{x}|}$$
(3.5)

donde \dot{x} y \dot{y} son las derivadas de x e y respecto a un parámetro adimensional t.

Haciendo la transformación a coordenadas polares con las ecuaciones (3.1, 3.2) y con $\theta = t$, y evaluando el resultado en $\theta = 0$ encontramos que:

$$R_c = \frac{R_0^2}{R_0 - R_{\theta\theta,0}}$$
(3.6)

donde $R_{\theta\theta,0} \equiv \frac{d^2 R}{d\theta^2}$ evaluado en $\theta = 0$.

Figura 3.3: Representación esquemática de los radios característicos de un choque de proa

Una forma simple de obtener el radio de curvatura es haciendo una expansión Taylor para la función $R(\theta)$ como sigue:

$$R(\theta) \simeq R_0 + \frac{1}{2} R_{\theta\theta,0} \theta^2 + \mathcal{O}(\theta^4)$$
(3.7)

y hacer un ajuste polinomial a $R(\theta)$ para $|\theta| < \Delta \theta$ y determinar R_0 y $R_{\theta\theta,0}$ de los primeros coeficientes del ajuste, y posteriormente R_c a partir de la ecuación 3.6. $\Delta \theta$ es el rango del ángulo polar dentro del cual se puede hacer el ajuste. $\Delta \theta = 30^{\circ}$ es una buena opción.

Un último parámetro es el ángulo asintótico de apertura de las alas, denotado como θ_{∞} . Sin embargo, esta medida solo aplica para choques cuyas alas son asintóticamente cónicas, y aún para éstos en la mayoría de los casos es dificil de medirlo debido a que el ángulo polar θ tiende al valor asintótico muy lentamente y además la emisión de las alas es bastante débil. Por otro lado, los radios característicos (R_0, R_c, R_{90}) son medibles observacionalmente en la mayoría de los casos. A partir de éstos, podemos determinar dos parámetros adimensionales llamados "planitud" y "alatud". El primero de éstos es una medida de qué tan plano es el choque de proa en la nariz o "apex", y lo denotamos con la letra griega II, mientras que el segundo es una medida de qué tanto se abren las alas del choque de proa, y lo denotamos con la letra griega Λ . Ambos parámetros se definen a continuación:

$$\Pi \equiv \frac{R_c}{R_0} \tag{3.8}$$

$$\Lambda \equiv \frac{R_{90}}{R_0} \tag{3.9}$$

3.3. Cuádricas de Revolución

Un tipo de superficies relevante y matemáticamente simple son las *Cuádricas de Revolución* (Goldman, 1983; Gfrerrer & Zsombor-Murray, 2009), que son superficies de revolución de las secciones cónicas (círculo, elipse, parábola e hipérbola). Estas superficies son muy flexibles y pueden ser una aproximación muy útil a choques de proa con formas más complejas.

La forma de la cuádrica en el plano xy se muestra en la figura 3.4 para elipses e hipérbolas, respectivamente. La sección cónica en sí se describe con dos parámetros, que son los semi-ejes $a \ge b$. Sin embargo, la curva puede desplazarse a lo largo del eje x, de manera que el radio en el ápex R_0 sea independiente de $a \ge b$, para eso utilizamos un tercer parámetro denominado x_0 que nos indica el desplazamiento del centro de la curva respecto al origen.

De esta manera hacemos la representación paramétrica de las curvas cónicas en términos de un parámetro adimensional denotado con la letra t:

$$x = x_0 + \sigma a \mathcal{C}(t) \tag{3.10}$$

$$y = b\mathcal{S}(t) \tag{3.11}$$

Donde:

$$\mathcal{C}(t), \mathcal{S}(t) = \begin{cases} \cos t, \sin t & \text{elipses} \\ \cosh t, \sinh t & \text{hipérbolas} \end{cases}$$
(3.12)

$$\sigma = \begin{cases} +1 & \text{elipses} \\ -1 & \text{hipérbolas} \end{cases}$$
(3.13)

$$x_0 = R_0 - \sigma a \tag{3.14}$$

Por otro lado, la forma polar del choque de proa $R(\theta)$ viene dada por:

$$\tan \theta = \frac{b\mathcal{S}(t)}{a\mathcal{C}(t) + x_0} \tag{3.15}$$

$$R = \left((a\mathcal{C}(t) + x_0)^2 + b^2 \mathcal{S}^2(t) \right)^{1/2}$$
(3.16)

El tipo de cónica lo podemos caracterizar mediante el parámetro \mathcal{Q} , donde:

$$Q \equiv \sigma \frac{b^2}{a^2} \tag{3.17}$$

Para las superficies abiertas (hiperboloides) tenemos que Q < 0, mientras que para las superficies cerradas tenemos que Q > 0. Casos particulares son la esfera Q = 1 y el paraboloide $Q = 0^4$. De manera equivalente se puede definir el ángulo θ_Q como sigue:

$$\tan \theta_Q = \sigma \frac{b}{a} \tag{3.18}$$

Este ángulo se relaciona con la excentricidad de las cónicas (y que sustituye a esta última en este trabajo) como se muestra a continuación:

$$\tan \theta_Q = \sigma \sqrt{|1 - e^2|} \tag{3.19}$$

El conjunto de parámetros (a, x_0, \mathcal{Q}) es suficiente para caracterizar a nuestras cuádricas de revolución: \mathcal{Q} nos indica el tipo de cónica, *a* establece la escala y x_0 el desplazamiento del centro a lo largo del eje *x*. Sin embargo, para futuras aplicaciones tanto a modelos de interacción de vientos como a observaciones (capítulos 4 y 5) nos sería util hacer la caracterización mediante los parámetros (R_0, Π, Λ) (ver §3.2). Las equivalencias entre los dos conjuntos de parámetros los calculamos a continuación:

$$R_c = \frac{b^2}{a} = a|\mathcal{Q}| \tag{3.20}$$

$$R_{90}^2 = b^2 \sigma \left(1 - \frac{x_0^2}{a^2} \right) = \mathcal{Q} \left(a^2 - x_0^2 \right)$$
(3.21)

 $^{^4\}mathrm{En}$ el apéndice D examinamos los resultados de esta sección y de la §3.4.2 para el caso particular del paraboloide.

Figura 3.4: Representación esquemática de: a) Elipse. Y, b) Hipérbola. En ambos casos se ilustran los parámetros relevantes de éstas y los radios característicos

Figura 3.5: Familia de secciones cónicas, donde el valor del parámetro θ_Q varía desde $\theta_Q < 0$ (hipérbolas) hasta $\theta_Q > 0$ (elipses). Casos especiales son $\theta_Q = 0$ (parábola) y $\theta_Q = 45^{\circ}$ (círculo). Este parámetro sustituye en este trabajo a la excentricidad.

Combinando las ecuaciones (3.8, 3.9, 3.14, 3.17, 3.20, 3.21), obtenemos lo siguiente:

$$R_0 = x_0 + \sigma a \tag{3.22}$$

$$\Pi = \frac{a|\mathcal{Q}|}{x_0 + \sigma a} = \frac{a\mathcal{Q}}{\sigma(x_0 + \sigma a)} = \frac{a\mathcal{Q}}{(a + \sigma x_0)}$$
(3.23)

$$\Lambda = \left(\mathcal{Q}\frac{a - \sigma x_0}{a + \sigma x_0}\right)^{1/2} \tag{3.24}$$

De aquí podemos escribir el parámetro de las cuádricas Q en términos de la planitud y la alatud:

$$Q = 2\Pi - \Lambda^2 \tag{3.25}$$

Por tanto, el signo de $2\Pi - \Lambda^2$ determina si una cuádrica es esferoidal o hiperboloidal. En la figura 3.5 mostramos como, para planitud constante, podemos tener una familia de cónicas variando únicamente la alatud, y por consiguiente, el parámetro Q.

3.4. Proyección en el Plano del Cielo

Para un choque de proa que es la vez geométricamente delgado y ópticamente delgado, únicamente se observa el borde de éste por abrillantamiento al limbo, por lo tanto, su orientación respecto a la línea de visión modifica su forma respecto a la forma real del choque. Para ello, rotamos el sistema de referencia del choque de proa en coordenadas cartesianas, denotado por (x, y, z), por un ángulo que llamamos *inclinación*, denotado por *i*, en el plano *xz*. La inclinación está definida de modo que cuando $i = 0^{\circ}$ el eje de simetría del choque es perpendicular a la línea de visión, es decir, lo observamos "de canto". Y cuando $i = 90^{\circ}$ el eje desimetría es paralelo a la línea de visión, es decir, que lo observamos "de frente". De este modo la transformación entre el sistema de refencia del choque y el sistema de

Figura 3.6: Sistema de referencia del choque v
s sistema de referencia del plano del cielo. Los ejes x' y
 y' se encuentran en el plano del cielo, mientras el ej
ez' es paralelo a la línea de visión. Solo la región del choque cuya tangente se
a paralela a la línea de visión será visible por abrillantamiento al limbo.

referencia del plano del cielo, denotado por (x', y', z') queda como sigue:

$$\begin{pmatrix} x'\\y'\\z' \end{pmatrix} = \mathbf{A}_y(i) \begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} x\cos i - z\sin i\\y'\\z\cos i + x\sin i \end{pmatrix}$$
(3.26)

Donde $\mathbf{A}_{y}(i)$ está definida por la ecuación (E.4) en el apéndice E.

Por otro lado, la forma tridimensional del choque de proa viene dado por una rotación alrededor del eje x utilizando la matriz de rotación $\mathbf{A}_x(\phi)$ (ecuación E.5) sobre las ecuaciones (3.1, 3.2):

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{A}_x(\phi) \begin{pmatrix} R(\theta)\cos\theta \\ R(\theta)\sin\theta \\ 0 \end{pmatrix} = \begin{pmatrix} R(\theta)\cos\theta \\ R(\theta)\sin\theta\cos\phi \\ R(\theta)\sin\theta\sin\phi \end{pmatrix}$$
(3.27)

La relación entre ambos sistemas de referencia se ilustra en la figura 3.6.

3.4.1. Vectores normal y tangente a la superficie

Definimos los vectores \hat{n} y \hat{t} , como los vectores normal y tangente a la superficie, respectivamente para ϕ constante. En el caso $\phi = 0$ (figura 3.7), ambos vectores se encuentran en el plano xy y es fácil mostrar que:

$$\hat{t}_0 = \begin{pmatrix} -\cos\alpha\\ \sin\alpha\\ 0 \end{pmatrix} \quad \text{y} \quad \hat{n}_0 = \begin{pmatrix} \sin\alpha\\ \cos\alpha\\ 0 \end{pmatrix}$$
(3.28)

Donde:

$$\tan \alpha = -\frac{dy}{dx} = \frac{1+\omega \tan \theta}{\tan \theta - \omega}$$
(3.29)

y:

$$\omega(\theta) = -\frac{1}{R} \frac{dR}{d\theta} \tag{3.30}$$

Para $\phi \neq 0$, basta con hacer una rotación de las ecuaciones (3.28) alrededor del eje x utilizando la matriz de rotación $\mathbf{A}_x(\phi)$:

$$\hat{n} = \mathbf{A}_x(\phi)\hat{n}_0 = \begin{pmatrix} \sin\alpha\\\cos\alpha\cos\phi\\\cos\alpha\sin\phi \end{pmatrix} \quad \hat{t} = \mathbf{A}_x(\phi)\hat{t}_0 = \begin{pmatrix} -\cos\alpha\\\sin\alpha\cos\phi\\\sin\alpha\sin\phi \end{pmatrix}$$
(3.31)

3.4.2. Línea tangente

Debido a que el choque es ópticamente delgado y geométricamente delgado, solo la región del choque cuya tangente sea paralela a la línea de visión será visible. Esto corresponde a una curva que denominamos *línea tangente*, que debe cumplir con la siguiente condición:

$$\hat{n} \cdot \hat{z}' = 0 \tag{3.32}$$

Denotamos como ϕ_T al ángulo azimutal que cumple la condición anterior para una inclinación dada, en función del ángulo polar θ :

$$\sin \phi_T = -\tan i \tan \alpha = \tan i \, \frac{1 + \omega \tan \theta}{\omega - \tan \theta} \tag{3.33}$$

Figura 3.7: Vectores unitarios normal y tangente a la superficie $R(\theta)$ en un plano de azimuth ϕ constante.

De esta manera, la forma de la línea tangente del choque de proa, a la que llamamos *forma proyectada* viene dada por:

$$\begin{pmatrix} x'_T \\ y'_T \\ z'_T \end{pmatrix} = R(\theta) \begin{pmatrix} \cos\theta\cos i - \sin\theta\sin\phi_T\sin i \\ \sin\theta\left(1 - \sin^2\phi_T\right)^{1/2} \\ \cos\theta\sin i + \sin\theta\sin\phi_T\cos i \end{pmatrix}$$
(3.34)

En el caso general, z'_T no es una función lineal de x'_T y y'_T , por lo que la línea tangente no se encuentra en un plano. La forma aparente (x'_T, y'_T) de la línea tangente también puede escribirse en coordenadas polares (R', θ') , donde:

$$R'(\theta) = \left(x_T'^2 + y_T'^2\right)^{1/2} \quad \text{y} \quad \tan \theta' = \frac{y_T'}{x_T'} \tag{3.35}$$

Es de notar a su vez que la ecuación (3.33) no tiene solución para valores arbitrarios de θ y de la inclinación, puesto que se requiere que $|\sin \phi_T| < 1$. Por tanto, la línea tangente solo existe para valores de θ tales que $\theta < \theta_0$ donde θ_0 es el valor de θ en el eje de simetría de la línea tangente proyectada $(\theta'(\theta_0) = 0)$ y que se obtiene resolviendo la siguiente ecuación implícita:

$$\tan \theta_0 = \frac{|\tan i| + \omega(\theta_0)}{1 - \omega(\theta_0) |\tan i|}$$
(3.36)

Esto implica que si el choque de proa es suficientemente "abierto" ($\alpha > \alpha_{min}$), entonces para inclinaciones tales que $|i| > 90^{\circ} - \alpha_{min}$ no existirá la línea tangente para ningún valor de θ , es decir, el choque de proa se encontrará sufientemente "de cara" como para que ya no parezca un choque de proa para el observador.

3.4.3. Planitud y Alatud proyectadas: caso general

La forma del choque de proa en el sistema de de referencia del cielo $R'(\theta')$ es la que actualmente se observa, por tanto es necesario definir los radios característicos R'_0 y R'_{90} , donde R'_0 es el radio del eje de simetría aparente y R'_{90} es el radio aparente en la dirección perpendicular a R'_0 . Es decir $R'_0 = x'_T(y'_t = 0)$ y $R'_{90} = y'_t(x'_t = 0)$. Utilizando las ecuaciones (3.33) y (3.34) encontramos que:

$$R'_0 = R(\theta_0) \cos(\theta_0 - |i|)^5 \tag{3.37}$$

Donde θ_0 es la solución de la ecuación (3.36), y

$$R'_{90} = R(\theta_{90}) \sin \theta_{90} \left(1 - \sin^2 \phi_T(\theta_{90})\right)^{1/2}$$
(3.38)

donde θ_{90} es la solución de la siguiente ecuación implícita:

$$\cot \theta_{90} = \frac{1 - \left(1 + \omega(\theta_{90})^2 \sin^2 2i\right)^{1/2}}{2\omega(\theta_{90}) \cos^2 i}$$
(3.39)

Por otro lado, el radio de curvatura aparente se obtiene a partir de la ecuación (3.6) pero en el sistema de referencia primado:

$$R'_{c} = \frac{R'^{2}_{0}}{R'_{0} - R'_{\theta'\theta',0}}$$
(3.40)

1 10

⁵Evaluando la ecuación (3.33) en $\theta = \theta_0$ con ayuda de la ecuación (3.36) encontramos que $\sin \phi_T(\theta_0) = -\frac{\tan i}{|\tan i|}$ por lo que al sustituir este resultado en la componente xde la ecuación (3.34) encontramos que $R'_0 = R(\theta_0) \left(\cos \theta_0 \cos i + \sin \theta_0 \sin i \frac{\tan i}{|\tan i|}\right)$ que finalmente se reduce al resultado de la ecuación (3.37)

3.4.4. Aplicación a las Cuádricas de Revolución

El objetivo de esta sección es obtener la forma proyectada de las cuádricas de revolución, puesto que son una aproximación buena y mucho más sencilla a la forma real de un choque de proa. Para esto es conveniente utilizar un sistema de referencia donde el origen se ubica en el centro de la sección cónica:

$$(X,Y) = (x - x_0, y) \tag{3.41}$$

de esta manera, la forma de las cuádricas de revolución es:

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \mathbf{A}_x(\phi) \begin{pmatrix} a\mathcal{C}(t) \\ b\mathcal{S}(t) \\ 0 \end{pmatrix} = \begin{pmatrix} a\mathcal{C}(t) \\ b\mathcal{S}(t)\cos\phi \\ b\mathcal{S}(t)\sin\phi \end{pmatrix}$$
(3.42)

Siguiendo el procedimiento mostrado en la §3.4 calculamos el ángulo azimutal ϕ que cumple con el criterio de ser tangente a la línea de visión:

$$\sin \phi_T = \frac{b\mathcal{C}(t)}{a\mathcal{S}(t)} \tan i \tag{3.43}$$

Ahora utilizamos la ecuación (3.26) para obtener la forma aparente de una cuádrica dada:

$$X'_T = \frac{\mathcal{C}(t)}{a\cos i} \left(a^2\cos^2 i + \sigma b^2\sin^2 i\right)$$
(3.44)

$$Y'_T = b\mathcal{S}(t) \left(1 - \frac{b^2 \mathcal{C}^2(t)}{a^2 \mathcal{S}^2(t)} \tan^2 i\right)^{1/2}$$
(3.45)

Podemos mostrar que la forma proyectada de una sección cónica (elipse o hipérbola), es de la misma clase que la sección cónica original. Si ese fuera el caso, entonces podemos escribir las ecuaciones (3.44, 3.45) de la siguiente manera:

$$X_T' = a'\mathcal{C}(t') \tag{3.46}$$

$$Y_T' = b' \mathcal{S}(t') \tag{3.47}$$

Después de un poco de álgebra encontramos que nuestra suposición es consistente, con las siguientes equivalencias:

$$a' = a\cos i f_{\mathcal{Q},i} \tag{3.48}$$

$$b' = b \tag{3.49}$$

$$\mathcal{C}(t') = f_{\mathcal{Q},i}\mathcal{C}(t) \tag{3.50}$$

Donde introducimos el factor de proyección de las cuádricas:

$$f_{Q,i} = \left(1 + Q \tan^2 i\right)^{1/2}$$
 (3.51)

Como ya demostramos que la forma proyectada de la línea tangente de una superficie cúadrica es una sección cónica del mismo tipo, entonces podemos determinar la forma proyectada reutilizando las ecuaciones (3.22-3.25) sustituyendo las cantidades no primadas por sus equivalentes primados. De esta manera, utilizando las ecuaciones (3.17, 3.48, 3.49) encontramos que el parámetro de las cuádricas para la forma proyectada es:

$$\mathcal{Q}' = \frac{\mathcal{Q}}{f_{\mathcal{Q},i}^2 \cos^2 i} \tag{3.52}$$

Ahora regresamos al sistema de referencia centrado en la estrella:

$$(x'_T, y'_T) = (X'_T + x'_0, Y'_T)$$
(3.53)

donde el desplazamiento proyectado x'_0 es:

$$x_0' = x_0 \cos i \tag{3.54}$$

La proyección de la distancia al ápex viene dada por la versión primada de la ecuación (3.22):

$$R'_0 = x'_0 + \sigma a' \tag{3.55}$$

$$\implies \frac{R'_0}{R_0} = \cos i \left[1 + \frac{\Pi}{\mathcal{Q}} \left(1 - f_{\mathcal{Q},i} \right) \right] \tag{3.56}$$

eq;

Asimismo la planitud y la alatud proyectada pueden calcularse a partir de las ecuaciones (3.23, 3.25, 3.48, 3.52):

$$\Pi' = \frac{\Pi}{(R'_0/R_0) f_{\mathcal{Q},i} \cos i}$$
(3.57)

$$\Lambda' = \left(2\Pi' - \mathcal{Q}'\right)^{1/2} \tag{3.58}$$

En la figura 3.8 mostramos el comportamiento de la planitud y la alatud aparente con la inclinación para distintos valores del parámetro \mathcal{Q} (color) y de la planitud Π (grosor de la curva). Se puede observar que para las superficies elipsoidales (Q > 0), la planitud y alatud aparente tienden a $\Pi' = \Lambda' = 1$ conforme $i \to 90^{\circ}$. Esto se debe a que en este límite observamos la superficie de frente y vemos su sección transversal circular. En el caso del paraboloide la convergencia se da a $\Lambda' = \Pi' = 2$. Por otro lado, la planitud y alatud aparente divergen cuando $|i| \rightarrow i_{\rm crit} = 90^\circ - |\theta_Q|$ debido a que, como ya mencionamos en la §3.4.2, cuando $|i| > i_{crit}$ ya no existe una línea tangente a la línea de visión y por tanto no se observaría abrillantamiento al limbo. También cabe destacar dos casos particulares: El esferoide confocal con planitud unitaria ($\Pi = 1$) y el paraboloide confocal ($\Pi = \Lambda = 2$). En estos dos casos su forma aparente no se ve afectada por la inclinación: para el esferoide confocal se puede mostrar fácilmente a partir de las ecuaciones (3.51, 3.52, 3.56-3.58) que si Q = 1, $\Pi = 1$, entonces $\Pi' = 1$, $\Lambda' = 1$ y $\mathcal{Q}'=1$, independientemente de la inclinación. De manera similar, tomando el límite de estas mismas ecuaciones cuando $\mathcal{Q} \to 0$ podemos estimar la planitud y alatud aparente del paraboloide, y para el caso particular donde $\Pi = 2$, se obtiene a su vez que $\Pi' = 2$ independientemente de la inclinación.

En la figura 3.9a observamos el diagrama de diagnóstico $\Pi' - \Lambda'$. Cada curva representa a una cuádrica de revolución siguiendo la misma convención que en la figura 3.8 para los valores de Q y Π y variando la inclinación a lo largo de cada una de éstas, donde además el punto donde i = 0 (cuádrica vista de canto) se marca con un punto. Las regiones sombreadas representan a cada clase de cuádrica, la zona superior más clara a los hiperboloides, la zona gris delgada a los elipsoides prolatos, la interfaz entre estas dos últimas a los paraboloides y la zona gris inferior a los elipsoides oblatos. Se puede observar que en ningún caso las curvas cruzan de una región a

Figura 3.8: Efectos de la proyección sobre las cuádricas de revolución con la inclinación |i|. Los colores de las curvas representan variaciones en el parámetro Q de las cuádricas. El grosor de la curva indica el valor de la planitud intrínseca Π . Los rectángulos sombreados muestran cuartiles de $|\sin i|$ que se encuentran equitativamente poblados para una distribución isotrópica de orientaciones. (a) Planitud aparente Π' . (b) Alatud aparente Λ'

Figura 3.9: (a) Diagrama de diagnóstico Λ' vs Π' para diferentes tipos de cuádricas: esferoides oblatos (amarillo), esferoides (rojo), esferoides prolatos (morado), paraboloides (negro) e hiperboloides (azul, verde y turquesa). Cada punto de una curva representa un valor diferente de la inclinación, y se muestran explícitamente las inclinaciones múltiplos de 15°, con la forma de círculos rellenos. Las regiones sombreadas representan al tipo de cuádrica que mejor ajusta a los parámetros (Π', Λ') cubiertos. La región clara para los hiperboloides, la región gris oscura para los esferoides prolatos y la región gris clara para los hiperboloides oblatos. La interfaz entre la región de hiperboloides y esferoides prolatos corresponde a los paraboloides y la región entre esferoides prolatos y oblatos a los esferoides. (b) Distacia proyectada R'_0/R_0 versus |i|.

Figura 3.10: Efectos de la inclinación de la forma aparente de arcos cuádricos cuya planitud y alatud están uniformemente distribuídos en los rangos $\Pi = [0.5, 4.5]$, $\Lambda = [0.5, 4.5]$. En cada pánel se muestra la forma aparente incrementando la inclinación en intervalos iguales de $|\sin i|$. El collor representa el parámetro Q, desde azul (menor valor de Q, que representa formas más abiertas), pasando por naranja, hasta amarillo (elipsoides oblatos). El tamaño representa la distancia aparente estrella-ápex R'_0/R_0 .

otra. También se observa de nuevo que las curvas elipsoidales convergen a $(\Pi', \Lambda') = (1, 1)$, las curvas hiperbólicas a $(\Pi', \Lambda') = (+\infty, +\infty)$ y las parabólicas a $(\Pi', \Lambda') = (2, 2)$. Asimismo en la figura 3.9b observamos el comportamiento de la separación aparente estrella-ápex con inclinación. En este caso se observa que para inclinaciones pequeñas $(|i| < 30^{\circ})$, esta separación depende muy poco del parámetro Q, siendo más importante la planitud Π . Por otro lado, para inclinaciones mayores, la separación aparente se incrementa cada vez más rápido para cuádricas abiertas ($Q \leq 0$), mientras que para los elipsoides la separación es cada vez más lenta e incluso puede decrecer con inclinación.

En la figura 3.10 mostramos una visión complementaria del análisis de

la forma aparente con la inclinación. En esta figura se toman "capturas" de (Π', Λ') en intervalos regulares de sin *i*. Los valores de la planitud y alatud intrínseca están uniformemente distribuídos en los intervalos $\Pi = [0.5, 4.5]$ v $\Lambda = [0.5, 4.5]$, lo que nos da un cuadrado uniformemente distribuído de valores cuando |i| = 0, y que se va distorsionando conforme |i| se incrementa. La escala de color representa el parámetro \mathcal{Q} , incrementándose dicho parámetro desde el azúl hasta el amarillo, pasando por el naranja, mientras que el tamaño del punto es proporcional a R'_0/R_0 . Se puede observar que todos los puntos tienden a la línea $\Pi' = \Lambda'$) a altas inclinaciones, y que los puntos azules quedan fuera del rango de la gráfica. Esto es porque a altas inclinaciones, para las formas muy abiertas ya no existe la línea tangente a la línea de visión. De hecho, la región verde sombreada es la región para la cual aun existe la línea de visión para cada inclinación y se hace cada vez más pequeña conforme la inclinación aumenta. Esta figura es meramente cualitativa, puesto que no hay razón para esperar una distribución uniforme de planitud y alatud (en el siguiente capítulo encontramos que en el modelo de capa delgada no encontramos formas cuvo parámetro \mathcal{Q} sea mayor a 1. por ejemplo).

Capítulo 4

Modelo de Capa Delgada

Un ejemplo más realista para la forma de los choques de proa proviene de modelos hidrodinámicos en estado estacionario de la interacción de flujos hipersónicos en el límite de capa delgada. Ejemplos clásicos son la interacción entre dos vientos de Cantó et al. (1996) (CRW de aquí en adelante) y la interacción entre un viento con una corriente plano-paralela (Wilkin, 1996).

Debido a la relevancia del artículo de CRW para este trabajo, mucho del material presentado corresponde a dicho artículo, como por ejemplo las secciones $\S4.1$ y $\S4.2.2$, mientras que el resto de las secciones son una extensión a este trabajo, y se encuentra en nuestro artículo anexado en el apéndice H.

4.1. Cantidades conservadas en un flujo hipersónico de capa delgada

Consideramos dos flujos hipersónicos, no acelerados que forman una capa estacionaria delgada formada por dos choques radiativos separados por una discontinuidad de contacto. El sistema tiene geometría cilíndrica y los vientos no tienen velocidad azimutal. Bajo estos términos, describimos la posición de la capa delgada como $R(\theta)$, donde R es el radio de la capa medido a partir de la posición del origen del viento con menor momento y θ es el ángulo polar. Asumimos que la capa de gas chocado es muy delgada, por lo que podemos asumir que tiene una sola velocidad pos-choque dada

por:

$$\vec{v} = v_r \hat{r} + v_z \hat{z} \tag{4.1}$$

Donde el eje de simetría del sistema es paralelo a \hat{z} , y \hat{r} es el radio cilíndrico. Definimos $\dot{M}(\theta)$, $\vec{\Pi}(\theta)$ y $\dot{J}(\theta)$ como la tasa de pérdida de masa, la tasa de momento y la tasa de momento angular, respectivamente, de la capa delgada integradas desde $\theta = 0$ hasta θ . Éstas se calculan de la siguiente manera:

$$\dot{\Pi}(\theta) = \dot{\Pi}_r(\theta)\hat{r} + \dot{\Pi}_z(\theta)\hat{z} = \dot{M}\left(v_r\hat{r} + v_z\hat{z}\right)$$

$$\vec{z} = \vec{z} \quad \vec{z} \quad$$

$$\dot{J}(\theta) = \vec{R}(\theta) \times \dot{\Pi}(\theta) \tag{4.3}$$

$$\dot{M}(\theta) = \dot{M}_w(\theta) + \dot{M}_{w1} \tag{4.4}$$

Donde $\vec{R}(\theta) \equiv R(\theta) \sin \theta \ \hat{r} + R(\theta) \cos \theta \ \hat{z}$. Resolviendo el producto cruz y tomando su magnitud encontramos que:

$$\dot{J}(\theta) = \dot{M}(\theta)R(\theta)v_{\theta} \tag{4.5}$$

donde:
$$v_{\theta} = v_r \cos \theta - v_z \sin \theta$$
 (4.6)

Por otro lado, al asumir estado estacionario, necesitamos que la tasa de pérdida de masa, la tasa de momento y la tasa de momento angular de la capa delgada sean iguales a aquellas inyectadas por los dos vientos. Entonces definimos estas cantidades como \dot{M}_w , $\dot{\Pi}_{wr}$, $\dot{\Pi}_{wz}$ y \dot{J}_w para el viento con menor momento, y para el otro viento se utiliza la misma notación solo que utilizando el subíndice "w1". De esta forma tenemos que:

$$\dot{\Pi}_{r}(\theta)\hat{r} + \dot{\Pi}_{z}(\theta)\hat{z} = \begin{bmatrix} \dot{\Pi}_{wr}(\theta) + \dot{\Pi}_{wr1}(\theta) \end{bmatrix} \hat{r} + \begin{bmatrix} \dot{\Pi}_{wz}(\theta) + \dot{\Pi}_{wz1}(\theta) \end{bmatrix} \hat{z} \quad (4.7)$$

$$\dot{J} = \dot{J}_w(\theta) + \dot{J}_{w1}(\theta) \tag{4.8}$$

$$M(\theta) = M_w(\theta) + M_{w1}(\theta) \tag{4.9}$$

Combinando las ecuaciones (4.2, 4.4, 4.5, 4.7-4.9) encontramos que:

$$\dot{M}(\theta) \left[v_r \hat{r} + v_z \hat{z} \right] = \left(\dot{\Pi}_{wr}(\theta) + \dot{\Pi}_{wr1}(\theta) \right) \hat{r} + \left(\dot{\Pi}_{wz}(\theta) + \dot{\Pi}_{wz1}(\theta) \right) \hat{z} \quad (4.10)$$

$$M(\theta)v_{\theta}R(\theta) = J_w(\theta) + J_{w1}(\theta)$$
(4.11)

Y finalmente combinando con la ecuación (4.6) resolvemos para $R(\theta)$:

$$R(\theta) = \frac{\dot{J}_w(\theta) + \dot{J}_{w1}(\theta)}{\left(\dot{\Pi}_{wr}(\theta) + \dot{\Pi}_{wr1}(\theta)\right)\cos\theta - \left(\dot{\Pi}_{wz}(\theta) + \dot{\Pi}_{wz1}(\theta)\right)\sin\theta}$$
(4.12)

4.2. Problema de Interacción de Dos Vientos

Aplicamos el formalismo ya mencionado para la interacción de dos vientos radiales. El viento con menor momento se localiza en el origen, y su densidad a radio fijo varía con el ángulo polar como una ley de potencias (figura 3.1), o bien, un viento interno con densidad constante e isotrópica:

$$n_{An}(\theta) = \begin{cases} n_0 \cos^k \theta & \text{si } \theta \le 90^\circ \\ 0 & \text{si } \theta > 90^\circ \end{cases}$$
(4.13)

$$n_C = n_0 \tag{4.14}$$

Donde n_0 corresponde a la densidad del viento interior en el eje de simetría ($\theta = 0$) y a su vez en el radio tal que el viento ha alcanzado su velocidad terminal. Mientras que el índice k indica el grado de anisotropía del viento interior. Cuando la densidad del viento está dada por la ecuación (4.14) denominamos a los choques resultantes como "cantoides", por Cantó et al. (1996), mientras que si la densidad está dada por (4.13) entonces los denominamos "Ancantoides". Un caso particularmente interesante es el viento para un proplyd (Henney & Arthur, 1998), donde k = 1/2. Por el momento restringimos al viento "externo" como isotrópico. El problema se muestra de manera esquemática en la figura 3.2.

Al considerar un flujo de masa en estado estacionario que se mueve a través de una superficie esférica de radio r_0 encontramos la siguiente expresión para calcular la tasa de pérdida de masa:

$$\dot{M}_w = \int_0^\theta \int_0^{2\pi} \rho_w v_w \ r_0^2 \sin\theta \ d\theta \ d\phi \tag{4.15}$$

Donde v_w es la velocidad del viento interno, $\rho_w = n\bar{m}$ es su densidad, n se obtiene utilizando la ecuación 4.14 ó 4.13. Y \bar{m} es la masa promedio de las partículas del viento.

Resolviendo (4.15) para vientos con densidades dadas por (4.13, 4.14), encontramos que:

$$\dot{M}_w = \dot{M}_w^0 \begin{cases} (1 - \cos^k \theta) & \text{Ancantoides} \\ \frac{1}{2} (1 - \cos \theta) & \text{Cantoides} \end{cases}$$
(4.16)

Donde:

$$\dot{M}_{w}^{0} = \begin{cases} \frac{2\pi}{k+1}\bar{m}n_{o}v_{w}r_{0}^{2} & \text{Ancantoides} \\ 4\pi\bar{m}n_{o}v_{w}r_{0}^{2} & \text{Cantoides} \end{cases}$$
(4.17)

Con esto, obtenemos las tasas de momento y momento angular. Para los choques cantoides, los resultados corresponden a las ecuaciones (9-11) de CRW, sin embargo, para los choques ancantoides, las tasas de momento (axial y radial) y momento angular están dados por:

$$\dot{\Pi}_{wz} = \int_{0}^{\min(\theta, \pi/2)} v_w \cos\theta \ d\dot{M}_w = \frac{v_w \dot{M}_w^0}{2(k+2)} \max\left(1 - \cos^{k+2}\theta, 1\right)$$
(4.18)

$$\dot{\Pi}_{wr} = \int_0^{\min(\theta, \pi/2)} v_w \sin\theta \ d\dot{M}_w = \frac{1}{2} \dot{M}_w^0 v_w I_k(\theta)$$
(4.19)

$$\dot{J}_w = \int_0^{\min(\theta, \pi/2)} |\vec{R} \times \vec{v}_w| d\dot{M}_w = 0$$
(4.20)

Donde:

$$I_k(\theta) = \int_0^{\min(\theta, \pi/2)} \cos^k \theta \sin^2 \theta \ d\theta \tag{4.21}$$

Esta última integral tiene una solución analítica en términos de una función hipergeométrica de la forma ${}_2F_1\left(-\frac{1}{2};\frac{1+k}{2};\frac{3+k}{2};\cos^2\theta\right)$. En el caso particular k = 1/2, este resultado se "simplifica" a una integral de segundo tipo de la forma $E\left(\frac{\theta}{2}|2\right)$, pero es más sencillo calcular estas integrales de manera numérica. La tasa de momento angular para el viento interior es cero debido a que éste se mide respecto al origen, donde se localiza la fuente con menor

Figura 4.1: Soluciones para la forma de la discontinuidad de contacto del modelo de capa delgada. Las coordenadas están normalizadas con D, la distancia entre las fuentes de los vientos. La fuente del viento más débil se localiza en el origen (0,0), mientras que la otra fuente se localiza en (1,0), ambas marcadas con puntos negros. Los choques de proa mostrados tienen un valor del parámetro $\beta = 0.01$ fijo, mientras que el índice de anisotropía k varía desde 0 hasta 3, mostrados en escala de colores verdes. El choque cantoide con $\beta = 0.01$ se muestra en negro. Nótese que el choque ancantoide con k = 0 es más cerrado en las alas que el tipo cantoide, debido a que en los choques ancantoides la densidad del viento cae a cero cuando $\theta \ge 90^{\circ}$, mientras que en los cantoides la densidad del viento es constante para toda θ .

momento. En este punto los vectores de posición y velocidad para un valor de θ dado son paralelos.

Para el viento exterior utilizamos las ecuaciones (12-15) y (19-22) de CRW sin cambiar, que corresponden a las ecuaciones (4.32 - 4.35) y (4.22-4.25) respectivamente, pero las incluímos en las siguientes secciones por completez.

4.2.1. Interacción con un viento esférico isotrópico

En este caso tomamos como variable independiente al ángulo polar medido a partir de la posición de la fuente del viento externo, denotado por θ_1 . De esta forma las tasas de pérdida de masa, momento y momento angular quedan como sigue:

Figura 4.1 (cont.): En esta figura el parámetro de anisotropía k es fijo con valor de 1/2, mientras que el parámetro β varía desde 10^{-3} hasta 0.99. La distancia al ápex R_0 se incrementa conforme β crece, llegando al valor asintótico de $R_0/D = 0.5$ cuando $\beta \rightarrow 1$. Algo notable es que en los choques ancantoides aún en el caso límite $\beta = 1$, la forma del choque también es curva, debido a que la densidad del viento interior cae con θ y fuera del eje de simetría el momento del viento exterior es mayor.

$$\dot{M}_{w1} = \frac{M_{w1}^0}{2} \left(1 - \cos\theta_1\right) \tag{4.22}$$

$$\dot{\Pi}_{wz1} = -\frac{v_{w1}\dot{M}_{w1}^0}{4}\sin^2\theta_1 \tag{4.23}$$

$$\dot{\Pi}_{wr1} = \frac{v_{w1}M_{w1}^0}{4} \left(\theta_1 - \sin\theta_1 \cos\theta_1\right)$$
(4.24)

$$\dot{J}_{w1} = \int_0^{\theta_1} R(\theta) v_{w1} \sin(\pi - \theta - \theta_1) \, d\dot{M}_{w1} \tag{4.25}$$

Utilizando la ley de los senos (ver figura 3.2), la ecuación (4.25) queda como sigue:

$$\dot{J}_{w1} = Dv_{w1} \int_0^{\theta_1} \sin \theta_1 \ d\dot{M}_{w1} = \frac{v_{w1} \dot{M}_{w1}^0}{4} \left(\theta_1 - \sin \theta_1 \cos \theta_1\right) D \qquad (4.26)$$

Por otro lado, de la figura 3.2, podemos deducir la siguiente relación

geométrica entre $R(\theta)$, θ y θ_1 :

$$\frac{R(\theta)}{D} = \frac{\sin \theta_1}{\sin(\theta + \theta_1)} \tag{4.27}$$

Combinando las ecuaciones (4.12, 4.18 - 4.26, 4.27) obtenemos una ecuación implícita que nos indica la dependencia de θ_1 con θ :

$$\theta_1 \cot \theta_1 - 1 = 2\beta I_k(\theta) \cot \theta - \frac{2\beta}{k+2} \left(1 - \cos^{k+2} \theta \right)$$
(4.28)

donde:

$$\beta = \begin{cases} 2(k+1) \frac{\dot{M}_{w}^{0} v_{w}}{\dot{M}_{w1}^{0} v_{w1}} & \text{Ancantoides} \\ \frac{\dot{M}_{w}^{0} v_{w}}{\dot{M}_{w1}^{0} v_{w1}} & \text{Cantoides} \end{cases}$$
(4.29)

Sin embargo, (4.28) solo aplica en el rango $0<\theta\leq\pi/2.$ Cuando $\theta>\pi/2$ la relación entre θ y θ_1 es:

$$\theta_1 \cot \theta_1 - 1 = 2\beta \left(I_k(\pi/2) \cot \theta - \frac{1}{k+2} \right)$$
(4.30)

Donde:

$$I_k(\pi/2) = \frac{\pi}{4} \frac{\Gamma\left(\frac{1+k}{2}\right)}{\Gamma\left(\frac{4+k}{2}\right)} \tag{4.31}$$

y Γ es la función Gamma usual. Resolviendo para $R(\theta)$, encontramos la forma del choque de proa para (β, k) fijos. Esto se ilustra en la figura 4.1 para β fijo y múltiples valores del parámtero de anisotropía k. En este caso se observa de manera cualitativa que entre mayor sea k más cerrado es el choque. Por otro lado, en la figura 4.1 (cont.) se muestran diferentes choques donde k es fijo y se hace variar β . Entre mayor sea β , más abierta es la forma, y en el límite $\beta \to 1$ la forma del choque es plano-paralela en el caso de los choques cantoides.

Figura 4.2: Solución para la forma de la discontinuidad de contacto de los choques ancantoides y wilkinoides. Las coordenadas están normalizadas con la distancia al ápex R_0 . El choque wilkinoide se muestra en negro y los choques cantoides en escala de azul, con β variando desde 10^{-3} hasta 0.08. Nótese que el choque wilkinoide se comporta como el caso asíntótico de los choques cantoides cuando $\beta \rightarrow 0$.

4.2.2. Interacción de un viento esférico isotrópico con un viento plano–paralelo (Choques Wilkinoides)

En este caso las tasas de pérdida de masa, de momento y momento angular del viento plano-paralelo con velocidad v_a y densidad uniforme ρ_a quedan como sigue:

$$\dot{M}_{w1} = \pi \rho_a v_a R^2 \sin^2 \theta \tag{4.32}$$

$$\dot{\Pi}_{wz1} = -\pi \rho_a v_a^2 R^2 \sin^2 \theta \tag{4.33}$$

$$\dot{\Pi}_{wr1} = 0 \tag{4.34}$$

$$\dot{J}_{w1} = \int_0^r r' v_a \sin\theta \ d\dot{M}_{w1} = \frac{2}{3} \pi \rho_a v_a^2 R^3 \sin^3\theta \tag{4.35}$$

Sustituyendo estas ecuaciones en (4.12) junto con (4.16-4.20) para vientos tipo cantoides (k = 0) obtenemos lo siguiente:

$$R = \frac{\frac{2}{3}\pi\rho_a v_a R^3 \sin^3 \theta}{\frac{\dot{M}_w^0 v_w}{4} \left(\theta - \sin \theta \cos \theta\right) \cos \theta - \left(\frac{\dot{M}_w^0 v_w}{4} \sin^2 \theta - \pi\rho_a v_a^2 R^2 \sin^2 \theta\right) \sin \theta}$$
(4.36)

La condición de equilibrio de presión en este caso nos lleva a la siguiente relación:

$$\frac{\dot{M}_w^0 v_w}{4\pi R_0^2} = \rho_a v_a^2 \tag{4.37}$$

Por tanto:

$$R/R_0 = \frac{\frac{2}{3} \left(R/R_0\right)^3 \sin^3 \theta}{\left(\theta - \sin \theta \cos \theta\right) \cos \theta - \left(\sin^2 \theta - \left(R/R_0\right)^2 \sin^2 \theta\right) \sin \theta}$$
(4.38)

Resolviendo para R/R_0 encontramos que:

$$R = R_0 \left[\csc^2\theta \left(1 - \theta \cot\theta\right)\right]^{1/2}$$
(4.39)

Este resultado se muestra en la figura 4.2, junto con choques tipo cantoides con diferentes valores de β . En esta figura se puede ver que conforme $\beta \rightarrow 0$ la forma de los choques cantoides tiende a la forma del choque wilkinoide.

4.3. Forma "verdadera" de los choques cantoides, ancantoides y wilkinoides

Para los tres tipos de formas de choques de proa que utilizamos en este trabajo (cantoides, ancantoides y wilkinoides), calculamos su correspondiente alatud y planitud. Para los choques ancantoides obtenemos lo siguiente. El procedimiento detallado se puede consultar en el apéndice F:

Figura 4.3: Diagrama $\Lambda - \Pi$ para choques cantoides, ancantoides y wilkinoides. En cada curva tenemos un valor diferente para el parámetro de anisotropía k. En cada línea, β varía en el rango [0, 1], y los parámetros (Π, Λ) fueron calculados de acuerdo a los resultados del apéndice F. Los círculos del color de las líneas representan valores particulares de β : 10⁻³, 10⁻², 0.1 y 0.5, y con la diferencia de que el coeficiente de segundo orden de la ecuación 4.41 para la planitud Π fue obtenido de manera numérica con el fin de utilizar este método para encontrar la planitud aparente con la ecuación 3.40.

$$\Lambda = \frac{(3\xi)^{1/2} \left(1 + \beta^{1/2}\right)}{\left(1 + \frac{1}{5}\xi\beta\right)^{1/2} \left(1 - \xi\beta\right)}$$
(4.40)

$$\Pi = \left| 1 - 2\frac{R_{\theta\theta,0}}{R_0} \right|^{-1} \tag{4.41}$$

Donde:
$$R_{\theta\theta,0} = \frac{C_{k\beta}}{1+\beta^{1/2}} + \frac{1+2\beta^{1/2}}{3}$$
 (4.42)

Donde $\xi \equiv \frac{2}{k+2}$ y $C_{k\beta}$ son parámetros que se introduce por conveniencia en el apéndice F.

Para los choques cantoides la planitud y alatud son equivalentes al resultado del choque ancantoide con k = 0, pero se muestran a continuación por completez:

$$\Pi = \frac{5}{3\left(1 - \beta^{1/2}\right)} \tag{4.43}$$

$$\Lambda = \frac{\sqrt{3}}{\left(1 + \frac{1}{5}\beta\right)^{1/2} \left(1 - \beta^{1/2}\right)} \tag{4.44}$$

Por último, el radio en el ápex, la planitud y alatud para los choques wilkiniodes es:

$$R_{0} = \left(\frac{\dot{M}_{w}^{0}v_{w}}{4\pi\rho_{a}v_{a}^{2}}\right)^{1/2}$$
(4.45)

$$\Lambda = \sqrt{3} \tag{4.46}$$

$$\Pi = \frac{5}{3} \tag{4.47}$$

 R_0 en este caso se obtiene directamente de la ecuación (4.37), mientras que Π y Λ se obtienen tomando el límite $\beta \rightarrow 0$ en las ecuaciones (4.43, 4.44), aunque Λ también puede obtenerse evaluando la ecuación (4.39) en $\theta = \pi/2$.

En la figura 4.3 se muestran los resultados de las ecuaciones (4.40-4.47) en forma de diagrama $\Lambda - \Pi$. Los choques tipo cantoides ocupan en este diagrama una curva, donde cada punto de ésta representa un valor distinto de β , cuyo rango es (0, 1), y está representada en color negro. Los choques ancantoides ocupan diferentes curvas, una por cada valor del índice de anisotropía k, y se representan por curvas con diferente tonalidad de verde, mientras que los choques wilkinoides ocupan un solo punto en este diagrama, representado por el círculo amarillo.

La tendencia general de los choques cantoides y ancantoides es que conforme se incrementan β v k, también se vuelven más abiertos v más planos en el ápex (Π y Λ incrementan), siendo el choque tipo cantoide el más abierto a un valor de β dado. Como va hemos mencionado, el choque tipo cantoide y el tipo ancantoide con k = 0 son muy similares, excepto que el choque cantoide es más abierto en las alas ($\theta > 90^\circ$) debido al soporte que da hacia atrás el viento interior. Sin embargo, como su comportamiento es igual para $\theta < 90^{\circ}$, por tanto, no hay diferencia entre estos dos tipos de choques en este diagrama. Todos los choques se encuentran ya sea en la región de esferoides prolatos (región gris oscura) o hiperboloides (región clara), ninguno en la región de esferoides oblatos (ver figura 3.9a). Los choques tipo esferoide prolato son los que tienen valores de β pequeños, y la transición hacia hiperboloide se da cuando $\beta \sim 0.01$ para los choques cantoides y ancantoides con parámetro k pequeño. Esta transición a los hiperboloides se recorre para β mayor conforme el parámetro k se incrementa. Esto contrasta con el caso de las cuádricas puras, que siempre permanecen en la misma región, pero esto se debe a que las formas de los choques de proa son más complejas que una cuádrica de revolución: mientras que la forma de la "cabeza" del choque (la región cercana al ápex) puede aproximarse bien con una variedad de cuádricas, la forma de las alas lejanas siempre es más parecida a un hiperboloide, como se ilustra en la figura 4.4. Por otro lado, el choque wilkinoide se ubica en el límite $\beta \rightarrow 0$ de la curva de los choques cantoides, como era de esperarse, y se ubica en la región de esferoides prolatos. De la figura 4.3 también puede apreciarse que todas las curvas (al menos para β pequeña) se aglomeran cerca de la diagonal $\Pi \simeq \Lambda$ con la tendencia de que para anisotropía grande, $\Lambda > \Pi$, existe una región donde hay una degeneración entre β y k que se rompe para β grande.

Todo esto funciona para la forma verdadera de los choques de proa, que

corresponde a cuando son vistos de canto (i = 0). La alatud y planitud verdaderas no toman en cuenta el comportamiento de las alas lejanas $(\theta > 90^{\circ})$. De hecho, para un choque dado, hay dos formas de calcular el ángulo de las cuádricas θ_Q . Una es a partir de los parámetros (Π, Λ) utilizando las ecuaciones (3.17, 3.18, 3.25):

$$\theta_Q^{\text{head}} = sgn\left(2\Pi - \Lambda^2\right) \ \tan^{-1}\left|2\Pi - \Lambda^2\right| \tag{4.48}$$

La segunda manera es a partir de estimar el ángulo asintótico θ_{∞} :

$$\theta_Q^{\text{tail}} = \theta_\infty - \pi \tag{4.49}$$

Donde θ_{∞} puede obtenerse a partir de la ecuación (28) de CRW para los choques cantoides:

$$\theta_{\infty} - \tan \theta_{\infty} = \frac{\pi}{1 - \beta} \tag{4.50}$$

Mientras que para los choques ancantoides utilizamos la ecuación (4.30) utilizando la condición $\theta_{\infty} + \theta_{1\infty} = \pi$:

$$\theta_{\infty} - \left(\frac{k+2(1-\beta)}{k+2}\right) \tan \theta_{\infty} = \pi + 2\beta I_k(\pi/2) \tag{4.51}$$

Como las soluciones a la forma de los choques de proa, tanto cantoides como ancantoides solo ajustan parcialmente a una cuádrica de revolución, entonces $\theta_Q^{\text{head}} \neq \theta_Q^{\text{tail}}$. Esta discrepancia se vuelve relevante al momento de obtener la forma aparente, ya que en este caso la región del choque que es tangente a la línea de visión se aleja del ápex y se acerca a las alas lejanas conforme se incrementa la inclinación.

4.4. Obtención de la Forma Aparente

A continuación aplicamos el formalismo desarrollado en la §3.4 a las formas de los choques de proa obtenidos en este capítulo para obtener tanto la forma aparente como la planitud y alatud aparentes.

Figura 4.4: Parámetro de las cuádricas θ_Q (ver §3.3) en función de la tasa de momentos β para las soluciones de la forma de la cabeza del choque de proa, mostrado en línea continua, y de la cola, mostrada en línea rayada. Para valores numéricos pequeños de β , se puede encontrar que el parámetro θ_Q es consistente con la forma de esferoides prolatos, sin embargo, conforme β incrementa este parámetro disminuye y eventualmente hay una transición hacia formas hiperbólicas. Para la forma de las alas, estimada a partir del ángulo asintótico θ_{∞} (ecuación 4.49), la forma siempre es hipérbólica, y en este caso, existe una diferencia entre los choques tipo cantoide (línea negra de punto y raya) con el choque tipo ancantoide isotrópico (k = 0).

En la figura 4.5 mostramos la forma aparente de choques tipo cantoides y wilkinoides, y mostramos como referencia un paraboloide confocal cuya forma aparente no cambia con la inclinación (ver §3.4.4), mientras que la figura 4.6 muestra la forma aparente de choques ancantoides.

Se muestra una tendencia general en donde las alas son sistemáticamente más abiertas para altas inclinaciones. Sin embargo, en el caso de los choques wilkinoides se muestra el comportamiento opuesto, aunque los cambios son muy sutiles. El caso de la figura 4.6a, donde se muestra un choque tipo ancantoide con $\beta = 0.005$ y k = 1/2 se observa que para inclinaciones menores a 60°, las alas cercanas ($\theta \sim 90^\circ$) se cierran sutilmente, y luego se abren más para inclinaciones mayores.

En la figuras 4.7 y 4.8 mostramos la solución a las ecuaciones (3.36, 3.37) para el modelo de capa delgada, junto con el factor de escalamiento R'_0/R_0 en función de la inclinación. En estas figuras se observa que el radio aparente en el ápex siempre aumenta con la inclinación, mostrando un crecimiento más rápido para choques más abiertos, pero en los choques más cerrados se alcanzan valores más altos de R'_0/R_0 ; ésto debido a que en los choques más cerrados la inclinación máxima (la inclinación a la cual se corta la curva, ver §3.4.2) donde aun existe una línea tangente es mayor.

Las soluciones a las ecuaciones (3.39, 3.38) para el modelo de capa delgada se muestran en las figuras 4.9, 4.10. Se observa que la alatud aparente se incrementa abruptamente cuando la inclinación se aproxima a la inclinación máxima, excepto en el caso wilkinoide, donde la alatud disminuye con inclinación muy lentamente.

La planitud aparente se obtuvo a partir de realizar ajustes polinómicos en θ^2 a la forma aparente $R'(\theta')$ para calcular el coeficiente de segundo orden $R'_{\theta'\theta',0}$ (ver §3.2, ecuación 3.7) y posteriormente utilizar las ecuaciones (3.40, 3.37) para obtener el radio de curvatura aparente R'_c y el radio aparente en el ápex R'_0 y calcular finalmente $\Pi' = R'_c/R'_0$.

Su comportamiento con inclinación se muestra en la figura 4.11. Aquí se observa un comportamiento similar al de la alatud aparente; sin embargo, en la figura 4.11b, donde el pararámetro de anisotropía es k = 1/2, se observa una caída abrupta en la planitud justo antes de llegar a la inclinación máxima. Esta caída se observa solo en los choques ancantoides, y se observa en el punto en que el ápex proyectado pasa por $\theta = \frac{\pi}{2}$, donde hay una discontinuidad en la densidad del viento interior (ver figura 3.1), y que

Figura 4.5: Forma aparente de diferentes choques de pro
a en intervalos de inclinación de 15°: (a) Paraboloide confocal. (b) Wilkinoide. (c) Cantoide
 $\beta=0.005.$ (d) Cantoide $\beta=0.01$

Figura 4.6: Extensión de la figura 4.5 para choques de pro
a no isotrópicos (ancantoides): (a) $\beta = 0.005$, k = 1/2. (b) $\beta = 0.01$, k = 1/2. (c) $\beta = 0.005$, k = 3. (d) $\beta = 0.01$, k = 3.
CAPÍTULO 4. MODELO DE CAPA DELGADA

70

Figura 4.7: (a) Soluciones a la ecuación (3.36) en función de la inclinación para choques de proa del modelo de capa delgada y viento interior isotrópico (cantoides y wilkinoides). (b) Soluciones a la ecuación (3.37) en función de la inclinación normalizadas con R_0 .

Figura 4.8: (a) Soluciones a la ecuación (3.36) en función de la inclinación para choques de proa del modelo de capa delgada y viento interior anisotrópico (ancantoides) para dos índices de anisotropía: k = 1/2 (arriba) y k = 3 (abajo). (b) Soluciones a la ecuación (3.37) en función de la inclinación normalizadas con R_0 .

Figura 4.9: (a) Soluciones a la ecuación (3.39) en función de la inclinación para choques de proa del modelo de capa delgada y viento interior isotrópico (cantoides y wilkinoides). (b) Alatud aparente en función de la inclinación, obtenida a a partir del cociente de las soluciones de las ecuaciones (3.38, 3.37)

Figura 4.10: (a) Soluciones a la ecuación (3.39) en función de la inclinación para choques de proa del modelo de capa delgada y viento interior anisotrópico (ancantoides) para dos índices de anisotropía: k = 1/2 (arriba) y k = 3 (abajo). (b) Alatud aparente en función de la inclinación, obtenida a a partir del cociente de las soluciones de las ecuaciones (3.38, 3.37)

Figura 4.11: Soluciones a la ecuación 3.40 para obtener la planitud aparente en función de la inclinación en el modelo de capa delgada para: (a) viento interno isotrópico (cantoides y wilkinoides) y viento interno anisotrópico (ancantoides) con índice de anisotropía de (b) k = 1/2 y (c) k = 3.

provoca a su vez una discontinuidad en la segunda derivada de $R(\theta)$. Esta discontinuidad es más acentuada en el caso k = 0 de los choques ancantoides y se va suavizando conforme k aumenta.

Por último, mostramos en la figura 4.12 los diagramas $\Lambda' - \Pi'$ para diferentes tipos de choques de proa. Cada curva representa un choque de proa con parámetros (β, k) fijos donde la inclinación varía de un punto a otro a lo largo de la curva. El comportamiento de estos choques de proa se diferencia del de las cuádricas de revolución, mostrado en la figura 3.9a. En este caso, las curvas no están confinadas a una sola región: para inclinaciones bajas, la mayoría de las curvas ajustan mejor a la forma de elipsoides prolatos, a excepción de las curvas con parámetro β alto ($\beta \gtrsim 0.01$), mientras que para altas inclinaciones la forma ajusta mejor a hiperboloides. Esto se debe a la tensión que existe entre la forma de la cabeza y de la cola (figura 4.4). Aquí también se observa la discontinuidad en la planitud explicado anteriormente, sobre todo en la figura 4.12b. La curva del choque wilkinoide se muestra en color blanco en la figura 4.12c, y tiene un comportamiento menos interesante que otras curvas: simplemente se mueve desde $(5/3, \sqrt{3})$ hasta $(3/2, \sqrt{8/3})$. Aunque se ubica en la región de elipsoide prolato, el hecho de que θ_{∞} sea de 180° sugiere que la forma de las alas lejanas sea más parecido al de un paraboloide. Pero converge en $(3/2, \sqrt{8/3})$ en vez de en (2, 2) porque las alas lejanas son asintóticamente cúbicas en vez de cuadráticas.

La densidad de marcas a lo largo de una curva nos indican la probabilidad de observar dicha porción de ésta, si asumimos una distribución isotrópica de ángulos de visión. Se puede observar que la densidad de marcas usualmente se concentra al inicio de cada curva, cerca de $i = 0^{\circ}$, y este efecto se intensifica cuando β es pequeño.

Figura 4.12: Diagramas planitud-alatud para las soluciones del modelo de capa delgada. Los círculos de colores indican la forma intrínseca para cada modelo $(i = 0^{\circ})$. Las líneas muestran la solución a este mismo modelo en función de la inclinación. Las marcas más pequeñas corresponden a inclinaciones igualmente espaciadas de $|\sin i|$. El modelo wilkinoide se muestra en color blanco. (a) Soluciones para los modelos cantoide (azul) y ancantoide k = 0.5 (rojo) para $\beta = [0.001, 0.003, 0.01, 0.03, 0.1, 0.3]$.

Figura 4.12 (cont.): (b) Soluciones para modelos ancantoides k = 3 (naranja) y k = 0 (morado).

Figura 4.12 (cont.): (c) Igual que (a) pero aumentada para mostrar la convergencia de los modelos cantoides hacia el modelo wilkinoide conforme $\beta \to 0$ utilizando como referencia $\beta = [10^{-3}, 10^{-4}, 10^{-5}].$

Capítulo 5

Resultados obtenidos para los proplyds "clásicos"

Probamos nuestro modelo descrito en los capítulos anteriores en una muestra de proplyds pertenecientes a la Nebulosa de Orión (ON) que presentan un choque de proa. En la figura 5.1 se muestran los proplyds que pertenecen a nuestra muestra.

En todos los casos no fue posible medir el radio característico R_{90} debido a que el brillo de la cáscara decae con el ángulo polar θ y no es detectable para ángulos del orden de 60°. Sin embargo, a continuación mostraremos la metodología para obtener la inclinación más probable de cada choque, así como los parámetros del modelo de cada uno de éstos que nos indican su forma intrínseca.

5.1. Metodología para la medición de la forma aparente.

Se utilizaron imágenes en el filtro de F502N de la cámara WPC2 del Telescopio Espacial Hubble (HST), que abarca la línea de [O III]. Se utilizaron las herramientas del programa DS9 para análisis de imágenes astronómicas para trazar la posición de θ^1 Ori C y de cada uno de los proplyds de la muestra. La posición y la forma de los choques de proa fue trazada con una serie de marcas puntuales a lo largo del choque, a partir de las cuales

Figura 5.1: Imagen de la parte central de la Nebulosa de Orión donde se ubican los proplyds de nuestra muestra. Las cruces color cyan corresponden a las mediciones de la forma aparente para cada choque de proa. Los círculos amarillos marcan la posición de cada proplyd y la "x" roja corresponde a la posición de la estrella ionizante θ^1 Ori C. Los círculos negros ilustran de manera esquemática el radio de curvatura de cada choque.

podemos obtener arreglos con la declinación y la ascención recta de cada choque, así como la posición de cada proplyd y de θ^1 Ori C. Posteriormente hacemos la transformación de las coordenadas del choque al sistema de referencia del proplyd (donde el eje x se define como la línea que conecta a un proplyd con θ^1 Ori C y el proplyd se localiza en el origen). El radio de curvatura aparente se obtiene haciendo un ajuste de mínimos cuadrados de la forma de un círculo de las mediciones obtenidas. R_0 se obtiene como la distancia a lo largo del eje x entre el proplyd y el ajuste circular dentro del rango de las coordenadas de las mediciones.

5.1.1. Medición de incertidumbres

Para saber qué tan confiables son las coordenadas de las mediciones, se realizó el procedimiento siguiente: Del total de marcas realizadas para trazar la posición del choque de cada proplyd, se crearon un total de 10 submuestras donde se removemos aleatoriamete aproximadamente una tercera parte de las marcas, pero dejando un mínimo de cuatro puntos, y se procedió a calcular los radios característicos para cada sub-muestra. La medición de la posición del choque sin restar marcas cuenta como la medición "original", y la diferencia entre la medición de los radios característicos para cada sub-muestra respecto a la muestra original será nuestra incertidumbre. En los casos de choques cuya forma se trazó con pocos puntos, las posibles submuestras que se pueden obtener son pocas respecto a otros choques donde se utilizaron más puntos, por tanto en estos casos habrá varias sub-muestras repetidas. En la figura 5.2 se muestran ejemplos de dichas sub-muestras para algunos proplyds.

5.2. Comparación con el Modelo de Capa Delgada

Los radios característicos obtenidos para la muestra original y para las sub-muestras se muestran en la figura 5.3. En cada pánel se utiliza un valor fijo para el parámetro de anisotropía k. De estas figuras se pueden obtener la tasa de momentos β y la inclinación *i* para un grado de anisotropía dado por inspección visual al encontrar intersecciones entre las curvas teóricas y las barras radiales de las incertidumbres de cada proplyd (una Todos los puntos

Primera sub-muestra

Figura 5.2: Ejemplos de incertidumbres sistemáticas en los ajustes circulares a la forma de los choques para tres fuentes (desde la línea superior hasta la inferior): 177-341, LV4 y 168-328. La columna de la izquierda muestra el ajuste a todos los puntos identificados en el borde de la cáscara, donde el número y el espaciamiento de los puntos es una medida subjetiva de nuestra confianza al trazar el borde de cada cáscara. La columna de la derecha muestra el ajuste a una de las sub-muestras seleccionadas aleatoriamente que contienen 2/3 partes de los puntos de la muestra original para cada cáscara.

Figura 5.2 (cont.): En esta figura la columna de la derecha muestra el ajuste para una sub-muestra diferente a la columna anterior.

Todos los puntos

Segunda sub-muestra

por cada sub-muestra). Y a partir de éstos se puede inferir la distancia intrínseca a θ^1 Ori C, D, y el radio intrínseco en el ápex, R_0 . En general algunas observaciones cualitativas que se encuentran son: Los proplyds con planitud mayor, LV4 y LV2b ajustan mejor a modelos donde el parámetro de anisotropía es bajo. LV2, quien tiene la planitud aparente más baja de toda la muestra, ajusta con modelos con alto índice de anisotropía $(k \gtrsim 3)$, con HST1 (177-341) ocurre algo similar, sin embargo, los modelos a los que ajusta este proplyd tienen una tasa de momentos baja e inclinaciones muy altas $(i \sim 80^{\circ})$. Esto es difícil de atribuirselo a errores en las mediciones por que es el proplyd que menos desviaciones tiene entre la medición original y las sub-muestras. El resto de los proplyds ajusta bien con un parámetro de anisotropía medio $(k \sim 1/2 - 3)$. Dependiendo de los parámetros (β, k) , la inclinación que se le puede atribuir a cada proplyd en la mayoría de los casos varía entre 15° y 40°.

Con base a este análisis, se resume en la tabla 5.1 los ajustes a los parámetros de los proplyds: cociente de momentos β , inclinación, distancia a θ^1 Ori C intrínseca D y radio del choque en el ápex R_0/D .

Figura 5.3: Similar a la figura 4.12 pero sustituyendo la alatud aparente por el radio aparente en el ápex R'_0/D' para diferentes grados de anisotropía k, donde en cada pánel se asume que este parámetro es fijo. A lo largo de cada curva el valor del parámetro β es fijo, mientras que la inclinación se incrementa a lo largo de la curva, empezando a partir del círculo grande, donde $i = 0^{\circ}$. Las marcas circulares pequeñas representan intervalos de 15°, mientras que las marcas más pequeñas representan intervalos de 5°. Los resultados observacionales de los choques de proa para nuestro set de proplyds se muestran con puntos negros, mientras que las mediciones de las sub muestras se muestran con líneas de colores radiales que parten desde la medición "principal". La opacidad de la medición de cada sub muestra es mayor cuanto menor sea la desviación respecto a la medición principal.

Figura 5.3 (cont.)

Figura 5.3 (cont.)

Figura 5.3 (cont.)

		Observado			Ajuste teórico					
OW	Nombre	D'	R'_0/D'	$\Pi'_{\rm shape}$	$\Pi'_{\rm flux}$	β	k	i	D	R_0/D
(1)	(2)	(3)	(4)	$(5)^{-}$	(6)	(7)	(8)	(9)	(10)	(11)
168-328		6.8	0.15 ± 0.01	$1.45^{+0.10}_{-0.15}$	1.55 ± 0.05	0.005	0.5	52.5 ± 2.50	$0.022 \pm 1.5 \times 10^{-3}$	0.07
169-338		16.4	0.06 ± 0.01	$1.45^{+1.05}_{-0.25}$	1.65 ± 0.10	0.002	0.0 - 0.5	36.3 ± 1.25	$0.040 \pm 1.3 imes 10^{-3}$	0.04
177 - 341	HST1	25.6	0.15 ± 0.01	1.25 ± 0.05	1.15 ± 0.05	0.0005 - 0.001	3.0 - 8.0	72.5 ± 2.50	$0.171 \pm 2.6 \times 10^{-2}$	0.04
180 - 331		25.1	$0.07^{+0.01}_{-0.03}$	1.30 ± 0.10	1.30 ± 0.10	0.0005	0.5	62.5 ± 2.50	$0.109 \pm 2.2 \times 10^{-3}$	0.02
167 - 317	LV2	7.8	$0.29^{+0.03}_{-0.05}$	$1.15^{+0.35}_{-0.55}$	1.03 ± 0.18	0.02 - 0.1	3.0 - 8.0	42.5 ± 2.04	$0.021 \pm 9.2 \times 10^{-4}$	0.18 ± 0.06
166 - 316	LV2b	7.2	$0.11^{+0.01}_{-0.03}$	$1.75_{-0.35}^{+0.85}$	1.75 ± 0.10	0.02 - 0.01	0.0 - 0.5	20.0 ± 2.50	$0.015 \pm 4.4 \times 10^{-4}$	0.11 ± 0.02
163 - 317	LV3	6.9	0.33 ± 0.01	$1.80^{+0.30}_{10}$	2.05 ± 0.05	0.06	0.5	40.0 ± 2.50	$0.018 \pm 9.0 \times 10^{-4}$	0.20
161 - 324	LV4	6.2	0.19 ± 0.01	$2.65^{+0.25}_{-0.65}$	2.10 ± 0.05	0.02 - 0.05	0.0	23.8 ± 13.75	$0.014 \pm 1.7 \times 10^{-3}$	0.15 ± 0.03
158 - 323	LV5	9.6	0.21 ± 0.01	1.55 ± 0.15	1.70 ± 0.05	0.02	0.5	42.5 ± 2.50	$0.026 \pm 9.4 \times 10^{-3}$	0.02

Tabla 5.1: Ajuste a los parámetros de los arcos para los choques de proa de los proplyds

Notas – Col. (1): ID de la fuente (O'Dell & Wen, 1994). Col. (2): Nombre alternativo de la fuente. Col. (3): Distancia proyectada desde θ^1 Ori C, segundos de arco. Col. (4): Radio exterior aparente a lo largo del eje, normalizado con la distancia proyectada, donde la incertidumbre es calculada a partir de los valores máximo y mínimo de las submuestras descritas en § 5.1, pero utilizando como mínimo la mitad de la resolución de los ejes de la figura 5.3. Se determina con el ajuste circular decrito en § 5.1. Col. (5): Planitud aparente, donde la incertidumbre es calculada del mismo modo que en Col. (4). Se determina con el ajuste circular descrito en § 5.1. Col. (6): Planitud aparente, pero aplicando el criterio adicional de que el brillo superficial del proplyd obtenido debe coincidir con la predicción teórica. La medición central corresponde al promedio de las mediciones de las submuestras que cumplen con dicho criterio, con una desviación de $\pm 1\sigma$. Si solo una submuestra cumple el criterio, el resultado de Col. (5) se traspasa a esta columna. Col. (7): Cociente de momentos entre el viento del proplyd y la estrella O (ver capítulo 4) de las submuestras utilizadas en Col. (6). Col. (8): Parámetro de anisotropía del viento del proplyd. Col. (9): Inclinación respecto al plano del cielo, en grados. Col. (10): Distancia real desde θ^1 Ori C, parsecs. Col. (11): Radio real de la cáscara a lo largo del eje, normalizado con distancia.

5.3. Obtención de la Presión de Equilibrio

Las mediciones de los radios característicos y las inclinaciones obtenidas para los proplyds en esta sección se puede predecir la distancia intrínseca del proplyd D a θ^1 Ori C, así como la escala intrínseca del proplyd, dada por el radio en el ápex R_0 (columnas 10 y 11 de la tabla 5.1). Con ayuda de estos parámetros y además conociendo el radio del frente de ionización y la densidad máxima del flujo fotoevaporado en el frente de ionización de cada proplyd podemos estimar el flujo F_* que se requiere para que exista equilibrio de ionización y compararlo con el flujo ionizante que recibe el proplyd de θ^1 Ori C a la distancia D. A su vez se puede estimar la presión ram del flujo fotoevaporado antes del choque y compararlo con la presión ram del viento estelar de θ^1 Ori C antes del choque.

El flujo de fotones ionizantes necesario para que exista equilibrio de ionización en el flujo fotoevaporado proveniente del proplyd, se puede determinar con la siguiente ecuación (Henney, 2001):

$$F_{\rm ph} = v_w(r_{\rm IF})n_{\rm IF} + \alpha'_{\rm rec}n_{\rm IF}^2\omega r_{\rm IF}$$
(5.1)

Donde $\alpha'_{\rm rec} = 2.6 \times 10^{-13} \,{\rm cm}^3 \,{\rm s}^{-1}$ (ver apéndice A), $\omega \simeq 0.12$ es un factor que está relacionado con la ley de velocidades del flujo fotoevaporado del proplyd, y es proporcional al grosor del IF escalado con $r_{\rm IF}$, $n_{\rm IF}$ es la densidad máxima del frente de ionización, y por último, estamos considerando que los frentes de ionización son de tipo D crítico, de donde se obtiene que $v_w(r_{\rm IF}) = c_{\rm II} = 11 \,{\rm km \, s}^{-1}$, donde $a_{\rm II}$ es la velocidad del sonido del medio ionizado.

Por otro lado, el flujo de fotones ultravioleta provenientes de θ^1 Ori C a la distancia D viene dado por:

$$F_* = \frac{(1 - f_d)\mathcal{N}_*}{4\pi D^2}$$
(5.2)

Donde f_d es un factor relacionado con la absorción del polvo.

La condición de equilibrio de ionización implica que $F_{ph} = F_*$. Sin embargo, no todas las mediciones de las submuestras predicen una distancia D que lleven a alcanzar dicho equilibrio. En la columna (6) de la tabla

OW	Nombre	$r_{\mathrm{IF},14}*$	N_6^*
168-328		2.7 ± 0.3	4.08 ± 0.48
169-338		2.7 ± 0.3	1.43 ± 1.09
177 - 314	HST1	19.6 ± 1.9	0.42 ± 0.06
180 - 331		11.7 ± 1.3	0.49 ± 0.08
167 - 317	LV2	7.6 ± 0.4	2.65 ± 0.23
166 - 316	LV2b	2.4 ± 0.6	4.21 ± 1.21
163 - 317	LV3	4.8 ± 0.7	3.19 ± 0.71
161 - 324	LV4	3.4 ± 0.3	4.21 ± 0.63
158 - 323	LV5	6.1 ± 0.7	2.37 ± 0.47

Tabla 5.2: Parámetros del Frente de Ionización de los proplyds.

Notas – Col. (1): ID de la fuente (O'Dell & Wen, 1994). Col. (2): Nombre alternativo de la fuente. Col. (3): Radio del IF del proplyd, en unidades de 10^{14} cm Col. (4): Densidad máxima del IF, en unidades de 10^{6} cm⁻³ * En la Col. (3) la corrección por distancia se da como sigue: $r_{\rm IF,14} = r_{\rm IF,14}^{\rm GAH} \frac{414 \, {\rm pc}}{430 \, {\rm pc}}$, mientras que en la Col. (4) la corrección es $N_6 = N_6^{\rm GAH} \left(\frac{414 \, {\rm pc}}{430 \, {\rm pc}}\right)^{-1/2}$, donde $r_{\rm IF,14}^{\rm GAH}$ son el radio del frente de ionización medido en unidades de 10^{14} cm y su densidad medida en unidades de $10^6 \, {\rm cm}^{-3}$ extraídos de García-Arredondo et al. (2001).

5.1 mostramos el promedio de la planitud aparente de las sub-muestras que se aproximan más al equilibrio de ionización, y para las mediciones consecuentes de dicha tabla (columnas (7) en adelante) también se utilizan estas sub-muestras.

Por otro lado, la presión ram en la cáscara viene dada por:

$$P_{in} = n_{ps} \bar{m} c_{\mathrm{II}}^2 M^2 \tag{5.3}$$

donde $\bar{m} = \mu m_p$, donde $\mu = 1.3$ para un gas con una temperatura de $\sim 10^4 \,\mathrm{K}$ y una velocidad del sonido de $11 \,\mathrm{km \, s^{-1}}$, $m_p = 1.673 \times 10^{-24} \,\mathrm{g}$ es la masa del hidrógeno, M es el número de Mach del flujo fotoevaporado antes del choque y n_{ps} es la densidad máxima del flujo fotoevaporado antes del choque, que se relaciona con n_{IF} como sigue:

$$n_{ps} = n_{\rm IF} \left(\frac{R_0}{r_{\rm IF}}\right)^{-2} M^{-1}$$
 (5.4)

Por último, la presión ram del viento de θ^1 Ori C en función de la distancia radial r es:

$$P_*(r) = \frac{\dot{M}_{w1}^0 v_{w1}}{4\pi r^2} \tag{5.5}$$

Donde \dot{M}_{w1}^0 es la tasa de pérdida de masa de θ^1 Ori C y v_{w1} es la velocidad terminal del viento. De manera análoga al flujo, el equilibrio de presiones ram implica que un choque estacionario se logra cuando $P_{in} = P_*$, y esto ocurre para cada proplyd cuando $r = D - R_0$.

En la figura 5.4 mostramos diagramas log-log de flujo v
s distancia y presión vs distancia de los proplyds (mostrados en colores) junto con el flujo y presión del viento de θ^1 Ori C (mostrados con la líneas gruesas semi-transparentes). En el diagrama de la presión, la línea azul representan dos modelos para el viento estelar de θ^1 Ori C utilizados en Gagné et al. (2005): el modelo frío (azul), apropiado para una estrella O7, utiliza una tasa de pérdida de masa de $\dot{M}_{w1}^0 = 5.5 \times 10^{-7} \,\mathrm{M_{\odot} \, yr^{-1}}$ y una velocidad terminal del viento de $v_{w1} = 2760 \,\mathrm{km \, s^{-1}}$, también existe el modelo caliente,

Figura 5.4: Diagrama log-log de flujo y presión ram vs distancia, para las sub-muestras de cada proplyd, mostradas con colores, mientras que el flujo y presión ram de la estrella se muestran con la línea gris. Las mediciones de la presión y el flujo utilizan las mediciones del radio del IF y densidad de la tabla 5.2, una tasa de fotones ionizantes de $\mathcal{N}_* = 1 \times 10^{49} \,\mathrm{s}^{-1}$, que corresponde a una estrella de tipo espectral entre O5 y O6 (ver tabla A.1), un factor de absorción por polvo f_d de 0.5 y el IF de los proplyds es de tipo D-crítico. En el pánel izquierdo el número de Mach del flujo fotoionizado es M = 3, y en el pánel derecho es M = 2. En esta figura se muestra el modelo A: se utiliza la densidad y radio del frente de ionización de la tabla 5.2. En los diagramas de presión vs distancia, la línea azul representa la presión ram del viento de θ^1 Ori C del modelo frío (azul) de Gagné et al. (2005), y en la lína gris se utilizan la tasa de pérdida de masa y la velocidad terminal reportados en García-Arredondo et al. (2002).

Figura 5.4 (cont.): Modelo B.1: la densidad se obtiene de a partir de la tasa de momentos β obtenida para cada submuestra con la ecuación 5.6, y utilizando la tasa de pérdida de masa y la velocidad terminal del viento de θ^1 Ori C reportada en García-Arredondo et al. (2002).

5.3. OBTENCIÓN DE LA PRESIÓN DE EQUILIBRIO 95

Figura 5.4 (cont.): Modelo B.2: la densidad se obtiene de a partir de la tasa de momentos β obtenida para cada submuestra con la ecuación 5.6, suponiendo que el número de Mach del viento interno es M = 3 y utilizando la tasa de pérdida de masa y la velocidad terminal del viento de θ^1 Ori C del modelo *frío* reportada en Gagné et al. (2005).

Figura 5.4 (cont.): Modelo HA, que utiliza las densidades de la tabla 5.2 y además las inclinaciones reportadas en Henney & Arthur (1998).

apropiado para una estrella tipo O5.5, utiliza una tasa de pérdida de masa de $\dot{M}_{w1}^{0} = 1.4 \times 10^{-6} \,\mathrm{M_{\odot} \, yr^{-1}}$ y una velocidad del viento de $v_{w1} = 2980 \,\mathrm{km \, s^{-1}}$ (en la línea gris la tasa de pérdida de masa es de $\dot{M}_{w1}^0 = 3.5 \times 10^{-7} \,\mathrm{M_{\odot} \, yr^{-1}}$ y la velocidad terminal del viento es de $v_{w1} = 1400 \,\mathrm{km \, s^{-1}}$, García-Arredondo et al. (2002)). Sin embargo, los diferentes métodos para determinar los parámetros del viento de θ^1 Ori C llevan a calcular el cociente \dot{M}_{w1}/v_{w1} en vez de dichos parámetros en particular. Entonces se asume un valor plausible para la velocidad terminal v_{w1} del viento y en consecuencia se estima la tasa de pérdida de masa (García-Arredondo et al., 2001). Midiendo el ancho equivalente de la línea de H α , se encuentra un cociente de $\dot{M}_{-7}/v_3 = 3.85$, donde \dot{M}_{-7} es la tasa de pérdida de masa medida en unidades de $10^{-7} \,\mathrm{M_{\odot} \, yr^{-1}}$, y v_3 es la velocidad terminal del viento en unidades de $10^3 \,\mathrm{km \, s^{-1}}$ (García-Arredondo et al., 2001). Sin embargo, existe una variabilidad en el viento de θ^1 Ori C y probablemente el valor de \dot{M}_{-7}/v_3 encontrado mediante el ancho equivalente de H α sea un límite superior, y que el valor promedio de este cociente sea aproximadamente la mitad, es decir, $\dot{M}_{-7}/v_3 \simeq 1.9$. En García-Arredondo et al. (2001) se aplica el criterio adicional de que $\dot{M}_{w1}v_{w1} = 4.2$ para que se cumpla la condición de equilibrio de presión ram de LV2 a una inclinación de $i = 50^{\circ}$ (equivalente a 40° en este trabajo, siendo que el ángulo de inclinación utilizado en García-Arredondo et al. (2001) es el ángulo complementario de la inclinación utilizada en este trabajo). De esta forma la tasa de pérdida de masa $\dot{M}_{w1}^0 = 3.5 \times 10^{-7} \,\mathrm{M_{\odot} \, yr^{-1}}$ y la velocidad terminal $v_{w1} = 1400 \,\mathrm{km \, s^{-1}}$ cumplen estos criterios. Por otro lado, en el modelo *caliente* de Gagné et al. (2005) se encuentra que $\dot{M}_{-7}/v_3 \simeq 4.7$, demasiado alto respecto a lo que predice el ancho equivalente de la línea de H α , por lo tanto, es poco realista utilizarlo para modelar el viento de θ^1 Ori C. Sin embargo, el modelo *frío* predice que $\dot{M}_{-7}/v_3 \simeq 2$, ligeramente por encima del 1.9 que predice el ancho equivalente de la línea de H α , por lo que si relajamos el criterio de que $\dot{M}_{w1}v_{w1} = 4.2$ entonces este modelo no es totalmente descartable.

En todos los casos utilizamos el radio del frente de ionización reportado en García-Arredondo et al. (2001), tabla 1, pero escalados a la distancia a ON utilizada en este trabajo ($414 \pm 6.8 \,\mathrm{pc}$, Menten et al. (2007)), y mostrados en la columna 3 de la tabla 5.2, para la densidad utilizamos dos modelos diferentes:

- A. Utilizando los perfiles de brillo y la densidad máxima del frente de ionización obtenidos en García-Arredondo et al. (2001), pero escalando por la distancia a θ^1 Ori C (columna 4 de la tabla 5.2)
- B. A partir de nuestras propias mediciones de la tasa de momentos β , y utilizando las ecuaciones (3.4, 4.16) la densidad se calcula como sigue:

$$n_{ps} = \frac{\beta \left(\dot{M}_{w1}^{0} v_{w1}\right)}{4\pi R_{0}^{2} \bar{m} \left(M c_{\mathrm{II}}\right)^{2}} \tag{5.6}$$

C. Como modelo de comparación mostramos el modelo GAH, que es una recopilación de trabajos anteriores, con el fin de comprobar si en el trabajo mostrado en esta tesis realmente existe una mejora en nuestro conocimiento acerca de las propiedades de los proplyds. En este modelo utilizamos las densidades de la columna 4 de la tabla 5.2 y las inclinaciones reportadas en Henney & Arthur (1998), tabla 2, excepto por LV2, donde la inclinación es corregida a $i = 40^{\circ} \pm 10^{\circ}$ (Henney et al., 2002; García-Arredondo et al., 2001).

Para todos los modelos, suponemos que el número de Mach del flujo fotoevaporado en la posición del choque es de M = [2, 3], que es un intervalo plausible para la velocidad del flujo fotoevaporado. Algunas observaciones cualitativas son las siguientes: la variación con el número de Mach en la presión en los Modelos A y HA es pequeña (la diferencia entre los diagramas con M = 3 y M = 2 es de $\log \left(\frac{P_{\rm in}(M=2)}{P_{\rm in}(M=3)}\right) \simeq -0.35$) mientras que en el modelo B no existe variación en la presión con velocidad pero sí en el flujo, a través de las ecuaciones (5.1, 5.4 y 5.6). Debido a la dependencia de la densidad del viento interior con los parámetros del viento exterior en el modelo B, éste está subdividido en modelo B.1, donde se usan los parámetros del viento exterior de García-Arredondo et al. (2002), y modelo B.2, donde se utilizan los parámetros del modelo frío de Gagné et al. (2005) (ver continuación de la figura 5.4). Otra observación importante es que en los modelos A y GAH no parece existir una correlación entre las presiones ram de los proplyds con su distancia a θ^1 Ori C, aunque algunos proplyds se encuentran en equilibrio de presión con el viento de θ^1 Ori C. Por otro lado, en el modelo B la presión ram del viento interior es proporcional a D^{-2} , y las mediciones de los proplyds concuerdan de manera bastante buena con la condición de equilibrio de presión, independientemente del modelo para el viento exterior en cuestión. Esto se debe principalmente a que en el modelo B a través de la ecuación 5.6 se asume que la condición de equilibrio de presiones ram se cumple por defecto, por lo que para comprobar la efectividad de este modelo hay que comprobar la condición de equilibrio de ionización. De la primera continuación de la figura 5.4 se ve que un número ligeramente mayor de sub-muestras cumplen con esta condición cuando se asume un número de Mach de M = 2 respecto a cuando se asume que M = 3. En los modelos A y GAH el número de sub-muestras que cumplen con la condición de equilibrio de ionización es superior, pero no se cumple para los proplyds más lejanos (180-331 y 177-341). Para aclarar esto propongo 1) aumentar el número de posibles mediciones de la inclinación y 2) mejorar el método para cuantificar qué tanto se aproxima una determinada medición de la inclinación a las condiciones de equilibrio de ionización y presión y 3) cuantificar cuál modelo predice un mayor número de mediciones de la inclinación mejorando los criterios para cuantificar la aproximación a las condiciones de equilibrio.

Los resultados de este capítulo serán enviados a una revista próximamente.

Capítulo 6

Resumen y Conclusiones

En el capítulo 2 mencionamos escenarios astrofísicos donde se forman choques de proa para resaltar las diferentes situaciones donde se puede aplicar el trabajo desarrollado en esta tesis, entre las que hemos destacado las siguientes:

- Proplyds.
- Objetos LL
- Estrellas errantes
- Estrellas AGB y supergigantes rojas

En el capítulo 1 mencionamos el modelo aceptado para los proplyds, que consiste en que el disco protoplanetario de una estrella tipo T Tauri embebida dentro de una región HII está siendo fotoevaporado e ionizado por la radiación ultravioleta de la estrella masiva central. Se forma un frente de ionización con forma aproximadamente hemisférica entre la estrella T Tauri y la estrella masiva y una cola que apunta en dirección opuesta que se forma cuando el disco protoplanetario es fotoevaporado e ionizado por la radiación difusa.

En el caso particular de ON, en muchos de los proplyds también se observan choques de proa, que son resultado de la interacción del flujo fotoevaporado del proplyd con el viento estelar de θ^1 Ori C. Trabajos previos (Robberto et al., 2005), intentaron comparar la forma de los choques de proa más cercanos a θ^1 Ori C con el modelo de capa delgada de Cantó et al. (1996) midiendo en observaciones en infrarrojo a $10 \,\mu$ m los radios proyectados R_0 y R_{90} normalizados con la distancia proyectada D a θ^1 Ori C. Sin embargo, no todas las mediciones concuerdan con las predicciones del modelo de capa delgada 2.3.

En el capítulo 3 describimos los conceptos más importantes para describir la forma de un choque de proa cilíndricamente simétrico producto de la interacción de dos vientos en estado estacionario bajo tres escenarios (figuras 3.2 y 3.1):

- Un viento interior esférico, isotrópico, supersónico y no acelerado interactúa con un viento plano-paralelo con velocidad constante e hipersónica y densidad constante. Al choque resultante se le conoce como *wilkinoide*.
- Un viento interior supersónico y no acelerado que puede ser a) esférico e isotrópico o b) hemisférico y con densidad que varía con el ángulo polar como una ley de potencias de cos θ con índice de potencias k que interactúa con un viento exterior esférico, isotrópico, hipersónico y no acelerado. A los choques resultantes se les conoce como a) cantoides y b) ancantoides, siendo estos últimos una extensión al trabajo previamente publicado de Cantó et al. (1996), con el fin de lograr que las mediciones faltantes ajustaran con las nuevas predicciones teóricas de este tipo de choques.

La forma de un choque de proa se puede caracterizar con una serie de parámetros que pueden obtenerse de manera observacional para choques de proa en imágenes en cualquier longitud de onda siempre y cuando la imagen esté resuelta, que son al radio en el ápex, la planitud y la alatud (figura 3.3).

Desarrollamos de manera independiente (ver por ejemplo Wilkin (1997)) un método para encontrar la forma proyectada de un choque de proa cilíndricamente simétrico en un marco de referencia que está rotado por un ángulo *i* respecto al plano del cielo, suponiendo que sea visible su *línea* tangente por abrillantamiento al limbo. Aplicamos este método primero a superficies cuádricas, tales como hiperboloides, esferoides, paraboloides y elipsoides, donde la línea tangente es una sección cónica. Encontramos la dependencia con inclinación de la planitud y la alatud proyectada, en forma de funciones explícitas, así como curvas dependientes de la inclinación en el plano $\Pi' - \Lambda'$ y encontramos que dependiendo del tipo de superficie, cuantificada por el parámetro \mathcal{Q} , éstas se mueven en tres diferentes regiones (figura 3.9a): la región superior (hacia alatudes altas), donde se encuentran los hiperboloides. Una región intermedia y angosta donde se encuentran los elipsoides prolatos, y la región inferior donde se encuentran los elipsoides oblatos. Los paraboloides se encuentran exclusivamente en la interfaz entre la región de los hiperboloides y los elipsoides prolatos. Y los esferoides se encuentran en la interfaz entre los elipsoides prolatos y oblatos. También se encontró que conforme $i \rightarrow 90^{\circ}$, la planitud y alatud aparentes convergen a $\Pi' = \Lambda' = 1$ para los elipsoides y esferoides, y los paraboloides convergen a $\Pi' = \Lambda' = 2$. para los hiperboloides la planitud y alatud aparentes divergen cuando la inclinación tiende a un valor crítico donde deja de existir la línea tangente.

En el capítulo 4 describimos a detalle el modelo de capa delgada de CRW para los tres escenarios de interacción de vientos ya descritos. Calculamos la planitud, la alatud y el ángulo asintótico θ_{∞} de los choques resultantes en función de los parámetros del modelo que son el cociente de la tasa de momentos β y el parámetro de anisotropía k en el caso de los choques ancantoides. A diferenia del caso de las cuádricas de revolución, aquí no existen funciones explícitas para describir la forma del choque resultante. A partir de la planitud y la alatud se puede aproximar la forma de la cabeza y de las alas lejanas del choque a una cuádrica de revolución. La forma de las alas lejanas siempre ajusta a un hiperboloide, mientras que para la cabeza ajusta mejor a un esferoide prolato cuando el cociente de las tasas de momentos β es pequeño y conforme este parámetro se incrementa, la forma de la cabeza pasa a ser hiperbólica (figura 4.4).

Siguiendo el método del capítulo anterior, encontramos la forma proyectada de los choques en el modelo de capa delgada y calculamos la planitud y alatud aparentes en función de la inclinación. Excepto para los choques wilkinoides, la planitud y la alatud aparente incrementan con inclinación. La planitud aparente de los choques ancantoides presenta una discontinuidad en inclinaciones tales que la línea tangente pasa por $\theta = 90^{\circ}$ donde la segunda derivada de $R(\theta)$ tiene una discontinuidad debido a que en ese punto termina el viento interior.

En este modelo las curvas dependientes de la inclinación en el diagrama planitud-alatud son más complicadas que en el caso de las cuádricas de revolución, y no se encuentran confinadas a una sola región. De manera general la forma aparente del choque es más parecida a un esferoide prolato a inclinaciones bajas y a un hiperboloide a inclinaciones altas. Esto debido a que la línea tangente se va recorriendo hacia las alas lejanas conforme la inclinación aumenta, donde la forma del choque se aproxima más a un hiperboloide.

En el capítulo 5 hicimos mediciones de la planitud, el radio aparente R'_0 en el ápex y la distancia proyectada D' de los choques de proa asociados a los proplyds clásicos LV2–LV5 y otros proplyds cuya distancia provectada es mayor: 168-338, 169-338, 177-341 (HST1) y 180-331 con imágenes del HST en el filtro F502N tomadas con el instrumento WFPC2. Debido a que el brillo superficial es menor en dirección a las alas, la alatud proyectada no es medible. La forma los choques de proa fue medida con marcas puntuales a lo largo de cada choque utilizando las herramientas del programa DS9 para imágenes astronómicas, así como para la posición de cada proplyd y la de θ^1 Ori C, y extrayendo las coordenadas de cada marca. El radio de curvatura fue medido haciendo un ajuste de mínimos cuadrados a un círculo de las marcas que trazan la posición de los choques y R'_0 fue medido como la distancia entre el proplyd y el ajuste en la línea que conecta la posición del prop
lyd con θ^1 Ori C. Se repitió el proceso con 10 sub-muestras donde en cada una de ellas se removió la tercera parte de las marcas originales de manera aleatoria. Las desviaciones en las mediciones de la planitud y R'_0 de cada sub-muestra respecto a la medición original juegan el papel de las incertidumbres. Se compararon estas mediciones con las predicciones teóricas del modelo de capa delgada en diagramas planitud vs R'_0/D' asumiendo un valor fijo para el parámetro de anisotropía k, y por medio de inspección visual se estimaron posibles valores para la inclinación y el cociente de tasas de momentos β para cada proplyd. A partir de estas determinaciones se estimó la distancia intrínseca D y el radio intrínseco en el ápex R_0 . Por último, utilizando mediciones del radio del frente de ionización de García-Arredondo et al. (2001), evaluamos las condiciones de equilibrio de ionización y de presiones, mostradas en la figura 5.4, bajo dos suposiciones para la densidad del viento interior: a) que la condición

de equilibrio de presiones no se cumple "de facto" por lo que utilizamos la densidad del frente de ionización reportada en García-Arredondo et al. (2001) y b) La condición de equilibrio de presiones sí se cumple "de facto" y la densidad pre-choque del viento interior es calculada a partir de la ecuación 5.6. Para la tasa de momento del viento exterior utilizamos los parámetros de García-Arredondo et al. (2002) y el modelo frío de Gagné et al. (2005), donde ambos cumplen con la condición $\dot{M}_{-7}/v_3 \sim 2$. Hasta este punto no queda claro cuál de los modelos para el viento exterior predice un mejor ajuste a la condición de equilibrio de presiones en cada choque de proa.

6.1. Trabajo a Futuro

El contenido del capítulo 5 será incluído en un artículo para ser enviado posteriormente a una revista para su publicación. Con el fin de poder concluir con las determinaciones de la densidad del viento interior y evaluar de manera más eficaz las condiciones de equilibrio de ionización y presiones ram, hace falta establecer un método más eficiente para estimar la inclinación al comparar las mediciones con el modelo de capa delgada en función de los parámetros (β , k), y a su vez establecer un método para cuantificar el grado en que las estimaciones de la inclinación se aproximan a las condiciones de equilibrio de ionización y presión ram. A su vez es necesario explorar otros modelos donde se formen choques de proa.

En artículos aún en preparación, se analiza diferentes escenarios donde además de la interacción viento-viento consideramos además escenarios donde la radiación de la estrella y el acoplamiento entre gas y polvo del ambiente juegan un papel importante (ver apéndice G). Finalmente, en la §6 de Tarango Yong & Henney (2018) se hizo un análisis de las formas de los choques de proa resultantes de simulaciones hidrodinámicas y magnetohidrodinámicas de Meyer et al. (2017) que incluyen las predicciones de la forma aparente de la discontinuidad de contacto en el diagrama $\Pi'-\Lambda'$ en forma de curvas dependientes de la inclinación, el radio aparente en el ápex R'_0 en función de la inclinación, etc. con el fin de comparar estos modelos con observaciones de las formas de los arcos por estrellas errantes.
Bibliografía

- Bally J., Sutherland R. S., Devine D., Johnstone D., 1998, AJ, 116, 293
- Bally J., O'Dell C. R., McCaughrean M. J., 2000, AJ, 119, 2919
- Cantó J., Raga A. C., Wilkin F. P., 1996, ApJ, 469, 729
- Churchwell E., Felli M., Wood D. O. S., Massi M., 1987, ApJ, 321, 516
- Cox N. L. J., et al., 2012, A&A, 537, A35
- Gagné M., Oksala M. E., Cohen D. H., Tonnesen S. K., ud-Doula A., Owocki S. P., Townsend R. H. D., MacFarlane J. J., 2005, ApJ, 628, 986
- García-Arredondo F., Henney W. J., Arthur S. J., 2001, ApJ, 561, 830
- García-Arredondo F., Arthur S. J., Henney W. J., 2002, Revista Mexicana de Astronomía y Astrofísica, 38, 51
- Gfrerrer A., Zsombor-Murray P., 2009, Journal for Geometry and Graphics, 13, 131–144
- Goldman R., 1983, IEEE Computer Graphics and Applications, 3, 68–76
- Gordon M. A., Churchwell E., 1970, A&A, 9, 307
- Groenewegen M. A. T., et al., 2011, A&A, 526, A162
- Gutiérrez-Soto L. , 2015, Master's thesis, Universidad Nacional Autónoma de México
- Hayward T. L., Houck J. R., Miles J. W., 1994, ApJ, 433, 157

- Henney W. J., 2001, in Cantó J., Rodríguez L. F., eds, Revista Mexicana de Astronomia y Astrofisica, vol. 27 Vol. 10, Revista Mexicana de Astronomia y Astrofisica Conference Series. pp 57–60
- Henney W. J., Arthur S. J., 1998, AJ, 116, 322
- Henney W. J., Tarango-Yong J. A., 2017, in Cosmic Feast of the Elements. p. 16
- Henney W. J., O'Dell C. R., Meaburn J., Garrington S. T., Lopez J. A., 2002, ApJ, 566, 315
- Johnstone D., Hollenbach D., Bally J., 1998, ApJ, 499, 758
- Kobulnicky H. A., et al., 2016, ApJS, 227, 18
- Laques P., Vidal J. L., 1979, A&A, 73, 97
- Menten K. M., Reid M. J., Forbrich J., Brunthaler A., 2007, A&A, 474, 515
- Meyer D. M. A., Mignone A., Kuiper R., Raga A. C., Kley W., 2017, MNRAS, 464, 3229
- O'Dell C. R., Wen Z., 1994, ApJ, 436, 194
- O'Dell C. R., Wen Z., Hu X., 1993, ApJ, 410, 696
- Prialnik D., 2000, An Introduction to the Theory of Stellar Structure and Evolution. Cambridge University Press
- Richard Bronson G. B. C., Saccoman J. T., 2014, Linear Algebra. Algorithms, Applications and Techniques. Elsevier
- Robberto M., et al., 2005, AJ, 129, 1534
- Shull J. M., McKee C. F., 1979, ApJ, 227, 131
- Stahler S. W., Palla F., 2004, The Formation of Stars. Wiley-VCH
- Tarango Yong J. A., Henney W. J., 2018, MNRAS, 477, 2431
- Tenorio-Tagle G., 1979, A&A, 71, 59

- Wilkin F. P., 1996, ApJ, 459, L31
- Wilkin P. F., 1997, PhD thesis, University of California, Berkeley
- Yusef-Zadeh F., 1990, ApJ, 361, L19
- van Buren D., McCray R., 1988, ApJ, 329, L93

Apéndice A

Regiones H II (Stahler & Palla, 2004)

Consideremos el caso en que se forma una estrella masiva dentro de una nube molecular, que por simplicidad está compuesta exclusivamente de hidrógeno molecular H₂. La estrella masiva emite fotones ultravioleta que tienen la energía suficiente para disociar el H₂ como para ionizar el hidrógeno atómico resultante. Luego el plasma ionizado se recombina para volver a ser H I emitiendo líneas espectrales de diversas energías, siendo la más energética la línea de Ly α . Como al realizar una ionización se pierde un fotón ionizante y el flujo de radiación proveniente de la estrella es finito, entonces la estrella solo puede ionizar la región de la nube más próxima a ésta. Si suponemos que la nube tiene densidad uniforme, entonces esta región tendrá forma esférica, conocida como *esfera de Strömgren*.

A.1. Esfera de Strömgren (Stahler & Palla, 2004)

El plasma ionizado dentro de la esfera de Strömgren se encuentra en balance de ionización, esto es, que la tasas de ionización y la de recombinación son iguales. La tasa de ionizaciones es igual a la cantidad de fotones ionizantes que emite la estrella central por segundo. Esto es, los fotones que poseen una energía mayor al límite de Lymann, que corresponde a $E = 13.6 \,\mathrm{eV}$, o bien $\lambda = 912 \,\mathrm{\AA}$. En la tabla A.1 se muestra la tasa de fotones

Tipo Espectral	$\begin{array}{c} Masa \\ (M_{\odot}) \end{array}$	$\frac{\log \mathcal{N}_*}{(s^{-1})}$	$\frac{\log \mathcal{N}_{FUV}}{(\mathrm{s}^{-1})}$
O4	70	49.9	49.5
O5	60	49.4	49.2
O6	40	48.8	48.8
07	30	48.5	48.6
08	23	48.2	48.4
O9	20	47.8	48.2
B0	18	47.1	48.1
B1	13	45.4	47.5
B2	10	44.8	47.1

Tabla A.1: Tasa de fotones ionizantes para estrellas masivas (Stahler & Palla, 2004)

ionizantes \mathcal{N}_* para estrellas masivas de tipo espectral O y B temprano.

El radio de esta esfera se denomina *radio de Strömgren* que viene dado por:

$$R_s = \left[\frac{3\mathcal{N}_*}{4\pi\alpha'_{rec}(n_H^0)^2}\right]^{1/3} = 0.4 \text{ pc} \left(\frac{\mathcal{N}_*}{10^{49} \text{ s}^{-1}}\right)^{1/3} (n_{H_2})^{-2/3}$$
(A.1)

Donde α'_{rec} es el coeficiente de recombinación a todos los niveles energéticos del hidrógeno excepto el estado base, n_H^0 y n_{H_2} son la densidad numérica del hidrógeno neutro y del hidrógeno molecular donde está embebida la región H II, respectivamente.

En la expresión numérica, se adopta una temperatura de 10^4 K que es la temperatura característica de una región H II y con la que el coeficiente de recombinación α'_{rec} adopta un valor de 2.6×10^{-13} cm³ s⁻¹.

Dentro de la región H II, la probabilidad por unidad de tiempo de ionizar un átomo de hidrógeno dado es mucho mayor a la probabilidad de una recombinación, por lo que el gas está casi completamente ionizado. Sin embargo, en los bordes la densidad de gas neutro aumenta debido a que en dicha región el flujo de fotones ionizantes ha sido atenuado por todo el gas ionizado más próximo a la estrella. La transición de gas ionizado a gas neutro tiene un grosor Δr que corresponde al camino libre medio del gas neutro. Esto es:

$$\Delta R = \frac{1}{\sigma_{\nu_1} n_H^0} \tag{A.2}$$

Donde σ_{ν_1} es la sección recta de un átomo de hidrógeno en el estado base, evaluada en la longitud de onda del límite de Lymann. Utilizando $\sigma_{\nu_1} = 6.8 \times 10^{-18} \,\mathrm{cm}^2$ y $n_H^0 = 2 \times 10^3 \, 10^3 cm^{-3}$ obtenemos que $\Delta r = 7.4 \times 10^{13} \,\mathrm{cm} \sim 5 \times 10^{-5} \,\mathrm{R_s}$, lo que muestra que las regiones H II tienden a tener bordes bien delimitados.

Sin embargo, las esferas de Strömgren no son objetos estáticos, sino que se expanden con el tiempo. Este proceso ocurre en dos etapas: en la primera inicialmente no existe ninguna región H II pero que la radiación ultravioleta de la estrella hace que se expanda de manera exponencial al disociar e ionizar el gas a su alrededor hasta alcanzar el radio de Strömgren. Posteriormente la diferencia de presiones entre el gas ionizado de la región H II y del gas neutro circundante, provoca una segunda expansión con forma de ley de potencias hasta alcanzar equilibrio de presiones.

A.2. Flujos de Champaña

La segunda expansión lleva a que la región H II se expanda dos órdenes de magnitud por encima del radio de Strömgren, pero el tiempo que toma alcanzar dichas dimensiones es tan largo que la estrella central muere antes de se alcanze el equilibrio de presiones. Sin embargo, es más probable que el frente de ionización rebase el borde de la nube molecular donde se formó, y en este caso el gas ionizado altamente presurizado escapa directamente hacia el medio interestelar que lo rodea (que tiene una presión aún menor que la de la nube molecular), creando el *Flujo de champaña* (Stahler & Palla, 2004). El escenario se muestra en la figura A.1.

A.3. Características de la emisión

Tradicionalmente la línea de H_{α} es la que se utiliza para detectar regiones H II en el óptico, sin embargo, otras líneas espectrales, tales como

Figura A.1: Formación de un flujo de champaña (Tenorio-Tagle, 1979)

iones de carbono, oxígeno y nitrógeno también son importantes. Es más, aunque estos iones son relativamente poco abundantes, poseen estados metaestables que pueden ser excitados por electrones del ambiente que tengan solo unos pocos eV de energía, y posteriormente emitir líneas prohibidas de emisión. La sección transversal para la excitación de la línea es relativamente grande, aun más que la de la recombinación electrón-protón, por lo que la emisión de líneas prohibidas es un proceso de enfriamiento más eficaz que la recombinación en cascada del hidrógeno. Los iones más comunes de estos metales son los que están ionizados varias veces, tales como el [O II]. que emite en óptico el doblete $\lambda\lambda 3726 - 3729$ Å, el [O III], que emite en óptico el doblete $\lambda\lambda 4959 - 5007$ Å, el [N II] que tiene dos transiciones que emiten a las longitudes de onda de $\lambda 6583$ Å v $\lambda 6548$ Å, v el [C IV] a $\lambda 1549$ Å en ultravioleta. Por otro lado, en radio continuo observamos radiación libre-libre. A bajas frecuencias, donde la aproximación de Rayleigh-Jeans es válida, el coeficiente de absorción es proporcional a ν^{-2} . Por tanto, a bajas frecuencias la región HII es ópticamente gruesa respecto a frecuencias más altas. En el régimen ópticamente grueso, la emisividad es proporcional a ν^2 v la pendiente nos da una estimación directa de la temperatura. Por otro lado, en el régimen ópticamente delgado, el flujo es proporcional a la medida de emisión, por lo que teniendo la región H II espacialmente resuelta. podemos tener una estimación de la densidad electrónica.

Apéndice B

Choques y Frentes de Ionización

Algunas veces en un medio gaseoso pueden existir discontinuidades importantes en alguna de sus propiedades físicas, cuando estas propiedades son la presión, densidad y temperatura del gas nos estamos refiriendo a un choque, que es producido cuando el gas sufre una perturbación a una velocidad superior a la del sonido, mientras que si la discontinuidad ocurre en el grado de ionización del gas, entonces esta discontinuidad es conocida como frente de ionización. En esta sección analizaremos las condiciones de salto tanto de los choques como de los frentes de ionización para conocer las propiedades del gas en las dos interfaces de la discontinuidad.

B.1. Choques (condiciones de salto)

Consideremos un fluído que tiene densidad ρ_1 , presión P_1 y se mueve en la dirección de eje +x con velocidad u_1 . En la posición x = s(t) existe un choque que se mueve a velocidad $u_0 \equiv \frac{ds}{dt}$. Delante del choque el fluído tiene densidad ρ_2 , presión P_2 y se mueve a velocidad u_2 .

Antes y después del choque escogemos dos puntos arbitrarios, x_1 y x_2 , respectivamente que forman una superficie cada uno en el plano yz que están en co-movimiento con la discontinuidad (ver figura B.1).

La masa encerrada dentro del volumen que forman las dos superficies

Figura B.1: Representación esquemática de un fluido con una discontinuidad situada en x = s(t). Detrás y delante del choque en las posiciones $x = x_1$ y $x = x_2$, respectivamente, situamos dos superficies paralelas al choque y que están en co-movimiento con éste.

es constante en el tiempo, esto es, la cantidad que fluido que entra por la superficie 1 (atrás del choque), debe ser igual a la que sale por la superficie 2:

$$\frac{d}{dt} \int_{x_1}^{x_2} \rho \, dx = 0 \tag{B.1}$$

Por otro lado, dentro del volumen entre las dos superficies, la presión del fluído en la superficie 1 contribuye a incrementar el momento, mientras que la presión en la superficie 2 tiene el efecto contrario, entonces:

$$\frac{d}{dt} \int_{x_1}^{x_2} \rho u \ dx = P_1 - P_2 \tag{B.2}$$

Por último, por completez la potencia mecánica por unidad de área $P_1u_1 - P_2u_2$ incrementa la energía interna del fluído entre las superficies:

$$\frac{d}{dt} \int_{x_1}^{x_2} \rho\left(\frac{u^2}{2} + \epsilon\right) \, dx = P_1 u_1 - P_2 u_2 \tag{B.3}$$

Donde ϵ es la energía interna por unidad de masa. Nótese que esta ecuación no es válida si el fluído puede perder energía por radiación (este caso se discutirá aparte más adelante).

Las tres ecuaciones anteriores son de la siguiente forma:

$$\frac{dJ}{dt} \equiv \frac{d}{dt} \int_{x_1}^{x_2} \Psi(x,t) \ dx \tag{B.4}$$

Donde $\Psi(x,t)$ presenta una discontinuidad espacial en x = s(t). Como la integral implica solo la coordenada espacial y la derivada es respecto al tiempo, entonces podemos intercambiar el orden de éstas:

$$\frac{dJ}{dt} = \int_{x_1}^{x_2} \frac{d\Psi}{dt} \, dx = \int_{x_1}^{x_2} \left(\frac{\partial\Psi}{\partial t} + \frac{\partial\psi}{\partial x}\frac{dx}{dt}\right) \, dx \tag{B.5}$$

Debido a la discontinuidad separaramos el segundo término de la integral:

$$\frac{dJ}{dt} = \int_{x_1}^{x_2} \frac{\partial \Psi}{\partial t} \, dx + \int_{x_1}^s \frac{\partial \psi}{\partial x} \frac{dx}{dt} \, dx + \int_s^{x_2} \frac{\partial \psi}{\partial x} \frac{dx}{dt} \, dx$$
$$= \int_{x_1}^{x_2} \frac{\partial \Psi}{\partial t} \, dx \left(\Psi_1 u_0 - \Psi_1 u_1 + \Psi_2 u_2 - \Psi_2 u_0\right) \tag{B.6}$$

Como x_1 y x_2 son puntos arbitrarios, podemos tomar el límite cuando $x_1, x_2 \rightarrow s$. Este límite es de interés ya que los choques en muchos casos son muy delgados en comparación con el tamaño característico del sistema. De esta manera el primer término del lado derecho de la ecuación (B.6) desaparece porque la derivada parcial respecto al tiempo de Ψ es finita para toda x (incluída la discontinuidad). Entonces:

$$\lim_{x_1, x_2 \to s} \frac{dJ}{dt} = \Psi_2 v_2 - \Psi_1 v_1 \tag{B.7}$$

Donde $v_2 \equiv u_2 - u_0$ y $v_1 \equiv u_1 - u_0$ son las velocidades del fluído respecto a la velocidad del choque.

Utilizando la ecuación (B.7) en (B.1) obtenemos la primera condición de salto:

$$\rho_1 v_1 = \rho_2 v_2 \tag{B.8}$$

Aplicando a su vez en la ecuación (B.2) con ayuda de la ecuación (B.8) obtenemos la siguiente condición de salto:

$$\rho_1 v_1^2 + P_1 = \rho_2 v_2^2 + P_2 \tag{B.9}$$

Por último, la última condición de salto, solo válida para sistemas adiabáticos es, utilizando la ecuación (B.3) es:

$$\frac{1}{2}v_1^2 + \epsilon_1 + \frac{P_1}{\rho_1} = \frac{1}{2}v_2^2 + \epsilon_2 + \frac{P_2}{\rho_2}$$
(B.10)

Para el caso en que el fluído pierde energía por radiación, la ecuación (B.2) sufre la siguiente modificación:

$$\frac{d}{dt} \int_{x_1}^{x_3} \rho\left(\frac{u^2}{2} + \epsilon\right) dx = P_1 u_1 - P_3 u_3 - 2F_{rad}$$
(B.11)

Donde F_{rad} es el flujo de radiado por el fluído y x_3 es un punto localizado más allá de la región de relajamiento del choque (la zona donde el fluído está radiando, como referencia podemos tomar la figura 3 de Shull & McKee (1979)).

De esta forma, la nueva condición de salto en caso de un choque radiativo es:

$$\frac{1}{2}v_3^2 + \epsilon_3 + \frac{P_3}{\rho_3} = \frac{1}{2}v_1^2 + \epsilon_1 + \frac{P_1}{\rho_1}\frac{2F_{rad}}{\rho_1 v_1}$$
(B.12)

B.2. Frentes de Ionización

Para esta sección, utilizaremos el subíndice "0" para las propiedades del gas en la interfaz neutra, mientras que para la interfaz ionizada utilizaremos el subídice "i" (ver figura B.2). Bajo esta nomenclatura, combinamos las ecuaciones (B.8, B.9) para las condiciones de salto en el frente de ionización y reescribiendo la presión en términos de la velocidad del sonido:

$$P_x = c_x^2 \rho_x \tag{B.13}$$

donde el subíndice "x" puede hacer referencia tanto al medio neutro o ionizado. En la ecuación para la energía, son los fotones estelares los que determinan la temperatura del gas y se asume que la temperatura del frente de ionización se calienta a la temperatura de la región H II de manera instantánea. Con esto, encontramos el salto en densidad del frente de ionización:

$$\frac{\rho_i}{\rho_0} = \frac{1}{2c_i^2} \left[v_0^2 + c_0^2 \pm \left(\left(v_0^2 + c_0^2 \right)^2 - 4v_0^2 c_i^2 \right)^{1/2} \right]$$
(B.14)

Figura B.2: Representación esquemática de la estuctura de un frente de ionización. En un medio gaseoso, con densidad ρ_0 , presión P_0 y que se mueve velocidad v_1 está expuesto a radiación ionizante con una tasa de fotnes ionizantes \mathcal{N}_* . El gas ionizado tiene densidad ρ_i , presión P_i y se mueve a velocidad v_i . Las velocidades están medidas en el sistema de referencia del frente de ionización.

O bien, en términos del número de Mach del gas neutro $\mathcal{M} \equiv v_0/c_0$:

$$\frac{\rho_i}{\rho_0} = \frac{1}{2} \frac{c_0^2}{c_i^2} \left[\mathcal{M}^2 + 1 \pm \left(\left(\mathcal{M}^2 + 1 \right)^2 - 4 \mathcal{M}^2 \frac{c_i^2}{c_0^2} \right)^{1/2} \right]$$
(B.15)

En la ecuación (B.15) se requiere que el argumento de la raíz cuadrada sea positivo. Para que esto suceda se debe cumplir la siguiente condición:

$$\mathcal{M}^2 - 2\mathcal{M}\frac{c_i}{c_0} + 1 \ge 0 \tag{B.16}$$

Los casos críticos (donde el discriminante (B.16) es igual a cero) son:

$$\mathcal{M}_{R} = \frac{c_{i}}{c_{0}} \left[1 + \left(1 - \frac{c_{0}^{2}}{c_{i}^{2}} \right)^{1/2} \right]$$
(B.17)

$$\mathcal{M}_D = \frac{c_i}{c_0} \left[1 - \left(1 - \frac{c_0^2}{c_i^2} \right)^{1/2} \right]$$
(B.18)

Como $c_i^2 \gg c_0^2$, dado que $c_i \sim 10 \text{ kms}^{-1} \text{ y } c_0 \sim 1 - 3 \text{ kms}^{-1}$ entonces podemos hacer las siguientes aproximaciones:

$$\mathcal{M}_R \simeq 2\frac{c_i}{c_0} \tag{B.19}$$

$$\mathcal{M}_D \simeq \frac{1}{2} \frac{c_0}{c_i} \tag{B.20}$$

Cuando $\mathcal{M} \geq \mathcal{M}_R$, el frente de ionización se denomina tipo R (rarified), y en caso de que $\mathcal{M} \leq \mathcal{M}_D$ se denominan frentes tipo D (dense). Cuando $\mathcal{M} = \mathcal{M}_R$ o $\mathcal{M} = \mathcal{M}_D$ los frentes se denominan R crítico y D crítico, respectivamente. En los frentes tipo R el material neutro viaja a velocidad supersónica y el salto de densidad es $\rho_i/\rho_0 < 0$ (la onda de material que pasa a través del frente de ionización está rarificada respecto al material ionizado, de ahí el nombre). En los frentes tipo D ocurre lo contrario: la onda de material viaja a velocidad subsónica y es densa respecto al material

Figura B.3: Soluciones para el salto en (a) densidad y (b) velocidad de un frente de ionización. La línea punteada representa la solución a la ecuación (B.15) cuando se utiliza el signo negativo, mientras que la línea contínua a la solución con signo positivo. En la región sombreada en verde se muestran los frentes tipo D y en la región azul los frentes tipo R. Los frentes tipo D crítico y R crítico ocurren donde se intersectan las soluciones con las líneas punteadas verticales.

ionizado. En el caso de que $\mathcal{M}_D < \mathcal{M} < \mathcal{M}_R$ la onda de material que viaja hacia el frente de ionización se amortigua rápidamente. En la figura B.3a se muestran las soluciones para el salto de densidad para frentes de ionización "fuertes" (signo positivo en la ecuación (B.15)) y "débiles" (signo negativo en (B.15)).

Por otro lado, el salto en velocidad lo podemos derivar combinando las ecuaciones (B.8, B.15). El resultado se muestra en la figura B.3b. En el caso de los frentes R crítico y D crítico, la velocidad del gas en el medio ionizado es igual a la velocidad del sonido.

Apéndice C

Derivación Matemática del Radio de Curvatura

C.1. Caso General

Tomamos una curva genérica $\vec{\sigma}(t) \equiv x(t)\hat{x} + y(t)\hat{y}$ continua y suave para todo valor de t real y finito. Sus derivadas se denotan como $\vec{\sigma}'(t)$ y $\vec{\sigma}''(t)$. Su longitud de arco está dada por:

$$s(t) = \int_0^t \|\vec{\sigma}'(t')\| dt'$$
 (C.1)

Reparametrizamos la trayectoria $\vec{\sigma}(t)$ con la longitud de arco y diferenciando respecto a ésta obtenemos lo siguiente:

$$\frac{d\vec{\sigma}}{ds} = \frac{\vec{\sigma}'(t)}{\|\vec{\sigma}'(t)\|} \equiv \vec{T}(s) \tag{C.2}$$

Esta última expresión se logró diferenciando la ecuación (C.1) y aplicando la regla de la cadena al diferenciar $\frac{d\vec{\sigma}}{ds}$. $\vec{T}(s)$ es el vector tangente a la trayectoria $\vec{\sigma}(s)$.

La curvatura κ se define como la magnitud de la derivada del vector tangente respecto a la longitud de arco, o bien, como la segunda derivada de la trayectoria $\vec{\sigma}(s)$:

$$\kappa \equiv \left\| \vec{T}'(s) \right\| = \left\| \vec{\sigma}''(s) \right\| \tag{C.3}$$

El radio de curvatura se define como el radio de un círculo que ajusta localmente a la trayectoria, y se calcula como el inverso multiplicativo de la curvatura:

$$R_c = \frac{1}{\kappa} \tag{C.4}$$

Aplicando la regla de la cadena encontramos la siguiente expresión para la curvatura:

$$\kappa = \left\| \frac{\vec{\sigma}''(t)}{\|\vec{\sigma}'(t)\|^2} - \frac{\vec{\sigma}'(t)}{\|\vec{\sigma}'(t)\|^4} \vec{\sigma}'(t) \cdot \vec{\sigma}''(t) \right\|$$
(C.5)

Escribimos las componentes de las derivadas de $\vec{\sigma}(t)$ para calcular los factores que intervienen en la ecuación (C.5):

$$\vec{\sigma}'(t) = \dot{x}\hat{x} + \dot{y}\hat{y} \tag{C.6}$$

$$\vec{\sigma}''(t) = \ddot{x}\hat{x} + \ddot{y}\hat{y} \tag{C.7}$$

$$\implies \vec{\sigma}'(t) \cdot \vec{\sigma}''(t) = \dot{x}\ddot{x} + \dot{y}\ddot{y}$$
 (C.8)

De esta forma, calculamos la curvatura como sigue:

$$\kappa = \left[\left(\frac{\ddot{x}}{\|\vec{\sigma}'\|^2} - \frac{\dot{x}(\dot{x}\ddot{x} + \dot{y}\ddot{y})}{\|\vec{\sigma}'\|^4} \right)^2 + \left(\frac{\ddot{y}}{\|\vec{\sigma}'\|^2} - \frac{\dot{y}(\dot{x}\ddot{x} + \dot{y}\ddot{y})}{\|\vec{\sigma}'\|^4} \right)^2 \right]^{1/2}$$
(C.9)

$$\kappa = \|\vec{\sigma}'\|^{-2} \left[\left(\ddot{x}(\dot{x}^2 + \dot{y}^2) - \dot{x}(\dot{x}\ddot{x} + \dot{y}\ddot{y}) \right)^2 \right]$$
(C.10)

$$+ \left(\ddot{y}(\dot{x}^2 + \dot{y}^2) - \dot{y}(\dot{x}\ddot{x} + \dot{y}\ddot{y})\right)^{2^{1/2}}$$

$$\kappa = \|\vec{\sigma}'\|^{-2} \left[\left(\ddot{x}\dot{y}^2 - \dot{x}\dot{y}\ddot{y} \right)^2 + \left(\ddot{y}\dot{x}^2 - \dot{y}\dot{x}\ddot{x} \right)^2 \right]^{1/2}$$
(C.11)

$$\kappa = \left\|\vec{\sigma}'\right\|^{-3} \left[\ddot{x}^2 \dot{y}^2 + \ddot{y}^2 \dot{x}^2 - 2\ddot{x}\ddot{y}\dot{x}\dot{y}\right]^{1/2} \tag{C.12}$$

$$\kappa = \frac{|xy - yx|}{(\dot{x}^2 + \dot{y}^2)^{3/2}} \tag{C.13}$$

Utilizando coordenadas polares, y utilizando el ángulo polar θ como parámetro, la expresión para el radio de curvatura queda como sigue:

$$R_{c} = \frac{\left(R^{2} + R_{\theta}^{2}\right)^{3/2}}{|R^{2} + 2R_{\theta} - RR_{\theta\theta}|}$$
(C.14)

Donde $R_{\theta} \equiv \frac{dR}{d\theta}$ y $R_{\theta\theta} \equiv \frac{d^2R}{d\theta^2}$.

Evaluando (C.14) en el ápex ($\theta = 0$) encontramos que $R_{\theta,0} = 0$ por ser el mínimo de $R(\theta)$ y podemos quitar las barras de valor absoluto porque el denominador resultante siempre es positivo por la misma razón. Por tanto recuperamos la ecuación (3.6):

$$R_c = \frac{R_0^2}{R - R_{\theta\theta,0}} \tag{C.15}$$

C.2. Radio de curvatura para un polinomio de grado 2n

Dado que es de nuestro interés calcular el radio de curvatura del choque en el eje de simetría ($\theta = 0$), debido a que es analíticamente más fácil de calcular, y a su vez es medible observacionalmente ajustando un círculo a una serie de mediciones de la posición del choque (sección). Entonces, hacemos una aproximación para la función $R(\theta)$ que nos da la forma del choque mediante un polinomio par de grado 2n de la siguiente forma:

$$R(\theta) \simeq R_0 \left(1 + R_{\theta\theta,0} \theta^2 + \mathcal{O}(\theta^4) \right)$$
(C.16)

De esta forma calculamos las derivadas de $R(\theta)$:

$$\dot{R}(\theta) \simeq R_0 \theta \left(2R_{\theta\theta,0} + \mathcal{O}(\theta^2)\right)$$
 (C.17)

$$\ddot{R}(\theta) \simeq R_0 \left(2R_{\theta\theta,0} + \mathcal{O}(\theta^2) \right) \tag{C.18}$$

Evaluando en $\theta = 0$ obtenemos los siguiente:

$$R(0) = R_0 \tag{C.19}$$

$$\dot{R}(0) = 0 \tag{C.20}$$

$$\ddot{R}(0) = 2R_{\theta\theta,0}R_0 \tag{C.21}$$

$$\implies \omega(0) = 0$$
 (C.22)

$$\dot{\omega}(0) \equiv \frac{\ddot{R}(0)}{R(0)} - \left(\frac{\dot{R}(0)}{R(0)}\right)^2 = 2R_{\theta\theta,0}$$
(C.23)

Sustituyendo en la ecuación (C.14) obtenemos la planitud en el ápex:

$$\Pi = \frac{1}{|1 - 2R_{\theta\theta,0}|} \tag{C.24}$$

Por esto en el apéndice F para encontrar el radio de curvatura nos enfocamos en encontrar el coeficiente de segundo orden en la expansión en serie de $R(\theta)$.

Apéndice D

Planitud y alatud aparente del paraboloide

Las ecuaciones (3.10, 3.11) en el plano $\phi = 0$ no funcionan para el caso particular de la paraboloide, donde Q = 0. En su lugar, utilizamos la siguiente parametrización:

$$x = R_0 \left(1 - \frac{1}{2} \Pi t^2 \right) \tag{D.1}$$

$$y = R_0 \Pi t \tag{D.2}$$

En este caso, tenemos conocimiento previo de la planitud, y por definición, la alatud ($\Lambda = (2\Pi)^{1/2}$), ver ecuación 3.25. Utilizando la ecuación 3.26 sobre las ecuaciones (D.1, D.2) previamente aplicando la matriz de rotación $A_x(\phi)$, encontramos la forma proyectada de la línea tangente:

$$x_T'/R_0 = \left(1 - \frac{1}{2}\Pi t^2\right)\cos i - \Pi t\sin\phi_T\sin i \tag{D.3}$$

$$y_T'/R_0 = \Pi t \cos \phi_T \tag{D.4}$$

De las ecuaciones (3.29, 3.33) encontramos que $\sin \phi_T = -t^{-1} \tan i$, por

lo tanto:

$$x'_T/R_0 = \cos i \left[1 + \frac{1}{2} \Pi t \tan^2 i - \frac{1}{2} \Pi \left(t^2 - \tan^2 i \right) \right]$$
(D.5)

$$y'_T/R_0 = \Pi \left(t^2 - \tan^2 i\right)^{1/2}$$
 (D.6)

El radio proyectado en el ápex es el valor de x_T^\prime cuando $y_T^\prime=0,$ lo que nos lleva a:

$$R'_0/R_0 = \cos i \left(1 + \frac{1}{2} \Pi \tan^2 i \right)$$
 (D.7)

esta expresión también se puede obtener al obtener el límite de la ecuación (3.56) cuando $\mathcal{Q} \to 0$.

Las ecuaciones (D.5, D.6) pueden reescribirse como:

$$x'_T = R'_0 \left(1 - \frac{1}{2} \Pi' t'^2 \right)$$
(D.8)

$$y_T' = R_0' \Pi' t' \tag{D.9}$$

donde:

$$\Pi' = \frac{2\Pi}{2\cos^2 i + \Pi \sin^2 i} \tag{D.10}$$

$$t' = \cos i \left(t^2 - \tan^2 i\right)^{1/2}$$
 (D.11)

La ecuación (D.10) también puede obtenerse al aplicar el límite $\mathcal{Q} \to 0$ a la ecuación (3.57). Ésto nos muestra que la forma proyectada es efectivamente una parábola para todas las inclinaciones. Entonces la alatud proyectada se puede calcular como $\Lambda' = (2\Pi')^{1/2}$, se puede demostrar que en el límite $i \to 90^{\circ}$ la planitud y la alatud proyectadas tienden a 2 y que la estas cantidades son independientes de la inclinación para el paraboloide confocal ($\Pi = \Lambda = 2$).

Apéndice E

Matrices de Rotación y Proyección en el Plano del Cielo.

La transformación del sistema de referencia del objeto (no primado) al sistema de referencia del plano del cielo (primado), se realiza mediante una rotación respecto al eje y por un ángulo i. Dicha rotación es descrita por la matriz de rotación $\mathbf{A}_y(i)$:

$$\mathbf{A}_{y}(i) = \begin{pmatrix} \cos i & 0 & -\sin i \\ 0 & 1 & 0 \\ \sin i & 0 & \cos i \end{pmatrix}$$
(E.1)

A su vez se pueden obtener con esta matriz los vectores unitarios del sistema de referencia primado en términos de los vectores unitarios del sistema de referencia no primado:

$$\hat{x}' = \mathbf{A}_y(-i) \begin{pmatrix} 1\\0\\0 \end{pmatrix} \tag{E.2}$$

$$\hat{y}' = \mathbf{A}_y(-i) \begin{pmatrix} 0\\1\\0 \end{pmatrix} \tag{E.3}$$

$$\hat{z}' = \mathbf{A}_y(-i) \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$
(E.4)

Es de notarse que en este caso el signo de *i* está invertido debido a que actualmente la matriz de rotación $\mathbf{A}_y(i)$ realiza una rotación en favor de las manecillas del reloj, mientras que convencionalmente se utiliza el signo positivo del ángulo de rotación para rotaciones en contra de las manecillas del reloj (Richard Bronson & Saccoman, 2014).

Por otro lado, como estamos considerando choques con geometría cilíndrica, entonces todos los ángulos azimutales ϕ son equivalentes. Entonces, por simplicidad, podemos trabajar con curvas bidimensionales en plano xy (z = 0), donde su forma tridimensional es una superficie de revolución de éstas alrededor del eje x y se puede encontrar mediante la matriz de rotación:

$$\mathbf{A}_{x}(\phi) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\phi & -\sin\phi\\ 0 & \sin\phi & \cos\phi \end{pmatrix}$$
(E.5)

Donde ϕ toma valores en el intervalo $[0, 2\pi]$

Apéndice F

Derivación paso a paso de los Radios Característicos en el Modelo de Capa Delgada

F.1. *R*₀

Podemos determinar el radio característico R_0 a partir de la condición de que el choque es estacionario. En este caso, los momentos de los dos vientos son iguales en la posición del choque. Por tanto, utilizando la ecuación de momento en $\theta = 0$ obtenemos lo siguiente:

$$\rho_{ws}v_w^2 = \rho_{ws1}v_{w1}^2 \tag{F.1}$$

Donde ρ_{ws} y ρ_{ws1} son las densidades de los dos vientos en la posición del choque. Por otro lado, como la tasa de pérdida de masa es constante para un ángulo θ dado, entonces podemos hacer lo siguiente:

$$\frac{\dot{M}_w^0}{4\pi R_0^2 v_w} v_w^2 = \frac{\dot{M}_{w1}^0}{4\pi \left(D - R_0\right)^2 v_{w1}} v_{w1}^2 \tag{F.2}$$

En esta última ecuación hemos sustituído $\dot{M}_w^0 = 4\pi R_0^2 v_w \rho_{ws}$ y $\dot{M}_{w1}^0 = 4\pi \left(D - R_0\right)^2 v_{w1} \rho_{ws1}$.

Reduciendo la ecuación (F.2) encontramos una expresión para R_0 :

$$\frac{R_0}{D} = \frac{\beta^{1/2}}{1 + \beta^{1/2}} \tag{F.3}$$

F.2. Alatud de Choques tipo Cantoides y Ancantoides

 R_{90} puede determinarse a partir de evaluar las ecuaciones (4.27) y (4.28) en $\theta = \frac{\pi}{2}$ como sigue:

$$\frac{R_{90}}{D} = \tan \theta_{1,90} \tag{F.4}$$

$$\theta_{1,90} \cot \theta_{1,90} - 1 = -\frac{2\beta}{k+2} \tag{F.5}$$

Donde $\theta_{1,90} = \theta_1\left(\frac{\pi}{2}\right)$. Introducimos un nuevo parámetro $\xi \equiv \frac{2}{k+2}$ de modo que combinando las dos ecuaciones anteriores obtenemos lo siguiente:

$$\frac{R_{90}}{D} = \tan \theta_{1,90} = \frac{\theta_{1,90}}{1 - \xi\beta}$$
(F.6)

Hacemos una expansión en serie para el lado izquierdo de la ecuación y reducimos:

$$\theta_{1,90}^2 \left(1 + \frac{\theta_{1,90}^2}{15} \right) \simeq 3\beta\xi$$
(F.7)

Tomamos la solución a primer orden $\theta_{1,90} = 3\beta\xi$, sustituímos este valor en el término correctivo y resolvemos para $\theta_{1,90}$:

$$\theta_{1,90} = \left(\frac{3\xi\beta}{1+\frac{1}{5}\xi\beta}\right)^{1/2} \tag{F.8}$$

Finalmente sustituímos (F.8) en (F.6) para obtener R_{90} :

$$\frac{R_{90}}{D} = \frac{(3\xi\beta)^{1/2}}{\left(1 + \frac{1}{5}\xi\beta\right)^{1/2}(1 - \xi\beta)}$$
(F.9)

$$\Lambda = \frac{(3\xi)^{1/2} \left(1 + \beta^{1/2}\right)}{\left(1 + \frac{1}{5}\xi\beta\right)^{1/2} \left(1 - \xi\beta\right)}$$
(F.10)

F.3. Planitud de choques tipo Cantoides y Ancantoides

Siendo que el choque de proa en nuestro modelo genérico es simétrico, entonces la forma $R(\theta)$ debe ser una función par, por tanto podemos hacer la siguiente expansión en serie:

$$R(\theta) \simeq R_0 + \frac{1}{2} R_{\theta\theta,0} \theta^2 + \mathcal{O}(\theta^4)$$
 (F.11)

De esta forma la planitud del choque en el ápex queda como sigue (ver apéndice C):

$$\Pi = \left(1 - 2\frac{R_{\theta\theta,0}}{R_0}\right)^{-1} \tag{F.12}$$

Para encontrar el coeficiente de segundo orden $R_{\theta\theta,0}$ hacemos una expansión en serie de las ecuaciones (4.28) y (4.27) para ángulos pequeños, mostrando a continuación la expansión de cada término para al final hacer la reducción algebraica:

$$\theta_1 \cot \theta_1 - 1 \simeq -\frac{\theta_1^2}{3} \left(1 + \frac{\theta_1^2}{15} \right) \tag{F.13}$$

$$\cos^k \theta \simeq \left(1 - \frac{\theta^2}{2}\right)^k \simeq \left(1 - \frac{k\theta^2}{2}\right)$$
 (F.14)

$$\sin^2 \theta \simeq \theta^2 \left(1 - \frac{\theta^2}{6} \right)^2 \simeq \theta^2 \left(1 - \frac{\theta^2}{3} \right)$$
(F.15)

$$\implies \cos^k \theta \sin^2 \theta \simeq \theta^2 \left[1 - \left(\frac{1}{3} + \frac{k}{2} \right) \theta^2 \right]$$
 (F.16)

$$\implies I_k(\theta) \simeq \frac{\theta^3}{3} \left[1 - \frac{1}{10} \left(3k + 2 \right) \theta^2 \right] \tag{F.17}$$

$$\cot \theta \simeq \theta^{-1} \left(1 - \frac{\theta^2}{3} \right) \tag{F.18}$$

$$\implies 2\beta I_k(\theta) \cot \theta \simeq \frac{2}{3}\beta \theta^2 \left[1 - \frac{1}{30} \left(9k + 16 \right) \theta^2 \right]$$
(F.19)

$$-\frac{2\beta}{k+2}\left(1-\cos^{k+2}\theta\right) \simeq \beta\theta^2 \left[1-\frac{1}{12}\left(3k+4\right)\right] \tag{F.20}$$

Sustituyendo las expansiones anteriores en (4.28) obtenemos lo siguiente:

$$\theta_1^2 \left(1 + \frac{\theta_1^2}{15} \right) \simeq \beta \theta^2 \left[1 + \frac{1}{60} \left(4 - 9k \right) \theta^2 \right] \tag{F.21}$$

La solución a primer orden (ignorando el término cuártico) es $\theta_1^2 \simeq \beta \theta^2$. Sustituímos esta solución en el término correctivo y resolvemos para θ_1^2 :

$$\theta_1^2 \simeq \beta \theta^2 \left[1 + \frac{1}{60} \left(4 - 9k \right) \theta^2 \right] \left(1 + \frac{\beta \theta^2}{15} \right)^{-1}$$
 (F.22)

$$\theta_1^2 \simeq \beta \theta^2 \left[1 + \frac{1}{60} \left(4 - 9k \right) \theta^2 \right] \left(1 - \frac{\beta \theta^2}{15} \right) \tag{F.23}$$
$$\Rightarrow \theta^2 \approx \beta \theta^2 \left(1 + C_{\text{F}} \theta^2 \right)$$

$$\implies \theta_1^2 \simeq \beta \theta^2 \left(1 + C_{k\beta} \theta^2 \right) \tag{F.24}$$

Donde:
$$C_{k\beta} = \left(\frac{1}{15} - \frac{3k}{20} - \frac{\beta}{15}\right)$$
 (F.25)

Utilizamos esta solución para θ_1 en la ecuación (4.27), ignorando términos de orden superior al cuártico dentro de los corchetes:

$$\theta_1 \simeq \beta^{1/2} \theta \left(1 + C_{k\beta} \theta^2 \right)^{1/2} \tag{F.26}$$

$$\implies \theta + \theta_1 \simeq \theta \left[1 + \beta^{1/2} \left(1 + \frac{C_{k\beta}}{2} \theta^2 \right) \right] \tag{F.27}$$

$$\sin \theta_1 \simeq \theta_1 \left(1 - \frac{\theta_1^2}{6} \right) \tag{F.28}$$

$$\simeq \beta^{1/2} \theta \left(1 + \frac{C_{k\beta}}{2} \theta^2 \right) \left[1 - \frac{\beta \theta^2 \left(1 + C_{k\beta} \theta^2 \right)}{6} \right]$$
(F.29)

$$\implies \sin \theta_1 \simeq \beta^{1/2} \theta \left[1 + \left(\frac{C_{k\beta}}{2} - \frac{\beta}{6} \right) \theta^2 \right]$$
(F.30)

$$\sin\left(\theta + \theta_1\right) \simeq \left(\theta + \theta_1\right) \left[1 - \frac{\left(\theta + \theta_1\right)^2}{6}\right] \tag{F.31}$$

$$\simeq \theta \left[1 + \beta^{1/2} \left(1 + \frac{C_{k\beta}}{2} \theta^2 \right) \right] \left[1 - \frac{\theta^2 \left(1 + \beta^{1/2} \left(1 + \frac{C_{k\beta}}{2} \theta^2 \right) \right)^2}{6} \right]$$
(F.32)

$$\simeq \theta \left(1 + \beta^{1/2} \right) \left[1 + \left(\frac{\beta^{1/2} C_{k\beta}}{2 \left(1 + \beta^{1/2} \right)} - \frac{1}{6} \left(1 + \beta^{1/2} \right)^2 \theta^2 \right) \right]$$
(F.33)

$$\implies \frac{R}{D} \simeq \frac{\beta^{1/2}}{1+\beta^{1/2}} \left[1 + \left(\frac{C_{k\beta}}{2} - \frac{\beta}{6}\right) \theta^2 \right] \\ \left[1 + \left(-\beta^{1/2} C_{k\beta} - \left(1+\beta^{1/2}\right)^2 \right) \rho^2 \right]^{-1}$$
(F.34)

$$\begin{bmatrix} 1 + \left(\frac{1}{2(1+\beta^{1/2})} - \frac{1}{6}\right)^{\theta} \end{bmatrix}$$

$$\simeq R_0 \left[1 + \left(\frac{C_{k\beta}}{2(1+\beta^{1/2})} + \frac{1+2\beta^{1/2}}{6}\right)^{\theta} \right]$$
(F.35)

De esta mostramos que el término de segundo órden que necesitamos en la ecuación (4.41) está dado por:

$$\frac{R_{\theta\theta,0}}{2} = \frac{C_{k\beta}}{2\left(1+\beta^{1/2}\right)} + \frac{1+2\beta^{1/2}}{6}$$
(F.36)

que es el resultado mostrado en la ecuación (4.42)

F.4. Planitud para choques tipo Wilkinoides

Hacemos expansión Taylor hasta cuarto orden de cada uno de los términos de la ecuación (4.39)

$$\csc^2 \theta \simeq \theta^{-2} \left(1 - \frac{\theta^2}{6} + \mathcal{O}(\theta^4) \right)^{-2} \simeq \theta^{-2} \left(1 + \frac{\theta^2}{3} + \mathcal{O}(^4) \right)$$
(F.37)

$$\theta \cot \theta \simeq 1 - \frac{\theta^2}{3} \left(1 + \frac{\theta^2}{15} + \mathcal{O}(\theta^4) \right)$$
 (F.38)

$$\implies 1 - \theta \cot \theta \simeq \frac{\theta^2}{3} \left(1 + \frac{\theta^2}{15} + \mathcal{O}(\theta^4) \right)$$
(F.39)

Sustituímos en la ecuación (4.39):

$$R(\theta) \simeq R_0 \left[3\theta^{-2} \left(1 + \frac{\theta^2}{3} + \mathcal{O}(\theta^4) \right) \frac{\theta^2}{15} \left(1 + \frac{\theta^2}{15} \right) \right]^{1/2} \qquad (F.40)$$

$$\implies R(\theta) \simeq R_0 \left[1 + \frac{2\theta^2}{5} + \mathcal{O}(\theta^4) \right]^{1/2} \tag{F.41}$$

$$\implies R(\theta) \simeq R_0 \left[1 + \frac{\theta^2}{5} + \mathcal{O}(\theta^4) \right]$$
 (F.42)

De esta forma mostramos que el coeficiente de segundo orden en este caso es $R_{\theta\theta,0} = \frac{1}{5}$. Por lo tanto, sustituyendo este valor en la ecuación (C.24) encontramos que

$$\Pi = \frac{5}{3} \tag{F.43}$$

Apéndice G

Otros modelos donde se forman arcos similares

Consideramos el escenario donde una estrella con luminosidad bolométrica L interactuando con una corriente de gas y polvo formando una emisión en forma de arco. Esta corriente puede ser por ejemplo un flujo de champaña dentro de una región HII, o bien puede deberse al movimiento relativo de la estrella con el medio interestelar, incluso el viento de otra estrella. A menudo estas estructuras se interpretan como choques de proa, como los que hemos descrito en este trabajo, pero existen otras interpretaciones que pueden ser más acertadas en otros casos, como las ondas de proa conducidas por presión de radiación, propuesta inicialmente por van Buren & McCray (1988). Los fotones estelares en este caso son absorbidos por el polvo. La transferencia de momento es suficiente como para desviar al polvo y formar una cavidad libre de polvo a una determinada distancia de la estrella y en el borde la densidad del polvo está incrementada. Dependiendo del acoplamiento entre gas y polvo pueden existir dos regímenes: cuando el acoplamiento es fuerte, tanto el gas como el polvo son desviados por la presión de radiación formando un arco similar a los choques de proa formados por la interacción de vientos, y cuando el acoplamiento es débil, solo el polvo es desviado por la presión de radiación, formando una onda de polvo desacoplándose del gas. Estos escenarios son descritos en la figura G.1.

Figura G.1: Choques de proa, ondas de proa, ondas de polvo y choques de proa de radiación. Estos últimos se forman cuando la opacidad de la corriente externa es alta y la radiación de la estrella le transfiere todo su momento al polvo.

Apéndice H

True Versus Apparent Shapes of Bowshocks

Este artículo contiene gran parte de esta Tesis, actualmente publicado en la revista Monthly Notices of the Royal Astronomical Society (MNRAS) en Marzo de 2018 (Tarango Yong & Henney, 2018).
True versus apparent shapes of bow shocks

Jorge A. Tarango-Yong* and William J. Henney*

Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apartado Postal 3-72, 58090 Morelia, Michoacán, México

Accepted 2018 March 9. Received 2018 March 8; in original form 2017 December 6

ABSTRACT

Astrophysical bow shocks are a common result of the interaction between two supersonic plasma flows, such as winds or jets from stars or active galaxies, or streams due to the relative motion between a star and the interstellar medium. For cylindrically symmetric bow shocks, we develop a general theory for the effects of inclination angle on the apparent shape. We propose a new two-dimensional classification scheme for bow shapes, which is based on dimensionless geometric ratios that can be estimated from observational images. The two ratios are related to the flatness of the bow's apex, which we term *planitude*, and the openness of its wings, which we term *alatude*. We calculate the expected distribution in the planitude–alatude plane for a variety of simple geometrical and physical models: quadrics of revolution, wilkinoids, cantoids, and ancantoids. We further test our methods against numerical magnetohydrodynamical simulations of stellar bow shocks and find that the apparent planitude and alatude measured from infrared dust continuum maps serve as accurate diagnostics of the shape of the contact discontinuity, which can be used to discriminate between different physical models. We present an algorithm that can determine the planitude and alatude from observed bow shock emission maps with a precision of 10 to 20 per cent.

Key words: hydrodynamics - circumstellar matter - stars: winds, outflows.

1 INTRODUCTION

The archetypal bow shock is formed when a solid body moves supersonically through a compressible fluid. Terrestrial examples include the atmospheric re-entry of a space capsule, or the sonic boom produced by a supersonic jet (van Dyke 1982). In astrophysics, the term bow shock is employed more widely, to refer to many different types of curved shocks that have approximate cylindrical symmetry. Instead of a solid body, astrophysical examples usually involve the interaction of two supersonic flows, such as the situation of a stellar wind emitted by a star that moves supersonically through the interstellar medium (van Buren & McCray 1988; Kobulnicky, Gilbert & Kiminki 2010; van Marle et al. 2011; Mackey et al. 2012, 2015). In such cases, two shocks are generally produced, one in each flow. Sometimes, especially in heliospheric studies (Zank 1999; Scherer & Fichtner 2014), the term 'bow shock' is reserved for the shock in the ambient medium, with the other being called the 'wind shock' or 'termination shock'. However, in other contexts such as colliding wind binaries (Stevens, Blondin & Pollock 1992; Gayley 2009), such a distinction is not so useful. A further class of astrophysical bow shock is driven by highly collimated, supersonic jets of material, such as the Herbig-Haro objects (Schwartz 1978; Hartigan, Raymond & Hartmann 1987) that are powered by jets from

*E-mail: j.tarango@irya.unam.mx (JAT-Y); w.henney@irya.unam.mx (WJH)

young stars or protostars. Additional examples are seen in planetary nebulae (Phillips, Cuesta & Ramos-Larios 2010; Meaburn, Boumis & Akras 2013), active galaxies (Wilson & Ulvestad 1987), and in galaxy clusters (Markevitch et al. 2002). In the jet-driven case, the term 'working surface' is often applied to the entire structure comprising the two shocks plus the shocked gas in between them, separated by a *contact discontinuity*. The working surface may be due to the interaction of the jet with a relatively quiescent medium, or may be an 'internal working surface' within the jet that is due to supersonic temporal variations in the flow velocity (Raga et al. 1990).

In empirical studies, the relationship between these theoretical constructs and the observed emission structures is not always clear. In such cases, the term 'bow shock' is often used in a more general sense to refer to the entire arc of emission. In this paper, we will concentrate on stellar bow shocks, in which the position of the star can serve as a useful reference point for describing the bow shape. The empirical terminology that we will employ is illustrated in Fig. 1. The *apex* is the point of closest approach of the bow to the star, which lies on the approximate symmetry axis, and the region around the apex is sometimes referred to as the head of the bow. The wings are the swept-back sides of the bow, which lie in a direction from the star that is orthogonal to the axis, with the far wings being the wing region farthest from the apex. Finally, the tail is the region near the axis but in the opposite direction from the apex. Fig. 2 shows an idealized schematic of how a double bow shock shell is formed from the interaction of two supersonic streams: an inner wind and an outer wind, with the inner wind being the weaker of the two (in

Figure 1. Descriptive terminology for a stellar bow shock. The apex is the closest approach of the bow to the star, while the wings are the parts of the bow that curve back past the star.

Figure 2. Quasi-stationary bow shock structure formed by the interaction of two supersonic winds. Lower-left inset box shows the case where the inner wind is anisotropic. The streamlines (thin lines) are drawn to be qualitatively realistic: they are straight in regions of hypersonic flow, but curved in subsonic regions, responding to pressure gradients in the shocked shells. Streamline slopes are discontinuous across oblique shocks.

Figure 3. Schematic diagram of cylindrically symmetric two-wind interaction problem in the thin-shell limit, following Canto, Raga & Wilkin (1996).

terms of momentum), so that the shell curves back around the inner source. The outer wind may be from another star, or may be a larger scale flow of the interstellar medium, such as the champagne flow produced by the expansion of an H II region away from a molecular cloud (Tenorio-Tagle 1979; Shu et al. 2002; Medina et al. 2014). Alternatively, it may be due to the supersonic motion of the inner source through a relatively static medium, in which case the outer wind will not be divergent as shown in the figure but rather plane parallel. The thickness of the shocked shells at the apex depends on the Mach number, M, of the flows and the efficiency of the post-shock cooling. For sufficiently strong cooling, the post-shock cooling zone thickness is negligible and the shock can be considered isothermal. In this case, the shell thickness is of the order of \mathcal{M}^{-2} times the source-apex separation (Henney 2002), which can become very small for high Mach numbers. The shell thickness will tend to increase towards the wings, due to the increasing shock obliqueness, which reduces the perpendicular Mach number. In the extreme thinshell limit, the entire bow structure can be treated as a surface. The bow radius measured from the inner source (star) is $R(\theta, \phi)$, where θ is the polar angle, measured from the star-apex axis, and ϕ is the azimuthal angle, measured around that axis. Assuming cylindrical symmetry about the axis, this reduces to $R(\theta)$, which is illustrated in Fig. 3, following Canto et al. (1996). The separation between the two sources is D and the complementary angle, as measured at the position of the outer source, is θ_1 . The minimum value of $R(\theta)$ is the stagnation radius, R_0 , which occurs at the apex ($\theta = 0$). In a steady state, ram-pressure balance on the axis implies that

$$\frac{R_0}{D} = \frac{\beta^{1/2}}{1 + \beta^{1/2}},\tag{1}$$

where β is the momentum ratio between the two winds. If the winds are isotropic, with inner wind mass-loss rate \dot{M}_w and terminal velocity V_w , while the outer wind has corresponding values \dot{M}_{w1} and V_{w1} , then the momentum ratio is

$$\beta = \frac{\dot{M}_{\rm w} V_{\rm w}}{\dot{M}_{\rm w1} V_{\rm w1}}.$$
(2)

The case where the outer wind is a parallel stream (Wilkin 1996) corresponds to the limit $\beta \rightarrow 0$, in which case *D* is no longer a meaningful parameter.

The paper is organized as follows. In Section 2, we outline the geometric parameters that are necessary for describing bow shapes and introduce two dimensionless ratios: planitude and alatude. In Section 3, we derive general results for the projection of bow

Figure 4. Parameters for characterizing a bow shape. Bow radius from the star, measured parallel (R_0) and perpendicular (R_{90}) to the symmetry axis, together with radius of curvature (R_c) at apex and asymptotic opening angle (θ_{∞}) of the far wings.

shapes on to the plane of the sky. In Section 4, we apply the results to the simplest possible class of geometric bow models: the quadrics of revolution, which comprise spheroids, paraboloids, and hyperboloids, each of which occupies a distinct region of the planitude-alatude plane. In Section 5, we consider thin-shell hydrodynamic models for the parallel-stream case (wilkinoids) and wind-wind case (cantoids), including extension to an anisotropic inner wind (ancantoids). We calculate the location of the models in the planitude-alatude plane as a function of the inclination of the bow shock axis to the plane of the sky. In Section 6, we test our methods against the results of more realistic numerical simulations of bow shocks, including the derivation of the shape parameters from maps of infrared dust emission. In Section 7, we apply our methods to example observations of proplyd bow shocks in the Orion nebula, paying close attention to the systematic uncertainties that arise when our algorithms are applied to real data. In Section 8, we summarize our results and outline how following papers will apply these ideas to a more extensive set of observations, models, and numerical simulations.

2 PLANITUDE AND ALATUDE OF BOW SHAPES

The stagnation radius R_0 describes the linear scale of the bow shock, but in order to characterize its shape, more parameters are required. To efficiently capture the diversity of bow shapes, we propose the parameters shown in Fig. 4. The perpendicular radius R_{90} is the value of $R(\theta)$ at $\theta = 90^\circ$, whereas R_c is the radius of curvature of the bow at the apex ($\theta = 0$). For a cylindrically symmetric bow, we show in Appendix A that this is given by

$$R_{\rm c} = \frac{R_0^2}{R_0 - R_{\theta \theta, 0}} \,, \tag{3}$$

where $R_{\theta\theta,0}$ is $d^2 R/d\theta^2$ evaluated at $\theta = 0$.

A fourth parameter is the asymptotic opening angle of the far wings, θ_{∞} , which is useful in the case that the wings are asymptotically conical. However, in many bow shocks, the wings tend towards the asymptotic angle only slowly, making θ_{∞} difficult to measure, especially since the emission from the far wings is often weak at best. In contrast, the three radii, R_0 , R_{90} , and R_c , are straightforward to determine from observations. One simple method to estimate the radius of curvature is to make use of the Taylor expansion¹ of $R(\theta)$ about the apex (with θ in radians):

$$R(\theta) = R_0 + \frac{1}{2} R_{\theta\theta,0} \theta^2 + \mathcal{O}(\theta^4) , \qquad (4)$$

so that fitting a polynomial in θ^2 to $R(\theta)$ for $|\theta| < \Delta \theta$ yields R_0 and $R_{\theta\theta,0}$ from the first two coefficients, and hence R_c from equation (3). Experience has shown that $\Delta \theta = 30^\circ$, and three terms in the polynomial are good choices, where the third term is used only as a monitor (if the coefficient of θ^4 is not small compared with R_0 , then it may indicate a problem with the fit).

Since we have three radii, we can construct two independent dimensionless parameters:

Planitude
$$\Pi \equiv \frac{R_c}{R_0}$$
 (5)

Alatude
$$\Lambda \equiv \frac{R_{90}}{R_0}$$
, (6)

and these will be the principal shape parameters that we will use in the remainder of the paper. The *planitude*, Π , is a measure of the flatness of the head of the bow around the apex, while the *alatude*, Λ , is a measure of the openness of the bow wings. Although 'planitude' can be found in English dictionaries, 'alatude' is a new word that we introduce here, derived from the Latin *ala* for 'wing'.

Several previous studies have discussed the relation between R_{90} and R_0 as a diagnostic of bow shape (e.g. Robberto et al. 2005; Cox et al. 2012; Meyer et al. 2016), but as far as we know, we are the first to include R_c . Robberto et al. (2005, section 4.2) use the ratios R_0/D and R_{90}/D in analysing proplyd bow shapes in the Trapezium cluster in the centre of the Orion nebula (Hayward, Houck & Miles 1994; García-Arredondo, Henney & Arthur 2001; Smith et al. 2005). In that case, the source of the outer wind is known, and so D is well determined (at least, in projection), but for many bow shocks D is not known, and is not even defined for the moving-star or parallel-stream case. Cox et al. (2012, section 4.1) compare the observed shapes of bow shocks around cool giant stars with an analytic model, and use A and B for the projected values of R_0 and R_{90} , respectively (see the next section for discussion of projection effects). Meyer et al. (2016, section 3.2) analyse the distribution of R_0/R_{90} (the reciprocal of our Λ) for hydrodynamic simulations of bow shocks around runaway OB stars.

3 PROJECTION ON TO THE PLANE OF THE SKY

In this section, we calculate the apparent shape on the plane of the sky of the limb-brightened border of a shock or shell that is idealized as an arbitrary cylindrically symmetric surface.

3.1 Frames of reference

Consider body-frame Cartesian coordinates (x, y, z), where x is the symmetry axis, and spherical polar coordinates (R, θ, ϕ) , where θ is the polar angle and ϕ the azimuthal angle. Since the surface is

¹ This method assumes both that $R(\theta)$ is even (true for a cylindrically symmetric bow) and that the orientation of the axis is already known. Generalization to the cases where these assumptions do not hold is discussed in Appendix E.

Figure 5. Relationship between body frame (unprimed coordinates) and observer frame (primed coordinates). Note that the plane of the sky is a projective plane, not a geometric plane in Euclidean 3-space, see discussion in the text.

cylindrically symmetric, it is can be specified as $R = R(\theta)$, so that Cartesian coordinates on the surface are

$$\mathbf{r} \equiv \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} R(\theta) \cos \theta \\ R(\theta) \sin \theta \cos \phi \\ R(\theta) \sin \theta \sin \phi \end{pmatrix}.$$
 (7)

Suppose that the viewing direction makes an angle *i* with the *z*-axis, so that we can define observer-frame coordinates (x', y', z'), which are found by rotating the body-frame coordinates about the *y*-axis. The same vector, *r*, expressed in the observer frame is then

$$\mathbf{r} = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \mathbf{A}_{y}(i) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \cos i - z \sin i \\ y \\ z \cos i + x \sin i \end{pmatrix},$$
(8)

where the rotation matrix $\mathbf{A}_{y}(i)$ is given in Appendix B. The inclination angle *i* is defined so that $i = 0^{\circ}$ when the surface is viewed perpendicular to its axis (*side on*) and $i = \pm 90^{\circ}$ when it is viewed along its axis (*end on*), with positive *i* when the apex points towards the observer.

The relationship between the two frames is illustrated in Fig. 5. All quantities in the observer's frame are denoted by attaching a prime to the equivalent quantity in the body frame. There are two ways of interpreting the primed coordinates. On the one hand, the 3-vector (x', y', z') specifies a point in Euclidean space, \mathbb{R}^3 , but an alternative interpretation is to take the 2-vector (x', y') as specifying a point in a *projective space*, \mathbb{P}^2 (see e.g. section 15.6 of Penrose 2004). Each 'point' in \mathbb{P}^2 is equivalent to a line in \mathbb{R}^3 , specifically: a line of sight that passes through the observer. Thus, (x', y') gives the celestial coordinates on the *plane of the sky*, with x' being the projected symmetry axis of the surface. We assume that the observer is located at a very large distance, relative to the size of the

Figure 6. Unit vectors in the body frame that are normal and tangential to the surface $R(\theta)$ in a plane of constant azimuth, ϕ .

bow, so that all lines of sight are effectively parallel to the z'-axis, with the observer at $z' = -\infty$. But, from the point of view of the plane of the sky, the z' coordinate is strictly irrelevant since it is a projective plane, and not a Euclidean plane. In the following, we will switch between the \mathbb{R}^3 and \mathbb{P}^2 interpretations as convenient, resolving ambiguity where necessary via the adjectives 'Euclidean' for \mathbb{R}^3 and 'plane-of-sky' or 'projected' for \mathbb{P}^2 .

3.2 Unit vectors normal and tangential to the surface

We define unit vectors \hat{n} , \hat{t} , such that \hat{n} is normal to the surface, while \hat{t} is tangent to the surface in a plane of constant ϕ . For $\phi = 0$, the surface lies in the *xy* plane and it is straightforward to show (Fig. 6) that in this case the unit vectors are given by

$$\hat{\boldsymbol{t}}_0 = \begin{pmatrix} -\cos\alpha \\ \sin\alpha \\ 0 \end{pmatrix} \quad \text{and} \quad \hat{\boldsymbol{n}}_0 = \begin{pmatrix} \sin\alpha \\ \cos\alpha \\ 0 \end{pmatrix}, \tag{9}$$

where α is the *slope angle*, given by

$$\tan \alpha = -\left. \frac{\mathrm{d}y}{\mathrm{d}x} \right|_{R(\theta)} = \frac{1 + \omega \tan \theta}{\tan \theta - \omega} \tag{10}$$

and ω is a dimensionless local growth factor:

$$\omega(\theta) = \frac{1}{R} \frac{\mathrm{d}R}{\mathrm{d}\theta}.\tag{11}$$

For general $\phi \neq 0$, we find \hat{n} and \hat{t} by rotating equations (9) around the *x*-axis with the matrix $\mathbf{A}_x(\phi)$ (equation B5):

$$\hat{\boldsymbol{n}} = \boldsymbol{A}_{\boldsymbol{x}}(\phi)\,\hat{\boldsymbol{n}}_0 = \begin{pmatrix} \sin\alpha\\\cos\alpha\cos\phi\\\cos\alpha\sin\phi \end{pmatrix}$$
(12)

$$\hat{t} = \mathbf{A}_{x}(\phi)\,\hat{t}_{0} = \begin{pmatrix} -\cos\alpha\\\sin\alpha\cos\phi\\\sin\alpha\sin\phi \end{pmatrix}.$$
(13)

3.3 Tangent line

The boundary on the plane of the sky of the projected surface is the locus of those lines of sight that graze the surface tangentially. This corresponds to a curved line on the surface itself, which we denote the *tangent line*, and which is defined by the condition

$$\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{z}}' = \boldsymbol{0}. \tag{14}$$

We denote by ϕ_{T} that value of ϕ that satisfies this relation for a given inclination, *i*, and polar angle, θ . From equations (12), (14), (B4), and (10), this is

$$\sin\phi_{\rm T} = -\tan i \tan\alpha = \tan i \frac{1+\omega \tan\theta}{\omega-\tan\theta} \,. \tag{15}$$

From equations (7) and (8) it follows that the observer-frame coordinates of the tangent line are given by

$$\begin{pmatrix} x'_{\rm T} \\ y'_{\rm T} \\ z'_{\rm T} \end{pmatrix} = R(\theta) \begin{pmatrix} \cos\theta\cos i - \sin\theta\sin\phi_{\rm T}\sin i \\ \sin\theta(1 - \sin^2\phi_{\rm T})^{1/2} \\ \cos\theta\sin i + \sin\theta\sin\phi_{\rm T}\cos i \end{pmatrix}.$$
 (16)

Note that, in general, $z'_{\rm T}$ is not a linear function of $x'_{\rm T}$ and $y'_{\rm T}$, so that the tangent line $(x'_{\rm T}, y'_{\rm T}, z'_{\rm T})$ is not a plane curve in three-dimensional Euclidean space, \mathbb{R}^3 . However, for the projected shape $(x'_{\rm T}, y'_{\rm T})$ of the tangent line on the plane of the sky, \mathbb{P}^2 , the value of $z'_{\rm T}$ does not matter (see above). The projected shape can also be described in polar form as $R'(\theta')$, where

$$R' = (x_{\rm T}'^2 + y_{\rm T}'^2)^{1/2}$$
 and $\tan \theta' = y_{\rm T}'/x_{\rm T}'$. (17)

Equation (15) will not have a solution for arbitrary values of θ and *i*, but only when $|\tan i \tan \alpha| < 1$. In particular, if $i \neq 0$, then the tangent line only exists for $\theta > \theta_0$, where θ_0 is the value of θ on the tangent line's projected symmetry axis ($\theta' = 0$). From equations (16) and (17), it follows that $\sin^2 \phi_T = 1$ at $\theta = \theta_0$, which yields the implicit equation

$$\tan \theta_0 = \frac{|\tan i| + \omega(\theta_0)}{1 - \omega(\theta_0)|\tan i|}.$$
(18)

In addition, if the surface is sufficiently 'open' ($\alpha \ge \alpha_{\min} > 0$ for all θ), then for those inclinations with $|i| > (90^{\circ} - \alpha_{\min})$ the tangent line does not exist for any value of θ . In other words, when the viewing angle is sufficiently close to face-on, the projected surface has no 'edge' and will no longer look like a bow shock to the observer.

After completing this work, it was brought to our attention that the principal results of this section had already been derived in appendix B of the PhD thesis by Wilkin (1997). For instance, Wilkin's equation 8 is equivalent (apart from differences in notation) to our equation (15).

3.4 Characteristic radii on the plane of the sky

In order to compare the shell shape given by $R(\theta)$ with observations, it is convenient to define the following apparent radii in the observer frame: R'_0 and R'_{90} . These are projected distances of the shell tangent line from the origin. The first is measured in the direction of the symmetry axis, and the second in a perpendicular direction. More concretely $R'_0 = x'_T(y'_T = 0)$ and $R'_{90} = y'_T(x'_T = 0)$. From equations (15) and (16), we find that

$$R'_0 = R(\theta_0)\cos(\theta_0 + i). \tag{19}$$

Here θ_0 is the solution of equation (18), and

$$R'_{90} = R(\theta_{90})\sin\theta_{90}(1-\sin^2(\phi_{\rm T}(\theta_{90})))^{1/2}, \tag{20}$$

where θ_{90} is the solution of the implicit equation:

$$\cot \theta_{90} = \frac{1 - (1 + \omega(\theta_{90})^2 \sin^2 2i)^{1/2}}{2\omega(\theta_{90}) \cos^2 i}.$$
(21)

The projected alatude (see Section 2) is then given by $\Lambda' = R'_{90}/R'_0$.

Similarly, the projected planitude is $\Pi' = R'_c/R'_0$, where R'_c is found by applying the equivalent of equation (3) for primed quantities:

$$R'_{\rm c} = \frac{(R'_0)^2}{R'_0 - R'_{\theta'\theta',0}} \,. \tag{22}$$

3.5 Line-of-sight velocities on the tangent line

Motions in a thin shocked shell will be predominantly tangential to the shell surface. In addition, for the particular case of wind–wind bow shocks, the flow in each azimuthal slice can be shown to be independent (Wilkin 2000), which implies that the shell velocity is parallel to \hat{i} . The projected line-of-sight shell velocity is therefore

$$v_{\rm los} = (\hat{\boldsymbol{i}}' \cdot - \hat{\boldsymbol{z}}') v_{\parallel}(\theta) = \frac{v_{\parallel}(\theta)(1+\omega^2)^{1/2}\sin i}{\sin\theta - \omega\cos\theta},\tag{23}$$

where $v_{\parallel}(\theta)$ is the gas velocity along the shell and the standard sign convention has been adopted such that velocities away from the observer are deemed positive.

4 QUADRICS OF REVOLUTION

For an arbitrary surface of revolution, application of equations (15) and (16) to determine the projected shape of the tangent line is not straightforward and in general requires numerical techniques. However, analytical results can be found for the important class of surfaces known as *quadrics of revolution* (Goldman 1983; Gfrerere & Zsombor-Murray 2009), which are formed by rotating a conic section plane curve about its symmetry axis. Examples are the sphere, spheroids (oblate and prolate), and right circular paraboloids and hyperboloids.² We ignore the degenerate cases of cylinders, cones, and pairs of parallel planes. While mathematically simple, these quadrics are sufficiently flexible that they can provide a useful approximation to more complex bow shock shapes.

The shape of the quadric curves in the *xy* plane ($\phi = 0$) is shown in Figs 7(a) and (b) for the ellipse and hyperbola case, respectively. The conic section itself is fully described by two lengths, *a* and *b*, which are the semi-axes.³ However, the curve can be translated along the *x*-axis to an arbitrary point with respect to the star, so that the apex distance R_0 has no necessary relation to *a* or *b*, and therefore the star/bow combination requires *three* independent lengths for its specification. The displacement x_0 from the star to the 'centre' of the conic section is

$$x_0 = R_0 - \sigma a$$
 with $\sigma = \begin{cases} +1 & \text{ellipse} \\ -1 & \text{hyperbola} \end{cases}$. (24)

For hyperbolae, the centre is 'outside' the bow and x_0 is always positive, whereas for ellipses the centre is 'inside' the bow and x_0 is usually negative, except when $a < R_0$ (see Fig. 7).

A general parametric form⁴ for the xy coordinates of the quadrics (in the $\phi = 0$ plane, and with the star at the origin)

⁴ The special case of the parabola needs to be treated differently, see Appendix C.

² We consider only the case of a single sheet of a two-sheet hyperboloid or paraboloid, since these are the versions that resemble a bow, whereas the one-sheet versions resemble the waist of an hourglass.

³ Note that we do not require that a > b, so either a or b may be the semi-major axis.

)

Figure 7. Example off-centre conic sections that can form quadrics of revolution: (a) ellipse, (b) hyperbola. The relationship is shown between the conic section parameters a, b, θ_Q and the bow shock characteristic radii R_0, R_{90}, R_c , as defined in Fig. 4. The origin (centre of the weaker flow) is indicated by a red star, the centre of curvature of the apex of the bow shock is indicated by a green dot, and the geometric centre of the conic section is indicated by a blue cross, which is offset by x_0 from the origin. Note that R_0, R_{90}, R_c, a , and b are all *lengths* and are always positive, whereas x_0 is a *displacement* and may be positive or negative.

as a function of $t = [0, \pi]$ is then

$$x = x_0 + \sigma a C(t)$$

$$y = b S(t),$$
(25)

where

$$S, C = \begin{cases} \sin, \cos & \text{ellipse} \\ \sinh, \cosh & \text{hyperbola} \end{cases}$$
(26)

Except for the circle case ($\sigma = +1, a = b$), the parametric variable *t* is not actually an angle in physical space. Instead, the polar form of the bow shape $R(\theta)$ must be found by substituting equations (25) into $\theta = \tan^{-1}y/x$ and $R = (x^2 + y^2)^{1/2}$.

The type of quadric surface can be characterized by the *quadric parameter*:

$$Q \equiv \sigma \frac{b^2}{a^2},\tag{27}$$

where Q < 0 corresponds to open surfaces (hyperboloids) and Q > 0 corresponds to closed surfaces (oblate spheroids with Q > 1 and prolate spheroids with Q < 1). Special cases are the sphere (Q = 1) and the paraboloid (Q = 0). Alternatively, one can define a *quadric angle*:

$$\theta_{\mathcal{Q}} = \sigma \tan^{-1}(b/a),\tag{28}$$

which is marked in Fig. 7. In the case of hyperboloids, the asymptotic opening angle of the wings (Section 2 and Fig. 4) is $\theta_{\infty} = \pi + \theta_{\omega}$ (note that $\theta_{\omega} < 0$ in this case), and the minimum slope angle is $\alpha_{\min} = |\theta_{\omega}|$, see discussion following equation (18).

The set of parameters (Q, a, x_0) are then sufficient to characterize the star/bow combination, where *a* is the quadric scale and x_0 is its centre displacement from the star. However, we can also characterize the star/bow by (R_0, Π, Λ) , where R_0 is the star–apex distance, and Π and Λ are the planitude and alatude, see Section 2. We now derive the equivalences between these two descriptions. The apex radius of curvature for a conic section is

$$R_{\rm c} = \frac{b^2}{a} = a|\mathcal{Q}|,\tag{29}$$

whereas the perpendicular radius, R_{90} , is the value of y when x = 0, which can be found from equations (24) and (25) as

$$R_{90}^2 = \mathcal{Q}\left(a^2 - x_0^2\right).$$
(30)

Combining equations (5), (6), (24), and (27)–(30) yields

$$R_0 = x_0 + \sigma a \tag{31}$$

$$\Pi = \frac{aQ}{a + \sigma x_0} \tag{32}$$

$$\Lambda = \left(\mathcal{Q}\frac{a - \sigma x_0}{a + \sigma x_0}\right)^{1/2} \tag{33}$$

with $\sigma = \operatorname{sgn} Q$. It also follows that the quadric parameter in terms of the planitude and alatude is

$$Q = 2\Pi - \Lambda^2. \tag{34}$$

Hence, it is the sign of $2\Pi - \Lambda^2$ that determines σ and whether a quadric is a spheroid or a hyperboloid. For example, for a constant planitude, Π , we can have a family of different quadric types, with varying alatude, Λ , that increases from oblate, through prolate and paraboloid, to hyperboloid, as illustrated in Fig. 8.

4.1 Parabolic departure function

The special case of confocal conic sections ($\Lambda = \Pi$) can be written in polar form as

$$R(\theta) = R_0 \frac{1+e}{1+e\cos\theta},\tag{35}$$

Figure 8. Example of a family of conic sections, all with the same planitude (flatness at apex, marked by white dot): $\Pi = R_c/R_0 = 2$. The quadric angle, θ_Q , varies over the family (see the text), with lower values of θ_Q giving larger values of the alatude, $\Lambda = R_{90}/R_0$, meaning more open wings. Different values of Π can be achieved for the exact same quadrics by sliding them along the *x*-axis, which will also change the axis scales since these are normalized by R_0 .

where $e = (1 - Q)^{1/2}$ is the *conic eccentricity*. For the confocal parabola (e = 1), the dimensionless reciprocal radius is therefore $R_0/R(\theta) = \frac{1}{2}(1 + \cos \theta)$, which suggests the following form for a *departure function* that measures the difference between a given shape $R(\theta)$ and the parabola:

$$\Delta(\cos\theta) = \frac{R_0}{R(\theta)} - \frac{1}{2} \left(1 + \cos\theta\right). \tag{36}$$

From equations (35) and (36), it is clear that Δ is a linear function of $\cos \theta$ for other confocal conics, being positive for ellipses (e < 1) and negative for hyperbolae (e > 1). Examples are shown in Fig. 9 for a grid of nine conics centred on the confocal parabola, with (Π , Λ) ranging from 3/4 to 4/3 of (2, 2). The hyperbolae have negative values of Δ in the far wings, with tracks that end at $\cos \theta_{\infty}$.

Strictly speaking, the departure function is redundant if one is interested in only conic sections, since they are fully determined by Π and Λ . None the less, as we will show in following sections, it is a useful tool for studying general $R(\theta)$, being very sensitive to small variations in the shape.

4.2 Plane-of-sky projection of quadric surfaces

We now apply the machinery of Section 3 to find the projected shape of a quadric bow on the plane of the sky. The intrinsic 3D shape of the shell is given by rotating equations (25) about the *x*-axis, but it is more convenient to first transform to a reference frame where the origin is at the centre of the conic section:

$$(X, Y, Z) = (x - x_0, y, z).$$
 (37)

In this new frame, the quadric shape is

$$X = aC(t)$$

$$Y = bS(t)\cos\phi$$

$$Z = bS(t)\sin\phi.$$
 (38)

Figure 9. Parabolic departure function, $\Delta(\cos\theta)$, for conic sections with different planitude and alatude, centred on that of the confocal parabola, $(\Pi, \Lambda) = (2, 2)$, which has $\Delta(\cos\theta) = 0$. Planitude (shown by different line colours) determines the slope of Δ at the apex, $\cos\theta = 1$. Alatude (shown by different line widths) determines the value of Δ at $\cos\theta = 0$. All conics with $\Pi = \Lambda$ have departure functions that are straight lines.

The azimuth of the tangent line as a function of inclination and parametric variable is then found from equations (10) and (15) to be

$$\sin\phi_{\rm T} = \frac{b\mathcal{C}(t)}{a\mathcal{S}(t)}\tan i.$$
(39)

Combining equations (8), (38) and (39) gives the observer-frame Cartesian plane-of-sky coordinates of the tangent line:

$$\begin{aligned} X'_{\rm T} &= \frac{\mathcal{C}(t)}{a\cos i} (a^2 \cos^2 i + \sigma b^2 \sin^2 i) \\ Y'_{\rm T} &= b\mathcal{S}(t) \left(1 - \frac{b^2 \mathcal{C}^2(t)}{a^2 \mathcal{S}^2(t)} \tan^2 i\right)^{1/2}. \end{aligned}$$
(40)

We wish to show that this projected shape is a conic section of the same variety (ellipse or hyperbola) as the one that generated the original quadric. If this *were* true, then it would be possible to write the plane-of-sky coordinates as

$$\begin{aligned} X'_{\rm T} &= a' \mathcal{C}(t') \\ Y'_{\rm T} &= b' \mathcal{S}(t'). \end{aligned} \tag{41}$$

Comparing equations (40) and (41), we find after some algebra that the two forms for (X'_{T}, Y'_{T}) are indeed consistent, with the equivalences:

$$a' = a f_{\mathcal{Q},i} \cos i \tag{42}$$

$$b' = b$$
 (43)

$$t' = \mathcal{C}^{-1}[f_{\mathcal{O},i}\mathcal{C}(t)], \tag{44}$$

where for convenience we define the quadric projection factor:

$$f_{Q,i} = (1 + Q \tan^2 i)^{1/2}.$$
(45)

This demonstrates the original claim that the projected shape is also a conic section, which means that we can reuse the previous equations (31)–(34) with primed quantities substituted for unprimed

Figure 10. Effects of projection on quadrics of revolution: variation with inclination, |i|, of bow size and shape. Different line colours correspond to varying quadric parameter, Q (see key), while variation in line width corresponds to variation in the 'true' planitude, Π , or apex radius of curvature. Vertical grey rectangles show quartiles of $|\sin i|$, which will be equally populated for an isotropic distribution of orientations. (a) Projected planitude: Π' . (b) Projected alatude, Λ' .

ones. From equations (27), (42), and (43), it follows that the quadric parameter of the projected shape is

$$Q' = \frac{Q}{f_{Q,i}^2 \cos^2 i} \,. \tag{46}$$

Finally, we transform the projected reference frame back to be centred on the star again:

$$(x'_{\rm T}, y'_{\rm T}) = (X'_{\rm T} + x'_0, Y'_{\rm T}), \qquad (47)$$

where the projected quadric displacement x'_0 follows from simple foreshortening:

$$x'_0 = x_0 \cos i.$$
 (48)

The projection of the apex distance then follows from the primed version of equation (31) as

$$\frac{R'_0}{R_0} = \cos i \left[1 + \frac{\Pi}{\mathcal{Q}} \left(f_{\mathcal{Q},i} - 1 \right) \right],\tag{49}$$

and the projected planitude and alatude can be calculated from equations (32), (34), (42), and (46) as

$$\Pi' = \frac{\Pi}{\left(R'_0/R_0\right) f_{\mathcal{Q},i} \cos i} \tag{50}$$

$$\Lambda' = (2\Pi' - Q')^{1/2}.$$
(51)

These are all shown in Figs 10 and 11 for a variety of quadric parameter Q (line colour) and true planitude Π (line thickness). The projected planitude and alatude (Fig. 10) behave in a qualitatively similar fashion. Whatever the true values of Π and Λ , all spheroids (Q > 0) tend towards $\Pi' = 1$ and $\Lambda' = 1$ as the inclination increases towards 90°. This is because when the spheroid is oriented edge-on, we see its circular cross-section. Hyperboloids behave differently: although Π' and Λ' initially decrease with increasing inclination (for true $\Pi > 2$), they turn around and increase again as |i| approaches the critical value $i_{\rm crit} = 90^{\circ} - |\theta_{Q}|$. For $|i| > i_{\rm crit}$, the tangent line does not exist (see Section 3.3) because the line of sight is 'inside' the asymptotic cone of the far wings (with opening half-angle $\alpha_{\rm min} = |\theta_{Q}|$), and so no limb-brightened shell would be visible.⁵ For paraboloids and spheroids, $\alpha_{\rm min} = 0$, which means that the tangent line exists for all viewing angles.

In Fig. 11(a), we show the inclination-dependent tracks of the quadrics in the diagnostic $\Pi' - \Lambda'$ plane of projected alatude versus projected planitude. The true planitude and alatude, which are seen for an edge-on viewing angle $i = 0^{\circ}$, are marked by filled circles. The zones corresponding to each class of quadric (oblate spheroid, prolate spheroid, or hyperboloid) are marked by grey shading, and it can be seen that the tracks never cross from one zone to another. The convergence of all the spheroid tracks on the point $(\Pi', \Lambda') = (1, 1)$ is apparent, as is the divergence of the hyperboloid tracks towards $(\Pi', \Lambda') = (+\infty, +\infty)$, whereas the paraboloids, by contrast, converge on the point $(\Pi', \Lambda') = (2, 2)$. Two special cases are the confocal paraboloid and the concentric sphere,⁶ with true planitude and alatude $(\Pi, \Lambda) = (2, 2)$ and (1, 1), respectively, which are the only quadrics whose apparent shape remains identical for all inclination angles.

Fig. 11(b) shows how the apparent star–apex separation varies with inclination. For moderate inclinations, $|i| < 30^{\circ}$, this depends primarily on the true planitude Π , with very little influence of the quadric parameter Q. For $\Pi > 1$, the separation increases with |i|,

 $^{\rm 6}$ So named because the star is at the focus of the parabola, or the centre of the sphere.

⁵ As illustrated in fig. 8 of Graham et al. (2002), the isophotal emission contours are elliptical in such a case (assuming cylindrical symmetry) and no curved bow shape is apparent. Deviations from cylindrical symmetry *can* result in a curved emission arc, even for this no-tangent case (Graham et al.'s fig. 9), but that is beyond the scope of this paper.

Figure 11. As Fig. 10, but (a) diagnostic planitude-alatude diagram: Λ' versus Π' , and (b) projected/true star-apex distance: R'_0/R_0 versus |i|. In panel (a), shading indicates different classes of quadrics: hyperboloids (white), prolate spheroids (dark grey), and oblate spheroids (light grey), with the limiting case of paraboloids shown by the thin black line.

whereas for $\Pi < 1$, it decreases slightly. Note, however, that for the cases where the projected distance to the source of the external flow, D', can be measured, then R'_0/D' is always an increasing function of |i|. For larger inclinations, $|i| > 30^\circ$, the strands for different Q begin to separate, with hyperbolae showing the strongest increase of R'_0 with |i|.

A complementary view of the effects of projection is shown in Fig. 12, which shows 'snapshots' of (Π', Λ') for a sequence of six values of the inclination, equally spaced in $|\sin i|$, so that each panel is equally likely for an isotropic distribution of orientations. The distributions of the true Π and Λ are each assumed to be uniform in the range [0.5, 4.5], giving a uniformly filled square of values for |i| = 0, which becomes increasingly distorted as |i| increases. The colour scale represents Q and the symbol size is proportional to R'_0/R_0 . It can be seen that the points tend to cluster closer and closer to the diagonal, $\Lambda' = \Pi'$, as the inclination increases, and that the points just below this line tend to have the largest values of R'_0/R_0 . The green shaded region shows the zone of true Λ , Π for hyperboloids where the tangent lines still exist for that value of |i|. This becomes smaller and smaller as |i| increases, which explains why the hyperboloid zone becomes increasingly depopulated: all quadrics that lie above this region when $i = 0^{\circ}$ will no longer be visible as a bow for this value of |i|. Note that this figure is merely illustrative of the qualitative effects of projection, since in reality there is no particular reason to expect a uniform distribution in true Π and Λ .

5 THIN-SHELL BOW SHOCK MODELS

More physically realistic examples of bow shapes are provided by steady-state hydrodynamic models for the interaction of hypersonic flows in the thin-shell limit. The classic examples are the solutions for the wind–parallel stream and wind–wind problems (see Section 1) of Canto et al. (1996, hereafter CRW), where it is assumed that the two shocks are highly radiative and that the post-shock flows

are perfectly mixed to form a single shell of negligible thickness. In this approximation, the shape of the shell is found algebraically by CRW from conservation of linear and angular momentum, following an approach first outlined in Wilkin (1996). For the wind–stream case, the resulting bow shape was dubbed *wilkinoid* by Cox et al. (2012) and has the form

$$R(\theta) = R_0 \csc \theta \left(3(1 - \theta \cot \theta)\right)^{1/2}.$$
(52)

For the wind–wind case, a family of solutions are found that depend on the value of β , the wind momentum ratio,⁷ see Fig. 3, equations (1) and (2), and surrounding discussion in Section 1. We propose that these shapes be called *cantoids*. The exact solution for the cantoid shapes (equations 23 and 24 of CRW) is only obtainable in implicit form, but an approximate explicit solution (equation 26 of CRW) is very accurate for $\beta \leq 0.1$. The wilkinoid shape corresponds to the $\beta \rightarrow 0$ limit of the cantoids. Note that CRW employ cylindrical polar coordinates, *z* and *r*, see our Fig. 3, and we follow this usage for the thin-shell models discussed in this section. CRW's *z*-axis corresponds to the Cartesian *x*-axis used in Sections 3 and 4 of the current paper, while the *r*-axis corresponds to *y* when $\phi = 0$.

A generalization of the cantoids to the case of an anisotropic⁸ inner wind is developed next, giving rise to what we call *ancantoids*, which depend on an anisotropy index, *k*, in addition to β .

5.1 Bow shocks from anisotropic wind-wind interactions

We wish to generalize the results of CRW to the case where the inner wind is no longer isotropic, but instead has a density that falls

⁷ By always placing the weaker of the two winds at the origin, it is only necessary to consider $\beta \leq 1$.

⁸ Note that the wind anisotropy axis must be aligned with the star-star axis to maintain cylindrical symmetry.

Figure 12. Variation with inclination angle of the apparent shape of quadric bows with true planitude and alatude that are uniformly distributed over the ranges $\Pi = [0.5, 4.5]$, $\Lambda = [0.5, 4.5]$. Panels show the apparent (Π' , Λ') as the inclination is increased through uniform intervals in $|\sin i|$. Symbol colour represents the quadric parameter, Q, increasing from dark blue, through orange, to yellow. Symbol size is proportional to the increase in apparent star–apex distance, R'_0/R_0 .

off with angle, θ , away from the symmetry axis. Specifically, at some fiducial spherical radius, R_0 , from the origin, the wind mass density is given by

$$\rho(R_0,\theta) = \begin{cases} \rho_0 \cos^k \theta & \text{for}\theta \le 90^\circ\\ 0 & \text{for}\theta > 90^\circ \end{cases},$$
(53)

where ρ_0 is the density on the symmetry axis and $k \ge 0$ is an *anisotropy index*. The wind velocity is still assumed to be constant and the wind streamlines to be radial, so the radial variation of density at each angle is $\rho(R, \theta) = \rho(R_0, \theta) (R/R_0)^{-2}$ and the wind mass-loss rate and momentum loss rate per solid angle both have the same $\cos^k \theta$ dependence as the density. Examples are shown in Fig. 13 for a variety of different values of *k*. As *k* increases, the wind becomes increasingly jet-like.

Our primary motivation for considering such an anisotropic wind is the case of the Orion nebula proplyds and their interaction with the stellar wind of the massive star θ^1 Ori C (García-Arredondo et al. 2001). The inner 'wind' in this case is the transonic photoevaporation flow away from a roughly hemispherical ionization front, where photoionization equilibrium, together with monodirectional illumination of the front, implies that the ionized hydrogen density, *n*, satisfies $n^2 \propto \cos \theta$, which is equivalent to k = 0.5 in equation (53). Since the primary source of ionizing photons is the same star that is the source of the outer wind, it is natural that the inner wind's axis should be aligned with the star–star axis in this case. For other potential causes of wind anisotropy (for instance, bipolar flow from an accretion disc), there is no particular reason for the axes to be

Figure 13. Schematic diagram of wind flow patterns in isotropic and nonisotropic cases for different values of the anisotropy index, *k*. Arrow length represents the wind momentum loss rate per solid angle.

aligned, so cylindrical symmetry would be broken. Nevertheless, we calculate results for general k with aligned axes, so as to provide a richer variety of cylindrically symmetric bow shock shapes than

are seen in the cantoids. The general solution for the bow shock shape, $R(\theta)$, in the CRW formalism is

$$R(\theta) = \frac{\dot{J}_{w} + \dot{J}_{w1}}{\left(\dot{\Pi}_{wr} + \dot{\Pi}_{wr1}\right)\cos\theta - \left(\dot{\Pi}_{wz} + \dot{\Pi}_{wz1}\right)\sin\theta},\tag{54}$$

where $\dot{\Pi}_{wr}$, $\dot{\Pi}_{wz}$, \dot{J}_w are the accumulated linear radial momentum, linear axial momentum, and angular momentum, respectively, due to the inner wind emitted between the axis and θ . The equivalent quantities for the outer wind have subscripts appended with '1'. The inner wind momenta for our anisotropic case (replacing CRW's equations 9 and 10) are

$$\dot{\Pi}_{wz} = \frac{k+1}{2(k+2)} \dot{M}_{w}^{0} V_{w} \max[(1 - \cos^{k+2}\theta), 1]$$

$$\dot{\Pi}_{wr} = (k+1) \dot{M}_{w}^{0} V_{w} I_{k}(\theta), \qquad (55)$$

where

$$\dot{M}_{\rm w}^0 = \frac{2\pi}{k+1} r_0^2 \rho_0 V_{\rm w} \tag{56}$$

is the total mass-loss rate of the inner wind. The integral

$$I_k(\theta) = \int_0^{\max(\theta, \pi/2)} \cos^k \theta \sin^2 \theta \, \mathrm{d}\theta \tag{57}$$

has an analytic solution in terms of the hypergeometric function, $_2F_1(-\frac{1}{2};\frac{1+k}{2};\frac{3+k}{2};\cos^2\theta)$, but is more straightforwardly calculated by numerical quadrature. The angular momentum of the inner wind about the origin is $\dot{J}_w = 0$ because it is purely radial. The outer wind momenta are unchanged from the CRW case, but are given here for completeness:

$$\begin{split} \dot{\Pi}_{wz1} &= -\frac{\dot{M}_{w1}^{0}V_{w1}}{4}\sin^{2}\theta_{1} \\ \dot{\Pi}_{wr1} &= \frac{\dot{M}_{w1}^{0}V_{w1}}{4}\left(\theta_{1} - \sin\theta_{1}\cos\theta_{1}\right) \\ \dot{J}_{w1} &= \frac{\dot{M}_{w1}^{0}V_{w1}}{4}\left(\theta_{1} - \sin\theta_{1}\cos\theta_{1}\right)D. \end{split}$$
(58)

We define β in this case as the momentum ratio *on the symmetry axis*, which means that

$$\dot{M}^{0}_{w1}V_{w1} = 2(k+1)\,\beta\,\dot{M}^{0}_{w}V_{w}.$$
(59)

Substituting equations (55)–(59) into equation (54) and making use of the geometric relation between the interior angles of the triangle shown in Fig. 3:

$$R\sin(\theta + \theta_1) = D\sin\theta_1,\tag{60}$$

yields

$$\theta_1 \cot \theta_1 = 1 + 2\beta \left(I_k(\theta) \cot \theta - \frac{1 - \cos^{k+2} \theta}{k+2} \right), \tag{61}$$

which is the generalization of CRW's equation 24 to the anisotropic case. Equation (61) is solved numerically to give $\theta_1(\theta)$, which is then combined with equations (60) and (1) to give the dimensionless bow shape, $R(\theta; \beta, k)/R_0$, where we now explicitly indicate the dependence of the solution on two parameters: axial momentum ratio, β , and anisotropy index, k. We refer to the resultant bow shapes as *ancantoids*.

Figure 14. Bow shock shapes for interacting winds in the thin-shell approximation: cantoids and ancantoids. Coordinates are normalized by *D*, the distance between the two wind sources, which are indicated by black dots on the axis. The weaker source is at (0.0, 0.0) and the stronger source is at (1.0, 0.0). Results are shown for different values of the wind momentum ratio, β (different line widths), and for the case where the weaker wind is isotropic (black lines) or anisotropic (coloured lines).

5.2 True shapes of cantoids and ancantoids

The shapes of the ancantoid bow shocks are shown in Fig. 14 for three different values of β , and are compared with the CRW results for cantoids (dashed curves). The location of these shapes in the planitude–alatude plane is shown in Fig. 15, where the grey background shading indicates the zones of different quadric classes, as in Section 4, Figs 11 and 12. Values of Π and Λ are calculated via the analytic expressions derived in Appendices D1 and D2, respectively, which are only approximate in the case of Λ . However, the filled square symbols show the exact results for $\beta = 0.5$, which can be seen to lie extremely close to the approximate results, even for the worst case of k = 0. The leading term in the relative error of equation (D14) scales as $(\beta/(k + 2))^2$, so the approximation is even better for smaller β and larger k.

It is apparent from Fig. 14 that the k = 0 ancantoid is identical to the cantoid for $\theta \le 90^\circ$ (z > 0, to the right of vertical dotted line in Fig. 14), but is slightly more swept back in the far wings.⁹ Since the true planitude and alatude depend on $R(\theta)$ only in the range $\theta = [0, 90^\circ]$, the cantoid and the k = 0 ancantoid behave identically in Fig. 15. There is a general tendency for the bows to be flatter and more open with increasing β and decreasing k, with the cantoid being most open at a given β . All the models cluster close to the diagonal $\Lambda \simeq \Pi$ in the planitude–alatude plane, but with a tendency for $\Lambda > \Pi$ at higher anisotropy. There is therefore a degeneracy

⁹ Due to the discontinuity in the inner wind density at $\theta = 90^{\circ}$ (see Fig. 13), there is a discontinuity in the second derivative of the bow shape.

Figure 15. True shapes of cantoids and ancantoids in the Π - Λ plane, calculated according to results of Appendix D. For each line, β varies over the range [0, 1] from lower left to upper right (although the black and red lines are truncated on the upper right), and line colours correspond to different anisotropy indices, matching those used in Fig. 14. Circle symbols mark particular β values: 0, 0.01, 0.1, from largest to smallest circle. Square symbols mark $\beta = 0.5$, but with Λ calculated exactly, instead of using the approximation of equation (D14). The white plus symbol marks the result for the wilkinoid: (Π , Λ) = ($\frac{5}{3}$, $\sqrt{3}$). Background shading indicates the domains of different quadric classes: hyperboloids (white), prolate spheroids ((dark grey)), and oblate spheroids (light grey).

between β and k for higher values of β . The wilkinoid shape, which corresponds to the $\beta \rightarrow 0$ limit of the cantoids, is marked by a white plus symbol in Fig. 15, and lies in the prolate spheroid region of the plane. Cantoids lie either in the prolate spheroid or hyperboloid regions, according to whether β is less than or greater than about 0.01. For ancantoids of increasing k, this dividing point moves to higher values of β , until almost the entire range of models with k = 8 are within the prolate spheroid zone.

However, the true planitude and alatude, which are what would be observed for a side-on viewing angle (i = 0), are not at all sensitive to the behaviour of the far wings of the bow shock, which has a rather different implication as to which variety of quadric best approximates each shape. We illustrate this in Fig. 16, which shows two different ways of estimating the quadric angle, θ_Q (see Section 4). The first is from (Π, Λ), as in Fig. 15:

$$\theta_{Q}^{\text{head}} = \text{sgn}(2\Pi - \Lambda^2) \tan^{-1} \left| 2\Pi - \Lambda^2 \right|^{1/2}, \tag{62}$$

which follows from equations (27), (28), and (34). The second is from the asymptotic opening angle of the wings, θ_{∞} (Fig. 4):

$$\theta_{\mathcal{Q}}^{\text{tail}} = \theta_{\infty} - 180^{\circ},\tag{63}$$

where θ_{∞} is calculated from equation (D17) for ancantoids or equation (D19) for cantoids. If the bow shock shape were truly a quadric, then these two definitions would agree. However, as seen in Fig. 16, this is not the case for the cantoids and ancantoids. While $[b]\theta_{Q}^{head}$ generally corresponds to a prolate spheroid (except for the largest values of β), $[b]\theta_{Q}^{hail}$ always corresponds to a hyperbola. This tension between the shape of the head and the shape of the far wings has important implications for the projected shapes (as we will see in the

Figure 16. Equivalent quadric angles, θ_Q , for ancantoids and cantoids. Solid lines show values of θ_Q calculated from (Π, Λ), which is representative of the shape of the head, while dashed lines show θ_Q calculated from θ_{∞} , which is representative of the tail. Dot-dashed line shows the result for cantoids, which differ from the k = 0 ancantoids in θ_{∞} , but not in (Π, Λ). Grey shading and line colours have the same meaning as in Fig. 15.

next section), since the far wings influence the projected planitude and alatude when the inclination is large.

Fig. 17 shows the parabolic departure function (see Section 4.1) for the thin-shell models. This provides an alternative perspective on the resultant bow shapes, with two different types of behaviour being apparent. Models with high β and low anisotropy behave similarly to the hyperboloids, such as the $(\Pi, \Lambda) = (\frac{3}{2}, \frac{8}{3}), (2, \frac{8}{3}), (\frac{8}{3}, \frac{8}{3}), and (\frac{3}{2}, 2)$ cases from Fig. 9. This is the case for the $\beta \ge 0.01$ models in Fig. 17(a), which all show departure functions that become negative in the far wings (more open than parabola) and terminate at $a \theta_{\infty} < 180^\circ$. The second type of behaviour is shown by models with low β or high anisotropy, which behave like spheroids, all tend towards $\Delta = 0$ in the far tail as $\cos \theta \rightarrow -1$.

5.3 Apparent shapes of projected cantoids and ancantoids

Figs 18 and 19 show the apparent bow shapes of various thinshell models (wilkinoid, cantoids, ancantoids)¹⁰ for different inclination angles |i|. For comparison, Fig. 18(a) shows the confocal paraboloid, whose apparent shape is independent of inclination (see Appendix C). The wilkinoid (Fig. 18b) shows only subtle changes, with the wings becoming slightly more swept back as the inclination increases. The cantoids (Figs 18c and d) behave in the opposite

¹⁰ See also previous studies of the projected shape of the wilkinoid (Wilkin 1997; Cox et al. 2012; Ng et al. 2017) and the cantoids (Robberto et al. 2005).

(b)

Figure 17. Parabolic departure function, $\Delta(\cos \theta)$, for ancantoids and cantoids. Heavy lines show the $\beta = 0$ parallel-stream case (wilkinoid in the isotropic case). Light lines show increasing values of $\beta = 10^{-4}$, 0.001, 0.01, 0.1, as marked. (a) Cantoids (grey) and moderately anisotropic ancantoids: hemispheric, k = 0 (black), and proplyd-like, k = 0.5 (red). (b) Cantoids (grey) and extremely anisotropic, jet-like ancantoids: k = 3 (purple) and k = 8 (blue).

way, with the wings becoming markedly more open once |i| exceeds 60° (for $\beta = 0.001$) or 45° (for $\beta = 0.01$). The ancantoids (Fig. 19) can show more complex behaviour. For instance, in the k = 0.5, $\beta = 0.001$ ancantoid (Fig. 19a), the near wings begin to become more closed with increasing inclination up to $|i| = 60^{\circ}$, at which point they open up again, whereas the opening angle of the far wings increases monotonically with |i|.

Figure 18. Apparent bow shapes as a function of inclination angle for isotropic thin-shell models. (a) Confocal paraboloid for comparison (shape independent of inclination). (b) Wilkinoid. (c) Cantoid, $\beta = 0.001$. (d) Cantoid, $\beta = 0.01$.

Figure 19. Further apparent bow shapes as a function of inclination angle for anisotropic thin-shell models (ancantoids). (a) $\beta = 0.001$, k = 0.5; (b) $\beta = 0.1$, k = 0.5; (c) $\beta = 0.001$ k = 3; (d) $\beta = 0.1$ k = 3.

The inclination-dependent tracks that are traced by the thinshell models in the projected planitude–alatude plane are shown in Fig. 20. The behaviour is qualitatively different from the quadric shapes shown in Fig. 11(a) in that the tracks are no longer confined within the borders of the region of a single type of quadric (hyperboloid or spheroid). At low inclinations, many of the models behave like the prolate spheroids, but then transition to a hyperboloid behaviour at higher inclinations, which is due to the tension between the shape of the head and the shape of the far wings, as discussed in

Figure 20. Apparent projected shapes of wilkinoid, cantoids, and ancantoids in the $\Pi' - \Lambda'$ plane. Coloured symbols indicate the |i| = 0 position for $\beta = 0.001$, 0.003, 0.01, 0.03, 0.1, 0.3. Thin lines show the inclination-dependent tracks of each model, with tick marks along each track for 20 equally spaced values of $|\sin i|$. Grey shaded regions are as in Fig. 11(a). The wilkinoid track is shown in white. (a) Isotropic wind model (cantoid) and prophyd-like model (ancantoid, k = 0.5). (b) Hemispheric wind model (ancantoid, k = 3).

the previous section. This can be seen most clearly in the $\beta = 0.001$, k = 0.5 ancantoid [lowest red line in Fig. 20(a), see also zoomed version in Fig. 21]. The track begins heading towards $(\Pi', \Gamma') = (1, 1)$, as expected for a spheroid, but then turns around and crosses the paraboloid line to head out on a hyperboloid-like track.

Figure 21. As Fig. 20(a) but zoomed in to show the wilkinoid track (white) and the convergence of the cantoid tracks (purple) to the wilkinoid as $\beta \rightarrow 0$.

Ancantoids with different degrees of inner wind anisotropy are shown in Fig. 20(b). In all cases, the tracks follow hyperboloid-like behaviour at high inclinations, tending to populate the region just above the diagonal $\Lambda' = \Pi'$. The k = 0 ancantoids show a kink in their tracks at the point where the projected apex passes through $\theta = 90^{\circ}$, due to the discontinuity in the second derivative of $R(\theta)$ there (see footnote 9). The wilkinoid has a much less interesting track, most clearly seen in the zoomed Fig. 21, simply moving the short distance from $(\frac{5}{3}, \sqrt{3})$ to $(\frac{3}{2}, \sqrt{\frac{8}{3}})$. Despite its location in the ellipsoid region of the plane, the fact that it has $\theta_{\infty} = 180^{\circ}$ means that it behaves more like a parabola at high inclination, but converges on $(\frac{3}{2}, \sqrt{\frac{8}{3}})$ instead of (2, 2) since the far wings are asymptotically cubic, rather than quadratic.

The local density of tick marks gives an indication of how likely it would be to observe each portion of the track, assuming an isotropic distribution of viewing angles. It can be seen that the ticks tend to be concentrated towards the beginning of each track, near the |i| = 0 point, so the hyperboloid-like portions of the tracks would be observed for only a relatively narrow range of inclinations. This concentration becomes more marked as β becomes smaller, which helps to resolve the apparent paradox that the wilkinoid corresponds to the $\beta \rightarrow 0$ limit of the cantoids, and yet follows a qualitatively different track. The detailed behaviour of the small- β cantoid models is shown in Fig. 21, which zooms in on the region around the wilkinoid track. It can be seen that for $\beta < 0.001$ the cantoid tracks begin to develop a downward hook, similar to the k = 0.5 ancantoids discussed above. For $\beta < 10^{-4}$, this begins to approach the wilkinoid track, and the high-inclination, upward portion of the track becomes less and less important as β decreases.

6 MORE REALISTIC BOW SHOCK MODELS

The assumptions underlying the models of the previous section may break down in various ways. To test whether the planitude– alatude analysis is still useful in less 'ideal' situations, we here apply it to more realistic simulations of stellar bow shocks. We choose a pair of hydromagnetic (HD) and magnetohydrodynamic (MHD) moving-star simulations from Meyer et al. (2017), in which the only difference is the presence (MHD case) or absence (HD case) of an ambient magnetic field with strength $B = 7 \,\mu$ G, oriented parallel to the stellar velocity. In each case, the inner wind comes from a 20 M_☉ main-sequence star, with mass-loss rate and terminal velocity that are roughly constant with time at $\dot{M}_w \approx 4 \times 10^{-7} \,\text{M}_{\odot} \,\text{yr}^{-1}$ and V_w $\approx 1200 \,\text{km} \,\text{s}^{-1}$, while the outer wind is a parallel stream due to the star's own motion at 40 km s⁻¹ through a uniform medium of density 0.57 cm⁻³.

For these parameters, the radiative cooling distance for shocked ambient gas in the bow is a significant fraction (\approx 10 per cent) of the bow shock size, R_0 , tending to increase towards the wings, and the radiative cooling in the shocked stellar wind is even less efficient. This represents a significant violation of the assumptions behind the thin-shell models, since the total shocked shell thickness is of the same order as R_0 . Nevertheless, the emissivity of several observationally important emission processes, such as mid-infrared thermal dust emission and the optical H α emission line, is concentrated near the contact discontinuity,¹¹ so it is reasonable to use this surface as a first approximation for the shape of the bow.

We have traced the contact discontinuity in the two models, using the procedure outlined in Fig. 22, and show results for the parabolic departure function (see Section 4.1) as blue symbols in Fig. 23. The MHD simulation shows a strongly negative dip in the departure function close to the apex ($\cos \theta = 1$), indicating a very flat shape.¹² The HD simulation shows only a small negative dip in the departure function at the apex, but otherwise approximately follows the wilkinoid curve in the forward hemisphere. In both cases, the departure function is more positive than the wilkinoid in the far wings $(\cos \theta < -0.5)$, but we do not have data for the full range of θ , and so two different extrapolations for $\theta \rightarrow 180^{\circ}$ are shown. In the first (dashed red line in figure), we fit a low-order polynomial of $\cos \theta$ to the points with $\cos \theta < -0.5$ and extend it to $\cos \theta = -1$, which gives an asymptotically closed shape. In the second extrapolation (solid red line in figure), we fit a polynomial that is multiplied by $(1 + \cos \theta)^{1/2}$, which forces the departure function to zero at $\cos \theta = -1$, giving an asymptotically open shape, as with the wilkinoid. In a true steady state, the far wings should be asymptotically open, but as $\theta \to 180^\circ$ the flow times become longer and longer, so that a bow shock with a finite age will be closed.

Using a 12th-order Chebyshev fit to the traced shapes, we show the apparent shape of the contact discontinuity at a series of inclination angles, |i|, in Fig. 24. The four panels show the two simulations for each of the two far-wing extrapolations. Comparison with Figs 18 and 19 shows the general tendency is the same as with the wilkinoid: that the apex becomes less flat and the wings less open

¹¹ Note that, in the non-magnetic HD models, efficient thermal conduction leads to a thick layer of hot, thermally evaporated ambient material that separates the shocked stellar wind from the cool, dense shell of shocked ambient gas (see section 3.3 of Meyer et al. 2014). In this case, the contact discontinuity is taken to be the boundary between hot and cold ambient gas, as opposed to the *material discontinuity* between shocked ambient gas and shocked wind gas. In the MHD models, the thermal conduction is almost completely suppressed, so that the material and contact discontinuities coincide.

¹² Meyer et al. (2017) speculate that this flatness may be the signature of the formation of a complex multiple-shock topology at the apex (de Sterck & Poedts 1999). For our purposes, the reason does not matter, merely that the magnetic and non-magnetic models predict markedly different shapes.

Figure 22. Procedure for tracing the contact discontinuity from the Meyer et al. (2017) simulations. The density maps from Meyer et al.'s fig. 3 are converted to FITS format and displayed using the software SAOMAGE DS9 (Joye & Mandel 2003). The density contour at 0.4 cm⁻³ is displayed (shown in green in the figure), and this is traced by hand by placing 'point regions' on the image (shown by black 'x' shapes in the figure). The zoom facility of the software allows the points to be placed with any required accuracy. The points are saved to a file in the DS9 region file format, which is then read by PYTHON programs for further processing. For example, the yellow boxes show circle fits and determination of the parameters R_0 , R_c , and R_{90} . In this example, only the points shown in orange (within 60° of axis) are used in the fits.

as the inclination angle is increased. There is no sign of the sudden increase in openness at high inclination, as seen in the cantoids and ancantoids that are asymptotically hyperbolic. On the other hand, the projected shapes of both simulations vary much more strongly with |i| than the wilkinoid does. For the HD simulation, this is mainly apparent for $|i| > 30^\circ$, but for the MHD simulation it occurs at all inclinations.

The resultant inclination-dependent tracks in the planitudealatude plane are shown in Fig. 25. These are compared with measurements13 from post-processed infrared dust continuum maps at 60 µm (section 4.3 of Meyer et al. 2017), shown by open square symbols for $i = 30^\circ, 45^\circ$, and 60° . The agreement between the two is good. In particular, the 60 µm-derived shapes are always very close to the tracks derived from the contact discontinuity shape. Also, the ordering of the three inclinations along the tracks corresponds to what is predicted, although quantitatively there are some slight deviations. This close agreement stems from the fact, emphasized by Meyer et al. (2014), that the long-wavelength dust emission from hot-star bow shocks tends to be dominated by material just outside the contact discontinuity. Note that there is almost no difference in the planitude-alatude tracks between the closed and open extrapolations. This is because Π' and Λ' only depend on the portion of $R(\theta)$ between θ_0 (equation 18) and θ_{90} (equation 21), and these

¹³ The shape measurements were performed by converting to contours the 60 µm images in Meyer et al. (2017)'s fig. 10 and then tracing the ridge of minimum radius of curvature of the contours. Identical results are found from using the 100 µm maps instead. For the 25 µm maps, although the same results are found for low inclinations, in the maps with $|i| \ge 45^\circ$ in the HD case, it becomes impossible to trace the limb-brightened rim because it becomes fainter than the emission from the true apex of the bow.

Figure 23. Departure function for the shape of the contact discontinuity, measured from two numerical simulations of a $20 \, M_{\odot}$ main-sequence star, moving at $40 \, \text{km s}^{-1}$ through a uniform medium of density $0.57 \, \text{cm}^{-3}$ (Meyer et al. 2017). (a) MHD simulation with ambient magnetic field of strength 7 µG, oriented parallel to the stellar velocity. (b) Hydrodynamic simulation with zero magnetic field. Blue dots show the measured shape, while the thick, pale-red line shows a 12th-order Chebyshev polynomial fit. The published shapes only extend to $\theta \approx 130^\circ$ - 150° , so we extrapolate the shapes out to $\theta = 180^\circ$. Two different extrapolations are shown, corresponding to bows that are asymptotically closed (dashed red line) or open (solid red line). For comparison, black lines show the departure function for wilkinoid (thick line) and cantoids (thin lines).

Figure 24. Projected shapes of contact discontinuity from simulations at different inclinations |i| (varying line colour and thickness, see key). The top row shows magnetized simulation of Fig. 23(a), and the bottom row shows non-magnetized simulation of Fig. 23(b). The left column shows asymptotically open extrapolation, and the right column shows asymptotically closed extrapolation. All shapes are normalized to the projected apex distance, $R'_{h_{c}}$.

Figure 25. Apparent projected shapes of simulations in the $\Pi' - \Lambda'$ plane. Thick solid lines show the predicted inclination-dependent tracks of the traced contact discontinuity shape for the asymptotically open extrapolation, with tick marks indicating 20 equal intervals in |i. Thin solid lines show the same for the asymptotically closed extrapolation, which only deviates from the open case at the high-|i| end of the HD tracks. The true planitude and alatude are marked by filled circle symbols. Open square symbols show the shapes traced from the dust emission maps at 60 µm for inclinations of (largest to smallest) 30° , 45° , and 60° . For comparison, the wilkinoid track is shown in white. Note that the scales of both axes are logarithmic in this case.

Figure 26. Apparent projected apex distance of simulations. Line and symbol meanings are as in Fig. 25. In addition, triangle symbols at $|i| = 0^\circ$ denote radius measured on H α optical emission maps. Note that the distances for the blue square symbols have been adjusted according to the correction factor discussed in footnote 14.

are both smaller than the θ range where extrapolation is necessary, except for in the HD case at the highest inclinations.

Fig. 26 shows the inclination dependence of the projected apex distance, R'_0 . As in the previous figure, the lines show the prediction based on the shape of the contact discontinuity, while the square symbols show the results from the 60 µm dust continuum maps.¹⁴ In addition, triangle symbols show results from H α optical emission line maps, which are given for i = 0 in fig. 7 of Meyer et al. (2017). Again, the agreement is good between the values derived from the shape of the contact discontinuity and those derived from the surface brightness maps. The greatest discrepancy is seen with the H α maps and the intermediate inclination dust maps, with R'_0 being overestimated by a few per cent in both cases. The differences in behaviour between the two simulations are much larger than this. The larger true planitude of the MHD simulation means that the relative increase of R'_0 with |i| is much stronger than in the HD simulation for $|i| < 45^{\circ}$, as expected from Fig. 10(b).

¹⁴ There is an apparent error in the spatial scales for the HD simulations in figs 10 and 11 of Meyer et al. (2017), with the dust emission peaks occurring at radii that are clearly too large. The stated apex distance for the contact discontinuity in this simulation is 0.69 pc from table 2 of Meyer et al. (2014), and the position of the peak in dust column density is 0.70 pc from fig. 17(a) of Meyer et al. (2014). These are consistent with figs 3, 4, and 7 of Meyer et al. (2017), but not with figs 10 and 11. Luckily, the position of the reapex is clearly visible in the 25 µm maps of fig. 10 at inclinations of 45° and 60°. The projected separation of the true apex is $R_0 \cos i$, independent of the bow shape, which allows a correction factor of 0.65 to be found, assuming that the on-axis peak in the 25 µm emission coincides with the peak in dust column density. This correction has been applied to the blue square symbols shown in our Fig. 26.

Figure 27. Histograms of (top to bottom) projected planitude, alatude, and bow shock size for the shape of the contact discontinuity in the Meyer et al. (2017) simulations. The *y*-axis gives the probability density (per unit *x*-axis quantity), assuming a uniform distribution of viewing directions.

The probability densities¹⁵ of the apparent shape and size of the simulation bows (measured at the contact discontinuity) are shown in Fig. 27, assuming that the viewing direction is uniformly distributed in solid angle. The modal value of the projected planitude is similar at $\Pi' \approx 1.8$ for both simulations, but the distribution is much broader in the MHD case, which has a low-level wing extending out to $\Pi' \approx 6$. The projected alatude distributions are both narrower than the planitude (note the different scale of the histogram axis), with the MHD case again being the broader of the $\infty = 1.8$ for the HD case). Finally, the distribution of projected-overtrue apex distance is also broader for the MHD case.

7 EXAMPLE APPLICATION TO OBSERVATIONS

As an example of measuring the projected planitude and alatude of real bow shocks, we present an analysis of M42 000-400 and M42 069-601, which are two H α emission arcs (Bally, O'Dell & McCaughrean 2000; Gutiérrez-Soto 2015) associated with proplyds¹⁶ in the west of the Orion nebula (M42) at a distance of roughly 0.5 pc from the high-mass Trapezium stars that ionize

¹⁵ The probability density is defined so that its integral over the full range of the histogrammed variable is unity, making it independent of the histogram bin widths. This means that the characteristic width of an approximately unimodal distribution is one over the maximum probability density.

¹⁶ The coordinate designation (see O'Dell & Wen 1994 for an explanation of the nomenclature) of 000-400 is very imprecise in right ascension, but we use it here for consistency with previous papers. The associated proplyd

Figure 28. Example empirical determination of planitude and alatude for observed bow shocks associated with proplyds in the outer Orion nebula (M42). Colour scale and contours show a *Hubble Space Telescope* H α image (ACS F658N filter; Bally et al. 2006) of M42 000-400 (panels a–c) and M42 069-601 (panels d–f). The image scale and orientation are indicated in panel (a) and are the same for all panels. Three different bows have been traced by eye on each object (red and white filled symbols): (a, d) inner edge, (b, e) ridge of maximum emission, and (c, f) outer edge. For each panel, the dark-coloured circle shows the initial fit to the full set of points (white and red), using the algorithm described in Appendix E. The centre of curvature and derived axis are shown by a small filled circle and dashed line in the same clour. Lighter coloured circles show there subsequent iterations where the fit is restricted to points within $\pm \Delta \theta = 75^\circ$ of the axis. The subset of points used in the final iteration is marked in red. The perpendicular radii for the final iteration are shown by dotted lines. In panels (a), (b), and (d)–(f), the iterations converge immediately, but in panel (c) the iterations stably oscillate between two slightly different solutions.

the nebula. An image of one of these arcs (M42 069-601) was used in the illustration of bow shock terminology in Fig. 1.

7.1 Empirical determination of bow shock shape

We consider three different tracings of the bow shape (see Fig. 28): the peak of the emission arc ('ridge'), and its inner and outer edges. In all three cases, we placed by eye the points that define the bow, using SAOIMAGE DS9 (Joye & Mandel 2003) in a similar fashion to in Fig. 22, and guided by the image contours.¹⁷

We determine the planitude and alatude by fitting a circle to the traced points within $\pm \Delta \theta = 75^{\circ}$ of the bow axis, using the iterative algorithm described in Appendix E. The fitted circle, when combined with the position of the central source, yields the orientation of the bow axis, together with the apex distance, R_0 , radius of curvature, R_c , and two perpendicular radii (one for each wing), R_{0+} and R_{90-} . These are all indicated in the panels of Fig. 28 by light-

coloured lines.¹⁸ The projected planitude and alatude then follow as $\Pi' = R_c/R_0$, $\Lambda'_+ = R_{90+}/R_0$, $\Lambda'_- = R_{90-}/R_0$, which are shown in Fig. 29.

7.2 Analysis of sources of systematic uncertainty

The planitude is found to have a moderate dependence on the choice of $\Delta\theta$, as shown in Fig. 30, where it can be seen that, although the values of Π' are relatively stable for $\Delta\theta \ge 60^\circ$ (light grey shaded region), they can show much larger variations for $\Delta\theta < 60^\circ$. The fact that the radius of curvature is defined at a point (the projected apex) might seem to argue for making $\Delta\theta$ as small as possible, but that would lead to circle fits that were extremely sensitive to the exact positions of the few points included in the fit. A reliable fit requires four or more points, ideally spanning a total separation that is a substantial fraction of R_c , which would argue for $\Delta\theta$ larger than about $\Pi'/2$ rad, or 60° -90°. On the other hand, if $\Delta\theta \ge 90^\circ$, then the planitude and alatude would no longer be independent since the bow would be forced to lie on the 'sphere' line, $\Lambda' = (2\Pi' - 1)^{1/2}$ (see Section 4). Balancing these two concerns suggests an optimal

is listed with the more correct designation 4596-400 in catalogues such as Ricci, Robberto & Soderblom (2008).

¹⁷ In the case of the 'ridge' method at least, it is possible to automate this step, which we will discuss in detail in a following paper.

¹⁸ For conciseness, we drop the prime symbol from the radii, both in this section and in Appendix E, even though they are all projected quantities.

Figure 29. Location in the projected planitude–alatude plane of the converged circle fits to the M42 bows: (a) 000-400, (b) 069-601. For each solution, the two values of the projected alatude, Λ'_+ and Λ'_- , corresponding to R_{90+} and R_{90-} , are joined by a vertical line. Large symbols show the results from the fits shown in Fig. 28, while small symbols show results for fits using $\Delta \theta = 60^{\circ}$ instead of 75°. In panel (a), two slightly different Π' values are shown for the outer bow, since the fit does not converge to a single value [see Fig. 28(c) and Appendix E].

Figure 30. Variation of fitted planitude, Π' , as a function of the parameter $\Delta\theta$, which controls how close a point must be to the axis in order to be included in the circle fit. (a) M42 000-400, (b) M42 069-601. For the three traced bows (inner, outer, and ridge) of each object, the symbol key lists the mean and standard deviation of Π' , calculated over the 'stable' range $\Delta\theta = 60^{\circ}$ -80°, which is indicated by light grey shading.

(64)

 $\Delta\theta=75^\circ,$ which is shown in Fig. 28, whereas in Fig. 29 we show results for both 75° (thick lines) and 60° (thin lines).

Unlike all the models considered in Sections 5 and 6, the observed bows are not necessarily symmetrical and so the alatude for the two wings, Λ'_{-} and Λ'_{+} , may be different. We therefore calculate an average alatude, $\langle \Lambda' \rangle$, and an alatude asymmetry, $\Delta \Lambda'$:

 $\left< \Lambda' \right> = \frac{1}{2} \left(\Lambda'_+ + \Lambda'_- \right) \qquad \Delta \Lambda' = \frac{1}{2} \left(\Lambda'_+ - \Lambda'_- \right).$

The results for these two quantities, together with the plantfude, are
shown in Table 1. For each object and for each tracing (inner, ridge
outer, see Fig. 28), the mean
$$\pm$$
 standard deviation is listed for circle
fits using $\Delta \theta = 60^{\circ} - 80^{\circ}$ (see Fig. 30). Additionally, the row 'All
for each object gives the global mean and standard deviation ove
all three tracings.

It can be seen from Table 1 that the uncertainty in the fitted parameters is dominated by the variations between the different traced shapes. For example, the one-sigma relative variation of planitude, Π' , is <10 per cent within the individual tracings, but

Source	Bow	Π'	$\langle \Lambda' \rangle$	$\Delta\Lambda'$
000-400	Inner	2.87 ± 0.19	2.40 ± 0.04	0.35 ± 0.08
	Ridge	3.62 ± 0.38	2.73 ± 0.02	0.51 ± 0.10
	Outer	2.51 ± 0.24	2.46 ± 0.02	-0.06 ± 0.02
	All	3.00 ± 0.54	2.53 ± 0.15	0.16 ± 0.16
069-601	Inner	3.81 ± 0.23	2.90 ± 0.01	0.44 ± 0.05
	Ridge	2.43 ± 0.13	2.17 ± 0.01	0.07 ± 0.02
	Outer	2.22 ± 0.15	2.11 ± 0.01	0.01 ± 0.01
	All	2.82 ± 0.75	2.39 ± 0.37	0.17 ± 0.20

Table 1. Fitted planitude and alatude for M42 bows.

≈20 per cent between tracings. For the mean alatude, $\langle \Lambda' \rangle$, the variation within individual tracings is extremely small¹⁹ at ≈1 per cent, but is ≈10 per cent between tracings. The alatude asymmetry, $\Delta\Lambda'$, is best interpreted as a difference between the symmetry axis of the apex region and the symmetry axis of the wings. In relative terms, this is 0–20 per cent, but with large systematic variations between tracings (for instance, in both objects it is very small for the outer arcs).

It could be argued that much of the between-tracing variations in Π' and $\langle \Lambda' \rangle$ are due to real differences between the shapes of the inner and outer boundaries of the emission arc. Although this may be true, in the absence of a robust theory as to exactly what feature of the observed images constitutes *the* bow shock, such variations nevertheless serve to limit the precision with which the bow shock shape can be measured. We therefore conclude that conservative estimates of 20 per cent precision for Π' and 10 per cent precision for Λ' are appropriate when analysing observations of a similar or better quality²⁰ to those presented in Fig. 28. This will be an important limitation when comparing the statistics of the shapes of different bow shock populations, as we will present in a following paper.

7.3 Derived shape of the M42 arcs

From a casual inspection of Fig. 28, it is apparent that the shapes of the two M42 arcs are closely similar, and this is confirmed by the numbers in Table 1. Both 000-400 and 069-601 are consistent with $(\Pi', \Lambda') \approx (3.0, 2.5)$, and if we take the absolute minimum over all the different tracings and reasonable variations in the $\Delta\theta$ fit parameter, we find unassailable lower limits of $(\Pi', \Lambda') > (2.1, 2.1)$. In the rest of this section, we consider only these lower limits, since they are already sufficient for drawing interesting conclusions.

Comparison with Fig. 25 shows that both the MHD and HD simulations of Meyer et al. (2016) are inconsistent with the observations. Although $\Pi' > 2.1$ can be satisfied,²¹ the simulations' projected alatude is $\Lambda' < 1.9$ for all inclinations, which is significantly less than the observed lower limit of 2.1. This is not particularly surprising since the simulations were not tailored to the situation of these proplyd bow shocks in M42, in which the mildly supersonic photo-

²⁰ Since the uncertainties are systematic and due to unavoidably subjective decisions, it is unlikely that better quality observations would improve the situation, although poorer quality observations could make things worse. ²¹ Either by the MHD simulations at low inclinations ($|i| = 0^{\circ}-20^{\circ}$) or by

the HD simulation at intermediate inclinations ($|i| = 30^{\circ} - 40^{\circ}$).

evaporation flow from an externally irradiated protoplanetary disc interacts with the mildly supersonic champagne flow from the core of the Orion nebula. The proplyd case has at least four important differences from the runaway O-star case modelled by Meyer et al. (2016). (1) The velocity of the outer wind is $\leq 20 \text{ km s}^{-1}$ instead of 40 km s⁻¹. (2) The outer wind is slightly divergent, rather than plane parallel. (3) Both inner and outer shocks are strongly radiative, so both shells (see Fig. 2) contribute to the observed emission. (4) The inner wind is not isotropic, but instead corresponds to the k = 0.5case of equation (53). The ways in which these differences may account for the discrepancy with the observations will be explored in detail in a subsequent paper.

8 SUMMARY AND DISCUSSION

We have shown that the shapes of stellar bow shocks can be usefully characterized by two dimensionless numbers: the *planitude*, Π , or flatness of the bow's apex, and the *alatude*, Λ , or openness of the bow's wings (Section 2). The planitude and alatude can be estimated from ratios of lengths that can be straightforwardly measured from observations or theoretical models. We develop a general method (Section 3) for finding the projected shape, (Π' , Λ'), of a bow shock's limb-brightened edge, or *tangent line*, as a function of inclination angle, *i*, where the emission shell is idealized as a cylindrically symmetric surface.

We first apply this method to find inclination-dependent tracks on the projected planitude-alatude plane for the special case of quadric surfaces (Section 4), such as hyperboloids, paraboloids, and spheroids, where the tangent line is a conic section. The spheroids and hyperboloids occupy distinct regions of the plane, with the paraboloids defining the boundary between the two. As the inclination is increased from |i| = 0 (side-on) to $|i| = 90^{\circ}$ (end-on), the tracks first tend to approach the diagonal $\Lambda' = \Pi'$, corresponding to confocal conics, always remaining within their own region. At the highest inclinations, the spheroids all converge at $|i| = 90^{\circ}$ on the point $(\Pi', \Lambda') = (1, 1)$ and the paraboloids on the point (Π', Λ') = (2, 2). The hyperboloids, on the other hand, diverge as $(\Pi', \Lambda') \rightarrow$ (∞, ∞) for a finite i_{crit} , which depends on the asymptotic opening angle of the tail. For $|i| > i_{crit}$, the tangent line no longer exists for the hyperboloid, and it would no longer appear to be a curved bow shock. We introduce the parabolic departure function (Section 4.1) as tool for visualizing differences in bow shapes, $R(\theta)$, over the full range, $\theta = [0^{\circ}, 180^{\circ}]$.

We then apply the projection method to a set of thin-shell hydrodynamic models of bow shocks (Section 5): the *wilkinoid* from a wind–parallel stream interaction and the *cantoids* from wind–wind interactions. We generalize the latter to the *ancantoids*, where one of the winds is anisotropic. We find that the wilkinoid is confined to a small region of the $\Pi' - \Lambda'$ plane, with projected planitude and alatude varying with inclination by <15 per cent. The cantoids and ancantoids with sufficiently small values of β , the wind momentum ratio, have more interesting behaviour, with tracks that pass from the spheroid region at low inclinations to the hyperboloid region at high inclinations.

In the following section (Section 6), we test the projected shape analysis methods against the results of computational fluid dynamic simulations of magnetized and non-magnetized bow shocks from Meyer et al. (2017) of a runaway OB main-sequence star. We find that measurements made on maps of infrared dust emission can be accurate diagnostics of the projected shape of the contact discontinuity for this type of bow shock (Fig. 25). The distributions of projected planitude and alatude for a population of randomly

¹⁹ This is because the only way that variation in the circle fit parameters affects the alatudes is through the axis orientation vector, and changing the orientation induces roughly opposite effects on Λ'_+ and Λ'_- , which approximately cancel out in $\langle \Lambda' \rangle$.

oriented bow shocks show systematic differences between the different simulations.

Finally (Section 7), we give an example of the application of our methods to observed emission maps of bow shocks, describing a robust algorithm for empirically determining the projected planitude and alatude from imperfect real data. We investigate the sensitivity of the results to systematic errors due to both observational uncertainties and subjective choices in the application of the algorithm. We find that the projected planitude and alatude can be determined with precisions of 20 per cent and 10 per cent, respectively. For our illustrative observations, we show that this is more than sufficient to rule out certain models.

This paper is the first of a series that will apply our shape analysis to a wide variety of models and observations of stellar bow shocks. In a second paper, we consider the alternative model of dusty radiation-driven bow wave (Ochsendorf et al. 2014), instead of a hydrodynamic bow shock, and also calculate the signature in the planitude–alatude plane of oscillations in the bow shape, which may be due to instabilities or a time-varying source. In a third paper, we apply our techniques to observational data sets for three different classes of stellar bow shocks: OB stars (Kobulnicky et al. 2016), cool giants/supergiants (Cox et al. 2012), and young stars in the extended Orion nebula (Henney et al. 2013). In a fourth paper, we analyse the proplyd bow shocks in the core of the Orion nebula (García-Arredondo et al. 2001).

ACKNOWLEDGEMENTS

We are grateful for financial support provided by Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, through grant Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica IN111215. JATY acknowledges support via a research studentship from Consejo Nacional de Ciencias y Tecnología, Mexico. This work has made extensive use of PYTHON language libraries from the sCIPY (Jones et al. 2001–2018) and ASTROPY (Astropy Collaboration et al. 2013, 2018) projects. We appreciate the thoughtful comments of the anonymous referee, which led us to clarify the presentation of our results and prompted the addition of Section 7 and Appendices A and B.

REFERENCES

- Astropy Collaboration et al., 2013, A&A, 558, A33
- Astropy Collaboration et al., 2018, ApJ, preprint (arXiv:1801.02634)
- Bally J., O'Dell C. R., McCaughrean M. J., 2000, AJ, 119, 2919
- Bally J., Licht D., Smith N., Walawender J., 2006, AJ, 131, 473
- Canto J., Raga A. C., Wilkin F. P., 1996, ApJ, 469, 729 (CRW)
- Cox N. L. J. et al., 2012, A&A, 537, A35
- de Sterck H., Poedts S., 1999, A&A, 343, 641
- García-Arredondo F., Henney W. J., Arthur S. J., 2001, ApJ, 561, 830
- Gayley K. G., 2009, ApJ, 703, 89
- Gfrerrer A., Zsombor-Murray P., 2009, J. Geom. Graph., 13, 131
- Goldman R., 1983, IEEE Comput. Graph. Appl., 3, 68
- Graham M. F., Meaburn J., Garrington S. T., O'Brien T. J., Henney W. J., O'Dell C. R., 2002, ApJ, 570, 222
- Guggenheimer H., 2012, Dover Books on Mathematics, Differential Geometry. Dover Press, New York
- Gutiérrez-Soto L. Á., 2015, Master's thesis, Universidad Nacional Autónoma de México, Mexico
- Hartigan P., Raymond J., Hartmann L., 1987, ApJ, 316, 323
- Hayward T. L., Houck J. R., Miles J. W., 1994, ApJ, 433, 157
- Henney W. J., 2002, Rev. Mex. Astron. Astrofis., 38, 71
- Henney W. J., García-Díaz M. T., O'Dell C. R., Rubin R. H., 2013, MNRAS, 428, 691

- Jones E. et al., 2001–2018, SciPy: Open Source Scientific Tools for Python, Available at http://www.scipy.org/
- Joye W. A., Mandel E., 2003, in Payne H. E., Jedrzejewski R. I., Hook R. N., eds, ASP Conf. Ser. Vol. 295, Astronomical Data Analysis Software and Systems XII. Astron. Soc. Pac., San Francisco, p. 489
- Kobulnicky H. A., Gilbert I. J., Kiminki D. C., 2010, ApJ, 710, 549
- Kobulnicky H. A. et al., 2016, ApJS, 227, 18
- Mackey J., Mohamed S., Neilson H. R., Langer N., Meyer D. M.-A., 2012, ApJ, 751, L10
- Mackey J., Gvaramadze V. V., Mohamed S., Langer N., 2015, A&A, 573, A10
- Markevitch M., Gonzalez A. H., David L., Vikhlinin A., Murray S., Forman W., Jones C., Tucker W., 2002, ApJ, 567, L27
- Meaburn J., Boumis P., Akras S., 2013, MNRAS, 435, 3462
- Medina S.-N. X., Arthur S. J., Henney W. J., Mellema G., Gazol A., 2014,
- MNRAS, 445, 1797
 Meyer D. M.-A., Mackey J., Langer N., Gvaramadze V. V., Mignone A., Izzard R. G., Kaper L., 2014, MNRAS, 444, 2754
- Meyer D. M.-A., van Marle A.-J., Kuiper R., Kley W., 2016, MNRAS, 459, 1146
- Meyer D. M.-A., Mignone A., Kuiper R., Raga A. C., Kley W., 2017, MNRAS, 464, 3229
- Mohr P. J., Phillips W. D., 2015, Metrologia, 52, 40
- Ng C.-Y., Bandiera R., Hunstead R. W., Johnston S., 2017, ApJ, 842, 100
- O'Dell C. R., Wen Z., 1994, ApJ, 436, 194
- Ochsendorf B. B., Verdolini S., Cox N. L. J., Berné O., Kaper L., Tielens A. G. G. M., 2014, A&A, 566, A75
- Penrose R., 2004, The Road to Reality: A Complete Guide to the Laws of the Universe. Jonathan Cape, London
- Phillips J. P., Cuesta L. C., Ramos-Larios G., 2010, MNRAS, 409, 881
- Quincey P., Brown R. J. C., 2017, Metrologia, 54, 454
- Raga A. C., Binette L., Canto J., Calvet N., 1990, ApJ, 364, 601
- Ricci L., Robberto M., Soderblom D. R., 2008, AJ, 136, 2136
- Robberto M. et al., 2005, AJ, 129, 1534
- Scherer K., Fichtner H., 2014, ApJ, 782, 25
- Schwartz R. D., 1978, ApJ, 223, 884
- Shu F. H., Lizano S., Galli D., Cantó J., Laughlin G., 2002, ApJ, 580, 969
- Smith N., Bally J., Shuping R. Y., Morris M., Kassis M., 2005, AJ, 130, 1763
- Stevens I. R., Blondin J. M., Pollock A. M. T., 1992, ApJ, 386, 265
- Tenorio-Tagle G., 1979, A&A, 71, 59
- van Buren D., McCray R., 1988, ApJ, 329, L93
- van Dyke M., 1982, An Album of Fluid Motion. Parabolic Press, Stanford, CA
- van Marle A. J., Meliani Z., Keppens R., Decin L., 2011, ApJ, 734, L26
- Weisstein E. W., 1999–2018, Radius of Curvature, From MathWorld A Wolfram Web Resource, Available at http://mathworld.wolfram.com/ RadiusofCurvature.html
- Wilkin F. P., 1996, ApJ, 459, L31
- Wilkin F. P., 1997, PhD thesis, Univ. California, Berkeley
- Wilkin F. P., 2000, ApJ, 532, 400
- Wilson A. S., Ulvestad J. S., 1987, ApJ, 319, 105

2/2

Zank G. P., 1999, Space Sci. Rev., 89, 413

APPENDIX A: RADIUS OF CURVATURE

The radius of curvature of a general curve can be written as (e.g. equations 2–5 of Guggenheimer 2012)

$$R_{\rm c} \equiv \frac{1}{|\kappa|} = \left| \frac{\mathrm{d}s}{\mathrm{d}\alpha} \right|,\tag{A1}$$

where κ is the *curvature*, *s* is the path length along the curve, and α is the tangent angle (see Fig. 6). In spherical polar coordinates, this becomes (Weisstein 1999–2018)

$$R_{\rm c} = \frac{\left(R^2 + R_{\theta}^2\right)^{3/2}}{\left|R^2 + 2R_{\theta}^2 - RR_{\theta\theta}\right|},\tag{A2}$$

where $R_{\theta} = dR/d\theta$ and $R_{\theta\theta} = d^2R/d\theta^2$. At the apex, $R_{\theta} = 0$ by symmetry, which yields equation (3) of Section 2. Note that θ is dimensionless and should be measured in radians (Mohr & Phillips 2015; Quincey & Brown 2017).

APPENDIX B: ROTATION MATRICES AND PLANE-OF-SKY PROJECTION

The transformation from the body-frame (unprimed) to observerframe (primed) coordinates is a rotation about the *y*-axis by an angle *i*, which is described by the rotation matrix:

$$\mathbf{A}_{y}(i) = \begin{pmatrix} \cos i & 0 & -\sin i \\ 0 & 1 & 0 \\ \sin i & 0 & \cos i \end{pmatrix}.$$
 (B1)

This is used in equation (8). A further application is to express the observer-frame Cartesian basis vectors in terms of the body-frame basis:

$$\hat{\mathbf{x}}' = \mathbf{A}_{\mathbf{y}}(-i) \begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} \cos i\\0\\-\sin i \end{pmatrix}, \tag{B2}$$

$$\hat{\mathbf{y}}' = \mathbf{A}_{\mathbf{y}}(-i) \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \tag{B3}$$

$$\hat{z}' = \mathbf{A}_{y}(-i) \begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} \sin i\\0\\\cos i \end{pmatrix}.$$
 (B4)

Note that in this case the sign of *i* is reversed because it is the inverse operation to that in equation (8).

Since we are considering cylindrically symmetric bows, all azimuths ϕ are equivalent, so it is sufficient to work with twodimensional curves in the plane z = 0 (which is also $\phi = 0$) and then find the three-dimensional surface by rotating about the *x*-axis via the rotation matrix:

$$\mathbf{A}_{x}(\phi) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\phi & -\sin\phi\\ 0 & \sin\phi & \cos\phi \end{pmatrix}, \tag{B5}$$

where ϕ takes all values in the interval [0, 2π].

APPENDIX C: PARABOLOIDS AND THEIR PLANE-OF-SKY PROJECTION

Equation (25) for the *xy* coordinates of a quadric in the $\phi = 0$ plane cannot be used in the case of a paraboloid (Q = 0). Instead, a convenient parametrization is

$$\begin{aligned} x &= R_0 \left(1 - \frac{1}{2} \Pi t^2 \right) \\ y &= R_0 \Pi t, \end{aligned} \tag{C1}$$

where we have 'baked in' knowledge of the planitude, $\Pi = R_c/R_0$ (see Section 2). The projected plane-of-sky coordinates of the tangent line follow from equation (8) as

$$x'_{\rm T}/R_0 = \left(1 - \frac{1}{2}\Pi t^2\right)\cos i + \Pi t\sin\phi_{\rm T}\sin i$$

$$y'_{\rm T}/R_0 = \Pi t\cos\phi_{\rm T}.$$
 (C2)

The azimuth of the tangent line is found from equations (10) and (15) as $\sin \phi_{\rm T} = -t^{-1} \tan i$, so that

$$\begin{aligned} x'_{\rm T}/R_0 &= \cos i \left[1 + \frac{1}{2} \Pi \tan^2 i - \frac{1}{2} \Pi \left(t^2 - \tan^2 i \right) \right] \\ y'_{\rm T}/R_0 &= \Pi (t^2 - \tan^2 i)^{1/2} . \end{aligned}$$
(C3)

The projected star–apex distance, R'_0 , is the value of $x'_{\rm T}$ when $y'_{\rm T} = 0$, yielding

$$R'_0/R_0 = \cos i \left(1 + \frac{1}{2}\Pi \tan^2 i\right).$$
 (C4)

Note that the same result can be obtained from a Taylor expansion of equation (45) substituted into equation (49) in the limit $Q \rightarrow 0$.

Equation (C3) can be rewritten in the form

$$\begin{aligned} x'_{\rm T} &= R'_0 \left(1 - \frac{1}{2} \Pi' t'^2 \right) \\ y'_{\rm T} &= R'_0 \Pi' t' , \end{aligned}$$
(C5)

where

$$\Pi' = \frac{2\Pi}{2\cos^2 i + \Pi \sin^2 i} \tag{C6}$$

$$t' = \cos i (t^2 - \tan^2 i)^{1/2}, \tag{C7}$$

which demonstrates that the projected shape is also a parabola. It is apparent from equation (C6) that the projected planitude obeys

 $\lim_{n \to \infty} \Pi' = 2,$

for all values of the true planitude Π , as is shown by the black lines in Fig. 10(a). The projected alatude can be found as

$$\Lambda' = (2\Pi')^{1/2}.$$
 (C8)

For the special case of the confocal paraboloid, $\Pi = \Lambda = 2$, we have $\Pi' = \Pi$ and $\Lambda' = \Lambda$ by equations (C6) and (C8) for all inclinations, so its shape is unaffected by projection.

APPENDIX D: ANALYTIC DERIVATION OF THIN-SHELL BOW SHAPE PARAMETERS

In this appendix, we provide analytic calculations of the planitude, alatude, and asymptotic opening angle for the wilkinoid, cantoids, and ancantoids. We first consider the most general case of the ancantoids, and then show how results for cantoids and the wilkinoid follow as special cases.

D1 Planitude of ancantoids

From equations (3) and (5), the planitude depends on the apex second derivative, $R_{\theta\theta,0}$, as

$$\Pi = (1 - R_{\theta\theta,0}/R_0)^{-1}.$$
 (D1)

From equation (4), the second derivative can be found from the coefficient of θ^2 in the Taylor expansion of $R(\theta)$. Since we do not have $R(\theta)$ in explicit analytic form, we proceed via a Taylor expansion of the implicit equations (60) and (61), retaining terms up to θ^4 to obtain from equation (61):

$$\theta_1^2 = \beta \theta^2 \left(1 + C_{k\beta} \theta^2 \right) + \mathcal{O}(\theta^6) , \qquad (D2)$$

with the coefficient $C_{k\beta}$ given by

$$C_{k\beta} = \frac{1}{15} - \frac{3k}{20} - \frac{\beta}{15} \,. \tag{D3}$$

Note that it is necessary to include the θ^4 term in the expansion of θ_1^2 so that θ_1/θ is accurate to order θ^2 . Then, from equation (60), we find

$$\frac{R}{D} = \frac{\sin \theta_1}{\sin(\theta + \theta_1)}
= \frac{\beta^{1/2}}{1 + \beta^{1/2}} \left\{ 1 + \theta^2 \left[\frac{C_{k\beta}}{2(1 + \beta^{1/2})} + \frac{1}{6} (1 + 2\beta^{1/2}) \right] \right\}
+ \mathcal{O}(\theta^4),$$
(D4)

where in the second line we have carried out a Taylor expansion of the two sine terms and substituted equation (D2). Comparing coefficients of unity and θ^2 between equations (4) and (D4), we find

$$\frac{R_0}{D} = \frac{\beta^{1/2}}{1 + \beta^{1/2}} \tag{D5}$$

$$\frac{R_{\theta\theta,0}}{R_0} = \frac{C_{k\beta}}{1+\beta^{1/2}} + \frac{1}{3}(1+2\beta^{1/2}),\tag{D6}$$

so that the final result for the planitude, from equation (D1), is

ancantoid
$$\Pi = \left[1 - \frac{C_{k\beta}}{1 + \beta^{1/2}} - \frac{1}{3} \left(1 + 2\beta^{1/2}\right)\right]^{-1}$$
. (D7)

D2 Alatude of ancantoids

To find the alatude, $\Lambda = R_{90}/R_0$, we use equation (60) at $\theta = 90^{\circ}$ to write

$$\Lambda = \frac{D}{R_0} \tan \theta_{1.90},\tag{D8}$$

where $\theta_{1,90} = \theta_1(\theta = 90^\circ)$, which, following equation (61), must satisfy

$$\theta_{1,90}\cot\theta_{1,90} = 1 - \frac{2\beta}{k+2} \,. \tag{D9}$$

Combining equations (D8) and (D9) with equation (D5) yields

$$\Lambda = \frac{(1+\beta^{1/2})\theta_{1,90}}{\beta^{1/2}(1-\xi_k\beta)},\tag{D10}$$

where

$$\xi_k = \frac{2}{k+2} \,. \tag{D11}$$

We now take the Taylor expansion of equation (D9) to find

$$\theta_{1,90}^2 + \frac{1}{15}\theta_{1,90}^4 + \mathcal{O}\left(\theta_{1,90}^6\right) = 3\xi_k\beta,\tag{D12}$$

which, if $\theta_{1,90}$ is small, has the approximate solution

$$\theta_{1,90} \approx \left(\frac{3\xi_k\beta}{1+\frac{1}{5}\xi_k\beta}\right)^{1/2} . \tag{D13}$$

Substituting back into equation (D8) yields an approximate value for the alatude of

ancantoid
$$\Lambda \approx \frac{(3\xi_k)^{1/2}(1+\beta^{1/2})}{\left(1+\frac{1}{5}\xi_k\beta\right)^{1/2}(1-\xi_k\beta)}$$
. (D14)

This approximation is surprisingly accurate, with a relative error of the order of 1 per cent even for β as large as 0.5 with k = 0.

D3 Planitude and alatude of cantoids and wilkinoid

Since Π and Λ depend on only that portion of the inner wind emitted in the forward hemisphere, $\theta \le 90^\circ$, the results for the cantoids can be found by taking k = 0, in which case equations (D3), (D7), (D11), and (D14) yield

antoid
$$\begin{cases} \Pi = \frac{5}{3(1-\beta^{1/2})} \\ \Lambda = \frac{\sqrt{3}}{\left(1+\frac{1}{5}\beta\right)^{1/2}(1-\beta^{1/2})}. \end{cases}$$
(D15)

The wilkinoid shape is equal to the $\beta \rightarrow 0$ limit of the cantoid, so its planitude and alatude are given by

wilkinoid
$$\begin{cases} \Pi = \frac{5}{3} \\ \Lambda = \sqrt{3}. \end{cases}$$
 (D16)

The wilkinoid results can also be obtained directly from equation (52), and in the case of Λ this has already been noted by several authors (Cox et al. 2012; Meyer et al. 2016).

D4 Asymptotic opening angle

The asymptotic opening angle of the far wings, θ_{∞} , can be found from equation (61) for the ancantoids, together with the condition that $\theta_{\infty} + \theta_{1\infty} = \pi$. These yield the implicit equation

$$\theta_{\infty} - \left(\frac{k+2(1-\beta)}{k+2}\right) \tan \theta_{\infty} = \pi + 2\beta I_k(\pi/2), \tag{D17}$$

where

c

$$I_k(\pi/2) = \frac{\sqrt{\pi}}{4} \frac{\Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{k+4}{2}\right)}$$
(D18)

and Γ is the usual Gamma function. This can be compared with the equivalent result obtained by CRW for the cantoids:

$$\theta_{\infty} - \tan \theta_{\infty} = \frac{\pi}{1 - \beta} .$$
(D19)

Note that, unlike in the cases of Π and Λ , equation (D17) does *not* reduce to equation (D19) in the limit $k \to 0$. This is because, for $\theta > 90^\circ$, the k = 0 ancantoid differs from the cantoid since the former has no wind in the backward hemisphere (see Fig. 13). Therefore, there is less inner support for the far wings of the bow, and so θ_{∞} is smaller than in the cantoid case. The wilkinoid result again follows from $\beta \to 0$, implying that $\theta_{\infty} = \pi$, or, in other words, that the far wings are asymptotically parallel to the symmetry axis, as is the case for the paraboloid (Appendix C). In the case of the wilkinoid, however, the behaviour is cubic in the wings, $z \sim r^3$, as opposed to quadratic as in the paraboloid.

APPENDIX E: EMPIRICAL DETERMINATION OF RADIUS OF CURVATURE FOR A BOW SHOCK OF UNKNOWN ORIENTATION

Consider a set of *N* points on the plane of the sky,²² with Cartesian coordinates $\mathbf{r}_k = (x_k, y_k)$ for k = 1, ..., N. We wish to estimate the radius of curvature of the smooth curve that the set of points is presumed to be sampled from. To do this, we fit a circle to the

²² In the main body of the paper, the prime symbol (') is used to distinguish projected from 'true' quantities. In this appendix, for simplicity, we omit the primes since *all* quantities are projected.

points as follows. The circle is defined by its centre, $\mathbf{r}_c = (x_c, y_c)$, and radius, R_c . For a given circle, we define a mean radius of the set of points from the circle centre:

$$\bar{R}_{\rm c}(x_{\rm c}, y_{\rm c}) = \frac{1}{N} \sum_{k=1}^{N} |\boldsymbol{r}_k - \boldsymbol{r}_{\rm c}| \,. \tag{E1}$$

We then optimize to find best-fitting values (x_c^*, y_c^*) , which minimize the objective function

$$f(x_{\rm c}, y_{\rm c}) = \sum_{k=1}^{N} \left(|\boldsymbol{r}_k - \boldsymbol{r}_{\rm c}| - \bar{R}_{\rm c}(x_{\rm c}, y_{\rm c}) \right)^2.$$
(E2)

The best-fitting radius of curvature is then given by $R_c^* = \bar{R}_c(x_c^*, y_c^*)$.

If we also know the position, $\mathbf{r}_0 = (x_0, y_0)$, of the bow's central source, then we can find the unit vector in the direction of the bow's projected axis as

$$\hat{\xi} = \frac{r_0 - r_c^*}{|r_0 - r_c^*|},$$
(E3)

and the apex distance from the source as23

$$R_0 = \left| \boldsymbol{r}_c^* + \boldsymbol{R}_c^* \hat{\boldsymbol{\xi}} - \boldsymbol{r}_0 \right| . \tag{E4}$$

A refinement of the method is then to iteratively repeat the circle fit after restricting the set of points to those lying within a certain angle $\Delta\theta$ of the bow axis, where we find that best results are obtained with $\Delta\theta \approx 60^{\circ}-75^{\circ}$. That is,

$$|\theta_k| < \Delta \theta, \tag{E5}$$

where the signed angle θ_k of each point from the axis,²⁴ measured at the source position r_0 , can be calculated as

$$\theta_{k} = \arctan\left[\frac{(\boldsymbol{r}_{k} - \boldsymbol{r}_{0}) \cdot \hat{\boldsymbol{\xi}}^{\perp}}{(\boldsymbol{r}_{k} - \boldsymbol{r}_{0}) \cdot \hat{\boldsymbol{\xi}}}\right].$$
(E6)

²³ This is only valid if the resultant $R_0 < R_c^*$, otherwise the opposite sign of $\hat{\xi}$ must be taken.

²⁴ Although the sign of θ_k is not relevant to equation (E5), it is used below in calculating the perpendicular radii.

In the preceding equation, the 'perpendicular' operator (\perp) rotates its vector argument anticlockwise by 90°, so that $(x, y)^{\perp} = (-y, x)$.

Two or three iterations are sufficient for convergence in most cases, although in some cases it is possible that the process will converge to a stable flip-flop oscillation between two different solutions. This is due to the dependence of the θ_k , via $\hat{\xi}$, on the r_c^* of the previous iteration, which can lead to points entering and leaving the fitted set. We have not found this to be a serious problem in practice, since the two solutions tend to be very close to one another. It could be mitigated by averaging r_c^* over two previous iterations. The alternative of measuring the angle with respect to the centre of curvature, r_c^* , instead of the source, r_0 , is found to be much less stable.

If quantitative estimates exist for the uncertainties, ϵ_k , in the measurements of \mathbf{r}_k , then it is appropriate to incorporate weights of ϵ_k^{-2} in the objective function. However, it is rare for the ϵ_k to be objectively quantifiable, since the uncertainties are often systematic and/or subjective. In the cases where the bow shape is traced by eye, based on real or synthetic observations, a more practical approach is to maintain uniform weighting but to place a greater density of points \mathbf{r}_k in regions where the shape is well determined and to place them more sparsely in regions where the shape is less certain.

Since there is no guarantee of symmetry about the axis $\hat{\xi}$, the perpendicular radius will in general be different in the two wings of the bow, with values R_{90+} and R_{90-} . These can be estimated by defining

$$\boldsymbol{R}_{k} = |\boldsymbol{r}_{k} - \boldsymbol{r}_{0}| \tag{E7}$$

and linearly interpolating between the points (θ_k, R_k) at $\theta = \pm 90^\circ$.

Our PYTHON language implementation of this algorithm is freely available at https://github.com/div-B-equals-0/circle-fit. An example application to real data is given in Section 7 and Fig. 28. Note that this method is not necessary if the orientation of the bow axis is known a priori, in which case the Taylor series method described in Section 2 is more efficient and accurate.

This paper has been typeset from a TFX/LATFX file prepared by the author.

Índice de figuras

1.1.	La Nebulosa de Orión	8
1.2.	Asociación Ori Id	9
1.3.	Representación esquemática de un proplyd	11
1.4.	Geometría del flujo fotoevaporado	12
1.5.	Representación esquemática del flujo foto evaporado	14
2.1.	Terminología de un choque de Proa <i>estelar</i>	16
2.2.	La región del Trapecio	17
2.3.	Comparación entre R_{90}/D y R_0/D por Robberto et al. (2005)	20
2.4.	Simulación hidrodinámica de un choque de proa de un proplyd	
	por García-Arredondo et al. (2001)	21
2.5.	Esquema del choque de proa de un proplyd	22
2.6.	Posibles escenarios para los flujos en interacción de los cho-	
	ques de proa en ON	23
2.7.	Metodología para la medición de la forma del choque de proa	24
2.8.	Ejemplos de objetos LL obtenidos del catálogo de Gutiérrez-	
	Soto (2015)	25
2.9.	Mapa de objetos del catálogo de Gutiérrez-Soto (2015) dentro	
	de ON	27
2.10.	Ejemplos de choques de proa en infrarrojo producidos por	
	estrellas errantes	30
2.11.	Interacciones tipo "fermata" de los objetos R Scl, NML Tau,	
	W Ori, W Pic y α Ori	31
3.1.	Representación esquemática de vientos con diferentes aniso-	
	tropías	35

3.2.	Representación esquemática del problema de interacción de dos vientos	3
3.3.	Representación esquemática de los radios característicos de un choque de proa	3
3.4.	Parámetros relevantes y radios característicos de elipse e hipérbola	4
3.5.	Familia de secciones cónicas	4
3.6.	Sistema de referencia del choque vs sistema de referencia del plano del cielo	4
3.7.	Vectores unitarios normal y tangente a la superficie $R(\theta)$.	4
3.8.	Efectos de la proyección sobre las cuádricas de revolución con la inclinación $ i $	4
3.9.	Diagrama de diagnóstico Λ' vs Π' para diferentes tipos de cuádricas y distacia proyectada R'_0/R_0 versus $ i $	5
3.10.	Efectos de la inclinación de la forma aparente de arcos cuádricos	5
4.1.	Soluciones para la forma de la discontinuidad de contacto del modelo de capa delgada. Parámetro $\beta = 0.01$ fijo	5
4.2.	Solución para la forma de la discontinuidad de contacto de los choques ancantoides y wilkinoides.	6
4.3.	Diagrama $\Lambda - \Pi$ para choques cantoides, ancantoides y wilkinoides	6
4.4.	Parámetro de las cuádricas θ_Q que ajusta a la forma de la cabeza y la cola de las soluciones del modelo de capa delgada.	6
4.5.	Forma aparente de diferentes choques de proa en intervalos de inclinación de 15°	6
4.6.	Extensión de la figura 4.5 para choques de proa no isotrópicos (ancantoides)	6
4.7.	θ_0 y R'_0 en función de la inclinación para choques cantoides y wilkinoides.	7
4.8.	θ_0 y R'_0 en función de la inclinación para choques ancantoides.	7
4.9.	θ_{90} y alatud aparente en función de la inclinación para cho- ques cantoides y wilkinoides.	7
4.10.	θ_{90} y alatud aparente en función de la inclinación para cho- ques ancantoides	7

4.11.	Planitud aparente para choques cantoides, ancantoides y wilkinoides.	74
4.12.	Diagrama planitud-alatud aparente para las soluciones del modelo de capa delgada	76
5.1.	Imagen de la parte central de la Nebulosa de Orión donde se ubican los proplyds de nuestra muestra.	80
5.2.	Ejemplos de incertidumbres sistemáticas en los ajustes circu- lares a la forma de los choques para tres fuentes.	82
5.3.	Diagrama $\Pi' - R'_0/D'$ donde se comparan las mediciones de los proplyds con las predicciones teóricas del modelo de capa	~
5.4.	delgada	85
A.1.	Sub-muestras de cada propiyod	93 114
B.1.	Esquema de discontinuidad de contacto	118
B.2. B.3.	Esquema de la esructura de un frente de ionización Soluciones del salto de densidad y velocidad en un frente de	122
C_{1}	ionización en función del número de Mach del medio neutro.	124
G.I.	de proa de radiación	140

170 ÍNDICE DE FIGURAS

Índice de tablas

2.1.	Clasificación morfológica de choques de proa estelares de estrellas AGB y supergigantes (Cox et al., 2012)	29
5.1. 5.2	Ajuste a los parámetros de los arcos para los choques de proa de los proplyds Parámetros del Frente de Jonización de los proplyds	89 91
A.1.	Tarametros del Frence de lomzación de los propiyas. Tasa de fotones ionizantes para estrellas masivas (Stahler & Palla, 2004)	112