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Chapter 1

Introduction

Degrees of freedom of complex systems

A complete or integral idea of what statistical physics is about, can only be achieved if we disregard the
central importance of thermal systems in the original construction of the field. Most realistic, complex
systems, do not have an associated Hamiltonian. Still, ideas from statistical physics can be applied to
them. It is for this reason that in this part of the work, we expose some of the basic mathematical concepts
underlying the studies of general non-Hamiltonian and Hamiltonian systems, from which we study only
examples of the non-Hamiltonian class.

The great problem with complex systems is that there is no such a thing as a general framework based on
few principles, as for mechanical, either classical or quantum systems. Namely, the axiomatic formulation
for classical mechanics due to D’Alembert, Lagrange, Laplace, Euler, Hamilton, Jacobi and others [1], or
even better: Quantum mechanics, the most reliable physical theory we have up to now. For compactness,
let’s keep into the classical realm. According to the discipline of analytical mechanics, all what is needed
for determining precisely the past and future of a mechanical system is the knowledge of the degrees of
freedom of the system at some time of its evolution. This is a powerful statement that revolutionized
science and boosted technology more than two centuries ago. Based on the success of this theory, Laplace
famously wrote in A Philosophical Essay on Probabilities that someone with sufficient computational
power (“Laplace’s demon”) could predict all past and future of the universe provided precise and complete
knowledge of the mechanical state of all existing particles at a single time. Despite this theory being one
of the most elegant creations of the human intelect, we now understand that this deterministic view is
utterly reduced and impracticable for complex systems. Laplace’s demon is an impossible construct.
Nevertheless, in my point of view, this is one of the moments on the history of physics in which we see
more clearly the important role that philosophy plays in scientific development. The classical studies of
scientists like Joule, Kelvin, Carnot, Clausius and Helmhotlz on thermal systems opened the way to a new
philosophycal perspective in which this determinism appeared to be insufficient. Thermal systems (simple
substances, specially diluted gases) can be described by few degrees of freedom that can be measured in a
macroscopic way, disregarding the microscopic nature of their huge number of constituent particles. This
allowed Boltzmann [2], Maxwell, Gibbs [3] and others to propose a statistical interpretation of thermal
phenomena. The success of this probabilistic view to mechanical systems gave birth to the exciting and
wide discipline of Statistical Physics, which is itself endowed with dense philosophycal content. The
solution to the central problem concerning physical irreversibility, the apparent natural unidirectional flow
of time (at least for classical systems) is thought to be laying somewhere in the foundations of statistical
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physics.
Thus, perhaps a revival on the proper use of philosphy in science is necessary to push the advancement
on studies of complexity toward new horizons. There are some outstanding examples in which, at least in
the technical realm, the boundary of complexity theory has being moved forward and reside mainly in the
context of machine learning and the theory behind it. It is in the spirit exposed above that Lanczos wrote
in The variational principles of mechanics:

In our day, we have witnessed at least one fundamental discovery of unprecedented magni-
tude, namely Einstein’s theory of General Relativity, which was obtained by mathematical and
philosophical speculation of the highest order.

Therefore, a great portion of the problem lies on the successful identification of the relevant degrees of
freedom, for each relevant scale, or even better, if possible, of the degrees of freedom useful for many
or all the scales involved in generic problems. This is in general not known and thus a thermodynamic
framework, at least in the classical sense, cannot be established. To this end, it would be necessary a sort
of global formalism that construct local formalisms. Concerning this problem of scales, dynamics and
statistics, in Part II we show how in a simple one-dimensional system with complex dynamics is
The great majority of ‘systems’ we study, or we are prone to study are curiosly more or less predefined by
the ways they can be looked at. That’s how we can call them systems in the first place, because there is
some suggestion on their behavior that makes us think of observables that are well defined and measured,
although they could hide a great complexity, due to not obvious or explicit degrees of freedom. Besides,
what seems as ‘well- defined’ according to our perception, could be an amazingly intrincated combination
of, actually simpler, variables. One example comes from biology. In ecology there exists the old problem
of defining a proper measure of diversity of species in an ecological system [4]. Even defining what a
species is represents a problem, but that is a wider discussion outside the scope of this work. For now,
let us accept that there exist ecological elements or objects, i.e., the species, which will take the place of
the particles or elementary constituents of our ecologycal system. Making this abstraction is helpful for
translating the problem into the language of physics and therefore, to try to reach some kind of statistical
argument to treat the system macroscopically. Some models have been built based upon this approach,
such as the one we address in Part III, which conforms a central portion of this Thesis.

Approaches to effective reduction of degrees of freedom
The usual practical approach when dealing with a complex problem, is to hope for the best when building
a model for its description. This model must preferably be low dimensional and reduced in parameters,
although high dimensional systems with many free parameters are commonplace. The physicist dream is
to always be able of get rid of all the parameters and attain a suitable parameter-free description. As it
happens, this is not the rule but the exception. Proteins, for instance, specifically the problem of protein
folding, constitute a highly complicated problem that necessitates a complexity reduction. The thermody-
namical and kinetic aspects of protein folding have been extensively studied [5] but a complete description
of the dynamics of single proteins is out of reach due to the several and separated time scales involved,
arising from the complex and numerous interactions between their constituent chemical groups, that are
by themselves not simple units in general.

The so-called theory of complex networks is one tools preferre by the community for tackling real-world
complex problems, ranging from human mobility to the workings of animal and human brains [6, 7]. The
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success of this tools can be regarded as astonishing considering the wide range of applicability that the
simplicity of the concept of what a network is allows. Almost everything that can be abstracted, can be
fitted into the form of a network, and this in turns allows the application of the developed machinery up to
know. Upon application of these machinery, one can truly find effective degrees of freedom in many-body
systems, for many complex situations. These are, in my opinion, the main reason for which the community
working under this approach grew so fast. But I think that the most sensible way to reach a new frontier in
the understanding of complexity is not by the industrialized application of new tools without further think-
ing. I am not stating that the former works are unimportant, but a deep revision of all the rapid advances
in empirical and technical terms could be performed and much understanding could be gained.

In Part IV I intend to put the different problems addressed in Parts II and III into the same perspective and
try to give some humble philosophycal insights into bigger problems related to them. The author is aware
that this piece of work is nothing but a very small contribution to the field of complexity, but also hopes to
expand the ideas put here and to expand the boundary of understanding of these fascinating phenomena.
Whether there exists or not a unifying theory behind complexity is not clear, but that philosophy and
mathematics are needed to find the answer is out of the question.
In Part IV a summary and a brief discussion are presented, with the intention to close this work with
a unified flavor and to highlight some open questions and perspectives that can be followed in further
explorations.
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Chapter 2

Ergodic Theory

Ergodic theory is, loosely speaking, the problem of finding invariant measures of generic dynamical sys-
tems. More formally, ergodic theory is the study of those transformations defined on a measure space that
leave invariant the measure of all measurable subsets of the space [8], i.e., the study of measure-preserving
transformations that are also indecomposable.

From the foundational point of view, there is much more to the subject of ergodicity than only the basic
and loose idea we are thaught in standard courses of statistical mechanics [9]. The typical definition of
ergodicity states that for an ergodic system, the ensemble average of any observable on the phase space is
equal to its time average

lim
T→∞

1
T

∫ T

0
f (x(t))dt =

∫
f (x)dΓ, (2.1)

where Γ = Γ(x) is the natural measure of the phase space.
From the mathematical point of view, this definition is limited. The formal definition of ergodicity comes
in the language of measure theory, to be briefly exposed in the next section.
It is by assuming this ergodicity of the dynamics of the system that the postulate of equal a priori proba-
bilities of microstates is justified [10]. Some authors, like Hill [11] consider the ergodic property and the
equal a priori probabilities assumption on the same footing and write them as different postulates.
The main critique to the postulate of ergodicity in Krylov’s works [] to this approach to statistical mechan-
ics is that, apart from being a property very hard to prove, almost no real system is actually expected to
fulfill ergodicity.

Basics of measure theory

Given a set X we define a σ -algebra of susbsets of X as the collection A of subsets of X that fulfill the
following properties [12]:

(i) /0 ∈A and X ∈A ,

(ii) A ∈A implies Ac ∈A ,

(iii) for any finite collection A1, . . . ,An of subsets in A we have that
⋃n

i=1 Ai inA .
The former condition can extend to countable additivity:
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(iv) for any countable collection {Ai}i∈N of sets in A , we have
⋃n

i∈NAi ∈A .

Once the construction of a sigma-algebra is ready, we can properly define the concept of measure. A
measure ν is a real-valued∗ set function that sends the sets A ∈A to the extended reals, this is

ν : A → R+, (2.2)

for which the following properties must hold:

1 The measure ν is additive if

ν

(
n⋃

i=1

Ai

)
=

n

∑
i=1

ν(Ai) (2.3)

for any finite sequence {A1, . . . ,An)⊂A of pairwise disjoint sets such that their union is in A .

2 The measure ν is countably additive or σ -additive if

ν

(
∞⋃

i=1

Ai

)
=

∞

∑
i=1

ν(Ai), (2.4)

for any countably collection {Ai)⊆A of sets that are pairwise disjoint such that their union is still
in A .

The sets A that can be assigned a value of the measure unambiguously are called measurable. The triad
(X ,A ,ν) thus defined is known as a measure space. If the measure is normalized, ν(X) = 1, the triad is
called a probability space. A measure ν is said to be invariant under f if the condition

ν( f−1(A)) = ν(A) (2.5)

for all sets A ∈A [13]. Invariant measures are the central object of study in ergodic theory. This measures
are important in the analysis of the asymptotic properties of generic dynamical systems and are funda-
mental in physics. If we consider de set M consisting of all the invariant measures that can be properly
defined on A , interesting questions arise about the structure of this set. In particular, the convexity of M
can be demonstrated [14], and this allows for all the invariant measures on the σ -algebra to be decomposed
in terms of the extreme points of M . These extreme points η ∈M are indecomposabe and receive the
special name of ergidic measures. Let us state this separately in the following [15]:

Proposition 1 Let f : X → X be a measurable transformation and η be an f -invariant
probability measure. The following statements are equivalent.

1. The system ( f ,µ) is ergodic.

2. For every invariant set A ∈A we have that either η(A) = 1 or η(A) = 0.

3. Every invariant function is constant almost everywhere, that is, in a set of full measure.

With the definition above, we can now talk about ergodicity on much more rigurous ground.

∗A measure can take also complex values, but we keep the exposition here in the real realm.
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Frobenius-Perron operator and Radon-Nikodym theorem
Of central importance later in the discussion in Part II, Chapter 4, are the following resuts regarding the
evolution of measures under the action of maps on the interval reduced to the action of a linear operator
known as the Frobenius-Perron operator.
For a general transformation on a set X , T : X → X , such that T ∈ L1(X ,A ,ν) (which do not need to be
measure-preserving) its associated Frobenius-Perron operator L is defined through the integral relation∫

A
L ρdν =

∫
T−1(A)

ρdν , (2.6)

for A ∈ A and ρ ∈ L1(X ,A ,ν). There is an interesting and fundamental probabilistic interpretation
to the formula above. If we consider a random variable x on the probability space (X ,A ,ν) has the
corresponding probability density function ρ(x), then the action of the transformation on this random
variable T (x), has the corresponding probability density function L ρ . Let us define as µ the measure of
the function of the density ρ under the preimage set T−1(A)

µ(A) =
∫

T−1(A)
ρdν , (2.7)

then we can write the integral relation in Eq. (2.6) in the form

L ρ =
d

dν
µ. (2.8)

The uniqueness of L is guaranteed by the application of a powerful, but relatively straightforward result
known as the Radon-Nikodym theorem [16]:

Assume that two σ -finite measures µ and ν are defined on a measurable space (X ,A ). Fur-
thermore, assume µ � ν (µ is absolutely continuous with respecto to ν). Then there exists a
measurable function ρ : X → [0,∞), such that for any measurale set A⊆ X ,

µ(A) =
∫

A
ρdν . (2.9)

The function ρ is unique, and is known as the Radon-Nikodym derivative of µ with respect to ν . Hence,
according to the above theorem L ρ in is a Radon-Nikodym derivative, which is unique for given µ and ν

such that µ� ν . This last assumption of absolute continuity will be seen to be abandoned for the problem
presented in Chapter 4, with important implications for our interests.

Coarse-grained measure
The characteristic function is a set function defined as

χ(x) = 1, if x ∈ A or, (2.10)
= 0, if x 6∈ A

now we can define the coarse-grained measure

ρ̃i(x) = ∑
i

ρi
χi(x)
|Mi|

(2.11)

9



where

ρi =
∫
Mi

dxρ(x) (2.12)

is the piecewise constant density over the partition over regions Mi that coarse-grains the space. Now let
us evolve this measure one unit of time by applying the Frobenius-Perron operator once

ρ
′
i = L ·ρi =

∫
Mi

dx(L ·ρ)(x) (2.13)

=
∫
Mi

dx
∫

dyρ(y)δ (x− f (y))

= ∑
j

ρ j
χ j(x)
|M j|

∫
Mi

dx
∫
M j

dyδ (x− f (y))

we can identify the double integral above as the quotient∫
Mi

dx
∫
M j

dyδ (x− f (y)) = |Mi
⋂

f−1(M j)| (2.14)

which, by inserting it into last line of Eq. (2.14) corresponds to the elements of the matrix representation
of the approximate Frobenius-Perron operator

Li j =
|Mi

⋂
f−1(M j)|
|Mi|

. (2.15)

Hence, Eq. (2.14) can be written as

ρ
′
i = ∑

j
Li jρ j

χ j(x)
|M j|

, (2.16)

or as

ρ
′ = ρL. (2.17)

In the one dimensional case we are going to address, this treatment coincides with the histogram of the
evolution of an ensemble.
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Chapter 3

Piecewise monotone maps of the interval

Theorems and general properties

In the following, we denote by C as the set of continuos functions on the interval I ∈R, I = [a,b]. We are
interested in the class of all piecewise monotone mappings M, M ⊂ C. We will analyze the dynamics of
functions f : I→ I such that f ∈M. This class of mappings has the advantage that the theorems we will
use apply to any member of M. A mapping is said to be piecewise monotone if there exists a partition f the
interval a= l0 < l1 < .. . < lN < lN+1 = b such that f is strictly monotone on [lk, lk+1) for each k = 0, . . . ,N.
The points u in which f is not monotone in any neighborhood of u are called turning points. The usual
question that arises around this class of mappings is about the asymptotic behavior of their orbits, this is
{ f n(x)}n→∞

for typical initial points. Piecewise monotone maps of the interval have been deeply studied
as suitable qualitative models of real processes since works such as May’s well-known Simple mathe-
matical models with very complicated dynamics [17]. Despite decades have past since the beggining of
these studies, active mathematical research it is being done with respect to one-dimensional dynamics [18].

The main matter I want to expose here is a general result, Theorem 2.4 in [19]. This theorem tells us about
the behavior of typical orbits (in the topological sense) of mappings f ∈M. According to this result, these
typical orbits can only get one three different kinds of asympotic behavior, namely:

(i) The destiny of the orbit is an f -invariant subset C ⊂ I, which consists of finitely many closed inter-
vals, on wich f has an action that is topologically transitive. Topological transitivity means that the
orbit of some point in C is dense in C.

(ii) There is a Cantor-like set R, invariant under f to which the orbit is attracted and acts minimally on
it. The implication of this is that each of the orbits on R set are dense on R.

(iii) An f -invariant open set Z ⊂ I contains the orbit. Also, all the compositions f n, n≥ 0 are monotone
in the connected components of Z

The former is a strong result that classifies the dynamics in a stringent way. There is the other part of the
story, which is about the structure of the subset on the interval for which none of the above conditions are
true. Despite being a small set, it is important because it can influence the global complexity of the iterates
of f . In this work, point (ii) is the main reason leading to the complexity of the iterates of the map we
analyze.
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The behavior of long-term iterates of dynamical systems close to transitions from periodic to chaotic
motion has been an active and fruitful subject of study for decades [20]. Nevertheless, the studies of the
intricate nature of the transients of individual trajectories approaching the onset of chaos via different
routes have proven to be of value for advancing in the understanding of the possible valid formulations
of statistical mechanics for systems out of thermodynamic equilibrium [21]. Specifically, the interest has
been put into the detailed transient phase of single trajectories, as well as ensembles of them, with initial
conditions in successive steps of the period-doubling route to chaos of the logistic map, as well as in the
accumulation point of this cascade. The form of the logistic map we use is the following

f (x) = 1−µx|z|, x ∈ [−1,1], µ ∈ [0,2] (3.1)

with quadratic maximum, z = 2. From the thorough analysis of the dynamics of trayectories at successive
steps in the period-doubling cascade, it has been demonstrated [22] that the dynamics at the transition
point, the Feigenbaum point, is approximated with increasing similarity by the transient dynamics of tra-
jectories initiated at each of the steps of the bifurcation cascade as the accumulation point is approached.
In [22,23] it is described how a deformed statistical-mechanical structure emerges from the aforementioned
connection between the transient dynamics (via the succession of superstable cycles) and the dynamics at
the Feigenbaum point (µ = µ∞). The whole description of the intricate dynamics of approach of single
trajectories to periodic, superstable attractors in the succession of period doublings is shown in full detail
in [22]. In the same spirit, but on the problem of revealing the statistical nature of the onset of chaos, work
has been done via the detailed analysis of the sums of iterates of nonlinear low dimensional maps, obtain-
ing interesting implications to the possible generalizations of the CLT for correlated variables describing
nonequilibrium processes [24–27], only to mention one of those. Nevertheless, despite this statistical anal-
ysis, no work has been done concerning the matter of nonuniform convergence of the distributions at the
Feigenbaum point.
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Part II

Probabilistic and statistical approaches
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Chapter 4

Fokker-Planck equation and Frobenius-Perron
operator

As an additional example of succesful reduction of degrees of feedom in a model (although this effective
behavior is different in nature), in this section we study the evolution of the density of iterates of the logis-
tic map at a representative set of dynamical regimes: From the periodic motion at superstable orbits of the
period-doubling route to chaos and its corresponding, aperiodic, accumulation point; to the chaotic mo-
tion at Misiurewicz points, along the band-splitting chaotic cascade. We restate the problem of studying
individual orbits of the logistic map and change the picture to ensembles of positions evolving under the
action of a linear operator acting on the density of iterations, in close resemblance to the classical normal
diffusion problem, in which the problem of tracking the dynamics of single particles via the Langevin
equations for each particle, can be recast into a single partial differential equation for the evolution of the
probability density of finding a particle at a specific position and time, i.e., the Fokker-Planck equation.
We have characterized in detail the evolution of the density of iterates in the phase space originated by
the action of the Frobenius-Perron (FP) operator. It is found how a separation of time scales emerges; the
dynamics underlying the evolution of individual trajectories on the time scale of single iterations of the
map becomes, asymptotically, a larger time scale, if the condition that the density be invariant under the
action of the FP operator is imposed. This time scales are exponentially separated: iterations follow the
scale t, while τ ∼ 2n are the times for which the action of the FP dynamics is invariant, independently
of the initial distribution of points in phase space. To be clear, the asymptotic distribution will almost
always be different for different initial distributions but it will be invariant under the FP operator at times
τ . The scaling of the density over this induced time scale τ is found to follow a renormalization-group
(RG) structure. The entropy associated with evolving and invariant densities via the Shannon expression
has extrema at the fixed points of the proposed RG operation. It is found that this entropy as a function
of the control parameter has the behavior of an equation of state of a thermal system on a phase transi-
tion. This formalism summarizes in a novel and compact fashion many of the ideas exposed in previous
works [21, 22] and opens the way to new insights by allowing the direct application of our RG-entropy
approach and the complete formalism of thermodynamics.
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Introduction
In Section 4.2 we study the approach of an ensemble of trajectories at successive bifurcation points and
at the onset of chaos; then we calculate its associated densities of iterates. We show the emergence of a
larger time scale, of the form τ = 2n (where n is the order of the superstable orbit in the period-doubling
sequence). Then we look at the scaling of those densities as the Feigenbaum point is approached through
superstable cycles.
In Section 4.3 we study the band splitting process also in terms of the distributions of iterates at the
well-defined sequence of Misiurewicz points. At this sequence of points, the dynamics is chaotic and
the (expected) long time behavior of the density to be stationary. We confirm this stationary character in
the larger time scale τ = 2n. These results are used in parallel to a rescaling scheme over the smooth,
invariant distribution at µ = 2, known as the Ulam density. This self-affine transformation on the Ulam
distribution sequentially reproduces the band-splitting process at Misiurewicz points in an exact way, on
the τ time scale. The convergence of the original smooth and ‘regular’ Ulam distribution toward a singular
one with fractal support at the Feigenbaum point is found to be equivalent to that obtained for the period-
doubling cascade. This contributes to the understanding of the convergence problem adressed in several
works [28, 29], concerning possible generalizations of the CLT, mentioned earlier. The ‘forward’ cascade
of period-doubling bifurcations meets the band-splitting cascade at the Feigenbaum point, and thus, both
sequences of rescalings of disutributions are convergent at this point. This is supported here by numerical
evidence and the treatment with the entropies.
Finally, in Sec.4.4 we propose a renormalization group (RG) scheme to the former prescription and de-
scribe the flow for the action of the RG transformation in parameter space. We conclude once more that
the Feigenbaum point has a nontrivial fixed point distribution associated to it with respect to some suitable
RG transformation and that the entropy extrema are reached at fixed points of this RG transformation [21].

Fokker-Planck equation for the logistic map
Here we obtain the analogous of a Fokker-Planck equation from a piecewise monotone map of the interval.
This way we change the perspective of analysis we have followed in past works [21, 22], based on single
trayectories, with or without the influence of noise, analogous to the Langevin approach in the classsical
diffusion problem. To this end we switch to the point of view of ensembles of iterations, represented by
densities on the interval. Later we show that this approach is indeed contained as a special case into the
general theory of ergodicity. Starting with the logistic map

xi,t = 1−µx2
i,t−1, xi,t ∈ [−1,1], t = 0,1,2 . . . (4.1)

that would be the equivalent to the Lagrangian view, in coordinates xi(t) in fluid flow analysis in which
one follows a the trajectory of a single particle in time. Thus, in order to get the overall picture we pass to
Eulerian coordinates x. We may write

p(x, t) =
∫

dx′p(x, t|x′, t−1)p(x′, t−1) (4.2)

with x = 1−µx′2. In this case, the conditional transition probability is given by a Dirac delta

p(x, t|x′, t−1) = δ (x−1+µx′2) (4.3)

Hence we get the expression
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p(x, t) =
∫ 1

−1
dx′δ (x−1+µx′2)p(x′, t−1), (4.4)

that, after the change of variables y = 1−µx′2 for x′ ∈ [0,1] and z = 1−µx′2 for x′ ∈ [−1,0] becomes

p(x, t) =
1

2
√

µ(1− x)

[
p

(√
1− x

µ
, t−1

)
+ p

(
−

√
1− x

µ
, t−1

)]
(4.5)

for x ∈ [1− µ,1] and p(x, t) = 0 for x ∈ (−1,1− µ). We will derive this same equation from a different
but equivalent approach in the next section.
There is an important difference between the Fokker-Planck equation and the equation we obtained for
the logistic map, Eq. (4.13), and this is that the inverse of the logistic map is not unique. Therefore, the
“backwards” equation of Eq. (4.13), analogous to reverse time in the Fokker-Planck equation, is obtained
by inserting in Eq.(4.6) the backward propagation of the probability density

p(x, t−1) =
∫ 1

1−µ

dx′p(x, t−1|x′, t)p(x′, t) (4.6)

with x =±
√

1−x′
µ

. The conditional transition probability is a sum of two Dirac deltas

p(x, t−1|x′, t) = 1
2

δ

(
x−

√
1− x′

µ

)
+

1
2

δ

(
x−

√
1− x′

µ

)
(4.7)

Hence we have the expression

p(x, t−1) =
∫ 1

−1
dx′
[

1
2

δ

(
x−

√
1− x′

µ

)
+

1
2

δ

(
x−

√
1− x′

µ

)]
p(x′, t) (4.8)

that yields

p(x, t−1) =

{
µxp(1−µx2, t), x ∈ [0,1]
−µxp(1−µx2, t), x ∈ [−1,0]

(4.9)

which is already normalized.

Transient and invariant densities of iterates for superstable orbits

The density of iterates at time t, ρt(x), can be constructed also directly from the evolution of an initial
density under the action of the map, by means of an operational approach. For an arbitrary initial density
ρ0(x) of iterates distributed over the whole iterval I, provided the initial number of trajectories is preserved,
the following must hold ∫

f t(I)
ρt(x)dx =

∫
I
ρ0(x)dx

where I as total lebesgue measure m, hence x0 ∈ I
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Consider an arbitrary initial density ρ0(x) put to evolve in discrete time ρt(x). Provided the relation above
is valid for the dissipaive case [16, 30], we can think of a linear operator acting on arbitrary densities in
phase space and pushing them forward in time. This operator is defined by the action

ρt(x) = L t
ρ0(x), (4.10)

which is, in explicit form

ρt(x) =
∫

I
δ [y− f t(x0)]ρ0(y)dy (4.11)

The above equation is known as the Frobenius-Perron equation and the associated linear operator pushing
the density in time, as the Frobenius-Perron operator, with its singular kernel δ [y− f t(x0)] [30]. Notice that
we have a linear relation between the delta-densities through the integral operation, despite the evolution
law f (x) for single trayectories being nonlinear.
From the Frobenius-Perron equation (Eq. (4.11)) we will get the invariant density of iterates in the phase
space for the logistic map at different dynamical regimes, corresponding these to different phase-space
mixing conditions. In this section, we focus on superstable attractors of the logistic map, Eq.(4.1), also
known as supercycles. This subsequence of control parameter values will be denoted here as Sk, k =
1,2,3, . . ., so 2k gives the period of the superstable attractor in turn.

Evolution of the density along the period-doubling cascade.
The periodic superstable attractors form a sequence of points in the cascade of the period-doubling route
to chaos with interesting dynamical and statistical propertiers properties [22, 23]. For one dimensional
quadratic maps, the condition of a periodic point x∗ being a critical point of the map, i.e. f ′(x∗) = 0, is suf-
ficient (and necessary) to guarantee stability of the orbit at a super-exponential rate. Hence, this condition
defines the sequence of control parameter values we will use in the following, the so-called superstable
orbits or supercycles.

Now we proceed to solve Eq. (4.11) explicitly for the logistic map, as defined by Eq. (3.1), at subsequent
times

ρt+1(x) =
∫

I0

δ [y−1+µx2]ρt(y)dy (4.12)

with I0 the initial set representing an ensemble of positions, to be considered as the interval [−1,1] with
full Lebesgue measure and uniform density. Integration of the above expression yields

ρt+1(x) =
1

2
√

µ(1− x)

[
ρt

(√
1− x

µ

)
+ρt

(
−

√
1− x

µ

)]
(4.13)

for x ∈ [1− µ,1] and ρt(x) = 0 for x ∈ (−1,1− µ). Eq. (4.13) is properly normalized as it stands. As
we showed in previous section, Eq. (4.13), is a discrete-time analog of the Fokker-Planck equation in
condensed matter theory, but for a particular dynamical system which is continuos in space and discrete in
time. This equation is valid for subsequent times, but we are also interested in the asymptotic state of the
dynamics of the density.
Relying on numerical evidence (See Fig. 4.1), we give support to the conjecture that the invariant dis-
tribution corresponding to the asymptotic state of the successive compositions of the Frobenius-Perron
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Figure 4.1: Evolution of an initially uniform density of positions in the interval [−1,1]. Panel (a) At
the first iteration, the density tends to accumulate around one, which confirms the findings described
in [22]. Panel (b) corresponds to the second iteration of the initial uniform density under the action of
the map. Notice the formation of a peak around −0.3. In Panel (c) we see the result of ten iterations
of the Frobenius-Perron operator, where we can see four peaks centered on the final attractor points: {∼
−0.31,0,∼ 0.87,1}. These attractor points are clearly noticeable in Panel (d) where the to the long term
state (about 5000 iterations, in this case) of the density under the action of the PF operator is presented.

operator, for an initial arbitrary density at superstable, periodic regimes (µ < µ∞) is a distribution whose
support is the interval [−1,1] on its way to become a fractal set. Hence we write

L ∞
µ [ρ0(x)] =

2n−1

∑
k=0

Akδ (x− x∗k), (4.14)

where the Ak’s are the ‘intensities’ of the deltas and the subindices of the positions x∗k follow the order
given by the dynamics of the attractor points. The expected natural measure for a system on a periodic
regime of period p is given by [15]
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νp =
1
p

p−1

∑
j=0

δ ( f j(x)− x∗). (4.15)

Provided that the measures νp are ergodic, equations (4.14) and (4.15) would be equivalent. This means
that Ak = A = 1/p. Nevertheless, this is not the numerical result. In rigurous terms, the reason is that
the measure obtained from the Frobenius-Perron evolution is not ergodic. Considering the numerical
results alone, this can be understood by the finite precision, finite iteration time, the different local scaling
constants and, more importantly perhaps, the fractal structure of the unstable repeling positions which
make the orbits coming from different region to have exponentially different arrival times to attracting
positions. This fractal structure and the so-called times of flight of the positions is addressed in [22]. The
set of repelling positions (also a set of measure zero with respect to the Lebesgue measure) accumulates no
density; actually, it is clear that the density is zero at these points. That nonergodic character is precisely
the problem with these measures, obtained for µ < µ∞ is that they are not absolutely continuous with
respect to the Lebesgue measure. This implies that the sets of zero Lebesgue measure are not necessarily
of measure zero under ν . In fact, they are not in our case, as the set of periodic points accumulate all the
ν-measure. Hence, averages over v carry a different physical meaning than those performed over m. We
are working on a way to ‘regularize’ the measure obtained at µ∞ so physiscal meaning can be extracted
from averages over it.
The first superstable attractor (denoted here as S1), corresponding to control parameter value µ1 = 1, is
composed by two fixed points, namely, the positions x∗0 = 0 and x∗1 = 1. By the mere defining characteristic
of the superstable attractors, the former two points are members of the attractor set for all values of k even
in the limit k→ ∞. For instance, the expected ‘invariant’ distribution at some ‘post-transient’ time is, for
S2 (µ2 = 1.3107026413368...)

ρS2(x) = A0δ (x− x∗0)+A1δ (x− x∗1)+A2δ (x− x∗2)+A3δ (x− x∗3) (4.16)

Taking ρt(x) = ρS2 in the right side of Eq. (4.13), and considering that the singular density cannot be

symmetric, so ρ

(
−
√

1−x
µ

)
= 0 necessarily, we get

ρt+1,S2(x) = A0δ (x− x∗1)+A1δ (x− x∗2)+A2δ (x− x∗3)+A3δ (x− x∗0). (4.17)

This means that the locations of the densities have just cycled over the fixed points conforming the attractor.
This can be seen clearly in Fig. 4.2. We adopt the convention that the ‘zero time’ just after the transient
dynamics is when the density at x∗0 = 0 corresponds to the lowest peak (lowest Ak). Hence, in general, for
the forward application of Eq. (4.13) to ρSn(x) we have

L

[
2n−1

∑
k=0

Akδ (x− x∗k)

]
=

2n−1

∑
k=0

Akδ (x− x∗
σ(k)) (4.18)

with the property

L 2n

[
2n−1

∑
k=0

Akδ (x− x∗k)

]
=

2n−1

∑
k=0

Akδ (x− x∗k), (4.19)

where σ(k) in Eq. (4.18) pushes the index by one unit, according to the dynamics of the map, this is,
σ(k)→ k + 1, k 6= 2n and σ(2n− 1)→ 0, therefore σ2n

(k) = k. From the former property we see the
emergence of two distinct time scales. The one associated to the single action of the Frobenius-Perron
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operator, Eq. (4.11), which is tied to the dynamics of the compositions of the map, as it can be seen from
the kernel δ [y− f t(x0)] of the Frobenius-Perron operator. This time scale is represented by the index k
or t. The second, largest, time scale is ‘parametrized’ by n so it depends on the dynamical regime. It is
formed by steps of τ = 2n, hence it increases exponentially with respect to the ‘natural’ scale given by the
Frobenius-Perron dynamics.

Figure 4.2: In the upper left panel the density at t = T (by convention) is depicted. It can be clearly seen
how the density peaks cycle over the attractor points without changing at all in magnitude. This cycling is
given by the same dynamics of the fixed points xk forming the attractor.

Density of iterates at the Feigenbaum point.
The accumulation point of the bifurcation cascade is reached as n→ ∞. Here motion becomes aperiodic,
hence Eq. (??) would read

lim
n→∞

L n
µ∞
[ρ0(x)] =

2n−1

∑
k=0

Akδ (x− x∗k),

Nevertheless, convergence to the above limit is not guaranteed, because there is not absolute continuity
with respect to the initial Lebesgue measure. Indeed, due to the condition of absolutely continuous con-
dition imposed for uniqueness of the Frobenius-Perron operator, one would rather expect that limit to be
zero. This tell us that in the limit n→∞ at the Feigenbaum point, one could probably not be able to define
a Frobenius-Perron unambiguously. But due to the ergodic theorem, we know that a density can be asigned
to this sets, so we conjecture that for the asymptotic limit of the application of the Frobenius-Perron oper-
ator, the condition of absolute continuity is lost.
Therefore, we have to introduce another notion, expressed by the relation
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L T
µ [ρ0(x)] =

2n−1

∑
k=0

Akδ (x− x∗k),

where T represents a long iteration time, but still not the infinite limit. This can be interpreted as an
intermediate ‘quasi-stable’ state of the Frobenius-Perron dynamics on piecewise monotone functions on
the interval for which the behavior (ii) exposed in Sec. 3.1 holds. Furthermore, an imporant implication
of the stability of the quantity in Eq. 4.2 is that there exist a level of coarse graining for which the T -th
application of the Frobenius-Perron operator has an eigenfunction. We think these are important findings
that deserve further studies.

Transient and invariant densities at Misiurewicz points.

We will now focus our attention on a sequence of points in the chaotic regime µ > µ∞, particularly the
sequence of control parameter values where the chaotic bands are about to split, known as Misiurewicz
points. This band-splitting scenario is the chaotic equivalent to the period-doubling scenario for µ < µ∞

studied in Sec. 4.2. The points {xb} ∈ [−1,1] that correspond to the borders of the bands at Misiurewicz
points are well defined by positions of the the trajectory initiated at zero, i.e. xbn+1 = f (xbn), xb1 = 0.

Invariant Measure as a stationary solution.
In this case, Eq. (4.11) is also valid. We obtain the successive densities (believed to be stationary) at the
sequence of Misiurewicz points.
For x ∈ [1−µ,1] we look for the stationary solution ρt(x) = ρt+1(x) of Eq. (4.13). This solution, that we
will call ρeq must satisfy

ρeq(x) =
1

2
√

µ(1− x)

[
ρeq

(√
1− x

µ

)
+ρeq

(
−

√
1− x

µ

)]
. (4.20)

We test the invariant density of iterates of the logistic map in the fully chaotic regime, also known as the
Ulam map f (x) = 1−2x2 under this developed framework. First noticing that the corresponding density
(ρ(x), p(x)) of the Ulam map

ρeq =
1

π
√

1− x2
(4.21)

is symmetric around zero

ρeq(−x) = ρeq(x)

with this, Eq. (4.20) becomes

ρeq(x) =
ρeq

(√
1−x

µ

)
√

µ(1− x)
(4.22)

it can be easily verified that the density defined by Eq. (4.21) indeed fulfils Eq. (4.22).
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Scaling of the invariant measure at Misiurewicz points
The invariant density of the iterates of the logistic map with z = 2 also referred to as the Ulam map, is
given by the well known expression already presented in Eq. (4.21)∗

p(x) =
1

π
√

1− x2
(4.23)

Next, we show how at the Misiurewicz points the invariant distribution can be obtained by proper scalings
of Eq. (4.23). Let us consider the first Misiurewicz point. Passing to the variable

y≡ bx+a, 0 < b < 1, −1+b < a < 1−b

we have

ρY (y) =
∫

dxρX(x)δ (y−bx−a) (4.24)

=
1
b

ρX

(
y−a

b

)
,

we thus obtain

ρ(x) =
1

π
√

b2− (x−a)2
. (4.25)

So, at the first Misiurewicz point the scaling ansatz gives

ρ(x) =


(

2π

√
b2

1− (x−a1)2
)−1

, x ∈ [−b1 +a1,b1 +a1](
2π

√
b2

1− (x−a2)2
)−1

, x ∈ [−b2 +a2,b2 +a2]
(4.26)

with −1+b1 < a1 < 1−b1, and a2 = a1 +b1 +b2 or a2 = a1−b1−b2.

Following this procedure, we get the expression for the densities at each Misiurewicz point as the Feigen-
baum attractor is approached with k→ ∞

ρMk =
1

2k+1π
√

b2(k+1)− (x− (k+1)a)2
(4.27)

In the equation above, we can notice that b2(k+1) → 0 as k→ ∞. But that would mean ρMk become a
complex quantity unless the inequality

b2(k+1) ≥ (x− (k+1)a)2 (4.28)

is strictly satisfied as k→ ∞. This implies also that x− (k+1)a≥ 0 on each corresponding region (band).
This indicates that there exists a tight relationship between the constants a,b and the universal scaling
constants α and δ . This is also work in progress.

∗The perhaps more widespread expression is p(x) = 1/π
√

x(1− x), but that corresponds to the form of the logistic map
given by f (x) = ax(1− x).
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Figure 4.3: Entropy vs control parameter value. NOTES: Zoom into the region around µ = µ∞, preferably

Renormalization Group approach to the Frobenius-Perron Dynamics

The renormalization scheme operating at the level of the invariant distributions at Misiurewicz points has
a straightforward geometric visualization. Take the horizontal axis in Fig. and then cut the final group
of density peaks, corresponding to the region close to x = 1, after this, stretch the x axis accordingly to
recover the.
After this operation, which will retain the normalization and stretch the x axis.
From the calculation of Shannon entropy for the numerically calculated densities at each superstable and
Misiurewicz point, we get an interesting result. Namely, that the logistic map on its route to chaos by
period-doubling along with the band splitting scenario out of chaos, can be viewed as a macroscopic
system in equilibrium undergoing a phase transition.
In Fig. 4.3 it is seen how a phase separation occurs similar to the spontaneous magnetization displayed
by a magnet below its Curie temperature, here representing a transition between two distinctive behaviors:
the regular motion associated to the period-doubling cascade, followed by a phase transition at constant
temperature, i.e, control parameter value µ , in which entropy presents a sudden increase at the accumula-
tion point or transition to chaos µ = µ∞. After this sudden change in entropy, the phase corresponding to
chaotic behavior yields larger values for the entropy, which is consistent.
Considering that the control parameter value plays the role of the temperature, we can think of an associ-
ated generalized susceptibility

χ = µ

(
∂S
∂ µ

)
, (4.29)
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Figure 4.4: Susceptibility calculated according to χ = µ

(
∂S
∂ µ

)
.

Once the entropy is obtained, the whole thermodynamic framework can be constructed and proper connec-
tions with our formalism of the Frobenius-Perron densities can be adequately established. This will enable
us to elucidate the connection between the microscopic dynamics of individual trajectories of the map and
the macroscopic thermodynamic quantities we just found for the whole problem of the dual dynamical
scenarios, both the routes out and into chaos. Which is more relevant here in our point of view, is that
even when the densities are not absolutely continuous with respect to the Lebesgue measure, the Shannon
entropy still gives results that are more or less sensible.
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Chapter 5

Sums of positions and their distributions at the
onset of chaos

Here we provide a thorough rationalization, backed by ample evidence, of the properties of sums of con-
secutive positions and their distributions for ensembles of trajectories associated with the sequence of
chaotic 2n-band attractors of the logistic map. We add to previous understanding [25, 31, 32] on the distri-
butions of sums of positions at the period-doubling accumulation point for trajectories initiated within the
attractor or with an ensemble of them uniformly-distributed across the entire phase space (the domain of
the map). In the former case [31, 32] the support of the stationary distribution is the multifractal set that
makes up the Feigenbaum attractor and its amplitude follows its multifractal nature. For the latter case [25]
we demonstrated that the stationary distribution possesses an infinite-level hierarchical structure that orig-
inates from the properties of the repellor set and its preimages. We have also established [31, 32] that the
entire problem λ ≥ 0 can be couched in the language of the renormalization group RG formalism in a way
that makes clear the identification of the existing stationary distributions and the manner in which they are
reached. The RG transformation consists of position summation (and rescaling); there is only one relevant
variable, the control parameter distance to the transition to chaos ∆µ . There are two fixed-point distribu-
tions, the trivial continuum-space gaussian distribution and the nontrivial multiscale distribution reached
only when ∆µ = 0. The RG transformation modifies behavior similar to that of the nontrivial fixed point
into that resembling the trivial fixed point through a well-defined crossover phenomenon. We show here
that it is at this crossover region that the q-gaussian-like distributions are observed in Refs. [33–37]

The stationary distributions of sums of positions of trajectories generated by the logistic map have been
found to follow a basic renormalization group (RG) structure: a nontrivial fixed-point multi-scale distri-
bution at the period-doubling onset of chaos and a Gaussian trivial fixed-point distribution for all chaotic
attractors. Here we describe in detail the crossover distributions that can be generated at chaotic band-
splitting points that mediate between the aforementioned fixed-point distributions. Self-affinity in the
chaotic region imprints scaling features to the crossover distributions along the sequence of band splitting
points. The trajectories that give rise to these distributions are governed first by the sequential formation
of phase-space gaps when, initially uniformly-distributed, sets of trajectories evolve towards the chaotic
band attractors. Subsequently, the summation of positions of trajectories already within the chaotic bands
closes those gaps. The possible shapes of the resultant distributions depend crucially on the disposal of
sets of early positions in the sums and the stoppage of the number of terms retained in them.
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Introduction

A few years ago a possible generalization of the central limit theorem (CLT) was put forward, as suitable
for strongly correlated variables and that would have as its stationary distribution the so-called q-gaussian
function [38]. Subsequently, it was surmised that a fitting model system for the observation of this gen-
eralization would be the period-doubling accumulation point of the logistic map [33]. This development
led to increased interest and discussion [24, 26, 27, 31, 32, 34–37, 39, 40] about whether sums of correlated
deterministic variables at vanishing, or near vanishing, Lyapunov exponent λ give rise to a general type of
non-gaussian stationary distribution.
As it turned out [34], [36], [37], the distributions resembling q-gaussians at the period-doubling accumu-
lation point require, unusual, specific procedures to be obtained. The first one is to work with a small but
positive Lyapunov exponent λ & 0. The second is to discard an initial tract of consecutive positions in
the ensemble dynamics, the disposal of a ‘transient’, before evaluating the sum of the remaining positions.
And the third is to stop the summation at a finite number of terms. When the transient set of terms is not
discarded the resulting distribution would show an irregular, jagged, serrated, shape, whereas if the sum-
mation continues towards a larger and larger total number of terms the distribution approaches a gaussian
shape. The q-gaussian-like distributions were observed along a sequence of values of the map control pa-
rameter µ that in latter studies [37] were identified as those approximately obeying the Huberman-Rudnick
scaling law [41], the power law that relates distance in control parameter space to Feigenbaum’s universal
constant δ , or, equivalently, the number 2n, n = 0,1,2, . . ., of bands of the chaotic attractors.
In the following Section 2 we set up the elements of our analysis: The chaotic band splitting cascade of the
logistic map [42, 43], along which we study trajectories at the control parameter points where bands split,
also called Misiurewicz (Mn) points [44]. We focus on scaling properties for the sequence of Mn points.
There we explain the dynamics undergone by an ensemble of uniformly distributed initial positions that
consists of consecutive gap formation until arrival at the Mn attractor, after which intraband chaotic motion
drives the dynamics. In Section 3 we present summations of positions and their distributions at various Mn
points for different choices of disposal of initial sets of positions and different total number of summation
terms. We explain the structure of the sums and their distributions in terms of the dynamics described in
Section 2. In particular we detail the case that leads to distributions that resemble a q-gaussian shape. In
Section 4 we discuss our results at some length in terms of the associated RG transformation.

Dynamics at chaotic band splitting points

We consider the logistic map fµ(x) = 1− µx2, −1 ≤ x ≤ 1, 0 ≤ µ ≤ 2, for which the control parameter
value for its main period-doubling cascade accumulation point is µ = µ∞ = 1.401155189092... When µ

is shifted to values larger than µ∞, ∆µ ≡ µ − µ∞ > 0, the attractors are chaotic and consist of 2n bands,
n = 0,1,2, ..., where 2n ∼ ∆µ−κ , κ = ln2/ lnδ , and δ = 4.669201609102 . . . is the universal constant that
measures both the rate of convergence of the values of µ = µn to µ∞ at period doubling or at band splitting
points. See Fig. 1a. The Misiurewicz (Mn) points, are attractor merging crises, where multiple pieces
of an attractor merge together at the position of an unstable periodic orbit [44]. The Mn points can be
determined by evaluation of the trajectories with initial condition x0 = 0 for different values of µ , as these
orbits follow the edges of the chaotic bands until at µ = µn the unstable orbit of period 2n reaches the
merging crises [44].
Trajectories initiated inside a 2n-band attractor consist of an interband periodic motion of period 2n and
an intraband chaotic motion. Trajectories initiated outside a 2n-band attractor exit progressively a family
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Figure 5.1: (a) Attractor bands (in black) and gaps between them (white horizontal regions) in logarithmic
scales, − log(|µ − µ∞|) and log(|x|) in the horizontal and vertical axes, respectively. The band-splitting
points Mn (circles) follow a straight line indicative of power law scaling. The vertical white strips are
periodic attractor windows. (b) Sequential gap formation for M5 by an ensemble of trajectories with
initial conditions uniformly distributed along the map phase space. Black dots represent absolute values
of trajectory positions |xt | at iteration time t. See text.

of sets of gaps formed in phase space between the 2n bands. This family of sets of gaps starts with the
largest gap formed around the first unstable orbit, or first repellor, of period 20, followed by two gaps
containing the two positions of the second repellor of period 21, and so on. See Fig. 1b. The widths of
the gaps diminish in a power law fashion as their numbers 2k, k = 0,1,2, ..., for each set increase. We
follow the dynamics towards the Mn, n = 0,1,2, ..., attractors by setting a uniformly-distributed ensemble
of initial conditions across phase space, −1 ≤ x0 ≤ 1, and record the normalized number of bins Wt , in a
fine partition of this interval, that still contain trajectories at iteration time t. The results are shown in Fig.
2, where we observe an initial power law decay in Wt with logarithmic oscillations followed by a transition
into a stay regime, a plateau with a fixed value of Wt , when (practically) all trajectories become contained
and remain in the bands of the attractor.

The properties of Wt show discrete scale invariance associated with powers of 2 characteristic of unimodal
maps. The number of logarithmic oscillations in the regime when trajectories flow towards the attractor
coincides with the number of consecutive sets of gaps that need to be formed at the Mn points, whereas
the final constant level of Wt coincides with the total number of bins that comprise the total width of the
2n bands of the attractors. We notice that these properties when observed along the plateau entry points
labeled t∗n shown in Fig. 2 obey the Huberman-Rudnick scaling law since the times t∗n are related to the 2n

bands of the Mn points and these in turn are given by ∆µn ∼ δ−n.
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Figure 5.2: Distributions P(Y ;Ns,N f ; µn) of zero mean sums Y ≡ X −〈X〉, where X is given by Eq. (5.5).
The sums were obtained from a uniform distribution of 106 initial conditions across [−1,1] at M5 when
the attractor of 25 bands is about to split into 26 bands. A value of Ns = 28 is used in all panels. The values
of N f used are: (a) 25, (b) 29, (c) 213 and (d) 217. See text.

Sums of positions and their distributions at band splitting points
Let us consider now the sum of consecutive positions xt starting with an iteration time t = Ns up to a final
iteration time t = N f of a trajectory with initial condition x0 and control parameter value µ fixed at a Mn
point, n = 0,1,2, ..., i.e.

X(x0,Ns,N f ; µn)≡
N f

∑
t=Ns

xt . (5.1)

We studied a collection of these sums for trajectories started from a uniform distribution of initial condi-
tions in the entire interval −1 ≤ x0 ≤ 1 with different values of n, Ns and N f , and we also evaluated their
corresponding histograms and finally their distributions by centering and normalization of the histograms.
Clearly, stationary distributions require N f → ∞ and, unless there is some unusual circumstance, they are
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not dependent on the value of Ns. We know [31], [32] that for all ∆µ > 0 the stationary distribution is
gaussian and that in the limit ∆µ = 0 the stationary distribution is of an exceptional kind with intricate
multiscale features [25, 35]. Here we explore other distributions that can be obtained when Ns and N f are
varied and identify the dynamical properties that give rise to them.
The observation of q-gaussian-like distributions in Refs. [34,37], involved a large value of discarded terms
Ns before sums similar to that in Eq. (5.5) were evaluated. Also, it was found necessary to limit the
number of summands to a finite number N f to prevent the distribution to approach a gaussian form. For
example in Ref. [34] a fixed value of Ns = 212 was reported to be used for sums evaluated at attractors
with a number of bands 2n with n in the range 4 to 8. These sums were terminated, respectively, with
values N f = 2n f with n f in the range 9 to 17. In these studies the values of ∆µ were not precisely fixed
at band splitting points as we do here but the dynamical properties we describe are equivalent. We can
understand the effect of the values of n, Ns and N f used in terms of the dynamics of trajectories from the
knowledge gained in the previous section. In references [34] and [37], the starting times t = Ns,n in the
sums in Eq. 5.5 satisfy the condition t∗n � Ns,n. We can conclude with the assistance of Fig.2, that the
terms discarded in those studies comprise the flow of trajectories towards the attractors plus a significant
segment of dynamics within the chaotic bands, therefore all of the terms contained in the sums correspond
to the dynamics within the chaotic bands.
As a representative example we show in Fig. 3 the distributions P(Y ;Ns,N f ; µn) for the sums in Eq. (5.5),
with Y = X −〈X〉, and where 〈X〉 is the average of X over x0. In this figure n = 5 and Ns = 28, and N f
takes the values N f = 25, 29, 213 and , 217, respectively, in panels (a), (b), (c) and (d). In (a) the sum
comprises only one visit to each band and the structure of the distribution is the result of the one cycle
intraband motion of the ensemble of trajectories. In (b) the sum contains already about 24 = 16, band
cycles, for which we obtain a distribution with q-gaussian-like shape but sharp drops at the edges. In (c)
the q-gaussian-like shape is disappearing after 256 band cycles, while in (d), when there are 4096 band
cycles, we observe already the stationary gaussian form. The same distribution progression pattern shown
in Fig. 3 is observed at other Mn points. Furthermore, the sums and their distributions for any value of n
can be reproduced by rescaling consistent with Huberman-Rudnick law. This is illustrated in Fig. 4 where
we show in panels (a), (b) and (c) the resemblance of the centered sums Y for the band merging points
M3, M4 and M5, respectively. In panel (d) we show the distributions P for these sums without rescaling of
the horizontal axis Y .
We have shown that there is an ample variety of distributions P(Y ;Ns,N f ; µn) associated with the family
of sums of iterated positions, as in Eq. (5.5), obtained from an ensemble of trajectories started from a
uniform distribution of initial conditions in the interval −1 ≤ x0 ≤ 1. The shapes of these distribution
vary with Ns and N f but there is scaling property with respect to n. All the types of distributions obtained
can be understood from the knowledge of the dynamics that these trajectories follow, both when flowing
towards the chaotic band attractors and when already within these attractors. There exists throughout the
family of chaotic band attractors with λ > 0 an underlying scaling property, displayed, e.g., by the self-
affine structure in Fig. 1a. This scaling property is present all over, here highlighted by: i) The sequential
formation of gaps shown in Fig. 1b. ii) The number of bins Wt still containing trajectories at iteration
time t, shown in Fig. ??, both for its initial decay with logarithmic oscillations and the final constant
regime. And iii) the different classes of sums and their distributions obtained for a given value of n are
reproduced for other values of n under appropriate rescaling, as shown in Fig. 5.3. For adeptness and
precision purposes we chose here to study the family of Misiurewicz points Mn but similar, equivalent,
results are obtained for chaotic attractors between these points.
The discussion about the types of distributions P(Y ;Ns,N f ; µMn) is assisted by recalling [31, 32] the RG
framework associated with summation of positions. Positions xt for trajectories within chaotic-band at-
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Figure 5.3: Rescaled sums and their distributions obtained from a uniform distribution of 3 ∗ 106 initial
conditions across [−1,1] at the band-splitting points Mn, n = 3,4,5. The values of Ns and N f used are,
respectively Ns = 26,27,28, and N f = 212,213,214.
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tractors can be decomposed as xt = xt +δxt , where xt is chosen to be (for example) fixed at the center of
the band visited at time t and δxt is the distance of xt from xt . When the number of bands 2n is large all
the values of δxt are small. The sum in Eq. ( 5.5) can be written as

X ≡ X +δX , X =
N f

∑
t=Ns

xt , δX =
N f

∑
t=Ns

δxt , (5.2)

where X captures the interband periodic (and therefore correlated) motion and δX consists of the intraband
chaotic (and therefore random) motion. As discussed in Refs. [31,32] the action of the RG transformation,
summation, is driven by δxt and results in gradual widening of all the chaotic bands, such that eventually
for a sufficiently large number of summands all of them merge into a single band. When 0 ≤ Ns,n . t∗n
gap formation competes with band widening, while when t∗ . Ns,n band widening develops unimpeded.
When 0 ≤ Ns,n . t∗n the combined processes of the dynamical evolution of the ensemble of trajectories
and the repeated RG transformation is dominated initially by gap formation but it is always followed
by gap merging. Initially, the distributions for these sums resemble the jagged multiscale shape of the
stationary distribution for the nontrivial fixed point at ∆µ = 0 but they necessarily evolve towards the
gaussian distribution of the trivial fixed point present for all ∆µ > 0 [31, 32]. When t∗n � Ns,n, as in
Refs. [33,34,36], [37], the trajectory positions considered in the sums are all contained within the attractor
bands and from the first term t = Ns,n the gaps begin to close due to the action of δxt that is akin to an
independent random variable. As we have shown in Fig. 3, when the number of summands grow the shape
of the distribution evolves by first eliminating the initial serrated features, then developing a symmetrical
shape that shows possible long tails but that end in a sharp drop (the claimed q-gaussian type), and finally
the approach to the gaussian stationary distribution. All of the above can be observed for each 2n-band
chaotic attractor, basically from n≥ 1 , and when a self-affine family of these attractors is chosen, like the
Misiurewicz points Mn the sums and their distributions can be rescaled such that they just about match for
all n, as shown in Fig. 5.3, where the sums where started at Ns,n ' t∗n .
Concisely, the elimination of a large enough set of early positions in the sums for a given n, such that
the location of its first term Ns is located inside the plateau of Wt in Fig. 2, ensures that the sums capture
only the dynamics within the 2n-band attractor. Therefore the shape of the distributions are dominated by
the uncorrelated chaotic contributions δxt , that as t increases evolves towards the final gaussian shape. A
nongaussian distribution can only be obtained if there is a finite number of summands N f . Self-affinity in
the chaotic-band family of attractors, provides scaling properties to the distributions of sums of positions
that are described by an appropriate use of the Huberman-Rudnick power-law expression.

Statistical aspects of the sums

In this section we ∗ the study presented in the previous sections, thus considering the same scheme used
in [28]. This study represents an opportunity for a closer analysis of the transformation of the distributions
that initially possess multifractal characteristics that evolve toward the gaussian limit distribution. The
larger the number 2n of attractor bands, the finer is the approximation achieved to the multifractal structure
of the distribution corresponding to the accumulation point before falling into the gaussian basin.
As a counterpart to our previous study of the stationary distribution formed by sums of positions at the
Feigenbaum point via the period-doubling cascade in the logistic map [25], we determine the family of
related distributions for the accompanying cascade of chaotic band-splitting points in the same system. By

∗This section corresponds to the article [29].
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doing this we rationalize how the interplay of regular and chaotic dynamics gives rise to either multiscale
or gaussian limit distributions. As demonstrated before [31], sums of trajectory positions associated with
the chaotic-band attractors of the logistic map lead only to a gaussian limit distribution, but, as we show
here, the features of the stationary multiscale distribution at the Feigenbaum point can be observed in the
distributions obtained from finite sums with sufficiently small number of terms. The multiscale features
are acquired from the repellor preimage structure that dominates the dynamics toward the chaotic attrac-
tors. When the number of chaotic bands increases this hierarchical structure with multiscale and discrete
scale-invariant properties develops. Also, we suggest that the occurrence of truncated q-gaussian-shaped
distributions for specially prescribed sums are t-Student distributions premonitory of the gaussian limit
distribution.
Here we consider again the logistic map. When the control parameter µ is changed toward values greater
than µ∞, this is ∆µ = µ−µ∞ > 0, the corresponding attractors are mainly chaotic (except for the periodic
windows) and consist of 2n bands n = 0,1,2,3, . . ., following the scaling law 2n ∼ ∆µ−κ , κ = ln2/ lnδ .
Among these chaotic attractors, we are only interested in the subsequence corresponding to the Misi-
urewicz points, that are regarded as dynamical crises [44]. In Fig. 5.4(a) we show (marked by different
symbols) several Mn points that appear aligned due to the scales we used. The family of lines of equal
slope along which the points Mn fall, reveal the scaling according to a power law associated to these po-
sitions. In Fig. 5.4(b) we show a corroboration of the occurrence of the gaussian limit distribution for
the sums generated at the attractor for Ulam’s map, which is composed by a single, fully chaotic region
that covers the whole interval x ∈ [−1,1] for µ = 2, while in Fig. 5.4(c) we show the multifractal limit
distribution corresponding to the Feigenbaum point at µ∞.

In this section we show some statistical aspects regarding the sums originated by ensembles of positions
and their corresponding distributions at Misiurewicz points. In particular, we are interested on the role that
is played by the Student’s-t distribution, or simply t distribution, for explaining the distributions associated
to these sums. In one hand, we find that the distributions obtained from sums with a finite number of
terms, when properly adjusted, this finite sum reproduces the asymmetric form with exponential tails of
the limit distribution corresponding to µ∞, and this gradually displays more of the characteristics of the
underlying multifractal as the order n of the Misiurewcz point Mn increases. In the other hand, as the
number N of terms in the sum increases, the distribution shows a rather symmetric form for each value n
and eventually approaches the gaussian limit distribution as N→∞, just as it is expected for all the chaotic
attractors. Finally and as the center of this work, we discuss the occurrence of the so-called q-gaussian
distributions for a very special kind of sums in, or around the points Mn [28, 33, 34, 36, 37] in terms of
the distributions that are standard in literature of probability and statistics [45]. These standard and well-
known distributions are the result of a finite and rather poor sampling extracted from a population with a
normal distribution, as it is the case of the aforementioned t distribution.
The stationary distributions of sums of consecutive positions of trajectories generated by the logistic map
have been found to follow a basic renormalization group (RG) structure: a nontrivial fixed-point multiscale
distribution at the period-doubling onset of chaos (Feigenbaum point) and a gaussian trivial fixed-point
distribution for all chaotic attractors [31, 32]. At the Feigenbaum point the limit distribution of sums of
positions, generated by an ensemble of initial conditions uniformly distributed in the full phase space, pos-
sesses an infinite-level hierarchical structure that originates from the properties of the repellor set and its
preimages [25]. This ladder organization was elucidated [31] through consideration of the family of peri-
odic attractors, conveniently, the super-stable attractors called supercycles [42], along the period-doubling
cascade. Here we complement this study by considering instead the cascade of chaotic band-splitting at-
tractors, or Misiurewicz (Mn,n = 0,1,2, ...) points [28]. This gives us the opportunity of analyzing the
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transformation of the developing multiscale distributions into the gaussian limit distribution. The larger
the number 2n of bands in the attractor the finer the approximation attained to the multiscale structure of
the non-trivial fixed-point limit distribution before it undergoes a crossover to the gaussian distribution.

We consider the logistic map fµ(x) = 1− µx2, −1 ≤ x ≤ 1, 0 ≤ µ ≤ 2, for which the control parameter
value for its main period-doubling cascade accumulation point is µ = µ∞ = 1.401155189092 . . . [?]. When
µ is shifted to values larger than µ∞, ∆µ ≡ µ−µ∞ > 0, the attractors are (mostly) chaotic and consist of
2n bands, n = 0,1,2, ..., where 2n ∼ ∆µ−κ , κ = ln2/ lnδ , and δ = 4.669201609102 . . . is the universal
constant that measures both the rate of convergence of the values of µ = µn to µ∞ at period doubling
or at band splitting points [42]. The latter points are attractor merging crises, where multiple pieces
of an attractor merge together at the position of an unstable periodic orbit [44]. The Mn points can be
determined by evaluation of the trajectories with initial condition x0 = 0 for different values of µ , as these
orbits follow the edges of the chaotic bands until at µ = µn the unstable orbit of period 2n reaches the
merging crises [44]. In Fig. 6.1a we show (with different symbols) several Mn points that appear aligned
because of the logarithmic scales employed. The family of lines of equal slope along which the Mn points
fall reveal the power-law scaling associated with their locations. In Fig. 6.1b we show a corroboration for
the gaussian limit distribution for sums generated at the one-band fully-chaotic attractor at µ = 2, whereas
in Fig. 6.1c we show the multiscale limit distribution for the Feigenbaum point at µ∞.
Here we present results for ensembles of sums of positions and their distributions at the attractors where
bands split. On the one hand, we find that distributions obtained from sums with an adequately finite
number of terms resemble the asymmetric exponential-tailed shape of the limit distribution at µ∞, and
display gradually more of its multiscale features as the order n of the band-splitting point Mn increases.
On the other hand, as the number of summands N increases the distribution for each value of n develops
a symmetrical shape and eventually approaches the gaussian limit distribution for N → ∞, as anticipated
for all chaotic attractors. We discuss the occurrence of so-called q-gaussian distributions for special sums
of positions at, or around, the Mn points [28], [46], [33] in terms of distributions for finite-size data sets
drawn from gaussian variables such as it is the case of the t-Student distribution.

Sums of positions and their distributions for band-splitting attractors
We consider the sum of consecutive positions xt up to a final iteration time N of a trajectory with initial
condition x0 and control parameter value µ , i.e.

X(x0,N; µ)≡
N

∑
t=0

xt (5.3)

for x0 ∈ [−1,1], as well as the centered, rescaled, sum

Y ≡ X−〈X〉
σ

, (5.4)

where 〈X〉 is the average value for the sums over the ensemble of M initial conditions, and σ is the stan-
dard deviation of this ensemble. The use of Y instead of X facilitates the comparison between sums with
different values of µn. We denote by H the histogram corresponding to the sum Y . H can be normalized
or not, in which case it will be indicated.
The four panels in Fig. 6.7 show the results for X(x0,N; µ) for all possible initial conditions −1≤ x0 ≤ 1
when the control parameter takes the values for the first four Misiurewicz points, Mn,n = 0,1,2,3. The
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Figure 5.4: (a) Attractor bands (in black) and gaps between them (white horizontal regions) in logarithmic
scales, − log(µ − µ∞) and log(|x|), in the horizontal and vertical axes, respectively. The band-splitting
points Mn (circle, triangle, diamond and square symbols) follow straight lines indicative of power-law
scaling. The vertical white strips are periodic attractor windows. (b) Histogram H of sums of trajectories
when µ = 2 approaches the shape of the gaussian limit distribution. (c) Histogram of sums of trajectories
at µ = µ∞ approximates the shape of the multiscale limit distribution.
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plots are all symmetrical with respect to x0 = 0 and exhibit as a main feature two matching peaks and a
central valley. For M0 the two peaks and the valley are nearly concealed by other symmetrically-located
peaks that form the fluctuating background generated by the large chaotic band that forms the attractor.
But as the number of bands that form the attractor increases (and their widths decrease) for the subsequent
M1, M2 and M3 points the twin large peaks and other, finer, features become increasingly clear. This is
the result of weaker intraband chaotic motion fluctuations as the interband regular dynamics progressively
dominates.
The panels in Fig. 6.7 can be compared with those in Fig. 2 in [25] where the corresponding sums for the
first supercycle attractors are shown. The same twin peaks separated by a central valley and progressively
finer motifs of alternating signs appear in the sums of positions at the supercycle attractors [25], only there
the absence of chaotic motion does not mask these details. In [25] it was demonstrated that these features
in the sums arise from the dynamics towards the attractors. Namely, the two large peaks arise from the
trajectories still close to the main repellor or its first preimage. Whereas the finer peaks of alternating signs
are due to trajectory positions near subsequent repellors or their infinite families of preimages. See [25]
for details. Here we observe, as shown in Fig. 6.7 that for the Misiurewicz points the same developments
take place and that as the order n of Mn increases their effect on the sums becomes increasingly clear.
We look now at the distributions associated with the sets of sums X(x0,N; µ) shown previously. The
four panels in Fig. 5.6 present in semi-logarithmic scales the results for the (normalized) histograms that
correspond to the sums in the panels for the first four Misiurewicz points, Mn,n = 0,1,2,3 in Fig. 6.7.
In the case of M0 one obtains an almost round shape with some uneven, pointy, features at the right hand
side. In the inset we show the attainment of a gaussian form when the number of summands is increased.
The histogram for the next point M1 already shows a basic tent shape formed by a sharp rise followed
by a gentler decline. The following case M2 displays serrated features over the tent shape that appear
even more pronounced in the last case for M3. Thus, as n increases we observe the development of the
asymmetrical double-exponential global shape, with superimposed motifs of ever-decreasing finer detail,
of the stationary distribution for µ∞ shown in Fig. 6.1c.

Truncated q-gaussian (t-Student) crossover distributions at band-splitting
attractors

Special sums of positions of ensembles of trajectories within the chaotic band attractors of the logistic
map generate distributions that are well reproduced by truncated q-gaussian shapes [46], [33]. These
sums are generated by first discarding an opening set of terms Ns such that the ensemble of trajectories
initiated as a uniform distribution within [−1,1] is already located within the multiple-band attractor [28].
Secondly, the sums are stopped at a total number of terms N f such that their distribution still displays large
non-exponential, but truncated, tails. That is, these kind of sums are of the form

X(x0,Ns,N f ; µ)≡
Ns+N f

∑
t=Ns

xt . (5.5)

.
In Fig. 5.7 where we show in panels (a), (b) and (c) the centered sums Y ≡ (X−〈X〉)/σ for the Misiurewicz
points M3, M4 and M5, when the attractors are about to split into 16, 32 and 64 chaotic bands, respectively.
In panel (d) we show the distributions P for these sums without rescaling of the horizontal axis Y . This
kind of distributions have been fitted by q-gaussians [46], [33].
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Figure 5.5: Sums Y (x0,N; µ) as a function of the initial condition x0. These correspond, as indicated in
each frame, to the first four Misiurewicz points, M0, M1, M2 and M3, when the attractors are about to split
into 2, 4, 8 and 16 chaotic bands, respectively. The number of terms in the sums for M0, M1, M2 and M3
are N = 24,25,26,27, respectively. See text for description.
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Figure 5.6: Normalized histograms H, obtained from the sums in Fig. 6.7. As indicated, these correspond
to the first four Misiurewicz points, Mn,n = 0,1,2,3. In the inset for M0 the sum consists of O(210) terms.
See text for description

39



The Student’s distribution or t-distribution is defined through the random variable

ϑ =
W
√

n√
Z

, (5.6)

where n is the sample size, the random variable X follows a gaussian distribution and Z is a random
variable Z = Z2

1 +Z2
2 +Z2

3 + . . .+Z2
n following a χ2-distribution. The sum in Eq. (5.5) when it is centered

and rescaled as in Eq. (5.4), can be viewed as a random variable similar to that in Eq. (5.6) by including
the crucial and delicate, but rather well-justified, assumption that the sums of positions follow a gaussian
distribution. This is possible provided that the correlation function for the positions xt goes to zero as the
number of iterations N goes to infinity in a chaotic regime, as it is certainly fulfilled by the collection of
Misiurewicz points we have used [43]. Under this assumption, the quantity in the numerator X̃ ≡ X−〈X〉
will (asymptotically) follow a gaussian distribution, and, considering the fact that the standard deviation
in Eq. (5.4) is σ = (1/M ∑

M
i (Xi−〈X〉))1/2 we can write

Y =
X̃
√

M√
Z̃

, (5.7)

where we have considered Z̃ to be Z̃ = ∑
M
i X̃i. The probability density function of the variable defined in

Eq. (5.6) is

P(ϑ) =
Γ
(n+1

2

)
(nπ)1/2Γ(n

2)

(
1+

ϑ 2

n

)− n+1
2

. (5.8)

So we can expect, and then corroborate numerically, that our variable Y follows the same distribution,
hence the sums of iterates Y can be regarded to follow a t-distribution. It is well known that the t-
distribution arises when estimating the mean of finite data sets drawn from an infinite set that pertains
to a gaussian distribution [45, 47]. The larger the sample the closer the t-distribution resembles the gaus-
sian distribution and, in the limit n→ ∞ this is no longer an approximation and we recover a Gaussian, as
we can check straightforwardly from Eq. (5.8).
It has been demonstrated [48] that this distribution optimizes the Tsallis entropy expression [46]. The
expression for the t-distribution coincides (after a suitable change of variable) with that of the so-called
q-gaussian distribution [48]

P(y) =
(

β (q−1)
π

) 1
2 Γ

(
1

q−1

)
Γ

(
1

q−1 −
1
2

)(1+β (q−1)y2)
1

1−q , 1 < q < 3. (5.9)

Therefore, the appearance of q-gaussian-like distributions for these families of sums are predictable as
the chosen finite sets of data cannot still approximate the gaussian limit distribution. Interestingly, the
t-Student (or q-gaussian) distribution maximizes an entropy expression that satisfies only three of the
Khinchin axioms (with the exclusion of composability) [39] whereas the gaussian distribution maximizes
the canonical entropy expression that satisfies all four Khinchin axioms.

Summary and discussion
We have probed the dynamical properties of chaotic attractors of the logistic map with the intention of
learning about the distributions formed by sums of ensembles of positions of trajectories with uniformly-
distributed initial conditions through the total phase space [−1,1]. For suitability we chose members of
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Figure 5.7: (Colour on-line.) Rescaled sums obtained from a uniform distribution of 106 initial conditions
across [−1,1] at the band-splitting points Mn, n = 3,4,5 with labels (a),(b),(c), respectively, and with
their corresponding distributions (normalized histograms) P in (d). The values of Ns and N f used are,
respectively Ns = 26,27,28, and N f = 29,210,211.

the family of attractors at which bands split. Our results are consistent with the existence of a single type
of limit distribution (i.e. when the number of summands N→ ∞) for all chaotic attractors, this being the
gaussian distribution. But we also observed, when the sums have a sufficiently small number of terms,
the characteristic features of the multiscale, asymmetric, exponential-tailed, limit distribution that occurs
for the special case of the accumulation point of the band-splitting attractors, the Feigenbaum point at µ∞.
The crossover that takes place from distributions displaying the multiscale form to the gaussian shape was
also addressed. Sums obtained when all trajectories are placed within the chaotic bands and are built-up
from finite sets of positions that evolve randomly are comparable to sets of variables extracted from a
gaussian population as this is their limit distribution. Such procedure generates the t-Student distribution,
equivalently a q-gaussian distribution, as previous studies detected.
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Part III

Dimensional reduction in a model of
evolutionary ecology.
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Chapter 6

From high to low dimensions in a model of
evolutionary ecology.

It is well known that low-dimensional nonlinear deterministic maps close to a tangent bifurcation exhibit
intermittency and this circumstance has been exploited, e.g. by Procaccia and Schuster [49], to develop a
general theory of 1/ f spectra. This suggests it is interesting to study the extent to which the behavior of a
high-dimensional stochastic system can be described by such tangent maps. The Tangled Nature (TaNa)
Model of evolutionary ecology is an ideal candidate for such a study, a significant model as it is capa-
ble of reproducing a broad range of the phenomenology of macroevolution and ecosystems. The TaNa
model exhibits strong intermittency reminiscent of Punctuated Equilibrium and, like the fossil record of
mass extinction, the intermittency in the model is found to be non-stationary, a feature typical of many
complex systems. We derive a mean-field version for the evolution of the likelihood function controlling
the reproduction of species and find a local map close to tangency. This mean-field map, by our own local
approximation, is able to describe qualitatively only one episode of the intermittent dynamics of the full
TaNa model. To complement this result we construct a complete nonlinear dynamical system model con-
sisting of successive tangent bifurcations that generates time evolution patterns resembling those of the full
TaNa model in macroscopic scales. The switch from one tangent bifurcation to the next in the sequences
produced in this model is stochastic in nature, based on criteria obtained from the local mean-field approx-
imation, and capable of imitating the changing set of types of species and total population in the TaNa
model. The model combines full deterministic dynamics with instantaneous parameter random jumps at
stochastically drawn times. In spite of the limitations of our approach, that entails a drastic collapse of
degrees of freedom, the description of a high-dimensional model system in terms of a low-dimensional
one appears to be illuminating.

Intermittent dynamics and evolutionary ecology

Intermittent dynamics in the form of long periods of little change separated by relatively short time inter-
vals of hectic activity is observed in many complex systems. Examples include snoring, mass extinctions,
financial crashes and brain activity. Such systems contain large numbers of components and very often
involve stochastic processes. It was more than 40 years ago suggested by Procaccia and Schuster that
important aspects of such intermittent dynamics can be captured by a simple essentially deterministic
equation. It is not in general straight forward to connect in detail the complex system to the mathematics
considered by Procaccia and Schuster. We consider a multi-component model of evolutionary ecology and
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derive how the single component equation of the type considered by Procaccia and Schuster is related to
the parameters of the stochastic many component dynamics. The single component description enables us
to describe aspects of the intermittent extinction dynamics that so far has eluded mathematical analysis.
We also demonstrate that the single component mathematics is able to qualitatively mimic the evolution
and extinction dynamics of consecutive ecologies generated by the full many component model. We think
that our results expands the applicability of the analysis put forward by Procaccia and Schuster and thereby
help connect the methodology developed for deterministic and typically low dimensional dynamics to the
stochastic dynamics of complex systems.
High-dimensional complex systems, such as turbulence, relaxing glasses, biological evolution, the finan-
cial market or brain dynamics, exhibit intermittent dynamics [50, 51]. While intermittency in basic one-
dimensional non-linear maps at the so-called tangent bifurcation [51] has received significant attention e.g.
because of their universal aspects [52] and has been suggested as a universal mechanism for 1/ f noise [53].
In fact the paradigmatic Pomeau-Manneville map [54] was derived to represent intermittency in weakly
turbulent fluid dynamics. The relevance of such maps to high-dimensional stochastic systems depends on
whether a robust macroscopic degree of freedom emerges, which is able to capture the dominant dynamics.
A case in point is the Tangled Nature (TaNa) model [50] of evolutionary ecology, since it displays inter-
mittent evolution at the macroscopic level while microscopically individuals reproduce, mutate and die at
essentially constant rates [55,56]. Numerical simulations of the model show that the total population N(t)
as a function of time t (in the scale of generations) consists of quasi-stable, steady, periods that alternate
with interludes of hectic transitions, during which N(t) exhibits large amplitude fluctuations [55, 56]. The
populations of species behave accordingly, during the quasi-stable periods they predominantly retain their
identity, but at the transitions some species vanish, others arise, while the rest survive [55, 56].
Here we study the incidence of intermittency, as displayed close to the tangent bifurcation in low-dimensional
nonlinear maps, in the macroscopic behavior of the TaNa model. We make two intents. The first one is
to approximate the evolution equations of the model, via determination of mean-field lowest-order local
terms to obtain a map near tangency that reproduces the prototypical quasi-stable episode. The second is
to model, phenomenologically, the sequences of consecutive quasi-stable and hectic periods via a nonlin-
ear dynamical model that makes use of the families of tangent bifurcations that occur in one-dimensional
quadratic maps. We arrive at the following general picture. The dynamics of the original TaNa model is
fully stochastic and fluctuations are very important in steering its progress. The one-dimensional mean-
field local map near tangency, we derive, is deterministic and has the limitation, without further devel-
opment, that only one quasi-stable event can be generated at a time. But this map offers criteria for the
duration of the quasi-stable episodes in terms of the TaNa model parameters. Based on these criteria
we introduce a stochastic element in the construction of an otherwise deterministic nonlinear dynamical
model. This model reproduces qualitatively the sequences of quasi-stable periods with varying types and
numbers of species as in the TaNa model. We comment on the class of nonlinear dynamical systems with
this kind of stochastic element. We reach the conclusion that in spite of the approximations incurred and
assumptions made our study facilitates interesting insights that hint to a radical reduction of degrees of
freedom under certain circumstances.
High-dimensional complex systems, such as turbulence, relaxing glasses, biological evolution, the finan-
cial market or brain dynamics, exhibit intermittent dynamics [50, 51]. While intermittency in basic one-
dimensional non-linear maps at the so-called tangent bifurcation [51] has received significant attention e.g.
because of their universal aspects [52] and has been suggested as a universal mechanism for 1/ f noise [53].
In fact the paradigmatic Pomeau-Manneville map [54] was derived to represent intermittency in weakly
turbulent fluid dynamics. The relevance of such maps to high-dimensional stochastic systems depends on
whether a robust macroscopic degree of freedom emerges, which is able to capture the dominant dynamics.
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A case in point is the Tangled Nature (TaNa) model [50] of evolutionary ecology, since it displays inter-
mittent evolution at the macroscopic level while microscopically individuals reproduce, mutate and die at
essentially constant rates [55,56]. Numerical simulations of the model show that the total population N(t)
as a function of time t (in the scale of generations) consists of quasi-stable, steady, periods that alternate
with interludes of hectic transitions, during which N(t) exhibits large amplitude fluctuations [55, 56]. The
populations of species behave accordingly, during the quasi-stable periods they predominantly retain their
identity, but at the transitions some species vanish, others arise, while the rest survive [55, 56].
Here we study the incidence of intermittency, as displayed close to the tangent bifurcation in low-dimensional
nonlinear maps, in the macroscopic behavior of the TaNa model. We make two intents. The first one is
to approximate the evolution equations of the model, via determination of mean-field lowest-order local
terms to obtain a map near tangency that reproduces the prototypical quasi-stable episode. The second is
to model, phenomenologically, the sequences of consecutive quasi-stable and hectic periods via a nonlin-
ear dynamical model that makes use of the families of tangent bifurcations that occur in one-dimensional
quadratic maps. We arrive at the following general picture. The dynamics of the original TaNa model is
fully stochastic and fluctuations are very important in steering its progress. The one-dimensional mean-
field local map near tangency, we derive, is deterministic and has the limitation, without further devel-
opment, that only one quasi-stable event can be generated at a time. But this map offers criteria for the
duration of the quasi-stable episodes in terms of the TaNa model parameters. Based on these criteria
we introduce a stochastic element in the construction of an otherwise deterministic nonlinear dynamical
model. This model reproduces qualitatively the sequences of quasi-stable periods with varying types and
numbers of species as in the TaNa model. We comment on the class of nonlinear dynamical systems with
this kind of stochastic element. We reach the conclusion that in spite of the approximations incurred and
assumptions made our study facilitates interesting insights that hint to a radical reduction of degrees of
freedom under certain circumstances.

The TaNa model

The Tangled Nature model is a model of evolutionary ecology, which studies the macro-dynamics emerg-
ing from the dynamics of individual organisms or agents, co-evolving together and subject to a web of
mutual interactions. The model is an attempt to identify possible simple mechanisms behind the myriad
of complicated interactions, feedback loops, contingencies, etc., as one moves from the short time repro-
ductive dynamics at the level of individuals, to the long time systems level behaviour. The strategy is to
keep the model sufficiently simple to enable analysis, and to pinpoint the details or assumptions in the
model that are responsible for the specific behaviour at the systems level. One major concern of the model
has been to understand how the smooth continuous pace of the reproductive dynamics at the level of in-
dividuals, can lead to intermittent or punctuated dynamics at the level of high taxonomic structures. The
model was introduced in [55, 56] and since then, the model framework has been used by several authors
see e.g. [57–61]. A summary of some of the models features and predictions can be found in [50].

Description of the model

The dynamical entities of the TaNa model consist of agents represented by a sequence of binary variables
with fixed length L [62]. We denote by n(Sa, t) the number of agents of type Sa = (Sa

1,S
a
2, ...,S

a
L) (here Sa

i ∈
{−1,1})at time t and the total population is N(t) = ∑

2L

a=1 n(Sa, t). A time step is defined as a succession
of one annihilation and of one reproduction attempt. Annihilation consists of choosing an agent at random
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with uniform probability and remove the agent with probability pkill , taken to be constant in time and
independent on the type. Reproduction: choose with uniform probability an agent, Sa, at random and
duplicate the agent (and remove the mother) with probability

po f f (Sa, t) =
exp(H(Sa, t))

1+ exp(H(Sa, t))
, (6.1)

which depends on the occupancy distribution of all the types at time t through the weight function

H(Sa, t) =
k

N(t)∑
b

J(Sa,Sb)n(Sb, t)−µN(t). (6.2)

In Eq. (6.2), the first term couples the agent Sa to one of type Sb by introducing the interaction strength
J(Sa,Sb), whose values are randomly distributed in the interval [−1,+1]. For simplification and to em-
phasize interactions we here assume: J(Sa,Sa) = 0. The parameter k scales the interactions strength and
µ can be thought of as the carrying capacity of the environment. An increase (decrease) in µ corresponds
to harsher (more favourable) external conditions.
Mutations occur in the following way: For each of the two copies Sa1 and Sa2 , a single mutation changes
the sign of one of the genes: Sa1

i →−Sa1
i , Sa2

i →−Sa2
i with probability pmut . We define a generation to

consist of N(t)/pkill time steps, i.e. the average time needed to kill all the individuals at time t. These
microscopic rules generate intermittent macro dynamics [56] as shown in Fig. 6.1. The long quiescent
epochs are called quasi Evolutionary Stable Strategies (qESS), since they do remind one of John Maynard
Smith’s notion of Evolutionary Stable Strategies introduced in his game theoretic description of evolution
[63].
The weight function H will fluctuate about the value given by the stable dynamical fixed point condition
po f f (H) = pkill . This suggests that the mean field value of H may indeed evolve in an intermittent way
that may be captured by a tangent map. We will therefore derive the mean field map for 〈H〉.

Mean field mapping derivation for H

To establish a map for the mean field approximation to the weight function H, we need to analyse each
of the microscopic stochastic processes that can lead to a change in H. These are reproduction, with or
without mutation and death. And we will make use of the fact that if a quantity, say X , undergoes the
change to X 7→ X +∆ with probability p and remains unchanged X 7→ X with probability 1− p, then in
the mean field approximation we have 〈X〉 7→ 〈X〉+ p∆. We use a short hand notation in which we label
individuals and types as i, j,k... and accordingly the interaction between two types i and j as Ji j.

Reproduction with no mutation. We need to estimate the average change to the likelihood function, Hi for
type i given that an individual of type j0 reproduces without mutating. The change in Hi is given by

Hi 7→
k

N +1

[
∑
j 6= j0

Ji, jn j + Ji, j0(n j0 +1)

]
−µ(N +1)

=
k

N +1

(
∑

j
Ji, jn j−µN

)
+

(
k

N +1
Ji, j0−µ

)
= Hi +∆

i
R,0m( j0) (6.3)
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We replaced N +1 by N in the first term and introduced the change

∆
i
R,0m( j0) =

k
N +1

Ji, j0−µ, (6.4)

which will occur with probability

pi
R,0m( j0) =

n j0
N

po f f ( j0)(P
(0)
mut)

2, (6.5)

where P(0)
mut = (1− pmut)

L is the probability of no mutations occurring, and its counted twice, once for each
offspring. Averaging over all possible types (of which there are Ω = 2L) we obtain

∆̄R,0m = 〈∆i
R,0m( j0)〉=

1
Ω

∑
j0

(
k
N

Ji j0−µ

)
n j0
N

po f f ( j0)(P
(0)
mut)

2L

7→
(

kJ̄
N
−µ

)
〈po f f 〉ext(1− pmut)

2L, (6.6)

where we have introduced J̄, which denotes the strengths Ji, j averaged over pairs of interacting extant
types and similarly 〈po f f 〉ext denotes the offspring probability average over extant types.

Reproduction with 1 mutation Next we consider the average change to the likelihood function, Hi for type
i given that an individual of type j0 reproduces with one copy mutating and ending in qo and the other not
mutating. The change in Hi is given by

Hi 7→
k

N +1

[
∑

j 6=q0

Ji, jn j + Ji,q0(nq0 +1)

]
−µ(N +1)

=
k

N +1

(
∑

j
Ji, jn j−µN

)
+

(
k

N +1
Ji,q0−µ

)
= Hi +∆

i
R,m(q0). (6.7)

Again we have replaced N +1 by N in the first term and introduced the change

∆
i
R,m(q0) =

k
N +1

Ji,q0−µ, (6.8)

which will occur with probability

pi
R,m( j0) =

n j0
N

po f f ( j0)p jo→qo, (6.9)

where
p jo→qo = pd joqo

mut (1− pmut)
L−d joqo , (6.10)

and d joqo is the hamming distance between the sequences jo and qo, This means that

∆̄
i
R,1m = ∑

joqo

(
k

N +1
Ji,qo−µ

)
n jo

N
po f f

j pd joqo
mut (1− pmut)

L−d joqo . (6.11)
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By limiting our approximation to the nearest neighbours, and proceeding like in the previous case, we
obtain

∆̄R,1m = Lp(o)mut p(1)mut

(
kJ̃
N
−µ

)
〈po f f 〉ext , (6.12)

where L is the number of first neighbours and P(1)
mut = pmut(1− pmut)

(L−1) denotes the probability that
exactly one L genes mutate. Notice the difference between J̄ introduced in Eq. (6.6) and the averaged
quantity J̃ introduced in this equation. The two differs by being averages over different sets of types.
Here J̃ is averaged over interaction strengths Ji j connecting already occupied type and types hit by a new
mutation, i.e. types located in the perimeter of the cluster of extant reproducing sites. In contrast J̄ is
the average of the interaction strength between extant types. We will expect that typically J̃ < J̄ because
adaptation has favoured mutualistic interactions amongst the extant types. However, an accurate estimate
of the two quantities from first principle is of course very difficult.

Reproduction with 2 mutations. Next we consider the average change to the likelihood function, Hi for
type i given that an individual of type j0 reproduces with both copies mutating and ending in qo and q1.
The change in Hi is given by

Hi 7→
k

N +1

[
∑

j 6=q0,q1, jo

Ji, jn j + Ji,q0(nq0 +1)+ Ji,q1(nq1 +1)+ Ji,q1(nq1−1)

]
−µ(N +1)

=
k

N +1

(
∑

j
Ji, jn j−µN

)
+

(
k

N +1
(Ji,q0 + Ji,q1− Ji, jo)−µ

)
= Hi +∆

i
R,2m(q0), (6.13)

where we have consider the fact that the number of individuals of the parent decreases in case of 2 muta-
tions. Again we have replaced N +1 by N in the first term and introduced the change

∆
i
R,2m(q0) =

k
N +1

(Ji,q0 + Ji,q1− Ji, jo)−µ, (6.14)

which will occur with probability

pi
R,m( j0) =

n j0
N

po f f ( j0)p jo→qo p jo→q1. (6.15)

And once again limiting our approximation to the nearest neighbour mutations we obtain

∆̄R,2m = L2(P(1)
mut)

2
(

kJ̃
N
−µ

)
〈po f f 〉ext . (6.16)

Notice the difference between J̄ introduced in Eq. (6.6) and the averaged quantity J̃ introduced in this
equation. The two differs by being averages over different sets of types. Here J̃ is averaged over inter-
action strengths Ji j connecting already occupied type and types hit by a new mutation, i.e. types located
in the perimeter of the cluster of extant reproducing sites. In contrast J̄ is the average of the interaction
strength between extant types. We will expect that typically J̃ < J̄ because adaptation has favoured mutu-
alistic interactions amongst the extant types. This is in fact verified by our simulations, see Fig. 6.3 below.
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Killing event on site j0 leads to

Hi 7→
k

N−1

[
∑
j 6= j0

Ji, jn j + Ji,00(n j0−1)

]
−µ(N−1)

=
k

N−1

(
∑

j
Ji, jn j−µN

)
−
(

k
N

Ji, j0−µ

)
= Hi−∆

i
R,0m( j0). (6.17)

This change occurs with probability (n j0/N)pkill .
Combining this result with the weighted results in Eqs. (6.6), (6.12) and (6.16) we obtain the following
map, which in mean field describes how 〈H〉 changes as an effect of the microscopic reproduction and
killing events

〈H〉 7→ 〈H〉+A〈po f f 〉ext−Bpkill, (6.18)

where the coefficients are given by

A =

(
kJ̄
N
−µ

)
(P(0)

mut)
2 +

(
kJ̃
N
−µ

)
(P(0)

mut +Lp(1)mut)Lp(1)mut (6.19)

B =
kJ̄
N
−µ (6.20)

We have derived a map for the evolution of 〈H〉. We now need to close the map, i.e. we need a way to
express the H i dependency of 〈po f f 〉ext in terms of 〈H〉. We could assume

〈po f f (H i)〉ext 7→ po f f (〈H〉ext). (6.21)

This procedure gives us the following map for xn (which we use as shorthand for the iterates of 〈H〉ext)

xn+1 = xn +Apo f f (xn)−Bpkill. (6.22)

The map has a fixed point a x∗ given by po f f (x∗) = Bpkill/A. The map is stable if A < 0 and B < 0. For
AB < 0 the map is either attractive (repulsive) to the left of x∗ and repulsive (attractive) to the right hand
of x∗. For A < 0 and B < 0 x∗ is repulsive in both directions. The conclusion is that the dramatic mean
field approximation suggested in Eq. (6.21), which corresponds to the replacement 〈Hn〉ext 7→ 〈H〉next for
all n∈N, wipes out the intermittency. To establish a mean field description of the intermittency we instead
expand po f f (H i) in Eq. (6.18) to second order about x∗ and replaces only 〈H2〉ext by 〈H〉2ext . This leads to
a tangent map and we study the intermittency of this map in the next section.

Analysis close to tangency
We expand po f f (H) in Eq. (6.18) to second order about H∗ = ln[pkill/(1− pkill)],

po f f (H) = a0 +a1(H−H∗)+a2(H−H∗)2 (6.23)

where

a0 = pkill,

a1 = p′o f f (H
∗) = pkill(1− pkill),

a2 =
1
2

p′′o f f (H
∗) =

1
2

a1(1−2pkill).
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We substitute Eq. (6.23) into Eq. (6.22) and obtain the following map for ∆ = 〈H〉−H∗

∆n+1 = b0 +b1∆n +b2∆
2
n ≡ f (∆n), (6.24)

where

b0 = a0(A−B),
b1 = 1+a1A,
b2 = a2A.

Let ∆c be given by f ′(∆c) = 1 and ε = f (∆c)−∆c, i.e. at ∆c the map has a tangent parallel to the identity
and the vertical distance to the identity at this point is ε and is given by

ε = b0−
(1−b1)

2

4b2
. (6.25)

In Figure 6.2 we show an example of an iteration of the map in Eq. (7.1) for a set of typical simulation
parameters.
The number of iterations T needed to pass through the bottleneck between the map and the identity is of
order T = π/

√
εb2 (see e.g. [51] Chap. 5). Hence we have(

π

T

)2
= b0b2−

1
4
(1−b1)

2 (6.26)

We can simplify this expression by only working to the lowest order in the killing probability and further
more we will only include mutation processes considered above, i.e. single gene mutations in one or in
both offspring. Let us denote by P0 the probability that no mutation occur, i.e. P0 = (1− pmut)

2L. Since
we neglect all other mutation events than the two kinds just described, we have the approximation

1−P0 = (P(0)
mut +Lp(1)mut)Lp(1)mut , (6.27)

in which case Eq. (6.19) becomes

A =

(
kJ̄
N
−µ

)
P0 +

(
kJ̃
N
−µ

)
(1−P0). (6.28)

With these approximations we arrive at(
π

T

)2
'− k

2N
(J̄− J̃)(1−P0)

[
k
N
(J̄− J̃)P0 +

k
N

J̃−µ

]
p2

kill. (6.29)

We find that kP0(J̄− J̃)/N is very small and hence that the expression for (π/T )2 is well approximated by(
π

T

)2
'− k

2N
(J̄− J̃)(1−P0)

(
k
N

J̃−µ

)
p2

kill. (6.30)

We conclude that our mean field analysis suggests that the length of the qESS, i.e. the metastable quiescent
epochs, is set by four mechanisms. Firstly, it is obvious that the rate of mutations (1−P0) influences the
duration of the qESS: no mutations leads to no transitions and hence lead to T = ∞. Secondly, the rate
of killing, i.e. the factor p2

kill . The rate of killing is related to the rate of offspring production, since due
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to the environmental coupling term −µN in Eq. (6.2) on average there is a balance between reproduction
and killing. Hence if pkill decreases the rate of reproduction decreases and fewer mutations are produced
leaving the qESS more stable and T larger. The third mechanism influencing T is the mismatch between
the characteristic interaction strength between the set of extant types and mutant types located in the
perimeter of the set of extant types, i.e. the factor (J̄− J̃). One may consider this factor as being related to
the selective pressure on the qESS state. Namely, if J̄ = J̃ there is no selective pressure, since the mutants
are entirely like the wild types. The lack of selective pressure drives T to become infinite. Finally the term
kJ̃−µ . Again one may see the fact that when kJ̃/N = µ the duration T becomes infinite as representing
the fact that a mutant population for which k/̃N = µ is already well tuned to the environmental pressure
represented by µ .
It is of course interesting to try to relate the prediction for the duration T given by Eq. (6.30) to the actual
qESS intermittency observed in simulations of the Tangled Nature model. To do this we have determined
the time average values of J̄ and J̃ during 4000 qESS states and plot the distributions obtained in Fig. 6.3.
In order for Eq. (6.30) to make sense the sign has of course to be positive. The two terms that could in
principle be problematic are (J̄− J̃) and (kJ̃

N − µ). In Fig. 6.3 we show the distribution of these terms
obtained from a set of 4000 measured qESS. The difference in the average J’s is always positive while the
second term is alway negative. Given the high stochasticity of the TaNa, this doesn’t mean that a specific
qESS cannot produce a negative value, but that this is extremely unlikely, and perhaps it wouldn’t last long
enough for us to notice it. Amongst all the realisations of J̄ and J̃ we recorded only 0.16% corresponds to
a negative right hand side in Eq. (6.30).
Indeed one has to consider —Eq.(30) as a qualitative description of the duration more than a quantitative
one. This is the case because of the approximations we were forced to make when deriving the mean field
expressions. Moreover, it is difficult to relate the quantitive values for T obtained from Eq. (30) to the
durations observed in the simulations because of the always difficult problem of relating mean field time
to Monte Carlo simulation time steps.

Successive tangent bifurcation model

Based on the analysis in the previous section we now advance a simple nonlinear dynamical model capable
of imitating some features of the macroscopic dynamics that can be typically generated by the TaNa model.
It is important to notice that the local tangent map we obtained in Eq. (6.2) can only generate one qESS
episode since it does not provide a reinjection mechanism or alternative continuation of dynamical evo-
lution. Therefore, to reproduce sequences of qESS episodes it is necessary to extend this first result. We
shall be guided by Eq. (6.30) to do this. This equation establishes the factors that affect the duration T of
the qESS. These factors are driving forces for the hectic bursts that terminate one qESS and generate a new
one. The numbers and types of species in the sequences of qESS in the TaNa model may (and do) change
from one qESS to the next. This occurs at the hectic bursts. If this feature is to be reproduced the period of
the attractor associated with the tangent bifurcation should have the capability to be changed. Our model
considers families of chaotic attractors in the vicinity of tangent bifurcations present in low-dimensional
iterated maps that display intermittency, referred to as intermittency of type I [51]. For convenience these
families can be taken from those occurring an infinite number of times in unimodal maps, as represented
by the quadratic logistic map, fν(x) = 1−νx2, −1≤ x≤ 1, 0≤ ν ≤ 2.
Unimodal maps share self-similar families of attractors such as chaotic attractors that consist of 2k, k =
0,1,2, . . ., bands. For given k the 2k-band attractors appear for a given range of the control parameter
ν , with the exception of some smaller intervals where periodic attractors reappear. See Fig. 6.4. These
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intervals are control parameter windows of regular behaviour that start at a tangent bifurcation at which
chaotic dynamics transforms sharply into periodic motion. The dynamics at the chaotic attractors in the
vicinity of the left edge, ν . ντ of the window of periodic attractors, the location ν = ντ of the tangent
bifurcation, displays intermittency, i.e., at ν . ντ where ντ is the location of the tangent bifurcation. That
is, the map trajectories consist of quasi-periodic motion interrupted by bursts of irregular behaviour. The
iteration time duration of the quasi-periodic episodes increases as the tangent bifurcation is approached
and the statistical features of these durations have been shown to display characteristics of various types
of noise [53]. At the tangent bifurcation the duration of the episodes diverges and the motion becomes
periodic. The opening periods τ of the windows follow the Sharkovskii ordering [64]. A single tangent
bifurcation of a unimodal map linking a fixed period attractor to a chaotic one is only capable of portraying
a fixed set of types of species and a fixed total number of them, i.e. no evolutionary change. Whereas a
set of such tangent bifurcations visited sequentially according to some rules can describe consecutive
quasi-stable episodes with varying numbers of species and total population, as in a evolutionary process.
The following procedure, which incorporates the criteria identified above for the duration of the qESS,
can be used to generate successive quasi-periodic events of different (quasi)-periods mediated by brief
erratic bursts, each event associated with a different periodicity τn and of different duration Tn. First
choose a control parameter value ν0 just left of a window of periodicity τ0 of the logistic map with tangent
bifurcation at ντ0 , δν0 ≡ ν0−ντ0 . 0. When the map trajectory with initial condition x0 comes out of the
bottlenecks formed by f (τn)(x) and the identity line (see Fig. 6.2) (to experience a chaotic burst before
it is re-injected close to the bottlenecks) the control parameter of the map is changed and the trajectory
continues its evolution in a different environment. This change in control parameter is mediated by a set
of stochastic conditions, that when fulfilled another control parameter value ν1 is generated just left of a
window of periodicity τ1 with δν1 ≡ ν1− ντ1 . 0, and so on for n = 2,3, . . .. Two of these conditions
refer to exceedances associated with two random variables δ1 and δ2, generated by a normal and a uniform
distributions, respectively. The conditions are δ1 > Γ1 and δ2 > Γ2 where Γ1 and Γ2 are two prescribed
thresholds. Samplings for δ1 and δ2 run until the two thresholds are overcome simultaneously a given
number l of times (l = 2 for our results shown below). Then the control parameter value is changed to that
of a different window chosen at random. The new value of δνn is estimated via δνn∼ (Tn)

−2 (see e.g. [51]
Chap. 5), where the duration Tn is given by Eq. (6.30). The two implemented thresholds correspond to
critical values of the imbalances referred after Eq. (6.30),

δ1 =
k
N J̃−µ

p2
kill(1−P0)

and

δ2 =
k

2N (J̄− J̃)
p2

kill(1−P0)
. (6.31)

For conciseness and clarity, in Fig. 6.5 we show as a flow diagram the algorithm followed by the consec-
utive tangent bifurcation model. The repetition of this prescription leads to the dynamical behavior shown
in Fig. 6.6 that can be compared with that obtained from the TaNa model in Fig. 6.1. The quasi-periodic
episode of period τn is identified with the quasi stable co-existence of n species for a time period Tn in the
TaNa model and the chaotic burst at its ending leads to some extinctions and new mutated species of the
following quasi-stable configuration.
This approach can be considered to be a phenomenological modelling of the original TaNa model. The
threshold selections of the periodic windows τn at ντn and of the value of the control parameter distance
δνn from the corresponding tangent bifurcation can be further elaborated, e.g. by devising specific rules

54



suggested by ecological principles associated with reproduction, mutation and death, and in this way
obtain a closer reproduction of the dynamics of the TaNa model. Interestingly, an average decrement of
the variables δνn with increasing time t, that implies an average increment of the duration of quasi-stable
episodes Tn with t, observed in the TaNa dynamical properties, signals an approach to the intermittency
transition out of chaos. Our modelling by means of the dynamics associated with families of tangent
bifurcations implies (in a well-defined manner restricted to deterministic nonlinear dynamics) that the
ecological evolution model operates near the onset of chaos, in our case, at nearly vanishing Lyapunov
exponent.
The stochastic element of the model resides only in the threshold conditions to switch from the chaotic
vicinity of one tangent bifurcation to the chaotic vicinity of another. The dynamical behavior of the model
between these instantaneous shift times is the known chaotic deterministic dynamics in the neighborhood
of tangent bifurcations of low-dimensional attractors. In the model the time duration between control
parameter ν changes corresponds to the duration of the qESS (see Fig. 6.6).
To explore a possible relationship between the dynamical properties of low-dimensional nonlinear systems
and the high-dimensional, and often stochastic, dynamics of relevance to complex systems it is necessary
to identify a few robust macroscopic degrees of freedom of the latter that capture the salient features of
its dynamical evolution. We have performed such an analysis for a particularly high-dimensional and
particularly strongly stochastic model, namely, the Tangled Nature model of evolutionary ecology. We
find that despite of the dramatic approximations involved in establishing a local one-dimensional map we
nevertheless obtain meaningful and interesting statements concerning the duration of the long quiescent
epochs of the TaNa model.
We then went on to describe how a simple quadratic map is able to reproduce structures that qualitatively
exhibit, with a high degree of similarity, the full high-dimensional stochastic model. We advanced a non-
linear dynamical system model consisting of consecutive one-dimensional chaotic attractors near tangent
bifurcations that generate time evolution patterns resembling those of the TaNa model in macroscopic
scales. These tangent bifurcations are chosen from the infinite families that occur at the onset the peri-
odic windows in the logistic map according to a threshold prescription based on the previously identified
mechanisms that control the duration of the basic quasi-stable event generated by the local map derived
from the TaNa model. These mechanisms involve imbalances between (average) values of parameters with
ecological meaning that define the TaNa model. See Eq. (6.30) and text below it.
The manner into which randomness has been introduced in the consecutive tangent bifurcation model
does not generate any unstable behavior in the low-dimensional intermittency. The random changes in the
control parameter take place instantaneously according to the algorithm described in the previous section.
Otherwise, the dynamics is fully deterministic, and follows known patterns associated with the families of
tangent bifurcations in a quadratic map.
The generally unanticipated link we established between the macroscopic dynamics of a high–dimensional
stochastic model and the intermittent dynamics of low-dimensional systems requires a closer examination.
This can be developed, first, by deriving under less sweeping approximations the collapse of degrees of
freedom that leads to this correspondence. This would include the derivation from the TaNa model of
a more complete, tangent bifurcation model to fit more closely the mutual interactions that define the
TaNa model of evolutionary ecology. The occurrence of the connection between high-dimensional and
low-dimensional dynamical model systems offers a new path to the study of complex systems. A possible
methodology to obtain, or at least to visualize, this reduction is, as attempted here, to derive from the
original model via mean-field arguments a nonlinear iterated map representation, such as a coupled map
lattice. This is actually the case here for the species or agents ni of the TaNa model when described by
the approximations made on the likelihood function Hi. Such macroscopic collective behavior is known
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to arise in couple map lattices [65].
We evaluate the implication and outlook of an unanticipated simplification in the macroscopic behav-
ior of two high-dimensional stochastic models: the Replicator Model with Mutations and the Tangled
Nature Model (TaNa) of evolutionary ecology. This simplification consists of the apparent display of low-
dimensional dynamics in the non-stationary intermittent time evolution of the model on a coarse-grained
scale. Evolution on this time scale spans generations of individuals, rather than single reproduction, death
or mutation events. While a local one-dimensional map close to a tangent bifurcation can be derived from
a mean-field version of the TaNa model, a nonlinear dynamical model consisting of successive tangent
bifurcations generates time evolution patterns resembling those of the full TaNa model. To advance the
interpretation of this finding, here we consider parallel results on a game-theoretic version of the TaNa
model that in discrete time yields a coupled map lattice. This in turn is represented, a la Langevin, by
a one-dimensional nonlinear map. Among various kinds of behaviours we obtain intermittent evolution
associated with tangent bifurcations. We discuss our results.

Game theory and intermittent dynamics in low dimension

The next step we consider is a radical simplification of the game-theoretic CML replicator-mutation equa-
tions into a one-dimensional nonlinear map. This attempt aims at probing the possible connection be-
tween the macroscopic intermittent behaviors of the above-mentioned high-dimensional models with the
low-dimensional established sources of intermittency, such as the tangent bifurcation [51] with known 1/ f
noise spectra [53]. In doing so, we reduce the many-strategy game-theoretic problem to a classic version
of two strategies, where one of them represents the chosen agent or species and the other assemblages all
the others. Finally, we recall that a one-dimensional nonlinear dynamical model can be constructed [66]
such that its time evolution consists of successive tangent bifurcations that generate patterns resembling
those of the full TaNa model in macroscopic scales. The parameters in the model are based on identified
mechanisms that control the duration of the basic quasi-stable event generated by a local mean-field map
derived from the TaNa model [66].

Replicator model with mutations
Here we briefly present the intermittent behavior of the Replicator Model with Mutations, details of which
can be found in [67]. The replicator equation [68] was introduced in evolutionary game theory in order to
capture the frequency-dependent nature of the evolution process. We are interested in the limit of many
strategies. Players may leave the system (say go bankrupt or extinct) or may change their strategy (mutate).
This means that the number of players choosing a given strategy and the number of available strategies are
in constant evolution. This version of the replicator dynamics set-up was studied by Tokita and Yasutomi
in [69]. The authors focused on the emerging network properties. Here we continue this study but with an
emphasis on the intermittent nature of the macro-dynamics.
The model is described in terms of a configuration vector n(t) which contains the relative frequencies
of all the allowed d different strategies, so the components ni(t) ∈ [0,1] for all i = 1,2, ...,d. A d× d
payoff matrix J contains the payoffs of every pairwise combination. The matrix J is a random and fixed
interaction network on top of which the replicator dynamics will evolve. Each strategy distinguishes itself
from the others in its payoffs or interactions with the rest of the strategy space. We used an uncorrelated,
large matrix of dimension d ∈ (102,104). In the initial configuration, No < d strategies start with the same
frequency ni = 1/No and for all the other strategies ni(0) = 0. The empty strategies can become populated
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only by one of the active strategies mutating into them. Once this happens, their frequency will evolve
according to the replicator equation, Eq. (6.32), in which these newly occupied strategies interact with the
active strategies which they are linkedf through the matrix J.
A time step of the replicator dynamics consists of calculating the fitness, hi(t) = ∑ j Ji jn j(t) of each active
strategy and compare it with the average fitness h̄(t) = ∑i j Ji jni(t)n j(t). The frequencies are updated
according to

ni(t +1) = ni(t)+

(
∑

j
Ji jn j(t)−∑

k, j
Jk jnk(t)n j(t)

)
ni(t). (6.32)

When the frequency of a strategy i goes below a preset extinction threshold ni(t) < next , the strategy is
considered extinct and its frequency is set to zero ni(t +1) = 0. Right after an extinction event the system
is immediately renormalised in order to maintain the condition ∑i ni(t) = 1.
The stochastic element consists in the following updates. With probability pmut each strategy mutates into
another one, this is done by transferring a fraction αmut of the frequency from the considered strategy to
another strategy. The label of the latter strategy is chosen in the vicinity of the first by use of a normal
distribution N(i,∆) centred on label i ∈ {1,2, ...,d} with variance ∆ with periodic boundary conditions,
i.e. label d+1 is identified with label 1. The closer the labels of two strategies are the more likely it is for
one to mutate into the other.
The systemic level dynamics is described by n(t) and is shown in fig.(6.7), where we present the occupancy
plot (left panel) and the evolution of the frequencies of the single strategies (right panel).
The parameters used in the simulations are d = 256, next = 0.001, αmut = 0.01, pmut = 0.2 and ∆ = 15 and
were chosen for reasons of computational performance. The meta stable states are typically characterised
by two strongly occupied strategies which are surrounded by 7 to 8 “cloud” strategies. These are populated
by mutations and quickly die out.

Mean Field Description
The random mutations are the only source of stochasticity in the model’s dynamics. These stochastic
events can make the frequency of a strategy grow as a result of inflow from different strategies mutating
on to the given strategy and can lead to a strategy looses part of its frequency due to mutations onto other
strategies. The gain is on average given by αmutn j(t +1) which happens with probability pmut ∑ j∈Na p j→i,
where Na is the number of active strategies and

p j→i =
e
−|i− j|2

2∆2

√
2π∆2

(6.33)

is the probability of i mutating into j (and viceversa). A fraction of players αmut are lost, which happens
with probability pmut . We therefore get the mean field description as

ni(t +1)' ni(t)+

(
∑

j
Ji jn j(t)−∑

jk
Jikni(t)nk(t)

)
ni(t)

+pmutαmut

(
∑

j
n j(t)p j→i−ni(t)

)
. (6.34)

We now bravely reduce Eq. (6.34) to a one dimensional map intending to capture the evolution of the
occupancy of a single strategy as it evolves and interact with all other strategies and arrive at

n(t +1) = n(t)+ J1n2(t)+ J2n3(t)+αn(t). (6.35)
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Here J1 represent the average effect of the Ji jn j(t) term in Eq (6.34), J2 the effect of the Jikni(t)nk(t) term
and α sums up the effect of the last term in the equation. This mean field equation is of the same form as

xk+1 = f (xk) = xk +δxk(1− xk)[S+(1−T −S)xk], (6.36)

with α = δS, J1 = δ (1−T − 2S) and J2 = δ (1−T − ST ). This map has been studied in detail in [70].
Note we have included a factor δ (omitted in [70]) to represent the size of the time step when going from
Eq. (1) to Eq. (2) in Ref. [70]. Here we simply present simulations in Fig. 6.8 to demonstrate that the map
can reproduce behavior very similar to the simulation of the full model.
The fact that the intermittency of the high dimensional Replicator Model with Mutations may be qualita-
tively related to tangent bifurcation of a one dimensional map encourage us to discuss in the next section
a similar strategy of dramatic dimensional reduction for the fully stochastic Tangled Nature model. The
Tangled Nature model is a model of evolutionary ecology, which studies the macro-dynamics emerging
from the dynamics of individual agents, co-evolving in a web of mutual interactions. The systemic level
dynamics exhibit intermittency. The model was introduced in [55, 56] and since then, the model frame-
work has been used by several authors see e.g. [57–61]. A summary of some of the models features and
predictions can be found in [50].

Model of successive bifurcations
A simple nonlinear dynamical model is capable of imitating some features of the macroscopic dynamics
described above [66]. This model makes use of families of chaotic attractors near tangent bifurcations
present in low-dimensional iterated maps that display intermittency of type I [51]. These families can
be taken from those occurring in quadratic maps, such as the quadratic logistic map, fν(x) = 1− νx2,
−1 ≤ x ≤ 1, 0 ≤ ν ≤ 2. The dynamics at the vicinity ν . ντ of the tangent bifurcation at ν = ντ dis-
plays intermittency. That is, the map trajectories consist of quasi-periodic motion interrupted by bursts
of irregular behaviour. The iteration time duration of the quasi-periodic episodes increases as the tangent
bifurcation is approached. At the tangent bifurcation the duration of the episodes diverges and the motion
becomes periodic.
A phenomenological procedure for generating successive qESS with durations obtained from the criteria
given by Eq. (12) is briefly described as follows [66]. First choose a control parameter value ν0 just left
of a window of periodicity τ0 of the logistic map with tangent bifurcation at ντ0 , δν0 ≡ ν0− ντ0 . 0.
When the map trajectory with initial condition x0 comes out of the bottlenecks formed by f (τn)(x) and
the identity line to experience a chaotic burst before it is re-injected close to the bottlenecks. The map
trajectory evolves in this environment (performing one or more holdup passages and re-injections) until a
set of two stochastic conditions is fulfilled, in which case another control parameter value ν1 is generated
just left of a window of periodicity τ1 with δν1 ≡ ν1− ντ1 . 0, and so on for n = 2,3, . . .. These two
conditions refer to exceedances associated with two random variables δ1 and δ2, distributed by a uniform
and a normal distribution, respectively. The conditions are δ1 > Γ1 and δ2 > Γ2 where Γ1 and Γ2 are two
prescribed thresholds. Only when the two thresholds are overcome simultaneously the control parameter
value is changed to that of a different window, otherwise the trajectory remains close to the same window.
The two implemented thresholds correspond to critical values of the imbalances referred after Eq. (6.30),

δ1 =
k
N J̃−µ

p2
kill(1−P0)

and δ2 =
k

2N (J̄− J̃)
p2

kill(1−P0)
. (6.37)
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Depending on the threshold values one obtains different dynamical patterns. When the values of Γ1 and
Γ2 are small only one or at most a few bottleneck passages take place before there is a change of periodic
window. When these values are large the number of bottleneck passages is large before there is a change
in periodic window, an indication that the system is robust to environmental variations. The dynamical
properties of the model are sensitive to the imbalances represented by δ1 and δ2 and this sensitivity rep-
resents evolutionary changes. The repetition of this prescription leads to the dynamical behavior shown
in Fig. 6.9 that can be compared with that obtained from the TaNa model in Fig. 6.1. The quasi-periodic
episode of period τn is identified with the quasi stable co-existence of n species for a time period Tn in the
TaNa model and the chaotic burst at its ending leads to some extinctions and new mutated species of the
following quasi-stable configuration.

Conclussions
We have considered two related high-dimensional model systems designed to represent evolving ecolog-
ical systems where agents or strategies are species that undergo reproduction, death or mutation. One of
them, the TaNa model is a fully stochastic model, whereas the other, a game-theoretic adaptation of the
former, contains both deterministic and stochastic elements. Both models have been shown to display
non-stationary intermittent behavior on macroscopic (many individual generation) time scales. Given that
these model systems show macroscopic collective behavior reminiscent of low-dimensional nonlinear in-
termittency, we have attempted to extract from them expressions for simple nonlinear iterated maps by
introducing approximations. The resulting low-dimensional dissipative maps display attractors associated
with intermittency near tangent bifurcations.
The successive simplifications that have been introduced in modeling high-dimensi-onal complex systems
and in exploring their properties follow this scheme: First, the TaNa model was built up by selecting
simple mechanisms at the individual level for ecosystem evolution such as annihilation, reproduction and
mutation to define basic time steps, and then time evolution lets these contribute to form more complicated
interactions at the systems level. Second, the time evolution equations of a mean-field deterministic ap-
proximation of the TaNa model suggest a game-theoretic interpretation that leads to a replication-mutation
model that preserves the non-stationary intermittent behavior for the macroscopic evolution, but permits
considerations in the game theory language of strategies and pay-off values. Third, in discrete time space
the replication-mutation model becomes a CML with stochastic terms so that the characteristics of the
nonlinear maps that constitute it can be inspected. And finally, the latter problem was seen to represent a
two-strategy symmetric game that within a time-discrete version constitutes a one-dimensional map with
two control parameters. This was recognized [70] as a replicator bimodal map that displays the routes to
chaos familiar in unimodal maps that display period doublings, chaotic attractors and intermittency.
Therefore, pending stricter analysis, we preliminarily identify the macroscopic behavior of the high-
dimensional model systems we describe here as composed of (effective) low-dimensional intermittency.
The remarkable collapse of degrees of freedom that this circumstance entails may turn out to be more
general than the few instances in which similar conduct has previously been encountered [65, 71]. This
prospect, and the advance in understanding it delivers, promotes a revitalization of a close relation between
nonlinear dynamical theory and the science of complex systems.
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Figure 6.1: Upper Panel: Total population as a function of time (in generations) for a single realization of
the TaNa model. The punctuated dynamics is clearly visible: quasi-stable periods alternate with periods
of hectic transitions, during which N(t) exhibits large amplitude fluctuations. Lower panel: The average
of the weight function H and the reproduction probability. The parameters are L = 10, pkill = 0.4, pmut =
0.02, µ = 0.007, k = 40 the red line indicates pkill .
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Figure 6.2: The left panel shows the first 67 iterations of the map in Eq. (7.1), with initial condition ∆0 =
−1.2. The corresponding trajectory is shown in the right panel. The set of parameter values is the same
than that as for Fig. 6.1, with the corresponding averaged interactions J̄ ≈ 0.0587 and J̃ ≈ −0.000001,
thus yielding the coefficients of the map b0 ≈ 0.060784, b1 ≈ 1.167990 and b2 ≈ 0.151191.

Figure 6.3: The distribution of factors that enter into the expression Eq. (6.30) for the duration of the qESS.
The J̄ and J̃ are the time averaged during a qESS. The data show is sampled over 4000 qESS realisations.
The parameters for the simulation is the same as in Fig. 6.1
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Figure 6.4: Families of chaotic attractors with interspersed periodic attractor windows for the logistic map
with positions in absolute values, for a range of control parameter values ν . The red lines indicate the
control parameter values that correspond to the segments appearing in Fig. 6.6. The periods associated
with the vertical red lines are, from left to right, 5, 7, 12, 9, 8, 10, 11 and 3.

Figure 6.5: Schematic flow diagram of the algorithm under which the consecutive tangent bifurcation
model operates. The successive values of δνn are estimated via δνn ∼ (Tn)

−2. We have used l = 2 for our
numerical results. See text for description.
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Figure 6.6: Left Panel: Iterated time t evolution of a trajectory generated by the consecutive tangent
bifurcation model. The figure is composed of segments, each of which corresponds to a fixed value of the
control parameter νn close to a tangent bifurcation of a given period τn. The periods of the segments are
consecutively, from left to right, 11, 5, 12, 9,... Positions appear in the figure in absolute values. Iteration
times t would correspond to generations in the TaNa model (as in left panel in Fig. 1). Right Panel: Log-
Log plot of the distribution of durations T of the quasi stationary episodes near the tangent bifurcations
of the phenomenological model. It approximates a power law with exponent −1.87 that resembles the
distribution of qESS episodes obtained from simulations of the TaNa model in Ref. [6].

Figure 6.7: Left panel: occupancy distribution of the types. The genotypes are labelled arbitrarily and a
dot indicates a type which is occupied at the time t (i.e. n(t) > 0). The punctuated dynamics is clearly
visible: quasi-stable periods alternate with brief periods of hectic transitions. Right panel: the frequencies
of the strategies. Each colour belongs to a different strategy. Once again the transitions from one meta
stable configuration (approximate fixed point) to another is clear.
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Figure 6.8: Simulation of the replicator map in Eq. (6.36) near a period five periodic window with control
parameters S = T = 6.5950. Panel (a): The map (Eq. (6.36)) composed five times. Panel (b): Trajectory
obtained from the map without being composed, f (x), showing the laminar episodes separated by chaotic
bursts. Panel (c): Enlargement of the map in (a) showing a local near-tangent piece. See the enclosed
region inside the square in Panel (a). Panel (d): Trajectory obtained form the map f (5)(x) showing the
laminar episodes separated by chaotic bursts. The value of the Lyapunov exponent is λ = 0.001391.
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Figure 6.9: Iterated time evolution of a trajectory generated by the consecutive tangent bifurcation model.
The figure is composed of segments, each of which corresponds to a fixed value of the control parameter
close to a tangent bifurcation, associated with a given period. Within each segment, many laminar episodes
occur separated by chaotic bursts. The periods of the segments are consecutively, from left to right, 8, 7,
9,... Positions appear in the figure in absolute values.
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Part IV

Summary and Discussion
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Chapter 7

Effective behavior in the studied models

In this last chapter, most important results are summarized. As a brief discussion some commentaries
regarding those results are added, and some conjectures I consider valuable for rounding this document
are made. Perhaps these conjectures result to be interesting for future works.

Hence, it is sensible to recall the main items stated in the exposed works:

1. We found low-dimensional dynamical behavior whose statistical description corresponds to long-
standing, quasi-stable crossover distributions existing between gaussian and singular distributions.

2. The loss of correlations between deterministic variables close to the accumulation point of a bifur-
cation cascade implies the validity of the central limit theorem, for dynamics arbitrarily close to this
accumulation point.

3. After applying strong assumptions leading to a mean field calculation over a high-dimensional model
for ecological evolution, we obtained a one-dimensional map close to a tangent bifurcation which
exhibits intermittent behavior. With use of the theory on 1/ f noise developed by Procaccia and
Schuster, we are able to calculate the laminar periods from the parameters of the original TaNa.

4. At the level of the dynamics of population in terms to the replicator equation for each of the species
of the model, after preforming an approximation we get again a map exhibiting type-I intermittency.

5. We studied a dissipative, one-dimensional map for two subsequences of values of its control pa-
rameter. We followed the evolution of the density of an initial uniform ensemble of trayectories
and calculated the corresponding entropy with the Shannon expression. A phase transition occurs in
terms of the thermodynamic (Shannon) entropy, related to a change in the invariant measure induced
by the dynamics of the map.

Some commentaries are in order regarding points 1 and 2. It has been clear since long ago [42] that mixing
is lost at the accumulation point of a bifurcation cascade. As a little accomplishment, here we give more
formal evidence on what until now has only been conjectured and claimed everywere: That ergodicity is
at this point is necessarily also missing. This assumption has been instrumental in many works concerning
the supposed generalizations of statistical mechanics via Tsallis claims.
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Effective degrees of freedom and coarse graining
Points from 3 to 5 can be discussed in terms of the concept of coarse-graining. Coarse-graining is necessary
for building models of nature. Every time we construct a model we are coarse-graining our observations by
reducing the number of variables or the level of detail in the description. This is specially true for complex
systems. As an example, we take the Tangled Nature Model of evolutionary ecology, fully explained
in Part III, that carries with it a heavy coarse graining of the real process of ecological evolution. As a
critique to this model it must be said that it does not incorporate factors considered as fundamental for the
evolution of the great mayority of ecological systems, such as the interaction of members of a species with
themselves, among other considerations that are perhaps more subtle to be treated in this brief conclussion
of my work. Correspondingly, the assumptions made in [66, 72] to derive the mean field map

∆n+1 = b0 +b1∆n +b2∆
2
n ≡ f (∆n), (7.1)

even if reasonable and based on physical intuition about ecology but are rather strong mathematically.
The main assumption is that typical events exist in the space of all possible realizations of the model,
such that a change in the dynamics of the main function H due to a microscopic event (or perturbation),
is guaranteed with probability p. This in turn implies that the impact of the species on the macroscopic
dynamics is homogeneous, which is by no means obvious, on the contrary, it is a strong assumption.
And not only mathematically, it also sounds counterintuitive for an ecologist. Is in that spirit that further
analysis can be performed, assuming some inhomogeinity in the impact of the species. There are other
pending explorations, such as an thorough analysis of the regions on parameter space of the TaNa model
on which this intermittent behavior is allowed to happen ∗.
There is another peculiar occurrence of coarse-graining in our work, that I would consider as ‘induced’ or
natural rather than imposed by some fine-tuned criteria. This is what points 1, 2 and 5 are special about.
According to our findings, there is a separation of time scales: that of the time iteration of the transforma-
tion f (we also used T ) and such that the action of the Frobenius-Perron operator is invariant. This is not
an isolated fact, but a consequence of the underlying dynamics of the map close and on the accumulation
point of the bifurcation cascade. The dynamics on these points becomes fractalized due to the structure of
the attractors, that are actually successive steps on the construction of a Cantor set of infinite scales. The
existence of this time scale and of a ‘quasi-stationary’ state for the action of the Frobenius-Perron operator
strongly suggests that there is some level of coarse graning on the system due to two main facts that I
have identified. First, that finite precision of any numerical calculation prevents the finest description to be
achieved, then, in this sense is that the coarse-grained is induced in the first place. Second, the separation
of time scales invites to think that, among all the different regions on the interval of definition of the trans-
formation f , there begins to emerge a special set of them that are of particular importance when we see the
system in a collective way, by iteratin ensembles of positions and not only observing isolated trajectories.

It is that inspired by those findings and conjectures that I think we can little by little construct a general
theory of complex systems. Perhaps a general understanding and classification of complex systems can be
done if we make the proper questions with the aid of the proper and modern mathematical tools.

∗I want to thank Hugo Hernández for pointing this in our useful discussions.
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[67] D. Piovani, J. Grujić, and H. J. Jensen. Linear stability theory as an early warning sign for transitions
in high dimensional complex systems. Journal of Physics A: Mathematical and Theoretical, 49(29),
2016.

[68] P. D. Taylor and L. B. Jonker. Evolutionary stable strategies and game dynamics. Mathematical
Biosciences, 40(1):145–156, 1978.

[69] K. Tokita and A. Yasutomi. Emergence of a complex and stable network in a model ecosystem with
extinction and mutation. Theoretical Population Biology, 63:131–146, 2003.

[70] D. Vilone, A. Robledo, and A. Sánchez. Chaos and unpredictability in evolutionary dynamics in
discrete time. Physical Review Letters, 107:038101, 2011.

[71] E. Ott and T. M. Antonsen. Low dimensional behavior of large systems of globally coupled oscilla-
tors. CHAOS, 18:037113, 2008.

[72] A. Diaz-Ruelas, H. J. Jensen, D. Piovani, and A. Robledo. Relating high dimensional stochastic
complex systems to low dimensional intermittency. European Physical Journal: Special Topics,
226:341–351, 2017.

74


	Portada 

	Contents
	Part I. Prolegomena 

	Chapter 1. Introduction 

	Chapter 2. Ergodic Theory 

	Chapter 3. Piecewise Monotone Maps of the Interval  

	Part II. Probabilistic and Statistical Approaches  

	Chapter 4. Fokker-Planck Equation and Frobenius-Perron Operator  

	Chapter 5. Sums of Positions and Their Distributions at the Onset of Chaos  

	Part III. Dimensional Reduction in a Model of Evolutionary Ecology 

	Chapter 6. From High to low Dimensions in a Model of Evolutionary Ecology 

	Part IV. Summary and Discussion  

	Chapter 7. Effective Bbehavior in the Studied Models  

	Bibliography



