
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO
POSGRADO EN CIENCIA E INGENIERÍA DE LA COMPUTACIÓN

WAIT-FREE GATHERING PROBLEMS ON
GRAPHS

T E S I S
QUE PARA OPTAR POR EL GRADO DE:

Doctor en Ciencias (Computación)

PRESENTA:
Manuel Alcántara Juárez

TUTORES:
Dr. Sergio Rajsbaum Gorodezky

Instituto de Matemáticas, UNAM

Dr. José David Flóres Peñaloza
Facultad de Ciencias, UNAM

COMITÉ TUTORAL
Dr. Armando Casteñada Rojano

Instituto de Matemáticas, UNAM

Ciudad Universitaria, Ciudad de México, Enero de 2019

UNAM – Dirección General de Bibliotecas

Tesis Digitales

Restricciones de uso

DERECHOS RESERVADOS ©

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea
objeto de protección de los derechos de autor, será exclusivamente para
fines educativos e informativos y deberá citar la fuente donde la obtuvo
mencionando el autor o autores. Cualquier uso distinto como el lucro,
reproducción, edición o modificación, será perseguido y sancionado por el
respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

Presidente: Dr. José David Flores Peñaloza

Vocal: Dr. Sergio Rajsbaum Gorodezky

Secretario: Dr. Armando Castañeda Rojano

1er. Suplente: Dr. José de Jesús Galaviz Casas

2o. Suplente: Dr. Ricardo Marceĺın Jiménez

La tesis se realizó en el Posgrado en Ciencia e Ingenieŕıa de la Computación,
IIMAS, UNAM.

TUTOR DE TESIS:

Dr. Sergio Rajsbaum Gorodezky

———————————————————

Agradecimientos

Sin lugar a dudas, la culminación del presente trabajo no hubiera sido posi-
ble sin el apoyo de todas aquellas personas que directa o indirectamente
contribuyeron durante el desarrollo del mismo. En especial, deseo agradecer
de todo corazón:

A mi madre Teresa Juárez y a mi hermano Daniel Alcántara, por su
apoyo incondicional, por las palabras de aliento cuando las necesitaba y por
haberme siempre impulsado a seguir adelante hasta conseguir este gran logro.

A mi novia Norma Verónica Trinidad Hernández, por haber soportado
de manera titánica todas mis caidas, por los sacrificios que en ocasiones
tuvimos que hacer, pero sobre todo por su gran amor y compresión que aún
en los peores momentos siempre lograban sacar lo mejor de mı́.

A los miembros de mi comité tutoral el Dr. Sergio Rajsbaum Gorodezky,
el Dr. David Flores Peñaloza y el Dr. Armando Castañeda Rojano, por
haberme guiado durante toda esta traveśıa, compartiendo conmigo su expe-
riencia, conocimiento y sus invaluables consejos.

A Luis Chacón Ochoa, por ayudarme a dirigir sin condición alguna
el club PU++ durante mis d́ıas de ausencia, por ser mi amigo y compañero
en la realización de los concursos de programación y por haber compartido
conmigo todas aquellas tardes de juegos memorables.

A mis amigos, Renato Zamudio, Armando Ballinas y Karla Roćıo, por
escucharme y apoyarme siempre que lo necesitaba, y que, aunque cada vez
sea más dif́ıcil coincidir para vernos, siempre tienen un par de minutos para
hacerme réır.

A CONACYT por haberme brindado la oportunidad de realizar todos
mis estudios de posgrado con ayuda de una beca; aśı mismo, al proyecto
UNAM-PAPIIT IN109917 por el apoyo económico para asistir a diversos
encuentros y congresos.

i

Abstract

The Gathering problem in the Look-Compute-Move model for a set of
autonomous robots has been thoroughly studied for over two decades. If the
space is a graph G, it is required that all robots gather in finite time on
the same vertex of G not fixed in advance. Each robot works as follows:
repeatedly Looks at its surroundings to obtains a snapshot containing the
vertices of G, where all robots are located; based on this information, the
robot Computes a destination position (adjacent to its current position)
and then Moves to it.

What would be the effect of requiring termination after a bounded
number of cycles? Namely, we are looking for solutions where each robot
irrevocably decides a vertex of the graph without waiting for the actions of
other robots or waiting that some condition happens. This research studies
the hardness of termination in Gathering type problems.

It first shows that the classic Gathering problem with the termina-
tion requirement is unsolvable by any non-trivial algorithm in the standard
Asynchronous Luminous Robots model (ALR). The impossibility of Gath-
ering exposes a relationship between the ALR model and the asynchronous
crash-prone wait-free multiprocess shared memory (WFSM) model.

Then, we extend the ALR model to encompass crash failures and
asynchronous appearing times. We called this model EALR, and we studied
on it two weaker variants of Gathering with termination: Edge-Gathering
and K-Gathering. We fully characterize the solvability of Edge-Gathering:
it is solvable for three or more robots if and only if the base graph is a tree.
Particular solutions for K-Gathering in some graph families are also provided.

On the computability side, we show that the EALR and WFSM mod-
els are equally powerful to solve general robot tasks on graphs. Using this
equivalence, we derive a full combinatorial topology characterization of the
solvability of general robot tasks in EALR. These results bring together, for
the first time, two areas that have been independently studied for a long time
into a common theoretical foundation.

iii

Contents

Acknowledgments i

Abstract iii

Index of figures vii

1 Introduction 1
1.1 Related Work . 3
1.2 Contributions . 4
1.3 Organization . 7

2 The Hardness of Strong Termination 9
2.1 Asynchronous Luminous Robots 10
2.2 The Gathering problem . 15
2.3 Wait-Free Shared Memory Model 16
2.4 Unsolvability of Gathering with strong termination 17

3 The Extended ALR Model (EALR) 23
3.1 Weakened Gathering type problems 25

3.1.1 Edge-Gathering . 25
3.1.2 K-Gathering . 25

3.2 Algorithm for Edge-Gathering on trees 27
3.3 Algorithms for K-Gathering 35

3.3.1 Solution on trees . 35
3.3.2 Solution on graphs with a dominant vertex 36
3.3.3 Solution when the clique graph (K(G)) is a tree 37

4 Impossibility Results 43
4.1 Robot Tasks . 43
4.2 Equivalence between EALR and WFSM 45

4.2.1 From EALR to WFSM 46

v

4.2.2 From WFSM to EALR 46
4.2.3 The semi-synchronous case 47

4.2.3.1 From EALR to immediate snapshot WFSM . 48
4.2.3.2 From WFSM to semi-synchronous EALR . . 49

4.3 Impossibility of Edge-Gathering 49
4.3.1 Impossibility without the use of lights 50
4.3.2 Impossibility on cyclic graphs 53

4.4 Characterization of solvable Robot Tasks 57
4.4.1 The characterization 57

5 Conclusions 59

List of Figures

2.1 Different labellings on the input graph 10
2.2 Example of the Look operation 12
2.3 Example of a Look-Compute-Move cycle 13
2.4 Wait Free Shared Memory Model representation 17
2.5 Solving Binary Consensus . 20

3.1 K-Gathering problem . 26
3.2 Scenario where Si is different for different robots 28
3.3 Execution and real position definition 28
3.4 Tree TS is a sub-tree of T 0 . 30
3.5 Set of real and computed positions definition 30
3.6 Scenario on the sub-case 2.2.2 of lemma 3.2.4 33
3.7 Scenario on the sub-case 2.3.2 of lemma 3.2.5 34
3.8 Example of clique graph K(G) and the subdivision K ′(G). . . 37
3.9 Mapping restriction from vertices of G to vertices of K(G) . . 39
3.10 Example of an execution of algorithm 6 40
3.11 Proof of the K−Agreement property of algorithm 6 41

4.1 Semi-synchronous version of the EALR model 48
4.2 Impossibility of Gathering . 51
4.3 Mapping vertices of the cycle C to indexes of the shared memory 54
4.4 The wait-free computability Theorem, Fig 11.7 from [1]. . . . 58

vii

Chapter 1

Introduction

Problems of coordination and collaboration among a group of independent
individuals are undoubtedly the object of study in several areas of knowl-
edge. From the distributed computing perspective, in the last years, several
theoretical models have been raised based on mobile robots [2, 3]. The
main challenge is to propose distributed algorithms capable of coordinating
a set of autonomous process units (commonly called robots), which move
over a specific defined space where they communicate and cooperate with
each other to achieve a common goal.

The current research trend in the mobile robots area tries to figure
out what are the minimum robots’ capabilities to solve a certain group of
problems. Usually, models assume a system composed by a set of mobile
robots that execute the same algorithm, and the only way that each of them
has to communicate with others is based on the observation of its surround-
ings and the movement decision that they take as a consequence. So, in this
type of models, robots are silent, meaning that they do not have a direct
way to exchange information, and hence, the algorithms design process is
commonly based on the execution of Look-Compute-Move (LCM) cycles
[4]. Where in each of them, a robot obtains information of its surround-
ings (Look), then it analyzes the data to compute an adjacent position to
its current location, possibly the same (Compute), and finally moves there
(Move).

In some settings, the mere observation of the environment does not
always provide enough information to the robots to solve problems, so that
is why they are endowed with certain capabilities to help them achieve its
goal. For this reason, throughout literature, it is possible to find a wide
range of models that define its own characteristics. Some examples could be

1

CHAPTER 1. INTRODUCTION

orientation: robots share the same coordinate system, or they know where
the cardinal points are; visibility: how much information can be obtained
from the environment (complete or partial); and memory : how much infor-
mation robots could remember. Also, recent papers (e.g. [5, 6]) have begun
to use external lights, which allows robots to transmit additional information
to their current position. And although in principle one could conceive any
capability, what it is sought is that robots be as simple as possible, to be
consistent with any possible real application, where the energy consumption
and the cost per unit are decisive factors.

Among the problems that have received considerable attention in its
study, because it constitutes one of the fundamental primitives principles for
the control and coordination of autonomous mobile robots, is the Gathering
problem [7] (Gathering for two robots is often called rendezvous). In which,
given an initial configuration of N ≥ 2 robots, all of them should occupy a
single vertex in finite time.

Some Gathering solutions have been proposed, in which either the
robots start on a specific initial configuration, or they have more powerful
capabilities (e.g., [7, 8, 9]). However, some of these algorithms do not guar-
antee termination, i.e., each robot never decides a vertex; while others only
guarantee a weak type of termination, in which a robot decides a vertex only if
it detects a particular configuration, for example, the position of other robots
satisfy a given property. On the other hand, few models consider the pres-
ence of faults (e.g., [10, 11]), and in all of them the assumption that robots
move on the plane or their executions are synchronous/semi-synchronous1 is
always present.

Therefore, this work seeks to extend the results on the Gathering
problem considering a strong termination property, in which each robot ter-
minates in finite LCM cycles, regardless of the actions of others. We first
analyze the hardness of termination using the standard ALR (Asynchronous
Luminous Robots) model [4], and later we consider weaker variants of Gather-
ing with termination in a more challenging model that we have called EALR,
where robots can appear asynchronously and might also present a stopping
failure at any moment during the execution. Preliminary results of this work
were presented in [12].

1In semi-synchronous executions, the scheduler repeatedly chooses an arbitrary non-
empty subset of robots which execute their Move-Look steps concurrently.

2

CHAPTER 1. INTRODUCTION

1.1 Related Work

The Gathering problem has been extensively studied from the distributed
computing perspective under the Look-Compute-Move model; mostly in
the plane, assuming synchronous, semi-synchronous and asynchronous mod-
els, and considering a vast range of capabilities such as visibility, anonymity,
shape, memory or orientation. Some surveys can be found at [2, 13, 14, 15,
16].

It has been shown that Gathering is unsolvable for N ≥ 2 robots in
a very restricted model, where robots move on the plane, are anonymous,
asynchronous, disoriented, unable to remember events in the past, without
multiplicity detention and starting in arbitrary positions [17]. The main
reason is that robots do not have any way to distinguish between similar
situations, so it is possible to create scenarios where, repeatedly, robots de-
tect each other, exchange positions and leave the state of the system in a
symmetrical configuration, this without finishing in the same place.

On the other hand, favorable results have been reported if some as-
sumptions about the robot’s capabilities are made. For example, surprisingly,
the Gathering problem is solvable for N > 2 robots if they are allowed to
detect multiplicities, i.e., they can identify the number of robots located in
a specific location [7]. Also, it is possible to solve Gathering if robots are
allowed to make decisions based on past events [9]. Likewise, the use of a
compass also let them gather in the same place, even if robots have limited
visibility of their environment [8].

When working on graphs, the Gathering problem has been mostly
studied in rings, where several papers have analyzed all the initial asymmetric
configurations, detecting the scenarios where it is possible to find a solution
[18, 19, 20]. Additional results working on grids [21, 22] or in the case with
only two robots (Rendezvous) [4, 23, 24, 25] can also be found.

On the other hand, the case of study where robots might fail has al-
ready been taken into consideration [10, 11, 26, 27], investigating mainly two
possibilities: stop failures and Byzantine failures. In the first one, robots
stop their activity entirely and terminate their execution prematurely, re-
maining immobile in the place where the crash occurred. While in the sec-
ond, robots perform malicious behaviors that could influence the decisions of
others. In both cases, the solutions demand that the robots that do not fail

3

CHAPTER 1. INTRODUCTION

must succeed in solving the problem, regardless of the behavior of those with
a malfunction. For example, a fault-tolerant algorithm for converge (robots
never reach the same point) is shown in [28] under a configuration without
termination, using the center of gravity, or also called the center of mass, of
the group of robots.

Recently, a small extension has started to be considered, in which
robots use lights to communicate additional information of their current po-
sition [5]. Under this variant, it is known that two robots can solve Gathering
in the plane, using only two lights and starting in arbitrary positions [24];
however, the algorithms are not fault-tolerant.

A similar model where Gathering has been studied is the one based
on agents. In this setting, there are N programs that live inside of a net-
work. Different from the robot models, the agents cannot perform a Look
operation to perceive all the environment. Usually, each agent explores the
graph to save its topology locally, and each one has a unique label that
shares with other agents when they meet on the same node or by writing it
on a persistence storage inside each node. For more references, see for ex-
ample [29, 30, 31, 32, 33], where Gathering and similar problems are studied
from the agents perspective, considering crash or Byzantine failures, or even
asynchronous starting/appearing times.

1.2 Contributions

The main goal of this research is to study the hardness of achieving strong
termination on the Gathering problem for the standard ALR model, where
robots are fully asynchronous, anonymous, oblivious, disoriented, without
detecting multiplicities, moving on the vertices of a connected simple graph,
running the same deterministic algorithm (uniform) and empowered with
lights to communicate with each other.

Since robots are asynchronous in ALR (thus delays are unpredictable
and arbitrarily long), the strong termination property guarantee that each
robot terminates in a fixed number of LCM cycles, regardless of the delays
of other robots. That means, a robot cannot wait for others’ actions to ter-
minate (see for example [34], where a robot ends its algorithm only when
the light of the other robots shows a specific color). Observe that the defi-
nition of Gathering does not require that robots irrevocably make a decision

4

CHAPTER 1. INTRODUCTION

when they gather, it is only expected that eventually, they arrive at the same
vertex in finite time.

Hence, our first contribution shows that Gathering with strong ter-
mination is unsolvable by any non-trivial algorithm (namely, one in which
robots gather on a non-fixed vertex) in ALR, even if robots have strong capa-
bilities, like having an unbounded number of lights, share the same labeling of
the graph, being non-anonymous or non-oblivious. Interestingly, this result
is obtained by reducing the fundamental Binary Consensus problem in crash-
prone asynchronous multiprocess shared memory systems into the Gathering
problem in ALR. Then, the well-known impossibility of Binary Consensus im-
plies the impossibility of Gathering with strong termination. This reduction
shows an interesting connection between asynchronous mobile robot models
and the asynchronous multiprocess shared memory model.

Later, we study a novel and challenging extension of the ALR model
that we called EALR (Extended Asynchronous Luminous Robots), where
robots might also present a crash failure, and we consider a new property in
which it is not necessary that all the robots start its execution at the same
time. That means that robots might appear unexpectedly in any vertex of
the graph or disappear in the case of failure without interfering in the general
solution of the problem. More in detail, in the EALR model a subset of robots
asynchronously join the computation, and moreover, some of them may never
appear due to crash failures. Remarkably, there are executions in EALR that
cannot happen in ALR, even if this is extended to include crash failures. For
example, due to the combination of the strong termination property and the
asynchronous appearing times, it is possible that a “fast” robot runs several
(even all) of its LCM cycles alone, without seeing any other robot. To the best
of my knowledge, the study of a model that links these three particularities
(strong termination, failures and asynchronous appearing times) is explored
for the first time in this work.

Since Gathering with termination is unsolvable by any non-trivial al-
gorithm in the ALR model, it is also unsolvable in the more challenging
EALR model either. Following in the same direction, we then relax the re-
quirement that robots should gather exactly in the same vertex to consider
two weakened Gathering type problems with strong termination in EALR:
Edge-Gathering and K-Gathering. In the Edge-Gathering problem robots
are required to move to vertices of the same edge; while in the K-Gathering
problem robots are required to move to a subset of vertices of the same
complete subgraph. We considered these problems because it is natural to

5

CHAPTER 1. INTRODUCTION

think that although robots are not in the same vertex, they are close enough
between them.

We first show that lights are needed in order to solve Edge-Gathering
for N ≥ 3 robots whenever diam(G) ≥ 3. With the help of the lights, we
present an algorithm that solves Edge-Gathering on any tree. Furthermore, if
the graph G has at least one cycle, then Edge-Gathering becomes unsolvable,
even if robots have stronger capabilities. With these results we can fully
characterize Edge-Gathering: it is solvable on a graph G if and only if G is
a tree. Then, we proved that K-Gathering is solvable using lights on any
graph whose related clique graph is a tree, and it is also solvable without
lights on any graph with at least one dominating vertex. Observe that the
last algorithm shows a separation between Edge-Gathering and K-Gathering.
Because, while the first one is unsolvable without lights for any non-trivial
graph (i.e., diam(G) ≥ 3), the second is solvable without lights in some
graphs.

Our impossibility result of Edge-Gathering in presence of cycles, ex-
poses a strong connection between EALR and the standard asynchronous
multiprocess crash-prone Wait-Free Shared Memory model (WFSM): if robots
can use an unbounded number of lights then the two models are equally
powerful to solve general robot tasks on graphs (which include Gathering,
Edge-Gathering, and K-Gathering with strong termination). This equiva-
lence between EALR and WFSM uncovers an intimate connection between
EALR and topology, where powerful topological techniques have been used
in the past two decades in the study of fault-tolerant distributed comput-
ing, and in particular in WFSM (see textbook [1]). Using this connection,
we derive a full combinatorial topology characterization of the solvability of
general robot tasks in EALR.

Finally, while our algorithms work in the fully asynchronous model,
our impossibility results remain even if the model is semi-synchronous (where
the scheduler repeatedly chooses an arbitrary non-empty subset of robots
which execute their Move-Look steps concurrently, e.g. [35]). We uncover
a direct link between the semi-synchronous robot model and the immediate-
snapshot model, that is significant in shared-memory computing [1]. Our
results show that the asynchronous and semi-synchronous models are equally
powerful when robots might appear asynchronously.

6

CHAPTER 1. INTRODUCTION

Problem in
EALR

Robots Graph Solvability

Gathering N ≥ 2 Connected
Unsolvable: In ALR and EALR,
even with stronger capabilities.
Theorem 2.4.1.

Edge-
Gathering

N ≥ 2 Tree
Solvable: diam(T)− 1 rounds
and light colors. Theorem 3.2.1.

N ≥ 3 Connected with
diam(G) ≥ 3

Unsolvable: Without lights.
Theorem 4.3.2.

N ≥ 3 With a cycle
Unsolvable: Even with
unbounded lights. Theorem 4.3.4.

K-Gathering

N ≥ 2 Tree
Solvable: diam(T)− 1 light
colors and rounds. Corollary 3.3.1.

N ≥ 2 With a dominating
vertex

Solvable: Without lights and 1
round. Theorem 3.3.1.

N ≥ 2 The clique graph of
G is a tree

Solvable:
4 ·diam(K(G)) · |V (G)| · |V (K(G))||
lights and
2 · diam(K(G)) + diam(G) rounds.
Theorem 3.3.2.

N ≥ 3 diam(G) ≥ 3 and
no triangles

Unsolvable: Without lights.
Corollary 4.3.1.

N ≥ 3 With cycles and no
triangles

Unsolvable: Even with
unbounded lights. Theorem 4.3.5.

Table 1.1: Summary of positive and impossibility results presented in this
research.

1.3 Organization

The organization of this work is divided into 5 chapters. In Chapter 2, we
prove that the Gathering problem with strong termination is unsolvable on
the ALR model, even if robots have stronger capabilities. We first introduce
the standard model for asynchronous robots with lights (ALR) and then we
study the relation of Gathering with strong termination from the wait-free
read/write shared memory model perspective, reducing it to the Binary Con-
sensus problem. Next, Chapter 3 extends the ALR model to consider crash

7

CHAPTER 1. INTRODUCTION

failures and asynchronous appearing times, calling this new model EALR.
Also, we present weakened Gathering types problems: Edge-Gathering and
K-Gathering. And later, we introduce some algorithms for the solvable cases.
Chapter 4 shows our impossibility results and presents a solvability charac-
terization for general robot tasks. It also shows that the EALR and its
semi-synchronous variant are equivalent. Finally, Chapter 5 concludes this
thesis with final remarks and some future work.

8

Chapter 2

The Hardness of Strong Termination

In this chapter, we will show that Gathering with strong termination is un-
solvable by any non-trivial algorithm in the ALR model, even if robots have
stronger capabilities, like an unlimited amount of local memory, unbounded
number of light colors or sharing a common labeling of G. Since robots are
asynchronous in ALR (thus, delays are unpredictable and arbitrarily long),
the strong termination property guarantees that each robot terminates in a
bounded number of its LCM cycles, regardless of the delays of other robots.
That means, a robot cannot wait that some condition happens in order to
terminate. Weaker termination properties have been studied in literature,
where a robot ends its execution when it detects a “good” configuration
(e.g., [36]); however, for that to happen, a robot has to wait for others to do
something.

Generally speaking, the impossibility result comes from a reduction
from the well-known Binary Consensus problem in the multiprocess asyn-
chronous shared memory model to the Gathering problem in ALR. This
reduction highlights one of the main contributions of this research: there
is a connection between asynchronous robot models and the standard asyn-
chronous wait-free shared memory (WFSM) model with crash failures. As
we will see, this connection opens the possibility to import all the results
developed for decades in the WFSM model to use them in ALR. Moreover,
on chapter 3 we will extend the ALR model to make it equivalent to WFSM,
proving that one can go back and forth between models.

9

CHAPTER 2. THE HARDNESS OF STRONG TERMINATION

2.1 Asynchronous Luminous Robots

We consider the usual Look-Compute-Move (LCM) model of asynchronous
robots (in literature is usually found as ASYNC [37]), moving on the vertices
of a simple connected graph G (e.g. [38]), and extended with the possibility of
robots communicating using lights [34]. We called this model Asynchronous
Luminous Robots (ALR).

More in detail, the ALR model is a distributed system formed by a
group of N ≥ 2 autonomous computational entities called robots, denoted
by p1, p2, . . . , pN . Each robot is a simple state machine that executes a de-
terministic algorithm A in asynchronous way, so the actions of each robot
happen at unpredictable moments of time. Hence, there is no concept either
of a global clock or a central control unit.

Initially, all the robots reside over the graph G in an inactive state,
and at arbitrary times (due to the asynchrony), the robots start executing
the same algorithm A, which receives for each robot pi the graph G = (V,E)
and a vertex vi; that represent the definition of the space where the robots
are allowed to move and the initial vertex where pi will start the execution of
A. Although all the robots know the graph G, it is assumed that they do not
share a common labeling, either on the vertices or edges of G (disoriented).

Figure 2.1: All robots know the input graph G, but they do not share the
same labeling, either on the vertices or edges of G.

The robots are modeled as points without volume, so it is possible that
more than one occupies the same vertex at the same time without this coming
to represent some blockage or interference between them. Also, robots are
anonymous an identical, so, there are not unique identifiers in the system, and

10

CHAPTER 2. THE HARDNESS OF STRONG TERMINATION

it is impossible to distinguish two different robots only by their appearance.

Each robot has the following theoretical devices to interact with others
and with the environment:

• A motor: to move over the vertices of the graph.

• An external visible light: which can show a constant number of colors
associated with an integer value. Each light is visible to all the robots,
even in the scenarios where the positions of three or more of them are
collinear. The use of this external light gives to each robot the ability
to transmit more information that only its actual position [5].

• A set of cameras: able to detect the positions and the light color of all
the active robots in the system.

Definition 2.1.1. The state of a robot is a tuple made of the state of its
local state machine A (which encodes its local variables, current vertex, etc.)
and an integer value associated to its light.

Definition 2.1.2. The initial state of a robot is composed by the initial
state of A and its light equal to a predefined value.

The way in which robots exchange information is silent, meaning that
there is no direct communication between them, i.e., the communication
occurs implicitly only by looking at other robots’ positions and its lights
values. The actions that each robot can perform are based on the following
interface of operations:

• Look(G): Examines atomically (in a single instant of time) every ver-
tex in the graph G to obtain a set of pairs (v, q) that denotes the
existence of at least one active robot on the vertex v, whose light is
showing color q. Also, due to the possibility that more than one robot
could be in the same vertex v showing in their light the same value
q, the Look operation will contemplate in its result only a single pair
(v, q). That means, in ALR is not possible to detect multiplicities, so,
a robot can only detect the existence of other with state (v, r), but it
could not know exactly how many of them are in the same situation.
See figure 2.2 for clarity.

• Compute(view): According to the specification of a deterministic al-
gorithm and based on the information returned by the Look operation,
each robot pi performs a local computation to decide a pair (v, r), where
v is an adjacent vertex to its current position (possible the same) and r

11

CHAPTER 2. THE HARDNESS OF STRONG TERMINATION

is the value to show in its light; pi changes to this new local state when
it executes its next Move operation. Although the computational
complexity of this process has not been established, it is assumed that
always produces a result in a bounded period of time.

• Move(u, r): The robot that invokes this operation standing on vertex
x moves immediately to vertex u and sets its light to value r, where
u must be an adjacent vertex to x (or equal to x) and r is a non-
negative value. If none of this conditions holds, then the operation
is not performed, and the robot remains in its previous state. This
operation moves the robot atomically, independently of the distance
between adjacent vertices.

Figure 2.2: Although there are six robots in the system, the Look operation
invoked by the blue robot returns a set of only four pairs. Observe that there
are two robots with the same state on vertex r.

Robots move onG from vertex to vertex operating in Look-Compute-
Move (LCM) cycles, where in each of them, a robot pi Looks at its sur-
roundings to collect information from the environment (such as the positions
of other robots). Then, based on this information, pi Computes a desti-
nation vertex (adjacent to its current position) and then Moves to it. The
model is asynchronous, so, robots do not have a common notion of time, and
each one runs at its own speed. Namely, a scheduler decides, at any moment,
the robot that will execute its next operation, which depending on the state

12

CHAPTER 2. THE HARDNESS OF STRONG TERMINATION

of the robot, it will be either a Look, Compute or a Move operation. Also,
robots are unable to remember events made in the past; hence, in each cycle,
the Compute operation will only depend on the information obtained by
the Look operation, namely, robots are oblivious.

Figure 2.3: Example of a LCM cycle: the blue robot detects the other one,
computes the pair (z, 1) and finally moves there, setting its light to value one.

Definition 2.1.3. A configuration of the system is an N -vector containing
the state of robot pi in its i-th entry.

Definition 2.1.4. An initial configuration is a configuration in which all
the robots are in their initial states.

Definition 2.1.5. A robot performs a step when it executes one of its
available operations, either Move or Look, and then changes its local state.

Definition 2.1.6. An execution E is an infinite alternating sequence of
configurations and steps E = C0 s0 C1 . . ., where C0 is an initial configuration
and Ck+1 is the configuration obtained by applying step sk to configuration
Ck. To represent an execution, we will use an infinite time-line containing
all the events made by the robots.

Definition 2.1.7. The state machine of a robot pi models a local algorithm
Ai that determines the next step of pi.

Definition 2.1.8. A robot algorithm is a collection A of local algorithms
A1, . . . ,An. As said above, all Ai are identical.

Algorithm 1 illustrates a general algorithm in the ALR model. Bear
in mind that, due to the asynchronous nature of the robots, it is possible

13

CHAPTER 2. THE HARDNESS OF STRONG TERMINATION

that between the Look and Compute steps (lines 5 and 7) there could
be concurrent operations of other robots. This implies that a robot pi could
compute its next state with information that does not necessarily correspond
to the current state of the system. This uncertainty is the one that sometimes
makes difficult to prove that any given algorithm is correct.

In summary, in the ALR model robots are: uniform, silent, anony-
mous, identical, asynchronous, oblivious, rigid, disoriented, without detect-
ing multiplicities and with a constant number of light colors.

Algorithm 1 General algorithm in the ALR model. Code for robot pi,
where G = (V,E) is an arbitrary graph and vi ∈ V .

1: procedure Algorithm(G, vi)
2: viewi ← {}
3: while true do
4: // An oblivious algorithm does not store previous events
5: viewi ←Look(G)
6: // pi computes its next state
7: (vi, ri)← Compute(viewi)
8: // pi moves to vertex vi and sets its light to ri
9: Move(vi, ri)

10: end while
11: end procedure

Finally, we will be interested in algorithms in which each robot irre-
vocably decides a vertex on the graph. Formally, in a robot algorithm with
strong termination, in every execution, every robot reaches a decision state;
such that, once the robot enters to that state it never moves to a different ver-
tex or change its light value (the robot still executes LCM cycles afterward,
but it moves to the same vertex and sets its light to the same value). We say
that a robot decides the vertex in which is standing on when it reaches a deci-
sion state. Typically, return instructions in the pseudo-code of an algorithm
represent decision states. Moreover, decision states are well identified in the
local state machine that every robot follows, thus, given an algorithm with
termination, it is possible to determine when a robot has made a decision.

14

CHAPTER 2. THE HARDNESS OF STRONG TERMINATION

2.2 The Gathering problem

In the well-known Gathering problem (without strong termination), robots
start at any arbitrary position, and it is required that in finite time, all of
them meet at the same location not fixed in advance. This problem for two
robots is also known as rendezvous.

In the case where the robots move on the plane and no assumptions are
made on its capabilities, i.e., robots are oblivious, disoriented, asynchronous,
anonymous, without multiplicity detection, then Gathering is impossible for
N ≥ 2 robots [17]. However, the problem starts becoming solvable if some
additional capabilities are added to the robots. For example, Gathering is
solvable if robots can detect multiplicities [7], or have a compass [8], or can
store previous events (non-oblivious) [9].

As a mere exercise, we can trivially solve Gathering, even without
lights, if we allow robots to share the same vertex labeling. For instance,
Algorithm 2 shows one possible solution that works as follows: in each round,
each robot obtains the set of positions where all robots are standing, and
then, it moves in the direction towards the vertex with the minimum label
in the view. In this way, the sequence of local minimums that are considered
during an execution is monotonically decreasing. Therefore, since the vertices
in the input graph are finite, at some point, a robot will reach the vertex with
the global minimum of all the views, and this is going to be the vertex where
all the robots meet.

Algorithm 2 Converge for N ≥ 2 robots on any connected graph G = (V,E). Code for robot pi.

Function Convergence(vi, G)

1: loop
2: viewi ← Look(G)
3: // pi moves in the direction of the vertex with the minimum label in the view
4: localMinimumi ← the vertex with minimum label in viewi.
5: vi ← some closest vertex to localMinimumi.
6: Move(vi)
7: end loop

Take into consideration that in the previous algorithm, robots cannot
just meet on the vertex with the minimum label, because by definition, the
gathering vertex cannot be fixed in advance. Also, observe that although
robots gather on the same vertex in a finite time, individually, they do not
“know” when that happens, because it is always possible that a robot dis-
covers a new vertex with a lower label, which would be the new meeting
point.

15

CHAPTER 2. THE HARDNESS OF STRONG TERMINATION

As we can see, if robots share the same vertex labeling, it is relatively
easy to solve Gathering, mainly because the definition itself does not require
that each robot irrevocably decides a vertex at some point during the execu-
tion, so robots could change its decision at any time. But, in a real scenario,
where robots perform a sequence of tasks and Gathering is only one of them,
it is not enough to say that robots will gather in finite time, it would be
desirable to know in advance how many LCM cycles each robot will execute.

Our definition of Gathering with strong termination is the following:

Definition 2.2.1 (Gathering with strong termination). In the Gathering
problem with termination on a simple graph G, each robot starts on a vertex
of G and executes its code, so that the following three properties are satisfied:

• Termination: Every robot decides a vertex of G in a bounded number
of its LCM cycles, regardless of the delays of other robots.

• Validity: The decided vertex of a robot cannot be fixed in advance.

• Agreement: All decided vertices are the same.

What would the effect of modifying the Gathering problem to require
strong termination be? Can Algorithm 2 or any of the known algorithms
be changed so that strong termination is guaranteed? As we will see in the
next sections the answer to this question is no, even if robots have powerful
capabilities, such as the use of IDs or the possibility to detect multiplicities.

2.3 Wait-Free Shared Memory Model

The Wait-Free Shared Memory (WFSM) models a multiprocess architecture
where asynchronous crash-prone processes communicate through an array
M of shared memory registers by applying atomic read/write operations. In
more detail, the WFSM system consists of N ≥ 2 asynchronous processes
(state machines), denoted by q1, q2, . . . , qN , where at most N − 1 of them
may fail by crashing (when a process crashes it stops executing steps). Each
register M [i] has associated with process qi, where only this one can deposit
a value executing a Writei(x) operation, but it can read the entire array M
atomically using a Snapshot 1.

1We could have instead assumed that a process can only atomically read individually
shared registers because it is known that it is possible to implement an atomic Snapshot
in a wait-free manner from read/write operations (see for example [39, 40]).

16

CHAPTER 2. THE HARDNESS OF STRONG TERMINATION

Since there are at most N−1 failures and processes are asynchronous,
they run a wait-free algorithm, intuitively, the code of a process cannot
include instructions that wait for a read/write operation of other process.
We refer the reader to standard books (e.g. [39, 40]) for a full description of
the model.

Figure 2.4: In the WFSM model, N ≥ 2 processes communicate through an
array M of shared memory registers. Each process qi has associated with the
register M [i], where only qi can deposit a value, but it can read the entirely
array M atomically with a Snapshot operation.

2.4 Unsolvability of Gathering with strong

termination

The next simple lemma exhibits a link between ALR and WFSM.

Lemma 2.4.1. Let A be any algorithm in the ALR model. Then, A can be
simulated in the WFSM model in a wait-free manner (i.e., tolerating up to
N − 1 crash failures), and the simulation can start at any configuration of
A.

Proof. To simulate A from a configuration C in the WFSM model, each
process qi simulates step by step the code of algorithm A for robot pi, and
decides whatever pi decides in the resulting simulated execution (if A satisfies
termination).

To do that, first each entry M [i] of the WFSM model is initialized with the
tuple (vi, ri) that corresponds to the state of pi in C, namely, its position

17

CHAPTER 2. THE HARDNESS OF STRONG TERMINATION

and light value. Intuitively, at any time, the i-th entry of the shared array
M will contain the visible state of robot pi. Next, we need to specify how
processes can simulate the atomic Move and Look operations of the ALR
model as Write and Snapshot operations of the WFSM model.

To simulate a Move(vi, ri) operation, process qi simply executes
Writei((vi, ri)); namely, it atomically writes the pair (vi, ri) into M [i]. On
the other hand, to simulate a Look(G) operation, process qi takes an atomic
snapshot of M , i.e., it executes the Snapshot(M) operation and returns the
set of pairs (vj, rj) that it detected in the array M .

The simulation is correct because as already argued, processes in the WFSM
model can atomically simulate the Move and Look operations in ALR.

Once established a connection between models, we can now show a
relationship between Gathering with strong termination and the well-known
Binary Consensus problem, which is one of the fundamental problems in the
theory of concurrent computing.

Definition 2.4.1 (Binary Consensus). In the Binary Consensus problem [41],
each of N ≥ 2 processes starts with a private input w ∈ { 1, 2 } and decides
a value, such that the following properties are satisfied:

• Termination: Every correct process decides a value.

• Validity: Every correct process decides a value that is proposed by
at least one process.

• Consensus-Agreement: All decided values are the same.

Given an algorithm with strong termination in the ALR model, we
say that an execution starting at a configuration C (possibly a non-initial
configuration) is pi-solo if robot pi is the only one taking steps from the
beginning of the execution (starting at C) until it decides, and then the other
robots take steps. Since robots are deterministic, in every pi-solo execution
starting at C, pi must decide the same vertex and do so after taking the same
number of steps.

Definition 2.4.2. We say that a Gathering algorithm with strong termi-
nation has the solo-trivial property, if for every configuration C there is
a vertex û, such that for every robot pi, it decides û in a pi-solo execution
starting at C.

18

CHAPTER 2. THE HARDNESS OF STRONG TERMINATION

Observe that in an algorithm with the solo-trivial property, for every
initial configuration and every execution of the algorithm starting at that
configuration, the robots decide the same vertex. Thus, in that sense, such
an algorithm is trivial. An example of algorithm with the solo-trivial property
could be the one that works on graphs with only one dominating vertex v̂,
where all the robots (without even communication) move directly to that
vertex.

Lemma 2.4.2. Let A be an algorithm for N ≥ 2 robots in the ALR model.
Suppose that A satisfies the Termination and Agreement properties of
the Gathering problem with strong termination [2.2.1]. If A does not have
the solo-trivial property, then the Binary Consensus problem is solvable by
two processes in the WFSM model.

Proof. Since A does not have the solo-trivial property, there exists at least
one configuration C, such that, there is a pair of distinct robots r1 and r2,
and two distinct vertices x1 and x2 of G, satisfying that for each i ∈ {1, 2},
in a ri-solo execution starting at C, ri decides xi. Observe that C is not
necessarily an initial configuration of A.

Now, using A, Algorithm 3 below solves the Binary Consensus prob-
lem for two processes in WFSM. The basis of the solution is that processes
simulate A starting from C using the result of Lemma 2.4.1. Process qi sim-
ulates robot ri with i ∈ {1, 2}. Note that there might be more than two
robots in C (i.e., A might be designed for more than two robots); however,
the simulation only simulates two of them, r1 and r2. Thus, the executions of
A starting at C are simulating, in which only r1 and r2 take steps until they
decide while all other robots remain static. It is guaranteed that at some
point on the execution r1 and r2 will decide a vertex, because A satisfies the
Termination property.

Claim: Algorithm 3 solves the Binary Consensus problem for 2 processes.
To prove it, we need to show that the algorithm satisfied each property of
the Binary Consensus problem:

- Termination: Clearly, each correct process terminates because there
are no loops in the algorithm and every correct process simulating a
robot in A eventually decides a vertex in the simulation, due to the
Termination property.

- Validity: By contradiction. Suppose first that process q1 returns a
value that has not been proposed. Thus, q1 must read the value in
M [2] in line 9 before q2 executes line 2. Now, observe that the only

19

CHAPTER 2. THE HARDNESS OF STRONG TERMINATION

Algorithm 3 Binary Consensus for N = 2 processes tolerating one failure.
Code for process qi.
Function BinaryConsensus(i, w)

1: // Variable i corresponds to the ID of the respective process in the WFSM model.
2: M [i]← w
3: // Process qi simulates robot ri
4: v ← Decision of ri in the simulation of A starting from C
5: // x1 is the decided vertex in the r1-solo execution starting at C
6: if v = x1 then
7: return M [1]
8: else
9: return M [2]

10: end if

way in which q1 could return M [2] is if it gets a vertex v 6= x1 after
simulating A. But that implies that the process did not simulate a
r1-solo execution of A starting from C. Thus, both processes q1 and q2
participated concurrently in the simulation, and then q2 executed line
2 before q1 executed line 9, which is a contradiction.

The other case when process q2 returns a value that has not been pro-
posed is analogous.

- Consensus-Agreement: SinceA satisfies the Agreement property
of Gathering with strong termination, in every execution all correct
processes get the same vertex from it. Therefore, all of them decide
the same value.

Figure 2.5: If we suppose that there exists an algorithm A that solves the
Gathering problem with strong termination, then, we can use it to solve the
Binary Consensus problem in the WFSM model, simulating two robots and
mapping vertex v1 to value 1 and the rest of the vertices to value 2.

20

CHAPTER 2. THE HARDNESS OF STRONG TERMINATION

Theorem 2.4.1. The Gathering problem with strong termination is unsolv-
able by any algorithm in the ALR model, even if robots have powerful capa-
bilities, such as, unbounded number of light colors, non-oblivious or sharing
the same labeling of G.

Proof. The Validity property of the Gathering problem with termina-
tion guarantee that robots cannot fixed in advance the vertex where they
gather, so, that implies that any algorithm solving the problem does not
have the solo-trivial property. Thus, if there is such an algorithm in ALR,
then by Lemma 2.4.2, the Binary Consensus for two processes is solvable in
WFSM. That is a contradiction, since Binary Consensus is impossible in that
model [39].

It is worth to observe that the impossibility of Gathering with strong
termination does not come from the capacities of robots (number of lights or
amount of local memory), the common information they have (orientation,
labeling, etc.), or from the fact that we are working on graphs, as essentially
the same definitions can be stated for Gathering algorithms with termination
on the plane, and the same result holds. The impossibility comes from the
validity condition in the statement of the problem. As an example, consider
the following version of Gathering.

Definition 2.4.3 (Gathering with same-vertex-validity). In the Gathering
problem with the same-vertex-validity on a graph G, each robot starts
on a vertex of G and executes its code, so that the following three properties
are satisfied:

• Termination: Every robot decides a vertex of G in a bounded number
of its own LCM cycles, regardless of delays of other robots.

• Validity: If all robots start on the same vertex v, then every decided
vertex is v.

• Agreement: All decided vertices are the same.

Observe that the only thing that we have modified is the Validity
property, and with that change the very definition of the problem implies
that any algorithm solving it does not have the solo-trivial property, and
thus the reduction in Lemma 2.4.2 implies that Gathering with the same-
vertex-validity is impossible on any non-trivial graph.

Corollary 2.4.1. The Gathering problem with the same-vertex-validity is
unsolvable in the ALR model on any non-trivial graph, even if robots are

21

CHAPTER 2. THE HARDNESS OF STRONG TERMINATION

non-oblivious, share the same labeling of the graph, are able to detect mul-
tiplicities and possess an unbounded number of light colors.

Hence, although it is possible to solve the Gathering problem without
termination using more powerful capabilities or restricting the initial configu-
rations, the simple fact of demanding strong termination makes the problem
unsolvable as long as the solo-trivial property does not hold, and the rea-
son is that any solution to Gathering implies also a solution for the Binary
Consensus problem.

In the light of this result, a natural question that arises is if there exists
weakened Gathering type problems for which it is possible to achieve strong
termination. In the rest of the paper, we will study two weaker variants of
Gathering with strong termination that are not only solvable in ALR; they
are solvable by a more challenging and novel model in which robots might
crash and appear asynchronously at any time on the execution. In fact,
this model turns out to be equivalent to WFSM, and the impossibility of the
problems on some graphs will be obtained by using fundamental impossibility
results in that model.

22

Chapter 3

The Extended ALR Model (EALR)

In this chapter, we extend the ALR model to encompass crash failures and
asynchronous appearing times, calling this new model EALR. Later, we show
that the weakened Gathering problems, Edge-Gathering and K-Gathering,
with strong termination can be solved not only in ALR but also in the more
challenging EALR model.

More in detail, in the extended version of ALR model (EALR) we
consider three additional assumptions:

1. Robots might present a stopping failure at any time during the execu-
tion (same as in [11, 42, 43]), from which it never recovers, causing the
robot to stop its movement, but leaving visible at all time the last value
set on its light. Therefore, it is not possible for a robot to distinguish
between one that is very slow of another that has presented a failure.

2. Robots may use an unbounded number of light colors. Namely, a robot
can show any positive integer on its light.

3. We lift an assumption made in almost all previous work: we do not
require that all robots must be present initially. Thus, robots may
appear in (not necessarily distinct) vertices of G at any time. Some
robots may never appear due to the crash failures (hence, never seen by
other robots), and once a robot is placed on a vertex, it starts running
its local algorithm asynchronously together with the other robots. We
call this property Asynchronous Appearing Times .

One point that we want to highlight is that although in EALR the
light of a crashed robot is still visible for all active robots, our algorithms
can tolerate robots disappearing after crashing, i.e., the scheduler decides
that the last step of a faulty robot is a Move operation setting its light to

23

CHAPTER 3. THE EXTENDED ALR MODEL (EALR)

a negative value.

It is considered that initially all robots are inactive, and none of them
is present in the graph. To model the asynchronous appearing times of each
robot, we use the lights in the following way: the initial light value is set to
−1, symbolizing the fact that its participation in the execution has not yet
begun, and it remains invisible to other robots. At the moment that pi sets
its light to a non-negative value, then it becomes visible to the others, and
we say that pi is an active robot.

Definition 3.0.1. A robot is inactive if the value set in its light is negative;
otherwise, it is said that the robot is active .

Observe that initially all robots are inactive, thus, the first action
that each of them must perform is a Move operation (since it is the only
instruction that modifies the state of the light) with its initial vertex and
its light set to a non-negative value. Also, it should be remarked that the
Look operation is modified to discards the state of any robot whose light is
showing a negative value (those that are inactive).

If the lights are unnecessary to solve a problem (we allow robots to
solve problems without the help of lights), we will consider a single fictitious
light that merely models when a robot starts executing its algorithm and
becomes visible, whose value will always be 0 once the robot is active. Note
that with the previous assumption, it is straightforward to simulate models
where robots have no lights, or they are visible since the begging of the
execution (with synchronous appearing times), only be initializing the light
of every robot to 0 instead of −1.

Same as in the WFSM model, EALR considers that the number of
robots that may fail in every execution is at most N − 1; thus, robots run
a wait-free algorithm. Take into consideration that as N − 1 robots might
crash without becoming active, the solo executions are possible, where only
one robot runs its algorithm without detecting any other until it decides.

Definition 3.0.2. We will say that a robot is correct if by extending its
execution indefinitely it performs an infinite number of steps. Otherwise, it
is a crashed robot.

24

CHAPTER 3. THE EXTENDED ALR MODEL (EALR)

3.1 Weakened Gathering type problems

In this section, we will analyze two weaker Gathering type problems with ter-
mination: Edge-Gathering and K-Gathering. In which the Validity prop-
erty prioritizes the idea of closeness: if robots start on a “small region”, they
should stay there. In the first problem, robots decide vertices that either are
the same or belong to the same edge. While in second, robots are required
to decide vertices that are at a distance of at most one (hence, they decide
vertices of a complete subgraph).

3.1.1 Edge-Gathering

In the Edge-Gathering problem, we allow robots to swarm at the same vertex
or vertices belonging to the same edge. Formally:

Definition 3.1.1. In the Edge-Gathering problem on a graph G, each
robot starts with a vertex of G and executes its code, so that the following
three properties are satisfied:

1. Termination: Every correct robot decides a vertex of G.

2. Validity: If all active robots start on the same vertex v, then every
decided vertex is v. If the initial vertices of the active robots cover an
edge e, then every decided vertex is a vertex of e.

3. Edge-Agreement: All decided vertices belong to the same edge.

Unexpectedly, even if we allow robots to end up close enough to each
other, the Edge-Gathering problem remains unsolvable in EALR if the base
graph has a cycle (Theorem 4.3.4). However, in the next sections, we present
an algorithm to solve it on any tree using diam(G)− 1 light colors and LCM
cycles. Also, we prove that Edge-Gathering is unsolvable unless lights are
available for communication (Theorem 4.3.2).

3.1.2 K-Gathering

An interesting observation in the Edge-Gathering problem that must be high-
lighted is that if all pairs of robots decide vertices at a distance at most one,

25

CHAPTER 3. THE EXTENDED ALR MODEL (EALR)

then the Edge-Agreement property is not necessarily satisfied. Let’s take
for example an execution with three robots on a graph G that contains K3

(complete graph with three vertex), where each robot decides different ver-
tices of K3. See figure 3.1.

Although it is clear that the Edge-Agreement property is not ful-
filled in the previous scenario, the result does not seem negligible, because
although the robots are not on the same vertex or the same edge, they are
very close among them. So, with this in mind, we want to present an even
weaker version of Gathering, which generalizes the Validity property: if
robots start in a “small enough region”, they should stay there. Observe
that Edge-Gathering and K-Gathering are the same problems for two robots.
Also, note that every solution to Edge-Gathering also solves K-Gathering,
while the opposite might not be true.

Definition 3.1.2. In the K-Gathering problem on a graph G, each robot
starts with a vertex of G and executes its code, so that the following three
properties are satisfied:

• Termination: Every correct robot decides a vertex of G.

• Validity: If all of active robots start on a set of vertices of a complete
subgraph, then every decided vertex must belongs to that set.

• K-Agreement: All decided vertices belong to the same complete sub-
graph.

Figure 3.1: If the figure represents the initial positions of the robots and we
want to solve the K-Gathering problem, then any subset of { a, b, c } is a valid
final positions of the robots.

26

CHAPTER 3. THE EXTENDED ALR MODEL (EALR)

3.2 Algorithm for Edge-Gathering on trees

Algorithm 4 solves Edge-Gathering for N ≥ 2 robots on any tree T . The
general idea is that every robot goes through a sequence of diam(T) − 1
rounds. In every round, a robot pi uses its light to announce its round number
and atomically collects (in viewi using a Look operation) the position and
the state of the light of all active robots in the system. Then, pi considers the
set Si containing its current vertex vi and the positions of robots executing
the maximal round (max roundi), these vertices define a subtree Ti of T .
Later, if vi is a leaf of Ti then pi moves one step inside Ti, otherwise it does
not move. Intuitively, robots in maximal rounds are the leaders, and indicate
to the rest where to gather.

Algorithm 4 Edge-Gathering algorithm for N ≥ 2 robots on any tree T = (V,E). Code for robot pi.

Function EdgeGatheringTree(vi, T)

1: // pi becomes visible to the others
2: Move(vi, 0)
3: for ri ← 1 to diam(T)− 1 do
4: // position and light color of all active robots
5: viewi ← Look(T)
6: max roundi ← max{rj : (∗, rj) ∈ viewi}
7: // positions of robots in maximum round and pi’s position
8: Si ← {vj : (vj ,max roundi) ∈ viewi ∨ vj = vi}
9: // subtree induced by positions in Si

10: Ti ← smallest subtree of T spanning all vertices in Si

11: if vi is a leaf of Ti ∧ diam(Ti) > 0 then
12: vi ← vertex of Ti that is adjacent to vi
13: end if
14: // pi makes visible its new position and updates its color light
15: Move(vi, ri)
16: end for
17: return vi

Although Algorithm 4 is simple its behavior is not, due to the combi-
nation of asynchrony, distinct appearing times and failures. For example, in
a given execution, due to asynchrony, two robots could compute their next
vertices using the same maximal round, but with very different sets of po-
sitions; moreover, a robot could compute its next position considering only
crashed robots. Such difficulties make the correctness of the algorithm far
from trivial. Notice that in Algorithm 4 robots do not share any labeling or
orientation of T .

Now, we need to prove that each property (Termination, Validity
and Edge-Agreement) of the Edge-Gathering problem holds.

Lemma 3.2.1. Algorithm 4 satisfies the Termination property of the Edge-
Gathering problem.

27

CHAPTER 3. THE EXTENDED ALR MODEL (EALR)

Figure 3.2: Scenario where different robots compute the same maximum
round but with very different sets Si. The nodes within the blue frame corre-
spond to the subtree Ti of the blue robot; analogous to the others.

Proof. Algorithm 4 contains only one loop controlled by variable ri, that
it is never altered inside the loop, so, every robot runs exactly diam(T)− 1
rounds and then it decides a vertex. Therefore, the Termination property
is satisfied.

The proof of Lemma 3.2.2 shows that Algorithm 4 satisfies the Va-
lidity property of Edge-Gathering. Actually, proves a stronger property:
the decision of a robot belongs to the subtree spanning the initial positions
of all the active robots. In other words, if T 0 is the minimum subtree of T
generated by the initial vertices of all the active robots, then the final vertices
of the correct robots belong to T 0. Note that T 0 is an abstract concept, since
it may not exist during the execution of the algorithm. Subsequent lemmas
use the following notation.

Definition 3.2.1. Let α′ be a prefix of an execution α. The real position
of a robot pi in α′ is the vertex belonging to the last Move operation made
by pi in α′.

Figure 3.3: The execution α contains all the steps made by the robots. The
vertex x in the red step corresponds to the real position of the blue robot
under the prefix α′.

28

CHAPTER 3. THE EXTENDED ALR MODEL (EALR)

Definition 3.2.2. For every local variable xi of pi, x
r
i,α′ will denote the value

of xi in round r in a prefix α′. With this notation, v0i,α′ is the initial vertex
of pi. When α′ is understood it is omitted from the subscript.

Lemma 3.2.2. Let α be any execution of Algorithm 4. We claim that for
every prefix α′ of α and for every active robot pi in α′, T 0 contains the real
position of pi in α′.

Proof. We prove the claim by strong induction over the steps in α′.

Base Case: |α′| = 1. Hence, α′ contains only one step, that must be
Move(vi, 0) for some robot pi. The claim holds as the current value of vi
corresponds to the initial vertex of pi.

Inductive Hypothesis: Suppose that the claim holds for the prefix α′.

Inductive Step: We will show that the claim holds when one more step is
executed, namely, α′ · e.

Case 1: e = Look or Compute
Then, all the real positions are the same, both in α′ and α′ · e. Hence, the
claim holds by I.H.

Case 2: e = Move(vi, ri)

Sub-case 2.1: ri = 0
The claim holds, because the current value of vi corresponds to the
initial vertex of pi, and the claim holds for every prefix of α′ by I.H.

Sub-case 2.2: ri ≥ 1.
By I.H. we know that all the real positions contained in α′ belong to
T 0, so we just need to prove that vi ∈ T 0. Now, to compute vi, pi uses a
set of vertices S = {u1, . . . , ux} which is a subset of the vertices that it
collects in its r-th round. Observe that for every u ∈ S there is a prefix
α′′ of α′ such that u is the real position of a robot pj, and then, by I.H.
u ∈ T 0. Hence, if TS represents the smallest subtree of T spanning the
vertices in S, we have that TS ⊆ T 0, because if we suppose that there
exists a vertex of TS that is not contained in T 0, then there would be a
cycle in T , contradicting the hypothesis that T is a tree (See figure 3.4).
Finally, following the pseudo-code of the Algorithm 4, or pi does not
move or it moves one step forward to the center of TS. In both cases,
vi ∈ T 0.

29

CHAPTER 3. THE EXTENDED ALR MODEL (EALR)

Figure 3.4: TS represents the smallest subtree of T spanning the vertices in
S. We have that TS ⊆ T 0.

Lemma 3.2.3. Algorithm 4 satisfies the Validity property of Edge-Gathering.

Proof. If the initial vertices of all active robots are the same or they cover an
edge, then by lemma 3.2.2 it is known that every decided vertex belongs to T 0,
which implies that the Validity property of Edge-Gathering is satisfied.

The hardest part of the correctness proof of Algorithm 4 is showing
the Edge-Agreement property, that it is based on Lemma 3.2.4 below.
Which roughly speaking, shows that as rounds go by, positions of robots are
not far away from each other.

Figure 3.5: The last event of the red robot in α′ is a Look operation, which
implies that it has two positions, a real one highlighted in an orange frame
and a computed one in the green frame. The other robots only have a real
position.

Due to the Look and Compute operations only modify the internal
state of a robot, we are going to assume without loss of generality that both

30

CHAPTER 3. THE EXTENDED ALR MODEL (EALR)

instructions are performed atomically, since from that moment the following
state of pi is completely defined. So, if the last operation of a robot pi in
a prefix α′ is its Look operation of the r-th round, we will say that pi has
a real position in vertex vr−1i and a computed one in vri (See figure 3.2.3).
Otherwise, pi will have only one real position. It should be noted that the
computed position of pi only exists in its local variables and therefore is
unknown to all other robots.

Definition 3.2.3. Given a prefix α′ of an execution α, pos(α′) denotes the
set of both real and computed positions of all the active robots in α′.

Lemma 3.2.4. Let α be any execution of Algorithm 4. We claim that for
any prefix α′ of α and for any pair of position vri , v

m
j ∈ pos(α′) it holds that:

dist(vri , v
m
j) ≤ diam(T)−min(r,m)

Proof. By strong induction on the steps included in α′.

Base Case: |α′| = 1. Hence, α′ contains a single step, which must be
Move(vi, 0) for some robot pi. In this case, there is only one active robot in
α′, so pos(α′) = { v0i }. Thus, the claim of the lemma clearly holds for α′.

Inductive Hypothesis: Suppose that the claim holds for prefix α′.

Inductive Step: We need to prove that the claim still holds when one more
step is performed, namely, α′ · e.

Case 1: e = Move(vi, r)

Sub-case 1.1: r = 0
The positions of α′ ·e are all the positions of α′ and v0i (which is the real
position of pi), i.e., pos(α′·e) = pos(α′)∪{ v0i }. For any two positions in
pos(α′) the claim holds by I.H, and for v0i and any position vmj ∈ pos(α′)
we have that dist(v0i , v

m
j) ≤ diam(T) ≤ diam(T)−min(0,m) because

both v0i and vmj are vertices of T and 0 ≤ m ≤ diam(T)− 1 because m
is a valid round number.

Sub-case 1.2: r ≥ 1
Then the last step of pi in α′ is the Look operation of the r-th round.
Hence, in α′, vri is the computed position of pi and vr−1i is the real one.
Then, in α′ · e the computed position simply becomes real replacing
vr−1i , i.e., pos(α′ · e) = pos(α′) \

{
vr−1i

}
. Thus, by I.H. the claim holds

for α′ · e.

31

CHAPTER 3. THE EXTENDED ALR MODEL (EALR)

Case 2: e = Lookr+1
i (T)

Observe that the last step of pi in α′ is the Move operation of the r-th
round, hence, vri is its real position in α′. Thus, the positions in α′ · e are
all the position of α′ together with vr+1

i , which is the computed position of
pi, i.e., pos(α′ · e) = pos(α′) ∪

{
vr+1
i

}
. By I.H. the claim holds for any

two positions in pos(α′). Thus, we only need to show that dist(vr+1
i , vmj) ≤

diam(T)−min(r + 1,m) for any (real or computed) position vmj ∈ pos(α′).

Sub-case 2.1: dist(vr+1
i , vmj) < dist(vri , v

m
j)

(2) dist(vri , v
m
j) ≤ diam(T)−min(r,m) I.H.

(3) dist(vr+1
i , vmj) < diam(T)−min(r,m) (2.1) and (2)

Sub-case 2.1.1: (4) r ≥ m
(5) min(r,m) = m From (4)
(6) min(r + 1,m) = m From (4)
(7) dist(vr+1

i , vmj) < diam(T)−m (3) and (5)

(8) dist(vr+1
i , vmj) ≤ diam(T)−min(r + 1,m) (7) and (6)

Sub-case 2.1.2: (4) r < m
(5) min(r,m) = r From (4)
(6) min(r + 1,m) = r + 1 From (4)
(7) dist(vr+1

i , vmj) < diam(T)− r (3) and (5)

(8) dist(vr+1
i , vmj) ≤ diam(T)− r − 1 (7) and Prop. <

(9) dist(vr+1
i , vmj) ≤ diam(T)−min(r + 1,m) (8) and (6)

Sub-case 2.2: dist(vr+1
i , vmj) > dist(vri , v

m
j)

Then pi moved to an adjacent vertex with vr+1
i 6= vri and (vri , v

r+1
i) ∈ E.

Thus, the conditions in line 11 of algorithm 4 was satisfied. Therefore,
diam(T r+1

i) > 0 and vri is a leaf in T r+1
i .

Sub-case 2.2.1: vmj ∈ T r+1
i

As vri is a leaf of T r+1
i and vmj ∈ T r+1

i , the only situation that
leads to have (2.2) is that vri = vmj . Thus, dist(vri , v

m
j) = 0 but as

(vri , v
r+1
i) ∈ E then dist(vr+1

i , vmj) = 1 ≤ diam(T)−min(r+1,m),
because 0 ≤ m, (r + 1) ≤ diam(T) − 1 due to m and (r + 1) are
valid round numbers.

Sub-case 2.2.2: vmj /∈ T r+1
i

So that the position of pj is not found in T r+1
i , it means that

vmj /∈ Sr+1
i , which indicates that pi had to see at least another

robot running a round equal to or greater than m, depending
on whether vmj is a real or computed position. Therefore, m ≤
max roundr+1

i = `. On the other hand, as diam(T r+1
i) > 0 and

32

CHAPTER 3. THE EXTENDED ALR MODEL (EALR)

dist(vr+1
i , vmj) > dist(vri , v

m
j), then there exits at least one leaf

v`k ∈ T r+1
i such that vr+1

i ∈ Path(v`k, v
m
j), which implies that

(1) dist(vr+1
i , vmj) ≤ dist(v`k, v

m
j) (See figure 3.6). Observe that

v`k ∈ pos(α′).

Figure 3.6: As vmj /∈ T r+1
i then there exits at least one leaf

v`k ∈ T r+1
i such that vr+1

i ∈ Path(v`k, v
m
j)

Sub-case 2.2.2.1: (2) r ≥ m
(3) min(r + 1,m) = m From (2)
(4) dist(vr+1

i , vmj) ≤ dist(v`k, v
m
j) From (1)

(5) dist(v`k, v
m
j) ≤ diam(T)−min(`,m) I.H.

(6) dist(v`k, v
m
j) ≤ diam(T)−m (5) and ` ≥ m

(7) dist(v`k, v
m
j) ≤ diam(T)−min(r + 1,m) (6) y (3)

(8) dist(vr+1
i , vmj) ≤ diam(T)−min(r + 1,m) (4) and (7)

Sub-case 2.2.2.2: (2) r < m
(3) min(r + 1,m) = r + 1 From (2)
(4) dist(vr+1

i , vmj) ≤ dist(v`k, v
m
j) From (1)

(5) diam(T)−m ≤ diam(T)− (r + 1) From (2)
(6) dist(v`k, v

m
j) ≤ diam(T)−min(`,m) I.H.

(7) dist(v`k, v
m
j) ≤ diam(T)−m (6) and ` ≥ m

(8) dist(v`k, v
m
j) ≤ diam(T)− (r + 1) (7) y (5)

(9) dist(v`k, v
m
j) ≤ diam(T)−min(r + 1,m) (8) and (3)

(10) dist(vr+1
i , vmj) ≤ diam(T)−min(r + 1,m) (4) and (9)

• Sub-case 2.3: dist(vr+1
i , vmj) = dist(vri , v

m
j)

Note that this case only happens when vr+1
i = vri , i.e., pi did not move,

so at least one of the two conditions in line 11 of Algorithm 4 was not
fulfilled. Therefore, diam(T r+1

i) = 0 or vri is not a leaf in T r+1
i with

diam(T r+1
i) ≥ 2 (it is necessary at least 3 vertices in T r+1

i so that vri is
not a leaf).

Also, observe that if r ≥ m, then min(r,m) = m = min(r + 1,m) and
dist(vr+1

i , vmj) = dist(vri , v
m
j) ≤I.H. diam(T)−min(r,m) = diam(T)−

m = diam(T)−min(r + 1,m).

33

CHAPTER 3. THE EXTENDED ALR MODEL (EALR)

Thus, assume that r < m, then min(r,m) = r, min(r + 1,m) =
r + 1 and diam(T) −m ≤ diam(T) − (r + 1). By I.H. dist(vri , v

m
j) ≤

diam(T) − min(r,m) = diam(T) − r. In what follows we show that
dist(vr+1

i , vmj) ≤ diam(T)−min(r + 1,m) = diam(T)− (r + 1).

Sub-case 2.3.1: diam(T r+1
i) = 0

- If vmj ∈ T r+1
i then vmj = vr+1

i . Therefore, dist(vr+1
i , vmj) = 0 ≤

diam(T) − (r + 1) because (r + 1) is a valid round number and
0 ≤ (r + 1) ≤ diam(T)− 1.
- If vmj /∈ T r+1

i but vm−1j ∈ T r+1
i , then vm−1j = vr+1

i with dist(vr+1
i , vm−1j)

= 0, but as dist(vm−1j , vmj) = 1 we have dist(vr+1
i , vmj) = 1 ≤

diam(T) − (r + 1) because (r + 1) is a valid round number and
0 ≤ (r + 1) ≤ diam(T)− 1.
- If vmj /∈ T r+1

i and vm−1j /∈ T r+1
i , it was because pi detected at

least one robot pk over a vertex v`k executing a round greater to
or equal to m (depending on the real position of pj). Hence, ` =
max roundr+1

i ≥ m and m = min(`,m). Now, as diam(T r+1
i) = 0

we have that v`k = vr+1
i , thus dist(vr+1

i , vmj) = dist(v`k, v
m
j) ≤I.H.

diam(T)−min(`,m) = diam(T)−m ≤ diam(T)− (r + 1).

Sub-case 2.3.2: vri is not a leaf in T r+1
i and diam(T r+1

i) ≥ 2.
Due to pj is an active robot its real position (vmj or vm−1j) must

be in viewr+1
i and hence ` = max roundr+1

i ≥ m− 1.
On the other hand, as vri is not a leaf its degree in T r+1

i is at
least 2, then there exists a vertex v`k belonging to a robot pk
that is a leaf in T r+1

i where vr+1
i ∈ Path(v`k, v

m
j) (See figure 3.7).

Figure 3.7: If vri is not a leaf in T r+1
i then there exists a vertex

v`k such that vr+1
i ∈ Path(v`k, v

m
j).

Observe that vr+1
i 6= v`k, hence dist(vr+1

i , vmj) < dist(v`k, v
m
j) and

by I.H. dist(v`k, v
m
j) ≤ diam(T) −min(l,m). Now, as r ≤ (m −

1) ≤ min(l,m) then diam(T) − min(l,m) ≤ diam(T) − r, thus

34

CHAPTER 3. THE EXTENDED ALR MODEL (EALR)

dist(vr+1
i , vmj) < dist(v`k, v

m
j) ≤ diam(T)−r. Finally, dist(vr+1

i , vmj) ≤
diam(T)− (r + 1)

Lemma 3.2.5. Algorithm 4 satisfies the Edge-Agreement property of
Edge-Gathering.

Proof. Consider any execution of Algorithm 4, and let α be any prefix of
it in which every non-faulty robot has decided. Let v

diam(T)−1
i , v

diam(T)−1
j be

the real positions in α of two non-faulty robots pi and pj. Then, v
diam(T)−1
i

(resp. v
diam(T)−1
j) is the decision of pi (resp. pj). By Lemma 3.2.4:

dist(v
diam(T)−1
i , v

diam(T)−1
j) ≤ 1

which implies that the decided vertices of pi and pj are at distance at most 1.
Finally, observe that all decided vertices cover a vertex or an edge, because
T is a tree and it has no triangles.

Theorem 3.2.1. Algorithm 4 solves Edge-Gathering in the EALR model
for N ≥ 2 luminous, oblivious and anonymous robots, on any tree T in
diam(T) − 1 rounds using diam(T) − 1 distinct light colors and tolerating
N − 1 crash failures.

Proof. The proof follows directly from lemmas [3.2.1, 3.2.3, 3.2.5]

3.3 Algorithms for K-Gathering

In this section, we expose three algorithms to solve the K-Gathering problem
on particular graph families. The first solves the problem on any tree. The
second one works on graphs with at least one dominating vertex. And the
last one deals with graphs whose related clique is also a tree.

3.3.1 Solution on trees

Corollary 3.3.1. Algorithm 4 solves the K-Gathering problem in the EALR
model for N ≥ 2 luminous, oblivious and anonymous robots, on any tree T
in diam(T)− 1 rounds using diam(T)− 1 distinct light colors and tolerating
N − 1 crash failures.

35

CHAPTER 3. THE EXTENDED ALR MODEL (EALR)

Proof. Theorem 3.2.1 shows that Algorithm 4 solves the Edge-Gathering
problem on trees. But, observe that in the case of trees, the Edge-Gathering
and K-Gathering problems are equivalent: a tree has no triangles, hence, if
the robots’ decisions are at distance 1, then all of them must belong to the
same edge. Thus, Algorithm 4 also solves K-Gathering on trees.

3.3.2 Solution on graphs with a dominant vertex

Algorithm 5 solves K-Gathering for N ≥ 2 robots on any connected graph G
with at least one dominating vertex. The algorithm works as follows: every
robot simply collects the positions of all active robots and decides its initial
position if it sees no conflict (i.e., all vertices belong to the same complete
graph). Otherwise, it moves to any dominating vertex and decides it.

Observe that in Algorithm 5 robots do not use lights to communicate
information, but lets remember that there is always a fictitious light that it
is used only to indicate the participation of the robot on the execution.

Algorithm 5 K-Gathering algorithm for N ≥ 2 robots on any connected graph G =
(V,E) with a dominating vertex v̂. Code for robot pi.

Function KGatheringDominatingVertex(vi, G)

1: // pi becomes visible to others
2: Move(vi)
3: viewi ← Look(G)
4: // if pi sees a conflict
5: if ∃vj ∈ viewi such that dist(vi, vj) ≥ 2 then
6: // pi moves to some dominating vertex v̂
7: vi ← v̂
8: // pi makes visible its new position
9: Move(vi)

10: end if
11: return vi

Lemma 3.3.1. Every execution of Algorithm 5 satisfies the Termination
property of the K-Gathering problem.

Proof. Algorithm 5 terminates because it does not contain any loop, so
every correct robot decides a vertex in one LCM round.

Lemma 3.3.2. Every execution of Algorithm 5 satisfies the Validity prop-
erty of the K-Gathering problem.

36

CHAPTER 3. THE EXTENDED ALR MODEL (EALR)

Proof. If the initial positions of all active robots belong to the same complete
subgraph, then the distance between any pair of positions is at most one.
Thus, the condition in line 5 is not satisfy and no robot executes line 7.
Therefore, all decided vertices belong to the initial subgraph.

Lemma 3.3.3. Algorithm 5 satisfies the K−Agreement property of the
K-Gathering problem.

Proof. Due to G has at least one dominating vertex, the diameter of G is
at most 2. And two robots cannot decide vertices at distance 2, because the
robot that takes the last snapshot among them will notice that there is a
conflict and will move to one of the dominating vertices. Therefore, any pair
of robots ends in the same complete subgraph.

Theorem 3.3.1. Let G be a graph with at least one dominating vertex, then
K-Gathering is solvable in the ALR model for N ≥ 2 oblivious and anony-
mous robots on G in only 1 round, without the use of lights and tolerating
N − 1 crash failures.

Proof. The proof follows directly from lemmas [3.3.1, 3.3.2, 3.3.3]

3.3.3 Solution when the clique graph (K(G)) is a tree

The clique graph of G, represented by K(G), is the graph whose vertices
are the maximal complete subgraphs of G, and there is an edge between
two vertices if the intersection of the corresponding graphs is non-empty.
Formally, the clique graph of G is the graph K(G) = (VK , EK) with VK =
{Kx : Kx is a maximal complete subgraph of G} and EK = {(Kx, Ky) :
V (Kx) ∩ V (Ky) 6= ∅}. See figure 3.8 for an example of a clique graph.

Figure 3.8: Example of clique graph K(G) and the subdivision K ′(G).

Let K ′(G) be the graph obtained from K(G) by subdividing each of its
edges: every (Kx, Ky) ∈ E(K(G)) is replaced with (Kx, Kxy) and (Kxy, Ky)

37

CHAPTER 3. THE EXTENDED ALR MODEL (EALR)

in K ′(G), where Kxy is the complete subgraph defined by the intersection of
Kx and Ky. Thus, every vertex of K ′(G) is a complete subgraph of G. For
example, in figure 3.8 the upper green vertex corresponds to the intersection
of the two completed K3 graphs, while the other intersects the lower K3

graph with K2.

Remark 1. If K(G) is a tree then K ′(G) is a tree. Also, diam(K ′(G)) ≤
2 ∗ diam(K(G)) and |V (K ′(G))| ≤ 2 ∗ |V (K(G))|.

In what follows we prove that algorithm 6 solves the K-Gathering
problem for N ≥ 2 robots on any graph G whenever K(G) (the clique graph)
is a tree. The idea behind of the algorithm is that robots simulate Algorithm 4
over the graph K ′(G). In the simulation, robots do not actually move, they
simple announce in their lights where they move in the simulation. Finally,
to solve K-Gathering on G every robot computes its decision based on the
result of the simulation and then moves towards it. To do that, robots use any
pair of functions fin : V (G) → V (K(G)) and fout : V (K ′(G)) → V (G) such
that every v ∈ V (G) belongs to the subgraph fin(v), and for every subgraph
K ∈ V (K ′(G)), fout(K) is a vertex of K. The aim of these functions is
to transform inputs for K-Gathering on G to inputs for algorithm 4, and
outputs of that algorithm to outputs for K-Gathering on G. Note that the
codomain of fin is V (K(G)) because we want to map each vertex of G to a
maximal complete subgraph of G containing that vertex. See figure 3.10 for
an example of the application of the functions.

Lemma 3.3.4. Function fin can only map each vertex v ∈ V (G) to at most
two different and adjacent vertices in K(G).

Proof. By contradiction. Suppose that there exists a vertex v ∈ V (G) such
that function fin can map v to three or more vertices in K(G) and let C1, C2

and C3 any three of those vertices. By definition of fin, v must be a vertex
of the maximal subgraphs represented by C1, C2 and C3, and by definition
of K(G) there must be an edge between all of these vertices (See figure 3.9).
Thus, K(G) contains K3. Contradiction!, because K(G) is a tree. Therefore,
function fin can map vertex v to at most two vertices of K(G).

Now, observe that by definition of K(G), if some vertex v can be mapped
to two different vertices x, y ∈ V (K(G)) by function fin, then x and y must
be adjacent. Because, by definition of fin, v must appears in the maximal
complete subgraphs x and y, and hence, there must be an edge connecting
them.

38

CHAPTER 3. THE EXTENDED ALR MODEL (EALR)

Figure 3.9: Each vertex v ∈ V (G) can only be mapped by function fin to
at most two adjacent vertex in K(G), because if we assume the opposite then
K(G) contains a cycle.

Algorithm 6 K-Gathering algorithm for N ≥ 2 robots on any connected graph G =
(V,E) whose clique graph K(G) is a tree. Code for robot pi.

Function KGatheringCliqueTree(vi, G, fin, fout)

1: // pi becomes visible to others
2: Move(vi, vi|⊥|⊥)
3: /* pi simulates algorithm 4 over the subdivision of the clique graph and stores the

result vertex
4: ui ← Simulate EdgeGatheringTree(fin(vi),K

′(G))
5: /* pi stores the value of its light, because it will start moving but it cannot change the

status of its light because it is possible that other robots are still simulating algorithm 4
*/

6: ri ← light value of pi
7: /* pi gets the initial positions of the robots to decide the complete subgraph where to

move. Observe that we need to retrieve the initial positions of the robots through the
light because it is possible that some robots are currently moving on the graph */

8: Si ← { wi : (∗, wi | ∗|∗) ∈ Look(G) }
9: /* Instead of applying fout directly, pi first checks is there is an initial position of a

robot that belongs to the subgraph ui. This instruction is to guarantee the Validity
property*/

10: if exists an initial position wi ∈ Si such that wi belongs to the complete subgraph ui,
i.e. wi ∈ V (ui) then

11: xi ← wi

12: else
13: xi ← fout(ui)
14: end if
15: // pi moves until it reach the decided vertex
16: while xi 6= vi do
17: vi ← closest vertex to xi
18: /* Observe that while pi is moving to the decided vertex, it conserves the status

of its light, to be according to those robots that are in the simulating phase */
19: Move(vi, ri)
20: end while
21: return vi

To perform the simulation of Algorithm 4, the light’s value of each
robot pi will be divided in three parts. The first one will permanently show

39

CHAPTER 3. THE EXTENDED ALR MODEL (EALR)

its input vertex vi (hence, |V (G)| light colors are needed), the second part
will show the vertex where pi is standing on in the simulated graph K ′(G)
(2 ∗ |V (K(G))| additional light colors) and the last one will store the round
number of the simulated algorithm 4 (at most 2 ∗ diam(K(G)) light colors).

Figure 3.10: Example of an execution of Algorithm 6. Letters A,B and C
represent the positions of active robots.

Lemma 3.3.5. Every execution of Algorithm 6 satisfies the Termination
property of the K-Gathering problem.

Proof. We know that every invocation of Algorithm 4 always terminates.
On the other hand, we know that vertex xi ∈ V (G) because both wi and
fout(ui) are vertices of G. Hence, if pi is not in xi then it moves to one vertex
closest to it, and due to G is connected, at some moment pi will reach xi.
Therefore, the loop in line 15 always terminates and algorithm 6 satisfies the
Termination property.

Lemma 3.3.6. Every execution of algorithm 6 satisfies the Validity prop-
erty of the K-Gathering problem.

Proof. Consider any execution α of Algorithm 6 in which robots start on
vertices in the same complete graph. Let I be the set with the initial input
of all active robots in α. As I forms a complete graph, then there exists at
least one maximal complete subgraph C where I ⊆ C. Note that C must be
a vertex in K(G).

Now, as every vertex v ∈ I belongs to C, fin can map v to C, and by
lemma 3.3.4, v also could be mapped to at most one adjacent vertex K of C.
Thus, the minimal subtree T generated by fin(I) must be a star with center
C. Observe that C contains the initial positions of all the robots and if v is
mapped to K instead of C, then K contains v that is the initial position of
some robot because v ∈ I. Also, note that the only way v belong to K is
that v lives in the intersection between C and K.

40

CHAPTER 3. THE EXTENDED ALR MODEL (EALR)

On the other hand, when T is subdivided in K ′(G), namely T ′, one can
see that for every vertex of T ′ there is at least an input of a robot that
belongs to that vertex (which is a subgraph of G), because the vertices in the
subdivision correspond exactly to the vertices that live in the intersection of
C and other maximal complete subgraph. Observe, that T ′ correspond to
the subgraph generated by the initial positions of robots in K ′(G), hence, by
the property of Algorithm 4 explained in lemma 3.2.2, every decided vertex
in the simulation must belong to T ′.

Therefore, each robot must decides the input of a robot, because as we ex-
plained previously, every vertex in T ′ contains at least one initial position
of a robot. Thus, the decided vertices is a subset of I that is a complete
subgraph. Hence, the algorithm satisfy the Validity property.

Lemma 3.3.7. Algorithm 6 satisfies the K−Agreement property of the
K-Gathering problem.

Proof. It is enough to observe that after the simulation of Algorithm 4 each
robot decides a vertex of the of maximal complete subgraph ui that it obtains
after the simulation, through the line 10 or the fout function.

Now, by the Edge-Agreement property of Algorithm 4, every robot de-
cides either the same vertex K of K ′(G) (which is a complete subgraph of
G), or decide an edge (K,K ′) of K ′(G) (with K ′ being a subgraph of the
complete subgraph K). In both cases, robots decide a subgraph of K, which
is complete (See figure 3.11).

Figure 3.11: By the Edge-Agreement property of Algorithm 4 robots
must decide the same vertex or the vertices spanning an edge in K ′(G). In
both cases, robots decide a subgraph of a complete subgraph.

41

CHAPTER 3. THE EXTENDED ALR MODEL (EALR)

Theorem 3.3.2. Let G be a graph such that K(G) is a tree. Then, the
K-Gathering problem is solvable in the ALR model for N ≥ 2 oblivious and
anonymous robots on G in at most 2∗diam(K(G)) +diam(G) rounds, using
at most 4∗diam(K(G))∗|V (G)|∗|V (K(G))|| light colors and tolerating N−1
crash failures.

Proof. The proof follows directly from lemmas [3.3.5, 3.3.6, 3.3.7]

42

Chapter 4

Impossibility Results

In this section, we present our impossibility results. We first define a gen-
eral notion of a robot task that includes many variants of Gathering type
problems. We show that as far as robot task solvability, the EALR model is
equivalent to WFSM, connecting with this result two areas that have been
studied independently for long time.

4.1 Robot Tasks

Definition 4.1.1. Given a graph G, we say that σ is a input simplex if
it represents the set of vertices of G where robots can start their execution.
Similarly, σ is called an output simplex if σ is the set of vertices where the
robots are allowed to end.

Definition 4.1.2. The set I that contains all the possible input simplexes
is called input complex . Similarly, the output complex O is the set
that consist of all output simplexes. We assume that both I and O are
closed under containment, which is why they are called complexes: if σ is an
input /output simplex, then for any simplex σ′ ⊆ σ it holds that σ′ ∈ I/O.
Namely, if robots may start (or end) on a set of vertices, they may start
(end) in any subset of them.

Definition 4.1.3. A robot task on G is a triple 〈I,O,∆〉 where I is an
input complex, O is an output complex and ∆ : I → O is the function that
abstracts the constraints of the problem, with the property that if σ′ ⊆ σ
then ∆(σ′) ⊆ ∆(σ). In other words, ∆ is a monotonic function.

43

CHAPTER 4. IMPOSSIBILITY RESULTS

Robot tasks can be considered as colorless [1] tasks, because they sim-
ply specify input/output relations and not specific input/output assignments
to robots. As an example, we can define the Gathering and Edge-Gathering
problems as a robot tasks specifications, observe that the definition of the
output complex O captures the Agreement property of each problem:

Definition 4.1.4. Given a graph G = (V,E), the Gathering problem as a
robot task specification is defined by the triple 〈I,O,∆〉 where:

• I = P(V) is the power set of V , i.e. I is the set that contains all the
possible subsets of vertices in V .

• O = { { v } : v ∈ V }. The output simplexes in O are all the sets
consisting of a single vertex of V .

• For each σ ∈ I: ∆(σ) = τ ∈ O

Definition 4.1.5. Given a graph G = (V,E), the Edge-Gathering prob-
lem as a robot task specification is defined by the triple 〈I,O,∆〉 where:

• I = P(V) is the power set of V , i.e. I is the set that contains all the
possible subsets of vertices of V .

• O = { { v } : v ∈ V } ∪ { { u, v } : (u, v) ∈ E }. In other words, the
output complex O includes in addition to all the singletons, all the sets
of two vertices that belong to the same edge on G.

• For each σ ∈ I:

∆(σ) =

σ if |σ| = 1

τ ∈ { σ, { v1 } , { v2 } } if σ = { v1, v2 } with (v1, v2) ∈ E
τ ∈ O otherwise

There are many other robot Gathering tasks that one could consider,
notablyK-Gathering. For example, one may define tasks where robots should
end up at distance d or maybe decide a set of vertices forming an indepen-
dent set. But not all the problems are robot Gathering tasks, for instance,
requiring that no two robots end up in the same vertex or requiring that
robots end in vertices inducing a connected subgraph of G cannot be spec-
ified as a robot task (In both cases the output complex is not closed under
by containment).

44

CHAPTER 4. IMPOSSIBILITY RESULTS

4.2 Equivalence between EALR and WFSM

Before proving the equivalence, we will describe the concept of robot task
solubility on each model.

Definition 4.2.1. An algorithm A solves a robot task 〈I,O,∆〉 in the
EALR model, if for any σ ∈ I and for any execution where the correct
robots start with entries in σ, the following conditions are satisfy:

• Termination: Every correct robot decides a value in a bounded num-
ber of LCM cycles.

• Validity: The set of all the decided vertices forms a simplex τ ∈ ∆(I).

Definition 4.2.2. A distributed algorithm in the WFSM model solves a
robot task on G, 〈I,O,∆〉, if the following holds:

• Each process qi starts with a vertex vi of G as input, such that the set
of the inputs forms a simplex σ with σ ∈ I.

• In any execution, each correct process decides a value vi, such that the
set of the decided values forms a simplex τ , with τ ∈ ∆(σ).

Notice that according to the previous definition, processes actually
do not “move” in any way on G; they simply communicate with each other
as many times (and as much information) as they want through the shared
memory M , and then they decide vertices of G.

The following theorem proves that EALR and WFSM models are
equivalent, that means that any algorithm that solves a robot task in the
former can be used to solve the same problem on the latter, and viceversa.
The result is based on the lemmas presented in the next subsections but we
have decided to put it here for readability purposes.

Theorem 4.2.1. A robot task T on G is solvable in the WFSM model with
N luminous robots and tolerating f failures if and only if T is solvable in
the EALR model with N robots tolerating up to f failures.

Proof. The proof follows directly from lemmas[4.2.1, 4.2.2].

45

CHAPTER 4. IMPOSSIBILITY RESULTS

4.2.1 From EALR to WFSM

Lemma 4.2.1. If a robot task T on G is solvable in the EALR model with N
luminous robots tolerating f failures, then T is solvable in the WFSM model
with N processes tolerating up to f failures.

Proof. Consider an algorithm A that solves the robot task T in the EALR
model with N luminous robots, tolerating f failures. We will prove that T
is solvable in the WFSM model with N processes, tolerating up to f fail-
ures by simulating algorithm A. To do that, each process qi simulates the
code of robot pi, so, we need to specify how processes are able to simulate
the atomic Move and Look operations in EALR, as Write and Snap-
shot operations on WFSM. Note that the Compute operation is a local
deterministic algorithm that can be used in both models.

At the beginning of the execution, there is an array M of shared memory reg-
isters, where each entry M [i] contains the current state of robot pi. Initially,
every register contains the value ⊥, which symbolizes the fact that pi has not
started its local computation. Now, to simulate a Move(vi, ri) operation,
process qi simply executes Writei((vi,mi)), namely, it atomically writes the
pair (vi,mi) into M [i]. On the other hand, to simulate a Look(G) operation,
process qi takes an atomic snapshot of M , i.e., it executes Snapshot(M)
and returns the set of pairs (vj, rj) that it detected in the array M .

Thus, to solve T , each process qi simply simulates step by step the code of
algorithm A for robot pi and decides whatever pi decides in the resulting
simulated execution. The simulation solves T , because (1) A solves T in
the EALR model by assumption, and (2) as already argued, processes in the
WFSM model can atomically simulate the Move and Look operations in
the EALR model.

4.2.2 From WFSM to EALR

We have seen in lemma 4.2.1 that if a robot task T = 〈I,O,∆〉, is solvable
in EALR with N luminous robots, then T is solvable in the WFSM model.
In this subsection we are going to prove that the other direction is also true.

Lemma 4.2.2. If a robot task T on G is solvable in the WFSM model with
N processes tolerating f failures, then T is solvable in the EALR model with
N luminous robots tolerating up to f failures.

46

CHAPTER 4. IMPOSSIBILITY RESULTS

Proof. Consider an algorithm A that solves T with N processes tolerating
f failures in the WFSM model. We will prove that T is solvable in the EALR
model with N robots tolerating f failures by simulating algorithm A. To do
that, each robot pi simulates the code of process qi, so, we need to specify
how robots are able to simulate the Write and Snapshot operations in
WFSM as Look and Move operations on EALR.

To perform the simulation, the light of each robot pi will save the value of
the i-th register of the share memory M , and to keep the integrity of the
information, each robot pi will be assigned to a single vertex vi, where it
will remain throughout all the execution. The graph G consists of only N
vertices and it is possible to add edges, however, it is not necessary, since as
mentioned previously no robot will move from its designated vertex.

To simulate the Writei(x) operation, robot pi uses its light to save the
value x, so it invokes the Move(vi, x) operation. Now, to replicate an
Snapshot(M) operation, it is sufficient to execute a Look(G) operation
returning the light’s value of each active robot, and ⊥ from those that has
not started its execution.

Thus, to solve T , each robot pi simulates merely step by step the code of
algorithm A for process qi, and decides whatever qi decides in the resulting
simulated execution. The simulation solves T , because (1) A solves T in the
WFSM model by assumption, and (2) as already argued, robots in EALR
can atomically simulate the Write and Snapshot operations defined in the
WFSM model.

4.2.3 The semi-synchronous case

In this subsection, we show that Theorem 4.2.2 proves that the semi-synchronous
version of EALR and the immediate snapshot of WFSM are equivalent. Also,
Theorem 4.2.3 shows that EALR and its semi-synchronous version are equiv-
alent too.

In the semi-synchronous version of EALR, the execution consists of
a sequence of concurrency classes, where in each of them, k robots are acti-
vated, where they first execute a Move operation (in any arbitrary order),
and then execute a Look operation (in any arbitrary order too). Notice that
the first operation of every robot must be a Move operation, because that
is the only way that robots can turn on their light and become visible in G.

47

CHAPTER 4. IMPOSSIBILITY RESULTS

On the other hand, in the immediate snapshot version of WFSM
model, each step consists of a concurrency class of k processes, 1 ≤ k ≤ N ,
where processes first concurrently execute their Write operations (each one
to its own cell of M), and then concurrently execute a Snapshot(M) op-
eration. An execution is an arbitrary sequence of concurrency classes. We
stress that the immediate snapshot version of WFSM can solve exactly the
same set of tasks as its fully asynchronous version [44].

Figure 4.1: In the asynchronous version robots run at its own speed, while
in the semi-synchronous version the execution consists of a sequence of con-
currency classes, where in each of them k robots are activated.

Theorem 4.2.2. A robot task T on G is solvable in the semi-synchronous
EALR model if and only if it is solvable in the immediately snapshot ver-
sion of WFSM.

Proof. The proof follows directly from lemmas [4.2.4, 4.2.3] and the fact that
the WFSM model and the immediate snapshot of WFSM are equivalent [44].

Theorem 4.2.3. A robot task T on G is solvable asynchronously in the
EALR model if and only if it is solvable in the semi-synchronous version
of EALR.

Proof. The proof follows directly from lemmas [4.2.1, 4.2.2] and the fact that
the WFSM model and its immediate snapshot version are equivalent [44].

4.2.3.1 From EALR to immediate snapshot WFSM

Lemma 4.2.3. If a robot task T on G is solvable in the EALR model with
N luminous robots tolerating f failures, then T is solvable in the immediate
snapshot WFSM model with N processes tolerating f failures.

48

CHAPTER 4. IMPOSSIBILITY RESULTS

Proof. The proof is almost the same as lemma 4.2.1. The only difference is
that to perform the simulation, we need to consider only a subset of execu-
tions of A, in which the scheduler runs the robots in semi-synchronous steps.
Since A solves T , then, particularly A solves T in the semi-synchronous set
of executions.

4.2.3.2 From WFSM to semi-synchronous EALR

Lemma 4.2.4. If a robot task T on G is solvable in WFSM model with N
processes tolerating f failures, then T is solvable in the semi-synchronous
EALR model with N robots tolerating f failures.

Proof. The simulation is the same as the one in the proof of Lemma 4.2.2,
the only difference is that we will consider only a subset of executions of
A where the scheduler runs the processes in semi-synchronous steps. Since
A solves T , then, particularly A solves T in the semi-synchronous set of
executions.

4.3 Impossibility of Edge-Gathering

In this section, we are going prove that if one intends to solve the Edge-
Gathering problem, robots must use lights, even if at most 2 robots fail. Also,
we are going to show that Edge-Gathering is unsolvable in the EALR model
on any graph G with a cycle. With this last result and the Algorithm 4
presented in subsection 3.2, we can fully characterize the problem: it is
solvable for three or more robots on any graph G if and only if G is a tree.

The idea of both impossibilities results are divided into three parts:
first, we prove that the problem is unsolvable for three robots tolerating two
failures in the WFSM model. Then, using the solubility result of the BG
simulation [45], we extend the result for N robots tolerating two failures.
Finally, we applied the reduction presented in subsection 4.2.2 that transform
any algorithm from WFSM to EALR, getting a contradiction and completing
the proof.

Roughly speaking, the BG simulation reduces the solvability of a robot
task for (t + 1) processes tolerating t failures, to the solvability of the same
robot task for N > t processes tolerating t failures. In other words, the

49

CHAPTER 4. IMPOSSIBILITY RESULTS

BG simulation result says that: given an algorithm A for N > t processes
tolerating t failures that solves a robot task T (observe thatA is not necessary
wait-free), then it is possible to construct an algorithm B where t+1 processes
out of which t might fail can simulate algorithm A to solve the same task T .
Note that algorithm B is wait-free.

However, the BG simulation is typically used for proving impossibility
results (using the contrapositive) by showing first an impossibility result for
the wait-free case and the extend it to the case with only t failures.

4.3.1 Impossibility without the use of lights

Definition 4.3.1. In the WFSM model, an Edge-Gathering algorithm A is
restricted if each process qi writes a vertex vi of G (it does not store any
other information) in the shared memory every time it executes a Write
operation. Moreover, whenever qi writes vi in the shared memory, vi depends
only on the set generated by the Snapshot(M) operation, i.e., every vertex
that qi writes in its position of the shared memory depends only on the set
of vertices qi “sees” from its latest Snapshot operation.

Lemma 4.3.1. Let G be a graph with diam(G) ≥ 3, then there is no re-
stricted algorithm A that solves Edge-Gathering for N = 3 processes toler-
ating up to 2 failures in the WFSM model, even if processes share the same
labeling or orientation of G.

Proof. By contradiction. Suppose there is such an algorithm A.
Let q1, q2, q3 be the name of the processes and v1, v2, v3 three vertices of G,
such that dist(v1, v2) = 2 and dist(v1, v3) ≥ 3. Note that these vertices exist
due to diam(G) ≥ 3.

Now, consider the execution α of algorithm A, in which first q1 starts on v1
and runs solo until it decides. Then, q3 starts on v3, executes a single Write
operation and crashes. Finally, q2 starts on v2 and runs until it decides. Let
α′ be the shortest prefix of α in which q1 has already decided a value. Note
that α′ is also a prefix of the execution γ in which q1 starts on v1 and runs
solo, and all other processes crashed without taking any step. Due to the
Validity property of Edge-Gathering, q1 must decide v1 in γ, and thus, q1
must decide v1 in α. Hence, by the Edge-Agreement property, q2 decides
a vertex w in α such that dist(v1, w) ≤ 1, and since dist(v1, v3) ≥ 3, we have
that dist(w, v3) ≥ 2.

50

CHAPTER 4. IMPOSSIBILITY RESULTS

On the other hand, consider the execution β ofA that is symmetric to α: first
q3 starts on v3 and runs solo until it decides, then q1 starts on v1, executes
a single Write operation and crashes. Finally, q2 starts on v2 and runs
until it decides. Observe that v3 must decide v3 in β by the same reason of
the previous scenario. Following, we argue that the decision of q2 in β is at
distance more than 1.

Let α′′, β′′ the prefixes of α and β respectively, in which q2 is about to take
its first Snapshot operation. Observe that due to the robots do not have
lights, the only information that q2 detect from the environment at the end
of both α′′ and β′′ is the set { v1, v3 }, forming by the vertices of q1 and q3.
Namely, q2 cannot distinguish between executions α and β. Hence, q2 writes
in its register the same vertex in both scenarios in its next Write operation
(since A is restricted); and again, q3 sees the same set of vertices in both
extensions of α′′ and β′′, and so on.

Therefore, the decision of q2 in β is the same as its decision in α, that is
the vertex w such that dist(w, v3) ≥ 2. But this contradicts the Edge-
Agreement property of Edge-Gathering, because in the execution β, q2
and q3 are correct robots and there must happen that dist(w, v3) ≤ 1.

Figure 4.2: Due to robots do not have lights, then the red robot is not
able to discern between α and β executions. Therefore, in one of them the
final position of the red robot will not satisfy the Validity property of Edge-
Gathering.

51

CHAPTER 4. IMPOSSIBILITY RESULTS

Theorem 4.3.1. Let G be a graph with diam(G) ≥ 3, then, there is no
restricted algorithm that solves the Edge-Gathering problem for N ≥ 3 pro-
cesses tolerating 2 failures in the WFSM model, even if processes share the
same labeling or orientation of G.

Proof. Suppose for the sake of contradiction, that there is a restricted al-
gorithm A that solves the Edge-Gathering problem for N ≥ 3 processes
tolerating 2 failures.

Hence, using the BG simulation, it is possible to use A to construct an
algorithm B for 3 processes tolerating 2 failures. Algorithm B is wait-free,
restricted and solves Edge-Gathering, because:

1. A solves Edge-Gathering and tolerates two failures, hence B solves
Edge-Gathering and tolerates two failures.

2. A is restricted, hence, in the simulation each simulated write oper-
ation of A writes a vertex of G (though processes use an additional
shared memory to implement the commit-adopt function, however this
is part of the simulation)

But by Lemma 4.3.1, B does not exist. Contradiction!

Theorem 4.3.2. Let G be a graph with diam(G) ≥ 3. Then, there is no
algorithm A that solves the Edge-Gathering problem for N ≥ 3 robots without
lights in the Strong 1 version of the EALR model, with at most two robots
failing.

Proof. By contradiction. Suppose there is such an algorithmA. By lemma 4.2.2,
the existence of A implies an Edge-Gathering algorithm B on G for N ≥ 3
processes tolerating two failures in the WFSM model.

Moreover, the proof of lemma 4.2.2 shows that in the simulation of A in the
WFSM model, every time a process writes into the shared memory, it writes
only a vertex of G: since robots in A do not have lights then the information
that is written in the shared memory in the simulation is only the positions
of robots, i.e., vertices of G. Thus, B is restricted. Finally, by lemma 4.3.1,
B does not exist. Hence, A cannot exist.

The same result can be extended to K-Gathering over graphs with a
diameter at least three and no triangles since in this case Edge-Gathering
and K-Gathering are equivalent.

1In the Strong version of the EARL, we assume that robots are non-oblivious, non-
anonymous, non-disoriented, share the same labeling of G and can detect multiplicities

52

CHAPTER 4. IMPOSSIBILITY RESULTS

Corollary 4.3.1. Let G be a connected graph with diam(G) ≥ 3 and no
triangles. Then, there is no algorithm A that solves K-Gathering problem
on G for N ≥ 3 robots without lights in the Strong version of the EALR
model, with at most two robots failing.

4.3.2 Impossibility on cyclic graphs

So far, we have seen that (1) it is impossible that robots gather on a single
vertex, and (2) for three or more robots the Edge-Gathering problem requires
the use of lights. Now, we show that even using an unbounded number of
lights, the existence of a single cycle in G is an obstruction for solving Edge-
Gathering.

Definition 4.3.2. In the k-Set Agreement problem [46], each process starts
with a private input value v, and after communicating with other processes,
the following properties are satisfied:

• Termination: Every correct process decides a value.

• Validity: Every correct process decides a value that it is proposed by
at least one process.

• k-set-agreement: At most k different values are decided.

Lemma 4.3.2. Let G be a connected graph with a cycle C. There is no
algorithm A that solves Edge-Gathering on G for N = 3 processes tolerating
two failures in the WFSM model.

Proof. By contradiction. Suppose there is such an algorithm A. Let C be a
simple cycle of G and v1, v2, v3 three distinct and consecutive vertices of C.
Consider P as the simple path obtained by removing v3 from C.

It is straightforward to prove that two robots can solve Edge-Gathering in
the EALR model on any path P in at most length(P) rounds without using
lights. Hence, by Lemma 4.2.1 there is an algorithm B that solves Edge-
Gathering on P for processes q1 and q2 in the WFSM model. We use al-
gorithm A and B to solve the 2-Set Agreement problem for three processes
tolerating two failures in the WFSM model that it is well-known to be im-
possible by [47]

We claim that Algorithm 7 solves the 2-Set Agreement problem for three
processes q1, q2, q3 using algorithms A and B. The idea of the algorithm is
the following: first, the vertices of G are mapped to indexes of the shared

53

CHAPTER 4. IMPOSSIBILITY RESULTS

memory of processes: v3 is mapped to index 3, v2 is mapped to 2, and the
remaining vertices are mapped to 1, as illustrated in figure 4.3. Then, as a
first action, every process proposes its value by writing it in its register of the
shared memory. Subsequently, only processes q1 and q2 simulate algorithm
B on the path P , taking v1 and v2 as its input vertices. At the end of that
invocation two important properties are satisfied. The first one is that q1
and q2 must decide vertices at a distance at most one on the path P ; and the
second is that if q1 or q2 decides a vertex other than v1 and v2, it is because
both processes were activated. Finally, the three processes execute algorithm
A to gather in a vertex or in an edge of G. And hence, at most to distinct
indexes (and then, at most two different values) are decided.

v1v1

v2v2

v3v3

PC

1 2

3

. . .

. . .

Figure 4.3: Mapping vertices of the cycle C to indexes of the shared memory
for the 2-Set Agreement problem.

Now, we need to show that Algorithm 7 is correct. The Termination and
2-Set-Agreement property are straightforward to prove. What is more
complicated to achieve is the Validity property: only proposed values from
participating processes can be decided; and that is the aim of algorithm B.
Actually, the most complicated case is when p1 and p2 participate; but by
the way in we arranged the initial positions, when algorithm A executes,
algorithm B will prevent that q1 and q2 move in the case when q3 fails before
starting the algorithm; and thus, preventing them from decide vertex v3 that
corresponds to a value that has not been proposed.

- Termination: By assumption, A and B terminate in all invocations,
and there are not loops in Algorithm 7. Thus, in every execution all
the correct processes return a value.

- 2-Set-Agreement: If at most two processes return a value, then the
property is trivially satisfied. So, the only interesting case is when the
three processes return a value. But, since A solves the Edge-Gathering
problem on G, then the three robots end in the same vertex or on the

54

CHAPTER 4. IMPOSSIBILITY RESULTS

Algorithm 7 2-Set Agreement algorithm for N = 3 processes tolerating 2
failures. Code for process qi.
Function 2SetAgreement(vi)

1: // process qi proposes its value in the shared memory
2: M [i]← vi
3: // The initial vertex of q3 in the algorithm A is always v3
4: if i = 3 then
5: u← v3
6: else
7: /* The initial vertex of q1 and q2 in the algorithm A is the result of the simulated

Edge-Gathering algorithm over the path P */
8: u← B.EdgeGathering2Robots(vi, P)
9: end if

10: // All the robots simulate algorithm A and at most two values are decided
11: yj ← A.EdgeGatheringCycle(u,G)
12: /* If the decided vertex is v1, v2 or v3 then process decides the corresponding proposed

value */
13: if yj ∈ { v1, v2, v3 } then
14: return M [j]
15: else
16: /* The only way that some process chooses a value other than v1, v2 or v3 is that

at least processes q1 and q2 participate in the algorithm. So, we can choose the value
associated to any of those processes; in this case, we have decided to choose the value
of q1 */

17: return M [1]
18: end if

same edge, and hence, at most two distinct values are decided.

- Validity: We identify three cases according to the number of processes
that participate and decide in the execution.

Case 1: Only one process qi participates in the execution.
If qi = q3, then q3 invokes A with input v3, and consequently ob-
tains v3 from it by the Validity property of the Edge-Gathering
problem. Thus, q3 returns M [3] that corresponds to its proposed
value.

If qi is either q1 or q2, then qi first invokes B with input vi, and
due to the Validity property of the Edge-Gathering problem, qi
must get the same vertex vi from B. Next, qi invokes A with input
vi and obtains vi as well, for the same above reason. Therefore, qi
returns its own value M [i].

Case 2: Two processes qi and qj participate in the execution.
Suppose without loss of generality that qi = q3 and qj is either q1
or q2. Then, process qj first invoke algorithm B with input vj, it

55

CHAPTER 4. IMPOSSIBILITY RESULTS

runs solo (because process q3 does not executes B) and obtains vj.
Subsequently, q3 and qj invoke A with inputs v3 and vj, respec-
tively. And since v3 and vj form an edge, then they must obtain
from A only those vertices. Therefore, we concluded that q3 and
qj could return only the values stored in M [3] and M [j], which
both are proposed values.

Now, if qi and qj are the processes q1 and q2, then when they
invoke B they decide the same vertex or the vertices that cover
an edge over the path P , and by the Validity property of Edge-
Gathering, qi and qj must obtain any subset of those vertices in
the invocation of A. Observe that vertex v3 is not in P , so, qi and
qj could only return the values stored in M [1] and M [2], which
both were proposed.

Case 3: The three processes become active. Which implies that
any value that is decided was proposed by someone. Therefore,
the Validity property is satisfy.

Theorem 4.3.3. Let G be any cyclic graph. Then, there is no algorithm A
that solves Edge-Gathering on G for N ≥ 3 processes tolerating up to two
failures in the WFSM model.

Proof. By contradiction. Suppose that there is such an algorithm A. Now,
using the BG simulation, it is possible to use A to construct and algorithm
B that solves the same task for three processes tolerating two failures. But,
by lemma 4.3.2 algorithm B does not exist, so we have a contradiction.

Theorem 4.3.4. Let G be a connected graph with a cycle, then there is no
algorithm A that solves the Edge-Gathering problem on G for N ≥ 3 robots
in the Strong ALR model, even if at most two robots might fail.

Proof. By contradiction. Suppose there is such an algorithmA. By lemma 4.2.2,
the existence of such an algorithmA implies a solution for Edge-Gathering on
G for N ≥ 3 processes tolerating two failures in the WFSM model. However,
that algorithm cannot exist by theorem 4.3.3.

Theorem 4.3.5. Let G be a connected graph with cycles and no triangles.
There is no algorithm that solves K-Gathering on G for N ≥ 3 robots in the
strong ALR model, even if at most two robots might fail.

Proof. Theorem 4.3.4 directly implies that the K-Gathering problem is im-
possible on cyclic graphs with no triangles: if there is such an algorithm,

56

CHAPTER 4. IMPOSSIBILITY RESULTS

then in every execution processes decide a vertex or an edge (since the graph
has no triangles), which contradicts the theorem.

4.4 Characterization of solvable Robot Tasks

This section presents a topological characterization of the solvability of robots
tasks in the EALR model. It is assumed that the reader has a basic knowl-
edge of the study of distributed computing through combinatorial topology
(see [1]).

4.4.1 The characterization

The following combinatorial characterization is expressed in the topological
approach to distributed computing (see for example [1]).

Theorem 4.4.1. A robot task on G, 〈I,O,∆〉 is solvable for N robots in
the EALR model tolerating N −1 failures if and only if there is a subdivision
Subd(I) and a simplicial map δ from Subd(I) to O, such that for every input
simplex σ, δ(Subd(σ)) ⊆ ∆(σ).

This follows because (1) the EALR and WFSM models are equivalent
and (2) the wait-free computability theorem [47] states that a robot task is
solvable in WFSM if and only if there is a subdivision of I and a simplicial de-
cision map to O respecting ∆ [1]. More in detail, the wait-free computability
theorem describes when a general task 〈I,O,∆〉 has a wait-free read/write
protocol. Such a general task permits the use of processes IDs, both to specify
the task and to solve it. Thus, input and output simplexes are defined over
vertices colored with process IDs. We reproduce here Figure 11.7 from [1]
for the reader’s convenience, where the theorem is illustrated.

The theorem states that (I,O,∆) has a wait-free read/write protocol
if and only if there is a chromatic subdivision X of I and a color-preserving
simplicial map δ : X(I) → O such that for each simplex s′ ∈ X(s), δ(s′) is
carried by ∆(s). In Figure 4.4 we see an input simplex s in I at the top, and
how a distributed algorithm subdivides it into X(s), part of the subdivision
X(I). Each vertex of X(s) represents the final state of a process in one of
the executions starting in s. In the figure, s′ is an example of a set of process’

57

CHAPTER 4. IMPOSSIBILITY RESULTS

s

Δ(s)

Carrier map Δ

Simplicial map δ

S’

I O

OX(I)

Figure 4.4: The wait-free computability Theorem, Fig 11.7 from [1].

final states in one of the possible executions starting in s. The decision map
δ defines the decisions taken by the set of processes in s′. These decisions
are δ(s′), thus, for each s′ ∈ X(s), the decisions δ(s′) should belong to ∆(s),
as the rule ∆ states the legal outputs when starting in each initial simplex s.

Corollary 4.4.1. No sequential algorithm decides if a given robot task on
G for three processes tolerating two failures is solvable in the EALR model.

The proof follows from Theorem 4.2.1, and by reduction to the classic
loop contractibility problem in a 2-dimensional complex, which is undecid-
able, following the techniques in [48, 49]. Notice, however, that if the robots
have a bounded number of lights (as in [34]), then their set of possible views
returned by Look operations on G is finite, hence:

Corollary 4.4.2. It is decidable if a given robot task on G for three processes
with no lights, tolerating two failures is solvable in the EALR model.

58

Chapter 5

Conclusions

In this work, we studied the hardness of termination in Gathering type prob-
lems. We considered a strong termination property in which each robot
terminates in a bounded number of its LCM cycles, regardless of delays of
other robots.

We showed that the classic Gathering problem with termination is
unsolvable by any algorithm in the standard Asynchronous Luminous Robot
model (ALR), even if robots have stronger capabilities.

Then, we introduced a novel model called EALR by extending ALR to
include crash failures and asynchronous appearing times. In this new model,
we studied the solvability of two Gathering type problems with termination:
Edge-Gathering and K-Gathering. We proved that Edge-Gathering is pos-
sible on a graph G if and only if G is a tree. We also gave solutions for
the K-Gathering problem when G has at least one dominating vertex or its
related clique graph is a tree.

Our impossibility results were obtained through an equivalence be-
tween models: EALR is equally powerful to solve general robot tasks as
the standard asynchronous crash-prone wait-free multiprocess shared mem-
ory (WFSM) model. This equivalence allowed us to use powerful topologi-
cal techniques in the ALR and EALR models, deriving a full combinatorial
topology characterization of the solvability of general robot tasks in EALR.

There are many interesting research avenues that arise from this work.
On the complexity side, two of our algorithms for Edge-Gathering and K-
Gathering use a non-constant number of lights. An interesting question is
whether the same problems can be solved using a constant number of lights;

59

CHAPTER 5. CONCLUSIONS

hence showing that strong termination for these problems can be achieved at
the cost of an extra small communication mechanism. We also proved that
it is impossible to solve K-Gathering on any connected graph G with cycles
and no triangles, but remains open if it is solvable or not if G has triangles
(for example, K-Gathering is solvable by a trivial algorithm if G is a wheel.).

Related to the number of lights, our equivalence between EALR and
WFSM uses an unbounded amount of lights. This comes from the fact that
the size of registers in WFSM is unbounded. However, it would be interesting
to study the effect of restricting the number of lights in EALR and its relation
with asynchronous multiprocessing shared memory systems (possibly with
bounded size registers). Also, it would be interesting to study other variants
of the model. For example, robots moving in a two (or higher) dimensional
space, synchronous variants, or variants with Byzantine failures.

60

Bibliography

[1] Maurice Herlihy, Dmitry Kozlov, and Sergio Rajsbaum. Distributed
Computing Through Combinatorial Topology. Morgan Kaufmann, San
Francisco, CA, USA, 2013.

[2] Maria Potop-Butucaru, Michel Raynal, and Sebastien Tixeuil. Dis-
tributed computing with mobile robots: An introductory survey. In
Proceedings of the 2011 14th International Conference on Network-Based
Information Systems, NBIS ’11, pages 318–324, Washington, DC, USA,
2011. IEEE Computer Society.

[3] Levent Bayındır. A review of swarm robotics tasks. Neurocomputing,
172:292 – 321, 2016.

[4] Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile
robots: Formation of geometric patterns. SIAM J. Comput., 28(4):1347–
1363, March 1999.

[5] Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and
Masafumi Yamashita. Autonomous mobile robots with lights. Theor.
Comput. Sci., 609(P1):171–184, January 2016.

[6] Giuseppe Antonio Di Luna, Paola Flocchini, Sruti Gan Chaudhuri,
Nicola Santoro, and Giovanni Viglietta. Robots with lights: Overcoming
obstructed visibility without colliding. CoRR, abs/1405.2430, 2014.

[7] Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola San-
toro. Distributed computing by mobile robots: Gathering. SIAM J. on
Computing, 41(4):829–879, 2012.

[8] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Wid-
mayer. Gathering of asynchronous robots with limited visibility. Theo-
retical Computer Science, 337(1):147 – 168, 2005.

61

BIBLIOGRAPHY

[9] Mark Cieliebak. Gathering Non-oblivious Mobile Robots, pages 577–588.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[10] Noa Agmon and David Peleg. Fault-tolerant gathering algorithms for
autonomous mobile robots. SIAM Journal on Computing, 36(1):56–82,
2006.

[11] Zohir Bouzid, Shantanu Das, and Sébastien Tixeuil. Gathering of mo-
bile robots tolerating multiple crash faults. In IEEE 33rd International
Conference on Distributed Computing Systems (ICDCS), pages 337–346,
Washington, DC, USA, 2013. IEEE Computer Society.

[12] S. Rajsbaum, A. Castañeda, D. F. Peñaloza, and M. Alcántara. Fault-
tolerant robot gathering problems on graphs with arbitrary appearing
times. In 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 493–502, May 2017.

[13] David Peleg Asaf Efrima. Distributed Models and Algorithms for Mo-
bile Robot Systems, pages 70–87. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007.

[14] P. Flocchini, G. Prencipe, and N. Santoro. Distributed Computing by
Oblivious Mobile Robots. Synthesis lectures on distributed computing
theory. Morgan & Claypool, 2012.

[15] Giuseppe Prencipe. Autonomous mobile robots: A distributed comput-
ing perspective. In Paola Flocchini, Jie Gao, Evangelos Kranakis, and
Friedhelm Meyer auf der Heide, editors, ALGOSENSORS, volume 8243
of Lecture Notes in Computer Science, pages 6–21. Springer, 2013.

[16] Giuseppe Prencipe and Nicola Santoro. Distributed Algorithms for Au-
tonomous Mobile Robots, pages 47–62. Springer US, Boston, MA, 2006.

[17] Giuseppe Prencipe. Impossibility of gathering by a set of autonomous
mobile robots. Theoretical Computer Science, 384(2):222 – 231, 2007.
Structural Information and Communication Complexity (SIROCCO
2005).

[18] Ralf Klasing, Euripides Markou, and Andrzej Pelc. Gathering Asyn-
chronous Oblivious Mobile Robots in a Ring, pages 744–753. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006.

[19] François Bonnet, Maria Potop-Butucaru, and Sebastien Tixeuil. Asyn-
chronous Gathering in Rings with 4 Robots, pages 311–324. Springer
International Publishing, Cham, 2016.

62

BIBLIOGRAPHY

[20] Gianlorenzo D’Angelo, Gabriele Di Stefano, and Alfredo Navarra. Gath-
ering on rings under the look–compute–move model. Distributed Com-
puting, 27(4):255–285, 2014.

[21] Gianlorenzo D’Angelo, Gabriele Di Stefano, Ralf Klasing, and Alfredo
Navarra. Gathering of Robots on Anonymous Grids without Multiplicity
Detection, pages 327–338. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2012.

[22] Gianlorenzo D’Angelo, Gabriele Di Stefano, and Alfredo Navarra. Gath-
ering Asynchronous and Oblivious Robots on Basic Graph Topologies
Under the Look-Compute-Move Model, pages 197–222. Springer New
York, New York, NY, 2013.

[23] Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and M. Yamashita.
Rendezvous with constant memory. Theor. Comput. Sci., 621:57–72,
2016.

[24] Giovanni Viglietta. Rendezvous of two robots with visible bits. CoRR,
abs/1211.6039, 2012.

[25] Taisuke Izumi, Samia Souissi, Yoshiaki Katayama, Nobuhiro Inuzuka,
Xavier Défago, Koichi Wada, and Masafumi Yamashita. The gathering
problem for two oblivious robots with unreliable compasses. CoRR,
abs/1111.1492, 2011.

[26] Quentin Bramas and Sébastien Tixeuil. Wait-Free Gathering With-
out Chirality, pages 313–327. Springer International Publishing, Cham,
2015.

[27] Armando Castañeda, Sergio Rajsbaum, and Matthieu Roy. Convergence
and covering on graphs for wait-free robots. Journal of the Brazilian
Computer Society, 24(1):1, Jan 2018.

[28] Reuven Cohen and David Peleg. Convergence properties of the grav-
itational algorithm in asynchronous robot systems. SIAM Journal on
Computing, 34(6):1516–1528, 2005.

[29] Gianluca De Marco, Luisa Gargano, Evangelos Kranakis, Danny
Krizanc, Andrzej Pelc, and Ugo Vaccaro. Asynchronous determinis-
tic rendezvous in graphs. Theoretical Computer Science, 355(3):315 –
326, 2006.

63

BIBLIOGRAPHY

[30] Anders Dessmark, Pierre Fraigniaud, Dariusz R. Kowalski, and Andrzej
Pelc. Deterministic rendezvous in graphs. Algorithmica, 46(1):69–96,
Sep 2006.

[31] Sébastien Bouchard, Yoann Dieudonné, and Bertrand Ducourthial.
Byzantine gathering in networks. Distrib. Comput., 29(6):435–457,
November 2016.

[32] Yoann Dieudonné, Andrzej Pelc, and David Peleg. Gathering despite
mischief. ACM Trans. Algorithms, 11(1):1:1–1:28, August 2014.

[33] Jérémie Chalopin, Yoann Dieudonné, Arnaud Labourel, and Andrzej
Pelc. Fault-tolerant rendezvous in networks. In Javier Esparza, Pierre
Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata,
Languages, and Programming, pages 411–422, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

[34] Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and
Masafumi Yamashita. Autonomous mobile robots with lights. Theor.
Comput. Sci., 609(P1):171–184, January 2016.

[35] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed
Computing by Oblivious Mobile Robots. Synthesis Lectures on Dis-
tributed Computing Theory 3(2). Morgan & Claypool, 2012.

[36] Chrysovalandis Agathangelou, Chryssis Georgiou, and Marios Mavron-
icolas. A distributed algorithm for gathering many fat mobile robots in
the plane. In ACM Symposium on Principles of Distributed Computing,
PODC ’13, Montreal, QC, Canada, July 22-24, 2013, pages 250–259,
2013.

[37] Mattia D’Emidio, Daniele Frigioni, and Alfredo Navarra. Synchronous
robots vs asynchronous lights-enhanced robots on graphs. Electron.
Notes Theor. Comput. Sci., 322(C):169–180, April 2016.

[38] François Bonnet, Maria Potop-Butucaru, and Sebastien Tixeuil. Asyn-
chronous gathering in rings with 4 robots. In Proc. Ad-hoc, Mobile, and
Wireless Networks: 15th International Conference (ADHOC-NOW),
number 9724 in LNCS, pages 311–324. Springer, 2016.

[39] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamen-
tals, Simulations and Advanced Topics. John Wiley & Sons, 2004.

64

BIBLIOGRAPHY

[40] Michel Raynal. Safe, Regular, and Atomic Read/Write Registers, pages
305–328. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[41] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374–382,
1985.

[42] Noa Agmon and David Peleg. Fault-tolerant gathering algorithms for
autonomous mobile robots. SIAM Journal on Computing, 36(1):56–82,
2006.

[43] Kaustav Bose, Ranendu Adhikary, Sruti Gan Chaudhuri, and Bud-
dhadeb Sau. Crash tolerant gathering on grid by asynchronous oblivious
robots. CoRR, abs/1709.00877, 2017.

[44] Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result
for t-resilient asynchronous computations. In Proceedings of the Twenty-
Fifth Annual ACM Symposium on Theory of Computing (STOC), pages
91–100, 1993.

[45] E. Borowsky, E. Gafni, N. Lynch, and S. Rajsbaum. The BG distributed
simulation algorithm. Distrib. Comput., 14(3):127–146, October 2001.

[46] Soma Chaudhuri. More choices allow more faults: Set consensus prob-
lems in totally asynchronous systems. Inf. Comput., 105(1):132–158,
July 1993.

[47] Shavit N. Herlihy, Maurice and. The topological structure of asyn-
chronous computability. J. ACM, 46(6):858–923, November 1999.

[48] Eli Gafni and Elias Koutsoupias. Three-processor tasks are undecidable.
SIAM J. Comput., 28(3):970–983, 1999.

[49] Maurice Herlihy and Sergio Rajsbaum. The decidability of distributed
decision tasks (extended abstract). In Proceedings of the Twenty-Ninth
Annual ACM Symposium on the Theory of Computing (STOC), pages
589–598, 1997.

65

	Portada
	Abstract
	Contents
	Chapter 1. Introduction
	Chapter 2. The Hardness of Strong Termination
	Chapter 3. The Extended ALR Model (EALR)
	Chapter 4. Impossibility Results
	Chapter 5. Conclusions
	Bibliography

