

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

POSGRADO EN CIENCIAS DE LA TIERRA

CENTRO DE GEOCIENCIAS

EXHUMACIÓN DE LOS INTRUSIVOS COMANJA Y TESORERA: IMPLICACIONES EN EL LEVANTAMIENTO DE LA MESA CENTRAL DE MÉXICO

TESIS

PARA OPTAR AL GRADO DE:

MAESTRA EN CIENCIAS DE LA TIERRA

PRESENTA

MARÍA DE JESÚS PAULINA OLMOS MOYA

TUTOR

DR. ÁNGEL FRANCISCO NIETO SAMANIEGO CENTRO DE GEOCIENCIAS SANTIAGO DE QUERÉTARO, QUERÉTARO...... 2018

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

- Dr. Raúl Miranda Avilés, Universidad de Guanajuato
- Dr. Gilles Pierre Rene Levresse, Universidad Nacional Autónoma de México
- Dr. Luca Ferrari, Universidad Nacional Autónoma de México
- Dr. Peter Schaaf, Universidad Nacional Autónoma de México

DIRECTOR DE TESIS:

Dr. Ángel Francisco Nieto Samaniego

AGRADECIMIENTOS

Agradezco inmensamente al Dr. Ángel Francisco Nieto Samaniego por su gran disposición y buena actitud en el desarrollo de esta tesis, por su invaluable motivación y paciencia.

Al proyecto académico UNAM-PAPPIT IN 105417.

Al CONACYT por el apoyo económico recibido durante la realización de mis estudios de maestría.

A mi Mamá, que con paciencia, regaños, desvelos, alegrías, comprensión y amor siempre ha estado para mí, al igual que mi papá.

A Raúl Ariel Vega por su compañía, por darme mucha felicidad y brindarme su apoyo incondicional en cada momento, bueno o crítico de este trabajo.

A mis hermanos, a mi persona "Chu"; por cada valioso consejo, aun en la lejanía.

Al Dr. Fanis Abdullin, por su gran apoyo el cual fue decisivo en la realización de este trabajo.

A Alexis del Pilar y Juan Carlos Mesino, por su compañía en campo, su gran amistad, comentarios y recomendaciones para esta tesis.

Al Dr. Gilles Levresse y Dr. Carlos Ortega Obregón, por el acompañamiento académico, por el tiempo brindado para responder dudas y dar recomendaciones.

A Juan Tomás y Oscar en el taller de laminación de CGEO, UNAM, por su ayuda en la elaboración de láminas delgadas para este trabajo. A Manuel Albarrán por su ayuda en el taller de molienda, en la preparación de muestras para fechamientos isotópicos. Al Dr. Carlos Ortega Obregón, por su ayuda en la realización de fechamientos isotópicos para esta investigación, en el Laboratorio de Estudios isotópicos del CGEO, UNAM. A mis profesores que a lo largo de mis estudios de maestría me apoyaron con sus clases, asesorías o comentarios.

Un especial agradecimiento al personal administrativo del Centro de Geociencias.

A mis compañeros del Centro de Geociencias, en grande a mis amigas y amigos de cubo que hicieron mi estadía de dos años llenos de buenas anécdotas y buen compañerismo; Andy, Ángeles, Chago, Jeny, Lluvia, Paola, Richi, Anita y Rulo.

RESUMEN

La historia de levantamiento-exhumación de la Mesa Central de México (ubicada en la porción centro del país), en donde afloran los cuerpos intrusivos de Comanja y Tesorera, puede ser inferida a partir de fechamientos isotópicos que indiquen la edad de cristalización y enfriamiento de dichos plutones. Este trabajo se centra en reconstruir la evolución del levantamientoexhumación de los cuerpos intrusivos de Comanja y Tesorera, usando técnicas de fechamiento U/Pb en apatito y circón, Trazas de Fisión en apatito y geobarometría en hornblenda. Adicionalmente también se incluyen análisis geocronológicos preliminares del Granito Peñón Blanco.

La Granodiorita Tesorera tiene una edad de cristalización de 73.3 ±0.3 Ma (U/Pb-LA-ICPMS, en zircón) y su edad de enfriamiento por Trazas de Fisión es de 66±3.1 Ma. Su profundidad de emplazamiento, obtenida a partir de geobarometría en hornblenda es de ~6.1 km. El Granito Comanja tiene una edad de cristalización de 52.64±0.52 Ma (U/Pb-LA-ICPMS, en zircón), su edad de enfriamiento por trazas de fisión es de 51.2±2.4 Ma y su profundidad de emplazamiento se estima de ~7.5 Km.

Con base en los datos obtenidos interpretamos que la exhumación de la Granodiorita Tesorera, hasta alcanzar la superficie, duró ~11 m. a. (73 a 62 Ma), ocurriendo a una tasa de ~570 m/m. a., y la exhumación prosiguió durante 14 m. a. más, pero a una tasa considerablemente más baja. En el caso del Granito Comanja la exhumación, hasta alcanzar la superficie, duró ~3 m. a. (52 Ma a 49 Ma), a una tasa promedio de 2300 m/m. a., continuando posteriormente por 17 m. a. más, pero a una tasa considerablemente más baja. Ambos casos de levantamiento-exhumación son similares, pero para el Granito Comanja tuvo lugar 20 m. a. después que para la Granodiorita Tesorera. Los dos intrusivos se ubican sobre grandes sistemas de fallas, la Granodiorita Tesorera sobre el Sistema de Fallas San Luis Tepehuanes y el Granito Comanja sobre el Sistema de Fallas de El Bajío.

Aunque aún desconocemos el papel que esas estructuras regionales jugaron en los procesos de levantamiento-exhumación, la coincidencia espacial sugiere que esos grandes sistemas de fallas condicionaron el tiempo de exhumación para cada caso.

ÍNDICE

RESL	JMEN	1
ABST	TRACT	— 3
CAPÍ	TULO 1. GENERALIDADES	— 4
1.1 1.2 1.3 1.4	 1.1 Introducción	
CAPÍ	TULO 2. MARCO GEOLÓGICO	9
2.1 2.2 2.3 2.4	Mesa Central de México Granito Comanja Granodiorita Tesorera Granito Peñón Blanco	9 11 14 17
CAPÍ	TULO 3. METODOLOGIA ————————————————————————————————————	20
3.1 3.2 3.3 3.4 3.5	Compilación cartográfica y geológica de las áreas de estudio — Toma de muestras en campo — Análisis petrográfico — Fechamientos isotópicos — Geobarometría —	20 20 22 22 22 40
CAPÍ	TULO 4. RESULTADOS	42
4.1 4.2 4.3	Granito Comanja Granodiorita Tesorera Granito Peñón Blanco	42 51 58
CAPÍ	TULO 5. DISCUSIÓN	64
CAPÍ	TULO 6. CONCLUSIONES	71
REFE	RENCIAS	72
ANE	XOS	79

LISTA DE FIGURAS

Figura 1. Mapa de ubicación de las provincias fisiográficas con las que	
limita la Mesa Central. La línea roja delimita las regiones sur y norte	7
Figura 2. Mapa de ubicación de los cuerpos intrusivos y de los conglomerado	OS
que afloran dentro de la Mesa Central	8
Figura 3. Columna estratigráfica de la Mesa Central	10
Figura 4. Mapa geológico del sector sur de la Sierra de Guanajuato, donde	se
encuentra aflorando el Granito Comanja	11
Figura 5. Columna estratigráfica del Granito Comanja	12
Figura 6. Mapa geológico del Complejo Ígneo La Tesorera, donde se encuent	ra
aflorando la Granodiorita Tesorera	14
Figura 7. Columna estratigráfica de la Granodiorita Tesorera	15
Figura 8. Mapa geológico de la Sierra de Salinas, donde se encuentra aflorano	ot
el Granito Peñón Blanco	17
Figura 9. Columna estratigráfica del Granito Peñón Blanco	18
Figura 10. Mapa de ubicación de los tres cuerpos intrusivos muestreados	21
Figura 11. Gráfica de temperatura vs tiempo de varios métodos de datació	źп
aplicados en diferentes minerales 2	25
Figura 12. Superficie pulida a través de un cristal de apatito, donde se aprecia	an
las TF contenidas dentro de la red cristalina	30
Figura 13. Fotografía de un cristal de apatito de la muestra LT-01, donde s	se
aprecian los tres tipos de trazas	31
Figura 14. Tipos de cristales de apatito	33
Figura 15. Fotografías de los afloramientos y muestra de mano de los tra	es
intrusivos	34
Figura 16. Prensa hidráulica, lavadero y batea para separación de mineral	es
pesados	34
Figura 17. Briquetas, suspensiones de alúmina de 1.0 micras	36
Figura 18. Vaso de precipitado con ácido (HNO3) 5.5 M	36
Figura 19. Fotografía de cristales de apatito de la muestra LT-01	37
Figura 20. Cristales de apatito3	38
Figura 21. Fotografías de la muestra de mano de GC-014	42
Figura 22. Fotomicrografías de la muestra CG-O1 con nícoles cruzados	13
Figura 23. Gráfica de dispersión de datos que corresponden a la muestra d	el
Granito Comanja	14
Figura 24. Diagrama de Tera-Wasserburg de la muestra GC-01	45

Figura 25. Gráfica de edad de la muestra DT-10. Gráfica de concordia	46
Figura 26. Gráfica de promedio de la muestra DT-11. Gráfica de concordia	47
Figura 27. Gráfica de promedio de las muestras DT-11 y DT-10	48
Figura 28. Modelo térmico de la muestra CG-01. Gráfica de barras	de
frecuencia contra la longitud medida de 35 F-apatitos	49
Figura 29. Fotografías de la muestra de mano de LT-01	51
Figura 30. Fotomicrografías de la muestra LT-01 con nícoles cruzados	52
Figura 31. Gráfica de dispersión de datos que corresponden a la muestra d	e la
Granodiorita Tesorera	53
Figura 32. Diagrama de Tera-Wasserburg de la muestra LT-01	54
Figura 33. Modelo térmico de la muestra LT-02. Gráfica de barras de frecuei	าсіа
contra la longitud medida de 79 F-apatitos	55
Figura 34. Fotografía de la sección delgada PLN-001 que corresponde a	a la
Granodiorita Tesorera. Microfotografías de las hornblendas	55
Figura 35. Fotografías de la muestra de mano de PB-01	58
Figura 36. Fotomicrografías de la muestra PB-01 con nícoles cruzados	59
Figura 37. Gráfica de dispersión de datos que corresponden a la muestra	del
Granito Peñón Blanco	60
Figura 38. Diagrama de Tera-Wasserburg de la muestra PB-01	61
Figura 39. Gráfica de concordia para la muestra PB-01	62
Figura 41. Representación de los periodos de depósito de los Conglomera	dos
Zacatecas y Guanajuato. Y de los eventos de exhumación y erosión de	e la
Granodiorita Tesorera y Granito Comanja	70
Figura 42. Esquema de la historia evolutiva de la Montaña Laramide	71

LISTA DE TABLAS

Tabla 1. Tabla de edades isotópicas del Granito Comanja	13
Tabla 2. Tabla de edades isotópicas de la Granodiorita Tesorera	16
Tabla 3. Tabla de edades isotópicas del Granito Peñón Blanco	19
Tabla 4. Resumen de los resultados de gobarometría para las dos muestr	as de
diques graníticos del Granito Comanja	50
Tabla 5. Resumen de los resultados de gobarometría para las dos muestr	as de
diques graníticos del Granito Comanja	57

CAPITULO 1. GENERALIDADES

1.1 INTRODUCCIÓN

En la parte central de México afloran dos conjuntos litológicos: 1) Las Rocas mesozoicas deformadas por acortamiento asociado a la Orogenia Larámide y metamorfizadas en bajo grado; 2) Rocas cenozoicas continentales, sedimentarias y volcánicas, que se encuentran afectadas por un fallamiento normal y oblicuo, el cual ha sido asociado a la tectónica Basin and Range (B&R) (Nieto-Samaniego et al., 2007; Tristán-González et al., 2009). Estos dos conjuntos litológicos están separados por una gran discordancia angular del Cretácico tardío-Paleoceno que se extiende en toda la Mesa Central (MC) y en la mayor parte de México (Nieto-Samaniego et al., 2005). El episodio de transición del régimen de acortamiento larámide al de extensión (B&R) que se observa en la provincia fisiográfica de la Mesa Central ha sido debatido por diversos autores (Tristán-González et al., 2009; Botero-Santa et al., 2015; Ángeles-Moreno et al., 2017). Este episodio ha sido documentado en la Sierra de Guanajuato, donde estuvo asociado al emplazamiento del batolito granítico denominado Granito Comanja (GC) y a una fase transicional de fallamiento transcurrente (Botero-Santa et al., 2015; Ángeles-Moreno et al., 2017). La transición acortamiento-extension tuvo lugar en Paleoceno superior (Selandiano – Ypresiano) y fue contemporánea con el inicio de la exhumación del GC (Ángeles-Moreno et al., 2017).

Dentro de la MC (Figura 1) se encuentran reportados varios cuerpos intrusivos de diferentes edades: el ya mencionado Granito Comanja, que aflora en la Sierra de Guanajuato con una edad de 51.0±0.3 Ma (Ángeles-Moreno et al., 2017), la Granodiorita Tesorera (GT), que aflora en las comunidades de Tesorera y Guanajuatillo, Zacatecas, de 73.3±0.3 Ma (Cuéllar-Cárdenas et al., 2012) y el Granito Peñón Blanco (PB), el cual aflora en el límite entre los estados de San Luis Potosí y Zacatecas, de 50.94±0.47 Ma (Aranda-Gómez et al., 2007); también se conocen los intrusivos Chepinque de 81.64±2.01 Ma (Franzetti, 2009), San Pedro de 62±0.6 Ma

(Cuéllar-Cárdenas et al., 2012), San Martín de 46 Ma (Damon et al., 1983) y Chalchihutes de 53.6±1.1 Ma (Damon et al., 1983) (Figura 2). Esos cuerpos intrusivos de diferentes edades de cristalización y que ahora se encuentran en superficie, nos indican que necesariamente hubo uno o varios eventos de exhumación dentro de la MC. Dicha exhumación se evidencia también con la presencia de conglomerados rojos del Paleógeno en diferentes puntos dentro la MC, aflorando en las cercanías de los cuerpos intrusivos antes mencionados (Figura2).

La hipótesis de este trabajo es que ocurrió un levantamiento en la parte sur de la Mesa Central de México, que fue responsable tanto de la exhumación de los cuerpos intrusivos mencionados, como del depósito de los conglomerados paleogénicos.

Como objetivo de estudio se seleccionaron los intrusivos Granito Comanja y Granodiorita Tesorera para llevar a cabo análisis geobarométricos y geocronológicos para poder reconstruir la historia de levantamiento y exhumación de la parte centro-sur de la MC. Adicionalmente se hizo un primer análisis geocronológico del Granito Peñón Blanco.

Para el desarrollo de esta tesis se llevó a cabo petrografía, fechamientos isotópicos por los métodos U/Pb en circón y U/Pb en apatito, trazas de fisión en apatito y geobarometria en hornblenda.

1.2 OBJETIVO GENERAL

Reconstruir la historia de levantamiento-exhumación en la parte centro-sur de la Mesa Central.

1.3 OBJETIVOS PARTICULARES

- Reconstruir la historia de levantamiento-exhumación del Granito Comanja y la Granodiorita Tesorera, a partir de fechamientos isotópicos de Ar-Ar en biotita y K-Ar en feldespatos publicados en la literatura y edades de cristalización y enfriamiento obtenidas en este trabajo, por medio de las técnicas de fechamiento U-Pb en apatito y circón, trazas de fisión en apatito y geobarometria en hornblenda.
- Probar el método de doble datación in situ en apatitos por trazas de fisión y U-Pb.
- Reconstruir la evolución térmica de los tres cuerpos intrusivos usando los resultados obtenidos a partir de las dataciones y la geobarometria en hornblenda.

1.4 LOCALIZACIÓN DEL ÁREA DE ESTUDIO

Las áreas de estudio se encuentran ubicadas en la parte centro-sur de la Mesa Central (MC). La MC es una provincia fisiográfica ubicada en el centro de México, limita al este con la Sierra Madre Oriental, al sur con la planicie del Bajío y la Faja Volcánica Transmexicana y al oeste con la Sierra Madre Occidental. Se divide en dos regiones: La región sur que presenta las cotas mayores a los 2 000 m s.n.m., y la región norte, que es de mayor tamaño, tiene cotas menores debido a un alto grado de erosión y presenta grandes cuencas continentales rellenas de sedimentos. Estas dos regiones se encuentran divididas por un gran lineamiento de estructuras de ~ 900 km de longitud con rumbo NW que corresponden al Sistema de Fallas San Luis Tepehuanes (SFSLT) (Nieto-Samaniego et al., 2005) (Figura 1).

Figura 1. Mapa de ubicación de las provincias fisiográficas con las que limita la Mesa Central. Se observa con líneas rojas el lineamiento de estructuras (SFALT) que separa a las dos regiones de la MC.

Los tres cuerpos intrusivos estudiados en este trabajo se encuentran ubicados entre los estados de Guanajuato, Zacatecas y San Luis Potosí. Por una parte, el Granito Comanja se localiza dentro de la Sierra de Guanajuato al sureste de la MC, con coordenadas UTM 14Q 242668.00 mE y 2338738.00 mN. La Granodiorita Tesorera se ubica dentro del Complejo Ígneo La Tesorera que se localiza al oriente de la ciudad de Zacatecas, en el límite con el estado de San Luis Potosí (Tristán-González et al., 2015), con coordenadas UTM 13Q 794590.00 mE y 2514326.00 mN. El Granito Peñón Blanco pertenece al Complejo Volcánico de Pinos (Aranda-Gómez et al., 2007) ubicado entre San Luis Potosí y Zacatecas, con las coordenadas UTM 14Q 225408.00 mE y 2493245.00 mN (Figura 2).

Figura 2. Mapa de ubicación de los cuerpos intrusivos y de los conglomerados rojos que afloran dentro de la Mesa Central.

CAPITULO 2. MARCO GEOLÓGICO

2.1 MESA CENTRAL DE MÉXICO

La estructura de la corteza de la MC se ha interpretado a partir de análisis sísmicos y gravimétricos por varios autores (Meyer et al., 1958; Fix, 1975; Rivera y Ponce, 1986; Kerdan, 1992). Se le estimó un espesor cortical de aproximadamente 32 km y presenta elevaciones de hasta 2 250 m s.n.m. Bajo esta corteza se propuso la presencia de cuerpos parcialmente fundidos de material mantélico, sugiriendo que la adición de materiales fundidos en la base produjo el levantamiento y calentamiento de la parte inferior y media de la corteza (Nieto-Samaniego et al., 1997).

Litológicamente la MC está conformada por dos paquetes de rocas: uno de edad mesozoica y otro de edad cenozoica.

El basamento pre-volcánico del Mesozoico de la Mesa Central está conformado por el ensamble de dos terrenos tectonoestratigráficos: Terreno Guerrero y Sierra Madre (Tristán-González, 2008). Las rocas más antiguas que afloran en la MC son de edad triásica y corresponden a facies marinas, yaciendo sobre estas rocas aparecen las rocas continentales del Jurásico. Posteriormente del Oxfordiano hasta el Cretácico prevalecen las condiciones marinas, durante este periodo se depositan tres conjuntos litológicos: al oriente la Plataforma Valles-San Luis Potosí (facies arrecifales y de talud), hacia el centro de la MC aparece la Cuenca Mesozoica del Centro de México (secuencias de lutitas y areniscas calcáreas) y hacia el occidente y sur aparecen los conjuntos volcanosedimentarios marinos (basaltos almohadillados con componentes sedimentarios) (Nieto-Samaniego et al., 2005). Todas estas rocas se encuentran deformadas por acortamiento y por un fallamiento inverso atribuidos a la Orogenia Larámide, muestran estructuras de foliación y pliegues de empuje (Ángeles-Moreno et al., 2017) que se relacionan con al menos dos eventos de deformación (Martini et al., 2016). Sobreyaciendo discordante a la secuencia mesozoica aflora la cubierta de rocas del Cenozoico. La secuencia cenozoica consiste de rocas de origen continental: conglomerados y de manera sobresaliente se encuentran aflorando campos volcánicos compuestos de domos de lava (andesita y riolita principalmente), basaltos y depósitos piroclásticos (Tristán-González et al., 2015). Este paquete de rocas volcánicas constituye un episodio tectono-magmático ocurrido durante el Paleógeno que se asocia a la subducción de la Placa Farallón debajo de la placa de Norteamérica (Ferrari et al., 2005). Este episodio produce una fase de extensión a la cual se le atribuye el origen de la provincia de Cuencas y Sierras de México (Tristán-González et al., 2015).

Se ha reconocido entre estos dos paquetes de rocas una discordancia angular y erosional que abarca del Cretácico Superior al Paleoceno. Esta discordancia representa un hiatus sedimentario que ocurrido durante la Orogenia Larámide (Nieto-Samaniego et al., 2005) (Figura 3).

Columna estratigráfica de la Mesa Central

Figura 3. Columna estratigráfica de la Mesa Central (Nieto-Samaniego et al., 2005).

2.2 GRANITO COMANJA

Echegoyén-Sanchez et al. (1975) denominan como Granito Comanja a un cuerpo granítico de dimensiones batolíticas, que se extiende desde Comanja de Corona, Jal., hasta el Mineral de la Luz, en el Distrito Minero de Guanajuato.

El intrusivo muestra una aureola de contacto de dimensiones considerables y de mineralogía variada. Este cuerpo granítico tiene una forma alargada con una orientación NW-SE de aproximadamente 45 km de longitud y varia su anchura de 2 a 7 km (Ángeles-Moreno et al., 2017) (Figura 4).

Figura 4. Mapa geológico del sector sur de la Sierra de Guanajuato, donde se encuentra aflorando el Granito Comanja en color guinda y con la localización de las muestras investigadas (Ángeles-Moreno et al., 2017).

El granito intrusiona a las unidades mesozoicas (Complejo Vulcanosedimentario Sierra de Guanajuato). Se encuentra cubierto discordantemente por el Conglomerado Duarte, en el cual se ha reportado la presencia de clastos de granito (Miranda-Avilés et al., 2016) que podrían ser

parte del GC y por rocas volcánicas del Oligoceno. En el área estudiada lo sobreyace directamente la Andesita Cerro Verde. (Figuras 5).

Columna estratigráfica

Figura 5. Columna estratigráfica simplificada de la Sierra de Guanajuato, modificada de Ángeles-Moreno et al., (201)7.

Varios autores (Martínez-Reyes, 1992; Quintero-Legorreta, 1992; Botero-Santa et al.,2015; Ángeles-Moreno et al., 2017) describen al GC como un granito leucocrático, félsico, fanerítico, compuesto por cuarzo, ortoclasa, oligoclasa, biotita y presenta vetas de turmalina y cataclasita o estructuras frágil-dúctil. Ángeles-Moreno et al. (2018) reportan en su descripción petrográfica texturas de reacción entre feldespato alcalino y plagioclasa, sugiriendo una inestabilidad térmica y composicional del granito. En este trabajo se hizo un análisis petrográfico que se presenta en el capítulo de Resultados. Diferentes autores han reportado edades isotópicas de enfriamiento y de cristalización del Granito Comanja utilizando diferentes métodos de datación (Tabla 1).

AUTOR	MINERAL	MÉTODO	EDAD
Múgica-Mondragón y Jacobo-Albarrán (1983)	Biotita	K-Ar	55±4 Ma 58±5 Ma
Zimmerman et al. (1990)	Biotita	K-Ar	53±3 Ma 51±1 Ma
Stein et al. (1994)	Biotita	K-Ar	52.9±2.7 Ma 51±1.3 Ma 49.5±1.5 Ma
Botero-Santa et al. (2015)	Biotita Orthoclasa Circón	Ar-Ar Ar-Ar U-Pb	53.11±0.27 Ma 53.63±0.75 Ma 51.7±0.2 Ma
Ángeles-Moreno et al. (2017)	Circón	U-Pb	51.0±0.3 Ma
Ruíz-González (2015)	Circón	U-Pb	51.0±0.33 Ma
Table 1. Table de adades isaténicas del Cranite Comania			

Tabla 1. Tabla de edades isotópicas del Granito Comanja.

Como se puede observar en la Tabla 1, las edades de enfriamiento y cristalización están frecuentemente invertidas, debido quizá a un exceso de argón en el sistema, lo cual puede deberse a las texturas de exsolución presentes en los feldespatos datados del granito. Las edades de cristalización obtenidas por el método de U/Pb en circón ubican la edad del GC en el Ypresiano. En este trabajo se obtuvieron edades por varios métodos que se reportan en el capítulo de resultados.

2.3 GRANODIORITA TESORERA

Tristán-González et al. (2015) denominan como Granodiorita Tesorera a un cuerpo intrusivo que aflora dentro del Complejo Ígneo La Tesorera, en el estado de Zacatecas, el cual se emplazó a lo largo de fallas y fracturas de rumbo NW con anchos variables. (Figura 6).

Figura 6. Mapa geológico del Complejo Ígneo La Tesorera, donde se encuentra aflorando la Granodiorita Tesorera (Tristán-González et al., 2015).

La granodiorita intrusiona a la secuencia sedimentaria y vulcanosedimentaria mesozoica, así como a los sedimentos calcáreos del Cretácico Temprano que se encuentran deformados por el evento de acortamiento de la orogenia Larámide. La sobreyacen directamente la Dacita El Gato y la Riolita La Leona del Paleógeno (Tristán-González et al., 2015) (Figura 7).

Columna estratigráfica

Figura 7. Columna estratigráfica simplificada de la Granodiorita Tesorera, modificada de Tristán-González et al. (2015).

Esta granodiorita es descrita por varios autores (González-Arroyo et al., 1997; Larrañaga-Obregón y Caballero-Martínez., 2000; Quevedo-Coronado, 2007; Solé et al., 2007; Cuellar-Cárdenas et al., 2012) como un cuerpo intrusivo de composición granítica o granodiorítica de textura holocristalina, inequigranular, porfídica, compuesta de plagioclasa, feldespato potásico, hornblenda, biotita parcialmente alterada, clorita y cuarzo. Cuéllar-Cárdenas et al. (2012) reportan plagioclasas con maclas de albita-periclina, zonación e intercrecimientos antipertíticos. En este trabajo se hizo un análisis petrográfico que se presenta en el capítulo de Resultados.

Diferentes autores han reportado edades isotópicas de enfriamiento y de cristalización de la Granodiorita Tesorera utilizando diferentes métodos de datación (Tabla 2).

Como se puede observar en la Tabla 2, las edades de enfriamiento y cristalización están invertidas como en el caso del Granito Comanja, y de igual manera se pudieron observar texturas de exsolución presentes en algunos minerales de la granodiorita, lo cual nos podría producir un exceso de argón en los minerales del pluton. La edad de cristalización obtenida por el método de U/Pb en circón ubican la edad de la GT a finales del Campaniano.

En este trabajo se obtuvieron edades por varios métodos que se reportan en el capítulo de resultados.

AUTOR	MINERAL	MÉTODO	EDAD
Múgica-Mondragón and Jacobo- Albarrán (1983)	Biotita	K-Ar	74±6.0 Ma
Solé et al. (2007)	Biotita	K-Ar	73±3.0 Ma
Franzetti (2009)	Biotita Feldespato	K-Ar	75±2.7 Ma 76.8±1.9 Ma
Cuéllar-Cárdenas et al. (2012)	Circón	U-Pb	73.3±0.3 Ma

Tabla 2. Tabla de edades isotópicas de la Granodiorita Tesorera.

2.4 GRANITO PEÑON BLANCO

El denominado Granito Peñón Blanco aflora en la Sierra de Salinas y pertenece al Complejo Volcánico de Pinos y se encuentra emplazado sobre fallas normales (Aranda-Gómez et al., 2007) (Figura 8).

Figura 8. Mapa geológico simplificado de la Sierra de Salinas, donde se encuentra aflorando el Granito Peñón Blanco. MC-35, corresponde a la muestra que se fechó en el trabajo de Aranda-Gómez et al. (2007), S: Salinas de Hidalgo, SLP.

Este cuerpo granítico intrusiona a toda la secuencia mesozoica de la Sierra de Salinas. La secuencia cenozoica que está sobreyaciendo discordante a las rocas del Mesozoico corresponde a capas rojas de conglomerado continental del Eoceno que contiene clastos del granito PB (Aranda-Gómez et al., 2007) y sobre los lechos rojos aparece una secuencia volcánica dominada por riolitas, riodacitas, ignimbritas y numerosos flujos de lava (Figura 9).

Columna estratigráfica

Figura 9. Columna estratigráfica simplificada del Granito Peñón Blanco, modificada de Aranda-Gómez et al. (2007).

Se trata de un cuerpo intrusivo de textura porfídica, con fenocristales envueltos en una matriz equigranular, presenta una mineralogía de cuarzo, ortoclasa, sanidino, oligoclasa, muscovita y como mineral accesorio tiene turmalina negra (Nieto-Samaniego et al., 2005; Aranda-Gómez et al., 2007). Por otra parte, Silva-Romo (1996) con base en su composición química y mineralógica lo clasifica como un granito peraluminoso.

En este trabajo se hizo un análisis petrográfico que se presenta en el capítulo de Resultados.

Dos autores reportan edades isotópicas del Granito Peñón Blanco utilizando diferentes métodos de datación (Tabla 3). Como se puede observar en la Tabla 3, las dos edades corresponden a eventos de enfriamiento. Como edad de cristalización consideramos la edad de U/Pb en circón que se reporta en este trabajo en el capítulo de Resultados y ubica la edad del Granito Peñón Blanco en Ypresiano.

AUTOR	MINERAL	MÉTODO	EDAD
Múgica-Mondragón and Jacobo- Albarrán (1983)	Muscovita	K-Ar	47±4 Ma
Aranda-Gómez et al. (2007)	Muscovita	Ar-Ar	50.94±0.47 Ma

Tabla 3. Tabla de edades isotópicas del Granito Peñón Blanco.

CAPÍTULO 3. METODOLOGÍA

3.1 <u>COMPILACIÓN CARTOGRÁFICA Y GEOLÓGICA DE LAS ÁREAS DE</u> <u>ESTUDIO</u>

El primer paso para la elaboración de esta tesis consistió en hacer una búsqueda de información bibliográfica de trabajos geológicos previos centrados en nuestras áreas de estudio, así como también de mapas tanto geológicos como topográficos buscando así los mejores afloramientos para poder proceder al trabajo de campo.

Por otra parte, también se recabo información referente a los métodos de datación que utilizaron diferentes autores en trabajos previos referentes a los tres cuerpos intrusivos que serían analizados en este trabajo: U-Pb en circón, Ar-Ar en muscovita, biotita y ortoclasa, K-Ar en muscovita y biotita. Así como también con respecto a la metodología de fechamientos isotópicos por los métodos U-Pb en circón y U-Pb en apatito, trazas de fisión en apatito y geobarometria en hornblenda.

3.2 TOMA DE MUESTRAS EN CAMPO

La recolección de muestras de los tres cuerpos intrusivos se llevó a cabo tomando en consideración la calidad del afloramiento (que la roca se observara fresca).

Para el Granito Comanja se colecto una muestra representativa de aproximadamente 3 kg. El afloramiento se observaba ligeramente intemperizado, pero sin presencia de diques que pudieran ser un inconveniente para los posteriores análisis.

En la zona de afloramiento de la Granodiorita Tesorera, se colectaron dos muestras. La primera se tomó de un banco de material donde la roca se observaba muy intemperizada y deleznable por lo cual se tomó aproximadamente 1 kg de material, considerando que no sería muy útil para

los análisis. La segunda muestra se colecto dentro de un área minera y corresponde a un bloque de granodiorita. Cabe mencionar que este bloque se observaba fresco y sin vetillas, por lo cual consideramos que no proviene de la zona mineralizada, sino de las obras de preparación de la mina desarrolladas en la granodiorita.

Para el Granito Peñón Blanco se tomó una muestra representativa de aproximadamente 3 kg en uno de los hombros del intrusivo, no del núcleo del granito. El afloramiento se observaba moderadamente intemperizado y con abundantes vetillas de turmalina negra que iban desde escala milimétrica hasta métrica. De este afloramiento no se pudo tomar una muestra fresca como se pretendía.

Durante el trabajo de campo se tomó en consideración observar las unidades aledañas a los afloramientos con la intensión de mantener un control en la estratigrafía de las zonas de estudio.

Figura 10. Mapa de ubicación de los tres cuerpos intrusivos muestreados, los cuales afloran dentro de la parte centro-sur de la Mesa Central. Tcg: Conglomerado Zacatecas, Kgt: Granodiorita Tesorera, Ecd: Conglomerado Guanajuato, Egc: Granito Comanja.

3.3 ANÁLISIS PETROGRÁFICO

Para el análisis petrográfico de las rocas se elaboraron 6 láminas delgadas: una para cada uno de los cuerpos intrusivos (Granito Comanja, Granodiorita Tesorera y Granito Peñón Blanco) y tres más para las unidades sobreyacientes de la Granodiorita Tesorera (Dos para Dacita El Gato y una para Riolita La Leona). La elaboración de las secciones delgadas se llevó a cabo en el Taller de Laminación del Centro de Geociencias.

Posteriormente para cada una de las 6 láminas delgadas se determinó la composición mineralógica y características texturales microscópicas de las rocas. El estudio petrográfico se realizó utilizando un microscopio de luz polarizada Nikon ECLIPSE E 2000 del Centro de Geociencias.

3.4 FECHAMIENTOS ISOTÓPICOS

Como trabajo previo a la parte analítica de esta tesis se colecto la información bibliográfica correspondiente a los fechamientos isotópicos antes realizados a los tres cuerpos intrusivos por diferentes métodos de datación: K-Ar en muscovita y biotita, Ar-Ar en muscovita, biotita y ortoclasa y U-Pb en circón (Tabla1, 2 y 3).

<u>Método de datación K-Ar:</u> Fue desarrollado en los años 1937-1948 (Von Weizs äcker, 1937; Aldrich and Nier, 1948). A partir de este método se puede calcular la edad de un mineral (muscovita, biotita, etc.) o de una roca con contenido de potasio (K). Esta metodología es una de las primeras técnicas de datación isotópica y la más usada del siglo XX.

El método se basa en decaimiento natural del isótopo radiactivo de ⁴⁰K a ⁴⁰Ar a través del tiempo. Entonces el número de átomos de ⁴⁰Ar producidos a partir de ⁴⁰K que es medido de forma independiente (Fluorescencia de Rayos X, Fotometría por Flama) permite calcular una edad del mineral desde su

formación hasta el presente (asumiendo que el mineral no contiene ⁴⁰Ar al inicio de su formación). Es considerado como un geocronómetro útil para medir edades que van desde el Cuaternario hasta la formación del Sistema Solar. También se ha empleado para intercalibración de constantes de decaimiento. La vida media del ⁴⁰K es de 1250 millones de años y la temperatura de cierre del sistema isotópico para algunos de los minerales (Figura 11) que se pueden fechar por este método son:

Hornblenda: ~490-685 °C Muscovita: ~300-400 °C Biotita: ~ 337-413 °C Feldespato-K: ~150-248 °C

(McDougall y Harrison, 1999; Berger y York, 1981; Lux, D.R, 1985; Foland, K.A, 1973)

Como muchos métodos de análisis la datación isotópica del método K-Ar cuenta con ventajas y desventajas.

VENTAJAS	DESVENTAJAS
1) Numerosos minerales que	1) Es muy difícil distinguir cuales son
contengan K pueden ser fechados	las fuentes de Ar presentes en la
por este método (siendo el K un	muestra ya sea atmosférico, inicial o
elemento muy abundante en la	radiogénico.
corteza terrestre).	2) La posibilidad de tener pérdida de
2) el Ar es un gas inerte y se puede	Ar en el sistema ya sea por difusión u
aislar muy bien y no se requiere de	otros fenómenos.
isócrona.	3) El exceso de Ar en el sistema.
3) El decaimiento natural de un	4) La medición del K y del Ar se mide
metal a un gas noble es una ventaja	a partir de dos alícuotas
que permite la determinación de	independientes (lo que puede
cantidades muy pequeñas de Ar por	producir problemas de
espectrometría de masas.	inhomogeneidad).
	5) La muestra que tenga poco
	contenido de K tendrá más rango de
	error en el resultado.

<u>Método de datación Ar-Ar:</u> Método propuesto por Thorbjorn Sigurgeirsson en 1962, es una variante del método de fechamiento de K-Ar, en la que una pequeña parte del isotopo de ³⁹K (isotopo más abundante de K) es transformado en ³⁹Ar al irradiar la muestra en un reactor nuclear. De esta manera se mide solamente la isotopía de Ar en la muestra, con lo que disminuye el error. Permite investigar la historia de enfriamiento a partir del fechamiento de minerales tales como hornblenda, biotita, muscovita y sanidino. Esta técnica ha reemplazado parcialmente a la datación por el método de K-Ar debido a ciertas ventajas, tiene mayor precisión y mejora la interpretación.

La datación isotópica de Ar-Ar cuenta con ventajas y desventajas.

VENTAJAS	DESVENTAJAS
 Medición solamente de la isotopía de Ar. No se requiere determinación de la concentración de K. (proporcionando mayor precisión interna). Capacidad de analizar muestra pequeñas y heterogéneas. Permite analizar en calentamiento por pasos, así el espectro de desgasificación resultante permite identificar pérdidas o exceso de Ar en el sistema. Método capaz de realizar análisis in situ o monocristal. 	 La irradiación de las muestras en un reactor nuclear, la manipulación y almacenamiento del material radiactivo resulta inconveniente y tardado. Las rocas de grano fino pueden perder argón por retroceso durante la irradiación. El exceso de Ar en el sistema (que es un problema del geobarómetro).

Figura 11. Gráfica de temperatura de cierre de varios métodos de datación aplicados en diferentes minerales (McDougall y Harrison, 1999; Harrison and McDougall, 1980; Berger y York, 1981; Lux, D.R, 1985; Foland, K.A, 1973; Donelick et al., 2005).

Las dos técnicas antes mencionadas se basan en el decaimiento del isotopo de ⁴⁰K al isotopo ⁴⁰Ar que ocurre de manera natural. Una diferencia esencial entre estas técnicas de datación reside en la medición del potasio; para K-Ar se requiere la medición de la concentración de K por separado generalmente medido por espectrometría flama, espectrometría de absorción atómica o dilución isotópica y la medición de la isotopía de Ar por espectrometría de masas. Para Ar-Ar no se requiere medir el potasio y la edad se calculada sobre

la base de la razón de isótopos de Argón. Las dos técnicas de datación isotópica dan como resultado con énfasis edades de enfriamiento.

La parte analítica de este trabajo se esquematizó de las siguientes dos maneras: A) Datación de U-Pb en circón para el Granito Peñón Blanco, Dacita El Gato y Riolita La Leona. B) Doble datación in situ de U-Pb y trazas de fisión en apatito para Granito Comanja, Granodiorita Tesorera y Granito Peñón Blanco.

A) Datación de U-Pb en circón para el Granito Peñón Blanco, Dacita El Gato y Riolita La Leona:

Recopilación bibliográfica acerca del método de datación U-Pb en circón

Toma de muestras en campo

Trituración de las rocas y separación de minerales pesados

Separación mineral (circón) de forma manual bajo lente binocular

Montura de los minerales y encapsulamiento en resina Epóxica

Pulido de las briquetas y obtención de imágenes de catodolominiscencia

Datación U-Pb

Recopilación bibliográfica acerca del método de datación U-Pb en circón

La técnica para fechamientos isotópicos por el método de U/Pb, está basada en el decaimiento radiactivo natural de los isótopos padre de uranio (U) 238, 235 y de torio 232 a isotopos hijo de plomo (Pb) 206, 207, 208 con una vida media de 4500 y 704 m. a. Esos decaimientos provienen de una serie de reacciones complejas que involucran (U) y torio (Th), permitiendo tener varios geocronómetros dentro de un mismo sistema.

$$206 PbP/^{204}Pb = 206 Pbi/^{204}Pb + 238 U (e^{\lambda 238 t} - 1)/^{204}Pb, \qquad \lambda_{238} = 1.5512 * 10^{-10}a^{-1} \\ 207 PbP/^{204}Pb = 207 Pbi/^{204}Pb + 235 U (e^{\lambda 235 t} - 1)/^{204}Pb, \qquad \lambda_{235} = 9.8485 * 10^{-10}a^{-1} \\ 208 PbP/^{204}Pb = 208 Pbi/^{204}Pb + 232 Th (e^{\lambda 232 t} - 1)/^{204}Pb, \qquad \lambda_{232} = 0.4947 * 10^{-10}a^{-1}$$

Donde P representa la abundancia del isótopo en la muestra, i la abundancia isotópica inicial, 204Pb hace referencia al plomo común y λ es la constante de decaimiento para cada uno de los isótopos de uranio y torio. Se asume que este sistema de decaimiento de U/Pb en circón, permaneció como un sistema cerrado.

Las ecuaciones que caracterizan los geocronómetros pueden ser simplificadas a la siguiente forma:

$$\frac{{}^{206}Pb^{*}}{{}^{238}U} = \left(e^{\lambda_{238}t} - 1\right); \frac{{}^{207}Pb^{*}}{{}^{235}U} = \left(e^{\lambda_{235}t} - 1\right)$$

La edad se define con base en una relación isotópica proporcional, como una evolución simultánea entre U y Pb la cual da lugar a la curva de concordia (Wetherill, 1956), donde se ajustan las muestras sin pérdida de Pb o ganancia de U. Se define la edad de concordia como aquella edad relacionada directa y exclusivamente con el decaimiento radioactivo.

Para poder llevar a cabo esta técnica de fechamiento es necesario utilizar un mineral que contenga gran cantidad de uranio en su sistema. El circón es un mineral que al momento de su cristalización almacena y retiene en su estructura una importante concentración de uranio y por el contrario muy poco o nada de plomo. Se encuentra presente en rocas ígneas de composición silícica a intermedia y es un mineral química y mecánicamente resistente, por lo que es más difícil que ocurra pérdida de plomo radiogénico o un exceso de

plomo común. Su comportamiento como geocronómetro está condicionado a su alta temperatura de cierre (Figura 11) que es de 700-900 °C (Harrison and McDougall, 1980). Por estas características, el circón se ha convertido en el principal material usado para datación de U-Pb. El método U/Pb en circón ha permitido datar eventos que se relacionan con metamorfismo y cristalización de magmas.

Toma de muestras en campo

Se colectaron 3 muestras de las áreas de estudio (Figura 10): 1 muestra del Granito Peñón Blanco (PB-01), 1 muestra de la Riolita La Leona (RL-01) y 1 muestra de la Dacita El Gato (DG-01).

Trituración de las rocas y separación de minerales pesados

Las muestras fueron trituradas y molidas en una prensa hidráulica y posteriormente se tamizaron en tres tamaños de mallas diferentes (No. 120, 35 y 4). Las fracciones menores a la malla No.35 se emplearon para separar minerales pesados haciendo uso de la batea y colocando este material pesado en pequeños recipientes (vasos Petri) con alcohol. Esto se llevó a cabo en el taller de molienda del Centro de Geociencias de la UNAM.

Montura de los minerales y encapsulamiento en resina epóxica

Del concentrado de minerales pesados, donde se asume que se encuentran los circones se hizo una selección manual de esos minerales bajo el microscopio haciendo uso de pinzas desmagnetizadas.

Separación mineral (circón) de forma manual bajo lente binocular

Se montaron los circones sobre una cinta de doble pegamento. Para cada muestra se montaron de 50 a 60 cristales. Sobre ellos de colocó una briqueta de plástico con resina epóxica y se dejó secar aproximadamente 24 horas.
Pulido de las briquetas y obtención de imágenes de catodolominiscencia

Posteriormente, se pulieron las briquetas con lijas para agua de diferentes tamaños de grano (800-300). Al tener pulidas las briquetas, en el Laboratorio de Fluidos Corticales del CGEO de la UNAM se obtuvieron las imágenes de catodoluminiscencia. Sobre estas imágenes se seleccionaron los puntos (zonas de núcleo y zonas de bordes de crecimiento) que serían analizados por ablación laser.

Datación U-Pb

Los análisis de las muestras se realizaron en el Laboratorio de Estudios Isotópicos (LEI) del CGEO de la UNAM. El sistema de ablación que se utilizó para realizar los análisis es de marca Resonetics, el cual se encuentra unido a un espectrómetro de masas con plasma acoplado inductivamente (ICP-MS). Las briquetas se colocaron dentro de la celda de ablación que está presurizada con gas helio. El tamaño del spot que se empleó para los análisis de las muestras DG-01 y RL-01 fue de 23 micras, mientras que para PB-01 fue de 17 micras. Para el cálculo de edades y sus respectivos errores se utilizó un software Isoplot 4.1.

<u>B)</u> Doble datación in situ de U-Pb y trazas de fisión en apatito para Granito Comanja, Granodiorita Tesorera y Granito Peñón Blanco.

Análisis bibliográfico acerca de las Trazas de Fisión en Apatitos

El método de datación de trazas de fisión (TFD) es considerado como un importante termocronómetro de baja temperatura que ha sido utilizado en los últimos 30 – 40 años, que permite reconstruir la historia térmica de las rocas ígneas, metamórficas y sedimentarias (Gleadow and Brown, 2000). Entre otros procesos es útil en el estudio de metamorfismo de bajo grado, activación o reactivación de fallas, magmatismo somero, ambientes geológicos tales como cinturones orogénicos, márgenes del rift, cuencas sedimentarias, cratónes, procesos diagenéticos, depósitos minerales y cálculo de la velocidad de levantamiento y/o erosión (Abdullin et al., 2014).

La aplicación de TFD surgió de importantes trabajos como el de Wagner y Reimer (1972) en los Alpes Europeos, mientras que la idea de utilizarlo como método de termocronología haciendo inferencia en la denudación y la tectónica de cinturones orogénicos es incluso más antigua (Clark and Jäger, 1969).

La fisión espontánea es una forma de desintegración radioactiva de isótopos pesados que ocurre de manera natural (Flerov y Petrzhak, 1940). Este método se basa en la fisión espontanea de un núcleo de U^{238} generando un defecto más o menos lineal conocido como traza de fisión (Figura 12), las trazas tienen longitudes iniciales de 16±1 micras y pocos nanómetros de anchura, las trazas se pueden acortar mediante un proceso de borrado termico. La vida media de la fisión espontanea del U^{238} es de (8.2±0.1) x 10¹⁵ años (Holden y Hoffman, 2003; Hadler et al., 2003), este método en apatito y circón permite datar un rango de 1 a 500 m. a, a veces hasta 1 Ga.

Figura 12. Superficie pulida a través de un cristal de apatito, donde se aprecian las TF contenidas dentro de la red cristalina. Redibujado de Gleadow and Brown (2000).

Estos defectos solo son visibles al microscopio óptico sometiendo al apatito a un ataque químico con HCl o HNO₃, de esta manera las trazas se abren y alcanzan un tamaño visible (Figura 13) suficiente para reconocer los tres tipos de trazas (Figura 14): 1) traza cortada o semicortada, 2) traza punto y 3) traza confinada o completa (es el tipo de traza que se utiliza para el modelado térmico, midiendo su longitud).

Figura 13. Fotografía de un cristal de apatito de la muestra LT-02 de la Granodiorita Tesorera, donde se aprecian los tres tipos de trazas: rectángulo rojo – traza completa, rectángulo verde – traza semicortada y circulo amarillo – traza punto.

Por otra parte, también existen las trazas espontaneas que son aquellas que se generan durante un tiempo geológico de manera natural y las trazas inducidas que se forman por la fisión del U²³⁵ a partir de la radiación de la muestra con neutrones térmicos en un reactor (Gleadow et al., 1986; Green et al., 1986).

Existen dos metodologías para calcular la edad de trazas de fisión: 1) Método convencional o EDM (External Detector Method): Para este análisis es necesario obtener las densidades de trazas espontaneas y trazas inducidas. A través de estas densidades se puede obtener la concentración de uranio en un mineral. El EDM ha sido utilizado desde los años 80, pero cada vez se emplea menos ya que analíticamente es muy complejo por requerir la irradiación de las muestras, lo cual vuelve el análisis tardado y costoso.

2) Método alternativo (medición in-situ de U²³⁸; LA-ICP-MS) o DTF: Se lleva a cabo haciendo una medición in situ de la concentración de U²³⁸ en los cristales por medio de LA-ICP-MS (Ablación Laser Asociada con un Espectrómetro de Masas con fuente de Plasma Inductivamente Acoplado) (Cox et al., 2000; Hasebe et al., 2004; Donelick et al., 2005).

Las primeras dataciones de apatito y circón por este método fueron obtenidas por Cox et al (2000) y Svojtka and Kosler (2002).

Algunos de los minerales que se pueden datar por este método son el circón, apatito y titanita. El apatito es el mineral más común del grupo de los fosfatos en la corteza terrestre. Su fórmula química general Ca_5 (PO₄)₃ cuenta con tres aniones adicionales (F, Cl y OH) y estos a su vez dan lugar a los tres tipos de apatitos: fluorapatito, clorapatito e hidroxiapatito. El F-apatito (fluorapatito) se encuentra más comúnmente en la naturaleza (Betekhtin, 1956). Los apatitos son de colores verdosos, amarillos, azules, blancos, violeta y pueden ser transparentes. Tienen una dureza 5 en la escala de Mohs. Su densidad varía desde 3.15 hasta 3.21 g/cm3. Por lo general, su forma es prismática hexagonal y bipiramidal (Figura 14). Los apatitos se disuelven en ácidos fuertes como HNO₃, HCl y H₂SO₄. Sin embargo, en la naturaleza son muy resistentes al intemperismo físico-químico (Betejtin, 1951).

Figura 14. Tipos de cristales de apatito. Redibujado de Betejtín, 1951.

Este mineral cuenta con características que lo hacen un buen candidato para llevar a cabo análisis de datación tales como DTF y U-Pb; se encuentra presente en los tres tipos de roca (ígnea, sedimentaria siliciclástica y metamórfica), contiene una moderada cantidad de U en su sistema, presenta buena estabilidad química en la superficie terrestre y tiene la capacidad de conservar los elementos traza y REE durante la diagénesis (Abdullin et al., 2014).

La temperatura de cierre para TF es de ~ 90-120 °C en F-apatitos (Figura 11). Esta temperatura depende de dos parámetros importantes: 1) la tasa de enfriamiento y 2) la composición geoquímica; la correlación entre el contenido de CI en Wt%, y valores de D-par o longitudes de etch pits en micras (Donelick et al., 2005). Esta temperatura de cierre puede aumentar hasta los 150 y 160°C.

Toma de muestras en campo

Se colectaron 3 muestras de las áreas de estudio (Figura 15): 2 muestras de granito: GC-01 (Granito Comanja), PB-01 (Granito Peñón Blanco) y 1 muestra de granodiorita: GT-01 (Granodiorita Tesorera).

Figura 15. Fotografías de los afloramientos y muestra de mano de los tres intrusivos: a) Granito Comanja (GC-01), b) Granito Peñón Blanco (GP-01) y c) Granodiorita Tesorera (GT-01).

En el taller de molienda del Centro de Geociencias de la UNAM, las muestras fueron trituradas y molidas en una prensa hidráulica (Figura 16), posteriormente se tamizaron en tres tamaños de mallas diferentes (No. 4, No. 45, No. 120). Las fracciones menores a las mallas No. 45 y 120 se emplearon para separar minerales pesados haciendo uso de la batea y colocando este material pesado en pequeños recipientes (vasos Petri) con alcohol.

Figura 16. a) Prensa hidráulica, b) lavadero y batea para separación de minerales pesados.

Separación mineral (apatito) de forma manual bajo lente binocular y por líquidos pesados

Del concentrado de minerales pesados, se hizo una selección manual de apatitos, bajo el microscopio y haciendo uso de pinzas desmagnetizadas. Por este método de selección de granos se encontraron pocos apatitos, por lo que se decidió realizar una segunda separación por medio de líquidos pesados, el cual consiste en separar apatitos y circones por diferencia de densidad utilizando bromoformo. Posteriormente, del concentrado de apatitos y circones se separaron estos dos minerales utilizando loduro de Metileno (MEI).

Montura de los minerales y encapsulamiento en resina epóxica

Se montaron los apatitos sobre una cinta de doble pegamento, acomodándose de manera cuidadosa con orden y con una distancia entre ellos adecuada para un buen conteo de granos y que no se traslapen unos con otros, o queden muy separados. Se montaron en total 30 cristales por muestra. Sobre estos de colocó una briqueta de plástico de 2.5 cm de diámetro con resina epóxica y se dejó secar aproximadamente 24 horas.

Pulido de las briquetas

Posteriormente en el taller de laminación del Centro de Geociencias de la UNAM se pulieron las briquetas (Figura 17) usando lijas húmedas y para finalizar el pulido se utilizaron suspensiones de alúmina de 3, 1, 0.3 y 0.1 micras, sobre paños de Buehler MicroCloth (Figura 17), teniendo mucho cuidado de que el pulido de la briqueta sea lo más parejo y perfecto que se pueda.

Figura 17. a) Briquetas, b) Suspensiones de alúmina de 1.0 micras.

Posteriormente se realizó el ataque químico o "etching" a los apatitos con la intención de que las trazas de fisión sean visibles para poder así realizar el conteo. Este ataque químico se hizo colocando ácido nítrico (HNO₃) 5.5 M y con una temperatura aproximada de 21°C en un vaso de precipitado (Figura 18). Seguido de esto con unas pinzas se tomó de un extremo la briqueta y se introdujo en el vaso de precipitado con ácido durante 20 segundos; pasado este tiempo se sacó rápidamente la briqueta y se enjuago con agua destilada (asegurándonos de enjuagar totalmente). Por último, se secó la briqueta con papel de laboratorio de manera cuidadosa, evitando poner en contacto directo la muestra con nuestras manos.

Figura 18. Vaso de precipitado con ácido (HNO₃) 5.5 M y con una temperatura aproximada de 21°C donde se sumergió la briqueta

Conteo de trazas y Datación U-Pb

El conteo de TF se hizo mediante el uso de un microscopio en el taller de laminación del Centro de Geociencias de la UNAM. Para comenzar se colocó la briqueta sobre el porta objetos del microscopio óptico de luz transmitida (Olympus BX51) y se centró de tal manera que los apatitos se pudieran observar e identificar (Figura 20), seleccionando solo aquellos que fueran factibles a analizar. Para dicha selección fue necesario utilizar un software de procesamiento de imágenes (ImageJ), que permite un conteo semiautomático de TF. La selección se hizo tomando en cuenta tres parámetros importantes: 1) Que los apatitos fueran mayores a las 60 micras (es el diámetro del spot que se utilizó para los análisis). 2) Que los apatitos no presentaran zoneamiento de uranio ya que esto distorsionaría los resultados, el zoneamiento se infiere por la distribución heterogénea de las trazas, en todo el cristal (Figura 19). 3) Que el apatito no estuviera muy sucio, esto se refiere a que el cristal tenga abundantes inclusiones, micro fracturas o cualquier otro defecto (Figura 19).

Figura 19. a) Fotografía de cristales de apatito de la muestra LT-02 de la Granodiorita Tesorera. b) Fotografía de un cristal de apatito donde se indica con círculo rojo un zoneamiento de uranio y con el circulo azul un defecto (inclusión fluida).

El conteo de trazas espontaneas se llevó a cabo seleccionando sobre la imagen de la computadora un área de conteo (mínimo de 4,000 micras cuadradas), considerando que el spot de laser se posicione dentro de esa área; posteriormente se contaron una por una los tres tipos de trazas una a una bajo un microscopio óptico Leica usando tanto luz reflejada, como luz transmitida (Figura 20).

Figura 20. a) Cristales de apatito donde se aprecia con un recuadro gris la zona de conteo y con un círculo rojo la localización ubicación donde se quiere que se realice la ablación. b) Cristal de apatito donde se indica con un recuadro gris un área mayor de conteo (esto se puede hacer cuando la distribución de las trazas en el cristal es homogénea), y tres círculos rojos indicando las tres ablaciones que se quieren hacer al cristal, para de esta manera tener tres datos en un mismo cristal.

Para la datación de TF por ICP-MS se requieren ablaciones puntuales con láser dentro de los campos donde se realizó el conteo de TF (Figura 21) y el cálculo de densidades de las trazas espontáneas (Chew y Donelick, 2012; Abdullin et al., 2014). Los análisis se realizaron en el Laboratorio de Estudios Isotópicos (LEI) del Centro de Geociencias de la UNAM, utilizando un sistema de ablación

láser de excímeros Resonetics M050 199nm ArF, acoplado con un espectrómetro de masas cuadrupolar con fuente de plasma inductivamente acoplado (ICP-MS). Las ablaciones se realizaron con un spot de 60 μ m de diámetro. La tasa de penetración es de 0.15 μ m por disparo (Solari et al., 2010). El estándar que utilizamos fue el apatito Durango (Abdullin et al., 2014).

Modelado térmico:

El modelado térmico (T°C – tMa) de las muestras se realizó en base a los análisis completos de trazas de fisión considerando los siguientes parámetros: 1) Su variabilidad en la longitud, la cual depende de dos factores que son; el tiempo geológico y la temperatura. Esta variabilidad de longitud en las trazas se lleva a cabo en la Zona de Borrado Parcial (PAZ), ahí las trazas sufren un acortamiento parcial. 2) Las edades de trazas de fisión en granos individuales; y 3) el parámetro cinético, el cual consiste en medir el contenido del cloro mediante LA-ICP-MS. Los modelos térmicos se construyeron con la ayuda del software HeFTy (Ketcham, 2005) y utilizando el modelo de borrado de trazas de Ketcham et al. (2007). Se recomienda registrar al menos 50 trazas confinadas que se encuentren de forma horizontal (paralelas al "eje c) y no perpendiculares al "eje c".

El modelo térmico que se obtiene se hace generalmente para el intervalo de la PAZ (60-120°C), aunque la estadística puede prolongar los modelos un intervalo más grande (20-170°C).

Estos modelos se pueden ajustar a los datos obtenidos por los fechamientos isotópicos de U-Pb en trazas de fisión, dándonos así la oportunidad de tener una mejor interpretación de los resultados.

3.5 **GEOBAROMETRÍA**

La geobarometría es un método útil para estimar la presión a la que se formó una roca endógena, se basa en el estudio experimental de la estabilidad de determinados minerales y en la distribución de algunos elementos químicos entre diferentes minerales.

Hammarstrom y Zen (1986) proponen de forma empírica el método de geobarometria por Al total en hornblenda, con la intención de obtener presiones solidus o de cristalización de plutones calcoalcalinos.

Posteriormente, con el objetivo de determinar las profundidades de emplazamiento de cuerpos intrusivos ha sido utilizado el geobarómetro de Al total en hornblenda propuesto por Schmidt (1992). Este geobarómetro se basa en la correlación entre el contenido de Al-total en hornblenda y la presión de cristalización (Hammarstrom and Zen 1986), lo cual se puede traducir en una profundidad de cristalización.

Muchas intrusiones graníticas se emplazan bajo condiciones distintas a las que se proponen para realizar una calibración experimental propuesta por Anderson y Smith (1995). El barómetro es sensible a las variaciones de temperatura y otros factores que pueden causar que las presiones calculadas sean altas. El efecto de la temperatura puede ser de hasta 2 kbar por 100°C, dependiendo abundancia de aluminio total.

Tomando en cuenta los anteriores trabajos sobre geobarometria en hornblenda (Hammarstrom y Zen, 1986; Johnson y Rutherford; Schmidt, 1992; Anderson y Smith, 1995) Mutch et al., 2016, reportan nuevos datos sobre la composición de anfíboles magmáticos sintetizados a partir de una variedad de granito. Consecuente a esto desarrollaron un nuevo geobarómetro de Al total en hornblenda que es aplicable en rocas de composición variable; anfíbol, plagioclasa, biotita, cuarzo, feldespato alcalino, ilmenita, titanita, magnetita, apatito. Considerando también un rango de presión de 0.8-10 kbar y un rango de temperatura de 725±75 °C. Proponen para el cálculo de presión la siguiente fórmula:

$$P$$
 (kbar) = 0.5 + 0.331(8) × Al^{tot} + 0.995(4) × (Al^{tot})²

<u>Metodología</u>: Para este trabajo se realizó un análisis de microsonda electrónica y geobarometria de Al-total en hornblenda para una muestra (PLN-001) que corresponde a la Granodiorita Tesorera.

Como inicio la muestra se trituró, se molió y se tamizo utilizando mallas de No. 200 a 50. Posteriormente se realizó la separación de minerales a partir del concentrado de la muestra. Se separaron de manera manual las hornblendas haciendo uso de pinzas y del microscopio, para después montar los minerales en un vidrio con cinta adhesiva. Seguido de esto las hornblendas se colocaron en una briqueta añadiéndoles resina y se pulieron en lijas finas hasta lograr su exposición en superficie.

Después de verificar que fueran hornblendas usando Microscopio Electrónico de barrido con espectroscopía de dispersión de Energía de Rayos X (SEM-EDS), se montaron en un portaobjetos en el Taller de Laminación del CGEO-UNAM para preparar una sección pulida; posteriormente se tomaron fotografías en el microscopio petrográfico. Se seleccionaron los granos a analizar elaborándose mapas de las imágenes que contienen los puntos a analizar y se recubrieron posteriormente con grafito.

Los análisis se realizaron en la microsonda electrónica del Laboratorio Universitario de Petrología (LUP) del Instituto de Geofísica de la UNAM. Se empleó el geobarómetro de aluminio total en hornblenda de Mutch et al., (2016).

CAPÍTULO 4. RESULTADOS

4.1 GRANITO COMANJA

El Granito Comanja es un cuerpo granítico de dimensiones batolíticas que se encuentra aflorando en la Sierra de Guanajuato (Figura 4).

Es una roca leucocrática, de textura fanerítica y porfídica. Los minerales principales corresponden a fenocristales grandes y de mediano tamaño de; feldespato potásico, cuarzo, plagioclasa y biotita (Figura 21). Los minerales accesorios son el zircón y el apatito. En el afloramiento la roca se encuentra moderadamente intemperizada y fracturada, se observaron también numerosas vetillas de turmalina negra y otras de cuarzo.

Figura 21. Fotografías de la muestra de mano de GC-01, que corresponde al Granito Comanja. En la fotografía derecha se aprecian cristales de biotita (Bt), plagioclasa (Pl), feldespato potásico (Kfs) y cuarzo (Qz). Se aprecian también cristales oxidados de color naranja.

En sección delgada la muestra tiene una textura holocristalina, hipidiomórfica – inequigranular. Los cristales de cuarzo, plagioclasa, feldespato y biotita tienen una forma que va de euhedral a suhedral (Figura 22). Los cuarzos presentan una extinción ondulante y recta. Las plagioclasa se encuentran altamente fracturadas y presentan zoneamiento continuo y oscilatorio, así como también macla simple o de Carlsband y polisintética o de tipo albita. Los feldespatos alcalinos presentan texturas de exsolución y alteración sericítica. Algunos cristales de biotita se encuentran parcialmente cloritizados.

Figura 22. Fotomicrografías de la muestra CG-O1 con nícoles cruzados. a) Cristales de plagioclasa (PI) muy fracturados con macla polisintética y uno al centro con zonado concéntrico. b) Textura holocristalina – inequigranular con cristales subhedrales de bitotita (Bt), plagioclasa y feldespato alcalino (Kfs). C) Feldespato alcalino de color gris claro con textura de exsolución (micropertitas), entre los feldespatos se aprecia una textura en desequilibrio. d) Cuarzo (Qz) con extinción ondulante, plagioclasa con lamelas de exsolución tipo pertita y biotita.

Este batolito se encuentra intrusionando al Complejo Volcanosedimentario Sierra de Guanajuato (CVSG) (Quintero-Legorreta, 1992; Martínez-Reyes, 1992) y en varios puntos es sobreyacido discordantemente por las rocas volcánicas del Cenozoico. En el área cercana al poblado de La Estancia, en el municipio de León, Gto. El GC encuentra cubierto directamente por la andesita Cerro Verde del Mioceno. Un resumen de las edades del Granito Comanja que se han obtenido en trabajos previos se presenta en la Tabla 1. No obstante que se conoce bien su edad, en este trabajo se reportan nuevas edades en apatito y dos en circón del CG.

Edades en apatito

Para el caso del GC, se realizaron fechamientos por Trazas de Fisón (FTA) y U/Pb (Figura 11).

En el caso del análisis de FTA se analizaron un total de 22 cristales de apatito que dieron una edad de 51.2 ± 2.4 Ma (Figura 23).

Figura 23. Gráfica de dispersión de datos que corresponden a la muestra del Granito Comanja. Los círculos de color amarillo-rojo indican cada análisis que se realizó en 22 cristales de apatito. La barra de color de la parte inferior indica el contenido (wt %) de cloro (Cl) en cada cristal. Los números sobre la curva derecha indican las edades en Ma.

En la gráfica se puede apreciar que la dispersión en los datos no es significativa (11%), por consiguiente, se infiere que se trata de una sola edad que corresponde a un solo evento de enfriamiento-exhumación. Por otra parte, la muy poca cantidad de cloro registrada en cada uno los apatitos nos indica que se tratan del tipo F-apatitos.

Se realizó el fechamiento isotópico por U/Pb en apatito; se analizaron los 22 cristales que se utilizaron para TFA más otros 10 apatitos que dieron una edad de <u>54.126±2.2 Ma</u> (Figura 24).

Figura 24. Diagrama de Tera-Wasserburg de la muestra GC-01. La línea gris corresponde a la curva de concordia, mientras que la línea verde corresponde a la línea de discordia, las elipses de color rojo corresponden a los análisis realizados en la muestra.

En la gráfica es muy notorio cómo todos los análisis son discordantes, pero se forma una buena línea de discordia cuya intersección inferior se aproxima bien a la edad del CG.

Edades en circón

Se hicieron fechamientos isotópicos por el método de U/Pb en circón en dos muestras del Granito Comanja (DT-10 y DT-11).

Para la muestra DT-10 se analizaron un total de 35 circones, de los cuales solo 7 cristales fueron tomados en cuenta para obtener una edad promedio ponderado de <u>52.64±0.52 Ma</u> (Figura 25).

Figura 25. a) Gráfica de edad de la muestra DT-10. Las líneas rojas corresponden a los circones analizados, las líneas verdes indica la media del conjunto de datos. En el recuadro superior se muestran los 7 circones que se usaron para calcular la edad de cristalización. b) Gráfica de concordia, la línea verde contínua corresponde a la línea de concordia, las elipses de color rojo corresponden a los análisis realizados y la línea verde punteada es la línea de discordia.

En esta figura se puede ver que la mayoría de los datos son concordantes, por lo tanto, se considera como una buena edad coincidiendo a su vez con datos previamente reportados. Cuatro de circones más viejos se consideraron como circones heredados o antecristales y no corresponden al evento de cristalización de esta muestra. En el caso de DT-11 se analizaron un total de 36 circones, de los cuales solo 2 cristales fueron tomados en cuenta para considerar una edad de cristalización de <u>53.35±0.41 Ma</u> (Figura 26).

Figura 26. a) Gráfica de promedio de la muestra DT-11. Las barras rojas indican el número de zircones analizados. Los recuadros de colores muestran los tres grupos de circones que tiene esta muestra. En el recuadro verde se muestran los 2 circones que se graficaron para considerar la edad de cristalización. b) Gráfica de concordia, la línea azul continua corresponde a la línea de concordia, las elipses de colores corresponden a los análisis realizados en la muestra, las de color verde a los dos datos más concordantes y la línea azul punteada es la línea de discordia.

En la gráfica se aprecia un grupo grande homogéneo de aproximadamente 56 Ma que no corresponden a la edad de cristalización del Granito Comanja (véase tabla de edades del Granito Comanja Tabla 1). Este grupo quizá pertenezca a un estadio previo del GC que aporta a esta muestra antecristales de circón de edad más vieja. Los circones más jóvenes, que no están incluidos dentro del recuadro verde y que aparecen a su derecha sí tienen la edad del GC, pero dado su magnitud de discordia no se consideraron. Todas estas edades podrían atestiguar los diferentes pulsos magmáticos que formaron al batolito. Ya que se tienen estas dos muestras (DT-10 y DT-11) pertenecientes al mismo cuerpo intrusivo, se adjuntaron los dos análisis dándonos como resultado la siguiente gráfica (Figura 27).

Figura 27. Gráfica de promedio de las muestras DT-11 y DT-10. Las barras rojas indican los zircones analizados. Los recuadros de colores muestran los grupos de circones que tienen estas muestras. En el recuadro verde se muestran los circones más jóvenes que se graficaron para considerar la edad de cristalización.

En esta gráfica se identifican 5 poblaciones de circones de diferentes edades; los dos grupos más antiguos y de 60-57 Ma pueden corresponder a los estadios más antiguos de la evolución del magma. No se puede asumir que sean xenocristales heredados ya que en la zona no se han reportado unidades de roca que sean de esa edad, las rocas más antiguas que se conocen tienen edades de 52-50 Ma y se encuentran depositadas directamente sobre las rocas del Mesozoico. El grupo de circones más numeroso y homogéneo de los 55 Ma junto con el de los 53 Ma representan quizá antecristales que crecieron en la cámara magmática fuente del granito o representan las fases antiguas del emplazamiento del GC. Por último, el grupo más joven de los 52 Ma corresponde a la edad de cristalización, esto considerando que esta edad es correlacionable con las edades de cristalización obtenidas por otros autores.

Adicionalmente se hizo un modelo térmico a partir de la medición de longitudes de trazas espontáneas en 22 F-apatitos (fluorapatitos) de la muestra GC-01 (Figura 28).

Figura 28. a) Modelo térmico de la muestra CG-01, donde se grafica temperatura en grados centígrados contra tiempo en millones de años. PAZ corresponde al intervalo en temperatura donde las trazas sufren un borrado parcial o sufren acortamiento. La edad de enfriamiento que se calculó para estos 22 F-apatitos fue de 49±3 Ma. b) Gráfica de barras de frecuencia contra la longitud medida de 35 F-apatitos.

El modelo térmico que mejor se ajustó para este cuerpo intrusivo nos indica que se trató de un solo evento de enfriamiento, rápido, ocurrido aproximadamente de los 52 a los 49 Ma. Nos indica también que las trazas de fisión que se midieron, atravesaron la zona de PAZ (120-60 °C) suficientemente rápido para mantener longitudes de 15 μ m, evitando así acortarse en su paso por la zona de borrado parcial.

Geobarometría

Con respecto a la profundidad de emplazamiento del Granito Comanja Ángeles-Moreno (2018) propone una profundidad de entre 6.6 y 7.3 km utilizando geobarometria en hornblenda para dos muestras. La temperatura y presión que calculó la hizo siguiendo la metodología de Ridolfi y Renzulli (2012) y Anderson and Smith (1995).

Nosotros recalculamos la profundidad de emplazamiento para estas muestras del GC utilizadas por Ángeles-Moreno (2018), obteniendo una sola profundidad y utilizando el geobarómetro propuesto por Mutch et al. (2016) (Tabla 4).

Se obtuvieron en promedio 678 °C para las dos muestras y una presión promedio de 1.9 \pm 0.3 kbar. Considerando una densidad promedio de la cobertura de 2500 kg/m³ se calculó una profundidad de emplazamiento para el GC de <u>7.6 \pm 1.2 km</u>.

MUESTRA	TEMPERATURA	PRESIÓN	PROFUNDIDAD
	HORNBLENDA	HORNBLENDA	
C2 - TC125	678 °C	1.9±0.3 kbar	7.6±1.2 km

Tabla 4. Resumen del promedio de gobarometría para las dos muestras de diques graníticos del Granito Comanja, utilizando el método de cálculo de Mutch et al. (2016).

4.2 GRANODIORITA TESORERA

La Granodiorita Tesorera es un cuerpo intrusivo que se encuentra aflorando en entre los poblados de Guanajuatillo, Tesorera, El Saucito y Noria del Cerro, Zacatecas (Figura 4).

Es una roca mesocrática, de textura fanerítica equigranular de grano medio. Los minerales principales corresponden a fenocristales de mediano tamaño de feldespato, cuarzo, plagioclasa, biotita y hornblenda (Figura 29). Los minerales accesorios son el zircón y el apatito. La muestra que se colecto para este trabajo no fue tomada de un afloramiento in situ, sino fue tomada de un banco de material extraído de una mina y corresponde a una muestra fresca sin presenta intemperismo ni alteración hidrotermal.

Figura 29. Fotografías de la muestra de mano de LT-02, que corresponde a la Granodiorita Tesorera. En la fotografía derecha se aprecian cristales de biotita (Bt), plagioclasa (PI) y cuarzo (Qz).

En sección delgada la muestra tiene una textura holocristalina, hipidiomórficagranular. Los cristales de cuarzo, plagioclasa y feldespato potásico tienen una forma euhedral y subhedral. Biotita, hornblenda y augita tienen una forma subhedral y anhedral (Figura 30). Los cuarzos presentan una extinción ondulante y recta. Las plagioclasa muestran alteración sericítica, zoneamiento normal y concentrico, así como también macla simple o de Carlsband, polisintética o de tipo albita y periclina. Los feldespatos alcalinos presentan texturas de exsolución y alteración sericítica.

Figura 30. Fotomicrografías de la muestra LT-02 con nícoles cruzados. a) Cristal de plagioclasa (PI) con macla de Carlsband y zonado concéntrico. b) Feldespato alcalino (Kfs) de color negro con lamelas de exsolución tipo pertita, plagioclasa con alteración sericítica, cuarzo (Qz) con extinción ondulante c) Plagioclasa de color gris oscuro con macla simple y zonado concéntrico, plagioclasa de color blanco con maclas de albitapericlina. d) Textura holocristalina –granular con cristales subhedrales y anhedrales de bitotita (Bt), plagioclasa alterada que presenta ligeramente una textura de exsolución antipertitica, hornblendas (HbI) de color amarillo.

Esta granodiorita se encuentra intrusionando a unidades volcanosedimentarias de lutita y caliza que se encuentran deformadas en bajo grado. En la zona de estudio es sobreyacida directamente por rocas volcánicas del Cenozóico; Dacita el Gato de 47.50±0.24 Ma y Riolita La Leona de 49.24±0.14 Ma (edades obtenidas en este trabajo).

Un resumen de las edades de la Granodiorita Tesorera que se han obtenido en trabajos previos se presenta en la Tabla 2. En este trabajo se reportan nuevas edades en apatito de la GT.

Edades en apatito

Para el caso de la GT, se realizaron fechamientos por; Trazas de Fisón (FTA) y U/Pb (Figura 11).

En el caso del análisis de FTA se analizaron un total de 31 cristales de apatito que dieron una edad de $\underline{66\pm3.1 \text{ Ma}}$ (Figura 31).

Figura 31. Gráfica de dispersión de datos que corresponden a la muestra de la Granodiorita Tesorera. Los círculos de color amarillo-rojo indican cada análisis que se realizó en 31 cristales de apatito. La barra de color de la parte inferior indica el contenido (wt %) de cloro (Cl) en cada cristal. Escala de desviación estándar con respecto al tiempo (σ /t). Los números sobre la curva derecha indican las edades en Ma.

En la gráfica se puede apreciar que la dispersión de los datos es de 18%, lo cual nos indica que la variación de nuestros análisis va desde aproximadamente 83 Ma hasta 32 Ma. No se obtuvo una buena confiabilidad de los datos, debido a los tres cristales más jóvenes de aproximadamente 32 Ma que evidentemente no son parte del grupo más homogéneo de aproximadamente 65 Ma. Tomando en cuenta solo a la población de datos más abundante y homogéneo se infiere que se trata de una sola edad que corresponde a un solo evento de enfriamiento-exhumación. Por otra parte, la muy poca cantidad de cloro registrada en cada uno los apatitos nos indica que se tratan del tipo F-apatitos.

Se realizó el fechamiento isotópico por U/Pb en apatito; se analizaron los 31 cristales que se utilizaron para TFA más otros 14 apatitos que dieron una edad de <u>72.8±3.1 Ma</u> (Figura 32).

Figura 32. Diagrama de Tera-Wasserburg de la muestra LT-02. La línea gris corresponde a la curva de concordia, mientras que la línea verde corresponde a la línea de discordia, las elipses de color rojo corresponden a los análisis de los apatitos individuales realizados en la muestra.

En la gráfica es muy notorio cómo todos los análisis son discordantes, pero se forma una buena línea de discordia cuya intersección inferior se aproxima bien a la edad de la GT.

Adicionalmente se hizo un modelo térmico a partir de la medición de longitudes de trazas espontáneas en 31 F-apatitos (fluorapatitos) de la muestra LT-02 (Figura 33).

Figura 33. a) Modelo térmico de la muestra LT-02, donde se grafica temperatura en grados centígrados contra tiempo en millones de años. PAZ corresponde al intervalo en temperatura donde las trazas sufren un borrado parcial o sufren acortamiento. La edad de enfriamiento que se calculó para estos 22 F-apatitos fue de 61.4 Ma. b) Gráfica de barras de frecuencia contra la longitud medida de 79 F-apatitos.

El modelo térmico que se ajustó para este cuerpo intrusivo nos indica que se trató de un solo evento de enfriamiento rápido, ocurrido aproximadamente de los 66 a los 61 Ma. Cabe recalcar que el pequeño pico que aparece a los 30 Ma se debe a que se tomaron en cuenta los tres cristales más jóvenes que pudieron haberse recalentado por fluidos hidrotermales asociados a la mineralización de la zona. Nos indica también que muchas de las trazas de fisión que se midieron, atravesaron la zona de PAZ (120-60 °C) suficientemente rápido para mantener longitudes de 15 μ m, evitando así acortarse en su paso por la zona de borrado parcial, mientras que otras se recalentaron y se acortaron a longitudes de entre 14 y 13 μ m.

Geobarometría

La Granodiorita Tesorera contiene dentro de su mineralogía hornblenda y este mineral se utilizó en este trabajo como geobarómetro.

En la sección delgada PLN-001 (Figura 34), los minerales de esta lamina delgada (Figura 34) se analizaron con la microsonda electrónica JEOLJXA 8900R en el Laboratorio Universitario de Petrología (LUP-UNAM) usando estándares naturales y sintéticos. La hornblenda fue analizada con un haz enfocado en 1 micrómetro de diámetro. Los cristales individuales fueron seleccionados con base en sus relaciones texturales con otros minerales. La temperatura y la presión fueron calculadas con base en la caracterización química de los minerales (Mogessie et al., 1990) usando los resultados de la microsonda. Temperatura y presión fueron calculadas siguiendo la metodología de Ridolfi y Renzulli (2012) y de Muntch et al. (2016), respectivamente (Tabla 5).

Figura 34. a) Fotografía de la sección delgada PLN-001 que corresponde a la Granodiorita Tesorera. Se indican encerradas con círculos rojos las hornblendas que se seleccionaron para el análisis (12 minerales). b) Microfotografías de las hornblendas seleccionadas.

L

Para la muestra PLN-001 se seleccionaron 12 cristales de hornblenda y se hicierón un total de 48 análisis. Todos lon anfiboles fueron clasificados como kaersutita. Se obtuvo una temperatura de 689 °C y una presión de 1.5 \pm 0.2 kbar. Considerando una densidad promedio de la cobertura de 2500 kg/m³ se calculó una profundidad de emplazamiento para el GC de <u>6.1 \pm 0.9 km</u>.

MUESTRA	TEMPERATURA	PRESIÓN	PROFUNDIDAD
	HORNBLENDA	HORNBLENDA	
PLN-001	689 °C	1.5±0.2 kbar	6.1±0.9 km

Tabla 5. Resultado de gobarometría para la muestra de la Granodiorita Tesorera,utilizando el método de cálculo de Mutch et al. (2016).

4.3 GRANITO PEÑÓN BLANCO

El Granito Peñón Blanco es un cuerpo intrusivo que se encuentra aflorando en la Sierra de Salinas, en las cercanías de municipio de Salinas, San Luis Potosí. (Figura 8).

Es una roca leucocrática, de textura porfídica-fanerítica, con fenocristales de grano medio y una matriz de grano fino. Los minerales principales corresponden a fenocristales de; cuarzo bipiramidal, plagioclasa, feldespato potásico y muscovita (Figura 35). Los minerales accesorios son el zircón, apatito y turmalina negra. La muestra se colecto para este trabajo fue tomada de un afloramiento in situ, en un hombro del intrusivo. Corresponde a una muestra moderadamente alterada por hidrotermalismo, muy fracturada y con alta cantidad de vetillas rellenas de calcita y turmalina negra y presenta intemperismo.

Figura 35. Fotografías de la muestra de mano de PB-01, que corresponde al Granito Peñón Blanco. En la fotografía derecha se aprecian cristales de muscovita (Ms), plagioclasa (PI), cuarzo (Qz) y feldespato potásico (Kfs).

En sección delgada la muestra tiene una textura holocristalina, porfídicainequigranular. Los fenocristales de cuarzo, plagioclasa y feldespato potásico tienen una forma euhedral. La matriz consiste principalmente de cuarzo, plagioclasa y feldespato microgranular, pero contiene unos pocos microlitos de muscovita. La muscovita, tienen una forma subhedral (Figura 36) y se puede interpretar su presencia como un producto de alteración que remplazó los espacios vacíos de la matriz y algunos de los fenocristales de feldespato. Los cuarzos presentan una extinción ondulante y recta. Las plagioclasas presentan alteración sericítica y tienen macla simple o de Carlsband, polisintética o de tipo albita y periclina. Los feldespatos alcalinos presentan alteración sericítica.

Figura 36. Fotomicrografías de la muestra PB-01 con nícoles cruzados. a) Fenocristal de cuarzo (Qz) euhedral y plagioclasas (PI) de grano medio con macla de Carlsband envueltos en una pasta microcristalina de cuarzo, plagioclasa y feldespato. b) Feldespato alcalino (Kfs) de color con alteración sericítica, cuarzo (Qz) con extinción recta y muscovita (Ms) mostrando su máxima birrefringencia. c) Plagioclasa de color gris oscuro con maclas de albita-periclina. d) Feldespato alcalino con macla de Carlsband.

Este granito se encuentra instrusionando a las unidades mesozoicas deformadas en bajo grado de la Sierra de Salinas. A esta secuencia mesozoica la sobreyacen discordantemente los lechos rojos del Eoceno intercalados con una ignimbrita.

Un resumen de las edades del Granito Peñón Blanco que se han obtenido en trabajos previos se presenta en la Tabla 3. En este trabajo se reportan nuevas edades en apatito y circón para este cuerpo intrusivo.

Edades en apatito

Para el caso del GP, se realizaron fechamientos por; Trazas de Fisón (FTA) y U/Pb (Figura 11).

Para FTA se analizaron un total de 11 cristales de apatito que dieron una edad de <u>32.1±1.5 Ma</u> (Figura 37).

Figura 37. Gráfica de dispersión de datos que corresponden a la muestra del Granito Peñón Blanco. Los círculos de color amarillo-rojo indican cada análisis que se realizó en 11 cristales de apatito. La barra de color de la parte inferior indica el contenido (wt %) de cloro (Cl) en cada cristal. Escala de desviación estándar con respecto al tiempo (σ /t). Los números sobre la curva derecha indican las edades en Ma.

En la gráfica se puede apreciar que la dispersión de los datos es de 5.1%, esto nos indica que la variación de nuestros análisis va desde aproximadamente 35 Ma hasta 30 Ma, por lo cual tenemos una buena confiabilidad de los datos. Salvo un solo análisis de cerca de los 24 Ma, el cual fue descartado. Tomando que la población de datos es más o menos homogénea se infiere que se trata de una sola edad que corresponde a un solo evento de enfriamientoexhumación. Por otra parte, la muy poca cantidad de cloro registrada en cada uno los apatitos nos indica que se tratan del tipo F-apatitos.

Se realizó el fechamiento isotópico por U/Pb en apatito; se analizaron los 11 cristales que se utilizaron para TFA más otros 34 apatitos que dieron una edad de <u>50.06±0.13 Ma</u> (Figura 38).

Figura 38. Diagrama de Tera-Wasserburg de la muestra PB-01. La línea gris corresponde a la curva de concordia, mientras que la línea verde corresponde a la línea de discordia, las elipses de color rojo corresponden a los análisis realizados en la muestra.

En la gráfica es muy notorio cómo todos los análisis son discordantes, pero se forma una buena línea de discordia cuya intersección inferior se aproxima bien a la edad del GP.

Edades en circón

Se hizo un fechamiento isotópico por el método de U/Pb en circón en una muestra del Granito Peñón Blanco (PB-01).

Para la muestra PB-01 se analizaron un total de 49 circones, todos los cristales fueron tomados en cuenta para obtener una edad promedio ponderado de <u>49.5±8.2 Ma</u> (Figura 39).

Figura 39. Gráfica de concordia para la muestra PB-01, la línea verde continua corresponde a la línea de concordia, las elipses de color rojo corresponden a los análisis realizados y la línea verde punteada es la línea de discordia.

En la figura 39 se puede ver que muchos de los circones son discordantes y el rango de error en la edad es muy grande, debido a esto no se pudo obtener una gráfica de promedio. Esta discordancia de los datos se debe a que todos los circones analizados contenían un exceso de uranio. A pesar de tener este inconveniente la edad que se obtuvo se considera como una buena edad coincidiendo a su vez con datos previamente reportados.

CAPÍTULO 5. DISCUSIÓN

• La Montaña Laramide y el levantamiento-exhumación-erosión del sur de la Mesa Central

La Orogenia Laramide es la causa a la cual se le atribuye el desarrollo de las principales estructuras de deformación por acortamiento del Mesozoico tardío - Cenozoico temprano en el centro de México (Cuéllar-Cárdenas et al., 2012). Dentro del área de estudio, situada en el sur de la Mesa Central de México, hay rocas que presentan estructuras tales como pliegues y foliaciones, lo cual nos indica que evidentemente fueron afectadas por este evento de deformación contráctil (Nieto-Samaniego et al., 2007).

El fin de la deformación contráctil migró desde la costa del Pacífico, en donde se ha documentado que ocurrió a los ~100 Ma, hacia el núcleo de la Sierra Madre Oriental (SMOr) en donde ocurrió a los ~60 Ma (Cuéllar-Cárdenas et al., 2012; Fitz-Díaz et al., 2014). Esto ha sido evidenciado con el afloramiento de rocas metamórficas profundas en facies de esquistos y gneiss que se encuentran localizadas en la zona más occidental y donde se ha estimado que la exhumación de estas rocas es de ~15 km. En la zona de la MC, las rocas presentan un metamorfismo en facies de esquistos verdes; en zona de la SMOr se presentan las facies más superficiales o rocas sin metamorfismo (Cuéllar-Cárdenas et al., 2012). El desarrollo de la Montaña Laramide termina de manera contemporánea o justo después de cesar el periodo de acortamiento, dando paso al régimen de extensión el cual se ha documentado en el norte y sur de México y que domina hasta el presente (Henry y Aranda-Gómez, 1992).

Algunos autores (Tristán-González et al., 2009; Botero-Santa et al., 2015; Angeles-Moreno et al., 2017) reportan que durante la transición entre el régimen de acortamiento y de extensión, ocurrió un evento de fallamiento lateral transcurrente. Por otra parte, cerca de la transición entre el periodo de acortamiento y el de extensión, un grupo de cuerpos plutónicos post-deformación fueron emplazados en la parte superficial de la corteza y
actualmente se encuentran aflorando en la Sierra Madre Occidental, dentro de la MC (Granito Comanja, Granodiorita Tesorera y el Granito Peñón Blanco) (Figura 2) y en SMOr.

Para la Granodiorita Tesorera la edad de cristalización es de ~ 73 Ma (U/Pb-LA-ICPMS, en zircón, Cuéllar-Cárdenas et al., 2012), esta edad coincide con el fin del evento de acortamiento Laramide, y la edad de las Trazas de Fisión (TF) de ~ 66 Ma (Figura 31) indica que la exhumación de 6.1 a 2 km ocurrió en un lapso de 7 m. a. y con una tasa de exhumación de ~ 570 m/m. a. Asumiendo que la tasa de exhumación se mantuvo constante hasta llegar a la superficie, la GT habría llegado a superficie a los \sim 63 Ma (Figura 40). Después de la exhumación de la GT, la erosión continuo hasta los ~ 49 Ma que es la edad de la Dacita El Gato (Figura 6) que se encuentra cubriendo directamente a la granodiorita (Figura 7). Durante ese lapso ocurrió erosión y pudo haber ocurrido también cierta actividad volcánica, pero debido a que son escasas las evidencias de rocas volcánicas del Ypresiano-Bartoniano dentro de la MC y sumado a esto que estas rocas tienen un espesor pequeño, menor a los 200 m, esto nos puede indicar que fueron erosionadas. Para el caso del Granito Comanja, se obtuvieron 2 fechamientos de U/Pb en circón, dando su edad de cristalización de \sim 52 Ma (Figura 26) y la edad de TF es de \sim 51 Ma (Figura 23), lo que nos indica que la exhumación de 7.6 km a 2 km de profundidad ocurrió en un lapso de ~ 1 Ma con una tasa de exhumación de 5000 m/m.a. Asumiendo que esta tasa de exhumación disminuyo hasta que el plutón llego a la superficie, el GC habría llegado a superficie a los \sim 49.6 Ma (Figura 40). Posterior a la exhumación del GC, la erosión continua hasta los ~ 31 Ma, que es la edad de la ignimbrita que cubre al granito (Figura 5).

Dos de los mecanismos de exhumación más reconocidos son:

 <u>Erosión</u>: Las tasas de erosión pueden variar de 2 a 3 órdenes de magnitud, dependiendo del relieve topográfico. Se ha documentado que tasas de erosión que exceden los 5000 m/m. a., pero al ser tasas de erosión muy elevadas, esos casos son muy poco comunes y más bien excepcionales (Burbank, 2002). <u>Remoción tectónica por sobrecarga (colapso gravitacional)</u>: Este tipo de mecanismo puede producir altas tasas de exhumación, pero una de las condiciones necesarias es que la montaña supere los 3 km de altura, para así poder generarse un colapso gravitacional (Dewey 1988).

Para poder responder al por qué se producen altas tasas de exhumación, se tomaron en cuenta los mecanismos de exhumación antes mencionados (erosión y colapso gravitacional). Estos mecanismos coinciden en que es necesario tener un alto relieve topográfico, para poder generarse.

En este trabajo obtuvimos para la Granodiorita Tesorera, una tasa de exhumación de 600 m/m. a. Esta tasa de exhumación está por debajo de lo reportado para grandes montañas orogénicas (1200 a 10000 m/m. a.) (Burbank, 2002) y está por encima de las tasas de erosión reportadas (13 a 244 m/m. a., excluyendo al Tibet) (Blackburn et al., 2018). Estos datos sugieren que la exhumación de la Granodiorita Tesorera ocurrió en un ambiente de alta montaña, debido a una combinación de altas tasas de erosión y colapso gravitacional.

El caso del Granito Comanja es un claro ejemplo de colapso gravitacional, esto evidenciado por la alta tasa de exhumación de 2300 m/m. a. Esta tasa de exhumación está claramente por encima de las tasas de erosión típicas (13 a 244 m/m. a.) y también porque se ha documentado un fallamiento normal que inicia justamente después del emplazamiento de este cuerpo granítico (Angeles-Moreno et al., 2017).

Después de la exhumación de la GT, la erosión se mantuvo durante 14 m. a., y en el caso del GC posterior a su exhumación, la erosión se mantuvo durante 17 m. a. Estas observaciones son consistentes con la evolución de montañas orogénicas (Blackburn et al., 2018). Estos autores proponen, que al terminar la formación de una montaña hay una fase corta de rápida erosión y levantamiento, seguida por un largo episodio en el que ambos decrecen drásticamente.

Para evaluar la magnitud de erosión, consideramos la compilación de Blackburn et al. (2018), en donde se indica que para las montañas con altitud

de ~ 2000 m s. n. m., las tasas de erosión están alrededor de los 100 m/m. a. Si la altitud está entre los 1000 a 2000 m. s. n. m., las tasas de erosión van de 20 a 100 m/m. a. Esta situación podría esperarse para nuestras áreas de estudio, después de haber ocurrido la exhumación de los plutones. La erosión actuó durante ca 15 m. a., y se esperaría que el espesor de la cubierta que fue removido fuera de 300 a 1500 m, adicional a esto, si se considera lo que ya se había removido durante la exhumación de los plutones, el total de la cubierta removida habría sido de 7 a 8.5 km (Figura 41). Una observación importante es que, áreas cercanas a los intrusivos se encuentran cubiertas por ignimbritas del Oligoceno (Nieto-Samaniego et al., 2005, 2007). La presencia de este tipo de roca cubriendo grandes áreas en el GC, así como en las cercanías de la GT, sugiere que la erosión previa al depósito de las ignimbritas produjo una baja topografía, ya que para que las ignimbritas se depositen uniformemente en grandes áreas requieren de una topografía moderada o baja. Este tipo de escenarios implican que la exhumación y el levantamiento ocurrieron al mismo tiempo, porque de otra manera se tendría una montaña de \sim 10 km. s. n. m, lo cual es muy poco probable (Figura 41).

• Levantamiento-exhumación-erosión fue diacrónico

El emplazamiento del Granito Comanja tuvo lugar 21 m. a. después del emplazamiento de la Granodiorita Tesorera. Ambos cuerpos plutonicos se pueden interpretar como cuerpos post-deformación, ya que ninguno de los dos presenta estructuras de deformación (Cuéllar-Cárdenas et al., 2012; Tristán-González et al., 2016).

La exhumación de la GT ocurrió en un intervalo de tiempo de \sim 73 y \sim 63 Ma, mientras que la exhumación de GC entre \sim 52 y 49 Ma (Figura 41). Para estos sucesos hay algunas observaciones importantes que deben destacarse:

- El GC se encuentra localizado ca. 160 km al sur de la GT.
- La GT está emplazada sobre el Sistema de Fallas San Luis Tepehuanes (SFSLT) (Nieto-Samaniego et al., 2007), mientras que el CG sobre el Sistema de Fallas del Bajío (SFB) (Nieto-Samaniego et al., 2007; Botero-

Santa et al., 2015). Ambos sistemas mayores de fallas tienen una orientación NW.

 En las dos áreas de estudio el levantamiento-exhumación-erosión tuvo una duración de ca. 20 m. a., tales eventos finalizan con el emplazamiento de la cubierta volcánica.

Asumiendo que se dio un engrosamiento de la corteza generado por el acortamiento laramidico, el levantamiento-exhumación-erosión de la GT sucedió como como respuesta isostática, la cual se ajusta a la evolución que comúnmente se observa en la formación de grandes montañas (p. ej., England and Molnar, 1990; Blackburn et al., 2018). Aunque ambos episodios de levantamiento-exhumación-erosión tuvieron una duración en tiempo similar, así como también la cantidad de exhumación y la altura final de la superficie, salvo que tales episodios se dieron con una diferencia de 20 m. a. (Figura 41).

El hecho de que los intrusivos Comanja y Tesorera se encuentren sobre los sistemas de fallas del Bajío y Tepehuanes respectivamente, sugieren, que estos sistemas de fallas mayores controlaron de alguna manera la exhumación, pero la diferencia en tiempo entre las dos exhumaciones permanece sin explicación.

Figura 40. Representación de los periodos de depósito de los Conglomerados Zacatecas y Guanajuato y de los eventos de exhumación y erosión de la Granodiorita Tesorera y Granito Comanja.

Figura 42. Esquema de la historia evolutiva de la Montaña Laramide. Se puede apreciar también el levantamiento-exhumación-erosión de los plutones Tesorera y Comanja.

CAPÍTULO 6. CONCLUSIONES

- Los intrusivos Granito Comanja y Granodiorita Tesorera son cuerpos intrusivos que se emplazaron sobre grandes sistemas de fallas de orientación NW y después de que terminó el acortamiento Larámide. Su exhumación aporta información fundamental sobre el levantamiento y la erosión de la Mesa Central.
- La edad de emplazamiento del Granito Comanja es de 52.64±0.52 Ma, su edad de exhumación hasta los 2 km de profundidad es de 51.2±2.4 Ma y su edad de exhumación hasta la superficie es de ~ 49 Ma. Después de llegar a la superficie prevaleció un periodo de erosión hasta los ~ 31 Ma. Su profundidad de emplazamiento es de 7.6 Km. La exhumación del GC de 7.6 a 2 km de profundidad ocurrió en un lapso de ~ 1 Ma con una tasa de exhumación de 5600 m/m. a. Este fenómeno ocurrió en un ambiente de alta montaña, debido a una combinación de altas tasas de erosión y colapso gravitacional.
- La edad de emplazamiento de la Granodiorita Tesorera es de 73.3 ±0.3 Ma, su edad de exhumación hasta los 2 km de profundidad es de 66±3.1 Ma y su edad de exhumación hasta la superficie es de ~ 63 Ma. Después de la exhumación de la GT, la erosión continuo hasta los ~ 49 Ma. Su profundidad de emplazamiento es de 6.1 km. La exhumación de la GT de 6.1 a 2 km de profundidad ocurrió en un lapso de 7 Ma y con una tasa de exhumación de 570 m/m. a. Y ocurrió por colapso gravitacional.
- En las dos áreas de estudio el levantamiento-exhumación-erosión tuvo una duración de ca. 20 m. a., y tales eventos finalizan con el emplazamiento de la cubierta volcánica.

REFERENCIAS

Abdullin, F., Solé, J., y Solari, L., 2014, Datación mediante trazas de fisión y análisis multielemental con LA-ICP-MS del fluorapatito de Cerro de Mercado, Durango, México: Revista Mexicana de Ciencias Geológicas, 31, 395-406 pp.

Anderson, J., L., and Smith, D., R., 1995, The effects of temperature and fO₂ on the Al-in-hornblende barometer: American Mineralogist, 80, 549-559 pp.

Angeles-Moreno, E., Nieto-Samaniego, A., F., Ruiz-González, F., J., Levresse, G., Alaniz-Alvarez, S. A., Olmos-Moya, P., and Miranda-Avilés, R., 2017, The transition between shortening and extensional regimes in central Mexico recorded in the tourmaline veins of the Comanja Granite: Journal of South American Earth Sciences, 73, 65-77 pp.

Aranda Gómez, J., J., Molina Garza, R., McDowell, F., W, Vassallo Morales, L., F., Ortega Rivera, M., A., Solorio Munguía, J., G., and Aguillón Robles, A., 2007, The relationships between volcanism and extension in the Mesa Central: the case of Pinos, Zacatecas, Mexico: Revista Mexicana de Ciencias Geológicas, 24, 126-233 pp.

Betejtín, A., G., 1951, Curso de Mineralogía: Moscú, Gos, Izdat, Geol, Liter, 543 pp.

Betekhtin, A., G., 1956, Course of Mineralogy (en ruso): Moscù, Nedra, 558 pp.

Berger, G. W., & York, D., 1981, Geothermometry from 40Ar39Ar dating experiments: Geochimica et Cosmochimica Acta, 45, 795-811 pp.

Blackburn, T., Ferrier, K. L., Perron, J. T., 2018, Coupled feedbacks between mountain erosion rate, elevation, crustal temperature, and density: Earth and Planetary Science Letters 498, 377–386.

Botero-Santa, P., A., Alaniz-Álvarez, S., A., Nieto-Samaniego, Á., F., López-Martínez, M., Levresse, G., Xu, S., y Ortega-Obregón, C., 2015, Origen y desarrollo de la cuenca El Bajío en el sector central de la Faja Volcánica Transmexicana: Revista mexicana de ciencias geológicas, 32, 84-98 pp. Burbank, D. W, 2002, Rates of erosion and their implications for exhumation: *Mineralogical Magazine*, *66*, 25-52.

Chew, D., M., and Donelick, R., A., 2012, Combined apatite fission track and U-Pb dating by LA-ICP-MS and its application in apatite provenance analysis. Quantitative mineralogy and microanalysis of sediments and sedimentary rocks: Mineralogical Association of Canada Short Course, 42, 219-247 pp.

Clark, S., P., and Jäger, E., 1969, Denudation rate in the Alps from geochronologic and heat flow data: American Journal of Science, 267, 1143-1160 pp.

Cox, R., Kosler, J., Sylvester, P., Hodych, P., 2000, Apatite fission-track (FT) dating by LAM-ICP-MS analysis, inGoldschmidt Conference, Oxford, UK: Journal of Conference Abstracts, 5, 322 pp.

Cuéllar-Cárdenas, M., A., Nieto-Samaniego, Á., F., Levresse, G., Alaniz-Álvarez, S., A., Solari, L., Ortega-Obregón, C., y López-Martínez, M., 2012, Límites temporales de la deformación por acortamiento Laramide en el centro de México: Revista Mexicana de Ciencias Geológicas, 29, 179-203 pp.

Damon, P., E., Clark, K., F., and Shafiqullah, M., 1983, Geochronology od the porphyry copper deposits and related mineralization of Mexico: Canadian Journal of Earth Sciences. 20, 1052-107.

Dewey, J. F., 1988, Extensional collapse of orogens: Tectonics, 7, 1123-1139.

Donelick, R., A., O'Sullivan, P., B., and Ketcham, R., A., 2005, Apatite fissiontrack analysis: Reviews in Mineralogy and Geochemistry, 58, 49-94.

Echegoyén-Sánchez, J., Cantero Pérez, E., Guerrero Álvarez, H., y Calixto, J., M,, 1975, Estudio geológico preliminar de la zona de Arperos, Gto. Comanja de Corona, Jal. Guanajuato, México: Consejo de Recursos Naturales no Renovables, residencia Guanajuato.

England, P. Molnar, P., 1990, Surface uplift, uplift of rocks, and exhumation of rocks: Geology 18, p. 1173-1177.

Ferrari, L., Valencia-Moreno, M., y Bryan, S., 2005, Magmatismo y tectónica en la Sierra Madre Occidental y su relación con la evolución de la margen occidental de Norteamérica: Boletín de la Sociedad Geológica Mexicana, 57, 343-378.

Fitz-Diaz, E., Hudleston, P., Tolson, G., y Van Der Pluijm, B., 2014, Progressive, episodic deformation in the Mexican Fold–Thrust Belt (central Mexico): evidence from isotopic dating of folds and faults. International: Geology Review, 56, 734-755.

Fix, J., E., 1975, The crust and upper mantle of central Mexico: Geophysical Journal Royal Society, 43, p. 453-499.

Flerov, G., N., and Petrzhak, K., A., 1940, Spontaneous fission of uranium: Phys. Rev, 58, 275-279.

Franzetti, M., 2009, Contribution á l'étude des massifs plutoniques de la Tesorera et de la Sauceda, Mexique: Brest, Fr., Université de Bretagne Occidentale, Mémoire de stage de Master 1, 39 pp. (Inédito).

Gleadow, A., J., W., Duddy, I., R., Green, P., F., and Lovering, J., F., 1986, Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis: Contributions to Mineralogy and Petrology, 94, 405-415.

Gleadow, A., J., and Brown, R., W., 2000, Fission-track thermochronology and the long-term denudational response to tectonics: Geomorphology and global tectonics, 57-75.

González-Arroyo, A., Martínez-Tovar, M., Montañez-Castillo, A., Chávez-Rangel, F., J., García-Ruíz, J., M., 1997, Carta Geológica-Minera, Zacatecas F13-6, escala 1:250,000: Pachuca, Hidalgo, México, Consejo de Recursos Minerales (COREMI), 1 mapa

Green, P., F., Duddy, I., R., Gleadow, A., J., W., Tingate, P., R., and Laslett, G., M., 1986, Thermal annealing of fission tracks in apatite: 1. A qualitative description: Chemical Geology, Isotope Geoscience section, 59, 237-253.

Hammarstrom, J., M., and Zen, E., A., 1986, Aluminum in hornblende: an empirical igneous geobarometer: American Mineralogist, 71, 1297-1313.

Harrison, T., M., and McDougall, I., 1980, Investigations of an intrusive contact, northwest Nelson, New Zealand—I. Thermal, chronological and isotopic constraints: Geochimica et cosmochimica acta, 44, 1985-2003.

Hasebe, N., Barbarand, J., Jarvis, K., Carter, A., and Hurford, A., J., 2004, Apatite fission-track chronometry using laser ablation ICP-MS: Chemical Geology, 207, 135-145.

Holden, N., E., 2003, Table of the Isotopes (No. BNL-71000-2003-BC): Brookhaven National Lab., Upton, NY (US).

Henry, C. D., & Aranda-Gomez, J. J., 1992, The real southern Basin and Range: Mid-to late Cenozoic extension in Mexico: Geology, 20, 701-704.

Kelley, S., 2002, K-Ar and Ar-Ar dating: Reviews in Mineralogy and Geochemistry, 47, 785-818.

Johnson, M., C., and Rutherford, M., J., 1989, Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks: Geology, 17, 837-841.

Kerdan, T., P., 1992, Estructura de la corteza y manto superior en el norte de México (a lo largo del Trópico de Cáncer desde Baja California hasta el Golfo de México): Universidad Nacional Autónoma de México, México, Posgrado en Ciencias de la Tierra, tesis de maestria, 346 pp.

Ketcham, R., A., 2005, Forward and inverse modeling of low-temperature thermochronometry data: Reviews in mineralogy and geochemistry, 58, 275-314.

Ketcham, R. A., Carter, A., Donelick, R. A., Barbarand, J., y Hurford, A. J., 2007, Improved modeling of fission-track annealing in apatite: American Mineralogist, 92, 799-810. Larrañaga-Obregón, G., Caballero-Martínez, J., A., 2000, Carta geológicominera Zacatón, F13-B59, escala 1:50,000: Pachuca, Hidalgo, México, Consejo de Recursos Minerales, 1 mapa.

Lux, D. R., 1985, K/Ar ages from the basal gneiss region, Stadlandet area, western Norway: *Norsk Geologisk Tidsskrift*, *65*, 277-286.

Martini, M., Solé, J., Garduño-Martínez, D., E., Pi Puig, T., Omaña, L., 2016, Evidence for two Cretaceous superposed orogenic belts in central Mexico base don paleontologic and K-Ar geochronologic data from the Sierra de los Cuarzos: Geosphere 12, 1-14.

Martinez-Reyes, J., 1992, Mapa geológico de la Sierra de Guanajuato: con resumen de la geología de la Sierra de Guanajuato.

Meyer, R., P., Steinhart, J., S., and Woolard, G., P., 1958, Seismic determination of cristal structure en the central plateau od mexico: Transactions of the American Geophysical Union, 39, p. 525.

McDougall, I., Mac Dougall, I., & Harrison, T. M., 1999, Geochronology and Thermochronology by the 40Ar/39Ar Method: Oxford University Press on Demand.

Miranda-Avilés, R., Puy-Alquiza, M., J., Omaña, L., y Loza-Aguirre, I., 2016, Los depósitos clásticos pos-Laramide de la Sierra de Guanajuato: Implicaciones de su composición en la evolución tectono-sedimentaria y paleogeográfica: Estudios Geológicos, 72, 058.

Mogessie, A., Tessadri, R., and Veltman, C., B., 1990, EMP-AMPH—A Hypercard program to determine the name of an amphibole from electron microprobe analysis according to the International Mineralogical Association scheme: Computers & Geosciences, 16, 309-330.

Mujica-Mondragón, M., R., and Jacobo-Albarrán, J., 1983, Estudio petrogenético de las rocas ígneas y metamórficas del Altiplano Mexicano, México: Instituto Mexicano del Petróleo, Proyecto C-1156.

Mutch, E., J., F., Blundy, J., D., Tattitch, B., C., Cooper, F., J., and Brooker, R., A., 2016, An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer: Contributions to Mineralogy and Petrology, 171, 85.

Nieto-Samaniego, Á., F., Alaniz-Álvarez, S., A., y Labarthe-Hernández, G., 1997, La deformación cenozoica poslaramídica en la parte meridional de la Mesa Central, México: Revista Mexicana de Ciencias Geológicas, 14, 13-25.

Nieto-Samaniego, Á., F., Alaniz-Álvarez, S., A., y í Cano, A., C., 2005, La Mesa Central de México: estratigrafía, estructura y evolución tectónica cenozoica: Boletín de la Sociedad Geológica Mexicana, 57, 285-318.

Nieto-Samaniego, Á., F., Alaniz-Álvarez, S., A., and Camprubí, A., 2007, Mesa Central of México: Stratigraphy, structure, and Cenozoic tectonic evolution: Geological Society of America Special Papers, 422, 41-70.

Quintero-Legorreta, O., 1992, Geología de la región de Comanja, estados de Guanajuato y Jalisco: Revista Mexicana de Ciencias Geológicas, 10, 6-25.

Quevedo-Coronado, A., L., 2007, Geología y estructura de las zonas afectadas por la intrusión de los cuerpos plutónicos de Peñón Blanco, La Sauceda y Noria del Cerro, Estado de San Luis Potosí y Zacatecas: San Luis Potosí, Universidad Autónoma de San Luis Potosí, Facultad de Ingeniería, trabajo recepcional, 66 pp.

Ridolfi, F., and Renzulli, A., 2012, Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130° C and 2.2 GPa: Contributions to Mineralogy and Petrology, 163, 877-895.

Rivera, J., y Ponce, L., 1986, Estructura de la corteza al oriente de la Sierra Madre Occidental, México, basada en la velocidad del grupo de las ondas Rayleigh: Geofísica Internacional (México), 25, p. 383-402. Ruiz-González F., J., 2015, Estudio de las vetas de turmalina que regristran la historia de exhumación del Granito Comanja, Sierra de Guanajuato, México: Universidad Nacional Autónoma de México. Tesis de Maestría, 128 pp.

Schmidt, M., W., 1992, Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer: Contributions to mineralogy and petrology, 110, 304-310.

Silva-Romo, G., 1996, Estudio de la estratigrafía y estructuras tectónicas de la Sierra de Salinas, Estados de SLP y Zacatecas: Universidad Nacional Autónoma de México, Facultad de Ciencias. Tesis de Maestría.

Solari, L., A., Gómez-Tuena, A., Bernal, J., P., Pérez-Arvizu, O., and Tanner, M., 2010, U-Pb zircon geochronology with an integrated LA-ICP-MS microanalytical workstation: Achievements in precision and accuracy: Geostandards and Geoanalytical Research, 34, 5-18.

Solé, J., Salinas, J., C., González-Torres, E., y Cendejas Cruz, J., E., 2007, Edades K/Ar de 54 rocas ígneas y metamórficas del occidente, centro y sur de México: Revista mexicana de ciencias geológicas, 24(1), 104-119

Solé, J., 2009, Determination of K-Ar ages in milligram samples using an infrared laser for argon extraction. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up-to-the-Minute Research in Mass Spectrometry, 23, 3579-3590.

Stein, G., Lapierre, H., Monod, O., Zimmermann, J., L., and Vidal, R., 1994, Petrology of some Mexican Mesozoic-Cenozoic plutons: Sources and tectonic environments: Journal of South American Earth Sciences, 7, 1-7.

Svojtka, M., Košler, M., 2002, Fission-track dating of zircon by LA-ICP-MS, in 12th Annual V. M. Goldschmidt Conference, Davos, Switzerland: Journal of Conference Abstracts, Special Supplement of Geochimica et Cosmochimica Acta, 66, A756. Tristán-González, M., 2008, Evolución tectono-magmática durante el Paleógeno en la porción sur-oriental de la Mesa Central: Universidad Nacional Autónoma de México, Centro de Geociencias. Tesis de Doctorado, 207 pp.

Tristán-González, M., Aguirre-Díaz, G., J., Labarthe-Hernández, G., Torres-Hernández, J., R., and Bellon, H., 2009, Post-Laramide and pre-Basin and Range deformation and implications for Paleogene (55–25 Ma) volcanism in central Mexico: A geological basis for a volcano-tectonic stress model: Tectonophysics, 471, 136-152.

Tristán-González, M., Aguillón-Robles, A., Barboza-Gudiño, J., R., Torres-Hernández, J., R., Bellon, H., López-Doncel, R., ... y Labarthe-Hernández, G., 2009, Geocronología y distribución espacial del vulcanismo en el Campo Volcánico de San Luis Potosí: Boletín de la Sociedad Geológica Mexicana, 61, 287-303.

Tristán-González, M., Aguillón-Robles, A., Barboza-Gudiño, J., R., Cruz-Márquez, J., García-Arreola, M., E., Bellon, H., ... y Labarthe-Hernández, G., 2015, Características geoquímicas y significado tectónico del complejo de diques y domos félsicos del Paleoceno-Eoceno de La Tesorera, Zacatecas, en la Mesa Central, México: Revista Mexicana de Ciencias Geológicas, 32, 455-474.

Wagner, G., A., and Reimer, G., M., 1972, Fission track tectonics: the tectonic interpretation of fission track apatite ages: Earth and Planetary Science Letters, 14, 263-268.

Wetherill, G. W, 1956, Discordant uranium-lead ages: I. Eos, Transactions American Geophysical Union, 37, 320-326.

Zimmermann, J.L., Stein, G., Lapierre, Henriette, Vidal, Raúl, Campa, M. F., y Monod, Olivier, 1990, Données géochronologiques nouvelles (Guerrero Guanajuato): Société de France, Réunion des Sciences de la Terre, 13, 127 pp.

Tabla A1. Datos analíticos por U/Pb ICPMS-LA en circón de la muestra DT-10 del Granito Comanja

Punto	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	²⁰⁸ Pb/ ²³² Th	$^{\pm 2\sigma}_{abs}$	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Best age (Ma)	±2σ	Disc %
DT10-1	6060	988	0.16	0.0658	0.104	0.0113	0.0068	0	0	72.2	2	101	11	800	210	72.2	2	28.5
DT10-2	2720	385	0.14	0.0486	0.0636	0.0094	0.0029	0	0	60.59	1	62.6	3	167	65	60.59	1	3.21
DT10-3	1290	320	0.25	0.0461	0.0532	0.0083	0.0027	0	0	53.25	1	52.6	3	238	110	53.25	1	-1.2
DT10-4	1430	540	0.38	0.0541	0.0637	0.0081	0.0029	0	0	51.8	1	62.6	6	410	120	51.8	1	17.3
DT10-5	749	474	0.63	0.048	0.058	0.0084	0.0027	0	0	54.1	1	57.2	4	310	110	54.1	1	5.42
DT10-6	303	166	0.55	0.0594	0.0707	0.009	0.0034	0	0.1	57.6	2	69.1	6	760	130	57.6	2	16.6
DT10-7	464	336	0.72	0.0495	0.0588	0.0086	0.0029	0	0	54.9	1	57.9	5	425	92	54.9	1	5.18
DT10-8	633	1040	1.64	0.0534	0.0627	0.0085	0.0026	0	0	54.4	1	61.7	5	390	120	54.4	1	11.8
DT10-9	641	412	0.64	0.0505	0.0572	0.0083	0.0026	0	0	53.4	1	56.4	4	408	100	53.4	1	5.32
DT10-10	1904	547	0.29	0.0505	0.0569	0.0082	0.0029	0	0	52.35	1	56.1	4	273	100	52.35	1	6.68
DT10-11	989	222	0.22	0.0755	0.116	0.0112	0.008	0	0	71.5	2	111	15	1120	##	71.5	2	35.6
DT10-12	2280	950	0.42	0.0787	0.086	0.0082	0.004	0	0	52.4	2	83.6	10	1130	##	52.4	2	37.3
DT10-13	1160	792	0.68	0.0502	0.059	0.0086	0.0027	0	0.1	55.4	1	58.1	3	318	55	55.4	1	4.65
DT10-14	703	267	0.38	0.0544	0.0611	0.0085	0.0032	0	0	54.2	1	60.1	6	480	110	54.2	1	9.82
DT10-15	1153	639	0.55	0.052	0.0601	0.0087	0.0029	0	0	55.8	1	59.2	6	460	140	55.8	1	5.74
DT10-16	587	245	0.42	0.0811	0.0977	0.0088	0.0047	0	0	56.2	1	95.4	7	1282	110	56.2	1	41.1
DT10-17	2350	486	0.21	0.0548	0.0725	0.0098	0.0041	0	0	63	1	71	4	463	120	63	1	11.3
DT10-18	758	303	0.4	0.049	0.0619	0.0092	0.0028	0	0	59	1	60.9	5	286	97	59	1	3.12
DT10-19	618	223	0.36	0.1032	0.134	0.0095	0.0061	0	0	60.7	2	127	12	1640	140	60.7	2	52.2
DT10-20	511	284	0.56	0.0514	0.0607	0.0087	0.003	0	0	56	1	59.7	6	420	140	56	1	6.2
DT10-21	377	263	0.7	0.0519	0.06	0.0087	0.0029	0	0	55.5	1	59	5	457	91	55.5	1	5.93
DT10-22	554	198	0.36	0.0539	0.0646	0.0089	0.0033	0	0	57.2	2	63.4	6	640	110	57.2	2	9.78
DT10-23	600	145	0.24	0.0512	0.0604	0.0087	0.0035	0	0	55.7	1	59.5	6	400	150	55.7	1	6.39
DT10-24	630	312	0.5	0.05	0.0568	0.0083	0.0029	0	0.1	53	2	56	5	393	78	53	2	5.36
DT10-25	4810	1042	0.22	0.4769	1.211	0.0182	0.1294	0	0	116	2	805	24	4165	40	4165	40	85.6
DT10-26	254	126	0.5	0.0512	0.0606	0.0085	0.0028	0	0	54.4	1	59.7	6	313	91	54.4	1	8.88
DT10-27	528	297	0.56	0.0492	0.0526	0.0082	0.0027	0	0.1	52.4	1	52.1	4	386	86	52.4	1	-0.6
DT10-28	1130	442	0.39	0.0513	0.0594	0.0087	0.0026	0	0.1	55.7	2	58.5	5	380	120	55.7	2	4.79
DT10-29	825	252	0.31	0.0505	0.059	0.0086	0.0029	0	0	55.15	1	58.1	5	314	78	55.15	1	5.08

DT10-30	539	175	0.33	0.0518	0.0587	0.0086	0.0028	0	0.1	55	2	57.8	5	493	87	55	2	4.84
DT10-31	1250	433	0.35	0.049	0.0587	0.0088	0.0029	0	0	56.29	1	57.8	4	244	79	56.29	1	2.61
DT10-32	841	312	0.37	0.0478	0.0573	0.0087	0.0027	0	0	55.8	1	56.5	4	253	75	55.8	1	1.24
DT10-33	1007	632	0.63	0.047	0.0568	0.0086	0.0029	0	0	55.4	1	56	4	319	87	55.4	1	1.07
DT10-34	1530	1030	0.67	0.0486	0.0596	0.0088	0.0028	0	0	56.5	1	58.7	4	430	180	56.5	1	3.75
DT10-35	640	490	0.77	0.0573	0.0666	0.0082	0.0029	0	0	52.6	1	65.4	6	530	120	52.6	1	19.6
DT10-36	1610	246	0.15	0.0467	0.0652	0.0097	0.0031	0	0	62.4	1	64.1	4	183	66	62.4	1	2.65

Tabla A2. Datos analíticos por U/Pb ICPMS-LA en circón de la muestra DT-11 del Granito Comanja

Punto	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	²⁰⁸ Pb/ ²³² Th	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Best age (Ma)	±2σ	Disc %
DT11-1	6370	917	0.14	0.42	0.61	0.01	0.077	0	0.8	67.9	2	485	26	3973	76	3973	76	28.5
DT11-2	990	148	0.15	0.06	0.06	0.01	0.004	0	0.2	50.4	1	60.6	5	539	68	50.4	1	3.21
DT11-3	620	253	0.41	0.11	0.16	0.01	0.008	0	0.1	63.7	2	153	14	1850	150	63.7	2	-1.2
DT11-4	364	190	0.52	0.35	0.64	0.01	0.024	0	0.3	82.6	3	496	36	3700	120	3700	#	17.3
DT11-5	4540	760	0.17	0.18	0.25	0.01	0.026	0	0.2	62.3	1	224.4	11	2672	90	62.3	1	5.42
DT11-6	490	333	0.68	0.16	0.21	0.01	0.007	0	0.1	61.6	2	193	12	2403	95	61.6	2	16.6
DT11-7	5810	1950	0.34	0.07	0.1	0.01	0.005	0	0.2	69.4	1	97.2	6	802	110	69.4	1	5.18
DT11-8	852	481	0.56	0.14	0.19	0.01	0.007	0	0.1	64.1	1	180	12	2197	73	64.1	1	11.8
DT11-9	1034	583	0.56	0.05	0.06	0.01	0.003	0	0.2	55.4	1	59.1	5	340	130	55.4	1	5.32
DT11-10	425	282	0.66	0.05	0.06	0.01	0.003	0	0.3	56.7	2	59.3	6	500	##	56.7	2	6.68
DT11-11	1740	850	0.49	0.05	0.06	0.01	0.003	0	0.3	55.7	2	57.4	4	202	52	55.7	2	35.6
DT11-12	1700	1190	0.7	0.05	0.06	0.01	0.003	0	0.2	53.2	1	55.7	4	226	57	53.2	1	37.3
DT11-13	1420	328	0.23	0.05	0.06	0.01	0.003	0	0.2	58.1	1	62.6	4	220	60	58.1	1	4.65
DT11-14	1043	364	0.35	0.05	0.06	0.01	0.003	0	0.5	56.1	2	59.1	8	308	100	56.1	2	9.82
DT11-15	5060	8870	1.75	0.05	0.07	0.01	0.003	0	0.5	66.1	1	72.4	4	238	91	66.1	1	5.74
DT11-16	541	319	0.59	0.11	0.16	0.01	0.006	0	0.3	63.1	2	150	10	1820	97	63.1	2	41.1
DT11-17	3430	4230	1.23	0.18	0.3	0.01	0.005	0	0.9	73.2	2	262	28	2670	160	73.2	2	11.3
DT11-18	1330	360	0.27	0.06	0.08	0.01	0.004	0	0.5	60.8	1	74.8	5	446	100	60.8	1	3.12
DT11-19	581	430	0.74	0.05	0.06	0.01	0.003	0	0.1	52.1	2	63.7	6	425	100	52.1	2	52.2
DT11-20	1186	930	0.78	0.05	0.06	0.01	0.003	0	0.1	54.9	1	57.3	4	317	77	54.9	1	6.2
DT11-21	522	266	0.51	0.06	0.08	0.01	0.004	0	0.3	56.4	2	78.4	6	719	110	56.4	2	5.93
DT11-22	1057	962	0.91	0.05	0.06	0.01	0.003	0	0.1	59.3	1	63.2	4	335	83	59.3	1	9.78
DT11-23	1100	169	0.15	0.05	0.07	0.01	0.004	0	0.4	56.4	2	64.8	7	430	160	56.4	2	6.39
DT11-24	420	330	0.79	0.08	0.09	0.01	0.004	0	0.3	53.5	1	88	11	1130	##	53.5	1	5.36
DT11-25	325	640	1.97	0.06	0.08	0.01	0.003	0	0.3	56.7	2	74.6	7	670	##	56.7	2	85.6
DT11-26	930	392	0.42	0.06	0.08	0.01	0.003	0	0.2	57	2	77.3	6	610	110	57	2	8.88
DT11-27	445	251	0.56	0.05	0.06	0.01	0.003	0	0.2	59.3	2	63.1	5	299	87	59.3	2	-0.6
DT11-28	758	327	0.43	0.05	0.05	0.01	0.003	0	0.1	53.6	1	54.2	6	350	130	53.6	1	4.79
DT11-29	538	300	0.56	0.07	0.09	0.01	0.004	0	0.5	54.4	3	83	14	1020	##	54.4	3	5.08
DT11-30	315	179	0.57	0.05	0.06	0.01	0.003	0	0	55.9	2	56.3	7	490	110	55.9	2	4.84
DT11-31	2730	515	0.19	0.07	0.08	0.01	0.006	0	0	56.9	1	80	8	790	170	56.9	1	2.61
DT11-32	970	205	0.21	0.05	0.06	0.01	0.003	0	0.1	55	1	57.1	3	160	67	55	1	1.24
DT11-33	1700	2300	1.35	0.06	0.08	0.01	0.003	0	0.3	58.7	1	75.7	6	690	140	58.7	1	1.07
DT11-34	3520	371	0.11	0.05	0.07	0.01	0.003	0	0.3	63.1	1	64.5	4	178	60	63.1	1	3.75
DT11-35	2400	512	0.21	0.06	0.07	0.01	0.004	0	0.3	56.3	1	67.4	5	480	120	56.3	1	19.6

Tabla A3. Datos analíticos por U/Pb ICPMS-LA en circón de la muestra PB-01 del Granito Peñón Blanco

Punto	U (ppm)	Th (ppm)	Th/U	207Pb/206Pb	207Pb/235U	206Pb/238U	208Pb/232Th	±2s abs	Rho	206Pb/238U	±2s	207Pb/235U	±2s	207РЬ/206РЬ	±2s	Best age (Ma)	±2s	Disc %
PB1-1	22710	441	0.02	0.07	0.08	0.01	0.03	0	0.2	53.3	0	81	4	982	89	53.3	0	28.5
PB1-2	33100	1315	0.04	0.12	0.16	0.01	0.05	0	0.8	54.5	1	147	9	2023	87	54.5	1	3.21
PB1-3	28100	595	0.02	0.11	0.13	0.01	0.07	0	0.1	54.7	0	122	6	1777	95	54.7	0	-1.2
PB1-4	18000	609	0.03	0.12	0.15	0.01	0.04	0	0.8	54.8	2	137	19	1690	##	54.8	2	17.3
PB1-5	19400	453	0.02	0.09	0.11	0.01	0.04	0	0	56	0	105	7	1400	130	56	0	5.42
PB1-6	246	98.3	0.4	0.11	0.14	0.01	0.01	0	0.3	56	2	134	11	1770	160	56	2	16.6
PB1-7	###	593	0.02	0.13	0.17	0.01	0.1	0	0.8	56.5	1	155	14	2060	150	56.5	0	5.18
PB1-8	###	710	0.03	0.15	0.19	0.01	0.09	0	0.1	58	1	175	13	2362	94	58	1	11.8
PB1-9	16890	1126	0.07	0.1	0.13	0.01	0.02	0	0.5	58	1	122	25	1650	##	58	1	5.32
PB1-10	31330	807	0.03	0.2	0.25	0.01	0.15	0	0.1	58.3	4	229	47	2800	140	58.3	4	6.68
PB1-11	###	2281	0.06	0.45	0.58	0.01	0.18	0	0.7	59.7	7	463	57	4077	54	59.7	7	35.6
PB1-12	###	943	0.04	0.26	0.35	0.01	0.17	0	0.7	63.3	1	306	15	3240	49	63.3	1	37.3
PB1-13	###	754	0.03	0.22	0.33	0.01	0.16	0	0.9	63.7	1	282	38	2760	##	63.7	1	4.65
PB1-14	19200	548	0.03	0.28	0.44	0.01	0.26	0	1	69.5	2	368	19	3332	56	69.5	2	9.82
PB1-15	###	724	0.02	0.42	0.69	0.01	0.49	0	0.4	74.4	2	532	42	3997	160	74.4	2	5.74
PB1-16	###	1700	0.07	0.52	0.9	0.01	0.24	0	1	75.2	4	647	32	4285	33	75.2	4	41.1
PB1-17	###	852	0.03	0.39	0.69	0.01	0.4	0	0.9	78	2	534	24	3857	42	78	2	11.3
PB1-18	###	1871	0.05	0.57	0.97	0.01	0.36	0	0.6	78.5	4	690	34	4422	35	78.5	4	3.12
PB1-19	###	1664	0.05	0.52	0.9	0.01	0.34	0	0.6	80.8	4	653	32	4288	37	80.8	4	52.2
PB1-20	###	854	0.04	0.48	0.88	0.01	0.39	0	0.8	83.4	1	643	17	4180	33	83.4	1	6.2
PB1-21	24100	899	0.04	0.47	0.91	0.01	0.41	0	0.5	84	2	657	17	4154	41	84	2	5.93
PB1-22	###	1770	0.05	0.53	1.03	0.01	0.38	0	0.9	87.9	6	718	41	4323	36	87.9	6	9.78
PB1-23	19900	594	0.03	0.45	0.93	0.01	0.51	0	1	90.1	2	665	33	4061	65	90.1	2	6.39
PB1-24	###	952	0.04	0.47	1.01	0.01	0.46	0	1	91.6	3	704	29	4159	43	91.6	3	5.36

PB1-25	###	1570	0.05	0.54	1.09	0.01	0.45	0	0.5	92.6	4	749	73	4346	310	92.6	4	85.6
PB1-26	###	3811	0.11	0.61	1.27	0.01	0.21	0	0.2	93	1	833	19	4534	32	93	1	8.88
PB1-27	###	1134	0.04	0.55	1.24	0.02	0.63	0	0.8	102.6	4	817	44	4390	76	102.6	4	-0.6
PB1-28	###	2292	0.05	0.65	1.72	0.02	0.59	0	0.7	117	2	1014	23	4615	33	117	2	4.79
PB1-29	412	51.5	0.13	0.05	0.14	0.02	0.01	0	0.2	129.7	5	136	9	160	140	129.7	5	5.08
PB1-30	0.01	0.01	1.4 -	-	-	-	-			-	-	-	-		-	-	-	4.84

Tabla	A4. Date	os analític	os por	U/Pb ICF	PMS-LA	de la mi	uestra G	6C-01 (del Grani	to Co	manja, d	onde	se realizo	ó el
	conteo de TF en apatito													
Punto	U (ppm)	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 2\sigma$ abs	²⁰⁷ Pb/ ²³⁵ U	$\pm 2\sigma$ abs	²⁰⁶ Pb/ ²³⁸ U	$\pm 2\sigma$ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ
GC1-1	9.07	0.801	0.051	8.95	0.65	0.1594	0.0051	0.619	953	28	2329	67	4964	120
GC1-2	13.67	0.779	0.05	6.262	0.44	0.1172	0.0027	0.124	715	16	2014	63	4914	110
GC1-3	17.7	0.779	0.049	5.05	0.38	0.0924	0.0037	0.917	569	22	1820	72	4914	110
GC1-4	10.584	0.787	0.049	7.58	0.53	0.1401	0.0034	0.506	845	19	2182	62	4932	110
GC1-5	54.93	0.6578	0.041	1.79	0.13	0.04012	0.0009	0.526	253.5	5.8	1043.9	46	4641	94
GC1-6	54.38	0.6689	0.042	1.773	0.12	0.039	0.0009	0.35	246.6	5.5	1036.3	47	4669	91
GC1-7	49.53	0.684	0.044	1.983	0.14	0.04228	0.0011	0.189	266.9	6.6	1110.2	46	4704	98
GC1-8	46.99	0.7	0.044	2.286	0.16	0.04764	0.0012	0.328	300	7.1	1209	50	4736	100
GC1-9	53.91	0.683	0.043	2.006	0.14	0.04244	0.001	0.404	267.9	6.1	1118	47	4697	99
GC1-10	38.55	0.711	0.045	2.696	0.19	0.05428	0.0013	0.253	340.7	8	1326.8	51	4760	100
GC1-11	34.62	0.748	0.047	3.428	0.25	0.0646	0.0018	0.69	403.7	11	1508	57	4846	110
GC1-12	11.242	0.781	0.049	8.85	0.63	0.1571	0.0046	0.615	940	26	2320	65	4918	110
GC1-13	15.26	0.8	0.053	7.28	0.53	0.1266	0.0046	0.661	768	26	2149	65	4963	120
GC1-14	11.49	0.807	0.052	9.39	0.67	0.1632	0.0043	0.183	974	24	2375	65	4977	120
GC1-15	11.105	0.786	0.05	9.89	0.7	0.1758	0.004	0.453	1044	22	2423	65	4930	110
GC1-16	10.74	0.819	0.053	11	0.77	0.1879	0.0046	0.175	1110	25	2522	65	5005	120
GC1-17	32.43	0.752	0.048	3.803	0.27	0.07111	0.0016	0.145	442.8	9.4	1594	55	4853	110
GC1-18	21.01	0.743	0.048	4.84	0.36	0.0922	0.0029	0.669	568	17	1789	62	4834	110
GC1-19	8.271	0.806	0.052	12.85	0.91	0.2294	0.0061	0.329	1334	32	2667	67	4976	120
GC1-20	13.65	0.792	0.051	7.19	0.51	0.1353	0.0035	0.334	819	19	2135	62	4943	110
GC1-21	10.17	0.798	0.051	9.8	0.69	0.1805	0.0047	0.416	1072	26	2414	65	4957	120
GC1-22	10.61	0.792	0.051	9.1	0.67	0.1724	0.0057	0.614	1024	31	2350	67	4944	120
GC1-23	40.83	0.722	0.046	2.742	0.19	0.05736	0.0014	0.273	359.5	8.3	1339.1	52	4786	100

Tabla A	bla A5. Datos analíticos por U/Pb ICPMS-LA de la muestra LT-02 de la Granodiorita Tesorera, donde se realizó													
					el co	nteo de	TF en ap	oatito						
Punto	U (ppm)	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 2\sigma$ abs	²⁰⁷ Pb/ ²³⁵ U	$\pm 2\sigma$ abs	²⁰⁶ Pb/ ²³⁸ U	$\pm 2\sigma$ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ
LT2-1	13.24	0.768	0.049	8.79	0.62	0.1636	0.004	0.67	977	22	2321	70	4890	110
LT2-2	20.55	0.738	0.047	5.33	0.4	0.1032	0.0035	0.804	633	20	1872	64	4821	110
LT2-3	4.99	0.802	0.052	22.4	1.9	0.393	0.019	0.882	2128	88	3190	81	4967	120
LT2-4	15.77	0.76	0.048	7.68	0.54	0.1391	0.003	0.267	839	17	2193	63	4871	110
LT2-5	15.65	0.763	0.049	7.77	0.56	0.1367	0.0036	0.504	826	20	2205	63	4879	110
LT2-6	7.416	0.8	0.051	16.13	1.1	0.2747	0.0071	0.605	1564	36	2888	64	4963	110
LT2-7	8.64	0.806	0.051	13.31	0.94	0.2246	0.0059	0.473	1306	31	2700	67	4976	110
LT2-8	10.422	0.775	0.049	11.25	0.79	0.1983	0.0047	0.414	1166	25	2543	65	4906	110
LT2-9	11.92	0.78	0.05	10.05	0.73	0.1771	0.0053	0.672	1050	29	2439	68	4916	110
LT2-10	6.671	0.803	0.051	17.6	1.2	0.2964	0.0075	0.554	1673	37	2966	68	4968	110
LT2-11	7.14	0.787	0.05	17.89	1.3	0.3111	0.0083	0.673	1745	41	2986	69	4934	110
LT2-12	7.177	0.808	0.051	16.1	1.2	0.2784	0.0073	0.598	1582	37	2881	70	4980	120

Tabla A	Tabla A6. Datos analíticos por U/Pb ICPMS-LA de la muestra PB-01 del Granito Peñón Blanco, donde se realizó													
	el conteo de TF en apatito													
Punto	U (ppm)	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 2\sigma$ abs	²⁰⁷ Pb/ ²³⁵ U	$\pm 2\sigma$ abs	²⁰⁶ Pb/ ²³⁸ U	$\pm 2\sigma$ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	$\pm 2\sigma$	²⁰⁷ Pb/ ²³⁵ U	$\pm 2\sigma$	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ
PB1-1	164.86	0.1287	0.015	0.0789	0.011	0.0087	0.0003	-0.119	55.8	1.8	77.1	11	2110	210
PB1-2	40.65	0.087	0.014	0.0522	0.0094	0.00849	0.0004	-0.048	54.5	2.7	52.3	9.3	1380	310
PB1-3	21.37	0.248	0.036	0.216	0.036	0.01239	0.0008	-0.005	79.3	4.9	202	30	3160	250
PB1-4	37.31	0.744	0.083	3.958	0.56	0.0764	0.0025	-0.24	474.5	15	1625	110	4835	190
PB1-5	193.5	0.1174	0.014	0.0696	0.01	0.00856	0.0003	-0.052	54.9	1.9	68.3	9.6	1898	210
PB1-6	14.44	0.233	0.047	0.207	0.041	0.0122	0.0013	-0.046	78.1	8.3	190	35	3170	320
PB1-7	115.5	0.2121	0.025	0.1474	0.021	0.01024	0.0004	0.248	65.7	2.4	140.3	20	2908	180
PB1-8	6.789	0.741	0.085	3.892	0.55	0.0767	0.0032	0.193	476	19	1615	120	4827	190
PB1-9	135.78	0.1401	0.017	0.0834	0.012	0.00868	0.0003	-0.244	55.7	1.9	81.3	11	2197	220
PB1-10	33.2	0.26	0.032	0.247	0.036	0.0133	0.0006	0.244	85.2	3.7	223.1	30	3242	210
PB1-11	34.53	0.127	0.018	0.0786	0.013	0.0094	0.0006	0.303	60.3	3.7	76.6	13	2020	280
PB1-12	155.4	0.1391	0.017	0.089	0.013	0.00898	0.0003	-0.015	57.6	1.9	86.5	12	2206	220
PB1-13	174.9	0.1558	0.018	0.0973	0.014	0.00895	0.0003	0.06	57.5	1.8	94.8	14	2416	210

	Tabla A7	. Datos ar	nalíticos	por U/P	b ICPM	S-LA en	apatito	de la r	nuestra G	6C-01	del Gran	ito Co	omanja	
Punto	U (ppm)	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 2\sigma$ abs	²⁰⁷ Pb/ ²³⁵ U	$\pm 2\sigma$ abs	²⁰⁶ Pb/ ²³⁸ U	$\pm 2\sigma$ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ
GC1-1	9.07	0.801	0.051	8.95	0.65	0.1594	0.0051	0.619	953	28	2329	67	4964	120
GC1-2	13.67	0.779	0.05	6.262	0.44	0.1172	0.0027	0.124	715	16	2014	63	4914	110
GC1-3	17.7	0.779	0.049	5.05	0.38	0.0924	0.0037	0.917	569	22	1820	72	4914	110
GC1-4	10.584	0.787	0.049	7.58	0.53	0.1401	0.0034	0.506	845	19	2182	62	4932	110
GC1-5	54.93	0.6578	0.041	1.79	0.13	0.04012	0.0009	0.526	253.5	5.8	1043.9	46	4641	94
GC1-6	54.38	0.6689	0.042	1.773	0.12	0.039	0.0009	0.35	246.6	5.5	1036.3	47	4669	91
GC1-7	49.53	0.684	0.044	1.983	0.14	0.04228	0.0011	0.189	266.9	6.6	1110.2	46	4704	98
GC1-8	46.99	0.7	0.044	2.286	0.16	0.04764	0.0012	0.328	300	7.1	1209	50	4736	100
GC1-9	53.91	0.683	0.043	2.006	0.14	0.04244	0.001	0.404	267.9	6.1	1118	47	4697	99
GC1-10	38.55	0.711	0.045	2.696	0.19	0.05428	0.0013	0.253	340.7	8	1326.8	51	4760	100
GC1-11	34.62	0.748	0.047	3.428	0.25	0.0646	0.0018	0.69	403.7	11	1508	57	4846	110
GC1-12	11.242	0.781	0.049	8.85	0.63	0.1571	0.0046	0.615	940	26	2320	65	4918	110
GC1-13	15.26	0.8	0.053	7.28	0.53	0.1266	0.0046	0.661	768	26	2149	65	4963	120
GC1-14	11.49	0.807	0.052	9.39	0.67	0.1632	0.0043	0.183	974	24	2375	65	4977	120
GC1-15	11.105	0.786	0.05	9.89	0.7	0.1758	0.004	0.453	1044	22	2423	65	4930	110
GC1-16	10.74	0.819	0.053	11	0.77	0.1879	0.0046	0.175	1110	25	2522	65	5005	120
GC1-17	32.43	0.752	0.048	3.803	0.27	0.07111	0.0016	0.145	442.8	9.4	1594	55	4853	110
GC1-18	21.01	0.743	0.048	4.84	0.36	0.0922	0.0029	0.669	568	17	1789	62	4834	110
GC1-19	8.271	0.806	0.052	12.85	0.91	0.2294	0.0061	0.329	1334	32	2667	67	4976	120
GC1-20	13.65	0.792	0.051	7.19	0.51	0.1353	0.0035	0.334	819	19	2135	62	4943	110
GC1-21	10.17	0.798	0.051	9.8	0.69	0.1805	0.0047	0.416	1072	26	2414	65	4957	120
GC1-22	10.61	0.792	0.051	9.1	0.67	0.1724	0.0057	0.614	1024	31	2350	67	4944	120
GC1-23	40.83	0.722	0.046	2.742	0.19	0.05736	0.0014	0.273	359.5	8.3	1339.1	52	4786	100
GC1-24	3.319	0.813	0.051	27.14	1.9	0.509	0.014	0.714	2649	61	3386	69	4991	120
GC1-25	12.82	0.785	0.05	7.94	0.58	0.154	0.0044	0.59	923	25	2221	66	4927	110
GC1-26	9.846	0.785	0.05	10.46	0.74	0.2032	0.0048	0.271	1192	26	2475	65	4928	110
GC1-27	12.85	0.796	0.051	7.57	0.53	0.1458	0.0035	0.408	877	20	2180	63	4954	110
GC1-28	16.81	0.785	0.05	5.87	0.42	0.1154	0.0027	0.451	705	15	1959	62	4928	110
GC1-29	22.3	0.77	0.049	5.03	0.38	0.0984	0.0036	0.816	607	22	1822	63	4895	110

GC1-30	13.46	0.797	0.051	7.6	0.55	0.1446	0.0052	0.747	870	29	2181	66	4955	110
GC1-31	18.95	0.775	0.05	5.614	0.4	0.1074	0.0028	0.423	657	16	1919	60	4906	110
GC1-32	34.8	0.712	0.046	2.87	0.23	0.0584	0.0026	0.839	367	16	1366	61	4763	100
GC1-33	9.948	0.809	0.052	10.4	0.74	0.1876	0.005	0.465	1108	27	2475	64	4983	120
GC1-34	14.3	0.782	0.05	7.15	0.51	0.1299	0.0038	0.672	787	21	2135	61	4921	110
GC1-35	30.9	0.725	0.047	3.37	0.27	0.0647	0.0028	0.82	404	17	1488	63	4792	110
GC1-36	3.904	0.806	0.051	24.96	1.8	0.4361	0.011	0.563	2332	48	3307	71	4976	120
GC1-37	15.8	0.773	0.049	7.71	0.77	0.1365	0.01	0.96	821	57	2164	100	4901	110
GC1-38	12.648	0.777	0.05	8.35	0.57	0.1478	0.0035	0.218	888	19	2268	62	4909	110
GC1-39	16.27	0.8	0.052	7.46	0.56	0.1239	0.0042	0.737	755	25	2167	67	4962	120
GC1-40	27.74	0.726	0.046	3.9	0.28	0.0712	0.0021	0.665	443	13	1616	58	4795	100
GC1-41	13.65	0.785	0.05	8.96	0.65	0.1507	0.0043	0.633	904	24	2331	65	4929	110
GC1-42	17.48	0.774	0.05	6.44	0.53	0.1088	0.0054	0.911	664	32	2040	72	4904	110
GC1-43	18.26	0.789	0.05	5.96	0.42	0.1004	0.0028	0.555	617	16	1972	59	4937	110
GC1-44	22.12	0.766	0.05	4.973	0.35	0.0876	0.0026	0.465	541	16	1818	60	4886	110
GC1-45	31.98	0.723	0.046	3.506	0.25	0.0659	0.0018	0.571	411.4	11	1527	57	4789	100
GC1-46	7.837	0.792	0.052	8.09	0.59	0.1403	0.0047	0.693	849	25	2236	66	4943	120
GC1-47	6.419	0.819	0.053	16.35	1.2	0.2778	0.0078	0.368	1583	38	2898	67	5004	120
GC1-48	17.41	0.778	0.049	6.396	0.45	0.114	0.0031	0.679	696	18	2033	64	4913	110
GC1-49	9.952	0.811	0.053	9.9	0.69	0.1748	0.0046	0.073	1040	26	2426	66	4987	120
GC1-50	17.660	0.793	0.051	6.03	0.69	0.1052	0.0086	0.982	642	49	1944	82	4946	110
GC1-51	27.950	0.746	0.048	3.589	0.25	0.069	0.0016	0.156	430.3	9.8	1546	56	4840	110
GC1-52	18.350	0.792	0.05	5.815	0.41	0.1058	0.0027	0.51	648	16	1949	60	4944	110
GC1-53	7.270	0.815	0.051	19.38	1.5	0.342	0.015	0.912	1894	70	3055	77	4995	120

Та	bla A8. D	atos anali	íticos po	or U/Pb l	CPMS-L	A en apa	tito de l	la mue	estra LT-0	2 de la	a Granod	iorita	a Tesorera	
Punto	U (ppm)	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 2\sigma$ abs	²⁰⁷ Pb/ ²³⁵ U	$\pm 2\sigma$ abs	²⁰⁶ Pb/ ²³⁸ U	$\pm 2\sigma$ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	$\pm 2\sigma$	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ
LT2-1	13.24	0.768	0.049	8.79	0.62	0.1636	0.004	0.67	977	22	2321	70	4890	110
LT2-2	20.55	0.738	0.047	5.33	0.4	0.1032	0.0035	0.804	633	20	1872	64	4821	110
LT2-3	4.99	0.802	0.052	22.4	1.9	0.393	0.019	0.882	2128	88	3190	81	4967	120
LT2-4	15.77	0.76	0.048	7.68	0.54	0.1391	0.003	0.267	839	17	2193	63	4871	110
LT2-5	15.65	0.763	0.049	7.77	0.56	0.1367	0.0036	0.504	826	20	2205	63	4879	110
LT2-6	7.416	0.8	0.051	16.13	1.1	0.2747	0.0071	0.605	1564	36	2888	64	4963	110
LT2-7	8.64	0.806	0.051	13.31	0.94	0.2246	0.0059	0.473	1306	31	2700	67	4976	110
LT2-8	10.422	0.775	0.049	11.25	0.79	0.1983	0.0047	0.414	1166	25	2543	65	4906	110
LT2-9	11.92	0.78	0.05	10.05	0.73	0.1771	0.0053	0.672	1050	29	2439	68	4916	110
LT2-10	6.671	0.803	0.051	17.6	1.2	0.2964	0.0075	0.554	1673	37	2966	68	4968	110
LT2-11	7.14	0.787	0.05	17.89	1.3	0.3111	0.0083	0.673	1745	41	2986	69	4934	110
LT2-12	7.177	0.808	0.051	16.1	1.2	0.2784	0.0073	0.598	1582	37	2881	70	4980	120
LT2-13	7.289	0.819	0.053	15.3	1.1	0.2568	0.0067	0.38	1473	34	2831	68	5005	120
LT2-14	33.31	0.686	0.044	3.312	0.23	0.0674	0.0015	0.247	420.5	9.3	1483	55	4703	100
LT2-15	5.86	0.782	0.05	15.51	1.1	0.2725	0.0068	0.548	1553	35	2847	67	4921	110
LT2-16	19.96	0.746	0.047	5.963	0.42	0.1108	0.0026	0.345	677.3	15	1969	61	4841	110
LT2-17	15.4	0.757	0.048	8.53	1.1	0.154	0.015	0.954	913	85	2225	120	4865	110
LT2-18	15.01	0.764	0.05	7.24	0.51	0.1307	0.0032	0.04	792	18	2141	62	4881	110
LT2-19	16.54	0.773	0.049	7.124	0.5	0.1266	0.0031	0.394	768	18	2126	63	4901	110
LT2-20	8.67	0.781	0.05	13.48	0.96	0.2371	0.0065	0.551	1371	34	2714	64	4925	120
LT2-21	14.77	0.785	0.05	8.57	0.6	0.1483	0.0037	0.154	891	20	2296	60	4928	110
LT2-22	15.28	0.751	0.048	6.5	0.52	0.1169	0.005	0.875	712	29	2036	70	4851	110
LT2-23	4.88	0.802	0.051	24.53	1.9	0.411	0.019	0.863	2214	86	3281	82	4966	110
LT2-24	11.03	0.792	0.051	10.62	0.77	0.1801	0.0055	0.688	1067	30	2490	65	4944	120
LT2-25	16.32	0.781	0.05	7.36	0.52	0.1274	0.0033	0.354	773	19	2154	63	4919	110
LT2-26	7.956	0.796	0.051	13.49	0.94	0.2275	0.0057	0.324	1321	30	2715	68	4952	110
LT2-27	10.4	0.782	0.052	12	1.4	0.202	0.017	0.947	1175	93	2534	120	4921	120
LT2-28	18.56	0.75	0.048	6.64	0.47	0.1179	0.0029	0.316	718	17	2065	62	4849	110
LT2-29	13.57	0.771	0.05	9.38	0.66	0.1617	0.0038	0.129	966	21	2374	65	4896	110

LT2-30	76.8	0.587	0.038	1.6	0.11	0.03662	0.001	0.456	231.8	5.9	969	44	4474	97
LT2-31	13.69	0.778	0.05	9.36	0.68	0.1599	0.0041	0.633	956	23	2375	69	4912	110
LT2-32	13.46	0.784	0.049	9.22	0.66	0.1596	0.0047	0.703	954	26	2363	67	4926	110
LT2-33	16.7	0.754	0.049	7.52	0.53	0.1339	0.0031	0.14	811	18	2175	61	4859	110
LT2-34	15.22	0.777	0.05	7.85	0.55	0.1341	0.0032	0.237	811	18	2217	68	4911	110
LT2-35	12.07	0.782	0.05	10.35	0.73	0.1745	0.0042	0.2	1039	23	2465	65	4921	110
LT2-36	51.03	0.653	0.041	2.313	0.16	0.04675	0.0011	0.334	294.5	6.9	1215	50	4629	95
LT2-37	6.712	0.819	0.053	17.27	1.2	0.2795	0.0077	0.174	1588	39	2951	65	5004	120
LT2-38	8.929	0.806	0.052	14.73	1	0.2385	0.0063	0.354	1378	33	2796	67	4975	120
LT2-39	12.67	0.773	0.05	9.59	0.67	0.1615	0.0044	0.417	964	25	2397	66	4902	110
LT2-40	18.88	0.73	0.047	6.07	0.43	0.1081	0.0032	0.146	661	19	1984	62	4812	110
LT2-41	10.41	0.753	0.048	9.46	0.7	0.1644	0.0055	0.737	980	30	2385	68	4857	110
LT2-42	46.37	0.654	0.041	2.621	0.18	0.05306	0.0012	0.21	333.2	7.1	1306	51	4632	95
LT2-43	12.48	0.765	0.049	7.99	0.59	0.1423	0.0044	0.721	857	25	2228	66	4883	110
LT2-44	5.887	0.804	0.052	27	12	0.45	0.19	0.999	1910	320	3020	110	4971	120
LT2-45	14.91	0.765	0.052	6.89	0.49	0.1276	0.0036	0.244	778	22	2091	57	4883	120

Tab	ola A9. D	atos anal	íticos p	or U/Pb	ICPMS-	LA en ap	atito de	e la mu	iestra PB	-01 de	el Granito	o Per	ión Blanco)
Punto	U (ppm)	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 2\sigma$ abs	²⁰⁷ Pb/ ²³⁵ U	$\pm 2\sigma$ abs	²⁰⁶ Pb/ ²³⁸ U	$\pm 2\sigma$ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	$\pm 2\sigma$	207Pb/235U	$\pm 2\sigma$	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 2\sigma$
PB1-1	164.86	0.1287	0.015	0.0789	0.011	0.0087	0.0003	-0.119	55.8	1.8	77.1	11	2110	210
PB1-2	40.65	0.087	0.014	0.0522	0.0094	0.00849	0.0004	-0.048	54.5	2.7	52.3	9.3	1380	310
PB1-3	21.37	0.248	0.036	0.216	0.036	0.01239	0.0008	-0.005	79.3	4.9	202	30	3160	250
PB1-4	37.31	0.744	0.083	3.958	0.56	0.0764	0.0025	-0.24	474.5	15	1625	110	4835	190
PB1-5	193.5	0.1174	0.014	0.0696	0.01	0.00856	0.0003	-0.052	54.9	1.9	68.3	9.6	1898	210
PB1-6	14.44	0.233	0.047	0.207	0.041	0.0122	0.0013	-0.046	78.1	8.3	190	35	3170	320
PB1-7	115.5	0.2121	0.025	0.1474	0.021	0.01024	0.0004	0.248	65.7	2.4	140.3	20	2908	180
PB1-8	6.789	0.741	0.085	3.892	0.55	0.0767	0.0032	0.193	476	19	1615	120	4827	190
PB1-9	135.78	0.1401	0.017	0.0834	0.012	0.00868	0.0003	-0.244	55.7	1.9	81.3	11	2197	220
PB1-10	33.2	0.26	0.032	0.247	0.036	0.0133	0.0006	0.244	85.2	3.7	223.1	30	3242	210
PB1-11	34.53	0.127	0.018	0.0786	0.013	0.0094	0.0006	0.303	60.3	3.7	76.6	13	2020	280
PB1-12	155.4	0.1391	0.017	0.089	0.013	0.00898	0.0003	-0.015	57.6	1.9	86.5	12	2206	220
PB1-13	174.9	0.1558	0.018	0.0973	0.014	0.00895	0.0003	0.06	57.5	1.8	94.8	14	2416	210
PB1-14	38.53	0.433	0.056	0.556	0.09	0.01873	0.0009	0.644	119.6	5.8	445	57	4020	190
PB1-15	19.4	0.38	0.055	0.394	0.067	0.01524	0.0009	0.478	97.5	5.7	338	51	3780	220
PB1-16	3.252	0.636	0.084	2.27	0.34	0.0518	0.0034	0.163	325	21	1201	100	4580	210
PB1-17	354	0.1007	0.012	0.058	0.0084	0.00831	0.0003	0.229	53.3	1.8	57.2	8.1	1622	220
PB1-18	70.12	0.1514	0.019	0.102	0.016	0.00939	0.0005	0.221	60.3	3	98.5	14	2335	210
PB1-19	75	0.197	0.031	0.133	0.024	0.00973	0.0006	0.087	62.4	3.5	127	21	2760	270
PB1-20	828	0.0936	0.01	0.0551	0.0078	0.00837	0.0003	0.135	53.74	1.6	54.4	7.5	1494	210
PB1-21	19.1	0.245	0.047	0.194	0.04	0.01108	0.0007	0.103	71	4.6	178	33	3150	290
PB1-22	300.7	0.0772	0.0093	0.0445	0.0066	0.00829	0.0003	-0.138	53.2	1.8	44.2	6.4	1096	230
PB1-23	216.6	0.0929	0.011	0.0527	0.008	0.00819	0.0003	0.114	52.59	1.7	52.1	7.7	1490	220
PB1-24	232.2	0.269	0.035	0.24	0.038	0.01344	0.0008	0.3	86.1	4.9	217	31	3270	210
PB1-25	23.44	0.1349	0.016	0.0822	0.012	0.00889	0.0003	-0.038	57	1.9	80.2	11	2136	220
PB1-26	40.43	0.1138	0.013	0.0639	0.0091	0.00803	0.0003	0.318	51.56	1.6	62.9	8.7	1878	210
PB1-27	762.9	0.71	0.12	14.3	3	0.291	0.043	0.652	1640	220	2750	210	4750	280
PB1-28	42	0.186	0.027	0.1231	0.019	0.00982	0.0005	-0.388	63	3	117.6	17	2690	240
PB1-29	26.88	0.37	0.05	0.399	0.064	0.01573	0.0008	0.265	100.6	5	337	45	3730	200

5.506	0.613	0.1	1.55	0.27	0.0369	0.0031	0.323	233	19	935	110	4480	270
176.9	0.1212	0.015	0.0727	0.011	0.00862	0.0003	0.057	55.3	1.8	71.2	10	1942	210
19.35	0.318	0.045	0.357	0.058	0.01597	0.0008	-0.023	102.1	4.9	321	49	3600	230
35.78	0.314	0.039	0.342	0.053	0.01533	0.0007	0.467	98.1	4.4	298	41	3516	200
170.6	0.1554	0.018	0.0954	0.014	0.00874	0.0003	0.027	56.1	1.8	92.9	12	2391	190
11.22	0.88	0.18	7.75	1.4	0.13	0.02	0.263	780	110	2160	180	5090	440
849.3	0.0947	0.011	0.0518	0.0076	0.008	0.0004	0.05	51.3	2.2	51.3	7.3	1526	240
13.5	0.67	0.098	1.96	0.32	0.044	0.0034	0.379	277	21	1096	120	4670	230
116.9	0.0911	0.013	0.0523	0.0088	0.00821	0.0004	0.384	52.7	2.3	51.7	8.5	1420	260
87.9	0.365	0.046	0.316	0.05	0.01225	0.0006	0.594	78.5	3.7	281	37	3786	170
15.53	0.35	0.045	0.397	0.061	0.01618	0.0008	0.158	103.4	5	337	44	3660	190
219.7	0.1231	0.015	0.0775	0.011	0.00889	0.0003	0.204	57	1.9	75.7	11	2039	210
50	0.18	0.025	0.138	0.023	0.0109	0.0006	0.439	69.9	3.8	132	21	2630	230
53.8	0.808	0.089	27.6	4.1	0.488	0.029	0.862	2550	120	3397	140	4981	200
245.2	0.1784	0.021	0.1171	0.017	0.00931	0.0003	0.079	59.7	2	112.3	15	2631	190
18.2	0.176	0.028	0.127	0.022	0.01018	0.0008	0.046	65.3	5.2	123	19	2580	260
38.59	0.43	0.05	0.564	0.086	0.01789	0.0007	0.679	114.3	4.6	451	55	3995	180
25	0.307	0.064	0.255	0.053	0.01182	0.0008	-0.287	75.8	4.8	229	43	3490	300
173	0.1106	0.014	0.0672	0.01	0.00867	0.0003	-0.053	55.7	2	66	9.9	1770	240
	5.506 176.9 19.35 35.78 170.6 11.22 849.3 13.5 116.9 87.9 15.53 219.7 50 53.8 245.2 18.2 38.59 25 173	$\begin{array}{ccccc} 5.506 & 0.613 \\ 176.9 & 0.1212 \\ 19.35 & 0.318 \\ 35.78 & 0.314 \\ 170.6 & 0.1554 \\ 11.22 & 0.88 \\ 849.3 & 0.0947 \\ 13.5 & 0.67 \\ 116.9 & 0.0911 \\ 87.9 & 0.365 \\ 15.53 & 0.35 \\ 219.7 & 0.1231 \\ 50 & 0.18 \\ 53.8 & 0.808 \\ 245.2 & 0.1784 \\ 18.2 & 0.176 \\ 38.59 & 0.43 \\ 25 & 0.307 \\ 173 & 0.1106 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.5060.6130.11.550.27176.90.12120.0150.07270.01119.350.3180.0450.3570.05835.780.3140.0390.3420.053170.60.15540.0180.09540.01411.220.880.187.751.4849.30.09470.0110.05180.007613.50.670.0981.960.32116.90.09110.0130.05230.008887.90.3650.0460.3160.0515.530.350.0450.3970.061219.70.12310.0150.07750.011500.180.0250.1380.02353.80.8080.8927.64.1245.20.1760.0280.1270.02238.590.430.050.5640.086250.3070.0640.2550.0531730.11060.0140.06720.01	5.506 0.613 0.1 1.55 0.27 0.0369 176.9 0.1212 0.015 0.0727 0.011 0.00862 19.35 0.318 0.045 0.357 0.058 0.01597 35.78 0.314 0.039 0.342 0.053 0.01533 170.6 0.1554 0.018 0.0954 0.014 0.00874 11.22 0.88 0.18 7.75 1.4 0.13 849.3 0.0947 0.011 0.0518 0.0076 0.008 13.5 0.67 0.098 1.96 0.32 0.044 116.9 0.0911 0.013 0.0523 0.0088 0.00821 87.9 0.365 0.046 0.316 0.05 0.01225 15.53 0.35 0.045 0.397 0.061 0.01618 219.7 0.1231 0.015 0.0775 0.011 0.00889 50 0.18 0.025 0.138 0.023 0.0109 53.8 0.808 0.089 27.6 4.1 0.488 245.2 0.176 0.028 0.127 0.022 0.01018 38.59 0.43 0.05 0.564 0.086 0.01789 25 0.307 0.064 0.255 0.053 0.01182 173 0.1106 0.014 0.0672 0.01 0.00867	5.5060.6130.11.550.270.03690.0031176.90.12120.0150.07270.0110.008620.000319.350.3180.0450.3570.0580.015970.000835.780.3140.0390.3420.0530.015330.0007170.60.15540.0180.09540.0140.008740.000311.220.880.187.751.40.130.02849.30.09470.0110.05180.00760.0080.004413.50.670.0981.960.320.0440.0034116.90.09110.0130.05230.00880.008210.000487.90.3650.0460.3160.050.012250.000615.530.350.0450.3970.0610.016180.008219.70.12310.0150.07750.0110.008890.003500.180.0250.1380.0230.01090.000653.80.8080.08927.64.10.4880.029245.20.17840.0210.11710.0170.009310.000318.20.1760.0280.1270.0220.010180.000838.590.430.050.5640.0860.017890.0007250.3070.0640.2550.0530.011820.00081730.11060.0140.06720.010.00867<	5.5060.6130.11.550.270.03690.00310.323176.90.12120.0150.07270.0110.008620.00030.05719.350.3180.0450.3570.0580.015970.0008-0.02335.780.3140.0390.3420.0530.015330.00070.467170.60.15540.0180.09540.0140.008740.00030.02711.220.880.187.751.40.130.020.263849.30.09470.0110.05180.00760.0080.00440.0513.50.670.0981.960.320.0440.00340.379116.90.09110.0130.05230.00880.008210.00040.38487.90.3650.0460.3160.050.012250.00060.59415.530.350.0450.3970.0610.016180.00030.204500.180.0250.1380.0230.01090.00060.43953.80.8080.08927.64.10.4880.0290.862245.20.17840.0210.11710.0170.009310.00030.07918.20.1760.0280.1270.0220.010180.00080.46638.590.430.050.5640.0860.017890.00070.679250.3070.6640.2550.0530.01182<	5.5060.6130.11.550.270.03690.00310.323233176.90.12120.0150.07270.0110.008620.00030.05755.319.350.3180.0450.3570.0580.015970.0008-0.023102.135.780.3140.0390.3420.0530.015330.00070.46798.1170.60.15540.0180.09540.0140.008740.0030.02756.111.220.880.187.751.40.130.020.263780849.30.09470.0110.05180.00760.0080.0040.0551.313.50.670.0981.960.320.0440.00340.379277116.90.09110.0130.05230.00880.00210.00440.38452.787.90.3650.0460.3160.050.012250.00660.59478.515.530.350.0450.3970.0610.016180.0080.158103.4219.70.12310.0150.07750.0110.008890.0030.20457500.180.0250.1380.0230.01090.00060.43969.953.80.8080.08927.64.10.4880.0290.8622550245.20.17840.0210.11710.0170.009310.00030.07959.718.2 <td>5.5060.6130.11.550.270.03690.00310.32323319176.90.12120.0150.07270.0110.008620.00030.05755.31.819.350.3180.0450.3570.0580.015970.0008-0.023102.14.935.780.3140.0390.3420.0530.015330.00070.46798.14.4170.60.15540.0180.09540.0140.008740.00030.02756.11.811.220.880.187.751.40.130.020.263780110849.30.09470.0110.05180.00760.0080.00040.0551.32.213.50.670.0981.960.320.0440.00340.37927721116.90.09110.0130.05230.00880.00240.38452.72.387.90.3650.0460.3160.050.12250.00060.59478.53.715.530.350.0450.3970.0610.016180.00030.204571.9500.180.0250.1380.0230.0190.00060.43969.93.853.80.8080.08927.64.10.4880.0290.8622550120245.20.17840.0210.11710.0170.00310.0070.679114.34.6<tr< td=""><td>5.5060.6130.11.550.270.03690.00310.32323319935176.90.12120.0150.07270.0110.008620.00030.05755.31.871.219.350.3180.0450.3570.0580.015970.0008-0.023102.14.932135.780.3140.0390.3420.0530.015330.00070.46798.14.4298170.60.15540.0180.09540.0140.008740.0030.02756.11.892.911.220.880.187.751.40.130.020.2637801102160849.30.09470.0110.05180.00760.0080.00440.0551.32.251.313.50.670.0981.960.320.0440.00340.379277211096116.90.09110.0130.05230.00880.008210.00440.38452.72.351.787.90.3650.0460.3160.050.012250.00660.59478.53.728115.530.350.0450.3970.0610.016180.00330.204571.975.7500.180.0250.1380.0230.01090.00660.43969.93.813253.80.8080.08927.64.10.4880.0290.8622550<t< td=""><td>5.5060.6130.11.550.270.03690.00310.32323319935110176.90.12120.0150.07270.0110.008620.00030.05755.31.871.21019.350.3180.0450.3570.0580.015970.0008-0.023102.14.93214935.780.3140.0390.3420.0530.015330.00070.46798.14.429841170.60.15540.0180.09540.0140.008740.0030.02756.11.892.91211.220.880.187.751.40.130.020.2637801102160180849.30.09470.0110.05180.00760.0080.0040.0551.32.251.37.313.50.670.0981.960.320.0440.00340.379277211096120116.90.09110.0130.05230.00880.00040.38452.72.351.78.587.90.3650.0460.3160.050.012250.00060.59478.53.72813715.530.350.0450.3970.0610.01880.00030.204571.975.711500.180.0250.1380.0230.0190.0060.43969.93.81322153</td><td>5.5060.6130.11.550.270.03690.00310.323233199351104480176.90.12120.0150.07270.0110.008620.00030.05755.31.871.210194219.350.3180.0450.3570.0580.015970.0008-0.023102.14.932149360035.780.3140.0390.3420.0530.015330.00070.46798.14.4298413516170.60.15540.0180.09540.0140.008740.0030.02756.11.892.912239111.220.880.187.751.40.130.020.26378011021601805090849.30.09470.0110.05180.00760.0080.0040.0551.32.251.37.3152613.50.670.981.960.320.0440.0340.3792772110961204670116.90.09110.0130.05230.0080.00240.5478.53.728137378615.530.350.0460.3160.0550.012250.0060.59478.53.728137378615.530.350.0450.3970.0610.016180.00880.158103.45337443660219.70.1231</td></t<></td></tr<></td>	5.5060.6130.11.550.270.03690.00310.32323319176.90.12120.0150.07270.0110.008620.00030.05755.31.819.350.3180.0450.3570.0580.015970.0008-0.023102.14.935.780.3140.0390.3420.0530.015330.00070.46798.14.4170.60.15540.0180.09540.0140.008740.00030.02756.11.811.220.880.187.751.40.130.020.263780110849.30.09470.0110.05180.00760.0080.00040.0551.32.213.50.670.0981.960.320.0440.00340.37927721116.90.09110.0130.05230.00880.00240.38452.72.387.90.3650.0460.3160.050.12250.00060.59478.53.715.530.350.0450.3970.0610.016180.00030.204571.9500.180.0250.1380.0230.0190.00060.43969.93.853.80.8080.08927.64.10.4880.0290.8622550120245.20.17840.0210.11710.0170.00310.0070.679114.34.6 <tr< td=""><td>5.5060.6130.11.550.270.03690.00310.32323319935176.90.12120.0150.07270.0110.008620.00030.05755.31.871.219.350.3180.0450.3570.0580.015970.0008-0.023102.14.932135.780.3140.0390.3420.0530.015330.00070.46798.14.4298170.60.15540.0180.09540.0140.008740.0030.02756.11.892.911.220.880.187.751.40.130.020.2637801102160849.30.09470.0110.05180.00760.0080.00440.0551.32.251.313.50.670.0981.960.320.0440.00340.379277211096116.90.09110.0130.05230.00880.008210.00440.38452.72.351.787.90.3650.0460.3160.050.012250.00660.59478.53.728115.530.350.0450.3970.0610.016180.00330.204571.975.7500.180.0250.1380.0230.01090.00660.43969.93.813253.80.8080.08927.64.10.4880.0290.8622550<t< td=""><td>5.5060.6130.11.550.270.03690.00310.32323319935110176.90.12120.0150.07270.0110.008620.00030.05755.31.871.21019.350.3180.0450.3570.0580.015970.0008-0.023102.14.93214935.780.3140.0390.3420.0530.015330.00070.46798.14.429841170.60.15540.0180.09540.0140.008740.0030.02756.11.892.91211.220.880.187.751.40.130.020.2637801102160180849.30.09470.0110.05180.00760.0080.0040.0551.32.251.37.313.50.670.0981.960.320.0440.00340.379277211096120116.90.09110.0130.05230.00880.00040.38452.72.351.78.587.90.3650.0460.3160.050.012250.00060.59478.53.72813715.530.350.0450.3970.0610.01880.00030.204571.975.711500.180.0250.1380.0230.0190.0060.43969.93.81322153</td><td>5.5060.6130.11.550.270.03690.00310.323233199351104480176.90.12120.0150.07270.0110.008620.00030.05755.31.871.210194219.350.3180.0450.3570.0580.015970.0008-0.023102.14.932149360035.780.3140.0390.3420.0530.015330.00070.46798.14.4298413516170.60.15540.0180.09540.0140.008740.0030.02756.11.892.912239111.220.880.187.751.40.130.020.26378011021601805090849.30.09470.0110.05180.00760.0080.0040.0551.32.251.37.3152613.50.670.981.960.320.0440.0340.3792772110961204670116.90.09110.0130.05230.0080.00240.5478.53.728137378615.530.350.0460.3160.0550.012250.0060.59478.53.728137378615.530.350.0450.3970.0610.016180.00880.158103.45337443660219.70.1231</td></t<></td></tr<>	5.5060.6130.11.550.270.03690.00310.32323319935176.90.12120.0150.07270.0110.008620.00030.05755.31.871.219.350.3180.0450.3570.0580.015970.0008-0.023102.14.932135.780.3140.0390.3420.0530.015330.00070.46798.14.4298170.60.15540.0180.09540.0140.008740.0030.02756.11.892.911.220.880.187.751.40.130.020.2637801102160849.30.09470.0110.05180.00760.0080.00440.0551.32.251.313.50.670.0981.960.320.0440.00340.379277211096116.90.09110.0130.05230.00880.008210.00440.38452.72.351.787.90.3650.0460.3160.050.012250.00660.59478.53.728115.530.350.0450.3970.0610.016180.00330.204571.975.7500.180.0250.1380.0230.01090.00660.43969.93.813253.80.8080.08927.64.10.4880.0290.8622550 <t< td=""><td>5.5060.6130.11.550.270.03690.00310.32323319935110176.90.12120.0150.07270.0110.008620.00030.05755.31.871.21019.350.3180.0450.3570.0580.015970.0008-0.023102.14.93214935.780.3140.0390.3420.0530.015330.00070.46798.14.429841170.60.15540.0180.09540.0140.008740.0030.02756.11.892.91211.220.880.187.751.40.130.020.2637801102160180849.30.09470.0110.05180.00760.0080.0040.0551.32.251.37.313.50.670.0981.960.320.0440.00340.379277211096120116.90.09110.0130.05230.00880.00040.38452.72.351.78.587.90.3650.0460.3160.050.012250.00060.59478.53.72813715.530.350.0450.3970.0610.01880.00030.204571.975.711500.180.0250.1380.0230.0190.0060.43969.93.81322153</td><td>5.5060.6130.11.550.270.03690.00310.323233199351104480176.90.12120.0150.07270.0110.008620.00030.05755.31.871.210194219.350.3180.0450.3570.0580.015970.0008-0.023102.14.932149360035.780.3140.0390.3420.0530.015330.00070.46798.14.4298413516170.60.15540.0180.09540.0140.008740.0030.02756.11.892.912239111.220.880.187.751.40.130.020.26378011021601805090849.30.09470.0110.05180.00760.0080.0040.0551.32.251.37.3152613.50.670.981.960.320.0440.0340.3792772110961204670116.90.09110.0130.05230.0080.00240.5478.53.728137378615.530.350.0460.3160.0550.012250.0060.59478.53.728137378615.530.350.0450.3970.0610.016180.00880.158103.45337443660219.70.1231</td></t<>	5.5060.6130.11.550.270.03690.00310.32323319935110176.90.12120.0150.07270.0110.008620.00030.05755.31.871.21019.350.3180.0450.3570.0580.015970.0008-0.023102.14.93214935.780.3140.0390.3420.0530.015330.00070.46798.14.429841170.60.15540.0180.09540.0140.008740.0030.02756.11.892.91211.220.880.187.751.40.130.020.2637801102160180849.30.09470.0110.05180.00760.0080.0040.0551.32.251.37.313.50.670.0981.960.320.0440.00340.379277211096120116.90.09110.0130.05230.00880.00040.38452.72.351.78.587.90.3650.0460.3160.050.012250.00060.59478.53.72813715.530.350.0450.3970.0610.01880.00030.204571.975.711500.180.0250.1380.0230.0190.0060.43969.93.81322153	5.5060.6130.11.550.270.03690.00310.323233199351104480176.90.12120.0150.07270.0110.008620.00030.05755.31.871.210194219.350.3180.0450.3570.0580.015970.0008-0.023102.14.932149360035.780.3140.0390.3420.0530.015330.00070.46798.14.4298413516170.60.15540.0180.09540.0140.008740.0030.02756.11.892.912239111.220.880.187.751.40.130.020.26378011021601805090849.30.09470.0110.05180.00760.0080.0040.0551.32.251.37.3152613.50.670.981.960.320.0440.0340.3792772110961204670116.90.09110.0130.05230.0080.00240.5478.53.728137378615.530.350.0460.3160.0550.012250.0060.59478.53.728137378615.530.350.0450.3970.0610.016180.00880.158103.45337443660219.70.1231

Tabla A10. Resultados del análisis químico de hornblenda en microsonda electrónica y geobarometría. MuestraC2 del dique perteneciente al Granito Comanja

Análisis id	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24	M25	M26	M27	M28	M29	M30
SiO2	45.2	45.4	45.6	44.5	44.5	44.1	44.9	44.4	44.8	44.5	44.3	44.4	45.3	45.5	45.6	44.9	45.2	45	45.1	45.1	44.4	45.3	44.7	45.3	45	45.2	45	36	45
TiO2	0.91	0.85	0.9	1.12	1.21	1.27	1.42	1.49	1.49	1.29	1.3	1.3	0.97	0.92	1.09	1.31	1.32	1.32	1.25	1.31	1.27	1.25	1.38	1.35	1.3	1.29	1.3	4.3	1.3
AI2O3	5.44	5.25	5.51	5.8	5.93	5.87	5.41	5.67	5.87	5.64	6.069	5.96	5.51	5.32	5.74	5.83	5.94	5.89	5.76	5.9	5.76	5.67	6.1	5.67	5.7	5.57	5.6	12	5.7
Cr2O3	0	0	0	0.01	0	0	0.01	0.01	0	0.01	0	0	0	0	0.02	0.01	0	0	0	0	0	0	0.03	0	0	0.02	0	0	0
FeO	25.6	26	26.1	26.3	26.4	26.4	26.5	26.6	26.5	27.6	26.72	26.5	26.1	26	26.1	26.2	26.5	26.5	25.9	26.3	26.5	26.6	26.3	26.4	26	26.5	27	29	27
MnO	1.72	1.64	1.61	1.59	1.63	1.53	1.61	1.65	1.69	1.6	1.539	1.57	1.55	1.59	1.55	1.61	1.61	1.62	1.62	1.62	1.57	1.65	1.6	1.66	1.6	1.67	1.6	0.6	1.7
MgO	6.88	6.72	6.56	6.4	6.21	6.14	6.31	6.16	6.06	6.15	6.155	6.36	6.44	6.58	6.63	6.42	6.29	6.28	6.49	6.38	6.27	6.43	6.29	6.44	6.4	6.25	6.4	6.2	6.4
CaO	9.8	9.64	9.68	9.59	9.67	9.62	9.65	9.76	9.72	9.43	9.701	9.62	9.67	9.61	9.73	9.78	9.74	9.78	9.33	9.48	9.71	9.53	9.65	9.46	9.5	9.55	9.6	0	9.6
Na2O	1.82	1.84	1.94	1.88	1.87	1.93	1.9	1.92	2.19	1.99	1.962	1.87	2	1.85	2.07	2.08	2.06	1.97	1.92	2.07	1.93	1.81	2.1	2.1	2	1.9	1.9	0.1	1.9
K2O	0.75	0.71	0.8	0.85	0.92	0.89	0.82	0.88	0.87	0.87	0.934	0.93	0.79	0.78	0.83	0.84	0.86	0.87	0.84	0.86	0.88	0.88	0.9	0.84	0.9	0.84	0.8	11	0.8
Total	98.1	98	98.7	98.1	98.3	97.7	98.5	98.6	99.2	99.1	98.68	98.5	98.4	98.1	99.4	99	99.6	99.3	98.2	98.9	98.3	99.1	99	99.2	99	98.9	99	99	99
No. De O	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23
Si	6.88	6.91	6.91	6.8	6.79	6.79	6.84	6.79	6.82	6.75	6.755	6.77	6.91	6.93	6.87	6.82	6.82	6.82	6.86	6.82	6.8	6.83	6.79	6.84	6.9	6.86	6.8	5.9	6.8
Al iv	0.97	0.94	0.98	1.04	1.07	1.07	0.97	1.02	1.05	1.01	1.091	1.07	0.99	0.95	1.02	1.04	1.06	1.05	1.03	1.05	1.04	1.01	1.09	1.01	1	1	1	2.1	1
Total	7.85	7.85	7.9	7.85	7.86	7.85	7.82	7.81	7.87	7.76	7.846	7.83	7.9	7.88	7.89	7.86	7.88	7.87	7.89	7.88	7.84	7.84	7.88	7.85	7.9	7.86	7.8	8	7.8
Al vi	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.2	0
Ti	0.1	0.1	0.1	0.13	0.14	0.15	0.16	0.17	0.17	0.15	0.149	0.15	0.11	0.11	0.12	0.15	0.15	0.15	0.14	0.15	0.15	0.14	0.16	0.15	0.2	0.15	0.1	0.5	0.2
Cr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fe3+	1.18	1.21	1.12	1.24	1.17	1.15	1.14	1.12	0.99	1.38	1.17	1.24	1.07	1.15	1.08	1.07	1.08	1.1	1.19	1.15	1.15	1.26	1.09	1.17	1.1	1.16	1.2	0	1.2
Fe2+	2.08	2.1	2.19	2.13	2.2	2.25	2.24	2.28	2.38	2.12	2.238	2.14	2.26	2.17	2.22	2.26	2.27	2.26	2.09	2.17	2.24	2.1	2.25	2.17	2.2	2.21	2.2	4	2.1
Mn	0.22	0.21	0.21	0.21	0.21	0.2	0.21	0.21	0.22	0.21	0.199	0.2	0.2	0.21	0.2	0.21	0.21	0.21	0.21	0.21	0.2	0.21	0.21	0.21	0.2	0.21	0.2	0.1	0.2
Mg	1.56	1.52	1.48	1.46	1.41	1.41	1.43	1.4	1.37	1.39	1.399	1.44	1.46	1.49	1.49	1.45	1.42	1.42	1.47	1.44	1.43	1.45	1.42	1.45	1.5	1.41	1.4	1.5	1.4
Ni	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Zn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	5.14	5.15	5.1	5.16	5.14	5.15	5.19	5.19	5.13	5.24	5.154	5.17	5.1	5.12	5.11	5.14	5.12	5.13	5.11	5.12	5.16	5.16	5.12	5.15	5.1	5.14	5.2	6.3	5.2
Ca	1.6	1.57	1.57	1.57	1.58	1.59	1.58	1.6	1.58	1.53	1.585	1.57	1.58	1.57	1.57	1.59	1.58	1.59	1.52	1.54	1.59	1.54	1.57	1.53	1.5	1.55	1.6	0	1.5
Na	0.54	0.54	0.57	0.56	0.55	0.58	0.56	0.57	0.65	0.59	0.58	0.55	0.59	0.55	0.61	0.61	0.6	0.58	0.57	0.61	0.57	0.53	0.62	0.61	0.6	0.56	0.6	0	0.6
K	0.15	0.14	0.15	0.17	0.18	0.17	0.16	0.17	0.17	0.17	0.182	0.18	0.15	0.15	0.16	0.16	0.17	0.17	0.16	0.17	0.17	0.17	0.17	0.16	0.2	0.16	0.2	2.3	0.2
Ba	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pb	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Suma	2.28	2.25	2.3	2.29	2.32	2.34	2.3	2.34	2.4	2.29	2.347	2.3	2.32	2.27	2.34	2.37	2.34	2.33	2.25	2.31	2.33	2.24	2.36	2.31	2.3	2.27	2.3	2.4	2.3
F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cl	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

OH*	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Total	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24	M25	M26	M27	M28	M29	M30
(Ca+Na) (B)	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	0	2
Na (B)	0.4	0.43	0.43	0.43	0.42	0.41	0.42	0.4	0.42	0.47	0.415	0.43	0.42	0.43	0.43	0.41	0.42	0.41	0.48	0.46	0.41	0.46	0.43	0.47	0.5	0.45	0.4	0	0.5
(Na+K) (A)	0.28	0.25	0.3	0.29	0.32	0.34	0.3	0.34	0.4	0.29	0.347	0.3	0.32	0.27	0.34	0.37	0.34	0.33	0.25	0.31	0.33	0.24	0.36	0.31	0.3	0.27	0.3	2.3	0.3
Mg/(Mg+Fe2)	0.43	0.42	0.4	0.41	0.39	0.39	0.39	0.38	0.37	0.4	0.385	0.4	0.39	0.41	0.4	0.39	0.38	0.39	0.41	0.4	0.39	0.41	0.39	0.4	0.4	0.39	0.4	0.3	0.4
Fe3/(Fe3+Alvi)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
Sum of S2	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	14	13
Fe#	0.68	0.68	0.69	0.7	0.7	0.71	0.7	0.71	0.71	0.72	0.709	0.7	0.7	0.69	0.69	0.7	0.7	0.7	0.69	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24	M25	M26	M27	M28	M29	M30
Temperatura de Hb (T°C)	698	690	693	704	706	708	703	710	715	706	711.4	710	695	689	704	713	710	708	706	711	707	700	718	710	709	700	702	778	707
Presión (Kbar)	1.77	1.7	1.79	1.93	1.99	1.98	1.76	1.88	1.95	1.84	2.045	1.99	1.8	1.72	1.87	1.93	1.96	1.95	1.9	1.95	1.92	1.84	2.05	1.85	1.9	1.82	1.8		1.9
Profundidad (m)	682	684	681	678	677	677	682	679	677	680	675.3	676	681	683	679	678	677	677	678	677	678	680	675	680	679	680	680		680
			Método	os utilizad	os									Mue	stra: C2														
			Temper	atura: Rid	olfi and R	enzulli (20	011)							mac	Kbar k	m													

Temperatura: Ridolfi and Renzulli (2011) Presión: Mutch et al., 2016 Muestra: C2 Kbar km max 2.0 8.7 min 7.0 7.0 mean 1.9 8.2

Tabla A11. Resultados del análisis químico de hornblenda en microsonda electrónica y geobarometría. Mu	uestra TC-
125 del dique perteneciente al Granito Comanja	

Análisis id	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24	M25	M26	M27	M28	M29	M30	M31	M32
SiO2	47.2	46	45	48	41.1	43.3	45.4	45.5	46	45	45	46.6	40.3	47.1	46.9	48	51.3	64.2	46.4	46.2	46	48	46	48	47.1	48.6	46.4	45.8	45	45	46
TiO2	0.92	1	1.2	0.8	2.47	1.88	1.4	1.39	1.1	1.3	1.3	1.19	0.52	0.99	0.99	0.8	0.25	0.01	1.2	1.28	1.2	0.9	1.3	1	1.08	0.51	1.35	1.33	1.4	1.4	1.1
AI2O3	5.18	5.5	6.1	4.5	9.21	7.89	6.29	6.59	6	6.5	6.1	5.33	17.5	5.09	5.27	4.9	2.1	17.1	5.58	5.87	5.8	4.7	5.9	5.1	5.33	4.46	5.65	5.93	6.2	6.7	6.3
Cr2O3	0	0	0	0	0	0.03	0	0	0	0	0	0.01	0	0.02	0	0	0.01	0	0.02	0.01	0	0	0	0	0	0	0	0.01	0	0	
FeO	23.9	24	24	24	25.4	25.1	24.1	24.3	24	24	24	23.8	17	24.2	23.9	22	23.6	0.32	24	23.9	24	23	23	23	23.5	22.7	24.2	24.2	25	25	24
MnO	0.99	0.9	1	1.1	0.87	0.84	0.91	0.97	0.9	1.1	1	1.06	0.28	1.02	0.98	1	1.34	0	1.01	0.98	1	0.9	0.9	0.9	0.83	0.88	0.88	1	1	0.9	0.9
MgO	7.72	7.6	7.3	8.4	5.4	6.08	6.96	6.99	7.2	7	7.1	7.68	2.04	8.16	7.8	8.9	10.6	0	7.33	7.29	7.3	8.1	7.2	7.9	7.83	8.56	7.66	7.21	7	7	6.9
CaO	10.5	11	11	10	11	10.9	10.9	10.5	11	11	11	10.5	3.35	10.3	10.6	11	8.3	0.06	10.7	10.5	10	11	11	11	10.7	10.7	10.5	10.7	11	11	11
Na2O	1.24	1.2	1.5	1.2	2.03	1.61	1.42	1.46	1.3	1.5	1.5	1.33	0.48	1.23	1.19	1.1	0.58	1.73	1.29	1.34	1.5	1.1	1.3	1.2	1.23	1.21	1.44	1.52	1.6	1.4	1.2
К2О	0.73	0.8	0.9	0.6	1.29	1.19	0.89	0.92	0.9	1	0.9	0.75	0.41	0.66	0.72	0.7	0.21	17.5	0.8	0.85	0.8	0.7	0.9	0.8	0.71	0.44	0.81	0.98	1	1	1
Total	98.4	98	98	99	98.8	98.9	98.3	98.6	98	99	98	98.2	81.8	98.8	98.4	98	98.3	101	98.3	98.3	98	98	97	98	98.3	98.1	98.9	98.6	99	99	99
No. De O	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23
Si	7.11		6.9	7.1	6.37	6.64	6.93	6.89		6.9	6.9	7.04	6.91	7.03	7.06	7.2	7.36	8.59	7.04	7	7	7.2	7	7.2	7.1	7.28	6.97	6.96	6.9	6.8	23
Al iv	0.89	1	1.1	0.8	1.63	1.36	1.07	1.11	1	1.1	1.1	0.95	1.09	0.89	0.94	0.8	0.35	0	0.96	1	1	0.8	1	0.8	0.9	0.72	1	1.04	1.1	1.2	1
Total	8	8	8	7.9	8	8	8	8	8	8	8	7.99	8	7.92	8	8	7.71	8.59	8	8	8	8	8	8	8	8	7.97	8	8	8	8
Al vi	0.02	0	0	0	0.05	0.06	0.06	0.06	0.1	0	0	0	2 45	0	0	0	0	2.7	0.02	0.05	0	0	0.1	0.1	0.05	0.07	0	0.02	0	0	0.1
Ti	0.03	0 1	0 1	0.1	0.05	0.00	0.00	0.00	0.1	0.2	01	0.12	2.45	0 11	0.11	01	0.02	2.7	0.03	0.05	0.1	0 1	0.1	0.1	0.05	0.07	0.15	0.02	0.2	0	0.1
Cr	0.1	0.1	0.1	0.1	0.29	0.22	0.10	0.10	0.1	0.2	0.1	0.15	0.07	0.11	0.11	0.1	0.05	0	0.14	0.15	0.1	0.1	0.1	0.1	0.12	0.06	0.15	0.15	0.2	0.2	0.1
Fe3+	0.75	06	0.7	11	0.5	0.57	0.52	0.7	06	0.7	0.7	0.79	0	1.05	0 02	0.7	2 1 2	0	0.65	0.68	0.7	0.7	0.5	0.4	0 66	0.67	0.70	06	0.0	0	0.5
Fe2+	2.25	2.4	23	1.1	2.8	2.65	2.55	2 37	2.5	2.4	2.4	2 23	2 44	1.05	2.02	2.1	0.7	0.04	2 30	2 35	23	23	2.5	2.4	0.00	2 18	2.26	2.46	2.4	2.3	2.6
Mn	0.13	0.1	0.1	0.1	0.11	0.11	0.12	0.12	0.1	0.1	0.1	0.14	0.04	0.13	0.13	0.1	0.16	0.04	0.13	0.13	0.1	0.1	0.1	0.1	0.11	0.11	0.11	0.13	0.1	0.1	0.1
Mg	1 73	17	17	1 0	1 25	1 30	1.58	1 58	1.6	1.6	1.6	1 73	0.52	1.87	1 75	2	2 27	0	1.66	1.65	1.6	1.8	17	1.8	1 76	1 01	1 72	1.63	1.6	1.6	1.6
Ni	1.75	1.7	1.7	1.5	1.25	1.55	1.50	1.50	1.0	1.0	1.0	1.75	0.52	1.02	1.75	0	2.27	0	1.00	1.05	1.0	1.0	1.7	1.0	1.70	1.51	1.72	1.05	1.0	1.0	1.0
Zn	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	5	5	5	5 1	5	5	5	5	5	5	5	5.01	5 5 1	5.08	5	5	5 20	2 74	5	5	5	5	5	5	5	5	5.03	5	5	5	5
	5	5	5	5.1	5	5	5	5	5	5	5	5.01	5.51	5.00	5	5	5.25	2.74	5	5	5	5	5	5	5	5	5.05	5	5	5	5
Са	47		47		4.02	4 70	4.70	4 74				1.00	0.00	4.05	4 74	47	4.27	0.01		4 74			4.0		4 70	4 74	4.60				
Na	1.7	1.8	1./	1.6	1.82	1.79	1.78	1./1	1.8	1.7	1.7	1.69	0.62	1.65	1.71	1.7	1.27	0.01	1.74	1.71	1./	1.7	1.8	1.8	1.72	1./1	1.69	1.74	1.7	1.7	1.8
К	0.36	0.3	0.4	0.4	0.61	0.48	0.42	0.43	0.4	0.4	0.4	0.39	0.16	0.35	0.35	0.3	0.16	0.45	0.38	0.39	0.4	0.3	0.4	0.4	0.36	0.35	0.42	0.45	0.5	0.4	0.4
Ba	0.14	0.2	0.2	0.1	0.20	0.25	0.17	0.18	0.2	0.2	0.2	0.15	0.09	0.12	0.14	0.1	0.04	2.99	0.15	0.10	0.2	0.1	0.2	0.1	0.14	0.08	0.10	0.19	0.2	0.2	0.2
Sr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pb	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Suma	0	0	0	0	0	0	0	0	0	0	0	2 22	0	0	0	0	0	2.45	0	0	22	0	0	0	0	0	0	2 20	0	0	0
-	2.2	2.3	2.3	2.1	2.68	2.5	2.37	2.32	2.3	2.3	2.4	2.23	0.87	2.13	2.19	2.2	1.4/	3.45	2.27	2.27	2.3	2.2	2.3	2.3	2.22	2.15	2.27	2.38	2.4	2.3	2.4
F																															
r Cl	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

OH*	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Total	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
(Ca+Na) (B)	2	2	2	2	2	2	2	2	2	2	2	2	0.78	2	2	2	1.44	0.46	2	2	2	2	2	2	2	2	2	2	2	2	2
Na (B)	0.3	0.2	0.3	0.4	0.18	0.21	0.22	0.29	0.2	0.3	0.3	0.31	0.16	0.35	0.29	0.3	0.16	0.45	0.26	0.29	0.3	0.3	0.2	0.2	0.28	0.29	0.31	0.26	0.3	0.3	0.2
(Na+K) (A)	0.2	0.3	0.3	0.1	0.68	0.5	0.37	0.32	0.3	0.3	0.4	0.23	0.09	0.13	0.19	0.2	0.04	2.99	0.27	0.27	0.3	0.2	0.3	0.3	0.22	0.15	0.27	0.38	0.4	0.3	0.4
Mg/(Mg+Fe2)	0.44	0.4	0.4	0.5	0.31	0.34	0.38	0.4	0.4	0.4	0.4	0.44	0.18	0.48	0.44	0.5	0.76	0	0.41	0.41	0.4	0.4	0.4	0.4	0.43	0.47	0.43	0.4	0.4	0.4	0.4
Fe3/(Fe3+Alvi)	0.96	1	1	1	0.9	0.9	0.89	0.92	0.9	0.9	1	1	0	1	1	0.9	1	0	0.95	0.93	0.9	1	0.9	0.8	0.93	0.91	1	0.97	1	1	0.9
Sum of S2	13	13	13	13	13	13	13	13	13	13	13	13	13.5	13	13	13	13	11.3	13	13	13	13	13	13	13	13	13	13	13	13	13
Fe#	0.63	0.6	0.6	0.6	0.73	0.7	0.66	0.66	0.7	0.7	0.7	0.64	0.82	0.62	0.63	0.6	0.55	1	0.65	0.65	0.6	0.6	0.6	0.6	0.63	0.6	0.64	0.65	0.7	0.7	0.7
Temperatura de Hb (T°C*)	673	683	704	670	785	739	702	708	690	706	702	688	715	682	678	678	629	703	685	692	695	664	690	672	679	657	698	701	710	710	690
Presión (Kbar)	1.65	1.8	2.1		3.87	2.99	2.15	2.27	2	2.2	2.1	1.71		1.59	1.68	1.5			1.82	1.94	1.9	1.5	2	1.6	1.7		1.83	1.97	2.1	2.3	2.1
Profundidad (m)	685	681	675		654	661	673	671	677	672	674	683		687	684	689			680	678	678	691	677	685	683		680	677	674	670	673
							Muestra: TO	-125																							

 Kbar
 km

 max
 3.9
 16.8

 min
 1.5
 6.4

 mean
 2.0
 8.0

 Métodos utilizados
 Temperatura: Ricolfi and Renzulli (2011)

 Presión: Mutch et al., 2016

Tabla A12. Resultados del análisis químico de hornblenda en microsonda electrónica y geobarometría. Muestra PLN-001 de la Granodiorita Tesorera

Análisis id	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24	M25	M26	M27	M28	M29	M30	M31
SiO2	41	40.1	40.05	50.2	49.9	50.2	50.4	49.7	49.8	49.05	49.8	48.7	49.2	48.7	48.7	48.6	48.8	49.1	49	49.6	50	49.9	47.9	48.5	48.9	48.4	49	49	49.2	48
TiO2	5.1	5.17	5.11	0.73	0.78	0.77	0.74	0.83	0.84	0.8	0.82	1	0.71	0.85	0.86	0.89	1.03	0.85	0.9	0.72	0.8	0.82	1.24	1.24	1.11	1.25	1	1	0.87	1
AI2O3	12	12.4	12.29	3.96	4.11	4.08	3.91	4.2	4.41	5.4	4.47	4.9	4.7	5.34	5.27	5.62	5.18	5.06	5.3	4.57	5.2	5.2	5.83	5.69	5.4	5.68	5	4	4.79	6
Cr2O3	0	0	0	0	0	0	0	0	0	0	0.02	0	0	0	0	0	0	0	0	0	0	0.01	0	0	0	0	0	0	0.01	0
FeO	12	12.2	12.34	18.4	18.8	18.9	18.4	18.4	18.7	18.2	18.8	18.9	18.2	18.1	18.6	18.5	17.7	17.9	18	18.3	18	18.4	18.5	17.7	17.9	17.9	18	19	18.6	18
MnO	0.2	0.2	0.18	0.67	0.7	0.68	0.71	0.69	0.72	0.6	0.68	0.7	0.66	0.49	0.61	0.54	0.42	0.55	0.5	0.56	0.6	0.56	0.55	0.36	0.45	0.39	1	1	0.64	0
MgO	13	12.6	12.6	12.4	12.2	12.3	12.6	12.3	12.2	12.2	12.1	11.8	12.4	12.5	12	12	12.5	12.5	12	12.5	12	12.3	11.8	12.3	12.6	12.5	12	12	11.9	12
CaO	12	11.9	11.56	11.5	11.3	11.5	11.4	11.4	11.2	11.1	11.2	11.4	11.1	11.1	11.1	11.2	11.1	11.1	11	11.3	11	11.1	11	11.1	11.1	11.1	11	11	11.4	11
Na2O	2.6	2.71	2.63	0.92	1.01	1	0.81	1	1.01	1.1	1.13	1.1	1.06	1.07	1.24	1.27	1.13	1.21	1.2	0.91	1.1	1.12	1.26	1.25	1.17	1.1	1	1	1.03	1
К2О	1.2	1.17	1.13	0.53	0.5	0.54	0.47	0.55	0.52	0.6	0.54	0.7	0.6	0.66	0.68	0.67	0.6	0.61	0.6	0.58	0.6	0.62	0.7	0.67	0.63	0.65	1	1	0.65	1
BaO	0.1	0.08	0.09	0.02	0	0.04	0.02	0	0.03	0	0.04	0	0	0.03	0	0.04	0.01	0.01	0	0.02	0	0.02	0.04	0	0.03	0.02	0	0	0.03	0
РЬО	0	0.03	0	0	0	0	0	0	0.05	0	0	0	0.05	0	0.01	0	0	0	0	0	0	0	0	0.03	0	0.02	0	0	0.04	0
ZnO	0	0	0.05	0.01	0.06	0.04	0.02	0.05	0.02	0	0.03	0	0.02	0.05	0	0.01	0.02	0	0.1	0	0	0	0.06	0.01	0.04	0.06	0	0	0.01	0
Cl	0	0.05	0.08	0.11	0.1	0.08	0.11	0.14	0.1	0.2	0.2	0.1	0.12	0.17	0.18	0.21	0.19	0.17	0.2	0.14	0.1	0.16	0.23	0.2	0.2	0.15	0	0	0.2	0
NiO	0	0.03	0.02	0.01	0	0	0	0	0	0	0	0	0	0	0	0.01	0.02	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	99	98.5	97.9	99.2	99.3	99.9	99.4	99	99	99	99.5	99.1	98.7	98.7	99	99.3	98	99	99	99	100	100	98.8	99	99.3	99	99	99	99	99
No. De O	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23
Si	6	5.93	5.937	7.26	7.22	7.22	7.25	7.22	7.19	7.089	7.19	7.1	7.14	7.05	7.07	7.04	7.08	7.11	7.1	7.17	7.1	7.14	6.97	7.03	7.04	7	7.1	7	7.16	7
Al iv	2	2.07	2.063	0.68	0.7	0.69	0.66	0.72	0.75	0.911	0.76	0.85	0.8	0.91	0.9	0.96	0.89	0.86	0.9	0.78	0.9	0.86	1	0.97	0.92	0.97	0.9	1	0.82	1
Total	8	8	8	7.94	7.92	7.91	7.91	7.94	7.94	8	7.95	7.95	7.94	7.96	7.97	8	7.97	7.98	8	7.95	8	8	7.98	8	7.96	7.96	8	8	7.98	8
Al vi	0.1	0.1	0.084	0	0	0	0	0	0	0.003	0	0	0	0	0	0	0	0	0	0	0	0.02	0	0.01	0	0	0	0	0	0
Ti	0.6	0.58	0.57	0.08	0.08	0.08	0.08	0.09	0.09	0.089	0.09	0.1	0.08	0.09	0.09	0.1	0.11	0.09	0.1	0.08	0.1	0.09	0.14	0.14	0.12	0.14	0.1	0	0.1	0
Cr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	###	##
Fe3+	0.1	0.04	0.184	0.73	0.8	0.78	0.85	0.75	0.85	0.839	0.82	0.75	0.91	0.95	0.85	0.82	0.84	0.83	0.9	0.85	0.8	0.84	0.86	0.77	0.88	0.91	0.9	1	0.72	2
Fe2+	1.4	1.47	1.346	1.5	1.47	1.5	1.36	1.48	1.4	1.362	1.45	1.54	1.3	1.23	1.41	1.42	1.31	1.34	1.3	1.36	1.4	1.35	1.39	1.38	1.28	1.25	1.3	2	1.54	0
Mn	0	0.02	0.023	0.08	0.09	0.08	0.09	0.08	0.09	0.07	0.08	0.08	0.08	0.06	0.08	0.07	0.05	0.07	0.1	0.07	0.1	0.07	0.07	0.04	0.05	0.05	0.1	0	0.08	0
Mg	2.8	2.79	2.785	2.67	2.63	2.64	2.7	2.65	2.63	2.636	2.61	2.56	2.69	2.7	2.6	2.6	2.71	2.69	2.6	2.69	2.6	2.63	2.56	2.66	2.71	2.69	2.6	3	2.58	3
Ni	0	0	0.002	0	0	0	0	0	0	5E-04	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	###	##
Zn	0	0	0.005	0	0.01	0	0	0.01	0	0.002	0	0	0	0	###	0	0	0	0	0	0	0	0.01	0	0	0.01	0	0	0	0
Total	5	5	4.993	5.06	5.07	5.08	5.08	5.06	5.06	4.998	5.05	5.05	5.06	5.04	5.03	5	5.03	5.03	5	5.05	5	5	5.02	5	5.04	5.03	5	5	5.02	5
Ca	1.8	1.88	1.837	1.78	1.76	1.77	1.75	1.77	1.73	1.725	1.72	1.78	1.73	1.72	1.72	1.73	1.72	1.72	1.7	1.75	1.7	1.7	1.71	1.72	1.72	1.72	1.7	2	1.77	2
Na	0.7	0.78	0.757	0.26	0.28	0.28	0.22	0.28	0.28	0.32	0.31	0.31	0.3	0.3	0.35	0.36	0.32	0.34	0.3	0.26	0.3	0.31	0.36	0.35	0.33	0.31	0.3	0	0.29	0
K	0.2	0.22	0.213	0.1	0.09	0.1	0.09	0.1	0.1	0.117	0.1	0.13	0.11	0.12	0.13	0.12	0.11	0.11	0.1	0.11	0.1	0.11	0.13	0.12	0.12	0.12	0.1	0	0.12	0
Ba	0	0	0.006	0	0	0	0	0	0	0.002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pb	0	0	0	0	0	0	0	0	0	7E-04	###	0	0	0	###	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Suma	2.8	2.88	2.807	2.14	2.13	2.15	2.06	2.15	2.11	2.161	2.14	2.21	2.14	2.14	2.2	2.21	2.16	2.18	2.2	2.12	2.1	2.12	2.2	2.2	2.16	2.14	2.2	2	2.18	2

F	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cl	0	0.01	0.019	0.03	0.03	0.02	0.03	0.03	0.03	0.051	0.05	0.03	0.03	0.04	0.04	0.05	0.05	0.04	0	0.03	0	0.04	0.06	0.05	0.05	0.04	0.1	0	0.05	0
OH*	2	1.99	1.981	1.97	1.97	1.98	1.97	1.97	1.97	1.95	1.95	1.97	1.97	1.96	1.96	1.95	1.95	1.96	2	1.97	2	1.96	1.94	1.95	1.95	1.96	1.9	2	1.95	2
Total	18	17.9	17.81	17.1	17.1	17.2	17.1	17.1	17.1	17.16	17.1	17.2	17.1	17.1	17.2	17.2	17.2	17.2	17	17.1	17	17.1	17.2	17.2	17.2	17.1	17	17	17.2	17

M32	M33	M34	M35	M36	M37	M38	M39	M40	M41	M42	M43	M44	M45	M46	M47	M48	M49	M50	M51	M52	M53	M54	M55	M56	M57	M58	M59
48.8	49.5	50	49.5	49.1	49.5	49.8	48.7	49	48.72	49.27	49.32	49.4	48.99	48.1	49.64	49.107	49.75	49.61	49.6	49.32	50.1	48.2	49.8	49.29	40.03	40.1	40.27
1.12	0.81	0.8	0.77	0.85	0.78	0.79	0.97	1.2	1.183	0.94	0.947	0.751	1.016	1.182	0.851	0.781	0.813	0.749	0.73	0.788	0.837	1.29	0.99	0.923	5.194	5.16	5.115
5.53	4.43	5	4.91	5.05	4.89	4.88	5.18	5.5	5.558	5.114	5.136	4.603	5.372	6.135	5.05	5.043	4.474	4.534	4.79	5.035	5.048	6.09	5.31	5.517	12.41	12.3	12.32
0	0	0	0	0	0	0	0.02	0	0	0.012	0.008	0.035	0	0.005	0	0	0	0.013	0	0.007	0	0	0.02	0	0	0	0.005
17.9	18.8	18	18.8	18	18.4	18.3	18.1	18	17.77	17.94	17.96	18.3	17.71	18.02	18.22	18.882	18.5	18.29	18.3	18.28	18.38	17.8	18	18.39	12.1	12.4	12.3
0.46	0.65	0.6	0.64	0.55	0.56	0.54	0.55	0.4	0.461	0.491	0.511	0.639	0.44	0.411	0.592	0.62	0.669	0.573	0.58	0.525	0.547	0.36	0.47	0.492	0.176	0.18	0.165
12.4	12	13	12.1	12.5	12.6	12.7	12.1	12	12.58	12.41	12.52	12.21	12.65	12.16	12.35	11.723	12.25	12.25	12.5	12.23	12.47	12.4	12.5	12.23	12.81	12.6	12.43
11	11.5	11	11.2	11.1	11.1	11.1	11	11	11.13	11.08	11.1	11.27	11.06	11.07	11.31	11.035	11.5	11.52	11.3	11.17	11.19	11.1	11.2	11.24	11.86	11.8	11.71
1.16	0.99	1.1	1.05	1.08	1.11	1.08	1.14	1.2	1.229	1.119	1.26	1.043	1.217	1.329	1.102	1.126	1.005	0.91	1.1	1.11	1.103	1.34	1.18	1.2	2.559	2.53	2.52
0.63	0.58	0.6	0.55	0.56	0.53	0.56	0.67	0.6	0.648	0.599	0.612	0.585	0.6	0.639	0.602	0.537	0.584	0.607	0.59	0.575	0.55	0.75	0.6	0.694	1.171	1.16	1.202
0.02	0.02	0	0	0.01	0	0.04	0.07	0	0.008	0.01	0.011	0	0	0.055	0.02	0	0.036	0	0	0	0.023	0.04	0.01	0	0.119	0.04	0.085
0.01	0.05	0.1	0.02	0.01	0.02	0.06	0.01	0	0	0.007	0	0.056	0.04	0.033	0	0	0.012	0	0	0.007	0.002	0	0.04	0.042	0	0	0.05
0.06	0.02	0.1	0.02	0.03	0.07	0.02	0.05	0	0.012	0.046	0	0.017	0.004	0.081	0.066	0.049	0.075	0.051	0.03	0.027	0.004	0.01	0.03	0.064	0.017	0.02	0.033
0.24	0.13	0.2	0.11	0.18	0.12	0.2	0.18	0.2	0.194	0.161	0.249	0.175	0.224	0.207	0.139	0.172	0.125	0.142	0.18	0.226	0.161	0.19	0.21	0.191	0.038	0.01	0.046
0.01	0	0	0	0.03	0	0	0	0	0.007	0.011	0	0	0.001	0.018	0	0	0.006	0	0	0	0.002	0	0	0	0.002	0.02	0.005
99	99	100	99	99	99	100	98	99	99	99	99	99	99	99	100	99	100	99	100	99	100	99	100	100	98	98	98
23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23
7.45	7.19	7.1	7.13	7.1	7.11	7.13	7.09	7	7.023	7.118	7.108	7.177	7.066	6.96	7.135	7.1355	7.187	7.198	7.15	7.137	7.149	6.97	7.12	7.075	5.918	5.93	5.975
0.55	0.76	0.8	0.84	0.86	0.83	0.82	0.89	0.9	0.944	0.871	0.872	0.788	0.913	1.04	0.856	0.8636	0.762	0.775	0.81	0.859	0.849	1.03	0.88	0.925	2.082	2.07	2.025
8	7.95	8	7.97	7.96	7.94	7.95	7.98	8	7.968	7.989	7.98	7.965	7.979	8	7.991	7.9992	7.948	7.973	7.96	7.996	7.998	8	8	8	8	8	8
0.45	0	0	0	0	0	0	0	0	0	0	0	0	0	0.006	0	0	0	0	0	0	0	0	0.02	0.008	0.081	0.09	0.13
0.13	0.09	0.1	0.08	0.09	0.08	0.09	0.11	0.1	0.128	0.102	0.103	0.082	0.11	0.129	0.092	0.0854	0.088	0.082	0.08	0.086	0.09	0.14	0.11	0.1	0.578	0.57	0.571
0	0	0	0	0	0	0	0	0	0	0.001	9E-04	0.004	0	####	0	0	0	0.001	0	####	0	0	0	0	0	0	6E-04
2.29	0.72	0.9	0.88	0.91	0.97	0.93	0.82	0.8	0.85	0.833	0.811	0.775	0.864	0.846	0.786	0.8419	0.735	0.715	0.82	0.815	0.845	0.8	0.78	0.795	0.12	0.15	0.066
0	1.56	1.3	1.38	1.27	1.24	1.25	1.39	1.3	1.292	1.335	1.353	1.449	1.2/2	1.335	1.405	1.4526	1.501	1.505	1.39	1.398	1.348	1.35	1.37	1.413	1.376	1.38	1.46
0.06	0.08	0.1	0.08	0.07	0.07	0.07	0.07	0	0.056	0.06	0.062	0.079	0.054	0.05	0.072	0.0763	0.082	0.07	0.07	0.064	0.066	0.04	0.06	0.06	0.022	0.02	0.021
2.81	2.6	2.7	2.6	2.7	2.7	2./1	2.63	2.7	2.704	2.673	2.69	2.645	2./2	2.623	2.648	2.5394	2.638	2.648	2.69	2.638	2.653	2.66	2.66	2.618	2.822	2.78	2.748
0.01	0	0	###	0	0 01	0	0.01	0	####	0.001	0	0.002	1E-04	0.002	0.007	0.0052	/E-04	0.005	0	0 002	****	0	0	0.007	####	U	0.004
0.01	5.05	-	5.02	5.02	0.01	U E 04	0.01 E 01	-	0.001	0.005 E.005	5.02	0.00Z	4E-04	4.020	0.007	4.005.6	5.042	0.005	5.04	0.003 E 001	#### 5.002	-	-	4.007	4.0002	U F	4.000
5.74	5.05	5	5.03	5.03	5.06	5.04	5.01	5	5.03	5.005	5.02	5.033	5.02	4.969	5.002	4.9950	5.043	5.022	5.04	5.001	5.002	5	5	4.993	4.998	c	4.990

1.7 1.7 1.7 1.72 1.71 1.72 1.7 1.72 1.71 1.71 1.72 1.71 1.71 1.72 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 1.71 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>																											
0.4 0.28 0.3 0.29 0.3 0.31 0.3 0.32 0.31 0.31 0.305 0.33 0.34 0.33 0.34 0.33 0.34 0.37 0.377 0.317 0.282 0.256 0.31 0.311 0.305 0.33 0.334 0.33 0.344 0.31 0.311 0.305 0.31 0.311 0.305 0.31 0.311 0.305 0.31 0.311 0.305 0.314 0.311 0.305 0.314 0.311 0.305 0.314 0.311 0.305 0.314 0.311 0.305 0.314 0.311 0.305 0.314 0.311 0.305 0.314 0.311 0.305 0.314 0.311 0.305 0.314 0.311 0.305 0.314 0.311 0.305 0.31 0.311 0.305 0.31 0.311 0.305 0.31 0.311 0.30 0.31 0.30 0.31 0.31 0.30 0.31 0.31 0.30 0.31 0.31 0.30 0.31 0.31 0.30 0.31 0.31 0.31 0.31 0.31 <td>1.86 1.861</td> <td>1.879</td> <td>1.729</td> <td>1.71</td> <td>1.72</td> <td>1.711</td> <td>1.731</td> <td>1.75</td> <td>1.791</td> <td>1.78</td> <td>1.718</td> <td>1.742</td> <td>1.715</td> <td>1.708</td> <td>1.754</td> <td>1.715</td> <td>1.714</td> <td>1.72</td> <td>1.7</td> <td>1.72</td> <td>1.7</td> <td>1.71</td> <td>1.72</td> <td>1.73</td> <td>1.7</td> <td>1.79</td> <td>1.8</td>	1.86 1.861	1.879	1.729	1.71	1.72	1.711	1.731	1.75	1.791	1.78	1.718	1.742	1.715	1.708	1.754	1.715	1.714	1.72	1.7	1.72	1.7	1.71	1.72	1.73	1.7	1.79	1.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	'34 0.73 0.725	0.734	0.334	0.33	0.38	0.305	0.311	0.31	0.256	0.282	0.3172	0.307	0.373	0.34	0.294	0.352	0.313	0.344	0.3	0.32	0.3	0.31	0.3	0.29	0.3	0.28	0.34
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21 0.22 0.228	0.221	0.127	0.11	0.14	0.1	0.106	0.11	0.112	0.108	0.0995	0.11	0.118	0.11	0.108	0.113	0.11	0.119	0.1	0.12	0.1	0.1	0.1	0.1	0.1	0.11	0.12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0.005	0.007	0	0	0	0.001	0	0	0	0.002	0	0.001	0.003	0	0	6E-04	####	####	0	0	0	0	###	0	0	0	0
0 0 ### ### ### 0 ### 0 0 ### 0 0 0 0 0 ### 1 0 0 0 0 0 0 ### 1 0 0 0 0 0 ### 1 0 0 0 0 0 0 1 ### 0 0 0 0 0 1 ### 0	0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.7 2.1 2.1 2.13 2.11 2.1 2.16 2.16 2.15 2.16 <td< th=""><th>0 0 0.002</th><th>0</th><th>0.002</th><th>0</th><th>0</th><th>####</th><th>####</th><th>0</th><th>0</th><th>5E-04</th><th>0</th><th>0</th><th>0.001</th><th>0.002</th><th>0.002</th><th>0</th><th>####</th><th>0</th><th>0</th><th>###</th><th>0</th><th>###</th><th>###</th><th>###</th><th>0</th><th>0</th><th>0</th></td<>	0 0 0.002	0	0.002	0	0	####	####	0	0	5E-04	0	0	0.001	0.002	0.002	0	####	0	0	###	0	###	###	###	0	0	0
0 0	33 2.81 2.813	2.833	2.19	2.15	2.23	2.116	2.149	2.17	2.159	2.169	2.1347	2.16	2.206	2.159	2.156	2.179	2.138	2.182	2.2	2.16	2.1	2.11	2.13	2.12	2.1	2.17	2.27
0.03 0.03 0.05 0.03 0.05 0.04 0.07 0.03 0.06 0.03 0.04 0.05 0.03 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05	0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.94 1.97 2 1.97 1.96 1.97 1.96 1.945 1.96 1.96 1.96 1.965 1.96 1.945 1.961 1.957 1.964 18 17.2 17 17.1 17.1 17.1 17.2 17 17.18 17.14 17.16 17.21 17.16 17.15 17.15 17.12 17.1 17.19 17	.01 0 0.012	0.01	0.046	0.05	0.05	0.039	0.055	0.04	0.035	0.031	0.0424	0.034	0.051	0.055	0.043	0.061	0.039	0.047	0	0.04	0.05	0.03	0.05	0.03	0	0.03	0.06
18 17.2 17 17.1 17.1 17.1 17.1 17.2 17 17.18 17.14 17.18 17.16 17.16 17.21 17.16 17.135 17.17 17.16 17.2 17.15 17.12 17.2 17.1 17.19 17.19	.99 2 1.988	1.99	1.954	1.95	1.95	1.961	1.945	1.96	1.965	1.969	1.9576	1.966	1.949	1.945	1.957	1.939	1.961	1.953	2	1.96	1.95	1.97	1.96	1.97	2	1.97	1.94
	.84 17.8 17.82	17.84	17.19	17.1	17.2	17.12	17.15	17.2	17.16	17.17	17.135	17.16	17.21	17.16	17.16	17.18	17.14	17.18	17	17.2	17.1	17.1	17.1	17.1	17	17.2	18

	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24	M25	M26	M27	M28	M29	M30	M31
(Ca+Na) (B)	2	2	2	2	2	2	1.98	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1.84
Na (B)	0.2	0.12	0.163	0.22	0.24	0.23	0.22	0.23	0.27	0.3	0.28	0.22	0.28	0.3	0.28	0.27	0.28	0.28	0.27	0.2	0.29	0.3	0.29	0.28	0.28	0.28	0.28	0.2	0	0.06
(Na+K) (A)	0.8	0.88	0.807	0.14	0.13	0.15	0.09	0.15	0.11	0.2	0.14	0.21	0.14	0.1	0.2	0.21	0.16	0.18	0.17	0.1	0.12	0.1	0.2	0.2	0.16	0.14	0.16	0.2	0	0.42
Mg/(Mg+Fe2)	0.7	0.65	0.674	0.64	0.64	0.64	0.66	0.64	0.65	0.7	0.64	0.62	0.67	0.7	0.65	0.65	0.67	0.67	0.66	0.7	0.66	0.7	0.65	0.66	0.68	0.68	0.66	0.6	1	1
Fe3/(Fe3+Alvi)	0.4	0.28	0.687	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.98	1	1	0.99	1	1	1	1	1	0.96
Sum of S2	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
Fe#	0.4	0.35	0.355	0.46	0.46	0.46	0.45	0.46	0.46	0.5	0.46	0.47	0.45	0.4	0.47	0.46	0.44	0.45	0.46	0.5	0.46	0.5	0.47	0.45	0.44	0.45	0.46	0.5	0	0.45

	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24	M25	M26	M27	M28	M29	M30	M31
Temperatura de Hb (T°C)	961	974	970.3	690	695	694	688	698	700	721	703	711	712	725	722	728	725	722	725	##	712	713	737	736	731	735	721	688	##	727
Presión (Kbar)	5.7	5.9	5.797	1.18	1.22	1.21	1.16	1.25	1.31	1.6	1.33	1.49	1.41	1.6	1.61	1.73	1.57	1.53	1.62	1.4	1.56	1.6	1.83	1.76	1.64	1.75	1.61	1.2	1	1.84
Profundidad (m)	645	645	645.3	703	701	702	704	700	697	686	696	690	693	686	686	683	687	689	686	695	688	688	680	682	685	682	686	701	##	680
ANEXOS

M32	M33	M34	M35	M36	M37	M38	M39	M40	M41	M42	M43	M44	M45	M46	M47	M48	M49	M50	M51	M52	M53	M54	M55	M56	M57	M58	M59
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		2	2 2	2	2	2	2	2	2	2
0	0.21	0.32	0.3	0.28	0.29	0.3	0.28	0.27	0.3	0.286	0.285	0.246	0.292	0.285	0.258	0.282	0.2201	0.2	09 0.2	5 0.27	0.289	0.28	0.29	0.27	0.121	0.135	0.14
0	0.17	0.1	0.1	0.13	0.11	0.1	0.16	0.18	0.2	0.138	0.179	0.156	0.159	0.206	0.16	0.135	0.169	0.:	59 0.16	6 0.15	0.116	0.23	0.146	0.19	0.833	0.811	0.81
1	0.62	0.68	0.7	0.68	0.69	0.68	0.66	0.67	0.7	0.667	0.665	0.646	0.681	0.663	0.653	0.636	0.6374	0.6	38 0.6	6 0.65	0.663	0.66	0.659	0.65	0.672	0.668	0.65
1	1	1	1	1	1	1	1	1	1	1	1	1	1	0.993	1	1	1		1	1 1	1	1	0.978	0.99	0.597	0.637	0.34
13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13		13 1	3 13	13	13	13	13	13	13	13
0	0.47	0.45	0.5	0.45	0.45	0.45	0.46	0.45	0.4	0.448	0.446	0.457	0.44	0.454	0.453	0.475	0.4587	0.4	56 0.45	1 0.46	0.453	0.45	0.448	0.46	0.346	0.356	0.36
M32	M33	M34	M35	M36	M37	M38	M39	M40	M41	M42	M43	M44	M45	M46	M47	M48	M49	M50	M51	M52	M53	M54	M55	M56	M57	M58	M59
##	697	717	708	719	717	714	720	733	737	718.7	724.3	704.8	730.7	745.2	714.1	707.8	701.54	69	3.5 711	5 713	711.9	747	720	724	972.8	967.3	962
2	1.32	1.5	1.5	1.52	1.46	1.45	1.58	1.7	1.7	1.543	1.546	1.379	1.632	1.935	1.512	1.528	1.3294	1.3	55 1.42	7 1.52	1.498	1.91	1.593	1.68	5.868	5.819	5.83
681	697	690	691	689	691	692	687	684	684	688.4	688.3	694.2	685.6	677.7	689.4	688.8	696.25	69	5.2 692	4 689	689.9	678	686.8	684	645	645.2	645

 Muestra: PLN-001

 Kbar
 km

 max
 0.90
 7.04

 min
 1.20
 6.4

 mean
 1.50
 6.9

 Métodos utilizados
 Temperatura: Ridolfi and Renzulli (2011)

 Presión: Nutch et al., 2016