

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA

Síntesis y control morfológico de perovskitas híbridas MAPbBr₃ (MA=Metilamonio) mediante tratamiento pirolítico de aerosoles.

TESIS

Que para obtener el título de

Química

PRESENTA

Elizabeth Ramírez Ochoa

Ciudad Universitaria, Ciudad de México, 2018

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

PRESIDENTE: Profesor: Jesús Gracia Mora

VOCAL: Profesor: José Martín Enrique Carreto Cortes

SECRETARIO: Profesor: Alfonso Ramón García Márquez

1er. SUPLENTE: Profesor: José Luis López Cervantes

2° SUPLENTE: Profesor: Diego Solís Ibarra

SITIO DONDE SE DESARROLLÓ EL TEMA: LABORATORIO DE CATÁLISIS, MATERIALES AVANZADOS Y NANOTECNOLOGÍA (209), EDIFICIO F, FACULTAD DE QUÍMICA. CIRCUITO INTERIOR, CIUDAD UNIVERSITARIA, COL. COPILCO COYOACÁN, C. P. 04510

ASESOR DEL TEMA:

Alfonso Ramón García Márquez

SUPERVISOR TÉCNICO:

Diego Solís Ibarra

SUSTENTANTE:

Elizabeth Ramírez Ochoa

El presente trabajo se realizó mediante el apoyo del proyecto DGAPA PAPIIT IA 208316 "Síntesis de compuestos porosos submicrométricos y nanométricos vía aerosol"

Índice

1	Re	umen		1
2 Introducción			2	
3	An	Antecedentes		
	3.1	Materiales híbrido	los orgánico-inorgánico	4
	3.2	Perovskitas		6
	3.2	1 Historia		6
	3.2	2 Sistema de d	clasificación de perovskitas	6
	3.2	B Estructuras o	de perovskitas	7
	3.2	1 Perovskitas i	inorgánicas	8
	3.2	5 Perovskitas I	híbridas	10
	3.3	Celdas fotovoltaio	icas de perovskitas híbridas	13
	3.4	Métodos de Sínte	esis	13
	3.5	Síntesis por aero	osol	16
4	Hip	tesis		19
5	Ob	etivos		20
	5.1	Objetivo general.	l	20
	5.2	Objetivos específ	íficos	20
6	Re	ultados y discusió	ón	21
	6.1	Difracción de ray	yos X de polvos (DRX)	22
	6.2	Microscopía elec	ctrónica de barrido (MEB)	35
	6.3	Fluorescencia (P'	PV)	43
	6.4	Rendimiento espa	pacio-tiempo	45
7	Co	clusiones		47
8	Pe	spectivas		48
9	An	xos		49
	9.1	Anexo 1: Metodo	ología experimental	49
	9.2 crista		de datos de picos usados para la estimación de tamaño del la de Scherrer a partir de Difracción de rayos X	52
	9.3 de m	•	nes de Microscopía electrónica de barrido y ejemplo de la tom . Tablas de tamaños obtenidos en nm	
1	0 Ref	rencias		.129

1 Resumen

La búsqueda de materiales que permitan transformar y aprovechar la energía de fuentes renovables es un tema de interés mayor dentro de la comunidad científica, por lo que la obtención de dispositivos que realicen estas acciones de manera eficiente están en constante mejora.

Uno de los materiales que sin duda ha revolucionado los dispositivos fotovoltaicos y de emisión de luz son las perovskitas híbridas de halogenuros de plomo con aminas primarias, las celdas solares con estos materiales han alcanzado una eficiencia del 20 % y los diodos emisores de luz a base de éstas presentan una luminiscencia prometedora. Una de las desventajas de su aplicación en gran escala, es la dificultad de obtención de grandes cantidades, por lo que una síntesis en continuo, como la síntesis por generación de aerosol es atractiva para llegar a la aplicación.

Este trabajo consistió en el estudio síntesis de la perovskita híbrida MAPbBr₃ mediante síntesis por generación de aerosol donde se variaron los tensoactivos ocupados que son n-octilamina (OctA) y n-dodecilamina (DodA) y la concentración de éstos, obteniendo dos series de productos, cada una correspondiente al tensoactivo ocupado. Los productos se caracterizaron por difracción de rayos-X (DRX), microscopía electrónica de barrido (MEB) y fluorescencia (PV). Las caracterizaciones por rayos-X y microscopía electrónica de barrido mostraron que el tamaño de partícula y la polidispersidad dependen de la concentración del tensoactivo ocupado, identificando así las concentraciones óptimas de síntesis.

Como parte del interés en el escalamiento del producto a nivel industrial, se estimaron los rendimientos espacio-tiempo de las síntesis y se compararon con los de una síntesis coloidal reportada por Vybornyi ¹, obteniendo valores superiores al reportado por esta síntesis, los valores se muestran en el capítulo 6.4.

Los estudios de fluorescencia realizados revelaron máximos de emisión cercanos a 525 nm, sin embargo, los resultados obtenidos no son significativos de las propiedades en bulto.

2 Introducción

En los últimos años, la ciencia de materiales ha avanzado a pasos agigantados, sobre todo en la búsqueda de innovar tecnología, así como, nuevas formas de obtención de energía de forma eficiente, ésta última debido a que otros recursos naturales no renovables como el petróleo se están agotando además de los efectos adversos al medio ambiente que la quema de estos recursos genera.

Dentro de estos avances, los materiales inorgánicos han sido ampliamente usados, debido a sus propiedades intrínsecas como su estabilidad térmica y mecánica ², conductividad y band gap, dentro de sus desventajas se encuentran las temperaturas elevadas de síntesis, los largos tiempos de reacción, y la baja solubilidad en disolventes comunes, entre otros.

Así mismo, los materiales orgánicos han sido ampliamente usados debido a su procesamiento a bajas temperaturas, sus buenas propiedades luminiscentes y su versatilidad para formar moléculas; no obstante presentan una serie de desventajas, como su baja estabilidad térmica y mecánica, así como movilidad de carga limitada a temperatura ambiente.³

Dentro de los materiales de estudio, se han desarrollado los materiales híbridos, los cuales combinan las propiedades de cada componente (orgánico e inorgánico), específicamente aquellas que se consideran ventajas en el desempeño de los materiales.

Los compuestos tipo perovskita, han sido ampliamente estudiados debido a sus propiedades electrónicas y ópticas, atribuidas a su estructura. Las mayormente estudiadas son las perovskitas tipo ABO₃ ³, debido a su elevada conductividad de protón en estructuras cúbicas o de simetría reducida.

Como parte de la familia de compuestos que presentan esta estructura, las perovskitas híbridas surgen como un nuevo material de relevancia para su estudio, específicamente aquellas a base de halogenuros de plomo y aminas primarias. Principalmente porque sus propiedades son modificables, dependiendo de los precursores y condiciones de síntesis.

Las síntesis de estos materiales tienen desventajas, principalmente no poder hacer un modelo de síntesis escalable a la industria, ya que muchos de estos métodos de síntesis, se realizan en equipos costosos, tienen tiempos de reacción largos o en su defecto generan una gran cantidad de desechos de disolventes orgánicos⁴, de los cuales se hablará en las siguientes secciones.

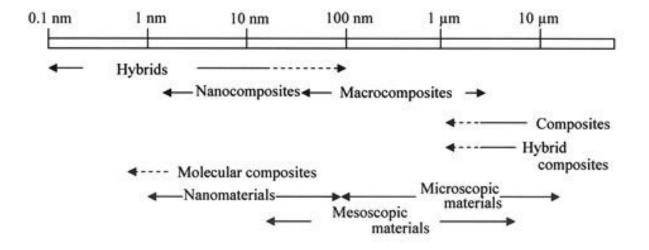
Uno de los métodos de síntesis no convencionales que podría superar todas estas fallas al realizar la síntesis de perovskitas híbridas a un modelo escalable en la industria, es el método de aerosol, que dentro de sus principales ventajas se encuentran que puede ser un proceso realizado en continuo, y los disolventes ocupados pueden ser no tóxicos y amigables con el ambiente como el agua.

El presente trabajo consiste en un estudio sistemático de síntesis por aerosol de perovskitas híbridas orgánico-inorgánico, a partir de bromuro de plomo y metilamina asistido de las sales de las aminas primarias n-dodecilamina y n-octilamina como agentes de control de crecimiento de cristalito.

El uso de estas aminas primarias con largo de cadena distinto tiene como finalidad observar si en ambas series la concentración y el largo de la cadena influyen en la morfología de la perovskita y por ende en sus propiedades.

3 Antecedentes

3.1 Materiales híbridos orgánico-inorgánico


Los materiales híbridos orgánico-inorgánico han surgido como materiales interesantes en la ciencia de materiales ya que combinan las propiedades de los distintos materiales a diferentes escalas.

A pesar de la dificultad de clasificación que presentan los materiales híbridos, en general, algunas definiciones otorgadas por diferentes autores se muestran a continuación.

De acuerdo con Yakamoto y colaboradores ^{5, 7}, los materiales híbridos se definen como mezclas de dos o más componentes para generar un material con nuevas propiedades creadas por la generación de nuevos orbitales electrónicos que se forman entre cada constituyente; Makishima ^{6, 7} categoriza a las sustancias en cuatro tipos de materiales por medio de los modos de su enlace químico, definiendo, a los materiales híbridos como mezclas de dos o más materiales con nuevos enlaces químicos formados. La categorización de los materiales propuestos es la siguiente:

- 1. Compositos: mezcla de materiales que consisten en una matriz y una dispersión a nivel micrométrico.
- 2. Nanocompositos: mezcla sub-micrométrica de materiales similares.
- Híbridos: Material formado por fases orgánicas e inorgánicas de escala submicrométrica.
- 4. Nanohíbridos: Material formado a nivel atómico o molecular de diferentes materiales con enlaces químicos o interacciones débiles entre los diferentes materiales cuyos tamaños no sobrepasen los 100 nm.⁷

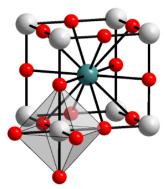
Similar a las definiciones anteriores, la figura 1 muestra una clasificación de los materiales dependiendo de su escala, propuesta por The Materials Science Society of Japan, cuyo criterio está basado en tamaño de los componentes.

Figura 1. Clasificación de materiales híbridos según su escala ⁷

Ashby ^{7,8} define materiales híbridos como "una combinación de dos o más materiales en una geometría y escala predeterminada, que sirven óptimamente a un propósito específico" ⁷

Hagiwara y Suzuki ^{7, 9} describen a los materiales híbridos como una combinación intencional de dos o más materiales que se complementan entre ellos para tener nuevas funciones que los componentes individuales no poseen de manera individual. De acuerdo con este criterio, la diferencia entre materiales híbridos y compositos residen en sus funciones y/o propiedades, los materiales híbridos deben de tener funciones o propiedades superiores en comparación de los compositos tradicionales (e. g. Aumento en la luminiscencia, optimización de transferencia de carga, duración de vida del excitón). ⁷

Los materiales híbridos orgánico-inorgánico tienen ventajas en las propiedades a las de los materiales orgánicos, por ejemplo, bajo costo, flexibilidad, fácil procesamiento, fácil modificación de las propiedades ópticas y electrónicas, además de algunas propiedades superiores de los materiales inorgánicos, por ejemplo, la alta movilidad de carga y la estabilidad mecánica y térmica. ²


3.2 Perovskitas

3.2.1 Historia

En 1839, Gustav Rose descubrió un mineral compuesto por trióxido de titanio y de calcio con fórmula CaTiO₃ al cual nombró perovskita, en honor al mineráologo ruso Count Lev Aleksevich Perovski ³.

La perovskita cristaliza en un sistema ortorrómbico (pseudocúbico), sin embargo, se representa idealmente como una celda cúbica en la cual el catión con la valencia más baja se encuentra en el centro; el catión con la valencia más elevada se encuentra en los vértices y los oxígenos se sitúan en las aristas, dando origen a una estequiometría ABO₃ A-Catión B-catión y O-Oxígeno 1:1:3. Esta celda se ilustra en la figura 2.

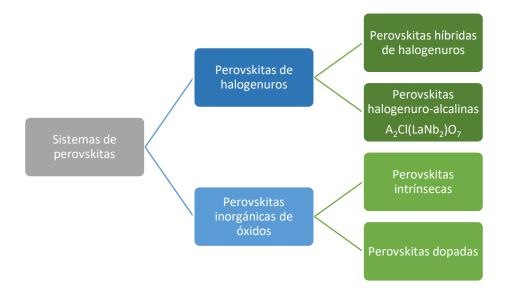
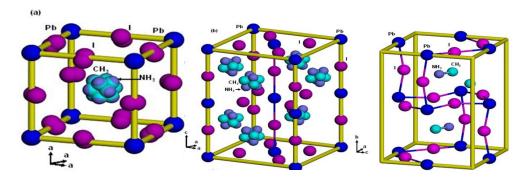

A partir de esta estructura tipo, se ha nombrado a un grupo de compuestos que toman la misma estructura cristalina, cuya abreviatura es ABX₃, donde A y B son cationes de distinto tamaño y X es un anión, usualmente un óxido o halogenuro.

Figura 2. Representación de la estructura ideal de la perovskita cúbica ¹⁰ Blanco=B, Rojo=X, Azul=A

3.2.2 Sistema de clasificación de perovskitas

De acuerdo con las posibles modificaciones de las perovskitas, se ha propuesto una clasificación de acuerdo con su composición mostrada en la figura 3, dentro de las que figuran las perovskitas constituidas por halogenuros de sales de amonio (híbridas), las cuales son el objeto de este trabajo.


Figura 3. Diagrama de clasificación de perovskitas. 11

3.2.3 Estructuras de perovskitas

Se ha observado que algunos factores modifican las estructuras en las cuales la perovskita puede cristalizar, las cuales son: cúbica, tetragonal y ortorrómbica, como producto de la distorsión de la celda ideal, generando estructuras con menor simetría. (figura 4) ¹³

Algunos factores de estas observaciones son:

- 1. Efectos de tamaño: En un caso ideal, la distancia entre el catión B y el anión es a/2 y la distancia entre el catión A y el anión es $\sqrt{2}(\frac{a}{2})$, si estas distancias cambian, se modifica la estructura cúbica.
- 2. Cambio la composición ideal del ABO₃: Dependiendo de la valencia de los cationes, el contenido de oxígeno o en su defecto halogenuros puede variar, generando vacancias.
- Efectos Jahn-Teller: En algunas perovskitas pueden existir iones activos al efecto Jahn-Teller en la posición B, causando una elongación en el octaedro que conlleva al cambio de los parámetros de celda horizontal (a) y vertical (c).¹²

Figura 4. Estructura cúbica, tetragonal y ortorrómbica; respectivamente ¹³

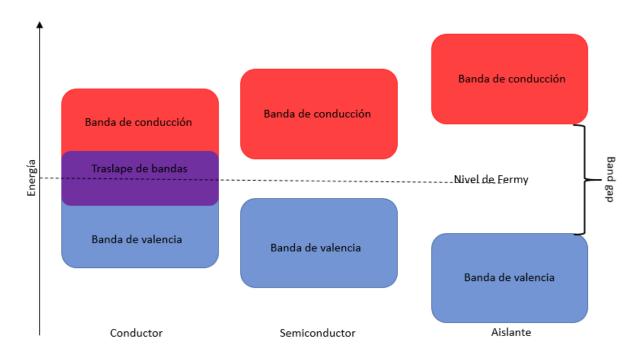
3.2.4 Perovskitas inorgánicas

A partir del titanato de calcio, se descubrió una serie de compuestos homólogos, los cuales tienen la misma estructura, sin embargo los cationes y aniones son diferentes.

El primero en introducir el concepto de compuestos homólogos en perovskitas entre los óxidos y halogenuros fue Goldschmidt, basado en una serie de consideraciones químicas y cristalográficas, que son:

- 1. La similitud entre los radios iónicos de los aniones O²⁻ y F⁻.
- 2. La aplicación del modelo de iones rígidos a compuestos que contengan los iones O²⁻ y F⁻ los cuales, al tener relativamente bajas polarizaciones resultan en que su radio iónico es casi independiente a su número de coordinación.
- La correspondencia entre la estructura cristalina y de los compuestos con óxido y con fluoruro, considerando que los cationes en dichos compuestos tienen un radio iónico similar.¹⁴

Como consecuencia de estas consideraciones, de las propiedades y de la versatilidad al modificar su composición en las perovskitas, se han realizado estudios modificando los cationes y los aniones, obtiendo las perovskitas inorgánicas e híbridas.

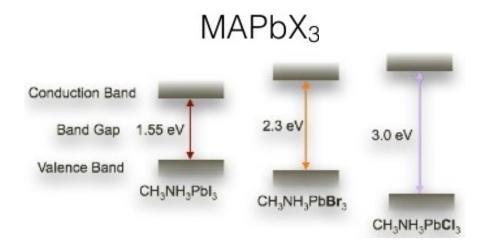

La perovskita inorgánica con propiedades similares a una perovskita orgánica-inorgánica fue reportada por Møller con fórmula CsPbX₃ (X=Cl, Br, o l) en 1958,

posteriormente Mitzi y colaboradores reportaron sus propiedades optoelectrónicas.¹⁵

La propiedad óptica más interesante de esta perovskita es su band gap (ancho de banda prohibida) modificable dentro de la región del visible en el espectro electromagnético dependiente de su composición, el radio atómico de los componentes y del tamaño de partícula debido a los efectos de tamaño cuánticos. las propiedades de esta perovskita inorgánica son comparables a las perovskitas híbridas, debido a que muestran propiedades ópticas similares. ¹⁶

Antes de pasar a la siguiente sección, es importante mencionar qué es el ancho de banda prohibida (band gap) se define como la diferencia de energía necesaria para excitar un electrón de la banda de valencia a la banda de conducción, esta distancia entre las bandas de conducción y de valencia permite su clasificación como materiales conductores, semiconductores o aislantes.

Donde los materiales conductores son aquellos cuyas bandas de valencia y de conducción se encuentran muy próximas entre sí, en algunos casos, estas bandas se encuentran sobrepuestas. A diferencia de los semiconductores que se encuentran situados entre los materiales conductores y los aislantes, donde las bandas se encuentran en una distancia media, a temperaturas muy bajas difícilmente conducen la corriente eléctrica y al elevar su temperatura o al ser sometidos a un campo eléctrico externo su comportamiento cambia a ser del tipo conductor, finalmente, la distancia entre bandas en los materiales aislantes es tan grande que no es posible la conducción eléctrica a través de ellos.


Figura 5. Esquema de clasificación de materiales dependiente del band gap.

3.2.5 Perovskitas híbridas

Con el descubrimiento de que la composición en las perovskitas puede ser modificado para la optimización de sus propiedades, se buscaron variaciones de las especies aniónicas y catiónicas, dentro de las que destacan las perovskitas de halogenuros híbridos orgánico-inorgánico, las cuales fueron sintetizadas por primera vez por D. Weber en 1978.¹⁷

En los últimos años éstas han sido objeto de estudio especialmente en la forma de películas, microcristales y monocristal. Ej. una de las perovskitas híbridas más estudiadas es el CH₃NH₃PbX₃ debido a su aplicabilidad en celdas solares para mejorar las eficiencias de conversión y el bajo costo de su producción.¹⁸

La alta eficiencia fotolumínica de las perovskitas híbridas, aunado a su flexibilidad composicional, las posicionan como candidatos tecnológicos a la eficiencia de conversión de energía en celdas solares y en su uso como LEDs debido a que se distinguen por: su pureza de color y su band gap modificable para cubrir todo el espectro visible. ²²

Figura 6. Band gap modificable según el halogenuro ocupado 19

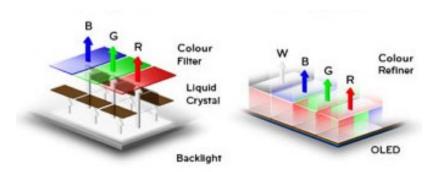
Debido a que el uso de las perovskitas híbridas en LEDs son el principal objetivo de este trabajo se menciona brevemente sus funciones y variaciones.

Diodos electroluminiscentes (LEDs)

Un diodo emisor de luz (LED, por sus siglas en inglés), es un dispositivo semiconductor que emite luz cuando una corriente eléctrica pasa a través de él. La luz emitida es producida cuando las partículas portadoras de carga (electrones y huecos) son combinados con un material semiconductor. ²⁰

Debido a que la luz es generada en el material semiconductor sólido, se describen como dispositivos de estado sólido. El término de iluminación de estado sólido (solid-state lighting), que también incluye a los OLEDs se distinguen de los demás dispositivos de emisión de luz de otras fuentes (lámparas incandescentes y fluorescentes) por ser dispositivos de emisión de luz de estado sólido. ²⁰

Dentro de los LEDs los electrones y huecos son confinados en niveles energéticos, la separación entre estos niveles determina la energía de los fotones emitida, esta energía determina la longitud de onda que emite, por ende su color. ²⁰


Previamente se han fabricado LEDs a base de materiales inorgánicos, puntos cuánticos así como moléculas y polímeros orgánicos, cada uno presentando diferentes ventajas que se muestran a continuación.

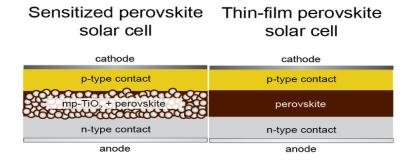
Los LEDs inorgánicos revolucionaron la iluminación artificial y contribuyeron en ahorros de energía significativos. Sin embargo, sus inconvenientes son las temperaturas elevadas y el vacío necesario para su fabricación. Adicionalmente, los sustratos en los que son depositados son costosos.²¹

Posteriormente, los LEDs de puntos cuánticos (QLEDs, por sus siglas en inglés), no requieren las condiciones tan estrictas de temperatura y vacío de sus análogos inorgánicos, pero están limitados por una alta concentración de recombinación no radiativa debido a los defectos en superficie lo que conlleva a un apagamiento. ²¹

Por último, los LEDs orgánicos (OLEDs, por sus siglas en inglés), tienen aplicaciones comerciales y a diferencia de otros, su formado y deformación es plausible, además de no tener una rápida recombinación como los QLEDs. A pesar de sus ventajas, su proceso de elaboración requiere de alto vacío, por lo que su producción a gran escala no es costeable. ²¹

La figura 7 nos muestra el comparativo entre los LEDs inorgánicos y los LEDs orgánicos reflejados en una mejor calidad de imagen.

Figura 7. Comparación entre LEDs inorgánicos y orgánicos respectivamente ²² Todas estas deficiencias presentadas en LEDs inorgánicos, OLEDs y QLEDs no se presentan en LEDs a base de perovskitas debido a la baja densidad de defectos, un band gap modificable relacionado con su composición y una transferencia eficiente de carga. ²¹


3.3 Celdas fotovoltaicas de perovskitas híbridas

Dentro de las celdas solares las perovskitas híbridas han mostrado una eficiencia de conversión (PCE, por sus siglas en inglés) más elevada, excediendo el 22%, comparado con las celdas solares comerciales del 12 %. ⁴

La mejora de este rendimiento en la eficiencia de las celdas solares, en adición a su procesado fácil a partir de métodos en solución, el ancho de banda prohibida modificable, su coeficiente de absorción elevado, su alta movilidad de carga, y su lenta recombinación radiativa de los portadores de carga fotoexcitados, sitúan a las perovskitas híbridas como un material de gran interés, ya que pueden ser ocupadas para una amplia variedad de dispositivos optoelectrónicos.²³

La perovskita puede funcionar como un componente sensibilizador del espectro visible del dióxido de titanio dentro de las celdas solares sensibilizadas con cromóforos (DSSC)²⁴ o como el material activo del dispositivo.

La figura 8 muestra las celdas fotovoltaicas a base de perovskitas híbridas.

Figura 8. Celdas fotovoltaicas híbridas a) DSSC y b) Celda a base de material híbrido ²⁵

3.4 Métodos de Síntesis.

A continuación, se muestran algunos de los métodos de síntesis previamente ocupados, en qué consisten y sus principales desventajas:

El método más ocupado actualmente es el método coloidal, el cual, presenta una serie de variaciones que se muestran a continuación, así como sus principales desventajas.

a) Métodos Coloidales

a. Sales de amonio:

Se preparan las sales de amonio ($R\cdot NH_2\cdot HX$) y éstas sales se disuelven con los halogenuros metálicos (MX_2) en estequiometría 2:1, posteriormente los cristales son obtenidos mediante la evaporación del disolvente. La elección del disolvente es importante en estos casos ya que de él depende la pureza y propiedades de los productos, para esta síntesis se necesitan disolventes apróticos polares, los cuales son muy contaminantes, el disolvente más ocupado para esta síntesis es la dimetilformamida (DMF) y en otros casos se ocupa el dimetilsulfóxido (DMSO). Ambos disolventes son tóxicos (el DMSO en menor medida) y muy contaminantes.

$$RNH_2 + HX + PbX_2 \rightarrow [RNH_3]PbX_3$$

b. Método de Schmidt:

Este método de síntesis fue usado por Schmidt *et. al.*, ocupando como ligante de cadena larga, el bromuro de octilamonio.

La síntesis consiste en agregar el bromuro de plomo, el bromuro de metilamonio y el bromuro de octilamonio a una solución en agitación de ácido oleico y 1-octadeceno a una temperatura de 80°C, esta solución se mantiene en agitación y temperatura constante durante la noche. Una vez que la solución cambia de color a amarillo se agrega acetona inmediatamente para terminar la reacción. Posteriormente, la dispersión resultante se centrifuga para obtener las perovskitas como producto.

Dentro de las desventajas de este método es que los tiempos de reacción son relativamente largos (agitación durante una noche), el producto final tiene alta cantidad de impurezas por lo que se requieren varios métodos de purificación, y se necesita estar presente durante el tiempo de reacción para poder notar el cambio de color de la solución, en caso de no ser así la reacción no se terminará y generará

productos indeseados como poros finos en la estructura y retención de grupos hidroxilo.²⁶

c. Ablación térmica:

Para este método se requerían de 2 fuentes de evaporación térmica, uno para los componentes inorgánicos y otro para los componentes orgánicos para aplicar diferentes temperaturas a los componentes, en este caso se necesita de extremo cuidado para poder llegar a un balance de los vapores y poder hacer el depósito. Posteriormente, Mitzi, Prikas y Chondroudis desarrollaron un método en el cual se requiere una sola fuente de evaporación, el cual consiste en que perovskitas orgánicas-inorgánicas en forma de cristal, se someten a vacío y a una fuente de calor que alcanza aproximadamente los 1000°C en segundos. Entre las ventajas de este método es el depósito de una gran cantidad de partículas que muestran una buena autoorganización en su estructura. Sin embargo, las condiciones de síntesis dictan tiempos muy cortos para evitar descomposición y el gasto energético es muy elevado. ²⁷

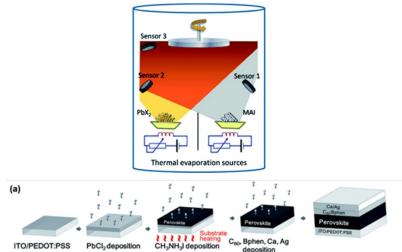


Figura 9. Método de ablación térmica 28

d. Spin-coating

En este método, el equipo consta de un sustrato que el equipo se encarga de girar a altas velocidades después de adicionar una solución sobre éste para eliminar el exceso.

En este caso, las soluciones precursoras en las que se encuentran disueltos la amina y el halogenuro son depositadas sobre el sustrato, para ser sometidos a los giros. Una vez eliminado el exceso de solución, se espera la evaporación del disolvente para así formar capas de los cristales esperados. Dentro de las desventajas de este método se encuentran la influencia de la carga superficial que pudiera tener el sustrato en las propiedades del material; la posibilidad de defectos como burbujas en la superficie, la aparición de un patrón en espiral debido a las condiciones de giro al que fue sometido y la limitante de tamaño del sustrato como inconveniente para escalar el método a gran escala. ¹⁸

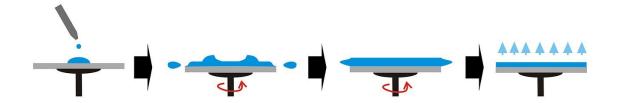


Figura 10. Método de spin-coating. 29

3.5 Síntesis por aerosol

En los últimos años, el proceso de aerosol ha sido considerado como un método efectivo no convencional y se ha ocupado para nuevas aplicaciones y síntesis de nuevos productos.

Este método consiste en la conversión de gas a partícula, que significa la producción de partículas de átomos individuales o moléculas en fase gaseosa. La formación de partículas es llevada a cabo debido al enfriamiento de un vapor supersaturado o por la generación de átomos o moléculas por reacciones químicas de los precursores gaseosos. ³⁰

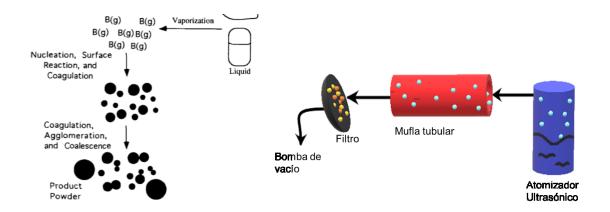


Figura 11. Proceso de conversión de gas a sólido 30

De las primeras aplicaciones diferentes que se le dio a este proceso, fue la síntesis de puntos cuánticos.³⁰

La síntesis de puntos cuánticos a través del aerosol genera partículas de precursores metálicos a una escala nanométrica, las cuales se depositan en un sustrato, que es tratado posteriormente para ser grabado con plasma y así formar los puntos cuánticos sobre el sustrato. ³⁰

El método de síntesis por aerosol es un método muy versátil ya que es posible sintetizar una gran variedad de productos dependiendo de las condiciones en las que se lleva a cabo la síntesis, además de que puede ser escalable a la industria, para una mayor eficiencia en la obtención de productos y presenta la posibilidad de realizar la síntesis por medio de arrastre de vapor o por métodos al vacío.

Dentro de las ventajas de este método se encuentran:

- 1) Ofrece una manera sencilla de dopar películas con cualquier elemento, con la simple adición a la mezcla de reacción.
- 2) No requiere sustratos de alta calidad
- 3) La tasa de depósito y el grosor de las películas puede ser fácilmente modificada.
- 4) No causa sobrecalentamiento local que puede ser dañino para los productos
- 5) Al cambiar la composición de la mezcla de reacción durante el proceso, se pueden crear películas con capas de gradientes de composición. ³¹

Los pioneros en el procesamiento y preparación de películas delgadas a partir de este método son Chamberlin y Skarman en 1996 con sulfuro de Cadmio.³¹

Más tarde, Brinker, propuso la síntesis de partículas sílice y Cerio por el método de aerosol, con la modificación de que ocupó filtros para el depósito de las partículas en lugar de sustrato para la recolección del producto.³² Debido a la versatilidad de este proceso, se han buscado variables y modificaciones aplicables al mismo, especialmente en la manera de recolectar los productos, entre ellas, por depósito en sustrato, por medio de filtros y a través de trampas de vapores.

Si el proceso de aerosol se lleva a cabo por medio de acarreo de gases, el depósito y el uso de trampas de vapores es común, Daanen, describe que a través de una serie de colectores de vapores en paralelo es posible aumentar la cantidad de producto obtenido.³³

Algunas de las desventajas de este método son la dificultad para producir materiales multicomponentes, su bajo rendimiento en algunas rutas de proceso, problemas asociados a gases tóxicos producidos ³⁰, y el tiempo necesario para encontrar las condiciones óptimas de síntesis con respecto al producto esperado. Adicionalmente, el montaje del equipo requiere de infraestructura de seguridad como medida precautoria ante las partículas en fase gaseosa.

Con base en lo anterior, la importancia de este trabajo radica en el uso del proceso de aerosol para realizar la síntesis de perovskitas híbridas de manera más eficiente, con un tiempo de síntesis menor a los ya establecidos, y disminuyendo la contaminación por disolventes que la síntesis de perovskitas de manera convencional ocasiona.

4 Hipótesis

Ocupando bromuro de metilamonio (MABr) y bromuro de plomo (PbBr₂) como precursores de perovskita en disolución acuosa, así como, n-dodecilamina y n-octilamina como agentes de control de crecimiento, es posible obtener perovskitas híbridas de plomo y metilamonio por el método de aerosol, en las cuales la morfología y el tamaño estarán controlados por las concentraciones empleadas de los surfactantes ocupados.

5 Objetivos

5.1 Objetivo general

• Realizar un estudio sistemático de la síntesis de perovskitas híbridas (MAPbBr₃) por el método del aerosol utilizando dos agentes plantilla.

5.2 Objetivos específicos

- Buscar condiciones óptimas de síntesis independientemente del tensoactivo ocupado.
- Sintetizar y caracterizar estructuralmente las perovskitas híbridas obtenidas.
- Realizar un estudio de fluorescencia de los materiales obtenidos.
- Elaborar una racionalización de la síntesis de estos materiales en función del tensoactivo utilizado y su concentración en la mezcla de reacción.

6 Resultados y discusión

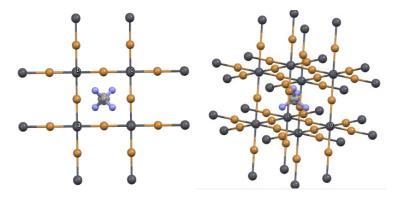
Se llevó a cabo una serie de síntesis de MAPbBr₃ por método de aerosol, la cual consiste de manera general, en preparar una mezcla de reacción con bromuro de metilamonio (MABr), bromuro de plomo (PbBr₂), ácido bromhídrico (HBr), agua y el tensoactivo a ocupar que puede ser n-dodecilamina (DodA) o n-octilamina (OctA), la cual posteriormente, en la cabeza de atomización es nebulizada (microgotas de mezcla de reacción dispersas en aire) que por acción de una depresión aire-vacío es acarreada a una mufla tubular donde el disolvente reaccionará y la fracción sólida de reacción formará el producto final que se depositará en el filtro. La síntesis detallada se encuentra en el ANEXO 1.

Los dos tensoactivos usados en las síntesis como agentes de control de crecimiento de las facetas y de tamaño de cristalito, son de cadena larga. Como punto de comparación se realizó la síntesis de producto sin tensoactivo, para observar su efecto en el producto final. En las tablas siguientes se muestran las relaciones estequiométricas ocupadas en cada reacción.

Tabla 1. Relaciones estequiométricas mol/mol para los productos con n-dodecilamina (DodA) como tensoactivo.

Dodecilamina (DodA)						
	CH ₃ NH ₃ Br	PbBr ₂	DodA			
Clave	[mol]	[mol]	[mol]			
ERO 01	1	1	0.1			
ERO 02	1	1	0.05			
ERO 03	1	1	0.025			
ERO 04	1	1	0.01			
ERO 05	1	1	0.001			

Tabla 2. Relaciones estequiométricas mol/mol para los productos con noctilamina (OctA) como tensoactivo.


Octilamina (OctA)						
	CH₃NH₃Br	PbBr ₂	OctA			
Clave	[mol]	[mol]	[mol]			
ERO 06	1	1	0.1			
ERO 07	1	1	0.05			
ERO 08	1	1	0.025			
ERO 09	1	1	0.01			
ERO 10	1	1	0.001			

Se realizaron disoluciones acuosas con las relaciones estequiométricas de los reactivos como se muestran en las tablas anteriores, para ser sometidas a evaporación por ultrasonido y pasar por la mufla a 350°C, por medio de vacío para ser depositado en el filtro.

El tiempo de aspersión en la mayoría de los casos se fijó a 20 minutos, de manera que se obtuviese cantidad suficiente de producto para su caracterización, sin embargo, este se puede alargar si se desea aumentar la cantidad de producto.

6.1 Difracción de rayos X de polvos (DRX)

Para confirmar la formación de la estructura de la perovskita, se simuló el difractograma de polvos a partir del archivo CIF de la celda ideal, el cual fue medido por difracción de rayos X de monocristal a baja temperatura. (Figura 12).

Figura 12. Representación de esferas y bastones Celda unitaria tipo cúbica de la perovskita híbrida tribromoplumbato(II) de metilamonio obtenida a partir del archivo CIF.

Con base en el difractograma simulado (Figura 13) se determinaron los planos de cada reflexión, siendo el plano (001), asignado a valores de dos theta de 14.86 °, el más relevante para los sistemas sintetizados.

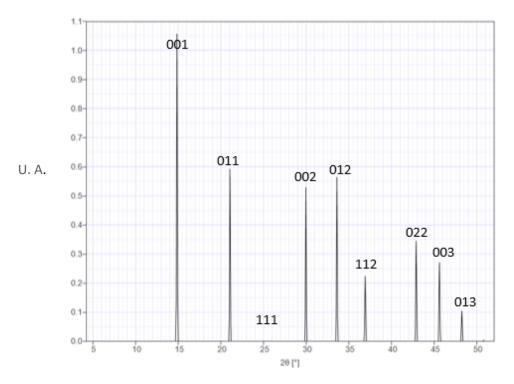


Figura 13. Difractograma simulado a partir del archivo CIF

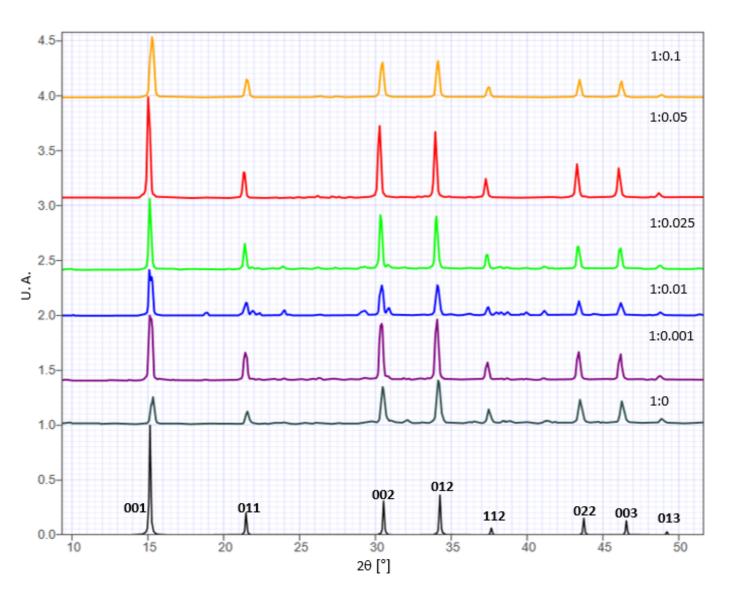
Perovskitas con n-dodecilamina

En la siguiente figura se muestran los difractogramas obtenidos de los productos donde se ocupó n-dodecilamina como agente plantilla y una tabla con la primera determinación de tamaño de cristalito a partir de rayos X ocupando la ecuación de Scherrer.

$$\tau = \frac{K\lambda}{\beta cos\theta}$$

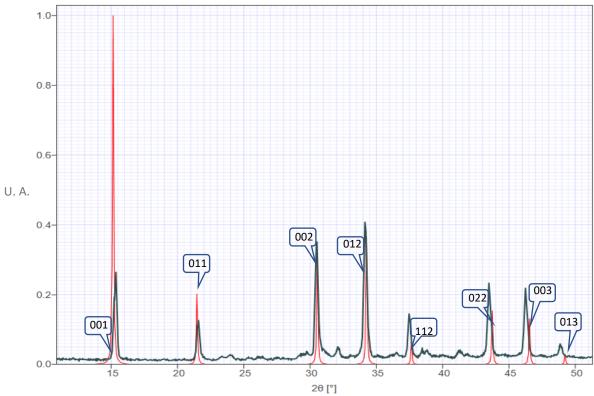
Donde:

τ=tamaño de cristalito

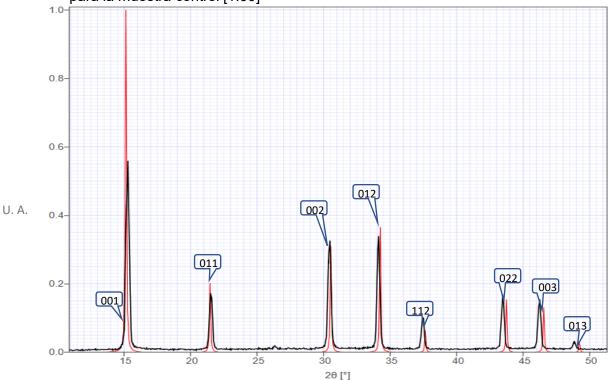

λ= longitud de onda

K=factor de forma del cristal

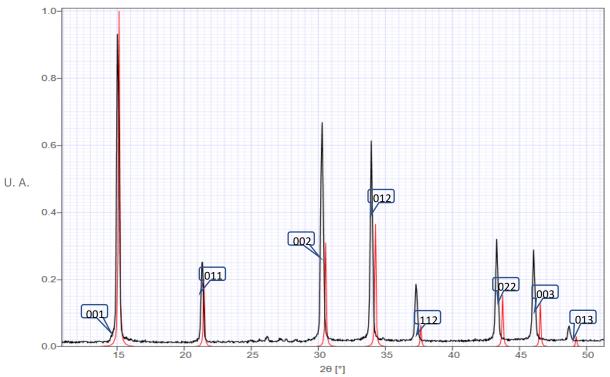
β=ensanchamiento medio de perfil de


difracción

θ=posición del pico de difracción



Relación	Tamaño de
estequiométrica	cristalito del
MAPbBr:dodA	plano 001 (nm)
[mol:mol]	
1:0.1	200
1:0.05	200
1:0.025	101
1:0.01	400
1:0.001	51
1:0	48


Figura 14. Difractogramas de productos obtenidos con n-dodecilamina y tabla de determinación de tamaño de cristalito a partir de Rayos X.

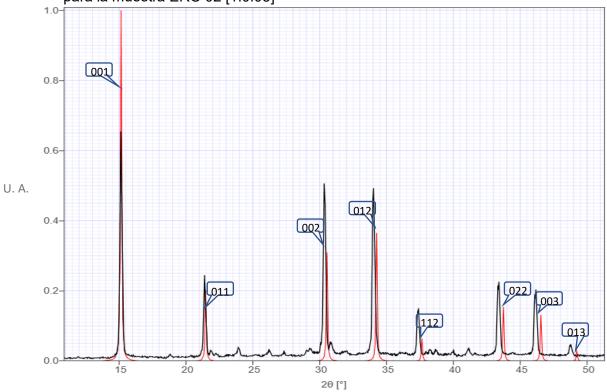

Figura 15. Comparativo entre el difractograma simulado y el difractograma obtenido para la muestra control [1:00]


Figura 16. Comparativo entre el difractograma simulado y el difractograma obtenido para la muestra ERO 01 [1:0.1]

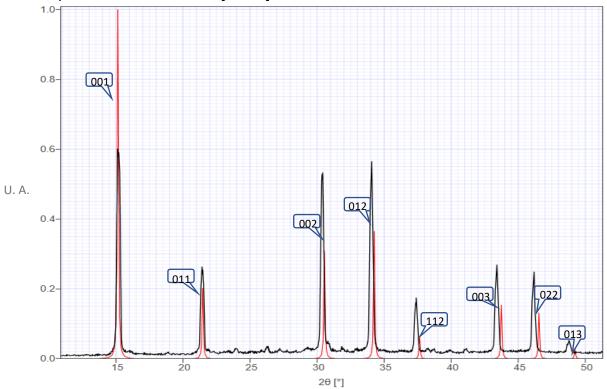
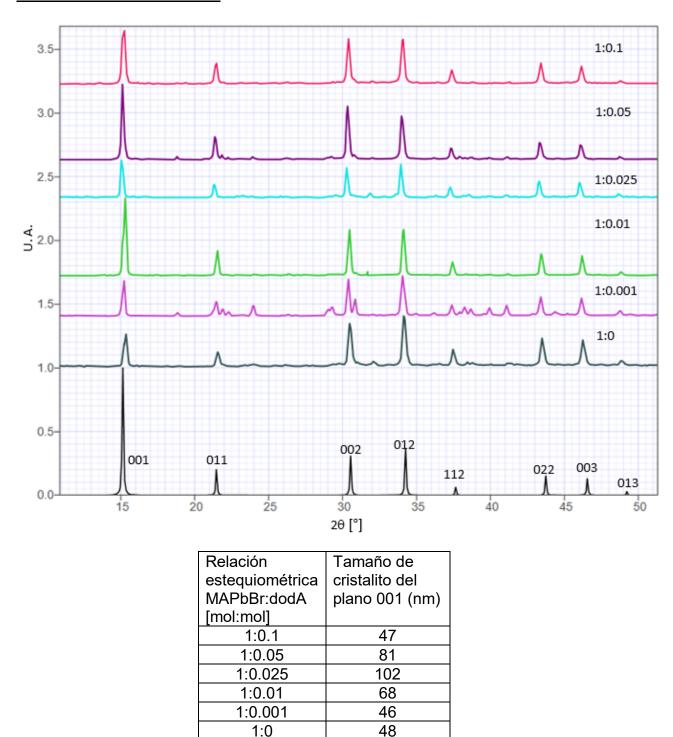

Figura 17. Comparativo entre el difractograma simulado y el difractograma obtenido para la muestra ERO 02 [1:0.05]

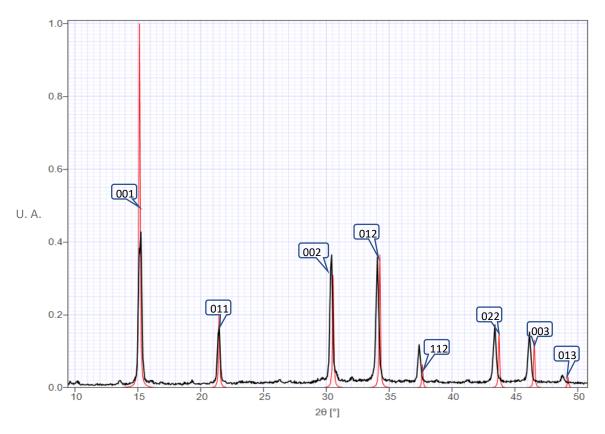
Figura 18. Comparativo entre el difractograma simulado y el difractograma obtenido para la muestra ERO 03 [1:0.025]

Figura 19. Comparativo entre el difractograma simulado y el difractograma obtenido para la muestra ERO 04 [1:0.01]

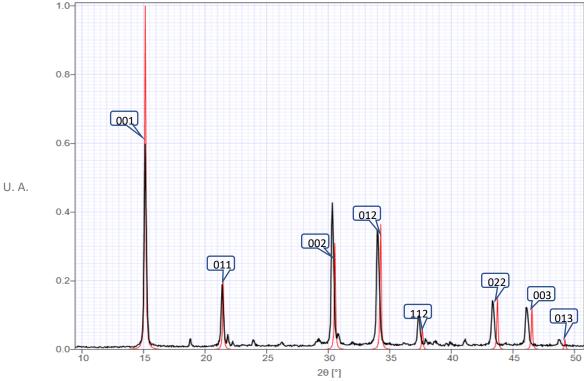
Figura 20. Comparativo entre el difractograma simulado y el difractograma obtenido para la muestra ERO 05 [1:0.001]

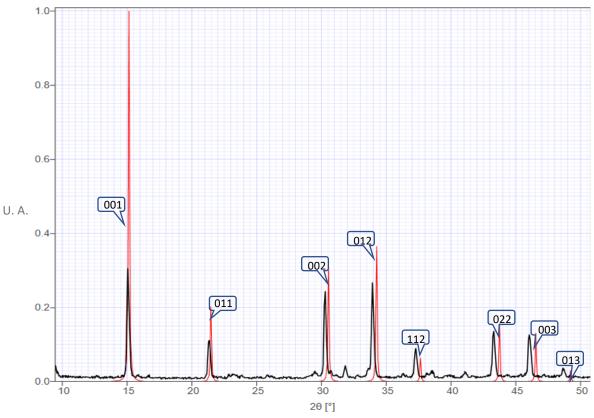

Con base en los difractogramas obtenidos de los productos con n-dodecilamina como agente plantilla se puede observar que hay cambios en la intensidad de las reflexiones, principalmente en las reflexiones correspondientes a los planos 001 y 011 entre los productos obtenidos y el difractograma simulado, lo que sugiere una orientación preferencial de la muestra.

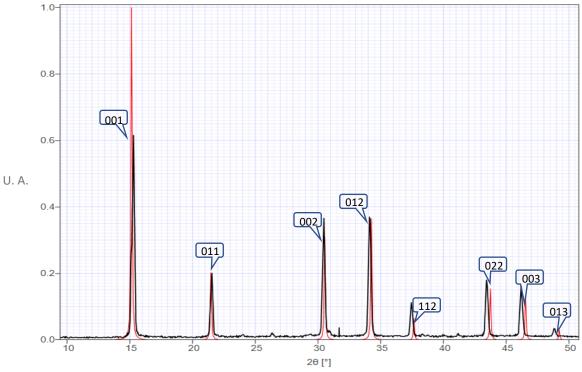
Adicionalmente, se observan reflexiones adicionales a las esperadas por el difractograma simulado a bajas concentraciones de tensoactivo. A medida que ésta aumenta las señales adicionales desaparecen, lo que indica que el tensoactivo funciona como buen agente plantilla a ciertas concentraciones.


Se ha demostrado la influencia como agentes plantilla de las aminas de cadena larga, así como de ácidos carboxílicos, por medio de síntesis coloidal. ³⁴

En el caso de la serie sintetizada con n-dodecilamina se observa de manera experimental, que a partir de una relación estequiométrica entre reactivos y tensoactivo de 1:0.025, a mayor concentración de la n-dodecilamina delimita la aparición de señales en los difractogramas (Para el caso de una relación 1:0.01 las reflexiones adicionales en 2θ: 18.88°, 23.98°, 29.20°, 39.95°, 41.13°, así como 2 conjuntos de tres señales traslapados con dos máximos en 21.49 °, 21.93 °, 22.36 °; y 37.96°, 38.27° y 38.70° y dos señales traslapadas en 30.44°, 30.94°; para la reacción control 1:0 se presentan dos reflexiones traslapadas en 38.46°, 38.83° y reflexiones adicionales en 32.12 ° y 41.25 °), el tamaño de perovskita y la intensidad de las señales para los planos 002 y 012, mostrando su función como agente de control de crecimiento evitando una gran polidispersidad. Por debajo la relación [1:0.025], las reflexiones adicionales a las esperadas para una fase cúbica aparecen, y al comparar los tamaños de cristalito calculados con la serie de concentraciones, no se observa una tendencia en el tamaño de cristalito, ya que el tamaño de 101 nm para la muestra con una con relación reactivo tensoactivo 1:0.025; cambia a 400nm para su equivalente con relación 1:0.01 mol y finalmente disminuye a 51 nm para la relación 1:0,001 mol. Esto sugiere que a proporciones de tensoactivo por debajo de 0.025 mol se obtendrá un producto similar al de la reacción control.


Perovskitas con n-octilamina


Figura 21. Difractogramas de productos obtenidos con n-octilamina y tabla de determinación de tamaño a partir de Rayos X.


Figura 22. Comparativo entre el difractograma simulado y el difractograma obtenido para la muestra ERO 06 [1:0.1] con Octilamina

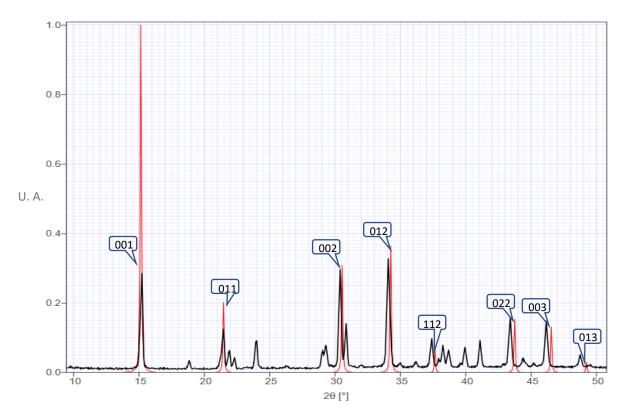

Figura 23. Comparativo entre el difractograma simulado y el difractograma obtenido para la muestra ERO 07 [1:0.05] con Octilamina

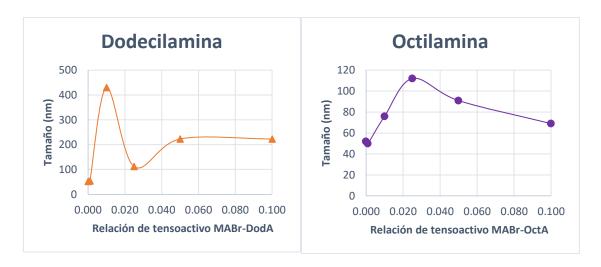
Figura 24. Comparativo entre el difractograma simulado y el difractograma obtenido para la muestra ERO 08 [1:0.025] con Octilamina

Figura 25. Comparativo entre el difractograma simulado y el difractograma obtenido para la muestra ERO 09 [1:0.01] con Octilamina

Figura 26. Comparativo entre el difractograma simulado y el difractograma obtenido para la muestra ERO 10 [1:0.001] con Octilamina

En la serie sintetizada con n-octilamina, se puede observar que para el producto ERO 10 [1:0.001] hay mayor cantidad de señales diferentes a las esperadas las cuales se encuentran en 2θ = $18.88\,^{\circ}$, $23.94\,^{\circ}$, $39.94\,^{\circ}$, $41.08\,^{\circ}$, $44.33\,^{\circ}$ y $45.24\,^{\circ}$; se observan dos conjuntos de tres señales en $21.47\,^{\circ}$, $21.89\,^{\circ}$, $22.32\,^{\circ}$ y en $37.96\,^{\circ}$, $38.26\,^{\circ}$, y $38.68\,^{\circ}$; finalmente, se pueden observar dos conjuntos de dos reflexiones traslapadas en $28.99\,^{\circ}$, $29.36\,^{\circ}$; y $30.38\,^{\circ}$, y $30.86\,^{\circ}$. En el producto ERO 08 correspondiente a la relación [1:0.025] también se observan reflexiones adicionales, a los productos de la reacción con menor concentración de tensoactivo, correspondientes a las señales en 2θ = $9.5\,^{\circ}$, $31.82\,^{\circ}$, y $41.09\,^{\circ}$, y sólo un conjunto de dos señales traslapadas en $38.19\,^{\circ}$ y $38.5\,^{\circ}$.

Estas reflexiones adicionales mostradas en la serie de n-octilamina nos muestran que al igual que con los productos de n-dodecilamina se observa un comportamiento similar en función de la concentración del tensoactivo, observando la desaparición de las reflexiones a medida que el tensoactivo aumenta. Para la serie con n-


dodecilamina la relación a la que estas reflexiones adicionales desaparecen es 1:0.025. En contraste, para la serie de n-octilamina la relación molar reactivostensoactivo para observar la desaparición de otras señales es de 1:0.05, indicando que, para un mejor control de crecimiento requiere una mayor concentración del tensoactivo. Esto se atribuyó al largo de la cadena del tensoactivo ocupado, sin embargo, para poder afirmar si hay cambios adicionales a las reflexiones obtenidas se realizaron caracterizaciones adicionales.

De acuerdo al artículo de Takeo Oku ¹³, estas señales adicionales a las esperadas sugieren que nuestros productos no están conformados por una fase cúbica pura, y esta fase puede encontrarse en coexistencia con la fase ortorrómbica, debido a que en el artículo mencionado las perovskitas que fueron analizadas ocupan yoduro en lugar de bromuro, hay un desplazamiento en las señales por lo que no se observa un traslape evidente y no es posible asignarle una fase a las señales adicionales.

Al realizar los comparativos de los resultados obtenidos entre ambos tensoactivos como agentes plantilla, se observa que tanto la serie de n-dodecilamina como la serie de n-octilamina, tienen un punto de inflexión respecto al tamaño de cristalito y la relación de tensoactivo ocupado. La serie con n-octilamina sugiere un comportamiento de distribución con respecto al tamaño de cristalito, mientras que la serie de n-dodecilamina, no se pudo atribuir algún tipo de comportamiento de distribución, debido al el punto de inflexión en esta serie, el tamaño vuelve a bajar y posteriormente subir, descartando un comportamiento como el observado para la serie de n-octilamina.

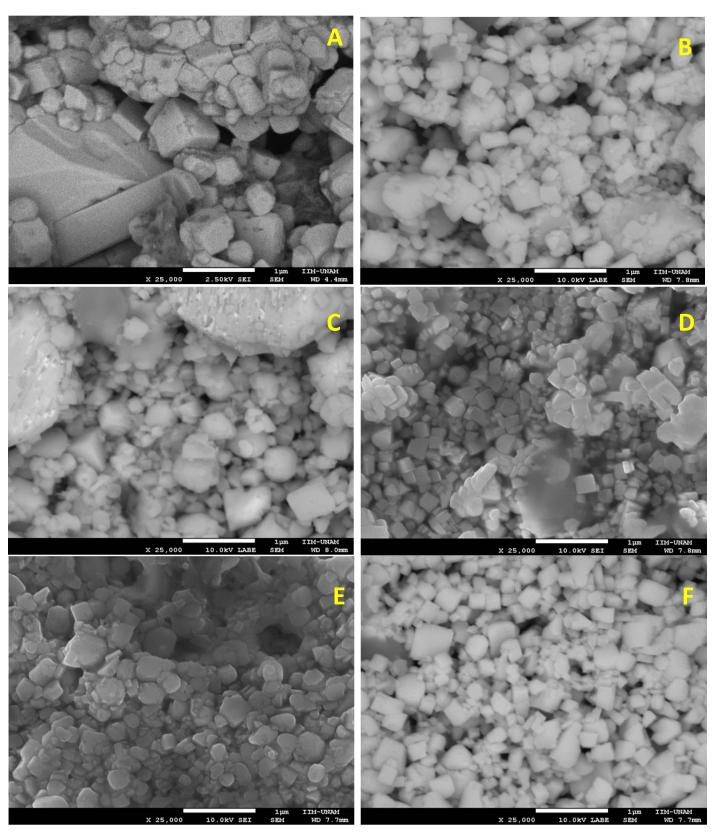
En ambas series se observa que, a bajas concentraciones de tensoactivo, señales adicionales a las esperadas aparecen, sugiriendo que a bajas concentraciones no se tiene un control en la morfología de partícula.

La gráfica 1 muestra la distribución de tamaños respecto a la concentración de tensoactivo. Donde se muestra que se tiene un máximo de tamaño para n-dodecilamina y n-octilamina una relación de [1:0.01] y [1:0.025] respectivamente, lo que sugiere un punto de inflexión (switch point) para la relación de tensoactivo y un máximo de tamaño de partícula.

Gráfica 1. Correspondencias de tamaño de cristalito y relación de tensoactivo

Con respecto al tamaño obtenido de los difractogramas por medio de la ecuación de Scherrer como primera determinación se puede observar que no hay una dependencia del tamaño de partícula con la concentración de tensoactivo, por lo que se utilizó la microscopía electrónica de barrido como técnica complementaria para observar los cambios en la morfología de las partículas y la variación de su tamaño con respecto a la media de tamaño de la muestra, lo que se conoce como polidispersidad.

Una lista con todas las reflexiones en los difractogramas obtenidos, así como la tabla con los cálculos de tamaño de cristalito por medio de la ecuación de Scherrer se encuentra en el ANEXO 2.


Para poder analizar mejor estos resultados se recurrió a la microscopía electrónica de barrido para determinar si existe la presencia de otra fase a esta concentración.

6.2 Microscopía electrónica de barrido (MEB)

Para complementar la información obtenida por medio de difracción de rayos X se realizaron estudios de microscopía electrónica de barrido (MEB), para observar la morfología y la media de tamaño de los productos obtenidos para compararlos con las medidas de cristalito obtenidas mediante el análisis de difracción de rayos X (DRX) y determinar si existe otra fase presente a esas concentraciones. Adicionalmente, esta técnica permite observar la morfología de las partículas y la desviación de los tamaños con respecto al tamaño promedio de la población, conocido como polidispersidad.

A continuación, se muestran algunas imágenes de microscopía electrónica de barrido para los productos obtenidos para realizar una comparación visual de la morfología, polidispersidad y tamaño de partícula.

La figura 27 muestra las imágenes de microscopía electrónica de barrido de los productos obtenidos con n-dodecilamina de izquierda a derecha y de arriba hacia abajo de menor a mayor concentración de tensoactivo, siendo A, el producto de la reacción control (sin tensoactivo) y F el producto cuya concentración de tensoactivo más elevada.

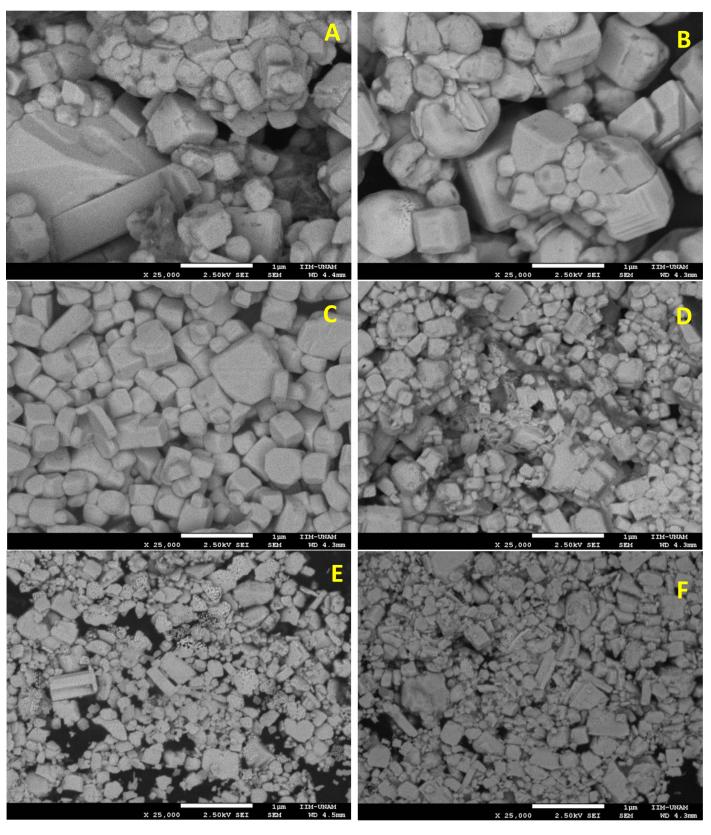


Figura 27. Imágenes MEB serie n-dodecilamina sin tensoactivo (A), 1:0.001 (B);1:0.01 (C), 1:0.025 (D), 1:0.05 (E), 1:0.1 (F), con un aumento de 1μ m.

Se puede observar que en la reacción control el tamaño y la morfología de la partícula son muy variables mostrando que no hay un control en el crecimiento de partícula, al adicionar el tensoactivo, el primer cambio observado es el de la morfología, ya que a concentraciones muy bajas de tensoactivo (B) no se observa un control de tamaño, sin embargo, se observa una morfología más uniforme.

La figura 27 D [1:0.025] muestra la imagen de los productos obtenidos a la respectiva concentración del máximo estimado por DRX, a esta concentración, la morfología cúbica de la partícula ya es evidente, y se muestra que la diferencia de tamaño de partícula disminuye.

Las figuras 27 E y F ([1:0.05] y [1:0.01]) muestran el producto con las concentraciones más altas de tensoactivo. La morfología es consistente en la mayoría de las partículas, se observa en estos dos casos que las diferencias de tamaño aumentan en función de la concentración.

Figura 28. Imágenes MEB serie n-octilamina sin tensoactivo (A), 1: 0.001 (B); 1:0.01 (C), 1:0.025 (D), 1:0.05 (E), 1:0.1(F), con un aumento de 1μ m.

En la serie con n-octilamina se puede observar que al adicionar el tensoactivo hay control morfológico, aunque no se observa un control en el tamaño de la partícula, como se puede observar en la Figura 28 B ([1:0.001])

Al aumentar la concentración de tensoactivo ocupado se observa que, a bajas concentraciones de tensoactivo, específicamente una concentración previa al punto máximo (Figura 28 C [1:0.01]) y el punto máximo (Figura 28 D [1:0.025]), hay un mejor control de tamaño y de morfología.

También se observa que, a diferencia de la serie sintetizada con n-dodecilamina, la estructura cúbica empieza a mostrar facetas asociadas a la familia de planos (110) y (111) en las aristas y vértices de las partículas, respectivamente, lo que puede sugerir una competencia (o equilibrio) de crecimiento de dos facetas con respecto a este tensoactivo. Contrastando con los resultados mostrados por DRX donde el plano (111) no se hace evidente.

Cuando se supera el punto máximo de concentración se observa por medio de MEB que las partículas tienen un tamaño más uniforme, pero la morfología deja de ser cúbica en la mayoría de los casos figura 27 (D y E) y tiene mayor tendencia a formar láminas, como está descrito en el ANEXO 3.

Como punto de comparación, se ha observado la influencia del largo de cadena de ácidos orgánicos y de ligantes amino en la síntesis coloidal de perovskitas de CsPbX₃, mostrando que el ácido hexanoico y la octilamina tienen una preferencia a formar nanopartículas, mientras que los compuestos de cadena más larga como el ácido oleico y la dodecilamina forman nanocubos.³⁶ Adicionalmente se observa que además del tensoactivo ocupado, la temperatura de reacción influye en la morfología.

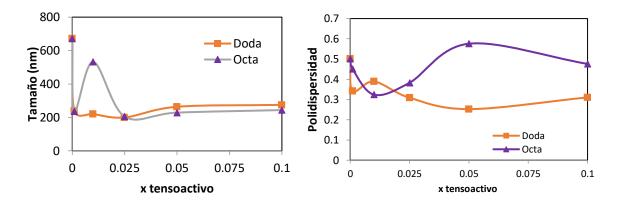
Adicionalmente, Pan y colaboradores, observaron en la síntesis coloidal de estos sistemas que a mayor largo de cadena y mayor temperatura, se formarán nanocubos, así como, a menor temperatura y menor largo de cadena se formaran láminas³⁵, lo que sugiere que la temperatura de trabajo favoreció la formación de partículas en lugar de láminas en ambos casos.

A partir de los datos obtenidos en las imágenes de microscopía de barrido se realizó la Tabla 3 donde se muestran las diferencias entre los tamaños promedio medidos por difracción de rayos X (\overline{X}_{DRX}) y microscopía de barrido (\overline{X}_{MEB}); y la desviación estándar de la muestra (σ).

Muestra	\overline{X}_{DRX} (nm)	\overline{X}_{MEB} (nm)	σ (nm)
1:0	52	672.16	336.98
	n-doded	cilamina	
1:0.1	223	274.94	85.33
1:0.05	223	263.49	66.51
1:0.025	112	199.63	61.63
1:0.01	430	219.93	85.58
1:0.001	54	238.78	81.49
	n-octil	amina	
1:0.1	69	243.76	116.01
1:0.05	91	228.59	131.63
1:0.025	112	205.03	78.48
1:0.01	76	532.23	172.36
1:0.001	50	235.39	106.06

Tabla 3. Tamaños de partícula obtenidos por DRX y MEB

De acuerdo con los valores de la desviación promedio, la reacción control presenta los valores más elevados (polidispersidad elevada), y dichos valores disminuyen en función del tensoactivo, sugiriendo una dependencia de este valor de la concentración del agente plantilla.


A continuación, se muestran las gráficas de polidispersidad con relación a la concentración de tensoactivo. Para comparar de manera normalizada, se decidió calcular el valor de polidispersidad mediante la siguiente ecuación:

$$P = \frac{\sigma}{\bar{X}}$$

Siendo:

P= Polidispersidad σ = Desviación estándar de la muestra \overline{X} = Tamaño promedio de partícula

Siendo un valor de 1 o mayor, una muestra polidispersa y un valor de cero, una muestra monodispersa.

Gráfica 2. Gráfica de relación de polidispersidad respecto a la concentración molar de tensoactivo.

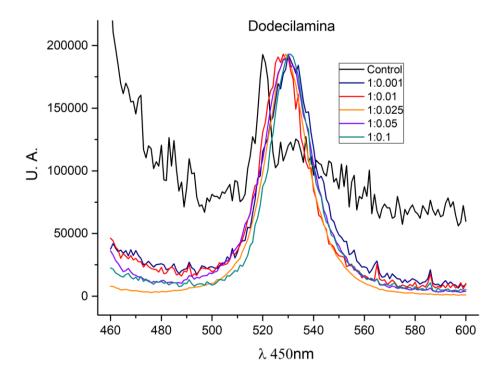
Se puede observar la influencia del tensoactivo como agente de control de crecimiento, en comparación con el producto de la reacción control (sin tensoactivo) a partir de bajas concentraciones (0.001) ya que en ambos casos de DodA y OctA tanto el tamaño de partícula como la polidispersidad asociada disminuyen.

A una relación de tensoactivo de 0.01 en los productos obtenidos con n-octilamina presenta un mínimo de polidispersidad y un máximo de tamaño, Por otro lado, en la serie de DodA, la polidispersidad es la más elevada de las proporciones de tensoactivo mientras que el tamaño promedio es cercano al mínimo.

Para una relación de tensoactivo de 0.025 el tamaño se encuentra en un mínimo para ambos tensoactivos, aunque la polidispersidad en los productos obtenidos con n-octilamina aumenta con respecto a la proporción anterior, en el caso de n-dodecilamina la polidispersidad disminuye sin llegar a un mínimo.

Por encima de la relación anterior de tensoactivo, el tamaño de partícula en ambas series aumenta, hasta llegar a un tamaño aproximado de 200-300 nm a partir de la proporción 1:0.05 que no varía de manera significativa con el aumento en la cantidad de tensoactivo. Por otra parte, la tendencia de los valores de polidispersidad divergen en función del tensoactivo ocupado, para OctA a partir de

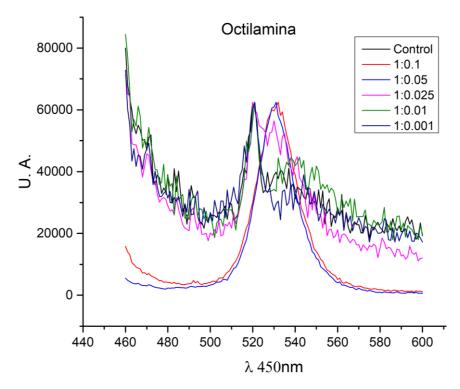
la concentración [1:0.025] la polidispersidad va en aumento y para n-dodecilamina, la polidispersidad disminuye.


En conclusión, al aumentar la concentración de tensoactivo a partir de la concentración 0.05 el cual es el punto en donde el tamaño promedio de partícula se vuelve independiente de la cantidad de tensoactivo, pero las polidispersidades varían, observando que para la relación más alta de tensoactivo (0.1) la polidispersidad de n-octilamina comienza a disminuir y para n-dodecilamina, se observa un aumento. Con base en estos resultados no se puede deducir ningún comportamiento de la polidispersidad en función de la proporción de tensoactivo, por lo que se abre la puerta a un trabajo posterior.

Comparando los resultados de las dos series de productos aquellos obtenidos con n-dodecilamina presentan los menores valores de polidispersidad con respecto a los de la serie con n-octilamina, confirmando que el tensoactivo de cadena más larga permite un mejor control del tamaño promedio de partícula. De acuerdo con este estudio, se concluye que un producto con un mínimo de tamaño y una polidispersidad asociada baja para ambos tensoactivos, la relación de tensoactivo que puede otorgar mejores resultados es la relación de MABr:tensoactivo [1:0.025], pero si se busca obtener la menor polidispersidad posible es necesario previamente seleccionar el tensoactivo a ocupar debido a las variaciones que cada uno representa, en el caso de n-dodecilamina, es la relación [1:0.05] y en el caso de n-octiamina, corresponde a la relación [1:0.01]. Cabe señalar que la serie de OctA es la única que permitirá variaciones en las facetas de las partículas, observando las facetas 111 y 110 en los productos.

Las microscopías electrónicas de barrido correspondientes al cálculo de tamaño y polidispersidad, así como las tablas con los datos medidos se encuentran en el ANEXO 3.

6.3 Fluorescencia (PV)


Se decidió excitar la muestra a 450 nm para obtener la longitud de onda de emisión, en las siguientes figuras se muestran los resultados obtenidos.

Se observa en el caso de los productos obtenidos con n-dodecilamina que la longitud de onda a la que emiten es similar a la longitud de onda esperada de 527 nm ²¹ a 535 nm ³⁶ para el bulto de los productos sintetizados.

Todos los máximos de los productos obtenidos con n-dodecilamina se encuentran alrededor de 530 nm, sin variación debido a la concentración de tensoactivo ocupado, mostrando la independencia de la concentración del tensoactivo para la fluorescencia.

.

Para el caso de n-octilamina se observa que a menores concentraciones de tensoactivo la banda correspondiente a MAPbBr₃ se desplaza al UV, donde las relación de tensoactivo es de 1:0.001, 1:0.1 en una longitud de onda de 520 nm, la relación de tensoactivo de 1:0.025 se observan máximos a 520 nm y 530 nm, para relaciones de concentraciones mayores a 1:0.025 se observan los máximos a 530 nm, iguales a los de la serie obtenida con n-dodecilamina. Para esta serie es evidente que existe una correlación entre la concentración del tensoactivo ocupado y la fluorescencia obtenida.

Debido a que la fluorescencia fue llevada a cabo en suspensión y considerando los tamaños de partícula observados por medio de la microscopía electrónica de barrido este estudio no es representativo del bulto, debido a que una parte del producto se encuentra suspendido en el tolueno, por lo que los resultados obtenidos de este método de caracterización son correspondientes a las partículas de menor tamaño, y la otra parte con partículas de mayor tamaño se encuentra sedimentada.

Como consecuencia de estas diferencias de tamaños los espectros muestran gran cantidad de ruido, especialmente para los productos obtenidos en la serie realizada con n-octilamina.

6.4 Rendimiento espacio-tiempo

Para poder mostrar la efectividad del método de síntesis por aerosol es necesario hacer un comparativo del rendimiento entre este método y los métodos comúnmente usados.

Dado que los métodos utilizados para la síntesis de perovskitas como ablación térmica, y el método de spín coating no permiten estimar un rendimiento, se compararon los resultados obtenidos con el esperado por síntesis coloidal.

$$R = \frac{(\textit{Masa producto})(60 \, \textit{minutos})(24 \, \textit{horas})}{(\textit{volumen ocupado})(\textit{tiempo de reacción})(1 \, \textit{hora})(1 \, \textit{día})}$$

Unidades de R =
$$\frac{kg}{(m^3)(dia)}$$

Sin tensoactivo

112.11kg m⁻³ día⁻¹

Serie Dodecilamina

MAPbBr₃: dodecilamina [1:0.1]

117.6kg m⁻³ día⁻¹

MAPbBr₃: dodecilamina [1:0.05]

55.8 kg m⁻³ día⁻¹

MAPbBr₃: dodecilamina [1:0.025]

91.64kg m⁻³ día⁻¹

MAPbBr₃: dodecilamina [1:0.01]

248.8kg m⁻³ día⁻¹

MAPbBr₃: dodecilamina [1:0.001]

88.2kg m⁻³ día⁻¹

Serie Octilamina

MAPbBr₃: octilamina [1:0.1]

21.065kg m⁻³ día⁻¹

MAPbBr₃: octilamina [1:0.05]

90.51kg m⁻³ día⁻¹

MAPbBr₃: octilamina [1:0.025]

7.2 kg m⁻³ día⁻¹

MAPbBr₃: octilamina [1:0.01]

188.64kg m⁻³ día⁻¹

MAPbBr₃: octilamina [1:0.001]

202.5kg m⁻³ día⁻¹

En el caso de la síntesis coloidal utilizada para este tipo de sistemas el rendimiento obtenido en el artículo de Vybornyi ¹ y colaboradores es del 40-70% en una síntesis de 12 horas con flujo de nitrógeno, considerando el 70% como el rendimiento máximo corresponde a 0.668 kg m⁻³ día⁻¹.

Con base en estos resultados es posible decir que el método de síntesis por aerosol de perovskitas híbridas presenta un mejor rendimiento espacio-tiempo que los métodos anteriores.

7 Conclusiones

Se realizó un estudio sistemático de síntesis de la perovskita híbrida (MA)PbBr3 utilizando dos tensoactivos de largo de cadena distintos mediante la síntesis por generación de aerosol, observando que la morfología y el tamaño de partícula dependían de la proporción y el largo de cadena del tensoactivo empleado.

La proporción molar de tensoactivo determinada para obtener los mejores balances entre tamaño promedio y polidispersidad fue 1:0.025 para ambas series. A concentraciones mayores a 1:0.05 el tamaño de partícula muestra un comportamiento independiente de la concentración de tensoactivo y del largo de la cadena observando valores muy similares de tamaño en ambas series.

La fluorescencia muestra que para cualquier relación de tensoactivo de ndodecilamina se obtienen máximos alrededor de una longitud de onda de 530 nm correspondiente al esperado para la perovskita en bulto, y para la serie de noctilamina se observa que a bajas concentraciones los máximos correspondientes muestran un desplazamiento al UV correspondientes a la longitud de onda de 520nm.

El rendimiento obtenido muestra que el método de síntesis por aerosol resulta ser más eficiente en la obtención de productos en comparación con los métodos coloidales, y debido a que el producto puede ser obtenido en forma continua, resulta ser un método escalable para la industria de obtención de perovskitas híbridas.

El estudio realizado permite mostrar la eficiencia de los tensoactivos como agente plantilla en el método de síntesis ocupado, así como las relaciones de reactivos: tensoactivo más apropiado dependiendo del objetivo de la síntesis (polidispersidad, tamaño, fluorescencia).

8 Perspectivas

Debido a los problemas observados en la obtención de los espectros de fluorescencia se recomienda ocupar métodos de dispersión que permitan romper los agregados de partículas para evitar la sedimentación al realizar la fluorescencia en suspensión.

Así mismo se recomienda realizar un estudio de fluorescencia en sólido. Para así evitar cualquier error derivado de este método de caracterización.

Para comprobar la independencia del tamaño en función de la concentración de tensoactivo y del largo de cadena a relaciones estequiométricas mayores a 1:0.05 es necesario realizar más experimentos a relaciones mayores a 1:0.1.

Debido a que el presente trabajo sólo se enfocó a las variaciones ocasionadas por la concentración y largo de cadena correspondientes al tensoactivo se recomienda realizar más estudios sistemáticos variando las temperaturas de trabajo, así como las concentraciones de bromuro de metilamonio y bromuro de plomo (II) y la relación estequiométrica de estos dos reactivos.

9 Anexos

9.1 Anexo 1: Metodología experimental

Para la serie de n-dodecilamina se realizaron los cálculos necesarios para mantener la relación estequiométrica deseada.

Metodología general de preparación de equipo

La mufla tubular tiene que llegar a una temperatura de 350°C y mantenerse, sin tener fluctuaciones de temperatura, el tubo de reacción que se encuentra dentro de la mufla se debe conectar la bomba de vacío con 2 dedos fríos, sumergidos en nitrógeno líquido como trampas de humedad.

Previo a la preparación de mezcla

Es necesario pesar previamente todos los reactivos a ocupar, porque pueden reaccionar desde el baño sónico; así mismo, también se debe pesar el filtro donde se va a depositar el producto para poder realizar una diferencia de masas y saber la cantidad neta de producto obtenido, ya que, al traspasar el producto a un vial, la masa disminuye, ya que parte del producto no se separa del filtro.

Metodología general de preparación de mezcla de reacción

En 30 mL de agua desionizada se adicionan 200μL de HBr; posteriormente se agrega el PbBr₂ el cual ha sido previamente pesado y molido, la mezcla se dispersa en baño sónico durante 5 minutos, una vez dispersado el PbBr₂ se agrega el CH₃NH₃Br previamente pesado, la mezcla se dispersa nuevamente en baño sónico durante 5 minutos, finalmente se agrega el tensoactivo previamente medido y se dispersa en baño sónico durante 5 minutos.

Metodología general de reacción

Una vez preparada la mezcla y el equipo montado, se adicionan aproximadamente 15 mL de mezcla de reacción a la cabeza de dispersión para ser sometidos a reacción en la mufla, se enciende la bomba de vacío y se espera el tiempo de síntesis, el cual se estipuló en 20 minutos.

Recolección de muestra

Una vez pasado el tiempo de reacción, el filtro con el producto depositado se pesa, para hacer la diferencia de masas y calcular la masa de producto obtenido, después se procede a desprender con ayuda de la espátula el producto del filtro, para depositarlo en un vial etiquetado, para su caracterización.

Como referencia de las concentraciones de tensoactivo a ocupar se ocupan relaciones [1:0.1], [1:0.05], [1:0.025], [1:0.01] y [1:0.001] considerando a 1=3x10⁻⁴ mol de producto esperado

Difracción de rayos X

Las mediciones de rayos X fueron realizadas en la facultad de química, laboratorio 203 de posgrado, edificio B con el Dr. David Díaz en el equipo Bruker D2 Phaser A26-X1-A2B0C4C, posteriormente los difractogramas fueron analizados a través del programa Match! y Crystal Diffract (programa del cual se tomaron las imágenes mostradas en este trabajo y se muestra la simulación CIF de la perovskita híbrida esperada).

Las tablas con la estimación del tamaño de partícula por medio de la ecuación de Scherrer mostradas en el ANEXO 2, fueron calculadas a través del programa Match! ocupando como patrón de referencia el difractograma esperado para la perovskita cúbica simulada.

Microscopía electrónica de barrido

Se realizan las medidas de MEB, en el Instituto de Materiales de la UNAM

Se realiza el cálculo de tamaño de partícula por medio de un programa de edición y visualización de imágenes (GIMP 2.0) para realizar las medidas de los lados observados de la cristalito, se consideran ambos lados de la perovskita, así es posible observar si los lados considerados en una sola dimensión sugieren una forma cuadrada.

Para el cálculo de tamaño de partícula por medio de microscopía electrónica de barrido se tomaron medidas de más de 100 partículas por muestra y se realizó el

cálculo del promedio de las medidas, y se calculó el promedio de las desviaciones absolutas como medida de la polidispersidad.

Fluorescencia

Las medidas realizadas tanto para el espectro UV-Vis-NIR y las medidas de fluorescencia en dispersión se realizaron en el laboratorio del Dr. David Díaz.

Para la fluorescencia en dispersión se ocupó un equipo FluoroMax-4, Horiba Scientific, modelo Fluoromax 4C.

Las muestras se excitaron a una longitud de onda de 350nm y 450 nm, aunque en el presente trabajo sólo se muestran los espectros obtenidos a una longitud de onda de 450 nm al ser más claros.

Para el tratamiento de datos obtenidos por fluorescencia se ocupó el programa Origin Pro 9.1 con el cual se obtuvieron los puntos máximos de cada espectro obtenido.

9.2 Anexo 2: Tablas de datos de picos usados para la estimación de tamaño del cristal usando la fórmula de Scherrer a partir de Difracción de rayos X

Productos con dodecilamina como agente plantilla

			ERO 00	[1:00]			
2θ				FWHM	FWHM	FWHM	Tamaño de
[grados]	d [A]	1/10	Cuentas	total	instr.	muestra	cristalito [nm]
15.210	5.8207	589.5	542	0.2558	0.0800	0.1758	47.62
21.401	4.1486	272.2	250	0.2558	0.0800	0.1758	48.04
30.336	2.9440	855.6	786	0.2558	0.0800	0.1758	48.91
31.934	2.8003	66.9	61	0.2558	0.0800	0.1758	49.1
33.992	2.6353	1000.0	919	0.2558	0.0800	0.1758	49.36
36.349	2.4696	30.7	28	0.2558	0.0800	0.1758	49.68
37.324	2.4073	322.9	297	0.2558	0.0800	0.1758	49.82
38.300	2.3481	44.1	41	0.2558	0.0800	0.1758	49.97
38.609	2.3301	43.9	40	0.2558	0.0800	0.1758	50.02
41.086	2.1952	46.8	43	0.2558	0.0800	0.1758	50.41
43.335	2.0863	555.8	511	0.2558	0.0800	0.1758	50.79
46.097	1.9675	533.8	490	0.2558	0.0800	0.1758	51.3
48.711	1.8679	102.4	94	0.2558	0.0800	0.1758	51.81
53.691	1.7058	152.4	140	0.2558	0.0800	0.1758	52.9
56.063	1.6391	161.1	148	0.2558	0.0800	0.1758	53.48
58.362	1.5799	130.9	120	0.2558	0.0800	0.1758	54.06
62.803	1.4784	81.1	75	0.2558	0.0800	0.1758	55.3
64.971	1.4342	258.9	238	0.2558	0.0800	0.1758	55.96
67.075	1.3943	110.8	102	0.2558	0.0800	0.1758	56.63
71.216	1.3230	151.4	139	0.2558	0.0800	0.1758	58.06
73.249	1.2912	188.8	173	0.2558	0.0800	0.1758	58.82
79.242	1.2079	62.6	58	0.2558	0.0800	0.1758	61.28

Relación planos/reflexiones									
2θ [grados] simulado	2θ [grados] ERO 00	Planos correspondientes	Tamaño						
14.86	15.210	001	47.62						
21.06	21.401	011	48.04						
29.96	30.336	002	48.91						

	ERO 01 [1:0.1]									
				E)A/IIIA	E) A / L I D / A	E14/115/4	Tamaño de			
00.5	J. F.A.1	1/10	6	FWHM	FWHM	FWHM	cristalito			
2θ [grados]	d [A]	1/10	Cuentas	total	instr.	muestra	[nm]			
15.227	5.8141	1000.0	1222	0.1218	0.0800	0.0418	200.27			
21.467	4.1361	389.7	476	0.1218	0.0800	0.0418	202.04			
26.274	3.3892	22.2	27	0.1218	0.0800	0.0418	203.84			
27.289	3.2654	48.3	59	0.1218	0.0800	0.0418	204.27			
30.408	2.9372	940.6	1150	0.1218	0.0800	0.0418	205.7			
34.062	2.6300	998.5	1221	0.1218	0.0800	0.0418	207.61			
37.396	2.4028	287.9	352	0.1218	0.0800	0.0418	209.56			
43.402	2.0832	526.3	643	0.1218	0.0800	0.0418	213.64			
46.161	1.9649	480.7	588	0.1218	0.0800	0.0418	215.77			
48.798	1.8647	77.1	94	0.1218	0.0800	0.0418	217.97			
53.769	1.7035	136.6	167	0.1218	0.0800	0.0418	222.56			
56.135	1.6371	139.9	171	0.1218	0.0800	0.0418	224.96			
58.441	1.5779	112.8	138	0.1218	0.0800	0.0418	227.44			
62.889	1.4766	60.3	74	0.1218	0.0800	0.0418	232.67			
65.041	1.4329	210.3	257	0.1218	0.0800	0.0418	235.41			
67.156	1.3928	81.9	100	0.1218	0.0800	0.0418	238.26			
71.297	1.3217	114.0	139	0.1218	0.0800	0.0418	244.28			
73.329	1.2900	145.0	177	0.1218	0.0800	0.0418	247.46			
75.310	1.2609	20.6	25	0.1218	0.0800	0.0418	250.73			
79.299	1.2072	59.5	73	0.1218	0.0800	0.0418	257.81			

Relación planos/reflexiones									
2θ [grados] simulado	2θ [grados] ERO 01	Planos correspondientes	Tamaño						
14.86	15.227	001	200.27						
21.06	21.467	011	202.04						
25.88	26.274	111	203.84						

	ERO 02 [1:0.05]									
2θ				FWHM	FWHM	FWHM	Tamaño de			
[grados]	d [A]	1/10	Cuentas	total	instr.	muestra	cristalito [nm]			
15.016	5.8954	1000.0	992	0.1218	0.0800	0.0418	200.22			
21.342	4.1600	262.3	260	0.1218	0.0800	0.0418	201.99			
26.199	3.3987	18.1	18	0.1218	0.0800	0.0418	203.8			
27.100	3.2878	13.9	14	0.1218	0.0800	0.0418	204.18			
30.228	2.9542	673.3	668	0.1218	0.0800	0.0418	205.61			
33.940	2.6392	693.1	688	0.1218	0.0800	0.0418	207.54			
37.278	2.4101	204.8	203	0.1218	0.0800	0.0418	209.49			
43.287	2.0885	378.0	375	0.1218	0.0800	0.0418	213.56			
46.039	1.9698	353.0	350	0.1218	0.0800	0.0418	215.68			
48.679	1.8690	54.0	54	0.1218	0.0800	0.0418	217.87			
53.649	1.7070	99.3	99	0.1218	0.0800	0.0418	222.44			
56.022	1.6402	100.0	99	0.1218	0.0800	0.0418	224.84			
58.324	1.5808	79.4	79	0.1218	0.0800	0.0418	227.31			
62.780	1.4789	50.3	50	0.1218	0.0800	0.0418	232.53			
64.926	1.4351	159.0	158	0.1218	0.0800	0.0418	235.26			
67.050	1.3947	65.0	64	0.1218	0.0800	0.0418	238.11			
71.186	1.3235	86.0	85	0.1218	0.0800	0.0418	244.11			
73.223	1.2916	106.1	105	0.1218	0.0800	0.0418	247.29			
75.227	1.2621	16.3	16	0.1218	0.0800	0.0418	250.59			
79.179	1.2087	44.1	44	0.1218	0.0800	0.0418	257.58			

	Relación planos/reflexiones								
2θ [grados] simulado 2θ [grados] ERO 02 Planos Tamaño correspondientes									
	14.86	15.016	001	200.22					
	21.06	21.342	011	201.99					
	25.88	26.199	111	203.8					

			ERO 03	[1:0.025]			
2θ				FWHM	FWHM	FWHM	Tamaño
[grados]	d [A]	1/10	Cuentas	total	instr.	muestra	cristalito [nm]
15.060	5.8782	1000.0	904	0.1624	0.0800	0.0824	101.57
21.323	4.1636	378.4	342	0.1624	0.0800	0.0824	102.46
23.848	3.7281	44.4	40	0.1624	0.0800	0.0824	102.92
26.140	3.4063	23.2	21	0.1624	0.0800	0.0824	103.37
27.274	3.2672	25.8	23	0.1624	0.0800	0.0824	103.62
30.266	2.9507	852.8	771	0.1624	0.0800	0.0824	104.31
33.932	2.6398	858.1	776	0.1624	0.0800	0.0824	105.28
37.270	2.4106	240.0	217	0.1624	0.0800	0.0824	106.27
39.974	2.2536	11.1	10	0.1624	0.0800	0.0824	107.15
43.274	2.0891	404.6	366	0.1624	0.0800	0.0824	108.33
46.043	1.9697	355.5	321	0.1624	0.0800	0.0824	109.41
48.673	1.8692	60.5	55	0.1624	0.0800	0.0824	110.52
53.644	1.7071	91.7	83	0.1624	0.0800	0.0824	112.84
56.018	1.6403	90.0	81	0.1624	0.0800	0.0824	114.06
58.332	1.5806	71.1	64	0.1624	0.0800	0.0824	115.32
62.777	1.4790	39.3	35	0.1624	0.0800	0.0824	117.96
64.944	1.4348	123.3	111	0.1624	0.0800	0.0824	119.36
67.049	1.3947	46.1	42	0.1624	0.0800	0.0824	120.79
71.198	1.3233	59.5	54	0.1624	0.0800	0.0824	123.84
73.235	1.2914	70.4	64	0.1624	0.0800	0.0824	125.46
79.212	1.2083	33.8	31	0.1624	0.0800	0.0824	130.7

Relación planos/reflexiones								
2θ [grados] simulado	2θ [grados] ERO 03	Planos correspondientes	Tamaño					
14.86	15.060	001	101.57					
21.06	21.323	011	102.46					
25.88	26.140	111	103,37					

			ERO 04	[1:0.01]			
2θ				FWHM	FWHM	FWHM	Tamaño de
[grados]	d [A]	1/10	Cuentas	total	instr.	muestra	cristalito [nm]
15.151	5.8429	1000.0	376	0.1015	0.0800	0.0215	389.32
21.543	4.1217	285.8	107	0.1015	0.0800	0.0215	392.85
24.052	3.6971	119.9	45	0.1015	0.0800	0.0215	394.58
29.344	3.0412	96.6	36	0.1015	0.0800	0.0215	398.93
30.492	2.9293	653.7	245	0.1015	0.0800	0.0215	400
34.156	2.6230	710.2	267	0.1015	0.0800	0.0215	403.73
37.481	2.3976	184.7	69	0.1015	0.0800	0.0215	407.53
41.193	2.1897	116.2	44	0.1015	0.0800	0.0215	412.28
43.478	2.0798	321.1	121	0.1015	0.0800	0.0215	415.47
46.235	1.9619	288.0	108	0.1015	0.0800	0.0215	419.62
48.829	1.8636	61.4	23	0.1015	0.0800	0.0215	423.82
53.840	1.7014	88.9	33	0.1015	0.0800	0.0215	432.83
55.448	1.6558	36.5	14	0.1015	0.0800	0.0215	435.97
56.228	1.6347	94.9	36	0.1015	0.0800	0.0215	437.55
58.508	1.5763	69.4	26	0.1015	0.0800	0.0215	442.34
63.054	1.4731	46.0	17	0.1015	0.0800	0.0215	452.75
65.117	1.4314	108.0	41	0.1015	0.0800	0.0215	457.88
67.187	1.3922	40.3	15	0.1015	0.0800	0.0215	463.3
71.371	1.3205	53.6	20	0.1015	0.0800	0.0215	475.14
73.400	1.2889	68.7	26	0.1015	0.0800	0.0215	481.34
79.383	1.2061	23.1	9	0.1015	0.0800	0.0215	501.53

Relación planos/reflexiones									
2θ [grados] simulado									
14.86	15.151	001	389.32						
21.06	21.543	011	392.85						
29.96	30.492	002	400						

	ERO 05 [1:0.001]										
				FWHM	FWHM	FWHM	Tamaño de				
2θ [grados]	d [A]	1/10	Counts	total	instr.	muestra	cristalito [nm]				
15.077	5.8716	1000.0	1216	0.2436	0.0800	0.1636	51.16				
21.321	4.1641	411.2	500	0.2436	0.0800	0.1636	51.61				
30.261	2.9511	846.0	1028	0.2436	0.0800	0.1636	52.54				
33.918	2.6409	870.8	1059	0.2436	0.0800	0.1636	53.02				
37.255	2.4116	250.6	305	0.2436	0.0800	0.1636	53.52				
43.248	2.0903	414.6	504	0.2436	0.0800	0.1636	54.56				
46.015	1.9708	380.2	462	0.2436	0.0800	0.1636	55.1				
48.594	1.8721	62.7	76	0.2436	0.0800	0.1636	55.65				
53.592	1.7087	99.7	121	0.2436	0.0800	0.1636	56.82				
55.966	1.6417	102.3	124	0.2436	0.0800	0.1636	57.43				
58.258	1.5825	71.6	87	0.2436	0.0800	0.1636	58.06				

Relación planos/reflexiones							
2θ [grados] simulado	2θ [grados] ERO 05	Planos correspondientes	Tamaño				
14.86	15.077	001	51.16				
21.06	21.321	011	51.61				
29.96	30.261	002	52.54				

Productos con Octilamina como agente plantilla

	ERO 06 [1:0.1]						
2θ [grados]	d [A]	1/10	Cuentas	FWHM total	FWHM instr.	FWHM muestra	Tamaño de cristalito [nm]
15.086	5.8682	1000.0	957	0.2574	0.0800	0.1774	47.17
21.387	4.1514	364.9	322	0.2374	0.0800	0.1574	53.64
30.319	2.9456	864.1	722	0.2247	0.0800	0.1447	59.39
33.978	2.6363	854.0	710	0.2238	0.0800	0.1438	60.32
37.312	2.4080	242.5	198	0.2201	0.0800	0.1401	62.51
43.304	2.0877	406.5	327	0.2166	0.0800	0.1366	65.36
46.069	1.9686	361.6	288	0.2141	0.0800	0.1341	67.22
48.684	1.8688	57.1	56	0.2650	0.0800	0.1850	49.23
51.656	1.7681	43.4	13	0.0778	0.0800		
53.666	1.7065	86.3	78	0.2438	0.0800	0.1638	56.77
56.043	1.6396	92.5	76	0.2223	0.0800	0.1423	66.03
58.340	1.5804	71.9	61	0.2300	0.0800	0.1500	63.35
62.776	1.4790	41.1	55	0.3599	0.0800	0.2799	34.73
64.954	1.4346	128.1	116	0.2428	0.0800	0.1628	60.41
67.033	1.3950	54.3	56	0.2763	0.0800	0.1963	50.71
71.200	1.3233	413.0	59	0.2437	0.0800	0.1637	62.35
73.217	1.2917	483.7	68	0.2388	0.0800	0.1588	65.08
79.161	1.2090	50.3	23	0.1218	0.0800	0.0418	257.55

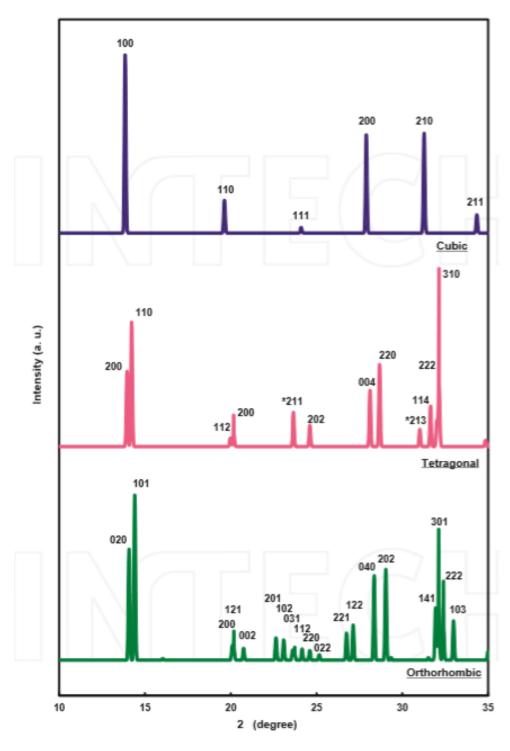
Relación planos/reflexiones							
2θ [grados] simulado	2θ [grados] ERO 06	Planos correspondientes	Tamaño				
14.86	15.086	001	47.17				
21.06	21.387	011	53.64				
29.96	30.319	002	59.39				

	ERO 07 [1:0.05]							
2θ				FWHM	FWHM	FWHM	Tamaño de	
[grados]	d [A]	1/10	Cuentas	total	instr.	muestra	cristalito [nm]	
14.997	5.9028	1000.0	933	0.1827	0.0800	0.1027	81.49	
18.678	4.7468	39.4	37	0.1827	0.0800	0.1027	81.88	
21.246	4.1786	324.3	303	0.1827	0.0800	0.1027	82.2	
30.191	2.9578	796.3	743	0.1827	0.0800	0.1027	83.68	
33.860	2.6452	647.4	604	0.1827	0.0800	0.1027	84.45	
37.192	2.4156	164.6	154	0.1827	0.0800	0.1027	85.24	
43.208	2.0921	277.2	259	0.1827	0.0800	0.1027	86.9	
45.967	1.9728	240.5	224	0.1827	0.0800	0.1027	87.76	
48.605	1.8717	43.9	41	0.1827	0.0800	0.1027	88.65	
53.590	1.7087	59.8	56	0.1827	0.0800	0.1027	90.51	
55.959	1.6419	61.0	57	0.1827	0.0800	0.1027	91.49	
58.239	1.5829	44.3	41	0.1827	0.0800	0.1027	92.48	
62.677	1.4811	24.4	23	0.1827	0.0800	0.1027	94.59	
62.933	1.4757	20.9	20	0.1827	0.0800	0.1027	94.72	
64.864	1.4363	73.6	69	0.1827	0.0800	0.1027	95.72	
66.974	1.3961	29.3	27	0.1827	0.0800	0.1027	96.87	
71.130	1.3244	40.4	38	0.1827	0.0800	0.1027	99.32	
73.148	1.2928	44.8	42	0.1827	0.0800	0.1027	100.6	
79.104	1.2097	19.4	18	0.1827	0.0800	0.1027	104.78	

Relación planos/reflexiones							
2θ [grados] simulado	2θ [grados] ERO 07	Planos correspondientes	Tamaño				
14.86	14.997	001	81.49				
21.06	21.246	011	82.2				
29.96	30.191	002	83.68				

	ERO 08 [1:0.025]							
2θ				FWHM	FWHM	FWHM	Tamaño de	
[grados]	d [A]	1/10	Cuentas	total	instr.	muestra	cristalito [nm]	
9.494	9.3162	103.5	63	0.1624	0.0800	0.0824	101.04	
15.053	5.8856	1000.0	614	0.1624	0.0800	0.0824	101.57	
21.320	4.1677	350.9	215	0.1624	0.0800	0.0824	102.46	
30.286	2.9512	791.6	486	0.1624	0.0800	0.0824	104.32	
31.848	2.8099	110.0	68	0.1624	0.0800	0.0824	104.71	
33.949	2.6407	852.9	523	0.1624	0.0800	0.0824	105.28	
37.279	2.4121	255.5	157	0.1624	0.0800	0.0824	106.27	
43.293	2.0899	417.1	256	0.1624	0.0800	0.0824	108.34	
46.044	1.9713	380.8	234	0.1624	0.0800	0.0824	109.41	
48.646	1.8718	70.9	43	0.1624	0.0800	0.0824	110.5	
53.623	1.7092	110.3	68	0.1624	0.0800	0.0824	112.83	
55.994	1.6423	103.1	63	0.1624	0.0800	0.0824	114.04	
58.294	1.5829	76.2	47	0.1624	0.0800	0.0824	115.3	
62.750	1.4808	52.5	32	0.1624	0.0800	0.0824	117.94	
64.896	1.4369	155.9	96	0.1624	0.0800	0.0824	119.33	
66.998	1.3968	64.6	40	0.1624	0.0800	0.0824	120.75	
71.152	1.3251	88.9	55	0.1624	0.0800	0.0824	123.8	
73.195	1.2931	106.3	65	0.1624	0.0800	0.0824	125.42	
79.155	1.2100	45.9	28	0.1624	0.0800	0.0824	130.64	

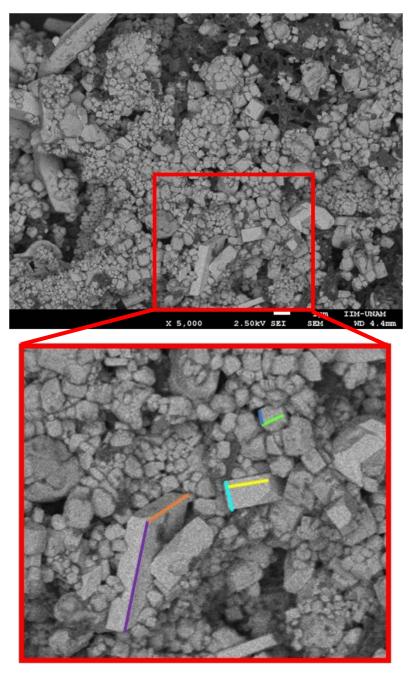
Relación planos/reflexiones							
2θ [grados]	20 [grados] EDO 00	Planos	Tamaño				
simulado	2θ [grados] ERO 08	correspondientes					
14.86	15.053	001	101.57				
21.06	21.320	011	102.46				
29.96	30.286	002	104.32				


	ERO 09 [1:0.01]							
2θ [grados]	d [A]	1/10	Cuentas	FWHM total	FWHM instr.	FWHM muestra	Tamaño de cristalito [nm]	
15.205	5.8222	1000.0	968	0.2030	0.0800	0.1230	68.06	
21.448	4.1397	353.3	342	0.2030	0.0800	0.1230	68.66	
30.358	2.9420	691.9	670	0.2030	0.0800	0.1230	69.9	
34.003	2.6344	735.2	712	0.2030	0.0800	0.1230	70.54	
37.336	2.4065	210.3	204	0.2030	0.0800	0.1230	71.2	
43.342	2.0860	358.0	347	0.2030	0.0800	0.1230	72.59	
46.092	1.9677	324.7	314	0.2030	0.0800	0.1230	73.31	
48.733	1.8671	54.7	53	0.2030	0.0800	0.1230	74.05	
53.702	1.7055	89.2	86	0.2030	0.0800	0.1230	75.61	
56.058	1.6392	88.5	86	0.2030	0.0800	0.1230	76.42	
58.366	1.5798	79.1	77	0.2030	0.0800	0.1230	77.27	
62.787	1.4788	39.6	38	0.2030	0.0800	0.1230	79.03	
64.961	1.4344	125.5	122	0.2030	0.0800	0.1230	79.97	
67.071	1.3943	49.2	48	0.2030	0.0800	0.1230	80.93	
71.210	1.3231	63.2	61	0.2030	0.0800	0.1230	82.97	
73.247	1.2912	81.6	79	0.2030	0.0800	0.1230	84.05	
79.203	1.2084	32.4	31	0.2030	0.0800	0.1230	87.55	

Relación planos/reflexiones							
2θ [grados] simulado	2θ [grados] ERO 09	Planos correspondientes	Tamaño				
14.86	15.205	001	68.06				
21.06	21.448	011	68.66				
29.96	30.358	002	69.9				

ERO 10 [1:0.001]							
2θ				FWHM	FWHM	FWHM	Tamaño de
[grados]	d [A]	1/10	Cuentas	total	instr.	muestra	cristalito [nm]
15.221	5.8209	882.7	930	0.2639	0.0800	0.1839	45.52
18.855	4.7067	73.5	77	0.2639	0.0800	0.1839	45.74
21.464	4.1401	365.0	385	0.2639	0.0800	0.1839	45.92
21.900	4.0586	147.2	155	0.2639	0.0800	0.1839	45.96
22.327	3.9819	92.0	97	0.2639	0.0800	0.1839	45.99
23.972	3.7122	256.8	271	0.2639	0.0800	0.1839	46.12
29.064	3.0724	150.8	159	0.2639	0.0800	0.1839	46.61
29.302	3.0480	176.2	186	0.2639	0.0800	0.1839	46.64
30.400	2.9404	908.6	958	0.2639	0.0800	0.1839	46.75
30.844	2.8991	346.2	365	0.2639	0.0800	0.1839	46.8
34.066	2.6319	1000.0	1054	0.2639	0.0800	0.1839	47.19
36.197	2.4817	50.8	53	0.2639	0.0800	0.1839	47.47
37.386	2.4054	255.6	269	0.2639	0.0800	0.1839	47.63
37.930	2.3722	56.5	60	0.2639	0.0800	0.1839	47.71
38.261	2.3524	192.1	202	0.2639	0.0800	0.1839	47.76
38.676	2.3281	138.8	146	0.2639	0.0800	0.1839	47.82
39.941	2.2572	170.3	180	0.2639	0.0800	0.1839	48.01
41.089	2.1968	236.7	249	0.2639	0.0800	0.1839	48.18
43.397	2.0852	444.0	468	0.2639	0.0800	0.1839	48.56
44.372	2.0416	71.8	76	0.2639	0.0800	0.1839	48.73
46.148	1.9671	417.8	440	0.2639	0.0800	0.1839	49.04
48.765	1.8675	108.0	114	0.2639	0.0800	0.1839	49.54
51.848	1.7634	45.9	48	0.2639	0.0800	0.1839	50.17
53.168	1.7227	56.5	60	0.2639	0.0800	0.1839	50.45
53.750	1.7054	107.7	114	0.2639	0.0800	0.1839	50.58
54.835	1.6742	42.4	45	0.2639	0.0800	0.1839	50.83
55.376	1.6591	92.3	97	0.2639	0.0800	0.1839	50.95
56.112	1.6391	128.2	135	0.2639	0.0800	0.1839	51.13
58.432	1.5795	76.3	80	0.2639	0.0800	0.1839	51.7
61.713	1.5031	72.5	76	0.2639	0.0800	0.1839	52.56
63.000	1.4755	111.7	118	0.2639	0.0800	0.1839	52.92
65.004	1.4348	169.6	179	0.2639	0.0800	0.1839	53.5
67.137	1.3943	68.6	72	0.2639	0.0800	0.1839	54.15
71.282	1.3230	90.2	95	0.2639	0.0800	0.1839	55.52
73.306	1.2914	117.2	124	0.2639	0.0800	0.1839	56.24
75.960	1.2528	45.0	47	0.2639	0.0800	0.1839	57.24
79.264	1.2086	26.0	27	0.2639	0.0800	0.1839	58.58

Relación planos/reflexiones							
2θ [grados]	20 [grades] EBO 10	Planos	Tamaño				
simulado	2θ [grados] ERO 10	correspondientes					
14.86	15.221	001	45.52				
21.06	21.464	011	45.92				
29.96	30.400	002	46.75				


Figura A1. Patrón de difracción calculado para CH₃NH₃Pbl₃ para las fases cúbica, tetragonal y ortorrómbica¹³

Se pueden observar las señales producidas por las diferentes morfologías de las perovskitas, debido a que la perovskita mostrada contiene yodo, las señales se muestran desplazadas.

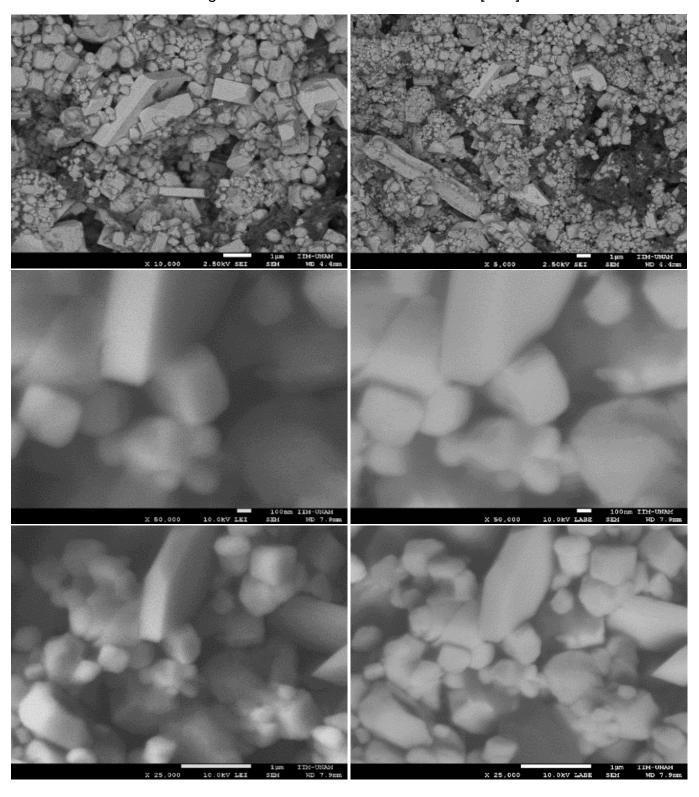
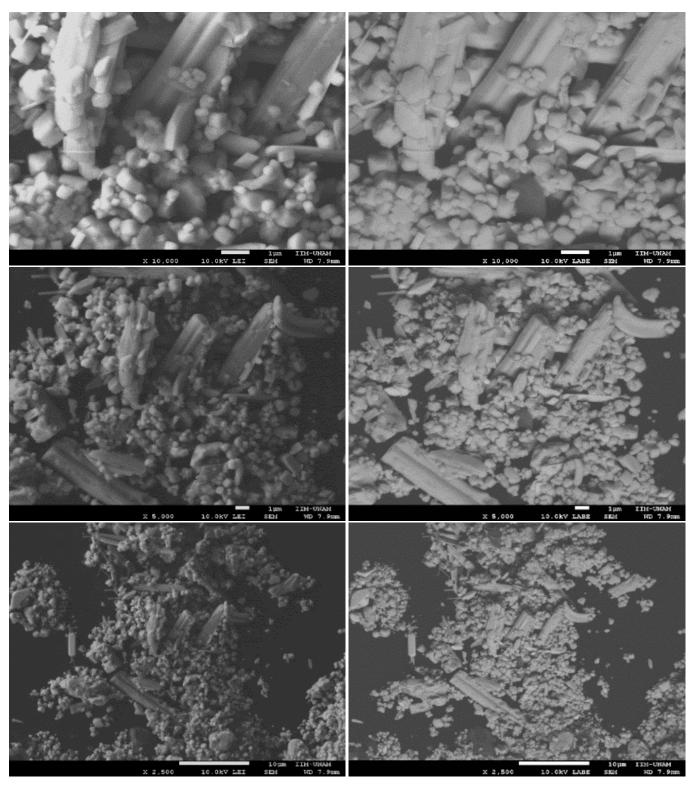
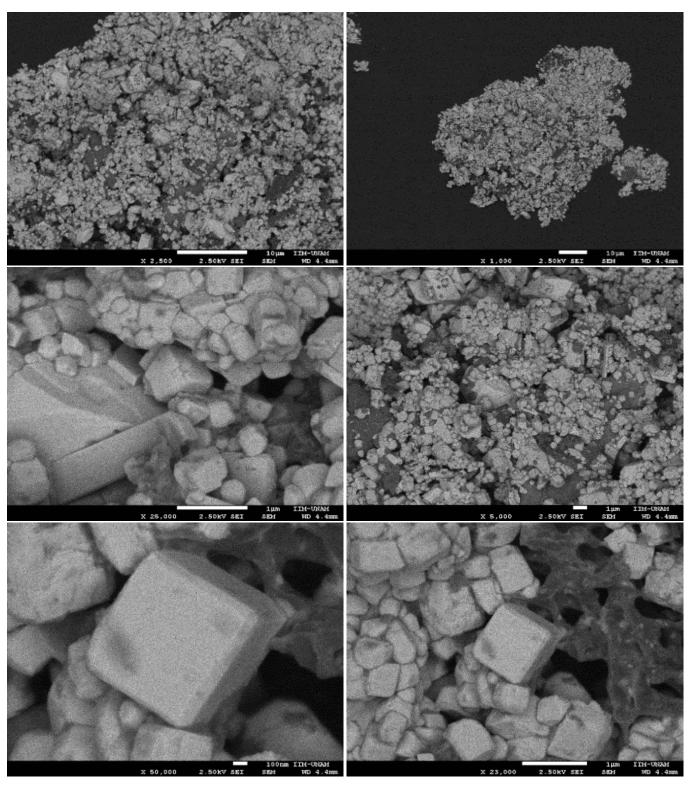

9.3 Anexo 3: Imágenes de Microscopía electrónica de barrido y ejemplo de la toma de medida de partícula. Tablas de tamaños obtenidos en nm.

Figura A2. Imágenes de MEB de reacción control ERO 00 [1:00] 1μm



61 Px 39.8 Px 166.2 Px 65 Px 33.2 Px 21.4 Px 54 Px (1μm)
 1.129 μm 0.737 μm 3.077 μm 1.203 μm 0.614 μm 0.396 μm
 1129 nm 737 nm 3077 nm 1203 nm 614 nm 396 nm


Imágenes de MEB de la muestra ERO 00 [1:00]

Imágenes de MEB de la muestra ERO 00 [1:00]

Imágenes de MEB de la muestra ERO 00 [1:00]

Imágenes de MEB de la muestra ERO 00 [1:00]

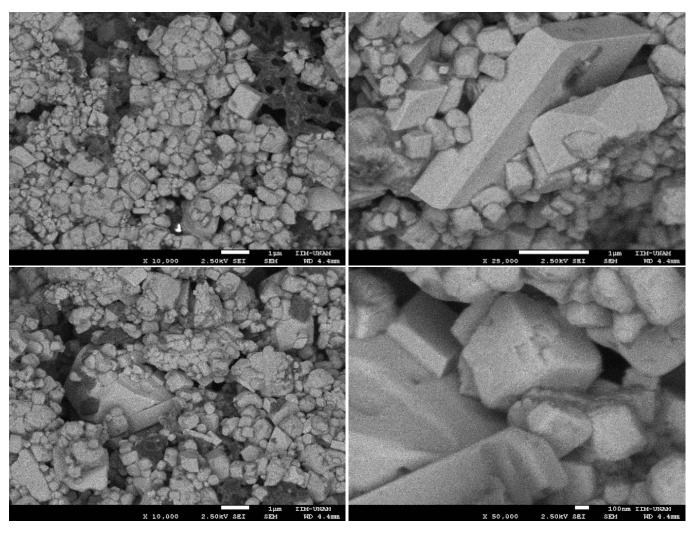
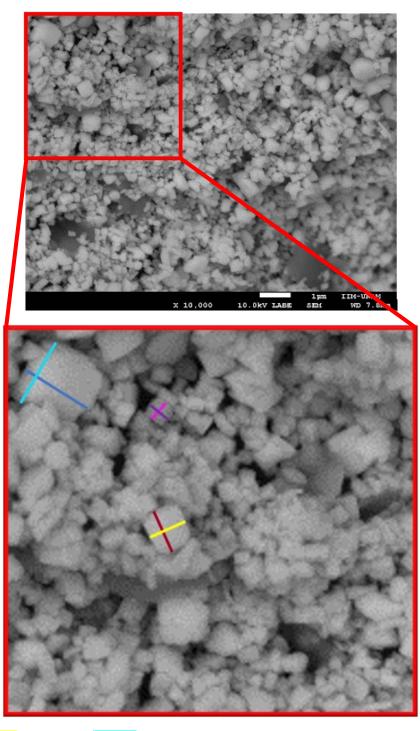



Tabla de medidas de las imágenes de MEB de la muestra ERO 00 [1:00]

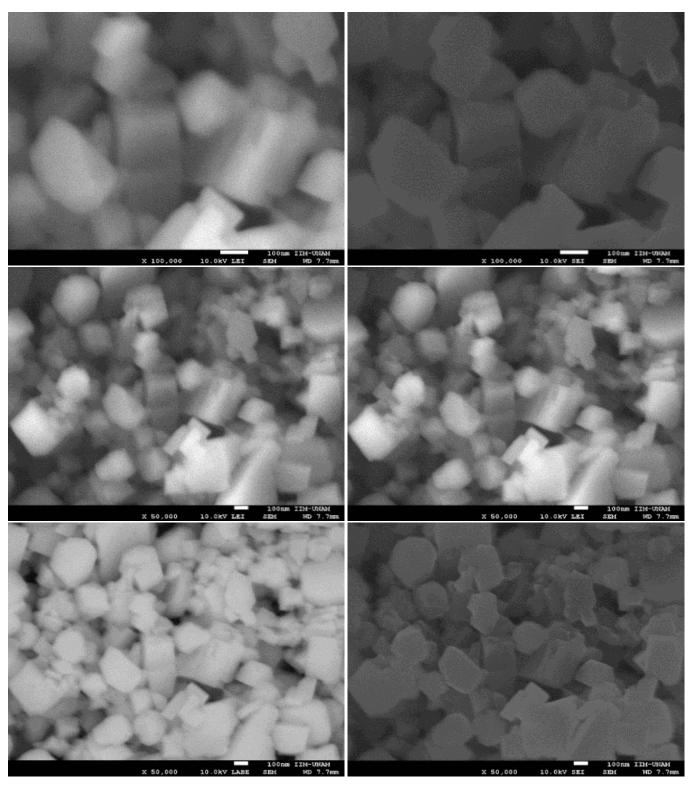
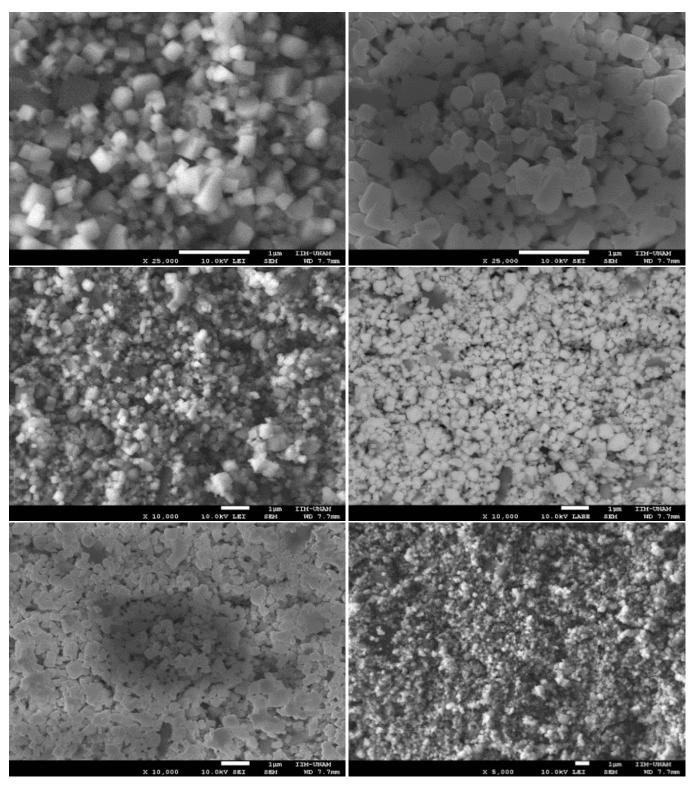
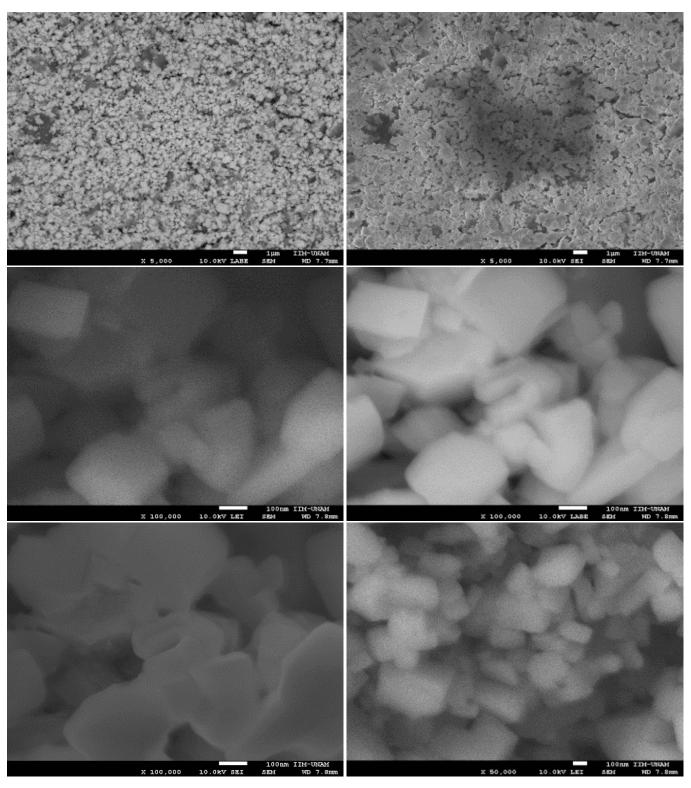
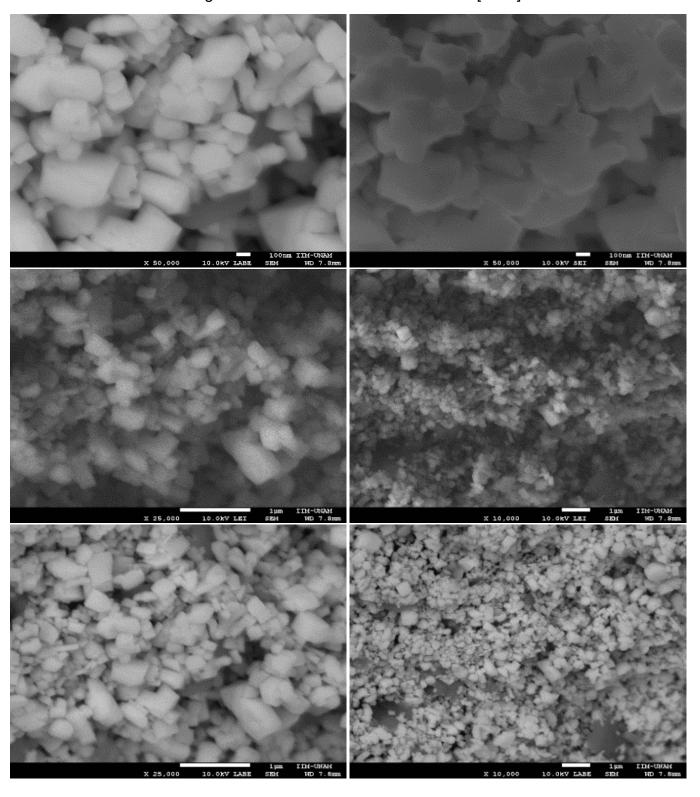

Muestra	Nm	nm	Muestra	nm	nm	Muestra	nm	nm
	334.07407	363.7037		337.38318	235.51402		709.25926	392.59259
	1504.4776	2410.4478		472.8972	629.90654		405.55556	327.77778
	2110.4478	1701.4925		365.42056	498.13084		694.44444	761.11111
	1382.0896	1698.5075		552.33645	615.88785		879.62963	785.18519
	986.56716	1001.4925		343.92523	498.13084		350	292.59259
	1395.5224	1491.0448		1052.3364	707.47664		316.66667	351.85185
	1182.0896	1341.791		288.78505	326.16822		225.92593	207.40741
	271.96262	251.40187		623.36449	297.19626		485.18519	492.59259
	710.28037	600		1095.3271	815.88785		535.18519	524.07407
	1212.1495	723.36449		465.42056	423.36449		440.74074	514.81481
	524.29907	401.86916		542.05607	556.07477		422.22222	500
	412.14953	515.88785		634.57944	498.13084		494.44444	557.40741
	414.95327	411.21495		590.65421	663.5514		1200	755.55556
	243.92523	146.72897		929.62963	968.51852		585.18519	525.92593
	441.1215	622.42991		346.2963	374.07407		474.07407	485.18519
	394.39252	381.30841		644.44444	557.40741		753.7037	505.55556
	188.78505	258.8785		496.2963	644.44444		681.30841	508.41121
	422.42991	285.04673		705.55556	796.2963		504.6729	344.85981
	2451.8519	1592.5926		394.44444	340.74074		440.18692	417.75701
	722.22222	703.7037		274.07407	292.59259		419.62617	430.84112
	818.51852	1051.8519		264.81481	331.48148		660.74766	714.95327
ERO 00	1688.8889	1787.037	ERO 00	359.25926	474.07407	ERO 00	876.63551	711.21495
[1:00]	370.37037	351.85185	[1:00]	570.37037	448.14815	[1:00]	451.40187	353.27103
[1.00]	833.33333	1337.037	[2.00]	894.44444	696.2963		632.71028	442.99065
	433.33333	907.40741		485.84906	558.49057		526.16822	527.1028
	744.44444	631.48148		632.07547	358.49057		405.60748	370.09346
	529.62963	557.40741		237.73585	198.11321		401.86916	366.35514
	468.51852	431.48148		233.96226	267.92453		404.6729	469.15888
	479.62963	464.81481		188.67925	207.54717		254.20561	284.11215
	2526.3158	1616.5414		349.0566	283.01887		528.97196	456.07477
	1684.2105	1093.985		467.92453	408.49057		190.65421	196.26168
	2154.1353	1319.5489		551.88679	435.84906		448.14815	592.59259
		1195.4887			177.35849		500	446.2963
	1635.3383	2875.9398		226.41509	277.35849		868.51852	864.81481
	1278.1955	1240.6015		173.58491	165.09434		303.7037	381.48148
	907.77778 982.96296 282.96296 275.37037			298.14815	283.33333		231.48148	231.48148
				240.74074	216.66667		612.96296	324.07407
	762.44898	903.26531		183.33333	209.25926		446.2963	444.44444
	424.89796	536.73469		277.77778	300		501.85185	529.62963
	533.06122	571.02041		485.18519	592.59259		316.66667	392.59259
	628.57143	474.69388		314.81481	333.33333		348.14815	374.07407
	557.14286	662.04082		825.92593	633.33333		575.92593	411.11111
	359.18367	385.71429		331.48148	431.48148		211.11111	301.85185
	302.44898	261.22449		1740.7407	0	Durana II	514.81481	327.77778
	365.71429	318.77551		746.2963	766.66667	Promedio:	629.35892	590.49546

Figura A3. Imágenes de MEB de ERO 01 [1:0.1] $1\mu m$



57.2Px 48.3Px 95.4Px 90.2Px 30.8Px 30.8Px 107(1μm)
0.53 μm 0.45 μm 0.89 μm 0.84 μm 0.29 μm 0.29 μm
534.58 nm 451.40 nm 891.59 nm 842.99 nm 287.85 nm 287.85 nm

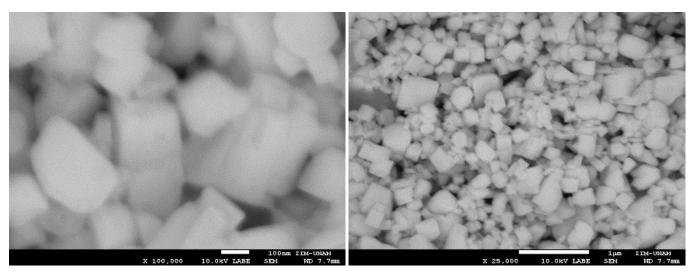
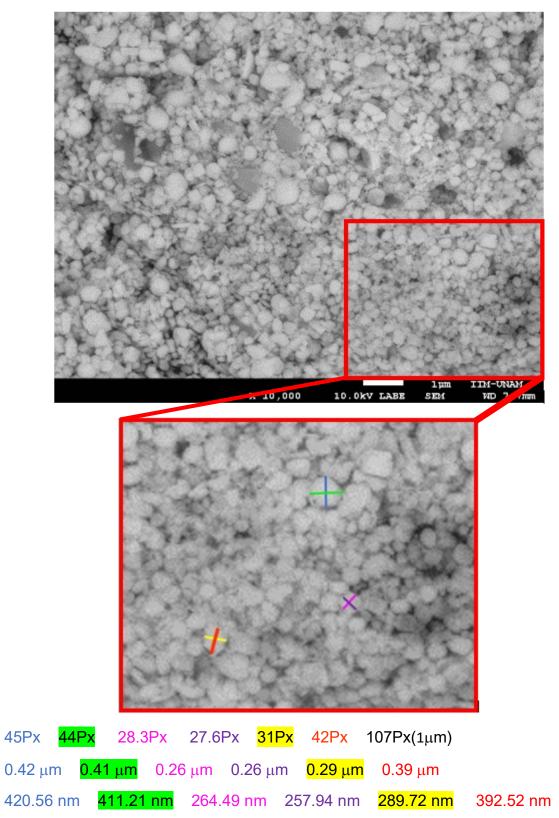

Imágenes de MEB de la muestra ERO 01 [1:0.1]

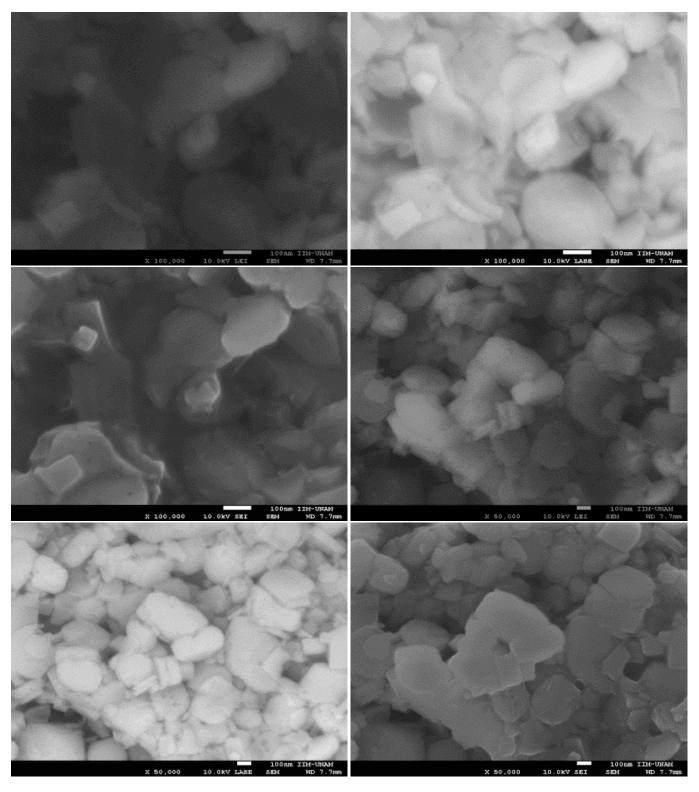

Imágenes de MEB de la muestra ERO 01 [1:0.1]

Imágenes de MEB de la muestra ERO 01 [1:0.1]

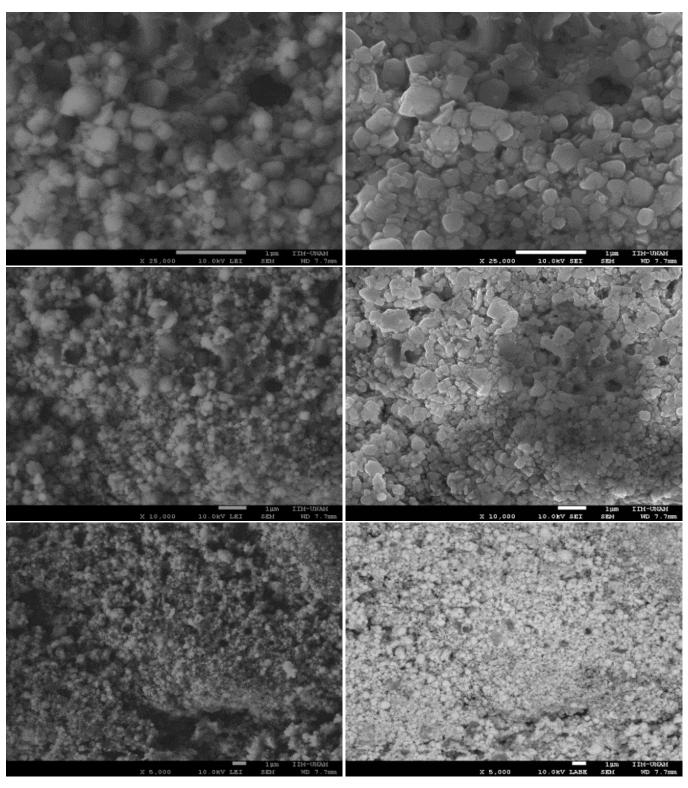
Imágenes de MEB de la muestra ERO 01 [1:0.1]

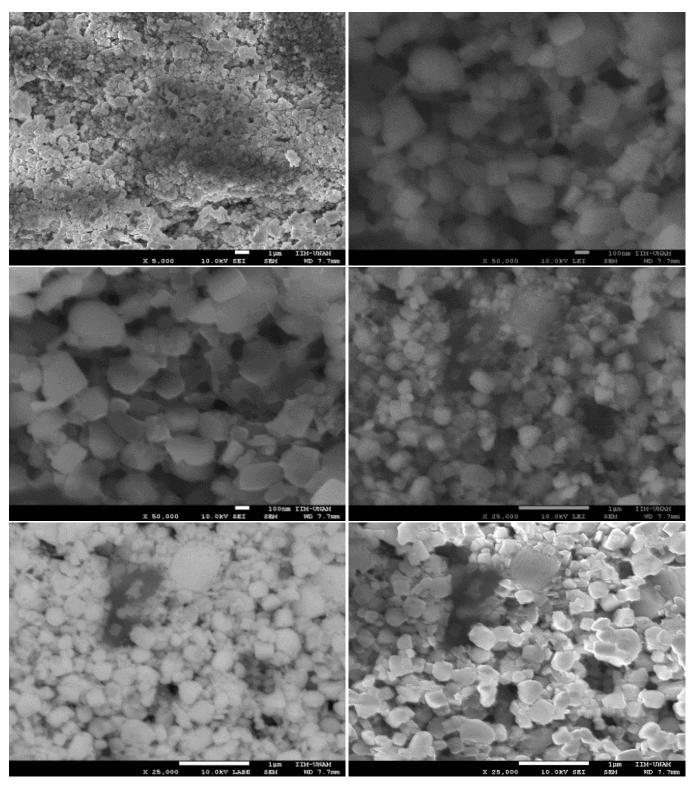
Imágenes de MEB de la muestra ERO 01 [1:0.1]


Tabla de medidas de las imágenes de MEB de la muestra ERO 01 [1:0.1]

Muestra	Nm	nm	Muestra	nm	nm	Muestra	Nm	nm
	216.82243 165.42	165.42056		420.97378	271.53558		298.14815	340.74074
	177.47664	170.28037		188.76404	200.37453		377.77778	301.85185
	243.17757	338.50467		166.29213	109.3633		575.92593	631.48148
	209.43925	213.73832		238.20225	143.44569		307.40741	225.92593
	178.13084	134.11215		145.69288	153.55805		385.18519	344.44444
	102.05607	108.8785		274.90637	228.08989		529.62963	320.37037
	304.44444	263.14815		222.84644	241.1985		298.14815	388.88889
	218.51852	163.14815		203.74532	188.38951		277.77778	277.77778
	226.11111	252.77778		146.44195	148.68914		216.66667	225.92593
	231.85185	146.11111		185.01873	177.52809		307.40741	385.18519
	172.22222	183.33333		264.81481	264.81481		262.92135	168.16479
	195.92593	170.74074		344.44444	394.44444		302.24719	272.65918
	109.44444	126.85185		307.40741	248.14815		440.07491	322.09738
	178.88889	197.40741		370.37037	329.62963		354.68165	238.20225
	265.37037	215.55556		364.81481	340.74074		265.16854	246.44195
	245	221.11111	ERO 01	303.7037	301.85185		230.71161	234.45693
ERO 01 [1:0.1]	162.22222	155.37037		274.07407	207.40741	ERO 01 [1:0.1]	214.60674	220.22472
[1.0.1]	308.14815	202.03704	[1:0.1]	290.74074	261.11111	[1.0.1]	214.98127	146.44195
	111.48148	160.37037		259.25926	296.2963		138.95131	149.81273
	213.7037	260.37037		331.48148	348.14815		132.9588	249.81273
	110.92593	131.11111		275.92593	275.92593		116.10487	104.86891
	181.48148	153.88889		303.7037	366.66667		142.3221	164.79401
	320.55556	218.51852		270.37037	192.59259		191.7603	97.378277
	159.25926	150.92593		420.37037	394.44444		461.42322	340.07491
	309.81481	344.81481		400	488.88889		164.41948	115.73034
	254.68165	280.89888		298.14815	405.55556		138.95131	123.59551
	159.17603	172.28464		261.11111	211.11111		498.8764	211.98502
	200	211.23596		351.85185	240.74074		137.45318	214.60674
	265.16854	299.62547		200	257.40741		146.44195	279.02622
	191.38577	281.64794		314.81481	314.81481		124.34457	151.31086
	202.99625	213.48315		594.44444	296.2963		115.73034	119.10112
	216.85393	217.22846		340.74074	359.25926		127.34082	206.74157
	204.86891	213.10861		657.40741	500		109.3633	122.47191
						Promedio:	259.17205	242.82527


Figura A4. Imágenes de MEB de ERO 02 [1:0.05] 1μm


Imágenes de MEB de la muestra ERO 02 [1:0.05]

Imágenes de MEB de la muestra ERO 02 [1:0.05]

Imágenes de MEB de la muestra ERO 02 [1:0.05]

Imágenes de MEB de la muestra ERO 02 [1:0.05]

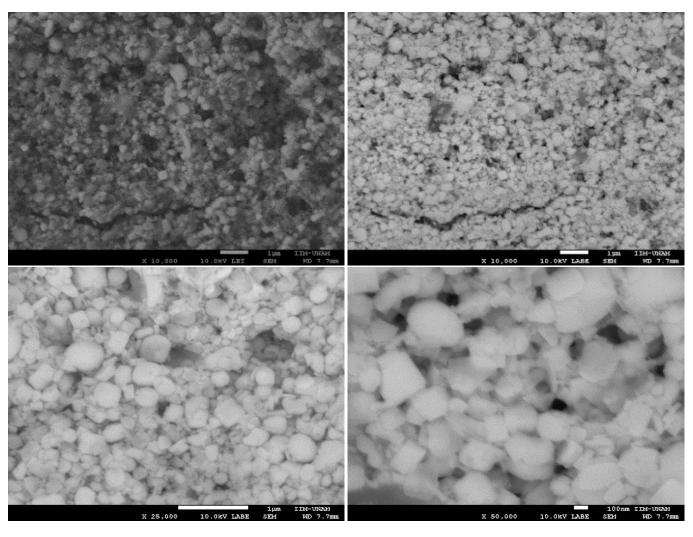
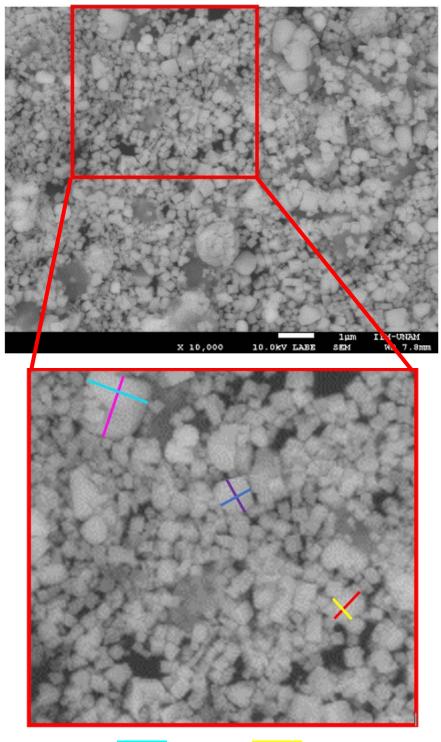



Tabla de medidas de las imágenes de MEB de la muestra ERO 02 [1:0.05]

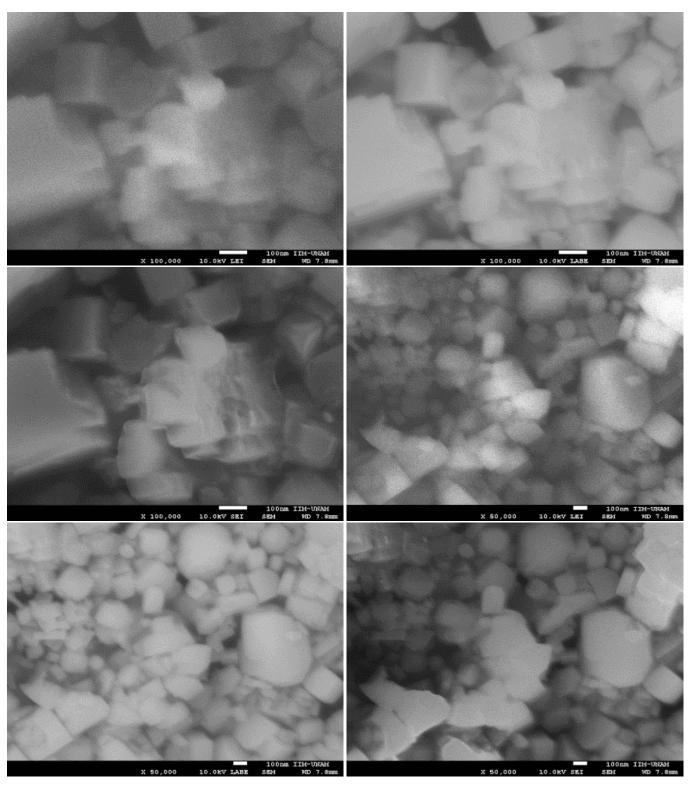
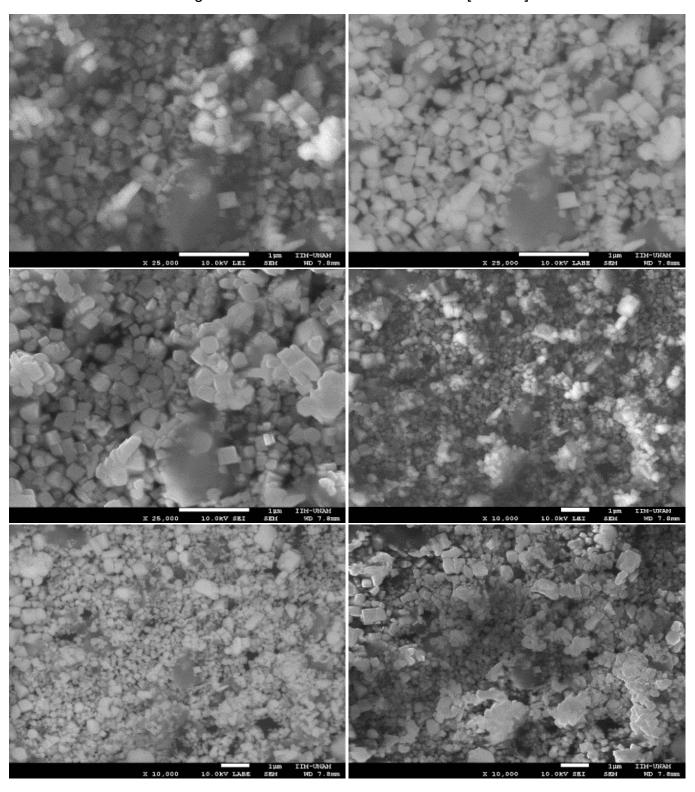
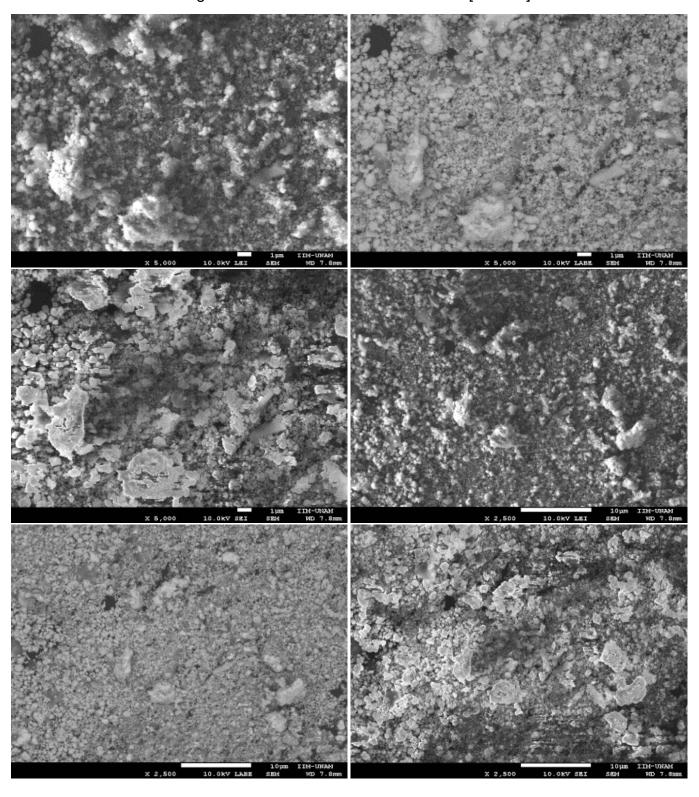
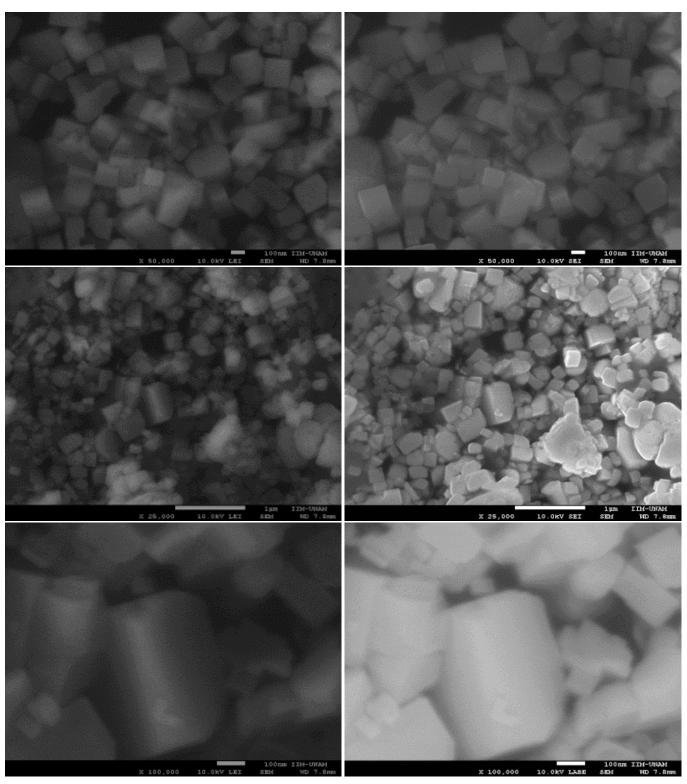

Muestra	nm	nm	Muestra	nm	nm	Muestra	nm	nm
	115.18519	161.2963		152.03704	198.88889		517.75701	351.40187
	148.7037	120		238.33333	162.96296		299.06542	375.70093
	226.66667	261.66667		169.25926	128.33333		275.70093	277.57009
	231.48148	327.96296		94.259259	122.59259		300.93458	218.69159
	255.92593	213.7037		491.85185	384.62963		365.42056	318.69159
	200.74074	154.07407		302.62172	274.1573		356.07477	277.57009
	367.77778	179.07407		370.78652	285.39326		257.00935	243.92523
	117.59259	159.25926		182.77154	98.876404		357.94393	293.45794
	81.666667	83.703704		247.56554	273.78277		275.70093	280.37383
	288.14815	167.77778		157.30337	94.382022		271.96262	261.68224
	275.74074	302.77778		376.77903	249.06367		267.28972	272.8972
	118.14815	142.40741		139.32584	103.74532		226.16822	271.02804
	274.06015	252.25564		234.45693	207.86517		317.75701	280.37383
	397.36842	416.16541		152.80899	157.6779		308.41121	308.41121
	391.35338	271.80451		172.65918	210.48689		295.3271	328.97196
	180.45113	112.78195		593.45794	537.38318		310.28037	290.65421
	248.1203	242.10526		281.30841	399.06542		186.91589	163.5514
	151.12782	101.12782		244.85981	207.47664		314.01869	259.81308
	266.16541	239.09774		272.8972	302.80374		266.35514	258.8785
	211.2782	195.48872		204.6729	239.25234	ERO 02	238.31776	315.88785
ERO 02	364.28571	356.39098	ERO 02	185.04673	212.14953	[1:0.05]	313.08411	342.05607
[1:0.05]	248.49624	207.5188	[1:0.05]	186.91589	179.43925		291.58879	351.40187
	203.00752	210.52632		239.25234	210.28037		238.31776	277.57009
	160.52632	106.39098		171.96262	158.8785		319.62617	242.05607
	247.36842	189.09774		286.91589	314.01869		317.75701	299.06542
	261.2782	300.75188		151.40187	171.96262		178.50467	166.35514
	222.93233	204.88722		255.14019	287.85047		322.42991	282.24299
	121.80451	203.38346		187.85047	171.96262		311.21495	319.62617
	261.65414	185.71429		241.1215	355.14019		233.64486	282.24299
	134.58647	159.77444		258.8785	251.40187		347.66355	277.57009
	145.11278	102.25564		171.96262	171.96262		342.99065	242.99065
	176.31579	221.42857		242.99065	255.14019		267.28972	322.42991
	135.33835	191.72932		230.84112	233.64486		228.03738	244.85981
	202.63158	155.6391		168.2243	155.14019		268.2243	293.45794
	321.11111	357.03704		214.95327	252.33645		272.8972	326.16822
	225.18519	231.11111		158.8785	180.37383		244.85981	248.59813
	237.22222	157.22222		228.97196	246.72897		368.2243	292.52336
	189.62963	157.22222		322.42991	285.98131		155.14019	203.73832
	184.44444	123.7037		384.11215	382.24299		188.78505	204.6729
	255.92593	218.14815		198.13084	251.40187		158.8785	151.40187
	315.74074	268.7037		207.47664	178.50467	Promedio:	248.14398	237.32378
	113.51852	110.74074		342.99065	338.31776			

Figura A5. Imágenes de MEB de ERO 03 [1:0.025] $1\mu m$



52Px 46.2Px 88.5Px 93.4Px 52.8Px 40.8Px 107Px(1μm)
0.49μm 0.43 μm 0.83 μm 0.87 μm 0.49 μm 0.38 μm
485.98 nm 431.78 nm 827.10 nm 872.90 nm 493.46 nm 381.31 nm


Imágenes de MEB de la muestra ERO 03 [1:0.025]


Imágenes de MEB de la muestra ERO 03 [1:0.025]

Imágenes de MEB de la muestra ERO 03 [1:0.025]

Imágenes de MEB de la muestra ERO 03 [1:0.025]

Imágenes de MEB de la muestra ERO 03 [1:0.025]

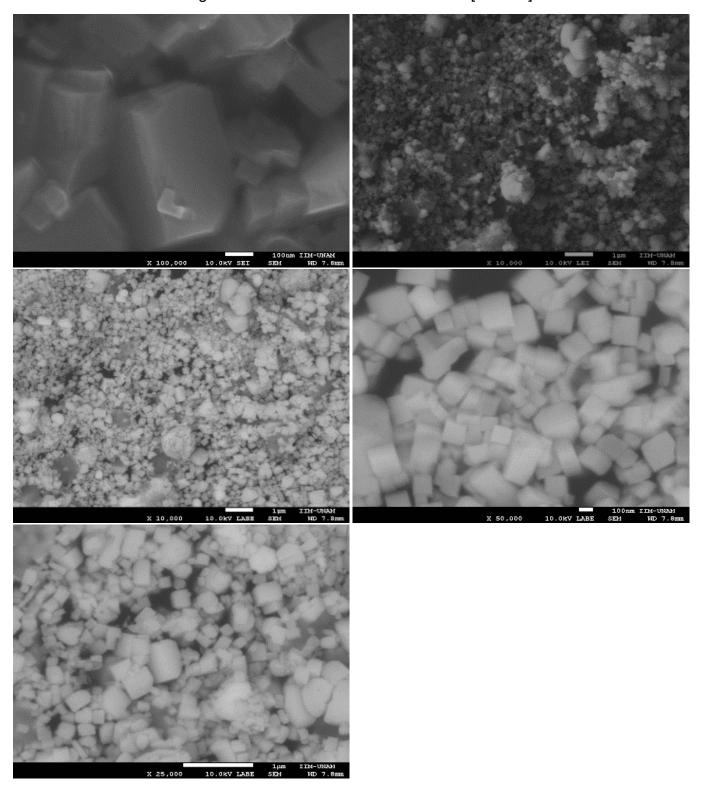
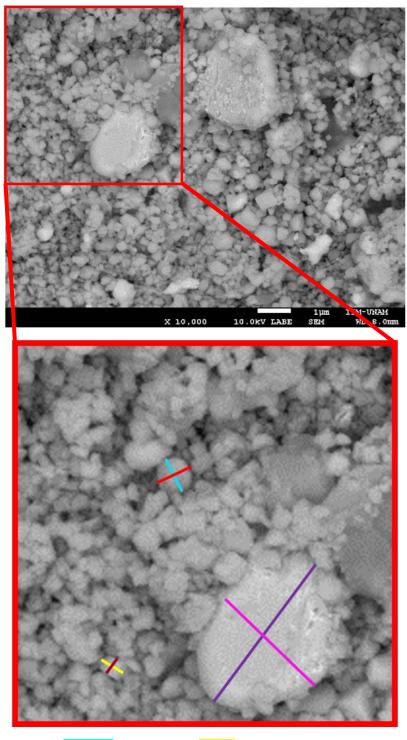



Tabla de medidas de las imágenes de MEB de la muestra ERO 03 [1:0.025]

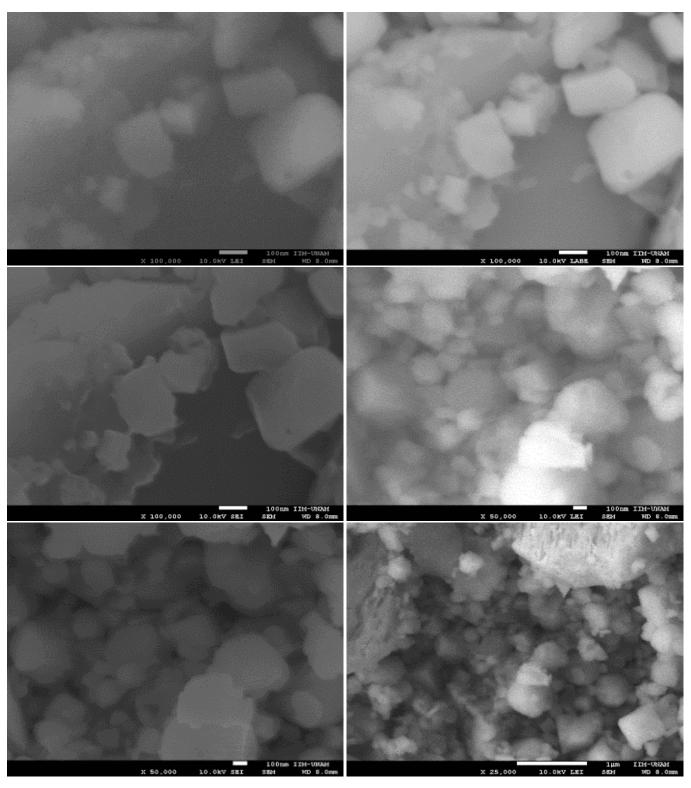
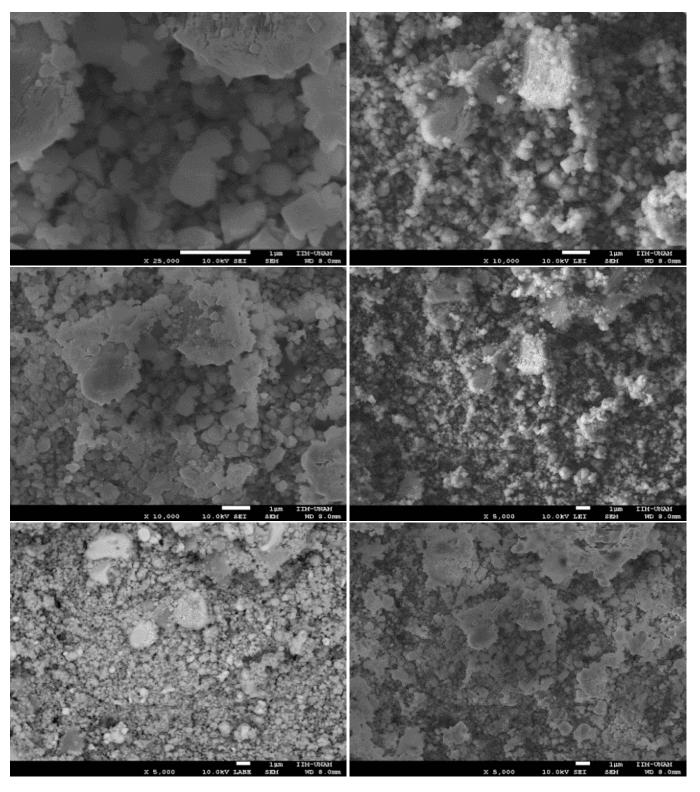

Muestra	nm	nm	Muestra	nm	nm	Muestra	nm	nm
	233.92523	197.19626		237.07865	198.8764		115.88785	96.261682
	227.28972	136.4486		221.34831	187.26592		109.34579	113.08411
	210.93458	162.42991		191.01124	164.79401		241.1215	231.7757
	124.29907	114.01869		267.79026	191.7603		218.69159	165.42056
	168.03738	182.61682		140.82397	179.02622		214.95327	196.26168
	141.85185	151.66667		173.03371	236.70412		244.85981	267.28972
	146.48148	147.77778		250.18727	272.28464		125.23364	171.96262
	160.37037	199.44444		114.23221	215.35581		140.18692	75.700935
	173.33333	147.59259		241.1985	248.31461		168.2243	168.2243
	96.666667	121.85185		219.10112	259.92509		138.31776	109.34579
	358.14815	329.25926		213.85768	149.81273		168.2243	186.91589
	183.14815	156.66667		216.4794	225.46816		205.60748	168.2243
	211.48148	232.77778		151.31086	138.95131		218.88889	184.44444
	144.62963	125.92593		177.90262	94.007491		116.66667	139.81481
	271.85185	183.33333		271.02804	327.1028		128.14815	101.11111
	124.44444	62.962963		580.37383	495.3271		77.407407	152.59259
	63.333333	85		117.75701	121.49533		183.33333	182.40741
	222.22222	57.407407		280.37383	238.31776		35.37037	35.37037
	217.77778	147.77778		213.08411	281.30841		228.51852	238.14815
	70	126.11111		397.19626	234.57944	ERO 03	114.44444	144.25926
ERO 03	124.81481	136.85185	ERO 03	222.42991	209.34579	[1:0.025]	131.66667	139.62963
[1:0.025]	170	142.22222	[1:0.025]	196.26168	179.43925		153.7037	160.74074
	237.96296	198.7037		340.18692	380.37383		112.22222	107.40741
	52.962963	48.148148		313.08411	281.30841		129.44444	127.77778
	129.62963	90.37037		345.79439	324.29907		117.22222	73.333333
	108.51852	108.33333		295.3271	263.5514		272.96296	258.33333
	112.59259	119.25926		197.19626	234.57944		114.81481	105.74074
	130.71161	114.23221		168.2243	188.78505		115.18519	101.85185
	212.73408	238.95131		188.78505	212.14953		82.777778	116.48148
	142.3221	134.0824		177.57009	168.2243		89.259259	92.962963
	182.397	197.00375		147.66355	127.1028		219.47566	133.33333
	201.49813	209.3633		197.19626	168.2243		155.80524	122.84644
	250.5618	219.85019		242.99065	196.26168		167.0412	135.20599
	140.07491	72.659176		179.43925			110.11236	
	139.32584	127.71536		260.74766	285.04673		170.41199	169.66292
	129.21348	180.89888		833.64486	665.42056		180.89888	170.41199
	153.55805	233.70787		142.05607	109.34579		224.7191	172.28464
	239.70037	185.76779		264.48598	205.60748		116.4794	128.08989
	187.26592	221.72285		155.14019	158.8785		146.44195	231.08614
	161.04869	154.30712		301.86916	257.00935		162.54682	98.876404
	111.23596	87.265918		121.49533	144.85981	Promedio:	188.62636	176.73165
	143.07116	158.8015		244.85981	231.7757			

Figura A6. Imágenes de MEB de ERO 04 [1:0.01] 1μm



257.4Px 184.3Px 57.9Px 50.3Px 41Px 28.4Px 107Px(1μm)
2.41 μm 1.72 μm 0.54 μm 0.47 μm 0.38 μm 0.27 μm
2405.61 nm 1722.43 nm 541.12 nm 470.09 nm 383.18 nm 265.42 nm

Imágenes de MEB de la muestra ERO 04 [1:0.01]

Imágenes de MEB de la muestra ERO 04 [1:0.01]

Imágenes de MEB de la muestra ERO 04 [1:0.01]

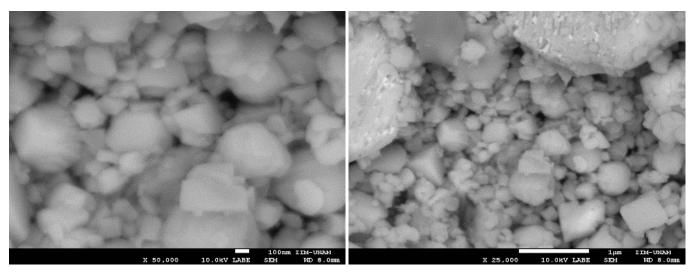
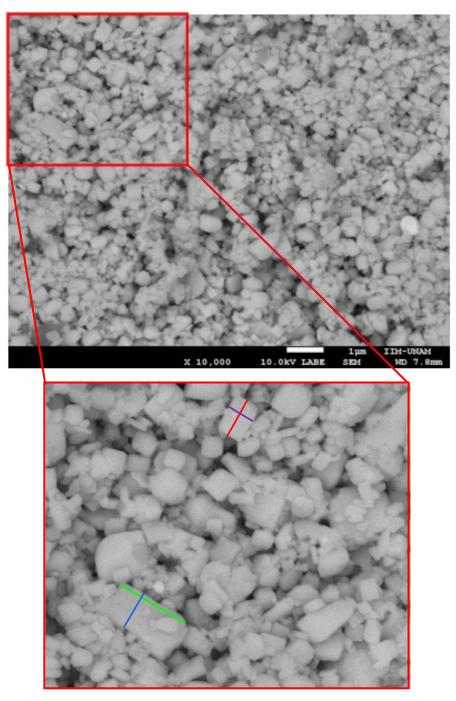
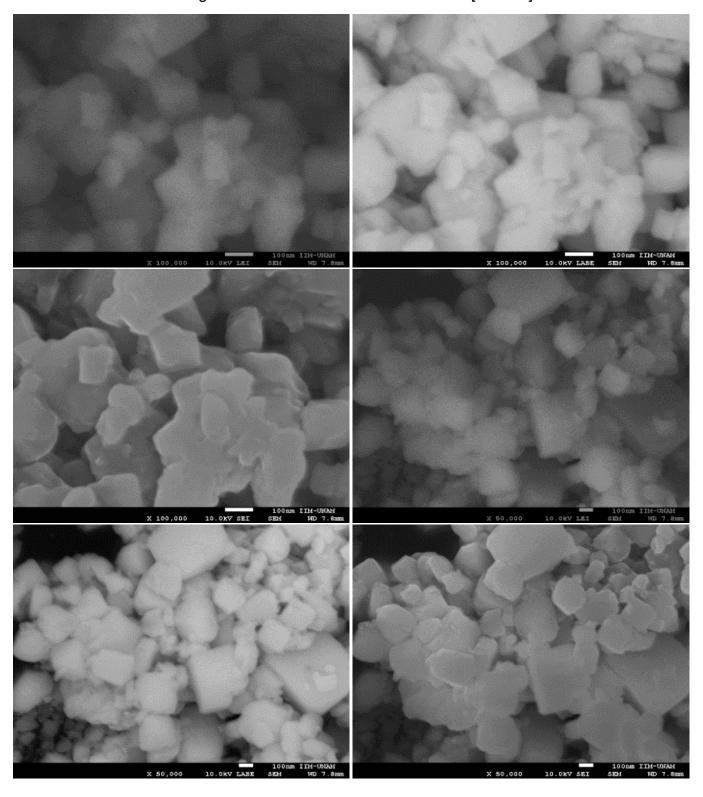
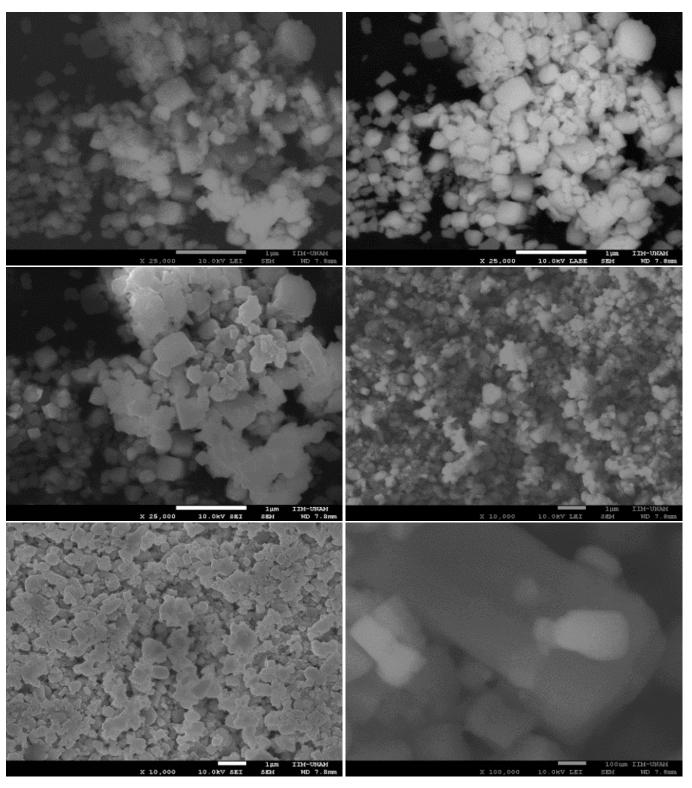



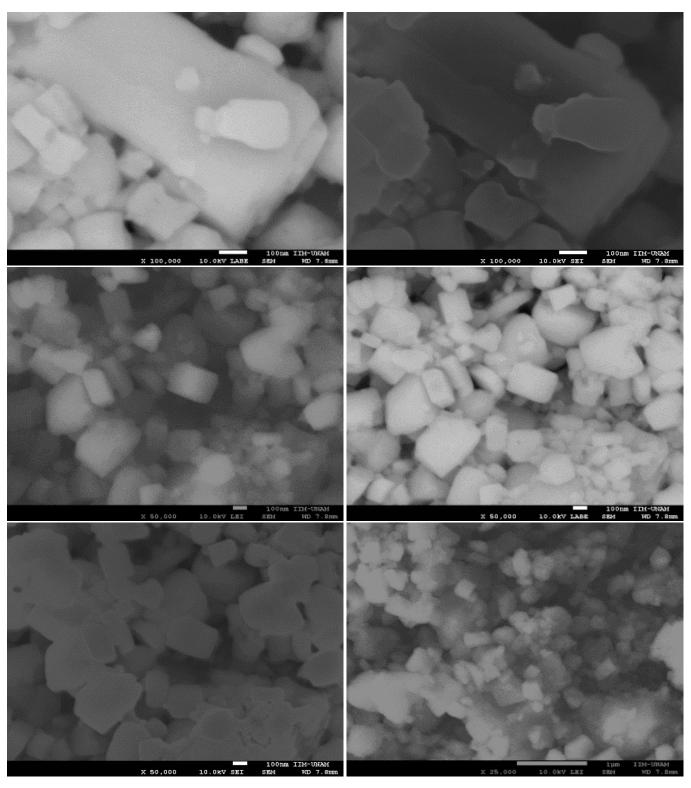
Tabla de medidas de las imágenes de MEB de la muestra ERO 04 [1:0.01]

Muestra	nm	nm	Muestra	nm	nm	Muestra	nm	nm
	165.42056	105.14019		669.28839	557.6779		281.30841	271.02804
	250	149.81308		94.007491	109.3633		339.25234	292.52336
	347.19626	294.29907		266.29213	301.1236		401.86916	401.86916
	115.23364	93.17757		414.23221	280.89888		287.85047	285.04673
	124.57944	67.850467		204.49438	155.05618		271.02804	261.68224
	60.934579	46.168224		468.16479	198.8764		140.18692	149.53271
	119.71963	108.59813		217.22846	217.22846		84.11215	179.43925
	90.37037	68.888889		157.30337	161.04869		149.53271	158.8785
	172.59259	179.81481		211.98502	212.35955		271.02804	231.7757
	214.81481	152.03704		69.662921	85.393258		435.51402	418.69159
	99.62963	60.37037		176.02996	209.73783		368.2243	290.65421
	174.44444	118.33333		168.53933	280.89888		184.11215	234.57944
	252.22222	201.85185		108.61423	146.44195		260.74766	187.85047
	196.48148	137.59259		250.18727	89.88764		171.96262	125.23364
	144.81481	148.14815		274.76636	133.64486		328.97196	304.6729
	114.62963	111.2963		210.28037	181.30841		200	181.30841
	179.62963	152.77778		171.96262	136.4486		314.01869	267.28972
	79.074074	83.703704		325.23364	257.94393		477.57009	376.63551
EDO 04	163.14815	79.074074	55004	277.57009	252.33645	ERO 04 [1:0.01]	267.28972	230.84112
ERO 04 [1:0.01]	169.25926	196.48148	ERO 04 [1:0.01]	242.99065	179.43925		289.71963	214.95327
[1.0.01]	171.11111	167.03704	[1:0.01]	153.27103	132.71028		342.05607	371.96262
	343.7037	320.37037		460.74766	446.72897		140.18692	87.850467
	107.40741	111.11111		386.91589	358.8785		299.06542	289.71963
	158.51852	123.14815		212.14953	257.94393		214.95327	214.95327
	343.82022	292.50936		188.78505	234.57944		312.14953	188.78505
	206.74157	169.28839		293.45794	290.65421		568.2243	588.78505
	206.74157	164.79401		213.08411	217.75701		191.58879	127.1028
	330.33708	221.34831		514.01869	418.69159		239.25234	179.43925
	262.92135	273.78277		414.95327	263.5514		352.33645	318.69159
	403.37079	360.67416		271.02804	289.71963		150.46729	165.42056
	146.44195	120.97378		251.40187	244.85981		1072.8972	833.64486
	237.82772	199.25094		327.1028	196.26168		284.11215	264.48598
	177.52809	169.28839		464.48598	297.19626		126.16822	171.96262
	238.95131	189.13858		260.74766	324.29907		297.19626	244.85981
	172.28464	159.55056		233.64486	282.24299		214.95327	205.60748
	226.59176	191.01124		480.37383	476.63551		254.20561	206.54206
	573.03371	493.25843		214.95327	224.29907		242.99065	177.57009
	513.48315	471.91011		153.27103	179.43925		253.27103	252.33645
	211.23596	187.26592		289.71963	261.68224		149.53271	140.18692
						Promedio:	258.62478	227.18603


Figura A7. Imágenes de MEB de ERO 05 [1:0.001] $1\mu m$


58.6Px 40.8Px 107.7Px 56Px 107Px (1μm) 0.547 μm 0.381 μm 1.006 μm 0.523 μm

547.66 nm 381.31nm 1006.54 nm 523.36 nm


Imágenes de MEB de la muestra ERO 05 [1:0.001]

Imágenes de MEB de la muestra ERO 05 [1:0.001]

Imágenes de MEB de la muestra ERO 05 [1:0.001]

Imágenes de MEB de la muestra ERO 05 [1:0.001]

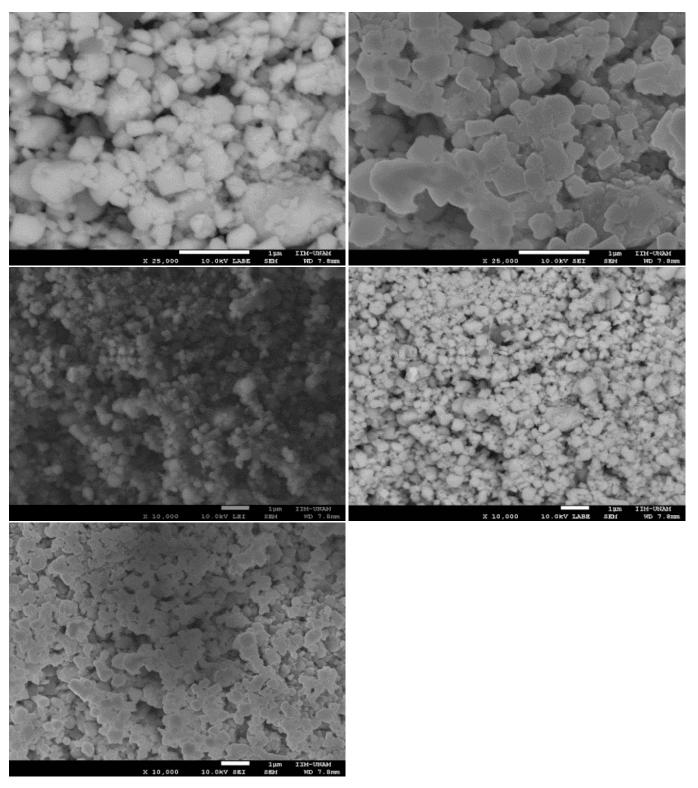
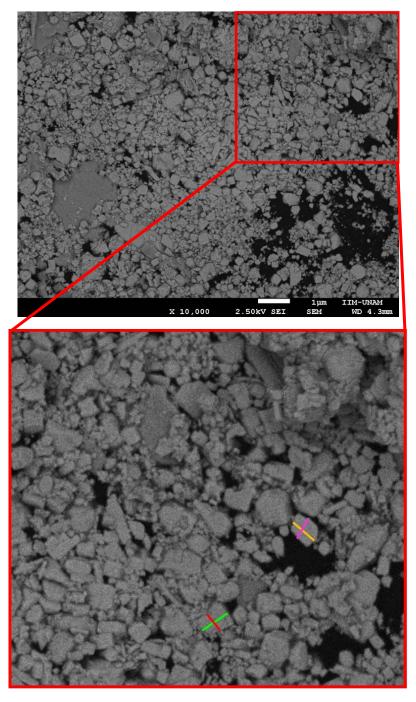



Tabla de medidas de las imágenes de MEB de la muestra ERO 05 [1:0.001]

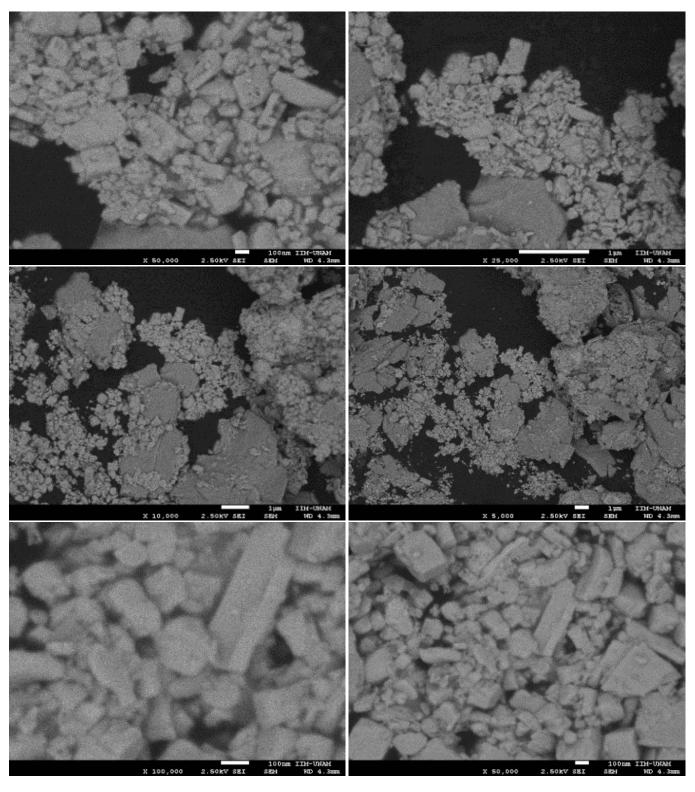
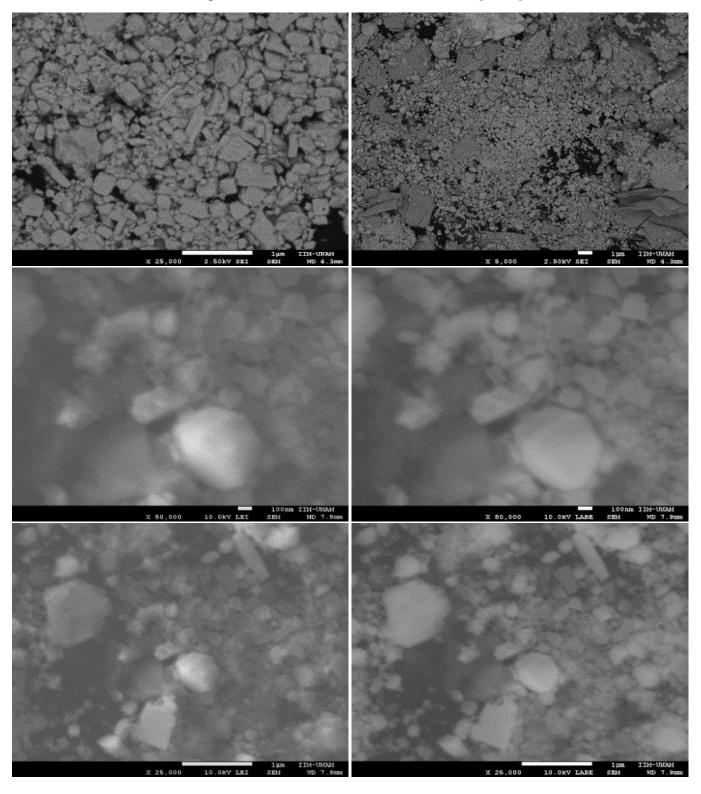
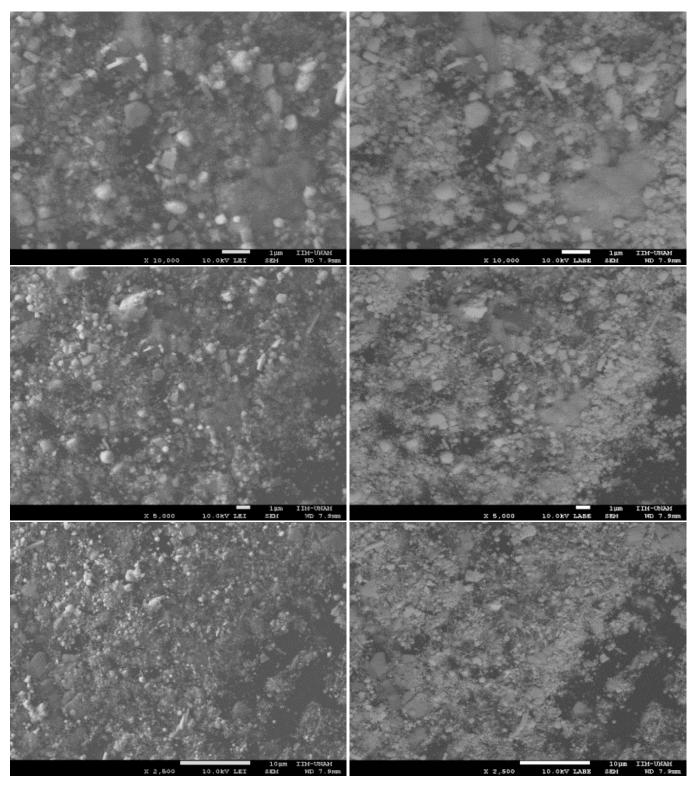

Muestra	Nm	nm	Muestra	nm	nm	Muestra	nm	nm
	170.18692 129.90654	170.18692 129.90654	396.26168	357.00935		65.233645	79.345794	
	153.45794	126.16822		255.14019	268.2243		202.03704	256.11111
	129.25234	105.60748		389.71963	363.5514		268.51852	223.51852
	202.24299	117.00935		200.93458	204.6729		105.18519	106.85185
	215.55556	191.11111		265.42056	185.04673		188.14815	154.07407
	210.92593	197.22222		236.4486	221.49533		236.85185	192.96296
	267.22222	231.85185		159.81308	140.18692		240.74074	225.92593
	248.7037	227.96296		282.24299	244.85981		462.40741	447.59259
	172.40741	94.814815		583.17757	414.95327		103.51852	106.11111
	149.25926	123.33333		464.48598	246.72897		72.407407	59.259259
	237.22222	188.51852		271.02804	242.99065		111.48148	105.92593
	301.85185	304.44444		165.42056	206.54206		150	266.66667
	139.25926	88.703704		282.24299	344.85981		61.111111	78.888889
	72.962963	56.296296		227.1028	192.52336		51.666667	69.444444
	151.48148	124.44444		188.78505	205.60748		74.62963	51.296296
	190.6367	182.77154		131.7757	66.35514		119.07407	68.518519
	147.56554	149.81273		334.57944	269.15888		279.40075	243.07116
	248.68914	172.28464		239.25234	131.7757		231.46067	175.2809
	265.16854	253.55805		254.20561	186.91589	EDO 0E	185.01873	92.883895
ERO 05	165.54307	111.23596	EDO 05	200.93458	209.34579	ERO 05 [1:0.001]	391.7603	224.34457
[1:0.001]	110.86142	168.16479	ERO 05 [1:0.001]	300.93458	197.19626		379.77528	307.86517
[1.0.001]	180.52434	112.35955	[1.0.001]	158.8785	168.2243		163.67041	102.24719
	184.26966	119.47566		235.51402	218.69159		254.68165	165.9176
	183.14607	191.01124		340.18692	147.66355		294.00749	211.61049
	279.40075	249.4382		207.47664	173.83178		274.1573	221.34831
	172.65918	119.47566		130.84112	140.18692		307.1161	189.51311
	276.40449	256.92884		329.90654	285.04673		425.8427	286.51685
	316.85393	219.10112		186.91589	166.35514		247.19101	262.17228
	205.99251	195.50562		251.40187	251.40187		181.64794	233.33333
	220.97378	176.77903		152.33645	173.83178		222.84644	129.96255
	354.30712	331.08614		248.59813	277.57009		135.58052	144.56929
	243.44569	247.19101		328.03738	308.41121		220.22472	277.52809
	182.77154 181.2734	181.27341		300.93458	210.28037		145.31835	138.57678
	571.53558	621.34831		93.457944	99.065421		143.44569	79.026217
	222.47191	301.49813		206.54206	197.19626		187.64045	205.99251
	317.22846	269.66292		191.58879	204.6729		264.79401	243.82022
	114.23221	150.93633		185.04673	272.05607		137.07865	109.3633
	123.59551	103.37079		286.26168	108.78505		113.10861	98.876404
	274.1573	240.07491		496.91589	993.83178		195.50562	176.77903
	531.7757	385.04673		104.57944	107.1028	Promedio:	227.26594	201.40242
	289.71963	281.30841		143.64486	54.299065			

Figura A8. Imágenes de MEB de ERO 06 [1:0.1] 1μm

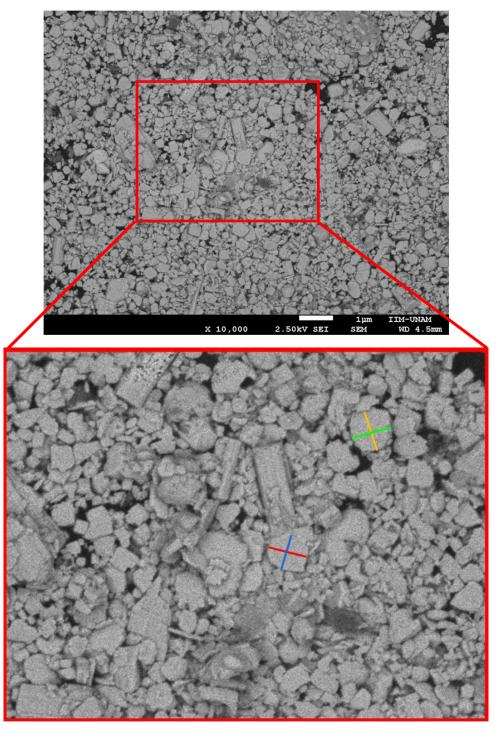


42.7Px 30.6Px 39.6Px 30Px 107 Px $(1\mu m)$ 0.399 μm 0.285 μm 0.370 μm 0.280 μm 399.07 nm 285.98 nm 370.09 nm 280.37 nm


Serie n-octilamina Imágenes de MEB de la muestra ERO 06 [1:0.1]

Serie n-octilamina Imágenes de MEB de la muestra ERO 06 [1:0.1]

Serie n-octilamina Imágenes de MEB de la muestra ERO 06 [1:0.1]



Serie n-octilamina

Tabla de medidas de las imágenes de MEB de la muestra ERO 06 [1:0.1]

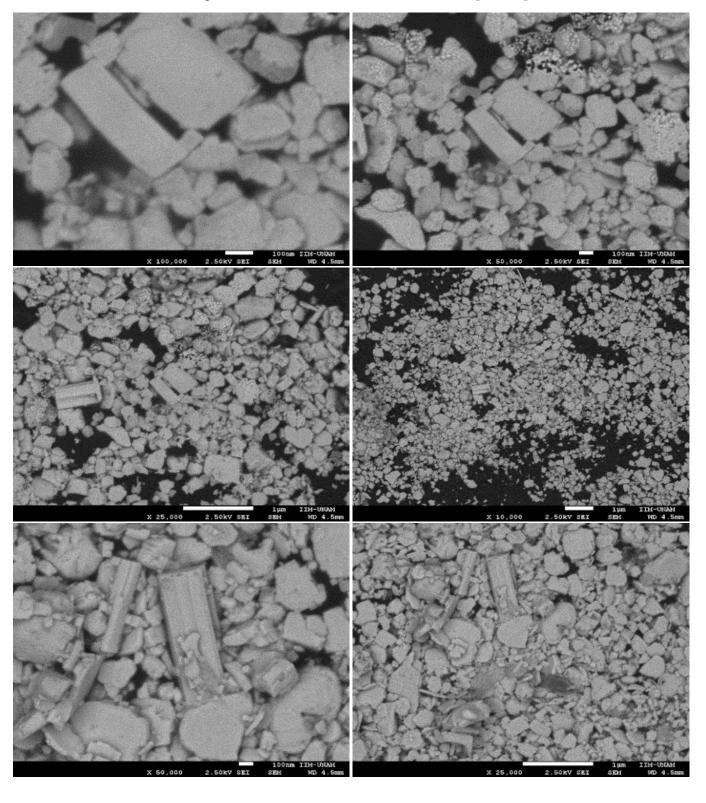
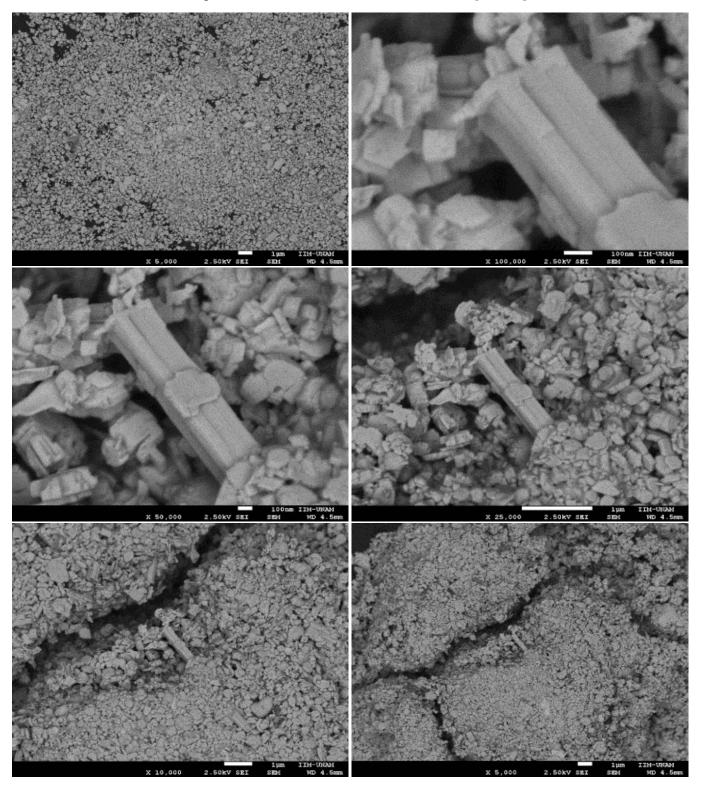
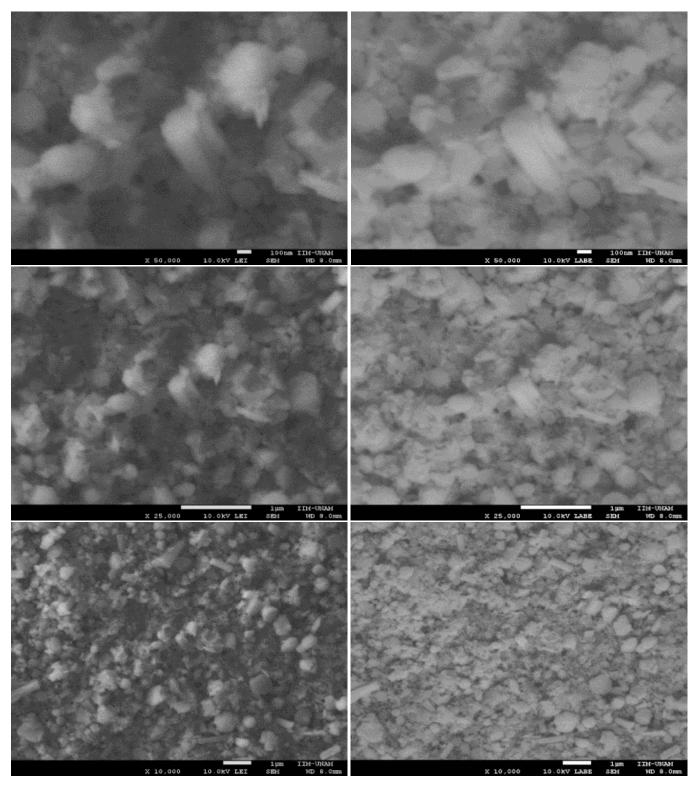

Muestra	nm	nm	Muestra	nm	Nm	Muestra	nm	nm
	266.2963	260.37037		261.11111	235.18519		73.782772	69.662921
	160.37037	148.88889	185 963	314.81481	262.96296		312.35955	140.82397
	217.40741	176.85185		170.37037	196.2963		74.906367	63.670412
	447.96296	266.2963		462.96296	314.81481		127.34082	112.73408
	265.18519	178.7037		261.11111	250		316.85393	297.00375
	144.44444	142.59259		364.81481	288.88889		244.94382	138.57678
	165.55556	152.22222		151.1215	46.261682		101.87266	85.393258
	115.92593	59.814815		149.06542	234.01869		301.49813	228.83895
	563.67041	322.47191		105.98131	92.616822		87.265918	84.644195
	236.70412	158.8015		67.383178	52.429907		120.97378	94.007491
	153.55805	175.2809		105.70093	53.364486		62.172285	50.187266
	195.50562	208.98876		588.31776	125.42056		113.85768	95.505618
	335.20599	219.10112		220.37383	197.66355		145.69288	132.9588
	261.79775	268.16479		118.03738	164.85981		145.69288	124.34457
	465.54307	194.38202		95.233645	106.26168		314.98127	100.74906
	179.77528	97.378277		118.97196	65.607477		144.56929	97.752809
	101.87266	82.397004		102.42991	90.934579		129.21348	87.640449
	141.1985	92.134831		90.740741	90.740741	ERO 06 [1:0.1]	119.10112	79.026217
ERO 06	171.91011	129.21348	ERO 06	305	212.22222		125.09363	142.69663
[1:0.1]	388.78505	331.7757	[1:0.1]	148.7037	97.962963		161.04869	55.430712
	242.99065	206.54206		121.48148	94.444444		954.30712	899.25094
	267.28972 192.52336		128.33333	117.59259		820.59925	250.5618	
	364.48598	261.68224		52.962963	64.814815		207.86517	196.25468
	233.64486	200		109.62963	59.074074		183.5206	179.77528
	336.4486	285.04673		221.11111	184.44444		197.00375	214.23221
	200.93458	201.86916		107.59259	61.481481		206.36704	152.43446
	259.81308	205.60748		148.14815	75.925926		194.75655	192.8839
	467.28972	234.57944		67.962963	54.62963		604.6729	366.35514
	267.28972	223.36449		82.592593	78.703704		318.69159	326.16822
	251.40187	242.99065		96.296296	89.074074		375.70093	228.97196
	163.5514	145.79439		229.62963	88.333333		325.23364	310.28037
	306.54206	121.49533		102.77778	63.333333		785.04673	485.98131
	210.28037 93.457944		250.18519	157.40741		557.00935	573.83178	
	153.27103	145.79439	40.74074 07.40741	485.92593	117.22222		434.57944	347.66355
	209.25926	340.74074		152.77778	136.2963		146.72897	139.25234
	425.92593	407.40741		93.632959	89.88764		508.41121	272.8972
	240.74074	240.74074		233.33333	177.90262		207.47664	187.85047
	144.44444	159.25926		254.68165	129.96255	Promedio:	239.97144	178.76163

Figura A9. Imágenes de MEB de ERO 07 [1:0.05] $1\mu m$



49.3Px 49.6Px 47.8Px 40.2Px 107Px(1μm) 0.460 μm 0.463 μm 0.446 μm 0.375 μm 460.75 nm 463.55 nm 446.73 nm 375.70 nm


Serie n-octilamina Imágenes de MEB de la muestra ERO 07 [1:0.05]

Serie n-octilamina Imágenes de MEB de la muestra ERO 07 [1:0.05]

Serie n-octilamina Imágenes de MEB de la muestra ERO 07 [1:0.05]

Serie n-octilamina Imágenes de MEB de la muestra ERO 07 [1:0.05]

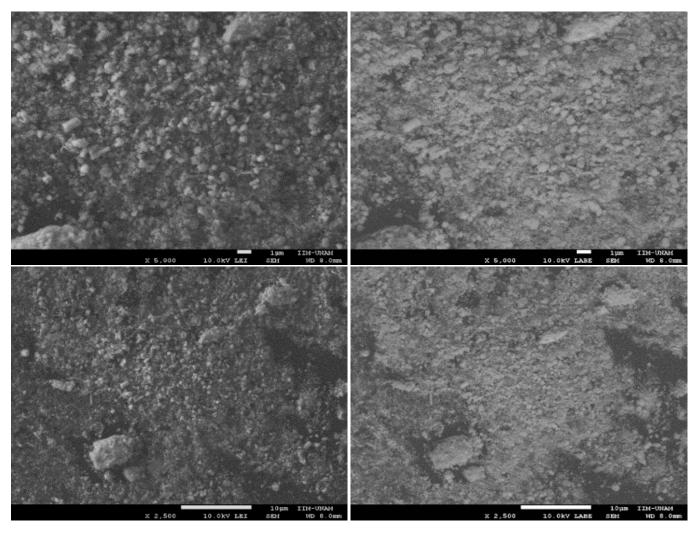
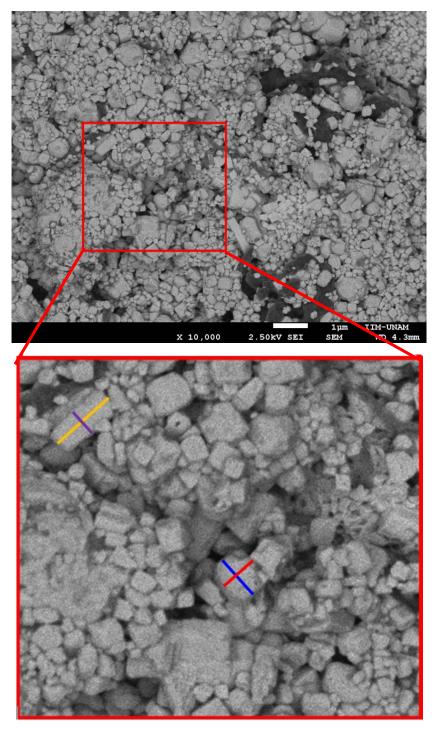



Tabla de medidas de las imágenes de MEB de la muestra ERO 07 [1:0.05]

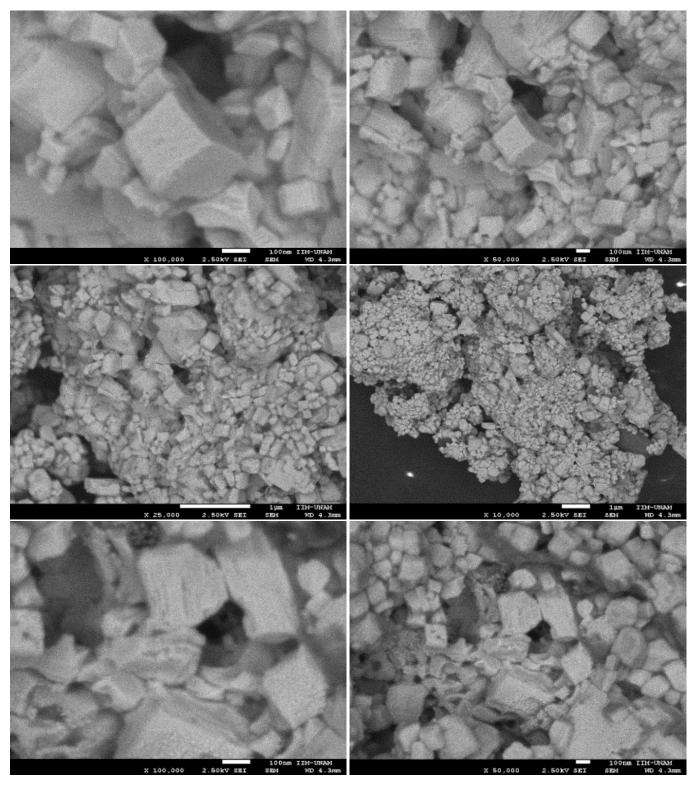
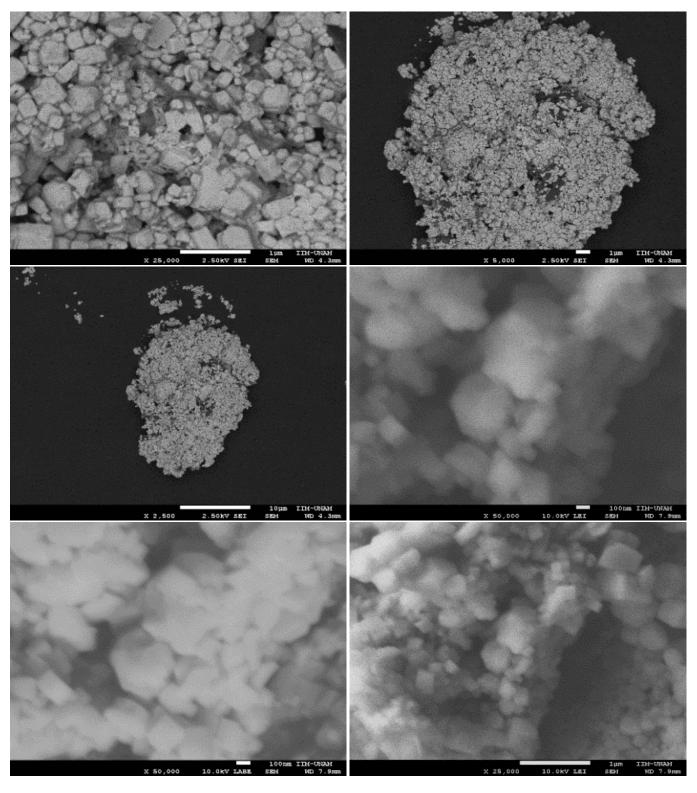
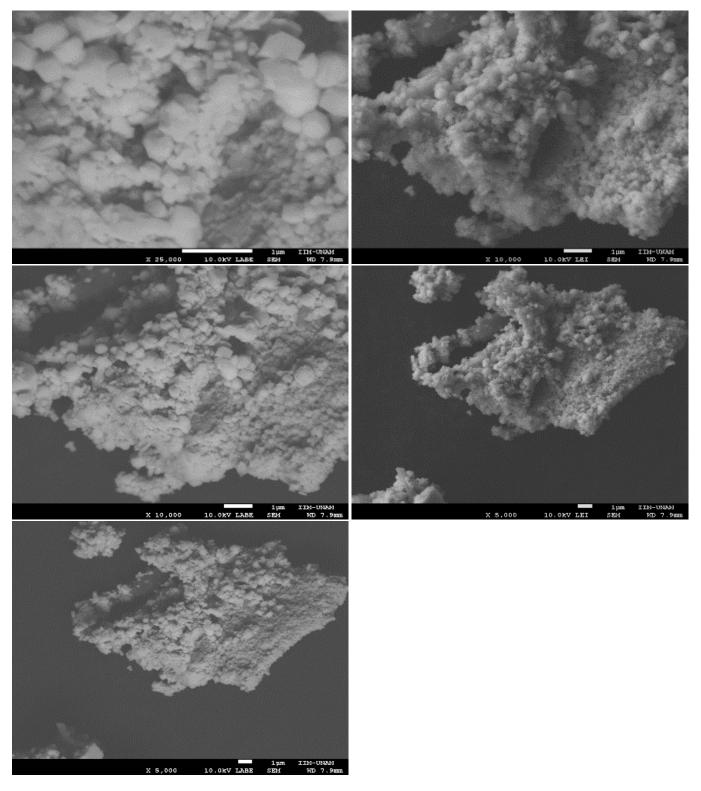

Muestra	nm	nm	Muestra	Nm	nm	Muestra	nm	nm
	482.42991	315.23364		209.73783	122.09738		132.20974	134.0824
	507.57009	182.42991		312.73408	167.0412		165.54307	126.59176
	110	112.05607		576.77903	355.05618		247.19101	223.97004
	187.94393	153.83178		144.56929	128.08989		115.35581	100.74906
	220.28037	168.2243		128.83895	108.98876		134.83146	142.3221
	132.14953	85.700935		90.636704	60.299625		238.20225	193.25843
	75.514019	89.719626		250.93633	213.10861		125.3271	119.62617
	123.27103	104.01869		89.62963	82.592593		145.23364	114.39252
	31.775701	35.700935		93.518519	71.296296		227.77778	67.037037
	55.514019	53.271028		52.22222	53.148148		153.14815	115.92593
	208.51852	119.81481		113.88889	101.85185		164.44444	173.51852
	193.88889	125.74074		39.444444	41.851852		94.62963	90.37037
	177.40741	100.92593		72.592593	30		123.33333	175.55556
	188.33333	166.2963		97.222222	87.962963	ERO 07 [1:0.05]	249.07407	165.92593
	81.481481	77.962963		70.925926	40.925926		81.851852	40.925926
	185.18519	188.88889	ERO 07 [1:0.05]	93.703704	64.62963		201.87266	203.74532
	181.2963	121.85185		82.037037	64.814815		576.77903	277.15356
	80.740741	52.407407		66.666667	55.740741		188.76404	168.16479
ERO 07	179.62963	124.25926		127.03704	88.888889		238.95131	198.50187
[1:0.05]	68.148148	57.407407		163.51852	89.074074		171.53558	189.51311
	176.02996	131.08614		92.592593	66.666667		94.756554	80.524345
	340.07491	231.08614		77.77778	35.925926		134.0824	108.98876
	273.03371	212.35955		704.25926	77.962963		173.03371	68.913858
	179.02622	146.81648		131.83521	120.22472		179.40075	108.61423
	329.58801	92.509363		244.56929	204.86891		137.07865	117.603
	89.88764	71.161049		85.393258	135.20599		191.01124	196.25468
	323.59551	206.74157		120.22472	78.651685		853.27103	301.86916
	267.41573	131.08614		177.90262	159.92509		611.21495	748.59813
	104.86891	86.516854		217.603	224.7191		345.79439	287.85047
	231.08614	218.35206		173.78277	135.58052		442.99065	485.04673
	151.31086	108.61423		242.3221	276.40449		784.11215	298.13084
	59.925094	44.94382		91.385768	75.280899		1765.4206	200
	153.55805	127.71536		167.79026	63.670412		501.86916	478.50467
	228.83895	213.48315		334.45693	184.26966		290.65421	374.76636
	149.81273	138.95131		237.82772	185.76779		540.18692	301.86916
	512.73408	390.6367		435.58052	465.54307		223.28022	155.63789
	149.81273	179.77528		120.59925	121.34831			
	100.74906	112.35955		138.20225	177.52809			

Figura A10. Imágenes de MEB de ERO 08 [1:0.025] $1\mu m$

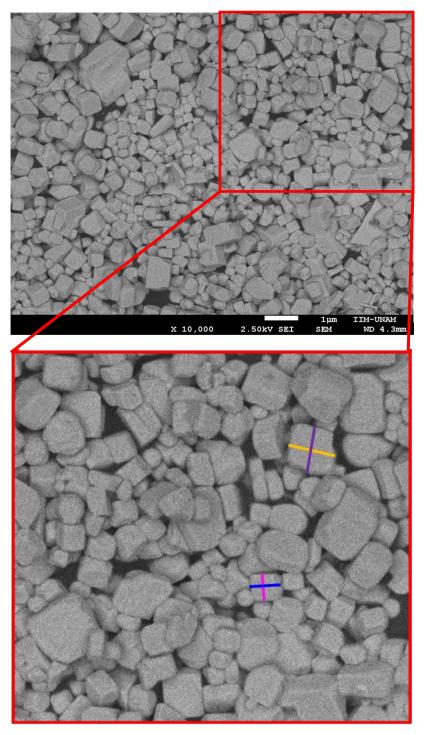


73.7Px 31.8Px 50.9Px 41.7Px 107Px(1 μ m) 0.688 μ m 0.297 μ m 0.475 μ m 0.389 μ m 688.78 nm 297.20 nm 475.70 nm 389.72 nm


Serie n-octilamina
Imágenes de MEB de la muestra ERO 08 [1:0.025]

Serie n-octilamina
Imágenes de MEB de la muestra ERO 08 [1:0.025]

Serie n-octilamina
Imágenes de MEB de la muestra ERO 08 [1:0.025]



Serie n-octilamina

Tabla de medidas de las imágenes de MEB de la muestra ERO 08 [1:0.025]

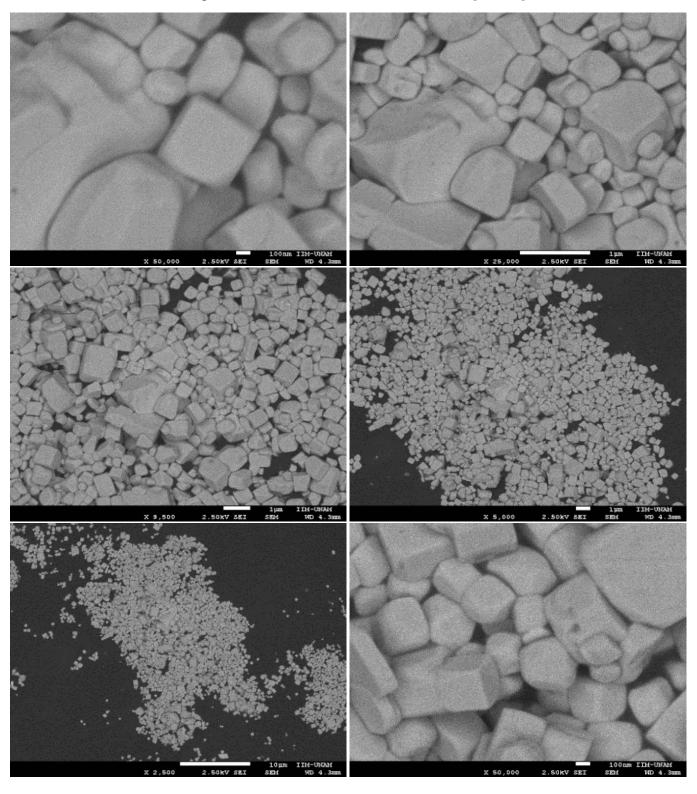
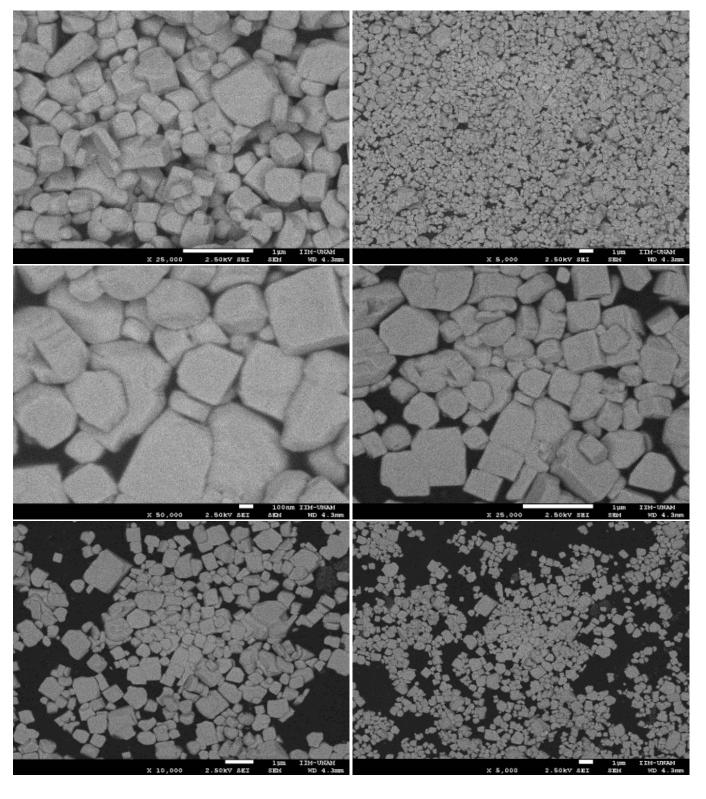
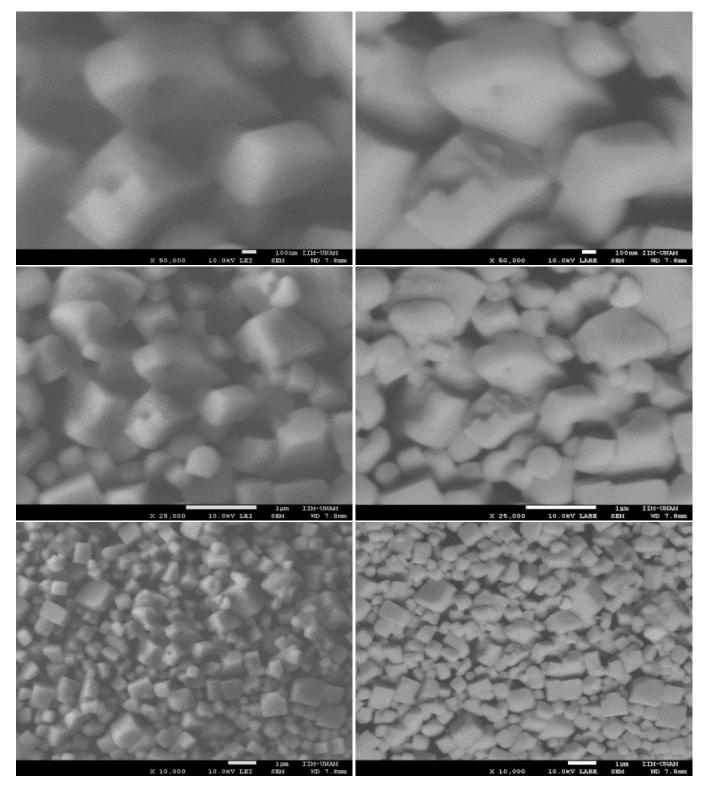
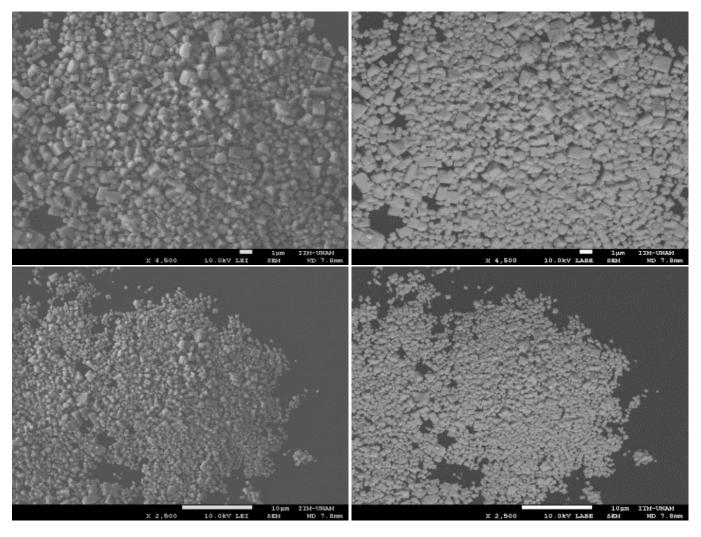

Muestra	nm	nm	Muestra	nm	nm	Muestra	nm	nm
	102.8972	100		111.23596	92.883895		188.78505	181.30841
	124.29907	160.93458		184.26966	175.65543		251.40187	268.2243
	265.3271	226.63551		458.42697	372.28464		192.52336	145.79439
	69.065421	98.598131		159.17603	88.764045		112.14953	84.11215
	133.92523	67.28972		124.34457	116.10487		274.76636	152.33645
	133.17757	65.327103		271.16105	242.69663		335.51402	293.45794
	140.93458	111.7757		98.876404	78.277154		239.25234	217.75701
	112.33645	85.981308		98.127341	98.501873		176.63551	139.25234
	239.06542	252.80374		254.30712	232.9588		277.57009	121.49533
	97.943925	72.616822		138.95131	187.26592		168.2243	109.34579
	111.49533	117.38318		237.82772	199.25094		343.92523	330.84112
	291.2963	237.59259		135.58052	136.32959		177.57009	151.40187
	98.888889	97.037037		265.9176	238.95131		306.54206	271.02804
	126.2963	89.074074		188.76404	212.35955		187.26592	210.48689
	123.14815	105.37037		105.61798	90.636704		260.29963	253.55805
	64.259259	66.851852		224.7191	130.71161		392.13483	214.60674
	98.518519	75.925926	ERO 08 [1:0.025]	122.09738	113.10861		276.40449	233.70787
	175.92593	99.62963		115.35581	133.70787	ERO 08 [1:0.025]	165.16854	153.55805
ERO 08	94.814815	75.925926		191.01124	122.84644		210.11236	198.12734
[1:0.025]	148.14815	81.296296		100.74906	106.36704		316.10487	196.62921
	208.51852	179.81481		268.16479	156.55431		151.68539	108.61423
	154.62963	113.88889		177.90262	75.655431		230.71161	150.93633
	237.96296	153.88889		183.5206	167.0412		246.06742	156.17978
	187.22222	141.11111		78.651685	97.378277		502.24719	283.89513
	94.62963	110.18519		98.127341	87.640449		167.79026	147.56554
	96.111111	74.62963		90.262172	94.007491		384.11215	483.17757
	94.44444	107.77778		337.38318	301.86916		257.00935	250.46729
	218.51852	187.03704		330.84112	318.69159		244.85981	298.13084
	118.33333	95.37037		181.30841	167.28972		469.15888	231.7757
	97.037037	97.962963		432.71028	285.04673		549.53271	364.48598
	119.10112	97.752809		174.76636	151.40187		204.6729	212.14953
	151.68539	194.38202		297.19626	265.42056		308.41121	300
	89.138577	81.64794		215.88785	159.81308		239.25234	204.6729
	120.59925	67.041199		280.37383	221.49533		405.60748	371.02804
	176.02996	108.61423		214.95327	121.49533		181.30841	160.74766
	165.54307	161.04869		113.08411	129.90654		243.92523	261.68224
	136.32959	71.910112		285.04673	139.25234	Promedio:	200.43193	165.37066
	77.153558	73.782772		168.2243	93.457944			

Figura A11. Imágenes de MEB de ERO 09 [1:0.01] 1μm



76.2Px 68.4Px 43.0Px 48Px 107Px(1μm) 0.712 μm 0.639 μm 0.401 μm 0.448 μm 712.15 nm 639.25 nm 401.87 nm 448.60 nm


Serie n-octilamina Imágenes de MEB de la muestra ERO 09 [1:0.01]


Serie n-octilamina Imágenes de MEB de la muestra ERO 09 [1:0.01]

Serie n-octilamina Imágenes de MEB de la muestra ERO 09 [1:0.01]

Serie n-octilamina Imágenes de MEB de la muestra ERO 09 [1:0.01]

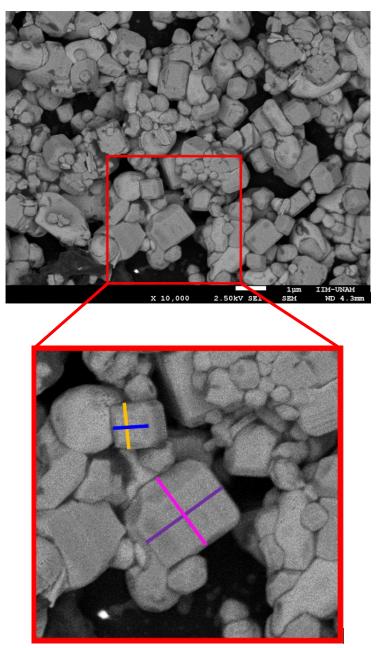

Serie n-octilamina

Tabla de medidas de las imágenes de MEB de la muestra ERO 09 [1:0.01]

Muestra	nm	nm	Muestra	nm	nm	Muestra	nm	nm
	334.07407	224.62963		1215.6863	1187.2549	_	339.70037	277.52809
	407.59259	358.7037		424.5098	338.23529		274.1573	208.2397
	268.51852	211.11111		674.5098	636.27451		219.10112	189.88764
	396.2963	285.55556		473.52941	215.68627		349.81273	283.89513
	592.40741	533.51852		705.88235	637.2549		513.48315	512.73408
	669.66292	429.21348		451.96078	240.19608		298.50187	184.26966
	602.62172	508.98876		623.52941	585.29412		367.79026	216.85393
	1025.0936	895.50562		631.37255	582.35294		596.26168	529.90654
	691.7603	368.53933		622.54902	611.76471		828.03738	639.25234
	502.99625	285.01873		613.72549	392.15686		902.80374	689.71963
	319.85019	262.17228		465.68627	366.66667		663.5514	622.42991
	593.25843	560.67416		833.33333	622.54902		942.99065	686.91589
	768.91386	394.38202		500	383.33333		851.40187	727.1028
	620.22472	537.07865		319.60784	400		487.85047	469.15888
	254.68165	203.74532		509.80392	480.39216		401.86916	336.4486
	406.36704	347.19101		619.60784	421.56863		783.17757	625.23364
	339.32584	246.81648		623.52941	603.92157		594.39252	649.53271
	939.70037	872.28464		617.64706	593.13725	ERO 09 [1:0.01]	515.88785	462.61682
ERO 09	465.54307	350.5618	ERO 09 [1:0.01]	363.72549	384.31373		924.29907	921.49533
[1:0.01]	321.72285	301.49813		666.66667	508.82353		356.07477	305.60748
[1.0.01]	599.25094	343.07116		160.55556	277.59259		397.19626	351.40187
	425.4902	380.39216		305.55556	300.92593		474.76636	422.42991
	234.31373	214.70588		417.59259	329.81481		500.93458	508.41121
	470.58824	408.82353		417.59259	405		442.99065	414.95327
	970.58824	698.03922		217.03704	161.48148		1031.7757	1165.4206
	752.94118	333.33333		277.77778	209.44444		909.34579	893.45794
	567.64706	514.70588		856.17978	357.6779		533.64486	507.47664
	539.21569	598.03922		483.14607	400.37453		416.82243	264.48598
	478.43137	347.05882		337.45318	303.37079		345.79439	315.88785
	645.09804	314.70588		380.89888	323.22097		818.69159	644.85981
	682.35294	747.05882		379.02622	238.95131		640.18692	670.09346
	271.56863	233.33333		501.87266	368.16479		580.37383	526.16822
	413.72549	323.52941		172.28464	172.28464		846.72897	757.00935
	349.01961	334.31373		398.50187	360.29963		515.88785	522.42991
	928.43137	660.78431		246.81648 170.78652 257.6779 235.95506		363.5514	317.75701	
	393.13725	363.72549			571.96262	568.2243		
	648.03922	595.09804		403.37079	181.64794	Promedio:	528.34735	442.0055
	264.70588	237.2549		361.04869	295.13109			
	469.60784	434.31373		473.78277	456.55431			

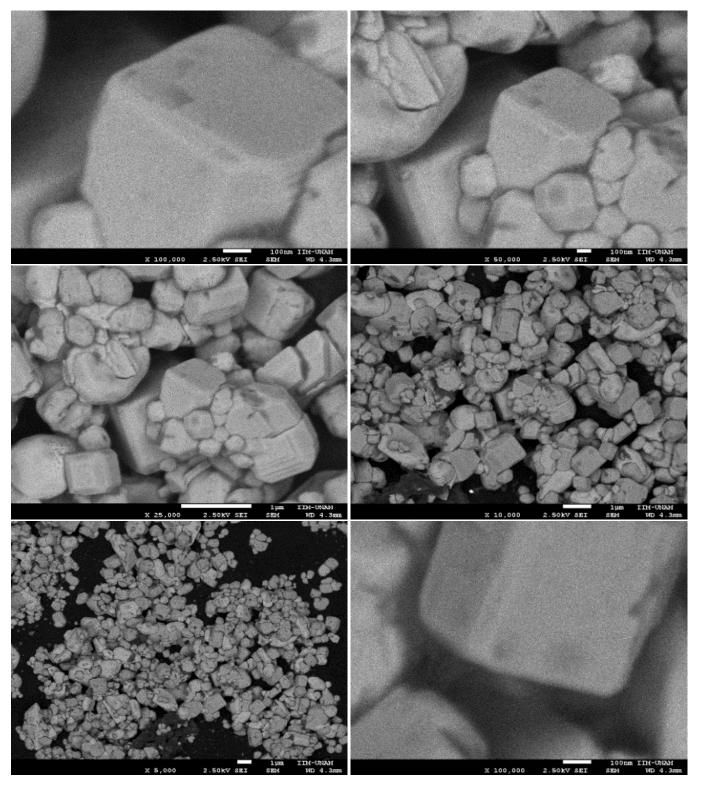
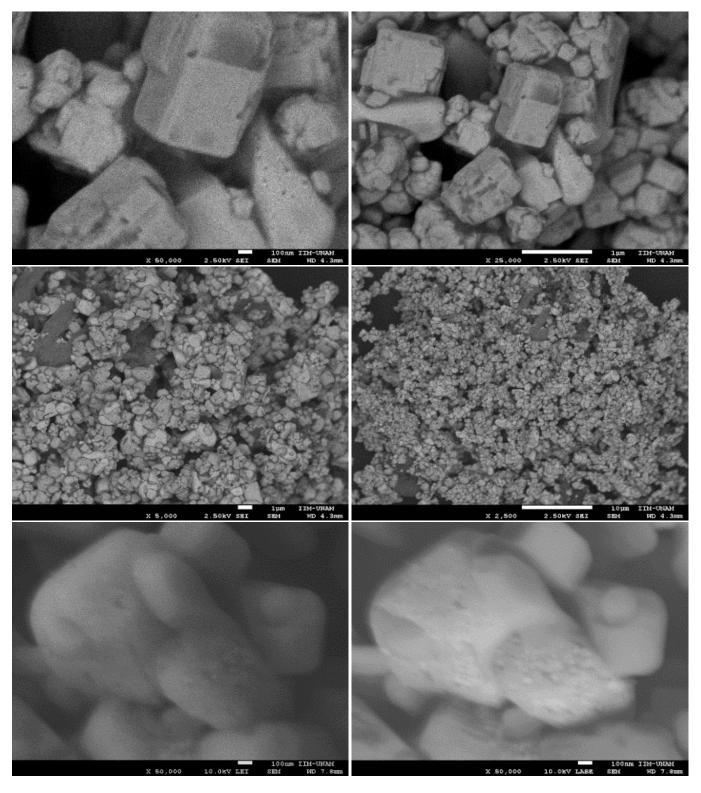
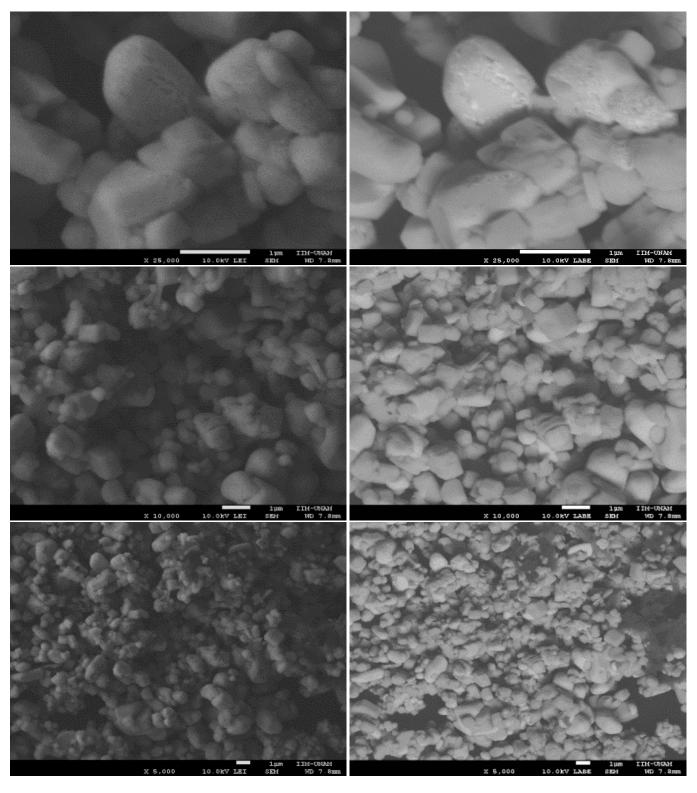
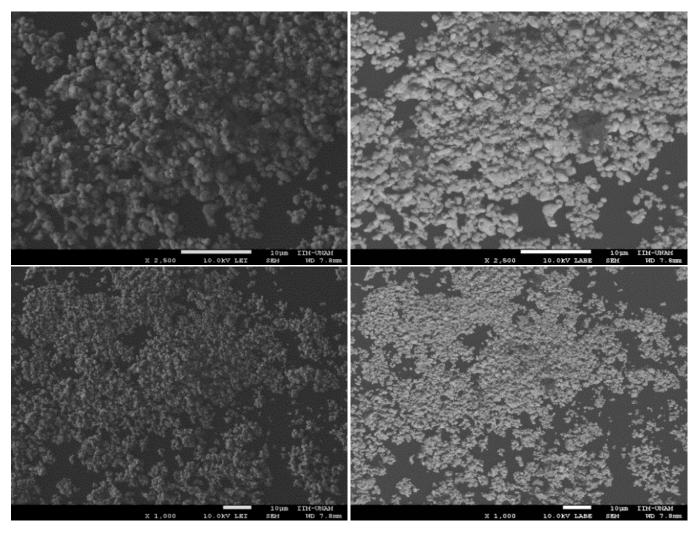

Serie n-octilamina

Figura A12. Imágenes de MEB de ERO 10 [1:0.001] $1\mu m$



142.4Px
 129.6Px
 70.6Px
 59.4Px
 107Px(1μm)
 1.33 μm
 1.21 μm
 0.659 μm
 0.555 μm
 1330.84 nm
 1211.21 nm
 659.81 nm
 555.14 nm


Serie n-octilamina
Imágenes de MEB de la muestra ERO 10 [1:0.001]


Serie n-octilamina
Imágenes de MEB de la muestra ERO 10 [1:0.001]

Serie n-octilamina
Imágenes de MEB de la muestra ERO 10 [1:0.001]

Serie n-octilamina
Imágenes de MEB de la muestra ERO 10 [1:0.001]

Serie n-octilamina

Tabla de medidas de las imágenes de MEB de la muestra ERO 10 [1:0.001]

Muestra	nm	nm	Muestra	nm	nm	Muestra	nm	nm
	532.58427	401.1236		42.696629	41.198502		193.25843	112.73408
	607.49064	654.30712		71.161049	86.516854		116.10487	108.61423
	518.35206	617.97753		60.674157	53.183521		119.47566	129.96255
	231.83521	217.97753		102.99625	73.782772		240.07491	201.1236
	250.18727	220.97378		196.25468	122.47191		296.25468	194.75655
	792.50936	495.50562		174.90637	126.21723		134.0824	102.99625
	263.29588	238.20225		92.883895	79.775281		214.23221	208.2397
	332.20974	314.98127		170.41199	248.31461		213.10861	164.41948
	261.79775	210.11236		195.50562	165.16854		132.58427	203.74532
	233.70787	221.72285		98.876404	79.026217		249.06367	159.17603
	171.91011	155.80524		140.44944	104.86891		97.003745	98.876404
	164.41948	156.55431		100.74906	66.292135		135.20599	84.269663
	158.8015	146.44195		109.3633	68.913858		332.9588	374.90637
	158.8015	119.85019		116.10487	103.74532		270.03745	179.02622
	142.3221	172.28464		55.430712	85.018727		303.37079	327.71536
	176.02996	176.02996	ERO 10 [1:0.001]	43.820225	47.940075	ERO 10 [1:0.001]	226.21723	139.70037
ERO 10	184.26966	116.10487		74.157303	74.906367		239.32584	306.74157
[1:0.001]	86.891386	78.651685		267.0412	243.44569		142.69663	131.46067
[1.0.001]	93.632959	93.632959		124.34457	123.59551		127.71536	108.61423
	429.21348	330.71161		179.77528	208.2397		236.32959	277.52809
	127.34082	97.378277		260.67416	188.01498		131.08614	142.69663
	260.67416	239.70037		177.52809	156.17978		129.96255	106.74157
	262.92135	185.01873		156.17978	167.0412		132.58427	163.29588
	225.8427	246.44195		169.66292	156.55431		236.32959	144.56929
	108.98876	98.127341		135.58052	105.61798		307.1161	319.85019
	550.93633	216.4794		97.378277	97.378277		268.91386	198.12734
	222.84644	176.02996		123.97004	101.87266		197.00375	217.97753
	313.85768	217.97753		176.77903	176.02996		286.14232	230.71161
	194.38202	222.47191		907.1161	1002.6217		276.02996	288.01498
	220.97378	210.86142		266.29213	249.4382		202.24719	163.29588
	128.08989	119.47566		233.33333	89.88764		308.2397	157.30337
	242.69663	190.6367		265.9176	229.21348		280.89888	219.85019
	95.505618	89.513109		370.78652	230.71161		180.89888	188.38951
	196.62921	153.55805		1180.8989	586.51685		480.89888	119.10112
	56.179775	74.906367		245.31835	244.56929	Promedio:	227.12115	191.69548

10 Referencias

_

- ² Kim, Y., Cho, H., Heo, J., Kim, T., Myoung, N., & Lee, C. et al. (2014). Multicolored Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes. Advanced Materials, 27(7), 1248-1254.
- ³ Wei, Y. (2012). synthesis and optical properties of self-assembled 2D layered organic-inorganic perovskites for optoelectronics (Doctorado). École normale supérieure de Cachan.
- ⁴Luo, P., Zhou, S., Liu, Z., Xia, W., Sun, L., & Cheng, J. et al. (2016). A novel transformation route from PbS to CH₃NH₃PbI₃ for fabricating curved and large-area perovskite films. *Chem. Commun.*, *52*(75), 11203-11206.
- ⁵ A. Yamada, H. Sasabe, Y. Osada and Y. Shiroda, I. Concepts of Hybrid Materials, Hybrid Materials –Concept and Case Studies, ASM International, OH, USA, 1989.
- A. Makisima, "Possibility of Hybrids Materials", Ceramic Japan, 39, (2004) 90-91.
 Nanko, M. (2009). Definitions and categories of hybrid materials. AZO Materials, 6.
 http://dx.doi.org/10.2240/azojomo0288
- ⁸ M. F. Ashby and Y. J. M. Bréchet, "Designing Hybrid Materials", Acta Mater., 51 (2003) 5801-5821.
- ⁹ Y. Hagiwara and H. Suzuki, Fracture Mechanics, Ohmsha, Tokyo, Japan, (2000) 135-138.
- ¹⁰Perovskita. (2005). Commons.wikimedia.org. Recuperado 16 noviembre 2017, a partir de https://commons.wikimedia.org/wiki/File:Perovskita-
- wiki.jpg#/media/File:Kristallstruktur_Perovskit.png
- ¹¹ Materials and Technologies for Making Perovskite-based Solar Cell ppt video online download. (2014). Slideplayer.com. Recuperado 9 diciembre 2017, a partir de http://slideplayer.com/slide/4215750/

¹ Vybornyi, O., Yakunin, S., & kovalenko, M. (2016). Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals. Nanoscale, 8(12), 6278-6283. doi:10.1039/c5nr06890h

¹²Johnsson, M., & Lemmens, P. (2008). Perovskites and thin films crystallography and chemistry. Journal Of Physics: Condensed Matter, 20(26), 264001. doi:10.1088/0953-8984/20/26/264001

¹³TakeoOku (2015). Crystal Structures of CH₃NH₃Pbl₃ and Related Perovskite Compounds Used for Solar Cells, Solar Cells - New Approaches and Reviews, Prof. Leonid A. Kosyachenko (Ed.), InTech, DOI: 10.5772/59284. Available from: https://www.intechopen.com/books/solar-cells-new-approaches-and-reviews/crystal-structures-of-ch3nh3pbi3-and-related-perovskite-compounds-used-for-solar-cells

¹⁴Verma, A., & Jindal, V. (2011). ChemInform Abstract: ABX₃-type Oxides and Halides: Their Structure and Physical Properties. Cheminform, 42(21), no-no. http://dx.doi.org/10.1002/chin.201121201

¹⁵ Ravi, V., Irfanullah, M., Chowdhury, A., & Nag, A. (2015). Colloidal CsPbBr₃ Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots. *Angewandte Chemie*, *127*(51), 15644-15648.

¹⁶Loredana Protesescu, Sergii Yakunin, Maryna I. Bodnarchuk, Franziska Krieg, Riccarda Caputo, Christopher H. Hendon, Ruo Xi Yang, Aron Walsh, and Maksym V. Kovalenko (2015).

¹⁷Walsh, A. (2015). Principles of Chemical Bonding and Band Gap Engineering in Hybrid Organic–Inorganic Halide Perovskites. The Journal Of Physical Chemistry, 119, 5755-5760.

¹⁸Lignos, I., Stavrakis, S., Nedelcu, G., Protesescu, L., deMello, A., &Kovalenko, M. (2016). Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform: Fast Parametric Space Mapping. Nano Letters, 16(3), 1869-1877.

¹⁹ Band gap engineering of hybrid perovskites for solar cells. (2018). Slideshare.net. Recuperado 16 July 2017, a partir de https://www.slideshare.net/KiriPo/band-gap-engineering-in-hy

²⁰LEDs magazine. (2004). Recuperado 7 Febrero 2018, a partir de http://www.ledsmagazine.com/articles/2004/01/what-is-an-led.html

²¹ Veldhuis, S., Boix, P., Yantara, N., Li, M., Sum, T., Mathews, N., &Mhaisalkar, S. (2016). ChemInform Abstract: Perovskite Materials for Light-Emitting Diodes and Lasers. Cheminform, 47(44).

- ²² (2018). Insights.ges.com. Recuperado 16 abril 2018, a partir de https://insights.ges.com/us-blog/light-up-your-event-with-oled-digital-displays
- ²³ Hu, F., Zhang, H., Sun, C., Yin, C., Bihu, L., & Zhang, C. et al. (2015). Superior Optical Properties of Perovskite nanocrystals as Single Photon Emitters. ACS Nano.
- ²⁴ Lin, Q., Armin, A., Nagiri, R., Burn, P., & Meredith, P. (2014). Electro-optics of perovskite solar cells. Nature Photonics, 9(2), 106-112.
- ²⁵ Perovskite solar cell. (2017). En.wikipedia.org. Recuperado 16 mayo 2018, a partir de

https://en.wikipedia.org/wiki/Perovskite_solar_cell#/media/File:Perovskite

- ²⁶ Schmidt, L., Pertegás, A., González-Carrero, S., Malinkiewicz, O., Agouram, S., & Mínguez Espallargas, G. et al. (2014). Nontemplate Synthesis of CH₃NH₃PbBr₃ Perovskite Nanoparticles. Journal Of The American Chemical Society, 136(3), 850-853. doi: 10.1021/ja4109209
- ²⁷Zhang, S., Audebert, P., Wei, Y., Al Choueiry, A., Lanty, G., &Bréhier, A. et al. (2010). Preparations and Characterizations of Luminescent Two Dimensional Organic-inorganic Perovskite Semiconductors. Materials, 3(5), 3385-3406. http://dx.doi.org/10.3390/ma3053385
- ²⁸ Ono, L., Leyden, M., Wang, S., & Qi, Y. (2016). Organometal halide perovskite thin films and solar cells by vapor deposition. Recuperado 8 marzo 2018, a partir de http://pubs.rsc.org/en/content/articlehtml/2016/ta/c5ta08963h
- ²⁹Spin Coater.com Laurell Technologies. Spincoater.com. Recuperado 4 diciembre 2017, a partir de http://www.spincoater.com/what-is-spin-coating.php
- ³⁰Gurav, A., Kodas, T., Pluym, T., &Xiong, Y. (1993). Aerosol Processing of Materials. Aerosol Science And Technology, 19(4), 411-452.
- ³¹Patil, P. (1999). Versatility of chemical spray pyrolysis technique. Materials Chemistry And Physics, 59(3), 185-198.

³²Jiang, X., Jiang, Y., Liu, N., Xu, H., Rathod, S., Shah, P., &Brinker, C. (2011). Controlled Release from Core-Shell Nanoporous Silica Particles for Corrosion Inhibition of Aluminum Alloys. Journal Of Nanomaterials, 2011, 1-10.

- ³³ Fu, J., Daanen, N., Rugen, E., Chen, D., &Skrabalak, S. (2017). Simple Reactor for Ultrasonic Spray Synthesis of Nanostructured Materials. Chemistry Of Materials, 29(1), 62-68.
- ³⁴ Sun, S., Yuan, D., Xu, Y., Wang, A., & Deng, Z. (2016). Ligand-Mediated Synthesis of Shape-Controlled Cesium Lead Halide Perovskite Nanocrystals via Reprecipitation Process at Room Temperature. ACS Nano, 10(3), 3648-3657. doi: 10.1021/acsnano.5b08193
- ³⁵ Pan, A., He, B., Fan, X., Liu, Z., Urban, J., & Alivisatos, A. et al. (2016). Insight into the Ligand-Mediated Synthesis of Colloidal CsPbBr₃ Perovskite Nanocrystals: The Role of Organic Acid, Base, and Cesium Precursors. ACS Nano, 10(8), 7943-7954. doi:10.1021/acsnano.6b03863
- ³⁶Luo, B., Pu, Y., Lindley, S., Abdelmageed, G., Ashry, H., & Li, Y. et al. (2015). Synthesis, Optical Properties, and Exciton Dynamics of Organolead Bromide Perovskite Nanocrystals. The Journal Of Physical Chemistry C, 119(47), 26672-26682. doi:10.1021/acs.jpcc.5b08537