

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA

Estudio generalizado de las isotermas de adsorción

T E S I S QUE PARA OBTENER EL TÍTULO DE: INGENIERO QUÍMICO P R E S E N T A:

MARTÍNEZ JUAREZ IVONNE EDITH

DIRECTOR DE TESIS : FIS. CARLOS JAVIER MARTÍNEZ GÓMEZ

CD MX 2018

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

FACULTAD DE ESTUDIOS SUPERIORES "ZARAGOZA"

DIRECCIÓN

UNIVERSIDAD NACIONAL AUTONOMA DI MENICO

JEFE DE LA UNIDAD DE ADMINISTRACIÓN ESCOLAR P R E S E N T E.

Comunico a usted que al alumno(a) <u>Martinez Juárez Ivonne Edith.</u> con número de cuenta <u>41310601-4</u> de la carrera <u>Ingenieria Quimica</u>, se le ha fijado el dia <u>26</u> del mes de <u>Octubre</u> de <u>2018</u> a las <u>15:00 horas</u> para presentar su examen profesional, que tendrá lugar en la sala de exàmenes profesionales del Campus II de esta Facultad, con el siguiente jurado:

PRESIDENTE	DR. ROBERTO MENDOZA SERNA
VOCAL	FIS. CARLOS JAVIER MARTÍNEZ GÓMEZ
SECRETARIO	I.Q., BLAS MALDONADO SÁNCHEZ
SUPLENTE	Q.F.B. ERIK ABEL DE LOS SANTOS MATA
SUPLENTE -	I.Q. ANDREA HERNÁNDEZ FERNÁNDEZ

El título de la tesis que se presenta es: "Estudio generalizado de las isotermas de adsorción".

Opción de Titulación: Convencional

A T E N T A M E N T E "POR MI RAZA HABLARÁ EL ESPÍRITU" DE ESTUDIOS 9 SUPERIORES CDMX,. a 01 de Octubre de 2018. FACULTA ZARAGOZA DR. VICTOR MANDEL MENDOZA NUÑEZ DA RECCA DIRECTOR 0 RECIBI Vo.E Brie 1 OFICINA DE EXÁMENES PROFESIONALES Y DE GRADO LO DOMINGA ORTIZ BAUTISTA

AGRADECIMIENTOS

Quiero agradecer profundamente a mis abuelos quienes fueron las personas después de mis padres que más se preocupaban por mí.

Gracias a mis profesores por todas las enseñanzas, quienes se esforzaron por trasmitirme sus experiencias durante mi formación académica, sobre todo a Sandra Gutiérrez y Yuliana Cadena quienes me inspiraron para ser una mujer con aspiraciones y poder elegír la carrera de ingeniería química.

Gracias a mis amigos por sus palabras de aliento, por sus consejos y ayuda que me brindaron para culminar mi proyecto tesis y por las grandes experiencias juntos.

Gracías a mi director de tesis Fis. Carlos Javier Martínez Gómez por su apoyo incondicional, su confianza, por las enseñanzas y aprendizajes transmitidos, por la orientación para la realización del presente trabajo.

Por último, agradezco a la Facultad de Estudios Superiores Zaragoza por haberme abierto las puertas para recorrer un camino lleno de experiencias inolvidables y por brindarme los conocimientos para ser un Ingeniero Químico.

DEDICATORIAS

Quiero dedicar el presente proyecto a mis padres Antonia Juárez, Fernando Martínez[†], de manera especial a mi madre por confiar en mi, por los esfuerzos realizados para brindarme el apoyo necesario, pues gracías a ella pude culminar esta etapa en mi vida y lograr uno de mis objetivos en la vida, gracías por ser el ejemplo de esfuerzo y fortaleza.

A mí hermano Víctor por su pacíencia y apoyo brindado.

Gracías a mi hijo Sebastián por su amor, por su paciencia, por caminar a mi lado, por ser mi principal motivación.

RESUMEN	1
INTRODUCCIÓN	2
OBJETIVOS	5
CAPÍTULO 1. Adsorción	6
1.1 Isotermas de adsorción	6
1.2 Calculo del área BET	10
1.3 El punto B	14
1.4 La modificación del área BET	15
1.5 Histéresis	15
1.5.1 Rizo de histéresis. Tipo A	17
1.5.2 Rizo de histéresis. Tipo F	20
CAPÍTULO 2. Distribución del diámetro de poro (D.D.P)	21
2.1 Distribución del diámetro de poro Barrett Joyner y Halenda (BJH)	21
2.2 Distribución de diámetro de poro de adsorción (Dos sentidos)	25
CAPÍTULO 3. Isotermas y D.D.P.	26
3.1 Isotermas de adsorción-desorción	26
3.2 Isotermas según la región en función de la recta y=x	35
3.3 Isotermas normalizadas	36
3.4 Forma de la D.D.P. según la región	45
CAPÍTULO 4. Resultados	46
4.1 La obtención del punto B mediante un giro en la isoterma	46
4.2 Cálculo del área específica y el volumen total de poro	51
4.2 Propiedades medidas, parámetros obtenidos y criterios utilizados	54
4.2.1. Distribuciones del diámetro de poro	54
CAPÍTULO 5. Conclusiones	62
Referencias bibliográficas	64
ANEXO A. Recolección de datos de isotermas	66
ANEXO B. Cálculos del área BET y "área modelo"	82
ANEXO C. Datos de la distribución del diámetro de poro	85

ÍNDICE

RESUMEN

En la presente tesis se realizó el análisis de 16 muestras experimentales de distintos materiales obtenidas por varios autores, en las cuales se verificó un seccionamiento de regiones, para contribuir a una interpretación del fenómeno de adsorción presente en el desarrollo de las isotermas y determinar propiedades morfológicas.

Se aplicó el método Brunauer Emmett y Teller (BET), el punto B, y se propuso un método en el cual se hizo una modificación al área BET, éste fue denominado como "área modelo" para determinar el área específica de cada uno de los materiales. Con los resultados obtenidos se demostró gráficamente que el método BET y el método propuesto en esta tesis se comportan de manera paralela. El punto B se consideró solo por una aproximación gráfica.

Mediante la interpretación de las isotermas de nitrógeno (adsorcióndesorción) se estableció el tipo de rizo de histéresis.

Se realizaron los cálculos pertinentes para obtener la distribución del diámetro de poro (D.D.P.) de cada una de las muestras; se observó que el volumen de la distribución presenta una afinidad al volumen total de poro. La forma del rizo de histéresis y su ubicación con respecto a la recta y = x tienen gran influencia en la D.D.P.

INTRODUCCIÓN

El fenómeno de adsorción esta ligado (desde 1940) a las isotermas de adsorción, definidas por Brunauer [1].

La ingeniería química como rama del conocimiento y como una de las áreas con más desarrollo en la tecnología, tiene sus problemas que envuelven una gran cantidad de aproximaciones para transformar las ciencias que la conforman principalmente la química y la física, la interpretación de los fenómenos superficiales permite establecer nuevos planteamientos teóricos para cada una de las ciencias mencionadas.

La aplicación del fenómeno de adsorción transformó los principios de interpretación de una reacción química y ha sido una herramienta predominante en la evaluación de catalizadores, por otro lado la interpretación física en la evaluación de las fuerzas de dispersión, permite observa que el desbalance de las fuerzas en la superficie si existe, pues las películas adsorbidas en vidrios tienen dimensiones monomoleculares o el desbalance de una superficie en carbón activado permitió la fabricación de un refrigerador solar por adsorción, pues en el proceso de adsorción se desprende calor.

La adsorción también contribuye siendo una permanente fuente de incógnitas para los científicos que estudian la fisicoquímica pues al presentarse en ella diversos fenómenos hace motivante su interpretación.

Ahora bien, suponiendo que se desea obtener los tipos de isotermas usando un solo adsorbato ¿qué se tendría que cambiar o como dirigir el estudio?

Actualmente el nitrógeno como adsorbato ha jugado un papel preponderante en los equipos de servicio para determinar isotermas de adsorción, el estudio mantiene una metodología muy acotada además que se usa un gas inerte, fácil de conseguir industrialmente como líquido y gas de alta pureza.

Con esto en mente entre una gran cantidad de resultados experimentales, se pueden encontrar las isotermas para un adsorbato determinado como el nitrógeno N₂ y obtener el estudio que lleve a una mejor caracterización del material. Primero se tiene que asumir el riesgo de no saber si dichas isotermas fueron consideradas como reversibles, se ha de enfatizar que los estudios eran enfocados solo al proceso de adsorción según Barrett y Brunauer [2, 3], que son los estudios previos de Brunauer [1], se constata que el material de estudio solo en la rama de adsorción y la clasificación no involucra el volumen adsorbido con lo que se imposibilita poder encontrar los tipos definido para un solo adsorbato a la reducción en la presión, posibilitó el hallazgo de los rizos de histéresis lo que implicó una nueva interpretación del proceso de adsorción dicho rizo obligo a los teóricos a pensar en la dependencia de la forma de la isoterma con el volumen requerido para hacer la isoterma. Además, que permitió una clasificación de los poros, y sus dimensiones con lo que fue necesario generar toda la teoría que envuelve el cálculo de la D.D.P. Wheller realizó los primeros intentos para ir a fondo en el cálculo de algo que representará las formas que se podrían encontrar en una muestra de acuerdo con Brunauer y Barrett [1,2] sin embargo, la metodología para la obtención de la D.D.P. suena más a una regla importante en la fisisorción si sabe que las cantidades adsorbidas pueden depender del tamaño de los poros. Pero así como el

entendimiento de las isotermas de adsorción cuando presenta histéresis ha sido muy complicado el desarrollo de la D.D.P. han tenido un avance muy lento, pues se desarrollaron modelos geométricos que dependían de consideraciones que suceden al mismo tiempo la adsorción de multicapas la condensación capilar y finalmente la aparición del rizo de histéresis, así como el límite de aplicación de la ecuación de Kelvin que actualmente es la principal herramienta analítica del fenómeno de histéresis y finalmente la determinación de que región de la isoterma es más útil para un soporte determinado.

La propuesta de Wheller tuvo un desarrollo próximo a 30 años pues implicó la propuesta de la diferencia en las dimensiones de los radios, el desarrollo de la teoría del espesor "t" en forma algebraica y una relación analítica de todo el intervalo para un solo adsorbato (en muestra como nitrógeno N₂) el desarrollo del radio hidráulico creado por Brunauer [3].

OBJETIVOS

La adsorción realiza un estudio de isotermas (ramas de adsorción-desorción)

con el propósito de interpretar propiedades medidas por la isoterma.

Objetivos específicos:

- Calcular el área específica por el método Brunauer Emmett y Teller (BET) y mediante un modelo propuesto.
- > Obtener el punto B mediante un giro en la isoterma normalizada.
- Clasificar el tipo de isoterma y el tipo de rizo de histéresis.
- > Obtener la distribución del diámetro de poro.
- > Calcular el volumen total de poro de la D.D.P.

Las isotermas estudiadas en el presente trabajo utilizan nitrógeno N₂ en un baño de N₂ líquido (77 K) como adsorbato, que permite conclusiones definitivas y resultados que puedan ser extrapolados en las propiedades morfológicas del material en estudio.

CAPÍTULO 1. Adsorción

1.1 Isotermas de adsorción

Cuando un gas llega a estar en equilibrio con la superficie de un sólido o un líquido, la concentración de las moléculas del gas es mayor en las inmediaciones de la superficie que en la fase del gas libre, a pesar de la naturaleza del gas o de la superficie. Este proceso por el cual el exceso formado es en la superficie se llama adsorción.

La adsorción ha sido utilizada para medir la influencia de la estructura porosa y la morfología externa en relación con la actividad catalítica, pues se sabe por Boon [4] que a bajas temperaturas la actividad catalítica no varía con el tamaño del poro. Al aumentar la temperatura, la difusión en los poros estrechos de las esferas puede no mantenerse con la reacción catalítica; la reacción queda confinada a las capas externas de las esferas, donde la rugosidad de la superficie externa de los cuerpos del catalizador contra la velocidad de reacción. La efectividad del catalizador está controlada por el sistema poroso y por la morfología externa del cuerpo de los catalizadores que frecuentemente es un sólido poroso termoestable catalíticamente inerte.

Experimentalmente se ha observado que el fenómeno de adsorción depende de la presión, la temperatura, la naturaleza y área del adsorbente, así como de la naturaleza del adsorbato. La isoterma de adsorción muestra como la cantidad adsorbida depende de la presión de equilibrio de un gas a temperatura tal que la cantidad adsorbida sea constante.

En general sí A es la cantidad adsorbida:

$$A = f(p,T), gas, solido$$
 1.1

Para el caso de la isoterma se tiene:

$$A = f(p), T, gas, solido$$
 1.2

Si el gas se encuentra por debajo de su temperatura crítica, esto es, si el gas es un vapor podemos escribir la relación (1.1) como:

$$A = f(p, p_s), T, vapor, solido$$
 1.3

En la que p_s es la presión de vapor saturado del adsorbato a temperatura T.

En la literatura existen una gran cantidad de isotermas de varias formas, la mayoría de las cuales pueden clasificarse en 5 tipos como se muestra en la figura 1.1.

Figura 1.1 Los cinco tipos de isotermas de la clasificación BDDT. [1] (Va=volumen adsorbido por gramo, P/ Ps=presión relativa)

El fenómeno de adsorción ha estado ligado desde hace muchos años atrás (desde 1940) a las isotermas de adsorción, definidas por Brunauer [1] dicha clasificación ha sido piedra angular cuando se trata de asignarle propiedades al material que presenta una isoterma que caiga dentro de esta clasificación y en el desarrollo e interpretación del fenómeno de adsorción, sin embargo, cada isoterma se obtuvo con diferentes adsorbatos como puede verse en la tabla 1.1.

Tipo de isoterma	Tipo de adsorbato
	Oxigeno
I	Nitrógeno
	Bromo
IV	Benceno
V	Vapor de agua

Tabla 1.1 Tipos de adsorbatos utilizados para cada tipo de isoterma.

Actualmente se ha generalizado el uso de nitrógeno N₂ como adsorbato, de tal forma que los cálculos obtenidos están enfocados a las propiedades físicas del N₂, tales como el espesor "t" o los valores para determinar el área específica en función de la monocapa. La clasificación de las isotermas se desarrolla solo en la rama de adsorción, cuando inquiere sobre la rama de desorción aparecen dificultades para explicar en algunos casos el rizo de histéresis formado, el comportamiento diferente en la desorción llevó a otro estado los objetivos de la técnica pues se abrían nuevos horizontes en la investigación, así con el uso del nitrógeno como adsorbato se ha encontrado que la isoterma tipo I esta relacionada con adsorción monomolecular en el material después de la cual ya no hay adsorción. En fisisorción este tipo de isotermas son obtenidas por materiales microporosos tales como las zeolitas.

Cuando se trata de hablar de las propiedades derivadas de la isoterma, se considera solo la rama de adsorción, la evolución del volumen total de poro no se menciona en la rama de desorción, de tal forma que la región abierta de las isotermas II y III no interpretan la condensación capilar en poros de dimensiones correspondientes a mesoporos. Sin embargo, no hay mención de reversibilidad en este tipo de isotermas y lo que las diferencia con las isotermas IV, V es una llegada horizontal en la presión de saturación lo que habla de formación de multicapas. La teoría de adsorción de gases de van der Waals no menciona ni interpreta el significado de la rama de desorción y proporcionan la interpretación de la isoterma tipo I o de Langmuir, y derivan una ecuación para las otras tres III, IV, V ha sido complicada.

La isoterma tipo II en bajas presiones presenta un comportamiento parecido al tipo I hasta el punto B por lo cual Emmet y Brunauer [5] consideran que en este punto la superficie del material está cubierta totalmente por una monocapa de adsorbato, después de este punto la adsorción es paulatina lo cual corresponde indudablemente a la formación de multicapas. Este tipo de isotermas las producen los óxidos de aluminio.

La isoterma tipo III está caracterizada por una adsorción igual o menor que el calor de licuefacción del adsorbato por lo que se puede establecer que al inicio la interacción del adsorbato es más con él mismo que con la superficie. Esta isoterma es poco común, sin embargo, se ha obtenido en limaduras metálicas o en hidróxido de galio utilizando nitrógeno como adsorbato a 77 K.

Las isotermas tipo I, II y V; en algunos casos al encontrarse en la vecindad de la presión de saturación del gas, muestra una desviación hacia arriba si es condensación capilar u horizontal si es adsorción de multicapas.

1.2 Calculo del área BET

MÉTODO DE BRUNAUER EMMET Y TELLER (BET)

Este método explica cuantitativamente las isotermas de adsorción, permite encontrar el volumen de la monocapa y calcular el valor del área específica.

Brunauer, Emmett y Teller [6] se basaron en un modelo con determinadas características físicas para obtener la ecuación general de las isotermas de adsorción.

Utilizaron las características del modelo propuesto por Langmuir [7] para la adsorción monomolecular y que son:

- a) El gas se encuentra en equilibrio interno y con la superficie a la temperatura T. la cual implica que la densidad del gas es uniforme.
- b) Entre las moléculas del gas adsorbido y la fase adsorbida se supone un equilibrio dinámico a una presión p, es decir, el número de moléculas adsorbidas es constante en el tiempo.
- c) Independientemente del tipo de fuerzas que intervienen en la adsorción, las moléculas no pueden desplazarse libremente sobre la superficie y no interactúan con las moléculas adsorbidas vecinas.

El método BET fue desarrollado desde el punto de vista cinético, enfocando su atención al proceso de intercambio entre las moléculas en la fase gaseosa y las moléculas adsorbidas. El estado del sistema cuando se ha alcanzado el equilibrio para una presión dada se representa en la figura 1.2

Figura 1.2 Representación gráfica del modelo de adsorción de BET. [18]

Young [8] propone para deducir la ecuación de BET asumir que existe una relación entre S_o y S_1 , esto es:

$$A_1 p S_0 = b_1 S_1 \exp[-E_1/RT]$$
 1.4

 A_1 y b_1 son los coeficientes de condensación y evaporación respectivamente.

La cantidad de moléculas que se adsorben S_1 más la cantidad de moléculas que se evaporan de S_1 es igual a la cantidad de moléculas que se condensan en S_0 más la cantidad de moléculas que se evaporan de S_2 .

$$A_2 p S_1 + b_1 S_1 \exp[-E_1/RT] = A_1 p S_0 + b_2 S_2 \exp[-E_2/RT]$$
 1.5

Haciendo uso de 1.4 se tiene:

$$A_2 pS_1 = b_2 S_2 \exp[-E_2/RT]$$
 1.6

$$A_3 pS_2 = b_3 S_3 \exp[-E_3/RT]$$
 1.7

Para S_i

$$A_i p S_{i-1} = b_i S_i \exp[-E_i / RT]$$
 1.8

La superficie S total está dada por:

$$S = \sum_{i=0}^{i=\infty} S_i \tag{1.9}$$

El desarrollo analítico permite establecer la siguiente relación:

$$Va/Vm = \sum_{i=0}^{i=\infty} iS_i/S$$
 1.10

donde Va es el volumen adsorbido y Vm el volumen de la monocapa por gramo de muestra respectivamente.

Para la deducción BET supusieron que:

$$E_2 = E_3 = E_i = E_L$$

$$a_2 = a_3 = a_i$$

$$b_2 = b_3 = b_i$$
1.11

donde E_L es el calor de licuefacción del líquido a granel

Se realizaron las siguientes sustituciones:

$$g = b_i/A_i = constante \ i > 2$$

$$y = [A_i/b_i]p \exp[E_i/RT]$$

$$x = [p/g] \exp[E_1/RT]$$
1.12

De modo que las ecuaciones 1.4 a 1.9 pueden escribirse como:

$$S_0 = yS_1$$

 $S_0 = xS_1$
 $S_3 = xS_2 = x^2 S_1$
 $S_i = x^{i-1}S = x^{i-1}y S_0$
1.14

$$S_i = Cx^i S_0 \ para \ i > 0 \tag{1.15}$$

donde

$$C = \frac{y}{x} = [a_1 b_2 / a_2 b_1] \exp[\frac{(E_1 - E_L)}{RT}]$$
 1.16

La ecuación 1.10 se puede escribir como:

$$V_a / V_m = C S_0 \sum_{i=1}^{i=\infty} i \, x^i / [S_0 (1 + C \sum_{i=1}^{i=\infty} x^i)]$$
 1.17

La suma en el denominador es una progresión geométrica dada por

$$\sum_{i=1}^{i=\infty} x^i = x/(1-x)$$
 1.18

Substituyendo estos resultados en la ecuación 1.17 se obtiene

$$\frac{V_a}{V_m} = \frac{Cx}{[1-x][1-x+Cx]}$$
 1.19

Para la determinación de las constantes V_m y C la ecuación 1.19 se escribe de la siguiente forma

$$\left[\frac{x}{(1-x)}\right] \left[\frac{1}{Va}\right] = \left[\frac{1}{V_mc}\right] + \left[\frac{C-1}{V_mc}\right] x$$
 1.20

Al linealizar la anterior ecuación, la ordenada al origen $A = \frac{1}{V_m c}$; y la pendiente

 $B=\frac{C-1}{V_mC}.$

Se pueden obtener V_m y C como:

$$V_m = \frac{1}{A+B}$$
 1.21

$$C = 1 + \frac{B}{A}$$
 1.22

Una vez conocido V_m , al área específica de la muestra (S/W) se calcula por medio de la relación:

$$S/_{W} = N \sigma_{0} V_{m}/_{V_{0}}$$
 1.23

donde S es el área total de la muestra entre el peso de la misma, N es el número de Avogadro, σ_0 es el área de la molécula del adsorbato y V_0 el volumen molar del gas a condiciones normales de presión y temperatura (22.14 L.).

En este estudio el adsorbato utilizado es el nitrógeno cuya molécula tiene un área de 16.2 Å, si se llama $S_{BET} = S/W$ entonces la ecuación 1.23 dará:

$$S_{BET} = 4.35 * V_m$$
 1.24

De esta manera se calculó el área específica de las muestras utilizadas en el estudio.

1.3 El punto B

El punto B indica el valor de presión relativa para la cual el recubrimiento de la monocapa se ha completado, indicando el inicio de la adsorción por multicapas.

El tipo II de las isotermas obtenidas experimentalmente frecuentemente presentan una porción recta, una característica estrictamente no compatible con las propiedades de la ecuación de BET proporcionando un punto de inflexión. El punto en el cuál la porción lineal fue escogido por Emmett y Brunauer [5] como el punto B y lo tomaron para indicar que es donde se completa la monocapa, de modo que lo adsorbido en el punto B debe ser igual a la capacidad de la monocapa por el método BET.

Existe una correlación adecuada entre los dos métodos siempre y cuando el método BET se aplique en el intervalo de la isoterma que contiene al punto B.

Sin embargo, en ocasiones la determinación de punto B, cuando la curva de la isoterma es muy pronunciada, corresponde a valores altos de C de acuerdo con Young [8] y el punto puede localizarse con precisión aun cuando la región lineal es corta. De manera contraria cuando la curva de la isoterma es poco pronunciada, C es pequeño y la determinación del punto B es difícil de localizar y el valor de V_m puede diferir ampliamente de la del método BET.

1.4 La modificación del área BET

En el presente trabajo se calculó el área específica BET como se mencionó en la sección 1.2, sin embargo, se propone un nuevo método en donde se realiza una modificación a una variable con el objetivo de realizar la comparación entre ambos métodos.

En la ecuación 1.18 el numerador fue transformado por:

$$\sum_{1}^{i=\infty} i \ x^{i} = X \ \left(\frac{d}{dx}\right) \sum_{1}^{i=\infty} \ x = x/(1-x)^{2}$$
 1.25

por lo tanto; el termino $\frac{x}{Va(1-x^2)}$ será la modificación que deberá aplicarse al método propuesto el cual se llamará "área modelo", en donde V_m y C se obtienen de la misma forma que por el área BET; los resultados de estos dos métodos se muestran en el anexo A.

1.5 Histéresis

El rizo de histéresis formado por la rama de adsorción y desorción de una isoterma se obtiene de adsorbentes porosos y es atribuida a la condensación capilar. La primera explicación de la histéresis fue propuesta por Zsigmondy [9], quien supone que durante la adsorción el vapor no moja las paredes del poro completamente, sin embargo, en la desorción el mojado es completo consecuentemente $cos\theta = 1$ en la ecuación de Kelvin.

$$RT Ln \left(\frac{P_a}{P_s} \right) = -\frac{2\varphi V \cos\theta}{r}$$
 1.26

donde P_a es la presión de equilibrio en la rama de adsorción, P_s es la presión de saturación, φ tensión superficial, V volumen molar del adsorbato líquido, θ ángulo de humectación y r es el radio del poro cilíndrico.

Esto explica porque P_d , la presión de equilibrio es en desorción, es menor que P_a para una cantidad adsorbida. De aquí se deduce que la rama de desorción corresponde a un equilibrio verdadero de la condensación capilar.

Es lógico creer que los valores de desorción representan el equilibrio para una presión dada $({}^{P}/{}_{PS})$, y no por otra razón pues son más grandes que los valores de adsorción. Es posible aceptar que, por alguna razón, la formación del menisco es retrasado en el lado de adsorción, pero a la presión de saturación, todos los poros se llenan de líquido; consecuentemente, no puede haber un retraso en la formación del menisco en el lado de la desorción. Por estas razones los estudios sobre estructura porosa deben ser sobre la rama de desorción.

Sin embargo, existe la posibilidad de que hay un retraso en la formación del menisco. Fue sugerido por Kraemer [10] y McBain [11] sugieren que la histéresis es causada por poros en forma de tinteros.

En la rama de adsorción, el cuello estrecho se llenará a presiones bajas, y la parte ancha del cuerpo a presiones altas. En la rama de desorción, sin embargo, el poro se vaciará solo cuando la presión se reduzca tanto que el líquido en el cuello del poro se vuelva inestable. Si esta teoría fuere la única y correcta explicación de la histéresis, entonces la rama de adsorción representaría un verdadero equilibrio de condensación capilar. Sin embargo, si el adsorbente contiene poros de tintero en

una proporción no despreciable, entonces la desorción no representa un verdadero equilibrio de la condensación capilar.

Un poro tintero es cualquier poro con entradas estrechas y cuerpo amplio.

Un proceso presenta histéresis cuando al intervenir la dirección de cambio de la variable independiente (x) y la variable dependiente toma valores diferentes a los obtenidos en el proceso inicial. La histéresis es la tendencia de un material a conservar una de sus propiedades, en ausencia del estímulo que la ha generado. En el proceso de adsorción-desorción se pueden encontrar dos tipos de rizo de histéresis: tipo A y tipo F.

1.5.1 Rizo de histéresis. Tipo A.

El tipo A se caracteriza porque ambas ramas de la isoterma (adsorcióndesorción) son perpendiculares al eje de la presión, la adsorción ocurre antes de que se alcance la presión de saturación y la desorción se efectúa a presiones menores que la adsorción.

Una muestra que contenga poros cilíndricos cuyas entradas sean todas de las mismas dimensiones presentará este tipo de rizo. Boer [12] propuso una clasificación sustentada en la forma geométrica del poro observada en la figura 1.4, generando ciertos tipos de rizos de histéresis como se muestra en la figura 1.3.

Figura 1.3 Los cinco tipos de rizos de histéresis de acuerdo con la clasificación de Boer. [18]

Figura 1.4 Formas de poro que generan un rizo de histéresis de tipo A. [18]

1.5.2 Rizo de histéresis. Tipo F.

Este tipo de rizo que no pertenece a la clasificación de Boer, es el más común de encontrar y se caracteriza por que sus dos ramas adsorción – desorción son inclinadas como se muestra en la figura 1.5.

En el presente trabajo, para ser consistente con la clasificación de Boer se asumen poros de una forma geométrica, pero de diversas dimensiones.

Figura 1.5 Rizo de histéresis del tipo F. [18]

CAPÍTULO 2. Distribución del diámetro de poro (D.D.P)

2.1 Distribución del diámetro de poro Barrett Joyner y Halenda (BJH)

En el presente trabajo se proporciona el método para determinar distribuciones de diámetro de poro usando el método de Wheeler a través del procedimiento BJH [2]. Se desarrolló un programa con los siguientes fundamentos teóricos en el que se tomaron 13 puntos de cada una de las isotermas, se pudo correr el programa de presiones bajas a altas en el que se obtuvieron resultados (Anexo C) discutidos en el capítulo 4.

Las características de este método BJH son las siguientes:

- a. Se utiliza la isoterma de desorción.
- b. Se supone que los poros son de forma cilíndrica.
- c. Se supone como lo hizo Wheeler [13]; que el volumen desorbido en cualquier punto de la isoterma, es calculado como volumen líquido:

$$V_a = V_c + V_1 \tag{2.1}$$

donde V_c es el volumen líquido que se desorbe capilarmente en poros de radio r_c y V_1 es el volumen desorbido por multicapas de las paredes de los poros con radios mayores que r_c .

- d. Cuando se inicia la desorción todos los poros se encuentran llenos de tal forma que $V_a = V_c$.
- e. El espesor "t" en cualquier punto de la isoterma se calcula por medio de la ecuación 2.2.

$$t = 3.54 \left(\frac{v_a}{v_m}\right)$$
 2.2

- f. El cálculo de la D.D.P. se realiza hasta un radio mínimo de 15 Å propuesto por Dubinin [14].
- g. Los poros se clasifican en diferentes grupos en función de la presión.

El número j de grupos de poro que se calculan para una isoterma depende de la forma de esta. El radio representativo del grupo $j - \acute{esimo}$ es el promedio aritmético de los extremos del intervalo, es decir.

$$r_j = \left(\bar{r}_{jmax} + \bar{r}_{jmin}\right)/2 \tag{2.3}$$

Tomando en cuenta que el volumen total desorbido durante el decremento j de presión Va_j es la suma del volumen desorbido capilarmente Vc_j y el volumen desorbido de las multicapas $V1_j$

$$Va_j = Vc_j + V1_{j-1}$$
 2.4

Cuando se inicia la desorción, esto es, $(p/P_s) = 1$ todos los poros están llenos. Al bajar la presión a una presión (p/P_s) , los poros de radio r_1 se vacían quedando en sus paredes una capa adsorbida de espesor t_1 . Como ya se mencionó, en este paso $Va_1 = Vc_1$ de tal forma que el volumen total del poro de radio r_1 es:

$$Vc = R_{11}Vc_1 = R_{11}Va_1 2.5$$

donde R₁₁ está definido como:

$$R_{11} = (\bar{r}_1 / \bar{r}_1 - t_1)^2$$
 2.6

de aquí

$$Vp_1 = (\bar{r}_1/\bar{r}_1 - t_1)^2 Va_1$$
 2.7

En el siguiente paso, al pasar a $(p/P_s)_2$ con $(p/P_s)_1 > (p/P_s)_2$ el volumen Vp_2 se calcula como:

$$Vp_2 = R_{22}Vc_2 = (\bar{r}_2/\bar{r}_2 - t_2)^2 Vc_2$$
 2.8

Pues en las paredes del poro permanece una capa adsorbida de espesor t_2 .

$$Vc_2 = Va_2 + V1_1$$
 2.9

donde $V1_1$ es la cantidad desorbida de los poros de radio \bar{r}_1 al reducirse la capa adsorbida en ellos de un espesor t_1 al nuevo espesor t_2 representado en la figura 2.1 $V1_1$ se calcula como:

$$V1_1 = Vp_1[(\bar{r}_1 - t_2/\bar{r}_1)^2 - (\bar{r}_1 - t_1/\bar{r}_1)^2]$$
 2.10

de aquí

$$Vp_2 = R_{22}(Va_2 - V1) = R_{22}(Va_2 - Vp) - [(\bar{r_1} - t_2/\bar{r_1})^2 - (\bar{r_1} - t_1/\bar{r_1})^2] \quad 2.11$$

Al reducirse la presión n veces $(p/Ps)_n$ el volumen de poro Vp_n será

$$Vp_n = R_{nn}Vcn 2.12$$

con

$$Vc_n = Van - V1_{n-1}$$
 2.13

 $V1_{n-1}$ es la cantidad que se desorbe de todos los poros mayores que el radio r_n al reducirse sus espesores t_{n-1} a un espesor t_n . El volumen es entonces:

$$V1_{n-1} = \sum_{j=1}^{n-1} \left\{ \left[\left(\frac{\bar{r}_j - t_{j+1}}{\bar{r}_j} \right)^2 \right] - \left(\frac{\bar{r}_j - t_j}{\bar{r}_j} \right)^2 \right\} V p_j$$
 2.14

y así la ecuación 2.13 queda como:

$$Vp_{n} = Rnn \left[Van - \sum_{j=1}^{n-1} \left(\frac{\bar{r}_{j} - t_{j}}{\bar{r}_{j+1}} \right)^{2} - \left(\frac{\bar{r}_{j} - t_{j}}{\bar{r}_{j}} \right)^{2} Vp \right]$$
 2.15

Al graficar Vp_n contra \bar{r}_n se obtienen la D.D.P. del material. \bar{r}_n según sea el caso, se calcula por medio de las siguientes ecuaciones:

 $(p_e/P_s) = exp(-2\gamma Vm/RT r_e)$ para un menisco cóncavo.

 $(p_c/P_s) = exp(-\gamma Vm/RT r_c)$ para un poro cilíndrico abierto sus extremos.

Figura 2.1 Representación esquemática del mecanismo de desorción en poros de diferentes radios y el espesor adsorbido en cada una de las presiones correspondientes a esos radios. [18]

El área de los poros de radio \bar{r}_n es:

$$S_{pn} = 2Vpn/\bar{r}_n \qquad 2.16$$

La suma de todas las áreas S_{pn} proporciona el área total acumulada Sacum.

$$Sacum = \sum_{I=1}^{n} Sp_{I}$$
 2.17

La media *Sacum* sirve para determinar que tan exacto, es el modelo empleado. *Sacum* se compara para esto con el área $BET(S_{BET})$ la cúal se considera como el área real de la muestra.

El volumen total acumulado Vacum es la suma de todos los Vpn,es decir;

$$Vacum = \sum_{J=1}^{n} V p_J$$
 2.18

Como las medidas se realizan en términos de volúmenes de gas adsorbido en condiciones normales de presión y temperatura, se deben convertir estos valores de volumen de gas a valores de volumen líquido.

$$V_{lig} = 0.001558V \text{ a CNTP}$$
 2.19

Lo cual sólo se aplica al nitrógeno.

2.2 Distribución de diámetro de poro de adsorción (Dos sentidos)

Es sabido que para la obtención de la D.D.P. de un material la isoterma obtenida de N₂ debe ser mencionada y asignar un valor promedio del radio de Kelvin y del espesor "t" y con ello asignar el volumen correspondiente a ese radio promedio Roberts [15] desarrolla el método de presiones mayores a menores o reduciendo presiones. Así ha quedado establecida la metodología común. Sin embargo, considerando que existen poros de una sola geometría regular se invirtió el procedimiento de presiones menores a mayores y asignar el volumen con el propósito de confirmar la caracterización reportada por la D.D.P. y verificar las posibles desviaciones.

Como se verá adelante existe un sólido en reproducción cuando la isoterma se desarrolla en una región especifica de los cuadrantes definidos lo que puede utilizarse para desarrollar con certeza el método Horváth-Kawazoe [16].

Confirmando así el uso del método de Horváth-Kawazoe para microporos pues aparece en esta como una sola distribución para adsorción- desorción, con lo que puede extenderse el recorrido de la D.D.P. de Roberts a valores cercanos a los 10 Å como punto mínimo.

CAPÍTULO 3. Isotermas y D.D.P.

3.1 Isotermas de adsorción-desorción

Para este estudio se utilizaron datos experimentales obtenidos de diversos autores [2, 17, 18, 19, 20] de 16 muestras que permitieron realizar las siguientes graficas de adsorción-desorción.

Figura 3.1 Muestra en estudio con datos de Anderson [17].

Figura 3.2 Muestra en estudio con datos de Barrett [2].

Figura 3.3 Muestra en estudio con datos de Barrett [2].

Figura 3.4 Muestra en estudio con datos Soria [19].

Figura 3.5 Muestra en estudio con datos Soria [19].

Figura 3.6 Muestra en estudio con datos de Briones [20].

Figura 3.8 Muestra en estudio con datos de Briones [20].

Figura 3.9 Muestra en estudio con datos de Hernández [18].

Figura 3.10 Muestra en estudio con datos de Anderson [17].

Figura 3.12 Muestra en estudio con datos de Hernández [18].

Figura 3.13 Muestra en estudio con datos de Hernández [18].

Figura 3.14 Muestra en estudio con datos de Hernández [18].

Figura 3.15 Muestra en estudio con datos de Hernández [18].

Figura 3.16 Muestra en estudio con datos de Hernández [18].

3.2 Isotermas según la región en función de la recta y=x

Cuando aparece el rizo de histéresis en la isoterma de adsorción se encuentra sustentada en la ecuación de Kelvin.

Se puede obtener una conclusión analítica al normalizar la isoterma y distinguir las regiones que se encuentran en la figura 3.17 y 3.18.

Figura 3.17 Tipos de regiones en función a la recta y=x propuesta por Hernández [18].

Puesto que la porosidad de una muestra depende de la energía libre de Gibbs de formación del material, entonces la cantidad de poros es una característica propia que dependerá del valor de las propiedades y su control al momento de la formación del material.

Al formarse el material la red formada define la porosidad de éste, distinguiéndose más el comportamiento entre el adsorbente – adsorbato que en la cantidad adsorbida en cierta zona de presión.

3.3 Isotermas normalizadas

Para una correcta interpretación de las isotermas de adsorción es necesario que los datos de volumen y presión sean normalizados; permitiendo una mejor ordenación en donde se pueda distinguir el tipo de isoterma de la clasificación de Brunauer [1], la observación de características que pueden proporcionar información del material. La normalización permitirá la obtención del punto B mediante un giro de la isoterma.

A continuación, se presentan las muestras de isotermas normalizadas.

Figura 3.19 Muestra normalizada con datos de Anderson [17].

Figura 3.20 Muestra normalizada con datos de Barrett [2].

Figura 3.21 Muestra normalizada con datos de Barrett [2].

Figura 3.22 Muestra normalizada con datos Soria [19].

Figura 3.23 Muestra normalizada con datos Soria [19].

Figura 3.24 Muestra normalizada con datos de Briones [20].

Figura 3.25 Muestra normalizada con datos de Briones [20].

Figura 3.26 Muestra normalizada con datos de Briones [20].

Figura 3.27 Muestra normalizada con datos de Hernández [18].

Figura 3.28 Muestra normalizada con datos de Anderson [17].

Figura 3.29 Muestra en estudio con datos de Hernández [18].

Figura 3.30 Muestra en estudio con datos de Hernández [18].

Figura 3.31 Muestra en estudio con datos de Hernández [18].

Figura 3.32 Muestra en estudio con datos de Hernández [18].

Figura 3.33 Muestra en estudio con datos de Hernández [18].

Figura 3.34 Muestra en estudio con datos de Hernández [18].

3.4 Forma de la D.D.P. según la región

Las isotermas en estudio pueden ser ubicadas en términos de la recta y = x, ya que pueden encontrarse por arriba, sobre o por debajo de esta recta y como podrá observarse dicha posición tiene repercusión en la forma de la D.D.P. con la que se determina la utilidad del material como soporte.

Cuando la isoterma normalizada presenta un rizo de histéresis por arriba de la recta y = x, corresponde a radios pequeños, la D.D.P es unimodal y el volumen total de poro de la isoterma es muy próximo al volumen total de poro de la distribución (ver tabla 4.2, sección 4.2).

Cuando la isoterma normalizada se encuentra sobre la recta y = x, presenta un corrimiento a radios mayores con una dispersión baja.

Por último, la isoterma que se encuentra por debajo de la recta y = xmantiene una reducción en la distancia y una ampliación en recorrido de la distribución del diámetro de poro; además una tendencia al crecimiento de radios promedio dicho crecimiento permitirá que los poroso grandes se interconecten.

CAPÍTULO 4. Resultados

4.1 La obtención del punto B mediante un giro en la isoterma

El punto B puede ser determinado de otra forma gráfica; para ello se debe dar un giro de 90° a la isoterma de estudio normalizada, visualiza el punto máximo de la curva, y al trazar una línea recta, se puede leer el punto B como se muestra a continuación.

Figura 4.1 Muestra en rotación con datos de Anderson [17], (a) para vidrio poroso, (b) para SiO2 aerogel.

De esta manera se puede observar en la figura 4.1a el punto B del vidrio poroso 7 igual a 0.41 y en la figura 4.1b el de la SiO_2 aerogel igual a 0.16. Los resultados se muestras en la tabla 4.1 (sección 4.2).

A continuación, se presentan las muestras de isotermas normalizadas en rotación, así como el punto B correspondiente.

Figura 4.2 Muestra en rotación con datos de Barrett [2], (a) para silica gel, (b) para carbón activado.

Figura 4.3 Muestra en rotación con datos de Hernández [18], (a) para bohemita a 200°C, (b) para bohemita a 400°C, (c) para bohemita a 450°C, (d) para bohemita a 500°C, (e) para bohemita a 600°C, (f) para bohemita a 700°C, (g) para bohemita a 850°C.

Figura 4.4 Muestra en rotación con datos de Briones [20], (a) para zeolita IV, (b) para zeolita V, (c) para N-PROPYL.

Figura 4.5 Muestra en rotación con datos Soria [19], (a) para zeolita VIII, (b) para zeolita X.

4.2 Cálculo del área específica y el volumen total de poro

Para el cálculo del área específica de las isotermas se consideró el método BET, una modificación propuesta (sección 1.4) y la normalización de datos para la obtención del punto B. Se determinó el volumen de la monocapa (V_m) como lo indica en el método BET. Los resultados obtenidos son ordenados en la tabla 4.1 y graficados en la figura 4.6 de la siguiente manera:

Tabla 4.1 Resultados del área específica.

# de muestra	Muestra	Punto B	Área B (m²/g)	S _{BET} (m²/g)	Área modelo (m²/g)	C modelo	<i>Ē</i> modelo	Vm	\overline{Vm}
1	SiO ₂ aerogel	0.16	904.8	1024.87	1224.27	41.3		235.6	
2	Carbón activado	0.69	1092.55	1001.57	1200	120.53	60.92	230.41	203.79
3	Silica gel	0.42	772.82	812.01	909.2	58.34		186.66	
4	VIII	0.8	856.08	706.89	867.62	23.53		162.5	
5	Х	0.26	427.52	525.38	643.61	19.42		120.77	
6	N- PROPYL	0.1	413.25	423.58	549.03	43.29	22.46	97.37	95.305
7	IV	0.1	235.99	383.01	515.93	10.14		88.05	-
8	V	0.07	197.92	326.39	430.96	17.02		75.03	
9	200	0.24	283.69	283.03	365.32	33.35		65.06	
10	Vidrio poroso 7	0.41	242.56	258.99	316.62	36.09		59.54	
11	450	0.15	226.59	233.81	301.88	33.43		53.75	
12	400	0.19	212.25	223.55	288.97	28.19	32.02	51.39	46.375
13	600	0.11	183.91	197.81	255.62	32.47		45.47	
14	500	0.12	181.41	189.78	244.9	34.72		43.63	
15	700	0.12	186.87	189.32	244.11	31.71		43.52	
16	850	0.06	33.55	37.6	48.71	26.26		8.64	

Se realizó una correlación entre las columnas S_{BET} y C modelo obteniendo un valor de r=0.6.

En la figura 4.6 se observa que la curva del S_{BET} y el "área modelo" son paralelas y la curva de área B es solo una aproximación al área específica.

Se calculó el volumen total de poro (V_{TP}) de la distribución del diámetro de poro. El V_{TP} de la isoterma se encuentra reportado en los datos experimentales obtenidos de diversos autores [2, 17, 18, 19, 20]. En la tabla 4.2 se presenta el tipo de isoterma establecido de acuerdo con la clasificación de Brunauer [1] que explica la información experimental. Se realizó una correlación entre las columnas V_{TP} isoterma y B obteniendo un valor de r=0.84.

Muestra	Tipo de isoterma	Tipo de rizo	V _{TP} distribución	V _{TP} isoterma	Corte de la isoterma	В
SiO ₂ aerogel	IV	Tipo A	1255.13	1300	0.35	455
Carbón activado	I	Tipo A	140.18	364	0.77	280.28
Silica gel	I	Tipo A	407.03	423	0.65	274.95
VIII		-	175.11	246	0.78	191.88
Х	IV	Tipo A	375.76	378	0.54	204.12
N-PROPYL	II	Tipo A	912.28	950	0.29	275.5
IV	IV	Tipo A	551.25	542.5	0.36	195.3
V	II	Tipo A	636.61	650	0.3	195
200	IV	Tipo F	226.31	271.73	0.52	141.2996
Vidrio poroso 7	I	Tipo A	123.11	136	0.63	85.68
450	II	Tipo A	309.13	347.27	0.4	138.908
400	II	Tipo F	214.62	256.81	0.49	125.8369
600	II	Tipo A	340.17	384.34	0.32	122.9888
500	II	Tipo A	306.28	347.52	0.35	121.632
700		Tipo A	316.69	357.99	0.34	121.7166
850	111	Tipo A	85.27	128.566	0.28	35.99848

Tabla 4.2 Volumen total de poro, tipos de isotermas y rizo de histéresis.

Figura 4.7 Volumen total de poro.

El volumen de la D.D.P. es muy parecido al volumen total de poro de la isoterma, en la figura 4.7 se observa una semejanza entre ambas curvas, de manera tal que el cálculo del V_{TP} de la distribución se realizó con exactitud.

4.2 Propiedades medidas, parámetros obtenidos y criterios utilizados

El estudio es dirigido a la determinación de propiedades estructurales a través de modelos de medida: la distribución del diámetro de poro a través de la rama de adsorción de la isoterma de nitrógeno, el área específica determinada por el método BET y la normalización de la isoterma para obtener el punto B.

4.2.1. Distribuciones del diámetro de poro

La D.D.P. se determinó solo para la isoterma de adsorción, se corrió de menor a mayor presión y viceversa, obteniendo resultados similares (Anexo C). Al graficar radio vs volumen se obtuvieron las gráficas de las distribuciones, que se mostrarán a continuación, en las cuales la leyenda "normal" indicará que la distribución es calculada de mayor a menor presión y la leyenda "inversa" indicará que el cálculo es menor a mayor presión.

Figura 4.8 Isotermas por arriba de la recta y=x y su D.D.P.

En la figura 4.8 se muestra de lado izquierdo isotermas de materiales con baja porosidad y del lado derecho sus distribuciones correspondientes; que se comportan de manera unimodal, caracterizado por radios pequeños.

Las figuras 4.8 a, c, e, i, presentan una adsorción multicapas y son características de materiales microporosos. La alta energía de la adsorción de microporos produce que el gas (N₂) se adsorba a bajas presiones.

Figura 4.9 lsoterma sobre la recta y=x y su D.D.P.

En la figura 4.9a se observa una isoterma tipo IV ubicada sobre la recta y = x; de materiales mesoporosos, presenta adsorción multicapas y la condensación capilar, la figura 4.9b es su D.D.P. que presenta un corrimiento a radios mayores con una dispersión baja.

0.8

0.6

0.4

0.2

0.0

0

Adsorción Nonomolecular 🛽

0.2

0.4

Figura 4.10 Isotermas por debajo de la recta y=x y su D.D.P.

En la figura 4.10 se muestra de lado izquierdo las isotermas de materiales con poros grandes, ubicadas por debajo de la recta y = x y del lado derecho las distribuciones correspondientes; que mantienen una reducción en la distancia, con una tendencia al crecimiento de radios permitiendo que los poros grandes se interconecten. También se observa que cuando el rizo de histéresis baja hacia el eje x, la D.D.P. empieza a separarse.

Las figuras 4.10 a, c, e, g, i, k, m, ñ y p son isotermas de materiales mesoporosos y presentan condensación capilar.

La figura 4.10r es una isoterma tipo III en la que las interacciones adsorbatoadsorbente son débiles y presentan adsorción multicapas y condensación capilar.

CAPÍTULO 5. Conclusiones

El objetivo establecido en el nombre del presente trabajo de inicio parecía un atrevimiento, la adsorción en muchos años ha sido muy caprichosa y egoísta pues poco se ha obtenido en varias décadas. En las investigaciones existentes sobre el fenómeno ha sido difícil saber si se puede encontrar aterrizaje en la generalidad.

El desarrollo de este trabajo permitió encontrar dos criterios: uno geométrico y otro analítico para obtener que el valor del área BET quedará en el centro de los datos obtenidos por cada uno de los criterios, lo que hace al método de BET un método Roberts el quedar dentro de dos aproximaciones.

Con los resultados obtenidos se encontró una aproximación cercana para la distribución de diámetro de poro D.D.P. en términos de la región en la que se forma el rizo de histéresis de la isoterma, en función de su colocación en el sistema de cuadrantes pues la ubicación de la isoterma normalizada entre las rectas y = x y y = 1 - x, en las que en este trabajo se define cuatro regiones.

La obtención de la D.D.P. por los dos métodos; de presión alta a presión baja y viceversa llevo a una forma muy parecida, pero no iguales en el punto de intersección.

Además, pensando en el punto de intersección de la recta y = 1 - x del volumen adsorbido con el volumen total de poro, presentan un alto valor de correlación r=0.84. Se debe tener en cuenta que la correlación entre los parámetros de las propiedades texturales no existe, sin embargo, este valor alto es muy difícil de encontrar e interpretar, se considera que en este punto los poros mayores son solo los que pueden completar su llenado.

Finalmente se considera que el número de pasos establecidos para el cálculo de la D.D.P. fueron los adecuados debido a que el método no presentó sobre estimación en el volumen total de poro.

Referencias bibliográficas

- Brunauer S., Deming L., Deming W. and Teller E. On a theory of the van der Waals adsorption of gases. J Am Chem Soc. (1940); 62, 1723.
- Barrett E., Joyner L. and Halenda P. The determination of pore volume and area distributions in porous Substances. I. Computations from nitrogen isotherms. J Am Chem Soc. (1951); 73, 373.
- 3. Brunauer S., Mikhail R. and Bodor E. *Pore structure analysis without a pore shape model* J colloid interface Science. (1967); 24, 451.
- Boon A., van der Grift C., van Veldhuizen A. and Geus J. Influence of porous structure and external morphology on activity of catalyst spheres prepared by the sol-gel method. Studies in Surface Science and Catalysis. (1991); 62, 717.
- 5. Emmett P. and Brunauer S. The use of low temperature van der Waals adsorption isotherms in determining the surface area of iron synthetic ammonia catalysts. J Am Chem Soc. (1937); 59, 1553.
- Brunauer S., Emmett P. and Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. (1938); 60, 309.
- Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc. (1919); 38, 2221.
- Young D. and Crowell A. *Physical adsorption of gases*. First Edition. London Butterworths (1962).
- 9. Zsigmondy R. Über die struktur des Gels der Kieselsäure. Theorie der Entwässerung. Z Anorg Allgem Chem. (1911); 71, 356.
- 10. Kraemer E. and Taylor H. *A treatise on physical chemistry*. Van Nostrand, New York, (1931).

- 11. McBain J. An explanation of hysteresis in the hydration and dehydration of gels. J Am Chem Soc. (1935); 57, 699.
- Everett D. and Stone F. *The structure and properties of porous materials.* London Butterworth (1958).
- Wheeler A. Presentation at Catalysis Symposia. Gibson Island A. A. S. Conferences Junio (1945).
- 14. Dubinin M.M. Modern state of the theory of gas and vapour adsorption by microporous adsorbents. Pure and Appl. Chem. (1965); 10, 309.
- 15. Roberts B. A procedure for estimating pore volume and area distributions from sorption isotherms. J colloid interface Science. (1967); 23, 266.
- 16. Horváth G. and Kawazoe K. *Method for the calculation of effective pore size distribution in molecular sieve carbon.* J Chem Eng Japan. (1983); 16,470.
- 17. Anderson R. *Pore distributions from desorption isotherms*. J. Catal. (1964);3, 50.
- Hernández Fernández A. Propiedades texturales obtenidas de un arreglo en la isoterma de adsorción. Licenciatura. FES Zaragoza; (2015).
- 19. Soria Guzmán S. *Nuevas descripciones de la isoterma de adsorción.* Licenciatura. FES Zaragoza; (2017).
- 20. Briones Tavares C. Seguimiento de cambio morfológico por adsorción. Licenciatura. FES Zaragoza; (2017).

ANEXO A.

Recolección de datos de isotermas

Para el presente estudio se utilizaron datos experimentales recolectados de diversos autores [2, 17, 18, 19, 20] de 16 muestras que permitieron realizas las isotermas de adsorción-desorción.

SiO ₂ AEROGEL									
15	SOTERMA	A DE ADSORCIÓN	ISOTERMA DE DESORCIÓN						
P/PS	CC/G	NORMALIZADA	P/PS	CC/G	NORMALIZADA				
0	0	0	0	0	0				
0.05	195	0.15	0.05	195	0.15				
0.085	221	0.17	0.085	221	0.17				
0.13	247	0.19	0.13	247	0.19				
0.15	253.5	0.195	0.15	253.5	0.195				
0.22	279.5	0.215	0.22	279.5	0.215				
0.25	286	0.22	0.25	286	0.22				
0.3	312	0.24	0.3	312	0.24				
0.35	325	0.25	0.35	325	0.25				
0.4	344.5	0.265	0.4	344.5	0.265				
0.55	396.5	0.305	0.55	396.5	0.305				
0.58	416	0.32	0.58	416	0.32				
0.69	481	0.37	0.69	481	0.37				
0.7	494	0.38	0.7	494	0.38				
0.8	604.5	0.465	0.8	604.5	0.465				
0.87	767	0.59	0.83	741	0.57				
0.88	793	0.61	0.88	1131	0.87				
0.905	910	0.7	0.89	1261	0.97				
0.92	975	0.75	0.92	1274	0.98				
0.935	1053	0.81	0.935	1280.5	0.985				
0.945	1131	0.87	0.945	1287	0.99				
0.97	1293.5	0.995	0.97	1293.5	0.995				
1	1300	1	1	1300	1				
CARBÓN ACTIVADO									
-----------------	--------	----------------	------	-----------------------	-------------	--	--	--	--
15	SOTERM	A DE ADSORCIÓN	15	ISOTERMA DE DESORCIÓN					
P/PS	CC/G	NORMALIZADA	P/PS	CC/G	NORMALIZADA				
0	0	0	0	0	0				
0	160	0.4396	0	160	0.4396				
0.05	240	0.6593	0.05	240	0.6593				
0.1	258	0.7088	0.1	258	0.7088				
0.15	270	0.7418	0.15	270	0.7418				
0.2	277	0.7610	0.2	277	0.7610				
0.25	281	0.7720	0.25	281	0.7720				
0.3	288	0.7912	0.3	288	0.7912				
0.35	292	0.8022	0.35	292	0.8022				
0.4	299	0.8214	0.4	299	0.8214				
0.45	300	0.8242	0.45	300	0.8242				
0.5	303	0.8324	0.5	312	0.8571				
0.55	307	0.8434	0.55	319	0.8764				
0.6	313	0.8599	0.6	322	0.8846				
0.65	318	0.8736	0.65	324	0.8901				
0.7	320	0.8791	0.7	330	0.9066				
0.75	322	0.8846	0.75	332	0.9121				
0.8	330	0.9066	0.8	335	0.9203				
0.85	335	0.9203	0.85	340	0.9341				
0.9	340	0.9341	0.9	344	0.9451				
0.95	342	0.9396	0.95	352	0.9670				
1	364	1	1	364	1.00				

SILICA GEL									
IS	OTERMA	A DE ADSORCIÓN	IS	OTERMA	A DE DESORCIÓN				
P/PS	CC/G	NORMALIZADA	P/PS	CC/G	NORMALIZADA				
0	0	0	0	0	0				
0.024	125	0.2955	0.024	125	0.2955				
0.05	155	0.3664	0.05	155	0.3664				
0.1	183	0.4326	0.1	183	0.4326				
0.15	203	0.4799	0.15	203	0.4799				
0.2	221	0.5225	0.2	221	0.5225				
0.25	240	0.5674	0.25	240	0.5674				
0.3	259	0.6123	0.3	259	0.6123				
0.35	276	0.6525	0.35	276	0.6525				
0.4	296	0.6998	0.4	296	0.6998				
0.45	315	0.7447	0.45	320	0.7565				
0.5	337	0.7967	0.5	411	0.9716				
0.55	362	0.8558	0.55	412	0.9740				
0.6	381	0.9007	0.6	415	0.9811				
0.65	403	0.9527	0.65	416	0.9835				
0.7	413	0.9764	0.7	417	0.9858				
0.75	419	0.9905	0.75	418	0.9882				
0.8	420	0.9929	0.8	419	0.9905				
0.85	421	0.9953	0.85	421	0.9953				
0.9	422	0.9976	0.9	422	0.9976				
0.95	423	1.0000	0.95	423	1.0000				
1	423	1.0000	1	423	1.0000				

15	SOTERM/	A DE ADSORCIÓN	ISOTERMA DE DESORCIÓN						
P/PS	CC/G	NORMALIZADA	P/PS	CC/G	NORMALIZADA				
0	0	0.0000	0	0	0.0000				
0.05	110	0.4472	0.05	110	0.4472				
0.1	146	0.5935	0.1	146	0.5935				
0.15	164	0.6667	0.15	164	0.6667				
0.2	180	0.7317	0.2	180	0.7317				
0.25	195	0.7927	0.25	195	0.7927				
0.3	206	0.8374	0.3	206	0.8374				
0.35	218	0.8862	0.35	218	0.8862				
0.4	222	0.9024	0.4	222	0.9024				
0.45	228	0.9268	0.45	228	0.9268				
0.5	234	0.9512	0.5	234	0.9512				
0.55	238	0.9675	0.55	238	0.9675				
0.6	242	0.9837	0.6	242	0.9837				
0.65	242	0.9837	0.65	242	0.9837				
0.7	244	0.9919	0.7	244	0.9919				
0.75	244	0.9919	0.75	244	0.9919				
0.8	246	1.0000	0.8	246	1.0000				
0.85	246	1.0000	0.85	246	1.0000				
0.9	246	1.0000	0.9	246	1.0000				
0.95	246	1.0000	0.95	246	1.0000				
1	246	1.0000	1	246	1.0000				

ΖΕΟΙΙΤΑ Χ									
15	SOTERMA	A DE ADSORCIÓN	ISOTERMA DE DESORCIÓN						
P/PS	CC/G	NORMALIZADA	P/PS	CC/G	NORMALIZADA				
0	0	0.000	0	0	0.0000				
0.05	76	0.201	0.05	76	0.2011				
0.1	100	0.265	0.1	100	0.2646				
0.15	118	0.312	0.15	118	0.3122				
0.2	130	0.344	0.2	130	0.3439				
0.25	144	0.381	0.25	144	0.3810				
0.3	152	0.402	0.3	152	0.4021				
0.35	168	0.444	0.35	168	0.4444				
0.4	184	0.487	0.4	184	0.4868				
0.45	202	0.534	0.45	202	0.5344				
0.5	220	0.582	0.5	260	0.6878				
0.55	242	0.640	0.55	300	0.7937				
0.6	270	0.714	0.6	336	0.8889				
0.65	304	0.804	0.65	358	0.9471				
0.7	328	0.868	0.7	362	0.9577				
0.75	346	0.915	0.75	370	0.9788				
0.8	358	0.947	0.8	372	0.9841				
0.85	372	0.984	0.85	372	0.9841				
0.9	374	0.989	0.9	374	0.9894				
0.95	376	0.995	0.95	376	0.9947				
1	378	1.000	1	378	1.0000				

N-PROPYL									
15	SOTERMA	A DE ADSORCIÓN	ISOTERMA DE DESORCIÓN						
P/PS	CC/G	NORMALIZADA	P/PS	CC/G	NORMALIZADA				
0	0	0.0000	0	0	0.0000				
0.05	45	0.0474	0.05	45	0.0474				
0.1	105	0.1105	0.1	105	0.1105				
0.15	115	0.1211	0.15	115	0.1211				
0.2	120	0.1263	0.2	120	0.1263				
0.25	125	0.1316	0.25	125	0.1316				
0.3	130	0.1368	0.3	130	0.1368				
0.35	135	0.1421	0.35	135	0.1421				
0.4	140	0.1474	0.4	140	0.1474				
0.45	145	0.1526	0.45	145	0.1526				
0.5	145	0.1526	0.5	145	0.1526				
0.55	150	0.1579	0.55	150	0.1579				
0.6	160	0.1684	0.6	160	0.1684				
0.65	175	0.1842	0.65	200	0.2105				
0.7	200	0.2105	0.7	260	0.2737				
0.75	240	0.2526	0.75	370	0.3895				
0.8	330	0.3474	0.8	800	0.8421				
0.85	560	0.5895	0.85	905	0.9526				
0.9	920	0.9684	0.9	930	0.9789				
0.95	940	0.9895	0.95	945	0.9947				
1	950	1.0000	1	950	1.0000				

ZEOLITA IV									
18	SOTERM	A DE ADSORCIÓN	ISOTERMA DE DESORCIÓN						
P/PS	CC/G	NORMALIZADA	P/PS	CC/G	NORMALIZADA				
0	0	0.0000	0	0	0.0000				
0.05	50	0.0922	0.05	50	0.0922				
0.1	65	0.1198	0.1	65	0.1198				
0.15	75	0.1382	0.15	75	0.1382				
0.2	90	0.1659	0.2	90	0.1659				
0.25	95	0.1751	0.25	95	0.1751				
0.3	100	0.1843	0.3	100	0.1843				
0.35	110	0.2028	0.35	110	0.2028				
0.4	115	0.2120	0.4	115	0.2120				
0.45	125	0.2304	0.45	125	0.2304				
0.5	140	0.2581	0.5	140	0.2581				
0.55	155	0.2857	0.55	155	0.2857				
0.6	170	0.3134	0.6	180	0.3318				
0.65	185	0.3410	0.65	205	0.3779				
0.7	200	0.3687	0.7	250	0.4608				
0.75	250	0.4608	0.75	425	0.7834				
0.8	425	0.7834	0.8	515	0.9493				
0.85	500	0.9217	0.85	530	0.9770				
0.9	520	0.9585	0.9	535	0.9862				
0.95	540	0.9954	0.95	540	0.9954				
1	542.5	1.0000	1	542.5	1.0000				

ZEOLITA V									
15	SOTERMA	A DE ADSORCIÓN	15	ISOTERMA DE DESORCIÓN					
P/PS	CC/G	NORMALIZADA	P/PS	CC/G	NORMALIZADA				
0	0	0.0000	0	0	0.0000				
0.05	48	0.0738	0.05	48	0.0738				
0.1	66	0.1015	0.1	66	0.1015				
0.15	75	0.1154	0.15	75	0.1154				
0.2	84	0.1292	0.2	84	0.1292				
0.25	87	0.1338	0.25	87	0.1338				
0.3	90	0.1385	0.3	90	0.1385				
0.35	93	0.1431	0.35	93	0.1431				
0.4	99	0.1523	0.4	99	0.1523				
0.45	102	0.1569	0.45	102	0.1569				
0.5	114	0.1754	0.5	114	0.1754				
0.55	120	0.1846	0.55	120	0.1846				
0.6	129	0.1985	0.6	144	0.2215				
0.65	144	0.2215	0.65	162	0.2492				
0.7	165	0.2538	0.7	192	0.2954				
0.75	195	0.3000	0.75	234	0.3600				
0.8	249	0.3831	0.8	330	0.5077				
0.85	420	0.6462	0.85	579	0.8908				
0.9	607	0.9338	0.9	607	0.9338				
0.95	640	0.9846	0.95	640	0.9846				
1	650	1.0000	1	650	1.0000				

BOHEMITA TRATADA EN AIRE 200°C								
ISC	DTERMA D	DE ADSORCIÓN	ISOTERMA DE DESORCIÓN					
P/PS	CC/G	NORMALIZADA	P/PS	CC/G	NORMALIZADA			
0	0	0.0000	0	0	0.0000			
0.0797	63.4	0.2333	0.083	63.69	0.2344			
0.1526	72.7	0.2675	0.1357	70.36	0.2589			
0.2103	79.43	0.2923	0.2026	78.51	0.2889			
0.3779	100.69	0.3706	0.351	97.3	0.3581			
0.4662	114.06	0.4198	0.4564	129.12	0.4752			
0.5612	131.62	0.4844	0.5545	178.29	0.6561			
0.6382	150.68	0.5545	0.6288	206.91	0.7615			
0.7063	170.47	0.6274	0.7008	214.74	0.7903			
0.7639	190.77	0.7021	0.7636	219.61	0.8082			
0.8098	203.94	0.7505	0.802	222.09	0.8173			
0.853	213.22	0.7847	0.8424	222.47	0.8187			
0.8801	217.27	0.7996	0.8704	222.88	0.8202			
0.9053	219.57	0.8080	0.8956	223.21	0.8214			
0.9253	220.29	0.8107	0.9184	223.77	0.8235			
0.9401	220.95	0.8131	0.9304	223.83	0.8237			
0.9584	221.69	0.8158	0.9584	224.29	0.8254			
0.9652	222.07	0.8172	0.9512	224.31	0.8255			
0.972	222.46	0.8187	0.9596	224.65	0.8267			
0.9788	222.84	0.8201	0.9684	224.58	0.8265			
0.9856	223.21	0.8214	0.9768	224.91	0.8277			
0.9848	223.24	0.8216	0.9848	225.64	0.8304			
1	271.73	1.0000	1	271.73	1.0000			

VIDRIO POROSO 7									
ISOTERMA DE ADSORCIÓN			IS	ISOTERMA DE DESORCIÓN					
P/PS	CC/G	NORMALIZADA	P/PS	CC/G	NORMALIZADA				
0	0	0	0	0	0				
0.08	55.76	0.41	0.08	55.76	0.41				
0.1	58.48	0.43	0.1	58.48	0.43				
0.13	62.56	0.46	0.13	62.56	0.46				
0.14	63.92	0.47	0.14	63.92	0.47				
0.16	65.28	0.48	0.16	65.28	0.48				
0.23	72.08	0.53	0.23	72.08	0.53				
0.25	73.44	0.54	0.25	73.44	0.54				
0.3	77.52	0.57	0.3	77.52	0.57				
0.41	89.76	0.66	0.41	89.76	0.66				
0.44	92.48	0.68	0.44	92.48	0.68				
0.5	102	0.75	0.47	107.44	0.79				
0.59	116.96	0.86	0.48	118.32	0.87				
0.635	126.48	0.93	0.485	134.64	0.99				
0.66	130.56	0.96	0.66	134.64	0.99				
0.68	133.28	0.98	0.68	136	1				
0.78	136	1	0.78	136	1				
1	136	1	1	136	1				

BOHEMITA TRATADA EN AIRE 450°C								
ISC	DTERMA D	DE ADSORCIÓN	ISOTERMA DE DESORCIÓN					
P/PS	CC/G	NORMALIZADA	P/PS	CC/G	NORMALIZADA			
0	0	0.0000	0	0	0.0000			
0.0805	52.61	0.1515	0.0843	53.07	0.1528			
0.1516	59.96	0.1727	0.1369	58.79	0.1693			
0.2101	65.65	0.1890	0.1945	64.39	0.1854			
0.377	82.09	0.2364	0.3465	79.26	0.2282			
0.4644	93.42	0.2690	0.4508	92.61	0.2667			
0.5558	110.79	0.3190	0.5542	114.87	0.3308			
0.6293	132.56	0.3817	0.637	164.83	0.4746			
0.7014	169.79	0.4889	0.7059	272.04	0.7834			
0.7569	214.51	0.6177	0.7594	293.4	0.8449			
0.8091	261.85	0.7540	0.8031	299.26	0.8618			
0.8462	285.03	0.8208	0.8423	301.61	0.8685			
0.8733	294.06	0.8468	0.8704	302.29	0.8705			
0.9027	298.9	0.8607	0.8948	302.77	0.8719			
0.9249	300.49	0.8653	0.9187	302.99	0.8725			
0.9406	301.03	0.8668	0.9303	303.59	0.8742			
0.9571	302.15	0.8701	0.9513	304.17	0.8759			
0.9641	302.57	0.8713	0.9583	303.75	0.8747			
0.9707	303.3	0.8734	0.9596	304.38	0.8765			
0.9781	303.34	0.8735	0.9682	304.7	0.8774			
0.9847	304.06	0.8756	0.9765	305.25	0.8790			
0.9847	303.91	0.8751	0.9851	305.5	0.8797			
1	347.27	1.0000	1	347.27	1.0000			

BOHEMITA TRATADA EN AIRE 400°C								
ISC	OTERMA D	DE ADSORCIÓN	ISOTERMA DE DESORCIÓN					
P/PS	CC/G	NORMALIZADA	P/PS	CC/G	NORMALIZADA			
0	0	0.0000	0	0	0.0000			
0.0781	47.77	0.1860	0.0781	47.77	0.1860			
0.154	55.8	0.2173	0.154	55.8	0.2173			
0.2105	61.89	0.2410	0.2105	61.89	0.2410			
0.3771	82.59	0.3216	0.3771	82.59	0.3216			
0.4657	95.86	0.3733	0.4657	105.7	0.4116			
0.5623	113.08	0.4403	0.5623	149.81	0.5833			
0.6372	131.3	0.5113	0.6372	188.05	0.7323			
0.7044	151.69	0.5907	0.7044	197.85	0.7704			
0.7602	171.09	0.6662	0.7602	202.45	0.7883			
0.8086	186.08	0.7246	0.8086	204.95	0.7981			
0.8549	196.2	0.7640	0.8549	205.93	0.8019			
0.8793	200.1	0.7792	0.8793	206.23	0.8030			
0.9054	202.36	0.7880	0.9054	206.55	0.8043			
0.9258	203.06	0.7907	0.9258	206.92	0.8057			
0.9397	203.9	0.7940	0.9397	206.99	0.8060			
0.9588	204.43	0.7960	0.9588	207.29	0.8072			
0.9653	205.08	0.7986	0.9653	207.09	0.8064			
0.9727	205	0.7983	0.9727	207.05	0.8062			
0.9796	205.27	0.7993	0.9796	207.64	0.8085			
0.982	205.54	0.8004	0.982	207.48	0.8079			
0.989	205.99	0.8021	0.989	208.28	0.8110			
1	256.81	1.0000	1	256.81	1.0000			

BOHEMITA TRATADA EN AIRE 600°C							
ISC	DTERMA D	DE ADSORCIÓN	ISOTERMA DE DESORCIÓN				
P/PS	CC/G	NORMALIZADA	P/PS	CC/G	NORMALIZADA		
0	0	0.0000	0	0	0.0000		
0.0805	44.24	0.1151	0.0805	44.24	0.1151		
0.152	50.55	0.1315	0.152	50.55	0.1315		
0.2103	55.46	0.1443	0.2103	55.46	0.1443		
0.3791	68.93	0.1793	0.3791	68.93	0.1793		
0.4692	77.7	0.2022	0.4692	77.7	0.2022		
0.5597	89.56	0.2330	0.5597	89.56	0.2330		
0.6352	104.42	0.2717	0.6352	104.42	0.2717		
0.7007	121.44	0.3160	0.7098	156.58	0.4074		
0.7579	159.13	0.4140	0.7606	295.32	0.7684		
0.8039	221.26	0.5757	0.8129	335.33	0.8725		
0.8474	295.23	0.7681	0.8444	342.24	0.8905		
0.8719	321.34	0.8361	0.8703	344.01	0.8951		
0.8991	337.37	0.8778	0.8994	345.01	0.8977		
0.9232	340.96	0.8871	0.9175	345.52	0.8990		
0.9396	342.21	0.8904	0.9335	346.05	0.9004		
0.9598	343.51	0.8938	0.9491	346.43	0.9014		
0.968	343.81	0.8945	0.9565	346.73	0.9021		
0.9741	344.4	0.8961	0.9595	346.72	0.9021		
0.9807	344.97	0.8976	0.9681	347	0.9028		
0.9811	345.1	0.8979	0.9763	347.55	0.9043		
0.9877	345.67	0.8994	0.9857	347.8	0.9049		
1	384.34	1.0000	1	384.34	1.0000		

BOHEMITA TRATADA EN AIRE 500°C					
ISOTERMA DE ADSORCIÓN			ISOTERMA DE DESORCIÓN		
P/PS	CC/G	NORMALIZADA	P/PS	CC/G	NORMALIZADA
0	0	0.0000	0	0	0.0000
0.0803	43.06	0.1239	0.0841	42.49	0.1223
0.1537	49.13	0.1414	0.1357	47.71	0.1373
0.2113	53.54	0.1541	0.1943	52.96	0.1524
0.3819	66.66	0.1918	0.344	66.1	0.1902
0.4687	78.51	0.2259	0.4505	77.59	0.2233
0.5604	91.82	0.2642	0.5479	92.01	0.2648
0.6351	108.7	0.3128	0.6433	121.61	0.3499
0.7011	134.05	0.3857	0.6942	185.41	0.5335
0.7571	176.88	0.5090	0.7661	293.12	0.8435
0.8047	242.19	0.6969	0.8043	300.45	0.8646
0.8433	285.06	0.8203	0.8424	302.71	0.8711
0.8771	297.26	0.8554	0.8683	302.52	0.8705
0.9025	301.48	0.8675	0.8962	302.61	0.8708
0.9252	302.48	0.8704	0.9122	302.01	0.8690
0.9419	304.22	0.8754	0.9345	302.39	0.8701
0.9576	305.03	0.8777	0.9497	302.51	0.8705
0.9642	305.55	0.8792	0.9407	302.66	0.8709
0.9707	306.08	0.8808	0.9631	304.48	0.8762
0.9773	306.59	0.8822	0.9674	304.62	0.8766
0.9843	306.79	0.8828	0.9763	304.67	0.8767
0.9913	304.98	0.8776	0.9837	304.82	0.8771
1	347.52	1.0000	1	347.52	1.0000

BOHEMITA TRATADA EN AIRE 700°C						
ISOTERMA DE ADSORCIÓN			ISOTERMA DE DESORCIÓN			
P/PS	CC/G	NORMALIZADA	P/PS	CC/G	NORMALIZADA	
0	0	0.0000	0	0	0.0000	
0.0773	41.48	0.1159	0.0839	41.38	0.1156	
0.1545	48.17	0.1346	0.136	46.16	0.1289	
0.2108	52.91	0.1478	0.1934	50.36	0.1407	
0.3821	66.52	0.1858	0.3438	62.8	0.1754	
0.4675	75.05	0.2096	0.4518	73.37	0.2049	
0.5654	88.12	0.2462	0.5527	86.93	0.2428	
0.6371	102.87	0.2874	0.6316	106.43	0.2973	
0.7008	123.44	0.3448	0.7117	160.95	0.4496	
0.7569	157.71	0.4405	0.7662	277.35	0.7747	
0.8039	212.43	0.5934	0.8102	302.45	0.8449	
0.8446	270.51	0.7556	0.8432	310.47	0.8673	
0.8749	295.73	0.8261	0.8708	312	0.8715	
0.8979	305.35	0.8530	0.8946	312.79	0.8737	
0.9247	308.81	0.8626	0.921	313.6	0.8760	
0.9399	310.06	0.8661	0.9325	313.77	0.8765	
0.9604	311.35	0.8697	0.9518	314.13	0.8775	
0.9633	310.6	0.8676	0.9547	314.16	0.8776	
0.9721	311.76	0.8709	0.963	314.66	0.8790	
0.9786	312.25	0.8722	0.9712	314.99	0.8799	
0.9852	312.75	0.8736	0.9745	314.92	0.8797	
0.9877	312.93	0.8741	0.9807	315.31	0.8808	
1	357.99	1.0000	1	357.99	1.0000	

BOHEMITA TRATADA EN AIRE 850°C						
ISOTERMA DE ADSORCIÓN			ISC	OTERMA D	E DESORCIÓN	
P/PS	CC/G	NORMALIZADA	P/PS	CC/G	NORMALIZADA	
0	0	0.0000	0	0	0.0000	
0.081	7.9394	0.0618	0.081	8.5185	0.0663	
0.1561	9.4053	0.0732	0.1561	9.6319	0.0749	
0.2087	10.2873	0.0800	0.2087	10.7869	0.0839	
0.3774	12.9766	0.1009	0.3774	13.0873	0.1018	
0.466	14.6342	0.1138	0.466	16.8213	0.1308	
0.5608	16.7929	0.1306	0.551	20.4519	0.1591	
0.6368	19.2401	0.1497	0.635	25.9676	0.2020	
0.7015	22.2	0.1727	0.7086	32.7715	0.2549	
0.7579	25.919	0.2016	0.7623	38.7534	0.3014	
0.8043	30.1067	0.2342	0.8111	44.8011	0.3485	
0.8454	35.0703	0.2728	0.8528	50.7778	0.3950	
0.8723	39.4846	0.3071	0.8814	55.7221	0.4334	
0.8976	44.9397	0.3495	0.9033	60.4651	0.4703	
0.9188	50.4553	0.3924	0.9256	66.6888	0.5187	
0.9324	55.1417	0.4289	0.9417	72.9671	0.5675	
0.9503	62.7055	0.4877	0.9595	84.1794	0.6548	
0.9549	66.4597	0.5169	0.964	88.2627	0.6865	
0.9628	71.7554	0.5581	0.9735	100.109	0.7787	
0.9702	77.8914	0.6058	0.9789	110.205	0.8572	
0.9743	83.0784	0.6462	0.9839	120.025	0.9336	
0.9777	88.7418	0.6902	0.9876	125.941	0.9796	
1	128.566	1.0000	1	128.566	1.0000	

ANEXO B. Cálculos del área BET y "área modelo"

A continuación, se presenta una serie de variables que se utilizaron para el cálculo del área obtenida por el método BET comparada con el resultado del "área modelo".

Vidrio poroso 7				
	Isoterma	de adsorció	'n	
x	Va	$\frac{x}{(1-x)Va}$	$\frac{x}{(1-x^2)Va}$	
0.08	55.76	0.0016	0.0014	
0.1	58.48	0.0019	0.0017	
0.13	62.56	0.0024	0.0021	
	A=	0.0002	0.00038	
	B=	0.0166	0.01336	
C= 70.8608 36.0946			36.0946	
A+B= 0.0168 0.0137			0.0137	
V _m = 59.54 72.78				
	S _{BET} =	258.99	316.63	

SiO₂ aerogel					
	Isoterma	de adsorci	ón		
x	Va	$\frac{x}{(1-x)Va}$	$\frac{x}{(1-x^2)Va}$		
0.05	195	0.0003	0.0003		
0.085	221	0.0004	0.0004		
0.13	247	0.0006	0.0005		
	A=	0.0001	0.0001		
	B=	0.0042	0.0035		
	C=	69.557	41.302		
	A+B=	0.0042	0.0036		
V _m =		235.6	281.44		
	S _{BET} =	1024.87	1224.27		

Silica gel					
	Isoterma	de adsorci	ón		
x	Va $\frac{x}{(1-x)Va}$ $\frac{x}{(1-x^2)Va}$				
0.024	125	0.0002	0.0002		
0.05	155	0.0003	0.0003		
0.1	183	0.0006	0.0006		
	A=	0.0009	0.0001		
	B=	0.0053	0.0047		
C= 6.722 58.341					
A+B= 0.0054 0.0048					
V _m = 186.66 209.01					
	S _{BET} =	812.01	909.2		

Carbón activado					
	Isoterm	a de adsor	ción		
x	Va	$\frac{x}{(1-x)Va}$	$\frac{x}{(1-x^2)Va}$		
0.05	240	0.0002	0.0002		
0.1	258	0.0004	0.0004		
0.15	270	0.0007	0.0006		
	A=	2.2E-07	0.00003		
	B=	0.0043	0.0036		
	C=	19389	120.527		
	A+B=	0.0043	0.0036		
	Vm=	230.41	275.86		
	$S_{BET}=$	1001.57	1200		

Bohemita tratada en aire 200°C					
	Isoterma	de adsorció	'n		
x	Va $\frac{x}{(1-x)Va}$ $\frac{x}{(1-x^2)Va}$				
0.0797	63.4	0.0014	0.0013		
0.1526	72.7	0.0025	0.0021		
0.2103	79.43	0.0034	0.0028		
A= 0.0002 0.00			0.0004		
	B=	0.0152	0.0115		
C= 100.45 33.35					
A+B= 0.0154 0.0119			0.0119		
V _m = 65.06 83.98					
	S _{BET} =	283.03	365.32		

Bohemita tratada en aire 400°C				
	Isoterma	de adsorció	ón	
x	Va	$\frac{x}{(1-x)Va}$	$\frac{x}{(1-x^2)Va}$	
0.0781	47.77	0.0018	0.0016	
0.154	55.8	0.0033	0.0028	
0.2105	61.89	0.0043	0.0036	
	A=	0.0003	0.0005	
	B=	0.0192	0.0145	
	C=	68.27	28.19	
	A+B=	0.0195	0.0151	
	V _m =	51.39	66.43	
	$S_{BET}=$	223.55	288.97	

Bohemita tratada en aire 450°C						
	Isoterma	de adsorció	n			
x	Va $\frac{x}{(1-x)Va}$ $\frac{x}{(1-x^2)Va}$					
0.0805	52.61	0.0017	0.0015			
0.1516	59.96	0.0030	0.0026			
0.2101	65.65	0.0041	0.0033			
A= 0.0002 0.0004						
	B=	0.0184	0.0140			
	C=	101.661	33.432			
A+B= 0.0186 0.0144						
V _m = 53.75 69.39						
	$S_{BET}=$	233.81	301.88			

	CDLI	200101	001100				
Bohemita tratada en aire 600°C							
ls	soterma d	le adsorció	n				
x	Va	$\frac{x}{(1-x)Va}$	$\frac{x}{(1-x^2)Va}$				
0.0805	44.24	0.0020	0.0018				
0.152	50.55	0.0035	0.0031				
0.02103	55.46	0.0048	0.0040				
	A=	0.0002	0.0005				
	B=	0.0218	0.0165				
	C=	96.021	32.473				
	A+B=	0.0220	0.0170				
	V _m =	45.047	58.76				
	S _{BET} =	197.82	255.62				

Bohemita tratada en aire 500°C					
	Isoterma	de adsorció	n		
x	Va $\frac{x}{(1-x)Va}$ $\frac{x}{(1-x^2)Va}$				
0.0803	43.06	0.0020	0.0019		
0.1537	49.13	0.0037	0.0032		
0.2113	53.54	0.0050	0.0041		
	A=	0.0002	0.0005		
	B=	0.0227	0.0172		
C= 112.91 34.72					
A+B= 0.0229 0.0177					
V _m = 43.63 56.3					
	$S_{BET}=$	189.78	244.89		

Bohemita tratada en aire 700°C									
	Isoterma (de adsorció	'n						
x	Va	$\frac{x}{(1-x)Va}$	$\frac{x}{(1-x^2)Va}$						
0.0773	41.48	0.0020	0.0019						
0.1545	48.17	0.0038	0.0033						
0.2108	52.91	0.0050	0.0042						
	A=	0.0003	0.0006						
	B=	0.0227	0.0172						
	C=	85.074	31.714						
A+B=		0.0229	0.1178						
	V _m =	43.52	56.12						
	$S_{BET}=$	189.32	244.11						

Bohemita tratada en aire 850°C									
	Isoterma o	de adsorció	ón						
x	Va	$\frac{x}{(1-x)Va}$	$\frac{x}{(1-x^2)Va}$						
0.081	7.9334	0.0111	0.0103						
0.1561	9.4053	0.0197	0.0170						
0.2087	10.287	0.0256	0.0212						
	A=	0.0019	0.0034						
	B=	0.1138	0.0859						
	C=	61.01	26.26						
	A+B=	0.1157	0.0893						
	V _m =	8.64	11.2						
	$S_{BET}=$	37.6	48.71						

Zeolita IV									
	Isoterm	a de adsorci	ión						
x	Va	$\frac{x}{(1-x)Va}$	$\frac{x}{(1-x^2)Va}$						
0.1	65	0.0017	0.0016						
0.15	75	0.0024	0.0020						
0.2	90	0.0028	0.0023						
	A=	0.0007	0.0008						
	B=	0.0107	0.0076						
	C=	16.775	10.145						
	A+B=	0.0114	0.0084						
	V _m =	88.05	118.6						
	S _{BET} =	383.01	515.93						

Zeolita V									
Isoterma de adsorción									
x	Va	$\frac{x}{(1-x)Va}$	$\frac{x}{(1-x^2)Va}$						
0.1	66	0.0017	0.0015						
0.15	75	0.0024	0.0020						
0.2	84	0.0030	0.0025						
	A=	0.0004	0.0006						
	B=	0.0129	0.0095						
	C=	33.569	17.020						
	A+B=	0.0133	0.0101						
	V _m =	75.03	99.07						
	$S_{BET}=$	326.39	430.96						

	Zeolita VIII									
	Isoterma de adsorción									
x	Va	$\frac{x}{(1-x)Va}$	$\frac{x}{(1-x^2)Va}$							
0.05	110	0.0005	0.0005							
0.1	146	0.0008	0.0007							
0.15	164	0.0011	0.0009							
	A=	0.0002	0.0002							
	B=	0.0060	0.0048							
	C=	35.566	23.535							
	A+B=	0.0062	0.0050							
	V _m =	162.504	199.45							
	$S_{BET}=$	706.89	867.62							

Zeolita X									
	Isoterm	a de adsorc	ión						
x	Va	$\frac{x}{(1-x)Va}$	$\frac{x}{(1-x^2)Va}$						
0.05	76	0.0007	0.0007						
0.1	100	0.0011	0.0010						
0.15	118	0.0015	0.0013						
A=		0.0003	0.0003						
	B=	0.0080	0.0064						
	C=	27.689	19.419						
	A+B=	0.0083	0.0068						
	V _m =	120.77	147.95						
	S _{BET} =	525.38	643.61						

N-PROPYL									
	Isoterm	na de adsorcio	ón						
x	Va	$\frac{x}{(1-x)Va}$	$\frac{x}{(1-x^2)Va}$						
0.1	105	0.0011	0.0010						
0.15	115	0.0015	0.0013						
0.2	120	0.0021	0.0017						
	A=	0	0.0002						
	B=	0.0103	0.0077						
	C=	540.474	43.295						
	0.0079								
	V _m =	97.37	126.21						
	$S_{BET}=$	423.58	549.03						

ANEXO C. Datos de la distribución del diámetro de poro

En el presente anexo se mostrarán los resultados obtenidos del cálculo de las variables utilizadas para la obtención del radio (r) y el volumen total de poro a diferentes presiones, con las cuales se grafica la D.D.P. de cada una de las muestras en estudio.

El cálculo se realizó de presiones relativas altas a bajas considerando un rango de 1-0 y de manera contraria de presiones relativas bajas a altas con un rango de 0-1.

	Х	r	Vm	V	t	real	r	ΔV	ΔV cc/s	r	t
1	0.96	233.45	59.54	136	8.09	144.09	241.54	0	0	217.709	8.086
2	0.95	185.79		136	8.09	144.09	193.88	0	0	177.993	8.086
3	0.94	154.02		136	8.09	144.09	162.11	0	0	150.756	8.086
4	0.93	131.32		136	8.09	144.09	139.41	0	0	130.893	8.086
5	0.92	114.29		136	8.09	144.09	122.38	0	0	115.757	8.086
6	0.91	101.05		136	8.09	144.09	109.13	0	0	103.836	8.086
7	0.9	90.45		136	8.09	144.09	98.54	0	0	82.631	8.086
8	0.85	58.64		136	8.09	144.09	66.73	0	0	54.768	8.086
9	0.76	34.73		136	8.09	144.09	42.81	0.68	0.00106	35.396	8.066
10	0.62	19.94		135.32	8.05	143.37	27.98	0.68	0.00106	25.499	8.025
11	0.53	15.01		134.64	8.01	142.65	23.02	49.64	0.07734	18.959	6.529
12	0.38	9.85		85	5.05	90.05	14.90	20.40	0.03178	11.884	4.447
13	0.15	5.02		64.6	3.84	68.44	8.86				

Tabla 1. Calculó de variables para vidrio poroso 7

Tabla 2. D.P.P. de presión alta a presión baja para vidrio poroso 7

_	ΔV	r	t	V	VI	V _{acumulado}
1	0	217.709	8.086	0	0	0
2	0	177.993	8.086	0	0	0
3	0	150.756	8.086	0	0	0
4	0	130.893	8.086	0	0	0
5	0	115.757	8.086	0	0	0
6	0	103.836	8.086	0	0	0
7	0	82.631	8.086	0	0	0
8	0	54.768	8.086	0	0	0
9	0.001	35.396	8.066	0.002	0	0.0018
10	0.001	25.499	8.025	0.002	0	0.0040
11	0.077	18.959	6.529	0.179	0.028	0.1832
12	0.032	11.884	4.447	0.009	0.081	0.1918

Tabla 3. D.P.P. de presión baja a presión alta para vidrio poroso 7

	ΔV	r	t	V	VI
1	0.032	11.884	4.447	0.081	-0.015
2	0.077	18.959	6.529	0.216	-0.029
3	0.001	25.499	8.025	0.064	-0.001
4	0.001	35.396	8.066	0.003	0
5	0	54.768	8.086	0.001	0
6	0	82.631	8.086	0	0
7	0	103.836	8.086	0	0
8	0	115.757	8.086	0	0
9	0	130.893	8.086	0	0
10	0	150.756	8.086	0	0
11	0	177.993	8.086	0	0
12	0	217.709	8.086	0	0.253

	Х	r	Vm	V	t	real	r	ΔV	ΔV cc/s	r	t
1	0.96	233.45	59.54	136	8.09	144.09	241.54	0	0	217.709	8.086
2	0.95	185.79		136	8.09	144.09	193.88	0	0	177.993	8.086
3	0.94	154.02		136	8.09	144.09	162.11	0	0	150.756	8.086
4	0.93	131.32		136	8.09	144.09	139.41	0	0	130.893	8.086
5	0.92	114.29		136	8.09	144.09	122.38	0	0	115.757	8.086
6	0.91	101.05		136	8.09	144.09	109.13	0	0	103.836	8.086
7	0.9	90.45		136	8.09	144.09	98.54	0	0	82.631	8.086
8	0.85	58.64		136	8.09	144.09	66.73	0	0	54.768	8.086
9	0.76	34.73		136	8.09	144.09	42.81	0.68	0.00106	35.396	8.066
10	0.62	19.94		135.32	8.05	143.37	27.98	0.68	0.00106	25.499	8.025
11	0.53	15.01		134.64	8.01	142.65	23.02	49.64	0.07734	18.959	6.529
12	0.38	9.85		85	5.05	90.05	14.90	20.40	0.03178	11.884	4.447
13	0.15	5.02		64.6	3.84	68.44	8.86				

Tabla 4. Calculó de variables para SiO₂ aerogel

Tabla 5. D.P.P. de presión alta a presión baja para SiO2 aerogel

	ΔV	r	t	V	VI	Vacumulado
1	0.004	228.942	19.318	0.005	0	0.0048
2	0.004	189.186	19.279	0.005	0	0.0099
3	0.004	161.910	19.240	0.005	0	0.0151
4	0.004	142.008	19.201	0.005	0	0.0205
5	0.000	126.853	19.182	0.000	0	0.0205
6	0.004	114.912	19.162	0.006	0.001	0.0263
7	0.608	90.758	16.212	0.899	0.093	0.9257
8	0.516	57.475	10.792	0.642	0.130	1.5674
9	0.213	34.607	7.276	0.132	0.054	1.6999
10	0.041	23.529	6.055	-0.025	0.030	1.6746
11	0.101	17.802	5.372	0.146	0.058	1.8209
12	0.111	11.782	4.346	0.135	0.345	1.9555

Tabla 6. D.P.P. de presión baja a presión alta para SiO₂ aerogel

	ΔV	r	t	V	VI
1	0.111	11.782	4.346	0.280	-0.029
2	0.101	17.802	5.372	0.266	-0.031
3	0.041	23.529	6.055	0.129	-0.058
4	0.213	34.607	7.276	0.433	-0.180
5	0.516	57.475	10.792	1.055	-0.262
6	0.608	90.758	16.212	1.289	-0.117
7	0.004	114.912	19.162	0.174	-0.001
8	0.000	126.853	19.182	0.001	-0.001
9	0.004	142.008	19.201	0.006	-0.001
10	0.004	161.910	19.240	0.007	-0.001
11	0.004	189.186	19.279	0.006	-0.001
12	0.004	228.942	19.318	0.006	2.043

	Х	r	Vm	V	t	real	r	ΔV	V cc/s	r	t
1	0.96	233.45	186.66	423	8.02	431.02	241.47	0	0	217.646	8.022
2	0.95	185.79		423	8.02	431.02	193.82	0	0	177.929	8.022
3	0.94	154.02		423	8.02	431.02	162.04	0	0	150.692	8.022
4	0.93	131.32		423	8.02	431.02	139.34	0	0	130.829	8.022
5	0.92	114.29		423	8.02	431.02	122.32	0	0	115.694	8.022
6	0.91	101.05		423	8.02	431.02	109.07	0.40	0.00062	103.769	8.018
7	0.9	90.45		422.6	8.01	430.61	98.47	0	0	82.560	8.015
8	0.85	58.64		422.6	8.01	430.61	66.65	3.83	0.00597	54.661	7.978
9	0.76	34.73		418.77	7.94	426.71	42.67	4.23	0.00659	35.233	7.902
10	0.62	19.94		414.54	7.86	422.40	27.80	0	0	25.335	7.862
11	0.53	15.01		414.54	7.86	422.40	22.87	126.90	0.19771	19.088	6.658
12	0.38	9.85		287.64	5.46	293.10	15.30	80.37	0.12522	12.129	4.693
13	0.15	5.02		207.27	3.93	211.20	8.95				

Tabla 7. Calculó de variables para silica gel

Tabla 8. D.P.P. de presión alta a presión baja para silica gel

	ΔV	r	t	V	VI	Vacumulado
1	0	217.646	8.022	0	0	0
2	0	177.929	8.022	0	0	0
3	0	150.692	8.022	0	0	0
4	0	130.829	8.022	0	0	0
5	0	115.694	8.022	0	0	0
6	0.001	103.769	8.018	0.001	0	0.0007
7	0	82.560	8.015	0	0	0.0007
8	0.006	54.661	7.978	0.008	0	0.0089
9	0.007	35.233	7.902	0.011	0	0.0198
10	0	25.335	7.862	0	0.001	0.0198
11	0.198	19.088	6.658	0.464	0.069	0.4839
12	0.125	12.129	4.693	0.150	0.298	0.6342

Tabla 9. D.P.P. de presión baja a presión alta para silica gel

	ΔV	r	t	V	VI
1	0.125	12.129	4.693	0.333	-0.057
2	0.198	19.088	6.658	0.602	-0.074
3	0	25.335	7.862	0.155	-0.003
4	0.007	35.233	7.902	0.015	-0.005
5	0.006	54.661	7.978	0.015	-0.002
6	0	82.560	8.015	0.003	0
7	0.001	103.769	8.018	0.001	0
8	0	115.694	8.022	0	0
9	0	130.829	8.022	0	0
10	0	150.692	8.022	0	0
11	0	177.929	8.022	0	0
12	0	217.646	8.022	0	0.788

	Х	r	Vm	V	t	real	r	ΔV	ΔV cc/s	r	t
1	0.96	233.45	230.41	356.72	5.48	362.20	238.93	3.64	0.00567	215.076	5.453
2	0.95	185.79		353.08	5.42	358.50	191.22	3.64	0.00567	175.303	5.397
3	0.94	154.02		349.44	5.37	354.81	159.39	0	0	148.038	5.369
4	0.93	131.32		349.44	5.37	354.81	136.69	3.64	0.00567	128.148	5.341
5	0.92	114.29		345.8	5.31	351.11	119.61	0	0	112.984	5.313
6	0.91	101.05		345.8	5.31	351.11	106.36	7.28	0.01134	101.007	5.257
7	0.9	90.45		338.52	5.20	343.72	95.65	3.64	0.00567	79.718	5.173
8	0.85	58.64		334.88	5.15	340.03	63.78	3.64	0.00567	51.800	5.117
9	0.76	34.73		331.24	5.09	336.33	39.81	9.10	0.01418	32.350	5.019
10	0.62	19.94		322.14	4.95	327.09	24.89	9.10	0.01418	22.353	4.879
11	0.53	15.01		313.04	4.81	317.85	19.82	18.20	0.02836	17.100	4.670
12	0.38	9.85		294.84	4.53	299.37	14.38	21.84	0.03403	11.798	4.362
13	0.15	5.02		273	4.19	277.19	9.22				

Tabla 10. Calculó de variables para carbón activado

Tabla 11. D.P.P. de presión alta a presión baja para carbón activado

	ΔV	r	t	V	VI	V _{acumulado}
1	0.006	215.076	5.453	0.006	0	0.0060
2	0.006	175.303	5.397	0.006	0	0.0120
3	0	148.038	5.369	0	0	0.0120
4	0.006	128.148	5.341	0.006	0	0.0182
5	0	112.984	5.313	0	0	0.0182
6	0.011	101.007	5.257	0.013	0	0.0308
7	0.006	79.718	5.173	0.006	0	0.0372
8	0.006	51.800	5.117	0.007	0	0.0442
9	0.014	32.350	5.019	0.020	0	0.0639
10	0.014	22.353	4.879	0.023	0.001	0.0867
11	0.028	17.100	4.670	0.052	0.002	0.1390
12	0.034	11.798	4.362	0.079	0.088	0.2184

Tabla 12. D.P.P. de presión baja a presión alta para carbón activado

	ΔV	r	t	V	VI
1	0.034	11.798	4.362	0.086	-0.003
2	0.028	17.100	4.670	0.059	-0.003
3	0.014	22.353	4.879	0.028	-0.002
4	0.014	32.350	5.019	0.023	-0.002
5	0.006	51.800	5.117	0.009	-0.001
6	0.006	79.718	5.173	0.008	-0.001
7	0.011	101.007	5.257	0.014	-0.001
8	0	112.984	5.313	0.001	0
9	0.006	128.148	5.341	0.007	0
10	0	148.038	5.369	0	0
11	0.006	175.303	5.397	0.007	-0.001
12	0.006	215.076	5.453	0.007	0.117

	Х	r	Vm	V	t	real	r	ΔV	ΔV cc/s	r	t
1	0.96	233.45	65.06	222.82	12.12	234.94	245.58	0	0	221.747	12.124
2	0.95	185.79		222.82	12.12	234.94	197.92	0	0	182.031	12.124
3	0.94	154.02		222.82	12.12	234.94	166.14	0	0	154.794	12.124
4	0.93	131.32		222.82	12.12	234.94	143.44	1.36	0.00212	134.894	12.087
5	0.92	114.29		221.46	12.05	233.51	126.34	0	0	119.721	12.050
6	0.91	101.05		221.46	12.05	233.51	113.10	0	0	107.800	12.050
7	0.9	90.45		221.46	12.05	233.51	102.50	1.36	0.00212	86.558	12.013
8	0.85	58.64		220.1	11.98	232.08	70.62	1.36	0.00212	58.621	11.939
9	0.76	34.73		218.74	11.90	230.64	46.63	14.94	0.02328	38.826	11.495
10	0.62	19.94		203.797	11.09	214.89	31.02	39.40	0.06139	27.490	10.017
11	0.53	15.01		164.397	8.95	173.34	23.96	61.14	0.09526	19.712	7.282
12	0.38	9.85		103.257	5.62	108.88	15.47	31.26	0.04870	12.204	4.768
13	0.15	5.02		72	3.92	75.92	8.94				

Tabla 13. Calculó de variables para bohemita tratada en aire 200°C

Tabla 14. D.P.P. de presión alta a presión baja para bohemita tratada en aire 200°C

	ΔV	r	t	V	VI	V _{acumulado}
1	0	221.747	12.124	0	0	0
2	0	182.031	12.124	0	0	0
3	0	154.794	12.124	0	0	0
4	0	134.894	12.087	0.003	0	0.0026
5	0	119.721	12.050	0	0	0.0026
6	0	107.800	12.050	0	0	0.0026
7	0.002	86.558	12.013	0.003	0	0.0054
8	0.002	58.621	11.939	0.003	0	0.0087
9	0.023	38.826	11.495	0.047	0.003	0.0556
10	0.061	27.490	10.017	0.145	0.025	0.2004
11	0.095	19.712	7.282	0.176	0.057	0.3761
12	0.049	12.204	4.768	-0.023	0.118	0.3526

Tabla 15. D.P.P. de presión baja a presión alta para bohemita tratada en aire 200°C

	ΔV	r	t	V	VI
1	0.049	12.204	4.768	0.131	-0.027
2	0.095	19.712	7.282	0.308	-0.065
3	0.061	27.490	10.017	0.313	-0.045
4	0.023	38.826	11.495	0.138	-0.014
5	0.002	58.621	11.939	0.025	-0.002
6	0.002	86.558	12.013	0.006	-0.001
7	0	107.800	12.050	0.001	0
8	0	119.721	12.050	0	-0.001
9	0.002	134.894	12.087	0.004	-0.001
10	0	154.794	12.124	0.001	0
11	0	182.031	12.124	0	0
12	0	221.747	12.124	0	0.694

	Х	r	Vm	V	t	real	r	ΔV	V cc/s	r	t
1	0.96	233.45	51.39	208.02	14.33	222.35	247.78	0	0	223.953	14.329
2	0.95	185.79		208.02	14.33	222.35	200.12	0	0	184.236	14.329
3	0.94	154.02		208.02	14.33	222.35	168.35	0	0	156.999	14.329
4	0.93	131.32		208.02	14.33	222.35	145.65	1.29	0.00201	137.092	14.285
5	0.92	114.29		206.73	14.24	220.97	128.53	0	0	121.912	14.241
6	0.91	101.05		206.73	14.24	220.97	115.29	0	0	109.991	14.241
7	0.9	90.45		206.73	14.24	220.97	104.69	1.28	0.00199	88.742	14.197
8	0.85	58.64		205.45	14.15	219.60	72.79	2.57	0.00400	60.746	14.064
9	0.76	34.73		202.88	13.98	216.86	48.70	20.54	0.03200	40.599	13.268
10	0.62	19.94		182.34	12.56	194.90	32.50	48.80	0.07603	28.353	10.880
11	0.53	15.01		133.54	9.20	142.74	24.21	51.36	0.08002	19.860	7.430
12	0.38	9.85		82.18	5.66	87.84	15.51	28.25	0.04401	12.124	4.688
13	0.15	5.02		53.93	3.71	57.64	8.74				

Tabla 16. Calculó de variables para bohemita tratada en aire 400°C

Tabla 17. D.P.P. de presión alta a presión baja para bohemita tratada en aire 400°C

	ΔV	r	t	V	VI	V acumulado
1	0	223.953	14.329	0	0	0
2	0	184.236	14.329	0	0	0
3	0	156.999	14.329	0	0	0
4	0.002	137.092	14.285	0.003	0	0.0025
5	0	121.912	14.241	0	0	0.0025
6	0	109.991	14.241	0	0	0.0025
7	0.002	88.742	14.197	0.003	0	0.0053
8	0.004	60.746	14.064	0.007	0	0.0121
9	0.032	40.599	13.268	0.070	0.006	0.0822
10	0.076	28.353	10.880	0.183	0.040	0.2655
11	0.080	19.860	7.430	0.101	0.056	0.3666
12	0.044	12.124	4.688	-0.032	0.094	0.3344

Tabla 18. D.P.P. de presión baja a presión alta para bohemita tratada en aire 400°C

	ΔV	r	t	V	VI
1	0.044	12.124	4.688	0.117	-0.026
2	0.080	19.860	7.430	0.272	-0.067
3	0.076	28.353	10.880	0.377	-0.062
4	0.032	40.599	13.268	0.208	-0.021
5	0.004	60.746	14.064	0.043	-0.003
6	0.002	88.742	14.197	0.008	-0.001
7	0	109.991	14.241	0.001	0
8	0	121.912	14.241	0	-0.001
9	0.002	137.092	14.285	0.004	-0.001
10	0	156.999	14.329	0.001	0
11	0	184.236	14.329	0	0
12	0	223.953	14.329	0	0.791

	Х	r	Vm	V	t	real	r	ΔV	V cc/s	r	t
1	0.96	233.45	53.75	308.72	20.33	329.05	253.79	0.69	0.00108	229.933	20.310
2	0.95	185.79		308.03	20.29	328.32	206.08	0	0	190.194	20.287
3	0.94	154.02		308.03	20.29	328.32	174.31	0.70	0.00109	162.934	20.264
4	0.93	131.32		307.33	20.24	327.57	151.56	1.73	0.00270	142.991	20.184
5	0.92	114.29		305.6	20.13	325.73	134.42	0	0	127.798	20.127
6	0.91	101.05		305.6	20.13	325.73	121.18	0	0	115.877	20.127
7	0.9	90.45		305.6	20.13	325.73	110.58	0.70	0.00109	94.649	20.104
8	0.85	58.64		304.9	20.08	324.98	78.72	9.72	0.01514	66.443	19.761
9	0.76	34.73		295.18	19.44	314.62	54.17	145.85	0.22723	41.969	14.638
10	0.62	19.94		149.33	9.83	159.16	29.77	42.72	0.06656	25.901	8.428
11	0.53	15.01		106.61	7.02	113.63	22.03	23.27	0.03625	18.685	6.255
12	0.38	9.85		83.34	5.49	88.83	15.34	20.83	0.03245	12.239	4.803
13	0.15	5.02		62.51	4.12	66.63	9.14				

Tabla 19. Calculó de variables para bohemita tratada en aire 450°C

Tabla 20. D.P.P. de presión alta a presión baja para bohemita tratada en aire 450°C

	ΔV	r	t	V	VI	V acumulado
1	0.001	229.933	20.310	0.001	0	0.0013
2	0	190.194	20.287	0	0	0.0013
3	0.001	162.934	20.264	0.001	0	0.0027
4	0.003	142.991	20.184	0.004	0	0.0064
5	0	127.798	20.127	0	0	0.0064
6	0	115.877	20.127	0	0	0.0064
7	0.001	94.649	20.104	0.002	0	0.0081
8	0.015	66.443	19.761	0.031	0.004	0.0387
9	0.227	41.969	14.638	0.526	0.118	0.5651
10	0.067	25.901	8.428	-0.114	0.033	0.4513
11	0.036	18.685	6.255	0.007	0.024	0.4579
12	0.032	12.239	4.803	0.024	0.098	0.4816

Tabla 21. D.P.P. de presión baja a presión alta para bohemita tratada en aire 450°C

	ΔV	r	t	V	VI
1	0.032	12.239	4.803	0.088	-0.011
2	0.036	18.685	6.255	0.108	-0.028
3	0.067	25.901	8.428	0.207	-0.088
4	0.227	41.969	14.638	0.743	-0.109
5	0.015	66.443	19.761	0.252	-0.006
6	0.001	94.649	20.104	0.012	0
7	0	115.877	20.127	0.001	0
8	0	127.798	20.127	0	-0.001
9	0.003	142.991	20.184	0.005	-0.001
10	0.001	162.934	20.264	0.003	0
11	0	190.194	20.287	0	0
12	0.001	229.933	20.310	0.002	1.037

	Х	r	Vm	V	t	real	r	ΔV	V cc/s	r	t
1	0.96	233.45	43.63	304	24.67	328.67	258.12	0	0	234.289	24.666
2	0.95	185.79		304	24.67	328.67	210.46	1.76	0.00274	194.501	24.594
3	0.94	154.02		302.24	24.52	326.76	178.54	0	0	167.193	24.523
4	0.93	131.32		302.24	24.52	326.76	155.84	0	0	147.330	24.523
5	0.92	114.29		302.24	24.52	326.76	138.82	0	0	132.194	24.523
6	0.91	101.05		302.24	24.52	326.76	125.57	0	0	120.273	24.523
7	0.9	90.45		302.24	24.52	326.76	114.97	0	0	99.068	24.523
8	0.85	58.64		302.24	24.52	326.76	83.16	10.24	0.01595	70.790	24.107
9	0.76	34.73		292	23.69	315.69	58.42	180.79	0.28167	43.688	16.358
10	0.62	19.94		111.21	9.02	120.23	28.96	24.33	0.03791	25.509	8.036
11	0.53	15.01		86.88	7.05	93.93	22.06	17.38	0.02708	18.774	6.344
12	0.38	9.85		69.5	5.64	75.14	15.49	22.50	0.03506	12.163	4.726
13	0.15	5.02		47	3.81	50.81	8.84				

Tabla 22. Calculó de variables para bohemita tratada en aire 500°C

Tabla 23. D.P.P. de presión alta a presión baja para bohemita tratada en aire 500°C

	ΔV	r	t	V	VI	V acumulado
1	0	234.289	24.666	0	0	0
2	0.003	194.501	24.594	0.004	0	0.0036
3	0	167.193	24.523	0	0	0.0036
4	0	147.330	24.523	0	0	0.0036
5	0	132.194	24.523	0	0	0.0036
6	0	120.273	24.523	0	0	0.0036
7	0	99.068	24.523	0	0	0.0036
8	0.016	70.790	24.107	0.037	0.006	0.0402
9	0.282	43.688	16.358	0.704	0.201	0.7447
10	0.038	25.509	8.036	-0.347	0.014	0.3974
11	0.027	18.774	6.344	0.030	0.016	0.4269
12	0.035	12.163	4.726	0.050	0.077	0.4772

Tabla 24. D.P.P. de presión baja a presión alta para bohemita tratada en aire 500°C

_	ΔV	r	t	V	VI
1	0.035	12.163	4.726	0.094	-0.014
2	0.027	18.774	6.344	0.093	-0.021
3	0.038 25.509		8.036	0.126	-0.071
4	0.282	43.688	16.358	0.902	-0.102
5	0.016	70.790	24.107	0.272	-0.002
6	0	99.068	24.523	0.004	0
7	0	120.273	24.523	0	0
8	0	132.194	24.523	0	0
9	0	147.330	24.523	0	0
10	0	167.193	24.523	0	0
11	0.003	194.501	24.594	0.004	0
12	0	234.289	24.666	0.000	1.094

	Х	r	Vm	V	t	real	r	ΔV	∆V cc/s	r	t
1	0.96	233.45	45.47	345.91	26.93	372.84	260.38	0	0	236.554	26.930
2	0.95	185.79		345.91	26.93	372.84	212.72	0	0	196.837	26.930
3	0.94	154.02		345.91	26.93	372.84	180.95	0	0	169.600	26.930
4	0.93	131.32		345.91	26.93	372.84	158.25	0	0	149.737	26.930
5	0.92	114.29		345.91	26.93	372.84	141.22	0	0	134.602	26.930
6	0.91	101.05		345.91	26.93	372.84	127.98	0.77	0.00120	122.651	26.900
7	0.9	90.45		345.14	26.87	372.01	117.32	1.16	0.00181	101.371	26.825
8	0.85	58.64		343.98	26.78	370.76	85.42	50.35	0.07845	71.503	24.820
9	0.76	34.73		293.63	22.86	316.49	57.59	197.63	0.30791	42.498	15.167
10	0.62	19.94		96	7.47	103.47	27.41	11.45	0.01784	24.501	7.028
11	0.53	15.01		84.55	6.58	91.13	21.59	15.37	0.02395	18.414	5.984
12	0.38	9.85		69.18	5.39	74.57	15.24	19.99	0.03114	12.044	4.608
13	0.15	5.02		49.19	3.83	53.02	8.85				

Tabla 25. Calculó de variables para bohemita tratada en aire 600°C

Tabla 26. D.P.P. de presión alta a presión baja para bohemita tratada en aire 600°C

	ΔV	r	t	V	VI	V acumulado
1	0	236.554	26.930	0	0	0
2	0	196.837	26.930	0	0	0
3	0	169.600	26.930	0	0	0
4	0	149.737	26.930	0	0	0
5	0	134.602	26.930	0	0	0
6	0.001	122.651	26.900	0.002	0	0.0020
7	0.002	101.371	26.825	0.003	0	0.0053
8	0.078	71.503	24.820	0.184	0.036	0.1890
9	0.308	42.498	15.167	0.656	0.222	0.8452
10	0.018	24.501	7.028	-0.401	0.007	0.4443
11	0.024	18.414	5.984	0.037	0.012	0.4811
12	0.031	12.044	4.608	0.049	0.068	0.5300

Tabla 27. D.P.P. de presión baja a presión alta para bohemita tratada en aire 600°C

	ΔV	r	t	V	VI
1	0.031	12.044	4.608	0.082	-0.010
2	0.024	18.414	5.984	0.076	-0.012
3	0.018	24.501	7.028	0.059	-0.057
4	0.308	42.498	15.167	0.881	-0.127
5	0.078	71.503	24.820	0.483	-0.012
6	0.002	101.371	26.825	0.025	0
7	0.001	122.651	26.900	0.002	0
8	0	134.602	26.930	0	0
9	0	149.737	26.930	0	0
10	0	169.600	26.930	0	0
11	0	196.837	26.930	0	0
12	0	236.554	26.930	0	1.145

	Х	r	Vm	V	t	real	r	ΔV	V cc/s	r	t
1	0.96	233.45	43.52	314.52	25.58	340.10	259.04	0	0	235.207	25.584
2	0.95	185.79		314.52	25.58	340.10	211.38	0	0	195.490	25.584
3	0.94	154.02		314.52	25.58	340.10	179.60	1.04	0.00162	168.211	25.541
4	0.93	131.32		313.48	25.50	338.98	156.82	0	0	148.306	25.499
5	0.92	114.29		313.48	25.50	338.98	139.79	0	0	133.170	25.499
6	0.91	101.05		313.48	25.50	338.98	126.55	0	0	121.249	25.499
7	0.9	90.45		313.48	25.50	338.98	115.95	1.18	0.00184	99.996	25.451
8	0.85	58.64		312.3	25.40	337.70	84.04	39.95	0.06224	70.461	23.778
9	0.76	34.73		272.35	22.15	294.50	56.88	168.53	0.26257	42.630	15.299
10	0.62	19.94		103.82	8.44	112.26	28.38	25.06	0.03904	24.899	7.426
11	0.53	15.01		78.76	6.41	85.17	21.42	10.74	0.01673	18.400	5.970
12	0.38	9.85		68.02	5.53	73.55	15.38	21.48	0.03347	12.096	4.659
13	0.15	5.02		46.54	3.79	50.33	8.81				

Tabla 28. Calculó de variables para bohemita tratada en aire 700°C

Tabla 29. D.P.P. de presión alta a presión baja para bohemita tratada en aire 700°C

_	ΔV	r	t	V	VI	V acumulado
1	0	235.207	25.584	0	0	0
2	0	195.490	25.584	0	0	0
3	0.002	168.211	25.541	0.002	0	0.0023
4	0	148.306	25.499	0	0	0.0023
5	0	133.170	25.499	0	0	0.0023
6	0	121.249	25.499	0	0	0.0023
7	0.002	99.996	25.451	0.003	0	0.0056
8	0.062	70.461	23.778	0.142	0.025	0.1471
9	0.263	42.630	15.299	0.577	0.184	0.7244
10	0.039	24.899	7.426	-0.294	0.014	0.4309
11	0.017	18.400	5.970	0.007	0.012	0.4378
12	0.033	12.096	4.659	0.056	0.076	0.4934

Tabla 30. D.P.P. de presión baja a presión alta para bohemita tratada en aire 700°C

	ΔV	r	t	V	VI
1	0.033	12.096	4.659	0.089	-0.011
2	0.017	18.400	5.970	0.060	-0.016
3	0.039	24.899	7.426	0.111	-0.065
4	0.263	42.630	15.299	0.797	-0.108
5	0.062	70.461	23.778	0.388	-0.010
6	0.002	99.996	25.451	0.020	0
7	0	121.249	25.499	0	0
8	0	133.170	25.499	0	0
9	0	148.306	25.499	0	0
10	0.002	168.211	25.541	0.002	0
11	0	195.490	25.584	0	0
12	0	235.207	25.584	0	1.050

	Х	r	V m	V	t	real	r	ΔV	ΔV cc/s	r	t
1	0.96	233.45	8.64	84.85	34.76	119.61	268.22	8.220	0.01281	242.704	33.081
2	0.95	185.79		76.63	31.40	108.03	217.19	5.920	0.00922	200.091	30.184
3	0.94	154.02		70.71	28.97	99.68	182.99	3.340	0.00520	170.957	28.287
4	0.93	131.32		67.37	27.60	94.97	158.92	3.090	0.00481	149.777	26.970
5	0.92	114.29		64.28	26.34	90.62	140.63	2.570	0.00400	133.482	25.810
6	0.91	101.05		61.71	25.28	86.99	126.33	1.930	0.00301	120.639	24.889
7	0.9	90.45		59.78	24.49	84.27	114.94	9.640	0.01502	97.064	22.518
8	0.85	58.64		50.14	20.54	70.68	79.18	11.570	0.01803	64.856	18.173
9	0.76	34.73		38.57	15.80	54.37	50.53	13.630	0.02124	40.341	13.011
10	0.62	19.94		24.94	10.22	35.16	30.15	5.660	0.00882	26.532	9.059
11	0.53	15.01		19.28	7.90	27.18	22.91	6.423	0.01001	19.014	6.584
12	0.38	9.85		12.8566	5.27	18.12	15.12	3.857	0.00601	11.914	4.478
13	0.15	5.02		9	3.69	12.69	8.71				

Tabla 31. Calculó de variables para bohemita tratada en aire 850°C

Tabla 32. D.P.P. de presión alta a presión baja para bohemita tratada en aire 850°C

	ΔV	r	t	V	VI	V acumulado
1	0.013	242.704	33.081	0.017	0	0.0172
2	0.009	200.091	30.184	0.012	0	0.0295
3	0.005	170.957	28.287	0.007	0	0.0363
4	0.005	149.777	26.970	0.007	0	0.0429
5	0.004	133.482	25.810	0.005	0	0.0484
6	0.003	120.639	24.889	0.004	0.001	0.0525
7	0.015	97.064	22.518	0.023	0.004	0.0760
8	0.018	64.856	18.173	0.027	0.008	0.1032
9	0.021	40.341	13.011	0.029	0.011	0.1318
10	0.009	26.532	9.059	-0.004	0.007	0.1275
11	0.010	19.014	6.584	0.008	0.007	0.1356
12	0.006	11.914	4.478	-0.003	0.015	0.1329

Tabla 33. D.P.P. de presión baja a presión alta para bohemita tratada en aire 850°C

	ΔV	r	t	V	VI
1	0.006	11.914	4.478	0.015	-0.003
2	0.010	19.014	6.584	0.030	-0.007
3	0.009	26.532	9.059	0.036	-0.012
4	0.021	40.341	13.011	0.073	-0.016
5	0.018	64.856	18.173	0.066	-0.008
6	0.015	97.064	22.518	0.038	-0.001
7	0.003	120.639	24.889	0.006	0.001
8	0.004	133.482	25.810	0.005	0.001
9	0.005	149.777	26.970	0.005	0.003
10	0.005	170.957	28.287	0.004	0.005
11	0.009	200.091	30.184	0.005	0.012
12	0.013	242.704	33.081	0	0.167

	Х	r	Vm	V	t	real	R	ΔV	ΔV cc/s	r	t
1	0.96	233.45	88.05	542	21.79	563.79	255.24	2	0.00312	231.374	21.751
2	0.95	185.79		540	21.71	561.71	207.50	2.90	0.00452	191.559	21.652
3	0.94	154.02		537.1	21.59	558.69	175.61	0	0	164.264	21.594
4	0.93	131.32		537.1	21.59	558.69	152.91	0	0	144.401	21.594
5	0.92	114.29		537.1	21.59	558.69	135.89	1.10	0.00171	129.243	21.572
6	0.91	101.05		536	21.55	557.55	122.60	1	0.00156	117.280	21.529
7	0.9	90.45		535	21.51	556.51	111.96	5	0.00779	95.954	21.409
8	0.85	58.64		530	21.31	551.31	79.95	101.43	0.15803	65.952	19.269
9	0.76	34.73		428.57	17.23	445.80	51.96	244.12	0.38034	39.654	12.323
10	0.62	19.94		184.45	7.42	191.87	27.35	37.98	0.05917	24.125	6.652
11	0.53	15.01		146.47	5.89	152.36	20.90	32.55	0.05071	17.664	5.234
12	0.38	9.85		113.92	4.58	118.50	14.43	38.92	0.06064	11.234	3.798
13	0.15	5.02		75	3.02	78.02	8.04				

Tabla 34. Calculó de variables para zeolita IV

Tabla 35. D.P.P. de presión alta a presión baja para zeolita IV

	ΔV	r	t	V	VI	V _{acumulado}
1	0.003	231.374	21.751	0.004	0	0.0038
2	0.005	191.559	21.652	0.006	0	0.0095
3	0	164.264	21.594	0	0	0.0095
4	0	144.401	21.594	0	0	0.0095
5	0.002	129.243	21.572	0.002	0	0.0120
6	0.002	117.280	21.529	0.002	0	0.0143
7	0.008	95.954	21.409	0.013	0.001	0.0272
8	0.158	65.952	19.269	0.314	0.053	0.3411
9	0.380	39.654	12.323	0.689	0.198	1.0304
10	0.059	24.125	6.652	-0.266	0.031	0.7648
11	0.051	17.664	5.234	0.039	0.037	0.8041
12	0.061	11.234	3.798	0.055	0.131	0.8589

Tabla 36. D.P.P. de presión baja a presión alta para zeolita IV

	ΔV	r	t	V	VI
1	0.061	11.234	3.798	0.138	-0.021
2	0.051	17.664	5.234	0.145	-0.032
3	0.059	24.125	6.652	0.174	-0.114
4	0.380	39.654	12.323	1.041	-0.197
5	0.158	65.952	19.269	0.708	-0.043
6	0.008	95.954	21.409	0.085	-0.002
7	0.002	117.280	21.529	0.005	-0.001
8	0.002	129.243	21.572	0.003	0
9	0	144.401	21.594	0	0
10	0	164.264	21.594	0	-0.001
11	0.005	191.559	21.652	0.007	-0.001
12	0.003	231.374	21.751	0.006	1.585

	Х	r	Vm	V	t	real	r	ΔV	ΔV cc/s	r	t
1	0.96	233.45	75.03	643.5	30.36	673.86	263.81	3.50	0.00545	239.902	30.278
2	0.95	185.79		640	30.20	670.20	215.99	9.50	0.01480	199.879	29.972
3	0.94	154.02		630.5	29.75	660.25	183.77	6.50	0.01013	172.264	29.594
4	0.93	131.32		624	29.44	653.44	160.76	6.50	0.01013	152.095	29.288
5	0.92	114.29		617.5	29.13	646.63	143.43	10.50	0.01636	136.558	28.887
6	0.91	101.05		607	28.64	635.64	129.69	0	0	124.389	28.639
7	0.9	90.45		607	28.64	635.64	119.09	28	0.04362	102.524	27.978
8	0.85	58.64		579	27.32	606.32	85.96	338.50	0.52738	66.015	19.332
9	0.76	34.73		240.5	11.35	251.85	46.07	91	0.14178	36.531	9.200
10	0.62	19.94		149.5	7.05	156.55	26.99	32.50	0.05064	23.760	6.287
11	0.53	15.01		117	5.52	122.52	20.53	19.50	0.03038	17.490	5.060
12	0.38	9.85		97.5	4.60	102.10	14.45	22.50	0.03506	11.506	4.069
13	0.15	5.02		75	3.54	78.54	8.56				

Tabla 37. Calculó de variables para zeolita V

Tabla 38. D.P.P. de presión alta a presión baja para zeolita V

	ΔV	r	t	V	VI	V acumulado
1	0.005	239.902	30.278	0.007	0	0.0071
2	0.015	199.879	29.972	0.020	0	0.0276
3	0.010	172.264	29.594	0.015	0	0.0422
4	0.010	152.095	29.288	0.015	0	0.0576
5	0.016	136.558	28.887	0.026	0	0.0836
6	0	124.389	28.639	0	0.001	0.0832
7	0.044	102.524	27.978	0.081	0.018	0.1647
8	0.527	66.015	19.332	1.019	0.268	1.1833
9	0.142	36.531	9.200	-0.226	0.058	0.9573
10	0.051	23.760	6.287	-0.014	0.024	0.9436
11	0.030	17.490	5.060	0.013	0.020	0.9567
12	0.035	11.506	4.069	0.035	0.106	0.9918

Tabla 39. D.P.P. de presión baja a presión alta para zeolita V

	ΔV	r	t	V	VI
1	0.035	11.506	4.069	0.084	-0.009
2	0.030	17.490	5.060	0.077	-0.016
3	0.051	23.760	6.287	0.124	-0.049
4	0.142	36.531	9.200	0.340	-0.138
5	0.527	66.015	19.332	1.331	-0.121
6	0.044	102.524	27.978	0.311	-0.002
7	0	124.389	28.639	0.003	0
8	0.016	136.558	28.887	0.027	0
9	0.010	152.095	29.288	0.016	0
10	0.010	172.264	29.594	0.015	0.001
11	0.015	199.879	29.972	0.020	0.001
12	0.005	239.902	30.278	0.006	1.469

	Х	r	Vm	V	t	real	r	ΔV	V cc/s	r	t
1	0.96	233.45	162.5	246	5.36	251.36	238.81	0	0	214.982	5.359
2	0.95	185.79		246	5.36	251.36	191.15	0	0	175.266	5.359
3	0.94	154.02		246	5.36	251.36	159.38	0	0	148.029	5.359
4	0.93	131.32		246	5.36	251.36	136.68	0	0	128.166	5.359
5	0.92	114.29		246	5.36	251.36	119.65	0	0	113.030	5.359
6	0.91	101.05		246	5.36	251.36	106.41	0	0	101.109	5.359
7	0.9	90.45		246	5.36	251.36	95.81	0	0	79.904	5.359
8	0.85	58.64		246	5.36	251.36	64.00	1.97	0.00307	52.020	5.338
9	0.76	34.73		244.03	5.32	249.35	40.04	1.72	0.00268	32.628	5.297
10	0.62	19.94		242.31	5.28	247.59	25.21	6.15	0.00958	22.685	5.212
11	0.53	15.01		236.16	5.14	241.30	20.16	17.22	0.02683	17.387	4.957
12	0.38	9.85		218.94	4.77	223.71	14.62	54.94	0.08560	11.607	4.171
13	0.15	5.02		164	3.57	167.57	8.60				

Tabla 40. Calculó de variables para zeolita VIII

Tabla 41. D.P.P. de presión alta a presión baja para zeolita VIII

	ΔV	r	t	V	VI	V _{acumulado}
1	0	214.982	5.359	0	0	0
2	0	175.266	5.359	0	0	0
3	0	148.029	5.359	0	0	0
4	0	128.166	5.359	0	0	0
5	0	113.030	5.359	0	0	0
6	0	101.109	5.359	0	0	0
7	0	79.904	5.359	0	0	0
8	0.003	52.020	5.338	0.004	0	0.0038
9	0.003	32.628	5.297	0.004	0	0.0076
10	0.010	22.685	5.212	0.016	0	0.0237
11	0.027	17.387	4.957	0.052	0.005	0.0755
12	0.086	11.607	4.171	0.197	0.145	0.2728

Tabla 42. D.P.P. de presión baja a presión alta para zeolita VIII

	ΔV	r	t	V	VI
1	0.086	11.607	4.171	0.209	-0.017
2	0.027	17.387	4.957	0.086	-0.007
3	0.010	22.685	5.212	0.028	-0.002
4	0.003	32.628	5.297	0.007	-0.001
5	0.003	52.020	5.338	0.005	-0.001
6	0	79.904	5.359	0.001	0
7	0	101.109	5.359	0	0
8	0	113.030	5.359	0	0
9	0	128.166	5.359	0	0
10	0	148.029	5.359	0	0
11	0	175.266	5.359	0	0
12	0	214.982	5.359	0	0.208

	Х	r	Vm	V	t	real	r	ΔV	V cc/s	r	t
1	0.96	233.45	120.77	376.48	11.04	387.52	244.49	0.37	0.00058	220.653	11.030
2	0.95	185.79		376.11	11.02	387.13	196.82	0.38	0.00059	180.926	11.019
3	0.94	154.02		375.73	11.01	386.74	165.03	0.38	0.00059	153.678	11.008
4	0.93	131.32		375.35	11.00	386.35	142.32	0.75	0.00117	133.798	10.991
5	0.92	114.29		374.6	10.98	385.58	125.27	0	0	118.652	10.980
6	0.91	101.05		374.6	10.98	385.58	112.03	0.38	0.00059	106.725	10.975
7	0.9	90.45		374.22	10.97	385.19	101.42	1.51	0.00235	85.492	10.947
8	0.85	58.64		372.71	10.92	383.63	69.56	2.27	0.00354	57.574	10.892
9	0.76	34.73		370.44	10.86	381.30	45.58	26.46	0.04122	37.801	10.471
10	0.62	19.94		343.98	10.08	354.06	30.02	58.59	0.09128	26.697	9.224
11	0.53	15.01		285.39	8.37	293.76	23.38	115.29	0.17962	19.106	6.676
12	0.38	9.85		170.1	4.99	175.09	14.84	52.92	0.08245	11.647	4.210
13	0.15	5.02		117.18	3.43	120.61	8.46				

Tabla 43. Calculó de variables para zeolita X

Tabla 44. D.P.P. de presión alta a presión baja para zeolita X

	ΔV	r	t	V	VI	V acumulado
1	0.001	220.653	11.030	0.001	0	0.0006
2	0.001	180.926	11.019	0.001	0	0.0013
3	0.001	153.678	11.008	0.001	0	0.0020
4	0.001	133.798	10.991	0.001	0	0.0034
5	0	118.652	10.980	0	0	0.0034
6	0.001	106.725	10.975	0.001	0	0.0041
7	0.002	85.492	10.947	0.003	0	0.0072
8	0.004	57.574	10.892	0.005	0	0.0126
9	0.041	37.801	10.471	0.079	0.004	0.0912
10	0.091	26.697	9.224	0.203	0.036	0.2946
11	0.180	19.106	6.676	0.338	0.102	0.6331
12	0.082	11.647	4.210	-0.048	0.181	0.5854

|--|

	ΔV	r	t	V	VI
1	0.082	11.647	4.210	0.202	-0.046
2	0.180	19.106	6.676	0.532	-0.111
3	0.091	26.697	9.224	0.472	-0.068
4	0.041	37.801	10.471	0.209	-0.024
5	0.004	57.574	10.892	0.042	-0.003
6	0.002	85.492	10.947	0.007	-0.002
7	0.001	106.725	10.975	0.003	0
8	0	118.652	10.980	0	-0.001
9	0.001	133.798	10.991	0.002	-0.001
10	0.001	153.678	11.008	0.002	-0.001
11	0.001	180.926	11.019	0.001	-0.001
12	0.001	220.653	11.030	0.001	1.070

	Х	r	Vm	V	t	real	r	ΔV	ΔV cc/s	r	t
1	0.96	233.45	97.37	945	34.36	979.36	267.81	0	0	243.980	34.357
2	0.95	185.79		945	34.36	979.36	220.15	0	0	204.263	34.357
3	0.94	154.02		945	34.36	979.36	188.38	9.25	0.01441	176.858	34.188
4	0.93	131.32		935.75	34.02	969.77	165.34	5.75	0.00896	156.723	33.916
5	0.92	114.29		930	33.81	963.81	148.11	0	0	141.483	33.811
6	0.91	101.05		930	33.81	963.81	134.86	0	0	129.561	33.811
7	0.9	90.45		930	33.81	963.81	124.26	25	0.03895	107.902	33.357
8	0.85	58.64		905	32.90	937.90	91.54	525	0.81795	70.041	23.359
9	0.76	34.73		380	13.82	393.82	48.54	218.50	0.34042	37.174	9.843
10	0.62	19.94		161.5	5.87	167.37	25.81	14.25	0.02220	23.086	5.612
11	0.53	15.01		147.25	5.35	152.60	20.36	7.25	0.01130	17.652	5.222
12	0.38	9.85		140	5.09	145.09	14.94	25	0.03895	12.072	4.635
13	0.15	5.02		115	4.18	119.18	9.20				

Tabla 46. Calculó de variables para N-PROPYL

Tabla 47. D.P.P. de presión alta a presión baja para N-PROPYL

	ΔV	r	t	V	VI	V acumulado
1	0	243.980	34.357	0	0	0
2	0	204.263	34.357	0	0	0
3	0.014	176.858	34.188	0.022	0	0.0221
4	0.009	156.723	33.916	0.015	0	0.0366
5	0	141.483	33.811	0	0	0.0366
6	0	129.561	33.811	0	0	0.0366
7	0.039	107.902	33.357	0.081	0.015	0.1179
8	0.818	70.041	23.359	1.808	0.555	1.9260
9	0.340	37.174	9.843	-0.397	0.130	1.5292
10	0.022	23.086	5.612	-0.189	0.007	1.3402
11	0.011	17.652	5.222	0.008	0.011	1.3482
12	0.039	12.072	4.635	0.073	0.128	1.4213

Tabla 48. D.P.P. de presión baja a presión alta para N-PROPYL

	ΔV	r	t	V	VI
1	0.039	12.072	4.635	0.103	-0.006
2	0.011	17.652	5.222	0.035	-0.005
3	0.022	23.086	5.612	0.047	-0.047
4	0.340	37.174	9.843	0.716	-0.221
5	0.818	70.041	23.359	2.338	-0.226
6	0.039	107.902	33.357	0.555	-0.004
7	0	129.561	33.811	0.008	0
8	0	141.483	33.811	0	-0.001
9	0.009	156.723	33.916	0.016	-0.002
10	0.014	176.858	34.188	0.026	-0.001
11	0	204.263	34.357	0.002	0
12	0	243.980	34.357	0	2.552