

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIAS DE LA TIERRA CENTRO DE GEOCIENCIAS (GEOLOGÍA)

ANÁLISIS DE PROCEDENCIA Y TERMOCRONOLOGÍA DETRÍTICA DE LAS FORMACIONES MATZITZI Y TIANGUISTENGO: IMPLICACIONES TECTÓNICAS EN LA EVOLUCIÓN PALEOZOICA-MESOZOICA DEL SUR DE MÉXICO

TESIS QUE PARA OPTAR POR EL GRADO DE MAESTRA EN CIENCIAS DE LA TIERRA

PRESENTA: ALEJANDRA MARÍA BEDOYA MEJÍA

TUTOR:

DR. LUIGI A. SOLARI (UNAM-CENTRO DE GEOCIENCIAS)

MIEMBROS DEL COMITÉ TUTOR:

MARIANO ELÍAS HERRERA (UNAM-INSTITUTO DE GEOLOGÍA) CARLOS ORTEGA OBREGÓN (UNAM-CENTRO DE GEOCIENCIAS) LUCA FERRARI (UNAM-CENTRO DE GEOCIENCIAS) GILBERTO SILVA ROMO (UNAM-FACULTAD DE INGENIERÍA)

> JURIQUILLA, SANTIAGO DE QUERÉTARO OCTUBRE, 2018

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

"Declaro conocer el código de ética de la Universidad Nacional Autónoma de México, plasmado en la Legislación Universitaria. Con base en las definiciones de integridad y honestidad ahí especificadas, aseguro mi firma al calce que el presente es original y enteramente de mi autoría. Todas las citas de, o referencias a, las obras de otros autores aparecen debida y adecuadamente señaladas, así como acreditadas mediante los recursos editoriales convencionales."

Agradecimientos

Agradezco a mi tutor, Luigi Solari, por su acompañamiento a lo largo de este proceso, por transmitirme sus enseñanzas, conocimiento y observaciones en la elaboración de este proyecto.

Quiero agradecer a los investigadores Fanis Abdullin, Michelangelo Martini y Carlos Ortega por sus observaciones y enseñanzas durante el desarrollo de mi maestría, y por la ayuda brindada semestre a semestre. Al profesor Jorge Aranda y al estudiante Édgar Juárez por la ayuda brindada en el análisis petrográfico.

Agradezco a Mariana Jaramillo, Sandra Suárez y Raúl Martínez por la colaboración brindada en campo, y a María Isabel Sierra por las discusiones durante la elaboración de este manuscrito.

Agradezco a mis padres por todo el apoyo que me han brindado. A Santiago por su apoyo y colaboración en las discusiones que propiciaron un mejor entendimiento durante la realización de este proyecto.

Por último, quiero agradecer a CONACYT y al proyecto PAPIIT IN103417 por el apoyo económico y financiamiento en la realización de mis estudios de maestría y tesis de investigación.

Resumen

La evolución geológica del sur de México durante el Paleozoico-Mesozoico ha sido relacionada a los procesos tectónicos involucrados durante la conformación y fragmentación del supercontinente Pangea. En este trabajo, se integraron análisis petrográficos de arenisca, geocronología U-Pb en circones detríticos, termocronología U-Pb, geoquímica y análisis de trazas de fisión en apatitos detríticos, realizados en muestras de rocas detríticas del Paleozoico tardío - Triásico de las formaciones Matzitzi y Tianguistengo, en el sur de México, permitiendo reconstruir y constreñir la procedencia y la historia tectono-térmica de estas secuencias, las cuales guardan el registro de los procesos geológicos en el sur de México entre la amalgamación y la fragmentación de Pangea.

Nuevos datos geocronológicos U-Pb en circón de la unidad volcánica Toba Atolotitlán sugieren para la Formación Matzitzi una edad de acumulación del Triásico Medio, debido a su carácter sinsedimentario. Se propone una edad de acumulación del Triásico para la Formación Tianguistengo. El análisis de procedencia de areniscas muestra una fuente principalmente metamórfica de edad grenvilliana para la Formación Matzitzi, con un aporte mínimo de rocas procedentes del arco Carbonífero-Pérmico de México. Para la Formación Tianguistengo se identificó una fuente principal granítica plutónica de edad Carbonífero-Pérmico, y fuentes metamórficas subordinadas de edad grenvilliana y paleozoica temprana. Los datos termocronológicos U-Pb y geoquímicos en apatitos detríticos son coherentes con los análisis petrográficos y geocronológicos en circones detríticos. Para la Formación Matzitzi la subpoblación de apatitos detríticos presenta edades del Neoproterozoico temprano, los cuales muestran una firma geoquímica similar a la observada en las rocas gnéisicas del Complejo Oaxaqueño. Una subpoblación principal del Carbonífero Tardío es observada en los apatitos detríticos de la Formación Tianguistengo, con una firma geoquímica similar a las rocas pertenecientes al arco Pérmico-Carbonífero construido al W de México, como lo es el Plutón Totoltepec. Estos resultados nuevos, sugieren una acumulación sedimentaria continental durante el Triásico Medio-Inferior, controlada por la exhumación de bloques de basamento y de raíces del arco Carbonífero-Pérmico construido en la margen occidental de México, y una disminución de la actividad magmática durante su acumulación.

Los datos termocronológicos de baja temperatura muestran edades de trazas de fisión en apatitos (AFT) de aprox. 240 Ma para la Formación Tianguistengo, los cuales coinciden con la edad de acumulación de dicha formación, y corresponden a edades de enfriamiento de la fuente, que es el

registro de la exhumación triásica del Plutón Totoltepec. Un pulso de exhumación durante el Cretácico Tardío-Paleoceno es registrado por los apatitos detríticos de la Formación Matzitzi, el cual es correlacionable con la historia de deformación compresional durante el Cretácico-Eoceno registrada en el sur de México, el cual se conoce como la Orogenia Larámide.

Abstract

Geological evolution of southern Mexico during Paleozoic-Mesozoic was characterized by tectonic processes related to the assembly and fragmentation of Pangea. In this contribution integrated petrographic analysis, U-Pb detrital zircon geochronology, U-Pb detrital apatite thermochronology, geochemistry and fission tracks analysis were obtained in late Paleozoic-Early Triassic sedimentary sequences of the Matzitzi and Tianguistengo Formations, located in southern Mexico. Those data allow to constrain the provenance and tectono-thermal record of the geological history of southern Mexico between the amalgamation and fragmentation of Pangea.

New U-Pb geochronological data in the volcanic unit Toba Atolotitlán suggested a Middle Triassic accumulation age for the Matzitzi Formation, due to their syndepositional character. A Triassic accumulation age is proposed for the Tianguistengo Formation. Sandstones provenance analysis show a metamorphic Grenvillian main source for the Matzitzi Formation, with a minimum arc-related source, for the Tianguistengo Formation was identified a plutonic granitic Carboniferous-Permian main source, and a Grenvillian and Early Paleozoic sources subordinated. Detrital apatite U-Pb thermochronology and geochemistry suggested the same main sources for both clastic successions. For the Matzitzi Formation a main Early Neoproterozoic subpopulation shows a geochemistry signature similar to metamorphic rocks of the Oaxacan Complex. A Late Carboniferous main subpopulation for the Tianguistengo Formation is observed dominantly by apatite microanalysis, with a geochemical signature similar to Carboniferous-Permian arc-related rocks in southern Mexico, like the Totoltepec pluton. This new results suggested a continental sedimentary accumulation during Early-Middle Triassic, controlled by a basement blocks and Carboniferous-Permian magmatic arc roots exhumation/uplift, and an arc activity diminished during this period.

Apatite fission track data show inheritances ages ca. 240 Ma for the Tianguistengo Formation, suggesting an accumulation age and the source cooling history, in this case this is the record of Totoltepec pluton Triassic exhumation. A Late Cretaceous – Paleocene exhumation pulse is recorded in sandstones of the Matzitzi Formation, correlated with Cretaceous-Eocene compressive deformational history in southern Mexico, known as the Laramide Orogeny.

Tabla	de	contenido
-------	----	-----------

A	grade	ecimie	entos		
R	esum	ien		14	
Α	bstra	ct		16	
1.	1. Introducción			11	
2.	М	Marco Geológico Regional			
3.	М	letodo	ología	20	
	3.1.	Tra	abajo de Campo	20	
3.2. Análisis Petrográfico		An	álisis Petrográfico	20	
	3.4. Geocronología U-Pb		21		
	3.5.	Те	rmocronología U-Pb y Geoquímica detrítica en apatitos	22	
	3.6.	Те	rmocronología de baja temperatura: Trazas de fisión en apatitos (AFT)	23	
4.	Re	esulta	dos	25	
	4.1.	Tra	abajo de Campo: Observaciones	25	
	4.	1.1.	Formación Matzitzi	27	
	4.	1.1.	Formación Tianguistengo	31	
	4.2.	An	álisis petrográfico	33	
	4.	2.1.	Petrografía de areniscas	33	
	4.	2.2.	Toba Atolotitlán	39	
	4.3.	Ge	ocronología U-Pb	41	
	4.	3.1.	Formación Matzitzi	41	
	4.	3.2.	Formación Tianguistengo	44	
	4.	3.3.	Toba Atolotitlán	46	
	4.4.	Те	rmocronología U-Pb en apatitos	49	
	4.	4.1.	Formación Matzitzi	49	
	4.	4.2.	Formación Tianguistengo	51	
	4.5.	Ge	oquímica detrítica en apatitos	53	
	4.	5.1.	Formación Matzitzi	53	
	4.	5.2.	Formación Tianguistengo	64	
	4.6.	Те	rmocronología de baja temperatura: Trazas de fisión en apatitos (AFT)	77	
	4.	6.1.	Formación Matzitzi	77	
	4.	6.2.	Formación Tianguistengo	80	
5.	Di	iscusi	ón	84	

5.1.	Proc	edencia y edad de acumulación84
5.1.	1.	Formación Matzitzi
5.1.	2.	Formación Tianguistengo
5.2.	Tern	nocronología AFT y Modelo de evolución térmica88
5.2.	1.	Formación Matzitzi
5.2.	2.	Formación Tianguistengo
5.3.	Imp	licaciones paleotectónicas y paleogeográficas90
6. Con	clusic	ones
Reference	cias	
Anexo I. análisis)	Infor	mación muestras utilizadas en este trabajo (localización, unidad litológica, tipo de 112
Anexo II	. Func	lamentos del análisis por trazas de fisión en apatitos113
Anexo II	I. Con	teo de puntos análisis petrográfico de areniscas (Método Gazzi-Dickinson) 118
Anexo I\	/. Cara	acterísticas texturales de las areniscas de la Fm. Matzitzi y Tianguistengo 120
Anexo V	. Imág	genes de Catodoluminiscencia muestras detríticas: Fm. Matzitzi y Tianguistengo121
Anexo V	I. Imá	genes de Catodoluminiscencia Toba Atolotitlán122
Anexo V	II. Res	sultados de análisis geocronológico U-Pb en circón123
Anexo V	III. Re	sultados de análisis Termocronológico U-Pb en apatitos detríticos
Anexo IX	(. Res	ultados de análisis geoquímico en apatitos detríticos180
Anexo X apatitos	. Des	cripción unidades del basamento en las cuales se realizó análisis geoquímico de 203
Anexo X y estánd	l. Resi ares u	ultados de análisis de edades de trazas de fisión de las muestras detríticas analizadas utilizados

Lista de Figuras

Figura 1. Mapa geológico regional con los principales dominios litológicos del sur de México 15
Figura 2. Columna esquemática generalizada de las unidades litológicas presentes en la zona de
estudio19
Figura 3. Mapas geológicos locales con localidades de muestreo de este trabajo, región de los Reyes
Metzontla-San Luis Atolotitlán y región de Santo Domingo Tianguistengo-Santo Tomás Otlaltepec
Figura 4. Fotografías de afloramientos de las rocas de la Fm. Matzitzi
Figura 5. Fotografías de las capas conglomeráticas de la Fm. Matzitzi
Figura 6. Fotografías de las areniscas de la Fm. Matzitzi
Figura 7. A) Fotografías de las capas de lutitas de la Fm. Matzitzi, B). Hojas de plantas fósiles e
impresiones en lutitas de la Fm. Matzitzi
Figura 8. Fotografías de la Toba Atolotitlán
Figura 9. Fotografías de las areniscas de la Fm. Tianguistengo
Figura 10. Fotografías de las capas conglomeráticas de la Fm. Tianguistengo
Figura 11. Microfotografías de las areniscas de la Fm. Matzitzi
Figura 12. Microfotografías de las areniscas e la Fm. Matzitzi
Figura 13. Microfotografía de las areniscas de la Fm. Tianguistengo
Figura 14. Diagramas de clasificación de areniscas de Folk (1980) y Garzanti (2016)
Figura 15. Diagramas de discriminación tectónica para areniscas de Dickinson (1985) y Garzanti
(2016)
Figura 16. Microfotografías de la Toba Atolotitlán 40
Figura 17. Diagramas de Concordia U-Pb y de Densidad de Probabilidad de Edades de las muestras
ABM-02, ABM-05 Y ABM-10
Figura 18. Diagramas de Concordia U-Pb y de Densidad de Probabilidad de Edades de las muestras
RMO-01 y RMO-04
Figura 19. Diagramas de Concordia U-Pb y de edad promedio ponderada para las muestras de la
Toba Atolotitlán ABM-11a, ABM-11b y ABM-1348
Figura 20. Diagrama Tera-Wasserburg análisis U-Pb en apatitos muestra ABM-02 50
Figura 21. Diagrama Tera-Wasserburg análisis U-Pb en apatitos muestra ABM-05 50
Figura 22. Diagrama Tera-Wasserburg análisis U-Pb en apatitos muestra ABM-10

 Figura 38. Diagramas de discriminación Fm. Tianguistengo-Subpoblación neoproterozoica media
 Figura 38. Diagramas de discriminación Fm. Tianguistengo-Subpoblación neoproterozoica media 71 Figura 39. Diagramas de REE Fm. Tianguistengo-Subpoblación cámbrica media
 Figura 38. Diagramas de discriminación Fm. Tianguistengo-Subpoblación neoproterozoica media
Figura 38. Diagramas de discriminación Fm. Tianguistengo-Subpoblación neoproterozoica media
Figura 38. Diagramas de discriminación Fm. Tianguistengo-Subpoblación neoproterozoica media
Figura 37. Diagramas de REE Fm. Tianguistengo-Subpoblación neoproterozoica media
Figura 36. Diagramas de discriminación Fm. Tianguistengo-Subpoblación neoproterozoica temprana
Figura 35. Diagramas de REE Fm. Tianguistengo-Subpoblación neoproterozoica temprana67
Figura 34. Diagramas de discriminación para los apatitos de la Fm. Tianguistengo
Figura 33. Diagrama de REE Fm. Tianguistengo64
Figura 32. Diagramas de discriminación Fm. Matzitzi-Subpoblación pérmica temprana
Figura 31. Diagramas de REE Fm. Matzitzi-Subpoblación pérmica temprana
Figura 30. Diagramas de discriminación Fm. Matzitzi-Subpoblación Neoproterozoica tardía61
Figura 29. Diagramas de REE Fm. Matzitzi-Subpoblación neoproterozoica tardía
Figura 28. Diagramas de discriminación Fm. Matzitzi-Subpoblación neoproterozoica temprana 58
Figura 27. Diagramas de REE Fm. Matzitzi-Subpoblación neoproterozoica temprana
Figura 26. Diagramas de discriminación para los apatitos de la Fm. Matzitzi
Figura 25. Diagrama de REE Fm. Matzitzi
Figura 24. Diagrama Tera-Wasserburg análisis U-Pb en apatitos muestra RMO-04

Figura 47. Relación entre Edad de Trazas de Fisión en apatitos con la composición en función del
contenido de Cl (wt%) para las muestras de la Formación Tianguistengo
Figura 48. Modelo termal de las muestras detríticas de la Formación Matzitzi
Figura 49. Esquema paleogeográfico desde el Pérmico temprano hasta el Triásico Medio,
representando las principales unidades litológicas estudiadas94
Figura 50. Modelo de formación de trazas de fisión-"Ion spike explosion" 114
Figura 51. Trazas confinadas
Figura 52. Localización del punto de ablación en el área de conteo de trazas de fisión espontáneas

Lista de Tablas

Tabla 1. Edades pico presentes en las muestras colectadas en la Fm. Matzitzi	42
Tabla 2. Edades pico presentes en las muestras colectadas en la Fm. Tianguistengo	45

1. Introducción

La configuración geológica del sur de México ha sido relacionada al tiempo y los mecanismos involucrados en la historia de convergencia y acreción de terrenos que dieron lugar a la conformación del supercontinente Pangea durante el Pérmico y a su posterior fragmentación durante el Triásico-Jurásico. Esta configuración, puede ser comprendida desde el estudio del registro geológico encontrado en el sur de México, en donde la yuxtaposición de terrenos tectonoestratográficos, construcción de arcos magmáticos y apertura de cuencas sedimentarias dieron lugar a este registro geológico (Pindell, 1985; Rowley y Pindell, 1989; Sedlock et al., 1993; Pindell y Kennan, 2009; Martini y Ortega-Gutiérrez, 2016). Los processos geológicos que ocurren a gran escala han dado lugar a su vez a eventos deformacionales y de metamorfismo, así como de procesos de levantamiento y exhumación de bloques. Estos procesos pueden ser entendidos con base en los componentes detriticos de las sucesiones sedimentarias (ej. Silva-Romo et al., 2015; Martini et al., 2016).

Diversos trabajos han permitido entender la evolución tectónica y geológica de la región sur de México durante el Paleozoico-Mesozoico, sin embargo, la gran parte de ellos han sido abordados a partir del estudio de los complejos metamórficos que conforman el basamento en esta región (ej. Complejo Oaxaqueño, Complejo Acatlán), y en las sucesiones Jurásicas que registran la historia de fragmentación de Pangea, apertura del Golfo de México y migración-rotación del bloque Yucatán hasta su posición actual (Elías-Herrera y Ortega-Gutiérrez, 2002; Solari et al., 2003; Martini y Ortega-Gutiérrez, 2016; Ortega-Gutiérrez et al., 2018). Escasas secuencias sedimentarias de edad Paleozoico tardío-Mesozoico temprano se pueden encontrar en el sur de México, por lo que pocos trabajos han sido enfocados al entendimiento de la evolución tectónica en este periodo de tiempo. Escasos estudios previos realizados en estas unidades no abarcan por completo el análisis geológico integrado, que permitiría entender la procedencia e historia de formación y estructuración de las mismas (Velasco–Hernández y Arellano, 1996; Centeno-García et al, 2009; Campos-Madrigal et al., 2013; Silva-Romo et al., 2015; Martini et al., 2016).

En este trabajo se presenta un análisis integrado de procedencia y termocronología en las rocas siliciclásticas de las formaciones Matzitzi y Tianguistengo, a las cuales se les ha asignado edades del

Pénsilvánico-Pérmico Tardío (Silva-Pineda, 1970; R. Weber, 1997) y Triásica (Verde-Ramírez, 2015), respectivamente.

Los estudios de procedencia son abordados comúnmente desde la geocronología detrítica, permitiendo establecer una relación entre la edad de los componentes detríticos y la roca fuente, sin embargo, estas no corresponden a una única fuente, por lo cual la integración de herramientas que permitan la caracterización de la fuente son necesarias (O'Sullivan 2018). Aquí, mediante la implementación de técnicas convencionales de procedencia como análisis petrográfico de areniscas y geocronología detrítica en circón, así como multitécnicas micro-analíticas en apatitos detríticos, son abordadas con el fin de establecer la procedencia de estas sucesiones sedimentarias y su historia tectono-térmica asociada.

El apatito es un mineral útil en estudios de procedencia y exploración mineral, que se encuentra en la gran mayoría de tipos de roca, ígneas, metamórficas y sedimentarias clásticas (Morton y Yaxley, 2007; Chew y Donelick, 2012; Henrichs et al., 2018). Es comúnmente usado para análisis termocronológicos de baja temperatura, como trazas de fisión y (U-Th)/He, y debido a la temperatura de cierre del sistema U-Pb en apatitos, en un rango de entre ~350-550°C, ha sido también usado como herramienta de procedencia en zonas en donde la naturaleza de las rocas no permite la aplicación de geocronología U-Pb en circones (carencia de circones) (Chew y Donelick, 2012; Mark et al., 2016; O'Sullivan et al., 2016; Henrichs et al., 2018). Además, se ha demostrado que la composición química de los apatitos también es una herramienta útil para estudios de procedencia de rocas sedimentarias, la cual podría relacionarse directamente con la geoquímica de apatitos de rocas fuente de la cual fueron derivados, debido a su sensibilidad a cambios petrogenéticos, y suficiente estabilidad en condiciones de enterramiento durante el proceso de sedimentación y diagénesis, en ambientes donde las condiciones climáticas no sean dominadas por características tropicales, ácidas, que promuevan su disolución (Belousova et al., 2002; Morton y Yaxley, 2007; Abdullin et al., 2016; Henrichs et al., 2018). Por ello, en este trabajo la realización de análisis de termocronología U-Pb, la cual hasta ahora no ha sido utilizado ampliamente como herramienta en los análisis de procedencia (Carrapa et al., 2009; Mark et al., 2016; O'Sullivan et al., 2018), geoquímica de elementos traza y trazas de fisión, permite constreñir tanto la naturaleza de las áreas fuente como la historia termal de las formaciones Matzitzi y Tianguistengo.

Los nuevos resultados presentados permiten contribuir al entendimiento de los procesos geológicos y tectónicos ocurridos durante en el Paleozoico temprano-Mesozoico tardío, asociados al tiempo comprendido entre unas de las reconfiguraciones tectónicas más importantes en la evolución geológica del sur de México.

2. Marco Geológico Regional

La evolución tectónica del sur de México durante el Paleozoico-Mesozoico está caracterizada por la combinación de eventos colisionales y regímenes de subducción y extensión que dan lugar a una configuración geológica compleja, la cual aún no está completamente esclarecida. Como consecuencia del reajuste tectónico global durante la conformación del supercontinente Pangea en el Paleozoico, fueron desencadenados eventos de acreción de terrenos (ej. Terreno Mixteco, Terreno Zapoteco; Figura 1) (Torres et al., 1999; Elías-Herrera y Ortega-Gutiérrez, 2002; Elías-Herrera et al., 2005; Kirsch et al., 2012; Martini et al., 2016), así como la generación de un arco magmático hacia el borde occidental de dicho supercontinente (Arco del Este de México), para el cual algunos autores han propuesto una edad permo-triásica (Torres et al., 1999; Dickinson y Lawton, 2001). Sin embargo, la ausencia de registro magmático durante el Triásico, y por el contrario el suficiente registro existe del Carbonífero-Pérmico, sugiere más bien la construcción de un arco magmático durante este periodo de tiempo (Kirsch et al., 2012; Ortega-Obregón et al., 2014). Previo a la fragmentación del supercontinente Pangea, la instauración de sistemas fluviales importantes localizados a lo largo de Pangea ecuatorial, como el Paleo-río La Mora propuesto por Silva-Romo et al., (2015), dio lugar a la construcción de sucesiones sedimentarias y dispersión de sedimentos desde el Cratón Amazónico hasta el sur de México (Silva-Romo et al., 2015; 2018). Así mismo como la subsecuente fragmentación progresiva del supercontinente Pangea durante el Triásico Tardío-Jurásico, generada por el establecimiento de un régimen de carácter extensional, dio como resultado la apertura del Océano Atlántico, Golfo de México y cuencas subsidiarias, exhumación de bloques de basamento y construcción de plataformas carbonatadas (ej. Rowley y Pindell, 1989; Pindell y Kennan, 2009; Martini y Ortega-Gutiérrez, 2016).

El registro de estos cambios en la configuración tectónica está presente en las sucesiones sedimentarias del Paleozoico tardío–Mesozoico temprano, encontradas al sur del estado de Puebla y estado de Oaxaca, las cuales han sido estudiadas particularmente desde aspectos paleontológicos debido a su importante contenido de plantas fósiles (ej. Formación Matzitzi – Silva-Pineda, 1970). Sin embargo, los estudios estratigráficos son escasos y restringidos, así mismo como aproximaciones tectónicas con integración de múltiples técnicas, que permitan un mejor entendimiento de la configuración paleogeográfica y tectónica durante los reajustes anteriormente mencionados.

Figura 1. Mapa geológico regional con los principales dominios litológicos del sur de México, Modificado de Kirsch et al (2012); (2014). Mx: Terreno Mixteco; Oax: Oaxaquia; J: Terreno Juárez; Xo: Complejo Xolapa; FVTM: Faja Volcánica Transmexicana.

A continuación, se describe de manera resumida la configuración geológica del sur de México, particularmente en la región sur del Estado de Puebla y Oaxaca, foco de este estudio (**Figura 2**).

Basamento pre-Mesozoico

En la región sur de México, el basamento pre-Mesozoico está representado por rocas metamórficas de corteza media e inferior, correspondientes a complejos remanentes de sistemas orogénicos con edades comprendidas entre el Mesoproterozoico y Paleozoico Tardío, definidos como el Complejo Oaxaqueño y Complejo Acatlán (Ortega-Gutiérrez et al., 2018).

El Complejo Oaxaqueño está constituido por rocas metaplutónicas y metasedimentarias en facies granulita de edades de ~ 1 Ga, que conformaron el denominado microcontinente Oaxaquia, el cual se extiende desde el estado de Tamaulipas hasta el estado de Oaxaca, y representa el registro de la Orogenia Zapoteca (evento que tuvo lugar durante la conformación del supercontinente Rodinia ca. 990 Ma), en una secuencia de edad ca. 1.4 Ga, para la cual se ha sugerido un ambiente tectónico de formación de arco intra-oceánico o de rift (Ortega-Gutiérrez et al., 1995; Keppie, 2004; Solari et al., 2014; Weber y Schulze, 2014; Ortega-Gutiérrez et al., 2018). El Complejo Oaxaqueño está limitado tectónicamente al este por la Falla Oaxaca, al oeste por la Falla Caltepec y al sur por la Falla Chacalapa (Alaniz-Álvarez et al., 1994; Elías-Herrera y Ortega-Gutiérrez, 2002; Tolson, 2005)-Litológicamente incluye para- y ortogneises principalmente, pegmatitas, y una serie de intrusivos AMCG (anortosita-mangerita-charnoquita-granito) (Solari et al., 2003; Solari et al., 2014; Ortega-Gutiérrez et al., 2018).

Al oeste del Complejo Oaxaqueño, se encuentra en yuxtaposición el Complejo Acatlán, separados entre sí por la Zona de Falla Caltepec, la cual ha sido identificada como la zona de sutura entre ambos complejos, resultado de la colisión oblicua durante el Pérmico temprano (Elías-Herrera y Ortega-Gutiérrez, 2002; Elías-Herrera et al., 2005; Martini et al., 2016). El Complejo Acatlán es un complejo polimetamórfico, constituido por rocas metasedimentarias y metaígneas formadas en escenarios tectónicos relacionados con la apertura, cierre y/o subducción de los océanos lapetus, Rheico y Paleo-Pacífico, de edades desde el Cambro-Ordovícico hasta el Paleozoico Tardío, con metamorfismo en facies esquisto verde, esquisto azul y eclogita, y se encuentra limitado tectónicamente por al NE por el cabalgamiento de Papalutla, al sur por el Complejo Xolapa y al este por la Falla Caltepec como se mencionó anteriormente (Talavera-Mendoza et al., 2005; Nance et al., 2009; Ortega-Obregon et al., 2009; Vega-Granillo et al., 2009; Ortega-Gutiérrez et al., 2018).

Arco del Este de México

En el sur y este de México, una serie de cuerpos ígneos dispuestos de forma discontinua y de edad Paleozoico Tardío, han sido considerados parte del arco continental construido durante el Paleozoico tardío-Triásico al oeste del supercontinente Pangea (Torres et al., 1999; Dickinson y Lawton, 2001; Solari et al., 2001; Kirsch et al., 2012; Ortega-Obregón et al., 2014). En la zona de estudio, el Arco del Este de México está representado por el Plutón Totoltepec y el Granito Cozahuico. El Plutón Totoltepec consiste en una suite de gabro-diorita-tonalita-trondjhemita, con edades entre ca. 306 Ma, en las porciones más máficas, que son menos abundantes, y ca. 290 Ma en las intrusiones más félsicas, predominantes en esta unidad (Kirsch et al., 2012). El Granito Cozahuico es un cuerpo ígneo deformado de composición granítica a granodiorítica, de edad ca. 277 Ma, el cual ha sido interpretado como un cuerpo sintectónico emplazado en la zona de cizalla de la Falla Caltepec, que pone en yuxtaposición a los Complejos Oaxaqueños y Acatlán (Elías-Herrera y Ortega-Gutiérrez, 2002; Elías-Herrera et al., 2005).

Formación Matzitzi

La Formación Matzitzi, objeto de estudio de este trabajo, es una de las pocas sucesiones sedimentarias considerada previamente de edad del Paleozoico Tardío en la región sur de México (ej. Centeno-García et al., 2009). Fue descrita inicialmente por Aguilera (1896) como una sucesión sedimentaria arcósica de Triásico tardío, con un importante contenido de plantas fósiles, y posteriormente definida formalmente por Calderón-García (1956) como una secuencia compuesta por intercalaciones de areniscas y lutitas oscuras, con escasos lentes de conglomerados y capas de carbón, y un abundante contenido de plantas fósiles. Se encuentra expuesta en el sur del estado de Puebla, entre los pueblos de Los Reyes Metzontla, San Luis Atolotitlán y Santiago Coatepec (Figura 3A). Es una secuencia siliciclástica a la cual se le ha asignado un origen continental, y a partir de su importante contenido de plantas fósiles, algunos autores le han asignado edades entre el Pensilvánico (Silva-Pineda, 1970) y Pérmico Tadío (Weber, 1997). Está compuesta por estratos de areniscas, intercalados con conglomerados, lutitas y lodolitas carbonosas, además hacia la base de esta formación, se encuentra un cuerpo de roca ígnea de composición félsica, denominada Toba Atolotitlán, la cual ha sido descrita como una roca ígnea volcánica sindeposicional a la Formación Matzitzi (Hernández-Láscares, 2000; Centeno-García et al., 2009). El carácter extrusivo de esta unidad y su relación a un arco magmático desarrollado durante el Permo-Triásico en esta región ha sido propuesto por Centeno-García et al. (2009).

La Formación Matzitzi se encuentra sobreyaciendo de manera discordante a las rocas de los Complejos Oaxaqueño y Acatlán (Weber, 1997; Centeno-García et al., 2009), y subyace discordantemente la unidad de "Lechos rojos", a la cual se le ha asignado una edad de Triásico-Jurásico (Morán-Zenteno et al., 1993), así como la Formación Caltepec y la Formación Zapotitlán de edad Cretácico Tardío (Mendoza-Rosales, 2010; Ortega-Gutiérrez et al., 2014).

Esta unidad es una de las pocas formaciones que guarda registro sedimentario del Paleozoico tardío en el sur del país, la cual ha sido objeto de estudio principalmente desde el punto de vista paleontológico (Silva-Pineda, 1970; Magallón-Puebla, 1991; Weber, 1997; Galván-Mendoza, 2000), y de la cual se desconocen aún aspectos geológicos importantes.

Formación Tianguistengo

La Cuenca Otlaltepec es una secuencia siliciclástica ubicada en el poblado de Santo Tomás Otlaltepec, la base de la cuenca sobreyace de forma discordante al Complejo Acatlán y al Plutón Totoltepec hacia el sureste de esta. Se encuentra en contacto fallado al SW con el Plutón Totoltepec por la Falla Matanza, de carácter sinestral-normal y al W por una falla normal NNE con el Complejo Acatlán (Martini et al., 2016; Martini et al., 2017). La Cuenca Otlaltepec ha sido propuesta de base a techo, como una cuenca conformada por las formaciones Tianguistengo, Piedra Hueca, Otlaltepec y Magdalena, las cuales se encuentran separadas entre sí por discordancias (Ramos-Leal, 1989; Morán-Zenteno et al., 1993; Verde-Ramírez, 2015; Martini et al., 2016).

La Formación Tianguistengo, objeto de estudio de este trabajo, fue propuesta por Ramos-Leal (1989) como una sucesión de litoarenitas y limolitas de color rojizo y pardo, expuestas en la región de Santo Domingo Tianguistengo. Verde-Ramírez (2015) la describe como una secuencia formada por estratos de areniscas intercalados con limolitas con contenido de flora fósil, para la cual se ha propuesto un origen continental fluvial, interpretada por algunos autores como una llanura de inundación (Verde-Ramírez, 2015) y abanicos aluviales producto del levantamiento del Plutón Totoltepec (Ramírez-Calderón, 2017). A esta unidad se le ha asignado una edad del Triásico (Ramos-Leal, 1989) y Triásico Superior-Jurásico (Verde-Ramírez, 2015). La Formación Tianguistengo se ha correlacionado con la Formación La Mora en el área de Huajuapan, Oaxaca, a la cual se le ha asignado una edad del Triásico Superior-Jurásico Inferior, acumulada previamente a la

fragmentación de Pangea (Silva-Romo et al., 2015; 2018). Se encuentra sobreyacida por la Formación Piedra Hueca por una discordancia, a la cual se le ha asignado una edad Jurásico Inferior, mientras que a las dos formaciones superiores, Formación Otlaltepec y Formación Magdalena (Morán-Zenteno et al., 1993), esta última propuesta posteriormente como Formación Santa Lucía por Silva-Romo et al., (2018), se les ha asignado una edad del Jurásico Medio y Cretácico Superior, respectivamente (Verde-Ramírez, 2015; Martini et al., 2016).

Figura 2. Columna esquemática generalizada de las unidades litológicas presentes en la zona de estudio. Elaborada a partir de (Mendoza-Rosales, 2010; Helbig et al., 2012; Kirsch et al., 2012; Martini et al., 2016; Ortega-Gutiérrez et al., 2018). FT: Falla Tianguistengo.

3. Metodología

3.1. Trabajo de Campo

El área de estudio se encuentra ubicada entre las localidades de Los Reyes Metzontla, San Luis Atolotitlán, Santiago Coatepec y Santo Domingo Tianguistengo, SE del Estado de Puebla, límites con el Estado de Oaxaca. La identificación de características litológicas y estructurales se realizó tanto en la Formación Matzitzi como en la Formación Tianguistengo (Cuenca Otlaltepec) y la Toba Atolotitlán. 23 muestras fueron colectadas para análisis petrográficos, de las cuales se seleccionaron 3 muestras de la Formación Matzitzi y 2 de la Formación Tianguistengo para análisis de geocronología U-Pb en circón, termocronología U-Pb, trazas de fisión, y geoquímica detrítica en apatitos (**Figura 3**). Para información litológica, localización y tipo de análisis de cada una de las muestras colectadas en este trabajo, referirse al **Anexo I**.

3.2. Análisis Petrográfico

Se realizaron 14 secciones delgadas para análisis petrográfico, tanto de rocas sedimentarias como de rocas ígneas, correspondientes a las formaciones Matzitzi y Tianguistengo, y a la Toba Atolotitlán. La descripción de cada una de las muestras se llevó a cabo en el Laboratorio de Microscopía Electrónica, Centro de Geociencias, UNAM, usando un microscopio Nikon Eclipse LV100N POL. Para las rocas ígneas se realizó una descripción de las características texturales y análisis modal de sus componentes principales. Para el análisis petrográfico de rocas sedimentarias, se realizó un conteo de al menos 400 granos en cada una de las muestras detríticas, siguiendo la metodología de *Gazzi-Dickinson* (Ingersoll et al., 1984), detallando la naturaleza de los fragmentos líticos debido a su importancia en la identificación de áreas fuente (Garzanti y Vezzoli, 2003; Garzanti, 2016). Las muestras fueron graficadas en los diagramas ternarios QFL (Folk, 1980), QtFl y QmFLt (Dickinson, 1985), y QFL (Garzanti, 2016).

3.4. Geocronología U-Pb

Se seleccionaron para análisis geocronológico por U-Pb (ablación láser acoplada con espectrometría de masas en plasma de Ar, LA-ICP-MS por su acrónimo en inglés) en circones detríticos, 8 muestras de las unidades litológicas correspondientes a la Formación Matizitzi, Formación Tianguistengo y Toba Atolotitlán. Los circones analizados se separaron usando técnicas tradicionales de separación mineral: trituración, molienda, líquidos pesados y selección aleatoria de los cristales con el fin de no incurrir en sesgos. Para cada muestra se obtuvieron imágenes de catodoluminiscencia previas a la ablación láser con el fin de identificar y seleccionar puntos de ablación. Las imágenes fueron obtenidas usando una lupa binocular Olympus SXZ12 acoplada a una platina de catodoluminiscencia Relion, en el Laboratorio de Fluidos Corticales del Centro de Geociencias, UNAM.

El análisis en circones por U-Pb LA-ICP-MS se llevó a cabo en el Laboratorio de Estudios Isotópicos (LEI) del Centro de Geociencias, UNAM, empleando un láser de excímeros Resolution M-50, con de una longitud de onda de 193 nm, acoplado a un espectrómetro de masas cuadrupolar Thermo ICapQc, siguiendo la metodología descrita en Solari et al. (2010). Se empleó un diámetro de ablación de 23µm y una tasa de repetición de 5 Hz. El circón 91500 (~1065 Ma, Wiedenbeck et al., 1995) fue empleado como material de referencia, mientras que el circón Plešovice (~337 Ma, Sláma et al., 2008) como segundo estándar. El vidrio NIST SRM 610 se analizó también durante la secuencia para el cálculo de elementos traza. Durante la sesión se midieron las señales de los isótopos ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th y ²³⁸U, además de otros elementos como Si, P, Ti, Y, Nb, Hf y REE. La reducción de datos, propagación de errores y cálculos de edades se realizaron usando el software IOLITE (Paton et al., 2010) con el esquema de reducción de datos integrado a este software, VizualAge (Petrus y Kamber, 2012).

Las edades ²⁰⁷Pb/²⁰⁶Pb se consideraron para circones más antiguos a 1400 Ma y edades ²⁰⁶Pb/²³⁸U para circones <1400 Ma (Gehrels et al., 2008; Gehrels, 2012; Spencer et al., 2016). Las edades se reportan con una incertidumbre de 2-sigma. Edades que excedieran un error analítico del 10% fueron descartadas, así como aquellas muestras que excedieran una discordancia >30%, o tuvieran un porcentaje menor al -5% de discordancia. La máxima edad de depósito para las muestras detríticas analizadas se determinó con base en la metodología de la media ponderada del grupo más joven de circones detríticos que se superponen (al menos 3 granos) descrita en (Dickinson y Gehrels, 2009), también se identificaron picos de edades presentes en cada muestra, empleando el macro

de Excel AgePick disponible en Arizona Laserchron Center (www. geo.arizona.edu/alc). Los diagramas de concordia y de densidad de probabilidad relativa PDP, se construyeron utilizando Isoplot v. 4.15 (Ludwig, 2012), y el diagrama KDE (Kernel Density Estimator) empleando el software Density Plotter v. 7.3 (Vermeesch, 2012).

3.5. Termocronología U-Pb y Geoquímica detrítica en apatitos

Se seleccionaron para análisis termocronológico U-Pb, geoquímica y trazas de fisión en apatitos detríticos, 3 muestras de la Formación Matizitzi y 2 de la Formación Tianguistengo (mismas muestras en donde fueron realizados análisis petrográfico y geocronología U-Pb en circón). Los apatitos analizados se separaron usando técnicas tradicionales de separación mineral: trituración, molienda, líquidos pesados y selección aleatoria de los cristales, en el taller de molienda del Centro de Geociencias, UNAM. Los tres análisis se llevaron a cabo en una misma sesión de LA-ICP-MS.

El análisis U-Pb LA-ICP-MS y geoquímico de apatitos, se realizó en el Laboratorio de Estudios Isotópicos (LEI) del Centro de Geociencias, UNAM, empleando un láser de excímeros Resolution M-50, de una longitud de onda de 193 nm, inductivamente acoplado a un espectrómetro de masas cuadrupolo Thermo ICapQc, siguiendo la metodología descrita en Abdullin et al., (2016). Se empleó un diámetro de ablación de 60 µm y una tasa de repetición de 4 Hz (Abdullin et al., 2016; Mark et al., 2016). El apatito Madagascar (ca. 473 Ma, Thomson et al., 2012; Cochrane et al., 2014;) fue empleado como estándar primario de referencia para el cálculo de edades U-Pb, y el apatito MES 612 como estándar primario para el cálculo de elementos traza. Durante la sesión se midieron las señales de los isótopos ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th y ²³⁸U, y de los elementos Mg, Mn, P, Cl, Sr, Y y REE. La reducción de datos, propagación de errores, corrección por Pb común en materiales de referencia y cálculos de edades se realizaron, usando el software IOLITE (Paton et al., 2010) y esquema de reducción de datos para este software modificado de VizualAge (Petrus y Kamber, 2012), VizualAge_UcomP-bine (Chew et al., 2014; Mark et al., 2016). Los análisis se reportan con una incertidumbre de 2-sigma.

Los apatitos a diferencia de los circones, pueden incorporar concentraciones significativas de Pb en su estructura durante su cristalización (Pb común), lo que hace que los granos de apatito en el

sistema U-Pb sean comúnmente discordantes (Mark et al., 2016). Las edades fueron calculadas a partir de la construcción del diagrama Tera-Wasserburg, utilizando Isoplot v. 4.15 (Ludwig, 2012), en donde se identificaron subpoblaciones que mostraran una tendencia lineal coherente (granos cogenéticos), en donde su intercepto inferior correspondería a la edad para cada subpoblación, esto sin realizar las correcciones por ²⁰⁷Pb, la cual se realiza utilizando la relación inicial de ²⁰⁷Pb/²⁰⁶Pb, correspondiente a la intersección de la discordia con el eje de las ordenadas (eje y) cuando ²³⁸U/²⁰⁶Pb= 0 (Chew et al., 2014; Mark et al., 2016; Henrichs et al., 2018). Debido a que la discordancia no puede ser un criterio en el sistema U-Pb en apatitos, la exclusión de granos analizados se determinó a partir del contenido de U (< 1ppm, errores analíticos altos), descartando granos que presentaran errores analíticos > 25% (Mark et al., 2016).

La geoquímica detrítica de apatitos de las muestras analizadas en este trabajo se graficó en los diagramas propuestos por Belousova et al. (2002), discriminando subpoblaciones de granos de acuerdo a las edades U-Pb obtenidas, con el fin de diferenciar mejor la procedencia de cada una de estas, comparándola directamente con las posibles áreas fuente (Morton y Yaxley, 2007; Jafarzadeh et al., 2014; O'Sullivan et al., 2018), de las que se cuenta con una base de datos geoquímicos en apatitos preliminares obtenidos en el Laboratorio de Estudios Isotópicos (LEI) del Centro de Geociencias, UNAM (no publicados).

3.6. Termocronología de baja temperatura: Trazas de fisión en apatitos (AFT)

Los análisis de trazas de fisión en apatitos fueron realizados por el método de alternativo al detector externo, en donde se mide y cuantifica el contenido de U por LA-ICP-MS (Hasebe et al., 2004; Chew y Donelick, 2012; Abdullin at al., 2014; Abdullin et al., 2016). El método se describe brevemente en el **Anexo II**, así mismo, se presenta el marco teórico y los fundamentos del análisis de trazas de fisión.

Los análisis de trazas de fisión en apatitos se realizaron en las mismas muestras y en la misma sesión analítica de LA-ICP-MS que los análisis U-Pb y geoquímica de elementos traza en apatitos, como se mencionó anteriormente. El protocolo empleado es descrito en detalle en (Abdullin et al., 2016; Mark et al., 2016). Previo a los análisis de ablación láser, se realizó el ataque químico (*etching*) para revelado de trazas de fisión en las muestras previamente pulidas, usando la metodología de Donelick at al. (2005), con inmersión en 5.5N HNO3 (20 ± 1 s; 21 ± 1 °C). Alrededor de 40 granos fueron seleccionados para el cálculo de edades por trazas de fisión, y se midieron al menos 60 longitudes de trazas confinadas por muestra, teniendo en cuenta zonación de uranio (distribución de trazas de fisión en el cristal), inclusiones o defectos cristalinos, o alto contenido de uranio (elevado número de trazas de fisión, difícil de cuantificar). Se realizó un mapa de localización de granos mediante fotografías de las muestras, esto para facilitar el conteo de trazas y localización del punto de ablación, el cual debe coincidir con el área de conteo de trazas espontáneas (Hasebe et al., 2004; Chew y Donelick, 2012; Abdullin et al., 2014; Abdullin et al., 2016). El conteo de trazas espontáneas, medición de áreas de conteo de trazas, se realizó en el Laboratorio de Laminación del Centro de Geociencias, UNAM, bajo un microscopio petrográfico Leica DMLP y con ayuda del software ImageJ para tratamiento de imágenes.

El apatito de Durango (31.4 \pm 0.5 Ma, McDowell et al., 2005), se usó como estándar primario para el cálculo de edades y para la determinación de la concentración de Cl, este último realizado siguiendo la metodología descrita en Chew et al. (2014), asumiendo una concentración promedio de Cl de 0.43 \pm 0.03 % peso. El apatito Madagascar se usó como segundo estándar con una concentración de Cl de 0.2 \pm 0.1 % peso (Goldoff et al., 2012; Chew et al., 2014),y el vidrio NIST SRM 612 para el análisis de todos los otros elementos traza. Para el cálculo de la cantidad de ²³⁸U, se usó el ⁴³Ca como estándar interno, y se tomó el valor promedio de 55 \pm 3 % peso para el Ca total, asumiendo que este valor es estequiométrico (Hasebe et al., 2004; Chew y Donelick, 2012; Goldoff et al., 2012; Abdullin et al., 2014; Abdullin et al., 2016).

El cálculo de edades y el del factor de corrección zeta "Z" (ver **Anexo II** para detalles en los fundamentos del método AFT), se realizó en el software IsoplotR BETA de Vermeesch (2017), la prueba de chi-cuadrado se usó para evaluar si las edades de granos individuales pertenecen a una única población, representando una edad concordante el conjunto de datos con valor P (χ 2)> 5% (Galbraith, 1981; P. F. Green, 1981). Los diagramas de visualización de edades y el diagrama KDE (Kernel Density Estimator) (ancho de banda: 10 Ma) se realizaron en el software RadialPlotter v. 8.3 (Vermeesch, 2009), y el modelo termal se realizó en el software HeFTy v. 1.8.0 (Ketcham, 2005; Ketcham et al., 2007; Ketcham y Donelick, 2013), usando como parámetro cinético la concentración de Cl %wt, y el modelo de annealing de Ketcham et al. (2007).

4. Resultados

4.1. Trabajo de Campo: Observaciones

A continuación, se describen las características litológicas principales de las unidades sedimentarias objeto de estudio de este trabajo, las cuales incluyen la Formación Matzitzi y la Formación Tianguistengo. El trabajo de campo se realizó con el fin de describir y muestrear las unidades geológicas comprendidas en el área de estudio, no siendo propósito del mismo un análisis estratigráfico ni sedimentológico de detalle. Las localidades de muestreo y la geología local se presentan en la **Figura 3.**

Figura 3. Mapas geológicos locales con localidades de muestreo de este trabajo. A). Región de los Reyes Metzontla-San Luis Atolotitlán, modificado de SG mexicano, (2001). B). Región de Santo Domingo Tianguistengo-Santo Tomás Otlaltepec, modificado de Martini et al., (2016).

4.1.1. Formación Matzitzi

Esta unidad corresponde a una sucesión de rocas sedimentarias clásticas, la cual presenta una deformación importante tanto de tipo frágil y localmente dúctil (**Figura 4C,D**). En el área de muestreo (**Figura 3**), está compuesta por estratos de areniscas de espesores variables en alternancia con capas de lodolitas delgadas, lutitas negras, areniscas conglomeráticas y conglomerados (**Figura 4A,B**).

Los conglomerados, se observan más hacia la base de la secuencia y predominantemente en la región de San Luis Atolotitlán-Santiago Coatepec, al sur de esta, en el límite de los estados de Puebla y Oaxaca, y en la región de Los Reyes Metzontla-San Luis Atolotitlán. Estos son masivos, clasto-soportados a matriz-soportados, polimícticos, compuestos por clastos redondeados a sub-angulares, los cuales tienen tamaños de 2 hasta 70 cm de diámetro (**Figura 5A,C**). Los clastos, composicionalmente en orden de abundancia corresponden a fragmentos de rocas metamórficas como gneises y cuarcitas (**Figura 5B**), rocas de composición granítica milonitizadas y algunos de ellos sin deformación aparente, areniscas cuarzosas y rocas volcánicas de composición intermedia a máfica, y algunos clastos de calizas.

Las areniscas a lo largo del área de estudio, varían de gruesas-muy gruesas a finas y ocasionalmente conglomeráticas. En el límite entre los estados de Puebla y Oaxaca, sur de Santiago Coatepec y en la región de San Luis Atolotitlán-Santiago Coatepec, las areniscas de grano muy grueso se observan generalmente masivas (**Figura 6B**) y se encuentran asociadas a los paquetes de conglomerados. Los estratos de areniscas gruesas-medias, en la región de Zapotitlán-Los Reyes Metzontla-San Luis Atolotitlán, presentan gradación normal, y en las de grano medio-fino se puede observar estratificación plano-paralela, cruzada tipo artesa y planar (**Figura 6C**), y ocasionalmente *climbing ripples.* Las areniscas medias a finas se encuentran intercaladas con estratos de lutitas y ocasionalmente presentan estructuras tipo *flaser y* rizaduras. Dentro de esta secuencia también son observables cuerpos lenticulares de conglomerados (**Figura 5D**).

Figura 4. Fotografías de afloramientos de las rocas de la Formación Matzitzi. A) Capas gruesas de areniscas intercaladas con capas de conglomerados de poco espesor (localidad cercana a la cabecera municipal de Los Reyes Metzontla, desde Zapotitlán Salinas). B) Capas de areniscas con intercalaciones de lodolitas (localidad cercana a cabecera municipal de Los Reyes Metzontla, hacia San Luis Atolotitán, muestra arenisca ABM-03). C) y D) Paquetes gruesos de areniscas medias a muy gruesas con una importante deformación frágil (localidad en la región de Los Reyes Metzontla).

Figura 5. Fotografías de las capas conglomeráticas de la Formación Matzitzi. A) y C) Conglomerado clasto-soportado masivo (localidad en las inmediaciones de Santiago Coatepec). B) Conglomerado clasto-soportado, en donde se puede observar los clastos de composición gnéisica de tamaños de hasta 30 cm de diámetro (localidad en las inmediaciones de Santiago Coatepec). D) Capa lenticular e conglomerado intercaladas con capas de areniscas medias a conglomeráticas (localidad Los Reyes Metzontla, muestra arenisca ABM-04).

Figura 6. Fotografías de las areniscas de la Formación Matzitzi. A) Capas competentes de areniscas de grano medio con gradación normal. B) Areniscas conglomeráticas masivas (A y B, localidad cercana a la cabecera municipal de Los Reyes Metzontla). C) Areniscas gruesas a medias con estratificación cruzada (localidad al sur de Santiago Coatepec, autopista entre los estados de Puebla y Oaxaca).

Comúnmente los estratos de limolitas son físiles y contiene fósiles de plantas, principalmente hojas (de hasta 10 cm de largo) e impresiones de tallos (**Figura 7**).

Hacia el poblado de San Luis Atolotitlán y Santiago Coatepec, se pueden observar estratos de areniscas finas y limolitas intercaladas con capas de roca volcánica de composición félsica, a la cual se ha denominado como la Toba Atolotitlán (Centeno-García et al., 2009) (**Figura 8A,B**). El contacto de las areniscas con esta unidad se observa concordante, y en algunas ocasiones en la zona de contacto es posible observar laminación y fragmentos de esta felsita que han sido incorporados por las rocas clásticas y viceversa a manera de intraclastos (**Figura 8C,D,E**), sugiriendo una formación contemporánea a la sedimentación.

Figura 7. A) Fotografías de las capas de lutitas de la Formación Matzitzi (localidad cercana a cabecera municipal de San Luis Atolotitlán, desde Los Reyes Metzontla). B). Hojas de plantas fósiles e impresiones en lutitas de la Formación Matzitzi.

Figura 8. Fotografías de la Toba Atolotitlán (región de San Luis Atolotitlán-Santiago Coatepec). A) y B) Capas masivas de composición félsica de la roca volcánica localizada en San Luis Atolotitlán. C), D) Aspecto brechoide y laminaciones en el contacto con las rocas clásticas de la Formación Matzitzi. E) Contacto Formación Matzitzi y Toba Atolotitlán, incorporación de material siliciclástico en la roca volcánica (muestras ABM-11A, 11B, 13).

4.1.1. Formación Tianguistengo

Esta unidad, correspondiente a la base de la Cuenca Otlaltepec, en la región de Santo Domingo Tianguistengo subyace de manera discordante a los conglomerados de la Formación Piedra Hueca. Es una secuencia siliciclástica compuesta de estratos de areniscas, lutitas, limolitas y conglomerados.

En cercanías al contacto con la Formación Piedra Hueca, los estratos observados corresponden a estratos de areniscas y conglomerados principalmente. Las areniscas de la Formación Tianguistengo varían de finas y medias a areniscas conglomeráticas (**Figura 9C**), las cuales presentan estratificación cruzada tipo arteza y estratificación plano-paralela (**Figura 9B**), ocasionalmente se observan rizaduras y deformación de sedimentos suaves como *flames*.

Figura 9. Fotografías de las areniscas de la Formación Tianguistengo. A) Capas masivas de areniscas medias a gruesas (localidad de Santo Domingo Tianguistengo, muestra arenisca RMO-01). B) Estratificación plano-paralela y cruzada (localidad de Santo Domingo Tianguistengo). C) Capas de areniscas conglomeráticas con intercalación de conglomerados finos a medios (localidad entre Santo Domingo Tianguistengo y Totoltepec, muestra arenisca RMO-04).

Los conglomerados observados en la región de Santo Domingo Tianguistengo-Totoltepec, son masivos, matriz-soportados, con clastos de hasta 7 cm de diámetro, subredondeados a angulares, composicionalmente variables, correspondientes a fragmentos de cuarzo, rocas metamórficas (esquistosas), rocas ígneas plutónicas de composición granítica y volcánicas de composición intermedia, y areniscas (**Figura 10**). Los estratos de conglomerados se encuentran intercalados con capas de areniscas conglomeráticas y limolitas.

Figura 10. Fotografías de las capas conglomeráticas de la Formación Tianguistengo, clasto-soportados y masivos (localidad entre Santo Domingo Tianguistengo y Totoltepec).

4.2. Análisis petrográfico

4.2.1. Petrografía de areniscas

4.2.1.1. Formación Matzitzi

Nueve muestras de areniscas de la Formación Matzitzi fueron seleccionadas para análisis petrográfico. Los resultados del conteo de puntos (metodología Gazzi-Dickinson; aprox. 400 puntos por muestra) y las características texturales para cada una de las muestras se presentan en los **Anexos III y IV**, respectivamente.

Las areniscas de la Formación Matzitzi son areniscas matriz-soportadas, las cuales presentan tamaños de grano variables entre 0.1-1.8 mm, con pobre a moderada selección, los granos presentan formas angulares a subredondeadas, con baja-media esfericidad (Figura 11A,B). Están compuestas (en orden de abundancia) por: cuarzo monocristalino (35.5-42.6%) el cual presenta tanto extinción ondulatoria como paralela; feldespato potásico, en algunos de los casos corresponde a microclina y micropertitas (32.4-17.8%) (Figura 11C); cuarzo policristalino foliado y no foliado (4.2-15.5%), biotita como el mineral accesorio más abundante (0.5-13.7%); otros minerales accesorios como circón, apatito, rutilo y granate (0.2-11%); líticos metamórficos de medio a alto grado principalmente (0.5-9.6%) (Figura 11E,F); plagioclasa (0.3-7.7%), la cual presenta en la mayoría de los granos saussuritización pervasiva, dificultando muchas veces su identificación; líticos volcánicos, principalmente de composición félsica e intermedia (microlitos) (0.2-4.5%) (Figura **12A,B**); y líticos sedimentarios (0-2%), los cuales son principalmente limolitas y areniscas de grano fino (Figura 11F), y sedimentos calcáreos subordinados. Muchos de los granos de feldespato potásico presentan texturas de intercrecimiento como texturas micrográficas y micromirmequíticas (Figura 12C). Algunos de los granos de cuarzo, plagioclasa y feldespato se encuentran contenidos en fragmentos de rocas graníticas, gnéisicas o volcánicas (Figura 12D).

Se realizó una discriminación más detallada en cuanto a la naturaleza de los fragmentos líticos metamórficos, debido al porcentaje de abundancia que presentan y a la existencia de posibles fuentes metamórficas de diferente naturaleza, esto con el fin de establecer de forma más clara su procedencia. Los líticos metamórficos que fueron identificados se dividieron principalmente en 5 categorías de acuerdo su grado metamórfico (Garzanti, 2016). En orden de abundancia son los

siguientes (del total de líticos metamórficos 0.5-9.6%): lítico metamórfico cuarzo-micáceo con esquistosidad y/o crenulación (Lmf3), lítico gnéisico con micas (biotita y moscovita principalmente) (Lmf4), lítico metamórfico cuarzo-micáceo con clivaje marcado (Lmf2), metasamita (Lmf1) y lítico de filita (Lmp2). El grado metamórfico aumenta desde Lmp2-Lmf1,2,3,4.

Figura 11. Microfotografías de las areniscas de la Formación Matzitzi. A), B) Arcosa de la Formación Matzitzi con nícoles cruzados y paralelos, respectivamente, compuesta por cuarzo monocristalino (Qm), feldespato potásico (Fk), plagioclasa (Pg), granate (Grt) y biotita (Bt) (muestra ABM-01B). C) Clasto de feldespato potásico con textura micropertítica (muestra ABM-01A). D) Fragmento de roca gnéisica compuesta por biotita y cuarzo (muestra ABM-01A). E) Lítico metamórfico esquistoso con biotita (Lmf3) (muestra ABM-01C). F) Lítico metamórfico cuarzo-micáceo (Lmf2) y lítico sedimentario areno-limoso (Lss) (muestra ABM-03).

Figura 12. Microfotografías de las areniscas e la Formación Matzitzi. A) Lítico volcánico de composición intermedia (Lvm) y clasto de cuarzo polimetamórfico (Qp) (muestra ABM-03). B) Lítico volcánico de textura felsítica (Lvf) (muestra ABM-03). C) Clasto de feldespato potásico con textura micromirmequítica (muestra ABM-01A. D) Fragmento de roca granítica compuesta de cuarzo, feldespato y plagioclasa (muestra ABM-01A).

En el diagrama de clasificación de Folk (1980), las muestras de la Formación Matzitzi se clasifican como arcosas, arcosas líticas a litoarenitas feldespáticas (**Figura 14A**). En el diagrama QFL de Garzanti (2016) las muestras varían en composición de feldespato-cuarzosas y cuarzo-feldespáticas a feldespatolito-cuarzosas (**Figura 14B**). En los diagramas de discriminación tectónica QtFL de Dickinson (1985) y QFL de Garzanti (2016) (**Figura 15A,C**), las muestras se ubican en el campo de basamento levantado o bloque continental (respectivamente), orógeno reciclado y procedencia mixta (**Figura 15B**), sugiriendo la existencia de múltiples fuentes y áreas con levantamiento regional importante.

4.2.1.2. Formación Tianguistengo

De la Formación Tianguistengo se seleccionaron dos muestras para análisis petrográfico de areniscas. Los resultados del conteo de puntos (metodología Gazzi-Dickinson; aprox. 400 puntos por muestra) y las características texturales para cada una de las muestras se presentan en los **Anexos III y IV**, respectivamente.

Las areniscas de la Formación Tianguistengo son areniscas clasto-soportadas, pobre a moderadamente seleccionadas con tamaño de grano variable entre 0.1-2 mm, los granos presentan formas subangulares en su mayoría, con media a baja-media esfericidad. Están compuestas en orden de abundancia, por: cuarzo monocristalino (44.8-37.9%) el cual presenta extinción ondulatoria y paralela; plagioclasa (25.4-30.6%) y feldespato potásico subordinado (0.7-5-5%) (**Figura 13A,B**); cuarzo policristalino foliado y no foliado (4.5-12%) (**Figura 13C**); líticos metamórficos (5-7.2%) (**Figura 13D**); líticos volcánicos (2-7-2%), principalmente de composición intermedia (microlitos) y félsica (**Figura 13E,F**); moscovita como el mineral accesorio más abundante (1.5-3%); otros minerales accesorios como circón, epidota, clorita (6-8%); y líticos sedimentarios (0-0.5%), los cuales son principalmente limolitas y areniscas de grano fino, y sedimentos calcáreos subordinados.

Los líticos metamórficos que fueron identificados de acuerdo al grado metamórfico (Garzanti, 2016), en orden de abundancia son los siguientes (del total de líticos metamórficos 5-7.2%): lítico metamórfico cuarzo-micáceo con esquistosidad y/crenulación (Lmf3), metasamita (Lmf1), lítico metamórfico cuarzo-micáceo con clivaje marcado (Lmf2), lítico de filita (Lmp2) y lítico gnéisico con micas (biotita y moscovita principalmente) (Lmf4).

Figura 13. Microfotografía de las areniscas de la Formación Tianguistengo. A), B) Arcosa de la Formación Tianguistengo compuesta por cuarzo monocristalino (Qm), feldespato potásico (Fk), plagioclasa (Pg), lítico volcánico de composición intermedia (Lvm) y clinozoisita (Czo) (muestra RMO-01). C) Clasto de cuarzo policristalino foliado (Qpf) (muestra RMO-04). D) Lítico metamórfico de metasamita (Lmf1) (muestra RMO-04). E), F) Lítico volcánico de composición intermedia (Lvm) (muestra RMO-04).

En el diagrama de clasificación de Folk (1980), las muestras de la Formación Tianguistengo se ubican al igual que las muestras de la Formación Matzitzi, en el campo de arcosas a arcosas líticas (**Figura 14A**). En el diagrama QFL de Garzanti (2016) las muestras las muestras se ubican en el límite de las areniscas litocuarzo-feldespáticas a litofeldespato-cuarzosas (**Figura 14B**). En los diagramas de discriminación tectónica QtFL de Dickinson (1985) y QFL de Garzanti (2016), las muestras se ubican en el campo de basamento levantado o bloque continental (respectivamente) y arco disectado (Figura 15A,C), sugiriendo una procedencia de múltiples áreas fuente tal y como se observa en el diagrama QmFL de Dickinson (1985) (Figura 15B).

Figura 14. Diagramas de clasificación de areniscas propuestos por: A) Folk (1980) y B) Garzanti (2016). IFQ: litofeldespatocuarzosa; IQF: litocuarzo-feldespática; qLF: cuarzolito-feldespática; fLQ: feldespatolito-cuarzosa; fQL: feldespatocuarzolítica; qFL: cuarzofeldespato-lítica.

Figura 15. Diagramas de discriminación tectónica para areniscas propuestos por: A, B) Dickinson (1985) y C) Garzanti (2016). CB: Bloque continental, RO: Orógeno reciclado, MA: Arco magmático.

4.2.2. Toba Atolotitlán

La Toba Atolotitlán en sección delgada presenta una textura porfídica, definida por una matriz de microcristales de cuarzo y feldespato, los cuales forma un mosaico de cristales anhedrales, con fenocristales euhedrales de feldespato (sanidino, **Figura 16A**) y plagioclasa, algunos de ellos presentando saussuritización pervasiva. El mosaico de cristales de feldespato y cuarzo, forman una textura felsítica (**Figura 16**), la cual puede estar asociada a recristalización durante el proceso de devitrificación o cristalización tardía (McPhie, 1993; Best, 2013). La composición de la plagioclasa varía entre An₁₅-An₁₈, correspondiente a Oligoclasa. Por sus características petrográficas, el carácter explosivo documentado previamente por otros trabajos (Centeno-García et al., 2009) no fue observado en las secciones analizadas en este estudio, por lo que se sugiere, al menos para las secciones analizadas, no es una toba primaria.

Figura 16. Microfotografías de la Toba Atolotitlán. A) Fenocristal de feldespato en una matriz de composición félsica (muestra ABM-11B). B), C), D) Mosaico de microcistales de feldespato y cuarzo: textura felsítica (muestra ABM-11B).

4.3. Geocronología U-Pb

4.3.1. Formación Matzitzi

Se seleccionaron tres muestras de areniscas de la Formación Matzitzi para análisis geocronológico U-Pb en circones detríticos (ABM-02, ABM-05 y ABM-10). Las relaciones isotópicas y edades se presentan en el **Anexo VII**.

En la muestra ABM-02 fueron analizados 153 circones, los cuales presentan tamaños variables entre 80-360 μm. Se pueden distinguir dos grupos de circones de acuerdo a su morfología y características de su estructura interna: un grupo predominante que presenta morfologías subredondeadas y tonalidades rosadas, y un segundo grupo de menor abundancia conserva una morfología prismática y euhedral. En las imágenes de catodoluminiscencia los circones más subredondeados exhiben zonación convoluta y estructuras de sobrecrecimiento, características de circones de origen metamórfico, en donde se pueden observar núcleos heredados y dominios con zonación oscilatoria y no concéntrica, subordinados a estos, los cristales euhedrales exhiben patrones de zonación magmática, característicos de circones de origen (gneo (Anexo V) (Connelly, 2001; Corfu et al., 2003; Hoskin y Schaltegger, 2003). La relación Th/U varía entre 0.04-6.87 (Anexo VII), lo que sugiere una mezcla de áreas fuente tanto ígneas como metamórficas (Rubatto, 2002; Hoskin y Schaltegger, 2003). La muestra ABM-02 tiene tres grupos principales de edades (Tabla 1, Figura 17) Jurásico Inferior-Medio (200-169 Ma), Permo-Triásico (286-222 Ma), y Meso-Neoproterozoico (1300-877 Ma), y un grupo menos representativo del Mesoproterozoico temprano (1453-1400 Ma). El grupo más joven que se superpone en edad con un error de 2-sigma, arroja un valor medio ponderado de 179.2 ± 3 Ma (12 granos).

En la muestra ABM-05 fueron analizados 105 circones, los cuales varían en tamaño entre 60-420 µm. Se pueden diferenciar dos grupos de circones, con respecto a su morfología. Los cristales de tamaños mayores, presentan formas subredondeadas y son coloreados de un tono rosáceo oscuro, y en las imágenes de catodoluminiscencia exhiben estructuras de sobrecrecimiento y zonación oscilatoria no concéntrica e irregular, características de circones que provienen de rocas metamórficas. Un segundo grupo, con una abundancia mucho menor, presentan formas prismáticas y euhedrales, los cuales, en ocasiones se encuentran fracturados. En catodoluminiscencia exhiben patrones de zonación, como las que se observan en circones de origen ígneo (**Anexo V**) (Connelly,

41

2001; Corfu et al., 2003; Hoskin y Schaltegger, 2003). La relación Th/u varía entre 0.04-1.04 (**Anexo VII**), lo que sugiere una mezcla de fuentes de origen ígneo y metamórfico (Rubatto, 2002; Hoskin y Schaltegger, 2003). La muestra ABM-05 presenta un grupo principal predominante de edades Mesoproterozoicas ca. 1310-941 Ma (**Tabla 1, Figura 17**), con dos picos de edad dentro de este mismo grupo de 1011 Ma y 1169 Ma, y un par de circones con edades más jóvenes de 594.4 ± 13 Ma y 277.2 ± 8.2 Ma (**Figura 17**). El grupo más joven que se superpone en edad con un error de 2-sigma, tiene un valor medio ponderado de 1011 ± 12 Ma (18 granos).

En la muestra ABM-10, se analizaron 103 circones, los cuales tienen tamaños entre 50-300 μm, se observan también dos grupos de circones con respecto a su morfología, un grupo predominante de formas redondeadas y unos pocos de morfología prismática y subhedral. En las imágenes de catodoluminiscencia se pueden observar cristales que exhiben zonación convoluta de sobrecrecimiento y zonación oscilatoria no concéntrica, sugiriendo una fuente metamórfica; y un segundo grupo, que presentan patrones de zonación, como las que se observan en circones de origen ígneo (**Anexo V**) (Connelly, 2001; Corfu et al., 2003; Hoskin y Schaltegger, 2003). Los valores de Th/U varían entre 0.07-2.19 (**Anexo VII**) sugiriendo una mezcla de áreas fuente tanto ígneas como metamórficas (Rubatto, 2002; Hoskin y Schaltegger, 2003). Los circones analizados presentan un único grupo predominante de edades mesoproterozoicas entre ~1320-948 Ma (**Tabla 1, Figura 17**), con dos picos de edad dentro de este grupo de 997 Ma y 1190 Ma. El grupo más joven que se superpone en edad con un error de 2-sigma, tiene un valor medio ponderado de 995.6 ± 8.4 Ma (11 granos).

	EDAD MÍNIMA	EDAD MÁXIMA	# GRANOS	EDAD PICO	# GRANOS
MUESTRA ABM-02	169	200	12	179	12
	222	286	21	245	15
	877	1300	110	273	9
	1400	1453	2	920	8
				999	47
				1065	22
				1128	20
				1194	22
				1418	3
MUESTRA ABM-05	941	1310	103	1011	18
				1169	60
MUESTRA	948	1320	100	997	11
ABM-10				1190	39

Tabla 1. Edades pico presentes en las muestras colectadas en la Formación Matzitzi

Figura 17. Diagramas de Concordia U-Pb y de Densidad de Probabilidad de Edades de las muestras ABM-02, ABM-05 Y ABM-10.

4.3.2. Formación Tianguistengo

Para el análisis geocronológico U-Pb en circones detríticos, se seleccionaron dos muestras de areniscas de la Formación Tianguistengo, RMO-01 y RMO-04. Las relaciones isotópicas y edades se presentan en el **Anexo VII**.

En la muestra RMO-01 fueron analizados 104 circones, los cuales presentan tamaños entre 60-300 μm, dos grupos son principalmente diferenciables debido a su morfología y características texturales. Un primer grupo correspondiente a circones euhedrales y de morfología prismática, con patrones de zonación magmática, sugiriendo una fuente ígnea por las imágenes de catodoluminiscencia, y un segundo grupo con formas más subredondeadas a redondeadas, con texturas de sobrecrecimiento, sugiriendo un origen metamórfico (**Anexo V**) (Connelly, 2001; Corfu et al., 2003; Hoskin y Schaltegger, 2003). Los valores de la relación Th/U varían entre 0.02-2.16, esperados para una mezcla de fuentes de origen ígneo y metamórfico (Th/U circones de origen ígneo >0.5, circones de origen metamórfico ~<0.1; Rubatto, 2002; Hoskin y Schaltegger, 2003). En esta muestra se pueden observar tres grupos principales de edades (**Tabla 2, Figura 18**): Carbonífero-Pérmico (330-260 Ma), Neo-Mesoproterozoico (1141-940 Ma) y Mesoproterozoico (1282-1155 Ma), un grupo menos representativo del Cámbrico (530-508 Ma), y unas pocas edades >~1800 Ma. El grupo más joven que se superpone en edad con un error de 2-sigma, tiene un valor medio ponderado de 282.6 ± 2.6 Ma (18 granos).

En la muestra RMO-04 fueron analizados 100 circones, los cuales varían en tamaño entre 50-320 µm, son diferenciables dos grupos de circones debido a su morfología y textura en imágenes de catodoluminiscencia Un grupo correspondiente a cristales de formas redondeadas a subredondeadas, que exhiben en las imágenes de catodoluminiscencia bordes de sobrecrecimiento y zonación oscilatoria, característicos de circones de origen metamórfico, y un segundo grupo correspondiente a circones de morfologías euhedrales y prismáticas, con patrones de zonación magmática, sugiriendo una fuente ígnea (**Anexo V**) (Connelly, 2001; Corfu et al., 2003; Hoskin y Schaltegger, 2003). La relación Th/U varía entre valores de 0.06-1.77, valores que se esperarían en áreas fuente tanto ígneas como metamórficas (Rubatto, 2002; Hoskin y Schaltegger, 2003). Se observan tres grupos de edades principalmente (**Tabla 2, Figura 18**): Carbonífero-Triásico ~361-232 Ma, Neoproterozoico-Cámbrico 636-516 Ma, y Meso-Neoproterozoico (1300-919 Ma). El grupo más

44

joven que se superpone en edad con un error de 2-sigma, tiene un valor medio ponderado de 251.6 ± 8.6 Ma (cinco granos).

	EDAD MÍNIMA	EDAD MÁXIMA	# GRANOS	EDAD PICO	# GRANOS
MUESTRA RMO-01	260	330	46	293	33
	508	530	2	520	3
	940	1141	31	997	12
	1155	1282	13	1037	12
				1092	5
				1180	6
				1229	9
MUESTRA RMO-04	232	361	76	287	56
	517	636	7	547	3
	919	1300	14	592	5
				973	4
				1081	5
				1162	6

Tabla 2. Edades pico presentes en las muestras colectadas en la Formación Tianguistengo

Figura 18. Diagramas de Concordia U-Pb y de Densidad de Probabilidad de Edades de las muestras RMO-01 y RMO-04.

4.3.3. Toba Atolotitlán

Las muestras ABM-11a, ABM-11b y ABM-13, fueron recolectadas de la Toba Atolotitán, los detalles de las relaciones isotópicas y edades se presentan en el **Anexo VII**.

Alrededor de 35 circones fueron analizados en cada muestra, los cuales presentan tamaños variables entre 30-220 μ m, con morfologías predominantemente prismáticas, euhedrales a subhedrales. En las imágenes de catodoluminiscencia (**Anexo VI**) exhiben patrones de zonación magmática, como se observan en circones de origen ígneo, y unos pocos presentan núcleos de xenocristales. La relación Th/U, (excepto en un circón) varía entre 0.1-1.72, valores que sugieren un

origen (gneo (Rubatto, 2002). Para la muestra ABM-11a, fue obtenido un rango de edades entre 230.1 \pm 1.4 Ma y 252.4 \pm 4 Ma, y un par de circones un poco más antiguas con edades de 260.3 \pm 4.2 y 273.1 \pm 4.5 Ma, y con edades más jóvenes ca. 220 Ma La edad promedio ponderada obtenida a partir de 17 granos es de 239.2 \pm 1.4 Ma. Para la muestra ABM-11b, fueron obtenidas edades entre 237.8 \pm 3.9 Ma y 256.9 \pm 2.9 Ma un par edades ca. 310-330 Ma, y edades más antiguas heredadas ca. 1 Ga. 14 granos para la muestra ABM-11b arrojan una edad promedio ponderada de 242.9 \pm 1.3 Ma, y por último para la muestra ABM-13, fueron obtenidas edades entre 233.3 \pm 6.3 Ma y 259.9 \pm 4.6 Ma, y unos cuantos circones con edades más antiguas heredadas de 339.1 \pm 7.6 Ma, 778 \pm 27 Ma, 1214 \pm 25 Ma y 1240 \pm 26 Ma, 9 granos arrojan una edad promedio ponderada de 238.5 \pm 2.2 Ma (**Figura 19**).

Figura 19. Diagramas de Concordia U-Pb y de edad promedio ponderada para las muestras de la Toba Atolotitlán ABM-11a, ABM-11b y ABM-13.

4.4. Termocronología U-Pb en apatitos

4.4.1. Formación Matzitzi

Se seleccionaron 3 muestras de la Formación Matzitzi para análisis termocronológico U-Pb en apatitos, ABM-02, ABM-05 y ABM-10 (muestras de donde se obtuvieron los circones detríticos para geocronología U-Pb). Los resultados de edades y relaciones isotópicas se presentan en el **Anexo VIII**.

Los resultados se muestran en el diagrama de concordia Tera-Wasserburg (Figura 20, Figura 21, Figura 22). Las líneas de discordia muestran edades coherentes para subpoblaciones posiblemente cogenéticas.

En la muestra ABM-02 fueron analizados 120 granos de apatitos. Las edades intercepto inferior en el diagrama T-W fueron calculadas sin aplicar correcciones por la relación inicial 207 Pb/ 206 Pb, sino únicamente, constreñidas a partir de la línea de discordia. Tres líneas de tendencia coherentes son definidas por subpoblaciones y se pueden observar en el diagrama Tera-Wasserburg. Los tres grupos de edades intercepto inferior son: Neoproterozoico temprano 958 ± 15 Ma, Pérmico 275 ± 20 Ma, y un grupo Neoproterozoico tardío de 578 ± 24 definido por solo 3 granos (**Figura 20**). Para la muestra ABM-05, 174 granos de apatitos fueron analizados, los cuales también definen tres grupos principales de edades, se observan también las subpoblaciones de edades del Neoproterozoico temprano 962.6 ± 8.6 Ma y Carbonífero tardío 300 ± 42 Ma, y una subpoblación Ordovícico Medio pobremente definida a 460 ± 82 Ma (**Figura 21**). En la muestra ABM-10, fueron analizados 119 apatitos, que definen de igual forma dos grupos principales de edad neoproterozoica entre ca. 990-740 Ma, y un grupo pobremente definido de edad Pérmico temprano (288 ± 14 Ma) (**Figura 22**).

Figura 20. Diagrama Tera-Wasserburg análisis U-Pb en apatitos muestra ABM-02.

Figura 21. Diagrama Tera-Wasserburg análisis U-Pb en apatitos muestra ABM-05.

Figura 22. Diagrama Tera-Wasserburg análisis U-Pb en apatitos muestra ABM-10.

4.4.2. Formación Tianguistengo

De la Formación Tianguistengo fueron seleccionadas 2 muestras de arenisca correspondientes a RMO-01 y RMO-04 para análisis termocronológico U-Pb en apatitos (muestras de donde se obtuvieron los circones detríticos para geocronología U-Pb). Las relaciones isotópicas y edades se presentan en el **Anexo VIII**. Los resultados se muestran en el diagrama de concordia Tera-Wasserburg (**Figura 23, Figura 24**).

De la muestra RMO-01 fueron analizados 153 apatitos, los cuales definen cuatro grupos principales de edades: Neoproterozoico temprano, con varias edades concordantes dentro del error analítico, y una intersección inferior a 877 ± 36 Ma; Neoproterozoico tardío (685 ± 44 Ma), una subpoblación pobremente constreñida del Cámbrico medio (508 ± 59 Ma) y un último grupo de edades Carbonífero tardío 315.3 ± 4.9 Ma (**Figura 23**). 100 granos de apatitos fueron analizados en la muestra RMO-04, los cuales definen dos grupos principales de edades, en esta se observan también las subpoblaciones de edades del Neoproterozoico temprano con intersección a 943 ± 57 Ma y Carbonífero tardío a 309.5 ± 4.6 Ma. las edades del Neoproterozoico tardío y Cámbrico están ausentes en esta muestra (**Figura 24**).

Figura 23. Diagrama Tera-Wasserburg análisis U-Pb en apatitos muestra RMO-01.

Figura 24. Diagrama Tera-Wasserburg análisis U-Pb en apatitos muestra RMO-04.

4.5. Geoquímica detrítica en apatitos

Para la geoquímica detrítica en apatitos se analizaron 3 muestras de areniscas de la Formación Matzitzi (ABM-02, ABM-05 y ABM-10) y dos muestras de la Formación Tianguistengo (RMO-01 y RMO-04), muestras en donde se realizaron a su vez análisis termocronológico AFT y U-Pb en apatitos, y geocronología U-Pb en circones detríticos. Los resultados geoquímicos de los elementos de las tierras raras (REE) y elementos trazas medidos en apatitos, se presentan en el **Anexo IX**.

Los resultados de los apatitos analizados en este trabajo se graficaron junto con análisis geoquímico en apatitos de unidades del basamento de diferente composición, realizados previamente por el Laboratorio de Estudios Isotópicos (LEI), UNAM. Dicha comparación se realizó empleando los diagramas de discriminación propuestos por Belousova et al. (2002) Sr vs. Y y (Ce/Yb)cn vs. ∑REE (wt%), este último con el fin de ver el enriquecimiento o empobrecimiento de los LREE con respecto al total de los REE, y el diagrama de REE normalizado al condrito (valores de McDonough y Sun, 1995). Las unidades de basamento comparadas con los apatitos de este trabajo, son: pegmatitas y para- y ortogneises pertenecientes al Complejo Oaxaqueño, y unidades litológicas que representan el arco Carbonífero-Pérmico del sur de México, tales como el Granito Etla, la Riolita Sosola y el Plutón Totoltepec (Kirsch et al., 2012; Ortega-Obregón et al., 2014), una breve descripción del tipo de litología de las muestras del basamento es presentada en el **Anexo X**.

4.5.1. Formación Matzitzi

Para las 3 muestras de la Formación Matzitzi, se establecieron cuatro subpoblaciones con base en las edades obtenidas mediante análisis U-Pb en apatitos (Figura 20, Figura 21, Figura 22), con el fin de realizar una comparación con las posibles rocas fuente compatibles con la edad de cada subpoblación. Los 4 grupos se dividen en subpoblaciones de edades entre 1) Neoproterozoico temprano (ca. 990-800 Ma), 2) Neoproterozoico tardío (ca. 580 Ma), 3) Ordovícico Medio (ca. 460 Ma) y 4) Pérmico temprano (ca. 300-275 Ma) (Figura 25, Figura 26).

Figura 25. Diagrama de REE normalizado al condrito (valores de McDonough y Sun, 1995), comparando el patrón de REE de los apatitos de la Formación Matzitzi.

Figura 26. Diagramas de discriminación para los apatitos de la Formación Matzitzi A). (Ce/Yb)cn vs. ∑REE (wt%) y B). Sr vs. Y.

Fuente del Neoproterozoico temprano (ca. 990-800 Ma):

La mayoría de los apatitos con edades U-Pb entre ca. 990-800 Ma, son composicionalmente similares a los apatitos del Complejo Oaxaqueño. En el diagrama de REE normalizado al condrito (valores de McDonough y Sun, 1995) (Figura 27A) se puede observar como el patrón promedio de REE de los apatitos de la Formación Matzitzi de edad Neoproterozoico temprano muestra un enriquecimiento de los LREE (elementos de las tierras raras livianas) con respecto a los HREE (elementos de las tierras raras pesadas) y una marcada anomalía negativa de Eu, distribución similar al de las rocas del Complejo Oaxagueño-Gneis 1, las cuales corresponden en su mayoría a ortogneises en facies granulita (Anexo X), y a la muestra VS2, correspondiente a una pegmatita del mismo complejo metamórfico, y exhibe una notable diferencia con las fuentes carboníferopérmicas, las cuales presentan un menor enriquecimiento en LREE (Figura 27B). Esta similitud puede apreciarse también en el diagrama (Ce/Yb)cn vs. SREE (wt%) (cn, normalizado al condrito) (Figura 28A), en donde la distribución de los apatitos de esta subpoblación para las muestras de la Formación Matzitzi sigue el mismo patrón de dispersión de los gneises y pegmatitas del Complejo Oaxaqueño. La mayoría de apatitos en ambas litologías se concentran en valores de Ce/Yb cercanos a 10 y valores mayores, y una amplia distribución en el total de REE. En el diagrama Sr vs. Y (Figura 28B), se puede observar que los apatitos de los gneises del Complejo Oaxaqueño presentan un contenido similar de Sr (en promedio ~200 ppm Fm Matzitzi, ~250 ppm Complejo Oaxaqueño) y de Y (en promedio ~1100 ppm Fm Matzitzi, ~900 ppm Complejo Oaxaqueño) a la mayoría de los apatitos detríticos de la Formación Matzitzi, y si bien, son compatibles con la distribución de los apatitos del Plutón Totoltepec, las edades U-Pb obtenidas para los apatitos de la Formación Matzitzi son mucho más antiguas que la edad propuesta para este intrusivo (ca. 300 Ma, Kirsch et al., 2012).

Fuente del Neoproterozoico tardío y Ordovícico (ca. 580 y 460 Ma):

Los apatitos de la subpoblación con edades del Neoproterozoico tardío (ca. 580 Ma) muestran cierta similitud en la distribución de REE normalizados al condrito con los apatitos de las rocas ígneas carbonífero-pérmicas como el Granito Etla y la Riolita Sosola, exhibiendo un enriquecimiento de los LREE con respecto a los HREE y no muestran anomalía de Eu (**Figura 29B**), sin embargo, la edad de estas unidades es mucho más joven que la obtenida para esta subpoblación. En los diagramas (Ce/Yb)cn vs. ∑REE (wt%) y Sr vs. Y se puede observar que los apatitos de esta subpoblación muestran valores ligeramente menores de (Ce/Yb)cn que la mayoría de los gneises del Complejo

Oaxaqueño, y contenido de Sr mayor (~635 ppm) al promedio para este complejo metamórfico (~250 ppm) (Figura 30).

Figura 27. Diagramas de REE normalizado al condrito (valores de McDonough y Sun, 1995), comparando el patrón de REE de los apatitos de la Formación Matzitzi-Subpoblación neoproterozoica temprana ca. 990-800 con apatitos de: A) unidades del basamento de edad Grenville y B). unidades del basamento de edad Carbonífero-Pérmico.

Figura 28. Diagramas de discriminación A). (Ce/Yb)cn vs. ∑REE (wt%) y B). Sr vs. Y, para apatitos de unidades del basamento y de la Formación Matzitzi-Subpoblación neoproterozoica temprana ca. 990-800 Ma.

Para la subpoblación de edades ordovícicas (ca. 460 Ma) se puede observar en el diagrama de REE normalizado al condrito, un enriquecimiento de los LREE con respecto a los HREE y en la mayoría de los granos se puede apreciar una marcada anomalía de Eu, similar al patrón observado en los apatitos de las rocas del Complejo Oaxaqueño (**Figura 29A**). Las edades de esta subpoblación son, sin embargo, mucho más jóvenes que esta unidad de basamento. En el diagrama de (Ce/Yb)cn vs. Σ REE (wt%), al igual que la subpoblación de apatitos del Neoproterozoico tardío, esta subpoblación muestra valores ligeramente menores de (Ce/Yb)cn que la mayoría de los gneises del Complejo Oaxaqueño. En el diagrama Sr vs. Y se puede observar que a excepción de una muestra que tiene un mayor contenido de Sr que este complejo (~672 ppm). La mayoría de apatitos ordovícicos de la Formación Matzitzi, muestran valores cercanos pero ligeramente más bajos de Sr (~219 ppm) que los apatitos de las diferentes litologías del Complejo Oaxaqueño (~250 ppm gneises, ~1100 ppm, ~1350 ppm, ~250 ppm pegmatitas OC1020, Panchita, VS2 respectivamente) (**Figura 30**).

Fuente del Pérmico temprano (ca. 300-275 Ma):

Los apatitos con edades U-Pb entre ca.300-275 Ma, son composicionalmente similares a los apatitos del Plutón Totoltepec, fase máfica. En el diagrama de REE normalizado al condrito (valores de McDonough y Sun, 1995) (**Figura 31**), muestran un enriquecimiento en los LREE al igual que el patrón promedio de los apatitos de esta unidad plutónica, pero con una anomalía de Eu suavizada. En el diagrama (Ce/Yb)cn vs. ∑REE (wt%) esta subpoblación muestra una distribución de igual forma, similar a la definida por la fase máfica del Plutón Totoltepec, aunque algunos de los apatitos analizados muestren cierta dispersión en el total de REE, y uno de estos muestre un mayor enriquecimiento de Yb con respecto a Ce (**Figura 32A**). En el diagrama Sr vs Y se puede observar cierta correlación entre los apatitos de la Formación Matzitzi (Sr ~ 425 ppm) y el Plutón Totoltepec, en su fase tanto máfica como félsica (~370 ppm, ~190 ppm respectivamente), y cierta tendencia a agruparse más cercana a los apatitos de las rocas permo-carboníferas (**Figura 32B**).

Figura 29. Diagramas de REE normalizado al condrito (valores de McDonough y Sun, 1995), comparando el patrón de REE de los apatitos de la Formación Matzitzi-Subpoblación neoproterozoica tardía ca. 580 y ordovícica ca. 460 Ma con apatitos de: A) unidades del basamento de edad Grenville y B). unidades del basamento de edad Carbonífero-Pérmico.

Figura 30. Diagramas de discriminación A). (Ce/Yb)cn vs. ∑REE (wt%) y B). Sr vs. Y, para apatitos de unidades del basamento y de la Formación Matzitzi-Subpoblación Neoproterozoica tardía ca. 580 Ma y ordovícica ca. 460 Ma.

Figura 31. Diagramas de REE normalizado al condrito (valores de McDonough y Sun, 1995), comparando el patrón de REE de los apatitos de la Formación Matzitzi-Subpoblación pérmica temprana ca. 300-275 Ma con apatitos de: A) unidades del basamento de edad Grenville y B). unidades del basamento de edad Carbonífero-Pérmico.

Figura 32. Diagramas de discriminación A). (Ce/Yb)cn vs. ∑REE (wt%) y B). Sr vs. Y, para apatitos de unidades del basamento y de la Formación Matzitzi-Subpoblación pérmica temprana ca.300-275 Ma.

4.5.2. Formación Tianguistengo

Para las 2 muestras de la Formación Tianguistengo, se establecieron cuatro subpoblaciones con base en las edades obtenidas mediante análisis U-Pb en apatitos (**Figura 23, Figura 24**), para así establecer una compatibilidad con las posibles rocas fuente. Los 4 grupos se dividen en subpoblaciones de edades entre 1) Neoproterozoico temprano (ca. 950-880 Ma), 2) Neoproterozoico medio (ca. 685 Ma), 3) Cámbrico medio (ca. 510 Ma) y 4) Carbonífero tardío (ca. 315-310 Ma) (**Figura 33, Figura 34**).

Figura 33. Diagrama de REE normalizado al condrito (valores de McDonough y Sun, 1995), comparando el patrón de REE de los apatitos de la Formación Tianguistengo.

Figura 34. Diagramas de discriminación para los apatitos de la Formación Tianguistengo A). (Ce/Yb)cn vs. ∑REE (wt%) y B). Sr vs. Y.

Fuente del Neoproterozoico temprano (ca. 950-880 Ma):

La mayoría de los apatitos con edades U-Pb entre ca. 950-880 Ma, presentan una composición similar a los apatitos de las rocas gnéisicas del Complejo Oaxaqueño. Een el diagrama de REE normalizado al condrito (valores de McDonough y Sun, 1995) (Figura 35A) puede observarse esta similitud, en donde el patrón promedio de REE de los apatitos de la Formación Tianguistengo, subpoblación del Neoproterozoico temprano muestra un enriquecimiento de los LREE (elementos de las tierras raras livianas) con respecto a los HREE (elementos de las tierras raras pesadas) y una anomalía negativa de Eu bien definida. Este patrón de REE puede verse a su vez en el promedio de los apatitos de rocas del Complejo Oaxaqueño-Gneis 1, las cuales corresponden en su mayoría a ortogneises en facies granulita (Anexo X). En el diagrama (Ce/Yb)cn vs. SREE (wt%) (cn, normalizado al condrito) (Figura 36A), la distribución de los apatitos de esta subpoblación es similar a la de los apatitos de los gneises y algunos apatitos de pegmatitas del Complejo Oaxaqueño, presentando una amplia distribución en el total de REE y un enriquecimiento de Ce con respecto a Yb. En el diagrama Sr vs. Y (Figura 36B), se puede observar que los apatitos de los gneises del Complejo Oaxaqueño presentan un contenido similar de Sr (en promedio ~246 ppm Fm Tianguistengo, ~250 ppm Complejo Oaxagueño) y de Y (en promedio ~1300 ppm Fm Tianguistengo, ~900 ppm Complejo Oaxaqueño).

Figura 35. Diagramas de REE normalizado al condrito (valores de McDonough y Sun, 1995), comparando el patrón de REE de los apatitos de la Formación Tianguistengo-Subpoblación neoproterozoica temprana ca. 950-880 con apatitos de: A) unidades del basamento de edad Grenville y B). unidades del basamento de edad Carbonífero-Pérmico.

Figura 36. Diagramas de discriminación A). (Ce/Yb)cn vs. ∑REE (wt%) y B). Sr vs. Y, para apatitos de unidades del basamento y de la Formación Tianguistengo-Subpoblación neoproterozoica temprana ca. 950-880 Ma.

Fuente del Neoproterozoico medio (ca. 685 Ma):

Los apatitos de esta subpoblación presentan un enriquecimiento en las LREE, como se puede observar en el patrón de distribución en el diagrama de las REE normalizadas al condrito (Figura 37), exhibiendo una suavizada anomalía negativa de Eu. En la base de datos de unidades del basamento no se tiene unidades que guarden relación a esta edad, por lo cual dicha comparación geoquímica con las rocas fuente para esta subpoblación resulta insuficiente. En el diagrama (Ce/Yb)cn vs. ∑REE (wt%) puede observarse que los apatitos de esta subpoblación presentan un mayor enriquecimiento de Ce con respecto a Yb, y se asemejan a la composición de los apatitos de las rocas pegmatíticas del Complejo Oaxaqueño (Figura 38A), sin embargo, estas últimas presentan edades más antiguas que la definida por esta subpoblación. El contenido de Sr promedio para este grupo de apatitos es aproximadamente 720 ppm, más elevado que para los gneises del Complejo Oaxaqueño (Figura 38B).

Fuente del Cámbrico medio (ca. 510 Ma):

Los apatitos de la Formación Tianguistengo, subpoblación cámbrica media en su mayoría presentan un patrón de enriquecimiento en los LREE con respecto a los HREE, y una anomalía negativa de Eu marcada, a excepción de un par de granos que no exhiben esta anomalía (**Figura 39**), en el diagrama (Ce/Yb)cn vs. Σ REE (wt%), puede apreciarse este enriquecimiento de los LREE, pues todas las muestras se localizan en valores mayores a 1 en la relación (Ce/Yb)cn (**Figura 40A**). Tanto en el diagrama (Ce/Yb)cn vs. Σ REE (wt%) y Sr vs. Y no existe una correlación muy bien definida con las unidades del basamento, la distribución de los apatitos para esta subpoblación es más dispersa, sin embargo, ninguna de estas posibles fuentes presenta edades contenidas en esta subpoblación (**Figura 40**). El contenido de Y y Sr en esta subpoblación tiene valor un promedio de aproximadamente 700 ppm y 460 ppm respectivamente.

Figura 37. Diagramas de REE normalizado al condrito (valores de McDonough y Sun, 1995), comparando el patrón de REE de los apatitos de la Formación Tianguistengo-Subpoblación neoproterozoica media ca.685 Ma con apatitos de: A) unidades del basamento de edad Grenville y B). unidades del basamento de edad Carbonífero-Pérmico.

Figura 38. Diagramas de discriminación A). (Ce/Yb)cn vs. ∑REE (wt%) y B). Sr vs. Y, para apatitos de unidades del basamento y de la Formación Tianguistengo-Subpoblación neoproterozoica media ca. 685 Ma.

Figura 39. Diagramas de REE normalizado al condrito (valores de McDonough y Sun, 1995), comparando el patrón de REE de los apatitos de la Formación Tianguistengo-Subpoblación cámbrica media ca.510 Ma con apatitos de: A) unidades del basamento de edad Grenville y B). unidades del basamento de edad Carbonífero-Pérmico.

Figura 40. Diagramas de discriminación A). (Ce/Yb)cn vs. ∑REE (wt%) y B). Sr vs. Y, para apatitos de unidades del basamento y de la Formación Tianguistengo-Subpoblación cámbrica media ca. 510 Ma.

Fuente del Carbonífero tardío (ca. 315-310 Ma):

Los apatitos con edades U-Pb entre ca.315-310 Ma, son composicionalmente similares a los apatitos de la fase máfica del Plutón Totoltepec, como puede observarse en el diagrama de REE normalizado al condrito (valores de McDonough y Sun, 1995) (**Figura 41B**). Esta subpoblación muestra un enriquecimiento en los LREE al igual que el patrón promedio de los apatitos de este intrusivo, exhibiendo también una marcada anomalía de Eu. En el diagrama (Ce/Yb)cn vs. SREE (wt%) puede verse una ligera similitud, en donde la distribución de los apatitos de esta subpoblación se encuentra muy cerca de los apatitos del Plutón Totoltepec, sin embargo, presenta una mayor dispersión y no solo es consistente con esta unidad, también muestra una distribución cercana a los apatitos de las rocas cabonífero-permicas como la Riolita Sosola y el Granito Etla (**Figura 42A**). Esto puede observarse también en el diagrama Sr vs. Y (**Figura 42B**). El contenido promedio de Sr para esta subpoblación es de aproximadamente 430 ppm, y de Y de aproximadamente 440 ppm.

Figura 41. Diagramas de REE normalizado al condrito (valores de McDonough y Sun, 1995), comparando el patrón de REE de los apatitos de la Formación Tianguistengo-Subpoblación carbonífera tardía ca. 315-310 Ma con apatitos de: A) unidades del basamento de edad Grenville y B). unidades del basamento de edad Carbonífero-Pérmico.

Figura 42. Diagramas de discriminación A). (Ce/Yb)cn vs. ∑REE (wt%) y B). Sr vs. Y, para apatitos de unidades del basamento y de la Formación Tianguistengo-Subpoblación carbonífera tardía ca. 315-310 Ma.

4.6. Termocronología de baja temperatura: Trazas de fisión en apatitos (AFT)

4.6.1. Formación Matzitzi

Se seleccionaron tres muestras de areniscas de la Formación Matzitzi para análisis termocronológico de trazas de fisión en apatitos (AFT por su acrónimo en inglés – Apatite Fission Tracks) cuantificando el contenido de U por LA-ICP-MS LA-ICP-MS (ABM-02, ABM-05 y ABM-10). Muestras que a su vez fueron analizadas por lo métodos anteriormente descritos. Los resultados obtenidos se presentan en el **Anexo XI**.

Las tres muestras analizadas pasan la prueba del P (χ 2)> 5% (Galbraith, 1981; P. F. Green, 1981), dando como resultado edades concordantes de 59.8 ± 3.7 Ma para la muestra ABM-02 (P(χ 2) = 8%), 58.2 ± 1.5 Ma para la muestra ABM-05 (P(χ 2) = 51%) y una edad de 60.4 ± 1.8 Ma para la muestra ABM-10 (P(χ 2) = 13%) (**Figura 43**). Se midieron alrededor de 60 a 100 longitudes de trazas confinadas en cada una de las muestras analizadas (**Figura 43**), obteniendo una longitud media de 13.15 ± 1.38 µm para la muestra ABM-02 (número de trazas confinadas medidas = 69), 12.78 ± 1.3 µm para la muestra ABM-05 (número de trazas confinadas medidas = 123), y una longitud media de 13.16 ± 1.1 µm para la muestra ABM-10 (número de trazas confinadas medidas = 64).

La composición química de los cristales de apatitos, en función de su contenido de cloro, se relaciona con el comportamiento cinético de éstos en el proceso de borrado térmico (Donelick et al., 2005; Gallagher et al., 1998; Green et al., 1986; Ketcham, 2005; Ketcham, et al., 2007). De esta manera, los apatitos con un mayor contenido en Cl son más resistentes al borrado térmico de sus trazas de fisión (acortamiento) que los apatitos ricos en F, mostrando para los primeros edades más antiguas (Green et al., 1986). La gráfica de edades de granos individuales vs. Cl wt% (Figura 44), permite establecer si existe una correlación entre la edad de AFT de grano individual y su composición. En las tres muestras de la Formación Matzitzi no existe una correlación directa entre el contenido de Cl y la edad de AFT, ya que independientemente del contenido de Cl las edades individuales están entre ca. 45-80 Ma.

ABM-02 [LTM=13.15 ± 1.38 SD de 69 Trazas Confinadas] (n=40)

Edad Central=59.6 ± 1.5 Ma (1o) 90 Dispersión: 7.6% P(X^2)=0.08 80 75 2 -70 65 60 0 55 -2 50 45 40 10% σ/t 21 14 10 11 2 6 t/σ 0 8 4 Cloro (wt.%) 0,14 2,12

ABM-05 [LTM=12.78 ± 1.30 SD de 123 Trazas Confinadas] (n=78)

ABM-10 [LTM=13.16 ± 1.10 SD de 64 Trazas Confinadas] (n=31)

Figura 43. Radial Plots mostrando las edades obtenidas por Trazas de Fisión en Apatitos para las muestras de la Formación Matzitzi ABM-02, ABM-05 y ABM-10, y los histogramas de la longitud de trazas confinadas.

Figura 44. Relación entre Edad de Trazas de Fisión en apatitos con la composición en funsión del contenido de Cl (wt%) para las muestras de la Formación Matzizti (ABM-02, ABM-05 y ABM-10).

4.6.2. Formación Tianguistengo

Para la Formación Tianguistengo se seleccionaron dos muestras de arenisca para análisis termocronológico de AFT por LA-ICP-MS (RMO-01 y RMO-04). Los resultados individuales obtenidos se presentan en el **Anexo XI**.

Las muestras de la Formación Tianguistengo no superan la prueba del P (χ 2)> 5% (Galbraith, 1981; P. F. Green, 1981), indicando una mezcla de diferentes poblaciones de edades de granos individuales (Hasebe y Tagami, 2001). La dispersión en ambas muestras es del 19-32%, respectivamente. Para la Muestra RMO-01, se muestra una distribución de edades entre ~70-240 Ma (**Figura 45**), con tres grupos de componentes de edades: ca. 200 Ma, ca. 150 Ma y ca. 85 Ma; en la muestra RMO-04 se puede identificar así mismo un patrón de distribución amplio, de edades entre ~40-185 Ma (**Figura 46**), tres grupos de componentes de edades fueron obtenidos: ca. 142 Ma, ca. 92 Ma y ca. 57 Ma. Para las muestras RMO-01 (número de trazas confinadas medidas = 193) y RMO-04 (número de trazas confinadas medidas = 93) se midieron longitudes de trazas confinadas obteniendo una media de 12.04 ± 2.05 µm y 12.33 ± 1.61 µm, respectivamente (**Figura 45, Figura 46**).

Para las muestras de la Formación Tianguistengo, la gráfica que permite establecer una correlación entre la edad de AFT vs. Contenido de Cl se muestra en la **Figura 47**, donde se puede observar que, para ambas muestras, existe una correlación, evidenciada en los granos con edades más viejas correspondiendo a valor más altos en el contenido de Cl.

RMO-01 [LTM=12.03 ± 2.03 SD de 193 Trazas Confinadas] (n=96)

Figura 45. Radial Plot mostrando las edades obtenidas por Trazas de Fisión en Apatitos para la muestra RMO-01 de la Formación Tianguistengo y el histograma de longitudes de trazas confinadas.

RMO-04 [LTM=12.33 ± 1.61 SD de 93 Trazas Confinadas] (n=45)

Figura 46. Radial Plots mostrando las edades obtenidas por Trazas de Fisión en Apatitos para la muestra RMO-04 de la Formación Tianguistengo y el histograma de longitudes de trazas confinadas.

Figura 47. Relación entre Edad de Trazas de Fisión en apatitos con la composición en función del contenido de Cl (wt%) para las muestras de la Formación Tianguistengo (RMO-01 y RMO-04).

5. Discusión

5.1. Procedencia y edad de acumulación

A continuación, se discutirá la procedencia de la Formación Matzitzi y Formación Tianguistengo, incluyendo la petrografía de areniscas, resultados geocronológicos U-Pb en circones detríticos, y la integración de los resultados geoquímicos y termocronológicos U-Pb en apatitos detríticos.

5.1.1. Formación Matzitzi

Los componentes detríticos de la Formación Matzitzi están representados por un abundante contenido de cuarzo y feldespato con texturas de intercrecimiento, indicando una procedencia principalmente de rocas ígneas plutónicas y metamórficas de composición cuarzo-feldespática, similares a las encontradas dentro del Complejo Oaxaqueño y las derivadas de las rocas graníticas pertenecientes al Arco del Este de México (Solari et al., 2003; Kirsch et al., 2012; Ortega-Obregón et al., 2014). Fragmentos y líticos de rocas metamórficas gnéisicas y minerales accesorios como granate y biotita, encontrados en las areniscas de esta formación, soportan esta correlación. Una menor proporción de líticos sedimentarios clásticos y carbonatados, así como metasedimentarios de bajo grado, sugieren erosión de las rocas de la Formación Tecomate, incluidas dentro del Complejo Acatlán (Talavera-Mendoza et al., 2005; Kirsch et al., 2012). Líticos volcánicos subordinados de composición félsica e intermedia, pueden estar asociados a la porción volcánica del arco construido durante el Carbonífero-Pérmico. La abundante presencia de feldespato y las facies conglomeráticas con clastos de gran tamaño principalmente de gneises, sugieren una rápida acumulación próxima a la fuente, en un ambiente continental. Las características de los componentes detríticos, así como la naturaleza de las fuentes, sugieren una procedencia principalmente de niveles estructurales intermedios de la corteza continental (Dickinson, 1985; Garzanti, 2016).

Estudios paleontológicos en los helechos encontrados en la Formación Matzitzi han sugerido una edad máxima de sedimentación del Pensilvánico (Silva-Pineda, 1970) y Pérmico temprano (Weber, 1997). Nuevos datos geocronológicos U-Pb en circón en la Toba Atolotilán, interpretada en este trabajo por sus características petrográficas mencionadas anteriormente y observaciones de campo (Capítulo 4.1 y 4.2), como una unidad ígnea sindeposicional a la Formación Matzitzi y de edad ca.240

Ma. Por la relación estratigráfica entre la Toba Atolotitlán y la Formación Matztizi, se sugiere una edad de acumulación para esta secuencia sedimentaria mucho más joven que la propuesta anteriormente, indicando más bien una edad del Triásico Medio de ca. 240 Ma, coherente con los datos anteriormente obtenidos en la Toba Atolotitlán por Elías-Herrera et al. (2011) (240 ± 1 Ma).

Los resultados de geocronología detrítica en circón de la Formación Matzitzi permitieron identificar una población de edades dominantes del Neo-Mesoproterozoico (ca. 940-1400 Ma), y dos subpoblaciones menos representativas del Neoproterozoico tardío (ca. 594 Ma) y Pérmico temprano (ca. 277 Ma). La muestra ABM-02 presenta una población detrítica importante del Jurásico Inferior (169-200 Ma) y se interpreta como una secuencia probablemente perteneciente a unidades más jóvenes (ej. Formación Zapotitlán) sugiriendo posibles errores cartográficos y/o de muestreo, y no correspondiente a la Formación Matzitzi.

Los circones entre 940-1400 Ma son semejantes a las edades U-Pb reportadas para las rocas metamórficas del Complejo Oaxaqueño (Solari et al., 2003; 2014), lo cual es coherente con las observaciones petrográficas que sugieren una procedencia derivada de rocas gnéisicas identificadas en dichos complejos. Edades similares han sido reportadas para las rocas metamórficas en facies esquisto verde de la Formación Tecomate incluida dentro del Complejo Acatlán, sin embargo, las características petrográficas son más coherentes con rocas metamórficas de más alto grado.

Las pocas edades del Neoproterozoico tardío (ca. 594 Ma) y Pérmico temprano (ca. 277 Ma), son similares a las edades reportadas para las rocas metamórficas del Complejo Acatlán, rocas sedimentarias de la Formación Santa Rosa en el Terreno Maya y Amazonia (Talavera-Mendoza et al., 2005; Keppie et al., 2008; Weber et al., 2009; Kirsch et al., 2012); y las rocas del Arco Este de México (Kirsch et al., 2012; Ortega-Obregón et al., 2014), respectivamente. Sin embargo, el escaso registro de estas edades sugiere que dichas unidades no son fuente dominante de aporte para la Formación Matzitzi, probablemente debido a que estaban poco expuestas en superficie durante la acumulación de esta unidad.

Resultados termocronológicos U-Pb en apatitos detríticos de la Formación Matzitzi permitieron identificar cuatro grupos de subpoblaciones principales de edades de: 1) Neoproterozoico temprano (ca. 990-800 Ma), 2) Neoproterozoico tardío (ca. 580 Ma), 3) Ordovícico Medio (ca. 460 Ma) y 4) Pérmico temprano (ca. 300-275 Ma). Integrando estos resultados con los datos geoquímicos obtenidos durante la misma sesión analítica de LA-ICP-MS, confirma, como se ha mencionado anteriormente fuentes principalmente derivadas del Complejo Oaxaqueño (**Figura 23, Figura 24**).

Las características geoquímicas que exhiben los apatitos de este complejo metamórfico, como el enriquecimiento de los LREE con respecto a los HREE, una marcada anomalía negativa de Eu, y un contenido de Sr e Y de ~250 ppm y ~900 ppm, respectivamente, son semejantes a los apatitos detríticos con edades U-Pb del Neoproterozoico temprano (990-800 Ma) de la Formación Matzitzi. Edades ⁴⁰Ar/³⁹Ar en hornblenda de ca. 980 Ma han sido interpretadas como edades de metamorfismo para rocas del Complejo Oaxaqueño (Solari et al., 2003), las cuales son registradas por dicha subpoblación, con edades de enfriamiento entre 990-800 Ma (temperatura de cierre sistema U-Pb apatitos ~350-550°C, Chew y Donelick, 2012; Mark et al., 2016; O'Sullivan et al., 2016; Henrichs et al., 2018). Las subpoblaciones de apatitos detríticos de la Formación Matzitzi con edades entre Neoproterozoico tardío y Ordovícico Medio pueden representar fuentes derivadas de las unidades incluidas en el Complejo Acatlán, sin embargo, la falta de datos geoquímicos en apatitos de esta unidad dificulta establecer con certeza esta comparación.

La subpoblación de edades Pérmico temprano (300-275 Ma) de los apatitos de la Formación Matzitzi presenta características similares a los apatitos derivados de las rocas ígneas del Plutón Totoltepec (fase máfica ~370 ppm), y tiende a agruparse próximos a las rocas permo-carbonífera. Sugiriendo una fuente proveniente de las rocas del Arco Este de México. Sin embargo, esta población al igual que la identificada mediante geocronología U-Pb en circones detríticos está subordinada.

5.1.2. Formación Tianguistengo

La composición de las areniscas de la Formación Tianguistengo indican una procedencia predominante derivada de rocas cuarzo-feldespáticas. En este caso el mayor contenido de plagioclasa con respecto al feldespato potásico puede estar reflejando la composición original de la roca parental, semejantes a las rocas graníticas del Plutón Totoltepec y las rocas del Arco del Este de México (Elías-Herrera y Ortega-Gutiérrez, 2002; Kirsch et al., 2012; Ortega-Obregón et al., 2014). Esto sugiere una rápida acumulación y proximidad a la fuente, puesto que la plagioclasa es aún más inestable que el feldespato potásico (Dickinson, 1985). En los diagramas de discriminación tectónica se puede ver reflejada la procedencia de raíces plutónicas de un arco (Dickinson, 1985; Garzanti, 2016). Los líticos metamórficos y volcánicos en la Formación Tianguistengo están subordinados. Los líticos metamórficos, principalmente de rocas esquistosas cuarzo-micáceas, son comparables con las unidades incluidas en el Complejo Acatlán (Talavera-Mendoza et al., 2005; Vega-Granillo et al.,

2009). Los líticos volcánicos por su parte podrían estar relacionados a la porción volcánica relacionada al arco que da lugar a la formación del Plutón Totoltepec.

Una edad máxima de depósito del Triásico había sido sugerida para la Formación Tianguistengo por Verde-Ramírez (2015), coherente con la edad de acumulación triásica propuesta en este trabajo. Los datos geocronológicos a su vez muestran un pico predominante de edades del Carbonífero-Pérmico (ca. 255-360 Ma), comparables con las reportadas para las rocas del Arco Este de México, representado en la zona de estudio principalmente por el Plutón Totoltepec (Elías-Herrera y Ortega-Gutiérrez, 2002; Kirsch et al., 2012; Ortega-Obregón et al., 2014). Una segunda población de edades está comprendida entre ca. 920-1300 Ma, las cuales han sido reportadas para las rocas metamórficas del Complejo Oaxaqueño (Solari et al., 2003; Solari et al., 2014). Edades del Neoproterozoico entre 508-636 Ma y un grupo menos representativo con edades >1800 Ma, son comparables con edades U-Pb reportadas para las rocas metamórficas del Complejo Acatlán, y para las rocas sedimentarias de la Formación Santa Rosa del Terreno Maya y Amazonía (Talavera-Mendoza et al., 2005; Keppie et al., 2008; Weber et al., 2009; Kirsch et al., 2012).

Resultados termocronológicos U-Pb en apatitos detríticos de la Formación Tianguistengo permitieron identificar cuatro subpoblaciones principales de edades de: 1) Neoproterozoico temprano (ca. 950-880 Ma), 2) Neoproterozoico medio (ca. 685 Ma), 3) Cámbrico medio (ca. 510 Ma) y 4) Carbonífero tardío (ca. 315-310 Ma).

La subpoblación de apatitos detríticos predominante presenta edades del Carbonífero tardío (ca. 315-310 Ma). Las características geoquímicas de dicha subpoblación se asemejan a las de los apatitos derivados de las rocas ígneas del Plutón Totoltepec, como lo son el enriquecimiento en los LREE, notable anomalía de Eu y un contenido promedio de Sr y de Y de ~ 430 ppm y ~ 440 ppm, respectivamente. Esta subpoblación también es comparable a los apatitos derivados de las rocas ígneas permo-carboníferas como el Granito Etla y la Riolita Sosola incluidas en el Arco Este de México, lo cual es coherente con las observaciones petrográficas y resultados U-Pb en circones detríticos.

Las características geoquímicas de la subpoblación de apatitos detríticos de edades entre 950-880 Ma, son comparables con las de apatitos derivados del Complejo Oaxaqueño, enriquecimiento de los LREE con respecto a los HREE, marcada anomalía negativa de Eu, y un contenido de Sr e Y de ~250 ppm y ~900 ppm, respectivamente, lo que se sugiere una derivación de dicho complejo. Las edades del Neoproterozoico medio (ca. 685 Ma) y Cámbrico medio (ca. 510 Ma) pueden estar

relacionadas, por su parte, a las rocas del Complejo Acatlán, sin embargo, al no contar con datos geoquímicos en apatitos de esta unidad y la escasez de este tipo de estudios en apatitos derivados de rocas metamórficas, esta aseveración queda todavía como una hipótesis.

5.2. Termocronología AFT y Modelo de evolución térmica

5.2.1. Formación Matzitzi

Para la interpretación de los datos de trazas de fisión en apatitos, en términos de trayectorias T-t, se realizó el modelamiento termal inverso para las muestras pertenecientes a la Formación Matzitzi las cuales superan la prueba del P (χ 2)> 5% (Galbraith, 1981; P. F. Green, 1981). Este modelado se realizó en el software HeFTy (Ketcham, 2005; Ketcham et al., 2007; Ketcham y Donelick, 2013), teniendo en cuenta edades TF, longitud de trazas confinadas y el contenido de Cl como parámetro cinético, además de la edad de acumulación de dicha formación (ca. 240 Ma) y relaciones estratigráficas que indicaran el periodo de tiempo en el cual la Formación Matzitzi estuvo expuesta en superficie. En este caso, las rocas sedimentarias de la Formación Caltepec, que sobreyacen de forma discordante a esta formación, y a la cual se le ha asignado una edad del Cretácico Inferior (ca. 132-125 Ma) (Mendoza-Rosales, 2010) permiten constreñir el modelo. Los modelos obtenidos se muestran en la **Figura 48**. Entre 200k y 600k iteraciones se realizaron usando un método de Monte-Carlo hasta obtener al menos 15 a 20 buenas soluciones (Bondad de ajuste> 0.5 y aceptables >0.05) (Ketcham, 2005).

Las muestras de la Formación Matzitzi, presentan edades AFT entre ~42-85 Ma, con una edad concordante promedio de ca. 60 Ma, mucho más jóvenes que la edad de depositación para esta formación, lo cual indica que estas muestras fueron sometidas a temperaturas mayores que las de la zona de borrado parcial de trazas (PAZ – *Partial Annealing Zone* ~60-120°C), sufriendo probablemente a un calentamiento pos-deposicional (enterramiento) (Gleadow et al., 2002; Hasebe y Tagami, 2001) y reflejando una edad de enfriamiento *post-annealing* (Hasebe y Tagami, 2001).

En la **Figura 48** se puede observar que, aunque la historia más antigua de enterramiento y exhumación no está bien constreñida por los datos con los que se cuenta, el pulso de exhumación rápida en el Cretácico Tardío-Paleoceno se encuentra muy bien definido por las edades AFT y las longitudes de las trazas. Las longitudes de trazas se encuentran acortadas por un tiempo de

residencia relativamente alto en la zona de borrado parcial (PAZ), lo cual se puede observar desde el Paleoceno hasta final del Mioceno (temperaturas entre 60 y 80 °C).

Figura 48. Modelo termal de las muestras detríticas de la Formación Matzitzi. La región de color morado corresponde a una buena solución de ajuste y la región de color verde corresponde a un ajuste aceptable. La línea negra gruesa muestra el ajuste estadístico más adecuado. GOF: Goodness-of fit (bondad de ajuste).

5.2.2. Formación Tianguistengo

Las muestras de la Formación Tianguistengo tienen edades AFT que no pasan las prueba del P(χ 2)> 5% (Galbraith, 1981; P. F. Green, 1981) y valores relacionados con la edad de acumulación de esta formación. Por lo tanto, no todas las edades pueden ser interpretadas como simplemente edades de enfriamiento, y no todas reflejan la historia termal propia de la roca.

Las edades AFT alrededor de 240 Ma reflejan la edad de acumulación triásica de esta secuencia sedimentaria, sugiriendo una derivación propia de la fuente que, en este caso, es coherente con las edades AFT triásicas reportadas para el Plutón Totoltepec (Ramírez-Calderón, 2017). Edades más jóvenes que la edad de acumulación sugieren un calentamiento por encima y/o a través de la zona de borrado parcial (PAZ). Un número significativo de trazas acortadas muestran un calentamiento a través de la zona de borrado parcial, y no por encima de esta (Hasebe y Tagami, 2001). En la **Figura 47** se puede ver que las edades más antiguas dentro de este grupo corresponden a apatitos con un mayor contenido de cloro, los cuales son más resistentes al borrado y reseteo térmico (T >~160°C) A partir de esto, se puede establecer que la máxima temperatura que pudieron haber experimentado estas rocas es de alrededor de ~120°C (Gleadow et al., 2002), que visto en términos de profundidad, para gradiente geotermal normal de 30°C/km, estas rocas habrían alcanzado una profundidad máxima aproximada de 4 km durante su enterramiento.

5.3. Implicaciones paleotectónicas y paleogeográficas

Los nuevos resultados presentados en esta contribución permiten reconstruir las características geológicas principales en el límite tectónico de los complejos metamórficos Acatlán y Oaxaqueño durante el Paleozoico tardío-Mesozoico temprano. El análisis integrado de procedencia en secuencias sedimentarias en zonas de sutura como registro de los procesos tectónicos responsables por la yuxtaposición de terrenos no cogenéticos, permite reconocer y limitar el tiempo y la naturaleza de los eventos tectónicos y geológicos que dieron lugar a su formación y estructuración. Una representación resumida de la paleogeografía durante el Paleozoico tardío-Mesozoico temprano se presenta en la **Figura 49**.

Durante el Carbonifero-Pérmico los bloques de basamento correspondientes al Complejo Oaxaqueño y Acatlán se amalgamaron bajo un régimen dextral transpresional, siendo la zona de Falla Caltepec el límite tectónico de estos bloques (Elías-Herrera et al., 2005; Elías-Herrera y Ortega-Gutiérrez, 2002). La construcción de un arco magmático a partir del Carbonífero y continúo hasta el Pérmico, ha sido documentada para la región sur de México. Las rocas plutónicas del Plutón Totoltepec de edades entre ~306-289 Ma (Kirsch et al., 2012), el Granito Etla de edad 255.2 ± 1.1 Ma, la Riolita Sosola de edad 270.5 ± 2.5 Ma, el Stock La Carbonera de edad 272.5 ± 1 Ma (Ortega-Obregón et al., 2014), entre otros, hacen parte del registro magmático de este arco.

La Formación Matzitzi, la cual sobreyace discordantemente las rocas de los complejos Oaxaqueño y Acatlán (Centeno-García et al., 2009; Elías-Herrera y Ortega-Gutiérrez, 2002), incluye areniscas con material inestable, representado por el alto contenido de feldespato, sugiriendo una acumulación proximal al área fuente y posiblemente un clima árido o semi-árido con un relieve elevado, además de un régimen tectónico activo (relación Q:F decrece) (Dickinson, 1985; Garzanti, 2016). Nuestros resultados, sugieren una acumulación para la Formación Matzitzi durante el Triásico Medio contemporánea a la formación de la Toba Atolotitlán la cual presenta una edad ca. 240 Ma. A partir del análisis de procedencia anteriormente descrito, se sugiere que esta secuencia sedimentaria fue derivada a partir de una fuente principalmente metamórfica, similar a las rocas del Complejo Oaxaqueño, indicando que este complejo metamórfico ya estaba expuesto al momento de su depositación, y que escasa presencia de circones derivados del arco Carbonífero-Pérmico puede deberse a que durante la acumulación de la Fm. Matzitzi las raíces plutónicas del arco estaban escasamente expuestas y la naturaleza del arco posiblemente era dominantemente plutónica, con actividad volcánica limitada.

El volcanismo de la Toba Atolotitlán de edad ca. 240 Ma, no está ampliamente representado en el sur de México, escasas unidades presentan edades siquiera cercanas a esta. Un arco construido durante el Permo-Triásico había sido sugerido por diversos autores (ej. Torres et al., 1999; Dickinson y Lawton, 2001) sin embargo, este ha sido constreñido más bien durante el Carbonífero-Pérmico, como se mencionó anteriormente. En este contexto, la presencia de la Toba Atolotitlán puede sugerir una posible continuación del arco hasta el Triásico Medio, correspondiendo posiblemente a las etapas finales de un arco principalmente plutónico, sugerido así por el escaso registro volcánico que existe para este periodo de tiempo, y coherente con una firma geoquímica de arco, como lo sugiere Centeno-García et al., (2009). El escaso registro magmático para este periodo de tiempo ha

sido explicado mediante un cambio en las características en el régimen de subducción, como una disminución en el ángulo de subducción hasta una subducción plana durante el Triásico Medio-Tardío, dando como resultado una disminución hasta ausencia del magmatismo en el sur de México y migración del mismo hacia el E (Kirsch et al., 2014), quizás representado por las rocas metagraníticas del Triásico Tardío presentes en el Complejo Chuacús en Guatemala (edades U-Pb entre 226 y 218 Ma, Solari et al., 2011; Maldonado et al., 2018). Otra alternativa para explicar el volcanismo presente en la Formación Matzitzi, es que este podría estar relacionado a las facies tempranas del vulcanismo en un ambiente extensional, que precedería la apertura de cuencas de rift formadas durante el Jurásico en México, e influenciado por la zona de subducción al W de Norteamérica (Martini y Ortega-Gutierréz, 2016).

La Formación Tianguistengo presenta una edad de acumulación del Triásico y se sugiere una procedencia derivada principalmente de las rocas graníticas presentes en el Plutón Totoltepec, con menor aporte de las rocas metamórficas del Complejo Oaxaqueño y Acatlán. La abundante presencia de componentes inestables en las areniscas de la formación, como lo es el importante contenido de plagioclasa que sugiere una proximidad y rápida depositación con respecto al área fuente. Esto puede corresponder a una exhumación del Plutón Totoltepec durante el Triásico (Ramírez-Calderón, 2017), la cual es registrada también por los datos termocronológicos de baja temperatura, (edades AFT ca. 240 Ma) que corresponden a edades derivadas de esta fuente. Este evento de exhumación durante el Triásico ha sido relacionado por Kirsch et al., (2014) con el cambio en las características del ángulo de subducción, como mencionado anteriormente. Así mismo, el aporte de componentes detríticos derivados posiblemente de las rocas metamórficas del Complejo Oaxaqueño, sugieren que este, ya se encontraba expuesto durante este periodo de tiempo, mientras que la escasa presencia de detritos del Complejo Acatlán, sugiere que este estaba poco expuesto.

El evento tectono-térmico más joven registrado por la secuencia sedimentaria de la Formación Matzitzi durante el Cretácico Tadío-Paleoceno, que documentan los datos termocronológicos de baja temperatura (AFT), indica un pulso de exhumación rápida durante este periodo de tiempo. Este periodo de exhumación puede estar relacionado al evento deformacional compresivo Larámide que tuvo lugar durante el Cretácico Tardío, identificado principalmente en Estados Unidos (ej. Livaccari et al., 1981; Li y Li, 2007), y el cual toma lugar en el sur de México desde el Cretácico Tardío hasta el Eoceno, con una migración de la deformación de occidente a oriente (Cerca et al., 2004; Nieto-

Samaniego et al., 2006). Las edades más antiguas que registran esta deformación son del Santoniense-Campaniense (ca. 85 a ca. 71 Ma) en Tetelcingo, Paleoceno en Texmalac, ambas en la Plataforma Guerrero-Morelos; pre- Bartoniense (40 Ma) en el bloque Acatlan-Oaxaqueño, y en el Eoceno Medio en la cuenca de Veracruz (zona más oriental) (Nieto-Samaniego et al., 2006). Así, las edades ca. 60 Ma aquí obtenidas, coinciden con las esperadas en el bloque Acatlán-Oaxaqueño.

Figura 49. Esquema paleogeográfico desde el Pérmico temprano hasta el Triásico Medio, representando las principales unidades litológicas estudiadas. Flecha de color negro gruesa indica el movimiento relativo de la placa del Pacífico con respecto a Pangea; flechas de color azul indican las áreas fuentes principales de detritos a las cuencas estudiadas en este trabajo, y las de color rosado representan fuentes subordinadas; Ch: Bloque Chortis; AC: Andes Colombianos; M: Mérida; My: Bloque Maya; Y: Yucatán; F: Florida; Co: Bloque Coahuila; Mx: Terreno Mixteco; Oax: Oaxaquia; PT: Plutón Totoltepec. .Modificado de Kirsch et al. (2012); Ortega-Obregón et al. (2014); Weber et al. (2007).

6. Conclusiones

La integración de análisis de procedencia de secuencias sedimentarias, a partir de petrografía de areniscas, geocronología, termocronología y geoquímica detrítica permite reconstruir la configuración paleogeográfica de las áreas fuente de las cuales fueron derivada y la historia tectono-termal de estas cuencas.

Resultados termocronológicos U-Pb y geoquímicos en apatitos detríticos de la Formación Matzitzi, sugieren una fuente principalmente a rocas metamórficas grenvilianas, como las incluidas dentro de Complejo Oaxaqueño, lo cual es soportado además por las observaciones petrográficas y geocronología detrítica en circón. Para el caso de la Formación Tianguistengo, los resultados sugieren una fuente plutónica dominante de edades Carbonífero-Pérmicas, como las incluidas en el Plutón Totoltepec.

Análisis geocronológicos en circones detríticos sugieren una edad de acumulación para la Formación Tianguistengo del Triásico. Para la Formación Matzitzi se propone una edad del Triásico Medio, con base en la edad de la Toba Atolotitlán (ca.240 Ma).

Estos nuevos resultados sugieren una acumulación de sucesiones sedimentarias formadas en un ambiente continental, durante el Triásico, la cual estuvo controlada por la exhumación de bloques de basamento y de raíces del arco Carbonífero-Pérmico construido en la margen occidental de México, y una disminución de la actividad magmática durante su acumulación.

El volcanismo presente en la Formación Matzitzi puede sugerir una posible continuación del arco Carbonífero-Pérmico hasta el Triásico, o estar relacionada a las etapas iniciales de las cuencas de rift desarrolladas durante el Jurásico en México, sin embargo, el carácter félsico de estas rocas y el escaso registro en el sur de México de magmatismo de esta edad, no permite con certeza realizar esta afirmación.

Los resultados termocronológicos de la Formación Tianguistengo, muestran edades AFT derivadas de la fuente, las cuales registran la exhumación del Plutón Totoltepec. Estos, además sugieren que la máxima temperatura alcanzada por esta unidad es de 120° (PAZ ~60-120°C).

Las edades AFT obtenidas para las areniscas de la Formación Matzitzi, sugieren un periodo de exhumación durante el Cretácico Tardío-Paleoceno, contemporáneo con el evento de deformación compresiva observado en el centro-sur de México, conocido como la Orogenia Larámide.

Los análisis integrados de termocronología U-Pb y geoquímica detrítica en apatitos son herramientas muy útiles en los estudios de procedencia, sin embargo, requieren una mejor caracterización equivalente de las áreas fuente.

Referencias

- Abdullin, F., Solé, J., Meneses-Rocha, J. de J., Solari, L., Shchepetilnikova, V., y Ortega-Obregón, C. (2016). LA-ICP-MS-based apatite fission track dating of the Todos Santos Formation sandstones from the Sierra de Chiapas (SE Mexico) and its tectonic significance. *International Geology Review*, *58*(1), 32-48.
- Abdullin, F., Solé, J., y Solari, L. (2014). Datación mediante trazas de fisión y análisis multielemental con LA-ICP-MS del fluorapatito de Cerro de Mercado (Durango, México). *Revista mexicana de ciencias geológicas*, *31*(3), 395-406.
- Abdullin, F., Solé, J., Solari, L., Shchepetilnikova, V., Meneses-Rocha, J. J., Pavlinova, N., y Rodríguez-Trejo, A. (2016). Single-grain apatite geochemistry of Permian–Triassic granitoids and Mesozoic and Eocene sandstones from Chiapas, southeast Mexico: implications for sediment provenance. *International Geology Review*, *58*(9), 1132-1157.
- Alaniz-Álvarez, S. A., Ortega-Gutiérrez, F., y Nieto-Samaniego, Á. F. (1994). Structural evolution of the Sierra de Juarez mylonitic complex, State of Oaxaca, Mexico. *Revista Mexicana de Ciencias Geológicas*, 11(2), 3.
- Belousova, E., Griffin, W., O'Reilly, S. Y., y Fisher, N. (2002). Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. *Journal of Geochemical Exploration*, *76*(1), 45-69.

Best, M. G. (2013). Igneous and Metamorphic Petrology. John Wiley y Sons.

Campos-Madrigal, E., Centeno-García, E., Mendoza-Rosales, C. C., y Silva-Romo, G. (2013).
 Sedimentología, reconstrucción paleoambiental y significado tectónico de las sucesiones clásticas del Jurásico Medio en el área de Texcalapa, Puebla-Huajuapan de León, Oaxaca: Revisión de las formaciones Ayuquila y Tecomazúchil. *Revista mexicana de ciencias geológicas*, *30*(1), 24–50.

- Carrapa, B., DeCelles, P. G., Reiners, P. W., Gehrels, G. E., y Sudo, M. (2009). Apatite triple dating and white mica 40Ar/39Ar thermochronology of syntectonic detritus in the Central Andes: A multiphase tectonothermal history. *Geology*, *37*(5), 407–410.
- Carrillo, M., y Martínez, E. (1983). Evidencia de facies continentales en la Formación Matzitzi. *Estado de Puebla: Revista del Instituto de Geología*, *5*(1), 117–118.
- Centeno-García, E., Mendoza-Rosales, C. C., y Silva-Romo, G. (2009). Sedimentología de la Formación Matzitzi (Paleozoico superior) y significado de sus componentes volcánicos, región de Los Reyes Metzontla-San Luis Atolotitlán, Estado de Puebla. *Revista mexicana de ciencias geológicas, 26*(1), 18–36.
- Cerca, M., Ferrari, L., Bonini, M., Corti, G., y Manetti, P. (2004). The role of crustal heterogeneity in controlling vertical coupling during Laramide shortening and the development of the Caribbean-North America transform boundary in southern Mexico: insights from analogue models. *Geological Society, London, Special Publications, 227*(1), 117–139.
- Chew, D. M., y Donelick, R. A. (2012). Combined apatite fission track and U-Pb dating by LA-ICP-MS and its application in apatite provenance analysis. *Quantitative mineralogy and microanalysis of sediments and sedimentary rocks: Mineralogical Association of Canada Short Course*, *42*, 219-247.
- Chew, D. M., Donelick, R. A., Donelick, M. B., Kamber, B. S., y Stock, M. J. (2014). Apatite Chlorine Concentration Measurements by LA-ICP-MS. *Geostandards and Geoanalytical Research*, *38*(1), 23-35.
- Chew, D., Petrus, J., y Kamber, B. (2014). U–Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. *Chemical Geology*, *363*, 185-199.

- Cochrane, R., Spikings, R. A., Chew, D., Wotzlaw, J. F., Chiaradia, M., Tyrrell, S., Schaltaltegger, U., Van der Lelij, R. (2014). High temperature (> 350 C) thermochronology and mechanisms of Pb loss in apatite. *Geochimica et Cosmochimica Acta*, *127*, 39-56.
- Connelly, J. N. (2001). Degree of preservation of igneous zonation in zircon as a signpost for concordancy in U/Pb geochronology. *Chemical Geology*, *172*(1-2), 25-39.
- Corfu, F., Hanchar, J. M., Hoskin, P. W., y Kinny, P. (2003). Atlas of zircon textures. *Reviews in mineralogy and geochemistry*, *53*(1), 469-500.
- Dickinson, W. R. (1985). Interpreting provenance relations from detrital modes of sandstones. En *Provenance of arenites* (pp. 333-361). Springer.
- Dickinson, W. R., y Gehrels, G. E. (2009). Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. *Earth and Planetary Science Letters*, 288(1-2), 115-125.
- Dickinson, W. R., y Lawton, T. F. (2001). Carboniferous to Cretaceous assembly and fragmentation of Mexico. *Geological Society of America Bulletin*, *113*(9), 1142–1160.
- Donelick, R. A., O'Sullivan, P. B., y Ketcham, R. A. (2005). Apatite fission-track analysis. *Reviews in Mineralogy and Geochemistry*, 58(1), 49-94.
- Elías-Herrera, M., y Ortega-Gutiérrez, F. (2002). Caltepec fault zone: An Early Permian dextral transpressional boundary between the Proterozoic Oaxacan and Paleozoic Acatlán complexes, southern Mexico, and regional tectonic implications. *Tectonics*, *21*(3).
- Elías-Herrera, M., Ortega-Gutiérrez, F., Sánchez-Zavala, J. L., Macías-Romo, C., Ortega-Rivera, A., y Iriondo, A. (2005). La falla de Caltepec: raíces expuestas de una frontera tectónica de larga vida entre dos terrenos continentales del sur de México. *Boletín de la Sociedad Geológica Mexicana*, *57*(1), 83–109.

- Elías-Herrera, M., Ortega-Gutiérrez, F., Macías-Romo, C., Sánchez-Zavala, J. L., y Solari, L. (2011). Colisión oblicua del Cisuraliano-Guadalupiano entre bloques continentales en el sur de México: Evidencias estratigráfico-estructurales y geocronológicas, in Simposio en Honor del Dr. Zoltan de Cserna, Libro de Resúmenes. En Simposio en Honor del Dr. Zoltan de Cserna, Libro de Resúmenes: Mexico DF, Instituto de Geología, Universidad Nacional Autónoma de México (pp. 159–164).
- Fleischer, R. L., Price, P. B., y Walker, R. M. (1975). *Nuclear tracks in solids: principles and applications*. Univ of California Press.

Folk, R. L. (1980). Petrology of sedimentary rocks. Hemphill Publishing Company.

- Galbraith, R. F. (1981). On statistical models for fission track counts. *Journal of the International* Association for Mathematical Geology, 13(6), 471–478.
- Gallagher, K., Brown, R., y Johnson, C. (1998). Geological applications of fission track analysis. *Annual Review of Earth and Planetary Sciences*, *26*, 519-572.
- Galván-Mendoza, E. (2000). Contribución al conocimiento paleoecológico de la tafoflora Matzitzi. Paleozoico Tardio, sur del Estado de Puebla: Tesis de Maestria, Universidad Nacional Autónoma de México, Facultad de Ciencias.
- Garzanti, E. (2016). From static to dynamic provenance analysis—Sedimentary petrology upgraded. Sedimentary Geology, 336, 3-13.
- Garzanti, E., y Vezzoli, G. (2003). A classification of metamorphic grains in sands based on their composition and grade. *Journal of Sedimentary Research*, *73*(5), 830-837.
- Gehrels, G. (2012). Detrital zircon U-Pb geochronology: Current methods and new opportunities. *Tectonics of sedimentary basins: Recent advances*, 45-62.

- Gehrels, G. E., Valencia, V. A., y Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. *Geochemistry, Geophysics, Geosystems, 9*(3).
- Gleadow, A., y Duddy, I. (1981). A natural long-term track annealing experiment for apatite. *Nuclear Tracks*, *5*(1-2), 169-174.
- Gleadow, A., Duddy, I., Green, P. F., y Lovering, J. (1986). Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. *Contributions to Mineralogy and Petrology*, *94*(4), 405-415.
- Gleadow, A. J., Belton, D. X., Kohn, B. P., y Brown, R. W. (2002). Fission track dating of phosphate minerals and the thermochronology of apatite. *Reviews in Mineralogy and Geochemistry*, *48*(1), 579-630.
- Goldoff, B., Webster, J. D., y Harlov, D. E. (2012). Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. *American Mineralogist*, *97*(7), 1103-1115.
- Green, P., Duddy, I., Gleadow, A., Tingate, P., y Laslett, G. (1986). Thermal annealing of fission tracks in apatite: 1. A qualitative description. *Chemical Geology: Isotope Geoscience section*, *59*, 237-253.
- Green, P. F. (1981). A new look at statistics in fission-track dating. *Nuclear tracks*, 5(1-2), 77–86.
- Hasebe, N., y Tagami, T. (2001). Exhumation of an accretionary prism—results from fission track thermochronology of the Shimanto Belt, southwest Japan. *Tectonophysics*, *331*(3), 247–267.
- Hasebe, N., Barbarand, J., Jarvis, K., Carter, A., y Hurford, A. J. (2004). Apatite fission-track chronometry using laser ablation ICP-MS. *Chemical Geology*, *207*(3-4), 135-145.

- Helbig, M., Keppie, J. D., Murphy, J. B., y Solari, L. (2012). U–Pb geochronological constraints on the Triassic–Jurassic Ayú Complex, southern Mexico: derivation from the western margin of Pangea-A. *Gondwana Research*, *22*(3-4), 910–927.
- Henrichs, I. A., O'Sullivan, G., Chew, D. M., Mark, C., Babechuk, M. G., McKenna, C., y Emo, R. (2018). The trace element and U-Pb systematics of metamorphic apatite. *Chemical Geology*.
- Hernández-Láscares, D. (2000). Contribución al conocimiento de la estratigrafía de la Formación
 Matzitzi, área Los Reyes Metzontla-Santiago Coatepec, extremo suroriental del estado de
 Puebla: México, Universidad Nacional Autónoma de México, Colegio de Ciencias y
 Humanidades, Unidad Académica de los Ciclos Profesionales y de Posgrado. México
 [master's thesis]: Uni-versidad Nacional Autónoma de México, Colegio de Ciencias y
 Humani-dades, Unidad Académica de los Ciclos Profesionales y De Posgrado.
- Hoskin, P. W., y Schaltegger, U. (2003). The composition of zircon and igneous and metamorphic petrogenesis. *Reviews in mineralogy and geochemistry*, *53*(1), 27-62.
- Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., y Sares, S. W. (1984). The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. *Journal of Sedimentary Research*, *54*(1), 103-116.
- Jafarzadeh, M., Harami, R. M., Friis, H., Amini, A., Mahboubi, A., y Lenaz, D. (2014). Provenance of the Oligocene–Miocene Zivah Formation, NW Iran, assessed using heavy mineral assemblage and detrital clinopyroxene and detrital apatite analyses. *Journal of African Earth Sciences*, *89*, 56-71.
- Keppie, J. D. (2004). Terranes of Mexico revisited: A 1.3 billion year odyssey. *International Geology Review*, *46*(9), 765–794.
- Keppie, J. D., Dostal, J., Miller, B. V., Ramos-Arias, M. A., Morales-Gámez, M., Nance, R. D., ... Housh, T. (2008). Ordovician–earliest Silurian rift tholeiites in the Acatlán Complex, southern

Mexico: Evidence of rifting on the southern margin of the Rheic Ocean. *Tectonophysics*, 461(1-4), 130–156.

- Keppie, J. D., Dostal, J., Murphy, J. B., y Nance, R. D. (2008). Synthesis and tectonic interpretation of the westernmost Paleozoic Variscan orogen in southern Mexico: From rifted Rheic margin to active Pacific margin. *Tectonophysics*, 461(1-4), 277–290.
- Ketcham, R. A. (2005). Forward and inverse modeling of low-temperature thermochronometry data. *Reviews in mineralogy and geochemistry*, *58*(1), 275-314.
- Ketcham, R. A., Carter, A., Donelick, R. A., Barbarand, J., y Hurford, A. J. (2007). Improved modeling of fission-track annealing in apatite. *American Mineralogist*, *92*(5-6), 799-810.
- Ketcham, R. A., y Donelick, R. (2013). HeFTy Version 1.8. 3. User Manual: Department of Geological Sciences, University of Texas at Austin.
- Kirsch, M., Helbig, M., Keppie, J. D., Murphy, J. B., Lee, J. K., y Solari, L. (2014). A Late Triassic tectonothermal event in the eastern Acatlán Complex, southern Mexico, synchronous with a magmatic arc hiatus: The result of flat-slab subduction? *Lithosphere*, *6*(2), 63–79.
- Kirsch, M., Keppie, J. D., Murphy, J. B., y Solari, L. (2012). Permian–Carboniferous arc magmatism and basin evolution along the western margin of Pangea: Geochemical and geochronological evidence from the eastern Acatlán Complex, southern Mexico. *Bulletin*, 124(9-10), 1607–1628.
- Li, Z.X., y Li, X.H. (2007). Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model. *Geology*, *35*(2), 179–182.
- Livaccari, R. F., Burke, K., y Şengör, A. M. C. (1981). Was the Laramide orogeny related to subduction of an oceanic plateau? *Nature*, *289*(5795), 276–278.

- Ludwig, K. (2012). User's manual for Isoplot version 3.75–4.15: a geochronological toolkit for Microsoft. *Excel Berkley Geochronological Center Special Publication*, (5).
- Magallón-Puebla, S. A. (1991). Estudio sistemático y biométrico de helechos del tipo Pecopteris (Marattiales; Pteridophyta) de la Formación Matzitzi (Permo-Carbonífero), estado de Puebla: Universidad Nacional Autónoma de México, Facultad de Ciencias. Tesis de *Licenciatura*.
- Maldonado, R., Ortega-Gutiérrez, F., y Ortíz-Joya, G. A. (2018). Subduction of Proterozoic to Late Triassic continental basement in the Guatemala suture zone: A petrological and geochronological study of high-pressure metagranitoids from the Chuacús complex. *Lithos*, *308*, 83–103.
- Mark, C., Cogné, N., y Chew, D. (2016). Tracking exhumation and drainage divide migration of the Western Alps: A test of the apatite U-Pb thermochronometer as a detrital provenance tool. *Bulletin*, *128*(9-10), 1439-1460.
- Martini, M., y Ortega-Gutiérrez, F. (2016). Tectono-stratigraphic evolution of eastern Mexico during the break-up of Pangea: A review. *Earth-Science Reviews*, *183*, 38-55.
- Martini, M., Ramírez-Calderón, M., Solari, L., Villanueva-Amadoz, U., Zepeda-Martínez, M., Ortega-Gutiérrez, F., y Elías-Herrera, M. (2016). Provenance analysis of Jurassic sandstones from the Otlaltepec Basin, southern Mexico: Implications for the reconstruction of Pangea breakup. *Geosphere*, *12*(6), 1842–1864.
- Martini, M., Velasco-de León, P., Zepeda-Martínez, M., Lozano-Carmona, D. E., y Ramírez-Calderón,
 M. (2017). Field guide to the Jurassic Otlaltepec and Tezoatlán Basins, southern Mexico: sedimentological and paleontological records of Puebla and Oaxaca. *Boletín de la Sociedad Geológica Mexicana*, 69(3), 691–709.

- McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. *Chemical geology*, *120*(3-4), 223-253.
- McDowell, F. W., McIntosh, W. C., y Farley, K. A. (2005). A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard. *Chemical Geology*, 214(3-4), 249-263.
- McPhie, J. (1993). Volcanic textures: a guide to the interpretation of textures in volcanic rocks. CODES, University of Tasmania, 198.
- Mendoza-Rosales, C. (2010). Estratigrafía y facies de las cuencas cretácicas de Puebla y su significado tectónico: Universidad Nacional Autónoma de México (PhD Thesis). tesis doctoral, 190 pp.
- Morton, A., y Yaxley, G. (2007). Detrital apatite geochemistry and its application in provenance studies. *GSA special papers*, *420*, 319-344.
- Nance, R. D., Keppie, J. D., Miller, B. V., Murphy, J. B., y Dostal, J. (2009). Palaeozoic palaeogeography of Mexico: constraints from detrital zircon age data. *Geological Society, London, Special Publications, 327*(1), 239–269.
- Nieto-Samaniego, A. F., Alaniz-Álvarez, S. A., Silva-Romo, G., Eguiza-Castro, M. H., y Mendoza-Rosales, C. C. (2006). Latest Cretaceous to Miocene deformation events in the eastern Sierra Madre del Sur, Mexico, inferred from the geometry and age of major structures. *Geological Society of America Bulletin*, *118*(1-2), 238–252.
- Ortega-Gutiérrez, F., Elías-Herrera, M., Morán-Zenteno, D. J., Solari, L., Luna-González, L., y Schaaf, P. (2014). A review of batholiths and other plutonic intrusions of Mexico. *Gondwana Research*, *26*(3-4), 834–868.
- Ortega-Gutiérrez, F., Elías-Herrera, M., Morán-Zenteno, D. J., Solari, L., Weber, B., y Luna-González, L. (2018). The pre-Mesozoic metamorphic basement of Mexico, 1.5 billion years of crustal evolution. *Earth-Science Reviews*, 183, 2-37.

- Ortega-Gutierrez, F., Ruiz, J., y Centeno-Garcia, E. (1995). Oaxaquia, a Proterozoic microcontinent accreted to North America during the late Paleozoic. *Geology*, *23*(12), 1127–1130.
- Ortega-Obregón, C., Keppie, J. D., Murphy, J. B., Lee, J. K. W., y Ortega-Rivera, A. (2009). Geology and geochronology of Paleozoic rocks in western Acatlán Complex, southern Mexico: Evidence for contiguity across an extruded high-pressure belt and constraints on Paleozoic reconstructions. *Geological Society of America Bulletin*, *121*(11-12), 1678–1694.
- Ortega-Obregón, C., Solari, L., Gómez-Tuena, A., Elías-Herrera, M., Ortega-Gutiérrez, F., y Macías-Romo, C. (2014). Permian–Carboniferous arc magmatism in southern Mexico: U–Pb dating, trace element and Hf isotopic evidence on zircons of earliest subduction beneath the western margin of Gondwana. *International Journal of Earth Sciences*, *103*(5), 1287–1300.
- O'Sullivan, G., Chew, D., y Samson, S. (2016). Detecting magma-poor orogens in the detrital record. *Geology*, 44(10), 871-874.
- O'Sullivan, G. J., Chew, D. M., Morton, A. C., Mark, C., y Henrichs, I. A. (2018). An Integrated Apatite Geochronology and Geochemistry Tool for Sedimentary Provenance Analysis. *Geochemistry, Geophysics, Geosystems*.
- Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A., y Maas, R. (2010). Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. *Geochemistry, Geophysics, Geosystems*, 11(3).
- Petrus, J. A., y Kamber, B. S. (2012). VizualAge: A novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. *Geostandards and Geoanalytical Research*, *36*(3), 247-270.
- Pindell, J. L. (1985). Alleghenian reconstruction and subsequent evolution of the Gulf of Mexico, Bahamas, and Proto-Caribbean. *Tectonics*, 4(1), 1–39.
- Pindell, J. L., y Kennan, L. (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. *Geological Society, London, Special Publications, 328*(1), 1–55.
- Pineda, A. S. (1970). Plantas del Pensilvánico de la región de Tehuacán, Puebla. *Paleontología Mexicana*, (29).
- Ramírez-Calderón, M. (2017). New petrologic and stratigraphic constraints for the Tianguistengo Formation in southern Mexico: a new record of a Triassic river draining equatorial Pangea? Presentado en Cordilleran Section - 113th Annual Meeting - 2017, GSA.
- Ramos-Leal, J. A. (1989). Estratigrafía y evolución Paleoambiental del área de San Juan Ixcaquixtla. Edo. de Puebla (Tesis de Licenciatura): Mexico DF, Universidad Nacional Autónoma de México.
- Reiners, P. W., Ehlers, T. A., y Zeitler, P. K. (2005). Past, present, and future of thermochronology. *Reviews in Mineralogy and Geochemistry*, *58*(1), 1-18.
- Rowley, D. B., y Pindell, J. L. (1989). End Paleozoic-Early Mesozoic western Pangean reconstruction and its implications for the distribution of Precambrian and Paleozoic rocks around Meso-America. *Precambrian Research*, *42*(3-4), 411–444.
- Rubatto, D. (2002). Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. *Chemical geology*, *184*(1-2), 123-138.
- Sedlock, R. L., Ortega-Gutiérrez, F., y Speed, R. C. (1993). *Tectonostratigraphic terranes and tectonic* evolution of Mexico. GSA special papers, 278).

S.G. Mexicano (2001). Carta Geológico-Minera Atzumba E14-B85, Puebla, Oaxaca, Esc. 1: 50,000.

Sl, T. (1993). Jurassic-Cretaceous paleogeographic evolution of the northern Mixteca terrane, southern Mexico. *Geofísica Internacional*, *32*(3), 453–473.

- Silva-Romo, G., Mendoza-Rosales, C. C., Campos-Madrigal, E., Centeno-García, E., & Peralta-Salazar, R. (2015). Early Mesozoic Southern Mexico–Amazonian connection based on U–Pb ages from detrital zircons: The La Mora Paleo-River in the Mixteca Terrane and its paleogeographic and tectonic implications. *Gondwana Research*, 28(2), 689-701.
- Silva-Romo, G., Mendoza-Rosales, C. C., Campos-Madrigal, E., Morales-Yáñez, A., de la Torre-González, A. I., & Nápoles-Valenzuela, J. I. (2018). Recycling of Amazonian detrital zircons in the Mixteco terrane, southern Mexico: Paleogeographic implications during Jurassic-Early Cretaceous and Paleogene times. *Journal of South American Earth Sciences*, 83, 210-226.
- Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S., Morris,
 G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., y Whitehouse,
 M. J. (2008). Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic
 microanalysis. *Chemical Geology*, 249(1-2), 1-35.
- Solari, Luigi A., Dostal, J., Gutiérrez, F. O., y Keppie, J. D. (2001). The 275 Ma arc-related La Carbonera stock in the northern Oaxacan Complex of southern Mexico: U-Pb geochronology and geochemistry. *Revista Mexicana de Ciencias Geológicas*, 1(1), 149–161.
- Solari, L., Keppie, J. D., Ortega-Gutiérrez, F., Cameron, K. L., Lopez, R., y Hames, W. E. (2003). 990 and 1100 Ma Grenvillian tectonothermal events in the northern Oaxacan Complex, southern Mexico: roots of an orogen. *Tectonophysics*, *365*(1-4), 257–282.
- Solari, L., Gómez-Tuena, A., Bernal, J. P., Pérez-Arvizu, O., y Tanner, M. (2010). U-Pb Zircon Geochronology with an Integrated LA-ICP-MS Microanalytical Workstation: Achievements in Precision and Accuracy. *Geostandards and Geoanalytical Research*, *34*(1), 5-18.
- Solari, L., Tuena, A. G., Gutiérrez, F. O., y Obregón, C. O. (2011). The Chuacús Metamorphic Complex, central Guatemala: geochronological and geochemical constraints on its Paleozoic-Mesozoic evolution. *Geologica Acta*, *9*(3-4), 329–350.

- Solari, L., Ortega-Gutiérrez, F., Elías-Herrera, M., Ortega-Obregón, C., Macías-Romo, C., y Reyes-Salas, M. (2014). Detrital provenance of the Grenvillian Oaxacan Complex, southern Mexico: a zircon perspective. *International Journal of Earth Sciences*, *103*(5), 1301-1315.
- Spencer, C. J., Kirkland, C. L., y Taylor, R. J. (2016). Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology. *Geoscience Frontiers*, 7(4), 581-589.
- Tagami, T., y O'Sullivan, P. B. (2005). Fundamentals of fission-track thermochronology. *Reviews in Mineralogy and Geochemistry*, *58*(1), 19-47.
- Talavera-Mendoza, O., Ruiz, J., Gehrels, G. E., Meza-Figueroa, D. M., Vega-Granillo, R., y Campa-Uranga, M. F. (2005). U–Pb geochronology of the Acatlán Complex and implications for the Paleozoic paleogeography and tectonic evolution of southern Mexico. *Earth and Planetary Science Letters*, 235(3-4), 682–699.
- Thomson, S. N., Gehrels, G. E., Ruiz, J., y Buchwaldt, R. (2012). Routine low-damage apatite U-Pb dating using laser ablation–multicollector–ICPMS. *Geochemistry, Geophysics, Geosystems, 13*(2).
- Tolson, G. (2005). La falla Chacalapa en el sur de Oaxaca. *Boletín de la Sociedad Geológica Mexicana*, 57(1), 111–122.
- Torres, R., Ruiz, J., Patchett, P. J., Grajales, J. M., Bartolini, C., Wilson, J. L., y Lawton, T. F. (1999). A Permo-Triassic continental arc in eastern Mexico: tectonic implications for reconstructions of southern North America. GSA special papers, 340, 191–196.
- Vega-Granillo, R., Calmus, T., Meza-Figueroa, D., Ruiz, J., Talavera-Mendoza, O., y López-Martínez,
 M. (2009). Structural and tectonic evolution of the Acatlán Complex, southern Mexico: Its role in the collisional history of Laurentia and Gondwana. *Tectonics*, *28*(4), 1-25.

- Velasco–Hernández, M., y Lucero–Arellano, M. R. (1996). Una localidad nueva de la Formación Matzitzi en el Río Calapa, límite estatal de Oaxaca y Puebla. *México: Revista Mexicana de Ciencias Geológicas, 13*(1), 123–127.
- Verde-Ramírez, M. A. (2015). Relación entre la tectónica y sedimentación del Jurásico, Santo Domingo Tianguistengo, Oaxaca: Mexico DF, Instituto de Geología, Universidad Nacional Autónoma de México (Msc Thesis). Tesis de Maestría.
- Vermeesch, P. (2012). On the visualisation of detrital age distributions. *Chemical Geology*, *312*, 190-194.
- Vermeesch, P. (2017). Statistics for LA-ICP-MS based fission track dating. *Chemical Geology*, 456, 19-27.
- Weber, B., Iriondo, A., Premo, W. R., Hecht, L., y Schaaf, P. (2007). New insights into the history and origin of the southern Maya block, SE México: U–Pb–SHRIMP zircon geochronology from metamorphic rocks of the Chiapas massif. *International Journal of Earth Sciences*, *96*(2), 253–269.
- Weber, B., y Schulze, C. H. (2014). Early Mesoproterozoic (> 1.4 Ga) ages from granulite basement inliers of SE Mexico and their implications on the Oaxaquia concept–Evidence from U-Pb and Lu-Hf isotopes on zircon. *Revista Mexicana de Ciencias Geológicas*, *31*(3).
- Weber, B., Valencia, V. A., Schaaf, P., y Ortega-Gutiérrez, F. (2009). Detrital zircon ages from the Lower Santa Rosa Formation, Chiapas: implications on regional Paleozoic stratigraphy. *Revista Mexicana de Ciencias Geológicas, 26*(1), 260–276.
- Weber, R. (1997). How old is the Triassic flora of Sonora and Tamaulipas and news on Leonardian floras in Puebla and Hidalgo, Mexico. *Revista Mexicana de Ciencias Geológicas*, 14(2), 12.

Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W., Meier, M., Oberli, F. v, ... Spiegel, W. (1995). Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. *Geostandards and Geoanalytical Research*, *19*(1), 1-23.

Anexo I. Información muestras utilizadas en este trabajo (localización, unidad litológica, tipo de análisis)

			Unidad		D	U-Pb	U-Pb		Geoquímica
Muestra	Latitud	Longitud	Litológica	Litologia	Petrografia	Circón	Apatito	AFI	Apatitos
	19 00/276	07 229021	Em Matzitzi	Aronisco	v				
ADIVIU1-A	18.094270	-97.556921		Arenisca	^				
ABM01-B	18.094276	-97.338921	Fm. Matzitzi	Arenisca	Х				
	19 00/276	07 220021	Em Matzitzi	Arenisca	v				
ADIVIOT-C	10.094270	-97.338921		conglomerática	~				
ABM02	18.252552	-97.495102	Fm. Matzitzi	Arenisca	Х	Х	Х	Х	Х
ABM03	18.223579	-97.469238	Fm. Matzitzi	Arenisca	Х				
ABM04	18.223579	-97.469238	Fm. Matzitzi	Arenisca	Х				
ABM05	18.221573	-97.462616	Fm. Matzitzi	Arenisca	Х	Х	Х	х	Х
ABM08	18.220758	-97.469284	Fm. Matzitzi	Arenisca	Х				
ABM11a	18.188751	-97.426369	Toba Atolotilán	Felsita		Х			
ABM10	18.193378	-97.418747	Fm. Matzitzi	Arenisca	Х	Х	Х	х	Х
ABM11b	18.188751	-97.426369	Toba Atolotilán	Felsita	Х	Х			
ABM13	18.188934	-97.426369	Toba Atolotilán	Felsita		Х			

Región de Los Reyes Metzontla-San Luis Atolotitlán

Región de Santo Domingo Tianguistengo

Muestre	Latitud	Longitud	Unidad	Litología	Dotrografía	U-Pb	U-Pb	AET	Geoquímica
widestra	Latitud	Longitud	Litológica	Litologia	Petrografia	Circón	Apatito	AFI	Apatitos
RMO01	18.281736	-97.802765	Fm.	Arenisca	Х	Х	Х	Х	Х
			Tianguistengo						
RMO04	18.262964	-97.841507	Fm.	Arenisca	Х	Х	Х	Х	Х
			Tianguistengo						

Anexo II. Fundamentos del análisis por trazas de fisión en apatitos

La termocronología de baja temperatura es un método de datación isotópica usado para constreñir historias tectono-térmicas de procesos que ocurren en la parte superior de la corteza y cerca de la superficie terrestre, a temperaturas menores de 300 °C, sus aplicaciones incluyen por ejemplo evolución de cuencas sedimentarias, de cinturones orogénicos, generación de hidrocarburos y de depósitos minerales, y evolución del paisaje en periodos de tiempo prolongados (Donelick, et al, 2005; Gallagher et al., 1998; Reiners, et al., 2005; Tagami y O'Sullivan, 2005).

El análisis de trazas de fisión en apatito permite obtener información de historias termales que ocurren a bajas temperaturas, menores de ~120°C (ej. Gallagher et al., 1998). Así como otros métodos de datación isotópica convencional, este método se basa en cuantificar la cantidad de isótopo hijo generado por la desintegración radiactiva del isótopo padre, y la cantidad de este último; pero en este caso, en vez de la generación de un isótopo hijo, es generado un defecto en la estructura cristalina del mineral denominado traza de fisión (Chew y Donelick, 2012; Donelick et al., 2005; Gallagher et al., 1998; Tagami y O'Sullivan, 2005).

I. Formación de trazas de fisión

Las trazas de fisión son el resultado casi exclusivamente de la fisión espontánea de ²³⁸U. La fisión espontánea es una forma de desintegración radiactiva de un isótopo pesado, el cual se divide en dos fragmentos atómicos positivamente cargados, que se repelen y se desplazan en dirección opuesta, generando un defecto lineal en la estructura interna de los minerales que contienen U (ej. apatito, circón, monacita) (Gallagher et al., 1998; Tagami y O'Sullivan, 2005). La teoría de formación de trazas "ion spike explosión model" propuesta por Fleischer at al. (1975) es la más aceptada (**Figura 50**), esta consiste en que el movimiento rápido de una partícula cargada positivamente, deja como resultado una serie de átomos positivamente ionizados, los cuales se repelen y crean vacíos intersticiales debido a su desplazamiento en sentido opuesto, dando lugar a la formación de la traza de fisión.

Figura 50. Modelo de formación de trazas de fisión-"Ion spike explosion", modificado de Gallagher et al. (1998). a). Círculos negros: presencia de ²³⁸U en la estructura interna de un cristal, naturalmente inestable. b). fisión espontánea de ²³⁸U. c). traza de fisión.

II. Visualización de trazas de fisión

Las trazas de fisión latentes solo pueden ser observadas bajo un microscopio electrónico de transmisión debido a que su amplitud solo alcanza unos pocos nanómetros, por ello es necesario realizar un procedimiento que consiste en un ataque químico que permite la revelación de las trazas, amplificándolas y así, haciendo posible su visualización bajo microscopios ópticos, este ataque es denominado en inglés como "*etching*" (Donelick et al., 2005; Tagami y O'Sullivan, 2005), en este trabajo la metodología usada es la descrita por Donelick et al. (2005), en donde la superficie de la muestra que contiene cristales de apatitos previamente pulida, es atacada químicamente con 5.5N HNO₃ a una temperatura de 21° C \pm 1°C, durante 20 s \pm 1 s.

III. Longitud de trazas confinadas

Las trazas de fisión confinadas son trazas que se encuentran dentro de la estructura cristalina del mineral (no interceptan la superficie) y que pueden ser reveladas mediante el ataque químico por su intersección con trazas que si interceptan la superficie o con defectos en la red cristalina (**Figura 51**). La medición de trazas confinadas y su distribución exhiben propiedades indicativas de la historia de enfriamiento que experimentó la muestra (Donelick et al., 2005; Gleadow et al., 1986; Green et al., 1986). Hay diferentes tipos de trazas confinadas: traza en traza, TINT (Track in Track), traza en clivaje, TINCLE (Track in Cleavage) y traza en defecto cristalino o inclusión, TINDEF (Track in Defect or inclusión) (Donelick et al., 2005), para el análisis de trazas de fisión en este trabajo fueron medidas únicamente las TINT que se encontraban horizontalmente dispuestas.

Figura 51. Trazas confinadas, modificado de Tagami y O'Sullivan (2005)

IV. Borrado termal de trazas de fisión – Annealing

El comportamiento del proceso de borrado o acortamiento de trazas de fisión, definido en inglés como *"annealing*", no está totalmente claro, sin embargo, hay un consenso general en que este depende principalmente de la temperatura que experimentó la muestra, el tiempo transcurrido y la composición química del mineral. Los parámetros cinéticos (i.e. Dpar, Cl%wt)., son parámetros medibles que permiten modelar el comportamiento cinético del proceso de borrado térmico, en el caso de este trabajo, es usado el Cl%wt (Donelick et al., 2005; Gallagher et al., 1998; Green et al., 1986; Ketcham, 2005; Ketcham, et al., 2007). La zona de borrado parcial (PAZ-*Partial annealing zone*), es un rango de temperatura a lo largo de cual ocurre el proceso de "annealing", para las trazas de fisión en apatitos está dada por el rango de temperatura entre 60-120°C, en donde existirá un borrado total de las trazas de fisión por encima de 120°C (~160°C en Cl-apatitos, presentan mayor resistencia al borrado), un borrado o reseteo parcial entre este rango de temperatura, y por debajo de 60°C no existirá perturbación (Abdullin et al., 2016; Chew, et al., 2014; Gleadow y Duddy, 1981; Gleadow, at al., 2002).

V. Determinación de edad de trazas de fisión

Las edades radiométricas se determinan teniendo en cuenta tres parámetros, el número de isótopos radiactivos y radiogénicos en un mineral y la constante de decaimiento del isótopo radiactivo. Para el caso de trazas de fisión la edad, t, se determina por la cantidad de ²³⁸U presente en el mineral por unidad de volumen, ²³⁸N, el número de trazas espontáneas por unidad de volumen, N_s y la constante de decaimiento para fisión espontánea λ_f , además se tiene en cuenta

la constante de decaimiento- α para ²³⁸U, λ_D (Tagami y O'Sullivan, 2005). La fórmula general para el cálculo de edades por trazas de fisión es la siguiente:

$$N_{s}=\left.\frac{\lambda_{f}}{\lambda_{D}}\right.^{_{238}}N\left(e^{\lambda_{D}{}^{t}}-1\right)$$

Dos métodos son empleados principalmente para el cálculo de las edades por trazas de fisión en apatitos, uno de ellos es el método tradicional del detector externo (EDM-*external detector method*), el cual consiste en la generación de trazas inducidas por medio de irradiación termal con neutrones, registrándolas en un detector externo, en proporción a la cantidad de ²³⁵U (Donelick et al., 2005; Hasebe et al., 2004). El segundo método empleado, y el que se utilizó en este trabajo es el de LA-ICP-MS (*Laser Ablation Inductively Acopled Plasma Mass Spectrometry*) descrito brevemente a continuación.

Método LA-ICP-MS para cálculo de edades por trazas de fisión en apatitos

El método para la determinación de edades por trazas de fisión usando LA-ICP-MS consiste en la medición directa del contenido de ²³⁸U por medio de ablación láser, y la determinación de la densidad de trazas espontáneas. La medición directa de ²³⁸U (ubicación del punto de ablación) debe realizarse en la misma área en donde fueron contadas previamente las trazas de fisión espontáneas (**Figura 52**) (Abdullin et al., 2016; Abdullin et al., 2014; Chew y Donelick, 2012; Hasebe et al., 2004).

Figura 52. Localización del punto de ablación (diámetro de 60 μm en este trabajo) en el área de conteo de trazas de fisión espontáneas

La ecuación general para el cálculo de edades de trazas de fisión por LA-ICP-MS propuesta por Hasebe et al., (2004) se muestra a continuación, en donde λ_D es la constante de decaimiento α para el ²³⁸U (1.55125 X 10⁻¹⁰a⁻¹), ρ_s es la densidad de trazas espontáneas, M es la masa atómica de ²³⁸U (238.0508 u), λ_f es la constante de decaimiento por fisión espontánea, N_A es el número de Avogadro, ²³⁸U es la cantidad medida por ablación láser, y R_{sp} es un factor *que* representa la mitad de la longitud promedio de las trazas espontáneas en apatitos de rocas enfriadas rápidamente y sin perturbaciones térmicas, (~15 ± 0.5 µm; (Abdullin et al., 2016; Chew y Donelick, 2012; Gleadow et al., 1986):

$$t = \frac{1}{\lambda_D} \ln \left(1 + \frac{\rho_{s\lambda_D M}}{\lambda_f N_A^{238} U 10^{-6} dR_{sp}} \right)$$

Para la determinación del contenido de ²³⁸U, el cálculo de este es realizado a partir de estándares de concentraciones conocidas (ej. Apatito Durango, vidrio NIST SRM 612) y como estándar interno es usado ⁴³Ca y el ⁴⁴Ca, además se toma un valor de CaO promedio de 55 <u>+</u> 3 %wt, asumiendo que este valor es estequiométrico (Abdullin et al., 2016; Abdullin et al., 2014; Chew y Donelick, 2012; Goldoff et al., 2012; Hasebe et al., 2004). Las edades obtenidas pueden ser absolutas como es descrito en Hasebe et al., 2004, o corregidas por un factor "Z", el cual toma en cuenta la desviación en las edad de los estándares de apatitos utilizados en cada sesión, generando un factor de corrección "Z" para las muestras desconocidas (Chew y Donelick, 2012; Mark et al., 2016), en este trabajo se presentan de las dos formas.

Muestra	Unidad Litológica	Qm	Qond	Qmg	QmLmf3	Qmf	Qms	Qpi	Qpf	Qlvf	Qlvm	Ρ	Plv	Plvm	Pg	F	Fg	Flvf	Lss	Lsm	Lmp2	Lmf1	Lmf2	Lmf3	Lmf4
ABM- 01A	Fm Matzitzi	59	79	23	1			7	20	1		19			9	80	41		2					2	5
ABM- 01B	Fm Matzitzi	80	65	2				7	13			31				125	5							2	
ABM- 01C	Fm Matzitzi	71	64	4	2	1	1	2	28			12			3	79	10		2			2		20	2
ABM-02	Fm Matzitzi	68	96		2			8	19			5				114			4	10	4			10	1
ABM-03	Fm Matzitzi	45	106	2			3	2	59			20		1	6	66	11		5	1		4	5	16	1
ABM-04	Fm Matzitzi	53	81	1	1			2	47			8			2	63	7					1	2	22	3
ABM-05	Fm Matzitzi	20	146	1				3	20			28			1	125	4					1	1	10	
ABM-08	Fm Matzitzi	34	99				4		45	1		1				86		1	3	5		1		23	
ABM-10	Fm Matzitzi	36	125	3					17			21			2	109	5							22	2
RMO-01	Fm Tianguistengo	71	88	2					18			126			1	26	1				1	1	2	15	1
RMO-04	Fm Tianguistengo	29	98	2				1	47		5	100	2		3	21	2		1	1	4	3	1	18	

Anexo III. Conteo de puntos análisis petrográfico de areniscas (Método Gazzi-Dickinson)

Muestra	Unidad Litológica	Lv	Lvv	Lvf	Lvm	Lvi	Lsc	Ре	СІ	Bt	Grt	Ep	Zr	Chl	Msv	Rt	Ар	Amp	Ор	Czo	Carb	Total granos
ABM-01A	Fm Matzitzi	4		3						15	14		4		3	1			15		2	409
ABM-01B	Fm Matzitzi			4	1				5	23	5		5	8	11			1	13			406
ABM-01C	Fm Matzitzi	1		1					2	51	9		2	7	4	2			17		3	402
ABM-02	Fm Matzitzi	3		7	1		4		11	2			3	1	1				18		13	405
ABM-03	Fm Matzitzi	1	1	4	3			1	1	21			2	1	2				3		9	402
ABM-04	Fm Matzitzi			6			1		15	54			1	13	3	1			11		2	400
ABM-05	Fm Matzitzi				1				2	15				3	8		1		7		7	404
ABM-08	Fm Matzitzi			16	2		2		5	33	7		4	4	8				14		5	403
ABM-10	Fm Matzitzi			4	1				5	25	4		4		6	2			12		1	406
RMO-01	Fm Tianguistengo		2	2	7				5	3		1	1	11	6				8	1		400
RMO-04	Fm Tianguistengo		1	14	12	1	1		2	1			2	1	12				5		15	405

Muestra	Unidad Litológica	Tamaño de grano (mm)	Redondez	Esfericidad	Selección
ABM-01A	Fm Matzitzi	0.1-1	Subangular-subredondeado	Baja-Media	Moderada a Pobremente seleccionada
ABM-01B	Fm Matzitzi	0.1-0.4	Angular-subangular	Baja-Media	Bien seleccionada
ABM-01C	Fm Matzitzi	0.1-1.8	Subangular-subredondeado	Baja-Media	Pobremente seleccionada
ABM-02	Fm Matzitzi	0.1-1.7	Subangular-subredondeado	Media	Pobremente seleccionada
ABM-03	Fm Matzitzi	0.1-2	Angular-subredondeado	Baja-Media	Pobremente seleccionada
ABM-04	Fm Matzitzi	0.1-1	Angular-subredondeado	Baja-Media	Moderada a Pobremente seleccionada
ABM-05	Fm Matzitzi	0.1-1.2	Angular-subredondeado	Baja-Media	Moderadamente seleccionada
ABM-08	Fm Matzitzi	0.1-1.8	Angular-subangular	Baja-Media	Pobremente seleccionada
ABM-10	Fm Matzitzi	0.1-1.6	Angular-subangular	Baja-Media	Pobremente seleccionada
RMO-01	Fm Tianguistengo	0.1-0.4	Subangular	Media	Bien seleccionada
RMO-04	Fm Tianguistengo	0.1-2	Subangular	Baja-Media	Moderada a Pobremente seleccionada

Anexo IV. Características texturales de las areniscas de la Formación Matzitzi y Tianguistengo

Anexo V. Imágenes de Catodoluminiscencia muestras detríticas: Formación Matzitzi (ABM-02, ABM-05, ABM-10) y Formación Tianguistengo (RMO-01, RMO-04)

Anexo VI. Imágenes de Catodoluminiscencia Toba Atolotitlán (ABM-11a, ABM-11b, ABM-13)

							Relacio	ones Corregi	das²						Ed	lades C	Corregidas (M	a)			
MUESTRA ABM-02	U (ppm) ¹	Th (ppm)1	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	²⁰⁸ Pb/ ²³² Th	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_01	15.86	0.707	0.04	0.074	0.006	1.700	0.160	0.169	0.005	0.059	0.027	0.27	1008.0	25.0	1003.0	58.0	1075.0	92.0	1008.0	25.0	-0.5
Zircon_02	65.8	11.9	0.18	0.074	0.005	1.710	0.110	0.168	0.004	0.047	0.005	0.38	1002.0	23.0	1006.0	43.0	1059.0	64.0	1002.0	23.0	0.4
Zircon_03	30.3	15.3	0.50	0.054	0.011	0.287	0.065	0.040	0.002	0.012	0.002	0.25	251.0	12.0	260.0	53.0	850.0	170.0	251.0	12.0	3.5
Zircon_04	239.7	62.8	0.26	0.071	0.002	1.645	0.050	0.166	0.002	0.050	0.003	0.02	991.8	13.0	989.0	20.0	983.0	37.0	991.8	13.0	-0.3
Zircon_05	84.1	48.3	0.57	0.052	0.006	0.288	0.034	0.040	0.001	0.013	0.001	0.02	250.5	6.1	266.0	28.0	550.0	120.0	250.5	6.1	5.8
Zircon_06	72.3	117.4	1.62	0.053	0.009	0.208	0.033	0.029	0.001	0.009	0.001	-0.10	184.3	6.6	189.0	27.0	570.0	240.0	184.3	6.6	2.5
Zircon_07	106.7	48.8	0.46	0.085	0.003	2.022	0.079	0.170	0.003	0.058	0.004	0.09	1012.0	17.0	1120.0	27.0	1314.0	45.0	1012.0	17.0	9.6
Zircon_08	396	124	0.31	0.080	0.002	2.033	0.058	0.183	0.003	0.057	0.003	0.57	1083.8	14.0	1126.0	19.0	1198.0	27.0	1083.8	14.0	3.7
Zircon_09	106.1	46.8	0.44	0.079	0.003	2.250	0.095	0.204	0.003	0.064	0.004	0.36	1195.0	18.0	1194.0	30.0	1179.0	43.0	1195.0	18.0	-0.1
Zircon_10	124.1	41.3	0.33	0.080	0.003	2.109	0.081	0.191	0.003	0.063	0.004	0.22	1131.0	18.0	1150.0	26.0	1189.0	42.0	1131.0	18.0	1.7
Zircon_11	255	70.6	0.28	0.080	0.002	2.334	0.071	0.208	0.003	0.060	0.003	-0.18	1217.6	15.0	1222.0	21.0	1207.0	31.0	1217.6	15.0	0.4
Zircon_12	78.8	31.2	0.40	0.071	0.003	1.694	0.070	0.170	0.003	0.054	0.004	0.07	1013.0	17.0	1004.0	26.0	978.0	42.0	1013.0	17.0	-0.9
Zircon_13	145.5	50.7	0.35	0.079	0.002	2.210	0.077	0.201	0.004	0.058	0.003	0.04	1181.0	19.0	1183.0	24.0	1187.0	36.0	1181.0	19.0	0.2
Zircon_14	31.8	19.72	0.62	0.052	0.008	0.288	0.041	0.039	0.002	0.013	0.002	-0.22	247.0	11.0	250.0	33.0	810.0	160.0	247.0	11.0	1.2
Zircon_15	132	62.1	0.47	0.069	0.003	1.646	0.077	0.166	0.004	0.049	0.003	0.11	987.0	22.0	984.0	30.0	931.0	50.0	987.0	22.0	-0.3
Zircon_16	15.4	1.56	0.10	0.071	0.008	1.520	0.160	0.161	0.006	0.042	0.010	0.06	961.0	34.0	943.0	69.0	970.0	120.0	961.0	34.0	-1.9
Zircon_17	21.8	11.6	0.53	0.073	0.006	1.710	0.130	0.170	0.005	0.053	0.004	-0.06	1014.0	28.0	1013.0	47.0	1052.0	95.0	1014.0	28.0	-0.1
Zircon_18	91.7	63.6	0.69	0.073	0.003	1.720	0.076	0.167	0.003	0.051	0.003	0.00	999.0	17.0	1020.0	27.0	1019.0	45.0	999.0	17.0	2.1
Zircon_19	386	16.3	0.04	0.096	0.002	3.777	0.100	0.281	0.004	0.083	0.005	0.29	1598.0	20.0	1591.5	20.0	1563.0	20.0	1563.0	20.0	-0.4
Zircon_20	97.1	46	0.47	0.081	0.003	2.313	0.087	0.205	0.003	0.062	0.004	0.15	1200.0	17.0	1214.0	26.0	1211.0	36.0	1200.0	17.0	1.2
Zircon_21	115.2	41.5	0.36	0.072	0.003	1.730	0.067	0.172	0.003	0.050	0.003	0.19	1025.0	16.0	1021.0	24.0	992.0	40.0	1025.0	16.0	-0.4
Zircon_22	59.6	5.4	0.09	0.075	0.003	1.732	0.081	0.166	0.004	0.051	0.007	0.13	990.0	20.0	1017.0	30.0	1042.0	50.0	990.0	20.0	2.7

Anexo VII. Resultados de análisis geocronológico U-Pb en circón

							Relacio	nes Corregi	das²						Ed	ades C	Corregidas (Ma	a)			
MUESTRA ABM-02	U (ppm) ¹	Th (ppm)1	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	²⁰⁸ Pb/ ²³² Th	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_23	195.1	66	0.34	0.072	0.003	1.816	0.091	0.180	0.004	0.052	0.003	0.67	1065.0	21.0	1048.0	33.0	991.0	54.0	1065.0	21.0	-1.6
Zircon_24	265	34.1	0.13	0.079	0.002	2.026	0.069	0.183	0.004	0.051	0.003	0.61	1085.0	19.0	1123.0	24.0	1147.0	34.0	1085.0	19.0	3.4
Zircon_25	145.3	5.8	0.04	0.071	0.003	1.667	0.065	0.168	0.002	0.055	0.005	-0.02	998.4	12.0	997.0	24.0	974.0	35.0	998.4	12.0	-0.1
Zircon_26	149.5	62.6	0.42	0.074	0.002	1.778	0.062	0.173	0.003	0.052	0.003	0.00	1027.5	14.0	1036.0	23.0	1014.0	30.0	1027.5	14.0	0.8
Zircon_27	132.4	34.6	0.26	0.074	0.002	1.698	0.059	0.164	0.003	0.051	0.003	0.00	980.0	15.0	1007.0	22.0	1053.0	39.0	980.0	15.0	2.7
Zircon_28	203.7	87.6	0.43	0.075	0.002	2.012	0.061	0.191	0.003	0.056	0.003	0.25	1126.4	15.0	1119.0	20.0	1075.0	26.0	1126.4	15.0	-0.7
Zircon_29	255	112.1	0.44	0.089	0.002	3.052	0.091	0.245	0.003	0.068	0.003	0.44	1415.5	18.0	1420.0	23.0	1407.0	23.0	1407.0	23.0	0.3
Zircon_30	175.2	65.1	0.37	0.079	0.002	2.253	0.074	0.206	0.003	0.061	0.003	0.27	1208.0	17.0	1197.0	23.0	1162.0	32.0	1208.0	17.0	-0.9
Zircon_31	201.1	117.7	0.59	0.082	0.002	2.474	0.086	0.217	0.003	0.063	0.003	0.50	1264.5	16.0	1267.0	26.0	1235.0	42.0	1264.5	16.0	0.2
Zircon_32	190	146.6	0.77	0.080	0.002	2.158	0.067	0.197	0.003	0.058	0.003	0.17	1157.0	17.0	1167.0	21.0	1189.0	32.0	1157.0	17.0	0.9
Zircon_33	175.3	36.4	0.21	0.072	0.002	1.742	0.054	0.174	0.003	0.054	0.003	0.24	1031.6	15.0	1023.0	20.0	986.0	29.0	1031.6	15.0	-0.8
Zircon_34	286.3	67.6	0.24	0.081	0.002	2.288	0.070	0.205	0.003	0.061	0.003	0.34	1201.0	18.0	1208.0	22.0	1230.0	26.0	1201.0	18.0	0.6
Zircon_35	69.6	30	0.43	0.080	0.003	2.304	0.093	0.207	0.004	0.062	0.004	0.32	1210.0	23.0	1214.0	29.0	1198.0	25.0	1210.0	23.0	0.3
Zircon_36	16.5	5.66	0.34	0.075	0.006	1.730	0.140	0.166	0.005	0.049	0.005	0.00	988.0	26.0	1003.0	51.0	1067.0	86.0	988.0	26.0	1.5
Zircon_37	156	88	0.56	0.072	0.002	1.646	0.059	0.166	0.002	0.049	0.003	-0.02	992.3	13.0	990.0	22.0	970.0	35.0	992.3	13.0	-0.2
Zircon_38	106.1	22.7	0.21	0.075	0.003	1.972	0.073	0.190	0.003	0.059	0.004	-0.03	1119.0	18.0	1107.0	24.0	1076.0	31.0	1119.0	18.0	-1.1
Zircon_39	40.7	18.73	0.46	0.077	0.005	1.700	0.110	0.163	0.004	0.050	0.004	0.24	973.0	23.0	1005.0	42.0	1130.0	64.0	973.0	23.0	3.2
Zircon_40	81.47	29.12	0.36	0.079	0.003	2.202	0.090	0.203	0.003	0.060	0.004	0.15	1192.0	18.0	1182.0	28.0	1180.0	53.0	1192.0	18.0	-0.8
Zircon_41	50.9	21	0.41	0.077	0.004	1.868	0.089	0.180	0.004	0.053	0.003	0.10	1065.0	22.0	1070.0	31.0	1098.0	61.0	1065.0	22.0	0.5
Zircon_42	81.4	28.1	0.35	0.075	0.003	1.836	0.075	0.180	0.003	0.054	0.003	0.15	1069.0	17.0	1062.0	26.0	1059.0	42.0	1069.0	17.0	-0.7
Zircon_43	30.1	16.57	0.55	0.075	0.006	1.720	0.130	0.166	0.005	0.054	0.003	0.14	989.0	27.0	1006.0	49.0	1034.0	67.0	989.0	27.0	1.7
Zircon_44	61.3	20.2	0.33	0.073	0.003	1.674	0.067	0.167	0.003	0.048	0.003	-0.01	995.0	17.0	999.0	25.0	1045.0	46.0	995.0	17.0	0.4
Zircon_45	129	147	1.14	0.075	0.003	1.855	0.071	0.179	0.003	0.053	0.003	0.18	1064.0	17.0	1063.0	25.0	1087.0	40.0	1064.0	17.0	-0.1
Zircon_46	20.01	9.61	0.48	0.072	0.006	1.860	0.140	0.183	0.006	0.052	0.004	-0.30	1080.0	31.0	1058.0	51.0	1060.0	100.0	1080.0	31.0	-2.1
Zircon_47	61.8	15.87	0.26	0.073	0.003	1.699	0.077	0.170	0.003	0.048	0.003	0.09	1012.0	19.0	1004.0	29.0	1047.0	57.0	1012.0	19.0	-0.8

							Relacio	ones Corregi	das²						Ed	ades C	orregidas (M	a)			
MUESTRA ABM-02	U (ppm) ¹	Th (ppm)1	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	²⁰⁸ Pb/ ²³² Th	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_48	140	43.4	0.31	0.072	0.003	1.770	0.076	0.177	0.003	0.051	0.004	0.00	1054.0	18.0	1032.0	28.0	998.0	34.0	1054.0	18.0	-2.1
Zircon_49	42.6	15.74	0.37	0.074	0.004	1.692	0.098	0.169	0.003	0.051	0.003	0.22	1011.0	19.0	1007.0	37.0	1023.0	69.0	1011.0	19.0	-0.4
Zircon_50	219.9	81.9	0.37	0.080	0.002	2.181	0.068	0.198	0.003	0.058	0.003	0.15	1164.0	16.0	1176.0	22.0	1198.0	32.0	1164.0	16.0	1.0
Zircon_51	31.9	27.69	0.87	0.047	0.008	0.264	0.042	0.038	0.002	0.012	0.001	0.12	241.0	11.0	243.0	31.0	590.0	130.0	241.0	11.0	0.8
Zircon_52	29.2	2.71	0.09	0.082	0.004	2.300	0.130	0.208	0.004	0.066	0.008	-0.05	1217.0	23.0	1216.0	40.0	1250.0	51.0	1217.0	23.0	-0.1
Zircon_53	34.1	21.25	0.62	0.054	0.008	0.295	0.041	0.041	0.002	0.013	0.002	-0.16	260.0	12.0	266.0	31.0	780.0	130.0	260.0	12.0	2.3
Zircon_54	93.9	30.7	0.33	0.052	0.005	0.288	0.022	0.041	0.001	0.013	0.001	-0.02	257.0	8.2	255.0	17.0	502.0	97.0	257.0	8.2	-0.8
Zircon_55	117.3	51.2	0.44	0.079	0.003	2.214	0.078	0.201	0.003	0.058	0.003	0.05	1182.0	18.0	1184.0	25.0	1180.0	40.0	1182.0	18.0	0.2
Zircon_56	49.1	22.12	0.45	0.082	0.004	2.308	0.100	0.211	0.005	0.062	0.004	0.11	1232.0	25.0	1217.0	34.0	1191.0	42.0	1232.0	25.0	-1.2
Zircon_57	145.9	81.28	0.56	0.077	0.002	1.956	0.069	0.186	0.003	0.055	0.003	0.49	1102.0	18.0	1099.0	24.0	1104.0	29.0	1102.0	18.0	-0.3
Zircon_58	96.8	40	0.41	0.091	0.003	3.169	0.110	0.253	0.005	0.072	0.004	0.27	1453.0	24.0	1451.0	28.0	1447.0	30.0	1447.0	30.0	-0.1
Zircon_59	801	232.9	0.29	0.080	0.002	2.234	0.060	0.205	0.003	0.058	0.003	0.36	1203.8	14.0	1191.5	19.0	1187.4	19.0	1203.8	14.0	-1.0
Zircon_60	48.1	33.4	0.69	0.076	0.003	1.866	0.088	0.178	0.004	0.050	0.003	0.23	1053.0	21.0	1065.0	31.0	1089.0	45.0	1053.0	21.0	1.1
Zircon_61	132.8	69.6	0.52	0.080	0.003	2.215	0.089	0.202	0.003	0.058	0.003	0.32	1185.0	18.0	1187.0	28.0	1208.0	32.0	1185.0	18.0	0.2
Zircon_62	445	199	0.45	0.073	0.002	1.768	0.058	0.177	0.003	0.052	0.003	0.28	1051.0	18.0	1036.0	22.0	1025.0	42.0	1051.0	18.0	-1.4
Zircon_63	205	68.4	0.33	0.087	0.002	2.715	0.087	0.229	0.003	0.067	0.004	0.16	1330.0	17.0	1334.0	23.0	1366.0	26.0	1330.0	17.0	0.3
Zircon_64	33.2	17.51	0.53	0.078	0.003	1.982	0.099	0.188	0.006	0.056	0.004	0.44	1112.0	31.0	1114.0	33.0	1145.0	56.0	1112.0	31.0	0.2
Zircon_65	857	69.8	0.08	0.077	0.002	1.908	0.056	0.182	0.003	0.055	0.003	0.61	1075.7	15.0	1084.0	20.0	1116.0	22.0	1075.7	15.0	0.8
Zircon_66	212.4	126.5	0.60	0.078	0.002	2.093	0.073	0.194	0.003	0.058	0.003	0.27	1142.0	17.0	1145.0	24.0	1184.0	33.0	1142.0	17.0	0.3
Zircon_67	167	52.4	0.31	0.071	0.002	1.680	0.060	0.173	0.003	0.051	0.003	0.21	1027.0	15.0	999.0	23.0	965.0	30.0	1027.0	15.0	-2.8
Zircon_68	126	75.4	0.60	0.073	0.002	1.668	0.064	0.167	0.003	0.051	0.003	0.14	995.0	16.0	1000.0	26.0	1041.0	37.0	995.0	16.0	0.5
Zircon_69	62.5	28.1	0.45	0.076	0.003	1.943	0.082	0.185	0.004	0.055	0.003	-0.09	1094.0	20.0	1092.0	28.0	1117.0	54.0	1094.0	20.0	-0.2
Zircon_70	57.2	31.2	0.55	0.056	0.006	0.299	0.028	0.039	0.001	0.012	0.001	-0.19	245.6	7.9	270.0	23.0	601.0	98.0	245.6	7.9	9.0
Zircon_71	74.8	39.96	0.53	0.070	0.004	1.758	0.110	0.180	0.005	0.047	0.003	0.25	1069.0	27.0	1026.0	39.0	937.0	79.0	1069.0	27.0	-4.2
Zircon_72	196	30.4	0.16	0.077	0.002	2.303	0.086	0.216	0.004	0.053	0.004	0.31	1260.0	20.0	1212.0	26.0	1153.0	26.0	1260.0	20.0	-4.0

							Relacio	ones Corregi	das²						Ed	ades C	orregidas (M	a)			
MUESTRA ABM-02	U (ppm) ¹	Th (ppm)1	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	²⁰⁸ Pb/ ²³² Th	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_73	140.6	34.4	0.24	0.073	0.002	1.674	0.061	0.168	0.003	0.051	0.003	0.24	999.5	14.0	997.0	23.0	995.0	40.0	999.5	14.0	-0.3
Zircon_74	518	77.2	0.15	0.077	0.002	2.016	0.061	0.191	0.003	0.057	0.003	0.48	1125.8	15.0	1120.0	21.0	1112.0	21.0	1125.8	15.0	-0.5
Zircon_75	78.8	57.8	0.73	0.074	0.003	1.801	0.065	0.177	0.003	0.051	0.003	0.05	1049.0	18.0	1044.0	24.0	1027.0	40.0	1049.0	18.0	-0.5
Zircon_76	218	63.7	0.29	0.073	0.002	1.774	0.057	0.175	0.003	0.050	0.003	-0.01	1040.2	14.0	1037.0	21.0	1020.0	35.0	1040.2	14.0	-0.3
Zircon_77	64.4	44.44	0.69	0.075	0.003	2.028	0.087	0.195	0.004	0.057	0.003	0.02	1148.0	21.0	1126.0	28.0	1055.0	53.0	1148.0	21.0	-2.0
Zircon_78	9.55	4.4	0.46	0.075	0.010	1.690	0.210	0.171	0.007	0.051	0.005	-0.01	1014.0	36.0	1015.0	84.0	1110.0	110.0	1014.0	36.0	0.1
Zircon_79	173	69	0.40	0.077	0.003	2.152	0.077	0.202	0.003	0.058	0.003	-0.01	1186.0	17.0	1164.0	25.0	1099.0	35.0	1186.0	17.0	-1.9
Zircon_80	352	16	0.05	0.073	0.002	1.826	0.059	0.182	0.003	0.054	0.004	0.18	1078.1	14.0	1054.0	21.0	1014.0	28.0	1078.1	14.0	-2.3
Zircon_81	36.9	49.3	1.34	0.060	0.005	0.712	0.060	0.085	0.002	0.025	0.002	0.00	526.0	14.0	544.0	35.0	672.0	93.0	526.0	14.0	3.3
Zircon_82	194.7	18.02	0.09	0.071	0.002	1.643	0.053	0.167	0.003	0.053	0.004	0.02	996.2	14.0	992.0	21.0	945.0	32.0	996. 2	14.0	-0.4
Zircon_83	80.2	32.2	0.40	0.078	0.003	2.151	0.086	0.200	0.004	0.062	0.004	0.27	1176.0	20.0	1167.0	29.0	1152.0	33.0	1176.0	20.0	-0.8
Zircon_84	260.8	115	0.44	0.072	0.002	1.685	0.063	0.169	0.002	0.049	0.003	0.18	1005.1	13.0	1002.0	24.0	966.0	44.0	1005.1	13.0	-0.3
Zircon_85	185.6	210.8	1.14	0.050	0.003	0.300	0.019	0.043	0.001	0.013	0.001	-0.01	273.8	5.5	265.0	15.0	347.0	81.0	273.8	5.5	-3.3
Zircon_86	119.2	73.31	0.62	0.073	0.003	1.696	0.067	0.171	0.003	0.050	0.002	0.00	1015.0	15.0	1011.0	25.0	1012.0	52.0	1015.0	15.0	-0.4
Zircon_87	63	8.7	0.14	0.080	0.003	2.181	0.093	0.201	0.005	0.037	0.005	0.13	1177.0	25.0	1181.0	32.0	1183.0	52.0	1177.0	25.0	0.3
Zircon_88	268.9	75.1	0.28	0.075	0.002	1.836	0.058	0.178	0.002	0.053	0.003	0.04	1058.1	13.0	1058.0	21.0	1064.0	35.0	1058.1	13.0	0.0
Zircon_89	84	35.4	0.42	0.083	0.003	2.595	0.110	0.226	0.004	0.069	0.005	0.15	1311.0	22.0	1306.0	30.0	1304.0	45.0	1311.0	22.0	-0.4
Zircon_90	131	46.6	0.36	0.072	0.002	1.713	0.067	0.172	0.003	0.052	0.003	0.41	1025.0	15.0	1011.0	25.0	982.0	37.0	1025.0	15.0	-1.4
Zircon_91	159.4	41.2	0.26	0.072	0.002	1.684	0.061	0.169	0.003	0.049	0.003	0.06	1006.0	14.0	1001.0	23.0	963.0	42.0	1006.0	14.0	-0.5
Zircon_92	125	36.3	0.29	0.078	0.003	2.144	0.087	0.198	0.005	0.063	0.004	0.63	1164.0	28.0	1161.0	28.0	1126.0	36.0	1164.0	28.0	-0.3
Zircon_93	111.6	79	0.71	0.073	0.003	1.657	0.068	0.167	0.003	0.049	0.002	0.03	995.0	16.0	990.0	26.0	992.0	47.0	995.0	16.0	-0.5
Zircon_94	50.7	10.79	0.21	0.072	0.004	1.706	0.093	0.169	0.005	0.051	0.004	0.13	1009.0	26.0	1006.0	35.0	1035.0	52.0	1009.0	26.0	-0.3
Zircon_95	270.7	125.7	0.46	0.072	0.002	1.633	0.051	0.165	0.002	0.048	0.002	0.14	984.2	12.0	982.0	20.0	984.0	35.0	984.2	12.0	-0.2
Zircon_96	101.5	28.66	0.28	0.073	0.003	1.680	0.065	0.167	0.003	0.051	0.003	0.03	996.0	15.0	1002.0	25.0	1008.0	37.0	996.0	15.0	0.6
Zircon_97	202	44.7	0.22	0.074	0.002	1.694	0.056	0.169	0.003	0.048	0.003	0.09	1004.0	15.0	1008.0	22.0	1030.0	37.0	1004.0	15.0	0.4

							Relacio	nes Corregi	das²						Ed	ades C	orregidas (M	a)			
MUESTRA ABM-02	U (ppm) ¹	Th (ppm)1	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	²⁰⁸ Pb/ ²³² Th	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_98	147.9	39.1	0.26	0.072	0.003	1.670	0.066	0.168	0.003	0.051	0.003	0.12	1003.0	15.0	999.0	24.0	1005.0	40.0	1003.0	15.0	-0.4
Zircon_99	86.7	41.01	0.47	0.078	0.003	2.127	0.091	0.196	0.004	0.059	0.003	0.25	1154.0	21.0	1155.0	30.0	1163.0	34.0	1154.0	21.0	0.1
Zircon_100	28.7	25	0.87	0.050	0.007	0.288	0.035	0.040	0.002	0.012	0.001	-0.15	253.0	11.0	252.0	27.0	570.0	130.0	253.0	11.0	-0.4
Zircon_101	109.2	72.9	0.67	0.073	0.003	1.741	0.065	0.171	0.003	0.050	0.003	0.11	1019.0	16.0	1022.0	25.0	1007.0	45.0	1019.0	16.0	0.3
Zircon_102	154.9	53.2	0.34	0.078	0.002	2.225	0.068	0.208	0.003	0.061	0.003	0.15	1219.0	17.0	1188.0	22.0	1154.0	30.0	1219.0	17.0	-2.6
Zircon_103	67.5	464	6.87	0.072	0.003	1.642	0.060	0.165	0.004	0.048	0.002	-0.09	983.0	20.0	985.0	23.0	1020.0	45.0	983.0	20.0	0.2
Zr-ABM-02	93.1	27.5	0.30	0.074	0.002	1.625	0.040	0.152	0.003	0.050	0.002	0.01	911.0	17.0	978.0	15.0	1031.0	63.0	911.0	17.0	6.9
Zr-ABM-02_1	22.63	3.25	0.14	0.081	0.004	1.731	0.090	0.151	0.004	0.063	0.006	0.13	903.0	22.0	1016.0	33.0	1230.0	97.0	903.0	22.0	11.1
Zr-ABM-02_2	89.3	40.2	0.45	0.077	0.003	2.090	0.057	0.189	0.004	0.056	0.002	0.16	1113.0	21.0	1148.0	18.0	1111.0	69.0	1113.0	21.0	3.0
Zr-ABM-02_3	300.6	135.3	0.45	0.050	0.002	0.264	0.009	0.037	0.001	0.012	0.001	0.08	232.7	4.9	237.6	7.4	194.0	91.0	232.7	4.9	2.1
Zr-ABM-02_4	99.1	45.9	0.46	0.054	0.004	0.284	0.018	0.037	0.001	0.014	0.001	0.09	235.1	5.1	257.0	14.0	300.0	130.0	235.1	5.1	8.5
Zr-ABM-02_5	102.3	77	0.75	0.075	0.003	1.474	0.053	0.138	0.003	0.041	0.002	0.31	835.4	16.0	921.0	21.0	1068.0	67.0	835.4	16.0	9.3
Zr-ABM-02_6	58.7	18.34	0.31	0.076	0.004	1.710	0.066	0.162	0.004	0.051	0.003	0.37	965.0	20.0	1010.0	23.0	1080.0	87.0	965.0	20.0	4.5
Zr-ABM-02_7	105.6	10	0.09	0.052	0.004	0.324	0.019	0.044	0.001	0.018	0.002	0.06	280.4	6.8	284.0	14.0	280.0	150.0	280.4	6.8	1.3
Zr-ABM-02_8	226	230	1.02	0.051	0.003	0.205	0.011	0.028	0.001	0.008	0.000	0.26	179.9	4.7	189.1	9.3	240.0	110.0	179.9	4.7	4.9
Zr-ABM-02_9	42	37.4	0.89	0.067	0.017	0.287	0.077	0.030	0.002	0.010	0.002	-0.13	192.2	9.5	253.0	51.0	730.0	390.0	192.2	9.5	24.0
Zr-ABM-02_10	142.3	70.7	0.50	0.056	0.003	0.331	0.014	0.044	0.001	0.013	0.001	0.46	280.2	7.2	289.0	11.0	410.0	110.0	280.2	7.2	3.0
Zr-ABM-02_11	83.5	44.2	0.53	0.093	0.003	3.219	0.072	0.255	0.005	0.071	0.003	0.28	1466.0	25.0	1461.0	18.0	1504.0	52.0	1504.0	52.0	-0.3
Zr-ABM-02_12	75	17.3	0.23	0.059	0.005	0.227	0.019	0.030	0.001	0.011	0.001	-0.17	188.3	6.2	207.0	16.0	470.0	180.0	188.3	6.2	9.0
Zr-ABM-02_13	25.2	16.3	0.65	0.074	0.004	1.650	0.092	0.166	0.004	0.051	0.003	0.09	990.0	21.0	981.0	35.0	1020.0	110.0	990.0	21.0	-0.9
Zr-ABM-02_14	317	89.3	0.28	0.074	0.002	1.594	0.046	0.161	0.005	0.048	0.002	0.42	960.8	25.0	969.0	18.0	1048.0	48.0	960.8	25.0	0.8
Zr-ABM-02_15	47.1	13.93	0.30	0.052	0.005	0.307	0.030	0.042	0.001	0.014	0.001	-0.06	264.3	8.4	269.0	23.0	250.0	190.0	264.3	8.4	1.7
Zr-ABM-02_16	55.8	18.68	0.33	0.077	0.009	0.325	0.042	0.032	0.001	0.018	0.002	0.25	200.8	6.9	281.0	30.0	970.0	220.0	200.8	6.9	28.5
Zr-ABM-02_17	69.4	54.6	0.79	0.054	0.005	0.207	0.018	0.029	0.001	0.009	0.001	-0.20	183.6	6.4	193.0	15.0	290.0	210.0	183.6	6.4	4.9
Zr-ABM-02_18	59.92	8.49	0.14	0.068	0.003	0.969	0.056	0.103	0.005	0.038	0.004	0.25	632.0	32.0	691.0	31.0	890.0	94.0	632.0	32.0	8.5

							Relacio	ones Corregi	das²						Ed	lades C	orregidas (M	a)			
MUESTRA ABM-02	U (ppm) ¹	Th (ppm)1	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	²⁰⁸ Pb/ ²³² Th	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zr-ABM-02_19	253.7	230.8	0.91	0.050	0.003	0.191	0.010	0.028	0.001	0.009	0.000	0.21	177.1	3.7	177.0	8.0	180.0	110.0	177.1	3.7	-0.1
Zr-ABM-02_20	99	42.8	0.43	0.050	0.005	0.202	0.017	0.028	0.001	0.010	0.001	-0.26	178.9	5.0	188.0	14.0	240.0	200.0	178.9	5.0	4.8
Zr-ABM-02_21	72.1	61.9	0.86	0.053	0.004	0.269	0.016	0.037	0.001	0.012	0.001	0.09	235.8	6.7	241.0	13.0	250.0	150.0	235.8	6.7	2.2
Zr-ABM-02_22	42.9	16.35	0.38	0.076	0.003	1.694	0.058	0.157	0.004	0.051	0.003	0.08	941.0	22.0	1004.0	22.0	1071.0	84.0	941.0	22.0	6.3
Zr-ABM-02_23	37.66	15.05	0.40	0.074	0.004	1.587	0.070	0.151	0.004	0.048	0.003	-0.11	909.0	22.0	966.0	28.0	1050.0	100.0	909.0	22.0	5.9
Zr-ABM-02_24	360	133.1	0.37	0.077	0.002	1.767	0.033	0.164	0.003	0.049	0.002	0.04	977.9	18.0	1033.0	12.0	1104.0	47.0	977.9	18.0	5.3
Zr-ABM-02_25	198	239	1.21	0.052	0.003	0.258	0.015	0.036	0.001	0.012	0.001	0.07	225.2	6.4	232.0	13.0	280.0	140.0	225.2	6.4	2.9
Zr-ABM-02_26	50.8	30.1	0.59	0.052	0.006	0.209	0.024	0.029	0.001	0.009	0.001	-0.15	184.0	6.7	190.0	20.0	140.0	230.0	184.0	6.7	3.2
Zr-ABM-02_27	361.5	162	0.45	0.052	0.002	0.202	0.009	0.027	0.001	0.009	0.000	0.19	173.4	3.3	187.0	7.2	250.0	96.0	173.4	3.3	7.3
Zr-ABM-02_28	49.8	28.8	0.58	0.061	0.005	0.319	0.027	0.038	0.001	0.011	0.001	-0.02	239.1	8.2	279.0	20.0	560.0	190.0	239.1	8.2	14.3
Zr-ABM-02_29	351	355	1.01	0.050	0.002	0.194	0.009	0.028	0.001	0.009	0.000	0.39	177.0	4.0	180.0	7.3	170.0	100.0	177.0	4.0	1.7
Zr-ABM-02_30	66.1	35.34	0.53	0.074	0.003	1.688	0.063	0.166	0.003	0.052	0.002	-0.07	990.0	19.0	1001.0	23.0	1022.0	83.0	990.0	19.0	1.1
Zr-ABM-02_31	131	58.71	0.45	0.074	0.002	1.731	0.046	0.170	0.003	0.048	0.002	0.22	1014.0	18.0	1018.0	16.0	1031.0	63.0	1014.0	18.0	0.4
Zr-ABM-02_32	77.3	25.5	0.33	0.063	0.021	0.328	0.150	0.039	0.002	0.018	0.008	0.11	243.0	9.6	287.0	79.0	710.0	330.0	243.0	9.6	15.3
Zr-ABM-02_33	52.1	30.1	0.58	0.053	0.006	0.271	0.028	0.038	0.001	0.012	0.001	-0.12	242.1	7.2	244.0	22.0	280.0	210.0	242.1	7.2	0.8
Zr-ABM-02_34	170.7	26.1	0.15	0.073	0.002	1.544	0.031	0.154	0.003	0.053	0.002	0.07	922.0	16.0	947.0	12.0	1001.0	53.0	922.0	16.0	2.6
Zr-ABM-02_35	400.4	225	0.56	0.079	0.002	2.109	0.045	0.196	0.003	0.057	0.002	0.33	1153.1	18.0	1154.0	14.0	1160.0	39.0	1153.1	18.0	0.1
Zr-ABM-02_36	113.2	46.8	0.41	0.086	0.003	1.808	0.043	0.152	0.003	0.054	0.002	-0.09	913.0	17.0	1047.0	16.0	1336.0	60.0	913.0	17.0	12.8
Zr-ABM-02_37	200	86.7	0.43	0.084	0.003	2.191	0.061	0.185	0.005	0.048	0.003	-0.17	1091.0	25.0	1177.0	19.0	1295.0	66.0	1091.0	25.0	7.3
Zr-ABM-02_38	78.4	16.92	0.22	0.078	0.003	2.008	0.051	0.187	0.004	0.055	0.003	0.13	1105.0	21.0	1117.0	17.0	1137.0	65.0	1105.0	21.0	1.1
Zr-ABM-02_39	263	63.2	0.24	0.081	0.002	2.314	0.038	0.204	0.004	0.064	0.003	0.07	1194.0	19.0	1218.0	11.0	1228.0	45.0	1194.0	19.0	2.0
Zr-ABM-02_40	64.8	35.9	0.55	0.070	0.003	1.581	0.060	0.162	0.004	0.048	0.002	0.04	968.0	19.0	960.0	24.0	949.0	91.0	968.0	19.0	-0.8
Zr-ABM-02_41	91.3	34.1	0.37	0.057	0.003	0.290	0.017	0.039	0.001	0.013	0.001	0.33	245.5	6.9	257.0	13.0	450.0	120.0	245.5	6.9	4.5
Zr-ABM-02_42	75.23	95	1.26	0.055	0.005	0.218	0.017	0.028	0.001	0.009	0.001	-0.23	178.8	6.4	199.0	14.0	470.0	190.0	178.8	6.4	10.2
Zr-ABM-02_43	192.8	51.2	0.27	0.078	0.002	2.023	0.042	0.190	0.003	0.057	0.002	0.30	1118.8	17.0	1124.0	14.0	1142.0	47.0	1118.8	17.0	0.5

							Relacio	ones Corregi	das²						Ec	lades (Corregidas (M	a)			
MUESTRA ABM-02	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	²⁰⁸ Pb/ ²³² Th	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zr-ABM-02_44	25.72	15.77	0.61	0.050	0.007	0.283	0.034	0.041	0.002	0.013	0.001	-0.06	256.0	11.0	253.0	27.0	210.0	250.0	256.0	11.0	-1.2
Zr-ABM-02_45	76.8	28	0.36	0.053	0.005	0.208	0.017	0.029	0.001	0.010	0.001	0.02	183.4	6.3	191.0	15.0	310.0	190.0	183.4	6.3	4.0
Zr-ABM-02_46	140	66.5	0.48	0.079	0.002	2.115	0.056	0.196	0.004	0.058	0.003	0.35	1154.0	20.0	1155.0	18.0	1171.0	53.0	1154.0	20.0	0.1
Zr-ABM-02_47	83.1	26.4	0.32	0.076	0.003	1.739	0.054	0.167	0.004	0.056	0.003	0.19	993.0	20.0	1027.0	19.0	1098.0	64.0	993.0	20.0	3.3
Zr-ABM-02_48	353	188	0.53	0.073	0.002	1.669	0.024	0.168	0.003	0.051	0.002	-0.05	1002.8	15.0	996.3	8.9	996.0	44.0	1002.8	15.0	-0.7
Zr-ABM-02_49	102.4	30.1	0.29	0.071	0.002	1.582	0.041	0.162	0.003	0.052	0.002	0.03	965.0	17.0	964.0	16.0	946.0	66.0	965.0	17.0	-0.1

1: Concentraciones de U y Th fueron calculados empleando un estándar externo como en Paton et al., 2010, Geochemistry, Geophysics, Geosystems

2: Las incertidumbres propagadas se reportan en un nivel de 2-sigma de acuerdo con Paton et al., 2010, Geochemistry, Geophysics, Geosystems

La relación 207Pb/206Pb, edades y errores son calculados de acuerdo a Petrus and Kamber, 2012, Geostandards Geoanalytical Research

El diámetro de ablación utilizado fue de 23 micrómetros, usando el protocolo analítico modificado de Solari et al., 2010, Geostandards Geoanalytical Research

						Relacione	es Corregi	das ²						Edade	s Corregidas	(Ma)			
ABM-05	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_01_	20.17	1.149	0.06	0.0697	0.0067	1.6000	0.1500	0.1618	0.0056	0.04	966.0	31.0	969.0	55.0	975.0	84.0	966.0	31.0	0.3
Zircon_02	83.2	27.2	0.33	0.0741	0.0050	1.6730	0.1100	0.1663	0.0043	0.15	991.0	24.0	994.0	44.0	1038.0	63.0	991.0	24.0	0.3
Zircon_03	28.07	14.48	0.52	0.0801	0.0059	2.1700	0.1600	0.1996	0.0055	-0.04	1173.0	30.0	1169.0	51.0	1208.0	86.0	1173.0	30.0	-0.3
Zircon_04	77.6	34.7	0.45	0.0798	0.0045	2.2770	0.1400	0.2048	0.0051	0.23	1203.0	27.0	1202.0	44.0	1230.0	62.0	1203.0	27.0	-0.1
Zircon_05	26.5	26.1	0.98	0.0753	0.0053	1.7380	0.1300	0.1673	0.0051	0.08	997.0	28.0	1016.0	48.0	1054.0	93.0	997.0	28.0	1.9
Zircon_06	63.8	29.3	0.46	0.0732	0.0043	1.6710	0.1100	0.1687	0.0042	0.29	1005.0	23.0	1000.0	39.0	1022.0	66.0	1005.0	23.0	-0.5
Zircon_07	49.6	14.44	0.29	0.0776	0.0048	1.9630	0.1300	0.1852	0.0046	-0.03	1095.0	25.0	1099.0	44.0	1140.0	85.0	1095.0	25.0	0.4
Zircon_08b	25.42	16.92	0.67	0.0703	0.0055	1.6100	0.1300	0.1620	0.0043	0.01	967.0	24.0	965.0	52.0	971.0	98.0	967.0	24.0	-0.2
Zircon_09	56.2	38.3	0.68	0.0741	0.0050	1.7030	0.1300	0.1711	0.0047	0.27	1018.0	26.0	1012.0	45.0	1018.0	78.0	1018.0	26.0	-0.6
Zircon_10	108	51.7	0.48	0.0788	0.0043	2.1360	0.1300	0.1983	0.0046	0.14	1166.0	25.0	1161.0	40.0	1169.0	56.0	1166.0	25.0	-0.4
Zircon_11a	125.5	43.36	0.35	0.0737	0.0043	1.9620	0.1300	0.1909	0.0053	0.33	1126.0	28.0	1107.0	41.0	1067.0	74.0	1126.0	28.0	-1.7
Zircon_11	83.8	27.6	0.33	0.0767	0.0047	2.0920	0.1400	0.1977	0.0047	0.19	1163.0	25.0	1144.0	45.0	1141.0	63.0	1163.0	25.0	-1.7
Zircon_12	153.8	78.8	0.51	0.0779	0.0043	2.1380	0.1300	0.1978	0.0049	0.29	1163.0	26.0	1160.0	41.0	1141.0	47.0	1163.0	26.0	-0.3
Zircon_13	40.1	13.93	0.35	0.0781	0.0052	2.0340	0.1400	0.1925	0.0055	0.18	1134.0	30.0	1137.0	47.0	1186.0	68.0	1134.0	30.0	0.3
Zircon_14	228.5	67.9	0.30	0.0737	0.0040	1.7590	0.1100	0.1729	0.0038	0.13	1028.2	21.0	1032.0	40.0	1039.0	75.0	1028.2	21.0	0.4
Zircon_15	243	93.5	0.38	0.0704	0.0037	1.6170	0.0950	0.1660	0.0038	0.01	990.0	21.0	976.0	36.0	927.0	81.0	990.0	21.0	-1.4
Zircon_16	110.2	51.9	0.47	0.0789	0.0047	2.1490	0.1300	0.1978	0.0048	-0.17	1163.0	26.0	1166.0	44.0	1184.0	83.0	1163.0	26.0	0.3
Zircon_17	89.7	11.36	0.13	0.0539	0.0047	0.3250	0.0300	0.0439	0.0013	0.07	277.2	8.2	284.0	23.0	458.0	110.0	277.2	8.2	2.4
Zircon_18	90	43.9	0.49	0.0800	0.0048	2.1910	0.1500	0.1997	0.0049	0.11	1173.0	26.0	1179.0	45.0	1181.0	73.0	1173.0	26.0	0.5
Zircon_19	60.99	44.39	0.73	0.0785	0.0051	2.3200	0.1600	0.2123	0.0056	0.20	1241.0	30.0	1213.0	49.0	1156.0	64.0	1241.0	30.0	-2.3
Zircon_20	61.5	23.4	0.38	0.0770	0.0046	2.1350	0.1300	0.1994	0.0055	0.04	1171.0	30.0	1158.0	43.0	1142.0	80.0	1171.0	30.0	-1.1
Zircon_21	97.9	29.29	0.30	0.0787	0.0044	2.1190	0.1300	0.1971	0.0046	0.14	1159.0	25.0	1153.0	42.0	1165.0	63.0	1159.0	25.0	-0.5
Zircon_22	79.1	44.1	0.56	0.0761	0.0046	1.9330	0.1200	0.1859	0.0042	0.00	1099.0	23.0	1094.0	44.0	1113.0	67.0	1099.0	23.0	-0.5
Zircon_23	282	73.8	0.26	0.0814	0.0045	2.4110	0.1400	0.2158	0.0048	0.05	1259.0	26.0	1245.0	43.0	1198.0	58.0	1259.0	26.0	-1.1
Zircon_24	53.9	19.19	0.36	0.0751	0.0055	2.1600	0.1600	0.2055	0.0056	-0.05	1205.0	30.0	1165.0	53.0	1076.0	87.0	1205.0	30.0	-3.4

MUESTRA						Relacione	es Corregi	das ²	Edades Corregidas (Ma)											
ABM-05	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %	
Zircon_25	88.4	31.9	0.36	0.0759	0.0043	2.0680	0.1300	0.2006	0.0046	0.19	1179.0	25.0	1136.0	42.0	1077.0	52.0	1179.0	25.0	-3.8	
Zircon_26	123.3	128.3	1.04	0.0763	0.0044	1.9670	0.1300	0.1879	0.0045	0.12	1110.0	24.0	1105.0	41.0	1082.0	70.0	1110.0	24.0	-0.5	
Zircon_27b	516	180.4	0.35	0.0738	0.0044	1.7800	0.1100	0.1778	0.0043	-0.07	1055.0	23.0	1038.0	39.0	1034.0	50.0	1055.0	23.0	-1.6	
Zircon_27	220	87.2	0.40	0.0748	0.0041	1.8170	0.1100	0.1775	0.0044	0.21	1053.0	24.0	1051.0	39.0	1068.0	48.0	1053.0	24.0	-0.2	
Zircon_28	45.42	20.69	0.46	0.0725	0.0045	1.6900	0.1100	0.1705	0.0045	0.09	1014.0	25.0	1005.0	43.0	1017.0	71.0	1014.0	25.0	-0.9	
Zircon_29	103.9	49.9	0.48	0.0776	0.0042	1.9960	0.1200	0.1876	0.0043	0.24	1108.0	23.0	1113.0	40.0	1133.0	58.0	1108.0	23.0	0.4	
Zircon_30	69.1	33.6	0.49	0.0808	0.0047	2.2730	0.1400	0.2069	0.0053	0.10	1212.0	28.0	1211.0	40.0	1210.0	67.0	1212.0	28.0	-0.1	
Zircon_31	175	72.6	0.41	0.0797	0.0041	2.2440	0.1300	0.2042	0.0048	0.39	1197.0	26.0	1196.0	39.0	1205.0	64.0	1197.0	26.0	-0.1	
Zircon_32	29.3	10.96	0.37	0.0743	0.0059	1.9900	0.1600	0.1929	0.0051	0.00	1137.0	28.0	1110.0	55.0	1067.0	64.0	1137.0	28.0	-2.4	
Zircon_33	551	328	0.60	0.0774	0.0039	2.0680	0.1100	0.1945	0.0041	0.17	1145.6	22.0	1137.8	37.0	1136.0	44.0	1145.6	22.0	-0.7	
Zircon_34	631	24.7	0.04	0.0773	0.0039	2.0620	0.1200	0.1927	0.0042	0.08	1136.0	23.0	1136.0	38.0	1140.0	60.0	1136.0	23.0	0.0	
Zircon_35	151.4	57.7	0.38	0.0770	0.0041	2.0510	0.1200	0.1915	0.0043	0.33	1129.0	23.0	1131.0	40.0	1136.0	59.0	1129.0	23.0	0.2	
Zircon_36	101.3	49.9	0.49	0.0789	0.0045	2.1500	0.1300	0.1968	0.0059	0.39	1157.0	32.0	1162.0	42.0	1162.0	60.0	1157.0	32.0	0.4	
Zircon_37	125.2	46.9	0.37	0.0724	0.0039	1.8580	0.1100	0.1813	0.0041	0.20	1074.0	22.0	1067.0	40.0	1006.0	63.0	1074.0	22.0	-0.7	
Zircon_38	155.5	72.86	0.47	0.0713	0.0039	1.6900	0.0990	0.1690	0.0039	0.05	1006.0	22.0	1006.0	36.0	967.0	61.0	1006.0	22.0	0.0	
Zircon_39	148.1	81.9	0.55	0.0753	0.0039	2.0570	0.1200	0.1942	0.0042	-0.13	1143.9	23.0	1136.0	38.0	1113.0	60.0	1143.9	23.0	-0.7	
Zircon_40	121	64.8	0.54	0.0772	0.0041	2.1380	0.1200	0.1981	0.0046	0.34	1165.0	25.0	1160.0	40.0	1140.0	69.0	1165.0	25.0	-0.4	
Zircon_41	566	69.4	0.12	0.0805	0.0040	2.3110	0.1300	0.2060	0.0045	0.36	1207.0	24.0	1218.0	37.0	1212.0	56.0	1207.0	24.0	0.9	
Zircon_42	208.5	100.2	0.48	0.0785	0.0040	2.2370	0.1300	0.2024	0.0044	0.17	1188.2	23.0	1192.0	40.0	1161.0	59.0	1188.2	23.0	0.3	
Zircon_43	937	189.8	0.20	0.0775	0.0038	2.1160	0.1200	0.1950	0.0042	0.63	1149.5	22.0	1153.5	39.0	1138.0	67.0	1149.5	22.0	0.3	
Zircon_44	219	80.2	0.37	0.0799	0.0041	2.3580	0.1400	0.2095	0.0048	0.26	1226.0	26.0	1229.0	41.0	1217.0	66.0	1226.0	26.0	0.2	
Zircon_45	180	73.4	0.41	0.0804	0.0043	2.4330	0.1400	0.2159	0.0047	0.41	1260.0	25.0	1254.0	41.0	1203.0	64.0	1260.0	25.0	-0.5	
Zircon_46	173.1	90.5	0.52	0.0782	0.0043	2.1560	0.1300	0.1968	0.0047	0.05	1160.0	26.0	1165.0	41.0	1153.0	66.0	1160.0	26.0	0.4	
Zircon_47	339	31.4	0.09	0.0793	0.0041	2.2790	0.1300	0.2060	0.0048	0.56	1207.0	26.0	1205.0	41.0	1181.0	65.0	1207.0	26.0	-0.2	
Zircon_48	108.1	42.8	0.40	0.0756	0.0043	1.9590	0.1200	0.1858	0.0041	0.23	1098.3	22.0	1099.0	41.0	1080.0	47.0	1098.3	22.0	0.1	
Zircon_49	102.4	56	0.55	0.0774	0.0044	2.1020	0.1300	0.1956	0.0047	0.26	1151.0	26.0	1153.0	42.0	1145.0	67.0	1151.0	26.0	0.2	

MUESTRA						Relacione	es Corregi	das ²	Edades Corregidas (Ma)												
ABM-05	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %		
Zircon_50	71.9	14.49	0.20	0.0777	0.0045	2.1170	0.1300	0.1947	0.0049	0.14	1149.0	27.0	1151.0	43.0	1158.0	73.0	1149.0	27.0	0.2		
Zircon_51	100.8	61.8	0.61	0.0743	0.0045	1.8760	0.1200	0.1824	0.0045	-0.15	1080.0	25.0	1074.0	40.0	1051.0	63.0	1080.0	25.0	-0.6		
Zircon_52	90.8	25.02	0.28	0.0739	0.0041	1.7670	0.1100	0.1728	0.0043	0.12	1028.0	23.0	1031.0	40.0	1035.0	84.0	1028.0	23.0	0.3		
Zircon_53	231.2	100.6	0.44	0.0755	0.0040	1.9370	0.1100	0.1861	0.0040	0.02	1099.9	22.0	1095.0	39.0	1074.0	62.0	1099.9	22.0	-0.4		
Zircon_54	157	86.5	0.55	0.0785	0.0043	2.2330	0.1300	0.2039	0.0048	0.03	1196.0	26.0	1193.0	42.0	1183.0	52.0	1196.0	26.0	-0.3		
Zircon_55	103.9	40.5	0.39	0.0764	0.0044	1.9550	0.1300	0.1849	0.0049	0.44	1093.0	27.0	1096.0	43.0	1094.0	75.0	1093.0	27.0	0.3		
Zircon_56	74.4	25.25	0.34	0.0805	0.0048	2.3150	0.1500	0.2092	0.0058	0.10	1224.0	31.0	1218.0	45.0	1191.0	72.0	1224.0	31.0	-0.5		
Zircon_57	194.9	72.4	0.37	0.0790	0.0044	2.2390	0.1300	0.2045	0.0046	-0.02	1200.0	25.0	1192.0	41.0	1192.0	70.0	1200.0	25.0	-0.7		
Zircon_58	226.6	110.2	0.49	0.0774	0.0041	2.0740	0.1200	0.1945	0.0045	0.43	1146.0	24.0	1142.0	39.0	1128.0	49.0	1146.0	24.0	-0.4		
Zircon_59	117.5	63	0.54	0.0798	0.0046	2.1990	0.1400	0.2020	0.0049	0.17	1186.0	26.0	1183.0	45.0	1177.0	62.0	1186.0	26.0	-0.3		
Zircon_60	242.8	105.1	0.43	0.0710	0.0040	1.6670	0.1000	0.1695	0.0038	0.20	1009.3	21.0	998.0	41.0	980.0	68.0	1009.3	21.0	-1.1		
Zircon_61	207.4	78.4	0.38	0.0813	0.0043	2.4150	0.1400	0.2169	0.0054	0.14	1265.0	28.0	1246.0	41.0	1216.0	59.0	1265.0	28.0	-1.5		
Zircon_62	140.9	18.09	0.13	0.0747	0.0042	1.8100	0.1100	0.1781	0.0040	0.23	1056.0	22.0	1050.0	41.0	1070.0	69.0	1056.0	22.0	-0.6		
Zircon_63	67.3	20.04	0.30	0.0781	0.0045	2.1320	0.1300	0.1972	0.0049	0.23	1160.0	26.0	1156.0	43.0	1155.0	70.0	1160.0	26.0	-0.3		
Zircon_64	132.5	47.8	0.36	0.0787	0.0045	2.1610	0.1300	0.2020	0.0054	0.14	1190.0	28.0	1168.0	42.0	1163.0	96.0	1190.0	28.0	-1.9		
Zircon_65	337.8	177.8	0.53	0.0804	0.0043	2.2600	0.1300	0.2067	0.0048	-0.15	1211.0	26.0	1203.0	38.0	1192.0	66.0	1211.0	26.0	-0.7		
Zircon_66	154	63	0.41	0.0732	0.0044	1.7080	0.1100	0.1700	0.0040	-0.09	1012.0	22.0	1016.0	39.0	1003.0	71.0	1012.0	22.0	0.4		
Zircon_67	86.2	25.58	0.30	0.0794	0.0048	2.1940	0.1400	0.2003	0.0049	0.18	1177.0	26.0	1176.0	45.0	1212.0	57.0	1177.0	26.0	-0.1		
Zircon_68	474	37.9	0.08	0.0827	0.0044	2.2380	0.1500	0.1940	0.0053	0.87	1143.0	28.0	1189.0	45.0	1266.0	100.0	1143.0	28.0	3.9		
Zircon_69	147.9	55.09	0.37	0.0737	0.0040	1.8420	0.1100	0.1812	0.0043	0.21	1074.0	23.0	1059.0	39.0	1038.0	61.0	1074.0	23.0	-1.4		
Zircon_70	245.2	54.3	0.22	0.0786	0.0041	2.1490	0.1200	0.1979	0.0043	0.03	1164.1	23.0	1164.0	39.0	1168.0	59.0	1164.1	23.0	0.0		
Zircon_71	110.8	48.4	0.44	0.0784	0.0042	2.0680	0.1200	0.1922	0.0043	0.16	1133.0	23.0	1137.0	40.0	1142.0	58.0	1133.0	23.0	0.4		
Zircon_72	256	129	0.50	0.0793	0.0040	2.2150	0.1200	0.2021	0.0044	0.09	1186.4	24.0	1185.0	39.0	1188.0	66.0	1186.4	24.0	-0.1		
Zircon_73	79.3	30.93	0.39	0.0724	0.0047	1.6810	0.1100	0.1680	0.0042	-0.07	1001.0	23.0	1001.0	44.0	1003.0	72.0	1001.0	23.0	0.0		
Zircon_74	38.4	13.71	0.36	0.0752	0.0048	1.9470	0.1300	0.1881	0.0054	-0.06	1110.0	29.0	1102.0	44.0	1137.0	85.0	1110.0	29.0	-0.7		
Zircon_75	185	84.2	0.46	0.0785	0.0042	2.2060	0.1300	0.2013	0.0045	0.03	1182.0	24.0	1182.0	40.0	1159.0	62.0	1182.0	24.0	0.0		

MUESTRA						Relacione	es Corregi	das ²						Edade	es Corregidas	(Ma)			
ABM-05	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_76	60.9	19.8	0.33	0.0776	0.0045	1.9300	0.1200	0.1824	0.0048	0.28	1080.0	26.0	1096.0	42.0	1120.0	75.0	1080.0	26.0	1.5
Zircon_77	129.7	47	0.36	0.0755	0.0043	1.9850	0.1200	0.1886	0.0046	0.33	1114.0	25.0	1108.0	42.0	1106.0	47.0	1114.0	25.0	-0.5
Zircon_78	125.8	65	0.52	0.0776	0.0043	2.0900	0.1300	0.1965	0.0045	0.27	1157.0	24.0	1147.0	40.0	1124.0	60.0	1157.0	24.0	-0.9
Zircon_79	457	382	0.84	0.0783	0.0038	2.1680	0.1200	0.1999	0.0042	0.18	1174.5	22.0	1170.6	38.0	1156.0	60.0	1174.5	22.0	-0.3
Zircon_80	62.4	22.38	0.36	0.0797	0.0046	2.2170	0.1400	0.1998	0.0048	-0.07	1177.0	27.0	1183.0	43.0	1207.0	57.0	1177.0	27.0	0.5
Zircon_81	135.9	68.25	0.50	0.0801	0.0045	2.2730	0.1400	0.2052	0.0045	0.22	1203.0	24.0	1205.0	42.0	1196.0	65.0	1203.0	24.0	0.2
Zircon_82	271	151.4	0.56	0.0820	0.0043	2.4360	0.1400	0.2155	0.0046	-0.22	1257.9	24.0	1255.0	39.0	1246.0	71.0	1257.9	24.0	-0.2
Zircon_83	153.7	83.8	0.55	0.0808	0.0042	2.4130	0.1400	0.2135	0.0046	0.20	1247.6	25.0	1245.0	40.0	1224.0	54.0	1247.6	25.0	-0.2
Zircon_84	151.3	71.6	0.47	0.0794	0.0042	2.2180	0.1300	0.2025	0.0046	0.01	1189.0	25.0	1186.0	41.0	1185.0	60.0	1189.0	25.0	-0.3
Zircon_85	254.9	121.1	0.48	0.0786	0.0042	2.1750	0.1300	0.2006	0.0045	0.26	1178.0	24.0	1172.0	41.0	1152.0	61.0	1178.0	24.0	-0.5
Zircon_86	155.1	67.4	0.43	0.0765	0.0042	2.1530	0.1300	0.2004	0.0046	-0.19	1177.0	24.0	1164.0	41.0	1119.0	59.0	1177.0	24.0	-1.1
Zircon_87	117	24.8	0.21	0.0795	0.0043	2.1990	0.1300	0.2008	0.0046	0.10	1179.0	25.0	1179.0	41.0	1183.0	57.0	1179.0	25.0	0.0
Zircon_88	97.7	46.23	0.47	0.0765	0.0042	2.0390	0.1200	0.1927	0.0043	-0.01	1136.0	23.0	1129.0	39.0	1103.0	74.0	1136.0	23.0	-0.6
Zircon_89	71.4	22.1	0.31	0.0787	0.0048	2.1910	0.1400	0.2006	0.0050	0.08	1181.0	27.0	1174.0	45.0	1163.0	61.0	1181.0	27.0	-0.6
Zircon_90	330.1	81.7	0.25	0.0802	0.0042	2.3570	0.1400	0.2126	0.0046	0.14	1242.7	25.0	1229.0	41.0	1186.0	56.0	1242.7	25.0	-1.1
Zircon_91	188.1	50	0.27	0.0719	0.0038	1.6660	0.0970	0.1676	0.0038	0.21	998.6	21.0	995.0	37.0	993.0	64.0	998.6	21.0	-0.4
Zircon_92	111.2	69.7	0.63	0.0778	0.0043	2.1160	0.1300	0.1965	0.0046	0.33	1157.0	25.0	1158.0	41.0	1139.0	68.0	1157.0	25.0	0.1
Zircon_93	111.1	46.8	0.42	0.0783	0.0043	2.2110	0.1300	0.2022	0.0047	-0.10	1187.0	25.0	1183.0	41.0	1179.0	57.0	1187.0	25.0	-0.3
Zircon_94	124.4	54.2	0.44	0.0734	0.0040	1.8480	0.1100	0.1792	0.0043	0.02	1063.0	24.0	1061.0	38.0	1027.0	65.0	1063.0	24.0	-0.2
Zircon_95	87.1	44.6	0.51	0.0784	0.0045	2.2110	0.1400	0.2020	0.0050	0.36	1186.0	27.0	1184.0	43.0	1179.0	53.0	1186.0	27.0	-0.2
Zircon_96	90.8	26.2	0.29	0.0739	0.0046	1.7820	0.1200	0.1730	0.0042	0.26	1031.0	22.0	1035.0	43.0	1053.0	89.0	1031.0	22.0	0.4
Zircon_97	78.1	27.9	0.36	0.0772	0.0051	2.0240	0.1300	0.1897	0.0048	-0.01	1119.0	26.0	1121.0	44.0	1130.0	73.0	1119.0	26.0	0.2
Zircon_98	86.5	25.72	0.30	0.0795	0.0047	2.3380	0.1500	0.2090	0.0050	0.17	1223.0	27.0	1228.0	42.0	1192.0	65.0	1223.0	27.0	0.4
Zircon_99	68.8	27.5	0.40	0.0800	0.0056	2.1980	0.1500	0.1977	0.0051	-0.11	1163.0	28.0	1181.0	47.0	1180.0	88.0	1163.0	28.0	1.5
Zircon_100	120	46.2	0.39	0.0758	0.0042	2.0600	0.1200	0.1930	0.0046	0.03	1137.0	25.0	1137.0	42.0	1108.0	53.0	1137.0	25.0	0.0
Zircon_101	148.8	49.5	0.33	0.0798	0.0044	2.4220	0.1500	0.2147	0.0048	0.20	1254.0	25.0	1247.0	44.0	1181.0	71.0	1254.0	25.0	-0.6

MUESTRA						Relacione	es Corregi	das ²						Edade	es Corregidas	(Ma)			
ABM-05	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_102	421	29.8	0.07	0.0587	0.0032	0.7890	0.0460	0.0966	0.0022	0.13	594.4	13.0	592.0	27.0	571.0	59.0	594.4	13.0	-0.4
Zircon_103	362	99.7	0.28	0.0801	0.0040	2.3760	0.1300	0.2120	0.0045	0.12	1239.5	24.0	1236.0	41.0	1193.0	58.0	1239.5	24.0	-0.3

1: Concentraciones de U y Th fueron calculados empleando un estándar externo como en Paton et al., 2010, Geochemistry, Geophysics, Geosystems

2: Las incertidumbres propagadas se reportan en un nivel de 2-sigma de acuerdo con Paton et al., 2010, Geochemistry, Geophysics, Geosystems

La relación 207Pb/206Pb, edades y errores son calculados de acuerdo a Petrus and Kamber, 2012, Geostandards Geoanalytical Research

El diámetro de ablación utilizado fue de 23 micrómetros, usando el protocolo analítico modificado de Solari et al., 2010, Geostandards Geoanalytical Research

			Relaciones Corregidas ² Edades Corregidas (Ma)																
MUESTRA ABM-10	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_01	36.1	20.36	0.56	0.0783	0.0034	2.0970	0.0930	0.1944	0.0038	0.27	1145.0	20.0	1146.0	30.0	1150.0	46.0	1145.0	20.0	0.1
Zircon_02	19.4	3.49	0.18	0.0792	0.0045	2.5000	0.1300	0.2239	0.0052	0.04	1306.0	27.0	1267.0	40.0	1208.0	63.0	1306.0	27.0	-3.1
Zircon_03	50.7	23.76	0.47	0.0743	0.0035	1.8420	0.0730	0.1795	0.0034	0.11	1064.0	19.0	1062.0	27.0	1060.0	51.0	1064.0	19.0	-0.2
Zircon_04	28.5	14.3	0.50	0.0770	0.0045	2.0500	0.1200	0.1933	0.0041	0.10	1139.0	22.0	1128.0	40.0	1113.0	89.0	1139.0	22.0	-1.0
Zircon_05	25.4	10.36	0.41	0.0813	0.0049	2.2800	0.1100	0.2076	0.0048	-0.15	1215.0	26.0	1213.0	33.0	1205.0	61.0	1215.0	26.0	-0.2
Zircon_06	72	15.9	0.22	0.0787	0.0045	2.0900	0.1200	0.1952	0.0063	0.36	1149.0	34.0	1152.0	37.0	1113.0	71.0	1149.0	34.0	0.3
Zircon_07	29.8	10.98	0.37	0.0790	0.0039	2.0720	0.0950	0.1912	0.0047	0.24	1127.0	25.0	1144.0	34.0	1134.0	54.0	1127.0	25.0	1.5
Zircon_08	43.13	5.62	0.13	0.0705	0.0042	1.5210	0.0850	0.1568	0.0038	0.04	938.0	21.0	933.0	34.0	922.0	71.0	938.0	21.0	-0.5
Zircon_09	27.77	60.9	2.19	0.0787	0.0041	2.2300	0.1200	0.2014	0.0044	0.23	1183.0	24.0	1183.0	36.0	1147.0	78.0	1183.0	24.0	0.0
Zircon_10	207.1	78.3	0.38	0.0780	0.0023	2.0670	0.0560	0.1918	0.0026	0.25	1131.0	14.0	1136.0	19.0	1143.0	32.0	1131.0	14.0	0.4
Zircon_11a	399	42.49	0.11	0.0817	0.0023	2.4750	0.0730	0.2184	0.0030	0.55	1273.0	16.0	1269.0	19.0	1216.0	26.0	1273.0	16.0	-0.3
Zircon_11	69.6	18.14	0.26	0.0852	0.0030	2.7840	0.1000	0.2331	0.0067	0.43	1350.0	35.0	1350.0	28.0	1329.0	44.0	1350.0	35.0	0.0
Zircon_12	239	165	0.69	0.0813	0.0022	2.4180	0.0580	0.2144	0.0029	0.17	1252.0	15.0	1247.0	17.0	1219.0	28.0	1252.0	15.0	-0.4
Zircon_13	220	58.7	0.27	0.0779	0.0024	2.2470	0.0570	0.2059	0.0031	-0.13	1207.0	17.0	1195.0	18.0	1149.0	37.0	1207.0	17.0	-1.0
Zircon_14	426	71.5	0.17	0.0755	0.0019	1.9740	0.0470	0.1880	0.0025	0.31	1111.0	14.0	1106.0	16.0	1066.0	26.0	1111.0	14.0	-0.5
Zircon_15	92.3	38	0.41	0.0792	0.0024	2.1120	0.0630	0.1932	0.0026	0.15	1139.0	14.0	1154.0	20.0	1188.0	32.0	1139.0	14.0	1.3
Zircon_16	165.2	60	0.36	0.0781	0.0023	2.2900	0.0570	0.2075	0.0029	0.29	1216.0	15.0	1212.0	19.0	1180.0	35.0	1216.0	15.0	-0.3
Zircon_17	274.1	115.1	0.42	0.0820	0.0021	2.4750	0.0550	0.2173	0.0027	0.04	1267.6	14.0	1268.0	16.0	1254.0	28.0	1267.6	14.0	0.0
Zircon_18	213	86.9	0.41	0.0811	0.0030	2.4500	0.0850	0.2182	0.0038	0.31	1272.0	20.0	1256.0	25.0	1231.0	35.0	1272.0	20.0	-1.3
Zircon_19	147	71.2	0.48	0.0818	0.0023	2.4530	0.0590	0.2161	0.0026	0.12	1261.4	14.0	1263.0	18.0	1251.0	28.0	1261.4	14.0	0.1
Zircon_20	60.3	33.3	0.55	0.0789	0.0031	2.2120	0.0810	0.2004	0.0033	-0.07	1177.0	18.0	1181.0	26.0	1161.0	47.0	1177.0	18.0	0.3
Zircon_21	432	115.3	0.27	0.0784	0.0018	2.1440	0.0440	0.1983	0.0025	0.53	1165.9	13.0	1165.0	15.0	1149.0	21.0	1165.9	13.0	-0.1
Zircon_22	196.9	62.2	0.32	0.0797	0.0021	2.2710	0.0510	0.2050	0.0030	0.31	1202.0	16.0	1202.0	16.0	1192.0	28.0	1202.0	16.0	0.0
Zircon_23	56.6	35.3	0.62	0.0773	0.0044	2.0130	0.0930	0.1895	0.0038	-0.24	1119.0	21.0	1116.0	31.0	1149.0	54.0	1119.0	21.0	-0.3
Zircon_24	25.9	6.63	0.26	0.0797	0.0047	2.0800	0.1200	0.1909	0.0046	0.06	1126.0	25.0	1150.0	38.0	1192.0	57.0	1126.0	25.0	2.1

						Relacion	ies Corregi	das ²					Ec	dades (Corregidas (M	a)			
MUESTRA ABM-10	U (ppm)¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_25a	405	179.1	0.44	0.0825	0.0021	2.3710	0.0520	0.2097	0.0030	0.25	1227.0	16.0	1233.0	16.0	1262.0	32.0	1227.0	16.0	0.5
Zircon_25	220	95.8	0.44	0.0805	0.0032	2.4080	0.0870	0.2117	0.0035	0.20	1238.0	19.0	1243.0	26.0	1244.0	31.0	1238.0	19.0	0.4
Zircon_26	48.2	20.7	0.43	0.0759	0.0038	1.9540	0.0960	0.1864	0.0039	0.02	1101.0	21.0	1098.0	33.0	1132.0	47.0	1101.0	21.0	-0.3
Zircon_27	149	56.8	0.38	0.0800	0.0026	2.2860	0.0740	0.2072	0.0032	0.34	1214.0	17.0	1212.0	24.0	1200.0	45.0	1214.0	17.0	-0.2
Zircon_28	185.7	88.4	0.48	0.0821	0.0026	2.3820	0.0680	0.2088	0.0040	0.19	1222.0	22.0	1240.0	19.0	1264.0	41.0	1222.0	22.0	1.5
Zircon_29	70.2	20.63	0.29	0.0771	0.0027	2.1440	0.0690	0.2010	0.0038	0.14	1181.0	21.0	1161.0	22.0	1122.0	38.0	1181.0	21.0	-1.7
Zircon_30	308.4	164.2	0.53	0.0803	0.0019	2.2720	0.0510	0.2041	0.0029	0.40	1197.0	16.0	1203.0	16.0	1211.0	26.0	1197.0	16.0	0.5
Zircon_31	79.8	20.02	0.25	0.0746	0.0031	1.7480	0.0680	0.1710	0.0033	0.29	1018.0	18.0	1026.0	26.0	1029.0	54.0	1018.0	18.0	0.8
Zircon_32	90.8	53.9	0.59	0.0784	0.0035	2.1050	0.0770	0.1934	0.0035	-0.22	1139.0	19.0	1148.0	26.0	1156.0	43.0	1139.0	19.0	0.8
Zircon_33	687	49.1	0.07	0.0767	0.0016	2.0290	0.0410	0.1907	0.0023	0.49	1124.9	12.0	1124.5	14.0	1114.0	26.0	1124.9	12.0	0.0
Zircon_34	91.7	65.86	0.72	0.0817	0.0029	2.4420	0.0750	0.2149	0.0038	0.10	1255.0	20.0	1256.0	23.0	1228.0	33.0	1255.0	20.0	0.1
Zircon_35	369	105.8	0.29	0.0784	0.0020	2.1160	0.0490	0.1951	0.0021	0.17	1148.7	11.0	1153.0	16.0	1170.0	26.0	1148.7	11.0	0.4
Zircon_36	475	305	0.64	0.0717	0.0016	1.6890	0.0330	0.1694	0.0018	0.23	1008.5	10.0	1004.0	12.0	979.0	22.0	1008.5	10.0	-0.4
Zircon_37	28	13.56	0.48	0.0751	0.0039	2.0400	0.1100	0.1923	0.0047	0.43	1133.0	25.0	1123.0	40.0	1036.0	71.0	1133.0	25.0	-0.9
Zircon_38	397	157	0.40	0.0720	0.0021	1.6450	0.0430	0.1665	0.0021	0.40	993.0	12.0	989.0	16.0	976.0	33.0	993.0	12.0	-0.4
Zircon_39	397.4	149	0.37	0.0789	0.0019	2.1670	0.0490	0.1987	0.0023	0.37	1168.3	13.0	1170.0	16.0	1167.0	28.0	1168. <mark>3</mark>	13.0	0.1
Zircon_40	224.5	52.7	0.23	0.0791	0.0021	2.1880	0.0480	0.2003	0.0026	0.13	1177.1	14.0	1176.0	15.0	1183.0	31.0	1177.1	14.0	-0.1
Zircon_41	411	77.3	0.19	0.0790	0.0019	2.2070	0.0510	0.2024	0.0025	0.43	1188.1	13.0	1183.0	16.0	1174.0	20.0	1188.1	13.0	-0.4
Zircon_42	396	134	0.34	0.0728	0.0019	1.8170	0.0480	0.1799	0.0025	0.32	1066.0	14.0	1051.0	17.0	1028.0	33.0	1066.0	14.0	-1.4
Zircon_43	204	226	1.11	0.0713	0.0020	1.5990	0.0430	0.1632	0.0023	0.15	974.6	13.0	971.0	16.0	937.0	40.0	974.6	13.0	-0.4
Zircon_44	278	39.1	0.14	0.0777	0.0018	2.1630	0.0440	0.2002	0.0025	0.17	1176.3	13.0	1171.4	14.0	1148.0	29.0	1176.3	13.0	-0.4
Zircon_45	204	98.5	0.48	0.0777	0.0020	2.1220	0.0510	0.1967	0.0026	0.18	1157.3	14.0	1155.0	17.0	1153.0	29.0	1157.3	14.0	-0.2
Zircon_46	438	70.7	0.16	0.0800	0.0017	2.2310	0.0480	0.2021	0.0026	0.56	1186.6	14.0	1190.0	15.0	1201.0	26.0	1186.6	14.0	0.3
Zircon_47	107.9	39.2	0.36	0.0778	0.0027	2.1480	0.0750	0.1979	0.0034	0.47	1164.0	18.0	1161.0	24.0	1142.0	37.0	1164.0	18.0	-0.3
Zircon_48	141.9	67.6	0.48	0.0810	0.0024	2.3250	0.0650	0.2066	0.0034	0.25	1210.0	18.0	1219.0	20.0	1231.0	28.0	1210.0	18.0	0.7

						Relacior	nes Corregi	das ²					Ec	lades (Corregidas (N	la)			
MUESTRA ABM-10	U (ppm)1	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_49	74.1	7.51	0.10	0.0769	0.0027	2.1240	0.0700	0.1977	0.0033	0.26	1163.0	17.0	1158.0	22.0	1111.0	41.0	1163.0	17.0	-0.4
Zircon_50	275	127.2	0.46	0.0769	0.0020	2.0240	0.0480	0.1889	0.0026	0.23	1117.0	15.0	1122.0	16.0	1134.0	26.0	1117.0	15.0	0.4
Zircon_51	663	274	0.41	0.0780	0.0017	2.1340	0.0390	0.1969	0.0022	0.13	1158.8	12.0	1159.3	13.0	1148.0	25.0	1158.8	12.0	0.0
Zircon_52	323	89.4	0.28	0.0805	0.0020	2.4440	0.0640	0.2174	0.0026	0.53	1268.0	14.0	1255.0	19.0	1221.0	24.0	1268.0	14.0	-1.0
Zircon_53	242.5	59.12	0.24	0.0805	0.0019	2.3250	0.0490	0.2077	0.0031	0.38	1216.0	17.0	1219.0	15.0	1211.0	27.0	1216.0	17.0	0.2
Zircon_54	180	59	0.33	0.0810	0.0023	2.4140	0.0700	0.2136	0.0035	0.50	1248.0	19.0	1245.0	21.0	1204.0	29.0	1248.0	19.0	-0.2
Zircon_55	58.8	25	0.43	0.0760	0.0031	1.9640	0.0790	0.1857	0.0031	0.16	1098.0	17.0	1103.0	26.0	1095.0	52.0	1098.0	17.0	0.5
Zircon_56	85.3	42.2	0.49	0.0813	0.0030	2.2400	0.0780	0.2015	0.0035	0.13	1183.0	19.0	1191.0	25.0	1232.0	39.0	1183.0	19.0	0.7
Zircon_57	135.5	40.1	0.30	0.0799	0.0024	2.1940	0.0660	0.1991	0.0039	0.39	1170.0	21.0	1177.0	21.0	1195.0	29.0	1170.0	21.0	0.6
Zircon_58	147.4	35.4	0.24	0.0799	0.0025	2.2590	0.0710	0.2046	0.0029	0.32	1200.0	16.0	1197.0	22.0	1202.0	43.0	1200.0	16.0	-0.3
Zircon_59	181.9	70.5	0.39	0.0773	0.0022	2.0410	0.0540	0.1918	0.0028	0.24	1131.0	15.0	1128.0	18.0	1136.0	26.0	1131.0	15.0	-0.3
Zircon_60	203	69.7	0.34	0.0755	0.0021	1.9570	0.0540	0.1855	0.0028	0.30	1097.0	15.0	1099.0	19.0	1088.0	33.0	1097.0	15.0	0.2
Zircon_61	136.1	67.9	0.50	0.0820	0.0021	2.3440	0.0500	0.2087	0.0027	0.02	1222.0	14.0	1225.0	15.0	1249.0	22.0	1222.0	14.0	0.2
Zircon_62	689	390	0.57	0.0804	0.0017	2.3630	0.0400	0.2113	0.0023	0.23	1235.5	12.0	1231.2	12.0	1218.0	22.0	1235.5	12.0	-0.3
Zircon_63	310	84.4	0.27	0.0783	0.0018	2.2060	0.0420	0.2029	0.0024	0.15	1192.2	13.0	1182.4	13.0	1156.0	23.0	1192.2	13.0	-0.8
Zircon_64	48.8	24.15	0.49	0.0708	0.0031	1.6280	0.0680	0.1640	0.0029	-0.12	979.0	16.0	977.0	26.0	968.0	56.0	979.0	16.0	-0.2
Zircon_65	387	106.2	0.27	0.0789	0.0018	2.1700	0.0460	0.1992	0.0030	0.34	1171.0	16.0	1171.0	15.0	1180.0	26.0	1171.0	16.0	0.0
Zircon_66	210.2	134.5	0.64	0.0713	0.0023	1.6250	0.0470	0.1668	0.0023	0.05	994.3	13.0	978.0	18.0	967.0	45.0	994.3	13.0	-1.7
Zircon_67	195.5	59.1	0.30	0.0770	0.0023	2.1880	0.0600	0.2037	0.0030	-0.08	1195.0	16.0	1176.0	19.0	1127.0	41.0	1195.0	16.0	-1.6
Zircon_68	20.4	7.1	0.35	0.0742	0.0059	1.7300	0.1300	0.1698	0.0056	0.22	1010.0	31.0	1004.0	51.0	1039.0	81.0	1010.0	31.0	-0.6
Zircon_69	284	91.4	0.32	0.0762	0.0020	2.0020	0.0570	0.1892	0.0027	0.57	1117.0	15.0	1114.0	19.0	1114.0	30.0	1117.0	15.0	-0.3
Zircon_70	209.3	111.6	0.53	0.0750	0.0021	1.9130	0.0490	0.1842	0.0025	0.18	1089.6	14.0	1088.0	17.0	1075.0	36.0	1089.6	14.0	-0.1
Zircon_71	148	85.9	0.58	0.0753	0.0022	1.8560	0.0490	0.1793	0.0026	0.15	1063.0	14.0	1067.0	18.0	1052.0	40.0	1063.0	14.0	0.4
Zircon_72	460	221	0.48	0.0802	0.0018	2.2430	0.0490	0.2029	0.0032	0.61	1191.0	17.0	1194.0	15.0	1192.0	27.0	1191.0	17.0	0.3
Zircon_73	239	36.7	0.15	0.0728	0.0021	1.7060	0.0480	0.1688	0.0023	0.22	1005.2	12.0	1010.0	18.0	1013.0	34.0	1005.2	12.0	0.5

						Relacior	nes Corregi	das ²					Ec	dades (Corregidas (M	la)			
MUESTRA ABM-10	U (ppm)¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_74	383	179.6	0.47	0.0909	0.0019	3.2230	0.0600	0.2557	0.0029	0.19	1467.5	15.0	1462.1	14.0	1434.0	24.0	1434.0	24.0	-0.4
Zircon_75	143.8	38.22	0.27	0.0779	0.0022	2.1200	0.0510	0.1964	0.0027	0.21	1156.0	15.0	1156.0	17.0	1145.0	34.0	1156.0	15.0	0.0
Zircon_76	363	93.6	0.26	0.0745	0.0018	1.9140	0.0390	0.1839	0.0023	0.30	1088.3	13.0	1086.8	13.0	1060.0	30.0	1088.3	13.0	-0.1
Zircon_77	91	30.31	0.33	0.0723	0.0029	1.6300	0.0690	0.1645	0.0024	0.24	982.0	13.0	978.0	27.0	1011.0	53.0	982.0	13.0	-0.4
Zircon_78	245	70.8	0.29	0.0803	0.0021	2.2770	0.0540	0.2052	0.0026	0.23	1203.0	14.0	1204.0	17.0	1208.0	27.0	1203.0	14.0	0.1
Zircon_79	300	105.3	0.35	0.0746	0.0019	1.7930	0.0470	0.1746	0.0025	0.49	1039.0	14.0	1044.0	17.0	1055.0	30.0	1039.0	14.0	0.5
Zircon_80	59.3	25.6	0.43	0.0763	0.0040	2.1770	0.0960	0.2062	0.0050	-0.10	1208.0	27.0	1176.0	30.0	1115.0	67.0	1208.0	27.0	-2.7
Zircon_81	465	152.9	0.33	0.0721	0.0017	1.6620	0.0350	0.1666	0.0019	-0.03	993.5	11.0	993.7	13.0	993.0	31.0	993.5	11.0	0.0
Zircon_82	290	114	0.39	0.0823	0.0020	2.3710	0.0530	0.2103	0.0030	0.27	1231.0	16.0	1233.0	16.0	1248.0	23.0	1231.0	16.0	0.2
Zircon_83	127.1	59.9	0.47	0.0798	0.0027	2.2800	0.0690	0.2077	0.0036	0.19	1216.0	19.0	1204.0	21.0	1197.0	40.0	1216.0	19.0	-1.0
Zircon_84	316	206	0.65	0.0787	0.0019	2.2030	0.0480	0.2022	0.0023	0.18	1187.0	13.0	1181.0	15.0	1166.0	26.0	1187.0	13.0	-0.5
Zircon_85	40.5	19.09	0.47	0.0741	0.0038	1.8800	0.0960	0.1816	0.0044	0.04	1079.0	25.0	1075.0	34.0	1105.0	65.0	1079.0	25.0	-0.4
Zircon_86	434.6	144.3	0.33	0.0797	0.0018	2.2450	0.0440	0.2029	0.0023	0.42	1190.8	12.0	1194.8	14.0	1188.0	24.0	1190.8	12.0	0.3
Zircon_87	440	131	0.30	0.0719	0.0017	1.6700	0.0450	0.1680	0.0023	0.59	1001.1	13.0	998.0	17.0	970.0	35.0	1001.1	13.0	-0.3
Zircon_88	51.9	29.6	0.57	0.0814	0.0032	2.2720	0.0870	0.2034	0.0047	0.14	1193.0	25.0	1200.0	27.0	1255.0	49.0	1193.0	25.0	0.6
Zircon_89	224	57.7	0.26	0.0779	0.0019	2.1130	0.0510	0.1955	0.0026	0.45	1151.0	14.0	1154.0	17.0	1143.0	27.0	1151.0	14.0	0.3
Zircon_90	104	58.6	0.56	0.0777	0.0023	2.1200	0.0600	0.1972	0.0033	0.24	1160.0	18.0	1157.0	19.0	1129.0	30.0	1160.0	18.0	-0.3
Zircon_91	127	41.3	0.33	0.0779	0.0021	2.1680	0.0520	0.2001	0.0028	0.25	1176.0	15.0	1172.0	17.0	1138.0	29.0	1176.0	15.0	-0.3
Zircon_92	256	179.5	0.70	0.0816	0.0023	2.3870	0.0550	0.2125	0.0027	0.10	1241.9	14.0	1240.0	17.0	1230.0	25.0	1241.9	14.0	-0.2
Zircon_93	199.2	55.24	0.28	0.0797	0.0024	2.2750	0.0580	0.2064	0.0035	0.25	1209.0	19.0	1204.0	18.0	1197.0	26.0	1209.0	19.0	-0.4
Zircon_94	180.8	56.8	0.31	0.0816	0.0027	2.4480	0.0900	0.2186	0.0037	0.46	1274.0	20.0	1254.0	26.0	1212.0	40.0	1274.0	20.0	-1.6
Zircon_95	273	85.2	0.31	0.0808	0.0020	2.3390	0.0530	0.2099	0.0025	0.09	1228.1	13.0	1223.0	16.0	1228.0	25.0	1228.1	13.0	-0.4
Zircon_96	127.2	52.4	0.41	0.0810	0.0021	2.3660	0.0570	0.2113	0.0030	0.32	1236.0	16.0	1233.0	17.0	1229.0	21.0	1236.0	16.0	-0.2
Zircon_97	287	102.8	0.36	0.0823	0.0022	2.4420	0.0720	0.2160	0.0034	0.51	1260.0	18.0	1257.0	21.0	1244.0	35.0	1260.0	18.0	-0.2
Zircon_98	278.2	143.4	0.52	0.0806	0.0019	2.2750	0.0430	0.2047	0.0025	0.05	1200.2	13.0	1204.0	13.0	1202.0	25.0	1200.2	13.0	0.3

						Relacior	ies Corregi	das ²					Ed	dades (Corregidas (N	la)			
MUESTRA ABM-10	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_99	128.9	51.4	0.40	0.0764	0.0025	2.0100	0.0630	0.1886	0.0029	0.19	1114.0	16.0	1117.0	21.0	1120.0	29.0	1114.0	16.0	0.3
Zircon_100	239	172.1	0.72	0.0816	0.0023	2.3350	0.0520	0.2088	0.0037	0.36	1222.0	20.0	1222.0	16.0	1229.0	40.0	1222.0	20.0	0.0
Zircon_101	54	23.4	0.43	0.0818	0.0037	2.4730	0.0950	0.2170	0.0051	-0.08	1266.0	27.0	1265.0	27.0	1258.0	48.0	1266.0	27.0	-0.1

1: Concentraciones de U y Th fueron calculados empleando un estándar externo como en Paton et al., 2010, Geochemistry, Geophysics, Geosystems

2: Las incertidumbres propagadas se reportan en un nivel de 2-sigma de acuerdo con Paton et al., 2010, Geochemistry, Geophysics, Geosystems

La relación 207Pb/206Pb, edades y errores son calculados de acuerdo a Petrus and Kamber, 2012, Geostandards Geoanalytical Research

El diámetro de ablación utilizado fue de 23 micrómetros, usando el protocolo analítico modificado de Solari et al., 2010, Geostandards Geoanalytical Research

						Relacione	es Corregio	das²						Edade	s Corregidas	(Ma)			
MUESTRA RMO-01	U (ppm)1	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_01	493	70.1	0.14	0.0721	0.0027	1.6540	0.0580	0.1676	0.0018	0.29	998.6	10.0	990.0	22.0	981.0	42.0	998.6	10.0	-0.9
Zircon_01_b	239	42.4	0.18	0.0730	0.0031	1.7550	0.0640	0.1739	0.0026	-0.06	1033.0	14.0	1028.0	24.0	1005.0	48.0	1033.0	14.0	-0.5
Zircon_02	200	37.3	0.19	0.0713	0.0026	1.6470	0.0530	0.1672	0.0020	0.03	996.4	11.0	989.0	20.0	983.0	45.0	996.4	11.0	-0.7
Zircon_03	221.9	164.7	0.74	0.0737	0.0027	1.7870	0.0590	0.1755	0.0022	0.17	1042.0	12.0	1040.0	21.0	1027.0	46.0	1042.0	12.0	-0.2
Zircon_04	376	182	0.48	0.0739	0.0024	1.7810	0.0520	0.1748	0.0016	0.34	1038.3	9.0	1038.1	19.0	1052.0	38.0	1038.3	9.0	0.0
Zircon_05	194.4	127.7	0.66	0.0740	0.0028	1.7680	0.0600	0.1730	0.0020	0.16	1028.4	11.0	1033.0	22.0	1025.0	45.0	1028.4	11.0	0.4
Zircon_06	141.9	306.3	2.16	0.0722	0.0028	1.6420	0.0550	0.1647	0.0018	-0.06	982.7	10.0	985.0	21.0	995.0	40.0	982.7	10.0	0.2
Zircon_07	183.8	96	0.52	0.0810	0.0031	2.3580	0.0800	0.2109	0.0026	0.23	1233.0	14.0	1229.0	24.0	1212.0	49.0	1233.0	14.0	-0.3
Zircon_08	197.6	141.6	0.72	0.0734	0.0028	1.7940	0.0600	0.1752	0.0019	0.12	1040.5	10.0	1042.0	22.0	1028.0	41.0	1040.5	10.0	0.1
Zircon_09	196.3	161.4	0.82	0.0740	0.0028	1.8270	0.0590	0.1787	0.0021	-0.16	1059.8	12.0	1056.0	22.0	1050.0	33.0	1059.8	12.0	-0.4
Zircon_10	480	125.8	0.26	0.0919	0.0031	3.2770	0.0970	0.2572	0.0029	0.35	1475.0	15.0	1475.0	23.0	1470.0	36.0	1470.0	36.0	0.0
Zircon_11	240	137.3	0.57	0.0706	0.0028	1.5880	0.0540	0.1609	0.0019	-0.01	961.7	11.0	965.0	21.0	970.0	42.0	961.7	11.0	0.3
Zircon_12	424	212.5	0.50	0.0718	0.0025	1.6740	0.0520	0.1680	0.0015	0.05	1000.8	8.4	1000.0	19.0	993.0	40.0	1000.8	8.4	-0.1
Zircon_13	289	70.6	0.24	0.0859	0.0029	2.7440	0.0860	0.2307	0.0025	0.48	1338.0	13.0	1341.0	23.0	1339.0	39.0	1338.0	13.0	0.2
Zircon_14	110.1	32.6	0.30	0.0814	0.0033	2.4200	0.0880	0.2141	0.0028	-0.03	1252.0	15.0	1252.0	28.0	1247.0	64.0	1252.0	15.0	0.0
Zircon_15	145	65.4	0.45	0.0522	0.0036	0.3230	0.0210	0.0447	0.0008	-0.01	282.0	5.0	283.0	16.0	306.0	70.0	282.0	5.0	0.4
Zircon_16	90.5	85.6	0.95	0.0550	0.0043	0.3400	0.0240	0.0462	0.0010	0.10	290.9	6.0	295.0	18.0	440.0	86.0	290.9	6.0	1.4
Zircon_17	98.7	49.7	0.50	0.0499	0.0043	0.3010	0.0250	0.0438	0.0011	0.14	276.4	7.0	266.0	20.0	323.0	92.0	276.4	7.0	-3.9
Zircon_18	143.8	84	0.58	0.0811	0.0029	2.3560	0.0730	0.2103	0.0023	-0.13	1230.4	12.0	1232.0	22.0	1224.0	48.0	1230.4	12.0	0.1
Zircon_19	92.1	30	0.33	0.0530	0.0051	0.3310	0.0310	0.0454	0.0012	0.07	286.3	7.3	291.0	23.0	522.0	100.0	286.3	7.3	1.6
Zircon_20	69	30.7	0.44	0.0522	0.0038	0.3370	0.0260	0.0468	0.0015	0.24	294.9	9.1	298.0	20.0	356.0	55.0	294.9	9.1	1.0
Zircon_21	84.4	24.7	0.29	0.0521	0.0050	0.3160	0.0290	0.0434	0.0012	0.10	273.6	7.3	276.0	22.0	494.0	76.0	273.6	7.3	0.9
Zircon_22	73.3	18.76	0.26	0.0544	0.0047	0.3730	0.0310	0.0496	0.0014	0.11	311.9	8.8	324.0	24.0	514.0	110.0	311.9	8.8	3.7
Zircon_23	59.2	47.5	0.80	0.0514	0.0045	0.3500	0.0300	0.0472	0.0014	0.09	297.0	8.7	301.0	23.0	490.0	110.0	297.0	8.7	1.3
Zircon_24	149.5	71.6	0.48	0.0500	0.0042	0.3020	0.0240	0.0440	0.0010	0.16	277.2	6.0	272.0	20.0	349.0	76.0	277.2	6.0	-1.9

						Relacione	es Corregio	das ²	Edades Corregidas (Ma)											
MUESTRA RMO-01	U (ppm)1	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %	
Zircon_25	117.4	85.3	0.73	0.0532	0.0041	0.3930	0.0290	0.0535	0.0011	-0.01	336.1	6.6	334.0	21.0	447.0	81.0	336.1	6.6	-0.6	
Zircon_26	156	127	0.81	0.0574	0.0031	0.6770	0.0330	0.0845	0.0013	0.06	522.9	7.5	526.0	19.0	526.0	62.0	522.9	7.5	0.6	
Zircon_27	129.1	94.5	0.73	0.0532	0.0033	0.3750	0.0240	0.0508	0.0011	0.03	319.4	6.5	322.0	18.0	375.0	62.0	319.4	6.5	0.8	
Zircon_28	110.3	95.5	0.87	0.0518	0.0035	0.3420	0.0220	0.0466	0.0010	0.01	293.4	5.9	297.0	17.0	421.0	83.0	293.4	5.9	1.2	
Zircon_29	126.4	53	0.42	0.0790	0.0033	2.1940	0.0840	0.1996	0.0024	0.10	1173.0	13.0	1177.0	27.0	1183.0	53.0	1173.0	13.0	0.3	
Zircon_30	130.2	41	0.31	0.0512	0.0034	0.3290	0.0220	0.0454	0.0010	0.24	286.1	6.4	290.0	16.0	318.0	81.0	286.1	6.4	1.3	
Zircon_31	494	319	0.65	0.0513	0.0023	0.3440	0.0140	0.0483	0.0005	0.00	303.8	3.2	299.5	11.0	314.0	53.0	303.8	3.2	-1.4	
Zircon_32	263.6	209.5	0.79	0.0515	0.0024	0.3540	0.0160	0.0493	0.0008	0.07	310.1	4.6	307.1	12.0	307.0	63.0	310.1	4.6	-1.0	
Zircon_33	69.1	38.1	0.55	0.0563	0.0040	0.7300	0.0490	0.0905	0.0020	0.17	558.0	12.0	554.0	29.0	495.0	72.0	558.0	12.0	-0.7	
Zircon_34	130.1	142.4	1.09	0.0526	0.0032	0.3430	0.0200	0.0470	0.0010	0.24	296.2	6.0	300.0	16.0	394.0	60.0	296.2	6.0	1.3	
Zircon_35	119.3	124.4	1.04	0.0541	0.0037	0.3240	0.0230	0.0440	0.0009	0.02	277.3	5.5	284.0	18.0	374.0	70.0	277.3	5.5	2.4	
Zircon_36	64.3	42.2	0.66	0.0506	0.0040	0.3340	0.0270	0.0467	0.0013	0.13	294.3	8.0	290.0	20.0	410.0	110.0	294.3	8.0	-1.5	
Zircon_37	33.4	28.59	0.86	0.0472	0.0071	0.2860	0.0420	0.0430	0.0016	-0.20	271.4	9.9	267.0	29.0	470.0	130.0	271.4	9.9	-1.6	
Zircon_38	383	188	0.49	0.0767	0.0028	1.9750	0.0670	0.1867	0.0035	0.52	1103.0	19.0	1109.0	24.0	1103.0	45.0	1103.0	19.0	0.5	
Zircon_39	182.8	103.8	0.57	0.0927	0.0032	3.3960	0.0980	0.2632	0.0032	0.24	1506.0	16.0	1503.0	23.0	1493.0	32.0	1493.0	32.0	-0.2	
Zircon_40	80.4	35.42	0.44	0.0500	0.0048	0.3180	0.0280	0.0461	0.0014	0.23	290.5	8.7	287.0	22.0	372.0	91.0	290.5	8.7	-1.2	
Zircon_41	1165	28.4	0.02	0.0724	0.0023	1.6230	0.0470	0.1630	0.0020	0.62	973.1	11.0	978.5	18.0	997.0	42.0	973.1	11.0	0.6	
Zircon_42	45.2	20.39	0.45	0.0541	0.0071	0.3630	0.0420	0.0489	0.0018	-0.05	308.0	11.0	310.0	32.0	690.0	120.0	308.0	11.0	0.6	
Zircon_43	50.1	18.17	0.36	0.0590	0.0110	0.3640	0.0620	0.0463	0.0020	0.04	292.0	12.0	309.0	47.0	690.0	140.0	292.0	12.0	5.5	
Zircon_44	137.1	43.5	0.32	0.0761	0.0033	1.9270	0.0710	0.1844	0.0023	-0.04	1091.0	13.0	1089.0	25.0	1101.0	50.0	1091.0	13.0	-0.2	
Zircon_45	39.1	18.31	0.47	0.0731	0.0042	1.6330	0.0880	0.1660	0.0029	0.11	990.0	16.0	987.0	32.0	988.0	64.0	990.0	16.0	-0.3	
Zircon_46	71.5	38.9	0.54	0.0575	0.0041	0.6830	0.0470	0.0860	0.0019	0.10	532.0	12.0	527.0	28.0	540.0	93.0	532.0	12.0	-0.9	
Zircon_47	185.5	158.7	0.86	0.0827	0.0031	2.3630	0.0770	0.2082	0.0024	0.20	1219.0	13.0	1230.0	23.0	1258.0	38.0	1219.0	13.0	0.9	
Zircon_48	56.4	37.8	0.67	0.0524	0.0059	0.3270	0.0340	0.0451	0.0013	-0.17	284.3	7.9	283.0	26.0	490.0	120.0	284.3	7.9	-0.5	
Zircon_49	87.4	29.5	0.34	0.0530	0.0048	0.3260	0.0270	0.0443	0.0011	-0.12	279.2	6.5	284.0	20.0	518.0	93.0	279.2	6.5	1.7	

MUESTRA RMO-01				Relaciones Corregidas ²							Edades Corregidas (Ma)								
	U (ppm)1	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_50	55.6	23.8	0.43	0.0563	0.0064	0.3600	0.0370	0.0481	0.0015	-0.12	302.9	9.4	309.0	28.0	530.0	120.0	302.9	9.4	2.0
Zircon_51	28.94	49.18	1.70	0.0714	0.0038	1.6740	0.0870	0.1691	0.0039	0.18	1006.0	21.0	993.0	33.0	938.0	69.0	1006.0	21.0	-1.3
Zircon_52	142.9	59.4	0.42	0.0514	0.0035	0.3420	0.0230	0.0479	0.0010	0.03	301.7	6.4	297.0	18.0	383.0	84.0	301.7	6.4	-1.6
Zircon_53	110.3	41	0.37	0.0727	0.0033	1.7160	0.0720	0.1706	0.0025	0.10	1016.0	14.0	1012.0	27.0	1021.0	51.0	1016.0	14.0	-0.4
Zircon_54	93.9	50	0.53	0.0523	0.0047	0.3240	0.0280	0.0450	0.0013	0.07	283.7	7.8	283.0	22.0	395.0	76.0	283.7	7.8	-0.2
Zircon_55	65.8	36.56	0.56	0.0519	0.0041	0.3360	0.0260	0.0468	0.0012	0.06	294.6	7.1	292.0	20.0	412.0	76.0	294.6	7.1	-0.9
Zircon_56	276	152.9	0.55	0.0727	0.0026	1.6710	0.0520	0.1671	0.0018	-0.04	996.0	10.0	997.0	20.0	1012.0	42.0	996.0	10.0	0.1
Zircon_57	88.6	36.8	0.42	0.0800	0.0034	2.2030	0.0870	0.2007	0.0023	0.20	1179.0	12.0	1179.0	28.0	1176.0	52.0	1179.0	12.0	0.0
Zircon_58	34.1	11	0.32	0.0808	0.0044	2.3100	0.1200	0.2064	0.0046	0.11	1213.0	25.0	1209.0	36.0	1211.0	68.0	1213.0	25.0	-0.3
Zircon_59	75	69	0.92	0.0573	0.0067	0.3710	0.0420	0.0466	0.0014	-0.01	293.7	8.4	329.0	31.0	570.0	100.0	293.7	8.4	10.7
Zircon_60	180	177.3	0.99	0.0781	0.0036	2.1160	0.0950	0.1975	0.0033	0.74	1161.0	18.0	1157.0	29.0	1199.0	52.0	1161.0	18.0	-0.3
Zircon_61	143.8	33.5	0.23	0.0720	0.0028	1.5880	0.0560	0.1613	0.0019	0.05	964.0	11.0	967.0	21.0	999.0	56.0	964.0	11.0	0.3
Zircon_62	246	131	0.53	0.0537	0.0030	0.3720	0.0190	0.0502	0.0008	-0.13	316.0	4.7	320.0	14.0	400.0	84.0	316.0	4.7	1.3
Zircon_63	106	32.1	0.30	0.0767	0.0031	1.9740	0.0770	0.1864	0.0031	0.54	1102.0	17.0	1104.0	26.0	1119.0	42.0	1102.0	17.0	0.2
Zircon_64	55.1	42.6	0.77	0.0537	0.0059	0.3520	0.0380	0.0477	0.0015	0.03	300.2	9.5	305.0	28.0	690.0	130.0	300.2	9.5	1.6
Zircon_65	95.1	99.7	1.05	0.0536	0.0043	0.3440	0.0250	0.0478	0.0010	0.00	301.0	6.1	298.0	19.0	478.0	81.0	301.0	6.1	-1.0
Zircon_66	179.7	57.9	0.32	0.0794	0.0030	2.0530	0.0680	0.1898	0.0024	0.04	1120.0	13.0	1132.0	23.0	1188.0	43.0	1120.0	13.0	1.1
Zircon_67	88.7	158.4	1.79	0.0740	0.0033	1.8190	0.0710	0.1771	0.0029	0.08	1051.0	16.0	1050.0	25.0	1043.0	54.0	1051.0	16.0	-0.1
Zircon_68	58.6	21.56	0.37	0.0538	0.0055	0.3450	0.0330	0.0477	0.0015	-0.16	300.3	8.9	302.0	24.0	520.0	110.0	300.3	8.9	0.6
Zircon_69	136.1	134.2	0.99	0.0536	0.0039	0.3470	0.0230	0.0469	0.0011	-0.22	296.5	6.2	301.0	18.0	459.0	83.0	296.5	6.2	1.5
Zircon_70	197	58.8	0.30	0.0800	0.0029	2.2020	0.0700	0.2022	0.0022	0.17	1187.1	12.0	1183.0	23.0	1192.0	40.0	1187.1	12.0	-0.3
Zircon_71	46.5	24.83	0.53	0.0564	0.0072	0.3520	0.0390	0.0458	0.0017	-0.15	289.0	11.0	307.0	30.0	670.0	120.0	289.0	11.0	5.9
Zircon_72	231.8	127.7	0.55	0.0526	0.0030	0.3420	0.0190	0.0475	0.0006	-0.01	298.8	3.9	298.0	14.0	343.0	69.0	298.8	3.9	-0.3
Zircon_73	62.3	34.2	0.55	0.0599	0.0078	0.3670	0.0440	0.0460	0.0018	-0.20	290.0	11.0	326.0	29.0	648.0	100.0	290.0	11.0	11.0
Zircon_74	39.6	8.48	0.21	0.0829	0.0046	2.3700	0.1200	0.2087	0.0042	0.04	1222.0	22.0	1226.0	38.0	1247.0	51.0	1222.0	22.0	0.3
						Relacione	es Corregio	das ²						Edade	s Corregidas	(Ma)			
-------------------	----------	-----------------------	------	--------------------------------------	------------	-------------------------------------	-------------	-------------------------------------	------------	-------	-------------------------------------	------	-------------------------------------	-------	--------------------------------------	-------	-----------------------	-------------	--------
MUESTRA RMO-01	U (ppm)1	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_75	63.3	49	0.77	0.0567	0.0073	0.3480	0.0440	0.0454	0.0021	0.02	286.0	13.0	307.0	35.0	620.0	130.0	286.0	13.0	6.8
Zircon_76	569	70.9	0.12	0.0717	0.0026	1.5150	0.0510	0.1556	0.0035	0.65	932.0	19.0	936.0	21.0	980.0	45.0	932.0	19.0	0.4
Zircon_76b	413	53.6	0.13	0.0835	0.0033	2.0220	0.0790	0.1744	0.0031	0.43	1036.0	17.0	1121.0	26.0	1275.0	36.0	1036.0	17.0	7.6
Zircon_77	216.1	265.6	1.23	0.0515	0.0028	0.3270	0.0160	0.0459	0.0007	0.10	289.3	4.2	286.0	12.0	371.0	57.0	289.3	4.2	-1.2
Zircon_78	56	10.45	0.19	0.0731	0.0038	1.6230	0.0840	0.1632	0.0034	0.38	974.0	19.0	979.0	31.0	1012.0	54.0	974.0	19.0	0.5
Zircon_79	162.9	66.5	0.41	0.1963	0.0062	13.6600	0.3800	0.5104	0.0054	0.46	2658.0	23.0	2726.0	27.0	2796.8	31.0	2796.8	31.0	2.5
Zircon_80	132.2	92.4	0.70	0.0831	0.0034	2.3620	0.0830	0.2094	0.0031	-0.17	1225.0	17.0	1229.0	25.0	1257.0	54.0	1225.0	17.0	0.3
Zircon_81	80.2	66.7	0.83	0.0506	0.0057	0.3260	0.0350	0.0478	0.0017	0.06	301.0	10.0	296.0	26.0	560.0	100.0	301.0	10.0	-1.7
Zircon_82	159.1	53.2	0.33	0.0737	0.0030	1.7690	0.0610	0.1743	0.0022	-0.04	1035.6	12.0	1033.0	22.0	1049.0	46.0	1035.6	12.0	-0.3
Zircon_83	142.4	61.1	0.43	0.0739	0.0028	1.7750	0.0570	0.1750	0.0024	0.18	1040.0	13.0	1037.0	20.0	1049.0	37.0	1040.0	13.0	-0.3
Zircon_84	799	454	0.57	0.0527	0.0019	0.3390	0.0110	0.0465	0.0005	0.06	292.8	3.2	296.3	8.1	305.0	47.0	292.8	3.2	1.2
Zircon_85a	147	80.4	0.55	0.0776	0.0032	1.9140	0.0740	0.1812	0.0028	0.20	1073.0	15.0	1089.0	24.0	1160.0	42.0	1073.0	15.0	1.5
Zircon_85	104.2	50.7	0.49	0.0820	0.0042	2.4130	0.1000	0.2134	0.0058	0.46	1246.0	31.0	1250.0	33.0	1230.0	68.0	1246.0	31.0	0.3
Zircon_86	37.5	8.1	0.22	0.0736	0.0045	1.6880	0.0940	0.1680	0.0036	0.07	1001.0	20.0	1004.0	34.0	1070.0	69.0	1001.0	20.0	0.3
Zircon_87	142.1	52.8	0.37	0.0520	0.0034	0.3230	0.0200	0.0449	0.0008	-0.02	282.9	4.9	283.0	15.0	431.0	88.0	282.9	4.9	0.0
Zircon_88	52.7	33.8	0.64	0.0551	0.0060	0.3250	0.0340	0.0448	0.0015	0.12	282.3	9.1	286.0	27.0	575.0	99.0	282.3	9.1	1.3
Zircon_89	340	146.5	0.43	0.1249	0.0043	6.0320	0.1800	0.3573	0.0039	0.09	1969.0	19.0	1980.0	26.0	2018.0	40.0	2018.0	40.0	0.6
Zircon_90	95.2	75.79	0.80	0.0561	0.0047	0.3520	0.0270	0.0468	0.0013	0.04	294.7	8.1	304.0	21.0	540.0	86.0	294.7	8.1	3.1
Zircon_91	336	160	0.48	0.0783	0.0029	1.9690	0.0650	0.1846	0.0022	0.14	1092.0	12.0	1104.0	22.0	1137.0	45.0	1092.0	12.0	1.1
Zircon_92	128.2	47.4	0.37	0.0720	0.0038	1.4660	0.0630	0.1501	0.0030	-0.05	901.0	17.0	919.0	24.0	1021.0	51.0	901.0	17.0	2.0
Zircon_93	129.9	89.5	0.69	0.0520	0.0038	0.3290	0.0210	0.0470	0.0011	0.10	296.0	6.6	293.0	17.0	410.0	84.0	296.0	6.6	-1.0
Zircon_94	207	40.5	0.20	0.0727	0.0029	1.6560	0.0570	0.1663	0.0017	-0.08	991.4	9.3	993.0	23.0	1012.0	39.0	991.4	9.3	0.2
Zircon_95	106.6	82.8	0.78	0.0599	0.0039	0.6770	0.0380	0.0831	0.0014	-0.02	514.5	8.2	522.0	23.0	602.0	85.0	514.5	8.2	1.4
Zircon_96	263.5	116.4	0.44	0.0735	0.0028	1.6980	0.0640	0.1696	0.0022	0.46	1010.0	12.0	1006.0	24.0	996.0	47.0	1010.0	12.0	-0.4
Zircon_97	52.7	15.75	0.30	0.0842	0.0056	2.4800	0.1500	0.2172	0.0043	-0.21	1267.0	23.0	1271.0	41.0	1295.0	73.0	1267.0	23.0	0.3

						Relacione	es Corregio	las ²						Edade	es Corregidas	(Ma)			
MUESTRA RMO-01	U (ppm)1	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_98	185	46.2	0.25	0.0545	0.0032	0.3550	0.0190	0.0475	0.0010	0.21	299.4	6.1	308.0	15.0	406.0	81.0	299.4	6.1	2.8
Zircon_99	413	391	0.95	0.0603	0.0022	0.8320	0.0260	0.1003	0.0011	0.19	615.9	6.4	614.5	15.0	621.0	47.0	615.9	6.4	-0.2
Zircon_100	74	99.4	1.34	0.1170	0.0045	5.4600	0.1900	0.3409	0.0049	0.06	1891.0	24.0	1892.0	30.0	1892.0	43.0	1892.0	43.0	0.1
Zircon_101	216.4	170.9	0.79	0.0527	0.0032	0.3650	0.0200	0.0496	0.0012	0.25	312.3	7.2	315.0	15.0	377.0	70.0	312.3	7.2	0.9

1: Concentraciones de U y Th fueron calculados empleando un estándar externo como en Paton et al., 2010, Geochemistry, Geophysics, Geosystems

2: Las incertidumbres propagadas se reportan en un nivel de 2-sigma de acuerdo con Paton et al., 2010, Geochemistry, Geophysics, Geosystems

La relación 207Pb/206Pb, edades y errores son calculados de acuerdo a Petrus and Kamber, 2012, Geostandards Geoanalytical Research

El diámetro de ablación utilizado fue de 23 micrómetros, usando el protocolo analítico modificado de Solari et al., 2010, Geostandards Geoanalytical Research

MUESTRA						Relacione	es Corregio	das²						Eda	des Corregid	las (Ma)			
RMO-04	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_01	121.8	106.5	0.87	0.0520	0.0040	0.3110	0.0270	0.0445	0.0015	0.04	280.6	9.4	276.0	21.0	365.0	70.0	280.6	9.4	-1.7
Zircon_02	69.9	65.9	0.94	0.0529	0.0050	0.3210	0.0320	0.0443	0.0018	-0.13	279.2	11.0	283.0	25.0	473.0	86.0	279.2	11.0	1.3
Zircon_03	51.9	23	0.44	0.1480	0.0260	1.0300	0.2400	0.0551	0.0036	0.46	346.0	22.0	720.0	110.0	2140.0	270.0	346.0	22.0	51.9
Zircon_04	240	158	0.66	0.0538	0.0026	0.3170	0.0190	0.0434	0.0015	-0.11	273.6	9.4	279.0	15.0	348.0	57.0	273.6	9.4	1.9
Zircon_05	201.7	109.31	0.54	0.0560	0.0047	0.3310	0.0270	0.0444	0.0016	-0.20	280.3	9.7	293.0	20.0	428.0	61.0	280.3	9.7	4.3
Zircon_06	133.7	55.1	0.41	0.0535	0.0041	0.3280	0.0280	0.0447	0.0016	0.05	281.7	10.0	286.0	22.0	449.0	86.0	281.7	10.0	1.5
Zircon_07	89.2	67.9	0.76	0.0537	0.0051	0.3580	0.0370	0.0483	0.0017	-0.07	303.9	11.0	307.0	27.0	528.0	88.0	303.9	11.0	1.0
Zircon_08	49.11	32.4	0.66	0.0491	0.0055	0.3140	0.0360	0.0465	0.0023	-0.06	293.0	14.0	273.0	28.0	377.0	93.0	293.0	14.0	-7.3
Zircon_09	69.9	47.3	0.68	0.0531	0.0052	0.3270	0.0360	0.0450	0.0017	0.22	283.8	11.0	283.0	27.0	556.0	100.0	283.8	11.0	-0.3
Zircon_10	214	193	0.90	0.0516	0.0029	0.3110	0.0220	0.0441	0.0015	0.24	277.8	9.4	276.0	16.0	338.0	77.0	277.8	9.4	-0.7
Zircon_11	157.9	133	0.84	0.0519	0.0024	0.3270	0.0210	0.0450	0.0016	0.23	283.9	9.6	288.0	17.0	356.0	42.0	283.9	9.6	1.4
Zircon_12	158.2	96.1	0.61	0.0517	0.0030	0.3150	0.0220	0.0445	0.0016	0.18	280.4	9.9	277.0	17.0	361.0	75.0	280.4	9.9	-1.2
Zircon_13	109.7	39.62	0.36	0.0745	0.0028	1.8720	0.1100	0.1793	0.0058	0.08	1063.0	32.0	1068.0	38.0	1106.0	42.0	1063.0	32.0	0.5
Zircon_14	195.4	78.3	0.40	0.0521	0.0023	0.3710	0.0230	0.0508	0.0016	0.14	319.4	10.0	323.0	17.0	311.0	58.0	319.4	10.0	1.1
Zircon_15	175.2	83.1	0.47	0.0527	0.0028	0.3300	0.0200	0.0458	0.0016	-0.01	288.8	9.6	289.0	15.0	305.0	51.0	288.8	9.6	0.1
Zircon_16	69.9	21.4	0.31	0.0526	0.0046	0.3450	0.0350	0.0470	0.0023	0.33	296.0	14.0	298.0	27.0	448.0	94.0	296.0	14.0	0.7
Zircon_17	183.5	211.7	1.15	0.0518	0.0027	0.3430	0.0220	0.0477	0.0016	-0.09	300.1	9.9	299.0	16.0	349.0	67.0	300.1	9.9	-0.4
Zircon_18	32.1	18.8	0.59	0.0620	0.0120	0.4510	0.0970	0.0513	0.0033	-0.03	322.0	20.0	369.0	67.0	940.0	200.0	322.0	20.0	12.7
Zircon_19	364	209.6	0.58	0.0589	0.0015	0.7770	0.0380	0.0953	0.0029	0.08	586.5	17.0	583.3	22.0	571.0	36.0	586.5	17.0	-0.5
Zircon_20	198	70.5	0.36	0.0811	0.0018	2.3780	0.1100	0.2105	0.0063	0.06	1231.6	34.0	1235.0	34.0	1220.0	23.0	1231.6	34.0	0.3
Zircon_21	116.7	35.6	0.31	0.0859	0.0023	2.7820	0.1400	0.2331	0.0074	0.13	1351.0	38.0	1349.0	38.0	1340.0	27.0	1351.0	38.0	-0.1
Zircon_22	544	749	1.38	0.0532	0.0017	0.3800	0.0200	0.0515	0.0016	0.27	323.9	9.6	327.0	15.0	354.0	48.0	323.9	9.6	0.9
Zircon_23	145	176	1.21	0.0526	0.0048	0.3340	0.0350	0.0457	0.0017	0.38	288.0	11.0	290.0	26.0	438.0	95.0	288.0	11.0	0.7
Zircon_24	448	305.9	0.68	0.0540	0.0015	0.4624	0.0230	0.0620	0.0019	-0.09	387.7	12.0	385.6	16.0	373.0	33.0	387.7	12.0	-0.5
Zircon_25	129.1	106.7	0.83	0.0539	0.0031	0.3720	0.0260	0.0513	0.0019	-0.01	322.5	12.0	322.0	20.0	346.0	58.0	322.5	12.0	-0.2

MUESTRA						Relacione	es Corregio	das ²						Eda	ades Corregid	las (Ma)			
RMO-04	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_26	129.2	100.7	0.78	0.0587	0.0030	0.6900	0.0430	0.0871	0.0028	0.02	538.5	17.0	537.0	26.0	581.0	71.0	538.5	17.0	-0.3
Zircon_27	470	525	1.12	0.1586	0.0028	9.4300	0.4400	0.4271	0.0130	0.66	2292.0	58.0	2380.0	43.0	2442.0	20.0	2442.0	20.0	3.7
Zircon_28	665	40.9	0.06	0.0715	0.0015	1.6100	0.0760	0.1624	0.0057	0.67	970.0	32.0	974.0	30.0	963.0	31.0	970.0	32.0	0.4
Zircon_29	146.1	95.4	0.65	0.0525	0.0030	0.3240	0.0220	0.0455	0.0015	-0.02	286.8	9.4	284.0	17.0	381.0	61.0	286.8	9.4	-1.0
Zircon_30	149	133.9	0.90	0.0524	0.0055	0.3100	0.0330	0.0426	0.0017	-0.16	268.7	10.0	273.0	25.0	530.0	110.0	268.7	10.0	1.6
Zircon_31	156.7	130	0.83	0.0528	0.0031	0.3490	0.0250	0.0478	0.0017	0.12	301.1	11.0	305.0	18.0	397.0	68.0	301.1	11.0	1.3
Zircon_32	92	24.8	0.27	0.0793	0.0026	2.3780	0.1300	0.2126	0.0075	0.42	1242.0	40.0	1242.0	40.0	1196.0	36.0	1242.0	40.0	0.0
Zircon_33	115	128	1.11	0.0536	0.0036	0.3390	0.0260	0.0468	0.0018	-0.11	294.7	11.0	295.0	20.0	396.0	76.0	294.7	11.0	0.1
Zircon_34	167.9	179.3	1.07	0.0529	0.0027	0.3380	0.0230	0.0465	0.0017	0.48	292.8	10.0	294.0	18.0	371.0	67.0	292.8	10.0	0.4
Zircon_35	41.7	21.8	0.52	0.0529	0.0061	0.3450	0.0370	0.0481	0.0022	0.00	303.0	14.0	302.0	29.0	540.0	110.0	303.0	14.0	-0.3
Zircon_36	201	152.1	0.76	0.0520	0.0028	0.3650	0.0240	0.0503	0.0017	0.04	316.1	10.0	315.0	18.0	336.0	60.0	316.1	10.0	-0.3
Zircon_37	78	64.13	0.82	0.0517	0.0047	0.3140	0.0290	0.0434	0.0017	-0.05	273.6	11.0	274.0	22.0	470.0	85.0	273.6	11.0	0.1
Zircon_38	74	51.2	0.69	0.0513	0.0043	0.3270	0.0300	0.0450	0.0017	-0.06	283.6	11.0	285.0	22.0	434.0	77.0	283.6	11.0	0.5
Zircon_39	116.4	140.3	1.21	0.0519	0.0039	0.3460	0.0290	0.0470	0.0017	-0.03	296.1	11.0	299.0	22.0	414.0	77.0	296.1	11.0	1.0
Zircon_40	29.3	15.41	0.53	0.0637	0.0064	0.9050	0.0910	0.1018	0.0048	-0.02	624.0	28.0	658.0	46.0	750.0	130.0	624.0	28.0	5.2
Zircon_41	152.1	97.6	0.64	0.0527	0.0036	0.3450	0.0280	0.0465	0.0017	0.13	295.2	11.0	300.0	21.0	423.0	72.0	295.2	11.0	1.6
Zircon_42	111.1	43.1	0.39	0.0799	0.0029	2.1880	0.1200	0.1991	0.0064	0.18	1170.0	35.0	1174.0	39.0	1166.0	47.0	1170.0	35.0	0.3
Zircon_43	113.7	119.3	1.05	0.0593	0.0029	0.7990	0.0500	0.0969	0.0033	-0.03	598.0	19.0	600.0	27.0	609.0	64.0	598.0	19.0	0.3
Zircon_44	82.5	79.6	0.96	0.0487	0.0083	0.3130	0.0510	0.0459	0.0023	-0.39	289.0	14.0	273.0	38.0	680.0	270.0	289.0	14.0	-5.9
Zircon_45	60.8	36.2	0.60	0.0543	0.0048	0.3430	0.0300	0.0465	0.0024	0.13	293.0	15.0	297.0	23.0	539.0	79.0	293.0	15.0	1.3
Zircon_46	50.8	21.2	0.42	0.0537	0.0086	0.3820	0.0580	0.0520	0.0027	-0.28	327.0	17.0	323.0	43.0	540.0	110.0	327.0	17.0	-1.2
Zircon_47	133.9	49.2	0.37	0.0542	0.0039	0.3710	0.0280	0.0506	0.0019	0.02	318.2	11.0	319.0	21.0	466.0	71.0	318.2	11.0	0.3
Zircon_48	574	259	0.45	0.0524	0.0019	0.2739	0.0150	0.0384	0.0013	0.33	243.0	8.1	246.6	13.0	322.0	51.0	243.0	8.1	1.5
Zircon_49	147.7	105.2	0.71	0.0532	0.0036	0.3310	0.0250	0.0460	0.0017	0.08	290.2	10.0	291.0	20.0	419.0	71.0	290.2	10.0	0.3
Zircon_50	345	39.9	0.12	0.0742	0.0018	1.8250	0.0950	0.1786	0.0062	0.74	1059.0	34.0	1057.0	36.0	1048.0	26.0	1059.0	34.0	-0.2
Zircon_51	262.1	255	0.97	0.0521	0.0034	0.3650	0.0280	0.0499	0.0017	0.19	314.0	10.0	315.0	21.0	377.0	77.0	314.0	10.0	0.3

MUESTRA						Relacione	es Corregio	las ²						Eda	ades Corregid	las (Ma)			
RMO-04	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_52	118.1	85.9	0.73	0.0513	0.0044	0.3400	0.0310	0.0476	0.0018	-0.20	299.8	11.0	296.0	23.0	410.0	120.0	299.8	11.0	-1.3
Zircon_53	66.4	36.4	0.55	0.0522	0.0046	0.3320	0.0300	0.0460	0.0018	-0.08	290.0	11.0	293.0	23.0	500.0	92.0	290.0	11.0	1.0
Zircon_54	112.8	51.8	0.46	0.0755	0.0021	1.9630	0.1000	0.1873	0.0060	0.38	1107.0	33.0	1101.0	36.0	1063.0	41.0	1107.0	33.0	-0.5
Zircon_55	183.6	105.7	0.58	0.0541	0.0034	0.3820	0.0280	0.0512	0.0019	-0.15	321.6	11.0	327.0	21.0	357.0	66.0	321.6	11.0	1.7
Zircon_56	110.1	56.4	0.51	0.0624	0.0045	0.7620	0.0630	0.0878	0.0041	0.32	542.0	24.0	573.0	36.0	700.0	120.0	542.0	24.0	5.4
Zircon_57	122	85.5	0.70	0.0540	0.0072	0.3530	0.0470	0.0471	0.0020	-0.08	296.8	12.0	304.0	36.0	410.0	120.0	296.8	12.0	2.4
Zircon_58	165.6	101.78	0.61	0.0770	0.0022	2.1530	0.1100	0.1979	0.0059	0.27	1163.8	32.0	1164.0	36.0	1136.0	30.0	1163.8	32.0	0.0
Zircon_59	66	39.8	0.60	0.0852	0.0058	2.3800	0.1900	0.2037	0.0075	0.43	1195.0	40.0	1234.0	56.0	1312.0	46.0	1195.0	40.0	3.2
Zircon_60	79.7	56.8	0.71	0.0494	0.0049	0.3350	0.0350	0.0468	0.0017	-0.05	295.6	11.0	294.0	27.0	570.0	110.0	295.6	11.0	-0.5
Zircon_61	99.4	79.6	0.80	0.0507	0.0036	0.3370	0.0270	0.0480	0.0017	0.06	302.1	10.0	298.0	21.0	434.0	71.0	302.1	10.0	-1.4
Zircon_62	75.2	31.8	0.42	0.0519	0.0059	0.3270	0.0390	0.0455	0.0018	0.06	287.1	11.0	285.0	30.0	460.0	120.0	287.1	11.0	-0.7
Zircon_63	47	20.94	0.45	0.0514	0.0046	0.3810	0.0390	0.0519	0.0020	0.24	326.4	12.0	326.0	29.0	510.0	100.0	326.4	12.0	-0.1
Zircon_64	156.6	145.7	0.93	0.0524	0.0032	0.3170	0.0220	0.0442	0.0015	-0.12	279.8	9.1	278.0	17.0	415.0	73.0	279.8	9.1	-0.6
Zircon_65	160	104.3	0.65	0.0716	0.0029	1.6080	0.0910	0.1636	0.0052	-0.24	977.0	29.0	977.0	38.0	996.0	62.0	977.0	29.0	0.0
Zircon_66	37.7	16.58	0.44	0.0542	0.0073	0.3640	0.0500	0.0494	0.0024	-0.04	311.0	14.0	311.0	38.0	760.0	130.0	311.0	14.0	0.0
Zircon_67	75.1	40.9	0.54	0.0507	0.0054	0.3190	0.0350	0.0460	0.0020	0.05	289.9	12.0	278.0	27.0	395.0	87.0	289.9	12.0	-4.3
Zircon_68	415	115.9	0.28	0.0800	0.0017	2.0870	0.0980	0.1945	0.0059	-0.04	1145.7	32.0	1144.0	33.0	1181.0	29.0	1145.7	32.0	-0.1
Zircon_69	171.3	138.6	0.81	0.0531	0.0031	0.3470	0.0250	0.0484	0.0017	0.19	304.6	10.0	301.0	19.0	416.0	84.0	304.6	10.0	-1.2
Zircon_70	311	197.7	0.64	0.0523	0.0023	0.3470	0.0200	0.0488	0.0016	0.01	307.4	9.7	303.0	16.0	322.0	53.0	307.4	9.7	-1.5
Zircon_71	213.2	88.7	0.42	0.0767	0.0021	1.9130	0.0970	0.1840	0.0057	0.38	1088.0	31.0	1085.0	34.0	1098.0	33.0	1088.0	31.0	-0.3
Zircon_72	80.7	47.75	0.59	0.0527	0.0056	0.3170	0.0340	0.0446	0.0022	-0.04	281.0	14.0	281.0	25.0	470.0	100.0	281.0	14.0	0.0
Zircon_73	82.8	45	0.54	0.0514	0.0044	0.3580	0.0360	0.0507	0.0021	-0.02	318.6	13.0	307.0	26.0	342.0	81.0	318.6	13.0	-3.8
Zircon_74	104.5	59.6	0.57	0.0541	0.0053	0.3220	0.0330	0.0450	0.0018	-0.04	283.5	11.0	281.0	25.0	470.0	130.0	283.5	11.0	-0.9
Zircon_75	54.3	36.2	0.67	0.0568	0.0037	0.6960	0.0530	0.0902	0.0033	0.04	557.0	20.0	532.0	32.0	508.0	80.0	557.0	20.0	-4.7
Zircon_76	59.4	17.26	0.29	0.0523	0.0053	0.3770	0.0400	0.0510	0.0021	-0.03	320.4	13.0	321.0	30.0	542.0	96.0	320.4	13.0	0.2
Zircon_77	66.7	47.8	0.72	0.0513	0.0041	0.3180	0.0280	0.0446	0.0016	-0.13	281.2	10.0	284.0	22.0	490.0	92.0	281.2	10.0	1.0

MUESTRA						Relacione	es Corregio	das ²						Eda	ades Corregio	las (Ma)			
RMO-04	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σ abs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	Mejor Edad (Ma)	±2σ	Disc %
Zircon_78	36.72	14.14	0.39	0.0519	0.0051	0.3660	0.0390	0.0508	0.0023	0.15	319.0	14.0	324.0	26.0	454.0	88.0	319.0	14.0	1.5
Zircon_79	109.3	53.1	0.49	0.0528	0.0039	0.3260	0.0260	0.0461	0.0015	-0.11	290.4	9.5	287.0	20.0	417.0	62.0	290.4	9.5	-1.2
Zircon_80	90.9	78.9	0.87	0.0523	0.0048	0.3350	0.0310	0.0465	0.0019	0.01	292.9	12.0	295.0	25.0	439.0	88.0	292.9	12.0	0.7
Zircon_81	35.7	63.3	1.77	0.0617	0.0069	0.8250	0.0870	0.1015	0.0041	-0.23	623.0	24.0	620.0	52.0	660.0	120.0	623.0	24.0	-0.5
Zircon_82	151.4	69.7	0.46	0.0522	0.0033	0.3170	0.0250	0.0449	0.0016	0.12	283.1	9.7	278.0	19.0	305.0	61.0	283.1	9.7	-1.8
Zircon_83	67.7	46.6	0.69	0.0723	0.0037	1.7250	0.1100	0.1708	0.0065	-0.17	1016.0	35.0	1016.0	40.0	1103.0	69.0	1016.0	35.0	0.0
Zircon_84	85.66	58	0.68	0.0523	0.0065	0.3050	0.0450	0.0398	0.0021	0.26	252.0	13.0	265.0	34.0	620.0	140.0	252.0	13.0	4.9
Zircon_85	52.7	14.33	0.27	0.0520	0.0055	0.3700	0.0420	0.0518	0.0020	0.09	325.6	12.0	324.0	29.0	540.0	120.0	325.6	12.0	-0.5
Zircon_86	299	76.2	0.25	0.0516	0.0023	0.3120	0.0190	0.0439	0.0014	0.23	276.9	8.6	275.0	15.0	302.0	43.0	276.9	8.6	-0.7
Zircon_87	67.9	54.4	0.80	0.0522	0.0049	0.3490	0.0390	0.0491	0.0020	0.03	308.7	12.0	306.0	28.0	510.0	110.0	308.7	12.0	-0.9
Zircon_88	69.5	55.2	0.79	0.0517	0.0050	0.3220	0.0330	0.0458	0.0021	0.14	289.0	13.0	286.0	24.0	410.0	130.0	289.0	13.0	-1.0
Zircon_89	79.7	75.1	0.94	0.0534	0.0051	0.3660	0.0370	0.0510	0.0019	0.12	320.8	12.0	320.0	26.0	435.0	96.0	320.8	12.0	-0.3
Zircon_90	157.7	59.2	0.38	0.0707	0.0020	1.5380	0.0810	0.1591	0.0052	0.36	952.0	29.0	944.0	32.0	926.0	37.0	952.0	29.0	-0.8
Zircon_91	133.7	83	0.62	0.0510	0.0037	0.3180	0.0280	0.0445	0.0017	0.11	280.7	10.0	279.0	22.0	390.0	80.0	280.7	10.0	-0.6
Zircon_92	88.3	31.9	0.36	0.0506	0.0036	0.3270	0.0260	0.0461	0.0017	0.15	290.8	11.0	288.0	19.0	393.0	50.0	290.8	11.0	-1.0
Zircon_93	53	36.39	0.69	0.0524	0.0067	0.2980	0.0370	0.0408	0.0021	0.05	258.0	13.0	262.0	29.0	490.0	130.0	258.0	13.0	1.5
Zircon_94	48.2	28.4	0.59	0.0527	0.0066	0.2900	0.0350	0.0404	0.0017	-0.16	255.1	11.0	258.0	28.0	630.0	120.0	255.1	11.0	1.1
Zircon_95	82.6	32.1	0.39	0.0525	0.0038	0.3410	0.0260	0.0467	0.0019	-0.19	293.9	12.0	297.0	20.0	374.0	67.0	293.9	12.0	1.0
Zircon_96	74.6	47.2	0.63	0.0521	0.0047	0.3170	0.0300	0.0433	0.0015	-0.20	273.2	9.5	277.0	23.0	433.0	84.0	273.2	9.5	1.4
Zircon_97	58.9	46.6	0.79	0.0507	0.0044	0.3160	0.0320	0.0433	0.0021	0.43	273.0	13.0	277.0	25.0	450.0	140.0	273.0	13.0	1.4
Zircon_98	72.4	30.4	0.42	0.0504	0.0035	0.3080	0.0220	0.0427	0.0015	-0.03	269.4	9.6	272.0	17.0	391.0	70.0	269.4	9.6	1.0
Zircon_99	80.2	34.7	0.43	0.0552	0.0058	0.3300	0.0360	0.0432	0.0020	-0.06	272.8	13.0	288.0	27.0	425.0	87.0	272.8	13.0	5.3
Zircon_100	115.9	74.1	0.64	0.0516	0.0034	0.2880	0.0210	0.0406	0.0015	-0.11	256.8	9.0	260.0	17.0	382.0	78.0	256.8	9.0	1.2

1: Concentraciones de U y Th fueron calculados empleando un estándar externo como en Paton et al., 2010, Geochemistry, Geophysics, Geosystems

2: Las incertidumbres propagadas se reportan en un nivel de 2-sigma de acuerdo con Paton et al., 2010, Geochemistry, Geophysics, Geosystems

La relación 207Pb/206Pb, edades y errores son calculados de acuerdo a Petrus and Kamber, 2012, Geostandards Geoanalytical Research

							Relacio	nes Corregio	das²						E	dades	Corregidas (N	Vla)			
	U (ppm) ¹	Th (ppm)1	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor Edad (Ma)	±2s	Disc %
Zr_ABM-11a	730	317	0.43	0.0525	0.0019	0.2840	0.0130	0.0395	0.0006	0.0108	0.0006	0.118	249.6	3.9	253.7	10	298	79	249.6	3.9	1.62
Zr_ABM-11a_1	2400	300	0.13	0.0586	0.0045	0.3080	0.0210	0.0380	0.0007	0.0146	0.0008	-0.208	240.5	4.6	272.6	16	548	140	240.5	4.6	11.78
Zr_ABM-11a_2	570	198	0.35	0.0578	0.0086	0.3440	0.0500	0.0433	0.0007	0.0146	0.0014	-0.478	273.1	4.5	300	34	480	230	273.1	4.5	8.97
Zr_ABM-11a_3	490	181	0.37	0.0530	0.0043	0.2980	0.0220	0.0412	0.0007	0.0113	0.0010	-0.121	260.3	4.2	264.1	17	305	140	260.3	4.2	1.44
Zr_ABM-11a_4	370	102	0.28	0.0528	0.0024	0.2760	0.0140	0.0381	0.0008	0.0119	0.0007	-0.174	240.8	4.7	247	11	320	100	240.8	4.7	2.51
Zr_ABM-11a_5	433	127	0.29	0.0504	0.0031	0.2710	0.0300	0.0388	0.0012	0.0109	0.0015	0.091	245.6	7.3	244.6	21	230	120	245.6	7.3	-0.41
Zr_ABM-11a_6	81	28.6	0.35	0.0524	0.0120	0.2840	0.0270	0.0387	0.0029	0.0101	0.0011	0.123	245	18	252	21	310	310	245.0	18.0	2.78
Zr_ABM-11a_7	716	309	0.43	0.0520	0.0020	0.2586	0.0120	0.0363	0.0005	0.0112	0.0005	0.041	230.1	3.4	233.2	9.8	280	90	230.1	3.4	1.33
Zr_ABM-11a_8	237	82	0.35	0.0514	0.0026	0.2650	0.0130	0.0371	0.0009	0.0112	0.0006	0.286	234.5	5.6	238.2	10	250	110	234.5	5.6	1.55
Zr_ABM-11a_9	173	51.8	0.30	0.0602	0.0035	0.2790	0.0210	0.0348	0.0008	0.0109	0.0012	0.006	220.6	4.9	252	16	560	120	220.6	4.9	12.46
Zr_ABM-11a_10	423	167	0.39	0.0508	0.0051	0.2640	0.0650	0.0378	0.0019	0.0091	0.0015	0.000	239.3	12	237.5	28	238	150	239.3	12.0	-0.76
Zr_ABM-11a_11	250	83.8	0.34	0.0512	0.0025	0.2670	0.0130	0.0377	0.0010	0.0118	0.0006	-0.032	238.3	6	243	11	260	110	238.3	6.0	1.93
Zr_ABM-11a_12	285	84.6	0.30	0.0505	0.0021	0.2721	0.0120	0.0394	0.0006	0.0123	0.0007	-0.084	249	3.8	244.1	8.9	205	89	249.0	3.8	-2.01
Zr_ABM-11a_13	429	180	0.42	0.0583	0.0028	0.2970	0.0170	0.0373	0.0004	0.0093	0.0008	0.043	236.3	2.7	264	13	540	96	236.3	2.7	10.49
Zr_ABM-11a_14	616	258	0.42	0.0583	0.0025	0.2940	0.0140	0.0367	0.0006	0.0127	0.0006	-0.320	232.3	3.7	261	11	540	95	232.3	3.7	11.00
Zr_ABM-11a_15	475	181	0.38	0.0660	0.0023	0.3420	0.0140	0.0382	0.0005	0.0139	0.0006	-0.380	241.4	3.1	298	10	780	81	241.4	3.1	18.99
Zr_ABM-11a_16	309	147	0.48	0.0513	0.0023	0.2840	0.0140	0.0399	0.0007	0.0132	0.0007	-0.053	252.4	4	253	11	242	97	252.4	4.0	0.24
Zr_ABM-11a_17	591	270	0.46	0.0556	0.0023	0.2830	0.0120	0.0374	0.0006	0.0107	0.0005	-0.079	236.6	3.6	252	9.9	410	84	236.6	3.6	6.11
Zr_ABM-11a_18	710	304	0.43	0.0512	0.0073	0.2580	0.0750	0.0364	0.0023	0.0113	0.0042	0.287	230.4	14	233	49	240	220	230.4	14.0	1.12
Zr_ABM-11a_19	770	358	0.46	0.0509	0.0020	0.2720	0.0130	0.0391	0.0008	0.0107	0.0007	0.330	247.4	4.6	244	10	250	88	247.4	4.6	-1.39
Zr_ABM-11a_20	540	217	0.40	0.0612	0.0043	0.3170	0.0250	0.0377	0.0007	0.0157	0.0010	0.055	238.2	4.2	279	19	600	130	238.2	4.2	14.62
Zr_ABM-11a_21	950	467	0.49	0.0540	0.0016	0.2806	0.0100	0.0378	0.0005	0.0117	0.0005	-0.057	239.3	2.8	251	7.7	372	66	239.3	2.8	4.66
Zr_ABM-11a_22	620	259	0.42	0.0599	0.0085	0.2860	0.0350	0.0345	0.0008	0.0124	0.0007	0.169	218.4	5	255	26	570	200	218.4	5.0	14.35
Zr_ABM-11a_23	6690	2690	0.40	0.2521	0.0170	0.3455	0.0280	0.0100	0.0016	0.0163	0.0009	0.673	63.8	10	301.2	20	3196	170	3196.0	10.0	78.82
Zr_ABM-11a_24	867	427	0.49	0.0544	0.0022	0.2750	0.0130	0.0369	0.0005	0.0126	0.0006	0.017	233.3	3.3	246.7	10	410	87	233.3	3.3	5.43

							Relacio	nes Corregio					E	dades	Corregidas (N	∕Ia)					
	U (ppm) ¹	Th (ppm)1	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor Edad (Ma)	±2s	Disc %
Zr_ABM-11a_25	882	391	0.44	0.0509	0.0017	0.2672	0.0110	0.0383	0.0005	0.0124	0.0005	-0.148	242.4	3.3	240.3	8.4	220	76	242.4	3.3	-0.87
Zr_ABM-11a_26	415	162	0.39	0.0560	0.0054	0.2930	0.0220	0.0380	0.0022	0.0080	0.0015	-0.022	240.1	14	261	17	420	170	240.1	14.0	8.01
Zr_ABM-11a_27	1430	1630	1.14	0.2523	0.0140	1.1530	0.0760	0.0335	0.0008	0.0198	0.0009	0.504	212.4	4.8	777	40	3200	130	3200.0	4.8	72.66
Zr_ABM-11a_28	936	592	0.63	0.0533	0.0016	0.2813	0.0110	0.0393	0.0006	0.0119	0.0005	0.055	248.6	3.5	251.6	8.4	334	65	248.6	3.5	1.19
Zr_ABM-11a_29	603	239	0.40	0.0507	0.0023	0.2650	0.0140	0.0378	0.0007	0.0126	0.0006	0.322	238.9	4.3	240.1	11	225	100	238.9	4.3	0.50
Zr_ABM-11a_30	743	287	0.39	0.0612	0.0042	0.3080	0.0250	0.0369	0.0005	0.0152	0.0013	0.179	233.4	3.3	273	18	633	120	233.4	3.3	14.51
Zr_ABM-11a_31	1079	688	0.64	0.0718	0.0120	0.3770	0.0780	0.0388	0.0012	0.0119	0.0039	0.502	245.4	7.3	324.8	46	977	180	245.4	7.3	24.45
Zr_ABM-11a_32	490	199	0.41	0.0532	0.0025	0.2710	0.0140	0.0375	0.0008	0.0136	0.0007	0.241	237.4	5.1	243.1	11	310	110	237.4	5.1	2.34
Zr_ABM-11a_33	362	136	0.38	0.0569	0.0120	0.3060	0.0750	0.0391	0.0009	0.0165	0.0041	0.227	247.2	5.7	270	49	440	260	247.2	5.7	8.44
Zr_ABM-11a_34	489	271	0.55	0.0506	0.0023	0.2790	0.0140	0.0399	0.0006	0.0123	0.0005	0.288	252.2	3.5	249	11	200	100	252.2	3.5	-1.29
Zr_ABM-11b	880	367	0.42	0.0509	0.0017	0.2692	0.0110	0.0383	0.0005	0.0128	0.0005	-0.084	242.3	3.2	241.9	8.4	222	75	242.3	3.2	-0.17
Zr_ABM-11b_1	124	38.6	0.31	0.0513	0.0053	0.2490	0.0240	0.0354	0.0010	0.0126	0.0015	-0.029	224.2	6	226	19	210	210	224.2	6.0	0.80
Zr_ABM-11b_2	655	75.2	0.11	0.0817	0.0020	2.3470	0.0820	0.2107	0.0031	0.0490	0.0031	0.295	1232.5	16	1226	25	1236	48	1232.5	16.0	-0.53
Zr_ABM-11b_3	525	190	0.36	0.0518	0.0021	0.2640	0.0130	0.0376	0.0006	0.0123	0.0006	0.241	237.8	3.9	238.5	11	256	89	237.8	3.9	0.29
Zr_ABM-11b_4	203	108	0.53	0.0574	0.0035	0.2910	0.0180	0.0377	0.0008	0.0143	0.0010	0.249	238.5	4.9	265	13	460	120	238.5	4.9	10.00
Zr_ABM-11b_5	899	407	0.45	0.0501	0.0018	0.2714	0.0120	0.0391	0.0006	0.0127	0.0005	0.068	247.1	3.4	244.6	9.4	189	78	247.1	3.4	-1.02
Zr_ABM-11b_6	687	211	0.31	0.0502	0.0019	0.2686	0.0120	0.0389	0.0006	0.0127	0.0006	-0.088	245.9	3.5	241.2	9.7	205	79	245.9	3.5	-1.95
Zr_ABM-11b_7	450	156.5	0.35	0.0503	0.0020	0.2705	0.0120	0.0388	0.0006	0.0128	0.0006	-0.272	245.1	3.9	242.8	9.2	192	89	245.1	3.9	-0.95
Zr_ABM-11b_8	463	226.6	0.49	0.0541	0.0025	0.3990	0.0180	0.0535	0.0009	0.0175	0.0007	-0.147	335.9	5.4	340	13	364	100	335.9	5.4	1.21
Zr_ABM-11b_9	705	366	0.52	0.0497	0.0019	0.2713	0.0110	0.0395	0.0006	0.0130	0.0005	-0.139	249.5	3.7	243.5	8.6	169	83	249.5	3.7	-2.46
Zr_ABM-11b_10	332	133	0.40	0.0515	0.0024	0.2790	0.0140	0.0393	0.0006	0.0134	0.0007	-0.185	248.7	4	251	11	240	100	248.7	4.0	0.92
Zr_ABM-11b_11	679	318	0.47	0.0531	0.0019	0.2800	0.0110	0.0387	0.0006	0.0131	0.0006	0.151	244.8	3.7	250.8	8.4	314	74	244.8	3.7	2.39
Zr_ABM-11b_12	313	162.7	0.52	0.0449	0.0024	0.2490	0.0160	0.0398	0.0008	0.0116	0.0007	0.313	251.7	5.1	225	13	-49	110	251.7	5.1	-11.87
Zr_ABM-11b_13	847	396	0.47	0.0518	0.0019	0.2779	0.0120	0.0390	0.0006	0.0128	0.0005	0.098	246.3	3.9	248.7	9.2	270	80	246.3	3.9	0.97
Zr_ABM-11b_14	627	239	0.38	0.0515	0.0018	0.2737	0.0120	0.0386	0.0006	0.0121	0.0006	0.132	243.9	3.5	245.4	9.5	249	80	243.9	3.5	0.61

							Relacio	nes Corregio	das²						E	dades	Corregidas (N	∕Ia)			
	U (ppm) ¹	Th (ppm)1	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor Edad (Ma)	±2s	Disc %
Zr_ABM-11b_15	458	166	0.36	0.0503	0.0021	0.2723	0.0120	0.0394	0.0006	0.0131	0.0006	-0.095	249	3.9	244.2	9.6	194	93	249.0	3.9	-1.97
Zr_ABM-11b_16	677	276	0.41	0.0519	0.0020	0.2750	0.0120	0.0386	0.0006	0.0121	0.0005	0.150	244.2	3.8	247.7	9.2	262	85	244.2	3.8	1.41
Zr_ABM-11b_17	724	306	0.42	0.0527	0.0019	0.2770	0.0110	0.0386	0.0006	0.0088	0.0005	-0.021	244	3.9	247.9	8.9	300	76	244.0	3.9	1.57
Zr_ABM-11b_18	1213	1051	0.87	0.1091	0.0060	0.4580	0.0210	0.0305	0.0009	0.0113	0.0006	-0.249	193.9	5.8	382.8	15	1789	120	193.9	5.8	49.35
Zr_ABM-11b_19	174	49.3	0.28	0.0522	0.0028	0.2790	0.0160	0.0386	0.0007	0.0118	0.0008	0.474	244.1	4.2	248	13	250	110	244.1	4.2	1.57
Zr_ABM-11b_20	487	202	0.41	0.0507	0.0023	0.2683	0.0130	0.0387	0.0006	0.0106	0.0005	-0.035	244.4	3.9	241	10	206	100	244.4	3.9	-1.41
Zr_ABM-11b_21	798	379	0.47	0.0515	0.0019	0.2720	0.0120	0.0384	0.0005	0.0083	0.0005	0.223	242.8	3	244.3	9	257	84	242.8	3.0	0.61
Zr_ABM-11b_22	776	422	0.54	0.0550	0.0051	0.2850	0.0340	0.0378	0.0008	0.0107	0.0013	0.009	239	4.6	254.5	25	430	160	239.0	4.6	6.09
Zr_ABM-11b_23	361	169	0.47	0.0707	0.0048	0.4740	0.0340	0.0494	0.0008	0.0171	0.0013	0.463	310.5	5.2	392	23	900	140	310.5	5.2	20.79
Zr_ABM-11b_24	743	295	0.40	0.0520	0.0021	0.2770	0.0130	0.0393	0.0006	0.0115	0.0004	0.165	248.2	3.6	248.1	10	285	92	248.2	3.6	-0.04
Zr_ABM-11b_25	2210	2480	1.12	0.1922	0.0078	0.6620	0.0310	0.0257	0.0007	0.0119	0.0005	0.047	163.3	4.6	514	19	2745	72	2745.0	4.6	68.23
Zr_ABM-11b_26	722	367	0.51	0.0499	0.0017	0.2692	0.0100	0.0383	0.0005	0.0122	0.0005	-0.340	242	3.3	241.9	8.4	214	81	242.0	3.3	-0.04
Zr_ABM-11b_27	28.9	49.8	1.72	0.0693	0.0057	1.5800	0.1200	0.1598	0.0045	0.0440	0.0021	-0.033	955	25	964	47	920	170	955.0	25.0	0.93
Zr_ABM-11b_28	970	538	0.55	0.0518	0.0016	0.2925	0.0110	0.0407	0.0005	0.0119	0.0004	0.124	256.9	2.9	260.4	8.4	283	65	256.9	2.9	1.34
Zr_ABM-11b_29	1460	1320	0.90	0.1950	0.0150	0.8430	0.0650	0.0313	0.0008	0.0183	0.0011	0.026	198.4	5.1	619	36	2730	130	2730.0	5.1	67.95
Zr_ABM-11b_30	651	213	0.33	0.0509	0.0021	0.2740	0.0130	0.0393	0.0005	0.0122	0.0006	0.014	248.7	3.3	245.5	10	245	94	248.7	3.3	-1.30
Zr_ABM-11b_31	454	192	0.42	0.0514	0.0027	0.2750	0.0140	0.0391	0.0007	0.0122	0.0006	0.000	247	4.1	246	11	240	110	247.0	4.1	-0.41
Zr_ABM-11b_32	441	162	0.37	0.0522	0.0022	0.2753	0.0110	0.0388	0.0007	0.0116	0.0007	0.167	245.2	4.4	246.8	9.1	309	94	245.2	4.4	0.65
Zr_ABM-11b_33	473	169	0.36	0.0517	0.0021	0.2755	0.0120	0.0392	0.0008	0.0119	0.0006	-0.017	248.1	4.6	248.1	8.9	253	88	248.1	4.6	0.00
Zr_ABM-11b_34	341	187	0.55	0.0734	0.0043	0.3090	0.0170	0.0308	0.0009	0.0112	0.0007	-0.142	195.5	5.7	274	14	990	110	195.5	5.7	28.65
Zr ABM-13	531	196.7	0.37	0.0524	0.0020	0.2632	0.0100	0.0369	0.0007	0.0116	0.0006	0.110	233.4	4.1	237	8.9	287	83	233.4	4.1	1.52
 Zr ABM-13 1	392	169	0.43	0.0496	0.0028	0.2570	0.0160	0.0374	0.0008	0.0113	0.0007	0.040	236.7	4.8	232	13	150	130	236.7	4.8	-2.03
 Zr_ABM-13_2	382	187	0.49	0.1650	0.0710	1.0400	7.8000	0.0468	0.0660	0.0340	0.3000	0.936	295	310	714	360	2450	270	295.0	310.0	58.68
Zr_ABM-13_3	355	101	0.28	0.0501	0.0021	0.2590	0.0130	0.0372	0.0008	0.0123	0.0007	-0.277	235.5	4.6	234	9.8	190	95	235.5	4.6	-0.64
Zr_ABM-13_4	588	290	0.49	0.0526	0.0025	0.2880	0.0140	0.0404	0.0007	0.0110	0.0007	0.247	255.4	4.6	256.9	11	297	96	255.4	4.6	0.58

							Relacio	nes Corregio	das²						E	dades	Corregidas (N	vla)			
	U (ppm) ¹	Th (ppm)1	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor Edad (Ma)	±2s	Disc %
Zr_ABM-13_5	553	196	0.35	0.0513	0.0045	0.2550	0.0230	0.0369	0.0010	0.0118	0.0012	-0.007	233.3	6.3	230	18	240	170	233.3	6.3	-1.43
Zr_ABM-13_6	608	215	0.35	0.0509	0.0020	0.2650	0.0120	0.0377	0.0007	0.0118	0.0006	-0.067	238.2	4.4	238.6	9.5	220	86	238.2	4.4	0.17
Zr_ABM-13_7	383	123	0.32	0.0534	0.0021	0.2849	0.0140	0.0393	0.0009	0.0124	0.0007	0.283	248.5	5.7	254.3	11	333	91	248.5	5.7	2.28
Zr_ABM-13_8	570	233	0.41	0.0530	0.0020	0.2760	0.0110	0.0381	0.0005	0.0118	0.0006	-0.162	241.1	3.3	247.4	9	344	81	241.1	3.3	2.55
Zr_ABM-13_9	319	168	0.53	0.0489	0.0029	0.2610	0.0150	0.0381	0.0008	0.0125	0.0006	-0.181	241.2	4.8	235	12	150	130	241.2	4.8	-2.64
Zr_ABM-13_10	335	136	0.41	0.0511	0.0027	0.2870	0.0170	0.0409	0.0006	0.0127	0.0007	0.114	258.3	3.8	257	13	260	120	258.3	3.8	-0.51
Zr_ABM-13_11	831	252	0.30	0.0681	0.0730	0.2960	2.1000	0.0314	0.0180	0.0114	0.1400	0.323	199	110	263	310	890	400	199.0	110.0	24.33
Zr_ABM-13_12	650	236	0.36	0.0729	0.0190	0.3710	0.1200	0.0368	0.0008	0.0151	0.0021	0.047	233.2	5	319	65	950	260	233.2	5.0	26.90
Zr_ABM-13_13	671	317	0.47	0.0562	0.0034	0.3010	0.0210	0.0386	0.0006	0.0132	0.0009	0.565	243.8	3.6	267.1	15	446	110	243.8	3.6	8.72
Zr_ABM-13_14	760	312	0.41	0.0521	0.0021	0.2680	0.0150	0.0384	0.0009	0.0126	0.0006	0.309	242.6	5.3	241	13	270	91	242.6	5.3	-0.66
Zr_ABM-13_15	273	101.6	0.37	0.0522	0.0027	0.2840	0.0160	0.0390	0.0007	0.0125	0.0006	0.176	246.6	4.4	253	13	290	110	246.6	4.4	2.53
Zr_ABM-13_16	407	129	0.32	0.0597	0.0027	0.3190	0.0160	0.0390	0.0007	0.0140	0.0006	0.162	246.9	4.2	281	12	578	100	246.9	4.2	12.14
Zr_ABM-13_17	925	396	0.43	0.0518	0.0014	0.2833	0.0110	0.0397	0.0006	0.0123	0.0006	0.277	250.6	3.6	253.1	8.4	267	64	250.6	3.6	0.99
Zr_ABM-13_18	1349	234	0.17	0.0870	0.0089	1.5560	0.0750	0.1283	0.0047	0.0635	0.0030	0.023	778	27	952	28	1356	140	778.0	27.0	18.28
Zr_ABM-13_19	1210	1080	0.89	0.3500	0.0170	2.2080	0.1800	0.0464	0.0018	0.0504	0.0081	0.049	292.2	11	1191	47	3700	68	3700.0	11.0	75.47
Zr_ABM-13_20	47	21.8	0.46	0.0768	0.0037	2.2580	0.1100	0.2121	0.0049	0.0567	0.0039	0.040	1240	26	1204	35	1149	100	1240.0	26.0	-2.99
Zr_ABM-13_21	854	506	0.59	0.0511	0.0018	0.2710	0.0110	0.0394	0.0006	0.0120	0.0005	0.095	248.9	3.9	243.3	8.5	230	80	248.9	3.9	-2.30
Zr_ABM-13_22	845	402	0.48	0.0511	0.0019	0.2754	0.0120	0.0394	0.0008	0.0124	0.0008	0.207	249	5.1	246.8	9.5	242	85	249.0	5.1	-0.89
Zr_ABM-13_23	592	200.7	0.34	0.0509	0.0019	0.2750	0.0120	0.0392	0.0006	0.0124	0.0006	0.042	247.8	3.9	246.1	9.5	218	83	247.8	3.9	-0.69
Zr_ABM-13_24	68.5	23.8	0.35	0.0612	0.0056	0.3470	0.0350	0.0399	0.0014	0.0134	0.0012	0.274	252	8.5	298	26	560	190	252.0	8.5	15.44
Zr_ABM-13_25	434	141.1	0.33	0.0508	0.0019	0.2700	0.0120	0.0385	0.0007	0.0117	0.0007	0.283	243.5	4.5	243.6	9.4	218	86	243.5	4.5	0.04
Zr_ABM-13_26	892	353	0.40	0.0509	0.0013	0.2766	0.0097	0.0390	0.0005	0.0125	0.0005	0.146	246.7	3	247.8	7.8	229	60	246.7	3.0	0.44
Zr_ABM-13_27	374	24.4	0.07	0.0526	0.0025	0.3950	0.0180	0.0540	0.0012	0.0214	0.0027	0.377	339.1	7.6	337.8	13	323	100	339.1	7.6	-0.38
Zr_ABM-13_28	585	117.4	0.20	0.0804	0.0020	2.3060	0.0980	0.2067	0.0046	0.0650	0.0029	0.167	1214	25	1214	32	1204	54	1214.0	25.0	0.00
Zr_ABM-13_29	901	470	0.52	0.0509	0.0064	0.2706	0.0580	0.0382	0.0013	0.0110	0.0026	0.112	241.8	7.8	243	39	248	180	241.8	7.8	0.49

							Relacio	nes Corregi	das²						E	dades	Corregidas (I	vla)			
	U (ppm) ¹	Th (ppm)1	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor Edad (Ma)	±2s	Disc %
Zr_ABM-13_30	244	101.4	0.42	0.0829	0.0038	0.4580	0.0230	0.0401	0.0009	0.0200	0.0013	0.216	253.3	5.3	382	16	1288	100	253.3	5.3	33.69
Zr_ABM-13_31	622	240	0.39	0.0529	0.0022	0.2700	0.0120	0.0374	0.0005	0.0134	0.0007	0.150	236.6	3.3	242.2	9.9	308	86	236.6	3.3	2.31
Zr_ABM-13_32	416	135	0.32	0.0512	0.0022	0.2900	0.0140	0.0412	0.0007	0.0137	0.0008	0.159	259.9	4.6	259.5	11	247	98	259.9	4.6	-0.15
Zr_ABM-13_33	273	82.2	0.30	0.0489	0.0030	0.2660	0.0220	0.0392	0.0009	0.0131	0.0010	0.282	247.7	5.5	239	17	130	130	247.7	5.5	-3.64
Zr_ABM-13_34	627	191	0.30	0.0515	0.0019	0.2737	0.0120	0.0392	0.0006	0.0119	0.0006	0.119	247.8	3.8	245.5	9.3	250	85	247.8	3.8	-0.94

1: Concentraciones de U y Th fueron calculados empleando un estándar externo como en Paton et al., 2010, Geochemistry, Geophysics, Geosystems

2: Las incertidumbres propagadas se reportan en un nivel de 2-sigma de acuerdo con Paton et al., 2010, Geochemistry, Geophysics, Geosystems

La relación 207Pb/206Pb, edades y errores son calculados de acuerdo a Petrus and Kamber, 2012, Geostandards Geoanalytical Research

El diámetro de ablación utilizado fue de 23 micrómetros, usando el protocolo analítico modificado de Solari et al., 2010, Geostandards Geoanalytical Research

Muestra ABM-02	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final 206Pb/238U	±2s	Edad Final ²⁰⁷ Pb/ ²³⁵ U	±2s
ABM02-1	2.9830	0.081	0.1752	0.0045	0.41139	0.1231	0.003	1040.5	25	1406	20
ABM02-2	2.1930	0.053	0.1639	0.0043	0.00251	0.0963	0.0025	978	24	1179	17
ABM02-3	9.2600	0.33	0.2274	0.0063	0.56557	0.2918	0.0093	1321	33	2360	33
ABM02-4	4.0570	0.069	0.1805	0.0046	0.14333	0.1622	0.0029	1069.4	25	1646	14
ABM02-5	9.3600	0.13	0.1286	0.0034	0.22053	0.521	0.0087	780	19	2372	13
ABM02-6	16.3700	0.26	0.1792	0.0061	0.25444	0.658	0.018	1062	33	2906	16
ABM02-7	2.1510	0.035	0.1703	0.0043	0.13933	0.0907	0.0016	1013.4	24	1164	11
ABM02-8	13.4500	0.28	0.2635	0.0079	0.15941	0.3659	0.0093	1507	40	2708	20
ABM02-9	3.1050	0.073	0.1778	0.0046	0.10855	0.1266	0.0032	1055	25	1431	18
ABM02-10	2.7810	0.033	0.1861	0.0045	0.01755	0.1077	0.0013	1100.1	25	1349.7	8.8
ABM02-11	2.6900	0.057	0.173	0.0044	0.02832	0.1119	0.0026	1028.6	24	1326	16
ABM02-12	8.9700	0.21	0.1151	0.0042	0.25187	0.557	0.018	702	24	2335	22
ABM02-13	3.6290	0.073	0.1787	0.0047	0.03342	0.1469	0.0035	1060	26	1558	15
ABM02-14	3.6320	0.078	0.1865	0.0047	0.17376	0.1409	0.003	1102.5	26	1559	17
ABM02-15	2.0850	0.038	0.17	0.0043	0.36405	0.0884	0.0013	1012.9	23	1145	13
ABM02-16	4.6450	0.092	0.1851	0.0047	0.21652	0.1813	0.0035	1094.7	26	1757	16
ABM02-17	2.1170	0.02	0.17478	0.0042	0.39078	0.0872	0.00067	1038.4	23	1154.1	6.4
ABM02-18	2.7390	0.067	0.1751	0.0045	0.05100	0.1129	0.003	1040	25	1337	18
ABM02-19	3.2690	0.063	0.1773	0.0047	0.05046	0.1321	0.0031	1054	27	1472	15
ABM02-20	2.0260	0.079	0.1495	0.0046	0.83263	0.0979	0.0018	898	26	1130	25
ABM02-21	2.7400	0.058	0.1781	0.0043	0.20443	0.1104	0.0021	1056.7	24	1340	16
ABM02-22	3.8400	0.083	0.1802	0.0044	0.42759	0.1544	0.0028	1068.2	24	1601	17
ABM02-23	6.9770	0.086	0.207	0.0052	0.07840	0.2427	0.0038	1213	28	2111	10
ABM02-24	27.3800	0.78	0.3046	0.011	0.22737	0.659	0.023	1712	56	3402	29

Anexo VIII. Resultados de análisis Termocronológico U-Pb en apatitos detríticos

Muestra ABM-02	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final ²⁰⁶ Pb/ ²³⁸ U	±2s	Edad Final ²⁰⁷ Pb/ ²³⁵ U	±2s
ABM02-25	5.8330	0.056	0.1923	0.0046	0.24184	0.2181	0.0018	1133.8	25	1950.8	8.3
ABM02-26	9.7400	0.36	0.2318	0.0064	0.47905	0.3031	0.0087	1343	33	2410	34
ABM02-27	2.7330	0.029	0.1748	0.0043	0.30830	0.1127	0.0011	1038.7	23	1337	7.9
ABM02-28	3.3960	0.076	0.1796	0.0048	0.16694	0.1374	0.0032	1065	26	1509	19
ABM02-29	3.3540	0.042	0.1808	0.0045	0.08332	0.1339	0.0019	1071.2	24	1494.5	9.6
ABM02-30	2.0100	0.11	0.1606	0.005	0.02819	0.0906	0.0056	960	28	1113	38
ABM02-31	16.7000	0.37	0.2679	0.0079	0.34367	0.45	0.01	1529	40	2917	22
ABM02-32	4.3810	0.058	0.191	0.0047	0.04472	0.1649	0.0023	1126.6	26	1708	11
ABM02-33	2.6730	0.045	0.1723	0.0043	0.15871	0.1119	0.002	1024.9	24	1322	13
ABM02-34	4.4990	0.089	0.1865	0.0051	0.24443	0.1736	0.0038	1104	27	1729	16
ABM02-35	4.2310	0.071	0.1855	0.0048	0.18394	0.1641	0.0026	1097	26	1679	14
ABM02-36	2.6940	0.047	0.1784	0.0044	0.06908	0.1096	0.002	1058.2	24	1325	13
ABM02-37	9.0800	0.26	0.2226	0.007	0.05317	0.293	0.01	1295	37	2344	26
ABM02-38	30.0400	0.72	0.4004	0.013	0.23462	0.54	0.015	2169	58	3487	23
ABM02-39	4.6000	0.13	0.1875	0.0052	0.06100	0.1787	0.0058	1108	28	1752	24
ABM02-40	2.4350	0.037	0.1701	0.0043	0.40019	0.1028	0.0014	1012.8	24	1252	11
ABM02-41	9.7300	0.29	0.1134	0.0043	0.04855	0.628	0.026	692	25	2408	28
ABM02-42	4.9710	0.084	0.1952	0.0052	0.05438	0.1831	0.0037	1149	28	1813	14
ABM02-43	2.3370	0.065	0.061	0.002	0.29033	0.2774	0.0076	381.8	12	1221	20
ABM02-44	3.6720	0.066	0.1781	0.0046	0.02433	0.1484	0.0031	1056	25	1566	14
ABM02-45	2.1580	0.063	0.1643	0.0043	0.08046	0.0948	0.0028	980	24	1164	20
ABM02-46	3.6480	0.081	0.168	0.0046	0.25352	0.1578	0.0036	1001	25	1560	18
ABM02-47	3.8520	0.082	0.1874	0.0053	0.21662	0.1484	0.0035	1107	29	1601	17
ABM02-48	8.3300	0.14	0.2182	0.0057	0.09654	0.2738	0.0052	1272	30	2268	15
ABM02-49	2.4220	0.041	0.1708	0.0043	0.25032	0.1024	0.0019	1016.7	23	1251	12
ABM02-50	1.7290	0.029	0.1603	0.0039	0.29522	0.0775	0.0012	958.4	22	1020	11
ABM02-51	4.6000	0.087	0.1924	0.0049	0.18279	0.173	0.003	1134.3	26	1747	16

Muestra ABM-02	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final ²⁰⁶ Pb/ ²³⁸ U	±2s	Edad Final ²⁰⁷ Pb/ ²³⁵ U	±2s
ABM02-52	11.5900	0.28	0.136	0.0042	0.24708	0.611	0.016	822	24	2571	23
ABM02-53	3.0340	0.072	0.1494	0.0039	0.05668	0.145	0.0036	898	22	1416	19
ABM02-54	3.2620	0.048	0.1768	0.0044	0.31095	0.133	0.0018	1049.4	24	1471	12
ABM02-55	10.7600	0.12	0.2475	0.0063	0.27599	0.3123	0.0035	1425	33	2502	11
ABM02-56	14.0700	0.21	0.2654	0.0075	0.01429	0.3809	0.0082	1517	38	2755	14
ABM02-57	2.7820	0.06	0.1708	0.0045	0.27203	0.118	0.0022	1016	25	1349	16
ABM02-58	27.9000	0.83	0.2727	0.011	0.62814	0.749	0.02	1552	54	3409	29
ABM02-59	4.3200	0.1	0.1967	0.0053	0.42904	0.1593	0.0033	1157	29	1698	20
ABM02-60	6.7300	0.12	0.2064	0.0061	0.10423	0.2367	0.0065	1209	33	2076	17
ABM02-61	21.4400	0.3	0.322	0.0099	0.15895	0.484	0.012	1798	49	3159	14
ABM02-62	7.2900	0.14	0.2203	0.006	0.11383	0.2393	0.0054	1283	32	2145	17
ABM02-63	4.8160	0.054	0.1884	0.0048	0.11845	0.1857	0.0022	1113	26	1789.5	9.4
ABM02-64	1.9620	0.027	0.1692	0.0041	0.01064	0.0832	0.0013	1007.5	23	1101.8	9.1
ABM02-65	3.2870	0.062	0.1755	0.0047	0.10273	0.1355	0.0029	1042	26	1479	15
ABM02-R1	3.8970	0.064	0.1837	0.0046	0.02146	0.1535	0.0032	1087.1	25	1612	13
ABM02-R2	5.6440	0.094	0.1812	0.0049	0.10635	0.2239	0.005	1073	27	1921	14
ABM02-R3	2.3020	0.031	0.1772	0.0043	0.31172	0.0933	0.0013	1051.9	24	1212.3	9.6
ABM02-R4	6.0600	0.12	0.2103	0.0056	0.05560	0.2069	0.0047	1230	30	1983	17
ABM02-R5	5.1700	0.06	0.1979	0.0049	0.46913	0.1884	0.0022	1163.8	27	1846.9	9.9
ABM02-R6	2.7030	0.073	0.1605	0.0043	0.06127	0.1209	0.0037	959	24	1326	20
ABM02-R7	4.1080	0.059	0.1837	0.0047	0.32880	0.1616	0.0024	1087.2	25	1655	12
ABM02-R8	4.2400	0.33	0.1763	0.0053	0.90490	0.1707	0.0098	1046	29	1653	59
ABM02-R9	4.2970	0.074	0.1861	0.0049	0.33180	0.1677	0.0031	1100	27	1693	15
ABM02-R10	4.5410	0.077	0.1857	0.0046	0.49168	0.177	0.0023	1098.1	25	1739	14
ABM02-R11	5.6100	0.18	0.1978	0.0052	0.10932	0.204	0.0052	1164	28	1912	27
ABM02-R12	2.3410	0.046	0.1802	0.0046	0.33096	0.0936	0.0017	1069.3	24	1227	14
ABM02-R13	1.8190	0.036	0.1485	0.0037	0.10362	0.088	0.0017	892.6	21	1051	13

Muestra ABM-02	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final ²⁰⁶ Pb/ ²³⁸ U	±2s	Edad Final ²⁰⁷ Pb/ ²³⁵ U	±2s
ABM02-R14	9.9000	0.3	0.1262	0.0048	0.20231	0.582	0.027	766	27	2428	27
ABM02-R15	2.4250	0.042	0.1708	0.0043	0.12445	0.1026	0.002	1016.3	24	1249	13
ABM02-R16	1.9270	0.041	0.1643	0.0042	0.59140	0.0842	0.0015	980.3	23	1089	14
ABM02-R17	2.6210	0.051	0.1781	0.0045	0.31225	0.1061	0.0021	1056.5	25	1305	14
ABM02-R18	2.5040	0.085	0.1718	0.0047	0.04995	0.1053	0.0035	1022	26	1272	25
ABM02-R19	1.6470	0.018	0.16424	0.0039	0.51615	0.07214	0.00071	980.3	22	988	7.1
ABM02-R20	2.9160	0.039	0.16948	0.0041	0.05211	0.1246	0.0017	1009.2	22	1385	10
ABM02-R21	7.5800	0.16	0.1021	0.0034	0.09926	0.541	0.015	627	20	2182	19
ABM02-u1	13.2900	0.36	0.145	0.0057	0.30182	0.663	0.024	872	32	2699	26
ABM02-u2	2.9900	0.11	0.1607	0.0051	0.30917	0.134	0.0046	960	28	1402	26
ABM02-u3	17.0800	0.41	0.1831	0.0067	0.31036	0.677	0.021	1083	36	2938	24
ABM02-u4	34.4400	0.85	0.451	0.016	0.31648	0.559	0.017	2395	71	3633	24
ABM02-u5	2.4900	0.12	0.0608	0.0027	0.15016	0.301	0.02	380	16	1269	35
ABM02-u6	22.9900	0.91	0.275	0.014	0.26292	0.605	0.033	1561	70	3238	43
ABM02-u7	4.2180	0.073	0.1965	0.0053	0.24446	0.1552	0.0031	1156	29	1678	14
ABM02-u8	15.9300	0.54	0.2831	0.01	0.13242	0.399	0.015	1611	50	2868	33
ABM02-u9	1.9210	0.097	0.1439	0.0043	0.09920	0.0945	0.0049	866	24	1089	31
ABM02-u10	3.6300	0.15	0.1697	0.0052	0.04039	0.152	0.0072	1013	28	1548	33
ABM02-u11	13.5500	0.42	0.2603	0.0086	0.30268	0.374	0.01	1490	44	2716	30
ABM02-u12	6.9400	0.23	0.173	0.006	0.15542	0.291	0.012	1028	33	2101	30
ABM02-u13	10.5600	0.32	0.1281	0.0051	0.08838	0.609	0.027	776	29	2479	28
ABM02-u14	3.2530	0.072	0.17	0.0045	0.14210	0.1383	0.0035	1014	24	1470	17
ABM02-u15	14.2400	0.28	0.1543	0.0054	0.27512	0.673	0.02	925	30	2768	19
ABM02-u16	13.2100	0.42	0.2575	0.0087	0.19425	0.372	0.013	1480	46	2692	29
ABM02-u17	1.9490	0.081	0.1567	0.0048	0.14585	0.0899	0.0043	938	27	1096	29
ABM02-u18	4.6500	0.4	0.1951	0.0085	0.04191	0.175	0.016	1147	46	1750	74
ABM02-u19	5.1300	0.11	0.193	0.0051	0.07116	0.1948	0.0049	1137	28	1838	19

Muestra ABM-02	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final 206Pb/238U	±2s	Edad Final 207Pb/235U	±2s
ABM02-u20	2.5820	0.087	0.161	0.0044	0.01406	0.1154	0.004	962	24	1291	25
ABM02-u21	17.5200	0.53	0.1849	0.007	0.22411	0.675	0.023	1092	38	2961	29
ABM02-u22	2.9600	0.11	0.0645	0.0024	0.18151	0.326	0.017	403	14	1392	27
ABM02-u23	2.1010	0.029	0.1701	0.0042	0.08501	0.0895	0.0015	1012.5	23	1149.7	9.2
ABM02-u24	4.0700	0.15	0.1779	0.0055	0.30871	0.1615	0.0061	1055	30	1642	29
ABM02-u25	3.8980	0.055	0.1894	0.0047	0.16491	0.149	0.0024	1118	25	1614	11
ABM02-u26	7.9500	0.28	0.2062	0.0074	0.09852	0.277	0.011	1211	39	2217	31
ABM02-u27	5.2600	0.12	0.1955	0.0053	0.39292	0.1931	0.0041	1151	28	1860	20
ABM02-u28	4.6100	0.11	0.1899	0.0054	0.15991	0.176	0.0047	1121	29	1752	19
ABM02-u29	1.9390	0.045	0.1737	0.0043	0.25445	0.0805	0.0018	1032.6	24	1093	15
ABM02-u30	7.0500	0.1	0.1932	0.0049	0.50270	0.2645	0.0035	1139	27	2117	13
ABM02-u31	2.7480	0.093	0.1096	0.0035	0.16691	0.1836	0.0067	670	20	1337	24
ABM02-u33	6.3600	0.25	0.2174	0.008	0.45104	0.2124	0.0095	1267	42	2030	31
ABM02-u34	10.1900	0.22	0.2585	0.0071	0.18028	0.2852	0.0073	1482	36	2450	19

Muestra ABM-05	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final ²⁰⁶ Pb/ ²³⁸ U	±2s	Edad Final ²⁰⁷ Pb/ ²³⁵ U	±2s
ABM05-1	9.14	0.14	0.2238	0.0069	0.24755	0.2958	0.0048	1302	36	2353	14
ABM05-2	3.828	0.067	0.1847	0.0057	0.30164	0.1492	0.0025	1092.3	31	1598	14
ABM05-3	4.17	0.06	0.1903	0.0059	0.00076388	0.157	0.0027	1122.9	32	1667	12
ABM05-4	5.5	0.13	0.1966	0.0062	0.19769	0.2013	0.0047	1157	34	1901	19
ABM05-5	4.68	0.14	0.1866	0.0063	0.030359	0.1809	0.0065	1103	34	1759	26
ABM05-6	1.946	0.039	0.1661	0.0051	0.16299	0.0846	0.0019	990.4	28	1098	14
ABM05-7	5.85	0.14	0.201	0.0068	0.099317	0.2082	0.0053	1180	36	1951	21
ABM05-8	2.905	0.075	0.1768	0.0056	0.31977	0.1185	0.0028	1049	31	1384	19
ABM05-9	5.45	0.13	0.1954	0.0065	0.029034	0.1966	0.0056	1150	35	1893	20
ABM05-10	12.95	0.33	0.2598	0.0091	0.28064	0.3577	0.0094	1488	47	2676	25

Muestra ABM-05	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final ²⁰⁶ Pb/ ²³⁸ U	±2s	Edad Final ²⁰⁷ Pb/ ²³⁵ U	±2s
ABM05-11	2.184	0.03	0.1685	0.0051	0.17951	0.0921	0.0012	1004.6	27	1175.2	9.6
ABM05-12	12.95	0.19	0.2554	0.0085	0.062188	0.3649	0.0075	1466	43	2675	14
ABM05-13	2.725	0.055	0.1712	0.0054	0.18794	0.1146	0.0023	1019	30	1334	15
ABM05-14	3.111	0.04	0.1781	0.0054	0.08421	0.1249	0.0016	1056.6	30	1435	10
ABM05-15	2.742	0.04	0.1742	0.0054	0.1747	0.1132	0.002	1035.2	29	1339	11
ABM05-16	3.003	0.056	0.1735	0.0054	0.049219	0.1238	0.0026	1031.3	30	1409	14
ABM05-17	20.02	0.19	0.3094	0.0097	0.071513	0.4613	0.0059	1737	48	3093.4	9
ABM05-18	2.238	0.036	0.1685	0.0052	0.027864	0.0948	0.0016	1003.8	29	1194	11
ABM05-19	16.4	0.27	0.2799	0.0096	0.3696	0.4194	0.0078	1590	48	2899	16
ABM05-20	9.77	0.22	0.2332	0.0077	0.55673	0.3023	0.0061	1351	40	2410	21
ABM05-21	2.023	0.028	0.1673	0.0051	0.033462	0.0864	0.0014	997.3	28	1122.8	9.5
ABM05-22	4.051	0.099	0.1786	0.0057	0.11293	0.1613	0.0048	1059	31	1642	20
ABM05-23	3.058	0.048	0.1753	0.0055	0.099091	0.125	0.0021	1040.9	30	1423	12
ABM05-24	1.815	0.04	0.1658	0.005	0.042722	0.0778	0.0017	989.1	28	1049	14
ABM05-25	1.77	0.018	0.15897	0.0048	0.30458	0.07939	0.00077	951	27	1034.4	6.6
ABM05-26	10.23	0.14	0.2373	0.0077	0.41684	0.3065	0.0052	1372	40	2457	13
ABM05-27	19.54	0.52	0.3013	0.011	0.41853	0.458	0.012	1697	54	3069	27
ABM05-28	2.248	0.05	0.1655	0.0052	0.28664	0.0954	0.002	987.2	29	1195	16
ABM05-29	2.279	0.05	0.1621	0.0051	0.023853	0.1	0.0025	968.4	28	1207	15
ABM05-30	3.782	0.074	0.1799	0.0058	0.10272	0.1503	0.0032	1067	31	1587	16
ABM05-31	6.33	0.11	0.2048	0.0065	0.025296	0.2201	0.0044	1201	35	2021	16
ABM05-32	3.593	0.055	0.1787	0.0055	0.26794	0.1428	0.0023	1059.9	30	1549	13
ABM05-33	5.99	0.14	0.1866	0.0066	0.2582	0.2319	0.0057	1102	36	1972	20
ABM05-34	3.419	0.045	0.1767	0.0054	0.13003	0.1385	0.0021	1049.1	30	1508	10
ABM05-35	5.31	0.12	0.1923	0.0062	0.087802	0.1976	0.0048	1133	33	1875	19
ABM05-36	3.13	0.12	0.071	0.0027	0.63868	0.317	0.011	442	16	1441	27
ABM05-37	2.3	0.05	0.1706	0.0052	0.284	0.0968	0.002	1015.4	29	1211	15

Muestra ABM-05	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final ²⁰⁶ Pb/ ²³⁸ U	±2s	Edad Final ²⁰⁷ Pb/ ²³⁵ U	±2s
ABM05-38	3.628	0.043	0.1806	0.0055	0.052741	0.1447	0.0018	1070.2	30	1556.9	8.9
ABM05-39	2.236	0.044	0.1699	0.0053	0.22521	0.0942	0.0021	1011.6	29	1191	14
ABM05-40	2.765	0.044	0.1776	0.0054	0.04933	0.1124	0.0019	1053.8	29	1347	12
ABM05-41	4.62	0.051	0.1801	0.0055	0.12829	0.1854	0.0025	1068.9	29	1752.4	9.2
ABM05-42	3.209	0.07	0.1654	0.0055	0.34278	0.1411	0.003	987	31	1462	17
ABM05-43	4.72	0.1	0.19	0.006	0.30189	0.1796	0.0037	1123	32	1770	19
ABM05-44	2.681	0.038	0.1704	0.0052	0.0095596	0.1144	0.0018	1014.3	29	1324	11
ABM05-45	2.932	0.049	0.1702	0.0052	0.023782	0.1252	0.0023	1012.9	29	1389	13
ABM05-46	2.345	0.036	0.1601	0.005	0.4331	0.1065	0.0014	957	28	1225	11
ABM05-47	2.934	0.062	0.1827	0.0057	0.1578	0.1164	0.0026	1082	31	1392	15
ABM05-48	9.01	0.16	0.2342	0.0075	0.0014668	0.2829	0.0058	1356	39	2340	16
ABM05-49	1.822	0.029	0.1658	0.0051	0.004101	0.0802	0.0015	989	28	1053	11
ABM05-50	6.13	0.11	0.2088	0.0066	0.28342	0.2171	0.0044	1222	35	1998	17
ABM05-51	9.08	0.23	0.2308	0.0079	0.34178	0.288	0.0073	1338	41	2343	23
ABM05-52	2.161	0.036	0.1736	0.0053	0.086253	0.0912	0.0014	1032	29	1170	11
ABM05-53	5.289	0.091	0.1982	0.0064	0.0108	0.195	0.0042	1165	35	1868	14
ABM05-54	8.58	0.17	0.2195	0.0079	0.05537	0.2902	0.0088	1279	42	2292	18
ABM05-55	3.097	0.059	0.1753	0.0055	0.14469	0.1304	0.0025	1041.3	30	1437	14
ABM05-56	3.1	0.059	0.1793	0.0058	0.15175	0.1274	0.0024	1063	32	1434	15
ABM05-57	2.447	0.066	0.1732	0.0054	0.060466	0.105	0.0027	1029.6	30	1260	18
ABM05-58	26.2	0.54	0.3563	0.012	0.3191	0.547	0.011	1964	58	3355	19
ABM05-59	4.254	0.084	0.1838	0.0059	0.030814	0.1698	0.0039	1088	32	1685	17
ABM05-60	4.23	0.27	0.1874	0.0065	0.81863	0.164	0.0076	1107	35	1671	52
ABM05-m1	2.584	0.07	0.161	0.0053	0.47025	0.1173	0.0031	962	29	1294	20
ABM05-m2	4.865	0.064	0.2006	0.0061	0.15409	0.1784	0.0022	1178.4	33	1795	11
ABM05-m3	3.975	0.092	0.1803	0.006	0.060362	0.1603	0.0037	1069	33	1627	19
ABM05-m4	4.122	0.082	0.1874	0.0059	0.21786	0.1601	0.0029	1107	32	1660	17

Muestra ABM-05	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final ²⁰⁶ Pb/ ²³⁸ U	±2s	Edad Final ²⁰⁷ Pb/ ²³⁵ U	±2s
ABM05-m5	3.604	0.098	0.1811	0.0057	0.10467	0.1452	0.0039	1073	31	1551	21
ABM05-m6	1.899	0.059	0.1628	0.0051	0.066269	0.086	0.0027	972.1	28	1081	20
ABM05-m7	2.128	0.023	0.16721	0.005	0.07141	0.0932	0.001	996.7	28	1157.6	7.6
ABM05-m8	4.557	0.089	0.1902	0.0061	0.36783	0.1746	0.0034	1122	33	1742	16
ABM05-m9	2.304	0.036	0.1645	0.005	0.27023	0.1021	0.0014	981.5	28	1213	11
ABM05-m10	3.588	0.071	0.1876	0.0058	0.09925	0.1399	0.003	1108.5	31	1545	16
ABM05-m11	6.996	0.088	0.2147	0.0066	0.32106	0.2389	0.0026	1253.8	35	2112	11
ABM05-m12	3.538	0.058	0.1831	0.0056	0.23893	0.1404	0.0024	1083.7	31	1535	13
ABM05-m13	3.366	0.075	0.1822	0.0059	0.21392	0.1326	0.0029	1079	32	1494	18
ABM05-m14	1.559	0.055	0.0891	0.003	0.036503	0.1262	0.0048	550.4	18	951	22
ABM05-m15	3.129	0.052	0.1789	0.0056	0.24557	0.1277	0.0019	1061	31	1439	13
ABM05-m16	6.77	0.15	0.2073	0.0068	0.21738	0.2358	0.0061	1214	36	2079	20
ABM05-m17	4.749	0.092	0.1834	0.006	0.18452	0.1886	0.0043	1085	33	1777	17
ABM05-m19	2.955	0.055	0.1751	0.0054	0.039823	0.123	0.0026	1039.9	30	1395	14
ABM05-m20	3.35	0.1	0.1736	0.0057	0.049407	0.1423	0.0042	1032	31	1493	23
ABM05-m21	1.886	0.026	0.1703	0.0051	0.028546	0.0806	0.0014	1013.5	28	1075.8	9.2
ABM05-U1	7.84	0.21	0.2273	0.0073	0.55695	0.2519	0.0059	1320	38	2209	24
ABM05-U2	12.92	0.26	0.2648	0.0091	0.13415	0.3572	0.0095	1514	46	2672	19
ABM05-U3	18.04	0.37	0.3109	0.011	0.39353	0.4252	0.0082	1745	52	2995	20
ABM05-U4	2.524	0.05	0.1757	0.0056	0.057188	0.1056	0.0027	1043	31	1282	15
ABM05-U5	4.63	0.11	0.1939	0.0064	0.075083	0.1744	0.0049	1142	34	1755	21
ABM05-U6	18.6	0.35	0.3042	0.011	0.10059	0.446	0.011	1711	54	3023	17
ABM05-U7	3.312	0.07	0.1814	0.0056	0.11208	0.1335	0.0032	1074.6	31	1482	16
ABM05-U8	4.31	0.17	0.1036	0.0044	0.47912	0.306	0.012	635	25	1694	31
ABM05-U9	4.417	0.085	0.1887	0.0058	0.078754	0.1712	0.0037	1114.4	32	1714	16
ABM05-U10	20.21	0.85	0.3197	0.012	0.59912	0.458	0.015	1787	57	3096	40
ABM05-U12	11.68	0.43	0.2496	0.0082	0.34283	0.344	0.011	1436	42	2564	26

Muestra ABM-05	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final ²⁰⁶ Pb/ ²³⁸ U	±2s	Edad Final ²⁰⁷ Pb/ ²³⁵ U	±2s
ABM05-U13	2.297	0.053	0.1565	0.0049	0.33868	0.108	0.002	937.2	27	1210	16
ABM05-U14	8.66	0.17	0.1695	0.0063	0.15405	0.381	0.011	1009	35	2310	18
ABM05-U15	3.93	0.1	0.1886	0.006	0.1513	0.1521	0.004	1114	32	1618	21
ABM05-U16	16.62	0.55	0.299	0.011	0.092572	0.417	0.017	1692	53	2922	29
ABM05-U17	3.162	0.068	0.1716	0.0053	0.14262	0.1354	0.0033	1020.8	29	1449	16
ABM05-U18	8.71	0.19	0.2196	0.0073	0.012304	0.2936	0.0075	1280	39	2308	20
ABM05-U19	2.24	0.043	0.1609	0.005	0.0036834	0.1016	0.0021	961.5	28	1195	13
ABM05-U20	2.103	0.047	0.1641	0.0051	0.28681	0.0934	0.0022	979.3	28	1154	15
ABM05-U21	3.743	0.086	0.1763	0.0059	0.062949	0.1538	0.004	1047	32	1581	18
ABM05-U22	7.55	0.15	0.2137	0.0073	0.19196	0.2546	0.0056	1248	39	2177	18
ABM05-U23	4.1	0.13	0.1249	0.005	0.22939	0.241	0.0082	758	28	1654	26
ABM05-U24	4.4	0.12	0.1903	0.0063	0.29461	0.1664	0.0044	1123	34	1709	23
ABM05-U25	4.05	0.11	0.1847	0.006	0.17148	0.1598	0.0046	1095	33	1640	23
ABM05-U26	4.288	0.096	0.1832	0.0064	0.23135	0.1686	0.0043	1087	34	1689	19
ABM05-U27	2.811	0.089	0.1633	0.0053	0.064421	0.1228	0.0037	975	29	1355	24
ABM05-U28	2.449	0.061	0.0663	0.0024	0.075272	0.27	0.0092	413.6	14	1255	18
ABM05-U29	12.18	0.31	0.2497	0.0088	0.18442	0.3557	0.0095	1436	45	2615	24
ABM05-U30	3.224	0.088	0.1691	0.0055	0.19176	0.1373	0.0039	1007	30	1467	21
ABM05-U31	23.7	0.52	0.3314	0.012	0.46498	0.518	0.011	1844	57	3260	21
ABM05-U32	11.01	0.51	0.2401	0.0088	0.80613	0.329	0.011	1386	46	2511	45
ABM05-U33	2.767	0.038	0.1697	0.0052	0.065697	0.1168	0.0016	1010.4	29	1347	10
ABM05-U34	3.627	0.096	0.1497	0.005	0.42076	0.175	0.0041	899	28	1556	21
ABM05-U35	3.669	0.056	0.1707	0.0053	0.031886	0.1538	0.0027	1017.2	28	1564	12
ABM05-U36	2.57	0.032	0.1655	0.0051	0.18189	0.1113	0.0014	987.5	28	1294.1	9.6
ABM05-U37	1.826	0.039	0.1596	0.005	0.33798	0.0817	0.0018	954.6	28	1054	14
ABM05-U38	13.6	0.46	0.2622	0.01	0.24059	0.37	0.013	1500	51	2721	31
ABM05-U39	6.91	0.14	0.1997	0.0065	0.18473	0.2482	0.005	1174	35	2101	17

Muestra ABM-05	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final ²⁰⁶ Pb/ ²³⁸ U	±2s	Edad Final ²⁰⁷ Pb/ ²³⁵ U	±2s
ABM05-U40	0.981	0.034	0.0759	0.0025	0.19912	0.0934	0.0032	471.6	15	698	17
ABM05-U41	8.08	0.19	0.2141	0.0071	0.25343	0.2678	0.0068	1250	38	2240	22
ABM05-U42	3.705	0.085	0.1653	0.0053	0.31103	0.1606	0.0035	986	29	1574	19
ABM05-U43	2.094	0.052	0.1364	0.0044	0.15784	0.1108	0.003	824.4	25	1145	17
ABM05-U44	4.517	0.081	0.1896	0.006	0.23651	0.1718	0.003	1119	33	1733	15
ABM05-U45	11.26	0.35	0.2389	0.0093	0.2382	0.339	0.011	1389	48	2544	28
ABM05-U46	20.92	0.32	0.3122	0.0099	0.21284	0.4807	0.0088	1751	49	3134	15
ABM05-U47	3.159	0.054	0.1733	0.0053	0.021745	0.1314	0.0026	1031.5	30	1450	12
ABM05-U48	3.8	0.074	0.0969	0.0035	0.074582	0.2784	0.0082	596	21	1591	16
ABM05-U49	4.977	0.091	0.1829	0.0059	0.36284	0.1949	0.0036	1082	32	1816	15
ABM05-U50	16.11	0.45	0.2868	0.011	0.16313	0.399	0.013	1625	53	2878	27
ABM05-U51	6.1	0.15	0.1966	0.0069	0.24348	0.2241	0.0062	1157	37	1990	21
ABM05-U52	23.9	0.85	0.301	0.016	0.31813	0.582	0.024	1693	77	3262	36
ABM05-U53	10.86	0.33	0.2368	0.0078	0.75485	0.3292	0.0078	1370	41	2506	28
ABM05-U54	5.6	0.14	0.2025	0.0065	0.0054053	0.1991	0.0054	1189	35	1914	21
ABM5xtr-2	2.49	0.072	0.1729	0.0046	0.15096	0.1034	0.0029	1028	25	1266	21
ABM5xtr-3	2.828	0.072	0.1747	0.0051	0.03395	0.1166	0.0037	1038	28	1363	19
ABM5xtr-4	2.221	0.025	0.1707	0.0044	0.20367	0.0935	0.0013	1015.6	24	1188.6	8.2
ABM5xtr-5	2.687	0.058	0.1724	0.0047	0.30427	0.1133	0.0025	1025	26	1328	16
ABM5xtr-6	10.99	0.13	0.2387	0.0068	0.12836	0.3323	0.0054	1379	35	2521	11
ABM5xtr-8	7.82	0.25	0.2166	0.007	0.26113	0.2584	0.0086	1263	37	2212	27
ABM5xtr-9	4.17	0.1	0.1795	0.0054	0.0097348	0.1689	0.0054	1064	30	1666	20
ABM5xtr-10	5.6	0.12	0.1999	0.0055	0.21088	0.2027	0.0044	1175	29	1919	17
ABM5xtr-11	15.73	0.44	0.2776	0.0085	0.26832	0.405	0.011	1579	43	2855	26
ABM5xtr-12	3.852	0.087	0.1849	0.005	0.34698	0.1489	0.0034	1093	27	1601	18
ABM5xtr-13	2.18	0.035	0.1713	0.0043	0.30082	0.0921	0.0015	1019.1	24	1174	11
ABM5xtr-14	6.44	0.14	0.2046	0.0058	0.068294	0.2272	0.006	1202	32	2038	20

Muestra ABM-05	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final ²⁰⁶ Pb/ ²³⁸ U	±2s	Edad Final ²⁰⁷ Pb/ ²³⁵ U	±2s
ABM5xtr-15	3.99	0.11	0.0796	0.0024	0.049487	0.356	0.011	493.8	14	1632	22
ABM5xtr-16	5.535	0.099	0.1933	0.0051	0.21832	0.2067	0.0039	1139	27	1906	16
ABM5xtr-17	2.559	0.051	0.1699	0.0045	0.33105	0.1083	0.0022	1011.4	25	1288	15
ABM5xtr-18	4.501	0.09	0.1842	0.0053	0.35484	0.1748	0.0034	1090	29	1729	17
ABM5xtr-19	2.699	0.047	0.1651	0.0045	0.42535	0.1187	0.0019	985	25	1327	13
ABM5xtr-20	2.728	0.045	0.1768	0.0048	0.24325	0.1111	0.0021	1049	26	1335	12
ABM5xtr-21	2.129	0.049	0.1701	0.0046	0.063994	0.091	0.0026	1012	25	1162	17
ABM5xtr-22	1.732	0.031	0.1621	0.0042	0.2025	0.0775	0.0016	968.5	23	1020	12
ABM5xtr-23	7.43	0.18	0.2133	0.0061	0.086509	0.2522	0.0065	1246	33	2164	22
ABM5xtr-24	2.177	0.03	0.168	0.0045	0.12065	0.0931	0.0016	1001	25	1172.9	9.5
ABM5xtr-25	5.4	0.14	0.1964	0.0055	0.11903	0.1988	0.0059	1158	31	1884	21
ABM5xtr-26	3.074	0.061	0.1789	0.0047	0.35732	0.1234	0.0025	1061	26	1424	15
ABM5xtr-27	2.826	0.055	0.1706	0.0047	0.32061	0.121	0.0024	1015	26	1363	14
ABM5xtr-28	4.61	0.13	0.1794	0.005	0.10174	0.1826	0.0052	1063	27	1746	24
ABM5xtr-29	4.578	0.095	0.1909	0.0053	0.37526	0.1735	0.0038	1126	28	1743	17
ABM5xtr-30	1.821	0.025	0.1694	0.0044	0.42696	0.0781	0.0011	1008.7	24	1052.6	8.9
ABM5xtr-10f	3.107	0.092	0.178	0.0048	0.25802	0.1261	0.0038	1058	27	1434	22
ABM5xtr-11f	9.39	0.22	0.2331	0.007	0.25443	0.2892	0.0073	1350	37	2376	20
ABM5xtr-12f	3.27	0.12	0.1781	0.0056	0.36966	0.1317	0.0047	1053	29	1469	27
ABM5xtr-13f	6.31	0.15	0.2007	0.0059	0.1124	0.2286	0.0067	1179	32	2019	21
ABM5xtr-14f	4.88	0.19	0.1908	0.0056	0.6723	0.1842	0.0057	1125	30	1798	30
ABM5xtr-24f	2.471	0.055	0.1748	0.0047	0.029214	0.1019	0.0022	1039	26	1264	15
ABM5xtr-26f	6.36	0.18	0.2039	0.0063	0.30069	0.2267	0.0064	1199	32	2022	25
ABM5xtr-28f	4.34	0.1	0.1828	0.0052	0.35204	0.1698	0.0033	1082	28	1701	19
ABM5xtr-30f	5.44	0.11	0.1967	0.0055	0.34793	0.1993	0.004	1158	30	1892	15

Muestra ABM-10	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final 206Pb/238U	±2s	Edad Final 207Pb/235U	±2s
abm10-1	6.010	0.17	0.1968	0.0055	0.38412	0.2198	0.0056	1158	30	1975	25
abm10-2	2.600	0.038	0.1643	0.0042	0.22362	0.1151	0.002	980.6	23	1300	11
abm10-3	1.957	0.036	0.1716	0.0043	0.25502	0.0821	0.0015	1021	24	1100	12
abm10-4	2.069	0.048	0.178	0.0045	0.10748	0.0836	0.0018	1056.2	24	1137	16
abm10-5	3.372	0.046	0.178	0.0044	0.010693	0.1362	0.0021	1057.1	25	1500	11
abm10-6	1.827	0.023	0.17197	0.0042	0.13044	0.07663	0.00097	1022.9	23	1055.9	8.6
abm10-7	2.299	0.04	0.1708	0.0042	0.22431	0.0969	0.0016	1016.4	23	1213	12
abm10-8	2.595	0.041	0.1706	0.0042	0.081489	0.1101	0.0017	1015.4	23	1298	12
abm10-9	4.322	0.085	0.1904	0.0049	0.24807	0.164	0.0033	1123	27	1700	16
abm10-10	3.563	0.032	0.186	0.0045	0.038097	0.1385	0.0014	1099.5	24	1540.9	7
abm10-11	5.160	0.1	0.1959	0.0052	0.25705	0.1905	0.0036	1153	28	1844	17
abm10-12	3.393	0.074	0.1749	0.0045	0.0039303	0.1393	0.0031	1038.9	24	1500	17
abm10-13	2.882	0.054	0.1731	0.0045	0.045006	0.1201	0.0026	1028.8	24	1376	14
abm10-14	2.235	0.035	0.1711	0.0043	0.075198	0.0943	0.0017	1018	24	1191	11
abm10-15	3.526	0.062	0.1857	0.0047	0.025517	0.1383	0.0028	1097.7	25	1537	14
abm10-16	3.901	0.079	0.1833	0.0047	0.159	0.1523	0.0026	1085	26	1612	16
abm10-17	10.010	0.25	0.2348	0.0071	0.063206	0.3091	0.0096	1359	37	2432	23
abm10-18	12.590	0.19	0.2588	0.0076	0.21314	0.3508	0.0072	1489	37	2650	15
abm10-19	3.615	0.075	0.1847	0.0047	0.16447	0.14	0.0028	1093	26	1551	16
abm10-20	3.065	0.048	0.1801	0.0044	0.18017	0.1237	0.002	1067.6	24	1423	12
abm10-21	2.369	0.033	0.1677	0.0041	0.18129	0.1006	0.0014	999.5	23	1233	10
abm10-22	2.886	0.029	0.179	0.0043	0.060757	0.1159	0.0013	1061.3	24	1378.8	7.3
abm10-23	8.260	0.18	0.2142	0.0062	0.34766	0.2776	0.0065	1251	33	2260	20
abm10-24	3.199	0.05	0.188	0.005	0.090381	0.1232	0.0024	1110	27	1460	13
abm10-25	2.533	0.051	0.1716	0.0044	0.17382	0.1071	0.0024	1021	24	1287	15
abm10-26	2.172	0.07	0.1745	0.0045	0.31422	0.0905	0.0029	1036	25	1171	22
abm10-27	2.112	0.039	0.1755	0.0044	0.099309	0.0867	0.0017	1042.1	24	1153	13

Muestra ABM-10	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final 206Pb/238U	±2s	Edad Final ²⁰⁷ Pb/ ²³⁵ U	±2s
abm10-28	3.341	0.061	0.1831	0.0045	0.5731	0.1314	0.0022	1084	25	1489	14
abm10-29	3.200	0.11	0.1818	0.005	0.17717	0.1273	0.0045	1076	27	1457	28
abm10-30	2.119	0.043	0.173	0.0044	0.18255	0.0879	0.0018	1028.3	24	1155	14
abm10-31	2.783	0.081	0.1687	0.0049	0.34345	0.1205	0.0033	1005	27	1350	22
abm10-32	22.430	0.51	0.3363	0.012	0.25522	0.482	0.015	1866	58	3204	22
abm10-33	3.658	0.056	0.1878	0.0047	0.080552	0.14	0.0023	1109.4	25	1561	12
abm10-34	3.525	0.073	0.1821	0.0048	0.11737	0.1388	0.003	1079	26	1533	16
abm10-35	2.239	0.034	0.1764	0.0043	0.16626	0.0919	0.0012	1047.4	24	1192	11
abm10-36	4.512	0.098	0.191	0.0051	0.24893	0.1716	0.0038	1126	27	1738	18
abm10-37	6.480	0.092	0.2043	0.0051	0.064182	0.2285	0.0034	1198.1	28	2042	12
abm10-38	1.804	0.04	0.1654	0.0042	0.059846	0.0787	0.0018	986.6	23	1047	14
abm10-39	4.815	0.087	0.1954	0.0049	0.053309	0.1761	0.0034	1150.6	27	1790	15
abm10-40	2.504	0.047	0.1756	0.0045	0.16651	0.1024	0.0019	1042.6	25	1272	14
abm10-41	3.231	0.051	0.1806	0.0045	0.018382	0.129	0.0022	1070	24	1465	12
abm10-42	2.846	0.078	0.1734	0.0046	0.13797	0.1168	0.0034	1031	25	1367	21
abm10-43	12.220	0.59	0.214	0.01	0.022865	0.422	0.025	1248	53	2623	44
abm10-N1	3.013	0.051	0.1744	0.0043	0.53167	0.1237	0.0015	1036.1	24	1410	13
abm10-N2	1.545	0.034	0.137	0.0035	0.10553	0.0809	0.0019	827.6	20	949	14
abm10-N3	3.176	0.033	0.1837	0.0045	0.021705	0.1241	0.0016	1088.3	24	1451.9	8.3
abm10-N4	2.210	0.027	0.1761	0.0043	0.24904	0.0904	0.0011	1045.8	24	1183.7	8.5
abm10-N5	2.062	0.046	0.1673	0.0043	0.23656	0.0885	0.0018	997	24	1137	15
abm10-N6	2.006	0.055	0.1696	0.0045	0.064299	0.0856	0.0026	1010	25	1117	18
abm10-N7	3.194	0.047	0.1809	0.0047	0.52263	0.1285	0.0018	1072	25	1455	11
abm10-N8	2.407	0.039	0.1766	0.0044	0.18625	0.0984	0.0016	1048.4	24	1244	12
abm10-N9	2.203	0.042	0.1317	0.0034	0.12023	0.1196	0.0026	797.7	19	1181	13
abm10-N10	1.932	0.026	0.1691	0.0041	0.47326	0.0826	0.001	1007.1	23	1091.8	8.9
abm10-N11	1.269	0.017	0.1175	0.0029	0.089719	0.0779	0.0011	715.9	17	831.3	7.5

Muestra ABM-10	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final 206Pb/238U	±2s	Edad Final 207Pb/235U	±2s
abm10-N12	1.952	0.031	0.1675	0.0041	0.007723	0.0837	0.0015	998.5	23	1103	10
abm10-N13	2.123	0.048	0.1476	0.0038	0.026335	0.1032	0.0024	887.6	21	1157	15
abm10-N14	3.654	0.075	0.189	0.0048	0.43727	0.1387	0.0024	1115.7	26	1562	16
abm10-N15	1.952	0.024	0.1658	0.0041	0.24378	0.0848	0.001	988.9	23	1099.9	8
abm10-N16	3.443	0.088	0.1877	0.005	0.16003	0.1342	0.0033	1109	27	1520	20
abm10-N17	3.022	0.075	0.1827	0.0047	0.18164	0.1197	0.0027	1081	25	1415	18
abm10-N18	3.162	0.039	0.1765	0.0046	0.47158	0.1303	0.0014	1048	25	1447.1	9.5
abm10-N19	2.519	0.054	0.1762	0.0043	0.10111	0.1022	0.002	1046.2	24	1276	16
abm10-N20	3.004	0.091	0.1674	0.0044	0.21119	0.1296	0.0037	997	24	1404	23
abm10-N21	7.040	0.13	0.2108	0.0057	0.015472	0.2442	0.0053	1233	30	2118	16
abm10-N22	1.678	0.025	0.1675	0.0041	0.012077	0.0723	0.0012	998.2	23	999.4	9.6
abm10-N23	2.074	0.035	0.1696	0.0042	0.24043	0.0874	0.0014	1009.7	23	1141	12
abm10-N24	1.664	0.029	0.166	0.0041	0.029969	0.0724	0.0014	990	23	995	11
abm10-N25	8.896	0.098	0.227	0.0056	0.66133	0.2817	0.0026	1318.8	29	2327	10
abm10-N26	4.750	0.29	0.1871	0.0054	0.70073	0.1798	0.0091	1105	30	1756	50
abm10-Z1	1.758	0.036	0.1615	0.0041	0.4805	0.0788	0.0014	964.8	23	1033	13
abm10-Z2	2.665	0.051	0.1704	0.0043	0.060578	0.113	0.0024	1014.2	24	1317	14
abm10-Z4	10.030	0.25	0.224	0.0066	0.27803	0.3221	0.0085	1302	35	2439	24
abm10-Z5	23.990	0.64	0.2989	0.011	0.34432	0.577	0.016	1684	53	3266	26
abm10-Z6	4.955	0.098	0.194	0.0054	0.13989	0.185	0.0042	1142	29	1809	17
abm10-Z7	4.950	0.12	0.1908	0.0056	0.16488	0.1882	0.0049	1125	30	1813	20
abm10-Z8	3.453	0.065	0.1809	0.0046	0.15858	0.1386	0.0033	1072	25	1515	15
abm10-Z9	1.832	0.029	0.1312	0.0035	0.35689	0.1	0.0017	794.3	20	1056	11
abm10-Z10	2.952	0.072	0.1789	0.0048	0.19245	0.1193	0.003	1061	26	1393	19
abm10-Z11	3.853	0.073	0.1631	0.0043	0.34987	0.1681	0.0033	974	24	1602	15
abm10-Z12	5.570	0.13	0.1681	0.0046	0.063811	0.242	0.0063	1001	26	1909	20
abm10-Z13	3.990	0.11	0.1744	0.005	0.33494	0.1651	0.0051	1036	27	1628	22

Muestra ABM-10	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final 206Pb/238U	±2s	Edad Final 207Pb/235U	±2s
abm10-Z14	2.271	0.06	0.173	0.0048	0.32043	0.095	0.0032	1028	27	1203	19
abm10-Z15	1.764	0.069	0.0626	0.0018	0.56959	0.2041	0.0077	391.7	11	1027	25
abm10-Z16	3.560	0.09	0.18	0.0048	0.26524	0.1444	0.0039	1067	26	1541	21
abm10-Z17	6.270	0.22	0.2027	0.0063	0.052019	0.2246	0.0091	1189	34	2016	31
abm10-Z18	7.340	0.21	0.2108	0.0066	0.10305	0.2508	0.0085	1232	35	2159	25
abm10-Z19	3.000	0.056	0.1688	0.0045	0.036461	0.1282	0.0027	1005	25	1408	14
abm10-Z20	10.360	0.31	0.2426	0.0086	0.02739	0.308	0.012	1399	44	2465	27
abm10-Z21	4.114	0.096	0.1895	0.0051	0.28339	0.1565	0.0035	1119	28	1654	19
abm10-Z22	3.605	0.068	0.1827	0.0047	0.034719	0.1415	0.0033	1081	26	1551	15
abm10-Z23	2.179	0.059	0.1724	0.0046	0.11914	0.0914	0.0029	1025	26	1174	19
abm10-Z24	3.311	0.088	0.1829	0.0046	0.4914	0.1298	0.0032	1082.6	25	1490	20
abm10-Z25	3.064	0.077	0.1738	0.0048	0.13728	0.1277	0.0034	1035	27	1424	19
abm10-Z26	5.480	0.16	0.1985	0.0055	0.24063	0.1977	0.0052	1167	29	1896	24
abm10-Z27	3.584	0.077	0.1799	0.0054	0.16647	0.1451	0.0041	1066	29	1544	17
abm10-Z28	3.753	0.083	0.1877	0.0048	0.028404	0.1425	0.0034	1109	26	1580	18
abm10-Z29	5.450	0.18	0.1978	0.0055	0.34125	0.1991	0.0059	1163	30	1887	28
abm10-Z30	5.890	0.19	0.1959	0.0058	0.054882	0.22	0.008	1153	31	1957	29
abm10-Z31	8.480	0.23	0.1904	0.0057	0.23915	0.3215	0.0097	1123	31	2279	24
abm10-Z32	6.640	0.099	0.168	0.005	0.44977	0.284	0.0045	1001	28	2063	13
abm10-Z33	1.718	0.043	0.0932	0.0025	0.15752	0.1319	0.0035	574.6	15	1016	15
abm10-Z34	16.270	0.63	0.275	0.014	0.12082	0.415	0.021	1560	70	2882	38
abm10-Z35	6.470	0.15	0.2103	0.0059	0.24558	0.2247	0.0054	1230	31	2039	20
abm10-Z36	5.650	0.13	0.2034	0.0056	0.43107	0.1993	0.0051	1193	30	1924	20
abm10-Z37	1.722	0.052	0.1129	0.0035	0.66151	0.1104	0.0026	690	20	1014	19
abm10-Z38	25.920	0.63	0.3215	0.011	0.26495	0.588	0.016	1795	53	3343	23
abm10-Z39	5.850	0.13	0.1475	0.0041	3.11E-02	0.2837	0.0074	886	23	1952	20
abm10-Z40	13.410	0.56	0.2181	0.0095	0.20823	0.438	0.022	1275	52	2708	39

Muestra ABM-10	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final ²⁰⁶ Pb/ ²³⁸ U	±2s	Edad Final ²⁰⁷ Pb/ ²³⁵ U	±2s
abm10-Z41	5.512	0.09	0.1954	0.0049	0.12534	0.2025	0.0038	1150.6	27	1903	14
abm10-Z42	5.260	0.14	0.1946	0.0059	0.20584	0.1954	0.0053	1146	32	1859	23
abm10-Z43	7.950	0.23	0.22	0.007	0.12806	0.2628	0.0088	1281	37	2223	26
abm10-Z44	2.497	0.014	0.2275	0.0055	0.73302	0.07936	0.00035	1321.2	29	1270.9	4.1
abm10-Z45	5.290	0.17	0.1985	0.006	0.63476	0.1918	0.0049	1167	32	1861	27
abm10-Z46	1.794	0.042	0.1623	0.0041	0.18201	0.0808	0.0017	969.5	23	1046	14
abm10-Z47	8.710	0.2	0.2217	0.0066	0.21691	0.284	0.0081	1293	36	2305	21
abm10-Z48	3.756	0.088	0.1833	0.0051	0.2863	0.1482	0.0041	1084	28	1581	19
abm10-Z49	4.710	0.15	0.1653	0.0048	0.075347	0.2052	0.0068	988	26	1764	27
abm10-Z50	3.475	0.066	0.1825	0.0047	0.17839	0.136	0.0029	1080	25	1520	15
abm10-Z51	8.720	0.25	0.1446	0.0051	0.31271	0.432	0.015	870	29	2316	28

Muestra RMO-01	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final 206Pb/238U	±2s	Edad Final ²⁰⁷ Pb/ ²³⁵ U	±2s
RM001-1	12.89	0.27	0.1594	0.005	0.34038	0.597	0.019	953	27	2677	20
RM001-2	2.114	0.048	0.06824	0.0015	0.33027	0.2242	0.0055	425.5	8.8	1158	15
RM001-3	9.12	0.23	0.1289	0.0029	0.26518	0.534	0.0083	781	16	2350	21
RM001-4	3.95	0.12	0.0828	0.0021	0.25614	0.3466	0.0098	512.7	13	1621	24
RM001-5	14.47	0.35	0.1752	0.0053	0.18382	0.596	0.019	1040	29	2778	22
RMO01-6	6.67	0.16	0.1032	0.0029	0.04792	0.467	0.012	633	17	2068	20
RM001-7	4.161	0.091	0.0809	0.0019	0.056236	0.3685	0.0085	501.7	11	1664	18
RMO01-9	3.91	0.068	0.0794	0.002	0.2076	0.3567	0.0077	492.6	12	1615	14
RM001-10	4.69	0.13	0.0851	0.0027	0.111	0.398	0.013	526	16	1762	23
RM001-12	4.92	0.14	0.0904	0.0025	0.048818	0.387	0.013	558	15	1802	24
RM001-13	9.12	0.27	0.1255	0.0039	0.069704	0.522	0.021	762	22	2350	26
RM001-14	6.42	0.18	0.106	0.0035	0.52904	0.451	0.014	649	20	2032	25

Muestra RMO-01	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final 206Pb/238U	±2s	Edad Final 207Pb/235U	±2s
RM001-15	2.8	0.059	0.0724	0.0018	0.087695	0.2778	0.0076	450.6	11	1354	16
RMO01-16	11.66	0.21	0.1463	0.0047	0.36934	0.572	0.014	880	26	2579	17
RM001-17	10.45	0.099	0.1363	0.0029	0.10484	0.5465	0.006	823.5	16	2475	8.7
RM001-18	2.193	0.071	0.0679	0.0016	0.012714	0.2328	0.0073	423.3	9.7	1175	23
RM001-19	0.856	0.017	0.05493	0.0011	0.093196	0.1138	0.002	344.7	6.4	627.7	9.1
RM001-20	3.12	0.12	0.0753	0.002	0.44953	0.3051	0.009	467.8	12	1433	30
RMO01-21	10.02	0.2	0.1323	0.0031	0.010933	0.548	0.012	801	17	2434	19
RMO01-22	2.523	0.055	0.0673	0.0016	0.013554	0.2716	0.0075	419.6	9.9	1277	16
RMO01-23	1.715	0.029	0.06124	0.0012	0.24583	0.2036	0.0038	383.1	7.4	1013	11
RMO01-24	2.703	0.082	0.0696	0.0016	0.26517	0.2783	0.0074	433.7	9.5	1329	22
RMO01-25	9.2	0.5	0.132	0.011	0.14044	0.513	0.045	795	60	2360	50
RMO01-26	3.751	0.093	0.0781	0.0023	0.17999	0.344	0.013	485	14	1580	20
RMO01-27	6.18	0.1	0.0978	0.0022	0.0084173	0.4578	0.009	601.2	13	2001	14
RMO01-28	3.638	0.063	0.08034	0.0017	0.0030455	0.3278	0.0061	498.1	10	1557	14
RMO01-29	17.53	0.33	0.1951	0.0052	0.25469	0.653	0.017	1149	28	2962	18
RMO01-30	5.261	0.081	0.0902	0.002	0.1243	0.4225	0.008	556.6	12	1861	13
RMO01-31	6.881	0.098	0.1076	0.0026	0.18394	0.4648	0.0093	659	15	2095	13
RMO01-32	2.666	0.047	0.07008	0.0015	0.0012822	0.2758	0.0059	436.6	9.2	1318	13
RMO01-34	5.52	0.11	0.0944	0.0023	0.17438	0.425	0.01	581.3	14	1902	17
RMO01-35	8.05	0.2	0.1159	0.0034	0.12242	0.499	0.016	707	20	2237	23
RMO01-36	2.318	0.032	0.06709	0.0015	0.16023	0.2497	0.0052	418.6	8.9	1217.3	9.8
RMO01-37	10.75	0.18	0.1377	0.0034	0.24294	0.566	0.01	831	19	2503	15
RMO01-38	2.819	0.047	0.0714	0.0016	0.16456	0.2844	0.0058	444.8	9.7	1362	12
RMO01-39	3.168	0.061	0.0749	0.0017	0.0063377	0.3072	0.0072	465.3	10	1450	15
RM001-40	9.76	0.14	0.1311	0.0031	0.31123	0.56	0.01	794	18	2410	12
RM001-41	61.2	1.4	0.569	0.018	0.077722	0.778	0.025	2900	74	4198	22
RM001-44	21.79	0.47	0.2309	0.006	0.52313	0.681	0.013	1338	31	3172	21

Muestra RMO-01	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final 206Pb/238U	±2s	Edad Final ²⁰⁷ Pb/ ²³⁵ U	±2s
RMO01-45	8.43	0.21	0.1212	0.0031	0.55417	0.508	0.01	737	18	2279	22
RM001-46	11.26	0.22	0.1447	0.0049	0.581	0.566	0.015	871	27	2553	17
RM001-47	6.656	0.078	0.1055	0.0025	0.12521	0.4582	0.0095	646.4	15	2066	10
RM001-48	8.69	0.75	0.1182	0.007	0.38835	0.55	0.032	719	40	2295	70
RMO01-49	7.33	0.3	0.1107	0.0045	0.36587	0.478	0.02	676	26	2161	35
RMO01-50	1.95	0.055	0.0622	0.0017	0.29025	0.2237	0.0069	389.2	10	1099	19
RMO01-53	34.48	0.74	0.3521	0.009	0.4136	0.72	0.014	1944	43	3625	21
RMO01-54	3.276	0.074	0.0748	0.0018	0.18665	0.3178	0.0083	464.9	11	1476	17
RMO01-55	12.65	0.3	0.1502	0.0052	0.065197	0.605	0.02	902	29	2657	22
RMO01-56	14.56	0.33	0.1789	0.0046	0.3905	0.598	0.014	1061	25	2784	22
RMO01-60	2.313	0.045	0.0697	0.0017	0.060115	0.244	0.0056	434.4	10	1217	14
RMO01-B1	1.74	0.041	0.06193	0.0015	0.051275	0.2018	0.0052	387.3	9	1022	15
RMO01-B2	1.769	0.03	0.06039	0.0013	0.26928	0.213	0.0037	378	7.7	1034	11
RMO01-B3	1.318	0.019	0.0574	0.0012	0.24451	0.1642	0.0032	360.1	7.2	853	8.1
RMO01-B4	2.922	0.086	0.07315	0.0016	0.3538	0.2892	0.0058	455.1	9.5	1388	23
RMO01-B5	2.365	0.088	0.0681	0.0019	0.09033	0.251	0.011	424.7	11	1232	28
RMO01-B6	8.47	0.19	0.1217	0.0028	0.33382	0.512	0.011	741	16	2284	20
RMO01-B8	1.096	0.025	0.05555	0.0012	0.13511	0.1421	0.0034	348.5	7.6	753	12
RMO01-B9	1.474	0.037	0.06011	0.0014	0.22364	0.1783	0.0056	376.3	8.5	918	15
RMO01-B10	1.676	0.037	0.06	0.0015	0.22022	0.2031	0.0065	375.7	9.1	998	14
RM001-B12	3.212	0.072	0.0745	0.0018	0.14741	0.313	0.0075	463.3	11	1461	18
RM001-B13	2.638	0.057	0.06986	0.0015	0.44308	0.2732	0.0045	435.3	9.3	1315	16
RMO01-B14	2.211	0.054	0.06605	0.0015	0.13891	0.2439	0.0055	412.3	8.9	1186	16
RMO01-B15	3.43	0.1	0.0744	0.002	0.23432	0.3316	0.0097	462.8	12	1508	23
RMO01-B16	9.29	0.14	0.125	0.0029	0.22257	0.535	0.01	759	16	2368	14
RMO01-B18	2.334	0.057	0.0664	0.0014	0.058365	0.2568	0.0065	414.4	8.6	1221	17
RMO01-x1	2.747	0.087	0.0706	0.0021	0.10214	0.283	0.011	439	13	1338	23

Muestra RMO-01	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final 206Pb/238U	±2s	Edad Final 207Pb/235U	±2s
RMO01-x3	1.65	0.14	0.0644	0.0032	0.33259	0.191	0.016	402	19	1017	49
RMO01-x4	14.23	0.49	0.1858	0.0078	0.24878	0.556	0.022	1097	42	2768	33
RMO01-x5	2.71	0.11	0.0737	0.0022	0.094272	0.268	0.013	458	13	1330	28
RMO01-x6	5.25	0.21	0.0919	0.0029	0.13111	0.415	0.02	567	17	1853	34
RMO01-x8	24.36	1	0.2455	0.013	0.28928	0.696	0.029	1414	65	3277	40
RMO01-x9	6.7	0.18	0.1052	0.0033	0.27238	0.459	0.015	645	19	2069	23
RMO01-x11	11.32	0.22	0.1449	0.004	0.30133	0.567	0.013	872	23	2548	18
RMO01-x12	2118	59	17.89	0.6	0.93144	0.8522	0.0071	18940	210	7771	28
RMO01-x13	0.605	0.027	0.04985	0.0014	0.16806	0.0901	0.0035	313.6	8.8	479	18
RMO01-x14	0.634	0.017	0.05063	0.0011	0.3501	0.0949	0.0024	318.4	6.6	498	10
RMO01-x15	11.5	0.31	0.1427	0.0047	0.16607	0.582	0.023	860	27	2565	25
RMO01-x17	8.61	0.28	0.1157	0.0052	0.24026	0.524	0.025	705	30	2296	30
RMO01-x19	2.456	0.055	0.0674	0.002	0.44718	0.2654	0.0067	420.3	12	1258	16
RMO01-x21	4.44	0.13	0.0842	0.0024	0.18091	0.387	0.012	521	14	1722	24
RMO01-x22	16.54	0.57	0.1948	0.0067	0.10934	0.609	0.027	1151	37	2912	33
RMO01-x23	5.08	0.18	0.0856	0.0032	0.064635	0.431	0.022	529	19	1832	29
RM001-x24	13.96	0.61	0.1818	0.0068	0.058915	0.555	0.03	1076	37	2755	43
RMO01-x25	4.783	0.079	0.0871	0.0019	0.039812	0.3955	0.0073	538.2	11	1781	14
RMO01-x26	4.23	0.19	0.0801	0.0034	0.19654	0.39	0.023	496	21	1684	39
RMO01-x27	6.27	0.17	0.1004	0.0025	0.032893	0.455	0.014	617	15	2011	24
RMO01-x30	2.863	0.05	0.06954	0.0016	0.049104	0.2997	0.0071	433.3	9.4	1371	13
RMO01-x31	33.05	0.89	0.331	0.015	0.079974	0.744	0.027	1837	71	3578	26
RMO01-x32	17.68	0.55	0.2011	0.0058	0.061063	0.641	0.019	1181	31	2970	28
RMO01-x33	5.86	0.25	0.0978	0.0045	0.12211	0.428	0.024	601	26	1963	37
RMO01-x34	17.97	0.34	0.198	0.005	0.16369	0.654	0.015	1164	27	2986	18
RMO01-x36	0.803	0.034	0.0504	0.0013	0.44418	0.1161	0.0056	316.8	7.8	597	19
RMO01-x37	3.09	0.12	0.0712	0.0024	0.075681	0.323	0.016	443	14	1431	28

Muestra RMO-01	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final 206Pb/238U	±2s	Edad Final 207Pb/235U	±2s
RMO01-x38	3.757	0.096	0.0745	0.0021	0.052122	0.362	0.011	463.2	12	1581	21
RMO01-x43	16.18	0.4	0.2027	0.0069	0.099633	0.585	0.025	1189	37	2887	24
RMO01-x45	4.82	0.14	0.0881	0.0024	0.17134	0.4	0.012	544	14	1789	25
RMO01-x46	15.14	0.4	0.1803	0.0063	0.033119	0.626	0.023	1068	34	2827	25
RMO01-x47	18.3	0.49	0.2041	0.0057	0.53908	0.652	0.015	1197	30	3001	26
RMO01-x49	3.864	0.089	0.0793	0.002	0.32345	0.3564	0.009	491.8	12	1604	18
RMO01-x50	4.28	0.11	0.081	0.0026	0.011954	0.381	0.014	502	15	1691	21
RMO01-x51	3.4	0.15	0.0731	0.0032	0.1408	0.34	0.016	454	19	1501	35
RM001-x52	16.2	0.27	0.1792	0.0054	0.13002	0.654	0.018	1062	30	2890	16
RMO01-x54	79.4	1.7	0.734	0.024	0.48037	0.786	0.021	3554	86	4456	22
RMO01-x55	141	57	1.12	0.4	0.94679	0.89	0.12	4.80E+03	1.20E+03	4980	380
RMO01-x56	43.7	1.2	0.428	0.014	0.29515	0.734	0.023	2293	64	3853	26
RMO01-x59	2.79	0.13	0.0731	0.0022	0.25492	0.282	0.013	454	13	1351	36
RMO01-x60	45.6	4	0.446	0.036	0.96611	0.744	0.019	2350	160	3857	80
RMO01-x61	19.89	0.47	0.2078	0.007	0.22664	0.694	0.023	1216	38	3083	23
RMO01-x62	2.67	0.13	0.0767	0.0026	0.1984	0.25	0.012	476	16	1334	35
RMO01-x63	14.44	0.46	0.1745	0.0069	0.17639	0.596	0.024	1036	38	2784	32
RMO01-x66	9.77	0.36	0.1289	0.0044	0.072013	0.557	0.023	781	25	2421	33
RMO01-x67	4.85	0.2	0.0879	0.0027	0.087295	0.402	0.017	543	16	1797	32
RMO01-x69	4.43	0.12	0.084	0.0025	0.1496	0.383	0.015	520	15	1718	22
RMO01-x71	3.72	0.13	0.08	0.0022	0.032929	0.343	0.013	496.2	13	1575	28
RMO01-x73	11.42	0.22	0.1438	0.0038	0.074461	0.581	0.017	866	21	2560	17
RMO01-x75	17.08	0.49	0.1866	0.006	0.20041	0.667	0.021	1106	33	2939	27
RM001-52	2.97	0.1	0.0756	0.0025	0.096245	0.285	0.013	469	15	1399	27
RMO01-59	1.74	0.075	0.062	0.002	0.30851	0.203	0.011	388	12	1026	28
RMO01-x18	5.1	0.22	0.1017	0.0037	0.15876	0.369	0.019	624	22	1833	36
RMO01-x53	5.31	0.1	0.1088	0.0027	0.0085829	0.3538	0.0089	666	16	1871	16

Muestra RMO-01	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final 206Pb/238U	±2s	Edad Final ²⁰⁷ Pb/ ²³⁵ U	±2s
RMO01-x28	3.104	0.079	0.1034	0.0023	0.082082	0.2158	0.0058	634.1	13	1431	20
RMO01-x20	1.192	0.028	0.0865	0.0019	0.49785	0.0993	0.002	535	11	798	12
RM001-x7	1.572	0.091	0.0998	0.0036	0.39313	0.1134	0.0063	613	21	951	36
RMO01-43	1.63	0.043	0.0948	0.0023	0.1547	0.1249	0.0041	583.9	14	986	17
RM001-x2	1.813	0.054	0.1045	0.0024	0.036862	0.129	0.004	640	14	1048	20
RMO01-x64	33.68	0.88	0.419	0.014	0.1549	0.591	0.019	2263	62	3601	25
RM001-57	1.59	0.028	0.156	0.003	0.25852	0.0739	0.0013	934.3	17	965	11
RMO01-x48	1.518	0.038	0.1415	0.003	0.00034634	0.078	0.002	853.1	17	936	15
RMO01-x74	2.017	0.072	0.144	0.0035	0.060062	0.1035	0.004	867	20	1125	24
RMO01-x40	1.733	0.036	0.1526	0.0029	0.17052	0.082	0.0019	915.3	16	1020	13
RMO01-x41	1.781	0.054	0.1494	0.0036	0.069088	0.0857	0.0027	899	20	1036	20
RMO01-8	1.703	0.033	0.1535	0.0031	0.15916	0.0826	0.0016	920	17	1009	12
RMO01-B11	1.767	0.17	0.1536	0.0093	0.096604	0.088	0.003	921	50	1031	47
RM001-42	6.3	0.11	0.196	0.0043	0.19935	0.2333	0.0045	1154	23	2017	15
RMO01-x72	5.94	0.2	0.1939	0.0058	0.17978	0.2201	0.0088	1142	31	1966	30
RMO01-x58	6.8	0.2	0.1749	0.0062	0.030686	0.284	0.013	1043	35	2081	27
RM001-51	5.43	0.15	0.1517	0.0039	0.20605	0.2586	0.0077	910	22	1890	23
RMO01-x68	2.73	0.1	0.1283	0.0042	0.018362	0.1539	0.0079	778	24	1332	28
RMO01-x65	3.68	0.1	0.1383	0.0033	0.23866	0.1952	0.005	835	18	1565	23
RMO01-58	4.61	0.13	0.1584	0.0039	0.19965	0.216	0.0064	948	21	1748	22
RMO01-x16	3.1	0.092	0.1544	0.0038	0.17998	0.1477	0.0048	925	21	1437	23
RMO01-x70	1.707	0.06	0.1166	0.0028	0.50991	0.1051	0.0033	711	16	1008	22
RMO01-x42	2.865	0.08	0.1263	0.0031	0.078295	0.1659	0.0055	767	18	1374	22
RM001-11	1.804	0.039	0.1281	0.0026	0.1853	0.1064	0.0025	777.1	15	1046	14
RMO01-x39	2.563	0.046	0.1441	0.003	0.041669	0.1278	0.0029	867.5	17	1291	13
RMO01-x57	4.001	0.091	0.1483	0.0032	0.22511	0.1953	0.0042	891	18	1635	18
RMO01-x29	1.402	0.019	0.1138	0.0024	0.2968	0.0894	0.0013	694.5	14	889.6	8

Muestra RMO-01	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final ²⁰⁶ Pb/ ²³⁸ U	±2s	Edad Final ²⁰⁷ Pb/ ²³⁵ U	±2s
RMO01-B17	1.429	0.028	0.1181	0.0024	0.058823	0.0901	0.0017	719.3	14	901	12
RMO01-x44	3.794	0.086	0.1396	0.0031	0.068048	0.1972	0.005	843	18	1592	18
RMO01-33	1.151	0.032	0.1168	0.0024	0.22005	0.0715	0.0019	712	14	776	15
RMO01-x10	3.86	0.16	0.1447	0.0036	0.17346	0.1941	0.0074	871	20	1614	35
RMO01-x35	3.423	0.085	0.1298	0.0029	0.076624	0.1912	0.0052	786.8	16	1507	20

Muestra RMO-04	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final ²⁰⁶ Pb/ ²³⁸ U	±2s	Edad Final ²⁰⁷ Pb/ ²³⁵ U	±2s
RM004-2	16.19	0.41	0.1877	0.007	0.10621	0.645	0.024	1108	38	2884	24
RM004-3	2.458	0.059	0.0657	0.0024	0.0068404	0.2748	0.0091	410.2	14	1262	18
RM004-4	35	1.2	0.341	0.017	0.86387	0.728	0.021	1888	85	3631	40
RM004-5	4.483	0.08	0.0862	0.0027	0.14435	0.3811	0.0073	532.8	16	1726	15
RM004-6	11.43	0.22	0.1478	0.0055	0.38105	0.57	0.015	888	31	2562	17
RM004-7	2.238	0.032	0.06744	0.0022	0.17099	0.2408	0.0057	420.7	13	1192	10
RM004-8	15.7	0.31	0.1854	0.007	0.11011	0.612	0.019	1096	38	2863	19
RMO04-9	15.22	0.55	0.1821	0.0084	0.59395	0.605	0.015	1077	45	2831	34
RMO04-10	21.82	0.56	0.237	0.009	0.26318	0.663	0.019	1370	47	3172	25
RM004-11	1.933	0.031	0.06477	0.0021	0.025628	0.2159	0.0044	404.5	13	1092	11
RM004-12	6.18	0.17	0.1038	0.0038	0.25859	0.437	0.013	636	22	1998	24
RM004-14	4.34	0.19	0.085	0.0032	0.24295	0.369	0.016	526	19	1698	35
RM004-15	28.98	0.5	0.2946	0.011	0.083084	0.706	0.02	1663	56	3454	18
RMO04-16	2.395	0.047	0.0688	0.0022	0.060261	0.2521	0.0059	428.9	13	1242	14
RM004-17	8.98	0.36	0.1247	0.0048	0.6743	0.521	0.014	757	28	2327	37
RM004-18	1.602	0.032	0.05898	0.0019	0.21188	0.1933	0.0035	370.1	11	970	12
RM004-19	20.31	0.41	0.225	0.0086	0.13755	0.663	0.022	1307	45	3107	19
RM004-20	13.15	0.4	0.161	0.0062	0.44589	0.6	0.017	962	35	2685	28

Muestra RMO-04	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final 206Pb/238U	±2s	Edad Final 207Pb/235U	±2s
RM004-21	13.63	0.4	0.1604	0.0065	0.015343	0.619	0.025	958	36	2724	27
RM004-22	16.09	0.33	0.1851	0.0072	0.20402	0.627	0.018	1097	38	2883	19
RM004-23	12.51	0.25	0.1538	0.006	0.0025116	0.577	0.018	922	34	2644	18
RM004-24	4.487	0.094	0.0824	0.0027	0.34087	0.3895	0.0085	510.5	16	1727	17
RM004-26	7.71	0.14	0.1114	0.0039	0.22965	0.497	0.011	680	23	2196	16
RMO04-z1	3.422	0.098	0.0745	0.0028	0.34665	0.327	0.01	463	17	1514	22
RMO04-z2	2.244	0.053	0.06658	0.0022	0.10173	0.2383	0.0057	415.5	13	1193	17
RMO04-z3	1.213	0.072	0.059	0.0021	0.55194	0.152	0.008	369.6	13	806	33
RMO04-z4	4.327	0.085	0.083	0.0029	0.03172	0.379	0.011	514.1	18	1697	16
RMO04-z5	16.08	0.32	0.1808	0.0068	0.30687	0.639	0.016	1071	37	2882	18
RMO04-z6	4.345	0.084	0.0843	0.0028	0.37137	0.365	0.0067	521.4	17	1703	16
RMO04-z8	2.678	0.05	0.06678	0.0022	0.07381	0.2861	0.0066	416.7	13	1323	13
RM004-z10	2.211	0.063	0.0681	0.0024	0.14089	0.2275	0.0068	424.7	14	1182	20
RM004-z11	0.796	0.01	0.05168	0.0016	0.075138	0.1102	0.0015	324.8	9.7	594.1	5.8
RM004-z12	3.201	0.057	0.0739	0.0024	0.16624	0.3057	0.0067	459.8	14	1456	14
RMO04-D1	15.74	0.3	0.183	0.0077	0.4435	0.613	0.016	1083	42	2859	18
RMO04-D3	6.22	0.19	0.0968	0.0039	0.071018	0.45	0.018	596	23	2002	26
RMO04-D4	2.143	0.07	0.0618	0.0025	0.092237	0.251	0.011	387	15	1160	23
RMO04-D5	7.21	0.28	0.1109	0.0053	0.20698	0.469	0.025	677	31	2141	35
RM004-D7	18.37	0.42	0.1977	0.0078	0.0099684	0.665	0.023	1162	42	3017	22
RM004-D9	14.5	0.45	0.1693	0.0064	0.27411	0.616	0.022	1008	36	2781	30
RM004-D10	7.95	0.21	0.1126	0.0042	0.089916	0.507	0.018	687	24	2221	24
RM004-D11	3.545	0.087	0.0754	0.0025	0.083912	0.3375	0.0085	468.7	15	1535	20
RM004-D12	16.74	0.37	0.1775	0.0069	0.20377	0.664	0.021	1053	38	2917	22
RM004-D13	13.7	0.48	0.1584	0.0088	0.28055	0.61	0.029	964	48	2727	33
RM004-D14	5.888	0.091	0.0937	0.0031	0.19831	0.4509	0.0086	577.4	19	1958	13
RM004-D15	11.51	0.24	0.1428	0.0055	0.41694	0.579	0.012	860	31	2566	21

Muestra RMO-04	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final 206Pb/238U	±2s	Edad Final 207Pb/235U	±2s
RM004-D16	1.311	0.063	0.05387	0.0018	0.61051	0.1721	0.0061	338.2	11	846	27
RM004-D17	6.16	0.14	0.0977	0.0039	0.089349	0.448	0.014	601	23	1997	20
RM004-D18	42.06	0.51	0.4034	0.014	0.34089	0.749	0.013	2189	66	3820	12
RM004-D19	11.97	0.59	0.1491	0.0071	0.85993	0.565	0.017	895	40	2606	44
RM004-D21	4.04	0.17	0.0807	0.0038	0.16845	0.354	0.018	503	22	1641	35
RM004-D22	16.24	0.38	0.1837	0.0069	0.57977	0.626	0.016	1087	38	2888	23
RM004-D23	4.77	0.41	0.0856	0.0048	0.92062	0.387	0.019	532	29	1745	72
RM004-D24	9.71	0.24	0.1281	0.0049	0.1315	0.542	0.016	777	28	2408	22
RM004-D25	185.2	5.6	1.679	0.076	0.54432	0.797	0.024	6330	180	5313	34
RM004-D26	12.05	0.41	0.1473	0.0057	0.20012	0.586	0.024	886	32	2606	32
RM004-D27	21.44	0.45	0.2292	0.0085	0.15478	0.675	0.016	1329	45	3156	21
RM004-D28	11.2	1.4	0.14	0.013	0.94699	0.543	0.025	842	76	2460	120
RM004-D29	16.54	0.27	0.1862	0.007	0.3527	0.635	0.016	1100	38	2907	16
RM004-D30	3.37	0.13	0.0778	0.0031	0.12604	0.307	0.014	483	18	1491	30
RM004-D31	214.9	2.8	1.863	0.061	0.65981	0.826	0.0092	6779	140	5458	14
RM004-D32	5.62	0.12	0.0943	0.0032	0.052774	0.4314	0.0098	580.6	19	1920	18
RM004-D33	23.42	0.52	0.2498	0.0094	0.060816	0.677	0.02	1437	48	3242	22
RM004-D34	15.84	0.33	0.1878	0.0069	0.046929	0.62	0.02	1109	37	2865	20
RM004-D35	13.82	0.93	0.1624	0.0096	0.82791	0.618	0.023	968	53	2735	64
RM004-D37	5.63	0.12	0.0936	0.004	0.144	0.438	0.015	576	23	1926	18
RM004-D38	23.6	1.2	0.2447	0.012	0.84154	0.699	0.018	1408	63	3243	50
RM004-D39	17.8	0.56	0.1938	0.0084	0.30532	0.652	0.022	1146	47	2973	29
RM004-D40	9.57	0.26	0.1284	0.0046	0.15824	0.533	0.018	779	26	2394	26
RM004-D41	15.38	0.43	0.1817	0.0073	0.28544	0.621	0.019	1075	40	2839	27
RM004-D42	35.6	3	0.362	0.029	0.97518	0.718	0.017	1980	130	3616	80
RM004-D43	12.25	0.37	0.1524	0.0069	0.13573	0.591	0.024	914	38	2623	27
RM004-D44	94.7	3	0.849	0.035	0.68354	0.803	0.022	3955	120	4624	33

Muestra RMO-04	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final 206Pb/238U	±2s	Edad Final ²⁰⁷ Pb/ ²³⁵ U	±2s
RM004-D45	6.96	0.17	0.1041	0.0039	0.23245	0.485	0.016	638	23	2110	21
RMO04-D46	23.75	0.59	0.2569	0.01	0.47962	0.681	0.018	1473	52	3259	25
Rmo4xtr-1	20.74	0.48	0.2232	0.008	0.11843	0.666	0.024	1298	42	3123	22
Rmo4xtr-2	18.25	0.55	0.2017	0.0084	0.56127	0.663	0.022	1183	45	3001	28
Rmo4xtr-3	4.269	0.071	0.08466	0.0022	0.21837	0.3634	0.0063	523.8	13	1686	14
Rmo4xtr-4	14.18	0.3	0.1709	0.0061	0.21217	0.6	0.017	1016	33	2766	20
Rmo4xtr-5	4.33	0.13	0.0847	0.003	0.12323	0.36	0.013	524	18	1694	25
Rmo4xtr-6	3.226	0.073	0.0723	0.0023	0.2368	0.3186	0.0086	450.1	14	1464	17
Rmo4xtr-7	2.878	0.058	0.0689	0.0021	0.17936	0.3052	0.0077	429.2	13	1375	15
Rmo4xtr-8	13.99	0.42	0.1667	0.0057	0.24427	0.609	0.019	999	31	2756	29
Rmo4xtr-9	5.168	0.089	0.0938	0.0027	0.074405	0.4	0.01	579.2	17	1848	15
Rmo4xtr-10	18.51	0.48	0.2056	0.0075	0.021	0.651	0.022	1204	40	3015	25
Rmo4xtr-11	7.29	0.27	0.1062	0.0043	0.014534	0.492	0.023	650	25	2143	33
Rmo4xtr-12	9.64	0.21	0.1331	0.0044	0.26618	0.518	0.013	805	25	2401	21
Rmo4xtr-13	19.59	0.47	0.2171	0.007	0.0069079	0.657	0.022	1270	36	3067	23
Rmo4xtr-14	11.28	0.27	0.1414	0.0054	0.30443	0.57	0.016	852	31	2543	23
Rmo4xtr-15	4.61	0.11	0.0876	0.0025	0.16315	0.375	0.0096	541.2	15	1751	20
Rmo4xtr-6TR	5.3	0.47	0.0947	0.0051	0.98272	0.404	0.019	582	29	1836	65
RMO04-D6	18.46	0.46	0.1998	0.0076	0.11681	0.658	0.021	1174	41	3011	24
RMO04-25	4.957	0.097	0.1887	0.0059	0.065448	0.1888	0.0042	1114	32	1810	17
RMO04-D2	2.276	0.047	0.1583	0.0049	0.48436	0.1037	0.0019	947.5	27	1208	15
RMO04-D8	5.89	0.16	0.198	0.0062	0.42222	0.2137	0.0052	1166	35	1960	24
RMO04-D20	4.34	0.16	0.1866	0.0061	0.63333	0.1654	0.0045	1103	33	1700	31
RMO04-D36	5.72	0.78	0.1845	0.0093	0.99322	0.213	0.012	1090	49	1867	54
RM004-D47	2.144	0.03	0.1693	0.0051	0.31052	0.0917	0.0012	1008.5	28	1162.5	9.5
RM004-1	5.07	0.26	0.1855	0.0064	0.74513	0.2	0.0083	1097	35	1820	42
RM004-13	5.93	0.27	0.196	0.0066	0.30513	0.2169	0.0097	1154	35	1966	40
Muestra RMO-04	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	Edad Final ²⁰⁶ Pb/ ²³⁸ U	±2s	Edad Final ²⁰⁷ Pb/ ²³⁵ U	±2s
----------------	-------------------------------------	---------	-------------------------------------	---------	----------	--------------------------------------	---------	---	-----	---	-----
RMO04-z9	3.695	0.073	0.1821	0.0057	0.015283	0.1451	0.003	1078.3	31	1569	16
RMO04-z7	3.509	0.047	0.1744	0.0054	0.20963	0.144	0.0021	1036.2	29	1528	11

Muestra ABM-02	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
ABM02-1	213	5271	966.8	141.3	1291.4	2228	205.5	788.5	129.02	23.98	103.62	8.629	32.43	3.797	6.38	0.49	1.988	0.191	55.94	36.18
ABM02-2	131.7	292.8	595.3	638.8	1174.4	3116	399.5	1628	302.8	55.64	229.8	25.3	129.7	22.43	59.32	7.506	44.46	6.174	56.42	26.06
ABM02-3	40.6	373.3	833.8	517	1901	3625	379.1	1457	237.9	32.13	192.8	19.91	103.1	17.97	46.8	5.76	33.94	5.28	57.4	17.93
ABM02-4	188	467.2	271	314.8	1371.3	2377	231.5	756.6	113.47	22.61	100.97	11.18	60.83	10.94	29.32	3.649	21.32	3.122	92.16	36.83
ABM02-5	277	2771	264.2	1259	312	918	158.3	860	412.1	52.79	486.9	71.89	376.1	53.36	120.97	14.38	80.34	10.197	0.124	22.29
ABM02-6	70.1	530.4	585.3	323.9	138.4	471.9	76.6	372.9	86.6	21.04	81.07	9.68	56.49	10.82	32.17	4.447	28.59	4.96	5.73	6.551
ABM02-7	59.4	693	237.55	1329	3281	6374	678.2	2325	402.1	41.01	359.9	42.01	236.8	43.06	119.05	14.98	89.81	13.02	464.6	57.76
ABM02-8	-1.2	359.6	92.28	1014	932	2232	262.2	964	203.8	14.73	200.3	26.96	165.35	31.16	92.07	12.42	75.68	10.94	6.49	7.47
ABM02-9	173.8	256.9	130.6	916	1668	4430	531	1879	329	19.81	277	30.9	167	28.9	78.4	9.66	55.4	8.08	78.8	30.2
ABM02-10	59.6	888.2	93.52	8373	594.8	2482	479.2	2616	1072.9	47.01	1259.6	202.1	1322.1	251.4	742.1	101.67	632.1	92.98	194.1	101.4
ABM02-11	56.6	269.2	145.14	516.2	958.7	1726	181	640.6	125.25	16.99	127.12	15.52	89.39	16.1	44.85	5.583	32.73	4.888	69.04	34.76
ABM02-12	67	422.7	470.8	522.8	185.6	652.2	115.3	578.7	153.6	27.44	135.5	16.62	93.17	16.26	45.57	5.884	35.16	5.393	5.586	7.663
ABM02-13	185	539.8	80.17	1673	2243	5573	704.6	2546	499.2	31.44	436.1	54.67	313.5	55.12	152.18	19.04	108.07	15.36	97.61	25.98
ABM02-14	145	472.4	130.83	3704	4198	10314	1281	4553	926.1	30.83	845.4	112.85	666.7	119.87	331.7	41.59	239.3	33.65	156.97	33.78
ABM02-15	120.4	392.2	93.52	5600	1576	4685	775	3597	1233	8.93	1406	213.1	1228	196.6	457.2	46.4	216.9	26.69	8.53	90.6
ABM02-16	59	126.3	331.4	465.9	966.3	3044	481.5	2117	451.4	66.3	350.5	35.27	143.4	16.03	26.14	1.898	7.52	0.726	9.54	31.05
ABM02-17	264	1031.1	79.97	5547	2715	7033	1011	4641	1244	86.03	1281.8	179.12	1098.1	200.2	533.7	64.77	363.8	50.11	88.19	229.2
ABM02-18	146	541.6	490.6	1732	2011	4933	637.6	2487	489.3	51.63	435.2	55.67	321	58.6	159.79	19.98	113.69	15.39	75.23	27.48
ABM02-19	77.8	575.8	595.9	905.1	1686	3491	415.1	1519	278	61.46	238.9	29.28	169	31.29	86.51	11.12	66.42	9.49	171.09	31.4
ABM02-20	475	689.2	268.8	1187.7	1750	4513	551.5	1994	347.1	28.02	298	36.91	215.6	40.27	111.73	14.18	80.89	11.214	136	66.3
ABM02-21	123	346.7	177.28	118	126.1	223.1	25.04	102.2	22.1	5.29	24.47	3.275	20.37	4.107	11.4	1.439	8.68	1.345	14.75	70.5
ABM02-22	253	374.2	1639.5	970.4	4260	9304	1168	4476	687.3	52.6	450.2	43.49	211.5	34.78	88.69	10.69	60.31	8.037	62.22	60.55
ABM02-23	46.9	290.5	2590	543.5	2131	3221	307	1044.5	151.1	31.49	132.91	13.49	72.53	14.53	44.38	6.597	47.41	9.181	157.6	34.96
ABM02-24	146.2	371.1	687.9	415.6	166.6	488.6	77.99	408.8	107.16	22.94	109.06	13.96	81.82	14.89	38.47	4.554	26.02	3.488	2.805	2.03
ABM02-25	174.4	418	4902	901.3	2443	7543	1144	5153	851.5	132.06	511.8	47.04	206.8	31.7	73.27	8.295	46.54	6.246	102.88	101.03
ABM02-26	104.8	645.6	378.9	2656	651	2667	469	2452	573	65	533	74.4	462	93	258.2	34.42	207.2	29.22	2.64	17.85
ABM02-27	112	575	121.78	941.7	274.9	559.8	66.75	314.8	93.79	9.12	138.2	22.02	148.9	32.2	89.69	11.2	67.26	10.8	64.65	100.12
ABM02-28	150.5	252.6	116	1864	673.9	1975	283.9	1341	352.1	23.18	394.3	58.7	350.5	64.92	160.87	18.83	99.73	12.27	14.06	16.11
ABM02-29	25	698.5	1215.7	1292	1604	3985	535.1	2267	411.5	95.29	354.4	44.75	257.9	48.84	126.31	15.42	83.55	10.053	290.6	47.38

Anexo IX. Resultados de análisis geoquímico en apatitos detríticos (en ppm)

Muestra ABM-02	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
ABM02-30	83.6	339.7	56.39	1073	1290	2830	344.1	1434	257.9	11.54	251.8	31.71	188.2	37.03	96.52	11.76	64.61	8.485	47.07	7.536
ABM02-31	293	443.8	734.3	375.1	973.7	2332	283.8	1112.5	158.2	27.86	124.9	13.32	71.56	13.43	34.87	4.267	24.67	3.455	22.48	6.811
ABM02-32	107.1	421.9	263.3	1504	3590	7421	883	3550	541.8	50.38	451.3	51.3	281.6	53.37	137.8	17.01	98.19	13.523	127.74	35.04
ABM02-33	90.6	429	648.8	893.7	1032.4	2498	316.9	1340	245.7	42.48	216.3	28.45	168.9	32.76	87.24	11.15	62.75	8.007	216.78	59.06
ABM02-34	201.8	735.1	278.2	325.2	287.9	786.9	102.3	458.6	86.18	8.88	84.09	10.17	58.63	11.49	31.02	4.107	25.96	4.148	3.245	18.991
ABM02-35	78	492.7	351.1	2757	3421	7592	984.3	4097	702.1	44.14	628	82.99	492.4	95.58	264.1	36.18	224.2	31.63	110.68	32.47
ABM02-36	256	405	348.3	128	546.8	784.2	71.55	277	45.67	9.45	43.58	4.604	24.21	4.457	11.11	1.349	7.73	1.111	44.34	50.2
ABM02-37	160	1368	203.49	3548	3210	9937	1509	7527	1367.8	81.76	1097.4	134.52	739.9	134.43	335.2	40.24	224.2	28.55	3.293	5.4
ABM02-38	49.5	1064	109.09	2420	111.7	379.2	73.09	518.2	202.5	26.49	294.9	49.59	355	80	231	31.84	194	27.92	2.02	2.918
ABM02-39	158.6	215.3	424.7	786	1572	3367	382.1	1581	241.9	18.15	223.5	26.26	147.72	27.59	67.26	7.515	39.87	5.259	18.33	12.684
ABM02-40	240	1885	298.6	729.8	1358	2530	250.1	980.7	165.1	29.66	171	21.65	127.32	25.03	66.91	8.45	49.09	6.787	169.58	47.28
ABM02-41	2751	556.5	583.2	762.5	586.9	1502	205.7	1076.4	216.7	23.18	207.4	25.83	146.4	27.36	67.21	7.867	42.7	5.437	12.011	4.891
ABM02-42	216.5	730.1	264.4	4378	1649	5934	883.1	4674	1121.3	72.27	1059.1	147.74	881	165.67	425.2	52.43	297.6	38.67	13.565	22.15
ABM02-43	59.8	399.4	267.8	966.4	503.1	1450	195.4	999	212.6	32.19	220.3	28.52	170.3	34.15	92.81	12.39	77.65	12.62	59.29	19.09
ABM02-44	518	785.2	291.3	816.5	1975	3420	387	1521	223	15.8	199	22.81	130.6	25.88	69.99	9.086	55.04	8.259	51.8	26.68
ABM02-45	204.3	595.3	602.9	347	1384	2556	256.3	1017.4	138.3	25.64	114.55	12.28	64.74	11.87	30.35	3.721	22	3.021	41.66	27.62
ABM02-46	108.9	126.1	133.54	116.4	1693	4258	570.2	2820	510.2	20.79	283.7	17.38	45.61	4.021	6.1	0.376	2.133	0.21	83.68	21.11
ABM02-47	112	184	313.1	392.9	798.9	1791	208.6	953	158	22.06	135.5	15.1	79.82	14.26	34.13	3.939	22.26	2.937	32.3	17.14
ABM02-48	277	736.5	380.1	730.6	2394	5140	587.8	2538	371.3	42.7	276.6	28.13	141.62	25.05	62.42	7.519	43.1	6.179	36.32	17.77
ABM02-49	73.5	1168.7	2641	1541	1452	6734	1169	6022	1050.3	158.03	650.1	65.89	317.4	52.06	127.69	15.69	91.91	12.43	13.267	61.12
ABM02-50	116	349.5	257.4	201.2	836.5	1015	85.2	321.8	55.55	10.42	56.01	6.535	36.59	6.645	16.43	1.899	10.56	1.461	142.99	116.67
ABM02-51	78.1	125.9	346.9	726.7	1316	4320	709.3	3758	791.8	79.3	611.9	60.03	231.6	25.24	37.78	2.813	12.3	1.184	7.429	34.54
ABM02-52	31.3	311.4	363.3	2451	885.2	2777	434.2	2239	471.6	76.5	443.3	59.75	378.2	80.4	241.5	35.28	235.6	37.34	49.06	11.14
ABM02-53	37.6	505.1	146.1	899	1031	3112	443	2025	355.1	22.24	275.3	31.38	167	29.74	74.9	9.24	53.6	7.31	21.19	32.4
ABM02-54	129.7	454.4	443.4	857.7	2791	5623	639.2	2516	351	49.2	278.7	29.78	158.1	28.81	74.72	9.18	54.5	7.639	108.45	65.37
ABM02-55	669	2694	542.1	798.7	979.6	2481	345.7	1600	408.4	15.04	381.2	44.54	200.6	27.53	50.8	4.377	19.06	2.009	49.17	36.33
ABM02-56	296.6	265.8	288.2	498.2	1540	4082	595.1	2823	603.7	17.38	445.5	41.04	154.93	18.03	29.09	2.095	8.81	0.897	4.132	8.867
ABM02-57	299.3	1055.9	113.46	3722	843.6	2854	471.2	2476	687.7	28.24	753.8	112.54	695.5	131.25	331.7	39.12	205.2	25.41	79.53	26.06
ABM02-58	1193	1262.6	749.7	475.8	1539	3049	326.2	1225	180.7	24.83	154.5	16.25	86.94	16.09	42.25	5.297	32.17	4.813	16.63	3.398
ABM02-59	42.7	417.2	329.4	2590	120.7	814	207.5	1456	520.5	69.32	558.9	78.31	468.2	88.8	237.7	31.46	191.7	26.58	7.9	17.76
ABM02-60	138.3	181.6	192.5	188	2804	6849	898	3732	636.3	20.01	406.6	27.81	76.55	6.668	9.32	0.524	2.66	0.25	41.7	10.853
ABM02-61	100.9	406.9	824.1	833	3731	7941	950	3593	477.9	54.03	337.1	33.38	165.02	28.55	70.77	8.293	47.19	6.357	24.72	6.151

Muestra ABM-02	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
ABM02-62	92.1	2084	57.09	5752	193.7	1152	246.2	1417	531.1	39.16	670.2	120.97	869.1	191.1	583.4	85.41	544.5	77.26	21.84	14.251
ABM02-63	174.2	491.8	183	1829	630.5	2065	350.9	1780	456.3	22.94	436.2	60.19	356	65.46	164.92	19.1	100.87	12.7	30.94	57.58
ABM02-64	48.9	618	132.58	2415	3618	9153	1168	4699	820.5	34.81	697.3	81.18	442.6	81.92	215.6	27.47	164	22.79	321.6	73.38
ABM02-65	188.3	364.3	441.2	1749	906.4	2934	425.7	1910	406.7	32.73	394.4	52.14	309.6	59.54	155.1	19.04	106.78	14.45	17.19	27.89
ABM02-R1	46.6	726.1	348.9	3968	783.5	2883	522.9	2894	828.2	120.26	820.1	122.96	771.9	145.64	378.6	46.36	246.8	30.54	31.76	28.87
ABM02-R2	81.9	303.2	262.3	2038	3559	8157	1044	4370	726	58.47	596.6	70.67	391.3	72.01	184.31	22.29	122.76	15.78	77.51	19.68
ABM02-R3	236.1	5445	264.3	715.9	1824	3389	355.8	1322	241	32.31	225.6	25.12	124.5	19.57	42.38	4.473	23.17	2.921	185.3	144.2
ABM02-R4	63.7	282.8	278.2	1149	2890	5811	658.7	2628	415.1	47.57	337.3	37.99	208.9	38.91	103.1	13	76.8	10.83	72.3	20.19
ABM02-R5	182.6	543.5	3493	406	2396	5624	726.4	2944	404.9	74.54	247.8	21.37	92.24	14.15	32.21	3.623	19.9	2.636	144.8	69.53
ABM02-R6	176	429.6	1074.2	514	831.2	2669	377.9	1668	285.4	31.98	200.6	21.04	104.39	17.85	44.04	5.4	30.21	4.228	8.94	26.55
ABM02-R7	48.5	748.2	337.7	856.2	675	1848	257.2	1247	261.6	41.64	241.3	27.38	149.5	28.4	72.94	8.9	51.5	8.383	106.98	43.14
ABM02-R8	473	1162.5	747.3	1249	878	2155	291.2	1328	298.2	34.18	280.2	38.71	233.5	45.14	119.2	15.66	93.37	12.75	148.1	37.91
ABM02-R9	73.1	957.2	203.3	232.8	1131	1751	159.6	559.5	79.3	14.57	71.99	7.76	41.66	7.82	20.28	2.516	15.42	2.559	10.57	23.73
ABM02-R10	261.5	389.7	2053	639.8	2134	5402	726	3093	480.6	65.74	316.1	30.86	144.3	23.15	55.58	6.427	36.62	4.901	24.53	75.5
ABM02-R11	227	616.8	397.3	1267	1380	3228	422.6	1851	341.8	24.57	314.9	39.61	226.5	43.14	112	13.93	78.6	10.94	38.9	17.53
ABM02-R12	60.5	2830	313.1	231.5	941	1967	189.5	769.1	140.7	26.54	119.74	11.81	49.6	6.382	11.6	0.945	4.21	0.461	98.06	57.09
ABM02-R13	241	521.4	638.4	171.9	1264	1875	158.2	515.6	63.64	12.99	54.8	5.562	29.67	5.684	15.59	1.986	12.22	1.86	209.1	73.53
ABM02-R14	132.6	647.4	896.4	537	270.1	857.5	145.8	806.7	182.7	43.75	169.4	20.18	108.9	19.26	46	5.344	29.39	4.114	8.345	4.494
ABM02-R15	294.1	766.9	144.02	693.4	1536	2356	238.2	862	133.43	5.46	128.7	16.07	98.25	20.95	61.54	8.763	56.53	9.46	51.83	53.23
ABM02-R16	325	1297.8	339.7	1899	2032	4516	550	2225	429.2	40.21	392	54.49	332.9	66.04	184.1	24.74	147.9	20.45	277.9	76.7
ABM02-R17	167	238.2	43.73	5622	2533	7320	1081	5052	1162.3	5.5	1273.7	186	1105.3	201.1	483.6	54.25	273.8	32.25	176.7	40.72
ABM02-R18	149	469.1	84.3	5337	3350	9105	1257	5582	1159.9	21.24	1125	154.1	928.2	181.5	483.7	61.32	343.6	45.74	103.11	38.42
ABM02-R19	351	426.2	610.5	1570	2575	4828	553.2	2109	340.8	71.4	309.6	38.08	226.9	47.27	138.3	19.63	128	20.33	801.6	242.6
ABM02-R20	333	354	2222	646.2	2602	7016	969	4269	695.7	70.06	413.2	36.52	151.5	22.6	49.91	5.318	28.89	3.648	53.98	140.78
ABM02-R21	72.9	579.2	477.2	366.5	1245	2565	280.7	1084	160	27.97	124.3	13.28	70.31	13.04	34.52	4.516	27.92	4.022	29.72	9.413
ABM02-u1	63	510.9	495	291.7	137.7	343	53.6	301.6	78.3	18.65	77.3	9.38	53.6	10.72	28.71	3.73	23.07	3.782	2.8	5.01
ABM02-u2	92.6	282.8	358.9	414.5	876.2	1761	192	770.8	129.2	24.44	114.29	13.3	73.45	14	36.78	4.678	27.19	3.897	70.12	11.18
ABM02-u3	94.9	612.9	552.8	348.2	162	484.4	78.9	438.7	102.36	23.4	93.25	11.05	62.58	12.12	33.3	4.467	27.42	4.294	3.038	4.559
ABM02-u4	158.7	409.9	308.8	1577	1172	2917	400.9	1900	434.3	15.89	419.2	56.81	326.9	60.5	149.6	16.79	84.98	10.47	5.334	2.181
ABM02-u5	48.6	262.7	342.5	246.1	288.7	560.5	65.36	293.9	54.72	11.89	55.32	6.803	40.4	8.55	24.47	3.41	22.37	3.961	9.64	5.995
ABM02-u6	208.6	287.6	584	357.4	219.5	577	86.3	471.3	110.4	23.92	107.8	13.37	72.54	12.86	30.93	3.537	19.36	2.63	2.298	0.887
ABM02-u7	31.5	566.6	94.81	2801	2112	5031	607	2605	504.9	14.87	497.3	69.91	436.5	91.22	266.2	36.78	227.2	32.37	61.09	32.19

Muestra ABM-02	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
ABM02-u8	23.5	197.4	298.5	602.5	133.8	607.4	122.2	754	176	22.53	155.4	19.74	110.6	20.51	55.47	7.157	42.22	5.915	0.0396	3.295
ABM02-u9	181.2	145.1	128.27	378.8	944	2366	316.4	1478	296.3	11.8	248.6	24.74	103.13	14.34	28.78	2.71	13	1.739	19.98	10.731
ABM02-u10	249	367.3	331.7	681.5	949.8	2111	279.5	1310	247.4	35.01	214.4	25.91	139.1	24.81	61.3	7.38	40.92	5.47	39.73	8.4
ABM02-u11	200.6	391.2	533.4	1079.4	2182	4787	564.4	2322	366.1	23.53	292	34.76	196.3	37.07	99.77	12.86	73	10.28	25.99	3.567
ABM02-u12	287.3	491	445.2	710.1	963	2050	240.1	1007	186.1	40.94	172.5	22.33	132	25.12	68.65	8.99	54.39	7.587	14.47	6.129
ABM02-u13	69.5	384.1	559.4	369.8	983.1	2224	274.4	1192	184	29.43	137.4	14.19	71.69	12.61	32.79	4.238	25.7	4.084	90	4.652
ABM02-u14	130.5	343.4	304.7	1706	2281	5288	683	3043	580.6	48.4	500.4	61.84	346	61.66	157.6	19.33	107.83	14.22	63.26	18.56
ABM02-u15	50.7	212.1	3255	367	197.8	894	183.5	1197	310.9	63.01	220.5	20.79	88.64	13.05	28.13	3.005	16.09	2.231	1.322	6.91
ABM02-u16	231.1	157	271.1	482.2	1177	2791	364.7	1610	261.6	14.61	205.8	21.4	106.47	17.46	40.12	4.337	22.35	2.889	3.111	3.722
ABM02-u17	199.3	351.3	209.7	1313	1055	2626	321.5	1385	281.9	32.77	287.1	38.52	235.2	46.27	125.93	16.08	93.97	12.88	51.33	11.2
ABM02-u18	178.2	514.5	285	2251	1289	4225	628.8	3052	643.7	49.52	586.7	75.88	436.1	80.21	204.8	24.39	134.47	17.42	14.5	1.302
ABM02-u19	119.2	267.7	284.6	2920	1031	2879	483.6	2725	718.1	77.78	719.4	96.98	577.6	107.96	281.7	35.71	203.8	27.78	11.22	17.32
ABM02-u20	240	542.3	104.51	88.1	1453	3189	395	1692	276.2	38.37	165.1	11.07	32.35	3.244	5.09	0.37	2.03	0.234	42.14	19.9
ABM02-u21	65.6	833.5	374.6	480.2	377.8	975	127.4	581	109.9	18.38	101.6	12.13	69.65	14.03	41.9	6.043	44.34	8.13	5.292	4.571
ABM02-u22	45.1	474.3	599.6	240.3	643.9	1465	174.3	714	101.15	19.39	80.11	8.66	45.54	8.34	22.27	2.836	17.11	2.467	47.99	15.03
ABM02-u23	246	311.4	189.5	3030	2868	6839	960	4466	917.1	57.94	834.4	105.8	614.4	113.02	287.3	33.81	178.2	21.16	307.4	75.94
ABM02-u24	123.6	3662	28.58	1689	4825	11660	1491	6539	1267.3	78.31	1012.8	103.03	445.2	59.21	113.35	10.45	49.39	5.479	49.12	11.9
ABM02-u25	97.9	125.3	349.6	728.6	2231	7150	1183	6086	1328.8	177.65	872.6	72.58	251.9	27.66	45.54	3.573	16.76	1.722	28.69	61.24
ABM02-u26	152	167.4	550.2	407.9	426.6	1200	162.9	726.8	142	19.06	122.2	14.29	78.21	13.9	34.87	4.126	22.83	3.068	14.63	6.571
ABM02-u27	395	307.2	248.4	2475	3340	9.10E+03	1220	5220	1076	26.1	874	101.6	532	87.5	203.2	22.27	110.3	12.85	96.3	21.94
ABM02-u28	106	108.3	98.48	777.5	3262	7266	855	3496	647.1	22.8	510.4	49.81	210.5	27.96	49.13	3.721	15.33	1.521	52.92	16.91
ABM02-u29	78	467.2	892	477.1	707	1787	238.5	1057	187.7	30	152.2	17.33	91.63	16.22	41.09	5.159	30.02	4.175	93.8	43.3
ABM02-u30	438	340.9	1714	1383	3363	9514	1260	5337	868.8	84.63	583.3	59.5	288.4	49.12	124.4	15.36	92.4	13	50.56	55.07
ABM02-u31	65.8	344.7	171.6	1068.7	916	2186	275.2	1192	240	33.6	228.1	29.89	176.9	34.6	94.19	12.3	73.79	10.65	100.9	19.67
ABM02-u32	223	331.1	1054.2	686.7	2260	5190	662	2683	406.2	61.6	294	31.2	152.4	24.84	59.68	6.98	39.57	5.351	3.787	1.133
ABM02-u33	33	350.8	829.9	113	377	692.9	69.6	268.1	36.52	8.35	32.49	3.28	18.01	3.593	10.14	1.301	8.38	1.58	9.44	4.57
ABM02-u34	29	385.2	66.91	4047	352.8	1304	251.6	1633	672	51.97	871.6	141.5	869	156.8	386.8	46.94	262.6	34.14	4.619	13.39

Muestra ABM-05	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
ABM05-1	103.8	363	4147	987	2105	5262	707.2	3146	476	52.79	339	36.37	191.4	34.58	88.26	10.87	62.52	8.21	44.38	45.5
ABM05-2	83	129.1	381.6	2263	972	3925	737	4327	1100.9	160.4	984.4	117.84	574.9	83.11	163	15.2	70.8	7.988	29.57	41.09
ABM05-3	65.9	97.4	259.5	1274	1008	3711	710.8	4236	1135.7	212.9	933.4	98.74	399.2	46.51	74.35	6.108	27.99	2.954	11.911	27.25
ABM05-4	392	340.3	80.4	2414	1885	5640	877	4489	937.1	26.16	815.2	95.35	509.7	88.38	209.9	23.57	122.39	14.82	56.67	14.62
ABM05-5	120.7	440.7	71.29	2943	3199	7297	941.4	4303	788	29.05	741.1	95.17	551.4	104.86	269.7	32.01	175.9	23.23	9.662	12.451
ABM05-6	101.1	461.3	36.2	3520	2759	6940	901	4105	840.9	15.77	835.9	111.4	669.1	130.2	343.5	42.41	242.3	32	218.5	53.46
ABM05-7	301	90.3	84.17	312.2	1121	3265	562.9	3216	816.9	32.95	532.8	39.13	117.26	10.965	14.84	0.893	4.32	0.383	0.779	9.795
ABM05-8	109	250.6	151.97	982.8	958	2230	287.8	1361	269.4	35.68	263.4	32.28	184.8	34.82	86.86	9.965	53.02	6.884	51.25	25.13
ABM05-9	38.3	91.9	221.82	1411	506.3	2080	412.1	2452	691.8	70.76	629.6	76.66	371.6	52.13	95.7	8.18	35.36	3.621	2.76	14.67
ABM05-10	70.6	194.7	253.7	1492	707	1843	276.3	1423	348.6	14.85	340.1	45.8	281.9	55.99	149.2	17.84	96	12.25	0.866	7.12
ABM05-11	103.7	394.4	148.92	2751	5319	10600	1178	4409	736.9	69.77	648.1	81.4	481.1	93.61	258.6	33.82	203.9	29.83	405.8	103.36
ABM05-12	283.8	477.2	191.2	2382	1906	4983	712.3	3379	778.9	24.96	753.9	94.39	522.4	91.04	215.8	23.82	121.46	15.14	55.88	14.221
ABM05-13	197.9	352.2	90.24	1433	2343	5834	716.2	2900	521.4	16.98	461.7	53.29	282.1	48.35	111.54	11.62	59.14	7.02	135.51	50.92
ABM05-14	59.1	651.9	92.61	1894	3212	6625	740.5	2889	490.3	32.38	453.4	55.75	325.7	63.18	169.8	21.55	125.3	17.92	90.55	75.96
ABM05-15	143.3	2269	33.1	3462	996	3108	472.2	2342	599.2	10.15	621.4	94.09	616	125.3	356.8	49.26	304.8	42.62	42.31	48.32
ABM05-16	94.4	405.5	179.4	1153.9	3490	7746	946	3971	587.1	41.01	439.7	46.25	233.5	39.27	95.36	10.89	60.46	8.124	164.7	33.08
ABM05-17	171.5	396.9	2008	915.2	1467	4401	669	3072	542.8	79.23	364.6	38.53	192.9	32.18	79.45	9.645	56.24	7.547	10.09	23.17
ABM05-18	358	364.5	356.6	861.4	4564	8450	878	3062	396.4	29.95	294.2	30.23	159.7	28.76	75.84	9.498	55.78	7.907	286.6	71.83
ABM05-19	118.7	494.6	924.1	573.9	1053	2833	380	1742	304.5	52.5	226	24.25	120.5	19.37	45.05	5.21	28.43	3.758	29.83	10.4
ABM05-20	1014	317.6	670.3	707.9	1588	3623	462.4	1982	313.4	37.97	240.2	26.22	138.15	24.57	60.94	7.28	40.6	5.511	59.91	17.96
ABM05-21	75.9	301.8	132.49	2909	6899	13120	1378	5230	802.4	26.37	691.9	85.7	496.5	94.72	254	32.25	187.6	26.61	313.6	98.04
ABM05-22	119.8	181.7	69.84	457.5	2711	7130	988	4334	883.3	11.67	579.8	45.79	152.33	16.78	27.04	2.01	8.99	0.93	26.86	14.342
ABM05-23	68.2	608.3	118.6	1824	2785	5207	585.4	2290	443	31.4	416.9	53.9	318.4	61.87	166.6	20.84	118.7	16.69	141.5	48.58
ABM05-24	137.2	227.2	61.25	2817	3904	8140	926	3616	663.6	19.73	611.9	80.32	480.6	93.83	258.9	34.09	199.4	28.26	109.36	65.36
ABM05-25	110.4	135.6	74.13	1925	4443	8973	1006	3768	652.6	28.51	550.1	65.05	366	67.82	175.5	21.66	123.9	17.52	170.73	142.2
ABM05-26	211.7	428.6	174.12	1768	2268	5907	841	3889	921.9	19.68	815.9	93.8	459.6	67.37	133.35	12.29	55.48	6.249	70.17	17.96
ABM05-27	146.2	279	717.2	643	1208	2609	336.3	1453	259	30.75	208.8	24.07	129.03	22.62	56.23	6.479	34.63	4.667	27.33	8.8
ABM05-28	100.5	342.7	74.96	5008	4903	12230	1562	6780	1373.7	24.14	1246.1	165.03	967.3	179.5	453.9	53.38	275	32.82	132.12	38.59
ABM05-29	63.8	272.7	68.37	3064	2081	4943	667.4	3067	700.7	23.26	687.1	94.59	579.1	111	295.4	35.72	191.4	23.34	77.3	40.39
ABM05-30	99.3	410.8	273.4	1985	2495	5843	785.1	3502	645.6	43.25	546.6	67.78	389.3	72.25	188	23.02	125.62	16.55	56.72	25.15
ABM05-31	56.2	101.4	562.3	1279.7	605	2453	474	2773	721	70.02	635.2	73.77	342.8	46.14	85.44	7.635	34.36	3.749	6.86	18.8
ABM05-32	82.3	596.1	389.2	1244.5	2690	5531	646.2	2640	434.1	90.4	359.6	41.51	226.2	41.8	108.11	13.15	75.05	10.508	103	42.77

Muestra ABM-05	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
ABM05-33	223	222.1	291.4	512.9	1065	2478	338.2	1615	348.1	61.51	316.6	33.62	145.71	18.4	30.38	2.342	9.39	0.98	37.35	13.84
ABM05-34	90.4	427.3	132.06	2144	1357	4792	808.1	4087	1002.1	23.43	771.9	92.24	483.1	79.24	185.95	21.51	116.15	14.62	40.69	50.11
ABM05-35	133.8	161.2	129.98	484.8	879	3709	590.4	3274	859	39.87	584.4	49.3	163.6	16.17	24.44	1.843	8.95	0.894	43.5	18.53
ABM05-36	37.8	731.1	362.3	1101	430.5	1324	204.8	1072	272	29.49	254	32.64	186.3	35.08	93	12.36	73.7	10.58	49.97	26.03
ABM05-37	56.9	385.7	52.74	1944	2753	5861	657.9	2561	459	17.07	434.8	56.23	335.4	65.57	178.5	22.94	133.05	18.13	212.1	39.5
ABM05-38	265	444	530.2	982.7	2969	5843	644.2	2485	363.8	37.82	290.6	32.45	178.1	33.28	87.63	11.06	62.77	8.749	117.96	62.06
ABM05-39	254	230.5	77.95	2867	1686	4662	635.3	2852	582	24.33	562.3	78.4	487.3	97.3	273.9	37	221.2	30.39	57.31	43.53
ABM05-40	119.2	570.2	165.84	1908	3449	7621	923	3755	641.7	64.96	535.4	64.65	366.2	68.48	181	22.72	131.97	17.83	387.1	62.61
ABM05-41	138	317.8	37	809.5	3019	8860	1231	5734	1067.3	26.32	742	66.58	245.4	27.06	42.2	2.958	11.94	1.1	88.82	55.88
ABM05-42	114.3	464.3	197.4	1434	680.1	1106	223.7	1071	235	14.57	271.2	37.14	238.6	49.99	138.17	17.02	95.35	13.32	21.51	31.75
ABM05-43	183.1	452.4	268.7	1215.4	847	2026	266.9	1263	269	29.04	284.5	37.62	226.6	43.03	112.89	14.01	80.17	10.64	20.887	22.71
ABM05-44	79.1	685.2	180.31	2555	3984	8970	1013	4129	627.3	45.72	584.3	73.86	438.9	85.89	232.3	29.32	167.7	22.07	207.9	61.21
ABM05-45	66.8	726.7	91.2	3196	1281	4862	748.7	3488	897	31.35	929.9	133.08	704.7	115.7	279.4	33.66	188.1	24.15	72	42.11
ABM05-46	140	234.9	134.44	677.8	682.8	1913	242.5	1072	189.8	19.71	179.5	22.15	125.15	23.38	60.16	7.216	40.74	5.564	28.81	74.24
ABM05-47	52.3	201	147.8	2157	3272	6340	730.7	3266	551.2	73.61	540.1	67.62	394.5	76.04	197.4	23.94	137.5	19.4	147.2	25.75
ABM05-48	44	336.9	125.06	681	91.2	371.8	67	409.3	128.4	10.88	152.8	22.12	130.68	22.52	49.43	4.913	21.45	2.235	0.9	14.861
ABM05-49	193	306.7	66.69	7229	3130	8930	1288	6575	1555.1	30.24	1618.3	229.6	1427.1	272.2	695.4	82.95	457.6	58.81	151.5	61.58
ABM05-50	255	127.9	307.6	1982	842	3270	603.1	3476	841	55.43	774	95.7	487.3	72.7	147	14.47	68.3	7.44	7.77	20.62
ABM05-51	540	493.1	24.7	1782	2084	6300	897	4261	1179.9	3.917	984.5	108.96	478.8	64.45	120	10.9	49.87	5.506	0.496	11.64
ABM05-52	74.9	242.1	65.92	1776	3259	8410	1159	5693	1276.4	16.91	1105.6	119	522.4	68.53	119.18	9.48	39.01	3.945	5.511	81.13
ABM05-53	67.4	230.6	364.2	3079	5068	13240	1716	8020	1312.8	65.45	990.3	116.42	637.3	113.65	288.2	34.28	186.1	22.91	83.42	19.25
ABM05-54	166	204	107.76	2387	1873	4835	671.2	3196	688.7	29.44	659.5	84.89	488.5	89.8	215.4	23.21	115.8	13.85	13.55	11.76
ABM05-55	89.4	392.9	77.23	1622	3844	8340	1003	4134	641.8	30.36	511.7	58.92	320.4	58.64	147.9	17.17	92.3	12.27	49.37	36.77
ABM05-56	141.4	286.8	117.39	912.2	1294	2605	297.1	1249	216.8	20.23	207.2	26.67	156.69	30.06	80.06	9.8	55.68	7.52	91.85	32.26
ABM05-57	139.8	334.8	71.81	2945	2099	5215	691	3288	688.4	26.38	685.8	92.54	552.3	106.53	278.7	34.32	189.9	24.89	58.92	26.91
ABM05-58	76.9	423.9	736.2	493.1	3328	5792	585.8	2263	290.1	54.98	214.4	20.64	98.25	16.53	40.5	4.728	27.36	3.95	55.27	7.048
ABM05-59	40.7	243.6	123.58	3202	4883	10680	1224	5049	851	52.65	769.3	100.65	596.7	112.66	294.2	36.01	199	26.14	62.13	22.75
ABM05-60	129	90.7	464.2	1571	948	3680	693	4150	1051	120.8	920	102.6	457	59.7	105.5	8.98	39.4	4.21	13.5	28.1
ABM05-m1	190	269.7	87.6	1859	1921	4465	562.3	2486	480.8	23.68	453.2	59.37	347.5	66.56	173.8	21.29	120.54	16.28	155.2	35.25
ABM05-m2	224	808.8	332.8	42.22	645.6	1730	200.5	867	170.1	10.48	93.68	6.182	16.56	1.501	2.067	0.103	0.572	0.0472	11.31	39.47
ABM05-m3	615	179.2	191.77	751.3	923	2406	324.6	1447	287.9	19.24	235.7	27.81	149.3	25.97	64.67	7.749	42.29	5.466	85.47	16.63
ABM05-m4	253	460.7	64.05	1996	1657	5142	679.1	2937	522.9	25.44	433	57.44	339.2	65.27	179.1	24.09	167	19.96	34.95	28.74

Muestra ABM-05	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
ABM05-m5	140.6	211.7	148.1	566.2	561.9	1503	189.4	834	155	17.1	143.2	17.84	101.77	19.2	49.46	5.863	33.15	4.517	30.93	18.672
ABM05-m6	222	136.1	73.73	2046	2883	5618	631.3	2511	462.4	18.95	433.5	57.95	350.3	69.59	190.5	24.66	144.4	20.07	92.17	46
ABM05-m7	237.5	625.4	155.33	2469	876	1888	319.5	1544	344.8	10.92	382	55.88	370.6	80.11	235.4	33.24	215.2	33.64	28.89	149.52
ABM05-m8	121.5	111.7	97.71	1032	2333	6510	965	4565	954	14.46	740.8	75.2	310.8	38.66	65.2	5.04	14.56	2.183	97.2	23.81
ABM05-m9	129.2	384	77.83	1120.5	1889	3397	363.4	1459	270.9	10.36	264	34.08	199.7	38.66	101.77	12.5	62.52	9.563	102.72	55.7
ABM05-m10	830	215.6	85.55	1262	970	2496	325.7	1389	286	9.28	276.5	37.92	227.3	42.32	108.38	13.09	71.51	8.97	28.18	39.31
ABM05-m11	258	358	5637	582.9	2159	5458	753.8	3241	519.2	83.34	317.6	30.11	135.31	20.38	46.82	5.335	29.83	3.823	38.81	73.97
ABM05-m12	560	135.8	154.61	355.3	2128	6222	1001	5231	1348.2	40.28	875.1	63.27	163.8	12.02	14.41	0.709	4.24	0.366	30.14	49.72
ABM05-m13	111.3	355.8	61.63	2679	1789	4560	665.4	3254	735.1	19.85	712.3	92.6	544.8	102.25	258.1	30.89	168.3	21.44	7.456	22.49
ABM05-m14	194	229.2	87.48	4234	331.3	1989	433.8	2639	857.6	23.81	940.2	140.07	870.3	162.91	399.1	45.62	231.3	28.04	56.51	25.13
ABM05-m15	180.1	210.3	110.62	2043	2889	6476	812	3355	656.4	38.42	586.3	71.71	410.4	75.2	190.7	22.94	128.84	17.11	122.52	45.71
ABM05-m16	111	124.5	175.64	346.8	1052	3312	568	3011	704.2	14.54	472.3	37.97	121.2	11.86	17.58	1.272	5.78	0.547	6.78	16.62
ABM05-m17	547	363.8	483.3	931.2	1100	3039	433.5	1919	350.5	34.83	286.1	33.64	184.8	33.42	83.15	9.87	53.56	6.991	22.48	24.74
ABM05-m18	309	621.8	2472	414.4	2060	4820	601	2369	357	57.09	216.7	19.48	88.53	14.28	34.68	3.979	23.27	3.316	132.9	50.13
ABM05-m19	40	382.1	64.28	2576	3333	7650	908	3652	646	18.82	592.5	76.71	457.1	88.39	237.5	30.47	177.5	24.17	124.1	34.76
ABM05-m20	174	335.9	105.4	1857	2840	6200	764	3192	585.5	27.3	513.3	63.05	355.9	65.61	165.42	19.75	108.75	14.7	54.22	19.47
ABM05-m21	64.4	264	114.88	2623	2646	5846	716.4	3122	555.3	36.81	536.5	73.1	450.2	89.03	243.2	31.56	187.2	25.7	210.8	70.43
ABM05-U1	1190	170	305.5	1022.4	179	621	134.3	897	356	9.82	434.5	54.1	256.7	35.44	60.36	4.697	17.92	1.781	0.2338	23.43
ABM05-U2	99.4	318.1	113.64	2257	1306	3601	542.3	2786	632.6	10.12	653.6	84.45	478.1	83.24	193.5	21.1	136	12.31	63.35	8.894
ABM05-U3	126.5	110.4	293.4	1315	353	1462	268.5	1568	373.4	87.38	354	46.79	265	47.75	115.72	13.097	63.27	8.521	1.354	5.485
ABM05-U4	78.9	244.5	67.75	3417	2720	7109	954	4227	818.5	21.6	774.4	105.25	632.2	122.57	327.7	40.81	231.6	31.13	26.17	27.28
ABM05-U5	158.2	408.5	151.01	962.2	524.5	1324	188.8	930	222.9	29.93	236.8	31.47	184.9	34.64	87.5	10.43	58.08	7.708	24.65	12.423
ABM05-U6	90.8	204.5	153.04	1138	618	1989	314.8	1605	355.5	7.24	326.9	41.4	231.2	41.5	102.6	11.75	62.13	7.97	1.605	5.283
ABM05-U7	129.9	321.1	342.6	1053.5	2003	4096	487.5	2024	346.4	41.93	294.1	34.61	194.3	36.46	95.19	11.74	68.72	9.57	97.71	35.05
ABM05-U8	37.2	145.7	99.68	2550	1410	3815	546.4	2537	578.9	32.31	583.3	79.5	473.9	90.95	235.9	28.65	157.8	20.5	10.849	10.661
ABM05-U9	97.4	326.4	376.1	822.8	2899	5940	690	2634	376.3	39.55	284.1	30.45	160.6	28.74	73.22	8.978	52.42	7.382	149.41	35.41
ABM05-U10	481	146.7	125.39	504.5	1333	4018	644	3256	789	19.27	533.5	47.06	172.1	18.47	27.47	1.761	7.6	0.735	4.03	7.14
ABM05-U11	128.5	428.2	510.5	397.8	2382	4589	492.7	1769	229.4	25.83	161.3	16.11	77.87	13.67	34.36	4.141	24.1	3.253	52	5.532
ABM05-U12	85	366.6	725	431.3	2369	5045	589.4	2311	315.5	37.43	221.4	21.37	95.6	14.9	32.9	3.447	18	2.325	57.4	13.5
ABM05-U13	813	225.3	138.51	1275	2016	4613	528	2032	326.2	29.81	290.8	36.73	212.5	41.94	114.62	14.92	88.64	12.61	122.5	50.85
ABM05-U14	70.9	208.7	107.59	2451	1205	3532	522.2	2409	512.5	14.47	513.6	71.31	431.5	84.57	224.2	27.8	158.5	20.8	49.82	7.11
ABM05-U15	46.6	118.1	229.9	789	471.5	2182	468	2905	746.2	148.8	605.3	60.05	237.5	29.15	50	4.27	20.21	2.224	4.56	17.64

Muestra ABM-05	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	υ
ABM05-U16	277	309	834.5	575.5	857	2051	293.1	1352	235.5	41.08	194	21.95	116.55	20.74	50.9	6.021	33.77	4.428	7.618	2.949
ABM05-U17	282	370.2	636.6	372.5	2360	4195	416	1428	177.5	21.63	136.4	13.92	70.79	12.74	32.05	3.772	21.43	2.941	36.07	35.82
ABM05-U18	103.1	923	614	732.7	1816	4108	520.5	2182	357.5	60.37	279.5	31.52	156.6	25.56	58	6.522	35.36	4.43	66.5	11.24
ABM05-U19	405	179.2	67.3	7579	4174	11750	1612	7140	1593.3	33.81	1560	226.5	1401.3	274.7	737.2	93.86	523.2	66.14	134.3	54.01
ABM05-U20	779	159.3	80.2	4071	700	2978	541	2868	798.3	72.92	835.3	120.04	724.7	143.69	384.8	48.94	279.1	36.68	27.64	52.08
ABM05-U21	114	59.4	109.96	143.1	1475	3945	582.1	2742	545	29.02	315.5	20.93	56.27	5.135	7.59	0.433	2.35	0.214	17.18	14.52
ABM05-U22	231	522.3	576.7	548.6	2746	5400	611.3	2218	321	33.22	221.1	22.21	109.19	19.05	47.78	5.72	32.62	4.474	30.51	12.076
ABM05-U23	123.5	135.1	86.19	1481	1594	3609	452	1834	392.1	14.1	367.9	47.19	272.5	52.28	137.1	16.68	94	12.54	74.9	12.76
ABM05-U24	1114	325.4	120.9	1183	3185	6350	701	2597	423.1	32.11	346	40.22	219.6	41.08	105.6	12.888	73.6	10.06	44.79	19.78
ABM05-U25	550	111.8	187.15	1389	895	3121	564.2	2979	833	112.95	729.8	87.03	398	51.63	84.65	6.662	27.11	2.612	9.25	23.32
ABM05-U26	236	296.4	231.9	1743	2587	5935	774.2	3265	648.9	42.11	535.4	64.28	352.8	64.3	162.5	19.78	108.82	14.25	35.64	16.52
ABM05-U27	210.8	323.2	171.22	369.8	426.9	1054	138.3	621	128.7	13.87	119.15	13.95	74.23	13.14	30.92	3.553	24.68	2.432	41.33	21.23
ABM05-U28	65.1	81.1	114.59	345.2	1944	4840	640.5	2793	580.4	20.87	404.1	33.16	111.77	12.16	19.06	1.367	6.14	0.605	63.5	25.78
ABM05-U29	293	188.3	119.72	1124	490.5	1576	227.4	1041	245	17.32	244.9	32.81	196.7	38.28	100.3	12.26	65.97	8.61	8.7	5.26
ABM05-U30	119.5	254.3	197.9	503	794	1632	183.8	740	141.6	21.52	135.83	16.01	89.92	16.9	43.42	4.996	27.48	3.791	36.46	18.83
ABM05-U31	274	219.6	112.81	939.6	136.9	792	189.1	1311	644.8	13.18	594.4	63.69	266	32.89	56.55	4.794	21.58	2.213	0.0886	3.896
ABM05-U32	1050	306.9	605.4	782.9	1786	4044	529.8	2258	426.2	63.83	329	35.67	178.1	28.72	65.61	7.187	38.63	4.931	59.38	20.65
ABM05-U33	83.9	363.6	640	1235	942	3246	525	2423	510	65.92	381.8	43.85	235.6	42.77	111.5	14.44	88.11	13.71	119.73	75.47
ABM05-U34	511	164	115.07	2326	1285	3568	542.5	2686	754.2	13.56	760.8	98.92	534	86.71	188.8	19.53	105.29	11.1	37.05	24.73
ABM05-U35	439.1	1021	117.36	1387	1470	3516	459.1	1983	476	10.18	422.6	53.51	294.7	51.82	126.45	15.07	81.2	10.43	80.09	44.66
ABM05-U36	249	331.2	133.57	4500	1974	5600	841	3969	1013.6	54.05	980	138.9	845.8	165.1	442	56.01	306.1	38.72	32.75	61.68
ABM05-U37	195	220.6	148.32	3581	741	2888	512.2	2717	770.8	48.43	800.4	114.44	694.1	131.97	337.8	40.22	215.1	27.83	211.7	36.46
ABM05-U38	127.9	309.2	85.93	1554	2300	5730	793	3510	789	10.4	653	74.8	375.4	59.38	124.4	11.97	54.21	6.363	1.13	3.003
ABM05-U39	706	1520	483.4	1146	1059	2743	387.5	1809	404.7	15.73	340.5	42.57	231.2	40.52	100.06	12.21	67.61	9.28	39.38	20.75
ABM05-U40	154	131.2	142.57	4144	1752	5575	860	4123	1035.1	41.62	981.3	135.95	808.8	152.82	397.6	47.91	263.8	35.11	73.63	32.98
ABM05-U41	105	152.4	155.5	1918	250	1223	259.5	1636	504.3	49.62	475	64.83	378.6	71.03	185.4	23.77	140	19.25	0.47	9.872
ABM05-U42	712	393.5	739.1	349.4	864	1941	243.2	1053	172.8	17.95	131.2	14.01	71.2	12.41	30.2	3.552	19.68	2.699	50.95	21.53
ABM05-U43	283	237.4	104.28	2243	2316	5154	642.9	2809	585.1	38.57	542.5	71.54	420.4	80.85	214.45	26.57	151.5	21.35	50.11	30.57
ABM05-U44	194.1	588.6	330.1	332.5	1637	2589	245.1	849	114.7	14.79	100.46	11.2	61.05	11.35	28.98	3.498	19.84	2.894	81.17	30.05
ABM05-U45	111.9	157.4	139.17	270	1179	2625	314.7	1267	232.2	9.46	174.7	18	77.18	9.82	16.83	1.347	5.45	0.539	10.66	4.353
ABM05-U46	109.2	730.1	877.4	807.4	3327	7740	970	3958	637.8	104.19	424.7	41.99	191.7	29.92	68.05	7.346	39.86	5.065	102.72	11.555
ABM05-U47	148.8	187.1	165.9	426.6	1288	4211	698	3777	954.8	24.47	640.8	51.36	160.1	15.26	21.79	1.509	7.26	0.729	14.54	54.05

Muestra ABM-05	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
ABM05-U48	103.3	331.4	88.67	1428	1273	3022	390.9	1698	367.4	12.67	344.3	45.24	269.3	51.92	139.81	17.53	102.68	14.21	58.36	17.967
ABM05-U49	174.5	283.3	261.1	818.4	642.1	1867	268	1219	286.7	8.94	248.5	31.01	169.7	30.63	75.6	8.558	44.49	5.807	35.01	25.92
ABM05-U50	383	93.8	323.5	107.8	1090	2731	386.6	1750	358.8	28.53	238.1	17.95	50.15	4.055	5.045	0.247	1.143	0.1121	8.42	3.842
ABM05-U51	87.6	121.8	162.7	1964	328.6	1478	297	1827	554.3	61.29	534.4	73.59	425.2	76.57	187.5	21.49	115.21	15.89	1.498	9.267
ABM05-U52	1375	585.7	672.2	762	488	1255	180.5	929	227.4	51.23	218.5	27.89	158	28.14	67.9	7.64	41.3	5.3	3.688	1.364
ABM05-U53	325	693.5	1967	325.4	2987	5700	619.6	2275	293.4	42.87	177.1	15.45	68.46	11.24	28.09	3.255	18.89	2.677	87.8	28.23
ABM05-U54	38.8	82	390.7	1132	609	2416	458.3	2682	680.7	68.11	577	67.98	312.3	41.54	74.11	6.301	27.16	2.896	3.28	17.47
ABM5xtr-2	607	497.3	45.4	3501	2642	6540	828	3667	803.9	17.61	786.1	106	638.7	123.3	328.4	40.9	230.1	30.21	195.2	48.3
ABM5xtr-3	72.1	254.4	153.2	963.3	920.5	2158	276.6	1243	257.7	34.95	252.2	31.35	178.9	33.6	84.9	9.74	52.16	6.7	47.1	23.86
ABM5xtr-4	115.6	399.7	145.09	2883	5678	11250	1188	4365	740.4	71.27	638.4	82.09	484.6	94.65	263.6	34.72	208.8	30.22	403.4	103.3
ABM5xtr-5	227	2304	32.72	3577	862	2831	418.4	2052	582	10.04	602.8	92.94	611.1	125.3	362.9	49.69	309.4	43.07	41.7	47.04
ABM5xtr-6	80.9	643.2	477.4	2604	1435	4006	559.3	2504	667.3	41.3	614	88.52	515.6	91.75	228.6	25.95	135.1	15.83	1.237	20.07
ABM5xtr-8	54.8	112.2	73.59	555.5	1998	3389	327.7	1150	169	10.55	147.9	16.61	92.82	17.78	47.7	6.145	37.66	7.04	32.42	7.12
ABM5xtr-9	137.1	187.9	75.16	446.4	2609	7039	929	4160	854.3	11.48	560.7	44.8	146.5	16.26	27.09	1.938	9.03	0.878	25.83	13.832
ABM5xtr-10	181.9	187.3	122.57	617.6	2890	8075	1106	5210	1103.5	9.48	785.5	65.81	224.6	24.83	38.08	2.488	10.54	1.054	23.92	18.54
ABM5xtr-11	92.4	275.7	289	739.2	1331	3716	523.6	2359	408	28.08	296.9	31.66	157.6	26.6	64.6	7.494	42.28	5.626	2.333	4.581
ABM5xtr-12	1336	1182	78.15	1882	3658	7225	740	2763	481.8	34.78	438.9	54.36	319.2	62.05	169.6	21.9	131.4	19.52	97.1	31.33
ABM5xtr-13	137.3	336.5	563.5	624.2	4963	8681	821	2808	358	36.34	251.1	23.8	117.97	21.15	54.83	6.764	38.01	5.28	162.7	78.1
ABM5xtr-14	155.6	165.7	130.5	405.5	758	3134	488.2	2690	726.5	33.45	487.3	41.52	136.32	13.63	20.72	1.468	7.55	0.765	34.37	14.65
ABM5xtr-15	44.3	738.6	365.5	926.7	363	1098	168.7	865	228.4	25.23	209.2	27.13	155.3	29.35	79.68	10.38	63.59	8.95	32.14	19.23
ABM5xtr-16	1280	379.4	38.69	783.8	2670	7704	1046	4752	1033.3	26.52	709.8	64.84	238.3	26.74	41.84	2.859	12.12	1.115	87.6	53.08
ABM5xtr-17	76.7	207.3	109.71	2098	3158	7150	844	3506	670.4	39.03	591.4	71.58	403.1	75.04	192.7	22.86	127.8	16.74	125.74	46.61
ABM5xtr-18	169.8	457.2	275.9	1190.1	804.7	1898	243	1132	268.4	29.38	277.3	37.26	223.8	43.03	111.29	13.92	78.34	10.52	20.71	22.62
ABM5xtr-19	79.8	683.8	180.2	2370	3631	7671	863	3356	577.7	41.86	529.2	67.73	402.1	78.62	212.2	26.76	151.9	19.95	172.02	51.43
ABM5xtr-20	60.8	227.8	146.67	2279	3206	6041	683.4	2918	573.1	75.69	553.6	70.04	410.1	78.79	205.2	25.01	142.8	20.1	201.8	29.89
ABM5xtr-21	144	263.5	72.13	3551	1293	4406	694	3536	937.5	24.19	937.6	127.08	723	129.79	308.4	33	163.9	19.92	86.78	30.98
ABM5xtr-22	110.1	324.5	67.98	7129	3036	8380	1202	5914	1498	29.17	1517	219.7	1349	258.8	661.2	79.02	430.1	55.16	138.2	56.63
ABM5xtr-23	43.9	118.4	303.7	1583	640.5	2554	463.1	2546	664.7	43.71	598.8	74.83	379.4	56.42	114.5	11.16	51.57	5.691	3.888	13.15
ABM5xtr-24	103.1	255.7	67.19	1628	2988	7547	1017	4832	1113.6	14.27	962.2	103.55	453.3	60.09	104.12	8.26	33.65	3.423	4.145	64.55
ABM5xtr-25	61.4	235.5	370.9	2719	5348	13050	1641	6867	1189.1	55.23	880.2	101.41	549.1	97.79	246.4	29.12	155.2	19.25	72.59	16.81
ABM5xtr-26	79	405.8	83.17	1815	4236	9280	1093	4328	685.8	33.48	547.9	63.39	343.9	63.04	157.8	18.7	100.26	13.23	59.02	42.6
ABM5xtr-28f	99.3	290.5	116.32	887.4	1211	2490	276.4	1117	213.4	20.05	203.8	26.19	153.4	29.61	78.14	9.63	53.61	7.236	90.34	32.15

Muestra ABM-05	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
ABM5xtr-30f	33.6	242.5	120.1	2973	4144	9160	1031	4022	776.3	48.08	699.7	91.96	538.3	101.82	264.8	32.68	178.5	23.73	51.21	19.05
Muestra ABM-10	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
abm10-1	67.3	126.5	120.31	405.1	1834	4499	612.1	2980	675.3	51.62	525.7	47.31	155.8	14.36	18.84	1.138	5.21	0.514	11.72	16.21
abm10-2	78.6	237.1	225.3	365.6	785	1816	225.6	1063	234.9	47.56	214.1	22.38	99.23	13.52	24.18	1.995	8.66	0.924	77.37	42.31
abm10-3	111.5	308.2	103.72	1139.5	2797	5065	527.7	1996	308.7	23.16	276.3	33.45	194.1	37.56	100.93	12.83	76.35	11.1	94.08	49.19
abm10-4	82.3	201.7	77.82	2108	2212	5560	726	3198	631	18.2	580.8	73.31	416.1	75.75	187.6	21.43	124.8	14.59	112.9	50.73
abm10-5	118.3	310.5	1949.4	540.9	1509	3792	495.9	2131	347.2	39.83	236.3	24.44	116.87	19.07	45.81	5.426	30.99	4.115	62.05	51.39
abm10-6	50.3	183.6	82.2	2463	3802	7956	891	3456	571.7	41.91	538.8	70.08	421.2	83.55	228.7	30.09	183.1	25.66	290.3	97.21
abm10-7	75.3	331.5	113.39	1515	4204	7033	692.5	2546	401.5	27.36	368.2	44.73	257.9	50.05	133.3	17.01	99.81	13.78	130.9	59.34
abm10-8	85	293.3	98.65	1676	2963	7105	945	4270	892.2	48.24	740.6	82.16	392.4	59.7	125.31	12.72	66.03	8.384	72.73	70.21
abm10-9	108.2	147.9	162.71	341.6	1025	3125	515.6	2697	657.9	25.3	466.6	38.14	122.7	12.45	18.4	1.272	5.63	0.584	3.204	25.62
abm10-10	1041	3977	285.8	1435	866	1472	319.7	1570	379.2	22.37	385	50	287.3	50.89	122.56	14.95	86.27	11.04	0.0698	114.73
abm10-11	157.8	181.2	91.11	257.5	2161	7240	1188	6100	1489	15.05	801	48.35	114.8	9.2	13.36	0.748	4.65	0.42	6.29	24.71
abm10-12	72.3	107.6	117.06	197	3023	7119	901	3830	652.4	25.17	411.2	29.13	81.52	6.899	9.54	0.523	2.8	0.254	88.12	29.75
abm10-13	135.1	222.3	107.76	1714	1364	3416	459.1	2022	414.2	13.9	407.4	51.82	301.9	58.64	153.17	18.83	105.94	14.41	81.8	35.13
abm10-14	81.5	658.7	86.17	2990	3502	7940	955	3932	751	20.18	698.2	89.9	537.4	102.23	274	33.93	193.2	25.84	197.1	63.18
abm10-15	152.5	176.6	177.8	806.4	1462	4861	817.2	4337	1220.2	56.31	938.1	81.28	276.9	29.23	44.91	3.508	17.27	1.86	28.24	36.95
abm10-16	90.5	289.9	167.31	1812	2052	5089	657	2829	537.8	18.24	456	57.29	333	61.18	160.8	20.17	122.24	15.65	90.36	25.67
abm10-17	105.5	270.2	92.86	2182	1091	4250	730.8	3849	949.1	17.46	846.9	98.95	502.3	79.68	173.1	18.07	90.31	10.57	24.9	8.981
abm10-18	128.5	348.9	705.3	464.3	1115	2464	318.8	1383	223.1	47.34	178.2	18.55	94.97	16.26	39.02	4.528	24.05	3.373	34.62	10.377
abm10-19	74.7	469	138.62	1522	1877	3819	452.3	1879	348.4	35.57	344.3	43.22	259	50.6	136.22	17.33	102.61	14.99	97.68	24.96
abm10-20	141.6	270.3	405.3	897.4	1851	3135	316.5	1142	173.6	18.74	167.8	19.94	119.4	25.02	73.53	10.25	66.68	11.24	194.68	68.12
abm10-21	141.1	164	128.82	449.1	623.9	1265	141.4	579.1	104.14	14.09	104.16	13	77.36	15.02	40.22	4.887	28.13	3.97	84.7	69.53
abm10-22	186.2	222.6	145.04	876.6	318.1	1181	215.9	1242	533.2	11.86	583.8	68.64	273.6	31.89	54.39	4.636	19.97	2.234	0.0666	122.06
abm10-23	219.7	288	428.1	871.1	1572	3565	456.5	1969	341.9	34.07	281.4	32.16	174.6	31.24	77.85	9.26	49.96	6.6	36.62	9.511
abm10-24	61.6	237.5	844	534.2	2440	3109	253.9	821	124.5	43.3	122.4	14.56	84.58	16.99	47.04	6.313	40.67	6.014	31.33	32.87
abm10-25	165.8	338.5	61.85	1392	2053	5238	667.2	2834	549.9	11.68	460.6	53.8	278	46.61	110.74	12.47	66.59	8.462	50.7	27.21
abm10-26	76.4	187.7	68.99	2032	2371	5223	648.1	2700	492.8	22.36	456.4	59.27	349.1	67.92	181.2	22.54	128.1	17.34	26.26	24.34
abm10-27	105.3	307	89.39	1483	2594	4790	528.2	2138	389.2	35.66	356.5	45.04	262.1	50.75	135.2	17.25	100.93	14.37	80.2	52.16

Muestra ABM-10	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
abm10-28	92.1	746.9	3307	1432	710	2169	345.2	1796	441.6	48.04	368.2	49.9	288.3	50.5	125.2	14.76	80.5	10.16	6.38	90.5
abm10-29	56.7	928.2	99.3	600	402	769	99.8	431	80.1	11.13	89.5	11.8	77.6	17.64	53.6	7.3	48.7	8.32	9.06	21.9
abm10-30	101.8	335.6	94.03	1417	3062	6034	640.3	2390	383.4	22.7	337.6	41.59	241.1	46.17	125.13	15.74	92.47	13.16	92.2	56.05
abm10-31	86.1	457.3	93.97	1531	2477	5277	595.8	2340	404.2	18.11	363.9	46.53	271.9	52.34	140.7	17.62	100.7	13.96	65.92	26.19
abm10-32	148.4	150.2	136.35	327.3	1592	4437	624.1	2919	516.6	6.38	337.1	28.18	103.43	12.35	21.46	1.725	7.93	0.938	36.8	3.785
abm10-33	103.1	562.4	162.84	1445	2616	4886	536.6	2117	353.6	35.25	325.9	41.65	246.3	48.45	133.1	16.97	102.96	14.87	177.9	58.62
abm10-34	73.2	350.7	161.33	1221	2316	4876	615.9	2775	495.9	55.69	401.5	47.15	252.4	45.39	112.25	13.14	71.55	9.09	109.74	27.55
abm10-35	66.8	344.4	92.55	1657	2473	4820	515.2	2049	368.9	30.6	349.2	46.02	271.9	53.28	147.01	19.34	116.7	16.89	204.7	85.84
abm10-36	171.7	382.9	156.37	275.2	1169	1885	169.4	547.2	76.18	8.71	70	8.358	47.42	9.06	24.01	3.004	17.51	2.583	99.01	26.08
abm10-37	148.7	327	1050.8	1200	1314	3650	537.6	2538	471.7	74.05	352.1	42.48	235.4	43.14	114.63	15	91.33	12.52	39.64	38.65
abm10-38	120	163.7	72.59	4703	174.1	1029	246.5	1759	687	14.28	847.2	138.94	895	172.3	443.4	52.77	277.3	35.17	29.03	39.65
abm10-39	124	160.6	191.02	250.7	791	2519	426.6	2354	654.8	37.96	465.4	37.48	107.9	9.15	11.29	0.623	3.124	0.329	6.468	34.42
abm10-40	24.5	653.8	56.67	2312	4007	8381	898	3420	587.3	24.67	527.2	67.03	393.9	75.27	202.7	25.82	148.9	20.74	57.3	51.7
abm10-41	86.8	1147.3	64.38	8024	5319	12190	1530	7008	1724.6	128.4	1749.9	249.8	1519.5	291.8	774.4	96.41	534.9	68.57	188.29	78.47
abm10-42	76.2	187	67.82	2608	1267	3607	544.9	2754	672.3	24.39	674.2	91.58	526.9	93.81	228	25.22	128.9	15.82	28.43	19.14
abm10-43	1507	422.8	619.9	537.3	495.8	1215	172.6	853	181.7	39.17	172.2	21.05	113.9	19.48	45.69	5.08	26.85	3.398	5.789	1.948
abm10-N1	201.1	306.4	5640	546.5	3075	7170	854	3403	466.2	62.74	280.3	25.49	115.14	18.21	44.98	5.47	31.11	4.177	116.88	103.31
abm10-N2	68.2	309.2	62.73	1811	3197	6879	788	3031	493.8	20.33	440	55.01	317.8	59.83	160.44	20.01	115.71	15.83	104.63	52.01
abm10-N3	39	498.1	164.46	1223.2	225.6	825.1	154.1	930	300.8	51.05	338.8	47.29	261.3	41.8	88.53	8.789	41.08	4.364	10.78	102.88
abm10-N4	222	989.1	168.5	2624	376.1	1543	284.2	1609	532	13.15	555.5	81.37	487.1	89.14	232.8	29.89	172.1	23.15	4.481	186.1
abm10-N5	109.2	350.3	60.96	1673	3196	6226	677.5	2594	422.6	17.87	385.8	48.55	283.3	54.73	149.4	19.41	115.19	16.38	168.66	73.39
abm10-N6	79.4	250.8	54.4	3755	2539	6787	963	4626	1069	16.21	1071	139.82	798.7	138.36	328.5	36.15	180.9	21.93	35.29	26.27
abm10-N7	332	1230.2	301.2	708.1	861	1664	189.6	765	146.2	8.06	142.5	18.89	116.31	23.33	66.72	9.277	58.64	9.26	57.08	63.05
abm10-N8	67.4	302.8	65.23	1977	2922	5757	659	2645	457.7	28.68	434.4	55.64	329.2	64.43	176	22.69	133.4	19.22	159.5	63.72
abm10-N9	76.5	282.3	298.4	646.3	1090	1708	170.2	643.2	118.7	11.75	123.3	16.08	99.2	20.43	58.99	7.82	49.12	7.65	75.4	50.77
abm10-N10	244	334.4	115.18	2031	3502	6255	674.2	2701	491.7	72.38	476.4	60.45	354	68.47	186.3	23.98	142.29	20.8	194.8	118.22
abm10-N11	53.6	268.3	657	1033.6	2138	3177	322.1	1196	184.6	17.14	191.9	24.29	151.6	32.03	92.39	12.56	81.2	13.41	299	159.33
abm10-N12	126.7	583.8	42.95	3105	4194	9020	1039	4112	719.2	17.19	673.5	88.03	526.8	101.98	279.5	36.11	210.5	29.3	298.4	85.33
abm10-N13	113.3	574.1	63.77	1891	3891	7504	786	2937	482	22.15	437.3	54.61	318.4	60.9	167.2	21.58	127.1	17.99	92	57.98
abm10-N14	191	520.5	87.71	4886	794	3212	573.3	3339	1036.2	8.42	1086	154.7	930	175.4	448.1	52.83	254.1	38.13	199.4	40.58
abm10-N15	198	291.2	58.52	2719	3096	6381	715	2916	550.6	30.6	538.1	72.94	455.3	91.16	259.8	34.86	216	30.7	173.5	148
abm10-N16	84.8	215.7	143.96	2353	611.4	1864	308.4	1797	498.6	17.57	533	73.17	447.9	87.58	233.4	29.24	161.8	21.09	1.167	27.27

Muestra ABM-10	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
abm10-N17	98.7	95.2	102.59	634.1	2093	5500	782	3757	861	46.79	659.7	62.89	218.6	21.26	30.85	2.196	9.88	0.909	33	43.39
abm10-N18	310	544.6	197.1	1449	1284	4310	653	3229	743	12.81	561.7	64.99	327.1	52.66	123.33	13.92	73.7	9.225	33.07	148.1
abm10-N19	135.6	435.9	365.4	985	1347	2355	245.6	1001	171	23.99	164.7	21.8	139.3	30.63	94.4	13.82	94.4	15.65	81.6	63.4
abm10-N20	240	263.4	76.88	1802	4558	12750	1734	8290	1616	14.45	1223.9	121.54	509.8	67.53	122.65	10.17	44.05	4.684	65.37	34.35
abm10-N21	280	758.1	269.8	1918	450	1445	233.1	1383	431.9	13.8	456.4	66.09	399.7	74.24	185.1	21.06	109.51	13.65	2.586	20.62
abm10-N22	138	245.4	167.79	2162	2277	6029	687	2887	508.8	30.74	469.4	60.35	365.1	73.35	204.2	26.71	159.3	21.79	154.79	102.09
abm10-N23	181	457.5	97.39	1061.5	3135	5568	546.3	2112	317.7	16.89	276.7	32.85	186.6	36.16	97.44	12.41	74.67	10.78	118.73	115.54
abm10-N24	30.4	297.1	50.29	2569	3022	7051	801	3507	662.8	25.71	600.4	78.51	465	88.9	235.5	29.45	166.9	22.53	181.93	76.03
abm10-N25	196	367.4	9202	434	1972	5175	647.5	2930	447.5	98.45	269.7	23.48	102.47	15.33	34.92	3.853	21.55	2.808	21.84	63.57
abm10-N26	78.5	253.5	128.94	719.8	1664	5083	747	3990	862.1	16.12	641.1	60.25	233	27.68	45.74	3.53	14.72	1.676	170.2	33.08
abm10-Z1	58	241.6	83.51	1332	2066	4558	485.7	1986	336.1	24.92	300.4	37.45	220.4	43.25	118.8	15.48	91.62	13.21	90.46	64.53
abm10-Z2	106	114.1	119.84	791	3592	8687	1030	4709	917.8	27.47	679.4	62.97	239.2	27.17	43.81	3.432	15.1	1.491	123	54.03
abm10-Z4	148.3	128.2	166.7	1340	1079	3852	610	3343	827.3	13.02	711.6	78.55	355.4	48.64	89.46	7.949	31.49	3.947	38.45	7.552
abm10-Z5	571	371.1	595.3	650.9	655.4	1589	207.2	1055	217.6	40.25	199.9	24.07	132.8	23.69	56.19	6.379	34.56	4.452	6.746	2.371
abm10-Z6	139	250.8	190.93	590.9	897	2136	267.1	1253	246.1	27.76	230.5	26.12	134.19	21.23	43.08	3.828	16.09	1.698	35.66	17.6
abm10-Z7	119.2	314.4	91.59	1199	1186	2814	365.2	1642	308.4	19.5	295.6	37.69	222.7	42.55	109.8	13.24	73.22	9.46	38.97	13.76
abm10-Z8	121	184.2	104.6	670.9	2150	5733	861	4635	1114.3	40.27	802.9	68.46	232.9	24.69	37.85	2.732	12.68	1.287	5.804	29.8
abm10-Z9	113.1	288.7	98.06	1092.1	1619	3250	360.3	1472	272.2	19.4	256.3	32.28	189.2	37.4	101.9	13	79.37	11.57	83.23	85.76
abm10-Z10	95.9	185.7	94.6	1280.1	1659	3735	444.5	1842	348.2	14.3	331.3	41.82	234.9	42.42	104.75	12.04	63.11	8.17	78.98	25.18
abm10-Z11	491	159.9	157.32	488.7	296.1	1354	274.2	1718	676.4	20.29	512.7	47.76	168	17.68	27.4	2.147	9.85	0.993	0.818	34.46
abm10-Z12	118	213.9	210.6	289.6	429	998	130.6	641.9	142.8	26.22	141	15.03	71.34	10.49	19.69	1.658	6.96	0.735	38.66	15.11
abm10-Z13	95.8	601	81.3	1999	3508	7253	815	3147	524	20.84	475.1	59.42	341.7	65.84	176.3	22.15	127.4	17.17	63.2	16.03
abm10-Z14	95.2	355.6	80.64	1319	2413	4877	546.5	2156	370.2	26.04	338.6	41.07	232	43.5	114.38	14.19	83.47	11.86	69.11	26.26
abm10-Z15	76.2	564.2	88.83	3306	2661	6844	879	3801	765.3	28.3	724.9	97.13	580.2	112.54	300.2	37.59	209.5	26.91	196.9	73
abm10-Z16	77.5	112.1	98.03	405.7	2366	5818	818	3800	757.4	21.61	536.6	42.95	140.28	14.65	22.39	1.534	7.22	0.704	42.02	23.91
abm10-Z17	166	283.9	397.3	151	499.9	911.5	97	377.9	57.98	8.52	49.26	5.28	27.63	5.174	13.19	1.611	8.94	1.292	7.984	6.811
abm10-Z18	109.8	295.2	345.2	981.6	595	1662	252.1	1264	275.6	45.86	249.7	32.1	184.1	34.83	91.49	11.52	67.61	9.025	18.33	6.628
abm10-Z19	91.4	972.9	180.38	479	1694	4365	547	2076	338.4	12.89	235	23.14	100.71	15.46	36.17	4.116	23.66	3.345	104.36	35.64
abm10-Z20	55.8	460.3	82.1	2169	879	2992	531.6	2834	813.1	12.25	762.9	97.28	496.8	81.18	177.3	17.27	83.5	10.22	1.304	4.035
abm10-Z21	449	92.2	111.21	270.2	2671	6430	853	3704	726.5	20.44	488.5	37.9	109.5	9.18	12.01	0.676	3.29	0.32	43.13	25.1
abm10-Z22	150.8	69.7	121.76	412.1	1973	6260	925	4345	926.5	22.19	638.4	52.74	159.2	14.65	20.12	1.27	6.16	0.57	199.8	33.67
abm10-Z23	158	155.1	83.55	989.6	2403	4519	487.6	1910	316.1	24.94	282.1	32.75	177.6	33.48	86.31	10.43	61.66	9.04	29.1	23.65

Muestra ABM-10	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
abm10-Z24	335	407.9	316	1783	610.2	1842	286.6	1458	412.7	9.33	417.9	61.25	362.6	64.91	158.3	17.55	86.5	10.49	38.79	68.9
abm10-Z25	200	122.9	97	563.6	2274	5852	792	3698	781.7	35.05	589.6	52.56	187.6	20.2	30.85	2.11	9.19	0.919	59.38	27.75
abm10-Z26	274	327.7	278.8	1066	962	2499	339	1515	288.9	26.1	251.1	33.23	194	36.95	98.1	12.39	70.2	9.07	32.32	13.56
abm10-Z27	114	153.3	105.25	1006.5	593.3	1468	181.7	806	170.3	12.08	186.6	26.41	166.8	33.82	89.64	10.67	57.68	7.69	40.05	18.09
abm10-Z28	55.6	109.3	103.01	672.8	1290	3118	440	2104	505.6	43.92	424.7	45.3	187.9	23.55	41.67	3.819	18.79	2.141	4.805	26.15
abm10-Z29	153	173.2	134.67	2344	2145	6464	873	3698	641.5	22.14	546.2	69.06	399.1	76.91	208.9	27.09	161.6	22.77	11.44	12.01
abm10-Z30	712	227.3	247.7	386.1	967	2712	381.2	1796	333	13.63	244.2	23.24	99.1	14.42	27.36	2.29	10.05	1.077	32.58	8.31
abm10-Z31	113.4	204.6	238.1	405	446.9	948	120.9	553.4	109	22.15	112.6	13.69	75.52	13.56	33.44	3.936	22.14	3.159	8.148	7.506
abm10-Z32	236	404	162.4	792	295.9	1249	250.5	1483	549.2	16.19	593.3	75.71	289.1	27.7	33.63	1.91	6.92	0.69	0.0301	32.23
abm10-Z33	55.9	255.7	179.1	279.5	567.3	1045	113.4	461	82.4	16.06	77.6	9.36	51.9	9.7	24.67	3.031	17.45	2.593	54.43	52.59
abm10-Z34	204.5	333.4	145.39	1278	2140	5.00E+03	650	2840	487	14.6	395	46.3	245	44.3	109.1	12.85	67.6	8.55	2.41	2.203
abm10-Z35	201	148	168.7	466.7	2737	6359	799	3460	618.1	16.9	453.5	40.68	150.1	16.65	25.68	1.777	7.46	0.727	89.3	21.89
abm10-Z36	193.8	406.8	312.5	735.1	858	2246	307.7	1419	273.9	11.39	239.6	27.86	151.2	27.29	67.68	7.478	38.42	5.019	34.92	15.29
abm10-Z37	45.3	175.8	116.14	2451	2869	6400	774	3300	636.4	24.98	595.1	77.19	445.3	83.89	216.8	25.61	140.9	19.24	107.68	40.09
abm10-Z38	291	349	574.2	766.9	896	2065	275.2	1252	241.2	37.46	218.5	27.26	153.1	26.99	65.94	7.77	42.44	5.46	11.09	3.392
abm10-Z39	108	377.3	275.9	821.6	402.6	1235	190.2	899	198.8	6.17	195.1	25.23	145.9	27.47	69.55	8.06	43.62	5.58	13.39	17.63
abm10-Z40	1534	439.1	617.9	535.2	505.8	1246	176.5	865	182	38.74	172.8	20.83	111.92	19.28	46.05	5.042	26.85	3.311	6.012	2.08
abm10-Z41	207.9	2042	145.83	4557	55.39	282.5	65.9	442.9	240.2	5.57	393	84.1	668	151.43	475.4	71.76	459.4	63.5	0.0297	38.42
abm10-Z42	103	106.8	90.78	353.8	2041	5901	867	4103	834.7	18.71	546.4	41.64	124.72	12.03	18.25	1.228	6.27	0.584	22.26	12.15
abm10-Z43	116.1	351	368.8	664.6	1297	2896	373.9	1621	275.3	42.8	222.4	24.85	131.74	23.24	57.6	6.781	37.83	5.015	23.48	6.663
abm10-Z45	45.9	127.6	100.03	575.5	2645	6206	804	3624	738.4	22.1	553.4	49.79	179.3	19.66	30.64	2.274	10.33	1.001	41.82	11.96
abm10-Z46	204	386.2	85.1	1994	2864	6056	686	2758	486.4	32.27	456.1	57.5	339.2	65.49	175.7	22.76	132.8	18.55	159.6	74.09
abm10-Z47	77.3	65.9	106.14	835.8	1684	5263	898	5002	1245.9	26.95	899.2	76.84	274.9	30.74	49.96	3.823	16.86	1.766	19.16	9.671
abm10-Z48	70.5	339.8	116.33	3021	1467	4058	615	3050	706.3	12.97	717.4	97.8	576.9	106.63	268.2	31.73	172.3	22	14.46	20.74
abm10-Z49	507	285.8	155.5	3295	1122	3786	621	3138	755.6	22.36	728	99.3	596.8	114	307	39.06	228.3	31.38	7.22	24.64
abm10-Z50	150	224.7	195.8	453.6	995	3001	489.4	2711	678.4	31.95	576.2	51.03	171	16.77	22.95	1.476	6.83	0.671	4.427	43.76
abm10-Z51	52.2	180	138.8	656	1023	2108	238.2	987	175.2	17.63	168.9	20.66	117.2	22.28	57.89	6.97	39.47	5.29	18.87	7.57

Muestra RMO-01	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
RM001-1	77.8	443.5	744.6	158.6	605.2	1045.5	114.3	520.1	92.1	11.19	80.9	7.907	38.8	7.05	17.09	1.948	10.77	1.659	20.5	5.198
RM001-2	142.4	910	193.5	187	647.4	1484	150.2	558.7	76.99	16.51	65.68	6.916	36.79	6.805	17.92	2.32	14.49	2.353	37.69	38.72
RM001-3	381	720.6	371.5	244.7	765.4	1350	126.1	474.1	78.43	12.63	70.98	8.38	48.09	9.21	24.9	3.38	21.55	3.223	105.54	34.57
RM001-4	62.6	448.4	534.6	130.7	660.1	805	72	278.4	44.49	10.21	40.61	4.158	22.64	4.305	12.4	1.653	10.61	1.862	25.1	19.55
RM001-5	89.2	479.2	597.1	209.8	728.1	1074.9	109.5	466.2	79.82	16.36	70.81	7.43	40	7.288	19.54	2.439	14.85	2.328	17.67	4.575
RM001-6	48.1	436.2	552.5	112.3	627.3	832.2	76.49	307.6	51.51	8.69	51.11	4.739	23.9	4.376	11.76	1.376	9.07	1.554	25.07	9.43
RM001-7	56.3	377.5	714	93.7	558.5	792.3	68.63	256.8	36.43	10.81	33.72	3.184	16.48	3.234	9.09	1.257	8.5	1.538	58.43	17.603
RM001-8	48.6	373	142.86	2713	3534	8345	1024	4396	843.3	46.3	750.5	93.32	526	94.33	242.2	30	173.3	23.39	68.76	44.67
RM001-9	57.1	437.2	713.2	191.2	705.9	1224	126.4	483.1	74.99	14.01	62.44	6.447	35.4	6.68	19.13	2.607	17.18	2.794	66.45	19.32
RM001-10	38.3	364	517.8	108.7	732	907.6	78.63	287	40.97	11.34	35.85	3.475	18.1	3.435	9.79	1.379	9.58	1.708	24.44	11.21
RM001-11	31.5	181.9	1013.1	247.3	972.5	2797	406.3	1773	282.4	46.39	180.2	15.67	63.16	8.703	17.53	1.681	8.78	1.083	95.9	34.09
RM001-12	72	354.1	675.6	115.27	539.6	639.4	57.09	229.6	36.32	9.83	35.17	3.541	19.36	3.64	10.02	1.267	8.4	1.546	32.54	9.777
RM001-13	283.3	1001	284.4	259.6	258	659.3	83.73	382.8	76.84	14.54	70.43	8.673	50.21	9.48	24.81	2.986	17.81	2.517	13.537	5.047
RM001-14	50.6	324.3	742.3	200.2	388.9	907.2	115.6	513.4	86.66	13.73	68.78	7.226	38.1	6.967	18.91	2.421	14.86	2.159	34.54	10.808
RM001-15	130	1068	246.9	211.6	152.9	531.2	76.51	371.5	71.9	19.81	61.5	7.199	40.02	7.231	19.08	2.439	15.23	2.366	21.97	30.55
RM001-16	80.3	574.6	352	237.2	38.92	170.8	35.26	232.4	76.9	17.09	71.1	8.42	45.21	8.12	20.59	2.637	15.9	2.454	5.636	10.74
RM001-17	332	4179	161.74	1755	121.5	466	82.39	472.8	205.4	33.77	283.5	54.04	367.4	68.78	180.1	23.36	138.1	17.08	0.604	38.25
RM001-18	139.8	1081	278.5	484.7	315.7	840.1	118.4	578.3	131.6	22.76	133.1	16.31	93.26	17.66	44.81	5.343	30.84	4.438	45.45	20.76
RM001-19	124	209	490.3	1109.3	865.1	2786	475.2	2394	493.3	47.81	373.6	42.39	220.3	37.16	92.54	11.41	66.15	8.882	54.32	122.14
RM001-20	59.6	1153	364.4	318.7	630	1168	128.3	591.7	107.2	23.2	107.2	11.55	63.27	12.29	31.96	3.801	23.37	3.9	59.4	28.13
RM001-21	22.7	963.1	122.41	1523	86.2	403.4	81.3	556	285.4	12.53	370	57.83	344.7	61.91	160.1	22.39	147.83	20.78	11.875	11.381
RM001-22	23.8	193.1	80.62	517.3	61.36	261.8	48.29	295.1	89.06	12.13	103.38	13.95	85.24	17.59	48.46	6.222	36.75	5.391	29.67	15.748
RM001-23	121.4	909	304.2	166.7	449.7	1228.5	144.4	592.3	89.58	16.05	70.51	7.255	36.23	6.391	15.61	1.809	10.28	1.576	43.63	69.47
RM001-24	58.1	472.6	286.9	341.7	280	976	144.8	694.4	135.2	24.67	108.1	12.48	67.23	12.54	33.57	4.41	27.26	4.06	60.66	42.11
RM001-25	120.6	570.8	164.59	502.8	92.9	312.8	52.98	319.9	100.76	24.66	123.2	17.19	105.47	20.92	53.65	6.474	36.26	4.988	1.682	0.875
RM001-26	39.4	245.4	538.9	170.1	397.1	780.5	82.8	320.2	44.82	9.52	43.51	4.642	26.37	5.588	15.88	2.08	13.55	2.437	48.92	10.68
RM001-27	108.4	3842	352.9	1745	164.3	771	158	980	475.1	21.26	526.3	80.77	443.7	72.71	172.7	21.83	128.1	15.34	3.298	21.89
RM001-28	57.5	546.7	168.77	725.2	135.6	554.9	91.64	499.6	134.8	24.07	139.5	19.5	121.61	25.72	73.79	10.53	67.12	10.45	63.86	35.54
RM001-29	42.7	908	336.1	119	220.5	417.5	39.24	146.3	23.33	5.193	23.45	2.454	13.9	3.255	10.43	1.567	11.75	2.454	3.323	7.292
RM001-30	103.4	655.4	350	227.1	166.1	742.2	115.6	553.4	96.1	17.32	70.68	7.883	42.64	8.017	21.71	3.043	19.64	3.045	51.3	23.16
RM001-31	103.1	635.2	287.6	259.8	119.2	422.2	66.98	364.6	84.67	14.31	74.54	8.794	47.35	8.94	23.83	3.065	18.49	2.814	29.86	18.26
RM001-32	107.3	767.2	296.3	159.9	110.4	448.2	69.38	360.6	68.9	14.57	54.78	5.937	29.92	5.478	13.72	1.703	10.3	1.566	35.24	41.04

Muestra RMO-01	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
RM001-33	411	224.6	180.63	364	1148	1989	190.8	664.6	90.6	16.33	82.6	8.85	49.47	10.47	30.33	4.158	26.66	4.094	149.5	37.89
RM001-34	52.3	451	352.1	176.2	36.89	173.7	35.58	246.2	66.52	11.58	57.45	6.414	32.4	5.671	14.12	1.75	10.42	1.501	5.831	16.87
RM001-35	69.4	460	577.3	120.4	655.9	821.7	71.68	269.6	39.86	9.09	35.56	3.563	18.41	3.55	9.85	1.363	9.17	1.646	25.02	8.094
RMO01-36	81	608.8	314	175.9	165	598.7	88.6	430.4	75.9	14.3	59.21	6.282	31.28	5.716	14.58	1.795	10.86	1.699	20.17	41.89
RM001-37	81.7	625.8	364.2	261.1	93.5	343.9	62.28	394.6	106.05	18.87	91.23	10.087	51.08	8.82	21.57	2.595	14.97	2.191	7.65	12.63
RMO01-38	50.6	439	285.8	145.1	228.4	682.2	88.54	382.4	62.74	11.63	49.24	5.104	26	4.836	12.32	1.539	9.37	1.49	16.225	39.18
RMO01-39	49.2	395.8	258.3	142.1	162	406.6	47.66	202.7	35.61	8.45	33.49	3.76	22.23	4.574	13.44	1.902	12.58	2.28	30.18	37.04
RM001-40	75.5	662.3	432.7	267.6	453.8	1423	225.4	1243	383.6	33.17	332.1	29.5	97.53	10.031	14.62	1.078	5.27	0.636	14.15	19.198
RM001-41	104.4	1058	646.8	414.7	313.2	980.4	150.1	788.1	183	18.19	157.2	18.05	94.61	16.41	39.04	4.368	23.27	2.932	3.163	1.811
RM001-42	161.4	481.2	363	1037.6	778.5	2169	336.9	1633	374.1	30.93	326.6	41.1	227.4	39.74	99.05	11.911	66.07	8.253	34.71	12.563
RM001-43	75.4	265.9	279.2	1836	279.4	1237	239.2	1468	424.4	37.41	455.7	62.21	370	71.01	184.44	22.83	128.83	16.94	21.54	22.86
RM001-44	46.9	1006	201.3	130.7	44.73	162.9	28.93	182.1	51.7	9.46	50.95	5.625	29.68	5.386	13.03	1.503	8.43	1.299	8.444	5.965
RM001-45	95.6	791.7	361.6	237.7	1426	2014	181.1	642	86.6	15.14	81.2	8.06	43.03	8.59	23.99	3.089	20.91	3.656	35.79	10.15
RM001-46	69.9	693.8	236.3	105.52	334.6	474	39.17	141.4	21.17	6.362	21.91	2.657	16.15	3.542	10.73	1.512	10.46	1.932	5.71	10.31
RM001-47	92.2	391.9	278.6	39.77	83.7	167.4	17.29	68.6	11.15	3.81	11.93	1.266	6.93	1.46	4.132	0.522	3.57	0.731	12	20.8
RM001-48	226	239.4	267.4	335.1	66.1	270.1	47.01	264.1	67.6	6.56	67.62	9.52	57.03	11.38	31.5	4.333	26.55	3.832	28.8	2.427
RM001-49	31.4	258.2	573.5	101.66	333.5	462.2	44.74	183	28.03	7.24	26.05	2.96	16.46	3.333	9.52	1.287	8.2	1.433	9.409	4.22
RM001-50	53.9	302.3	647.8	301.3	630.4	1504	186.9	773	111.7	23.12	94.53	9.81	50.99	9.75	27.17	3.487	22.44	3.927	70.2	22.9
RM001-51	105.2	268.5	666.2	713.2	694	2073	311.2	1400	262.9	36.35	203.4	23.79	130.4	24.27	65.74	8.815	54.37	7.408	19.28	10.329
RM001-52	104.4	920	205.22	398.7	242.6	569.4	75.36	387.3	93.3	25.44	104.5	13.1	76.84	15.1	38.34	4.683	27.53	4.116	16.69	7.288
RM001-53	205.7	5037	416.2	1286	200	778.7	139.7	804	283.6	20.89	280.6	41.89	247.7	43.41	110.9	14.54	86.5	11	2.509	4.699
RM001-54	29	397	665.7	117.3	805.5	1116	95.7	323.9	44.33	13.86	38.36	3.706	19.42	3.835	10.7	1.524	10.26	1.785	45.56	20.52
RM001-55	36.5	364.2	468.3	233.2	644.5	1176	135.3	620.1	108.7	13.57	91.26	9.42	47.98	8.766	22.12	2.681	15.37	2.412	11.643	4.896
RM001-56	169.1	1065	417.2	388.5	1466	2851	314.9	1191	172.7	19.15	141.4	14.51	74.77	14	37.32	4.662	27.63	4.151	20.59	5.78
RM001-57	118.9	59.2	174.87	35.74	129.6	243.6	25.32	87.1	13.92	2.408	11.19	1.349	7.48	1.265	3.174	0.408	2.239	0.258	65.84	68.25
RM001-58	162.8	321.1	789.1	447.4	720	2026	281.9	1229	199.5	30.84	150.9	16.9	87.49	15.56	39.18	4.691	27.02	3.664	38.7	11.98
RMO01-59	25.7	572.8	290.5	1072.9	1396	3752	514.4	2356	479	16.36	390.8	45.49	234	39.09	91.78	10.35	54.03	6.669	25.79	13.432
RMO01-60	42.2	331.1	690.2	304	727.8	1273	134.8	568	95.24	12.36	81.57	9.43	53.17	10.42	29.94	4.064	26.62	4.352	50.98	27.56
RMO01-B1	21.3	772	623.9	159.5	407.8	745.7	77.6	320.5	51.32	18	46.84	4.986	26.82	5.383	15.36	2.045	13.42	2.568	42.42	40.38
RMO01-B2	86.9	590.2	303.9	149.5	184.9	638	87.2	402.8	69.33	17.57	52.44	5.79	30.31	5.583	14.79	1.904	12.33	1.968	96.12	67.52
RMO01-B3	44	474.8	293.4	327.8	175.2	715	116.5	591	124.4	23.4	98.9	11.78	64.93	12.27	33.12	4.412	28.2	4.475	127.1	106.5
RMO01-B4	70.5	581.9	152.68	126.1	189.3	334.7	34.49	144.9	27.05	4.248	30.28	3.767	22.85	4.56	12.01	1.431	8.09	1.201	7.56	32.94

Muestra RMO-01	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
RMO01-B5	37.6	827.9	258.1	285.7	160.6	401.3	56.53	308.5	79.43	25.39	87.99	10.91	62.38	11.73	28.6	3.254	18.11	2.539	48.15	13.136
RMO01-B6	55.2	1063	314.3	1460	113.6	473.5	91.6	612.1	281	26.81	335.7	52.59	316.7	57.82	148	18.94	110.76	14.07	9.036	14.43
RMO01-B7	148	53	439.6	15.47	26.22	51.53	6.01	22.92	4.47	1.225	3.96	0.577	3.47	0.632	1.703	0.224	1.308	0.174	16.45	25.93
RMO01-B8	28.1	354.1	262.3	131.3	184.5	644.4	85.97	396	66.88	9.98	52.24	5.537	28.91	4.971	12.58	1.526	8.6	1.317	21.56	76.21
RMO01-B9	40.1	411.2	196.1	356.5	421.5	1255	160.3	699.8	125.8	21.84	108	12.79	70.26	13.38	35.23	4.506	27.08	4.196	67	52.18
RM001-B10	31	481.9	318.5	237.6	65.22	286.4	58.54	366.8	96.58	17.58	77.74	8.95	47.3	8.574	22.42	2.878	17.36	2.684	1.995	37.75
RM001-B11	56.4	124.7	357.8	324.1	835	1422	150.6	579.3	90.62	13.55	80.52	9.63	54.73	10.49	28.64	3.65	22.1	3.147	34.08	24.65
RM001-B12	101.1	598	308.5	102.1	269.6	727	87.7	367.8	54.01	10.87	38.69	3.951	19.71	3.452	8.99	1.076	6.54	1.019	42.87	18.78
RM001-B13	88.7	2502	195.1	2022	145.9	582.1	105	632.8	314.8	26.58	371.3	64.14	393.3	67.64	173.2	23.86	147.7	18.08	8.5	55.8
RM001-B14	24.7	341.2	218.5	643.7	498.9	1327	172.8	810	167.3	9.56	160.6	19.96	114.69	22.24	58.67	7.056	40.38	5.66	21.85	49.08
RM001-B15	38.9	335	638.8	62.57	488.9	865	74.8	242.7	30.51	7.69	22.74	2.242	11.57	2.018	5.27	0.664	3.94	0.616	30.79	18.36
RMO01-B16	990	844.3	430.1	839.9	863	2046	265.4	1191	246.5	19.93	223.4	27.8	156.75	29.16	72.36	8.35	44.37	5.689	58.62	15.79
RM001-B17	107.2	269.4	568.4	430.4	679.1	2237	309.6	1257	199.2	28.83	142.5	15.62	78.88	13.81	35.64	4.358	24.6	3.435	22.64	48.1
RMO01-B18	70.1	469.2	842.2	901	1453	3106	391.7	1624	301	24.8	246.1	29.76	165.3	30.43	80.16	10.09	58.72	7.575	85.99	55.17
RMO01-x1	32.6	318.4	455.9	159.2	990	1000	83.5	316.7	51.41	13.82	49.01	5.104	26.73	5.155	14.06	1.82	11.44	2.166	17.98	15.91
RMO01-x2	55.6	306.7	330	1719	536.2	2098	363.1	1772	490.9	11.21	444.7	63.75	359.3	62.15	155.79	19.21	105.72	12.81	39.69	19.37
RMO01-x3	47.4	109.9	325.8	58.38	758.9	816	58.99	175.1	18.02	2.733	16.18	1.504	7.8	1.622	4.84	0.689	4.71	0.885	1.618	3.355
RMO01-x4	87	294.4	765.5	322	441.9	1265	179.3	855	142.93	29.96	111.97	12.38	65.37	11.51	28.99	3.339	19.25	2.751	18.82	2.396
RMO01-x5	47.7	512.5	267.8	782.1	1530	3509	448.2	1948	338.6	22.3	284.5	31.71	166.8	29.85	74.79	9.1	51.89	7.54	15.69	9.892
RMO01-x6	218	321	900.2	335.5	138.8	497.6	94.8	572.7	134	26.42	120.4	13.22	68.67	12.22	31.08	3.769	22.41	3.343	15.24	7.523
RM001-x7	22.2	130.9	191.02	309.9	359	972	125.4	526.4	88.59	8.42	73.85	9.36	54.19	10.749	30.11	3.948	22.97	2.895	79	13.72
RM001-x8	100.4	585.5	628.6	164.2	825	1187	115.5	470	76	13.76	65.9	6.73	34	6.23	16.16	1.97	12.36	2.099	7.77	2.244
RMO01-x9	35.5	387.3	494.5	89.4	546.7	605.9	47.87	173.5	26.39	7.33	26.03	2.659	14.54	2.923	8.32	1.149	8.06	1.646	17.06	6.63
RM001-x10	115.2	336	871.2	519.6	523.5	2059	335.6	1568	288.5	45.11	203.6	22.37	112.48	18.92	47.12	5.598	31.62	4.06	38	12.655
RM001-x11	42.4	253	214.1	220.3	109.5	271	36.23	167.2	36.88	9.48	38.24	5.103	31.89	7.055	21.69	3.09	21.23	3.907	6.67	9.758
RM001-x12	37	124.2	1529.7	1302	17.38	68	13.78	101	70.33	22.86	184.1	41.19	308.5	56.34	134.84	15.77	82.86	9.028	0.1154	0.648
RM001-x13	2980	470	3004	125.3	307	1029	153.1	711	112.4	19.39	71.51	6.73	29.74	4.79	11.47	1.279	7.68	1.147	93	67.7
RM001-x14	138	742.8	177.37	2118	481.7	1756	312.7	1902	629.7	25.67	668.7	85.65	463.8	85.56	228.6	30.12	193.2	30.15	5.966	80.27
RM001-x15	84.8	567	593.3	245	1095	1947	221.1	929	141	16.91	112.78	11	54.1	9.5	24.17	2.937	18.18	2.765	23.76	5.271
RMO01-x16	771	315.1	2548	384.9	562.8	1851	305.3	1568	289.1	65.9	190.5	19.31	90.73	14.12	33.01	3.916	23.58	3.148	23.76	21.84
RM001-x17	26.3	194.6	582.9	466.1	168.6	640.7	108.1	609.3	144.9	14.42	132.06	16.39	89.66	16.73	43.92	5.586	34.19	5.001	22.34	2.768
RM001-x18	43.9	899.7	74.79	368.5	260.5	1016	169.2	930	242.5	13.5	213.9	23.16	100.6	13.47	24.85	2.365	13.9	2.317	0.027	3.409

Muestra RMO-01	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
RMO01-x19	46.5	330.5	525.9	748.5	404.6	1170	166.4	865	202.6	50.19	212.6	25.21	141	26.83	69.58	8.278	48.88	7.708	25.52	26.49
RM001-x20	60.7	163.9	640.7	374.2	1235	2814	335.7	1393	192	19.54	142.2	14.9	73.89	12.88	32.36	3.863	21.88	2.987	181.5	67.66
RM001-x21	29.4	219.6	603	140.3	287.2	522.8	56.17	246.6	41.11	9.56	38.54	4.325	23.78	4.803	13.37	1.739	11.04	1.899	16.66	9.728
RM001-x22	30	159.4	865.1	398	101.9	383.7	70.7	433.3	124.9	24.26	122.8	15.02	81.44	14.52	35.64	4.264	24.8	3.539	1.068	3.079
RM001-x23	36	438.6	280.9	149.9	277.1	433	44.17	203.2	38.98	8.46	39.48	4.411	23.93	4.704	12.79	1.665	10.57	1.865	7.14	5.372
RM001-x24	131	443.6	809	392.3	131.2	537	91	498.3	111.8	11.14	104	12.54	69.5	13.21	34.11	4.134	23.08	3.299	9.56	3.68
RM001-x25	22.4	739.6	185.75	63.53	31.6	92.5	12.03	62.4	15.23	4.885	15.64	1.794	10.02	1.949	5.53	0.719	5.01	0.911	7.13	32.28
RMO01-x26	21.5	95.7	275.1	1710	1100	3690	583	2920	619	30.5	528	65.35	356.9	63.71	154.5	17.2	86.8	10.62	36.7	5.47
RM001-x27	121.4	523.7	428.3	242.2	728	1493	153.4	605	90.18	16.04	70.45	7.933	43.78	8.207	22.18	2.762	17.17	2.48	31.71	13.22
RM001-x28	52.2	126.1	492.7	238.3	367	920	113.4	481.1	76.07	10.23	61	7.228	39.72	7.596	20.83	2.659	15.96	2.261	43.16	28.32
RMO01-x29	349	321	250	244.6	344.4	567.8	56.38	226.8	43.88	12.68	48.62	6.486	39.45	7.89	21.01	2.675	16.26	2.443	77.25	101.2
RMO01-x30	38.2	390.3	199.68	64.67	37.37	101.1	12.31	58.4	11.54	3.241	11.7	1.443	8.84	1.964	6.03	0.857	6.17	1.202	5.187	33.76
RM001-x31	430	1421	248.3	819.2	257.9	679.9	94.7	523.8	140.3	34.44	163.5	23.85	151.3	30.11	79.92	10.08	58.11	7.708	4.724	1.99
RM001-x32	102	313.9	693.7	280.1	503.5	1228	160.6	734	122.6	16.25	97.6	10.84	56.24	9.96	25.21	2.996	17.09	2.511	20.78	5.66
RM001-x33	76.9	454	204.2	630.3	196.4	559.5	86.4	500.6	138.6	26.22	161.7	21.67	130.5	25.45	65.99	7.803	44.3	6.146	7.508	2.928
RM001-x34	32.8	560.5	269.6	164	450.3	1089	131.4	568.2	91.8	13.37	68.14	6.845	34.09	5.998	14.93	1.742	10.47	1.481	16.54	9.006
RM001-x35	55.9	178.6	199.9	333.3	316.4	745	95.7	460.7	90.26	22.09	88.88	10.93	62.65	11.86	30.81	3.646	20.48	3.01	25.34	18.06
RMO01-x36	56	352.9	135.01	192.9	89.2	391.8	83.7	577.7	197.5	10.06	144.1	12.68	51.14	7.025	14.92	1.649	8.66	0.95	7.664	22.55
RM001-x37	119	155.8	263.6	254.7	317.9	812	102.9	451.1	86.1	13.69	74.84	8.86	49.05	8.85	22.36	2.689	16.07	2.233	12.658	7.931
RMO01-x38	31.6	350.8	487.9	131.7	637	801	72.1	290.9	41.06	12.7	35.83	3.739	20.55	4.124	11.82	1.621	10.95	1.964	31.93	13.09
RMO01-x39	87.2	291.8	637.8	394	928	2235	284.6	1180	189.1	28.28	138.81	15.16	77.04	13.17	33.09	3.897	21.89	2.905	91.81	38.05
RMO01-x40	75.8	217.3	625.1	532.7	1056	2318	300.8	1321	236.1	36.22	184.4	20.74	107.7	18.11	44.66	5.341	30.43	4.023	100.6	66.22
RM001-x41	125	404.7	133.45	1317	1922	4267	532.9	2280	395.4	10.45	342.7	42.62	240.6	44.63	116.41	14.27	78.93	10.535	57.2	23.77
RM001-x42	57.3	214.4	604.2	719	1000	3832	581.2	2650	411.7	45	275	29.12	145.35	24.39	61.08	7.381	42.76	5.89	104.91	15.38
RM001-x43	24.7	258.2	304.2	878	1037	2387	319.4	1443	274.1	28.15	245.9	31.12	175.8	32.34	81.54	9.49	50.52	6.903	10.269	4.63
RMO01-x44	62.3	248.7	998.6	311.2	731.5	1846	242.4	1066	173.4	29.47	125.8	13.2	65.68	11.33	28.68	3.47	20.34	2.849	55.83	26.1
RM001-x45	19.4	187.5	592.9	73.99	155	288.2	31.07	141.1	24.99	5.79	23.07	2.42	13.29	2.675	7.54	1.021	6.96	1.226	23.75	7.93
RMO01-x46	96.5	662.7	411.2	294.7	311.5	820	108.7	520.9	97.88	14.7	85.1	9.95	55.88	10.216	26.78	3.403	20.08	2.9	8.152	3.367
RM001-x47	73.8	1988	256	699	69.6	262.2	47.85	324.9	123.9	19.01	139.5	19.75	120.5	23.38	65.4	8.92	57.86	8.96	12.3	7.56
RMO01-x48	63.8	218.5	423.9	566.6	1520	3050	404	1650	290	52.7	217	23.87	119.5	19.5	48.14	5.945	33.76	4.422	41.4	35
RMO01-x49	33.7	1712	354.6	1405	98.9	521.1	105.8	691	280.8	12.88	299.1	46.77	280.6	48.4	122.62	16.05	96.19	11.79	0.775	17.9
RM001-x50	60.6	251.9	371.2	103	409	623.2	56.3	209.2	32.91	7.12	28.81	3.313	19.45	3.704	10.15	1.339	8.57	1.366	26.02	11.456

Muestra RMO-01	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
RM001-x51	64.2	274.3	191.3	1542	222	645	101.2	576	196.6	12.52	261.7	40.73	267.3	54.4	148.85	18.07	98.66	12.92	19.9	5.02
RM001-x52	130	541.5	400.2	157.2	1181	1719	149.5	553.5	66.65	15.72	60.55	5.577	27.8	5.169	13.16	1.513	8.98	1.551	13.96	7.045
RM001-x53	56.4	322.7	897.2	297.1	825.3	1906	233.4	1019	147.8	26.01	108.7	11.53	58.49	10.19	25.89	3.207	18.63	2.701	59.65	21.39
RM001-x54	123.2	1132	677.2	342.2	269.1	859	128.4	688	150.1	15.25	124.76	14.6	76.08	13.01	30.92	3.474	18.28	2.314	2.343	1.427
RMO01-x56	67.8	738.8	351.9	121.4	588.3	1000	94.7	354.6	49.12	8.06	41.13	4.291	22.4	4.109	11.3	1.409	8.85	1.356	2.185	1.509
RM001-x57	66.6	258.5	650.2	564.8	1093	2485	326.6	1447	264.8	46.24	209.4	23.57	122.05	20.43	49.56	5.713	31.58	4.225	27.85	22.82
RMO01-x58	44.4	251	685.9	232.9	797	1554	170.6	672	102.2	17.92	82.36	8.57	44.18	7.755	19.87	2.481	14.51	2.182	9.049	4.059
RMO01-x59	40	302.4	560.4	159.5	667	937	87.8	330.1	51.48	8.49	43.41	4.762	26.65	5.261	15.23	2.122	13.61	2.254	32.09	16.24
RMO01-x60	70.4	963	496.1	294.2	228.2	662	88.5	452	95.2	9.43	87.3	10.11	56	10.35	26.71	3.189	18.48	2.565	6.7	3.04
RMO01-x61	58.2	455.5	549	171.6	956	1224	107.3	418.7	64.83	14.67	59.99	6.07	32.2	6.176	16.55	2.079	13.91	2.485	11.55	2.967
RMO01-x62	39.4	104.6	198.53	73.1	397.3	690	58.2	185.4	21.14	4.47	18.72	1.788	9.41	2.039	6.37	0.88	5.97	1.09	1.858	9.71
RMO01-x63	31.4	443.9	442.8	251.8	879	1404	147.4	639	110.9	14.19	95.76	10.05	52.44	9.53	24.48	2.982	18.07	2.761	12.564	3.381
RMO01-x64	120.3	355.4	890.3	382.9	1469	3130	375.8	1566	234.2	40.91	170.2	17.29	82.3	13.09	30.22	3.284	17.7	2.295	10.66	2.673
RMO01-x65	117.4	369.5	1230.8	161.5	702.3	1403	161.1	688	95.75	19.99	70.25	6.73	31.89	5.384	12.66	1.439	8.26	1.135	31.13	13.807
RMO01-x66	253	283	426.7	1527	428.7	1526	247.4	1322	314.5	37.72	306.1	42.6	258.7	50.68	139.6	18.32	107.88	15.26	14.89	4.675
RMO01-x67	74.4	533.8	371.3	92.3	750.8	826.9	69	262.8	40.46	6.99	36.07	3.403	16.47	2.93	7.44	0.953	5.6	1.034	7.795	7.28
RMO01-x68	165	244.1	284.1	1064	1090	2640	354.9	1652	309.5	15.93	279	34.27	190.9	34.56	85.75	9.91	50.93	6.009	6.165	5.252
RMO01-x69	34.4	411.4	556.6	86.16	693	727	51.37	172.3	22.69	7.08	22.65	2.214	12.2	2.409	7.14	0.986	6.86	1.465	17.48	11.152
RMO01-x70	45	189.9	338.2	705.3	1233	2673	298	1119	177.9	17.83	144.5	18.14	106.8	21.24	59.6	8.201	50.96	7.58	180.1	30.33
RM001-x71	37.7	340.7	465.9	145.2	682.5	781	67.5	273.1	41.96	8.26	39.15	4.224	23.43	4.597	12.66	1.612	9.99	1.843	14.96	12.303
RM001-x72	126.8	672.3	257.6	1370	2632	5792	690.9	2719	461.4	36.97	364.5	44.35	246.6	45.28	119.98	15.14	87.49	12.075	16.48	4.936
RM001-x73	43.2	1192	316.3	403	562.2	1620	211.7	951	187.6	19.84	136.8	15.22	77.4	12.93	31.19	3.684	21.33	2.859	15.02	6.599
RM001-x74	74.3	373.2	198.2	668	1213	3175	381.6	1473	229.8	17.54	177.8	20.73	109.59	19.75	51.17	6.353	37.2	5.088	33.15	15.61
RM001-x75	51.3	333.9	1033.1	276.8	961	1685	180.8	727	111	17.92	89.44	9.27	47.15	8.77	23.18	2.907	17.64	2.833	13.46	3.499
RMO1xtr-1	78.2	468.2	775.2	175.9	609.3	1095	126.1	587.6	100.84	11.12	88	8.591	42.08	7.59	18.27	2.012	10.98	1.708	20.06	5.603
RMO1xtr-2	126.5	912.4	194.7	191.2	634.1	1474	146.8	544.1	75.06	15.98	62.76	6.78	36.92	6.804	18.01	2.287	14.73	2.347	33.47	33.48
RMO1xtr-3	42.4	441.3	552.5	106.38	632.8	828.3	72.1	287.4	44.09	9.1	41.59	4.06	20.5	3.856	10.18	1.317	8.69	1.543	27.87	12.35
RMO1xtr-4	54.9	461	753.2	205.8	802.7	1438	140.8	556.4	83.47	15.25	66.66	7.059	37.65	7.258	20.56	2.802	19.02	3.054	66.27	19.14
RMO1xtr-5	54.9	375.6	676.8	112.2	515.9	639.5	57.44	237.8	37.11	9.7	35.14	3.651	19.25	3.734	9.85	1.279	8.14	1.519	36.57	9.619
RMO1xtr-6	151.7	1174	247.8	174.7	226.2	694	85.9	391.8	69.57	15.73	58.32	6.563	34.6	6.344	16.22	1.984	12.59	1.891	25.71	26.23
RMO1xtr-7	20.7	918.7	125.4	2139	114.8	535.7	103.9	721	371.5	16.04	465.3	73.15	443.2	80.05	210.4	28.81	186.6	26.17	24.37	17.59
RMO1xtr-8	38.1	399.8	254.6	178.1	226.1	498.3	59.2	288.5	56.09	11.97	51.19	5.835	32.6	6.498	17.7	2.287	14.51	2.529	56.48	40.06

Muestra RMO-01	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
RMO1xtr-9	73.6	544.1	301.2	369.2	340.6	1112	156.1	745.3	142.5	25.18	109.84	12.84	69.44	13.01	34.85	4.465	28.09	4.186	57.19	22
RMO1xtr-10	91.6	635.1	285.9	293	139.7	496.1	77.4	431.6	100.8	17.08	87	10.36	56.45	10.58	28.03	3.537	21.39	3.289	34.77	18
RMO1xtr-11	31.3	375.4	277.6	132.7	207.5	641.5	82.8	373.1	61.1	10.95	46.88	4.916	25.21	4.632	12.11	1.525	9.09	1.461	12.3	37.85
RMO1xtr-12	66.1	616.7	367.3	236.6	85.3	323.4	58.19	374.2	107.72	18.81	88.77	9.84	50.66	8.579	21.33	2.543	14.93	2.12	6.657	11.859
RMO1xtr-13	77.1	677	409.7	283.8	294.7	990	142.7	726	161.8	22.56	120	12.78	63.03	10.64	25.32	2.972	16.26	2.178	8.835	5.099
RMO1xtr-14	74.2	783.8	359.7	228.1	1315	1894	162	579.9	81.5	13.8	73.66	7.39	39.37	7.93	21.94	2.846	19.13	3.278	31.77	9.183
RMO1xtr-15	29.8	244.4	278.8	2066	246.9	1163	223.9	1398	437.6	38.96	464.6	64.27	387.1	73.61	192.8	24.15	135.36	17.85	14.84	22.37
Ap-RMO1xtrB-1	42.5	365.6	475.2	129	631.6	724	63.9	251.3	40.06	7.78	36.13	3.93	21.84	4.315	11.62	1.511	9.63	1.698	13.64	12.44
Ap-RMO1xtrB-2	63.2	460.3	558.7	204.4	720	1033	105.5	449.3	77.77	15.91	66.3	7.294	38.9	7.216	18.92	2.45	14.97	2.319	17.84	5.041
Ap-RMO1xtrB-5	37.7	403.9	529.2	93.5	646.2	817	71.9	262.6	39.03	9.08	33.71	3.274	16.87	3.188	8.86	1.202	8.14	1.43	18.57	7.956
Ap-RMO1xtrB-6	76.5	262	660.5	573.4	1132	2629	330.4	1458	256.5	44.76	202.4	23.07	117.6	19.8	47.81	5.606	30.61	4.2	27.41	22.64
Ap-RMO1xtrB-7	193	1290	251.8	167.5	312.6	871	102.2	427.9	70.88	13.96	58.79	6.52	34.07	6.162	15.66	1.846	11.11	1.673	26.43	24.64
Ap-RMO1xtrB-8	134.4	319.6	208.1	1870	1123	3202	454	2223	492.5	20.58	465.9	60.46	353.8	67.64	172.5	20.28	108.54	13.77	19.05	4.696
Ap-RMO1xtrB-9	321	4426	163	1769	124.4	475.7	84.4	484.2	212	33.25	286.3	54.19	366.7	69.15	180.5	23.72	137.9	17.08	0.679	38.81
Ap-RMO1xtrB-12	129.1	1083	273.4	460.6	304.8	823	113.5	577	127.2	22.27	126.2	15.62	89.44	17.21	43.37	5.134	29.23	4.226	31.64	16.43
Ap-RMO1xtrB-13	939	938	324.9	629.8	151	449.9	70.6	402.9	119	31.54	138.5	19.47	120.98	23.64	60.06	7.363	40.97	5.419	4.487	1.445
Ap-RMO1xtrB-14	24.1	190	80.6	484.1	54.4	241.3	44.45	283.1	83.07	10.85	93.08	12.48	76.96	15.84	43.49	5.515	32.19	4.555	18.69	12.94
Ap-RMO1xtrB-15	38.2	418.5	263.6	227.9	240	577.3	71.9	350.8	71.73	14.82	63.76	7.372	42.53	8.267	23.04	3.027	19.45	3.308	67.79	31.06
Ap-RMO1xtrB-16	69.4	566.7	301.4	367.4	337	1095	155.9	735	138.8	24.81	106.3	12.5	68.47	12.94	34.17	4.381	27.44	4.1	57	25.34
Ap-RMO1xtrB-17	79.2	3545	352.3	1738	144	670.7	137.3	869	427.4	19.05	463.9	70.71	395.6	64.07	152.7	19.17	110.28	13.34	1.986	15.82
Ap-RMO1xtrB-18	42.1	380.6	590.3	170.3	606	817	76.2	326.3	61.56	8.77	59.86	6.414	34.4	6.646	17.09	2.037	12.48	2.085	40.15	21.35
Ap-RMO1xtrB-19	10.6	225	159.2	3017	3662	9610	1284	5764	1065	87.7	898.4	110.32	610.3	112.7	285.7	33.9	184.2	23.66	5.491	11.52
Ap-RMO1xtrB-20	101.2	559.4	426.3	150.8	517.1	1052	107.6	413.3	61.98	10.49	46.3	5.252	28.79	5.362	14.37	1.829	10.83	1.538	26.55	8.672
Ap-RMO1xtrB-22	107.2	339	1566.4	784.8	600	1923	307.1	1564	328.6	87.36	268.9	33.46	176.3	28.85	66.05	7.458	39.67	4.776	13.43	22.58
Ap-RMO1xtrB-23	74.1	495.9	205.5	654.7	198.5	578.4	89.1	508.4	141.4	25.74	162.4	21.98	132.79	25.63	65.26	7.753	43.9	5.868	7.34	2.718
Ap-RMO1xtrB-24	109.4	759.9	317.2	160.2	276.7	837	108	473.8	82.78	14.91	61.19	6.43	33.1	5.842	14.56	1.785	10.78	1.662	36.61	41.95
Ap-RMO1xtrB-25	234	1250	443.8	467.9	1608	3410	379.1	1453	204.7	22.58	156	16.94	89.57	16.73	44.63	5.749	36.36	5.72	22.44	9.42
Ap-RMO1xtrB-26	135.4	333.8	810	417	758	2113	277.3	1190	188	28.7	139.2	15.36	79.98	14.11	35.04	4.25	24.27	3.267	37.04	11.54
Ap-RMO1xtrB-27	110.9	3827	367.1	2021	121.1	583.2	119.4	774	394.3	18.32	460.6	75.1	439.2	73.22	180.8	24.29	149.7	18.68	2.336	13.57
Ap-RMO1xtrB-28	83.7	754.5	404.7	331.8	291.3	991	153.6	799	175.6	24.57	131.9	14.36	73.1	12.1	28.96	3.363	18.37	2.404	9.68	6.206
Ap-RMO1xtrB-29	23.6	322.1	560.9	168.7	687.5	993	92.3	344.1	52.76	8.6	42.87	4.816	27.28	5.358	15.4	2.126	13.62	2.317	35.52	17.49
Ap-RMO1xtrB-30	87.2	653.3	281.7	354.9	159.1	574.4	92.5	504	118.4	20	102.4	12.35	68.97	12.71	33.58	4.306	25.98	3.935	47.19	24.94

Muestra RMO-01	Mg	Mn	Sr	Y	La		Ce P	r N	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
Ap-RMO1xtrB-18	77.8	443.5	5 744	.6 15	8.6 605	5.2 10	045.5 11	4.3 5	20.1	92.1	11.19	80.9	7.907	38.8	7.05	17.09	1.948	10.77	1.659	20.5	5.198
							I		-	1					1		T	-		.	1
Muestra RMO-04	L I	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
RM004-1		21.7	163	110.67	3440	301	1346	309	2236	932	26.9	1092	158.6	881	140.6	300	30.4	138.2	15.56	6.54	21.3
RM004-2		75.2	454.1	446.1	156.4	824.5	1162	115.1	503.4	81.56	14.7	73.2	7.09	34.48	5.863	13.95	1.619	9.69	1.536	11.314	3.981
RM004-3		48.3	320.2	414.9	167.8	152.2	461	62.46	299.2	56.44	8.76	51.14	6.122	33.81	6.31	15.82	1.874	10.71	1.51	14.33	12.82
RM004-4		114	844	386.5	294.8	354.6	933.9	126.9	607.4	116.1	18.07	97.64	11.09	58.68	10.61	26.57	3.295	18.97	2.722	6.09	3.19
RM004-5		75.6	553.9	294.1	661.1	957	2336	279.6	1226.4	211	13.89	188	22.83	131.42	24.71	64.52	7.846	45.11	6.111	96.53	30.1
RM004-6		52.2	833.5	324.1	834.4	235.2	833.7	142.2	812	210.6	19.73	198.1	25.96	149.6	27.76	73.46	9.38	55.56	7.33	7.55	7.48
RM004-7		45.5	443.1	221.4	271.2	841.1	1600	146.1	546.4	72.91	14.65	69.64	7.771	45.75	9.392	27.16	3.907	27.04	4.615	102.05	47
RM004-8		68.4	953	437.5	413.2	524.8	1324	171.1	809	142	23.41	129	14.64	81.66	15.67	41.49	5.167	32.53	5.041	13.15	4.558
RM004-9		145	937.2	535.9	440.9	559.3	1470	201.7	976	188.1	29.63	156.9	17.66	93.1	16.42	40.72	4.86	27.89	3.839	14.91	5.19
RM004-10		130.2	1002	428.3	305	607.4	1512	187.9	806.8	122.74	20.32	97.76	10.62	56.99	10.479	27.46	3.658	22.83	3.405	10.283	4.753
RM004-11		76.2	757.8	260.5	454.2	1615	3309	311.7	1133	147.8	26.41	129.1	14.63	82.93	16.59	45.96	6.39	41.62	6.313	191.5	72.2
RM004-12		56.9	637.5	396.1	360.4	351.2	924.4	119.4	554.4	108.6	23.06	103.3	11.71	64	12.4	33.51	4.326	26.71	4.348	12.83	9.61
RM004-13		116.2	174.2	87.22	636	1828	4920	722	3583	790	26.33	611	57.4	211.3	23.81	37.5	2.82	12.37	1.271	4.19	11.44
RM004-14		69.4	247.6	461.6	118.8	595.2	949	95.3	405.8	58.03	9.84	48.24	4.597	22.38	4.162	10.7	1.264	7.77	1.331	12.17	7.08
RM004-15		73.5	800	369.3	358.9	408.9	1215	177.7	896	171	25.1	135.84	15.07	77.74	13.38	32.23	3.772	20.83	2.787	7.65	3.055
RM004-16		88.8	775.8	254.2	361.1	1458	2572	223.5	811	102.28	25.67	94.25	10.39	59.9	12.6	37.36	5.381	38.6	6.959	189.1	56.55
RM004-17		224.9	2770	800.3	337.8	118.5	366.3	56.1	321.6	77	17.27	71.95	9.69	58.75	11.61	31.24	4.12	24.92	3.45	6.48	11.18
RM004-18		41.5	545.1	245.9	585.2	230.3	650.5	94.9	518.9	128.3	18.54	131.3	16.59	97.69	19.75	54.25	7.25	46.01	7.617	37.94	57.97
RM004-19		94.5	851	477.1	454.2	465.1	1327	188.7	939	180.7	28.64	147.6	17.22	89.7	16.29	40.76	4.99	28.72	4.05	14.6	4.37
RM004-20		145	1018	297.2	486.5	1390	3013	346.3	1355	202.3	26.1	156.7	17.36	92.2	16.9	44.72	5.638	34.57	4.864	21.24	7.06
RM004-21		51.3	210.4	855.7	301.9	25	159	45.55	367.1	123.7	22.61	109.81	12.56	63.43	11.09	27.09	3.259	18.97	2.718	2.28	4.158
RM004-22		100.8	912.9	417.3	350.3	623.6	1417	177.1	771	135.7	19.9	114.4	12.73	66.3	12.65	33.31	4.114	24.04	3.763	17.7	5.347
RM004-23		70.9	710.5	289.2	384.5	880.2	1896	235.8	1018	162.5	17.96	131.8	14.37	75.8	14.18	36.06	4.367	25.16	3.572	16.91	5.511
RM004-24		79.4	1177	293.5	1226	259.5	710.4	104.2	551.7	166	29.18	200.8	28.05	172	38.04	117.9	17.71	130.6	25.95	57.9	23.48
RM004-25		334	303.7	207	1971	2167	5299	728.9	3275	675.6	46.2	577.1	71.96	402.1	75.43	191.1	23.15	128.2	16.14	71.34	20.02
RM004-26		59	640.4	353.5	727.4	340.5	1080	168	847	193.9	25.72	169	21.34	119.8	23.81	66.2	9.19	59.58	9.27	16.26	10.07

Muestra RMO-04	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
RMO04-z1	40.7	345	349	108.3	680.8	735.7	65.84	268.9	47.83	7.84	45.87	4.41	21.12	3.846	9.55	1.109	6.52	1.133	17.63	12.65
RMO04-z2	43.8	938	182.5	1193	693.2	1471	178.5	855.6	210.4	15.94	237.1	33.04	205.9	44.7	126.83	16.4	98.05	15.13	49.07	35.16
RMO04-z3	23.4	391	266	412.2	1347	2492	239.4	859	130.6	21.17	114	13.2	73.33	14.59	41.02	5.677	36.08	5.48	84.2	33.53
RMO04-z4	27.6	381.2	337.8	153.6	270.3	646.9	81.51	368.3	67.62	11.37	55.52	5.909	29.26	5.358	13.66	1.692	10.15	1.679	8.504	13.17
RMO04-z5	105.9	966	454.2	464.9	825	1866	236.9	1011	179.8	25.82	146.1	16.7	87	16.16	42.63	5.302	30.42	4.512	19.72	5.534
RMO04-z6	128.7	751	328.7	317.5	1339	2277	215.9	754	122.4	20.57	106.4	11.714	61	11.778	31.45	4.009	25.23	3.85	77.17	32.35
RMO04-z7	128.3	373.8	242.7	2006	607.3	1820	318.5	1694	442.7	16.64	438.8	60.97	364.6	72.31	196.4	25.12	146	19.67	0.827	44.39
RMO04-z8	31	674.5	316.5	471	230.9	681.1	104.4	513.8	126.6	18.57	117.39	14.59	79.38	15.38	42.37	5.717	38.66	6.51	26.95	37.31
RMO04-z9	85.9	439.9	257	1210	2050	3794	415.9	1578	289.3	17.19	266.2	34.37	197.7	39.31	107.97	14.25	84.49	11.88	96.28	27.76
RM004-z10	44.2	580.2	204.8	636.3	685.4	1454	172	730	156.3	21.93	156	19.96	116.4	23.56	63.5	8.42	50.07	7.33	54.96	28.99
RMO04-z11	70.9	640.3	322.6	314.6	1360	2292	227.2	794	121.2	29.83	102.7	10.84	57.33	11	30.6	4.166	27.25	4.328	122.5	160.7
RMO04-z12	89.9	690.4	289	276.6	1497	2435	208.9	673	93.54	19.08	80.08	8.756	48.43	9.6	27.22	3.866	25.37	3.897	130.8	45.43
RMO04-D1	53.8	746.3	185.5	343.1	529.2	1169	146.4	645.8	133.6	18.73	113.3	12.73	66.33	12.02	30.86	3.851	23.29	3.448	10.46	5.56
RMO04-D2	36.3	336.4	148.46	810	475.4	1306	221.4	1250	471.3	45.22	467	53.03	229.9	29.59	52.24	4.484	20.73	2.41	30.2	80.1
RMO04-D3	46.5	350.3	510.7	293.6	625.3	1445	191.5	901	171.4	21.79	132.4	13.74	64.73	10.619	25.57	2.953	17.03	2.294	17.23	6.232
RMO04-D4	18.4	492.6	337.9	1001.6	437.7	1319	189.6	921	213	8.73	217.2	28.15	166.2	33.3	89.91	11.06	63	9.16	14.1	10.772
RMO04-D5	125	541.3	173.8	614.2	242.1	736.6	111	591	149.9	19.62	162	20.87	122.59	23.01	57.1	6.547	36.87	5.148	9.54	3.436
RMO04-D6	125.2	1005.2	491.5	224	601.1	1177	124.1	484	75.34	13.29	64.85	6.984	37.71	7.266	19.87	2.539	16.74	2.723	13.02	3.989
RMO04-D7	149.3	1163	509.6	458	865.2	1856	225.8	952	166.9	25.08	139.55	15.53	83.43	15.47	40.71	5.188	31.1	4.657	23.38	5.096
RMO04-D8	132	283.2	518.2	1249	546	1654	285	1565	401.5	68.7	359.6	46.45	262.3	45.98	114.9	14.47	85.64	11.24	31.52	30.81
RMO04-D9	57.6	818	253	152	97.8	255.6	36.44	172.3	38.09	5.88	35.66	4.205	24.42	4.828	13.47	1.743	11.11	1.721	2.844	4.852
RM004-D10	29.9	575.2	354.2	839.4	251.1	840.4	145.1	798.2	215.8	22.34	197	25.35	146.95	27.68	73.76	9.75	57.73	7.976	19.69	9.42
RM004-D11	32.1	576.7	311.5	371.3	235.1	614	79.6	348.4	73.26	16.1	70.71	8.39	48.52	10.2	30.92	4.664	34.38	6.343	19.43	22.16
RM004-D12	59.9	773.7	358.4	344.8	1059	1856	209.8	851	142.4	21.8	117.8	12.72	67.46	12.29	32	3.965	23.93	3.562	16.16	4.883
RM004-D13	58.5	412.8	483.3	307.3	179.8	500.7	73.2	379.1	95.12	24.15	99.13	11.9	67.37	12.38	29.73	3.331	18.09	2.482	4.146	1.703
RM004-D14	43.3	374.1	485.4	1916	141.4	605.6	119.4	745	324.3	22.83	380.4	64.14	408	73.66	192.2	24.5	139.3	17	1.7	33.38
RM004-D15	59	661.1	248.6	717	262.5	824	128.7	645	150.1	18.21	136.2	17.85	110.1	22.04	64.7	9.34	62.2	9.57	16.51	9.77
RM004-D16	34.5	472.3	469.2	2420	610	1910	323	1795	535	75.2	551	73.5	431	81.2	221	30.3	198.9	31.2	68.2	80.2
RM004-D17	185	965	192.08	374.6	276.8	669.4	88	432.5	101.5	30.41	104	13	74.43	14.18	36.51	4.438	26.47	4.1	16.41	6.681
RM004-D18	97	831.7	747.2	428	345.8	917	121.9	589.8	124.5	21.84	112.2	13.53	75.49	14.22	38.76	4.977	31.74	4.925	13.61	6.284
RM004-D19	84	662	315.2	305	576	1184	124.7	492	79.7	13.16	71.9	8.17	46.3	9.29	26.75	3.71	25.19	4.56	15.07	8.68
RM004-D20	116.3	219.6	161.1	629	587	1618	258.3	1343	343.2	23.72	307.9	34.86	158.3	21.61	37.8	2.888	12.15	1.368	13.8	30.3

Muestra RMO-04	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
RM004-D21	55.2	250.8	542	334	959.4	1981	264.2	1266	223	24	166.6	16.38	75.86	12.08	28.68	3.219	17.63	2.331	14.42	6.601
RM004-D22	106.2	862	361.9	279	958.7	1673	170.6	652	98.2	14.57	83.2	9.03	49.73	9.55	25.96	3.399	21.23	3.586	19.08	5.597
RM004-D23	49.7	442.9	317.6	395	1420	2460	233	852	132.6	20.79	116.1	13.19	74.52	14.18	39.37	5.18	32.55	4.897	78.5	33.6
RM004-D24	48.4	578.2	366.9	341.2	141.7	422.6	65	319.2	76.5	14.1	70.3	8.73	51.08	10.3	29.52	4.141	27.95	4.857	5.036	7.175
RM004-D25	33.9	152	551	41.88	149.6	305.4	34.48	144.7	20.61	4.599	17.12	1.547	7.43	1.353	3.614	0.43	2.6	0.479	0.506	0.44
RMO04-D26	38.6	642	281.5	973.6	134.8	538	104	635.6	191	31.19	195	28.04	176.9	34.39	93.58	12.25	71.9	9.97	4.112	5.835
RM004-D27	96.3	1078	405.5	502.9	653	1591	207.5	927	177	23.16	149.2	17.3	97.15	18.03	47.12	5.95	35.39	5.34	13.47	4.664
RM004-D28	84.4	604.4	444.1	696	260.9	765	116.5	612	168.5	28.27	173.5	21.72	123.1	22.89	59.7	7.77	49.6	7.88	56.1	11.5
RM004-D29	188.6	1010	502.6	488.2	1173	2506	301.7	1211	198.2	30.66	154.6	17.15	93.9	16.87	43.63	5.476	32.41	4.454	19.61	6.306
RM004-D30	57.2	476.3	146.09	539.5	128.1	466.6	79.33	451.9	127.94	18.37	139.35	18.25	107.02	20.17	51.5	6.28	35.72	5.391	26.55	7.014
RM004-D31	81.4	74.1	495.6	573.6	10.7	38.6	7.95	61.7	44.2	10.04	90.72	18.52	127.5	23.11	56.84	6.713	34.24	4.116	1.96	3.255
RM004-D32	54.3	396	230.7	295.2	77.7	325.6	52.95	295.8	68.04	16.17	64.35	8.314	50.93	9.922	27.52	3.796	23.95	3.719	13.39	13.529
RM004-D33	27	508.5	214.3	423.6	155	568	94.1	505.3	103.15	15.56	93.87	11.78	71.41	13.91	39.14	5.386	33.59	4.831	3.728	3.832
RM004-D34	69	620.6	287.4	762.8	454.7	1289	190.3	988	217.9	27.45	214.9	26.61	153.6	28.47	71.23	8.407	46.91	6.683	18.11	4.926
RM004-D35	45.8	527.7	570	306.6	464	1118	139.2	583.9	106.6	20.46	91.4	10.56	58.18	10.6	28.46	3.726	22.97	3.539	20.5	3.581
RM004-D36	197	167.6	120.59	3541	299.8	1328	305.4	2217	920.3	27.25	1092.6	157.1	883.3	140.6	303.6	30.72	139.7	15.64	5.27	20.31
RM004-D37	47.4	570.2	428.4	771.2	328	1023	165.1	867	217.6	26.53	201	24.97	141.1	25.98	66.49	8.319	48.1	6.382	15.64	10.985
RM004-D38	81.4	1109	514	341.2	297.3	823.5	108.4	504.9	102	11.22	91.78	10.42	57.78	10.86	30.2	3.907	25.88	4.2	17.38	6.5
RM004-D39	131	371.7	838.4	153.4	738	1210	120.5	479.7	75.78	15.84	69.05	6.76	32.04	5.424	13.46	1.671	10.56	1.633	14.36	3.503
RM004-D40	47.4	641.1	399.8	433.1	361.6	1005	136.1	604	102.26	24.43	92.71	10.368	59.62	12.19	35.99	5.393	40.12	7.346	8.48	7.37
RM004-D41	199.7	1062	517.7	278	1127	1871	194.2	759	110.2	17.74	94.49	9.78	52.9	9.74	25.98	3.292	20.55	3.182	16.8	4.816
RM004-D42	560	995	576.7	410.3	987	2260	283.7	1167	172	24.57	134.6	14.95	81.4	14.45	36.79	4.588	27.05	3.707	15.9	4.4
RM004-D43	95.5	885.5	330.9	140.8	745.5	1137	101.2	363.7	50.87	9.34	45.68	4.514	24.1	4.555	12.35	1.64	10.89	1.812	13.3	3.808
RM004-D44	1028	1334	858.9	276.2	155.2	443.3	67.6	354.9	74.6	19.8	69	8.84	52.1	9.8	25.2	3.128	18.62	2.505	2.95	1.179
RM004-D45	64.2	312.1	700.8	453.2	183.7	623.7	97.9	518.4	107.4	30.25	106.6	12.88	77.42	15.58	43.63	5.959	39.24	6.613	20.45	9.364
RM004-D46	56.3	690	448.6	367.3	478.2	1258	175.1	830	153.4	23.07	123.98	14.1	74.11	13.13	32.7	3.886	22.56	3.033	11.53	4.26
RM004-D47	53.1	407.3	150.75	1961	1878	5260	756	3372	634.9	28.4	536.2	65.73	372.9	69.66	181.8	22.73	132.7	18.05	13.24	112.7
ap_RMO04xtrB-1	118.6	154.6	114.98	2802	243.3	1058.3	244.4	1779	749.7	22.21	891.3	126.46	705.7	113.11	243.2	24.58	109.82	12.26	3.745	13.78
ap_RMO04xtrB-2	74.1	533.4	443.5	169.4	759.2	1155	123.8	562.4	93.27	14.16	80.65	7.918	38.8	6.439	15.55	1.711	9.93	1.549	9.614	3.186
ap_RMO04xtrB-3	103.3	967.2	476.5	332.3	404.5	1020	138.1	644.9	125.4	20.44	100	11.49	62.29	11.33	28.98	3.662	20.78	2.991	10.061	4.613
ap_RMO04xtrB-4	61.4	596.1	301.2	675.4	980.5	2239	267.5	1141	216.2	14.78	187	23.22	133	25.15	66.44	8.276	46.62	6.297	93.49	30.18
ap_RMO04xtrB-5	15.6	385.2	421.8	2025	141.1	631.1	129	798.8	334.5	17.86	391.9	67.1	426	76.96	204	26.53	151	18.42	0.433	40.8

Muestra RMO-04	Mg	Mn	Sr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Th	U
ap_RMO04xtrB-6	30	695.3	351.7	426.5	208.7	636.4	100.1	523.8	120.7	15.99	111.9	13.46	75.56	14.37	38.57	5.181	34.12	5.793	20.28	31.97
Rmo4xtr-1	79.6	504.6	441.3	170.3	748.8	1182	123.4	544.6	94.94	14.95	81.39	8.06	39	6.61	15.79	1.777	9.99	1.541	9.596	3.103
Rmo4xtr-2	103.2	941.3	483.6	400.1	438	1177	157.6	740	153.5	25.4	123.1	14.31	76.7	13.9	35.35	4.337	25.33	3.425	10.45	4.75
Rmo4xtr-3	67.3	549.7	297.9	651.7	917	2245	247.6	1063	209.8	14.29	180.3	22.54	129.42	24.37	64.38	7.751	44.15	5.965	93.81	29.82
Rmo4xtr-4	40.4	825.1	362.7	677.5	222.4	739	120.7	653	177.6	18.12	160.3	20.78	118.3	22.34	59.42	7.642	44.66	5.872	5.357	5.608
Rmo4xtr-5	28.4	344.5	350.7	88.6	559	614.3	52.99	220	38.64	6.3	37.19	3.615	17.14	3.159	7.76	0.891	5.33	0.935	12.78	9.639
Rmo4xtr-6	75.1	910.8	255.4	478.7	266.3	773.3	108.2	507.2	114	17.22	104.1	13.1	75.67	15.39	43.97	6.013	38.19	5.953	23.43	25.46
Rmo4xtr-7	35.5	573.5	304.5	407.2	244.6	670.3	87.2	394.7	82.8	17.43	79.96	9.544	55.1	11.32	34.32	5.141	37.39	6.93	24.96	26.53
Rmo4xtr-8	83.3	1030.7	466.9	440.2	551.5	1354	173.3	784	150	24.4	129.8	15.04	83.73	16.08	42.95	5.479	34.01	5.332	12.97	4.867
Rmo4xtr-9	85.2	786.5	275.7	288.2	1184	2151	190.5	671.6	98.11	11.88	84.01	9.44	52.49	10.39	29.08	3.958	24.86	3.757	68.2	22.52
Rmo4xtr-10	167	1061.2	441.5	303.1	619.6	1464	173.6	697.7	117.6	19.96	92.9	10.31	56.11	10.28	27.35	3.511	21.96	3.267	10.309	4.769
Rmo4xtr-11	203.9	1039.1	188.6	371.5	260.6	653	84.5	410	100.4	28.36	103.5	12.87	75.22	14.32	37.48	4.61	27.62	4.078	9.705	4.913
Rmo4xtr-12	204.9	3019	878.8	328.9	146.4	422.3	62.7	331.2	82.7	17.68	73.55	9.54	56.93	11.01	30.64	3.956	24.39	3.368	5.512	9.72
Rmo4xtr-13	85.2	852.9	481.3	467.5	499.1	1359	187.2	872	181	28.27	144.1	16.54	89.14	16.08	40.92	5.117	29.72	3.94	10.47	4.518
Rmo4xtr-14	83.5	756.4	342.1	402.9	318.2	866.1	113.9	517.6	105.23	18.84	95.23	11.43	65.89	13.25	37.79	5.186	32.99	5.228	7.69	6.93
Rmo4xtr-15	79.8	1269.8	275.9	1360.3	256.3	718	105.3	549.2	166.9	25.27	200.5	28.59	183.7	39.88	124.6	18.8	141.6	26.94	41.6	23.46
Rmo4xtr-6TR	90.1	719.4	321.1	387.7	1028	2045	204.8	770.9	125.3	20.47	104	11.96	68.17	13.44	37.76	5.037	31.98	4.752	70.1	38.1

Anexo X. Descripción unidades del basamento en las cuales se realizó análisis geoquímico de apatitos

Muestra	Unidad Litológica	Tipo de Roca	Referencia
Panchita	Complejo Oaxaqueño	Pegmatita	
VS2	Complejo Oaxaqueño	Pegmatita	
OC1020	Complejo Oaxaqueño	Pegmatita	
OC111	Complejo Oaxaqueño (Gneis 1)	Granulita con granate y minerales máficos (posiblemente clinopiroxeno intercrecido con minerales opacos)	(Solari et al., 2014)
OC008	Complejo Oaxaqueño (Gneis 2)	Roca metamórfica de protolito gabroico	
OC1005	Complejo Oaxaqueño (Gneis 1)	Granulita con granate, cerca del tipo Charnoquita	(Solari et al., 2014)
OC1008	Complejo Oaxaqueño (Gneis 2)	Granulita moderadamente retrogradada (moscovita-sericita) con granate, feldespato, silimanita y monacita subordinada	(Solari et al., 2014)
OC1009	Complejo Oaxaqueño-Migmatita el Catrín (Gneis 1)	Melanosoma de la Migmatita el Catrín	(Solari et al., 2014)
OC1012	Complejo Oaxaqueño (Gneis 1)	Granulita de hornblenda y dos piroxenos	(Solari et al., 2014)
OC1013	Complejo Oaxaqueño (Gneis 2)	Roca metasedimentaria en facie granulita con granate, biotita roja y grafito.	(Solari et al., 2014)
OC1019	Complejo Oaxaqueño (Gneis 1)	Migmatita retrogradada con las fases máficas originales reemplazadas por biotita y minerales del grupo de la epidota	(Solari et al., 2014)
Sosola	Riolita Sosola	Riolita	
Etla (OC1011)	Granito Etla	Granito	
To-1	Plutón Totoltepec	Roca ígnea plutónica composición félsica	
To-2	Plutón Totoltepec	Roca ígnea plutónica composición félsica	
To-3	Plutón Totoltepec	Roca ígnea plutónica composición félsica	
To-AM	Plutón Totoltepec	Roca ígnea plutónica composición félsica	
To-Ga	Plutón Totoltepec	Roca ígnea plutónica composición máfica	

ABM-02 (muestra detrítica) N= 40											
CaO = 55+/-3 wt% para apatitos spot 60 um	detriticos; Cl Durar	igo = 0.4	13 +/-0.03 v	vt.%							
- F F.	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U-238	Edad AFT (Ma)	1SE (Ma)	Cl (wt.%)	tot incert Cl (wt.%)	
Edad absoluta (CM DUR-1)	ABM02-1	55	5090	1080550	36.18	2.20	57.4	8.5	1.229	0.101	
Edad absoluta (CM DUR-1)	ABM02-2	85	9380	906183	26.06	1.58	66.8	8.3	2.115	0.165	
Edad absoluta (CM DUR-1)	ABM02-3	41	6490	631741	17.93	1.80	67.7	13.0	0.462	0.041	
Edad absoluta (CM DUR-1)	ABM02-4	72	5400	1333333	36.83	2.22	69.5	9.2	1.035	0.086	
Edad absoluta (CM DUR-1)	ABM02-5	53	10170	521141	22.29	1.41	45.0	6.8	1.202	0.100	
Edad absoluta (CM DUR-1)	ABM02-6	73	4930	1480730	57.76	3.52	49.3	6.5	0.458	0.042	
Edad absoluta (CM DUR-1)	ABM02-7	26	10830	240074	7.47	0.46	61.8	13.0	0.135	0.018	
Edad absoluta (CM DUR-1)	ABM02-8	87	11250	773333	25.98	1.56	57.2	7.0	0.613	0.052	
Edad absoluta (CM DUR-1)	ABM02-9	47	6030	779436	33.78	2.16	44.4	7.1	0.502	0.047	
Edad absoluta (CM DUR-1)	ABM02-10	183	5530	3309222	90.60	8.78	70.1	8.5	0.633	0.055	
Edad absoluta (CM DUR-1)	ABM02-11	50	6700	746269	31.05	1.95	46.2	7.2	0.275	0.029	
Edad absoluta (CM DUR-1)	ABM02-12	49	6500	753846	31.40	2.23	46.2	7.4	0.518	0.046	
Edad absoluta (CM DUR-1)	ABM02-13	131	4950	2646465	70.50	6.68	72.1	9.3	0.551	0.048	
Edad absoluta (CM DUR-1)	ABM02-14	50	5720	874126	34.96	2.19	48.1	7.4	0.440	0.044	
Edad absoluta (CM DUR-1)	ABM02-15	163	4560	3574561	101.03	6.13	68.0	6.7	0.593	0.055	
Edad absoluta (CM DUR-1)	ABM02-16	37	5230	707457	17.85	1.74	76.1	15.0	0.719	0.063	
Edad absoluta (CM DUR-1)	ABM02-17	141	5180	2722008	100.12	6.02	52.3	5.4	0.400	0.040	
Edad absoluta (CM DUR-1)	ABM02-18	61	9730	626927	16.11	1.00	74.7	11.0	0.456	0.041	
Edad absoluta (CM DUR-1)	ABM02-19	116	7520	1542553	47.38	2.86	62.6	6.9	0.772	0.066	
Edad absoluta (CM DUR-1)	ABM02-20	24	8200	292683	7.54	0.47	74.5	16.0	0.335	0.032	
Edad absoluta (CM DUR-1)	ABM02-21	25	11090	225428	6.81	0.44	63.6	13.0	1.247	0.105	
Edad absoluta (CM DUR-1)	ABM02-22	72	7000	1028571	35.04	2.13	56.4	7.5	0.557	0.049	

Anexo XI. Resultados de análisis de edades de trazas de fisión de las muestras detríticas analizadas y estándares utilizados

ABM-02 (muestra detrítica) N=	= 40									
CaO = 55+/-3 wt% para apatito	s detríticos; Cl Durar	ngo = 0.4	3 +/-0.03 v	vt.%						
	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U-238	Edad AFT (Ma)	1SE (Ma)	Cl (wt.%)	tot incert Cl (wt.%)
Edad absoluta (CM DUR-1)	ABM02-23	76	6650	1142857	32.47	1.95	67.6	8.8	0.339	0.034
Edad absoluta (CM DUR-1)	ABM02-24	80	6410	1248050	50.20	3.00	47.8	6.1	0.355	0.033
Edad absoluta (CM DUR-1)	ABM02-25	34	19600	173469	5.40	0.34	61.7	11.0	0.669	0.061
Edad absoluta (CM DUR-1)	ABM02-26	35	11250	311111	12.68	0.78	47.2	8.5	0.808	0.072
Edad absoluta (CM DUR-1)	ABM02-27	60	4500	1333333	47.28	2.83	54.2	7.7	0.428	0.041
Edad absoluta (CM DUR-1)	ABM02-28	42	5570	754039	22.15	1.35	65.4	11.0	1.640	0.132
Edad absoluta (CM DUR-1)	ABM02-29	56	7460	750670	21.11	1.32	68.3	10.0	0.226	0.027
Edad absoluta (CM DUR-1)	ABM02-30	55	7710	713359	17.77	1.12	77.1	11.0	1.264	0.106
Edad absoluta (CM DUR-1)	ABM02-31	81	7300	1109589	34.54	2.23	61.7	7.9	0.395	0.038
Edad absoluta (CM DUR-1)	ABM02-32	25	9300	268817	11.14	0.79	46.4	9.9	0.423	0.039
Edad absoluta (CM DUR-1)	ABM02-33	80	6200	1290323	32.40	2.78	76.4	11.0	0.278	0.029
Edad absoluta (CM DUR-1)	ABM02-34	86	4390	1958998	65.37	4.12	57.6	7.2	0.547	0.050
Edad absoluta (CM DUR-1)	ABM02-35	83	6900	1202899	36.33	2.28	63.6	8.0	0.632	0.055
Edad absoluta (CM DUR-1)	ABM02-36	49	5840	839041	26.06	1.60	61.9	9.6	1.003	0.086
Edad absoluta (CM DUR-1)	ABM02-37	24	4280	560748	14.25	0.88	75.5	16.0	1.057	0.093
Edad absoluta (CM DUR-1)	ABM02-38	80	4520	1769912	57.58	3.49	59.1	7.5	0.691	0.060
Edad absoluta (CM DUR-1)	ABM02-39	117	6040	1937086	73.38	4.38	50.8	5.6	1.002	0.085
Edad absoluta (CM DUR-1)	ABM02-40	30	4330	692841	27.89	1.71	47.8	9.2	1.248	0.107

ABM-05 (muestra detrítica) N= 78										
CaO = 55+/-3 wt% para apatitos detri	íticos; Cl Durango =	: 0.43 +/-0	0.03 wt.%							
spot 60 μm		No	Á		11 220	4 - 4 + 1 I		105 (Ma)		tat in cart Cl (ust 0/)
	Ngr - apatito	INS	Area	rno-s	0-238 ppm	238	Edad AFT (Ma)	ISE (IVIA)	CI (Wt.%)	tot incert Ci (wt.%)
Edad absoluta (CM DUR-2)	ABM05-1	57	4330	1316397	48.30	3.66	52.4	8.0	1.228	0.103
Edad absoluta (CM DUR-2)	ABM05-2	31	4000	775000	23.86	1.50	62.4	12.0	1.074	0.093
Edad absoluta (CM DUR-2)	ABM05-3	118	4020	2935323	103.30	6.32	54.6	6.0	1.167	0.101
Edad absoluta (CM DUR-2)	ABM05-4	65	4340	1497696	47.04	3.20	61.2	8.7	0.879	0.078
Edad absoluta (CM DUR-2)	ABM05-5	26	4120	631068	20.07	1.23	60.4	12.0	1.283	0.106
Edad absoluta (CM DUR-2)	ABM05-6	29	4930	588235	13.83	0.85	81.6	16.0	1.195	0.102
Edad absoluta (CM DUR-2)	ABM05-7	40	6080	657895	18.54	1.13	68.2	12.0	0.790	0.074
Edad absoluta (CM DUR-2)	ABM05-8	36	4250	847059	31.33	2.24	52.0	9.4	0.994	0.087
Edad absoluta (CM DUR-2)	ABM05-9	97	4420	2194570	78.10	4.69	54.0	6.4	0.945	0.082
Edad absoluta (CM DUR-2)	ABM05-10	36	10100	356436	14.65	0.94	46.8	8.4	0.761	0.068
Edad absoluta (CM DUR-2)	ABM05-11	88	5170	1702128	53.08	3.31	61.6	7.6	0.684	0.064
Edad absoluta (CM DUR-2)	ABM05-12	66	5140	1284047	46.61	2.94	53.0	7.3	0.650	0.063
Edad absoluta (CM DUR-2)	ABM05-13	63	7220	872576	22.62	1.41	74.1	10.0	1.371	0.114
Edad absoluta (CM DUR-2)	ABM05-14	158	9570	1650993	51.43	3.12	61.7	6.2	1.125	0.094
Edad absoluta (CM DUR-2)	ABM05-15	66	6700	985075	29.89	1.84	63.3	8.7	0.419	0.045
Edad absoluta (CM DUR-2)	ABM05-16	56	6000	933333	30.98	1.90	57.9	8.5	1.766	0.143
Edad absoluta (CM DUR-2)	ABM05-17	70	4810	1455301	56.63	3.90	49.4	6.8	0.585	0.053
Edad absoluta (CM DUR-2)	ABM05-18	35	6670	524738	13.15	0.90	76.6	14.0	0.331	0.035
Edad absoluta (CM DUR-2)	ABM05-19	84	4850	1731959	64.55	4.11	51.6	6.5	0.620	0.059
Edad absoluta (CM DUR-2)	ABM05-20	37	6380	579937	16.81	1.08	66.3	12.0	0.921	0.079
Edad absoluta (CM DUR-2)	ABM05-21	72	5930	1214165	42.60	2.73	54.8	7.4	0.594	0.058
Edad absoluta (CM DUR-2)	ABM05-22	77	8000	962500	32.15	1.97	57.6	7.4	0.702	0.063
Edad absoluta (CM DUR-2)	ABM05-23	59	7720	764249	19.05	1.20	77.0	11.0	0.482	0.046
Edad absoluta (CM DUR-2)	ABM05-24	48	5660	848057	22.79	1.43	71.5	11.0	0.396	0.039
Edad absoluta (CM DUR-2)	ABM05-25	167	4360	3830275	125.00	7.98	58.9	5.9	0.697	0.061

ABM-05 (muestra detrítica) N= 78										
CaO = 55+/-3 wt% para apatitos detrí	ticos; Cl Durango =	: 0.43 +/-0).03 wt.%							
	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U- 238	Edad AFT (Ma)	1SE (Ma)	Cl (wt.%)	tot incert Cl (wt.%)
Edad Corregida (CM DUR para Z-1)	ABM05-26	63	4000	1575000	45.50	3.08	71.6	11.0	0.780	0.068
Edad Corregida (CM DUR para Z-1)	ABM05-27	80	8000	1000000	41.09	2.65	50.4	7.3	0.635	0.056
Edad Corregida (CM DUR para Z-1)	ABM05-28	66	8660	762125	27.25	1.77	57.9	9.0	0.578	0.052
Edad Corregida (CM DUR para Z-1)	ABM05-29	41	8000	512500	14.62	0.91	72.5	13.0	1.364	0.111
Edad Corregida (CM DUR para Z-1)	ABM05-30	33	9650	341969	12.45	0.77	56.9	11.0	0.923	0.079
Edad Corregida (CM DUR para Z-1)	ABM05-31	76	4200	1809524	53.46	3.81	70.0	11.0	1.066	0.091
Edad Corregida (CM DUR para Z-1)	ABM05-32	30	8000	375000	9.80	0.62	79.1	16.0	0.817	0.069
Edad Corregida (CM DUR para Z-1)	ABM05-33	71	8000	887500	25.13	1.54	73.0	11.0	1.080	0.091
Edad Corregida (CM DUR para Z-1)	ABM05-34	36	12000	300000	14.67	1.09	42.4	8.2	0.553	0.050
Edad Corregida (CM DUR para Z-1)	ABM05-35	30	12000	250000	7.12	0.52	72.6	15.0	0.653	0.058
Edad Corregida (CM DUR para Z-1)	ABM05-36	127	4450	2853933	103.36	6.18	57.2	7.2	1.143	0.097
Edad Corregida (CM DUR para Z-1)	ABM05-37	40	8000	500000	14.22	0.88	72.7	13.0	2.361	0.191
Edad Corregida (CM DUR para Z-1)	ABM05-38	110	8000	1375000	50.92	3.15	55.9	7.4	1.078	0.092
Edad Corregida (CM DUR para Z-1)	ABM05-39	65	4000	1625000	75.96	4.62	44.3	6.8	0.737	0.066
Edad Corregida (CM DUR para Z-1)	ABM05-40	68	4210	1615202	48.32	3.15	69.2	11.0	0.842	0.073
Edad Corregida (CM DUR para Z-1)	ABM05-41	40	4020	995025	33.08	2.10	62.3	11.0	0.826	0.072
Edad Corregida (CM DUR para Z-1)	ABM05-42	59	8000	737500	23.17	1.40	65.9	10.0	1.243	0.104
Edad Corregida (CM DUR para Z-1)	ABM05-43	64	4050	1580247	71.83	4.28	45.6	7.0	1.135	0.096
Edad Corregida (CM DUR para Z-1)	ABM05-44	31	9270	334412	10.40	0.74	66.5	14.0	0.741	0.064
Edad Corregida (CM DUR para Z-1)	ABM05-45	46	8000	575000	17.96	1.10	66.3	11.0	1.364	0.110
Edad Corregida (CM DUR para Z-1)	ABM05-46	109	4000	2725000	98.04	5.80	57.6	7.5	0.500	0.046
Edad Corregida (CM DUR para Z-1)	ABM05-47	43	8300	518072	14.34	0.88	74.7	13.0	0.787	0.066
Edad Corregida (CM DUR para Z-1)	ABM05-48	48	4000	1200000	48.58	2.98	51.2	8.7	0.727	0.064
Edad Corregida (CM DUR para Z-1)	ABM05-49	60	4000	1500000	65.36	3.92	47.6	7.5	0.714	0.064
Edad Corregida (CM DUR para Z-1)	ABM05-50	169	4000	4225000	142.20	8.61	61.5	7.3	0.682	0.059

ABM-05 (muestra detrítica) N= 78											
CaO = 55+/-3 wt% para apatitos detrí	ticos; Cl Durango =	• 0.43 +/-0	0.03 wt.%								
spot 60 μm	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U- 238	Edad AFT (Ma)	1SE (Ma)	Cl (wt.%)	tot incert Cl (wt.%)	
Edad Corregida (CM DUR para Z-1)	ABM05-51	105	8000	1312500	38.59	2.39	70.4	9.4	1.003	0.085	
Edad Corregida (CM DUR para Z-1)	ABM05-52	69	8000	862500	40.39	2.75	44.3	6.8	0.465	0.045	
Edad Corregida (CM DUR para Z-1)	ABM05-53	48	8000	600000	25.15	1.53	49.4	8.4	1.109	0.092	
Edad Corregida (CM DUR para Z-1)	ABM05-54	116	8000	1450000	42.77	2.73	70.1	9.2	0.708	0.062	
Edad Corregida (CM DUR para Z-1)	ABM05-55	42	9800	428571	13.84	0.89	64.1	12.0	0.940	0.083	
Edad Corregida (CM DUR para Z-1)	ABM05-56	49	4000	1225000	50.11	2.97	50.6	8.5	1.103	0.091	
Edad Corregida (CM DUR para Z-1)	ABM05-57	55	8820	623583	18.53	1.34	69.6	12.0	0.660	0.056	
Edad Corregida (CM DUR para Z-1)	ABM05-58	48	4000	1200000	39.50	2.46	62.9	11.0	0.834	0.072	
Edad Corregida (CM DUR para Z-1)	ABM05-59	74	4000	1850000	62.06	3.75	61.7	9.1	0.946	0.083	
Edad Corregida (CM DUR para Z-1)	ABM05-60	55	4000	1375000	43.53	3.25	65.4	11.0	0.638	0.056	
Edad Corregida (CM DUR para Z-1)	ABM05-61	68	4080	1666667	62.61	3.77	55.1	8.3	0.710	0.062	
Edad Corregida (CM DUR para Z-1)	ABM05-62	54	4000	1350000	55.88	3.36	50.1	8.2	0.503	0.047	
Edad Corregida (CM DUR para Z-1)	ABM05-63	67	5620	1192171	31.75	1.98	77.6	12.0	0.535	0.052	
Edad Corregida (CM DUR para Z-1)	ABM05-64	33	5300	622642	22.71	1.38	56.8	11.0	1.396	0.117	
Edad Corregida (CM DUR para Z-1)	ABM05-65	81	4340	1866359	61.21	3.87	63.1	9.1	1.261	0.106	
Edad Corregida (CM DUR para Z-1)	ABM05-66	45	4200	1071429	42.11	2.61	52.7	9.2	0.485	0.046	
Edad Corregida (CM DUR para Z-1)	ABM05-67	83	4360	1903670	74.24	4.50	53.1	7.6	0.774	0.070	
Edad Corregida (CM DUR para Z-1)	ABM05-68	45	4840	929752	25.75	1.91	74.7	13.0	0.437	0.043	
Edad Corregida (CM DUR para Z-1)	ABM05-69	40	11000	363636	14.86	0.91	50.7	9.2	0.328	0.033	
Edad Corregida (CM DUR para Z-1)	ABM05-70	65	4430	1467269	61.58	3.94	49.4	7.6	0.604	0.055	
Edad Corregida (CM DUR para Z-1)	ABM05-71	57	8000	712500	20.62	1.67	71.5	12.0	0.413	0.041	
Edad Corregida (CM DUR para Z-1)	ABM05-72	39	12000	325000	11.64	0.79	57.8	11.0	0.905	0.074	
Edad Corregida (CM DUR para Z-1)	ABM05-73	101	4600	2195652	81.13	4.85	56.0	7.5	0.658	0.062	
Edad Corregida (CM DUR para Z-1)	ABM05-74	53	8800	602273	19.25	1.18	64.8	11.0	1.080	0.093	
Edad Corregida (CM DUR para Z-1)	ABM05-75	42	4740	886076	36.77	2.33	49.9	9.0	0.576	0.051	

ABM-05 (muestra detrítica) N= 78 CaO = 55+/-3 wt% para apatitos detríticos; Cl Durango = 0.43 +/-0.03 wt.% spot 60 μm													
	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U- 238	Edad AFT (Ma)	1SE (Ma)	Cl (wt.%)	tot incert Cl (wt.%)			
Edad Corregida (CM DUR para Z-1)	ABM05-76	45	5050	891089	32.26	1.93	57.2	10.0	0.777	0.068			
Edad Corregida (CM DUR para Z-1)	ABM05-77	46	8000	575000	26.91	1.78	44.3	7.8	0.686	0.060			
Edad Corregida (CM DUR para Z-1)	ABM05-78	47	8100	580247	22.75	1.39	52.8	9.1	0.478	0.045			

ABM-10 (muestra detrítica) N= 31											
CaO = 55+/-3 wt% para apatitos de	etríticos; Cl Durango	= 0.43 +	/-0.03 wt.	%							
spot 60 μm											
	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U-238	Edad AFT (Ma)	1SE (Ma)	Cl (wt.%)	tot incert Cl (wt.%)	
Edad Absoluta (CM DUR-1)	ABM10-1	32	5840	547945	16.21	1.12	64.9	12.0	0.243	0.027	
Edad Absoluta (CM DUR-1)	ABM10-2	94	5900	1593220	49.19	3.01	62.2	7.5	0.756	0.069	
Edad Absoluta (CM DUR-1)	ABM10-3	70	4410	1587302	50.73	3.67	60.1	8.4	0.995	0.084	
Edad Absoluta (CM DUR-1)	ABM10-4	75	4650	1612903	51.39	3.06	60.3	7.8	0.602	0.053	
Edad Absoluta (CM DUR-1)	ABM10-5	128	4420	2895928	97.21	5.93	57.3	6.2	0.566	0.050	
Edad Absoluta (CM DUR-1)	ABM10-6	93	5020	1852590	59.34	3.60	60.0	7.2	0.560	0.049	
Edad Absoluta (CM DUR-1)	ABM10-7	127	5820	2182131	70.21	4.33	59.7	6.5	0.433	0.040	
Edad Absoluta (CM DUR-1)	ABM10-8	51	5780	882353	25.62	1.71	66.2	10.0	0.866	0.075	
Edad Absoluta (CM DUR-1)	ABM10-9	155	4760	3256303	114.73	6.89	54.6	5.5	1.306	0.105	
Edad Absoluta (CM DUR-1)	ABM10-10	64	6440	993789	29.75	1.81	64.2	8.9	0.320	0.030	
Edad Absoluta (CM DUR-1)	ABM10-11	110	4400	2500000	63.18	3.83	76.0	8.6	0.578	0.050	
Edad Absoluta (CM DUR-1)	ABM10-12	45	4040	1113861	36.95	2.28	57.9	9.3	1.053	0.090	
Edad Absoluta (CM DUR-1)	ABM10-13	62	5490	1129326	25.67	1.61	84.4	12.0	0.755	0.066	
Edad Absoluta (CM DUR-1)	ABM10-14	26	6420	404984	10.38	0.65	74.9	15.0	1.286	0.105	
Edad Absoluta (CM DUR-1)	ABM10-15	41	5200	788462	24.96	1.51	60.7	10.0	0.654	0.058	
Edad Absoluta (CM DUR-1)	ABM10-16	80	4460	1793722	68.12	4.06	50.6	6.4	0.782	0.068	
Edad Absoluta (CM DUR-1)	ABM10-17	80	4860	1646091	69.53	4.13	45.6	5.8	0.625	0.054	

ABM-10 (muestra detrítica) N= 31												
CaO = 55+/-3 wt% para apatitos de	etríticos; Cl Durango	= 0.43 +	/-0.03 wt.	%								
spot 60 μm												
	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U-238	Edad AFT (Ma)	1SE (Ma)	Cl (wt.%)	tot incert Cl (wt.%)		
Edad Absoluta (CM DUR-1)	ABM10-18	161	4510	3569845	122.06	7.59	56.2	5.6	0.878	0.075		
Edad Absoluta (CM DUR-1)	ABM10-19	71	5200	1365385	32.87	2.22	79.7	11.0	0.851	0.072		
Edad Absoluta (CM DUR-1)	ABM10-20	33	4460	739910	27.21	1.69	52.3	9.7	0.771	0.066		
Edad Absoluta (CM DUR-1)	ABM10-21	43	6040	711921	24.34	1.52	56.2	9.3	0.347	0.035		
Edad Absoluta (CM DUR-1)	ABM10-22	100	4770	2096436	52.16	3.40	77.1	9.2	1.047	0.089		
Edad Absoluta (CM DUR-1)	ABM10-23	63	4350	1448276	56.05	3.75	49.7	7.1	0.701	0.062		
Edad Absoluta (CM DUR-1)	ABM10-24	98	5030	1948310	58.62	3.74	63.9	7.6	0.729	0.064		
Edad Absoluta (CM DUR-1)	ABM10-25	120	4400	2727273	85.84	5.25	61.1	6.7	0.547	0.050		
Edad Absoluta (CM DUR-1)	ABM10-26	42	6340	662461	26.08	1.59	48.9	8.1	0.826	0.068		
Edad Absoluta (CM DUR-1)	ABM10-27	68	6200	1096774	38.65	2.28	54.6	7.4	0.965	0.081		
Edad Absoluta (CM DUR-1)	ABM10-28	65	5580	1164875	39.65	2.35	56.5	7.8	1.666	0.137		
Edad Absoluta (CM DUR-1)	ABM10-29	94	6680	1407186	34.42	2.23	78.5	9.6	0.807	0.067		
Edad Absoluta (CM DUR-1)	ABM10-30	119	4440	2680180	78.47	4.66	65.6	7.2	0.547	0.048		
Edad Absoluta (CM DUR-1)	ABM10-31	53	8550	619883	19.14	1.25	62.2	9.5	1.024	0.087		

RMO-01 (muestra detrítica) N= 96

CaO = 55+/-3 wt% para apatitos detríticos; Cl Durango = 0.43 + -0.03 wt.% spot 60 μ m

	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U-238	Edad AFT (Ma)	1SE (Ma)	Cl (wt.%)	tot incert Cl (wt.%)
Edad Absoluta (CM DUR-2)	RMO1xtr-1	39	12460	313002	5.60	0.38	107.0	19.0	0.284	0.032
Edad Absoluta (CM DUR-2)	RMO1xtr-2	238	7010	3395150	33.48	2.13	193.0	18.0	0.614	0.058
Edad Absoluta (CM DUR-2)	RMO1xtr-3	100	11700	854701	12.35	0.83	132.0	16.0	0.434	0.044
Edad Absoluta (CM DUR-2)	RMO1xtr-4	197	10290	1914480	19.14	1.19	190.0	18.0	0.725	0.069
Edad Absoluta (CM DUR-2)	RMO1xtr-5	45	7440	604839	9.62	0.60	120.0	19.0	0.569	0.059
Edad Absoluta (CM DUR-2)	RMO1xtr-6	209	6910	3024602	26.23	1.65	219.0	20.0	0.762	0.069

RMO-01 (muestra detrítica) N= 96										
CaO = 55+/-3 wt% para apatitos detríticos; C	Cl Durango = 0.43 +/-0.03	wt.%								
	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U-238	Edad AFT (Ma)	1SE (Ma)	Cl (wt.%)	tot incert Cl (wt.%)
Edad Absoluta (CM DUR-2)	RMO1xtr-7	136	8500	1600000	17.59	1.20	173.0	19.0	0.312	0.036
Edad Absoluta (CM DUR-2)	RMO1xtr-8	205	6110	3355155	40.06	2.70	160.0	16.0	0.737	0.073
Edad Absoluta (CM DUR-2)	RMO1xtr-9	137	5560	2464029	22.00	1.35	213.0	22.0	0.675	0.060
Edad Absoluta (CM DUR-2)	RMO1xtr-10	94	6280	1496815	18.00	1.17	159.0	19.0	0.655	0.063
Edad Absoluta (CM DUR-2)	RMO1xtr-11	148	4810	3076923	37.85	2.37	155.0	16.0	0.466	0.049
Edad Absoluta (CM DUR-2)	RMO1xtr-12	107	10680	1001873	11.86	0.74	161.0	19.0	0.343	0.037
Edad Absoluta (CM DUR-2)	RMO1xtr-13	34	7640	445026	5.10	0.33	166.0	30.0	0.362	0.044
Edad Absoluta (CM DUR-2)	RMO1xtr-14	75	7500	1000000	9.18	0.58	207.0	27.0	0.619	0.060
Edad Absoluta (CM DUR-2)	RMO1xtr-15	125	7350	1700680	22.37	1.39	145.0	16.0	0.494	0.046
Edad Corregida (CM DUR para Z-2)	RM001-1	30	8640	347222	5.20	0.33	138.0	28.0	0.418	0.044
Edad Corregida (CM DUR para Z-2)	RM001-2	180	4570	3938731	38.72	2.53	209.0	25.0	0.807	0.073
Edad Corregida (CM DUR para Z-2)	RM001-3	235	6000	3916667	34.57	2.26	232.0	26.0	2.501	0.202
Edad Corregida (CM DUR para Z-2)	RM001-4	66	4000	1650000	19.55	1.44	174.0	27.0	0.474	0.048
Edad Corregida (CM DUR para Z-2)	RM001-5	39	12700	307087	4.58	0.30	138.0	26.0	0.540	0.053
Edad Corregida (CM DUR para Z-2)	RM001-6	50	6570	761035	9.43	0.63	166.0	28.0	0.511	0.053
Edad Corregida (CM DUR para Z-2)	RM001-7	53	4200	1261905	17.60	1.06	148.0	24.0	0.531	0.054
Edad Corregida (CM DUR para Z-2)	RM001-8	108	4070	2653563	44.67	2.75	123.0	16.0	0.371	0.045
Edad Corregida (CM DUR para Z-2)	RM001-9	105	6410	1638066	19.32	1.23	174.0	23.0	0.755	0.065
Edad Corregida (CM DUR para Z-2)	RM001-10	82	9740	841889	11.21	0.74	155.0	22.0	0.360	0.038
Edad Corregida (CM DUR para Z-2)	RM001-11	116	9000	1288889	34.09	2.12	78.4	10.0	0.321	0.036
Edad Corregida (CM DUR para Z-2)	RM001-12	67	8600	779070	9.78	0.61	164.0	25.0	0.648	0.060
Edad Corregida (CM DUR para Z-2)	RM001-13	50	8400	595238	5.05	0.32	241.0	41.0	2.300	0.186
Edad Corregida (CM DUR para Z-2)	RM001-14	68	8000	850000	10.81	0.66	162.0	25.0	0.728	0.062
Edad Corregida (CM DUR para Z-2)	RM001-15	115	4250	2705882	30.55	1.86	182.0	24.0	0.924	0.088
Edad Corregida (CM DUR para Z-2)	RM001-16	42	7260	578512	10.74	0.76	111.0	20.0	0.318	0.030

RMO-01 (muestra detrítica) N= 96												
CaO = 55+/-3 wt% para apatitos detríticos; Cl Durango = 0.43 +/-0.03 wt.% spot 60 um												
	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U-238	Edad AFT (Ma)	1SE (Ma)	Cl (wt.%)	tot incert Cl (wt.%)		
Edad Corregida (CM DUR para Z-2)	RM001-17	101	4500	2244444	38.25	2.47	121.0	17.0	0.573	0.054		
Edad Corregida (CM DUR para Z-2)	RM001-18	181	8200	2207317	20.76	1.34	218.0	26.0	0.994	0.085		
Edad Corregida (CM DUR para Z-2)	RM001-19	211	4000	5275000	122.14	7.22	89.4	10.0	0.354	0.033		
Edad Corregida (CM DUR para Z-2)	RM001-20	197	6000	3283333	28.13	2.08	239.0	29.0	1.148	0.104		
Edad Corregida (CM DUR para Z-2)	RM001-21	46	4780	962343	11.38	0.71	174.0	30.0	0.522	0.060		
Edad Corregida (CM DUR para Z-2)	RM001-22	83	8100	1024691	15.75	0.96	134.0	19.0	0.345	0.034		
Edad Corregida (CM DUR para Z-2)	RM001-23	260	4000	6500000	69.47	4.28	192.0	21.0	0.599	0.053		
Edad Corregida (CM DUR para Z-2)	RM001-24	176	4100	4292683	42.11	3.00	209.0	26.0	0.761	0.066		
Edad Corregida (CM DUR para Z-2)	RM001-26	40	8500	470588	10.68	0.72	91.2	17.0	0.566	0.074		
Edad Corregida (CM DUR para Z-2)	RM001-27	55	4280	1285047	21.89	1.39	121.0	20.0	0.265	0.034		
Edad Corregida (CM DUR para Z-2)	RM001-28	220	8400	2619048	35.54	2.11	152.0	17.0	0.529	0.048		
Edad Corregida (CM DUR para Z-2)	RM001-29	41	8200	500000	7.29	0.47	141.0	26.0	0.313	0.030		
Edad Corregida (CM DUR para Z-2)	RM001-30	103	5110	2015656	23.16	1.42	179.0	24.0	0.873	0.078		
Edad Corregida (CM DUR para Z-2)	RM001-31	125	8150	1533742	18.26	1.13	173.0	22.0	0.714	0.062		
Edad Corregida (CM DUR para Z-2)	RM001-32	246	8000	3075000	41.04	2.48	154.0	17.0	0.710	0.062		
Edad Corregida (CM DUR para Z-2)	RM001-33	85	4030	2109181	37.89	2.29	115.0	16.0	0.549	0.059		
Edad Corregida (CM DUR para Z-2)	RM001-34	48	4600	1043478	16.87	1.07	128.0	22.0	0.378	0.045		
Edad Corregida (CM DUR para Z-2)	RM001-35	39	7500	520000	8.09	0.50	133.0	24.0	0.356	0.035		
Edad Corregida (CM DUR para Z-2)	RM001-36	148	4250	3482353	41.89	2.51	171.0	21.0	0.526	0.046		
Edad Corregida (CM DUR para Z-2)	RM001-37	65	5490	1183971	12.63	0.82	193.0	30.0	0.372	0.036		
Edad Corregida (CM DUR para Z-2)	RM001-38	241	6000	4016667	39.18	2.39	210.0	23.0	0.492	0.044		
Edad Corregida (CM DUR para Z-2)	RM001-39	98	4010	2443890	37.04	2.41	136.0	19.0	0.634	0.056		
Edad Corregida (CM DUR para Z-2)	RM001-40	56	5730	977312	19.20	1.15	105.0	17.0	0.246	0.033		
Edad Corregida (CM DUR para Z-2)	RM001-42	90	8600	1046512	12.56	0.77	171.0	24.0	1.265	0.109		
Edad Corregida (CM DUR para Z-2)	RM001-43	163	8200	1987805	22.86	1.42	179.0	22.0	0.556	0.049		

RMO-01 (muestra detrítica) N= 96										
CaO = 55+/-3 wt% para apatitos detríticos; Cl Durango = 0.43 +/-0.03 wt.%										
	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U-238	Edad AFT (Ma)	1SE (Ma)	Cl (wt.%)	tot incert Cl (wt.%)
Edad Corregida (CM DUR para Z-2)	RM001-45	53	5400	981481	10.15	0.77	199.0	34.0	0.676	0.058
Edad Corregida (CM DUR para Z-2)	RM001-46	45	8100	555556	10.31	0.80	111.0	20.0	0.857	0.079
Edad Corregida (CM DUR para Z-2)	RM001-47	123	8240	1492718	20.80	1.26	148.0	19.0	0.719	0.063
Edad Corregida (CM DUR para Z-2)	RM001-49	31	9000	344444	4.22	0.28	168.0	34.0	0.459	0.042
Edad Corregida (CM DUR para Z-2)	RM001-50	68	8600	790698	22.90	1.62	71.6	11.0	0.489	0.045
Edad Corregida (CM DUR para Z-2)	RM001-51	60	8440	710900	10.33	0.64	142.0	22.0	0.523	0.053
Edad Corregida (CM DUR para Z-2)	RM001-52	51	8200	621951	7.29	0.49	175.0	30.0	0.720	0.061
Edad Corregida (CM DUR para Z-2)	RM001-53	30	10000	300000	4.70	0.32	132.0	27.0	0.313	0.033
Edad Corregida (CM DUR para Z-2)	RM001-54	81	4130	1961259	20.52	1.27	196.0	28.0	0.610	0.062
Edad Corregida (CM DUR para Z-2)	RM001-55	42	12000	350000	4.90	0.31	147.0	26.0	0.329	0.030
Edad Corregida (CM DUR para Z-2)	RM001-56	44	8200	536585	5.78	0.38	191.0	34.0	0.641	0.058
Edad Corregida (CM DUR para Z-2)	RM001-57	293	4000	7325000	68.25	4.70	220.0	25.0	1.341	0.133
Edad Corregida (CM DUR para Z-2)	RM001-58	56	4780	1171548	11.98	0.78	201.0	33.0	0.375	0.043
Edad Corregida (CM DUR para Z-2)	RM001-59	52	4180	1244019	13.43	0.82	190.0	32.0	0.697	0.062
Edad Corregida (CM DUR para Z-2)	RMO01-60	131	4320	3032407	27.56	1.69	225.0	28.0	0.755	0.067
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-1	103	9200	1119565	12.35	0.82	173.0	21.0	0.471	0.043
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-2	68	14060	483642	5.00	0.33	184.0	25.0	0.321	0.029
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-5	52	9100	571429	7.90	0.52	138.0	21.0	0.341	0.032
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-6	97	5760	1684028	22.48	1.42	143.0	17.0	0.388	0.037
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-7	192	9000	2133333	24.46	1.55	166.0	16.0	0.685	0.058
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-8	45	9840	457317	4.66	0.31	187.0	30.0	0.959	0.079
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-9	174	6530	2664625	38.53	2.51	132.0	13.0	0.454	0.043
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-11	113	10030	1126620	14.39	2.30	149.0	28.0	0.525	0.049
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-12	77	4850	1587629	16.31	1.07	185.0	24.0	1.153	0.095
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-14	58	5920	979730	12.85	0.81	146.0	21.0	0.302	0.032

RMO-01 (muestra detrítica) N= 96										
CaO = 55+/-3 wt% para apatitos detríticos; Cl Durango = 0.43 +/-0.03 wt.%										
spot 60 μm										
	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U-238	Edad AFT (Ma)	1SE (Ma)	Cl (wt.%)	tot incert Cl (wt.%)
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-15	174	7340	2370572	30.83	1.95	147.0	14.0	0.670	0.059
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-16	187	7990	2340426	25.16	1.64	177.0	17.0	0.641	0.056
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-17	88	7430	1184388	15.71	1.04	144.0	18.0	0.098	0.014
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-18	130	7260	1790634	21.20	1.79	161.0	20.0	0.397	0.037
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-19	57	5660	1007067	11.44	0.74	168.0	25.0	0.309	0.030
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-20	108	11280	957447	8.61	0.56	211.0	25.0	0.679	0.057
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-22	142	7880	1802030	22.42	1.43	153.0	16.0	0.921	0.080
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-23	28	8770	319270	2.70	0.19	224.0	45.0	0.557	0.050
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-24	253	5140	4922179	41.65	2.57	224.0	20.0	0.908	0.078
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-25	46	7310	629275	9.35	0.71	129.0	21.0	0.626	0.058
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-26	80	10040	796813	11.46	0.81	133.0	18.0	0.299	0.030
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-27	67	5820	1151203	13.47	0.86	163.0	22.0	0.444	0.042
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-28	45	9920	453629	6.16	0.40	141.0	23.0	0.221	0.025
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-29	125	6910	1808973	17.36	1.14	198.0	22.0	0.360	0.034
Edad absoluta (CM DUR-3)	Ap-RMO1xtrB-30	142	6410	2215289	24.76	1.70	170.0	18.0	0.609	0.055

RMO-04 (muestra detrítica) N= 45 CaO = 55+/-3 wt% para apatitos detríticos; Cl Durango = 0.43 +/-0.03 wt.% spot 60 μm											
	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U-238	AFT age (Ma)	1SE (Ma)	Cl (wt.%)	tot incert Cl (wt.%)	
Edad Absoluta (CM DUR-2)	Rmo4xtr-2	23	8600	267442	4.75	0.36	108.0	24.0	0.471	0.049	
Edad Absoluta (CM DUR-2)	Rmo4xtr-3	104	5220	1992337	29.82	1.81	128.0	15.0	0.885	0.079	
Edad Absoluta (CM DUR-2)	Rmo4xtr-4	22	7300	301370	5.61	0.37	103.0	23.0	0.317	0.036	
Edad Absoluta (CM DUR-2)	Rmo4xtr-5	36	9020	399113	9.64	0.61	79.5	14.0	0.308	0.035	
Edad Absoluta (CM DUR-2)	Rmo4xtr-6	43	5310	809793	25.46	1.70	61.1	10.0	0.472	0.044	
RMO-04 (muestra detrítica) N= 45 CaO = 55+/-3 wt% para apatitos detríticos;	Cl Durango = 0.43 +/-	0.03 wt.9	%								
--	-----------------------	-----------	-------	---------	-----------	------------------	--------------	----------	-----------	----------------------	
spot 60 μm	I		,								
	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U-238	AFT age (Ma)	1SE (Ma)	Cl (wt.%)	tot incert Cl (wt.%)	
Edad Absoluta (CM DUR-2)	Rmo4xtr-7	27	4800	562500	26.53	1.71	40.8	8.3	0.328	0.036	
Edad Absoluta (CM DUR-2)	Rmo4xtr-8	22	10100	217822	4.87	0.34	85.8	19.0	0.326	0.036	
Edad Absoluta (CM DUR-2)	Rmo4xtr-9	91	5200	1750000	22.52	1.38	148.0	18.0	1.185	0.104	
Edad Absoluta (CM DUR-2)	Rmo4xtr-10	19	9000	211111	4.77	0.31	84.9	20.0	0.531	0.052	
Edad Absoluta (CM DUR-2)	Rmo4xtr-11	33	7400	445946	4.91	0.32	173.0	32.0	0.967	0.084	
Edad Absoluta (CM DUR-2)	Rmo4xtr-12	37	5210	710173	9.72	0.62	140.0	25.0	0.671	0.061	
Edad Absoluta (CM DUR-2)	Rmo4xtr-13	21	6050	347107	4.52	0.30	147.0	33.0	0.518	0.050	
Edad Absoluta (CM DUR-2)	Rmo4xtr-14	24	8600	279070	6.93	0.47	77.3	17.0	0.470	0.046	
Edad Absoluta (CM DUR-2)	Rmo4xtr-15	41	4900	836735	23.46	1.50	68.5	12.0	0.699	0.066	
Edad absoluta (CM DUR-4)	RMO04xtrB-1	30	11000	272727	13.78	0.88	38.1	7.4	0.154	0.023	
Edad absoluta (CM DUR-4)	RMO04xtrB-2	26	15800	164557	3.19	0.22	98.8	21.0	0.271	0.039	
Edad absoluta (CM DUR-4)	RMO04xtrB-3	23	7650	300654	4.61	0.30	125.0	27.0	0.367	0.045	
Edad absoluta (CM DUR-4)	RMO04xtrB-4	95	5760	1649306	30.18	1.83	105.0	12.0	0.776	0.076	
Edad absoluta (CM DUR-4)	RMO04xtrB-5	60	5780	1038062	40.80	2.70	48.9	7.1	0.300	0.040	
Edad absoluta (CM DUR-4)	RMO04xtrB-6	86	8000	1075000	31.97	2.04	64.6	8.1	0.298	0.035	
Edad corregida (CM DUR para Z-1)	RM004-1	48	4040	1188119	21.30	2.37	115.0	22.0	0.159	0.018	
Edad corregida (CM DUR para Z-1)	RM004-2	25	9520	262605	3.98	0.25	136.0	30.0	0.229	0.024	
Edad corregida (CM DUR para Z-1)	RM004-3	78	8200	951220	12.82	0.82	153.0	22.0	0.495	0.045	
Edad corregida (CM DUR para Z-1)	RM004-5	165	8000	2062500	30.10	1.78	141.0	17.0	0.958	0.080	
Edad corregida (CM DUR para Z-1)	RM004-6	32	8050	397516	7.48	0.53	110.0	22.0	0.429	0.038	
Edad corregida (CM DUR para Z-1)	RM004-7	98	4500	2177778	47.00	2.89	95.7	13.0	0.636	0.056	
Edad corregida (CM DUR para Z-1)	RM004-8	20	8000	250000	4.56	0.29	113.0	27.0	0.249	0.027	
Edad corregida (CM DUR para Z-1)	RM004-9	28	9600	291667	5.19	0.44	116.0	25.0	0.357	0.034	
Edad corregida (CM DUR para Z-1)	RM004-10	18	9300	193548	4.75	0.31	84.0	21.0	0.535	0.051	
Edad corregida (CM DUR para Z-1)	RM004-11	338	6000	5633333	72.20	4.68	160.0	17.0	0.886	0.076	

PMO 04 (muestre detrítice) N= 45										
CaO = 55+/-3 wt% para apatitos detríticos	; Cl Durango = 0.43 +/-	0.03 wt.	%							
spot 60 µm	, , , , , , , , , , , , , , , , , , , ,									
	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U-238	AFT age (Ma)	1SE (Ma)	Cl (wt.%)	tot incert Cl (wt.%)
Edad corregida (CM DUR para Z-1)	RM004-12	29	8200	353659	9.61	0.65	76.1	16.0	0.483	0.045
Edad corregida (CM DUR para Z-1)	RM004-13	40	8000	500000	11.44	1.25	90.3	18.0	0.526	0.048
Edad corregida (CM DUR para Z-1)	RM004-14	26	6060	429043	7.08	0.49	125.0	27.0	0.476	0.044
Edad corregida (CM DUR para Z-1)	RM004-15	20	21000	95238	3.06	0.20	64.4	16.0	0.466	0.043
Edad corregida (CM DUR para Z-1)	RMO04-16	95	4050	2345679	56.55	3.65	85.7	12.0	0.958	0.078
Edad corregida (CM DUR para Z-1)	RM004-17	43	8200	524390	11.18	1.00	96.8	18.0	0.662	0.058
Edad corregida (CM DUR para Z-1)	RM004-18	102	4000	2550000	57.97	3.48	90.9	12.0	0.572	0.052
Edad corregida (CM DUR para Z-1)	RMO04-19	24	8000	300000	4.37	0.33	141.0	32.0	0.557	0.051
Edad corregida (CM DUR para Z-1)	RM004-20	20	8720	229358	7.06	0.53	67.2	16.0	0.742	0.063
Edad corregida (CM DUR para Z-1)	RM004-21	20	8000	250000	4.16	0.27	124.0	30.0	0.464	0.042
Edad corregida (CM DUR para Z-1)	RM004-22	28	18000	155556	5.35	0.34	60.2	13.0	0.518	0.046
Edad corregida (CM DUR para Z-1)	RM004-23	41	8300	493976	5.51	0.37	184.0	34.0	0.772	0.065
Edad corregida (CM DUR para Z-1)	RM004-24	77	8000	962500	23.48	1.56	84.7	13.0	0.542	0.049
Edad corregida (CM DUR para Z-1)	RM004-25	50	8000	625000	20.02	1.21	64.6	11.0	0.200	0.020
Edad corregida (CM DUR para Z-1)	RMO04-26	34	8700	390805	10.07	0.68	80.2	16.0	0.493	0.045

ANÁLISIS ESTÁNDAR DURANGO

CM DUR Z-1 (Durango Std) N = 10 (CaO = 55+/-2 wt.%)												
	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U-238	Edad AFT (Ma)	1SE (Ma)				
Edad absoluta	DUR-1	42	23030	182371	12.08	0.57	29.1	4.7				
Edad absoluta	DUR-2	51	26900	189591	12.12	0.56	30.1	4.4				
Edad absoluta	DUR-3	48	25240	190174	12.13	0.56	30.2	4.6				
Edad absoluta	DUR-4	42	21930	191518	12.24	0.57	30.1	4.9				
Edad absoluta	DUR-5	54	28100	192171	11.86	0.55	31.2	4.5				

	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U-238	Edad AFT (Ma)	1SE (Ma)
Edad absoluta	DUR-6	30	17440	172018	12.07	0.54	27.5	5.2
Edad absoluta	DUR-7	44	24820	177276	12.18	0.54	28.0	4.4
Edad absoluta	DUR-8	51	26860	189873	12.80	0.58	28.6	4.2
Edad absoluta	DUR-9	51	26970	189099	12.75	0.59	28.6	4.2
Edad absoluta	DUR-10	44	24050	182952	12.74	0.58	27.7	4.4

CM DUR Z-2 (Durango Std) N = 10 (CaO = 55+/-	2 wt.%)							
	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U-238	Edad AFT (Ma)	1SE (Ma)
Edad absoluta	DUR-1	42	23030	182371	12.40	0.57	28.3	4.6
Edad absoluta	DUR-2	51	26900	189591	12.05	0.56	30.3	4.5
Edad absoluta	DUR-3	48	25240	190174	12.10	0.56	30.3	4.6
Edad absoluta	DUR-4	42	21930	191518	12.12	0.57	30.4	4.9
Edad absoluta	DUR-5	54	28100	192171	12.22	0.55	30.3	4.3
Edad absoluta	DUR-6	30	17440	172018	12.13	0.54	27.3	5.1
Edad absoluta	DUR-7	44	24820	177276	12.07	0.54	28.3	4.5
Edad absoluta	DUR-8	51	26860	189873	12.61	0.58	29.0	4.3
Edad absoluta	DUR-9	51	26970	189099	12.86	0.59	28.3	4.2
Edad absoluta	DUR-10	44	24050	182952	12.82	0.58	27.5	4.3
Valor Z de 417000 - error para Z de 28000 - Iso	olotR (Vermeesch, 2017)	•						

CM DUR-1 (Durango Std) N = 10 (CaO = 55+/-2 w	CM DUR-1 (Durango Std) N = 10 (CaO = 55+/-2 wt.%)												
	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U-238	Edad AFT (Ma)	1SE (Ma)					
Edad absoluta	DUR-1	63	27290	230854	12.96	0.61	34.3	4.6					
Edad absoluta	DUR-2	53	25930	204396	11.99	0.56	32.8	4.8					
Edad absoluta	DUR-3	56	28160	198864	12.31	0.57	31.1	4.4					
Edad absoluta	DUR-4	50	26450	189036	12.16	0.57	29.9	4.5					
Edad absoluta	DUR-5	58	27790	208708	12.58	0.59	32.0	4.5					
Edad absoluta	DUR-6	49	27440	178571	12.64	0.60	27.2	4.1					
Edad absoluta	DUR-7	53	28270	187478	12.36	0.58	29.2	4.2					
Edad absoluta	DUR-8	63	27860	226131	12.28	0.59	35.5	4.8					
Edad absoluta	DUR-9	47	27320	172035	12.27	0.58	27.0	4.1					
Edad absoluta	DUR-10	59	28430	207527	12.11	0.62	33.0	4.6					

CM DUR-2 (Durango Std) N = 9 (CaO = 55+/-2 wt.%)											
	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U-238	Edad AFT (Ma)	1SE (Ma)			
Edad absoluta	DUR-1	53	25930	204396	12.17	0.57	32.3	4.7			
Edad absoluta	DUR-2	56	28160	198864	12.09	0.58	31.7	4.5			
Edad absoluta	DUR-3	50	26450	189036	12.13	0.58	30.0	4.5			
Edad absoluta	DUR-4	58	27790	208708	12.45	0.59	32.3	4.5			
Edad absoluta	DUR-5	49	27440	178571	12.48	0.58	27.6	4.1			
Edad absoluta	DUR-6	53	28270	187478	12.30	0.58	29.4	4.3			
Edad absoluta	DUR-7	63	27860	226131	12.38	0.59	35.2	4.7			
Edad absoluta	DUR-8	47	27320	172035	12.21	0.59	27.1	4.2			
Edad absoluta	DUR-9	59	28430	207527	11.89	0.57	33.6	4.7			

CM DUR-3 (Durango Std) N = 10 (CaO = 55+/-2 wt.%)												
	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U-238	Edad AFT (Ma)	1SE (Ma)				
Edad absoluta	dur-1	62	27290	227189	11.97	0.75	36.5	5.2				
Edad absoluta	dur-2	53	25930	204396	11.85	0.71	33.2	5.0				
Edad absoluta	dur-3	55	28160	195313	11.95	0.73	31.5	4.7				
Edad absoluta	dur-4	50	26450	189036	11.92	0.73	30.6	4.7				
Edad absoluta	dur-5	58	27790	208708	12.47	0.77	32.2	4.7				
Edad absoluta	dur-6	49	27440	178571	12.52	0.77	27.5	4.3				
Edad absoluta	dur-7	53	28270	187478	12.31	0.77	29.3	4.4				
Edad absoluta	dur-8	63	27860	226131	12.18	0.77	35.8	5.0				
Edad absoluta	dur-9	47	27320	172035	12.20	0.76	27.2	4.3				
Edad absoluta	dur-10	59	28430	207527	12.15	0.76	32.9	4.8				

CM DUR-4 (Durango Std) N = 10 (CaO = 55+/-2 wt.%)										
	Ngr - apatito	Ns	Área	rho-S	U-238 ppm	tot incert U-238	Edad AFT (Ma)	1SE (Ma)		
Edad absoluta	dur-1	62	27290	227189	12.24	0.74	35.7	5.0		
Edad absoluta	dur-2	53	25930	204396	12.08	0.74	32.6	4.9		
Edad absoluta	dur-3	55	28160	195313	12.15	0.74	31.0	4.6		
Edad absoluta	dur-4	50	26450	189036	12.29	0.74	29.6	4.6		
Edad absoluta	dur-5	58	27790	208708	12.68	0.81	31.7	4.6		
Edad absoluta	dur-6	49	27440	178571	12.47	0.77	27.6	4.3		
Edad absoluta	dur-7	53	28270	187478	12.49	0.77	28.9	4.4		
Edad absoluta	dur-8	63	27860	226131	12.32	0.75	35.3	4.9		
Edad absoluta	dur-9	47	27320	172035	12.24	0.77	27.1	4.3		
Edad absoluta	dur-10	59	28430	207527	12.11	0.74	33.0	4.7		