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largo de estos dos años de maestŕıa en un lugar retirado de mi hogar.
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Introduction

In general, there exist many ways to approach a same object of study, that is why we

can reach to this object from the different branches of the mathematics.

The purpose of this thesis is to explore a set analogous to the classical Mandelbrot set

Mq, respectively, and we will denote for M the other set.

The classic Mandelbrot set is defined as the set of complex parameters c such that the

orbit of zero under the function Pc(z) = z2 + c is bounded, i.e.,

Mq := {c ∈ C : |P n
c (0)| < ∞∀n ∈ N}.

We can characterize Mq in terms of the connectivity of the correspondent Julia set Jc.

Theorem 0.1. If P n
c (0) → ∞, then the Julia set Jc is totally disconnected. Otherwise,

{P n
c (0)}n∈N is bounded and Jc is connected.

We define the Mandelbrot set M for a pair of linear maps as the set of complex

parameters λ on the unit open disk such that the set

Aλ =

� ∞�

n=0

anλ
n : an ∈ {0, 1}

�

is connected, i.e,

M := {λ ∈ D : Aλ is connected}.

The set Aλ is selfsimilar with respect to the iterated function system {λz,λz + 1}, that
is the unique non empty compact set such that

Aλ = λAλ ∪ (λAλ + 1).

1



Introduction 2

These types of sets are our starting point, in Chapter 1 we will see these with more detail.

Also, in this chapter we will give necessary conditions to ensure the existence of these

sets, we will prove the equivalence between the two definitions of Aλ, and we will prove

the following result analogous to Theorem 0.1.

Theorem 0.2. The set Aλ is either connected or totally disconnected.

The study of M began in 1985 with Barnsley and Harrington [2]. One of the things

that they proved is the existence of an interval in M around 1
2
. We will see their proof

in Chapter 2.

As we mentioned at the beginning, it is important to take a different perspective. In

the Chapter 2 we will study the works of Bandt, Bousch and Solomyak, who are inclined

for the following definition of M in terms of power series:

M =

� ∞�

n=0

anλ
n : λ ∈ D, an ∈ {−1, 0, 1}

�
.

Through this characterization, we can prove that M, for example, is closed. We look

for similarities and differences between M and Mq. Moreover, we are interested in the

asymptotic selfsimilarity.

Consider two compact subsets E and F of C, a complex number ρ such that |ρ| < 1

and the unitary compact disk centered at zero D. We define

Er = (E ∩D) ∪ ∂D.

We say that E and F are asymptotically similar if

lim
n→∞

δ(ρnEr, ρ
nFr) = 0,

where δ is the Hausdorff metric.

In other words, the sets E and F are asymptotically similar if they look alike under

scaling and rotations. Tan Lei [16] proved that Mq and Jc are asymptotically simi-

lar when c is a Misiurewicz point, i.e., the orbit of zero under Pc is preperiodic. In

the case of M, this result was partially proved by Solomyak [15], and independently by

Calegari, Koch and Walker [5]. In Chapter 3 we review with detail the proof of Solomyak.
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Besides a complete proof of the asymptotic similarity, there are a lot of open questions

about M, for example, the Hausdorff dimension of the boundary of M. So that there is

an extensive field to explore around this set.



Introducción

En general, existen muchas maneras de abordar un mismo objeto de estudio, es por

ello que uno puede llegar a este desde distintas áreas de la matemática.

El propósito de esta tesis es estudiar un conjunto de Mandelbrot análogo al conjunto

de Mandelbrot clásico, a los que denotaremos por M y Mq respectivamente.

El conjunto de Mandelbrot clásico se define como el conjunto de parámetros complejos c

para los cuales la órbita de cero bajo la función Pc(z) = z2 + c es acotada, i.e.,

Mq := {c ∈ C : |P n
c (0)| < ∞ ∀n ∈ N}.

También podemos caracterizar Mq en términos de la conexidad del conjunto de Julia

correspondiente Jc.

Theorem 0.3. Si P n
c (0) → ∞, entonces el conjunto de Julia Jc es totalmente disconexo.

En otro caso, {P n
c (0)}n∈N es acotada y Jc es conexo.

Definimos M, el conjunto de Mandelbrot en dos generadores lineales, como el conjunto

de parámetros complejos λ en el disco unitario abierto para los cuales el conjunto

Aλ =

� ∞�

n=0

anλ
n : an ∈ {0, 1}

�

es conexo, i.e.,

M := {λ ∈ D : Aλ es conexo}.

El conjunto Aλ es llamado autosimilar con respecto al sistema de funciones iteradas

{λz,λz + 1}, es decir, es el único conjunto compacto no vaćıo tal que

Aλ = λAλ ∪ (λAλ + 1).

4
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Este tipo de conjuntos ha sido nuestro punto de partida, y en el Caṕıtulo 1 nos dedicare-

mos a estudiarlos con más detalle. En este Caṕıtulo daremos las condiciones necesarias

para asegurar la existencia de estos conjuntos, probaremos la equivalencia entre las dos

caracterizaciones de Aλ y demostraremos el siguiente resultado análogo al Teorema 0.1.

Theorem 0.4. El conjunto Aλ es conexo o totalmente disconexo.

El estudio de M comenzó en 1985 con Barnsley y Harrington [2]. Una de las cosas que

lograron mostrar es que existe una vecindad alrededor de 1
2
de M totalmente contenida

en R. Veremos la prueba de esto en el Caṕıtulo 2.

Como mencionamos al inicio, es importante enriquecernos con otros puntos de vista.

En el segundo caṕıtulo estudiaremos los trabajos de Bandt, Bousch y Solomyak, quienes

se inclinan por la siguiente definición de M en términos de series de potencias:

M =

� ∞�

n=0

anλ
n : λ ∈ D, an ∈ {−1, 0, 1}

�
.

Mediante esta caracterización podemos probar, por ejemplo, que M es cerrado. Lo que

haremos es buscar semejanzas y diferencias entre M y Mq. Más en espećıfico, estamos

interesados en la similaridad asintótica.

Consideremos dos subconjuntos compactos E y F de C, un número complejo ρ tal que

|ρ| < 1 y el disco unitario D cerrado centrado en el origen. Definimos

Er = (E ∩Dr) ∪ ∂Dr.

Decimos que E y F son asintóticamente similares si

lim
n→∞

δ(ρnEr, ρ
nFr) = 0,

donde δ es la distancia de Hausdorff.

En otras palabras, los conjuntos E y F lucen similares bajo escalamientos y rotaciones.

Tan Lei [16] demostró que Mq y Jc son asintóticamente similares cuando c es un punto

Misiurewicz, i.e, la órbita de cero bajo Pc es preperiódica. En el caso de M, este resultado

ha sido parcialmente demostrado por Solomyak [15] e independientemente por Calegari,

Koch, y Walker [5]. En el tercer y último caṕıtulo haremos una revisión con detalle de la

prueba de Solomyak.
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Además de una prueba completa de la similaridad asintótica, existen muchas otras pre-

guntas abiertas acerca de M, por ejemplo, la dimensión de Hausdorff de la frontera de

M, de manera que queda mucho campo que explorar alrededor de este conjunto.



Chapter 1

Iterated Function Systems

1.1 Introduction

Through this chapter we introduce briefly the Iterated Function Systems (IFS). In-

tuitively, when studying IFS is dealing with dynamics systems with discrete time and

continuous space; this perspective give us many results useful to approach to the main

problem of this work.

First, we give the basic concepts to understand IFS theory which will be necessary to

follow up on this work, then we present the Hausdorff dimension and the similarity di-

mension, after we introduce an important tool to study IFS: symbolic dynamics, which

give us an essential connection to the sequences space in certain symbols, and finally we

give a quick overview of the topology of IFS.

All results on this chapter were taken from [9], [10] and [11].

1.2 Preliminaries

Definition 1. Let (K, d) be a complete metric space and D a closed subset of K. A

mapping ϕ: D → D is called a contraction on D if there is number c with 0 < c < 1 such

that

d(ϕ(x),ϕ(y)) ≤ cd(x, y) for all x, y ∈ D.

7
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In other words, a map is a contraction if it is a Lipschitz map with constant less than

one. Notice that any contraction is continuous. If the equality holds, then ϕ transforms

sets into geometrically similar sets, and we call ϕ a similarity.

Definition 2. A finite family of contractions {ϕ1,ϕ2, . . . ,ϕm}, with m ≥ 2, is called an

Iterated Function System (IFS).

According to the Banach’s fixed point theorem, for each contraction ϕi, i ∈ {1, 2, . . . ,m}
there exists a unique fixed point x ∈ K, and we simply write F (ϕi) for this fixed point.

We extend the concept of fixed point to IFS by introducing the following definition.

Definition 3. Let {ϕ1,ϕ2, . . . ,ϕm} be an IFS. We say that a nonempty compact set V

in K is self-similar if it satisfies

V =
m�
i=1

ϕi(V ).

Some authors [9] use the term attractor or invariant set instead of self-similar.

We could question the existence of such self-similar set. We may regard V as a fixed

point of a certain contraction in some metric space. In fact, John E. Hutchinson [10]

proved that a IFS defines a contraction in the metric space of compact sets of K, denoted

by C(K), with the Hausdorff metric.

Example 1. Let K =[0,1], ϕ1(x) =
1
x
, ϕ2(x) =

1
2
+ 2

3
. Then {ϕ1,ϕ2} is an IFS and the

classical Cantor set obtained by omitting middle third intervals is the self-similar set.

Figure 1.1: Middle third Cantor set.

Example 2. Let K = C, ϕ1(z) = λz, ϕ2(z) = λ(z) + 1, where λ ≈ 0.506 + 0.48i. Then

{ϕ1,ϕ2} is an IFS and the Figure 1.1 is selfisimilar set.

1.3 Hausdorff Dimension and Similarity Dimension

Definition 4. Let (K, d) be a metric space. For any A ⊂ K, we define
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Figure 1.2: Self-similar set correspondig to the IFS of the Example 2.

Hs
δ(A) = inf{�

i≥1

diam(Ei)
s : A ⊂ ∪i≥1Ei, diam(Ei) ≤ δ},

where diam(E) is the diameter of E and s and δ are positive real numbers.

For a fixed set A ⊂ K, Hs
δ(A) is a function of two variables, s and δ. Notice that the

series on the right side can diverge, i.e., the function Hs
δ takes values on [0, ∞].

Lemma 1. Let (K, d) be a metric space. For 0 ≤ s < t,

Ht
δ(E) ≤ Hs

δ(E)

for any E ⊆ K.

Proof: If E ⊆ ∪i≥1Ei and diam(Ee)≤ δ for any i, then

�
i≥1

diam(Ei)
t =

�
i≥1

diam(Ei)
t−sdiam(Ei)

s ≤ δt−s
�
i≥1

diam(Ei)
s.

�

Definition 5. For a set A ⊂ K, we define the s-dimensional Hausdorff outer measure of

(K, d) as

Hs(A) = lim
δ→0+

Hs
δ(A).

We ensure that the limit exist by including the value ∞. Its well known that Hs is a

complete Borel regular measure for s > 0.
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It should be mentioned that Hausdorff measure generalizes the idea of volume n −
dimensional in Rn, actually, it can be shown that the Hausdorff measure coincides,

within a constant, with the Lebesgue measure in Rn.

By the Lemma 1, we obtain the next proposition.

Proposition 1. For any A ⊆ K,

sup{s : Hs(A) = ∞} = inf{s : Hs(A) = 0} (1.1)

Proof: Observe that by Lemma 1, if s < t, then Hs(A) < ∞ implies Ht(A) = 0 and

Ht(A) > 0 implies Hs = ∞.

�

Definition 6. The quantity given by the equality (1.1) is called the Hausdorff dimension

of A.

The Hausdorff dimension of A is usually denoted by dimH(A). We recall that the Haus-

dorff outer measure and the Hausdorff dimension strongly depends of the metric d.

We concern about the size of a self-similar sets. In order to measure these sets, we

state some results about the Hausdorff dimension.

Definition 7. Let (K, d) be a metric space, {ϕ1,ϕ2, . . . ,ϕm} be an IFS and A the corre-

sponding self-similar set. We define the similarity dimension of A to be the positive root

of the following equation on d

m�
i=1

L(ϕi)
d = 1,

where L(ϕi) is the Lipschitz constant of the contraction ϕi.

We denote this value by dimS(A). Strictly, the similarity dimension is not a dimen-

sion, but under a certain condition this value agrees with the Hausdorff dimension of the

self-similar set, which is convenient in computational terms.

We can always ensure that the Hausdorff dimension is bounded by the similarity di-

mension.



Chapter 1. IFS 11

Theorem 1.1. For a self-similar set A,

dimH(A) ≤ dimS(A).

Proof: Let A be the self-similar set corresponding to {ϕ1,ϕ2, . . . ,ϕm}. Due to the

definition of the Hausdorff dimension, it suffices to showHd(A) < ∞, where d = dimS(A).

By definition of self-similar, we get

A =
m�
i=1

ϕi(A).

Furthermore, we have

diam(ϕi1 ◦ ϕi2 ◦ · · · ◦ ϕik(A)) ≤ diam(A)
k�

j=1

L(ϕij) ≤ λkdiam(A)

where each ij ∈ {1, 2, . . . ,m} and λ is the largest of the Lipschitz constant of the IFS.

We get

Hd
δ(A) ≤

m�

i1=1

· · ·
m�

ik=1

diam(ϕi1 ◦ ϕi2 ◦ · · · ◦ ϕik(A))

≤ diam(A)d
m�

i1=1

· · ·
m�

ik=1

k�

j=1

L(ϕj)

≤ diam(A)d

�
m�

ik=1

k�

j=1

L(ϕj)

�d

= diam(A)d

We make λkdiam(A) ≤ δ for any δ by taking k large enough.

�

The equality between both dimension holds if the IFS satisfies the open set set condition.

We say that the set of contractions {ϕ1,ϕ2, . . . ,ϕm} satisfies the open set condition if

there exist a nonempty bounded open set U ⊂ K such that
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1. ϕi(U) ⊂ U , i ∈ {1, 2, . . . ,m}

2. ϕi(U) ∩ ϕj(U) = ∅ for i �= j

Definition 8. A δ - covering of a given set A is a countable sequence of sets {Ui} which

satisfies:

1. A ⊂
∞�
i=1

Ui

2. 0 < diam(Ui) ≤ δ for i ≥ 0.

In order to prove the following theorem, we take K = Rn.

Theorem 1.2. Let {ϕ1,ϕ2, . . . ,ϕm} be an IFS consisting of similitudes (i.e. contractions

where the equality holds) and A the corresponding self-similar set. If the IFS satisfies

the open set condition, then

dimH(A) = dimS(A).

The proof of this theorem have been taken from [10]. Proof: Suppose that U ⊂ K in

the open set condition contains a closed ball of radius α and is contained in a closed ball

of radius β. Set

γ = min
1≤i≤m

L(ϕi)

We show by contradiction that

Hd(A) ≥
�

γα
2β+1

�n

.

Let

τ =
�

γα
2β+1

�n

Now, we suppose that Hd(V ) < τ . Then for some small enough positive number δ and a

δ - covering {Wi} of A the inequality

∞�
i=1

diam(Wi) < τ
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holds. Assuming that {Wi} is an open covering, we can enlarge each {Wi} slightly keeping

the inequality. Due to compacity, there is a finite family {Wi}i≤N ⊂ {Wi} which covers

A, i.e.,

A ⊂
N�

i=1

Wi and
N�

i=1

diam(Wi)
s < τ. (1.2)

For k ≤ q and and arbitrary set B ∈ K, put

µk(B) =
� k�

j=1

(L(ϕij))
d,

where the sum runs through every finite sequence i1i2 . . . ik which satisfies the condition

B ∩ U i1i2...ik �= ∅. Notice that, for a fixed set B, the sequence {µk(B)} is decreasing,

because

Ui112...ikik+1
⊂ Ui112...ik and

m�

i=1

(L(ϕi))
d = 1. (1.3)

Thus, the limit

µ(B) = lim
k→∞

µk(B)

exists. In particular, the inclusion A ⊂ U implies that µ(A) = 1. We also have the

following properties:

1. If B ⊂ C, then µ(B) ≤ µ(C)

2. µ(B ∪ C) ≤ µ(B) + µ(C)

Using these properties, we obtain the inequalities

1 = µ(A) ≤ µ

�
N�
i=1

Wi

�
≤

N�
i=1

µ(Wi)

We shall evaluate µ(Wi). As we may assume that diam(Wi) < δ, there exist at least

natural number k ≥ 2 such that

L(ϕi1) . . . L(ϕik−1
) > diam(Wj) > L(ϕi1) . . . L(ϕk)

Let Λj be the family of sequences {i1, . . . , ik} which satisfies the previous relation for each

Wj. In general, the length of the sequences in Λj aren’t the same. Let l be the maximum

of these lengths and by 1.3. Then
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µl(Wj) ≤
�

(L(ϕi1) · · ·L(ϕik))
s,

where the sum runs over all i1 . . . ik with Wj ∩ U i1...ik �= ∅. This is because the condition

Wj ∩ U i1...ik...il �= ∅ implies Wj ∩ U i1...ik �= ∅. It follows therefore that

µ(Wj) ≤ µj(Wj) ≤ p diam(Wj)

where p is the number of sequences in Λj with Wj ∩ U i1...ik �= ∅.

Put

r = L(ϕi1) · · ·L(ϕik)α and R = L(ϕi1) · · ·L(ϕik)β.

Then, as each ϕi is a similitude, we see that Ui1...ik contains a closed ball of radius r and

is contained in a closed ball of radius R. If x is an arbitrary element of Wj, then the

closed ball of radius diam(Wj) contains Wj, and so Ui1...ik is contained in some closed ball

of radius 2R + diam(Wj). We also have

r ≥ αγL(ϕi1) · · ·L(ϕik) ≥ αγ diam(Wj)

and

R ≤ β diam(Wj);

hence, it turns out that Ui1...ik sits in a closed ball of radius 2R+diam(Wj) and it contains

a closed ball of radius αγdiamWj). It is important to keep in mind that the closed ball of

radius 2R+diam(Wj) does not depend of the sequences in Λj. By the open set condition,

the sets of the form Ui1...ik are mutually disjoint, and so by comparing their n−dimensional

volumes we get

p (αγ diam(Wj))
n ≤ ((2β + 1) diam(Wj))

n,

or, equivalently

p ≤
�

2β+1
αγ

�n

= τ−1.
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This implies that µ(Wj) ≤ τ−1 diam(Wj), which in turn give

1 ≤
N�
j=1

µ(Wj) ≤ τ−1
N�
j=1

diam(Wj)
s;

however, this contradicts 1.2.

�

We give basic examples of fractal sets whose Hausdorff dimension are calculable by the

Theorem 2.

Example 3. Consider the Cantor set described in the Example 1. This set is the self-

similar set corresponding to two contractions

ϕ1(x) =
1
3
x and ϕ2(x) =

1
3
x+ 2

3
,

and the corresponding IFS satisfies the open set condition taking U = (0, 1) (Figure 1.3).

For this contractions, we have

L(ϕ1) = L(ϕ2) =
1
3
,

so we can compute the Hausdorff dimension of the Middle Third Cantor set by solving

�
1
3

�d
+
�
1
3

�d
= 1.

Then, the Hausdorff dimension is

dimH(C) = log 2
log 3

.

Figure 1.3: The IFS correponding to the Middle Third Cantor set satisfies the open
set condition taking U = (0, 1).
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1.4 Symbolic Dynamics

Throughout this section, we introduce the concept of symbolic dynamic. Due to the

natural relation that exist between the space of symbols and IFS, it is important to

understand how it works.

Definition 9. Let N ∈ N.

1. For m ≥ 1, we define

WN
m = {1, 2, . . . , N}m = {w1w2 . . . wm : wi ∈ {1, 2, . . . , N}}.

2. An element w ∈ WN
m is called a word of length m with symbols {1, 2, . . . , N}.

3. For m = 0, WN
m = ∅ and call ∅ the empty word.

4. The WN
∗ = ∪m≥0W

N
m and denote the length of w ∈ WN

∗ by |w|.

5. The collection of one-sided infinite sequences of symbols {1, 2, . . . , N} is denoted

by ΣN , i.e.,

ΣN = {1, 2, . . . , N}N = {w1w2 · · · : wi ∈ {1, 2, . . . , N} for i ∈ N}.

The last set in the previous definition is named differently depending on the context.

For example, in dynamics it is known as the Shift Space, while in topology it is called the

Cantor Set. To simplify notation and when it is not confusing, we omit the superindex,

i.e., we write Wm,W∗ and Σ.

When we talk about the Shift Space, is also usual to define two maps: the shift map

and its branch of inverse maps.

The first one is a map σ : ΣN → ΣN given by

σ(ω1ω2ω3 . . . ) = ω2ω3 . . . . (1.4)

And, for k ∈ {1, 2, . . . , N}, we define a map σk : Σ
N → Σn by

σk(ω1ω2ω3 . . . ) = kω1ω2ω3 . . .
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We are particularly interested on the map σk. On the next theorem, we prove that σk is

a contraction on Σ under a certain metric and the Shift Space is actually the self-similar

set respect to {σ1, σ2, . . . , σN}.

Theorem 1.3. For ω, τ ∈ σ with ω �= τ and 0 < γ < 1, define

δγ(ω, τ) = γs(ω,τ)

where s(ω, τ) = min{m : ωm �= τm}− 1. Also define δγ(ω, τ) = 0 if ω = τ . Then,

1. δγ is a metric on Σ and (ΣN , δγ) is a compact metric space.

2. Furthermore, σk is a similitude with L(σk) = γ and Σ is the self-similar set with

respect to {σ1, σ2, . . . , σN}.

Proof:

1. We have by the definition that δγ(ω, τ) ≥ 0 and δγ(ω, τ) = 0 if and only if ω = τ .

To verify the triangle inequality observe that min{s(ω, τ), s(τ,κ)} ≤ s(ω,κ) for

ω, τ,κ ∈ Σ, so we can see that δγ(ω,κ) ≤ δγ(ω, τ) + δγ(τ,κ).

To verify that this space is compact, first notice that Σ is totally bounded, so

we just need to check that the space is complete. Let {ωi}i≥1 be a Cauchy sequence

in Σ, then for ε > 0 exist N ∈ N such that, for m,n > N ,

δγ(ω
m,ωn) < ε

2
.

Without loss of generality, we suppose that m > n and define τi = ωm
i , then

δγ(ω
n, τ) ≤ δγ(ω

n,ωm) + (ωm, τ) < ε
2
+ ε

2

Hence, ωi → τ . Therefore, Σ is compact.

2. Now, observe that for ω, τ ∈ Σ, s(σk(ω), σk(τ)) = s(ω, τ)− 1, this means that σk is

a contraction and L(σk) = γ. Finally, notice that Σ is a compact set such that

Σ = σ1(Σ) ∪ · · · ∪ σk(Σ),

This implies that Σ is the correspondent self-similar set.
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�

At the beginning of the section, we said that there exist a natural relation between an IFS

and the Shift Space. The following theorem shows that every self-similar set is a quotient

space of the Shift Space under certain relation. It is important to keep this in mind

because on Chapter Two it will helps us to have this characterization of a self-similar set.

Theorem 1.4. Let {ϕ1,ϕ2, . . . ,ϕN} be an IFS and K the correspondent the self-similar

set. For ω = ω1ω2 . . .ωm ∈ W∗, set ϕω = ϕω1 ◦ ϕω2 ◦ · · · ◦ ϕωm and Kω = ϕω(K). Then,

for any ω = ω1ω2ω3 · · · ∈ Σ,

1. ∩m≥1Kω1ω2...ωm contains only one point.

2. The map π : Σ → K given by

{π(ω)} = ∩m≥1Kω1ω2...ωm (1.5)

is continuous.

3. For any i ∈ {1, 2, . . . , N},

π ◦ σi = ϕi ◦ π.

4. π is a surjective map.

Proof:

1. As every ϕi, i ∈ {1, 2, . . . , N} is a contraction, we have

Kω1ω2...ωmωm+1 = ϕω1ω2...ωm(ϕωm+1(K)) ⊆ ϕω1ω2...ωm(K) = Kω1ω2...ωm

and

diam(ϕi(K)) ≤ L(ϕi)diam(K)

diam(ϕω1ω2...ωm(K)) ≤
�

max
i∈{1,2,...N}

L(ϕi)

�m

diam(K).

Then, by Cantor’s intersection theorem, ∩m≥1Kω1ω2...ωm consist of only one point.
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2. Let ω, τ two elements of Σ such that δγ(ω, τ) ≤ γm, then π(ω), π(τ) ∈ Kω1ω1...ωm =

Kτ1τ2...τm and d(π(ω), π(τ)) ≤ maxi∈{1,2,...m} L(ϕi)
mdiam(K). Therefore, π is con-

tinuous.

3. For i ∈ {1, 2, . . . N},

{π(σi(ω))} = ∩m≥1Kiω1ω2...ωm = ∩m≥1ϕiKiω1ω2...ωm = ϕi{π(ω)}.

4. Finally, to prove that π is surjective we use the fact that Σ is the correspondent

self-similar set of {σ1, σ2, . . . , σN},

π(Σ) = π(σ1(Σ) ∪ σ2(Σ) ∪ · · · ∪ σN(Σ))

= π(σ1(Σ)) ∪ π(σ2(Σ)) ∪ · · · ∪ π(σN(Σ))

= ϕ1(π(Σ)) ∪ ϕ2(π(Σ)) ∪ · · · ∪ ϕN(π(Σ)).

Hence, π(Σ) is a non empty, compact and self-similar set respect to {ϕ1,ϕ2, . . . ,ϕN},
then π(Σ) = K.

�

Definition 10. A sequence ω such that π(ω) = a for a ∈ K is said to be an address for

a.

The address of a ∈ K is not necessary unique, because the intersection between the pieces

ϕi(K),ϕj(K), i �= K is not necessary empty. In this case, we said that there is an overlap.

We are interested in the particular case of an IFS with two generators {ϕ1,ϕ2}. Let

IK = ϕ1(K) ∩ ϕj(K), and σ defined as in (1.4).

Definition 11. The self-similar set K is said to be post-critically finite (p.c.f.) if

�
m≥1

σm(π−1(IK))

is a finite non-empty set.

In other words, we said that a self-similar set K is p.c.f. if IK is non-empty and every

a ∈ K has and finitely many addresses and every address is eventually periodic.
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1.5 Topology of IFS

A general task in mathematics is to classify objects. In topology, for example, two

topological spaces are the same if there is an homeomorphism between them. In this

case, we will say that two sets are equivalent if there is a bi-Lipschitz map between them.

In this section we will see that there are advantages of using bi-Lipschitz maps. One

of them is that bi-Lipschitz transformations are homeomorphisim, so we are able to use

topological properties to prove things about IFS.

Through the following propositions we prove the main result about the topology of self-

similar sets.

Definition 12. Let A ⊂ K. We say that a map f : A → K is bi-Lipschitz if there exist

two constants c1, c2 ∈ R such that 0 < c1 ≤ c2 and

c1d(x, y) ≤ d(f(x), f(y)) ≤ c2d(x, y)

for all x, y ∈ A.

Proposition 2. Let ϕ be a bi-Lipschitz with c > 0. If A ⊂ K, then

Hs(ϕ(A)) = csHs(A)

We are making a quick review on topology of IFS with the intention of exposing known

results. For the proof of this Proposition, see [9].

Let A ⊂ K, we said that a map f : A → K satisfies the Hölder condition or is Hölder

continuous with exponent α in A if

d(f(x), f(y)) < cd(x, y)α for all x, y ∈ A

with constants c > 0 and α > 0.

Notice that this condition implies that f is continuous. We can generalize Proposition 2

for transformations which satisfy the Hölder condition.

Proposition 3. Let A ⊂ K and f : A → K be Hölder continuous. Then, for each s
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Hs/α(f(A)) ≤ cs/αHs(A),

and

dimH(f(A)) ≤ α−1 dimH(A)

Proof: Let {Ui} be a δ-covering of A. Since

diam(f(A ∩ Ui)) ≤ c(diam(A ∩ Ui))
α ≤ c(diam(Ui))

α,

hence, {f(A ∩ Ui)} is a ε-covering of A, where ε = cδα. Thus,

∞�
i=1

(diam(A ∩ Ui))
s/α ≤ cs/α

∞�
i=1

(diam(Ui))
α,

so that

Hs/α
ε (f(A)) ≤ cs/αHs

δ(A).

As δ → 0, so � → 0, so

Hs/α(f(A)) ≤ cs/αHs(A). (1.6)

Now, if s > dimH(A), 1.4 equals zero, implying that

dimH f(A) ≤ s/α

for all s > dimH A.

�

In particular, when α = 1, f is a Lipschitz map and

Hs(f(A)) ≤ csHs(A)

and

dimH(f(A)) ≤ dimH(A).
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Corollary 1. Let D be a closed subset of K. If f : D → K is a bi-Lipschitz map, then

dimH(f(D)) = dimH(D).

We would like relate the dimension of a set with its topology. The next result tells us

that if the dimension of a set is lower than 1, then it is necessarily disconnected.

Proposition 4. A set A ⊂ K with dimH(A) < 1 is totally disconnected.

Proof: Let x, y be two distinct points in A. Define a map f : K → [0, 1) by f(z) =

d(x, z). Notice that

|f(z)− f(w)| = |d(x, z)− d(x, w)| ≤ d(z, w).

This means that f is a Lipschitz map. We have from the corollary 1 that

dimH(f(A)) ≤ dimH(A) < 1.

Thus, f(A) is a subset of R with H1 measure zero, and so has a dense complement.

Choosing r /∈ f(A) and 0 < r < f(y) it follows that

A = {z ∈ A : d(z, x) < r} ∪ {z ∈ A : d(z, x) > r}.

Thus, A is contained in two disjoint open sets with x in one set and y in the other, this

means that x and y are in different components.

�

Theorem 1.5. For an IFS {ϕ1,ϕ2, . . . ,ϕm} and A the corresponding self-similar set, the

following statements are equivalent:

1. For any i, j ∈ {1, 2, . . . ,m} there exist {ik}k=0,1,...n ⊆ {1, 2, . . . ,m} such that i0 =

i, in = j and Aik ∩ Aik+1
�= ∅ for any k = 0, 1, . . . , n− 1.

2. A is arcwise connected.

3. A is connected.

Proof By definition 2 implies 3.
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• 3 =⇒ 1. Choose i ∈ {1, 2, . . . ,m} and define I ⊆ {1, 2, . . . ,m} by

I = {j ∈ {1, 2, . . . ,m} : there exist {ik}k=0,1,...n ⊆ {1, 2, . . . ,m}
such that i0 = i, in = j and Aik ∩ Aik+1

�= ∅ for any k = 0, 1, . . . , n− 1}.

If U = ∪j∈IAj and V = ∪j /∈IAj, then U ∩ V = ∅. Notice that U and V are open

sets with the subspace topology restricted to A due to every ϕi is Lipschitz. Also

both U and V are closed sets because Ai is closed and I is a finite set. This implies

that U is a clopen set. Hence U = K or U = ∅, but Ai ⊂ U and hence U = K.

Therefore V = ∅ and I = {1, 2, . . . ,m}.

• Now we prove 3 implies 1. In order to prove this implication, we cite the following

lemma from [11]

Lemma 2. For a map u : [0, 1] → A and for t ∈ [0, 1], we define

D(u, t) = sup{lim sup
n→∞

d(u(tn), u(sn)) : lim
n→∞

tn = lim
n→∞

sn = t}.

If fn : [0, 1] → A is uniformly convergent to f : [0, 1] → A as n → ∞ and

limn→∞ D(fn, s) = 0, then f is continuous at s.

We define

P = {f : A2 × [0, 1] → A : f(p, q, 0) = p, f(p, q, 1) = q ∀p, q ∈ A}.

Also for f, g ∈ P , we set

dP (f, g) = sup{d(f(p, q, t), g(p, q, t)) : (p, q, t) ∈ A2 × [0, 1]}

Then (P, dP ) is a complete metric space. We can choose n(p, q), {ik(p, q)}0≤k≤n(p,q) ⊆
{1, 2, . . . ,m} and {xk(p, q)}0≤k≤n(p,q) ⊆ A so that x0(p, q) = p, xn(p,q)(p, q) = q and

xk(p, q), xk+1(p, q) ∈ Aik(p,q) for k = 0, 1, . . . , n(p, q)− 1.

For f ∈ P , define Gf ∈ P by, for k/n(p, q) ≤ t ≤ (k + 1)/n(p, q),

(Gf)(p, q, t) = ϕik(p,q)(f(yk(p, q), zk(p, q), n(p, q)t− k)),

where yk(p, q) = ϕ−1
ik(pq)

(xk(p, q)) and zk(p, q) = ϕ−1
ik(p,q)

(xk+1(p, q)). Then, it follows

that
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dP (G
mf,Gmg) < rm,

where rm = maxω∈Wm diam(Aω). Since rm → 0 asm → ∞ and (P, dP ) is a complete

metric space, there exist f∗ ∈ P such that Gmf → f∗ as m → ∞. Also we set

D(f) = sup{D(f(p,q), t) : (p, q, t) ∈ A2 × [0, 1]},

for f ∈ P where f(p,q)(t) = f(p, q, t). Then D(Gmf) ≤ rmD(f) and due to the

Lemma 2, f∗ is continuous respect to t. As f∗(p, q, t) is a continuous path between

p and q, A is arcwise connected.

�

Observe that this theorem shows us how to construct a connected neighbourhood for each

point on A.

Corollary 2. If A is connected, then it is locally connected.

Along this chapter we made a quick review on theory of IFS, if the reader wants to

deepen the subject, he may find more material on the references.



Chapter 2

The Mandelbrot Set for a pair of

linear maps

2.1 Introduction

The main task of this thesis is to describe the Mandelbrot set in two generators. By

giving this set the name Mandelbrot, is natural to wonder about the similarities between

this set and the classical Mandelbrot set.

We will start this chapter with a brief introduction to the classical Mandelbrot set, we

will define it and do a summary of the most known results. Later on, we will present

the Mandelbrot set in two generators and show some of its properties and characteristics.

Finally, we will discuss about what can be done as future work.

2.2 Mandelbrot set for the quadratic family

In this section we give a brief introduction to the classical Mandelbrot set. Some theo-

rems are stated without proof because of their prevelance, the results in this section were

taken from [7].

Let

P (z) = αz2 + βz + γ

25
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be a quadratic polynomial with α, β, γ ∈ C. P (z) can be conjugated by

h(z) =
1

α
z − β

2α2

, and we have the form

Pc(z) = z2 + c.

This means that the dynamical information of the quadratic polynomials depends on the

parameter c. Usually, the Mandelbrot set is defined as,

Mq = {c ∈ C : {P n
c (0)}n∈N is bounded}.

The next theorem characterizes the set Mq in terms of the connectivity of the correspon-

dent Julia set Jc.

Theorem 2.1. If P n
c (0) → ∞, then the Julia set Jc is totally disconnected. Otherwise

{P n
c (0)}n∈N is bounded and Jc is connected.

Figure 2.1: Mandelbrot set for the quadratic family Mq.

The importance of the following result lies in that it give us an idea on how to compute

this set and how to demonstrate that Mq is compact.
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Theorem 2.2. The Mandelbrot set is a simply connected subset of the disk {z ∈ C :

|z| ≤ 2}, which meets the real axis in the interval [−2, 1/4]. Moreover,

Mq = {c ∈ C : |P n
c (0)| ≤ 2 ∀n ∈ N}.

Note that P n
c (0) = Qn(c) for some polynomial Qn which can be define inductively by

Q1(c) = c and

Qn+1(c) = P n+1
c (0) = Pc(P

n
c (0)) = (P n

c (0))
2 + c = Qn(c)

2 + c.

Corollary 3. Mq is compact.

Proof: Let D2 ⊂ C be the closed disk of radius two, by last theorem, c ∈ Mq if and only

if Qn(c) ∈ D2 for all n ∈ N, therefore,

Mq =
�
n∈N

Q−1
n (D2).

Since D2 is closed, Mq is closed. Then, Mq is compact because Mq ⊂ D2.

�

The proof that Mq is connected was first presented by Douady and Hubbard [8], but the

local connectedness it is still an open question. The set Mq is not regularly closed, it has

many antennae which connects infinite many interior components.

A main result about Mq was proved by Tan Lei [16] on 1990. She proved that Mq

and Jc are asymptotically similar when c is a Misiurewicz point, in other words, Mq and

Jc looks similar under an appropriate magnification. We will see with more detail this

property in the next chapter.

Definition 13. We say that c ∈ ∂Mq is a Misiurewicz point if the forward orbit of 0

under Pc is eventually periodic.

Years after Tan Lei’s result, Shishikura proved that the Hausdorff dimension of the

boundary Mandelbrot set is two [13].

Theorem 2.3.
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Figure 2.2: At the left, Mq magnified around a Misiurewicz parameter, at the right,
Jc.

dimH(∂Mq) = 2.

Moreover, for any open set U wish intersects ∂Mq, dimH(U ∩ ∂Mq) = 2.

Theorem 2.4. For a generic c ∈ ∂Mq,

dimH(Jc) = 2.

In other words, there exist a residual (hence dense) subset R of ∂Mq such that if c ∈ R,

then dimH(Jc) = 2.

There are a lot of important results about Mq, but is not our intention to delve into

it, in the next section we introduce another Mandelbrot set.

2.3 Mandelbrot set for a pair of linear maps

Consider (C(C), dH) the space of compact sets of C with the Hausdorff metric induced

by the euclidean metric. Note that this implies (C(C), dH) is a complete metric space.

Let K ∈ C(C), λ ∈ C such that |λ| < 1 given by the map

Φ : C(C) → C(C)
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A → λA+K

.

Note that Φ is a contraction with Lipschitz constant λ, and according to the Banach

Fixed Point Theorem, there exist a unique set Aλ that is self-similar. By this theorem,

we have the next presentation of Aλ:

Aλ = K +
∞�

n=1

λnK (2.1)

We are interested in the case K = {0, 1}. We translate this in terms of IFS and define

ϕ1(z) = λz, ϕ2(z) = λz + 1, (2.2)

and the correspondent self-similar set

Aλ = ϕ1(Aλ) ∪ ϕ2(Aλ).

Definition 14. The connectedness locus is

M = {λ ∈ D : Aλ is connected},

where D ⊂ C is the open unit disk.

This set is also called the Mandelbrot Set for a pair of linear maps (Fig. 2.3), by analogy

with Mq. Also we can define M in terms power series considering the presentation of Aλ

saw in (2.1).

Proposition 5. If λ ∈ D such that λ �= 0, then the following properties are equivalent:

1. Aλ is connected.

2. Iλ := ϕ1(Aλ) ∩ ϕ2(Aλ) �= ∅.

3. The map π : {0, 1}N → Aλ ⊂ C

π((ai)i≥0) =
∞�

i=0

aiλ
i (2.3)

is not injective.



Chapter 2. Mandelbrot Set for IFS 30

Figure 2.3: The connectedness locus M.

4. There is a sequence (bi)i∈N such that bi ∈ {−1, 0, 1} and

∞�
i=0

biλ
i = 0.

5. There is a sequence (bi)i∈N non identical to zero such that b0 = 1, bi ∈ {−1, 0, 1}
and

∞�
i=0

biλ
i = 0.

Proof: From the Theorem 1.5 we have that 1 ⇔ 2 and 2 =⇒ 3.

• 2 ⇔ 4. Suppose that ϕ1(Aλ) ∩ ϕ2(Aλ) �= ∅. Observe that if z ∈ ϕ2(Aλ) then z has

associated a series with a0 = 1, and if z ∈ ϕ1(Aλ) then z has associated a series

with a0 = 0. This implies that if z ∈ ϕ1(Aλ) ∩ ϕ2(Aλ) then z has associated two

series determined by the sequences (ai), (a
�
i) such that a0 = 1, a�0 = 0, i.e.

1 +
∞�
n=1

biλ
i =

∞�
n=1

b�iλi.

If we take the difference between those series we obtain

∞�

i=0

biλ
i = 0 where bi = ai + a�i, (2.4)

hence b0 = 0, bi ∈ {−1, 0, 1}.

Inversely, if there exist a sequence (bi) like in 4., construct two sequences (ai),

(a�i) such that ai−a�i = bi, this means that at least one element in ϕ1(Aλ)∩ϕ2(Aλ)

has two representations in power series.
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• Notice that the proof of 3. ⇔ 5. is analogous to 2 ⇔ 4.

• 5. =⇒ 4. Suppose that

∞�
i=0

biλ
i = 0

and there exist a coefficient bk �= 0. Then, dividing by λk, we rewrite the series as

∞�
i=0

bi+kλ
i = 0.

to obtain 4.

�

Corollary 4. If Aλ is disconnected, the application defined in 3 is an homeomorphism.

The Proposition 5 allows us to represent M as

M = {λ ∈ D : ∃f ∈ B, f(λ) = 0} (2.5)

where

B =

�
1 +

∞�
i=1

biz
i : bi ∈ {−1, 0, 1}

�
.

You may think that M is not well defined. For example, instead of using the maps ϕ1,

ϕ2, we could have used maps

ϕ0(z) = λz − 1 and ϕ1(z) = λz + 1.

But with those maps, the representation of the Mandelbrot set in terms of power series

is the same. Actually, we can define the maps

ϕc(z) = λz + c and ϕd(z) = λz + d

for and arbitrary c, d ∈ C such that c �= d. Now, consider the map

h(z) = (z − c
1−λ

)/(d− c).
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This map conjugates ϕc to ϕo and ϕd to ϕ1, i.e, ϕc = h−1ϕ0h and ϕd = h−1ϕ1h, and

send the fixed points of ϕc,ϕd into the fixed points of ϕ0,ϕ1, this means that self-similar

set Aλ corresponding to {ϕc,ϕd} differs only in size and position to the self-similar set

defined by {ϕ0,ϕ1}, but the connectivity is not affected. Hence M is equal for both IFS.

Also, by this approach in terms of power series we are able to prove the next propo-

sition.

Proposition 6. M is relatively closed in D. Moreover, M is the closure of the set of all

zeros of polynomials with coefficients in {−1, 0, 1}.

Proof: Let λ be a zero of a power series f with coefficients in {−1, 0, 1}. The zeros of
f with modulus less than 1 form a discrete set, so we can take a circular neighbourhood

G of λ with radius r < 1 − |λ| such that G does not contain another zero of f . Then,

there is ε > 0 such that

|f(z)| > ε

for every z ∈ ∂G. Now, choose n ∈ N such that

∞�
i=n

(|λ|+ r)i < ε/2,

and let p be the polynomial obtained by truncation of f before zn. By Rouché’s theorem,

p has a zero in G. Since r > 0, M is in the closure of the set of zeros of polynomials with

coefficients in {−1, 0, 1}.

Now, let λ be in the closure of he set of zeros of polynomials with coefficients in {−1, 0, 1},
i.e., λ is a zero of a limit of a sequence of zeros λk of polynomial pk with coefficient in

{−1, 0, 1}. Let f(z) be the limiting power series, and let G be a δ- neighbourhood of λ

with |f(z)| > ε > 0 for z ∈ ∂G. By Rouché’s theorem, G must contain at least one zero

of f . For δ → 0, this implies f(λ) = 0.

�
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2.4 Structure

In this section we introduce some facts about M.

First, we talk about symmetries on M and Aλ. Notice that the functions

f(z) = −z

g(z) = z

are continuous, therefore, if Re(λ) ≥ 0, Im(λ) ≥ 0 and Aλ is connected, so they are A−λ

and Aλ, this means that M is symmetric respect the real and the imaginary axes.

From Proposition 4, we know that Aλ is totally disconnected if its Hausdorff dimension

Figure 2.4: Section of Mon the first quadrant.

is less than 1, and from the Theorem 1, we can see that

{λ ∈ D : |λ| ≥ 2−1/2} ⊂ M ⊂ {λ ∈ D : |λ| ≥ 1/2}.

From Figure 2.5, we observe an “antenna”. Barnsley and Harrington proved that it

actually exist. More precisely, there is a line segment from 0.5 to about 0.649 (Figure

2.2). In order to prove the existence of this antenna, we include Barnsley and Harrington

proposition.

Proposition 2.5. The interval I = [0.5, 0.53] lies in ∂(M).

Proof: We want to show that as λ leaves the real axis, Aλ becomes disconnected. For

λ ∈ I, let
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Figure 2.5: Antenna in M.

α = maxϕ1(Aλ) = −1 +
∞�
i=1

λi = (2s− 1)/(1− s).

By symmetry, ϕ1(Aλ) can intersect ϕ2(Aλ) only in points on [−α,α].

Notice that in an open interval containing I, α < λ3, which means

−α > α− 2λ3 = 1 + λ+ λ2 − λ3 +
∞�
i=4

λi

Hence, for any λ in and open interval containing I, we have

−α ≤ gλ(ω) ∈ ϕ1(Aλ)

only if

gλ(ω) = −1 + λ+ λ2 + λ3 +
∞�
i=4

ωiλ
i

for some sequence (ωi)i≥4 ∈ {0, 1}N. Then

dgλ
dλ

(ω) = 1 + 2λ+ 3λ2 +
∞�
i=4

iωiλ
i−1

> 1 + 2λ+ 3λ2 −
∞�
i=3

iλi−1

= 2(1 + 2λ+ 3λ2)− 1
(1−λ)2

> 1

The opposite behavior occurs in ϕ2(Aλ) = −ϕ1(Aλ). Since

|d2gλ
dλ2 (ω)| ≤ 2

(1−λ)3

uniformly in {0, 1}N, we can make a first order Taylor approximation with λ imaginary

and find that uniformly in a neighbourhood of the only part of ϕ1(Aλ) and ϕ2(Aλ) where

the real parts can match, the imaginary parts separate as λ leaves the real axis.
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�

We proved that M is relativily closed on D and we may ask if it is regular-closed. The ex-

istence of this antenna give us a negative answer to this question, but Bandt [1] conjetured

that M \ R is relativily closed and Calegary, Koch and Walker [5] gave an affirmative

answer to this question. We omit the proof this theorem since it is out the limits of this

work.

Theorem 2.6. The interior of M is dense away from the real axis, i.e.

M = int(M) ∪ (M ∩ R).

The following set was first introduced by Bousch [3]. This set has also an interest-

ing structure studied by Bousch [3], [4] and Calegary, Koch and Walker [5]. For more

references read [5].

Definition 15. We define

M0 = {λ ∈ D : 0 ∈ Iλ}.

Figure 2.6: M0.

By definition, M0 ⊂ M. This set also has a representation in terms of power series,

M0 = {λ ∈ D : ∃f ∈ B0, f(λ) = 0},

where
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B0 =

�
1 +

n�
i=1

biz
i : bi ∈ {0, 1}

�
.

To conclude this section we present another subset of M, more difficult two draw and its

study has not been thorough.

Definition 16. We define

M1 = {λ ∈ D : Aλ is full and connected}.

Where full means that its complement is connected.

Even if working with M1 is not very common, in the next chapter we deal with a

subset of this set: those λ for which Aλ is a dendrite.

2.5 Semigroup generated by a pair of contracting

similarities

This section is about how Calegary, Koch and Walker [5] approach to this Mandelbrot

set. Our perspective has been to see this set in terms of theory of IFS and use results about

complex analysis, but some of previous results can be written in terms of semigroups.

Proposition 2.7. Let S = {ϕ1,ϕ2} be the set of contracting similarities given by (2.2).

Then, S is a semigroup under the composition.

We have that the linear maps are a group under the composition, but in this case,

the inverse of a contracting map is a expansive map, that is why we only consider the

semigroup structure.

Definition 17. Let S be a finitely generated semigroup of contracting similarities. The

limit set Λ is the closure of the set of fixed point of the elements of S.

Notice that by the definition of limit Λ = Aλ, but this notion is given in algebraic

terms.

Definition 18. We say that S is a Schottky semigroup if there is an embedded loop

γ ⊂ C bounding a closed topological disk D, so that the elements of S take D to disjoint

disks contained in D.
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If the elements of an IFS generates a semigroup S such that satisfies the condition of

being Schottky, the IFS has the OSC. Actually, being Schottky is an open condition.

Theorem 2.8. The semigroup S has disconnected Λ if and only if S is Schottky.

Proof: [5].

2.6 Hausdorff dimension of the sets Aλ and the Open

Set Condition

On the Section 1.3 we made a quick review of the Hausdorff dimension and how to

compute it in the case of IFS that satisfies the open set condition .

We think that future work could be related with the open set condition. This idea

consists of studying this condition and see how it is related with the boundary or the

interior of M and the algebraic equivalent of the open set condition given by Bandt and

Graf may be an important piece to solve this.

We recall that open set condition is about the existence of a nonempty bounded open set

U ⊂ K such that

1. ϕi(U) ⊂ U , i ∈ {1, 2, . . . ,m}

2. ϕi(U) ∩ ϕj(U) = ∅ for i �= j.

The set U is called the feasible open set. As we said, there is and algebraic characteriza-

tion.

Let Σ = {0, 1}. The maps

N = {h = ϕ−1
j ◦ ϕi|i, j ∈ Σ∗, i1 �= j1}

are called the neighbour maps and the algebraic formulation of the open set reads as

follows: There is a constant κ > 0 such that ||h − id|| > κ for all neighbour maps h,

where || · || denotes the sup norm on C. This means that if the feasible set exist, the map

h cannot be near to the identity map.



Chapter 3

Asymptotic self-similiarity

3.1 Introduction

In this last chapter, we focus on an interesting property of M the asymptotic similar-

ity. If we observe Figure 3.1, there is no reason to think that M and Aλ look similar.

However, we define a new set (Figure 3.2) given as the selfsimilar set of the IFS consist-

ing of add another contraction to the original IFS. This set looks similar to the section

of M shown in the Figure 3.2. We want to formalize this idea through the concept of

asymptotic similarity.

We will study Solomyak’s proof about the existence of parameters λ such that there are

Figure 3.1: Sets Aλ and M

38
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Figure 3.2: Sets Aλ and M

asymptotic similarity between M and this new set, but the question about the distribu-

tion of these parameters remains open.

3.2 Asymptotic self-similarity

Throughout this section we introduce the concept of asymptotic self-similarity. As we

mentioned in the introduction, we want to formalize the notion of looking similar. These

definitions are taken from [16].

We want to compare compact sets in C, so our workspace is (C(C), dH).

Definition 19. For r ∈ [0,∞) and any closed set F ⊂ C, we define the following compact

set,

Ar = (A ∩Dr) ∪ ∂(Dr)

where Dr is the ball of radius r centered at 0.

If we want to analyse the local behavior at some point z ∈ A, it is enough to translate

the set, we use the notation A− z.

Definition 20. Let ξ ∈ C with |ξ| > 1. A compact set A ∈ C(C) is ξ-self-similar around

0 if there is r > 0 such that

(ξA)r = Ar.
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Figure 3.3: Sets A, Dr.

This means that the set A, within Dr, is invariant under a magnification by ξ and a

certain rotation. It is important to know that the notion of ξ-selfsimilarity differs from

the definition of selfsimilarity introduced on the first chapter.

Definition 21. A closed subset A ⊂ C is asymptotically ξ-self-similar a point z ∈ A if

there is r > 0 and a closed set G ⊂ C such that

lim
n→∞

dH([ξ
n(z − A)]r, Gr) = 0.

The set G is automatically self-similar around 0 and it is called the limit model of A at

z.

Definition 22. Two closed subsets F,G ⊂ C are asymptotically similar about 0 if there

is r > 0 such that

lim
t∈C,t→∞

dH((tF )r, (tG)r) = 0.

[16] proved that the Mandelbrot Set for the quadratic family is asymptotically similar

about any Misiurewicz point to the correspondent Julia Set Jc. The Figures 3.1 and 3.2

illustrate this idea. They have been taken from [12].

3.3 Post-critically finite self-similar sets

In this chapter we will define the Post-critically finite sets. Solomyak explored the

posibility to consider this property as an analogue of the Misiurewicz points.
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Figure 3.4: Let c = −0.2282 + 1.1150i. At the left, the Julia set Jc, on the right,
there is Mq around c.

Figure 3.5: Let c = −0.1011 + 0.9563i. At the left, the Julia set Jc, on the right,
there is Mq around c.

Definition 23. Let π : {0, 1}∞ → Aλ the natural projection to the self-similar set given

by (2.3). A sequence (ai) such that π((ai)) = z is said to be an address of z ∈ Aλ.

Observe that an address is not necessarily unique due to overlapping, as it is possible

for some z ∈ λ to have more than one address, it is even possible to have more than a

countable number of addresses.

Definition 24. A self-similar set Aλ is said to be post-critically finite (p.c.f.) if

�
m≥1

σm((π−1(Iλ))

is a finite non-empty set, where σ is the shift map defined as in (1.4).
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In other words, if Aλ is p.c.f., the set Iλ is “small”, and for every z ∈ Iλ has finitely

many addresses, each of which is eventually periodic.

Definition 25. We define the filled self-similar set Aλ as the self-similar set correspondent

to the IFS {ϕ1,ϕ2,ϕ3} where

ϕ3(z) = λz − 1.

Figure 3.6: For λ ≈ 0.574 + 0.369i, Aλ is a p.c.f. self-similar set. At the left, Aλ, at
the right, M around λ.

We may say that the set Aλ does not look similar to that portion of M, but the asymp-

totic similarity occurs between Aλ and M. The Figures (3.5) and (3.6) illustrate why

the λs for which Aλ is p.c.f. are candidates to be the analogous to the Misiurewicz points.

For λ ∈ M let

Figure 3.7: At the left, Aλ, at the right, M around λ.
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Fλ = {f ∈ B : f(λ) = 0},

which is not empty, by the definition of M. We keep in mind that we are looking for

p.c.f. Aλ. Solomyak asks if it is true that Fλ is a singleton whenever Aλ is p.c.f. and

gives a partial answer.

Lemma 3. If λ ∈ M and |Iλ| ≤ 2, then Fλ is a singleton. Moreover

1. |Iλ| = 1 if and only if Fλ = {fλ}, with fλ having all coefficients in {−1, 1}.

2. |Iλ| = 2 if and only if Fλ = {fλ}, with fλ having exactly one zero coefficient.

Proof:

1(⇒) Suppose that Iλ = {z}. Let

f(z) = 1 +
∞�

i=1

biz
i, (3.1)

s(z) = −z +
1

1− λ

We want to prove that bi ∈ {−1, 1}. From (3.1), we define

zλ := 1 +
∞�

i≥1:bi=1

λi =
∞�

i≥1:bi=−1

λi (3.2)

Observe that zλ ∈ Iλ because it has two addresses, exist n ∈ N such that bn = 0,

then zλ + λn ∈ Iλ, which is a contraction.

Now, we show that Fλ = {f}. Assume that f, g,Fλ, this means that f and g

have coefficients in {−1, 1} and constant term 1. We define

h = 1
2
(f + g),

as f(λ) = g(λ) = 0, then, h(λ) = 0, then h ∈ Fλ and h has coefficients in {−1, 1}
which implies that the coefficients of f and g are equal.

2(⇒) Now suppose that Iλ = {z1, z2}. Then Iλ is a 2-cycle for the map s, therefore

z1 + z2 = 1/(1− λ) = z. Let f be like (3.1). By (3.2), we obtain that zλ ∈ Iλ and
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2zλ = 1 +
�

i≥1:bi �=0

λi = 2z − �
i≥1:bi=0

λi.

If bi ∈ {−1, 1} for all n, then zλ = z, but z �= z1, z2, which contradicts that

|Iλ| = 2. On the other hand, if bn = 0 for some n ≥ 1, then zλ, zλ + λn ∈ Iλ, hence

{zλ, zλ + λn} = {z1, z2} and z2 − z1 = λn, which implies that such n is unique.

If there is another function g ∈ Fλ, it must have a unique zero coefficient at λn.

Then h = 1
2
(f + g) ∈ Fλ as well, and it also has a unique zero coefficient at λn,

therefore f = g.

(⇐) Suppose that Fλ = {fλ}, and let z ∈ Iλ. Then z has two representations in power

series,

z = 1 +
∞�
i=1

aiλ
i =

∞�
i=1

a�iλi

for some ai, a
�
i ∈ {0, 1}, and for the Proposition 5 we know that

f(z) = 1 +
∞�
i=1

biλ
i = 1 +

∞�
i=1

(ai − a�i).

Wherever bi ∈ {−1, 1}, the coefficients ai, a
�
i are uniquely determined. This implies

that |Iλ| = 1 if bi ∈ {−1, 1} for all i ∈ N, otherwise, if there exists exactly one

an = 0, then we get two choices for ai, a
�
i, hence |Iλ| = 2.

�

Through the following lemma Solomyak proved that far from the real axis, there exist

parameters such that the sets Aλ and M are asymptotically similar.

Lemma 4. Suppose that f ∈ B and f(λ0) = 0, for some λ /∈ R with |λ0| ≤ 2−1/2. Then

there exist C1 > 0 and K ∈ N such that for all n ≥ K, for every h(z) =
�∞

i=0 aiz
i such

that

g(z) := f(z) + znh(z) ∈ B,

there is a unique λ1 ∈ DC1|λ0|n(λ0) which satisfies g(λ1) = 0, and moreover,

λ1 ∈ DC1n|λ0|2n

�
λ0 −

λ0
n

f �(λ0)
h(λ0)

�
.
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Proof: Notice that g(z) has coefficients bounded by modulus 2. We have f(λ0) = 0

with |λ0| ≤ 2−1/2, and we want to estimate a zero of g close to λ0 for large n. Let

c1 = 40|λ0||f �(λ0)|−1. First, we use Rouche’s theorem to show that g has a unique zero

in Dc1|λ0|n(λ0) for n sufficiently large. Note that

ζ0 := λ0 − g(λ0)/g
�(λ0)

is the unique zero p(z) := g(λ0) + g�(λ0)(z − λ0).

We have

|g(λ0)| = |h(λ0)||λ0|n ≤ 2(1− |λ0|)−1|λ0|n < 2(1− 0.8)−1|λ0|n = 10|λ0|n.

Next,

|g�(λ0)| = |f �(λ0) + nλn−1
0 h(λ0) + λn

0h
�(λ0)| ≥ 1

2
|f �(λ0)|

for n sufficiently large, since f �(λ0) �= 0. Thus

|ζ0 − λ0| = |g(λ0)/g
�(λ0)| ≤ 20|λ0|n|f �(λ0)|−1 = c1/2.

On {z : |z − λ0| = c1} we have

|p(z)| ≥ |g�(λ0)||z − λ0|− |g(λ0)|
≥ (1

2
|f �(λ0)|)(40|f �(λ0)|)−1 − 10|λ0|n)

= 10|λ0|n.

Since |λ0| ≤ 2−1/2, the disk Dc1|λ0|n(λ0) is contained in D0.8 for n sufficiently large, and

in this disc g is analytic and satisfies

|g��(z)| ≤ 4(1− |z|)−3 ≤ L,

where L = 22 · 53. Then, by Taylor’s theorem,

|g(z)− p(z)| ≤
�
L

2

�
|z − λ0|2, (3.3)
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for z ∈ Dc1|λ0|n(λ0) and n sufficiently large. Also

�
L

2

�
|z − λ0|2 =

�
L

2

�
c21|λ0|2n

on {z : |z − λ0| = c1}, which is smaller than 10|λ0|n for large n. Thus, Rouche’s theorem

yields a unique λ1 ∈ Dc1|λ0|n(λ0) such that g(λ1) = 0. Using (3.3) for z = λ1, we obtain

|g(λ1)− g(λ0)− g�(λ0)(λ1 − λ0)| ≤
�
L

2

�
|λ1 − λ0|2,

and since
|λ1 −

�
λ0 − λn

0

g�(λ0)
h(λ0)

�
| = |λ1|−

�
λ0 − g(λ0)

g�(λ0)

�
|

≤ (2|g�(λ0)|)−1L|λ1 − λ0|2
≤ |f �(λ0)|−1Lc21|λ0|2n.

(3.4)

Now, observe that

|(g�(λ0))
−1 − (f �(λ0))

−1| =
|nλn−1

0 h(λ0)+λnh�(λ0)|
|f �(λ0)g�(λ0)|

≤ 2|nλn−1
0 h(λ0)+λnh�(λ0)|

|f �(λ0)|2

≤ c2n|λ0|n

for some c2 > 0. Combining this with (3.4) yields

λ1 ∈ Dc3n|λ0|2n

�
λ0 −

λn
0h(λ0)

f �(λ0)

�

for some c3 > 0.

�

Theorem 3.1. Suppose that λ0 ∈ M\ R with |λ0| ≤ 2−|/2, is such that Fλ0 = {f},

f(z) = ql(z) +
bl+1z

l+1 + · · ·+ bl+pz
l+p

1− zp
, (3.5)

where ql(z) = 1 +
�l

i=1 biz
i. Then f �(λ0) �= 0, and

1. M about λ0 and (λl+1
0 /f �(λ0))Aλ0 about −ql(λ0)/f

�(λ0) are asymptotically similar;

2. Aλ0 is λ−p
0 − self similar about −ql(λ0)/λ

l+1
0 , ql(λ0)/λ

l+1
0 ;

3. M is asymptotically λ−p
0 − self similar about λ0.
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In order to prove the theorem, denote

φ(z) =
bl+1 + bl+2z + · · ·+ bl+pz

l+p

1− zp
, (3.6)

so that f(z) = ql(z) + zl+1φ(z) and 0 = ql(λ0) + zl+1φ(λ0) and

ζ = φ(λ0).

Moreover

ζ = −ql(λ0)

λl+1
0

. (3.7)

Since bi ∈ {−1, 0, 1}, we have

ζ = Φ(λ0) ∈ Aλ0 .

By compactness, it follows that

∃r0 > 0 : ∀z ∈ Aλ0 ∩Dr0(ζ) (3.8)

for every address of z which starts with (bl+1 . . . bl+p).

Proof:

1. From the definition of asymptotic similarity consider r = 1, that is to say, the disk

of radius 1. It is enough to show that for any ε > 0, for t ∈ C, with |t| large enough,
we have

t(M− λ0) ⊂ t

�
λl+1
0

f �(λ0)
(Aλ0 + ζ)

�
+Dε

and

t

�
λl+1
0

f �(λ0)
(Aλ0 + ζ)

�
∩Dt ⊂ t(M− λ0) +Dε.

2. We claim that

(λ−p
0 (Aλ0 − ζ))ρ = (Aλ0 − ζ)ρ (3.9)

where ρ = r0|λ0|−p. Observe that Aλ0 is symmetric about 0, the self similarity

about ζ will imply self similarity about −ζ.
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Let ξ ∈ (Aλ0 − ζ)ρ. We can assume that ξ = z − ζ for some z ∈ Aλ0 . By (3.6) and

(3.7) we have,

ξλp
0 = λp

0z + ζ(1− λp
0) = bl+1 + · · ·+ bl+pλ

p−1
0 + λp

0z ∈ Aλ0 ,

hence, ξ ∈ (λ−p
0 (Aλ0 − ζ))ρ, therefore, (λ

−p
0 (Aλ0 − ζ))ρ ⊃ (Aλ0 − ζ)ρ.

Conversely, suppose that ξ is in the left hand side of (3.8) and |ξ| < ρ. Then

z = λp
0ξζ ∈ Aλ0 , hence z ∈ Aλ0 ∩Dr0(ζ). By (3.8) this implies that z = bl+1 + · · ·+

bl+pλ
p−1
0 + λp

0ω for some ω ∈ Aλ0 . Then

ξ + ζ =
z − ζ

λp
0

+ ζ =
z − ζ(1− λp

0)

λp
0

= ω ∈ Aλ0 ,

which means that ξ ∈ (Aλ0 − ζ)ρ, therefore, (λ
−p
0 (Aλ0 − ζ))ρ ⊂ (Aλ0 − ζ)ρ.

�



Conclusions

In this work we studied the Mandelbrot set for a pair of linear maps: we saw its defini-

tion and some properties, where the asymptotic similarity was of our particular interest.

As we mentioned, we look for a complete result about this property, that is to say, an

equivalent for Tan Lei’s theorem.

One purpose of working in this set is to stablish a dictionary between the classic Man-

delbrot set and this Mandelbrot set. In Chapter 2 and Chapter 3 we discussed some of

the work done in this way, but there still work to do, for example:

• There is not notion of external rays in this set.

• A characterization of the boundary.

• Hausdorff dimension of the boundary.

• An equivalent to Misiurewicz points.

49
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