

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIAS DE LA TIERRA INSTITUTO DE GEOFÍSICA MODELACIÓN MATEMÁTICA Y COMPUTACIONAL

MODELADO DE LA RESPUESTA DE RESISTIVIDAD ELÉCTRICA DE UN CASO DE GEOMETRÍA REGULAR DE ESTRUCTURAS 3D, USANDO FUNCIONES DE GREEN

T E S I S QUE PARA OPTAR POR EL GRADO DE MAESTRO EN CIENCIAS

P R E S E N T A: HÉCTOR OCTAVIO AUGUSTO HERNÁNDEZ CONTRERAS

DIRECTORA DE TESIS: DRA. ELSA LETICIA FLORES MÁRQUEZ INSTITUTO DE GEOFÍSICA, UNAM

CIUDAD UNIVERSITARIA C.D. DE MÉXICO, AGOSTO DE 2018

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Dedicatoria

A mis padres, que han sacrificado mucho por darnos lo que ellos no tuvieron.

A Liz y a mis hermanas Jimena y Adriana.

Agradecimientos

A la Universidad Nacional Autónoma de México, que me ha hecho crecer como profesional y como persona, la educación es el mayor regalo que he recibido en la vida.

A la Dra. Leticia Flores Márquez, quien me aconsejó con mucha paciencia y estuvo muy al pendiente de cada paso en este trabajo, una verdadera madre académica.

A mi comité de evaluación semestral: Dr. René Chávez Segura y Dr. Andrés Tejero Andrade quienes estuvieron aportando consejos y recomendaciones desde el primer semestre.

Al Dr. Ambrosio Aquino López y al Dr. José Manuel Romo Jones por sus comentarios y correcciones.

Al Consejo Nacional de Ciencia y Tecnología (CONACYT), sin su apoyo no hubiese sido posible este proyecto.

Al Posgrado en Ciencias de la Tierra y especialmente al Instituto de Geofísica que me ha tolerado desde hace ya mucho tiempo.

ÍNDICE.

1 Introducción.	4
1.1 Planteamiento del Problema.	4
1.2 Justificación.	4
1.3 Hipótesis.	5
1.4 Objetivos.	5
2 Bases Teóricas	6
2.1 Ecuaciones Básicas.	7
2.2 Potencial de una Fuente Puntual.	8
2.3 Dispositivo Eléctrico y Tipo de Arreglos1	.0
2.4 La ecuación Diferencial Parcial1	.3
2.5 Función Potencial en un Semi-espacio Heterogéneo1	.6
2.6 Weak Scattering1	.7
3 Implementación Numérica	.9
3.1 Implementación del Algoritmo	.9
3.2 Cálculo de la Resistividad Aparente. 2	2
3.3 Profundidad de Investigación	2
4 Integración Numérica2	<u>'</u> 4
4.1 Cuadratura Gaussiana2	24
4.2 Cubatura para Integrales Volumétricas2	26
5 Desarrollo del Algoritmo	29
5.1 Diagrama de Flujo3	0
5.2 Descripción del Programa3	\$1
6 Ejemplos Sintéticos y Casos Reales	\$7
6.1 Bloque resistivo	57
6.2 Bloque Conductor	50
6.3 Varios cuerpos en el medio6	;3
6.4 Análisis de resultados para los datos sintéticos7	'5
6.5 Ejemplo con datos reales7	'6
6.6 Análisis de resultados para los casos reales8	\$5
Conclusiones y Recomendaciones8	6
Bibliografía	8
Anexos	0

1 Introducción.

Existen, en la interpretación de información geoeléctrica, diferentes métodos para reconstruir la respuesta de resistividad aparente dado un modelo o una serie de datos sintéticos, es decir, un modelado directo. Estos métodos consisten en resolver la ecuación de Poisson que es una ecuación diferencial parcial (PDE), esta PDE usualmente se resuelve mediante los métodos de diferencias finitas, elemento finito o ecuaciones integrales.

Una limitante importante en los métodos integrales es la complejidad del medio y la geometría de los cuerpos que se encuentran en ese medio. Para reducir este problema se propone una hipótesis acerca de la interacción de estos cuerpos con el medio como es el Weak Scattering (Eskola, 1992), o dispersión débil en la cual se desprecian las corrientes secundarias generadas en los cuerpos debido a la presencia del campo principal.

En este trabajo se emplea el método propuesto por Hvozdara y Kaikkonen (1998), que consiste en interpretar la respuesta de un cuerpo de conductividad no uniforme en un semiespacio homogéneo bajo el supuesto que el medio presenta dispersión débil.

1.1 Planteamiento del Problema.

Aplicando las funciones de Green para resolver la EDP de Poissson con condiciones de frontera, se puede generar un algoritmo que reproduzca la respuesta eléctrica del subsuelo mediante el modelado directo.

Se examina un caso real, con datos tomados en campo, y se compara con los datos sintéticos del algoritmo propuesto, modelando los cuerpos con dimensiones y características electromagnéticas semejantes a las del modelo obtenido por la inversión.

1.2 Justificación.

La creación de un modelo digital ayuda a entender las características electromagnéticas de un sitio en particular, puede usarse para probar la posible respuesta de un arreglo electródico específico o comparar con un caso similar en otra localización. El modelado que se plantea realizar es de bajo consumo de recursos computacionales, lo que permite una implementación relativamente sencilla. 1.3 Hipótesis.

El modelado directo de la respuesta geoeléctrica DC para cuerpos 3D puede realizarse mediante las funciones de Green gracias al método de la integral de volumen (MIV) donde únicamente se utiliza la corriente primaria para calcular el potencial eléctrico y se asume que las corrientes eléctricas secundarias son despreciables, efecto conocido como "dispersión débil".

1.4 Objetivos.

- Desarrollar un algoritmo computacional, en ambiente Matlab[®], que permita simular la respuesta de resistividad eléctrica de un semi-espacio con heterogeneidades, dadas por cuerpos de geometría regular, utilizando funciones de Green.

- Demostrar que esta técnica de modelado directo puede reproducir la respuesta de casos particulares, sintéticos y aplicados, que se corroboran con los modelos realizados con paquetes comerciales.

- Validar el modelo realizado con datos reales de un sitio de prueba.

${f 2}$ Bases Teóricas.

En la prospección geoeléctrica se estudia, a través de mediciones realizadas en la superficie, la disposición y magnitud de la resistividad en el subsuelo. La resistividad en este medio está afectada por diferentes factores, tanto geológicos como físicos y químicos; como es, el contenido mineral, la porosidad, el fluido que contienen los poros, la temperatura, la presión, y la salinidad si el fluido que contienen los poros es agua.

La forma en la que se mide esta propiedad electromagnética es inyectando una corriente eléctrica en el medio. Se considera que el subsuelo es un *semi-espacio* de resistividad p, la otra parte o el otro *semi-espacio*, corresponde a la superficie y es de resistividad infinita. Se clavan en el suelo dos electrodos A y B, los cuales, se conectan a un generador o batería, la corriente saldrá por A en dirección al subsuelo y regresará por B para cerrar el circuito **Figura 2.1**.

El comportamiento de las corrientes eléctricas que recorren el subsuelo puede modelarse matemáticamente mediante una ecuación diferencial parcial EDP, asumiendo un semiespacio homogéneo y de resistividad constante, como se explica a continuación. 2.1 Ecuaciones Básicas.

Partiendo de las ecuaciones de Maxwell:

$$\nabla \times E = -\frac{\partial B}{\partial t} \qquad (2.1.1)$$
$$\nabla \times H = J + \frac{\partial D}{\partial t} \qquad (2.1.2)$$
$$\nabla \cdot J = -\frac{\partial q}{\partial t} \qquad (2.1.3)$$

Donde:

E: Intensidad de ampo eléctrico

B: Inducción magnética

H: Intensidad de campo magnético

J: Densidad de corriente eléctrica

D: Desplazamiento eléctrico

q: Densidad de carga eléctrica

 σ : Conductividad

La ley de Ohm para medios isótropos es:

$$J = \sigma E \qquad (2.1.4)$$

Que nos dice que la densidad de corriente J en un punto, tiene la misma dirección y sentido que el campo E en el mismo punto y es proporcional a él y es en proporción a la conductividad σ . La ecuación (2.1.3) es conocida como la ecuación de continuidad.

Al tratarse de un campo estacionario, las derivadas temporales son iguales a cero, es decir:

$$abla \times E = 0$$
 (2.1.5)
 $abla \times H = J$ (2.1.6)
 $abla \cdot J = 0$ (2.1.7)

La ecuación de continuidad (2.1.7) se cumplirá en todos los puntos del semi-espacio, excepto en los electrodos (Orellana, 1982). La ecuación (2.1.5) nos dice que el campo es irrotacional o conservativo, entonces deriva de un potencial *U*:

$$E = -\nabla U \qquad (2.1.8)$$

Si existe una fuente puntual, es decir un electrodo clavado en el suelo y conectado a un generador o batería, las ecuaciones que rigen el comportamiento son:

$$\nabla \times E = 0$$
$$\nabla \cdot \sigma E = I\delta \qquad (2.1.9)$$

De manera particular, si la conductividad es constante, entonces podemos reescribir 2.1.9 como:

$$\nabla \cdot E = I\rho\delta \qquad (2.1.10)$$

Donde $\rho = 1/\sigma$ y δ es la función delta de Dirac. De (2.1.8) se tiene entonces que:

$$\nabla^2 U = -I\rho\delta \qquad (2.1.11)$$

En caso de no existir fuente puntual se tiene:

$$\nabla^2 U = 0 \qquad (2.1.12)$$

expresión conocida como la ecuación de Laplace.

2.2 Potencial de una Fuente Puntual.

Por lo general la fuente de la corriente es un electrodo clavado en el suelo, es decir en (x_s, y_s, z_s) , y se considera una fuente puntual, **figura 2.2**, la corriente se comporta como se describe a continuación.

Combinando la ecuación de Ohm (2.1.4) con la de continuidad (2.1.7), se tiene que:

$$\nabla \cdot J = \nabla \cdot (\sigma E) = 0 \qquad (2.2.1)$$

Desarrollando la ecuación (2.2.1) se llega a

$$\nabla \cdot (\sigma E) = \sigma \nabla \cdot E + E \cdot \nabla \sigma = -\sigma \nabla \cdot \nabla U + E \cdot \nabla \sigma = -\sigma \nabla^2 U + E \cdot \nabla \sigma = 0$$
(2.2.2)

De nuevo, si asumimos una zona de conductividad uniforme se tiene que $\nabla \sigma = 0$ y llegamos a la misma expresión que (2.1.12), es decir, $\nabla^2 U = 0$

Figura 2.2: Flujo de corriente de una Fuente puntual en la superficie, y la distribución del potencial.

Para un caso simple con un subsuelo que se considera homogéneo, una sola fuente puntual, y un potencial que es inversamente proporcional a la distancia de la fuente, la superficie equipotencial tiene la forma de una semi-esfera, y el flujo de la corriente es perpendicular a esta superficie. El potencial en este caso está dado por (Loke, 2004):

$$U(r) = \frac{\rho l}{2\pi r} \qquad (2.2.3)$$

Donde r es la distancia que existe entre un punto en el medio, y la fuente.

2.3 Dispositivo Eléctrico y Tipo de Arreglos.

La medición del potencial eléctrico se realiza mediante el dispositivo eléctrico. Este dispositivo está constituido principalmente por un electrodo por donde "entra" la corriente al semi-espacio y otro en donde se mide el potencial, como se puede deducir al observar la **figura 2.2**. Dado que se puede medir el potencial, y el parámetro que se desea conocer es la resistividad del medio, a partir de la ecuación (2.2.3) se puede obtener la siguiente expresión:

$$\rho = 2\pi r \frac{U}{I} \qquad (2.3.1)$$

Esta expresión se puede reescribir de la siguiente manera:

$$\rho = k \frac{U}{I} \qquad (2.3.2)$$

Donde $k = 2\pi r$ se conoce también como el factor geométrico, y está asociado directamente con la disposición y el número de electrodos que constituyen el dispositivo eléctrico o arreglo, de manera que, este factor geométrico es específico del arreglo empleado.

Existen diferentes tipos de arreglos, pero el más común es el de cuatro electrodos, **figura 2.3**, en donde se mide la diferencia de potencial entre dos puntos con dos electrodos en la superficie M y N, y dos electrodos de corriente A y B. Para este tipo de arreglos, el factor geométrico queda de la siguiente forma:

$$k = \frac{2\pi}{\frac{1}{AM} - \frac{1}{BM} - \frac{1}{AN} + \frac{1}{BN}}$$
(2.3.3)

Conociendo los valores de corriente y potencial, se puede obtener una *resistividad aparente* (ρ_a) .

$$\rho_a = k \frac{\Delta U}{I} \qquad (2.3.4)$$

Donde ΔU es la diferencia de potencial entre M y N.

El valor registrado en superficie por cualquier tipo de arreglo no es la resistividad real del punto de atribución, sino una resistividad aparente. Dado que en la realidad el subsuelo no es homogéneo, no se registrará el valor de la resistividad real en un punto, sino un valor que dependerá de los diferentes valores de resistividad del medio y de la distancia entre electrodos, este valor no es un promedio ni una media ponderada de las otras resistividades. Mediante la inversión puede encontrarse la relación que existe entre la resistividad real y la aparente.

Figura 2.3: Modelo básico de un dispositivo eléctrico de 4 electrodos (cuadripolo); A y B, electrodos de corriente; M y N, electrodos de potencial.

Los siguientes, son los cuatro arreglos más comunes en la exploración geofísica:

i) Wenner-Schlumberger: Considerado un híbrido de los dos arreglos que componen su nombre¹; consta de cuatro electrodos, dos de corriente y dos de potencial, **figura 2.4 a)**, su factor geométrico es:

$$k = \pi n(n+1)a$$
 (2.3.5)

La separación entre electrodos se indica con la letra a. El factor n es un valor positivo que, en la mayoría de los casos, es entero.

ii) Dipolo-Dipolo: También consta de 4 electrodos, dos de corriente y dos de potencial, pero se agrupan los electrodos de corriente en un extremo, y los de potencial en el otro extremo del arreglo, **figura 2.4 b)**, su factor geométrico es:

$$k = \pi n(n+1)(n+2)a \qquad (2.3.6)$$

iii) Polo-Dipolo: Esta configuración posee 3 electrodos, uno de corriente y dos de potencial **figura 2.4 c)**, su factor geométrico es:

$$k = 2\pi n(n+1)a \qquad (2.3.7)$$

iv) Polo-Polo: Es un arreglo con sólo dos electrodos, uno de potencial y uno de corriente, **figura 2.4 d)**, su factor geométrico queda definido como:

$$k = 2\pi a$$
 (2.3.8)

¹ El arreglo Wenner posee la misma distancia *a* entre electrodos con factor $k = 2\pi a$. Si se asigna el valor 1 al factor n en el arreglo Wenner-Schlumberger, este se convierte en un arreglo Wenner. En el arreglo Schlmberger sólo se desplazan los electrodos de corriente en que se encuentran en los extremos.

Figura 2.4: Cuatro de los arreglos más comunes.

Como puede observarse, existen una gran cantidad de posibles configuraciones, el número y disposición de los electrodos, depende básicamente del tipo de estudio y de las condiciones de la exploración. Szalai y Szarka (2008), clasifican los arreglos según tres parámetros ambivalentes: "superposición" de las mediciones, "enfoque" de las corrientes y "colinealidad", lo que genera 8 clases de arreglos con alrededor de 100 configuraciones documentadas. Los arreglos aquí mostrados corresponderían a la clase 1 (no superpuestos, no enfocados, colineales). La **tabla 2.1** muestra las diferentes clases mencionadas.

Clase	Parámetros	Código Asignado	Ejemplo
I	No superpuestos, no enfocados, colineales.	(1-1-1)	Schlumberger, Wenner, polo- dipolo, dipolo-dipolo.
II	No superpuestos, no enfocados, no colineales.	(1-1-m)	Dipolo ecuatorial, dipolo axial.
111	No superpuestos, enfocados, colineales.	(1-m-1)	Unipolo Wenner, Unipolo Schlumberger.
IV	Superpuestos, no enfocados, colineales.	(m-1-1)	Lee, Lee asimétrico, Schlumberger de doble y triple profundidad.
V	No superpuestos, enfocados, no colineales.	(1-m-m)	CED, doble, triple y cuádruple laterolog.
VI	Superpuestos, no enfocados, no colineales.	(m-1-m)	Cuadripolo-cuadripolo, Schlumberger tensorial.
VII	Superpuestos, enfocados, colineales.	(m-m-1)	Trielectrodo C.
VIII	Superpuestos, enfocados, no colineales.	(m-m-m)	-

Tabla 2.1: Clasificación de arreglos electródicos propuesta por Szalai y Szarka (2008).

2.4 La ecuación Diferencial Parcial.

Suponiendo un semi-espacio homogéneo para una Tierra 3D con una serie de inhomogeneidades como se muestra en la **figura 2.5**, si se inyecta corriente en el punto A, se generará un campo eléctrico que creará corrientes de conducción en dichas inhomogeneidades.

Para un semi-espacio 3D, no homogéneo, con una resistividad $\rho(\bar{r})$, el potencial eléctrico producido por una fuente puntual en la superficie z=0, se puede expresar de la siguiente manera, (Tejero, 2002).

$$\nabla \cdot \left[\frac{\nabla U(\bar{r})}{\rho(\bar{r})} \right] = -I\delta(\bar{r}) \qquad z \ge 0 \qquad (2.4.1)$$

Donde $\delta(\bar{r})$ es la función impulso y \bar{r} es la distancia entre la fuente y el punto de observación. Con las siguientes condiciones de frontera.

.

$$\frac{\partial U(\bar{r})}{\partial(z)} = 0; \qquad z = 0 \qquad (2.4.2)$$
$$U(\bar{r}) = 0 \text{ Cuando } \bar{r} \rightarrow \infty \text{ y } z \ge 0$$

Una solución para el potencial $U(\bar{r})$ se puede obtener gracias a la primera identidad de Green en una región delimitada por una semi-esfera como la de la **figura 2.6**, esta solución es:

$$\int_{v} U(\bar{r}') \nabla^2 v(\bar{r}') dv = -\int_{v} \nabla' U(\bar{r}) \cdot \nabla' v(\bar{r}') dv + \oint_{s} U(\bar{r}') \nabla' v(\bar{r}') \cdot \bar{\eta} ds \qquad (2.4.3)$$

Figura 2.5: Semi-espacio con heterogeneidades. A es la posición de la fuente, M posición donde se mide el potencial, (Modificado de Tejero, 2002)

La integral de superficie puede dividirse en dos partes, la parte correspondiente a la superficie S_0 y otra correspondiente a S_r tomando como referencia la **figura 2.6**, es decir:

$$\oint_{s} U(\bar{r}) \nabla' v(\bar{r'}) \cdot \bar{\eta} ds = \int_{S_0} U(\bar{r}) \nabla' v(\bar{r'}) \cdot \bar{\eta} ds_0 + \int_{S_r} U(\bar{r}) \nabla' v(\bar{r'}) \cdot \bar{\eta} ds_r \qquad (2.4.4)$$

Dadas las condiciones del problema, sabemos que, si r tiende al infinito, el potencial es igual a cero, de esta forma podemos representar la solución tomando en cuenta sólo la integral de superficie en S_0

$$\int_{V} U(\bar{r}') \nabla^2 v(\bar{r}') dV = -\int_{V} \nabla' U(\bar{r}) \cdot \nabla' v(\bar{r}') dV + \oint_{s_0} U(\bar{r}') \nabla' v(\bar{r}') \cdot \overline{\eta} ds_0 \qquad (2.4.5)$$

Se puede sustituir *v* por la función de Green para un problema con fronteras tipo Neumann, es decir:

$$\nabla^2 G(\overline{r}, \overline{r}') = -\delta(\overline{r}, \overline{r}') \quad z > 0 \qquad (2.4.6)$$
$$\frac{\partial G(\overline{r}, \overline{r}')}{\partial \overline{\eta}} = 0 \quad z = 0 \qquad (2.4.7)$$

Donde \bar{r}' está relacionado con un sistema de coordenadas local y, \bar{r} está relacionado con un sistema de coordenadas global.

Figura 2.6: Región encerrada por las superficies S₀ y S_r

Una función de Green que satisfaga esta ecuación no puede existir pues viola la segunda identidad de Green, Tejero (2002). Esta identidad es:

$$\int_{V} [G\nabla^{2}v - v\nabla^{2}G]dV = \oint_{S} \left(G\frac{\partial v}{\partial n} - v\frac{\partial G}{\partial n}\right)dS \qquad (2.4.8)$$

Si en esta ecuación v es una función unitaria constante, tenemos:

$$\int_{V} \delta(\bar{r}, \bar{r}') dV = -\oint_{S} \frac{\partial G}{\partial n} dS \qquad (2.4.9)$$

Para dar solución al problema se hace uso de funciones de Green generalizadas. Donde $G = \frac{1}{4\pi r}$

2.5 Función Potencial en un Semi-espacio Heterogéneo.

A partir de la función de Green generalizada, la función potencial $U(\bar{r})$ se puede determinar de la primera identidad de Green, ecuación (2.4.3), (Tejero, 2002):

$$U(\bar{r}) = \int_{v} \nabla' U(\bar{r}) \cdot \nabla' G(\bar{r}, \bar{r}') dv - \oint_{s} U(\bar{r}') \nabla' G(\bar{r}, \bar{r}') \cdot \overline{n} d\bar{s} \qquad (2.5.1)$$

El gradiente de la función de Green se expresa como (Tejero, 2002):

$$\nabla' G = \frac{1}{4\pi} \left[\frac{(x-x')\overline{i} + (y-y')\overline{j} + (z-z')\overline{k}}{[(x-x')^2 + (y-y')^2 + (z-z')^2]^{3/2}} + \frac{(x-x')\overline{i} + (y-y')\overline{j} - (z+z')\overline{k}}{[(x-x')^2 + (y-y')^2 + (z+z')^2]^{3/2}} \right] + k\overline{k'}$$
(2.5.2)

El valor normal del gradiente evaluado en la frontera z' = 0 es:

$$\nabla' G \cdot \overline{\eta} = -k \qquad (2.5.3)$$

donde $k = \frac{1}{\int_{s} ds}$ es el inverso de la superficie que es de extensión infinita, por lo tanto, k es igual a cero.

igual a cero.

Al sustituir las ecuaciones (2.6.3) y (2.6.2) en (2.6.1), la función potencial se puede expresar de la siguiente manera

$$U(\overline{r}) = -\frac{1}{4\pi} \int_{V} \overline{E}(\overline{r}) \cdot \left[\frac{(x-x')\overline{i} + (y-y')\overline{j} + (z-z')\overline{k}}{[(x-x')^{2} + (y-y')^{2} + (z-z')^{2}]^{\frac{3}{2}}} + \frac{(x-x')\overline{i} + (y-y')\overline{j} - (z+z')\overline{k}}{[(x-x')^{2} + (y-y')^{2} + (z+z')^{2}]^{\frac{3}{2}}} \right] dV - \left[\frac{1}{4\pi} \int_{V} E_{z}(\overline{r}) dV \right] k + k \int_{s} U(\overline{r}) ds \qquad (2.5.4)$$

Recordando que $\nabla' U(\overline{r}') = -\overline{E}(\overline{r})$; y si k = 0, entonces, se simplifican dos de las integrales quedando el potencial de la siguiente forma:

$$U(\overline{r}) = -\frac{1}{4\pi} \int_{V} \overline{E}(\overline{r}) \cdot \left[\frac{(x-x')\overline{i} + (y-y')\overline{j} + (z-z')\overline{k}}{[(x-x')^{2} + (y-y')^{2} + (z-z')^{2}]^{\frac{3}{2}}} + \frac{(x-x')\overline{i} + (y-y')\overline{j} - (z+z')\overline{k}}{[(x-x')^{2} + (y-y')^{2} + (z+z')^{2}]^{\frac{3}{2}}} \right] dV \quad (2.5.5)$$

De la ley de Ohm, ecuación (2.1.4), se expresa el campo eléctrico como:

$$\rho(\overline{r})\overline{J}(\overline{r}) = \overline{E}(\overline{r}) \qquad (2.5.6)$$

Sustituyendo la ecuación (2.6.6) en (2.6.5), se obtiene la expresión del potencial en la superficie producido por una fuente puntual, en un semi-espacio heterogéneo.

$$U(\overline{r}) = -\frac{1}{4\pi} \int_{v} \rho(\overline{r}) \overline{J}(\overline{r}) \cdot \left[\frac{(x-x')\overline{i} + (y-y')\overline{j} - (z-z')\overline{k}}{[(x-x')^{2} + (y-y')^{2} + (z-z')^{2}]^{3/2}} + \frac{(x-x')\overline{i} + (y-y')\overline{j} - (z+z')\overline{k}}{[(x-x')^{2} + (y-y')^{2} + (z+z')^{2}]^{\frac{3}{2}}} \right] dv \quad (2.5.7)$$

El problema con la ecuación (2.5.7), es que no se conocen las corrientes secundarias generadas por la interacción de las inhomogeneidades en el medio y por lo tanto se desconoce el valor total de $\overline{J}(\overline{r})$. En el siguiente subtema se propone una solución a este problema.

2.6 Weak Scattering.

Si se considera que las corrientes secundarias son despreciables con respecto a las corrientes primarias, es decir: $\overline{J}_s(\overline{r}) \ll \overline{J}_p(\overline{r})$, se puede obtener una expresión mucho más sencilla para el potencial de la ecuación (2.5.7). Esta consideración es denominada Dispersión Débil o Weak Scattering (Eskola, 1992).

Se puede expresar el potencial considerando que las corrientes secundarias son despreciables, es decir que el potencial medido en la superficie es producto solo de las corrientes primarias, de esta forma se tiene:

$$U(\overline{r}) = -\frac{1}{4\pi} \int_{V} \rho\left(\overline{r'}\right) \overline{J_{p}}\left(\overline{r'}\right) \cdot \left[\frac{(x-x')\overline{i} + (y-y')\overline{j} - (z-z')\overline{k}}{\left[(x-x')^{2} + (y-y')^{2} + (z-z')^{2}\right]^{\frac{3}{2}}} + \frac{(x-x')\overline{i} + (y-y')\overline{j} - (z+z')\overline{k}}{\left[(x-x')^{2} + (y-y')^{2} + (z+z')^{2}\right]^{\frac{3}{2}}} \right] dv \quad (2.6.1)$$

Si la fuente se ubica en z=0 entonces:

$$U(\bar{r}) = -\frac{1}{2\pi} \int_{v} \rho(\bar{r}') \bar{J}_{p}(\bar{r}') \cdot \left[\frac{(x-x')\hat{\iota} + (y-y')\hat{j} + (z')\hat{k}}{\left[(x-x')^{2} + (y-y')^{2} + (z')^{2}\right]^{\frac{3}{2}}} \right] dv \qquad (2.6.2)$$

La ecuación (2.6.2) determina el potencial en z=0, que es producido por una fuente puntual que también se coloca en el mismo plano, y es válida para una Tierra 3-D y cuando las corrientes de conducción secundarias son despreciables.

 $\overline{J_p}(\overline{r})$ es el vector de corrientes de la fuente para un electrodo puntual con coordenadas $(x_s, y_s, 0)$. De la ecuación de continuidad para campos estacionarios se tiene que $\oint_v \nabla \cdot \overline{J_p}(\overline{r}) dv = 0$; entonces si la corriente total entra por el punto de coordenadas de la fuente y el balance de las corrientes que entran y salen de una superficie semi-esférica con centro en la fuente se mantiene igual a cero, se tiene que:

$$\oint_{Sr} \nabla \cdot \overline{J_p}(\bar{r}) dv = \int_{Sr} \overline{J_p}(\bar{r}) \cdot d\bar{S_r} = I \qquad (2.6.3)$$

De esta ecuación para $z_s = 0$ se llega a:

$$\bar{J}_p(\bar{r}) = \frac{I}{2\pi} \left[\frac{(x - x_s)\hat{\iota} + (y - y_s)\hat{j} + (z)\hat{k}}{[(x - x_s)^2 + (y - y_s)^2 + (z)^2]^{3/2}} \right]$$
(2.6.4)

Sustituyendo la ecuación (2.7.4) en (2.7.2), el potencial queda expresado para puntos (x, y, 0) y coordenadas de fuente $(x_s, y_s, 0)$ como:

$$U(\bar{r}) = -\frac{I}{4\pi^2} \int_{v} \left[\frac{(x'-x_s)(x-x') + (y'-y_s)(y-y') - {z'}^2}{\left[(x'-x_s)^2 + (y'-y_s)^2 + {z'}^2 \right]^{\frac{3}{2}} \left[(x-x')^2 + (y-y')^2 + {z'}^2 \right]^{\frac{3}{2}}} \rho(x',y',z') \right] dv$$
(2.6.5)

Donde (x_s, y_s) son las coordenadas de la fuente, bajo un sistema de referencia fijo (x, y) o de campo; (x', y') es el sistema de referencia móvil o coordenadas de cuerpo y son las variables de la integración, ambos sistemas de coordenadas serán explicados en el siguiente capítulo. La ecuación (2.6.5) se puede usar para calcular el potencial producido por una fuente puntual colocada en cualquier punto sobre el plano z=0. Esta ecuación, además, cumple con el principio de superposición.

3 Implementación Numérica.

La forma de resolver el problema de modelado directo para la respuesta de resistividad eléctrica es mediante la resolución de la EDP de Poisson. Una forma de resolver la ecuación es mediante el empleo de diferencias finitas, este método ha sido de ayuda, sobre todo en problemas del tipo 2D, como los trabajos de: Mufti (1976), Dey y Morrison (1979), Spitzer (1995) y Loke y Barker (1996). Otra forma de obtener la solución es mediante el uso del elemento finito, bajo este esquema se tienen ejemplos como los trabajos de: Coggon (1971), Fox, Hohmann, Killpack y Rijo (1980), Pridmore, Hohmann, Ward y Sill (1980), Sasaki (1994), Tsourlous y Ogilvy (1999), Li y Spitzer (2002, 2005), Marescot, Lopes, Rigobert y Green (2008), y Ren y Tang (2010). Finalmente, la EDP puede resolverse, también, mediante el uso de ecuaciones integrales como en los trabajos de: Snyder (1976), Eskola (1992), Pérez (1995), Pérez, Méndez y Gómez (2001), León (2004) y Pidlisecky, Haber y Knight (2007).

La heterogeneidad del medio y la geometría de los cuerpos en el semi-espacio ha sido una limitante importante para la técnica de la ecuación integral y, para el empleo de diferencias finitas y elemento finito, la desventaja es que se obtienen sistemas de ecuaciones lineales muy grandes que consumen muchos recursos computacionales.

Gracias a que se hace la hipótesis de que las corrientes secundarias son despreciables (problema del week scattering o dispersión débil) (Eskola, 1992; Hvozdara & Kaikkonen, 1998), la ecuación integral se convierte en una opción viable para el modelado, incluso con cuerpos de geometría compleja.

3.1 Implementación del Algoritmo.

En el capítulo anterior se mencionan dos sistemas de coordenadas para la ecuación (2.6.5); a continuación, se define la relación que existe entre un sistema y otro.

Se establece el origen del sistema de referencia móvil en el centro geométrico del prisma; este es llamado el "Sistema de Coordenadas Local". El sistema de referencia fijo es denominado "Sistema de Coordenadas Global". La transformación entre ambos sistemas se define asumiendo un punto arbitrario P en el espacio; su vector de posición en términos del Sistema de Coordenadas Global es \overline{r} ; y \overline{r}' , es su vector de posición en términos del Sistema de Coordenadas Local. La relación entre ambos sistemas queda determinada por el vector \overline{r}_a como se muestra en la **figura 3.1**. $\overline{r} = \overline{r}' + \overline{r}_a \qquad (3.1.1)$

Donde $\overline{r} = (x, y, z), \overline{r}' = (x', y', z'), y \overline{r}_a = (x_a, y_a, z_a)$ (Flores et al, 2015)

Dado que se manejan dos sistemas de coordenadas, es conveniente dejar todo expresado en términos de un solo sistema para su implementación computacional. Siguiendo la transformación de la ecuación (3.1.1), un punto **p** con coordenadas (x_p, y_p, z_p) quedaría como:

$$(x_p, y_p, z_p) = (x'_p, y'_p, z'_p) + (x_a, y_a, z_a) = (x'_p + x_a)\hat{\imath} + (y'_p + y_a)\hat{\jmath} + (z'_p + z_a)\hat{k}$$
(3.1.2)

Figura 3.1: Relación entre el Sistema de Coordenadas Global y el Sistema de Coordenadas Local, (El origen del sistema de coordenadas local coincide con el centro del prisma).

Realizando los respectivos cambios de coordenadas en la ecuación (2.6.5), se tiene:

$$U(\bar{r}) = -\frac{I}{4\pi^2} \int_{\nu} \left[\frac{(x' - x'_{cs})(x'_p - x') + (y' - y'_{cs})(y'_p - y') - (z' + z_a)^2}{\left[(x' - x'_{cs})^2 + (y' - y'_{cs})^2 + (z' + z_a)^2 \right]^{\frac{3}{2}} \left[(x'_p - x')^2 + (y'_p - y')^2 + (z' + z_a)^2 \right]^{\frac{3}{2}} \rho(x', y', z') \right] d\nu \quad (3.1.3)$$

Donde (x'_{cs}, y'_{cs}) son las coordenadas en superficie de la fuente o electrodo de corriente, (x'_p, y'_n) son las coordenadas en superficie del electrodo de potencial.

Asumiendo cuerpos heterogéneos aislados inmersos en el semi-espacio, se tiene el siguiente contraste de resistividades

$$\Delta \rho = \rho_c - \rho_m \qquad (3.1.4)$$

Donde ρ_c es la resistividad del cuerpo o prisma y ρ_m la resistividad del medio. Dado que, para el problema directo, ambos valores de resistividad son conocidos, $\Delta \rho$ puede salir de la integral como una constante.

$$U(\bar{r}) = -\frac{I}{4\pi^2} \Delta \rho(x', y', z') \int_{v} \left[\frac{(x' - x'_{cs})(x'_p - x') + (y' - y'_{cs})(y'_p - y') - (z' + z_a)^2}{\left[(x' - x'_{cs})^2 + (y' - y'_{cs})^2 + (z' + z_a)^2 \right]^{\frac{3}{2}} \left[(x'_p - x')^2 + (y'_p - y')^2 + (z' + z_a)^2 \right]^{\frac{3}{2}} \right] dv \quad (3.1.5)$$

Dado que el potencial es una magnitud aditiva, si se tienen varias fuentes, habrá que sumar algebraicamente los potenciales respectivos, (Orellana, 1982).

$$U = \frac{\rho}{2\pi} \sum \frac{I_i}{r_i} \qquad (3.1.6)$$

donde r_i es la distancia del manantial de índice i al punto considerado, e I_i la intensidad de corriente que entra o sale por él, con su signo correspondiente; principio conocido como superposición.

Usando el principio de superposición, se suman las contribuciones de los efectos que genera cada electrodo de corriente sobre cada uno de los electrodos de potencial. Con electrodos de corriente A y B, y electrodos de potencial M y N, con lo que se tiene:

$$\Delta U_{N}^{M} = \frac{|I|}{4\pi^{2}} \Delta \rho \int_{V} \left[-\left[\frac{(x' - x'_{cs})(x'_{p} - x') + (y' - y'_{cs})(y'_{p} - y') - (z' + z_{a})^{2}}{[(x' - x'_{cs})^{2} + (y' - y'_{cs})^{2} + (z' + z_{a})]^{\frac{3}{2}} [(x'_{p} - x')^{2} + (y'_{p} - y')^{2} + (z' + z_{a})^{2}]^{\frac{3}{2}} \right]_{AM} + \frac{(x' - x'_{cs})(x'_{p} - x') + (y' - y'_{cs})(y'_{p} - y') - (z' + z_{a})^{2}}{[(x' - x'_{cs})^{2} + (y' - y'_{cs})^{2} + (z' + z_{a})]^{\frac{3}{2}} [(x'_{p} - x')^{2} + (y'_{p} - y')^{2} + (z' + z_{a})^{2}]^{\frac{3}{2}}} \right]_{BM} + \frac{(x' - x'_{cs})(x'_{p} - x') + (y' - y'_{cs})(y'_{p} - y') - (z' + z_{a})^{2}}{[(x' - x'_{cs})^{2} + (y' - y'_{cs})^{2} + (z' + z_{a})]^{\frac{3}{2}} [(x'_{p} - x')^{2} + (y'_{p} - y')^{2} + (z' + z_{a})^{2}]^{\frac{3}{2}}} \right]_{AN} - \frac{(x' - x'_{cs})(x'_{p} - x') + (y' - y'_{cs})(y'_{p} - y') - (z' + z_{a})^{2}}{[(x' - x'_{cs})^{2} + (y' - y'_{cs})^{2} + (z' + z_{a})]^{\frac{3}{2}} [(x'_{p} - x')^{2} + (y'_{p} - y')^{2} + (z' + z_{a})^{2}]^{\frac{3}{2}}} \right]_{AN}}{\left[(x' - x'_{cs})^{2} + (y' - y'_{cs})^{2} + (z' + z_{a})]^{\frac{3}{2}} [(x'_{p} - x')^{2} + (y'_{p} - y')^{2} + (z' + z_{a})^{2}]^{\frac{3}{2}} \right]_{AN}} \right] dV \quad (3.1.7)$$

Gracias a la ecuación (3.1.7) es posible calcular la diferencia de potencial de manera numérica.

3.2 Cálculo de la Resistividad Aparente.

Una vez obtenidos los valores de la diferencia de potencial, podrá definirse el valor de la resistividad aparente, recordar q: $\rho = 2\pi R \frac{U(r)}{I}$ o $\rho = k \frac{\Delta U}{I}$

El potencial puede ser expresado como la suma de los efectos generados por el semiespacio y el cuerpo, despejando la resistividad a partir de la ecuación (2.2.3), se puede obtener la resistividad aparente de la siguiente forma:

$$\rho_a = \rho_m + k \frac{\Delta U_N^M}{I} \qquad (3.2.1)$$

3.3 Profundidad de Investigación.

Para determinar la profundidad a la que se encuentra el punto de asignación, se emplea la "profundidad media de investigación" (z_e), propuesta por Edwards (1977) y Barker (1991), esta profundidad se obtiene gracias a la función de sensibilidad y la derivada de Fréchet (McGillivray & Oldenburg, 1990).

Esta profundidad depende del tipo de arreglo, la abertura total de este, y el número de niveles de la configuración. Para determinar la profundidad máxima, simplemente se multiplica la longitud total del arreglo L, o la abertura máxima entre electrodos **a**, por el factor correspondiente según la **tabla 3.1**.

Tipo de Arreglo	z _e /a	z _e /L
Wenner	0.519	0.173
Dipolo-Dipolo		
n=1	0.416	0.139
n=2	0.697	0.174
n=3	0.962	0.192
n=4	1.220	0.203
n=5	1.476	0.211
n=6	1.730	0.216
n=7	1.983	0.220
n=8	2.236	0.224
Wenner-Schlumberger		
n=1	0.519	0.173
n=2	0.925	0.186
n=3	1.318	0.189
n=4	1.706	0.190
n=5	2.093	0.190
n=6	2.478	0.191
n=7	2.863	0.191
n=8	3.247	0.191
n=9	3.632	0.191
n=10	4.015	0.191
Polo-Dipolo		
n=1	0.519	
n=2	0.925	
n=3	1.318	
n=4	1.706	
n=5	2.093	
n=6	2.478	
n=7	2.863	
n=8	3.247	
Polo-Polo	0.867	

Tabla 3.1: Coeficientes para calcular la profundidad media de investigación Z_e para diferentes arreglos. L es la longitud total del arreglo, (Modificado de Edwards, 1977).

4 Integración Numérica.

4.1 Cuadratura Gaussiana.

El objetivo de la integración numérica es aproximar el valor de una integral definida en un intervalo [a, b] para una función f(x). Haciendo uso de la interpretación geométrica de la integral definida como el área bajo la curva, se busca evaluar la función en ciertos puntos para generar uno o más polígonos que aproximen esta área. Mathews y Fink (2000), definen la integración numérica de la siguiente forma:

Supongamos que $a = x_0 < x_1 < \cdots < x_M = b$

$$Q[f] = \sum_{k=0}^{M} w_k f(x_k) = w_0 f(x_0) + w_1 f(x_1) + \dots + w_M f(x_M)$$
(4.1.1)

Una integral definida tiene la siguiente fórmula:

$$\int_{a}^{b} f(x) \, dx = Q[f] + E[f] \qquad (4.1.2)$$

Se llama fórmula de integración numérica o de cuadratura; el término E[f] se llama error de truncamiento de la fórmula; los valores $\{x_k\}_{k=0}^M$ se llaman nodos de integración o nodos de cuadratura y los valores $\{w_k\}_{k=0}^M$ se llaman pesos de la fórmula.

Dependiendo del problema o de la función a integrar es como se eligen los nodos de integración, por ejemplo, para los métodos de Newton-Cotes, o sea, regla del trapecio, regla de Simpson, regla de tres octavos de Simpson, etc. Se eligen estos nodos de forma equiespaciada lo que resulta relativamente sencillo de implementar en un algoritmo computacional, sin embargo, es de esperar que para polinomios de orden mayor estos métodos tendrán errores significativos de truncamiento.

En la Cuadratura Gaussiana los nodos que se utilizan, por lo general², son las raíces de los polinomios de Legendre. Esto permite que se escoja de manera óptima los puntos en que será evaluada la función representando mejor el área bajo la curva.

² Existen cuadraturas que usan como nodos las raíces de otros polinomios como: Chebyshev, Hermite, etc. y pueden ser consideradas Cuadraturas Gaussianas también.

Existe una forma general de la Cuadratura Gaussiana de N nodos, esta es:

$$G_N(f) = w_{N,1}f(x_{N,1}) + w_{N,2}f(x_{N,2}) + \dots + w_{N,N}f(x_{N,N})$$
(4.1.3)

Esta regla general para N nodos es exacta para funciones polinomiales de grado menor o igual que 2N-1, (Mathews & Fink, 2000).

No es necesario calcular, cada vez que se requiera, los pesos y las raíces necesarios para una cuadratura de N nodos, estos ya se han calculado previamente por diferentes autores y en la literatura especializada se pueden encontrar una gran cantidad de tablas. Los pesos y nodos que se emplean están definidos en un intervalo de [-1,1] por lo tanto para poder usarlos en un intervalo arbitrario [a, b] es necesario realizar un cambio de variables.

La transformación se realiza de la siguiente forma:

$$t = \frac{a+b}{2} + \frac{b-a}{2}x \quad con \quad dt = \frac{b-a}{2}dx \quad (4.1.4)$$

y la relación

$$\int_{a}^{b} f(t)dt = \int_{-1}^{1} f\left(\frac{a+b}{2} + \frac{b-a}{2}x\right)\frac{b-a}{2}dx \qquad (4.1.5)$$

Nos da la fórmula de cuadratura

$$\int_{a}^{b} f(t)dt = \frac{b-a}{2} \sum_{k=1}^{N} w_{N,k} f\left(\frac{a+b}{2} + \frac{b-a}{2} x_{N,k}\right)$$
(4.1.6)

Se ha mencionado que la cuadratura de N nodos es exacta para polinomios de grado menor o igual a 2N-1. Normalmente las fórmulas de cuadratura se escogen de esta manera, para ser exactas sobre cierto tipo o conjunto de funciones. El concepto de Cuadratura Gaussiana puede entonces, generalizarse de la siguiente manera.

Una regla de cuadratura es una expresión de la forma

$$T_n(\varphi) = \sum_{i=1}^n \omega_i \cdot \varphi(x_i) \qquad (4.1.7)$$

donde $\omega: [a, b] \to R^1$ es una función no negativa conocida como la función de peso, $\varphi: [a, b] \to R^1$ es una función de una clase preseleccionada, y $x_i \in [a, b]$ para toda i = 1, 2, ..., 2n. Los puntos x_i son los nodos de la fórmula de cuadratura. Aunque la expresión **4.1.7** se considera una aproximación a la integral. Normalmente las fórmulas de cuadratura se desarrollan para ser exactas en ciertos tipos de funciones, más comúnmente, polinomios de un orden máximo m. Supongamos que

$$\{\varphi_1, \varphi_2, \dots, \varphi_{2n}\}$$
 (4.1.8)

es un conjunto de funciones integrables $[a, b] \rightarrow R^1$. Se dice que la regla de cuadratura de n nodos **4.1.7** es Gaussiana con respecto al sistema **4.1.8** si y sólo si este integra de manera exacta todas las funciones de **4.1.8**. En otras palabras, una regla Gaussiana es una regla de n puntos que es exacta para 2n funciones preseleccionadas. (Ma, Rokhlin & Wandzura, 1993).

4.2 Cubatura para Integrales Volumétricas.

En el subtema 4.1 se muestra una fórmula general para la Cuadratura Gaussiana, esta fórmula nos permite evaluar integrales en dominios de integración unidimensionales³. Para evaluar integrales en dominios de integración de dimensión n (n>=2) se han desarrollado los métodos denominados cubaturas. Existen muchos tipos de cubaturas desarrollados específicamente para integrales volumétricas pero la mayoría de estas son para cuerpos geométricos específicos, simples y sin caras curvas.

En el algoritmo propuesto en este estudio, se hace uso de un método relativamente nuevo de cubatura desarrollado por Jayan y Nagaraja (2015). Este método presenta una fórmula general que permite evaluar integrales triples sobre dominios como cubos, tetraedros, prismas, pirámides, o cualquier otra región acotada con caras planas o curvas.

Se utilizan los puntos de cuadratura unidimensionales publicados por Ma et al. (1993), que asigna un conjunto de nodos y pesos como mejor aproximación para un conjunto específico de funciones.

Se establece la integral que se desea evaluar como

$$I = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \int_{h_{1}(x,y)}^{h_{2}(x,y)} f(x,y,z) dz dy dx \qquad (4.2.1)$$

Se transforma el dominio de integración

$$\Omega = \{(x, y, z) | a \le x \le b, g_1(x) \le y \le g_2(x), h_1(x, y) \le z \le h_2(x, y)\}$$
(4.2.2)

a un cubo unitario de 0 a 1 en el espacio ξ , η , γ

$$C = \{(\xi, \eta, \gamma) | 0 \le \xi \le 1, 0 \le \eta \le 1, 0 \le \gamma \le 1\}$$
(4.2.3)

³ De hecho, el nombre de cuadratura es una analogía con el significado geométrico de la integral de una función con una variable.

usando la transformación

$$x = (b - a)\xi + a \qquad (4.2.4)$$

$$y = [g_2(x(\xi)) - g_1(x(\xi))]\eta + g_1(x(\xi)) \qquad (4.2.5)$$

$$z = [h_2(x(\xi), y(\xi, \eta)) - h_1(x(\xi), y(\xi, \eta))]\gamma + h_1(x(\xi), y(\xi, \eta)) \qquad (4.2.6)$$

x es función de ξ , y es función de ξ , η y z es función de ξ , η y γ

El Jacobiano de la transformación queda como

$$|J| = (b-a) \left[g_2(x(\xi)) - g_1(x(\xi)) \right] \left[h_2(x(\xi), y(\xi, \eta)) - h_1(x(\xi), y(\xi, \eta)) \right] > 0$$
(4.2.7)

Después de transformar la región de integración a un cubo unitario y de aplicar la fórmula de Cuadratura Gaussiana para cada integral se obtiene la fórmula para la integral propuesta de la siguiente manera:

$$I[f] = \int_{\Omega} f(x, y, z) d\Omega \qquad (4.2.8)$$
$$= \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} f(x(\xi), y(\xi, \eta), z(\xi, \eta, \gamma)) |J| d\gamma \, d\eta \, d\xi \qquad (4.2.9)$$
$$\approx \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} w_{1}^{i} w_{2}^{j} w_{3}^{k} |J| f\left(x(\xi_{i}), y(\xi_{i}, \eta_{j}), z(\xi_{i}, \eta_{j}, \gamma_{k})\right) \qquad (4.2.10)$$
$$\approx \sum_{m=1}^{N^{3}} c_{m} f(x_{m}, y_{m}, z_{m}) \qquad (4.2.11)$$

donde

$$c_{m} = w_{1}^{i} w_{2}^{j} w_{3}^{k} (b-a) [g_{2}(x(\xi)) - g_{1}(x(\xi))] [h_{2}(x(\xi), y(\xi, \eta)) - h_{1}(x(\xi), y(\xi, \eta))]$$
(4.2.12)
$$x_{m} = (b-a)\xi_{i} + a$$
(4.2.13)
$$y_{m} = [g_{2}(x(\xi_{i})) - g_{1}(x(\xi_{i}))]\eta_{j} + g_{1}(x(\xi_{i}))$$
(4.2.14)
$$z_{m} = [h_{2}(x(\xi_{i}), y(\xi_{i}, \eta_{j})) - h_{1}(x(\xi_{i}), y(\xi_{i}, \eta_{j}))]\gamma_{k} + h_{1}(x(\xi_{i}), y(\xi_{i}, \eta_{j}))$$
(4.2.15)

 ξ_i, η_j, γ_k son los nodos en (0,1) y $w_1^i w_2^j w_3^k$ son sus correspondientes pesos en una dimensión. cualquiera de los nodos y pesos de la Cuadratura Gaussiana pueden sustituirse en la fórmula. (Jayan & Nagaraja, 2015).

Dado que los límites de integración en la transformación quedan definidos como funciones, se puede integrar sobre un gran número de regiones incluso con curvas, sólo debe emplearse la función que describa la forma de la región proyectada sobre el eje correspondiente. Por ejemplo, un tetraedro quedaría definido como:

 $a = 0, b = a, g_1 = 0, g_2 = a - x, h_1 = 0, h_2 = a - x - y$ la región quedaría entonces como

$$T = \{(x, y, z) | 0 \le x \le a, 0 \le y \le a - x, 0 \le z \le a - x - y\}$$
(4.2.16)

entonces

$$I = \int_{0}^{a} \int_{0}^{a-x} \int_{0}^{a-x-y} f(x, y, z) \, dz \, dy \, dx \approx \sum_{m=1}^{N^{3}} c_{m} f(x_{m}, y_{m}, z_{m}) \tag{4.2.17}$$

donde

$$c_m = w_1^i w_2^j w_3^k (b-a)(d-c)(f-e)$$

$$x_m = a\xi_i$$

$$y_m = a(1-\xi_i)\eta_j$$

$$z_m = a(1-\xi_i - \eta_j + \xi_i\eta_j)\gamma_k$$

Hemos visto que es posible aplicar el método de cubatura para la evaluación de una integral de volumen definida. El problema que se aborda en este trabajo requiere la evaluación de varias integrales de este tipo, la cantidad de integrales a evaluar depende del número de electrodos en el arreglo (3.1.7) y de la cantidad de puntos evaluados (cuadripolos), y los límites de integración dependen de la forma y dimensiones del cuerpo inmerso en el medio.

Hablando en términos de costo computacional, la cantidad de cuadripolos, que resulten de un arreglo, es la que tiene el mayor impacto en el desempeño del algoritmo que se describe en el siguiente capítulo.

${f 5}$ Desarrollo del Algoritmo.

La aproximación que se tomará para modelar la respuesta eléctrica en este estudio es similar a la planteada por Flores, Tejero, León, Arango, y Chávez (2015), consiste en simular un prisma de geometría regular con una resistividad ρ_b , ubicado dentro del semi-espacio homogéneo de resistividad ρ_m , se hace la hipótesis de que las corrientes secundarias son despreciables y se emplea el método de integración volumétrica (VIM) a partir de la ecuación (3.1.7).

5.1 Diagrama de Flujo.

30

5.2 Descripción del Programa.

El programa "Volume Integral Model of the Electric Response" (VIMER Anexo A1) fue desarrollado en ambiente de Matlab[®] y diseñado para trabajar sin necesidad de importar o exportar archivos desde y hacia otras aplicaciones, los resultados se visualizan inmediatamente después de que se termina de procesar la información, esta visualización consiste en una pseudosección. Cabe mencionar que toda la información se ingresa al programa mediante ventanas.

En la **figura 5.1**, se muestra el diagrama de flujo del algoritmo, este diagrama muestra la secuencia lógica del programa en general. Este modelo fue diseñado para trabajar con cuerpos de caras planas paralelas.

Figura 5.2: Ventana de inicio del programa.

Se inicia con un mensaje de bienvenida al programa, **figura 5.2** (**Msg Anexo A2**). A continuación, aparece la primera ventana en donde se ingresan los datos correspondientes al tipo de arreglo, **figura 5.3** (**Arreglo Anexo A3**), la orientación de este, el número de electrodos y la separación entre estos. En el campo Tipo de Arreglo se introduce un número del 1 al 4 dependiendo del tipo de arreglo que se desee, los números asignados a cada tipo de arreglo son: 1, Wenner-Schlumerger; 2, Dipolo-Dipolo; 3, Polo-Dipolo; y 4, Polo-Polo. En el campo "Factor n" se introduce la cantidad de subniveles que se desee.

🚮 Lín — 🗆 🗙
Número de Electrodos:
48
Distancia Entre Electrodos m]:
3
Ángulo de la Línea:
90
lipo de Arregio:
1
Factor n:
1
OK Cancel

Figura 5.3: Ventana "Arreglo", se define la disposición de los electrodos y el tipo de arreglo (Anexo A3).

Como se mencionó en el capítulo 2, este método establece dos sistemas de coordenadas: SCR y SCC, pero para presentar las imágenes de manera más comprensible y determinar la posición de los cuerpos de forma más amigable para quien ejecute el programa, el usuario considerará como origen de coordenadas al primer electrodo en la superficie, a partir del cual, se "tiende" todo el arreglo, este origen no tiene ninguna intervención en el cálculo de la diferencia de potencial, es simplemente un arreglo para facilitar la interfaz.

Figura 5.4: Parámetros que definen la línea de electrodos, el primer electrodo es considerado el origen de coordenadas para la interfaz con el usuario.

El sistema de coordenadas es como se muestra en la **figura 5.4**, con *z* creciendo hacia arriba, x en dirección oeste a este, e y va de sur a norte. Las longitudes están definidas en metros [m], los ángulos en grados con decimales [°] y las resistividades en ohm-metro [Ω m]. El ángulo que determina la orientación del "tendido" se toma con respecto del eje y. Una vez que se han ingresado todos los parámetros del arreglo, se ingresa la posición y resistividad del primer cuerpo a modelar, así como la resistividad del medio. La posición se determina asignando las coordenadas en (x, y) del centro geométrico del cuerpo y la profundidad es la distancia que existe entre la superficie y el techo o cara superior del cuerpo, se ingresan las dimensiones: alto (eje z), largo (eje x), y ancho (eje y), **figura 5.5** (**Geom Anexo A4**).

🚮 Di — 🗇 🗙
Coordenada en x[m]:
0
Coordenada en y[m]:
0
Alto (z)[m]:
6
Largo (y)[m].
24
Ancho (x)[m]:
24
Profundidad [m]:
6
Resistividad del medio [ohmm]:
10
Resistividad del cuerpo [ohmm]:
4274
OK Cancel

Figura 5.5: Ventana "Cuerpo1", se ingresan las características y geometría del primer cuerpo a modelar (Geom Anexo A4).

Una vez ingresados los datos, se ejecuta la función "Elect" (Anexo A5) que asigna a cada electrodo su respectiva coordenada según el sistema SCR.

Según el tipo de arreglo que se haya elegido, se ingresa a uno de los cuatro casos mostrados en el diagrama de flujo y, según corresponda, se ejecuta una de las siguientes funciones: Caso 1, "WS" (Wenner-Schlumberger, Anexo A6); Caso 2, "DD" (Dipolo-Dipolo, Anexo A7); Caso 3, "PD" (Polo-Dipolo, Anexo A8); Caso 4, "PP" (Polo-Polo, Anexo A9), que generan un arreglo en donde se guarda, mediante índices asignados a cada electrodo, la secuencia correspondiente. Después, se ingresa a un ciclo en donde, dependiendo del número de electrodos para el tipo de arreglo seleccionado, se ejecutan las secciones de código "Kernel4e" (Anexo A10), "Kernel3e" (Anexo A11) ó "Kernel2e" (Anexo A12), que calculan la diferencia de potencial para arreglos de 4, 3, o 2 electrodos respectivamente para cada punto de atribución.

Dentro de estas secciones de código, se establecen los vectores de posición de cada electrodo y punto de medición, esto se consigue con la información generada en "Elect" y con la ejecución de las funciones "CGWS" (Anexo A13), "CGDD" (Anexo A14), "CGPD" (Anexo A15), "CGPP" (Anexo A16) para los casos 1, 2, 3 y 4 respectivamente, estas funciones son los generadores de coordenadas (x,y,z) de cada punto de atribución, en z se calcula según la profundidad media de investigación Ze (Edwards, 1977).

También, dentro de las secciones Kernel, se calcula la integral de volumen según la ecuación (3.1.7) con la función "**Cubatura**" (**Anexo A17**), esta función toma como parámetros los límites de integración determinados por las dimensiones del cuerpo, según se explicó en el capítulo 4, es decir, límites determinados por constantes. Se eligió evaluar la integral con 15 nodos y se escogió la familia de funciones: "Productos de Polinomios y Funciones Logarítmicas" publicada por Ma et al. (1993). La función **Cubatura** fue generada específicamente para evaluar esta integral en particular.

Los datos obtenidos se guardan en un arreglo de tamaño variable pues a continuación, se pregunta si se desea agregar otro cuerpo, **figura 5.6 (Geom2 Anexo A18**), este loop permite agregar tantos cuerpos como se desee, de ser el caso, se ingresan la posición y características del nuevo cuerpo. Al salir de este ciclo se suman las contribuciones de cada cuerpo a la respuesta eléctrica.
👅 D 🛛 —		×
Coordenada en x [m]:		
Coordenada on y [m]:		
0 Alto (z)[m]:		
Largo (y)[m]:	-	
Ancho (x)[m]: 6		
Profundidad [m]:		
7		
Resistividad del cuerpo [ohmm]:		
80		
OF	¢ 1	Cancel

Figura 5.6: Ventana "Cuerpo2", de ser el caso, se agregan las características de cuerpos adicionales, de esta forma, se pueden agregar tantos cuerpos como se desee (Geom2 Anexo A5).

Finalmente se ejecutan las funciones "sortn" (Anexo A19) e "imgmap2" (Anexo A20) que preparan la matriz, según el formato que necesita Matlab, para ejecutar su función de imagen de contornos "contourf", esta función es la que permite que se desplieguen los datos sin necesidad de exportar los mismos a un interpolador. Para hacer esto posible, la función "imgmap2" hace uso del método "Image Thikening", es decir, se "dilata" un pixel de la imagen hacia adelante, hacia abajo y en diagonal para facilitar la interpolación pues la matriz es rala, figura 5.7.

Figura 5.7: Ejemplo de dilatación de una imagen digital.

La acción de dilatar un elemento de la matriz no reemplaza los puntos calculados por el modelo porque se barre la imagen de arriba a abajo y de izquierda a derecha, de manera que, si un punto procedente del ensanchamiento queda en la misma posición que un punto calculado por el modelo, este último sobrescribe el dato anterior.

6 Ejemplos Sintéticos y Casos Reales.

En este capítulo se presenta la aplicación del modelo desarrollado a problemas característicos de respuesta de resistividad eléctrica. Los resultados de los ejemplos sintéticos se presentan en pseudosecciones representando la metodología de la tomografía de resistividad eléctrica (TRE) con los arreglos: Wenner-Schlumberger, Dipolo-Dipolo, Polo-Dipolo y Polo-Polo. Luego de obtener los resultados, se realiza una comparación, para cada ejemplo y cada arreglo, con los resultados obtenidos por el programa RES2DMOD de Geotomosoft, este, es un modelo directo en 2D que trabaja bajo el esquema de elemento finito.

Para realizar una comparación con un caso real, se toman los estudios de Barrera (2015), realizado en la delegación Xochimilco, y Urbieta (), en la delegación Álvaro Obregón, ambos en la Ciudad de México.

6.1 Bloque resistivo.

Se modela un bloque de 500 Ω m de resistividad en un medio de 10 Ω m, a medio metro de profundidad **figura 6.1** con 2 metros de altura y 9 metros de ancho en x e y. El tendido consta de 36 electrodos con un metro de separación entre estos y pasa por el centro del bloque en la superficie.

Figura 6.1: Modelo de bloque resistivo

	RES2DMOD)		Algoritmo	
Dato	Pos (x)	ρa [Ωm]	Dato	Pos (x)	ρa [Ωm]
1	1.5	9.9098	1	1.5	10.0135
2	2.5	9.9128	2	2.5	10.021
3	3.5	9.914	3	3.5	10.0338
4	4.5	9.9153	4	4.5	10.0567
5	5.5	9.9177	5	5.5	10.1005
6	6.5	9.9222	6	6.5	10.19
7	7.5	9.9317	7	7.5	10.3897
8	8.5	9.9544	8	8.5	10.8903
9	9.5	10.0174	9	9.5	12.3634
10	10.5	10.2351	10	10.5	17.8855
11	11.5	11.2899	11	11.5	45.1796
12	12.5	15.6751	12	12.5	98.8918
13	13.5	21.1132	13	13.5	172.0587
14	14.5	22.1626	14	14.5	222.5358
15	15.5	24.1271	15	15.5	245.5343
16	16.5	24.7648	16	16.5	248.0773
17	17.5	24.9188	17	17.5	250.8012
18	18.5	24.7648	18	18.5	251.5855
19	19.5	24.1271	19	19.5	247.2365
20	20.5	22.1626	20	20.5	223.9223
21	21.5	21.1132	21	21.5	172.5659
22	22.5	15.6751	22	22.5	98.8899
23	23.5	11.2899	23	23.5	45.1412
24	24.5	10.2351	24	24.5	17.8855
25	25.5	10.0174	25	25.5	12.3634
26	26.5	9.9544	26	26.5	10.8903
27	27.5	9.9317	27	27.5	10.3897
28	28.5	9.9222	28	28.5	10.19
29	29.5	9.9177	29	29.5	10.1005
30	30.5	9.9153	30	30.5	10.0567
31	31.5	9.914	31	31.5	10.0338
32	32.5	9.9128	32	32.5	10.021
33	33.5	9.9098	33	33.5	10.0135

Tabla 6.1. Datos obtenidos de resistividad aparente por ambos modelos (primer nivel, arreglo Wenner).

Figura 6.3. Comparación gráfica entre modelos para el primer nivel. Arreglo Wenner.

La **figura 6.2** muestra los resultados de ambos modelos; el algoritmo propuesto, y RES2DMOD, con un arreglo Wenner. Se observa que la pseudo-sección obtenida bajo el esquema de elemento finito (**6.2 b**), presenta valores de resistividad muy bajos, de 30 a 40 ohm metro, en comparación con el bloque que se modela. Por el contrario, el algoritmo propuesto obtiene valores de 250 a 300 ohm metro, estos resultados se muestran en la **figura 6.2 b**).

En la **tabla 6.1** se muestran los valores obtenidos por ambos modelos para el primer nivel y en la **figura 6.3** una comparación gráfica de ambos resultados. Resulta evidente que el modelo de RES2DMOD no refleja los valores de resistividad del bloque modelado. Es complicado decir cuál de los dos modelos es el más acertado pues no se posee una solución con datos reales del problema.

También debe señalarse que el software de RES2DMOD resuelve el problema en 2D y el algoritmo propuesto es para un esquema 3D, las dimensiones del bloque en y, para este ejemplo en particular, influyen de manera directa en la intensidad y forma de la anomalía. Lo que podría explicar la diferencia en las curvas de la gráfica de la **figura 6.3**.

l	RES2DMOD						
Dato	Pos (x)	ρa [Ωm]					
1	1.5	9.8736					
2	2.5	9.8716					
3	3.5	9.8707					
4	4.5	9.8695					
5	5.5	9.8676					
6	6.5	9.8637					
7	7.5	9.8553					
8	8.5	9.8351					
9	9.5	9.7806					
10	10.5	9.6108					
11	11.5	9.1127					
12	12.5	9.8009					
13	13.5	15.4116					
14	14.5	20.469					
15	15.5	19.1774					
16	16.5	18.6139					
17	17.5	18.4842					
18	18.5	18.6139					
19	19.5	19.1774					
20	20.5	20.469					
21	21.5	15.4116					
22	22.5	9.8009					
23	23.5	9.1127					
24	24.5	9.6108					
25	25.5	9.7806					
26	26.5	9.8351					
27	27.5	9.8553					
28	28.5	9.8637					
29	29.5	9.8676					
30	30.5	9.8695					
31	31.5	9.8707					
32	32.5	9.8716					
33	33.5	9.8736					

	Algoritmo						
Dato	Pos (x)	ρa [Ωm]					
1	1.5	9.9866					
2	2.5	9.9792					
3	3.5	9.9666					
4	4.5	9.944					
5	5.5	9.9011					
6	6.5	9.8143					
7	7.5	9.623					
8	8.5	9.1548					
9	9.5	7.8415					
10	10.5	3.483					
11	11.5	-8.7603					
12	12.5	49.2641					
13	13.5	182.4265					
14	14.5	236.1006					
15	15.5	221.0189					
16	16.5	212.2626					
17	17.5	202.3379					
18	18.5	208.715					
19	19.5	228.1958					
20	20.5	241.4638					
21	21.5	179.856					
22	22.5	48.2931					
23	23.5	-8.7284					
24	24.5	3.483					
25	25.5	7.8415					
26	26.5	9.1548					
27	27.5	9.623					
28	28.5	9.8143					
29	29.5	9.9011					
30	30.5	9.944					
31	31.5	9.9666					
32	32.5	9.9792					
33	33.5	9.9866					

Tabla 6.2. Datos obtenidos de resistividad aparente por ambos modelos (primer nivel arreglo, Dipolo-Dipolo).

Figura 6.5. Comparación gráfica entre modelos para el primer nivel. Arreglo Dipolo-Dipolo.

La **figura 6.4**, presenta los resultados al bloque resistivo con el arreglo Dipolo-Dipolo. De nuevo, **(6.4 b)** obtiene valores bajos de resistividad, del orden de 70 Ω m. En **(6.4 a)** se observan valores del orden de 300 ohm metro. Ambos resultados presentan formas similares en las isógonas.

La **tabla 6.2** muestra los datos obtenidos para el primer nivel del arreglo y la gráfica de la **figura 6.5** muestra una marcada diferencia en la magnitud de la resistividad. También podemos observar que la posición del cuerpo modelado es correcta en ambos modelos.

Figura 6.6: Resultados al ejemplo del bloque resistivo con arreglo Pipolo-Dipolo. a) Resultados del algoritmo. b) Resultados de RES2DMOD.

		`	[Algoritmo	
	RESZDIVIUL)			Algoritmo	
Dato	Pos (x)	ρa [Ωm]		Dato	Pos (x)	ρa [Ωm]
1	1	9.903		1	1	9.9485
2	2	9.9074		2	2	9.9275
3	3	9.9066		3	3	9.8954
4	4	9.9042		4	4	9.8443
5	5	9.9		5	5	9.7598
6	6	9.893		6	6	9.6132
7	7	9.8804		7	7	9.3444
8	8	9.8567		8	8	8.816
9	9	9.8075		9	9	7.6863
10	10	9.695		10	10	5.0068
11	11	9.4131		11	11	-2.0805
12	12	8.865		12	12	-15.0641
13	13	10.0191		13	13	59.5358
14	14	14.8516		14	14	179.3561
15	15	20.7031		15	15	238.1608
16	16	23.3342		16	16	252.3762
17	17	24.9188		17	17	252.486
18	18	26.1954		18	18	244.8898
19	19	27.551		19	19	249.9671
20	20	29.4736		20	20	270.4848
21	21	32.2072		21	21	287.1368
22	22	22.4852		22	22	212.8083
23	23	13.1668		23	23	92.363
24	24	10.7752		24	24	30.7643
25	25	10.2273		25	25	17.0405
26	26	10.0521		26	26	12.9646
27	27	9.983		27	27	11.435
28	28	9.9514		28	28	10.7667
29	29	9.9354		29	29	10.4412
30	30	9.9265		30	30	10.2692
31	31	9.9213		31	31	10.1722
32	32	9.9182		32	32	10.1145
33	33	9.9166		33	33	10.0786
			•			

Tabla 6.3. Datos obtenidos de resistividad aparente por ambos modelos (primer nivel, arreglo Polo-Dipolo).

Figura 6.7. Comparación gráfica entre modelos para el primer nivel. Arreglo Polo-Dipolo.

La **figura 6.6** muestra los resultados de ambos modelos, se aprecia una asimetría en la anomalía, propia del arreglo, los valores de resistividad en **6.6 b**) son mucho menores comparados con **6.6 a**). Estos valores pueden leerse mejor en la **tabla 6.3** que presenta valores de 20 a 30 Ω m para el modelo de RES2DMOD y de unos 250 Ω m para el algoritmo propuesto, estos valores corresponden a la ubicación del centro del bloque en el eje x.

En la gráfica de la **figura 6.7**, correspondiente al primer nivel del arreglo, se aprecia que el modelo propuesto es mucho más sensible a la presencia del bloque, definiendo bien la posición de este en el eje x.

	RES2DMO)	Ĩ		Algoritmo	
Dato	Pos (x)	ρa [Ωm]		Dato	Pos (x)	ρa [Ωm]
1	0.5	9.9651		1	0.5	10.1782
2	1.5	9.9722		2	1.5	10.2317
3	2.5	9.9768		3	2.5	10.3073
4	3.5	9.9825		4	3.5	10.4168
5	4.5	9.9911		5	4.5	10.5808
6	5.5	10.0043		6	5.5	10.8355
7	6.5	10.0255		7	6.5	11.2495
8	7.5	10.061		8	7.5	11.9606
9	8.5	10.1241		9	8.5	13.2701
10	9.5	10.2465		10	9.5	15.9093
11	10.5	10.5126		11	10.5	21.9261
12	11.5	11.1937		12	11.5	38.3485
13	12.5	13.3446		13	12.5	92.1004
14	13.5	19.5776		14	13.5	168.7564
15	14.5	28.2554		15	14.5	221.3691
16	15.5	32.6407		16	15.5	235.1465
17	16.5	34.7491		17	16.5	235.4123
18	17.5	35.3875		18	17.5	231.0585
19	18.5	34.7491		19	18.5	233.1718
20	19.5	32.6407		20	19.5	237.3288
21	20.5	28.2554		21	20.5	224.3393
22	21.5	19.5776		22	21.5	169.4509
23	22.5	13.3446		23	22.5	92.0443
24	23.5	11.1937		24	23.5	38.3485
25	24.5	10.5126		25	24.5	21.9261
26	25.5	10.2465		26	25.5	15.9093
27	26.5	10.1241		27	26.5	13.2701
28	27.5	10.061		28	27.5	11.9606
29	28.5	10.0255		29	28.5	11.2495
30	29.5	10.0043		30	29.5	10.8355
31	30.5	9.9911		31	30.5	10.5808
32	31.5	9.9825		32	31.5	10.4168
33	32.5	9.9768		33	32.5	10.3073

Tabla 6.4. Datos obtenidos de resistividad aparente por ambos modelos (primer nivel, arreglo Polo-Polo).

Figura 6.9. Comparación gráfica entre modelos para el primer nivel. Arreglo Polo-Polo.

En la **figura 6.8** se observan los resultados de ambos modelos para el arreglo Polo-Polo, además de la diferencia en la magnitud de los valores de resistividad aparente, se puede destacar la zona que se encuentra justo por debajo del bloque, en **6.8 b**) se obtienen valores de entre 40 y 50 Ω m, esto valores coinciden con los valores máximos alcanzados por el modelo RES2DMOD, es decir, la anomalía se "extiende" hacia la zona ubicada justo por debajo del bloque. En contraste, el algoritmo propuesto, **6.8 a**), obtiene una anomalía que "crece" hacia los lados y hacia abajo en forma diagonal y, en la zona que se encuentra justo por debajo del bloque, se obtienen los valores más bajos de resistividad aparente. Esta tendencia se puede apreciar en todos los arreglos.

La **tabla 6.4** muestra de manera numérica los resultados obtenidos por ambos modelos para el primer nivel del arreglo. Se observa la misma tendencia que en los modelos anteriores, valores de resistividad bajos para el modelo de Geotomosoft. La **figura 6.9** muestra la gráfica de estos valores, es evidente la mayor sensibilidad del algoritmo propuesto ante la presencia del bloque. Se muestra, también, el fenómeno descrito anteriormente; los valores de resistividad son menores en la zona central de la gráfica, lo que corresponde con la zona ubicada justo por debajo del bloque. 6.2 Bloque Conductor.

Se modela un bloque de geometría similar a la del caso anterior, pero con resistividad de 10 Ω m en un medio de 500 Ω m con 36 electrodos a un metro de separación entre estos, **figura 6.10**. El bloque se encuentra a 0.5 metros de profundidad y la línea de electrodos pasa por el centro del bloque, las dimensiones en x e y son de 9 metros, y posee 2 metros de alto.

Figura 6.10: Ejemplo de bloque conductor.

	RES2DMO)		Algoritmo	
Dato	Pos (x)	ρa [Ωm]	Dato	Pos (x)	ρa [Ωm]
1	1.5	495.1761	1	1.5	499.9865
2	2.5	495.2267	2	2.5	499.979
3	3.5	495.1352	3	3.5	499.9662
4	4.5	494.9705	4	4.5	499.9433
5	5.5	494.6988	5	5.5	499.8995
6	6.5	494.2296	6	6.5	499.81
7	7.5	493.3484	7	7.5	499.6103
8	8.5	491.4771	8	8.5	499.1097
9	9.5	486.7289	9	9.5	497.6366
10	10.5	470.728	10	10.5	492.1145
11	11.5	394.8878	11	11.5	464.8204
12	12.5	356.9975	12	12.5	411.1082
13	13.5	224.7854	13	13.5	337.9413
14	14.5	135.1656	14	14.5	287.4642
15	15.5	130.7683	15	15.5	264.4657
16	16.5	130.469	16	16.5	261.9227
17	17.5	130.424	17	17.5	259.1988
18	18.5	130.469	18	18.5	258.4145
19	19.5	130.7683	19	19.5	262.7635
20	20.5	135.1656	20	20.5	286.0777
21	21.5	224.7854	21	21.5	337.4341
22	22.5	356.9975	22	22.5	411.1101
23	23.5	394.8878	23	23.5	464.8588
24	24.5	470.728	24	24.5	492.1145
25	25.5	486.7289	25	25.5	497.6366
26	26.5	491.4771	26	26.5	499.1097
27	27.5	493.3484	27	27.5	499.6103
28	28.5	494.2296	28	28.5	499.81
29	29.5	494.6988	29	29.5	499.8995
30	30.5	494.9705	30	30.5	499.9433
31	31.5	495.1352	31	31.5	499.9662
32	32.5	495.2267	32	32.5	499.979
33	33.5	495.1761	33	33.5	499.9865

Tabla 6.5. Datos obtenidos de resistividad aparente por ambos modelos (primer nivel, arreglo Wenner).

Figura 6.12. Comparación gráfica entre modelos para el primer nivel. Arreglo Wenner.

La **figura 6.11** presenta los resultados de ambos métodos, RES2DMOD y el algoritmo propuesto, para el arreglo Wenner con un bloque conductor. En **6.11 a)** se observan valores que van de los 200 a los 500 Ω m, en **6.11 b)** se tienen valores de 20 a 350 Ω m.

En la **tabla 6.5**, correspondiente al primer nivel del arreglo, se pueden observar los valores obtenidos por los modelos, comparando con los ejemplos para el bloque resistivo, en este caso la diferencia entre valores es menor y la gráfica de la **figura 6.12** muestra este comportamiento, se tiene una diferencia máxima de sólo unos 100 Ω m en las curvas.

Se puede observar que el modelo de Geotomosoft obtiene valores menores a los del algoritmo propuesto en la zona donde se ubica el cuerpo. Contrario a lo que se observaba en el caso del bloque resistivo, en este caso RES2DMOD tiene mayor sensibilidad a la presencia del cuerpo. Ambos modelos ubican bien la posición del bloque en el eje x pero el algoritmo propuesto define mejor los bordes de este.

	RES2DMOI	D			Algoritmo	
Dato	Pos (x)	ρa [Ωm]		Dato	Pos (x)	ρa [Ωm]
1	1.5	493.7646		1	1.5	500.0134
2	2.5	493.7152		2	2.5	500.0208
3	3.5	493.7567		3	3.5	500.0334
4	4.5	493.8513		4	4.5	500.056
5	5.5	494.0266		5	5.5	500.0989
6	6.5	494.3575		6	6.5	500.1857
7	7.5	495.0261		7	7.5	500.37
8	8.5	496.5297		8	8.5	500.8452
9	9.5	500.4529		9	9.5	502.158
10	10.5	512.8937		10	10.5	506.51
11	11.5	549.8223		11	11.5	518.7603
12	12.5	346.1372		12	12.5	460.7359
13	13.5	180.0245		13	13.5	327.573
14	14.5	179.9555		14	14.5	273.8994
15	15.5	181.1068		15	15.5	288.981
16	16.5	181.4342		16	16.5	297.7374
17	17.5	181.5096	l	17	17.5	307.6622
18	18.5	181.4342	l	18	18.5	301.285
19	19.5	181.1068	l	19	19.5	281.8042
20	20.5	179.9555	l	20	20.5	268.5362
21	21.5	180.0245	l	21	21.5	330.144
22	22.5	346.1372	l	22	22.5	461.7069
23	23.5	549.8223		23	23.5	518.7284
24	24.5	512.8937		24	24.5	506.51
25	25.5	500.4529		25	25.5	502.158
26	26.5	496.5297		26	26.5	500.8452
27	27.5	495.0261		27	27.5	500.37
28	28.5	494.3575		28	28.5	500.1857
29	29.5	494.0266]	29	29.5	500.0989
30	30.5	493.8513	1	30	30.5	500.056
31	31.5	493.7567	1	31	31.5	500.0334
32	32.5	493.7152	1	32	32.5	500.0208
33	33.5	493.7646		33	33.5	500.0134
			-			

Tabla 6.6. Datos obtenidos de resistividad aparente por ambos modelos (primer nivel, arreglo Dipolo-Dipolo).

Figura 6.14. Comparación gráfica entre modelos para el primer nivel. Arreglo Dipolo-Dipolo.

En la **figura 6.13**, se observan los resultados correspondientes al arreglo dipolo-dipolo. En **6.13 a)** se tiene valores de; 100 Ω m, en la posición del elemento conductor; y de 550 Ω m, en la zona que se encuentra por debajo del bloque. En **6.13 b)** el rango es de 10 a 500 Ω m, y por debajo del bloque se tienen valores de 320 Ω m. Ambos modelos ubican bien la zona donde se encuentra el cuerpo y tienen morfologías similares, aunque las curvas obtenidas por el algoritmo propuesto son más suaves.

La **tabla 6.6** muestra los datos del primer nivel del arreglo; estos valores tienen una diferencia máxima de unos 100 Ω m en la parte central del bloque, la **figura 6.14** muestra esta diferencia y muestra, también, el comportamiento de ambos modelos. Los dos métodos definen bien la ubicación del elemento conductor en el eje x.

RES2DMO)			Algoritmo	
Pos (x)	ρa [Ωm]		Dato	Pos (x)	ρa [Ωm]
1	495.9919		1	1	500.0515
2	496.4544		2	2	500.0725
3	496.757		3	3	500.1046
4	497.1342		4	4	500.1557
5	497.6755		5	5	500.2402
6	498.5009		6	6	500.3868
7	499.8268		7	7	500.6556
8	502.0914		8	8	501.184
9	506.2912		9	9	502.3137
10	515.0275		10	10	504.9932
11	536.2694		11	11	512.0805
12	578.3816		12	12	525.0641
13	320.8975		13	13	450.4642
14	141.5427		14	14	330.6439
15	132.0359		15	15	271.8392
16	130.9441		16	16	257.6238
17	130.424		17	17	257.514
18	129.994		18	18	265.1102
19	129.5008		19	19	260.0329
20	128.7885		20	20	239.5152
21	128.6734		21	21	222.8632
22	135.6134		22	22	297.1917
23	253.5061		23	23	417.637
24	426.4285	,	24	24	479.2357
25	467.1666	,	25	25	492.9595
26	480.8629		26	26	497.0354
27	486.8701		27	27	498.565
28	489.9583		28	28	499.2333
29	491.722		29	29	499.5588
30	492.8068		30	30	499.7308
31	493.5134		31	31	499.8278
32	493.999		32	32	499.8855
33	494.3603		33	33	499.9214
	RES2DMOI Pos (x) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	RES2DMOD Pos (x) pa [Ωm] 1 495.9919 2 496.4544 3 496.757 4 497.1342 5 497.6755 6 498.5009 7 499.8268 8 502.0914 9 506.2912 10 515.0275 11 536.2694 12 578.3816 13 320.8975 14 141.5427 15 132.0359 16 130.9441 17 130.424 18 129.994 19 129.5008 20 128.7885 21 135.6134 22 135.6134 23 253.5061 24 426.4285 25 467.1666 26 480.8629 27 486.8701 28 489.9583 29 491.722 30 493.5134	RES2DMODPos (x) $\rhoa [\Omegam]$ 1495.99192496.45443496.7574497.13425497.67556498.50097499.82688502.09149506.291210515.027511536.269412578.381613320.897514141.542715132.035916130.944117130.42418129.99419129.500820128.788521128.673422135.613423253.506124426.428525467.166626480.862927486.870128489.958329491.72230492.806831493.513432493.99933494.3603	RES2DMOD Da [Ωm] Dato 1 495.9919 1 2 496.4544 2 3 496.757 3 4 497.1342 4 5 497.6755 5 6 498.5009 6 7 499.8268 7 8 502.0914 8 9 506.2912 9 10 515.0275 10 11 536.2694 11 12 578.3816 12 13 320.8975 13 14 141.5427 14 15 132.0359 15 16 130.9441 16 17 130.424 17 18 129.994 18 19 129.5008 19 20 128.7885 20 21 128.6734 21 22 135.6134 22 23 253.5061 23 24 426.4285 24 25 467.1666 25	RES2DMOD $Pos (x)$ $pa [\Omegam]$ $Dato$ $Pos (x)$ 1495.99191112496.4544223496.757334497.1342445497.6755556498.5009667499.8268778502.0914999506.2912101010515.0275101011536.2694111112578.3816121213320.8975131314141.5427141415132.0359151516130.9441161617130.424171718129.994181819129.5008202021128.6734212122135.6134222223253.5061232324426.4285242425467.1666252526480.8629262627486.8701272728489.958329491.72230492.8068303031493.5134313132493.999333333494.36033333

Tabla 6.7. Datos obtenidos de resistividad aparente por ambos modelos (primer nivel, arreglo Polo-Dipolo).

Figura 6.16. Comparación gráfica entre modelos para el primer nivel. Arreglo Polo-Dipolo.

Figura 6.15: Resultados del arreglo Polo-Dipolo; se observa que (6.15 a) presenta valores de 150 ohm metro en la zona del bloque y de 500 ohm metro en el resto de la sección. (6.15 b) presenta resistividades de 20 ohm para el bloque y de unos 500 ohm metro en el resto de la sección, ambos modelos presentan la asimetría propia del arreglo.

La **tabla 6.7** muestra los valores correspondientes al primer nivel del arreglo, en general se puede observar que la diferencia principal se encuentra en la zona del bloque a unos 15 metros sobre el eje x. En la **figura 6.16** se observa la gráfica de estos datos, el algoritmo propuesto muestra una curva mucho más asimétrica, comportamiento esperado para un arreglo de este tipo, que la obtenida por RES2DMOD que es mucho más simétrica y con bordes más angulados.

Arregio Polo-Polo

60

	RES2DMO)		Algoritmo	
Dato	Pos (x)	ρa [Ωm]	Dato	Pos (x)	ρa [Ωm]
1	0.5	492.6343	1	0.5	499.8218
2	1.5	491.993	2	1.5	499.7683
3	2.5	490.9459	3	2.5	499.6927
4	3.5	489.5669	4	3.5	499.5832
5	4.5	487.7564	5	4.5	499.4192
6	5.5	485.3221	6	5.5	499.1645
7	6.5	481.9326	7	6.5	498.7505
8	7.5	476.9983	8	7.5	498.0394
9	8.5	469.3877	9	8.5	496.7299
10	9.5	456.6736	10	9.5	494.0907
11	10.5	432.7431	11	10.5	488.0739
12	11.5	377.8226	12	11.5	471.6515
13	12.5	215.3849	13	12.5	417.8996
14	13.5	122.7428	14	13.5	341.2436
15	14.5	116.3082	15	14.5	288.6309
16	15.5	114.6845	16	15.5	274.8535
17	16.5	113.9628	17	16.5	274.5877
18	17.5	113.7478	18	17.5	278.9415
19	18.5	113.9628	19	18.5	276.8282
20	19.5	114.6845	20	19.5	272.6712
21	20.5	116.3082	21	20.5	285.6607
22	21.5	122.7428	22	21.5	340.5491
23	22.5	215.3849	23	22.5	417.9557
24	23.5	377.8226	24	23.5	471.6515
25	24.5	432.7431	25	24.5	488.0739
26	25.5	456.6736	26	25.5	494.0907
27	26.5	469.3877	27	26.5	496.7299
28	27.5	476.9983	28	27.5	498.0394
29	28.5	481.9326	29	28.5	498.7505
30	29.5	485.3221	30	29.5	499.1645
31	30.5	487.7564	31	30.5	499.4192
32	31.5	489.5669	32	31.5	499.5832
33	32.5	490.9459	33	32.5	499.6927

Tabla 6.8. Datos obtenidos de resistividad aparente por ambos modelos (primer nivel, arreglo Polo-Polo).

Figura 6.18. Comparación gráfica entre modelos para el primer nivel. Arreglo Polo-Polo.

Finalmente, en la **figura 6.17 a)**, se observan valores de 300 Ω m para la anomalía y de 500 Ω m para el resto de la sección, esta anomalía se presenta con curvas suaves ubicando bien la posición del bloque, en la parte baja de la pseudosección se tiene un comportamiento similar al de los casos anteriores, con valores de unos 550 Ω m. En la sección obtenida por el programa RES2DMOD **6.17 b)**, los valores para la anomalía se encuentran en el orden de 100 Ω m y presenta una forma más angulada o cuadrada. Finalmente, ambas anomalías se extienden de manera diagonal hacia los lados y hacia debajo con respecto a la ubicación del bloque.

La **tabla 6.8** muestra los valores correspondientes al primer nivel del arreglo, se puede observar una mayor diferencia entre resultados con respecto a los ejemplos anteriores. La **figura 6.18** muestra que el algoritmo propuesto obtiene una mejor definición de los bordes del bloque.

6.3 Varios cuerpos en el medio.

Se prueba la respuesta del algoritmo para dos bloques de diferente geometría con la misma resistividad de 500 Ω m. en un medio de 100 Ω m. **figura 6.19**, cada bloque se encuentra a diferente profundidad, con una línea de 48 electrodos y una separación de 2 metros entre estos.

Figura 6.19: Ejemplo con dos bloques de 500 Ω m a diferentes profundidades en un medio de 100 Ω m.

	RES2DMOD)		Algoritmo	
Dato	Pos (x)	ρa [Ωm]	Dato	Pos (x)	ρa [Ωm]
1	3	99.6843	1	3	100.0058
2	5	99.713	2	5	100.0089
3	7	99.7212	3	7	100.0142
4	9	99.729	4	9	100.0237
5	11	99.7406	5	11	100.0414
6	13	99.7609	6	13	100.0768
7	15	99.7997	7	15	100.1528
8	17	99.8809	8	17	100.3314
9	19	100.0693	9	19	100.799
10	21	100.5686	10	21	102.1883
11	23	102.1184	11	23	106.7488
12	25	106.7076	12	25	118.4158
13	27	114.4429	13	27	133.583
14	29	118.1075	14	29	148.4586
15	31	120.776	15	31	158.7975
16	33	120.7818	16	33	158.8005
17	35	118.124	17	35	148.4671
18	37	114.468	18	37	133.6002
19	39	106.741	19	39	118.4459
20	41	102.1662	20	41	106.7985
21	43	100.6409	21	43	102.2723
22	45	100.1824	22	45	100.9466
23	47	100.0655	23	47	100.6077
24	49	100.1216	24	49	100.7174
25	51	100.3852	25	51	101.3842
26	53	101.1888	26	53	103.6899
27	55	104.37	27	55	113.6302
28	57	117.0204	28	57	148.397
29	59	147.9402	29	59	199.9935
30	61	162.0388	30	61	251.4685
31	63	174.2056	31	63	283.7992
32	65	174.2038	32	65	283.7303
33	67	162.0336	33	67	251.3956
34	69	147.9326	34	69	199.8788
35	71	117.012	35	71	148.3915
36	73	104.3573	36	73	113.6076
37	75	101.1663	37	75	103.6494
38	77	100.3437	38	77	101.3084
39	79	100.0423	39	79	100.5657
40	81	99.9057	40	81	100.2775
41	83	99.8345	41	83	100.149
42	85	99.7935	42	85	100.0857
43	87	99.7674	43	87	100.052
44	89	99.7471	44	89	100.0329
45	91	99.7101	45	91	100.0215

Tabla 6.9. Datos obtenidos de resistividad aparente por ambos modelos (primer nivel, arreglo Wenner).

Figura 6.21. Comparación gráfica entre modelos para el primer nivel. Arreglo Wenner.

La **figura 6.20** muestra los resultados del ejemplo para dos bloques de diferente geometría y diferente profundidad para el arreglo Wenner. **6.20 a)** presenta valores de 150 a 300 Ω m en las zonas donde se encuentran los bloques. En **6.20 b)** se observan valores menores; de 120 a 160 Ω m, en ambos modelos las anomalías coinciden con la ubicación de los bloques y presentan una morfología muy similar.

La **tabla 6.9** y la gráfica de la **figura 6.21** muestran de manera cuantitativa la diferencia entre ambos modelos en el primer nivel del arreglo. De nuevo, se puede observar que el algoritmo propuesto es más sensible a la presencia de los cuerpos en el medio.

Dato	Pos (x)	ρa [Ωm]	
1	3	99.0223	
2	5	99.0032	
3	7	98.9967	
4	9	98.9906	
5	11	98.9812	
6	13	98.9643	
7	15	98.9309	
8	17	98.8603	
9	19	98.6982	
10	21	98.295	
11	23	97.2811	
12	25	96.3061	
13	27	100.7203	
14	29	109.8291	
15	31	111.3313	
16	33	111.3308	
17	35	109.8271	
18	37	100.7137	
19	39	96.293	
20	41	97.2586	
21	43	98.2537	
22	45	98.6242	
23	47	98.7272	
24	49	98.6818	
25	51	98.4592	
26	53	97.8119	
27	55	95.7328	
28	57	95.0135	
29	59	117.7241	
30	61	163.0943	
31	63	167.4995	
32	65	167.4994	
33	67	163.0948	
34	69	117.7272	
35	71	95.0191	
36	73	95.7412	
37	75	97.8286	
38	77	98.492	
39	79	98.7473	
40	81	98.8626	
41	83	98.921	
42	85	98.9532	
43	87	98.9726	
44	89	98.9873	
45	91	99.0116	

Algoritmo		
Dato	Pos (x)	ρa [Ωm]
1	3	99.9942
2	5	99.9911
3	7	99.9859
4	9	99.9766
5	11	99.9592
6	13	99.9248
7	15	99.8515
8	17	99.6826
9	19	99.2563
10	21	98.09
11	23	95.1288
12	25	94.5898
13	27	113.0862
14	29	131.8415
15	31	132.415
16	33	132.4084
17	35	131.8308
18	37	113.0697
19	39	94.56
20	41	95.0797
21	43	98.0075
22	45	99.1119
23	47	99.4146
24	49	99.3112
25	51	98.7057
26	53	96.752
27	55	90.0568
28	57	92.1636
29	59	180.0483
30	61	267.7747
31	63	272.7531
32	65	272.3615
33	67	267.4713
34	69	180.1653
35	71	92.159
36	73	90.0792
37	75	96.7918
38	77	98.78
39	79	99.4587
40	81	99.7308
41	83	99.8542
42	85	99.9157
43	87	99.9487
44	89	99.9675
45	91	99.9786

Tabla 6.10. Datos obtenidos de resistividad aparente por ambos modelos (primer nivel, arreglo Dipolo-Dipolo).

Figura 6.23. Comparación gráfica entre modelos para el primer nivel. Arreglo Dipolo-Dipolo.

Para el arreglo Dipolo-Dipolo, los resultados se muestran en la **figura 6.22**. La respuesta de los modelos es muy similar entre sí, pero los valores que obtiene el algoritmo propuesto (**6.22 a**) se encuentran en el rango de 150 a 300 Ω m, mientras que los valores de RES2DMOD no sobre pasan los 170 Ω m.

La **tabla 6.10** muestra los valores de cada modelo para el primer nivel del arreglo, estos valores se presentan de manera gráfica en la **figura 6.23**, ambos modelos definen bien los bordes de los cuerpos y el algoritmo propuesto obtiene valores de resistividad mayores.

RES2DMOD			
Dato	Pos (x)	oa [Ωm]	Dato
1	2	99.6291	1
2	4	99.6791	2
3	6	99.6786	3
4	8	99.6663	4
5	10	99.6442	5
6	12	99.6083	6
7	14	99.5488	7
8	16	99.4455	8
9	18	99.2558	9
10	20	98.887	10
11	22	98.1449	11
12	24	96.8145	12
13	26	96.9773	13
14	28	104.0824	14
15	30	116.1527	15
16	32	125.2076	16
17	34	131.9496	17
18	36	131.7446	18
19	38	116.4479	19
20	40	105.9126	20
21	42	102.0187	21
22	44	100.5723	22
23	46	99.8863	23
24	48	99.4324	24
25	50	98.9799	25
26	52	98.3284	26
27	54	97.1068	27
28	56	94.4525	28
29	58	96.8373	29
30	60	122.2397	30
31	62	162.8567	31
32	64	185.5928	32
33	66	201.8739	33
34	68	199.0728	34
35	70	139.6169	35
36	72	111.6764	36
37	74	104.116	37
38	76	101.8942	38
39	78	100.9744	39
40	80	100.5118	40
41	82	100.2492	41
42	84	100.0876	42
43	86	99.9827	43
44	88	99.9125	44
45	90	99.8671	45

Algoritmo							
Dato	Pos (x)	ρa [Ωm]					
1	2	99.977					
2	4	99.968					
3	6	99.9543					
4	8	99.9326					
5	10	99.8969					
6	12	99.8359					
7	14	99.7255					
8	16	99.5141					
9	18	99.0818					
10	20	98.1377					
11	22	96.0034					
12	24	92.0483					
13	26	95.3043					
14	28	123.4221					
15	30	151.9577					
16	32	165.5477					
17	34	173.3967					
18	36	171.7525					
19	38	144.6499					
20	40	117.3182					
21	42	105.9932					
22	44	102.1549					
23	46	100.589					
24	48	99.6614					
25	50	98.7003					
26	52	97.0715					
27	54	93.3898					
28	56	84.1881					
29	58	93.9723					
30	60	189.3728					
31	62	269.6483					
32	64	298.1971					
33	66	313.3186					
34	68	305.8645					
35	70	212.6706					
36	72	133.94					
37	74	110.4115					
38	76	104.2308					
39	78	102.0449					
40	80	101.1075					
41	82	100.6499					
42	84	100.4048					
43	86	100.2639					
44	88	100.1785					
45	90	100.1244					

Tabla 6.11. Datos obtenidos de resistividad aparente por ambos modelos (primer nivel, arreglo Polo-Dipolo).

Figura 6.25. Comparación gráfica entre modelos para el primer nivel. Arreglo Polo-Dipolo.

Figura 6.24: Resultados del arreglo Polo-Dipolo. En **6.24 a)** se observan anomalías de 180 a 300 Ω m. En **6.24 b)** se tienen valores de 130 a 200 ohm metro. Se observan morfologías muy similares entre modelos y la ubicación de las anomalías coincide la posición de los cuerpos.

La **tabla 6.11** muestra los datos del primer nivel del arreglo y la **figura 6.25** la gráfica de estos datos, se observa la asimetría propia del arreglo en los dos modelos y el algoritmo propuesto posee los valores mayores de resistividad.

Arregio Polo-Polo

RES2DMOD			Algoritmo	
Dato	Pos (x)	ρa [Ωm]	Dato	Pos (x)
1	1	100.498	1	1
2	3	100.5596	2	3
3	5	100.5897	3	5
4	7	100.6239	4	7
5	9	100.6726	5	9
6	11	100.7464	6	11
7	13	100.8607	7	13
8	15	101.043	8	15
9	17	101.3455	9	17
10	19	101.8757	10	19
11	21	102.8736	11	21
12	23	104.9263	12	23
13	25	109.565	13	25
14	27	119.3767	14	27
15	29	133.2897	15	29
16	31	141.2796	16	31
17	33	141.3754	17	33
18	35	133.5786	18	35
19	37	119.8555	19	37
20	39	110.2273	20	39
21	41	105.7881	21	41
22	43	103.9886	22	43
23	45	103.334	23	45
24	47	103.2871	24	47
25	49	103.6933	25	49
26	51	104.6088	26	51
27	53	106.3398	27	53
28	55	109.811	28	55
29	57	118.4015	29	57
30	59	139.7769	30	59
31	61	178.1786	31	61
32	63	197.6693	32	63
33	65	197.6502	33	65
34	67	178.1206	34	67
35	69	139.6808	35	69
36	71	118.2686	36	71
37	73	109.634	37	73
38	75	106.0951	38	75
39	77	104.2563	39	77
40	79	103.1658	40	79
41	81	102.4649	41	81
42	83	101.9901	42	83
43	85	101.6562	43	85
44	87	101.4145	44	87
45	89	101.2343	45	89

ρa [Ωm]

100.0857 100.1095

100.1428

100.1906 100.2614

100.3703

100.5453

100.8414 101.3744

102.4078

104.5971

109.7149

122.4378

147.1773

171.3971 182.1658

182.2106 171.5389

147.4314

122.8305

110.2923 105.4351

103.6333

103.208

103.6905

105.227

108.7253

117.1846

142.0259 201.3426

259.6636

281.6216

281.498

259.4705

201.2745

141.8857

116.9719

108.4037

104.7319

102.9025 101.892

101.2907

100.9124 100.6638

100.4945

Tabla 6.12. Datos obtenidos de resistividad aparente por ambos modelos (primer nivel, arreglo Polo-Polo).

Figura 6.27. Comparación gráfica entre modelos para el primer nivel. Arreglo Polo-Polo.

En los resultados para el arreglo Polo-Polo de la **figura 6.26** podemos observar resistividades del orden de 180 a 280 ohm metro para **6.26 a**) y de 140 a 200 ohm metro para el caso de **6.26 b**). En ambos casos las anomalías coinciden con la ubicación de los bloques y presentan formas muy similares, como se ha visto en los demás ejemplos.

La **tabla 6.12** muestra estos valores, la gráfica de la **figura 6.27** muestra la diferencia entre modelos.

6.4 Análisis de resultados para los datos sintéticos.

En general, para todos los ejemplos de datos sintéticos, se ha visto que el modelo propuesto presenta diferentes valores de resistividad en comparación con el software de Geotomo; mayores en el caso del bloque resistivo y menores en el caso del bloque conductor. Este comportamiento puede deberse al hecho de que es un modelo 3D y, como se mencionó antes, las dimensiones en el eje y afectan la forma e intensidad de las anomalías.

El algoritmo propuesto presenta, en general, curvas más suaves, buena resolución de los bordes de los cuerpos y las anomalías obtenidas se extienden a partir de los costados de los cuerpos y de manera diagonal hacia la parte baja de la pseudosección, comportamiento que se observa típicamente en levantamientos de casos reales. También se observa que, en la zona que se encuentra por debajo del cuerpo, se pierde resolución y los datos observados son del orden de 550 Ω m para el caso del bloque conductor, y para el caso del bloque resistivo, estos valores son incluso negativos, comportamiento también observado en levantamientos reales. El modelo de RES2DMO no presenta estos comportamientos y sus resultados son, en general, con curvas más angulosas con cambios muy drásticos en los valores de resistividad como se puede apreciar en todas las gráficas del primer nivel de cada arreglo.

6.5 Ejemplo con datos reales.

Para la comparación con los datos reales, se han probado varios casos, pero finalmente se han tomado los trabajos de Barrera (2015) y de Urbieta (2009) porque presentan ejemplos muy claros y verificables en cuanto a las características electromagnéticas y geométricas de las estructuras identificadas por las inversiones.

Se presentan primero los trabajos de Barrera (2015) en la delegación Xochimilco de la Ciudad de México. El estudio consta de un levantamiento de TRE para caracterizar el subsuelo con la finalidad de localizar un sitio de recarga artificial en el poblado de San Luis Tlaxialtemalco.

Derivado del estudio, se obtuvieron los resultados de la **figura 6.28**, que son verificados con una perforación, y se identifican tres unidades principales, basalto, basalto con arena y grava y una mezcla de gravas y arenas limosas.

Figura 6.28: Sección desarrollada por Barrera (2015).

Se toma el modelo obtenido por la inversión, **figura 6.29 a**), y se modela la capa de basaltos con tres prismas de unos 2000 Ω m de resistividad, **figura 6.29 b**). Se ha ignorado la capa superior por la dificultad del método para reproducir estratos horizontales y se toman los valores de resistividad de la capa intermedia (100 ohm metro) para la caracterización del medio.

Figura 6.29: a) Modelo obtenido por la inversión de datos, arreglo Wenner-Schlumberger. b) Disposición y geometría de los bloques que se modelan con el algoritmo desarrollado. (Modificado de Barrera, 2015).

La **figura 6.30 b)** muestra los resultados para el arreglo Wenner-Schlumberger, se observan valores de anomalía muy similares a los datos tomados en campo (**6.30 a**), de 350 a 400 Ω m. La forma general de la anomalía refleja de manera débil lo observado en campo, debe recordarse que se ha simplificado mucho el modelo al eliminar la capa somera. Aun así, los valores de resistividad se correlacionan bien.

Los tres bloques modelados representan una unidad de basalto identificado por la perforación, esta unidad tiene un grosor de unos 18 metros en la parte oeste de la sección y de unos 5 metros en la parte este de la misma, la pseudosección obtenida por el modelo muestra esta misma tendencia para esta unidad. Claro que lo que aquí se presenta es un modelo de la respuesta del subsuelo y, por lo tanto, no se espera obtener de manera clara la forma y ubicación de los cuerpos, los datos obtenidos son de resistividad aparente.

Los datos obtenidos para el arreglo Dipolo-Dipolo se muestran en la **figura 6.31 b)**. Se observa una mejor correlación con los datos tomados en campo (**9.31 a**), en cuanto a la forma general de la anomalía. Existe una ligera diferencia en los valores de resistividad; 500 Ω m para el modelo, y 700 Ω m para los datos tomados en campo.

La morfología en ambas secciones es muy similar y, como se menciona, los valores de resistividad se correlacionan razonablemente bien considerando que no se ha modelado la capa superior. La ubicación de los valores más altos de la anomalía también coincide en ambos casos, 80 metros en la horizontal y a unos 30 metros de profundidad.

El estudio realizado por Urbieta (2009), fue realizado en la delegación Álvaro Obregón y consta de la caracterización del subsuelo con el objetivo de ubicar un túnel que pasa por debajo de las calles Grullas, Guacamayas, Lerdo de Tejada y Pedro Cavilha **figura 6.32**, en la colonia Golondrinas. Parte de este estudio consistió en un levantamiento de TRE sobre las calles mencionadas con lo cual se consigue construir un modelo digital del túnel **figura 6.33**.

Figura 6.32: Secciones eléctricas bidimensionales de las cuatro calles, indicando la posible trayectoria del túnel. (Urbieta, 2009).

Para este estudio se ha tomado tanto la interpretación de la inversión como la información que surge de una excavación posterior al estudio, con la cual se comprueba la existencia del túnel.

Se describe un túnel de 5 metros de ancho y a 16 metros de profundidad a partir del techo de este. El túnel atraviesa las calles de manera perpendicular.

Como se puede observar en la **figura 6.32**, se tiene una gran cantidad de ruido y anomalías que no corresponden con la ubicación reportada del túnel. También se reporta que en 3 de los perfiles se utilizó la técnica "roll-along", excepto en la calle Pedro Cavilha, para cubrir la longitud requerida.

La técnica "roll-along" no se encuentra implementada en el algoritmo que se muestra en este estudio y las anomalías que no corresponden con la ubicación del túnel no tienen una interpretación por Urbieta (2009). Por estas razones, se ha decidido realizar la comparación sólo con la calle Pedro Cavilha y sólo con la información que se posee.

Figura 6.33: Resultados de la TRE 3D en la delegación Álvaro Obregón (Urbieta, 2009).

El perfil de la calle Pedro Cavilha se realizó con 28 electrodos con una separación de 5 metros con la configuración Dipolo-Dipolo. Se modeló con una resistividad del medio de 100 ohm metro y las dimensiones reportadas para el túnel.

Arreglo Dipolo-Dipolo

La **figura 6.34 b)** muestra los resultados del modelo directo, se puede apreciar que los valores de resistividad se encuentran bien correlacionados, alrededor de 200 Ω m, con los valores de **6.34 a)**. La profundidad de la anomalía coincide en ambos perfiles, aunque se observa que la influencia del bloque en los datos sintéticos se extiende por un área mayor en comparación con los datos de campo.

6.6 Análisis de resultados para los casos reales.

En general, los ejemplos con datos reales han representado muy bien lo observado en campo, particularmente el modelo realizado con el arreglo dipolo-dipolo, que representa las condiciones del estudio de la delegación Xochimilco realizado por Barrera (2015), ha obtenido los resultados más satisfactorios.

Los datos observados en el estudio de Urbieta (2009), se han representado muy bien por el modelo, aunque la anomalía se extiende por toda la sección, hay que tomar en cuenta que los datos son, por naturaleza, ruidosos y se ha modelado la sección del túnel que se reporta en la imagen **6.33**, las dimensiones reales del túnel, su profundidad o incluso los objetos que puedan existir dentro de este afectan la respuesta del algoritmo, como se mencionó antes, las dimensiones de los cuerpos modelados influyen directamente en la forma e intensidad de la anomalía.

Es difícil encontrar un ejemplo amigable para un modelado con cuerpos de caras planas paralelas, en este trabajo no se ha implementado la capacidad de obtener la integral de volumen para cuerpos de caras curvas porque sale del alcance fijado para este trabajo, pero esta característica puede agregarse al algoritmo en trabajos posteriores, esto permitiría realizar modelos mucho más complejos. Sin embargo, en su estado actual, este algoritmo tiene un gran valor al poderse implementar fácilmente, ya sea de manera preliminar a un estudio para justificar cierto tipo de arreglo o número de electrodos, o posterior a este para justificar el resultado de una inversión.

Conclusiones y Recomendaciones.

En cumplimiento del objetivo planteado para esta investigación se presenta un algoritmo computacional que permite el cálculo, mediante el modelo directo, de la respuesta eléctrica DC del subsuelo, que es de fácil implementación y no requiere de software adicional para la visualización de los datos de salida. El algoritmo desarrollado da como salida la respuesta eléctrica de un semi-espacio con heterogeneidades, dadas por cuerpos de geometría regular y resistividad constante, utilizando funciones de Green. Esto posee valor didáctico para quienes se inicien en el estudio de los métodos geoeléctricos de corriente continua.

La técnica del modelado directo mediante la integral de volumen ha podido reproducir la respuesta del subsuelo para uno o más cuerpos, bien delimitados dentro del semi-espacio. Pero, ha presentado algunos problemas para el caso de la Tierra estratificada, esto debido a que el método fue diseñado para cuerpos de dimensiones finitas.

Este tipo de modelos pueden usarse para planear levantamientos en campo o justificar el uso de un arreglo en particular, con un determinado número de electrodos o para determinar la mejor distancia entre estos; dependiendo del tipo de estructuras en el subsuelo que se pretende detectar.

La comparación de resultados con el estudio realizado por Barrera (2015), muestra que se puede representar adecuadamente un caso real. Aunque podría representarse mejor si se consideran cuerpos con caras curvas.

El empleo de la cubatura permite que, en estudios posteriores, se pueda modificar el script para aceptar cuerpos con caras curvas, esto permite eliminar una de las grandes limitantes actuales de la implementación numérica del método.

En general, los datos obtenidos por el algoritmo presentan resultados consistentes, independientemente del arreglo que se elija y, en comparación con el programa comercial de RES2DMOD, el método aquí presentado, aproxima mejor los valores de resistividad para los ejemplos sintéticos.

La técnica de dilatación, empleada para desplegar gráficamente las matrices ralas, que se obtienen con este tipo de soluciones, resulto ser muy efectiva.

El empleo de ventanas para la entrada de los datos que alimentan al algoritmo es de gran ayuda, pues no es necesario modificar el script cada vez que se desee generar un nuevo modelo.

El hecho de presentar los resultados al terminar el procesamiento de la información, sin necesidad de exportarlos a otro programa para su interpolación y despliegue gráfico, permite que se generen varios modelos de forma práctica, rápida y conveniente. El empleo de funciones en la estructura del programa permite que se puedan agregar, eventualmente, nuevas funciones que permitan escoger otros métodos de integración, aumentar el número de posibles arreglos o la optimización del programa.

A pesar de que la hipótesis de despreciar las corrientes eléctricas secundarias, lo que no corresponde al fenómeno físico, para la obtención de las ecuaciones que resuelven el problema planteado y en esta tesis, las aproximaciones que se obtienen en ejemplos sintéticos y reales son muy buenas, además de que reproducen los de otros programas computacionales ya existentes. Por lo que ha de tenerse esto en cuenta al momento de interpretar físicamente los resultados de este algoritmo.

Bibliografía.

- Arfken G. B., Weber H. J. (2005). Mathematical methods for physicists, 6th Edition. USA: Elsevier.

- Barker R.D. (1991). Depth of investigation of collinear symmetrical four-electrode arrays. Geophysics, 54, 1031-1037.

- Barrera J. A. (2015). Empleo del método geofísico Tomografía de Resistividad Eléctrica para la ubicación de un sitio de recarga de acuífero en Xochimilco. Tesis de licenciatura. México: Instituto de Ingeniería, UNAM.

-Coggon J.H. (1971). Electromagnetic and electrical modelling by the finite element method. Geophysics, 36, 132–155.

- Dey A., Morrison H. F. (1979). Resistivity modeling for arbitrarily shaped three-dimensional structures. Geophysics, 44, No. 4. 753-780.

-Edwards L. S. (1977). A modified pseudosection for resistivity and IP. Geophysics, 42, No. 5, 1020-1036.

-Eskola L. (1992). Geophysical interpretation using integral equations. Londres: Chapman and Hall.

- Flores E. L., Tejero A., León A., Arango C., Chávez R. (2015). Two algorithms to compute the electric resistivity response using Green's functions for 3D structures. Geofísica Internacional, 54-1, 7-20.

-Fox R.C., Hohmann G.W., Killpack T.J., Rijo L. (1980). Topographic effects in resistivity and induced-polarization surveys. Geophysics, 45, 75–93.

-Hvozdara M., Kaikkonen P. (1998). An integral equation solution of the forward D.C. geoelectric problem for a 3-D body of inhomogeneous conductivity buried in a halfspace. Journal of Applied Geophysics, 39, 95-107.

- Jayan S., Nagaraja K. V. (2015). A general and effective numerical integration method to evaluate triple integrals using generalized gaussian quadrature. Procedia Engineering, 127, 2041-1047.

- León A. M. (2004). Modelación de la Respuesta Eléctrica de Estructuras 3D en un Semiespacio Conductor. Tesis de Licenciatura, Facultad de Ingeniería, UNAM.

- Li Y., Spitzer K. (2002). 3D direct current resistivity forward modeling using finite element in comparison with finite-difference solutions, Geophysical Journal International, 151, 924–934.

- Li Y., Spitzer K. (2005). Finite-element resistivity modeling for 3D structures with arbitrary anisotropy, Physics of the Earth and Planetary Interiors, 150, 15–27.

-Loke M.H., Barker R.D. (1996). Practical techniques for 3D resistivity surveys and data inversion. Geophysical Prospecting, 44, 499–523.

- Loke M. H. (2004). Tutorial: 2-D and 3-D electrical imaging surveys.

- Ma J., Rokhlin V., Wandzura S. (1993). Generalized gaussian quadrature rules for systems of arbitrary functions. Connecticut: Yale U.

- Marescot L., Lopes S.P., Rigobert S., Green A.G. (2008). Nonlinear inversion of geoelectric data acquired across 3-D objects using a finite-element approach. Geophysics, 73, F121–F133.

- Mathews J. H., Fink K. D. (2000). *Métodos Numéricos con Matlab*, Tercera Edición. Madrid: Prentice Hall.

- McGillivray, P.R., Oldenburg D.W. (1990). Methods for calculating Frechet derivatives and sensitivities for the non-linear inverse problem: A comparative study. Geophysical Prospecting, 38, 499-524.

-Mufti I.R. (1976). Finite-difference resistivity modeling for arbitrarily shaped two-dimensional structures. Geophysics, 41, 62–78.

- Orellana E. (1982). Prospección geoeléctrica en corriente continua, 2ª edición. España: Paraninfo.

 Pérez M.A. (1995). Inversión rápida en 2-D de datos de resistividad, magnetotelúricos y electromagnéticos de fuente controlada a bajo número de inducción, Tesis Doctoral. Ensenada, México: Centro de Investigación Científica y de Estudios Superiores de Ensenada.

- Pérez M.A., Méndez-Delgado S., Gómez-Treviño E. (2001). Imaging low frequency and dc electromagnetic fields using a simple linear approximation. Geophysics, 66, 1067–1081.

- Pidlisecky A., Haber E., Knight R. (2007). RESINVM3-D: A MATLAB 3-D resistivity inversion package. Geophysics, 72, H1–H10.

- Pridmore D.F., Hohmann G.W., Ward S.H., Sill W. R. (1980). An investigation of finite-element modeling for electrical and electromagnetical data in 3D. Geophysics, 46, 1009–1033.

- Ren Z., Tang J. (2010). 3D direct current resistivity modeling with unstructured mesh by adaptive finite-element method. Geophysics, 75, H7–H17.

- Sasaki Y. (1994). 3D resistivity inversion using the finite-element method. Geophysics, 59, 1839–1848.

-Spitzer K. (1995). A 3D finite-difference algorithm for DC resistivity modeling using conjugate gradient methods. Geophysics, 123, 903–914.

- Szalai S., Szarka L. (2008). On the classification of surface geoelectric arrays. Geophysical Prospecting, 56, 159-175.

- Snyder D.D. (1976). A method for modeling the resistivity and IP response of two dimensional bodies, Geophysics, 41, 997–1015.

- Tejero A. (2002). Modelación de la respuesta magnetométrica empleando aproximación de Born con conductividad de referencia variable. Tesis de Doctorado. México: Instituto de Geofísica, UNAM.

- Tsourlos P.I., Ogilvy R.D. (1999). An algorithm for the 3-D inversion of tomographic resisitivity and induced polarisation data: preliminary results. Journal of the Balkan Geophysical Society, 2, 30–45.

-Urbieta J. (2009). Evaluación de las técnicas de adquisición de datos 2D y 3D con tomografía de resistividad eléctrica en pozo. Tesis de Maestría, Instituto de Geofísica, UNAM.

Anexos.

A1.

```
****
*****
                       VIMER
                                            ****
୫୫୫୫୫୫୫୫୫
         Volume Integral Model of the Electric Response
                                            ****
<u> ୧</u>୧୧୧୧୧
                     Versión (1.1)
                                            *****
*********
          Héctor Octavio Augusto Hernández Contreras
                                            *********
୫୫୫୫୫୫୫୫୫୫
         Tesis de Maestría. Instituto de Geofísica UNAM
                                           <u> ୧</u>୧୧୧୧୧୧
clear all
close all
clc
Msg
Er=1;
while Er==1
[NE,a,dec,TA,n]=Arreglo;
             if all(isnan([NE,a,dec,TA,n]))==1
               clear all
               return
             else if any(isnan([NE,a,dec,TA,n]))==1
                 Error1
                 Er=1;
             else if any(TA==[1,2,3,4])==0
                 Error2
                 Er=1;
             else
                Er=0;
             end
             end
             end
end
Er=1;
while Er==1
[xj,yj,h,l,w,d,rhom,rhoc]=Geom;
             if all(isnan([xj,yj,h,l,w,d,rhom,rhoc]))==1
               clear all
               return
             else if any(isnan([xj,yj,h,l,w,d,rhom,rhoc]))==1
               Error1
               Er=1;
             else
               Er=0;
             end
             end
end
I=20; % Intensity
******
%%%%% Position of the First Electrode / Posición del Primer Electrodo
xi=25000;
yi=25000;
%%%%% Coordinates (SCR) of the Body Center / Coordenadas (SCR) del Centro
%%%%% del Cuerpo
XA=xi+xj; YA=yi+yj; ZA=-d-(h/2);
%%%%% Electrode Line / Línea de Electrodos
E=Elect(xi,yi,NE,a,dec);
OS=[xi,yi];
***
%Nodos y Tipo de Función para Cubatura. N=5,10,15; T=1,2,3,4,5
NN=15;
TT=2;
```

```
switch TA
    case 1
       D=WS(NE,n);
       Ni = 1;
       iZ=1;
       while Ni==1
       Dr=rhoc-rhom; %Dif Res
       % Limits / Límites
       ac=-w/2; bc=w/2; cc=-l/2; dc=l/2; ec=-h/2; fc=h/2;
       Kernel4e
       Zar{iZ}=Z;
       ****
       Qstn=questdlg('Desea Agregar Otro Cuerpo?');
       Ni=(Qstn(1)=='Y');
         if Ni==1
           Er=1;
           while Er==1
           [xj,yj,h,l,w,d,rhoc]=Geom2;
               if all(isnan([xj,yj,h,l,w,d,rhoc]))==1
                 clear all
                 return
               else if any(isnan([xj,yj,h,l,w,d,rhoc]))==1
                 Error1
                 Er=1;
               else
                Er=0;
                 XA=xi+xj; YA=yi+yj;
                 ZA = -d - (h/2);
                 iZ=iZ+1;
               end
               end
           end
         end
       end
    case 2
       D=DD(NE,n);
       Ni=1;
       iZ=1;
       while Ni==1
       Dr=rhoc-rhom; %Dif Res
       % Limits / Límites
       ac=-w/2; bc=w/2; cc=-1/2; dc=1/2; ec=-h/2; fc=h/2;
       Kernel4e
       Zar{iZ}=Z;
       Qstn=questdlg('Desea Agregar Otro Cuerpo?');
       Ni=(Qstn(1)=='Y');
         if Ni==1
           Er=1;
           while Er==1
           [xj,yj,h,l,w,d,rhoc]=Geom2;
               if all(isnan([xj,yj,h,l,w,d,rhoc]))==1
                 clear all
                 return
               else if any(isnan([xj,yj,h,l,w,d,rhoc]))==1
                Error1
                 Er=1;
               else
                 Er=0;
                 XA=xi+xj; YA=yi+yj;
                 ZA=-d-(h/2);
```

```
iZ=iZ+1;
          end
          end
       end
     end
   end
case 3
   D=PD(NE,n);
   Ni=1;
   iZ=1;
   while Ni==1
   Dr=rhoc-rhom; %Dif Res
   % Limits / Límites
   ac=-w/2; bc=w/2; cc=-l/2; dc=l/2; ec=-h/2; fc=h/2;
   ***
   Kernel3e
   Zar{iZ}=Z;
   Qstn=questdlg('Desea Agregar Otro Cuerpo?');
   Ni=(Qstn(1)=='Y');
     if Ni==1
       Er=1;
       while Er==1
       [xj,yj,h,l,w,d,rhoc]=Geom2;
          if all(isnan([xj,yj,h,l,w,d,rhoc]))==1
            clear all
            return
          else if any(isnan([xj,yj,h,l,w,d,rhoc]))==1
            Error1
            Er=1;
          else
            Er=0;
            XA=xi+xj; YA=yi+yj;
            ZA = -d - (h/2);
            iZ=iZ+1;
          end
          end
       end
     end
   end
case 4
   D=PP(NE,n);
   Ni=1;
   iZ=1;
   while Ni==1
   Dr=rhoc-rhom; %Dif Res
   ***
   % Limits / Límites
   ac=-w/2; bc=w/2; cc=-l/2; dc=l/2; ec=-h/2; fc=h/2;
   Kernel2e
   Zar{iZ}=Z;
   Qstn=questdlg('Desea Agregar Otro Cuerpo?');
   Ni=(Qstn(1)=='Y');
     if Ni==1
       Er=1;
       while Er==1
       [xj,yj,h,l,w,d,rhoc]=Geom2;
          if all(isnan([xj,yj,h,l,w,d,rhoc]))==1
            clear all
            return
          else if any(isnan([xj,yj,h,l,w,d,rhoc]))==1
            Error1
            Er=1;
```

end

```
Rx=Zar{1}(:,1);
Ry=Zar{1}(:,2);
RX=sortn(Rx);
RY=sortn(Ry);
```

```
Zi=imgmap2(RX,RY,Zar,rhom,iZ);
figure('WindowStyle','normal')
contourf(RX,RY,Zi,10,'linecolor','none')
colorbar
hold on
scatter(Z(:,1),Z(:,2),2,[1 1 1])
hold off
```

A2.

function Msg

```
dlgname='Modelo de la Respuesta Eléctrica';
T1='Bienvenido al programa de modelado de la respuesta eléctrica.';
T2=' ';
T3='Ingrese los datos del cuerpo que desee modelar como se indica en los';
T4='campos correspondientes.';
T5='Por el momento sólo se modelan cuerpos geométricos de caras planas';
T6='paralelas.';
T7=' Presione "Ok" para continuar ';
helpstring=char(T1,T2,T3,T4,T5,T6,T7);
uiwait(msgbox(helpstring,dlgname,'modal'));
```

end

A3.

function [NE,a,D,TA,n]=Arreglo

```
prompt={'Número de Electrodos:','Distancia Entre Electrodos [m]:'...
    ,'Ángulo de la Línea:','Tipo de Arreglo:',...
    'Factor n:'};
dlg_title='Línea de Electrodos';
defaultanswer={'30','3','90','2','1'};
d=inputdlg(prompt,dlg_title,[1 30],defaultanswer);
l=length(d);
if 1>0
NE=str2double(d(1));
a=str2double(d(2));
D=str2double(d(3));
TA=str2double(d(4));
n=str2double(d(5));
else
NE=nan;
a=nan;
D=nan;
TA=nan;
n=nan;
end
```

end

A4.

function [xj,yj,h,l,w,d,rhom,rhoc]=Geom

```
prompt={'Coordenada en x[m]:','Coordenada en y[m]:','Alto (z)[m]:',...
           'Largo (y)[m]:','Ancho (x)[m]:','Profundidad [m]:',...
'Resistividad del medio [ohmm]:','Resistividad del cuerpo [ohmm]:'};
      dlg_title='Dimensiones del Cuerpo';
      defaultanswer={'45','0','3','12','12','3','100','500'};
      options.Interpreter='tex';
      dim=inputdlg(prompt,dlg_title,[1 30],defaultanswer,options);
L=length(dim);
if L>0
xj=str2double(dim(1));
yj=str2double(dim(2));
h=str2double(dim(3));
l=str2double(dim(4));
w=str2double(dim(5));
d=str2double(dim(6));
rhom=str2double(dim(7));
rhoc=str2double(dim(8));
else
xj=nan;
yj=nan;
h=nan;
l=nan;
w=nan;
d=nan;
rhom=nan;
rhoc=nan;
end
end
```

A5.

function E=Elect(xi,yi,NE,a,D)

% Coordenadas de los electrodos, "x" crece hacia el este, "y" crece hacia % el norte, xi,yi coordenadas del primer electrodo, NE número de electrodos % a separación entre electrodos, D declinación con respecto al norte de la % línea de electrodos en grados.

D=D*pi/180; dy=cos(D)*a; dx=sin(D)*a; E=zeros(NE,2); E(1,1:2)=[xi,yi]; for i=2:NE E(i,1)=E(i-1,1)+dx; E(i,2)=E(i-1,2)+dy; end

A6.

function D=WS(NE,n)

% Función WS, genera las coordenadas de los electrodos en el arreglo % Wenner-Schlumberger con una abertura entre electrodos inicial "a", un número % máximo de subniveles N y un número de electrodos NE A=1; %Integer index for electrode spacing N=1; %Integer index for sub-levels LT=(NE-1)*A; % Longitude of electrode line

```
LA=2*(N*A)+A; % Longitude of electrode array (Alcance del Arreglo)
Nq=4; % Number of electrodes used per reading
k=1; % Counter to store matrix
d=zeros((NE-3)*4,1); % Memory allocation for d. NE-3=Number of cuadpoles,
% (NE-3)*4 for each electrode there's one index.
while LA<=LT
      j=1; %Counter to store vector
     while N<=n && LA<=LT
           i=1; %Contador para avanzar en el índice de electrodo
          while LA<=NE
                %C1=1+((i-1)*A);
                C1=i;
                P1=C1+N*A;
                P2=C1+(A*(N+1));
                C2=C1+(2*N*A)+A;
                d(3*(i-1)+i:3*(i-1)+i+3) = [C1;P1;P2;C2];
                LA=C2+1; % Se rrecorre un lugar el arreglo
                i=i+1;
          end
        Sn(:,j)=d; %Índices de sub-nivel
        d(:)=0;
        j=j+1;
        N=N+1; % Cambio de sub-nivel
        LA=2*(N*A)+A; % Longitud del Arreglo para cambio de n
     end
     N=1;
     A=A+1;
     LA=2*(N*A)+A;
     D{k}.S=Sn; % salvar en un txt
     clear Sn;
     k=k+1;
end
```

A7.

```
function D=DD(NE,n)
%clear all
%n=2;
%NE=24;
% Función DD, genera las coordenadas de los electrodos en el arreglo
% Dipolo-Dipolo con una abertura entre electrodos inicial "a", un número
% máximo de subniveles N y un número de electrodos NE
A=1; %Integer index for electrode spacing
N=1; %Integer index for sub-levels
LT=(NE-1)*A; % Longitude of electrode line
LA=2*A+(N*A); % Longitude of electrode array
Nq=4; % Number of electrodes used per reading
k=1; % Counter to store matrix
while LA<=LT
      j=1; %Counter to store vector
     while N<=n && LA<=LT
           i=1; %Contador para avanzar en el índice de electrodo
           d=zeros((NE-3)*4,1); % Memory allocation for d
          while LA<=NE
                %C2=1+((i-1)*A);
                C2=i;
                C1=C2+A;
                P1=C2+(A*(N+1));
                P2=C2+2*A+(N*A);
                %d(3*(i-1)+i:3*(i-1)+i+3)=[C2;C1;P1;P2];
                d(Nq*i-(Nq-1):Nq*i)=[C2;C1;P1;P2];
                LA=P2+1; %Se recorre un lugar el arreglo
                i=i+1;
          end
        Sn(:,j)=d; %Índices de sub-nivel
```

```
clear d
  j=j+1;
  N=N+1; % Cambio de sub-nivel
  LA=2*A+(N*A); % Longitud del Arreglo para cambio de n
end
 N=1;
  A=A+1;
  LA=2*A+(N*A);
  D{k}.S=Sn; % salvar en un txt
  clear Sn;
  k=k+1;
```

```
end
```

A8.

function D=PD(NE,n)

```
% Función PD, genera las coordenadas de los electrodos en el arreglo
% Polo-Dipolo con una abertura entre electrodos inicial "a", un número
% máximo de subniveles N y un número de electrodos NE
A=1; %Integer index for electrode spacing
N=1; %Integer index for sub-levels
LT=(NE-1)*A; % Longitude of electrode line
LA=N*A+A; % Longitude of electrode array (Alcance del Arreglo)
Nq=3; % Number of electrodes used per reading
k=1; % Counter to store matrix
d=zeros((NE-2)*3,1); % Memory allocation for d. NE-2=Number of dipoles,
\ (NE-2)*3 for each electrode there's one index.
while LA<=LT
      j=1; %Counter to store vector
     while N<=n && LA<=LT
           i=1; %Contador para avanzar en el índice de electrodo
          while LA<=NE
                C1=i;
                Pl=i+N*A;
                P2=i+N*A+A;
                d(Nq*i-(Nq-1):Nq*i)=[C1;P1;P2];
                LA=P2+1; %Se recorre un lugar el arreglo
                i=i+1;
          end
        Sn(:,j)=d; %Índices de sub-nivel
        d(:)=0;
        j=j+1;
        N=N+1; % Cambio de sub-nivel
        LA=N*A+A; \ Longitud del Arreglo para cambio de n
     end
     N=1;
     A=A+1;
     LA=N*A+A;
     D{k}.S=Sn;
     clear Sn;
     k=k+1;
end
```

A9.

function D=PP(NE,n)

% Función PP, genera las coordenadas de los electrodos en el arreglo % Polo-Polo con una abertura entre electrodos inicial "a", un número % máximo de subniveles N y un número de electrodos NE

A=1; %Integer index for electrode spacing N=1; %Integer index for sub-levels LT=(NE-1)*A; % Longitude of electrode line LA=A; % Longitude of electrode array (Alcance del Arreglo)

```
Nq=2; % Number of electrodes used per reading
k=1; % Counter to store matrix
d=zeros((NE-1)*2,1); % Memory allocation for d. NE-1=Number of dipoles,
% (NE-1)*2 for each electrode there's one index.
while LA<=LT
      j=1; %Counter to store vector
     while N<=n && LA<=LT
           i=1; %Contador para avanzar en el índice de electrodo
          while LA<=NE
                C1=i;
                P1=i+A;
                d(Nq*i-(Nq-1):Nq*i)=[C1;P1];
                LA=P1+1; %Se recorre un lugar el arreglo
                i = i + 1;
          end
        Sn(:,j)=d; %Índices de sub-nivel
        d(:)=0;
        i=i+1;
        N=N+1; % Cambio de sub-nivel
        LA=A; % Longitud del Arreglo para cambio de n
     end
     N=1;
     A=A+1;
     LA=A;
     D{k}.S=Sn;
     clear Sn;
     k=k+1;
end
```

```
A10.
```

```
****
Niv=length(D); % Number of leves / Número de niveles
Long=length(D{1}.S);
jj=1; % Total Operations Counter / Contador total de operaciones
J=1;
wb=waitbar(0,'Espere Por Favor...');
for kkk=1:Niv
   Subniv=length(D{kkk}.S(1,:)); % Number of Sub-Leves / Número de sub-niveles
   for jjj=1:Subniv
  ii=1;
   iii=1;
  Logic=(D{kkk}.S(iii,jjj)==0);
      while iii<=Long && Logic==0
         if TA==1
           [A,B,M,N,Ze]=CGWS(iii,jjj,kkk,E,D);
         else
           [A,B,M,N,Ze]=CGDD(iii,jjj,kkk,E,D);
         end
%%%%% Coordinates of the Mesured Point / Coordenadas del Punto Medido
xp=Ze(1); yp=Ze(2); zp=Ze(3); %%%%% SCR
x0p=Ze(1)-XA;y0p=Ze(2)-YA;z0p=Ze(3)-ZA; %%%% SCC
a=[XA YA ZA]; %%%%% Vector a (SCR)
r=[xp yp zp]; %%%% Vector r (SCR)
r0=-a+r; %%%% Vector r0 (SCC)
%%%%% Coordinates of the Electrodes (A,B,M,N)
xsa=A(1); ysa=A(2); zsa=A(3); %%%% A (SCR)
xsb=B(1); ysb=B(2); zsb=B(3); %%%% B (SCR)
xm=M(1); ym=M(2); zm=M(3); %%%%% M (SCR)
xn=N(1); yn=N(2); zn=N(3); %%%%% N (SCR)
x0m=xm-XA;
yOm=ym-YA;
zOm=zm-ZA;
x0n=xn-XA;
y0n=yn-YA;
```

```
zOn=zn-ZA;
xOsa=xsa-XA;
yOsa=ysa-YA;
zOsa=zsa-ZA;
xOsb=xsb-XA;
yOsb=ysb-YA;
zOsb=zsb-ZA;
```

```
ram=sqrt((xsa-xm).^2+(ysa-ym).^2); % Distance A-M / Distancia A-M
rbm=sqrt((xsb-xm).^2+(ysb-ym).^2); % Distance B-M / Distancia B-M
ran=sqrt((xsa-xn).^2+(ysa-yn).^2); % Distance A-N / Distancia A-N
rbn=sqrt((xsb-xn).^2+(ysb-yn).^2); % Distance B-N / Distancia B-N
```


%%%%%%%%%% AM

IvAM=-Cubatura(x0sa,y0sa,x0m,y0m,ZA,NN,TT,ac,bc,cc,dc,ec,fc);

%%%%%%%%%% BM

IvBM=Cubatura(x0sb,y0sb,x0m,y0m,ZA,NN,TT,ac,bc,cc,dc,ec,fc);

%%%%%%%%%% AN

IvAN=Cubatura(x0sa,y0sa,x0n,y0n,ZA,NN,TT,ac,bc,cc,dc,ec,fc);

%%%%%%%%%% BN

IvBN=-Cubatura(x0sb,y0sb,x0n,y0n,ZA,NN,TT,ac,bc,cc,dc,ec,fc);

Iv=IvAM+IvBM+IvAN+IvBN;

DV=(1/(4*pi^2))*Dr*Iv; % Potential Difference / Diferencia de Potencial

```
k=(2*pi)/((1/ram)-(1/rbm)-(1/ran)+(1/rbn));
ra=rhom+(DV/I)*k;
```

%%%%%%Ze

```
Ra{kkk}.Ra(ii,jjj)=ra;
```

```
****
%%%% Projections on surface / Proyecciones en superficie
Za=[Ze(1), Ze(2)];
Zb=OS;
Zc=Za-Zb;
 if sin(dec*pi/180)==0
  Cp=norm(Zc)*sign(Zc(2));
 else
  Cp=norm(Zc)*sign(Zc(1));
 end
%%%%% XYZ File Format / Formato XYZ
Z(jj,1)=Cp;
Z(jj,2)=Ze(3);
Z(ii,3)=ra;
iii=iii+4;
ii=ii+1;
jj=jj+1;
if iii<=Long
   Logic=(D{kkk}.S(iii,jjj)==0);
end
      end
   end
   waitbar(kkk / Niv)
end
close(wb)
```

A11.

```
******
୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫
                          Kernel3e
                                    ଽଽଽଽଽଽଽଽଽଽଽଽଽଽଽଽଽ
Niv=length(D); % Number of leves / Número de niveles
Long=length(D{1}.S);
jj=1; % Total Operations Counter / Contador total de operaciones
J=1;
wb=waitbar(0,'Espere Por Favor...');
for kkk=1:Niv
   Subniv=length(D{kkk}.S(1,:)); % Number of Sub-Leves / Número de sub-niveles
   for jjj=1:Subniv
   ii=1;
   iii=1;
   Logic=(D{kkk}.S(iii,jjj)==0);
       while iii<=Long && Logic==0
          [A,M,N,Ze]=CGPD(iii,jjj,kkk,E,D);
***
%%%%% Coordinates of the Mesured Point / Coordenadas del Punto Medido
xp=Ze(1); yp=Ze(2); zp=Ze(3); %%%%% SCR
x0p=Ze(1)-XA;y0p=Ze(2)-YA;z0p=Ze(3)-ZA; %%%% SCC
a=[XA YA ZA]; %%%%% Vector a (SCR)
r=[xp yp zp]; %%%% Vector r (SCR)
r0=-a+r; %%%% Vector r0 (SCC)
%%%%% Coordinates of the Electrodes (A,M,N)
xsa=A(1); ysa=A(2); zsa=A(3); %%%% A (SCR)
%xsb=B(1); ysb=B(2); zsb=B(3); %%%% B (SCR)
xm=M(1); ym=M(2); zm=M(3); %%%%% M (SCR)
xn=N(1); yn=N(2); zn=N(3); %%%%% N (SCR)
x 0 m = x m - X \Delta;
yOm=ym-YA;
z 0m = zm - ZA;
x0n=xn-XA;
y0n=yn-YA;
z0n=zn-ZA;
x0sa=xsa-XA;
v0sa=vsa-YA;
z0sa=zsa-ZA;
%x0sb=xsb-XA;
%y0sb=ysb-YA;
%z0sb=zsb-ZA;
ram=sqrt((xsa-xm).^2+(ysa-ym).^2); % Distance A-M / Distancia A-M
%rbm=sqrt((xsb-xm).^2+(ysb-ym).^2); % Distance B-M / Distancia B-M
ran=sqrt((xsa-xn).^2+(ysa-yn).^2); % Distance A-N / Distancia A-N
%rbn=sqrt((xsb-xn).^2+(ysb-yn).^2); % Distance B-N / Distancia B-N
****
****
8888888888 AM
IvAM=-Cubatura(x0sa,y0sa,x0m,y0m,ZA,NN,TT,ac,bc,cc,dc,ec,fc);
8888888888 BM
%IvBM=Cubatura(x0sb,y0sb,x0m,y0m,ZA,NN,TT,ac,bc,cc,dc,ec,fc);
%%%%%%%%%% AN
IvAN=Cubatura(x0sa,y0sa,x0n,y0n,ZA,NN,TT,ac,bc,cc,dc,ec,fc);
%%%%%%%%%% BN
%IvBN=-Cubatura(x0sb,y0sb,x0n,y0n,ZA,NN,TT,ac,bc,cc,dc,ec,fc);
```

```
%Iv=IvAM+IvBM+IvAN+IvBN;
Iv=IvAM+IvAN;
DV=(I/(4*pi^2))*Dr*Iv; % Potential Difference / Diferencia de Potencial
%k=(2*pi)/((1/ram)-(1/rbm)-(1/ran)+(1/rbn));
k=(2*pi)/((1/ram)-(1/ran));
ra=rhom+(DV/I)*k;
8888887.e
Ra{kkk}.Ra(ii,jjj)=ra;
***
%%%% Projections on surface / Proyecciones en superficie
Za=[Ze(1), Ze(2)];
Zb=OS;
Zc=Za-Zb;
 if sin(dec*pi/180)==0
  Cp=norm(Zc)*sign(Zc(2));
 else
   Cp=norm(Zc)*sign(Zc(1));
 end
%%%%% XYZ File Format / Formato XYZ
Z(jj,1)=Cp;
Z(jj,2)=Ze(3);
Z(jj,3)=ra;
iii=iii+3;
ii=ii+1;
jj=jj+1;
if iii<=Long
   Logic=(D{kkk}.S(iii,jjj)==0);
end
       end
   end
   waitbar(kkk / Niv)
end
close(wb)
A12.
****
୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫୫<u></u>
```

```
Niv=length(D); % Number of leves / Número de niveles
Long=length(D{1}.S);
****
jj=1; % Total Operations Counter / Contador total de operaciones
J=1;
wb=waitbar(0,'Espere Por Favor...');
for kkk=1:Niv
   Subniv=length(D{kkk}.S(1,:)); % Number of Sub-Leves / Número de sub-niveles
   for jjj=1:Subniv
   ii=1;
   iii=1;
   Logic=(D{kkk}.S(iii,jjj)==0);
       while iii<=Long && Logic==0
          [A,M,Ze]=CGPP(iii,jjj,kkk,E,D);
%%%%% Coordinates of the Mesured Point / Coordenadas del Punto Medido
xp=Ze(1); yp=Ze(2); zp=Ze(3); %%%%% SCR
x0p=Ze(1)-XA;y0p=Ze(2)-YA;z0p=Ze(3)-ZA; %%%%% SCC
a=[XA YA ZA]; %%%% Vector a (SCR)
r=[xp yp zp]; %%%% Vector r (SCR)
r0=-a+r; %%%% Vector r0 (SCC)
%%%%% Coordinates of the Electrodes (A,M)
xsa=A(1); ysa=A(2); zsa=A(3); %%%%% A (SCR)
%xsb=B(1); ysb=B(2); zsb=B(3); %%%% B (SCR)
xm=M(1); ym=M(2); zm=M(3); %%%%% M (SCR)
```

%xn=N(1); yn=N(2); zn=N(3); %%%%% N (SCR) xOm=xm-XA; y0m=ym-YA; z Om = zm - ZA;%x0n=xn-XA; %y0n=yn-YA; %z0n=zn-ZA; x0sa=xsa-XA; y0sa=ysa-YA; z0sa=zsa-ZA; %x0sb=xsb-XA; %y0sb=ysb-YA; %z0sb=zsb-ZA; ram=sqrt((xsa-xm).^2+(ysa-ym).^2); % Distance A-M / Distancia A-M %rbm=sqrt((xsb-xm).^2+(ysb-ym).^2); % Distance B-M / Distancia B-M %ran=sqrt((xsa-xn).^2+(ysa-yn).^2); % Distance A-N / Distancia A-N %rbn=sqrt((xsb-xn).^2+(ysb-yn).^2); % Distance B-N / Distancia B-N **** 8888888888 AM IvAM=-Cubatura(x0sa,y0sa,x0m,y0m,ZA,NN,TT,ac,bc,cc,dc,ec,fc); %%%%%%%%%% BM %IvBM=Cubatura(x0sb,y0sb,x0m,y0m,ZA,NN,TT,ac,bc,cc,dc,ec,fc); %%%%%%%%%% AN %IvAN=Cubatura(x0sa,y0sa,x0n,y0n,ZA,NN,TT,ac,bc,cc,dc,ec,fc); 8888888888 BN %IvBN=-Cubatura(x0sb,y0sb,x0n,y0n,ZA,NN,TT,ac,bc,cc,dc,ec,fc); %Iv=IvAM+IvBM+IvAN+IvBN; Tv=TvAM; DV=(1/(4*pi^2))*Dr*Iv; % Potential Difference / Diferencia de Potencial k=(2*pi)/((1/ram)); ra=rhom+(DV/I)*k; %%%%%%Ze Ra{kkk}.Ra(ii,jjj)=ra; %%%%% Projections on surface / Proyecciones en superficie Za=[Ze(1), Ze(2)];7b=05; Zc=Za-Zb; if sin(dec*pi/180)==0 Cp=norm(Zc)*sign(Zc(2)); else Cp=norm(Zc)*sign(Zc(1)); end %%%%% XYZ File Format / Formato XYZ Z(jj,1)=Cp;Z(jj,2)=Ze(3);Z(jj,3)=ra; iii=iii+2; ii=ii+1; jj=jj+1; if iii<=Long Logic=(D{kkk}.S(iii,jjj)==0);

```
end
```

end end waitbar(kkk / Niv) end close(wb)

A13.

function [A,B,M,N,Ze]=CGWS(i,j,k,E,D)
% Coordinates Generator

function [A,B,M,N,Ze]=CGDD(i,j,k,E,D)

%i=1; %Line, #Cuad. %j=1; %Column, Sub-L %k=1; %Matrix, Level

A=E(D{k}.S(i,j),:); A(1,3)=0; B=E(D{k}.S(i+3,j),:); B(1,3)=0; M=E(D{k}.S(i+1,j),:); M(1,3)=0; N=E(D{k}.S(i+2,j),:); N(1,3)=0;

n=j;

% Median Depth of investigation (Wenner-Schlumberger)

ZeLWS=[0.173;0.186;0.189;0.190;0.190;0.191;0.191;0.191;0.191;0.191];

VL=B-A; %Vector L, según el tipo de arreglo se restan las posiciones de los electrodos en los extremos VL2=VL/2; Ze=A+VL2; % Posición en superficie del punto de atribución (en este caso centro del arreglo) L=sqrt(VL(1)^2+VL(2)^2); Ze(1,3)=-L*ZeLWS(n);

A14.

% Coordinates Generator %i=1; %Line, #Cuad. %j=1; %Column, Sub-L %k=1; %Matrix, Level A=E(D{k}.S(i+1,j),:); A(1,3)=0;B=E(D{k}.S(i,j),:); B(1,3)=0; $M=E(D\{k\}.S(i+2,j),:);$ M(1,3)=0; $N=E(D\{k\}.S(i+3,j),:);$ N(1,3)=0;n=j; % Median Depth of investigation (Dipole-Dipole) ZeLDD=[0.173;0.186;0.189;0.190;0.190;0.;0.220;0.224]; VL=N-B; VL2=VL/2;Ze=B+VL2;

A15.

```
function [A,M,N,Ze]=CGPD(i,j,k,E,D)
% Coordinates Generator
```

```
%i=1; %Line, #Cuad.
%j=1; %Column, Sub-L
%k=1; %Matrix, Level
```

A=E(D{k}.S(i,j),:); A(1,3)=0; M=E(D{k}.S(i+1,j),:); M(1,3)=0; N=E(D{k}.S(i+2,j),:); N(1,3)=0;

n=j;

% Median Depth of investigation (Pole-Dipole)

ZeLPD=[0.519,0.925,1.318,1.706,2.093,2.478,2.863,3.247];

```
VL=N-A; %Vector L, según el tipo de arreglo se restan las posiciones de los electrodos en
los extremos
VL2=VL/2;
Ze=A+VL2; % Posición en superficie del punto de atribución (en este caso centro del arreglo)
L=sqrt(VL(1)^2+VL(2)^2);
Ze(1,3)=-L*ZeLPD(n);
```

A16.

```
function [A,M,Ze]=CGPP(i,j,k,E,D)
% Coordinates Generator
```

%i=1; %Line, #Cuad. %j=1; %Column, Sub-L %k=1; %Matrix, Level

A=E(D{k}.S(i,j),:); A(1,3)=0; M=E(D{k}.S(i+1,j),:); M(1,3)=0;

n=j;

```
% Median Depth of investigation (Pole-Pole)
```

ZeLPP=0.867;

VL=M-A; %Vector L, según el tipo de arreglo se restan las posiciones de los electrodos en los extremos VL2=VL/2; Ze=A+VL2; % Posición en superficie del punto de atribución (en este caso centro del arreglo) L=sqrt(VL(1)^2+VL(2)^2); Ze(1,3)=-L*ZeLPP(n);

A17.

```
function I=Cubatura(Cx,Cy,Px,Py,Z,N,T,a,b,c,d,e,f)
% Función Cubatura: Obtiene la integral volumétrica obtenida de la función
% de Green para el cálculo de la respuesta eléctrica del subsuelo
% (Cx,Cy)coord. del electrodo de corriente; (Px,Py) coord del electrodo de
% potencial; Z profundidad del origen de coordenadas de cuerpo; N número de
% nodos para la cubatura (5,10,15); T tipo de función argumento
% (1,2,3,4,5); (a,b,c,d,e,f) límites de integración x,y,z respectivamente
%Cambios de variable:
% Cm=W1W2W3(b-a)(d-c)(f-e)
% Xm=(b-a)xi+a
% Ym=(d-c)xj+c
% Zm=(f−e)xk+e
switch T
       case 1
%%%%%%%%% Bessel Functions First Kind %%%%%%%%%%
                 switch N
                        case 5
22222 N5
W=[1.17179089779279;2.24136849121358;2.66214797121592;2.47001516625585;1.45415103193520];
                        case 10
%%%%% N10
                        case 15
%%%%% N15
                 end
        case 2
%%%%%%%% Polinomials & Logaritmic Functions %%%%%%%%%%
                switch N
                       case 5
%%%%% N5
698];
W=[0.0210469457918546;0.130705540744447;0.289702301671314;0.350220370120399;0.20832484167198
6];
                     case 10
88888 N10
6895404;...
0.348880142979353; 0.530440555787956; 0.716764648511655; 0.875234557506234; 0.975245698684393];
W=[0.00183340007378985;0.0134531223459918;0.0404971943169583;0.0818223696589036;0.1291923427
70138;
0.169545319547259;0.189100216532996;0.177965753961471;0.133724770615462;0.0628655101770325];
                      case 15
%%%%% N15
n = [ 0.000105784548458629; 0.00156624383616782; 0.00759521890320709; 0.0228310673939862; 0.05238862; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.052388662; 0.05238862; 0.052388662; 0.052388662; 0.05238862; 0.05238862; 0.05238862; 0.05238862; 0.05238862; 0.05238862; 0.05238862; 0.05238862; 0.05238862; 0.05238862; 0.05238862; 0.05238862; 0.05238862; 0.05238862; 0.05238862; 0.05238862; 0.05238862; 0.05238862; 0.05238862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.05238862; 0.05238862; 0.05238862; 0.05238862; 0.05238862; 0.0523862; 0.05238862; 0.05238862; 0.05238862; 0.05238862; 0.05238862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.0523862; 0.052385; 0.0523862; 0.05238; 0.05236; 0.05236; 0.05236; 0.05238; 0.0
301568200;...
0.100758685201213; 0.170740768849943; 0.262591206118993; 0.373536505184558; 0.497746358414533; ...
0.626789031392373;0.750516103461408;0.858255335207861;0.940141291212346;0.9884015959863421;
\mathbb{W} = [0.000403217724648460; 0.00306297843478700; 0.00978421211876615; 0.0215587522255813; 0.0383230]
673708892;...
0.0588981990263004; 0.0811170299392595; 0.102122101972069; 0.118789059030401; 0.128210316446694;
```

```
• • •
```

1; end case 3 ****** Products of Polynomial and Fractional Powers (2/3) ******** switch N case 5 %%%%% N5 111; W = [0.0350341916241438; 0.152986023564027; 0.293439234461264; 0.329423482895757; 0.18911706745480]81; case 10 %%%%% N10 n = [0.00106075936690850; 0.0105957835374351; 0.0419569285287569; 0.109001951813403; 0.21986107153] = 0.00106075936690850; 0.0105957835374351; 0.0419569285287569; 0.109001951813403; 0.21986107153] = 0.00106075936690850; 0.0105957835374351; 0.0419569285287569; 0.109001951813403; 0.21986107153] = 0.00106075936690850; 0.0105957835374351; 0.0419569285287569; 0.0109001951813403; 0.21986107153] = 0.00106075936690850; 0.0105957835374351; 0.0419569285287569; 0.0109001951813403; 0.21986107153] = 0.0010607593669085287569; 0.00105957835374351; 0.00105957835374351; 0.0019569285287569; 0.0010951813403; 0.0019569285287569; 0.00105957835374351; 0.0019569285287569; 0.0019569285287569; 0.0019569285287569; 0.0019569285287569; 0.0019569285287569; 0.0019569285287569; 0.0019569285287569; 0.0019569285287569; 0.0019569285287569; 0.0019569285287569; 0.0019569285287569; 0.0019569285287569; 0.0019569285287569; 0.0019569285287569; 0.0019569285287569; 0.0019569285287569; 0.0019569285287569; 0.0019569285287569; 0.0019569285287569; 0.0019569; 0.0019569; 0.0019569285287569; 0.0019569; 0.0012861;... 0.372071233678686;0.550779272731362;0.730779332479715;0.881954366270197;0.976639980362546]; W=[0.00342465634725548;0.0179697406786380;0.0471712377689652;0.0883592422887387;0.1329803638 59702;... 0.168929398195588;0.184191248381816;0.170661619172872;0.126951038006216;0.0593614553002092]; case 15 88888 N15 n = [0.000241818436310427; 0.00247904422657297; 0.0102231505109504; 0.0280798632789153; 0.06083392]81242860;... 0.112443594490995;0.185105777705090;0.278545764961840;0.389652905586201;0.512532528698514;.. 0.638982003700951;0.759334800695944;0.863560355211660;0.942468575671709;0.988861955722520]; W = [0.000785216839155443; 0.00428667428787457; 0.0119847435540932; 0.0245432960884266; 0.04164049]83681140;... . . . 0.125082141394901;0.113931212165169;0.0929687707138682;0.0636311469832558;0.0284506911259040 1; end case 4 ******* Products of Polynomial and Fractional Powers (1/2) ******** switch N case 5 %%%%% N5 11; $\mathbb{W} = \begin{bmatrix} 0.031495820433846; 0.147817740145233; 0.292773974169340; 0.334349276188739; 0.193563180453303 \end{bmatrix}$ 1; case 10 %%%%% N10 190650;... 0.366460914978464; 0.545885024355929; 0.727418879329945; 0.880346704943949; 0.976306802645093];W=[0.00299828120481279;0.0168386395659664;0.0455491829065261;0.0868038128143013;0.1321061511 26701;... 0.169114219381655;0.185393787355447;0.172422600578352;0.128574309018165;0.0601990160480740]; case 15 %%%%% N15 787087472;...

0.109550941121055;0.181570447192808;0.274636464058843;0.385717152459535;0.508930876164803;..

0.636017805747573;0.757194044089115;0.862273903642310;0.941904608637681;0.988750439427061]; W=[0.000680684768275793;0.00397246938629008;0.0114144447894424;0.0238083807101952;0.04083261 85452397;...

 $0.0612195391729371; 0.0828014703688452; 0.102824724623773; 0.118348384119426; 0.126687910323023; \ldots \\$

0.125836213297194;0.114797651013883;0.0937832798881199;0.0642380897499318;0.0287341392434250];

end

case 5

%%%%%%%% Products of Polynomial and Fractional Powers (1/3) %%%%%%%%%%

switch N

case 5

%%%% N5 n=[0.00831174531456776;0.0863966362795308;0.305943516943443;0.635656558720652;0.920004207024 857]; W=[0.0279778782123048;0.142398935990482;0.291943668689807;0.339447240627363;0.19823227648004 3];

case 10
%%%% N10
n=[0.000751897878625465;0.00874666094268371;0.0372684363855664;0.100986759928202;0.209274931
334610;...

0.360730157291068;0.540868549812902;0.723966527445448;0.878692655294032;0.975963746745065]; W=[0.00259000938099737;0.0157085175605557;0.0438972012175236;0.0851979518885884;0.1311854623 15937;...

0.169279428891491;0.186612247123971;0.174225330076043;0.130242598410538;0.0610612531343552];

case 15 %%%% N15 n=[0 000168121349224

 $n = [0.000168121349224655; 0.00200427399422478; 0.00888445820257933; 0.0254380748331252; 0.0566163366479501; \ldots] \\$

0.106639742234206;0.177998880856086;0.270675783247184;0.381720959785030;0.505267785653412;..

0.632999186646096;0.755011893747991;0.860961671393287;0.941329076190074;0.988636608057791]; W=[0.000582014429388243;0.00366362217710688;0.0108842247988913;0.0230661756216959;0.04001082 65603416;...

0.0604643908138577;0.0822581407444590;0.102603879506980;0.118500791181315;0.127191992481750; ...

0.126600784497532;0.115679059680403;0.0946133646757434;0.0648572778769515;0.0290234549535849];

end

end

S=0; for i=1:N for j=1:N for k=1:N S=S+(W(i)*W(j)*W(k)*(b-a)*(d-c)*(f-e)*(((((b-a)*n(i)+a)-Cx)*... (Px-((b-a)*n(i)+a))+(((d-c)*n(j)+c)-Cy)*(Py-((d-c)*n(j)+c))... -(((f-e)*n(k)+e)+Z)^2)/(((((b-a)*n(i)+a)-Cx)^2+... (((d-c)*n(j)+c)-Cy)^2+(((f-e)*n(k)+e)+Z)^2)^(3/2)*... ((Px-((b-a)*n(i)+a))^2+(Py-((d-c)*n(j)+c))^2+... (((f-e)*n(k)+e)+Z)^2)^(3/2)));
```
end
end
I=S;
```

A18.

```
function [x,y,h,l,w,d,rhoc]=Geom2
```

```
prompt={'Coordenada en x [m]:','Coordenada en y [m]:',...
          'Alto (z)[m]:','Largo (y)[m]:','Ancho (x)[m]:',...
          'Profundidad [m]:', 'Resistividad del cuerpo [ohmm]:'};
      title='Dimensiones del Cuerpo';
      defans={'57','0','3','12','12','3','500'};
      options.Interpreter='tex';
      options.Resize='on';
      options.WindowStyle='modal';
      dim=inputdlg(prompt,title,[1 15],defans,options);
L=length(dim);
if L>0
x=str2double(dim(1));
y=str2double(dim(2));
h=str2double(dim(3));
l=str2double(dim(4));
w=str2double(dim(5));
d=str2double(dim(6));
rhoc=str2double(dim(7));
else
    x=nan;
    y=nan;
    h=nan;
    l=nan;
    w=nan;
    d=nan;
    rhoc=nan;
end
```

A19.

end

function X=sortn(Rx)

```
Lx=length(Rx);
j=1;
while Lx>0
    ind=(1);
    Ax=Rx(ind);
    i=1;
    ii=Lx;
    while ii>1
          if Ax-Rx(i+1) == 0
             Rx(i+1)=[];
             i=i-1;
          elseif Ax-Rx(i+1)>0
             Ax=Rx(i+1);
             ind=i+1;
          end
          i=i+1;
          ii=ii-1;
    end
   X(j)=Ax;
   Rx(ind)=[];
   Lx=length(Rx);
   j=j+1;
end
```

end

A20.

```
function Zi=imgmap2(Rx,Ry,Rz,rhom,Nb)
x=length(Rx);
y=length(Ry);
z=length(Rz{1});
Zi=zeros(y,x);
  for L=1:Nb %Loop for Number of Bodys / Ciclo Para Varios Cuerpos
      Z{L}=zeros(y,x);
      for k=1:z
          for i=1:x
              if Rz{L}(k,1) == Rx(i)
                 break
                 %indx=i;
              end
          end
          for j=1:y
              if Rz{L}(k,2)==Ry(j)
                 break
                 %indy=j;
              end
          end
          Z\{L\}(j,i)=Rz\{L\}(k,3);
      %%%%% Thikennign / Ensanchamiento
          if i<x
             Z\{L\}(j,i+1)=Rz\{L\}(k,3);
          end
          if j<y
             Z{L}(j+1,i)=Rz{L}(k,3);
          end
          if i<x && j<y
             Z\{L\}(j+1,i+1)=Rz\{L\}(k,3);
          end
      8}
      end
  end
  for L=1:Nb
      Zi=Zi+Z\{L\};
  end
  %%%%% Background Resistivity
  for i=1:x
      for j=1:y
          if Zi(j,i)==0
             Zi(j,i)=rhom;
          end
      end
  end
end
```

Manual de Usuario.

Guía Rápida.

El programa de modelado funciona introduciendo las dimensiones y características de un cuerpo de caras planas paralelas, se establece un sistema de coordenadas x, y, z, en donde z crece hacia arriba, x va en dirección oeste a este, e y de sur a norte. Las longitudes están definidas en metros [m], los ángulos en grados con decimales [°] y las resistividades en ohm metro [Ω m]. Se considera que la posición del primer electrodo en la superficie es, también, el origen de coordenadas, para poder establecer la posición y tipo de arreglos se ha de tomar esto en cuenta.

- Al correr el programa aparece una ventana de diálogo de bienvenida de click en Ok para continuar con el programa.
- Aparecerá ahora la ventana de "Línea de electrodos", en esta ventana se introduce la información correspondiente a la disposición de los electrodos y la configuración o arreglo.
- Debe considerarse que el primer electrodo corresponde a la posición (0,0,0), a partir de este electrodo se desplegará la línea.
- En los dos primeros campos se introduce el número de electrodos y la distancia entre estos.
- En el tercer campo se especifica el ángulo de la línea de electrodos con respecto al eje y (Norte-Sur).
- En el campo Tipo de Arreglo se introduce un número del 1 al 4 dependiendo del tipo de arreglo que se desee, los números asignados a cada tipo de arreglo son: 1-Wenner-Schlumerger, 2-Dipolo-Dipolo, 3-Polo-Dipolo y 4-Polo-Polo.
- Finalmente, en el campo "Factor n" se introduce la cantidad de subniveles que se desee. Recordar que no todos los arreglos utilizan el factor n, de ser este el caso, ingrese 1 como valor para este campo.
- A continuación, se despliega la ventana de "Dimensiones del Cuerpo" en esta se introducen las dimensiones y características del cuerpo que se desea modelar. Los dos primeros campos son para las coordenadas x e y del centro geométrico del cuerpo, los tres campos siguientes corresponden a: alto (eje z), largo (eje x), y ancho (eje y).
- En el campo de profundidad, se introduce la distancia que hay desde la superficie hasta la cara superior o "techo" del cuerpo.
- En los últimos dos campos de esta ventana se introducen los valores de resistividad tanto del medio como del cuerpo. Dar click en ok para continuar.
- Luego de procesar la información, el programa preguntará al usuario si desea agregar otro cuerpo, si da click en el botón "yes" se desplegará otra ventana donde podrá introducir las características del nuevo cuerpo geométrico. Al terminar, el programa volverá a preguntarle si desea agregar otro cuerpo, agregue de esta manera, tantos cuerpos como desee.

En la ventana "Agregar Cuerpo" se deben ingresar las coordenadas en x y en y, estas coordenadas indican la posición del centro geométrico del nuevo cuerpo con respecto al origen de coordenadas.