

UNIVERSIDAD NACIONAL AUTÓNOMA DE MEXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS QUÍMICAS

ANÁLISIS DE LA SOLUCIÓN SÓLIDA Na₂(Zr_{1-x}Fe_x)O₃ COMO MATERIALES CAPTORES DE CO₂

PROYECTO DE INVESTIGACIÓN PARA OPTAR POR EL GRADO DE

MAESTRO EN CIENCIAS

PRESENTA

Q. DAVID CARRILLO JUÁREZ

DR. HERIBERTO PFEIFFER PEREA INSTITUTO DE INVESTIGACIONES EN MATERIALES

CIUDAD DE MÉXICO, JUNIO 2018

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS QUÍMICAS

ANÁLISIS DE LA SOLUCIÓN SÓLIDA Na₂(Zr_{1-x}Fe_x)O₃ COMO MATERIALES CAPTORES DE CO₂

PROYECTO DE INVESTIGACIÓN

PARA OPTAR POR EL GRADO DE

MAESTRO EN CIENCIAS

PRESENTA

Q. DAVID CARRILLO JUÁREZ

DR. HERIBERTO PFEIFFER PEREA INSTITUTO DE INVESTIGACIONES EN MATERIALES

CIUDAD DE MÉXICO, JUNIO 2018

Este trabajo fue realizado en el Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS) en el edificio E del Instituto de Investigaciones en Materiales de la UNAM.

AGRADECIMIENTOS

Al CONACyT por el apoyo económico otorgado para la realización de mis estudios de maestría. No. de becario: 598741 No. de CVU: 738842

A mis compañeros del laboratorio LaFReS, especialmente a Francisco, Arturo, Anita, Pedro, Hugo, Eli y Oscar por brindarme siempre su ayuda y por los momentos tan agradables y divertidos dentro y fuera del laboratorio. También al Dr. Heriberto por su tiempo y paciencia, por los consejos y regaños que estoy seguro me acompañarán en mi vida profesional.

Al chino, Jessy y Pepe. Hablar con ellos siempre renueva mi gusto por la ciencia.

A la M.C. Adriana Tejeda Cruz, al Dr. Omar Novelo Peralta y al Dr. Raul Escamilla Guerrero por su ayuda en distintas técnicas de caracterización para el presente trabajo.

Al jurado revisor de este trabajo por sus observaciones y su tiempo.

1. INTRODUCCIÓN

Cambio climático

El cambio climático es la variación del clima por largos periodos ya sea por causas naturales o por la actividad humana. Es uno de los más grandes problemas de nuestros tiempos y tiene grandes afectaciones tanto para la sociedad como para el medio ambiente. Los efectos del cambio climático son de nivel global, por lo que es necesario tomar medidas lo más pronto posible, de lo contrario será más difícil combatirlo y adaptarse a estos cambios.¹

Algunas de las consecuencias del cambio climático son: el derretimiento de los casquetes polares, aumento del nivel de mar, fenómenos meteorológicos más extremos, olas de calor y sequías.

El hombre ha influenciado fuertemente el clima y la temperatura de la Tierra mediante actividades como la deforestación, el uso de fertilizantes nitrogenados, la ganadería y la quema de combustibles fósiles. Esto aumenta considerablemente la concentración de gases de efecto invernadero en la atmósfera incrementando el efecto invernadero y el calentamiento global.²

Efecto invernadero y gases de efecto invernadero

De la luz solar que recibe la Tierra, aproximadamente el 30% es reflejada al espacio debido a las nubes o al hielo. Del 70% restante, una gran parte es absorbida por la tierra y el océano y una pequeña parte por la atmósfera. Al calentarse la tierra, el aire y los mares irradian energía en forma de radiación infrarroja de vuelta al espacio. Esta energía, en su trayecto a través de la atmósfera, es absorbida por vapor de agua y gases de efecto invernadero como el metano y el dióxido de carbono. Estos compuestos irradian la energía obtenida tanto del sol como de la superficie de la Tierra en todas direcciones, lo cual incrementa la radiación que recibe la superficie directamente del sol. Este proceso es conocido como el *Efecto Invernadero* (figura 1.1) y es benéfico para la vida en la Tierra ya que, de lo contrario, la temperatura promedio de la superficie de la Tierra sería de -18°C.^{3 4}

Los gases de efecto invernadero que se producen de manera natural son: vapor de agua, dióxido de carbono (CO₂), metano (CH₄), óxido nitroso (N₂O), y ozono (O₃).⁵

En los últimos siglos, la concentración de gases como el N₂O, CH₄ y el CO₂ ha aumentado radicalmente y es atribuido en gran medida a la actividad humana desde la revolución industrial (siglo XVIII)⁶:

- CO₂ mediante la quema de combustibles fósiles, la deforestación, degradación de suelos, etc.
- CH₄ mediante actividades como la agricultura, manejo de desechos, quema de biomasa, etc.
- ✤ N₂O debido al uso de fertilizantes y a la quema de combustibles fósiles.

El CO₂ es el más abundante de los gases de efecto invernadero con más del 70% en volumen, por lo que es necesario tomar medidas para reducir su presencia en la atmósfera.⁷

Figura 1.1. Representación esquemática del efecto invernadero.⁴

Uno de los métodos para la reducción de CO₂ en la atmósfera es la captura y almacenamiento de CO₂. Esta medida provee una solución a mediano plazo para mitigar el impacto ambiental, pero permite continuar con el uso de combustibles fósiles mientras las tecnologías de obtención de energía renovable maduran.⁸

Captura de CO2

La captura de CO₂ consiste en atrapar este gas durante su emisión sin liberarlo a la atmósfera. Parte del concepto de captura de CO₂ incluye su almacenamiento, para ello, el gas es comprimido y transportado mediante tuberías u otros medios a un almacén seguro, el cual puede ser un almacén subterráneo o un sedimento oceánico. Algunas de las tecnologías de captura de CO₂ son: materiales basados en membranas, destilación criogénica, adsorbentes húmedos y adsorbentes secos, entre otros. Los adsorbentes secos implican una interacción entre el CO₂ en fase gas y el material captor que es un sólido.⁹

Materiales sólidos captores de CO₂.

Existe una gran variedad de materiales sólidos para la captura de CO_2 y se pueden clasificar de acuerdo con la temperatura a la cual ocurre la sorción: de baja temperatura (< 200°C), de temperatura media (200 – 400°C) y de alta temperatura (> 400°C).¹⁰ Aunque existen otros factores que también son importantes al evaluar estos compuestos como la capacidad de sorción, la cinética, el costo, etc.^{9,11}

Algunos tipos de sólidos captores de CO₂ son: sólidos basados en aminas, zeolitas, estructuras metal-orgánicas (Metal-Organic Frameworks o MOFs), carbones activados, cerámicos alcalinos, entre otros.¹¹

Los cerámicos alcalinos son compuestos basados en algún metal alcalino como litio (Li), sodio (Na) y potasio (K). Estos cerámicos son de interés puesto que son económicamente accesibles, son atractivos para la captura de CO₂ a altas temperaturas ya que no hay necesidad de enfriar previamente los gases.⁹ Algunos de los materiales de este tipo que más han sido estudiados son: silicato de litio (Li₄SiO₄), aluminato de litio (Li₅AlO₄), silicato de sodio (Na₂SiO₃), zirconato de litio (Li₂ZrO₃) y zirconato de sodio (Na₂ZrO₃), entre otros.¹²

Zirconato de sodio

Como ya se mencionó, se han estudiado distintos cerámicos alcalinos como lo son el Li₂ZrO₃ y el Na₂ZrO₃. La capacidad captora del Li₂ZrO₃ fue reportada por Nakagawa y Ohashi en 1998¹³, reportaron que este material reacciona con el CO₂ entre los 450 y 550°C y que la reacción es reversible por encima de los 650°C. Tiempo después, López Ortiz y colaboradores encontraron que el Na₂ZrO₃ captura CO₂ a altas temperaturas, que su captura es mayor que la del Li₂ZrO₃ y que, además, puede alcanzar rendimientos de hasta el 100%.¹⁴ El Na₂ZrO₃ no solo captura CO₂ a altas temperaturas, sino que lo hace en un amplio intervalo que va desde temperatura ambiente hasta los 850°C.¹⁵

Para el Na₂ZrO₃, la captura máxima teórica de CO₂ es de 23.7% en masa, que corresponde a un mol de CO₂ quimisorbido por un mol de Na₂ZrO₃ y ocurre mediante la reacción 1:

$$Na_2ZrO_3 + CO_2 \rightarrow Na_2CO_3 + ZrO_2 \tag{1}$$

El mecanismo mediante el cual ocurre la captura de CO₂ en el Na₂ZrO₃ ha sido previamente reportado (figura 1.2) y ocurre de la siguiente manera: la superficie del Na₂ZrO₃ quimisorbe al CO₂ (proceso superficial) formando una capa externa de carbonato de sodio (Na₂CO₃) y óxido de zirconio (ZrO₂). Esta capa externa tiene una textura mesoporosa si la reacción es producida a temperaturas menores a 550°C¹⁶, por lo que la captura no se detiene ya que el CO₂ se difunde a través de estos poros hasta llegar a encontrar más Na₂ZrO₃. En caso de que se incremente la temperatura, la capa externa de Na₂CO₃ y ZrO₂ se sinteriza evitando la formación de los mesoporos. A pesar de esto, la quimisorción es reactivada mediante la difusión intracristalina de átomos de sodio hacia la superficie (proceso volumétrico) para que puedan ser capaces de reaccionar con el CO₂.^{17 18}

Figura 1.2. Mecanismo de captura de CO2 del Na2ZrO3.19

El Na₂ZrO₃ tiene una estructura cristalina monoclínica cuyos parámetros de red son: *a*= 5.623, *b*= 9.749, *c*= 11.127 Å, β = 99.98° y un volumen de celda V= 600.74 Å³.²⁰ En la figura 1.3 se muestra la estructura del Na₂ZrO₃, se puede observar que existen átomos de sodio que se encuentran justo en medio de dos capas o láminas de (ZrO₃)²⁻, lo que favorece su difusión. ²¹

Figura 1.3. Estructura cristalina de Na₂ZrO₃. Las esferas rojas representan átomos de O; las amarillas, átomos de Zr; las azules, átomos Na que se encuentran en medio de las láminas; las verdes, átomos de Na que se encuentran en las láminas.²⁰

Soluciones sólidas

Las soluciones sólidas son fases cristalinas que pueden tener composición variable. Una solución sólida simple puede ser: sustitucional, cuando un átomo o ion es introducido en la estructura original y reemplaza un átomo o ion con la misma carga; intersticial, si una especie química ocupa un sitio originalmente vacío sin que ningún átomo o ion sea removido. A partir de estos tipos básicos de soluciones sólidas se pueden formar soluciones sólidas más complejas en las cuales se pueden tener ambos tipos (sustitucional e intersticial), introducir iones con carga distinta al ion reemplazado o crear vacancias.²²

Se ha reportado que soluciones sólidas de cerámicos alcalinos captores de CO₂ como el Li_{4+x}(Si_{1-x}Al_x)O₄ ²³ y Li_{2-x}K_xZrO₃²⁴, entre otros, han visto mejoradas sus propiedades captoras de CO₂ como la cinética de captura, el intervalo de temperatura a la cual capturan y su selectividad.²¹ Soluciones sólidas de Na₂ZrO₃ también han mostrado mejoras en la captura de CO₂ sustituyendo átomos en sitios de sodio, como el Na_{2-x}K_xZrO₃²⁵, y también en sitios de zirconio como en el caso del Na₂(Zr_{1-x}Al_x)O_{3-x/2}¹⁶.

Hipótesis

Las propiedades captoras de CO₂ del Na₂ZrO₃ se verán mejoradas al adicionar hierro (Fe) en su estructura cristalina puesto que este elemento posee un menor radio iónico y mayor electronegatividad que el Zr²⁶, lo que debilitará la interacción entre las capas de (ZrO₃)²⁻ y los iones sodio mejorando su difusión.

Objetivo general y particulares

El objetivo general de este trabajo es estudiar el efecto en las propiedades captoras de CO₂ al introducir hierro dentro de la estructura cristalina del Na₂ZrO₃.

Los objetivos particulares son:

- Sintetizar mediante el método de reacción en estado sólido 2 series de compuestos con fórmulas nominales Na₂Zr_{1-x}Fe_xO_{3-x/2} y Na_{2+x}Zr_{1-x}Fe_xO₃.
- Caracterizar la estructura cristalina de las muestras mediante la técnica de difracción de rayos X y mediante un refinamiento de los patrones de difracción con el método de Rietveld.
- Caracterizar la superficie de las muestras mediante las técnicas de adsorción de N₂ y de Desorción a Temperatura Programada y su morfología mediante la Microscopia Electrónica de Barrido.
- Determinar la capacidad captora de CO₂ de las muestras mediante distintos análisis termogravimétricos con una atmósfera saturada de CO₂.
- Realizar un análisis cinético y energético mediante modelos matemáticos.

2. METODOLOGÍA

Síntesis del Na₂ZrO₃ y de las soluciones sólidas con Fe

La síntesis del Na₂ZrO₃ se llevó a cabo mediante el método de reacción en estado sólido. Se emplearon cantidades estequiométricas de carbonato de sodio (Na₂CO₃, J.T. Baker con 99.7% de pureza) y óxido de zirconio (ZrO₂, Aldrich con 99% de pureza) como reactivos. Se agregó un exceso de Na₂CO₃ del 20% para compensar el efecto de la sublimación del sodio.^{15,27} Los reactivos fueron molidos, mezclados y depositados en crisoles de cerámica para ser introducidos en una mufla. El tratamiento térmico consistió en incrementar la temperatura a una velocidad de 10°C/min hasta alcanzar los 900°C y se mantuvo esta temperatura durante 9 horas. El enfriamiento de los productos no se programó, por lo que se enfriaron a la velocidad a la que la mufla tarda en enfriarse. El Na₂ZrO₃ se sintetizó para ser utilizado como referencia para los compuestos que se describen a continuación.

Se sintetizaron dos series de soluciones sólidas con sustitución parcial de zirconio por hierro con fórmulas nominales Na₂Zr_{1-x}Fe_xO_{3-x/2} y Na_{2+x}Zr_{1-x}Fe_xO₃. En la primera serie, se espera que el hierro III se introduzca en sitios de zirconio IV, por lo que la falta de carga positiva será neutralizada mediante deficiencias de oxígeno; estas muestras serán denominadas *serie deficiente de oxígeno*. En la segunda serie, la carga positiva faltante será compensada mediante un exceso de iones sodio, por lo que estas muestras serán llamadas *serie con exceso de sodio*. Ambas series fueron sintetizadas bajo las mismas condiciones que el Na₂ZrO₃ utilizando nitrato de hierro III (Fe(NO₃)₃•9H₂O, Meyer con 98% de pureza) como fuente de hierro.

La síntesis del Na₂ZrO₃ ocurre mediante la siguiente reacción 2:

$$Na_2CO_3 + ZrO_2 \rightarrow Na_2ZrO_3 + CO_2 \tag{2}$$

La síntesis de la solución sólida con deficiencia de oxígeno ocurre mediante la reacción 3:

$$Na_{2}CO_{3} + (1-x)ZrO_{2} + xFe(NO_{3})_{3} \rightarrow Na_{2}Zr_{1-x}Fe_{x}O_{3-\frac{x}{2}} + CO_{2} + 3xNO_{2}$$
(3)

La síntesis de la solución sólida con exceso de sodio ocurre mediante la reacción 4:

$$(1+\frac{x}{2})Na_2CO_3 + (1-x)ZrO_2 + xFe(NO_3)_3 \rightarrow Na_{2+x}Zr_{1-x}Fe_xO_3 + (1+\frac{x}{2})CO_2 + 3xNO_2$$
(4)

Debido a que la composición de cada compuesto es distinta, las capturas máximas teóricas también son distintas. Como ya se mencionó anteriormente, la captura máxima del Na₂ZrO₃ es de 23.7% en masa, que equivale a 5.4 mmol/g_{cerámico}²⁸. Las capturas máximas teóricas de las soluciones sólidas son: 24.33% o 5.53 mmol/g_{cerámico} para Na₂Zr_{0.9}Fe_{0.1}O_{2.95}, 24.93% o 5.67 mmol/g_{cerámico} para Na₂Zr_{0.8}Fe_{0.2}O_{2.9}, 25.56% o 5.81 mmol/g_{cerámico} para Na₂Zr_{0.7}Fe_{0.3}O_{2.85}, 26.31% o 5.98 mmol/g_{cerámico} para Na_{2.1}Zr_{0.9}Fe_{0.1}O₃, 28.93% o 6.57 mmol/g_{cerámico} para Na_{2.2}Zr_{0.8}Fe_{0.2}O₃, 31.52% o 7.16 mmol/g_{cerámico} para Na_{2.3}Zr_{0.7}Fe_{0.3}O₃.

Técnicas de caracterización

Difracción de rayos X (DRX)

Para la caracterización estructural de las muestras, se obtuvieron los patrones de difracción con un difractómetro Bruker D8 con un tubo de rayos X con ánodo de Cu (k_{α} =1.5418 Å) sin monocromador. Las mediciones se realizaron en el intervalo de 10 a 60° con pasos de 0.02° con un tiempo de 3.5 segundos por paso y una rotación del portamuestras de 60 revoluciones por minuto. Para la identificación de fases se utilizó el software *Match!* y se hizo una comparación con la base de datos del JCPDS (*Joint Committee on Powder Difraction Standards*). Adicionalmente, se llevó a cabo un refinamiento por el método de Rietveld de los patrones de difracción mediante el software *Material Analysis Using Diffraction* (MAUD). Se empleó la función de ajuste de perfil *Pseudo-Voigt* y la secuencia de parámetros utilizada para la realización de los refinamientos presentados fue: parámetros de fondo y escala, de fase, de microestructura, de estructura cristalina, de textura y de posiciones atómicas.

Adsorción de N2

Para la caracterización textural de las muestras, se realizaron isotermas de adsorción/desorción de N₂ a 77 K mediante un equipo Bel Japan Minisorp II y se utilizó el modelo BET para la determinación de áreas superficiales. Antes de realizar las isotermas, las muestras fueron degasificadas al vacío a temperatura ambiente durante 24 horas.

Desorción a Temperatura Programada

Se llevó a cabo la Desorción a Temperatura Programada (TPD por sus siglas en inglés) de CO₂ en un equipo Bel Japan Belcat para estudiar más la superficie de los compuestos. En este equipo, se dio a las muestras un pretratamiento para eliminar

impurezas de la superficie a 850 °C seguido de un enfriamiento hasta 40 °C, ambos procesos bajo flujo de helio. Una vez que la temperatura disminuyó hasta 40°C, se cambió el flujo de helio por un flujo de CO₂ y se mantuvo a esa temperatura durante 60 minutos. Finalmente, las muestras se sometieron a un calentamiento con una rampa de 5°C/min bajo flujo de He hasta 900 °C.

Microscopia Electrónica de Barrido

Se empleó la Microscopia Electrónica de Barrido (MEB) para analizar la morfología y el tamaño de grano de las muestras, así como un mapeo elemental mediante la técnica de Espectroscopia de Rayos X de Energía Dispersiva. Para la obtención de las micrografías, las muestras fueron colocadas sobre una película de grafito y se empleó un equipo Jeol JSM-7600F.

Análisis termogravimétrico

Para medir la captura de CO₂ se empleó una termobalanza TA Instruments modelo Q500HR. Se realizaron 2 tipos de experimentos: dinámicos e isotérmicos. Primero se realizaron los experimentos dinámicos bajo un flujo de CO₂ con una rampa de calentamiento de 5°C/min hasta alcanzar los 900°C. Posteriormente, se realizaron experimentos isotérmicos a distintas temperaturas: 400, 500, 600, 700 y 800 °C, cada proceso inició con un calentamiento bajo un flujo de N₂ hasta alcanzar la temperatura deseada. Una vez que el equipo estabilizó la temperatura requerida, se cambió el flujo de N₂ por un flujo de CO₂ y se mantuvo en estas condiciones durante 180 minutos. Para todos los experimentos de análisis termogravimétricos se utilizó un mezclador de gases CHEMflow modelo Microtract-Bel.

3. RESULTADOS Y DISCUSIÓN

Difracción de rayos X

Se sintetizaron muestras con x= 0, 0.1, 0.2 y 0.3 para ambas series de compuestos y se obtuvieron los patrones de difracción correspondientes. La figura 3.1 corresponde a los patrones de difracción del Na₂ZrO₃ y la serie deficiente de oxígeno, aunque no se incluyen los de la serie con exceso de sodio puesto que presentan un comportamiento muy parecido.

El patrón de difracción de Na₂ZrO₃ obtenido experimentalmente concuerda con la tarjeta JCPDS 35-0770 que corresponde la fase monoclínica de Na₂ZrO₃. También se identificó la presencia de la fase hexagonal de Na₂ZrO₃ puesto que las reflexiones señaladas con el símbolo • están asociadas a esta fase.

Los patrones de difracción de la serie deficiente de oxígeno presentan reflexiones en aproximadamente 21, 30, 45, 46, 51 y 55° (señaladas con el símbolo \blacklozenge), así como reflexiones a ambos lados de la reflexión a ~34° (se señala con una flecha y se atribuye originalmente al Na₂ZrO₃). La intensidad de las reflexiones mencionadas aumenta conforme aumenta la cantidad de hierro, por lo que su presencia y su comportamiento indican que se encuentra presente una fase secundaria de hierro que concuerda con la tarjeta JCPDS 96-100-8928, que corresponde a la fase beta de la ferrita de sodio (NaFeO₂). También se puede observar que la intensidad de la reflexión a ~16° es notablemente mayor que la de la reflexión a ~39° para el Na₂ZrO₃, mientras que en las soluciones sólidas la diferencia es menor e incluso en el caso de Na₂Zr_{0.8}Fe_{0.2}O_{2.9} la intensidad de la reflexión a 39° es mayor.

Figura 3.1 Patrones de difracción de Na₂ZrO₃ y la serie deficiente de oxígeno.

Refinamiento por el método de Rietveld

Se realizaron refinamientos por el método de Rietveld de los patrones de difracción de todas las muestras pero sólo se presentan los correspondientes a Na₂ZrO₃ y Na₂Zr_{0.7}Fe_{0.3}O_{2.85}, puesto que los demás son muy parecidos a este último. En las imágenes de los refinamientos, los puntos negros pertenecen a los difractogramas obenidos experimentalmente, las lineas rojas a los modelados mediante los refinamientos y las lineas negras que se encuentran debajo del difractograma son la diferencia entre los datos experimentales y los calculados en el refinamiento.

En el patrón de difracción experimental de Na₂ZrO₃ refinado (figura 3.2) se puede observar la presencia de reflexiones (señaladas con el símbolo •) que no pudieron ser modeladas por el programa y que no tienen posiciones de Bragg asociadas a ellas pero, de acuerdo con la figura 3.1, se asocian a la fase hexagonal del Na₂ZrO₃. La fase hexagonal no fue incluida en el refinamiento debido a que no se encontró la información cristalográfica requerida, por lo que el refinamiento fue realizado sin tomar en cuenta esta fase pero sin excluir las reflexiones asociadas a ella.

Figura 3.2. Refinamiento por el método de Rietveld para Na₂ZrO₃.

En la tabla 1 se presentan los valores de los parametros de red y de los factores R (R_b, R_{wp} y R_{exp}) y χ^2 obtenidos mediante el refinamiento. Los parámetros de red calculados no difieren en gran medida de los reportados por Duan y colaboradores²⁰ (*a*= 5.623, *b*= 9.749, *c*= 11.127 Å, β = 99.98° y *V*= 600.74 Å³) y los factores R y χ^2 son bajos, por lo que se puede decir que el refinamiento fue bueno.

× -	0.0	0.1	0.2	0.3
	5 0040	5.0070	5.0000	0.0 5 0000
a(A)	5.6318	5.6276	5.6290	5.6336
b(Å)	9.7506	9.7468	9.7419	9.7410
c(Å)	11.1207	11.1220	11.1246	11.1286
β	99.77	99.73	99.76	99.82
V(Å ³)	601.82	601.28	601.21	601.76
Rb (%)	6.3	4.3	3.8	3.3
Rwp(%)	8.5	5.8	4.9	4.3
Rexp(%)	3.1	2.9	2.9	2.6
$\chi^{2}(\%)$	2.7	1.9	1.7	1.6
Va2ZrO3(%)	100	87.43	83.81	73.33
NaFeO2(%)	0	12.57	16.19	26.67

Tabla 1. Datos obtenidos mediante el refinamiento por el método de Rietveld para la serie deficiente de oxígeno.

Dado a que todos los patrones de difracción experimentales han mostrado tener presente una fase secundaria de hierro, se agregó la fase β de ferrita de sodio (NaFeO₂) a los refinamientos de ambas series de compuestos.

La figura 3.3 corresponde al refinamiento del patrón de difracción de Na₂Zr_{0.7}Fe_{0.3}O_{2.85}, en ella se puede observar que las reflexiones que en los patrones anteriores (figura 3.1) habían aparecido únicamente en los compuestos con hierro (señalados con el símbolo + y las reflexiones que aparecen a ambos lados de la reflexión señalada con una flecha) sí parecen corresponder a la fase secundaria de NaFeO₂.

La tabla 1 también muestra los resultados de los parámetros y valores obtenidos en los refinamientos para todos los compuestos de la serie deficiente de oxígeno. En

ella se observa que los parámetros *a* y β disminuyen, respecto al valor presentado por Na₂ZrO₃, cuando x= 0.1 y aumenta conforme aumenta la cantidad de hierro, sobrepasando el valor de *a* y β del Na₂ZrO₃ cuando x= 0.3. El parámetro *b* disminuye al aumentar la cantidad de hierro mientras que *c* se comporta de manera contraria, aumenta conforme aumenta la sustitución. El volumen de la celda parece comportarse como lo hicieron los parámetros *a* y β , excepto que cuando x=0.2 se tiene el menor volumen. Los tres compuestos presentaron un volumen de celda menor al volumen de celda de Na₂ZrO₃.

También se obtuvieron los porcentajes de fase presentes en las muestras. Para Na₂ZrO₃ se considera el 100% de fase. Na₂Zr_{0.9}Fe_{0.1}O_{2.95} está presente en un 87.43%, Na₂Zr_{0.8}Fe_{0.2}O_{2.9} en un 83.81% y Na₂Zr_{0.7}Fe_{0.3}O_{2.85} en un 73.33%, siendo NaFeO₂ la fase que ocupa el porcentaje restante en cada muestra. Se puede observar una clara tendencia entre el aumento de la presencia de la fase NaFeO₂ con el aumento de hierro, lo cual probablemente ocurra debido a que al aumentar el hierro se favorece la formación de esta fase secundaria. También, cabe recordar que al momento de sintetizar las muestras se les agregó un 20% de Na₂CO₃, lo que también pudo favorecer la formación de esta fase.

Los factores R y χ^2 de la serie deficiente de oxígeno son buenos, incluso mejores que los obtenidos para Na₂ZrO₃, por lo que se considera que los refinamientos fueron adecuados.

Figura 3.3. Refinamiento por el método de Rietveld para Na₂Zr_{0.7}Fe_{0.3}O_{2.85}.

En la tabla 2 se presentan los valores obtenidos en los refinamientos de la serie con exceso de sodio. Se observa que el parámetro *a* disminuye (respecto al valor que presenta Na₂ZrO₃) cuando x=0.1, se obtiene un valor parecido en x=0.2 y aumenta en x=0.3, pero, al contrario que en la serie deficiente de oxígeno, nunca se sobrepasa en valor de *a* de Na₂ZrO₃. El resto de los parámetros sí presentan el mismo comportamiento que la serie deficiente de oxígeno: el parámetro β disminuye

cuando x=0.1 y aumenta conforme se agrega hierro sobrepasando el valor obtenido para Na_2ZrO_3 cuando x=0.3. El parámetro de red *b* disminuye conforme aumenta la cantidad de hierro, mientras que *c* aumenta.

En esta serie de compuestos, el volumen de la celda tiene un valor mínimo cuando x=0.1 y aumenta al incrementar la sustitución con hierro sin sobrepasar el volumen de celda de Na₂ZrO₃.

Ambas series de compuestos presentaron un volumen de celda menor al de Na₂ZrO₃, lo que podría ser causado por la inserción de hierro (que es de menor tamaño) en la estructura cristalina del Na₂ZrO₃.

Na_{2.1}Zr_{0.9}Fe_{0.1}O₃ se encuentra presente en un 90.06%, Na_{2.2}Zr_{0.8}Fe_{0.2}O₃ en un 83.81% y Na_{2.3}Zr_{0.7}Fe_{0.3}O₃ en un 74.25%, siendo NaFeO₂ la fase que ocupa el porcentaje restante en cada muestra. También en esta serie de compuestos es clara la tendencia en el incremento de la presencia de la fase secundaria, aunque cuando x= 0.1 y 0.3, la serie deficiente de oxígeno presenta porcentajes mayores de NaFeO₂. Cuando x=0.2 ambas series presentan el mismo porcentaje de fases.

Los valores obtenidos de los factores R y χ^2 para esta serie de compuestos fueron más bajos que los obtenidos para el Na₂ZrO₃. No fueron tan bajos como los obtenidos para la serie deficiente de oxígeno pero, a pesar de eso, se considera que los refinamientos fueron adecuados.

x =	0.0	0.1	0.2	0.3
a(Å)	5.6318	5.6274	5.6273	5.6309
b(Å)	9.7506	9.7472	9.7461	9.7406
c(Å)	11.1207	11.1208	11.1242	11.1299
β	99.77	99.72	99.74	99.79
V(Å ³)	601.82	601.23	601.30	601.57
Rь (%)	6.3	5.7	4.7	3.6
Rwp(%)	8.5	7.4	6.1	4.7
Rexp(%)	3.1	3.1	3.0	2.9
$\chi^{2}(\%)$	2.7	2.4	2.0	1.6
Na ₂ ZrO ₃ (%)	100	90.06	83.81	74.25
NaFeO2(%)	0	9.94	16.19	25.75

Tabla 2. Datos obtenidos mediante el refinamiento por el método de Rietveld para la serie con exceso de sodio.

De acuerdo con los resultados obtenidos mediante el refinamiento, el hierro utilizado en la síntesis sólo entra parcialmente en la red del Na₂ZrO₃, el resto forma la fase secundaria de NaFeO₂.

Adsorción de N₂

Se observa en la figura 3.4 que todas las muestras presentan una curva tipo II de acuerdo con la clasificación de la IUPAC²⁹ y no presentan histéresis, por lo que las muestras son no porosas.

Figura 3.4. Curvas de adsorción-desorción de N2 para: a) serie deficiente de oxígeno, b) serie con exceso de sodio.

La tabla 3 muestra las áreas superficiales de los compuestos, las cuales fueron obtenidas mediante el modelo BET. El Na₂ZrO₃ presenta un área superficial de 0.7 m²/g, mismo valor reportado previamente por Alcántar y colaboradores.¹⁶ Se observa que las áreas superficiales de las muestras no difieren de manera significativa entre sí, pero en todas las muestras sustituidas con hierro esta parece disminuir sin presentar una tendencia respecto al aumento en la concentración de hierro. Esta disminución en el área superficial podría ser causada por la aglomeración de los granos de las soluciones sólidas observados en las micrografías que se presentan más adelante.

	а₅,вет (m²/g)	R^2
Na ₂ ZrO ₃	0.7	0.9989
Serie deficie	ente de oxígen	0
Na2Zr0.9Fe0.1O2.95	0.5	0.9963
Na2Zr0.8Fe0.2O2.9	0.2	0.9981
Na2Zr0.7Fe0.3O2.85	0.6	0.9961
Serie con e	xceso de sodio)
Na2.1Zr0.9Fe0.1O3	0.6	0.9907
Na2.2Zr0.8Fe0.2O3	0.5	0.9986
Na2 3Zro 7Eeo 3O3	0.5	0 9971

Tabla 3. Áreas superficiales calculadas mediante el modelo de BET.

Microscopia electrónica de barrido

Las muestras Na₂ZrO₃, Na₂Zr_{0.8}Fe_{0.2}O_{2.9} y Na_{2.2}Zr_{0.8}Fe_{0.2}O₃ fueron analizadas mediante microscopia electrónica de barrido (MEB). Las micrografías del Na₂ZrO₃ (figura 3.5) muestran la formación de aglomerados de aproximadamente 10 µm conformados por poliedros de diversos tamaños que no sobrepasan 1 µm en su lado más largo. Los poliedros presentan formas bien definidas (se marcan con amarillo las aristas visibles de algunos poliedros) e incluso una orientación preferida.

Figura 3.5. Micrografías MEB de Na₂ZrO₃. Se marcan con amarillo las aristas visibles de algunos poliedros.

En las micrografías de Na₂Zr_{0.8}Fe_{0.2}O_{2.9} (figura 3.6) se presentan cambios muy notorios respecto al Na₂ZrO₃. Se observan aglomerados de más de 10 µm y su morfología también cambia, aún logran observarse poliedros (se marcan con amarillo las aristas visibles de algunos poliedros) pero no tan bien definidos como en la muestra anterior. Encima de estos granos se presentan granos más pequeños, de menos de 0.5 µm, sin una microestructura definida. También parece haberse perdido la orientación preferida que presentaron los granos de Na₂ZrO₃.

Figura 3.6. Micrografías MEB de Na₂Zr_{0.8}Fe_{0.2}O_{2.9}. Se marcan con amarillo las aristas visibles de algunos poliedros.

En el caso del Na_{2.2}Zr_{0.8}Fe_{0.2}O₃ (figura 3.7), no parecen formarse poliedros como en las muestras anteriores, sólo se observan aglomerados más grandes que los que presentan los otros compuestos. Estos aglomerados están formados por granos (sin microestructura definida) de más de 1 µm con otros granos que tampoco presentan microestructura definida, pero más pequeños (no más de 0.5 µm) encima de ellos.

Figura 3.7. Micrografías MEB de Na_{2.2}Zr_{0.8}Fe_{0.2}O₃.

Como se mencionó anteriormente, las muestras sustituidas con hierro presentan aglomerados de mayor tamaño que los presentes en el Na₂ZrO₃, esta puede ser la causa por la cual presentan menor área superficial. También, es posible que los pequeños granos sin microestructura definida estén compuestos por alguna fase con hierro puesto que no se presentan en el Na₂ZrO₃. La aparición de una fase secundaria presente únicamente en los compuestos sustituidos con hierro concuerda con la fase secundaria detectada en los patrones de difracción de las soluciones sólidas, por lo que, de acuerdo con los resultados obtenidos mediante los refinamientos por el método de Rietveld, es muy probable que la composición de los pequeños granos sin microestructura definida sea NaFeO₂.

Espectroscopia de rayos X de energía dispersiva

Se realizaron mapeos elementales mediante la técnica de Espectroscopia de Rayos X de Energía Dispersiva (EDS por sus siglas en inglés) de las muestras Na₂Zr_{0.8}Fe_{0.2}O_{2.9} y Na_{2.2}Zr_{0.8}Fe_{0.2}O₃, aunque solo se presentan los mapeos de Na₂Zr_{0.8}Fe_{0.2}O_{2.9} (figura 3.8) puesto que ambas muestras presentaron un comportamiento similar. En esta figura, se muestra una micrografía MEB y mapeos correspondientes a cada elemento que conforma la muestra.

La micrografía MEB fue adquirida en una región distinta a la mostrada en la figura 3.6. De igual manera se observan poliedros, aunque predominan granos (sin microestructura definida) más grandes que estos. También están presentes los pequeños granos sin microestructura definida que aparecen en las figuras 3.6 y 3.7.

En el mapeo del Na₂Zr_{0.8}Fe_{0.2}O_{2.9} se señalan varias regiones. En la micrografía MEB, el círculo naranja muestra una región más oscura que forma parte de uno de los granos más grandes presentes. Esta región brilla con intensidad en los mapeos de Na, O y C, mientras que en el mapeo de Zr esta área no muestra mucho brillo, lo que indica que esta región carece de Zr por lo que se puede confirmar la presencia de Na₂CO₃ en la muestra, este carbonato es producto de la carbonatación que ocurre incluso a temperatura ambiente.³⁰

En el mapeo de C, además de la región señalada con el óvalo naranja, se muestra que hay una distribución uniforme de carbono, en forma de Na₂CO₃, en la superficie de la muestra. Por otro lado, el mapeo de hierro muestra que se encuentra distribuido por toda la superficie, lo que podía implicar la inserción de hierro dentro de la red de zirconato de sodio.

Los óvalos verdes en la micrografía MEB señalan pequeños granos sin microestructura definida parecidos a los presentes en las figuras 3.6 y 3.7. En los mapeos de Na, Fe y O se observan señales debidas a estos pequeños granos, pero no en el mapeo del zirconato. Esto podría confirmar la propuesta de que los pequeños granos sin microestructura definida están compuestos por una fase de NaFeO₂.

Figura 3.8. Mapeo mediante la técnica de EDS de Na₂Zr_{0.8}Fe_{0.2}O_{2.9}.

Desorción a temperatura programada

Para estudiar la reactividad de la superficie de las muestras, se realizaron experimentos de desorción a temperatura programada (TPD). La figura 3.9 corresponde al Na₂ZrO₃ y a la serie con exceso de sodio, no se incluyen la serie deficiente de oxígeno puesto que presenta un comportamiento parecido.

El Na₂ZrO₃ muestra un pico de desorción en 180°C, a esta temperatura la desorción es debida a CO₂ fisisorbido en la superficie del material. También se observa que a partir de ~700°C, comienza una desorción continua que se atribuye a la desorción de CO₂ debido a la descomposición del Na₂CO₃ a altas temperaturas.

Los máximos de los picos de desorción correspondientes a la serie con exceso de sodio se encuentran en: 167°C para Na_{2.1}Zr_{0.9}Fe_{0.1}O₃, 160°C Na_{2.2}Zr_{0.8}Fe_{0.2}O₃ y 167°C para Na_{2.3}Zr_{0.7}Fe_{0.3}O₃. Todos estos picos se encuentran por debajo de los 180°C, que es donde se ubica el pico correspondiente a Na₂ZrO₃. El hecho de que

los picos de las soluciones sólidas se encuentren a temperaturas menores respecto al Na₂ZrO₃ implica que estos materiales tienen una interacción más débil con el CO₂ puesto que se requiere de menor energía para romper esta interacción.

La intensidad de los picos de desorción de las soluciones sólidas es menor comparada con la intensidad del pico de Na₂ZrO₃, esto quiere decir que estos materiales cuentan con una cantidad menor de sitios básicos que pueden ser ocupados por CO₂ en comparación con el Na₂ZrO₃.

En ~680°C, las soluciones sólidas presentan un pico (señalado con el círculo verde) que no se observa en el Na₂ZrO₃, por lo que esta desorción podría estar relacionada con la fase de NaFeO₂. A partir de este pico, las soluciones sólidas comienzan a desorber el CO₂ de igual manera que el Na₂ZrO₃ a altas temperaturas.

Figura 3.9. Experimentos de TPD del Na₂ZrO₃ y la serie con exceso de sodio.

Termogravimetría

Análisis termogravimétrico dinámico

Para estudiar la capacidad captora de CO₂ de los compuestos sintetizados, se realizaron análisis termogravimétricos (TGA por sus siglas en inglés) de todas las muestras, tanto isotérmicos como a temperatura variable, es decir, dinámicos.

Las figuras 3.10 y 3.11 muestran los análisis dinámicos del Na₂ZrO₃ y las soluciones sólidas, estos análisis se llevaron a cabo desde 30° hasta 900°C bajo una atmósfera saturada de CO₂.

En la figura 3.10 se observa que el proceso superficial del Na₂ZrO₃ inicia cerca de los 80°C, y a ~280°C alcanza una captura máxima del 7.3% que se mantiene hasta ~360°C (óvalo morado). Posteriormente, se observa una ligera disminución atribuida a un proceso de equilibrio de sorción-desorción superficial de CO₂ (óvalo verde) el cual va seguido del proceso volumétrico de captura (óvalo amarillo) en el

que se alcanza un máximo de 17.3% a 850°C. Después de haber alcanzado este máximo, al seguir aumentando la temperatura, se logra observar una disminución de la masa que se puede atribuir a la desorción de CO₂.

En la figura 3.10 también se muestran las curvas pertenecientes a la serie deficiente de oxígeno. Estas muestras presentan un parecido en las temperaturas a las cuales se llevan a cabo los procesos superficiales, el equilibrio de sorción-desorción y el proceso volumétrico respecto al Na₂ZrO₃ En el proceso superficial. Na₂Zr_{0.9}Fe_{0.1}O_{2.95} y Na₂Zr_{0.8}Fe_{0.2}O_{2.9} presentan el mismo máximo de captura, que es de 4%, mientras que Na₂Zr_{0.7}Fe_{0.3}O_{2.85} alcanza un máximo del 3.1%. En cuanto a los máximos de captura durante el proceso volumétrico. Na₂Zr_{0.9}Fe_{0.1}O_{2.95} captura un 17.9%, valor que sobrepasa en 0.6% al máximo presentado por Na₂ZrO₃. Na₂Zr_{0.8}Fe_{0.2}O_{2.9} y Na₂Zr_{0.7}Fe_{0.3}O_{2.85} capturaron 16.6% y 16.4%, respectivamente. Parece ser que la captura de CO₂ disminuye conforme aumenta a cantidad de hierro. El Na₂Zr_{0.7}Fe_{0.3}O_{2.85} comienza a desorber CO₂ a ~800°C y su velocidad de desorción es mayor respecto a todos los demás compuestos.

Figura 3.10. Experimentos dinámicos de TGA para Na₂ZrO₃ y la serie deficiente de oxígeno.

La figura 3.11 corresponde a los análisis dinámicos de Na₂ZrO₃ y la serie con exceso de sodio. Esta serie de compuestos también muestra un parecido con el Na₂ZrO₃ respecto a las temperaturas a las cuales ocurren el proceso superficial (óvalo morado), el equilibrio de sorción-desorción (óvalo verde) y el proceso volumétrico (óvalo amarillo). Se observa que Na_{2.1}Zr_{0.9}Fe_{0.1}O₃ muestra un comportamiento parecido al Na₂ZrO₃, pero con un máximo de captura superficial de 6.9%, de 16.9% en el proceso volumétrico y, además, comienza a desorber a ~800°C. Na_{2.2}Zr_{0.8}Fe_{0.2}O₃ captura sólo un 3.9% y 15.8% en el proceso superficial y volumétrico, respectivamente. Su proceso de desorción parece comenzar cerca de los 900°C. En cuanto al Na_{2.3}Zr_{0.7}Fe_{0.3}O₃, sus máximos de captura son 2.7% y 13.6% y su desorción comienza a una temperatura cercana que el Na_{2.1}Zr_{0.9}Fe_{0.1}O₃.

Figura 3.11. Experimentos dinámicos de TGA para Na₂ZrO₃ y la serie con exceso de sodio.

En ambas series de experimentos, la solución sólida con x=0.1 tiene un comportamiento distinto respecto a las demás soluciones sólidas. Como ya se mencionó, en la figura 3.10 se observa que la captura máxima que presenta Na₂Zr_{0.9}Fe_{0.1}O_{2.95} sobrepasa a la de Na₂ZrO₃, mientras que el Na_{2.1}Zr_{0.9}Fe_{0.1}O₃ (figura 3.11) presenta un comportamiento parecido al del Na₂ZrO₃, pero sus capturas máximas nunca lo sobrepasan. La desorción de CO₂ para Na_{2.1}Zr_{0.9}Fe_{0.1}O₃ ocurre a ~800°C, 50°C menos que la temperatura a la cual comienza este mismo proceso en el Na₂ZrO₃.

A pesar de que todas las soluciones sólidas (excepto Na₂Zr_{0.8}Fe_{0.1}O_{2.95}) presentan capturas más bajas de CO₂, la velocidad de los procesos volumétricos es ligeramente mayor para la serie deficiente de oxígeno. Esto se aprecia mediante las pendientes de las rectas de dicho proceso. Na₂ZrO₃ presenta una pendiente de 0.043%/°C, mientras que las de la serie deficiente de oxígeno presentan valores de 0.05, 0.046 y 0.051%/°C cuando x= 0.1, 0.2 y 0.3, respectivamente. En el caso de la serie con exceso de sodio, la pendiente cuando x=0.2 presenta un valor de 0.044%/°C, que es muy parecido al de Na₂ZrO₃. Los compuestos de esta serie con x=0.1 y 0.3 presentan pendientes de 0.035 y 0.04%/°C, respectivamente. En la serie deficiente de oxígeno, la adición de hierro favorece la velocidad del proceso volumétrico aunque no necesariamente mejora su captura máxima, mientras que la serie con exceso de sodio no ve mejorada la velocidad del proceso volumétrico ni su captura máxima al adicionar hierro.

También se observa que, cuando la concentración de hierro es mayor, x=0.3, los valores máximos de captura de CO₂, tanto en el proceso superficial como en el volumétrico, son mínimos.

El hecho de que los compuestos con menor cantidad de hierro hayan presentado capturas mayores respecto a las demás soluciones sólidas parece indicar que la presencia de hierro inhibe la captura de CO₂.

Análisis termogravimétrico isotérmico

Como se mencionó anteriormente, las isotermas fueron realizadas bajo una atmósfera saturada de CO_2 a 400, 500, 600, 700 y 800°C durante 3 horas. Se seleccionó 400°C por ser la temperatura aproximada a la cual comienzan los procesos volumétricos. Se fijó el máximo de 800°C ya que cerca de esta temperatura se presentan los máximos de porcentajes de captura de CO_2 y a temperaturas mayores ya comienza la desorción.

Las isotermas pertenecientes al Na₂ZrO₃ (figura 3.12) muestran que a 400 y 500°C no se alcanza el equilibrio después de las 3 horas que duraron los experimentos y con ganancias en masa del 8.7 y 17.6%, respectivamente. La diferencia tan marcada entre estas ganancias puede deberse a que a 500°C la difusión se ve más favorecida que a 400°C. A 600, 700 y 800°C sí se alcanza el equilibrio durante el tiempo establecido y se observa que conforme la temperatura aumenta el máximo de captura también aumenta, estos máximos de captura son del 18.9, 19.8 y 20.4%, respectivamente. Por otro lado, los máximos de captura en las isotermas a partir de 500°C son mayores que el máximo registrado en el dinámico, que es de 17.3% (figura 3.10). También se puede observar que la cinética a 400°C es bastante lenta y aumenta considerablemente a partir de 500°C. Se aprecia un aumento en la cinética acorde al aumento en la temperatura tal que a 700 y 800°C se alcanzan lo máximos de captura y el equilibrio dentro de los primeros minutos de los experimentos.

Figura 3.12. Isotermas de Na₂ZrO₃ a distintas temperaturas bajo atmósfera de CO₂.

Las isotermas de ambas series de compuestos presentan un comportamiento parecido a la isoterma de Na₂ZrO₃ en cuanto a la forma de las curvas, por lo que no se muestran, pero a continuación se hablará de la cinética y de los rendimientos máximos de captura. Los rendimientos se calculan considerando como el 100% a las capturas máximas teóricas en masa para cada fórmula nominal en particular presentadas en la página 6.

La figura 3.13 muestra los rendimientos máximos de captura de las isotermas del Na₂ZrO₃ y de la serie deficiente de oxígeno. El Na₂ZrO₃ presentó rendimientos de

36.6, 74.4, 79.6, 83.6 y de 86.1% a 400, 500, 600, 700 y 800°C, respectivamente. Estos valores son siempre mayores respecto a los que presentan ambas series de compuestos.

Los rendimientos máximos del Na₂Zr_{0.9}Fe_{0.1}O_{2.95} son: 12% a 400°C, 47.7% a 500°C, 72.6% a 600°C y de 80.1% a 700°C y 79.7 % a 800°C. Únicamente se alcanza el equilibrio a 700 y 800°C, aunque a 800°C este se alcanza más pronto que a 700°. Los rendimientos de estas isotermas son siempre menores a los obtenidos en las isotermas del Na₂ZrO₃, a 400 y 500 °C la diferencia es >20% mientras que a temperaturas más altas es <7%. Esto podría implicar que la presencia de hierro inhibe la difusión de átomos a bajas temperaturas más que a altas temperaturas.

El Na₂Zr_{0.8}Fe_{0.2}O_{2.9} presentó rendimientos de 9.5% a 400°C, 42.6% a 500°C, 62.5% a 600°C, 71.8% a 700°C y 72.3% a 800°C. Únicamente se alcanza el equilibrio a 800° durante el tiempo del experimento, ya que a 700°C la captura aún va ligeramente en aumento. Los rendimientos de captura son menores hasta en un 10% que los que muestra Na₂Zr_{0.9}Fe_{0.1}O_{2.95}.

En la isoterma de Na₂Zr_{0.7}Fe_{0.3}O_{2.85} los rendimientos son: 12.4% a 400°C, 47.7% a 500°C, 64.5% a 600°C, 67.8% a 700°C y 64% a 800°C. En este caso ocurre algo distinto, sólo a 800°C se alcanza el equilibrio, pero su captura resulta ser menor que a 700 y 600°C. Esto podría estar relacionado con la desorción de CO₂ puesto que observando el estudio dinámico correspondiente (figura 3.10) se observa que a ~800°C comienza el proceso de desorción. El rendimiento es ligeramente mayor que el de Na₂Zr_{0.9}Fe_{0.1}O_{2.95} a 400°C. A 500°C presentan el mismo rendimiento y a partir de 600°C su rendimiento es menor. Respecto a Na₂Zr_{0.8}Fe_{0.2}O_{2.9}, su rendimiento es mayor hasta los 600°C, a partir de 700°C es menor.

Figura 3.13. Rendimientos máximos de captura de CO₂ de las isotermas de Na₂ZrO₃ y la serie deficiente de oxígeno.

La figura 3.14 muestra los rendimientos máximos de captura de las isotermas del Na₂ZrO₃ y de la serie con exceso de sodio.

Los rendimientos de captura del Na_{2.1}Zr_{0.9}Fe_{0.1}O₃ son: 15% a 400°C, 51.5% a 500°C, 69.1% a 700°C y 72.7% a 700 y 800°C. Sólo a 700 y 800°C se alcanza el equilibrio, aunque a 800°C lo alcanza dentro de los primeros minutos del experimento. A 400 y 500°C los rendimientos son mayores que para Na₂Zr_{0.9}Fe_{0.1}O_{2.95} (figura 3.13), a partir de 600°C son menores.

El Na_{2.2}Zr_{0.8}Fe_{0.2}O₃ presenta rendimientos de: 7.1% a 400°C, 30.1% a 500°C, 47.8% a 600°C, 57.5% a 700°C y 59.7% a 800°C. Parece ser que sólo se alcanzó el equilibrio a 800°C ya que a 700°C parece que la masa aún incrementa levemente. Los rendimientos son menores hasta en un 21% respecto a Na_{2.1}Zr_{0.9}Fe_{0.1}O₃ y hasta un 15% respecto a Na₂Zr_{0.8}Fe_{0.2}O_{2.9} (figura 3.13).

En la isoterma de Na_{2.3}Zr_{0.7}Fe_{0.3}O₃ los rendimientos son: 9.2% a 400°C, 27.3% a 500°C, 39.8% a 600°C, 46.4% a 700°C y 47.7% a 800°C. Únicamente se alcanza el equilibrio a 800°C. El rendimiento a 400°C es mayor que el de Na_{2.2}Zr_{0.8}Fe_{0.2}O₃ a esta misma temperatura, pero a partir de 500°C son menores. Respecto a Na₂Zr_{0.7}Fe_{0.3}O_{2.85} (figura 3.13) sus rendimientos son siempre menores.

Figura 3.14. Rendimientos máximos de captura de CO₂ de las isotermas de Na₂ZrO₃ y la serie con exceso de sodio.

Es evidente que la presencia de hierro y el aumento en su concentración disminuye la captura de CO₂. Los rendimientos de captura de CO₂ de las isotermas de la serie con exceso de sodio son menores comparados con la serie deficiente de oxígeno, excepto en el caso del Na_{2.1}Zr_{0.9}Fe_{0.1}O₃ ya que a 400 y 500°C su rendimiento es mayor. Esto podría estar relacionado con el comportamiento que presentó este último compuesto durante el estudio dinámico (figura 3.11), lo que podría indicar que a bajas concentraciones de hierro, con la fórmula con exceso de sodio y a temperaturas menores a 500°C la captura de CO₂ no se ve tan inhibida.

Análisis cinético

Se llevó a cabo un análisis cinético de las isotermas empleando un modelo de doble exponencial mediante la ecuación:

$$y = Ae^{-k_1t} + Be^{-k_2t} + C$$

Donde *y* representa el porcentaje de CO₂ capturado, *t* es el tiempo, k_1 es la constante exponencial asociada al proceso superficial, k_2 es la constante exponencial asociada al proceso volumétrico, *A* y *B* son factores preexponenciales que indican el intervalo en el que cada proceso controla todo el proceso de quimisorción-desorción de CO₂ y la constante *C* está relacionada con el valor de captura máxima³¹.

La tabla 4 muestra los datos obtenidos mediante el modelo de doble exponencial de las constantes cinéticas k^1 , k^2 y los coeficientes de correlación R^2 obtenidas de las isotermas de Na₂ZrO₃, mientras que la tabla 5 muestra los datos obtenidos para ambas series de compuestos.

Para el Na₂ZrO₃, las constantes k₁ aumentan conforme aumenta la temperatura, lo cual es de esperarse puesto que la captura de CO₂ se ve favorecida a mayores temperaturas. Las constantes k₂ presentan el mismo comportamiento, excepto a 800°C ya que el valor de k₂ es menor que los obtenidos a 600 y 700°C. Los valores de k₁ son siempre mayores que los de k₂, lo que concuerda con lo reportado²¹ e implica que el proceso difusivo es el paso limitante.³²

	Na ₂ ZrO ₃							
Temp. (°C)	k₁ (s⁻¹)	k ₂ (s ⁻¹)	R ²					
400	0.00662	0.00136	0.99997					
500	0.06712	0.01272	0.99894					
600	0.32513	0.03108	0.99247					
700	0.58334	0.03816	0.9804					
800	0.7722	0.02524	0.95848					

Tabla 4. Constantes cinéticas k ₁ y k ₂ y coeficientes
de correlación R ² para Na ₂ ZrO ₃ .

Las constantes k_1 de las soluciones sólidas (tabla 5) muestran la misma tendencia que las de Na₂ZrO₃ a aumentar conforme aumenta la temperatura. A 400°C la k_1 del Na₂ZrO₃ es menor que la de las soluciones sólidas a la misma temperatura, pero en el resto de las temperaturas las k_1 de las soluciones sólidas son siempre menores. Esto muestra que la adición de hierro no favorece la cinética del proceso superficial a temperaturas mayores de 500°C, pero sí a 400°C. En cuanto a la contante k_2 , a 400°C las constantes de ambas series cuando x=0.2 son menores que para el Na₂ZrO₃, en el resto de los compuestos las k_2 son mayores. Esto indica que el proceso volumétrico a 400°C no se ve favorecido a tal concentración de hierro. De 500 a 700°C las k_2 de las soluciones sólidas son siempre menores que las de Na₂ZrO₃, mientras que a 800°C son mayores. Esto podría implicar que de 500 a 700°C el proceso volumétrico es inhibido por la presencia de hierro, pero a 800°C se ve favorecido.

	k₁ (s⁻¹)	k ₂ (s ⁻¹)	R ²	k₁ (s⁻¹)	k ₂ (s ⁻¹)	R^2	
Temp. (°C)	Na ₂ Zr _{0.9} Fe _{0.1} O _{2.95}			Na _{2.1} Zr _{0.9} Fe _{0.1} O ₃			
400	0.01501	0.00161	0.99988	0.0129	0.00223	0.99994	
500	0.05028	0.01002	0.99978	0.04754	0.0094	0.99965	
600	0.25442	0.0155	0.99797	0.20667	0.01507	0.99593	
700	0.47272	0.02907	0.99492	0.47289	0.03713	0.99305	
800	0.63248	0.04038	0.98247	0.66356	0.03461	0.97436	
	Na	₂ Zr _{0.8} Fe _{0.2} C) _{2.9}	Na _{2.2} Zr _{0.8} Fe _{0.2} O ₃			
400	0.00826	0.00126	0.99973	0.00667	0.00108	0.9999	
500	0.03421	0.00557	0.99975	0.02731	0.00259	0.99944	
600	0.18191	0.01051	0.99658	0.18178	0.00967	0.99731	
700	0.41927	0.02698	0.99553	0.3357	0.02391	0.99485	
800	0.57878	0.05252	0.98594	0.51305	0.04773	0.98862	
	Na ₂ Zr _{0.7} Fe _{0.3} O _{2.85}			Na	_{2.3} Zr _{0.7} Fe _{0.3}	₃ O ₃	
400	0.00925	0.00177	0.99964	0.02832	0.00197	0.99997	
500	0.04264	0.00837	0.99981	0.03497	0.00317	0.99938	
600	0.23367	0.01515	0.99604	0.01045	0.18733	0.99805	
700	0.52064	0.02598	0.99337	0.40221	0.02642	0.99669	
800	0.7018	0.04324	0.97957	0.53933	0.03839	0.99146	

Tabla 5. Constantes cinéticas $k_1 y k_2 y$ coeficientes de correlación R^2 para ambas series de compuestos.

Con los valores obtenidos de las constantes $k_1 y k_2$ obtenidas a distintas temperaturas y mediante una representación gráfica de ln(k/T) en función de 1/T, se obtuvieron las entalpías de activación (ΔH^{\ddagger}) de acuerdo con el modelo de Eyring ($ln k/T = -\Delta H^{\ddagger}/RT + \Delta S^{\ddagger}/R$, donde R es la constante del gas ideal ΔS^{\ddagger} es la entropía) y sólo cuando los datos se ajustaron a un modelo lineal³³. La figura 3.15, que pertenece al ajuste lineal mediante el modelo de Eyring para Na_{2.2}Zr_{0.8}Fe_{0.2}O₃, ejemplifica las curvas obtenidas mediante la representación gráfica mencionada. Para la constante k₁ se realizaron dos ajustes lineales puesto que los datos de este proceso presentan dos tendencias, uno a temperaturas moderadas (400 a 600°C) y otro a altas temperaturas (600 a 800°C). Para la constante k₂ se realizó sólo un ajuste a partir de 500°C ya que ningún dato a 400°C se ajustó linealmente, lo que puede deberse a que a 400°C el proceso volumétrico aún no se ha activado (figuras 3.10 y 3.12).

En la figura 3.15 se puede observar que, de 400 a 600°C, el proceso superficial es más dependiente de la temperatura que en el intervalo de 600 a 800°C. El hecho de que el proceso superficial haya presentado dos tendencias podría deberse a que, a temperaturas moderadas, la textura de la capa externa puede tener una fuerte influencia sobre el proceso superficial provocando que, a este intervalo de

temperatura, sea más dependiente de la temperatura. A partir de 600°C las propiedades de la capa externa ya no tienen la misma influencia puesto que los procesos difusivos predominan, provocando que el proceso superficial sea menos dependiente de la temperatura.

Figura 3.15. Ajuste lineal mediante el modelo de Eyring para Na_{2.2}Zr_{0.8}Fe_{0.2}O₃ obtenidos de las constantes k₁ y k₂.

La tabla 6 muestra las entalpías de activación obtenidas mediante el modelo de Eyring para todas las muestras. Los datos para el proceso superficial de 600 a 800°C para Na_{2.3}Zr_{0.7}Fe_{0.3}O₃, los del proceso volumétrico del Na₂ZrO₃ y Na_{2.1}Zr_{0.9}Fe_{0.1}O₃ no se ajustaron al modelo lineal. El ajuste lineal de las constantes k₁ para Na₂ZrO₃ presentó entalpías de activación de 89 kJ/mol y de 26 kJ/mol en los intervalos de 400 a 600°C y de 600 a 800°C, respectivamente. A temperaturas moderadas, la Δ H[‡] obtenida es mayor a la reportada para el proceso superficial (33.8 kJ/mol)¹², lo cual, como se mencionó anteriormente, puede deberse a diferencias en las propiedades de la capa externa. A altas temperaturas, el valor experimental es menor pero más cercano al valor reportado, lo que podría confirmar que a partir de 600°C el proceso superficial ya no depende de la textura de la capa externa. Las constantes k₂ de Na₂ZrO₃ no presentaron una tendencia lineal.

Las ΔH^{\ddagger} obtenidas para ambas series de compuestos en el intervalo de 400 a 600°C son mayores que el valor reportado, por lo que es probable que la capa externa de estas muestras tenga propiedades parecidas a las de Na₂ZrO₃. Cabe mencionar que estos valores resultan ser menores que el valor presentado por Na₂ZrO₃, lo cual podría deberse a las variaciones en los datos puesto que los factores de correlación R² de las soluciones sólidas no son tan buenas como la del Na₂ZrO₃. Únicamente la entalpía de activación de Na_{2.3}Zr_{0.7}Fe_{0.3}O₃ se asemeja al valor reportado. En cuanto a las entalpías obtenidas a temperaturas mayores para el proceso superficial, los valores obtenidos para las soluciones sólidas son mayores que para

el Na₂ZrO₃, pero cercanos al reportado. No se presentan tendencias respecto a la cantidad de hierro, lo cual podría indicar que la presencia de hierro no influye en los requerimientos energéticos para la captura superficial.

Las entalpías de activación obtenidas para el proceso volumétrico de los compuestos Na₂Zr_{0.8}Fe_{0.2}O_{2.9}, Na_{2.2}Zr_{0.8}Fe_{0.2}O₃ y Na_{2.3}Zr_{0.7}Fe_{0.3}O₃ son consistentes entre sí y no distan mucho del valor reportado (48 kJ/mol)¹², lo que podría indicar que la presencia de hierro provoca que el proceso volumétrico sea un poco más dependiente de la temperatura que para el Na₂ZrO₃.

	k ₁ (400-600°C)		k ₁ (600-800°C)		k ₂ (T>500°C)			
Muestra	ΔH‡ (kJ/mol)	R ²	∆H‡ (kJ/mol)	R ²	∆H‡ (kJ/mol)	R ²		
Na ₂ ZrO ₃	89.0	0.99843	26.0	0.96341	-	-		
	S	erie defici	ente de oxíger	סו				
Na ₂ Zr _{0.9} Fe _{0.1} O _{2.95}	62.0	0.97114	27.8	0.96226	25.6	0.97856		
Na ₂ Zr _{0.8} Fe _{0.2} O _{2.9}	68.5	0.98348	37.6	0.9451	54.8	0.99752		
Na ₂ Zr _{0.7} Fe _{0.3} O _{2.85}	71.9	0.98763	35.3	0.9395	30.0	0.99559		
Serie con exceso de sodio								
Na _{2.1} Zr _{0.9} Fe _{0.1} O ₃	60.9	0.98652	37.9	0.95204	-	-		
Na _{2.2} Zr _{0.8} Fe _{0.2} O ₃	73.4	0.97151	32.5	0.99589	59.5	0.99628		
Na _{2.3} Zr _{0.7} Fe _{0.3} O ₃	33.6	0.94198	-	-	59.1	0.99988		

Tabla 6. Energías de activación (ΔH^{\ddagger}) obtenidas de acuerdo con el modelo de Eyring para todas las muestras.

CONCLUSIONES

- Se obtuvo la fase monoclínica de Na₂ZrO₃, aunque hay evidencia que indica la presencia de la fase hexagonal de Na₂ZrO₃ y de una fase secundaria de hierro de NaFeO₂.
- La caracterización superficial indica que las muestras son no porosas, que la adición de hierro modifica la microestructura del zirconato de sodio y también la reactividad de su superficie.
- La presencia de hierro disminuye tanto la cinética como la capacidad captora de CO₂, provoca que se requiera de mayor energía para la captura superficial a temperaturas menores de 600°C y también para el proceso volumétrico. La energía requerida para el proceso superficial a temperaturas mayores de 600°C no parece verse afectada.

REFERENCIAS

,	1.	Carrascosa	Alís,	J.	Cambio	climático.	Disponible	en:
---	----	------------	-------	----	--------	------------	------------	-----

http://www.un.org/es/sections/issues-depth/climate-change/index.html. (Acceso: Enero 2018)

- 2. Intergovernmental Panel of Climate Change. Causes of climate change. *Global Warming myth or reality* 1 (2004). (Acceso: Enero 2018)
- Weisel, G., Black, B. Global Warming. 206 (2010). Disponible en: https://earthobservatory.nasa.gov/Features/GlobalWarming/page1.php. (Acceso: Enero 2018)
- 4. CCG. ¿Qué es el Efecto Invernadero? *Cambio Climatico Global* (2016). Disponible en: http://cambioclimaticoglobal.com/efecto-invernadero. (Acceso: Enero 2018)
- 5. IPPC. IPCC Fourth Assessment Report: Climate Change 2007. (2007). Disponible en: https://www.ipcc.ch/publications_and_data/ar4/wg1/es/ts.html . (Acceso: Enero 2018)
- 6. ACS. What are the greenhouse gas gases since the Industrial Revolution? ACS Climate Science Toolkit | Greenhouse Gases (2007). Disponible en: http://www.acs.org/content/acs/en/climatescience/greenhousegases/industria Irevolution.html. (Acceso: Enero 2018)
- EPA. Global Greenhouse Gas Emissions Data. (2016). Disponible en: http://www3.epa.gov/climatechange/ghgemissions/global.html. (Acceso: Enero 2018)
- 8. Yang, H., Xu, Z., Fan, M., Slimane, R. B., Bland, A. E., Wright, I. Progress in carbon dioxide seperation and capture: A review. *J. Environ. Sci.* **20**, 14–27 (2008).
- 9. Lee, S. Y., Park, S. J. A review on solid adsorbents for carbon dioxide capture. *J. Ind. Eng. Chem.* **23**, 1–11 (2015).
- 10. Wang, S., Yan, S., Ma, X., Gong, J. Recent advances in capture of carbon dioxide using alkali-metal-based oxides. *Energy Environ. Sci.* **4**, 3805 (2011).
- 11. Choi, S., Drese, J. H., Jones, C. W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. *ChemSusChem* **2**, 796–854 (2009).
- 12. Pfeiffer, H. Advances on alkaline ceramics as possible CO₂ captors. *ACS Symp. Ser.* **1056**, 233–253 (2010).
- 13. Nakagawa, K., Ohashi, T. A Novel Method of CO₂ Capture from High Temperature Gases. *J. Electrochem. Soc.* **145**, 1344 (1998).
- López-Ortiz, A., Rivera, N. G. P., Rojas, A. R., Gutierrez, D. L. Novel carbon dioxide solid acceptors using sodium containing oxides. *Sep. Sci. Technol.* 39, 3559–3572 (2004).
- 15. Martínez-dlCruz, L., Pfeiffer, H. Microstructural Thermal Evolution of the Na₂CO₃ Phase Produced during a Na₂ZrO₃–CO₂ Chemisorption Process. *J.*

Phys. Chem. C **116,** 9675–9680 (2012).

- Alcántar-Vázquez, B., Gómez-García, J. F., Tavizón, G., Ibarra, I. A., Díaz, C., Lima, E., Pfeiffer, H. Structural and Ionic Conduction Analyses of the Na₂(Zr_{1-x}Al_x)O_{3-x/2} Solid Solution, During the CO₂ Chemisorption Process. *J. Phys. Chem. C* 2, 26212–26218 (2014).
- Alcerreca-Corte, I., Fregoso-Israel, E., Pfeiffer, H. CO₂ absorption on Na₂ZrO₃: A kinetic analysis of the chemisorption and diffusion processes. *J. Phys. Chem.* C **112**, 6520–6525 (2008).
- Sánchez-Camacho, P., Romero-Ibarra, I. C., Duan, Y., Pfeiffer, H. Thermodynamic and kinetic analyses of the CO₂ chemisorption mechanism on Na₂TiO₃: Experimental and theoretical evidences. *J. Phys. Chem. C* **118**, 19822–19832 (2014).
- 19. Alcérreca Corte, B. I. Estudio cinético de la captura de dióxido de carbono (CO₂) en el zirconato de sodio (Na₂ZrO₃). (UNAM, 2007).
- Duan, Y., Lekse, J., Wang, X., Li, B., Alcántar-Vázquez, B., Pfeiffer, H., Halley, J. W. Electronic Structure, Phonon Dynamical Properties, and CO₂ Capture Capability of Na_{2-x}M_xZrO₃ (M=Li,K): Density-Functional Calculations and Experimental Validations. *Phys. Rev. Appl.* **3**, 1–15 (2015).
- 21. Alcántar-Vázquez, B., Díaz, C., Romero-Ibarra, I. C., Lima, E., Pfeiffer, H. Structural and CO₂ Chemisorption Analyses on Na₂(Zr_{1-x}Al_x)O₃ Solid Solutions. *J. Phys. Chem. C* **2**, 16483–16491 (2013).
- 22. West, A. R. *Solid State Chemistry And Its Applications*. (John Wiley & Sons, 2014).
- Ortiz-Landeros, J., Gómez-Yáñez, C., Palacios-Romero, L. M., Lima, E., Pfeiffer, H. Structural and thermochemical chemisorption of CO₂ on Li_(4+x)(Si_(1-x)Al_(x))O₄ and Li_(4-x)(Si_(1-x)V_(x))O₄ solid solutions. *J. Phys. Chem. A* **116**, 3163– 71 (2012).
- 24. Veliz-Enriquez, M. Y., Gonzalez, G., Pfeiffer, H. Synthesis and CO₂ capture evaluation of Li_{2-x}K_xZrO₃ solid solutions and crystal structure of a new lithium-potassium zirconate phase. *J. Solid State Chem.* **180**, 2485–2492 (2007).
- 25. Sandoval-Diaz, A., Pfeiffer, H. Effects of potassium doping on the composition, structure and carbon dioxide chemisorption of Na₂ZrO₃. *Rev. Mex. Fis.* **54**, 65–68 (2008).
- 26. Royal Society of chemistry. Periodic Table. 2017. Disponible en: http://www.rsc.org/periodic-table/element/1/hydrogen. (Acceso: Noviembre 2017)
- 27. Martínez De La Cruz, L. Análisis estructural y microestructural de la captura de dióxido de carbono (CO₂) en el zirconato de sodio (Na₂ZrO₃) bajo diferentes condiciones fisicoquímicas. (UNAM, 2014).

- 28. Ooi, K. M., Chai, S. P., Mohamed, A. R., Mohammadi, M. Effects of sodium precursors and gelling agents on CO₂ sorption performance of sodium zirconate. *Asia-Pacific J. Chem. Eng.* **10**, 565–579 (2015).
- 29. Alothman, Z. A. A review: Fundamental aspects of silicate mesoporous materials. *Materials (Basel).* **5**, 2874–2902 (2012).
- 30. Sánchez-Camacho, P., Pfeiffer, H. Análisis termodinámico y cinético del mecanismo de quimisorción de CO₂ sobre Na₂TiO₃ y la solución sólida Na₂Zr_xTi_{1-x}O₃. (UNAM, 2015).
- 31. Martínez-dlCruz, L., Pfeiffer, H. Cyclic CO₂ chemisorption-desorption behavior of Na₂ZrO₃: Structural, microstructural and kinetic variations produced as a function of temperature. *J. Solid State Chem.* **204**, 298–304 (2013).
- 32. Martínez-Dlcruz, L., Pfeiffer, H. Effect of oxygen addition on the thermokinetic properties of CO₂ chemisorption on Li₂ZrO₃. *Ind. Eng. Chem. Res.* **49**, 9038–9042 (2010).
- 33. Mej.a-Trejo, V. L., Fregoso-Israel, E., Pfeiffer, H. Textural, Structural, and CO₂ Chemisorption Effects Produced on the Lithium Orthosilicate by Its Doping with Sodium (Li_{4-x}Na_xSiO₄). *Chem. Mater.* **20**, 7171–7176 (2008).