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Introduction

In this thesis, we present a characterization of independence using the d-sample copula defined

in [9] and improved in [11] and using the checkerboard approximation. Using this characteri-

zation, we define some statistics based on different metrics such as the total variation distance,

the Hellinger distance and the supremum distance; and we also define a statistic based on the

divergence of Kullback-Leibler.

This work is divided in five chapters. In the first chapter we present the basic definitions and

the most important results in copula theory.

In the second chapter we give a comparison between the empirical copula and the d-sample

copula of order m. Moreover, we note that it is a better idea to use the sample copula instead

the empirical copula, because of the simplicity of its evaluation.

In the third chapter we find the distribution of the sample copula under the assumption of

independence and we establish a way to evaluate moments.

In the fourth chapter we present the most important result of the present work: we give a sim-

ple characterization of independence through the checkerboard approximation and define four

statistics. We also compare our tests with some of the most used tests via simulations. More-

over, we use the proposed tests with real data. Finally, in the last section we propose further

investigations.

In the fifth chapter we give our final conclusions.
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Chapter 1

Preliminaries

We begin this chapter the basic definitions and main results of copulas. Moreover, in the second

section, we will see a certain type of dependence, called concordance. Also, in the third section,

we introduce an important class of copulas known as Archimedean. The results presented are

based on Nelsen’s book, An Introduction to Copulas [18]. We omit the proofs because they are

well known results.

1.1 Basic definitions and main results

This section includes the basic definitions and the most important theorem in copula theory:

Sklar’s Theorem. We also present the definitions and the principal results of the Frechet-

Hoeffding bounds and the product copula.

Definition 1.1.1. Let I = [0, 1] be the closed unit interval and let d ≥ 2 be the dimension. Let

S1, S2, ..., Sd be subsets of I such that 0, 1 ∈ Si for every i ∈ Id, where Id = {1, 2, ..., d}. Let

C ′ : S1×S2×· · ·×Sd → R be a function. Then C ′ is a d-subcopula if and only if C ′ satisfies:

i) C ′(u1, ..., ud) = 0 if at least one ui = 0 for some i ∈ Id;

ii) C ′(1, ..., ui, 1, ..., 1) = ui for every i ∈ Id and for every ui ∈ Si;

iii) C ′ is d-increasing, that is, for every 0 ≤ ui ≤ vi ≤ 1 such that ui, vi ∈ Si for every

i ∈ Id, we have that if B = [u1, v1]× · · · × [ud, vd] then

VC′(B) :=
∑
b

sgn(b)C ′(b) ≥ 0, (1.1)

where the sum runs over all b = (b1, ..., bd) which are the vertices of B, and the sign

function is defined by

sgn(b) =

{
1 if bk = uk for an even number of k’s;
−1 if bk = uk for an odd number of k’s.
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We say that a d-subcopula is a d-copula if and only if S1 = S2 = · · · = Sd = I.

The following theorem says that copulas have a Lipschitz condition on Id. From this it follows

immediately that copulas are uniformly continuous.

Theorem 1.1.2. Let S1, S2, ..., Sd be subsets of I such that 0, 1 ∈ Si for every i ∈ Id. Let

C ′ : S1 × S2 × · · · × Sd → R be a subcopula. Then for every (u1, ..., ud), (v1, ..., vd) ∈ Id,

|C ′(u1, ..., ud)− C ′(v1, ..., vd)| ≤
d∑
i=1

|vi − ui|,

i.e., C ′ is uniformly continuous in S.

The following theorem is the most important in the theory of copulas and was introduced by

Sklar in his doctoral thesis in 1959.

Theorem 1.1.3. (Sklar’s Theorem) Let H be a joint d-distribution function for d ≥ 2 with

margins F1, F2, ..., Fd. Then there exists a d-copula C such that for every (x1, x2, ..., xd) ∈ Rd,

H(x1, x2, ..., xd) = C(F1(x1), F2(x2), ..., Fd(xd)). (1.2)

If F1, F2, ..., Fd are continuous, then C is unique; otherwise, C is uniquely determined on

Ran(F1) × Ran(F2) × · · · × Ran(Fd). Conversely, if C is a d-copula and F1, F2, ..., Fd are

distribution functions, then the function H defined in equation (1.2) is a joint d-distribution

function in Rd.

Theorem 1.1.4. Let (u1, ..., ud) ∈ I2. We define

Md(u1, ..., ud) = min(u1, ..., ud), (1.3)

and

Wd(u1, ..., ud) = max(
d∑
i=1

ui − (d− 1), 0). (1.4)

Let C ′ be any d-subcopula with domain S. Then

Wd(u1, ..., ud) ≤ C ′(u1, ..., ud) ≤Md(u1, ..., ud), (1.5)

for every (u1, ..., ud) ∈ S.

Md and Wd are known as the Frechet-Hoeffding’s bounds.
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Md is always a d-copula for every d ≥ 2 and Wd is a copula for d = 2, but Wd is not a copula

for d ≥ 3. The left side of (1.5) is best possible, in the sense that for every d ≥ 3 and for every

(u1, ..., ud) ∈ Id, there exists a d-copula C such that C(u1, ..., ud) = Wd(u1, ..., ud).

Definition 1.1.5. Let (u1, ..., ud) ∈ Id. We define the product copula, denoted as Πd, by

Πd(u1, ..., ud) =
d∏
i=1

ui. (1.6)

The following theorem characterizes the independence between continuous random variables via

copulas.

Theorem 1.1.6. Let X1, ..., Xd be continuous random variables with unique d-copula C. Then

X1, ..., Xd are independent if only if C = Πd.

If C is a d-copula, then by theorem 1.1.2 it is uniformly continuous, and hence by the Lebesgue’s

decomposition theorem we have that for every (u1, ..., ud) ∈ Id

C(u1, ..., ud) = AC(u1, ..., ud) + SC(u1, ..., ud),

where AC is the absolutely continuous component with respect to the Lebesgue measure in Rd

and

AC(u1, ..., ud) =

∫ u1

0

. . .

∫ ud

0

∂d

∂x1 . . . ∂xd
C(x1, ..., xd)dxd . . . dx1;

and SC is the singular component with respect to the Lebesgue measure in Rd and

SC(u1, ..., ud) = C(u1, ..., ud)− AC(u1, ..., ud).

If C = AC on Id, we say that C is absolutely continuous and its density is given by

c(u1, ..., ud) =
∂dC(u1, ..., ud)

∂u1 · · · ∂ud
;

if C = SC on Id, we say that C is singular and we have that

∂dC(u1, ..., ud)

∂u1 · · · ∂ud
= 0 a.s. [PC ];

and in any other case we will say that C has an absolutely continuous component AC and a

singular component SC . It is common that, in this case, C is called hybrid.

3



If H is the distribution function related to C, as in Sklar’s Theorem, we know that if the support

of H is denoted by SH , then

SH =

(⋃
A

)c
such that A is an open set in Rd and PH(A) = 0,

where PH denotes the probability measure induced by H on (Rd,B(R)).

We remember that the arbitrary union of open sets is an open set and its complement is a closed

measurable set. Then, if SC denotes the support of C we have that SC is a closed set and

SC =

(⋃
B

)c
such that B is an open set in Id and PC(B) = 0.

We can determine if a d-copula is singular via the Lebesgue’s measure in Rd, according with the

following result: C is singular if only if the support of C has Lebesgue’s measure zero.

We observe that the product copula Πd is absolutely continuous, because for every (u1, ..., ud) ∈
Id

AΠd(u1, ..., ud) =

∫ u1

0

· · ·
∫ ud

0

∂d

∂u1 · · · ∂ud
Πd(v1, ..., vd)dvd · · · dv1

=

∫ u1

0

· · ·
∫ ud

0

1dvd · · · dv1

=
d∏
i=1

ui

= Πd(u1, ..., ud).

(1.7)

Let Md as in (1.3). The support of Md, denoted by SMd
is the main diagonal, i.e., SMd

= {u1 =

u2 = · · · = ud−1 = ud|ui ∈ I for every i ∈ Id}. Then Md is singular, because λd(SMd
) = 0, where

λd is the Lebesgue’s measure on Rd. Besides ∂dMd/∂u1 · · · ∂ud = 0 a.s. [λd].

Let 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. We define for every (u, v) ∈ I2 the family of copulas

Cα,β(u, v) = min(u1−αv, uv1−β) =

{
u1−αv if uα ≥ vβ;
uv1−β if uα ≤ vβ.

This family is known as Marshall-Olkin family or Generalized Cuadras-Augé family. This family

of copulas is hybrid, i.e., it has absolutely continuous and singular components. This follows

because

∂2

∂u∂v
Cα,β(u, v) =

{
(1− α)u−α if uα > vβ;
(1− β)v−β if uα < vβ.
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Then,if Aα,β denotes the absolutely continuous part of Cα,β, we have that for uα < vβ

Aα,β(u, v) = uv1−β − αβ

α + β − αβ
(uα)(α+β−αβ)/αβ,

and for uα > vβ

Aα,β(u, v) = u1−αv − αβ

α + β − αβ
(vβ)(α+β−αβ)/αβ,

i.e.,

Aα,β(u, v) = Cα,β(u, v)− αβ

α + β − αβ
(min(uα, vβ))(α+β−αβ)/αβ.

And if Sα,β denotes the singular part of Cα,β we have that for uα = vβ

Sα,β(u, v) =
αβ

α + β − αβ
(min(uα, vβ))(α+β−αβ)/αβ.

1.2 Archimedean copulas

In this section we introduce an important class of copulas called Archimedean. The Archimedean

class has many properties and the copulas which belong to this class are easy to construct.

Besides, many of the most used copulas belong to this family.

Definition 1.2.1. Let ϕ be a continuous, strictly decreasing function such that ϕ : I → [0,∞]

and ϕ(1) = 0. We define the pseudo-inverse of ϕ, denoted by ϕ[−1], as the function with

domain [0,∞] and range I given by

ϕ[−1](t) =

{
ϕ−1(t) if 0 ≤ t ≤ ϕ(0);
0 if ϕ(0) ≤ t ≤ ∞,

where ϕ−1 is the usual inverse of ϕ.

Observe that if ϕ(0) =∞, then ϕ[−1] = ϕ−1.

Theorem 1.2.2. Let ϕ and ϕ[−1] as in Definition 1.2.1. Let C : I2 → I be a function such that

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)). (1.8)

Then C is a 2-copula if and only if ϕ is convex.

5



Definition 1.2.3. If a 2-copula C can be represented as in (1.8), then it is called an Archimedean

copula; and the funtion ϕ is known as the Archimedean generator of C. If ϕ[−1] = ϕ−1,

then ϕ is called a strict generator. In any other case ϕ is known as a non strict generator.

We will see two examples of Archimedean copulas:

Example 1.2.4. i) Let ϕ(t) = −ln(t), for t ∈ I. We notice that ϕ(0) =∞, then ϕ[−1] = ϕ−1 =

exp(−t) and generates a copula. According to (1.8) the copula is given by

C(u, v) = exp(−[−ln(u)− ln(v)]) = uv = Π2(u, v).

ii) Let ϕ(t) = 1
θ

(
t−θ − 1

)
, with θ ∈ [−1,∞) \ {0}. We observe that ϕ(0) = ∞, and then it

follows that ϕ[−1] = ϕ−1 = (1 + θt)−1/θ. Then ϕ generates a copula given by

C(u, v) = max(u−θ + v−θ − 1, 0)−1/θ.

C is known as the Clayton copula.

Definition 1.2.5. A function g is said to be completely monotonic on an interval J if and

only if it is continuous and satisfies

(−1)k
dk

dtk
g(t) ≥ 0, (1.9)

for all t in the interior of J and for every k = 0, 1, 2, ....

Theorem 1.2.6. Let ϕ : I → [0,∞] be a continuous, strictly decreasing function such that

ϕ(1) = 0 and ϕ(0) =∞. Let d ≥ 2 and C : Id → I be a function given by

C(u1, ..., ud) = ϕ−1(ϕ(u1) + · · ·+ ϕ(ud)). (1.10)

Then C is a d-copula for every d ≥ 2 if and only if ϕ−1 is completely monotonic on [0,∞).

A copula C that satisfies (1.10) is called Archimedean d-copula, for every d ≥ 2.

Example 1.2.7. Let θ > 0. We define ϕθ(t) = 1
θ
(1/tθ − 1). Then, clearly, ϕθ satisfies the

condition of theorem 1.2.6. We note that ϕ−1
θ = (1 + θt)−1/θ and

(−1)k
dk

dtk
ϕ−1
θ = (−1)2k (1 + θt)−(1+kθ)/θ

θk

k−1∏
i=1

(1 + (i− 1)θ).

6



Hence

Cθ(u1, ..., ud) =

(
u−θ1 + · · ·+ u−θd − n+ 1

)−1/θ

,

is an Archimedean d-copula.

This is known as the Clayton family of d-copulas for θ > 0.

1.3 Dependence

In this section we present the definition of one measure of dependence: the concordance. We

also give the definition of two measures of association: Kendall’s tau and Spearman’s rho, and

we discuss their relation with copulas.

Definition 1.3.1. Let (xi, yi) and (xj, yj) denote two observations from a vector (X, Y ) of

continuous random variables. We say that (xi, yi) and (xj, yj) are concordant if and only if

xi < xj and yi < yj, or if xi > xj and yi > yj. In the same way, we say that (xi, yi) and (xj, yj)

are disconcordant if and only if xi < xj and yi > yj, or if xi < xj and yi > yj.

Definition 1.3.2. Let {(x1, y1), ..., (xn, yn)} be a random sample of size n from a vector (X, Y )

of continuous random variables. Let c be the number of concordant pairs and d be the number

of discordant pairs. We define the sample version of the Kendall’s tau, denoted by τ , as

τ =
c− d
c+ d

=
c− d(
n
2

)
i.e., τ is the probability of concordance minus the probability of discordance.

Following the same idea, the population version of Kendall’s tau is given by the difference

between the probability of concordance and the probability of discordance.

Definition 1.3.3. Let (X1, Y1) and (X2, Y2) be independent and identically distributed random

vectors, each with joint distribution function H and copula C. We define the population

version of Kendall’s tau, denoted by τX,Y or by τC, as

τX,Y = τC = P[(X1 −X2)(Y1 − Y2) > 0]− P[(X1 −X2)(Y1 − Y2) < 0]. (1.11)

The next theorem gives a way to calculate the population Kendall’s tau from continuous random

vectors.
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Theorem 1.3.4. Let (X1, Y1) and (X2, Y2) be independent vectors of continuous random vari-

ables with joint distributions H1 and H2, respectively, with common margins F (of X1and X2)

and G (of Y1 and Y2). Let C1 and C2 be the copulas of (X1, Y1) and (X2, Y2), respectively. Let

Q denote the difference between the probabilities of concordance and discordance of (X1, Y1) and

(X2, Y2), i.e.,

Q = Q(C1, C2) = P[(X1 −X2)(Y1 − Y2) > 0]− P[(X1 −X2)(Y1 − Y2) < 0]. (1.12)

Then

Q(C1, C2) = 4

∫ ∫
I2
C2(u, v)dC1(u, v)− 1.

As a direct consequence of the theorem 1.3.4, we have that if τX,Y is defined as in (1.11), then

τX,Y = τC = Q(C,C) = 4

∫ ∫
I2
C(u, v)dC(u, v)− 1 = 4E[C(u, v)]− 1.

Now, we give the definition of another measure of association based on concordance and discor-

dance, called Spearman’s rho.

Definition 1.3.5. Let (X1, Y1), (X2, Y2) and (X3, Y3) be three independent random vectors with

a common joint distribution function H and copula C. We define the population version of

Spearman’s rho, denoted by ρX,Y or by ρC, as

ρX,Y = ρC = 3(P[(X1 −X2)(Y1 − Y3) > 0]− P[(X1 −X2)(Y1 − Y3) < 0]), (1.13)

The Spearman’s rho is defined as the probability of concordance minus the probability of dis-

cordance for a pair of vectors with the same margins, but one has distribution function H, while

the other vector has independent components.

In the same way that Theorem 1.3.4, the next theorem establishes a way to calculate the

Spearman’s rho for random continuous variables.

Theorem 1.3.6. Let X and Y be continuous random variables with copula C. Then the popu-

lation version of the Spearman’s rho, defined as in (1.13), is given by

ρX,Y = ρC = 3Q(C,Π2) = 12

∫ ∫
I2
uvdC(u, v)− 3 = 12

∫ ∫
I2
C(u, v)dudv − 3. (1.14)

Let X and Y be continuous random variables with distribution functions F and G, respectively,

and copula C. If U = F (X) and V = G(Y ), then U and V have the same distribution, uniform

8



(0, 1), and joint distribution C. Then E[U ] = E[V ] = 1/2 and V ar[U ] = V ar[V ] = 1/12, and

this implies

ρX,Y = ρC = 12

∫ ∫
I2
uvdC(u, v)− 3 = 12E[UV ]− 3 =

E[UV ]− 1
4

1
12

=
E[UV ]− E[U ]E[V ]√
V ar[U ]

√
V ar[V ]

,

(1.15)

i.e., the population version of Spearman’s rho for X and Y is equal to Pearson’s correlation

coefficient for U and V .

9



Chapter 2

Sample-d copula of order m

In this chapter we present the definition and the most important results about the sample d-

copula of order m. Moreover, in the first section, we establish two almost unknown results

about empirical distribution functions and empirical copulas. In the third section we compare

the sample d-copula of order m with the empirical copula, and we will see that the sample copula

is a better approximation in many senses. Finally, in the fourth section, we give the definition

of the copula called the checkerboard approximation and we give some basic result; besides we

establish a Glivenko-Cantelli Theorem for the sample copula.

2.1 Empirical functions

In this section we present the theorems of Glivenko-Cantelli for the empirical distribution func-

tion and for sample copulas. Besides, we give two results that establish bounds in the opposite

way that the Glivenko-Cantelli theorem, we can think these results as “anti-Glivenko-Cantelli

Theorems”. It is surprising that these results have been little studied previously.

Definition 2.1.1. Let X1, ..., Xn be a random sample of size n from a continuous random

variables X and let X(1), ..., X(n) be their order statistics. The rank function r : In×Rn → In

is defined by

r(j,X1, ..., Xn) = k, if and only if Xj = X(k) where j, k ∈ In.

Definition 2.1.2. Let X1, ..., Xn be a random sample of size n from a continuous random

vector X of dimension d, where X i = (Xi,1, ..., Xi,d) ∈ Rd, for every i ∈ In. Let i ∈ In, the i-th

modified sample Y i = (Yi,1, ..., Yi,d), is defined by

Yi,j =
1

n
r(i,X1,j, ..., Xn,j) for every j ∈ Id.

Example 2.1.3. Let X1 = (2.2178, 2.6011), X2 = (−2.1351, 1.9449), X3 = (0.1139, 0.2113),

X4 = (−0.3874, 3.0680) and X5 = (0.7394,−2.0514) be a random sample of size n = 5 from a

10



bivariate normal distribution with mean µ = (0, 0) and correlation coefficient ρ = 0.4. Then

Y 1 =

(
5

5
,
4

5

)
, Y 2 =

(
1

5
,
3

5

)
, Y 3 =

(
3

5
,
2

5

)
, Y 4 =

(
2

5
,
5

5

)
and Y 5 =

(
4

5
,
1

5

)
.

Definition 2.1.4. Let X1, ..., Xn be a random sample of size n from a random vector X of

dimension d, with continuous joint distribution H and unique copula C. Let Y 1, ..., Y n be the

corresponding modified sample. We define the empirical copula, denoted by Cn : Id → I, by

Cn(u1, ..., ud) =
1

n

n∑
i=1

1(−∞,u1]×···×(−∞,ud](Yi,1, ..., Yi,d), for every (u1, ..., ud) ∈ Id. (2.1)

The following Theorem is the version of the Glivenko-Cantelli’s Theorem for empirical copulas:

Theorem 2.1.5. (Glivenko-Cantelli) Let Cn be the empirical copula constructed from a sample

of size n from a continuous joint distribution H with copula C. Then

lim
n→∞

sup
(u1,...,ud)∈Id

|Cn(u1, ..., ud)− C(u1, ..., ud)| = 0 a.s. [PC ],

where [PC ] is the probability measure on (Rd,B(Rd)) induced by the d-copula C.

Definition 2.1.6. Let X1, ..., Xn be a random sample of size n from a random variable X with

distribution function F . We define, for every x ∈ R, the empirical distribution function,

denoted by Fn, as

Fn(x) =
1

n

n∑
i=1

1(−∞,x](Xi). (2.2)

A well known result for distribution functions is the Glivenko-Cantelli’s Theorem:

Theorem 2.1.7. (Glivenko-Cantelli) Let X1, ..., Xn be a random sample of size n from a random

variable X with distribution function F , and let Fn be the empirical distribution function as in

(2.2). Then

lim
n→∞

sup
x∈R
|Fn(x)− F (x)| = 0 a.s. [PF ].

where PF is the probability measure induced by F on R.

The Glivenko-Cantelli’s Theorem indicates that when the sample size goes to infinity the empir-

ical distribution converges a.s. to the theoretical distribution. But, what happens for a fixed n?

What is the bound for the “worst” sample? An answer to this question is given by the almost

unknown result:

11



Lemma 2.1.8. Let X1, ..., Xn be a random sample of size n from a random variable X with

continuous distribution function F . Let Fn be the empirical distribution function as in (2.2).

Then

sup
x∈R
|Fn(x)− F (x)| ≥ 1

2n
a.s. [PF ]. (2.3)

Proof: Assume that F is continuous and that the sample is ordered, that is, X1 < X2 < · · · <
Xn. As Fn is a step function, we have for every k ∈ {1, ..., n}

Fn(Xk) =
k

n
and Fn(X−k ) =

k − 1

n
.

Then

sup
x∈R
|Fn(x)− F (x)| = max

1≤k≤n
(max(|Fn(X−k )− F (Xk)|, |Fn(Xk)− F (Xk)|))

= max
1≤k≤n

(
max

(∣∣∣∣k − 1

n
− F

(
Xk

)∣∣∣∣, ∣∣∣∣kn − F
(
Xk

)∣∣∣∣)). (2.4)

If we also assume that, for every k ∈ {1, ..., n}, F (Xk) = (2k−1)/(2n), that is, Xk = F (−1)((2k−
1)/(2n)), then∣∣∣∣k − 1

n
− 2k − 1

2n

∣∣∣∣ =

∣∣∣∣2k − 2− 2k + 1

2n

∣∣∣∣ =
1

2n
=

∣∣∣∣2k − (2k − 1)

2n

∣∣∣∣ =

∣∣∣∣kn − 2k − 1

2n

∣∣∣∣.
If F (Xk) 6= (2k − 1)/(2n) then

max
1≤k≤n

(∣∣∣∣k − 1

n
− F (Xk)

∣∣∣∣, ∣∣∣∣kn − F (Xk)

∣∣∣∣) >
1

2n
.

Hence

sup
x∈R
|Fn(x)− F (x)| ≥ max

1≤k≤n

1

2n
=

1

2n
,

and (2.3) is satisfied.

In the same sense that in the last lemma, we establish a bound between the real copula and the

empirical copula for the supremum distance and for a fixed sample size.

Lemma 2.1.9. Let X1, ..., Xn be a random sample of size n from a random vector X of di-

mension d, with continuous joint distribution function H and copula C. Let Y 1, ..., Y n be the

corresponding modified sample, and let Cn be the empirical copula. Then

sup
(u1,...,ud)∈Id

|Cn(u1, ..., ud)− C(u1, ..., ud)| ≥
1

n
a.s. [PC ]. (2.5)

12



Proof: Let 0 < ε < 1/n. Since C is a d-copula, then C(ε, 1, ..., 1) = ε, but by definition of the

empirical copula we have that Cn(ε, 1, ..., 1) = 0, because we can not see any points with any

coordinates less than or equal to ε. Then

lim
ε↑(1/n)

|Cn(ε, 1, ..., 1)− C(ε, 1, ..., 1)| = 1

n
,

and the result follows.

2.2 Sample d-copula of order m

The first concept presented in this section is the generalized transformation matrix. The matri-

ces of this kind are generated by a probability measure.

The main topic of the section is the sample d-copula of order m; this copula was first introduced

in [9], and the article [11] presents some improvements. The sample copula assigns uniform

mass to every d-box generated by a generalized transformation matrix that is determined by

the sample.

We establish some important results: given a fixed size for the sample, the partition generated

by the generalized transformation is independent from the sample; the density of the sample is

constant on every d-box generated by the partition, and the sample copula is in fact a copula.

Definition 2.2.1. Let In = {1, 2, ..., n}. For dimension d ≥ 2, let m ∈ N, we define Idm =

×di=1Im. Let τ be a probability measure on (Idm, 2
Idm), τ is known as a generalized transfor-

mation matrix if for all j ∈ Id and for all k ∈ Im∑
i∈Idm,ij=k

τ(i) > 0,

where i = (i1, ..., ij−1, ij = k, ij+1, ..., id) ∈ Idm. τ can be thought of as a d-dimensional matrix τ ,

considering

τ(i) = τi1,...,id if i = (i1, ..., id) ∈ Idm.

Example 2.2.2. Let

A =

 0 1
3

0
1
3

0 0
0 0 1

3

 ,
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and

B =

 1
3

0 0
1
3

0 0
0 0 1

3

 .

Then A is a generalized transformation matrix and B is not.

Definition 2.2.3. Let τ = (τi,j)i,j∈{1,...,m} be a generalized transformation matrix where d = 2.

Define {q1,0, q1,1, ..., q1,m} and {q2,0, q2,1, ..., q2,m} two partitions of I, such that q1,0 = q2,0 = 0

and for i, j ∈ Im we have that

q1,i =
i∑

i′=1

∑
j∈Im

τi′,j and q2,j =

j∑
j′=1

∑
i∈Im

τi,j′ .

We also define the partition induced by τ on I2 by

Qm
i,j = 〈q1,i−1, q1,i]× 〈q2,j−1, q2,j] for every (i, j) ∈ Im × Im,

where the 〈 notation indicates that the left end of the interval is closed if i = 1 or j = 1, and

open in any other case. Let Π2 be the product 2-copula, and define the τ(Π2) transformation by

τ(Π2)(u, v) =
∑

i′<i,j′<j

τi′,j′ +
u− q1,i−1

q1,i − q1,i−1

∑
j′<j

τi,j′ +
v − q2,j−1

q2,j − q2,j−1

∑
i′<i

τi′,j

+ τi,jΠ2

(
u− q1,i−1

q1,i − q1,i−1

,
v − q2,j−1

q2,j − q2,j−1

)
,

(2.6)

with u, v ∈ Qm
i,j for every i, j ∈ Im.

Equation (2.6) is the same as equation 2.3.2 in Lemma 2.3.5 in the proof of Sklar’s Theorem in

[18], using the subcopula generated by the generalized transformation matrix τ . Equation (2.6)

is a bilinear interpolation and hence τ(Π2) assigns the mass uniformly in every 2-box Qi,j.

Definition 2.2.4. Let m ≥ 2 and let τ = (τi1,...,id)(i1,...,id)∈(Im)d be a generalized transformation

matrix. We define q1,0 = q2,0 = · · · = qd,0 = 0, and for every j ∈ Id and for every k ∈ Im

qj,k =
k∑

ij=1

m∑
i1=1

· · ·
m∑

ij−1=1

m∑
ij+1=1

· · ·
m∑
id=1

τi1,...,ij−1,ij ,ij+1,...,id .

Then 0 = qj,0 < qj,1 < · · · < qj,m−1 < qj,m = 1 is a partition of I, induced by the matrix τ in the

j-coordinate. For every i = (i1, ..., id) ∈ (Im)d we define

Qm
i = 〈q1,(i1−1), q1,i1 ]× 〈q2,(i2−1), q2,i2 ]× · · · × 〈qd,(id−1), qd,id ]. (2.7)

Then the family (Qm
i )i∈(Im)d is a partition of Id.
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Definition 2.2.5. Let 2 ≤ m ≤ n and let X1, ..., Xn be a random sample of a size n from a

random vector X of dimension d, with continuous joint distribution H or d-copula C, where

X i = (Xi,1, ..., Xi,d) ∈ Rd, for every i = 1, ..., n. Let Un = {Y 1, ..., Y n} be the corresponding

modified sample. Define the uniform partition of size m of Id, where for every i = (i1, ..., id) ∈
(Im)d

Rm
i =

〈
i1 − 1

m
,
i1
m

]
× · · · ×

〈
id − 1

m
,
id
m

]
. (2.8)

Define

s
n,(m)
i1,...,id

=
card(Rm

i ∩ Un)

n
, (2.9)

where card(·) denotes de cardinality of a set. Let

Snm = (s
n,(m)
i1,...,id

)(i1,...,id)∈(Im)d , (2.10)

then Snm is always a d-dimensional generalized transformation matrix. Finally, let (Qm
i )i∈(Im)d be

the partition of Id induced by the generalized transformation matrix Snm given in equation (2.7).

Using the partition (Qm
i )i∈(Im)d, we define the sample d-copula of order m by

Cn
m(u1, ..., ud) = Snm(Πd)(u1, ..., ud), (2.11)

as in the generalization of equation (2.6), where Πd is the product copula in Id.

The function Cn
m was first proposed in [9]. We will see that Cn

m is an estimator of the true copula

C because is an estimator of C(m), the Checkerboard approximation, see Definition 2.4.2 below.

For a more in-depth study of Cn
m see [11].

We give the following example to clarify the definition of the Sample Copula of Order m:

Example 2.2.6. Let X1 = (−0.2787191, 0.8874746), X2 = (−1.60796965, 0.9300367), X3 =

(3.85470838,−2.7634594), X4 = (3.83099590,−1.7714260) and X5 = (−0.87848834,−0.78799474)

be a random sample of size n = 5 from a bivariate t distribution with 3 degrees of freedom, mean

µ = (0, 0) and variance-covariance matrix

V =

(
5 −2
−2 2

)
.

According to definition 2.1.2, the modified sample is given by Y 1 = (3/5, 4/5), Y 2 = (1/5, 5/5), Y 3 =

(5/5, 1/5), Y 4 = (4/5, 2/5), Y 5 = (2/5, 3/5). Let U5 = {Y 1, ..., Y 5}.

15



For m = 2 we have

R2
1,1 ∩ U5 = ∅,

R2
1,2 ∩ U5 = {Y 2, Y 5},

R2
2,1 ∩ U5 = {Y 3, Y 4},

R2
2,2 ∩ U5 = {Y 1}.

Then the matrix defined in (2.10) is given by

S5
2 =

(
0 2

5
2
5

1
5

)
.

The partition induced by S5
2 , as in definition 2.2.4, is determined by

q1,0 = q2,0 = 0, q1,1 = q2,1 = 2/5, q1,2 = q2,2 = 1.

Then

Q2
1,1 = [0, 2/5] × [0, 2/5], Q2

1,2 = [0, 2/5] × (2/5, 1], Q2
2,1 = (2/5, 1] × [0, 2/5], Q2

2,2 = (2/5, 1] ×

(2/5, 1].

By equation (2.11), the sample 2-copula of order 2 is given by

C5
2(u, v) =



0 if (u, v) ∈ Q2
1,1

u

(
5v−2

3

)
if (u, v) ∈ Q2

1,2(
5u−2

3

)
v if (u, v) ∈ Q2

2,1

2
5

(
5(u+v)−4

3

)
+ 1

5

(
5u−2

3

)(
5v−2

3

)
if (u, v) ∈ Q2

2,2

,

and its density is given by

c5
2(u, v) =


0 if (u, v) ∈ Q2

1,1
5
3

if (u, v) ∈ Q2
1,2 ∪Q2

2,1
5
9

if (u, v) ∈ Q2
2,2.

We observe that the density is constant in every 2-box and is given by si,j/λ
2(Q2

i,j), for i, j ∈ Im,

where λ2 denotes the Lebesgues measure in (R2,B(R2)).

Now, for m = 3 we have

R3
i,j ∩ U5 = ∅, for (i, j) ∈ {(1, 1), (1, 2), (2, 1), (3, 3)},

R3
1,3 ∩ U5 = {Y 2},

R3
2,2 ∩ U5 = {Y 5},

R3
2,3 ∩ U5 = {Y 1},

R3
3,1 ∩ U5 = {Y 3},
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R3
3,2 ∩ U5 = {Y 4}.

Then

S5
3 =

 0 0 1
5

0 1
5

1
5

1
5

1
5

0

 .

The partition induced by S5
3 is determined by

q1,0 = q2,0 = 0, q1,1 = q2,1 = 1/5, q1,2 = q2,2 = 3/5, q1,3 = q2,3 = 1.

Then

Q3
1,1 = [0, 1/5]× [0, 1/5], Q3

1,2 = [0, 1/5]× (1/5, 3/5], Q3
1,3 = [0, 1/5]× (2/5, 1], Q3

2,1 = (1/5, 3/5]×

[0, 1/5], Q3
2,2 = (1/5, 3/5]×(1/5, 3/5], Q3

2,3 = (1/5, 3/5]×(3/5, 1], Q3
3,1 = (3/5, 1]× [0, 1/5], Q3

3,2 =

(3/5, 1]× (1/5, 3/5], Q3
3,3 = (3/5, 1]× (3/5, 1].

Hence, the sample 2-copula of order 3 is given by

C5
3(u, v) =



0 if (u, v) ∈ Q3
1,1 ∪Q3

1,2 ∪Q3
2,1

u

(
5v−3

2

)
if (u, v) ∈ Q3

1,3

1
5

(
5u−1

2

)(
5v−1

2

)
if (u, v) ∈ Q3

2,2

1
5

(
5(u+v)−4

2

)
+ 1

5

(
5u−1

2

)(
5v−3

2

)
if (u, v) ∈ Q3

2,3(
5u−3

2

)
v if (u, v) ∈ Q3

3,1

1
5

(
5(u+v)−4

2

)
+ 1

5

(
5u−3

2

)(
5v−1

2

)
if (u, v) ∈ Q3

3,2

u+ v − 1 if (u, v) ∈ Q3
3,3.

and its density is given by

c5
3(u, v) =


0 if (u, v) ∈ Q3

1,1 ∪Q3
1,2 ∪Q3

2,1 ∪Q3
3,3

5
2

if (u, v) ∈ Q3
1,3 ∪Q3

3,1
5
4

if (u, v) ∈ Q3
2,2 ∪Q3

2,33 ∪Q3
3,2.

Again, we observe that the density is constant in every 2-box and is given by si,j/λ
2(Q3

i,j), for

i, j ∈ Im.

For m = 4 we have

R4
i,j ∩ U5 = ∅, for (i, j) ∈ {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 4), (3, 1), (3, 2), (3, 3), (4, 3), (4, 4)},

R4
1,4 ∩ U5 = {Y 2},

17



R4
3,4 ∩ U5 = {Y 1},

R4
4,1 ∩ U5 = {Y 3},

R4
4,2 ∩ U5 = {Y 4}.

Then

S5
4 =


0 0 0 1

5

0 0 1
5

0
0 0 0 1

5
1
5

1
5

0 0

 .

The partition induced by S5
4 is given by

q1,0 = q2,0 = 0, q1,1 = q2,1 = 1/5, q1,2 = q2,2 = 2/5, q1,3 = q2,3 = 3/5, q1,4 = q2,4 = 1.

Then

Q4
1,1 = [0, 1/5]× [0, 1/5], Q4

1,2 = [0, 1/5]× (1/5, 2/5], Q4
1,3 = [0, 1/5]× (2/5, 3/5], Q4

1,4 = [0, 1/5]×

(3/5, 1], Q4
2,1 = (1/5, 2/5]×[0, 1/5], Q4

2,2 = (1/5, 2/5]×(1/5, 2/5], Q4
2,3 = (1/5, 2/5]×(2/5, 3/5], Q4

2,4 =

(1/5, 2/5]× (3/5, 1], Q4
3,1 = (2/5, 3/5]× [0, 1/5], Q4

3,2 = (2/5, 3/5]× (1/5, 2/5], Q4
3,3 = (2/5, 3/5]×

(2/5, 3/5], Q4
3,4 = (2/5, 3/5]×(3/5, 1], Q4

4,1 = (3/5, 1]× [0, 1/5], Q4
4,2 = (3/5, 1]×(1/5, 2/5], Q4

4,3 =

(3/5, 1]× (2/5, 3/5], Q4
4,4 = (3/5, 1]× (3/5, 1].

Thus, the sample 2-copula of order 4 is given by

C5
4(u, v) =



0 if (u, v) ∈ A

u

(
5v−3

2

)
if (u, v) ∈ Q4

1,4(
5u−1

5

)
(5v − 2) if (u, v) ∈ Q4

2,3

1
5

(
5u− 1 + 5v−3

2

)
if (u, v) ∈ Q4

2,4

5u−2
5

if (u, v) ∈ Q4
3,3

1
5

(
1 + 5v−3

2
+ (5u− 2)

(
5v−3

2

))
if (u, v) ∈ Q4

3,4(
5u−3

2

)
v if (u, v) ∈ Q4

4,1

1
5

(
5u−3

2
+

(
5u−3

2

)
(5v − 1)

)
if (u, v) ∈ Q4

4,2

u+ v − 1 if (u, v) ∈ Q4
4,3 ∪Q4

4,4,

where A = Q4
1,1 ∪Q4

1,2 ∪Q4
1,3 ∪Q4

2,1 ∪Q4
2,2 ∪Q4

3,1 ∪Q4
3,2.

The density is given by
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c5
4(u, v) =


0 if (u, v) ∈ Q4

1,1 ∪Q4
1,2 ∪Q4

1,3 ∪Q4
2,1 ∪Q4

2,2 ∪Q4
2,4 ∪Q4

3,1 ∪Q4
3,2 ∪Q4

3,3 ∪Q4
4,3 ∪Q4

4,4
5
2

if (u, v) ∈ Q4
1,4 ∪Q4

3,4 ∪Q4
4,1 ∪Q4

4,2

5 if (u, v) ∈ Q4
2,3.

We observe that the density is constant in every 2-box is constant and is given by si,j/λ
2(Q4

i,j),

for i, j ∈ Im.

Let m = 5. Then we have that

R5
i,j ∩ U5 = ∅, for (i, j) ∈ I2

m \ {(1, 5), (2, 3), (3, 4), (4, 2), (5, 1)},

R5
1,5 ∩ U5 = {Y 2},

R5
2,3 ∩ U5 = {Y 5},

R5
3,4 ∩ U5 = {Y 1},

R5
4,2 ∩ U5 = {Y 4},

R5
5,1 ∩ U5 = {Y 3}.

Then the generalized transformation matrix is

S5
5 =


0 0 0 0 1

5

0 0 1
5

0 0
0 0 0 1

5
0

0 1
5

0 0 0
1
5

0 0 0 0

 .

The matrix induces the partition

q1,0 = q2,0 = 0, q1,1 = q2,1 = 1/5, q1,2 = q2,2 = 2/5, q1,3 = q2,3 = 3/5, q1,4 = q2,4 = 4/5, q1,5 =

q2,5 = 1,

and in this case we have that (Q5
i,j)(i,j)∈I25 = (R5

i,j)(i,j)∈I25 .

The sample 2-copula of order 5 is given by

C5
5(u, v) =



0 if (u, v) ∈ B
u(5v − 4) if (u, v) ∈ Q5

1,5
1
5
(5u− 1)(5v − 2) if (u, v) ∈ Q5

2,3
1
5
(5u− 1) if (u, v) ∈ Q5

2,4

u+ v − 1 if (u, v) ∈ C
1
5
(5v − 2) if (u, v) ∈ Q5

3,3
1
5
(1 + (5u− 2)(5v − 3)) if (u, v) ∈ Q5

3,4
1
5
(5u− 3)(5v − 1) if (u, v) ∈ Q5

4,2

(5u− 4)v if (u, v) ∈ Q5
5,1,

where B = Q5
1,1 ∪Q5

1,2 ∪Q5
1,3 ∪Q5

1,4 ∪Q5
2,1 ∪Q5

2,2 ∪Q5
3,1 ∪Q5

3,2 ∪Q5
4,1 and C = Q5

2,5 ∪Q5
3,5 ∪Q5

4,3 ∪
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Q5
4,4 ∪Q5

4,5 ∪Q5
5,2 ∪Q5

5,3 ∪Q5
5,4 ∪Q5

5,5.

The density is determined by

c5
5(u, v) =

{
0 if (u, v) ∈ I2 \ (Q5

1,5 ∪Q5
2,3 ∪Q5

3,4 ∪Q5
4,2 ∪Q5

5,1)
5 if (u, v) ∈ Q5

1,5 ∪Q5
2,3 ∪Q5

3,4 ∪Q5
4,2 ∪Q5

5,1.

We notice that, in the same way that in the previous cases, the density of the copula is constant

in every 2-box and its given by si,j/λ
2(Q5

i,j), for i, j ∈ Im.

We will see in the next theorem that the partition defined in 2.2.4 does not depend of the sample

and we will see that the density of the copula is constant on every d-box:

Theorem 2.2.7. Let 2 ≤ m ≤ n and let X1, ..., Xn be a random sample of size n from a

random vector X of dimension d, with continuous joint distribution H or d-copula C, where

X i = (Xi,1, ..., Xi,d) ∈ Rd, for every i = 1, ..., n. Let Un = {Y 1, ..., Y n} be the corresponding

modified sample.

Let 2 ≤ m ≤ n fixed and define (Rm
i )i∈(Im)d the uniform partition of size m of Id as in equation

(2.8), s
n,(m)
i1,...,id

as in equation (2.9), the generalized transformation matrix Snm as in equation

(2.10), the partition (Qm
i )i∈(Im)d of Id induced by Snm given in equation (2.7) , and Cn

m the

sample copula of order m as in equation (2.11). Then

i) For the partitions of (Qm
i )i∈(Im)d we know that 0 = q1,0 < q1,1 < · · · < q1,m = 1, but we also

have that

qj,0 = q1,0 = 0, qj,1 = q1,1, qj,2 = q1,2, ..., qj,m = q1,m = 1 for every j ∈ {2, 3, ..., d}, (2.12)

that is, in the d coordinates the partition of I does not change. Even more, with probability one,

the partition 0 = q1,0 < q1,1 < · · · < q1,m = 1 only depends on n and m, and does not depend on

the sample; in fact we have that

q1,j =
1

n
·
⌊
j · n
m

⌋
for every j ∈ {0, 1, 2, ...,m}, (2.13)

where bac denotes the greatest integer less than or equal to a.

ii) Let λd be the Lebesgue measure on the measurable space (Rd,B(Rd)), where B(Rd) denotes

the σ-algebra of Borel. If Cn
m denotes the sample copula of order m, let us denote by cnm its joint

density function. Then

cnm(u1, ..., ud) = s
n,(m)
i1,...,id

/λd(Qm
i1,...,id

) for every (u1, ..., ud) ∈ Qm
i1,...,id

and (i1, ..., id) ∈ (Im)d.

(2.14)
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Hence, the density is constant on every d-box Qm
i1,...,id

of the partition of Id induced by Snm.

Besides, if Md > n then exists at least one d-box Qm
i1,...,id

on which the density is zero. In fact,

at most there are n d-boxes with positive density.

iii) For every 2 ≤ m ≤ n, Cn
m is always a d-copula.

iv) Assume that m divides n, the the partition (Qm
i )i∈(Im)d of Id coincides with the uniform

partition (Rm
i )i∈(Im)d of size m.

v) If m = n there are exactly n elements of the partition (Qm
i )i∈(Im)d = (Rm

i )i∈(Im)d on which the

density equals nd−1 and the remaining elements have density zero.

Proof: i) We observe that for every k ∈ In and for every sample of size n, Y k always has the

form

Y k =

(
P1(k)

n
,
P2(k)

n
, ...,

Pd(k)

n

)
, (2.15)

where Pi is a permutation of In, for every i ∈ Id.
We define, for every k ∈ Id and for every l ∈ Im,

Nl(k) =
n∑
i=1

1( l−1
m
, l
m

]

(
Pk(i)

n

)
. (2.16)

Since Pk is a permutation, for every k ∈ Id, we have that Nl(1) = Nl(2) = · · · = Nl(d), for every

l ∈ Im. From this observation it follows that for every j ∈ Im

qj,0 = q1,0 = 0, qj,1 = q1,1, qj,2 = q1,2, ..., qj,m = q1,m = 1, (2.17)

and besides, for every j ∈ {0, 1, 2, ...,m},

q1,j =
1

n

j∑
l=1

Nl(1)

=
1

n

j∑
l=1

n∑
i=1

1{ l−1
m
<
P1(i)
n
≤ l
m
}

=
1

n

n∑
i=1

1{0<P1(i)
n
≤ j
m
}

=
1

n

n∑
i=1

1{0<P1(i)≤ jn
m
}

=
1

n

⌊
jn

m

⌋
.

(2.18)
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ii) Let µCnm be probability measure generated by Cn
m in (Id,B(Id)). We notice that, by definition,

for every (i1, ..., id) ∈ (Im)d, we have that

µCnm(Qm
i1,...,id

) = s
n,(m)
i1,...,id

. (2.19)

On the other hand, let cnm be the density function associated with Cn
m. Then for every (i1, ..., id) ∈

(Im)d we have that

µCnm(Qm
i1,...,id

) =

∫ q1,id

q1,(id−1)

. . .

∫ q1,i1

q1,(i1−1)

cnm(u1, ..., ud)du1 . . . dud, (2.20)

and moreover

λd(Qm
i1,...,id

) =

∫ q1,id

q1,(id−1)

. . .

∫ q1,i1

q1,(i1−1)

1du1 . . . dud =
d∏

k=1

(q1,ik − q1,(ik−1)). (2.21)

By the definition of the sample d-copula of order m it follows that cnm is constant on every d-box.

Hence

cnm(u1, ..., ud) = s
n,(m)
i1,...,id

/λd(Qm
i1,...,id

) for every (u1, ..., ud) ∈ Qm
i1,...,id

and (i1, ..., id) ∈ (Im)d.

Now, we assume that Md > n. We have that for (u1, ..., ud) ∈ Qm
i1,...,id

, cnm(u1, ..., ud) > 0 if and

only if s
n,(m)
i1,...,id

> 0. Since Snm is a generalized transformation matrix we can conclude that there

are at most n d-boxes with positive density.

iii) We have already proved that Cn
m is a d-subcopula in {q1,0, q1,1, ..., q1,m}d. Then, by the proof

of Lemma 2.3.5 in Nelsen’s book [18], we have that Cn
m is a d-copula.

iv) We assume that m divides n. There exists l ∈ N such that n = l · m. Thus, for every

j ∈ {0, 1, 2, ...,m} we have that

q1,j =
1

n
·
⌊
j · l ·m
m

⌋
=

1

n
· j · l =

j

m
.

v) Let m = n. We notice that N1 = N2 = · · · = Nm = 1, then there are exactly n elements of

the partition (Qm
i )i∈(Im)d on which the density is positive and has the form

1
n
1
nd

= nd−1,

and the remaining elements have density zero.
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The following definition can be understood as the maximum distance or the “distortion” between

the uniform partition and the partition induced by the generalized transformation matrix given

in 2.2.4.

Definition 2.2.8. Let 2 ≤ m ≤ n. Let, for every k ∈ Id, 0 = rk,0 < 1/m = rk,1 < 2/m = rk,2 <

· · · < (m− 1)/m = rk,m−1 < 1 = rk,m. Then (rk,j)k∈Id,j∈{0,1,...,m} generates the partition induced

by the uniform partition of size m. We define the distance between (Rm
i )i∈(Im)d and (Qm

i )i∈(Im)d

by

em((Rm
i ), (Qm

i )) = max
j∈{0,1,...,m}

|r1,j − q1,j|. (2.22)

In the next proposition we establish a bound for the distance em defined above:

Proposition 2.2.9. Let 2 ≤ m ≤ n, (Rm
i )i∈(Im)d as in (2.8), (Qm

i )i∈(Im)d as in (2.7) and em as

in (2.22). Then

max
2≤m≤n

em((Rm
i ), (Qm

i )) <
1

n
(2.23)

Proof: Since x − bxc < 1 for every x ∈ R, we notice that for every j ∈ {0, 1, ...,m} and for

every 2 ≤ m ≤ n ∣∣∣∣r1,j − q1,j

∣∣∣∣ =

∣∣∣∣ jm −
⌊
jn

m

⌋
1

n

∣∣∣∣ =
1

n

∣∣∣∣jnm −
⌊
jn

m

⌋∣∣∣∣ < 1

n
,

and hence the result follows.

Remark 2.2.10. If n is a multiple of m then em((Rm
i ), (Qm

i )) = 0, and this follow directly from

Theorem 2.2.7 part iv).

The following lemma shows that, in some cases, the sample d-copula of order m coincides (in

the supremum distance) with the real copula.

Lemma 2.2.11. Let d ≥ 2 be an integer and let n ≥ 4 be an even integer. Then there exists

2 ≤ m ≤ n, C a d-copula and a sample of size n from C, such that

sup
(u1,...,ud)∈Id

|Cn
m(u1, ..., ud)− C(u1, ..., Cd)| = 0. (2.24)

Proof: Let c be a function such that

c(u1, ..., ud) =

{
2d−1 if (u1, ..., ud) ∈ [0, 1/2]d ∪ (1/2, 1]d;
0 if (u1, ..., ud) ∈ Id \ [0, 1/2]d ∪ (1/2, 1]d.
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We will see that C is a d-copula with density function c. In order to see that, let uj = 0, for

some 1 ≤ j ≤ d. Then

C(u1, ..., uj−1, 0, uj+1, ..., ud) =

∫ u1

0

· · ·
∫ uj−1

0

∫ 0

0

∫ uj+1

0

· · ·
∫ ud

0

c(x1, ..., xd)dxd · · · dx1 = 0.

Let 0 ≤ u1 ≤ 1. Then

C(u1, 1, ..., 1) =

∫ 1

0

· · ·
∫ 1

0

∫ u1

0

c(x1, ..., xd)dx1 · · · dxd. (2.25)

If 0 ≤ u1 ≤ 1
2
, then (2.25) is equal to

∫ 1

0

· · ·
∫ 1

0

∫ 1

0

∫ u1

0

2d−1dx1 · · · dxd =
1

2d−1
2d−1u1 = u1.

If 1/2 ≤ u1 ≤ 1, then (2.25) is equal to

∫ 1

0

· · ·
∫ 1

0

2d−1dx1 · · · dxd =
1

2
+

2d−1

2d−1

(
u1 −

1

2

)
= u1.

Finally, as c is a nonnegative function, then clearly C is d-increasing. Hence C is a d-copula.

Now, let m = 2. We notice that, by definition, all the mass of the d-copula C is accumulated in

R2
1,1,...,1 and R2

2,2,...,2. Let X1, ..., Xd be a random sample of size n from the copula C, and assume

that exactly n/2 elements of the sample fall in the d-box R2
1,1,...,1. Then obviously the remaining

n/2 elements fall in the d-box R2
2,2,...,2 a.s. We observe that the modified sample Un = Y 1, ..., Y n

satisfies the same conditions as the sample. Then s
n,(2)
1,1,..,1 = s

n,(2)
2,2,...,2 = 1/2, and the remaining

si1,...,id = 0. Besides, by the theorem the density of the d-copula Cn
m is

cnm(u1, ..., ud) =

{
2d−1 if (u1, ..., ud) ∈ [0, 1/2]d ∪ (1/2, 1]d;
0 if (u1, ..., ud) ∈ Id \ [0, 1/2]d ∪ (1/2, 1]d.

Hence (2.24) is satisfied.

2.3 A comparison between the sample copula and the

empirical copula

It is very important to mention that the sample d-copula of order m is far easier to compute

than the empirical copula, the Bernstein copulas or the beta empirical copulas, see [13] and
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[20]. All three have been used to estimate the true copula C, but as shown in [11], in all of

these cases we may obtain better approximations to the true copula C using the sample copula.

In fact, when the sample size is not small or the dimension is slightly large, in many cases the

empirical copula, the Bernstein copulas or the beta empirical copula are impossible to evaluate

in a standard computer.

In the first result of this section we determine a bound for the supremum distance between Π

and M for the case d ≥ 2 and also we give a bound for the case d = 2 for the supremum distance

between Π and W .

Proposition 2.3.1. Let d ≥ 2 and Πd, Md and Wd as in (1.6), (1.3), and (1.4), respectively.

Then

sup
(u1,...,ud)∈Id

|Πd(u1, ..., ud)−Md(u1, ..., ud)| =
d− 1

dd/(d−1)
, (2.26)

where the supremum is attained at u1 = u2 = · · · = ud = (dd/(d−1))−1.

Besides,

sup
(u,v)∈I2

|Π2(u, v)−M2(u, v)| = sup
(u,v)∈I2

|Π2(u, v)−W2(u, v)| = 1

4
, (2.27)

where the supremum is attained in u = v = 1/2 in both cases.

Proof: Let 0 ≤ u(1) ≤ u(2) ≤ · · · ≤ u(d) ≤ 1 such that P (uk) = uj, for 1 ≤ k ≤ d, 1 ≤ j ≤ d,

and P is a permutation of Id. Then

sup
0≤u(1)≤u(2)≤···≤u(d)≤1

|Πd(u1, ..., ud)−Md(u1, ..., ud)| = sup
0≤u(1)≤u(2)≤···≤u(d)≤1

∣∣∣∣ d∏
i=1

u(i) − u(1)

∣∣∣∣
= sup

0≤u(1)≤u(2)≤···≤u(d)≤1
u(1)

∣∣∣∣ d∏
i=2

u(i) − 1

∣∣∣∣
= sup

0≤u(1)≤u(2)≤···≤u(d)≤1
u(1)

(
1−

d∏
i=2

u(i)

)
= max

0≤u(1)≤1
u(1)(1− ud−1

(1) ).

(2.28)

Let f(u) = u(1− ud−1), for 0 ≤ u ≤ 1. Then f ′(u) = 1− dud−1, and it follows hat f ′(u) = 0 if

and only if u = (d1/(d−1))−1. We observe that f ′′(u) = −d(d− 1)ud−2 < 0, and hence f reaches
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a maximum at u = (d1/(d−1))−1 and

f

(
1

d1/(d−1)

)
=

1

d1/(d−1)

(
1−

(
1

d1/(d−1)

)d−1)
=

d− 1

dd/(d−1)
,

and (2.26) is satisfied.

Now, let 0 ≤ α ≤ 1. We have that

sup
(u,v)∈I2

|Π2(u, v)−W2(u, v)| = sup
(u,v)∈I2

|uv −max(u+ v − 1, 0)|

= max{ sup
u+v<1

|uv −max(u+ v − 1, 0)|, sup
u+v≥1

|uv −max(u+ v − 1, 0)|}

= max{ sup
u+v<1

uv, sup
u+v≥1

|uv − u− v + 1|}

= max{ sup
0≤u<1/2

u(α− u), sup
1/2≤u≤1

(u− 1)2}.

(2.29)

Let f(u) = u(α − u), for 0 ≤ u < 1/2. Then f ′(u) = α − 2u, and f ′(u) = 0 if only if

u = α/2. Besides, f ′′(u) = −2 < 0, then f reaches a maximum at u = α/2. We observe that

f(α/2) = α2/4. Letting α ↑ 1 we have

sup
0≤u<1/2

u(α− u) = lim
α↑1

α2

4
=

1

4
.

Let g(u) = (u− 1)2, for 1/2 ≤ u < 1. We have that g′(u) = 2(u− 1) < 0, and then the function

g is strictly decreasing, hence reaches a maximum at u = 1/2. Then

sup
1/2≤u≤1

(u− 1)2 = g

(
1

2

)
=

1

4
,

and the result follows.

We notice that if we define h(d) = (d− 1)/(dd/(d−1)), then it can be easily proved that

lim
d→∞

h(d) = lim
d→∞

d− 1

dd/(d−1)
= 1. (2.30)

Let Cd be the set of all d-copulas. We notice that if we define, for every C1, C2 ∈ Cd,

dsup(C1, C2) = sup
(u1,...,ud)∈Id

|C1(u1, ..., ud)− C2(u1, ..., ud)|,

then (Cd, dsup) is obviously a metric space. Besides, by (1.5) and (2.30) if C1, C2 ∈ Cd then

0 ≤ dsup(C1, C2) ≤ 1.
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Definition 2.3.2. Let 2 ≤ m ≤ n and let X1, ..., Xn be a random sample of size n from a random

vector X of dimension d, with joint distribution H and copula C. Let Un = {Y 1, ..., Y n} be the

corresponding modified sample. Let Cn be the empirical copula defined as in (2.1), and let Cn
m

be the the sample copula of order m defined as in equation (2.11). We define

dsupn(Cn, C) = max

(
sup

(i1,...,id)∈Idn

∣∣∣∣Cn(i1n , ..., idn
)
− C

(
i1
n
, ...,

id
n

)∣∣∣∣, 1

n

)
, (2.31)

and

dsupn,(m)
(Cn

m, C) = sup
(i1,...,id)∈Idn

∣∣∣∣Cn
m

(
i1
n
, ...,

id
n

)
− C

(
i1
n
, ...,

id
n

)∣∣∣∣. (2.32)

Remark 2.3.3. The function dsupn is never a metric, and (Cd, dsupn,(m)
) is a pseudometric space.

The idea behind the definition in equation (2.31) arises from the Lemma 2.1.9, i.e., dsup(Cn, C) ≥
1/n. Directly from the definition dsupn(Cn, C) ≥ 1/n, and then dsupn is not a metric. We notice

that from Theorem 2.2.7 Cn
m is a d-copula, and if C is a d-copula such that for every (u1, ..., ud) ∈

Id, Cn
m(u1, ..., ud) = C(u1, ..., ud), then it is obvious that in particular Cn

m(i1/n, ..., id/n) =

C(i1/n, ..., id/n), for every (i1, ..., id) ∈ Idn, and hence dsupn,(m)
(Cn

m, C) = 0; but if Cn
m(i1/n, ..., id/n) =

C(i1/n, ..., id/n) for every (i1, ..., id) ∈ Idn does not imply that Cn
m = C. Hence (Cd, dsupn,(m)

) is a

pseudometric space.

Since {(i1/n, ..., id/n)|(i1, ..., id) ∈ Idn} ⊂ Id, it is obvious that for every d-copula C

dsupn(Cn, C) ≤ dsup(Cn, C), (2.33)

and

dsupn,(m)
(Cn

m, C) ≤ dsup(C
n
m, C). (2.34)

The following example shows that in (2.33) the inequality can be strict.

Example 2.3.4. Let d = 2, m = n = 2 and C = Π2. Let U2 be the modified sample. We

notice that U2 only can be of the form U2 = {(1/2, 1), (1, 1/2)} or U2 = {(1/2, 1/2), (1, 1)};
and takes every form with probability equal to 1/2. If the modified sample has the form U2 =

{(1/2, 1), (1, 1/2)}, we have that

dsup2(C2,Π2) = max

(∣∣∣∣0− 1

4

∣∣∣∣, ∣∣∣∣12 − 1

2

∣∣∣∣, ∣∣∣∣12 − 1

2

∣∣∣∣, ∣∣∣∣1− 1

∣∣∣∣, 1

2

)
=

1

2
.

Let 0 < ε < 1. Then

dsup(C2,Π2) = sup
(u,v)∈I2

|C2(u, v)− Π2(u, v)| ≥ |C2(1− ε, 1− ε)− (1− ε)2| = (1− ε)2.
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Letting ε ↓ 0, we have that

dsup(C2,Π2) ≥ lim
ε↓0

(1− ε)2 = 1.

Hence

1 = dsup(C2,Π2) > dsup2(C2,Π2) =
1

2
.

On the other hand, we have

dsup2,(2)(C
2
2 ,Π2) =

∣∣∣∣C2
2

(
1

2
,
1

2

)
− Π2

(
1

2
,
1

2

)∣∣∣∣ =

∣∣∣∣0− 1

4

∣∣∣∣ =
1

4
,

and hence

1 = dsup(C
2
2 ,Π2) > dsup2,(2) =

1

4
.

Now, if the modified sample has the form U2 = {(1/2, 1/2), (1, 1)}, we have that

dsup2(C2,Π2) = max

(∣∣∣∣12 − 1

4

∣∣∣∣, ∣∣∣∣12 − 1

2

∣∣∣∣, ∣∣∣∣12 − 1

2

∣∣∣∣, ∣∣∣∣1− 1

∣∣∣∣, 1

2

∣∣∣∣) =
1

2
,

and

dsup(C2,Π2) = sup
(u,v)∈I2

|C2(u, v)− Π2(u, v)|

= max( sup
(u,v)∈R2

1,1\{(1/2),(1/2)}
|0− uv|, sup

(u,v)∈R2
1,2\{(1/2,1/2)}

|0− uv|),

sup
(u,v)∈R2

2,1\{(1/2,1/2)}
|0− uv|, |C2(1/2, 1/2)− Π2(1/2, 1/2)|, sup

(u,v)∈R2
2,2

|1/2− uv|)

= max

(
1

4
,
1

2
,
1

2
,
1

4
,
1

2

)
=

1

2
.

(2.35)

Hence
1

2
= dsup(C2,Π2) = dsup2(C2,Π2) =

1

2
.

On the other hand, we have

dsup2,(2)(C
2
2 ,Π2) =

∣∣∣∣C2
2

(
1

2
,
1

2

)
− Π2

(
1

2
,
1

2

)∣∣∣∣ =

∣∣∣∣12 − 1

4

∣∣∣∣ =
1

4
,

and hence
1

2
= dsup(C

2
2 ,Π2) > dsup2,(2) =

1

4
.
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The next example shows that in some cases dsupn(Cn, C) = dsup(Cn, C) on the grid

{(i1/n, ..., id/n)|(i1, ..., id) ∈ Id}.

Example 2.3.5. Let X1, ..., Xn be a random sample of size n from the copula Md, defined as

in (1.3). Let Un = {Y 1, ..., Y n} be the corresponding modified sample. Since Md has as support

the principal diagonal, we have that X i = (ui, ui, ..., ui), for all i ∈ In, with ui ∈ I. We can

assume (reordering if necessary) that u1 < u2 < · · · < un, and then Y i = (i/n, i/n, ..., i/n), for

all i ∈ In. Then, for (v1, ..., vd) ∈ Id we have

Cn(v1, ..., vd) =

{
0 if there exists i ∈ Id such that vi < 1/n
k/n if k/n ≥ vi ∀ i ∈ Id and ∃j ∈ Id such that vj < (k + 1)/n,

where k ∈ In.

Let (i1, ..., id) ∈ Idn. By definition

Md

(
i1
n
, ...,

id
n

)
=

1

n
min(i1, ..., id),

and hence

sup
(i1,...,id)∈Idn

∣∣∣∣Cn(i1n , ..., idn
)
−Md

(
i1
n
, ...,

id
n

)∣∣∣∣ = 0.

Definition 2.3.6. Let µ and ν be two probabilities measures on (Rd,B(Rd)). We define the

total variation distance between µ and ν, denoted by dTV , as

dTV (µ, ν) = sup
A∈B
|µ(A)− ν(A)|.

Recall that if fµ and fν are the Radon-Nykodim’s derivatives of µ and ν, respectively, then

0 ≤ dTV (µ, ν) =
1

2

∫
Rd
|fµ − fν |dλd ≤ 1,

where λd is the Lebesgue measure in (Rd,B).

Let U1, ..., Un be a random sample from the product copula Π2. Let m = n and consider the

d-sample copula of order m. In this case we are considering the uniform partition of size n,

(Rd
i )i∈Idn , and according to Theorem 2.2.7, the density of the copula Cn

n is nd−1 in exactly n

boxes and is zero in the remaining boxes. Let J ⊂ Idn be the subset of n indices where the
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density of Cn
n is positive and let . Let fΠd and fCnn be the densities of Πd and Cd

n, respectively.

Then

dTV (Πd, C
n
n) =

1

2

∫
Id
|fΠd − fCdn|dλ

d

=
1

2

[∑
i∈J

∫
Rni

|1− nd−1|dλd +
∑

i∈(Ind \J)

∫
Rni

|1− 0|dλd
]

=
1

2

[
n(nd−1 − 1)

nd
+
nd − n
nd

]
=

1

2

[
1− 1

nd−1
+ 1− 1

nd−1

]
= 1− 1

nd−1
.

(2.36)

Hence

lim
n→∞

dTV (Πd, C
n
n) = 1,

and, moreover, for a fixed n we have

lim
d→∞

dTV (Πd, C
n
n) = 1.

2.4 Checkerboard approximation

In this section we define the Checkerboard approximation and give some basic results about it.

Also, we present an important result on the convergence of this copula to the real copula.

The most important result of this section is the Glivenco-Cantelli’s Theorem for the sample

d-copula of order m. We use the checkerboard approximation to prove the theorem.

Using the notation in Lemma 2.3.5 in Nelsen’s book [18], we give the followings definitions:

Definition 2.4.1. Let (a, b) ∈ I2 and let C ′ be a 2-subcopula with finite domain S1×S2. Let a1

and a2 be, respectively, the greatest and least elements of S1 that satisfy a1 ≤ a ≤ a2; and let b1

and b2 be, respectively, the greatest and least elements of S2 that satisfy b1 ≤ b ≤ b2. Clearly, if

a ∈ S1, then a1 = a = a2, and if b ∈ S2, then b1 = b = b2. We define the quantities λ1(u, v) and

µ1(a, b) as follows

λ1(a, b) = λ1 =

{
(a− a1)/(a2 − a1) if a1 < a2

1 if a1 = a2,
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and

µ1(a, b) = µ1 =

{
(b− b1)/(b2 − b1) if b1 < b2

1 if b1 = b2.

By the proof of Lemma 2.3.5 in Nelsen’s book [18], we have that, if we define

C(a, b) =(1− λ1(a, b))(1− µ1)(a, b)C ′(a1, b1) + (1− λ1(a, b))µ1(a, b)C ′(a1, b2)

+ λ1(a, b)(1− µ1)(a, b)C ′(a2, b1) + λ1(a, b)µ1(a, b)C ′(a2, b2),
(2.37)

then C is a copula.

We give the following definition according to [15]:

Definition 2.4.2. Let X be a random bivariate vector with joint distribution function H and

copula C. Let m ≥ 1. For every (u, v) ∈ I2, we define the checkerboard approximation of

C using the uniform partition of size m, denoted as C(m), by

C(m)(u, v) =
m∑
j=1

m∑
i=1

[
1(

i−1
m
, i
m

]
×

(
j−1
m
, j
m

](u, v)

(
(1− λ1(u, v))(1− µ1(u, v))C

(
i− 1

m
,
j − 1

m

)

+ (1− λ1(u, v))µ1(u, v)C

(
i− 1

m
,
j

m

)
+ λ1(u, v)(1− µ1(u, v))C

(
i

m
,
j − 1

m

)
+ λ1(u, v)µ1(u, v)C

(
i

m
,
j

m

)]
.

(2.38)

Equation (2.38) is the same as in Lemma 2.3.5 in the proof of Sklar’s Theorem in Nelsen’s book

using the copula C, i.e., C(m) assigns the mass uniformly in every box Ri,j. The checkerboard of

order m, is an approximation of the density of a true d-copula C, based on a uniform partition

of I = [0, 1], given by {0, 1/m, 2/m, . . . , (m− 1)/m, 1}.
The following lemma establishes a Gilvenko-Cantelli’s Theorem for the supremum distance be-

tween Cm and C:

Lemma 2.4.3. Let X be a random bivariate vector with copula C. Let m ≥ 1 and let C(m) be

the checkerboard approximation as in (2.38). Then, for every m ≥ 1,

sup
(u,v)∈I2

|C(m)(u, v)− C(u, v)| < 2

m
.

In fact we have, in general

sup
(u1,...,ud)∈Id

|C(m)(u1, ..., ud)− C(u1, ..., ud)| ≤
d

2m
.
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Moreover, it is well known, see [4], [5], [14] and [16], that C(m) is a good approximation of the

true copula C even for moderate values of m. In fact, C(m) is a good density approximation for

the true copula C. It is also trivial to see that C(m) has a density given by

c(m)(u1, . . . , ud) = VC(Rm
i1,...,id

)/λd(Rm
i1,...,id

) = Md · VC(Rm
i1,...,id

) for every (u1, . . . , ud) ∈ Rm
i1,...,id

,

(2.39)

where λd is the Lebesgue measure on the Borel space (Id,B(Id)). Hence, the density is constant

on each of the d-boxes of the uniform partition for every (i1, . . . id) ∈ Idm.

We notice that if we take C = Π2 in Definition 2.4.2 then we have that, for every m ≥ 1,

C(m) = Π2. In order to see that let (a, b),a1, a2, b1, b2, C
′, λ1 and µ1 as in Definition 2.4.1. And

let C ′ = Π2, then by equation (2.37) we have

C(a, b) =

(
a2 − a
a2 − a1

)(
b2 − b
b2 − b1

)
a1b1 +

(
a2 − a
a2 − a1

)(
b− b1

b2 − b1

)
a1b2

+

(
a− a1

a2 − a1

)(
b2 − b
b2 − b1

)
a2b1 +

(
a− a1

a2 − a1

)(
b− b1

b2 − b1

)
a2b2

=
a1a2b1b2 − a1a2b1b− a1b1b2a+ a1b1ab+ a1a2b2b− a1a2b1b2 − a1b2ab+ a1b1b2a

(a2 − a1)(b2 − b1)

+
a2b1b2a− a2b1ab− a1a2b1b2 + a1a2b1b+ a2b2ab− a2b1b2a− a1a2b2b+ a1a2b1b2

(a2 − a1)(b2 − b1)

=
(a1b1 − a1b2 − a2b1 + a2b2)ab

(a2 − a1)(b2 − b1)
= ab = Π2(a, b).

(2.40)

Let (u, v) ∈ I2 and take C = Π2 in equation (2.38). Then there exists a unique (i, j) ∈ Im such

that (u, v) ∈ ((i − 1)/m, i/m] × ((j − 1)/m, j/m]. Then using equation (2.40) we have that

C(m) = Π2.

The next theorem shows that if we take Cn, the empirical copula, as the subcopula used in the

proof of the Sklar’s Theorem given in [18], then the resulting copula is Cn
m, the sample copula

of order m.

32



Theorem 2.4.4. Let 2 ≤ m an let n be a multiple of m. Let X1, ..., Xn be a random sample of

size n from a random vector X of dimension 2, with copula C;and let Un = {Y 1, ..., Y n} be the

corresponding modified sample. Let Cn be the empirical copula defined as in (2.1), and let Cn
m

be the the sample copula of order m defined as in equation (2.11). Then for every (u, v) ∈ I2

Cn
m(u, v) =

m∑
j=1

m∑
i=1

[
1(

i−1
m
, i
m

]
×

(
j−1
m
, j
m

](u, v)

(
(1− λ1(u, v))(1− µ1(u, v))Cn

(
i− 1

m
,
j − 1

m

)

+ (1− λ1(u, v))µ1(u, v)Cn

(
i− 1

m
,
j

m

)
+ λ1(u, v)(1− µ1(u, v))Cn

(
i

m
,
j − 1

m

)
+ λ1(u, v)µ1(u, v)Cn

(
i

m
,
j

m

)]
.

(2.41)

Proof: Let (u, v) ∈ I2, let 2 ≤ m and let n be a multiple of m. Then there exists (i, j) ∈ I2
m

such that (u, v) ∈ R2
i,j =

〈
i−1
m
, i
m

]
×
〈
j−1
m
, j
m

]
, and besides there exists k ∈ N such that n = mk.

Then

R2
i,j =

〈
(i− 1)n

k
,
ik

n

]
×
〈

(j − 1)k

n
,
jk

n

]
.

By definition of the 2-volume of a subcopula, we have that

VCn(R2
i,j) = Cn

(
ik

n
,
jk

n

)
− Cn

(
(i− 1)k

n
,
jk

n

)
− Cn

(
ik

n
,
(j − 1)k

n

)
+ Cn

(
(i− 1)k

n
,
(j − 1)k

n

)

=
1

n

[ n∑
l=1

1{Yl,1≤(ik)/n,Yl,2≤(jk)/n} −
n∑
l=1

1{Yl,1≤((i−1)k)/n,Yl,2≤(jk)/n}

−
n∑
l=1

1{Yl,1≤(ik)/n,Yl,2≤((j−1)k)/n} +
n∑
l=1

1{Yl,1≤((i−1)k)/n,Yl,2≤((j−1)k)/n}

]

=
1

n

n∑
l=1

1{((i−1)k)/n<Yl,1≤(ik)/n,((j−1)k)/n<Yl,2≤(jk)/n} =
card(R2

i,j ∩ Un)

n
= s

n,(m)
i,j ,

(2.42)

where s
n,(m)
i,j is defined as in equation (2.9).
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Now, by the definition of the sample copula of order m, we have

Cn
m(u, v) =

∑
i′<i,j′<j

s
n,(m)
i′,j′ +

nu− (i− 1)k

k

∑
j′<j

s
n,(m)
i,j′ +

nv − (j − 1)k

k

∑
i′<i

s
n,(m)
i′,j

+
(nu− (i− 1)k)(nv − (j − 1)k)

k2
s
n,(m)
i,j

=
∑

i′<i,j′<j

s
n,(m)
i′,j′ + λ1(u, v)

∑
j′<j

s
n,(m)
i,j′ + µ1(u, v)

∑
i′<i

s
n,(m)
i′,j + λ1(u, v)µ1(u, v)s

n,(m)
i,j .

(2.43)

On the other hand, if the right side of (2.41) is equal to α, then

α = Cn

(
(i− 1)k

n
,
(j − 1)k

n

)
+ λ1(u, v)

[
Cn

(
ik

n
,
(j − 1)k

n

)
− Cn

(
(i− 1)k

n
,
(j − 1)k

n

)]
+ µ1(u, v)

[
Cn

(
(i− 1)k

n
,
jk

n

)
− Cn

(
(i− 1)k

n
,
(j − 1)k

n

)]
+ λ1(u, v)µ1(u, v)

[
Cn

(
ik

n
,
jk

n

)
− Cn

(
(i− 1)k

n
,
jk

n

)
− Cn

(
ik

n
,
(j − 1)k

n

)
+ Cn

(
(i− 1)k

n
,
(j − 1)k

n

)]
=

∑
i′<i,j′<j

s
n,(m)
i′,j′ + λ1(u, v)

∑
j′<j

s
n,(m)
i,j′ + µ1(u, v)

∑
i′<i

s
n,(m)
i′,j + λ1(u, v)µ1(u, v)s

n,(m)
i,j ,

(2.44)

and the result follows.

The folloging theorem is a version of the Glivenko-Cantelli’s Theorem for the sample copula of

order m.

Theorem 2.4.5. (Glivenko-Cantelli) Let m ≥ 2 and let n be a multiple of m. Let X1, ..., Xn

be a random sample of size n from a random vector X of dimension d, with copula C. Let Cn
m

be the sample d-copula, defined as in equation (2.11). Let ε > 0; then there exists Nε ∈ N such

that if n,m ≥ Nε, with Nε ≤ m ≤ n, then

sup
(u1,...,ud)∈Id

|Cn
m(u1, ..., ud)− C(u1, ..., ud)| < ε a.s [PC ]. (2.45)

Proof: We will do the proof for the case d = 2. Let ε > 0 and let Cn be the empirical copula as

in (2.1). From the Glivenko-Cantelli’s Theorem for the empirical copula, there exists N1,ε ∈ N
such that if n ≥ N1,ε, then

sup
(u,v)∈I2

|Cn(u, v)− C(u, v)| < ε

2
a.s [PC ],
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and it follows that, for every (u, v) ∈ I2,

|Cn(u, v)− C(u, v)| < ε

2
a.s [PC ]. (2.46)

Let (u, v) ∈ I2. Then there exist i, j ∈ Im such that (u, v) ∈ Rm
i,j =

〈
i−1
m
, i
m

]
×
〈
j−1
m
, j
m

]
. Let

C(m) be the checkerboard approximation, defined as in (2.38); let λ1 and µ1 as in Definition

2.4.1. Using Theorem 2.4.4, the triangle inequality and (2.46), we have

|Cn
m(u, v)− C(m)(u, v)| ≤(1− λ1(u, v))(1− µ1(u, v))

∣∣∣∣Cn(i− 1

m
,
j − 1

m

)
− C

(
i− 1

m
,
j − 1

m

)∣∣∣∣
+ (1− λ1(u, v))µ1(u, v)

∣∣∣∣Cn(i− 1

m
,
j

m

)
− C

(
i− 1

m
,
j

m

)∣∣∣∣
+ λ1(u, v)(1− µ1(u, v))

∣∣∣∣Cn( i

m
,
j − 1

m

)
− C

(
i

m
,
j − 1

m

)∣∣∣∣
+ λ1(u, v)µ1(u, v)

∣∣∣∣Cn( i

m
,
j

m

)
− C

(
i

m
,
j

m

)∣∣∣∣
<

[
(1− λ1(u, v))(1− µ1(u, v)) + (1− λ1(u, v))µ1(u, v)

+ λ1(u, v)(1− µ1(u, v)) + λ1(u, v)µ1(u, v)

]
ε

2
=
ε

2
a.s [PC ].

(2.47)

Now, by the Lemma 2.4.3, we have that for every m ≤ 1

sup
(u,v)∈I2

|C(m)(u, v)− C(u, v)| < 2

m
,

and by the Archimedean property there exists N2,ε such that if m ≥ N2,ε, then

sup
(u,v)∈I2

|C(m)(u, v)− C(u, v)| < 2

m
<
ε

2
a.s [PC ].

Let Nε = max(N1,ε, N2,ε). If n,m ≥ Nε, with Nε ≤ m ≤ n, then

sup
(u,v)∈I2

|Cn
m(u, v)− C(u, v)| ≤ sup

(u,v)∈I2
|Cn

m(u, v)− C(m)(u, v)|+ sup
(u,v)∈I2

|C(m)(u, v)− C(u, v)|

<
ε

2
+
ε

2
= ε a.s [PC ].

(2.48)
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Chapter 3

Sample distribution under
independence

In this chapter we assume that the modified sample comes from the product copula. Our goal is

to find the distribution of the sample frequencies in the boxes generated by the uniform partition

when we are sampling from the product copula. We will see that this distribution is well known.

Moreover, we will find some sample moments, like means, variances and covariances.

3.1 Preliminaries

Remark 3.1.1. If we consider the grid of I2, generated by the uniform partition of size n, then

there exist n! different ways in which can be observe the modified sample if the sample size is

equal to n. That is because we have n different possibilities in the region [0, 1/n]× [0, 1], n− 1

different possibilities in the region (1/n, 2/n]× [0, 1], and so on.

We use the notation P n
k to refer the k-permutations of n, i.e. ,

P n
k =

n!

(n− k)!
.

We will use the following result in several proofs of this chapter. This is a well know result in

combinatorial theory.

Proposition 3.1.2. (Generalized Vandermonde’s identity) Let 1 ≤ m ≤ n, with m,n ∈ Z+. Let

n = l1 + · · ·+ lj, with li ∈ Z+ for every i = 1, ..., j; and let m = k1 + · · ·+kj, with ki ∈ Z+∪{0}.
Then (

n

m

)
=

∑
k1+···kj

(
l1
k1

)
· · ·
(
lj
kj

)
.
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We recall that if X has a hypergeometric distribution with parameters: N the population size,

m the class 1 size, with m ≤ N , and k the sample size, then

P[X = x] =

(
m
x

)(
N−m
k−x

)(
N
k

) ,

and

E[X] =
km

N
, V aR[X] =

km

N

(N −m)

N

(N − k)

N − 1
. (3.1)

X counts the number of observations in the class 1.

Definition 3.1.3. Let X1, ..., Xn be a random sample of size n from a random vector X of

dimension 2 and Y 1, ..., Y n be the corresponding modified sample.Let 2 ≤ m ≤ n, and assume

that m divides n; let l = n/m. For i, j ∈ Im, let

Ri,j =

〈
i− 1

m
,
i

m

]
×
〈
j − 1

m
,
j

m

]
,

and let Ni,j be the random variable that indicates the number of observations from the modified

sample falling in the region Ri,j.

As m divides n, we have that, for every i, j ∈ Im,

Ri,j = 〈(i− 1)/m, i/m]× 〈(j − 1)/m, j/m] = 〈((i− 1)l)/n, (il)/n]× 〈((j − 1)l)/n, (jl)/n].

For example, we can see the region R1,1 in the figure 3.1.

R11

0 1
m

1
m

Figure 3.1: Region R11

37



3.2 Distribution of the sample frequencies and moments

Lemma 3.2.1. Let n,m, l, R1,1 and N1,1 as in the Definition 3.1.3. Then

P[N1,1 = n1,1] =
l!(n− l)!

n!

(
l

n1,1

)(
n− l
l − n1,1

)
=

(
l

n1,1

)(
n−l
l−n1,1

)(
n
l

) ,

i.e., the random variable N1,1 has hypergeometric distributions with parameters: n the population

size, l the class 1 size and l the sample size.

Proof: Let A1 = [0, l/n]× (l/n, 1] and A2 = (l/n, 1]× [0, 1]. We notice that N1,1 only can take

values with positive probability in {0, 1, ..., l}. First select the number of ways in which we can

select the n1,1 observations for the coordinate X in the region R1,1, that is
(

l
n1,1

)
, as we can see

in Figure 3.2; then we select the number of ways in which we can select the n1,1 observations for

the coordinate Y in the same region, that is P l
n1,1

, as we can see in Figure 3.3. For the elements

of the sample in the region A1, we have
(
l−n1,1

l−n1,1

)
ways to select the coordinate X and P n−l

n−n1,1

ways to select the coordinate Y . Finally, there are (n − l)! ways to select the elements of the

sample in the region A2. Then

P[N1,1 = n1,1] =

(
l

n1,1

)
P l
n1,1

(
l−n1,1

l−n1,1

)
P n−l
l−n1,1

(n− l)!
n!

=

(
l

n1,1

)
l!

(l−n1,1)!
(n−l)!

(n−2l+n1,1)!
(n− l)!

n!

=

(
l

n1,1

)(
n−l
l−n1,1

)
(n− l)!l!

n!

=

(
l

n1,1

)(
n−l
l−n1,1

)(
n
l

) .

(3.2)

Theorem 3.2.2. Let n,m, l, R1,1 and N1,1 as in the Definition 3.1.3. Then

E[N1,1/n] =
1

m2
, E[(N1,1/n)2] =

l2(l − 1)2

n3(n− 1)
+

1

nm2
, (3.3)

and

V ar[N1,1/n] =
l2(l − 1)

n3(n− 1)
+

1

nm2
−
(

1

m2

)2

.

38



R11

We select n1,1 posibilities

(marked in red) among

the l total options

regardless of the order

0 1
m

1
m

Figure 3.2:

R11

We select n1,1 posibilities

(marked in red) among

the l total options

considering the order

0 1
m

1
m

Figure 3.3:

Proof: According to the equations in (3.1), we have

E[N1,1/n] =
1

m2
,

and

V ar[N1,1/n] =
l2(n− l)2

n4(n− 1)
=
l2(n2 − 2nl + l2)

n4(n− 1)

=
l2n2 − 2nl3 + l4 + nl4 − nl4 + nl2 − nl2

n4(n− 1)

=
nl2(l2 − 2l + 1) + l2n(n− 1)− l4(n− 1)

n4(n− 1)

=
l2(l − 1)2

n3(n− 1)
+
l2

n3
− l4

n4

=
l2(l − 1)

n3(n− 1)
+

1

nm2
−
(

1

m2

)2

.

(3.4)

Finally

E[(N1,1/n)2] = V ar[N1,1/n] + (E[N1,1/n])2 =
l2(l − 1)

n3(n− 1)
+

1

nm2
.
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Lemma 3.2.3. Let n,m, l, Ri,j and Ni,j as in the Definition 3.1.3. Then for r ∈ {2, ...,m}

P[N1,1 = n1,1, N1,r = n1,r] =
l!(n− l)!

n!

(
l

n1,1

)(
l

n1,r

)(
n− 2l

l − n1,1 − n1,r

)
.

Proof: LetA1 = [0, l/n]×((l/n, 1]\((r−1)l/n, rl/n))), as in Figure 3.4, andA2 = (l/n, 1]×[0, 1].

We note that 0 ≤ n1,1 ≤ l, 0 ≤ n1,r ≤ l and are such that 0 ≤ n1,1 + n1,r ≤ l. Following the

same idea as in the proof of the Lemma 3.2.1, first we select the number of ways in which we

can select the n1,1 observations for the coordinate X in the region R1,1, that is to say,
(

l
n1,1

)
;

then there are P n
n1,1

ways in which we can select the coordinate Y for the same region. Now we

select the number of ways in we which can select the n1,r for the coordinate X in the region

R1,r, that is
(
l−n1,1

n1,r

)
; then we select the number of ways for the coordinate Y in the same region,

that is equal to P l
n1,r

. Next, for the region A1 we have
(
l−n1,1−n1,r

l−n1,1−n1,r

)
ways in which can select the

coordinate X and P n−2l
l−n1,1−n1,r

ways for the coordinate Y . Finally, for the region A2 we can select

the sample in (n− l)! ways. Hence

0

1
m

r−1
m

r
m

Figure 3.4: Region A1

P[N1,1 = n1,1, N1,r = n1,r] =

(
l

n1,1

)
P l
n1,1

(
l−n1,1

n1,r

)
P l
n1,r

(
l−n1,1−n1,r

l−n1,1−n1,r

)
P n−2l
l−n1,1−n1,r

(n− 2l)!

n!

=

(
l

n1,1

)
(n− l)!
n!

l!

(l − n1,1)!

(l − n1,1)!

(l − n1,1 − n1,r)!n1,r!

l!

(l − n1,r)

(n− 2l)!

(n− 3l + n1,1 + n1,r)!

=
l!(n− l)!

n!

(
l

n1,1

)(
l

n1,r

)(
n− 2l

l − n1,1 − n1,r

)
.

(3.5)
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Using the Vandermonde’s identity, we have that for every r ∈ {2, ..., l}∑
0≤n1,1+n1,r≤l

P[N1,1 = n1,1, N1,r = n1,r] =
∑

0≤n1,1+n1,r≤l

l!(n− l)!
n!

(
l

n1,1

)(
l

n1,r

)(
n− 2l

l − n1,1 − n1,r

)

=
l!(n− l)!

n!

∑
0≤n1,1+n1,r≤l

(
l

n1,1

)(
l

n1,r

)(
n− 2l

l − n1,1 − n1,r

)

=
l!(n− l)!

n!

(
n

l

)
= 1.

(3.6)

Theorem 3.2.4. Let n,m, l, Ri,j and Ni,j as in the Definition 3.1.3. Then for every r ∈
{2, ...,m}

Cov[N1,1/n,N1,r/n] =
l3(l − 1)

n3(n− 1)
−
(

1

m2

)2

. (3.7)

Proof:

E[N1,1N1,r] =
∑

0≤n1,1+n1,r≤l

n1,1n1,r
l!(n− l)!

n!

(
l

n1,1

)(
l

n1,r

)(
n− 2l

l − n1,1 − n1,r

)

=
l!(n− l)!

n!

∑
0≤n1,1+n1,r≤l

n1,1n1,r
l!

(l − n1,1)!n1,1!

l!

(l − n1,r)!n1,r!

(
n− 2l

l − n1,1 − n1,r

)

=
l2l!(n− l)!

n!

∑
0≤n1,1+n1,r≤l

(
l − 1

n1,1 − 1

)(
l − 1

n1,r − 1

)(
n− 2l

l − n1,1 − n1,r

)
.

(3.8)

Let j1 = n1,1−1 and jr = n1,r. It follows that j1+jr = n1,1+n1,r−2, and hence 0 ≤ j1+jr ≤ l−2.

Then by the above and by the Vandermonde’s identity

E[N1,1N1,r] =
l2l!(n− l)!

n!

∑
0≤j1+jr≤l−2

(
l − 1

j1

)(
l − 1

jr

)(
n− 2l

(l − 2)− (j1 + jr)

)

=
l2l!(n− l)!

n!

(
n− 2

l − 2

)

=
l2(n− l)!l!(n− 2l)!

n!(n− l)!(l − 2)!

=
l3(l − 1)

n(n− 1)
.

(3.9)
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Then

E[(N1,1/n)(N1,r/n)] =
l3(l − 1)

n3(n− 1)
,

and

Cov[N1,1/n,N1,r/n] =
l3(l − 1)

n3(n− 1)
−
(

1

m2

)2

.

Lemma 3.2.5. Let n,m, , l, R1,1, R2,2, N1,1 and N2,2 as in the Definition 3.1.3. Then

P[N1,1 = n1,1, N2,2 = n2,2] =
(l!)2(n− 2l)!

n!

∑
x1+x2=l−n1,1

∑
y1+y2=l−n2,2

[(
l

n1,1

)(
l

x1

)(
n− 2l

x2

)
(
l − n1,1

y1

)(
l − x1

n2,2

)(
n− 2l − x2

y2

)]
.

(3.10)

Proof: Let A1 = (2l/n, 1] × [0, l/n], A2 = (2l/n, 1] × (l/n, 2l/n], and A3 = [0, 1] × (2l/n, 1].

The number of ways in which we can select the k1,1 observations for the coordinate X in the

region R1,1 is
(

l
n1,1

)
and is equal to P l

n1,1
for the coordinate Y . In the region R2,1 we can select

x1 observations from the sample in
(
l
x1

)
ways for the coordinate X and P

l−n1,1
x1 ways for the

coordinate Y ; and for the region A1, we can select x2 observations for the coordinate X in(
n−2l
x2

)
ways and the coordinate Y in P

l−n1,1−x1
x2 . We note that the condition n1,1 + x1 + x2 = l

must be satisfied. Now, for the region R1,2 we can select y1 observations in
(
l−n1,1

y1

)
ways for the

coordinate X and P l
y1

ways for the coordinate Y ; the numbers of ways in which we can select

n2,2 observations in the region R2,2 for the coordinate X is
(
l−x1
n2,2

)
, and for the coordinate Y is

P l−y1
n2,2

; and for the region A2 we can select y2 observations in
(
n−2l−x2

y2

)
different ways for the

coordinate X and P
l−y1−n2,2
y2 . We note again that y1 + n2,2 + y2 = l must be satisfied. Finally,

for the region called A3, we can select the observations in (n− 2l)! ways. We can see all this in

the Figure 3.5. Then
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Figure 3.5:

P[N1,1 = n1,1, N2,2 = n2,2] =
∑

x1+x2=l−n1,1

∑
y1+y2=l−n2,2

[(
l

n1,1

)
P l
n1,1

(
l

x1

)
P l−n1,1
x1

(
n− 2l

x2

)
P l−n1,1−x1
x2

(
l − n1,1

y1

)
P l
y1

(
l − x1

n2,2

)
P l−y1
n2,2

(
n− 2l − x2

y2

)
P l−y1−n2,2
y2

(n− 2l)!

n!

]

=
(n− 2l)!

n!

∑
x1+x2=l−n1,1

∑
y1+y2=l−n2,2

[(
l

n1,1

)
l!

(l − n1,1)!

(
l

x1

)
(l − n1,1)!

(l − n1,1 − x1)!

(
n− 2l

x2

)
(l − n1,1 − x1)!

(l − n1,1 − x1 − x2)!

(
l − n1,1

y1

)
l!

(l − y1)!(
l − x1

n2,2

)
(l − y1)!

(l − y1 − n2,2)!

(
n− 2l − x2

y2

)
(l − y1 − n2,2)!

l − y1 − n2,2 − y2)!

]

=
(l!)2(n− 2l)!

n!

∑
x1+x2=l−n1,1

∑
y1+y2=l−n2,2

[(
l

n1,1

)(
l

x1

)(
n− 2l

x2

)
(
l − n1,1

y1

)(
l − x1

n2,2

)(
n− 2l − x2

y2

)]
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Using the Vandermonde’s identity we have

l∑
n1,1=0

l∑
n2,2=0

P[N1,1 = n1,1, N2,2 = n2,2] =
l∑

n1,1=0

l∑
n2,2=0

(l!)2(n− 2l)!

n!

∑
x1+x2=l−n1,1

∑
y1+y2=l−n2,2[(

l

n1,1

)(
l

x1

)(
n− 2l

x2

)(
l − n1,1

y1

)(
l − x1

n2,2

)(
n− 2l − x2

y2

)]

=
(l!)2(n− 2l)!

n!

l∑
n1,1=0

∑
x1+x2=l−n1,1

[(
l

n1,1

)(
l

x1

)(
n− 2l

x2

)
l∑

n2,2=0

∑
y1+y2=l−n2,2

(
l − n1,1

y1

)(
l − x1

n2,2

)(
n− 2l − x2

y2

)]

=
(l!)2(n− 2l)!

n!

l∑
n1,1=0

∑
x1+x2=l−n1,1

[(
l

n1,1

)(
l

x1

)(
n− 2l

x2

)
(
n− n1,1 − x1 − x2

l

)]

=
(l!)2(n− 2l)!

n!

(
n

l

)(
n− l
l

)

=
(l!)2(n− 2l)!

n!

n!

(n− l)!l!
(n− l)!(n− 2l)!l!

= 1.

(3.11)

Theorem 3.2.6. Let n,m, , l, N1,1 and N2,2 as in the Definition 3.1.3. Then

Cov[N1,1/n,N2,2/n] =
l4

n3(n− 1)
− 1

m4
.
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Proof:

E[N1,1N2,2] =
l∑

n1,1=0

l∑
n2,2=0

(l!)2(n− 2l)!

n!
n1,1n2,2

∑
x1+x2=l−n1,1

∑
y1+y2=l−n2,2[(

l

n1,1

)(
l

x1

)(
n− 2l

x2

)(
l − n1,1

y1

)(
l − x1

n2,2

)(
n− 2l − x2

y2

)]

=
(l!)2(n− 2l)!

n!

l∑
n1,1=1

∑
x1+x2=l−n1,1

[
n1,1

l(l − 1)!

n1,1(n1,1 − 1)!(l − n1,1)!

(
l

x1

)(
n− 2l

x2

) l∑
n2,2=1

∑
y1+y2=l−n2,2

n2,2
(l − x1)(l − x1 − 1)!

n2,2(n2,2 − 1)!(l − x1 − n2,2)!(
l − n1,1

y1

)(
n− 2l − x2

y2

)]
.

(3.12)

Let j1 = n1,1 − 1 and j2 = n2,2 − 1. Then

E[N1,1N2,2] =
(l!)2(n− 2l)!l

n!

l−1∑
j1=0

∑
x1+x2=l−1−j1

[(
l − 1

j1

)(
l

x1

)(
n− 2l

x2

)

(l − x1)
l−1∑
j2=0

∑
y1+y2=l−1−j2

(
l − x1 − 1

j2

)(
l − 1− j1

y1

)(
n− 2l − x2

y2

)]
,

(3.13)

and by the Vandermonde’s identity

E[N1,1N2,2] =
(l!)2(n− 2l)!l

n!

l−1∑
j1=0

∑
x1+x2=l−1−j1

[(
l − 1

j1

)
l(l − 1)!

(l − x1)!x1!
(l − x1)

(
n− 2l

x2

)(
n− 2l

x2

)]

=
(l!)2(n− 2l)!l2

n!

l−1∑
j1=0

∑
x1+x2=l−1−j1

(
l − 1

j1

)(
l − 1

x1

)(
n− 2l

x2

)(
n− 2l

x2

)

=
(l!)2l2(n− 2l)!

n!

(
n− 2

l − 1

)(
n− l − 1

l − 1

)
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=
l4

n(n− 1)
.

Then

E[(N1,1/n)(N2,2/n)] =
l4

n3(n− 1)
,

and hence

Cov[N1,1/n,N2,2/n] =
l4

n3(n− 1)
− 1

m4
.

Theorem 3.2.7. Let 2 ≤ m ≤ n, n ∈ N, and assume that m divides n, i.e. l = n/m. Let

Im = {1, ...,m}, (Ri,j)(i,j)∈Im be the uniform partition of size m of I2 and Ni,j be the random

variable that indicate the number of observations falling in Ri,j, for every i, j ∈ Im, when we

consider the modified sample of size n from the product copula; for i, j ∈ Im, let ni,j be zero or

a positive integer, satisfying the following conditions

m∑
j=1

ni,j = l for all i ∈ Im,

and
m∑
i=1

ni,j = l for all j ∈ Im.

Then

P
[ ⋂
i,j∈Im

{Ni,j = ni,j}
]

=
(l!)2m

n!
∏
i,j∈Im

ni,j!
.

Proof: First we select n1,1 elements from the sample in the region R1,1, for the coordinate X

we have
(

l
n1,1

)
ways and for the coordinate Y is given by P l

n1,1
; after that, we select n1,2 elements

from the sample in the region R1,2, this can be done in
(
l−n1,1

n2,2

)
ways for the coordinate X and

P l
n2,2

l ways for the coordinate Y ; and so on, i.e., we select n1,m elements from the in the region

R1,m in
(
l−

∑m−1
j=1 n1,j

n1,m

)
ways for the coordinate X and P l

n1,m
ways for the coordinate Y . Now, for

the region R2,1 there are
(

l
n2,1

)
and P l−n1,1

n2,1
ways in which we can select n1,2 elements from the

sample for the coordinates X and Y , respectively; for the region R2,2 we can select n2,2 points
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from the sample in
(
l−n2,1

n2,2

)
ways for the X axis and P

l−n1,2
n2,2, ways for the Y axis; and so on, i.e.,

for the region R2,m the number of ways in which we can select n2,m elements for the sample is

given by
(
l−

∑m−1
j=1 n2,j

n2,m

)
for the coordinate X and P

l−n1,m
n2,m for the coordinate Y .

P
[ ⋂
i,j∈Im

{Ni,j = ni,j}
]

=

(
l

n1,1

)
P l
n1,1,

(
l − n1,1

n1,2

)
P l
n1,2
· · ·
(
l −
∑m−1

j=1 n1,j

n1,m

)
P l
n1,m

∗
(

l

n2,1

)
P l−n1,1
n2,1,

(
l − n2,1

n2,2

)
P l−n1,2
n2,2

· · ·
(
l −
∑m−1

j=1 n2,j

n2,m

)
P l−n1,m
n2,m

...

∗
(

l

nm,1

)
P
l−

∑m−1
i=1 ni,1

nm,1,

(
l − nm,1
nm,2

)
P
l−

∑m−1
i=1 ni,2

nm,2 · · ·
(
l −
∑m−1

j=1 nm,j
nm,m

)
P
l−

∑m−1
i=1 ni,m

nm,m

=
l!

(l − n1,1)!n1,1!

l!

(l − n1,1)!

(l − n1,1)!

(l − (n1,1 + n1,2))!n1,2!

l!

(l − n1,2)!

· · ·
(l −

∑m−1
j=1 n1,j)!

(l −
∑m

j=1 n1,j)!n1,m!

l!

(l − n1,m)!

l!

(l − n2,1)!n2,1!

(l − n1,1)!

(l − (n1,1 + n2,1))!

(l − n2,1)!

(l − (n2,1 + n2,2))!n2,2!

(l − n1,2)!

(l − (n1,2 + n2,2))!

· · ·
(l −

∑m−1
j=1 n2,j)!

(l −
∑m

j=1 n2,j)!n2,m!

(l − n1,m)!

(l − (n1,m + n2,m))!

...

l!

(l − nm,1)!nm,1!

(l −
∑m−1

i=1 ni,1)!

(l −
∑m

i=1 ni,1)!

(l − nm,1)!

(l − (nm,1 + nm,2))!nm,2!

(l −
∑m−1

i=1 ni,2)!

(l −
∑m

i=1 ni,2)!

· · ·
(l −

∑m−1
j=1 nm,j)!

(l − (
∑m

j=1 nm,j − nm,m))!nm,m!

(l −
∑m−1

i=1 ni,m)!

(l − (
∑m

i=1 ni,m − nm,m))!

=
(l!)2m

n!
∏
i,j∈Im

ni,j!
.
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3.3 General case, d ≥ 2

The objective in this section is to discuss how we can generalize some of the ideas presented

above to the case d ≥ 2, concerning the moments and the joint distribution.

In the same way as in the case when d = 2, let 2 ≤ m ≤ n, such that m divides n.

Definition 3.3.1. Let d ≥ 2 and let let 2 ≤ m ≤ n, such that m divides n, that is, there

exists l ∈ Z such that l = n/m. Let i = (i, i, ..., i), for i = 1, 2, that is, i is a d-dimensional

vector with every entry equal to 1. Let N1 be the random variable that indicates the number of

observations in the d-box R1 = [0, l/n]d, and let N2 be the random variable that indicates the

number of observations in the d-box R2 = (l/n, 2l/n]d.

Theorem 3.3.2. Let d, n,m, l, N1, N2, R1 and R2 as in Definition 3.3.1.Then

i) E(N1/n) = 1
md

,

ii) E((N1/n)2) = ld(l−1)d

nd+1(n−1)d−1 + 1
nmd

,

iii) V ar(N1/n) = ld(l−1)d

nd+1(n−1)d−1 + 1
nmd
− 1

m2d ,

iv) Cov(N1/n,N2/n) = l2d

nd+1(n−1)d−1 − 1
m2d .

Theorem 3.3.3. Let d ≥ 2, and let Ni1···id be the random variable that indicates the number of

observations in the box Ri1···id = 〈(i1 − 1)/m, i1/m]× · · · × 〈(id − 1)/m, id/m]. Then

P
[ ⋂
i1,··· ,id∈Im

{Ni1···id = ni1···id}
]

=
(l!)dm

(n!)d−1
∏

i1,··· ,id∈Im ni1...id !
.

For more details, see [10].

3.4 Additional comments

The results presented above are valid in general, but we are interested only in the cases m = 2

and m = 3.Then we note the following, if d = 2 we have:

If m = 2 then N1,1 determines the distribution of Cn
2 .

If m = 3 then N1,1, N1,2, N2,1 and N2,2 give the distribution of Cn
3 .

In the following chapter we will give a characterization of independence using the distribution

48



of Cn
2 given Cn

3 . Using the present chapter, we could give the exact distribution of the statistics

that we will propose, but we will not present that result in this work. Instead of that, we notice

the following: because Cn
2 and Cn

3 are copulas and how [0, 1/3]2 ⊂ [0, 1/2]2 ⊂ [0, 2/3]2 we have

Cn
3

(
1

3
,
1

3

)
≤ Cn

2

(
1

2
,
1

2

)
≤ min

{
Cn

3

(
2

3
,
2

3

)
,
1

2

}
,

and

1

3
≤ Cn

3

(
2

3

)
≤ 2

3
.

Hence, Cn
2 and Cn

3 are not independent.
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Chapter 4

A new test of independence

In this chapter we provide a very simple characterization of Πd, the independence copula in

dimension d ≥ 2, in terms of the checkerboard approximations of order m = 2 and m = 3.

As we will see in the third section, the independence copula Πd, satisfies that Πd(u1, . . . , ud) =

C(m)(u1, . . . , ud) for every (u1, . . . , ud) ∈ Id and for every m ≥ 2. However, for the converse we

only need the equality for m = 2 and m = 3.

Let H0 denote the null hypothesis of independence, that is, the true copula is the product

copula, so that C = Πd. Since Cn
2 and Cn

3 are unbiased estimators of C(2) and C(3), respectively,

and using the fact that Cn
m and C(m) have constant densities on the boxes of the uniform

partition defined below, we can propose a test based on the distances between C(2) and Cn
2 , and

C(3) and Cn
3 . We consider several different distances, including: the supremum distance, the

total variation distance, the Hellinger distance, and even the Kullback-Leibler divergence. This

proposal works for every dimension d. Moreover, the exact distributions of the statistics used in

the test can be very easily approximated by a large number of simulations, because the sample

copula is “computer friendly”. Hence, we do not need to employ heavy machinery in order to

compute the corresponding null distributions.

We will show, via simulations, that our proposals have acceptable powers in dimensions d = 2,

and good powers in d = 3, and d = 4. We note, however, that the tests can be easily extended

to higher dimensions.

Also we run the presented tests with real data for dimension 3. We will see that all the test

have similar results. The data was taken from the financial markets.

Finally, we give a basic idea for a further investigation. This idea is called exhaustive dependence.

4.1 Introduction

Consider a dimension d ≥ 2 and consider a d-dimensional random vector X. A very relevant

problem is to determine if it is possible to decompose the vector in d independent uni-variate ran-
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dom variables. In some cases we could have evidence that a random vector could be independent

and then a statistical test of independence is necessary.

Many tests of statistics already exist. The majority of the tests are based on, at least, one of

the following concepts: empirical distribution function, ranks, empirical copula, characteristic

function, conditional distribution and distance correlation.

The most studied case is , of course, the case of dimension 2. Several tests have been pro-

posed, for example: the test of Spearman, the test of Hoeffding (1948), the test of Blum-

Kieffer-Rosenblatt(1961), and more recently the test of Genest-Remillard (2004) and the test of

Bagkavos-Patil (2017), see [12], [3], [7] and [1].

The case d ≥ 3 has been studied less and there are not as many tests as in the case of dimension

2. We can highlight two reasons for the complications in the case d ≥ 3: first, the statistics

based on the empirical distribution (or in the empirical copula) defined in dimension 2 can be

extended easily ti higher dimensions, however, they become difficult to evaluate for large sample

sizes; second, for the statistics based on ranks, for example the Spearman’s test, there is not a

simple extension for the case d ≥ 3, see [2] and [19].

Our goal is to show that the tests that we propose can be evaluated easily for higher dimensions

and for not small sample sizes. Moreover, of course, we have to show that the performance of

our tests is good.

4.2 Preliminary Results

We start this section with some basic notions. First, we have a Glivenko-Cantelli’s Theorem

which gives uniform almost sure convergence of Cn
m to C(m), for every m ≥ 2, that is,

lim
n→∞

sup
(u,v)∈I2

|Cn
m(u, v)− C(m)(u, v)| = 0 a.s. (4.1)

On the other hand, from [4], we also have that

lim
m→∞

sup
(u,v)∈I2

|C(m)(u, v)− C(u, v)| ≤ lim
m→∞

d

2m
= 0. (4.2)

From equations (4.1) and (4.2) we get a Glivenko-Cantelli’s Theorem for the convergence of Cn
m

to C.

Let PCnm and QC(m) be the probability measures induced by the sample d-copula Cn
m and by

the checkerboard copula C(m), respectively, associated with a d-copula C. Recall that the total

variation distance, see for example [8], between two probabilty measures P and Q on the Borel

measurable space (Id,B(Id)) is defined by
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dTV(P,Q) = sup
A∈B(Id)

|P(A)−Q(A)|. (4.3)

Recall that 0 ≤ dTV = (P,Q) ≤ 1.

The total variation distance of P and Q, in the case that P and Q have densities fP and fQ, with

respect to the Lebesgue measure λd on the measurable space (Id,B(Id)), which are constants on

the uniform partition of order m of Id, can be written as

dTV(P,Q) = sup
A∈B(Id)

|P(A)−Q(A)| = 1

2

∫
Id
|fP − fQ|dλd. (4.4)

Using equations (2.39), (2.14), (4.1) together with equation (4.4), it is easy to see that

Theorem 4.2.1. Let C be a d-copula, let m ≥ 2 fixed and let n be a multiple of m, let Cn
m be

the sample copula of order m built from a modified sample of size n from C and let C(m) be the

checkerboard of order m. If PCnm and QC(m) are the probability measures on Id defined by Cn
m

and C(m) respectively, then

lim
n→∞

dTV

(
PCnm ,QC(m)

)
= 0 a.s. (4.5)

We give the definition of other important metrics: the Hellinger distance and the supremum

distance or uniform distance, see [8]:

Definition 4.2.2. Let P and Q be two probability measures on (Rd,B(Rd)) and let fP and gQ be

the densities of the measures P and Q, respectively . We define the Hellinger distance between

P and Q, denoted by dH(P,Q), as

dH(P,Q) =
1√
2

[∫
Id

(√
fP −

√
fQ

)2

dλd
]1/2

. (4.6)

Note that 0 ≤ dH(P,Q) ≤ 1.

The Hellinger distance is a type L2 distance between P and Q.

Definition 4.2.3. Let FP and FQ be the distribution functions associated with the probability

measures P and Q, respectively. We define the supremum distance between P and Q,

denoted by dsup(FP, FQ), as

dsup(FP, FQ) = d∞(FP, FQ) = sup
x∈Id
|FP(x)− FQ(x)| ≤ 1. (4.7)
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The sumpremum distance is called the weak distance, because it is related to weak convergence.

Finally, we also include another function which is not a metric, called relative entropy, also

known in Statistics as Kullback-Leibler divergence

Definition 4.2.4. Let two probability measures P and Q and let fP and fQ the densities of P
and Q, respectively. We define the Kullback-Leibler divergence between P and Q, denoted

by dI(P,Q), as

dI(P,Q) =

∫
S(P)

fP log

(
fP
fQ

)
dλd, (4.8)

where, S(P) is the support of P on RI d, and we define 0 log(0/q) = 0 for every q ∈ RI and

p log(p/0) =∞, see [8].

This divergence satisfies that dI(P,P) = 0 and dI(P,Q) ≥ 0, but the remaining properties of a

metric are not satisfied, because even though dI(P,Q) ∈ [0,∞], so it can take the value ∞, it

is not symmetric, and it does not satisfy the triangle inequality. However, it is an important

quantity in Statistics, which measures information gain.

We will use the concepts in equations (4.4), (4.6), (4.7) and (4.8), in the next section to define

four statistics to test for multivariate independence.

4.3 Main Theorem

In this section we find a characterization of independence in terms of the checkerboard approx-

imations of a copula.

Theorem 4.3.1. Let C be a d-copula. Then

C = Πd if and only ifC(u1, . . . , ud) = C(2)(u1, . . . , ud) = C(3)(u1, . . . , ud) for every (u1, . . . , ud) ∈ Id,

(4.9)

where C(2) and C(3) are the checkerboards approximation of the d-copula C of order 2 and 3,

respectively.

Proof: First, assume that d = 2. Let us assume that C = Π2, that is, C is the independence

copula, we know that

C
′

m = {C(u, v) = u · v | u, v ∈ {0, 1/m, 2/m, . . . , (m− 1)/m, 1}},

is a 2-subcopula. For this 2-subcopula and the uniform partition of size m given in equation

(2.8), and using equation (1.1), we have that, for every i1, i2 ∈ Im,
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VC′m(Rm
i1,i2

) =
i1
m

i2
m
− i1 − 1

m

i2
m
− i1
m

i2 − 1

m
+
i1 − 1

m

i2 − 1

m

=

(
i1
m
− i1 − 1

m

)(
i2
m
− i2 − 1

m

)
= λ2(Rm

i1,i2
), (4.10)

where λ2 is the Lebesgue measure on ( RI 2,B( RI 2)).

If we use the bilinear interpolation of Lemma 2.3.5 in Nelsen’s book, see [18], we have that C(m)

the checkerboard approximation of order m of C = Π2 has a density given by equation (2.39)

c(m)(u, v) =
VC′m(Rm

i1,i2
)

λ2(Rm
i1,i2

)
for every (u, v) ∈ Rm

i1,i2
, (4.11)

for every i1, i2 ∈ Im. On the other hand, using equations (4.10) and (4.11) we have that

c(m)(u, v) =
VC′m(Rm

i1,i2
)

λ2(Rm
i1,i2

)
=
λ2(Rm

i1,i2
)

λ2(Rm
i1,i2

)
= 1 for every (u, v) ∈ Rm

i1,i2
,

for every i1, i2 ∈ Im. Hence, the density of C(m) is the constant 1 on I2. Therefore, for every

integer m ≥ 2, the checkerboard approximation C(m) satisfies

C(m)(u, v) =

∫ v

0

∫ u

0

1dsdt = u · v = Π2(u, v) = C(u, v) for every (u, v) ∈ I2. (4.12)

In particular this holds for m = 2 and m = 3.

Now, let us assume that for some 2-copula C we have that C(u, v) = C(2)(u, v) = C(3)(u, v) for

every (u, v) ∈ I2.

Let m = 2 and define α = VC([0, 1/2]2) = VC(R2
1,1), as in the uniform partition of order m = 2,

given in equation (2.8). Then, by equation (1.1) and using inequality (1.5), if α = C(1/2, 1/2),

we have

0 = W (1/2, 1/2) ≤ α = C(1/2, 1/2) ≤M(1/2, 1/2) =
1

2
. (4.13)

Observe that R2
1,1 ∪ R2

1,2 = [0, 1/2] × [0, 1] is a disjoint union. Also, observe that by continuity

of C, VC(R2
1,2) = VC(R2

1,2); the same applies to R2
2,1 and R2

2,2. Hence, using equation (1.1),

1

2
= VC([0, 1/2]× [0, 1]) = VC(R2

1,1) + VC(R2
1,2) = α + VC(R2

1,2)
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and so VC(R2
1,2) = (1/2 − α). Similar arguments show that VC(R2

2,1) = (1/2 − α) and that

VC(R2
2,2) = α. So, using the bilinear interpolation we obtain

C(2)(u, v) = Cα(u, v) =


4αuv if (u, v) ∈ R2

1,1

2αu+ 4(1/2− α)u(v − 1/2) if (u, v) ∈ R2
1,2

2αv + 4(1/2− α)(u− 1/2)v if (u, v) ∈ R2
2,1

α + (1− 2α)(u+ v − 1) + 4α(u− 1/2)(v − 1/2) if (u, v) ∈ R2
2,2.

From equation (4.14) we have that C(2) is a function of a unique parameter, that is, α =

C(1/2, 1/2), and from the hypothesis we have that C(u, v) = C(2)(u, v) = Cα(u, v), where from

equation (4.13), 0 ≤ α ≤ 1/2.

Now, we also assume that C satisfies

Cα(u, v) = C(u, v) = C(2)(u, v) = C(3)(u, v) = C(3)
α (u, v), (4.14)

for every (u, v) ∈ I2. In order to construct C
(3)
α (u, v) we need to evaluate all the volumes

VCα(R3
i1,i2

) for every i1, i2 ∈ I3 = {1, 2, 3}. We first observe that R3
1,1 = [0, 1/3]2 ⊂ [0, 1/2]2 =

R2
1,1, so using equation (4.14), we obtain

VCα(R3
1,1) = VCα([0, 1/3]2) = Cα(1/3, 1/3) =

4α

9
. (4.15)

In general, by continuity of C, VCα(R3
i1,i2

) = Cα(i/m, j/m)−Cα((i− 1)/m, j/m)−Cα(i/m, (j−

1)/m) + Cα((i− 1)/m, (j − 1)/m) for every i1, i2 ∈ I3. We also know from equation (2.8), that

λ2(R3
i1,i2

) = 1/9 for every i1, i2 ∈ I3. Hence, using equation (4.11), the density of C
(3)
α is given

by

c(3)
α (u, v) =

VCα(R3
i1,i2

)

λ2(R3
i1,i2

)
= 9VCα(R3

i1,i2
) (4.16)

for every (u, v) ∈ R3
i1,i2

and for every i1, i2 ∈ I3. Using equations (4.14) and (4.15) we have that

C(3)
α (u, v) = 9VCα(R3

1,1)u · v = 9

(
4α

9

)
u · v = 4αu · v, (4.17)

for every (u, v) ∈ R3
1,1 = [0, 1/3]2. We also have that
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VCα(R3
1,2) = Cα(1/3, 2/3)− Cα(1/3, 1/3)− Cα(0, 2/3) + Cα(0, 1/3)

=
2α

3
+ 4

(
1

2
− α

)(
1

3

)(
1

6

)
− 4α

9

=
1

9
+ α · 12− 4− 8

18

=
1

9
(4.18)

Now, using equations(4.17), (4.18) and integration we obtain

Cα(u, v) = 9VCα(R3
1,1)u

(
1

3

)
+ 9VCα(R3

1,2)u

(
v − 1

3

)
, (4.19)

for every (u, v) ∈ R3
1,2 = [0, 1/3]× (1/3, 2/3].

Finally, let us take (u0, v0) = (1/4, 1/2); then using equation (2.8), we have that (1/4, 1/2) ∈
(R2

1,1 ∩R3
1,2), and from equation (4.14), we have that

Cα(u0, v0) = C(2)(1/4, 1/2) = 4α

(
1

4

)(
1

2

)
=
α

2
. (4.20)

And using equations (4.18) and (4.19), we have that

C(3)
α (1/4, 1/2) = 4α

(
1

4

)(
1

3

)
+ 9

(
1

9

)(
1

4

)(
1

6

)
=
α

3
+

1

24
. (4.21)

Therefore, from hypothesis (4.14) and equations (4.20) and (4.21), we have that

C(3)
α (1/4, 1/2) = Cα(1/4, 1/2) if and only if α/2 = α/3 + 1/24 if and only if α = 1/4.

But, from equation (4.14), this happens if and only if Cα(u, v) = Π2(u, v) = u · v.

We now assume that d = 3 and that C = Π3 is the product 3-copula. Then we know that

C
′

m = {C(u, v, w) = u · v · w | u, v, w ∈ {0, 1/m, 2/m, . . . , (m− 1)/m, 1}},

is a 3-subcopula, and for this 3-subcopula and the uniform partition of size m given in equation

(2.8), and using equation (1.1), we have by continuity of C that
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VC′m(Rm
i1,i2,i3

) =
i1
m

i2
m

i3
m
− i1 − 1

m

i2
m

i3
m
− i1
m

i2 − 1

m

i3
m
− i1
m

i2
m

i3 − 1

m

+
i1 − 1

m

i2 − 1

m

i3
m

+
i1 − 1

m

i2
m

i3 − 1

m
+
i1
m

i2 − 1

m

i3 − 1

m
− i1 − 1

m

i2 − 1

m

i3 − 1

m

=

(
i1
m
− i1 − 1

m

)(
i2
m
− i2 − 1

m

)(
i3
m
− i3 − 1

m

)
= λ3(Rm

i1,i2,i3
), (4.22)

where λ3 is the Lebesgue measure on ( RI 3,B( RI 3)).

If we use the trilinear interpolation of Lemma 2.3.5 in Nelsen’s book, [18], we have that C(m)

the checkerboard approximation of order m of C = Π3 has a density given by equation (2.39)

c(m)(u, v, w) =
VC′m(Rm

i1,i2,i3
)

λ3(Rm
i1,i2,i3

)
for every (u, v, w) ∈ Rm

i1,i2,i3
, (4.23)

for every i1, i2, i3 ∈ Im. But, using equations (4.22) and (4.23) we have that

c(m)(u, v, w) =
VC′m(Rm

i1,i2,i3
)

λ3(Rm
i1,i2,i3

)
=
λ3(Rm

i1,i2,i3
)

λ3(Rm
i1,i2,i3

)
= 1 for every (u, v, w) Rm

i1,i2,i3
,

for every i1, i2, i3 ∈ Im. Hence, the density of C(m) is the constant 1 on I3. Therefore, for every

integer m ≥ 2 the checkerboard approximation C(m) satisfies that

C(m)(u, v, w) =

∫ v

0

∫ u

0

∫ w

0

1dsdtdr = u ·v ·w = Π3(u, v, w) = C(u, v, w) for every (u, v, w) ∈ I3.

(4.24)

In particular this holds for m = 2 and m = 3.

We now prove the converse. Let us assume that for some 3-copula C we have that C(u, v, w) =

C(2)(u, v, w) = C(3)(u, v, w) for every (u, v, w) ∈ I3.

Let m = 2, define α0 = VC([0, 1/2]3) = VC(R2
1,1,1), as in the uniform partition of order m = 2,

given in equation (2.8). Then, by equation (1.1), α0 = C(1/2, 1/2, 1/2), and using the inequality

(1.5), we have

0 = W 3(1/2, 1/2, 1/2) ≤ α0 = C(1/2, 1/2, 1/2) ≤M3(1/2, 1/2, 1/2) =
1

2
. (4.25)

Define α1 = C(1, 1/2, 1/2), α2 = C(1/2, 1, 1/2) and α3 = C(1/2, 1/2, 1). Let C1,2(u, v) =

C(u, v, 1), the we know that C1,2 is a 2-copula, and by hypothesis we also know that C1,2(u, v) =
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C(2)(u, v, 1) = C(3)(u, v, 1) for every (u, v) ∈ I2. It is trivial to see that by linearity in the

construction of C(2) and C(3), we have that the checkerboards of C1,2 of order m = 2 and

m = 3 are given by C
(2)
1,2(u, v) = C(2)(u, v, 1) and C

(3)
1,2(u, v) = C(3)(u, v, 1) for every (u, v) ∈ I2.

Therefore, we have the transformed hypotheses

C1,2(u, v) = C
(2)
1,2(u, v) = C

(3)
1,2(u, v) for every (u, v) ∈ I2. (4.26)

So using what we proved for the case d = 2 above, we have that

α3 = C(1/2, 1/2, 1) = C1,2(1/2, 1/2) = Π2(1/2, 1/2) =
1

4
. (4.27)

Defining C1,3(u,w) = C(u, 1, w) and C2,3(v, w) = C(1, v, w) for every u, v, w ∈ I, and reasoning

as above we observe that

α1 = C(1, 1/2, 1/2) = C2,3(1/2, 1/2) =
1

4
= C1,3(1/2, 1/2) = C(1/2, 1, 1/2) = α2. (4.28)

Now using the fact that any 3-copula is increasing in each coordinate, together with equations

(4.27) and (4.28) and inequality (4.25) we have that

0 ≤ α0 = C(1/2, 1/2, 1/2) ≤ min(α1, α2, α3) =
1

4
. (4.29)

In order to find C(2)(u, v, w), we first need to evaluate the C-volumes of all the uniform boxes

R2
i,j,k for every i, j, k ∈ I2, in order to find its density in each box, which is given by the constant

VC(R2
i,j,k)/λ

3(R2
i,j,k) = 8 · VC(R2

i,j,k) for every i, j, k ∈ I2 = {1, 2}.

We know that VC(R2
1,1,1) = C(1/2, 1/2, /12) = α0. By equation (1.1) and using i) in Def-

inition 1.1.1, we have that VC(R2
2,1,1) = VC([1/2, 1] × [0, 1/2] × [0, 1/2]) = C(1, 1/2, 1/2) −

C(1/2, 1/2, 1/2) = α1 − α0 = 1/4 − α0, similarly VC(R2
1,2,1) = VC(R2

1,1,2) = 1/4 − α0. Again,

by equation (1.1) and using i) and ii) in Definition 1.1.1, we obtain VC(R2
2,2,1) = VC([1/2, /1]×

[1/2, 1] × [0, 1/2]) = C(1, 1, 1/2) − C(1, 1/2, 1/2) − C(1/2, 1, 1/2) + C(1/2, 1/2, 1/2) = 1/2 −

α1 − α2 + α0 = 1/2 − 1/4 − 1/4 + α0 = α0, analogously, VC(R2
2,1,2) = VC(R2

1,2,2) = α0.

Finally, using Definition 1.1.1 we have that VC(R2
2,2,2) = VC([1/2, /1] × [1/2, 1] × [1/2], 1) =

1− 1/2− 1/2− 1/2 + 1/4 + 1/4 + 1/4− α0 = 1/4− α0.

Therefore, integrating the above density we get C(2)(u, v, w) the checkerboard copula of order

m = 2, for every (u, v, w) ∈ I3, which is given by:
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C(2)(u, v, w) =



8α0u · v · w if (u, v, w) ∈ R2
1,1,1

(2− 8α0)u · v · w + (8α0 − 1)u · v if (u, v, w) ∈ R2
1,1,2

(2− 8α0)u · v · w + (8α0 − 1)u · w if (u, v, w) ∈ R2
1,2,1

(2− 8α0)u · v · w + (8α0 − 1)v · w if (u, v, w) ∈ R2
2,1,1

8α0u · v · w + (1− 8α0)u · v
+(1− 8α0)u · w + (8α0 − 1)u if (u, v, w) ∈ R2

1,2,2

8α0u · v · w + (1− 8α0)u · v
+(1− 8α0)v · w + (8α0 − 1)v if (u, v, w) ∈ R2

2,1,2

8α0u · v · w + (1− 8α0)u · w
+(1− 8α0)v · w + (8α0 − 1)w if (u, v, w) ∈ R2

2,2,1

(1/2− 2α0){(u− 1/2) + (v − 1/2) + (w − 1/2)}
4α0{(u− 1/2)(v − 1/2) + (u− 1/2)(w − 1/2)}
4α0(v − 1/2)(w − 1/2) + α0

(2− 8α0)(u− 1/2)(v − 1/2)(w − 1/2) if (u, v, w) ∈ R2
2,2,2.

Observe that by hypothesis C(2)(u, v, w) = C(u, v, w), and that by equation (4.30) it has a

unique parameter α0.

In order to obtain C(3), we will obtain its density using equation (4.30), that is,

c(3)(u, v, w) =
VC(R3

i,j,k)

λ3(R3
i,j,k)

= 27VC(2)(R3
i,j,k), (4.30)

for every i, j, k ∈ I3 and for every (u, v, w) ∈ R3
i,j,k, as defined in equation (2.8).

To find the density of C(3) on R3
1,1,1 = [0, 1/3]3 we observe that R3

1,1,1 ⊂ R2
1,1,1, so, using

(4.30), VC(2)(R3
1,1,1) = C(2)(1/3, 1/3, 1/3) = (8/27)α0. To obtain the density of C(3) on R3

1,2,1 =

[0, 1/3] × (1/3, 2/3] × [0, 1/3] ⊂ R2
1,1,1 ∪ R2

1,2,1, we need VC(2)(R3
1,2,1) = C(2)(1/3, 2/3, 1/3) −

C(2)(1/3, 1/3, 1/3) = (2 − 8α0)(2/27) + (8α0 − 1)(1/9) − 8α0(1/27) = 1/27. For the den-

sity of C(3) on R3
1,1,2 = [0, 1/3] × [0, 1/3] × (1/3, 2/3] ⊂ R2

1,1,1 ∪ R2
1,1,2 we need VC(2)(R3

1,1,2) =

C(2)(1/3, 1/3, 2/3)−C(2)(1/3, 1/3, 1/3) = (2− 8α0)(2/27) + (8α0− 1)(1/9)− 8α0(1/27) = 1/27.

Finally, for the density of C(3) on R3
1,2,2 = [0, 1/3]×(1/3, 2/3]×(1/3, 2/3] ⊂ R2

1,1,1∪R2
1,2,1∪R2

1,1,2∪

R2
1,2,2 we need VC(2)(R3

1,2,2) = C(2)(1/3, 2/3, 2/3) − C(2)(1/3, 2/3, 1/3) − C(2)(1/3, 1/3, 2/3) +

C(2)(1/3, 1/3, 1/3) = 8α0(4/27) + (1 − 8α0)(4/9) + (8α0 − 1)(1/3) − (2 − 8α0)(4/27) − (8α0 −
1)(2/9) + 8α0(1/27) = 1/27. Hence, from equation (4.30), we have that C(3) has density 1 on

R3
1,1,2, R

3
1,2,1 and R3

1,2,2, and density 8α0 on R3
1,1,1.

Let (u0, v0, w0) = (1/4, 1/2, 2) ∈ R2
1,1,1∩R3

1,2,2 then by hypothesis C(2)(1/4, 1/2, 1/2) = C(3)(1/4, 1/2, 1/2).
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Integrating the density of C(3) we have that

C(3)(1/4, 1/2, 1/2) =

∫ 1/3

0

∫ 1/3

0

∫ 1/4

0

8α0dudvdw +

∫ 1/3

0

∫ 1/2

1/3

∫ 1/4

0

dudvdw

+

∫ 1/3

1/2

∫ 1/3

0

∫ 1/4

0

dudvdw +

∫ 1/2

1/3

∫ 1/2

1/3

∫ 1/4

0

dudvdw

= (2/9)α0 + (1/72) + (1/72) + (1/144)

= (2/9)α0 + (5/144). (4.31)

Now, using equation (4.30) we know that C(2)(1/4, 1/2, 1/2) = α0/2. Therefore, we have that

α0

2
=

2

9
α0 +

5

144
.

Solving for α0 we have that α0 = 1/8, and using equation (4.30), we have that C(3)(u, v, w) =

C(2)(u, v, w) = Π2(u, v, w) for every (u, v, w) ∈ I3.

The rest of the proof follows from an easy induction. �

From equations (4.12) and (4.24) in the last proof we have the following result:

Corollary 4.3.2. Let C = Πd be the product copula, then for every m ≥ 2 we have that

C(m)(u1, . . . , ud) = Πd(u1, . . . , ud) for every (u1, . . . , ud) ∈ Id.

4.4 Independence Tests

The total variation distance defined in equations (4.3) and (4.4) provides the largest possible

difference between two probability measures, so it is considered a far stronger distance than the

“sup” distance. Many statisticians seem to think that “the dTV is generally too strong to be

useful”, but this is not so in our case as Theorem 4.2.1 shows.

Using the characterization of independence given in Theorem 4.3.1, we first propose a new

independence test based on the total variation distance. We know by equation (4.9) that for

d ≥ 2

C = Πd if and only if C = C(2) = C(3).

Let QC(2) and QC(3) be the probability measures induced by the checkerboards of order m = 2

and m = 3, respectively. Assuming (4.9) holds, if we observe that the probability measure

associated to Πd the product copula is simply the Lebesgue product measure λd, then we have

that

dTV(QC(2) , λd) = 0 and dTV(QC(3) , λd) = 0. (4.32)
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Since the total variation distance is quite strong, we may use it to see whether the true copula

C equals the product copula Πd or not. So, we will use the fact that under H0, that is, C = Πd,

we have that QC(2) and QC(3) are equal to λd by equation (4.32), and besides, by Theorem 4.2.1,

QC(2) and QC(3) are the uniform limits of PCn2 and PCn3 as n increases. Hence, based on Corollary

4.3.2 we propose the statistic

ηTV(C;n) =
dTV(PCn2 , λ

d) + dTV(PCn3 , λ
d)

2
. (4.33)

In this case, we take a sample from a true copula C with sample size n, and PCnm for m = 2

and m = 3 are the probability measures induced by the sample copulas Cn
m with orders m = 2

and m = 3, respectively. Since in our case, the alternative hypothesis is H1 : C 6= Πd , then we

have that under H0, by equation (4.5), limn→∞ ηTV(C;n) = 0 almost surely. Also for any copula

C 6= Πd we have that limn→∞ ηTV(C;n) > 0.

Even if the null distribution of the test statistic, ηTV(Πd;n) is not known for a fixed sample size

n, it is straightforward to generate a large number of simulations in a very reasonable time,

even for not so small dimension d and sample sizes n, in order to approximate the quantiles, let

us say of order 90%, 95% and 99%, needed in order to perform a standard test. Of course, we

reject H0 at levels α = 0.10, 0.05 and α = 0.01, if the observed value of ηTV(C;n) exceeds the

respective (1− α) quantiles above.

We can also use different distances, other than the total variation distance. For example,

we can use the Hellinger distance given in equation (4.6), or the supremum distance given

in equation (4.7). Furthermore, we can even use the Kullback-Leibler divergence in equation

(4.8). Since the densities of the product copulas Πd, and the sample d-copulas of order m

are constant on the d-boxes of the uniform partition as in equation (2.8), dI satisfies that

dI(QC(2) , λd) = 0 = dI(QC(3) , λd) if C = Πd; however both are greater than zero if C 6= Πd.

Therefore, we can also use any of the following statistics to test for multivariate independence.

ηH(C;n) =
dH(PCn2 , λ

d) + dH(PCn3 , λ
d)

2
, (4.34)

ηsup(C;n) =
dsup(Cn

2 ,Π
d) + dsup(Cn

3 ,Π
d)

2
. (4.35)

ηI(C;n) =
dI(PCn2 , λ

d) + dI(PCn3 , λ
d)

2
. (4.36)

When the sample is not a multiple of six, we must modify the sample size. We need some

criterion to, we remove some data. Some criteria may be: remove the most recent data, remove
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the oldest data, remove the data randomly, etc. Let n be the size of the original sample, then

we define the sample size after removing the data, denoted by n∗ as

n∗ = 6

⌊
n

6

⌋
.

It is relevant to note that at most five data may be removed. When the sample size is big,

removing five data does not impact the results significantly

4.5 Simulations

In this Section we will carry out a simulation study in dimensions d = 2, d = 3 and d = 4. We

start by doing a comparison to several well known proposals of tests of independence, in the

case d = 2. For dimensions d = 2 and d = 3 we present the results of the comparison among our

statistics mentioned above for several different families of copulas. We also discuss some tests

of independence in the multivariate case.

For example, we simulate samples for a Clayton copula with ρ = 0.05 and for the product copula.

We run the simulations 1,000 times for sample sizes equal to 60, 600 and 6000, see Figure 4.1 and

Figure 4.3 ; then we present the results of some basic statistics such as the mean, the maximum

and the minimum the grids generated by the uniform partitions of size 2 and 3, see Figure 4.2

and Figure 4.4. The graphs of both simulations are very similar for every sample size, since ρ

is very close to 0. Instead of that, the statistics presented differ. The data corresponding to

the mean must be interpreted in the same way as the partition of I2, generated by the uniform

partitions of size 2 and 3. Of course, the mean in each rectangle, in the case of the product

copula, is very close to 1/4 for m = 2, and is close to 1/9 for m = 3. For the Clayton copula,

the values of the mean are a little far from the values 1/4 and 1/9, for m = 2 and m = 3,

respectively. Now, for the minimum and the maximum, the values for the independent copula

are closer than the values of the Clayton copula to 1/4 and 1/9.
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Figure 4.1: Clayton copula. Sample size of 60, 600 and 6000, respectively, and d = 2

Figure 4.2: Statistics for a Clayton copula. Sample size of 60, 600 and 6000, respectively, and
d = 2
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Figure 4.3: Product copula. Sample size of 60, 600 and 6000, respectively, and d = 2
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Figure 4.4: Statistics for the product copula. Sample size of 60, 600 and 6000, respectively, and
d = 2

4.5.1 Dimension d = 2

In this subsection we will study the case d = 2, which has been the most studied case for

independent tests. Several statistics have been proposed to test for independence. For example,

we have two classical tests; the first one proposed by Hoeffding in 1948, to test the independence

of two continuous random variables with continuous joint and marginal densities, see [12]. This

test is based on the function D(x, y) = F (x, y) − F (x,∞) · F (∞, y) = F (x, y) − F1(x) · F2(y),

where F denotes the joint distribution function, F1 and F2 are the margins of X and Y , and

∆(F ) =
∫
D2(x, y)dF (x, y). The statistic he proposed is based on the joint empirical distribution

function minus the product of the marginal empirical functions. Here we used the hoeffd

function of the R package Hmisc. The second test is based on extensions of this result and

is known as the Blum-Kiefer-Rosenblatt’s independence tests, see [3]. See also [17] for null

Gaussian approximations of the bivariate Blum-Kiefer-Rosenblatt (BKR) test of independence.

To perform the BKR test we use their statistic Bn and the normal approximation in [17]. Since

the results of these two statistics are always quite similar, here we only report the results based

on Hoeffding’s statistic.

Another well known test for independence in the case d = 2 is based on Spearman’s ρ, and

has been used extensively in applications. Here we use the spearman.test function of the R

package pspearman. However, it is well known that this test has low power if the distribution

of the alternative is continuous but singular, as is the case for several copulas.

We used a small value of the sample size, n = 36, to compare our results to other works which

also use small sample sizes for their simulations.

We first observe that, if we are simulating from a standard Archimedean copula, such as Clayton,

Gumbel, Frank, etc., the power obtained by using the tests of Hoeffding, Blum-Kiefer-Rosenblatt

and Spearman’s ρ are a little better at levels α = 0.01, 0.05 and α = 0.10 than the ones we obtain

using the statistics given in equations (4.33), (4.34) and (4.36); that is, the total variation, the

Hellinger distances and the Kullback-Leibler divergence, see Figure 4.5. It is important to note

that most of all these Archimedean copulas are absolutely continuous, with complete support
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and with smooth densities.

●
●

●

●

●

●

●

●

●
● ●

0.2 0.4 0.6 0.8

0
20

40
60

80
10

0

Clayton,d=2,n=36,alpha=01

rho

P
ow

er
s

●
●

●

●

●

●

●

●

●
● ●●

●

TV
Hellinger
K−L
Hoeffding
Spearman

● ●

●

●

●

●

●

●

● ● ●

0.2 0.4 0.6 0.8

0
20

40
60

80
10

0

Clayton,d=2,n=36,alpha=05

rho

P
ow

er
s

●
●

●

●

●

●

●

●

● ● ●●

●

TV
Hellinger
K−L
Hoeffding
Spearman

●

●

●

●

●

●

●

●
● ● ●

0.2 0.4 0.6 0.8

0
20

40
60

80
10

0

Clayton,d=2,n=36,alpha=10

rho

P
ow

er
s

●

●

●

●

●

●

●

●
● ● ●●

●

TV
Hellinger
K−L
Hoeffding
Spearman

Figure 4.5: Powers for the Clayton family with n = 36 in dimension d = 2

It is not difficult to see, via simulations, that the independent tests of Hoeffding and Blum-Kiefer-

Rosenblatt have a problem with small sample sizes. In fact, we note that if we are sampling from

the independent copula Π2, and test at the usual levels α = 0.01, 0.05 and α = 0.10, the real

levels of the test do not correspond to the desired values of α. For example, if we set α = 0.05

and perform several simulations, the actual value of α under independence is approximately

α = 0.075. Something similar happens with the other two values of α. This happens because

there is an effect of discretization of the statistic when the sample size is small. Therefore, we

recommend caution when using these two tests with small sample sizes. For a better detail,

observe Figure 4.6.
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Figure 4.6: Powers for the Product copula with dimension d = 2

We did not use the supremum distance in the simulations because we observed a strong dis-

cretization effect of the statistic (4.35); that is, the different values observed from this statistic

were very limited, with many ties.
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As a second example, we use the Fréchet-Mardia copulas. In this case, we use a convex mixture

of W2 and M2, the Fréchet-Hoeffding bounds, for the Figure 4.7, and we use a convex mixture of

W2, M2 and Π2 for the Figure 4.8. Remember that the copulas defined in Figure 4.7 are singular

and the copulas defined in Figure 4.8 are absolutely continuous. As we can see in Figure 4.7 and

Figure 4.8, the Spearman’s test has very low power, specially for singular copulas. We also note

that the total variation statistic in equation (4.33) performs a little better than the Hoeffding

and the Blum-Kiefer-Rosenblatt tests at the three levels, but the statistics given in equations

(4.34) and (4.36) have the best performance at all three levels, and have a power really close to

100% when α = 0.05 and α = 0.10.

In the Figure 4.8, the parameters in the convex combination aM2 + bW2 + (1− a− b)Π2 begin

with a = 0.5 and b = 0.5, and after b reduces until 0 while a = 0.5; after that, a reduces until 0

and b remains equal to 0.
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Figure 4.7: Powers for the Frechet-Mardia family with n = 36 in dimension d = 2 and Π = 0

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●0
20

40
60

80
10

0

Frechet−Mardia, d=2 ,n=36, α=1%

N
um

be
r 

of
 r

ej
ec

tio
ns

a=
0.

5,
b=

0.
5

a=
0.

5,
b=

0.
45

a=
0.

5,
b=

0.
4

a=
0.

5,
b=

0.
35

a=
0.

5,
b=

0.
3

a=
0.

5,
b=

0.
25

a=
0.

5,
b=

0.
2

a=
0.

5,
b=

0.
15

a=
0.

5,
b=

0.
1

a=
0.

5,
b=

0.
05

a=
0.

5,
b=

0

a=
0.

45
,b

=
0

a=
0.

4,
b=

0

a=
0.

35
,b

=
0

a=
0.

3,
b=

0

a=
0.

25
,b

=
0

a=
0.

2,
b=

0

a=
0.

15
,b

=
0

a=
0.

1,
b=

0

a=
0.

05
,b

=
0

a=
0,

b=
0

● TV
Hellinger
KL
Hoeffding
Spearman

●

● ●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

0
20

40
60

80
10

0

Frechet−Mardia, d=2 ,n=36, α=5%

N
um

be
r 

of
 r

ej
ec

tio
ns

a=
0.

5,
b=

0.
5

a=
0.

5,
b=

0.
45

a=
0.

5,
b=

0.
4

a=
0.

5,
b=

0.
35

a=
0.

5,
b=

0.
3

a=
0.

5,
b=

0.
25

a=
0.

5,
b=

0.
2

a=
0.

5,
b=

0.
15

a=
0.

5,
b=

0.
1

a=
0.

5,
b=

0.
05

a=
0.

5,
b=

0

a=
0.

45
,b

=
0

a=
0.

4,
b=

0

a=
0.

35
,b

=
0

a=
0.

3,
b=

0

a=
0.

25
,b

=
0

a=
0.

2,
b=

0

a=
0.

15
,b

=
0

a=
0.

1,
b=

0

a=
0.

05
,b

=
0

a=
0,

b=
0

● TV
Hellinger
KL
Hoeffding
Spearman ●

● ●

● ●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

0
20

40
60

80
10

0

Frechet−Mardia, d=2 ,n=36, α=10%

N
um

be
r 

of
 r

ej
ec

tio
ns

a=
0.

5,
b=

0.
5

a=
0.

5,
b=

0.
45

a=
0.

5,
b=

0.
4

a=
0.

5,
b=

0.
35

a=
0.

5,
b=

0.
3

a=
0.

5,
b=

0.
25

a=
0.

5,
b=

0.
2

a=
0.

5,
b=

0.
15

a=
0.

5,
b=

0.
1

a=
0.

5,
b=

0.
05

a=
0.

5,
b=

0

a=
0.

45
,b

=
0

a=
0.

4,
b=

0

a=
0.

35
,b

=
0

a=
0.

3,
b=

0

a=
0.

25
,b

=
0

a=
0.

2,
b=

0

a=
0.

15
,b

=
0

a=
0.

1,
b=

0

a=
0.

05
,b

=
0

a=
0,

b=
0

● TV
Hellinger
KL
Hoeffding
Spearman

Figure 4.8: Powers for the Frechet-Mardia family with n = 36 in dimension d = 2 and Π 6= 0

Finally, we use a convex combination of a Gumbel and a Gumbel-ID, where the latter denotes a
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Gumbel distribution with an increasing transformation in its first coordinate and a decreasing

transformation in its second coordinate. That is, we used the transformation (U, V )→ (U, 1−V ),

for any observation (Ui, Vi) of the Gumbel copula. The notation ID stands for increasing-

decreasing transformation. As we can see in Figure 4.9, in this case the Spearman’s ρ, the

Hoeffding and the Blum-Kiefer-Rosenblatt have lower powers than our three statistics (4.33),

(4.34) and (4.36). Note, however, that in this case the powers for these three statistics may be

far better than the ones obtained using the standard tests. In particular, the Kulback-Leibler

test (4.36) has the highest powers.
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Figure 4.9: Powers for the Mixture Gumb.-Gumb.ID family with n = 36 in dimension d = 2

Additionally, we include three examples from three absolutely continuous copulas: Clayton,

Gumbel and normal, see Figure 4.10, Figure 4.11 and Figure 4.12. The sample size in this case

is 60. We can observe that the results are very similar as in the case of sample size equal to 36.

● ●
● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

Clayton, d=2 ,n=60, α=1%

ρ

P
ow

er

● TV
Hellinger
KL
Hoeffding
Spearman ● ●

● ●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

20
40

60
80

10
0

Clayton, d=2 ,n=60, α=5%

ρ

P
ow

er

● TV
Hellinger
KL
Hoeffding
Spearman ● ●

●

●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

20
40

60
80

10
0

Clayton, d=2 ,n=60, α=10%

ρ

P
ow

er

● TV
Hellinger
KL
Hoeffding
Spearman

Figure 4.10: Powers for the Clayton family with n = 60 in dimension d = 2
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Figure 4.11: Powers for the Gumbel family with n = 60 in dimension d = 2
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Figure 4.12: Powers for the Normal family with n = 60 in dimension d = 2

Hence, we observe that our statistics (4.33), (4.34) and (4.36) are competitive even in the case

d = 2. Besides, in the case of a very smooth copula with complete support and 0.5 < |ρ̂| < 0.95,

where ρ̂ is the estimated value of Spearman’s rho, we found that for small values of the sample

size n, the Spearman’s ρ test had the best powers.

In a recent paper, see [1], the authors proposed a new test of bivariate independence based on

the idea that if (X, Y ) is a random vector with joint distribution F , then under independence

FY (y|x) = FY (y) and F−1
Y (y|x) = F−1

Y (y), that is, they do not depend on the value of X. Here

FY (y|x) denotes the c.d.f of Y conditional on X = x and F−1
Y (y|x) is its inverse. Based on this

idea they construct a new statistic Tn based on the empirical joint distribution function. They

compare their statistic to six different tests, including them the Hoeffding Dn, the BKR Bn and

the Spearman’s rank statistic Sn. In Figure 1 and Figure 2 of [1], with sample size n = 40, they

see that their Tn is competitive for some alternatives, and does not present a power to far below

in the case of copulas when the sample size n = 60. We did not include this statistic in our

68



study, but from the figures in [1], we can see that our proposals are close to the values of Sn,

and are always competitive if the joint distribution function is continuous and smooth.

4.5.2 Dimension d = 3

Many of the statistics proposed in dimension d = 2 for independence tests may be extended to

higher dimensions. In particular, some extensions to dimension d = 3 are somehow natural. For

example, in the case of the Hoeffding statistic, we could obviously use D(x, y, z) = F (x, y, z)−
F1(x) · F2(y) · F3(z), where F denotes the joint distribution function and F1, F2 and F3 are the

margins of X, Y and Z, respectively. If we define ∆(F ) =
∫
D2(x, y, z)dF (x, y, z) we could use

the empirical version Dn of the previous ∆ in order to test for independence. The Blum-Kiefer-

Rosenblatt statistic could be similarly extended to dimension d = 3. Many other statistics based

on the empirical copula have 3-dimensional versions, for example the statistic Gn of Genest and

Rémillard, [7]. The problem with all these possible extensions is that in dimension d = 3 the

empirical copula becomes unfeasible if the sample size is not small. For example if n = 1000

then the array necessary to obtain the empirical copula is of size 109, which blocks a lot of the

memory in a standard computer. Also since we have to operate with it to evaluate several of

these statistics, it becomes useless to try in large simulation studies. Note that, even in the case

of dimension d = 2, most of the papers that have been written proposing new independence

tests deal only with simulations based on small sample sizes, in most cases n ≤ 100. The reason

is that, even in dimension d = 2, the evaluation of some of the statistics become prohibitively

slow if the sample size is moderately large. On the other hand, every statistician who has

used the empirical distribution function for data in dimensions greater than or equal to d = 3,

knows that they need large sample sizes in order to obtain reasonable approximations of the true

distribution function F using the empirical distribution function Fn. In the case of 3-copulas,

the same is true with the empirical (sub)copula Cn.

In some cases, one can find the asymptotic distribution of a statistic based on the empirical

distribution function or empirical copula, but the limiting distribution can only be reached with

large extremely sample sizes. In such cases, the statistic is unfortunately impossible to evaluate

using a standard computer. Hence, it is not possible to assess for which values of the sample

size n the limiting distribution is actually reached.

There are another tests, based on the empirical process or multivariate characteristic functions,

which also have problems when working with large sample sizes. See for example [6].

In our simulations using our proposals given in equations (4.33), (4.34), (4.35) and (4.36), we

use large values of the sample size n. In many instances the other tests take a very long time,

or are even impossible to evaluate. Therefore, we only have compared our proposals among

themselves, in order to see which one of them has better power in each of the different cases.
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In [2], the authors propose a statistic, I2
n, which coincides with the square product moment

correlation when d = 2. The power of this test is good only for absolutely continuous random

variables, and it has the same problem as the Spearman’s ρ test in dimension d = 2.

In [19], the authors give a new test of multivariate independence based on analogues to Kendall’s

tau and Spearman’s ρ. The comments given in the previous paragraph also apply to these tests.

In Figures 4.13 through 4.15 we analyze the case d = 3. We used three sample sizes n = 60,

n = 120 and n = 216, with N = 10000 simulations to find the critical values of the tests under

H0. We also generated a thousand simulations under the alternative H1, to find the powers of

the four tests based in the statistics given in equations (4.33), (4.35), (4.34) and (4.36).

In Figure 4.13 we consider the Gumbel family, with α = 0.10. We observe that for n small the

statistic based on the supremum distance has better powers, but for n = 216 the powers are

similar for all tests. It is important to note that the statistic based on the supremum distance

has a strong discretization effect, which means that the critical values for this test are not very

accurate. The same effect is observed in Figure 4.14.
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Figure 4.13: Powers for the Gumbel family with different n in dimension d = 3

In Figure 4.14 we consider the normal family where the covariance matrix has equal correlations

for each pair of variables. We also observe that the supremum distance has a little better power,

that disipates when the sample size increases.
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Figure 4.14: Powers for the Normal family with different n and R in dimension d = 3

In Figure 4.15 we also study the normal family, but now one of the variables is independent

of the other two. In this case we observe that the supremum distance has the worse power

compared with the other three statistics, but for large values of n this difference dilutes.
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Figure 4.15: Powers for the Normal family with different n and R weak independence in dimen-
sion d = 3

4.5.3 Dimension d = 4

The comments made for the case d = 3 also apply to the case d = 4. The only difference is that

we now take different values of the sample size which include n = 600 and n = 1296. (The value

1296 = (16) · (81) is obtained by multiplying the number of boxes of C(2) and C(3) in dimension

d = 4). It is important to observe that if we try to evaluate the empirical distribution function

of a sample in dimension d = 4 and sample size n = 1296, in a computer we would only get an

error message because the array needed to get it is of size (1296)4 = 2821109907456, which no

personal computer can manage.
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In Figure 4.16 we consider the Frank family. With α = 0.05, we have the same remarks as in

Figure 4.13.
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Figure 4.16: Powers for the Frank family with different n in dimension d = 4

In Figure 4.17 we study the normal distribution with same correlation among all the random

variables, whereas in Figure 4.18 one random variable is independent of the other three, giving

weak dependence, The results are quite similar to those given in Figures 4.14 and 4.15.
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Figure 4.17: Powers for the Normal family with different n and R in dimension d = 4
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Figure 4.18: Powers for the Normal family with different n and R weak indep. in dimension
d = 4

Finally, we study the t distribution with same correlation among all the random variables. As we

can see in Figure 4.19, for a sample size of n = 60, the statistic based on the supremum distance

has the highest power followed by the statistic based in the Kullback-Liebler divergence, but

this behavior changes for larger sample sizes, for example, in the case of a sample size n = 1296,

the statistic based on the supremum distance has the worst performance and the statistic based

in the divergence has the best.
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Figure 4.19: Powers for the t distribution with different n and same correlation in dimension
d = 4

4.6 Real data

In this section we present the results of the proposed tests using real data. In the financial

world, a problem of high relevance is to determine if a set of financial variables are independent.

For example, we can ask if there is dependence between the reference rate and a certain index

of the equity market, or between a certain foreign exchange rate and the prices of the oil, etc.
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For this illustration, we use three important variables in the Mexican financial market: the index

of the Bolsa Mexicana de Valores, called IPC (Index of Price and Quotations), the exchange rate

for the US Dollar to the Mexican Peso (USDMXN), and the price of the sovereign bond with

term of one year called MBono. The data that we used correspond to the closing price taken

daily from 02/01/2015 to 13/02/2018 (dd/mm/yyyy). The data was taken from the Bloomberg

platform with the variable called px last. It is important to highlight that in the period that

we are considering there were many moments of high volatility, and the most relevant were: the

Brexit referendum in June 2016, the presidential election in the USA in November 2016 and

the sharp fall of the equity market presented in February 2018. The sample size observed was

n = 780.

As we can see in the graphics, the IPC index and the MXNUSD currency present an upward

drift; on the other side, the value of the MBono presents a downward drift, see 4.20.
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Figure 4.20: Time series of daily values of the IPC, USDMXN and MBono

As is usual in finance, we work with the returns (arithmetic) instead of the original values of

the variables in order to center and to stabilize them.

The variance of the returns for the IPC index is bounded and it seems that it is not time

dependent. For the case of the USDMXN exchange rate, the variance is stationary and the

majority of the data is close to the media, with a few exceptions. The variance of the MBono

is obviously time dependent, as we can see in the third graph of Figure 4.21; it is high at the

beginning and it reduces practically to a constant at the end.
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Figure 4.21: Time series of daily returns of the IPC, USDMXN and MBono

We run the tests using all possible pairs and the joint distribution of the 3 variables, that is, we

run the tests in the bivariate case for the IPC vs USDMXN, IPC vs MBono and USDMXN vs

MBono, and for the case of 3 dimensions, IPC vs USDMXN vs MBono.

In Figure 4.22 we show the modified sample for the bivariate cases. In the first graph, we can

notice that there is dependence between the IPC index and the USDMXN exchange rate because

there is a higher concentration of the modified sample in the corners of the second diagonal of

the unit box. In the second graph, the related one to the IPC index and the MBono, we can

not clearly appreciate a concentration of the modified sample in a particular place of the unit

box. For the third graph, we have a similar case to the first graph, that is, we can appreciate

higher concentration in two corners.
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Figure 4.22: Modified sample for the returns IPC vs USDMXN, IPC vs MBono and USDMXN
vs MBono, respectively

According to the tests, the variables IPC, USDMXN and MBono are not independent two to

two for the significance levels of 0.01, 0.05 and 0.1. In the following tables we can observe the
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p-value for each test. We can notice that for every case, the p-value is 0 for the distance of total

variation, for the Hellinger distance and for the Kulback- Liebler divergence; it is equal to 0 in

two cases for the Spearman; and it is close to 0 for Hoeffding and B-K-R statistics.

IPC vs USDMXN
Test p-value

Total variation 0
Hellinger 0

Kulback-Liebler 0
Hoeffding 0.00000001

BKR 0.00000271
Spearman 0

IPC vs MBono
Test p-value

Total variation 0
Hellinger 0

Kulback-Liebler 0
Hoeffding 0.00000166

BKR 0.00024956
Spearman 0.00001147

USDMXN vs MBono
Test p-value

Total variation 0
Hellinger 0

Kulback-Liebler 0
Hoeffding 0.00000001

BKR 0.00000298
Spearman 0

The following graph presents the modified sample of the returns of the IPC index, USDMXN

currency and MBono. We can see that the sample is not uniformly distributed in I3, see Figure

4.23.
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Figure 4.23: Modified sample of the returns for IPC vs USDMXN vs MBono

Now, for the tridimensional case, we reject independence in all the tests for the levels 0.01, 0.05

and 0.1. Moreover, the p-value is 0 for all the statistics.

4.7 Applications

A further investigation based on the work presented in this thesis is the following: What is the

maximum separation in which we can divide a vector in independent subvectors? To answer

this question we need the following definition

Definition 4.7.1. Let X = (X1, . . . , Xd) be a d-dimensional random vector. We say that X is

exhaustively dependent if and only if the distribution function of X can not be decomposed

in the product of the distribution functions associated to any independent subvectors of X.

For example, we consider a random vector X = (X1, X2, X3, X4). Then X is exhaustively de-

pendent if its distribution function can not be expressed in any of the following forms:

FX1,X2,X3,X4(x1, x2, x3, x4) = FXσ(1)(xσ(1))FXσ(2),Xσ(3),Xσ(4)(xσ(2), xσ(3), xσ(4)),

FX1,X2,X3,X4(x1, x2, x3, x4) = FXσ(1),Xσ(2)(xσ(1), xσ(2))FXσ(3),Xσ(4)(xσ(3), xσ(4)),

FX1,X2,X3,X4(x1, x2, x3, x4) = FXσ(1)(xσ(1))FXσ(2)(xσ(2))FXσ(3),Xσ(4)(xσ(3), xσ(4)),

FX1,X2,X3,X4(x1, x2, x3, x4) = FXσ(1)(xσ(1))FXσ(2)(xσ(2))FXσ(3)(xσ(3))FXσ(4)(xσ(4)),

where σ is any permutation of I4 = {1, 2, 3, 4}, FX1,X2,X3,X4(x1, x2, x3, x4) is the joint distribution

function of X and FXσ(1),...Xσ(k) for k ≤ 3 are the marginals.
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Then, the tests proposed in this thesis can be used to determine if a vector is not exhaustively

dependent and hence can be decomposed in independent subvectors.

Exhaustive dependence may be very useful in many applications. For example, in finance

it is relevant to identify if there is dependence between a group of variables. However, in

many real examples it is known from experience that some of the variables of interest are

dependent. Hence we can test if the assumption holds or not. For example, if we consider a

vector X = (X1, X2, X3, X4, X5) that is not exhaustively dependent, and suppose that it can be

expressed as

FX(x1, x2, x3, x4, x5) = FX1,X2(x1, x2)FX3,X4,X5(x3, x4, x5),

if the assumption is not rejected then it may be easier to model the structure of dependence

between (X1, X2) and between (X3, X4, X5) than the structure of dependence of X.
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Chapter 5

Final Comments

In the second chapter of this thesis we presented the concept of sample d-copula and we showed

that it has important properties such as it has constant density and a version of a Glivenko-

Cantelli’s theorem. Additionally, we compare the sample d-copula against the empirical copula,

and we noticed that there are many advantages using the sample d-copula instead the empirical.

In the third chapter we showed that it is possible to obtain the exact distribution of the sample

frequencies under the assumption of independence. We found simple expressions for the distri-

bution of the frequencies, and also we found expressions for the means and covariances. At the

end of the chapter we noticed that, in the case of dimension 2, the distribution in the cases of

the partition of order 2 and 3 is determined for only one and four random variables, respectively.

The main result of this thesis is the trivial characterization of multivariate independence in

terms of the checkerboards of order m = 2 and m = 3, C(2) and C(3). As we have seen, Cn
m

the sample d-copula of order m give us a very easy way to estimate the checkerboards of order

m = 2 and m = 3, Cn
m is an estimator of the true copula C, and also, an estimator of C(m), for

every 2 ≤ m ≤ n. Besides, this estimator can be evaluated with a standard computer, even for

large sample sizes and in dimension not so small, which allows us to perform a large number of

simulations in order to estimate the distributions under independence of the statistics that we

propose; this in contrast to some of the most famous tests that are impossible to evaluate for

large sample sizes in high dimensions.

Our proposed statistics are defined in terms of various distances and the Kulback-Leibler diver-

gence. Therefore, we do need not at all the heavy machinery of asymptotic theory to perform

the tests.

We simulated examples in dimension d = 2, d = 3 and d = 4, with different models and different

sample sizes, including a sample size of n = 1296 in dimension d = 4. As pointed out above, it

would be impossible to compute the empirical distribution function for these values of n and d.

Hence, any statistic based on this function is useless in this case, even if we rely on asymptotic

results. In [10], there are interesting results about the rate of the weak convergence of the sample

process.
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As we could observe the tests that we proposed are very competitive in comparison with the most

used tests in dimension 2; in fact, for small sample sizes we recommend to use the Hoeffding’s

test and the Blum’s test with caution because it has problems with the true value of α. Besides,

the Spearman’s test present problems with singular continuous random vectors.

In our simulations we observed that if the sample size is moderately large, any of the statistics

that we proposed may be used because they have similar powers. However, when the sample

size is small we warn the user against the statistic based on the supremum distance, because

it is affected by a strong discretization, which causes problems with the real values of α, the

probability of type I error. For more detail of this, observe the following graphs for dimension

d = 3, clearly the power of the test based on the supremum distance are higher than the

correspondent levels, see Figure 5.1:
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Figure 5.1: Powers for the Product copula with dimension d = 3
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[14] Li, X., Mikusiński, P. and Taylor, M.D. (1998). Strong approximations of copulas. J. Math.

Anal. Appl., 225, 608–623.
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