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Resumen

En este trabajo se presenta un observador con convergencia en tiempo �jo para sistemas lineales variantes
en el tiempo de la forma

ẋ(t) = A(t)x(t) +B(t)x(t),

y(t) = C(t)x(t),

donde las matrices del sistema A(t) ∈ Rn×n, B(t) ∈ Rn×m y C(t) ∈ Rr×n se asumen funciones continuas a
tramos y uniformemente acotadas en magnitud. Tanto las matrices como la entrada u(t) y la salida y(t) se
asumen conocidas. Se asume que el par (A(t), C(t)) es uniforme y completamente observable.

El observador propuesto está descrito por la siguiente dinámica:

˙̂x(t) =A(t)x̂(t) +B(t)u(t)−H(t)C>(t)
(
C(t)x̂(t)− y(t)

)
−H(t)

(
N(t)Λ1

⌈
N(t)x̂(t)− ψ(t)

⌋p1
+N(t)Λ2

⌈
N(t)x̂(t)− ψ(t)

⌋p2)
,

Ḣ(t) = H(t)A>(t) +A(t)H(t)−H(t)C>(t)C(t)H(t) +Q(t), H(t0) > 0,

Ṅ(t) = −A>(t)N(t)−N(t)A(t)−N(t)Q(t)N(t) + C>(t)C(t), N(t0) = 0,

ψ̇(t) = − (A(t) +Q(t)N(t))
>
ψ(t) + C>(t)ψ(t) +N(t)B(t)u(t), ψ(t0) = 0.

Los parámetros del observador se tienen que escoger de acuerdo a la siguiente tabla:

Parámetros Rango
p1 [0, 1)

p2 (1,∞)

Λi diag{λi,1, λi,2, · · · , λi,n}
λi,j (0,∞)

Q(t) = Q>(t) q1In ≥ Q(t) ≥ q2In
q1 and q2 (0,∞)

H(t0) Simétrica y positiva de�nida

N(t0) 0 ∈ Rn×n

ψ(t0) 0 ∈ Rn

Table 1: Parámetros del observador
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Éste observador es capaz de proporcionar un estimado exacto del estado x(t) del sistema en tiempo �jo.
Esta característica es descrita en el siguiente teorema:

Teorema. Considere al sistema lineal antes descrito y al observador. Asuma que los parámetros del ob-
servador son escogidos de acuerdo a la tabla presentada. Sea el par (A(t), C(t)) uniforme y completamente
observable en una ventana de tiempo de longitud T . Sea h > 0 y η > 0 tales que H(t) ≥ h In, para todo
t ≥ t0, y N(t) ≥ η In, para todo t ≥ t0 + T . Entonces x̂(t) converge a x(t) en tiempo �jo, uniformemente en
el tiempo inicial. Aun más, el tiempo necesario para que x̂(t) converja a x(t) es, a lo más

T +
nσp11 (Λ1)

h
p1+1

2 σp1+1
n (Λ1)ηp1+1(1− p1)

+
nσp21 (Λ2)

h
p2+1

2 σp2+1
n (Λ2)ηp2+1(p2 − 1)

.

Como puede observarse, el estimado del tiempo de convergencia es válido para cualquier error inicial. De
aquí que la convergencia no sólo sea uniforme en el tiempo inicial, sino también, en el estado inicial. Ésta
es la principal característica de la convergencia en tiempo �jo. La ventaja que se obtiene de la convergencia
en tiempo �jos es que pueden darse intervalos de con�anza para con�ar en el estimado del estado, cosa que
no puede hacerse si la convergencia es asintótica y sin conocer una región donde el estado del sistema está
contenido.



Abstract

In this work an observer with �xed-time convergence for linear time-varying systems is presented. The
addressed system class is as follows:

ẋ(t) = A(t)x(t) +B(t)x(t),

y(t) = C(t)x(t),

where the system matrices A(t) ∈ Rn×n, B(t) ∈ Rn×m, and C(t) ∈ Rr×n are assumed piecewise continuous
matrix valued functions, which are also uniformly bounded in magnitude. The matrices, the input u(t),
and the output y(t) are assumed known. We consider that the pair (A(t), C(t)) is uniformly completely
observable.

The proposed observer is described by the following dynamics:

˙̂x(t) =A(t)x̂(t) +B(t)u(t)−H(t)C>(t)
(
C(t)x̂(t)− y(t)

)
−H(t)

(
N(t)Λ1

⌈
N(t)x̂(t)− ψ(t)

⌋p1
+N(t)Λ2

⌈
N(t)x̂(t)− ψ(t)

⌋p2)
,

Ḣ(t) = H(t)A>(t) +A(t)H(t)−H(t)C>(t)C(t)H(t) +Q(t), H(t0) > 0,

Ṅ(t) = −A>(t)N(t)−N(t)A(t)−N(t)Q(t)N(t) + C>(t)C(t), N(t0) = 0,

ψ̇(t) = − (A(t) +Q(t)N(t))
>
ψ(t) + C>(t)ψ(t) +N(t)B(t)u(t), ψ(t0) = 0.

The observer parameters have to be chosen according with the next table:

Parameter Range
p1 [0, 1)

p2 (1,∞)

Λi diag{λi,1, λi,2, · · · , λi,n}
λi,j (0,∞)

Q(t) = Q>(t) q1In ≥ Q(t) ≥ q2In
q1 and q2 (0,∞)

H(t0) Symmetric, positive de�nite

N(t0) 0 ∈ Rn×n

ψ(t0) 0 ∈ Rn

Table 2: Observer parameters
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This observer is capable of providing an exact estimate of the system state x(t) in �xed time. This property
is given in the next theorem:

Theorem. Consider the previous linear systems and the observer dynamics. Assume that the observer pa-
rameters are chosen following the previous table. Let the pair (A(t), C(t)) be uniformly completely observable
over a time window of length T . Let h > 0 and η > 0 such that H(t) ≥ h In, for all t ≥ t0, and N(t) ≥ η In,
for all t ≥ t0 + T . Then x̂(t) converge to x(t) in �xed time. Furthermore, the convergence time is, at most

T +
nσp11 (Λ1)

h
p1+1

2 σp1+1
n (Λ1)ηp1+1(1− p1)

+
nσp21 (Λ2)

h
p2+1

2 σp2+1
n (Λ2)ηp2+1(p2 − 1)

.

As can be seen, the convergence time holds for any initial error. Then, the convergence is not only uniform
in the initial time, but also uniform in the initial condition. This is the main characteristic of the �xed-time
convergence. This property gives us the advantage of knowing a time for which the estimate can be trusted.
This is not possible if the convergences is asymptotic and one does not know a region in where the system
state lives.



List of symbols

Symbol Notes Meaning

R The set of real numbers
R≥a a ∈ R The interval [a,∞)
Rn n a natural number The real Euclidean space of dimension

n
Rn×m n and m natural numbers The space of real matrices with n rows

and m columns
L2

[t0,t1] t0, t1 ∈ R, t1 > t0 The set of all real squared integrable
functions de�ned over [t0, t1]

L2
[t0,t1],R

r t0, t1 ∈ R, t1 > t0, and r a natural
number

The set of all squared integrable, r-
vector valued, integrable functions de-
�ned over [t0, t1]

x> x ∈ Rn The transpose of a column vector, i.e.,
a row vector in R1×n

A> A ∈ Rn×m The transpose of the matrix A
xi, (x)i x ∈ Rn and i ≤ n a natural number The i-th component/coordinate of x
Ai,j A ∈ Rn×m, i ≤ n and j ≤ m natural

numbers
The component (i, j) of the matrix A

(A)i A ∈ Rn×m, i ≤ m a natural number The i-th column of the matrix A
tr(A) A ∈ Rn×n The trace of matrix A
diag{a1, · · · , an} ai ∈ R A squared diagonal matrix with diago-

nal elements ai
λi(A) A ∈ Rn×n, i ≤ n a natural number The i-th eigenvalue of A in some par-

ticular ordering. If A is symmetric, in
descending order

σi(A) A ∈ Rn×m, i ≤ min{n,m} a natural
number

The i-th singular value of A, when the
singular values are ordered in descend-
ing order

In n a natural number The identity matrix in Rn×n

‖x‖ x ∈ Rn The Euclidean norm of x equal to
√
x>x

‖x‖p x ∈ Rn and p ∈ R≥1 The p-norm of x de�ned as
(
∑n
i=1 |xi|p)1/p

dvcp v, p ∈ R The signed power of v: |v|psign(v)
dvcp v ∈ Rn and p ∈ R The signed power applied to each com-

ponent of v
A > B (A ≥ B) A, B ∈ Rn×n, both symmetric matrices A − B is a positive (semi) de�nite ma-

trix

xi
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Chapter 1

Introduction

Modern control theory relies on state feedback control. Almost all introductory textbooks in Automatic
Control dedicate their content to this topic. See for example (Kwakernaak and Sivan 1972), (Slotine and Li
1991), (Khalil 2002), (Hendricks, Jannerup, and Sørensen 2008) to mention a few. However, this approach
requires the availability of the full system's state at every moment. In real applications, having all the state
through sensors is not possible, practical, or even a�ordable. That is why the design of state observers has
become an intrinsic task in the development of modern control systems (Besançon 2007). An observer can
be seen as an auxiliary dynamical system that uses the input-output data coming from the system that is
capable of providing an accurate estimate of the system variables that are not available for measurement.
Usually, those estimates get close to the system state with time, in an asymptotic fashion. In many cases,
this su�ces the controller requirements to achieve its objective. Yet, in some situations, to get a good
performance, the degree of precision required in the estimates is high, and to obtain it, sometimes it is
needed to let the observer converge exactly and fast. Then, observers with high speed of convergence are
always good tools to have at hand.

The subject of study of this work is the design of observers for linear time-varying systems (LTV). Our
goal is to obtain a methodology for designing observers capable of reconstructing the state of the system
in a �nite amount of time, that is, in a non-asymptotic way. The objective goes further: the convergence
time should not exceed certain �xed amount, regardless of the initial error. This property is sometimes
referred to as �xed-time convergence, and has recently attracted the attention of the control community (A.
Polyakov 2012a). The importance of the LTV systems rests in di�erent points. First, this class of systems
covers the whole spectrum of linear, smooth, �nite-dimensional linear systems (R. Kalman, Falb, and Arbib
1969). Second, they can be used to approximate a large class of non-linear systems. This can be done
by linearization of the non-linear system along one trajectory, or by using more sophisticated and complete
methods as the iteration procedure described in (Tomas-Rodriguez and Banks 2010). Also, the class of linear
parameter-varying (LPV) can be represented and studied through LTV systems. At the same time, LPV
systems can be used to model linear and non-linear systems (Briat 2014). Finally, LTV systems can be used
to represent and analyse a broad class of classic problems in adaptive control (Narendra and Annaswamy
1989), (Ioannou and Sun 1995).

To design an observer for a general LTV system, there are not many options. Basically, one has to design
a Kalman-Bucy �lter. This observer was presented in (R. E. Kalman and R. S. Bucy 1961), and since then,
it has become the main tool to observer time-varying systems. Over the years, several modi�cations of the
algorithm have been proposed to improve its performance or to apply it in the observation of non-linear
systems (Besançon 2007). Some examples of these modi�cations are presented in (Boizot et al. 2007), where
the covariance matrices are adapted, or in (Deza et al. 1992), where the Kalman-Bucy �lter is combined
with a high gain approach. Another variation is proposed in (Besançon 2007, Sec. 1.3), where a linear term

1



2 CHAPTER 1. INTRODUCTION

is introduced in the Riccati equation to improve the convergence. Beyond all these innovations, at the core
of the procedure, the original result of Rudolf E. Kalman and Richard Bucy persists. The Kalman-Bucy
�lter consists of a linear time-varying output error feedback injection, which renders the observation error
dynamics in an asymptotically stable LTV system. Because of the linearity, the estimation converges, at
most, exponentially to the system trajectory. Additionally, the way in which the observer gain is computed
makes really hard to adjust the rate of convergence, or to adapt it to particular requirements. We see these
drawbacks as opportunity areas to improve the algorithm with respect to the convergence rate.

In contrast to the time varying case, for linear time-invariant systems (LTI), there are more options to
design an observer. From the classical Luenberger (Hendricks, Jannerup, and Sørensen 2008, Sec. 4.6) and
the stationary Kalman observer (Hendricks, Jannerup, and Sørensen 2008, Chap. 7), to new approaches
through high order sliding-mode observers and di�erentiator (Shtessel et al. 2013). We are interested in
properties mentioned above: Finite and Fixed-time convergence. The concept of �nite-time convergence
has more time in the literature of automatic control, and it can be tracked back to the classic sliding
modes. The second property, the �xed-time convergence, is relative new. This property was �rst observed
in homogeneous systems in the bi-limit in (Andrieu, Praly, and Astol� 2009), and the advantages of it in the
case of the robust di�erentiator were �st presented in (Cruz-Zavala, J. A. Moreno, and L. M. Fridman 2011).
The current denominations of �xed-time stability, convergence, and others, came from (A. Polyakov 2012a).
Since then, the topic has become very attractive, and several results on di�erentiation (Angulo, Jaime A.
Moreno, and L. Fridman 2013) and observation have been obtained (J. D. Sánchez-Torres and Loukianov
2014), (J. Diego Sánchez-Torres et al. 2015), (Gutiérrez et al. 2017), (Ménard, Moulay, and Perruquetti
2017), (Lopez-Ramirez et al. 2018), (Héctor Ríos and Teel 2018). Given the interest in this topic, there has
been an attempt to extend it to the case of homogeneous in the state time-varying systems (H. Ríos, E�mov,
A. Polyakov, et al. 2016), but with limit applications. The previous results for time invariant systems are
based on homogeneity, property that is not preserved when the time dependency is introduced, being this
the main di�culty in extending the theory to time-varying systems.

Inspired by the results of the sliding-mode community, and motivated by the high interest in the topic of
�nite and, particularly, �xed-time convergence, we start this work with the aim of providing these properties
in the observation of a particular class of homogeneous in the state time-varying systems: LTV systems. The
main contribution of this work is, precisely, an observer capable of estimating the state of a general LTV
system in �xed time. This observer can be seen as an improvement or modi�cation to the Kalman-Bucy
�lter, where the innovation terms are responsible for the accelerated convergence. This observer has also
been applied to some classic problem in adaptive control, where it provides, not only �xed-time convergence,
but allows to recover parameters and states under relaxed excitation conditions, something that was not
possible with the classical approaches.

1.1 Motivation

The initial motivation for this work came from the sliding-mode control. The achievements of this community
in �nite-time and �xed-time convergence in estimation of certain time-invariant systems moved us to extent
these results to the time-varying case. A �rst attempt was made in (J. G. Rueda-Escobedo and J. A.
Moreno 2015), where the problem of estimating constant parameters in �nite-time was addressed. However,
the proposed method in (J. G. Rueda-Escobedo and J. A. Moreno 2015) was only capable of recovering
the parameters exactly under very speci�c circumstances. At that moment, the question on how to do the
estimation in �nite time remained open. This work arises in response to that question, but extending the
scope to a more general class of systems.

A second motivation relies on the advantages that go along with the �nite and �xed-time convergence.
Academically speaking, �nite-time convergence means that the state of a system can be recovered exactly,
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something that does not happen when the convergence is asymptotic. But not only that, �nite-time con-
vergence also means a faster recovery of the estimation in the presence of perturbations, and in some cases,
disturbance rejection. On the other hand, �xed-time convergence has opened the opportunity of providing
times of reliability for the estimates. Since �xed-time convergence implies that the convergence time cannot
exceed,under any circumstance, certain limit, this allows to know when an estimate can be trusted. Given
that these two properties are interesting and useful, it is natural to try to use them in other applications.

Finally, there are some situations where the necessary information to achieve the estimation is only avail-
able for short time intervals. That is the case of parameters estimation in adaptive control, where some
kind of persistent excitation is needed. Usually, this excitation can only be kept by disturbing the nominal
operation of a system. Then, it is important to have observers and estimators capable of exploiting the
information more e�ciently and in less time.

1.2 Contributions

The main contribution of this thesis is an observer for general LTV systems with �xed-time convergence.
The observer and its properties are presented in Chapter 3, where the observer is introduced in (3.2). There,
not only the type of convergence is given, but an upper bound for the convergence time is provided (Theorem
3.1). Also, robustness of the observer in the presence of bounded disturbances is studied (Theorem 3.2),
and some conclusions about the behavior of the estimation error are obtained (Theorem 3.3). A preliminary
version of the observer was presented in

• P. Oliva-Fonseca, J. G. Rueda-Escobedo, and J. A. Moreno (Sept. 2016b). �Observador con conver-
gencia en tiempo �jo para sistemas LVT�. in: AMCA Congreso Nacional de Control Atomático

Besides general LTV systems, there are some particular application where the observer can be simpli�ed and
where it exhibits properties that cannot be reproduced by standard or classical methods. These cases are

• Observation of LTI systems in �xed-time (Section 4.1). On this topic, the following works were pre-
sented:

� J. G. Rueda-Escobedo, J. A. Moreno, and P. Oliva-Fonseca (June 2016a). �Finite-time state esti-
mation for LTI systems with a First-Order Sliding Mode�. In: 2016 14th International Workshop
on Variable Structure Systems (VSS), pp. 194�199. doi: 10.1109/VSS.2016.7506915

� J. G. Rueda-Escobedo, J. A. Moreno, and P. Oliva-Fonseca (Oct. 2016b). �Fixed-time Conver-
gent Unknown Input Observer for LTI Systems�. In: XVII Latin American Conference in 2016
Automatic Control, pp. 354�359

• Estimation of constant parameters in �xed-time (Section 4.2). The results obtained in this topic were
published in

� M. Noack, J. G. Rueda-Escobedo, J. Reger, and J. A. Moreno (Dec. 2016). �Fixed-time parameter
estimation in polynomial systems through modulating functions�. In: 2016 IEEE 55th Conference
on Decision and Control (CDC), pp. 2067�2072. doi: 10.1109/CDC.2016.7798568

• The design of adaptive observers for linear system with �xed-time convergence (Section 4.3). In this
topic, the following publications were obtained:

� P. Oliva-Fonseca, J. G. Rueda-Escobedo, and J. A. Moreno (Dec. 2016a). �Fixed-time adaptive
observer for linear time-invariant systems�. In: 2016 IEEE 55th Conference on Decision and
Control (CDC), pp. 1267�1272. doi: 10.1109/CDC.2016.7798440

https://doi.org/10.1109/VSS.2016.7506915
https://doi.org/10.1109/CDC.2016.7798568
https://doi.org/10.1109/CDC.2016.7798440
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server for LTI Systems�. In: IFAC-PapersOnLine 50.1. 20th IFAC World Congress, pp. 11639�
11644. issn: 2405-8963. doi: https://doi.org/10.1016/j.ifacol.2017.08.1664

• Generalization to the estimation of time-varying parameters (Section 4.4). The study of this topic
results in the following articles:

� Juan G. Rueda-Escobedo and Jaime A. Moreno (2016). �Discontinuous gradient algorithm for
�nite-time estimation of time-varying parameters�. In: International Journal of Control 89.9,
pp. 1838�1848. doi: 10.1080/00207179.2016.1159338

� H. Ríos, D. E�mov, J. A. Moreno, W. Perruquetti, and J. G. Rueda-Escobedo (July 2017).
�Time-Varying Parameter Identi�cation Algorithms: Finite and Fixed-Time Convergence�. In:
IEEE Transactions on Automatic Control 62.7, pp. 3671�3678. issn: 0018-9286. doi: 10.1109/
TAC.2017.2673413

Additionally to the situations exposed above, the technique developed in this thesis was extended to the
observation of LTV systems with delayed measurements. The proposed observer results to be useful when
the delay is time varying and unknown, but bounded. In that situation, there is a bounded observation error
because the lack of information about the delay. The interesting part relies on the possibility of reaching
the �nal bound arbitrarily fast, something that is new in this case. The results on this topic are reported in
the following articles:

• J. G. Rueda-Escobedo, Rosane Ushirobira, Denis E�mov, and J. A. Moreno (June 2018a). �A
Gramian-based observer with uniform convergence rate for delayed measurements�. In: 2018 European
Control Conference (ECC), To appear

• J. G. Rueda-Escobedo, Rosane Ushirobira, Denis E�mov, and J. A. Moreno (2018b). �Gramian-based
uniform convergent observer for stable LTV systems with delayed measurements�. In: International
Journal of Control, Accepted

During the study of observer designing for LTV systems with delayed measurements, a side results for the
case of constant known delay was obtained. In this case, a scheme of cascade �delayed" Kalman-Bucy �lter
is proposed to estimate asymptotically the state of the system allowing an arbitrarily large delay. Although
similar results can be found for LTI system, this was the �rst time this property was obtained for LTV
systems. This contribution was in part possible thanks to the research done about the Kalman-Bucy �lter
and presented in Section 2.3. This result was reported in:

• J. G. Rueda-Escobedo and J. A. Moreno (Sept. 2018). �Delayed Kalman-Bucy observer for a class
of LTV systems with delayed measurements�. In: 9th IFAC Symposium on Robust Control Design
(ROCOND), To appear

The contributions of this work are not limited to the observer here presented. During the development
of the proposed algorithm, we have created some tools to study the properties of the observer, and also,
the literature review about the Kalman-Bucy �lter took us to recover some interesting properties about it.
These contributions and developments are summarized in the following list:

• Lyapunov-like theorems to study �nite and �xed-time stability in time-varying system were developed
(Theorems 2.3 and 2.4).

• The interpretation of the Kalma-Bucy �lter as the recursive solver of a linear time-varying algebraic
equation (Section 2.3).
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• Recovery and complementation of some properties of the Riccati di�erential equations (Proposition
2.10). These properties were partially studied and presented by Rudolf E. Kalman in (R. E. Kalman
1960).

• An inequality to separate the e�ect of disturbances when acting under non-linear terms (Lemma 3.2).

1.3 Thesis structure

Beside the introduction, the thesis is organized in �ve chapters:

• Chapter 2 is a collection of concepts and ideas that support the developments presented in the chap-
ters after it. The considered topics are stability, linear systems, the Kalma-Bucy �lter, and Riccati
di�erential equations.

• In Chapter 3, the observer is presented and its properties are investigated. This chapter contains the
core of the thesis and its main contribution.

• In Chapter 4 particular cases of LTV systems are analyzed, and is discussed how to simplify the
structure of the observer for them. These cases are: LTI systems, constant parameter estimation,
adaptive observer design for LTI systems, and the reconstruction of time-varying parameters. In the
case of constant parameter estimation and the adaptive observer, non-uniform �xed-time convergence
is also studied, resulting in a relaxation on the classical persistence of excitation condition.

• In Chapter 5, a �nal balance about the observer's properties is given. Its advantages, drawbacks,
similarities and di�erences with the Kalman-Bucy �lter are exposed.

• Finally, in Chapter A, some basic inequalities are given since them are used recurrently along the
thesis.
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Chapter 2

Preliminaries

The objective of this chapter is to present several concepts that support the main result of this report. Most
of the concepts included in this chapter are common knowledge in the community of Automatic control;
however, it is useful to have them at hand for supporting the claims made along the work. On the other
hand, there are also results that are not that common, or have relevance only in certain communities. That
is the case of some properties of the Kalman-Bucy �lter that are developed here, or the concept of uniform
�nite and �xed-time stability that is even uncommon in the sliding-mode control literature.

This chapter starts with the concept of dynamical system and how to study some of its qualitative prop-
erties. In particular, the interest relies on some stability concepts and how to study these properties. After
that, the study is centered in linear dynamical systems, paying attention to the form of the solution and
how the internal state is re�ected in the output. Finally, the chapter ends with a discussion about the
Kalman-Bucy �lter and its properties.

2.1 Dynamical systems, Lyapunov stability, and related concepts

To begin this section, the concept of dynamical system is introduced. Although the de�nition of dynamical
system is a mathematical formalism, this de�nition is inspired in the work of the 19th century physicists,
and it represents an attempt to abstract the properties of natural systems.

De�nition 2.1 (Dynamical system). (Weiss and R. Kalman 1965, Def. 1) By a dynamical system we shall
mean a mathematical structure denoted by the septet

(
Σ, T , Ω, U , φ, Y, ψ

)
where:

1. Σ is an abstract space called the state space and T a set of values of time at which the behavior of
the system is de�ned. T is an ordered subset of the real numbers, with the usual ordering > (or <).
If t1, t0 ∈ T , the statement t1 > t0 (or t1 < t0) will mean that t1 is in the future (or in the past) with
respect to t0; equivalently, t0 is in the past (or in the future) with respect to t1.

2. Ω and U are abstract spaces with Ω being the set of functions of time u : T → U which represent the
admissible inputs to the system.

3. For any initial time t ∈ T , any initial state x ∈ Σ, and any input u ∈ Ω de�ned for t ≥ τ (or
t ≤ τ), states at other values of time the system are determined by a given Transition function
φ : Ω× T × T × Σ→ Σ, which is written as φu(t, τ, x). This function has the following properties:

7
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(a) φu(τ ; τ, x) = x for any u ∈ Ω, τ ∈ T , x ∈ Σ.

(b) φu(t; τ, x) is de�ned only when t ≥ τ (or t ≤ τ).
(c) φu(t2; t0, x) = φu(t2; t1, φu(t1; t0, x)) for all u ∈ ω, all t0, t1, t2 in T such that t2 ≥ t1 ≥ t0 (or

t2 ≤ t1 ≤ t0), and all x ∈ Σ.

(d) If u[τ,t] denotes the equivalent class of functions in Ω whose values agree with u in the set [τ, t]∩T ,
then

φu(t; τ, x) = φu[τ,t](t; τ, x).

4. Every output of the system at time t is given by the value of a real function ψ : T × Σ→ R; where ψ
belongs to a given class Y.

5. The functions φ and ψ are continuous with respect to suitable topologies de�ned on Σ, T , Ω, Y, and
the reals, as well as the induced product topologies.

One way to embody the previous concept is by means of di�erential equations. Let t0 ∈ R, x0 ∈ Rn, and
f, g : R≥t0 ×Rn → Rn be piecewise continuous functions in t and continuous in x. Consider the di�erential
equation

ẋ(t) = f(t, x(t)) + g(t, x(t))u(t), x(t0) = x0

y(t) = h
(
t, x(t)

) , (2.1)

and assume that its solutions are de�ned and are unique for any x0 and for t ≥ t0. Then, the solutions
of (2.1) satisfy all the criteria presented in De�nition 2.1, and therefore (2.1) can be used to represent an
abstract dynamical system where: Σ = Rn, T = {t ∈ R, t ≥ t0}, u(t) ∈ U , x(t) = φu(t; t0, x0), and h(t, x)
can be identi�ed with ψ. This kind of representation or model is common in �elds likes physics, chemistry,
engineering, economics, etc.

Some properties of system (2.1) can be studied by analyzing the �xed points of the di�erential equation
for zero input. Let xp be a �xed point, then, if (2.1) starts at xp (x0 = xp) and u(t) = 0, the correspondent
solution remains in such point: x(t) = xp for all t ≥ t0. This automatically means that f(t, xp) = 0 for all
t ≥ t0. Given that the derivative of the solutions is zero, these points are also called equilibrium points. This
concept is an inheritance of the classic mechanic where the equilibrium is reached when the acceleration is
zero. For simplicity, it is convenient to make a translation in the state x in other to make xp coincident
with zero. This can always be accomplished by the state transformation z = x− xp. Then, the equilibrium
solution is z(t) = 0. An important information to have about the equilibrium solution is to know when it is
stable. Intuitively, this means that if the initial condition of (2.1) is close to z = 0, the solution will remain
also close to the equilibrium solution, or even, the solution will approach it. In concrete, we are interested
in the Lyapunov stability of the equilibrium point. This concept is properly de�ned in the next segment.

De�nition 2.2 (Lyapunov Stability). (Khalil 2002, Def. 4.4) Consider a dynamical system described by
(2.1), with u(t) = 0 and f(t, 0) = 0 for all t ≥ t0. The equilibrium point x = 0 is Lyapunov

• stable if, for each ε > 0, there is δ = δ(ε, t0) > 0 such that

‖x(t0)‖ < δ =⇒ ‖x(t)‖ < ε, ∀ t ≥ t0. (2.2)

• uniformly stable if, for each ε > 0, the is δ = δ(ε) > 0, independent of t0, such that (2.2) is satis�ed.

• unstable if it is not stable.

• asymptotically stable if it is stable and there is a positive constant c = c(t0) such that x(t) → 0 as
t→∞, for all ‖x(t0)‖ < 0.
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• uniformly asymptotically stable if it is uniformly stable and there is a positive constant c, independent
of t0, such that for all ‖x(t0)‖ < 0, x(t) → 0 as t → ∞, uniformly in t0; that is, for each η > 0, there
is T = T (η) > 0 such that

‖x(t)‖ < 0, ∀ t ≥ t0 + T (η), ∀ ‖x(t0)‖ < c.

• globally uniformly asymptotically stable if it is uniformly stable, δ(ε) can be chosen to satisfy limε→∞ δ(ε) =
∞, and, for each pair of positive numbers η and c, there is T = T (η, c) > 0 such that

‖x(t)‖ < η, ∀ t ≥ t0 + T (η, c), ∀ ‖x(t0)‖ < c.

• (Khalil 2002, Def. 4.5) exponentially stable if there exist positive constants c, k, and λ such that

‖x(t)‖ ≤ k‖x(t0)‖ exp(−λ(t− t0)), ∀ ‖x(t0)‖ < c,

and globally exponentially stable if the inequality is satis�ed for any initial state x(t0).

• (Haddad, Nersesov, and Du 2008) �nite time stable if it is stable, and there exist an open neighborhood
D ⊂ Rn of the origin, and a function T : R≥t0 × D → [0,∞), called the settling-time function, such
that, for every t0 ∈ R and x0 ∈ D \ {0} limt→T (t0,x0) x(t) = 0 (�nite-time convergent).

• (Haddad, Nersesov, and Du 2008) uniformly �nite-time stable if it is uniformly stable and �nite-time
convergent.

• (Haddad, Nersesov, and Du 2008) globally �nite-time stable (respectively, globally uniformly �nite-time
stable) if it is �nite-time stable (respectively, uniformly �nite-time stable) with D = Rn.

• (A. Polyakov 2012b) �xed-time stable (respectively, uniformly �xed-time stable) if it is globally �nite-
time stable (respectively, globally uniformly �nite-time stable) and the settling-time function is bounded,
that is, ∃Tmax > 0 such that T (x0) ≤ Tmax for all x0 ∈ Rn (T (x0, t0) ≤ Tmax for all x0 ∈ Rn and all
t0 ≥ 0).

In general, proving that a system equilibrium point satis�es any of the stability concepts given above by
the direct application of the de�nition is really hard. The development of a tool to study this properties was
the concern of the work of Aleksandr M. Lyapunov (Lyapunov 1992). One of the results of the Lyapunov's
work was the concept of the now called Lyapunov function, a central topic in the modern Automatic Control
discipline. The use of such functions allows to investigate the stability of an equilibrium point. In regards of
this topic, below are presented some results that have been proved to help in the study of Lyapunov stability.

Theorem 2.1. (Khalil 2002, Theo. 4.8) Let x = 0 be an equilibrium point for ẋ(t) = f(t, x(t)) and D ⊂ Rn
be a domain containing x = 0. Let V : [t0,∞)×D → R≥0 be a continuously di�erentiable function such that

W1(‖x‖) ≤ V (t, x) ≤W2(‖x‖),

V̇ (t) =
∂

∂ t
V +

∂

∂ x
V · f(t, x) ≤ 0

for all t ≥ t0 and for all x ∈ D, where W1(·) and W2(·) are class K functions1. Then, x = 0 is uniformly
stable.
(Khalil 2002, Theo. 4.9) If the inequality can be strengthened to

V̇ (t) ≤ −W3(‖x(t)‖)

for all t ≥ 0 and for all x ∈ D, where W3(·) is a class K function. Then, x = 0 is uniformly asymptotically
stable. Finally, if D = Rn and W1(·), W2(·) are class K∞ functions, then x = 0 is globally uniformly
asymptotically stable.

1For a de�nition of class K, K∞, and KL functions, see (Khalil 2002, Def. 4.2).
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Theorem 2.2. (Khalil 2002, Theo. 4.10) Let x = 0 be an equilibrium point for ẋ(t) = f(t, x(t)) and D ⊂ Rn
be a domain containing x = 0. Let V : [t0,∞)×D → R≥0 be a continuously di�erentiable function such that

k1‖x‖a ≤V (t, x) ≤ k2‖x‖a

V̇ (t) ≤− k3‖x(t)‖a

for all t ≥ t0 and for all x ∈ D, where k1, k2, k2, and a are positive constants. Then, x = 0 is exponentially
stable. If the assumptions hold globally, then x = 0 is globally exponentially stable.

A positive de�nite function V satisfying the requirements of the theorems is called a Lyapunov function.
Any function V that satis�es the bounds W2(‖x‖) ≥ V (t, x) ≥ W2(‖x‖) for class K functions W1 and W2

is called a candidate Lyapunov function until its derivative, when evaluated over the system trajectories, is
proven to be negative, in such case, V quali�es as a Lypunov function.

The concepts of uniform stability, uniform asymptotic stability, and exponential stability are very well
known in the Automatic control community. The cases of uniform �nite and �xed-time stability, on the
contrary, are not well established. When the system in analysis is time invariant, i.e., ẋ(t) = f(x(t)), the
concepts of �nite and �xed-time stability are well spread in the sliding-mode control community, where these
properties have recently become a central topic (Andrey Polyakov and L. Fridman 2014). However, the way
these concepts apply when the system is time-varying is unclear. To exemplify the situation, consider the
system

ẋ(t) = −α(t, t0)

(
2

3

)1/2

dx(t)c1/4,

with α(t, t0) ≥ 0 for any t ≥ t0 ≥ 0. Also consider the candidate Lyapunov function V (x) = 2
3 |x|

3/2, which
derivative along the system trajectories is

V̇ (t) = −α(t, t0)

(
2

3

)1/2

|x(t)|3/4 = −α(t, t0)V 1/2(t).

To show di�erent scenarios, we consider the following choices for α(t, t0) and its integrals:

• α1(t, t0) = exp(−t) →
∫ t
t0
α1(σ, t0)dσ = − exp(−t) + exp(−t0),

• α2(t, t0) = exp(−t+ t0) →
∫ t
t0
α2(σ, t0)dσ = 1− exp(−t+ t0),

• α3(t, t0) = 1/(1 + t) →
∫ t
t0
α3(σ, t0)dσ = ln

(
(1 + t)/(1 + t0)

)
,

• α4(t, t0) = 1/(1 + t− t0) →
∫ t
t0
α4(σ, t0)dσ = ln(1 + t− t0).

In all these cases, the solution for V (t) is

V (t) =

(
V

1
2 (t0)− 1

2

∫ t

t0

α(σ, t0)dσ

)2

if 2
√
V (t0) >

∫ t
t0
α(σ, t0)dσ, and V (t) = 0 otherwise. This shows that x(t) can converge to zero in �nite

time. However, the properties of the solution are di�erent in each case. For α1, the �nite-time convergence is
only local since V (t0) has to be less than exp(−2 t0)/4, otherwise the integral of α1 will always be less than
2
√
V (t0) and V (t) converges to a constant. Also notice that the region for which the �nite-time convergence

occurs depends on the initial time. Furthermore, the (exact) convergence time is − ln(exp(−t0)− 2
√
V (t0)),

which also depends on the initial time. Then, the convergence is not uniform. The main characteristics in
each case are summarized in the following table.
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α(t, t0) Attraction region Convergence time Convergence

exp(−t) 4V (t0) < exp(−2 t0) − ln
(

exp(−t0)− 2
√
V (t0)

)
− t0 local, non-uniform

exp(−t+ t0) 4V (t0) < 1 − ln
(
1− 2

√
V (t0)

)
local, uniform

1/(1 + t) global
(

exp
(
2
√
V (t0)

)
− 1
)(

1 + t0
)

global, non-uniform

1/(1 + t− t0) global exp
(
2
√
V (t0)

)
− 1 global, uniform

In all cases, the function α is continuous and always positive. We can observe that local behavior happens
when the integral of α is bounded, and global when the integral diverges. To obtain uniformity, we introduced
dependency on t0 in α; however, this is not necessary. As an example, consider α(t) = 1 + sin(t), for which
there is global uniform �nite-time convergence. In (Haddad, Nersesov, and Du 2008), Example 3.1, the
authors claim that it is enough to have a continuous α(t) with α(t) > 0 for almost all t ∈ [t0,∞) to have
global convergence. Clearly, this is not true, as we showed in the previous examples. This mistake is also
re�ected in Theorem 4.1, item (ii), (ii) and (iv), where the same property over α is said to guarantee not
only globality, but also uniformity. The reference (Haddad, Nersesov, and Du 2008) is one of a very few
works dedicated to uniform �nite-time stability/convergence, and the mistake it contains re�ects the lack of
understanding of the topic.

Due to lack of work on Lyapunov theory in �nite and �xed-time stability for time-varying systems, we
are in the necessity of developing our own results to cover the requirements for this thesis. These results are
encompassed in the next theorems.

Theorem 2.3. Let x(t) = 0 be an equilibrium solution of ẋ(t) = f(t, x(t)). If there exist a continuously
di�erentiable function V : [0,∞) × Rn → R≥0, class K∞ functions W1(·) and W2(·), such that W1(‖x‖) ≤
V (t, x) ≤W2(‖x‖), a positive number λ ∈ (0, 1), and a positive function α : [0,∞)→ R≥0 such that

V̇ (t) ≤ −α(t)V λ(t), (2.3)

with

lim
t→∞

∫ t

t0

α(σ)dσ =∞ ∀ t0 ≥ 0,

then the solution x(t) = 0 is globally �nite-time stable. Furthermore, if there exist positive constants a1 > 0
and a0 ≥ 0 such that ∫ t

t0

α(σ)dσ ≥ a1

(
t− t0

)
− a0,

then x(t) = 0 is globally uniformly �nite-time stable. In such case, the settling-time function can be bounded
as

W 1−λ
2 (‖x(t0)‖) + a0(1− λ)

a1(1− λ)
≥ T

(
x(t0)

)
.

Proof. Following (Khalil 2002, Lem. 3.4), we can �nd the following solution for the di�erential inequality
(2.3):

α
(
‖x(t)‖

)
≤ V (t) ≤

(
V 1−λ(t0)− (1− λ)

∫ t

t0

α(σ)dσ

) 1
1−λ

for
1

1− λ
V 1−λ(t0) >

∫ t

t0

α(σ)dσ,
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and V (t) = 0 otherwise. To show the �nite-time convergence, we have to �nd a time for which V (t) = 0.
From the previous inequality, we have that this is ensured when∫ t

t0

α(σ)dσ ≥ 1

1− λ
V 1−λ(t0). (2.4)

Since the LHS goes to in�nity as t does, there exist t1 for every t0 and V (t0) at which we have the equality.
This proves the global �nite time convergences, but does not ensures uniformity since t1 may increase
unboundedly with t0. The lower bound for the growth of α(t) helps to establish the last property. In such
case, the convergence time can be estimated by majorizing the RHS of (2.4) as∫ t

t0

α(σ)dσ ≥ a1(t− t0)− a0 ≥
1

1− λ
V 1−λ(t0).

Then, for t greater than

t ≥ V 1−λ(t0) + a0(1− λ)

a1(1− λ)
+ t0 := t1,

we can guarantee that V (t) = 0, and since V (t) ≥ W1(‖x(t)‖), also x(t) = 0. In this case, the amount of
time needed to reach zero is at most

t1 − t0 =
V 1−λ(t0) + a0(1− λ)

a1(1− λ)
,

which does not depends on the initial time. In terms of x(t0), the convergence time can be estimated as

W 1−λ
2 (‖x(t0)‖) + a0(1− λ)

a1(1− λ)
,

asserting the uniformity.

Theorem 2.4. Let x = 0 be the equilibrium point of ẋ(t) = f(t, x(t)). If there exist a continuously di�eren-
tiable function V : [0,∞)× Rn → R≥0, and class K∞ functions W1(·) and W2(·), such that

W1(‖x‖) ≤V (t, x) ≤W2(‖x‖),
V̇ (t) ≤ −α(t)V p(t)− β(t)V q(t), (2.5)

with 0 < p < 1, q > 1, and for every t0 there exist t1(t0) <∞ such that∫ t1

t0

α(σ)dσ ≥ 1

1− p
and

∫ t1

t0

β(σ)dσ ≥ 1

q − 1
,

then x(t) = 0 is �xed-time stable. Furthermore, if there exist positive constants a1, b1 ∈ R>0 and non-negative
ones a0, b0 ∈ R≥0 such that∫ t

t0

α(σ)dσ ≥ a1(t− t0)− a0 and

∫ t

t0

β(σ)dσ ≥ b1(t− t0)− b0, (2.6)

then x(t) = 0 is uniformly �xed-time stable. In this case, the settling-time function can be bounded as

T (x0, t0) ≤ 1 + a0(1− p)
a1(1− p)

+
1 + b0(q − 1)

b1(q − 1)
∀ x0 ∈ Rn, t0 ≥ 0.

Proof. Denote V (t, x(t)) by V (t), in particular, V (t0, x0) by V (t0). Without loss of generality assume that
V (t0) > 1. From (2.5) we can see that the following two relations hold simultaneously:

V̇ (t) ≤ −α(t)V p(t),

V̇ (t) ≤ −β(t)V q(t).
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The general solution of the di�erential equation

ż(t) = −a(t)zα(t),

for α ≥ 0, α 6= 1, is

z(t) =

(∣∣z(t0)
∣∣1−α − (1− α)

∫ t

t0

a(σ)dσ

) 1
1−α

sign
(
z(t0)

)
.

Using the Comparison Lemma (Khalil 2002, Lem. 3.4), the previous solution can be specialized to our cases
with p ∈ [0, 1) and q > 1:

V (t) ≤
(
V 1−p(t0)− (1− p)

∫ t

t0

α(σ)dσ

) 1
1−p

, (2.7)

V (t) ≤ 1(
1

V q−1(t0) + (q − 1)
∫ t
t0
β(σ)dσ

) 1
q−1

, (2.8)

when V 1−p(t0) > (1 − p)
∫ t
t0
α(σ)dσ in (2.7), and V (t) = 0 otherwise. Again, both inequalities are valid

simultaneously. Consider �rst (2.8). Using it, let us �nd conditions that ensure V (t) ≤ 1. This occurs when∫ t

t0

β(σ)dσ ≥ 1

q − 1
− 1

(q − 1)V q−1(t0)
.

Noticing that

1

q − 1
>

1

q − 1
− 1

(q − 1)V q−1(t0)
∀ V (t0) ≥ 1,

and given the property of the integral of β(t), there exist t1(t0) for which which (q − 1)
∫ t1(t0)

t0
β(σ)dσ ≥ 1

holds. Then, for t ≥ t1(t0) we can guarantee that V (t) ≤ 1 independently of the initial condition. Now, we
consider (2.7) to �nd a time that ensure V (t) = 0. This happens when∫ t

t1(t0)

α(σ)dσ ≥ 1

1− p
.

Once more, given the integral property of α(t), there always exist t2(t1(t0)) (just t2(t0) for simplicity), such

that (1− p)
∫ t2(t0)

t1(t0)
α(σ)dσ ≥ 1. This shows the �xed-time convergence; however, the amount of time needed

to converge, i.e., t2(t0) − t0, may increase depending on t0. To suppress the dependency on t0, the lower
bounds for the integrals in (2.6) are used. With them, we can chose

t1 = t0 +
1 + b0(q − 1)

b1(q − 1)
,

t2 = t1 +
1 + a0(1− p)
a1(1− p)

= t0 +
1 + b0(q − 1)

b1(q − 1)
+

1 + a0(1− p)
a1(1− p)

.

These relations yield

t2 − t0 =
1 + b0(q − 1)

b1(q − 1)
+

1 + a0(1− p)
a1(1− p)

.

The length of the interval [t0, t2] does not depend on the initial time, asserting the uniformity.

These results about �nite and �xed-time stability for time-varying systems are by no means the more
general results on the topic that can be obtained. However, they analyze the basic properties we are looking
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in this class of systems. We want to remark that the bounds (2.6) not only help to establish uniformity, but
they imply robustness of the stability since they exclude functions α(t) and β(t) that goes to zero with time,
and because of this, they can be seen as a kind of persistent of excitation condition.

To end this section, we will present how to extend the use of Lyapunov functions to analyze robustness
of the stability, in particular Input-to-state stability (ISS). To introduce this concept, consider a dynamical
system described by

ẋ(t) = f(t, x(t)) + δ(t),

where δ(t) can be seen as a disturbance. Suppose that when δ(t) = 0, x(t) = 0 is a uniformly asymptotically
stable equilibrium point. One would expect that for δ(t) 6= 0, but uniformly bounded d ≥ ‖δ(t)‖, the state
x(t) will remain bounded, as happens in the case of linear systems. This is not true in general for non-linear
systems as is shown, for example, in (Khalil 2002, pp. 175). This is precisely what ISS tries to establish.
To formalize the discussion, we introduce the de�nition of ISS and a Lyapunov like theorem that helps to
evaluate if a system is ISS or not.

De�nition 2.3. (Edwards, Lin, and Wang 2000, Def. 2.1) Consider the system ẋ(t) = f(t, x(t), u(t)) and
assume that is forward complete. The system is input-to-state stable if there exist a class KL function β, a
class K function γ, such that, for each initial time t0 ≥ 0, each initial state x0, and each input function u(t),
it holds that

‖x(t)‖ ≤ β
(
‖x0‖, t− t0

)
+ γ

(
sup

s∈[t0,t]

‖u(s)‖

)

for all t ≥ t0.

De�nition 2.4. A smooth function V : [0,∞) × Rn → R≥0 is an ISS-Lyapunov function for system
ẋ(t) = f(t, x(t), u(t) if there exist K∞ functions W1(·), W2(·), ρ(·), and a continuous positive de�nite
function α such that

W1(‖x‖) ≤ V (t, x) ≤W2(‖x‖) ∀ t ≥ 0, ∀x ∈ Rn,

and

‖x‖ ≥ ρ(‖u‖) =⇒ ∂V

∂t
(t, x) +

∂V

∂x
f(t, x, u) ≤ −α(‖x‖).

Theorem 2.5. (Edwards, Lin, and Wang 2000, Theo. 1) A forward complete time varying system ẋ(t) =
f(t, x(t), u(t)) is ISS if and only if it admits a smooth ISS-Lyapunov function V .

2.2 Linear dynamical systems

The scope of this section is to review some properties of the linear dynamical systems related to its structure,
time behavior, stability, and some input-output properties. They will be used in the next section to analyze
the Kalman-Bucy �lter from a deterministic point of view, and it will help to develop some improvements
to such observer.

To start this section, the concept of dynamical system is narrowed to �nite-dimensional smooth linear
systems in the next de�nition. This class of systems will be the main subject of study from now on.

De�nition 2.5 (Finite dimensional, smooth linear dynamical system). A smooth linear dynamical system
is a dynamical system in the sense of De�nition 2.1 where
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• Σ is �nite-dimensional vector space,

• T is the real line and φ, ψ are smooth functions of t ∈ T ,

• φ is linear jointly in x ∈ Σ and u ∈ Ω and ψ is linear in x,

• U is p−dimensional and Y is r−dimensional.

Under the previous assumptions, all �nite dimensional, smooth linear dynamical systems are described as
follows:

Theorem 2.6. (R. Kalman, Falb, and Arbib 1969, Theo. 2.8 and 2.10) Every continuous-time, �nite-
dimensional, linear, smooth dynamical system obeys the relations:

ẋ(t) = A(t)x(t) +B(t)u(t),

y(t) = C(t)x(t),
(2.9)

For some measurable matrix valued functions A(t) : R → Rn×n, B(t) : R → Rn×p and C(t) : R → Rr×n.
Furthermore, the system is reversible in time.

The �rst part of Theorem 2.6 follows from the observation that linearity means φ(t; τ, x, u) = φ1(t, τ)x+
φ2(t, τ)u. By taking the time derivative of the previous relation, the di�erential expression arise. The second
part of the theorem comes from the solution theory of linear di�erential equation systems in form (2.9), as
will be exposed in the next paragraphs.

From this point on, it is assumed that u(t) is measurable, that A(t), B(t), and C(t) are picewise continuous
matrix valued functions of t ∈ R, and that they are uniformly bounded, that is, there exist positive real
constants µ, a, b, and c such that ‖u(t)‖ ≤ µ ‖A(t)‖ ≤ a, ‖B(t)‖ ≤ b, ‖C(t)‖ ≤ c for all t, where ‖ · ‖ denote
the matrix induced norm. Since the RHS of (2.9) is uniformly Lipschitz in x:∥∥A(t)x1(t) +B(t)u(t)−

(
A(t)x2(t) +B(t)u(t)

)∥∥ ≤ ‖A(t)‖ ‖x1(t)− x2(t)‖ ≤ a ‖x1(t)− x2(t)‖,

then, the Picard�Lindelöf theorem (Coddington and Levinson 1984, Chap. 1, Theo. 3.1) guarantees the
existence and uniqueness of solutions of (2.9) for any initial condition x(t0) = x0 on the interval [t0−ε, t0 +ε]
for some ε > 0. Given that the Lipschitz constant does not depend on the value of x, the solution can be
continued on any time interval, meaning that the solutions of a linear system exist for all t ∈ R. Given the
uniqueness, the solutions are reversible.

Now consider the unforced system and a set of n linear independent vectors {x1, x2, · · · , xn}. De�ne
the solution of (2.9) passing through the point (xi, t0) by φi(t) = φ(t; t0, xi). Then the set of functions
{φ1(t), φ2(t), · · · , φn(t)} is linearly independent. To show it, notice that for t = t0 they correspond to each
xi; since the functions are smooth, there is a time interval around t0 for which the sum

∑n
i=1 ciφi(t) is zero

if and only if each ci is zero, then the functions are linear independent over any interval. Furthermore, any
other solution can be expressed as a linear combination of the functions φi(t). To exemplify the previous
assertion, suppose we want the solution of (2.9) for u(t) = 0 and passing through (z, t0). Since the set formed
by the points xi is linear independent, there exist (unique) ci ∈ R such that z = c1x1 + c2x2 + · · · + cnxn.
Propose φ(t; t0, z) = c1φ1(t) + · · · + cnφn(t) as the desired solution. To test if this is correct, we only have
to check the initial condition and the di�erential equation. It is easy to see that at t0 φ(t0; t0, z) = z; on the
other hand, taking the derivative w.r.t. t we get:

d
dt
φ(t; t0, z) = c1A(t)φ1(t) + · · ·+ cnA(t)φn(t) = A(t)φ(t; t0, z).

Then φ(t; t0, z) is, in fact, the desired solution. This also means that all solutions of (2.9) can be generated
using the set {φ1(t), φ2(t), · · · , φn(t)}. Noticing that if φ(t; t0, xa) and φ(t; t0, xb) are solutions of (2.9), then
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φ(t; t0, xa)+φ(t; t0, xb) and c φ(t; t0, xa), c ∈ R also satisfy the di�erential equation, it is possible to conclude
that the set which contains all the solutions of (2.9) is a linear vector space of dimension n, and a basis is
given by the set {φ1(t), φ2(t), · · · , φn(t)}.

Let εi ∈ Rn, for i : 1, 2, · · · , n, with components εi,j = 0 for j 6= i, and εi,i = 1. That is, the set
{ε1, ε2, · · · , εn} represents the canonical basis for Rn. The solutions φi(t, t0) = φ(t; t0, εi) are of particular
interest since they can be used to �nd any other solution easily. Consider the matrix formed by columns
with these solutions Φ(t, t0) = col{φ1(t, t0), · · · , φn(t, t0)}, this matrix can be used to express the solution to
the unforced system as x(t) = Φ(t, t0)x(t0). This follows from the representation of the boundary condition
x(t0) in the canonical base of Rn. The matrix Φ(t, t0) is key in the study of dynamical linear system and
receive the name of state transition matrix. Some important properties of this matrix are given below:

Proposition 2.1. (Coddington and Levinson 1984, Chap. 3), (Abou-Kandil et al. 2003, Theo. 1.1.1) Let
Φ(t, t0) be the state transition matrix associated to the homogeneous equation ẋ(t) = A(t)x(t). Such matrix
has the following properties:

• Φ(t, τ)Φ(τ, t0) = Φ(t, t0) for t, t0, τ ∈ R,

• Φ−1(t, t0) = Φ(t0, t) for t, t0 ∈ R,

• ∂
∂ tΦ(t, t0) = A(t)Φ(t, t0) for t, t0 ∈ R,

• ∂
∂ tΦ

>(t0, t) = −A>(t)Φ>(t0, t) for t, t0 ∈ R,

• ∂
∂ tΦ(t0, t) = −Φ(t, t0)A(t) for t, t0 ∈ R,

• det Φ(t, t0) = exp
( ∫ t

t0
trA(s)ds

)
for t, t0 ∈ R,

• The state transition matrix is given by the Peano-Baker series

Φ(t, t0) = I +

∫ t

t0

A(s)ds+

∫ t

t0

A(s1)

∫ s1

t0

A(s2)ds2ds1

+

∫ t

t0

A(s1)

∫ s1

t0

A(s2)

∫ s2

t0

A(s3)ds3ds2ds1 + · · ·

• If A is constant, then

Φ(t, t0) = I +A(t− t0) +
1

2
A2(t− t0)2 +

1

6
A3(t− t0)3 + · · · := exp

(
A(t− t0)

)
,

• If A(t)A(τ) = A(τ)A(t) for all t, τ ∈ R, then

Φ(t, t0) = exp

(∫ t

t0

A(s)ds

)
.

In fact, using the state transition matrix, the general solution of (2.1) can be given as (Coddington and
Levinson 1984, Chap. 3, Theo. 3.1):

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, s)B(s)u(s)ds. (2.10)

This expression is commonly known as the Variation of Constants Formula. It can be veri�ed by checking
the boundary condition and its derivative.
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Now, with the principal properties of the linear systems solutions at hand, we will discus other properties
related with the input-output behavior of the systems. In particular, we are interested in computing the
internal state of the system assuming that the input u(t) is known and that we have an output y(t) which is
a linear combination of the state as in (2.9). Let us begin considering the time interval I = [t0, t1]. It is of
interest to know when is it possible to compute the state at t0 or t1 using the history of u(s) and y(s) with
s ∈ I. This re�ection yields the concepts of observable and constructible systems:

De�nition 2.6 (Observable system). A dynamical system is observable on I = [t0, t1] if and only if, for all
inputs and all corresponding outputs the state x(t0) is uniquely determined.

De�nition 2.7 (Constructible system). A dynamical system is constructible on I = [t0, t1] if and only if,
for all inputs and all corresponding outputs the state x(t1) is uniquely determined.

The question that arise after the de�nition is how to investigate when a linear system is observable or
constructible. To that matter, consider the output of the system at instant s ∈ I in terms of the state at t0:

y(s) = C(s)

(
Φ(s, t0)x(t0) +

∫ s

t0

Φ(s, σ)B(σ)u(σ)dσ

)
.

Now consider two di�erent values of x(t0), for example χ1 and χ2, and their corresponding outputs, y1(t)
and y2(s), for the same input. If both initial states generate the exactly same output during the interval,
these states are indistinguishable. This happens if the squared norm of y1(s) − y2(s) over I is identically
zero:

y1(s)− y2(s) = C(s)Φ(s, t0)
(
χ1 − χ2

)
,∫ t1

t0

‖y1(s)− y2(s)‖2ds =
(
χ1 − χ2

)> ∫ t1

t0

Φ>(s, t0)C>(s)C(s)Φ(s, t0)ds
(
χ1 − χ2

)
.

Then, if the matrix represented by the integral term on the RHS of the last equation is singular on I, there
are indistinguishable initial states, making the system unobservable. Notice that this property, in the case
of linear dynamical systems, does not depend on the input, but on the matrices A(t) and C(t). Analogously,
the output of the system on the interval I can be expressed in terms of the �nal state:

y(s) = C(s)

(
Φ(s, t1)x(t1) +

∫ s

t1

Φ(s, σ)B(σ)u(σ)dσ

)
.

Then, the squared norm of the di�erence between outputs generated by two di�erent �nal states, χ1 and χ2,
and the same input can be computed as:

y1(s)− y2(s) = C(s)Φ(s, t1)
(
χ1 − χ2

)
,∫ t1

t0

‖y1(s)− y2(s)‖2ds =
(
χ1 − χ2

)> ∫ t1

t0

Φ>(s, t1)C>(s)C(s)Φ(s, t1)ds
(
χ1 − χ2

)
.

Again, if the matrix de�ned by the integral term in the RHS of the last expression is singular, there would
be indistinguishable �nal states implying that the system is unconstructible. These observations yield the
following assertions2:

Theorem 2.7. (R. Kalman, Falb, and Arbib 1969, Sec. 2.6) The linear system (2.9) is (completely) observ-
able on the interval [t0, t1] if and only if the gramian matrix

N̄ (t1, t0) :=

∫ t1

t0

Φ>(s, t0)C>(s)C(s)Φ(s, t0)ds

is nonsingular.
2In (R. Kalman, Falb, and Arbib 1969) the conclusions are given in terms of unobservable/unconstructible events and not

in terms of the complete system; the theorems given here are equivalent to Theorem 6.6 and 6.7 in Section 2.6 of the cited
reference because if the gramian matrices are nonsingular there are no unobservable/unconstructible events.
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Theorem 2.8. (R. Kalman, Falb, and Arbib 1969, Sec. 2.6) The linear system (2.9) is (completely) con-
structible on the interval [t0, t1] if and only if the gramian matrix

N (t1, t0) :=

∫ t1

t0

Φ>(s, t1)C>(s)C(s)Φ(s, t1)ds

is nonsingular.

The gramian matrices N̄ (t1, t0) and N (t1, t0) are called Observability gramian matrix and Constructibility
gramian matrix, respectively. Notice than in the case of continuous time3 linear systems, both properties
are equivalent since

N (t1, t0) = Φ>(t0, t1)N̄ (t1, t0)Φ(t0, t1).

Then, if the system is observable on the interval I, it is also constructible in the same interval, and vice
versa.

The previous properties are tied to a speci�c time interval. This mean that they depend on the selection
of t0 and t1. If a system is observable/constructible on [t0, t1], it might not be on [t0 + ε, t1 + ε]. Even if
it is, the magnitude of the associated gramian matrix eigenvalues may di�er drastically. Let ∆ > 0 and
suppose that N (t0, t0 +∆) is nonsingular for all t0 ∈ R, but its smallest eigenvalue λn(t0) decrease whenever
t0 increase, that is, λn(t0) < λ̄ for all t0 ∈ R and λn(t0) → 0 as t0 → ∞. In this case, as the time evolves,
there is �less" information in N (t0, t0 + ∆) and a greater e�ort to recover the state will be required. These
scenarios are excluded if there is uniformity in the observability/constructibility property. The uniformity
is ensured if the gramian matrices satisfy the following:

De�nition 2.8. (R. E. Kalman 1960, Def. 5.23) A linear system (2.9) is uniformly (completely) observable
if there exist positive constants σ > 0, α1 ≥ α0 > 0 such that

α1I ≥ N̄ (t+ σ, t) ≥ α0I ∀ t ∈ R.

Equivalently, a de�nition of uniform of complete constructibility can be given:

De�nition 2.9. A linear system (2.9) is uniformly (completely) constructible if there exist positive constants
σ > 0, α1 ≥ α0 > 0 such that

α1I ≥ N (t, t− σ) ≥ α0I ∀ t ∈ R.

Using the same argument as before, it is easy to see that a linear system that is uniformly observable, it
is also uniformly constructible.

To end this section, we want to add that the uniformity on the observability/constructibility guarantee
the preservation of these properties for a class of non-linear systems with a linear part and an additive
known bounded disturbance (Sastry and C. Desoer 1982), or in the case of parameter uncertainties (Chung,
Park, and Lee 1999), i.e., if the parameter variation is small enough, the system with the correct parameters
will be UCO/UCC if the nominal system is UCO/UCC. The uniformity will also be essential to guarantee
boundedness of the observation error when the system is a�ected by unknown bounded disturbances. These
examples point out to the relation between uniformity and certain types of robustness.

3This is not true in general for discrete time linear system where the state transition matrix can be singular or even nilpotent.
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2.3 The Kalman-Bucy �lter

The Kalman �lter, for discrete-time linear systems, and the Kalman-Bucy �lter, for continuous-time linear
systems, are milestones in the theory of �ltering and state estimators/observers. The later one will be the
main topic of this section, and of great relevance along the report. The original work of Rudolf E. Kalman
and Richard S. Bucy (R. E. Kalman and R. S. Bucy 1961) was presented in the framework of stochastic
�ltering where the objective was to recover a message from an observed signal corrupted by a white noise
(stochastic) process. The original problem statement is as follows:

Optimal Estimation Problem:(R. E. Kalman and R. S. Bucy 1961) Let a message be a random process
x(t) generated by the model

ẋ(t) = A(t)x(t) +G(t)v(t).

The observed signal is

y(t) = C(t)x(t) + ν(t).

The signals v(t) and ν(t) are independent random processes with identically zero means and covariance
matrices:

cov
[
v(t), v(τ)

]
= Q(t) δ(t− τ)

cov
[
ν(t), ν(τ)

]
= R(t) δ(t− τ)

cov
[
v(t), ν(τ)

]
= 0

∀ t, τ,

where δ is the Dirac delta function, and Q(t), R(t) are symmetric, positive de�nite matrices. Given known
values of y(τ) in the time-interval t0 ≤ τ ≤ t, �nd an estimate x̂ with the property that the expected squared
error is minimized: E

(
‖x(t)− x̂(t)‖2

)
.

The solution to this problem is precisely the Kalman-Bucy �lter where the estimate x̂(t) is given by the
following linear dynamical system:

˙̂x(t) = A(t)x̂(t)−K(t)C>(t)R−1(t)
(
C(t)x̂(t)− y(t)

)
,

K̇(t) = A(t)K(t) +K(t)A>(t)−K(t)C>(t)R−1(t)C(t)K(t) +G(t)Q(t)G>(t),
(2.11)

where the �lter gain K(t) is the solution of the second expression, a Riccati di�erential equation, with
initial condition K(t0) = cov

[
x(t0), x(t0)

]
. To obtain the previous expressions, the original statement is

transformed into an optimal control problem by means of a duality principle. In that representation, the
solution can be derived by means of the main result in (R. E. Kalman 1960). Then, using the duality
principle again, the solution to the optimal estimation problem is obtained. A key element in the solution
is the Riccati di�erential equation that de�ne the behavior of the �lter gain K(t). Given the importance
of such class of di�erential equations, they will be reviewed latter in this section. For now, we will assume
that the solution exist on the interval [t0,∞), is unique, symmetric, and positive (semi) de�nite if the initial
condition is a symmetric positive (semi) de�nite matrix.

An equivalent formulation that is free of the stochastic framework has been proposed by Jan C. Willems
(Willems 2004). In the work of Willems, v(t) and ν(t) are interpreted as disturbances and are assumed locally
integrable functions instead of random processes. In this scenario, the observed signal y(t) can be reproduced
using di�erent combinations of initial conditions and di�erent disturbances v(t), ν(t). The problem then
is to �nd, among all the possibilities, the signals v(t), ν(t) and the initial condition x0 that minimize the
following criteria:

J = x>0 Γx0 +

∫ t

t0

v>(s)Q(s)v(s)ds+

∫ t

t0

ν>(s)R−1(s)ν(s)ds.
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Surprisingly, the solution to such problem yields, again, the Kalman-Bucy �lter (2.11). In this case, by
completing the squares of J (Brockett 1970, Chap. 3), the optimal values for x0, v(t), and ν(t) can be
found. These values in turn yield the dynamics of x̂(t).

In this section, with the objective of presenting the Kalman-Bucy �lter as an observer, we will follow a
di�erent path to derive the equations (2.11). To begin with, let us consider the linear system

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0,

y(t) = C(t)x(t),
(2.12)

where both u(t) and y(t) are known over the interval [t0, t]. Using this information, we want to �nd the
value of x(t). In this system, there are no disturbances. Let s ∈ [t0, t], using (2.10) we can write y(s) as

y(s) = C(s)

(
Φ(s, t)x(t) +

∫ s

t

Φ(s, σ)B(σ)u(σ)dσ

)
C(s)Φ(s, t)x(t) = y(s)− C(s)

∫ s

t

Φ(s, σ)B(σ)u(σ)dσ.

The previous equation de�nes a linear map between Rn and L2
[t0,t],Rr . This operator accepts a left inverse

if the pair (A(t), C(t)) is constructible for t ≥ t1 > t0 for some t1. We take the solution to the previous
equation as an estimate. Following (Brockett 1970, Sec. 3.20, Theo. 2), the solution for this class of equations
is

x̂(t) =

(∫ t

t0

Φ>(s, t)C>(s)C(s)Φ(s, t)ds

)−1

×
∫ t

t0

Φ>(s, t)C>(s)

(
y(s)− C(s)

∫ s

t

Φ(s, σ)B(σ)u(σ)dσ

)
ds

:= N−1(t, t0)× ψ(t). (2.13)

Although the previous expression solves the problem, in its current form it does not look very useful.
Fortunately, the estimate can be computed recursively. This means that x̂(t) can be computed using a
dynamical system. First, let us rename N (t, t0) just by N(t) when the initial time t0 is �xed. Then, to �nd
a recursion, we proceed in two steps. First, we look for a di�erential expression for N(t) and ψ(t). Second,
such expression will be used to compute the time derivative of x̂. Following this, we have:

Ṅ(t) = −A>(t)N(t)−N(t)A(t) + C>(t)C(t), N(t0) = 0,

Ṅ−1(t) = N−1(t)A>(t) +A(t)N−1(t)−N−1(t)C>(t)C(t)N−1(t), for t ≥ t1,
ψ̇(t) = −A>(t)ψ(t) + C>(t)y(t) +N(t)B(t)u(t), ψ(t0) = 0.

Here, the properties of the state transition matrix Φ(s, t) were used together with the relationship Ṅ−1(t)N(t)+
N−1(t)Ṅ(t) = 0. Notice that both, N(t) and ψ(t), are computed using a linear di�erential equation. Now,
the dynamics of x̂(t) can be derived as follows:

˙̂x(t) = Ṅ−1(t)ψ(t) +N−1(t)ψ̇(t)

= A(t)N−1(t)ψ(t)−N−1(t)C>(t)C(t)N−1(t)ψ(t) +N−1(t)C>(t)y(t) +B(t)u(t)

= A(t)x̂(t) +B(t)u(t)−N−1(t)C>(t)
(
C(t)x̂(t)− y(t)

)
.

This reassembles the structure of the Kalman-Bucy �lter; however, there are two important di�erences.
First, the initial condition for the constructibility gramian N(t) has to be zero, and therefore, there is no
proper choice to initialize its inverse N−1(t) and one has to wait until t1 to have an estimate. Second, if the
matrix A(t) describes a stable motion, −A>(t) will describe an unstable one (Callier and C. A. Desoer 1991,
Com. 115). This implies that N(t) and ψ(t) grows unboundedly as time passes, by whereas the magnitude of
N−1(t) will go to zero. The latter means that the observer gain is �losing" strength. To �x these problems,
the di�erential equation for N(t) is modi�ed by adding a quadratic term and changing the initial condition:

Ṅ(t) = −A>(t)N(t)−N(t)A(t)−N(t)Q(t)N(t) + C>(t)C(t), N(t0) > 0, (2.14)
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with q1I ≥ Q(t) ≥ q2I. Now, with the introduction of the quadratic term, the di�erential equation for N(t)
becomes of the Riccati type. As mentioned before, if a Riccati di�erential equation is initiated in a positive
(semi) de�nite matrix, its solution will remain positive (semi) de�nite. Then, the negative quadratic term
will �dissipate" energy, keeping the N(t) bounded (see (2.24)); additionally, if the initial condition is chosen
non-singular, N(t) will be non-singular over all the interval, showing that these modi�cations alleviate all
the issues mentioned above. In addition, the null space of N(t) at each t is the same no matter if it is solved
using the linear di�erential equation or the Riccati one. This means that the introduction of the quadratic
term does not modify the solvability of the original problem. To show the last point, we will follow (B.D.O.
Anderson 1971, Lem. 3.1). Consider the linear di�erential equation

Ṅ1(t) = −A>(t)N1(t)−N1(t)A(t) + C>(t)C(t), N1(t0) = N0 ≥ 0,

and its solution (Abou-Kandil et al. 2003, Cor. 1.1.6):

N1(t) = Φ>(t0, t)N0Φ(t0, t) +

∫ t

t0

Φ>(s, t)C>(s)C(s)Φ(s, t)ds,

where Φ(t, t0) is the state transition matrix associated to A(t). Also consider N2(t), the solution of the
Riccati equation

Ṅ2(t) = −A>(t)N2(t)−N2(t)A(t)−N2(t)Q(t)N2(t) + C>(t)C(t), N2(t0) = N0.

De�ne as Φ̄(t, t0) the state transition matrix associated to ẋ(t) = (−A>(t)−N2(t)Q(t))x(t), and for t1 > t0
consider S(t) = Φ̄(t1, t)N2(t)Φ̄>(t1, t) which satis�es

Ṡ(t) = Φ̄(t1, t)
(
N2(t)Q(t)N2(t) + C>(t)C(t)

)
Φ̄>(t1, t).

To show that N1(t) and N2(t) have the same null space, consider the time interval I = [t0, t1], and suppose
that N2(t1) is singular, then for some constant nonzero vector v ∈ Rn we have that N2(t1)v = 0. From the
de�nition of S(t) we know that S(t1)v = N2(t1)v = 0. Notice that both, S(t) and Ṡ(t), are positive semi
de�nite matrices on I. Consider the quadratic form q(t) = v>S(t)v ≥ 0. At the end point we have that
q(t1) = 0. q(t) can be obtained from solving the di�erential equation q̇(t) = v>Ṡ(t)v backwards in time.
Noticing that q̇(t) ≤ 0 when the time is reversed, and that q(t) ≥ 0 for all t ∈ I, we can conclude that the
only possibility is that q̇(t) = 0 and so q(t). This in tuns implies that S(t)v = P (t)Φ̄>(t1, t)v = 0 and that
C(t)Φ̄>(t1, t)v = 0 for all t ∈ I. Taking the time derivative of the product Φ̄>(t1, t)v we �nd that

d
dt

Φ̄>(t1, t)v =
(
A(t) +Q(t)N2(t)

)
Φ̄>(t1, t)v = A(t)Φ̄>(t1, t)v.

This means that Φ̄>(t1, t)v = Φ(t, t1)v over [t0, t1]. Then P (t)Φ̄>(t, t1)v = P (t)Φ(t, t1)v = 0 and C(t)Φ̄>(t, t1)v =
C(t)Φ(t, t1)v = 0. Now, the product N1(t1)v results in

N1(t1)v = Φ>(t0, t1)N0Φ(t0, t1)v +

∫ t1

t0

Φ>(s, t1)C>(s)C(s)Φ(s, t1)ds v = 0.

This proves that v belongs also to the nullspace of N1(t1). To prove the converse, that is, N1(t)v = 0 implies
N2(t)v = 0, we only need to reverse the procedure. Then, N1(t) and N2(t) have exactly the same nullspace
at each t, as mentioned before. This yields the following proposition:

Proposition 2.2. Let A(t) ∈ Rn×n, Q(t) ∈ Rn×n, and C(t) ∈ Rm×n be two uniformly bounded, piecewise
continuous matrix valued functions. Additionally, assume that Q(t) = Q>(t) and that there exist positive
constants q1 ≥ q2 > 0 such that q1In ≥ Q(t) ≥ q2In. Let N1(t) and N2(t) be the respective solutions of the
di�erential equations

Ṅ1(t) = −A>(t)N1(t)−N1(t)A(t) + C>(t)C(t),

Ṅ2(t) = −A>(t)N2(t)−N2(t)A(t)−N2(t)Q(t)N2(t) + C>(t)C(t),

with N1(t0) = N2(t0) = N0 and N0 = N>0 ≥ 0. Then, N1(t) and N2(t) have the same null space at each
t ≥ t0.
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A case of interest is when the initial condition N0 is set to zero. In such case N1(t) corresponds to the
constructibility gramian of the pair (A(t), C(t)), and more importantly, for the purpose of reconstructing
the state, N2(t) instead of N1(t), but with the advantages mentioned before. Now, a linear map analogue
to (2.13) would be desirable. In that respect, de�ne ψ(t) := N2(t)x(t). Di�erentiating ψ(t) with respect to
time, one gets

ψ̇(t) = Ṅ2(t)x(t) +N2(t)ẋ(t)

=
(
−A>(t)N2(t)−N2(t)A(t)−N2(t)Q(t)N2(t) + C>(t)C(t)

)
x(t) +N2(t)A(t)x(t) +N2(t)B(t)u(t)

= −A>(t)N2(t)x(t)−N2(t)Q(t)N2(t)x(t) + C>(t)C(t)x(t) +N2(t)B(t)u(t)

= − (A(t) +Q(t)N2(t))
>
ψ(t) + C>(t)y(t) +N2(t)B(t)u(t). (2.15)

In order to get the equivalence ψ(t) ≡ N2(t)x(t), correct initial conditions are needed. If the initial condition
of N2 is N0, and the initial condition of the system is x0, the appropriated initial condition for ψ is ψ(t0) =
N0x0. This implies the requirement of the initial condition for the system. However, if N(t0) is set to zero,
then ψ(t0) = 0; only in this case, there is certainty about initial condition for ψ(t). This drives the following
proposition:

Proposition 2.3. Let A(t) ∈ Rn×n, B(t) ∈ Rn×m, C(t) ∈ Rr×n, Q(t) ∈ Rn×n be piecewise continuous,
uniformly bounded matrix valued functions. Let Q(t) = Q>(t) and q1I ≥ Q(t) ≥ q2I for some positive
constants q1 ≥ q2 > 0. Let x(t) and N(t) be the solutions of the following di�erential equations:

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0,

Ṅ(t) = −A>(t)N(t)−N(t)A(t)−N(t)Q(t)N(t) + C>(t)C(t), N(t0) = 0,

for u(t) ∈ Rm a measurable function. De�ne y(t) as y(t) = C(t)x(t). Then, ψ(t) := N(t)x(t) satisfy the
following di�erential equation:

ψ̇(t) =
(
−A>(t)−N(t)Q(t)

)
ψ(t) + C>(t)y(t) +N(t)B(t)u(t), ψ(t0) = 0.

Note that the dynamics of ψ(t) depends only on input-output data, meaning that ψ(t) can be computed
online, despite its computation would not be necessary for the Kalman-Bucy �lter. However, this charac-
teristic will be really helpful in the developments of the next chapter. Now, considering N(t) and ψ(t) as in
Proposition 2.3, we take as state estimate x̂(t) = N−1(t)ψ(t), which dynamics results in

˙̂x(t) = Ṅ−1(t)ψ(t) +N−1(t)ψ̇(t)

= N−1(t)A>(t)ψ(t) +A(t)N−1(t)ψ(t) +Q(t)ψ(t)−N−1(t)C>(t)C(t)N−1(t)ψ(t)

−N−1(t)A>(t)ψ(t)−Q(t)ψ(t) +N−1(t)C>(t)y(t) +B(t)u(t)

= A(t)x̂(t) +B(t)u(t)−N−1(t)C>(t)
(
C(t)x̂(t)− y(t)

)
, (2.16)

with

Ṅ−1(t) = N−1(t)A>(t) +A(t)N−1(t)−N−1(t)C>(t)C(t)N−1(t) +Q(t). (2.17)

The previous expression is, in fact, the Kalman-Bucy �lter. This shows that the Kalman-Bucy �lter solves
the current state from the time-varying algebraic linear equation N(t)x(t) = ψ(t)! This interpretation will
be preferred along this thesis. Notice, however, that N−1(t) cannot be properly computed since there is no
suitable initial condition when N(t0) is singular. If (2.14) is initiated at any positive de�nite matrix, said
N0, its inverse will exist for all t ≥ t0, and it correspond to the solution of (2.17) initiated at N−1

0 . From
Theorem 2.10, given in the next section, we know that all solutions of (2.14) converge exponentially to the
one initiating in zero when the pair (A(t), C(t)) is uniformly constructible, and therefore, for every initial
initial condition for (2.17), its solution converges to the inverse we need. Since the transient error in N−1(t)
disappears only exponentially, the estimate provided by the Kalman-Bucy �lter converges exponentially as
well.
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Now, we want to analyze some properties of the Kalman-Bucy �lter related to the the convergence and
how it behaves when there are unknown inputs and bounded noise. To that matter, it is �rst necessary to
develop some bounds of N(t) because this matrix will be used to build a Lyapunov function. Fortunately,
Richard S. Bucy in (R. Bucy 1972) already developed such bounds in terms of the bounds for the following
gramian matrices:

β1I ≥N (t, t− T ) :=

∫ t

t−T
Φ>(s, t)C>(s)C(s)Φ(s, t)ds ≥ α1I ≥ 0,

β2I ≥W(t, t− T ) :=

∫ t

t−T
Φ(t, s)Q(s)Φ>(t, s)ds ≥ α2I ≥ 0.

The �rst gramian matrix corresponds to the constructibility gramian of the pair (A(t), C(t)) evaluated on
the �moving" interval [t − T, T ] of constant length T . The second one represents a kind of controllability
gramian. If α1 is strictly positive, the pair (A(t), C(t)) is UCC; analogously, if α2 > 0, the pair (A(t), Q1/2(t))
is uniformly completely controllable. Since Q(t) is a degree of freedom, we can impose, as we have done along
this section, some form of uniform positiveness, that is, q1I ≥ Q(t) ≥ q2I for some constants q1 ≥ q2 > 0.
Given q1 and q2, for any T > 0 there always exist positive constants β2 and α2 satisfying the previous
inequality forW. On the contrary, because C>(t)C(t) is in general positive semi-de�nite, there is a minimum
value for T > 0, if the pair is UCC, for which the constant α1 is greater than zero. Given this four constants
and the gramian matrices, we have that

N2(t) ≥
(
N̄−1(t, t− T ) + n2 β1β2

α1α2
W(t, t− T )

)−1

≥ α1α2

α2+n2β1β2
2
I

for t ≥ t0 + T. (2.18)

On the other hand, given q1 and q2, and the boundedness of A(t) and C(t), there always exists η > 0 such
that η ≥ ‖N2(t)‖ for all t ≥ t0(Proposition 2.5). Now, to have these properties at hand, we will summarize
them in the following proposition.

Proposition 2.4. Consider the Riccati di�erential equation

Ṅ(t) = −A>(t)N(t)−N(t)A(t)−N(t)Q(t)N(t) + C>(t)C(t), N(t0) ≥ 0,

for some piecewise continuous, uniformly bounded matrix valued functions A(t) ∈ Rn×n, C(t) ∈ Rr×n,
Q(t) ∈ Rn×n. Assume that the pair (A(t), C(t)) is uniformly completely constructible, and that Q(t) satisfy
q1I ≥ Q(t) ≥ q2I for some constants q1 ≥ q2 > 0. Then, there exist T > 0 and constants η1 ≥ η2 > 0 such
that

η1I ≥ N(t) ≥ η2I, ∀ t ≥ t0 + T,

for any t0, and where N(t) represents the solution of the Riccati di�erential equation.

Consider x(t) de�ned by (2.12) and x̂(t) de�ned by (2.16) and (2.17). Denote by x̃(t) = x̂(t) − x(t) the
estimation error, which dynamics satisfy

˙̃x(t) = A(t)x̃(t)−N−1(t)C>(t)C(t)x̃(t). (2.19)

To analyze indirectly the convergence of the observer, we will prove that x̃(t) goes to zero exponentially fast.
This can be done by considering the Lyapunov function candidate

V (x̃, t) = x̃>N(t)x̃, η2‖x̃‖2 ≥ V (x̃, t) ≥ η1‖x̃‖2,

with η1 and η2 as in Proposition 2.4. The time derivative of V , when evaluated over the trajectories of x̃,
results in:

V̇ (t) = ˙̃x>(t)N(t)x̃(t) + x̃>(t)N(t) ˙̃x(t) + x̃>(t)Ñ(t)x̃(t)

= x̃>(t)
(
A>(t)− C>(t)C(t)N−1(t)

)
N(t)x̃(t) + x̃>(t)N(t)

(
A(t)−N−1(t)C>(t)C(t)

)
x̃(t)

x̃>(t)
(
−A>(t)N(t)−A(t)N(t)−N(t)Q(t)N(t) + C>(t)C(t)

)
x̃(t)

= −x̃>(t)
(
N(t)Q(t)N(t) + C>(t)C(t)

)
x̃(t) ≤ −x̃>(t)N(t)Q(t)N(t)x̃(t)

≤ −q2η2V (t).
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From the last inequality, it is easy to conclude the exponential stability (Theorem 2.2). This gives support
to the assertion that x̂(t) converge to x(t). Now, we are going to investigate what happens when there are
disturbances in the system that the model do not consider. Let ν(t) ∈ Rn and δ(t) ∈ Rr be locally integrable,
and uniformly bounded, that is, ‖ν(t)‖ ≤M1 and ‖δ(t)‖ ≤M2. ν(t) acts as an additive unknown disturbance,
whereas δ(t) as additive noise. In the presence of these disturbances, the estimation error dynamics changes
to:

˙̃x(t) = A(t)x̃(t)−N−1(t)C>(t)C(t)x̃(t)− ν(t) +N−1(t)C>(t)δ(t).

To analyze this case, we will use the same Lyapunov function as before. In this situation, the time derivative
of V (t) results into

V̇ (t) = −x̃>(t)
(
N(t)Q(t)N(t) + C>(t)C(t)

)
x̃(t) + 2 x̃>(t)N(t)ν(t) + 2 x̃>(t)C>(t)δ(t)

≤ −q2η2V (t)− x̃>(t)C>(t)C(t)x̃(t) + ε1x̃
>(t)N(t)x̃(t) +

1

ε1
ν>(t)N(t)ν(t)

+ x̃>(t)C>(t)C(t)x̃(t) + δ>(t)δ(t)

≤ −1

2
q2η2V (t) +

1

q2η2
ν>(t)N(t)ν(t) + δ>(t)δ(t)

= −1

2
q2η2V (t) +

η1

q2η2
‖ν(t)‖2 + ‖δ(t)‖2.

This last inequality shows that the estimation error is Input-to-State-Stable with respect to both of the
disturbances. It is possible to compute an ultimate bound of the estimation error from the last inequality.
However, to obtain the ultimate bound, we will perform a di�erent analysis. Consider now as an error
measure ε(t) = N(t)x̂(t)− ψ(t), with ψ(t) as in (2.15). The dynamics of this new variable is

ε̇(t) = Ṅ(t)x̂(t) +N(t) ˙̂x(t)− ψ̇(t)

= −A>(t)N(t)x̂(t)−N(t)A(t)x̂(t)−N(t)Q(t)N(t)x̂(t) + C>(t)C(t)x̂(t) +N(t)A(t)x̂(t)

+N(t)B(t)u(t)− C>(t)C(t)x̂(t) + C>(t)C(t)x(t) + C>(t)δ(t) +A>(t)ψ(t) +N(t)Q(t)ψ(t)

− C>(t)C(t)x(t)− C>(t)δ(t)−N(t)B(t)u(t)

= −
(
A>(t) +N(t)Q(t)

)
ε(t).

This dynamics is uniform exponential stable, and it can be proved using W (ε, t) = ε>N−1(t)ε as Lyapunov
function. Then, in the limit, when ε(t) = 0, we have that x̂(t) = N−1(t)ψ(t), as expected. However, in
this case, x(t) is not equivalent to N−1(t)ψ(t) given the presence of the disturbances. If we would know the
values of ν(t) and δ(t), the correct computation of ψ(t) (call it ψ̄(t)) would be

˙̄ψ(t) =
(
−A>(t)−N(t)Q(t)

)
ψ̄(t) + C>(t)

(
y(t)− δ(t)

)
+N(t)

(
B(t)u(t) + ν(t)

)
.

Lets denote the di�erence between the computed ψ(t) and the correct one ψ̄(t) by ψ∆(t), which dynamics is

ψ̇∆(t) = −
(
A>(t) +N(t)Q(t)

)
ψ∆(t) + C>(t)δ(t)−N(t)ν(t).

Using Wψ(ψ∆, t) = ψ>∆N
−1(t)ψ∆ as Lyapunov function, it is possible to show the boundedness of ψ∆(t).

For the moment, the bound would not be of interest, and it would be treated later in this thesis. Using
x(t) = N−1(t)ψ̄(t) = N−1(ψ(t)− ψ∆(t)) we can compute the size of the �nal error:

x̃(t) = x̂(t)− x(t) = N−1(t)ψ(t)−N−1(t)
(
ψ(t)− ψ∆(t)

)
= N−1(t)ψ∆(t). (2.20)

This shows the intrinsic least square property of the Kalman-Bucy �lter. Additionally, this relation will help
us to compare the performance of the Kalman-Bucy �lter and the observer presented in this work.

To �nish this section, and for the sake of the self-contained, some properties of the Riccati di�erential
equation will be discussed in the next heading.
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2.3.1 Lyapunov and Riccati di�erential equations

In this section, we are going to develop some properties of the Matrix Riccati di�erential equations based
on well known properties of Lyapunov di�erential equations. These two classes of equations are de�ned as
follows:

De�nition 2.10. Let A(t) and Q(t) be uniformly bounded piecewise continuous matrix valued function
mapping R → Rn×n. In addition, Q(t) is assumed symmetric. A Lyapunov Di�erential Equation (LDE) is
a matrix di�erential equation of the form

±Ẋ(t) = A(t)X(t) +X(t)A>(t) +Q(t), X(t0) = X>(t0) = X0 ≥ 0 (or ≤ 0).

A Lyapunov Di�erential Inequality (LDI) is obtained when the equality sign is replaced by a inequality one,
for example:

±Ẋ(t) ≥ A(t)X(t) +X(t)A>(t) +Q(t), X(t0) = X>(t0) = X0 ≥ 0 (or ≤ 0).

De�nition 2.11. Let A(t), R(t), and Q(t) be matrix valued functions mapping R → Rn×n. The three
matrices are assumed uniformly bounded in magnitude. In addition, the matrices R(t) and Q(t) are assumed
symmetric. A Riccati Di�erential Equation (RDE) is a matrix di�erential equation of the form:

Ẋ(t) = A(t)X(t) +X(t)A>(t) +X(t)R(t)X(t) +Q(t), X(t0) = X>(t0) = X0 ≥ 0 (or ≤ 0). (2.21)

A Riccati Di�erential Inequality is obtained when the equality sign is replaced by a inequality one, for
example:

±Ẋ(t) ≥ A(t)X(t) +X(t)A>(t) +X(t)R(t)X(t) +Q(t), X(t0) = X>(t0) = X0 ≥ 0 (or ≤ 0).

From the structure of these equations it is clear that a LDE is a RDE where R(t) is zero. Furthermore, a
LDE is linear and its solution can be given in term of the state transition matrix associated to A(t). Such
solution is given by (Abou-Kandil et al. 2003, Cor. 1.1.6):

X(t) = Φ(t, t0)X0Φ>(t, t0) +

∫ t

t0

Φ(t, s)Q(s)Φ>(t, s)ds.

One can verify this fact by evaluating the boundary condition, and by replacing X(t) in the di�erential
equation. From the structure of the solution, the following lemma holds:

Lemma 2.1. (Abou-Kandil et al. 2003, Theo. 4.1.2) Let I ⊂ R be an interval with t0 ∈ I.

• If X(t) is on I a solution of the homogeneous LDE:

Ẋ(t) = A(t)X(t) +X(t)A>(t), t ∈ I,

then ±X(t0) ≥ (or >) 0 implies ±X(t) ≥ (or >) 0 for t ∈ I.

• If X(t) is on I a solution of the LDI:

±Ẋ(t) ≤ ±A(t)X(t)±X(t)A>(t), t ∈ I ∩ (−∞, t0],

then ±X(t0) ≥ (or >) 0 implies ±X(t) ≥ (or >) on I ∩ (−∞, t0].

• If X(t) is on I a solution of the LDI

±Ẋ(t) ≥ ±A(t)X(t)±X(t)A>(t), t ∈ I ∩ [t0,∞),

then ±X(t0) ≥ (or >) 0 implies ±X(t) ≥ 0 (or >) on I ∩ [t0,∞).
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• (Abou-Kandil et al. 2003, Lem. 4.1.3) Ẋ(t) ≤ 0 (or <) for t ∈ I implies X(t2) ≤ (or <) X(t1) for
t1, t2 ∈ I and t1 < t2.

These ordering properties for the solutions of homogeneous LDI will help us to establish analogue properties
for RDE. This in turn allows to proof the existence of solutions of RDE in certain cases. The ordering property
for the solution of RDE is given in the next theorem:

Theorem 2.9 (Comparison Theorem). (Abou-Kandil et al. 2003, Theo. 4.1.1) Let I ⊂ R be some interval,
t0 ∈ I, and let the matrix functions Ai(t), Ri(t) = R>i (t), Qi(t) = Q>i (t), for i = 1, 2, be piecewise
continuous and locally bounded. Consider two RDE of the form

Ẋi(t) = −A>i (t)Xi(t)−Xi(t)A(t) +Qi(t)−Xi(t)Ri(t)Xi(t), Xi(t0) = X>i (t0).

De�ne an associated Hamiltonian block matrix Hi(t) and the �imaginary" matrix unit J as

Hi(t) :=

[
Ai(t) Ri(t)
Qi(t) −A>i (t)

]
, J :=

[
0 −In
In 0

]
.

Spouse that X2(t0) ≥ (or >) X1(t0), then

J H1(t) ≥ J H2(t) for t ∈ I

implies X2(t) ≥ (or >) X1(t) for t ∈ I∩[t0,∞); i.e., the solutions of the RDE Xi(t) depend monotonically on
J Hi(t) (and in particular on Qi(t) and −Ri(t)) and on the initial value of Xi(t0). This statement remains
valid if we replace therein everywhere ≥ (or >) by ≤ (or <) and simultaneously [t0,∞) by (−∞, t0].

Proof. De�ne X̃(t) = X2(t) −X1(t) for which X̃(t0) ≥ (or >) 0. Let us drop the time dependency for the
sake of brevity; the time derivative of X̃(t) results in

˙̃X = −A>2 X2 −X2A2 +Q2 −X2R2X2 +A>1 X1 +X1A1 −Q1 +X1R1X1

= −A>2 X2 −X2A2 −
(
X2 −X1

)
R2

(
X2 −X1

)
−X2R2X1 −X1R2X2 +X1R2X1 +Q2 −Q1

+A>1 X1 +X1A1 +X1R1X1

= −A>2
(
X2 −X1

)
−
(
X2 −X1

)
A2 −

(
X2 −X1

)
R2

(
X2 −X1

)
+Q2 −Q1 + 2X1R2X1

−X2R2X1 −X1R2X2 −
(
A>2 −A>1

)
X1 −X1

(
A2 −A1

)
−X1

(
R2 −R1

)
X1

=
(
−A>2 −X1R2

)
X̃ + X̃

(
−A2 −R2X1

)
− X̃R2X̃(

A>1 −A>2
)
X1 +X1

(
A1 −A2

)
+X1

(
R1 −R2

)
X1 +Q2 −Q1

=
(
−A>2 −X1R2 −

1

2
X̃R2

)
X̃ + X̃

(
−A2 −R2X1 −

1

2
R2X̃

)
(
A>1 −A>2

)
X1 +X1

(
A1 −A2

)
+X1

(
R1 −R2

)
X1 +Q2 −Q1

= ÃX̃ + Ã>X̃ +
[
I X1

]
J
(
H1 −H2

)[ I
X1

]
= ÃX̃ + Ã>X̃ + Q̃(t).

Then, the dynamics of X̃(t) satisfy a LDE. In account of J (H1(t)−H2(t)) ≥ 0 we have

˙̃X(t) ≥ Ã(t)X̃(t) + X̃(t)Ã>(t),

then, by Lemma 2.1, X̃(t0) = X2(t0) − X1(t) ≥ 0 (or > 0) implies that X̃(t) ≥ 0 (or > 0) on I ∩ [t0,∞).
Equivalently, we have that X2(t) ≥ (or >) X1(t) over the same interval. If we reverse everywhere the
inequalities, the statement is true over I ∩ (∞, t0].
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Now, we are going to consider a speci�c class of RDE involved in the problem of state estimation. With
the help of the Comparison Theorem, the existence of solution for the RDE over [t0,∞) can be guarantee.
First, we consider the LDE for the constructibility gramian and the associated RDE:

Ṅ1(t) = −A>(t)N1(t)−N1(t)A(t)−N1Q(t)N1(t) + C>(t)C(t), (2.22)

Ṅ2(t) = −A>(t)N2(t)−N2(t)A(t) + C>(t)C(t),

with Q(t) ≥ 0 and N2(t0) ≥ N1(t0). The associated Hamiltonian matrices for these equations are

H1(t) =

[
A(t) Q(t)

C>(t)C(t) −A>(t)

]
H2(t) =

[
A(t) 0

C>(t)C(t) −A>(t)

]
.

In this case, the criteria J(H1(t)−H2(t)) results in

J(H1(t)−H2(t)) =

[
0 −I
I 0

]
·
[
0 Q(t)
0 0

]
=

[
0 0
0 Q(t)

]
≥ 0,

or J H1(t) ≥ J H2(t). Then, by Theorem 2.9, N2(t) ≥ N1(t) for t ≥ t0. In other words, N2(t) (the
constructibility gramian of the pair (A(t), C(t))) represent an upper bound for the solution of the �rst RDE,
asserting the existence of solutions for all t ≥ t0. Notice that here we did not need the invertibility of N2(t)
at any point, then, the existence of the solution is independent of the pair (A(t), C(t)) being constructible
or not. The only requirement is that Q(t) be a positive semi-de�nite matrix.

An other interesting property of the RDE (2.22) is that its solution remains positive semi-de�nite if the
initial condition is a positive semi-de�nite matrix. To see this, consider a third RDE:

Ṅ3(t) = −A>(t)N3(t)−N3(t)A(t)−N3(t)Q(t)N3(t), N3(t0) = 0.

Then, for any N1(t0), we have N1(t0) ≥ N3(t0). The criteria J(H3(t)−H1(t)) in this case yields[
0 −I
I 0

] [
0 0

−C>(t)C(t) 0

]
=

[
C>(t)C(t) 0

0 0

]
≥ 0.

This means that N1(t) ≥ N3(t) for all t ≥ t0. Since N3(t) = 0, we can conclude that N1(t) ≥ 0 for t ≥ t0.
Furthermore, if the initial condition N1(t0) is positive de�nite, the solution N1(t) remains positive de�nite.
If the initial condition is positive de�nite then, by continuity, the solution remains positive at least for a short
period of time. In such time interval the inverse of N1(t) exist. Denote it by K(t). It satisfy K(t0) = N−1

1 (t0)
and

d
dt
K(t)N1(t) = K̇(t)N1(t) +K(t)N1(t) = 0,

K̇(t) = −K(t)N1(t)K(t) = K(t)A>(t) +A(t)K(t)−K(t)C>(t)C(t)K(t) +Q(t). (2.23)

The existence of solutions for K(t) can be proved analogously to the case of N1(t). Given that N1(t) and
K(t) exist, and because they satisfy the relation N1(t)K(t) = K(t)N1(t) = I, is possible to assert that both
of them are positive de�nite. Also, notice that K(t) has the same dynamics as the gain for the Kalman-Bucy
�lter.

Now that we know that N1(t) exist for all t ≥ t0, and that it remains positive (semi) de�nite if N(t0)
is positive (semi) de�nite, we can proceed to proof that N1(t) is uniformly bounded if there exist positive
constants q1 ≥ q2, a, and c such that

q1I ≥ Q(t) ≥ q2I, a ≥ ‖A(t)‖, c ≥ ‖C>(t)C(t)‖.

Consider the positive de�nite function V (N1) = 1
2 tr
(
N2

1

)
, which derivative along the dynamics of N1(t)

results in

V̇ (t) = tr
(
−N1(t)

(
A>(t) +A(t)

)
N1(t)−N3/2

1 (t)Q(t)N
3/2
1 (t) + C>(t)C(t)N1(t)

)
≤ σ1

(
A>(t) +A(t)

)
tr
(
N2

1 (t)
)
− σn

(
Q(t)

)
tr
((
N2

1 (t)
)3/2)

+
1

2
tr
((
C>(t)C(t)

)2)
+

1

2
tr
(
N2

1 (t)
)

≤
(
4 a+ 1

)
V (t) +

1

2
c tr
(
C>(t)C(t)

)
− q2tr

((
N2

1 (t)
)3/2)

.
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Here, the relationship tr(XMX) ≥ σn(M)tr(X2), for X,M ∈ Rn×n and M = M>, and ‖M‖ = ‖M>‖ =
σ1(M), for M ∈ Rn×n, where used. Now, consider the following properties:

tr
(
Mp
)

=

n∑
i=1

λpi
(
M
)
, 0 ≤M = M> ∈ Rn×n, p > 0,

n∑
i=1

rpi ≥
1

np−1

( n∑
i=1

ri

)p
, p ≥ 1, ri ≥ 0.

Using these relations, we can arrive to the inequality

V̇ (t) ≤ n

2
c2 +

(
4 a+ 1

)
V (t)− q2

n∑
i=1

λ
3/2
i

(
N2

1 (t)
)

≤ n

2
c2 +

(
4 a+ 1

)
V (t)− q2√

n

(
n∑
i=1

λi
(
N2

1 (t)
))3/2

≤ n

2
c2 +

(
4 a+ 1

)
V (t)− 23/2 q2√

n
V 3/2(t). (2.24)

Denote by ν > 0 the unique root of the polynomial

23/2 q2√
n
x3/2 − (4 a+ 1)x− n

2
c2 = 0.

Then, for V (t) > ν, V̇ (t) < 0. Then, recalling Theorem 2.5, we can claim that N1(t) remains bounded. This
is summarized in the following proposition.

Proposition 2.5. Let A(t) ∈ Rn×n and C(t) ∈ Rr×n be piecewise continuous matrix valued function.
Assume that there exist positive constants a and c such that a ≥ ‖A(t)‖, c ≥ ‖C(t)‖ for all t ≥ 0. Let
Q(t) ∈ Rn×n be a symmetric piecewise continuous matrix function, accepting the bounds q1I ≥ Q(t) ≥ q2I >
0. Then, any solution of the Riccati di�erential equation

Ṅ(t) = −A>(t)N(t)−N(t)A(t)−N(t)Q(t)N(t) + C>(t)C(t), N(t0) ≥ 0,

remains bounded, that is, ‖N(t)‖ ≤ η for all t ≥ t0 and for some η > 0.

The �nal point to discuss is the dependency of the solution of (2.22) on the parameters A(t), Q(t), and
C(t), rather than on the initial condition, when the pair (A(t), C(t)) is UCC. What we found is that all the
solutions starting in any positive positive semi-de�nite matrix converge to the solution initiated in zero. This
was already known by R. E. Kalman 1960. However, the proof presented in (R. E. Kalman 1960, Theo. 7.2)
has some omissions and mistakes, which do not change the result, but make it di�cult of reproducing. In the
proof presented below, we not only reconstructed the proof of Kalman, but we investigate some convergence
properties that were left aside by him. More precisely, the di�erence between two ordered solutions of the
RDE converge to a �x bounded value in �xed-time.

Theorem 2.10. Let A(t) ∈ Rn×n, C(t) ∈ Rr×n, and Q(t) ∈ Rn×n be piecewise continuous, uniformly
bounded matrix valued functions. Let Q(t) = Q>(t) with q1I ≥ Q(t) ≥ q2I > 0. Consider the Riccati
di�erential equation

Ṅ(t) = −A>(t)N(t)−N(t)A(t)−N(t)Q(t)N(t) + C>(t)C(t), N(t0) = N>(t0) ≥ 0.

Assume that the pair (A(t), C(t)) is UCC. Consider Na(t) and Nb(t) two solutions of the RDE starting at
Na(t0) ≥ 0 and Nb(t0) ≥ 0 with Na(t0) ≥ Nb(t0). Then Na(t)→ Nb(t) as t→∞. In particular this means
that all the solutions of the RDE starting at any positive semi-de�nite matrix converge to the solution started
in zero.
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Denote by N̄(t) the solution starting at zero and by N(t) any other solution with positive semi-de�nite
initial condition. Let η1In ≥ N̄(t) ≥ η2In for all t ≥ t0 + T . Then, we have that r ≥ ‖N(t)− N̄(t)‖ for

t ≥ t0 + T +
η1

q2η2
2

ln

(
η2

1

r
+ 1

)
for given given r > 0 and N(t0) ≥ 0.

Proof. Given the ordering property of the RDE we have that Na(t) ≥ Nb(t) for all t ≥ t0, and the di�erence
E(t) = Na(t)−Nb(t) also satisfy E(t) ≥ 0 for all t0. The dynamics of the di�erence satisfy

Ė(t) = −A>(t)E(t)− E(t)A(t)−Na(t)Q(t)Na(t) +Nb(t)Q(t)Nb(t)

= −A>(t)E(t)− E(t)A(t)− E(t)Q(t)E(t)−Na(t)Q(t)Nb(t)−Nb(t)Q(t)Na(t) + 2Nb(t)Q(t)Nb(t)

= −
(
A>(t) +Nb(t)Q(t)

)
E(t)− E(t)

(
A(t) +Q(t)Nb(t)

)
− E(t)Q(t)E(t).

Since the pair (A(t), C(t)) is UCC, for t ≥ t0 + T we have the bounds η1In ≥ Nb(t) ≥ η2In > 0. Denote by
H(t) the inverse of Nb(t) for t ≥ t0 + T . It satis�es the bounds 1

η2
In ≥ H(t) ≥ 1

η1
In, and the dynamics:

Ḣ(t) = H(t)A>(t) +A(t)H(t)−H(t)C>(t)C(t)H(t) +Q(t), H(t0 + T ) = N−1
b (t0 + T ).

For t ≥ t0 + T , consider the candidate Lyapunov function

V (E, t) =
1

2
tr
((
EH(t)

)2)
=

1

2
tr
(
H1/2(t)EH(t)EH1/2(t)

)
,

1

2 η2
2

tr
(
E2
)
≥ V (E, t) ≥ 1

2 η2
1

tr
(
E2
)
.

To keep the equations short, the time dependency of the matrices is dropped. The derivative of V (t) along
the dynamics of E(t) yields

V̇ = tr
(
EH

(
ĖH + E Ḣ

))
= tr

(
−(EH)2A> − EH EQ− (H E)2A− EH EQ− (H E)2QE + (EH)2A> + (H E)2A

−(EH)2C>C H + EH EQ
)

= tr
(
−EH EQ− (H E)2QE −H1/2EH C>C H EH1/2

)
≤ tr

(
−H1/2EQEH1/2 − E1/2H EQEH E1/2

)
≤ −σn

(
Q
)
tr
(
EH E

)
− σn

(
Q
)
tr
(
E
(
EH

)2)
.

Knowing that tr(A2B2) ≥ tr((AB)2) (Bernstein 2009, Fact 8.12.22), it follows that

V̇ (t) ≤ − q2

η1
tr
(
E2(t)

)
− q2tr

(
H1/2(t)E3/2(t)H(t)E3/2(t)H1/2(t)

)
≤ − q2

η1
tr
(
E2(t)

)
− q2

η2
1

tr
(
E3(t)

)
≤ − q2

η1
tr
(
E2(t)

)
− q2

n2η2
1

tr3/2
(
E2(t)

)
≤ −2 q2

η2
2

η1
V (t)− 23/2q2

η2
2

η2
1

V 3/2(t) < 0. (2.25)

Then E(t) = 0 is uniformly asymptotically stable. Now, we are interested in investigate the time it takes
for ‖E(t)‖ to be less than or equal to some r > 0 for any given initial error. In order to proceed, we have to
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solve the di�erential inequality (2.25), which is of separable variables. Knowing that

∫
1

k1v + k2vp
dv =

p ln(v)− ln(k1v + k2v
p)

k1(p− 1)
and

f(v) = vp

k1v+k2vp

f−1(v) =
(

1
k1v
− k2

k1

)1/(1−p) ,

the di�erential equation can be solved. Using the solution together with the Comparison Lemma (Khalil
2002, Lem. 3.4), we have

V (t) ≤
((

1

V 1/2(t0 + T )
+

21/2

η1

)
exp

(
q2
η2

2

η1
(t− t0 − T )

)
− 21/2

η1

)−2

for t ≥ t0 + T. (2.26)

Since ‖E(t)‖ ≤ tr1/2(E2(t)) and 2 η2
1V (t) ≥ tr(E2(t)), if 21/2η1V

1/2(t) ≤ r we can ensure the ‖E(t)‖ ≤ r.
Then, we need to estimate a time for which V (t) ≤ r2/(2 η2

1). From (2.26) we have

V (t) ≤
((

1

V 1/2(t0 + T )
+

21/2

η1

)
exp

(
q2
η2

2

η1
(t0 + T )

)
− 21/2

η1

)−2

≤ r2

2 η2
1

.

Solving for t− t0 − T we get

t− t0 − T ≥
η1

q2η2
2

ln

 21/2(η2
1 + r)

r
(

21/2 + η1
V 1/2(t0+T )

)
 .

The RHS represent an amount of time that ensure ‖E(t)‖ ≤ r. Taking the limit for V (t0 +T )→∞ we have

t− t0 − T ≥
η1

q2η2
2

ln
(η2

1

r
+ 1
)
.

Then, the time needed to reach the region de�ned by ‖E(t)‖ ≤ r is bounded for any initial condition.



Chapter 3

Fixed-time observer for linear

time-varying systems

In this chapter, we present the main result of this work: An observer capable of estimating the internal state
of a linear time-varying system in �xed-time. First, the observer is introduced and its properties exposed
under ideal conditions. These ideal conditions consist on having the exact model of the linear system. Under
such assumptions, the observer is capable of giving an exact estimate of the system's state, and such estimate
is obtained in a �xed amount of time. The second part of the chapter is dedicated to study how the observer
and the estimate given by it behave when there are some deviations on the model. The deviations are
modelled as unknown �inputs" and additive noise in the measurements. The presence of these disturbances
do not allow the exact convergence; however, the error committed by the observer is not arbitrary large, but
it depends on the size of the disturbances. This shows that the observer is robust.

3.1 Observer in the unperturbed case

The objective of this work is to design an observer for a general linear time-varying system. The aim is to
have an accurate estimate of the internal state of the system in a �nite amount of time. To characterize
the class of systems for which the observer will be designed, consider piecewise continuous matrix valued
functions A(t) ∈ Rn×n, B(t) ∈ Rn×m, and C(t) ∈ Rr×n, de�ned for all t ∈ [0,∞), for which there exist
positive constants a, b, and c such that a ≥ ‖A(t)‖, b ≥ ‖B(t)‖, c ≥ ‖C(t)‖ for all t ≥ 0, that is, the matrices
are uniformly bounded. Using these matrices, we will consider a n-dimensional linear system described by

ẋ(t) = A(t)x(t) +B(t)u(t), x(t0) = x0,

y(t) = C(t)x(t),
(3.1)

where u(t) ∈ Rm, the input, is assumed to be a measurable function, and the output y(t) ∈ Rr represents
the available information about the state. Both functions, u(t) and y(t), are assumed known for all t ≥ t0.

The objective is then to estimate x(t) using only the input-output information, and the knowledge of the
system matrices. The estimation will be handled by a dynamical system, also known as observer. As we
showed in Section 2.2, this estimation task is not always possible, and it is conditioned by the matrices A(t)
and C(t). So, in order to recover the internal state, we have to assume the following:

Assumption 3.1. The pair
(
A(t), C(t)

)
is uniformly completely constructible (see De�nition 2.9).

31
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This in turn implies Proposition 2.2, 2.4 and 2.10 which will help us to study the properties of the observer.

Now, with the system speci�ed, and the main assumption posed, we are in position of introducing the
observer. De�ning x̂(t) as the estimate of x(t), the observer is described by the following set of equations

˙̂x(t) =A(t)x̂(t) +B(t)u(t)−H(t)C>(t)
(
C(t)x̂(t)− y(t)

)
−H(t)

(
N(t)Λ1

⌈
N(t)x̂(t)− ψ(t)

⌋p1
+N(t)Λ2

⌈
N(t)x̂(t)− ψ(t)

⌋p2)
,

(3.2)

Ḣ(t) = H(t)A>(t) +A(t)H(t)−H(t)C>(t)C(t)H(t) +Q(t), H(t0) > 0, (3.3)

Ṅ(t) = −A>(t)N(t)−N(t)A(t)−N(t)Q(t)N(t) + C>(t)C(t), N(t0) = 0, (3.4)

ψ̇(t) = − (A(t) +Q(t)N(t))
>
ψ(t) + C>(t)ψ(t) +N(t)B(t)u(t), ψ(t0) = 0. (3.5)

The observer's parameters are: 0 ≤ p1 < 1, p2 > 1, Λi = diag{λi,1, λi,2, · · · , λi,n}, λi,j > 0, Q(t) = Q>(t)
and q1In ≥ Q(t) ≥ q2In for all t ≥ t0 for some q1 ≥ q2 > 0. These parameters and their ranges are shown in
the next table.

Parameter Range
p1 [0, 1)

p2 (1,∞)

Λi diag{λi,1, λi,2, · · · , λi,n}
λi,j (0,∞)

Q(t) = Q>(t) q1In ≥ Q(t) ≥ q2In
q1 and q2 (0,∞)

H(t0) Symmetric positive de�nite

N(t0) 0 ∈ Rn×n

ψ(t0) 0 ∈ Rn

Table 3.1: Observer parameters

First of all, notice that observer (3.2) has the same linear feedback term we found in the Kalman-Bucy
�lter. The novelty lies in the non-linear feedback terms depending on exponents p1 and p2. Notice also that
the non-linear terms depend on N(t) and ψ(t). As it has been shown in the previous chapter, in (2.15), this
functions are related by the equivalence ψ(t) = N(t)x(t) when the initial conditions N(t0) = 0 and ψ(t0) = 0
are used (Proposition 2.3). Then, the terms inside the semi-brackets can be rephrased as N(t)(x̂(t)− x(t)).
Since N(t) becomes non-singular for any positive semi-de�nite initial condition if the pair (A(t), C(t)) is
constructible (Proposition 2.4), the non-linear terms represent a direct feedback of the estimation error.
Second, the idea of using di�erent powers is motivated by the sliding-mode control theory. It is expected
that the term depending on p1 provides �nite-time attraction when it is chosen in the proposed interval.
In the case of p2, since it is proposed to be greater than one, one would expect that it provides uniform
attraction w.r.t. the initial condition, to a neighborhood of the origin. With both terms, the observer
convergence should be accelerated to the point of requiring only a �nite amount of time to provide an exact
estimation of the state. Such amount of time is expected to be bounded for any initial condition and any
initial time. In other words, we are speaking of uniform �xed-time convergence. This, in fact, happens, as
will be shown latter. Finally, the role of the linear term is merely the stabilization of the estimation error.
This task can also be accomplished using only the non-linear terms, but the gains Λ1 and Λ2 would have to
be selected large enough to dominate the linear part of the system's dynamics.

With respect to the other parameters, Q(t) can be chosen arbitrarily inside the imposed boundaries.
However, it has to be noticed that Q(t) a�ects directly the eigenvalues of H(t) and N(t), and then, the
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convergence speed. Nevertheless, the qualitative properties of the observer are not a�ected by a particular
choice of Q(t). In the case of the gain matrices Λ1 and Λ2, they help to weight the nonlinear terms and their
coordinates. These matrices have a direct impact on the convergence time; increasing they will reduce such
time, although, the convergence time has a lower bound imposed by the size of the constructibility window
of the system.

Now, with the brief introduction to the observer, we proceed to present its main properties.

Theorem 3.1. Consider systems (3.1) and (3.2). Assume that the observer parameters are chosen as in
Table 3.1. Let the pair (A(t), C(t)) be uniformly completely constructible with a time window of length T .
Let h > 0 and η > 0 such that H(t) ≥ h In, for all t ≥ t0, and N(t) ≥ η In, for all t ≥ t0 + T . Then, x̂(t)
converges to x(t) in �xed time, uniformly in the initial time. Furthermore, the amount of time needed by
x̂(t) to reach x(t) is, at most,

T +
nσp11 (Λ1)

h
p1+1

2 σp1+1
n (Λ1)ηp1+1(1− p1)

+
nσp21 (Λ2)

h
p2+1

2 σp2+1
n (Λ2)ηp2+1(p2 − 1)

. (3.6)

Proof. To start, we have to derive the dynamics of the estimation error. Using the de�nition of e(t) and the
relationship ψ(t) = N(t)x(t) developed in Proposition 2.3, the error dynamics results in

ė(t) =
(
A(t)−H(t)C>(t)C(t)

)
e(t)−H(t)

(
N(t)Λ1

⌈
N(t)e(t)

⌋p1
+N(t)Λ2

⌈
N(t)e(t)

⌋p2)
. (3.7)

To establish the result we have to prove that e(t) = 0 is an uniformly �xed-time stable equilibrium point, and
give a bound for the settling time function. To that matter, we propose the following Lyapunov candidate
function:

V (t, e) = e>H−1(t)e.

Notice that the dynamics of H−1(t) has the same structure as N(t). N(t) is not the inverse of H(t) given
that N(t0) does not correspond to H−1(t0), being this the only reason. On the other hand, by Proposition
2.10 we know that H−1(t) converge to N(t) exponentially fast. Then, using Proposition 2.4 we have(

η1 + ε̄
)
In ≥ H−1(t) ≥

(
η2 − ε

¯

)
In > 0 ∀ t ≥ t0 + T,

for positive constants ε̄, ε
¯
. Since H(t0) > 0 and Q(t) is positive de�nite, uniformly in t, H−1(t) is bounded

from above and below for all t ≥ t0(Proposition 2.5). This makes possible to bound V as(
η1 + ε̄

)
‖e‖2 ≥ V (t, e) ≥

(
η2 − ε

¯

)
‖e‖2 ∀ t ≥ t0 + T,

making it a valid Lyapunov function. To proceed, we have to compute the time derivative of V when
evaluated over the trajectories of e(t). This results in

V̇ (t) = e>(t)H−1(t)
((
A(t)−H(t)C>(t)C(t)

)
e(t)−H(t)

(
N(t)Λ1

⌈
N(t)e(t)

⌋p1
+N(t)Λ2

)⌈
N(t)e(t)

⌋p2)(
e>(t)

(
A>(t)− C>(t)C(t)H(t)

)
−
(⌈
e>(t)N(t)

⌋p1
Λ1N(t) +

⌈
e>(t)N(t)

⌋p2
Λ2N(t)

)
H(t)

)
H−1(t)e(t)

e>(t)
(
−A>(t)H−1(t)−H−1(t)A(t)−H−1(t)Q(t)H−1(t) + C>(t)C(t)

)
e(t)

= − e>(t)H−1(t)Q(t)H−1(t)e(t)− e>(t)C>(t)C(t)e(t)− 2 e>(t)N(t)Λ1

⌈
N(t)e(t)

⌋p1
− 2 e>(t)N(t)Λ2

⌈
N(t)e(t)

⌋p2
≤ − q2

(
η2 − ε

¯

)
e>(t)H−1(t)e(t)− e>(t)C>(t)C(t)e(t)− 2

n∑
j=1

λ1,j

∣∣(N(t)e(t)
)
j

∣∣p1+1

− 2

n∑
j=1

λ2,j

∣∣(N(t)e(t)
)
j

∣∣p2+1
.
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By using the Jensen's inequality we have:∑n
j=1 λi,j

∣∣(N(t)e(t)
)
i

∣∣pi+1∑n
j=1 λi,j

≥

(∑n
j=1 λi,j

∣∣(N(t)e(t)
)
i

∣∣∑n
j=1 λi,j

)pi+1

.

Then

V̇ (t) ≤ −q2

(
η2 − ε

¯

)
V (t)−

∥∥C(t)e(t)
∥∥2 − 2

σp1+1
n (Λ1)

nσp11 (Λ1)

∥∥N(t)e(t)
∥∥p1+1

1
− 2

σp2+1
n (Λ2)

nσp21 (Λ2)

∥∥N(t)e(t)
∥∥p2+1

1

≤ −q2

(
η2 − ε

¯

)
V (t)−

∥∥C(t)e(t)
∥∥2 − 2

σp1+1
n (Λ1)

nσp11 (Λ1)

∥∥N(t)e(t)
∥∥p1+1 − 2

σp2+1
n (Λ2)

nσp21 (Λ2)

∥∥N(t)e(t)
∥∥p2+1

.

By Theorem 2.1 we have that e(t) = 0 is uniformly asymptotically stable. For t ≥ t0 + T we have that
N(t) ≥ η2In. Given that∥∥N(t)e(t)

∥∥pi+1 ≥ ηpi+1
2 ‖e(t)‖pi+1, ‖e(t)‖ ≥ 1√

η1 + ε̄
V 1/2(t),

then ∥∥N(t)e(t)
∥∥pi+1 ≥ ηpi+1

2

(η1 + ε̄)
pi+1

2

V
pi+1

2 (t).

This expression yields the following inequality for the derivative of V :

V̇ (t) ≤ −q2

(
η2 − ε

¯

)
V (t)− 2

σp1+1
n (Λ1)ηp1+1

2

nσp11 (Λ1)(η1 + ε̄)
p1+1

2

V
p1+1

2 (t)− 2
σp2+1
n (Λ2)ηp2+1

2

nσp21 (Λ2)(η1 + ε̄)
p2+1

2

V
p2+2

2 (t)

≤ −2
σp1+1
n (Λ1)ηp1+1

2

nσp11 (Λ1)(η1 + ε̄)
p1+1

2

V
p1+1

2 (t)− 2
σp2+1
n,2 (Λ2)ηp2+1

2

nσp21 (Λ2)(η1 + ε̄)
p2+1

2

V
p2+2

2 (t).

Since 1
2

(
p1 + 1

)
< 1 and 1

2

(
p2 + 1

)
> 1, by Theorem 2.4, we can conclude the uniform �xed-time stability of

e(t) = 0. Furthermore, from the theorem, we have the following bound for the convergence time:

T +
nσp11 (Λ1)(η1 + ε̄)

pi+1

2

σp1+1
n (Λ1)ηp1+1

2 (1− p1)
+

nσp21 (Λ2)(η1 + ε̄)
p2+1

2

σp2+1
n (Λ2)ηp2+1

2 (p2 − 1)
.

To get rid o� ε̄ we have to ask for a lower bound for H(t) of the form H(t) ≥ hIn > 0. In such case we
have 1

h In ≥ H
−1(t). We know that such bounds exists by Proposition 2.2 and 2.5. Then, we can replace the

constant η1 + ε̄ by 1/h.

From the bound to the convergence time (3.6) it appears a natural lower bound over it, the value of T .
This is because the system may not be constructible on the open interval [t0, t0 +T ). On the other hand, the
bound also tell us how to reduce the convergence time. There are two basic mechanism for it; �rst, one of
the exponents can be chosen zero and the other very large to increase the di�erence p2− 1. This mechanism
only allows to decrease the second terms in (3.6) arbitrarily, the one depending on p2; the �rst one reaches
a minimum when p1 is set to zero. The other mechanism is by modifying the values of σn(Λi) and λ1(Λi).
If the di�erence between σn(Λi) and σ1(Λi) is �xed, then, by increasing σn(Λi) one can make (3.6) as close
to T as desired; however, this is traduced in an arbitrarily gain increase. An indirect way to modify (3.6) is
by means of h and η. These constants depend manly on the constructibility properties of the system given
by A(t) and C(t), but they are also a�ected by the matrix Q(t). The e�ect of Q(t) on these values is really
complex, but it can be observed that increasing q1 makes η decrease, whereas increasing q2 also increases h.

As a �nal comment, we want to emphasize that other non-linear terms of the form dN(t)x̂(t) − ψ(t)cpi
can be added to the algorithm, whenever the exponents pi are selected as non-negative numbers. However,
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introducing further terms does not result in new or di�erent properties for the scheme. Nevertheless, they
might help to shape the reach trajectory. In contrast, removing one of the non-linearities results in a di�erent
property. If one keeps the non-linear term linked to p1, the convergence is in �nite time, uniformly in t0.
On the other hand, by keeping the term pending on p2, the convergence is exponential, uniformly in t0, but
there is also a kind of uniformity w.r.t. the initial conditions since the time needed to reach any bounded
region of e(t) = 0 accept a constant upper bound that does not depend on how the initial error was.

3.2 Robustness of the observer

Now, in this section, we are going to investigate how the observer (3.2) behaves when the system does not
follow the model exactly. This means that the observer is designed for the same system (3.1), but �in reality"
the system is described by

ẋ(t) = A(t)x(t) +B(t)u(t) + ν(t),

y(t) = C(t)x(t) + δ(t),
(3.8)

where ν(t) ∈ Rn, δ(t) ∈ Rr are unknown signals. We assume that both ν(t) and δ(t) are measurable
functions, and that they are uniformly bounded in the following manner: v ≥ ‖ν(t)‖, d ≥ ‖δ(t)‖ for all t ≥ 0.

Before analysing the algorithm, we have to study what happens with the auxiliary signals described in
(3.3)-(3.5). The computation of N(t) and H(t) is not a�ected by the presence of the disturbances, that is no
the case of ψ(t). Let us denote by Ψ(t) the signal that result of the relation Ψ(t) = N(t)x(t). The dynamics
of this signal is given by

Ψ̇(t) = Ṅ(t)x(t) +N(t)ẋ(t)

=
(
−A>(t)N(t)−N(t)A(t)−N(t)Q(t)N(t) + C>(t)C(t)

)
x(t) +N(t)

(
A(t)x(t) +B(t)u(t) + ν(t)

)
= −A>(t)Ψ(t)−N(t)Q(t)Ψ(t) +N(t)B(t)u(t) +N(t)ν(t) + C>(t)

(
C(t)x(t) + δ(t)− δ(t)

)
= −

(
A(t) +Q(t)N(t)

)>
Ψ(t) +N(t)B(t)u(t) + C>(t)y(t) +N(t)ν(t)− C>(t)δ(t). (3.9)

As can be seen, to keep the relation Ψ(t) = N(t)x(t), it is necessary to known the value of the disturbances.
Since this signals are not available, we can only compute ψ(t) as in (3.5). Denote by ζ(t) the di�erence
between Ψ(t) and ψ(t). The dynamics of ζ(t) results into

ζ̇(t) = Ψ̇(t)− ψ̇(t) = −
(
A(t) +Q(t)N(t)

)>
ζ(t) +N(t)ν(t)− C>(t)δ(t). (3.10)

It is important to show that ζ(t) remains bounded. In that matter, the following bound will be of great
importance:

Lemma 3.1. Let ζ(t) := Ψ(t)−ψ(t) where Ψ(t) and ψ(t) are computed following (3.9) and (3.5) respectively.
Let ζ̇(t) be given by (3.10), and ν(t) and δ(t) satisfy the bounds v ≥ ‖ν(t)‖, d ≥ ‖δ(t)‖. Let N(t) be computed
as in (3.4), and for t0 + T let it satisfy the bounds η1I ≥ N(t) ≥ η2I. Then,

lim
t→∞

‖ζ(t)‖ ≤
√

2 η1

q2η2

√
2

q2
v2 + d2.

Proof. For t ≥ t0 + T we have that η1I ≥ N(t) ≥ η2I, and 1
η2
I ≥ N−1(t) ≥ 1

η1
I. To compute an ultimate

bound for ζ(t) we propose the following Lyapunov like function V (t, ζ) = ζ>N−1(t)ζ. The derivative of V (t)
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along the trajectories of (3.10) is

V̇ (t) = ζ>(t)N−1(t)
[
−A>(t)ζ(t)−N(t)Q(t)ζ(t) +N(t)ν(t)− C>(t)δ(t)

]
+
[
−ζ>(t)A(t)− ζ>(t)Q(t)N(t)

+ν>(t)N(t)− δ>(t)C(t)
]
N−1(t)ζ(t) + ζ>(t)

[
N−1(t)A>(t) +A(t)N−1(t) +Q(t)

−N−1(t)C>(t)C(t)N−1(t)
]
ζ(t)

= −ζ>(t)Q(t)ζ(t) + 2 ν>(t)ζ(t)− 2 δ>(t)C(t)N−1(t)ζ(t)−
∥∥C(t)N−1(t)ζ(t)

∥∥2

≤ −q2‖ζ(t)‖2 + 2 ‖ν(t)‖2‖ζ(t)‖2 + 2 ‖δ(t)‖2
∥∥C(t)N−1(t)ζ(t)

∥∥− ∥∥C(t)N−1(t)ζ(t)
∥∥2
.

Using the Young's inequality, the derivative of V (t) can be bounded as

V̇ (t) ≤ −q2

2
‖ζ(t)‖2 +

2

q2
‖ν(t)‖2 + ‖δ(t)‖2.

Using the bounds 1
η2
‖ζ(t)‖2 ≥ V (t) and V (t) ≥ 1

η1
‖ζ(t)‖2, the previous inequality can be transformed into

the following di�erential inequality:

V̇ (t) ≤ −1

2
q2η2V (t) +

2

q2
‖ν(t)‖2 + ‖δ(t)‖2

≤ −1

2
q2η2V (t) +

2

q2
v2 + d2.

The solution to the di�erential inequality yields

V (t) ≤ V (t0 + T ) exp

(
−1

2
q2η2 (t− t0 − T )

)
+

2 d2

q2η2
+

4 v2

q2
2η

‖ζ(t)‖2 ≤ η1

η2
‖ζ(t0 + T )‖2 exp

(
−1

2
q2η2 (t− t0 − T )

)
+

2 d2η1

q2η2
+

4 v2η1

q2
2η2

.

Taking the limit when t→∞ we have

lim
t→∞

‖ζ(t)‖ ≤
√

2 η1

q2η2

√
2

q2
v2 + d2.

With the bound given in Lemma 3.1 we are ready to study what happens with the observer and the obser-
vation error under the e�ect of the disturbances.

To begin the analysis, we have to modify (3.7) to include the e�ect of ν(t) and δ(t). This yields

ė(t) =
(
A(t)−H(t)C>(t)C(t)

)
e(t)− ν(t) +H(t)C>(t)δ(t)−H(t)

[
N(t)Λ1

⌈
N(t)e(t) + ζ(t)

⌋p1 (3.11)

+N(t)Λ2

⌈
N(t)e(t) + ζ(t)

⌋p2]
.

Here, the relation ψ(t) = Ψ(t) − ζ(t) was used together with Ψ(t) = N(t)x(t). What we found about e(t)
is that it is Input State Stable (ISS) w.r.t. ν(t), δ(t) and ζ(t). The disturbances ν(t) and δ(t) are bounded
by assumption, and their boundedness ensure the boundedness of ζ(t) as can be seen in the proof of Lemma
3.1. We summarize our �ndings in the following two theorems:

Theorem 3.2. The dynamical system de�ned by (3.11) is ISS w.r.t. ν(t), δ(t), and ζ(t).

Theorem 3.3. Consider the error dynamics (3.11) and assume that the pair (A(t), C(t)) is UCC such that,
for t ≥ t0 + T , we have η1In ≥ N(t) ≥ η2In > 0 and h In ≥ H(t) with N(t) and H(t) as in (3.4) and (3.3).
Let ∆ be

∆ := sup
t∈[t0+T,∞)

∥∥C>(t)
(
C(t)e(t)− δ(t)

)∥∥,
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and k = 1 if p2 ≤ 2 or k = n
2−p2

2 if p2 > 2. Then, the observation error e(t) converges asymptotically to
the trajectory −N−1(t)ζ(t); furthermore, for p1 = 0, the trajectory is reached in �xed-time, in an amount of
time that does not exceed

T +
η1

q2η2
2

max

{
ln

(
1 +

2 η2
1(h∆ + η2n

1/2σ1(Λ1))

η2σn(Λ1)

)
, ln

(
1 +

2 η2
1h k σ1(Λ2)

n
1−p2

2 σn(Λ2)

)}

+
2

η
1/2
2 σn(Λ1)

+
2

η
p2+1

2
2 n

1−p2
2 σn(Λ2)(p2 − 1)

.

Theorem 3.2 tells us that the observer is not fragile. Whenever the disturbances are not large, the generated
error will be �proportional" to the size of the disturbances. Not only that, if the disturbances disappear,
the convergence to zero is recovered. It is important to remark that in such case, the convergence will be
exponential since the dynamics of ζ(t) is linear and it cannot reach zero in �nite time. The only way to
recover the �nite-time convergence is by resetting the values of N(t) and ψ(t) in order to forget �the corrupted
information". Also, it is important to remark that, in general, the presence of ν(t) and in particular of δ(t)
makes impossible to recover the system's state since the constructibility of the system breaks under such
circumstances. The second theorem, Theorem 3.3, gives us the �exact" behaviour of the error. The �nal
trajectory is the same as the one reached by the Kalman-Bucy observer (see (2.20)), the di�erence is that the
Kalman-Bucy observer approaches the trajectory in an exponential fashion, whereas the proposed observer
can reached it in �xed-time for p1 = 0. The other information that Theorem 3.3 gives us is an ultimate
bound for the observation error:

‖e(t)‖ →
∥∥N−1(t)ζ(t)

∥∥ ≤ 1

η2
‖ζ(t)‖,

then

lim
t→∞

‖e(t)‖ ≤

√
2 η1

q2η3
2

(
2

q2
v2 + d2

)
.

This bound follows from Lemma 3.1.

Before presenting the proofs of Theorem 3.2 and 3.3, we need the following result.

Lemma 3.2. Let x, δ ∈ R and p ≥ 0. Then, for any κ1 ∈ (0, 1) there exist κ2 > 0 such that

xdx+ δcp ≥ κ1 |x|p+1 − κ2 |δ|p+1.

In particular, for p > 0, one can select κ2 = max
{

1 + κ1, κ1/
(
1− κ(1/p)

1

)p}
. For p = 0 and κ1 ∈ (0, 1], κ2

can be selected as 1 + κ1.

Proof. For x = 0, the inequality is satis�ed trivially with any κ2 ≥ 0. Now, by homogeneity we have:

xdx+ δcp =
1

εp+1

(
(ε x)d(ε x) + (ε δ)cp

)
κ1 |x|p+1 − κ2 |δ|p+1 =

1

εp+1

(
κ1 |ε x|p+1 − κ2 |ε δ|p+1

)
,

for any ε > 0. Set ε = 1/|δ| and de�ne z = x/|δ|. The inequality then is equivalent to z dz + dδc0cp ≥
κ1 |z|p+1 − κ2. We will only consider the case dδc0 = 1 since the other one is analogous. For dδc0 = 1 we
have zdz + 1cp ≥ κ1 |z|p+1 − κ2, or

zdz + 1cp − κ1 |z|p+1 ≥− κ2. (3.12)
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This reduces the problem to prove that the LHS has a lower bound. For z ≥ 0, we have that dz + 1c0 = 1
and |z+ 1| > |z|, then zdz+ 1cp > |z|p+1. Since κ1 < 1, zdz+ 1cp−κ1 |z|p+1 > 0 and (3.12) holds for κ2 ≥ 0
on this interval. Now, for z ∈ (−1, 0), (3.12) becomes −|z| |z+1|p−κ1 |z|p+1 ≥ −κ2. In this interval we have
that |z| < 1 and |z + 1| < 1, then −|z| |z + 1|p − κ1 |z|p+1 ≥ −1 − κ1, which implies that (3.12) holds with
κ2 ≥ 1+κ1. Last, we consider the interval z ∈ (−∞,−1], where (3.12) reduces to |z| |z+1|p−κ1|z|p+1 ≥ −κ2.
For p = 0, the inequality holds trivially since

|z| |z + 1|p − κ1|z|p+1 = |z|
(
1− κ1

)
≥ 0.

For p > 0, we have that |z|p > |z + 1|p. To �nd a lower bound, consider the following auxiliary function:

|z| |z + 1|p − κ1|z|p+1 ≥ |z + 1|p+1 − κ1|z|p+1 := g(z).

Now, we proceed to look for the minimum of g(z). Taking its derivative, this results in g′(z) = (p+1)
(
κ1|z|p−

|z + 1|p
)
, which has a unique zero at z0 = −1/(1 − κ1/p

1 ). The second derivative of g(z) evaluated at z0

is positive, reveling that g(z) has a minimum at this point. Then g(z0) can be taken as κ2. This gives us
κ2 ≥ κ1/(1− κ1/p

1 )p. Finally, looking at the three conditions we get that

κ2 ≥ max

{
κ1 + 1,

κ1(
1− κ1/p

1

)p
}

and p > 0.

For p = 0, we only need to verify one region, when z ∈ (0, 1). In this region, it is su�cient that κ2 ≥ 1+κ1.

Proof of Theorem 3.2. To analyse (3.11) we propose as ISS-Lyapunov function the same as before V (t, e) =
e>H−1(t)e. The derivative of V (t) along the dynamics if (3.11) is

V̇ (t) = e>(t)H−1(t)ė(t) + ė>(t)H−1(t)e(t) + e>(t)Ḣ(t)e(t)

= −e>(t)C>(t)C(t)e(t)− e>(t)H−1(t)Q(t)H−1(t)e(t)− 2 e>(t)H−1(t)ν(t) + 2 e>(t)C>(t)δ(t)

− 2 e>(t)N(t)Λ1

⌈
N(t)e(t) + ζ(t)

⌋p1 − 2 e>(t)N(t)Λ2

⌈
N(t)e(t) + ζ(t)

⌋p2
.

By using the Young's inequality, the derivative can be bounded as

V̇ (t) ≤ ‖δ(t)‖2 +
2

q2
‖ν(t)‖2 − q2

2

∥∥H−1(t)e(t)
∥∥2 − 2

n∑
j=1

λ1,j

(
N(t)e(t)

)
j

⌈(
N(t)e(t)

)
j

+ ζj(t)
⌋p1

− 2

n∑
j=1

λ2,j

(
N(t)e(t)

)
j

⌈(
N(t)e(t)

)
j

+ ζj(t)
⌋p2

.

Using Lemma 3.2 we have

V̇ (t) ≤ d2 +
2

q2
v2 − q2

2

∥∥H−1(t)e(t)
∥∥2 − 2

n∑
j=1

λ1,j

(
κ1,p1

∣∣(N(t)e(t)
)
j

∣∣p1+1 − κ2,p1

∣∣ζj(t)∣∣p1+1
)

− 2

n∑
j=1

λ2,j

(
κ1,p2

∣∣(N(t)e(t)
)
j

∣∣p2+1 − κ2,p2

∣∣ζj(t)∣∣p2+1
)

≤ d2 +
2

q2
v2 − q2

2

∥∥H−1(t)e(t)
∥∥2 − 2σn(Λ1)κ1,p1

∥∥N(t)e(t)
∥∥p1+1

p1+1
− 2σn(Λ2)κ1,p2

∥∥N(t)e(t)
∥∥p2+1

p2+1

+ 2σ1(Λ1)κ2,p1

∥∥ζ(t)
∥∥p1+1

p1+1
+ 2σ1(Λ2)κ2,p2

∥∥ζ(t)
∥∥p2+1

p2+1
.

Using the equivalence between norms the inequality results in

V̇ (t) ≤ d2 +
2

q2
v2 − q2

2

∥∥H−1(t)e(t)
∥∥2 − 2σn(Λ1)κ1,p1

∥∥N(t)e(t)
∥∥p1+1 − 2n

1−p2
2 σn(Λ2)κ1,p2

∥∥N(t)e(t)
∥∥p2+1

+ 2n
1−p1

2 σ1(Λ1)κ2,p1

∥∥ζ(t)
∥∥p1+1

+ 2σ1(Λ2)κ2,p2

∥∥ζ(t)
∥∥p2+1

.
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Now, for t ≥ t0 + T we have h I ≥ H(t) and N(t) ≥ η I. Using these lower bounds, the inequality for V̇ (t) is
changed into

V̇ (t) ≤ d2 +
2

q2
v2 + 2n

1−p1
2 σ1(Λ1)κ2,p1

∥∥ζ(t)
∥∥p1+1

+ 2σ1(Λ2)κ2,p2

∥∥ζ(t)
∥∥p2+1 − q2

2h2
‖e(t)‖2

− 2ηp1+1σn(Λ1)κ1,p1‖e(t)‖p1+1 − 2ηp2+1σn(Λ2)κ1,p2‖e(t)‖p2+1.

In the RHS of the previous inequality we found three positive terms. Each of them is bounded and we can
group them into one constant, say ∆. On the other hand, we can see the negative terms as a polynomial
in ‖e(t)‖, which we denote as P (‖e(t)‖). To proof the ISS of e(t), let us introduce an extra parameter,
θ ∈ (0, 1). Using this parameter, we can rewrite the inequality as

V̇ (t) ≤ −(1− θ)P (‖e(t)‖)−
(
θP (‖e(t)‖)−∆

)
.

For

P
(
‖e(t)‖

)
≥ 1

θ
∆

q2

2h2
‖e(t)‖2 + 2ηp1+1σn(Λ1)κ1,p1‖e(t)‖p1+1 + 2ηp2+1σn(Λ2)κ1,p2‖e(t)‖p2+1 ≥ 1

θ
∆,

(3.13)

we have that

V̇ (t) ≤ −(1− θ)P (‖e(t)‖) < 0.

Given that P (‖e(t)‖) is a monotone function of ‖e(t)‖, there is a value µ > 0 for which ‖e(t)‖ ≥ µ implies
θ P (‖e(t)‖) ≥ ∆. Then, by Theorem 2.5, we can conclude the ISS.

Proof of Theorem 3.3. To study the the convergence of e(t) to the trajectory −N−1(t)ζ(t), let us de�ne the
auxiliary variable χ(t) = N(t)e(t) + ζ(t). The dynamic of this variable is

χ̇(t) = −
(
A>(t) +N(t)Q(t)

)
χ(t)−N(t)H(t)N(t)

2∑
i=1

Λi
⌈
χ(t)

⌋pi
+
(
In −N(t)H(t)

)
C>(t)

(
C(t)e(t)− δ(t)

)
.

To study the stability of χ(t) = 0 assume t ≥ t0 + T such that η1In ≥ N(t) ≥ η2In. To keep the equations
short, we dropped the time dependency. Consider the candidate Lyapunov function V (χ, t) = χ>N−1(t)χ,
which derivative along the dynamics of χ(t) results in

V̇ (t) = −χ>Qχ− 2χ>H N

2∑
i=1

Λi
⌈
χ
⌋pi

+ 2χ>N−1(In −N H)C>(C e− δ)

= −χ>Qχ− 2χ>
2∑
i=1

Λi
⌈
χ
⌋pi

+ 2χ>N−1(In −N H)C>(C e− δ) + 2χ>(In −H N))

2∑
i=1

Λi
⌈
χ
⌋pi
.

Now, we proceed to �nd a bound for V̇ (t):

V̇ (t) ≤ −q2

∥∥χ∥∥2 − 2σn(Λ1)
∥∥χ∥∥p1+1

p1+1
− 2σn(Λ2)

∥∥χ∥∥p2+1

p2+1
+

2

η2

∥∥In −N H
∥∥∥∥χ∥∥∥∥C>(C e− δ)

∥∥
+ 2

∥∥In −H N
∥∥(n 1−p1

2 σ1(Λ1)
∥∥χ∥∥p1+1

+ σ1(Λ2)k
∥∥χ∥∥p2+1

)
(3.14)

≤ −q2

2

∥∥χ∥∥2 − 2σn(Λ1)
∥∥χ∥∥p1+1 − 2n

1−p2
2 σn(Λ2)

∥∥χ∥∥p2+1
+

2

q2η2

∥∥In −N H
∥∥2∥∥C>(C e− δ)

∥∥2

+ 2
∥∥In −H N

∥∥(n 1−p1
2 σ1(Λ1)

∥∥χ∥∥p1+1
+ σ1(Λ2)k

∥∥χ∥∥p2+1
)
,

≤ −q2

2

∥∥χ∥∥2 − 2σn(Λ1)
∥∥χ∥∥p1+1 − 2n

1−p2
2 σn(Λ2)

∥∥χ∥∥p2+1
+

2h

q2η2

∥∥H−1 −N
∥∥2∥∥C>(C e− δ)

∥∥2

+ 2h
∥∥H−1 −N

∥∥(n 1−p1
2 σ1(Λ1)

∥∥χ∥∥p1+1
+ σ1(Λ2)k

∥∥χ∥∥p2+1
)
,
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with k = 1 if p2 ≤ 2 or k = n
2−p2

2 if p2 > 2. From Theorem 2.10 we know that H−1(t) converge to N(t),
then the term ‖H−1(t)−N(t)‖ tends to zero. From the estimate of the reaching time in Theorem 2.10 we
have that ∥∥H−1(t)−N(t)

∥∥ ≤ min

{
σn(Λ1)

2hn
1−p1

2 σ1(Λ1)
,
n

1−p2
2 σn(Λ2)

2h k σ1(Λ2)

}
for

t ≥ t0 + T +
η1

q2η2
2

max

{
ln

(
1 +

2 η2
1hn

1−p1
2 σ1(Λ1)

σn(Λ1)

)
, ln

(
1 +

2 η2
1h k σ1(Λ2)

n
1−p2

2 σn(Λ2)

)}
,

and then

V̇ (t) ≤ −q2

2

∥∥χ(t)
∥∥2 − σn(Λ1)

∥∥χ(t)
∥∥p1+1 − n

1−p2
2 σn(Λ2)

∥∥χ(t)
∥∥p2+1

+
2h

q2η2

∥∥H−1(t)−N(t)
∥∥2∥∥C>(t)(C(t)e(t)− δ(t))

∥∥2
.

Since δ(t) is bounded and so it is e(t) by Theorem 3.2, the term

2h

q2η2

∥∥H−1(t)−N(t)
∥∥2∥∥C>(t)(C(t)e(t)− δ(t))

∥∥2

fades out as H−1(t) converge to N(t), and V (t) → 0 as t → ∞, asserting the convergence to χ(t) = 0 or
e(t) = N−1(t)ζ(t).

For p1 = 0, the analysis can be done slightly di�erent. Consider again (3.14), from which we have

V̇ (t) ≤ −q2

∥∥χ∥∥2 −
(

2σn(Λ1)− 2

η2

∥∥In −N H
∥∥ ∥∥C>(C e− δ)

∥∥− 2n1/2σ1(Λ1)
∥∥In −H N

∥∥)∥∥χ∥∥
− 2σn(Λ2)

∥∥χ∥∥p2+1

p2+1
+ 2σ1(Λ2)k

∥∥In −H N
∥∥∥∥χ∥∥p2+1

≤ −q2

∥∥χ∥∥2 −
(

2σn(Λ1)− 2h

η2

∥∥H−1 −N
∥∥∥∥C>(C e− δ)

∥∥− 2n1/2σ1(Λ1)
∥∥H−1 −N

∥∥)∥∥χ∥∥
− 2n

1−p2
2 σn(Λ2)

∥∥χ∥∥p2+1
+ 2hσ1(Λ2)k

∥∥H−1 −N
∥∥∥∥χ∥∥p2+1

.

Let ∆ be

∆ := sup
t∈[t0+T,∞)

∥∥C>(t)
(
C(t)e(t)− δ(t)

)∥∥,
then, for t such that

t ≥ t0 + T +
η1

q2η2
2

max

{
ln

(
1 +

2 η2
1(h∆ + η2n

1/2σ1(Λ1))

η2σn(Λ1)

)
, ln

(
1 +

2 η2
1h k σ1(Λ2)

n
1−p2

2 σn(Λ2)

)}
we have

V̇ (t) ≤ −q2

∥∥χ(t)
∥∥2 − σn(Λ1)

∥∥χ(t)
∥∥− n 1−p2

2 σn(Λ2)
∥∥χ(t)

∥∥p2+1
< 0

≤ −η1/2
2 σn(Λ1)V 1/2(t)− η

p2+1
2

2 n
1−p2

2 σn(Λ2)V
p2+1

2 (t).

By Theorem 2.4 we can conclude the �xed-time convergence of χ(t) to zero, and estimate the convergence
time as

T +
η1

q2η2
2

max

{
ln

(
1 +

2 η2
1(h∆ + η2n

1/2σ1(Λ1))

η2σn(Λ1)

)
, ln

(
1 +

2 η2
1h k σ1(Λ2)

n
1−p2

2 σn(Λ2)

)}
+

2

η
1/2
2 σn(Λ1)

+
2

η
p2+1

2
2 n

1−p2
2 σn(Λ2)(p2 − 1)

.
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Summary

In this chapter, the observer was presented together with its convergence properties and an analysis of
robustness was developed. Although the proposed observer is applicable to the same class of systems as
the Kalman-Bucy �lter, it provides an improvement in the rate of convergence, and exact convergence in
absence of disturbances. When the systems is a�ected by unmodeled inputs and noise, the observation error
remains bounded, and the size of this error is comparable to the error exhibit by the Kalman-Bucy �lter
under the same circumstances. The reason for this behavior is that the estimation error generated in any of
the observers converge to the same trajectory, being the only di�erence the speed at which the trajectory is
reached.

The main backwards of the proposed observer in relation to the Kalman-Bucy �lter is the number of
di�erential equations to compute. For the proposed observer, n(n + 2)/2 (n the dimension of the system)
additional equation have to be computed. This equations correspond to the dynamics of N(t) and ψ(t).
However, this does not have to be the case. In the next chapter, particular classes of LTV systems are
studied. For this systems, the computation of H(t) is not needed. Then, only n extra equation have to be
computed in relation to the Kalman-Bucy �lter. Although this does not alleviate the problem completely,
it represent a signi�cant saving since for these systems, the number of equations to compute grows linearly
with the system's dimension and not quadratically.
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Chapter 4

Applications of the observer

In this chapter we are going to revisit some basic problems that appear in observer design and adaptive
control. These problems are usually explained in very di�erent frameworks. To address these topics, we
have to put them in the context of observation of a linear time-varying system. Fortunately, these problems,
with a correct interpretation, are precisely that. Then, the technique developed in the previous chapter can
handle them. However, the speci�c structure of each problem makes possible to adjust the observer in order
to simplify it without losing any of its properties. The problems we address in this chapter are:

• Observer design for linear time-invariant systems.

• Design of a parameter estimator for constant parameters that are present in a linear regression model.

• Design of an adaptive observer for linear systems a�ected by parametrized disturbances.

• Design of a parameter estimator for smooth time-varying parameters with bounded derivative.

4.1 Linear time invariant systems

We consider the class of linear systems with constant system matrices. Although the observer presented in
the previous chapter is fully applicable in this case, some simpli�cations can be done. The system considered
in this section is as follows:

ẋ(t) = Ax(t) +B u(t),

y(t) = C x(t),
(4.1)

with A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rr×n constant matrices. The main di�erence in this case is that we do
not need to compute H(t), and it can be replaced by a constant matrix. Let L ∈ Rn×r is such that A−LC
be a Hurwitz matrix. In such case, for every R = R> ∈ Rn×n, R > 0, there exist P = P> ∈ Rn×n, P > 0,
such that

P
(
A− LC

)
+
(
A− LC

)>
P = −R.

Consider the matrices L and P . The observer (3.2) for system (4.1) can be modi�ed into:

˙̂x(t) = A x̂(t) +B u(t)− L
(
C x̂(t)− y(t)

)
− P−1

(
N(t)Λ1

⌈
N(t)x̂(t)− ψ(t)

⌋p1
+N(t)Λ2

⌈
N(t)x̂(t)− ψ(t)

⌋p2)
.

(4.2)

43
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Ṅ(t) = −A>N(t)−N(t)A−N(t)QN(t) + C>C, N(0) = 0,

ψ̇(t) = −
(
A> +N(t)Q

)
ψ(t) + C>y(t) +N(t)B u(t), ψ(0) = 0.

The replacement of H(t) by constant matrices does not a�ect the properties of the observer. By this we
mean that the �xed-time convergence is kept, in the unperturbed case, as well as the robustness properties
investigated in Section 3.2 in the presence of disturbances. These properties are condensed in the following
theorems:

Theorem 4.1. Consider systems (4.1) and (4.2) with p1 ∈ [0, 1) and p2 > 1. Let N(t) ≥ η In > 0. Then
x̂(t) converges to x(t) in a �xed time, that is, the amount of time needed for the converge does not exceed

σ
p1+1

2
1 (P )

σn(Λ1)ηp1+1)(1− p1)
+

σ
p2+1

2
1 (P )

σn(Λ2)n
1−p2

2 ηp2+1(p2 − 1)
.

for any given initial error x̂(0)− x(0).

Proof. To analyze observer convergence, the estimation error dynamics is analyzed. The dynamics of such
error results in

ė(t) =
(
A− LC

)
e(t)− P−1

(
N(t)Λ1

⌈
N(t)e(t)

⌋p1
+N(t)Λ2

⌈
N(t)e(t)

⌋p2)
. (4.3)

The stability of the solution e(t) = 0 can be analysed using the Lyapunov function candidate V (e) = e>P e.
Evaluating the derivative of V along the trajectories of e(t) one gets

V̇ (t) = e>(t)
(
P
(
A− LC

)
+
(
A− LC

)>
P
)
e(t)− 2 e>(t)N(t)Λ1

⌈
N(t)e(t)

⌋p1 − 2 e>(t)N(t)Λ2

⌈
N(t)e(t)

⌋p2
= −e>(t)Q(t)e(t)− 2 e>(t)N(t)Λ1

⌈
N(t)e(t)

⌋p1 − 2 e>(t)N(t)Λ2

⌈
N(t)e(t)

⌋p2
≤ −σn(Q)‖e(t)‖2 − 2σn(Λ1)

∥∥N(t)e(t)
∥∥p1+1

p1+1
− 2σn(Λ2)

∥∥N(t)e(t)
∥∥p2+1

p2+1

≤ −σn(Q)‖e(t)‖2 − 2σn(Λ1)
∥∥N(t)e(t)

∥∥p1+1 − 2σn(Λ2)n
1−p2

2

∥∥N(t)e(t)
∥∥p2+1

≤ −σn(Q)‖e(t)‖2 − 2σn(Λ1)ηp1+1‖e(t)‖p1+1 − 2σn(Λ2)n
1−p2

2 ηp2+1‖e(t)‖p2+1.

Using the relation σ1(P )‖e(t)‖2 ≥ V (t), we obtain a di�erential inequality for V (t):

V̇ (t) ≤ −σn(Q)

σ1(P )
V (t)− 2

σ
p1+1

2
1 (P )

σn(Λ1)ηp1+1V
p1+1

2 (t)− 2

σ
p2+1

2
1 (P )

σn(Λ2)n
1−p2

2 ηp2+1V
p2+1

2 (t).

This di�erential inequality automatically tell us that e(t) = 0 is reached in �xed-time. This is asserted by
Theorem 2.4. The theorem also gives us the bound for the convergence time:

σ
p1+1

2
1 (P )

σn(Λ1)ηp1+1(1− p1)
+

σ
p2+1

2
1 (P )

σn(Λ2)n
1−p2

2 ηp2+1(p2 − 1)
.

In the case of LTI systems, where the observability is instantaneous, the lower bound for the convergence
time is zero. However, this limit cannot be reached. This is re�ected by the fact that the convergence time
can be made arbitrarily small by increasing the components of Λ1 and Λ2.

The ISS w.r.t. bounded disturbances showed for the general observer in the previous chapter can also
be obtained for the observer (4.2). To that matter, V (e) = e>P e can be considered as an ISS-Lyapunov
function candidate. By repeating the procedure showed in the proof of Theorem 3.2, the ISS property can
be concluded. The di�erence appears when analyzing the limit behavior of the observation error. To recover
the result of Theorem 3.3 we need a particular selection of P and L: they should correspond to a design of
a time-invariant Kalman �lter. This is showed in the next theorem:
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Theorem 4.2. Consider the perturbed LTI system

ẋ(t) = Ax(t) +B u(t) + ν(t),

y(t) = C x(t) + δ(t),

where ν(t) and δ(t) are uniformly bounded, integrable vector valued functions acting as unknown disturbances.
Consider the observer (4.2) with P the unique positive de�nite solution of the Riccati algebraic equation:

−A>P − P A− P QP + C>C = 0,

and set L = P−1C>. Let ζ(t) be de�ned as in (3.10). Then, the observation error e(t) = x̂(t) − x(t) reach
the trajectory −N−1(t)ζ(t) asymptotically. Furthermore, for p1 = 0 the trajectory is reached in �xed-time.

Proof. This proof follows the one for Theorem 3.3. Given the presence of ν(t) and δ(t) the observation error
dynamics is modi�ed and results in

ė(t) =
(
A− P−1C>C

)
e(t)− ν(t) + P−1C>δ(t)− P−1

2∑
i=1

N(t)Λi
⌈
N(t)e(t) + ζ(t)

⌋pi
.

In this situation, the dynamics of ζ(t) is

ζ̇(t) = −
(
A> +N(t)Q

)
ζ(t) +N(t)ν(t)− C>δ(t).

Consider the auxiliary error function χ(t) = N(t)e(t) + ζ(t), which dynamics results in

χ̇(t) = −
(
A> +N(t)Q

)
χ(t)−N(t)P−1

2∑
i=1

N(t)Λi
⌈
χ(t)

⌋pi
+
(
In −N(t)P−1

)
C>
(
C e(t)− δ

)
.

Since P represent the �nal value of N(t), i.e., limt→∞N(t) = P , the di�erence In − N(t)P−1 converge to
zero. Since the estimation error remains bounded, and δ(t) is bounded by assumption, the dynamics of χ(t)
tends asymptotically to

χ̇(t) = −
(
A> +N(t)Q

)
χ(t)−

2∑
i=1

N(t)Λi
⌈
χ(t)

⌋pi
.

Using V (χ, t) = χ>N−1(t)χ as Lyapunov function, it is possible to show that χ(t) = 0 is asymptotically
stable. Then the relation N(t)e(t)+ζ(t) = 0 is reached asymptotically as well. This means that e(t) converge
to −N−1(t)ζ(t). When p1 = 0, the discontinuous term is capable of rejecting the term depending on the
di�erence In−N(t)P−1. Then, for p1 = 0, the trajectory e(t)−N−1(t)ζ(t) can be reached in �xed-time.

Theorem 4.1 and 4.2 show that the replace of H(t) by P and L does not a�ect the properties of the
algorithm, that is, the �xed-time convergence is kept in the unperturbed case. In the presence of bounded
disturbances, the ISS property is also guarantee for any chose of P and L. However, to be able of telling
something about the size of the observation error and its behavior, a particular choice of P and L is needed.

4.1.1 Numerical Example

To exemplify the application of the observer in the case of linear time-invariant systems, we are going to use
the next parametrization:

ẋ(t) =

[
0 1
−3 −1

]
x(t) +

[
0
1

]
u(t), x(0) =

[
5
0

]
,

y(t) =
[
1 0

]
x(t).
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This system can be related to a mechanical system with a mass, a spring, and a damper. As input we propose
the function u(t) = sin(3 t). In this example, the problem of estimating x2(t) is equivalent to �computing"
the velocity from the position measurements. To con�gure the observer, we chose the following parameters:

L =
1

3

[
1
−9

]
, P =

1

8

[
12 9
9 13

]
, Λ1 = Λ2 = 10 I2

p1 =
1

2
, p2 =

3

2
, Q(t) = I2, x̂(0) = 0.

The numerical solver was set as indicated in Table 4.1. The results of the simulation are presented in

Parameter Value

Method Backward di�erentiation formula
Precision goal 10−6

Accuracy goal 10−6

Max step size 0.01

Table 4.1: Parameters of the numerical simulation: LTI system.

x1(t) x1(t)

0.5 1.0 1.5 2.0 2.5 3.0
t
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x2(t) x2(t)
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t
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2

(a) (b)

Figure 4.1: Response of the system and the observer. First state (a). Second state (b). The convergence of
the estimate can be observed in both cases.
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Figure 4.2: Logarithmic plots of the estimation error norm. Plot (a) exhibit �nite-time convergence. Plot
(b) shows the advantages of �xed-time convergence.

�gures 4.1 and 4.2. In Figure 4.1 it can be observed how the estimated state follows and reach the trajectory
described by the system state after 2.5 seconds. To be sure of the exact convergence, the norm of the
estimation error is plotted in a logarithmic scale in Figure 4.2 (a). It is observed an acceleration of the
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decrease in the error norm before 2 seconds. That kind of behaviour is evidence of a rate of convergence
that exceed the exponential convergence. As in any numerical simulation, the numerical error is present.
The size of the numerical error can be appreciated after 5 seconds, and it has a size of about 10−5, which is
close to the expected error given the numerical solver setting.

Now, to make evident the e�ect and the implications of the �xed-time convergence, the initial error was
intentionally increase to 103, 105, 107, and 109. The behaviour of the error norm for these initial errors is
shown in Figure 4.2 (b). It can be observed that the increase in the initial error does not have an appreciable
impact in the convergence time. This fact contrast with the behaviour of the exponential convergence where
an increase in the initial error always means a increase in the time needed to get close to zero. It also can
be seen that the four trajectories practically converge at the same time, about 2.6 seconds. In Figure 4.2
(b) the acceleration of the convergence can also be appreciated. For this simulation, the numerical error
increases a little, from 10−5 to 10−4.

Figure 4.2 as a whole present the two main features of the proposed observer. It provides an exact
convergence and more importantly, it can guarantee a time of trustiness on the estimate that does not
depend on the initial error.

4.2 Constant parameters estimation

The classic problem of estimating parameters in a linear regression model can be posed as follows (Narendra
and Annaswamy 1989)[Sec. 3.2]: Let θ ∈ Rn represent n constant unknown parameters. Let ω(t) ∈ Rm×n
a piece-wise continuous, uniformly bounded, matrix valued function that will be denotes as regressor. It is
assumed that the regressor is known at each t. Consider the linear regression model

y(t) = ω(t)θ, y(t) ∈ Rm. (4.4)

The problem consists in determining θ using the information of y(t) and ω(t).

It is well known in the adaptive control theory that persistency of excitation is needed to recovery the
unknown parameters (Narendra and Annaswamy 1989)[Sec. 3.2]. This property depends exclusively on ω(t)
and is de�ned as follows:

De�nition 4.1 (Persistency of excitation). (Ioannou and Sun 1995)[Def. 4.3.1] A picewise continuous signal
vector function ω(t) : R≥0 → Rm×n is of persistent excitation in Rn with a level of excitation α0 > 0 if there
exist positive constants α1, T such that

α1In ≥
1

T

∫ t+T

t

ω>(s)ω(s)ds ≥ α0Ib, t ≥ 0. (4.5)

The persistency of excitation is required for all the classical parameter estimation schemes to ensure the
convergence.

Although the previous description is the usual way to present the problem of parameter estimation, it
leaves aside the fact that the parameter estimation problem is an observation problem. To see it, (4.4) can
be written as follows:

ẋ(t) = 0,

y(t) = C(t)x(t).
(4.6)

Here, θ was replaced by x(t) and ω(t) by C(t). Given that ẋ(t) = 0, x(t) is constant. Then, (4.4) and (4.6)
represent the same system, but (4.6) in a more familiar fashion. Notice that for system (4.6), the observability



48 CHAPTER 4. APPLICATIONS OF THE OBSERVER

gramian and the constructibility gramian are the same. Also, notice that such gramians coincide with the
description of the persistency of excitation when there is uniformity. This has been pointed out by B.
Anderson 1977.

System (4.6) is a linear time-varying system with the peculiarity that matrix A is the null matrix. The
absence of the linear part in the dynamics allows us to leave out the linear term in the observer, and to omit
the computation of H(t). To estimate x(t) in this scenario, we propose the following simpli�cation of (3.2):

˙̂x(t) = −N(t)Λ1

⌈
N(t)x̂(t)− ψ(t)

⌋p1 −N(t)Λ2

⌈
N(t)x̂(t)− ψ(t)

⌋p2
, (4.7)

Ṅ(t) = −N(t)Q(t)N(t) + C>(t)C(t), N(t0) = 0,

ψ̇(t) = −N(t)Q(t)ψ(t) + C>(t)y(t), ψ(t0) = 0.

Again, the proposed simpli�cations do not change the properties of the observer. In this scenario, we have
the following result:

Theorem 4.3. Consider system (4.6) and observer (4.7). Assume that the pair (0, C(t)) is UCC over a time
window of length T . Equivalently, C(t) is of persistent excitation. Given the UCC, we have that N(t) ≥ η In
for t ≥ t0 + T and for some positive η > 0. Under this circumstances, x̂(t) converge to x(t) in �xed-time,
uniformly in t0. The convergence time does not exceed

T +
1

σn(Λ1)ηp1+1(1− p1)
+

1

σn(Λ2)n
1−p2

2 ηp2+1(p2 − 1)
.

Proof. De�ne e(t) = x̂(t)− x(t) as the parameters estimation error. The dynamics of e(t) is

ė(t) = −N(t)Λ1

⌈
N(t)e(t)

⌋p1 −N(t)Λ2

⌈
N(t)e(t)

⌋p2
. (4.8)

Consider as Lyapunv function candidate V (e) = e>e. The derivative of V (t) along the solutions of (4.8) is

V̇ (t) = −2 e>(t)N(t)Λ1

⌈
N(t)e(t)

⌋p1 − 2 e>(t)N(t)Λ2

⌈
N(t)e(t)

⌋p2
≤ −2σn(Λ1)

∥∥N(t)e(t)
∥∥p1+1

p1+1
− 2σn(Λ2)

∥∥N(t)e(t)
∥∥p2+1

p2+1

≤ −2σn(Λ1)
∥∥N(t)e(t)

∥∥p1+2 − 2σn(Λ2)n
1−p2

2

∥∥N(t)e(t)
∥∥p2+1

. (4.9)

For t ≥ t0 + T , we have that N(t) ≥ η In, and

V̇ (t) ≤ −2σn(Λ1)ηp1+1‖e(t)‖p1+2 − 2σn(Λ2)n
1−p2

2 ηp2+1‖e(t)‖p2+1

≤ −2σn(Λ1)ηp1+1V
p1+1

2 (t)− 2σn(Λ2)n
1−p2

2 ηp2+1V
p2+1

2 (t).

Again, by Theorem 2.4, the uniform �xed-time convergence can be asserted. From the same theorem, we
obtain the following upper bound for the convergence time:

T +
1

σn(Λ1)ηp1+1(1− p1)
+

1

σn(Λ2)n
1−p2

2 ηp2+1(p2 − 1)
.

Notice that in this case, the convergence time cannot be less than T . By increasing σn(Λ1) and σn(Λ2)
the convergence time can be made arbitrarily close to T , but not equal to it.

In contrast to the general case, in the constant parameter estimation we can investigate non-uniform
�xed-time convergence. The main reason is that here the Lyapunov function can be chosen time invariant
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and it accept upper and lower bound in terms of the error norm. To see this, consider again (4.9). Instead
of assuming the bound N(t) ≥ η In, let us consider directly σn(N(t)) as a function of t. Then, the time
derivative of V (t) can be bounded as

V̇ (t) ≤ −2σn(Λ1)σp1+1
n

(
N(t)

)
‖e(t)‖p1+1 − 2σn(Λ2)n

1−p2
2 σp2+1

n

(
N(t)

)
‖e(t)‖p2+1

≤ −2σn(Λ1)σp1+1
n

(
N(t)

)
V
p1+1

2 (t)− 2σn(Λ2)n
1−p2

2 σp2+1
n

(
N(t)

)
V
p2+1

2 (t)

Now, from Theorem 2.4, we know that if there exist t1 for each t0 ≥ 0, t1 > t0, such that∫ t1

t0

σp1+1
n

(
N(s)

)
ds ≥ 1

σn(Λ1)(1− p1)
and

∫ t1

t0

σp2+1
n

(
N(s)

)
ds ≥ n

p2−1
2

σn(Λ2)(p2 − 1)
,

then, e(t) = 0 is reached in �xed-time, but not necessarily with uniformity in t0. The restriction over the
integrals means that some information is needed in order to make the estimation. This restriction cannot be
avoided without violating the constructibility. However, uniform constructibility is not necessary. In other
words, this means that the classical requirement of persistent of excitation can be relaxed since the integral of
σn(N(t)) can be �nite. Furthermore, notice that the requisite for the integrals can be lowered by increasing
the gains σn(Λi), or by adjusting the exponents pi. Beside this interesting property of the observer (4.7),
it is important to remark that without uniform constructibility, i.e., without persistence of excitation, the
estimation error may grow unbounded if there is, for example, persistent noise in the measurements.

In relation to the robustness of the observer, the result of Theorem 3.2 can be recovered by using V (e) =
e>e as ISS-Lyapunov function and assuming UCC. On the other hand, recovering the result of Theorem 3.3
is more complicated. Without the linear term depending on H(t), the dynamics of χ(t) = N(t)e(t) + ζ(t),
with ζ(t) as in (3.10), results in

χ̇(t) = −N(t)Q(t)χ(t)−N2(t)

2∑
i=1

Λi
⌈
χ(t)

⌋pi
+ C>(t)

(
C(t)e(t)− δ(t)

)
.

Here, the term depending on e(t) and δ(t) is bounded, but does not disappear. This term prevents the
convergence of χ(t) to zero. One may thing that the disturbance can be compensated by using a discontinuous
(setting p1 = 0) with a large gain. However, increasing the gain might result in an increase of the size of
e(t), making the increment in the gain insu�cient. To recover the convergence of χ(t) to zero, it seems that
a linear term of the form −N−1(t)C>(t)

(
C(t)x̂(t)− y(t)) is needed in the observer.

4.2.1 Numerical Example

To illustrate the advantages given by the proposed observer, we are going to use the following system:

y(t) = ω(t)θ

=
[
cos(t) 1

] [12
−3

]
.

To estimate the parameters θ, the observer was con�gured using the next settings:

Λ1 = Λ2 = 10 I2, p1 =
1

2
, p2 =

3

2
, Q(t) = I2.

In Figure 4.3 we show the results of the simulation. The simulation was computed using the parameters
show in Table 4.2 for the numerical method. In Figure 4.3 (a), the convergence of the estimate to the true
parameters is shown. It can be seen that after approximately 3.5 seconds the estimation is exact. To con�rm
the �xed-time convergence, the initial error was intentionally increased to 103, 105, 107, and 109. The
convergence in the error norm is illustrated in a logarithmic plot in Figure 4.3 (b). As it can be appreciated,
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Figure 4.3: Results of the parameters estimation process. Convergence of the estimates (a). Logarithmic
plot of the error norm for di�erent initial conditions (b).

Parameter Value

Method Backward di�erentiation formula
Precision goal 10−7

Accuracy goal 10−7

Max step size 0.01

Table 4.2: Parameters of the numerical simulation: Constant parameters estimation.

the convergence is accelerated at the beginning when the error is really large. This makes that in all the
cases the convergence occurs at almost the same time. Also, it is important to remark the strict decrease at
the end of the trajectory, which revels the �nite-time convergence. As expected in a numerical simulation,
there is numerical error, which in this case results with an order of 10−7.

Now, to show a case when there is not persistency of excitation, we change the regressor for

ω(t) =
1

1 + t

[
cos(t) 1

]
.

In this situation, the information present in the regressor is lost with time. Clearly, a regressor with this
characteristic cannot be of persistent excitation. To help the observer in this situation, its parameter were
changed to

Λ1 = Λ2 = 50 I2, Q(t) =
1

5
I2,

leaving the rest intact. The results of the simulation under the exposed circumstances are displayed in Figure
4.4. As can be seen in Figure 4.4 (a), the convergence to the true parameters is not loss for this particular
regressor. Figure 4.4 (b) illustrates that the �xed-time convergence is kept. It is important to remark that
in this situation the starting time matters, so that we cannot speak about uniformity. Di�erent initial times
may result in very di�erent convergence times. To illustrated this phenomena, the simulation was repeated
taking the starting time as 5 and 15 seconds, instead of zero. The results of this experiment is shown in
Figure 4.5. In this �gure, the numerical solution of the three situation are compared. Notice that the initial
condition was the same in each case. As can be seen, the time needed for the convergence increase when
the starting time increases, an such increase is not proportional. Other e�ect due to the lack of uniformity
is the lost of robustness against bounded disturbances in the dynamics and the measurements. To illustrate
this, the function 0.1 sin(3 t) + 0.1 was added to y(t) and it is not considered for the observer. Even though
this disturbance is bounded, it generates a derive in the estimates. This is shown in Figure 4.6.
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Figure 4.4: Results of the parameters estimation process with loss of information. Convergence of the
estimates (a). Logarithmic plot of the error norm for di�erent initial conditions (b).
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Figure 4.5: Convergence of the estimation error for di�erent starting times in the absence of uniformity.

4.3 Adaptive observer

An adaptive observe should be capable of estimating the state of the system even in the presence of partially
unknown disturbances (Besançon 2007, Chap. 7). By partially unknown disturbances we mean disturbances
for which a model is available. One common model is a linear parametrization, as shown in the next system
structure:

ẋ(t) = A0x(t) + b ω(t)θ,

y(t) = C0x(t),
(4.10)

with x(t) ∈ Rn, θ ∈ Rm, b ∈ Rn, ω(t) ∈ R1×m a piece-wise continuous, uniformly bounded matrix valued
function. The system matrices are de�ned as follows:

A0 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 , b =


bn
bn−1

...
b1

 , C>0 =


1
0
...
0

 ,
with b1 + b2 s+ · · ·+ bns

n a Hurwitz polynomial. This system class is taken from (Marino and Tomei 1992).
Although the structure of (4.10) seems restrictive, it appears when estimating the state of a single-input-
single-output (SISO) LTI systems together with the 2n parameters of its minimal realization (Narendra
and Annaswamy 1989)[Sec. 4.3.2](Ioannou and Sun 1995)[Sec. 5.4]. Structure (4.10) can also appear when
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Figure 4.6: Derive of the estimates due to the presence of noise and lack of persistency in the excitation.

designing an adaptive observer for non-linear system of the form

ẋ(t) = f
(
x(t)

)
+ q0

(
x(t), u(t)

)
+

m∑
i=1

q1

(
x(t), u(t)

)
θi,

y(t) = h
(
x(t)

)
.

To be able of designing the observer, the system has to be put in the form

ż(t) = A0z(t) + g0

(
y(t), u(t)

)
+G

(
y(t), u(t)

)
θ,

y(t) = C0z(t),
(4.11)

by a parameter independent transformation. Conditions for the existence of such transformation are given
in (Marino and Tomei 1992)[Lem. 1.1]. Once the system is in form (4.11), by the parameter dependent
transformation (�ltered transformation) (Marino and Tomei 1992)

ξ(t) = z(t)−M(t)θ,

Ṁ(t) =
(
A0 − bC0A0

)
M(t) +

(
In − bC0

)
G
(
y(t), u(t)

)
,

the dynamics of ξ(t) results in form (4.10). Using this procedure, it is possible to choose b. However, to
recover z(t) and then x(t), the parameters are needed in order to invert the �ltered transformation.

In (4.10), the nominal part of the system is represented by A0x(t), whereas the term b ω(t)θ represents
a disturbance with parameters θ as the unknown part. The problem of designing an adaptive observer for
system (4.10) consists in �nding an algorithm to recover the internal state in the presence of the disturbance,
and, if possible, the value of θ.

To put this problem in the framework that has been proposed in this work, we need to extend the system
state to include the parameters as part of it. To that matter, de�ne χ(t) ∈ Rn+m as χ(t) = [x>(t), θ>]>.
The dynamics of the system can be represented through this new variable as

χ̇(t) = A(t)χ(t),

y(t) = C χ(t),
(4.12)

with

A(t) =

[
A0 b ω(t)
0 0

]
, and C =

[
C0 0

]
.

Using this representation it is clear that the problem of designing an adaptive observer for system (4.10)
is equivalent to designing an observer for the linear time-varying system (4.12). To be able of recovering
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the state and parameters, constructibility of the pair (A(t), C) is needed. Investigate this property with the
only knowledge of A0, C0, b, and ω(t) is a hard task. Fortunately, for a smooth ω(t), the UCC of the pair
(A(t), C) is equivalent to the observability of the pair (A0, C0), which holds, and the persistent excitation of
ω(t). Additionally, for system (4.12) it has been shown in (Juan G. Rueda-Escobedo and Jaime A. Moreno
2017) that the state can always been recovered regardless of the properties of ω(t).

For system (4.12), the observer structure proposed in the last chapter can also be simpli�ed. As in the
previous cases studied in this chapter, the main simpli�cation is related to the computation of H(t). The
advantage given by the structure of the matrices A0 and C0 is that one can always �nd L0 ∈ Rn, P0 ∈ Rn×n,
P0 = P>0 > 0, and R ∈ Rn×n, R = R> > 0, such that

P0

(
A0 − L0C0

)
+
(
A0 − L0C0

)>
P0 = −R and P0b = C>0 .

This possibility allows the design of an observer for (4.12) of the form

˙̂χ(t) = A(t)χ̂(t)− L(t)
(
C χ̂(t)− y(t)

)
, (4.13)

with

L(t) =

[
L0

Γω>(t)

]
, and Γ ∈ Rm×m, Γ = Γ> > 0.

The solution showed in (4.13) is the classic way of solving the problem (Marino and Tomei 1992). The
introduction of L(t) allows to stabilize the error dynamics induced by (4.13). The same L(t) can be used to
replace the necessity of H(t) in the observer (3.2). Using that modi�cation, the resulting observer is

˙̂χ(t) = A(t)χ̂(t)− L(t)
(
C χ̂(t)− y(t)

)
− P−1N(t)

2∑
i=1

Λi
⌈
N(t)χ̂(t)− ψ(t)

⌋pi
, (4.14)

Ṅ(t) = −A>(t)N(t)−N(t)A(t)−N(t)Q(t)N(t) + C>C, N(t0) = 0,

ψ̇(t) = −
(
A>(t) +N(t)Q(t)

)
ψ(t) + C>y(t), ψ(t0) = 0,

where

P ∈ R(n+m)×(n+m), P =

[
P0 0
0 Γ−1

]
, P−1 =

[
P−1

0 0
0 Γ

]
.

The main di�erence between the classic approach and the proposed observer is the type of convergence. The
classic approach can recover x(t) asymptotically; if, in addition, ω(t) is of persistent excitation, both, x(t) and
θ, are recovered exponentially, but the speed of convergence cannot be freely speci�ed (Narendra and Kudva
1974), (Narendra and Annaswamy 1989). In the case of (4.14), x(t) can also be recovered asymptotically.
If in addition, ω(t) is of persistent excitation, both, x(t) and θ, can be recovered in �xed-time, uniformly in
t0. Furthermore, the speed of convergence can be adjusted by means of Λ1 and Λ2. More precisely, we have

Theorem 4.4. Consider the systems (4.12) and (4.14) with ω(t) uniformly bounded and piecewise contin-
uous. Then, the overall estimation error e(t) = χ̂(t) − χ(t) remains bounded. Furthermore, the estimation
error in the state x̃(t) = x̂(t)− x(t) tends to zero as t→∞.

Proof. De�ne the observation error as e(t) = χ̂(t)− χ(t). Its dynamics is

ė(t) =
(
A(t)− L(t)C

)
e(t)− P−1N(t)

2∑
i=1

Λi
⌈
N(t)e(t)

⌋pi
.
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To analyze the the stability of the solution e(t) = 0, we propose the candidate Lyapunov function V (e) =
e>P e(t). The derivative of V along the dynamics of e(t) results in

V̇ (t) = e>(t)
(
P
(
A(t)− L(t)C

)
+
(
A(t)− L(t)C

)>
P
)
e(t)− 2 e>(t)N(t)

2∑
i=1

Λi
⌈
N(t)e(t)

⌋pi
.

To continue, the matrix in the quadratic term, P
(
A(t) − L(t)C

)
+
(
A(t) − L(t)C

)>
P , has to be analysed.

For it, each term has to be expressed by blocks[
P0 0
0 Γ−1

] [
A0 − L0C0 b ω(t)
−Γω>(t)C0 0

]
+

[
(A0 − L0C0)> −C>0 ω(t)Γ
ω>(t)b> 0

] [
P0 0
0 Γ−1

]
=[

P0

(
A0 − L0C0

)
+
(
A0 − L0C0

)>
P0 P0b ω(t)− C>0 ω(t)

−ω>(t)C0 + ω>(t)b>P0 0

]
=

[
−R 0
0 0

]
.

De�ne x̃(t) = x̂(t)− x(t) and θ̃(t) = θ̂(t)− θ. Then

V̇ (t) = −x̃>(t)R x̃(t)− 2 e>(t)N(t)Λ1

⌈
N(t)e(t)

⌋p1 − 2 e>(t)N(t)Λ2

⌈
N(t)e(t)

⌋p2
≤ −σn(R)‖x̃(t)‖2 − 2σn(Λ1)

∥∥N(t)e(t)
∥∥p1+1

p1+1
− 2σn(Λ2)

∥∥N(t)e(t)
∥∥p2+1

p2+1

≤ −σn(R)‖x̃(t)‖2 − 2σn(Λ1)
∥∥N(t)e(t)

∥∥p1+1 − 2σn(Λ2)n
1−p2

2

∥∥N(t)e(t)
∥∥p2+1 ≤ 0. (4.15)

Then, e(t) = 0 is uniformly stable by Theorem 2.1. Furthermore, by the Barbalat's Lemma (Narendra and
Annaswamy 1989)[Lem. 2.12], ‖x(t)‖ → 0 as t→∞.

Theorem 4.5. Consider the systems (4.12) and (4.14). Assume that ω(t) is uniformly bounded, smooth,
and of persistent excitation with T the length of the time window for which (4.5) holds. Then, there exist
η > 0 such that N(t) ≥ η In for all t ≥ t0 + T and χ̂(t) converges to χ(t) in �xed-time, uniformly in t0. The
convergence time does not exceed

T +
max{σ1(P0), σ1(Γ−1)}
σn(Λ1)ηp1+1(1− p1)

+
max{σ1(P0), σ1(Γ−1)}

σn(Λ2)n
1−p2

2 ηp2+1(p2 − 1)

for any initial error χ̂(t0)− χ(t0).

Proof. Consider the same Lyapunov function as in the proof of Theorem 4.5. We retake the procedure from
(4.15). Since ω(t) is of persistent excitation, there exist T > 0 and η > 0 such that N(t) ≥ η In for t ≥ t0 +T .
Given that e(t) = 0 is uniformly stable, the error does not grow too much in the interval [t0, t0 + T ]. Then,
for t ≥ t0 + T , inequality (4.15) becomes strict, and we have

V̇ (t) ≤ −2σn(Λ1)ηp1+1‖e(t)‖p1+1 − 2σn(Λ2)n
1−p2

2 ηp2+1‖e(t)‖p2+1

≤ −2
σn(Λ1)ηp1+1

max{σ1(P0), σ1(Γ−1)}
V
p1+1

2 (t)− 2
σn(Λ2)n

1−p2
2 ηp2+1

max{σ1(P0), σ1(Γ−1)}
V
p2+1

2 (t). (4.16)

Then, by Theorem 2.4, we can conclude the uniform �xed-time stability of e(t) = 0. Furthermore, this
theorem provide us with a bound for the convergence time:

T +
max{σ1(P0), σ1(Γ−1)}
σn(Λ1)ηp1+1(1− p1)

+
max{σ1(P0), σ1(Γ−1)}

σn(Λ2)n
1−p2

2 ηp2+1(p2 − 1)
.

As in the case of constant parameters estimation, here, we can also analyze non-uniform �xed-time con-
vergence. The reason, as before, is that V is time invariant and its lower bound does not degenerate to zero.
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To analyze this, consider again (4.15) and replace η by σn(N(t)) as a function of time. Then, if for every
t0 > 0 there exist t1 such that∫ t

t0

σp1+1
n (N(s))ds ≥ max{σ1(P0), σ1(Γ−1)}

σn(Λ1)(1− p1)
and

∫ t

t0

σp2+1
n (N(s))ds ≥ max{σ1(P0), σ1(Γ−1)}

σn(Λ2)n
1−p2

2 (p2 − 1)
,

χ̂(t) converges to χ(t) in �xed-time. As before, the lack of uniformity makes the convergence time dependent
of the initial time. Also, in the presence of bounded disturbances, the estimation error may diverge if the
disturbances are persistent. On the other hand, if ω(t) is of persistent excitation, the ISS property showed
in Theorem 3.2 can be recovered by using V (e) = e>P e as ISS-Lyapunov function. In the case of Theorem
3.3, something similar to the case of constant parameter estimation happens. Because the use of H(t) is
avoided, the error dynamic of the variable ξ(t) = N(t)e(t) + ζ(t) is perturbed:

ξ̇(t) = −
(
A>(t) +N(t)Q(t)

)
ξ(t)−N(t)P−1N(t)

2∑
i=1

Λi
⌈
ξ(t)

⌋pi
+
(
N(t)L(t) + C>

)(
δ(t)− C e(t)

)
.

Then, it cannot be guarantee that ξ(t) converge to zero. Due to this, the estimation error does not reach
the limit trajectory −N−1(t)ζ(t).

4.3.1 Numerical Example

To illustrate the properties of the adaptive observer, we will use it to observer the following system:

ẋ(t) = A0x(t) + b ω(t)θ

=

[
0 1
0 0

]
x(t) +

[
3
1

] [
cos(3t) 1

] [12
−3

]
,

y(t) = C0 x(t)

=
[
1 0

]
x(t).

For this system, L0 and P0 can be chosen as

L0 =

[
3
1

]
P0 =

[
1 −2
−2 6

]
.

Using these matrices, we obtain

P0

(
A0 − L0C0

)
+
(
A0 − L0C0

)>
P0 =

[
−2 1
1 −4

]
, P0 b =

[
1
0

]
.

Now, to con�gure the observer, the following parameters were chosen:

Γ = 10 I2, Λ1 = Λ2 = 10 I4, Q(t) = I4, p1 =
1

2
, p2 =

3

2
.

In �gures 4.7 and 4.8 the convergence of the adaptive observer is shown. In Figures 4.7 (a) and (b)
the trajectories of the system's state and the estimates provided by the observer are compared. It can
be appreciated how the estimates reach the target. In Figure 4.8 (a) the parametric convergence can be
appreciated. On the other hand, Figure 4.8 (b) shows a logarithmic plot of the error norm for the state and
parameter estimation. This plot helps us to make evident the exact convergence. This is re�ected in the
high slope that the graphs exhibit after 8 seconds. Now, to illustrate the �xed-time part, the simulation
was repeated with an intentional increment in the initial error. The initial error was set in 103, 105, and
107. The results of this process is shown in Figure 4.9. It can be seen that the increments in the initial
error are not traduced in a signi�cant increment in the convergence time. The high slope at the end of the
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Parameter Value

Method Implicit Runge-Kutta 4-5
Precision goal 10−6

Accuracy goal 10−6

Max step size 0.01

Table 4.3: Parameters of the numerical simulation: Adaptive observer.
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Figure 4.7: Comparison of the estimated state and the state of the system. It is shown how the estimate
reach the trajectory of the real system.

convergence also testi�es to the exact convergence. As in the previous cases, a numeric error can be seen
after the reaching phase. The numerical error in this example has an order around 10−5.

Finally, we proceed to show the behavior of the observer when ω(t) lack of excitation. For this, consider

ω(t) =
1

t+ 1

[
cos(3 t) 1

]
.

Using the same parameters for the observer and the simulation we obtained the plots shown in Figures 4.10
and 4.11. As can be seen in Figure 4.11, the observer is capable of recovering the state and the parameters
exactly for arbitrarily large initial error, that is, the �xed-time convergence is preserved. However, if we
change the starting time, the convergence time increases for the same initial conditions. This is illustrated
in Figure 4.12 (a). Now, to exhibit some of the problems that appear when there is no uniformity, we added
the function 0.2 sin(3 t) + 0.2 to the output. The result is shown in Figure 4.12 (b). As can be seen, the
estimation error in the case of the state remains bounded. However, in the case of the parameters, the
estimation error diverges.

4.4 Time-varying parameters estimation

The problem formulation of estimating time-varying parameters is quite similar, in structure, to the one of
estimating constant parameters. However, the similarities end there. Estimating time-varying parameters
involves the reconstruction of functions instead of constant vectors. The problem statement is as follows:
Let f(t) : R≥0 → Rn be a measurable uniformly bounded vector valued function, with bound ∆ ≥ ‖f(t)‖
for all t ≥ 0. Let C(t) : R≥0 → Rm×n be a uniformly bounded, piecewise smooth matrix valued function,
with a uniformly bounded derivative where de�ned, and for which the intervals in where is smooth, does not
shrink to zero. Consider the following system

θ̇(t) = f(t), θ(t0) = θ0,

y(t) = C(t)θ(t).
(4.17)
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Figure 4.8: Parametric convergence (a). Logarithmic plot of the error norm in the state and parameters (b).
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Figure 4.9: Logarithmic plot of the error norm combining the state estimation error and the parametric
error for di�erent magnitudes of initial error.

The problem consists in determining θ(t) from the knowledge of the output y(t), the regressor C(t), and the
bound ∆.

To observe θ(t), the algorithm developed in the previous chapter cannot be applied since (4.17) corresponds
to a linear time-varying system with unknown input. Therefore, given that f(t) is unknown, the dynamics
of θ(t) cannot be replicated. However, this problem can be put in a linear operator framework, and the ideas
of chapters 2 and 3 can be extended to this scenario.

Notice that θ(t) as the solution of (4.17) is a Lipschitz function since f(t) is uniformly bounded. Since
C(t) is assumed piecewise smooth, y(t) results piecewise Lipschitz. Then, the output equation in (4.17) can
be seen as a linear map between the space of vector valued Lipschitz functions of n components and the space
of piecewise Lipschitz functions of m components, where the operator is C(t). As we saw in Chapter 2, the
observability conditions are related to the injectivity of the operator, whereas an observer can be obtained
by looking at the left inverse. This principle is the basic mechanism behind the Kalman-Bucy �lter and the
proposed observer, and can be extended to this situation.

With respect to the injectivity of C(t) and the identi�ability of θ(t), we have the following result:

Theorem 4.6. (Juan G. Rueda-Escobedo and Jaime A. Moreno 2016) Let C(t) : R≥0 → Rm×n and Lip(Rn),
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Figure 4.10: State and parameter estimation in absence of uniformity. Convergence for the state (a).
Convergence for the parameters (b).
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Figure 4.11: Fixed-time convergence for state and parameters without persistence of excitation.

the set of all bounded Lipschitz continuous functions in Rn. Let S be the range of C(t)
(
Lip(Rn)

)
. Consider

y(t) ∈ S; on the interval [t0, t1] there exist a unique θ(t) ∈ Lip(Rn) such that y(t) = C(t)θ(t) i� rank(C(t)) =
n for all t ∈ [t0, t1].

Proof. Su�ciency. Since C(t) has rank n for all t, C>(t)C(t) is always invertible, and the unique solution
can be computed as

θ(t) =
(
C>(t)C(t)

)−1
C>(t)y(t). (4.18)

Necessity. Let C†(t) be the (unique) Moore-Penrose pseudoinverse of C(t) for each time instant. Then all
possible solutions can be expressed as follows

θ(t) = C†(t)y(t) +
(
In − C†(t)C(t)

)
v(t), (4.19)

where v(t) is an arbitrary function. This is possible since I−C†(t)C(t) projects onto the orthogonal space of
C(t) for each t. However, for any v(t), the solution might not be Lipschitz. Notice also that if Rank(C(t)) = n
then C†(t)C(t) = I. On the other hand, since it is assumed that y(t) ∈ S, there exist θ0(t) ∈ Lip(Rn) with
y(t) = C(t)θ0(t), and v(t), such that (4.19) is Lipschitz continuous, in fact v(t) = θ0(t). Furthermore, any
other solution can be expressed as v(t) = θ0(t) + w(t). Before constructing a suitable w(t), let us analyses
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Figure 4.12: E�ects of the lack of uniformity. Time convergence depending on t0 (a). Derive of the estimates
due to noise (b).

the term C†(t)C(t).
C†(t)C(t) is the orthogonal projector onto the range of C>(t), then its induced norm is one, which implies
that it is bounded element-wise. The term C†(t)C(t) has discontinuities whenever C(t) has it or C†(t). The
�rst one has a �nite number of discontinuities in any bounded interval given the properties asked for C(t).
The second one has discontinuities when C(t) has it, or when the rank of C(t) changes (Campbell and Meyer
2009, Theo. 10.5.1). Then the set of points ` ∈ [t0, t1] where C†(t)C(t) has discontinuities is closed and has
no interior (Campbell and Meyer 2009, Theo. 10.5.2). Now consider a and b, with b > a, any two consecutive
elements of `; on the interval (a, b) the regressor is di�erentiable, and so it is C†(t) (Campbell and Meyer
2009, Theo. 10.5.3). The product C†(t)C(t) is di�erentiable on (a, b).
To construct w(t), consider again a and b as before. De�ne ε = 1

3 (b − a), and the interval l1 = [a, a + ε],
l2 = (a+ ε, b− ε), and l3 = [b− ε, b]. De�ne each component of w(t), wi(t) with i = {1, · · · , n}, as

wi(t) =

{
0 t ∈ l1 or t ∈ l3
k sin

(
π
ε (t− a− ε)

)
t ∈ l2

,

with k ∈ R, k 6= 0. Then w(t) is Lipschitz continuous on (a, b). Since C†(t)C(t) is di�erenciable on (a, b),
its derivative exist and it is bounded on l2, then the product C†(t)C(t)w(t) is going to be Lipschitz. In
a similar way, w(t) can be de�ned for each pair a, b ∈ `, and (4.19) with v(t) = θ0(t) + w(t) represent a
di�erent solution. Then, the system is not identi�able.

The previous result give us the conditions that C(t) has to satisfy in order of having identi�ability of θ(t).
The �rst consequence of Theorem 4.6 is that m ≥ n, otherwise the rank conditions cannot be ful�lled. This
means that at least the same number of measurements and parameters is needed. Now, if the rank condition
is met, the left inverse of the operator results in (C>(t)C(t))−1C>(t), as shown in the Proof of Theorem 4.6.
However, the on-line calculation of this function might be computationally expensive or cumbersome when
n or m are large. Instead, we propose a sort of gradient algorithm to minimize the following instantaneous
cost function

J =
∥∥C(t)θ̂(t)− y(t)

∥∥
1
.

The negative gradient of J yields

˙̂
θ(t) = −C>(t)

⌈
C(t)θ̂(t)− y(t)

⌋0
.

To have a degree of freedom, a positive de�nite matrix Γ is introduced, then the algorithm results in

˙̂
θ(t) = −ΓC>(t)

⌈
C(t)θ̂(t)− y(t)

⌋0
. (4.20)
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It is important to remark that (4.20) has a discontinuous RHS. And because of this, the solutions of system
(4.20) have to be understood in the sense of Filipov (Filippov 2013). This is crucial since the discontinuity
will allow to compensate the dynamics of θ(t) without knowing f(t), but by imposing a gain Γ large enough.
Other modi�cation to (4.20) can be proposed in order to enhance the convergence, for example, including
correction terms of higher degree:

˙̂
θ(t) = −ΓC>(t)

⌈
C(t)θ̂(t)− y(t)

⌋0 − ΓC>(t)
⌈
C(t)θ̂(t)− y(t)

⌋p
, p > 1. (4.21)

The conditions given in Theorem 4.6 are necessary and su�cient to reconstruct θ(t) using the left inverse.
However, they might not be enough for (4.20) or (4.21) to work. In general, it would be necessary to
introduce the following uniformity condition on C(t):

σn

(
C(t)

)
≥ α > 0 ∀ t ≥ 0.

Knowing the value of α and ∆, then it is possible to design Γ such that (4.20) can work properly. This
yields σn

(
Γ
)
≥ ∆/α + ε, with ε > 0 a free parameter. Under this condition, it is possible to prove that

θ̂(t) → θ(t) in �nite time when using (4.20), and in �xed-time if (4.21) is used. To complete this part, the
previous assertion is proven for (4.21) since it encompasses the one for (4.20).

Theorem 4.7. Consider the systems (4.17) and (4.21). Let ‖f(t)‖ ≤ ∆, σn(C(t)) ≥ α > 0, and σn
(
Γ
)
≥

∆/α+ ε, ε > 0. Then θ̂(t) convergence to θ(t) in �xed-time. The convergence time does not exceed

σ
1/2
n

(
Γ
)

α ε
+

1

αp+1n
1−p
2 σ

p+1
2

n

(
Γ
)
(p− 1)

.

for any initial error θ̃(t0) = θ̂(t0)− θ(t0).

Proof. To begin with, the error dynamics θ̃(t) = θ̂(t)− θ(t) induced by (4.21) is derived:

˙̃
θ(t) = −ΓC>(t)

⌈
C(t)θ̃(t)

⌋0 − ΓC>(t)
⌈
C(t)θ̃(t)

⌋p − f(t).

To analyse the stability of θ̃(t) = 0, we propose as candidate Lyapunov function V (θ̃) = θ̃>Γ−1θ̃, which
derivative along the trajectories of (4.21) yields

V̇ (t) = −2
∥∥C(t)θ̃(t)

∥∥
1
− 2

∥∥C(t)θ̃(t)
∥∥p+1

p+1
− 2 f>(t)Γ−1θ̃(t)

≤ −2α‖θ̃(t)‖ − 2n
1−p
2 αp+1‖θ̃(t)‖p+1 +

2 ∆

σn(Γ)
‖θ̃(t)‖

≤ − 2

σn(Γ)

(
ασn(Γ)−∆

)
‖θ̃(t)‖ − 2n

1−p
2 αp+1‖θ̃(t)‖p+1

Given that σn(Γ) ≥ ∆/α+ ε, we can conclude

V̇ (t) ≤ − 2α ε

σn(Γ)
‖θ̃(t)‖ − 2n

1−p
2 αp+1‖θ̃(t)‖p+1

≤ − 2α ε

σ
1/2
n (Γ)

V 1/2(t)− 2n
1−p
2 αp+1σ

p+1
2

n

(
Γ
)
V
p+1
2 (t).

Then, by Theorem 2.4, the �xed-time stability of θ̃(t) is asserted. Also, from this theorem the bound for the
convergence times:

σ
1/2
n

(
Γ
)

α ε
+

1

αp+1n
1−p
2 σ

p+1
2

n

(
Γ
)
(p− 1)

.
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Now, as in the previous sections, it is interesting to see what happens when there are disturbances in the
model. Consider δ(t) ∈ Rm a uniformly bounded integrable vector valued function such that ‖δ(t)‖ ≤ d.
Consider now the perturbed system

θ̇(t) = f(t),

y(t) = C(t)θ(t) + δ(t),
(4.22)

we want to investigate the e�ect of δ(t) in the observer when this functions is unknown. As expected, the
presence of δ(t) makes impossible to recover θ(t) exactly. However, the error made by the observer remains
bounded, in other words, the error dynamic induced by the observer is ISS w.r.t. δ(t).

Theorem 4.8. Consider systems (4.22) and (4.21) with ‖δ(t)‖ ≤ d, σn(C(t)) ≥ α, and σn(Γ) ≥ ∆/α + ε.
The error dynamics which results of applying the observer (4.21) under this situation is

˙̃
θ(t) = −ΓC>(t)

⌈
C(t)θ̃(t)− δ(t)

⌋0 − ΓC>(t)
⌈
C(t)θ̃(t)− δ(t)

⌋p − f(t).

This dynamics is ISS w.r.t. δ(t).

Proof. Consider the candidate ISS-Lyapunov function V (θ̃) = θ̃>Γ−1θ̃, which derivative along the error
dynamics is

V̇ (t) = −2 θ̃>(t)C>(t)
⌈
C(t)θ̃(t)− δ(t)

⌋0 − 2 θ̃>(t)C>(t)
⌈
C(t)θ̃(t)− δ(t)

⌋p − 2 θ̃>(t)Γ−1f(t)

≤ −2

m∑
i=1

(
C(t)θ̃(t)

)
i

⌈(
C(t)θ̃(t)

)
i
− δi(t)

⌋0 − 2

m∑
i=1

(
C(t)θ̃(t)

)
i

⌈(
C(t)θ̃(t)

)
i
− δi(t)

⌋p
+

2 ∆

σn(Γ)
‖θ̃(t)‖.

By Lemma 3.2, V̇ (t) can be bounded as

V̇ (t) ≤ −2

m∑
i=1

∣∣(C(t)θ̃(t)
)
i

∣∣− 2κ1

m∑
i=1

∣∣(C(t)θ̃(t)
)
i

∣∣p+1
+ 4

m∑
i=1

∣∣δi(t)∣∣+ 2κ2

m∑
i=1

∣∣δi(t)∣∣p+1

+
2 ∆

σn(Γ)
‖θ̃(t)‖

≤ −2
∥∥C(t)θ̃(t)

∥∥− 2n
1−p
2 κ1

∥∥C(t)θ̃(t)
∥∥p+1

+ 4n
1
2

∥∥δ(t)∥∥+ 2κ2

∥∥δ(t)∥∥p+1
+

2 ∆

σn(Γ)
‖θ̃(t)‖

≤ − 2

σn
(
Γ
)(ασn(Γ)−∆

)∥∥θ̃(t)∥∥− 2n
1−p
2 αp+1

∥∥θ̃(t)∥∥p+1
+ 4n

1
2 d+ 2κ2d

p+1

≤ − 2α ε

σ
1/2
n

(
Γ
)V 1/2(t)− 2n

1−p
2 αp+1σ

p+1
2

n (Γ)V
p+1
2 (t) + 4n

1
2 d+ 2κ2d

p+1.

Consider q ∈ (0, 1). For V (t) such that

2α ε

σ
1/2
n

(
Γ
)V 1/2(t) + 2n

1−p
2 αp+1σ

p+1
2

n (Γ)V
p+1
2 (t) ≥ 4n

1
2

q
d+

2κ2

q
dp+1, (4.23)

we have

V̇ (t) ≤ −(1− q) 2α ε

σ
1/2
n

(
Γ
)V 1/2(t)− 2(1− q)n

1−p
2 αp+1σ

p+1
2

n (Γ)V
p+1
2 (t) < 0, (4.24)

then, the error dynamics is ISS w.r.t. δ(t)

As in the previous cases, we would like to investigate the behavior of the estimation error and its bounds.
In the presence of δ(t) one would expect that the convergence of χ(t) = C(t)θ̃(t) − δ(t) to zero, in other



62 CHAPTER 4. APPLICATIONS OF THE OBSERVER

words, that θ̃(t) tends to C†(t)δ(t). However, since there is not a speci�c model for C(t) or δ(t), we cannot
investigate the dynamics of χ(t). If an ultimate bound for the estimation error is wanted, one way to
proceed is by �nding the minimum value of V (or ‖θ̃‖) for which (4.23) holds. That value represent a region
of attraction. Given (4.24), this region is reached in �xed-time.

Before ending this section, one �nal remark is mandatory. Persistency of excitation is not a su�cient
condition for estimating time-varying parameters (see (Juan G. Rueda-Escobedo and Jaime A. Moreno
2016, Sec. 5.2)). Even if C(t) is of persistence of excitation, the may be multiple constant and time-varying
parameters that explain the output y(t). Then, if (4.21) is used in an attempt of estimating constant
parameters, the algorithm will fail, and it might generate �equivalent" time-varying ones while making the
output error C(t)θ̃(t)−y(t) zero. That is why (4.21) is not suitable for constant parameter estimation under
the condition that C(t) is of persistence excitation.

4.4.1 Numerical example

To exemplify the estimator, we choose a van der Pol oscillator as the model for the parameters:

θ̇1(t) = θ2(t), θ1(t0) = 3,

θ̇2(t) =
1

2

(
2− θ2

1(t)
)
θ2(t)− θ1(t), θ2(t0) = 0.

The regressor is taken as

C>(t) =

[
2 cos(t) − cos(t+ 1) 3 cos(2 t+ 1/2) 2 cos(t/3 + 1)
cos(2 t) cos(t/2) 2 cos(3 t/2 + 3/4) −3 cos(4 t/3)

]
.

For this con�guration we have ∆ = 5.4 and α = 0.4. To specify the estimator, we set

Γ =

[
16 4
4 20

]
, p = 2, θ̂1(t0) = θ̂1(t0) = 0.

The results of this simulation are presented in �gures 4.13 and 4.14. In Table 4.4 the setting for the numerical

Parameter Value

Method Backward di�erentiation formula
Precision goal 10−3

Accuracy goal 10−3

Max step size 0.01

Table 4.4: Parameters of the numerical simulation: Time-varying parameters.

method is shown. In the Figure 4.13 the trajectory of both, the parameters and the estimates, are displayed.
It can be appreciated how the estimates can track the trajectory of the actual parameters. The reach phase
cannot be seen in this �gure. In Figure 4.14 (a), the logarithmic plot of the error norm is shown. This plot
has two objectives, it illustrates the reaching phase and also helps to con�rm the �nite-time convergence.
In Figure 4.14 (b), the error norm it is also displayed in a logarithmic plot, but for di�erent initial errors of
magnitude 103, 105, and 107. In this plot, it can be appreciated how the convergence time reaches a limit
and at the same time, the acceleration part corresponding to the �nite-time convergence can be seen. This
shows how the �xed-time convergence is achieved by the estimator.

Summary

In this chapter, the algorithm presented in Chapter 3 was specialized to solve estimation and observation
problems that arise in areas such that LTI systems and adaptive control. In the cases of study, we proposed
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Figure 4.13: Time behaviour of the parameters and the estimates. First parameters (a). Second parameter
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Figure 4.14: Logarithmic plot of the error norm for the initial simulation (a), and for di�erent initial errors
(b).

strategies to overcome the computation of H(t), reducing the dimension of the observer. By doing this,
the properties of �xed-time convergences, in the unperturbed case, and the ISS property, in the presence of
disturbances, are kept. However, in the cases of constant parameter estimation and the adaptive observer,
the �nal bound of the estimation error, when there are disturbances, does not converge to −N−1(t)ζ(t) as
in Theorem 3.3. This is an indicative of the �optimality" loss by neglecting the computation of H(t).
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Chapter 5

Conclusions

The purpose of this work was to �nd an strategy to reconstruct withing a �xed time the internal state of linear
time-varying systems. The study of this class of systems took us to the idea of using the constructibility
equation ψ(t) = N (t, t0)x(t) as a source of valuable information to correct the estimate. Using only the
instantaneous information provided by the output to achieve exact convergence of the observer proved to
be a hard task, which for the moment is unsolved. On the contrary, if part of that information was stored,
as it is done in ψ(t), it can be used to achieve the goal. It is important to remark that for single-input
single-output observable linear time-invariant systems, exact convergence can be achieved by sliding-modes
di�erentiators without storing any information. However, such approach does not seem to work for general
uniformly-observable linear time-varying systems. From the �rst moment it was obvious that the direct use
of the constructibility gramian N (t, t0) has several drawbacks given its potential unbounded growth. Then,
the study was centred in obtaining something equivalent to the gramian, but with a better behaviour. This
takes us to modify the gramian dynamics to incorporate stabilizing linear terms, and ended in the Riccati
di�erential equation (RDE) that describe the dynamics of N(t). The change to a RDE contributed several
bene�ces to the observer in terms of generality, compactness, and robustness. It also pointed out to the
relation with the Kalman-Bucy �lter. This relationship has been used to introduce the observer and to
contrast it. At the end, the general structure of the observer can be seen as an extension or a modi�cation
to the Kalman-Bucy �lter. However, for particular problems and systems, the observer can be modi�ed to
avoid the terms inherited from the Kalman-Bucy �lter, making it to stand for its own. Even if it is wanted
to classify the observer as a variation of the Kalman-Bucy �lter, it does something that for the Kalman-Bucy
�lter is not possible, recovering the system state in �xed-time. This property is provided by the non-linear
innovation terms,what constitutes, the main contribution of this work.

The �xed-time convergence has proved to have some advantages. This property can be described as the
synergy of uniformity w.r.t. the initial conditions and �nite-time convergence. The �nite-time convergence
means, in theory, exact recovery of the system state, something that had not been achieved for general
linear time-varying systems. This, however, can be debated when a real application is in the middle. In
contrast, the uniformity w.r.t. the initial error is preserved in any circumstance. From both properties, the
last one proved to be the more useful. The uniformity implies that a time ensuring the reliability of the
estimate can be given, being this time independent from the initial estimation error. This information can
be very valuable in applications that evolve fast, where quick decision making is mandatory. The �xed-time
convergence makes also possible to perform some estimation task under non-classical conditions. This is the
case of constant parameter estimation and the design of adaptive observers for linear time-invariant systems,
where the estimation can be performed in �xed-time with a regressor that is not of persistent excitation,
but carrying enough information. Under these circumstances, the convergence is non-uniform in time.

Although the idea of storing information allowed us to achieve our goals, it has a price to pay: the
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e�ect of noise and other disturbance is also stored. Since the variable recording this information has a
linear dynamics, it can only �forget" the corrupted information exponentially. The only way to get rid of
the incorrect information is by resetting ψ(t) and N(t) to zero, and start the information collection again.
Whenever there is corrupted information in ψ(t), the exact convergence is lost. This makes the �nite-time
convergence fragile because in the hypothetical case of a disturbance that disappear completely, the exact
convergence is not recovered after the system returns to the nominal scenario, except if the estimation process
is reinitiated after the perturbation has disappeared. In contrast, the uniformity is kept in this situation,
and even in the case of a persistent disturbance, making it a robust property of the observer.

The main properties provided by the observer can be summarized in the following points:

• Under ideal conditions, the estimated state converges to the system state's exactly, in a time that is
bounded by a constant which is independent of the initial guess (Theorem 3.1).

• In the presence of disturbances, the error committed by the observer remains bounded and retain a
relation with the size of the disturbances (Theorem 3.2).

• The error committed by the observer when disturbances are present, is comparable to the one com-
mitted by the Kalman-Bucy �lter (Theorem 3.3).

5.1 Ideas for the future

During the development of this work, many questions arose but could not be addressed. Some of them could
lead to interesting contributions. We include here some of them:

• As shown in Section 2.3.1, the solutions of symmetric RDE for di�erent initial conditions converge to
the solution started in zero. This convergence is only asymptotic. It would be interesting to �nd a way
to make them reach the �nal trajectory in �nite time. This can be used to make H−1(t) converge to
N(t) exactly.

• As mentioned, the computation of ψ(t) is susceptible of the disturbances. It would be very useful
to make ψ(t) only store the information of a �nite-length time window without imposing an in�nite-
dimensional dynamic to it.

• In general, the presence of disturbances make impossible to recover the system state exactly. However,
under particular assumptions, it is possible. For example, if a linear time-invariant systems is strongly
detectable?, an unknown input observer can be designed. Other case is the design of a di�erentiator
when assuming the boundedness of the second derivative. In such case, a sliding-mode di�erentiator is
capable of reconstructing the state. For linear time-varying systems it is not clear what assumptions
or system's properties are necessary to recover the state exactly in the presence of unknown inputs, or
other kind of disturbances.

• It is unknown if it is possible to achieve �nite-time convergence when observing a linear time-varying
system without storing information. If possible, how to do it?



Appendix A

Classic inequalities

In this brief appendix we present three classic inequalities that are at the base of functional analysis. These
inequalities are used repeatedly along this thesis, and they have been our main tool to prove the negative
de�niteness of the derivative of all the Lyapunov functions at the core of the results of this work.

Proposition A.1 (Young's inequality). (Beckenbach and Bellman 1961)[Eq. 1.15.2] Let a, b ∈ R>0, and
p, q ∈ R>1 with 1/p+ 1/q = 1. Then

a b ≤ ap

p
+
bq

q
.

Furthermore, for any ε > 0 we have (
ε1/pa

)(
ε−1/pb

)
≤ εa

p

p
+

bq

εq/pq
.

Proposition A.2 (Jensen's inequality). (Beckenbach and Bellman 1961)[Eq. 1.16.5] Let f(x) : [a, b] → R
be a convex function over its interval of de�nition. Consider xi ∈ [a, b] and αi > 0 for i : {1, 2, · · · , n}, with∑n
i=1 α1 = 1. Then

n∑
i=1

αif(xi) ≥ f

(
n∑
i=1

αixi

)
.

In particular, for f(x) = xp+1, x ∈ R≥0 and p ≥ 0, we have

n∑
i=1

αix
p+1
i ≥

(
n∑
i=1

αixi

)p+1

.

Proposition A.3 (Equivalence between norms). (Hardy, Littlewood, and Pólya 1952)[Eq. 2.10.3] Let q ≥
p ≥ 1. Then, for x ∈ Rn, we have

‖x‖p ≥ ‖x‖q,

n
q−p
p q ‖x‖q ≥ ‖x‖p.
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