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Dipole and generalized oscillator strength dependent properties of free and at extreme
conditions systems with applications to material damage

C. Martínez-Flores
Instituto de Ciencias Físicas

Universidad Nacional Autónoma de México

Abstract
In this thesis, I explore the dipole and generalized oscillator strength (DOS and GOS, respectively)
derived properties of atomic systems for free and at extreme conditions by means of ab initio and
numerical approaches with relevance in material damage. For extreme conditions I mean in confinement
environments, e.g. atomic systems encaged by fullerene molecules and/or embedded in a plasma.
I show results for DOS and GOS derived electronic properties for atoms subjected to confinement
environments, e.g. photo-ionization cross section, mean excitation energy, and energy deposition of
heavy ions (energy loss). I present the study in next chapters with the following structure. In Chapter
1, I give a general introduction and the purpose of this thesis. In Chapter 2, I show the theoretical
approach used in this thesis where I establish the physical properties to study. In the field of energy loss
for free atomic systems (no extreme conditions), in Chapter 3, I present results of energy deposition
of heavy ions colliding with atoms and molecules within the Bethe’s theory. I show that, there is an
universal scaling when the electronic stopping cross section and projectile kinetic energy are scaled
properly in terms of the target mean excitation energy, I0, for all projectile-target combinations. Our
findings are compared with available experimental data observing a good agreement for high projectile
energies. In the same Chapter, continuing with the study of energy deposition for atomic systems,
I present preliminary results of the initial target symmetry effect on the GOS and its consequences
on the electronic stopping cross section. Our results make evident the relevance of the initial target
symmetry on the determination of the stopping cross section. For systems under confinement, in
Chapter 4, I consider the case of a hydrogen atom encaged by a C60 cavity obtaining the eigenvalues
and eigenfunctions from the time-independent Schrödinger equation by means of a finite-differences
approach. The C60 is described by a model potential that assumes that the fullerene cage has a
static electronic configuration. I find that the physical properties are modified strongly and the drastic
changes are predominant near the first avoided crossing of the energy levels. In Chapter 5, I present
results for a hydrogen atom encaged by an endohedral cavity under the influence of a weak plasma
interaction by solving the Schrödinger equation by means of a finite-differences approach. The plasma
interaction is described by a Debye-Hückel screening potential. We find that for low screening lengths,
the endohedral cavity potential dominates over the plasma interaction by confining the electron within
the cavity. For large screening lengths, a competition between both interactions is observed. As a
consequence, the DOS and GOS derived properties are modified. In Chapter 6, I present the study
of Li atom encaged by an endohedral cavity implementing the Hartree-Fock approach. I find that
the DOS and GOS are modified drastically for low values of confinement and as a consequence their
derived dependent electronic properties are modified too. Finally, in Chapter 7 I give the general
conclusions and perspectives about this scientific research.
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1
Introduction

The photo-ionization process and the energy deposition of ions (energy loss) are of crucial importance
in determining the damage to materials with implications in areas such as material science, plasma
physics, radiotherapy, and dosimetry. In the photo-ionization case, the response of atomic systems to
ionizing radiation is a dominant process in the universe that involves neutral atoms, molecules, clusters,
as well as their ions (positive or negative) and is carried out in many physical systems [1, 2]. These
include a variety of astrophysical systems, the upper atmosphere and different types of plasma. The
plasma is directly related to the knowledge of the internal structure of materials and their application
[3, 4], for example, the plasmas produced by a laser. Here, the interaction of intense laser beams
or synchrotron light with the materials leads to changes in phase transitions and the production of
hot plume of the material. Thus the investigation of these system has practical interest, e.g. in the
deposition of materials [5], in lithography [6], and microscopy [7], among others.

In the study of the energy deposition of swift, heavy bare ions colliding with an atomic or molecular
target, Bethe [8] proposed the first quantum mechanical treatment of the problem using perturbation
theory for the projectile–target interaction by means of the first Born approximation. From Bethe’s
theory, the electronic stopping cross section is a function of the mean excitation energy, I0, that plays a
crucial role. This I0 parameter accounts for the average energy that a target absorbs from the projectile
kinetic energy during the collision process. The determination of I0 is a difficult problem since it
requires the knowledge of the full excitation spectrum of the target. For molecular targets, the situation
is even more complicated due to the multi-center many-electron problem. In the literature, there have
been reported analytic functional fits or universal curves [9, 10] that facilitate the determination of the
electronic stopping cross section. These expressions require adjustable parameters for each projectile–
target combination. Another approach, is the use of the harmonic oscillator model to account for the
electronic stopping cross section [11], which allows us to obtain I0 using the Virial theorem. Under
this approach, in the intermediate to high collision energies, the following question arises: Is it possible
to find an universal scaling behavior for the electronic stopping cross section as a function of target
properties of atoms and molecules? In the following chapters, I explore this possibility (Paper I).

As mentioned above, in Bethe’s approximation, the energy deposition is characterized by the mean
excitation energy, I0. This parameter depends on the target’s dipole oscillator strength (DOS) and
consequently, on the whole target excitation spectrum. It has been found that the mean excitation
energy has a dependence on the target orientation [12, 13]. However this orientational dependence
has not been assessed in the generalized oscillator strength (GOS) and its effects in the stopping
cross-section, but only through the mean excitation energy. Another important issue that has not
been considered before is the initial target orbital symmetry state and the role it plays in the dipole
and generalized oscillator strength. Considering the harmonic oscillator approach [11], I formulate the
following two questions: How are the generalized oscillator strengths modified if I consider the initial
symmetry of the target? and How is the stopping cross section modified? In this work, I present
preliminary results on the initial target symmetry effect on the GOS and on the stopping cross section
(Paper III).

Furthermore, in the field of atomic systems subjected to different external environments (extreme
conditions), there are new challenges to investigate related to changes in their electronic properties

1



1. Introduction

[4, 14, 15, 16]. The study of hydrogenic impurities inside spherical or cilindrical cavities has been
related to the promise of applications in photo-voltaic materials, quantum computing, semiconductor
nanocrystals, hydrogen storage or medicine treatments [14, 17, 18, 19, 20, 21]. For example, atoms
encapsulated inside a fullerene molecule, known as endohedral systems (A@C), or quantum dots which
are small impurities that are grown or recorded in semiconductor materials with diameters of a few
nanometers. Here, the motion of the electrons is confined in the three spatial directions and when stim-
ulated with an external potential or light, they can only emit/absorpt in certain energy spectra (light
of a certain color). This technology is currently used in various electronic devices [19]. Thus, in these
problems, you need to have a precise knowledge of the interaction between light and certain materials.
Here, the systems encaged in a cavity can be considered as subjected to a spatial confinement.

A consequence of the spatial confinement on the atomic systems is the energy level shift and the
modification of the wave function with a consequently change in the dipole and generalized oscillator
strength, and therefore consequences in determining the damage to materials through the energy-loss
function. Some modified electronic properties are the ionization potential, polarization, the static and
dynamic polarizability, hyper-fine splitting, magnetic screening constants, orbital distortion, photo-
ionization, mean excitation energy, and the energy deposition of ions (projectile energy loss) or material
damage. For example, the photo-ionization of an atom in an endohedral cavity has been studied
previously for one-electron and multi-electronic systems finding huge energy resonances consequence
of the trapping of incoming and outgoing waves in the endohedral cavity [14, 15, 16, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31].

In the case of a free hydrogen atom, the analytic expressions for the generalized oscillator strength
have been available in the literature [32, 33, 34], however for endohedral systems this is not the case.
There is no work reporting generalized oscillator strength properties for a hydrogen or lithium atom
encaged by an endohedral cavity to our knowledge. Then, naturally, some questions arise as: How
are modified the dipole and generalized oscillator strength by the presence of the endohedral cavity in
comparison with the available free expressions? How are modified the dipole and generalized oscillator
strength derived dependent properties for an atom encaged in a fullerene molecule? And what is the
role of the different parameter sets reported in the literature on the dipole and generalized oscillator
strength for endohedral system? Through this thesis, I address these questions (Paper II).

Another example of confinement environment for atoms or ions is under a weak plasma environ-
ment. Here, the coupling strength of the plasma with the electrons of immersed atoms has consequences
in the modification of their electronic properties [4, 35], with applications in many research areas, e.g.
materials processing, fusion processes, and astrophysics environments. As before, the plasma environ-
ment modifies the dipole and generalized oscillator strength derived electronic properties of relevance in
material damage. For the dipole oscillator strength derived properties, the photo-ionization cross sec-
tion of atoms embedded in a plasma interaction has been studied previously (see Refs. [35, 36, 37, 38]
and references therein) finding that the effects of the screening potential on the photo-ionization pro-
duces multiple shape and virtual-state resonances for continuum states.

The energy loss by heavy ions colliding with a plasma, a generalized oscillator strength derived
electronic property, has been investigated from the theoretical and experimental point of view in recent
years [39, 40, 41]. These studies find an enhanced stopping power due to the increased energy transfer
to the free plasma electrons and the charges of the projectiles inside the plasma. However, there is
no work in the literature reporting generalized oscillator strength expressions for a hydrogen atom
encapsulated by a fullerene molecule embedded in a plasma interaction and their dependent electronic
properties. Because of this, I am interested in answering the following questions: How are modified
the energy levels of the endohedral atom embedded in a plasma interaction? And how are modified
the dipole and generalized oscillator strength derived dependent properties for an atom encaged in a
fullerene molecule and embedded in a plasma interaction? In this work, I present some answers to
these questions (Paper IV).

In the case of multielectronic systems, the photo-ionization cross section for the lithium atom has
been previously studied using several theretical methods, for example the use of psuedo-potentials,
Hartree-Fock methods, random phase approximations, to mentioned a few [42, 43, 44]. These methods

2



1. Introduction

have rendered good results when compared to the experimental data for the free lithium atom.
In a recent paper Hasoğlu et al. [31] studied the correlation energy of the ground state of alkali-

earth-metal atoms for an endohedral system A@C60 through multiconfiguration Hartree-Fock methods.
Hasoğlu et al. did not consider the specific case of photo-ionization problem, however they found that
with the increase of well depth, the valence electrons become trapped in the confining well and, as
a consequence, the correlation energy increases. Then, several intrigin aspects of the multielectronic
systems arise, for example, in the case of lithium atom, what is the influence of the endohedral cavity on
the core electrons? How are modified the energy levels? How the DOS and GOS dependent electronic
properties change? In this thesis, I give some answers to these questions (Paper V).

1.1 Outline of the thesis
Based on the previous discussion, in this thesis, I present original and novel research to explore the
dipole and generalized oscillator strength derived electronic properties for atomic systems at free
and at extreme conditions. The later class of systems are relevant to understand the electronic and
optical response of novel materials relevant in the determination of material damage. The electronic
properties under study are the photo-ionization cross section, energy mean excitation energy, and the
energy deposition of heavy ions colliding with atoms and molecules (energy loss).

This thesis is presented as follows. In Chapter 2, I present the theoretical approach used to
study the dipole and generalized oscillator strength derived electronic properties at free and extreme
conditions for atomic systems. Thus, in the next chapters we only show results and the reader would
be referred to Chapter 2 for all theoretical details. In Chapter 3, I present results of energy deposition
of ions when penetrating a material considering no confinement environments (free systems). Then,
in Chapter 4, I show results for the hydrogen atom under an endohedral confinement. In Chapter 5,
I study the endohedral hydrogen atom embedded in a plasma interaction. In Chapter 6, the results
and findings are discussed for the lithium atom encaged by an endohedral cavity. Furthermore, at
the end of each chapter, we give particular conclusions and perspectives. Finally, in Chapter 7, I give
the general conclusion and perspectives of this work. We use atomic units unless physical units are
explicitly stated.

3
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2
Theoretical approach

In this chapter, I provide an overview of the theoretical approach used to obtain the photo-ionization
cross section, mean excitation energy, and stopping cross section (energy loss), i.e. dipole and gen-
eralized oscillator strength (DOS and GOS) derived dependent properties. For this, it is required to
determine the eigenvalues and eigenfunctions of atomic systems at free and at extreme conditions, e.g.
hydrogen and lithium atoms. In sections 2.1–2.3, I present a general treatment to study the DOS and
GOS physical derived properties under confinement conditions, e.g. valid for any radial confinement
potential. In section 2.4, it is shown the general approach to obtain the electronic spectrum for atomic
systems for free and confinement conditions. Finally, I review a finite-differences numerical approach
to obtain the energy spectrum and specify the numerical details used in the results.

2.1 Photo-ionization cross section
In this section, I present the theory to calculate the photo-ionization cross section (PCS) within Bethe’s
approach. Furthermore, I present the spherical symmetry results to obtain the PCS as a function of
the dipole oscillator strength (DOS) directly from the eigenvalues and eigenfunctions through the
finite-differences approach.

2.1.1 Bethe approach for the hydrogen atom
Let us consider the case of an atomic system that interacts with an electromagnetic field where one
assumes that the movement of a particle of mass m is quantized and the electromagnetic field is
considered as classical [45]. The Schrödinger equation for a particle with charge q and mass me in an
electromagnetic field is described by

H = 1
2me

(
p − e

c
A(r, t)

)2
− eϕ(r, t) + V0(r), (2.1)

where we have assumed that the vector potential A is given by Maxwell’s equations. Here, we simplify
Eq. (2.1) if we know the following relation A · p − p · A = iℏ∇ · A, where we have assumed that there
is no source of electrostatic radiation, i.e. ϕ = 0 and ∇ · A = 0 (Coulomb gauge). Thus

H ∼=
p2

2me
+ e

mec
(A · p) + V0, (2.2)

where we have neglected the quadratic term from the expansion of Eq. (2.1). Thus, the Hamiltonian
of a charged particle in the presence of an electromagnetic field in the Coloumb gauge is given as

Ĥ = Ĥ0 + V̂ (t), (2.3)

5



2. Theoretical approach

where

Ĥ0 = − ℏ2

2me
∇2 + V̂0, (2.4)

V̂ (t) = e

mec
(A · p) . (2.5)

Here, we consider V̂ (t) as a perturbation to the Hamiltonian Ĥ0. We know in advance that this
semiclassical approximation gives a good description of the influence of the external radiation field
on the particle (absorption and induced emission), but it does not contain the description of the
influence of the particles on external radiation (spontaneous emission).

Consider a Hamiltonian consisting of two parts, one independent of time Ĥ0 and another depen-
dent on time V̂ (t), as in Eq. (2.3). From perturbation theory, we obtain the transition probability,
to first order, and defining the absorption coefficient in terms of the density matrix and the transition
probability [45], we obtain

dσ

dΩ
=
W abs

fi

NdΩ
= e2

(2πℏc)
v

ω
|⟨ψf |e−ik·rϵ · p|ψi⟩|2. (2.6)

This is the differential PCS for absorption, that describes an electron ejected from an atom under
the influence of a classic electromagnetic field [34]. Here ω and k are the angular frequency, and wave
vector of the incident electromagnetic radiation, respectively, v is the electron velocity, and, ψi and ψf

are the wave-functions for an initial and final state. Rewriting the PCS for absorption, we obtain

dσ

dΩ
= − e2

(2πmc)
kf

ω
|⟨ψf |e−ik·rϵ · ∇|ψi⟩|2, (2.7)

where we have used v = ℏk/m and p = −iℏ∇. From the dipole approximation, i.e. e−ik·r ∼= 1+ ik · r+
· · · , and assuming a linear polarization, the matrix element is modified and the PCS can be written as

dσ

dΩ
= 8π3e2ν

c

∣∣∣∣∫ ψ∗
f xψi dτ

∣∣∣∣2 . (2.8)

Then, Eq. (2.8) is the PCS for absorption in terms of the frequency of the incident photon ν. The
expression |

∫
ψ∗

fxψidτ |2 is the dipole moment between the initial and final state, which are related to
the DOS. Here x is the direction of the polarization of the photon [46].

To evaluate the dipole moment that appears in Eq. (2.8) for the hydrogen atom [46], we consider
that ψi is an eigenfunction of the ground state of the hydrogen atom, and the eigenfunction ψf is a
continuous state. The eigenfunction of the continuum depends on the energy (or frequency ν) and on
the quantum numbers l and m. The integral in Eq. (2.8) must be evaluated for all values of l and m
and the results must be added. In the case of the continuous spectrum, we will use the one proposed
by Bethe and Salpeter [46]. From here, we obtain an integral for the dipole moment in terms of the
eigenfunctions in the continuum. Using the residue theorem to perform this integral, we obtain that
the dipolar term can be written as

∣∣∣∣∫ ψ∗
fxψidτ

∣∣∣∣2 = 28

3Z4

(
n′2

1 + n′2

)5
e−4n′arccotn′

1 − e−2πn′ , (2.9)

where n′ = Z/k and Z is the atomic number. This equation is written in atomic units.
To rewrite the dipole moment [Eq. (2.9)] in terms of the frequency of the photon ν, we note that

the frequency is given as ν1 = E1/ℏ [46]. Furthermore, the kinetic energy of the free electron W is

6



2. Theoretical approach

related to the energy of the absorbed photon hν as W = hν − Ib. Here Ib is the ionization potential,
E = hν and W = Z2/n′2. Then, the frequency is given as

ν = ν1(1 + 1/n′2), n′ =
(

ν1

ν − ν1

)1/2

. (2.10)

Finally the PCS for the hydrogen atom is

σ(hν) = σH

(
E3

1
E4

)
e−4n′arccotn′

1 − e−2πn′ , (2.11)

where σH =
(
210π2/3

) (
ℏ2/2m

) (
e2/ℏc

)
= 9364.48×10−18eVcm2 and σ(hν) is a function of the photo-

electron energy, E. This equation permits us to obtain the PCS for the hydrogen atom under free
conditions (without confinement environment).

2.1.2 Results for spherical symmetry and pseudo-states in the continuum
Let us consider the spherical symmetry of an atomic system to obtain the PCS as a function of the
DOS. In the previous section, we have seen that the PCS, Eq. (2.8), is given by

σnl = 4π2
(
e2

ℏc

)
ℏωnf ni |⟨ψnf ,lf ,mf

|r · ϵ|ψni,li,mi⟩|2, (2.12)

where we have written it in terms of ω. Thus, we can rewrite the PCS as a function of the DOS as

σnl = 4π2
(
e2ℏ
2mc

)
fnf lf ,nili , (2.13)

with
fnf lf ,nili = 2m

ℏ
ωnf ni |⟨ψnf ,lf ,mf

|r · ϵ|ψni,li,mi⟩|2. (2.14)

Here the fnf lf ,nili depends on the polarization of the incident light and the orientation, that is,
the azimuthal quantum number (m) of the initial and final state, as well as the quantum number l.
The wave-functions of Eq. (2.13), for an initial and final state, are given by

ψni,li,mi = uni,li(r)
r

Yli,mi(θ, ϕ), (2.15)

ψnf ,lf ,mf
=
unf ,lf

(r)
r

Ylf ,mf
(θ, ϕ). (2.16)

When we sum over all the initial states ni, li,mi, and average over all the final states nf , lf ,mf

[34], we obtain

f̄nf lf ,nili = 1
2li + 1

+lf∑
mf =−lf

+li∑
mi=−li

1
3

3∑
i=1

fnf lf ,nili , (2.17)

f̄nf lf ,nili = 2m
3ℏ

ωnf ni

lf∑
mf =−lf

1
2li + 1

li∑
mi=−li

|⟨ψnf ,lf ,mf
|r · ϵ|ψni,li,mi⟩|2︸ ︷︷ ︸, (2.18)

which are known as the mean DOS. The underlined part will be modified (see below) to write it in
terms of radial functions for the spherical symmetry.
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2. Theoretical approach

From Eq. (2.18), the transition probability depends on the dipole matrix elements, therefore, it
is convenient to write them in simpler terms using the spherical symmetry for one active electron,
e.g. the hydrogen atom [47]. Thus, carrying out the matrix elements of Eq. (2.18), we obtain the
Clebsch-Gordan coefficients ⟨lf ,mf |1, ν, li,mi⟩ for the coupling of the initial li,mi and final angular
momentum lf ,mf . Here, for a dipole transition, the selection rule associated with the quantum number
m is ∆m = 0,±1 and for l is ∆l = lf − li = ±1. The underlined expression, in brackets, from Eq.
(2.18) is rewritten as

li∑
mi=−li

|⟨ψnf ,lf ,mf
|r · ϵ|ψni,li,mi⟩|2 =

(∫ ∞

0
unf lf

(r) r unili(r) dr
)2

l>
2lf + 1

, (2.19)

where l> is the maximum of the initial and final angular momentum, max(li, lf ). Furthermore, taking
the average over the final angular momentum

lf∑
mf =−lf

1
2lf + 1

= 1, (2.20)

the mean DOS is given as

f̄nf lf ,nili = 2m
3ℏ

ωnf ni

l>
2li + 1

(∫ ∞

0
unf li(r) r unili(r) dr

)2

, (2.21)

= 2m
3ℏ2 (Enf

− Eni)
l>

2li + 1

(∫ ∞

0
unf li(r) r unili(r) dr

)2

, (2.22)

with ωnf ni = (Enf
−Eni)/ℏ. When the mean DOS is positive, for Ef > Ei, we are in the absorption

case. When the DOS are negative, for Ef < Ei, we are in the emission case [47]. To verify that our
numerical approach has rendered a complete set of states, the DOS satisfy the Thomas-Reiche-Kuhn
(TRK) sum rule [34]. The TRK sum rule is given as

∑
nf

f̄nf lf ,nili(q) +
∫
df̄nf lf ,nili(q)

dEnf

dEnf
= 1 . (2.23)

We observe that it considers the contributions from the bound and continuum states.
To calculate the PCS for one active electron, it is necessary to use the continuum spectrum, thus,

we rewrite Eq. (2.13) as a function of the DOS [Eq. (2.14)] to obtain

σnl(hν) = 4π2
(
e2ℏ
2mc

)
df̄n0

dE
, (2.24)

where we simplify the notation in the DOS as nili → 0 and nf lf → n, for an initial and final state.
Here df̄n0/dE is the dipole oscillator strength density within the energy E and E + dE.

In the case when we have to describe the continuum by pseudo-continuum states, as in the case
of excited solutions in a box, then we require that the continuum wave-functions of the final excited
state must be normalized with respect to the energy, u → uE , i.e.∫

u∗
E′(r)uE(r)dr = δ(E′ − E) , (2.25)

such that
df̄n0

dE
= 2

3
(En − E0) |⟨REn(r)|r|R0(r)⟩|2 , (2.26)

8



2. Theoretical approach

with RE(r) = uE(r)/r. To normalize the final wave-function we follow the procedure of Ugray et al.
[48] given as

REn(r) =

√
2

En+1 − En−1
Rn(r) , (2.27)

where En+1 (En−1) is the energy of the adjacent above (below) pseudo-continuum excited state and
Rn(r) is the radial wave-function of the pseudo-continuum. Finally, Eq. (2.24) let us to calculate the
PCS of an atomic system with one active electron for a dipole transition as a function of the continuum
spectrum of the electronic system, Eq. (2.26), [47].

2.2 Electronic stopping power
Another property of interest related to the DOS and GOS is the electronic stopping cross section. The
Bethe’s model for the stopping power [8, 32] is the first quantum treatment to account for the energy
deposition of ions colliding with atomic or molecular targets, which is valid in the high energy regime.
Bethe considers the projectile momentum transfer as the dynamic factor that describes the energy loss
within the first Born approximation.

In this model, we consider the projectile interaction with the nucleus and the electron as a per-
turbation to the system. Furthermore, Bethe assumes that the projectile velocity is fast enough such
that the momentum does not change in the transversal direction. Under this considerations, the
Hamiltonian is

Ĥ = Ĥ1 + Ĥ2 + V̂ , (2.28)
Ĥ = Ĥ0 + V̂ , (2.29)

where Ĥ0 = Ĥ1 + Ĥ2 and Ĥ1, and Ĥ2 are the projectile and target Hamiltonian, respectively. Ĥ0 is
the unperturbed Hamiltonian, and V̂ is the interaction potential defined now as

V̂p = Z1Z2e
2

R
− Z1e

2
N2∑
j=1

1
|R − rj |

. (2.30)

Here, Z1 and Z2 are the atomic numbers for the projectile and target, N2 is the target bound electrons.
Thus, with the Hamiltonian given by Eq. (2.28) we solve the time-dependent Schrödinger equation
during the collision defined as

(Ĥ1 + Ĥ2 + V̂ )ψ = iℏ
∂ψ

∂t
. (2.31)

Using the time-dependent perturbation theory to solve Eq. (2.31) and considering that V̂ is a
perturbation to the free system Ĥ0, the Fermi golden rule for an electronic transition from an initial
(n0) to a final (n) state is given by [8, 32]

Wn = 2π
ℏ

|⟨n|V̂ |n0⟩|2δ(En − En0) , (2.32)

where the total energy during the collision is conserved. Integrating Eq. (2.32) as a function of the
final state (n), we obtain the probability transition per time and solid angle for a momentum between
p and p+ dp as

dWnn0 = kM1

ℏ5(2π)5 |⟨n|V̂ |n0⟩|2dΩ , (2.33)

9



2. Theoretical approach

where M1 is the projectile mass. Then, the differential cross section dσn(θ, ϕ)/dΩ is given by

dσn(θ, ϕ) = 1
(2π)2

M1

ℏ4 |⟨n|V̂ |n0⟩|2dΩ . (2.34)

From the energy conservation, the energy transferred by the projectile will be the energy gained
by the target. Then, the stopping cross section is given as

Se =
∑

n

∫
(En − En0) dσn

dΩ
dΩ , (2.35)

and the sum is over all target states (bound and continuum).
From the matrix element of Eq. (2.34), one finds that the electronic stopping cross section is

independent of the nuclear contribution as the wave-functions only represent electronic states of the
target (see Ref. [46]). The momentum transfered (q) is related to the wave vector (k) by q = k − k0,
and from the conservation of momentum, we obtain q2 = k2 + k2

0 − 2kk0 cos θ and dΩ = 2πqdq/kk0.
Thus, the stopping cross section [Eq. (2.35)] is

Se = 8πZ1e
4

ℏ2v2

∑
n

∫ qmax

qmin

(En − En0) |⟨n|
N2∑
j=1

e−iq·rj |n0⟩|2 dq
q2 , (2.36)

for a given projectile velocity v. The integration over q is carried out between a minimum and maximum
momentum transfer value determined from energy and momentum conservation [49]

qmax
min (n) = M1v

ℏ

1 ±

√
1 − 2(En − En0)

M1v2

 . (2.37)

Here E0 and En0 are the initial and final energy levels of the system, respectively.
Summarizing the previous results, we have an ion that moves with velocity v, mass M1, with a

nuclear charge Z1 that collides with a target of mass M2 and with N2 electrons bound to the nucleus
in some initial state |n0⟩. After the collision, the target electrons will undergo a transition to a final
state, denoted by |n⟩ where a transfer of kinetic energy exists between the ion and the electrons. The
kinetic energy transfer from the projectile to the target is given by Em − Em0 . Rewriting Eq. (2.36)
we obtain

Se(v) = 4πZ2
1e

4

mev2

∑
n

∫ qmax(n)

qmin(n)
Fnn0(q)dq

q2 , (2.38)

where Fnn0(q) are the generalized oscillator strength (GOS) defined as

Fnn0(q) = 2me

ℏ2q2 (En − En0) |Mnn0(q)|2 , (2.39)

and the atomic form factor given by

Mnn0(q) = ⟨n|
N2∑
j=1

e−iq·rj |n0⟩ . (2.40)

The integration limits of Eq. (2.38) are given by Eq. (2.37). Then, Eq. (2.38) requires the solution
of the undisturbed Schrödinger equation for a system of N2 electrons bound to the nucleus. In other
words, the knowledge of the complete excitation spectrum and the corresponding wave-functions is
required.
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2. Theoretical approach

2.2.1 Independent electron model
Instead of trying to solve an N–body problem, it is proposed to use the independent electron model
(see Ref. [11, 50]) for a multi-electronic system. This model implies that a system of N2 electrons is
described by a wave-function of the Hartree type of the form |n⟩ = |n1, n2, n3, ..., nN2⟩, where |ni⟩ is
the eigenfunction for a single electron for a undisturbed system. The energy transfer from the ground
state to any excited state is written as En −En0 =

∑N2
j=1

(
Enj − En0j

)
which permit us to obtain the

i-th contribution to the electronic stopping cross section as

Se(v) =
N2∑
i=1

Se,i(v) , (2.41)

where

Se,i(v) = 4πZ2
1e

4

mev2

∑
n

∫ qmax,i(n)

qmin,i(n)
F (i)

nin0i
(q)dq

q2 , (2.42)

and the GOS for the i-th electron is given as

F (i)
njn0j

(q) = 2me

ℏ2q2

(
Enj − En0j

)
|⟨nj |e−iq·rj |n0j⟩|2 . (2.43)

This result reproduces the Bragg and Kleeman [51] addition rule for the electronic stopping cross
section.

As a final remark, the oscillator strength is a dimensionless quantity that expresses the probability
of absorption or emission of electromagnetic radiation in transitions between energy levels of an atom or
molecule. Then, the GOS accounts for the probability transition from the ground state to a particular
excited state for a given momentum transfer, q, and is defined by Eq. (2.39).

The GOS, satisfy the Bethe’s sum rule (BSR) [49, 34] given as

∑
nj

Fnjn0(q) +
∫
dFnjn0(q)

dE
dE = Ne , (2.44)

where Ne is the number of bound electrons valid for any value of the transfered momentum q and is
the generalization of the TRK sum rule [Eq. (2.23)]. The first term is the sum over the bound states
and the second one is the sum over the continuum states. From the GOS we obtain the DOS for q → 0
given as fninj0 = limq→0Fnjnj0(q), see Eq. (2.21).

2.2.2 Bethe approximation and mean excitation energy
A particular case of Eq. (2.42) is the Bethe approximation for the electronic stopping cross section
for high energy regime. In the limit of high velocities (v ≫ ve, with ve the target’s electron velocity)
Eq. (2.42) is given by kinematic considerations for binary collisions between heavy ions, such that
qmax,i = 2mev/ℏ and qmin,i = (Eni − En0i)/ℏv. The lower limit is replaced by the independent
average of the mean excitation energy, that is qmin,i = I0i/ℏv (see Ref. [8, 46, 32]). Integrating Eq.
(2.42) assuming the fulfillment of the BSR [Eq. (2.44)], with the limits defined as before, we obtain

Se,i(v) = 4πZ2
1e

4

mev2

∑
n

∫ qmax,i

qmin,i

dq

q2 = 4πZ2
1e

4

mev2 ln
(

2mev
2

I0i

)
. (2.45)

Here, I0i is the mean excitation energy of the i-th orbital, defined by the DOS, fninj0 = limq→0Fnjnj0(q)
[Eq. (2.22)], as

ln I0i =
∑
ni

fninj0 ln (Eni − En0i) . (2.46)
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For high energy collisions and using the decomposition Bragg rule [Eq. (2.41)] [11, 51] which
states that the mean excitation energy of an atom –molecule– is the sum of the In0i of all the electrons
–atoms– composing the atom –molecule–. Thus, the mean excitation energy of the system is given by

N2 ln I0 =
∑
i=1

ni ln In0i , (2.47)

where ni is the occupation number of the i−th orbital. This I0 parameter accounts for the average
energy that a target absorbs from the projectile kinetic energy during the collision process. The
determination of I0 is a difficult problem since it requires the knowledge of the full excitation spectrum
of the target.

In summary, we know how to obtain the photo-ionization cross section [Eq. (2.24)] for atomic
systems with one active electron through the mean DOS [Eq. (2.26)], the electronic stopping cross
section as an orbital decomposition [Eqs. (2.41)-(2.42)] through the GOS [Eq. (2.43)], and the mean
excitation energy as a function of the DOS [Eq. (2.46)]. As we observe from these physical properties,
the DOS and GOS are the principal quantities to calculate as a function of the eigenvalues and
eigenfunctions for a given electronic transition. Thus, in the next sections, I will show how to obtain
the energy spectrum for atomic systems at free and extreme conditions.

2.3 Harmonic oscillator approach
As a first approach, the stopping cross section can be evaluated analytically, if we assume that the
electrons are bound harmonically to the target. The wave-function of a three-dimensional isotropic
harmonic oscillator, in Cartesian coordinates, is given as [52]

ϕnix,niy,niz (x, y, z) = Anie
−α2

i (x2+y2+z2)/2Hnix(αix)Hniy (αiy)Hniz (αiz), (2.48)

where Ani
= (α2

i /π)3/4/
√

2nix+niy+niznix!niy!niz! is the normalization constant, Hnix
is the Hermite

polynomial, α2
i = meω0i/ℏ, and the energy of the state is given by Eni = ℏω0i(nix + niy + niz + 3/2).

Here ω0i is the angular frequency of the i-th electron [53]. Thus, assuming an s-initial state from Eq.
(2.48) in (2.43) and (2.42) we obtain [54]

Se,i(v) = 4πe4Z2
1

mev2 Li(v) . (2.49)

Here the stopping number is given by

Li(v) = 1
2

[E1/I0i]∑
ν=1

Γ(ν − 1, xmin) − Γ(ν − 1, xmax)
(ν − 1)!

, (2.50)

where Γ(x, a) is the incomplete gamma function [52] and the limits are given by

xmax
min (v) = M1E1

meI0i

(
1 ±

√
1 − I0i

E1
ν

)2

, (2.51)

with I0i the mean excitation energy and E1 the projectile kinetic energy.
For atomic systems, the mean excitation energy is calculated by considering Eq. (2.48) where the

ground state wave-function is a function of the angular frequency ω0i. A consequence of the HO model
is that f0i = δi1 and consequently, the orbital mean excitation energy is related to the orbital electron
angular frequency as

I0i = ℏω0i . (2.52)

The angular frequency ω0i is found through the Virial theorem given as
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ω0i =

√
−2ϵ0i

me⟨r2
i ⟩
, (2.53)

where ϵ0i and ⟨r2
i ⟩ are the orbital energy and mean square position of the i-th electron, respectively,

and are taken from atomic data tables [54].
In the HO model, the orbital angular frequency is the only parameter that connects naturally

with the mean excitation energy. Thus, to account for the chemical composition of a molecular target,
we implement the Floating Spherical Gaussian Orbital (FSGO) model (see Ref. [55] and references
therein). The FSGO describes a molecular electronic system with an even number of electrons 2n,
distributed in n localized orbitals represented by the function Ψi, with i = 1, 2, · · · , n [56]. This model
only allows to consider closed shell systems. In this representation, each Gaussian orbital describes
the core (1s2), bond, and lone pair (LP) orbitals of a molecule. Each one of them is represented by a
Gaussian function of the form

Ψi(r) =
(

2
πρ2

i

)3/4

e−(r−Ri)2/ρ2
i (2.54)

where ρi is the orbital radius and Ri is the position of the Gaussian center. As noticed, this wave-
function is the ground state of the HO. This similarity justify the use of the FSGO wave-function
within the HO approach, such that there is a direct relations between ω0i and ρi. Using Eq. (2.54)
and Eq. (2.48) we obtain

I0i = 2ℏ2

meρ2
i

. (2.55)

These expressions let us take into account for the mean excitation energy for atomic and molecular
targets as a function of fundamental properties.

2.3.1 Spherical symmetry
In Section 2.1 we found that the electronic stopping cross section, Se, in an orbital decomposition, is
given by Eqs. (2.41)–(2.43). Here, we give a further step by taking into account the spherical symmetry
of the atomic system to calculate the GOS [Eq. (2.43)] by any spherical orbital. Considering that the
transfered momentum is along the z direction, the stopping cross section from an initial 1s state using
the wave-functions of Eq. (2.15) and (2.16) is given by [57]

Se,i(v) = 4πZ2
1e

4

mev2

∑
n

∫ qmax,i(n)

qmin,i(n)
F (i)

nin0i
(q)dq

q2 , (2.56)

where the GOS are
F (i)

nin0i
(q) = 2

q2 (Eni − En0i) |Mnin0i(q)|2 , (2.57)

and from the initial and final wave-functions, Eq. (2.15) and (2.16), we obtain

Mnin0i(q) =⟨ψnf
(r, θ, ϕ)|e−iqr cos θ|ψni(r, θ, ϕ)⟩ (2.58)

=il
√

2l + 1
∫ ∞

0
jl(qr)u∗

nil(r)u10(r)dr , (2.59)

is the atomic form factor, jl(x) is the spherical Bessel function of order l, and i is the imaginary
number. As we observe from Eq. (2.58), the atomic form factor is a function of the initial and final
radial wave-functions, u10(r) and unil(r), respectively. Note that these previous properties are only
function of the time-independent spectrum of the system (free or confined at extreme conditions).
These wave-functions will be found within a numerical approach by a finite-differences method.
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From the above results, we observe that the photo-ionization cross section [Eq. (2.24)], mean
excitation energy [Eq. (2.47)], and the electronic stopping cross section [Eq. (2.41)] are dependent on
the DOS and GOS, respectively. The DOS [Eq. (2.22)] and GOS [Eq. (2.43)] are a function of the
eigenvalues and eigenfunctions where the information of an atomic transition is contained. Thus, to
study an atomic system at free or at extreme conditions (confinement conditions), it is necessary to
obtain the energy spectrum and eigenfunctions. In the following sections, I show how to calculate the
energy spectrum of the hydrogen and lithium atoms.

2.4 Electronic spectrum of atomic systems
Once I have established how to calculate the physical properties considered in this thesis, I proceed
to obtain the energy spectrum of the atomic systems of interest. In this section, I show the general
treatment useful to study the electronic spectrum of the atomic systems under several confinements
conditions. In the next section, the confinement conditions are established used in this thesis.

2.4.1 One active electron atom
The electronic spectrum of a hydrogenic atom is given by the solutions to the time-independent
Schrödinger equation [45]. However, in this case, we consider a generalized case of the problem where
we suppose that the active electron is subjected to a screening potential [Vscre(r)] (e.g. a Coulombic
potential due to the inner electrons) and to a confinement potential [Vc(r)]. These potentials have
spherical symmetry and as a consequence a dependence on the radial variable. Thus, the Schrödinger
equation for an active electron is given as[

−1
2

∇2 + Vscre(r) + Vc(r)
]
ψn(r) = Enψn(r) , (2.60)

From the spherical symmetry of the problem the wave-function is given by Eq. (2.15). Thus, using
the function replacement Rnl = unl/r, the radial Schrödinger equation is reduced to[

−1
2
d2

dr2 + l(l + 1)
2r2 + Vscre(r) + Vc(r)

]
unl(r) = Enunl, (2.61)

which results in a one-dimension equation in terms of the radial variable as a function of the Vscre(r)
and Vc(r) potentials. Eq. (2.61) let us incorporate confinement effects through Vscre(r) and Vc(r)
potentials (see below), e.g. screening and pressure effects. To solve Eq. (2.61) we use a numerical
method described further below.

Note that, the well-known free hydrogen atom radial equation is obtained from Eq. (2.61) when
Vscre(r) = −Z/r and Vc = 0.

2.4.2 Lithium atom
A further case of study is a multi-electronic systems. As a first example, I consider the ground state
of the lithium atom confined under several conditions, e.g. for any confinement potential. Here I
implement the Hartree-Fock (HF) method considering the Restricted and Unrestricted approaches to
obtain the eigenvalues and eigenfunctions of the Li atom.

General Hartree-Fock method under confinement
In this section, I review some well-known results of the Hartree-Fock (HF) method [50] considering a
general approach when the electrons of the system are subject to a confinement potential [Vc(r)].
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A many-body stationary system is described by the Schrödinger equation as

ĤΦ(q1, ..., qN ) = EΦ(q1, ..., qN ), (2.62)

where the Hamiltonian is

Ĥ =
N∑

i=1

(
−1

2
∇2

i − Z

ri
+ Vc(ri)

)
+

N∑
i>j

1
rij
. (2.63)

Here Z is the atomic number, ri is the distance for the i-electron to the nucleus, rij is the distance
between i- and j- electrons, and Vc(r) is any confinement potential. Furthermore, we are neglecting
relativistic effects and we are in the Born-Oppenheimer approximation (heavy nuclei). Defining the
one-electron operator f̂i = − 1

2 ∇2
i −Z/ri + Vc(r) and the two-electron operator ĝij = 1/rij , Eq. (2.63)

is rewrite as

Ĥ =
N∑

i=1
f̂i +

N∑
i>j

ĝij . (2.64)

Eq. (2.62) has no analytical solution thus the Hartree-Fock method is implemented. This method
assumes a Slater determinant, i.e. an antisymmetric wave-function given by

Φ(q1, ..., qN ) = 1√
n!

∣∣∣∣∣∣∣∣∣
χ(α1; q1) χ(α1; q2) . . . χ(α1; qN )
χ(α2; q1) χ(α2; q2) . . . χ(α2; qN )

...
...

. . .
...

χ(αN ; q1) χ(αN ; q2) . . . χ(αN ; qN )

∣∣∣∣∣∣∣∣∣ , (2.65)

where χ(αN ; qN ) = ψ(qN )σ(αN ). Here ψ(qN ) and σ(αN ) are the spatial and spin contribution, re-
spectively. Using the variational method and Eq. (2.65) to solve Eq. (2.62), we obtain the general HF
equations for an open-shell atom given by the solution of the Fock operator, f(x), as

f(x1)χj(x1) = ϵjχj(x1). (2.66)

The spatial part in the Fockian term is given by

f(r1) = ĥ1(r1) +
∑
b ̸=a

Ĵb(r1) − K̂b(r1) , (2.67)

where ĥ1(r1) is the one-electron operator, Ĵb the Coulomb interaction operator, and K̂b the exchange
interaction operator defined as

ĥ1(r1) = −1
2

∇2
1 −

∑
A

ZA

r1A
+ Vc(r1) , (2.68)

Jb(r1)χj(r1) =
(∫

dr2χ
∗
b(r2)χb(r2) 1

r12

)
χj(r1), (2.69)

Kb(r1)χj(r1) =
(∫

dr2χ
∗
b(r2)χj(r2) 1

r12

)
χb(r1). (2.70)
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Recalling that the single electron term, Eq. (2.68), includes the confinement potential Vc(r)1. This,
let us to account for the effects of the confinement potential on the electron in each orbital.

The ground state HF energy is defined as

E0 =
∑

j

hjj + 1
2
∑
i ̸=j

Jij −Kij , (2.71)

with

hjj =
∫
drχj(r)ĥ(r)χj(r), (2.72)

Jij =
∫
dr1dr2χi(r1)χi(r1) 1

r12
χj(r2)χj(r2), (2.73)

Kij =
∫
dr1dr2χi(r1)χj(r1) 1

r12
χj(r2)χi(r2). (2.74)

It is important to note that Eqs. (2.66) are coupled and include the confinement by any model
potential.

Unrestricted Hartree-Fock approach
The unrestricted Hartree-Fock theory is the molecular orbital method for open shell atoms/molecules
where the number of electrons of each spin are different. This appraoch use single determinant total
wave function in which orbitals of the same n, l, and ml values but different ms values are regarded
as being independent [50].

Equations and ground state energy

Let us consider the lithium atom in the ground state 1s22s1 in an arbitrary confinement potential.
Thus, in agreement with Fig. 2.1a) and Eq. (2.67), the Unrestricted Hartree-Fock (UHF) equations
are given as (

ĥ1 + Ĵ2 + Ĵ3 − K̂3

)
χ1(r1) = ϵ1χ1(r1), (2.75)(

ĥ2 + Ĵ1 + Ĵ3

)
χ2(r1) = ϵ2χ2(r1), (2.76)(

ĥ3 + Ĵ1 + Ĵ2 − K̂1

)
χ3(r1) = ϵ3χ3(r1), (2.77)

with χi(ri) = ψ(r1)σ(ω), σ(ω) = α(ω) or β(ω) is the spin contribution. The subscripts 1, 2 in the
wave-function χ and energy terms corresponds to an electron in the ground state 1s2, and the subscript
3 corresponds to valence electron, i.e. χ1 = χα

1s, χ2 = χβ
1s, and χ3 the electron that is excited. The

ĥi, Ĵi, and Ki were given explicitly by Eq. (2.68)–(2.70).
The ground state energy, from Eq. (2.71), is given as

EUHF
0 =

3∑
j=1

hjj + 1
2

3∑
i=1,i̸=j

3∑
j=1

Jij −Kij , (2.78)

= h11 + h22 + h33 + J21 + J31 + J32 −K13, (2.79)

according to the configuration shown in Fig. 2.1a) for the UHF case.

1The free atom is obtained when Vc = 0.
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Figure 2.1: Configurations for the lithium atom. a) Unrestricted HF for ground state. b) Unrestricted
HF for an excited state. c) Restricted HF for the ground state.

Gauss-Seidel iteration method
To solve the coupled UHF equations (2.75)–(2.77), we use the Gauss-Seidel iteration method [58].
Here, we obtain the lithium ground state energies and wave-functions that are used to first step to
obtain the electronic spectrum of the lithium atom under confinement conditions (see next section).
Under this approach, we need to guess an initial wave function (χi) that allows us to calculate the
Coulomb and exchange integrals involved in Eqs. (2.75)–(2.77) as a first step. Then, we solve at the
same time the system of couples equations with this initial guess and we obtain new wave-functions for
the ground state, ūi. With this new wave-functions, we construct an improved wave function (uimp)
for each electron given as

uimp
i (r) = (1 − ω)ui(r) + ωūi(r), (2.80)

where ω is a relaxation parameter that has the value of 3/4. Then, we calculate the total energy given
by Eq. (2.79) and repeat this process until the total energy does not change, i.e. under a self-consistent
convergence criterion. At the end, we obtain, for each electron in the ground state of lithium atom,
an energy and a wave-function that includes the confinement interaction. In Appendix B, we describe
the implementation of the GS into the UHF approach.

Valence electron equation
Once we obtain the radial ground state wave-functions u1, u2, and u3 subjected to the Vc confinement
through the Gauss-Seidel method, we obtain the energy spectrum of the lithium atom through Eq.
(2.77). Now we need to obtain the bound and continuum (psuedo-continuum) states to calculate the
DOS derived properties of the Li atom. As, from Eq. (2.77) the spatial part is(

ĥ3 + Ĵ1 + Ĵ2 − K̂1

)
ψ3(r) = ϵ3ψ3(r),

the elements Ĵ1, Ĵ2 can be calculated using the previous results, i.e. the wave-functions found by the
GS method for the ground state. However, the exchange term K̂1 needs a more special treatment. To
include the exchange interaction of the inner core with the valence electron, we use Slater’s X-α [59]
approximation as a first approach. Thus the exchange interaction is approximated as

K̂1 = αρ
1/3
1 (r⃗), (2.81)

where α is a parameter. Here the term ρ1(r⃗) is the cahrge density due to the 1s2 electrons, ρ1(r1) =∑
i |ψi(r)|2, and it is defined in terms of ground state wave-functions.
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Under this approach the exchange term is given by

K̂1ψ3(r1) = αρ
1/3
1 (r1)ψ3(r1). (2.82)

The valence electron equation (2.77) is rewritten as(
ĥ3 + Ĵ1 + Ĵ2 − αρ

1/3
1

)
ψ3(r1) = ϵ3ψ3(r1), (2.83)

using the spherical symmetry and making ψ(r) = (unl(r)/r)Yml(θ, ϕ) we obtain(
−1

2
d2

dr2
1

+ l(l + 1)
2r2

1
− Z

r1
+ Vc(r1) + Ĵ1 + Ĵ2 − αρ

1/3
1

)
u3(r1) = ϵ3u3(r1). (2.84)

A one-electron equation that allows us to solve it with a numerical approach, e.g. a finite-differences
approach and obtain the excitation spectrum of the lithium atom.

Generalized and dipole oscillator strengths
In this Section, we present the theoretical approach for the GOS and DOS for the UHF case that is
closely related to the theory approach reviewed in Section 2.2.

From Eq. (2.39), in atomic units, the GOS for a multi-electronic system in the UHF case is defined
as [50]

Fn0 = 2
q2

(
EUHF

n − EUHF
0

)
|⟨Ψn(r)|

N∑
j=1

eiq·rj |Ψ0(r)⟩|2, (2.85)

where q is the momentum transferred, Ψn is the final excited state, and Ψ0 is the initial state from
where the transition occurs, and N is the number of electrons in a multi-electronic system. In the
special case when q → 0 in Eq. (2.85), the GOS corresponds to the DOS given by

fn0 = 2
(
EUHF

n − EUHF
0

)
|⟨Ψn(r)|

N∑
j=1

rj |Ψ0(r)⟩|2 . (2.86)

From Zsabo and Ostlund [50], a one-electron operator defined as O1 =
∑N

j=1 h(j), where h(j)
is any operator involving only the i−th electron, is used to rewrite the atomic form factor for a
determinant that differs by an orbital, in Eq. (2.86), as

⟨Ψn(r)|O1|Ψ0(r)⟩ = ⟨χn(r)|h|χ0(r)⟩. (2.87)

In our particular case we obtain

⟨Ψn(r)|
N∑

j=1
rj |Ψ0(r)⟩ = ⟨χn(r)|r|χ0(r)⟩. (2.88)

Thus, for a multi-electronic system, the atomic form factor is rewritten in terms of the wave-
functions of the ground and excited states, χ0 and χn, respectively. From Eq. (2.88), the DOS [Eq.
(2.86)] is given as

fn0 = 2
(
EUHF

n − EUHF
0

)
|⟨χn(r)|r|χ0(r)⟩|2 . (2.89)

Thus, the mean DOS under spherical symmetry is rewritten as
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f̄n0 = 2
3
(
EUHF

n − EUHF
0

) l>
2li + 1

|⟨un(r)|r|u0(r)⟩|2, (2.90)

where u0(r) and un(r) are the initial and final radial wave-functions of the valence electron, respectively.
This result is similar to Eq. (2.22) with the only difference in the energy levels, i.e. EUHF

0 and EUHF
n

is the total energy for the ground and excited state, respectively. A note of caution must be taken
with this result. The 1 and 2 electrons are still frozen, so it is not really an UHF approach. When
the 3rd electron is excited, the inner electrons will relax and change wave-function and energy. What
we have is that 1 and 2 electron are not the same as in strictly unrestricted or restricted Hartree-Fock
(see below). This is due to the X-α approximation.

Restricted Hartree-Fock approach

Equations and ground state energy
In the restricted Hartree-Fock (RHF) approach, we suppose that the two electrons in the 1s2 core are
frozen, i.e. there is no interaction with the valence electron in 2s1 (or any excited state), see Fig. 2.1c).
Thus, from Eqs. (2.75)-(2.77), the terms Ĵ3 and K̂3 are null and we obtain(

ĥ1 + Ĵ2

)
χ1(r1) = ϵ1χ1(r1), (2.91)(

ĥ3 + 2Ĵ1 − K̂1

)
χ3(r1) = ϵ3χ3(r1), (2.92)

where Eq. (2.91) is the same for the paired electrons 1 and 2 in the frozen core 1s2. The ground state
energy is defined as

ERHF
0 = 2h11 + h33 + J12 + 2J31 −K13, (2.93)

according with the configuration shown in Fig. 2.1c) for the RHF case.
In this case, ERHF

n − ERHF
0 = ϵ3 − ϵ1 and the system is reduced to solve Eq. (2.91) and (2.92)

using the Gauss-Seidel interaction method discussed above.

Generalized and dipole oscillator strengths
Once the eigenvalues and eigenfunctions are obtained for the ground and excited states, we would
determine the GOS and DOS for the RHF approach. The GOS for the RHF case is similar to Eq.
(2.85) and is given as

Fn0 = 2
q2 (ϵn − ϵ0) |⟨χn(r)|eiq·r|χ0(r)⟩|2, (2.94)

where q is the momentum transfer, χn is the final excited orbital, and χ0 is the initial orbital from
where the transition occurs. Observe that this is a result for a one-electron system. For q → 0 in Eq.
(2.94), the GOS reduced to the DOS. In the case of spherical symmetry, the mean DOS for one active
electron atom is reduced to

f̄n0 = 2
3

(ϵn − ϵ0) l>
2li + 1

|⟨un(r)|r|u0(r)⟩|2, (2.95)

where l>, u0(r), and un(r) are defined as above, ϵ0 and ϵn are the orbital energy for the ground and
excited states, respectively, of the valences electron.

In this section, I have shown the equations that allows us to obtain the energy spectrum of the
hydrogen [Eq. (2.60)] and lithium [Eq. (2.83) and (2.91)] atoms as a function of a screening, Vscre(r),
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and a confinement, Vc(r), potentials. As I mentioned above, the purpose of these potentials is to
generalize the eigenvalue problem, for the hydrogen and lithium atoms, and incorporate the extreme
conditions to obtain the energy spectrum dependence on the confinement environments. In next
sections, I establish which are the extreme conditions considered in this thesis.

2.5 Extreme conditions
In this section, we show the extreme environments consider in this thesis given by the confinement
potentials Vscre(r) and Vc(r). The first extreme condition is when the atomic system is subject to an
endohedral confinement. The second is when the atomic system is subjected to a plasma interaction.

2.5.1 Endohedral confinement by a fullerene cavity
To describe the electronic properties of an atom inside a fullerene cavity, we need to consider the n-
carbon atoms that constitute the fullerene and their delocalized valence electrons. This is an expensive
and complicated task from a purely ab initio approach. Thus, model potentials of quantum confinement
have proven to be appropriate (see e.g. Refs. [29, 30, 15, 16, 60]). Several potentials have been
proposed that model the spectral properties of a fullerene cage [22, 23, 24, 61]. For example, the
Dirac δ-potential [62], the square-well potential [63], the Woods-Saxon (WS) potential [64, 25], and
the power exponential potential [65, 26] have been used to model a Cn cavity. In a previous work,
Dolmatov et al. [25] found that the discontinuity shown by the squared well potential is not relevant
to the determination of dipole properties of the enclosed endohedral atom, particularly for the study
of the photo-ionization cross section. In this thesis, we use the square-well and the Woods-Saxon
potentials to model the endohedral cavity in order to address these findings. However, the question is
left open for properties that depend on the GOS for the H@C60 system. In Paper II, we respond this
question finding that the discontinuity is relevant in the determination of the GOS derived properties
in comparison with the DOS derived properties.

The parameters used in this work to describe a Cn fullerene cage are used under the assumption
that the fullerene cage electronic configuration is static. This assumption means that only the active
electron in the H@C60 endohedral system is the one in the H atom. Evidently, a more realistic cavity
description is required if one is to study the plasmonic behavior of the C60 system [66, 67], or to
take into account the exchange repulsion and polarization of the electronic structure [68], but that
is outside the scope of this thesis. Thus, we can consider, as a first order approximation to a more
realistic approach, a model potential to describe the electronic structure of the endohedral cage. The
square-well model potential is defined as

Vc(r) =
{

−V0, R0 ≤ r ≤ R0 + ∆
0, otherwise , (2.96)

where R0 is the inner radius, ∆ is the thickness of the spherical shell and V0 is the potential well depth.
The Woods-Saxon model potential [64] is defined as

Vc(r) = V0

1 + e−(r−(R0+∆))/γ
− V0

1 + e−(r−R0)/γ
, (2.97)

where γ is a smoothing parameter and R0, ∆, and V0 are defined as before. In particular, we use
two sets of parameters (inner radius, thickness of the spherical shell and well depth) found in the
literature to characterize an endohedral cavity [69, 63, 31]. In Fig. 2.2 we show the square (solid line)
and Woods-Saxon (dashed symbol lines) model potential observing the discontinuity at r = R0 and
r = R0 + ∆ for the square-well potential in comparison with the Woods-Saxon potential.

Finally, to obtain the eigenvalues and eigenfunctions of the endohedral hydrogen systems, we use
Eq. (2.96) or (2.97) in Eq. (2.61), (2.84) and (2.92), respectively, with Vscre(r) = −Z/r.
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Figure 2.2: Square well (solid-line) and Woods-Saxon (dashed lines with symbols) model potential as
a function of the potential well depth V0 for the parameters R0 = 5.8 a.u., ∆ = 1.89 a.u., and γ = 0.1.
See text for details.

2.5.2 Plasma interaction
The study of atoms or ions under plasma environments has been a topic of great interest over the past
decades due to the coupling strength of the plasma with the electrons of immersed atoms and the con-
sequent modification of their electronic properties [4, 35, 3], with applications in many research areas,
e.g., fusion processes [70], materials processing [71], and astrophysics environments [72]. The plasma
interaction may be described by a screening potential function that incorporates the collective effects
of the correlated many particles interaction processes in a plasma and has been studied exhaustively
under different treatments [73, 74], e.g., by the Debye-Hückel potential [74, 75], the cosine Debye-
Hückel potential [36], and recently by the Coulomb potential for finite-temperature [76, 77]. Then,
to describe the influence of a weak plasma interaction on an free atomic or on a H@C60 system, we
use the Debye-Hückel screening potential that characterizes the plasma in terms of a Debye screening
parameter λD. The Debye plasma screening potential Vscre(r) is [73, 74]

Vscre(r) = −Z

r
exp(−r/λD) , (2.98)

with the Debye screening length given by λD =
[
4π(1 + Z∗)ne2/kBT

]−1/2, kB is the Boltzmann
constant, n the density of plasma electrons, T the temperature, Z∗ the effective charge of the ions in
the embedded plasma, and Z the hydrogenic nuclei charge. The Debye-Hückel model is valid for weak
plasmas, i.e. those where Γ = (Ze)2(4πn/3)1/3/kBT < 1 is fulfilled [3, 74].

In order to relate the order of magnitude of the plasma density, as a function of the Debye screening
length λD, in Fig. 2.3, we show the electron plasma density for several temperatures as a function
of λD in a.u.. Examples of weakly coupled plasmas (thick blue-lines) are those occurring in fusion
plasma (T ∼ 6 × 106 − 107 K, n ∼ 1022 − 1026 cm−3), laser-produced plasma (T ∼ 5 × 105 − 3 × 106

K, n ∼ 1019 − 1021 cm−3), and stellar atmospheres (T ∼ 6 × 103 − 6 × 104 K, n ∼ 1015 − 1018 cm−3

) [3, 38, 78]. As shown in the figure, the yellow shaded region is where the weak plasma condition of
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Figure 2.3: The density of plasma electrons, n (cm−3), as a function of the screening length, λD

(a.u.), for several plasma temperatures T (K). The thick lines are example regions for fusion plasma,
laser-produced plasma, and stellar atmospheres where our model is applicable (yellow shaded area).
See text for details.

our model is fulfilled.
Thus, the effect of a confinement environment is accounted for by Eqs. (2.96), (2.97) or (2.98),

that permit us to find the DOS and GOS derived electronic properties. Then, to consider the hydrogen
atom encaged by an endohedral cavity embedded in a plasma interaction we use Eq. (2.98) and (2.97)
[or Eq. (2.96)] in (2.61).

2.6 Free atomic systems

The electronic spectrum of a free (without extreme conditions) atomic systems, i.e. no confinement,
has been a well-known problem since many years ago. For example, for the hydrogen atom, there is
an analytical solution to the time-independent Schrödinger equation to obtain the energy spectrum
and the wave-functions, and as a consequence physical properties as photo-ionization, mean excitation
energy, and energy deposition (energy loss) have been reported. In the case of multi-electronic systems,
several approaches have been proposed to obtain the energy spectrum, e.g. Hartree-Fock methods,
density functional theory, local plasma approximations among others. In this thesis, we are interested
in obtaining the energy spectrum and wave-functions for free atomic systems to calculate the stopping
cross section for heavy ions colliding with several atomic and molecular targets through the equations
presented in Section 2.2. These results are presented in Chapter 3.

Furthermore, from Section 2.4, I recover the well-known results for free atomic systems For exam-
ple, the radial hydrigenic equation, Eq. (2.61), for a free system is obtained for Vscre(r) = −Z/r and
Vc = 0. The general Hartree-Fock equations, Eq. (2.63), for a free system are recovered when Vc = 0.

Finally in this chapter, I have shown the theoretical approach to study atomic systems at free and
at extreme conditions. This approach, permit us to account for the effects on the energy spectrum of
the hydrogen and lithium atoms and, as a consequence, the change on DOS and GOS derived electronic
properties.

In the following chapters I will show how the DOS and GOS dependent properties are modified
for free atomic systems and at extreme conditions.
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2.7 Finite-differences approach
Finally we are in position to find the energy spectrum and wave-functions of: the H@C60 system [Eq.
(2.61)], the H@C60 system embedded in a weak plasma interaction, and for the Li@C60 system in the
UHF and RHF [Eq. (2.84) and (2.92) respectively] for different values of the confinement potential V0.
For this, we implement a finite-differences numerical approach. The basic idea of a finite-differences
approach is to discretize the function u(r) → uk where r → rk is known at the k-th point on a
numerical grid. Thus, k = 0 represents u0 and k = N + 1 represents uN+1, which are the boundary
conditions of the system, respectively [79]. The wave function uk is solved for N points in the grid.
In Appendix A, I give a detailed derivation of a finite-differences approach that is useful for all radial
equations considered in this thesis, e.g. Eqs. (2.61), (2.84), and (2.92). In short, by using the definition
of derivative and integration in a discretized grid, we can write Eq. (2.61) in matrix form taking into
account the boundary conditions. We use a finite-differences approach centered at the midpoint. Thus,
Eq. (2.61) is rewritten as

H̃ϕ⃗ = Eϕ⃗. (2.99)

where the matrix elements are give by

H̃i,i = 1
2

[
1

ri − ri−1
+ 1
ri+1 − ri

]
1

ri+1/2 − ri−1/2
+ Vi, (2.100)

H̃i,i+1 = − 1
2(ri+1 − ri)

1√
(ri+1/2 − ri−1/2)(ri+3/2 − ri+1/2)

, (2.101)

H̃i,i−1 = − 1
2(ri − ri−1)

1√
(ri+1/2 − ri−1/2)(ri−1/2 − ri−3/2)

. (2.102)

The latter equations permit us to solve the eigenvalue problem as a linear algebra problem.

2.8 Numerical implementation details
The results that are presented in the following chapters have been obtained considering a numerical
grid box that extends from r = 0 to r = 500 a.u., with a total number of N = 2000 points spaced
logarithmically in this range. The logarithmic grid allow us to have a better description of the wave-
function cusp at the origin and around the endohedral cage to guarantee the fulfillment of the numerical
procedure. We have calculated the GOS for values of the momentum transfer q up to 30 a.u., in steps
of ∆q = 0.1 a.u., and we have found that a value of l up to lmax = 100 fulfills the Bethe sum rule.
This means that we have a total of 200 000 excited states to describe the electronic properties of the
endohedral cavity for each well depth. For the DOS, we have a total of 2, 000 excited states for l = 1
to describe the electronic properties of the endohedral cavity for each well depth. The accuracy of
our finite-differences approach is controlled by the number of points in the grid and their spacing. We
have found that N = 2000 points spaced logarithmically between r = 0 and r = 500 a.u., produces
eigenvalues with a precision, for the free atomic systems considered in this thesis, up to the 4th decimal
place. Increasing the number of points would increase the precision, but at a higher computational
cost. Thus, these set of grid parameters are a compromise between precision and computing cost.

For the endohedral cage, two sets of parameters have been proposed to characterize properly the
cavity: a) R0 = 5.8 a.u., ∆ = 1.89 a.u., and V0 = 0.302 a.u. [80, 31] and b) R0 = 6.01 a.u., ∆ = 1.25
a.u., and V0 = 0.422 a.u. [25]. For the system H@C60, we use both sets of parameters to describe the
DOS and GOS electronic properties. We report the DOS and GOS derived electronic properties of
interest as a function of V0 for values going from the free case (V0 = 0) to V0 = 2.0 a.u., in steps of 0.1
a.u., to represent different electronic configurations of an endohedral H and Li atom.

For the H@C60 system and subjected to a weak plasma interaction, we describe the endohedral
cage by R0 = 5.8 a.u., ∆ = 1.89 a.u., V0 = 0.302 a.u., and γ = 0.1 [81]. Furthermore, we report
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the electronic properties of interest for other selected well depths values of V0 = 0, 0.7, and 1.0 a.u.,
that represent different electronic configurations of a C60 endohedral cage. The choice of these values
corresponds to no cavity (V0 = 0), V0 = 0.7 corresponds to the cavity depth for the first avoiding
crossing between the 2s and the 1s state [30], and V0 = 1.0 is when the 2s hydrogen state emulates the
1s state [30]. For each potential well depth, we present our results as a function of selected screening
length λD values ranging from λD = 0.01 to λD = 100, 000 a.u.. This last value is used to emulate
no plasma influence on the C60 cavity, i.e. λD → ∞. Thus, our values represent different plasma
environments and confinement conditions.

The method has been implemented in a FORTRAN 95 code that calculates the eigenvalues,
eigenfunctions, and physical properties.

In this chapter, I presented the theoretical approach use to obtain the results show in this thesis
for free and confined atomic and molecular systems. Thus, in the next chapters, we only show results
for free and confined systems and the reader would be referred to this chapter for the theoretical details
and numerical implementation in each case.
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3
Energy deposition for free atomic

and molecular systems

As a first step towards the understanding of energy deposition of heavy ions when penetrating a
material, in this chapter I present results for atomic and molecular systems considering no confinement
environments (free systems). This chapter is based on the research Paper I and III.

The energy deposition of heavy ions is of crucial importance in determining the damage to mate-
rials with implications in areas such as material science, plasma physics, radiotherapy, and dosimetry
[55]. In the fisrt part of the chapter, I show that there is an universal scaling when the electronic
stopping cross sections and projectile kinetic energy are scaled properly in terms of the target mean
excitation energy, I0, for all projectile-target combinations considered within Bethe’s tehory. The
scaling law expresses a systematic and universal behavior among complex projectile-target systems in
the energy deposition, characterized by the minimum momentum transfer during the slowing down
process. I provide an analytic expression for the universal scaling law for the stopping cross section
of any projectile-target combination valid at high collision energies. We compare our universal scaling
with atomic and molecular experimental data available in the literature observing a good agreement.

In the second part of this chapter, I study the effects of the initial s- and p-orbital target symmetry
on the generalized oscillator strength (GOS) and its consequences on the stopping cross-section. This
study is within Bethe’s theory of energy deposition by implementing the harmonic oscillator (HO)
approach to describe the target’s electron interactions. We report explicit expressions for the GOS as
a function of the initial target’s symmetry for angular momentum l = 0 and 1, making evident the
role of the targets symmetry contribution to the electronic stopping cross-section. The parameter that
characterizes the absorption of energy from the projectile to the target is the mean excitation energy,
I0. Here, I use the I0 reported by Oddershede and Sabin [At. Data Nucl. Data Tables (1984), 31,
275] in an orbital decomposition. We show results for the electronic stopping cross-section for protons
colliding with He, Li, B, C, Ne, and Ar atomic gases. Here I include the behavior of s- and p-orbital
target symmetry, showing excellent agreement with the available experimental data. Thus, I explore
the role that the symmetries of the initial state plays to account for the GOS and as a consequence
the electronic stopping cross section.

3.1 Heavy ions colliding with several targets
This section is based on the research Paper I contribution as a Ph.D. student.

3.1.1 Energy deposition and mean excitation energy
As we have mentioned previously, the energy deposition of swift, heavy particles when penetrating
matter is described solely by the target mean excitation energy, I0, at intermediate to high collision
energies. This mean excitation energy characterizes how the target absorbs energy from the incoming
projectile through the dipole oscillator strength, f0n (DOS). Thus, if I0 characterizes the way that a
target absorbs energy when colliding with an atom or molecule, it ponders the question if there is an
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3. Energy deposition for free atomic and molecular systems

universal behavior or scaling of the electronic stopping cross section based on this target property. The
idea of determining a scaling law is to express a systematic and universal behavior among complex
projectile-target systems in the energy deposition, regardless of the detailed mechanism for slowing
down. The mean excitation energy is accounted for by Eqs. (2.52) and (2.55) for atomic and molecular
targets, respectively.

Let us note that Eq. (2.49) assumes a fixed projectile charge. However, experimental evidence
points to the fact that the projectile has an "effective charge", Z∗

p , dependent on the projectile velocity.
Here, we use Betz expression for the effective charge, namely Z∗

p = Zp

(
1 − e−v/v0Z2/3

p

)
[82] where v

and v0 are the projectile and Bohr velocities, respectively.

3.1.2 Results
The scaling law for the electronic stopping cross section can be obtained by making ϵ = meEp/MpI0i

in Eqs. (2.49)–(2.51). By doing so, we obtain a general, single –universal– curve within the first Born
approximation that only depends on the target properties as

I0i

4πe4Z∗2
p

Se,i(ϵ) = f(ϵ) , (3.1)

where

f(ϵ) = 2Li(ϵ)
ϵ

, (3.2)

and Li(ϵ) is given by Eq. (2.50). The left-hand side of Eq. (3.1) depends only on the projectile-target
properties and the right-hand side is the universal curve, f(ϵ) as a function of the scaled projectile
energy. Thus, f(ϵ) is a scaled electronic stopping number given in terms of the target excitation
spectrum.

Once we obtain a single –universal– curve, Eq. (3.1), to account for the electronic stopping cross
section as a function of target properties, we are ready to test it on atomic and molecular targets.

The use of Eq. (2.50), and consequently Eq. (3.1), is umpractical due to the large sum that
involves the evaluation of the incomplete Gamma function. We have adjusted the f(ϵ) curve to an
expression given as

f(ϵ) =
ln
(
1 + 16ϵ2

)
c+ ϵ

, (3.3)

where c = 2/π given an error of less than 2% respect to the numerical evaluation of Eq. (2.50) for
ϵ > 1 which is the region of validity of the first Born approximation.

Atomic targets
In Fig. 3.1a), I show the scaled Se curve for H, He, Li, Be, C, N, O, Ne, Al, Si, Ar, Ca, Kr, Xe, Au,
Pb, and Bi heavy ion projectiles colliding with He, Be, B, C, Ne, Al, Si, and Ar atomic targets given
by Eq. (3.1) using the mean excitation energy reported for the atomic case by Eq. (2.52) [11]. The
symbols are the experimental data as given in Refs. [83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
97, 98, 99, 100, 101, 102, 103]. From the figure, one observes an excellent agreement for high energy
collisions (ϵ > 10) values in comparison with the available experimental data.

Molecular targets
In Fig. 3.1, we show the scaled stopping cross section [Eq. (3.1)] for H, He, Li, C, O, Ne, Si, Ar, and
Kr heavy ion projectiles colliding with H2 , CH4 , H2O, CO2 , Mylar, and Kapton molecular targets
in comparison with the available experimental data. As we observe, for high energies, the scaling law
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3. Energy deposition for free atomic and molecular systems

Figure 3.1: (a) Electronic stopping cross section scaling rule for H, He, Li, Be, C, N, O, Ne, Al, Si,
Ar, Ca, Kr, Xe, Au, Pb, and Bi heavy ion projectiles colliding with He, Be, B, C, Ne, Al, Si, and Ar
atomic targets. The experimental data (symbols) are taken from Refs. [83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103]. (b) The same as (a), but for several heavy ion
projectiles colliding with several molecular targets. The symbols are the experimental data as given in
Refs. [87, 98, 104, 88, 90, 95, 105, 106, 107, 108, 109, 110, 111]. Note that each target curve is shifted
by 0.2 on the vertical axis to avoid data cluttering.

is in excellent agreement for all the projectiles colliding on all targets. The mean excitation energy
is obtained from the FSGO approach, Eq. (2.55), in a core (1s2), bond, and lone pair (LP) orbital
decomposition by the Bragg rule [11, 51, 55] [see Eq. (2.47)].

In Fig. 3.2a), I show the theoretical result for f(ϵ), Eq. (3.2), which shows a very close agreement
with the experimental data. In Fig. 3.2a), I show the numerical evaluation of Eq. (3.2) for Mp = mp

, the proton mass (H ions, open triangle symbols), Mp = 4mp (He ions, cross symbol), Mp = 7mp (Li
ions, open square symbols), and Mp = 16mp (O ions, open circle symbols). From Fig. 3.2a), we observe
that the curve is universal for for all projectiles regardless of the explicit dependence of the projectile
mass, Mp. These results confirm the universal scaling law for any projectile–target combination at
high projectile energies within the first Born approximation.

In Fig. 3.2b), we show the universal scaling by means of Eq. (3.3) for all heavy ion projectiles
colliding with all atomic and molecular targets. From 3.2b), for values of meEp/MpI0 > 10 the
universal behavior is fulfilled by all the projectile–target combinations.

3.2 Initial orbital symmetry effects on the stopping power

This section is based on the research Paper III contribution as a Ph.D. student.
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3. Energy deposition for free atomic and molecular systems

Figure 3.2: (a) Numerical evaluation of Eq. (3.2), f(ϵ), for proton projectiles Mp = mp (open triangle
symbols), He projectiles Mp = 4mp (× symbols), Li projectiles Mp = 7mp (open square symbols) and
O projectiles Mp = 16mp (open circle symbols). (b) Universal scaling law for all projectiles and all
atomic/molecular targets. The symbols are the same experimental data shown in Fig. 3.1. See text
for discussion.

3.2.1 Orbital symmetry
An important issue present in the previous description is the initial target symmetry state and the
role it plays in the DOS, GOS, and consequently on the stopping cross-section. The orbital symmetry
dependence is important when one considers selection rules for electronic transitions, i.e. an electron
in an s-state would be excited to p-state orbitals, a p-state electron would be excited to s- or d-state
orbitals for dipole transitions. Thus, the role of the initial state symmetry in the generalized oscillator
strengths and, as a consequence changes in the stopping cross-section when accounting for the initial
target symmetry should be considered.

3.2.2 Results
From Bethe’s theory of energy deposition, the electronic stopping cross section for an ion moving with
velocity v, mass M1, and nuclear charge Z1e that collides with a target with mass M2 and N2 bound
electrons in some initial stationary state is describe by Eqs. (2.41)–(2.43), given explicitly in Chapter
2. The electronic stopping cross section is a function of the GOS given by Eq. (2.43) for a given
transferred momentum, q, in an orbital decomposition by the Bragg rule [11, 51, 55]. Then, to take
into account for the target electronic structure, we implement the HO approach by considering that
every electron of the target is bound harmonically to the nucleus [11]. We assume that the targets
electrons position is described by the wave-function of a three-dimensional isotropic harmonic oscillator
in Cartesian coordinates [Eq. (2.48)]. The transfer momentum is in the z-direction due to the spherical
symmetry of the target. Thus, the GOS that incorporates the initial symmetry is given as

Fnjn0j (q) =
2me(Enj − En0)

ℏ2

(
n0z!
njz!

)(
1
q2

)(
q2

2α2
j

)njz−n0z
[
Lnjz−n0z

n0z

(
q2

2α2
j

)]2

e−q2/2α2
j , (3.4)

with the term Lm−n
n (q) is the associated Laguerre polynomial [53]. This is the generalized expression

for the GOS for any initial state n0j state to a final state nj within the HO approach.
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Initial s-orbital target symmetry
As a first result of the generalized oscillator strength relation, Eq. (3.4), the s-orbital initial symmetry
is given when n0j = 0

Fnj0(q) = 1
(nj − 1)!

(
q2

2α2
j

)nj−1

e−q2/2α2
j . (3.5)

This result is in complete agreement to the one reported in Ref. [11], which corroborates that our
generalized expression for the GOS is correct. The evaluation of the electronic stopping cross section
is obtained by direct integration of Eq. (2.42) within the limits given by Eq. (2.37) as

Se(v) =
N2∑
i=1

Se,i(v), Se,i(v) =
4πe4Z2

p

mev2 Ls(v) , (3.6)

where Ls(v) is the s-symmetry stopping number given as

Ls(v) =
[Ep/I0i]∑

nj

1
2(nj − 1)!

[Γ(nj − 1, xmin) − Γ(nj − 1, xmax)] , (3.7)

with Γ(nj − 1, xmax
min ) being the incomplete gamma function [53] and it is evaluated in the limits

xmax
min = M2

1 v
2

2meℏω0i

(
1 ±

√
1 − 2ℏω0inj

M1v2

)2

. (3.8)

Initial p-orbital target symmetry
Now, let us consider the electronic transition from an initial state with p-orbital target symmetry, i.e.
n0j = 1, to a final excited state. From Eq. (3.4) the GOS are given as

Fnj1(q) = nj − 1
nj !

e−q2/2α2
j

[
nj −

(
q2

2α2
j

)]2(
q2

2α2
j

)nj−2

, (3.9)

where the electronic stopping cross-section is given by Eqs. (2.41)–(2.43) as

Se(v) =
Ne∑
i=1

Se,i(v), Se,i(v) =
4πe4Z2

p

mev2 Lp(v) . (3.10)

Here the stopping number Lp(v) for an initial state with p-symmetry is

Lp(v) =
[Ep/I0i]∑

nj>1

nj − 1
2nj !

[
−Γ(nj , x) + 2njΓ(nj − 1, x) − n2

jΓ(nj − 2, x)
] ∣∣∣xmax

xmin

, (3.11)

evaluated in the corresponding limits

xmax
min = M2

1 v
2

2meℏω0i

1 ±

√
1 − 2ℏω0i(nj − 1)

M1v2

2

. (3.12)

Note the difference on Eqs. (3.8), and (3.12) as the initial orbital symmetry is included also in the
limits of the momentum transfer.
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3. Energy deposition for free atomic and molecular systems

Figure 3.3: Electronic stopping cross-section for protons colliding with several atoms using the
target orbital symmetry contribution. In a) we show the results for He and Li, b) for B and C, and
c) for Ne and Ar. The solid line is the combination of the s− [Eq. (3.5)] and p− [Eq. (3.9)] target
symmetry results and the dashed-line is the contribution by considering all the electrons only in a
s-symmetry [Eq. (3.5)] as done originally in Ref. [11]. The symbols are the experimental data from
Ref. [113, 104, 114, 115, 116, 117, 98, 118, 119, 120, 121, 122, 123, 124, 125, 126].

Electronic stopping cross section
In Fig. 3.3, we show preliminary results for the total electronic SCS for protons colliding with He,
Li, B, C, Ne, and Ar atoms as a function of projectile initial kinetic energy and we compare with
available experimental data. I use the mean excitation energy as reported by Oddershede and Sabin
[112] and the proper s- and p-symmetry combination of the orbital contribution, Eqs. (3.6) and (3.10).
In Fig. 3.3a), I show the results for He and Li atoms (lines) using the HO results for the s−symmetry
observing a good agreement when comparison is made to the experimental data for large values of
projectile kinetic energy. In Fig. 3.3b), I show the results for B and C atoms which have open p
valence electrons. We have used the effective charge approach from Betz (solid lines) and compare
our results with the available experimental data. In the same figure, I show the electronic stopping
cross-section, as obtained by assuming that all the electrons are in an initial s-orbital symmetry, i.e.
by using only the n0j = 0 assumption originally reported in Ref. [11] (dashed line). From Fig. 3.3b),
the inclusion of the p-state symmetry modifies the slope when compared to the experimental data. In
Fig. 3.3c), I show the results for Ne and Ar targets. For noble gas targets I use the bare projectile
charge. The solid line is the stopping cross-section with the inclusion of the p-orbital symmetry and
the dashed-line is the result of only using the s-orbital assumption on all the electrons. From our
results one observes the relevance of including the initial state target symmetry in the stopping cross
section.

3.3 Conclusions and perspectives
In Section 3.1, I have shown that an universal scaling behavior of the electronic stopping cross section
occurs for all projectile–target systems when one considers the initial s-orbital target symmetry. This
expression was obtained within the harmonic oscillator approach, neglecting charge exchange effects
processes, however the scaling dependence is universal, as shown by the experimental evidence. The
results show the relevance of the mean excitation energy to account for the electronic stopping cross
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section. The scaling law expresses a systematic and universal behavior among complex projectile–
target systems in the energy deposition, regardless of the detailed mechanism for slowing down in the
intermediate-to-high collision energies.

In Section 3.2, I have shown that by accounting for the initial orbital symmetry of the target,
new expressions for the electronic stopping cross section are derived. These results are obtained
within the assumption that the electron can be described within an Harmonic Oscillator approach
and shows the effects on the initial target’s electron symmetry when comparing to the experimental
data, confirming our initial assumptions. Bethe’s theory includes the target orbital symmetry through
the mean excitation energy, however in this work, I have shown that the target symmetry is required
to be take into account in the Generalized Oscillator Strength, to evaluate the stopping cross-section
properly.

As I observe from the results, the initial target symmetry is relevant in the calculation of the
electronic stopping cross section. As a future work, a more realistic approach is to consider the
spherical symmetry of the problem by means of a Coulomb attraction for the target electrons and an
initial orbital target symmetry (s, p, d etc.) for the GOS. This work is in progress.
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4
Endohedral hydrogen atom

In this chapter, I explore the hydrogen (H) atom electronic properties at extreme conditions, where I
mainly follow the results reported in Paper II. In the first part of this chapter, I consider a hydrogen
atom encaged by an endohedral cavity, e.g. inside a fullerene molecule A@Cn. Firstly, I obtain
the eigenvalues and eigenfunctions for the H@C60 system by solving the time-independent Schrödinger
equation within a finite-differences approach as given in Chapter 2. The C60 fullerene cage is accounted
for by two model potentials: a) the square-well and b) the Woods-Saxon. We propose to use the Woods-
Saxon potential to study the role of a smooth cavity on the hydrogen atom Generalized and Dipolar
oscillator strength distribution (GOS and DOS). Both models characterize the cavity by an inner radius
R0, thickness ∆, and a well depth V0. Furthermore, the Wood-Saxon model potential is characterized
by a smooth parameter γ. The electronic properties of the confined hydrogen atom are reported as a
function of the well depth V0, emulating different electronic configurations of the endohedral cavity.
We report results for the photo-ionization cross section, the mean excitation energy, and the electronic
stopping cross section (energy loss).

4.1 Endohedral confinement
Atoms encaged by an endohedral cavity A@C60 have received much attention in recent years because
of the change of their electronic properties when subjected to spatial confinement [60]. An immediate
consequence of the confinement on the encaged atom is the energy level shift and the modification of the
wave function with a consequently change in the Dipole and Generalized Oscillator Strength (DOS and
GOS, respectively), and therefore a change in the properties related to them. Some previous studies
of DOS dependent properties for the A@Cn system can be found in the literature. For example, there
have been theoretical investigation efforts to determine the photo-ionization cross section for endohedral
confinement since giant resonances have been predicted [22, 23, 24, 25, 26, 127, 128, 129]. These huge
resonances are the result of the trapping of incoming and outgoing waves in the endohedral cavity
and recently have been confirmed experimentally for a Xenon atom under endohedral confinement
[130]. For the H@C60 system, the work of Dolmatov et al. [25] shows theoretical results for the
photo-ionization cross section using a numerical approach. Dolmatov et al. [25] find the presence
of energy resonances in the photo-ionization cross section as a function of the potential well depth.
Lin and Ho [26] report results for the photo-ionization cross section of H@C60 implementing finite-
element methods finding a significant influence of cage thickness and smooth shell boundary on the
photo-ionization resonances. In the field of material damage induced by collisions, relevant in material
science, the quantum mechanical study of the energy loss by a bare ion colliding with a target is
carried out by means of Bethe’s theory [131]. In Bethe’s approach, the projectile’s linear momentum
transferred to the bound target electrons during the collision is the main process for energy loss
into electronic excitations and ionization. Thus, in Bethe’s theory, only the electronic structure of
the target atom is required to account for the energy loss process. This approach is valid for high
projectile velocities where charge-exchange effects are negligible. For large projectile velocities, the
energy deposition is characterized by the mean excitation energy, I0, a parameter that accounts for
how much the target absorbs energy from the projectile. Some studies report the mean excitation
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Figure 4.1: Energy levels of the hydrogen atom encaged by an endohedral cavity as a function of
the well depth V0 for the 1s− 4s and 2p− 4p states. a) Results obtained by means of the square-well
potential (color lines) for the case of the first set of parameters R0 = 5.8 a.u., and ∆ = 1.89 a.u..
The results are compared to those of Connerade et al. [23] (×). b) Results for the square-well (color
lines) and the Wood-Saxon (symbols with same color-line) potentials for the case of the second set of
parameters R0 = 6.01 a.u., and ∆ = 1.25 a.u.. Note the shift of the avoided crossings towards larger
V0. See text for details.

energy for a hydrogen atom under pressure by a penetrable or impenetrable spherical cavity [132, 133],
but to the authors knowledge, none is reported for endohedral atoms. Outside Bethe’s approximation,
the GOS account for the target energy absorption, due to the projectile momentum transfer [131].
In the case of a free hydrogen atom, the analytic expressions for the GOS have been available in
the literature [134, 49, 135]. However, for endohedral systems, this is not the case, and a numerical
approach for the calculation of the GOS is need. For fullerene targets, there are several studies that
report theoretical and experimental stopping cross section (SCS). For example, Moretto-Capelle et
al. [136] (and references therein) report the theoretical energy deposited by protons colliding with
C60 molecules finding that the fullerene molecules behave as a carbon foil. For a confined system,
the stopping power for protons colliding with atomic hydrogen under pressure by a spherical cavity is
reported by Cabrera-Trujillo and Cruz [133] finding that, as pressure increases, the stopping power is
reduced.
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4.1.1 Results
In this section, we present the study of the hydrogen atom encaged by a C60 fullerene molecule (H@C60)
using two parameter sets to describe the cavity. The first set is R0 = 5.8, ∆ = 1.89, γ = 0.1 and
the second set is R0 = 6.01, ∆ = 1.25, γ = 0.1. We report the energy spectrum and wave-function
results by solving the time-independent Schrödinger equation by means of a finite-differences approach.
Then, we calculate the DOS and GOS derived dependent electronic properties, e.g. photo-ionization
[Eq. (2.24)], mean excitation energy [Eq. (2.46)], and the electronic stopping cross section [Eqs.
(2.56)–(2.58)]. Here, the GOS are given by Eq. (2.57) that take into account the s-initial orbital
symmetry. The numerical details were given in Section 2.8.

Energy levels and wave-functions

To obtain a proper description of the electronic properties given by our theoretical approach, we need
to obtain the appropriate energy levels and wave-functions for the H@C60 system. In Fig. 4.1, we
show the energy levels of the hydrogen atom encapsulated by an endohedral cage. The energies of the
1s to 4s and 2p to 4p states are shown as a function of the well depth V0. In Fig. 4.1a), we show the
results for the square-well potential with the first set of parameters that model the C60 endohedral
cavity, i.e. R0 = 5.89 a.u., and ∆ = 1.89 a.u.. In the same figure, we compare with the results reported
by Connerade et al. [23] (×), observing a good agreement. As the well depth V0 becomes deeper, we
observe an avoided crossing region between the ns and the (n + 1)s states for near degenerate states
at around V = 0.7 a.u. for several energy levels of the square-well potential. This avoided crossing is
a characteristic that shows the migration of the lower energy state, from being in the atom to being in
the endohedral cage. From Fig. 4.1a), we observe that for values of well depths V0 > 0.7 a.u., the 1s
state migrates to the endohedral cage. In Fig. 4.1b), we show the results for the case of an endohedral
cavity modeled by the square-well potential with the second set of parameters R0 = 6.01 a.u. and
∆ = 1.25 a.u. (color lines), as the ones used by Dolmatov [25], which is a cavity slightly larger than
the case shown in Fig. 4.1a). Here, for the same potential well depth values, the avoided crossings
have shifted towards larger values of V0 consequence of the larger endohedral cavity. In Fig. 4.1b), we
compare to the results obtained by using a Woods-Saxon potential with the same parameter values
and γ = 0.1 a.u. represented with symbols with the same color-line. The Woods-Saxon results for the
eigenvalues are almost identical to the case of the square well potential for shallow cavities. Thus, the
discontinuity of the square-well potential plays a small role in the energy-spectrum of the endohedral
confined H system for small V0 in agreement to Dolmatov’s findings [81]. Furthermore, for large values
of V0, some discrepancies start to be observed and become important in the calculation of the GOS
dependent properties. For example, for a well depth of V0 = 1.7 a.u., we note a discrepancy of around
5% in the 2p energy level state. This is due to the increase of the confinement effect by the endohedral
cavity on the 2p state such that the tunneling of the wave-function is different for both potentials (see
below). This discrepancy is increased as V0 increases.

In Figs. 4.2(a-d), we show the eigenfunctions for the 1s, 2s, 2p, and 3p states of the endohedral H
system for the square-well potential with the first set of parameters, R0 = 5.8 and ∆ = 1.89 a.u., for
values of the well depth V0 = 0.0, 0.302, 0.7, and 1.0 a.u.. For the case of the free atom, V0 = 0.0 a.u.,
we observe an excellent agreement with the analytic solutions shown by (◦) symbols. As the well depth
increases to V0 = 0.302 a.u., we observe, in Figs. 4.2b) and 4.2c), that the 2p and 2s wave-functions
are modified significantly in comparison with the 1s and 3p states shown in Figs. 4.2a) and 4.2d),
respectively. Note that the values R0 = 5.8, ∆ = 1.89 a.u., and V0 = 0.302 a.u. are the characteristic
parameters that describe a C60 fullerene molecule under this model potential approach, as reported
by Xu et al. [69, 63]. For a well depth near the first avoided crossing, V0 = 0.7 a.u., we observe in
Fig. 4.2b), that the 2p wave-function is completely confined in the cage region between 6 < r < 8
a.u.. Furthermore, the 1s [Fig. 4.2a)] and 2s [Fig. 4.2c)] wave-functions are split partially between
the C60 cage region and the hydrogen atom nuclear position. In Figs. 4.2a) and 4.2c), we compare
our results for the 1s and 2s wave-functions with those given by Connerade [23] (△) for a well depth
V0 = 0.7 a.u. observing an excellent agreement. For a well depth of V0 = 1 a.u. in Fig. 4.2a) and
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Figure 4.2: Radial wave function, un(r), for the 1s, 2s, 2p, and 3p states of the hydrogen atom
encaged by an endohedral cage (color lines) for selected well depths, V0, for the case of the square-well
potential with the first set of parameters R0 = 5.8 a.u. and ∆ = 1.89 a.u.. Our results are compared
to those of Connerade et al. (△) [23] for the 1s and 2s states at V0 = 0.7 a.u.. The (◦) symbols are
the analytic results for the free case. See text for details.

4.2b), the wave-functions for the 1s and 2p states are bound in the cavity region with no contribution
at the hydrogen atom position. Here the electron is completely bound by the cage with the lowest
energy state being at the endohedral cavity. Furthermore, the 2s wave function is now bound by the
Coulombic potential, as observed in Fig. 4.2c), and takes the characteristics of the unconfined 1s
function, a result in agreement with Connerade et al. [23]. Thus, the wave functions are modified by
the presence of the endohedral cage producing a trapping of the electron within the endohedral cavity
as the well depth increases.

Dipole oscillator strength

Once we have calculated the eigenvalues and eigenfunctions, we are ready to obtain the DOS and as
a consequence the photo-ionization cross section for the H@C60 system. In Fig. 4.3, we show the
1s → 2p transition as a function of the well depth V0 for the case of the first set of parameters,
R0 = 5.8 and ∆ = 1.89 a.u. (solid line) as well as for the second set of parameters, R0 = 6.01 and
∆ = 1.25 a.u. for both the square-well (long dashed line) and the Woods-Saxon (short-dashed line)
potentials. The (■) symbol corresponds to the exact free value, f1s→2p = 0.41619 in agreement to that
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Figure 4.3: Dipole oscillator strength for the 1s → 2p transition of a hydrogen atom confined by a
endohedral cavity as a function of the well depth V0. Solid line represents the results for the square-
well potential for the case of the first parameter set, R0 = 5.8 and ∆ = 1.89 a.u.. The dashed and
short-dashed lines are the results for the case when the parameter set is R0 = 6.01 and ∆ = 1.25 a.u.,
for the square-well (long dashed line) and Woods-Saxon (short dashed line) potentials with γ = 0.1
a.u., respectively. The (■) symbol corresponds to the exact free case, f1s→2p = 0.4162 a.u. i agreemen
to Wiese et al. [137]. See text for details.

reported by Wiese et al. [137]. From the figure, we observe that around the near degeneracy, the DOS
suffer a significantly change at V0 = 0.7 a.u. for the square-well and for the first parameter set with
R0 = 5.8 a.u.. For the first parameter set, the DOS decay from 0.4161 (free case), until a minimum
value of 0.1063 at V0 = 0.5 a.u., then, it reaches a maximum value around V0 = 0.8 a.u. and then
reaches a value of 0.68 for large V0. Observe that, this behavior is completely related to the change
of the 1s eigenfunction between being at the hydrogen atom and then localizing the 1s electron in the
endohedral cavity as the potential well depth increases. For the second parameter case, R0 = 6.01
and ∆ = 1.25 a.u., where the avoided crossing appears, the square-well and Woods-Saxon potentials
presents a similar behavior as before with the drastic change shifted to around V0 = 0.9 a.u.. For the
second parameter set, there exist a slightly difference for 0.6 < V0 < 1.2 a.u. between the square-well
and Woods-Saxon potentials results due to the effect of the discontinuity of the square-well potential
at the borders of the endohedral cavity. This difference can reach up to a 30 %, as observed in Fig.
4.3.

Photo-ionization cross section

The first DOS derived property that we have calculated is the photo-ionization cross section (PCS)
for an endohedral H atom for several well depths V0 as a function of the photo-electron energy due
to the relevance in material damage. In Fig. 4.4a), we show the results for the square-well potential
with parameter set R0 = 5.8 and ∆ = 1.89 a.u.. In Fig. 4.4b), we show the results for the square-well
(dashed color lines) and Woods-Saxon (symbols with same color-line) potential with parameter set
R0 = 6.01 a.u., ∆ = 1.25 a.u., and γ = 0.1 a.u.. As the photo-ionization cross section has been
calculated previously for the second parameter set and the Woods-Saxon potential by Dolmatov et al.
[25], we will use these results to establish the validity of our numerical method and to asses the proper
description of the photo-ionization cross section. In Fig. 4.4b), we show the results of Dolmatov et
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Figure 4.4: Photo-ionization cross section for an endohedral H atom as a function of the photo-
electron energy (eV) for different well depths V0. a) Results for the case of the square-well potential
(color lines) with first parameter set R0 = 5.8 a.u. and ∆ = 1.89 a.u.. b) Results for the case of
the square-well (color lines) and Woods-Saxon potentials (symbols with same color-line) with second
parameter set R0 = 6.01 a.u., ∆ = 1.25 a.u., and γ = 0.1 a.u.. In b) we show the results of Dolmatov
et al. [25] (thin solid black line) for a potential well depth of V0 = 0.422 a.u. for comparison purposes.
See text for discussion.

al. [25] (thin solid black line) for the case of V0 = 0.422 a.u. showing an excellent agreement with our
calculations. In Fig. 4.4a) and 4.4b), we observe the confinement resonances (Cooper resonances) that
occur due to the constructive interference of the photo-electron waves scattered off by the endohedral
cage and the outgoing photo-electron wave [138, 25]. From both parameter set, we find that the
position of the Cooper resonances are strongly dependent on the endohedral cavity parameters. For
the parameters that describe a C60 cavity, R0 = 5.8, ∆ = 1.89, and V0 = 0.302 a.u., shown in Fig.
4.4a), we find that the first Cooper resonance appears at 8 eV and the second at around 25 eV. For
the second set of parameters, R0 = 6.01, ∆ = 1.25, and V0 = 0.422 a.u., shown in Fig. 4.4b), the
first resonance appears at a photo-electron energy around 10 eV and the second one at around 28 eV.
As we observe from Fig. 4.4, the PCS is sensitive to the parameters used to model the endohedral
cavity. A clear discrepancy between the two sets of parameters is present for V0 = 0.9 a.u.. There is
an increase of the cross section at a photo-electron energy around 10 eV for the results with R0 = 6.01
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Figure 4.5: The same as Fig. 4.3, but for the mean excitation energy, I0. In this case, the (■)
symbol corresponds to the free case as reported by Cabrera-Trujillo and Cruz [133] with I0 = 14.9930
eV. See text for details.

a.u. rather than those with R0 = 5.8 a.u.. As we observe from the difference of the results in Fig.
4.4, the photo-ionization cross section experimental data can be used to adjust the set of parameters
that properly describe the endohedral cavity [69]. In Fig. 5.6b), we observe a slight change between
the square-well and Woods-Saxon potential results for the PCS for a photo-electron energy around the
first Cooper resonance that is near the first avoided crossing (V0 = 0.9 a.u.). The differences are more
evident for photo-electron energies lower than 10 eV.

Mean excitation energy

As we mentioned in the Introduction of this chapter, the mean excitation energy, I0, is related to the
stopping cross section (energy loss) by means of Eq. (2.46) under the Bethe approach [131]. In Fig.
4.5, we show the mean excitation energy as a function of the well depth, V0. The solid line is the
result for the squared well potential with cavity size R0 = 5.8 a.u. and ∆ = 1.89 a.u.. The dashed
and short-dashed lines are the results for a cavity size with R0 = 6.01 a.u. and ∆ = 1.25 a.u., for the
square-well and Woods-Saxon potential, respectively. In the free case [V0 = 0.0 a.u.], we reproduce the
result of I0 = 14.9930 eV (■) from Cabrera-Trujillo and Cruz [133]. As we observe from the figure, I0
decreases from I0 = 12.1300 eV at V0 = 0.6 to I0 = 1.6590 eV at V0 = 0.77 a.u., then increase until
I0 = 2.4330 eV at V0 = 3.0 a.u. for the cavity size R0 = 5.8 a.u.. For the cavity size with R0 = 6.01
a.u. we observe the same behavior but shifted towards the first avoided crossing for well depth V0 = 0.9
a.u.. The drastic change in I0 is related to the change of the 1s and np wave-functions as the well depth
increases, see Fig. 4.2, and the DOS 1s → 2p transition which is the principal intensity contribution.
The stopping cross section will be modified as the well depth is increased.

Generalized oscillator strength
In Fig. 4.6, we show the GOS for the 1s → 2s [F2s, Figs. 4.6a) and 4.6c)] and 1s → 3s [F3s, Figs.
4.6b) and 4.6d)] transitions as a function of the transferred momentum, q, for a selected set of well
depths. In Figs. 4.6a) and 4.6b), we show the results for the square-well potential (lines) for the cavity
size with R0 = 5.8 a.u. and ∆ = 1.89 a.u.. In Figs. 4.6c) and 4.6d) we show the results for the
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Figure 4.6: Generalized oscillator strength for the F2s and F3s, transitions for atomic hydrogen in an
endohedral cavity, as a function of the momentum transfer, q, for several confinement well depths. In
Figs. 4.6a) and 4.6b), we show the results for the square-well potential with cavity size R0 = 5.8 and
∆ = 1.89 a.u.. The (◦) symbols are the analytic results for the free case and we show the characteristic
value of the well depth V0 = 0.302 a.u.. In Figs. 4.6c) and 4.6d), we show the results for the square-well
(color lines) and Woods-Saxon (symbols with same color-lines) potentials with cavity size R0 = 6.01
and ∆ = 1.25 a.u. for the same set of confinement well depths, as well the characteristic value of the
well depth V0 = 0.422 a.u. for this endohedral cavity size. See text for details.

square-well (lines) and Woods-Saxon potentials (symbols with same color-line) for a cavity size with
R0 = 6.01 a.u., ∆ = 1.25 a.u., and γ = 0.1 a.u.. For comparison, the analytic GOS results for the free
atom [57] (V0 = 0 a.u., open circles) are reported showing an excellent agreement to our numerical
calculations for the squared well potential with R0 = 5.89 a.u.. In Fig. 4.6a), for values of V0 below
the avoided crossing, we observe a reduction of the F2s curve. At V0 = 0.7 a.u., the F2s curve increases
significantly and reduces its width in comparison with the free case. For V0 larger that the avoiding
crossing, the GOS curve diminishes again. In Fig. 4.6b), we observe a similar behavior for the F3s

only that the increase is given for a well depth of V0 = 1.0. Fig. 4.6c) shows the results for F2s but
for a cavity size of R0 = 6.01 a.u., observing a different behavior in comparison with the cavity size of
R0 = 5.89 a.u.. Here, the F2s curves remain very similar for values below V0 = 0.9 a.u. and then there
is an increase for V0 = 1.0 a.u.. From Fig. 4.6c), we observe a large difference between the square-well
and Woods-Saxon model potentials results for V0 = 1.0 a.u. that is evient near the maximum of F2s,
consequence of the smoothness of the shell cavity. In Fig. 4.6d), it is observed a notorious decrease
by a factor of 3 for F3s in the case of the well depth V0 = 1.0 a.u. in comparison with those found in
Fig. 4.6b). As we observe from Fig. 4.6, we find some differences for the two cavity potential models
that depend on the momentum transfer.

In Fig. 4.7, we show the GOS for the 1s → 2p [F2p, Figs. 4.7a) and 4.7c)] and 1s → 3p [F3p, Figs.
4.7b) and 4.7d)] for a selected set of potential well depths, as a function of q. In Figs. 4.7a) and 4.7b),
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Figure 4.7: (Color on-line). The same as in Fig. 4.6, but for the F2p and F3p transitions. The (■)
symbol is the results for q = 0 where the F2p is reduced to the DOS transition f1s→2p = 0.4161.

we show the results for the square-well potential (lines) for a cavity size R0 = 5.8 a.u. and ∆ = 1.89
a.u.. In Figs. 4.7c) and 4.7d), we show results for the square-well potential (lines) and Woods-Saxon
potentials (symbols with same color-lines) for a cavity size R0 = 6.01 a.u., ∆ = 1.25 a.u., and γ = 0.1
a.u.. The (■) symbol corresponds to the case when q → 0 in F2p, i.e. f1s→2p = 0.41619. From
Fig. 4.7a), we observe a decrease in F2p for V0 = 0.302 a.u. (green-dashed line) and an increase for
larger values of the well depth. Meanwhile in Fig. 4.7c), we observe that F2p remains very similar for
V0 = 0.422 when R0 = 6.01 a.u. than for the case when R0 = 5.89 a.u. and V0 = 0.302 a.u. [see Fig.
4.7a)]. The case of V0 = 0.7 is smaller in this case in comparison with the result given in Fig. 4.7a).
The F2p for the potential well depth of V0 = 1.0 a.u., remains very similar for both well cavity sizes.
Furthermore, the square-well and Woods-Saxon potential results are very similar, implying that for this
case the effects of the discontinuity in the potential are negligible. In Fig. 4.7b), for the F3p, we observe
an increase for V0 = 0.302 a.u. and then we observe a maximum at the avoiding crossing V0 = 0.7
a.u. for q ∼ 0.5 a.u. followed by a double maximum for V0 = 1.0 a.u.. In comparison, in Fig. 4.7d),
for the larger cavity size R0 = 6.01, we observe a larger increase in F3p for V0 = 0.7 a.u. as compared
to those obtained in Fig. 4.7b). Besides, a large difference is found between the square-well potential
results for F3p shown in Fig. 4.7b) and those shown in Fig. 4.7d) at V0 = 1.0 a.u.. Additionally,
a difference is observed between the square-well and Woods-Saxon potentials for V0 = 1.0 a.u. (just
above the avoiding crossing), which confirms that the discontinuity in the square-well is relevant in
the determination of GOS and is strongly dependent on the momentum transfer.

Electronic stopping cross section
In Fig. 4.8, we show the electronic SCS for protons colliding with atomic hydrogen encaged for the two
confining sizes of the endohedral cavity. We show the change of the SCS at different well depth values
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Figure 4.8: Electronic stopping cross section for protons colliding with atomic hydrogen encaged by
an endohedral cavity as a function of projectile initial kinetic energy for several confinement well depths
V0. a) shows the results for the case of the square-well potential with cavity size R0 = 5.8 a.u. and
∆ = 1.89 a.u.. b) shows the results for the case of the square-well potential (lines) and Woods-Saxon
potentials (symbols with the same color-lines) for a cavity size with R0 = 6.01 a.u., ∆ = 1.25 a.u.,
and γ = 0.1 a.u.. The (▽) symbols are the free atomic hydrogen results of Bichsel [139]. See text for
details.

as a function of the projectile initial kinetic energy. We compare our results for the free case with those
given by Bichsel [139] based in the first Born approximation (▽) observing an excellent agreement to
our V0 = 0.0 case. In Fig. 4.8a), we show the results for the square-well potential with cavity size
R0 = 5.8 a.u. and ∆ = 1.89 a.u. As we observe from the figure, the largest effect of the endohedral
cavity on the GOS dependent electronic properties is in the low energy collision where an increase in
the stopping cross section is found. As the well depth increases, the stopping cross section increases
too, observing a fastest change near the first avoided crossing, i.e. V0 = 0.7 a.u.. At high projectile
energies, the endohedral cavity is not discernible by the projectile. In Fig. 4.8b), we show the results
for the square-well (color lines) and Woods-Saxon potentials (symbols with the same line-color) for a
cavity size R0 = 6.01 a.u. and ∆ = 1.25 a.u.. Although the behavior is similar to the previous case, we
observe some differences at the same well depth. For example, near the degeneracy (V0 = 0.9 a.u. in
this case) the discrepancy between the square-well and Woods-Saxon potential is evident. This means
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that there is a strong effect on the GOS dependent properties due to the discontinuity of the potential
that models the endohedral cavity.

4.1.2 Conclusions and perspectives
In this chapter, I have analyzed the role of spatial confinement on the dipole and generalized oscillator
strength physical properties of a hydrogen atom enclosed by an endohedral cavity by means of two
model potentials: the square-well and Woods-Saxon potentials as a function of the well depth V0.
Furthermore, I have used two sets of parameters, as found in the literature, to describe a C60 endohedral
cage. It was found that the physical properties depend strongly on these values. Even more, with the
increase of the well depth, the GOS intensities are modified for the two sets of parameters, representing
different electronic configurations of the endohedral cavity. A slight difference was observed when I
compare the DOS for the square-well and Woods-Saxon potential, as a result of the discontinuity at
the borders of the first model. Particularly, the drastic changes are predominant near the first avoided
crossing of the energy levels for both set of parameters considered, due to the drastic change of the 1s
wave-function as it is confined by the endohedral cavity. We found that, for the photo-ionization cross
section and mean excitation energy, the differences between the two model potential approaches is up
to 30% for values of V0 near the first avoided crossing.

Some interesting aspects of the results presented here can be considered for a further study. For
example, the use of square well and the Wood-Saxon model potential could be improved by adding a
repulsive contribution on the model potentials or by considering the dynamic of the H@C60 system by
implementing a time-dependent method to account for the C60 atoms interacting with the hydrogen
atom.

In the following chapter, I consider some another confinement environment given by a plasma
medium. In this approach, I study an enhdohedral hydrogen atom system embedded in a plasma
environment. This novelty system has been confirmed recently in interstellar plasmas, leaving an
interesting system to study.
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5
Endohedral hydrogen atom in a

plasma environment

In this chapter, I study a hydrogen atom under extreme conditions, e.g. a hydrogen atom encaged by
an endohedral cavity under the influence of a weak plasma interaction, following mainly the results
reported in Paper IV. The study is based on the implementation of a finite-differences approach,
applied to a hydrogen atom in an endohedral cavity which is modeled by the Woods-Saxon potential
as defined before. The plasma interaction is described by a Debye-Hückel screening potential that
characterizes the plasma in terms of a Debye screening parameter λD. The electronic properties of the
endohedral hydrogen atom are reported for selected endohedral cavity well depths V0 and screening
lengths λD that emulate different confinement and plasma conditions for the system. Here, I assess
and report the photo-ionization cross section, mean excitation energy, and the electronic stopping
cross section. I find that for low screening lengths, the endohedral cavity interaction dominates over
the plasma interaction such that the electron is confined within the cavity and as a consequence,
the energy levels, wave-functions, dipole and generalized oscillator strengths are modified. For large
screening lengths, a competence between both interactions is observed. Our results compare well to
available theoretical and experimental data.

5.1 Plasma screening

The study of atoms or ions under plasma environments has been a topic of great interest over the
past decades due to the coupling strength of the plasma with the electrons of immersed atoms and
the consequent modification of their electronic properties [4, 35]. These properties are the subject of
interest in many research areas, for example, fusion processes, laser produced plasmas, and astrophysics
environments. The Coulombic screening interaction between charged particles in a plasma environment
has been studied exhaustively under different treatments [73, 74]. The plasma interaction has been
described by the Debye-Hückel potential [75, 74], the cosine Debye-Hückel potential [36], and recently
by the Coulomb potential for finite-temperature [76, 77]. One of the electronic properties that has
been studied previously is the photo-ionization cross section of atoms embedded in a plasma interaction
(for a review see Janev et al. [35]). Particularly, the study of the photo-ionization of the hydrogen
atom has been a topic of interest due to the appearance of several structures consequence of the plasma
conditions. For example, Qi et al. [37] have studied the photo-ionization processes of the hydrogen-like
ions embedded in a weakly plasma finding that the effects of the screening potential on the photo-
ionization produces multiple shape and virtual-state resonances for continuum states. Furthermore,
Chang et al. [38] found the same photo-ionization structure resonances but for one and two electrons
processes. Another property of interest is the static dipole polarizability for several atomic systems
under plasma influence [78, 140, 141, 142]. In this field, Qi et al. [78] calculate the static polarizability
of the hydrogen atom embedded in a Debye-Hückel plasma by means of a numerical approach finding
that the static polarizability suffers a dramatic increase when the plasma screening length decreases.
These results are confirmed by the work of Das [140], where he uses a numerical integration method

45



5. Endohedral hydrogen atom in a plasma environment

to perform the calculations.
As mentioned previously, the case of an atom encaged by a fullerene molecule (A@Cn), as an

external confinement on an atomic system is of great relevance due to many applications [14]. To
describe how the electronic properties of atoms encaged in a fullerene cavity change, we use the well-
known model potential approach for quantum confinement. Here, we use again the Woods-Saxon
model potential [143, 81] which assumes a static fullerene electronic structure for the atoms that form
the cavity and it has no discontinuities at the inner and outer radii of the fullerene, (see Section 2.5).
In this chapter we combine the Debye-Hückel potential to model the screening effects in a weak plasma
with the addition of an endohedral confinement in order to study the energy levels and wave functions,
with a consequently change in the Dipole Oscillator Strength (DOS) and related hydrogenic electronic
properties. Here, I present results for the photo-ionization cross section, the mean excitation energy,
and the electronic stopping cross section.

5.1.1 Results
In this section, I present the results of the study of the H@C60 system embedded in a Debye-Hückel
plasma interaction. I show the energy spectrum and wave-function results by solving the time-
independent Schrödinger equation, Section 2.4.1, by means of a finite-differences approach. Then,
I calculate the DOS and GOS derived dependent electronic properties, e.g. photo-ionization [Eq.
(2.24)], mean excitation energy [Eq. (2.46)], and the electronic stopping cross section [Eqs. (2.56)–
(2.58)]. Here, the GOS are given by Eq. (2.57) that take into account the s-initial orbital symmetry.
Note that I use the Wood-Saxon potential to describe the endohedral cavity with R0 = 5.8 and
∆ = 1.89 a.u. [69, 63]. The numerical details were given in Section 2.8.

Energy levels
In Figs. 5.1(a-d), I show the energy levels of the hydrogen atom embedded in a Debye-Hückel plasma
interaction encaged by a C60. The energies of the 1s to 4s and 2p to 4p are shown as a function of
screening length λD for several potential well depths V0. The results for V0 = 0.0 a.u. (the interaction
is only through a Debye-Hückel plasma) are shown in Fig. 5.1a). From the figure, for large values of
the screening length, λD = ∞ a.u., I obtain the well-known values of the hydrogen atom for the lowest
energy levels. An interesting characteristic occurs for values of λD < 0.84428 a.u.. Here the 1s state
is not bound anymore, i.e. it is delocalized in the continuum due to the strong plasma interaction.
For the rest of the energy states, there is a delocalization of the excited states for different screening
lengths, as observed in Fig. 5.1a) in agreement with previous findings [78, 144, 145]. In the same
figure, I show the results of Kang et al. [144] (×), Lumb et al. [146] (♢), and Lumb et al. [147] (□),
obtaining an excellent agreement when compared to the 1s state results (solid line).

By adding the endohedral cavity, a new and novel system is obtained. In Fig. 5.1b), I show
the results for a well depth of V0 = 0.302 a.u., i.e, the parameter that emulates the H@C60 system.
From the figure, one observes that the 1s and 2p states remain bound to the cage for 0.1 < λD < 1
a.u. values with almost a constant energy, thus breaking the delocalization of the 1s state [see Fig.
5.1a)]. The 1s and 2p states are confined in the endohedral cage due to the weak effects of the plasma
environment when one compares to the endohedral cavity [see below]. In the same figure, one observes
that the 2s state is bound for values of the screening length larger than λD > 1.09899 a.u., in contrast
with the results shown in Fig. 5.1a) for the same state which is bound for λD > 3.26010 a.u.. As one
notices, higher excited states are affected by the presence of the endohedral cavity and remain bound
for different values of the screening length in comparison with no endohedral cavity, as observed in
Fig. 5.1b). For higher values of λD > 1000 a.u., the plasma screening effect on the energy levels is
negligible and only the endohedral cavity potential produces an effect.

In Fig. 5.1c), we observe a significant change in the 1s, 2s and 2p energy levels when the well
depth of the endohedral cavity is increased to V0 = 0.7 a.u., where the first avoiding crossing occurs.
The 1s state is bound by the endohedral cage for all screening length values λD and the 2s state
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Figure 5.1: Hydrogen atom energy levels as a function of the screening length, λD, for the 1s to 4s
and 2p to 4p states when encaged by a C60 cavity embedded in a Debye-Hückel plasma potential for
selected well depths V0. The well depths considered are: a) V0 = 0.0, b) V0 = 0.302, c) V0 = 0.7, and
d) V0 = 1.0 a.u.. The results are compared to those of Kang et al. (×) [144], Lumb et al. (♢) [146],
and Lumb et al. (□) [147] without endohedral cavity (V0 = 0). See text for details.

is bound within the hydrogen atom and takes the characteristics of the unconfined 1s energy state
without endohedral cavity for large screening length values, in agreement to Connerade findings [30]
as reported in Section 4.1.1, [see Figs. 4.1 and 4.2c)]. However, the 2s state starts to be delocalized
as the screening length is decreased. From Fig. 5.1c), we observe that the 2s energy level behaves as
the 1s energy results when there is no cavity for λD < 7 a.u. [Fig. 5.1a)] and our results match those
of Kang et al. [144]. In the same figure, we observe that the 1s and 2p energy states become constant
for a screening length lower than λ < 1.0 a.u., similar to the case of V0 = 0.302 a.u.. Both states are
confined in the endohedral cavity due to the weakening effect of the plasma interaction in comparison
to the endohedral cavity.

In Fig. 5.1d), we show the results for a well depth of V0 = 1.0 a.u.. For values of the screening
length λD < 1 a.u., the 1s and 2p states are constant and bound to the endohedral cavity. The 2s state
is localized at the H nucleus, mimicking completely a 1s hydrogen state, where we observe an excellent
agreement between Kang et al. [144] results for no cavity and the 2s energy states [see Fig. 5.1d)]. The
1s energy state is completely bound by the cage for large values of λD, due to the strong confinement
effects of the endohedral potential. As the well depth is increased, the 1s and 2p energy states are
modified significantly for large values of λD reaching E2s = −0.71761 a.u. and E2p = −0.69407 a.u.,
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Table 5.1: Energy values for the 1s and 2p states, as well as the corresponding DOS (f2p) for a
hydrogen atom in an endohedral cavity embedded in a Debye-Hückel plasma for several selected values
of the well depths, V0, and plasma screening length, λD, as obtained with our FD approach. The
results in parenthesis correspond to those reported by Lin and Ho [148].

V0 = 0.0 V0 = 0.302
λD E1s E2p f2p E1s E2p f2p

0.1 — — — -0.09528 -0.06988 0.80914
0.3 — — — -0.09540 -0.06989 0.81148
0.5 — — — -0.09572 -0.06991 0.81717
0.8 — — — -0.09696 -0.07014 0.83451
1.0 -0.01029 — — -0.09874 -0.07056 0.85312
2.0 -0.14812 — — -0.15468 -0.07754 0.40545

(-0.148117) — — — — —
3.0 -0.23683 — — -0.23840 -0.08992 0.18145

(-0.236833) — — — — —
4.0 -0.29092 — — -0.29181 -0.10308 0.15037

(-0.290920) — — — — —
5.0 -0.32681 -0.00410 0.19334 -0.32748 -0.11510 0.14303

(-0.326809) (-0.004102) — — — —
8.0 -0.38588 -0.03277 0.33444 -0.38635 -0.14217 0.14226

(-0.385879) (-0.032768) — — — —
10 -0.40706 -0.04653 0.36301 -0.40749 -0.15447 0.14380
20 -0.45182 -0.08074 0.40182 -0.45219 -0.18578 0.14779
50 -0.48030 -0.10596 0.41370 -0.48066 -0.20987 0.14962
100 -0.49008 -0.11525 0.41555 -0.49043 -0.21897 0.14994
∞ -0.49999 -0.12499 0.41619 -0.50035 -0.22865 0.15005

V0 = 0.7 V0 = 1.0
0.1 -0.34414 -0.32063 0.71632 -0.56632 -0.54331 0.69922
0.3 -0.34414 -0.32064 0.71644 -0.56632 -0.54331 0.69924
0.5 -0.34416 -0.32064 0.71671 -0.56632 -0.54331 0.69927
0.8 -0.34429 -0.32073 0.71754 -0.56639 -0.54338 0.69938
1.0 -0.34459 -0.32099 0.71838 -0.56662 -0.54359 0.69950
2.0 -0.35096 -0.32693 0.72557 -0.57232 -0.54921 0.70044
3.0 -0.36303 -0.33835 0.73564 -0.58357 -0.56037 0.70140
4.0 -0.37618 -0.35069 0.74578 -0.59581 -0.57253 0.70216
5.0 -0.38845 -0.36204 0.75295 -0.60710 -0.58376 0.70273
8.0 -0.41736 -0.38786 0.73967 -0.63281 -0.60939 0.70370
10 -0.43112 -0.39972 0.70901 -0.64465 -0.62119 0.70403
15 -0.45355 -0.41892 0.63689 -0.66382 -0.64031 0.70443
20 -0.46655 -0.43023 0.59624 -0.67511 -0.65159 0.70460
50 -0.49268 -0.45403 0.54145 -0.69890 -0.67536 0.70480
100 -0.50213 -0.46308 0.53249 -0.70795 -0.68441 0.70483
∞ -0.51193 -0.47274 0.52937 -0.71761 -0.69407 0.70485

respectively. Thus, due to the combined effects of the endohedral potential and the plasma screening,
the 1s and 2p energy levels are confined within the endohedral cage with almost constant energies for
low screening length and high V0 values.

In Table 5.1, we report the values of the 1s and 2p energy states and the DOS for several well
depths and selected values of the screening length, λD, for reference purposes. We compare our results
with those given by Lin and Ho [148] for no endohedral cavity showing an excellent agreement.
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Figure 5.2: Radial wave function for the 1s-state of the H@C60 system embedded in a Debye-Hückel
plasma (color lines) for selected potential well depths: a) V0 = 0.0, b) V0 = 0.302, c) V0 = 0.7, and d)
V0 = 1.0 a.u., for several screening lengths λD. The (◦) symbols are the analytic results for the free
hydrogen atom. See text for details.

Wave-functions

To understand better the energy-level results, I analyze the behavior of the wave-functions. In Fig.
5.2, I show the 1s wave-function for the H@C60 system embedded in a Debye-Hückel interaction for
several well depths, V0, and screening length λD, as a function of the radial coordinate. In Fig. 5.2a)
the analytic wave-function results are represented by (◦) symbols for V0 = 0.0 a.u. and λD = ∞, i.e.
the free hydrogen atom results, observing an excellent agreement with our numerical findings. The
plasma interaction becomes weak as λD decreases, then, the wave-function width is increased and the
amplitude is decreased, i.e. the wave-function is becoming delocalized. For λD < 0.84428 a.u., the
1s electron is completely delocalized. In Fig. 5.2b), we show the case of the endohedral cavity for
V0 = 0.302 a.u.. Here, the wave-function starts to change for screening lengths lower than λD = 3 a.u.
and it presents a bump around 6 < r < 8 a.u., which is the region of the endohedral cavity. Thus, the
electron becomes localized within the endohedral cavity as is observed in Figs. 5.1b) for the energy and
5.2b) for the wave-function with λD < 3. For a well depth of V0 = 0.7 a.u., in Fig. 5.2c), near the first
avoided crossing for the H@C60 system without plasma interaction, we observe that the wave-function
is shared between the hydrogen atom and the endohedral cavity and the electron becomes completely
bound in the endohedral cavity region between 6 < r < 8 a.u. for λD < 1 a.u.. Finally, in Fig.
5.2d), we show the results for V0 = 1.0 a.u. finding that the Debye-Hückel plasma influence is almost
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Figure 5.3: The same as Fig. 5.2, but for the 2s radial wave-function.

negligible on the 1s wave-function for all values of λD due to the strong effect of the endohedral cavity.
In Fig. 5.3, I show the wave-function for the 2s-state of the H@C60 system under a Debye-Hückel

plasma. For a well depth of V0 = 0 a.u. and λD = ∞ a.u., i.e. free hydrogen atom, we obtain an
excellent agreement with the analytic results as shown in Fig. 5.3a) by (◦) symbols. As the screening
length is decreased, the wave-function becomes more diffuse and diminishes its amplitude until the
electron becomes delocalized. In Fig. 5.3b), I show a cavity with V0 = 0.302 a.u., where there is
a significant change in the 2s wave-function in comparison with the free case shown in Fig. 5.3a).
We observe that, the 2s wave-function shows a strong confinement within the endohedral cavity for
6 < r < 8 a.u. with a minimal effect from the plasma interaction. In the case of a well depth with
V0 = 0.7 a.u., near the avoiding crossing for a pure endohedral confinement, we observe an interesting
and unreported behavior for the confined electron wave-function as shown in Fig. 5.3c). In the same
figure, for small λD, the 2s state is found bound to the H nuclei and resembles the 1s free hydrogen
wave-function, as seen by the good comparison to the 1s wave-functions for the free case, (◦) symbols.
While λD increases, the wave-function is split partially between the C60 cage and the hydrogen atom
nuclear position due to the strong influence of the endohedral potential well as observed in Fig. 5.3c).
Due to the strong influence of the endohedral potential, for V0 = 1.0 a.u., in Fig. 5.3d), we observe
that the influence of the Debye-Hückel plasma on the 2s state is negligible. Thus, the 2s wave-function
exhibits the characteristics of the 1s wave function, as observed in Fig. 5.2a).

In Fig. 5.4, I show the 2p wave-function of the H@C60 system in a Debye-Hückel plasma. For a
well depth of V0 = 0 a.u. and λD = ∞ a.u. (free hydrogen atom), in Fig. 5.4a), I find an excellent
agreement between our numerical results and the analytic results shown by (◦) symbols. Similar to
the 1s wave-function, I find that as λD decreases, the 2p wave-function becomes more delocalized.
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Figure 5.4: (Color on-line). The same as in Fig. 5.2, but for the 2p radial wave-function.

When the endohedral cavity is present with V0 = 0.302 a.u., Fig. 5.4b) shows that the wave-function
is confined within the endohedral cage and the screening length has a minimal effect in the 2p state.
In Figs. 5.4c) and 5.4d) I show the wave-function for well depths with V0 = 0.7 and V0 = 1.0 a.u.,
respectively, finding that the effect of the Debye-Hückel plasma environment on the 2p wave-function
is negligible and is completely dominated by the endohedral cavity.

One partially concludes that the electron is localized in different regions of the cavity depending
of the strength of the Debye-Hückel potential or the endohedral cavity well depth. In consequence,
the electronic properties will be different due to the competition between both interactions.

Dipole oscillator strength
With the eigenvalues and eigenfunctions calculated in the last section, we proceed to obtain the dipole
oscillator strength of the H@C60 under a plasma confinement. In Fig. 5.5, we show the DOS for the
1s → 2p transition, f2p, for several well depths V0, as a function of the screening length λD. In the
same figure, we compare with the Debye-Hückel results of Saha et al. [145] (△) for no cavity, Qi et al.
[78] (□), Kang et al. [144] (×), and and Lumb et al. [146] (♢) where there is an excellent agreement
with our numerical results (solid line). For results with no cavity and for λD = ∞ a.u., we recover the
well-known free hydrogen atom value of f1s→2p = 0.41619. As the screening length decreases, the f2p

decreases until λD = 4.54257 a.u., where there is no anymore a bound f1s→2p transition, here the 2p
state becomes delocalized. In the case of a well depth of V0 = 0.302 a.u., when the endohedral cavity
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Figure 5.5: Dipole oscillator strengths for the 1s → 2p transition, f2p, of the endohedral H atom
encaged by a C60 in a Debye-Hückel plasma potential for selected well depths V0, as a function the
screening length λD. The (△) symbols are from Saha et al. [145], the (□) symbols are from Qi et al.
[78], the (×) symbols are from Kang et al. [144], and the (♢) are from Lumb et al. [146] for the case
of no cavity (V0 = 0). See text for details.

is present, we observe a significant change in the 1s → 2p transition for large screening lengths where
the f2p takes a value of 0.15 and increases for 1 < λD < 3 a.u., reaching a value of f1s→2p = 0.81 for
λD < 1 a.u., as one observes from Fig. 5.5. The constant value is explained by the behavior exhibited
by the 1s and 2p energy levels (Fig. 5.1) and wave-functions (Figs 5.2 and 5.4) for λD < 1 a.u.. For a
well depth of V0 = 0.7 a.u., one observes a similar but less prominent behavior as in the previous case.
For λD < 1.5 a.u., we obtain an average value of f1s→2p = 0.71 which is consequence of the confinement
of the 1s and 2p states in the endohedral cavity by the potential well and strong plasma interactions.
The largest change in the f2p is given for screening lengths between 5 < λD < 30 a.u. where the
influence of the plasma decreases and the endohedral potential becomes stronger. The abrupt change
is consequence of the 1s wave-function being partially confined in the C60 and the 2p is completely
confined in the endohedral region [see Figs. 5.1c), 5.2c), and 5.4c)]. In Fig. 5.5, for a well depth of
V0 = 1 a.u., the f2p is almost constant for all the screening lengths between 0.1 < λD < ∞ a.u. with
a value of around 0.7. For this case, the wave-functions for the 1s and 2p states are completely bound
by the cage, where the lower states are confined in the fullerene cavity, as observed in Figs. 5.2d) and
5.4d). Thus, the effect of the plasma is to weaken the 1s → 2p transition as λD decreases. When we
add the endohedral cavity the transition emission becomes stronger as λD decreases.

Photo-ionization cross section
The first DOS derived property result obtained in this work is the photo-ionization cross section (PCS)
shown in Figs. 5.6(a-d), for the H@C60 system embedded in a Debye-Hückel plasma for selected well
depths V0 and screening lengths λD as a function of the photo-electron energy. In the figure, we show
the results for well depths V0 = 0.0, 0.302, 0.7, and 1 a.u., as well as for values of the screening length
λD 3, 5, 8, 15, 30, and ∞ a.u.. In Fig. 5.6a), we show the case for no endohedral cavity (V0 = 0
a.u.) by solid line, where we observe an increase of the PCS as the screening length is decreased for
low-to-intermediate photo-electron energy. In the same figure, we observe the appearance of resonant
structures as λD decreases until the 2p state becomes unbound [78]. It resembles the well-known
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Figure 5.6: Photo-ionization cross section for the H@C60 system embedded in a Debye-Hückel plasma
environment for selected well depths V0 and for several screening lengths, λD, as a function of the photo-
electron energy. The (◦) symbols are the theoretical results of Lin and Ho [148] for λD = 3 a.u. and
the (△) symbols are the theoretical results of Qi et al. [37] for λD = 5 a.u.. See text for details.

analytic result of Bethe [34] for λD = ∞ a.u.. The (◦) symbols are the results given by Lin and Ho
[148] for λD = 3 a.u. and the (△) symbols are the theoretical results of Qi et al. [37] for λD = 5 a.u for
a pure hydrogen plasma (V0 = 0 no cavity) finding an excellent agreement with our results. In Figs.
5.6(b-d), for a given screening length, we observe the appearance of multiple structures in the PCS
when the endohedral cavity is present. These structures are confinement resonances, known as Cooper
resonances that occur due to constructive interference of the photo-electron waves scattered-off by the
C60 cage and the outgoing photo-electron wave [149]. We find that the Cooper resonances are sensitive
on the screening length and on the endohedral cavity well depth, as observed in Figs. 5.6(b-d). In Fig.
5.6b), for V0 = 0.302 a.u., we observe the increase of the PCS for large values of λD for a given photo-
electron energy and the emergence of Cooper resonances. Furthermore, the resonance position moves
towards high photo-ionization energies as λD is decreased. From Fig. 5.6c), for V0 = 0.7 a.u., the
Cooper resonances decrease and are shifted to larger values of photo-electron energies as the screening
length is increased. In Fig. 5.6d), we show the results for V0 = 1.0 a.u., were the PCS curve increases
for low values of screening length. The latter effect is due to the combined effects of the plasma and
the cavity. When the C60 is present, we observe that the Cooper resonances decrease and shift towards
low values of photo-electron energy as the plasma screening length is increased. As one observes, the
PCS of a H atom is modified drastically due to the endohedral cavity and the plasma screening.
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Figure 5.7: Mean excitation energy, I0, for a H@C60 confinement system in a Debye-Hückel plasma
as a function of screening length, λD, for several well depths V0.

Mean excitation energy
The second DOS derived property is the mean excitation energy, I0, shown in Fig. 5.7, as a function
of the screening length λD for several well depths V0. For no endohedral cavity (V0 = 0 a.u.) and
for large values of λD = ∞ a.u., we obtain the free hydrogen result of I0 = 14.993 eV in agreement
with the results of Cabrera-Trujillo and Cruz [150]. As the plasma interaction decreases (diminishing
of λD), the mean excitation energy decreases from I0 = 14.73608 eV at λD = 10 a.u. to I0 = 2.04646
eV at λD = 1 a.u.. For lower values of λD < 0.84428, the 1s is delocalized and there is no more
meaning for I0 as we observe from the figure. When one considers the cavity with V0 = 0.302 a.u.
(that emulates the H@C60 system), one observes a constant value of I0 = 1.08 eV for λD < 1 a.u..
As observed from the figure, the abrupt change is given for 1 < λD < 10 a.u. where the confinement
effects of the H@C60 are more relevant that the weak plasma interaction for large λD. This sudden
change is consequence of the transition from a strong plasma interaction to a weak plasma influence.
For a well depth of V0 = 0.7 a.u., the mean excitation energy is constant around I0 = 1.59 eV for
values of screening length lower than λD < 1.25 a.u.. In this case, we have that the 1s and 2p states
are partially and completely confined, respectively, in the endohedral cage [see Figs. (5.2) and (5.4)].
When the screening influence becomes weak (low λD values), the 1s and 2p energy levels are confined
completely by the endohedral cage and we observe a constant value for the mean excitation energy.
For no plasma interaction, at λD = ∞ a.u., we find a value of I0 = 4.12728 eV. As a consequence
of the DOS behavior, for V0 = 1 a.u., the mean excitation energy is almost constant with a value of
I0 = 1.830169 a.u. at λD = 0.1 a.u. and I0 = 1.81943 a.u. at λD = ∞ a.u.. The almost constant value
of I0 is attributed to the fact that the electron is strongly confined by the endohedral cavity [see Figs.
(5.2) and (5.4)] with a minimal influence from the plasma interaction. An immediate consequence for
low λD values, is that the electronic stopping cross section will increase for high collision energies.

Generalized oscillator strength
In Fig. 5.8, I show the GOS results for the 1s → 2s, F2s, transition as a function of the transferred
momentum, q, for several well depths and selected screening lengths. The (◦) symbols are the analytic
GOS results for the free hydrogen atom [54, 32] (i.e. V0 = 0 and λD → ∞ a.u.) showing an excellent
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Figure 5.8: Generalized oscillator strength for the 1s → 2s transition, F2s(q), for atomic hydrogen
confined by an endohedral cavity embedded in a Debye-Hückel plasma, as a function of the momentum
transfer, q, for several well depths V0 and screening lengths λD. We show the results for well depths:
a) V0 = 0.0, b) 0.302, c) 0.7, and d) 1.0 a.u. and selected screening lengths λD = 3, 5, 8, 15, 30, and
∞ a.u.. The (◦) symbols are the analytic results for the free hydrogen atom.

agreement with our numerical calculation. In Fig. 5.8a), one observes a decrease of the F2s curve
when the screening length is reduced, for V0 = 0.0 a.u.. From the figure, there is no F2s contribution
for screening lengths lower than λD = 3.2601 a.u., because of the delocalization of the 2s level, as
reported in Fig. 5.1a). For λD > 15 a.u., the curve is similar to the free case, i.e. there is a weak
plasma influence on the hydrogen atom that modifies slightly the GOS. In Fig. 5.8b), when the cavity
is present with V0 = 0.302 a.u., the effect of the plasma interaction is to increase F2s as the plasma
screening length decreases, contrary to the absence of the cage (V0 = 0 a.u.). For a well depth of
V0 = 0.7 a.u., corresponding to the first avoided crossing of the pure endohedral hydrogen atom, the
F2s decreases smoothly with the decrease of the screening length. However, in this case, there exist a
contribution for a screening length of λD = 3 a.u. contrary to the results for V0 = 0 a.u.. Fig. 5.8d)
shows the results for V0 = 1.0 a.u., where the F2s increases as the plasma screening length decreases.
Here, the 1s and 2s energy levels are confined in the endohedral cavity.

In Fig. 5.9, I show the GOS for the 1s → 3s, F3s, transition for selected potential well depths
and screening lengths as a function of q. In Fig. 5.9a), I show the F3s results for a well depth of
V0 = 0.0 a.u., as the 3s-excited state becomes delocalized [see Fig. 5.1a)], observing that there is no
contribution to the GOS for λD < 8 a.u.. For larger values of λD > 8 a.u., the F3s curve increases
softly until reaching the value of the free case. The (◦) symbols are the analytic results for the free
hydrogen atom [54] in excellent agreement with our numerical calculations. In Fig. 5.9b), I show the
effects of the plasma in the presence of an endohedral cavity with V0 = 0.302 a.u., observing an increase
of F3s for λD > 7 a.u.. In Fig. 5.9c), one observes the appearance of a minimum around q = 0.5 a.u.,
for V0 = 0.7 a.u.. The F3s intensity is reduced as the screening length is decreased, observing a slightly
contribution for λD = 6 a.u. as a consequence of the 3s-state starts to be delocalized. When the well
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Figure 5.9: (Color on-line). The same as in Fig. 5.8, but for the 1s → 3s transition, F3s(q).

depth is increased to V0 = 1.0 a.u., we observe, in Fig. 5.9d), that the second maximum has decreased
in intensity, where this transition has a large intensity as the endohedral cavity deepens. Once again,
the F3s curve decreases as the plasma screening length is decreased.

In Fig. 5.10, I show the GOS for the 1s → 2p, F2p, transition for selected potential well depths
and screening lengths as a function of transferred momentum q. In Fig. 5.10a), for V0 = 0.0 a.u.,
one observes a smooth decrease of the F2p curve as the screening length is decreased, observing that
F2p is negligible for λD < 4.54257 a.u. due to the delocalization of the 2p state. Once again, the
(◦) symbols are the analytic results for the free hydrogen atom [54] in excellent agreement with our
numerical calculations. The (■) symbol at q = 0 for F2p and V0 = 0 a.u. corresponds to the free
H atom case at f2p = 0.4161. When the well depth is increased to V0 = 0.302 a.u., there is a small
effect of the plasma interaction in comparison with the free case. Furthermore, we observe a notorious
amplitude decrease of the F2p intensity as compared to the free hydrogen case due to the fact that the
2p state is almost confined by the endohedral potential, independently of the screening length. In Fig.
5.10c), F2p increases slightly as the screening length decreases. In Fig. 5.10d), we observe that the
plasma influence on the F2p is negligible and the F2p intensity remains the same for all values of the
screening length. This is due to the fact that the electron is strongly bound in the cavity region and
the plasma screening environment effects are negligible. However, the intensity line is stronger than
in the previous free case (V0 = 0 a.u.).

In Fig. 5.11, I show the GOS for the 1s → 3p transition, F3p, for selected potential well depths
and screening lengths as a function of the transferred momentum q. In Fig. 5.11a) (V0 = 0 a.u.), one
observes a decrease of the F3p intensity as the plasma screening length is decreased. Notice that F3p

becomes null for screening length λD = 8 a.u.. The latter is attributed to the delocalization of the
3p energy level for values lower than λD < 8.84610 a.u.. As before, the (◦) symbols are the analytic
results for the free case. In Fig. 5.11b), for a well depth of V0 = 0.302 a.u., one observes a significant
increase of the F3p curve by a factor of 3 in comparison with Fig. 5.11a). In Fig. 5.11c), near the first
avoided crossing of a H atom for a pure endohedral cavity, one observes a maximum at around q = 0.5
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Figure 5.12: Electronic stopping cross section for protons colliding with atomic hydrogen encaged
by an endohedral cavity and embedded in Debye-Hückel plasma as a function of the projectile initial
kinetic energy for several selected confinement well depths V0 and plasma screening lengths λD. In
a) V0 = 0.0, b) V0 = 0.302, c) V0 = 0.7, and d) V0 = 1.0 a.u.. The (◦) symbols are the free atomic
hydrogen theoretical results of Bichsel [139].

a.u.. The F3p curve decreases for the decrease of the screening length. In Fig. 5.11d), one observes
the appearance of an oscillatory behavior in the F3p curve as a function of q. The influence of the
Debye-Hückel plasma on the endohedral H atom is negligible for screening lengths λD > 10 a.u..

Consequently, the GOS distributions are modified by the presence of the plasma environment
producing a decrease of the Fns curves as the screening length decreased meanwhile the Fnp increases.
This effect will be relevant in the behavior of the electronic stopping cross-section and GOS dependent
properties.

Electronic stopping cross section
In Fig. 5.12, I show the electronic stopping cross section (SCS) for protons colliding with atomic
hydrogen encaged by an endohedral cavity and embedded in a Debye-Hückel plasma. In this case the
assumption in the model is that the projectile momentum transfer goes only into the active electron
in the hydrogen target and not into the endohedral cavity (static model potential).

In Fig. 5.12a), I show the results for V0 = 0.0 a.u. where the hydrogen atom is subjected
only to the Debye-Hückel plasma interaction. In the low-to-intermediate energy collision, the largest
effect of the plasma environment occurs as well as for small screening length values. As the plasma
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5. Endohedral hydrogen atom in a plasma environment

interaction is decreased, the energy deposited by the ions into the hydrogen system increases slightly.
For high collision energy, the plasma interaction affects the SCS for values of λD < 3 a.u.. This is
because for low values of the screening length the bound states are near the delocalization threshold
meaning a higher absorption of the projectile energy. I compare the results to those of a free hydrogen
as reported by Bichsel [151] based in the same first Born approximation [(◦) symbols] observing an
excellent agreement to the free case results, V0 = 0.0 a.u. and λD → ∞ (solid line). In Fig. 5.12b),
I show the results for V0 = 0.302 a.u., for λD < 3 a.u. where one observes a significant change in the
SCS for low-to-intermediate collision energy. In Fig. 5.12c), I show the results for V0 = 0.7 a.u. (a well
depth near the first avoided crossing for a H atom confined by an endohedral cavity without plasma
interaction) observing an increase of the SCS for λD → ∞ (solid line) in comparison with the previous
results of Figs. 5.12(a-b) for intermediate-to-high projectile energies. I show the free case result (solid
thin line) in Figs. 5.12(c-d) for comparison purposes. From Fig. 5.12c), we observe a slight effect of
the plasma interaction on the H atom stopping cross section for all projectile energies. In Fig. 5.12d),
we show the results for V0 = 1.0 a.u., where one observes that the effect of the plasma influence on
the electronic SCS is negligible. As the endohedral cavity potential well increases, more bound states
appear below the delocalization threshold with the dominant transition becoming the 1s → 2p. Thus,
the stronger effect of the plasma is for shallow cavities, in contrast, for deep cavities, the effect of the
plasma is negligible with a predominant contribution only from the endohedral cavity.

5.2 Conclusions and perspectives
In this chapter, I have reported the effects of spatial confinement by a fullerene cavity on a hydro-
gen atom with a plasma interaction on properties dependent on the dipole and generalized oscillator
strength. I have used the Wood-Saxon model potential to describe the electronic static behavior of
the endohedral cage as a function of the well depth V0. The plasma interaction is described by the
Debye-Hückel screening potential. It is found that the energy levels and wave-functions are modified
drastically under the plasma interaction. With the increase of the endohedral well depth and the
decrease of the plasma screening length, the electron in the hydrogen atom is bound into the cavity
region. Particularly, this effect is reflected in the delocalization of the 1s and 2p energy levels for
screening lengths lower than λD < 1 a.u., for low values of V0. Consequently, the DOSs and GOSs
are modified due to the screening of the plasma potential. I find the appearance of new structures in
the photo-ionization cross section, as well as a drastic change on the static dipole polarizability and
mean excitation energy due to the change in the energy levels as a function of the screening length.
Furthermore, for large values of the endohedral well depth, the effects of the plasma interaction on
physical properties is negligible. Thus, I find a strong competition between the effects of the plasma
interaction and those of the static endohedral cavity which modify accordingly the electronic properties
of the system.

From the results, it would be interesting to implement a temperature-dependent model to describe
the plasma environment and obtain the DOS and GOS derived electronic dependent properties. Finally,
the study reported here could be extended to multi-electronic systems.

In the following chapter, I present the result obtain for the lithium atom encaged by a fullerene
molecule considering the Hartree-Fock approach.
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6
Lithium atom at extreme conditions

In this chapter, I study the dipole oscillator strength dependent properties of a lithium atom encaged
by a fullerene molecule Li@C60 by solving the Restricted and Unrestricted Hartree-Fock equations
within the Slater’s X−α approach by means of a Gauss-Seidel iterative method and a finite-differences
approach. This chapter is based on the research Paper V that is in preparation. I use the Woods-
Saxon potential to describe the endohedral confinement due to the relevance of the smoothness at
the cavity edges. The dipole dependent electronic properties reported are the photo-ionization cross
section (PCS) and the mean excitation energy. The content of this chapter is reported in Paper V
under preparation for submission.

6.1 Endohedral confinement

Photo-ionization of multi-electronic systems encapsulated inside an endohedral cage has received much
attention in recent years due to the change of their spatial confinement properties. In the case of the
Li@C60 system, I use the quantum confinement model potential, as discussed in Section 2.5, to describe
the C60 fullerene molecule. In this work, I use the Wood-Saxon potential to describe the Cn cavity.

To describe the electronic structure and interactions of the multi-electronic atom inside the C60
cage, different theoretical approaches have been developed. One approach is to considered a pseudo-
potential that describes the inner or frozen electronic structure of the atom. The pseudo-potential has
been applied to different problems in atomic physics with successful results [42, 43, 152, 44, 153]. The
basic idea of pseudo-potentials is to take into account the multi-electronic core interaction with the
single valence electron by a modification of the Coulomb potential.

The Restricted and Unrestricted Hartree-Fock (RHF and UHF, respectively) approaches have
been previously used to describe the electronic properties of the lithium atom without confinement
environment, e.g. [154, 155, 156, 157, 158]. For the Li atom encaged by a fullerene molecule, several
theoretical approximations have been implemented to study the photo-ionization process, e.g. [159,
160, 161, 162, 163, 164, 165, 166]. For example, Li and Ho [26, 164] use a psuedo-potential for
the lithium atom to simulate the core interaction with the single valence electron with optimized
parameters. Here, Li and Ho calculate the PCS of the 2s shell under a confinement given by a power
exponential potential, finding the emergence of multiple Copper resonances due to the endohedral
confinement. In a recent, paper Hasoğlu et al. [31] studied the correlation energies of the ground state
of alkali-earth-metal atoms for an endohedral system A@C60 through a multiconfiguration Hartree-
Fock method. Hasoğlu et al. do not consider the specific case of photo-ionization problem, however
they found that the valence electrons diffuse outward in the presence of the confining potential as a
function of the well depth, as consequence the electrons to be further apart and the correlation energy
decreases. With the increase of well depth, the valence electrons become trapped in the confining well
and, as a consequence, the correlation energy increases.

In this chapter, I analyze the endohedral lithium atom using the Wood-Saxon model potential
to describe the endohedral cavity in order to study the energy levels and wave functions, with a
consequently change in the Dipole Oscillator Strength (DOS) and related electronic properties.
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6.1.1 Results
In this chapter, I show the energy levels and wave-functions results by implementing the Gauss-Seidel
method and a finite-differences approach to solved the time-independent Schrödinger equation (see
Section 2.4.2). Then, I calculate the dipole oscillator strength (DOS) derived dependent electronic
properties e.g. photo-ionization [Eq. (2.24)] and mean excitation energy [Eq. (2.46)], within the RHF
and UHF approaches. Note that I use the Wood-Saxon potential to describe the endohedral cavity
with R0 = 5.8 and ∆ = 1.89 a.u. [69, 63]. The numerical implementation as given in Section 2.8.

Energy levels and wave-functions
In Fig. 6.1, I show the energy levels for the ground state of the endohedral lithium atom as obtained
by the RHF case. The energies of the 1s to 4s, 2p to 4p, and the total energy are shown as a
function of the well depth V0. Within the Slater’s X-α approach, I report an α parameter value of
0.26. From the figure, for a well depth of V0 = 0.0 a.u. (no endohedral cavity), I find that the energy
levels are E1s = −2.79231, E2s = −0.19639, E2p = −0.12866 a.u., for the ground and excited states,
respectively, and the total energy is ET otal = −7.43268 a.u., in excellent agreement with well known
result [167, 168]. In Fig. 6.1, one observes that the 1s energy level is not affected by the endohedal
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cavity and remains constant for all well depths V0, as we expect, due to we are considering a frozen
core by means of the RHF approach. As the well depth V0 becomes deeper, the valence energy level
migrates from being in the atom to being in the endohedral cage as one observes from Figs. 6.1 and
6.2 (see below). This behavior would be relevant in the determination of the DOS derived properties
described in the following sections.

In Figs. 6.2(a-d), I show the eigenfunctions for the 2s, 3s, 2p and 3p states of the Lithium atom
in an endohedral cavity for selected potential well depths V0 in the RHF case. For the case of the free
atom, V0 = 0.0 a.u., one observes a good agreement of the results in comparison with the Hartree-Fock
solutions shown by (◦) symbols from Ref. [167]. When the endohedral cavity is added, for a well
depth of V0 = 0.302 a.u., one observes, in Figs. 6.2(a-d), that the 2s, 2p, 3s, and 3p wave-functions
are modified significantly in comparison with the unconfined results for V0 = 0 a.u.. Here, it is evident
from Figs. 6.2(a-b) that the 2s and 2p wave-functions are shifted to the endohedral region, however,
for 3s and 3p wave-functions there is a competition between the Coulomb and well depth attraction.
For a well depth of V0 = 0.7 a.u., one observes, in Figs. 6.2(a-b), that the 2s and 2p wave-functions
are almost confined in the cage region between 6 < r < 8 a.u.. For the same well depth, the 3s
[Fig. 6.2c)] and 3p [Fig. 6.2d)] wave-functions are split partially between the C60 cage region and
the lithium atom nuclear position. When the well depth is increased to V0 = 1 a.u., from Figs. 6.2a)
and 6.2b), the 1s and 2p wave-functions are bound in the cavity region with no contribution at the
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hydrogen atom position. For this well depth, the valence electron is completely bound by the cage.
As one observes from Figs. 6.2(c-d), the increase of the well depth makes slight changes to the 3s and
3p wave-functions. From Fig. 6.1, we note that the 1s energy state is not altered by the presence of
the endohedral cavity being only the valence state the affected one. Thus, the 1s wave-function is not
modified by the presence of the endohedral cavity. The increase of the well depth produces a trapping
of the valence electrons within the endohedral cavity.

Dipole oscillator strength
From the calculated eigenvalues and eigenfunctions, I proceed to obtain the DOS for the Li@C60
system. In Fig. 6.3, I show the 2s → 2p transition as a function of the well depth V0. The (■) symbol
corresponds to the free result, f2s→2p = 0.76789 in good agreement with f2s→2p = 0.76568 from Ref.
[167] and f2s→2p = 0.76710 from Ref. [156]. From the figure, as the well depth is increased, the DOS is
increased too, where the significantly change is for V0 = 0.2 a.u., reaching a value of f2s→2p = 0.87491.
Then, the DOS decays smoothly until f2s→2p = 0.68603 for V0 = 2.0 a.u.. This behavior is related
to the change of the 2s [Fig. 6.2a)], 2p eigenfunctions [Fig. 6.2b)], and energy levels [Fig. 6.1]. As
the potential well depth is increased, the eigenfunction is between being in the lithium atom and then
localized in the endohedral cavity. A comparison must be made with the endohedral hydrogen atom
results presented in Chapter 4. From the endohedral hydrogenic results, we observed the decreased
of the DOS as the well depth is increased reaching a minimum and then an increase followed by a
constant value. In comparison, the Li@C60 presents a maximum and then a decrease of the DOS.

Photo-ionization cross section
The photo-ionization cross section is calculated for the 2s shell of the endohedral lithium atom for
several well depths and as a function of the photo-electron energy in the RHF approach. In Fig. 6.4a),
I show the results of the PCS for the free case (color solid line), i.e. no endohedral cavity (V0 = 0 a.u.).
In the same figure, I compare with the theoretical results of Peach (red solid line) [163], Lin and Ho
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cross section for several potential well depth as a function of the photo-electron energy. See text for
discussion.

[(×) symbols] [26], and the experimental results of Hudson and Carter (■) [159]. Here, one observes
a correspondence between our results and those reported by Peach and Lin and Ho for photo-electron
energies larger that 10 eV of photo-electron energy. For lower values of the photo-electron energy,
near 2.5 eV, we observe a discrepancy between our results and those reported by Refs. [26, 163].
Within the Slater’s X-α approximation, I use one adjustable parameter to obtain the energy spectrum.
The pseudo-potential used in Ref. [163] and Ref. [26] uses optimized parameters that are derived
by least-square fit to either experimental or theoretical results, leading a proper description of the
photo-ionization at low photo-electron energies.

In Fig. 6.4b), I show the PCS results for the encaged lithium atom for several well depths V0
as a function of the photo-electron energy. Here, the solid line is the free result, as I have described
previously in Fig. 6.4a). When the endohedral cavity is present, V0 = 0.3 a.u., one observes a
drastic decrease of the PCS for lower values of photo-electron energies and the appearance of Cooper
resonances around the photo-electron energies at 4 eV and 21 eV. These energy resonances occur due
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to the constructive interference of the photo-electron waves scattered off by the endohedral cage and
the outgoing photo-electron wave as in Chapter 4. From Fig. 6.4b), for a well depth of V0 = 0.7 a.u.,
the PCS is increased for a photo-electron energy of 4 eV. When the well depth is V0 = 1.0 a.u., the
PCS is increased for lower values of photo-electron energy and one observes that the resonance position
moves towards lower photo-ionization energies. We find that the Cooper resonances are sensitive to
the endohedral well depth, as observed in Fig. 6.4b).

Mean excitation energy
In Fig. 6.5, we show the results for the mean excitation energy, I0, as a function of the well depth V0.
For no endohedral cavity (V0 = 0 a.u.), one finds that the mean excitation energy, for the 2s orbital,
is I0 = 3.39698 eV in agreement to the results reported by Oddershede and Sabin with I0 = 3.29 eV
[169]. As the well depth is increased, the mean excitation energy is decreased reaching a minimum of
I0 = 1.34428 eV for V0 = 0.4 a.u.. For larger values of the well depth, the mean excitation energy is
increased smoothly reaching a value of I0 = 2.24666 eV for V0 = 2 a.u. The sudden change observed
in I0 is consequence of the change of the 2s → 2p DOS transition, which is the principal intensity
contribution.

6.2 Conclusions and perspectives
In this chapter, I have analyzed the role of the spatial confinement on the dipole oscillator strength
derived properties of the lithium atom encaged by an endohedral cavity by means of the Wood-Saxon
model potential and the restricted Hartree-Fock approach. It was found that the inner electrons are
not modified by the presence of the endohedral cavity due to the strong binding energy from the
nucleus. Here, the 2s valence electron have suffered a drastic change, as the well depth V0 is increased
and consequently the wave-functions are modified with implications on the photo-ionization and mean
excitation energy. For the photo-ionization cross section, it was found the appearance of Cooper
resonances as the well depth is increased.
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General conclusions

In this work, I have shown the relevance of accounting for the dipole and generalized oscillator strength
and the implications on the derived electronic properties with consequences on material damage, e.g.
photo-ionization cross section, mean excitation energy and stopping cross section (energy loss), for
atoms at free and at extreme conditions.

In the free case, I asses the universal character of the stopping cross section in terms of the mean
excitation energy target property, under the Bethe approach, for heavy ions colliding with atoms and
molecules. Among the complex projectile–target systems in the energy deposition considered here, the
scaling law expresses a systematic and universal behavior, regardless of the detailed mechanism for
slowing down in the intermediate-to-high collision energies. The scaling law results are in excellent
agreement with the available experimental data for high energy regimen within Bethe’s theory. From
these results, the mean excitation energy is a decisive parameter to account correctly for the stopping
cross section. Thus, the determination of the mean excitation energy is crucial, because among other
things, it has been established that this parameter has a dependence on the target orbital orientation.

In spite of the target orientation has been studied previously [12, 13], it has only been assessed
for the mean excitation energy and not for the generalized oscillator strength and consequently in the
stopping cross section. In this thesis, I have studied the effects of taking into account the initial orbital
target symmetry and new analytic expressions for the generalized oscillator strength and stopping
cross section were derived. These expressions are obtained assuming that the electrons in the target
are bound harmonically and the results are within Bethe’s theory. These results for the electronic
stopping cross section dependence of the initial target symmetry show good agreement in comparison
with the experimental data. However, the question is open for a more realistic approach considering
the initial target orbital symmetry in spherical coordinates. Nowadays, this is one of my investigation
lines.

For atomic systems encaged by an endohedral cavity, I presented a study of how the dipole and
generalized oscillator strength are modified and, as a consequence, the dependent electronic properties.
I found that the dipole oscillator strength is modified drastically around the first avoided crossing of
the ns and (n+1)s energy levels. For H@C60 system, the endohedral confinement leads the trapping of
the ground state in the cage as the potential well depth is increased. Thus, the photo-ionization cross
section and the mean excitation energy are modified, finding the appearance of Cooper resonances for
the photo-ionization and a diminishing of the mean excitation energy. With the increase of the well
depth, in the case of a hydrogen atom, I calculate the generalized oscillator strength as a function of
the confinement conditions, finding that their intensities are modified in comparison with the available
free expressions. Thus, the stopping cross section is modified. For low energy collisions, the endohedral
cavity effect is reflected in the increase of the stopping cross section, and at high projectile energies, the
endohedral cavity is not discernible by the projectile. It was found that the physical properties depend
strongly on the two model potential used to describe the endohedral cavity. Although I present new
results for the generalized oscillator strength for atomic systems encaged by an endohedral cavity, there
are open questions to answer. For example, I assumed through this thesis, that the model potentials
that describe the endohedral cavity are static and as a consequence, the carbons that conform the
fullerene molecule do not react properly to the interactions of the atomic system. A more realistic
approach would be to propose a potential consisting of repulsive and attractive components that
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take into account the internal forces between electrons and carbon atoms of the endohedral cage.
Furthermore, I have assumed that the atomic systems are at the geometrical center of the endohedral
cavity, however, recent research in the field of hydrogen storage points out that, maybe, it is not
completely correct. These intriguing aspects of the endohedral cavity are part of my new investigation
lines nowadays.

When I consider the H@C60 system embedded in a weak plasma interaction, interesting and new
features arise from the confinement effects. The hydrogen energy levels and wave-functions are modified
and, as a consequence, the dipole and generalized oscillator strength too. It is found that, with the
increase of the endohedral well depth and the decrease of the plasma screening length, the electron
in the hydrogen atom is bound into the cavity region. This effect is reflected in the delocalization of
the energy levels for lower screening lengths for low values of the potential well depth and a change in
the wave-functions. For dipole oscillator strength properties, I find the appearance of new structures
in the photo-ionization (energy resonances), as well as a drastic change on the mean excitation energy
due to the change in the energy levels as a function of the screening length. Furthermore, I compute
the generalized oscillator strength for this system finding a strong dependence at low screening lengths.
For the electronic stopping cross section, the stronger effect of the plasma is for shallow cavities, in
contrast, for deep cavities, the effect of the plasma is negligible with a predominant contribution only
from the endohedral cavity.

I hope these findings motivates further study on these system and a guide to perform experimental
work. Several improvements for this ab initio approach can be done. For example, as I mentioned
previously, the model potential cavity could be modified by adding a repulsive term. Furthermore,
I could consider a more realistic plasma interaction by proposing a temperature-dependent model
potential [76, 77]. Thus, these topics are part of my actual lines of investigation.
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II



A
Finite-differences approach

The numerical method of finite-differences in the midpoint grid is described below. If you multiply
Eq. (2.61) by u∗(r) on the left and integrates over the entire space, i.e. 0 ≤ r ≤ ∞, we have

−1
2
u∗ d

2u

dr2 + V (r)u∗u = Eu∗u , (A.1)

−1
2

∫
u∗u′′dr + V (r)

∫
u∗udr = E

∫
u∗udr , (A.2)

where V (r) = l(l + 1)/2r2 + Vscre(r) + Vc(r) and the explicit dependence of r on the wave functions
has been removed. From Eq. (A.2), the energy is

E =
− 1

2
∫
u∗u′′dr + V (r)

∫
u∗udr∫

u∗udr
. (A.3)

Integrating the first integral by parts we obtain

E =

∫ ( 1
2

∂u∗

∂r
∂u
∂r + V (r)u∗u

)
dr∫

u∗udr
. (A.4)

Under the finite-differences approach, the integral and the derivative are defined in terms of the
midpoint grid as ∫

u(r)dr =
N∑

i=1
ui(ri+1/2 − ri−1/2), ∂u

∂r
=
ui+1/2 − ui−1/2

ri+1/2 − ri−1/2
. (A.5)

Introducing Eq. (A.5) in (A.4) and after a little algebra we obtain the Schrödinger equation as

1
2

[
uj − uj−1

rj − rj−1
− uj+1 − uj

rj+1 − rj

]
+ Vjuj(rj+1/2 − rj−1/2) = Euj(rj+1/2 − rj−1/2), (A.6)

where the frontier conditions are given by

u0(rmin) = 0, uN (rmax) = 0. (A.7)

Eq. (A.6) can be written as a generalized eigenvalue problem as

Hu⃗ = ESu⃗, (A.8)

Diagonalizing this equation system by making S = LLT such that ϕ⃗ = LT u⃗ and L = S1/2 we obtain

H̃ϕ⃗ = Eϕ⃗. (A.9)

III



A. Finite-differences approach

Where the matrix elements are given as

H̃i,i = 1
2

[
1

ri − ri−1
+ 1
ri+1 − ri

]
1

ri+1/2 − ri−1/2
+ Vi, (A.10)

H̃i,i+1 = − 1
2(ri+1 − ri)

1√
(ri+1/2 − ri−1/2)(ri+3/2 − ri+1/2)

, (A.11)

H̃i,i−1 = − 1
2(ri − ri−1)

1√
(ri+1/2 − ri−1/2)(ri−1/2 − ri−3/2)

. (A.12)

Eqs. (A.9)-(A.12) permit us to find the eigenvalues and eigenfunctions of the H@C60 system [Eq.
(2.61)], the H@C60 system embedded in a weak plasma interaction, and for the Li@C60 system in the
UHF and RHF [Eqs. (2.84) and (2.92) respectively] for different values of the confinement potential
V0 As a consequence we can calculate the DOS and GOS derived electronic properties for free and at
extreme conditions.
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B
Gauss-Seidel Method

To show the implemetation of the Gauss-Seidel method, we consider the spatial part of the UHF Eqs.
(2.75)-(2.77) as (

ĥ1 + Ĵ2 + Ĵ3 − K̂3

)
ψ1(r) = ϵ1ψ1(r), (B.1)(

ĥ2 + Ĵ1 + Ĵ3

)
ψ2(r) = ϵ2ψ2(r), (B.2)(

ĥ3 + Ĵ1 + Ĵ2 − K̂1

)
ψ3(r) = ϵ3ψ3(r), (B.3)

where the equations need to be solved simultaneously. For example, Eq. (B.1) is given in terms of
their radial part due to the spherical symmetry as(

ĥ1 + Ĵ2 + Ĵ3 − K̂3

)
u1(r) = ϵ1u1(r). (B.4)

Here we assume that ψ1(r) = (u1(r)/r)Ylm(θ, ϕ). The kinetic term from Eq. (2.68) is given as

ĥ1 = −1
2

∇2 + V (r), (B.5)

= −1
2
d2

dr2 + V (r), with V (r) = −Z

r
+ Vc(r), (B.6)

using the latter kinetic term in Eq. (B.4) we re-write it in terms of the finite-differences approach as

−1
2
d2u1

dr2 = 1
2

[
u1,j − u1,j−1

rj − rj−1
− u1,j+1 − u1,j

rj+1 − rj

]
1

rj+1/2 − rj−1/2
, (B.7)

= h1,j−1u1,j−1 + h1,ju1,j + h1,j+1u1,j+1, (B.8)

where we define

h1,j−1 = −1
2

1
rj − rj−1

1
rj+1/2 − rj−1/2

, (B.9)

h1,j = 1
2

[
1

rj − rj−1
+ 1
rj+1 − rj

]
1

rj+1/2 − rj−1/2
, (B.10)

h1,j−1 = −1
2

1
rj+1 − rj

1
rj+1/2 − rj−1/2

. (B.11)

Then, Eq. (B.4) into the finite-differences approach is

(h1,j−1u1,j−1 + h1,ju1,j + h1,j+1u1,j+1 + Vju1,j + J2,ju1,j + J3,ju1,j −K3,ju1,j) = ϵ1u1,j , (B.12)
(h1,j + Vj + J2,j + J3,j −K3,j − ϵ1)u1,j = − (h1,j−1u1,j−1 + h1,j+1u1,j+1) , (B.13)

V



B. Gauss-Seidel Method

here the new wave-function ū1,j is

ū1,j = − h1,j−1u1,j−1 + h1,j+1u1,j+1

h3,j + Vj + J2,j + J3,j −K3,j − ϵ1
(B.14)

where
ϵ1 =

∫
dru∗

1(r)
(
ĥ1 + Ĵ2 + Ĵ3 − K̂3

)
u1(r). (B.15)

The improved wave-function is given as

unew
1,j (r) = (1 − ω)u1,j(r) + ωū1,j(r), (B.16)

here u1,j(r) is the initial guess wave-function. In a similar way, for Eqs. (B.2) and (B.3), the new
wave-functions ūj are

ū2,j = −h2,j−1u2,j−1 + h2,j+1u2,j+1

h2,j + Vj + J1,j + J3,j − ϵ2
, (B.17)

ū3,j = − h3,j−1u3,j−1 + h3,j+1u3,j+1

h3,j + Vj + J1,j + J2,j −K1,j − ϵ2
, (B.18)

and the improved wave-functions unew
j are

unew
2,j (r) = (1 − ω)u2,j(r) + ωū2,j(r), (B.19)
unew

3,j (r) = (1 − ω)u3,j(r) + ωū3,j(r), (B.20)

with the respective values of ϵ2 and ϵ3, as in Eq. (B.15).
Where the Coulumb and Exchange terms are given as

Ĵb(r1) = ⟨ψb(r2)| 1
r12

|ψb(r2)⟩, (B.21)

=
∫
dr2

1
r12

u∗
b(r2)ub(r2), (B.22)

=
∫ r1

0

1
r1
u∗

b(r2)ub(r2)dr2 +
∫ ∞

r1

1
r2
u∗

b(r2)ub(r2)dr2, (B.23)

K̂b(r1) = ⟨ψb(r2)| 1
r12

|ψj(r2)⟩, (B.24)

=
∫
dr2

1
r12

ub(r2)uj(r2), (B.25)

=
∫ r1

0

1
r1
u∗

b(r2)uj(r2)dr2 +
∫ ∞

r1

1
r2
u∗

b(r2)uj(r2)dr2. (B.26)

VI



Bibliography

[1] Ana María Cetto. La luz. Fondo de Cultura Económica, México, 1997.
[2] Gordon W.F. Drake. Handbook of atomic, molecular, and optical physics. Springer, 2 edition,

2006.
[3] Plasma Science Committee, editor. Plasma Science : From Fundamental Research to Techno-

logical Applications. National Academies Press, Washington, D.C., 1 edition, January 1995.
[4] D. Salzmann, editor. Atomic Physics in Hot Plasmas. Oxford University Press, Oxford, 1998.
[5] Makoto Kitabatake Kiyotaka Wasa and Hideaki Adachi. Thin Films Material Technology: Sput-

tering of Compound Materials. Springer-Verlag Berlin Heidelberg, Springer-Verlag Berlin Hei-
delberg, 1 edition, 2004.

[6] Hertz, H. M., Berglund, M., Hansson, B. A.M., Hemberg, O., and Johansson, G. J. Liquid-jet
laser-plasma x-ray sources for microscopy and lithography. J. Phys. IV France, 11:Pr2–389–Pr2–
396, 2001.

[7] A G Michette, R Fedosejevs, S J Pfauntsch, and R Bobkowski. A scanned source x-ray micro-
scope. Measurement Science and Technology, 5(5):555, 1994.

[8] H. Bethe. Zur theorie des durchgangs schneller korpuskularstrahlen durch materie. Annalen der
Physik, 397(3):325–400, 1930.

[9] Biersack J.P. Ziegler J.F. and Littmark U. The stopping and range of ions in solids. Pergamon
Press, New York, 1985.

[10] E.C. Montenegro, S.A. Cruz, and C. Vargas-Aburto. A universal equation for the electronic
stopping of ions in solids. Physics Letters A, 92(4):195 – 202, 1982.

[11] R. Cabrera-Trujillo. Stopping power in the independent-particle model: Harmonic oscillator
results. Phys. Rev. A, 60:3044–3052, Oct 1999.

[12] Henning H. Mikkelsen, Jens Oddershede, John R. Sabin, and Ejvind Bonderup. A bethe theory
for the directional dependence of stopping by molecules. Nuclear Instruments and Methods in
Physics Research Section B: Beam Interactions with Materials and Atoms, 100(4):451 – 457,
1995.

[13] Stephan P. A. Sauer, Jens Oddershede, and John R. Sabin. Mean excitation energies and their
directional characteristics for energy deposition by swift ions on the dna and rna nucleobases.
The Journal of Physical Chemistry C, 114(48):20335–20341, 2010.

[14] K. D. Sen, editor. Electronic Structure of Quantum Confined Atoms and Molecules. Springer
International Publishing, Switzerland, 2014.

[15] S. A. Cruz, J Sabin, and E Brandas, editors. Advances in Quantum Chemistry, volume 57.
Elsevier, Amsterdam, June 2009.

[16] S. A. Cruz, J Sabin, and E Brandas, editors. Advances in Quantum Chemistry, volume 58.
Elsevier, Amsterdam, June 2009.

[17] Russel B. Ross, Claudia M. Cardona, Dirk M. Guldi, Shankara Gayathri Sankaranarayanan,
Matthew O. Reese, Nikos Kopidakis, Jeff Peet, Bright Walker, Guillermo C. Bazan, Edward
Van Keuren, Brian C. Holloway, and Martin Drees. Endohedral fullerenes for organic photovoltaic
devices. Nat Mater, 8(3):208–212, 2014.

VII



Bibliography

[18] Simon C Benjamin, Arzhang Ardavan, G Andrew D Briggs, David A Britz, Daniel Gunlycke,
John Jefferson, Mark A G Jones, David F Leigh, Brendon W Lovett, Andrei N Khlobystov, S A
Lyon, John J L Morton, Kyriakos Porfyrakis, Mark R Sambrook, and Alexei M Tyryshkin. To-
wards a fullerene-based quantum computer. Journal of Physics: Condensed Matter, 18(21):S867,
2006.

[19] Stephen Ornes. Core concept: Quantum dots. Proceedings of the National Academy of Sciences,
113(11):2796–2797, 2016.

[20] Olga V. Pupysheva, Amir A. Farajian, and Boris I. Yakobson. Fullerene nanocage capacity for
hydrogen storage. Nano Letters, 8(3):767–774, 2008. PMID: 17924697.

[21] Mirza Ali Mofazzal Jahromi, Parham Sahandi Zangabad, Seyed Masoud Moosavi Basri, Key-
van Sahandi Zangabad, Ameneh Ghamarypour, Amir R. Aref, Mahdi Karimi, and Michael R.
Hamblin. Nanomedicine and advanced technologies for burns: Preventing infection and facili-
tating wound healing. Advanced Drug Delivery Reviews, 123:33 – 64, 2018. Advances and new
technologies in the treatment of burn injury.

[22] M. Ya. Amusia, A. S. Baltenkov, and U. Becker. Strong oscillations in the photoionization of 5s
electrons in xe@c60 endohedral atoms. Phys. Rev. A, 62:012701, Jun 2000.

[23] J P Connerade, V K Dolmatov, P A Lakshmi, and S T Manson. Electron structure of endohe-
drally confined atoms: atomic hydrogen in an attractive shell. Journal of Physics B: Atomic,
Molecular and Optical Physics, 32(10):L239, 1999.

[24] V.K. Dolmatov, A.S. Baltenkov, J.-P. Connerade, and S.T. Manson. Structure and photoioniza-
tion of confined atoms. Radiation Physics and Chemistry, 70(13):417 – 433, 2004.

[25] V K Dolmatov, J L King, and J C Oglesby. Diffuse versus square-well confining potentials in mod-
elling a@c60 atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 45(10):105102,
2012.

[26] C Y Lin and Y K Ho. Photoionization of atoms encapsulated by cages using the power-
exponential potential. Journal of Physics B: Atomic, Molecular and Optical Physics,
45(14):145001, 2012.

[27] S A Ndengué and O Motapon. Electric response of endohedrally confined hydrogen atoms.
Journal of Physics B: Atomic, Molecular and Optical Physics, 41(4):045001, 2008.

[28] O. Motapon, S. A. Ndengué, and K. D. Sen. Static and dynamic dipole polarizabilities and
electron density at origin: Ground and excited states of hydrogen atom confined in multiwalled
fullerenes. International Journal of Quantum Chemistry, 111(15):4425–4432, 2011.

[29] W. Jaskólski. Confined many-electron systems. Physics Reports, 271(1):1 – 66, 1996.
[30] J P Connerade, V K Dolmatov, and P A Lakshmi. The filling of shells in compressed atoms.

Journal of Physics B: Atomic, Molecular and Optical Physics, 33(2):251, 2000.
[31] M. F. Hasoğlu, H.-L. Zhou, and S. T. Manson. Correlation study of endohedrally confined

alkaline-earth-metal atoms (a@c60). Phys. Rev. A, 93:022512, Feb 2016.
[32] Mitio Inokuti. Inelastic collisions of fast charged particles with atoms and molecules—the bethe

theory revisited. Rev. Mod. Phys., 43:297–347, Jul 1971.
[33] N.F. Mott and H.S.W. Massey, editors. Theory of Atomic Collisions. Oxford University Press,

U.K., 3 edition, November 1965.
[34] Hans A. Bethe and Roman Jackiw, editors. Intermediate quantum mechanics. Westview Press,

Boulder, Colo., EE.UU., 3 edition, November 1997.
[35] R.K. Janev, Songbin Zhang, and Jianguo Wang. Review of quantum collision dynamics in debye

plasmas. Matter and Radiation at Extremes, 1(5):237 – 248, 2016.
[36] Y. Y. Qi, J. G. Wang, and R. K. Janev. Photoionization of hydrogen-like ions in dense quantum

plasmas. Physics of Plasmas, 24(6):062110, 2017.
[37] Y. Y. Qi, J. G. Wang, and R. K. Janev. Dynamics of photoionization of hydrogenlike ions in

debye plasmas. Phys. Rev. A, 80:063404, Dec 2009.
[38] T. N. Chang and T. K. Fang. Atomic photoionization in a changing plasma environment. Phys.

Rev. A, 88:023406, Aug 2013.

VIII



Bibliography

[39] D. H. H. Hoffmann, K. Weyrich, H. Wahl, D. Gardés, R. Bimbot, and C. Fleurier. Energy loss
of heavy ions in a plasma target. Phys. Rev. A, 42:2313–2321, Aug 1990.

[40] A. B. Zylstra, J. A. Frenje, P. E. Grabowski, C. K. Li, G. W. Collins, P. Fitzsimmons, S. Glenzer,
F. Graziani, S. B. Hansen, S. X. Hu, M. Gatu Johnson, P. Keiter, H. Reynolds, J. R. Rygg, F. H.
Séguin, and R. D. Petrasso. Measurement of charged-particle stopping in warm dense plasma.
Phys. Rev. Lett., 114:215002, May 2015.

[41] Ge Xu, M. D. Barriga-Carrasco, A. Blazevic, B. Borovkov, D. Casas, K. Cistakov, R. Gavrilin,
M. Iberler, J. Jacoby, G. Loisch, R. Morales, R. Mäder, S.-X. Qin, T. Rienecker, O. Rosmej,
S. Savin, A. Schönlein, K. Weyrich, J. Wiechula, J. Wieser, G. Q. Xiao, and Y. T. Zhao. Deter-
mination of hydrogen density by swift heavy ions. Phys. Rev. Lett., 119:204801, Nov 2017.

[42] George McGinn. Atomic and molecular calculations with the pseudopotential method. vii oneva-
lenceelectron photoionization cross sections. The Journal of Chemical Physics, 53(9):3635–3640,
1970.

[43] P.G. Burke and W.D. Robb. The r-matrix theory of atomic processes. Advances in Atomic and
Molecular Physics, 11:143 – 214, 1976.

[44] G Peach, H E Saraph, and M J Seaton. Atomic data for opacity calculations. ix. the lithium iso-
electronic sequence. Journal of Physics B: Atomic, Molecular and Optical Physics, 21(22):3669,
1988.

[45] N. Zettili. Quantum Mechanics: Concepts and applications. John Wiley y Sons Inc., 1 edition,
2001.

[46] H. Bethe and Salpeter. Quantum mechanics of one and two electrons. Addison-Wesley Publishing
company, 3 edition.

[47] H. Friedrich, editor. Theoretical atomic physics. Springer-Verlag, Berlin Heidelberg, 3 edition,
2006.

[48] L. M. Ugray and R. C. Shiell. Elucidating fermi’s golden rule via bound-to-bound transitions in
a confined hydrogen atom. American Journal of Physics, 81(3):206–210, 2013.

[49] Mitio Inokuti. Inelastic collisions of fast charged particles with atoms and molecules—the bethe
theory revisited. Rev. Mod. Phys., 43:297–347, Jul 1971.

[50] A. Zsabo and N. Ostlund. Modern Quantum Chemistry, Introduction to Advanced Electric Struc-
ture Theory. Dover Publications Inc., 1 edition, 1996.

[51] W. H. Bragg y R. Kleeman. Phil. Mag., (10):305, 1918.
[52] H.J. Weber and G. B. Arfken. Essential Mathematical Methods for Physicists. Elsevier Academic

Press, 6 edition, 2005.
[53] G.B. Arfken, H.J. Weber, and F.E. Harris. Mathematical Methods for Physicists: A Comprehen-

sive Guide. Academic Press, Elsevier, 7th edition edition, 2013.
[54] R. Cabrera-Trujillo and S. A. Cruz. Confinement approach to pressure effects on the dipole and

the generalized oscillator strength of atomic hydrogen. Phys. Rev. A, 87:012502, Jan 2013.
[55] L.N. Trujillo-Lopez, C. Martinez-Flores, and R. Cabrera-Trujillo. Universal scaling behavior

of molecular electronic stopping cross section for protons colliding with small molecules and
nucleobases. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions
with Materials and Atoms, 313:5 – 13, 2013.

[56] San Y. Chu and Arthur A. Frost. Floating spherical gaussian orbital model of molecular structure.
ix. diatomic molecules of firstrow and secondrow atoms. The Journal of Chemical Physics,
54(2):764–768, 1971.

[57] R. Cabrera-Trujillo and S. A. Cruz. Confinement approach to pressure effects on the dipole and
the generalized oscillator strength of atomic hydrogen. Phys. Rev. A, 87:012502, Jan 2013.

[58] Steven Koonin and Dawn C. Meredith. Computational Physics: Fortran Version. Westview
Press, 1998.

[59] J. C. Slater. A simplification of the hartree-fock method. Phys. Rev., 81:385–390, Feb 1951.
[60] K. D. Sen, editor. Electronic Structure of Quantum Confined Atoms and Molecules. Springer

International Publishing, Switzerland, 2014.

IX



Bibliography

[61] Zhifan Chen and A. Z. Msezane. Photoionization of the xe atom and xe@c60 molecule. The
European Physical Journal D, 65(3):353–356, 2011.

[62] M Ya Amusia, A S Baltenkov, L V Chernysheva, Z Felfli, and A Z Msezane. Dramatic distortion
of the 4d giant resonance by the c 60 fullerene shell. Journal of Physics B: Atomic, Molecular
and Optical Physics, 38(10):L169, 2005.

[63] V.K. Dolmatov. Photoionization of atoms encaged in spherical fullerenes. Advances in Quantum
Chemistry, 58:13 – 68, 2009.

[64] Roger D. Woods and David S. Saxon. Diffuse surface optical model for nucleon-nuclei scattering.
Phys. Rev., 95:577–578, Jul 1954.

[65] E M Nascimento, F V Prudente, M N Guimaraes, and A M Maniero. A study of the electron
structure of endohedrally confined atoms using a model potential. Journal of Physics B: Atomic,
Molecular and Optical Physics, 44(1):015003, 2011.

[66] Andy Rüdel, Rainer Hentges, Uwe Becker, Himadri S. Chakraborty, Mohamed E. Madjet, and
Jan M. Rost. Imaging delocalized electron clouds: Photoionization of c60 in fourier reciprocal
space. Phys. Rev. Lett., 89:125503, Aug 2002.

[67] S. W. J. Scully, E. D. Emmons, M. F. Gharaibeh, R. A. Phaneuf, A. L. D. Kilcoyne, A. S.
Schlachter, S. Schippers, A. Müller, H. S. Chakraborty, M. E. Madjet, and J. M. Rost. Photoex-
citation of a volume plasmon in c60 ions. Phys. Rev. Lett., 94:065503, Feb 2005.

[68] Tatiana Korona, Andreas Hesselmann, and Helena Dodziuk. Symmetry-adapted perturbation
theory applied to endohedral fullerene complexes: A stability study of h2@c60 and 2h2@c60.
Journal of Chemical Theory and Computation, 5(6):1585 – 1596, 6 2009.

[69] Y. B. Xu, M. Q. Tan, and U. Becker. Oscillations in the photoionization cross section of c60.
Phys. Rev. Lett., 76:3538–3541, May 1996.

[70] K. Nishikawa and M. Wakatani, editors. Plasma Physics: Basic Theory with Fusion Applications.
Springer-Verlag Berlin Heidelberg, Switzerland, 3 edition, 2000.

[71] Oleksiy V. Penkov, Mahdi Khadem, Won-Suk Lim, and Dae-Eun Kim. A review of recent
applications of atmospheric pressure plasma jets for materials processing. Journal of Coatings
Technology and Research, 12(2):225–235, Mar 2015.

[72] Y Kuramitsu and Y Sakawa et al. Laboratory investigations on the origins of cosmic rays. Plasma
Physics and Controlled Fusion, 54(12):124049, 2012.

[73] Michael S. Murillo and Jon C. Weisheit. Dense plasmas, screened interactions, and atomic
ionization. Physics Reports, 302(1):1 – 65, 1998.

[74] A.N. Sil, S. Canuto, and P.K. Mukherjee. Spectroscopy of confined atomic systems: Effect of
plasma. Advances in Quantum Chemistry, 58:115 – 175, 2009.

[75] E Hückel and P Debye. The theory of electrolytes: I. lowering of freezing point and related
phenomena. Phys. Z, 24:185–206, 1923.

[76] L. G. Stanton and M. S. Murillo. Unified description of linear screening in dense plasmas. Phys.
Rev. E, 91:033104, Mar 2015.

[77] G. P. Zhao, L. Liu, J. G. Wang, and R. K. Janev. Spectral properties of hydrogen-like ions in
finite-temperature quantum plasmas. Physics of Plasmas, 24(5):053509, 2017.

[78] Y. Y. Qi, J. G. Wang, and R. K. Janev. Static dipole polarizability of hydrogenlike ions in debye
plasmas. Phys. Rev. A, 80:032502, Sep 2009.

[79] Steven Koonin and Dawn C. Meredith. Computational Physics: Fortran Version. Westview
Press, 1998.

[80] Y. B. Xu, M. Q. Tan, and U. Becker. Oscillations in the photoionization cross section of c60.
Phys. Rev. Lett., 76:3538–3541, May 1996.

[81] V K Dolmatov, J L King, and J C Oglesby. Diffuse versus square-well confining potentials in mod-
elling a@c60 atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 45(10):105102,
2012.

[82] Hans-Dieter Betz. Charge states and charge-changing cross sections of fast heavy ions penetrating
through gaseous and solid media. Rev. Mod. Phys., 44:465–539, Jul 1972.

X



Bibliography

[83] M. Abdesselam, J.P. Stoquert, G. Guillaume, M. Hage-Ali, J.J. Grob, and P. Siffert. Stopping
power of c and al ions in solids. Nuclear Instruments and Methods in Physics Research Section
B: Beam Interactions with Materials and Atoms, 61(4):385 – 393, 1991.

[84] J. M. Anthony and W. A. Lanford. Stopping power and effective charge of heavy ions in solids.
Phys. Rev. A, 25:1868–1879, Apr 1982.

[85] G. de M. Azevedo, M. Behar, J. F. Dias, P. L. Grande, D. L. da Silva, and G. Schiwietz. Random
and channeling stopping powers of he and li ions in si. Phys. Rev. B, 65:075203, Jan 2002.

[86] R. Bimbot, H. Gauvin, I. Orliange, R. Anne, G. Bastin, and F. Hubert. Stopping powers of
solids for 40ar and 40ca ions at intermediate energies (2080 mev/u). Nuclear Instruments and
Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 17(1):1 –
10, 1986.

[87] R. Bimbot, C. Cabot, D. Gardes, H. Gauvin, R. Hingmann, I. Orliange, L. de Reilhac, and
F. Hubert. Stopping power of gases for heavy ions: Gas-solid effect: I. 213 mev/u ne and ar
projectiles. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions
with Materials and Atoms, 44(1):1 – 18, 1989.

[88] H. Gauvin, R. Bimbot, J. Herault, R. Anne, G. Bastin, and F. Hubert. Stopping powers of solids
for 16o ions at intermediate energies (2095 mev/u). Nuclear Instruments and Methods in Physics
Research Section B: Beam Interactions with Materials and Atoms, 28(2):191 – 194, 1987.

[89] H. Gauvin, R. Bimbot, J. Herault, B. Kubica, R. Anne, G. Bastin, and F. Hubert. Stopping
powers of solids for 84,86kr, 100mo and 129,132xe ions at intermediate energies (2045 mev/u)
and the charge state distributions at equilibrium. Nuclear Instruments and Methods in Physics
Research Section B: Beam Interactions with Materials and Atoms, 47(4):339 – 350, 1990.

[90] J. Herault, R. Bimbot, H. Gauvin, B. Kubica, R. Anne, G. Bastin, and F. Hubert. Stopping
powers of gases for heavy ions (o, ar, kr, xe) at intermediate energy (20100 mev/u). vanishing
of the gassolid effect. Nuclear Instruments and Methods in Physics Research Section B: Beam
Interactions with Materials and Atoms, 61(2):156 – 166, 1991.

[91] Claus Hanke and Jens Laursen. Stopping cross sections for particles from 1.0 to 8.5 mev in h2,
he, n2, o2, ne, kr and xe. Nuclear Instruments and Methods, 151(1):253 – 260, 1978.

[92] A. Javanainen, M. Sillanpaa, W. H. Trzaska, A. Virtanen, G. Berger, W. Hajdas, R. Harboe-
Sorensen, H. Kettunen, T. Malkiewicz, M. Mutterer, J. Perkowski, A. Pirojenko, I. Riihimaki,
T. Sajavaara, G. Tyurin, and H. J. Whitlow. Experimental linear energy transfer of heavy ions
in silicon for radef cocktail species. IEEE Transactions on Nuclear Science, 56(4):2242–2246,
Aug 2009.

[93] Joseph G. Kelley, Bach Sellers, and Frederick A. Hanser. Energy-loss and stopping-power mea-
surements between 2 and 10 mev/amu for 12C, 14N, and 16O in silicon. Phys. Rev. B, 8:103–106,
Jul 1973.

[94] A.D. Fertman, T.Yu. Mutin, M.M. Basko, A.A. Golubev, T.V. Kulevoy, R.P. Kuybeda, V.I.
Pershin, I.V. Roudskoy, and B.Yu. Sharkov. Stopping power measurements for 100-kev/u cu
ions in hydrogen and nitrogen. Nuclear Instruments and Methods in Physics Research Section
B: Beam Interactions with Materials and Atoms, 247(2):199 – 204, 2006.

[95] F. W. Martin and L. C. Northcliffe. Energy loss and effective charge of he, c, and ar ions below
10 mev/amu in gases. Phys. Rev., 128:1166–1174, Nov 1962.

[96] J. Perkowski, J. Andrzejewski, A. Climent-Font, G. Knyazheva, V. Lyapin, T. Malkiewicz,
A. Munoz-Martin, and W.H. Trzaska. Stopping power measurement of 48ca in a broad en-
ergy range in solid absorbers. Nuclear Instruments and Methods in Physics Research Section B:
Beam Interactions with Materials and Atoms, 249(1):55 – 57, 2006. Ion Beam Analysis.

[97] J. Raisanen, E. Rauhala, M. Bjornberg, A. Z. Kiss, and J. Dominguez. Stopping powers of al
and sn for 4he, 7li, 11b, 12c, 14n and 16o ions in the energy range 0.52.6 mev/amu. Radiation
Effects and Defects in Solids, 118(2):97–103, 1991.

[98] Gerald Reiter, N. Kniest, E. Pfaff, and G. Clausnitzer. Proton and helium stopping cross sections
in h2, he, n2, o2, ne, ar, kr, xe, {CH4} and {CO2}. Nuclear Instruments and Methods in Physics
Research Section B: Beam Interactions with Materials and Atoms, 44(4):399 – 411, 1990.

XI



Bibliography

[99] D.C. Santry and R.D. Werner. Stopping power measurements of c, al, si, ti, ni, ag, au and mylar
using radioactive alpha sources. Nuclear Instruments and Methods in Physics Research Section
B: Beam Interactions with Materials and Atoms, 1(1):13 – 15, 1984.

[100] Bach Sellers, Frederick A. Hanser, and Joseph G. Kelley. Energy-loss and stopping-power mea-
surements between 2 and 10 mev/amu for 3He and 4He in silicon. Phys. Rev. B, 8:98–102, Jul
1973.

[101] C. Tschalär and Hans Bichsel. Mean excitation potential of light compounds. Phys. Rev.,
175:476–478, Nov 1968.

[102] H. Weick, H. Geissel, C. Scheidenberger, F. Attallah, T. Baumann, D. Cortina, M. Hausmann,
B. Lommel, G. Munzenberg, N. Nankov, F. Nickel, T. Radon, H. Schatz, K. Schmidt, J. Stadl-
mann, K. Summerer, M. Winkler, and H. Wollnik. Slowing down of relativistic few-electron
heavy ions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions
with Materials and Atoms, 164-165:168 – 179, 2000.

[103] M. Zadro, A. Di Pietro, P. Figuera, M. Fisichella, M. Lattuada, A. Maggio, F. Pansini, M. Papa,
V. Scuderi, O.Yu. Goryunov, and V.V. Ostashko. Stopping power of helium gas for 9be ions from
2 to 31mev. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions
with Materials and Atoms, 259(2):836 – 840, 2007.

[104] H. K. Reynolds, D. N. F. Dunbar, W. A. Wenzel, and W. Whaling. The stopping cross section
of gases for protons, 30-600 kev. Phys. Rev., 92:742–748, Nov 1953.

[105] Robin Golser and Dieter Semrad. Energy loss of hydrogen and helium ions in hydrogen and
helium gas: looking for exceptions from velocity proportionality. Nuclear Instruments and Meth-
ods in Physics Research Section B: Beam Interactions with Materials and Atoms, 69(1):18 – 21,
1992.

[106] H. Geissel, Y. Laichter, W.F.W. Schneider, and P. Armbruster. Energy loss and energy loss
straggling of fast heavy ions in matter. Nuclear Instruments and Methods in Physics Research,
194(1):21 – 29, 1982.

[107] A.Z. Kiss, E. Somorjai, J. Raisanen, and E. Rauhala. Stopping powers of 1.57.2 mev 4he ions in
havar, nickel, kapton and mylar. Nuclear Instruments and Methods in Physics Research Section
B: Beam Interactions with Materials and Atoms, 39(1):15 – 17, 1989.

[108] Pratibha, V. Sharma, P.K. Diwan, Shyam Kumar, S.A. Khan, and D.K. Avasthi. Energy loss and
straggling in lr-115 and kapton polymeric foils for energetic ions. Nuclear Instruments and Meth-
ods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(11):2556
– 2563, 2008.

[109] E. Rauhala and J. Raisanen. Stopping powers of 0.58.3 mev protons in havar, nickel, kapton
and mylar. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions
with Materials and Atoms, 35(2):130 – 134, 1988.

[110] N. Shiomi-Tsuda, N. Sakamoto, and H. Ogawa. Stopping powers of mylar for protons from 4 to
11.5 mev. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions
with Materials and Atoms, 103(3):255 – 260, 1995.

[111] D I Thwaites. Stopping cross-sections of liquid water and water vapour for alpha particles within
the energy region 0.3 to 5.5 mev. Physics in Medicine and Biology, 26(1):71, 1981.

[112] Stephan P. A. Sauer, Jens Oddershede, and John R. Sabin. Mean excitation energies and their
directional characteristics for energy deposition by swift ions on the dna and rna nucleobases.
The Journal of Physical Chemistry C, 114(48):20335–20341, 2010.

[113] H. Baumgart, W. Arnold, H. Berg, E. Huttel, and G. Clausnitzer. Proton stopping powers in
various gases. Nuclear Instruments and Methods in Physics Research, 204(23):597 – 604, 1983.

[114] Peter K. Weyl. The energy loss of hydrogen, helium, nitrogen, and neon ions in gases. Phys.
Rev., 91:289–296, Jul 1953.

[115] John T. Park and E. J. Zimmerman. Stopping cross sections of some hydrocarbon gases for
40-250 kev protons and helium ions. Phys. Rev., 131:1611–1618, Aug 1963.

[116] E. Bonderup and P. Hvelplund. Stopping power and energy straggling for swift protons. Phys.
Rev. A, 4:562–569, Aug 1971.

XII



Bibliography

[117] J. E. Brolley and F. L. Ribe. Energy loss by 8.86-mev deuterons and 4.43-mev protons. Phys.
Rev., 98:1112–1117, May 1955.

[118] M. Bader, R. E. Pixley, F. S. Mozer, and W. Whaling. Stopping cross section of solids for
protons, 50-600 kev. Phys. Rev., 103:32–38, Jul 1956.

[119] Ch. Eppacher, R. Diez Muino, D. Semrad, and A. Arnau. Stopping power of lithium for hydrogen
projectiles. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions
with Materials and Atoms, 96(3):639 – 642, 1995. The Interaction of Swift Particles and Elec-
tromagnetic Fields with Matter.

[120] D.C. Santry and R.D. Werner. Stopping powers of c, al, si, ti, ni, ag and au for deuterons.
Nuclear Instruments and Methods in Physics Research, 188(1):211 – 216, 1981.

[121] Peter Bauer. Stopping power of light ions near the maximum. Nuclear Instruments and Methods
in Physics Research Section B: Beam Interactions with Materials and Atoms, 45(1):673 – 683,
1990.

[122] T.R. Ophel and G.W. Kerr. A study of the energy loss of 0.364.5 mev protons in thin carbon
foils. Nuclear Instruments and Methods, 128(1):149 – 155, 1975.

[123] S. Gorodetzky, Mme A. Chevallier, A. Pape, J.Cl. Sens, Mme A.M. Bergdolt, M. Bres, and
R. Armbruster. Mesure des pouvoirs d’arre c, ca, au et caf2 pour des protons d’rgie comprise
entre 0.4 et 6 mev. Nuclear Physics A, 91(1):133 – 144, 1967.

[124] J.B. Swint, R.M. Prior, and J.J. Ramirez. Energy loss of protons in gases. Nuclear Instruments
and Methods, 80(1):134 – 140, 1970.

[125] D.L. Mason, R.M. Prior, and A.R. Quinton. The energy straggling of 1-mev protons in gases.
Nuclear Instruments and Methods, 45(1):41 – 44, 1966.

[126] Arthur B. Chilton, John N. Cooper, and James C. Harris. The stopping powers of various
elements for protons of energies from 400 to 1050 kev. Phys. Rev., 93:413–418, Feb 1954.

[127] Zhifan Chen and Alfred Z. Msezane. Photoabsorption spectra of xe atoms encapsulated inside
fullerenes. The European Physical Journal D, 69(3):88, Mar 2015.

[128] Mohammad H. Javani, Himadri S. Chakraborty, and Steven T. Manson. Valence photoionization
of noble-gas atoms confined in the fullerene c60. Phys. Rev. A, 89:053402, May 2014.

[129] A S Baltenkov, S T Manson, and A Z Msezane. Jellium model potentials for the c 60 molecule
and the photoionization of endohedral atoms, a@c 60. Journal of Physics B: Atomic, Molecular
and Optical Physics, 48(18):185103, 2015.

[130] A. L. D. Kilcoyne, A. Aguilar, A. Müller, S. Schippers, C. Cisneros, G. AlnaWashi, N. B. Aryal,
K. K. Baral, D. A. Esteves, C. M. Thomas, and R. A. Phaneuf. Confinement resonances in
photoionization of Xe@c+

60. Phys. Rev. Lett., 105:213001, Nov 2010.
[131] H. Bethe. Zur theorie des durchgangs schneller korpuskularstrahlen durch materie. Annalen der

Physik, 397(3):325–400, 1930.
[132] Arup Banerjee, K. D. Sen, Jorge Garza, and Rubicelia Vargas. Mean excitation energy, static

polarizability, and hyperpolarizability of the spherically confined hydrogen atom. The Journal
of Chemical Physics, 116(10):4054–4057, 2002.

[133] R. Cabrera-Trujillo and S.A. Cruz. Accurate evaluation of pressure effects on the electronic
stopping cross section and mean excitation energy of atomic hydrogen beyond the bethe approx-
imation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions
with Materials and Atoms, 320:51 – 56, 2014.

[134] Hans A. Bethe and Roman Jackiw, editors. Intermediate quantum mechanics. Westview Press,
Boulder, Colo., EE.UU., 3 edition, November 1997.

[135] N.F. Mott and H.S.W. Massey, editors. Theory of Atomic Collisions. Oxford University Press,
U.K., 3 edition, November 1965.

[136] P Moretto-Capelle, D Bordenave-Montesquieu, A Rentenier, and A Bordenave-Montesquieu.
Interaction of protons with the c 60 molecule: calculation of deposited energies and electronic
stopping cross sections ( v 5 au). Journal of Physics B: Atomic, Molecular and Optical Physics,
34(18):L611, 2001.

XIII



Bibliography

[137] Wolfgang Lothar Wiese, Mo W Smith, and BM Glennon. Atomic transition probabilities. volume
1. hydrogen through neon. Technical report, National Bureau of standards Washington DC inst
for basic standards, 1966.

[138] M. Ya. Amusia. Photoionization and vacancy decay of endohedral atoms. Journal of Electron
Spectroscopy and Related Phenomena, 161(1):112 – 120, 2007.

[139] Hans Bichsel. Stopping power of hydrogen atoms. Phys. Rev. A, 43:4030–4031, Apr 1991.
[140] Madhusmita Das. Transition energies and polarizabilities of hydrogen like ions in plasma. Physics

of Plasmas, 19(9):092707, 2012.
[141] H. W. Li and Sabyasachi Kar. Polarizabilities of li and na in debye plasmas. Physics of Plasmas,

19(7):073303, 2012.
[142] Hua-Wei Li, Sabyasachi Kar, and Pinghui Jiang. Calculations of dynamic dipole polarizabilities

of li and na atoms in debye plasma using the model potential technique. International Journal
of Quantum Chemistry, 113(10):1493–1497.

[143] Roger D. Woods and David S. Saxon. Diffuse surface optical model for nucleon-nuclei scattering.
Phys. Rev., 95:577–578, Jul 1954.

[144] Shuai Kang, You-Chang Yang, Juan He, Fei-Qiao Xiong, and Ning Xu. The hydrogen atom
confined in both debye screening potential and impenetrable spherical box. Central European
Journal of Physics, 11(5):584–593, May 2013.

[145] B. Saha, P. K. Mukherjee, and G. H. F. Diercksen. Energy levels and structural properties of
compressed hydrogen atom under debye screening. A & A, 396:337, Nov 2002.

[146] Sonia Lumb, Shalini Lumb, and Vinod Prasad. Photoexcitation and ionization of a hydrogen
atom confined by a combined effect of a spherical box and debye plasma. Physics Letters A,
379(18):1263 – 1269, 2015.

[147] Sonia Lumb, Shalini Lumb, and Vinod Nautiyal. Photoexcitation and ionization of hydrogen
atom confined in debye environment. The European Physical Journal D, 69(7):176, Jul 2015.

[148] C. Y. Lin and Y. K. Ho. Effects of screened coulomb (yukawa) and exponential-cosine-screened
coulomb potentials on photoionization of h and he+. The European Physical Journal D, 57(1):21–
26, Mar 2010.

[149] M. Ya. Amusia. Photoionization and vacancy decay of endohedral atoms. Journal of Electron
Spectroscopy and Related Phenomena, 161(1):112 – 120, 2007.

[150] R. Cabrera-Trujillo and S.A. Cruz. Accurate evaluation of pressure effects on the electronic
stopping cross section and mean excitation energy of atomic hydrogen beyond the bethe approx-
imation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions
with Materials and Atoms, 320:51 – 56, 2014.

[151] Hans Bichsel. Stopping power of hydrogen atoms. Phys. Rev. A, 43:4030–4031, Apr 1991.
[152] J.N. Bardsley. Pseudopotential calculations of alkali interactions. Chemical Physics Letters,

7(5):517 – 520, 1970.
[153] Peter Schwerdtfeger. The pseudopotential approximation in electronic structure theory.

ChemPhysChem, 12(17):3143–3155, 2011.
[154] R.K Nesbet and R.E Watson. Restricted and unrestricted hartree-fock calculations for atomic

lithium. Annals of Physics, 9(2):260 – 271, 1960.
[155] A Hibbert. Z -1/2 expansion of the unrestricted hartree-fock equations for the ground state of

lithium. Journal of Physics B: Atomic and Molecular Physics, 1(6):1048, 1968.
[156] A. W. Weiss. The calculation of atomic oscillator strengths: the lithium atom revisited. Canadian

Journal of Chemistry, 70(2):456–463, 1992.
[157] Kwong T. Chung. Theory of transition rates in fewelectron ions. AIP Conference Proceedings,

274(1):381–388, 1993.
[158] Frederick W. King. Progress on high precision calculations for the ground state of atomic lithium.

Journal of Molecular Structure: THEOCHEM, 400:7 – 56, 1997. Ab Initio Benchmark Studies.
[159] R. D. Hudson and Virginia L. Carter. Atomic absorption cross sections of lithium and sodium

between 600 and 1000 å∗. J. Opt. Soc. Am., 57(5):651–654, May 1967.

XIV



Bibliography

[160] George McGinn. Atomic and molecular calculations with the pseudopotential method. vii oneva-
lenceelectron photoionization cross sections. The Journal of Chemical Physics, 53(9):3635–3640,
1970.

[161] P.G. Burke and W.D. Robb. The r-matrix theory of atomic processes. Advances in Atomic and
Molecular Physics, 11:143 – 214, 1976.

[162] J.N. Bardsley. Pseudopotential calculations of alkali interactions. Chemical Physics Letters,
7(5):517 – 520, 1970.

[163] G Peach, H E Saraph, and M J Seaton. Atomic data for opacity calculations. ix. the lithium iso-
electronic sequence. Journal of Physics B: Atomic, Molecular and Optical Physics, 21(22):3669,
1988.

[164] Peter Schwerdtfeger. Table of experimental and calculated static dipole polarizabilities for the
electronic ground states of the neutral elements (in atomic units). 2016.

[165] M. Ya. Amusia, N. A. Cherepkov, Dj. Živanović, and V. Radojević. Photoabsorption for helium,
lithium, and beryllium atoms in the random-phase approximation with exchange. Phys. Rev. A,
13:1466–1474, Apr 1976.

[166] Qi Yue-Ying, Wu Yong, Wang Jian-Guo, and Ding Pei-Zhu. Calculations of photo-ionization
cross sections for lithium atoms. Chinese Physics Letters, 25(10):3620, 2008.

[167] Charlotte Froese Fischer. A general multi-configuration Hartree-Fock program. Computer
Physics Communications, 14(12):145 – 153, 1978.

[168] C.F. Bunge, J.A. Barrientos, and A.V. Bunge. Roothaan-hartree-fock ground-state atomic wave
functions: Slater-type orbital expansions and expectation values for z = 2-54. Atomic Data and
Nuclear Data Tables, 53(1):113 – 162, 1993.

[169] Jens Oddershede and John R. Sabin. Orbital and whole-atom proton stopping power and shell
corrections for atoms with z ≤ 36. Atomic Data and Nuclear Data Tables, 31(2):275 – 297, 1984.

XV


	Portada
	Abstract
	Contents
	Publications
	1. Introduction
	2. Theoretical Approach
	3. Energy Deposition for Free Atomicand Molecular Systems
	4. Endohedral Hydrogen Atom
	5. Endohedral Hydrogen Atom in Aplasma Environment
	6. Lithium Atom at Extreme Conditions
	7. General Conclusions
	Appendix
	Bibliography



