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Introduction

We have bigger houses, but smaller families

More conveniences, but less time.

We have more degrees, but less sense.

More knowledge, but less judgement.

More experts, but more problems.

More medicines, but less wellness.

We have conquered outer space, but not inner space.

We’ve cleaned up the air, but polluted our soul.

We’ve split the atom, but not our prejudice.

Dalai Lama XIV extract from THE PARADOX OF OUR TIMES

Loss functions play a key role in Bayesian inference; they lie at the foundations

of Bayesian decision theory. Nevertheless, loss functions do not seem to have been

extensively and systematically used in applied problems such as cluster analysis, change-

point analysis, finite population sampling or variable selection. Binder (1978, 1981)

provides a first approach to this issue, placing emphasis on the loss incurred when

we cluster two subjects that do not belong together or when we do not cluster two

observations that belong to the same cluster. Lau and Green (2007) developed this ideas

in a Bayesian nonparametric framework, whereas Hurn et al. (2003) applied Binder’s

loss function to cluster linear regression curves. Later, Killick et al. (2012) introduced

a change-point analysis with a linear computational cost in a Bayesian parametric

framework. A modern approach is provided by Yau and Holmes (2013) using Markovian

loss functions and dynamic programming algorithms in order to make inference. Their

results can be applied to change-point analysis or product partition models. In variable

selection, Hahn and Carvalho (2015) and Puelz et al. (2016) used a loss function to

1



INTRODUCTION

compare the various models with the full one. Quintana and Iglesias (2003) provided

a new approach, proposing a loss function for estimating the parameters of a product

partition model and penalizing the number of clusters. Quintana et al. (2005a) and

Bormetti et al. (2012) applied this approach to outlier detection and change-point

analysis.

In this thesis, we exploit the ideas presented in Quintana and Iglesias (2003) and

extend their methodology in three relevant problems in statistics. In the case of cluster

and change-point analysis, we extend parametric product partition models to the non-

parametric case and generalize their loss function to deal with arbitrary distributions

functions instead of parameters. For finite population sampling, we apply them to find

the optimal post-stratification. Finally, in variable selection, we include a term in the

loss function which penalizes correlated variables in addition to model complexity.

This thesis is organized as follows. The first chapter provides a brief introduction to

parametric product partition models (PPMs) as defined by Barry and Hartigan (1992),

as well as to the Dirichlet process introduced by Ferguson (1973) and their relation-

ship. We also describe how PPMs are applied to change-point detection and provide

simulated examples where we show the limitations of using the marginal probability

criterion of Loschi and Cruz (2005) to detect change points. We also show how this

detection can be improved using a loss function.

In Chapter 2, we define nonparametric product partition models (NPPMs), which

use the Dirichlet process, and describe how to model the distribution of the data

within clusters. We also discuss some important properties such as its relationship

with the nested Dirichlet process (Rodŕıguez et al., 2008). We then propose an infe-

rence procedure using suitable loss functions for distribution functions, exploiting the

ideas presented in Quintana and Iglesias (2003). We apply NPPMs to nonparamet-

ric change-point analysis and take advantage of the random partition structure to deal

with missing values. We also compare our methodology through simulations with other

models recently discussed in the literature, and apply it to financial and genetic data.

This chapter represents the main contribution of the thesis and the main results are

published in Campirán Garćıa and Gutiérrez-Peña (2018).

In Chapter 3, we begin with a brief review of finite population sampling; then,

we explore a new framework for Bayesian post-stratification sampling using random

partition models and propose a suitable loss function for estimating the parameters of

2
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interest and finding the optimum post-stratification. This would be the first model for

sampling design. We also discuss a new methodology, based on the Bayesian learn-

ing process, that allows us to use previous surveys to obtain better estimates of the

parameters of interest.

In Chapter 4, we present a novel approach to variable selection in regression models

which can also be used in logit models and other generalized linear models. We propose

a loss function that penalizes high correlations between the explanatory variables, in

addition to the model complexity. Furthermore, we provide an algorithm to find the

subset of variables with minimum expected loss. Our approach is similar to that of

Hahn and Carvalho (2015). They use a loss function which compares each model with

the full one; however, this approach has several limitations that we will point out later

in that chapter.

Finally, in Chapter 5 we offer some concluding remarks and discuss further work.

In Appendix A we provide a more detailed proof, clarifying all the elements of the

sequential decision problem presented in Quintana and Iglesias (2003). In Appendices

B and C we present the calculations of the prior predictive distributions of the models

used in this thesis.

We used R Core Team (2016) and Gfortran in the simulations and numeric examples

presented in this work.
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Chapter 1
Product Partition Models and Dirichlet

Process

My joy is like Spring, so warm it makes flowers bloom all over the Earth.

My pain is like a river of tears, so vast it fills the four oceans.

Please call me by my true names, so I can hear all my cries and my laughter at

once, so I can see that my joy and pain are one.

Thich Nhat Hahn

In this chapter, we provide a brief introduction to product partition models (PPMs)

defined by Hartigan (1990), the Dirichlet process (Ferguson, 1973) and their relationship

established by Quintana and Iglesias (2003). We describe how PPMs can be applied

to change-point analysis (Barry and Hartigan, 1993). Finally, through simulations,

we compare marginal-probability and loss-function criteria to select change points in

PPMs.

1.1 Random partitions

In this section, we review a class of models that induce probability distributions on the

space of partitions of a finite set of objects. This kind of models are used in cluster

analysis and model comparison, among other applications (Quintana 2006; Tarantola

et al. 2008). Let S0 = {1, . . . , n} be a index set of observations. Let ρ = {S1, . . . , Sk}
denote a partition of S0 into k subsets with Si ⊆ S0, and Si ∩ Sj = ∅ for all i 6= j. For

5



1. PRODUCT PARTITION MODELS AND DIRICHLET PROCESS

example, if S0 = {1, 2, 3} then we obtain five partitions:

[{1, 2, 3}] [{1, 2}, {3}] [{1, 3}, {2}] [{1}, {2, 3}] [{1}, {2}, {3}]

To avoid any confusion in the following definitions, we will assume that the elements

of S, with S ∈ ρ, are sorted in ascending order and that min{s|s ∈ S1} < min{s|s ∈
S2} < · · · < min{s|s ∈ Sk}. Let y = (y1, . . . ,yn) be a vector of n observations with

yi ∈ Rp for 1 ≤ i ≤ n. As in Crowley (1997), we define the vector

yS = (yi, i ∈ S).

Obviously, a partition over S0 induces a partition over the entries of y. The number

of possible partitions of n objects is the Bell number, Bn, which satisfies the recursive

equation

Bn+1 =
n∑
k=0

(
n
k

)
Bk (1.1)

with B0 = 1. Note that this number grows exponentially; for example, B200 > 10275

!!! (Dahl, 2009). This represents a challenge when we are dealing with partitions.

Despite this computational difficulty, random partitions models have been applied in

medicine (Leon-Novelo et al. 2012; Müller and Quintana 2010; Müller et al. 2011),

finance (Bormetti et al. 2012; De Giuli et al. 2010; Quintana et al. 2005b), the analysis

of contingency tables (Tarantola et al. 2008), among other problems.

In some applications, it is enough to consider a particular class of partitions. For

example, if y is a real vector for which all the entries are ordered, it seems natural to

consider the partitions ρ = {S1, . . . , Sk} with the following form:

S1 = {1, . . . ,m1}, S2 = {m1 + 1, . . . ,m2}, . . . , Sk = {mk−1 + 1, . . . , n− 1, n}

with mi < mj if i < j. Note that there are 2n−1 partitions of n points into blocks of

consecutive segments.

This kind of partitions are useful, for example, in change-point detection problems

(Barry and Hartigan 1992, 1993), multiple change-point analysis for linear regression

(Loschi et al. 2010) and text segmentation (Kehagias et al. 2004).
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1.1 Random partitions

A random partition, denoted by RP (S0), is a probability distribution over all the

partitions of an n−element set S0 = {1, . . . , n}. Clearly, this induces a random partition

over the entries of y, denoted by RP (y).

For several applications, two basic properties are desirable for a random partition

model. The model should be exchangeable with respect to permutations of the indices of

the experimental units (symmetry property): Let σ = (σ1, ..., σn) denote a permutation

of S, and let sσ = (sσ1 , ..., sσn) describe the clusters implied by re-labeling experimental

unit i by h = σ−1i , i.e., σh = i. We require

p(s) = p(sσ)

for all partitions. A second important property, known as scalability, is that the model

should scale across sample sizes. We want

p(sn) =

|ρ|+1∑
j=1

p(sn, sn+1 = j).

where |ρ| is the number of clusters on the partition of S and si = j if i ∈ Sj denote

the cluster memberships. A probability model on ρ that satisfies these two conditions

is called an exchangeable product partition function (EPPF) which can be written as

p (|S1|, ..., |Sn|) (Pitman, 1996). In words, p(ρ) depends on the specific partition only

indirectly through the sizes |Sk| of the partitioning subsets Sk. Several probability

models p(ρ) have been used in the recent literature, including product partition models

(PPM), species sampling models (SSM) and model-based clustering (MBC). The SSM

and MBC satisfy the requirements of symmetry and scalability by definition, but not

all PPMs do. We shall discuss this issue in Subsection 1.4.1. For an extensive review

of random partitions, see for example, Quintana (2006).

Note that in clustering applications, each element of the partition represents a

cluster. In model comparison, each partition and the associated probability pS(yS)

represent a model for the data. For example, let S0 = {1, 2, 3, 4, 5} and y = (y1, . . . ,y5).

Considering the partitions ρ1 = [{1, 2, 3}, {4, 5}] and ρ2 = [{1, 2, 3, 4, 5}]. To the first

partition we associate the model

p(y1, . . . ,y5|ρ1) = pρ1,1(y1,y2,y3)pρ1,2(y4,y5)

7



1. PRODUCT PARTITION MODELS AND DIRICHLET PROCESS

and to the second one

p(y1, . . . ,y5|ρ2) = pρ2(y1,y2,y3,y4,y5)

where ρ1,1 = {1, 2, 3} , ρ1,2 = {4, 5} and ρ2 = {1, 2, 3, 4, 5}.

Quintana (2006) gives emphasis to PPMs as a relevant random-partition model.

We describe this class of models concisely in the following subsection.

1.2 Product partition models

Product partition models (PPMs) were defined by Hartigan (1990) and Barry and Har-

tigan (1992); these models are a particular case of random partitions. PPMs induce

a probability distribution over all possible partitions of a finite set of distinct observa-

tions: y1, . . . ,yn with yi ∈ Rp. For each partition, the n data points are divided into

k subsets, and each data point yi belongs only to one subset. Data points of distinct

subsets are assumed independent and data points belonging to the same subset are

assumed exchangeable. For any partition ρ = {S1, . . . , Sk} of S0 and data y1, . . . ,yn,

it is assumed that

p(y1, . . . ,yn|ρ) ∝
k∏
j=1

pSj (ySj ), (1.2)

where pS(yS) is the conditional density for observations in S given that S ∈ ρ. This

density depends only on S and not on other subsets in the partition. The partition ρ

is in turn assigned a prior probability model

P (ρ = {S1, . . . , Sk}) ∝
k∏
j=1

c(Sj), (1.3)

where, for A ⊆ {1, 2, . . . , n}, c(A) ≥ 0 is called the cohesion function of the subset A.

It is well known that the posterior distribution of ρ is again a PPM with cohesions

given by c(S)pS(yS). In the literature, the joint probability density of yS , denoted

by fY S
= pS(yS), belongs to a parametric family and the previous hierarchical model

defined by equations (1.2) and (1.3) includes a level with a prior for the parameters

(see, for example, Barry and Hartigan 1992, 1993; Bormetti et al. 2012; Crowley 1997;

Dahl 2009; Fearnhead 2006; Hartigan 1990; Hegarty and Barry 2008; Jordan et al.
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1.2 Product partition models

2007; Kehagias et al. 2004; Loschi 2002; Loschi and Cruz 2005; Loschi et al. 2003, 2010;

Monteiro et al. 2011; Müller et al. 2011; Quintana and Iglesias 2003; Tarantola et al.

2008). Barry and Hartigan (1992) referred to these models as parametric PPMs.

Remark 1.1. Recall that the entries of yS are exchangeable. Then, by de Finetti’s

theorem,

pS(yS) =

∫
fY S

(yS |θS)p(θS)dθS

=

∫ ∏
i∈S

fYS (yi|θS)p(θS)dθS

where fYS is the common marginal density for the y’s belonging to S given that S ∈ ρ.

We can define θ = (θ1, ...,θn) where θi = θS when i ∈ S, the common parameter of

fYS for y’s belonging to S.

Example 1.2. Normal-gamma PPM

p(y1, ..., yn|ρ,µ, τ ) ∝
n∏
i=1

N(yi|µi, τi) (1.4)

(
µS , τS

)
S∈ρ |ρ

ind∼ Ng
(
·|aS0 , bS0 , αS0 , βS0

)
p(ρ|c(S) with S ⊆ S0) ∝

∏
S∈ρ

c(S)

where Ng is the normal-gamma distribution (see Appendix B for more details),(
aS0 , b

S
0 , α

S
0 , β

S
0

)
are hyperparameters associated to S given that S ∈ ρ. We name this

model the normal-gamma product partition model (NGPPM).

In many applications, covariates are available and can be used in clustering. In

Müller and Quintana (2010) and Müller et al. (2011) the authors propose a generaliza-

tion of the PPM, introducing covariates as follows. Let

P (ρ = {S1, . . . , Sk}) ∝
k∏
i=1

g(xSi)c(Si), (1.5)

where x = (x1, . . . , xn) denotes the entire set of recorded covariates (xi is the covariate

of the i-th observation) and xS = {xi, i ∈ S}. The function g(xS) denotes a non-

negative function of xS that formalizes the similarity of the xi’s, with larger values

g(xS) for sets of covariates that are judged to be similar. Another extension is presented

by Park and Dunson (2010).
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1. PRODUCT PARTITION MODELS AND DIRICHLET PROCESS

1.3 PPMs and Dirichlet process

Definition 1.3. The Dirichlet process, introduced by Ferguson (1973), is a stochastic

process that can be thought of as a probability whose domain is the space of probability

measures on X .

Let (X ,F , ν) an space with ν : F → [0, 1] be a probability measure and α be a positive

real number; then a stochastic process P indexed by elements B ∈ F is said to be a

Dirichlet process on (X ,F) with parameter ν if, for any partition (B1, ..., Bn) with Bi ∈
F , the random vector (P (B1) · · ·P (Bn)) has a Dirichlet distribution with parameter

(αν(B1), · · · , αν(Bn)). We will denote such process by DP (α, ν), with base measure ν

and dispersion parameter α.

Remark 1.4. When we deal with X = Rp we will use the notation G for the base

measure; when dealing with more complex spaces, we will retain the notation ν.

We state some useful properties of the DP in the following proposition:

Proposition 1.5. (Ferguson, 1973)

Let P ∼ DP (α, ν) then

a) E(P ) = ν

b) If ψ is a P -integrable function, then E
(∫
ψdP

)
=
∫
ψdν. This holds for indicator

functions from the relation E(G(A)) = ν(A), and then standard measure theoretic argu-

ments extend this sequentially to simple measurable functions, nonnegative measurable

functions and finally to all integrable functions.

c) Conjugacy: Let π1, ..., πn be a sequence of independent draws from P then

P |π1, ..., πn ∼ DP
(
α+ n,

α

α+ n
ν +

n

α+ n

∑n
i=1 δ{πi}

n

)
.

Another approach to the Dirichlet process is using the stick breaking representation

of the elements of the DP (α,G) provided by Sethuraman (1994).

Proposition 1.6. Let H ∈ DP (α,G), then, with probability one, H has the following

form:

H(•) =

∞∑
i=1

πiδXi(•) (1.6)

where πi = βi
∏i−1
k=1(1− βk) with βk

iid∼ Beta(1, α)
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We now describe the generalized Pólya urn scheme proposed by Blackwell and

MacQueen (1973). Let π1, π2, .... be a infinite sequence of random elements on (the

Borel sets of) a complete separable metric space X with

P (π1 ∈ ·) = ν(·)

and

P (πi+1 ∈ ·|π1, ..., πi) = νi(·) with i ≥ 1,

where

νi(·) =
α

α+ i
ν(·) +

i

α+ i

∑i
j=1 δ{πj}(·)

i
(1.7)

α ∈ R+, and ν is a probability measure on X . Blackwell and MacQueen (1973) showed

that

a) νi(·) converges almost surely to a discrete random measure ν∗.

b) ν∗ is the Dirichlet process with base measure ν and concentration parameter α.

c) Given ν∗, π1, π2.... are independent with distribution ν∗.

Conversely :

Let π1, π2, ... be a random sample from P with P is taken from a the Dirichlet

process with parameters ν and α, i.e.

(πi|P )
i.i.d.∼ P,

P ∼ ν∗.

By Proposition 1.5 c), the posterior of ν∗ based on the first i observations π1, ..., πi is

also a Dirichlet process, but with an updated parameters α+ i and νi. Therefore

P (πi+1 ∈ ·|π1, ...., πi) =

∫
P (πi+1 ∈ ·|π1, ..., πi, P ) ν∗(dP |π1, ..., πi)

=

∫
P (·)ν∗(dP |π1, ..., πi)

= νi(·)

Note that X can be the space of distributions functions on Rp or even a more complex

space of objects such as stochastic processes, provided with the L2 metric, or random

measures such as the Dirichlet process. The nested Dirichlet process (NDP) defined by

Rodŕıguez et al. (2008) is an example to such construction.
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1.3.1 The cluster property of the DP

Let π1, ..., πn a random sample of the Dirichlet process with parameters (α, ν). Us-

ing equation (1.7), we can see that, with positive probability, we will have repeti-

tions. Matching the indices of unique values of π1, ..., πn we induce a partition of

S0 = {1, ..., n}. For instance, if we obtain π1 = 0.28, π2 = 4.3, π3 = 0.28, π4 = 3.1 and

π5 = 4.3, since π1 = π3, π2 = π5 we obtain the partition {{1, 3}, {2, 5}{4}}. Given that

π1, ..., πn are random, this induces a random partition of S0. This random partition,

in fact, encapsulates all the properties of the DP. To see this, we simply invert the

generative process; starting from the distribution over partitions, we can reconstruct

the joint distribution P(π1, ..., πn) =
∏n
i=1 P(πi|πi−1, ..., π1) by first drawing a random

partition of S0, then for each cluster j in the partition, draw a π∗k ∼ ν, and finally

assign πi = π∗k for each i in cluster j.

Figure 1.1: Cluster structure induced by the Dirichlet process on a random measure

space (X ,F , ν).

In Figure 1.1 we show an example of the cluster structure induced by the Dirichlet

process on a random measure space.

Quintana and Iglesias (2003) pointed out an interesting connection between para-

metric PPMs and the Dirichlet process. Because of its clustering properties, it is not

surprisingly that we can obtain a particular case of the PPM by integrating out the

DP. This result is formally presented in the following proposition for a general space

X .
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1.4 PPMs for change-point analysis

Proposition 1.7. Assume the following model

π1, ..., πn|P
i.i.d.∼ P

P ∼ DP (α, ν),

where α is a dispersion parameter and ν is the base measure of the DP . By integrating

out the DP, the Pólya urn representation of Blackwell and MacQueen (1973) implies

P(π1, ..., πn) =

n∏
i=1

{
αν(πi) +

∑
j<i δ{πi}(πj)

α+ i− 1

}
, (1.8)

where δA(x) = 1 if x ∈ A and δA(x) = 0 otherwise.

This joint marginal distribution can be expressed alternatively as follows. For a

given partition ρ = {S1, ..., Sk}, let ej,1 < ... < ej,|Sj | denote the elements of Sj ,

assumed to be sorted in ascending order. By the combinatorial arguments developed

in Lo (1984) it follows that equation (1.8) can be expressed as

P(π1, ..., πn) =
∑
ρ∈P

α|ρ|∏n
l=1(α+ l − 1)

|ρ|∏
j=1

(|Sj | − 1)!ν(πej,1)

|Sj |∏
i=2

δ{πej,i}
(
πej,1

)
= K

∑
ρ∈P

|ρ|∏
j=1

c(Sj)pSj (πSj ), (1.9)

where P is the set of all partitions, K =
∏n
l=1(α + l − 1), c(S) = α × (|S| − 1)!,

πSj = (πi|i ∈ Sj), the blocks πS1 , ...,πS|ρ| are independent and pSj (πSj ) is defined as

the probability such that all the elements in πSj are identical to a value drawn from

ν. Because equation (1.9) is identical to the marginal distribution that is obtained

through equations (1.2) and (1.3) for the choices just described, the integrated-out

nonparametric model can be seen as a special case of a PPM. This proposition is very

important for application purposes because it allows us to simulate this particular case

of PPMs more efficiently.

1.4 PPMs for change-point analysis

There is an increasing interest among statisticians in the area of change-point analysis;

this has been triggered by an awareness of important applications such as text segmen-

tation, detection of genes causing an abnormality, change-points in economic models,

13



1. PRODUCT PARTITION MODELS AND DIRICHLET PROCESS

detection of discontinuities in geophysics time series, etc. New theoretical and com-

putational methods also contributed to the development of this area. This is the case

of product partition models, since one of their main application has been in change-

point analysis. In this section, we will describe the model for such purpose and discuss

the limitations of the marginal probability criterion to detect changes point. We also

provide an alternative approach using loss functions.

In one-dimensional change-point problems, the goal is to partition the sequence

of observations x1, ..., xi, ..., xn (ordered by index i) into b contiguous subsequences or

blocks,

[x1, ..., xi1 ] , [xi1+1, ..., xi2 ] , ...,
[
xib−1+1, ..., xib

]
.

Let fi be the density function of xi, parametrized by θi ∈ Θ (whose value may change

from one observation to the next). We suppose that there exists a partition ρ of the

set {1, ..., n} into contiguous sets or blocks such that the sequence θ1, ...,θn is constant

within blocks; that is, there exists a partition ρ = (i0, i1, ..., ib) of the set {1, 2, ..., n}
such that

0 = i0 < i1 < i2 < · · · < ib = n

and

θi = θir with ir−1 < i ≤ ir

for r = 1, 2, ...., b. The parameter values change at the change points i1 + 1, i2 +

1, ..., ib−1 + 1. We denote the observations xi+1, ..., xj by xij . Let fij
(
xij |θij

)
be the

joint density of xij given θi+1 = θi+2 = ... = θij . (The notation f(·) will be used for

densities, and f(·|·) for conditional densities.) The observations x1, ..., xn are assumed

independent between different blocks, given the partition and given the parameters.

Then we have

f0n (x0n|ρ,θ) =

b∏
j=1

fij−1ij

(
xij−1ij |θij−1ij

)
where, as before, θ = (θ1, ...,θn). The partition is selected randomly according to a

product partition distribution. The probability of a partition ρ = (i0, i1, i2, ..., ib) is

p(ρ) ∝ ci0i1ci1i2 · · · cib−1ib ,

where cij is known as a cohesion function and is specified for each possible block ij.

We will define a new level of this hierarchical model, a prior distribution of θ.
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1.4 PPMs for change-point analysis

Given the partition ρ with b blocks, θi1 ,θi2 , ...,θib are independent. Let fij−1ij

(
θij−1ij

)
be the density of θij−1ij = (θij−1+1, ..., θij ). Because all parameters in the block ij−1ij

are equal to θij−1ij , the joint distribution of all the parameters is now determined. The

density fij
(
θij
)

will be called the block ij prior density.

For a given block ij, the predictive density of the observations xij is

fij (xij) =

∫
fij
(
xij |θij

)
fij
(
θij
)
dθij .

The joint probability density of xij , denoted by fxij , belongs to a parametric family

and the previous hierarchical model defined above includes a level specifying a prior

for the parameters. For a graphical representation of the PPM, see Figure 1.2.

!

!1 !2 …	   !i1 !i1+1 !i1+2 …	   !i2 !ib!1+1 …	   !n…	   !ib!1+2

x1 x2 …	   xi1 xi1+1 xi1+2 …	   xi2 xib!1+1 …	   xn…	   xib!1+2

Figure 1.2: Graphical representation of the PPM for change-point detection.

We now describe the normal-gamma example studied by Loschi et al. (2003). We

will compare it later with the NPPMs for change-point analysis.
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1. PRODUCT PARTITION MODELS AND DIRICHLET PROCESS

Example 1.8. Normal-Gamma model for change-point analysis.

x1, ..., xn|ρ, µ1, ..., µn, τ1, ..., τn ∼
n∏
i=1

N(xi|µi, τi) (1.10)

(
µij−1ij , τ ij−1ij

)
j=1,...,b

|ρ ind∼ Ng
(
·|aij−1ij

0 , b
ij−1ij
0 , α

ij−1ij
0 , β

ij−1ij
0

)
p(ρ = {i0, i1, ..., ib}) ∝ ci0i1ci1i2 · · · cib−1ib

where
(
a
ij−1ij
0 , b

ij−1ij
0 , α

ij−1ij
0 , β

ij−1ij
0

)
are hyperparameters associated with block ij−1ij.

A well known result gives

p(µij , τ ij |ρ,xij) = Ng(µij , τ ij |aij , bij , αij , βij) (1.11)

aij =
bij0 a

ij
0 + nijxij

bij0 + nij

bij = bij0 + nij

αij = αij0 +
nij
2

βij = βij0 +
1

2

j∑
h=i+1

(xh − xij)2 +
bij0 nij(xij − a

ij
0 )2

2(bij0 + nij)
,

where nij is the number of data points in block ij and xij is the mean of the data points

belonging to block ij. The posterior marginals are

p(τ ij |ρ,xij) = Ga(τ ij |αij , βij) (1.12)

p(µij |ρ,xij) = t2αij (µ
ij |aij , βij/(αijbij)),

where tν (µ,V ) denotes the non-standardized Student’s t-distribution. Hence

E(τ ij |ρ,xij) =
αij

βij
(1.13)

E(µij |ρ,xij) = aij .

The predictive distribution is given by x ∼ t
2αij0

(
aij0 , (α

ij
0 )−1βij0

(
In + H

bij0

))
with aij0 ∈

Rnij where aij0 = (aij0 , ..., a
ij
0 ), In denotes the n× n identity matrix and H is an n× n

matrix such that Hij = 1 ∀i, j (see Appendix B for more details).
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1.4 PPMs for change-point analysis

1.4.1 Cohesions functions

The selection of adequate cohesions functions is an important issue in PPMs. In this

subsection, we will review several alternatives proposed in the literature. Barry and

Hartigan (1992) considered a model in which the partition distribution used cohesions

of the form:

cij = (j − i)−3 for 0 < i < j < n,

cij = (j − i)−2 for i = 0 or j = n,

and c0n = n−1.

They also proved some desirable consistency properties of this choice of cohesions.

Inspired by previous work of Yao (1984), Barry and Hartigan (1993) used the follo-

wing cohesion functions, which imply that the sequence of change points forms a discrete

renewal process with inter-arrival times identically and geometrically distributed:

cij = (1− p)j−i−1p if j < n,

cij = (1− p)j−i−1, if j = n,

where p denotes the probability that a change occurs at any instant in the sequence.

Note that cij corresponds to the probability that a new change takes place after j − i
instants, given that a change has taken place at the instant i. Such cohesions are appro-

priate when it is reasonable to assume that the past change points are noninformative

about the future change points, which is sensible in many practical applications (Loschi

and Cruz, 2005).

Monteiro et al. (2011) studied some properties of the number of clusters (denoted

by C) in the partition ρ when p ∼ Beta(a, b). Quintana et al. (2005a) profit from the

relationship between the Dirichlet process and cohesions functions of the form c(S) ∝
α × |S − 1|!. More generally, cohesions functions depending only on the cardinality of

the set j − i can be induced by Gibbs-type priors if and only if cij =
(1−σ)j−i−1

(j−i)! for

0 ≤ i < j ≤ n and σ ∈ [−∞, 1] with (1− σ)j−i−1 = 1 if σ = −∞ and ρ = (0, n) when

σ = 1 (Blasi et al., 2015). This choice of cohesions leads to exchangeable blocks, which

can be very useful in many applications such as detecting gain or loss of material in

DNA sequences. However, there are situations in which the exchangeability assumption

is not adequate. For instance, in the context of Global warming, if we want to detect
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1. PRODUCT PARTITION MODELS AND DIRICHLET PROCESS

change of behaviour in the average temperature since 1900, then it is not reasonable

to suppose that the probability of partition [1900, 1980][1981, 2014] is the same that

[1900, 1933][1934, 2014] because there were more factories, cars, etc. in 1981 than in

1934.

For a non informative prior, we can use the uniform distribution giving equal weights

to all possible partitions.

1.4.2 Inference

Although Barry and Hartigan (1992, 1993) introduced PPMs for change-point analysis

and studied some consistency properties, they did not provide any methodology to

detect the points in time where a shift occurs. Indeed, they introduced their model only

for prediction purposes. Later, Loschi and Cruz (2005) used the marginal probability

of change point to decide whether a point in time is a changing point or not. In this

criterion, we fixed a probability p0, for each point i we calculate the marginal probability

of being a change point pi. If p0 > pi then xi is a change point.

Quintana et al. (2005a) provide a different approach using a weighted loss function

L
(
θ, θ̂ρ̂

)
= γ‖θ − θ̂ρ̂‖2 + (1− γ)|ρ̂|,

where θ̂ρ̂ is an estimate of θ associated with the selected partition ρ̂ and 0 ≤ γ ≤ 1.

Quintana and Iglesias (2003) show that the expected loss minimization criterion leads

to the choice ρ̂∗ that minimizes

SC(ρ̂) = γ‖θ̂B (x)− θ̂ρ̂ (x) ‖2 + (1− γ)|ρ̂|, (1.14)

where x = (x1, ..., xn), θ̂B (x) = E (θ|x) and θ̂ρ (x) = E (θ|x, ρ) (see Appendix A).

The above result shows that the optimal choice ρ̂∗ will be the partition for which the

resulting estimate θ̂ρ (x) is closest to θ̂B (x), penalized by the number of clusters. To

identify the change points, Quintana et al. (2005a) propose the following strategy with

SC defined by equation (1.14).
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1.4 PPMs for change-point analysis

Algorithm 1.1 Change-point detection

The basic procedure consists of recursively assessing subsequences of the set {1, . . . , n}
and identifying change points by splitting each subsequence into two parts.

Step 1: Set C = ∅, l = 1, u = n, ρ̂∗ = {1, . . . , n}.
Step 2: In the current partition ρ̂∗, split the set {l, . . . , u} into {l, . . . , j − 1} and

{j, . . . , u} for j = l + 1, . . . , u. Denote by ρj the corresponding partition. Let k∗ be

defined as SC (ρk∗) = min
l+1≤j≤u−1

SC(ρj).

Step 3: If SC (ρk∗) < SC (ρ̂∗) then add k∗ to C, replace ρ̂∗ by ρk∗ , and recur-

sively repeat Step 2 for l = l, and u = k∗ − 1 and for l = k∗, u = u. Otherwise, stop.

Yau and Holmes (2013) exposed the limitations of using the marginal probability

of change point or the most probable state sequence in hidden Markov models.

To see this, we analyze the following example using PPMs with cohesions functions

of the form: cij = (1− p0)j−i−1p0.

Example 1.9. We simulated the following sequence of random variables 1000 times:

Xi ∼



Bernoulli(0.1), if 1 ≤ i ≤ 30

Bernoulli(0.8), if 31 ≤ i ≤ 60

Bernoulli(0.1), if 61 ≤ i ≤ 90

Bernoulli(0.8), if 91 ≤ i ≤ 110

Bernoulli(0.2), if 111 ≤ i ≤ 140.

This sequence of data points contains four change points at {31, 61, 91, 111}. At each

iteration, we used the loss function criterion with γ = 0.7 and the probability of change

point for several values of p0 (p0 = 0.67, 0.69, 0.70). The results are shown in Figures

1.3 and 1.4 .

Comparing the histograms of the number of change points detected by the different

procedures with different parameters in Figures 1.3b, 1.4b, 1.4d and 1.4f, we obtain more

accurate results using a loss function. Indeed, the results obtained using the probability

criterion are quite poor. The histograms of change points locations are presented in

Figures 1.3a, 1.4a, 1.4c and 1.4e. As before, results obtained using a loss function are

better.
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(b) Number of change points.

Figure 1.3: Change point analysis of Example 1.9 using the loss function criterion with

γ = 0.7.
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Figure 1.4: Change point analysis of Example 1.9 using the change point probability

criterion with different values of p0.

.
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Chapter 2
Nonparametric Product Partition Models

The woods would be very silent if no birds sang except those that sang best.

Rabindranath Tagore

In this chapter we propose an extension of parametric product partition models

(PPMs) introduced by Hartigan (1990) and Barry and Hartigan (1992), using ideas

presented by Quintana and Iglesias (2003). We name our proposal nonparametric

product partition models (NPPMs) because we associate a random measure instead of

a parametric kernel to each set within a random partition. Our methodology does not

impose any specific form on the marginal distribution of the observations, allowing us to

detect shifts of behaviour even when dealing with heavy-tailed or skewed distributions.

We propose a suitable loss function and find the partition of the data having min-

imum expected loss. We then apply our nonparametric procedure to multiple change-

point analysis and compare it with PPMs and with other methodologies that have

recently appeared in the literature. Also, in the context of missing data, we exploit

the product partition structure in order to estimate the distribution function of each

missing value, allowing us to detect change points using the loss function mentioned

above. Finally, we present applications to financial as well as genetic data.
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2. NONPARAMETRIC PRODUCT PARTITION MODELS

2.1 Definition of nonparametric product partition models.

2.1.1 Motivation

Let Y be a discrete finite random variable. In the context of finite population sampling,

we want to find the stratification or partition ρ = {H1, . . . ,Hk} of the range of Y such

that

f(x) = f(x|Y ∈ H1)P (Y ∈ H1) + . . .+ f(x|Y ∈ Hk)P (Y ∈ Hk) (2.1)

minimizes the loss function

L(µρ, µ) = β‖µρ − µ‖2 + (1− β)|ρ|

where µ = E(X) and µρ is the estimate of µ associated with the partition or stratifi-

cation ρ, i.e.

µρ = E(X|Y ∈ H1)P (Y ∈ H1) + . . .+ E(X|Y ∈ Hk)P (Y ∈ Hk). (2.2)

Parametric product partition models are not flexible enough to represent the situa-

tion of equation (2.1) because it is assumed that for all strata H, f(x|Y ∈ H) belongs

to the same parametric family of distributions. Therefore, we need a more flexible

family of product partition models. It would be convenient to model f(x|Y ∈ H)

non-parametrically.

Now, we define nonparametric product partition models. For any partition ρ =

{S1, ..., Sk} of S0 = {1, ..., n} and data x = (x1, ...,xn), it is assumed that

p
(
x1, ...,xn | ρ, F

Sj
X

)
∝

n∏
i=1

Fi(xi)

F
Sj
X | ρ

ind∼ DP
(
αSj , GSj

)
P (ρ = {S1, ..., Sk}) ∝

k∏
i=1

c(Si) (2.3)

where αSj > 0 and GSj is a probability distribution function. In the same manner as

the PPMs, c(S) is a nonnegative set function called cohesion function. .

Remark 2.1. We can write
∏n
i=1 Fi(xi) =

∏k
j=1 F

Sj
X (xSj ) where k is the number of

clusters.
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2.1 Definition of nonparametric product partition models.

NPPMs, just as PPMs, induce a probability distribution over all possible partitions

of a finite set of observations: x1, ...,xn with xi ∈ Rp. For each partition, the n data

points are divided into k subsets, and each data point xi belongs to only one subset.

As before, data points of distinct subsets are independent and data points belonging

to the same subset are exchangeable.

Remark 2.2. Since the entries in xS are exchangeable, if FSX is the joint distribution

function of xS given ρ, applying de Finetti’s theorem (de Finetti 1972), we obtain

pS(xS) =

∫ {∏
i∈S

pS(xi|FSX)

}
dPS(FSX)

=

∫ {∏
i∈S

FSX(xi)

}
dPS(FSX)

where FSX is the common marginal distribution for the x’s such that i ∈ S given that

S ∈ ρ. and PS(FSX) is the probability measure over the space of distribution functions

induced by the Dirichlet Process associated to the set S. We can define F = (F1, ..., Fn)

where Fi = FSX when i ∈ S.

We now show that the posterior distribution is again a NPPM.

Proposition 2.3. The corresponding posterior distribution of ρ is again of the form

of equation (2.3), with cohesions given by c(Sj)pSj (xSj ) where pSj is the predictive

distribution given in remark 2.2. We define c(Sj)pSj (xSj ) as the posterior cohesions.

Proof.

p(ρ|x1, . . . ,xn) ∝ p(x1, . . . ,xn|ρ)p(ρ)

∝ pS1(xS1 |ρ) . . . pSk(xSk |ρ)×
k∏
j=1

c(Sj)

∝
∫
pS1(xS1 |ρ, F

S1
X )dP(FS1

X )× . . .

×
∫
pSk(xSk |ρ, F

Sk
X )dP(FSkX )×

k∏
j=1

c(Sj)

∝ c(S1)

∫ ∏
i∈S1

pS1(xi|FS1
X )

 dP(FS1
X )× . . .
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2. NONPARAMETRIC PRODUCT PARTITION MODELS

×c(Sk)
∫ ∏

i∈Sk

pSk(xi|FSkX )

 dP(FSkX )

∝ c(S1)

∫ ∏
i∈S1

FS1
X (xi)

 dP(FS1
X )× . . .

×c(Sk)
∫ ∏

i∈Sk

FSkX (xi)

 dP(FSkX )

We can recognize that

∫ ∏
i∈Sk

FSkX (xi)

 dP(FSkX ) is the predictive distribution

evaluated at xSj . As in the parametric case, the posterior distribution has cohesion

functions c(Sj)p(xSj ), where p(xSj ) is the predictive distribution with respect to the

Dirichlet process (with concentration parameter αSj and base measure GSj ).

Using the relationship between PPM and the Dirichlet process established by Quin-

tana and Iglesias (2003), stated in Proposition 1.7, we will show that using the NDP

in Definition 2.4, we can obtain a special case of NPPMs with cohesions functions

c(S) = α × (|S| − 1)!. This choice of cohesions functions promotes few clusters with

large amounts of data in each one. This can be very restrictive in many applications,

although Bormetti et al. (2012); De Giuli et al. (2010); Quintana and Iglesias (2003)

and Quintana et al. (2005a,b) exploited this feature for outlier detection.

2.1.2 Relationship with the Nested Dirichlet Process

We will discuss the relationship of the NPPMs with the Nested Dirichlet Process.

2.1.2.1 Nested Dirichlet Process (NDP)

We will describe the Nested Dirichlet Process (NDP) stating the two characterizations

provided by Rodŕıguez et al. (2008) and discuss if they are equivalent or not.

Definition 2.4. We say that Gj is a NDP (α, β,H) if

Gj |Q
iid∼ Q

Q ∼ DP (α,DP (β,H)).
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2.1 Definition of nonparametric product partition models.

Notice that the term DP (α,DP (β,H)) has a profound meaning and is not just a

matter of notation. In order to clarify this, we present the following discussion that

appears in Rodŕıguez et al. (2008). Consider the probability space (Θ,B(Rd), P ) where

Θ ⊂ Rd, B corresponds to the Borel σ-algebra of subsets of Rd and P is the probability

induced by the distribution function H. Consider the Dirichlet Process DP (β,H) with

β > 0. Let X be the space of probability measures over (Θ,B), let B(X ) the Borel

sets induced by the sup norm, it is well known that (X , ‖·‖∞), is a complete separable

metric space. Let ν be the probability induced in B(X ) by DP (β,H); then we have a

probability space defined by the triplet (X ,B(X ), ν).

Recall the original definition of the DP introduced by Ferguson (1973) stated in

Definition 1.3, the choice of Θ ⊂ Rn for the base space of the DP is merely a practical

one, and the aforementioned results extend in general to any complete and separable

metric space X . In particular, because the space of probability distributions is complete

and separable under the sup norm, we could have started by taking (X ,B(X ), ν) as our

base space. Therefore, DP (α, ν) is a random measure over the space of distributions

on distributions. We can replace ν = DP (β,H) and we would obtain DP (α,DP (β,H)

Definition 2.5.

G(•) ∼ Q ≡
∞∑
k=1

π∗kδG∗k(•) (2.4)

G∗k(•) ≡
∞∑
l=1

w∗lkδθ∗lk(•) (2.5)

where θ∗lk ∼ H, H is a probability measure on (Θ,B),

w∗lk = u∗lk
∏l−1
s=1(1− u∗sk) with u∗lk

i.i.d∼ Beta(1, β),

π∗k = v∗k
∏k−1
s=1(1− v∗s) with v∗k

i.i.d∼ Beta(1, α)

Figures 2.1 and 2.2 are graphical representations of Definition 2.5.
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2. NONPARAMETRIC PRODUCT PARTITION MODELS

Q= 𝜋1 +𝜋2 +𝜋3 +𝜋4

P=𝛼1 +𝛼2 +𝛼3 +𝛼4

+…

+…

M= 𝛾1 +𝛾2 +𝛾3 +𝛾4 +…

Figure 2.1: P,Q,M ∼ DP (α,DP (β,H))

Q=𝜋1 +𝜋2 +𝜋3 +𝜋4

𝐺1
∗ = 𝐺2

∗ = 𝐺3
∗ = 𝐺4

∗ =

𝐺1 = 𝐺2 = 𝐺4 =
𝐺3 =

+…

Figure 2.2: G∗i ∼ DP (β,H)), Q ∼ DP (α,DP (β,H)) and Gj ∼ Q

These authors claim that the NDP can be characterized as a distribution on the

space of distributions on distributions, but Müller and Nieto-Barajas (2008) argued
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2.1 Definition of nonparametric product partition models.

that this is not the case and it is only an element in the space of distributions on

distributions. They also pointed out that the model is better described as random

clustering of a set of random distribution. They justify it by noting that the argument

in equation (2.4) is θ, not a random distribution. Moreover, if equation (2.4) is changed

to

G(•) ∼ Q ≡
∞∑
k=1

π∗kδG∗k(•) (2.6)

then the argument • would be a measurable set of random measures and Gj would be

defined on the space of distribution on distributions.

If we analyze Definition 2.4, we obtain a probability measure on the space of distri-

butions on distributions, as stated by Rodŕıguez et al. (2008), whereas, using Definition

2.5 we obtain a random clustering of a set of random distributions therefore, definitions

2.4 and 2.5 can not be equivalent. In fact, if we change Definition 2.5 to the following

definition, the definitions would be equivalent.

Definition 2.6.

G(•) ∼ Q ≡
∞∑
k=1

π∗kδG∗k(•) (2.7)

G∗k(•) ≡
∞∑
l=1

w∗lkδθ∗lk(•) (2.8)

If we marginalize the Nested Dirichlet Process of Definition (2.4), we obtain a special

case of the Nonparametric Product Partition model. This result is formalized in the

following proposition.

Proposition 2.7. Let X = {F |F : Rp → [0, 1] is a probability distribution on Rp}, and

let ‖F‖∞ = supx |F (x)| be the sup norm. It is a well known result that (X , ‖ · ‖) is

a complete separable metric space. Let B(X ) be the Borel sets induced by ‖ · ‖. The

Dirichlet process DP (β, F0) induces a probability on (X ,B(X )) with β ∈ R+ and F0 a

distribution function on Rp. Let ν be the probability measure over (X ,B(X )) induced

by DP (β, F0), and consider the following model

x1, ...,xn|F1, ..., Fn
ind∼ Fi(xi)

F1, ..., Fn|P
i.i.d.∼ P

P |α, β, F0 ∼ DP (α, ν),

29



2. NONPARAMETRIC PRODUCT PARTITION MODELS

which is equivalent to

x1, ...,xn|F1, ..., Fn
ind∼ Fi(xi)

F1, ..., Fn
i.i.d.∼ P

P |α, β, F0 ∼ NDP (α, β, F0).

If we integrate out P , we obtain the following NPPM

p
(
x1, ...,xn | ρ, F

Sj
Y

)
∝

n∏
i=1

Fi(xi)

F
Sj
X | ρ

ind∼ DP (β, F0)

P (ρ = {S1, ..., Sk}) ∝
k∏
i=1

c(Si)

with cohesions functions

c(S) = α× (|S| − 1)!.

Proof. Straightforward using Proposition 1.7

As in the parametric case, this relationship allows us to simulate from this class

of NPPMs efficiently using algorithms proposed in Rodŕıguez et al. (2008) and Müller

and Nieto-Barajas (2008).

We raise the following conjecture, which we have not been able to prove,

Conjecture 2.8. If we marginalize the nested Dirichlet Process provided by Defini-

tion 2.5, we obtain a special case of the Nonparametric Product Partition model with

cohesion functions of the form c(S) = α× (|S| − 1)!.

2.2 Loss function

Let Sj ∈ ρ be such that i ∈ Sj , let ZSj ∼ F
Sj
Z , and define µi = E(ZSj ). Let µ =

(µ1, ...,µn). Notice that µ is a random vector with µi ∈ Rp and µi = µk if i, k ∈ Sj
We define the loss function

l
(
ρ̂,µ, µ̂ρ̂

)
= γ

∥∥µ− µ̂ρ̂∥∥2 + (1− γ) (|ρ̂| − |ρ|) (2.9)

where the vector µ̂ρ̂ is the estimate of the vector µ associated with the estimated

partition ρ̂ and |ρ̂| denotes the cardinality of ρ̂. Here, 0 ≤ γ ≤ 1 is a cost-complexity
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2.2 Loss function

parameter. The choice of loss function implies a trade-off (controlled by the user-defined

quantity γ) between the optimal estimator of µ and model simplicity, by which we

mean a model with a low number of clusters or strata. Notice that the term (|ρ̂| − |ρ|)

penalizes when the estimated partition ρ̂ contains more clusters than the true partition

ρ. We follow the procedure discussed in Quintana and Iglesias (2003) to obtain the

partition with the minimum expected loss.

Theorem 2.9. Let µ̂B (x) = E (µ|x) and µ̂ρ (x) = E (µ|ρ,x), then the expected loss

minimization criterion leads to the choice ρ̂∗ that minimizes

SC (ρ̂) = γ‖µ̂B (x)− µ̂ρ (x) ‖2 + (1− γ)|ρ̂| (2.10)

Proof. For a sequential decision problem, Bernardo and Smith (1994) state that one has

to first solve the final nth stage by minimizing the appropriate loss function, then one

has to solve the (n−1)th stage by minimizing the expected loss function conditional on

making the optimal choice at the nth stage; and so on, working backwards progressively,

until the optimal first stage option has been obtained. To visualize the decision tree of

our problem see Figure 2.3.

r̂

r
),ˆ,,ˆ( ˆ  l

 xp , xp 

(a) Second stage

r̂

r

 xp 

(b) First stage

Figure 2.3: Decision tree of Theorem 2.9
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2. NONPARAMETRIC PRODUCT PARTITION MODELS

To solve the optimization of the second stage:

l2(µ̂ρ̂|ρ) =

∫
l(ρ̂, ρ, µ̂ρ̂,µ)p(µ|ρ,x)dµ

= γ

∫
‖µ̂ρ̂ − µ‖2p(µ|ρ,x)dµ+ (1− γ) (|ρ̂| − |ρ|) .

Let µ̂∗ρ̂ = argminµ̂ρ̂{l2(µ̂ρ̂|ρ)}, then the loss of choosing ρ̂ when ρ is the real state of

the world would be l2(µ̂
∗
ρ̂|ρ). Now we will solve the first stage (see Figure 2.3b). The

expected loss is given by

l(ρ̂) =

∫
l2(µ̂

∗
ρ̂|ρ)p(ρ|x)dρ

= γ

∫ {∫
‖µ̂∗ρ̂ − µ‖2p(µ|ρ,x)dµ

}
p(ρ|x)dρ+ (1− γ)

(
|ρ̂| −

∫
|ρ|p(ρ|x)dρ

)
= γ

∫
‖µ̂∗ρ̂ − µ‖2

∫
p(µ|ρ,x)p(ρ|x)dρdµ+ (1− γ)

(
|ρ̂| −

∫
|ρ|p(ρ|x)dρ

)
= γ

∫
‖µ̂∗ρ̂ − µ‖2p(µ|x)dµ+ (1− γ)

(
|ρ̂| −

∫
|ρ|p(ρ|x)dρ

)
Since µ̂∗ρ̂ is the Bayes estimate under a quadratic loss function,

µ̂∗ρ̂ = E (µ|ρ,x) = µ̂ρ (x)

Finally,∫
‖µ̂ρ (x)− µ‖2p(µ|x)dµ =

∫ n∑
i=1

(µ̂ρ,i (x)− µi)2p(µ|x)dµ

=

∫ n∑
i=1

(µ̂ρ,i (x)− µ̂B,i (x) + µ̂B,i (x)− µi)2p(µ|x)dµ

=

∫ n∑
i=1

(µ̂ρ,i (x)− µ̂B,i (x))2p(µ|x)dµ

+2

∫ n∑
i=1

(µ̂ρ,i (x)− µ̂B,i (x))(µ̂B,i (x)− µi)p(µ|x)dµ

+

∫ n∑
i=1

(µ̂B,i (x)− µi)2p(µ|x)dµ

= ‖µ̂ρ (x)− µ̂B (x) ‖2 + 0 + tr(V (µ|x))

where tr(A) denotes the trace of a given matrix A. Then

γ

∫
‖µ̂ρ(x)− µ‖2p(µ|x)dµ+ (1− γ)(|ρ̂| − |ρ|) = γ‖µ̂ρ(x)− µ̂B(x)‖2 + γtr(V (µ|x))
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2.2 Loss function

+(1− γ)|ρ̂| − (1− γ)

∫
|ρ|p(ρ|x)dρ

The proof concludes by noting that the second and fourth term in the last expression

does not depend on ρ̂.

The above proof shows that the optimal choice ρ̂∗ will be the partition for which

the resulting estimate µ̂ρ(x) is closest to µ̂B(x) with the smallest number of elements.

We now introduce a loss function that depends on the distribution of the data and

not only on the mean value. Recall that Fi is the marginal distribution of Xi given

ρ = {S1, . . . , Sk}; if i ∈ Sj then Fi = F
Sj
X , and, Fi ∼ DP

(
αSj , GSj

)
. We define the loss

function

l(ρ̂, ρ, F̂ ρ̂,F ) =
n∑
i=1

γi‖Fi − F̂ρ̂,i‖2i + (1− γ) (|ρ̂| − |ρ|) (2.11)

where F = (F1, . . . , Fn), F̂ ρ̂ is the estimate of F associated with the estimated partition

ρ̂, i.e. F̂ ρ̂ =
(
F̂ρ̂,1, . . . , F̂ρ̂,n

)
. We define the following class of norms

‖F‖2i =

∫
Wi(y)(F (y))2dνi(y)

with Wi(y) a nonnegative function which represents a weighting function, νi(y) a mea-

sure on Rp and γ = 1−
∑n

i=1 γi with 0 ≤ γi and γ ≤ 1. The term (|ρ̂| − |ρ|) promotes

a smaller number of clusters.

Theorem 2.10. Let F̂B,i = E (Fi|x) and F̂ρ,i = E (Fi|ρ,x), then the expected loss

minimization criterion using the loss function defined by equation (2.11) leads to the

choice ρ̂∗ that minimizes

SC (ρ̂) =

n∑
i=1

γi‖F̂B,i − F̂ρ̂,i‖2i + (1− γ)|ρ̂|

Proof. Let

F̂ ρ =
(
F̂ρ,1, . . . , F̂ρ,n

)
, F̂B =

(
F̂B,1, . . . , F̂B,n

)
and

‖F̂ ρ̂ − F ‖2 =
n∑
i=1

γi‖Fi − F̂ρ,i‖2i .

The corresponding decision tree is depicted in Figure 2.4.
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Figure 2.4: Decision tree for the decision problem of Theorem 2.10.

We begin by solving the optimization problem of the second stage:

l2(F̂ ρ̂|ρ) = EF |ρ,x

(
l(ρ̂, ρ, F̂ ρ̂,F )

)

= EF |ρ,x

(
‖F̂ ρ̂ − F ‖2 + (1− γ) (|ρ̂| − |ρ|)

)

= EF |ρ,x

(
‖F̂ ρ̂ − F ‖2

)
+ (1− γ) (|ρ̂| − |ρ|) .

Let F̂
∗
ρ̂ = argminF̂ ρ̂{l2(F̂ ρ̂|ρ)}; then the loss of choosing ρ̂ when ρ is the real state of

the world would be l2(F̂
∗
ρ̂|ρ). Since F̂

∗
ρ̂ is the Bayes estimate under a quadratic loss

function,

F̂
∗
ρ̂ = EF |ρ,x (F ) = F̂ ρ.

Now we will solve the second stage (see Figure 2.4b). The expected loss is given by

l(ρ̂) = Eρ|x

(
l2(F̂

∗
ρ̂|ρ)

)

= Eρ|x

(
EF |ρ,x

(
‖F̂ ∗ρ̂ − F ‖2

)
+ (1− γ) (|ρ̂| − |ρ|)

)
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2.2 Loss function

= Eρ|x

(
EF |ρ,x

(
‖F̂ ∗ρ̂ − F ‖2

))
+ (1− γ)

(
|ρ̂| −Eρ|x(|ρ|)

)
= EF |x

(
‖F̂ ∗ρ̂ − F ‖2

)
+ (1− γ)

(
|ρ̂| −Eρ|x(|ρ|)

)
,

where

EF |x

(
‖F̂ ∗ρ̂ − F ‖2

)
= EF |x

( n∑
i=1

γi‖Fi − F̂ρ̂,i‖2i
)

= EF |x

(
n∑
i=1

γi

∫
Wi(y)

(
Fi − F̂ρ̂,i

)2
dνi(y)

)

=
n∑
i=1

γiEF |x

(∫
Wi(y)

(
Fi − F̂ρ̂,i

)2
dνi(y)

)
.

Applying Fubini’s theorem,

EF |x

(∫
Wi(y)

(
Fi − F̂ρ̂,i

)2
dνi(y)

)
=

∫
EF |x

(
Wi(y)

(
Fi − F̂ρ̂,i

)2)
dνi(y)

=

∫
Wi(y)EF |x

((
Fi − F̂ρ̂,i

)2)
dνi(y)(2.12)

with

EF |x

((
Fi − F̂ρ̂,i

)2)
= EF |x

((
Fi − F̂B,i + F̂B,i − F̂ρ̂,i

)2)
= EF |x

((
Fi − F̂B,i

)2)
+2EF |x

((
Fi − F̂B,i

)(
F̂B,i − F̂ρ̂,i

))
+EF |x

((
F̂B,i − F̂ρ̂,i

)2)
. (2.13)

Note that

EF |x

((
Fi − F̂B,i

)(
F̂B,i − F̂ρ̂,i

))
=

(
F̂B,i − F̂ρ̂,i

)
EF |x

((
Fi − F̂B,i

))
= 0

The first term in equation (2.13) does not depend on ρ̂ and can be thought of as a

constant K; hence

EF |x

((
Fi − F̂ρ̂,i

)2)
= K + 0 +

(
F̂B,i − F̂ρ̂,i

)2
.
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Substituting into equation (2.12), we obtain

EF |x

(∫
Wi(y)

(
Fi − F̂ρ̂,i

)2
dνi(y)

)
=

∫
Wi(y)

(
F̂B,i − F̂ρ̂,i

)2
dνi(y).

Therefore,

EF |x

(
‖F̂ ∗ρ̂ − F ‖2

)
=

n∑
i=1

γi

∫
Wi(y)

(
F̂B,i − F̂ρ̂,i

)2
dνi(y) +K2

=

n∑
i=1

γi‖F̂B,i − F̂ρ̂,i‖2i +K2

where K2 is another constant. Hence,

l(ρ̂) =

n∑
i=1

γi‖F̂B,i − F̂ρ̂,i‖2i + (1− γ)|ρ̂| − (1− γ)Eρ|x(|ρ|) +K2

The proof concludes by noting that the third and fourth terms in the last expression

do not depend on ρ̂.

The above proof shows that the optimal choice ρ̂∗ will be the partition for which

the resulting estimate F̂ ρ is closest to F̂B.

Theorems 2.9 and 2.10 suggest a procedure based on distances to find the optimal

ρ̂∗. However, an exhaustive search on the space of all possible partitions is infeasible.

Therefore we will adopt different heuristic algorithms depending on each application.

Unfortunately, these strategies can not give us the optimal solution but they can lead

to a reasonable one in a realistic amount of time.

2.3 Nonparametric product partition models for change-

point analysis

2.3.1 Introduction

From the statistical point of view, a change point is a place or time point such that the

observations follow one distribution up to that point and follow another distribution

after that point. Multiple change-point problems can be defined similarly (Chen and

Gupta, 2011). Change-point problems arise naturally in many disciplines such as eco-

nomics, finance, medicine, psychology and geology, and statisticians have developed a

number of methodologies to deal with this topic. The reader is referred, for example,
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2.3 Nonparametric product partition models for change-point analysis

to Chen and Gupta (2011) for parametric classic statistical models, and to Csörgö and

Horváth (1997) and Brodsky and Darkhovsky (2010) for nonparametric classical ap-

proaches and related results. For Bayesian parametric models see Ecley et al. (2011).

Another recent Bayesian parametric approach is discussed by Killick et al. (2012) us-

ing a cost function to detect change points. Since our approach is based on product

partition models (PPMs) for the underlying structure of the data, we start by briefly

reviewing relevant related work.

We can see change-point analysis as a particular case of clustering where the obser-

vations are ordered, usually by time. Because of its inherent cluster properties, PPMs

offer a convenient approach that can lead to good estimates in this setting. In fact,

change-point analysis for predictions purposes is an early application of PPMs (Barry

and Hartigan 1992, 1993). Later Loschi and Cruz (2005) and Quintana et al. (2005a)

proposed criteria to identify change points in these models. The former authors sug-

gest to use the marginal probability of being a change point at each location of the

time series, while the latter authors use a weighted loss function to identify the shifts

of behaviour. Many algorithms assume that each cluster has the same density (Chen

and Gupta, 2011). This approach may be very restrictive, which is why many authors

model the densities nonparametrically.

An early example of this approach from a Bayesian perspective can be found in

Mira and Petrone (1996), who used mixture of Dirichlet processes to model the densi-

ties; this ensures flexibility of the distribution for each cluster although their approach

is computationally very demanding when dealing with several change points. More

recently, Yau et al. (2011) proposed another approach which uses hidden Markov mo-

dels for the cluster structure and mixture of Dirichlet processes to model the density

at each state. In this model, we need to establish the number of states in advance,

which can be very limiting for some applications. Furthermore, Yau et al. (2011) use

the marginal probability to detect change points. This criterion has several limitations

which are discussed in Yau and Holmes (2013). A recent Bayesian parametric approach

was introduced by Killick et al. (2012) using a cost function to detect change points.

The main goal of this section is to introduce a flexible model for change-point

detection that can discover fluctuations in the distribution in sequentially observed

data. Let x1, ..., xn be a data sequence and consider the index set I = {1, ..., n}.
Consider a random partition ρ = {i0, i1, ..., ib} of the set I ∪ {0}, with ordered points
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2. NONPARAMETRIC PRODUCT PARTITION MODELS

0 = i0 < i1 < ib = n, and a random variable B which denotes the number of blocks in ρ.

Consider that each partition divides the data sequence into b contiguous subsequences,

which will be denoted here by xi(r−1)ir =
(
xi(r−1)+1, ..., xr

)T
, for r = 1, ..., b.

Let cij be the prior cohesion associated with block ij = {i+ 1, ..., j}, for i, j ∈ I ∪ {0},

and j > 1, that represents the degree of similarity among the observations in xi,j .

Let F1, ..., Fn be a sequence of marginal distributions of x1, ...., xn respectively. Given

a partition ρ, we have that Fi = Fi(r−1)ir , for every i(r−1) < i ≤ ir, and Fi0i1 , ..., Fi(b−1)ib

are independent, with Fij ∼ DP (αij , Gij).

We say that the random quantity (x1, ..., xn; ρ) follows a nonparametric product

partition model (NPPM), denoted by (x1, ..., xn; ρ) ∼ NPPM , if

1. the prior distribution of ρ is

p (ρ = {i0, i1, ..., ib}) ∝
b∏

j=1

ci(j−1)ij (2.14)

2. conditional on ρ = {i0, i1, ..., ib}, we have the following hierarchical model

Fi|αi, Gi |
ind∼ DP (αi, Gi) (2.15)

x1, ..., xn | F1, ..., Fn, ρ ∼
n∏
i=1

Fi (xi)

For a graphical representation for the NPPMs for change-point analysis, see Figure 2.5

Remark 2.11. The hyperparameters αi and Gi are fixed.

We now calculate the posterior distribution of the partition for the NPPMs applied

to change point analysis.

Proposition 2.12. The corresponding posterior distribution of ρ is again of the form

of equation (2.14), with cohesions given by c(S)pS(xS) = cijpij (xij) where pij (xij) is

the predictive distribution defined in proposition 2.3 with S = {i+ 1, ...., j}

Proof. Straightforward using Proposition 2.3.
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Figure 2.5: Graphical representation of NPPMs for change-point analysis.

2.3.2 Estimation of the weights in the loss function

The choice of loss function implies a trade-off (controlled by the user-defined quantity

γ) between the optimal estimator of F and model simplicity. Let,

l(ρ̂, F̂ ρ̂,F ) =
n∑
i=1

γi‖Fi − F̂ρ̂,i‖2i + (1− γ)|ρ̂| (2.16)

where F = (F1, ..., Fn), F̂ ρ̂ is the estimate of F associated to the estimated partition ρ̂,

F̂ ρ̂ =
(
F̂ρ̂,1, ..., F̂ρ̂,n

)
, ‖G‖2i =

∫
|G(x)|2dWi(x), with Wi(x) a probability distribution

function on Rp and γ =
∑n

i=1 γi with 0 ≤ γi and γ ≤ 1.

We use Theorem 2.10 and Algorithm 1.1 to estimate the change points.

Notice that, for a fixed value of γ, we obtain the change points by minimizing

equation (2.11) which we will denote by

ργ =
{
iγ0 , i

γ
1 , ..., i

γ
b

}
.

Denote the sum of squared errors associated to γ as
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2. NONPARAMETRIC PRODUCT PARTITION MODELS

SSEγ =

n∑
i=1

(xi − Cγi )2,

where Cγi is the mean of observations {xiγr−1+1, ..., xiγr } for iγr−1 < i ≤ iγr . Clearly, for

a fixed value γ0 of the parameter γ, there exists an interval I = (γa, γb) such that for

all γ ∈ I we obtain ργ = ργ0 ; therefore, it is enough to consider the number of change

points versus the SSEγ for the analysis.

2.3.3 Exact computational procedures

Barry and Hartigan (1993) provide an exact computational procedure to estimate the

gold standard F̂B used in Theorem 2.10. In this section, we will describe it briefly for

the nonparametric case.

Define

λij =
∑ b∏

k=1

cik−1ik ,

where the summation is over all sets of integers i = i0 < i1 < ... < ib = j. The

quantity λij is the sum of products of cohesions over all possible partitions of the set

{i+ 1, i+ 2, ..., j}. Let the relevance rij be the probability that the block ij is included

in the partition ρ. Then

rij =
λ0icijλjn
λ0n

,

The quantities λ0i and λjn may be calculated in O(n2) steps using the recursive

formulas

λ01 = c01,

λ0i+1 = c0i+1 +

i∑
k=1

λ0kcki+1,

λn−1n = cn−1n,

and

λjn = cjn +

n−1∑
k=j+1

cjkλkn

In our case, we want to calculate µ̂B and F̂B given the observations. The posterior

relevances rij(x) are computed from the posterior cohesions by recursive formulas like
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2.3 Nonparametric product partition models for change-point analysis

those just listed. Now

µ̂B,k = E(µk|x)

=
∑
i<k≤j

Eij(µk|xij)rij(x),

where Eij(µk|xij) denotes the posterior expectation of µk when the block ij lies in the

partition. Similarly for F̂B, i.e.

F̂B,k = E(Fk|x)

=
∑
i<k≤j

Eij(Fk|xij)rij(x),

where Eij(Fk|xij) denotes the posterior expectation of Fk when the block ij lies in the

partition. In the model defined by equations (2.14) and (2.15), the posterior cohesion

functions are given by

p (ρ = {i0, i1, ..., ib} |x) ∝
b∏

j=1

ci(j−1)ijp(xi(j−1)ij ) (2.17)

with

p(xij) =
α
Kij
ij

∏Kij
k=1 (|x∗k| − 1)!

α(1 + α)...(N − 1 + α)

Kij∏
k=1

Gij(x
∗
k),

where x∗k for k = 1, ...,Kij are the distinct values in block ij and |x∗k| is the number

of times that the value x∗k is repeated in block ij. The number of possible blocks in n

data points is
(
n+1
2

)
. For small data sets, this procedure is feasible (n < 500) but for

greater values of n, it is computationally expensive. We tackle this issue using a Gibbs

sampling scheme described in the following section.

2.3.4 Gibbs sampling for change-point analysis

Let Ui be an auxiliary random quantity that reflects whether or not a change point

occurs at time i (Barry and Hartigan, 1993); i.e.

Ui =

{
1 if Fi = Fi+1,
0 if Fi 6= Fi+1,

for i = 1, ..., n − 1. Each partition
(
U s1 , ..., U

s
n−1
)
, s ≥ 1, is generated by using Gibbs

sampling. Starting from an initial value
(
U0
1 , ..., U

0
n−1
)
, the r-th element at step s, U sr ,

is generated from the conditional distribution:

Ur | U s1 , ..., U sr−1, U s−1r+1 , ..., U
s−1
n−1;x0n
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for r = 1, ..., n − 1. To avoid unnecessary calculations, it is enough to consider the

following ratio:

Rr =
P (Ur = 1 | V s

r ;x0n)

P (Ur = 0 | V s
r ;x0n)

for r = 1, ..., n−1, in which V s
r =

{
U s1 = u1, ...., U

s
r−1 = ur−1, U

s−1
r+1 = ur+1, ..., U

s−1
n−1 = un−1

}

P (Ur = 1 | V s
r ;x0n) =

P
(
U s1 = u1, ...., U

s
r−1 = ur−1, Ur = 1, U s−1r+1 = ur+1, ..., U

s−1
n−1 = un−1 | x0n

)
P
(
U s1 = u1, ...., U sr−1 = ur−1, U

s−1
r+1 = ur+1, ..., U

s−1
n−1 = un−1 | x0n

)
and

P (Ur = 0 | V s
r ;x0n) =

P
(
U s1 = u1, ...., U

s
r−1 = ur−1, Ur = 0, U s−1r+1 = ur+1, ..., U

s−1
n−1 = un−1 | x0n

)
P
(
U s1 = u1, ...., U sr−1 = ur−1, U

s−1
r+1 = ur+1, ..., U

s−1
n−1 = un−1 | x0n

) .

Then

Rr =
P
(
U s1 = u1, ...., U

s
r−1 = ur−1, Ur = 0, U s−1r+1 = ur+1, ..., U

s−1
n−1 = un−1 | x0n

)
P
(
U s1 = u1, ...., U sr−1 = ur−1, U

s−1
r+1 = ur+1, ..., U

s−1
n−1 = un−1 | x0n

)
.

Let

x =

 max{i, s.t : 0 < i < r, U si = 0} if
U si = 0, for some
i ∈ {1, ..., r − 1}

0 otherwise

and

y =

 min{i, s.t : r < i < n,U si = 0} if
U si = 0, for some
i ∈ {r + 1, ..., n− 1}

n otherwise.

Hence

Rr =
cxy
∫ ∏y

i=x+1 F (xi) p (F ) dF

cxrcry
∫ ∏r

i=x+1 F (xi) p (F ) dF ·
∫ ∏y

i=r+1 F (xi) p (F ) dF
.

Consequently, the criterion for choosing the values U si , i = 1, ..., n− 1, becomes:

U sr =

{
1, if Rr ≥ 1−u

u
0, otherwise

for r = 1, ..., n− 1, in which u ∼ Unif (0, 1).

Fuentes-Garćıa et al. (2010) and Mart́ınez and Mena (2014) provide a clever Gibbs

sampler using p(k, n1, ..., nk) where k is the number of blocks and ni is the number of

observations within block i.
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2.3 Nonparametric product partition models for change-point analysis

2.3.5 Multiple change-point analysis with missing values

Missing data arise in many applications such as aCGH analysis that we will describe

in Section 2.4.3.2. To overcome this difficulty, we will start by assuming that the data

are missing at random, which is a reasonable assumption in many situations. Our

model allows us to handle this problem naturally since a common practice to estimate

a missing value in change-point analysis is to average values near the point where a

missing value appears. In our setting, we have random partitions which allow us to

average the distributions functions of all possible partitions of the data. It can be easily

shown that

p(ρ|X1, ..., Xn) ∝ p(ρc|Xc),

where Xc denotes the data and ρc the corresponding partition without missing val-

ues. Therefore, the quantities of interest of our analysis, Fi, FB,i can be calcu-

lated without extra computations. For instance, if we have 101 data points with

a missing value at i = 80, consider the partition ρ = [1, 50][51, 80][81, 101], then

Xc = {X1, ..., X79, X81, ..., X101} and ρc = [1, 50][51, 79][81, 101]. Notice that we will be

able to estimate E[Fk|Xc, ρc] = E[F80|X1, ..., X100, ρ] with 51 ≤ k ≤ 79.

We will provide two examples where we apply this idea.

Example 2.13. We simulated a data set as follows,

Xi
ind∼ N(µi, 1)


µi = 0, if 1 ≤ i ≤ 100

µi = 2, if 101 ≤ i ≤ 200

µi = 0, if 201 ≤ i ≤ 300,

with missing values at i ∈ {51, 80, 110, 140, 170, 195, 220, 250, 275}. Figure 2.6a shows

the simulated data with missing values. The estimated distributions at each point are

displayed in Figure 2.6b, where we can distinguish two clusters which correspond to the

two change points present in the data. The estimated distributions for missing values

together with the true distributions are presented in Figure 2.6c, where we can see that

the estimated distributions are close to the true ones.
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Figure 2.6: Graphics for Example 2.13.
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What happens when the missing value appears at a change point? The following

example will clarify this question.

Example 2.14. We simulated a data set as follows,

Xi
ind∼ N(µi, 1)

µi = 0, if 1 ≤ i ≤ 50

µi = 2, if 51 ≤ i ≤ 100

with missing values at i = 51. Figure 2.7a shows simulated data with a missing value at

i = 51. The estimated distributions at each point are displayed in Figure 2.7b, where we

can also distinguish two clusters which corresponds to the change point presented in the

data. Nevertheless, the estimated distribution (in blue) for i = 51 is a mixture of two

distributions: the first one of block {1, ..., 50} and the second one of block {52, ..., 100}.

0 20 40 60 80 100

0
2

4
6

i

 

(a) Xi

−4 −2 0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FB̂i

 

1

51

100

i

(b) F̂B,i for 1 ≤ i ≤ 100.

Figure 2.7: Graphics for Example 2.14.

2.4 Simulation experiments and applications

In the examples of this section we use the following cohesion function

cij = cNP × p× (1− p)j−i−1,

where cNP > 0 and p ∈ (0, 1) are constants. We note that p can be interpreted as the

probability of change at an arbitrary point, so that p× (1− p)j−i−1 is the probability
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of the event that a change point occurs at j. The parameter cNP allows us to promote

fewer change-points when cNP < 1. In what follows, we set cNP = 0.001 and p = 0.01.

For the parameters of the Dirichlet process DP (αij , Gij) we use a Normal distribution,

Gij = N
(
µij , σ

2
ij

)
. We employ an empirical Bayes approach to estimate µij and

σij as follows: µ̂ij = median(xij) and σ̂ij = IQR(xij)/1.349 where IQR stands for

interquartile range. We use these robust estimators so as to allow for observations from

heavy-tailed distributions. For the disperpersion parameters αij , we use the following

rule of thumb: if the number of observations is less than 50, we set αij = 1; for larger

samples, we use αij = 30.

2.4.1 Simulation study

Example 2.15. Here we give an example of the distribution functions estimated F̂B,i.

We simulated a data set as follows,

Xi
ind∼ N(µi, 1)


µi = 0, if 1 ≤ i ≤ 50

µi = 1, if 51 ≤ i ≤ 100

µi = 0, if 101 ≤ i ≤ 150.

Figure 2.8 shows the simulated data together with the estimated distributions at each

point.
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2.4 Simulation experiments and applications

(a) Xi (b) F̂B,i for 1 ≤ i ≤ 50

(c) F̂B,i for 51 ≤ i ≤ 100 (d) F̂B,i for 101 ≤ i ≤ 150

Figure 2.8: Graphics for Example 2.15.

In the next examples, we will also present simulation results from the nonparametric

product partition models using different function weights Wi and measure νi in the loss

function of Theorem 2.10 as follows. The first one is the NPPMs with Wi(x) = 1 and

νi(x) corresponding to the Lebesgue measure; for the second one, we set Wi(x) = 1

and νi(x) = F̂B,i(x), which we name NPPMsB; finally, inspired by the Anderson-

Darling test, we use Wi(x) = 1
F̂B,i(x)(1−F̂B,i(x))

with νi(x) = F̂B,i(x), and refer to it as

NPPMsBB. We study the behavior of the probability of change point of the NPPMs

as well and this will be identified by NPPMsP.

We compare the performance with that of parametric and nonparametric procedures

that have recently appeared in the literature, such as the Pruned Exact Linear Time
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(PELT) procedure (Killick et al., 2012), which is based on a penalization function, and

ECP (E-divisive change-point analysis) introduced by Matteson and James (2014),

which is based on a divergence measure that can determine whether two independent

random vectors are identically distributed. We also compare our proposal with the

parametric product partition model introduced by Barry and Hartigan (1992, 1993)

(bcp) which detects changes in mean with known variance, and the normal-gamma

product partition model studied by Loschi et al. (2003) which detects changes in mean

and variance in normally distributed data. For this model we analyze the marginal

probability of change point (NG P) and the loss function (NG) criterion. For each

method, we evaluate their effectiveness in detecting change in mean, variance, tail and

skewness for 20, 150 and 300 observations using the Rand index introduced by Rand

(1971) which we will describe briefly. Suppose that we have n data points with two

ways of clustering the data: U and V . Let A be the set of pairs of data points that

are together in U and V . Let B the set of pairs of data points that are not clustered

together under U and V . Then the Rand index is defined as follows

RandI =
|A|+ |B|(

n
2

) .

In words, the Rand index is the percentage of pairs of data in which the partitions A

and B cluster in the same way; that is, if both observations are clustered together or

not.

Example 2.16. Small data sets. Each simulation applies the methods described

earlier to a set of 1000 independent sequences of 20 observations with one change point

at i = 11 with distributions G1 and G2 respectively for each block. To assess the

performance for changes in mean, we set G1 = N(µ1, 1) and G2 = N(µ2, 1); for changes

in variance we define G1 = N(0, σ21) and G2 = N(0, σ22); in the case of changes in tail

we specify G1 = N(0, σ2) and G2 = tν . Finally, to study changes in skewness, we define

G1 = N(µ, 1) and G2 = sN(0, 1, α) where sN denotes the skew normal distribution and

µ = Mode(G2). Table 2.1 shows the mean and standard deviation of the Rand index for

each method and each case considered. For the purpose of facilitating the interpretation

of results, the table is colored with darker tones denoting better performance. We can

see that the methods based on loss functions (NPPMs, NPPMsB, NPPMsBB, NG, ECP

and PELT) perform better than methods that rely on the marginal probability of change

point (NPPMsP, bcp and NG P). The NPPMs with loss function have similar efficiency

and perform better than the other parametric and nonparametric approaches.
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Change in mean (N = 20)

(µ1, µ2) NPPMsP NPPMs NPPMsB NPPMsBB bcp NG NG P ECP PELT

(0, 0) 0.820.25 0.970.10 0.980.09 0.970.10 0.970.10 0.990.05 0.930.16 0.950.13 0.990.03

(0, 1) 0.630.20 0.820.16 0.820.16 0.820.16 0.620.17 0.760.18 0.650.19 0.800.17 0.740.18

(0, 2) 0.800.21 0.920.11 0.900.14 0.930.09 0.800.19 0.910.13 0.800.20 0.950.10 0.900.16

(0, 4) 0.960.07 0.980.03 0.980.03 0.990.03 0.980.06 0.990.03 0.960.06 0.9990.004 0.9960.02

Change in variance (N = 20)(
σ2
1, σ

2
2

)
NPPMsP NPPMs NPPMsB NPPMsBB bcp NG NG P ECP PELT

(1, 2.25) 0.580.17 0.810.14 0.820.13 0.820.13 0.620.14 0.700.16 0.660.13 0.710.16 0.690.13

(1, 5) 0.650.20 0.820.17 0.860.12 0.860.12 0.6500.12 0.770.15 0.700.09 0.730.16 0.750.17

(1, 10) 0.730.22 0.880.12 0.880.10 880.12 0.670.13 0.820.16 0.720.12 0.790.17 0.840.15

(1, 64) 0.900.15 0.930.08 0.910.13 0.9508 0.740.07 0.900.14 0.830.20 0.920.13 0.960.08

Change in tail (N = 20)

(σ, ν) NPPMsP NPPMs NPPMsB NPPMsBB bcp NG NG p ECP PELT

(1, 2.1) 0.60.17 0.750.16 0.80.13 0.740.17 0.590.14 0.670.14 0.650.09 0.690.16 0.670.13

(1, 3) 0.580.16 0.780.15 0.80.13 0.80.14 0.60.13 0.670.14 0.650.09 0.70.15 0.670.13

(1, 4) 0.580.16 0.810.12 0.80.13 0.80.13 0.590.12 0.670.15 0.650.09 0.70.15 0.660.13

(1, 8) 0.580.15 0.810.12 0.810.13 0.80.14 0.580.12 0.640.15 0.650.1 0.680.15 0.670.1

Change in skewness (N = 20)

(µ, α) NPPMsP NPPMs NPPMsB NPPMsBB bcp NG NG p ECP PELT

(0.5, 1) 0.570.16 0.810.13 0.810.13 0.80.14 0.570.12 0.620.15 0.650.13 0.690.15 0.670.13

(0.45, 3) 0.60.18 0.840.12 0.840.11 0.820.14 0.590.13 0.660.16 0.650.14 0.680.15 0.670.12

(0.35, 5) 0.620.19 0.840.12 0.850.11 0.850.12 0.610.13 0.670.16 0.660.14 0.70.16 0.670.12

(0.25, 10) 0.650.2 0.850.12 0.850.11 0.850.12 0.630.14 0.680.15 0.670.14 0.720.17 0.670.12
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Example 2.17. 150 observations. In this simulation experiment we include the

ECP2 which is the ECP method without specifying the number of change points. Each

simulation applies the methods described earlier to a set of 1000 independent sequences

of 150 observations with two change points at i = 51 and i = 101 with distributions G1,

G2, G1 for successive blocks. To assess the performance for changes in mean, we set

G1 = N(µ1, 1) and G2 = N(µ2, 1), for changes in variance we define G1 = N(0, σ21)

and G2 = N(0, σ22), in the case of changes in tail, we specify G1 = N(0, 1) and G2 = tν .

Finally, to study changes in skewness, we define G1 = N(µ, σ2) and G2 = sN(0, 1, α)

with µ = Mode(G2) and σ2 = V ar(G1). Table 2.2 presents the mean and the variance

of the Rand index. As in the case of 20 observations, we can see that the methods

using a loss function criterion perform better than the methods using the marginal

probability of change point. For changes in mean, PELT, ECP, ECP2 perform best

although NPPMBs perform adequately as well. For changes in variance, our proposal

performs slightly better than the other parametric and nonparametric procedures for

small changes, although the other methodologies are more effective when dealing with

big changes in variance. As expected, the parametric approaches assuming normality

can not deal well with changes in tail or skewness. For such cases, the nonparametric

approaches are most effective, NPPMs and NPPMsB being the methods that perform

best.
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Change in mean (n = 150)

(µ1, µ2) NPPMsP NPPMs NPPMsB NPPMsBB bcp NG NG P ECP ECP2 PELT

(0, 0) 0.870.21 0.990.06 10.03 10.05 0.990.05 10 10.04 0.980.1 0.980.09 0.980.08

(0, 1) 0.50.21 0.880.07 0.910.08 0.890.14 0.440.2 0.880.18 0.610.23 0.940.06 0.910.12 0.930.11

(0, 2) 0.760.21 0.950.12 0.980.02 0.960.12 0.830.2 0.980.02 0.730.02 0.990.01 0.990.02 0.990.02

(0, 4) 0.970.05 0.980.08 10.01 10.02 10.02 10.01 0.990.03 10 10.01 10.01

Change in variance (n = 150)

(σ2
1, σ

2
2) NPPMsP NPPMs NPPMsB NPPMsBB bcp NG NG P ECP ECP2 PELT

(1, 3) 0.630.2 0.860.1 0.850.06 0.810.15 0.50.23 0.790.2 0.740.17 0.770.11 0.470.22 0.830.2

(1, 5) 0.680.19 0.910.07 0.820.19 0.760.24 0.70.22 0.870.18 0.830.1 0.870.1 0.690.26 0.950.06

(1, 7) 0.790.09 0.890.17 0.880.12 0.860.1 0.80.16 0.940.09 0.860.07 0.920.08 0.810.23 0.960.03

(1, 10) 0.780.17 0.930.03 0.90.14 0.890.13 0.790.09 0.960.04 0.870.04 0.950.06 0.920.13 0.980.02

Change in tail (n = 150)

ν NPPMsP NPPMs NPPMsB NPPMsBB bcp NG NG p ECP ECP2 PELT

2.1 0.610.21 0.820.11 0.810.09 0.770.15 0.740.18 0.760.18 0.680.2 0.740.1 0.380.14 0.780.17

3 0.510.21 0.770.15 0.790.09 0.760.12 0.610.23 0.690.2 0.540.22 0.710.11 0.350.1 0.720.19

4 0.480.19 0.780.1 0.790.07 0.770.1 0.510.22 0.650.2 0.460.2 0.720.1 0.350.1 0.710.18

10 0.440.17 0.790.06 0.780.07 0.770.08 0.370.12 0.690.15 0.350.09 0.70.11 0.350.09 0.680.17

Change in skewness (n = 150)

(µ, σ, α) NPPMsP NPPMs NPPMsB NPPMsBB bcp NG NG p ECP ECP2 PELT

(0.5, 0.7, 2) 0.450.18 0.780.09 0.80.08 0.770.13 0.340.07 0.680.16 0.340.05 0.720.13 0.390.14 0.70.17

(0.45, 0.65, 3) 0.460.18 0.810.07 0.830.07 0.770.17 0.350.1 0.610.22 0.340.06 0.740.12 0.390.15 0.760.11

(0.35, 0.62, 5) 0.530.22 0.860.08 0.890.05 0.770.24 0.470.21 0.860.08 0.40.16 0.860.1 0.760.16 0.810.07

(0.25, 0.6, 10) 0.510.21 0.860.08 0.890.05 0.780.23 0.450.19 0.850.12 0.380.14 0.880.11 0.70.26 0.820.07
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Example 2.18. 300 observations. We use the same settings of the experiment of

150 observations with change points at i = 101 and i = 201. Comparing Table 2.2

and Table 2.3, we can observe better performance when the number of observations

increases. We notice the same behavior presented in the 150-observation experiment

although the nonparametric product partition models with loss function using weights

seems to better detect the change points than the ones which do not.
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Change in mean (n = 300)

(µ1, µ2) NPPMsP NPPMs NPPMsB NPPMsBB bcp NG NG P ECP ECP2 PELT

(0, 0) 0.760.25 0.980.09 10.02 0.990.05 10.03 10 10.04 0.980.08 0.980.08 0.980.08

(0, 1) 0.50.2 0.860.16 0.940.06 0.930.1 0.40.16 0.940.13 0.670.2 0.970.03 0.970.04 0.970.03

(0, 2) 0.760.22 0.910.15 0.990.01 0.970.12 0.860.18 0.990.01 0.70.01 10.01 0.990.01 0.990.02

(0, 4) 0.980.04 0.730.09 10.01 10.01 10.03 10 10.02 10 10.01 0.990.01

Change in variance (n = 300)

(σ2
1, σ

2
2) NPPMsP NPPMs NPPMsB NPPMsBB bcp NG NG P ECP ECP2 PELT

(1, 3) 0.730.14 0.880.04 0.880.1 0.890.08 0.520.24 0.880.15 0.810.1 0.790.1 0.520.23 0.940.05

(1, 5) 0.550.23 0.870.2 0.930.11 0.880.19 0.780.19 0.950.09 0.850.06 0.940.07 0.930.12 0.970.03

(1, 7) 0.630.24 0.930.09 0.930.15 0.90.13 0.850.11 0.970.06 0.860.04 0.960.05 0.960.08 0.980.02

(1, 10) 0.770.19 0.90.19 0.920.18 0.870.21 0.780.07 0.980.03 0.860.03 0.980.02 0.980.02 0.990.02

Change in tail (n = 300)

ν NPPMsP NPPMs NPPMsB NPPMsBB bcp NG NG p ECP ECP2 PELT

2.1 0.570.22 0.860.09 0.860.09 0.820.13 0.810.11 0.840.16 0.770.15 0.730.1 0.390.15 0.870.07

3 0.450.19 0.850.07 0.850.06 0.840.08 0.710.2 0.790.16 0.660.21 0.710.11 0.360.1 0.80.15

4 0.450.18 0.780.14 0.820.08 0.810.08 0.560.23 0.730.18 0.530.22 0.720.1 0.370.12 0.750.17

10 0.420.16 0.750.13 0.80.06 0.780.07 0.370.12 0.690.14 0.370.12 0.680.13 0.350.09 0.690.17

Change in skewness (n = 300)

(µ, σ, α) NPPMsP NPPMs NPPMsB NPPMsBB bcp NG NG p ECP ECP2 PELT

(0.5, 0.7, 2) 0.430.16 0.770.09 0.820.08 0.810.09 0.340.05 0.750.11 0.340.05 0.720.14 0.390.16 0.770.09

(0.45, 0.65, 3) 0.450.18 0.810.08 0.860.08 0.850.09 0.360.11 0.740.19 0.350.1 0.750.14 0.450.2 0.780.05

(0.35, 0.62, 5) 0.560.2 0.790.14 0.90.06 0.880.06 0.390.15 0.880.08 0.360.11 0.880.11 0.730.26 0.790.2

(0.25, 0.6, 10) 0.490.2 0.840.14 0.930.04 0.930.06 0.410.17 0.920.05 0.380.14 0.950.06 0.940.1 0.870.13
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2.4.2 Sensitivity Analysis

In this section we include a sensitivity analysis of our model. We carried out 100

simulations for each of the following combinations of the parameters.

α = 1, 30 cNP0 = 0.001, 0.002 pNP0 = 0.01, 0.05 using the following cohesion func-

tions:

cij = pNP0(1− pNP0)
j−i−1cNP0

For each simulation, we generated a data set as follows:

Xi
ind∼ N(µi, 1)


µi = 0, if 1 ≤ i ≤ 50

µi = 4, if 51 ≤ i ≤ 100

µi = 0, if 101 ≤ i ≤ 150.

Each simulation applies the methods described earlier to a set of 100 independent

sequences of 150 observations with two change points at i = 51 and i = 101 with

distributions N(µi = 0, 1), N(µi = 4, 1), N(µi = 0, 1) for successive blocks.

In Tables 2.4 and 2.5 we present the histograms of the frequency the change points

estimated for each method proposed, with different parameters α, cohesion functions

and probabilities of change.

The number of change points detected by the model NNPPMsP is quite unstable

when α = 1; this may be explained by the flexibility and variability of the Dirichlet

Process for small values of α. Using loss functions to estimate the change points is

more stable for a wider choice of parameters.
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Table 2.4: Histogram of the change points detected in the simulations
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α = 30 α = 30 α = 30 α = 30
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Table 2.5: Histogram of the change points detected in the simulations
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2.4.3 Applications to real data sets

2.4.3.1 Dow Jones industrial average

We will study the weekly closing values of the Dow-Jones industrial average over the

period from July 1st, to August 2nd, 1974 (the week before former President Nixon

resigned). The data can be downloaded from the R package strucchange (Zeileis et al.,

2002). We transform the data into a series of rates return,

Rt =
Pt+1

Pt
− 1

where Pt are the index values at week t, t = 1, 2, ..., 161. For the analysis, we will

assume as (Hsu, 1979), that the values are exchangeable.

Figure 2.9 presents the number of change points detected by the NPPM, NPPMB

and NPPMBB versus SSEγ for the Dow Jones data set described before. We can

see that NPPMB and NPPMBB have almost the same values, while NPPM presents

different behavior. We maximize the difference of SSE when we change more zero

change points to one change point for models NPPMB and NPPMBB. In the case

of NPPM, we maximize this difference when we change from 2 to 3 change points.

Therefore, for models NPPMB and NPPMBB, we choose γ in such a way that we

obtain one change point. In the case of NPPM, we select this value to obtain three

change points. Table 2.6 shows change points detected by different methods and their

respective SSE. Although PELT, ECP, NPPMB and NPPMBB detect only one point,

the last two have minimum SSE. Since NPPM detects three, naturally, it is the method

with minimum SSE. Figure 2.10 shows the change points detected by the methods

studied. In Figure 2.11, we can observe the estimated distribution for each data point

and distinguish mainly two groups of distributions, the first one in color blue and the

second one in green. Although both groups appear to have the same mean, the second

one has larger variance. The distribution corresponding to the change point found by

NPPMB and NPPMBB is indicated in red.
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Figure 2.9: Number of Change Points vs SSE for NPPM, NPPMB and NPPMBB.

Method Number of Change Points SSE

Change Points

NPPM 3 {24, 71, 91} 0.07748426

NPPMB 1 84 0.07774066

NPPMBB 1 84 0.07774066

PELT 1 90 0.07784357

ECP 1 90 0.07784357

Table 2.6: Dow Jones data and change points detected by different methods.
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Figure 2.10: Change points detected by NPPM, NPPMB, NPPMBB, PELT and ECP.
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Figure 2.11: Estimated distributions (F̂B,i) for i = 1, ..., 161.

2.4.3.2 Human genome

Biological and medical research reveals that some forms of cancer are caused by somatic

or inherited mutations in oncogenes and tumor suppressor genes; cancer development

and genetic disorders often result in chromosomal DNA copy number changes or copy

number variations (CNVs). Consequently, identification of these loci where the DNA

copy number changes or CNVs have taken place will (at least partially) facilitate the

development of medical diagnostic tools and treatment regimes for cancer and other

genetic diseases (Chen and Gupta, 2011).

Copy number variation can be discovered by cytogenetic techniques such as array

comparative genomic hybridization (aCGH), which consists of the steps described in

Figure 2.12.

Missing values are common in this type of data and occur for diverse reasons,

including insufficient resolution, image corruption, or simply due to dust or scratches
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Test=Tumoral	  DNA	  

Control=Normal	  DNA	  

Figure 2.12: Diagram of the microarray-based comparative genomic hybridization pro-

cess. Steps 1-3: Test and control DNA are labeled with fluorescent dyes, combined

equal amounts of DNA and applied to the microarray. Step 4: Test and control DNA

compete to attach, or hybridize, to the microarray. Steps 5-6: The microarray scanner

measures the fluorescent signals and computer software calculates the Log-Ratios of

the fluorescence intensities of the test and reference samples along the chromosome.

on the slide. Missing data may also occur systematically as a result of the robotic

methods used to create them (Troyanskaya et al., 2001).

Snijders et al. (2001) performed aCGH experiments on 15 fibroblast cell lines and

obtained normalized averages of the Log-Ratios. This data has been studied extensively

in the literature and can be downloaded from several sources, such as the GLAD package

of the R software (Hupe, 2011). Next, we present the analysis of the genome gm01524

of the Snijders database using NPPMs and compare it with ECP and PELT. Because

these methodologies do not consider missing data, we imputed the absent values as the

average of their neighboring observations. To apply our methodology, we assume that

missing values are at random which is consistent with Figure 2.13 where we do not

recognize any pattern at the points where a missing value is present.

Figure 2.14 shows the distribution functions estimated at each position of the

genome. We can see that all the chromosome positions share the same distribution

function with different mean, as assumed by several algorithms for change-points de-

tection for aCGH data.
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Figure 2.13: Genome gm01524 of Snijders data (2271 observations including 112 missing

values). Green lines indicates missing values.

Figure 2.14: Estimated distributions for each data point. Snijders data.
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2.4 Simulation experiments and applications

We will specify the number of change points using the graphic of the sum of square

errors displayed in Figure 2.15. The number of change points depends on the ”elbow”

point at which the remaining SSE are relatively small and all about the same size. This

point is not very evident in Figure 2.15, but we can still say that the eighteenth point

is our ”elbow” point.
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Figure 2.15: Number of change points vs SSE for NPPM, NPPMB and NPPMBB in

Snijders et al. data.

Table 2.7 shows the number of changes points obtained by ECP and PELT. We

compare the SSE obtained by these methods with the SSE obtained by NPPMs for the

same number of change points.
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Number of Change Points PELT ECP NPPM NPPMB NPPMBB

18 - 17.10636 18.6968 18.45198 18.39047

23 18.41243 - 18.54185 18.19333 18.17079

Table 2.7: SSE and number of change points detected by different methods for the

Snijders data.

Unlike NPPMs, ECP and PELT do not consider the variability of missing values,

which can explain the differences in Table 2.7. Figure 2.16 shows change points detected

by different methods.
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Figure 2.16: Snijders data and change points detected by different methods. (a) PELT

(b) ECP (c) NPPM (d) NPPMB (e) NPPMBB.
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2.5 Discussion

In this chapter, we used the Dirichlet process to extend the PPMs to the NPPMs

which does not impose any particular parametric form on the distribution function.

We also provided a methodology which uses loss functions to detect change points

that can also be applied to other models such as the nonparametric hidden Markov

models of Yau et al. (2011). For the loss function proposed in equation (2.11), we

suggested a procedure to determine the value of the parameter γ, which appears in

similar loss functions in different settings such as, for example, variable selection (Hahn

and Carvalho, 2015).

In many applications such as the analysis of aCGH data, missing data occurs fre-

quently. To tackle this difficulty, we took advantage of the random partition structure

of our model in order to estimate the distribution function of each missing value without

using multiple imputation (which is computationally less efficient). Then, we were able

to detect the change points using the loss functions described earlier. This procedure

can also be used in the parametric product partition models for change-point analysis.

Also, we established a relationship between NDP and NPPMs in the same way that

the PPMs are related to the Dirichlet process: By integrating out the Dirichlet process

in the NDP, we obtained a particular case of our model.

Finally, we have shown through simulations that methods based on loss functions

may perform better that the ones using the marginal probability. This is specially true

in the case of the NPPMs, in which this criterion detects change points very poorly.

Moreover, we have shown for different data sizes that our proposal performs better

than parametric and nonparametric models recently discussed in the literature.

Mena and Ruggiero (2016) discuss change-point analysis in a nonparametric setting;

they ask: If the model is too flexible, does it make sense to define a change point? We

argue that our loss function allows us to define it because we measure the shift using a

distance between distributions.
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Chapter 3
A New Approach to Bayesian

Post-Stratification

Those who have no compassion have no wisdom. Knowledge, yes; cleverness,

maybe; wisdom, no. A clever mind is not a heart. Knowledge doesn’t really

care. Wisdom does.

Benjamin Hoff

In the context of survey sampling, post-stratification is a reweighting of the sample

using an auxiliary variable which is highly correlated with the target variable. The

basic idea is that, if we know the population is composed of distinct groups (strata)

that differ with regard to the quantity we are interested in estimating and we know the

sizes of these strata in our population, then we can obtain a more accurate estimate

of the quantity of interest by correcting for any imbalance in the representation of the

strata in the sample. This correction is obtained by using a weighted average (using the

known weights from the population) of the averages within strata as our estimate of the

population mean. The aim of this chapter is to provide a Bayesian framework to model

the prior knowledge concerning the structure of the population using random partition

models. We will then be able to combine many polls to obtain better estimates through

a Bayesian learning process.

3.1 Finite Population Sampling

In this section we will give a brief overview of finite population sampling.
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3.1.1 Methods in finite population sampling

In finite population sampling there exist two main approaches to estimating the quan-

tities of interest: design-based and model-based inference. Little (2004) discusses the

main differences between them. More precisely, he divides these procedures as follows:

• Design-based inference.

• Model-based inference.

– Superpopulation modelling.

– Bayesian modelling.

In the following subsections we will describe each one briefly. Little proposes a third

view, in which the researcher takes into account the sample design and makes weak

parametric assumptions that can produce reliable and efficient inferences in survey

settings.

Design-based inference

Pure design-based inference is the most common in traditional sampling theory. Well-

known sampling texts such as Cochran (1977) use this type of approach. Here, the

population of interest is considered as a finite collection of elements. Design-based

inference assumes that the population is fixed. Each sample is viewed as a realization

of a random process, so a different sample may have chosen a different set of units. The

probabilistic nature of the sample is the only source of randomness that plays a part

when making inference about the population.

Design-based inference has several advantages:

• It takes into account the survey design.

• Accurate inferences in large samples without making strong assumptions such as

a distribution of the data.

• Easy computational implementation.

• Popularity among practical statisticians.
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3.1 Finite Population Sampling

Model-based inference

Unlike design-based inference, pure model-based inference does not regard the popu-

lation of interest as fixed. Here we assume that an infinite superpopulation or super-

population model, which includes a random component, is responsible for creating the

elements in the finite population. One way to think of the superpopulation model is

as the process used to create the elements in the population. The specific form of the

proposed infinite superpopulation model is often borrowed from classical methods such

as regression.

Superpopulation modelling

In the superpopulation approach we assume that the population is a random sample

from a model. We assume a probability distribution p(y|θ), where θ is a vector of

parameters that we want to study in order to characterize the population. A relevant

example studied in Little (2004) is model-based inference for the mean from a stratified

random sample. We want to estimate the mean of the population Y and we have a

stratification based on the discrete variable X. We will consider the basic normal post-

stratification model. Let yi denote the value of Y for unit i in the sample. Let xi be

the value of X for unit i. We will assume that xi given zi = h is normal with mean

µh and variance σ2h. Suppose we do not have any prior knowledge about µh and σ2h. A

simple Bayesian model that reflects this is

p(yi|xi = h, µh, σ
2
h)

independent
= N(µh, σ

2
h)

p(µh, log σh) ∝ const

In this model the structure is fixed. Suppose that we know σ2h; then standard

calculations yield

E(ŷ|x1, . . . , xn, σ2h) = yst =

H∑
h=1

Phyh

V ar(ŷ|x1, . . . , xn, σ2h) = vst =
H∑
h=1

P 2
hσ

2
h(

1

nh
− 1

Nh
)

where Ph is the probability of sampling from stratum h, nh is the number of observations

in the sample that belong to stratum h and Nh is the number of individuals in the
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population that belong to stratum h. We name this model the basic normal post-

stratification model (BNPM). When we replace the {σ2h} by the estimates {s2h}, we

obtain the same estimates as in design-based modelling. This procedure is often justified

when we have large samples.

Note that integrating over the posterior distribution of {σ2h} rather than simply

plugging in estimates yields a useful small-sample correction not readily available from

design-based and superpopulation approaches (see Little 2004).

Bayesian modelling

Ericson (1969) proposed a Bayesian approach using Pólya urns to predict the non

observed values of the population given the data (see section 1.3). Suppose we have

a population of size N and we observe a random sample of size n. In a first urn we

put the n observed values x1, . . . , xn. In a second urn we put N − n balls without

any values. These balls represent the unknown values of the rest of the population

Xn+1, . . . , XN . In the next step, we extract a ball from each urn, then we assign the

value of the ball of the first urn to the ball of the second one. Next we put the two balls

in the first urn. Now we will have n+ 1 balls in the first urn, and N −n−1 balls in the

second one. We continue this process until the second urn is empty. We thus obtain a

simulation of P (xn+1, . . . , xN |x1, . . . , xn). Suppose we have an infinite population and

we have a random sample of size n. Suppose also that we believe that the distribution

of the infinite population is G.

Blackwell and MacQueen (1973) extended the Pólya urn model as follows: In the

first urn we put the n observed values x1, . . . , xn, in the second urn we put an infinite

number of balls without any values; as before, these balls represent the unknown values

of the rest of the population. In the next step we select a ball from the first urn with

probability
n

n+ α
and with probability

α

n+ α
a new value from G; then we extract a

ball from the second urn and assign the value obtained to the ball. Then we put this

ball in the first urn. Now we have n + 1 balls in the first urn. The parameter α is a

dispersion parameter. With this procedure, we obtain the Dirichlet process DP (α,G)

defined by Ferguson (1973) and discussed in section 1.3.

The relationship between finite population sampling and Bayesian non-parametric

statistics arises naturally from these Pólya urn schemes. Despite this link, there are

only a few papers that relate these two fields of statistics. An example can be found
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in Binder (1982) who uses Bayesian non-parametric models for estimating population

percentiles and develops a procedure for interval estimates in stratified sampling.

Lo (1986) studies the Dirichlet multinomial model for finite population sampling.

He obtains the following result: If the population size tends to infinity (the sample size is

fixed), sampling without replacement from a Dirichlet multinomial process is equivalent

to the iid sampling from a Dirichlet process. In general, we feel that Bayesian inference

for finite population sampling is a challenging area of study that needs more attention

from the Bayesian community.

3.1.2 Stratification

Stratification is the process of grouping members of the population into relatively homo-

geneous subgroups before sampling. If the stratification is adequate, it helps us obtain

more accurate estimates because we include correct information in the inference. Un-

der specific circumstances, stratification yields better estimates than the ones obtained

with simple random sampling, but this is not always the case.

Optimal stratification

What is the best characteristic for the construction of the strata? How should the

boundaries between the strata be determined? How many strata should there be? In

Cochran (1977) the author gives some advices concerning these questions. Given the

number of strata, the equations for determining the best stratum boundaries have been

studied by Dalenius and Hodges (1959) under proportional and optimal allocation (the

size of each stratum is proportional to the standard deviation of the distribution of the

variable; hence larger samples are taken in the strata with the greatest variability to

generate the least possible sampling variance). An interesting problem arises when we

are dealing with multivariate variables. How can we choose the optimal stratification

when we have continuous and discrete random variables together?. One possibility is to

use Bayesian trees (see Denison et al. 2002) which induce a partition over both discrete

and continuous covariates.
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Figure 3.1: Graphical representation of post-stratification

3.1.3 Post-Stratification, weighting and calibration

Post-Stratification, weighting and calibration are related methods to use auxiliary in-

formation available on the whole population. For example, if our sample consists of

60% women, when we know from a census that in the population women are in fact

52%, this may introduce bias into the estimate of interest because we will give greater

weight to those people we oversampled. In this section we will describe some of the

main methods to use auxiliary variables in order to obtain better estimates.

3.1.3.1 Post-Stratification

When we are conducting a survey it is very important to obtain a representative sample

of the population. But sometimes we oversample some kinds of observations and un-

dersample others. As mentioned above, this may introduce bias into the estimate of the

quantity of interest. We can correct these biases statistically with a post-stratification

survey weight. In order to calculate a post-stratification weight, we need an auxil-

iary variable X to which we can compare our sample data. Then we can estimate a

parameter of the target variable Y . Figure 3.1 represents this situation.

Selection of post-strata: Considering all post-strata is not always practical because

of problems of empty strata and lack of sufficient population information. Little (1993)

develops an algorithm to collapse post-strata. He uses the reduction of the variance

of the estimated mean as a criterion to form the post-strata. Let us consider the

BNPM. Collapsing two post-strata h1 and h2 is interpreted as combining the population
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3.1 Finite Population Sampling

proportions Ph1 and Ph2 and modifying the model accordingly. The posterior mean

under this collapsed model is

y(h1h2)ps =
∑

h6=h1,h2

Phyh + (Ph1 + Ph2)y(h1h2),

where yh1h2 is the mean of the collapsed post-strata h1 and h2. The posterior variance

of the collapsed post-strata is denoted by v
(h1h2)
ps Hence the difference in posterior

variance can be written as: 4vh1,h2 = vps− v(h1h2)ps Little (1993) observes that if Y and

X× I{h1,h2} are independent, then the variance of the estimate can be reduced because

the distributions of Y |X = h1 and Y |X = h2 are the same. Then, when we collapse, we

reduce the number of parameters to be estimated ( µh1 and µh2 to µh1h2) and increase

the number of observations in the estimation of this parameter. But when Y |X = h1

and Y |X = h2 are associated, we are modelling a mixture of two normals with only one

normal distribution and then the replacement of the parameters µh1 and µh2 with µh1h2

can affect the global estimation of y. Little (1993) proposes the following algorithm:

Algorithm 3.1 Collapsing post-strata

1. Order the post-strata so that neighbors are a priori relatively homogeneous. If they

are based on an ordered variable (such as age), then this step is not needed.

2. Collapse the post-stratum pair (i, i+ 1) that maximizes E(4vi,i+1)

3. Proceed sequentially until a reasonable number of post-strata remain or E(4vi,i+1)

becomes noticeably negative.

Note that in this algorithm the prior knowledge about the population structure is

used and determines the final post-stratification.

Remark 3.1. The assignment of sample size to post-strata is irrelevant if there are

enough observations to make inference.

3.1.3.2 Weighting

Weighting the post-stratification: After selection of strata, we need to weight the ob-

servations in each strata. In many applications, survey weights can be the inverse of

the selection probabilities but this is not always the case. We can also use regression

as an alternative for weighting. Bethlehem and Keller (1987) use regression to provide

a method for weighting and to relate the target variables of the survey to auxiliary

variables. We now briefly describe this idea. Let 1, ..., N be the labels of the elements
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of the finite population. We will construct the following matrices: Y = [yij ]N×q and

X = [xij ]N×p where Y = (y1, . . . , yN )T are the target variables and X = (x1, . . . , xn)T

are the auxiliary variables. The objective of the sample is to estimate the q-vector of

means: y = YT
eN
N

where eN is the N -vector consisting of ones (eN = [1]N×1). Similarly

the p-vector of population means for the p auxiliary variables is denoted by x = XT eN
N

.

A sample from the finite population x can be represented as an N ×N -diagonal matrix

D = [dij ]N×N . dii = 1 if the i-element of the population is in the sample and dii = 0

otherwise. Then E[D] = W where W = [wij ]N×N is the N ×N diagonal matrix where

wii are the probabilities of inclusion of the i-element of the population. If the auxiliary

variables are correlated with the target variables, an estimator can be constructed as

follows:

Y = XB + E

where E is an N × q-matrix of residuals. Applying the ordinary least squares method

results in B = (XTX)−1XTY . An estimator for B, based in the sample data, is

defined as B̂ = (XTW−1DX)−1XW−1DY . The regression estimator is then given by

ŷR = B̂TY T eN
N

= B̂Tx. In the case of Simple Random Sampling (SRS), let ys be the

n-vector of sampled values of the target variable and Xs be the n×p-matrix of auxiliary

variables corresponding to sampled elements. The regression estimator then reduces

to ŷR = β̂Txs, where xs is the p-vector of sample means of the auxiliary variables and

β̂ = (XT
SXS)−1XT

s ys.

We can also include qualitative auxiliary variables. Suppose our auxiliary variable

has H categories. For each category there is a dummy variable which takes the value 1

if the particular element belongs to that stratum, otherwise it takes the value 0. The

matrix X has dimension N ×H and each row contains exactly one 1. The columns of

X sum up to the sub-population totals N1, N2, . . . , NH where N1 + . . .+NL = N . We

can retain the notation used in the case of SRS. The columns of Xs will sum up to the

random sample totals n1, n2, . . . , nH in the strata, where n1 + n2 + . . .+ nH = n. The

vector of population means of the auxiliary variables is equal to x =
(N1, N2, .., NH)T

N

and the corresponding vector of sample means is equal to xs =
(n1, . . . , nH)

n
. Due

to the special structure of the matrix X the matrix XT
SXS is a diagonal matrix with

diagonal elements equal to n1, . . . , nH . We obtain

β̂ = (y(1)s , . . . , y(H)
s )
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where yhs is the sample mean of the target variable in stratum h. Finally, we obtain

the following regression estimator

ŷR =
H∑
h=1

Nhŷ
h
s

N
= ŷps,

where the subscript ps denotes the traditional post-stratification estimator. If there are

no observations in one or more strata, then some of the diagonal elements of XT
SXS are

zero, in which case XT
SXS is singular. We can make XT

SXS non-singular by collapsing

strata. Suppose that we have the auxiliary variables SEX, AGE and REGION. We

can consider the following linear model SEX ×AGE + REGION where × denotes the

crossing of auxiliary variables. This kind of models are known as incomplete multi-way

stratification. Note that in this case we do not consider all the possible interactions

between the levels of the categorical variables.

3.1.3.3 Calibration

The method of calibration for estimation of population totals is described by Deville

and Särndal (1992). An implicit objective of the method is to use auxiliary information

to obtain estimators that are approximately unbiased with smaller variance. As before,

consider a finite population labelled by 1, ..., N . Let yi be the value of the target variable

of the i-unit. Let xi be the value of the auxiliary variable of the i-unit. Consider s, a

random sample from the population. Let wi = P (i ∈ s) the probability that the i-unit

belongs to the sample. The population total of x, tx =
N∑
i

xi is assumed known by the

researcher. Deville and Särndal (1992) consider a calibration estimator T̂C =
∑
i∈s

cixi

where the calibration weights ci are chosen to minimize a given distance φ from the

basic weights c
′
i = 1

wi
subject to

∑
i∈s

cixi = tx. When a weighted sum of squares is

used to measure the distance between the two sets of weights, the estimator obtained

through calibration corresponds to a generalized regression estimator.
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3.1.4 Nonparametric methods for calibration in finite population sam-

pling

3.1.4.1 Introduction

In linear weighting, (Bethlehem and Keller, 1987) and calibration methods (Deville

and Särndal, 1992) it is implicitly assumed that a linear relationship holds between the

target and the auxiliary variables. In many cases this assumption is not warranted and

can yield poor estimates. In order to obtain more efficient estimators for the popu-

lation means and the population distributions, in recent years frequentist statisticians

began to employ nonparametric models that are more flexible. In the Bayesian ap-

proach there are even fewer papers, even though nonparametric Bayesian statistics is

a growing area of research. The aim of this section is to provide an overview of the

latest nonparametric methods used for the calibration for finite population sampling

using auxiliary information, both from the classical and the Bayesian approaches. We

also discuss some draft ideas about the use of Bayesian nonparametric models in this

important matter for finite population sampling.

3.1.4.2 Frequentist approach

Consider a population U = {1, 2, . . . , N} of N units from which a random sample s of

size n is selected according to a specific sampling design with probabilities of inclusion

πi for the i-th element of the population. Let yi be the value of the target variable Y

and xi the auxiliary variable X for the i-th element.

Deville and Särndal (1992); Bethlehem and Keller (1987) describe the most common

methodologies used to include auxiliary variables X in order to make inference about

the mean of the target variable Y. Usually, a parametric model is used to represent the

relationship m(·) between the auxiliary data and the target variable.

A frequentist approach was suggested by Kuo (1988) for the distribution function;

she adopts a nonparametric model-based approach, which is more flexible when mode-

lling the relation between X and Y. Breidt and Opsomer (2000) use the local polynomial

regression estimator for the unknown regression function m(·). A more recent model

using local polynomial regression estimators can be founded in Rueda and Sánchez-

Borrego (2009). These latter authors assume that the population can be described
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by

yi = m(xi) + εi, (3.1)

where εi are independent and identically distributed with E[εi] = 0, and constant

variance σ2. After the sample has been observed, we can estimate y with

y = fys + (1− f)ysc (3.2)

where ys =
1

n

∑
i∈s

yi, ysc =
1

N − n
∑
i∈sc

yi and f is a real number that helps us to weight

the mean of the sample and the mean of the non sampled elements. For example, we

can set f =
∑
i∈s

πi. The first term of equation (3.2) is known, and estimating y is

equivalent to predicting the mean ysc in the non sample data. If x is known for all the

population, then a natural way to do the predicting is to use a regression model that

treats the unknown values yi i ∈ sc as predicted values of ŷi = m(xi) i ∈ sc. Clearly,

when we know the values xi for the complete population U , an estimator of y is

ŷ = fys + (1− f)
1

N − n
∑
i∈sc

ŷi.

In practice, we only have the values of the xi’s in the sample and the empirical distribu-

tion of X for the complete population U . Chambers et al. (1993) use a fixed bandwidth

kernel smoothing to get estimates of the function m(·) evaluated in xi i ∈ sc. The kernel

smoother is simply a weighted average of all data points.

m̂(x) =

∑
i∈sw(x, xi, h)yi∑
i∈sw(x, xi, h)

, (3.3)

where the weights are specified using a kernel function K and a bandwidth h

w(x, xi, h) = K

(
x− xi
h

)
.

The kernel function K is normally a non-negative-valued function, symmetric about

zero. The interpretation of the bandwidth depends on the kernel function used, but

it is generally true that a larger bandwidth leads to smoother estimates by giving

progressively more weight to observations further away from x. As the bandwidth gets

smaller, only observations close to x get significant weight and therefore the kernel

smooth estimate is largely determined by local observations.
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Montanari and Ranalli (2005) develop a different approach using a neural network

model for the calibration estimator. In many applications we require more than the

mean of the population. We may need, for example, to estimate the quantiles or

the density distribution of the target variable Y . (See Rueda et al. (2010) for an

extended review of the frequentist methods). Using the same notation as before, the

finite population distribution function of the study variable Y , is given by

FY (t) =
∑
i∈U

4(t− yi)
N

,

with

4(t− yi) =

{
1 if t ≥ yi
0 otherwise.

A design-based estimator of the distribution function of Y is the Horvitz-Thompson

estimator (HT), defined by

F̂Y H(t) =
∑
i∈s

di
4(t− yi)

N
,

with di =
1

πi
, which we call the basic design weights. The HT is unbiased but, in

general, is not a distribution function since lim
t→+∞

F̂Y H(t) 6= 1; also, it does not use

the auxiliary information provided by the variable x. We will now describe the model

proposed by Rueda et al. (2010). They assume the model described by equation (3.1)

and use the same estimator of m(·) defined by equation (3.3). To incorporate the

auxiliary information, they propose the calibration estimator based on m

F̂Y mc(t) =
∑
i∈s

ωi
4(t− yi)

N
,

where the calibrated weights ωi are modified from di by minimizing the chi-square

distance measure

Φs =
∑
i∈s

(ωi − di)2

diqi
,

with qi known positive constants unrelated to di, subject to the calibration equations

1

N

∑
i∈s

ωi4(tj − m̂(xi)) = Fm̂(tj),
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with tj for j = 1, 2 . . . , P arbitrarily chosen points such that t1 < t2 < . . . < tP

and where Fm̂(tj) denotes the finite distribution function or empirical distribution of

m̂(xi) i ∈ U evaluated at the point tj . The proposed estimator F̂Y mc(t) is a genuine

distribution function. Then the construction of the estimates of the finite population

α-quantile of Y denoted by QY (α) is straightforward:

Q̂Y mc(α) = inf{t : F̂Y mc(t) ≥ α}.

In this approach we do not obtain a confidence interval for the α-quantiles estimates.

3.1.4.3 Bayesian approach

Zheng and Little (2003) develop a Bayesian nonparametric method to estimate the

total of a finite population with probability-proportional-to-size sampling (PPS), in

which the values of πi are proportional to the values xi of the size variable X and are

usually known for the whole population before s is drawn. Zheng and Little consider

the following model

yi = f(πi, β) + εi

with εi
iid∼ N(0, π2ki σ

2). Here f is a function of πi that is continuous up to the (p− 1)th

derivate with unknown parameters β. The exponent k models error heteroscedasticity,

and for simplicity it is assumed to be known. The function f is estimated by splines,

which are piecewise polynomial functions that are smooth to a certain degree. Zheng

and Little (2004) use splines to make inference for the mean from two-stage sample

designs. Another approach has been explored by Ciampi et al. (2007) who use Bayesian

regression tree models for calibration in the context of micro-array analysis. In this

case we have a regression model for each terminal node of the tree, which provides

flexibility in the relationship between Y and X since the linear dependence is local.

Nelson and Meeden (1998) propose an extension of the Pólya posterior that can be

used to estimate population quantiles with auxiliary variables.
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3.2 A Bayesian approach to post-stratification

3.2.1 Toy example

In this example we will describe a new approach to post-stratification using random

partitions models. Suppose we want to estimate the proportion of people that will vote

for the PRI in the Mexico City. We also have a simple random sample of size 100. We

have census information which divided the population into three zones: X1, X2 and X3.

To obtain better estimates the researchers want to make an adequate post-stratification

using this information. They have five ways to make the post-stratification:

[{X1, X2, X3}][{X1, X2}, {X3}][{X1, X3}, {X2}][{X1}, {X2, X3}][{X1}, {X2}, {X3}]

Suppose that, in past elections, the researchers have observed that people from X1

and people from X2 have roughly the same behavior. Suppose also the number of

people in X1 is small, so it would be convenient to merge these zones. The researchers

want to find the best post-stratification using their knowledge. Let S0 = {1, 2, 3} and

X = {X1, X2, X3} Let ρ = {S1, . . . , Sk} be a partition of S0 into k subsets. We define

XS = {Xi, i ∈ S}.

Remark 3.2. Note that we are inducing a partition over the range of the covariate

ZONE.

Let us exemplify this idea using the following data.

i yi xi

1 0 1

2 1 1

3 1 2

4 1 2

5 1 2

6 1 2

7 0 2

8 0 3

9 0 3

10 1 3

Table 3.1: Data for the toy example
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Suppose that ρ = {{S1}{S2}} with S1 = {1, 3} and S2 = {2}, then {i : xi ∈ XS1} =

{1, 2, 8, 9, 10} and {i : xi ∈ XS2} = {3, 4, 5, 7}
In a PPM, the partition is over the observations. Müller and Quintana (2010);

Müller et al. (2011), use the covariates only to increase the probability that two data

points with the same covariates will be in the same cluster (see equation (1.5)). They do

not obtain a partition over the range of covariates. Clearly, using the partition over the

range of the covariates we obtain a partition over the population. Jordan et al. (2007)

presented a partition over the observed covariates of the sample for prediction purposes.

Hegarty and Barry (2008) also use a partition over the range of covariates to estimate

the relative risk of disease in each area. Holmes et al. (2005) proposed a Bayesian par-

tition model that constructs arbitrarily complex regression and classification surfaces

by splitting the covariate space but none of these works study the properties of those

models (such as the Bayesian learning process concerning the random partition ρ).

Let y = (y1, . . . , yn) be the sample of size n = 100, where

yi =

{
1 if the i-th individual votes for the PRI,
0 otherwise.

Let x = (x1, . . . , xn) where xi is the zone of the observation yi. We define yXS =

{yi : xi ∈ XS}. For example, if S = {1, 2} then XS = {X1, X2} and yXS is the set of

observations that belong to X1 or X2. We will assume that the probability distribution

that is associated with y is parameterized by a vector of the form θ = (θ1, . . . , θn). If

ρ = {S1, . . . , Sk}, then

θ =
k∑
i=1

(
θSiδ1(Si), . . . , θ

Siδn(Si)
)
,

where θS is a common value for the θi’s, i ∈ S. We denote this particular form of θ by

θρ and note that θ can also be represented as (θS1 , . . . , θS|ρ| , ρ).

Then we have the following hierarchical model:

yXSj |(θ
S1 , . . . , θS|ρ| , ρ) ∼

∏
{i:xi∈XSj }

Bernoulli(yi|θSj )

θSj |ρ ind∼ Beta(aSj , bSj ) with Sj ∈ ρ

ρ ∼ RP (S0),

where θSj is a parameter associated to the set or stratum XSj .
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3.2.1.1 Posterior inference

In this section we will calculate the posterior probability p(ρ = {S1, . . . , Sk}|y1, . . . , yn)

Suppose that we have fixed the size of the sample n.

p(ρ|y1, . . . , yn) ∝ p(y1, . . . , yn|ρ)p(ρ)

∝ p(ρ)p(yXS1
|ρ)× ... × p(yXS|ρ| |ρ)

∝ p(ρ)×
∫
p(yXS1

|ρ, θS1)p(θS1 |ρ)dθS1 ×

... ×
∫
p(yXS|ρ| |ρ, θS|ρ|)p(θ

S|ρ| |ρ)dθS|ρ|

We now calculate
∫
p(yXSj |ρ, θ

Sj )p(θSj |ρ)dθSj .

For any t ∈ R we have

Bernoulli(yXSj |t)×Beta(t|a, b) = t

∑
yi∈yXSj

yi
(1− t)

nSj−
∑
yi∈yXSj

yi
× Γ(a+ b)

Γ(a)Γ(b)
ta−1(1− t)b−1

= t

∑
yi∈yXSj

yi+a−1
(1− t)

nSj−
∑
yi∈yXSj

yi+b−1
× Γ(a+ b)

Γ(a)Γ(b)
,

where nSj = |Sj |.
Then we have∫ 1

0
Bernoulli(yXSj |t)×Beta(t|a, b)dt =

Γ(a+ b)

Γ(a)Γ1(b)
×∫ 1

0
t

∑
yi∈yXSj

yi+a−1
(1− t)

nSj−
∑
yi∈yXSj

yi+b−1
dt

=
Γ(a+ b)

Γ(a)Γ(b)

×
Γ(
∑

yi∈yXSj
yi + a)Γ(nSj −

∑
yi∈yXSj

yi + b)

Γ(a+ b+ nSj )
.

Finally,

p(ρ = {S1, . . . , Sk}|y1, . . . , yn) ∝
k∏
j=1

{
Γ(aSj + bSj )

Γ(aSj )Γ(bSj )

×
Γ(
∑

yi∈yXSj
yi + aSj )Γ(nSj −

∑
yi∈yXSj

yi + bSj )

Γ(aSj + bSj + nSj )


×p(ρ = {S1, . . . , Sk}).
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Remark 3.3.

lim
nSj→0

Γ(
∑

yi∈yXSj
yi + aSj )Γ(nSj −

∑
yi∈yXSj

yi + bSj )

Γ(aSj + bSj + nSj )
= Γ(aSj )Γ(bSj )Γ(aSj + bSj )

Hence, when there are missing observations in some Sj,

p(yXS1
, . . . ,yXS|ρ| |ρ) ∝

∏
{j|yXSj 6=∅}

p(yXSj |ρ)

3.2.2 General model

In this section we will introduce a more general model. Let (X,Y ) be a random

vector. Here X is a finite discrete random variable with X ∈ {X1, . . . , XM}. Let

S0 = {1, . . . ,M}, ρ = {S1, . . . , Sk} be a partition of S0 into k subsets. We define

XS = {Xi|i ∈ S} Let (x1, y1) . . . (xn, yn) be a simple random sample of (X,Y ). We

define yXS = {yi|xi ∈ XS}. We have the following model

yXSj |(θ
S1 , . . . , θS|ρ| , ρ) ∼

∏
{i:xi∈XSj

}

p(yi|θSj )

θSj |ρ ind∼ p(θSj |ψSj ) withSj ∈ ρ (3.4)

ρ ∼ RP (S0),

where θSj is a parameter associated to the set or stratum XSj and ψSj the respective

vector of hyperparameters.

3.2.2.1 Posterior inference

The posterior distribution of the partition is given by

p(ρ|y1, . . . , yn) ∝ p(y1, . . . , yn|ρ)p(ρ)

∝ p(ρ)p(yXS1
|ρ)× . . .× p(yXS|ρ| |ρ)

∝ p(ρ)×
∫
p(yXS1

|ρ, θS1)p(θS1 |ρ)dθS1 × . . .

×
∫
p(yXS|ρ| |ρ, θS|ρ|)p(θ

S|ρ| |ρ)dθS|ρ|

For each j = 1, . . . , |ρ| we have

p(yXSj |ρ, θ
Sj ) =

∏
{yi∈yXSj }

p(yi|ρ, θSj ).
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When there are missing observations for any Sj ,

p(yXS1
, . . . ,yXS|ρ| |ρ) ∝

∏
{j|yXSj 6=∅}

p(yXSj |ρ)

3.2.3 Bayesian Learning process

3.2.3.1 Introduction

The model defined in the previous section provides an interesting learning process

concerning the structure of the population. We will devote this section to study this

process. Suppose that each year we make the same study about preferences on the

same product. How can we use previous polls to make better estimates? If it seems

reasonable to assume that the structure of the population remains the same through

time, then we could learn about the post-stratification of the population. This idea

can be very useful when there is post-strata with only a few observations. Sometimes

it is technically more convenient to describe a partition by a set of cluster membership

indicators, si = j if i ∈ Sj , i = 1, . . . , n. Recall that we follow the convention that

clusters are labelled in order of appearance, to avoid any inconsistency.

Example 3.4. Let X = {X1, X2, X3, X4}. We consider the vector (s1, s2, s3, s4) to

represent the partition ρ. For example, the vector (1, 1, 2, 3) represents the partition

{{1, 2}, {3}, {4}}, in terms of covariates: {{X1, X2}, {X3}, {X4}}
We simulated data points from the partition (1, 1, 2, 2) and parameters (0.7, 0.7,

0.3, 0.3), then we simulated data from the same partition with parameters (0.6, 0.6,

0.4, 0.4). In Table 3.2, we show the probability of each partition with and without

the learning process. The true partition has probability 0.719 with learning process and

0.2026 without it. This property allows us to use previous polls to make better estimates.
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iteration 1 iteration 2 Without learning process

Partition (0.7,0.7,0.3,0.3) (0.6,0.6,0.4,0.4) (0.6,0.6,0.4,0.4)

1,2,3,4 0.08122034 0.01708853 0.0285

1,1,2,3 0.20027720 0.08200028 0.0555

1,2,1,3 0.00125464 0.00048465 0.0523

1,2,3,1 0.02916935 0.01866985 0.0867

1,2,2,3 0.00001025 0.00000031 0.0041

1,2,3,2 0.00132556 0.00016207 0.0166

1,2,3,3 0.19515760 0.15001130 0.1041

1,1,1,2 0.00002205 0.00000308 0.0189

1,1,2,1 0.00524628 0.00272366 0.0703

1,2,1,1 0.00502333 0.00900247 0.2427

1,2,2,2 0.00001885 0.00000184 0.0132

1,1,2,2 0.48122950 0.71983760 0.2026

1,2,1,2 0.00002048 0.00000460 0.0304

1,2,2,1 0.00000368 0.00000034 0.0125

1,1,1,1 0.00002089 0.00000948 0.0615

Table 3.2: Simulation of the learning process

Example 3.5. We simulated data from partition (1, 1, 2, 2) using parameters chosen

at random at each iteration. In Table 3.3 we show the parameters used at each iteration.
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θ1 θ2

1 0.725 0.947

2 0.658 0.356

3 0.583 0.423

4 0.985 0.572

5 0.799 0.967

6 0.767 0.591

7 0.86 0.655

8 0.84 0.784

9 0.636 0.066

10 0.992 0.346

11 0.898 0.847

12 0.622 0.405

13 0.387 0.426

14 0.387 0.337

15 0.099 0.091

16 0.251 0.288

17 0.292 0.111

18 0.95 0.422

19 0.727 0.867

20 0 0.663

Table 3.3: Values of θ1 and θ2

In Figure 3.2 we can see the probability of the partition (1, 1, 2, 2).

In the first and third iteration we can see that the parameters θs1 and θs2 are close.

The probability is near 0.2. In the 22th and 25th iterations, the parameters θs1 and θs2

are close too, but because of the learning process, the probability of the true partition is

near 1. The figure suggests consistency.

To assess the performance of the model, in this toy example we construct a weighted

distance between the true partition ρ and the partition ρ̂. This distance is based on

the loss function of Binder (1978), which is given by

∑
ρ̂

W (ρ, ρ̂) (δρ({ρ̂})− P (ρ̂))2
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Figure 3.2: Probability of the partition (1,1,2,2) with and without the learning process.

with

W (ρ, ρ̂) =
∑
i<j

{U(i, j) + V (i, j)} ,

where U(i, j) = 1 if and only if i and j are in the same cluster under partition ρ but in

different clusters under ρ̂; similarly, V (i, j) = 1 if and only if i and j are together in ρ̂ but

separated in ρ. Figure 3.3 shows the results obtained for different number of simulations

for P (Xi = 1) = 0.25 P (Xi = 2) = 0.25 P (Xi = 3) = 0.1 P (Xi = 4) = 0.4

Yi|{Xi ∈ {1, 2}} ∼ Bernoulli(0.8) Yi|{Xi ∈ {3, 4}} ∼ Bernoulli(0.2)

.
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Figure 3.3: Using weighted distance to assess the performance of Example 3.3.

3.2.3.2 Product partition parameters correlated in time

A common practice in finite population sampling is to use previous polls to estimate

the variance of the population and calculate the number of observation given a desired

precision. For this purpose, we define a new model in which the parameters associated

for each stratum can be dependent of previous polls. The model is given by

yXSj |(θ
t
s1 , . . . , θ

t
s|ρ|
, ρ) ∼

∏
{i,xi∈X∗j }

Bernoulli (yi|θtsj )

θtsj |ρ
ind∼ Beta(atSj , b

t
sj )withSj ∈ ρ

atsj , b
t
sj ∼ p(φSj )

ρ ∼ RP (S0) (3.5)

where θtsj is the parameter associated to stratum X∗j at time t. Let E(φ) = φ0; if

var(φ)→ 0 then, p(φ)→ δφ0 ⇒

p(θ1, . . . , θT ) =

∫ T∏
i=1

p(θi|φ)p(φ)dφ→
T∏
i=1

p(θi|φ0). (3.6)

When var(φ)→∞, θ1, . . . , θT are highly correlated.

For a graphical representation of this model see Figure 3.4.
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Figure 3.4: Graphical representation of PPM parameters correlated in time.

3.2.4 Loss function

We define the loss function

l
(
ρ, ρ̂,θ, θ̂ρ̂

)
= γ

∥∥∥θ − θ̂ρ̂∥∥∥2 + (1− γ) |ρ̂.| (3.7)

In Appendix A, we state and provide a more detailed proof clarifying all the elements

of the sequential decision problem of the theorem of Quintana and Iglesias (2003). This

will allow us to find the partition which minimizes the expected loss.

3.3 Discussion

In this chapter, we proposed a Bayesian post-stratification approach where we model the

post-stratification as a random partition in order to include our prior knowledge about

the structure of the population. We defined a hierarchical Bayesian model tailored for

such purpose. We also provided a toy example to illustrate this kind of models. Note

that, if we have a set of five discrete covariates, each covariate with 3 levels, then we

will have 35 = 243 basic strata. Using the Bell number in equation (1.1), we have

B243 > 10275. This is the number of possible ways that we can stratify our population
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3. A NEW APPROACH TO BAYESIAN POST-STRATIFICATION

using the five covariates. Because of this, we were not able to carry out the simulations

for more realistic problems.
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Chapter 4
Variable Selection

Human existence is based upon two pillars: Compassion and knowledge.

Compassion without knowledge is ineffective; knowledge without compassion is

inhuman

Weisskopf Victor (Physicist)

Variable selection is an important issue in regression analysis. In Bayesian statis-

tics, Bayes Factors have played a major role when dealing with this problem; in fact,

despite the importance of decision theory within the Bayesian framework, there are

few proposals that use a utility function to address this problem. Inspired by product

partition models, we propose a probability measure over all possible models and use

a loss function suitable for prediction purposes. We point out some of the differences

from other recent theoretic-decision approaches such as that of Hahn and Carvalho

(2015), who use a similar loss function but different probability and decision settings,

or Barbieri and Berger (2002) who studied conditions to minimize the squared error

loss in orthogonal designs or nested models.

4.1 Introduction

In the framework of regression analysis, we usually want to explain the data or predict

future observations in the simplest way, so redundant predictors must be removed.

Suppose that we have n observations with k covariates and a response variable Y .

Set p = k + 1, Y = (Y1, ..., Yn)T , X = [xij] is a n × p matrix with i = 1, ..., n,

j = 0, ...., k and xi0 = 1 for all i. Let S0 = {1, ..., k} and S ⊆ S0. We define the
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4. VARIABLE SELECTION

model MS : Y = XSβS + εS with XS = [xij ]j∈{0}∪S a n × nS matrix nS = |S| + 1,

εS ∼ Nn

(
0, σ2SIn

)
where In denotes the n×n identity matrix and |S| is the cardinality

of the set S. βS =
(
βS0 , ...., β

S
|S|

)
. In other words,

MS : Y ∼ Nn

(
y|XSβS , σ

2
SIn

)
Note that we have T = 2k models.

Example 4.1. Suppose that we have 3 observations and 5 covariates, then

X =

 1 x11 x12 x13 x14 x15

1 x21 x22 x23 x24 x25

1 x31 x32 x33 x34 x35

 .

If S = {2, 3, 5} then

XS =

 1 x12 x13 x15

1 x22 x23 x25

1 x32 x33 x35


with βS =

(
βS0 , β

S
2 , β

S
3 , β

S
5

)
4.2 A new theoretic decision approach for variable selec-

tion

In this section we set up the theoretic decision framework for our problem. In variable

selection, we typically first choose a model among the T possibilities, then we make pre-

dictions using the chosen model. This decision process can be modeled as a sequential

decision problem. In the first stage, the space of actions is A1 = {select MŜi
, 1 ≤ i ≤ T}

and the space of uncertain events is E1 = {MSi , 1 ≤ i ≤ T} (see Figure 4.1). We are

ready to define the loss function associated with choosing MŜ when the true model is

MS . Let

l(MŜ ,MS) = Aψ(XŜ) +B(|Ŝ| − |S|), (4.1)

where ψ
(
X Ŝ

)
is a measure of the collinearity of the covariates, |S| is the number of

covariates of the model MS and A,B ≥ 0. The constants A and B help us standardize

the measures ψ(XŜ) and |Ŝ| − |S|, making them commensurable. Recall that our main

purpose is prediction with the minimum number of covariates, which should ideally not

be correlated. The term |Ŝ|−|S| promotes fewer covariates. In fact, when the estimated
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4.2 A new theoretic decision approach for variable selection

model MŜ has less covariates than the true model MS , the loss function rewards it;

otherwise, it penalizes it. For instance, suppose X1, X2, X3 and X4 are independent

variables such as Y = X1 + X2 + X3 + X4 + ε, X5 = X1 + X2, X6 = X3 + X4 and

X7 = X1 + X2 + X3 + X4. Defining S = {1, 2, 3, 4}, Ŝ1 = {5, 6} and Ŝ2 = {7} and

A = 0, we obtain

l(MŜ1
,MS) = −2 > −3 = l(MŜ2

,MS),

which reflects our preference to predict with the fewest number of covariates.

The setting for the second stage of our decision problem is straightforward: Given

that we have chosen MŜ , the space of actions is A2 = {select ŷMŜ
∈ Rn|MŜ}. The

space of uncertain events is E2 = {yMS
∈ Rn|true model is MS}. A natural loss function

of choosing ŷMŜ
when the true value is yMS

could be

l′(ŷMŜ
,yMS

) = C‖ŷMŜ
− yMS

‖2 (4.2)

where yMS
is the true value of y predicted by the true model MS and C ≥ 0.

Finally, we introduce the loss function composed by l and l′, which can be seen as the

entire loss of the sequential decision problem previously described. For the sequential

decision problem depicted in Figure 4.1, the loss function is given by

L(MŜ ,MS ; ŷMŜ
,yMS

) = l′(ŷMŜ
,yMS

) + l(MŜ ,MS)

= C‖yMS
− ŷMŜ

‖2 +Aψ(X Ŝ)

+B(|Ŝ| − |S|) (4.3)

with A,B,C ≥ 0

Note that C,A,B describe the trade-off between precision, collinearity and model

complexity. Note also that the terms in equation (4.3), Aψ(X Ŝ) + B(|Ŝ| − |S|), can

be seen as the loss incurred when for choosing the wrong model. Since our main goal

is prediction with minimum number of covariates and that the covariates should be

uncorrelated, these penalizations seem reasonable. Given that we have chosen model

M̂S , the term ‖yMS
− ŷMŜ

‖2 penalizes for the difference of the true value yMS
and the

estimated value ŷM̂S
using model M̂S .
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4. VARIABLE SELECTION

:
:

:
:

:
:

First stage Second stage

Figure 4.1: Sequential decision problem for variable selection

Concerning the probability measure on the space of uncertain events, we define the

following hierarchical model:

p(MS) ∝
∏
i∈S

ci

Y |MS ,βS , σ
2
S ∼ Nn

(
y|XSβS , σ

2
SIn

)
βS , σ

2
S ∼ π(βS , σ

2
S),

where ci ≥ 0 quantifies the prior belief that the i-th covariate should be included in the

model and π(βS , σ
2
S) is the prior probability function of the parameters of the model

MS . We now calculate p (MS |D) where D is the observed data. It is given by

p (MS |D) ∝ p (D|MS) p(MS)
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4.2 A new theoretic decision approach for variable selection

∝
∏
i∈S

ci

∫
Nn

(
y|XSβS , σ

2
SIn

)
π(βS , σ

2
S)dβSdσ

2
S

We are ready for the following proposition, which will allow us to find the model MŜ

that minimizes the loss function defined previously. We will prove this result using the

ideas exposed in Quintana and Iglesias (2003).

Proposition 4.2. Let ŷB = E(y|D) and yMŜ
= E

(
y|MŜ , D

)
. Then the expected loss

minimization using the loss function of equation (4.3) leads to the choice of M∗
Ŝ

that

minimizes

SC(MŜ) = γ1‖ŷB − yMŜ
‖2 + γ2ψ(X Ŝ) + (1− γ1 − γ2)|Ŝ| (4.4)

Proof. We begin by solving the optimization problem at the second stage (see Figure

4.1):

l2

(
ŷMŜ
|MS

)
=

∫
L(MŜ ,MS ; ŷMŜ

,yMS
)p(yMS

|MS , D)dyMS

=

∫ [
γ1‖yMS

− ŷMŜ
‖2 + γ2ψ(X Ŝ) + (1− γ1 − γ2)(|Ŝ| − |S|)

]
p(yMS

|MS , D)dyMS

= γ1

∫
‖yMS

− ŷMŜ
‖2p(yMS

|MS , D)dyMS
+ γ2ψ(X Ŝ) + (1− γ1 − γ2)(|Ŝ| − |S|)

Now let ŷ∗MŜ
= arg minŷM

Ŝ

{
l2

(
ŷMŜ
|MS

)}
; then the loss of choosing the model

MŜ when MS is the real state of the world would be l2

(
ŷ∗MŜ
|MS

)
. Since ŷ∗MŜ

is the

Bayes estimate under quadratic loss, we obtain:

ŷ∗MŜ
= E

(
yMŜ
|MŜ , D

)
= E

(
y|MŜ , D

)
= yMŜ

We will now solve the first stage (see Figure 4.2).
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:
:

:
:

:
:

Figure 4.2: First stage of the decision problem

The expected loss is given by

l
(
MŜ

)
=

∑
S⊂S0

l2

(
ŷ∗MŜ
|MS

)
p (MS |D)

=
∑
S⊂S0

{
γ1

∫
‖yMS

− ŷ∗MŜ
‖2p(yMS

|MS , D)dyMS
+ (1− γ1 − γ2)|S|

}
p (MS |D)

+γ2ψ(X Ŝ) + (1− γ1 − γ2)|Ŝ|

= γ1

∫
‖yMS

− ŷ∗MŜ
‖2
∑
S⊂S0

p (MS |D) p(yMS
|MS , D)

 dyMS
+ (1− γ1 − γ2)E(|S|)

+γ2ψ(X Ŝ) + (1− γ1 − γ2)|Ŝ|

= γ1

∫
‖y − ŷ∗MŜ

‖2p(y|D)dy + (1− γ1 − γ2)E(|S|) + γ2ψ(X Ŝ) + (1− γ1 − γ2)|Ŝ|.

We now calculate
∫
‖y − ŷ∗MŜ

‖2p(y|D)dy
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4.2 A new theoretic decision approach for variable selection

∫
‖y − ŷ∗MŜ

‖2p(y|D)dy =

∫
‖y − ŷB + ŷB − ŷ∗MŜ

‖2p(y|D)dy

=

∫
‖y − ŷB‖2p(y|D)dy

+2

∫
(y − ŷB) �

(
ŷB − ŷ∗MŜ

)
p(y|D)dy

+

∫
‖ŷB − ŷ∗MŜ

‖2p(y|D)dy

= V (y|D) + 0 + ‖ŷB − ŷ∗MŜ
‖2.

Note that the first term in the last expression and E(|S|) do not depend on the model

MŜ and can be regarded as constants.

Hence, finding the optimum of
(
M∗
Ŝ
, ŷ∗MS

)
which minimizes the expected loss is

equivalent to minimizing

SC(MŜ) = γ1‖ŷB − yMŜ
‖2 + γ2ψ(X Ŝ) + (1− γ1 − γ2)|Ŝ|.

This solution can be interpreted as the best model with the loss function described

by equation (4.3), whose predictions are the closest to the average prediction based on

all the models. Moreover, Proposition 4.2 suggests a procedure based on distances to

find the optimal M∗
Ŝ

. Unfortunately, an exhaustive search on the space of all possible

partitions is unfeasible. However, we can adopt different heuristic algorithms depending

on each application. These strategies may not give us the optimal solution but can lead

us to a reasonable suboptimal one in a realistic amount of time.

4.2.1 Consistency

Consistency is a desirable property. When the size of n increases, our predictions should

be near the predictions under the true model.

Proposition 4.3. If π(βS , σ
2
S) is proper and M∗

Ŝ
minimizes

SC(MŜ) = ‖ŷB − yMŜ
‖2

then

lim
n→∞

yM∗
Ŝ

= yMS

97



4. VARIABLE SELECTION

We provide a sketch of the proof.

Proof. Since π(βS , σ
2
S) is proper, limn→∞ P (MS |D) = 1, hence limn→∞ ŷB = yMS

also, limn→∞ yMS
= yMS

, hence limn→∞ ‖ŷB − yMS
‖2 = 0. Since y∗MŜ

minimizes

SC(MŜ) then limn→∞ y
∗
MŜ

= ŷB, then limn→∞ yM∗
Ŝ

= yMS

Note that the optimal model that minimizes SC may not be unique.

4.3 Other loss functions

In this section we discuss other loss functions that explicitly include a penalization for

not choosing the true model. One such loss function is the following.

L(MŜ ,MS) = ‖G(Ŝ)−G(S)‖2 (4.5)

where G(S) is a p vector such that its i-th entry is equal to Ii∈S . Suppose that the

true model was generated by covariates X1, X2, X3, and X1 = X4, X2 = X5 and

X3 = X6. Defining S = {1, 2, 3}, Ŝ = {4, 5, 6} we obtain L(MŜ ,MS) =
√

6 although

MŜ = MS . Moreover, suppose that the true model is generated by covariates X1, X2

and X3; suppose also that X1 is highly correlated with X3. Defining S = {1, 2, 3} and

Ŝ = {1, 2} we obtain L(MŜ ,MS) = 1 even though we obtain the same prediction with

a smaller number of covariates than with the true model.

Proposition 4.4. The model which includes all variables with p(Xi|D) > 1
2 is optimal

under the loss function L of equation (4.5). This model is called the median probability

model (MPM) by Barbieri and Berger (2002).

Proof. For the sake of simplicity, we will denote by p(Xi|D) the probability that Xi

belongs to Model MS . Note that

E
(
L(MŜ ,MS)

)
=

p∑
i=1

E
(
Ii∈Ŝ − 2Ii∈ŜIi∈S + Ii∈S

)
=

p∑
i=1

[
Ii∈Ŝ − 2Ii∈Ŝp(Xi|D) + p(Xi|D)

]
.

Since the p terms of this sum do not affect each other, we only need to maximize

each one in order to maximize E
(
L(MŜ ,MS

)
. If p(Xi|D) ≤ 1

2 , we maximize Ii∈Ŝ −
2Ii∈Ŝp(Xi|D) + p(Xi|D) when Ii∈Ŝ = 0. In the case p(Xi|D) > 1

2 , the optimum value

is obtained when Ii∈Ŝ = 1.
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The Kullback-Leibler (KL) divergence is a widely used criterion to measure the

information loss when the distribution function Q is used to approximate P . Suppose

that q and p are two densities with respect to Lebesgue measure, then the KL divergence

between p and q is defined by

KL(p‖q) =

∫
ln

(
p(x)

q(x)

)
p(x)dx

For the variable selection problem, Laud and Ibrahim (1995) used the following criterion

based on the KL to choose the covariates that should be included in the model

KMŜ
= KL

(
MS0‖MŜ

)
+KL

(
MŜ‖MS0

)
. (4.6)

They compare all the models with the full model (MS0) and select the one that

minimizes KMŜ
. This approach does not include the probability of each model and

does not intend to minimize the expected value of KMŜ
. Based on this method, we can

consider the following loss function.

Definition 4.5. Let

L
(
MŜ ,MS

)
= A ·KL

(
MS‖MŜ

)
+B ·KL

(
MŜ‖MS

)
+ C|Ŝ| (4.7)

where A,B,C ≥ 0.

In our definition, we compare the estimated model MŜ with the true model MS

instead of the full model MS0 . Using the sequential decision settings discussed before,

we can calculate the optimum M∗
Ŝ

which minimizes the expected loss L
(
MŜ ,MS

)
. This

procedure is general and can be applied, for example, to generalized linear models,

although it presents technical challenges such as the estimation of βŜ given MŜ .

4.4 Other theoretic decision approaches

Hahn and Carvalho (2015) provide an explicit Bayesian decision-theoretic perspective

which we will briefly review here. Let Ȳ ∼ N(Xβ, σ2I) denote the density of the

posterior of the parameters β and σ2 by π(β, σ2|D) and λ ≥ 0. Let

f(Ȳ ) =

∫
f(Ȳ |β, σ2)π(β, σ2|D)d(β, σ2) (4.8)
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then the loss function

L(M̂S , Ȳ ) = λ|Ŝ|+ n−1‖ŷM̂S
− Ȳ ‖2 (4.9)

leads to minimizing

L(M̂S) = λ|Ŝ|+ n−1‖ŷM̂S
−Xβ̄‖2, (4.10)

where β̄ = E(β|D).

They solve the optimization problem using combinatorial programming.

Our approach is different from the work of Hahn and Carvalho (2015); they do

not use a probability measure over the models and so the loss function they employ

compares only the predicted value of the full model with the prediction of the estimated

model. In our case, we compare the predicted value of the estimated model with the

true value using the probability induced by the proposed hierarchical model. In some

sense, their approach can be seen as a particular case of our model when the probability

of the full model is close to one (p(MS0 |D) ≈ 1). Since we have a probability measure

over all possible models, we can calculate the marginal probability of each covariate

(p(Xi|D) =
∑
{MS |i∈S} p(MS |D)), which can guide us about the relative importance

of each covariate. This is unfeasible in their approach. From a practical point of

view, there are also important differences. When the number of covariates is greater

than the number of observations (p > n), their approach is very restrictive, requiring

very informative distributions for the existence of π(β, σ2|D) under the full model, as

opposed to our proposal which does not assume any condition on the prior distribution

of (βS , σ2S) with |S| ≤ p− 1 (which can lead to a different model estimate).

Under the squared loss function, in orthogonal design or sequence of nested models,

Barbieri and Berger (2002) have shown that the MPM is optimal. As pointed out

by Hahn and Carvalho (2015), the MPM is defined via marginal quantities which can

be misleading when strong dependence among predictors is present. Our approach

overcomes this difficulties because it is general and does not impose any restriction on

the models. We also include a term which penalizes complexity and multicollinearity,

allowing us to find the set of uncorrelated variables which performs the best.
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4.5 Computation of to ŷB

In order to obtain ŷB, we can use Gibbs Sampling on the space of the 2k possible models.

Let Ui be an auxiliary random quantity that reflects whether or not the variable Xi

belongs to the model MŜ :

Ui =

{
1 if i ∈MŜ ,
0 if i 6∈MŜ ,

for i = 1, ..., p.

Each model
(
U s1 , ..., U

s
p

)
, s ≥ 1, is generated by using Gibbs sampling.

Starting from an initial value
(
U0
1 , ..., U

0
p

)
, the r-th element at step s, U sr , is gener-

ated from the conditional distribution

Ur | U s1 , ..., U sr−1, U s−1r+1 , ..., U
s−1
p ;D

for r = 1, ..., p.

To avoid unnecessary calculations, it is enough to consider the following ratio

Rr =
P (Ur = 1 | V s

r ;D)

P (Ur = 0 | V s
r ;D)

for r = 1, ..., n−1, in which V s
r =

{
U s1 = u1, ...., U

s
r−1 = ur−1, U

s−1
r+1 = ur+1, ..., U

s−1
n−1 = un−1

}
,

P (Ur = 1 | V s
r ;D) =

P
(
U s1 = u1, ...., U

s
r−1 = ur−1, Ur = 1, U s−1r+1 = ur+1, ..., U

s−1
n−1 = un−1 | D

)
P
(
U s1 = u1, ...., U sr−1 = ur−1, U

s−1
r+1 = ur+1, ..., U

s−1
n−1 = un−1 | D

)
and

P (Ur = 0 | V s
r ;D) =

P
(
U s1 = u1, ...., U

s
r−1 = ur−1, Ur = 0, U s−1r+1 = ur+1, ..., U

s−1
n−1 = un−1 | D

)
P
(
U s1 = u1, ...., U sr−1 = ur−1, U

s−1
r+1 = ur+1, ..., U

s−1
n−1 = un−1 | D

) .

Then

Rr =
P
(
U s1 = u1, ...., U

s
r−1 = ur−1, Ur = 1, U s−1r+1 = ur+1, ..., U

s−1
n−1 = un−1 | D

)
P
(
U s1 = u1, ...., U sr−1 = ur−1, Ur = 0, U s−1r+1 = ur+1, ..., U

s−1
n−1 = un−1 | D

) .
Hence

Rr =
p(D|MŜ1

)p(MŜ1
)

p(D|MŜ2
)p(MŜ2

)
,

where Ŝ1 = {i : usi = 1, i < r} ∪ {r} ∪ {i : us−1i = 1, i > r} and Ŝ2 = {i : usi = 1, i <

r} ∪ {i : us−1i = 1, i > r} and consequently, the criterion of choosing the values U si ,

i = 1, ..., k, becomes:

U sr =

{
1, if Rr ≥ 1−u

u
0, otherwise

for r = 1, ..., p, in which u ∼ Unif (0, 1).
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4. VARIABLE SELECTION

4.6 Variable selection

We now provide an algorithm to minimize the loss function of equation (4.5) based on

Proposition 4.2.

Algorithm 4.1 Variable selection

Step 1: Set j = 1, S1 = {1, . . . , k} and evaluate SC(MS1).

Step 2: Set j = 2. Obtain l ∈ S1 such that if S2 = S1 − {l}, SC(MS2) is minimum.

Step 3: If SC(MS2) > SC(MS1) or S2 = ∅, set Ŝ∗ = S1 and STOP. Otherwise go to

step 4.

Step 4: Set j = j + 1. Obtain l ∈ Sj−1 such that if Sj = Sj−1 − {l}, SC(MSj ) is

minimum.

Step 5: If SC(MSj ) > SC(MSj−1) or Sj = ∅, set Ŝ∗ = Sj−1 and STOP. Otherwise

go to step 4.
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4.7 Correlation measures

The following example shows the consequences of multicollinearity in a multiple regres-

sion analysis. Let

(
X1

X2

)
∼ N2 (µ,Σ) with µ =

(
0
0

)
and Σ =

(
1 0.999999

0.999999 1

)
.

Let ε ∼ N(0, 0.1). We define the random variable Y = 3X1 + 2X2 + ε.

We simulated 50 times these variables and performed a classical linear regression

analysis. We obtained the following estimations for β1 and β2:

β̂1 = 6.841 and β̂2 = −1.812. We repeated this experiment 20 times. Table 4.1

shows the estimates of β̂i for each experiment.

Simulation β̂1 β̂2 β̂1 + β̂2

1 6.841 -1.812 5.029

2 5.735 -0.72 5.015

3 -6.031 11.029 4.998

4 3.354 1.649 5.003

5 -11.445 16.44 4.995

6 -2.369 7.363 4.994

7 9.461 -4.486 4.975

8 -7.581 12.56 4.979

9 2.653 2.362 5.015

10 15.451 -10.426 5.025

11 0.688 4.328 5.016

12 7.893 -2.888 5.005

13 -1.005 5.979 4.974

14 4.015 0.982 4.997

15 0.718 4.302 5.02

16 -4.945 9.945 5

17 -1.587 6.59 5.003

18 -5.79 10.786 4.996

19 -4.071 9.071 5

20 12.944 -7.937 5.007

Table 4.1: Estimated coefficients in the multicollinearity experiment
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4. VARIABLE SELECTION

This simple experiment shows that multicollinearity can produce estimators of the

coefficients with large variance and different signs. It also suggests a heuristic expla-

nation of why multicolinearity can be very problematic. Note that β̂1 + β̂2 ≈ 5. Since

X1 ≈ X2, and the true model is Y = 3X1 + 2X2 + ε, there are several combinations of

β̂1 and β̂2 such that β̂1 + β̂2 ≈ 5. We need a real number ψ(X Ŝ) which can be used in

equation (4.3) that measures and the correlation of a group of random variables. We

can find meaningful collinearity measures in Willan and Watts (1978). In fact, these

authors show that |C|
1
2 is the volume generated by the standardized variables where C

is the correlation matrix of the random variables considered. Note that

0 ≤ |C|
1
2 ≤ 1

In Figures 4.3 and 4.4 we show examples of the measure |C|
1
2 for two and three dimen-

sions respectively.

Example 4.6. Let Xi ∼ N(0, 1). We construct the following random variables:

Z1 = 3X3 +X1

Z2 = −3X3 + 2X2

Z3 = 10X1 + 2X4

Z4 = −2X4 +X5

Z5 = −X5 + 5X6

Z6 = −5X6 + 20X2

Now consider the model Y = X1 + 2X2 + ε. Clearly Y = Z1 + Z2 + ε and Y =

Z3+Z4+Z5+Z6+ε. We want to perform variable selection with Zi as the independent

variables. For model MS1 with S = {1, 2}, we obtain the following correlation matrix:

Z1 Z2

Z1 1 −0.97

Z2 −0.97 1

In this model, |C|
1
2 = 0.266. On the other hand, in model MS2 with S2 = {3, 4, 5, 6},

the following correlation matrix is obtained:

Z3 Z4 Z5 Z6

Z3 1 −0.175 0 0

Z4 −0.175 1 −0.087 0

Z5 0 −0.087 1 −0.237

Z6 0 0 −0.237 1

104



4.7 Correlation measures

In this model, |C|
1
2 = 0.958. This example shows the importance of considering a

correlation measure in the loss function. In fact, model MS1 has only two variables but

they are highly correlated, which can cause several problems, whereas model MS2 has

four variables with low correlation which leads to robust estimations.

Other correlation measures based on copulas can be found in Schmid et al. (2010).
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Figure 4.3: |C|
1
2 measure for bivariate normal distribution with different correlations.
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Figure 4.4: |C|
1
2 measure for multivariate normal distribution with different correlation

matrices
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4.8 Discussion

In this chapter, we proposed a new decision setting for variable selection problem in

regression analysis with a loss function suitable for prediction. We proved a result that

allowed to find the model which minimizes the expected loss function. We also provided

a Gibbs sampler algorithm that helped us to optimize this loss function. In order to

understand the difficulties that can arise in variable selection for regression analysis,

we provided several illustrative examples.

When we suspect that the true model does not belong to our list of entertained

model (for instance, if we think that the relationship between the dependent variable

and independent variable might not be linear and we consider only linear functions) we

could adopt the M-open framework discussed in (Gutiérrez-Peña and Walker, 2001,

2005) and use a nonparametric model such as the Gaussian process with the Kullback-

Leibler divergence as the loss function. We would then be choosing the linear model

which is closest (on average) to the true model.
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Chapter 5
Discussion

If you want others to be happy, practice compassion. If you want to be happy,

practice compassion.

Dalai Lama XIV

5.1 Conclusions

In this thesis, we have proposed suitable loss functions for each of the three statistical

problems we considered. For each case, we provided algorithms that can be regarded

as applications and/or an extensions of the methodology proposed by Quintana and

Iglesias (2003). Although their work has been extensively cited, mainly because they

establish a link between PPMs and the DP, to the best of our knowledge the present

thesis is the first work that exploits their proposal in order to make inferences based

on loss functions in different settings other than clustering in a parametric framework.

In what follows, we will describe the contributions of each chapter of the thesis,

including remarks that may be helpful in future work.

In Chapter 2, we used the Dirichlet process to extend PPMs to the nonparametric

case, which does not impose any particular parametric form of the distribution function.

We thus provided a methodology that uses loss functions to detect change points and

that can also be applied to other models such as the nonparametric hidden Markov

models. We also defined a simple loss function that can detect changes in the mean.

This is very useful in many applications such as the analysis of aCGH data, where one
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needs to process the human genome to detect abnormalities in the DNA that cause a

specific disease. We also introduced more complex loss functions which are adequate

to detect changes in the distribution. A general form was presented in Section 2.1;

based on Anderson–Darling and Cramér–von Mises statistics, we used three different

combinations of weights and measures that allowed us to detect changes in the tails

as well as skewness more efficiently. For the loss functions proposed, we implemented

a procedure to determine the value of the parameter γ, which appears in similar loss

functions but in different settings such as variable selection. In many applications,

missing data appears frequently. In order to tackle this difficulty, we took advantage

of the random partition structure of our model to estimate the distribution function

of each missing value without using multiple imputation, which is computationally less

efficient. This procedure can also be used in the parametric product partition models

for change-point analysis in order to estimate the “gold standards” of Theorems 2.9

and 2.10, we provided an exact computational procedure which is feasible for less than

300 observations, and a Gibbs sampler for larger data sets.

We focused our attention on the NPPMs for change-point detection purposes. How-

ever, NPPMs can also be used in a general clustering analysis. In fact, there is an in-

teresting relationship with the nested Dirichlet process (NDP), in the same way as the

PPMs are related with the Dirichlet process: by integrating out the Dirichlet process

in the NDP, we obtained a particular case of our model. This result has also practical

interest because we were able to profit from several simulation algorithms and apply

then it to nonparametric outlier detection. This is so because the cohesion functions

in this case can promote fewer clusters with larger amounts of data in each one.

We have shown empirically that methods based on loss functions may perform

better than methods that use the marginal probability, which is a popular criterion.

This is specially true in the case of the NPPMs, in which this criterion detected change

points very poorly because of the flexibility of the model. Moreover, we have shown

that our proposal performs better than parametric and nonparametric models recently

discussed in the literature, such as PELT and ECP with different data sizes. We also

applied our methodology to two real data sets in genetics and finance.

We used the low-level programming language Fortran in Ubuntu’s operating system

to implement the several methodologies discussed in Chapter 2. This allowed us to

perform exhaustive simulations to obtain reasonable results. We used the R software
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5.2 Future work

(R Core Team, 2016) as a GUI (graphical user interface) which allowed us to call the

dynamic libraries compiled in GNU FORTRAN (gfortran) to analyze the output of the

simulations. We also used OpenMP in gfortran to implement a parallelization of the

simulations.

In Chapter 3, we argued for the use of more sophisticated methods such as non-

parametric Bayesian statistics in finite population sampling, and stated a natural re-

lationship between these two branches of statistics. We discussed a novel approach to

Bayesian stratified sampling that allowed us to take advantage of prior knowledge about

the structure of the population. This approach provides a methodology for collapsing

strata in the post-stratification context. For this purpose, we induced the partition

over the range of the covariates instead of the target variables. Since the inference is

challenging and limited by the number of covariates, any improvement in the algorithm

could allow us to consider more complex problems.

Finally, in Chapter 4, we studied the variable selection problem in regression anal-

ysis and constructed a loss function which includes a penalization correlations between

the explanatory variables included in the model, in addition to the penalization on the

number of variables. The construction of this loss function was carefully justified. We

showed an example where one model had two highly correlated significant variables,

while a second model contained five significant variables with low correlation. This

example shows why we need to include a term in the loss function that penalizes corre-

lation besides the size or complexity of the model. We also proved a result (Proposition

4.2) that allowed us to devise a methodology to select the model with minimum ex-

pected loss. A Gibbs sampler was described to obtain the “gold standards” required

by Proposition 4.2. This methodology can be used in generalized linear models as well.

5.2 Future work

Theorem 2.10 will still hold if we use random measures other than the Dirichlet pro-

cess to define NPMMs. However, practical concerns will arise, such as the calculation

of the predictive distribution of the random measure employed for each block of each

simulated partition. Since the number of partitions may be very large, this can re-

sult in an insurmountable problem. In the case of the Dirichlet and Poisson-Dirichlet
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processes, this can be done because closed-form expressions of their multivariate pre-

dictive distributions are known. In the case of mixtures of Dirichlet process we can

deal with this issue using variational methods, introduced in Bayesian nonparametric

statistics by researchers on machine learning (see Blei and Jordan, 2006). Variational

methods can provide an adequate approximation in much fewer iterations than MCMC

strategies; see Bishop (2006, chap. 10) for an introduction to this methods in para-

metric Bayesian models. The calculation of the predictive distribution for most of the

other random measures is computationally very demanding. A natural extension of

the NPPMs would be the inclusion of covariates, in the same way as Park and Dunson

(2010) or Müller and Quintana (2010); Müller et al. (2011). Although the generaliza-

tion to several dimensions is straightforward, it was not developed here. On the other

hand, while NPPMs can be defined in arbitrary dimensions; they have practical lim-

itations due to the number of calculations needed. Therefore, it would be convenient

to develop simulation algorithms that can be parallelized to profit from the number

of CPU’s available. In the NPPM defined in equation (2.15), we used the DP with

dispersion parameter αi and centered at Gi which is a parametric distribution function

with parameter θi. It would be convenient to use a prior distribution on θi and αi.

Algorithm 1.1 finds a local optimum. Alternatively, we could use other approaches such

as agglomerative strategies or Simulated Annealing (SA)(Kirkpatrick et al., 1983). Al-

though these algorithms do not ensure convergence to the global optimum either, they

do not get stuck in local optima and can improve the solutions obtained.

Concerning our model for finite population sampling, an efficient computation im-

plementation is also needed, perhaps using parallel programing, due to the number of

possible stratifications. For instance, if we have a set of five discrete covariates, each

one with 3 levels, we will have 35 = 243 basic strata. Using the Bell number in equa-

tion (1.1), we have B243 > 10275, which is the number of possible ways in which we

can stratify our population using the five covariates. Clearly, this is computationally

challenging.
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Appendix A
Bayesian clustering and product

partition models

Quintana and Iglesias (2003) developed the following result to obtain the partition with

the minimum expected loss.

Let

l
(
ρ, ρ̂,θ, θ̂ρ̂

)
= γ

∥∥∥θ − θ̂ρ̂∥∥∥2 + (1− γ) |ρ̂| (A.1)

Theorem A.1. Let θ̂B (y) = E (θ|y) and θ̂ρ (y) = E (θ|ρ,y), then the expected loss

minimization criterion leads to the choice ρ̂∗ that minimizes

SC (ρ̂) = γ‖θ̂B (y)− θ̂ρ (y) ‖2 + (1− γ)|ρ̂| (A.2)

where the vector θ̂ρ̂ is the estimate of the vector θ associated with the estimated partition

ρ̂, and |ρ̂| denotes the cardinality of ρ̂. Here, 0 ≤ γ ≤ 1 is a complexity-cost parameter.

The choice of loss function implies a trade-off (controlled by the user-defined quantity

γ) between the optimal estimator of θ and model simplicity, by which we mean a model

with a low number of clusters or strata.

Proof. Quintana and Iglesias (2003) For a sequential decision problem, Bernardo and

Smith (1994) state that one has to first solve the final nth stage by minimizing the

appropriate loss function, then one has to solve the (n− 1)th stage by minimizing the

expected loss function conditional on making the optimal choice at the nth stage; and

so on, working backwards progressively, until the optimal first stage option has been

obtained. To visualize the decision tree of our problem see Figure A.1.
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Figure A.1: Decision tree of theorem A.1

To solve the optimization of the second stage:

l2(θ̂ρ̂|ρ) =

∫
l(ρ, ρ̂, θ̂ρ̂,θ)p(θ|ρ,y)dθ

= γ

∫
‖θ̂ρ̂ − θ‖2p(θ|ρ,y)dθ + (1− γ)|ρ̂|.

Let θ̂
∗
ρ̂ = argminθ̂ρ̂{l2(θ̂ρ̂|ρ)}, then the loss of choosing ρ̂ when ρ is the real state of

the world would be l2(θ̂
∗
ρ̂|ρ). Now we will solve the first stage (see Figure A.1b). The

expected loss is given by

l(ρ̂) =

∫
l2(θ̂

∗
ρ̂|ρ)p(ρ|y)dρ

= γ

∫ {∫
‖θ̂∗ρ̂ − θ‖2p(θ|ρ,y)dθ

}
p(ρ|y)dρ+ (1− γ)|ρ̂|

= γ

∫
‖θ̂∗ρ̂ − θ‖2

∫
p(θ|ρ,y)p(ρ|y)dρdθ + (1− γ)|ρ̂|

= γ

∫
‖θ̂∗ρ̂ − θ‖2p(θ|y)dθ + (1− γ)|ρ̂|

Since θ̂
∗
ρ̂ is the Bayes estimate under a quadratic loss function,

θ̂
∗
ρ̂ = E (θ|ρ,y) = θ̂ρ (y)
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Finally,∫
‖θ̂ρ (y)− θ‖2p(θ|y)dθ =

∫ n∑
i=1

(θ̂ρ,i (y)− θi)2p(θ|y)dθ

=

∫ n∑
i=1

(θ̂ρ,i (y)− θ̂B,i (y) + θ̂B,i (y)− θi)2p(θ|y)dθ

=

∫ n∑
i=1

(θ̂ρ,i (y)− θ̂B,i (y))2p(θ|y)dθ

+2

∫ n∑
i=1

(θ̂ρ,i (y)− θ̂B,i (y))(θ̂B,i (y)− θi)p(θ|y)dθ

+

∫ n∑
i=1

(θ̂B,i (y)− θi)2p(θ|y)dθ

= ‖θ̂ρ (y)− θ̂B (y) ‖2 + 0 + tr(V (θ|y))

where tr(A) denotes the trace of a given matrix A. Then

γ

∫
‖θ̂ρ(y)− θ‖2p(θ|y)dθ+ (1− γ)|ρ̂| = γ‖θ̂ρ(y)− θ̂B(y)‖2 + γtr(V (θ|y)) + (1− γ)|ρ̂|

The proof concludes by noting that the second term in the last expression does not

depend on ρ̂.

The above result shows that the optimal choice ρ̂∗ will be the partition for which

the resulting estimate θ̂ρ(y) is closest to θ̂B(y).
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Appendix B
Distributions and Related Results

B.1 Distributions

Definition B.1. Multivariate normal distribution. If X ∈ Rn has a multivariate

normal density, conventionally written X ∼ Nn (µ,λ) then

p (x) = (2π)−
n
2 |λ|

1
2 exp

{
−1

2
(x− µ)t λ (x− µ)

}
where E (X) = µ and V ar (X) = λ−1 provided λ is positive definite.

Remark B.2. We will use the notation N(µ,λ) and Nn(µ,λ) indistinctively for sim-

plicity purposes.

The next definition concerns to the multivariate noncentral t-distribution

Definition B.3. Multivariate t density. If X ∈ Rn has a multivariate t density,

conventionally written X ∼ tν (µ,V ), then

p(x) =
Γ
(
ν+n
2

)
Γ
(
ν
2

)
(νπ)

n
2

|V |−
1
2

(
1 +

1

ν
(x− µ)t V −1 (x− µ)

)− ν+n
2

(B.1)

p(x) ∝
(

1 +
1

ν
(x− µ)t V −1 (x− µ)

)− ν+n
2

(B.2)

where µ ∈ Rn is a location parameter. V is a n×n, symmetric, positive definite matrix

and ν > 0 is a degrees of freedom parameter. If ν > 1 then E(X) = µ; otherwise it is

undefined.
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B. DISTRIBUTIONS AND RELATED RESULTS

If ν > 2 then V ar(X) = ν
ν−2V ; otherwise it is undefined.

Note that if n = 1, µ = 0, and V = 1, then equation (B.1) becomes the pdf of the

univariate Student’s t distribution with ν degrees of freedom. See Kotz and Nadarajah

(2004) for further properties and applications.

The following definition extends the definition of the normal-gamma distribution.

Definition B.4. Multivariate normal-gamma distribution. A continuous random vec-

tor X = (X1, ..., Xn) and a random quantity τ have a joint multivariate normal-gamma

distribution of dimension n, with parameters µ,λ, α, β where µ ∈ Rn, λ a n× n sym-

metric, positive-definite matrix, α > 0 and β > 0 if the joint probability density of X

and τ , Ngn (x, τ |µ,λ, α, β) is

Ngn (x, τ |µ,λ, α, β) = Nn (x|µ,λτ)Ga (τ |α, β) (B.3)

Remark B.5. As in the case of the multivariate normal distribution, we will use

indistinctively Ngn (x, τ |µ,λ, α, β) and Ng (x, τ |µ,λ, α, β)

The skew normal distribution is a generalization of the normal distribution that can

have non zero skewness and is defined as follows.

Definition B.6. The density of a skew normal random variable has the density of the

form

f(x|ξ, ω, α) = 2φ(
x− ξ
ω

)Φ

(
α

(
x− ξ
ω

))
(B.4)

where φ and Φ are the density and the distribution function, respectively, of the standard

normal random variable. ξ is the location, ω is the scale and α is the shape parameter

which determines the skewness.

B.2 Proofs of selected propositions

The following result is very useful to complete quadratic forms.

Lemma B.7. Let z,b and c be an n× 1 vectors, A an n× n symmetric and invertible

matrix. Then

ztAz + 2btz + c =
(
z +A−1b

)t
A
(
z +A−1b

)
+ c− btA−1b
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Proof.(
z +A−1b

)t
A
(
z +A−1b

)
+ c− btA−1b = ztAz + ztAA−1b+ bt

(
A−1

)t
Az

+bt
(
A−1

)t
AA−1 b+ c− btA−1b

Since A is symmetric, we have that (A−1)t = A−1, hence(
z +A−1b

)t
A
(
z +A−1b

)
+ c− btA−1b = ztAz + 2btz + c

Proposition B.8. Let z,b and c be an n × 1 vectors, A an n × n symmetric and

invertible matrix. Then

ztAz − 2btz + c =
(
z −A−1b

)t
A
(
z −A−1b

)
+ c− btA−1b

Proof.(
z −A−1b

)t
A
(
z −A−1b

)
+ c− btA−1b = ztAz − ztAA−1b− bt

(
A−1

)t
Az

+bt
(
A−1

)t
AA−1 b+ c− btA−1b

= ztAz − 2btz + c

Lemma B.9. Let H be an n× n matrix with Hij = 1 ∀i, j then

HH = nH (B.5)

Proof.

(HH)ij =
n∑
k=1

HikHkm

= n ∀i, j.

Lemma B.10. Let H be an n × n matrix with Hij = 1 ∀i, j, In the n × n identity

matrix and b0 a positive real number then(
In −

H

n+ b0

)−1
=

(
In +

H

b0

)
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Proof. (
In +

H

b0

)(
In −

H

n+ b0

)
=

(
In +

H

b0

)(
In −

H

n+ b0

)
= In −

H

n+ b0
+
H

b0
− HH

b0 (n+ b0)

Using Lemma B.9

= In +
(n+ b0)H − b0H − nH

b0(b+ b0)

= In

Proposition B.11. Let Xi|µ, τ
i.i.d∼ N (µ, τ) for 1 ≤ i ≤ n and µ ∼ N(a0, b0τ) where

τ and b0τ are the respective precisions. Then X|τ ∼ N
(
a0, τ

(
In − H

n+b0

))
where

X = (X1, ..., Xn), a0 ∈ Rn, a0 = (a0, ..., a0), H an n × n matrix with Hij = 1 for

1 ≤ i ≤ n and 1 ≤ j ≤ n.

Proof.

p (x) =

∫
p (x|µ) p(µ)dµ

∝
∫

exp

{
−1

2
(x− µ)t τIn (x− µ)

}
exp

{
−b0τ

2
(µ− a0)2

}
dµ

∝
∫

exp

{
−1

2
(x− µ)t τIn (x− µ)

}
exp

{
−b0τ

2

(
µ2 − 2µa0 + a20

)}
dµ

where x = (x1, ..., xn)t and µ = (µ, µ, µ, ..., µ)t

(x− µ)t τIn (x− µ) = xtτInx− 2µtτInx+ µtτInµ

= xtτInx− 2µtτInx+ nτµ2

= xtτInx− 2µτ(x1 + x2 + ...+ xn) + nτµ2

Hence

p (x) ∝
∫

exp

{
−1

2

[
xtτInx− 2µ(τ(x1 + ..+ xn) + a0b0τ) + (nτ + b0τ)µ2 + a20b0τ

]}
dµ

∝
∫

exp

{
−1

2

[
xtτInx+ (nτ + b0τ)

(
µ2 − 2µ

n+ b0
(x1 + ..+ xn + a0b0)

)
+ a20b0τ

]}
dµ

∝
∫

exp

{
−1

2

[
xtτInx+ (nτ + b0τ)

(
µ2 − 2µ

n+ b0
(x1 + ..+ xn + a0b0)

)
+ (nτ + b0τ)

((
x1 + ..+ xn + a0b0

n+ b0

)2

−
(

(x1 + ..+ xn) + a0b0
n+ b0

)2
)]}

dµ
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∝
∫

exp

{
−1

2

[
xtτInx+ (nτ + b0τ)

(
µ− (x1 + ..+ xn) + a0b0

n+ b0

)2

− (nτ + b0τ)

(
(x1 + ..+ xn) + a0b0

n+ b0

)2
]}

dµ

∝
∫

exp

{
−1

2

[
xtτInx−

τ ((x1 + ..+ xn) + a0b0)
2

n+ b0

+ (nτ + b0τ)

(
µ− (x1 + ..+ xn) + a0b0

n+ b0

)2
]}

dµ

∝ exp

{
−1

2

[
xtτInx−

τ ((x1 + ..+ xn) + a0b0)
2

n+ b0

]}

×
∫

exp

{
−1

2

[
(nτ + b0τ)

(
µ− (x1 + ..+ xn) + a0b0

n+ b0

)2
]}

dµ

∝ exp

{
−1

2

[
xtτInx−

τ ((x1 + ..+ xn) + a0b0)
2

n+ b0

]}

∝ exp

−1

2

xtτInx− τ
(

(x1 + ..+ xn)2 + 2a0b0 (x1 + ..+ xn) + a20b
2
0

)
n+ b0


∝ exp

{
−1

2

[
xtτInx−

τ
(
xtHx+ 2a0b0 (x1 + ..+ xn)

)
n+ b0

]}

∝ exp

{
−1

2

[
xtτInx− τxtHx−

2b0τa0
tHx

n(n+ b0)

]}
∝ exp

{
−1

2

[
xtτ

(
In −

H

n+ b0

)
x− 2b0τa0

tHx

n(n+ b0)

]}
.

Let A = τ
(
In − H

n+b0

)
and b = b0τHa0

n(n+b0)
, Using Lemma B.7 we obtain

p (x) ∝ exp

{
−1

2

[(
x−A−1b

)t
A
(
x−A−1b

)]}
Using Lemma B.10,

A−1 =

(
τ

(
In −

H

n+ b0

))−1
(B.6)

= τ−1
(
In +

H

b0

)
(B.7)

Therefore

A−1b =

(
τ−1In +

H

τb0

)(
b0τHa0

n (n+ b0)

)
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=
b0Ha0

n (n+ b0)
+

b0τHHa0

b0τn (n+ b0)

=
b0Ha0 +HHa0

n (n+ b0)
.

Using again Lemma B.9

=
(b0In + nIn)Ha0

n (n+ b0)
= a0.

Finally

X|τ ∼ N
(
a0, τ

(
In −

H

n+ b0

))
.

Proposition B.12. In the multivariate normal-gamma distribution the marginal den-

sity of X is a multivariate t-distribution t2α
(
µ, α−1βλ−1

)
Proof. Begin by noting that the marginal density of X is

p (x) =

∫ ∞
0

p (x|τ) p (τ) dτ

p (x) ∝
∫ ∞
0
|τλ|

1
2 exp

(
−1

2
(x− µ)t λτ (x− µ)

)
τα−1 exp (−βτ) dτ

p (x) ∝
∫ ∞
0

τ
n
2 exp

(
−1

2
(x− µ)t λτ (x− µ)

)
τα−1 exp (−βτ) dτ

∝
∫ ∞
0

τα−
n
2
−1 exp

(
−τ
[

1

2
(x− µ)t λ (x− µ) + β

])
dτ

Notice that τα−
n
2
−1 exp

(
−τ
[
1
2 (x− µ)t λ (x− µ) + β

])
is the kernel of a gamma

density Ga (τ |a, b) with a = α+ n
2 and b = 1

2 (x− µ)t λ (x− µ) + β. Hence

p(x) ∝ Γ (a)

ba

∝
(

1

2
(x− µ)t λ (x− µ) + β

)− 2α+n
2

∝
(

1

2α
(x− µ)t λαβ−1 (x− µ) + 1

)− 2α+n
2

which is the kernel of a multivariate t-student t2α
(
µ, α−1βλ−1

)
We will calculate the prior predictive distribution for the normal-gamma model.
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Proposition B.13. Let X = (X1, ..., Xn) with Xi
iid∼ N(µ, τ) with i = 1, ..., n and

θ = (µ, τ) ∼ NG(a0, b0, α0, β0) then

X ∼ t2α
(
a0, α

−1
0 β0

(
In +

H

b0

))
(B.8)

Proof.

p(x) =

∫
Θ
p(x | θ)p(θ)dθ

=

∫ ∞
0

∫ ∞
−∞

p(x | µ, τ)p(µ | τ)p(τ)dµdτ

=

∫ ∞
0

[∫ ∞
∞

p (x | µ, τ) p (µ | τ) dµ

]
p(τ)dτ

We will also use of the fact that p (µ, τ) = p (µ | τ) p(τ), with

µ | τ, a0, b0 ∼ N (a0, b0τ)

τ | α0, β0 ∼ Gamma (α0, β0)∫∞
∞ p (x | µ, τ) p (µ | τ) dµ = p (x | τ)

p(x | τ) = N

(
a0, τ

(
In −

H

n+ b0

))

Using Proposition B.12 and Lemma B.10, we obtain

X ∼ t2α
(
a0, α

−1
0 β0

(
In +

H

b0

))
. (B.9)
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Appendix C
Prior Predictive of the Normal

Regression Model

C.1 Normal-Gamma regression model

Definition C.1. We first reparametrize the model by introducing the precision param-

eter τ = 1
σ2 , then

y|β, τ ∼ N(Xβ, τIn)

β|τ ∼ Nk+1 (β0, τV )

τ ∼ Gamma(α, β)

We need to calculate

p(y) =

∫ ∫
p(y|β, τ)p(β|τ)p(τ)dβdτ

Note that

p(y) =

∫ ∫
p(y|β, τ)p(β|τ)p(τ)dβdτ

∝
∫

(2π)−
n
2 |τIn|

1
2 exp

{
−1

2
(y −Xβ)t τIn (y −Xβ)

}
× (2π)−

k+1
2 |τV |

1
2 exp

{
−1

2
(β − β0)t τV (β − β0)

}
p (τ) dβdτ

∝
∫
|τIn|

1
2 |τV |

1
2 p(τ)exp

{
−τ

2

[
yty − ytXβ − (Xβ)t y

(
βtXtXβ

)
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+βtV β − βtV β0 − βt0V β + β0
tV β0

]}
dβdτ

∝
∫
τ
n+k+1

2 p(τ)exp
{
−τ

2

[
yty + β0

tV β0

]}
exp

{
−τ

2

[
−ytXβ − (Xβ)t y +

(
βtXtXβ

)
+βtV β − βtV β0 − βt0V β

]}
dβdτ

∝
∫
τ
n+k+1

2 p(τ)exp
{
−τ

2

[
yty + β0

tV β0

]}
exp

{
−τ

2

[
βtXtXβ − ytXβ − βtXty

+βtV β − βtV β0 − βt0V β
]}
dβdτ

∝
∫
τ
n+k+1

2 p(τ)exp
{
−τ

2

[
yty + β0

tV β0

]}
exp

{
−τ

2

[
βt
(
XtX + V

)
β − 2ytXβ

−β0
tV tβ − βt0V β

]}
dβdτ

∝
∫
τ
n+k+1

2 p(τ)exp
{
−τ

2

[
yty + β0

tV β0

]}
exp

{
−τ

2

[
βt
(
XtX + V

)
β − 2ytXβ

−2βt0V β
]}
dβdτ

∝
∫
τ
n+k+1

2 p(τ)exp
{
−τ

2

[
yty + β0

tV β0

]}
× exp

{
−τ

2

[
βt
(
XtX + V

)
β − 2

(
ytX + βt0V

)
β
]}
dβdτ

Using Proposition B.8

p(y) ∝
∫
τ
n+k+1

2 p(τ)exp
{
−τ

2

[
yty + β0

tV β0

]}
×exp

{
−τ

2

[(
β −A−1b

)t
A
(
β −A−1b

)
+ c− btA−1b

]}
dβdτ

with A = XtX + V bt = ytX + βt0V and c = 0, therefore b = Xty + V β0

p(y) ∝
∫
τ
n+k+1

2 p(τ)exp
{
−τ

2

[
yty + β0

tV β0

]}
×exp

{
−τ

2

[(
β −A−1b

)t
A
(
β −A−1b

)
− btA−1b

]}
dβdτ

∝
∫
τ
n
2 p(τ)exp

{
−τ

2

[
yty + β0

tV β0

]}
τ
k+1
2

×exp
{
−τ

2

[(
β −A−1b

)t
A
(
β −A−1b

)
− btA−1b

]}
dβdτ

∝
∫
τ
n
2 p(τ)exp

{
−τ

2

[
yty + β0

tV β0 − btA−1b
]}
dτ

We now define D = yty + β0
tV β0 − btA−1b

p(y) ∝
∫
τ
n
2 p(τ)exp

{
−τ

2
D
}
dτ
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p(y) ∝
∫
τ
n
2 τα−1exp {−τβ} exp

{
−τ

2
D
}
dτ

p(y) ∝
∫
τα+

n
2
−1exp

{
−τ(β +

D

2

}
dτ

This is the kernel of a Gamma distribution Ga (a, b) with a = α+ n
2 and b = β+ D

2 ,

hence

p(y) ∝ b−a

∝
(
yty + β0

tV β0 − btA−1b+ 2β

2

)−α−n
2

btA−1b =
(
ytX + βt0V

)
A−1

(
Xty + V β0

)
= ytXA−1Xty + ytXA−1V β0 + βt0V A

−1Xty + βt0V A
−1V β0

= ytXA−1Xty + 2βt0V A
−1Xty + βt0V A

−1V β0,

then

p(y) ∝
(
yty + β0

tV β0 − btA−1b+ 2β

2

)−α−n
2

p(y) ∝
(
yty − btA−1b+ β0

tV β0 + 2β

2

)−α−n
2

p(y) ∝
(
yty − ytXA−1Xty − 2βt0V A

−1Xty − βt0V A−1V β0 + β0
tV β0 + 2β

2

)−α−n
2

p(y) ∝

(
yt
(
I −XA−1Xt

)
y − 2βt0V A

−1Xty − βt0V A−1V β0 + β0
tV β0 + 2β

2

)−α−n
2

E = −βt0V A−1V β0 + β0
tV β0 + 2β = β0

t
(
I − V A−1

)
V β0 + 2β

hence

p(y) ∝

(
yt
(
I −XA−1Xt

)
y − 2βt0V A

−1Xty + E

2

)−α−n
2

p(y) ∝
(
ytFy − 2hty + E

2

)−α−n
2

.
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with

F =
(
I −XA−1Xt

)
and ht = βt0V A

−1Xt then h = XA−1V β0

p(y) ∝
(
ytFy − 2hty + E

2

)−α−n
2

∝

((
y − F−1h

)t
F
(
y − F−1h

)
+ E − htF−1h

2

)−α−n
2

∝

((
y − F−1h

)t
F
(
y − F−1h

)
+ E − htF−1h

2

)− 2α+n
2

∝
((
y − F−1h

)t
F
(
y − F−1h

)
+G

)− 2α+n
2

∝
(

1

2α

(
y − F−1h

)t 2αF

G

(
y − F−1h

)
+ 1

)− 2α+n
2

with G = E − htF−1h
Hence, Y ∼ tν (µ,Σ) with ν = 2α, µ = F−1h and Σ−1 = 2αF

G
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