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Introduction

We have bigger houses, but smaller families

More conveniences, but less time.

We have more degrees, but less sense.

More knowledge, but less judgement.

More experts, but more problems.

More medicines, but less wellness.

We have conquered outer space, but not inner space.
We've cleaned up the air, but polluted our soul.

We’ve split the atom, but not our prejudice.

DarLal LAMA XIV EXTRACT FROM THE PARADOX OF OUR TIMES

Loss functions play a key role in Bayesian inference; they lie at the foundations
of Bayesian decision theory. Nevertheless, loss functions do not seem to have been
extensively and systematically used in applied problems such as cluster analysis, change-
point analysis, finite population sampling or variable selection. Binder| (1978, 1981
provides a first approach to this issue, placing emphasis on the loss incurred when
we cluster two subjects that do not belong together or when we do not cluster two
observations that belong to the same cluster. [Lau and Green| (2007)) developed this ideas
in a Bayesian nonparametric framework, whereas [Hurn et al.| (2003) applied Binder’s
loss function to cluster linear regression curves. Later, Killick et al.| (2012)) introduced
a change-point analysis with a linear computational cost in a Bayesian parametric
framework. A modern approach is provided by |Yau and Holmes| (2013)) using Markovian
loss functions and dynamic programming algorithms in order to make inference. Their
results can be applied to change-point analysis or product partition models. In variable

selection, Hahn and Carvalho| (2015) and |[Puelz et al. (2016) used a loss function to
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compare the various models with the full one. |Quintana and Iglesias (2003|) provided
a new approach, proposing a loss function for estimating the parameters of a product
partition model and penalizing the number of clusters. |Quintana et al. (2005a) and
Bormetti et al. (2012]) applied this approach to outlier detection and change-point
analysis.

In this thesis, we exploit the ideas presented in |Quintana and Iglesias (2003)) and
extend their methodology in three relevant problems in statistics. In the case of cluster
and change-point analysis, we extend parametric product partition models to the non-
parametric case and generalize their loss function to deal with arbitrary distributions
functions instead of parameters. For finite population sampling, we apply them to find
the optimal post-stratification. Finally, in variable selection, we include a term in the
loss function which penalizes correlated variables in addition to model complexity.

This thesis is organized as follows. The first chapter provides a brief introduction to
parametric product partition models (PPMs) as defined by [Barry and Hartigan| (1992),
as well as to the Dirichlet process introduced by Ferguson (1973) and their relation-
ship. We also describe how PPMs are applied to change-point detection and provide
simulated examples where we show the limitations of using the marginal probability
criterion of [Loschi and Cruz (2005) to detect change points. We also show how this
detection can be improved using a loss function.

In Chapter [2| we define nonparametric product partition models (NPPMs), which
use the Dirichlet process, and describe how to model the distribution of the data
within clusters. We also discuss some important properties such as its relationship
with the nested Dirichlet process (Rodriguez et all [2008). We then propose an infe-
rence procedure using suitable loss functions for distribution functions, exploiting the
ideas presented in (Quintana and Iglesias| (2003). We apply NPPMs to nonparamet-
ric change-point analysis and take advantage of the random partition structure to deal
with missing values. We also compare our methodology through simulations with other
models recently discussed in the literature, and apply it to financial and genetic data.
This chapter represents the main contribution of the thesis and the main results are
published in |Campiran Garcia and Gutiérrez-Pena (2018).

In Chapter [3] we begin with a brief review of finite population sampling; then,
we explore a new framework for Bayesian post-stratification sampling using random

partition models and propose a suitable loss function for estimating the parameters of
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interest and finding the optimum post-stratification. This would be the first model for
sampling design. We also discuss a new methodology, based on the Bayesian learn-
ing process, that allows us to use previous surveys to obtain better estimates of the
parameters of interest.

In Chapter [4] we present a novel approach to variable selection in regression models
which can also be used in logit models and other generalized linear models. We propose
a loss function that penalizes high correlations between the explanatory variables, in
addition to the model complexity. Furthermore, we provide an algorithm to find the
subset of variables with minimum expected loss. Our approach is similar to that of
Hahn and Carvalho (2015). They use a loss function which compares each model with
the full one; however, this approach has several limitations that we will point out later
in that chapter.

Finally, in Chapter [5| we offer some concluding remarks and discuss further work.
In Appendix [A] we provide a more detailed proof, clarifying all the elements of the
sequential decision problem presented in |(Quintana and Iglesias (2003)). In Appendices
B] and [C] we present the calculations of the prior predictive distributions of the models
used in this thesis.

We used R Core Team (2016) and Gfortran in the simulations and numeric examples

presented in this work.
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Chapter

Product Partition Models and Dirichlet

Process

My joy is like Spring, so warm it makes flowers bloom all over the Earth.
My pain is like a river of tears, so vast it fills the four oceans.
Please call me by my true names, so I can hear all my cries and my laughter at

once, so I can see that my joy and pain are one.

THICH NHAT HAHN

In this chapter, we provide a brief introduction to product partition models (PPMs)
defined by |Hartigan (1990), the Dirichlet process (Ferguson,|1973) and their relationship
established by |Quintana and Iglesias| (2003). We describe how PPMs can be applied
to change-point analysis (Barry and Hartigan, 1993). Finally, through simulations,
we compare marginal-probability and loss-function criteria to select change points in

PPMs.

1.1 Random partitions

In this section, we review a class of models that induce probability distributions on the
space of partitions of a finite set of objects. This kind of models are used in cluster
analysis and model comparison, among other applications (Quintana 2006; Tarantolal
et al.[2008)). Let Sop = {1,...,n} be a index set of observations. Let p = {Si,...,S;}
denote a partition of Sy into k£ subsets with S; C Sp, and S; N S; = @ for all i # j. For



1. PRODUCT PARTITION MODELS AND DIRICHLET PROCESS

example, if Sy = {1,2,3} then we obtain five partitions:

[{1,2,3}) [{1, 23, {33] ({1, 3%, {2}] {1}, {2, 3}] {1}, {2}, {3}]

To avoid any confusion in the following definitions, we will assume that the elements
of S, with S € p, are sorted in ascending order and that min{s|s € S;} < min{s|s €
S} < -+ < min{s|s € Si}. Let y = (yy,...,y,) be a vector of n observations with

y, €RPfor 1 <i<n. Asin (1997), we define the vector
Ys = (ywl € S)

Obviously, a partition over Sy induces a partition over the entries of y. The number
of possible partitions of n objects is the Bell number, B,,, which satisfies the recursive

equation

Bo1 = i ( Z ) B, (1.1)

k=0
with By = 1. Note that this number grows exponentially; for example, Bagy > 1027
" , . This represents a challenge when we are dealing with partitions.
Despite this computational difficulty, random partitions models have been applied in
medicine (Leon-Novelo et al.[2012; Miller and Quintanal [2010; Miller et al.|2011]),
finance (Bormetti et al.|2012; De Giuli et al.[|2010; Quintana et al.2005b)), the analysis

of contingency tables (Tarantola et al.|2008), among other problems.

In some applications, it is enough to consider a particular class of partitions. For
example, if y is a real vector for which all the entries are ordered, it seems natural to

consider the partitions p = {S1, ..., Si} with the following form:

Si=A{1,...,m},So={m1+1,...,ma},.... S, ={mg_1+1,...,n—1,n}

with m; < m; if 7 < j. Note that there are 271 partitions of n points into blocks of
consecutive segments.

This kind of partitions are useful, for example, in change-point detection problems

(Barry and Hartigan[1992] [1993), multiple change-point analysis for linear regression
(Loschi et al||2010) and text segmentation (Kehagias et al|2004).




1.1 Random partitions

A random partition, denoted by RP(Sp), is a probability distribution over all the
partitions of an n—element set Sy = {1,...,n}. Clearly, this induces a random partition
over the entries of y, denoted by RP(y).

For several applications, two basic properties are desirable for a random partition
model. The model should be exchangeable with respect to permutations of the indices of
the experimental units (symmetry property): Let o = (071, ..., 0,) denote a permutation
of S, and let s, = (S4y, .-+, So,, ) describe the clusters implied by re-labeling experimental

unit ¢ by h = ai_l, i.e., op, = 1. We require

p(s) = p(so)

for all partitions. A second important property, known as scalability, is that the model

should scale across sample sizes. We want

lpl+1

p(sn) = Z P(8n, Snt1 = J)-

j=1

where |p| is the number of clusters on the partition of S and s; = j if ¢ € S; denote
the cluster memberships. A probability model on p that satisfies these two conditions
is called an exchangeable product partition function (EPPF) which can be written as
p(|S1]s -y |Sn|) (Pitman, 1996). In words, p(p) depends on the specific partition only
indirectly through the sizes |Sk| of the partitioning subsets Si. Several probability
models p(p) have been used in the recent literature, including product partition models
(PPM), species sampling models (SSM) and model-based clustering (MBC). The SSM
and MBC satisfy the requirements of symmetry and scalability by definition, but not
all PPMs do. We shall discuss this issue in Subsection [L4.1l For an extensive review
of random partitions, see for example, Quintana, (2006).

Note that in clustering applications, each element of the partition represents a
cluster. In model comparison, each partition and the associated probability ps(yg)
represent a model for the data. For example, let So = {1,2,3,4,5} and y = (y;,...,Ys).
Considering the partitions p1 = [{1,2,3},{4,5}] and p2 = [{1,2,3,4,5}]. To the first

partition we associate the model

p(ylv s ay5‘p1) = Pp1,1 (yla Y2, y3)pp1,2 (y47 y5)
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and to the second one

p(yl, ey y5|p2) = ppz(ylvaa Y3, Yq, y5)

where p11 ={1,2,3} , p12 = {4,5} and p2 = {1,2,3,4,5}.

Quintana, (2006) gives emphasis to PPMs as a relevant random-partition model.

We describe this class of models concisely in the following subsection.

1.2 Product partition models

Product partition models (PPMs) were defined by Hartigan| (1990) and Barry and Har-
tigan (1992)); these models are a particular case of random partitions. PPMs induce
a probability distribution over all possible partitions of a finite set of distinct observa-
tions: yq,...,vy, with y;, € RP. For each partition, the n data points are divided into
k subsets, and each data point y, belongs only to one subset. Data points of distinct
subsets are assumed independent and data points belonging to the same subset are
assumed exchangeable. For any partition p = {S1,..., S} of Sp and data y,,...,vy,,
it is assumed that i

P Yalp) < [ [ ps; (us,), (1.2)

j=1

where pg(yg) is the conditional density for observations in S given that S € p. This
density depends only on S and not on other subsets in the partition. The partition p

is in turn assigned a prior probability model
k
P(p={S1,...,8}) o< [ [ e(S)). (1.3)
j=1

where, for A C {1,2,...,n},c(A) > 0 is called the cohesion function of the subset A.
It is well known that the posterior distribution of p is again a PPM with cohesions
given by ¢(S)ps(yg). In the literature, the joint probability density of yg, denoted
by fys = ps(yg), belongs to a parametric family and the previous hierarchical model
defined by equations and includes a level with a prior for the parameters
(see, for example, Barry and Hartigan||1992} [1993; Bormetti et al.|2012; Crowley|/1997;
Dahl| 2009; [Fearnhead| 2006} Hartigan| |1990; [Hegarty and Barry||[2008; Jordan et al.
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2007; [Kehagias et al.|2004} Loschil2002; [Loschi and Cruz[2005; [Loschi et al.|[2003], 2010}
Monteiro et al)[2011; Muller et al.|2011; |(Quintana and Iglesias|[2003} [Tarantola et alll
2008). Barry and Hartigan| (1992) referred to these models as parametric PPMs.

Remark 1.1. Recall that the entries of yg are exchangeable. Then, by de Finetti’s

theorem,
pstus) = [ fro(uslo®)p(6%)a6°

— [ T w6 m(e®as°
€S
where fyg is the common marginal density for the y’s belonging to S given that S € p.
We can define @ = (04, ...,0,) where 6; = 0° when i € S, the common parameter of
fyg for y’s belonging to S.

Example 1.2. Normal-gamma PPM

n

Pt s yalos s m) o [ N (wilis ) (1.4)
i=1
(15,75 e, lp ™ N (-laf, 05,05, 55)
plple(S) with S € Sp) o< [ e(S)
Sep
where Ng is the normal-gamma distribution (see Appendix@for more details),
(ag,bg,ag,ﬂﬁg) are hyperparameters associated to S given that S € p. We name this
model the normal-gamma product partition model (NGPPM).

In many applications, covariates are available and can be used in clustering. In

Miller and Quintana (2010)) and Miller et al.| (2011)) the authors propose a generaliza-

tion of the PPM, introducing covariates as follows. Let

k
P(p={S1,....5k}) < [ [ g(zs,)c(S), (1.5)
i=1
where = (x1,...,2,) denotes the entire set of recorded covariates (z; is the covariate

of the i-th observation) and g = {z;,% € S}. The function g(xs) denotes a non-
negative function of xg that formalizes the similarity of the z;’s, with larger values
g(xg) for sets of covariates that are judged to be similar. Another extension is presented
by [Park and Dunson| (2010).
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1.3 PPMs and Dirichlet process

Definition 1.3. The Dirichlet process, introduced by Ferguson (1975), is a stochastic
process that can be thought of as a probability whose domain is the space of probability
measures on X.

Let (X, F,v) an space with v : F — [0,1] be a probability measure and « be a positive
real number; then a stochastic process P indexed by elements B € F is said to be a
Dirichlet process on (X, F) with parameter v if, for any partition (B, ..., By) with B; €
F, the random vector (P(By)---P(By)) has a Dirichlet distribution with parameter
(av(Bi),--- ,av(By)). We will denote such process by DP(a,v), with base measure v

and dispersion parameter o.

Remark 1.4. When we deal with X = RP we will use the notation G for the base

measure; when dealing with more complex spaces, we will retain the notation v.

We state some useful properties of the DP in the following proposition:

Proposition 1.5. (Ferguson, 19753)

Let P ~ DP(«,v) then

a) E(P)=v

b) If is a P-integrable function, then E (f ¢dP) = [Wdv. This holds for indicator
functions from the relation E(G(A)) = v(A), and then standard measure theoretic argu-
ments extend this sequentially to simple measurable functions, nonnegative measurable
functions and finally to all integrable functions.

c¢) Conjugacy: Let 7y, ..., m, be a sequence of independent draws from P then

Ay
P|7T1,...,7TnNDP <Oz—|—n7 @ v+ n Ez—l { z})

a-+n a—+n n

Another approach to the Dirichlet process is using the stick breaking representation

of the elements of the DP(«, G) provided by |Sethuraman| (1994).

Proposition 1.6. Let H € DP(a, G), then, with probability one, H has the following

form:

H(e) = midx,(e) (1.6)
=1

where m; = B; ;;11(1 — Bi) with By i Beta(1, a)

10



1.3 PPMs and Dirichlet process

We now describe the generalized Pélya urn scheme proposed by Blackwell and
MacQueen| (1973)). Let 71,9, .... be a infinite sequence of random elements on (the

Borel sets of ) a complete separable metric space X with

P(m€-)=v()
and
P (i1 € o[, ooy ) = vi(+) with § > 1,
where Zz 5 ()
vil) = aiiy(') * a:i = i{ﬂj} (1.7)

a € RT, and v is a probability measure on X. Blackwell and MacQueen| (1973) showed
that

a) v;(+) converges almost surely to a discrete random measure v*.
b) v* is the Dirichlet process with base measure v and concentration parameter «.
c) Given v*, 7y, mo.... are independent with distribution v*.

Conversely :
Let m1,m9,... be a random sample from P with P is taken from a the Dirichlet
process with parameters v and «, i.e.
(m|P) X P,
P ~ v
By Proposition c), the posterior of v* based on the first i observations 1, ..., m; is

also a Dirichlet process, but with an updated parameters o + 7 and v;. Therefore
]P’(T['H_l S -|7‘d’17 ....,ﬂ'i) = /P(ﬂ’i_;,_l S -‘7T1,...,7TZ',P) I/*(dP’ﬂ'l, ...,7TZ‘)
— [ POv@rim, .
= (")

Note that X can be the space of distributions functions on R? or even a more complex
space of objects such as stochastic processes, provided with the Lo metric, or random
measures such as the Dirichlet process. The nested Dirichlet process (NDP) defined by

Rodriguez et al.| (2008) is an example to such construction.

11
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1.3.1 The cluster property of the DP

Let my,...,m, a random sample of the Dirichlet process with parameters («,v). Us-
ing equation , we can see that, with positive probability, we will have repeti-
tions. Matching the indices of unique values of 71,...,m, we induce a partition of
So = {1, ...,n}. For instance, if we obtain 7 = 0.28, mo = 4.3, m3 = 0.28, m4 = 3.1 and
75 = 4.3, since m = 73, T2 = 75 we obtain the partition {{1,3},{2,5}{4}}. Given that
1, ..., T are random, this induces a random partition of Sy. This random partition,
in fact, encapsulates all the properties of the DP. To see this, we simply invert the
generative process; starting from the distribution over partitions, we can reconstruct
the joint distribution P(my, ..., m,) = [/, P(m|mi—1, ..., m1) by first drawing a random
partition of Sp, then for each cluster j in the partition, draw a 7; ~ v, and finally

assign m; = m;, for each ¢ in cluster j.

<>
@

(X, F,v)

Figure 1.1: Cluster structure induced by the Dirichlet process on a random measure
space (X, F,v).

In Figure we show an example of the cluster structure induced by the Dirichlet
process on a random measure space.

Quintana and Iglesias (2003) pointed out an interesting connection between para-
metric PPMs and the Dirichlet process. Because of its clustering properties, it is not
surprisingly that we can obtain a particular case of the PPM by integrating out the

DP. This result is formally presented in the following proposition for a general space
X.

12



1.4 PPMs for change-point analysis

Proposition 1.7. Assume the following model

i.3.d.
Tly ey Tp|P 7 P

P ~ DP(a,v),

where « is a dispersion parameter and v is the base measure of the DP. By integrating

out the DP, the Pdlya urn representation of Blackwell and MacQueen (1975) implies

[ av(mi) 2050 my ()
P(ﬂ'17"'7ﬂ'n):H{ (3[+Z<—]_ ’ }7
i=1

(1.8)

where 04(z) =1 if v € A and d4(x) = 0 otherwise.

This joint marginal distribution can be expressed alternatively as follows. For a
given partition p = {S1,...,5}, let ;1 < ... < €js;) denote the elements of §j,
assumed to be sorted in ascending order. By the combinatorial arguments developed

in Lo| (1984])) it follows that equation (1.8]) can be expressed as

ol 1551
P(ry,eymmy) = (1S;] = Dl (me, J e, (e
;HuaJrl_ll;[ IH{ )
el
= K> ] eS)ps;(ms)), (1.9)
pEP j=1

where P is the set of all partitions, K = [[};(a« +1—1), ¢(S) = a x (|S]—1)!,
ms; = (m|i € Sj), the blocks mg,,...,mg  are independent and pg;(ms;) is defined as
the probability such that all the elements in mg; are identical to a value drawn from
v. Because equation is identical to the marginal distribution that is obtained
through equations and for the choices just described, the integrated-out
nonparametric model can be seen as a special case of a PPM. This proposition is very
important for application purposes because it allows us to simulate this particular case

of PPMs more efficiently.

1.4 PPMs for change-point analysis

There is an increasing interest among statisticians in the area of change-point analysis;
this has been triggered by an awareness of important applications such as text segmen-

tation, detection of genes causing an abnormality, change-points in economic models,

13
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detection of discontinuities in geophysics time series, etc. New theoretical and com-
putational methods also contributed to the development of this area. This is the case
of product partition models, since one of their main application has been in change-
point analysis. In this section, we will describe the model for such purpose and discuss
the limitations of the marginal probability criterion to detect changes point. We also
provide an alternative approach using loss functions.

In one-dimensional change-point problems, the goal is to partition the sequence
of observations 1, ..., %, ..., T, (ordered by index ¢) into b contiguous subsequences or
blocks,

[.2171, ...,.’L‘il] 5 [xiﬁ-la ...,xiQ] g ey [.I‘Z'b71+1, ceey .’L'ib] .

Let f; be the density function of z;, parametrized by 8; € ® (whose value may change
from one observation to the next). We suppose that there exists a partition p of the
set {1,...,n} into contiguous sets or blocks such that the sequence 61, ..., 0,, is constant
within blocks; that is, there exists a partition p = (ig, %1, ...,1) of the set {1,2,...,n}
such that

O=ip<ii<ig<---<ip=n

and

0, = Oz’r with 7,1 <1 <1,

for r = 1,2,....,b. The parameter values change at the change points i; + 1,45 +
1,...,i—1 + 1. We denote the observations x;41,...,x; by x;;. Let f;; (:cijlﬂij) be the
joint density of x;; given 0,41 = 6;42 = ... = 8. (The notation f(-) will be used for
densities, and f(+]-) for conditional densities.) The observations z1, ..., z,, are assumed
independent between different blocks, given the partition and given the parameters.
Then we have ,
fon (@onlp,0) = T fiy1s; (i, _15;16%71%)

j=1

where, as before, 8 = (01, ...,0,). The partition is selected randomly according to a

product partition distribution. The probability of a partition p = (ig, i1, i2, ..., %) is

p(p> 8 cioilcilig T cib_libv

where ¢;; is known as a cohesion function and is specified for each possible block ij.

We will define a new level of this hierarchical model, a prior distribution of 6.

14



1.4 PPMs for change-point analysis

Given the partition p with b blocks, 8;,,6;,, ..., 8;, are independent. Let f;,_;; (Gz‘j_lz']-)
be the density of 0¢j71¢j = (91j71+1, v Ql-j). Because all parameters in the block i;_1%;
are equal to 8%-1%  the joint distribution of all the parameters is now determined. The
density f;; (0“ ) will be called the block %j prior density.

For a given block ij, the predictive density of the observations x;; is
fij (xi5) = /fzg (fBz‘j’Oij) fij (Bij) 6.

The joint probability density of x;;, denoted by fg,;, belongs to a parametric family
and the previous hierarchical model defined above includes a level specifying a prior

for the parameters. For a graphical representation of the PPM, see Figure

A
O

o
(H—®
O

B¢
e

AN

Figure 1.2: Graphical representation of the PPM for change-point detection.

We now describe the normal-gamma example studied by |Loschi et al.| (2003). We
will compare it later with the NPPMs for change-point analysis.

15
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Example 1.8. Normal-Gamma model for change-point analysis.

n

T1y ooy Ty 11 ooy iy Ty oy T~ [ N (il 73) (1.10)
=1

7;.717;. 74'.717:. znd ij—lij ij_li]' ij—lij ij—lij
('uj HT? ])j:17,,.7b|p ~ Ny "ao 7b0 » &g 7/60

p(p = {i07 ila ceey Y’b}) X Cigiy Cirio " " Ciy_qiyp
where aijflij bij*lij aij*lij 11t are hyperparameters associated with block i;_1%;
0 ) )y g ) Po yperp j—1%j-

A well known result gives

p(u, 7 p i) = Ng(u,79]a" b7, 0", gY) (1.11)
bi' + i

bij = béj+nij

L B oy
« ao + 9

B 1 J o b (T — ald)?
B = 186]+§ Z (mh_mij)2+ 0 Zj(ijlj 0) ,
W 2(bg + nij)

where n;; is the number of data points in block ij and T;; is the mean of the data points

belonging to block ij. The posterior marginals are
p(/ﬂ]‘pv wZ]) = toqii (sz‘ama ﬁl]/(alﬂblj))7
where t, (p, V') denotes the non-standardized Student’s t-distribution. Hence

5 o
E(mp, i) = 5 (1.13)
BE(u|p,xi) = av.
The predictive distribution is given by X ~t, ij (af)j, (agj)*lﬁéj (In + bfﬂ)) with aéj €
0 0
R™i where ag = (ag, -~ agj), I,, denotes the n x n identity matriz and H is ann X n

matriz such that Hi; =1 Vi,j (see Appendix@for more details).
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1.4 PPMs for change-point analysis

1.4.1 Cohesions functions

The selection of adequate cohesions functions is an important issue in PPMs. In this
subsection, we will review several alternatives proposed in the literature. Barry and
Hartigan| (1992)) considered a model in which the partition distribution used cohesions

of the form:

cij = (j—i)Pfor0<i<j<n,
cj = (j—i) 2 fori=0orj=n,
and cg, = n~t.

They also proved some desirable consistency properties of this choice of cohesions.
Inspired by previous work of [Yao| (1984), [Barry and Hartigan (1993)) used the follo-
wing cohesion functions, which imply that the sequence of change points forms a discrete

renewal process with inter-arrival times identically and geometrically distributed:

i = (1—pY "pifj<n,

C’L'j = (1 - p)j_i_lv lf] =n,

where p denotes the probability that a change occurs at any instant in the sequence.
Note that ¢;; corresponds to the probability that a new change takes place after j — ¢
instants, given that a change has taken place at the instant ¢. Such cohesions are appro-
priate when it is reasonable to assume that the past change points are noninformative
about the future change points, which is sensible in many practical applications (Loschi
and Cruz, 2005)).

Monteiro et al.| (2011) studied some properties of the number of clusters (denoted
by C) in the partition p when p ~ Beta(a,b). |Quintana et al.| (2005a)) profit from the
relationship between the Dirichlet process and cohesions functions of the form ¢(.S)
a x |S — 1|!. More generally, cohesions functions depending only on the cardinality of
the set j — ¢ can be induced by Gibbs-type priors if and only if ¢;; = (1_(275,“1 for
0<i<j<nando € [-o0,1] with (1 —a)j_i_l =1if 0 = —oc0 and p = (0,n) when
o =1 (Blasi et al.; 2015)). This choice of cohesions leads to exchangeable blocks, which
can be very useful in many applications such as detecting gain or loss of material in
DNA sequences. However, there are situations in which the exchangeability assumption

is not adequate. For instance, in the context of Global warming, if we want to detect

17
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change of behaviour in the average temperature since 1900, then it is not reasonable
to suppose that the probability of partition [1900,1980][1981,2014] is the same that
[1900, 1933][1934, 2014] because there were more factories, cars, etc. in 1981 than in
1934.

For a non informative prior, we can use the uniform distribution giving equal weights

to all possible partitions.

1.4.2 Inference

Although Barry and Hartigan/ (1992, 1993)) introduced PPMs for change-point analysis
and studied some consistency properties, they did not provide any methodology to
detect the points in time where a shift occurs. Indeed, they introduced their model only
for prediction purposes. Later, Loschi and Cruz (2005) used the marginal probability
of change point to decide whether a point in time is a changing point or not. In this
criterion, we fixed a probability pg, for each point ¢ we calculate the marginal probability
of being a change point p;. If pg > p; then z; is a change point.

Quintana et al.| (2005a) provide a different approach using a weighted loss function
L(8.05) =716 = 85]> + (1 =7,

where 9[3 is an estimate of 0 associated with the selected partition p and 0 < v < 1.
Quintana and Iglesias| (2003) show that the expected loss minimization criterion leads

to the choice p* that minimizes
SC(p) =105 (z) — 0, (@) > + (1 = 7)l4l. (1.14)

where = (z1,...,2,), O () = E(8]x) and 0, (x) = E (8|, p) (see Appendix [A]).
The above result shows that the optimal choice p* will be the partition for which the
resulting estimate 9,) () is closest to O (), penalized by the number of clusters. To

identify the change points, |Quintana et al.| (2005a) propose the following strategy with
SC' defined by equation (|1.14]).

18



1.4 PPMs for change-point analysis

Algorithm 1.1 Change-point detection

The basic procedure consists of recursively assessing subsequences of the set {1,...,n}
and identifying change points by splitting each subsequence into two parts.
Step 1: Set C=2, =1, u=mn, p*={1,...,n}.
Step 2: In the current partition p*, split the set {/,...,u} into {l,...,7 — 1} and
{js-.,u} for j =1+ 1,...,u. Denote by p; the corresponding partition. Let k* be
defined SC (py+) = i SC(p;).

cfined as SC (py-) i (P;)
Step 3: If SC (py«) < SC(p*) then add k* to C, replace p* by pj«, and recur-
sively repeat Step 2 for [ = [, and u = k* — 1 and for [ = k*, u = u. Otherwise, stop.

Yau and Holmes| (2013) exposed the limitations of using the marginal probability

of change point or the most probable state sequence in hidden Markov models.

To see this, we analyze the following example using PPMs with cohesions functions

Of the form: C’ij = (1 — po)j_i_lpo.

Example 1.9. We simulated the following sequence of random variables 1000 times:

Bernoulli(0.1), if 1 <i< 30
Bernoulli(0.8), if 31 <i <60
Xi ~ ¢ Bernoulli(0.1), if 61 <i <90
Bernoulli(0.8), if91 <i <110
Bernoulli(0.2), 4f 111 <1 < 140.

This sequence of data points contains four change points at {31,61,91,111}. At each
iteration, we used the loss function criterion with v = 0.7 and the probability of change
point for several values of py (po = 0.67,0.69,0.70). The results are shown in Figures
and[1.7] .

Comparing the histograms of the number of change points detected by the different

procedures with different parameters in Figures|1.50,[1.40], |1./d and|1.4f, we obtain more

accurate results using a loss function. Indeed, the results obtained using the probability
criterion are quite poor. The histograms of change points locations are presented in
Figures|1.53d, |1.4d,|1.4/d and|1.4¢€. As before, results obtained using a loss function are
better.
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(a) Change points detected. (b) Number of change points.

Figure 1.3: Change point analysis of Example using the loss function criterion with
v =0.7.
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(a) Change points detected with pg = 0.67.
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(¢) Change points detected with py = 0.69.
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(e) Change points detected with py = 0.7.
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(b) Number of change points with py = 0.67.
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(d) Number of change points with py = 0.69.
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(f) Number of change points with pg = 0.7.

Figure 1.4: Change point analysis of Example using the change point probability

criterion with different values of pg.
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Chapter

Nonparametric Product Partition Models

The woods would be very silent if no birds sang except those that sang best.

RABINDRANATH TAGORE

In this chapter we propose an extension of parametric product partition models
(PPMs) introduced by Hartigan (1990)) and [Barry and Hartigan (1992), using ideas
presented by |Quintana and Iglesias (2003). We name our proposal nonparametric
product partition models (NPPMs) because we associate a random measure instead of
a parametric kernel to each set within a random partition. Our methodology does not
impose any specific form on the marginal distribution of the observations, allowing us to

detect shifts of behaviour even when dealing with heavy-tailed or skewed distributions.

We propose a suitable loss function and find the partition of the data having min-
imum expected loss. We then apply our nonparametric procedure to multiple change-
point analysis and compare it with PPMs and with other methodologies that have
recently appeared in the literature. Also, in the context of missing data, we exploit
the product partition structure in order to estimate the distribution function of each
missing value, allowing us to detect change points using the loss function mentioned

above. Finally, we present applications to financial as well as genetic data.
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2. NONPARAMETRIC PRODUCT PARTITION MODELS

2.1 Definition of nonparametric product partition models.

2.1.1 Motivation

Let Y be a discrete finite random variable. In the context of finite population sampling,
we want to find the stratification or partition p = {Hj, ..., Hi} of the range of Y such
that

f@) = f|Y € H)P(Y € Hy) + ...+ f(z|Y € H,)P(Y € Hy) (2.1)

minimizes the loss function

L(pps 1) = Bllpe — pll* + (1 = B)p|

where ;1 = E(X) and p, is the estimate of y associated with the partition or stratifi-

cation p, i.e.
p,=EX|Y € H)P(Y € Hi)+ ...+ E(X|Y € H,)P(Y € Hy,). (2.2)

Parametric product partition models are not flexible enough to represent the situa-
tion of equation because it is assumed that for all strata H, f(z|Y € H) belongs
to the same parametric family of distributions. Therefore, we need a more flexible
family of product partition models. It would be convenient to model f(z|Y € H)
non-parametrically.

Now, we define nonparametric product partition models. For any partition p =
{S1,...,Sk} of So ={1,...,n} and data « = (@1, ..., ®,), it is assumed that

n

S.
p<x17"'7xn‘p7FXJ) X HF2<:BZ)
i=1

FYlp ™ DP(a%,G%)

k
P(p={S1,...5%}) o []e(S) (2.3)
=1

where % > 0 and G is a probability distribution function. In the same manner as

the PPMs, ¢(S) is a nonnegative set function called cohesion function. .

Remark 2.1. We can write [[}_, F,(x;) = H?Zl F;j (zs,) where k is the number of

clusters.
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2.1 Definition of nonparametric product partition models.

NPPMs, just as PPMs, induce a probability distribution over all possible partitions
of a finite set of observations: xi, ..., ®, with @; € RP. For each partition, the n data
points are divided into k subsets, and each data point x; belongs to only one subset.
As before, data points of distinct subsets are independent and data points belonging

to the same subset are exchangeable.

Remark 2.2. Since the entries in g are exchangeable, if F)S{ 1s the joint distribution

function of xg given p, applying de Finetti’s theorem (de Finetti 1972), we obtain

ps(zs) = /{HPS($i|F§)}dPS(F§)

i€S
-/ {H F)%(a:i)} dPs(F§)
€S

where Fjgf is the common marginal distribution for the x’s such that i € S given that
S €p. and ]P’S(F)S() is the probability measure over the space of distribution functions
induced by the Dirichlet Process associated to the set S. We can define F' = (F4, ..., Fy,)
where F; = F; when i € S.

We now show that the posterior distribution is again a NPPM.

Proposition 2.3. The corresponding posterior distribution of p is again of the form
of equation , with cohesions given by c(S;)ps;(Ts;) where ps; is the predictive
distribution given in remark . We define c(S;)ps,(xs,) as the posterior cohesions.

Proof.

p(p‘wlr"awn) X p(w1,,.’13n|/))p(ﬂ)
k
o psy(@s,|p). s, (@s.lp) x ] e(5))

j=1

x /psl (s, |p, FR)AP(FP) % . ..
k

< / P, (@s, o F2)AP(FY) x T] e(S))
j=1

x c(Sl)/ Hpgl(a:i\F;l) AP(FRH) % . ..

€S,
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2. NONPARAMETRIC PRODUCT PARTITION MODELS

<e(S) / [T psu (@il F) b ap(Fy)

1€Sk

x o(S1) / T FS () b aP(FS) x ...

€S

xc(Sk) / [1 F2 (i) p dP(F3)

1€Sk

We can recognize that / H F )‘S;’“ (z;) p dP(F ;’“) is the predictive distribution
1€Sy
evaluated at xg;. As in the parametric case, the posterior distribution has cohesion

functions ¢(S;)p(xs,), where p(zs;) is the predictive distribution with respect to the

Dirichlet process (with concentration parameter a® and base measure G*). O

Using the relationship between PPM and the Dirichlet process established by [Quin-
tana and Iglesias (2003), stated in Proposition we will show that using the NDP
in Definition [2.4], we can obtain a special case of NPPMs with cohesions functions
c(S) = a x (|S| — 1)!. This choice of cohesions functions promotes few clusters with
large amounts of data in each one. This can be very restrictive in many applications,
although Bormetti et al.| (2012)); |De Giuli et al. (2010); Quintana and Iglesias (2003)
and |Quintana et al.| (2005a,b)) exploited this feature for outlier detection.

2.1.2 Relationship with the Nested Dirichlet Process

We will discuss the relationship of the NPPMs with the Nested Dirichlet Process.

2.1.2.1 Nested Dirichlet Process (NDP)

We will describe the Nested Dirichlet Process (NDP) stating the two characterizations
provided by Rodriguez et al. (2008) and discuss if they are equivalent or not.
Definition 2.4. We say that G; is a NDP(«, 3, H) if
Gile ¥ Q
Q@ ~ DP(a,DP(B, H)).
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2.1 Definition of nonparametric product partition models.

Notice that the term DP(a, DP(f, H)) has a profound meaning and is not just a
matter of notation. In order to clarify this, we present the following discussion that
appears in Rodriguez et al.[ (2008). Consider the probability space (®, B(R%), P) where
© C R%, B corresponds to the Borel g-algebra of subsets of R? and P is the probability
induced by the distribution function H. Consider the Dirichlet Process DP (S, H) with
S > 0. Let X be the space of probability measures over (©,85), let B(X') the Borel
sets induced by the sup norm, it is well known that (X, |- ), is a complete separable
metric space. Let v be the probability induced in B(X) by DP(f, H); then we have a
probability space defined by the triplet (X', B(X),v).

Recall the original definition of the DP introduced by [Ferguson (1973) stated in
Definition the choice of ® C R” for the base space of the DP is merely a practical
one, and the aforementioned results extend in general to any complete and separable
metric space X. In particular, because the space of probability distributions is complete
and separable under the sup norm, we could have started by taking (X, B(X),v) as our

base space. Therefore, DP(«,v) is a random measure over the space of distributions

on distributions. We can replace v = DP(f, H) and we would obtain DP(«, DP(3, H)
Definition 2.5.

Go)~Q = Y miba: () (2.4)
k=1

Gi(e) = > wjdar () (2.5)
=1

where 0}y, ~ H, H is a probability measure on (©,B),
Wy, = Uy, Hls_:ll(l — u¥y,) with uj, vy Beta(1, ),

T = v} Hk;ll(l — v}) with v}, bid Beta(1, @)

s

Figures [2.1] and are graphical representations of Definition [2.5
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2. NONPARAMETRIC PRODUCT PARTITION MODELS

a= +17, | ‘ +173 |+, +...
P= ‘+a2 +as | +ay, +...
I | | S | ! vl
M= )/1“ ‘ +y2| |+)/3 N 2 +...
Figure 2.1: P,Q,M ~ DP(«a, DP(B,H))
Gi‘=‘ G;:| | Gy = ‘ Gi =
IS | I
Q=11 T, | ‘ 13 +1y +
| | |
G = G, = ‘ Gz = ‘ G, = ‘
| ] | I ]

Figure 2.2: G¥ ~ DP(B,H)), Q ~ DP(a,, DP(3,H)) and G; ~ Q

These authors claim that the NDP can be characterized as a distribution on the

space of distributions on distributions, but Muller and Nieto-Barajas (2008) argued
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2.1 Definition of nonparametric product partition models.

that this is not the case and it is only an element in the space of distributions on
distributions. They also pointed out that the model is better described as random
clustering of a set of random distribution. They justify it by noting that the argument
in equation is 6, not a random distribution. Moreover, if equation is changed

to

G(o) ~ Q= midg:(o) (2.6)
k=1

then the argument e would be a measurable set of random measures and G; would be
defined on the space of distribution on distributions.

If we analyze Definition we obtain a probability measure on the space of distri-
butions on distributions, as stated by |[Rodriguez et al.| (2008), whereas, using Definition
2.5 we obtain a random clustering of a set of random distributions therefore, definitions
and [2.5] can not be equivalent. In fact, if we change Definition 2.5] to the following

definition, the definitions would be equivalent.

Definition 2.6.

Go)~Q = Z?TZ(Scz(O) (2.7)
k=1

Gi(e) = D wipde; (o) (2.8)
=1

If we marginalize the Nested Dirichlet Process of Definition ([2.4]), we obtain a special
case of the Nonparametric Product Partition model. This result is formalized in the

following proposition.

Proposition 2.7. Let X = {F|F : R? — [0, 1] is a probability distribution on RP}, and
let |F||oo = supg |F'(x)| be the sup norm. It is a well known result that (X,| - |) is
a complete separable metric space. Let B(X) be the Borel sets induced by || « ||. The
Dirichlet process DP(B, Fy) induces a probability on (X,B(X)) with 3 € RT and Fy a
distribution function on RP. Let v be the probability measure over (X,B(X)) induced
by DP(S3, Fy), and consider the following model

ml,...,mn\Fl,...,Fn ~ Fl(xl)
F, .. FE, P "% p
Pla,B,Fy ~ DP(a,v),
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2. NONPARAMETRIC PRODUCT PARTITION MODELS

which is equivalent to

:Bl,...,wn‘Fl,...,Fn ~ Fz(xz)

Pla,8,Fy ~ NDP(a,B,Fp).

If we integrate out P, we obtain the following NPPM

n
S.
p<m17"'7$n|p7FY]> X HE(:CZ)
i=1

Fy|p ™' DP(B,F)

k
Pp={S1,...5%}) o []e(S)
i=1
with cohesions functions
c(S)=ax (S| -1
Proof. Straightforward using Proposition [1.7 O

As in the parametric case, this relationship allows us to simulate from this class
of NPPMs efficiently using algorithms proposed in Rodriguez et al.| (2008) and [Miiller,
and Nieto-Barajas| (2008)).

We raise the following conjecture, which we have not been able to prove,

Conjecture 2.8. If we marginalize the nested Dirichlet Process provided by Defini-
tion we obtain a special case of the Nonparametric Product Partition model with
cohesion functions of the form c¢(S) = a x (|S]| —1)!.

2.2 Loss function

Let Sj € p be such that i € Sj, let Zg, ~ st, and define p; = E(Zs;). Let p =
(1, -5 py,). Notice that p is a random vector with p; € RP and p; = py, if i,k € S
We define the loss function

U(pypoiny) = |l — )| * + (1 =) (18] — |o]) (2.9)

where the vector fi; is the estimate of the vector p associated with the estimated

partition p and |p| denotes the cardinality of p. Here, 0 < v < 1 is a cost-complexity
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2.2 Loss function

parameter. The choice of loss function implies a trade-off (controlled by the user-defined
quantity ) between the optimal estimator of g and model simplicity, by which we
mean a model with a low number of clusters or strata. Notice that the term (|p| — [p]|)
penalizes when the estimated partition p contains more clusters than the true partition
p.  We follow the procedure discussed in (Quintana and Iglesias| (2003) to obtain the

partition with the minimum expected loss.

Theorem 2.9. Let fip (x) = E (p|x) and i1, (x) = E (u|p,x), then the expected loss

minimization criterion leads to the choice p* that minimizes
SC(p) = 1Nbsp (@) — fr, (@) |I* + (1 —7)|p] (2.10)

Proof. For a sequential decision problem, Bernardo and Smith| (1994) state that one has
to first solve the final nth stage by minimizing the appropriate loss function, then one
has to solve the (n—1)th stage by minimizing the expected loss function conditional on
making the optimal choice at the nth stage; and so on, working backwards progressively,
until the optimal first stage option has been obtained. To visualize the decision tree of

our problem see Figure |2.3

u R N
4::7 407 —o l(pa P> /'1[7 ’ lu)
p plol) plulp,x)

(a) Second stage

— (i |p)

P plelx)

(b) First stage

Figure 2.3: Decision tree of Theorem |2.9

31



2. NONPARAMETRIC PRODUCT PARTITION MODELS

To solve the optimization of the second stage:
la(fylp) = /l Py ps By )P (1| p, ) dpa
= [ty ~ wlPotualp. @i + (1= ) (191 = 9]

Let f1; = argminﬂﬁ{fg(ﬂﬁ|p)}, then the loss of choosing p when p is the real state of
the world would be Zg(ﬂ}] p). Now we will solve the first stage (see Figure . The

expected loss is given by

1) = [ 1Giloipl)as

= o [{ [ 15 wiPotuin. vt ot + =) (161~ [ lotoleris)
o [l [ stulo@lptolerdpdi + =) (191 [ olotolorio)

3 [ iy P + (1 —) (Iﬁl -/ |p|p<p|m>dp>

Since ,&2 is the Bayes estimate under a quadratic loss function,

Finally,

[z, @) = ulPpule)du = / Z iy (@) — o) o) dps
-/ Zm (@) — i, (@) + fu; (@) — ) plal)dp
-/ §:j<u (@) — fu (@) *p(pal)dp
v f ;w (@) — i1 (@), (@) — p)plplz)dp

+/Z(ﬂ3,i () — ;) p(pela)dpe
i—1

=l () = fop () |7 + 0 + tx(V (pafx))

where tr(A) denotes the trace of a given matrix A. Then

v/ Ity () — plPp(plz)dp + (1 =)A= 1)) = Al () = fp@)]|* + vt (V (plz))
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2.2 Loss function

(1= )lp — (1) / plp(pl)dp

The proof concludes by noting that the second and fourth term in the last expression

does not depend on /. d

The above proof shows that the optimal choice p* will be the partition for which
the resulting estimate f1,(x) is closest to fip(x) with the smallest number of elements.
We now introduce a loss function that depends on the distribution of the data and
not only on the mean value. Recall that F; is the marginal distribution of X; given
p={S1,...,S};if i € Sj then F; = F;j, and, F; ~ DP (a5, G5). We define the loss

function

n
1P, p, Fp, F) = il Fi — Fpill? + (1 =) (1] = |o]) (2.11)
=1

where F' = (Fy,..., F,), F 5 is the estimate of F' associated with the estimated partition
P, i.e. Fﬁ = <Fﬁ,1, ce Aﬁ’n) We define the following class of norms

|F)2 = / Wily) (F(y))dvi(y)

with W;(y) a nonnegative function which represents a weighting function, v;(y) a mea-
sure on RP and v =1—>"" ;v with 0 <~; and v < 1. The term (|| — |p|) promotes

a smaller number of clusters.

Theorem 2.10. Let Fp; = E (Fj|z) and pri = FE (Fi|p,x), then the expected loss
minimization criterion using the loss function defined by equation leads to the

choice p* that minimizes
n
SC(p) =Y _villFpi— Fpill? + (1= )la|
i=1

Proof. Let

Fy= (B Fpn). F= (Fo. o Fp,)
and

n
1Fs = FI* =) vl Fi — Fpall?.
=1

The corresponding decision tree is depicted in Figure
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2. NONPARAMETRIC PRODUCT PARTITION MODELS

F .
z 40* 41(;b’p’FpﬂF)
p‘x P(Fp,x)

(a) Second stage

] lz(F )
p(plx)

(b) First stage

Figure 2.4: Decision tree for the decision problem of Theorem [2.10

We begin by solving the optimization problem of the second stage:
ZQ(Fﬁ|p) = EF|p,m (l(ﬁ7 P, Fﬁa F))
= Epjpe (I!Fﬁ —F|?+ (1 - (lal - |p|)>

= Epjpa (Hf% - FH2> + (@ =) (Al =D -

Let F; = argmini,ﬁ {Zg(ﬁﬂp)}; then the loss of choosing p when p is the real state of
the world would be ZQ(F;|p). Since F; is the Bayes estimate under a quadratic loss

function,
. s .

F,=Epj.(F)=F,.

Now we will solve the second stage (see Figure [2.4b]). The expected loss is given by

i(p) = Ep|m<zz<ﬁ,’§|p>>
~ B, (Emp,w(ufv; - F||2) +(1=7) (1] - |pr>>

34



2.2 Loss function

E(EF<||F - F\P)) =) (7] - Byalo))
_ EF|w(r\F2 - F||2) (=) (18]~ Balll) -

where
Epm<||Fﬁ—F\2> _ EFm(Z%m—F,a,m%>
=1
= EFm(Z%/VVz(y)( dl/z
=1

)
= S mna( [ W~ b))

Applying Fubini’s theorem,

EFm(/Wi(y)(Fi_Fp,i)QdVi(y)> = /EF|m (Wi(y)(Fi sz)2>dl/i(’y)

with
Ep|z ((Fz - Fﬁ,i)2> = Ep; ((Fz — Fpi+Fp; — Fﬁ,i)Q)
— Eppa <(E- - FB,Z»)Z)
+2Ep), <(Fz’ — Fp) (Fpi — Fﬁm’))
+Egs ((FB,Z- - F)) (2.13)
Note that
Brta (B Fs) (Fos = ) ) = (Fini— F3) B (= F) )
=0

The first term in equation (2.13)) does not depend on p and can be thought of as a

constant K; hence

Era ((Fi _ ﬁﬁ,z)2> K40+ (Fp, — By)>
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2. NONPARAMETRIC PRODUCT PARTITION MODELS

Substituting into equation (2.12)), we obtain
N ~ A2
EFm(/Wi(y)(FiFﬁ,z‘) dvi(y)> — /Wi(y)(FB,z' — Fp) dvi(y).
Therefore,
A % n ~ ~ 2
Boa (I8, - FIF) = S [ Witw)(Bins — ) dty) + K
i=1

7+ Ko

n
= Z%HFB,i - Ff;,z‘!
i=1
where K5 is another constant. Hence,
n
1p) =Y illFpi— Fpilli + (1 =1Al = (1 =NE(lp) + Ko
i=1

The proof concludes by noting that the third and fourth terms in the last expression

do not depend on p. O

The above proof shows that the optimal choice p* will be the partition for which
the resulting estimate Fp is closest to Fp.

Theorems and suggest a procedure based on distances to find the optimal
p*. However, an exhaustive search on the space of all possible partitions is infeasible.
Therefore we will adopt different heuristic algorithms depending on each application.
Unfortunately, these strategies can not give us the optimal solution but they can lead

to a reasonable one in a realistic amount of time.

2.3 Nonparametric product partition models for change-

point analysis
2.3.1 Introduction

From the statistical point of view, a change point is a place or time point such that the
observations follow one distribution up to that point and follow another distribution
after that point. Multiple change-point problems can be defined similarly (Chen and
Gupta, 2011). Change-point problems arise naturally in many disciplines such as eco-
nomics, finance, medicine, psychology and geology, and statisticians have developed a

number of methodologies to deal with this topic. The reader is referred, for example,
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2.3 Nonparametric product partition models for change-point analysis

to (Chen and Gupta/ (2011)) for parametric classic statistical models, and to |Csorgo and
Horvath (1997) and Brodsky and Darkhovsky| (2010) for nonparametric classical ap-
proaches and related results. For Bayesian parametric models see Ecley et al.| (2011)).
Another recent Bayesian parametric approach is discussed by [Killick et al.| (2012) us-
ing a cost function to detect change points. Since our approach is based on product
partition models (PPMs) for the underlying structure of the data, we start by briefly
reviewing relevant related work.

We can see change-point analysis as a particular case of clustering where the obser-
vations are ordered, usually by time. Because of its inherent cluster properties, PPMs
offer a convenient approach that can lead to good estimates in this setting. In fact,
change-point analysis for predictions purposes is an early application of PPMs (Barry
and Hartigan |1992) 1993). Later |Loschi and Cruz (2005) and |Quintana et al.| (2005a)
proposed criteria to identify change points in these models. The former authors sug-
gest to use the marginal probability of being a change point at each location of the
time series, while the latter authors use a weighted loss function to identify the shifts
of behaviour. Many algorithms assume that each cluster has the same density (Chen
and Guptal, 2011)). This approach may be very restrictive, which is why many authors
model the densities nonparametrically.

An early example of this approach from a Bayesian perspective can be found in
Mira and Petrone (1996]), who used mixture of Dirichlet processes to model the densi-
ties; this ensures flexibility of the distribution for each cluster although their approach
is computationally very demanding when dealing with several change points. More
recently, [Yau et al.|(2011]) proposed another approach which uses hidden Markov mo-
dels for the cluster structure and mixture of Dirichlet processes to model the density
at each state. In this model, we need to establish the number of states in advance,
which can be very limiting for some applications. Furthermore, [Yau et al.| (2011) use
the marginal probability to detect change points. This criterion has several limitations
which are discussed in Yau and Holmes| (2013). A recent Bayesian parametric approach
was introduced by Killick et al.| (2012) using a cost function to detect change points.

The main goal of this section is to introduce a flexible model for change-point
detection that can discover fluctuations in the distribution in sequentially observed
data. Let x1,...,z, be a data sequence and consider the index set I = {1,...,n}.

Consider a random partition p = {ig, 1, ..., 3} of the set I U {0}, with ordered points

37



2. NONPARAMETRIC PRODUCT PARTITION MODELS

0 =19 < i1 < iy = n, and a random variable B which denotes the number of blocks in p.
Consider that each partition divides the data sequence into b contiguous subsequences,
which will be denoted here by T, yyir = (wi(r71)+1, ...,xr)T, forr=1,...,b.

Let ¢;; be the prior cohesion associated with block ij = {i +1,..., 5}, for ¢,j € T U{0},
and j > 1, that represents the degree of similarity among the observations in x; ;.

Let F1, ..., F), be a sequence of marginal distributions of z1,...., z, respectively. Given

a partition p, we have that F; = F; for every i(,_1) <1 <y, and Fi, ..., F;

(r—1)tr> ib—1)%

are independent, with Fj; ~ DP (j, Gij).
We say that the random quantity (x1,...,2,;p) follows a nonparametric product

partition model (NPPM), denoted by (z1, ..., zn;p) ~ NPPM, if

1. the prior distribution of p is
b
p(p = {Z07217 7Zb}) X H Ci(j_l)i]' (214)
j=1

2. conditional on p = {ig, 1, ..., }, we have the following hierarchical model

Filai,Gi | "™ DP (o4, Gy) (2.15)

n
L1y .y I | Fl"'-an’pNHFi (xl)
=1

For a graphical representation for the NPPMs for change-point analysis, see Figure [2.5

Remark 2.11. The hyperparameters o; and G; are fized.

We now calculate the posterior distribution of the partition for the NPPMs applied
to change point analysis.
Proposition 2.12. The corresponding posterior distribution of p is again of the form
of equation , with cohesions given by c¢(S)ps(xs) = cijpij (Tij) where pij (x5) is
the predictive distribution defined in proposition [2.54 with S = {i +1,....,j}

Proof. Straightforward using Proposition O
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2.3 Nonparametric product partition models for change-point analysis

g

ip_qp ! 'h 1l )

\DP(a

w'Gii)  DP(a,.Gy) "DP(a
{{1,2 ..... i i AL 42,0, ), ,{ib_1+l,ib_1+21---,n}}

()

p(p) |0|1 |1|2 e Cib_lib

Figure 2.5: Graphical representation of NPPMs for change-point analysis.

2.3.2 Estimation of the weights in the loss function

The choice of loss function implies a trade-off (controlled by the user-defined quantity

) between the optimal estimator of F' and model simplicity. Let,
n
p, Fp, F) = 3l Fs = Epullf + (1= )14 (2.16)
i=1

where F = (Fl, ey F)s F is the estimate of F' associated to the estimated partition p,
Fﬁ = (Z:"p:l, oy ) |G||? = [|G(z)?dW;(x), with W;(z) a probability distribution
function on RP and v = Zi_l ~v; with 0 < ; and v < 1.

We use Theorem [2.10] and Algorithm [I.T] to estimate the change points.

Notice that, for a fixed value of v, we obtain the change points by minimizing
equation (2.11]) which we will denote by

py = {0,171} } -

Denote the sum of squared errors associated to v as
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2. NONPARAMETRIC PRODUCT PARTITION MODELS

n

SSE, =Y (xi — C}),

i=1
where C; is the mean of observations {%?,1 415 Ty } for il <i<i;. Clearly, for
a fixed value 7y of the parameter v, there exists an interval I = (v4,7) such that for
all v € I we obtain p, = p4,; therefore, it is enough to consider the number of change

points versus the SSE, for the analysis.

2.3.3 Exact computational procedures

Barry and Hartigan| (1993) provide an exact computational procedure to estimate the
gold standard F5 used in Theorem In this section, we will describe it briefly for

the nonparametric case.

Define
b
Nj =2 Il encin
k=1
where the summation is over all sets of integers i = ig < 711 < ... < 4, = j. The

quantity A;; is the sum of products of cohesions over all possible partitions of the set
i+1,i4+2,...,7}. Let the relevance r;; be the probability that the block 75 is include
i+ 1,4+ 2 i}, Let the rel ; be th bability that the block ¢j is included
in the partition p. Then

The quantities \g; and Aj, may be calculated in O(n?) steps using the recursive

formulas

Aol = cot,
K
Aoi+1 = COz‘+1+§ AOkChit1,
k=1
>\n—1n = Cp—1n,
and
n—1
Ajin = Cjn+ § CikAkn
k—j+1

In our case, we want to calculate figz and Fp given the observations. The posterior

relevances 7;;(x) are computed from the posterior cohesions by recursive formulas like
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2.3 Nonparametric product partition models for change-point analysis

those just listed. Now

Bpr = E(plz)
= Y Eijlpylri)ry (@),
i<k<j
where E;j(p|zi;) denotes the posterior expectation of p, when the block ij lies in the
partition. Similarly for Fg, ie.
Fp, = E(Fz)
= Y Eij(Filwi)ri(),
i<k<j
where E;j(Fj|x;j) denotes the posterior expectation of Fj, when the block ij lies in the
partition. In the model defined by equations and , the posterior cohesion

functions are given by

b

p(p = {io,i1, ..o iv} &) o< [ cipyoryiyp(@i i) (2.17)
j=1
with

’LJZ] Hk (’:Bk’
p(a) = a(l+a)... —l—l—a HG”

where o} for k = 1,..., K;; are the distinct values in block ij and |x}| is the number
of times that the value xj, is repeated in block 7j. The number of possible blocks in n
data points is (";1) For small data sets, this procedure is feasible (n < 500) but for
greater values of n, it is computationally expensive. We tackle this issue using a Gibbs

sampling scheme described in the following section.

2.3.4 Gibbs sampling for change-point analysis

Let U; be an auxiliary random quantity that reflects whether or not a change point

occurs at time 4 (Barry and Hartigan, [1993)); i.e.

CL 0 i F#£ i,

s
n—1

for « = 1,...,n — 1. Each partition (Uf, s ), s > 1, is generated by using Gibbs

sampling. Starting from an initial value (Ulo s ey Ug_l), the r-th element at step s, U?,

is generated from the conditional distribution:

S
U7»|U1,... r— 17U+1?" Us— l,m(m

n—
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for r = 1,...,n — 1. To avoid unnecessary calculations, it is enough to consider the

following ratio:
P U, =1|V?xo,)

R, =
P(Ur =0 ‘ V;,S;mon)
forr =1,...,n—1,in which V;? = {Uf =uy,...,.U | = ur,ljUflll = Ups1, ...,Uij = un,l}
P(Us = Us _ U.=1 Us—l _ Us—l _ |
s. 1] = Uly s Up g = Up—1,Upr = 1, r+1 — Up41y 00y n—1 — Un—1 | Lon
PUr =1V xon) = ; ; = =
P (Ul = ui, ""7Ur—1 = ur_l,UTH = Upr41, ""Un—l = Unp—1 | :l?on)

and
P(U; = Us | = U, =0,U ] = Uy~ =
1 = Uy Up g = Up—1, Up =0, Uy = Uptd, .. U1 = Un—1 ’ Lon

P(U:0|VS;$0): — —
" " " P ([]i9 = ui, "“7U7§—1 = Urflaqu_ll = Up41, ,UTSL_% = Un—1 | mon)
Then
r_ P (U =ty s Upy = up—1,Up = 0,US ] = g1, oo, USZ] = Un—1 | Ton)
T — —
P (Uls = ui, ”"7U1§—1 = ur_l,Uf_Hl = Upr41, ,Uz_% = Unp-—1 ’ :Bon)
Let
S — f
max{i,st:0<i<pUs =0} if Ui 7 0 forsome
xr = : ie{l,..,r—1}
0 otherwise
and
ry . . U? =0, for some
y min{i,s.t:r <i<n,U’ =0} if ile{r—i—l,...,n—l}
n otherwise.
Hence

R. — Cay f H?iJ::EJrl F (xl) p (F) ar
T ey [ [[ios F (@) p(F)dF - [TI, 1 F (i) p(F) dF”

Consequently, the criterion for choosing the values U7, ¢ = 1,...,n — 1, becomes:

g { L it Re> A
T 0, otherwise

for r=1,...,n — 1, in which u ~ Unif (0,1).
Fuentes-Garcia et al.| (2010) and [Martinez and Mena, (2014)) provide a clever Gibbs

sampler using p(k, ni, ..., ng) where k is the number of blocks and n; is the number of

observations within block 7.
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2.3 Nonparametric product partition models for change-point analysis

2.3.5 Multiple change-point analysis with missing values

Missing data arise in many applications such as aCGH analysis that we will describe
in Section [2.4.3.2] To overcome this difficulty, we will start by assuming that the data
are missing at random, which is a reasonable assumption in many situations. Our
model allows us to handle this problem naturally since a common practice to estimate
a missing value in change-point analysis is to average values near the point where a
missing value appears. In our setting, we have random partitions which allow us to
average the distributions functions of all possible partitions of the data. It can be easily

shown that
p(p| X1, s Xn) o p(pe] X o),

where X . denotes the data and p. the corresponding partition without missing val-
ues. Therefore, the quantities of interest of our analysis, F;, Fp; can be calcu-
lated without extra computations. For instance, if we have 101 data points with
a missing value at ¢ = 80, consider the partition p = [1,50][51,80][81,101], then
Xe =A{X1, ..., X79, X381, ..., X101} and p. = [1,50][51, 79][81, 101]. Notice that we will be
able to estimate E[Fy|X,, p.] = E[Fso|X1, ..., X100, p] with 51 < k < 79.

We will provide two examples where we apply this idea.

Example 2.13. We simulated a data set as follows,

w=0, if1<i<100
X %N (1) s =2, if 101 < i < 200
=0, if201 < i< 300,

with missing values at i € {51, 80,110,140, 170,195, 220, 250,275}. Figure shows
the simulated data with missing values. The estimated distributions at each point are
displayed in Figure[2.68, where we can distinguish two clusters which correspond to the
two change points present in the data. The estimated distributions for missing values
together with the true distributions are presented in Figure|2.6d, where we can see that

the estimated distributions are close to the true ones.
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Figure 2.6: Graphics for Example [2.13
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2.4 Simulation experiments and applications

What happens when the missing value appears at a change point? The following

example will clarify this question.

Example 2.14. We simulated a data set as follows,

XZ lﬁ, N(,LL’L? ) ' f

with missing values at i = 51. Figure[2.7d shows simulated data with a missing value at
i = 51. The estimated distributions at each point are displayed in Figure[2.70, where we
can also distinguish two clusters which corresponds to the change point presented in the
data. Nevertheless, the estimated distribution (in blue) for i = 51 is a mizture of two
distributions: the first one of block {1,...,50} and the second one of block {52, ...,100}.

FB
o _
— //
© © 100
2
< - © |
(=]
< | 51
N o' -
o~
o <3
o
5 — 1
T T T T T T e T T T T T T 1
0 20 40 60 80 100 -4 -2 0 2 4 6 8
i
(a) X; (b) F,; for 1 < i < 100.

Figure 2.7: Graphics for Example [2.14

2.4 Simulation experiments and applications

In the examples of this section we use the following cohesion function

cij =cnp Xpx (1—p)~ 71,
where cyp > 0 and p € (0, 1) are constants. We note that p can be interpreted as the

probability of change at an arbitrary point, so that p x (1 — p)’~*~! is the probability
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2. NONPARAMETRIC PRODUCT PARTITION MODELS

of the event that a change point occurs at j. The parameter c¢yp allows us to promote
fewer change-points when c¢yp < 1. In what follows, we set ¢yp = 0.001 and p = 0.01.
For the parameters of the Dirichlet process DP(w;j, Gi;j) we use a Normal distribution,
Gij = N <uij,a§j>. We employ an empirical Bayes approach to estimate p;; and
oi; as follows: fi;; = median(x;;) and ;5 = IQR(w;5)/1.349 where IQR stands for
interquartile range. We use these robust estimators so as to allow for observations from
heavy-tailed distributions. For the disperpersion parameters «;;, we use the following
rule of thumb: if the number of observations is less than 50, we set «;; = 1; for larger

samples, we use a;; = 30.

2.4.1 Simulation study

Example 2.15. Here we give an example of the distribution functions estimated FB,i.

We simulated a data set as follows,

=0, ifl<i<50
X "N (i, 1) s =1, if 51 < < 100
pi =0, if101 <i < 150.

Figure [2.8 shows the simulated data together with the estimated distributions at each

point.
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Figure 2.8: Graphics for Example [2.15

In the next examples, we will also present simulation results from the nonparametric
product partition models using different function weights W, and measure v; in the loss
function of Theorem as follows. The first one is the NPPMs with W;(xz) = 1 and
vi(z) corresponding to the Lebesgue measure; for the second one, we set Wj(z) = 1

and v;(x) = FB’i(l’), which we name NPPMsB; finally, inspired by the Anderson-

1
F‘B7i(l‘)(1—ﬁ‘37i($)
NPPMsBB. We study the behavior of the probability of change point of the NPPMs

as well and this will be identified by NPPMsP.

Darling test, we use W;(z) = ) with v;(z) = Fp,(x), and refer to it as

We compare the performance with that of parametric and nonparametric procedures

that have recently appeared in the literature, such as the Pruned Exact Linear Time
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(PELT) procedure (Killick et al., 2012), which is based on a penalization function, and
ECP (E-divisive change-point analysis) introduced by [Matteson and James| (2014),
which is based on a divergence measure that can determine whether two independent
random vectors are identically distributed. We also compare our proposal with the
parametric product partition model introduced by Barry and Hartigan (1992, [1993)
(becp) which detects changes in mean with known variance, and the normal-gamma
product partition model studied by |Loschi et al.| (2003)) which detects changes in mean
and variance in normally distributed data. For this model we analyze the marginal
probability of change point (NG P) and the loss function (NG) criterion. For each
method, we evaluate their effectiveness in detecting change in mean, variance, tail and
skewness for 20, 150 and 300 observations using the Rand index introduced by [Rand
(1971)) which we will describe briefly. Suppose that we have n data points with two
ways of clustering the data: U and V. Let A be the set of pairs of data points that
are together in U and V. Let B the set of pairs of data points that are not clustered
together under U and V. Then the Rand index is defined as follows

4]+ 1B]
(5)

In words, the Rand index is the percentage of pairs of data in which the partitions A

Randl =

and B cluster in the same way; that is, if both observations are clustered together or

not.

Example 2.16. Small data sets. FEach simulation applies the methods described
earlier to a set of 1000 independent sequences of 20 observations with one change point
at © = 11 with distributions G1 and Ga respectively for each block. To assess the
performance for changes in mean, we set Gy = N(u1,1) and Go = N(u2,1); for changes
in variance we define G1 = N(0,0%) and G = N(0,03); in the case of changes in tail
we specify Gy = N(0,0%) and Go = t,,. Finally, to study changes in skewness, we define
G1 = N(u,1) and G = sN(0, 1, o) where sN denotes the skew normal distribution and
w = Mode(G2). Table shows the mean and standard deviation of the Rand index for
each method and each case considered. For the purpose of facilitating the interpretation
of results, the table is colored with darker tones denoting better performance. We can
see that the methods based on loss functions (NPPMs, NPPMsB, NPPMsBB, NG, ECP
and PELT) perform better than methods that rely on the marginal probability of change
point (NPPMsP, bcp and NG P). The NPPMs with loss function have similar efficiency

and perform better than the other parametric and nonparametric approaches.
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Change in mean (N = 20)

)
)
)

(p1, p2) NPPMsP
(0,0) 0.82¢.25
(0,1 0.630.20
(0,2 0.800.21

NPPMsBB

0.800.19

Change in variance (N = 20)

0.800.20

Change in tail (N = 20)

(o-%, a%) NPPMsP NPPMs NPPMsB NPPMsBB bcp NG NG P ECP PELT

(1,2.25) 0.58¢.17 0.819.14 0.82¢0.13 0.82¢.13 0.620.14 0.700.16 0.660.13 0.710.16 0.69¢.13

(1,5) 0.650.20 0.6500.12 0.770.15 0.700.09 0.730.16 0.75¢0.17
0.670.13 0.82¢.16

(o,v) NPPMsP | NPPMs | NPPMsB | NPPMsBB bep NG NG p ECP PELT
(1,2.1) 0.60.17 0.750.16 0.80.13 0.740.17 0.590.14 0.670.14 0.650.09 0.690.16 0.670.13
(1,3) 0.580.16 0.780.15 0.80.13 0.80.14 0.60.13 0.670.14 0.650.00 0.70.15 0.670.13
(1,4) 0.580.16 0.810.12 0.80.13 0.80.13 0.590.12 0.670.15 0.650.09 0.70.15 0.660.13
(1,8) 0.580.15 0.810.12 0.810.13 0.80.14 0.580.12 0.640.15 0.650.1 0.680.15 0.670.1
Change in skewness (N = 20)
(u,a) | NPPMsP | NPPMs | NPPMsB | NPPMsBB bep NG NG p ECP PELT
(0.5,1) 0.570.16 0.810.13 0.810.13 0.80.14 0.570.12 0.620.15 0.650.13 0.690.15 0.670.13
(0.45,3) 0.60.15 0.840.12 0.840.11 0.820.14 0.590.13 0.660.16 0.650.14 0.680.15 0.670.12
(0.35,5) | 0.620.19 0.610.13 0.670.16 0.660.14 0.70.16 0.670.12
(0.25,10) | 0.650.2 0.630.14 0.680.15 0.670.14 0.720.17 0.670.12
Color key 0—0.6 0.6 — 0.7 0.7—0.8 | 0.8—0.85 _:I

Table 2.1: Rand index mean and standard deviation for n = 20.
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Example 2.17. 150 observations. In this simulation experiment we include the
ECP2 which is the ECP method without specifying the number of change points. Fach
simulation applies the methods described earlier to a set of 1000 independent sequences
of 150 observations with two change points at ¢ = 51 and i = 101 with distributions G,
Go, G1 for successive blocks. To assess the performance for changes in mean, we set
G1 = N(u1,1) and Go = N(ua, 1), for changes in variance we define G1 = N(0,0?)
and Go = N(0,03), in the case of changes in tail, we specify G1 = N(0,1) and Go = t,,.
Finally, to study changes in skewness, we define G1 = N(p,0?) and Go = sN(0,1, )
with = Mode(G2) and 0 = Var(G1). Table presents the mean and the variance
of the Rand index. As in the case of 20 observations, we can see that the methods
using a loss function criterion perform better than the methods using the marginal
probability of change point. For changes in mean, PELT, ECP, ECP2 perform best
although NPPMBs perform adequately as well. For changes in variance, our proposal
performs slightly better than the other parametric and nonparametric procedures for
small changes, although the other methodologies are more effective when dealing with
big changes in variance. As expected, the parametric approaches assuming normality
can not deal well with changes in tail or skewness. For such cases, the nonparametric
approaches are most effective, NPPMs and NPPMsB being the methods that perform
best.
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2.4 Simulat

Change in mean (n = 150)

(p1, p2) NPPMsP NPPMs NPPMsB NPPMsBB bcp NG NG P ECP ECP2 PELT
(0,0)
0,1) 0.50.21 0.44¢ o 0.61g.23
(0,2) 0.760.21 0.83¢.2 0.730.02
0,4)
Change in variance (n = 150)
(a%, a%) NPPMsP NPPMs NPPMsB NPPMsBB bcp NG NG P ECP ECP2 PELT
(1,3) 0.63¢.2 0.81¢.15
(1,5) 0.680.19 0.760.24
(1,7) 0.790.09
(1,10) 0.780.17
Change in tail (n = 150)
1 NPPMsP NPPMs NPPMsB NPPMsBB bcp NG NG p ECP ECP2 PELT
2.1 0.610.21 0.829.11 0.810.09 0.770.15 0.74¢ 18 0.760.18 0.68¢.2 0.74¢.1 0.380 14 0.78¢.17
3 0.510.21 0.770.15 0.799.09 0.760.12 0.61¢.23 0.69¢.2 0.54¢ .22 0.710.11 0.350.1 0.720.19
4 0.480.19 0.780.1 0.790.07 0.770.1 0.51¢.22 0.650. 2 0.460 2 0.720.1 0.350.1 0.710.18
10 0.44¢.17 0.799.06 0.780.07 0.770.08 0.37¢.12 0.690.15 0.35¢.09 0.70.11 0.350.09 0.68¢.17
Change in skewness (n = 150)

(py oy ) NPPMsP NPPMs NPPMsB NPPMsBB bcp NG NG p ECP ECP2 PELT
(0.5,0.7,2) 0.450.18 0.780.00 0.80 .08 0.770.13 0.349.07 0.680.16 0.340.05 0.720.13 0.390.14 0.70.17
(0.45,0.65, 3) 0.46¢.18 0.81¢.07 0.83¢.07 0.770.17 0.35¢0.1 0.61¢g. 22 0.34¢ .06 0.749.12 0.399.15 0.760.11
(0.35,0.62,5) 0.530.22 0.770.24 0.47¢.21 0.760.16 0.819.07
(0.25,0.6,10) 0.519.21 0.780.23 0.450 19 0.70.26 0.82¢ .07

Color key 0—0.6 ‘ 0.6 — 0.7 0.7—-0.8 | 0.8—10.85 _

Table 2.2: Rand index mean and standard deviation for n = 150.

51



2. NONPARAMETRIC PRODUCT PARTITION MODELS

Example 2.18. 300 observations. We use the same settings of the experiment of
150 observations with change points at i = 101 and ¢ = 201. Comparing Table
and Table [2.3, we can observe better performance when the number of observations
increases. We notice the same behavior presented in the 150-observation experiment
although the monparametric product partition models with loss function using weights

seems to better detect the change points than the ones which do not.
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2.4 Simulat

Change in mean (n = 300)

(11, p2) NPPMsP
(0,0) 0.760.25
(0,1) 0.5¢0.2

(0,2)

(c2,03) NPPMsP NPPMs NPPMsB NPPMsBB bep NG NG P ECP ECP2 PELT
(1,3) 0.780.14
(1,5) 0.550.23
(1,7) 0.630.24
(1,10) 0.770.19
1 NPPMsP NG p ECP ECP2 PELT
2.1 0.57¢ 22 0.770.15 0.730.1 0.390.15
3 0.450.19 0.660.21 0.719.11 0.36¢9.1
4 0.450.18 0.530.22 0.720.1 0.370.12 0.750.17
10 0.42¢9.1¢6 0.370.12 0.680.13 0.350.09 0.69¢0.17
Change in skewness (n = 300)
(py oy ) NPPMsP NPPMs NPPMsB NPPMsBB bcp NG NG p ECP ECP2 PELT
(0.5,0.7,2) 0.43¢.16 0.770.00 0.820.08 0.81¢.00 0.349.05 0.750.11 0.349.05 0.72¢.14 0.390.16 0.770.00
(0.45,0.65, 3) 0.450.18 0.81¢.08 0.360.11 0.74¢.19 0.350.1 0.750.14 0.45¢ .2 0.780.05
(0.35,0.62,5) 0.560.2 0.790.14
(0.25,0.6,10) 0.49¢ 2 0.840 14
Color key 0—0.6 ‘ 0.6 — 0.7 0.7 — 0.8 | 0.8 — 0.85 _

Table 2.3: Rand index mean and standard deviation for n = 300.
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2.4.2 Sensitivity Analysis

In this section we include a sensitivity analysis of our model. We carried out 100
simulations for each of the following combinations of the parameters.
a=1,30 cypg = 0.001,0.002 pypo = 0.01,0.05 using the following cohesion func-

tions:

o
cij = pnpo(l —pnpo)’ ™" Tenpo

For each simulation, we generated a data set as follows:

wi =0, if1 <¢<50
X ™ N (i, 1) 4 s = 4, if51<i< 100
w; =0, if 101 <1 < 150.

Each simulation applies the methods described earlier to a set of 100 independent
sequences of 150 observations with two change points at ¢ = 51 and ¢ = 101 with
distributions N(u; = 0,1), N(u; = 4,1), N(u; = 0,1) for successive blocks.

In Tables and we present the histograms of the frequency the change points
estimated for each method proposed, with different parameters «, cohesion functions
and probabilities of change.

The number of change points detected by the model NNPPMsP is quite unstable
when o = 1; this may be explained by the flexibility and variability of the Dirichlet
Process for small values of a. Using loss functions to estimate the change points is

more stable for a wider choice of parameters.
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a=1 a=1 a=1 a=1

enpo = 0.001 enpo = 0.001 enpo = 0.002 enpo = 0.002

pNpo = 0.01 pNpo = 0.05 pNpo = 0.01 pNpo = 0.05

varage umber o change pons 7 erage umberof change pons= 1129 Averagsrumber ofchangeponss 8.9

NPPMsP st 0o peaon S st oz w001 st 000205

NPPMs

NPPMsB sntaet o000 0001 [T

NPPMsBB mem—

Table 2.4: Histogram of the change points detected in the simulations
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a = 30 a =30 a = 30 a = 30

enpo = 0.001 enpo = 0.001 enpo = 0.002 enpo = 0.002

pNpo = 0.01 pNpo = 0.05 pNpo = 0.01 pNpo = 0.05

NPPMsP

i
i
NPPMs
e
§ g § §
§
: H

NPPMsB a0t o011 a0 0001 005 PR —

1o _ iin _ I — A1 -

NPPMsBB I —— [N —— N — JEIT e —

Table 2.5: Histogram of the change points detected in the simulations
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2.4.3 Applications to real data sets

2.4.3.1 Dow Jones industrial average

We will study the weekly closing values of the Dow-Jones industrial average over the
period from July 1st, to August 2nd, 1974 (the week before former President Nixon
resigned). The data can be downloaded from the R package strucchange (Zeileis et al.|
2002)). We transform the data into a series of rates return,

Py

-1
P,

Ry

where P; are the index values at week ¢, t = 1,2,...,161. For the analysis, we will
assume as (Hsu, [1979)), that the values are exchangeable.

Figure presents the number of change points detected by the NPPM, NPPMB
and NPPMBB versus SSE, for the Dow Jones data set described before. We can
see that NPPMB and NPPMBB have almost the same values, while NPPM presents
different behavior. We maximize the difference of SSE when we change more zero
change points to one change point for models NPPMB and NPPMBB. In the case
of NPPM, we maximize this difference when we change from 2 to 3 change points.
Therefore, for models NPPMB and NPPMBB, we choose v in such a way that we
obtain one change point. In the case of NPPM, we select this value to obtain three
change points. Table shows change points detected by different methods and their
respective SSE. Although PELT, ECP, NPPMB and NPPMBB detect only one point,
the last two have minimum SSE. Since NPPM detects three, naturally, it is the method
with minimum SSE. Figure 2.10] shows the change points detected by the methods
studied. In Figure 2.11] we can observe the estimated distribution for each data point
and distinguish mainly two groups of distributions, the first one in color blue and the
second one in green. Although both groups appear to have the same mean, the second
one has larger variance. The distribution corresponding to the change point found by
NPPMB and NPPMBB is indicated in red.
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0.0784
!

0.0782
!

0.0780
!

~= NPPM
-o- NPPMB
= NPPMBB

SSE
0.0774 0.0776 0.0778
I I I

0.0772
I

Number of Change Points

Figure 2.9: Number of Change Points vs SSE for NPPM, NPPMB and NPPMBB.

Method Number of Change Points SSE
Change Points
NPPM 3 {24,71,91} 0.07748426
NPPMB 1 84 0.07774066
NPPMBB 1 84 0.07774066
PELT 1 90 0.07784357
ECP 1 90 0.07784357

Table 2.6: Dow Jones data and change points detected by different methods.
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Change points detected by NPPM
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Change points detected by NPPMB and NPPMBB
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Change points detected by PELT and ECP
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Figure 2.10: Change points detected by NPPM, NPPMB, NPPMBB, PELT and ECP.
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Figure 2.11: Estimated distributions (F;) for i = 1,...,161.

2.4.3.2 Human genome

Biological and medical research reveals that some forms of cancer are caused by somatic
or inherited mutations in oncogenes and tumor suppressor genes; cancer development
and genetic disorders often result in chromosomal DNA copy number changes or copy
number variations (CNVs). Consequently, identification of these loci where the DNA
copy number changes or CNVs have taken place will (at least partially) facilitate the
development of medical diagnostic tools and treatment regimes for cancer and other
genetic diseases (Chen and Gupta, 2011]).

Copy number variation can be discovered by cytogenetic techniques such as array
comparative genomic hybridization (aCGH), which consists of the steps described in
Figure 2.12]

Missing values are common in this type of data and occur for diverse reasons,

including insufficient resolution, image corruption, or simply due to dust or scratches
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Steps 1-3 Step 4 Steps 5-6

7 -

\ OQOO e®®

Ratio

Test=Tumoral DNA / O O _) et . .° )
ol I .
—

Control=Normal DNA Loss in test DNA  Gain in test DNA

Figure 2.12: Diagram of the microarray-based comparative genomic hybridization pro-
cess. Steps 1-3: Test and control DNA are labeled with fluorescent dyes, combined
equal amounts of DNA and applied to the microarray. Step 4: Test and control DNA
compete to attach, or hybridize, to the microarray. Steps 5-6: The microarray scanner
measures the fluorescent signals and computer software calculates the Log-Ratios of

the fluorescence intensities of the test and reference samples along the chromosome.

on the slide. Missing data may also occur systematically as a result of the robotic
methods used to create them (Troyanskaya et al., [2001)).

Snijders et al.| (2001)) performed aCGH experiments on 15 fibroblast cell lines and
obtained normalized averages of the Log-Ratios. This data has been studied extensively
in the literature and can be downloaded from several sources, such as the GLAD package
of the R software (Hupe, 2011). Next, we present the analysis of the genome gm01524
of the Snijders database using NPPMs and compare it with ECP and PELT. Because
these methodologies do not consider missing data, we imputed the absent values as the
average of their neighboring observations. To apply our methodology, we assume that
missing values are at random which is consistent with Figure where we do not
recognize any pattern at the points where a missing value is present.

Figure [2.14] shows the distribution functions estimated at each position of the
genome. We can see that all the chromosome positions share the same distribution
function with different mean, as assumed by several algorithms for change-points de-

tection for aCGH data.
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Figure 2.13: Genome gm01524 of Snijders data (2271 observations including 112 missing

values). Green lines indicates missing values.
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2.4 Simulation experiments and applications

We will specify the number of change points using the graphic of the sum of square
errors displayed in Figure The number of change points depends on the ”elbow”
point at which the remaining SSE are relatively small and all about the same size. This

point is not very evident in Figure but we can still say that the eighteenth point
is our "elbow” point.
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Figure 2.15: Number of change points vs SSE for NPPM, NPPMB and NPPMBB in
Snijders et al. data.

Table shows the number of changes points obtained by ECP and PELT. We
compare the SSE obtained by these methods with the SSE obtained by NPPMs for the

same number of change points.
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| Number of Change Points | PELT | ECP | NPPM | NPPMB | NPPMBB
18 - 17.10636 | 18.6968 | 18.45198 | 18.39047
23 18.41243 - 18.54185 | 18.19333 | 18.17079

Table 2.7: SSE and number of change points detected by different methods for the
Snijders data.

Unlike NPPMs, ECP and PELT do not consider the variability of missing values,
which can explain the differences in Table[2.7] Figure[2.16)shows change points detected
by different methods.
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2.5 Discussion

In this chapter, we used the Dirichlet process to extend the PPMs to the NPPMs
which does not impose any particular parametric form on the distribution function.
We also provided a methodology which uses loss functions to detect change points
that can also be applied to other models such as the nonparametric hidden Markov
models of [Yau et al.| (2011)). For the loss function proposed in equation , we
suggested a procedure to determine the value of the parameter ~, which appears in
similar loss functions in different settings such as, for example, variable selection (Hahn
and Carvalho, 2015).

In many applications such as the analysis of aCGH data, missing data occurs fre-
quently. To tackle this difficulty, we took advantage of the random partition structure
of our model in order to estimate the distribution function of each missing value without
using multiple imputation (which is computationally less efficient). Then, we were able
to detect the change points using the loss functions described earlier. This procedure
can also be used in the parametric product partition models for change-point analysis.

Also, we established a relationship between NDP and NPPMs in the same way that
the PPMs are related to the Dirichlet process: By integrating out the Dirichlet process
in the NDP, we obtained a particular case of our model.

Finally, we have shown through simulations that methods based on loss functions
may perform better that the ones using the marginal probability. This is specially true
in the case of the NPPMs, in which this criterion detects change points very poorly.
Moreover, we have shown for different data sizes that our proposal performs better
than parametric and nonparametric models recently discussed in the literature.

Mena and Ruggiero (2016) discuss change-point analysis in a nonparametric setting;
they ask: If the model is too flexible, does it make sense to define a change point? We
argue that our loss function allows us to define it because we measure the shift using a

distance between distributions.
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Chapter

A New Approach to Bayesian
Post-Stratification

Those who have no compassion have no wisdom. Knowledge, yes; cleverness,
maybe; wisdom, no. A clever mind is not a heart. Knowledge doesn’t really

care. Wisdom does.

BENJAMIN HOFF

In the context of survey sampling, post-stratification is a reweighting of the sample
using an auxiliary variable which is highly correlated with the target variable. The
basic idea is that, if we know the population is composed of distinct groups (strata)
that differ with regard to the quantity we are interested in estimating and we know the
sizes of these strata in our population, then we can obtain a more accurate estimate
of the quantity of interest by correcting for any imbalance in the representation of the
strata in the sample. This correction is obtained by using a weighted average (using the
known weights from the population) of the averages within strata as our estimate of the
population mean. The aim of this chapter is to provide a Bayesian framework to model
the prior knowledge concerning the structure of the population using random partition
models. We will then be able to combine many polls to obtain better estimates through

a Bayesian learning process.

3.1 Finite Population Sampling

In this section we will give a brief overview of finite population sampling.
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3. A NEW APPROACH TO BAYESIAN POST-STRATIFICATION

3.1.1 Methods in finite population sampling

In finite population sampling there exist two main approaches to estimating the quan-
tities of interest: design-based and model-based inference. [Little (2004) discusses the

main differences between them. More precisely, he divides these procedures as follows:

e Design-based inference.

e Model-based inference.

— Superpopulation modelling.

— Bayesian modelling.

In the following subsections we will describe each one briefly. Little proposes a third
view, in which the researcher takes into account the sample design and makes weak
parametric assumptions that can produce reliable and efficient inferences in survey

settings.

Design-based inference

Pure design-based inference is the most common in traditional sampling theory. Well-
known sampling texts such as |Cochran (1977) use this type of approach. Here, the
population of interest is considered as a finite collection of elements. Design-based
inference assumes that the population is fixed. Each sample is viewed as a realization
of a random process, so a different sample may have chosen a different set of units. The
probabilistic nature of the sample is the only source of randomness that plays a part
when making inference about the population.

Design-based inference has several advantages:

It takes into account the survey design.

Accurate inferences in large samples without making strong assumptions such as

a distribution of the data.

e Easy computational implementation.

Popularity among practical statisticians.
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3.1 Finite Population Sampling

Model-based inference

Unlike design-based inference, pure model-based inference does not regard the popu-
lation of interest as fixed. Here we assume that an infinite superpopulation or super-
population model, which includes a random component, is responsible for creating the
elements in the finite population. One way to think of the superpopulation model is
as the process used to create the elements in the population. The specific form of the
proposed infinite superpopulation model is often borrowed from classical methods such

as regression.

Superpopulation modelling

In the superpopulation approach we assume that the population is a random sample
from a model. We assume a probability distribution p(y|@), where 0 is a vector of
parameters that we want to study in order to characterize the population. A relevant
example studied in |Little (2004)) is model-based inference for the mean from a stratified
random sample. We want to estimate the mean of the population Y and we have a
stratification based on the discrete variable X. We will consider the basic normal post-
stratification model. Let y; denote the value of Y for unit ¢ in the sample. Let x; be
the value of X for unit <. We will assume that z; given z; = h is normal with mean
(1, and variance O'%L. Suppose we do not have any prior knowledge about up and O'%L. A

simple Bayesian model that reflects this is

independent

N(pin, 07t)

p(pn,logop) x const

p(y2|ml = ha K, JiQL)

In this model the structure is fixed. Suppose that we know 0}21; then standard

calculations yield

H
E(§|$17"',xn50}21):gstzzphyh
h=1
u 11
Varﬁa:l,...,x ,02 = Vg = PPoi(— — —
Flere-eevtms ) = v =3 Pt = 50

where Py, is the probability of sampling from stratum h, nj, is the number of observations

in the sample that belong to stratum h and Nj is the number of individuals in the
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3. A NEW APPROACH TO BAYESIAN POST-STRATIFICATION

population that belong to stratum hA. We name this model the basic normal post-
stratification model (BNPM). When we replace the {02} by the estimates {s?}, we
obtain the same estimates as in design-based modelling. This procedure is often justified
when we have large samples.

Note that integrating over the posterior distribution of {J}%} rather than simply
plugging in estimates yields a useful small-sample correction not readily available from

design-based and superpopulation approaches (see Little|2004]).

Bayesian modelling

Ericson| (1969) proposed a Bayesian approach using Pdélya urns to predict the non
observed values of the population given the data (see section . Suppose we have
a population of size N and we observe a random sample of size n. In a first urn we
put the n observed values xq,...,z,. In a second urn we put N — n balls without
any values. These balls represent the unknown values of the rest of the population
Xn+t1,---,XnN. In the next step, we extract a ball from each urn, then we assign the
value of the ball of the first urn to the ball of the second one. Next we put the two balls
in the first urn. Now we will have n+ 1 balls in the first urn, and N —n — 1 balls in the
second one. We continue this process until the second urn is empty. We thus obtain a
simulation of P(zy41,...,2ZN|21,...,2y,). Suppose we have an infinite population and
we have a random sample of size n. Suppose also that we believe that the distribution
of the infinite population is G.

Blackwell and MacQueen| (1973) extended the Pélya urn model as follows: In the
first urn we put the n observed values x1, ..., T,, in the second urn we put an infinite
number of balls without any values; as before, these balls represent the unknown values

of the rest of the population. In the next step we select a ball from the first urn with

probability and with probability a new value from G; then we extract a

n+ n 4«
ball from the second urn and assign the value obtained to the ball. Then we put this
ball in the first urn. Now we have n + 1 balls in the first urn. The parameter « is a
dispersion parameter. With this procedure, we obtain the Dirichlet process DP(«, G)
defined by [Ferguson| (1973)) and discussed in section
The relationship between finite population sampling and Bayesian non-parametric
statistics arises naturally from these Pélya urn schemes. Despite this link, there are

only a few papers that relate these two fields of statistics. An example can be found
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3.1 Finite Population Sampling

in |Binder| (1982) who uses Bayesian non-parametric models for estimating population
percentiles and develops a procedure for interval estimates in stratified sampling.

Lo (1986) studies the Dirichlet multinomial model for finite population sampling.
He obtains the following result: If the population size tends to infinity (the sample size is
fized), sampling without replacement from a Dirichlet multinomial process is equivalent
to the iid sampling from a Dirichlet process. In general, we feel that Bayesian inference
for finite population sampling is a challenging area of study that needs more attention

from the Bayesian community.

3.1.2 Stratification

Stratification is the process of grouping members of the population into relatively homo-
geneous subgroups before sampling. If the stratification is adequate, it helps us obtain
more accurate estimates because we include correct information in the inference. Un-
der specific circumstances, stratification yields better estimates than the ones obtained

with simple random sampling, but this is not always the case.

Optimal stratification

What is the best characteristic for the construction of the strata? How should the
boundaries between the strata be determined? How many strata should there be? In
Cochran| (1977) the author gives some advices concerning these questions. Given the
number of strata, the equations for determining the best stratum boundaries have been
studied by |Dalenius and Hodges| (1959) under proportional and optimal allocation (the
size of each stratum is proportional to the standard deviation of the distribution of the
variable; hence larger samples are taken in the strata with the greatest variability to
generate the least possible sampling variance). An interesting problem arises when we
are dealing with multivariate variables. How can we choose the optimal stratification
when we have continuous and discrete random variables together?. One possibility is to
use Bayesian trees (see |Denison et al.|2002) which induce a partition over both discrete

and continuous covariates.
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Figure 3.1: Graphical representation of post-stratification

3.1.3 Post-Stratification, weighting and calibration

Post-Stratification, weighting and calibration are related methods to use auxiliary in-
formation available on the whole population. For example, if our sample consists of
60% women, when we know from a census that in the population women are in fact
52%, this may introduce bias into the estimate of interest because we will give greater
weight to those people we oversampled. In this section we will describe some of the

main methods to use auxiliary variables in order to obtain better estimates.

3.1.3.1 Post-Stratification

When we are conducting a survey it is very important to obtain a representative sample
of the population. But sometimes we oversample some kinds of observations and un-
dersample others. As mentioned above, this may introduce bias into the estimate of the
quantity of interest. We can correct these biases statistically with a post-stratification
survey weight. In order to calculate a post-stratification weight, we need an auxil-
iary variable X to which we can compare our sample data. Then we can estimate a
parameter of the target variable Y. Figure represents this situation.

Selection of post-strata: Considering all post-strata is not always practical because
of problems of empty strata and lack of sufficient population information. Little| (1993)
develops an algorithm to collapse post-strata. He uses the reduction of the variance
of the estimated mean as a criterion to form the post-strata. Let us consider the

BNPM. Collapsing two post-strata h1 and hs is interpreted as combining the population
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3.1 Finite Population Sampling

proportions Py, and Pj, and modifying the model accordingly. The posterior mean

under this collapsed model is
7o) = " P+ (Pay + Pao)T(hing)s
h#h1,ha

where ¥y, 5, is the mean of the collapsed post-strata hy and hy. The posterior variance
(h1h2)

of the collapsed post-strata is denoted by vps Hence the difference in posterior
variance can be written as: Avy, p, = Ups — v,(,Zth) Little (1993)) observes that if Y and

X XIyn, nyy are independent, then the variance of the estimate can be reduced because
the distributions of Y'|X = hy and Y| X = hg are the same. Then, when we collapse, we
reduce the number of parameters to be estimated ( up, and pp, to pp,n,) and increase
the number of observations in the estimation of this parameter. But when Y|X = hy
and Y| X = hg are associated, we are modelling a mixture of two normals with only one
normal distribution and then the replacement of the parameters pp, and pp, with pp, p,

can affect the global estimation of y. Little| (1993) proposes the following algorithm:

Algorithm 3.1 Collapsing post-strata
1. Order the post-strata so that neighbors are a priori relatively homogeneous. If they

are based on an ordered variable (such as age), then this step is not needed.
2. Collapse the post-stratum pair (i,1 + 1) that mazimizes E(Avj q1)
3. Proceed sequentially until a reasonable number of post-strata remain or E(Awv; ;1)

becomes noticeably negative.

Note that in this algorithm the prior knowledge about the population structure is

used and determines the final post-stratification.

Remark 3.1. The assignment of sample size to post-strata is irrelevant if there are

enough observations to make inference.

3.1.3.2 Weighting

Weighting the post-stratification: After selection of strata, we need to weight the ob-
servations in each strata. In many applications, survey weights can be the inverse of
the selection probabilities but this is not always the case. We can also use regression
as an alternative for weighting. Bethlehem and Keller| (1987) use regression to provide
a method for weighting and to relate the target variables of the survey to auxiliary

variables. We now briefly describe this idea. Let 1,..., NV be the labels of the elements
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3. A NEW APPROACH TO BAYESIAN POST-STRATIFICATION

of the finite population. We will construct the following matrices: Y = [y;;]nxq and
X = [zij]nxp Where Y = (y1,.. ., yn)? are the target variables and X = (z1,...,2,)"
are the auxiliary variables. The objective of the sample is to estimate the g-vector of
means: y = YTGWN where ey is the N-vector consisting of ones (ey = [1]nx1). Similarly
the p-vector of population means for the p auxiliary variables is denoted by T = X Te—N.
A sample from the finite population x can be represented as an N x N-diagonal matrix
D = [d;ij|nxn. dii = 1 if the i-element of the population is in the sample and d;; = 0
otherwise. Then E[D] = W where W = [w;;]nxn is the N x N diagonal matrix where
w;; are the probabilities of inclusion of the i-element of the population. If the auxiliary
variables are correlated with the target variables, an estimator can be constructed as
follows:

Y=XB+FE

where E is an N x g-matrix of residuals. Applying the ordinary least squares method
results in B = (XTX)"'XTY. An estimator for B, based in the sample data, is
defined as B = (XTW-IDX)"'XW~'DY. The regression estimator is then given by
Up = BTYTEY — BT In the case of Simple Random Sampling (SRS), let ys be the
n-vector of sampled values of the target variable and X be the n x p-matrix of auxiliary
variables corresponding to sampled elements. The regression estimator then reduces
to ?R = BTTS, where T is the p-vector of sample means of the auxiliary variables and
B=(XEXg) ' XTy,.

We can also include qualitative auxiliary variables. Suppose our auxiliary variable
has H categories. For each category there is a dummy variable which takes the value 1
if the particular element belongs to that stratum, otherwise it takes the value 0. The
matrix X has dimension N x H and each row contains exactly one 1. The columns of
X sum up to the sub-population totals N1, No, ..., Ng where N1+ ...+ N = N. We
can retain the notation used in the case of SRS. The columns of X will sum up to the

random sample totals ni,no,...,ny in the strata, where ny +no +...+ng =n. The
(N11N2>"aNH)T

vector of population means of the auxiliary variables is equal to T =

(nl,...,nH) ‘ Due
n

to the special structure of the matrix X the matrix XgX s is a diagonal matrix with

and the corresponding vector of sample means is equal to T, =

diagonal elements equal to ny,...,ng. We obtain

=@, ..., 3")
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where 7 is the sample mean of the target variable in stratum h. Finally, we obtain

the following regression estimator

H ~h
~ Nhys S
Yr = Z N - yps’
h=1

where the subscript ps denotes the traditional post-stratification estimator. If there are
no observations in one or more strata, then some of the diagonal elements of XEX 5 are
zero, in which case XEX s is singular. We can make X;‘CX s non-singular by collapsing
strata. Suppose that we have the auxiliary variables SEX, AGE and REGION. We
can consider the following linear model SEX xAGE + REGION where x denotes the
crossing of auxiliary variables. This kind of models are known as incomplete multi-way
stratification. Note that in this case we do not consider all the possible interactions

between the levels of the categorical variables.

3.1.3.3 Calibration

The method of calibration for estimation of population totals is described by [Deville

and Sarndal (1992)). An implicit objective of the method is to use auxiliary information

to obtain estimators that are approximately unbiased with smaller variance. As before,

consider a finite population labelled by 1, ..., N. Let y; be the value of the target variable

of the ¢-unit. Let x; be the value of the auxiliary variable of the i-unit. Consider s, a

random sample from the population. Let w; = P(i € s) the probability that the i-unit
N

belongs to the sample. The population total of z, t, = Z x; is assumed known by the
i

researcher. Deville and Sirndal| (1992) consider a calibration estimator Ty = Zcixi

1€8
where the calibration weights ¢; are chosen to minimize a given distance ¢ from the
basic weights c; = w% subject to ZCZ‘.’L'Z' = t,. When a weighted sum of squares is
1€S
used to measure the distance between the two sets of weights, the estimator obtained

through calibration corresponds to a generalized regression estimator.
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3.1.4 Nonparametric methods for calibration in finite population sam-
pling
3.1.4.1 Introduction

In linear weighting, (Bethlehem and Keller, 1987) and calibration methods (Deville
and Sarndal, [1992)) it is implicitly assumed that a linear relationship holds between the
target and the auxiliary variables. In many cases this assumption is not warranted and
can yield poor estimates. In order to obtain more efficient estimators for the popu-
lation means and the population distributions, in recent years frequentist statisticians
began to employ nonparametric models that are more flexible. In the Bayesian ap-
proach there are even fewer papers, even though nonparametric Bayesian statistics is
a growing area of research. The aim of this section is to provide an overview of the
latest nonparametric methods used for the calibration for finite population sampling
using auxiliary information, both from the classical and the Bayesian approaches. We
also discuss some draft ideas about the use of Bayesian nonparametric models in this

important matter for finite population sampling.

3.1.4.2 Frequentist approach

Consider a population U = {1,2,..., N} of N units from which a random sample s of
size n is selected according to a specific sampling design with probabilities of inclusion
m; for the i-th element of the population. Let y; be the value of the target variable Y
and z; the auxiliary variable X for the i-th element.

Deville and Sarndal (1992); Bethlehem and Keller (1987)) describe the most common
methodologies used to include auxiliary variables X in order to make inference about
the mean of the target variable Y. Usually, a parametric model is used to represent the
relationship m(-) between the auxiliary data and the target variable.

A frequentist approach was suggested by [Kuo| (1988)) for the distribution function;
she adopts a nonparametric model-based approach, which is more flexible when mode-
lling the relation between X and Y. |Breidt and Opsomer| (2000)) use the local polynomial
regression estimator for the unknown regression function m(-). A more recent model
using local polynomial regression estimators can be founded in [Rueda and Sanchez-

Borrego| (2009)). These latter authors assume that the population can be described
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3.1 Finite Population Sampling

by
yi = m(x;) + €, (3.1)

where ¢; are independent and identically distributed with Ele;] = 0, and constant

variance o2. After the sample has been observed, we can estimate 7 with

Y= 17+ (1= )Y (3.2)

where 7, = % % Yi, Yge = ﬁ ZGZ;C y; and f is a real number that helps us to weight
the mean of the sample and the mean of the non sampled elements. For example, we
can set f = Zm. The first term of equation (3.2 is known, and estimating ¥ is
equivalent to Il)erfedicting the mean Yy, in the non sample data. If « is known for all the
population, then a natural way to do the predicting is to use a regression model that
treats the unknown values y; @ € s¢ as predicted values of g; = m(z;) i € s¢. Clearly,

when we know the values x; for the complete population U, an estimator of ¥ is
~ _ 1 .
y:fys‘i‘(l—f)mzyi-
€8¢
In practice, we only have the values of the z;’s in the sample and the empirical distribu-
tion of X for the complete population U. (Chambers et al. (1993)) use a fixed bandwidth

kernel smoothing to get estimates of the function m(-) evaluated in x; i € s¢. The kernel

smoother is simply a weighted average of all data points.

Y ies W(T, mi, h)y;
Zies ’LU(%‘, Ly h) ’

where the weights are specified using a kernel function K and a bandwidth h

w(zx, x4, h) = K(m hxi>.

The kernel function K is normally a non-negative-valued function, symmetric about

m(x) =

(3.3)

zero. The interpretation of the bandwidth depends on the kernel function used, but
it is generally true that a larger bandwidth leads to smoother estimates by giving
progressively more weight to observations further away from x. As the bandwidth gets
smaller, only observations close to x get significant weight and therefore the kernel

smooth estimate is largely determined by local observations.
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3. A NEW APPROACH TO BAYESIAN POST-STRATIFICATION

Montanari and Ranalli (2005) develop a different approach using a neural network
model for the calibration estimator. In many applications we require more than the
mean of the population. We may need, for example, to estimate the quantiles or
the density distribution of the target variable Y. (See Rueda et al. (2010) for an
extended review of the frequentist methods). Using the same notation as before, the
finite population distribution function of the study variable Y, is given by

Fy(t)=Y A(tN_yi),
ieU

with

Alt —yi) = { 0 otherwise.

A design-based estimator of the distribution function of Y is the Horvitz-Thompson

estimator (HT), defined by

FYH Zd t_yz

€S

with d; = i', which we call the basic design weights. The HT is unbiased but, in
general, is n(l)t a distribution function since tiigrnoo FYH(t) # 1; also, it does not use
the auxiliary information provided by the variable . We will now describe the model
proposed by [Rueda et al. (2010). They assume the model described by equation
and use the same estimator of m(-) defined by equation . To incorporate the
auxiliary information, they propose the calibration estimator based on m

. At —y;
FYmc(t) = Zwi(]\]—y)a
1ES

where the calibrated weights w; are modified from d; by minimizing the chi-square

b=y L 0F,

€S idi

distance measure

with ¢; known positive constants unrelated to d;, subject to the calibration equations

Nzwz (z4)) —an(tj)a
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with t; for j = 1,2..., P arbitrarily chosen points such that t; < 2 < ... < tp
and where Fy,(t;) denotes the finite distribution function or empirical distribution of
m(z;) i € U evaluated at the point ;. The proposed estimator Fy,,.(t) is a genuine
distribution function. Then the construction of the estimates of the finite population

a-quantile of Y denoted by Qy («) is straightforward:
QYmC(OZ) - inf{t : FYmc(t) > Oé}.

In this approach we do not obtain a confidence interval for the a-quantiles estimates.

3.1.4.3 Bayesian approach

Zheng and Little (2003) develop a Bayesian nonparametric method to estimate the
total of a finite population with probability-proportional-to-size sampling (PPS), in
which the values of 7; are proportional to the values z; of the size variable X and are
usually known for the whole population before s is drawn. Zheng and Little consider

the following model
yi = f(mi, B) + €

with ¢; N(0,72%52). Here f is a function of m; that is continuous up to the (p — 1)th
derivate with unknown parameters 8. The exponent k£ models error heteroscedasticity,
and for simplicity it is assumed to be known. The function f is estimated by splines,
which are piecewise polynomial functions that are smooth to a certain degree. [Zheng
and Little| (2004)) use splines to make inference for the mean from two-stage sample
designs. Another approach has been explored by |Ciampi et al.| (2007) who use Bayesian
regression tree models for calibration in the context of micro-array analysis. In this
case we have a regression model for each terminal node of the tree, which provides
flexibility in the relationship between Y and X since the linear dependence is local.

Nelson and Meeden| (1998)) propose an extension of the Pélya posterior that can be

used to estimate population quantiles with auxiliary variables.
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3. A NEW APPROACH TO BAYESIAN POST-STRATIFICATION

3.2 A Bayesian approach to post-stratification

3.2.1 Toy example

In this example we will describe a new approach to post-stratification using random
partitions models. Suppose we want to estimate the proportion of people that will vote
for the PRI in the Mexico City. We also have a simple random sample of size 100. We
have census information which divided the population into three zones: X', X2 and X3.
To obtain better estimates the researchers want to make an adequate post-stratification

using this information. They have five ways to make the post-stratification:
(X2, XX X2 (X HEX, X (XX (X2, XPNHX (X2, {xPY)

Suppose that, in past elections, the researchers have observed that people from X!
and people from X? have roughly the same behavior. Suppose also the number of
people in X! is small, so it would be convenient to merge these zones. The researchers
want to find the best post-stratification using their knowledge. Let Sy = {1,2,3} and
X ={X' X2 X3} Let p={S1,...,S;} be a partition of Sy into k subsets. We define
Xg={X;,ie S}

Remark 3.2. Note that we are inducing a partition over the range of the covariate
ZONE.

Let us exemplify this idea using the following data.

H
H
~

E

O O[O = W[N]+~

ROl ORIk |IRIFR|IFRIO
W W W NN NN

—
o

Table 3.1: Data for the toy example
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3.2 A Bayesian approach to post-stratification

Suppose that p = {{S1}{S2}} with S; = {1,3} and Sy = {2}, then {i : z; € Xg,} =
{1,2,8,9,10} and {i: z; € Xg,} = {3,4,5,7}

In a PPM, the partition is over the observations. Miiller and Quintanal (2010);
Miiller et al.| (2011), use the covariates only to increase the probability that two data
points with the same covariates will be in the same cluster (see equation ) They do
not obtain a partition over the range of covariates. Clearly, using the partition over the
range of the covariates we obtain a partition over the population. Jordan et al.| (2007)
presented a partition over the observed covariates of the sample for prediction purposes.
Hegarty and Barry| (2008) also use a partition over the range of covariates to estimate
the relative risk of disease in each area. Holmes et al.| (2005) proposed a Bayesian par-
tition model that constructs arbitrarily complex regression and classification surfaces
by splitting the covariate space but none of these works study the properties of those
models (such as the Bayesian learning process concerning the random partition p).

Let y = (y1,-..,yn) be the sample of size n = 100, where

1 if the i-th individual votes for the PRI,
yi = .
0 otherwise.

Let x = (x1,...,x,) where z; is the zone of the observation y;. We define yfg{ =
{y; : #; € Xg}. For example, if S = {1,2} then Xg = {X!, X2} and y3 is the set of
observations that belong to X! or X2. We will assume that the probability distribution
that is associated with y is parameterized by a vector of the form 6 = (64,...,60,). If
p={51,...,5k}, then

k
0=> (0%6:(S:),...,0%6,(S:)),

=1
where 6° is a common value for the 6;’s, i € S. We denote this particular form of 8 by

6, and note that @ can also be represented as (6°1, ... ,0%1°1 p).

Then we have the following hierarchical model:

yg(j\(esl, 0% p) ~ H Bernoulli(y;|0°7)
{i:xieij}

0% p nd Beta(a®,b%) with S; € p
p RP(SO)v

where 6% is a parameter associated to the set or stratum X S;-
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3. A NEW APPROACH TO BAYESIAN POST-STRATIFICATION

3.2.1.1 Posterior inference

In this section we will calculate the posterior probability p(p = {S1,..., Sk }Hy1,---,Yn)

Suppose that we have fixed the size of the sample n.

plolyts - yn) o< p(y1,-- - Ynlp)p(p)
o< p(p)p(ys,lp) x . xp(ys |p)

5 plo) % [ pyElp. 0% )p(6% )6

x /p(yfq{p,\p, 05, )p(0°17 | p)d6° e

We now calculate fp(yfg(j|p, 653)p(6°7|p)doS; .
For any ¢t € R we have

Bernoulli(y‘gfj]t) x Beta(t|la,b) = tzyley? yl( T ueny, F((Z)—lt(?)t“ 1 —1)
_ tzyleyx yita—1 —t)nSJ Zyleyg Yitb—1 (a—l—b)j
[(a)'(b
where ng; = [S;].
Then we have
/01 Bernoulli(yg\t) x Beta(t|a,b)dt F((alj_l?IZ)
/ R A 1(1_t>”sj Zyeg¥ VT
— 0 a
F(G)F(b)
P(Qyieyy i + V(s = 2opieyy ¥i +0)
x Fla+b+ nsj)

Finally,

) b ( D(as, +bs,)
po= {51, Sl o) o H{W

F(Zyiey?j yi +as;)l(ns; — Zyieyfgj yi + bs;)
T(as; + bs; +ns;)
Xp(p = {Sl, cey Sk})

X
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3.2 A Bayesian approach to post-stratification

Remark 3.3.
F(Zyieyfé_ yi +as;)I'(ng; — EyiEyfé_ yi + bs;)
lim J j :FanFaer
nsj%O F(aSj _|_ij +n5j) ( S]) ( S]) ( S] Sj)

Hence, when there are missing observations in some Sj,

p(yss-ys In o 1 p@sl0)
{ilyX #2}

3.2.2 General model

In this section we will introduce a more general model. Let (X,Y) be a random
vector. Here X is a finite discrete random variable with X € {X', ..., XM}, Let
So = A{1,...,M},p = {S1,...,Sk} be a partition of Sy into k subsets. We define
Xg = {X'i € S} Let (z1,y1) ... (zn,yn) be a simple random sample of (X,Y). We
define y& = {yi|z; € Xs}. We have the following model

ys 1(0%, ..., 0%, p) ~ ] pwil6™)
{i:a:iEXSj}
05i1p " p(05i|pSi) withS, € p (3.4)

p ~ RP(S),

where 6% is a parameter associated to the set or stratum X s; and % the respective

vector of hyperparameters.
3.2.2.1 Posterior inference
The posterior distribution of the partition is given by

p(ply1s -5 yn) o< p(y1,---,Yalp)p(p)
o plp)p(ys,1p) x ... x p(ys,  |p)

o« p(p) x / p(yd o, 0°)p(0°|p)do>r x ...

X/p(y§p|p, Qs‘p‘)p(gsmlw)deslp\

For each j =1,...,|p| we have

pys1p.0%) = T plyilp.6%).
{vicys )
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3. A NEW APPROACH TO BAYESIAN POST-STRATIFICATION

When there are missing observations for any Sj;,

p(yd,-ud oo I pwdlo
{ilys, 72}

3.2.3 Bayesian Learning process

3.2.3.1 Introduction

The model defined in the previous section provides an interesting learning process
concerning the structure of the population. We will devote this section to study this
process. Suppose that each year we make the same study about preferences on the
same product. How can we use previous polls to make better estimates? If it seems
reasonable to assume that the structure of the population remains the same through
time, then we could learn about the post-stratification of the population. This idea
can be very useful when there is post-strata with only a few observations. Sometimes
it is technically more convenient to describe a partition by a set of cluster membership
indicators, s; = j if i € S;,% = 1,...,n. Recall that we follow the convention that

clusters are labelled in order of appearance, to avoid any inconsistency.

Example 3.4. Let X = {X! X% X3 X*}. We consider the vector (s1, 52, 83,54) to
represent the partition p. For example, the vector (1, 1, 2, 3) represents the partition
{{1,2},{3},{4}}, in terms of covariates: {{X', X%}, {X3}, {X*}}

We simulated data points from the partition (1, 1, 2, 2) and parameters (0.7, 0.7,
0.3, 0.3), then we simulated data from the same partition with parameters (0.6, 0.6,
0.4, 0.4). In Table we show the probability of each partition with and without
the learning process. The true partition has probability 0.719 with learning process and

0.2026 without it. This property allows us to use previous polls to make better estimates.
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3.2 A Bayesian approach to post-stratification

iteration 1 iteration 2 Without learning process
Partition | (0.7,0.7,0.3,0.3) | (0.6,0.6,0.4,0.4) (0.6,0.6,0.4,0.4)
1,2,3,4 0.08122034 0.01708853 0.0285
1,1,2.3 0.20027720 0.08200028 0.0555
1,2,1,3 0.00125464 0.00048465 0.0523
1,2,3,1 0.02916935 0.01866985 0.0867
1,2,2,3 0.00001025 0.00000031 0.0041
1,2,3,2 0.00132556 0.00016207 0.0166
1,2,3,3 0.19515760 0.15001130 0.1041
1,1,1,2 0.00002205 0.00000308 0.0189
1,1,2,1 0.00524628 0.00272366 0.0703
1,2,1,1 0.00502333 0.00900247 0.2427
1,2,2,2 0.00001885 0.00000184 0.0132
1,1,2,2 0.48122950 0.71983760 0.2026
1,2,1,2 0.00002048 0.00000460 0.0304
1,2,2,1 0.00000368 0.00000034 0.0125
1,1,1,1 0.00002089 0.00000948 0.0615

Table 3.2: Simulation of the learning process

Example 3.5. We simulated data from partition (1, 1, 2, 2) using parameters chosen

at random at each iteration. In Table[3.5 we show the parameters used at each iteration.
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3. A NEW APPROACH TO BAYESIAN POST-STRATIFICATION

01 02
0.725 | 0.947
0.658 | 0.356
0.583 | 0.423
0.985 | 0.572
0.799 | 0.967
0.767 | 0.591
0.86 | 0.655
0.84 | 0.784
0.636 | 0.066
0.992 | 0.346
0.898 | 0.847
0.622 | 0.405
0.387 | 0.426
0.387 | 0.337
0.099 | 0.091
0.251 | 0.288
0.292 | 0.111
0.95 | 0.422
0.727 | 0.867
0.663
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Table 3.3: Values of 6; and 65

In Fz'gure we can see the probability of the partition (1, 1, 2, 2).

In the first and third iteration we can see that the parameters 6°* and 0%2 are close.
The probability is near 0.2. In the 22th and 25th iterations, the parameters 0°' and 6°2
are close too, but because of the learning process, the probability of the true partition is

near 1. The figure suggests consistency.

To assess the performance of the model, in this toy example we construct a weighted
distance between the true partition p and the partition p. This distance is based on

the loss function of Binder| (1978), which is given by

> Wip,p) (5,({p}) — P(p))?
p
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3.2 A Bayesian approach to post-stratification

=== without learning

—with learning

Probability of the partition (1,1,2,2)
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Figure 3.2: Probability of the partition (1,1,2,2) with and without the learning process.

with
W(p.p) =D {U(i,5) + V(i.j)},
i<j
where U(i,7) = 1 if and only if ¢ and j are in the same cluster under partition p but in
different clusters under p; similarly, V' (i, 7) = 1 if and only if 7 and j are together in p but
separated in p. Figure|3.3|shows the results obtained for different number of simulations
for P(X;=1) = 025 P(X;=2) =02 P(X;=3)=01 P(X;=4) =04

Yil{Xi € {1,2}} ~ Bernoulli(0.8) Y;|{X; € {3,4}} ~ Bernoulli(0.2)
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Figure 3.3: Using weighted distance to assess the performance of Example

3.2.3.2 Product partition parameters correlated in time

A common practice in finite population sampling is to use previous polls to estimate
the variance of the population and calculate the number of observation given a desired
precision. For this purpose, we define a new model in which the parameters associated

for each stratum can be dependent of previous polls. The model is given by

yfg(j](Gzl, e HEM, p) o~ { H } Bernoulli (yz|0ﬁj)
i,xiEX;-‘
9§j|p ind Beta(afgj,bgj)witth €p

p ~ RP(S) (3.5)

where ng is the parameter associated to stratum X7 at time t. Let E(¢) = ¢o; if

var(¢) — 0 then, p(¢) = d4, =
p0" ... 6") = [ T]o@lom(@)do - [T p(e'ion). (3.6)
=1 =1

When var(¢) — oo, 8,...,67 are highly correlated.

For a graphical representation of this model see Figure
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p= {Sl’SZ’SB}

N

¢Sl ¢Sz ¢S3

@) (2 () (@) (6n) ()

0y o5 oy, os, 0y, os,
| | | | | |
y; YTZ )’; y*iz y; yzz

Figure 3.4: Graphical representation of PPM parameters correlated in time.

3.2.4 Loss function

We define the loss function

2

1(p.5,0.65) =[085 + (1= )15 (3.7)

In Appendix [A] we state and provide a more detailed proof clarifying all the elements
of the sequential decision problem of the theorem of |(Quintana and Iglesias| (2003)). This

will allow us to find the partition which minimizes the expected loss.

3.3 Discussion

In this chapter, we proposed a Bayesian post-stratification approach where we model the
post-stratification as a random partition in order to include our prior knowledge about
the structure of the population. We defined a hierarchical Bayesian model tailored for
such purpose. We also provided a toy example to illustrate this kind of models. Note
that, if we have a set of five discrete covariates, each covariate with 3 levels, then we
will have 3% = 243 basic strata. Using the Bell number in equation , we have

Boyz > 10%7. This is the number of possible ways that we can stratify our population
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3. A NEW APPROACH TO BAYESIAN POST-STRATIFICATION

using the five covariates. Because of this, we were not able to carry out the simulations

for more realistic problems.
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Chapter

Variable Selection

Human existence is based upon two pillars: Compassion and knowledge.
Compassion without knowledge is ineffective; knowledge without compassion is

inhuman

WEISSKOPF VICTOR (PHYSICIST)

Variable selection is an important issue in regression analysis. In Bayesian statis-
tics, Bayes Factors have played a major role when dealing with this problem; in fact,
despite the importance of decision theory within the Bayesian framework, there are
few proposals that use a utility function to address this problem. Inspired by product
partition models, we propose a probability measure over all possible models and use
a loss function suitable for prediction purposes. We point out some of the differences
from other recent theoretic-decision approaches such as that of [Hahn and Carvalho
(2015), who use a similar loss function but different probability and decision settings,
or Barbieri and Berger| (2002) who studied conditions to minimize the squared error

loss in orthogonal designs or nested models.

4.1 Introduction

In the framework of regression analysis, we usually want to explain the data or predict
future observations in the simplest way, so redundant predictors must be removed.
Suppose that we have n observations with k covariates and a response variable Y.
Set p=k+1,Y = (Yl,...,Yn)T, X = [x45] is a n x p matrix with ¢ = 1,...,n,
j=0,...,kand z;p = 1 for all i. Let Sp = {1,....,k} and S C Sy. We define the
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4. VARIABLE SELECTION

model Mg : Y = XgBg + g with Xg = [xij]je{o}us a n X ng matrix ng = |S| + 1,
gs ~ N, (0, a?gI n) where I, denotes the n x n identity matrix and |S| is the cardinality
of the set S. B¢ = (ﬁg, ....,Bﬁg'). In other words,

Mg :Y ~ N, (y| X sBg,0%1,)

Note that we have T = 2F models.

Example 4.1. Suppose that we have 8 observations and 5 covariates, then

1 211 w2 w13 14 X315
X =1 w1 oy 3 24 w25
1 w31 x32 w33 w34 X35
If S ={2,3,5} then
1 x2 m3 215
Xs=| 1 mn x23 w25

1 x32 w33 w35

4.2 A new theoretic decision approach for variable selec-

tion

In this section we set up the theoretic decision framework for our problem. In variable
selection, we typically first choose a model among the T" possibilities, then we make pre-
dictions using the chosen model. This decision process can be modeled as a sequential
decision problem. In the first stage, the space of actions is A; = {select M 5,1 <0< T}
and the space of uncertain events is & = {Mg,,1 < i < T} (see Figure 4.1). We are
ready to define the loss function associated with choosing Mg when the true model is
Msg. Let

I(Mg, Ms) = Av(Xg) + B(IS| - IS]), (4.1)

where (X S) is a measure of the collinearity of the covariates, |S| is the number of
covariates of the model Mg and A, B > 0. The constants A and B help us standardize
the measures ¢(X¢) and |S| — |5, making them commensurable. Recall that our main
purpose is prediction with the minimum number of covariates, which should ideally not

be correlated. The term |S|—|S| promotes fewer covariates. In fact, when the estimated
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4.2 A new theoretic decision approach for variable selection

model Mg has less covariates than the true model Mg, the loss function rewards it;
otherwise, it penalizes it. For instance, suppose Xi, X9, X3 and X4 are independent
variables such as Y = X; + Xo + X5+ Xy + €, X5 = X1 + X9, Xg = X3+ X4 and
X7 = X1 + Xo + X3+ X4. Defining S = {1,2,3,4}, §; = {5,6} and Sy = {7} and
A =0, we obtain

l(MS.I,Ms) =-2>-3= l(MSQaMS)7

which reflects our preference to predict with the fewest number of covariates.

The setting for the second stage of our decision problem is straightforward: Given
that we have chosen Mg, the space of actions is Ay = {select g Mg € R"|Mg}. The
space of uncertain events is & = {y,,, € R"|true model is Mg}. A natural loss function

of choosing ¥y Mg when the true value is y,,, could be

l/(@MSayMS) = C||@M§ - yMS”2 (4.2)

where y,,_ is the true value of y predicted by the true model Mg and C > 0.
Finally, we introduce the loss function composed by [ and I’, which can be seen as the
entire loss of the sequential decision problem previously described. For the sequential

decision problem depicted in Figure the loss function is given by

L(MgaMS;gMgvyMs) = l/(@MS,ayMS)—i_l(MS'?MS)
= Cllyass — | + AV(X)
+B(|S| — [S]) (4.3)

with A, B,C >0

Note that C, A, B describe the trade-off between precision, collinearity and model
complexity. Note also that the terms in equation , AP(Xg) + B(]S| - 19]), can
be seen as the loss incurred when for choosing the wrong model. Since our main goal
is prediction with minimum number of covariates and that the covariates should be
uncorrelated, these penalizations seem reasonable. Given that we have chosen model
Mg, the term lYnrg — Yn, |* penalizes for the difference of the true value y,,, and the

estimated value ¥y s using model Mg.
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Figure 4.1: Sequential decision problem for variable selection

Concerning the probability measure on the space of uncertain events, we define the

following hierarchical model:

p(Mg) o

Y|M57/3870-§' ~

2
63705 ~

Il

€S
Ny,

(y|XSB5, O-%In)

W(BS? O-g')a

where ¢; > 0 quantifies the prior belief that the i-th covariate should be included in the

model and 7(Bg,0%) is the prior probability function of the parameters of the model

Mg. We now calculate p (Mg|D) where D is the observed data. It is given by

p(Ms|D) o p(D|Ms)p(Ms)
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x [T [ Mo (61X 5508, m(Bs. 0%)dBsio
€S

We are ready for the following proposition, which will allow us to find the model Mg

that minimizes the loss function defined previously. We will prove this result using the

ideas exposed in |Quintana and Iglesias| (2003).

Proposition 4.2. Let yp = E(y|D) and Yy, =E (y|Mg, D). Then the expected loss
minimization using the loss function of equation leads to the choice of M; that

minimizes
SC(Mg) = 7illds —Yu PP +720(X5) + (1= —2)[5] (4.4)

Proof. We begin by solving the optimization problem at the second stage (see Figure

1):

I (300} 0Ms) = [ LM, M g, yar, ol [Ms. D)y,
[ [lass = 9 P+ 220X ) + (=21 = 92) 18] = 1)) plwar, M. D)y,

— / lars — 9ar, I2P(ars M, D)y, +12(X ) + (1= 71 = 12)(15] — |S])

Now let @}"WS = arg min@M§ {Z2 <@M§|Ms) }; then the loss of choosing the model

Mg when Mg is the real state of the world would be Iy (@MS’MS)- Since @*MS is the

Bayes estimate under quadratic loss, we obtain:
¥ir, = B (yar, | Mg, D) = E (y|Mg, D) =Gy,

We will now solve the first stage (see Figure .
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Yo T (Ui, 1145
— e ! M,
Ms,; o 2 (yM | ST)
Mg, — =9 1 (¥, [Ms,)
———ol (Y. |M
Ms; p(Ms, |D) 2 (yMST| ST)
Figure 4.2: First stage of the decision problem
The expected loss is given by
7 _ 7 ~
[(Mg) = Z l2 (’!JMS‘MS) p(Ms|D)
Kl
= 5 {0 [ st~ i s M. Dy, + (1= =181 (411D
SCSo

+720(X g) + (1 =y — 72)[9]

= '71/||yM5 —9ir 7S D p(Ms|D) p(yar|Ms, D) p dypyg + (1= —22)E(S])
SCSo

+92(X ) + (1 =y — )|

= [y~ G (el D)y + (=1 =22 E(S]) + 720X g) + (1 =71 = ]S

We now calculate [ ||y — @”MS I?p(y|D)dy
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[y =i PowiD)dy = [ 1y =95+ 5 - 5 PolyID)y
= [y islPotiD)iy
+2 [ (95~ 9r,) puID)y
+ [N = 9 PotyID)ay
= V(ID) +0+ g5 — Fir, I

Note that the first term in the last expression and E(|S|) do not depend on the model
Mg and can be regarded as constants.
Hence, finding the optimum of <M g,g)}‘ws) which minimizes the expected loss is

equivalent to minimizing
SC(Mg) =nlgp - §M§||2 +7929(X g) + (1L — 71 —72)[S].
O

This solution can be interpreted as the best model with the loss function described
by equation , whose predictions are the closest to the average prediction based on
all the models. Moreover, Proposition suggests a procedure based on distances to
find the optimal M; Unfortunately, an exhaustive search on the space of all possible
partitions is unfeasible. However, we can adopt different heuristic algorithms depending
on each application. These strategies may not give us the optimal solution but can lead

us to a reasonable suboptimal one in a realistic amount of time.

4.2.1 Consistency

Consistency is a desirable property. When the size of n increases, our predictions should

be near the predictions under the true model.
Proposition 4.3. If w(8g, O‘%) s proper and M; minimizes
N — 2
SC(Mg) = |95 — yMS”
then

].im * —
n—00 yMS‘ Yums
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We provide a sketch of the proof.

Proof. Since w(Bg,0%) is proper, limy, o P(Mg|D) = 1, hence limp 00 G5 = Yns,
also, limy o0 Ypre = Yargs hence lim, oo |95 — ﬂMSH2 = 0. Since y}"\/lé minimizes

SC(Mg) then limy, ;o yM = 9p, then lim,, Yars = Ynig =

Note that the optimal model that minimizes SC may not be unique.

4.3 Other loss functions

In this section we discuss other loss functions that explicitly include a penalization for

not choosing the true model. One such loss function is the following.
L(Mg, Ms) = |G(S) - G(S)|? (4.5)

where G(S) is a p vector such that its i-th entry is equal to I;cg. Suppose that the
true model was generated by covariates X, Xo, X3, and X; = X4, Xo = X5 and
X3 = X¢. Defining S = {1,2,3}, S = {4,5,6} we obtain L(Mg, Mg) = /6 although
Mg = Mg. Moreover, suppose that the true model is generated by covariates X7, Xo
and X3; suppose also that X is highly correlated with X3. Defining S = {1,2,3} and

= {1,2} we obtain L(Mg, Mg) = 1 even though we obtain the same prediction with

a smaller number of covariates than with the true model.

Proposition 4.4. The model which includes all variables with p(X;|D) > % is optimal
under the loss function L of equation . This model is called the median probability
model (MPM) by Barbieri and Bergen (2002).

Proof. For the sake of simplicity, we will denote by p(X;|D) the probability that X;
belongs to Model Mg. Note that

p
E(L(MS’MS)) - ZE ESHzGSJF]IzES)
1
Zp
= Z [Tcg — 2L, gp(Xi|D) + p(Xi|D)] .
1=1

Since the p terms of this sum do not affect each other, we only need to maximize

each one in order to maximize F (L(MS,MS) If p(X;|D) < , we maximize [, ¢ —
2L, ¢p(Xi| D) + p(X;|D) when I,_s = 0. In the case p(X;|D) > 5, the optimum value
is obtained when I, ¢ = 1. O
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4.4 Other theoretic decision approaches

The Kullback-Leibler (KL) divergence is a widely used criterion to measure the
information loss when the distribution function @) is used to approximate P. Suppose
that ¢ and p are two densities with respect to Lebesgue measure, then the KL divergence
between p and ¢ is defined by

KL(plo) = [ n <Z§Z§> o)

For the variable selection problem, Laud and Ibrahim/ (1995) used the following criterion

based on the KL to choose the covariates that should be included in the model

Ky, = KL (Ms,||Mg) + KL (Mg||Ms,) . (4.6)

They compare all the models with the full model (Mg,) and select the one that
minimizes Kpyz,. This approach does not include the probability of each model and
does not intend to minimize the expected value of K M- Based on this method, we can

consider the following loss function.

Definition 4.5. Let
L (Mg, Mg) =A-KL(Ms||Mg) + B- KL (Mg|Ms) + C|S]| (4.7)
where A, B,C > 0.

In our definition, we compare the estimated model Mg with the true model Mg
instead of the full model Mg,. Using the sequential decision settings discussed before,
we can calculate the optimum M; which minimizes the expected loss L (M &M S). This
procedure is general and can be applied, for example, to generalized linear models,

although it presents technical challenges such as the estimation of B¢ given Mg.

4.4 Other theoretic decision approaches

Hahn and Carvalho| (2015]) provide an explicit Bayesian decision-theoretic perspective
which we will briefly review here. Let Y ~ N(X3,0%I) denote the density of the
posterior of the parameters 3 and o2 by 7(3,0%|D) and A > 0. Let

(7) = / (Y18, 0%)n(8. 0% D)d(B.0?) (4.)
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4. VARIABLE SELECTION

then the loss function

L(Ms,Y) = AlS| +n Y, - Y (4.9)
leads to minimizing
L(Ms) = AlS| +n gy, — X8I (4.10)

where 3 = E(8|D).

They solve the optimization problem using combinatorial programming.

Our approach is different from the work of Hahn and Carvalho (2015); they do
not use a probability measure over the models and so the loss function they employ
compares only the predicted value of the full model with the prediction of the estimated
model. In our case, we compare the predicted value of the estimated model with the
true value using the probability induced by the proposed hierarchical model. In some
sense, their approach can be seen as a particular case of our model when the probability
of the full model is close to one (p(Mg,|D) =~ 1). Since we have a probability measure
over all possible models, we can calculate the marginal probability of each covariate
(p(XilD) = > (ngliesy P(Ms|D)), which can guide us about the relative importance
of each covariate. This is unfeasible in their approach. From a practical point of
view, there are also important differences. When the number of covariates is greater
than the number of observations (p > n), their approach is very restrictive, requiring
very informative distributions for the existence of 7(3, 02| D) under the full model, as
opposed to our proposal which does not assume any condition on the prior distribution
of (8°,0%) with |S| < p — 1 (which can lead to a different model estimate).

Under the squared loss function, in orthogonal design or sequence of nested models,
Barbieri and Berger| (2002) have shown that the MPM is optimal. As pointed out
by [Hahn and Carvalho (2015), the MPM is defined via marginal quantities which can
be misleading when strong dependence among predictors is present. Our approach
overcomes this difficulties because it is general and does not impose any restriction on
the models. We also include a term which penalizes complexity and multicollinearity,

allowing us to find the set of uncorrelated variables which performs the best.
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4.5 Computation of to yp

In order to obtain ¢ 5, we can use Gibbs Sampling on the space of the 2F possible models.
Let U; be an auxiliary random quantity that reflects whether or not the variable X;

belongs to the model Mg:

U — 1 if iGMS,,
T i i M,

fori=1,...,p.
Each model (Uf, e sz), s > 1, is generated by using Gibbs sampling.
Starting from an initial value (Ulo, vy UZ?), the r-th element at step s, U?, is gener-

ated from the conditional distribution

s s s—1 s—1,
U, | U, ... Ui, Ul D

» Yr—1

forr=1,...,p.
To avoid unnecessary calculations, it is enough to consider the following ratio
PU,=1]|V? D)

R, =
P(U,=0]|Vs D)

: : s—1 s—1
forr =1,...,n—1,in which V! = {Uf =Ul, e Ul = Ur1, Ul = Upyr, -, Uy ") = Uy

-1 -1
P (Uf = ui, ""7U7§—1 = uT_l,UT = 1,U,f+1 = Up41, ...,Us 1= Un—1 | D)

PU,=1|V? D)= — — e .
P(U; =u1,...; Uy = w1, US| = tpg, ..., USZ] =up_1| D)

and

s—1 s—1
PUf=uw, ..U =u—1,Up = 0,US = tygr, .., UpZy = un—1 | D)

PU,=0|V?D)= n-
(U =01V D) P (U =ut, s USy = 1, U} = gty ooy US"] = tn1 | D)

Then

s—1 s—1

P (U; =uy,....,US Ur—1,Up = LU = tUpg1, .., UpZ ) = up—1 | D)
1
1

R. = r—1— 5 _
T J— .
PUf=w, ..U = w1, U, = 0,US} —u, 1| D)

I
g
5
s
S
7

Hence
p(D[Mg, )p(Mg,)

" p(D|Mg,)p(Mg,)’
where Sy = {i:uf = Li <r}U{rtU{izui ' =1,i>r}and Sy = {i s uf = 1,i <

(3 K3

r} U {i: uf_l = 1,7 > r} and consequently, the criterion of choosing the values U/,

1 =1,...,k, becomes:

s | Lt B> u
T 0, otherwise

for r =1,...,p, in which u ~ Unif (0,1).
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4. VARIABLE SELECTION

4.6 Variable selection

We now provide an algorithm to minimize the loss function of equation (4.5]) based on
Proposition

Algorithm 4.1 Variable selection

Step 1: Set j = 1,51 ={1,...,k} and evaluate SC(Mg,).

Step 2: Set j = 2. Obtain [ € Sy such that if Sy = Sy — {l}, SC(Mg,) is minimum.
Step 3: If SC(Msg,) > SC(Mg,) or Sy = @, set 5* = S and STOP. Otherwise go to
step 4.

Step 4: Set j = j + 1. Obtain [ € S;_1 such that if S; = S;_1 — {l}, SC(Mg,) is
minimum.

Step 5: If SC(Ms;) > SC(Msg,_,) or S; = &, set S* = S;_1 and STOP. Otherwise
go to step 4.
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4.7 Correlation measures

The following example shows the consequences of multicollinearity in a multiple regres-

sion analysis. Let ( §1 ) ~ No (u, X)) with p = ( 8 ) and ¥ = (
2

1
0.999999

Let € ~ N(0,0.1). We define the random variable Y = 3X; 4+ 2X5 + e.

We simulated 50 times these variables and performed a classical linear regression

analysis. We obtained the following estimations for £, and (s:

Bl = 6.841 and Bg = —1.812. We repeated this experiment 20 times. Table

shows the estimates of 3; for each experiment.

Simulation ,5’1 BQ Bl + 32
1 6.841 -1.812 5.029
2 5.735 -0.72 5.015
3 -6.031 | 11.029 | 4.998
4 3.354 1.649 5.003
5 -11.445 | 16.44 4.995
6 -2.369 7.363 4.994
7 9.461 -4.486 4.975
8 -7.581 12.56 4.979
9 2.653 2.362 5.015
10 15.451 | -10.426 | 5.025
11 0.688 4.328 5.016
12 7.893 -2.888 5.005
13 -1.005 5.979 4.974
14 4.015 0.982 4.997
15 0.718 4.302 5.02
16 -4.945 9.945 5
17 -1.587 6.59 5.003
18 -5.79 10.786 | 4.996
19 -4.071 9.071 5
20 12.944 | -7.937 5.007

Table 4.1: Estimated coefficients in the multicollinearity experiment
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4. VARIABLE SELECTION

This simple experiment shows that multicollinearity can produce estimators of the
coefficients with large variance and different signs. It also suggests a heuristic expla-
nation of why multicolinearity can be very problematic. Note that Bl + /32 ~ 5. Since
X1 = X5, and the true model is Y = 3X7 + 2X5 + ¢, there are several combinations of
Bl and 32 such that Bl + BQ ~ 5. We need a real number w(XS) which can be used in
equation that measures and the correlation of a group of random variables. We
can find meaningful collinearity measures in Willan and Watts (1978]). In fact, these
authors show that |C ]% is the volume generated by the standardized variables where C'

is the correlation matrix of the random variables considered. Note that
0<|Clz <1

In Figures |4.3| and [4.4| we show examples of the measure |C ]% for two and three dimen-

sions respectively.

Example 4.6. Let X; ~ N(0,1). We construct the following random variables:

Zl = 3X3 + Xl

Zo = —3X5 +2X
75 = 10X, + 2X,
Zy=—2X4 + Xs
Zs = — X5 + 5Xe
Zo = —5X¢ + 20X,

Now consider the model Y = X1 +2Xo+¢€. Clearly Y = Z1 +Zo+€ and Y =
Zs+ Zy+ Zs+ Zg+e. We want to perform variable selection with Z; as the independent

variables. For model Mg, with S = {1,2}, we obtain the following correlation matriz:

Z1 Zy
Z1 |1 —0.97
Zy | =097 |1

In this model, \C\% = 0.266. On the other hand, in model Mg, with So = {3,4,5,6},

the following correlation matrixz is obtained:

Z3 Zy Zs Zg
Z3 |1 —0.175 | 0 0
Zy | —0.175 | 1 —0.087 | 0
Z5 |0 —0.087 | 1 —0.237
Zg | 0 0 —-0.237 | 1
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4.7 Correlation measures

In this model, |C’]% = 0.958. This example shows the importance of considering a
correlation measure in the loss function. In fact, model Mg, has only two variables but
they are highly correlated, which can cause several problems, whereas model Mg, has

four variables with low correlation which leads to robust estimations.

Other correlation measures based on copulas can be found in [Schmid et al.| (2010).
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X2

Xz

X2

p=0 4[c|]=1

p=05 [c[=0.864

X2

-2

-4

p=0.25 /|c|=0.969

p=0.75 ,[|c[=0.664

p=0.99 |c[=0.141

Figure 4.3: |C |% measure for bivariate normal distribution with different correlations.
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pi=0  4IC|=1 p=0.5 |c|=0.708

X3

X3

X>

-2

p;=0.9 /|c|=0.168

X3

X3
X,

-2

(c) (d)

Figure 4.4: |C \% measure for multivariate normal distribution with different correlation

matrices
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4. VARIABLE SELECTION

4.8 Discussion

In this chapter, we proposed a new decision setting for variable selection problem in
regression analysis with a loss function suitable for prediction. We proved a result that
allowed to find the model which minimizes the expected loss function. We also provided
a Gibbs sampler algorithm that helped us to optimize this loss function. In order to
understand the difficulties that can arise in variable selection for regression analysis,
we provided several illustrative examples.

When we suspect that the true model does not belong to our list of entertained
model (for instance, if we think that the relationship between the dependent variable
and independent variable might not be linear and we consider only linear functions) we
could adopt the M-open framework discussed in (Gutiérrez-Pena and Walker, 2001,
2005)) and use a nonparametric model such as the Gaussian process with the Kullback-
Leibler divergence as the loss function. We would then be choosing the linear model

which is closest (on average) to the true model.
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Chapter

Discussion

If you want others to be happy, practice compassion. If you want to be happy,

practice compassion.

Daral Lama XIV

5.1 Conclusions

In this thesis, we have proposed suitable loss functions for each of the three statistical
problems we considered. For each case, we provided algorithms that can be regarded
as applications and/or an extensions of the methodology proposed by Quintana and
Iglesiasg| (2003). Although their work has been extensively cited, mainly because they
establish a link between PPMs and the DP, to the best of our knowledge the present
thesis is the first work that exploits their proposal in order to make inferences based
on loss functions in different settings other than clustering in a parametric framework.

In what follows, we will describe the contributions of each chapter of the thesis,
including remarks that may be helpful in future work.

In Chapter [2, we used the Dirichlet process to extend PPMs to the nonparametric
case, which does not impose any particular parametric form of the distribution function.
We thus provided a methodology that uses loss functions to detect change points and
that can also be applied to other models such as the nonparametric hidden Markov
models. We also defined a simple loss function that can detect changes in the mean.

This is very useful in many applications such as the analysis of aCGH data, where one
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needs to process the human genome to detect abnormalities in the DNA that cause a
specific disease. We also introduced more complex loss functions which are adequate
to detect changes in the distribution. A general form was presented in Section
based on Anderson—Darling and Cramér—von Mises statistics, we used three different
combinations of weights and measures that allowed us to detect changes in the tails
as well as skewness more efficiently. For the loss functions proposed, we implemented
a procedure to determine the value of the parameter v, which appears in similar loss
functions but in different settings such as variable selection. In many applications,
missing data appears frequently. In order to tackle this difficulty, we took advantage
of the random partition structure of our model to estimate the distribution function
of each missing value without using multiple imputation, which is computationally less
efficient. This procedure can also be used in the parametric product partition models
for change-point analysis in order to estimate the “gold standards” of Theorems [2.9
and [2.10] we provided an exact computational procedure which is feasible for less than
300 observations, and a Gibbs sampler for larger data sets.

We focused our attention on the NPPMs for change-point detection purposes. How-
ever, NPPMs can also be used in a general clustering analysis. In fact, there is an in-
teresting relationship with the nested Dirichlet process (NDP), in the same way as the
PPMs are related with the Dirichlet process: by integrating out the Dirichlet process
in the NDP, we obtained a particular case of our model. This result has also practical
interest because we were able to profit from several simulation algorithms and apply
then it to nonparametric outlier detection. This is so because the cohesion functions
in this case can promote fewer clusters with larger amounts of data in each one.

We have shown empirically that methods based on loss functions may perform
better than methods that use the marginal probability, which is a popular criterion.
This is specially true in the case of the NPPMs, in which this criterion detected change
points very poorly because of the flexibility of the model. Moreover, we have shown
that our proposal performs better than parametric and nonparametric models recently
discussed in the literature, such as PELT and ECP with different data sizes. We also
applied our methodology to two real data sets in genetics and finance.

We used the low-level programming language Fortran in Ubuntu’s operating system
to implement the several methodologies discussed in Chapter This allowed us to

perform exhaustive simulations to obtain reasonable results. We used the R software
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(R Core Team, [2016]) as a GUI (graphical user interface) which allowed us to call the
dynamic libraries compiled in GNU FORTRAN (gfortran) to analyze the output of the
simulations. We also used OpenMP in gfortran to implement a parallelization of the
simulations.

In Chapter |3, we argued for the use of more sophisticated methods such as non-
parametric Bayesian statistics in finite population sampling, and stated a natural re-
lationship between these two branches of statistics. We discussed a novel approach to
Bayesian stratified sampling that allowed us to take advantage of prior knowledge about
the structure of the population. This approach provides a methodology for collapsing
strata in the post-stratification context. For this purpose, we induced the partition
over the range of the covariates instead of the target variables. Since the inference is
challenging and limited by the number of covariates, any improvement in the algorithm
could allow us to consider more complex problems.

Finally, in Chapter 4, we studied the variable selection problem in regression anal-
ysis and constructed a loss function which includes a penalization correlations between
the explanatory variables included in the model, in addition to the penalization on the
number of variables. The construction of this loss function was carefully justified. We
showed an example where one model had two highly correlated significant variables,
while a second model contained five significant variables with low correlation. This
example shows why we need to include a term in the loss function that penalizes corre-
lation besides the size or complexity of the model. We also proved a result (Proposition
that allowed us to devise a methodology to select the model with minimum ex-
pected loss. A Gibbs sampler was described to obtain the “gold standards” required
by Proposition This methodology can be used in generalized linear models as well.

5.2 Future work

Theorem will still hold if we use random measures other than the Dirichlet pro-
cess to define NPMMs. However, practical concerns will arise, such as the calculation
of the predictive distribution of the random measure employed for each block of each
simulated partition. Since the number of partitions may be very large, this can re-

sult in an insurmountable problem. In the case of the Dirichlet and Poisson-Dirichlet

111



5. DISCUSSION

processes, this can be done because closed-form expressions of their multivariate pre-
dictive distributions are known. In the case of mixtures of Dirichlet process we can
deal with this issue using variational methods, introduced in Bayesian nonparametric
statistics by researchers on machine learning (see Blei and Jordan, 2006). Variational
methods can provide an adequate approximation in much fewer iterations than MCMC
strategies; see |Bishop| (2006, chap. 10) for an introduction to this methods in para-
metric Bayesian models. The calculation of the predictive distribution for most of the
other random measures is computationally very demanding. A natural extension of
the NPPMs would be the inclusion of covariates, in the same way as|Park and Dunson
(2010) or Miller and Quintanal (2010); Miuller et al.| (2011)). Although the generaliza-
tion to several dimensions is straightforward, it was not developed here. On the other
hand, while NPPMs can be defined in arbitrary dimensions; they have practical lim-
itations due to the number of calculations needed. Therefore, it would be convenient
to develop simulation algorithms that can be parallelized to profit from the number
of CPU’s available. In the NPPM defined in equation , we used the DP with
dispersion parameter «; and centered at (G; which is a parametric distribution function
with parameter 8;. It would be convenient to use a prior distribution on 6; and «;.
Algorithm finds a local optimum. Alternatively, we could use other approaches such
as agglomerative strategies or Simulated Annealing (SA)(Kirkpatrick et al., [1983)). Al-
though these algorithms do not ensure convergence to the global optimum either, they
do not get stuck in local optima and can improve the solutions obtained.

Concerning our model for finite population sampling, an efficient computation im-
plementation is also needed, perhaps using parallel programing, due to the number of
possible stratifications. For instance, if we have a set of five discrete covariates, each
one with 3 levels, we will have 3° = 243 basic strata. Using the Bell number in equa-
tion , we have Bgy3 > 10?75, which is the number of possible ways in which we
can stratify our population using the five covariates. Clearly, this is computationally

challenging.
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Appendix

Bayesian clustering and product

partition models

Quintana and Iglesias (2003)) developed the following result to obtain the partition with
the minimum expected loss.

Let )
L(p5.0,0,) =0 -85 + 1= 15 (A1)

Theorem A.1. Let 05 (y) = E (0ly) and ép (y) = E(O|p,y), then the expected loss

minimization criterion leads to the choice p* that minimizes

SC(p) =105 (y) — 0, (y) > + (1 = 7)I4] (A.2)

where the vector éﬁ is the estimate of the vector 8 associated with the estimated partition
p, and |p| denotes the cardinality of p. Here, 0 < v <1 is a complexity-cost parameter.
The choice of loss function implies a trade-off (controlled by the user-defined quantity
) between the optimal estimator of @ and model simplicity, by which we mean a model

with a low number of clusters or strata.

Proof. |Quintana and Iglesias (2003) For a sequential decision problem, Bernardo and
Smith| (1994)) state that one has to first solve the final nth stage by minimizing the
appropriate loss function, then one has to solve the (n — 1)th stage by minimizing the
expected loss function conditional on making the optimal choice at the nth stage; and
so on, working backwards progressively, until the optimal first stage option has been

obtained. To visualize the decision tree of our problem see Figure

113



A. BAYESIAN CLUSTERING AND PRODUCT PARTITION MODELS

p 0 0
—0 —0 —8 1(p,0.0,,0)
g p(oly) p(@1p.y)
(a) Second stage
A ® 10 |p)
P p(ply)

(b) First stage

Figure A.1: Decision tree of theorem |A.1

To solve the optimization of the second stage:
LOsle) = [ 106087000061 )d0
= 9 [ 16~ 61p(6lp.)d8 + (1= )7,

Let 9: = argminéﬁ{72(9ﬁ|p)}, then the loss of choosing p when p is the real state of
the world would be Zg(é;| p). Now we will solve the first stage (see Figure . The

expected loss is given by

1) = [ @;lowleln)ar

7/ { [ 16~ 610l y)de}p<p|y>dp+ (1 -l
1 [ 165~ 612 [ 5610 w)plsl)dpde + (1~

- / 167 — 6]%p(6y)d8 + (1 — )|

Since é; is the Bayes estimate under a quadratic loss function,

0,=E@|p,y)=0,(y)
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Finally,
[ 16, ) - o010~ | Z(a ()~ 0.)0(6]y)do
-/ ;w () — 0 (y) + O (1) — 0,)p(6]y) 0
-/ gw (y) — 0121 (4))*p(6]y) a6
w2 f Zw (¥) — 0 ()85 (y) — 0)p(6]y)d
+f ;:(ég,i (y) — 0.)%0(6]y)d0

= 16, (y) =65 ) |I° +0+u(V(8ly))

where tr(A) denotes the trace of a given matrix A. Then

v/ 16, (y) — B1*p(81y)d6 + (1 = )1p] = 1118,(y) — O5(y)||* +~tr(V (8ly)) + (1 —7)|4]

The proof concludes by noting that the second term in the last expression does not

depend on p. O

The above result shows that the optimal choice p* will be the partition for which

the resulting estimate ép(y) is closest to Op(y).
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Appendix

Distributions and Related Results

B.1 Distributions

Definition B.1. Multivariate normal distribution. If X € R™ has a multivariate

normal density, conventionally written X ~ Ny (@, X) then

ple) =0 F N e {3 (@ Ale - w)

where B (X) = p and Var (X) = X! provided X is positive definite.
Remark B.2. We will use the notation N(m,A) and N, (@, X) indistinctively for sim-
plicity purposes.

The next definition concerns to the multivariate noncentral t-distribution

Definition B.3. Multivariate t density. If X € R™ has a multivariate t density,
conventionally written X ~t, (u, V'), then

w:Lgn)V_% 1 1:1:— ty=1(x — o B.1
Pe) = g VT (1 eV ) B.1)
o)« (14 @ V@) (B.2)

where p € R™ is a location parameter. V is a n X n, symmetric, positive definite matrix
and v > 0 is a degrees of freedom parameter. If v > 1 then E(X) = p; otherwise it is
undefined.
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If v > 2 then Var(X) = %5 V'; otherwise it is undefined.
Note that if n =1, u = 0, and V = 1, then equation becomes the pdf of the
univariate Student’s t distribution with v degrees of freedom. See |Kotz and Nadarajah

(2004) for further properties and applications.

The following definition extends the definition of the normal-gamma distribution.

Definition B.4. Multivariate normal-gamma distribution. A continuous random vec-
tor X = (Xy,..., Xpn) and a random quantity T have a joint multivariate normal-gamma
distribution of dimension n, with parameters p, X\, «, 3 where p € R™, X a n x n sym-
metric, positive-definite matriz, a > 0 and 8 > 0 if the joint probability density of X
and 7, Ngn (&, 7|, A, v, B) is

Ngn (z, 71, A o, B) = Ny, (z|pt, A7) Ga (7o, B) (B.3)

Remark B.5. As in the case of the multivariate normal distribution, we will use

indistinctively N gy, (&, T|p, X, «, 8) and Ng (x, T|p, X\, o, B)

The skew normal distribution is a generalization of the normal distribution that can

have non zero skewness and is defined as follows.

Definition B.6. The density of a skew normal random variable has the density of the

flale.w,0) = 2075y (a(l’ = )) (B.4)

w

form

where ¢ and ® are the density and the distribution function, respectively, of the standard
normal random variable. £ is the location, w is the scale and « is the shape parameter

which determines the skewness.

B.2 Proofs of selected propositions

The following result is very useful to complete quadratic forms.

Lemma B.7. Let z,b and ¢ be an n x 1 vectors, A an n X n symmetric and invertible

matriz. Then

Az + 2z + ¢ = (z + A_lb)t A (z + A_lb) +e—btA" D
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Proof.

(z+A7D) A(z+A7B) +c—bAD = 2'Az+2'AATb+ b (A7) Az
+b (AT AA bt e — b AT
Since A is symmetric, we have that (A~!)! = A=! hence
(z + A_lb)t A (z + A_lb) +ec—blATD = ZlAz+ 20z +c

O]

Proposition B.8. Let z,b and ¢ be an n x 1 vectors, A an n X n symmetric and

invertible matriz. Then

2tAz — 2z + ¢ = (z _ A*lb)tA (z _ Aflb) te—blA 1
Proof.
(z—A'B) A(z—A"'B) +c—bAb = 2Az—2'AAb—b (A7) Az
0 (A7) AA bt e~ b ATD
= 2lAz—2b'z+¢

O
Lemma B.9. Let H be an n X n matriz with H;; = 1 Vi, j then
HH =nH (B.5)
Proof.
n
(HH);; =Y HixHim
k=1
=n Vi, j.
O

Lemma B.10. Let H be an n x n matriz with H;; = 1 Vi,j, I,, the n X n identity

matriz and by a positive real number then

H \ ! H
I,—-— ) =(1,+=
(- ots) =(1+i)

119



B. DISTRIBUTIONS AND RELATED RESULTS

Proof.
H H H H
(o) (Bmim) = () (2o )
_ 7 H H HH
N n_n+bo+%_bo(n+bo)
Using Lemma [B.9]
I +<n+bo)H—bgH—nH
" bo(b+ bo)
= I,

O]

Proposition B.11. Let X;|u, 7 d N (u,7) for 1 <i <n and p ~ N(ag,boT) where

T and byt are the respective precisions. Then X|t ~ N (aO,T (In — %)) where

X = (X1,...,Xn), ap € R", ag = (ag,...,a0), H an n x n matriz with Hy; = 1 for
1<i<nandl <j<n.

Proof.

p(z) = / p (l1) p(ys)dp

o [ew{-5@— 't @ bow {0 (s} an
~ /exp{—;(m—u)tTIn(a:—u)}exp{—bO;(,u2—2uao+a(2))}d,u

where @ = (21, ...,2n)" and g = (p, o, ..., )’

(@ —p)irl, (x —p) = xlrl,x—2u'rl,x+ plrl,p
= z'rI,x —2u'rI, @+ nTp?
= z'rl,x —2ur(v) + 22+ ... +2,) + nrp?

Hence

l\.')\r—t

) o :L' "rIa — 2u(r(z1 + .. + Tn) + aoboT) + (nT + boT) p* + aObOT] } dp

o fon -
2
x /exp {— [a: TI,x 4 (nT + boT) <u2 e (x1+ ..+ zp + a0b0)> + a%bm‘} } du

n —+ by

2
exp {— [sc TInx + (nT+ boT) <u2 - +Iub

1+ ..+ x, + agb x1+ ..+ xn) + agb
—|—(n7—|—b07)<< ! n b 00) < ! T bo 00) )]}dﬂ

X (581 “+ ..+ In + agbo))
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1], (21 + .. + 2n) + aobo \ 2
_ I, _
a/exp{ 2[337 w—l—(nT-l-boT)(u — )
2
}du

1 . 2
O(/exp{_2 [thInm_r((ler + 2,) + agbo)

T+ .. +.%'n) + a0b0>

—(nT+bo7')<( p——

n + by
(14 .. + 25) + agho \ *
b - d
+ (n7 + bo7) <p p—— i
2
O(GXP{ — |t I,z 7 (@1 + . + 2n) + aoho) ]}
n + by
oty bo\ >
x/exp{— (nT + boT) (,u— (21 4+ +2n) + a0 0> ]}d,u
n + by
1 7 (1 + .. + Tn) + agho)”
X exp{ —=
2 n + by
((wl + .+ x4+ 2a0bg (1 + .. + xp) + agbg)
X exp —\airI,x —
n + by
1] 7 (@' Ha + 2a0by (21 + .. + )
X exp —|etrI,x —
2 n-l-bo
170 2b tH
ocexp{ —|a!rI,x — ' He W]}
2 L (n+b0)
x e 1 -ivtT I H - 2b0Ta0tH:13
X - n - ¢
P12 | Cntby n(n + bo)
Let A=rT (In — %) and b = ﬁ%ﬁﬁ,")’ Using Lemma we obtain
1 —14\¢ —1
p(xr) o exp ~5 [(zc—A b) A(x— A b)}
Using Lemma [B.10],

)

= <I f) (B.7)
Therefore
(

A = <1I + > boTHaO)
Tb(_)

n+b0
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boHa() boTHHG,()
n(n+by) born (n+ bo)
boHa() + HHaO
n(n + bo)

Using again Lemma [B.9]
(boI,, +nl,) Hag

n (n + bo)
= ay.

H
X|r~N I, - .
e oor (0-555))

Proposition B.12. In the multivariate normal-gamma distribution the marginal den-

Finally

O

sity of X is a multivariate t-distribution taq (u, a_lﬁ)\_l)

Proof. Begin by noting that the marginal density of X is

p(x) = /Ooommmpm dr

p@) [T NEes (<4 @ 0 A (@ - ) ) e (<pr)ar
pla) x [riew (; (@ — ) Ar (3 - u>) 7o~ exp (—Br) dr
x /OOO T4
1

Notice that 702 exp (7[5 (x - )X (x— p) + B]) is the kernel of a gamma
density Ga (t|a,b) witha =a+ % and b= 3 (z — 1) A (x — p) + B. Hence

|3

L exp (—T B(a;—u)u(m—pwﬁbdr

I (a)
p(x) pa
_2atn
1 ¢ 2
o (Gl@—p) A@—p)+5

2a+n

L @-wAap @ - 1)

5 T —p) Ao T — U

which is the kernel of a multivariate t-student to, (u, a~! B)\_l) O

We will calculate the prior predictive distribution for the normal-gamma model.
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Proposition B.13. Let X = (Xy,...,X,) with X; i N(p,7) with i = 1,...,n and
0 = (u,7) ~ NG(aop, by, o, Bo) then

ofn(eod) o
Proof.
wa) = [ el 0)p(o)a0
= [ [ ple tn el oty
= [T r@imnntnd s

o0

We will also use of the fact that p (u,7) = p(p | 7) p(7), with

p|T,a0,b0 ~ N (ag,bor)

T ag, B0 ~ Gamma (ag, SBo)

Jop@ | pm)p(p|r)dp=p(@|T)

o) = 3 (anr (1))

Using Proposition and Lemma we obtain

X ~taq (ao,aalﬁo <In + Z)) : (B.9)
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Appendix C

Prior Predictive of the Normal

Regression Model

C.1 Normal-Gamma regression model

Definition C.1. We first reparametrize the model by introducing the precision param-

eter T = 25, then
g

y|B, 7 ~ N(XB,11I,)
Bt ~ Nig1(Bg,7V)

7~ Gamma(a, )
We need to calculate
o) = [ [ oyl w81 )p(r)apar
Note that
o) = [ [ oyl pBir)p(r)apar
x [ enyEnalteap {5 (v - XB) L (v - X5
< (2)F (V1 eap {5 (8- B0)' 7V (8- B} (r) ditn
;

x [ I nal3 1V prean {7 [y'y - v X8 - (XB)'y (3'X'XP)
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+B'V B~ B'V o — B4V B + o'V o] } dBdr

x / 5 p(r)eap {5 [y'y + Bo'VBo] fean {7 [~y'XB - (XB)'y + (B'X'X)
+B'VB - B'V o — B4V 0]} dBdr

[T prgern {3 'y + 6o’V o] pen { -] [BX'XB -y XB - B'X"y
+B'VB - B'V o — LV 0]} dBdr

x /TMI;Hp(T)ea:p {—% [yty + ﬁotV,@O] } exp {—% [,@t (XtX + V) 8 —2y' X3
~Bo'V'B - B4V 8]} dBdr

o [T pegern (<] o'y + 6V Bo] peon { -] 8 (XX + V) B 29/ X
~26(V 8]} dBdr

S /TMI;HP(T)%P {—% 'y + 50tVﬂ0]}
X exp {—% (B (XX +V)B-2(y'X +B5V) ] } dBdr

Using Proposition [B.§

ply) o / Tn+§+1p(7)mp{_% [yty+ﬁotVﬂo]}
xeop {2 [(B—A7'0)' A (8= A7'b) + c—b'A7'b| } dpdr

with A = X'X +V bt =y' X + BLV and ¢ = 0, therefore b= X'y + V3,

o) x [ e (-] [y'y+ 60’V o]
xeap { =3 (8- A7'0) A (B— A7'b) —b'A™'b| } dBdr

k+1

x /Tgp(f)efrp {—% [y'y + Bo'V Bo] } T2
xexp {—g [(ﬁ — A7) A(B— A7) — btA—lb} } dBdr
x /T’Sp(T)exp {—g [y'y +Bo'VBo — b'A™'b] } dr

We now define D = y'y + B0’V 8o — b'A™1b

p(y) /Tgp(r)exp{—])} dr
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ply) o / rrleap {—rB) eop{~ LD} dr

p(y) o /T‘Hg_leﬂcp {—T(B + l;} dr

This is the kernel of a Gamma distribution Ga (a,b) witha = a+%5 and b= 3+ %)

hence

(y y+ Bo'VBo —
2

1b+2ﬁ)

AT = (y'X +BpV) AT (X'y + V)
= thA_lXt,y +thA—1VIBO +,66VA_1Xt’y +/86VA_1VBO

then
( ) o yy+BOtVIBO 1b+25
p(y x
ply) o y'y —b' Ao+ Bo'VBo +267 " ®
2

P <y y —y XA Xy - 2B VAT Xy — BV ATV By + Bo'V o + 26) e
2

ply) o (y (I-XA'X")y —2B,VA' X'y — BYVA VB, + Bo'V o + 25) -
2

E=-BVA'VBy+ Bo'VBo+28=060"(I-VA ) VB +28

hence

n
2

t _ —1yt
ply) (y - XA X)y2

—2BVAT' X'y + E) -

p(y)

(thy — 2hty + E) -
5 .
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with
F=(I-XA"'X") and h' = B{VA7' X" then h = XA~V 3

y'Fy — 2hty—i—E> o3

(y—F'0)'F(y—F'h)+E—hFh\ " *
* 2
(=

p(y)

_ 2a4n
F(y—F 'h)+E- htF—1h> 2
2

_ 20+4n

(y— F'h)' F(y— F'h) + G)

with G = E — h'F'h
Hence, Y ~ t, (u, X) with v =20, p = F'h and =71 = %
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