

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA

Deterioro térmico de las proteínas de la leche

TESIS QUE PARA OBTENER EL TÍTULO DE QUÍMICA DE ALIMENTOS

PRESENTA:

NANCY DONAJÍ SÁNCHEZ GARCÍA

CIUDAD DE MÉXICO,

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO

PRESIDENTE:	Profesora: Sandra Pérez Munguía
VOCAL:	Profesor: Juan Carlos Ramírez Orejel
SECRETARIO:	Profesora: Elizabeth Reyes López
1er. SUPLENTE:	Profesor: Gustavo Adolfo Zelada Guillén
2° SUPLENTE:	Profesora: Amelia Farrés González Sarabia

SITIO DONDE SE DESARROLLÓ EL TEMA

Este trabajo se desarrolló en el laboratorio 300 del Departamento de Alimentos y Biotecnología del Conjunto E de la Facultad de Química de la UNAM. Circuito de la Investigación Científica s/n Ciudad Universitaria.

ASESOR DEL TEMA:

M. en C. Sandra Pérez Munguía

SUPERVISOR TÉCNICO:

Dra. Amelia Farrés González Sarabia

SUSTENTANTE:

Nancy Donají Sánchez García

AGRADECIMIENTOS

A México, por la calidez que me ha brindado durante toda mi vida.

A la Universidad Nacional Autónoma de México, por la educación que me proporcionó en licenciatura.

A la M. en C., Sandra Pérez Munguía, por su paciencia, experiencia y compromiso durante este proceso.

A la Dra. Amelia Farrés, por su apoyo en la elaboración de este proyecto.

A mis compañeras de laboratorio, Itzel C., Itzel Z. y Nathali, gracias por su amistad, comprensión, motivación y ayuda.

A INOLAB por habernos facilitado el equipo de electroforesis capilar *ProteomeLab*[™] *PA 800 System, Beckman-Coulter, Inc.*, y al M. en C. Edgar Pérez Castañeda por el apoyo técnico.

A la profesora Elizabeth Reyes López y al profesor Juan Carlos Ramírez Orejel por su apoyo y compromiso en la revisión de este trabajo escrito.

Índice

	Lista de abreviaturas, acrónimos y símbolos	i
	Índice de figuras y tablas	v
	Introducción	1
	Planteamiento del problema	2
	Hipótesis	3
	Objetivo general	3
	Objetivos específicos	3
1.	Marco teórico	4
1.1	Mercado mundial y nacional de la leche de bovino	4
1.2	Química de las proteínas lácteas	8
1.3	Procesamiento de la leche fluida	11
1.3.1	Efecto del tratamiento térmico sobre las proteínas de la leche	13
1.4	Métodos electroforéticos	16
1.4.1	Análisis de las proteínas de la leche mediante electroforesis en gel	16
	de poliacrilamida con dodecil sulfato de sodio	
1.4.2	Fundamentos de la electroforesis capilar	17
1.4.3	Aplicaciones de la electroforesis capilar en leche	19
2.	Metodología	21
2.1	Muestras	22
2.1.1	Preparación de las disoluciones	23
2.2	Preparación de las muestras para la determinación de proteína	24
	por el método modificado de Lowry y para los ensayos	
	electroforéticos	
2.3	Ensayo de solubilidad de las muestras	25
2.4	Determinación de proteína por el método modificado de Lowry	26
2.5	Precipitación isoeléctrica de las caseínas y obtención de la	26
	fracción no caseínica	
2.6	Análisis electroforéticos	27

2.6.1	Electroforesis en gel de poliacrilamida con dodecil sulfato de sodio 2							
2.6.2	Electroforesis capilar de zona							
3.	Resultados y análisis de resultados							
3.1	Caracterización del Material de Referencia Certificado							
3.1.1	Concentración	e proteína por el método modificado de Lowry						
3.1.2	Perfiles proteí	nicos obtenidos mediante electroforesis en gel	30					
	de poliacrilami	da con dodecil sulfato de sodio						
3.1.3	Análisis cuanti	tativo	31					
3.2	Caracterizació	n de leche descremada en polvo	36					
3.2.1	Determinación	de la concentración de proteína por el método	36					
	modificado de	Lowry						
3.2.2	Perfiles proteí	nicos obtenidos mediante electroforesis en gel	38					
	de poliacrilami	da con dodecil sulfato de sodio						
3.3	Análisis de mu	iestras lácteas comerciales pasteurizadas	41					
	y ultrapasteuri	zadas						
3.3.1	Determinación	de la concentración de proteína por el método	41					
	modificado de	Lowry						
3.3.2	Perfiles proteí	nicos obtenidos mediante electroforesis en gel	44					
	de poliacrilami	da con dodecil sulfato de sodio						
3.3.3	Determinación	de la concentración relativa de las principales	48					
	proteínas de la	a leche por electroforesis capilar de zona						
4.	Conclusiones		54					
5.	Perspectivas		55					
6.	Bibliografía		56					
	Apéndices		65					
	Apéndice A	Determinación de la concentración de proteína	65					
		por el método modificado de Lowry						
	Apéndice B	Formulación del gel concentrador y del gel	67					
		separador de la electroforesis en gel de						
		poliacrilamida con dodecil sulfato de sodio						

Apéndice C	Determinación de la concentración relativa de			
	las principales proteínas de la leche por			
	electroforesis capilar de zona			
Apéndice C1	Material de Referencia Certificado	68		
Apéndice C2	Muestras comerciales pasteurizadas	70		
Apéndice C3	Muestras comerciales ultrapasteurizadas	78		

Lista de abreviaturas, acrónimos y símbolos

α-LA	alfa-lactoalbúmina
αs-CN	alfa-caseína
α _{s1} -CN	alfa _{s1} -caseína
α _{s2} -CN	alfa _{s2} -caseína
β-CN	beta-caseína
β-LG	beta-lactoglobulina
cm	centímetro
Cr	concentración relativa
Cys	cisteína
d.i.	diámetro interno
Σ	suma
g	gramo
h	hora
Hz	hertz
lg	inmunoglobulina
κ-CN	kappa-caseína
kDa	kilodalton
kg	kilogramo
kV	kilovolt
L	litro
Lf	lactoferrina
Μ	molar
m	masa
mg	miligramo
min	minuto
mm	milímetro
mL	mililitro
mM	milimolar
MΩ	megaohm

μA	microampere
hð	microgramo
μL	microlitro
μm	micra
Ν	normal
nm	nanómetro
рН	potencial de hidrógeno
pl	punto isoeléctrico
psi	libra-fuerza por pulgada cuadrada (por sus siglas en inglés)
r.p.m.	revoluciones por minuto
Sc	suero de quesería desmineralizado
S	segundo
tm	tiempo de migración
tmr	tiempo de migración relativo
ton	toneladas
V	volt
V cm ⁻¹	volt por centímetro
°C	grado Celsius
%	porciento
% C	porciento de bisacrilamida
% Т	porciento de poliacrilamida
AAPM	agregados de alto peso molecular
APS	persulfato de amonio (por sus siglas en inglés)
BSA	albúmina sérica bovina (por sus siglas en inglés)
CANILEC	Cámara Nacional de Industriales de la Leche
CAS	caseínas
CENAM	Centro Nacional de Metrología
COFOCALEC	Consejo para el Fomento de la Calidad de la Leche y sus
	Derivados
СТС	cobre-tartrato-carbonato
CV	coeficiente de variación

DTT	DL-ditiotreitol							
EC	electroforesis capilar							
ECZ	electroforesis capilar de zona							
EDTA	sal disódica del ácido etilendiamino tetraacético (por sus siglas							
	en inglés)							
EMIM	Encuesta Mensual de la Industria Manufacturera							
FAO	Organización de las Naciones Unidas para la Alimentación y la							
	Agricultura (por sus siglas en inglés)							
FEN	Fundación Española de la Nutrición							
FNC	fracción no caseínica							
HPMC	hidroxipropilmetil celulosa							
INEGI	Instituto Nacional de Estadística y Geografía							
ISO Organización Internacional de Estandarización (por sus								
	en inglés)							
L	leche pasteurizada o ultrapasteurizada							
LDP	leche descremada en polvo							
LEN	leche enriquecida, con 70% más de proteína, descremada							
	ultrafiltrada pasteurizada o ultrapasteurizada							
LGV	mezcla de leche con grasa vegetal pasteurizada o							
	ultrapasteurizada							
LH	bajo calor (por sus siglas en inglés)							
MC	muestra comercial							
MCE	muestra común de ensayo							
MCP	muestra comercial pasteurizada							
MCUHT	muestra comercial ultrapasteurizada							
MOPS	ácido 3-morfolinopropanosulfónico (por sus siglas en inglés)							
MP	muestra problema							
MRC	Material de Referencia Certificado							
NMX	Norma Mexicana							
NOM	Norma Oficial Mexicana							
PAGE	gel de poliacrilamida (por sus siglas en inglés)							

producto lácteo pasteurizado o ultrapasteurizado
proteínas del suero
polifloruro de vinilideno (por sus siglas en inglés)
desviación estándar relativa
Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y
Alimentación
dodecil sulfato de sodio (por sus siglas en inglés)
electroforesis en gel de poliacrilamida con dodecil sulfato de
sodio (por sus siglas en inglés)
Servicio de Información Agroalimentaria y Pesquera
tetrametil etilendiamina (por sus siglas en inglés)
Unión Europea
ultrafiltración
ultra alta temperatura (por sus siglas en inglés)
Departamento de Agricultura de los Estados Unidos (por sus
siglas en inglés)
ultravioleta

Índice de figuras y tablas

Figura 1.1	Producción industrial de leche fluida de 2005 al 2015							
Figura 1.2	Micela de caseína							
Figura 1.3	Sitio de unión del calcio a la α -LA							
Figura 1.4	Tratamientos térmicos aplicados a la leche	12						
Figura 1.5	Productos de entrecruzamiento de las proteínas	15						
Figura 1.6	Componentes de la electroforesis capilar	18						
Figura 1.7	Análisis de muestras lácteas por electroforesis capilar	20						
Figura 2.1	Diagrama de bloques de la estrategia experimental	21						
Figura 3.1	Perfil electroforético del MRC (SDS-PAGE, 12.5%T).	31						
Figura 3.2	Electroforegramas del MRC	33						
Figura 3.3	Perfiles electroforéticos de la LDP en condiciones no	39						
	reductoras (A) y condiciones reductoras (B) (SDS-PAGE,							
	12.5% T)							
Figura 3.4	Perfiles electroforéticos de la FNC de muestras de LDP bajo							
	condiciones reductoras (SDS-PAGE, 12.5% T)							
Figura 3.5	Concentración de proteína en las muestras comerciales	42						
	pasteurizadas y ultrapasteurizadas							
Figura 3.6	Concentración de proteína en la fracción no caseínica de las	44						
	muestras comerciales pasteurizadas y ultrapasteurizadas							
Figura 3.7	Perfiles electroforéticos de las MCP y MCUHT en	45						
	condiciones reductoras (A) y no reductoras (B) (SDS-PAGE,							
	12.5% T).							
Figura 3.8	Perfiles electroforéticos de la FNC y de las CAS de las MCP	47						
	y de las MCUHT en condiciones reductoras (SDS-PAGE,							
	12.5% T).							
Figura 3.9	Electroforegramas de las muestras comerciales	49						
	pasteurizadas							
Figura 3.10	Electroforegramas de las muestras comerciales	51						
	ultrapasteurizadas							

Figura A1	Curvas de calibración utilizadas para la cuantificación de	66				
	proteína por el método modificado de Lowry					
Figura C1	Electroforegramas del Material de Referencia Certificado	68				
Figura C2	Electroforegramas de la leche pasteurizada	70				
Figura C3	Electroforegramas de la leche enriquecida pasteurizada	72				
Figura C4	Electroforegramas del producto lácteo pasteurizado	74				
Figura C5	Electroforegramas de la mezcla de leche con grasa vegetal	76				
	pasteurizado					
Figura C6	Electroforegramas de la leche ultrapasteurizada	78				
Figura C7	Electroforegramas de la leche enriquecida	79				
	ultrapasteurizada					
Figura C8	Electroforegramas del producto lácteo ultrapasteurizado	80				
Figura C9	Electroforegramas de la mezcla de leche con grasa vegetal					
	ultrapasteurizada					
Tabla 1.1	Producción de leche y consumo de leche fluida	7				
	industrializada					
Tabla 1.2	Clasificación térmica de la leche descremada en polvo	16				
Tabla 3.1	Concentración de proteína en el MRC	29				
Tabla 3.2	Tiempo de migración relativo y concentración relativa de	34				
	las principales proteínas lácteas del MRC					
Tabla 3.3	Tiempo de migración relativo y concentración relativa de las	35				
	principales proteínas lácteas de la MCE y del MRC					
Tabla 3.4	Concentración de proteína en la leche descremada en polvo	36				
Tabla 3.5	Concentración de proteína en la fracción no caseínica de la	37				
	leche descremada en polvo					
Tabla 3.6	Concentración de proteína en las muestras comerciales	41				
	pasteurizadas y ultrapasteurizadas					
Tabla 3.7	Concentración de proteína de la fracción no caseínica de las	43				
	muestras comerciales pasteurizadas y ultrapasteurizadas					
Tabla 3.8	Tiempo de migración relativo promedio de las principales	52				
	proteínas lácteas del MRC y de las MCP (L, LEN, LGV y PL)					

Tabla 3.9	Concentración relativa promedio de las principales proteínas	53
	lácteas del MRC y de las MCP (L, LEN, LGV y PL)	
Tabla A1	Composición del reactivo cobre-tartrato-carbonato	65
Tabla B1	Gel concentrador (1.0 mm de espesor) (4% T, 2.6% C)	67
Tabla B2	Gel de separación (1.0 mm de espesor) (12.5% T, 2.6% C)	67
Tabla C1	Tiempo de migración relativo y concentración relativa de	69
	las principales proteínas lácteas del Material de Referencia	
	Certificado	
Tabla C2	Tiempo de migración relativo y concentración relativa de	71
	las principales proteínas lácteas de la leche pasteurizada	
Tabla C3	Tiempo de migración relativo y concentración relativa de	73
	las principales proteínas lácteas de la leche enriquecida	
	pasteurizada	
Tabla C4	Tiempo de migración relativo y concentración relativa de	
	las principales proteínas lácteas del producto lácteo	75
	pasteurizado	
Tabla C5	Tiempo de migración relativo y concentración relativa de	77
	las principales proteínas lácteas de la mezcla de leche con	
	grasa vegetal pasteurizada	

Introducción

La leche de bovino es uno de los alimentos más completos y de alto valor nutritivo debido a que sus componentes se encuentran en la forma y proporciones adecuadas (O'Mahony y Fox, 2013). Actualmente, el promedio de consumo de leche a nivel mundial es de 237 mL al día (o el equivalente a una porción de queso o yogur) que corresponde a la mitad de la ingesta recomendada por la Organización de las Naciones Unidas para la Alimentación y la Agricultura (Weaver *et al.*, 2013).

En el mercado mexicano, además de la leche y la mezcla de leche con grasa vegetal, cuyo contenido mínimo de proteína es de 30 g/L, se comercializa el producto lácteo y el producto lácteo combinado con un contenido mínimo de proteína de 22 g/L y 15 g/L, respectivamente (NOM-183-SCFI-2012) y recientemente leche enriquecida, concentrada por ultrafiltración, con un contenido mínimo de proteína de 54 g/L.

La aplicación de altas temperaturas y/o varios tratamientos térmicos a la leche, da lugar a la desnaturalización de las proteínas del suero y a la formación de nuevos enlaces inter e intramoleculares entre las proteínas y con los demás componentes presentes en la leche. Los nuevos enlaces generan agregados proteínicos de alto peso molecular de menor solubilidad y digestibilidad, con la consecuente pérdida de su calidad nutricional, además de la modificación de la funcionalidad de las proteínas lácteas (Rasmussen *et al.,* 1992; Patel *et al.,* 2007; Cattaneo *et al.,* 2008; Chevalier y Kelly, 2010; Chavan *et al.,* 2011; Al-Saadi *et al.,* 2013; Mallik *et al.,* 2015).

A nivel mundial la producción y la transformación de la leche es un campo bajo constante innovación. El empleo de nuevas técnicas de análisis y caracterización de estos productos permitirá un mejor control de calidad y garantizará su autenticidad.

Planteamiento del problema

En el 2017 se importaron 310 000 ton de leche en polvo a la que se le ha separado la mayor parte de la grasa, 8.4% más que en el 2016, por lo que México volvió a ocupar el primer lugar en la compra de esta materia prima (USDA, 2017). El déficit en la producción justifica los altos volúmenes de importación a fin de satisfacer la demanda nacional. Sin embargo, la sustitución parcial o total de leche fresca por leche concentrada o sólidos lácteos, debe ser del conocimiento de los consumidores y no debe representar un beneficio económico de las empresas lácteas.

Si bien verificar el cumplimiento del contenido de proteínas de cada denominación es importante, dado su valor nutricional y comercial, resulta fundamental conocer que las proteínas sean propias de leche y que no presenten daño térmico como resultado de la aplicación excesiva de calor durante su procesamiento.

En ese sentido, la Norma Mexicana NMX-F-736/1-COFOCALEC-2012, establece el método para separar y cuantificar de manera simultánea a las principales proteínas de la leche: α -Lactoalbúmina, β -Lactoglobulina, α_{s2} -caseína, α_{s1} -caseína, κ -CN y β -caseína por electroforesis capilar de zona.

En un estudio previo, comparativo entre leches industrializadas del mismo origen, no se encontró diferencia estadísticamente significativa, entre la concentración relativa de las principales proteínas de la leche entera antes y después de la pasteurización (NMX-F-736/1-COFOCALEC-2012), pero el proceso de ultra alta temperatura (UHT, por sus siglas en inglés) modificó el perfil electroforético.

En este estudio se analizaron muestras de leche, mezcla de leche con grasa vegetal, producto lácteo y leche enriquecida, pasteurizadas y ultrapasteurizadas, de la misma marca comercial, a fin de establecer el efecto de los dos procesos térmicos sobre la fracción proteínica mediante técnicas electroforéticas.

Hipótesis

Si se observan cambios en los perfiles electroforéticos de las proteínas lácteas debido a la formación de nuevos enlaces, entonces se modificará la relación natural entre las proteínas del suero y las caseínas.

Objetivo general

Evaluar el deterioro térmico de las proteínas en muestras comerciales de leche.

Objetivos específicos

- Caracterizar una muestra de leche genuina mediante métodos electroforéticos.
- Determinar el índice de nitrógeno de las proteínas de suero no desnaturalizadas de muestras de leche descremada en polvo para caracterizarlas y clasificarlas térmicamente.
- Comparar los perfiles electroforéticos entre la leche genuina, muestras de leche en polvo y leche procesada térmicamente a fin de detectar la formación de nuevos enlaces.
- Identificar y cuantificar a las principales proteínas de la leche mediante electroforesis capilar de zona para determinar la relación entre las proteínas de suero y las caseínas.
- Analizar el efecto de la pasteurización y la ultrapasteurización sobre las proteínas lácteas en muestras comerciales.

1. Marco teórico

1.1 Mercado mundial y nacional de la leche de bovino

El consumo de productos lácteos es muy heterogéneo que obedece tanto a patrones culturales como económicos. Está concentrado en los países desarrollados, básicamente por su mayor poder adquisitivo y en los menos desarrollados por el aumento de la población urbana (Chavan *et al.*, 2016).

En el 2016, la producción mundial de leche de bovino alcanzó 659,150,049 ton. La Unión Europea (UE-28) produjo la mayor cantidad de leche con una participación del 24%, seguido de Estados Unidos de América, India, China y Brasil, con 14.6%, 11.7%, 5.6% y 5.1%, respectivamente (FAOSTAT, 2017). India y China son los principales impulsores de la producción lechera debido a su mayor tasa de natalidad.

La producción nacional de leche fue de 12,100,000 ton en el 2017 (USDA, 2017), prácticamente 2 de cada 100 litros son de origen mexicano. Jalisco, Coahuila, Durango, Chihuahua y Guanajuato aportan más del 50% de la producción nacional (SIAP-SAGARPA, 2017).

El consumo de leche en México está asociado al ingreso, precios y preferencias de los consumidores. Se mide sumando la producción nacional y las importaciones lácteas cuantificadas en litros de leche equivalente y restando las exportaciones (CANILEC, 2017). El déficit en el mercado de leche se complementa con la importación de leche descremada en polvo (LDP). De 2013 a 2017, México importó LDP a una tasa anual promedio del 14% (USDA, 2017).

En el periodo de 2007 a 2016, la Industria de la leche registró un comportamiento favorable en la mayor parte de sus productos de acuerdo con la Encuesta Mensual de la Industria Manufacturera (EMIM) del Instituto Nacional de Estadística y Geografía (INEGI) (SIAP-SAGARPA, 2017).

La leche pasteurizada y la leche UHT, las diferentes variedades de queso y de yogur son los productos de mayor valor. Sin embargo, disminuyó en un 16% la producción de leche pasteurizada y la leche UHT alcanzó su máximo de producción en el 2009 (Figura 1.1). Lo anterior se puede explicar porque la leche pasteurizada requiere de una cadena de frío para su distribución y comercialización, y en el mercado encontramos una mayor variedad de leche UHT (reducida en grasa, saborizada, deslactosada, sin lactosa, con fibra, con extra-calcio, etc.), de mayor vida de anaquel, que no requiere refrigeración hasta el momento de su consumo, lo que hace que su traslado y almacenamiento sea más práctico.

En el 2016 el consumo de leche fluida fue de 4,183,000 ton (Tabla 1.1), en ese año se elaboraron y envasaron 3,613,000 ton, de los cuales el 46% correspondió a leche pasteurizada y el 34% a la leche UHT. El resto corresponde a la leche saborizada y a la leche rehidratada (SIAP-SAGARPA, 2017). Aunque en la EMIM no se especifica el proceso térmico aplicado a estos productos, se comercializan como leche saborizada UHT, dirigida principalmente al mercado infantil, y mezcla de leche con grasa vegetal pasteurizada del Programa de Abasto Social de Leche del Gobierno de la República.

	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016 ^{/p}
Producción de leche ¹	10,657	10,907	10,886	11,033	11,046	11,274	11,294	11,464	11,736	11,956
Consumo de leche fluida ¹	4,275	4,263	5,206	5,167	4,100	4,168	4,160	4,180	4,185	4,183
Producto terminado ²	4,471	4,582	4,600	4,440	4,274	3,818	3,747	3,568	3,546	3,613
Pasteurizada	2,007	2,007	2,009	1,961	1,966	1,854	1,827	1,732	1,694	1,688
Entera	1,877	1,869	1,869	1,824	1,845	1,734	1,728	1,628	1,583	1,583
Descremada	130	138	140	137	121	120	99	104	111	105
UHT	1,601	1,749	1,790	1,650	1,483	1,266	1,257	1,165	1,180	1,256
Entera	602	670	674	596	413	184	133	114	120	118
Descremada	999	1,079	1,116	1,054	1,070	1,082	1,124	1,051	1,060	1,138
Rehidratada descremada	642	630	628	653	649	563	545	549	543	524
De sabores	221	196	173	176	176	135	118	122	129	145

Tabla 1.1 Producción de leche y consumo de leche fluida industrializada*

Cifras redondeadas (miles de toneladas)

^{1/} Fuente: USDA. Dairy: world markets and trade. Foreign Agricultural Service

http://usda.mannlib.cornell.edu/usda/current/dairy-market/dairy-market-12-15-2017.pdf

^{2/} Fuente: Boletín de Leche. SIAP-SAGARPA (2017) con datos de la Encuesta Mensual de la Industria Manufacturera del Instituto Nacional de Estadística y Geografía

https://www.gob.mx/siap/documentos/boletin-de-leche?state=draft

^{/p} Datos preliminares

1.2 Química de las proteínas lácteas

La leche posee un gran valor nutricional debido a que los diferentes tipos de proteínas aportan todos los aminoácidos esenciales (Bansal y Bhandari, 2016). La estructura y las propiedades físicoquímicas de las principales proteínas lácteas han sido extensamente estudiadas (O'Mahony y Fox, 2014).

El contenido de proteína en la leche es de aproximadamente 32 g/L. Las proteínas más abundantes son las fosfoproteínas conocidas como caseínas y las proteínas del suero en una relación conservada 80:20, respectivamente. Las principales proteínas de la leche, que constituyen aproximadamente el 90% del total de las proteínas son: α -lactoalbúmina (α -LA) y β -lactoglobulina (β -LG) en el suero, en una relación aproximada 1:3 y las familias de las caseínas constituidas por α_{s1} -caseína (α_{s1} -CN), α_{s2} -caseína (α_{s2} -CN), β -caseína (β -CN) y κ -caseína (κ -CN) que guardan la proporción: 4:1:3.5:1.5 (Farrell *et al.*, 2004).

En la leche, el nivel de concentración del fosfato de calcio es superior a la saturación (el 66% del calcio y el 57% de fosfato, son insolubles) (Fox y Kelly, 2012), para prevenir su precipitación, se encuentran en un estado coloidal, asociados a las micelas de caseínas, que son partículas coloidales cuasi esféricas, de 150 nm de diámetro promedio, porosas, altamente hidratadas que poseen una carga neta negativa (Figura 1.2 A) (Dalgleish y Corredig, 2012). El calcio es secuestrado por los residuos de fosfoserina de α_{s1} -CN y β -CN generando zonas densamente electrónicas llamadas *nanoclusters* de fosfato de calcio amorfo en las micelas de caseína (Figura 1.2 B) (Holt *et al.*, 2013).

Aunque aún existe controversia sobre su organización y el modo de ensamblaje de las proteínas, los modelos propuestos coinciden en que predominantemente β -CN se localiza en el interior de la micela y α_s -CN se encuentra distribuida en toda la estructura. Los *nanoclusters* de fosfato de calcio amorfo reducen la repulsión electrostática entre las proteínas al neutralizar la carga y la κ -CN glicosilada,

monofosforilada, localizada mayoritariamente en la superficie, contribuye a la estabilidad de la micela de caseína por efecto estérico. El carboxilo terminal de κ-CN, rico en residuos de aminoácidos con carga negativa y grupos hidroxilo, constituye la región expuesta a la superficie conocida como "capa pilosa" (Figura 1.2 B) (Dalgleish y Corredig, 2012).

Figura 1.2 Micela de caseína. (A). Imagen de una micela de caseína obtenida por microscopía electrónica de barrido de emisión de campo de alta resolución. Fuente: Dalgleish *et al.*, 2004. (B). Esquema de la organización de las caseínas -los componentes de la micela de caseína no están a la misma escala-. Adaptado de Dalgleish y Corredig, 2012.

Las caseínas comparten varias características: son insolubles a pH 4.6 a 20 °C, no contienen puentes disulfuro, pero contienen secuencias ricas en prolina y glutamina, lo que genera regiones abiertas y flexibles, es decir, no se observan apilamientos. Por lo anterior, son susceptibles a la proteólisis y no se agregan cuando se aplica calor o altas presiones (Dalgleish y Corredig, 2012; Holt *et al.*, 2013; O'Mahony y Fox, 2014).

Las proteínas del suero más abundantes son la α -LA y la β -LG; las proteínas de menor concentración son la albúmina sérica bovina (BSA), las inmunoglobulinas (Ig) y la lactoferrina (Lf) (Huppertz, 2016). Las proteínas del suero presentan diferente estabilidad térmica, la α -LA es la más termoestable, seguido de la β -LG, la BSA y las inmunoglobulinas (Ig) que son las más termosensibles, y se desnaturalizan a temperaturas mayores de 80 °C (O'Mahony y Fox, 2014), por lo anterior, las proteínas del suero individualmente o en grupo se emplean como indicadores de la intensidad del tratamiento térmico aplicado a la leche (Manzo *et al.*, 2015).

La β -LG se ha estudiado con más detalle debido a que ejerce una influencia decisiva en la estabilidad térmica de los productos lácteos (Ambrosi *et al.*, 2016). Es una proteína globular, que contiene una cisteína (Cys₁₂₁) y dos puentes disulfuro intramoleculares: Cys₆₆-Cys₁₆₀ y Cys₁₀₆-Cys₁₁₉. Puede estar presente como monómero, dímero o tetrámero, dependiendo del pH y la temperatura del medio en el que se encuentre (Edwards y Goeffrey, 2014). Naturalmente se encuentra como dímero estabilizado por interacciones hidrofóbicas que se disocia a una temperatura superior a los 70 °C. La desnaturalización térmica de β -LG, provoca la exposición de sus grupos reactivos, formando complejos β — κ -CN vía puentes disulfuro intermoleculares (Anema, 2014).

La α-LA es una proteína monomérica que a diferencia de β-LG, se encuentra en la leche de todos los mamíferos porque forma parte de la UDP galactosil transferasa (lactosa sintetasa) que cataliza el paso final de la síntesis de la lactosa en la glándula mamaria a partir de dos moléculas de glucosa absorbidas de la sangre. Es la proteína más abundante del lactosuero humano y su estructura se estabiliza mediante cuatro enlaces disulfuro Cys₆-Cys₁₂₀, Cys₂₈-Cys₁₁₁, Cys₆₀-Cys₇₇ y Cys₇₃-Cys₉₀, y debido a que contiene un sitio de unión de calcio (Figura 1.3) (O´Mahony y Fox, 2014).

Figura 1.3 Sitio de unión del calcio a la α **-LA.** El Ca²⁺ (esfera roja) es estabilizado por siete enlaces de coordinación con los átomos de oxígeno (líneas azules punteadas) de los residuos de Asp₈₂, Asp₈₇, Asp₈₈, Lys₇₉ y Asp₈₄ y por dos moléculas de agua (esferas azules). Adaptado de Edwards y Goeffrey, 2014.

1.3 Procesamiento de la leche fluida

La producción de los diferentes tipos de leche fluida combina una serie de operaciones como: clarificación, descremado, estandarización, fortificación, homogeneización, tratamientos térmicos o no térmicos y envasado (Chavan *et al.*, 2016).

La pasteurización es el tratamiento térmico al que se somete la leche a 63 °C por 30 min (por lotes), o a 72 °C por 15 s en un proceso continuo. En el proceso UHT, la leche se somete de entre 135 °C a 149 °C durante 2 s a 8 s y se envasa asépticamente para garantizar su esterilidad comercial (Figura 1.4) (NOM-243-SSA1-2010).

Figura 1.4 Tratamientos térmicos aplicados a la leche. Adaptado de la Fundación Española de la Nutrición, 2016.

Inicialmente la leche se somete al proceso de clarificación para eliminar impurezas macroscópicas y al proceso de termización (65 °C por 15 s) cuando la leche se va a almacenar por más de 24 h, con el fin de eliminar bacterias psicrótrofas productoras de enzimas extracelulares termorresistentes (Deeth y Lewis, 2016; Huppertz, 2016). Posteriormente se descrema por centrifugación; la leche descremada puede ser mezclada de nuevo con la crema para regular el contenido de grasa en la leche, de acuerdo con su denominación, a lo que se llama estandarización. Se realiza la homogeneización con el fin de estabilizar la emulsión al reducir el tamaño de los glóbulos de grasa. Después del tratamiento térmico, el producto se enfría a temperatura ambiente y se envasa (Chavan *et al.,* 2016).

El futuro para las empresas y su éxito depende de la diversificación y del desarrollo de nuevos productos y presentaciones con un mayor valor comercial (Kumar *et al.,* 2013), como la leche enriquecida, de reciente comercialización en México, que contiene más proteínas y calcio.

Actualmente, los equipos basados en tecnologías de membrana (por ejemplo, ultrafiltración) forman parte del proceso de producción de varias empresas lácteas, que han descubierto el valor añadido que esta tecnología aporta al proceso de producción de derivados lácteos, al concentrar aquellos componentes de alto peso molecular, como son las proteínas (Kumar *et al.,* 2013).

La ultrafiltración (UF) se basa en la separación selectiva a través de una membrana mediante presión. Se realiza una filtración tangencial, mediante la cual el fluido circula paralelamente a la interfase, con objeto de evitar la acumulación de sedimentos en dicha membrana y prolongar su vida útil. Al final del proceso se obtienen dos fracciones: el permeado y el concentrado. En función del proceso, podrán resultar de interés uno u otro, o ambos (Tetra Pak, 2018).

Algunas de las aplicaciones de la UF son la disminución del contenido de lactosa, la obtención de concentrados de proteína y la elaboración de leche enriquecida en calcio y en proteína (Kumar *et al.,* 2013).

1.3.1 Efecto del tratamiento térmico sobre las proteínas de la leche

Debido a su composición química, la leche es un medio ideal para la proliferación de microorganismos, por lo que es necesario la aplicación de tratamientos térmicos, no térmicos o la combinación de ambos, a fin de asegurar su inocuidad y extender su vida útil (Chavan *et al.,* 2016). Los tratamientos térmicos producen modificaciones deseables como la destrucción de microorganismos, sin embargo, conforme el tratamiento térmico es más severo, se han detectado modificaciones no enzimáticas en las proteínas lácteas que repercute negativamente en sus propiedades nutricionales (Cattaneo *et al.,* 2008).

Cuando las proteínas del suero se desnaturalizan forman agregados de alto peso molecular (AAPM), solubles e insolubles, principalmente con κ -CN, y en menor medida con α_{s1} -CN, ya que la primera se encuentra en la superficie de la micela de

caseína a diferencia de la segunda que se localiza en el interior (Rasmussen *et al.,* 1992; Patel *et al.,* 2007; Anema, 2014). Estos agregados se forman mediante enlaces disulfuro e interacciones hidrofóbicas, lo que puede provocar la pérdida de la calidad nutricional de las proteínas y modificar su funcionalidad (Rasmussen *et al.,* 1992; Cattaneo *et al.,* 2008; Chevalier y Kelly, 2010; Chavan *et al.,* 2011; Al-Saadi *et al.,* 2013; Mallik *et al.,* 2015).

Mediante la cuantificación de los grupos sulfhidrilo se puede estimar el grado de desnaturalización de las proteínas lácteas (Patel *et al.*, 2007; Holland, 2009). La interacción de las proteínas con la fracción lipídica puede reducir la disponibilidad de las proteínas (Deeth y Lewis, 2016) y la reacción de Maillard genera el pardeamiento de la leche (Boekel, 1998). El excesivo tratamiento térmico da lugar a la formación de furosina y lactulosa. La primera derivada de la reacción de Maillard y la segunda de la isomerización de la lactosa (Lan *et al.*, 2010).

La sobreexposición al calor puede dar lugar a la formación de enlaces pseudopeptídicos que conducen a la formación de lisinoalanina, lantionina e histidinoalanina (Figura 1.5) (Cattaneo *et al.,* 2008; Chavan *et al.,* 2011; Al-Saadi *et al.,* 2013; Mallik *et al.,* 2015).

Estas reacciones disminuyen el valor nutritivo a causa de la menor biodisponibilidad de la lisina y la arginina (Deeth y Lewis, 2016); la desnaturalización y eventual insolubilización de proteínas del suero debido a la formación de complejos vía puentes disulfuro, principalmente entre la κ -CN y β -LG, puede afectar su digestibilidad y favorecer la formación de co-precipitados (Chevalier y Kelly, 2010; Chavan *et al.*, 2011). Optimizar el tratamiento térmico sería maximizar los efectos deseables y minimizar los indeseables.

Figura 1.5 Productos de entrecruzamiento de las proteínas. Adaptado de Pellegrino *et al.*, 2011).

Los primeros estudios para la evaluación de la desnaturalización de las proteínas del suero de la leche consistieron en precipitar a las caseínas mediante el ajuste del pH a 4.6, y en analizar el nitrógeno proteínico de la fracción no caseínica y el nitrógeno total. De esta manera se podían estimar los niveles de concentración de las proteínas del suero antes y después del tratamiento térmico aplicado a la leche (Anema, 2014).

Sin embargo, fue necesario utilizar un método más rápido y económico para cuantificar a las proteínas del suero y poder clasificar a la leche en polvo en base a los tratamientos térmicos aplicados durante su fabricación (Tabla 1.2). Por tal motivo, se desarrolló el método del índice de nitrógeno de las proteínas no desnaturalizadas del suero de la leche (WPNI, por sus siglas en inglés), en el que las caseínas y las proteínas del suero desnaturalizadas. El contenido de proteína en la fracción no caseínica (FNC) se diluye y se ajusta el pH de tal manera que se obtiene

una dispersión turbia. La turbidez es proporcional a la concentración de proteínas del suero (Anema, 2014).

Clasificación	WPNI (mg de nitrógeno/g leche en polvo)	o/g Pretratamiento) térmico	
Bajo calor	≥6	70 °C, 15 s	
Medio calor	4.51 – 5.99	85 °C, 65 s	
	1.51 – 4.50	(90 – 105) °C, 30 s	
Alto calor		90 °C, 5 min	
	≤ 1.50	120 °C, (1 – 2 min) 120 °C, 4 min	

Tabla 1.2 Clasificación	térmica de	la leche	descremada	en polvo.
-------------------------	------------	----------	------------	-----------

Adaptado de Sharma et al., 2012.

1.4 Métodos electroforéticos

1.4.1 Análisis de las proteínas de la leche mediante electroforesis en gel de poliacrilamida con dodecil sulfato de sodio

La técnica de electroforesis en gel de poliacrilamida ha sido empleada en numerosos laboratorios ya sea en medio ácido, básico o en presencia del dodecil sulfato de sodio (SDS-PAGE, por sus siglas en inglés). La SDS-PAGE posee un alto poder de resolución por el uso de un sistema discontinuo, formado de dos geles de distinta porosidad, concentración y pH (García, 2000).

La separación ocurre en el gel separador, donde la migración está determinada por la carga y el tamaño molecular de las partículas. En la parte superior de este gel se sitúa el gel concentrador, generalmente de una menor altura, en el que la muestra se concentra en una zona muy estrecha, lo que determina la separación en bandas finas en el gel separador. Al aplicar una diferencia de voltaje a un sistema con Tris-HCI en ambos geles y Trisglicina como regulador de pH de la corrida, los iones cloruro en el gel, las proteínas aniónicas en la muestra, y los iones glicinato en la disolución amortiguadora del tanque comienzan a moverse hacia el ánodo. Los iones Tris y cualquier proteína catiónica en la muestra migran hacia el cátodo (Westermeier, 2005).

Cuando la muestra concentrada llega a la interfase entre el gel concentrador y separador, ocurren cambios en la movilidad de los constituyentes por la modificación del pH, la fuerza iónica y el efecto de tamizaje del gel. La movilidad de la mayoría de las proteínas, en presencia del SDS y bajo condiciones reductoras, es linealmente proporcional al logaritmo de su peso molecular (Westermeier, 2005).

Al finalizar la electroforesis, las proteínas se pueden revelar mediante la adición de un colorante para hacerlas visibles (tinción con plata, azul de *Coomassie* o reactivos fluorescentes) (Carrillo *et al.*, 2013).

1.4.2 Fundamentos de la electroforesis capilar

La electroforesis capilar (EC) es un método de separación instrumental y en los últimos años, se presenta como una técnica alternativa a la electroforesis tradicional en gel. Además, es más versátil que la electroforesis convencional por los diferentes mecanismos de separación que pueden ser utilizados (Castagnino, 2000; Marina *et al.,* 2005) y complementaria a la cromatografía de líquidos.

El sistema de electroforesis capilar está constituido por una fuente de alto voltaje, un capilar, recipientes para contener la muestra y la disolución amortiguadora, dos electrodos y un sistema de adquisición de datos (Figura 1.6) (Shallan *et al.,* 2013).

La movilidad de los compuestos en disolución (en sentido y velocidad), bajo la influencia de un campo eléctrico, depende del tamaño y carga del analito, de la intensidad del campo eléctrico aplicado y de la naturaleza del electrolito soporte o

disolución amortiguadora (Marina *et al.,* 2005). En la práctica, se presenta la limitación debida al efecto Joule, que tiene lugar cuando una corriente eléctrica pasa a través de un medio. La disipación eficiente del calor se logra al utilizar capilares de sílice fundida de diámetros internos de entre 20 µm a 100 µm. Los capilares, de 20 cm a 100 cm, están recubiertos externamente con poliimida, que le confiere al capilar su flexibilidad y permite su manejo.

La electroforesis capilar de zona (ECZ), también denominada en disolución libre, es la modalidad más utilizada por su mayor simplicidad operacional, en la cual, se introduce al capilar la disolución amortiguadora de pH. Ambos extremos del capilar y los electrodos se sitúan en los recipientes con el amortiguador, se introduce la muestra por un extremo del capilar y se aplica un alto voltaje. Las especies iónicas migran con una movilidad electroforética en función de su carga y masa. En la ECZ, la polaridad normal se considera del ánodo al cátodo (Figura 1.6).

Figura 1.6 Componentes de la electroforesis capilar. Fuente: Chopin, 2012.

Los principales factores que pueden afectar la separación de los compuestos de interés, en función de su relación carga/masa, cuando se utiliza ECZ son: la composición (el uso de aditivos poliméricos como la hidroxipropilmetil celulosa), la

concentración y el pH del electrolito, el voltaje aplicado, y el recubrimiento de los capilares (Chopin, 2012; Shallan *et al.,* 2013).

1.4.3 Aplicaciones de la electroforesis capilar en leche

Debido a que la electroforesis capilar es más versátil que los métodos electroforéticos convencionales, su aplicación se ha expandido en diversas áreas. Dentro del sector de lácteos esta técnica se ha empleado para la identificación y cuantificación de las proteínas lácteas para evaluar el tratamiento térmico aplicado a los productos, así como para detectar adulteraciones.

La electroforesis capilar ha demostrado ser un método efectivo para el análisis de proteínas, sin embargo, la adsorción electrostática de las proteínas a la pared del capilar trae como consecuencia la pérdida de la simetría de los picos, inestabilidad de la línea base, pobre reproducibilidad y menor eficiencia (Verzola *et al.*, 2000). Para minimizar lo anterior se han empleado la combinación de varias estrategias: (a) trabajar a pH alcalinos a fin de reducir la atracción iónica o a pH ácidos para protonar los grupos silanoles, (b) utilizar aditivos que compitan con las proteínas por los sitios activos de la superficie y (c) modificar la superficie de la pared interna del capilar.

Los primeros trabajos para la separación e identificación de las proteínas lácteas mediante EC fueron los de Chen y Zang (1992) y el desarrollado por De Jong *et al.,* (1993). Este último ha sido el punto de partida de diversos trabajos para mejorar la separación (Figura 1.7). Mediante la utilización de capilares con fase polar neutra y celulosa modificada como aditivo en medio ácido se ha logrado separar a las principales proteínas lácteas incluidas algunas de sus variantes genéticas (Otte *et al.,* 1997; Strickland *et al.,* 2001; Miralles *et al.,* 2003; Heck *et al.,* 2008), así como para caracterizar las leches de vaca, oveja y cabra analizando la fracción caseínica (Molina *et al.,* 2000).

La EC bajo condiciones alcalinas ha sido utilizada para evaluar el tratamiento térmico de la leche mediante la cuantificación de las proteínas de suero nativas (Recio *et al.*, 1995), para estudiar el polimorfismo genético de la β -Lg (Paterson *et al.*, 1995), para identificar adulteraciones en la leche mediante la detección de la adición de sólidos de leche en alimentos lácteos (Riel y Olieman, 1995), y para evaluar las diferencias entre las proteínas de suero de la leche de vaca y oveja (Cartoni *et al.*, 1999).

Figura 1.7 Análisis de muestras lácteas por electroforesis capilar.

Mediante esta técnica electroforética, también ha sido posible la determinación simultánea de las caseínas y sus productos de degradación (Recio *et al.*, 1997), así como el estudio de la proteólisis de la leche (Miralles *et al.*, 2003) y de las caseínas en queso fresco (Otte *et al.*, 1997), queso madurado (Recio *et al.*, 1997), queso procesado (Miralles *et al.*, 2000) y queso elaborado con leche de diferentes especies (Molina *et al.*, 2000). Cabe mencionar que también se ha llevado a cabo el análisis cuantitativo de la lactoferrina de origen bovino en fórmulas infantiles (Li *et al.*, 2012).

2. Metodología

Figura 2.1 Diagrama de bloques de la estrategia experimental.

En la Figura 2.1 se muestra el diagrama de bloques de la estrategia experimental utilizada en este estudio. Para la preparación de las disoluciones y muestras se utilizaron reactivos de alta pureza, material desechable y agua desionizada (18.2 MΩ) (sistema *Simplicity* UV, *Millipore*, USA).

2.1 Muestras

Se analizó el Material de Referencia Certificado (**MRC**) por el Centro Nacional de Metrología (CENAM), 5 muestras de leche descremada en polvo (**LDP**), y 4 muestras de la misma marca comercial pasteurizadas y ultrapasteurizadas (**MCP y MCUHT**).

El **MRC** se preparó a partir de una muestra de leche de bovino (ganado Holstein) tomada a pie de establo (50 L), distribuida en botellas de polietileno y secada por liofilización. El CENAM certifico su contenido de: cenizas (0.74%), grasa (3.52%), proteína (3.57%), lactosa (4.82%) y humedad (87.80%). El producto liofilizado (lote DMR-411b) se rehidrató en el laboratorio de acuerdo con lo indicado por el CENAM (2016).

Como control del estudio se analizó una muestra de LDP de bajo calor (75 °C por 18 s) y 4 muestras problema (MP_1 , MP_2 , MP_3 y MP_4) sin clasificación térmica. Las muestras comerciales fueron: leche hidratada descremada ultrafiltrada con 70% más de proteína (LEN), leche (L), mezcla de leche con grasa vegetal (LGV) y producto lácteo (PL).

Se tomó una alícuota representativa de cada una de las muestras y se procedió con el análisis de solubilidad, determinación de la concentración de proteína total y de la fracción no caseínica (**FNC**) y los ensayos electroforéticos (SDS-PAGE y ECZ) para el análisis cualitativo y cuantitativo de la fracción proteínica extraída.
2.1.1 Preparación de las disoluciones

Disolución amortiguadora de solubilidad (pH= 8.3).

Sal disódica del ácido etilendiamino tetraacético (EDTA) [40 mM] y tetraborato de sodio [30 mM]. De cada reactivo se pesó la cantidad requerida para preparar 100 mL de la disolución y se diluyeron en un vaso de precipitados de 150 mL con aproximadamente 85 mL de agua. La solución se transfirió a un matraz volumétrico de 100 mL y se aforó con agua. Se midió el pH de la disolución y se conservó en refrigeración hasta el momento de su empleo.

Disolución amortiguadora de muestra (pH= 8.4).

Hidroxipropilmetil celulosa (HPMC) [0.05%, m/v], Tris-base [167 mM], ácido 3morfolinopropanosulfónico (MOPS) [42 mM], EDTA [67 mM] y urea [6 M]. Los reactivos se pesaron y se disolvieron en aproximadamente 50 mL de agua en un vaso de precipitados de 250 mL. La disolución se transvasó a un matraz volumétrico de 100 mL y se aforó. Se midió el pH de la disolución y se mantuvo en refrigeración hasta su uso.

Disolución amortiguadora de separación (pH= 3.0).

Urea [5 M], HPMC [0.05%, m/v], citrato trisódico dihidratado [20 mM] y ácido cítrico [0.185 M]. Se pesó la cantidad de reactivos requerida para preparar 100 mL de disolución y se disolvieron en el orden mencionado con aproximadamente 60 mL de agua en un vaso de precipitados de 250 mL. A continuación, se transvasó a un matraz volumétrico de 100 mL y se aforó. Se midió el pH de la disolución y se filtró mediante una membrana de *Nylon* de diámetro de poro de 0.45 µm y se conservó en refrigeración hasta su uso.

Disolución amortiguadora 4x (C).

Tris-HCI. Se pesó 3.0 g de Tris-base [0.5 M] y se disolvió en un vaso de precipitados de 100 mL con aproximadamente 30 mL de agua. Se adicionó poco a poco HCI (1:1)

hasta alcanzar un valor de pH de 6.8. Se aforó a 50 mL. La disolución se conservó en refrigeración en un frasco de vidrio.

Disolución amortiguadora 4x (S).

Tris-HCl. Se pesó 18.16 g de Tris-base [1.5 M] y disolvieron en un vaso de precipitados de 250 mL con aproximadamente 50 mL de agua, para preparar 100 mL de la disolución. Se ajustó el pH a un valor de 8.8 con HCl (1:1). Finalmente, se aforó a 100 mL y almacenó en refrigeración.

Disolución amortiguadora 2x.

Para preparar 10 mL de la disolución, se emplearon 2.5 mL de la disolución amortiguadora 4x (C), 4 mL de la solución de SDS al 10% (m/v), 2 mL de glicerol, 1 mL de azul de bromofenol al 0.5% (m/v) y 0.5 mL de agua. La disolución se homogenizó y se mantuvo a temperatura ambiente en un recipiente de plástico.

Disolución de ácido acético [1.75 M].

Con pipeta volumétrica se midió 10 mL de ácido acético glacial y se diluyó con aproximadamente 70 mL de agua en un vaso de precipitados de 250 mL. La disolución se aforó a 100 mL y se almacenó en un frasco de vidrio a temperatura ambiente.

Disolución de acetato de sodio [1 M].

Se pesó 13.60 g de acetato de sodio trihidratado y se disolvió en un vaso de precipitados de 250 mL con aproximadamente 50 mL de agua. La disolución se aforó a 100 mL y se almacenó a temperatura ambiente en un frasco de vidrio.

2.2 Preparación de las muestras para la determinación de proteína por el método modificado de Lowry y para los ensayos electroforéticos

El **MRC**, se rehidrató adicionando 44.78 g de agua desionizada a la muestra contenida en una botella de polietileno. Se mantuvo en baño maría a 50 °C durante

un minuto (parrilla PC-420D, *Corning,* USA) y se mezcló hasta homogeneizar (Vortex 37600 Maxi Mix II, *Barnstead Thermolyne,* Germany). Las 5 muestras de **LDP** se rehidrataron, a un nivel de sólidos de aproximadamente 11% en agua desionizada a 40 °C.

Se pesó una determinada cantidad de las muestras (**MRC**, **LDP** y **MC**), de acuerdo con el contenido de proteína declarado en la etiqueta, para solubilizar aproximadamente 10 mg/mL de proteína, nivel de concentración utilizada para la identificación y cuantificación de las principales proteínas de la leche por electroforesis capilar (NMX-736/1-COFOCALEC-2012), en tubos tipo *Eppendorf* de 2 mL y se conservaron a -70 °C (*Nuaire, Revco Technologies*, NC, USA) hasta su análisis. Para el análisis, se seleccionaron los tubos de manera aleatoria.

Se desestabilizó el sistema micelar utilizando la disolución amortiguadora de muestra con DTT [17 mM] (condiciones reductoras) y sin DTT (condiciones no reductoras). La mezcla se mantuvo a 800 r.p.m., a 40 °C, durante 30 min (*Thermomixer, Comfort, Eppendorf*). Se centrifugó a 13 526 r.p.m., y 4°C, durante 30 min (centrífuga, Mo. 5430 R, *Eppendorf*) y se recuperó la fracción soluble a fin de determinar la concentración de proteína total mediante el método modificado de Lowry (Peterson, 1977) y su perfil electroforético mediante SDS-PAGE (en condiciones reductoras y no reductoras) y por EC (en condiciones reductoras).

Para el análisis por EC la fracción soluble se recuperó con una jeringa de 1 mL (*Norm-Ject*, HSW, *Tuttlingen, Germany*) y se filtró a través de una membrana de PVDF de 13 mm de diámetro y 0.45 µm de tamaño de poro (*Agela Technologies Inc.*, DE, USA).

2.3 Ensayo de solubilidad de las muestras

La solubilización de las proteínas lácteas se realizó utilizando la disolución amortiguadora de solubilidad. Posteriormente la mezcla permaneció en una

25

agitación de 800 r.p.m., a 40 °C, durante 30 min (*Thermomixer Comfort, Eppendorf, Germany*) y a continuación se centrifugó (centrífuga, Mo. 5430 R, *Eppendorf*) a 13 526 r.p.m., durante 30 min a 4 °C. Finalmente se observó si la muestra fue totalmente soluble o si presentó algún residuo (Manso *et al.*, 2002).

2.4 Determinación de proteína por el método modificado de Lowry

Se determinó la concentración de proteína total de las muestras en la disolución amortiguadora de muestra, bajo condiciones no reductoras, y de la FNC mediante espectrofotometría (*Biospectrometer, kinetic, Eppendorf*) usando el método modificado de Lowry (Peterson, 1977). Se utilizó una disolución de 2 mg/mL de BSA (*Sigma Chemical Co.*, MO, USA) como estándar de la curva de calibración (Apéndice A). Se empleó un blanco de reactivos debido a la conocida interferencia de la urea con el método (Peterson, 1979; Moore *et al.*, 2010).

2.5 Precipitación isoeléctrica de las caseínas y obtención de la fracción no caseínica

La precipitación isoeléctrica de las caseínas y separación de la FNC se logró mediante la adición de:

- a) ácido clorhídrico (1:1) hasta alcanzar el valor de pH 4.6 (*pH Meter*, Mo. Φ 390, *Beckman-Coulter*, USA) (Lieske *et al.*, 1997) para la determinación del WPNI de las LDP.
- b) 1 mL de ácido acético [1.75 M] y 1 mL de acetato de sodio [1 M], (ISO-17997-2 2004), para el análisis de la FNC de las MC.

Se separó la fracción insoluble y de la **FNC** se midió el volumen, pH y la concentración de proteína. Adicionalmente se obtuvo el perfil electroforético (SDS-PAGE).

El valor obtenido de proteína por el método modificado de Lowry en el FNC se expresó como el WPNI/g de LDP considerando que por cada 100 g de proteína láctea hay 15.67 g de nitrógeno (factor 6.38).

La caseína se secó (*Horno de convección*, DX300, *Yamato Scientific Co. LTD*, Japan) toda la noche. Se pulverizó y se disolvió en la disolución amortiguadora de muestra para su análisis por SDS-PAGE.

2.6 Análisis electroforéticos

2.6.1 Electroforesis en gel de poliacrilamida con dodecil sulfato de sodio

Se emplearon geles de poliacrilamida para la concentración (4% T, 2.6% C) y separación (12.5% T, 2.6% C) (Apéndice B) de las proteínas lácteas bajo condiciones reductoras y no reductoras. Los ensayos de electroforesis se realizaron de acuerdo a Laemmli (1970) aplicando una diferencia de potencial de 100 V (*PowerPac™ HV Power Supply, Bio Rad*) (*Mini-PROTEAN™ Tetra Cell, Bio Rad*).

El material certificado por el CENAM (**MRC**), suero de quesería (**Sc**) y caseína calidad *Hammarsten* (**CAS**) se utilizaron como muestras de referencia de la separación electroforética. La mezcla de proteínas puras de bajo peso molecular (*SDS-PAGE Molecular Weight Standards, Low Range, Bio Rad*) se utilizó para la estimación de los pesos moleculares.

Las proteínas se fijaron y tiñeron con una disolución de azul de *Coomassie* R-250 al 0.05% en ácido acético:metanol:agua (1:5:4). El exceso de colorante se removió del gel con la misma composición de los disolventes y se conservó en ácido acético:metanol:agua (7:5:88). El análisis y la adquisición de las imágenes se realizó con un fotodocumentador (*Gel Doc*TM XR+ *ImagingSystem, Bio Rad*) controlado por el software ImageLabTM (ver 3.0) (*Bio-Rad*).

2.6.2 Electroforesis capilar de zona

La electromigración de las proteínas se realizó utilizando la disolución amortiguadora de separación y el capilar hidrofílico de poliacrilamida de 60 cm de longitud total, 50 cm de longitud efectiva, 50 µm de diámetro interno, con la ventana prefabricada y apertura óptica de (100 x 200) µm ($eCAP^{TM}$ Beckman-Coulter) bajo las siguientes condiciones de trabajo:

Introducción hidrodinámica de la muestra a 0.7 psi durante 5 s, campo eléctrico de 500 V cm⁻¹ a 40 °C, detección de la señal a 214 nm con una velocidad de adquisición de datos de 4 Hz, controlado por el *software* 32 *Karat*TM (ver 9.1) (*ProteomeLab*TM *PA 800 System, Beckman-Coulter, Inc.*).

Al principio de cada sesión experimental, el capilar se lavó con agua, aplicando 15 psi durante 15 min, en dirección del cátodo al ánodo. Después se acondicionó el capilar con la disolución amortiguadora de separación, aplicando 15 psi durante 15 min, en ambas direcciones. Al finalizar cada sesión, el capilar se lavó con agua durante 15 min a 20 psi en ambas direcciones y se almacenó a 4 °C.

Se analizaron 3 réplicas independientes de las muestras comerciales pasteurizadas y ultrapasteurizadas L, LEN, LGV y PL, así como del MRC. En cada electroforegrama se registró el tiempo de migración (tm) y el área de cada pico electroforético. Se calculó el tiempo de migración relativo (tmr) a α_{s1} -CN, el área corregida y la concentración relativa (Cr) de cada proteína (Apéndice C).

- 3. Resultados y análisis de resultados
- 3.1 Caracterización del Material de Referencia Certificado

3.1.1 Concentración de proteína por el método modificado de Lowry

El **MRC** fue soluble en la disolución de boratos-EDTA, amortiguador selectivo para solubilizar las proteínas lácteas (Manso *et al.*, 2002), porque es una muestra genuina de leche que no sufrió tratamiento térmico alguno.

La concentración de proteína total y de la FNC se calculó a partir de las curvas de calibración que se muestran en la Figura A1 (Apéndice A). El valor promedio de proteína de siete réplicas independientes fue de 3.37% (Tabla 3.1), 5.6% por debajo del valor certificado por el CENAM mediante el método de Kjeldahl. Aunque existe una buena correlación entre los dos métodos de cuantificación de proteína (Barbano y Lynch, 1990; Sapan *et al.*, 1999), el valor superior obtenido por Kjeldahl es debido a que es un método no selectivo y cuantifica el nitrógeno total (Moore *et al.*, 2010), en contraste con el método modificado de Lowry, que es más rápido y económico, pero que su respuesta es relativa al estándar de calibración y a la proteína misma (Sapan *et al.*, 1999).

# vial	Peso (g)	Concentración (g/100 g muestra)
5	0.5129	3.40
8	0.5173	3.36
15	0.5199	3.32
17	0.5216	3.36
20	0.5196	3.38
25	0.5150	3.41
28	0.5142	3.40
Promedio		3.37
RSD		0.03
CV (%)		0.92

Tabla 3.1	Concentración	de proteína	en el MRC
-----------	---------------	-------------	-----------

3.1.2 Perfiles proteínicos obtenidos mediante electroforesis en gel de poliacrilamida con dodecil sulfato de sodio

En la Figura 3.1 se observa el perfil electroforético del **MRC** bajo condiciones reductoras (A) y no reductoras (B). En el centro del gel, bajo condiciones reductoras, se observa el orden de migración anódico de las caseínas: α -CN, β -CN y κ -CN y a continuación, en la parte inferior del gel, el de las proteínas del suero: β -LG y α -LA, que son las de menor peso molecular y de mayor movilidad electroforética. En la parte superior del gel se detectan las proteínas del suero (**PS**) menos abundantes, y que de acuerdo con sus pesos moleculares teóricos corresponden a la Lf (80 kDa), la BSA (66 kDa) y la IgG (56 kDa) (Patel *et al.,* 2007).

Bajo condiciones no reductoras (Figura 3.1 B), la banda de κ -CN se observa tenue, a la par se observa una banda de alto peso molecular, que podría tratarse de multímeros compuestos por cadenas de monómeros de κ -CN unidas mediante enlaces disulfuro (Rasmussen *et al.*, 1992). Se observa un mayor número de bandas de mayor peso molecular que corresponden a las **PS** menos abundantes, sin embargo, las bandas correspondientes a β -LG y α -LA se aprecian tenues. Lo anterior es debido a que no existe hidrólisis de los enlaces disulfuro inter e intramoleculares al no utilizarse β -mercaptoetanol.

Figura 3.1 Perfil electroforético del MRC (SDS-PAGE, 12.5%T). Réplicas independientes (Leche genuina, secada por liofilización, DMR-411b, CENAM). Condiciones reductoras (**A**) y condiciones no reductoras (**B**). Tinción con azul de *Coomassie* R-250. *Gel Doc*TM XR+ *Imaging System* (*Bio Rad*).

3.1.3 Análisis cuantitativo

En la Figura 3.2 se muestran los electroforegramas correspondientes a tres réplicas independientes del **MRC**. Las **PS** son las primeras que migran, siendo el primer pico α -LA y el segundo β -LG (picos 1 y 2). De la primera se presume que no co-migra con ninguna otra proteína por lo que es confiable considerar que toda el área normalizada del pico es equivalente a su concentración. La segunda es la principal proteína del suero, y se detecta como un pico dividido debido a sus dos variantes genéticas, A y B predominantes en el ganado Holstein (De Block *et al.,* 2003).

A continuación, migran las caseínas en el siguiente orden: α_{s2} -CN (pico 3), α_{s1} -CN (pico 4) siendo la caseína más abundante que se refleja como el pico más alto, α_{s0} -CN (pico 5), κ -CN (pico 6) y finalmente migran las variantes genéticas de β -CN: β -CN B, β -CN A¹ y β -CN A², picos 7, 8 y 9, respectivamente.

La proteína α_{s2} -CN es la más hidrofílica de las caseínas (Heck *et al.*, 2008; Farrell, 2011). Se conocen cuatro variantes genéticas (A, B, C y D) que migran como un pico mayoritario seguido de un grupo de picos menores con diferentes grados de fosforilación que co-migran con los productos de hidrólisis de las β -CN (Ortega., 2003).

La α_{s1} -CN y la α_{s0} -CN pueden llegar a constituir hasta el 40% del total de las caseínas, y ambas señales tienen diferente grado de fosforilación, ya que la segunda tiene un residuo adicional de serina fosforilada (Heck *et al.*, 2008).

La κ-CN también tiene diferentes variantes genéticas, siendo la más predominante la A en la mayoría de las razas lecheras con la excepción del ganado Jersey (Farrell *et al.*, 2004).

Se distinguen fácilmente las tres principales variantes genéticas de la fracción más hidrofóbica de las caseínas, β -CN. La variante B difiere de la variante A² en dos residuos de aminoácidos (el residuo de serina en β -CN A² y el residuo de arginina en β -CN B), y la β -CN A¹ difiere de la β -CN A² en un residuo de aminoácido (sustitución de prolina por histidina, en la posición 67) por lo que se separa y migra primero (Ortega *et al.*, 2003). Pueden estar o no presentes todas las variantes genéticas de la familia de las β -CN en el ganado Holstein, sin embargo, su concentración relativa (Cr) es un valor conservado. La Cr, así como el tiempo de migración relativo (tmr) de las principales proteínas de la leche fluida liofilizada cuantificada por electroforesis capilar de zona se muestra en la Tabla 3.2.

Figura 3.2. Electroforegramas del MRC. Réplicas independientes (**A**, **B** y **C**). Capilar de poliacrilamida de 50 cm de longitud efectiva y 50 μm de d.i., ($eCAP^{TM}$, *Beckman-Coulter*, *Inc.* CA, USA). Inyección hidrodinámica (0.7 psi por 5 s). Separación en modo secuencia a 25 kV (43 μA), 40 °C y pH 3.0. Detección a 214 nm. *ProteomeLabTM PA 800 System* 32 *KaratTM* (ver 9.1) (*Beckman-Coulter, Inc.*). La migración de las principales proteínas lácteas corresponde a: 1: α-LA, 2: β-LG, 3: α s₂-CN, 4: α s₁-CN, 5: α s₀-CN, 6: κ -CN, 7: β-CN B, 8: β-CN A¹ y 9: β-CN A².

Proteína _	Réplica	1 #vial 2	Réplica	2 #vial 30	Réplica	Réplica 3 #vial 4	
	tmr	Cr (%)	tmr	Cr (%)	tmr	Cr (%)	
α-LA	0.746	4.16	0.749	4.06	0.745	4.28	
β-LG	0.791	12.35	0.793	12.53	0.790	12.34	
α _{s2} -CN	0.900	3.56	0.901	3.66	0.899	3.66	
α _{s1} -CN	1.000	25.58	1.000	24.89	1.000	24.72	
α _{s0} -CN	1.053	9.34	1.053	8.97	1.053	9.03	
κ-CN	1.134	4.46	1.134	4.67	1.132	4.82	
β-CN Β	1.165	0.73	1.176	0.76	1.165	0.77	
β-CN A¹	1.211	12.79	1.211	13.42	1.210	13.30	
β-CN A²	1.279	27.05	1.279	27.03	1.278	27.07	
Área total	119	0929	125	1516	1235659		
Peso (g)	0.5148		0.5	143	0.5	165	

Tabla 3.2 Tiempo de migración relativo y concentración relativa de las principales proteínas lácteas del MRC.

Los tmr a α_{s1} -CN de las principales proteínas de la leche coinciden con los valores publicados en la NMX-736/1-COFOCALEC-2012, que incluye los resultados de reproducibilidad del método electroforético utilizando leche entera de vaca genuina, Clase A, como muestra común de ensayo (**MCE**). Adicional al estudio de comparaciones interlaboratorios se obtuvo el perfil electroforético de las principales proteínas de la leche mediante las técnicas de SDS-PAGE y ECZ, la comparación entre ambos métodos electroforéticos permitió demostrar que el método de ECZ es selectivo y específico para cuantificar simultáneamente a las principales proteínas de la leche. El tiempo de migración relativo y la abundancia relativa promedio de las principales proteínas lácteas de la **MCE** y del **MRC** se muestran en la Tabla 3.3.

Principales proteínas de la leche		МС	CE ¹	MRC		
		tmr	Cr (%)	tmr	Cr (%)	
Proteínas	α-LA	0.745	4.34	0.746	4.17	
del suero	β-LG	0.792	13.26	0.791	12.41	
	Σ=		17.6		16.57	
	α _{s2} -CN	0.898	3.44	0.900	3.63	
	α _{s1} -CN	1.000	25.03	1.000	25.06	
	α _{s0} -CN	1.051	7.25	1.053	9.11	
Caseínas	к-CN	1.139	5.44	1.133	4.65	
	β-CN Β	1.153	1.84	1.158	0.76	
	β-CN A¹	1.207	16.73	1.210	13.17	
	β-CN A ²	1.274	22.68	1.278	27.05	
	Σ=		82.41		83.43	

 Tabla 3.3 Tiempo de migración relativo y concentración relativa de las principales proteínas lácteas de la MCE y del MRC.

¹: publicado en los apéndices informativos de la NMX-736/1-COFOCALEC-2012.

La concentración relativa de las principales proteínas de la leche del **MRC** es similar a los valores promedio obtenidos en el estudio interlaboratorios. La relación promedio de CAS/PS encontrada en la **MCE** fue de 82.4/17.6 y en el **MRC** fue de 83.4/16.6, lo que indica que se conserva la relación natural entre las principales fracciones proteínicas y que las muestras son comparables. Este resultado enriquece el estudio de validación del método electroforético.

3.2 Caracterización de leche descremada en polvo

3.2.1 Determinación de la concentración de proteína por el método modificado de Lowry

Todas las muestras de **LDP** rehidratada fueron solubles tanto en la disolución amortiguadora de boratos-EDTA como en la disolución amortiguadora de muestra (Tabla 3.4).

Muestra	Concentración de proteína							
MucStra	valor promedio (mg/mL)	RSD	CV (%)					
LH	39.3	0.17	0.44					
MP ₁	38.2	0.22	0.59					
MP ₂	34.3	0.22	0.64					
MP ₃	36.6	0.29	0.80					
MP ₄	34.3	0.23	0.66					

Tabla 3.4 Concentración de proteína en la leche descremada en polvo.

Dado que las **PS** son las proteínas lácteas más termosensibles, para evaluar su deterioro térmico, se analizó la **FNC** obtenida al adicionar HCI (1:1) hasta alcanzar el punto isoeléctrico de las caseínas (Lieske *et al.,* 1997) a fin de calcular el WPNI (Tabla 3.5).

La muestra de LH contiene la mayor concentración de proteína en la FNC, mientras que en las MP la concentración de proteína fue menor.

							Fracció	n no caseínica (I	FNC)		
Muestra	Peso (a)	Volumen (mL)	рН		Absorbancia (750 nm)	Volumen (mL)	WPNI (mg g lech	g de nitrógeno/ ne en polvo)	Conce prote	entración de ína (mg/mL)	Recuperación (%)
	(9)	()					Teórica	Experimental	Teórica	Experimental	_
					0.239			10.53		8.96	149.33
					0.243			10.68		9.09	151.10
LH	11.016	50	4.631		0.244	29	1.70	10.72	≥6	9.12	152.00
				Media	0.242			10.64		9.05	150.81
				RSD	0.002			0.01		0.08	1.35
				CV (%)	1.09			0.94		0.93	0.90
					0.272			5.56		5.02	83.66
					0.271			5.61		5.07	84.50
MP ₁	11.012	50	4.623		0.268	27	1.70	5.56		5.02	83.66
				Media	0.270			5.57		5.03	83.94
				RSD	0.002			0.03		0.02	0.48
				CV (%)	0.770			0.52		0.57	0.57
					0.257			5.92		4.81	80.16
					0.254			5.85		4.75	79.16
MP ₂	11.017	50	4.680		0.260	30	1.70	5.98		4.86	81.00
				Media	0.257			5.91		4.80	80.10
				RSD	0.003			0.06		0.05	0.92
				CV (%)	1.16			1.10		1.14	1.15
					0.247			5.39		4.84	80.66
					0.252			5.42		4.84	80.66
MP ₃	11.004	50	4.664		0.266	27	1.70	5.52		4.92	82.00
				Media	0.255			5.44		4.86	81.10
				RSD	0.009			0.07		0.04	0.77
				CV (%)	3.86			1.25		0.95	0.95
					0.301			5.54		4.96	82.66
					0.303			5.58		4.99	83.16
MP ₄	11.036	50	4.628		0.302	28	1.70	5.65		5.05	84.16
				Media	0.302			5.54		5.00	83.32
				RSD	0.001			0.05		0.04	0.76
				CV (%)	0.331			1.00		0.91	0.91

Tabla 3.5. Concentración de proteína en la fracción no caseínica de la leche descremada en polvo.

Los porcentajes de recuperación de proteína fueron diferentes entre las muestras, lo que está relacionado con la severidad del tratamiento térmico. Entre menor sea el porcentaje de recuperación de proteína, mayor será el daño térmico al que las proteínas fueron sometidas. La LH sobrepasa el 100%, mientras que en las demás muestras se obtuvo un porcentaje de recuperación de entre 80.16% a 83.66%. La concentración de proteína de LH está sobreestimado, ya que una fracción de caseínas quedo dispersa en la FNC.

De acuerdo al WPNI obtenido, se observa que todas las **MP** son muestras clasificadas como de medio calor, ya que el valor obtenido fue menor a 6 mg de nitrógeno/g LDP pero mayor a 1.51 mg de nitrógeno/g LDP.

3.2.2 Perfiles proteínicos obtenidos mediante electroforesis en gel de poliacrilamida con dodecil sulfato de sodio

Se incluyó en el análisis de los perfiles electroforéticos de las muestras de LDP (MP₁, MP₂, MP₃ y MP₄), el MRC (carril 4), suero de quesería (Sc) (carril 2) y caseínas (CAS) (carril 3), bajo condiciones no reductoras (A) y reductoras (B). Se observa el orden de migración característico de las diferentes proteínas de la leche (Figura 3.3).

En condiciones no reductoras (Figura 3.3 A) la banda correspondiente a κ -CN se observa tenue, a la vez que se aprecia una banda de alto peso molecular, que podría ser un oligómero de κ -CN (Rasmussen *et al.*, 1992). En los carriles del 5 al 9 las bandas correspondientes a las proteínas del suero, que son las más termolábiles, se aprecian tenues y se observa una fracción de muestra que no entró en la parte superior del gel concentrador debido a los tratamientos térmicos aplicados a las muestras (Chavan *et al.*, 2011). Esta fracción posiblemente corresponda a agregados de alto peso molecular (AAPM) de más de 500 kDa, se cree que dichos agregados están formados por las proteínas del suero y κ -CN unidos a través de puentes disulfuro (Patel *et al.*, 2007).

Figura 3.3 Perfiles electroforéticos de la LDP en condiciones no reductoras (A) y condiciones reductoras (B) (SDS-PAGE, 12.5% T). Estándar de bajo peso molecular (EST, carril 1); suero de quesería (Sc, carril 2); caseínas (CAS, carril 3); Material de Referencia Certificado (MRC, carril 4); leche descremada en polvo hidratada sometida a bajo calor (LH, carril 5); leche descremada en polvo hidratada: (MP₁, carril 6; MP₂, carril 7; MP₃, carril 8 y MP₄, carril 9). Tinción con azul de *Coomassie* (0.05%). *Gel DocTM XR+ ImagingSystem (Bio Rad*).

En base a los perfiles resultantes de SDS-PAGE es posible inferir sobre la intensidad del pretratamiento térmico aplicado a la leche. Considerando que la intensidad de cada banda es directamente proporcional a la concentración de proteína, mientras el tratamiento térmico es más drástico, las bandas de las proteínas del suero y κ-CN se aprecian más tenues y los AAPM se ven con mayor intensidad (Patel *et al.*, 2007).

Bajo condiciones reductoras (Figura 3.3 B), no se logra distinguir diferencias entre los perfiles de migración de las proteínas correspondientes al **MRC** de los perfiles obtenidos de las muestras de **LDP** hidratada de bajo calor y de las muestras problema. No se detectan bandas de AAPM debido a que el β -mercaptoetanol hidroliza los enlaces disulfuro inter e intra moleculares, y claramente se distinguen las bandas correspondientes a κ -CN y a las proteínas del suero.

En la FNC de las muestras de **LDP** (Figura 3.4) se aprecia la escasa aparición de las caseínas, como resultado de su precipitación con HCl diluido. Se observan las bandas correspondientes a las **PS**, principalmente en el filtrado de la muestra de **LH** (carril 5), debido al menor grado de desnaturalización, siguiendo de esta muestra, la **MP**₂ y la **MP**₁ presentan la mayor concentración de PS. Para la muestra **MP**₃ se observa el mayor grado de desnaturalización de las PS, y en la **MP**₄ también se observa un grado de desnaturalización elevado, mostrándose tenues las bandas correspondientes a las **PS**.

Figura 3.4 Perfiles electroforéticos de la FNC de las muestras de LDP bajo condiciones reductoras (SDS-PAGE, 12.5% T). Estándar de bajo peso molecular (EST, carril 1); suero de quesería (Sc, carril 2); caseínas (CAS, carril 3); Material de Referencia Certificado (MRC, carril 4); FNC de leche descremada en polvo rehidratada sometida a bajo calor (LH, carril 5), y de las muestras problema: (MP₁, carril 6; MP₂, carril 7; MP₃, carril 8 y MP₄, carril 9). Mismas condiciones de la Figura 3.3.

3.3 Análisis de muestras lácteas comerciales pasteurizadas y ultrapasteurizadas

3.3.1 Determinación de la concentración de proteína por el método modificado de Lowry

Todas las **MCP** fueron solubles en la disolución amortiguadora de boratos-EDTA, a diferencia de todas las **MCUHT** que fueron parcialmente solubles en esta disolución amortiguadora, observándose un precipitado. Sin embargo, fue posible solubilizarlas utilizando el buffer de muestra sin DTT, debido a que esta disolución tiene un mayor poder disolvente (Tabla 3.6). El precipitado formado en las muestras UHT está relacionado a un excesivo tratamiento térmico dando como resultado la insolubilización de las proteínas (Sakkas *et al.*, 2014).

	Especificación (g/L)	Concentración de proteína (mg/mL)							
Muestra		Paste	eurizad	as	Ultrapasteurizadas				
		Promedio	RSD	CV (%)	Promedio	RSD	CV (%)		
L	31.2	34.7	0.21	0.61	31.4	0.15	0.48		
LEN	54.0	54.9	0.40	0.73	55.1	0.10	0.18		
LGV	30.0	32.3	0.25	0.80	26.1	0.22	0.85		
PL	22.0	27.3	0.30	1.11	21.9	0.08	0.38		

Tabla 3.6 Concentración de proteína en las muestras comercialespasteurizadas y ultrapasteurizadas

De acuerdo a la concentración de proteína obtenida, todas las muestras cumplen con lo establecido en la NOM-155-SCFI-2012 y con lo indicado en la etiqueta, a excepción de la mezcla de leche con grasa vegetal ultrapasteurizada (**LGVUHT**) cuyo valor está por debajo de la especificación.

Figura 3.5 Concentración de proteína en las muestras comerciales pasteurizadas y ultrapasteurizadas.

Se determinó en las muestras pasteurizadas (L, LGV y PL) una mayor concentración de proteínas, de entre 9.4% a 19.6%, que en las **MCUHT** (Figura 3.5), a excepción de la **LEN**, encontrando el mismo valor de 55 g/L en ambos tratamientos térmicos.

La FNC de las MCP y MCUHT, se obtuvo mediante el método de prueba de la ISO-17997-2-2004, debido a que la sola adición de ácido no es suficiente para separar las fases. En todas las muestras se alcanzó el punto isoeléctrico de las caseínas y un volumen similar del filtrado de cada una de ellas (Tabla 3.7). En las MCP, la concentración de proteína de la FNC del PL y de la LGV coincide con el valor esperado, el de la L es ligeramente superior, y el valor experimental de la LEN está por debajo del valor esperado. El porcentaje de recuperación de la FNC de las MCP fue del 22% al 105% y de 31% al 88% en las MCUHT. Un porcentaje de recuperación significativamente menor al 100% fue debido a que no todas las PS fueron solubles y co-precipitaron con las caseínas al formar puentes disulfuro. La pérdida de la solubilidad se puede asociar a la mayor intensidad del tratamiento térmico aplicado a la leche a excepción de la LEN (Figura 3.6).

		fracción no caseínica (FNC)							
Muestra	Peso (g)	рН	Absorbancia (750 nm)	Volumen (mL)	Cond	entración d (mg/mL	e proteína .)	Recuperación	
	(0)		· · ·	ζ, γ	Teórica		Experimental	(%)	
				PASTEU	RIZADAS				
PL-1	20.0477	4.639	0.260	87			0.833	94.6	
PL-2	20.4736	4.597	0.257	90			0.823	93.5	
PL-3	20.2421	4.641	0.264	90	0.88		0.846	96.1	
						Media	0.834	94.7	
						RSD	0.011	1.310	
	00.4400	1750	0.005			CV (%)	1.38	1.382	
L-1	20.4499	4.758	0.205	88			1.316	105.3	
L-2	20.4310	4.771	0.208	07 88	1 25		1.316	105.4	
E-9	20.4400	4.700	0.204	00	1.20	Media	1.313	105.0	
						RSD	0.007	0.560	
						CV (%)	0.533	0.533	
LGV-1	20.5470	4,770	0.187	89			1,198	99.8	
LGV-2	20.0298	4.774	0.188	89			1.205	100.4	
LGV-3	20.1818	4.755	0.188	93	1.20		1.205	100.4	
						Media	1.202	100.2	
						RSD	0.004	0.336	
						CV (%)	0.336	0.335	
LEN-1	20.4822	4.614	0.152	87			0.487	22.5	
LEN-2	20.4812	4.626	0.148	88			0.474	21.9	
LEN-3	20.5353	4.632	0.151	88	2.16		0.483	22.3	
						Media	0.481	22.2	
						RSD CV(W)	0.006	0.308	
							1.384	1.383	
PI _1	20 4768	4 715	0.240	88		3	0 769	87 4	
PL-1	20.4324	4.704	0.245	88			0.785	89.2	
PL-3	20.4596	4.694	0.240	91	0.88		0.769	87.4	
						Media	0.774	87.9	
						RSD	0.009	1.049	
						CV (%)	1.193	1.192	
L-1	20.4810	4.728	0.213	88			0.682	54.5	
L-2	20.4654	4.685	0.218	89			0.698	55.8	
L-3	20.5207	4.720	0.216	90	1.25		0.692	55.3	
						Media	0.690	55.2	
						RSD	0.008	0.646	
	00.40.40	4 770	0.000	00		CV (%)	1.171	1.170	
	20.4949 20.4972	4.770	0.228	80 90			0.730	0U.8 50.2	
LGV-2	20.4550	4.769	0.227	89	1.20		0.727	60.5	
						Media	0.722	60.2	
						RSD	0.010	0.851	
						CV (%)	1.414	1.413	
LEN-1	20.5153	4.606	0.209	86			0.669	30.9	
LEN-2	20.5442	4.603	0.211	86			0.676	31.3	
LEN-3	20.4838	4.629	0.213	87	2.16		0.682	31.6	
						Media	0.675	31.3	
						RSD	0.006	0.301	
						CV (%)	0.963	0.963	

Tabla 3.7 Concentración de proteína en la fracción no caseínica de lasmuestras comerciales pasteurizadas y ultrapasteurizadas.

Figura 3.6 Concentración de proteína en la fracción no caseínica de las muestras comerciales pasteurizadas y ultrapasteurizadas.

3.3.2 Perfiles proteínicos obtenidos mediante electroforesis en gel de poliacrilamida con dodecil sulfato de sodio

En la Figura 3.7 se muestran los perfiles electroforéticos de las **MCP** (carriles 3 a 6) y **MCUHT** (carriles 7 a 10), en condiciones reductoras (A) y no reductoras (B). Bajo condiciones reductoras, se aprecia el mismo patrón de bandas que el **MRC** (carril 2). Sólo las bandas correspondientes a las caseínas y a α -LA y β -LG de la LGV (carril 9) y del PL (carril 10) ultrapasteurizadas se detectan más tenues.

Bajo condiciones no reductoras, en todas las **MCUHT** y en la **LEN** pasteurizada se observan AAPM, incluso no migran al gel concentrador, por lo que sus pesos moleculares son superiores a los 500 kDa. Se detecta α -LA y β -LG en las **MCP**, a excepción de la **LEN**, pero no se detectan en las **MCUHT**. En el caso de la **LEN** pasteurizada lo anterior podría explicarse si la materia prima empleada sufrió un tratamiento térmico previo.

Dado que la **LDP** se utiliza para la recombinación y reconstitución, y en su proceso de fabricación se pueden obtener diferentes grados de desnaturalización de las **PS**, que favorece la interacción con otras proteínas y componentes lácteos disminuyendo la concentración de β -LG y κ -CN, se podría pensar que el **PL** y la **LGV** emplearon **LDP** de medio calor como materia prima. Por otro lado, la muestra que presenta la mayor similitud con el **MRC** es la **L**, por lo que se presume que se elaboró a partir de leche fresca.

Figura 3.7. Perfiles electroforéticos de las MCP y MCUHT en condiciones reductoras (A) y no reductoras (B). (SDS-PAGE, 12.5% T). Para ambos geles: Estándar de bajo peso molecular (EST, carril 1); Material de Referencia Certificado (MRC, carril 2); Muestras comerciales pasteurizadas: leche descremada con 70% más de proteína (LEN, carril 3), leche (L, carril 4), mezcla de leche con grasa vegetal (LGV, carril 5) y producto lácteo (PL, carril 6); Muestras comerciales UHT: leche descremada con 70% más de proteína (LEN, carril 9) y producto lácteo (PL, carril 7), leche (L, carril 8), mezcla de leche con grasa vegetal de leche con grasa vegetal (LGV, carril 9) y producto lácteo (PL, carril 7), leche (L, carril 8), mezcla de leche con grasa vegetal (LGV, carril 9) y producto lácteo (PL, carril 10). Tinción con azul de *Coomassie* (0.05%). *Gel DocTM XR*+ *ImagingSystem* (*Bio Rad*).

Se analizó la FNC y la fracción caseínica de las **MCP** y **MCUHT** (Figura 3.8), con el fin de observar su deterioro térmico y comparar cada fracción proteínica.

Para las **MCP** (Figura 3.8 A) se observa la menor concentración de proteínas del suero para la **LEN** (carril 4). El resto de las **PS** de esta muestra co-precipitaron con las caseínas (Figura 3.8 B, carril 4). En el resto de las **MCP** se distingue que la mayoría de las **PS** logró solubilizarse.

Para las **MCUHT** se aprecia la misma intensidad en las bandas de las **PS** de todas las muestras (Figura 3.8 C). Sin embargo, la muestra de **LEN** se vuelve a comportar de igual manera que en su presentación pasteurizada (Figura 3.8, carril 4).

Por lo anterior, podría suponerse que para la fabricación de la **LEN**, se empleó concentrado de proteína de leche en polvo que contiene tanto caseínas como proteínas de suero en su forma nativa y en la misma proporción que la leche (Augustin *et al.*, 2011), en lugar de leche fresca.

Figura 3.8. Perfiles electroforéticos de la FNC y de las CAS de las MCP y de las MCUHT en condiciones reductoras (SDS-PAGE, 12.5%T). Para A y C: Estándar de bajo peso molecular (EST, carril 1); Material de Referencia Certificado (MRC, carril 2); Suero (Sc, carril 3); Fracción no caseínica de: leche descremada con 70% más de proteína (LEN, carril 4), leche (L, carril 5), mezcla de leche con grasa vegetal (LGV, carril 6), producto lácteo (PL, carril 7). Para B y D: Estándar de bajo peso molecular (EST, carril 1); Muestra de referencia de leche (MRC, carril 2); Caseínas (CAS, carril 3); Caseínas de: leche descremada con 70% más de proteína (LEN, carril 5), mezcla de leche (MRC, carril 2); Caseínas (CAS, carril 3); Caseínas de: leche descremada con 70% más de proteína (LEN, carril 4), leche (L, carril 5), mezcla de leche con grasa vegetal (LGV, carril 6), producto lácteo (PL, carril 4), leche (L, carril 5), mezcla de leche con grasa vegetal (LGV, carril 6), producto lácteo (PL, carril 4), leche (L, carril 5), mezcla de leche con grasa vegetal (LGV, carril 6), producto lácteo (PL, carril 4), leche (L, carril 5), mezcla de leche con grasa vegetal (LGV, carril 6), producto lácteo (PL, carril 7). Mismas condiciones de la Figura 3.7

3.3.3 Determinación de la concentración relativa de las principales proteínas de la leche por electroforesis capilar de zona

Esta técnica se empleó para identificar, separar y cuantificar a las proteínas del suero y las caseínas. Se obtuvieron los electroforegramas de las **MCP** y de las **MCUHT**.

De cada réplica independiente de las **MCP** y **MCUHT** se seleccionó un electroforegrama con el fin de poder comparar las señales de todas las muestras, y con el **MRC**. El análisis cuantitativo del **MRC** y de las muestras comerciales se muestran en el apéndice C. Al comparar el electroforegrama del **MRC** con los electroforegramas de las **MCP** (Figura 3.9) se observa que los picos de la **L** son los más altos, siguiendo los picos del **PL**, después los de la **LGV** y finalmente los de la **LEN**, lo anterior se relaciona con la pérdida de la solubilidad de las muestras.

Figura 3.9 Electroforegramas de las muestras comerciales pasteurizadas. Capilar hidrofílico neutro (eCAPTM Beckman-Coulter) 50 cm de longitud efectiva, 50 μ m de diámetro interno; ProteomeLabTM PA 800 System, Beckman-Coulter, Inc., controlado por el software 32 KaratTM ver 9.1). Misma escala.

Contrastando las señales de las **MCP** (Figura 3.9) con las de las **MCUHT** (Figura 3.10) se aprecia que los picos de las **MCUHT** son más bajos, anchos y perdieron simetría por lo que la modificación de los electroforegramas no permitió cuantificar las proteínas. Como se refirió anteriormente, las **MCUHT** fueron parcialmente solubles, la concentración de proteína y el área total de los electroforegramas (Apéndice C3) fue menor al de las **MCP**. La muestra que sufrió una mayor deformación en el perfil electroforético fue el **PL**. Si bien, la muestra con el menor deterioro térmico fue la **L**, debido a que sus electroforegramas fueron los menos modificados en comparación con el **MRC**, el deterioro es mayor al observado en las **MCP**. La ultrapasteurización y/o la acumulación de procesos térmicos puede repercutir en el valor nutricional de la leche debido a la formación de enlaces covalentes, diferentes a los puentes disulfuro, afectando la digestibilidad de las proteínas.

Figura3.10Electroforegramasdelasmuestrascomercialesultrapasteurizadas.Mismas condiciones de la Figura 3.9.

Principales ہ de la le	Principales proteínas de la leche		L	LEN	LGV	PL
Proteínas	α-LA	0.747	0.740	0.732	0.726	0.734
del suero	β-LG	0.791	0.786	0.786	0.779	0.781
	α _{S2} -CN	0.900	0.905	0.939	0.895	0.899
	α _{S1} -CN	1.000	1.000	1.000	1.000	1.000
	α _{\$0} -CN	1.053	1.045	1.041	1.057	1.045
Caseínas	k-CN	0.133	1.123	1.097	1.104	1.115
	β-CN Β	1.169	1.147	1.138	1.127	1.139
	β-CN A¹	1.211	1.201	1.202	1.191	1.192
	β-CN A ²	1.279	1.293	1.276	1.270	1.274

Tabla 3.8 Tiempo de migración relativo promedio de las principales proteínas lácteas del MRC y de las MCP (L, LEN, LGV y PL).

En la Tabla 3.8 se muestran los tmr promedio de las proteínas lácteas de las **MCP** estudiadas, observando una variación en la segunda cifra significativa después del punto decimal entre las muestras y con respecto a los tmr de las proteínas del **MRC**. La relación natural de las principales fracciones, CAS:PS se modificó en las **MCP** (Tabla 3.9). Para el **MRC** se obtuvo una relación de 83.4:16.6 y de 82.5:17.5 en la L, similar al **MCE**. Para el resto de las muestras pasteurizadas la relación fue: 84.3:15.7 para el **PL**; 85.7:14.3 para la **LGV** y 87.3:12.7 para la **LEN**.

Si bien la pasteurización no modifica el perfil electroforético (NMX-736/1-COFOCALEC-2012), el origen de la materia prima empleada para la elaboración de cada producto lácteo estudiado también influye en las determinaciones por la acumulación de los procesos térmicos aplicados.

Princi proteínas c	pales le la leche	MRC	L	LEN	LGV	PL
	α-LA	4.2	4.0	2.3	2.6	3.8
Proteínas del suero	β-LG	12.4	13.5	10.4	11.7	11.9
<u> </u>	Σ=	16.6	17.5	12.7	14.3	15.7
	α _{S2} -CN	3.6	3.8	3.3	3.4	3.3
	α _{S1} -CN	25.1	23.8	22.4	26.2	25.1
	α _{S0} -CN	9.1	7.0	8.2	7.9	8.2
Caseínas	k-CN	4.6	5.6	5.5	4.5	5.5
	β-CN Β	0.8	1.7	3.1	1.2	2.1
	β-CN A ¹	13.2	15.2	17.5	16.0	15.7
	β-CN A ²	27.0	25.4	27.3	26.5	24.4
-	Σ=	83.4	82.5	87.3	85.7	84.3

Tabla 3.9 Concentración relativa promedio de las principales proteínas lácteas del MRC y de las MCP (L, LEN, LGV y PL).

El electroforegrama de la L pasteurizada es muy similar al del MRC, por lo que se corrobora que se elaboró a partir de leche fresca. En contraste, la LEN pasteurizada contiene la menor concentración de PS de todas las muestras analizadas, lo que significa que la materia prima empleada en su fabricación recibió un tratamiento térmico previo, y que de acuerdo con lo obtenido por SDS-PAGE, se trata de un concentrado de proteínas de leche en polvo. Finalmente, las Cr de las proteínas lácteas de la LGV y el PL pasteurizados son similares, y debido a que sus perfiles electroforéticos obtenidos mediante SDS-PAGE coinciden con los de las LDP, es factible pensar que fueron elaborados a partir de leche descremada en polvo de medio calor.

4. Conclusiones

Se obtuvieron los perfiles electroforéticos característicos de una muestra de leche genuina, encontrando que la proporción de caseínas y proteínas de suero es equiparable a los valores teóricos.

Se caracterizó y se clasificó térmicamente cinco muestras de leche descremada en polvo en función del grado de desnaturalización de las proteínas del suero, mediante el índice de nitrógeno de las proteínas de suero no desnaturalizadas.

Se evaluó el grado de deterioro térmico de las proteínas lácteas de muestras comerciales, pasteurizadas y ultrapasteurizadas, mediante electroforesis en gel de poliacrilamida desnaturalizante de la fracción no caseínica, caseínas, y de la fracción proteínica total.

Se encontró que un mayor tratamiento térmico puede ocasionar mayor daño en las proteínas lácteas, por la pérdida de solubilidad de la muestra, por la desaparición de las bandas correspondientes a las proteínas del suero solubles en medio ácido en SDS-PAGE, y por la disminución de la concentración de las proteínas del suero y ensanchamiento y pérdida de la simetría de los picos electroforéticos correspondientes a las caseínas por ECZ.

Tratamientos térmicos excesivos durante la ultrapasteurización y/o la acumulación de procesos térmicos inducen la formación de nuevos enlaces covalentes, además de los puentes disulfuro, modificando el perfil electroforético característico de la leche fresca.

5. Perspectivas

Complementar el estudio analizando el contenido de furosina y lactulosa en cada una de las muestras estudiadas.

Identificar los agregados de alto peso molecular por medio de estudios de proteómica.

6. Bibliografía

- Al-Saadi, J., Mat, A. y Deeth, H. 2013. Effect of lactulose on cross-linking of milk proteins during heat treatments. *International Journal of Dairy Technology*, 66, 1-7.
- Ambrosi, V., Polenta, G., González, C., Ferrari, G. y Maresca, P. 2016. High hydrostatic pressure assisted enzymatic hydrolysis of whey proteins. *Innovative Food Science and Emerging Technologies*, 30, 1-8.
- Anema, S. 2014. The whey proteins in milk: thermal denaturation, physical interactions and effects on the functional properties of milk. En: H. Singh, M. Boland y A. Thompson. Eds. *Milk Proteins. From Expression to Food.* Segunda edición. Palmerston North: Academic Press, 269-318.
- 4. Augustin, M., Oliver, C., y Hemar, Y. 2011. Casein, caseinates, and milk protein concentrates. *Dairy Ingredients for Food Processing*, 7, 161-178.
- Barbano, D., y Lynch, J. 1990. Kjeldahl method for determination of total nitrogen content of milk: collaborative study. *Journal Association of Official Analytical Chemists*, 73(6), 849–59.
- Bansal, N., y Bhandari, B. 2016. Functional milk proteins: Production and utilization. Whey. Based ingredients. En: P. McSweeney y J. O'Mahony. Eds. *Advanced Dairy Chemistry. Volume 1B: Applied Aspects.* Cuarta edición. New York: Springer Science Business Media, 67-98.
- 7. Boekel, M. 1998. Effect of heating on Maillard reactions in milk. *Food Chemistry*, 62(4), 403-414.
- Cámara Nacional de Industriales de la Leche. CANILEC. 2017. Estadísticas. Consumo. [En línea] (Actualizado a septiembre de 2017). Disponible en: http://www.canilec.org.mx/estadisticas-consumo.html

[Último acceso el 28 de enero de 2018].

 Carrillo, J., Candia, M., Lugo, R., Espinoza, E. y Noriega, J. 2013. Evaluación de procedimientos de tinción para el análisis de proteínas por electroforesis. Revista *INVURNUS "En busca del conocimiento", Investigación*, 8 (1), 19-26.

- Cartoni, G., Coccioli, F., Jasionowska, R. y Masci, M. 1999.Determination of cow milk in ewe milk and cheese by capillary electrophoresis of the whey protein fractions. *Italian Journal of Food Science*, 10, 317-327.
- 11. Castagnino, J. M. 2000. Electroforesis capilar. BIOQUIMIA, Asociación Mexicana de Bioquímica Clínica, A.C., 25, 297-329.
- Cattaneo, S., Mascotti, F., y Pellegrino, L. 2008. Effects of over processing on heat damage of UHT milk. *European Food Research and Technology*, 226, 1099-1106.
- Centro Nacional de Metrología. CENAM. 2016. Ensayo de aptitud para la medición de parámetros bromatológicos en leche fluida liofilizada CNM-EA-630-005/2016.
- Chavan, R., Chavan, S., Khedkar, C. y Jana, A. 2011. UHT milk processing and effect of plasmin activity on shelf life. *Comprehensive Reviews in Food Science and Food Safety*, 10(5), 251-268.
- 15. Chavan, R., Sehrawat, R. y Mishra, V. 2016. Milk: Processing of milk. *Encyclopedia of Food and Health*, 729-735.
- 16. Chen, F. y Zang, H. 1992. Determination of milk proteins by capillary electrophoresis. *Journal of Association of Official Analytical Chemists International*, 75(5), 905-909.
- 17. Chevalier, F. y Kelly, A. 2010. Proteomic quantification of disulfide-linked polymers in raw and heated bovine milk. *Journal of Agricultural and Food Chemistry*, 58, 7437-7444.
- Chopin, M. 2012. Principios básicos de electroforesis capilar: técnica analítica de separación de analitos. *Investigación en Discapacidad*, 1(2), 86-89.
- Dalgleish, D., Spagnuolo, P. y Goff, H. 2004. A possible structure of the casein micelle based on high-resolution field-emission scanning electron microscopy. *International Dairy Journal*, 14, 1025-1031.
- 20. Dalgleish, D. y Corredig, M. 2012. The structure of the casein micelle of milk and its changes during processing. *Annual Review of Food Science and Technology*, 3, 449-467.

- 21. De Block, J., Merchiers, M., Mortier, L., Braekman, A., Ooghe, W. y Renterghem, V. 2003. Monitoring nutritional quality of milk powders: capillary electrophoresis of the way protein fraction compared with other methods. *International Dairy Journal*, 13, 87-94.
- 22. De Jong, N., Visser, S., y Olieman, C. 1993. Determination of milk proteins by capillary electrophoresis. *Journal of Chromatography A*, 652, 207-213.
- Deeth, H. y Lewis, M. 2016. Protein stability in sterilised milk and milk products.
 En: P. McSweeney y J. O'Mahony. Eds. *Advanced Dairy Chemistry. Volume* 1B: Applied Aspects. Cuarta edición. New York: Springer Science Business Media, 247-286.
- 24. Edwards, P. y Goeffrey, B. 2014. Structure and stability of whey proteins. En:
 H. Singh, M. Boland y A. Thompson. Eds. *Milk Proteins: From Expression to Food.* Segunda edición. Palmerston North: Academic Press, 201-242.
- Farrell, Jr., H. M., Jimenez, R., Bleck, G., Brown, E., Butler, J., Creamer, L., Hicks, C., Hollar, C., Ng-Kwai-Hang, K. y Swaisgood, H. 2004. Nomenclature of the proteins of cow's milk - Sixth revision. *Journal of Dairy Science*, 87, 1641-1674.
- Farrell, H. 2011. Milk proteins. Casein nomenclature, structure and association.
 En: J. Fuquay, P. Fox y P. McSweeney. Eds. *Encyclopedia of dairy sciences*. Segunda edición. Palmerston North: Academic Press: 765-771.
- Food and Agriculture Data. Food and Agriculture Organization of the United Nations. FAOSTAT. 2017. *Datos sobre alimentación y agricultura.* [En línea] (Actualizado el 15 de diciembre de 2017).

Disponible en:

http://www.fao.org/faostat/en/#data/QL

[Último acceso el 11 de enero de 2018].

 Fox, P. y Kelly, A. 2012. Chemistry and biochemistry of milk constituents. En: B. Simpson., L. Nollet., F. Toldrá., S. Benjakul., G. Paliyath y Y, Hui. Eds. *Food biochemistry and food processing*. Segunda edición. UK: Wiley-Blackwell, 442-464.
Fundación Española de Nutrición. FEN. 2016. Tecnología de los alimentos. Técnicas culinarias. Leche y productos lácteos. [En línea] (Actualizado a marzo de 2016).

Disponible en:

http://formacion.educalab.es/mod/imscp/view.php?id=21690 [Último acceso el 28 de enero de enero de 2018].

- 30. García, H. 2000. Electroforesis en geles de poliacrilamida: fundamentos, actualidad e importancia. *Universo Diagnóstico*, 1(2), 31-41.
- Heck, J., Olieman, C., Schennink, A., van Valenberg, H., Visker, M., Meuldijk, R. y van Hooijdonk, A. 2008. Estimation of variation in concentration, phosphorylation and genetic polymorphism of milk proteins using capillary zone electrophoresis. *International Dairy Journal*, 18, 548-555.
- Holland, 2009. Post-translational modifications of caseins. En: A. Thompson,
 M. Boland y H. Singh. Eds. *Milk Proteins. From Expression to Food.* Palmerston North: Academic Press, 107-132.
- Holt, C., Carver, J., Ecroyd, H. y Thorn, D. 2013. Caseins and the casein micelle: their biological functions, structure, and behavior in foods. *Journal of Dairy Science*, 96, 6127-6146.
- Huppertz, T. 2016. Heat stability of milk. En: P. McSweeney y J. O'Mahony. Eds. Advanced Dairy Chemistry. Volume 1B: Applied Aspects. Cuarta edición. New York: Springer Science Business Media, 179-196.
- 35. International Organization for Standardization ISO-17997-2-2004. *Milk. Determination of casein. Nitrogen content. Part 2. Direct method.*
- Kumar, P., Sharma, N., Ranjan, R., Kumar, S., Bhat, Z. y Jeong, K. 2013. Perspective of membrane technology in dairy industry: A review. *Asian-Australasian. Journal of Animal Sciences*, 26(9), 1347-1358.
- 37. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature*, 227, 680-685.
- Lan, X., Wang, W., Bu, D., Shen, J., Zheng, N. y Sun, P. 2010. Effects of heating temperatures and addition of reconstituted milk on the heat indicators in milk. *Journal of Food Science*, 75, 653-658.

- Li, J., Ding, X., Chen, Y., Song, B., Zhao, S. y Wang, Z. 2012. Determination of bovine lactoferrin in infant formula by capillary electrophoresis with ultraviolet detection. *Journal of Chromatography A*, 1244,178–183.
- Lieske, B., Konrad, G. y Faber, W. 1997. A new spectrophotometric assay for native β-lactoglobulin in raw and processed bovine milk. *International Dairy Journal*, 7, 805-812.
- 41. Mallik, J., Prajapati, J. y Patel, H. 2015. Heat load indicators and their significance in milk processing. *National Seminar on "Indian Dairy Industry Opportunities and Challenges*", 125-129.
- Manso, M., Catteno, T., Barzaghi, S., Olieman, C., López-Fandiño, R., Leaver, J., Otte, J., Sánchez, A., Svenning, C., Tirelli, A. y Vegarud, C. 2002. Determination of vegetal proteins in milk powder by sodium dodecyl sulfatecapillary gel electrophoresis: Interlaboratory study. *Journal of Association of Official Analytical Chemist International*, 85 (5), 1090-1095.
- 43. Manzo, C., Adalgisa, M. y Pizzano, R. 2015. Thermal markers arising from changes in the protein component of milk. *Food Control*, 51, 251-255.
- Marina, M., Ríos, A. y Valcárcel, M. 2005. Fundaments of capillary electrophoresis. En: M. Marina, A. Ríos y M. Várcacel. Eds. Comprehensive analytical chemistry. Analysis and detection by capillary electrophoresis. España: Elsevier Inc, volumen 45, 814-839.
- 45. Miralles, B., Ramos, M. y Amigo, L. 2000. Application of capillary electrophoresis to the characterization of processed cheeses. *Journal of Dairy Research*, 67, 91-100.
- Miralles, B., Ramos, M. y Amigo, L. 2003. Influence of proteolysis of milk on the whey protein to total protein ratio as determined by capillary electrophoresis. *Journal of Dairy Science*, 86, 2813-2817.
- 47. Molina, E., de Frutos, M. y Ramos, M. 2000. Capillary electrophoresis characterization of the casein fraction of cheese made from cows', ewes' and goats' milks. *Journal of Dairy Research*, 67, 209-216.

- Moore, J., DeVries, J., Lipp, M., Griffiths, J., y Abernethy, D. 2010. Total protein methods and their potential utility to reduce the risk of food protein adulteration. *Comprehensive Reviews in Food Science and Food Safety*, 9, 330-357.
- Norma Mexicana NMX-F-736/1-COFOCALEC-2012. Sistema Producto Leche. Alimentos lácteos. Identificación de proteínas en leche. Parte 1: Determinación de la composición de las proteínas propias de la leche por electroforesis capilar de zona. Método de prueba. Publicada en el Diario Oficial de la Federación el 19 de julio de 2012.
- 50. Norma Oficial Mexicana NOM-243-SSA1-2010. Productos y servicios. Leche, fórmula láctea, producto lácteo combinado y derivados lácteos. Disposiciones y especificaciones sanitarias. Métodos de prueba. [En línea] (Actualizado al 27 de septiembre de 2010).

Disponible en:

http://dof.gob.mx/nota_detalle.php?codigo=5160755&fecha=27/09/2010 [Último acceso el 23 de enero de 2018].

51. Norma Oficial Mexicana NOM-155-SCFI-2012. Leche. Denominaciones, especificaciones fisicoquímicas, información comercial y métodos de prueba.
[En línea] (Actualizado al 15 de marzo de 2012).
Disponible en:

http://www.dof.gob.mx/normasOficiales/4692/seeco/seeco.htm [Último acceso el 30 de enero de 2018].

 Norma Oficial Mexicana NOM-183-SCFI-2012. Producto lácteo y producto lácteo combinado. Denominaciones, especificaciones fisicoquímicas, información comercial y métodos de prueba.[En línea] (Actualizado al 15 de marzo de 2012).

Disponible en:

http://www.dof.gob.mx/normasOficiales/4693/seeco1/seeco1.htm [Último acceso el 29 de enero de 2018].

 O'Mahony, J. y Fox, P. 2013. Milk proteins: introduction and historical aspects.
 En: P. McSweeney y P. Fox. Eds. *Advanced Dairy Chemistry*. New York: Springer Science Business Media, 43-86.

- O'Mahony, J. y Fox, P. 2014. Milk: An Overview. En: H. Singh, M. Boland y A. Thompson. Eds. *Milk Proteins. From Expression to Food.* Segunda edición. Palmerston North: Academic Press, 19-73.
- Ortega, N., Albillos, S. y Busto, M. 2003. Application of factorial design and response surface methodology to the analysis of bovine caseins by capillary zone electrophoresis. *Control Food*, 14, 307-315.
- 56. Otte, J., Zakora, M., Kristiansen, K. y Qvist, K. B. 1997. Analysis of bovine caseins and primary hydrolysis products in cheese by capillary zone electrophoresis. *Lait Journal*, 77, 241-257.
- 57. Patel, H., Anema, S., Holroyd, S., Singh, H. y Creamer, L. 2007. Methods to determine denaturation and aggregation of proteins in low, medium and high-heat skim milk powders. *Lait Journal*, 87, 251-268.
- 58. Paterson, G.R., Hill, J.P. y Otter, D.E. 1995. Separation of β-lactoglobulin A, B and C variants of bovine whey using capillary zone electrophoresis. *Journal of Chromatography A*, 700, 105-110.
- Pellegrino, L., Catteno, S. y Noni, I. 2011. Effects of processing on protein quality and milk products. En: J. Fuquay, P. Fox y P. McSweeney. Eds. *Encyclopedia of dairy sciences.* Segunda edición. Palmerston North: Academic Press, 1067-1074.
- 60. Peterson, G. 1977. A simplification of the protein assay method of Lowry et al. which is more generally applicable. *Analitical Biochemistry*, 83, 346-356.
- 61. Peterson, G. 1979.Review of the folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. *Analytical Biochemistry*, 100, 201-220.
- Rasmussen, L., Hojrup, P. y Petersen, T. 1992. The multimeric structure and disulfide-bonding pattern of bovine κ-casein. *European Journal of Biochemistry*, 203, 381-386.
- 63. Recio, I., Ramos, M. y de Frutos, M. 1995. Quantitative analysis of mayor whey proteins by capillary electrophoresis using uncoated capillaries. *Electrophoresis*, 16, 654-658.

- Recio, I., Amigo, L., Ramos, M. y Lopez-Fandiño, R. 1997. Application of capillary electrophoresis to the study of proteolysis of caseins. *Journal of Dairy Research*, 64, 221-230.
- 65. Riel, J. y Olieman, C., 1995. Determination of caseinomacropeptide with capillary zone electrophoresis and its application to the detection and estimation of rennet whey solids in milk and buttermilk powder. *Electrophoresis*, 16, 529-533.
- 66. Sakkas, L., Moutafi, A., Moschopoulou, E. y Moatsou, G. 2014. Assessment of heat treatment of various types of milk. *Food Chemistry*, 159, 293-301.
- 67. Sapan, C., Lundblad, R. y Price, N. 1999. Colorimetric protein assay techniques. *Biotechnology and Applied Biochemistry*, 29, 99–108.
- Shallan, A., Guijt, R. y Breamore, M. 2013. Capillary Electrophoresis: Basic Principles. En: M. Houk. Ed. *Encyclopedia of Forensics Science*. Segunda edición. Washington, DC: Academic Press, 549-559.
- Sharma, A., Jana, H. y Shrikant, R. 2012. Functionality of milk powders and milk-based powders for end use applications. A review. *Comprehensive Reviews in Food Science and Food Safety.* 11, 518-528.
- 70. Servicio de Información Agroalimentaria y Pesquera de la Secretaria de Agricultura Ganadería, Desarrollo Rural, Pesca y Alimentación. SIAP-SAGARPA. 2017. *Boletín de Leche.* [En línea] (Actualizado a julio de 2017). Disponible en:

https://www.gob.mx/siap/documentos/boletin-de-leche?state=draft [Último acceso el 26 de enero de 2018].

- Sikand, V., Tong, P. y Walker, J. 2008. Impact of protein standardization of milk powder with lactose or permeate on whey protein nitrogen index and heat classification. *Dairy Science and Technology*, 88, 105-120.
- 72. Strickland, M., Johnson, M. y Broadbent, J. 2001. Qualitative and quantitative analysis of proteins and peptides in milk products by capillary electrophoresis. *Electrophoresis*, 22, 1510-1517.
- 73. Tetra Pak, 2018. Dairy Processing Handbook. Building blocks of dairy processing. [En línea] (Actualizado a enero de 2018).

Disponible en:

http://dairyprocessinghandbook.com [Último acceso el 4 de enero de 2018].

74. United States Department of Agriculture. USDA. 2017. *Dairy: world markets and trade. Foreign Agricultural Service.* [En línea] (Actualizado al 15 de diciembre de 2017).

Disponible en:

http://usda.mannlib.cornell.edu/usda/current/dairy-market/dairy-market-12-15-2017.pdf

[Último acceso el 10 de enero de 2018].

- 75. Verzola, B., Gelfi, C. y Righetti, P.G. 2000. Quantitative studies on the adsorption of proteins to the bare silica wall in capillary electrophoresis II. Effects of adsorbed, neutral polymers on quenching the interaction. *Journal of Chromatography A*, 874, 293-303.
- 76. Weaver, C., Wijesinha-Bettoni, R., McMahon, D. y Spence, L. 2013. *Milk and dairy products in human nutrition.* [En línea] (Actualizado en 2013).
 Disponible en: http://www.fao.org/docrep/018/i3396e/i3396e.pdf

[Último acceso el 10 de enero de 2018].

77. Westermeier, R. 2005. *Electrophoresis in practice: a guide to methods and applications of DNA and protein separations.* Cuarta edición. Germany: Wiley-Blackwell, 9-43.

7. Apéndices

Apéndice A. Determinación de proteína por el método modificado de Lowry

1. Elaboración de los reactivos

Reactivo A (150 mL)

Concentración	
0.1%	
0.2%	
10.0%	
	Concentración 0.1% 0.2% 10.0%

Tabla A1 Composición del reactivo cobre-tartrato-carbonato

a) 50 mL de solución CTC (Cobre-Tartrato- Carbonato)

b) 50 mL de solución NaOH [0.8 N].

c) Se mezclaron las disoluciones anteriores con 50 mL de agua.

Una vez preparada la solución A puede almacenarse hasta por dos meses y conservarse a temperatura ambiente.

Reactivo B.

Diluir (1:10) el reactivo de Folin Fenol con agua destilada

2. Elaboración de la curva de calibración con BSA.

a) Se preparó una solución de BSA 2 mg/mL e hicieron las diluciones correspondientes para tener concentraciones entre 0.20 mg/mL a 2.0 mg/mL.

b) Para llevar a cabo la reacción, se tomaron 50 μ L de cada dilución de BSA y adicionaron 800 μ L del reactivo A, se mezcló y añadieron 500 μ L del reactivo B, se agitó de nuevo y tras 15 min de desarrollo de la reacción se registró la absorbancia a 750 nm.

Figura A1. Curvas de calibración utilizadas para la cuantificación de proteína por el método modificado de Lowry.

Apéndice B. Formulación del gel concentrador y del gel separador (SDS-PAGE)

Reactivo	mL
Agua desionizada	6.08
Buffer 4X 0.5 M (pH 6.8)	2.50
Acrilamida (30%)	1.36
APS	0.05
TEMED	0.01
Volumen final	10.0

Tabla B1 Gel concentrador (1.0 mm de espesor) (4% T, 2.6% C)

Tabla B2 Gel de separación (1.0 mm de espesor, 12.5% T, 2.6% C)

Reactivo	mL
Agua desionizada	3.18
Buffer 4X 1.5 M (pH 8.8)	2.60
Acrilamida (30 %)	4.16
APS	0.05
TEMED	0.01
Volumen final	10.0

Apéndice C. Determinación de la concentración relativa de las principales proteínas de la leche por electroforesis capilar de zona.

Figura C1. Electroforegramas del Material de Referencia Certificado. Réplicas independientes (**A**, **B** y **C**). La migración de las principales proteínas lácteas corresponde a: 1: α-LA, 2: β-LG, 3: α s₂-CN, 4: α s₁-CN, 5: α s₀-CN, 6: κ -CN, 7: β-CN B, 8: β-CN A¹ y 9: β-CN A².

Proteína _	oteína Réplica 1 #vial 2 Réplica 2 #vi					ial 30	Ré	Réplica 3 #vial 4		
_	tmr	Área	Cr (%)	tmr	Área	Cr (%)	tmr	Área	Cr (%)	
α-LA	0.746	34395	4.16	0.749	35383	4.06	0.745	36686	4.28	
β-LG	0.791	108196	12.35	0.793	115587	12.53	0.790	112096	12.34	
α _{s2} -CN	0.900	35472	3.56	0.901	38367	3.66	0.899	37813	3.66	
α _{s1} -CN	1.000	283443	25.58	1.000	289397	24.89	1.000	284215	24.72	
α _{s0} -CN	1.053	108915	9.34	1.053	109840	8.97	1.053	109263	9.03	
κ-CN	1.134	55998	4.46	1.134	61615	4.67	1.132	62756	4.82	
β-CN Β	1.165	9435	0.73	1.176	10435	0.76	1.165	10253	0.78	
β-CN A ¹	1.211	171670	12.79	1.211	189025	13.42	1.210	184956	13.30	
β-CN A ²	1.279	383405	27.05	1.279	401867	27.03	1.278	397621	27.07	
Área total		1190929			125151	6		123565	9	
Peso (g)		0.5148			0.5143	5		0.5165		

 Tabla C1. Tiempo de migración relativo y concentración relativa de las

 principales proteínas lácteas del Material de Referencia Certificado.

Apéndice C2. Muestras comerciales pasteurizadas

Figura C2. Electroforegramas de la leche pasteurizada.

Proteína	Réplica 1 #vial 1			Ré	Réplica 2 #vial 6			Réplica 3 #vial 7		
_	tmr	Área	Cr (%)	tmr	Área	Cr (%)	tmr	Área	Cr (%)	
α-LA	0.737	33570	3.994	0.738	32701	4.199	0.744	29296	3.920	
β-LG	0.784	121985	13.657	0.784	112837	13.638	0.791	104087	13.106	
α _{s2} -CN	0.888	29379	2.901	0.888	26996	2.880	0.938	53400	5.671	
α _{s1} -CN	1.000	272582	23.914	1.000	253531	24.016	1.000	235096	23.416	
α _{s0} -CN	1.041	76679	6.465	1.040	73477	6.691	1.053	82890	7.843	
κ-CN	1.120	71605	5.611	1.119	66971	5.671	1.131	60217	5.302	
β-CN Β	1.144	22852	1.753	1.143	20878	1.731	1.155	19253	1.660	
β-CN A¹	1.197	212981	15.605	1.196	193794	15.346	1.209	178720	14.718	
β-CN A ²	1.289	383611	26.100	1.287	350862	25.828	1.303	318658	24.364	
Área total		1225244		1132047			1081617			
Peso (g)	0.5009 0.5055					0.5083				

Tabla C2. Tiempo de migración relativo y concentración relativa de las principales proteínas lácteas de la leche pasteurizada.

Figura C3. Electroforegramas de la leche enriquecida pasteurizada.

Proteína	éplica 1 #vi	al 4	Ré	Réplica 2 #vial 7			Réplica 3 #vial 9		
	tmr	Área	Cr (%)	tmr	Área	Cr (%)	tmr	Área	Cr (%)
α-LA	0.724	14899	2.037	0.733	14973	2.590	0.740	16171	2.122
β-LG	0.777	87400	11.136	0.787	64670	10.426	0.795	78971	9.650
α _{s2} -CN	0.945	52665	5.519	0.957	13931	1.845	0.914	23315	2.479
α _{s1} -CN	1.000	245172	24.267	1.000	201513	25.558	1.000	179251	17.414
α _{s0} -CN	1.054	99805	9.375	1.040	45843	5.588	1.028	100977	9.540
κ-CN	1.099	38784	3.492	1.113	38468	4.382	1.080	95100	8.556
β-CN Β	1.124	12154	1.071	1.138	12727	1.418	1.152	83231	7.020
β-CN A¹	1.187	200372	16.708	1.202	180163	19.012	1.216	211073	16.861
β-CN A ²	1.263	336870	26.394	1.270	292258	29.181	1.295	351469	26.358
Área total	1088121			864546			1139558		
Peso (g)		0.2970			0.2961			0.2952	

Tabla C3. Tiempo de migración relativo y concentración relativa de las principales proteínas lácteas de la leche enriquecida pasteurizada.

Figura C4. Electroforegramas del producto lácteo pasteurizado.

Proteína	Réplica 1 #vial 4			Ré	plica 2 #\	ial 7	Réplica 3 #vial 8			
	tmr	Área	Cr (%)	tmr	Área	Cr (%)	tmr	Área	Cr (%)	
α-LA	0.730	33988	3.904	0.742	23467	3.697	0.730	32684	3.839	
β-LG	0.777	114102	12.314	0.789	80458	11.925	0.777	104447	11.534	
α _{s2} -CN	0.921	45630	4.154	0.895	21822	2.852	0.881	29349	2.858	
α _{s1} -CN	1.000	285070	23.901	1.000	217612	25.449	1.000	303400	26.017	
α _{s0} -CN	1.046	118067	9.467	1.052	67179	7.466	1.036	91800	7.597	
к-CN	1.110	67692	5.114	1.126	59191	6.149	1.108	68876	5.329	
β-CN Β	1.134	28527	2.109	1.150	23363	2.375	1.133	24503	1.855	
β-CN A¹	1.187	210423	14.858	1.204	167105	16.236	1.186	219555	15.879	
β-CN A ²	1.276	368069	24.179	1.271	259245	23.850	1.274	372675	25.093	
Área total	1271568			919442			1247289			
Peso (g)		0.6998			0.7015			0.7006		

Tabla C4. Tiempo de migración relativo y concentración relativa de las principales proteínas lácteas del producto lácteo pasteurizado.

Figura C5. Electroforegramas de la mezcla de leche con grasa vegetal pasteurizado.

Tabla C5. Tiempo de migración relativo y concentración relativa de las principales proteínas lácteas de la mezcla de leche con grasa vegetal pasteurizado.

Proteína	Réplica 1 #vial 4			Ré	plica 2 #\	/ial 8	Réplica 3 #vial 10		
	tmr	Área	Cr (%)	tmr	Área	Cr (%)	tmr	Área	Cr (%)
α-LA	0.736	14849	2.280	0.722	17851	3.029	0.721	15722	2.519
β-LG	0.788	89365	12.812	0.774	74295	11.761	0.774	69902	10.446
α _{s2} -CN	0.887	15008	1.913	0.888	22842	3.150	0.910	40453	5.140
α _{s1} -CN	1.000	223042	25.207	1.000	216975	26.576	1.000	232738	26.908
α _{s0} -CN	1.070	68358	7.219	1.050	65241	7.610	1.050	80117	8.818
к-CN	1.117	47873	4.843	1.097	37399	4.177	1.097	43716	4.609
β-CN Β	1.141	14892	1.476	1.121	9352	1.022	1.120	10689	1.103
β-CN A¹	1.206	177146	16.602	1.184	161416	16.698	1.184	149955	14.642
β-CN A ²	1.285	314300	27.648	1.262	267726	25.977	1.263	281881	25.813
Área total		964833			873097			925173	5
Peso (g)		0.5030			0.5052			0.5062	

Figura C6. Electroforegramas de la leche ultrapasteurizada.

Figura C7. Electroforegramas de la leche enriquecida ultrapasteurizada.

Figura C8. Perfiles proteínicos del producto lácteo ultrapasteurizado.

Figura C9. Electroforegramas de la mezcla de leche con grasa vegetal ultrapasteurizado.