
 
 
 

UNIVERSIDAD NACIONAL AUTÓNOMA DE MEXICO 
POSGRADO EN CIENCIAS FÍSICAS 

INSTITUTO DE CIENCIAS NUCLEARES, UNAM 
GRAVITACIÓN, ASTROFÍSICA Y COSMOLOGÍA 

 
 
 
 
 

GEOMETRIC AND PHYSICAL PROPERTIES OF CLOSED EVER EXPANDING 
DUST MODELS 

 
 
 
 
 

TESIS 
QUE PARA OPTAR POR EL GRADO DE: 

MAESTRO EN CIENCIAS 
 
 
 
 

PRESENTA: 
SEBASTIÁN NÁJERA VALENCIA 

 
 
 
 

TUTOR: DR. ROBERTO ALLAN SUSSMAN LIVOVSKY 
ICN, UNAM 

 
 

MIEMBROS DEL COMITÉ TUTOR 
DR. JERÓNIMO CORTEZ QUEZADA       FACULTAD DE CIENCIAS 

 
                                        

   DR. HERNANDO QUEVEDO CUBILLOS   FACULTAD DE CIENCIAS
 
 

 
          CDMX, MAYO 2018  



 

UNAM – Dirección General de Bibliotecas 

Tesis Digitales 

Restricciones de uso 
  

DERECHOS RESERVADOS © 

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL 
  

Todo el material contenido en esta tesis esta protegido por la Ley Federal 
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). 

El uso de imágenes, fragmentos de videos, y demás material que sea 
objeto de protección de los derechos de autor, será exclusivamente para 
fines educativos e informativos y deberá citar la fuente donde la obtuvo 
mencionando el autor o autores. Cualquier uso distinto como el lucro, 
reproducción, edición o modificación, será perseguido y sancionado por el 
respectivo titular de los Derechos de Autor. 

 

  

 



Universidad Nacional Autónoma de México

Geometric and physical properties of

closed ever expanding dust models

Tesis de maestría presentada por Sebastián Nájera Valencia

dentro del Programa de Maestría en Ciencias Físicas

Dirigida por el Dr. Roberto A. Sussman





Universidad Nacional Autónoma de México

Geometric and physical properties of

closed ever expanding dust models

Tesis de maestría presentada por Sebastián Nájera Valencia

dentro del Programa de Maestría en Ciencias Físicas

Dirigida por el Dr. Roberto A. Sussman

El candidato El director

Ciudad de México, mayo de 2018





Geometric and physical properties of closed ever expanding dust models

Author: Sebastián Nájera Valencia

Advisor: Dr. Roberto A. Sussman



Para mi madre, Lisset y el resto de mi familia.





Abstract

Current observations suggest that our Universe is not incompat-

ible with a small positive spatial curvature that can be associated

with rest frames having a “closed” standard topology. We exam-

ine a toy model generalisation of the ΛCDM model in the form of

ever expanding Lemaître-Tolman-Bondi (LTB) models with pos-

itive spatial curvature. It is well known that such models with

Λ = 0 exhibit a thin layer distribution at the turning values of

the area distance that must be studied through the Israel-Lanczos

formalism. We find that this distributional source exhibits an un-

physical behaviour for large cosmic times and its presence can be

detected observationally. However, these unphysical features can

always be avoided by assuming Λ > 0. While these LTB models

are very simplified, we believe that these results provide a simple

argument favouring the assumption of a nonzero positive cosmo-

logical constant in cosmological models.





Resumen

Las observaciones actuales sugieren que nuestro Universo no es in-

compatible con una pequeña curvatura espacial positiva que puede

ser asociada con marcos de reposo que tengan topología estándar

cerrada. Examinamos una generalización al modelo de juguete

ΛCDM en la forma de modelos Lemaître-Tolman-Bondi (LTB) en

expansión perpetua con curvatura espacial positiva. Es sabido que

dichos modelos para Λ = 0 presentan una distribución de capa

delgada en los valores críticos de la distancia de área que debe ser

estudiada mediante el formalismo de Israel-Lanczos. Encontramos

que esta fuente distribucional muestra un comportamiento no físico

para valores grandes del tiempo cósmico y su presencia puede ser

detectada observacionalmente. Sin embargo, estas características

no físicas siempre pueden evitarse asumiendo Λ > 0. Aún cuando

estos modelos LTB son simplificaciones, creemos que estos resulta-

dos proveen un argumento simple que favorece la suposición de una

constante cosmológica positiva en modelos cosmológicos.
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Introduction

The spherically symmetric exact solutions of Einstein’s equations

known as the Lemaître-Tolman-Bondi (LTB) dust models are useful toy models

to study observational issues and structure formation in a Friedman Lemaître

Robertson Walker (FLRW) background. If we assume Λ > 0 these models

provide a simple inhomogeneous generalisation of the ΛCDM model favoured

by current observations. In fact, models with Λ = 0 and Λ > 0 provide simple

descriptions of a single CDM structure (overdensity or density void) in an

FLRW background. The evolution of such structures can always be mapped

rigorously to the formalism of gauge invariant cosmological perturbations (see

comprehensive discussion in [1, 2]). As shown in [1, 2] (see also [3, 4]), LTB

inhomogeneities can be described as covariant exact fluctuations that in their

linear regime reduce to linear cosmological perturbations in the isochronous

comoving gauge.

Models with Λ = 0 and Λ > 0 provide also provide simple relativistic

generalisations of the Newtonian spherical collapse model, which provide order

of magnitude estimations of collapsing times and density contrasts that are

useful in the design of numerical N–body simulations. See discussion and

examples in [5, 6, 7].
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Ever expanding FLRW models with a closed topology (rest frames

difeomorphic to the 3–sphere S3) and a dust source are not possible unless we

assume that Λ > 0. If Λ = 0 then all closed FLRW dust models must have

positive spatial curvature and must bounce and re–collapse. However, for LTB

models the extra degrees of freedom decouple kinematic evolution and the

topology of the rest frames, allowing (in principle) for ever expanding closed

models even if Λ = 0. In the 1980’s when a nonzero cosmological constant

was not favoured, Bonnor [8] showed interest in looking at ever expanding

LTB models with Λ = 0 and a closed topology. He showed that these models

exhibit a thin layer surface matter distribution at a timelike hypersurface

marked by the turning value of the area radius (the “equator” of S3). Using

the Israel-Lanczos formalism, Bonnor derived the equation of state for this

surface layer matter–energy distribution, regarding it in a pointblank manner

as unphysical because it involved negative surface pressure (these were the

times before dark energy). Hence, Bonnor concluded that full regularity of

closed LTB models with Λ = 0 required re-collapse and thus excluded ever

expanding kinematics. More recent research allows for the interpretation of

the negative surface layer pressure as surface tension [9].

In the present article we extend Bonnor’s work by (i) showing that

fully regular closed and ever expanding LTB models are possible once we

consider Λ > 0 and (ii) by looking for the case Λ = 0 at the time evolu-

tion of the distributional surface source in comparison with the evolution of

the continuous density. We show for models with zero and negative spatial

curvature that the behaviour of this source is unphysical, since for large times

the continuous dust density surface density decays at a much faster rate than

the distributional surface density (which has no contribution to the quasilocal

mass integral). In particular, we show that the presence of such distributional

source would be detectable by observations through the redshift from sources
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connected by radial null geodesics that cross the equatorial hypersurface of

S3. While the redshift as a function of comoving radius is continuous, its

derivative is not, with the abrupt change of rate occurring precisely at this

hypersurface. We show that this effect does not occur for re-collapsing LTB

models with closed topology (for which there is no distributional source at the

equator of S3).

Since observations do not rule out a Universe whose rest frames have

a closed S3 topology associated with a very small positive spatial curvature,

then a LTB model with Λ > 0 is a viable toy model approximation to a

ΛCDM model that is favoured by observations. Hence, we argue that the

results of the present article provide another argument to support the need

for a positive cosmological constant, since without the latter all ever expanding

CDM dominated models would be incompatible with a closed S3 topology.

The section by section description of this thesis is as follows. In

chapter 1 we present the Israel-Lanczos formalism for thin shells and a brief

survey of the differential geometry concepts needed in the construction. Chapter

2 provides an introduction to generic LTB models presenting the relevant equa-

tions needed in the analysis, section 2.2 focuses to generic LTB models with

Λ = 0, while in section 2.3 we examine the specific case of closed models. In

section 2.3.1 we review Bonnor’s work and in section 2.4 we apply the Israel-

Lanczos formalism to closed LTB models. In chapter 3 sections 3.1 and 3.2

provide an example of ever expanding closed models with zero and negative

spatial curvature, respectively. The surface layer density is evaluated for these

models, showing that in the large time regime the continuous density decays

much faster than the surface density, which is an unphysical behaviour. We

show in section 3.3 that fully regular ever expanding closed models with Λ > 0

are always possible. In sections 3.4 and 3.5 we compute null radial geodesics

for the spatially flat case in order to examine the observational detection of
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the thin shell distribution. Finally, in section 3.6, we show that no observa-

tional effects occur in the the case of re–collapsing models with positive spatial

curvature and Λ = 0, for which no thin shell distributional source arise.



Chapter

1
Israel-Lanczos formalism for thin
shells and related subjects

General Relativity (GR) is nowadays the most successful physical

theory to describe the universe in a large scale. GR assumes that space-time

is a Lorentzian manifold of four dimensions equipped with a metric tensor gab
which is a solution to Einstein’s field equations (EFE’s)

Gab = 8πTab − Λgab, (1.1)

where Tab is the energy-momentum tensor and Gab is the Einstein tensor. The

Einstein tensor is defined by

Gab = Rab −
1
2Rgab,

with Rab the Ricci tensor and R the Ricci scalar, both related to the intrinsic

curvature of the manifold.
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The energy-momentum tensor Tab is a tensor that depends on the

fields of matter, their covariant derivatives and the metric. It satisfies the

following properties c.f. [10]

1. Tab is vanishes on an open set U if and only if all matter fields vanish

on U ,

2. Tab obeys the conservation equation

T ab;b = 0, (1.2)

the covariant derivative of the right hand side of the Einstein field equations is

also zero in virtue of Bianchi’s identities. Local causality has to be introduced

for the matter fields included in the energy-momentum tensor. The postulate

of local causality is that [10] "the equations governing the matter fields must

be such that if U is a convex normal neighborhood and p and q are points in

U then a signal can be sent in U between p and q if and only if p and q can be

joined by a C1 curve lying entirely in U" and the curve is non-spacelike. This

postulate can be also written in terms of the Cauchy problem for the matter

fields.

1.1 Israel-Lanczos formalism

In the usual formulation of GR from the EFE’s and the conservation

equation it is usually assumed that the metric is at least C2(M ). Therefore

one of the postulates in this formulation is that the manifold admits a C3

atlas in which gab is at least twice continuously differentiable. Nevertheless if

one has a Cr atlas (r ≥ 1) it is a differential topology result that an analytic

subatlas can be found [11] so there is no loss of generality in our study to

assume from the start that the atlas used in the GR standard formulation
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is analytic. This imposes certain restrictions to the space-times that can be

analyzed under thess hypotheses as many space-times considered physically

relevant are not of this differentiable class on the whole manifold. In the late

1930’s Oppenheimer and Snyder obtained an exact solution to the EFE’s that

described the process of gravitational collapse to a black hole by considering a

star as a spherical distribution of dust with uniform density. The solution to

the problem involves considering space-time as two regions that are matched

on a common boundary, i.e. the surface of the star. It is not a trivial problem

to match two solutions of the EFE’s and obtain a new solution as in general

the differentiability conditions on this new solution need not be satisfied on

the boundary. Therefore the differentiability conditions have to be weakened

in order not to discard relevant solutions. Regardless of this consideration,

conservation equations make sense in the theory of distributions if the second

derivatives of the components of the metric tensor have, at most, a simple

discontinuity across a smooth hypersurface [12], hence tensors have to be

considered as distributions.

1.1.1 Differential geometry preliminaries

As the formulation of the junction conditions is across a hypersur-

face, which is regarded as a common boundary between two space-times, it is

necessary that we begin with some differential geometry definitions and res-

ults to establish terminology we will use henceforth. First we introduce the

definition of hypersurface with some related concepts.

Definition 1. LetM and N be Cr differentiable manifolds and let f :M → N

be a Cr mapping. We call f an immersion if its derivative is injective at each

point. An embedding is defined as an immersion which is a homeomorphism

onto its image in the induced topology.



4 1. Israel-Lanczos formalism for thin shells and related subjects

From the injective function theorem [13] the function f is locally

injective, and therefore is locally an embedding. With this concepts one can

define a hypersurface.

Definition 2. LetM be an n-dimensional manifold, Σ an (n−1)-dimensional

manifold, and let Φ : Σ → M an embedding, we say that the image Φ(Σ) of

Σ is a hypersurface in M .

Locally, by the implicit function theorem, the hypersurface Φ(Σ) ∈

M can be defined through a function F : M → R by the equation F (x) =

0. Henceforward, unless specifically stated, we consider (M , g) to be a 4-

dimensional orientable Lorentzian manifold, and Φ(Σ) to be a hypersurface

defined on the manifold.

As is usual in differential topology, as soon as a differentiable mani-

fold is defined the differentiable structure allows us to develop calculus on the

manifold. As the hypersurface previously defined is a differentiable manifold

one can procede as usual to define tangent vectors and tangent spaces to the

hypersurface. Given that the hypersurface is embedded in space-time we can

use a relation as follows to bring the structure already defined inM to Σ. We

follow [14] in this construction.

Definition 3. For each p ∈ Σ, the embedding Φ naturally defines a differential

mapping, called the push-forward from TpΣ to TΦ(p)M ,

dΦ|p : Tp(Σ)→ TΦ(p)M

V 7→ dΦ|pV ,

which has rank 3 for each p ∈ Σ given that the mapping is injective. The

push-forward can be generalized for contravariant tensors of any order in Σ.

In a similar manner, the pull-back maps 1-forms in T ∗Φ(p)M onto 1-forms in



1.1. Israel-Lanczos formalism 5

T ∗pΣ,

Φ∗|p : T ∗Φ(p)M → T ∗p (Σ)

ω 7→ Φ∗|pω.

Given that the rank of the push-forward is 3, dΦ|p(TpΣ) must be

a 3-dimensional subspace of TΦ(p)M , which is the tangent space to the hy-

persurface at Φ(p). For convenience in the notation we denote this tangent

space in Φ(p) by TpΣ. We now choose a coordinate system in both Σ and

M . The coordinate system taken in Σ, {ya} (Greek indexes run from 0 to 3,

while Latin indexes go from 1 to 3), is defined in a neighborhood of a point

p ∈ Σ, while the coordinate system in M , {xα}, is taken in a neighborhood

of Φ(p) ∈ M . We do not use abstract index notation to avoid confusion

with indexes which denote coordinates at the hypersurface, instead we denote

tensors by bold letters. Even though we choose coordinate systems in Σ and

M the Israel-Lanczos formalism is coordinate independent.

We know that the vectors ∂a|p form a basis for TpΣ and that the

push-forward maps these basis into three linearly independent vectors in Φ(p)

so they form a basis of the tangent space to the hypersurface. Hence

dΦ|p (∂a|p) = ∂Φµ

∂ya
∂

∂xµ

∣∣∣∣
Φ(p)
≡ eµa

∂

∂xµ

∣∣∣∣
Φ(p)
≡ ~ea|Φ(p).

By definition the vector fields ~ea are defined only at the hypersurface Φ(Σ).

As Φ is an homeomorphism between Σ and the hypersurface Φ(Σ), from now

on we identify (unless specifically stated) the points p and Φ(p), and Σ and

Φ(Σ) as usual.

Definition 4. Let TpΣ be the tangent space to the hypersurface, the orthogonal

complement in the dual space T ∗pM is a 1-dimensional vector space. This

space is spanned by a non-zero 1-form at p which we denote as n|p, which is
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unique up to scalar multiplication. We call this form the normal form to the

hypersurface. The vector normal to the hypersurface is defined as the vector

obtained by raising the index of n with the metric of M .

Due to its definition, n is defined only in Σ and n(~ea)|p = 0. In

components, the form is given by n = nµdx
µ. The hypersurface we previously

defined can be equipped with a natural metric inherited by the metric in the

manifold M . This metric can have different signatures which are associated

to the normal form to the hypersurface.

Definition 5. If g is a metric in M , the embedding Φ induces a metric Φ∗g|p
in Σ, such that for each X,Y ∈ TpΣ, Φ∗g(X,Y )|p = g(dΦ(X), dΦ(Y ))|Φ(p).

This metric is called the first fundamental form of Σ. We denote g̃ = Φ∗g|p.

Theorem 1. Let g̃ be the first fundamental form of Σ and let g be a Lorentzian

metric in M , then g̃ is

1. Lorentzian if gabnanb > 0, in which case we say Σ is a timelike hyper-

surface.

2. Degenerate if gabnanb = 0, in which case we say the hypersurface is null.

3. Positive definite if gabnanb < 0, in which case we say that Σ is a spacelike

hypersurface.

The proof of this theorem can be found in [10]. It is important to no-

tice that the first fundamental form’s signature can change from point to point

nevertheless we will restrict our study to hypersurfaces with definite signature

as the thin layer surface studied in chapter 3 is a time-like hypersurface. Mars

and Senovilla have dealt with general hypersurfaces in [14].

If gabnanb 6= 0, we can normalize the normal form n to have unit

magnitude. In this case, the mapping Φ∗ : T ∗Φ(p)M → T ∗pΣ will be injective
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in the 3-dimensional subspace H∗Φ(p) of T ∗Φ(p)M that consists in all forms ω ∈

Φ(p) such that gabnaωb = 0, given that Φ∗n = 0 and n does not lie in H∗.

Consequently, the inverse (Φ∗)−1 will be a mapping Φ̃∗ : T ∗pΣ from T ∗pΣ to

H∗Φ(p) and therefore in T ∗Φ(p). We can extend this mapping to a mapping of

covariant tensors in Σ to covariant tensors in Φ(Σ); as there already exists a

mapping dΦ of covariant tensors in Σ to Φ(Σ), we extend dΦ to a mapping

Φ̃∗ of arbitrary tensors in Σ to Φ(Σ), this mapping has the property that Φ̃∗T

has null contraction with n in all its indexes, i.e.

(Φ̃∗T )a···bc···dna = 0 ∧ (Φ̃∗T )a···bc···dgcene = 0

for any tensor defined in Σ. Hence, the tensor h in Φ(Σ) is defined by h =

Φ̃∗(Φ∗g). In terms of the normalized form n,

hab = gab ∓ nanb,

given that this implies Φ∗h = Φ∗g and habgbcnc = 0.

Definition 6. Let ñ be any extension of the 1-form n to an open neighborhood

of Φ(Σ) then the tensor K defined in Φ(Σ) by

Kab = hcah
d
b∇dñc

is called the second fundamental form of Σ.

This definition is independent of the extension, given that the pro-

jections by hab = gachcb restrict the covariant derivative to tangent directions

to Φ(Σ).

1.1.2 Algebra and calculus of tensorial distributions

As mentioned before, in the usual formulation of GR the metric is

taken to be at least of class C2 in order that the EFE’s are well-defined. The
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choice of the differentiability class can be circumvented by defining them in

a distributional sense, i.e. taking generalized functions instead of continuous

functions. We now proceed to lay the framework in which we will work to

understand what we mean by a distributional sense. We follow the standard

construction of the space of distributions c.f. [15, 12, 16], for additional details

see [17].

Definition 7. Let T and U be two tensors of type (p, q) and (q, p), respectively,

we denote by (T ,U) their scalar product at a point x ∈M . Let D(M ) be the

set of C∞0 tensor fields on M , i.e. smooth tensor fields with compact support

on M . We call D(M ) the set of test tensor fields. We denote by Dpq the

subset of D(M ) of tensor fields of type (p, q).

Definition 8. Given U ∈ Dpq , for each locally integrable (p, q) tensor, i.e.

integrable in each compact subset of its domain, T we define

< T ,U >=
∫
M

(T ,U)
√
−g d4x.

We can now define tensorial distributions by means of functionals.

Definition 9. Let χqp be a linear continuous functional

χqp : Dpq → R

T pq 7→ χqp(T pq ) ≡< χqp, T
p
q > .

We call χqp a tensorial distribution of type (p, q).

Henceforth we will refer to tensorial distributions by distributions.

We define the sum of distributions and product by a scalar in the

usual manner, giving the set of distributions a vector space structure. Notice

that the space of distributions is simply the dual space of D(M ).
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Definition 10. Let Sqp be a tensor field of type (q, p), we define a distribution

of type (p, q) associated to Sqp in the following manner

Sqp : Dpq → R

T pq 7→< Sqp, T
p
q >≡

∫
M

(S, T )η

where η if the volume element of the manifold.

Notice that it is not necessary that distributions act over test tensor

fields, this conditions can be weakened considering the action of the distribu-

tions whenever it can be defined.

The components of a tensorial distribution χqp in a coordinate system

are scalar distributions χα1···αq
β1···βp defined by

< χ
α1···αq

β1···βp , T >≡
〈
χqp, Tdx

α1 ⊗ · · · ⊗ dxαp ⊗ ∂

∂xβ1
⊗ · · · ⊗ ∂

∂xβq

〉
,

where T is a function of compact support.

Definition 11. Let χqp be distribution of type (p, q) and Srs a tensor field of

type (r, s), we define their tensor product as the distribution of type (s+p, r+q)

that acts on the following manner

< Srs ⊗ χqp, T
s+p

r+q >≡< χqp, (S,T )pq >,

where (S,T )pq ∈ Dpq is obtained by contracting the corresponding indexes of

S with those of T .

We now define the covariant derivative of distributions by means of

the covariant derivative defined on the manifold.

Definition 12. Let (M , g) be a Lorentzian manifold, χqp a distribution of type

(p, q), and T p+1
q a tensor field of type (p + 1, q). We define the covariant

derivative of χqp, ∇χqp, by the following relation

< ∇χqp, T p+1
q >≡ − < χqp, (DT )pq >



10 1. Israel-Lanczos formalism for thin shells and related subjects

where (DT )a1···ap
b1···bq = ∇cT

ca1···ap
b1···bq .

With this definition the components of the covariant derivative are

the scalar distributions that act in the usual way, as the components of the

covariant derivative of the tensor upon which the distribution acts.

1.1.3 Junction conditions

Let M+ and M− be two manifolds with boundaries Σ+ and Σ−,

respectively. Let ψ : Σ+ → Σ− be a diffeomorphism, we identify the points

on both boundaries and denote both boundaries by Σ. LetM be the disjoint

union of M+ and M−. As we are interested in the study of tensors in the

hypersurface we proceed to define the associated distributions in a piecewise

manner.

Definition 13. Let Σ be a hypersurface in (M , g), we define the Heaviside

function of Σ θ :M → R by

θ(x) =



1 if x ∈M+,

a if x ∈ Σ,

0 if x ∈M−,

where a ∈ R is arbitrary.

Given that θ is locally integrable, it defines a scalar distribution θ as

previously defined

< θ,T >=
∫
M+

Tη.

Given that Σ has measure zero onM , the distribution θ is independent of the

value of a, therefore it won’t be fixed.
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Let f :M → R be a locally integrable function which is differentiable

in allM , except possibly in Σ where it might be discontinuous. Therefore, f is

differentiable in bothM+ andM−. Additionally we demand that both limits

of the first derivatives are well defined over M+ and M−. We define f+ =

f |M+ and f− = f |M− , being f locally integrable the associated distribution

to this function is

f = f+ · θ + f− · (1− θ).

We calculate the derivative of f , integrating by parts in M+ and M− we

obtain for an arbitrary vector V

< ∇f, V >=
∫
M+

V µ∂µf
+η +

∫
V −

V µ∂µf
−η +

∫
Σ
[f ]V µdσµ (1.3)

where dσµ has an orientation fromM− toM+ and [f ] is the function defined

in Σ called the jump of f in Σ, and it is defined for all q ∈ Σ by

[f ](q) ≡ lim
x→q
M+

f+(x)− lim
x→q
M−

f−(x).

Definition 14. Let V ∈ D1
0 , we define the distribution δ of type (1, 0) by

< δ,V >≡
∫
Σ
V µdσµ =

∫
Σ
V µnµdσ.

From equation (1.3) taking f+ = 1 and f− = 0 it is straightforward

that δ = ∇θ. It is possible to define a scalar distribution δ by

< δ,V >≡
∫
Σ
V dσ.

This δ distribution is dependent of the choice of the normal form n, δ = n · δ,

in components δµ = nµ · δ. Therefore, (1.3) is

∂µf = ∂µf
+ · θ + ∂µf

− · (1− θ) + [f ] · δµ. (1.4)

N.B. 1. The most important properties of θ y θ are the following (As this prop-

erties are held almost everywhere we omit writing the distributional relations



12 1. Israel-Lanczos formalism for thin shells and related subjects

as they are analogous to the non-distributional ones.)

θ(x)θ(x) = θ(x),

θ · θ = θ,

θ(x)(1− θ(x)) = 0,

(1− θ(x)) = θ(−x),

(1− θ(x))(1− θ(x)) = (1− θ(x)),

∇θ = δ,

where δ is the Dirac distribution.

In the same manner that it was done for a scalar function, given a

tensor field T ∈ Dpq we have that the associated distribution is

T = T+ · θ + T− · (1− θ).

1.1.3.1 First junction condition

We regard space-time as the disjoint union of two separate Lorent-

zian manifolds with boundary M+ and M−, each a solution to Einstein’s

equations with metrics g+ and g−, respectively. The boundaries of M+ and

M− will be denoted Σ+ and Σ−, respectively. We will assume that there

exists a C3 diffeomorphism between both boundaries so henceforth we will

denote both boundaries by Σ unless specifically stated. In 1987, Clarke and

Dray [18] proved that under this assumptions "if a spacetime is constructed by

identifying the boundaries of two spacetimes in such a way that the intrinsic

metrics on the boundaries agree (and have a constant signature) then there

exists a unique choice of a C1 atlas in which the (four-dimensional) metric of

the spacetime is continuous". As pointed out by Mars and Senovilla [14], the

assumption of a constant signature is superflous. Therefore we assume that g
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is a continuous tensor on a hypersurface, this is called the first junction condi-

tion. If one assumes that g is discontinuous across the hypersurface then the

Christoffel symbols contain terms proportional to a product of distributions

which is ill-defined thus the assumption of continuity of the metric across Σ

can also be deduced from this argument. The first junction condition is also

known as the preliminary junction conditions.

We can decompose the metric tensor as

g = θ · g+ + (1− θ) · g−,

and from our hypothesis it has an associated distribution which would be

g = θ · g+ + (1− θ) · g−.

We now define the connection coefficients associated to the metric in the

manifold. Denoting by Γ+α
βγ the Christoffel symbols associated to g+ and

defined inM+∪Σ, and Γ−αβγ the Christoffel symbols associated to the metric

defined inM−∪Σ, g−. We denote by Γαβγ the Christoffel symbols associated

with the distributional metric g. For convenience in the notation we denote

(1− θ) = θ̃. So we obtain

Γαβγ =1
2g

αλ
(
g
λβ,γ

+ g
λγ,β
− g

βγ,λ

)
=1

2
(
gαλ+θ + gαλ−θ̃

)
(gλβ,γθ + gλγ,βθ − gβγ,λθ

+ gλβ,γ θ̃ + gλγ,β θ̃ − gβγ,λ θ̃)

=Γ+α
βγ θ + Γ−αβγ (1− θ).

Consequently we have

Γαβγ = Γ+α
βγ θ + Γ−αβγ (1− θ). (1.5)
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In this way we now know the Christoffel symbols as distributions so we define

the connection coefficients as functions defined on the manifold in the natural

way,

Γαβγ = Γ+α
βγ θ + Γ−αβγ (1− θ).

Notice that this definition produces the associated Christoffel distributions as

needed.

Given the relation between the Riemann tensor and the Christoffel

symbols we compute the Riemann tensor,

Rα
βγµ = Γαβµ,γ − Γαβγ,µ + Γαγρ Γ

ρ
βµ − Γαµρ Γ

ρ
βγ

and we will treat this relation in a distributional sense. First, given equations

(1.4) and (1.5), we have

Γαβµ,γ = Γ+α
βµ,γ · θ + Γ−αβµ,γ · θ̃ + δ · nγ[Γαβµ ].

As we have defined the functions Γαβµ , we have that the distributions Γαβµ
are associated to these functions and therefore the product ΓαγρΓ

ρ
βµ is well-

defined as it is the distribution associated to Γαγρ Γ
ρ
βµ . From this facts, we

obtain the distributional Riemann tensor which has the following expression

Rα
βγµ = R+α

βγµ · θ +Rα
βγµ · θ̃ + δ · nγ[Γαβµ ]− δ · nµ[Γαβγ ]. (1.6)

The term on the right hand side of the equation proportional to δ is called

the singular part of the Riemann tensor.

1.1.3.2 Second junction condition

We now seek the conditions to avoid the singular part of the Riemann

tensor. As the metric is assumed to be continuous across Σ, any discontinuity

of the derivative must be in the normal direction to the hypersurface, i.e.

[gαβ,γ] = cαβnγ, (1.7)
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where cαβ is a tensor field. With the jump of the ordinary derivative of the

metric in a coordinate system we can calculate the jump of the Christoffel

symbols. From (1.7) one obtains [nα;β] = −[Γ ραβ ]nρ and a direct calculation

yields that the singular term of the Riemann distribution is actually a tensor

field Rα
βµν which has the following expression

Rα
βµν = 1

2(−nα[Kβν ]nµ + nα[Kβµ]nν − nβ[Kα
µ ]nν + nβ[Kα

ν ]nµ).

Contracting Rρ
µρν = Rµν one obtains the so called singular part of the Ricci

distribution, i.e.

Rµν = R+
µνθ +R−µν(1− θ) + δRµν ,

where the explicit formula for the singular part is

Rµν = −[Kµν ]− [Kρ
ρ ]nµnν .

Notice that the singular part of the Ricci distribution vanishes if and only if

the jump of the second fundamental form vanishes, and therefore if and only

if the singular part of the Riemann distribution does. Contracting one again

R = R+θ +R−(1− θ) + δR ,

where R = −2[Kµ
µ ]. Therefore the Einstein distribution is piecewise defined

by

Gµν := Rµν −
1
2gµνR = G+

µνθ +G−µν(1− θ) + δGµν , (1.8)

where the singular part is

Gµν = Rµν −
1
2gµνR = −[Kµν ]− [Kρ

ρ ]nµnν −
1
2gµν(−2[Kρ

ρ ])

= −[Kµν ] + [Kρ
ρ ](gµν − nµnν) = −[Kµν ] + hµν [Kρ

ρ ], (1.9)

which is tangent to Σ. As our initial assumption was that both metrics are

solutions in M+ and M−, respectively, we can define an energy-momentum

tensor

T µν := T+
µνθ + T−µν(1− θ) + δTµν . (1.10)
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which is a solution to the EFE’s in a distributional sense. The singular part of

the energy-momentum tensor is interpreted as the surface energy-momentum

tensor of a surface layer or thin shell. As the surface energy-momentum tensor

is tangent to Σ we can do a decomposition

T µν = T abeµae
ν
b,

to arrive to the expression

Tab = −[Kab] + [K]hab.

From this expression it is immediate that to eliminate the singular term from

the curvature distributions it is sufficient to demand [Kab ] = 0, which is the

second junction condition or occasionally known as the junction conditions as

one assumes the first junction condition to obtain the second.

1.2 Bianchi’s second identity in distributional sense

A lengthy calculation shows [14] that Bianchi’s second identity holds

in a distributional sense, i.e.

1
2δ

αβγ
λµνRρσαβ;γ = Rρσλµ;ν +Rρσµν;λ +Rρσνλ;µ = 0, (1.11)

which as an immediate consequence has the equation ∇µGµν = 0. We now

analyze this last equation

∇µGµν = ∇µ(G+
µνθ +G−µν(1− θ) + δGµν) = [Gµν ]nµδ +∇µ(Gµνδ) (1.12)

Using equation (A.3) the last term can be expanded as

gµρ∇ρ(Gµνδ) = gµρ∇σ(Gµνnρnσδ) + gµρh λ
ρ ∇λGµνδ = hρµ∇µGρνδ. (1.13)

Using (A.2),

∇µ(Gµνδ) = (∇µGµν −KΣαβGαβnν)δ. (1.14)
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Substituting in (1.12) we have
(
nµ[Gµν ] +∇µGµν −

1
2nνG

αβ
(
K+
αβ

+K−αβ

))
δ = 0.

Separating in normal and tangential components we get

(K+
µν +K−µν )G µν = 2nµnν [Gµν ] (1.15)

∇µGµν = −nµhρν [Gµρ]. (1.16)

Notice that all relations are coordinate independent.





Chapter

2
Closed LTB Models

Given a 4-dimensional Lorentzian manifold (M , gab), it is called a

cosmological model if it admits a congruence of timelike curves C a, called

the word lines of the fundamental observers (WFO’s), such that each p ∈M

belongs to one and only one WFO. One also assumes that (M , gab) is a solution

to Einstein’s field equations and is asymptotically an FLRW model. The

tangent vector field to the WFO’s is called the 4-velocity field. Sometimes it

is convenient to adapt coordinates to the WFO’s assuming that each WFO is

parametrized as

x0 = x0(τ), xi = const., (2.1)

and that each WFO is labeled by one and only one set of constant values of

xi. These coordinates are known as comoving coordinates.
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2.1 LTB Models

LTB models are exact spherically symmetric solutions of Einstein’s

equations with an inhomogeneous dust source with or without cosmological

constant. We now follow the standard derivation of the LTB metric, be-

ginning by considering the general spherically symmetric metric in comoving

coordinates

ds2 = −N2 dt2 +B2 dr2 +R2dΩ2, (2.2)

where N = N(t, r), B = B(t, r) and R = R(t, r).

From the EFE’s

G0
0 = 2R′′

RB2 −
2R′B′
RB3 + R′2

B2R2

− 1
R2 −

2ṘḂ
N2RB

− Ṙ2

R2N2 = −κρ− Λ, (2.3)

G1
1 = − 2R̈

RN2 + R′2

B2R2 −
1
R2 + 2N ′R′

B2RN

− Ṙ2

R2N2 + 2ṄṘ
RN3 = −Λ, (2.4)

G1
0 = 2Ṙ′

B2R
− 2ḂR′
B3R

− 2N ′Ṙ
B2RN

= 0, (2.5)

G2
2 = G3

3 = 1
RB3N3

(
R′′BN3 −B2B̈RN +N ′′RBN2 − R̈B3N

−B′R′N3 −B′N ′RN2 +N2N ′R′B −B2ḂṘN +B2ḂṄR

+ṄṘB3
)

= −Λ, (2.6)

where R′ = ∂R/∂r, and Ṙ = ua∇aR = ∂R/∂t. We know the fluid moves in

timelike geodesics, so the acceleration is zero u̇a = ub∇bu
a = N ′/NB2 = 0,

which implies N ′ = 0 and one can rescale the time coordinate to make N = 1.

So (2.5) is

(BR′),t = 0, (2.7)
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if R′ = 0 one obtains a Kantowski-Sach’s-like metric, Bondi integrated this

equation for R′ 6= 0 and obtained the result

B2 = R′2

1−K , (2.8)

where K = K(r) is an arbitrary function. Therefore, the LTB metric in

comoving coordinates is

ds2 = −dt2 + R′2

1−Kdr2 +R2dΩ2. (2.9)

To avoid having a degenerate metric in (2.9) if there is a point in spacetime

in which R′(t∗, r∗) = 0 then by L’Hôpital’s rule K(r∗) = 1 in such a way that

the limit R′/(1 −K) is finite and non-zero. From this limit and that K is a

function of one variable one must also have that R(t, r∗) = 0 for all t.

As N ′ = 0, using (2.8) we can eliminate R′2 from the G1
1 component,

obtaining
2R̈
R

+ Ṙ2

R2 + K

R2 + Λ = 0. (2.10)

Assuming Ṙ 6= 0 we multiply this equation by R2Ṙ and integrate the resulting

equation to obtain a Friedmann-like equation

Ṙ2 = 2M
R
−K − 1

3ΛR
2, (2.11)

with M an arbitrary function which will be discussed in the following para-

graph.

Multiplying the G0
0 component by R2R′ we obtain by rearrangement(

R− RṘ2

N2 + RR′2

B2 + 1
3ΛR

3
)
,r

+R

(
Ṙ2

N2

)
,r

− 2B′RṘR′
N2B

= κρR2R′. (2.12)

By equation (2.5) the second and third terms on the left hand side sum up to

zero, so (2.12) is in fact(
R− RṘ2

N2 + RR′2

B2 + 1
3ΛR

3
)
,r

= κρR2R′. (2.13)
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The term in the left hand side of the previous equation is the radial derivative

of the Misner–Sharp quasi–local mass–energy function, a well known invariant

in a spherically symmetric spacetime, so we obtain the relation

2M ′ = 8πρR2R′. (2.14)

In an analogous way, the G1
1 component takes the form(

R− RṘ2

N2 + RR′2

B2 + 1
3ΛR

3
)
,t

= 0, (2.15)

which implies that M = M(r).

Notice that the density diverges whenever R or R′ do not have a zero

of the same order asM ′. The first divergence is the Big Bang singularity while

the second is know as a shell crossing singularity. In this type of singularity

the density goes to infinity and changes sign whenever the critical point is also

a turning value for R′. The radial geodesic distance between two infinitesimal

points is
√
|grr| dr, which is zero for a shell crossing singularity.

Misner–Sharp quasi–local mass–energy function is in general not

equal to the proper mass, which is given by

MP =
∫
V
ρ
√
−g dV = 4π

∫
ρ
R′R2
√

1−K
dr. (2.16)

Notice that if K = 0 then M = MP . This gives K a physical interpretation

as if K > 0 then M < MP and if K < 0 then M > MP . Therefore −K

determines the local energy per unit mass of the dust particles.

2.2 LTB Models with Λ = 0

Henceforth we consider Λ = 0 unless specifically stated. The equa-

tion (2.11), a Friedman–like evolution equation, leads to a classification of the
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models in three kinematic classes according to the sign of K = K(r), which

determines the existence of a zero of Ṙ2, and thus, the kinematic evolution:

for K > 0 the models expand initially Ṙ > 0, reach a maximal expansion

value Rmax = 2M/K where Ṙ = 0 and then collapse Ṙ < 0, while for K ≤ 0

the models are ever expanding. Since K = K(r), it is possible to have in a

single model regions with different kinematic class.

The solutions of the Friedman–like equation in (2.11) define the kin-

ematic classes as elliptic (K > 0), hyperbolic (K < 0) and parabolic (K = 0)

solutions given by

K > 0 : R = M

K
(1− cos η), η − sin η = K

3
2

M
(t− tbb(r)), (2.17)

K < 0 : R = M

|K|
(cosh η − 1), η − sinh η = |K|

3
2

M
(t− tbb(r)),(2.18)

K = 0 : R =
[9
2M(t− tbb(r))2

] 1
3
, (2.19)

with tbb(r) denoting the Big Bang time function such that R(tbb(r), r) = 0 for

variable r (notice that in general t′bb 6= 0).

To fully determine an LTB model we need to prescribe the three

free functions M(r), K(r) and tbb(r). Since the metric is invariant under

rescalings of r, it is always possible to reduce this set of free functions to a

pair of independent irreducible free functions. Given a choice of free functions,

all relevant quantities of the models can be computed from the solutions for

(2.17) to (2.19).

2.3 Ever expanding closed models

Closed LTB models are characterised by rest frames that are com-

pact 3–dimensional submanifolds without a boundary and with finite proper
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volume, which implies two possibilities: the rest frames are diffeomorphic to

S3 or to a 3-torus (an example of how to select the free functions latter case

is given in [19]). Since LTB models are spherically symmetric, the topological

class of the rest frames is directly connected with the existence of symmetry

centers, which are regular timelike comoving worldlines r = rc generated by

the fixed points of SO(3), and thus comply with

R(t, rc) = Ṙ(t, rc) = 0. (2.20)

Closed models diffeomorphic to S3 admit two symmetry centers, while rest

frames with toroidal topology admit no symmetry centers. In closed LTB

models the condition (2.20) holds for two values of r, which can be denoted

by r = 0 and r = rc. Since S3 is smooth there must exist a turning value

r = r∗ such that R′(t, r∗) = 0. Regularity conditions implies that M = K = 0

and all radial gradients vanish at both symmetry centers.

Using the orthonormal tetrad {(eµ)a}a=t,r,θ,φ the components of the

Riemann tensor are

Rtrtr = 2M
R3 −

M ′

R2R′
,

Rrθrθ = Rr,φ,r,φ = M

R3 −
M ′

R2R′
,

Rrθrθ = Rr,φ,r,φ = −2M
R3 ,

Rθφθφ = −2M
R3 .

The requirement of a nonsingular curvature at r = rc is having a finite limit

of M/R3 and having a finite value for the density ρ as

lim
r→rc

M

R3 = lim
r→rc

M ′

3R2R′
= 4πρ

3 . (2.21)
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2.3.1 Regularity of ever expanding closed models

After looking at closed LTB models with zero cosmological constant,

Bonnor [8] concluded that all “physically acceptable closed models” (PACM)

must be elliptic everywhere and eventually, collapse. Bonnor defined a PACM

by the following conditions:

1. ρ is finite and non–negative

2. There are no comoving surface layers nor shell–crossing singularities.

3. K, M and R are C1.

4. K satisfies extra regularity conditions at the symmetry centers, see [8].

These conditions imply

sgn(R′) = sgn(M ′) = sgn(
√

1−K), (2.22)

and, as an immediate consequence, if zeroes ofR′,M ′,
√

1−K exist, they must

all be common and of the same order. If the zeroes of R′ are different from

the zeros of the other quantities, then shell crossings occur where the density

and curvature scalars diverge with R > 0. The equation (2.14) together with

(2.22) imply that the density is non–negative and bounded everywhere, except

at the coordinate locus of a central singularity. The necessary and sufficient

conditions to avoid shell–crossing singularities, as required by (2.22), are given

by the Hellaby–Lake conditions given explicitly in [20, 4].

2.4 Lanczos–Israel formalism for closed models

Applying to the LTB metric the Lanczos-Israel-formalism yields as

the only nonzero component of the Einstein tensor: Gtt, given by (2.11), while
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the extrinsic curvature at the hypersurface marked locally by r = π/2 is given

by

Ka
b =



0 0 0 0

0 0 0 0

0 0 −
√

1−K|R′|
RR′

0

0 0 0 −
√

1−K|R′|
RR′


. (2.23)

The Darmois junction conditions demand the continuity of Ka
b at the hyper-

surface. Hence, if R′ > 0 for all r, then |R′|/R′ = 1, so that the junction

conditions are equivalent to the continuity of R and K. If there exists a zero

of R′ in some fixed value r = r0, then there exists a discontinuity of Ka
b unless

K(r0) = 1. At the turning value r0 = r∗ = π/2 there is clearly a discontinuity

of Ka
b .

Bonnor proved that a PACM must be an elliptic model. First, he

proved that if R′ changes sign (turning value) on a hypersurface r = r∗, with

r∗ constant, and 1−K 6= 0 on the hypersurface, then there is a surface layer.

The proof is straightforward. Since R has two zeros (two symmetry centers)

in closed LTB models, the continuity of R implies the existence of a turning

value marked by a zero of R′ in some value r = r∗ within the radial coordinate

range between the centers. Bonnor’s condition 2 implies that r = r∗ must lie

within an elliptic region (K > 0), since the regularity condition 1 − K = 0

at r = r∗ cannot be satisfied for a turning value in parabolic or hyperbolic

regions (K ≤ 0). Turning values in such regions necessarily exhibit a surface

layer, which is not contemplated in the definition of a PACM.

The equation of state of the surface layer that follows from (1.9) is

σ + Π1 + Π2 = 0, where σ is the surface density and Πi are the surface pres-

sures that follow from the right hand side of (1.9) (the distributional energy–

momentum tensor). Bonnor considered this equation of state unphysical, not
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only for having negative pressure, but also because of:

MTS =
∫

(T 1
1 + T 2

2 + T 3
3 − T 4

4 )
√
h d3x =

∫
(σ + Π1 + Π2)

√
h d3x = 0,

which means that the surface layer energy–momentum tensor produces zero

active gravitational mass.

To choose the appropriate free functionsM, K, tbb for a closed model

we must demand that their radial gradients vanish at turning values and at

the symmetry centers. In the following chapter we re-examine and extend

Bonnor’s results, looking at the spatially flat (K = 0) and negatively curved

(K < 0) cases separately.

2.4.1 Surface tension

The presence of distributional sources in thin layers can be associ-

ated with surface tension through the relativistic generalisation of the Kelvin

relation of Newtonian physics [9]

∆P = −2KA (2.24)

where the surface tension A depends on the material, ∆P the difference of

pressures in both sides of the surface layer and K is the mean curvature given

by K = 1/R1 + 1/R2, with R1, R2 the principal curvature radii. As proven in

[9], the relativistic generalisation of (2.24) is connected to a thin shell in the

framework of the Israel–Lanczos formalism:

∆P = 1
2
(
K+

ab +K−ab
)
T ab. (2.25)

where T ab is the projected energy–momentum tensor in (1.9)

T ab = haαh
b
βT

αβ, 8πT ab = −[Kab] + hab[Kc
c ] (2.26)

where haα = δaαδ
b
β + naαn

b
β with a, b = t, θ, φ the hypersurface intrinsic coordin-

ates.





Chapter

3
Analysis of ever expanding closed
LTB Models

3.1 The spatially flat case K = 0

A convenient choice for the free functions M and tbb is

M = M0 sin3 r̄, tbb = −T0 sin2 r̄, ⇒ R =
(9

2M0

)1/3
sin r̄

[
t̄+ T0 sin2 r̄

]2/3
,

(3.1)

where M0 = 3
2H
−1
0 , T0 is an arbitrary constant, r̄ = πH0r and t̄ = H0t are the

radial and time dimensionless coordinates respectively. However, to simply

notation henceforth we will drop the bars on top of t and r, understanding

henceforth that (unless specifically stated) t and r without overbars denote

these dimensionless rescaled coordinates.

The parameters in (3.1) have been selected so that the kinematic

evolution of the model at the symmetry centres r = 0, π coincides with that

of the Einstein–de Sitter spatially flat FLRW model, whose Big Bang time
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is given by t = 0. Hence, the constant T0 can be identified with the Big

Bang time of the LTB model at r̄ = π/2 (or equivalently r = 1
2H
−1
0 ), that is:

tbb(π/2) = −T0 < 0. For a more realistic cosmological scenario in the context

of an inhomogeneous model with small deviation from an FLRW background,

we shall assume that |T0| � t0, with present cosmic age given by t0 ∼ 13.7×109

years (a convenient bound value is |T0| ∼ 10, 000 years). With this choice of

free functions we have

R′ = (M0/6)1/3 cos r [7T0 sin2 r + 3t]
[t+ T0 sin2 r]1/3

while the density and the components of the extrinsic curvature follows from

(2.11) and (2.23) for K = 0:

8πρ = 16
3(t+ T0 sin2 r)(7T0 sin2 r + 3t) . (3.2)

Kθ
θ = Kφ

φ = −2
3

H
(
r − π

2

)
M

1
3

0 sin r [t+ T0 sin2 r]2/3
,

whereH (r) is the Heaviside function and we used the fact that t+t0 sin2 r ≥ 0

in the full domain 0 ≤ r ≤ π.

Since these expressions allow us to compute Kab
+ +Kab

− = 0, while

Gab is continuous on S , then (1.15) is satisfied identically everywhere. On the

other hand, the right hand side of (1.16) is zero, but computing its covariant

derivative and evaluating on S yields the following result: the singular part

of the Einstein tensor, Gab , is constant on S . Notice that from (2.25) there

is no surface pressure due to surface tension.

At S the only nonzero components of the distributional energy-

momentum tensor are:

8πσ = 1
(36M0)1/3(t+ T0)2/3 , 8πΠ1 = 8πΠ2 = −4πσ,
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where σ is the distributional density, while Π1 and Π2 are the distributional

pressures, with the equation of state given (as found by Bonnor) by σ+Π1 +

Π2 = 0. As the units of the distributional and continuous (non–distributional)

density are not the same we obtain the quasi-local mass from each density to

obtain a quantity that can be compared. The energy momentum tensor is

divided into a continuous (non-distributional) part and a distributional part

as: T ab = Tab + Tabδ(S ), where δ is the Dirac delta function, and in our case

Tab = ρuaub. From the expression of the full energy-momentum tensor it is

clear that it makes sense to compare the quantities Tabuaub and Tabuaubδ(S ),

which have the same energy density units, by means of integration over a

domain that contains the hypersurface.

We integrate ρ = Tabu
aub in a domain 0 < r1 < π/2 < r2 < π,

Mρ = 4π
∫ r2

r1
ρR2R′dr = M0[sin3 r2 − sin3 r1], (3.3)

from this expression we obtain an upper and lower bound, 0 ≤Mρ ≤M0.

For the distributional matter at the thin shell we obtain the contri-

bution of σ to the active gravitational mass as the integral of Tabuaubδ(S ),

Mσ =
∫ r2

r1
σR2|S δ

(
r − π

2

) ∫
dΩ dr = 1

2

∫ r2

r1

(
9
2M0

) 2
3 (t+ T0) 4

3

6 2
3M

1
3

0 (t+ T0) 2
3

δ
(
r − π

2

)
dr

= 1
2

(9M0

16

)1/3
(t+ T0)2/3.

Considering the arbitrary 0 ≤ r1, r2 ≤ π which give the upper bound for

Mρ, and from the ratio of the latter and Mσ we obtain a comparison of

the continuous mass and the contribution of the distributional density to the

quasilocal mass

ξ(t) = Mρ

Mσ

= 2
(4

3

) 2
3 M

2
3

0

(t+ T0) 2
3
. (3.4)

To obtain a numerical result we evaluate this ratio at present day cosmic time

t0 ≈ 13.7× 109 years and use M0 = 3/2H−1
0 , where H0 is the Hubble constant
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(∼ 70km/(secMpc)). We obtain for these values

ξ(t0) ≈ 2 2
3 2

H
2
3
0 (t0 + T0) 2

3

≈ 2 2
3 2(

70km/s
Mpc

)
(13.7× 109 + 105)years

≈ 3.2176, (3.5)

while for ten times the current age of the universe we have

ξ(10 t0) ≈ 2 5
3(

70km/s
Mpc

)
(13.7× 1010 + 105)years

≈ 0.69. (3.6)

Thus, for the asymptotic evolution range of large cosmic times the contri-

bution to the quasi–local mass from the distributional surface density dom-

inates the contribution from the continuous dust source. This behaviour is

clearly unphysical, since the distributional source does not generate effective

gravitational mass (from the quasi–local mass definition), yet it ends up over-

whelmingly dominating over the quasilocal mass obtained from the continuous

(and physical) dust density. In section 3.4 we further examine the physical

implications of this model.

3.2 The case K < 0

We select the same free functions as in (3.1), together with K(r) =

−K0 sin2 r. The only non-vanishing components of the extrinsic curvature are

Kθθ = −

√
1−K0 sin2 rR|R′|

R′
, Kφφ = Kθθ sin2 θ,

where

R(t, r) = M0 sin r(cosh η − 1)
K0

, η − sinh η = K
3
2
0 (t+ t0 sin2 r)

M0
.

Once again, [Ga
b] = 0, and Kab

+ + Kab
− = 0, so (1.15) is satisfied. Taking

the covariant derivative of Gab on S leads to a zero vector and thus (1.16) is
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identically satisfied once again. At S the distributional density and pressures

are

8πσ = 4
√

1−K0

R (t, r) |r= 1
2H0

, 8πΠ1 = 8πΠ2 = −4πσ,

while the non-distributional density takes the form

8πρ = 3M0 sin2 r cos r
4πR2R′

. (3.7)

To obtain a comparison one would proceed as in the case K = 0 but taking

into account the proper mass instead of the quasilocal mass, as in this case

both masses are not equal. These comparison yields a similar result as in the

case studied previously, which we considered to be unphysical.

3.3 Case Λ > 0

If Λ > 0, Einstein’s field equations yield the same form for the density

ρ given in (2.11), but the Friedman–like evolution equation is now:

Ṙ2 = Q(R)
R

, Q(R) = 2M −KR + λR3 (3.8)

where λ = 1
3Λ. The kinematic evolution is governed by the zeroes of the

cubic polynomial Q(R) for different values of K. Ever expanding regions

or models are characterized by configurations with those choices K and M

for which Q has no zeros for a specific range of r. In particular, fully regular

closed ever expanding models without thin layer distributional sources require

configurations with K > 0 for which Q(R) has no zeroes for all the range of

r.
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Figure 3.1: Plot of Q(R) in (3.8), see text for explanation.

To look at the sign of Q(R) we plot this cubic polynomial for fixed

positive values of M and λ and letting vary K for R > 0. As shown in Fig.

3.1, all curves above the lowest red thick curve (colors appear in the online

version), which are configurations of a generic LTB dust solution, represent

ever expanding universes. The dot-dash green curve represents spatially flat

models, below this curve are models with K > 0, and above the dash-dot

green curve there are negative spatial curvature models. In this case we can

choose K > 0 so that the condition K(r∗) = 1 for R′(t, r∗) = 0 holds and

thus, we have ever expanding models for which the regularity conditions for

a PACM hold: the metric coefficient √grr = ±R′/
√

1−K is well defined at

r∗ and Ka
b is continuous, which eliminates the surface distributional source

at r = r∗. This is an important result, since it proves that LTB models that

approximate the Λ-CDM model can have rest frames with a closed topology.
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3.4 Radial null geodesics at the interface

While the thin shell distributional source at the hypersurface r = r∗

in ever expanding closed LTB models does not generate effective mass, it

is interesting to find out if the existence of such source could be detected

observationally. To explore this question we need to find null geodesics that

cross this hypersurface and compute the redshift from light emitted along

these curves by distant observers in these models.

Photon trajectories (null geodesics) follow from the solutions of the

geodesic equation,
d2xa

dλ2 + Γ abc
dxb

dλ

dxc

dλ
= 0, (3.9)

with the constraint kaka = 0, for ka = dxa/dλ is the tangent vector of these

curves and λ is an affine parameter. We will consider only radial null geodesics

ka = [kt(λ), kr(λ), 0, 0], where kt and kr are obtained from (3.9)

d2t

dλ2 + Ṙ′

R′

(
dt

dλ

)2

= 0, (3.10)

d2r

dλ2 +
(
R′′

R′
− K ′

2(1−K)

)(
dr

dλ

)2

± 2Ṙ′√
1−K

|R′|
R′

(
dr

dλ

)2

= 0, (3.11)

subjected to the constraint kaka = 0

−
(
dt

dλ

)2

+ R′2

1−K

(
dr

dλ

)2

= 0, ⇒ dt

dλ
= ± R′√

1−K
dr

dλ
. (3.12)

The metric functions R, K and their derivatives in the coefficients follow from

the closed ever expanding models we have examined in previous sections (with

Λ = 0).

It is well-known that a non-degenerate Cr+1 metric determines the

Cr Levi-Civita connection. For K = 0 the metric is C∞, for K 6= 0 in general

it can only state that the metric is C0. For convinience we will analyze the case
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K = 0 in which the connection is Cr almost everywhere, i.e. it is Cr except

on a set of measure zero, namely the symmetry centers and at the turning

value of R′. Therefore there exists a convex normal neighborhood at each

p ∈ M , i.e. an open set U with p ∈ U such that for all q, r ∈ U there exists

a unique geodesic γ which stars at q and ends at r and is totally contained

in U , see [10]. The connection is not Cr at the symmetry centers and at the

hypersurface r = r∗, nevertheless the radial geodesic equation is Cr in all the

space-time except at the hypersurface r = r∗. By the standard existence and

uniqueness theorem for ODE’s there exists a unique geodesic from a symmetry

point to any point arbitrarily near the hypersurface, in comoving coordinates

this guarantees the existence of a null geodesic that starts at r = 0 and ends

at r = r∗− ε1 for any ε1 > 0 and a null geodesic with endpoints at r = r∗+ ε2

and r = rc for all ε2 > 0.

In order to check if the geodesic equation is well defined at r = π/2,

we consider the choice of functions of section 3.1, leading to:

d2t

dλ2 + 2
3Φ(t, r)

(
dt

dλ

)2

=0, (3.13)

d2r

dλ2 + Ψ(t, r)− Ω(t, r)
21 cos r

(
t0 sin2 r + 3

7t
)

(t+ t0 sin2 r)
Ψ(t, r)

(
dr

dλ

)2

=0. (3.14)

where

Φ(t, r) = 3t+ t0 sin2 r

(t+ t0 sin2 r) (3t+ 7t0 sin2 r) , (3.15)

Ψ(t, r) =± 2(36M0) 1
3

3 cos r(t0 sin2 r + 3t)
∣∣∣∣∣cos r(3t+ 7t0 sin2 r)

(t+ t0 sin2 r) 1
3

∣∣∣∣∣ , (3.16)

Ω(t, r) =21
(
t20 sin4 r +

(10
7 tt0 −

4
3 cos2 r

)
sin2 r + 3

7t(t− 4t0 cos2 r)
)

sin r,

(3.17)

and the plus minus sign in the square root from equation (3.12) will distinguish

between “ingoing” past directed curves and “outgoing” future directed curves.
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Since (3.14) is not well-defined near r(λ) = π/2, we introduce the

change of variable: t(λ) = 10w(λ) and solve numerically the geodesic equations

above for generic values of M0 and t0. In what follows we consider M0 = 10

and t0 = 0.5. The absolute value needs to be evaluated in a piecewise manner

|x| = x for x > 0 and |x| = −x for x < 0 for any x. For generic initial

conditions and working with both signs, each considered also in the geodesic

equations (see (3.16)) we solve numerically (3.13) and (3.14) for several initial

conditions, leading to the curves plotted in figure 3.2.

Figure 3.2: Plot to numerical solution of equations (3.13) and (3.14) for four

different geodesics with generic initial conditions. As it can be noticed, the

curves are smooth when considered as w(r) as opposed to the discontinuity

that is examined when w and r are considered as functions of the parameter λ.

The numerical solution for r ∈ [0, π/2) shows that near π/2 the

derivative dr/dλ does not tend to zero. The graphs for r(λ) and t(λ) for some

of the geodesics obtained are shown in figure 3.3. It can be seen from the

solutions that (3.12) restricts the solutions for t(λ) and r(λ) to be such that the
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(a) Plot for r(λ) ∈ [0, π/2) (b) Plot for r(λ) ∈ (π/2, π]

Figure 3.3: Plot to numerical solutions for r(λ). The plot on the left is the

plot for the values of r ∈ [0, π/2), while the second graph represents the values

r ∈ (π/2, π]. From the plots it can be seen that the values of the derivative

dr/dλ diverge, which has implications on dt/dλ, see fig. 3.4.

product R′dr/dλ be finite. In this cases the product is not zero which implies

that dr/dλ must diverge. Also, equation (3.12) reveals that solutions that are

not C1 can be obtained, as arbitrary initial conditions can be chosen over r

as a function of λ to obtain a C0 curve, defining r(π/2) = limr→π/2+ r(λ) =

limr→π/2− r(λ) that satisfies (3.13) and (3.14) for r ∈ [0, π/2)∪ (π/2, π]. Some

of these solutions are shown in figure 3.2. Therefore, there exists a jump in

the first derivative of the curve which could be used to probe the existence of

thin shells.

Although there is a discontinuity in the first derivative of the co-

ordinates of the geodesics, each value of r ∈ [0, π/2) ∪ (π/2, π] is reached in a

finite value of the affine parameter.
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Figure 3.4: Plot to numerical solutions for t, from the plots it can be seen that

the values of the derivative of the t curve are always finite due to the divergence

of dr/dλ, see fig. 3.3, as required by equation (3.12).

3.5 Redshift

The redshift for a K = 0 model is calculated through the following

integral, c.f. (A.12),

ln(1 + z(r(λ))) =
∫ λ

0
Ṙ′(t(λ), r(λ)) dr

dλ
dλ. (3.18)

Note that as dr/dλ is discontinuous at r = π/2, the integrand is not continuous

but the integral is. Figures 3.5 and 3.6 represent the redshift and the plot for

1/(1 + z)dz/dλ for two different geodesics.

As there is a discontinuity in the derivative of the redshift it is pos-

sible probe the existence of a thin shell by measuring the redshift of radial

photons. Nevertheless notice that the magnitude of the discontinuity depends

on the parametrization chosen.
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(a) Plot to numerical solution for z(λ) (b) Plot to numerical solution for
1

1+z
dz
dλ

Figure 3.5: Plot to numerical solutions for first geodesic, where the disconinuity

of the redshift can be apreciated. See text for details.

(a) Plot to numerical solution for z(λ) (b) Plot to numerical solution for
1

1+z
dz
dλ

Figure 3.6: Plot to numerical solutions for second geodesic, where the dis-

coninuity of the redshift can be apreciated. See text for details.
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3.6 A model with K > 0

We now analyze the case K > 0 and show that in this case observers

at the turning value would not detect any thin layers. Analyzing a model with

positive K is easier with a change of variables in the metric, where we obtain

a FLRW-like metric with line element

ds2 = −dt2 + a2
[
Γ 2R′2i

1− kqiR2
i

dr2 +R2
i dΩ

2
]
, (3.19)

where a(t, r) ≡ R/Ri, Ri ≡ R(ti, r) and t = ti determines a fiducial initial

hypersurface. Henceforth, all quantities evaluated at t = ti will be denoted

by a the subindex i. The dimensionless metric function Γ is

Γ ≡ R′/R

R′i/Ri

= 1 + a′/a

R′i/Ri

,

where Γi = 1, while kqi = K/R2
i . Note that the regularity condition on this

metric is R′ = 0 which implies kqiR2
i = 1.

We now consider the functions a, Γ and Ri taking into account a

closed model. We have, c.f. [21], that along turning values regularity con-

ditions on the density, ρ, density at the fiducial time, ρi, Ricci scalar of the

hypersurfaces at the fiducial time (3)Ri and the metric imply that R′i, M ′ and

(kiRi)′ must have common zeros along the turning values of the same order

in r − π/2. The function Γ must not have a zero due to the fact that Γ = 0

and ρi > 0 imply a shell-crossing singularity. So, with this considerations

R′ = a′Ri + RR′i
Ri

, K ′ = k′qiR
2
i + 2kqiRiR

′
i.

Evaluating both equations along S it is obtained that along the hypersurface

a′ = k′i = 0.

The null geodesic constraint is

dt

dλ
= ±a ΓR′i√

1− kqiR2
i

dr

dλ
. (3.20)
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The radial null geodesic equations are

d2t

dλ2 + a2Γ̇ + aȧΓ

2Γ 2

(
dt

dλ

)2

= 0, d2r

dλ2 + A(B +D)
(
dr

dλ

)2

= 0,

where

A = 1
2aR′2i Γ (−1 + kqiR2

i )
,

B = 2aR′i

CΓ +
± ΓR′2i Γ̇√

1− kqiR2
i

+ 1
2R
′
iΓ
′

 (−1 + kqiR
2
i )
 ,

C = −1
2k
′
qiR
′
iR

2
i −R′2i kqiRi +R′′i kqiR

2
i −R′i,

D =
2a′R′2i Γ ±

4ȧR′3i Γ 2√
1− kqiR2

i

 (−1 + kqiR
2
i ).

We check whether the geodesic equation in this variables is well defined. We

have that

lim
r→π

2

Γ = lim
r→π

2

R′

R′i

Ri

R
=
(

lim
r→π

2

R′

R′i

)
Ri

R

∣∣∣∣∣
r=π

2

due to the fact that R′i = dRi/dr is the derivative of a radial profile at a given

time, and the partial derivative R′ = ∂R/∂r is taken as a limit at a constant

time, so the limit in the last parenthesis must be a finite function of time. We

now check the product AB

AB = − C

R′i(1− kqi)
± R′iΓ̇√

1− kqiR2
i

+ 1
2
Γ ′

Γ
(3.21)

The limit of the second term is

lim
r→π

2

R′iΓ̇√
1− kqiR2

i

=
(

lim
r→π

2

Γ̇

) lim
r→π

2

R′i√
1− kqiR2

i

 .
The second limit of the right hand side is finite by regularity conditions, while

the first

Γ̇ =
(
Ṙ′R +R′Ṙ

R2

)
Ri

R′i
= Ri

(
Ṙ′R +R′Ṙ

R′iR
2

)
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has a finite limit at r = π
2 as long as the limit Ṙ′/R′i exists. We now analyze

the first term of the product AB,

C

R′i(1− kqiR2
i )

=
k′qiR

2
i + 2R′ikqiRi

2− 2kqiR2
i

− R′′i
R′i
.

The first limit term of the last equality is nonexistent as 1− kqiR2
i has a zero

of the same order as R′2i and k′2qi. Even though the limit does not exist, this

is consistent with the non-defined geodesic equation at S in the comoving

variables.

We now check the product AD,

AD = a′

a
± 2ȧR′iΓ
a
√

1− kqiR2
i

.

The limit of the first term is zero from the definition of a and as R′ and

R′i are continuous and zero at S . The second term is constant by previous

calculations.

Regularity conditions for a closed model require that K = 1 at S ,

where R′ = 0 and that the following limit be finite and not null,

lim
x→S

R′2

1−K , (3.22)

where x denotes a generic point in the manifold. It is straightforward to prove

that the metric component grr is continuous but does not have a continuous

partial derivative g′rr which immediately implies that the connection will not

be C1 in a set of measure zero, S . On the contrary, in the case K = 0

the connection is not C1 due to the fact that the metric is degenerate at S ,

as opposed to the model with K > 0 which is not degenerate by regularity

conditions.

Nevertheless, if a solution to the geodesic equation where to exist the

derivative of the radial and temporal coordinates should be continuous as they
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must satisfy the null geodesic constraint (3.20), which relates both derivatives

by the following relation
dt

dλ
= ±R′√

1−K
dr

dλ
. (3.23)

Both derivatives are related by a function which is continuous due to the

regularity conditions, where it is used that the square root is a continuous

function so the passage to the limit under the square root can be taken, and

by hypothesis was assumed to be invertible, which completely determines

both coordinates, unlike the case K = 0 which gives an infinite number of

choices of the derivative of the radial coordinate. Therefore LTB models with

K > 0 present no issues in geodesics and as there are no surface layers, and

by the analysis of equation (A.4) there is no effect on the redshift nor on the

derivatives of the coordinates.



Chapter

4
Conclusions

We have examined the dynamics and geometric properties of ever ex-

panding “closed” LTB dust models, where by “closed” we mean models whose

rest frames (hypersurfaces orthogonal to the 4–velocity marked by constant

time) are diffeomorphic to the standard 3–sphere S3. We considered both

cases, with Λ = 0 and Λ > 0. Since observations do not rule out a small posit-

ive curvature, the case Λ > 0 can be thought of as a toy model inhomogeneous

generalisation of the ΛCDM model.

Ever expanding closed LTB models with Λ = 0 where examined long

time ago by Bonnor [8], who showed that fulfillment of regularity conditions

require these models to admit a thin surface layer at the equator of the 3–

sphere (“turning value” of the area radius), which must be examined by means

of the Israel–Lanczos thin shell formalism. Bonnor found the equation of state

state satisfied by this distributional source, which he regarded as unphysical

because it does not contribute to the effective quasi–local mass and because
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of the negative surface pressure (this was before negative pressures were ac-

ceptable in connection with dark energy).

In the present thesis we extended Bonnor’s work by looking at the

time evolution of the distributional source, in comparison with the time evol-

ution of the continuous dust source. We also show that assuming Λ > 0

allows for perfectly regular closed LTB models, an option not contemplated

by Bonnor. By looking first at the spatially flat case K = 0 = Λ, we found

that the distributional density (which does not contribute to the effective

mass) dominates the continuous density in the asymptotic time range, which

is an unphysical effect. This same effect occurs for the negatively curved case

(Λ = 0, K < 0).

Furthermore, we raised the issue of whether the presence of this un-

physical distributional source could be detected by observations based on light

rays crossing the timelike hypersurface made by the time evolution of the 3–

sphere equator. By looking at radial null geodesics in the case K = 0 = Λ

and placing the observer at the symmetry center r = 0, we showed that the

presence of the distributional source causes a discontinuous radial derivative

of redshifts from observers beyond the equatorial hypersurface of S3. Hence,

we proved that this type of distributional source would be detectable by ob-

servations, even if it does not contribute to the effective quasi–local mass.

Finally, and for the purpose of comparison, we showed that this discontinuity

of the redshifts does not occur in re-collapsing closed LTB models (for which

there is no distributional source at the 3–sphere equator).



Appendix

A
Appendix

A.1 Distributional derivative of terms containing δ

We calculate the derivative of a distribution of the type T δ where

T ∈ D(M ) is defined at least on Σ. We use the rule for derivating distributions

< ∇µ(Tα1···αpδ), V µα1···αp > = − < Tα1···αpδ,∇µY
µα1···αp >

= −
∫
Σ
Tα1···αp∇µY

µα1···αpdσ

= −
∫
Σ
Tα1···αp(nµnρ + h ρ

µ )∇ρY
µα1···αpdσ,

where, in terms of inner products, the first term is

− < Tα1···αpnµn
ρδ,∇ρY

µα1···αp >=< ∇ρ(Tα1···αpnµn
ρδ), Y µα1···αp > . (A.1)

The second term is expanded as

−
∫
Σ
Tα1···αph

ρ
µ ∇ρY

µα1···αpdσ =−
∫
Σ
h ρ
µ ∇ρ(Tα1···αpY

µα1···αp)dσ

+
∫
Σ
Y µα1···αph ρ

µ ∇ρTα1···αpdσ.
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Using that

hγβh
α
δh

ρ
σ∇ρS

β
α = ∇σ(Sγδ ) + (hβδS

ρ
βnρ)KΣγσ + (hγαSαρnρ)KΣσδ , (A.2)

where Sαβ = h α
γ h

β
δ S

γδ and KΣαβ = 1/2(K+
αβ + K−αβ ), one arrives to the

following expression

−
∫
Σ
Tα1···αph

ρ
µ ∇ρY

µα1···αpdσ =−
∫
Σ
∇µ(Tα1···αpY

µα1···αp)dσ

−
∫
Σ
KΣρρnµTα1···αpY

µα1···αp

+
∫
Σ
Y µα1···αph ρ

µ ∇ρTα1···αpdσ.

As Y ∈ D(M ) the first integral is zero, therefore

−
∫
Σ
Tα1···αph

ρ
µ ∇ρY

µα1···αpdσ = < (hρµ∇µTα1···αp −KΣρρnµTα1···αp)δ, Y µα1···αp > .

Consequently

∇µ(Tα1···αpδ) = ∇ρ(Tα1···αpnµn
ρδ) + (hρµ∇µTα1···αp −Kρ

ρnµTα1···αp)δ. (A.3)

A.2 Calculation of limits

A.2.1 K > 0

From (2.17) we have the following relations

η = arccos (1− αR) , sin η =
√

1− cos η =
√
αR
√

2− αR,

t− tbb = 1
β

{
arccos (1− αR)−

√
αR
√

2− αR
}
,

where α = K
M

and β = K
3
2

M
= αK

1
2 .

Derivating respect to r and isolating R′ we obtain an expression

which involves gradients which vanish at S , so R′ vanishes also along the
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hypersurface.

Derivating once again and substituing

R′′ = 1
4

15M ∗D(F ∗B +G) +H + I + J

K4RM(KR− 2M)
where

F =
(
K ′2M − 4

5K
′M ′K − 2

5K
′′KM + 4

15M
′′K2

)
(KR− 2M),

G = 4
15t

′′
bb

(
2MK

7
2 −RK

9
2
)
,

H = 2K4MR3K ′′ + 8K4MR2M ′′ − 16K3M2R2K ′′ − 16K3M2RM ′′

+24K2M3RK ′′,

I = 4K4MR2K ′R′ − 3K3MR3K ′2 + 4K4M2R′2 − 8K4MRM ′R′

+4K4R2M ′2,

J = 48K2M2RK ′M ′ − 60KM3RK ′2 − 32K3MR2K ′M ′ + 40K2M2R2K ′2.

Note that at S , I and J vanish. As not all functions vanish at S , R′′ is not

necessarily of the form 0/0. In general, in radial profiles KR 6= 2M so R′′ is

finite. From our choice of free functions H doesn’t vanish at S .

We now analyze the term K ′/(2 − 2K), as the numerator and de-

nominator are zero at the hypersurface, using the choice of free functions

previously used we obtain that there is no limit at S , so the term is singular.

In the general case, L’Hôpital’s rule gives

lim
r→π

2

K ′

2− 2K = lim
r→π

2

K ′′

K ′
(A.4)

which necessarily gives a 0/0 form, ∞/0 form or no limit as K ′ is 0 at the

hypersurface.

The term
Ṙ′√

1−K
= 1

2

2M ′
R
− 2MR′

R2 −K ′
√

1−K
√

2M
R
−K
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clearly is of the form 0/0 at S . As R′,M ′, K ′ and
√

1−K have zeros of the

same order, this limit is well defined.

A.3 Redshift

We include the derivation from [22]. Let there be two light rays

emitted the same direction by an observer O1, where the second light ray is

emitted a time-interval later τ . We denote the equation of the first ray as

t = T (r). (A.5)

We denote the second ray as t = T (r) + τ(r). As both rays must obey

dt

dr
= R′√

1−K
(A.6)

we have

dT

dr
= dt

dr
= R,r(T (r), r)√

1−K(r)
,

d(T + τ)
dr

= R,r(T (r) + τ(r), r)√
1−K(r)

. (A.7)

To first order in τ and as τ was assumed to be small,

R,r(T (r) + τ(r), r) = R,r(T (r), r) + τ(r)R,tr(T (r), r). (A.8)

Using (A.8) and (A.7) we obtain

dτ

dr
= τ(r)R,tr(T (r), r)√

1−K(r)
. (A.9)

The redshift is defined by

τ(robs)
τ(rem) = 1 + z(rem). (A.10)

Considering a fixed observer and the sources separated an infinitesimal dis-

tance, one obtains by differentiating (dτ/dr)/τ = −(dz/dr)/(1 + z). So, one

obtains
1

1 + z

dz

dr
= −R,tr(T (r), r)√

1−K(r)
. (A.11)
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Integrating one obtains

ln(1 + z(r)) =
∫ robs

rem

R,tr(T (r), r)√
1−K(r)

dr. (A.12)
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