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Abstract

Current observations suggest that our Universe is not incompat-
ible with a small positive spatial curvature that can be associated
with rest frames having a “closed” standard topology. We exam-
ine a toy model generalisation of the ACDM model in the form of
ever expanding Lemaitre-Tolman-Bondi (LTB) models with pos-
itive spatial curvature. It is well known that such models with
A = 0 exhibit a thin layer distribution at the turning values of
the area distance that must be studied through the Israel-Lanczos
formalism. We find that this distributional source exhibits an un-
physical behaviour for large cosmic times and its presence can be
detected observationally. However, these unphysical features can
always be avoided by assuming A > 0. While these LTB models
are very simplified, we believe that these results provide a simple
argument favouring the assumption of a nonzero positive cosmo-

logical constant in cosmological models.






Resumen

Las observaciones actuales sugieren que nuestro Universo no es in-
compatible con una pequena curvatura espacial positiva que puede
ser asociada con marcos de reposo que tengan topologia estandar
cerrada. Examinamos una generalizacion al modelo de juguete
ACDM en la forma de modelos Lemaitre-Tolman-Bondi (LTB) en
expansion perpetua con curvatura espacial positiva. Es sabido que
dichos modelos para A = 0 presentan una distribucién de capa
delgada en los valores criticos de la distancia de area que debe ser
estudiada mediante el formalismo de Israel-Lanczos. Encontramos
que esta fuente distribucional muestra un comportamiento no fisico
para valores grandes del tiempo coésmico y su presencia puede ser
detectada observacionalmente. Sin embargo, estas caracteristicas
no fisicas siempre pueden evitarse asumiendo A > 0. Atn cuando
estos modelos LTB son simplificaciones, creemos que estos resulta-
dos proveen un argumento simple que favorece la suposicién de una

constante cosmoldgica positiva en modelos cosmologicos.
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Introduction

The spherically symmetric exact solutions of Einstein’s equations
known as the Lemaitre-Tolman-Bondi (LTB) dust models are useful toy models
to study observational issues and structure formation in a Friedman Lemaitre
Robertson Walker (FLRW) background. If we assume A > 0 these models
provide a simple inhomogeneous generalisation of the ACDM model favoured
by current observations. In fact, models with A = 0 and A > 0 provide simple
descriptions of a single CDM structure (overdensity or density void) in an
FLRW background. The evolution of such structures can always be mapped
rigorously to the formalism of gauge invariant cosmological perturbations (see
comprehensive discussion in [1, 2]). As shown in [1, 2] (see also [3, 4]), LTB
inhomogeneities can be described as covariant exact fluctuations that in their
linear regime reduce to linear cosmological perturbations in the isochronous

comoving gauge.

Models with A = 0 and A > 0 provide also provide simple relativistic
generalisations of the Newtonian spherical collapse model, which provide order
of magnitude estimations of collapsing times and density contrasts that are
useful in the design of numerical N-body simulations. See discussion and

examples in [5, 6, 7].
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Ever expanding FLRW models with a closed topology (rest frames
difeomorphic to the 3-sphere S®) and a dust source are not possible unless we
assume that A > 0. If A = 0 then all closed FLRW dust models must have
positive spatial curvature and must bounce and re—collapse. However, for LTB
models the extra degrees of freedom decouple kinematic evolution and the
topology of the rest frames, allowing (in principle) for ever expanding closed
models even if A = 0. In the 1980’s when a nonzero cosmological constant
was not favoured, Bonnor [8] showed interest in looking at ever expanding
LTB models with A = 0 and a closed topology. He showed that these models
exhibit a thin layer surface matter distribution at a timelike hypersurface
marked by the turning value of the area radius (the “equator” of S). Using
the Israel-Lanczos formalism, Bonnor derived the equation of state for this
surface layer matter—energy distribution, regarding it in a pointblank manner
as unphysical because it involved negative surface pressure (these were the
times before dark energy). Hence, Bonnor concluded that full regularity of
closed LTB models with A = 0 required re-collapse and thus excluded ever
expanding kinematics. More recent research allows for the interpretation of

the negative surface layer pressure as surface tension [9].

In the present article we extend Bonnor’s work by (i) showing that
fully regular closed and ever expanding LTB models are possible once we
consider A > 0 and (ii) by looking for the case A = 0 at the time evolu-
tion of the distributional surface source in comparison with the evolution of
the continuous density. We show for models with zero and negative spatial
curvature that the behaviour of this source is unphysical, since for large times
the continuous dust density surface density decays at a much faster rate than
the distributional surface density (which has no contribution to the quasilocal
mass integral). In particular, we show that the presence of such distributional

source would be detectable by observations through the redshift from sources
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connected by radial null geodesics that cross the equatorial hypersurface of
S3. While the redshift as a function of comoving radius is continuous, its
derivative is not, with the abrupt change of rate occurring precisely at this
hypersurface. We show that this effect does not occur for re-collapsing LTB
models with closed topology (for which there is no distributional source at the

equator of S?).

Since observations do not rule out a Universe whose rest frames have
a closed S3 topology associated with a very small positive spatial curvature,
then a LTB model with A > 0 is a viable toy model approximation to a
ACDM model that is favoured by observations. Hence, we argue that the
results of the present article provide another argument to support the need
for a positive cosmological constant, since without the latter all ever expanding

CDM dominated models would be incompatible with a closed S3 topology.

The section by section description of this thesis is as follows. In
chapter 1 we present the Israel-Lanczos formalism for thin shells and a brief
survey of the differential geometry concepts needed in the construction. Chapter
2 provides an introduction to generic LTB models presenting the relevant equa-
tions needed in the analysis, section 2.2 focuses to generic LTB models with
A = 0, while in section 2.3 we examine the specific case of closed models. In
section 2.3.1 we review Bonnor’s work and in section 2.4 we apply the Israel-
Lanczos formalism to closed LTB models. In chapter 3 sections 3.1 and 3.2
provide an example of ever expanding closed models with zero and negative
spatial curvature, respectively. The surface layer density is evaluated for these
models, showing that in the large time regime the continuous density decays
much faster than the surface density, which is an unphysical behaviour. We
show in section 3.3 that fully regular ever expanding closed models with A > 0
are always possible. In sections 3.4 and 3.5 we compute null radial geodesics

for the spatially flat case in order to examine the observational detection of
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the thin shell distribution. Finally, in section 3.6, we show that no observa-
tional effects occur in the the case of re—collapsing models with positive spatial

curvature and A = 0, for which no thin shell distributional source arise.



Chapter

Israel-Lanczos formalism for thin

shells and related subjects

General Relativity (GR) is nowadays the most successful physical
theory to describe the universe in a large scale. GR assumes that space-time
is a Lorentzian manifold of four dimensions equipped with a metric tensor g,

which is a solution to Einstein’s field equations (EFE’s)
G(lb - 87TT(lb - Agab? (11)

where T}, is the energy-momentum tensor and G, is the Einstein tensor. The

Einstein tensor is defined by
1
Gab = Rab - iRgalw

with R, the Ricci tensor and R the Ricci scalar, both related to the intrinsic

curvature of the manifold.
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The energy-momentum tensor 7, is a tensor that depends on the
fields of matter, their covariant derivatives and the metric. It satisfies the

following properties c.f. [10]

1. T, is vanishes on an open set U if and only if all matter fields vanish

on U,
2. T,, obeys the conservation equation

Tab;b — 07 (12)

the covariant derivative of the right hand side of the Einstein field equations is
also zero in virtue of Bianchi’s identities. Local causality has to be introduced
for the matter fields included in the energy-momentum tensor. The postulate
of local causality is that [10] "the equations governing the matter fields must
be such that if U is a convex normal neighborhood and p and ¢ are points in
U then a signal can be sent in U between p and ¢ if and only if p and ¢ can be
joined by a C! curve lying entirely in U" and the curve is non-spacelike. This

postulate can be also written in terms of the Cauchy problem for the matter

fields.

1.1 Israel-Lanczos formalism

In the usual formulation of GR from the EFE’s and the conservation
equation it is usually assumed that the metric is at least C?(.#). Therefore
one of the postulates in this formulation is that the manifold admits a C®
atlas in which g, is at least twice continuously differentiable. Nevertheless if
one has a C" atlas (r > 1) it is a differential topology result that an analytic
subatlas can be found [11] so there is no loss of generality in our study to

assume from the start that the atlas used in the GR standard formulation
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is analytic. This imposes certain restrictions to the space-times that can be
analyzed under thess hypotheses as many space-times considered physically
relevant are not of this differentiable class on the whole manifold. In the late
1930’s Oppenheimer and Snyder obtained an exact solution to the EFE’s that
described the process of gravitational collapse to a black hole by considering a
star as a spherical distribution of dust with uniform density. The solution to
the problem involves considering space-time as two regions that are matched
on a common boundary, i.e. the surface of the star. It is not a trivial problem
to match two solutions of the EFE’s and obtain a new solution as in general
the differentiability conditions on this new solution need not be satisfied on
the boundary. Therefore the differentiability conditions have to be weakened
in order not to discard relevant solutions. Regardless of this consideration,
conservation equations make sense in the theory of distributions if the second
derivatives of the components of the metric tensor have, at most, a simple
discontinuity across a smooth hypersurface [12], hence tensors have to be

considered as distributions.

1.1.1 Differential geometry preliminaries

As the formulation of the junction conditions is across a hypersur-
face, which is regarded as a common boundary between two space-times, it is
necessary that we begin with some differential geometry definitions and res-
ults to establish terminology we will use henceforth. First we introduce the

definition of hypersurface with some related concepts.

Definition 1. Let A4 and A be C" differentiable manifolds and let f : M — N
be a C" mapping. We call f an immersion if its derivative is injective at each
point. An embedding is defined as an immersion which is a homeomorphism

onto its image in the induced topology.
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From the injective function theorem [13] the function f is locally
injective, and therefore is locally an embedding. With this concepts one can

define a hypersurface.

Definition 2. Let A be an n-dimensional manifold, & an (n — 1)-dimensional
manifold, and let ® : & — M an embedding, we say that the image ®(X) of

Y is a hypersurface in A .

Locally, by the implicit function theorem, the hypersurface ®(%) €
M can be defined through a function F' : .4 — R by the equation F(z) =
0. Henceforward, unless specifically stated, we consider (,g) to be a 4-
dimensional orientable Lorentzian manifold, and ®(X) to be a hypersurface

defined on the manifold.

As is usual in differential topology, as soon as a differentiable mani-
fold is defined the differentiable structure allows us to develop calculus on the
manifold. As the hypersurface previously defined is a differentiable manifold
one can procede as usual to define tangent vectors and tangent spaces to the
hypersurface. Given that the hypersurface is embedded in space-time we can
use a relation as follows to bring the structure already defined in . to X. We

follow [14] in this construction.

Definition 3. For each p € ., the embedding ® naturally defines a differential
mapping, called the push-forward from T,% to Ty, M ,

d®|, : T,(Z) — To )M
V — d®|,V,
which has rank 3 for each p € % given that the mapping is injective. The

push-forward can be generalized for contravariant tensors of any order in X.

In a similar manner, the pull-back maps 1-forms in T ()M onto 1-forms in
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Ty,

", Tyl — T2(E)

w = &"|,w.

Given that the rank of the push-forward is 3, d®|,(7,%) must be
a 3-dimensional subspace of Tg(,)# , which is the tangent space to the hy-
persurface at ®(p). For convenience in the notation we denote this tangent
space in ®(p) by T,X. We now choose a coordinate system in both % and
M . The coordinate system taken in X, {y*} (Greek indexes run from 0 to 3,
while Latin indexes go from 1 to 3), is defined in a neighborhood of a point
p € %, while the coordinate system in ., {x®}, is taken in a neighborhood
of ®(p) € 4. We do not use abstract index notation to avoid confusion
with indexes which denote coordinates at the hypersurface, instead we denote
tensors by bold letters. Even though we choose coordinate systems in ¥ and

M the Israel-Lanczos formalism is coordinate independent.

We know that the vectors d,|, form a basis for 7T,X and that the
push-forward maps these basis into three linearly independent vectors in ®(p)

so they form a basis of the tangent space to the hypersurface. Hence

oe* 0

0
_9F 9 — M
dy® Oxt

=e' =
a(p) Ot

d®ly (Dalp)

= é:z |q) .
() (p)

By definition the vector fields €, are defined only at the hypersurface ®(%).
As @ is an homeomorphism between X and the hypersurface (%), from now
on we identify (unless specifically stated) the points p and ®(p), and % and
®(X) as usual.

Definition 4. Let T, be the tangent space to the hypersurface, the orthogonal
complement in the dual space T M is a 1-dimensional vector space. This

space is spanned by a non-zero 1-form at p which we denote as n|,, which is
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unique up to scalar multiplication. We call this form the normal form to the
hypersurface. The vector normal to the hypersurface is defined as the vector

obtained by raising the index of m with the metric of M .

Due to its definition, n is defined only in X and n(é,)[, = 0. In
components, the form is given by n = n,dx*. The hypersurface we previously
defined can be equipped with a natural metric inherited by the metric in the
manifold .. This metric can have different signatures which are associated

to the normal form to the hypersurface.

Definition 5. If g is a metric in M, the embedding ® induces a metric ®*g|,
in 3, such that for each XY € T)X, ®*¢(X,Y)|, = g(d®(X),d®(Y"))|s()-
This metric is called the first fundamental form of X. We denote g = ®*g|,.

Theorem 1. Let g be the first fundamental form of Z and let g be a Lorentzian

metric in M, then g is

1. Lorentzian if ¢®ngny > 0, in which case we say ¥ is a timelike hyper-

surface.
2. Degenerate if g®ngny, = 0, in which case we say the hypersurface is null.

3. Positive definite if ¢**nqany, < 0, in which case we say that ¥ is a spacelike

hypersurface.

The proof of this theorem can be found in [10]. It is important to no-
tice that the first fundamental form’s signature can change from point to point
nevertheless we will restrict our study to hypersurfaces with definite signature
as the thin layer surface studied in chapter 3 is a time-like hypersurface. Mars

and Senovilla have dealt with general hypersurfaces in [14].

If g®ngn, # 0, we can normalize the normal form m to have unit

magnitude. In this case, the mapping ®* : 1§ 4 — 1% will be injective



1.1. Israel-Lanczos formalism 7

in the 3-dimensional subspace Hg, of T§, # that consists in all forms w €
®(p) such that g*®nqw, = 0, given that ®*n = 0 and n does not lie in H*.
Consequently, the inverse (®*)~! will be a mapping @, : 3% from T3 to
Hg(p) and therefore in T3 We can extend this mapping to a mapping of
covariant tensors in 3 to covariant tensors in ®(2); as there already exists a
mapping d® of covariant tensors in ¥ to ®(X), we extend d® to a mapping
®, of arbitrary tensors in & to ®(X), this mapping has the property that ®,T'

has null contraction with n in all its indexes, i.e.

(@, 1) ma=0 A (®,1)°, 16N, =0

for any tensor defined in . Hence, the tensor h in (%) is defined by h =

®,(®*g). In terms of the normalized form n,
hab = Yap T Nallp,
given that this implies ®*h = ®*g and h_,¢"n. = 0.

Definition 6. Let n be any extension of the 1-form m to an open neighborhood

of ®(X) then the tensor K defined in ®(X) by
K,, = h,h% Vi,
is called the second fundamental form of X.

This definition is independent of the extension, given that the pro-
jections by h% = g*h,, restrict the covariant derivative to tangent directions

to ®(%).

1.1.2 Algebra and calculus of tensorial distributions

As mentioned before, in the usual formulation of GR the metric is

taken to be at least of class C? in order that the EFE’s are well-defined. The
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choice of the differentiability class can be circumvented by defining them in
a distributional sense, i.e. taking generalized functions instead of continuous
functions. We now proceed to lay the framework in which we will work to
understand what we mean by a distributional sense. We follow the standard
construction of the space of distributions c.f. [15, 12, 16], for additional details

see [17].

Definition 7. Let T and U be two tensors of type (p,q) and (g, p), respectively,
we denote by (T, U) their scalar product at a point x € M. Let D(M) be the
set of C§° tensor fields on M, i.e. smooth tensor fields with compact support
on M. We call D(M) the set of test tensor fields. We denote by 9P, the
subset of D(M) of tensor fields of type (p,q).

Definition 8. Given U € 9%, for each locally integrable (p,q) tensor, i.e.

integrable in each compact subset of its domain, T we define
<T,U >:/ (T, U)y/—g d'z.
M

We can now define tensorial distributions by means of functionals.

Definition 9. Let x?, be a linear continuous functional
X9, = R
1% = X1, (T7,) =< X1, T, > .

We call X9, a tensorial distribution of type (p,q).

Henceforth we will refer to tensorial distributions by distributions.

We define the sum of distributions and product by a scalar in the
usual manner, giving the set of distributions a vector space structure. Notice

that the space of distributions is simply the dual space of ().
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Definition 10. Let S9) be a tensor field of type (q,p), we define a distribution
of type (p,q) associated to S, in the following manner
S 9% — R
1% =< ST, Th >= /%(S, T)n

where 1 if the volume element of the manifold.

Notice that it is not necessary that distributions act over test tensor
fields, this conditions can be weakened considering the action of the distribu-

tions whenever it can be defined.

The components of a tensorial distribution x?, in a coordinate system

are scalar distributions 5,5, defined by

- - ) ) 9
<X ' Bl"'ﬁp’T>: <qu7de 1®®d$’ p®81;51®®8xﬂQ>’

where T is a function of compact support.

Definition 11. Let x?, be distribution of type (p, q) and S”, a tensor field of
type (1, s), we define their tensor product as the distribution of type (s+p,r+q)

that acts on the following manner
< Srs ® qu’ TerpH_q S=< qu’ (S, T)pq >,

where (S,T)pq € 9%, is obtained by contracting the corresponding indexes of

S with those of T.

We now define the covariant derivative of distributions by means of

the covariant derivative defined on the manifold.

Definition 12. Let (4, g) be a Lorentzian manifold, x9, a distribution of type

(p,q), and Tp+1q a tensor field of type (p + 1,q). We define the covariant

derivative of x%,, Vx1,, by the following relation

< Vx4, TP >=— <% (DT, >
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where (DT)almapbl...bq = VcTcalmapbl...bq )

With this definition the components of the covariant derivative are
the scalar distributions that act in the usual way, as the components of the

covariant derivative of the tensor upon which the distribution acts.

1.1.3 Junction conditions

Let .#" and .#~ be two manifolds with boundaries ¥ and %,
respectively. Let ¢ : &t — ¥~ be a diffeomorphism, we identify the points
on both boundaries and denote both boundaries by 2. Let .# be the disjoint
union of .#" and 4 ~. As we are interested in the study of tensors in the
hypersurface we proceed to define the associated distributions in a piecewise

manner.

Definition 13. Let ¥ be a hypersurface in (M ,g), we define the Heaviside
function of 260 : M — R by

lif ve AT,

0(z) =qa if xeX,

0 if xe€ M,

where a € R is arbitrary.

Given that 0 is locally integrable, it defines a scalar distribution @ as

previously defined
<0, T >= / Tn.
Mt

Given that X has measure zero on ., the distribution 6 is independent of the

value of a, therefore it won’t be fixed.
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Let f : A4 — R be alocally integrable function which is differentiable
in all 4 , except possibly in X where it might be discontinuous. Therefore, f is
differentiable in both .4 * and .# ~. Additionally we demand that both limits
of the first derivatives are well defined over .#£" and .#~. We define f* =
flu+ and f~ = f|4-, being f locally integrable the associated distribution

to this function is

—

=fro0+f-(1-0).

We calculate the derivative of f, integrating by parts in #* and 4~ we

obtain for an arbitrary vector V

<VFV 5= /ﬁ VEd,frn + /V VIO, + /Z[f]V“dau (1.3)

where do, has an orientation from .4~ to 4" and [f] is the function defined

in 2 called the jump of f in X, and it is defined for all ¢ € by

[/1(q) = lim 7 (z) = lim f~(2).

T—q T—>q
MT M

Definition 14. Let V € 9, we define the distribution & of type (1,0) by
<8,V >= / Vido, = / Vi, do.
% %
From equation (1.3) taking f* =1 and f~ = 0 it is straightforward
that § = V6. It is possible to define a scalar distribution § by

<OV >= / Vo
PN

This § distribution is dependent of the choice of the normal form n, d = n -9,

in components §,, = n, - §. Therefore, (1.3) is

Opf = 0uf T -0+ 0uf™ - (L=0) + [f] - 0y (1.4)

N.B. 1. The most important properties of 6 y 0 are the following (As this prop-

erties are held almost everywhere we omit writing the distributional relations
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as they are analogous to the non-distributional ones.)

0(2)0(x) = 0(x
0=0,

\ Cb

where 8 is the Dirac distribution.

In the same manner that it was done for a scalar function, given a

tensor field T € @pq we have that the associated distribution is

T=T"-0+T -(1-9).

1.1.3.1 First junction condition

We regard space-time as the disjoint union of two separate Lorent-
zian manifolds with boundary .#* and .# ~, each a solution to Einstein’s
equations with metrics g7 and g, respectively. The boundaries of . ' and
M~ will be denoted T and X7, respectively. We will assume that there
exists a C? diffeomorphism between both boundaries so henceforth we will
denote both boundaries by % unless specifically stated. In 1987, Clarke and
Dray [18] proved that under this assumptions "if a spacetime is constructed by
identifying the boundaries of two spacetimes in such a way that the intrinsic
metrics on the boundaries agree (and have a constant signature) then there
exists a unique choice of a C* atlas in which the (four-dimensional) metric of
the spacetime is continuous". As pointed out by Mars and Senovilla [14], the

assumption of a constant signature is superflous. Therefore we assume that g
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is a continuous tensor on a hypersurface, this is called the first junction condi-
tion. If one assumes that g is discontinuous across the hypersurface then the
Christoffel symbols contain terms proportional to a product of distributions
which is ill-defined thus the assumption of continuity of the metric across %
can also be deduced from this argument. The first junction condition is also

known as the preliminary junction conditions.

We can decompose the metric tensor as
g=0-g"+(1-0)-g,

and from our hypothesis it has an associated distribution which would be

g=0-g"+(1-0)-g.

We now define the connection coefficients associated to the metric in the
manifold. Denoting by F+0‘B7 the Christoffel symbols associated to g and
defined in AT UX, and '™, the Christoffel symbols associated to the metric
defined in £~ UZX, g~. We denote by I'"4. the Christoffel symbols associated
with the distributional metric g. For convenience in the notation we denote

(1—6) = 6. So we obtain

g+ (g)\ﬁ,'y T~ gﬁ%/\)

(ga)\—i-Q 4+ ga)\—QN>

(07 —
Eﬂv_

NN EN NN

(QAB,WQ + g)\'y,BQ - gﬁfy,)\Q

+ 90 + Gry 58 — G5y 00)
_r1ta —«
=T 5’7Q+ ﬁv@_@'

Consequently we have

Eaﬁ'y - FJFQEWQ + Fiaﬁw (l o Q)' (1'5)
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In this way we now know the Christoffel symbols as distributions so we define
the connection coefficients as functions defined on the manifold in the natural
way,

re, =T+ 04+T7% (1-0).
Notice that this definition produces the associated Christoffel distributions as

needed.

Given the relation between the Riemann tensor and the Christoffel

symbols we compute the Riemann tensor,

« _ 1o « « P « p
R Bw_rﬁun _Fﬁ'w +F7prﬂu _Fuprﬂv

and we will treat this relation in a distributional sense. First, given equations

(1.4) and (1.5), we have

« _ pta —« N «
Eﬁﬁw_r Blw'QjLF 5#,7.Q+5'n7[rﬁy]'

As we have defined the functions Faﬂ“, we have that the distributions Eo‘ﬁu
are associated to these functions and therefore the product anﬂ g 1s well-
defined as it is the distribution associated to I'% r’ 5, From this facts, we

obtain the distributional Riemann tensor which has the following expression

e o +a
= Py R

Byu Byu

The term on the right hand side of the equation proportional to § is called

the singular part of the Riemann tensor.

1.1.3.2 Second junction condition

We now seek the conditions to avoid the singular part of the Riemann
tensor. As the metric is assumed to be continuous across 2, any discontinuity

of the derivative must be in the normal direction to the hypersurface, i.e.

[gaﬁﬁ] = Caplly, (1.7)
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where c,p is a tensor field. With the jump of the ordinary derivative of the
metric in a coordinate system we can calculate the jump of the Christoffel
symbols. From (1.7) one obtains [na,s] = —[I",3]n, and a direct calculation
yields that the singular term of the Riemann distribution is actually a tensor

field #°5,,, which has the following expression
1

‘%aﬂ;w - 5(—710[[}(51,]71” + na[Kﬂu]nV - nﬂ[Ka,u]nl/ + nﬁ[Kau}n#)'

Contracting %£°,,, = &, one obtains the so called singular part of the Ricci
distribution, i.e.

B;U/ = RZI/Q + R/;V (l - Q) + 6‘%#1’7

where the explicit formula for the singular part is

Ry = _[K;w} - [Kp

Imum,.
Notice that the singular part of the Ricci distribution vanishes if and only if
the jump of the second fundamental form vanishes, and therefore if and only

if the singular part of the Riemann distribution does. Contracting one again

R=R9+R (1-0)+ 0%,

where # = —2[K* ]. Therefore the Einstein distribution is piecewise defined

by

v

1 _
Gy i= By = 59w = GLO+GL(1L—0)+ Y., (1.8)
where the singular part is
1 1
G = Ry — §9W'O]Z = _[KMV] - [Kpp]”unu - §guV(_2[Kpp])
= —[Ku]+ [Kpp}(glﬁV —nuny) = —[Ku] + hMV[Kpp]7 (1.9)

which is tangent to X. As our initial assumption was that both metrics are
solutions in .Z* and .4 ~, respectively, we can define an energy-momentum
tensor

T, =TL0+T,(1—0)+05F.. (1.10)
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which is a solution to the EFE’s in a distributional sense. The singular part of
the energy-momentum tensor is interpreted as the surface energy-momentum
tensor of a surface layer or thin shell. As the surface energy-momentum tensor

is tangent to X we can do a decomposition
12 ab_p v
T =T ey,
to arrive to the expression

Ty = —[Ku) + [Khap.

a

From this expression it is immediate that to eliminate the singular term from
the curvature distributions it is sufficient to demand [K ] = 0, which is the
second junction condition or occasionally known as the junction conditions as

one assumes the first junction condition to obtain the second.

1.2 Bianchi’s second identity in distributional sense

A lengthy calculation shows [14] that Bianchi’s second identity holds

in a distributional sense, i.e.

EpUAu;V + Epauu;/\ + Epau)\;u = O? (111>

poafiy

1
ap
55 ’y)\/u/E

which as an immediate consequence has the equation V*G,, = 0. We now

analyze this last equation

VIG,, = VGO + G (L—0)+09,) = [Gu]n'd + VH(9,0) (1.12)
Using equation (A.3) the last term can be expanded as

9"*V ,(9.,9) = ¢"'V o (Gun,n’0) + g“php’\VA‘ﬁw,é = h""V,%,,0. (1.13)

Using (A.2),
VA Yu6) = (V'Y — KZ39°n,)0. (1.14)
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Substituting in (1.12) we have
_ 1 -
(n“[GW] +V'y,, — s (K + KQB)) §=0.
Separating in normal and tangential components we get

(KJ“W +K,,)9" = Qn“n"[Qw] (1.15)
v'y,, =-n'n G, ] (1.16)

~Lpp

Notice that all relations are coordinate independent.






Chapter

Closed LTB Models

Given a 4-dimensional Lorentzian manifold (., gu), it is called a
cosmological model if it admits a congruence of timelike curves €¢, called
the word lines of the fundamental observers (WFQO’s), such that each p € 4
belongs to one and only one WFO. One also assumes that (., g,) is a solution
to Einstein’s field equations and is asymptotically an FLRW model. The
tangent vector field to the WFQO'’s is called the 4-velocity field. Sometimes it
is convenient to adapt coordinates to the WFQO’s assuming that each WFO is
parametrized as

2° =2°7), ' =const., (2.1)

and that each WFO is labeled by one and only one set of constant values of

x'. These coordinates are known as comoving coordinates.
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2.1 LTB Models

LTB models are exact spherically symmetric solutions of Einstein’s
equations with an inhomogeneous dust source with or without cosmological
constant. We now follow the standard derivation of the LTB metric, be-
ginning by considering the general spherically symmetric metric in comoving

coordinates

ds* = —N? dt* + B® dr® + R*dQ?, (2.2)
where N = N(t,r), B= B(t,r) and R = R(t,r).
From the EFE’s

2 R// 2 R/ B/ R/Q

GO = _
= RBE: RB® | BR?
1 2RB R?
T NRB RN TN (23)
Gl — _LR + Rf’Q _ i + M
" "RN2  B2R? R2 B2RN
R? ONR
- W + W = —A,‘ (24)
o'  2BR  2N'R
1
_ _ _ _ 2.
G B2R B3R  B2RN 0, (2.5)
1 . B}
2 3 3 2 2 3
G = G% = g (R'BN® = B*BRN + N'RBN® — RB*N

~B'R'N® — B'N'RN? + N°N'R'B — B>?BRN + B?BNR
+NRB®) = —A, (2.6)

where R’ = OR/0r, and R = u*V,R = OR/0t. We know the fluid moves in
timelike geodesics, so the acceleration is zero 1* = u’V,u® = N'/NB? = 0,
which implies N’ = 0 and one can rescale the time coordinate to make N = 1.
So (2.5) is

(BR'); =0, (2.7)
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if ¥ = 0 one obtains a Kantowski-Sach’s-like metric, Bondi integrated this

equation for R’ # 0 and obtained the result

R/Z
B>= — 2.8
—— (2.8)

where K = K(r) is an arbitrary function. Therefore, the LTB metric in

comoving coordinates is

/2

ds® = —dt* + ﬂ(dﬁ + R*dQ°. (2.9)

To avoid having a degenerate metric in (2.9) if there is a point in spacetime
in which R'(t.,r.) = 0 then by L’Hopital’s rule K (r,) = 1 in such a way that
the limit R'/(1 — K) is finite and non-zero. From this limit and that K is a

function of one variable one must also have that R(¢,r,) = 0 for all .

As N’ = 0, using (2.8) we can eliminate R from the G'; component,
obtaining )
2R R? K
—+ =+ =+A=0. 2.10
R + R? * R? + ( )
Assuming R # 0 we multiply this equation by R2?R and integrate the resulting

equation to obtain a Friedmann-like equation

: oM
R? = ——K—fARQ 2.11
7 5 (2.11)

with M an arbitrary function which will be discussed in the following para-

graph.

Multiplying the G° component by R*R’ we obtain by rearrangement

2 /2 1 2 2B /
(R—RR LB +AR3) +R<R> ﬂ kpRPR. (2.12)

N2 B2 3 N2 N2B
By equation (2.5) the second and third terms on the left hand side sum up to

zero, so (2.12) is in fact

RR*> RR? 1 __, .
(R— e + iz +3AR>TﬁpR R (2.13)
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The term in the left hand side of the previous equation is the radial derivative
of the Misner—Sharp quasi-local mass—energy function, a well known invariant

in a spherically symmetric spacetime, so we obtain the relation
2M' = 81pR*R’. (2.14)

In an analogous way, the G'; component takes the form

RR? RR? 1
R— —“AR}|] =0 2.15
( N T g T3 )t ’ (2.15)

)

which implies that M = M(r).

Notice that the density diverges whenever R or R’ do not have a zero
of the same order as M’. The first divergence is the Big Bang singularity while
the second is know as a shell crossing singularity. In this type of singularity
the density goes to infinity and changes sign whenever the critical point is also
a turning value for R’. The radial geodesic distance between two infinitesimal

points is y/|g.+| dr, which is zero for a shell crossing singularity.

Misner—Sharp quasi-local mass—energy function is in general not
equal to the proper mass, which is given by
R'R?
—dr.
vV1—-K
Notice that if K = 0 then M = Mp. This gives K a physical interpretation
as if K > 0 then M < Mp and if K < 0 then M > Mp. Therefore —K

Mp :/Vp\/—_gd\/:élw/p (2.16)

determines the local energy per unit mass of the dust particles.

2.2 LTB Models with A =0

Henceforth we consider A = 0 unless specifically stated. The equa-

tion (2.11), a Friedman-like evolution equation, leads to a classification of the
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models in three kinematic classes according to the sign of K = K(r), which
determines the existence of a zero of R?, and thus, the kinematic evolution:
for K > 0 the models expand initially R > 0, reach a maximal expansion
value Ryax = 2M /K where R = 0 and then collapse R < 0, while for K <0
the models are ever expanding. Since K = K(r), it is possible to have in a

single model regions with different kinematic class.

The solutions of the Friedman-like equation in (2.11) define the kin-
ematic classes as elliptic (K > 0), hyperbolic (K < 0) and parabolic (K = 0)

solutions given by

M , K3

K>0: R:?(l—cosn), n —sinn = M(t—tbb(r)), (2.17)
M K|3

K <0: R = ﬁ(coshn —1), n—sinhn= |J\/[|<t — tp(r))(2.18)
9 NE

K=0: R = §M<t — tbb(’l”)) s (219)

with ¢(r) denoting the Big Bang time function such that R(ty(r),r) = 0 for

variable r (notice that in general t;, # 0).

To fully determine an LTB model we need to prescribe the three
free functions M (r), K(r) and tm(r). Since the metric is invariant under
rescalings of r, it is always possible to reduce this set of free functions to a
pair of independent irreducible free functions. Given a choice of free functions,
all relevant quantities of the models can be computed from the solutions for

(2.17) to (2.19).

2.3 Ever expanding closed models

Closed LTB models are characterised by rest frames that are com-

pact 3-dimensional submanifolds without a boundary and with finite proper
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volume, which implies two possibilities: the rest frames are diffeomorphic to
S3 or to a 3-torus (an example of how to select the free functions latter case
is given in [19]). Since LTB models are spherically symmetric, the topological
class of the rest frames is directly connected with the existence of symmetry
centers, which are regular timelike comoving worldlines » = r. generated by

the fixed points of SO(3), and thus comply with

R(t,r.) = R(t,r.) = 0. (2.20)
Closed models diffeomorphic to S? admit two symmetry centers, while rest
frames with toroidal topology admit no symmetry centers. In closed LTB
models the condition (2.20) holds for two values of r, which can be denoted
by r = 0 and r = r.. Since S® is smooth there must exist a turning value
r = r, such that R'(¢,r.) = 0. Regularity conditions implies that M = K =0

and all radial gradients vanish at both symmetry centers.

Using the orthonormal tetrad {(e,)*}a=t 04 the components of the

Riemann tensor are

oM M
Rtrt’r ﬁ - RZR,7
/
Rr@rG = Rr,qﬁ,r,zzﬁ = %’ - Jé\jRﬂ
Rr@r@ = Rr,d),r,d) = _2};\347
R9¢9¢ = —2Rg\34.

The requirement of a nonsingular curvature at r = r. is having a finite limit

of M/R? and having a finite value for the density p as

M M’ 4
lim — = lim — 2P

rore B3 rone 3R2R 3

(2.21)
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2.3.1 Regularity of ever expanding closed models

After looking at closed LTB models with zero cosmological constant,
Bonnor [8] concluded that all “physically acceptable closed models” (PACM)
must be elliptic everywhere and eventually, collapse. Bonnor defined a PACM

by the following conditions:

1. p is finite and non—negative

2. There are no comoving surface layers nor shell-crossing singularities.
3. K, M and R are C*.

4. K satisfies extra regularity conditions at the symmetry centers, see [8].

These conditions imply
sgn(R') = sgn(M') = sgn(v1 — K), (2.22)

and, as an immediate consequence, if zeroes of R', M’, /1 — K exist, they must
all be common and of the same order. If the zeroes of R’ are different from
the zeros of the other quantities, then shell crossings occur where the density
and curvature scalars diverge with R > 0. The equation (2.14) together with
(2.22) imply that the density is non—negative and bounded everywhere, except
at the coordinate locus of a central singularity. The necessary and sufficient
conditions to avoid shell-crossing singularities, as required by (2.22), are given

by the Hellaby-Lake conditions given explicitly in [20, 4].

2.4 Lanczos—Israel formalism for closed models

Applying to the LTB metric the Lanczos-Israel-formalism yields as

the only nonzero component of the Einstein tensor: G,,, given by (2.11), while
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the extrinsic curvature at the hypersurface marked locally by r = 7/2 is given

by

[0 0 0 0o |
go |0 Y ’ ’ (2.23)
0 0 —YVLER 0

The Darmois junction conditions demand the continuity of K% at the hyper-
surface. Hence, if R > 0 for all r, then |R'|/R = 1, so that the junction
conditions are equivalent to the continuity of R and K. If there exists a zero
of R’ in some fixed value r = r(, then there exists a discontinuity of K¢ unless
K(rg) = 1. At the turning value ry = r* = m/2 there is clearly a discontinuity

of K.

Bonnor proved that a PACM must be an elliptic model. First, he
proved that if R’ changes sign (turning value) on a hypersurface r = r*, with
r* constant, and 1 — K # 0 on the hypersurface, then there is a surface layer.
The proof is straightforward. Since R has two zeros (two symmetry centers)
in closed LTB models, the continuity of R implies the existence of a turning
value marked by a zero of R’ in some value r = r* within the radial coordinate
range between the centers. Bonnor’s condition 2 implies that » = r* must lie
within an elliptic region (K > 0), since the regularity condition 1 — K = 0
at r = r* cannot be satisfied for a turning value in parabolic or hyperbolic
regions (K < 0). Turning values in such regions necessarily exhibit a surface

layer, which is not contemplated in the definition of a PACM.

The equation of state of the surface layer that follows from (1.9) is
o + IT; + 1y = 0, where ¢ is the surface density and II; are the surface pres-
sures that follow from the right hand side of (1.9) (the distributional energy—

momentum tensor). Bonnor considered this equation of state unphysical, not
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only for having negative pressure, but also because of:
Myg = /(Tl1 ST 4TS — TUOWh & = /(a T+ )WV &Pz = 0,

which means that the surface layer energy—-momentum tensor produces zero

active gravitational mass.

To choose the appropriate free functions M, K, ty, for a closed model
we must demand that their radial gradients vanish at turning values and at
the symmetry centers. In the following chapter we re-examine and extend
Bonnor’s results, looking at the spatially flat (K = 0) and negatively curved
(K < 0) cases separately.

2.4.1 Surface tension

The presence of distributional sources in thin layers can be associ-
ated with surface tension through the relativistic generalisation of the Kelvin

relation of Newtonian physics [9]
AP = 2% A (2.24)

where the surface tension A depends on the material, AP the difference of
pressures in both sides of the surface layer and £ is the mean curvature given
by & = 1/R; +1/Ry, with Ry, Ry the principal curvature radii. As proven in
[9], the relativistic generalisation of (2.24) is connected to a thin shell in the

framework of the Israel-Lanczos formalism:
AP = ; (KF+ K ) 7. (2.25)
where 7% is the projected energy-momentum tensor in (1.9)
T =hihyT’, 8T = —[K*"] + h*[K",] (2.26)

where h? = 535% + ngn% with a,b =t,0, ¢ the hypersurface intrinsic coordin-

ates.






Chapter

Analysis of ever expanding closed
LTB Models

3.1 The spatially flat case K =0

A convenient choice for the free functions M and & is

M = Mysin®7, ty, = —Tysin’F, = R= (ZMO) v sinr {t_—i- T, sin® f} 2 ,
(3.1)
where M, = %Ho_l, Ty is an arbitrary constant, 7 = wHyr and t = Hyt are the
radial and time dimensionless coordinates respectively. However, to simply
notation henceforth we will drop the bars on top of ¢t and r, understanding
henceforth that (unless specifically stated) ¢t and r without overbars denote

these dimensionless rescaled coordinates.

The parameters in (3.1) have been selected so that the kinematic
evolution of the model at the symmetry centres » = 0, 7w coincides with that

of the Einstein-de Sitter spatially flat FLRW model, whose Big Bang time
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is given by t = 0. Hence, the constant Ty can be identified with the Big
Bang time of the LTB model at ¥ = 7/2 (or equivalently r = 1 Hg'), that is:
tw(m/2) = =Ty < 0. For a more realistic cosmological scenario in the context
of an inhomogeneous model with small deviation from an FLRW background,
we shall assume that |Ty| < to, with present cosmic age given by tq ~ 13.7x10°
years (a convenient bound value is |Tp| ~ 10,000 years). With this choice of
free functions we have

My /6)"/3 cosr [7Tysin®r + 3t]

R/ — (
[t + Tp sin? 7"]1/3

while the density and the components of the extrinsic curvature follows from

(2.11) and (2.23) for K = 0:

16
3(t + Tysin? r)(7Tysin® r + 3t)

8mp = (3.2)

7 (r—1)

Y

2
Ky =K% = T3 1 23
Mg sinr [t + Tysin®r]

where 5 (r) is the Heaviside function and we used the fact that t+¢ysin?r > 0

in the full domain 0 < r < 7.

Since these expressions allow us to compute K, + K~ = 0, while
G, is continuous on &, then (1.15) is satisfied identically everywhere. On the
other hand, the right hand side of (1.16) is zero, but computing its covariant
derivative and evaluating on & yields the following result: the singular part
of the Einstein tensor, ¢, , is constant on . Notice that from (2.25) there

is no surface pressure due to surface tension.

At & the only nonzero components of the distributional energy-
momentum tensor are:

1
8mo = (36M0)1/3(t + T0)2/3a 87TH1 = 87TH2 — _47_‘_0_’
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where o is the distributional density, while II; and IIy are the distributional
pressures, with the equation of state given (as found by Bonnor) by o + IT; +
I, = 0. As the units of the distributional and continuous (non—distributional)
density are not the same we obtain the quasi-local mass from each density to
obtain a quantity that can be compared. The energy momentum tensor is
divided into a continuous (non-distributional) part and a distributional part
as: Tap = Top + Tapd(F), where § is the Dirac delta function, and in our case
T, = puguy. From the expression of the full energy-momentum tensor it is
clear that it makes sense to compare the quantities Tpyutu® and Fyuus(S),
which have the same energy density units, by means of integration over a
domain that contains the hypersurface.
We integrate p = Tyu®u® in a domain 0 < ry < /2 <ry <,
M, = 4m /T2 pR?R'dr = My[sin® ry — sin® ], (3.3)
T1

from this expression we obtain an upper and lower bound, 0 < ., < M,.

For the distributional matter at the thin shell we obtain the contri-

bution of ¢ to the active gravitational mass as the integral of Zuu’s(<),

2
9 3
v 1 e (2M)° (t+ T
//lg:/ JRzly(S(r—W>/der: <220)1 ( 02) 5(7’—7T> dr
n 2 20 65 Mg (t+ ) 2

ol

1 /9M\ /3
=5 () T

Considering the arbitrary 0 < ry, 7o < 7 which give the upper bound for
M,, and from the ratio of the latter and .#, we obtain a comparison of
the continuous mass and the contribution of the distributional density to the

quasilocal mass

My (A\E Mg
()= "7 =2 (3) o (3.4)

To obtain a numerical result we evaluate this ratio at present day cosmic time

to ~ 13.7 x 10° years and use My = 3/2H0_1, where Hj is the Hubble constant
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(~ 70km/(sec Mpc)). We obtain for these values

239 239

E(ty) ~ ~
(o) Ho% (to + Tp)3 (70%) (13.7 x 10° 4 105)years

~ 3.2176, (3.5)

while for ten times the current age of the universe we have

wlot

£(101ty) ~ ( 2 ~ 0.69. (3.6)

T0KPL2) (13.7 x 1010 + 10%)years

Thus, for the asymptotic evolution range of large cosmic times the contri-
bution to the quasi-local mass from the distributional surface density dom-
inates the contribution from the continuous dust source. This behaviour is
clearly unphysical, since the distributional source does not generate effective
gravitational mass (from the quasi-local mass definition), yet it ends up over-
whelmingly dominating over the quasilocal mass obtained from the continuous
(and physical) dust density. In section 3.4 we further examine the physical

implications of this model.

3.2 The case K <0

We select the same free functions as in (3.1), together with K(r) =
—Kysin?r. The only non-vanishing components of the extrinsic curvature are

V1 — Kosin?rR|R/| .

R ’

where

3
_ Mysin r(coshn — 1) ) — sinhy = K& (t + tosin? 7‘)'

Ko ’ My

R(t,r)

Once again, [G%] = 0, and K, " + K, ~ = 0, so (1.15) is satisfied. Taking

the covariant derivative of ¥, on & leads to a zero vector and thus (1.16) is
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identically satisfied once again. At & the distributional density and pressures

are

1- K,
8mo = 4—0, 8rIly = 8nlly = —4mo,
R(t,r) -

while the non-distributional density takes the form

3Mysin? rcosr
ATR%2R’

8mp = (3.7)

To obtain a comparison one would proceed as in the case K = 0 but taking
into account the proper mass instead of the quasilocal mass, as in this case
both masses are not equal. These comparison yields a similar result as in the

case studied previously, which we considered to be unphysical.

3.3 Case A >0

If A > 0, Einstein’s field equations yield the same form for the density

p given in (2.11), but the Friedman-like evolution equation is now:

. R
R? = Q;), Q(R) =2M — KR + \R? (3.8)
where \ = %A. The kinematic evolution is governed by the zeroes of the

cubic polynomial Q(R) for different values of K. Ever expanding regions
or models are characterized by configurations with those choices K and M
for which @ has no zeros for a specific range of r. In particular, fully regular
closed ever expanding models without thin layer distributional sources require
configurations with K > 0 for which Q(R) has no zeroes for all the range of

r.
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Figure 3.1: Plot of Q(R) in (3.8), see text for explanation.

To look at the sign of Q(R) we plot this cubic polynomial for fixed
positive values of M and A and letting vary K for R > 0. As shown in Fig.
3.1, all curves above the lowest red thick curve (colors appear in the online
version), which are configurations of a generic LTB dust solution, represent
ever expanding universes. The dot-dash green curve represents spatially flat
models, below this curve are models with K > 0, and above the dash-dot
green curve there are negative spatial curvature models. In this case we can
choose K > 0 so that the condition K(r*) = 1 for R'(t,7*) = 0 holds and
thus, we have ever expanding models for which the regularity conditions for
a PACM hold: the metric coefficient /g, = £R'/v/1 — K is well defined at
r* and K} is continuous, which eliminates the surface distributional source
at r = r*. This is an important result, since it proves that LTB models that

approximate the A-CDM model can have rest frames with a closed topology.
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3.4 Radial null geodesics at the interface

While the thin shell distributional source at the hypersurface r = r*
in ever expanding closed LTB models does not generate effective mass, it
is interesting to find out if the existence of such source could be detected
observationally. To explore this question we need to find null geodesics that
cross this hypersurface and compute the redshift from light emitted along

these curves by distant observers in these models.

Photon trajectories (null geodesics) follow from the solutions of the
geodesic equation,
d>x® dx® dz°
re« — 7= — 3.9
RPN S (3.9)
with the constraint £k, = 0, for k% = dz®/d) is the tangent vector of these
curves and )\ is an affine parameter. We will consider only radial null geodesics

k* = [k*(\), k"()),0,0], where k' and k" are obtained from (3.9)

2t R (dt\®

2 /" K’ 2 9 S / 2
dr (B KL ()t 2R R (A g
d\? R 2(1-K)/) \d\ V1—K R \d\
subjected to the constraint k,k* = 0

dt\* R* [dr)’ dt R dr
(& i [ R a 3.12
(ab\) +1—K<d)\> ST T VI RdA (3.12)

The metric functions R, K and their derivatives in the coefficients follow from

the closed ever expanding models we have examined in previous sections (with

A =0).

It is well-known that a non-degenerate C"*! metric determines the
C" Levi-Civita connection. For K = 0 the metric is C'*°, for K # 0 in general

it can only state that the metric is C°. For convinience we will analyze the case
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K = 0 in which the connection is C" almost everywhere, i.e. it is C" except
on a set of measure zero, namely the symmetry centers and at the turning
value of R'. Therefore there exists a convex normal neighborhood at each
p € M, i.e. an open set U with p € U such that for all ¢, € U there exists
a unique geodesic v which stars at ¢ and ends at r and is totally contained
in U, see [10]. The connection is not C" at the symmetry centers and at the
hypersurface r = r,, nevertheless the radial geodesic equation is C" in all the
space-time except at the hypersurface r = r,. By the standard existence and
uniqueness theorem for ODE’s there exists a unique geodesic from a symmetry
point to any point arbitrarily near the hypersurface, in comoving coordinates
this guarantees the existence of a null geodesic that starts at » = 0 and ends
at r = r, — ¢, for any €; > 0 and a null geodesic with endpoints at r = r, + €

and r = r, for all €5 > 0.

In order to check if the geodesic equation is well defined at r = /2,

we consider the choice of functions of section 3.1, leading to:

L 2 (dt> 0, (3.13)

dx2 3 d\
> W(t,r) — Qt dr
77; + (t,7) (t,7) W(t,r) <T> —0. (3.14)
dA* " 2l cosr (to sin? 7 + %t) (t + tosin®r) d\
where
3t + tosin’r
&(t,r) = 3.15
(t.7) (t + tosin?r) (3t + Ttgsin?r)’ (3:15)
2(36Mp) s 3t + Tty sin’
U(t,r) ==+ Jcosr(tg sin®r + 3t) cos (3t + Osml r) : (3.16)
3 (t + tosin®r)s
2 .4 10 4 9\ o 3 2 -
Q(t,r) =21 <t0 sin®r + (725150 — 5 cos 7") sin®r + ?t(t — 4ty cos 7’)) sinr,
(3.17)

and the plus minus sign in the square root from equation (3.12) will distinguish

between “ingoing” past directed curves and “outgoing” future directed curves.
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Since (3.14) is not well-defined near r(\) = 7/2, we introduce the
change of variable: ¢(\) = 10®™ and solve numerically the geodesic equations
above for generic values of My and ty. In what follows we consider My = 10
and ty = 0.5. The absolute value needs to be evaluated in a piecewise manner
|z] = z for x > 0 and |z| = —x for x < 0 for any z. For generic initial
conditions and working with both signs, each considered also in the geodesic
equations (see (3.16)) we solve numerically (3.13) and (3.14) for several initial

conditions, leading to the curves plotted in figure 3.2.

Figure 3.2: Plot to numerical solution of equations (3.13) and (3.14) for four
different geodesics with generic initial conditions. As it can be noticed, the
curves are smooth when considered as w(r) as opposed to the discontinuity

that is examined when w and r are considered as functions of the parameter .

The numerical solution for r € [0,7/2) shows that near 7/2 the
derivative dr/dX does not tend to zero. The graphs for 7(\) and ¢()) for some
of the geodesics obtained are shown in figure 3.3. It can be seen from the

solutions that (3.12) restricts the solutions for ¢(A) and r(\) to be such that the
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(a) Plot for 7(\) € [0,7/2) (b) Plot for r(X\) € (7/2,7]

Figure 3.3: Plot to numerical solutions for r(A\). The plot on the left is the
plot for the values of r € [0, 7/2), while the second graph represents the values
r € (m/2,m]. From the plots it can be seen that the values of the derivative

dr/d)\ diverge, which has implications on dt/d\, see fig. 3.4.

product R'dr/d\ be finite. In this cases the product is not zero which implies
that dr/dX must diverge. Also, equation (3.12) reveals that solutions that are
not C!' can be obtained, as arbitrary initial conditions can be chosen over r
as a function of A to obtain a C° curve, defining r(r/2) = lim, , _,+ 7(A) =
lim, , _»-7() that satisfies (3.13) and (3.14) for r € [0,7/2) U (7/2, 7]. Some
of these solutions are shown in figure 3.2. Therefore, there exists a jump in
the first derivative of the curve which could be used to probe the existence of

thin shells.

Although there is a discontinuity in the first derivative of the co-
ordinates of the geodesics, each value of r € [0,7/2) U (7/2, 7] is reached in a

finite value of the affine parameter.
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Figure 3.4: Plot to numerical solutions for ¢, from the plots it can be seen that
the values of the derivative of the ¢ curve are always finite due to the divergence

of dr/d), see fig. 3.3, as required by equation (3.12).

3.5 Redshift

The redshift for a K = 0 model is calculated through the following
integral, c.f. (A.12),

In(1 + 2(r(\))) = /0 RO, 1) ;l;d)\. (3.18)

Note that as dr/d) is discontinuous at r = 7/2, the integrand is not continuous
but the integral is. Figures 3.5 and 3.6 represent the redshift and the plot for
1/(1+ z)dz/dX for two different geodesics.

As there is a discontinuity in the derivative of the redshift it is pos-
sible probe the existence of a thin shell by measuring the redshift of radial
photons. Nevertheless notice that the magnitude of the discontinuity depends

on the parametrization chosen.
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(a) Plot to numerical solution for z(A) (b) Plot to numerical solution for
1 dz

T+z dx
Figure 3.5: Plot to numerical solutions for first geodesic, where the disconinuity

of the redshift can be apreciated. See text for details.

(a) Plot to numerical solution for z()\) (b) Plot to numerical solution for

1 dz
142z dX

Figure 3.6: Plot to numerical solutions for second geodesic, where the dis-

coninuity of the redshift can be apreciated. See text for details.
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3.6 A model with K >0

We now analyze the case K > 0 and show that in this case observers
at the turning value would not detect any thin layers. Analyzing a model with
positive K is easier with a change of variables in the metric, where we obtain

a FLRW-like metric with line element
ds* = —dt* + a* ﬂdﬁ + R2dQ? (3.19)
1 —k,R? ‘ ’
where a(t,r) = R/R;, R; = R(t;,r) and t = t; determines a fiducial initial
hypersurface. Henceforth, all quantities evaluated at t = t; will be denoted
by a the subindex i. The dimensionless metric function T' is
/ /
=
where I} = 1, while k,; = K/R?. Note that the regularity condition on this

metric is R = 0 which implies k,R? = 1.

We now consider the functions a,T' and R; taking into account a
closed model. We have, c.f. [21], that along turning values regularity con-
ditions on the density, p, density at the fiducial time, p;, Ricci scalar of the
hypersurfaces at the fiducial time ®)2; and the metric imply that R}, M’ and
(k;R;)" must have common zeros along the turning values of the same order

in 7 — m/2. The function I' must not have a zero due to the fact that I' =0

and p; > 0 imply a shell-crossing singularity. So, with this considerations

/
R =dR; + RRRZ', K' = kl,R? + 2k R; R;.

7

Evaluating both equations along & it is obtained that along the hypersurface
a =k =0.

The null geodesic constraint is
dt T'R; d
-+ i r

T Ik REAN

(3.20)
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The radial null geodesic equations are

d*t  a’T + aal (dt)Q _ d?r

dr\’
Py —o, T iaseD) (D) =
w e o) 70 e tABS )<d)\> 0,

where
1 b
ZaRQQF(—l + kqiR?)

TRPT 1
B = 2R (CF + (iRl + QRQF’> (=1+ kqiR?)) :

J1 = kiR

1
C=——k,RIR? — RPkyuR; + Rk R} — R,

9 vqit it

4' {31"2
AR N k).
N

We check whether the geodesic equation in this variables is well defined. We

D= (za’Rfr +

have that

R'R; y R'\ R,
R

ImI'=1lim —— = | lim —
r=3 r=3 R; R r=3 RfL

_ T

due to the fact that R, = dR;/dr is the derivative of a radial profile at a given
time, and the partial derivative R’ = OR/0r is taken as a limit at a constant
time, so the limit in the last parenthesis must be a finite function of time. We
now check the product AB

C RT 1T

— + 4+ ——
Ri(1 —kq) )1 —kyR2 2T

The limit of the second term is

AB =

(3.21)

R'T ( ) R!
lim ——=— = (lim ) [ lim ——2— | .
r=5 /1 = kg R r—% (ﬁ J1— kqiRZ?)

The second limit of the right hand side is finite by regularity conditions, while
the first

. (R’R+R’R> R; (R’R+R’R>
o G il o

R? B R/R?
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has a finite limit at 7 = 7 as long as the limit R'/R! exists. We now analyze

the first term of the product AB,

C KR} +2RkuR; Rl
Ré(l - kqiR%) B 2 - quiRz? R; '

The first limit term of the last equality is nonexistent as 1 — k,; R? has a zero
of the same order as R;? and k[>. Even though the limit does not exist, this
is consistent with the non-defined geodesic equation at & in the comoving

variables.

We now check the product AD,

' 2aRT
Ap="2 4 T

a a\/l—kqin.

The limit of the first term is zero from the definition of @ and as R’ and
R; are continuous and zero at &. The second term is constant by previous

calculations.

Regularity conditions for a closed model require that K = 1 at &,
where R’ = 0 and that the following limit be finite and not null,

R/Z
TR (8:22)

where x denotes a generic point in the manifold. It is straightforward to prove
that the metric component g,, is continuous but does not have a continuous
partial derivative ¢/ which immediately implies that the connection will not
be C! in a set of measure zero, . On the contrary, in the case K = 0
the connection is not C* due to the fact that the metric is degenerate at &,
as opposed to the model with K > 0 which is not degenerate by regularity

conditions.

Nevertheless, if a solution to the geodesic equation where to exist the

derivative of the radial and temporal coordinates should be continuous as they
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must satisfy the null geodesic constraint (3.20), which relates both derivatives

by the following relation
dt +R dr

A VIZKd\

Both derivatives are related by a function which is continuous due to the

(3.23)

regularity conditions, where it is used that the square root is a continuous
function so the passage to the limit under the square root can be taken, and
by hypothesis was assumed to be invertible, which completely determines
both coordinates, unlike the case K = 0 which gives an infinite number of
choices of the derivative of the radial coordinate. Therefore LTB models with
K > 0 present no issues in geodesics and as there are no surface layers, and
by the analysis of equation (A.4) there is no effect on the redshift nor on the

derivatives of the coordinates.
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Conclusions

We have examined the dynamics and geometric properties of ever ex-
panding “closed” LTB dust models, where by “closed” we mean models whose
rest frames (hypersurfaces orthogonal to the 4—velocity marked by constant
time) are diffecomorphic to the standard 3-sphere S®. We considered both
cases, with A = 0 and A > 0. Since observations do not rule out a small posit-
ive curvature, the case A > 0 can be thought of as a toy model inhomogeneous

generalisation of the ACDM model.

Ever expanding closed LTB models with A = 0 where examined long
time ago by Bonnor [8], who showed that fulfillment of regularity conditions
require these models to admit a thin surface layer at the equator of the 3—
sphere (“turning value” of the area radius), which must be examined by means
of the Israel-Lanczos thin shell formalism. Bonnor found the equation of state
state satisfied by this distributional source, which he regarded as unphysical

because it does not contribute to the effective quasi—local mass and because
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of the negative surface pressure (this was before negative pressures were ac-

ceptable in connection with dark energy).

In the present thesis we extended Bonnor’s work by looking at the
time evolution of the distributional source, in comparison with the time evol-
ution of the continuous dust source. We also show that assuming A > 0
allows for perfectly regular closed LTB models, an option not contemplated
by Bonnor. By looking first at the spatially flat case K = 0 = A, we found
that the distributional density (which does not contribute to the effective
mass) dominates the continuous density in the asymptotic time range, which

is an unphysical effect. This same effect occurs for the negatively curved case

(A=0, K <0).

Furthermore, we raised the issue of whether the presence of this un-
physical distributional source could be detected by observations based on light
rays crossing the timelike hypersurface made by the time evolution of the 3—
sphere equator. By looking at radial null geodesics in the case K = 0 = A
and placing the observer at the symmetry center » = 0, we showed that the
presence of the distributional source causes a discontinuous radial derivative
of redshifts from observers beyond the equatorial hypersurface of S3. Hence,
we proved that this type of distributional source would be detectable by ob-
servations, even if it does not contribute to the effective quasi-local mass.
Finally, and for the purpose of comparison, we showed that this discontinuity
of the redshifts does not occur in re-collapsing closed LTB models (for which

there is no distributional source at the 3-sphere equator).



Appendix

Appendix

A.1 Distributional derivative of terms containing ¢

We calculate the derivative of a distribution of the type T'6 where
T € 92( M) is defined at least on 2. We use the rule for derivating distributions

< v/‘(Tal"'O‘pé)’ yHrermor > = — < Ta1...ap(57 Vﬂy,ual---ap >
= _/ Tal---apvuyual'“a”da
X

— L Ty (m® + b, P)V, Y P00
where, in terms of inner products, the first term is
— < a0, V Y RO > =<V (Ty,.a,n,n"0), Y% > (ALl
The second term is expanded as

_/ Ta1---aphupva“a1"'ade :_/hﬂpvp(Talm%Y“al...%)do_
z z

[y, 19, T o, do
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Using that
h’yﬁh‘aéhpo'vﬁsﬁa = vU (Sf’yé) + (hﬁéspﬂn[JKZ’ya + (h'yasapnp>KZa67 (A2>

where §% = h.%hy’$" and K%, = 1/2(K",; + K ,54), one arrives to the

following expression

— | Toa
J Toveash

pvaMOél---Olpdo' —— /ZVM(Tal---apYHmmap)dU
— [ K 0, Ty, Y
é pnﬂ 1 D

Y N Ty do

AsY € 9(#) the first integral is zero, therefore

a /Z: Tal."aphupvﬂyualmapda =< (hPMVMToqmap - szpnMTOéln-Oép)é? yrorar >

Consequently

Vi(Tar0y0) = VoTasay?0) + (0 NV Tos oy — K210, Ty 0)0. (A3)

A.2 Calculation of limits

A21 K >0
From (2.17) we have the following relations

n =arccos (1 —aR), sinn=+/1—cosn=+VaRvV2—aR,
! {arccos (1 —aR)— VaRv2— aR} )

t—ty =

1
=aK?2.

SRR

_ K _
where a = §; and 8 =

Derivating respect to r and isolating R’ we obtain an expression

which involves gradients which vanish at &, so R’ vanishes also along the
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hypersurface.

Derivating once again and substituing

_11I5M*D(F+«B+G)+H+1+J

RII
4 K*RM(KR — 2M)
where
12 4 / / 2 " 4 "2
F = <K M= -K'M'K - =K"KM + =M"K > (KR —2M),

G = 145752’1] (2MK? — RK#),

H = 2K'MRK" +8K*MR*M" — 16 K3 M*R*K" — 16 K*M*RM"
+24K*M3*RK",

I = AK*MR’K'R —3K*MR*K"™ + 4AK*M*R? — 8K*MRM'R’
+4K*R*M",

J = 48K*M*RK'M' — 60K M*RK"™ — 32K*MR*K'M' + 40 K*M*R*K".

Note that at &, I and J vanish. As not all functions vanish at &, R” is not

necessarily of the form 0/0. In general, in radial profiles KR # 2M so R’ is

finite. From our choice of free functions H doesn’t vanish at &.

We now analyze the term K’/(2 — 2K), as the numerator and de-
nominator are zero at the hypersurface, using the choice of free functions
previously used we obtain that there is no limit at &, so the term is singular.

In the general case, L’Hopital’s rule gives

K/ K//
lim = lim

_n L (A.4)
r—22—-2K r—3% K’

which necessarily gives a 0/0 form, co/0 form or no limit as K’ is 0 at the

hypersurface.

The term

. ! /
R 1 2%_2]\;5_[(/

VI-K 2 /1-R./)*M _[

R
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clearly is of the form 0/0 at . As R', M’, K’ and /1 — K have zeros of the

same order, this limit is well defined.

A.3 Redshift

We include the derivation from [22]. Let there be two light rays
emitted the same direction by an observer 0, where the second light ray is

emitted a time-interval later 7. We denote the equation of the first ray as
t="T(r). (A.5)

We denote the second ray as t = T'(r) + 7(r). As both rays must obey

dt R
— = A6
dr 1-K (4.6)
we have
dTdt R,(T(r),r) d(T+7) R, (T(r)+7(r),r) (A7)
drdr 1—K()  dr 1—-K(r) '
To first order in 7 and as 7 was assumed to be small,
R, (T(r)+7(r),r) =R, (T(r),r)+7(r)Ru(T(r),r). (A.8)
Using (A.8) and (A.7) we obtain
d R.(T(r),
CTT — () 4 (T(r) 7’). (A.9)
T 1—K(r)
The redshift is defined by
T(Tebs)
=1 em)- Al
T = 1t () (A.10)

Considering a fixed observer and the sources separated an infinitesimal dis-
tance, one obtains by differentiating (d7/dr)/T = —(dz/dr)/(1 + z). So, one

obtains
1 dz _ _RM(T(T),T) (A1)
1+ zdr 1—K(r) '
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Integrating one obtains

In(1+2(r) = [ Rar(T(r).7)

Tem 1— K(r) dr. (A.12)
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