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Ingenieŕıa de la Computación el apoyo brindado para realizar estos estudios.

III



IV AGRADECIMIENTOS



Contents

Agradecimientos III

Abstract 1

1 Introduction 3
1.1 The Open-Ended Evolution problem . . . . . . . . . . . . . . 3
1.2 The Question: Complexity and Undecidability of OEE . . . . 4

1.2.1 Algorithmic Driven Evolution . . . . . . . . . . . . . . 5
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Preceding Approaches to the Topic . . . . . . . . . . . . . . . 7
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Computability and Complexity 9
2.1 Computability . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Computable Functions and Objects . . . . . . . . . . . 11
2.2 Algorithmic Information . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Randomness . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Universal Measures of Complexity . . . . . . . . . . . . 19

3 Computable Evolution 25
3.1 Computable Evolutionary Systems . . . . . . . . . . . . . . . 26
3.2 Open-Ended Evolution: A Formal Definition . . . . . . . . . . 28
3.3 A Formal Characterization for Adaptation . . . . . . . . . . . 30

4 Irreducibility of Time Complexity 35
4.1 Non-Randomness of Decidable Convergence Times . . . . . . 37
4.2 Randomness of Convergence in Dynamic Environments . . . . 41

V



VI CONTENTS

5 Beyond HP: OEE 45
5.1 Emergence, a Formal Definition . . . . . . . . . . . . . . . . . 48

6 A System Exhibiting Strong OEE 51
6.1 Chaitin’s Evolutive System . . . . . . . . . . . . . . . . . . . . 51

6.1.1 A Brief Introduction to Algorithmic Probability . . . . 52
6.1.2 Evolution Dynamics . . . . . . . . . . . . . . . . . . . 53

6.2 Chaitin’s System and OEE . . . . . . . . . . . . . . . . . . . . 56
6.3 Evolution as ¬HP . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.4 Algorithmic Probability Evolution . . . . . . . . . . . . . . . . 58

7 Approximating m(s) 61
7.1 Approximating K . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.1.1 The Use and Misuse of Lossless Compression . . . . . . 62
7.1.2 The Coding Theorem Method (CTM) . . . . . . . . . . 65

7.2 The Block Decomposition Method (BDM) . . . . . . . . . . . 69
7.2.1 l -overlapping String Block Decomposition . . . . . . . 71
7.2.2 2- and w -Dimensional Complexity . . . . . . . . . . . . 73
7.2.3 Dealing with Object Boundaries . . . . . . . . . . . . . 77
7.2.4 Error Estimation . . . . . . . . . . . . . . . . . . . . . 79
7.2.5 BDM Convergence towards Shannon entropy . . . . . . 81
7.2.6 BDM versus Entropy (Rate) and Compression . . . . . 84

7.3 Approximating m(s) . . . . . . . . . . . . . . . . . . . . . . . 84

8 Exploring Algorithmic Evolution 87
8.1 Why Algorithmic Evolution? . . . . . . . . . . . . . . . . . . . 88
8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.2.1 Theoretical Considerations . . . . . . . . . . . . . . . . 88
8.2.2 The Expectations . . . . . . . . . . . . . . . . . . . . . 90
8.2.3 Evolutionary Model . . . . . . . . . . . . . . . . . . . . 91
8.2.4 Experimental Setup: A Max One Problem Instance . . 92
8.2.5 Evolution Dynamics . . . . . . . . . . . . . . . . . . . 93
8.2.6 The Speed-Up Quotient . . . . . . . . . . . . . . . . . 95

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.3.1 Cases of Negative Speed-up . . . . . . . . . . . . . . . 96
8.3.2 The Causes of Extinction . . . . . . . . . . . . . . . . 98
8.3.3 Positive Speed-Up Instances . . . . . . . . . . . . . . . 102
8.3.4 Mutation Memory . . . . . . . . . . . . . . . . . . . . 104



CONTENTS VII

8.3.5 The Speed-Up Distribution . . . . . . . . . . . . . . . 104
8.3.6 Chasing Biological and Synthetic Dynamic Nets . . . . 107

9 Conclusions 113
9.1 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

10 Bibliography 119



VIII CONTENTS



Abstract

Does decidability hampers the potential of a dynamical system to generate
complexity? And, given the case, under what conditions can a system ex-
hibit non-trivial evolutionary behavior? Answering these two questions is
the main task of the research presented in the current text, which is divided
in two interconnected parts.

Chapters 2, 3, 4 and 5 deals with the first question within the context
of computable evolutionary dynamical systems. Using methods derived from
algorithmic complexity theory, we give robust definitions for open-ended evo-
lution and the adaptability of the sate of a system. We show that decidability
imposes absolute limits to the speed of complexity growth. This limit ties
tightly the speed of which complexity and innovation can appear to that
of the most trivial systems. Conversely, systems that exhibit non trivial
open-ended evolution must be undecidable, establishing undecidability as a
requirement for such systems [39].

In Chapters 6, 7, 8 we describe dynamical systems, first proposed by
Chaitin, that meet our criteria for no trivial (strong) open-ended evolution,
along with a series of numerical experiments on them. We call these systems
algorithmic probability-driven evolutionary systems or simply algorithmic
evolution. Among the experimental and theoretical results we found that
regular structures are preserved and carried on when they first occur and
can lead to an accelerated production of diversity and extinction, possibly
explaining naturally occurring phenomena such as diversity explosions and
massive extinctions. We argue that the approach introduced appears to be a
better approximation to biological evolution than models based exclusively
upon random uniform mutations [41, 86].
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Chapter 1

Introduction

Explaining the causes and underlying mechanics of the diversity and per-
ceived complexity found in the natural world is one of the main objectives
of science, philosophy and theology. One avenue of research on the topic is
found in the field known as artificial life (ALife), which embraces the use
of computational tools to search for the conditions needed for evolutionary
systems that are capable of exhibiting the properties of diversity and com-
plexity that are ascribed to the natural world. It is in this field where we
find the concept of Open-Ended Evolution (OEE).

1.1 The Open-Ended Evolution problem

Artificial Life (ALife), named by Christopher Langton, is a field that uses
computer science to study life in general, formulating an interdisciplinary
theory of mathematical biology [75]. Central to the field are the concepts
of self-organization and emergence; order and structure that are thought to
generate spontaneously from an initial computable set of rules or fundamental
entities [60]. It is within this context that we find the concept of Open-Ended
Evolution (OEE).

In broad terms, OEE is understood as the observed capacity that the

3



4 CHAPTER 1. INTRODUCTION

biosphere has to create complex and innovative life forms. When applied
to artificial evolution, one author describes OEE as “evolutionary dynam-
ics in which new, surprising, and sometimes more complex organisms and
interactions continue to appear” [73].

Giving a precise characterization for OEE and establishing the require-
ments and properties for a system to exhibit OEE is considered to be one of
the most important open problems in the field [7, 71, 72] and is thought to
be a required property of evolutionary systems capable of producing life [63].
This is called the OEE problem.

1.2 The Question: Complexity and Undecid-

ability of OEE

Central to the OEE problem is the evolution of complexity within the bounds
of its initial characterization. Defining and effectively measuring complexity
is a problem in itself [35]. In the opinion of this author, the most successful
theory of complexity is found in the framework of Algorithmic Information
Theory (AIT) [42]. Developed independently by Chaitin [18], Solomonoff [70]
and Kolmogorov [47], this theory uses the algorithmic complexity of a finite
object as its foundation. This measure of complexity is invariant from the
choice of (Turing compatible) computational model, therefore is universal.

It is within this framework that we find the following results pertaining
the limits that initial conditions impose upon the rest of the system:

“In evolutionary terms, it is difficult to justify how biological
algorithmic complexity could significantly surpass that of the en-
vironment itself.”

Zenil et al.,[79].

“The theorems of a finitely specified theory cannot be signifi-
cantly more complex than the theory itself.”
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Gregory Chaitin, [19].

“Is complexity a source of Incompleteness?”

Calude and Jürgensen, [16].

For the author, the cited results and statements strongly suggest the following
question:

Is undecidability a requirement for Open-Ended Evolution?

Answering this question by establishing an strict mathematical framework is
the first task undertaken by the first part of this project.

1.2.1 Algorithmic Driven Evolution

The second part to this project is concerned with exploring, theoretically
and experimentally, the consequences of assuming an evolutionary framework
based in algorithmic probability theory. This exploration is motivated by
the metabiology framework laid out by Chaitin [23, 22, 21] and assumes that
mutation randomness comes from algorithmic sources.

Natural selection explains how life has evolved over millions of years from
more primitive forms. However, the speed at which this happens has some-
times defied explanations based on random (uniformly distributed) muta-
tions. If the origin of mutations is algorithmic in any form, and can thus
be considered a program in software space, the emergence of a natural algo-
rithmic probability distribution has the potential to become an accelerating
mechanism.

The central theorem for algorithmic complexity theory establishes that
the probability of an object to be generated by a randomly chosen computable
process is in exponential inverse proportion to its algorithmic descriptive
complexity [70]. This result can be used to approximate the algorithmic
probability of an object. I simulate the application of algorithmic mutations
to binary matrices using numerical approximations to algorithmic probability
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based on the Block Decomposition Method (BDM) [84, 86], which is a com-
putable method for approximating the algorithmic descriptive complexity of
a binary multidimensional matrix.

1.3 Contributions

The main contributions presented are:

• The development of a mathematical definition for OEE.

• A formal characterization of adaptability.

• The presentation of a mathematical proof for the undecidability of
adaptation for systems that exhibit OEE.

• Exhibiting a system, first proposed by Chaitin, that show OEE.

• An argumentation of why such system is an adequate model for bio-
logical evolution.

• The development of an in-silico first experiment based on the concept
of algorithmic probability driven evolution.

• The experiment based on this model showed the following behavior,
which are backed by further theoretical developments:

– Algorithmic probability driven evolution must start from random
stages.

– The presence of statistically significant speed-up when evolving
towards non-trivially complex targets.

– Detection of resilient non-trivial structures called persistent struc-
tures. These structure impose the following behavior:

∗ Once an individual develops a regular structure during evolu-
tion, it is hard (improbable) go get rid of it.

∗ This difficulty increases with the size of the space of possible
mutations.
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∗ Therefore, persistent structures can promote both: diversity
and extinctions among a population.

∗ One natural way to mitigate the negative aspects of persistent
structures is by local evolution, or modularity.

– I argue that this behavior is a better approximation to biological
evolution than models that rely on “regular” (uniform) probabil-
ity for their mutations. And since algorithmic probability driven
evolution converges faster to regular structures than random mu-
tation, it approaches strong OEE behavior.

1.4 Preceding Approaches to the Topic

The relationship between dynamical systems and computability has been
studied before by Bournez [10], Blondel [9], Moore [59] and by Fredkin, Mar-
golus and Toffoli [31, 55], among others. That emergence is a consequence of
incomputability has been proposed by Cooper [26]. Complexity as a source
of undecidability has been observed in logic by Calude and Jürgensen [16].
Delvenne, Kurka and Blondel [30] have proposed robust definitions of com-
putable (effective) dynamical systems and universality, generalizing Turing’s
halting states, while also setting forth the conditions and implications for
universality and decidability and their relationship with chaos. Mechanisms
and requirements for open-ended evolution in systems with a finite number
of states (resource-bounded) have been studied by Adams et al. [3].

The definitions and general approach used during my research differs
from the ones cited above, therefore an extensive review of the topic on such
terms is not conductive to a better understanding of the topic as presented.
However, the results are ultimately related.

1.5 Outline

Chapters 2 to 6 correspond to the result presented in the article The limits
of decidable states on open-ended evolution and emergence [40], of which I
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was first author. These chapters contain theoretical results concerning to the
concept of Open-Ended Evolution and the restrictions it imposes to the rest
of the system.

Chapter 7 describes a computable method to approximate the descrip-
tive complexity of a multidimensional object and contains excerpts from the
article A decomposition method for global evaluation of Shannon entropy and
local estimations of algorithmic complexity [86], for which I was a contribut-
ing author. For this purpose, this chapter contains a brief introduction to
algorithmic complexity theory. I use this method to define a computable
approximation to the algorithmic probability of a matrix.

Building upon the preceding chapters, chapter 8 describes a computable
model that approaches algorithmic evolution. This model, coded in Haskell,
was used for a series of numeric experiments. I present the obtained results,
along with further theoretical developments based on them. This chapter’s
content overlaps with the article Algorithmically probable mutations reproduce
aspects of evolution such as convergence rate, genetic memory, modularity,
diversity explosions, and mass extinction [41], for which I was first author.

Finally, chapter 9 contains the joint conclusions of the three main sections
of this thesis.



Chapter 2

Computability, Randomness
and Complexity

Algorithmic information theory (AIT) is the field of mathematics and the-
oretical computer science that studies the information content of individual
objects from an algorithmic point of view, concerning itself with the rela-
tionship between computation, information, and randomness [53, 42].

One of the problems that motivated the development of this field was find-
ing a formal characterization for finite (and infinite) random mathematical
objects. For example, consider the problem of deciding if a binary sequence
of 8 bits is truly random, like the one expected from a fair coin toss game.
Intuitively, the sequence 01010101 has low probability of being random com-
pared to 01101001. However, traditional probability states that both have
the same change of occurring: 1/28. And, as AIT has found, the problem of
randomness is intimately related to the problem of complexity.

One way to solve the randomness problem is to state that the sequence
01010101 was likely made by the simple process of repeating 01 four times,
while 01101001 was likely done by randomly pressing keys in a keyboard.
However, for this solution to be broadly applied to the problem of random-
ness, we need to precisely define first what is a process (or algorithm).

9
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2.1 Computability

The Entscheidungsproblem or decision problem is a fundamental problem
in mathematics enunciated by the influential mathematician Davil Hilbert
in 1928. The problem asked for the existence of a process (algorithm) that
could take any clause in a first-order logic theory and answer if it was true for
any logical structure satisfying the axioms of the theory. This is equivalent
to ask for a mechanical method for deciding if the clause can be proven (or
derived using the rules of logic) from the initial set of axioms.

The problem was solved independently by Alonzo Church [24] and Alan
Turing [74] in 1936 as a negation: no such algorithm exists. Both math-
ematicians described different, but equivalent, formal systems that capture
everything that can be effectively calculable or computed following a determin-
istic procedure. These systems are known as λ-calculus and Turing machines,
respectively. By the Church-Turing thesis, a function over the natural num-
bers is computable following an algorithm if and only if it is computable by
a Turing machine (or a λ-expression) [27]. In other words, they formalized
the notion of algorithm, which so far has shown to be universal.

For this work I will omit giving a detailed description of a Turing ma-
chine or a λ-expression. Instead I will focus in a functional approach of
computability: I will consider Turing machines as functions over the natural
numbers which are agreed to be computable.

Definition 2.1. A Turing Machine T is a function

T : N→ N ∪ {⊥}

that is agreed to be computable.

Now, note that we can define a one-to-one mapping between the set of
all finite binary strings B∗ = {0, 1}∗ and the natural numbers by the relation
induced by a lexicographic order of the form:

{(“”, 0), (“0”, 1), (“1”, 2), (“00”, 3), (“01”, 4) . . . }.

Using this relation we can see all natural numbers (or positive integers) as
binary strings and vice versa. Accordingly, every finite binary string has a
natural number associated to it. Therefore the definition 2.1 is equivalent to:
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Definition 2.2. A Turing Machine T is a function

T : B∗ → B∗ ∪ {⊥}

that is agreed to be computable.

A string p ∈ B∗ is defined as a valid program for the Turing machine T if,
during the execution of T with p as input, all the characters in p are read. The
resulting binary string of evaluating T (p) is called the output of the machine.
If the output is ⊥ then we say the machine failed to stop. A Turing Machine
is prefix-free if no valid program can be a proper substring of another valid
program (though it can be a postfix of one)1. We call a valid program a self-
delimited object. Note that, given the relationship between natural numbers
and binary strings, the set of all valid programs is an infinite proper subset
of the natural numbers.

2.1.1 Computable Functions and Objects

In a broad sense, an object x is computable if it can be described by a Turing
Machine: if there exists a Turing machine that produces x as an output given
0 as an input (or the empty string). It is trivial to show that any finite string
on a finite alphabet is a computable object. Now we have all the elements
to formally define more complex computable objects.

Definition 2.3. A function f : N→ N is computable if there exists a Turing
Machine T such that f(x) = T (x).

The following statements can be easily proven for Turing machines and
λ-calculus, but I will enunciate them as axioms. Let f and g be computable
functions, then

• the composition f(g(x)) is a computable,

• if g(x) = ⊥ then f(g(x)) = ⊥ and

1A string is a prefix if it can be found at the begging of a bigger string and is postfix
if it can be found at the end.
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• the string concatenation f(x)g(x) (likewise denoted f(x) · g(x)) is also
computable.

Using computable functions as a base, we can easily describe more mathe-
matical objects.

For functions with more than one variable, if x is a pair x = (x1, x2),
we say that the codification g(x) is unambiguous if it is injective and the
inverse functions g−1

1 : g(x) 7→ x1 and g−1
2 : g(x) 7→ x2 are computable. If

x is a tuple (x1, ..., xi, ..., xn), then the codification g(x) is unambiguous if
the function (x, i) 7→ xi is computable. Having defined computable functions
over several variables, is easy to see that, over computable objects, all the
Peano arithmetic operators are also computable.

A sequence of natural numbers (or binary strings) δ1, δ2, ..., δi, ... is com-
putable if the function δ : i 7→ δi is computable. A real number is com-
putable if its decimal expansion is a computable sequence. For complex
numbers and higher dimensional spaces, we say that they are computable
if each of their coordinates are also computable. Finally, an infinite set S
over the natural numbers is computable if there exists a computable function
d such that x ∈ S if and only if d(x) = 1.

For further extending the notion of computability to more complex math-
ematical objects is very useful to introduce the notion of universal machine:

Definition 2.4. A Turing Machine U is considered universal if there exists
a computable function g such that for every Turing machine T there exists a
string 〈T 〉 ∈ B∗ such that T (x) = U(〈T 〉g(x)), where 〈T 〉g(x) is the concate-
nation of the strings 〈T 〉 and g(x). Given the previous case, 〈T 〉 and g(x) are
called a codification or a representation of the function T and the natural
number x, respectively. From now on I will denote the codification of T and
x by 〈T 〉 and 〈x〉 respectively. The codification g(x) is unambiguous if it is
injective.

When there exists x ∈ N such that T (x) = ⊥, it is understood that T
does not stop or diverges in x. Turing seminal results shows that there exists
universal Turing machines, but there does not exists a Turing machine TU
such that, for a universal machine U and a given machine T , TU(〈T 〉〈x〉) = 1
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if and only if T (x) 6= ⊥. This is called the undecidability of the halting set
HP , also known as the Halting problem (HP).

Definition 2.5. In general, a set S is undecidable if it does not exists a
computable function d such that x ∈ S if and only if d(x) = 1. A set is
semi-decidable or semi-computable if there exists a computable function d
such that d(x) = 1 implies x ∈ S. A set is decidable if it is computable.
The term ‘decidable’ is used since the function d decides a set membership
problem.

Now, for each of the objects described, we refer to the representation of
the associated Turing machine as the representation of the object for the ref-
erence Turing machine U , and we define the computability of further objects
by considering their representations. For example, a function f : R → R is
computable if the mapping 〈xi〉 7→ 〈f(xi)〉 is computable and we will denote
by 〈f〉 the representation of the associated Turing machine, calling it the
codification of f itself.

The definition of computability for further mathematical objects, such
as infinite sets of real numbers and sets of sets, follows from working with
representations. Working this way, it is easy to see how we can build a frame-
work for all computable mathematics and, therefore, computable science in
general.

It is the personal opinion of the author that all science that is currently
used to calculate, model or predict the natural world is computable. And
even when working with incomputable objects, we rely on computable bridges
to reach objective conclusions, such as the rules of first oder logic. I reached
this conclusion given that formal systems based on logical principles are the
fundation of modern mathematics, and logical derivation is a computable
process (for most widely used formalisms).

2.2 Algorithmic Information

Defined independently by Chaitin [18], Solomonoff [70] and Kolmogorov [47],
the notion of the algorithmic information content of a (computable) object
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measures the minimum amount of information that is needed to fully describe
the object without ambiguities. This description is done within the frame-
work of Turing machines since they define everything that can be described
without ambiguity given a finite set of rules. Formally,

Definition 2.6. Given a prefix-free2 universal Turing Machine U with al-
phabet Σ, the algorithmic descriptive complexity (also known as Kolmogorov
complexity and Kolmogorov-Chaitin complexity [47, 20]) of a string s ∈ Σ∗

is defined as
KU(s) = min{|p| : U(p) = s},

where U is a universal prefix-free Turing Machine and |p| is the number of
characters of p.

The stated function measures the minimum amount of information needed
to fully describe a computable object within the framework of a universal
Turing machine U . If U(p) = s then the program p is called a description
of s. The first of the smallest descriptions (in alphabetical order) is denoted
by s∗, and by 〈s〉 a not necessarily minimal description computable over the
class of objects. If M is a Turing machine, a program p is a description or
codification of M for U if for every string s we have it that M(s) = U(p·g(s)),
where g is an unambiguous computable function.

In the case of numbers, functions, sequences, sets and other com-
putable objects we consider the descriptive complexity of their smallest de-
scriptions. For example, given a computable function f : R → R, KU(f) is
defined as KU(f ∗), where f ∗ ∈ B∗ is the first of the minimal descriptions for
f .

Definition 2.7. Of particular importance for this document is the condi-
tional descriptive complexity of s with respect to r, which is defined as:

KU(s|r) = min{|p| : U(pr) = s},

where pr is the concatenation of p and r.

Conditional descriptive complexity can be interpreted as the smallest
amount of information needed to describe s given a full description of r.
We can think of p as a program with input r.

2See definition 2.2 and next subsection.
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One of the most important properties of the descriptive complexity mea-
sure is its stability or invariability : the difference between the descriptive
complexity of an object, given two universal Turing machines, is at most
constant.

Theorem 2.8. Invariance theorem [18, 47, 70]: Let U1 and U2 be two Uni-
versal Turing machines and KU1(s) and KU1(s) the algorithmic descriptive
complexity of s for U1 and U2, respectively; there exists a constant cU1U2 such
that

|KU1(s)−KU1(s)| ≤ cU1U2 ,

where cU1U2 is a constant that depends on U1 and U2 but not on s. This
constant can be understood as the length of a program, called compiler, that
translates any program p for U1 to a program p′ for U2 and vice versa.

It is this theorem that gives to K the adjective of universal : the algorith-
mic complexity of an object is independent of its reference, except for a small
error. Referencing the underlying universal machine U is usually omitted in
favor of the universal measure K. From now on I will too omit the subscript.

On Self-delimited Objects

Now is a good point to note that I am defining K for prefix-free universal
machines. This property is important since it allows us to daisy chain3

programs with minimal impact on the required program length. First, let
me explain the nature of self-delimited objects.

Recall that a self delimited object was defined as a valid program
for our reference universal machine. Since I am only considering prefix-
free programs, then, for any finite sequence of valid (prefix-free) programs
p1, p2, . . . , pn, we can describe a program q such that, using the description
of an universal machine, can execute the first program p1 until it reads all of
its characters, repeating the process n times. It follows that if the sequence
p1, p2, . . . , pn describes n different objects, then the algorithmic complexity

3To concatenate programs such that the input of the second is the output of the first.
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of the set of all the objects is equal (or less) than the sum

|q|+
n∑
i

|pi|.

Describing the same set for a reference universal machine with prefixes —
using a similar program— we would incur into a non constant penalty, as
shown in the case of the next paragraph.

Now, lets us consider what is needed to describe any natural number (or
string) x. One might use the identity Turing machine I(x) = x. However,
simply concatenating the strings, 〈I〉x, doest not yield a valid codification for
the program and its input, otherwise the string 〈I〉x0 would also be a valid
program and our reference universal Turing machine would not be prefix-free.
To solve this issue we must find a self contained form for x:

Definition 2.9. The natural self-delimited encoding of a finite string s is
defined as the string

1log(|s|)0s.

This is a string of 1’s of length log(|s|), followed by a 0 and the string itself
[53, section 1.4]. For log(n) we will always understand the rounding up of
the logarithm base 2 of n.

Given the previous encoding of s, we can now describe a program that
reads the 1’s until encountering the first 0. With this the program now has
the length of the string s and can read it without going outbounds. It follows
that for any binary string s (or natural number s):

K(s) ≤ log(|s|) + |s|+O(1) = O(log(s)).

2.2.1 Randomness

We now have all the elements to solve the problem introduced at the begin-
ning of the chapter and give a definition of randomness: a string is random
when it cannot be described by a short program [70].
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Definition 2.10. Given a natural number r, a string s is considered r-
random or incompressible if K(s) ≥ |s| − r. This definition would have it
that a string is random if it does not have a significantly shorter complete
description than the string itself.

A simple counting argument shows the existence of random strings: For
all n, there are 2n strings of length n; however the number of shorter descrip-
tions is

2n − 1 =
n−1∑
i=0

2i,

therefore there must me be at least one random string for any length. Fur-
thermore, recall that not all strings are valid programs and that there are
many descriptions for the same program, therefore the number of random
strings is even higher. In fact, the ratio of random to compressible strings
goes to 1 as n goes to infinity for any r. In other words, there are many more
random strings than non-random ones.

Definition 2.11. Recall the self-delimited encoding of s. It follows that
there exists a natural r such that if s is r-random then

K(x) = |x| − r +O(log |x|), (2.1)

where O(log |x|) is a positive term. We will say that for such strings the
randomness inequality holds tightly.

Let M be a halting Turing Machine with description 〈M〉 for the reference
machine U . A simple argument can show that the halting time of M cannot
be a large random number: Let UH be a Turing Machine that emulates
U while counting the number of steps, returning the execution time upon
halting. If r is a large random number, then M cannot stop in time r,
otherwise the program 〈UH〉〈M〉 will give us a short description of r. This
argument is summarized by the following inequality:

K(T (M)) ≤ K(M) +O(1), (2.2)

where T (M) is the number of steps that it took the machine M to reach the
halting state, the execution time of the machine M .
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It is important to note that the inequality 2.2, along with the construc-
tion given in definition 2.9, directly imply that K is a no computable
(incomputable) function, otherwise the self-delimiting encoding for nat-
ural numbers would set a hard upper bound to the execution time for any
halting machine, solving HP.

As a consequence, we can say that incomputable objects, like the set
HP , are irreducible, given that there is no short (finite) computable descrip-
tions for them. I characterrize this kind of objects as containing an infinite
ammount of information.

2.3 Complexity

Diverse scientific fields have their own notions and measures of complexity.
For example, in statistics, the complexity of a linear regression is often defined
as the degree of the polynomial model; for topology the Hausdorff dimension
and in dynamical systems theory we have the notion of chaos. In the opinion
of this author, the most accomplished definition of complexity is found in
AIT, as precludes the others by virtue of being established at the core of what
can be computed. It is natural to expect that the degree of a polynomial or
the dimension of a space to be highly correlated to the size of the minimum
description of the respective object, or with respect to the complexity of the
input in the case of chaotic systems (systems as in [37]). Furthermore, K is
capable of detecting regularities that the previous measure of complexity are
likely to omit.

However, K by itself is not a good measure of what is intuitively deemed
complex: in scientific literature random objects are considered to be as simple
as highly regulars ones [8, 48, 35, 1, 76]. In the words of physicist Murray
Gell-Marin [35]:

“A measure that corresponds much better to what is usually
meant by complexity in ordinary conversation, as well as in scien-
tific discourse, refers not to the length of the most concise descrip-
tion of an entity (which is roughly what AIC is), but to the length
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of a concise description of a set of the entity’s regularities. Thus
something almost entirely random, with practically no regulari-
ties, would have effective complexity near zero.”

From a computability point of view, the argument states that random strings
are as simple as very regular strings, given that there is no complex under-
lying structure in their minimal descriptions. The intuition that random
objects contain no useful information leads us to the same conclusion. Thus,
we need measures of complexity that can classify random objects (or their
respective computable representations) as simple, along with highly regular
objects.

It turns out that measures with this property can be also be found in
AIC, using algorithmic information content at is core, and thus they are also
universal.

2.3.1 Universal Measures of Complexity

Sophistication is a measure of useful information within a string. Proposed
by Koppel [48], the underlying approach consists in dividing the description
of a string x into two parts: the program that represents the underlying
structure of the object, and the input, which is the random or structureless
component of the object. This function is denoted by sophc(x), where c is a
natural number representing the significance level.

Definition 2.12. The sophistication of a natural number x at the signifi-
cance level c, c ∈ N, is defined as:

sophc(x) = min{|〈p〉| : p is a total function and

∃y.p(y) = x and |〈p〉|+ |y| ≤ K(x) + c}

Now, the images of a mapping δ : i 7→ δi already have the form δ(i), where
δ and i represent the structure and the random component respectively.
Random inputs i should bind this structure strongly up to a logarithmic
error, which is proven in the next lemma.
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Lemma 2.13. Let δ1, ..., δi, ... be a sequence of different natural numbers and
r a natural number. If the function δ : i 7→ δi is computable then there exists
an infinite subsequence where the sophistication is bounded up the logarithm
of a logarithmic term of their indices.

Proof. Let δ be a computable function. Note that since δ is computable and
the sequence is composed of different naturals, its inverse function δ−1 can
be computed by a program m which, given a description of δ and δi, finds
the first i that produces δi and returns it; therefore

K(i) ≤ K(δi) + |〈m〉|+ |〈δ〉|

and
K(δ) +K(i) ≤ K(δi) + |〈m〉|+ 2|〈δ〉|.

Now, if i is a r-random natural where the inequality holds tightly, we have
it that

(K(δ) +O(log |i|)) + |i| − r ≤ K(δi) + |〈m〉|+ 2|〈δ〉|,
which implies that, since δ is a total function,

soph(|〈m〉|+2|〈δ〉|+r)(δi) ≤ K(δ) +O(log log i).

Therefore, the sophistication is bounded up to the logarithm of a logarithmic
term for a constant significance level for an infinite subsequence.

Small changes in the significance level of sophistication can have a large
impact on the sophistication of a given string. Another possible issue is
that the constant proposed in lemma 2.13 could appear to be large at first
(but it becomes comparatively smaller as i grows). A robust variation of
sophistication called coarse sophistication [4] incorporates the significance
level as a penalty. The definition presented here differs slightly from theirs
in order to maintain congruence with the chosen prefix-free universal machine
and to avoid negative values. This measure is denoted by csoph(x).

Definition 2.14. The coarse sophistication of a natural number x is defined
as:

csoph(x) = min{2|〈p〉|+ |〈y〉| −K(x) : p(y) = x and p is total},

where |〈y〉| is a computable unambiguous codification of y.
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With a similar argument as the one used to prove lemma 2.13, it is easy
to show that coarse sophistication is similarly bounded up to the logarithm
of a logarithmic term.

Lemma 2.15. Let δ1, ..., δi, ... be a sequence of different natural numbers and
r a natural number. If the function δ : i 7→ δi is computable, then there exists
an infinite subsequence where the coarse sophistication is bounded up to the
logarithm of a logarithmic term.

Proof. If δ is computable and i is r-random, then by definition of csoph and
the inequalities presented in the proof of lemma 2.13, we have that

csoph(δi) ≤2K(δ) + (|i|+ 2 log |i|+ 1)−K(δi)

≤2K(δ) + (|i|+ 2 log |i|+ 1)−K(i) + |〈M〉|+ |〈δ〉|
≤2K(δ) + |〈M〉|+ |〈δ〉|+ (|i|+ 2 log |i|+ 1)− |i|+ r

=2K(δ) + |〈M〉|+ |〈δ〉|+ r + 1 +O(log log i))

Another proposed measure of complexity is Bennett’s logical depth [8],
which measures the minimum computational time required to compute an
object from a nearly minimal description. Logical depth works under the
assumption that complex or deep natural numbers take a long time to com-
pute from near minimal descriptions. Conversely, random or incompressible
strings are shallow since their minimal descriptions must contain the full
description verbatim.

Definition 2.16. The logical depth of a natural x at the level of significance
c is defined as:

depthc(x) = min{T (p) : |p| −K(x) ≤ c and U(p) = x}.

where T (P ) is the halting time of the program p.

Working with computing times has shown to be notoriously difficult and
often related to open fundamental problems in computer science and math-
ematics. For instance, finding a low upper bound to the growth of logical
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depth of all computable series of natural numbers would suggest a negative
answer to the question of the existence of an efficient way of generating deep
strings, which Bennett relates to the open P 6= PSPACE problem. For this
reason, I will use a related measure called busy beaver logical depth, denoted
by depthbb(x).

Definition 2.17. The busy beaver logical depth of the description of a natural
x, denoted by depthbb(x), is defined as:

depthbb(x) = min{|p| −K(x) + j : U(p) = x and T (p) ≤ BB(j)},

where BB(j), known as the busy beaver function, is the halting time of the
slowest program that can be described within j bits [28].

Instead of working directly with computing time, this version of logical
depth adds a penalty value according busy beaver function: if T (p) is large,
then the smallest j such that BB(j) ≥ T (p) is also expected to be large.
With this, the measure also manages to avoid the significance value of the
original logical depth function.

Definition 2.18. Formally, the busy beaver function [62] for a natural n is
defined as:

BB(n) = max{T (U(p)) : |p| ≤ n}.

This function is important for AIT and computer science in general as it
defines a limit to the execution time and the descriptive power of an algo-
rithm in terms of its description in form of a growing, uniform function. As
with K itself and the other complexity measures mentioned in this chapter,
BB(n) is incomputable.

The next result follows from a theorem formulated by Antunes and Fort-
now [4] and from lemma 2.15.

Corollary 2.19. Let δ1, ..., δi, ... be a sequence of different natural numbers
and r a natural number. If the function δ : i 7→ δi is computable, then there
exists an infinite subsequence where the busy beaver logical depth is bounded
up to the logarithm of a logarithmic term of their indeces.
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Proof. By theorem 5.2 at [4], for any i we have that

|csoph(δi)− depthbb(δi)| ≤ O(log |δi|).

By lemma 2.15 and theorem 4.1 the result follows.

On the Heuristics Behind AIT Complexity Measures

By separating the structured and unstructured data and defining the com-
plexity in terms of the algorithmic description of the first, sophistication
(and coarse sophistication) manages to robustly capture the heuristics be-
hind commonly used complexity measures in science for computable objects.

For example, the theory behind a linear regression models describes a
—presumed infinite— set S through a polynomial function f . This function
is the structured part of the set. Ideally, the points are meant to be normally
distributed with center at f ; the parameter for this normal distribution is
the irreducible information. It follows that a computable description of the
set is 〈f〉〈σ〉 and, if the linear model is indeed the best way to describe
S, then the sophistication of the set is given by K(f), within a constant
error. If there exists a better model, then sophc(S) < K(f). Furthermore,
by defining the complexity of the set in terms of the minimal descriptions
of f , we are also measuring the complexity of the coefficients themselves,
ultimately offering a more robust complexity measure than just the degree of
the resultant polynomial. This reasoning can be extended to other commonly
used complexity measures.
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Chapter 3

Computable Dynamical
Systems: Evolution

Broadly speaking, a dynamical system is one that changes over time. Predic-
tion of the future behavior of dynamical systems is a fundamental concern
of science in general. Scientific theories are tested upon the accuracy of their
predictions, and establishing invariable properties through the evolution of a
system is an important goal.

Limits to this predictability are known in science. For instance, chaos
theory establishes the existence of systems in which small deficits in the in-
formation of the initial states makes accurate predictions of future states
unattainable. However, I will focus on systems for which we have unambigu-
ous, finite (as to size and time) and complete descriptions of initial states
and behavior: computable dynamical systems.

Since their formalization by Church and Turing, the class of computable
systems has shown that, even without information deficits (i.e., with com-
plete descriptions), there are future states that cannot be predicted, in par-
ticular the state known as the halting state [74]. In this section I will use
this result and others from AIT (algorithmic information theory) to show
how predictability imposes limits to the growth of complexity during the
evolution of computable systems. In particular, I will show that random
(incompressible) times tightly bound the complexity of the associated states,

25
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ultimately imposing limits to the open-endedness of decidable evolutionary
systems.

3.1 Computable Evolutionary Systems

The simplest, most unassuming definition that the author can give for what I
understand as (Darwinian) evolution is the observed production of new kind
of organisms over time, from a presumed initial state, driven by adaptation.
If we assume that this process can be modeled by the language of science,
then we should be able to describe it as a dynamical system. Based on this
minimal description, I will formulate a rigorous mathematical definition using
AIT that captures any computable and deterministic theory of evolution.

A dynamical system is a rule of evolution in time within a state space;
a space that is defined as the set of all possible states of the system [57].
I will focus on a functional model for dynamical systems with a constant
initial state and variables representing the previous state and the time of
the system. This model allows me to set halting states for each time on a
discrete scale in order to study the impact of the descriptive complexity of
time during the evolution of a discrete computable system. Therefore, within
the language of a functional dynamical system:

Definition 3.1. A deterministic evolutionary system with discrete time is a
function S(M0, t, E(t)) : N 7→ N where there is:

• An evolution function (or rule) of the form Mt+1 = S(M0, t, E(t)).

• A time variable t ∈ N.

• An initial state M0 such that S(M0, 0, E(0)) = M0.

• An environment E that changes over time and affects the evolution of
S.

If t 7→ Mt is a computable function and M0 is a computable object, we will
say that S is a computable dynamical system.



3.1. COMPUTABLE EVOLUTIONARY SYSTEMS 27

The sequence of states M0,M1, ...,Mt, ... is called the evolution of the
system, where Mt is the state of the system at the time t. Given that Mt and
S(M0, t, E(t)) define the same object, I will use them indistinctly, depending
on which representation offers more clarity to the reader. Also, is possible to
define a function S ′ such that S ′(M0, t) = S(M0, t, E(t)), therefore I will use
the shorthand S(M0, t) when the environment function E(t) is not important
or when the discussion can be extended to dynamical systems in general.

One important property for the defined class of systems is the unique-
ness of the successor state property: given that the system is assumed
to be deterministic, we have that equal states must evolve equally given the
same evolution function. In other words:

Mt = Mt′ =⇒ Mt′+1 = Mt+1. (3.1)

The converse is not necessarily true. It is also important to note that we are
implying an infinity of possible states for non-cyclical systems.

Now, a complete description of a computable dynamical system S(M0, t)
should contain enough information to compute the state of the system at
any time; hence it must entail the codification of its evolution function S
and a description of the initial state M0, which is denoted by 〈M0〉. As a
consequence, if we only describe the system at time t by a codification of Mt,
then we would not have enough information to compute the successive states
of the system. So I will specify the complete description of a computable
system at time t as an unambiguous codification of the ordered pair composed
of 〈S〉 and 〈Mt〉, i.e. 〈(S, 〈Mt〉)〉, with 〈(S, 〈M0〉)〉 representing the initial
state of the system. It is important to note that, for any computable and
unambiguous codification function g of the stated pair, we have

K(〈(S, 〈Mt〉)) ≤ K(S) +K(M0) +K(t) +O(1),

as we can write a program that uses the descriptions for S, M0 and t to find
the parameters and then evaluate S(M0, t), finally producing Mt.
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3.2 Open-Ended Evolution: A Formal Defi-

nition

As mentioned in the introduction, open-ended evolution (OEE) has been
characterized as “evolutionary dynamics in which new, surprising, and some-
times more complex organisms and interactions continue to appear” [73]
and is considered a fundamental property for systems capable of producing
life [63]. This has been implicitly verified by various experiments in-silico
[54, 2, 51, 5].

One line of thought posits that open-ended evolutionary systems tend to
produce families of objects of increasing complexity [6, 5]. Furthermore, for a
number of complexity measures, it can be shown that the objects belonging
to a given level of complexity are finite (for instance K(x) and logical depth)
and for others, the dynamics (or structured information) are finite (such as
sophistication). Therefore an increase of complexity is a requirement for the
continued production of new objects with innovative interactions. A related
observation, proposed by Chaitin [21, 23], associates evolution with the search
for mathematical creativity, which implies an increase of complexity, as more
complex mathematical operations are needed in order to solve interesting
problems, which are required to drive evolution.

Following the aforementioned lines of thought, I have chosen to character-
ize OEE in computable dynamical systems as a process that has the property
of producing families of objects of increasing complexity. Formally, given a
complexity measure C, we say that a computable dynamical system S ex-
hibits open-ended evolution with respect to C if for every time t there exists
a time t′ such that the complexity of the system at time t′ is greater than
the complexity at time t, i.e. C(S(M0, t)) < C(S(M0, t

′), where a complexity
measure is a (not necessarily computable) function that goes from the state
space to a positive numeric space.

The existence of such systems is trivial for complexity measures on which
any infinite set of natural numbers (not necessarily computable) contains a
subset where the measure grows strictly:

Lemma 3.2. Let C be a complexity measure such that any infinite set of
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natural numbers has a subset where C grows strictly. Then a computable
system S(M0, t) is a system that produces an infinite number of different
states if and only if it exhibits OEE for C.

Proof. Let S(M0, t) be a system that does not exhibit OEE, and C a com-
plexity measure as described. Then there exists a time t such that for any
other time t′ we have C(M ′

t) ≤ C(Mt), which holds true for any subset of
states of the system. It follows that the set of states must be finite. Con-
versely, if the system exhibits OEE, then there exists an infinite subset of
states on which S grows strictly, hence an infinity of different states.

Given the previous lemma, a trivial computable system that simply pro-
duces all the strings in order exhibits OEE on a class of complexity measures
that includes algorithmic description complexity, sophistication and logical
depth. However, we intuitively conjecture that such systems have a much
simpler behavior compared to that observed in the natural world and non-
trivial artificial life systems. To avoid some of these issues I propose a stronger
version of OEE.

Definition 3.3. A sequence of natural numbers n0, n1, . . . , ni, ... exhibits
strong open-ended evolution (strong OEE) with respect to a complexity mea-
sure C if for every index i there exists an index i′ such that C(ni) < C(ni′),
and the sequence of complexities C(n0), C(n1), . . . , C(ni), . . . does not drop
significantly, i.e. there exists γ such that i ≤ j implies C(ni) ≤ C(nj) + γ(j)
where γ(j) is a positive function such that C(nj)−γ(j) is not upper-bounded
for any infinite subsequence γ(nij) where the strong OEE inequality holds.

It is important to note that while the definition of OEE allows for significant
drops in complexity during the evolution of a system, strong OEE requires
that the complexity of the system does not decrease significantly during
its evolution. In particular we will require that the complexity drops, as
measured by γ, not grow as fast as the complexity itself and that they do
not reach a constant level an infinite number of times.

Finally, I will construct the concept of speed of growth of complexity in
a comparative way: given two sequences of natural numbers ni and mi, ni
grows faster than mi if for every infinite subsequence and natural number N ,
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there exists j such that ni −mj ≥ N . Conversely, a subsequence of indexes
denoted by i grows faster than a subsequence of indexes denoted by j if for
every natural N , there exists i with i < j, such that ni − nj ≥ N .

If a complexity measure is sophisticated enough to depend on more than
just the size of an object, significant drops in complexity are a feature that
can be observed in trivial sequences such as the ones produced by enumer-
ation machines. Whether this is also true for non-trivial sequences is open
to debate. However, by classifying random strings as low complexity ob-
jects and posit that non-trivial sequences must contain a limited number of
random objects, then a non-trivial sequence must observe bounded drops in
complexity in order to be capable of showing non-trivial OEE. This is the
intuition behind the definition of strong OEE.

In resume, my definition of strong-OEE characterizes open-ended evolu-
tion if we assume:

• A space of computable, deterministic dynamical systems with discrete
time.

• Random (incompressible) objects are simple.

• OEE implies unbounded a growth in complexity.

– This growth does not need to be monotonous.

• The growth in complexity meets a baseline of stability.

3.3 A Formal Characterization for Adapta-

tion

It has been argued that in order for adaptation and survival to be possible
an organism must contain an effective representation of the environment, so
that, given a reading of the environment, the organism can choose a behavior
accordingly [79]. The more approximate this representation, the better the
adaptation. If the organism is computable, this information can be codified
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by a computable structure. We can consider Mt, where t stands for the
time corresponding to each of the stages of the evolution, a description of
an organism or population. This information is then processed following a
finitely specified unambiguous set of rules that, in finite time, will determine
the adapted behavior of the organism according to the information codified
by Mt; the adapted behavior can represent a simulation or a (computable)
theory explaining an organism. I will denote this behavior using the program
pt. An adapted system is one that produces an acceptable approximation of
its environment. An environment can also be represented by a computable
structure or function E. In other words, the system is adapted if pt(Mt)
produces E(t).

Based on this idea I propose a robust, formal characterization for adap-
tation:

Definition 3.4. Let K be the prefix-free descriptive complexity. We say
that the system at the state Mn is ε-adapted to the E if:

K(E|S(M0, t, E(t))) ≤ ε. (3.2)

The inequality states that the minimal amount of information that is
needed to describe E from a complete description of Mt is ε or less. This
information is provided in the form of a program p that produces E(t) from
the system at time t. We will define such a program p as the adapted behavior
of the system. It is not required that p be unique.

The proposed structure to characterize adapted states is robust since
K(E|S(M0, t, E(t))) is less than or equal to the number of characters needed
to describe any computable method of describing E from the state of the
system at time t, whether it be a computable theory for adaptation or a
computable model for an organism that tries to predict E. It follows that
any computable characterization of adaptation that can be described within
ε number of bits meets the definition of ε-adapted, given a suitable choice of
E, the adaptation condition for any given environment.

It is important to note that, although inspired by a representationalist
approach to adaptation, the proposed characterization of adaptation is not
contingent on the organisms containing an actual codification of the environ-
ment, since any organism that can produce an adapted behavior that can



32 CHAPTER 3. COMPUTABLE EVOLUTION

be explained effectively (that is, it is computable in finite time) is ε-adapted
for some ε. This also implies that ε-adapted is a necessary, but not
sufficient condition of adaptation, hence I call it characterization for
adaptation, rather than a definition.

As a simple example, we can think of an organism that must find food
located at the coordinates (x, j) on a grid in order to survive. If the in-
formation in an organism is codified by a computable structure M (such as
DNA), and there is a set of finitely specified, unambiguous rules that govern
how this information is used (such as the ones specified by biochemistry and
biological theories), codified by a program p, then we say that the organism
finds the food if p(M) = (j, k). If |〈p〉| ≤ ε, then we say that the organism is
adapted according to a behavior that can be described within ε characters.

The proposed model for adaptation is not limited to such simple inter-
actions. For a start, we can suppose that the organism sees a grid, denoted
by g, of size n×m with food at the coordinates (j, k). The environment can
be codified as a function E such that E(g) = (j, k) and ε-adapted implies
that the organism defined by the genetic code M , which is interpreted by
a theory or behavior written on ε bits, is capable of finding the food upon
seeing g. Similarly, more complex computational structures and interactions
imply ε-adaptation.

Now, for fixed environments, describing an evolutionary system that
(eventually) produces an ε-adapted system is trivial via an enumeration ma-
chine (the program that produces all the natural numbers in order), as it
will eventually produce E itself. Moreover, we require the output of our
process to remain adapted. Therefore I propose a stronger condition called
convergence:

Definition 3.5. Given the description of a computable dynamical system
S(M0, t, E) where t ∈ N is the variable of time, M0 is an initial state and
E is an environment, we say that the system S converges towards E with
degree ε if there exists δ such that t ≥ δ implies K(E|S(M0, t, E)) ≤ ε.

For a fixed initial state M0 and environment E, it is easy to see that
the descriptive complexity of a state of the system depends mostly on t: we
can describe a program that, given full descriptions of S, E, M0 and t, finds
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S(M0, t, E(t)). Therefore

K(S(M0, t, E(t))) ≤ K(S) +K(E) +K(M0) +K(t) +O(1), (3.3)

where the constant term is the length of the program described. In other
words, as the time t grows, time becomes the main driver for the descriptive
complexity within the system.
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Chapter 4

Irreducibility of Descriptive
Time Complexity

In the previous chapter, I showed that time was the main factor in the descrip-
tive complexity of the states within the evolution of a system. This result
is expanded by the time complexity stability theorem (4.1). This theorem
establishes that, within an algorithmic descriptive complexity framework,
similarly complex initial states must evolve into similarly complex future
states over similarly complex time frames, effectively erasing the difference
between the complexity of the state of the system and the complexity of the
corresponding time, establishing absolute limits to the reducibility of future
states.

Let F (t) = T (S(M0, t, E(t))) be the real execution time of the system
at time t. Using our time counting machine UH , it is easy to see that F (t)
is computable and, given the uniqueness of the successor state, F increases
strictly with t, and hence is injective. Consequently, F has a computational
inverse F−1 over its image. Therefore, we have it that (up to a small constant)
K(F (t)) ≤ K(F ) +K(t) and K(t) ≤ K(F−1) +K(F (t)). It follows that

K(t) = K(F (t)) + c,

where c is a constant independent of t (but that can depend on S). In
other words, for a fixed system S, the execution time and the system time
are equally complex up to a constant. From here on I will not differentiate
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between the complexity of both times. A generalization of the previous
equation is given by the following theorem:

Theorem 4.1 (Time Complexity Stability). Let S and S ′ be two computable
systems and t and t′ the first time where each system reaches the states Mt

and M ′
t′ respectively. Then there exists c such that |K(Mt) − K(t)| ≤ c

(analogous for t′) and |K(Mt)−K(M ′
t′)| ≤ c. Specifically:

i) There exists a natural number c that depends on S and M0, but not on
t, such that

|K(Mt)−K(t)| ≤ c. (4.1)

ii) If
K(S(M0, t, E(t))) = K(S ′(M ′

0, t
′, E ′(t))) +O(1)

and
K(M0) = K(M ′

0) +O(1)

then there exists a constant c that does not depend on t such that

|K(t)−K(t′)| ≤ c,

where t and t′ are the minimum times for which the corresponding state
is reached.

iii) Let S and S ′ be two dynamical systems with an infinite number of
equally–up to a constant–descriptive complex times αi and δi. For any
infinite subsequence of times with strictly growing descriptive complex-
ity, all but finitely many j, k such that j > k comply with the equation:

K(αk)−K(αj) = K(δk)−K(δj).

Proof. First, note that we can describe a program such that given S, M0 and
E, runs S(M0, E, x) for each x until it finds t. Therefore

K(t) ≤ K(S(M0, E, t)) +K(S) +K(M0) +K(E) +O(1). (4.2)

Similarly for t′. By the inequality 3.3 and the hypothesized equalities we
obtain

K(t)− (K(S) +K(M0) +K(E) +O(1))

≤ K(Mt)

≤ K(t) + (K(S) +K(E) +K(M0) +O(1)),
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which implies the first part. The second part is a direct consequence.

For the third part, suppose that there exists an infinity of times such that

K(αk)−K(αj) > K(δk)−K(δj).

Therefore

K(αk)−K(δk) > K(αj)−K(δj),

which implies that the difference is unbounded, which is a contradiction of the
first part. Analogously, the other inequality yields the same contradiction.

The slow growth of time is a possible objection to the assertion that
in the descriptive complexity of systems time is the dominating parameter
for predicting their evolution: the function K(t) grows within an order of
O(log t), which is very slow and often considered insignificant in the infor-
mation theory literature. However, we have to consider the scale of time we
are using. For instance, one second of real time in the system we are modeling
may mean an exponential number of discrete time steps for our computable
model (for instance, if we are emulating a genetic machine with current com-
puter technology), yielding a potential polynomial growth in their descriptive
complexity. Nevertheless, if this time conversion is computable, then K(t)
grows at most at a constant pace. This is an instance of irreducibility, as
there exist an infinity sequences of times that cannot be obtained by com-
putable methods. This time instances will be known as random times and
the sequences containing them will be deemed irreducible.

4.1 Non-Randomness of Decidable Conver-

gence Times

As mentioned before, one of the most important issues for science is predict-
ing the future behavior of dynamical systems. The prediction I will focus
on is about the first state of convergence (definition 3.5): Will a system
converge and how long will it take? In this section I shall show the limit
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that decidability imposes on the complexity of the first convergent state. A
consequence of this is the existence of undecidable adapted states.

Formally, for the convergence of a system S with degree ε to be decidable
there must exists an algorithm Dε such that Dε(S,M0, δ, E) = 1 if the system
is convergent at time δ and 0 otherwise. In other words, adaptability is
decidable if, for all Mδ, the function

D(Mδ) =

{
1 Mδ is adapted.

0 Otherwise.

is computable.

If this is the case, we can describe a machine P such that given full
descriptions of Dε, S and M0 it runs Dε with inputs S and M0 while run-
ning over all the possible times t, returning the first t for which the system
converges. Note that

δ = P (〈Dε〉〈S〉〈M0〉〈E〉).

Hence we have a short description of δ and therefore δ cannot be random: if
S(M0, t, E) is a convergent system then

K(δ) ≤ K(Dε) +K(S) +K(E) +K(M0) +O(1), (4.3)

where δ is the first time at which convergence is reached. Note that all the
variables are known at the initial state of the system. This result can summed
up by the following lemma:

Lemma 4.2. Let S be a system convergent at time δ. If δ is considerably
more descriptively complex than the system and the environment, i.e. if for
every reasonably large natural number d we have it that

K(δ) > K(S) +K(E) +K(M0) + d,

then δ cannot be found by an algorithm described within d number of char-
acters.

Proof. It is a direct consequence of the inequality 4.3.
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We call such times random convergence times and the state of the system
Mδ a random state.

It is important to note that the descriptive complexity of a random state
must also be high:

Lemma 4.3. Let S be a convergent system with a complex state S(M0, δ, E).
For every reasonably large d we have it that

K(S(M0, δ, E)) > K(S) +K(E) +K(M0) + d.

Proof. Suppose the contrary to be true, i.e. that there exists d small enough
that

K(S(M0, δ, E)) ≤ K(S) +K(E) +K(M0) + d.

Let q be the program that, given S, E, M0 and S(M0, δ, E), runs S(M0, t, E)
in order for each t and compares the result to S(M0, δ, E), returning the first
time where the equality is reached. Therefore, given the uniqueness of the
successor state (3.1), δ = q(S,M0, E, S(M0, δ, E)) and

K(δ) ≤K(S) +K(E) +K(M0) +K(S(M0, δ, E)) + |q|
≤K(S) +K(E) +K(M0) + (K(S) +K(E) +K(M0) + d) +O(1),

which gives us a small upper bound for the random convergence time δ.

In other words, if δ has high descriptive complexity, then there does
not exists a reasonable algorithm that finds it even if we have a complete
description of the system and its environment. It follows that the descriptive
complexity of a computable convergent state cannot be much greater than
the descriptive complexity of the system itself.

What a reasonably large d is has been handled so far with ambiguity, as
it represents the descriptive complexity of any computable method Dε. We
may intend to find convergence times, which intuitively cannot be arbitrarily
large. It is easy to ‘cheat ’ on the inequality 4.3 by including in the description
of the program Dε the full description of the convergence time δ, which is
why we ask for reasonable descriptions.

Another question left to be answered is whether complex convergence
times do exist for a given limit d, considering that the limits imposed by the
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inequality 4.3 loosen up in direct relation to the descriptive complexity of S,
E and M0.

The next result answers both questions by proving the existence of com-
plex convergence times for a broad characterization of the size of d:

Lemma 4.4 (Existence of Random Convergence Times). Let F be a total
computable function. For any ε there exists a system S(M0, t, E(t)) such that
the convergence times are F (S,M0, E)-random.

Proof. Let E and s be two natural numbers such that K(E|s) > ε. If we
assume the non existence of F (S,M0, E)-random convergence times, by re-
duction to the Halting Problem ([74]), is easy to reach a contradiction:

Let T ′ be a Turing Machine, and St the Turing machine that emulates T
for t steps with input M0 and returns E for every time equal to or greater
than the halting time, and s otherwise. Let us consider the system

S(M0, t, E(t)) = St(〈T 〉〈M0〉〈t〉〈E〉).

If the convergence times are not F (S,M0, E)-random, then there exists a
constant c such that we can decide HP by running S ′ for each t that meets
the inequality

|t|+ 2 log |t|+ c ≤ |S ′|+ |〈T 〉〈M0〉〈t〉〈E〉|+ F (S,M0, E)1,

which cannot be done, since HP is undecidable.

Let us focus on what the previous lemma is saying: F can be any com-
putable function. It can be a polynomial or exponential function with respect
to the length of a given description for M0 and E. It can also be any com-
putable theory that we might propose for setting an upper limit to the size
of an algorithm that finds convergence times given descriptions of the sys-
tem’s behavior, environment and initial state. In other words, for a class of
dynamical systems, finding convergence times, therefore convergent states,

1Recall the definition 2.9.
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is not decidable, even with complete information about the system and its
initial state.

Finally, by the proof of lemma 4.4, adapted states can be seen as a gen-
eralization of halting states.

4.2 Randomness of Convergence in Dynamic

Environments

So far I have limited the discussion to fixed environments. However, as
observed in the physical world, the environment itself can change over time.
We call such environments dynamic environments. In this section I will
extend the previous results to cover environments that change depending on
time as well as on the initial state of the system. I will also introduce a weaker
convergence condition called weak convergence and propose a necessary (but
not sufficient) condition for the computability of convergence times called
descriptive differentiability.

We can think of an environment E as a dynamic computable system, a
moving target that also changes with time and depends on the initial state
M0. In order for the system to be convergent, I propose the same criterion—
there must exists δ such that n ≥ δ implies

K(E(M0, n)|S(M0, n, E(M0, n))) ≤ ε. (4.4)

A system with a dynamic environment also meets the inequality 4.3 and
lemmas 4.2 and 4.4 since we can describe a machine that runs both S and
E for the same time t. Given that E is a moving target it is convenient to
consider an adaptation period for the new states of E:

Definition 4.5. We say that S converges weakly to E if there exist an infinity
of times δi such that

K(E(M0, δi)|S(M0, δi, E(M0, δi))) ≤ ε. (4.5)

We will call the infinite sequence δ1, δ2, . . . δi . . . the sequence of adaptation
times.
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As a direct consequence of the inequality 4.3 and lemma 4.4 we have the
following lemma:

Lemma 4.6. Let S(M0, t, E(M0, t)) be a weakly converging system. Any
decision algorithm Dε(S,M0, δi, E) can only decide the first non-random time.

As noted above, these results do not change when dynamic environments
are considered. In fact, we can think of static environments as a special case
of dynamic environments. However, with different targets of adaptability and
convergence, it makes sense to generalize beyond the first convergence time.
Also, it should be noted that specifying a convergence index adds additional
information that a decision algorithm can potentially use.

Lemma 4.7. Let S(M0, t, E(M0, t)) be a weakly converging system with an
infinity of random times such that k > j implies that

K(δk) = K(δj) + ∆Kδ(j, k),

where ∆Kδ is a (not necessarily computable) function with a range confined
to the positive integers. If the function ∆Kδ(i, i + m) is unbounded with
respect to i, then any decision algorithm Dε(S,M0, E, i), where i is the i-th
convergence time, can only decide a finite number of i’s.

Proof. Suppose that Dε(S,M0, E, i) can decide an infinite number of in-
stances. Let us consider two times δi and δi+m. Note that we can describe
a program that, by using Dε, S, E and M0 and i together with the distance
m, finds δi+m. The next inequality follows:

K(δi+m) ≤ K(Dε) +K(i) +K(m) +O(1).

Next, note that we can describe another program that given δi and using Dε,
S, E and M0 finds i, from which

K(i) ≤ K(Dε) +K(δi) +O(1) and −K(δi) ≤ K(Dε)−K(i) +O(1).

Therefore:

∆Kδ(i, i+m) = K(δi+m)−K(δi) ≤ 2K(Dε) +K(m) +O(1)

and ∆Kδ(i, i+m) is bounded with respect to i.
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As a direct consequence of the previous lemma, the next definition implies
in computability for a sequence of times:

Definition 4.8. We will say that a sequence of times δ1, δ2, ..., δi, ... is non-
descriptively differentiable if ∆Kδ(m) is not a total function, where

∆Kδ(m) = max{|∆Kδ(i, i+m)| : i ∈ N}.

In other words, an infinite sequence δ1, δ2, ...δi, ... of natural numbers is
non-descriptively differentiable if there exists a natural number m such that
the difference between the descriptive complexity of the elements at distance
m, given by

∆Kδ(i, i+m) = K(δi+m)−K(δi),

is unbounded. And if a sequence is non-descriptively differentiable then the
mapping i 7→ δi is incomputable.

One sequence that can be easily shown to meet the definition of descrip-
tively differentiability is the trivial sequence produced by an enumeration
machine: the sequence of natural numbers. By theorem 4.1 and lemma 4.7,
it follows that

If adaptation is decidable then the algorithmic descriptive com-
plexity of the sequence of adaptation times must follow closely
that of the natural numbers.

In the next chapter, I will show that such tight bound to the descriptive
algorithmic complexity for any decidable sequence will tightly bound the
complexity growth of any decidable sequence to that of the trivial systems,
such as the sequence of natural numbers.
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Chapter 5

Beyond Halting States:
Open-Ended Evolution

Inequality 4.3 states that being able to predict or recognize adaptation im-
poses a limit to the descriptive complexity of the first adapted state. A
particular case is the halting state, as shown in the proof of lemma 4.4.
In this chapter I extend the lemma to continuously evolving systems, show-
ing that computability of adapted times limits the complexity of adapted
states beyond the first, imposing a limit to open-ended evolution for three
of the complexity measures introduced in section 2.3: sophistication, coarse
sophistication and busy beaver logical depth.

For a system in constant evolution converging to a dynamic environment,
the lemma 4.7 imposes a limit to the growth of the descriptive complexity
of a system with computable adapted states: if growth of the descriptive
complexity of a sequence of convergent times is unbounded in the sense of
definition 4.8, then all but a finite number of times are undecidable. The
converse would be convenient, however it is not always true. Moreover, the
next series of results shows that imposing such a limit would impede strong
OEE:

Theorem 5.1. Let S be a non-cyclical computable system with initial state
M0, E a dynamic environment, and δ1, ..., δi, ... a sequence of times such that
for each δi there exists a total function pi such that pi(Mδi) = E(δi). If the
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function p : i 7→ pi is computable, then the function δ : i 7→ δi is computable.

Proof. Assume that p is computable. We can describe a program Dε such
that, given S, M0, δi and E, runs pδi(Mt) and E(t) for each time t, returning
1 if δi-th t is such that pδi(t) = E(t), and 0 otherwise. Therefore the sequence
of δi’s is computable.

The last result can be applied naturally to weakly convergent systems
(4.5): the way each adapted state approaches to E is unpredictable, in other
words, its behavior changes over different stages unpredictably. Formally:

Corollary 5.2. Let S(M0, t, E(t)) be a weakly converging system, with adap-
ted states Mδ1 , ...,Mδi , ... and p1, ..., pi, ... its respective adapted behavior. If
the mapping δ : i 7→ δi is non-descriptively differentiable then the function
p : i 7→ pi is not computable.

Proof. It is a direct consequence of applying the theorem 5.1 to the definition
of weakly converging systems.

Implied in the proof of the last corollary is the requirement for each pi to
be a total function. Within an evolution framework, this requirement makes
sense given that, in weakly convergent systems, the program pi represents an
the behavior of a digital organism, a biological theory or other computable
system that uses Mδi ’s information to predict the behavior of E(δi). If this
prediction does not process its environment in finite time then is hard to
argue that it represents an adapted system or a useful theory

Let us focus on the consequence of lemmas 2.13 and 2.15 and corollary
2.19. Given the relationship established between descriptive time complexity
and the corresponding state of a system (theorem 4.1), these last results imply
that either the complexity of the adapted states of a system (using any of
the three complexity measures) grows very slowly for an infinite subsequence
of times (becoming increasingly common up to a probability limit of 1 [17])
or the subsequence of adapted times is undecidable.

Theorem 5.3. If S(M0, t, E(t)) is a weakly converging system with adap-
tation times δ1, ..., δi, ... that exhibits strong OEE with respect to csoph and
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depthbb, then the mapping δ : i 7→ δi is not computable. Also, there exists a
constant c such that the result applies to sophc.

Proof. We can see the sequence of adapted states as a function Mδi : i 7→Mδi .
By lemmas 2.13 and 2.15 and corollary 2.19, for the three stated measures
of complexity, there exist an infinite subsequence where the respective com-
plexity is upper bounded by O(log log i). It follows that if complexity grows
faster than O(log log i) for an infinite subsequence, then there must exist an
infinity of indexes j in the bounded succession where γ(j) grows faster than
C(Mj). Therefore there exist an infinity of indexes j where C(Mj)− γ(j) is
upper bounded. Finally, note that if a computable mapping δ : i 7→ δi allows
growth on the order of O(log log i), then the computable function δ′ : i 7→ δ22i

would grow faster than the stated bound.

Now, in the absence of absolute solutions to the problem of finding
adapted states in the presence of strong OEE, one might cast about for
a partial solution or approximation that decides most (or at least some) of
the adapted states. The following corollary shows that the problem is not
even semi-computable: any algorithm one might propose can only decide a
bounded number of adapted states.

Corollary 5.4. If S(M0, t, E(t)) is a weakly converging system with adapted
states M1, ...,Mi, ... that show strong OEE, then the mapping δ : i 7→ δi is
not even semi-computable.

Proof. Note that for any subsequence of adaptation times δj1 , ..., δjk , ..., the
system must show strong OEE. Therefore, by theorem 5.3, any subsequence
must also not be computable. It follows that there cannot exists an algorithm
that produces an infinity of elements of the sequence, since such an algorithm
would allow the creation of a computable subsequence of adaptation times.

In short, the theorem 5.3 imposes undecidability on strong OEE and, ac-
cording to theorem 5.2, the behavior and interpretation of the system evolves
in an unpredictable way, establishing one path for emergence: a set of rules
for future states that cannot be reduced to an initial set of rules.
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Recall that for a given weakly converging dynamical system, the sequence
of programs pi represents the behavior or interpretation of each adapted state
Mi. If a system exhibits strong OEE with respect to the complexity measures
sophc, csoph or depthbb, by corollary 5.2 and theorem 5.3 the sequence of
behaviors is incomputable, and therefore irreducible to any function of the
form p : i 7→ pi, even when possessing complete descriptions for the behavior
of the system, its environment and its initial state. In other words, the
behavior of iterative adapted states cannot be obtained from the initial set of
rules.

Furthermore, I conjecture that we should expect the results presented in
this work to hold for all adequate measures of complexity:

Conjecture 5.5. Computability bounds the growing complexity rate to that
of an order of the slowest growing infinite subsequence with respect to any
adequate complexity measure C.

One way to understand conjecture 5.5 is that the information of future
states of a system is either contained at the initial state–hence their com-
plexity is bounded by that initial state–; or is undecidable. This should be a
consequence given that, for any computable dynamical system, the random-
ness induced by time cannot be avoided.

5.1 Emergence, a Formal Definition

Emergence is understood as objects, organism and behavior that arise out of
an initial conditions, set of rules or fundamental entities yet are innovative,
novel and irreducible with respect to them [60].

In the opinion of the author, there is no stronger concept for innovation
in a dynamical system than the incomputability required for (strong) OEE.
I will use this requirement to give a formal definition for emergent behavior.

Definition 5.6. A sequence of natural numbers δ1, δ2, ..., δi, ... shows emer-
gent behavior if it is irreducible.
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In the context of computable evolutionary systems, a sequence of adapted
states —and therefore of adapted times— is emergent if its irreducible to the
initial state of the system, the environment and the rules governing its evolu-
tion. And as shown in theorem 5.3, this is a necessary condition for (strong)
open-ended evolution.

In summary, if S(M0, t, E(t)) is a weakly converging system with adap-
tation times δ1, ..., δi, ... such that the evolution of the system shows strong
OEE then:

• Adaptation is undecidable.

• Furthermore, the set of adaptation times is not even semi-computable,
therefore also the set of adapted states.

• The adapted behavior of the system is irreducible and emergent,
as there is not a computable method to describe the behavior at each
adaptation stage, therefore there must be innovation.

On Bennett’s Logical Depth

Although I conjecture that the theorem 5.3 must also hold for logical depth as
defined by Bennett [8], encompassing logical depth will require a deeper un-
derstanding of the internal structure of the relationship between computable
systems and computing time, beyond the time complexity stability theorem
(4.1), and might be related to open fundamental problems in computer sci-
ence and mathematics. As mentioned before, finding a low upper bound to
the growth of logical depth of all computable series of natural numbers would
suggest a negative answer to the question of the existence of an efficient way
of generating deep strings, which Bennett relates to the P 6= PSPACE
problem.

It is important to address the fact that the diagonal algorithm χ(n, T )
that Bennett proposes for generating deep strings might present a contra-
diction to our conjecture. The algorithm produces strings of length n with
depth T for a significance level n −K(T ) − O(log n), where K(T ) must be
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smaller than n, and n must not be as large (or larger) than T to avoid shallow
strings.

One possible issue with this algorithm is that the significance level is not
computable, and we can expect it to vary greatly with respect to K(T ): For
large T with small K(T ) (such as T T

T
) the significance level is nearly n,

which suggests that, for a steady significance level with respect to times T
with large K(T ), the growth in complexity might not be stable. This issue,
along with an algorithm that consistently enumerates pairs of n and T s such
that K(T ) < n << T for growing T ’s, will be explored in future work and its
solution would require a formal definition of adequate complexity measures.

If χ might present a challenge to the conjecture 5.5 this would suggest an
important difference from the three complexity measures used in this work.



Chapter 6

A System Exhibiting Strong
OEE

Given the results exposed in chapter 5, it is reasonable to hesitate on the
definition of OEE. ‘Is there even a reasonable systems that meets the exposed
criteria? ’ The answer is yes, there is such a system.

6.1 Chaitin’s Evolutive System

In his Metabiology program [23], the mathematician Geogory Chaitin de-
veloped a first version of a mathematical theory of evolution based on AIT,
more precisely based in Algorithmic Probability [43]. With the aim of provid-
ing mathematical evidence for the adequacy of Darwinian evolution, Chaitin
defined a dynamic evolutionary model that converges to its environment
significantly faster than exhaustive search, being fairly close to an intelli-
gent solution to a mathematical problem that requires maximal creativity
[21, 23, 22].

In the present section I will describe this system —which I will refer to as
Chaitin’s system from now on— and proceed to show that it exhibits strong
OEE. But first I must introduce the concept of algorithmic probability.
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6.1.1 A Brief Introduction to Algorithmic Probability

Let us recall the original problem of defining randomness to decide if a coin
toss is fair. If we see the random pattern 01101001 emerge during the first
game we might conclude the that the coin has a good chance of being fair.
However, if we see the same random pattern

01101001, 01101001, . . . , 01101001

being repeated time after time then AIT tells us that, by considering the
concatenated string or the set, the larger sequence is not longer random.

There is another way of reaching the same conclusion, we intuitively know
that the probability of obtaining the same random sequence over consecu-
tive throws is low. In other words, the probability of obtaining an specific
random sequence must be low.

The concept of algorithmic probability (also known as Levin’s semi-
measure [52]) considers the production of randomly chosen programs that
produce an output. The algorithmic probability of a string s is thus a measure
that estimates the probability of a random program p producing a string s
when run on a universal (prefix-free) Turing machine U .

Definition 6.1. The algorithmic probability of a natural number s for the
prefix-free Turing machine U is defined as:

mU(s) =
∑

p:U(p)=s and p∈V

1

2|p|
, (6.1)

where V is the set of all valid programs for U . In other words, the algorithmic
probability of a natural number s is the probability for a randomly chosen
program for an universal Turing machine to produce s.

The function mU(s) is a probability semi-measure given that, by Kraft in-
equality [49, 56], for any prefix-free set of finite binary strings V we have∑

p∈V

1

2|p|
≤ 1,
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and the sum may not reach 1 due the non-halting programs.

A fundamental result in algorithmic probability [12] states that

− log(m(s)) = K(s) +O(1). (6.2)

Intuitively, the last equation is true given that the largest contributor to m(s)
is 1/2|s

∗|, where |s∗| is the longitude of the shortest program that generates
s, and − log(1/2|s

∗|) = |s∗|. Formally:

Theorem 6.2. The Coding Theorem [70, 52]: For s ∈ N and an universal
prefix-free Turing machine U there exists cu such that

| − log(m(s))−K(s)| < cu, (6.3)

where cu is a fixed constant, independent of s but dependent on U .

Now, we can rewrite the equation 6.2 as

mU(s) =
1

2K(s)+O(1)
(6.4)

and, by the invariance theorem (2.8), it follows that for any two prefix-free
universal Turing machines U1 and U2 and natural number s there exists c
such that

mU1(s) ≤ c ·mU2(s).

In other words, algorithmic probability has its own version of invariance.

Through the algorithmic probability literature, the reference universal
machine U is omitted, and the resulting probability m(s) function is called
the Universal Distribution [46, 69].

6.1.2 Evolution Dynamics

In Chaitin’s system, the environment is defined as two information-content
equivalent incomputable objects: the busy beaver function (definition 2.18)
and Chaitin’s constant Ω [15]. These two object are equivalent from a com-
putability point of view as it is possible to obtain one from the other with
a fixed program [32], therefore they convey the same amount of (infinite)
information. Formally, Ω is defined as:
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Definition 6.3. For a prefix-free universal machine U , Chaitin’s constant Ω
is defined as the probability

ΩU =
∑
p∈HP

1

2P
.

In other words, the probability of a randomly chosen valid program P to halt
for U , also known as the halting probability of U .

The exact value of ΩU depends on U . However, since ΩU encodes the
busy beaver function, given the exact value for ΩU is possible to find Ω′U for
any other universal prefix-free machine U ′ using the corresponding compiler
and a fixed program, therefore the subindex U is omitted for the universal
constant Ω. Let us define the environment at time t as E(t) = Ωt, that is
the first t bits of Ω.

Now, the initial state of the system M0 is defined as the natural number
0, the empty string. A successful mutation at the time t is defined as the
program µt such that 0.Mt−1 < 0.µt(Mt−1) < Ω, where 0.X is the binary
sequence X interpreted as a binary expansion of a number between 0 and 1.
We can now define the evolution function as

Mt = S(Mt−1, t,Ωt) = µt(Mt−1).

Now, the question is how to find µt. There are several strategies we can
use. One is to simply try all the possible programs until we find a successful
mutation. Another is to randomly choose a program according to it’s classical
probability. Other strategies were suggested by Chaitin: intelligently choose
the mutations and to randomly chose a program according to the probability
given by the universal distribution 6.1.

When using the universal distribution, Chaitin proved that the expected
numbers of stochastic draws (or real computing time) needed to find the se-
quence µ0, µ1, ..., µt is in the order ofO(t2(log(t))1+O(1)) [23, pp. 127], which is
much faster than going through all the programs or choosing n-bit mutations
according to classical probability, whose time is expected to be exponential.
Drawing mutations from the universal distribution yields a time that is fairly



6.1. CHAITIN’S EVOLUTIVE SYSTEM 55

close to the linear time expected from an intelligent solution. Instead of re-
peating Chaitin’s work here, I will keep the deterministic approach to reach
a related result based on similar ideas.

Theorem 6.4. Let us sort all possible programs according to their probability
under the universal distribution, from the most probable to the least one. If
S is a program that applies all the mutations according to this order then it
will produce the list µ0, µ1, ..., µt of successful mutations in a real computing
time of O(t2).

Proof. Consider the mutations µ∗k which are programs that add 1/2k to the
present state (approximation to Ω) and do the following (where M is the
input):

• Run all the valid programs from length 0 to k in dovetailing fashion,
adding 1/2j at each successful halt until obtaining 0.M + 1/2k.

Note that if 0.M + 1/2k > Ω, then µ∗k(M) will never halt. Now, the algorith-
mic complexity of each µ∗k is O(log(k)), therefore there are at most O(2log(k))
valid programs before it in the ordered list. It follows that, for each state of
the evolution, the program S will take a computing time of O(t) and, for the
complete list,

∑t
j=0O(j) = O(t2).

Now, we have the complete deterministic evolutionary system S(0, t,Ωt),
which runs with quadratic overhead. However, the system is not computable,
as S needs to know when the failed mutations µ∗k —along with other valid
programs— will halt, and the program order (the universal distribution)
along with the environment itself are incomputable entities.
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6.2 Chaitin’s System and OEE

Given that Ω can be used to compute BB(n) [32], an equivalent, but much
slower deterministic version of Chaitin’s system is the following:

M0 = 0

Mt = p.T (p) = max{T (U ′(q)) : H(Mt−1, q) ≤ w},
(6.5)

where H(Mt−1, p) is the distance between the programs Mt−1, q is the quan-
tification of the number of mutations needed to transform one string into the
other, and w is a positive integer acting as an accumulator that resets to 1
whenever Mt increases in value, adding 1 otherwise.

The environment can be defined as either E(t) = BB(t). or by an en-
coding of the proposition larger than U(Mt−1) for each time t. Given that
we can compute Mt−1 and its relationship with Mt given a description of
the latter and a constant amount of information (ε), we find adaptation at
the times t where the busy beaver function grows. It is easy to see that the
sequence of programs i 7→ Mi is precisely what generates the busy beaver
sequence ηi = BB(i).

As expected, the system is not computable. BB(t) is not a computable
function, the evolution of the system, along with the respective adaptation
times are also not computable. However, this sequence is composed of pro-
grams that compute, in order, an element of a sequence that exhibits strong
OEE with respect to depthbb:

Theorem 6.5. The sequence of busy beaver values ηi = BB(i) show strong
OEE with respect to the complexity measure depthbb (definition 2.17).

Proof. Let ηi = BB(i) be the sequence of all busy beaver values; by defini-
tion, if i is the first value for which BB(i) was obtained,

depthbb(BB(i)) = min{|pi| −K(BB(i)) + i},

where U(Pi) = K(BB(i)).

It follows that K(BB(i)) = |pi| and depthbb(BB(i)) = i, otherwise pi
would not be the minimal program. Therefore, the complexity of the se-
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quence is a monotone growing function with respect of the index, hence it
exhibits strong OEE with respect to depthbb.

And, by corollary 2.19, the next result follows.

Corollary 6.6. The system described in equation 6.5 exhibits strong OEE
with respect to csoph (definition 2.14).

Proof. By theorems 5.2 at [4] and 6.5, for any state of the system Mi we have
that |csoph(Mi) − i| ≤ O(log(|Mi|)), |Mi| = K(BB(i)) and |Mi| ≤ K(Mi).
It follows that

i−O(log(K(BB(i))) ≤ csoph(Mi),

which, by definition of BB (2.18), implies that

i−O(log(i)) ≤ csoph(Mi).

Thus, there exists j such that i > j implies that i 7→ csoph(Mi) grows
monotonically, therefore and we have the result.

Now, the corollary 6.6 proves that Chaitin’s system exhibits strong
OEE with respect at least one of the universal complexity measure used
through this text.

6.3 Evolution as ¬HP

Computing the system described in section 6.1 requires a solution for the
Halting Problem, and the system itself might also seem unnatural at first
glance, as it based on abstract, theoretical mathematical constructs. How-
ever, we can think of the biosphere as a huge parallel computer that is con-
stantly approximating solutions to the adaptation problem by means of sur-
vivability, just as Ω has been approximated [14].

I claim that just as we cannot generally know whether a Turing machine
will halt until it does, we may not know if an organism will keep adapting and
survive in the future, but we can know when it failed to do so (extinction).
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One may consider biological evolution to be a very rough, but fundamen-
tal, analogue to Chaitin’s system as the pursue of the busy beaver values
(longest running TMs) is equivalent to the search for the longest surviving
organisms. Within this framework, the periods of increase in complexity
are a natural consequence of approximating BB. In this view, our asser-
tion that adaptation is a generalization of the Halting problem has a natural
interpretation. In summary, I state that:

• The Biosphere is a massive parallel computer constantly approximating
the algorithmic probability Ω:

– ε-adapted is a generalization of the non-halting condition.

– Evolution looks for longest surviving organisms, analogue to longest
running Turing machine (the busy beaver problem, which is equiv-
alent to computing Ω).

– The observed increase in complexity is a natural consequence of
this search.

– Simple, long surviving organisms can bee seen as rough equivalent
to simple non-stopping Turing machines.

The set ¬HP is defined as the set of non-halting or diverging valid pro-
grams. This set is not semi-computable: If we had a computable function d
that returned 1 on positive instances, by running it along with any program,
we could decide HP. As corollary 5.4 shows, this is the same property that
we find for strong OEE evolutionary systems, which is congruent with the
arguments stated above.

Simply put, deciding adaptation is equivalent to deciding the set member-
ship of ¬HP.

6.4 Algorithmic Probability Evolution

One possible reading for the undecidability results exposed in chapter 5 is
that chasing for strong OEE is a scientific dead-end, as the sequence of
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adapted states are not even-semi computable. However, the beautiful al-
gorithmic evolution and algorithmic probability theory advanced by Chaitin,
Kolmogorov, Levin and Solomonoff presented in this chapter exposed a strong
OEE system and opened a new path for studying evolution.

Definition 6.7. An evolutionary system is driven by algorithmic probability
if the chance of a given mutation to occur is given by the universal distribu-
tion. We call these mutations algorithmic probable mutations.

The objective for the remainder of this work is to show a first numerical
experiment in evolution using algorithmic probability as main driver of mu-
tation, comparing the obtained results with the alternative hypothesis that
mutations are uniformly random. For that, we first need an effective approx-
imation to the universal distribution, which will be presented in the next
chapter.
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Chapter 7

Approximating the Universal
Distribution

As stated before, the universal distribution m(s) is an incomputable function.
However, by approximating the algorithmic complexity K(s), m(s) can be
approximated with different degrees of success (see equation 6.4). Conversely,
K(s) can be approximated from m(s). This last approach is known as the
Coding Theorem Method (CTM) [52]. Formally:

K(s) = − log(m(s)) +O(1). (7.1)

In the present chapter I will present an specific method, called the Block
Decomposition Method (BDM), developed by Zenil et al. [83, 84, 86]
for approximating the descriptive complexity of a multidimensional finite
objects. In one of the cited articles, we compared it to widely used alternative
methods such as Shannon’s entropy and compression algorithms. I will also
present such comparisons.

BDM has been successfully applied to graph theory [84], image classifi-
cation [34] and human behavioral complexity in the last few years [33, 44].

The content of the following sections overlap with the article ‘A Decom-
position Method for Global Evaluation of Shannon Entropy and

61
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Local Estimations of Algorithmic Complexity’ [86], for which I was
a contributing author.

7.1 Approximating K

In this section, based on [86], we present a measure of algorithmic complexity
that lies half-way between two universally used measures that enables the
action of both at different scales by dividing data into smaller pieces for which
the halting problem involved in an uncomputable function can be partially
circumvented, in exchange for a huge calculation based upon the concept of
algorithmic probability. The calculation can, however, be precomputed and
reused in future applications, thereby constituting a strategy for efficient
estimations –bounded by Shannon entropy and by algorithmic complexity–
in exchange for a loss of accuracy.

7.1.1 The Use and Misuse of Lossless Compression

Lossless compression algorithms have dominated the landscape of computable
applications of algorithmic complexity and have traditionally been used to
approximate K. When researchers have chosen to use lossless compression
algorithms for reasonably long strings, the method has proven to be of value
(e.g. [25]). Their successful application has to do with the fact that compres-
sion is a sufficient test for algorithmic non-randomness (though the converse
is not true). However, implementations of lossless compression algorithms are
based upon estimations of entropy rate, and are therefore no more closely
related to algorithmic complexity than is Shannon entropy by itself.

Entropy for information theory was originally conceived by Shannon [66]
as a measure of information transmitted over an stochastic communication
channel with known alphabets and is defined as:

Definition 7.1. The entropy H of a discrete random variable s with (finite)
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possible values s1, . . . , sn with probability distribution P (s) is defined as:

H(s) = −
n∑
i=1

P (si) log(P (si)),

where in the case of P (si) = 0 for some i, the value of the corresponding
summand 0 log(0) is taken to be 0.

We can also consider blocks of symbols for higher order entropy. The
following function Hl gives what is variously denominated as block entropy
and is Shannon entropy over blocks or subsequence of s of length l. That is,

Definition 7.2.
Hl(s) = −

∑
b∈blocks

Pl(b) log(Pl(b)),

where blocks is the set resulting of decomposing s in substrings or blocks of
size l and Pl(b) is the probability of obtaining the combination of n symbols
corresponding to the block b.

For infinite strings assumed to originate from a stationary source, the
entropy rate of s can be defined as the limit

lim
l→∞

1

l

∑
|s′|=l

Hl(s
′),

where |s′| = l indicates we are considering all the generated strings of length
l. For a fixed string we can think on the normalized block entropy value
where l better captures the periodicity of s.

When the logarithm is base 2, Shannon’s entropy measures the average
number of bits it would take transmit the full message over a communication
channel. This establishes hard limits to maximum lossless compression rates.
For instance, the Shannon coding (and Shannon-Fano) sorts the symbols of
an alphabet according to their probabilities, assigning smaller binary self-
delimited sequences to symbols that appear more frequently. Such methods
form the base of many, if not most, commonly used compression algorithms.

Given its utility in data compression, entropy is often used as a measure
of the information contained in a finite string s = s1s2 . . . x . . . sk. Let’s
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consider the natural distribution, the uniform distribution that makes the
least number of assumptions but does consider every possibility equally likely
and is thus uniform. Suggested by the set of symbols in s and the string
length the natural distribution of s is the distribution defined by P (x) = nx

|s| ,

where nx is the number of times the object x occurs in s (at least one to be
considered), and the respective entropy function Hl. If we consider blocks of
size n >> l ≥ 2 and the string s = 01010101 . . . 01, where n is the length of
the string, then s can be compressed in a considerably smaller number of bits
than a statistically random sequence of the same length and, correspondingly,
has a lower Hl value.

When the communication channel is transmitting an infinite string s, the
entropy rate of s is defined as the limit

lim
l→∞

Hl(s).

For finite objects, we can think of it as the normalized block entropy value
where l better captures the periodicity of s. It follows that, depending on the
granularity and probability distribution used, entropy can only account
for statistical regularities and not for algorithmic ones. For example,
the string 01010101 is periodic, but for the smallest granularity (1 bit) or
1-symbol block, the sequence has maximal entropy, because the number of
0s and 1s is the same assuming a uniform probability distribution for all
strings of the same finite length. Only for longer blocks of length 2 bits can
the string be found to be regular, identifying the smallest entropy value for
which the granularity is at its minimum.

Now, data compression can be viewed as a function that maps data
onto other data using the same units or alphabet (if the translation is into
different units or a larger or smaller alphabet, then the process is called an
encoding). Compression is successful if the resulting data is shorter than the
original data plus the decompression instructions needed to fully reconstruct
said original data. For a compression algorithm to be lossless, there must
be a reverse mapping from compressed data to the original data. That is to
say, the compression method must encapsulate a bijection between “plain”
and “compressed” data, because the original data and the compressed data
should be in the same units.

In similar fashion to Shannon-Fado code, the classical LZ77 [87] and LZ78
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[88] compression algorithms enact a greedy parsing of the input data LZ77
and achieve compression by replacing repeated chunks of data with references
to a single copy of that data existing earlier in the uncompressed object.
That is, at each step, they take the longest dictionary phrase which is a
prefix of the currently unparsed string suffix. LZ algorithms are said to be
‘universal’ because, assuming unbounded memory (arbitrary sliding window
length), they asymptotically approximate the (infinite) entropy rate of the
generating source [88]. Not only does lossless compression fail to provide any
estimation of the algorithmic complexity of small objects [29, 68], it is also
not more closely related to algorithmic complexity than Shannon entropy by
itself, being only capable of exploiting statistical regularities (if the observer
has no other method to update/infer the probability distribution). Thus in
effect no general lossless compression algorithm does better than provide the
Shannon entropy rate of the objects it compresses.

Another immediate drawback of computable entropy based complexity
measures is the lack of robustness [80, 78]. In other words, they are not in-
variant to different descriptions of the same object–unlike algorithmic com-
plexity, where the invariance theorem guarantees the invariance of an object’s
algorithmic complexity.

BDM builds upon block entropy’s decomposition approach using algo-
rithmic complexity methods to obtain and combine its building blocks. The
result is a complexity measure that, as shown in section 7.2.2, approaches
K in the best case and behaves like entropy in the worst case (7.2.5), out-
performing Hl in various scenarios. First we introduce the algorithm that
conforms the building blocks of BDM, which are local estimations of algo-
rithmic complexity.

7.1.2 The Coding Theorem Method (CTM)

A computationally expensive procedure that is nevertheless closely related to
algorithmic complexity involves approximating the algorithmic complexity of
an object by running every possible program, from the shortest to the longest,
and counting the number of times that a program produces every string
object. The length of the computer program will be an upper bound of the
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algorithmic complexity of the object, following the Coding theorem 6.2, and
a (potentially) compressed version of the data itself (the shortest program
found) for a given computer language or ‘reference’ UTM. This guarantees
discovery of the shortest program in the given language or reference UTM
but entails an exhaustive search over the set of countable infinite computer
programs that can be written in such a language. A program of length n
has asymptotic probability close to 1 of halting in time 2n [17], making this
procedure exponentially expensive, even assuming that all programs halt or
that programs are assumed never to halt after a specified time, with those
that do not being discarded.

As shown in [29] and [68], an exhaustive search can be carried out for a
small-enough number of computer programs (more specifically, Turing ma-
chines) for which the halting problem is known, thanks to the Busy Beaver
game [62]. This is the challenge of finding the Turing machine of fixed size
that runs for longer than any other machine of the same size, and for which
values are known for Turing machines with 2 symbols and up to 4 states.
One can also proceed with an informed runtime cut-off, well below the theo-
retical 2n optimal runtime that guarantees an asymptotic drop of non-halting
machines [17].

The so called Coding Theorem Method (or simply CTM) is a Bottom-
up Approach to Algorithmic Complexity. Unlike common implementations
of lossless compression algorithms, the main motivation of CTM is to find
algorithmic signals rather than just statistical regularities in data, beyond
the range of application of Shannon entropy and entropy rate.

CTM is divided into two parts thanks to the incomputability and in-
tractability intrinsic to algorithmic complexity measures. The trade-off of
CTM is this two-step and two-speed algorithm that requires a calculation in
O(exp) time but that can then be used and applied in O(1) by exchanging
time for memory in the construction of a precomputed lookup table, which
in turn diminishes the precision of the method in proportion to the object
size (e.g. string length) unless a new O(exp) iteration is precomputed. This
means that the procedure only works well for short strings. The slow part of
the algorithm is, paradoxically, slower than the slowest computable function
(equivalent to calculating the busy beaver function ( [62], see definition 2.18),
but some shortcuts and optimizations are possible [29, 68].
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CTM is rooted in the relation [29, 68] provided by algorithmic probability
between frequency of production of a string from a random program and its
algorithmic complexity as described by equation (7.1). Essentially it uses the
fact that the more frequent a string is, the lower Kolmogorov complexity it
has; and strings of lower frequency have higher Kolmogorov complexity. The
advantage of using algorithmic probability to approximate K by application
of the Coding Theorem6.2 is that m(s) produces reasonable approximations
to K based on an average frequency of production, which retrieves values
even for small objects.

Let (t, k) denote the set of all Turing machines with t states and k symbols
using the Busy Beaver formalism [62], and let T be a Turing machine in
(t, k) with empty input. Then the empirical output distribution D(t, k) for a
sequence s produced by some T ∈ (t, k) gives an estimation of the algorithmic
probability of s, D(t, k)(s) defined by:

Definition 7.3.

D(t, k)(s) =
|{T ∈ (t, k) : T produces s}|
|{T ∈ (t, k) : T halts }|

(7.2)

For small values t and k, D(t, k) is computable for values of the Busy
Beaver problem that are known. In this context, the Busy Beaver problem
is the problem of finding the t-state, k-symbol Turing machine which writes
a maximum number of non-blank symbols before halting, starting from an
empty tape, or the Turing machine that performs a maximum number of
steps before halting, having started on an initially blank tape. For t = 4
and k = 2, for example, the Busy Beaver machine has maximum runtime
S(t) = 107 [11], from which one can deduce that if a Turing machine with 4
states and 2 symbols running on a blank tape hasn’t halted after 107 steps,
then it will never halt. This is how D was initially calculated– by using
known Busy Beaver values. However, because of the undecidability of the
Halting problem, the Busy Beaver problem is only computable for small t, k
values [62]. Nevertheless, one can continue approximating D for a greater
number of states (and alphabet size), proceeding by sampling, as described
in [29, 68], with an informed runtime based on both theoretical and numerical
results.

Notice that 0 < D(t, k)(s) < 1, D(t, k)(s) and is thus said to be a semi-
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measure, just as m(s) is.

Now we can introduce a measure of complexity that is heavily reliant
upon algorithmic probability m(s), as follows:

Definition 7.4. Let (t, k) be the space of all t-state k-symbol Turing ma-
chines, t, k > 1 and D(t, k)(s) = the function assigned to every finite binary
string s. Then:

CTM(s, t, k) = − log(D(t, k)(s)). (7.3)

That is, the more frequently a string is produced the lower its Kolmogorov
complexity, with the converse also being true.

Table 7.1 shows the rule spaces of Turing machines that were explored,
from which empirical algorithmic probability distributions were sampled and
estimated.

(t,k) Calculation Number of Machines Time

(2,2) F– (6 steps) |R(2, 2)| = 2000 0.01 s
(3,2) F– (21) |R(3, 2)| = 2 151 296 8 s
(4,2) F– (107) |R(4, 2)| = 3 673 320 192 4 h
(4,2)2D F2D– (1500) |R(4, 2)2D| = 315 140 100 864 252 d
(4,4) S (2000) 334× 109 62 d
(4,5) S (2000) 214× 109 44 d
(4,6) S (2000) 180× 109 41 d
(4,9) S (4000) 200× 109 75 d
(4,10) S (4000) 201× 109 87 d
(5,2) F– (500) |R(5, 2)| = 9 658 153 742 336 450 d
(5,2)2D S2D (2000) 1291× 109 1970 d

Table 7.1: Calculated empirical distributions from rulespace (t, k). Letter
codes: F full space, S sample, R(t, k) reduced enumeration. Time is given
in seconds (s), hours (h) and days (d).
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Definition 7.5. We will designate as base string, base matrix, or base tensor
the objects of size l for which CTM values were calculated such that the full
set of kl objects have CTM evaluations. In other words, the base object is
the maximum granularity of application of CTM.

Table 7.1 provides figures relating to the number of base objects calcu-
lated.

Validations of CTM undertaken before show the correspondence between
CTM values and the exact number of instructions used by Turing machines
when running to calculate CTM [67](Fig 1 and Table 1) to produce each
string, i.e. direct K complexity values for this model of computation (as
opposed to CTM using algorithmic probability and the Coding theorem)
under the chosen model of computation [62]. The correspondence in values
found between the directly calculated K and CTM by way of frequency
production was near perfect.

Sections 7.1.2 and 7.2 and Fig. 10, 11, 12 and 15 in [36] support the
agreements in correlation using different rule spaces of Turing machines and
different computing models altogether (cellular automata). Section 7.1.1 of
the same paper provides a first comparison to lossless compression. The
sections ‘Agreement in probability’ and ‘Agreement in rank’ provide further
material comparing rule space (5,2) to the rule space (4,3) previously calcu-
lated in Zenil and Delahaye [29]. The section ‘Robustness’ in Soler-Toscano
et al. [68] provides evidence relating to the behavior of the invariance theorem
constant for a standard model of Turing machines [62].

7.2 The Block Decomposition Method (BDM)

Because finding the program that reproduces a large object is computation-
ally very expensive and ultimately uncomputable, one can aim at finding
smaller programs that reproduce smaller parts of the original object, parts
that together compose the larger object. And this is what the BDM does. It
decomposes the original data into fragments, the Kolmogorov complexity of
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which we have good approximations of. The sum of the programs that recon-
struct the original data is an approximation of its Kolmogorov complexity.
This also means that the method is local. BDM cannot, however, work alone.
It requires a CTM, described in the next section. In Section 7.5 we study a
method to extend its range of application, thereby effectively extending its
power by combining it with Shannon entropy.

The BDM is a hybrid complexity measure that calculates global entropic
and local algorithmic complexity. It is meant to extend the power of CTM,
and consists in decomposing objects into smaller pieces for which exact com-
plexity approximations have been numerically estimated using CTM, then
reconstructing an approximation of the Kolmogorov complexity for the larger
object by adding the complexity of the individual components of the object,
according to the rules of information theory. For example, if s is an object
and 10s is a repetition of s ten times smaller, upper bounds can be achieved
by approximating K(s) + log2(10) rather than K(10s), because we know
that repetitions have a very low Kolmogorov complexity, given that one can
describe repetitions with a short algorithm.

Here we introduce and study the properties of this Block Decomposition
Method based on a method advanced in [29, 68] that takes advantage of the
powerful relationship established by algorithmic probability between the fre-
quency of a string produced by a random program running on a (prefix-free)
UTM and the string’s Kolmogorov complexity. The chief advantage of this
method is that it deals with small objects with ease, and it has shown sta-
bility in the face of changes of formalism, producing reasonable Kolmogorov
complexity approximations. BDM must be combined with CTM if it is to
scale up properly and behave optimally for upper bounded estimations of K.
BDM + CTM is universal in the sense that it is guaranteed to converge to K
due to the invariance theorem, and as we will prove later, if CTM no longer
runs, then BDM alone approximates the Shannon entropy of a finite object.

Like compression algorithms, BDM is subject to a trade-off. Compres-
sion algorithms deal with the trade-off of compression power and compres-
sion/decompression speed.
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7.2.1 l-overlapping String Block Decomposition

Let us fix values for t and k and let D(t, k) be the frequency distribution
constructed from running all the Turing machines with n states and k sym-
bols. Following Eq. (7.2), we have it that − logD is an approximation of K
(denoted by CTM). We define the BDM of a string or finite sequence s as
follows,

Definition 7.6.

BDM(s, l,m) =
∑
i

CTM(si,m, k) + log(ni) (7.4)

where ni is the multiplicity of si and si the subsequence i after decomposition
of s into subsequences si, each of length l, with a possible remainder sequence
y < |l| if |s| is not a multiple of the decomposition length l.

The parameter m goes from 1 to the maximum string length produced
by CTM, where m = l means no overlapping inducing a partition of the
decomposition of s, m is thus an overlapping parameter when m < l for
which we will investigate its impact on BDM (in general, the smaller m a
greater overestimation of BDM).

The parameter m is needed because of the remainder. If |s| is not a
multiple of the decomposition length l then the option is to either ignore
the remainder in the calculation of BDM or define a sliding window with
overlapping m− l.

The choice of t and k for CTM in BDM depend only on the available
resources for running CTM, which involves running the entire (t, k) space of
Turing machines with t symbols and k states.

BDM approximates K in the following way: if pi is the minimum program
that generates each base string si, then CTM(si) ≈ |pi| and we can define
an unique program q that runs each pi, obtaining all the building blocks.
How many times each block is present in s can be given in O(log(ni)) bits.
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Therefore, BDM is the sum of the information needed to describe the de-
composition of s in base strings. How close is this sum to K is explored in
section 7.2.2.

The definition of BDM is interesting because one can plug in other algo-
rithmic distributions, even computable ones, approximating some measure
of algorithmic complexity even if it is not the one defined by Kolmogorov-
Chaitin such as, for example, the one defined by Calude et al. [13] based
upon Finite-state automata. BDM thus allows the combination of measures
of classical information theory and algorithmic complexity.

For example, for binary strings we can use t = 2 and k = 2 to produce
the empirical output distribution (2, 2) of all machines with 2 symbols and 2
states by which all strings of size l = 12 are produced, except two (one string
and its complement). But we assign them values

max {CTM(y, 2, 2) + e : |y| = 12}

where e is different from zero because the missing strings were not generated
in (2, 2) and therefore have a greater algorithmic random complexity than
any other string produced in (2, 2) of the same length. Then, for l = 12
and m = 1, BDM(s, l,m) decomposes s = 010101010101010101 of length
|s| = 18 into the following subsequences:

010101010101
101010101010
010101010101
101010101010
010101010101
101010101010
010101010101

with 010101010101 having multiplicity 4 and 101010101010 multiplicity 3.

We then get the CTM values for these sequences:

CTM(010101010101, 2, 2) = 26.99073
CTM(101010101010, 2, 2) = 26.99073
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To calculate BDM, we then take the sum of the CTM values plus the sum
of the logb of the multiplicities, with b = 2 because the string alphabet is 2,
the same as the number of symbols in the set of Turing machines producing
the strings. Thus:

log2(3) + log2(4) + 26.99073 + 26.99073 = 57.56642

7.2.2 2- and w-Dimensional Complexity

To ask after the likelihood of an array, we can consider a 2-dimensional
Turing machine. The Block Decomposition Method can then be extended
to objects beyond the unidimensionality of strings, e.g. arrays representing
bitmaps such as images, or graphs (by way of their adjacency matrices). We
would first need CTM values for 2- and w-dimensional objects that we call
base objects (e.g. base strings or base matrices).

A popular example of a 2-dimensional tape Turing machine is Langton’s
ant [50]. Another way to see this approach is to take the BDM as a way of
deploying all possible 2-dimensional deterministic Turing machines of a small
size in order to reconstruct the adjacency matrix of a graph from scratch (or
smaller pieces that fully reconstruct it). Then, as with the Coding theorem
method (above), the algorithmic complexity of the adjacency matrix of the
graph can be estimated via the frequency with which it is produced from
running random programs on the (prefix-free) 2-dimensional Turing machine.
More specifically,

BDM(X, {xi}) =
∑

(ri,ni)∈Adj(X){xi}

CTM(ri) + log(ni), (7.5)

where the set Adj(X){xi} is composed of the pairs (r, n), r is an element of the
decomposition of X (as specified by a partition {xi}, where xi is a submatrix
of X) in different sub-arrays of size up to d1 × . . . × dw (where w is the
dimension of the object) that we call base matrix (because CTM values were
obtained for them) and n is the multiplicity of each component. CTM(r)
is a computable approximation from below to the algorithmic information
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Figure 7.1: Non-overlapping BDM calculations are invariant to block permu-
tations (reshuffling base strings and matrices), even when these permutations
may have different complexities due to the reorganization of the blocks that
can produce statistical or algorithmic patterns. For example, starting from a
string of size 24 (top) or an array of size 8× 8 (bottom), with decomposition
length l = 8 for strings and decomposition l = 4× 4 block size for the array,
all 6 permutations for the string and all 6 permutations for the array have
the same BDM value regardless of the shuffling procedure.

complexity of r, K(r), as obtained by applying the coding theorem method
to w-dimensional Turing machines. In other words, {ri} is the set of base
objects.

Because string block decomposition is a special case of matrix block de-
composition, and square matrix block decomposition is a special case of w-
block decomposition for objects of w dimensions, let us describe the way in
which BDM deals with boundaries on square matrices, for which we can as-
sume CTM values are known, and that we call base strings or base matrices.

Fig. 7.1 shows that the number of permutations is a function of the com-
plexity of the original object, with the number of permutations growing in
proportion to the original object’s entropy–because the number of different
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resulting blocks determines the number of different n objects to distribute
among the size of the original object (e.g. 3 among 3 in Fig. 7.1 (top) or
only 2 different 4 × 4 blocks in Fig. 7.1 (bottom)). This means that the
non-overlapping version of BDM is not invariant vis-à-vis the variation of
the entropy of the object, on account of which it has a different impact on
the error introduced in the estimation of the algorithmic complexity of the
object. Thus, non-overlapping objects of low complexity will have little im-
pact, but with random objects non-overlapping increases inaccuracy. Over-
lapping decomposition solves this particular permutation issue by decreasing
the number of possible permutations, in order to avoid trivial assignment
of the same BDM values. However, overlapping has the undesired effect of
systematically overestimating values of algorithmic complexity by counting
almost every object of size n, n− 1 times, hence overestimating at a rate of
about n(n − 1) for high complexity objects of which the block multiplicity
will be low, and by n log(n) for low complexity objects.

Applications to graph theory [84], image classification [34] and human
behavioral complexity have been produced in the last few years [33, 44].

BDM Upper and Lower Absolute Bounds

In what follows we show the hybrid nature of the measure. We do this
by setting lower and upper bounds to BDM in terms of the algorithmic
complexity K(X), the partition size and the approximation error of CTM ,
such that these bounds are tighter in direct relation to smaller partitions and
more accurate approximations of K. These bounds are independent of the
partition strategy defined by {xi}.
Proposition 7.7. Let BDM be the function defined in Eq. 7.5 and let X be
an array of dimension w. Then

K(X) ≤ BDM(X, {xi}) +O(log2 |A|) + ε

and

BDM(X, {xi}) ≤ |Adj(X){xi}|K(X) +O(|Adj(X){xi}| log |Adj(X){xi}|)− ε,
where A is a set composed of all possible ways of accommodating the elements
of Adj(X){xi} in an array of dimension w, and ε is the sum of errors for the
approximation CTM over all the sub-arrays used.
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Proof. Let Adj(X){xi} = {(r1, n1), ..., (rk, nk)} and {pj}, {tj} be the se-
quences of programs for the reference prefix-free UTM U such that, for each
(rj, nj) ∈ Adj(X){xi}, we have U(pj) = rj, U(tj) = nj, K(rj) = |pj| and
|tj| ≤ 2 log(nj) + c. Let εj be a positive constant such that CTM(rj) + εj =
K(X); this is the error for each sub-array. Let ε be the sum of all the errors.

For the first inequality we can construct a program qw, whose description
only depends on w, such that, given a description of the set Adj(X){xi} and
an index l, it enumerates all the ways of accommodating the elements in the
set and returns the array corresponding to the position given by l.

Note that |l|, |Adj(X){xi}| and all nj’s are of the order of log|A|. Therefore
U(qwq1p1t1...pjtjl) = X and

K(X) ≤ |qwp1t1...pjtjl|

≤ |qw|+
k∑
1

(|qj|+ |pj|) + |l|

≤ BDM(X, {xi}) + ε+ |qw|
+ (log |A|+ c)|Adj(X){xi}|+O(log |A|)
≤ BDM(X, {xi}) +O(log2|A|) + ε,

which gives us the inequality.

Now, let qX be the smallest program that generates X. For the second
inequality we can describe a program q{xi} which, given a description ofX and
the index j, constructs the set Adj(X){xi} and returns rj, i.e. U(q{xi}qXj) =
rj. Note that each |j| is of the order of log |Adj(X){xi}|. Therefore, for
each j we have K(rj) + εj = |pj| ≤ |q{xi}| + |qX | + O(log |Adj(X){xi}|) and
K(rj) + εj + log(ni) ≤ |q{xi}|+ |qX |+O(log |Adj(X){xi}|) + log(ni). Finally,
by adding all the terms over the j’s we find the second inequality:

BDM(X, {xi}) + ε ≤ |Adj(X){xi}|(|qX |+ |q{xi}|
+ log(nj) +O(log |Adj(X){xi}|)) ≤ |Adj(X){xi}|K(X)

+O(|Adj(X){xi}| log |Adj(X){xi}|).

Corollary 7.8. If the partition defined by {xi} is small, that is, if |Adj(X){xi}|
is close to 1, then BDM(X, {xi}) ≈ K(X).
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Proof. Given the inequalities presented in proposition 7.7, we have it that

K(X)−O(log2 |A|)− ε ≤ BDM(M, {xi})

and

BDM(M, {xi}) ≤
|Adj(X){xi}|K(X) +O(|Adj(X){xi}| log |Adj(X){xi}|) + ε

which at the limit leads toK(X)−ε ≤ BDM(X) ≤ K(X)−ε andBDM(X) =
K(X)− ε. From [68], we can say that the error rate ε is small, and that by
the invariance theorem it will converge towards a constant value.

7.2.3 Dealing with Object Boundaries

Because partitioning an object—a string, array or tensor—leads to bound-
ary leftovers not multiple of the partition length, the only two options to
take into consideration such boundaries in the estimation of the algorithmic
complexity of the entire object is to either estimate the complexity of the
leftovers or to define a sliding window allowing overlapping in order to in-
clude the leftovers in some of the block partitions. The former implies mixing
object dimensions that may be incompatible (e.g. CTM complexity based on
1-dimensional TMs versus CTM based on higher dimensional TMs). Here we
explore these strategies to deal with the object boundaries. Here we intro-
duce a strategy for partition minimization and base object size maximization
that we will illustrate for 2-dimensionality. The strategies are intended to
overcome under- or over-fitting complexity estimations that are due to con-
ventions, not just technical limitations (due to, e.g., incomputability and
intractability).

In Section 7.2.2, we have shown that using smaller partitions for BDM
yields more accurate approximations to the algorithmic complexity K. How-
ever, the computational costs for calculating CTM are high. We have com-
piled an exhaustive database for square matrices of size up to 4×4. Therefore
it is in our best interest to find a method to minimize the partition of a given
matrix into squares of size up to d× d = l for a given l.
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Recursive BDM

The strategy consists in taking the biggest base matrix multiple of d × d
on one corner and dividing it into adjacent square submatrices of the given
size. Then we group the remaining cells into 2 submatrices and apply the
same procedure, but now for (d − 1) × (d − 1). We continue dividing into
submatrices of size 1× 1.

Let X be a matrix of size m× n with m,n ≥ d. Let’s denote by quad =
{UL,LL,DR,LR} the set of quadrants on a matrix and by quadd the set
of vectors of quadrants of dimension l. We define a function part(X, d, qi),
where 〈q1, . . . , qd〉 ∈ quadd, as follows:

part(X, l, qi) =max(X, d, qi)

∪ part(resL(X, d, qi), d− 1, qi+1)

∪ part(resR(X, d, qi), d− 1, qi+1)

∪ part(resLR(X, d, qi), d− 1, qi+1),

where max(X, d, qi) is the largest set of adjacent submatrices of size d×d that
can be clustered in the corner corresponding to the quadrant qi, resR(X, d−
1, qi) is the submatrix composed of all the adjacent rightmost cells that could
not fit onmax(X, d, qi) and are not part of the leftmost cells, resL(X, d−1, qi)
is an analogue for the leftmost cells and resLR(X, d− 1, qi) is the submatrix
composed of the cells belonging to the rightmost and leftmost cells. We call
the last three submatrices residual matrices.

By symmetry, the number of matrices generated by the function is invari-
ant with respect to any vector of quadrants 〈q1, . . . , qd〉. However, the final
BDM value can (and will) vary according to the partition chosen. Neverthe-
less, with this strategy we can evaluate all the possible BDM values for a
given partition size and choose the partition that yields the minimum value,
the maximum value, or compute the average for all possible partitions.

The partition strategy described can easily be generalized and applied to
strings (1 dimension) and tensors (objects of n-dimensions).
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Periodic Boundary Conditions

One way to avoid having remaining matrices (from strings to tensors) of
different sizes is to embed a matrix in a topological torus (see Fig. 7.3 bottom)
such that no more object borders are found. Then let X be a square matrix
of arbitrary size m. We screen the matrix X for all possible combinations to
minimize the number of partitions maximizing block size. We then take the
combination of smallest BDM for fixed base matrix size d and we repeat for
d − 1 until we have added all the components of the decomposed X. This
procedure, will, however, overestimate the complexity values of all objects
(in unequal fashion along the complexity spectra) but will remain bounded,
as we will show in Section 7.2.4.

Without loss of generality the strategy can be applied to strings (1 di-
mension) and tensors (any larger number of dimensions, e.g. greater than
2), the former embedded in a cylinder while tensors can be embedded in
n-dimensional tori (see Fig. 7.3).

7.2.4 Error Estimation

One can estimate the error in different calculations of BDM, regardless of
the error estimations of CTM (quantified in [29, 68]), in order to calculate
their departure and deviation both from granular entropy and algorithmic
complexity, for which we know lower and upper bounds. For example, a max-
imum upper bound for binary strings is the length of the strings themselves.
This is because no string can have an algorithmic complexity greater than its
length, simply because the shortest computer program (in bits) to produce
the string may be the string itself.

In the calculation of BDM, when an object’s size is not a multiple of the
base object of size d, boundaries of size < d will be produced, and there are
various ways of dealing with them to arrive at a more accurate calculation
of an object that is not a multiple of the base. First we will estimate the
error introduced by ignoring the boundaries or dealing with them in various
ways, and then we will offer alternatives to take into consideration in the
final estimation of their complexity.
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Figure 7.2: Error rate for 2-dimensional arrays. With no loss of generaliza-
tion, the error rate for n-dimensional tensors limd→∞

kn

nk = 0 is convergent
and thus negligible, even for the discontinuities disregarded in this plot which
are introduced by some BDM versions, such as non-overlapping blocks and
discontinuities related to trimming the boundary condition.

If a matrix X of size k × j is not a multiple of the base matrix of size
d× d, it can be divided into a set of decomposed blocks of size d× d, and R,
L, T and B residual matrices on the right, left, top and bottom boundaries
of M , all of smaller size than d.

Then boundaries R, L, T and B can be dealt with in the following way:

• Trimming boundary condition: R, L, T andB are ignored, thenBDM(X) =
BDM(X,R,L, T,B), with the undesired effect of general underestima-
tion for objects not multiples of d. The error introduced (see Fig. 7.2.4)
is bounded between 0 (for matrices divisible by d) and k2/exp(k), where
k is the size of X. The error is thus convergent (exp(k) grows much
faster than k2) and can therefore be corrected, and is negligible as a
function of array size as shown in Fig. 7.2.4.

• Cyclic boundary condition (Fig. 7.3 bottom): The matrix is mapped
onto the surface of a torus such that there are no more boundaries and
the application of the overlapping BDM version takes into consider-
ation every part of the object. This will produce an over-estimation
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of the complexity of the object but will for the most part respect the
ranking order of estimations if the same overlapping values are used
with maximum overestimation d − 1 × max{CTM(b)|b ∈ X}, where
K(b) is the maximum CTM value among all base matrices b in X after
thedecomposition of X.

• Full overlapping recursive decomposition: X is decomposed into (d−1)2

base matrices of size d× d by traversing X with a sliding square block
of size d. This will produce a polynomial overestimation in the size of
the object of up to (d − 1)2, but if consistently applied it will for the
most part preserve ranking.

• Adding low complexity rows and columns (we call this ‘add col’): If
a matrix of interest is not multiple the base matrices, we add rows
and columns until completion to the next multiple of the base matrix,
then we correct the final result by substracting the borders that were
artificially added.

The BDM error rate (see 7.3 top) is the discrepancy of the sum of the
complexity of the missed borders, which is an additive value of, at most,
polynomial growth. The error is not even for a different complexity. For a
tensor of d dimensions, with all 1s as entries, the error is bounded by log(kd)

for objects with low algorithmic randomness and by kd

dk
for objects with high

algorithmic randomness.

Ultimately there is no optimal strategy for making the error disappear,
but in some cases the error can be better estimated and corrected 7.2.4 and
all cases are convergent, hence asymptotically negligible, and in all cases
complexity ranking is preserved and under- and over-estimations bounded.

7.2.5 BDM Convergence towards Shannon entropy

Let {xi} be a partition of X defined as in the previous sections for a fixed d.
Then the Shannon entropy of X for the partition {xi} is given by:

H{xi}(X) = −
∑

(rj ,nj)∈Adj(X){xi}

nj
|{xi}|

log(
nj
|{xi}|

), (7.6)
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Figure 7.3: One way to deal with the decomposition of n-dimensional tensors
is to embed them in an n-dimensional torus(n = 2 in the case of the one de-
picted here), making the borders cyclic or periodic by joining the borders of
the object. Depicted here are three examples of graph canonical adjacency
matrices embedded in a 2-dimensional torus that preserves the object com-
plexity on the surface, a complete graph, a cycle graph and an Erdös-Rényi
graph with edge density 0.5, all of size 20 nodes and free of self-loops. Avoid-
ing borders has the desired effect of producing no residual matrices after the
block decomposition with overlapping.

where P (rj) =
nj

|{xi}| and the array rj is taken as a symbol itself. The following
proposition establishes the asymptotic relationship between H{xi} and BDM .

Proposition 7.9. Let M be a 2-dimensional matrix and {xi} a partition
strategy with elements of maximum size d× d. Then:

|BDM{xi}(X)−H{xi}(X)| ≤ O(log(|{xi}|))

Proof. First we note that
∑
nj = |{xi}| and, given that the set of matrices

of size d× d is finite and so is the maximum value for CTM(rj), there exists
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a constant cd such that |Adj(X){xi}|CTM(rj) < cd. Therefore:

BDM{xi}(X)−H{xi}(X)

=
∑

(CTM(rj) + log(nj) +
nj
|{xi}|

log(
nj
|{xi}|

))

≤ cd +
∑

(log(nj) +
nj
|{xi}|

log(
nj
|{xi}|

))

= cd +
∑

(log(nj)−
nj
|{xi}|

log(
|{xi}|
nj

))

= cd +
1

|{xi}|
∑

(|{xi}| log(nj)− nj log(
|{xi}|
nj

))

= cd +
1

|{xi}|
∑

log(
n
|{xi}|+nj

j

|{xi}|nj
)

Now, let’s recall that the sum of nj’s is bounded by |{xi}|. Therefore exists
c′d such that

1

|{xi}|
∑

log(
n
|{xi}|+nj

j

|{xi}|nj
) ≤ cd
|{xi}|

log(
|{xi}||{xi}|+c

′
d|{xi}|

|{xi}|c
′
d|{xi}|

)

=
cd
|{xi}|

log(|{xi}||{xi}|)

= cd log(|{xi}|).

Now, is important to note that the previous proof sets the limit in terms
of the constant cd, which minimum value is defined in terms of matrices for
which the CTM value has been computed. The smaller this number is, the
tighter is the bound set by 7.9. Therefore, in the worst case, this is when
CTM has been computed for a comparatively small number of matrices, or
the larger base matrix have small algorithmic complexity, the behavior of
BDM is similar to entropy. In the best case, when CTM is updated by any
means, BDM approximates algorithmic complexity (corollary 7.8).

Furthermore, we can think on cd log(|{xi}|) as a measure of the deficit
in information incurred by both, entropy and BDM, in terms of each other.
Entropy is missing the number of base objects needed in order to get an
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approximation of the compression length of M , while BDM is missing the
position of each base symbol. And giving more information to both measures
wont necessarily yield a better approximation to K.

7.2.6 BDM versus Entropy (Rate) and Compression

Let us address the task of quantifying how many strings with maximum
entropy rate are actually algorithmically compressible, i.e., have low algo-
rithmic complexity. That is, how many strings are actually algorithmically
(as opposed to simply statistically) compressible but are not compressed
by lossless compression algorithms, which are statistical (entropy rate) es-
timators. We know that most strings have both maximal entropy (most
strings look equally statistically disordered, a fact that constitutes the foun-
dation of thermodynamics) and maximal algorithmic complexity (according
to a pigeonhole argument, most binary strings cannot be matched to shorter
computer programs as these are also binary strings). But the gap between
those with maximal entropy and low algorithmic randomness diverges and is
infinite at the limit (for an unbounded string sequence). That is, there is an
infinite number of sequences that have maximal entropy but low algorithmic
complexity.

The promise of BDM is that, unlike compression, it does identify some
cases of strings with maximum entropy that actually have low algorithmic
complexity. Fig. 7.4 shows that indeed BDM assigns lower complexity to
more strings than entropy, as expected. Unlike entropy, and implementa-
tions of lossless compression algorithms, BDM recognizes some strings that
have no statistical regularities but have algorithmic content that makes them
algorithmically compressible.

7.3 Approximating m(s)

There are thus three methods available today for approximating K:

• CTM deals with all 2 bit strings of length 1-12 (and for some 20-30
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Figure 7.4: Top left: Comparison between values of entropy, compression
(Mathematica’s Compress[]) and BDM over a sample of 100 strings of length
10 000 generated from a binary random variable following a Bernoulli distri-
bution and normalized by maximal complexity values. Entropy just follows
the Bernoulli distribution and, unlike compression that follows entropy, BDM
values produce clear convex-shaped gaps on each side assigning lower com-
plexity to some strings compared to both entropy and compression. Top
right: The results confirmed using another popular lossless compression al-
gorithm BZip2. Bottom right: When strings are sorted by CTM, one no-
tices that BZip2 collapses most strings to minimal compressibility. Over all
212 = 4096 possible binary strings of length 12, entropy only produces 6
different entropy values, but CTM is much more fine-grained, and this is
extended to the longer strings by BDM.Similar results were obtained when
using a third lossless compression algorithm, LZMA.
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bits).

• BDM deals with 12 bits to hundreds of bits (with a cumulative error
that grows by the length of the strings–if not applied in conjunction
with CTM). The worst case occurs when substrings share information
content with other decomposed substrings and BDM just keeps adding
their K values individually.

• Lossless compression deals with no less than 100 bits and is unstable
up to about 1K bits.

While CTM cannot produce estimations of longer bitstrings, estimating
the algorithmic complexity of even bitstrings can be key to many problems.

Because BDM locally estimates algorithmic complexity via algorithmic
probability based upon CTM, it is slightly more independent of object de-
scription than computable measures such as Shannon entropy, though in the
‘worst case’ it behaves like Shannon entropy. We have also shown that the
various flavours of BDM are extremely robust, both by calculating theoreti-
cal errors on tensors and by numerical investigation, establishing that any
BDM version is fit for use in most cases. Hence the most basic and
efficient one can be used without much concern as to the possible alternative
methods that could have been used in its calculation, as we have exhaustively
and systematically tested most, if not all, of them.

Given the fitness showed by BDM, we can approximate the universal
distribution m(s) by

m(s) ≈ 1

2BDM(s)
,

where BDM(s) is one of the variants of BMD applied to the object s.

In the next chapter, I will proceed to define an stochastic dynamical
system using this approximation in what correspond to the first numerical
experimental in algorithmic probability driven evolution.



Chapter 8

A First Experiment in
Algorithmic Evolution

Whenever the universe can be considered computable —or algorithmic— and
the nature of its observed randomness are deep metaphysical questions. In
this chapter I will show what, to the best of my knowledge, are the firsts
numerical experiments that compare the algorithmic origin of random muta-
tions with the alternative hypothesis. These experiments, along with derived
theoretical analysis, show that an algorithmic origin for the randomness oc-
curring in the natural world has the potential to better explain diverse phe-
nomenon observed in natural evolution.

Among the phenomena better explained by algorithmic random muta-
tions are the faster than expected emergence of deep structures that are
repeated over subsequences generations, modularity, genetic memory, and
periods of accelerated grow in diversity and accelerated extinction.

The content of the present chaper overlaps with the article the article ‘Al-
gorithmically probable mutations reproduce aspects of evolution
such as convergence rate, genetic memory, modularity, diversity
explosions, and mass extinction ’ [41], for which I was first author.

87
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8.1 Why Algorithmic Evolution?

Central to modern synthesis and general evolutionary theory is the under-
standing that evolution is gradual and is explained by small genetic changes
in populations over time [38]. Genetic variation in populations can arise by
chance through mutation, with these small changes leading to major evolu-
tionary changes over time.

Of interest in connection to the possible links between the theory of bio-
logical evolution and the theory of information is the place and role of ran-
domness in the process that provides the variety necessary to allow organisms
to change and adapt over time.

It has been suggested [23, 76, 79, 82] that the deeply informational and
computational nature of biological organisms makes them amenable to be-
ing studied or considered as computer programs following (algorithmic) ran-
dom walks in software space, that is, the space of all possible—and valid—
computer programs.

The following model will allow me to numerically test this hypothesis and
explore the possible consequences of its validation vis-a-vis our understanding
of the biological aspects of life and natural evolution by natural selection, as
well as for applications to optimization problems in areas such as evolutionary
programming.

8.2 Methodology

8.2.1 Theoretical Considerations

As sated in chapter 6, Chaitin’s evolutionary model [21, 23, 22], a success-
ful mutation is defined as a computable function µ, chosen according to
the probabilities stated by the Universal Distribution (definition 6.1), that
changes the current state of the system (as an input of the function) to a
better approximation of the constant Ω (definition 6.3). In order to be able
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to simulate this system we would need to compute the Universal Distribution
and the fitness function. However, both the Universal Distribution and the
fitness function of the system require the solution of the Halting Problem
[74], which is incomputable. Nevertheless, as with Ω itself, this solution can
be approximated [14, 86]. In this chapter I will show a model that, to the
best of my knowledge, is the first computable approximation to Chaitin’s
proposal.

For this approximation I have made four important initial concessions:
one with respect to the real computing time of the system, and three with
respect to Chaitin’s model:

• I assume that building the probability distributions for each instance
of the evolution takes no computational time, while in the real compu-
tation this is the single most resource-intensive step.

• The goal of the system is to approximate objects of bounded informa-
tion content: binary matrices of a set size.

• I use BDM and Shannon’s entropy as approximations for the algorith-
mic information complexity K.

• I am not approximating the algorithmic probability of the mutation
functions, but that of their outputs.

I justify the first concession in a similar fashion as Chaitin: if we assume
that the interactions and mechanics of the natural world are computable,
then the probability of a decidable event occurring is given by the Universal
Distribution. The third one is a necessity, as the algorithmic probability
of an object is incomputable (it requires a solution for HP too). In the
next section I will argue that Shannon’s entropy is not as good as BDM for
my purposes. Finally, note that given the universal distribution and a fixed
input, the probability of a mutation is in inverse proportion to the descriptive
complexity of its output, up to a constant error. In other words, it is highly
probable that a mutation may reduce the information content of the input
but improbable that it may increase the information content. Therefore, the
last concession yields an adequate approximation, since a low information
mutation can reduce the descriptive complexity of the input but not increase
it in a meaningful way.
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8.2.2 The Expectations

It is important to note that, when compared to Chaitin’s metabiology model,
I had to change the goal of my system therefore I also had to change the
expectations I had for its behavior.

Chaitin’s evolution model (chapter 6) is faster than regular random mod-
els despite targeting a highly random object (Ω, definition 6.3), thanks to
the fact that positive mutations have low algorithmic information complexity
and hence a (relatively) high probability of being stochastically chosen un-
der the Universal Distribution. The universally low algorithmic complexity
of these positive mutations relies on the fact that, when assuming an oracle
for HP, we are also implying a constant algorithmic complexity for its eval-
uation function and target, since we can write a program that verifies if a
change on a given approximation of Ω is a positive one without needing a
codification of Ω itself.

In contrast, my model is expected to be sensitive with respect to the
algorithmic complexity of the target matrix, obtaining high speed-up for
structured target matrices that decreases as the algorithmic complexity of
the target grows. However, this change of behavior remains congruent with
the main argument of metabiologym and our assertion that, contrary to
regular random mutations, algorithmic probability driven evolution tends to
produce structured novelty at a faster rate, which we hope to prove in the
upcoming set of experiments.

In summary, I expected that when using an approximation to the Uni-
versal Distribution:

• Convergence will be reached in significantly fewer total mutations than
when using the uniform distribution for structured target matrices.

• The stated difference will decrease in relation to the algorithmic com-
plexity of the target matrix.
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The Unsuitability of Shannon’s Entropy

As shown in [80, 86] (chapter 7), when compared to BDM we can think of
Shannon’s entropy alone as a less accurate approximation to the algorithmic
complexity of an object (if its underlying probability distribution is not up-
dated by a method equivalent to BDM, as it would not be by the typical
uninformed observer). Therefore I expected the entropy-induced speed-up to
be consistently outperformed by BDM when the target matrix inclines away
from algorithmic randomness and has thus some structure. Furthermore, as
random matrices are expected to have a balanced number of 0’s and 1’s, I
anticipated the performance of single bit entropy to be nearly identical to the
uniform distribution on unstructured (random) matrices. For block entropy
[66, 65], that is, the entropy computed over submatrices rather than single
bits, the probability of having repeated blocks is in inverse proportion to
their size, while blocks of smaller sizes approximate single bit entropy, again
yielding similar results to the uniform distribution. The results support my
assumptions and claims.

8.2.3 Evolutionary Model

Broadly speaking, my evolutionary model is a tuple 〈S,S,M0, f, t, α〉, where:

• S is the state space,

• M0, with M0 ∈ S, is the initial state of the system,

• f : S 7→ R+ is a function, called the fitness or aptitude function, which
goes from the state space to the positive real numbers,

• t is a positive integer called the extinction threshold,

• α is a real number called the convergence parameter, and

• S : S 7→ S × (Z+ ∪ {⊥,>}) is a non-deterministic evolution dynamic
such that if S(M, f, t) = (M ′, t′) then f(M ′) < f(M) and t′ ≤ t,
where t′ is the number of steps or mutations it took S to produce M ′,
S(M, f, t) = (⊥, t′) if it was unable find M ′ with a better fitness in the
given time, and S(M, f, t) = (>, t′) if it finds M ′ such that f(M ′) ≤ α.
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Specifically, the function S receives an individual M and returns an evolved
individual M ′, in the time specified by t, that improves upon the value of
the fitness function f and the time it took to do so, ⊥ if it was unable to do
so and > if it reached the convergence value.

A successful evolution is the sequence

M0, (M1, t1) = S(M0, f, t), ..., (>, tn))

and
∑
ti is the total evolution time. We say that the evolution failed, or that

we got an extinction, if instead we finish the process by (⊥, tn), with
∑
ti

being the extinction time. The evolution is undetermined otherwise. Finally,
we will call each element (Mi, ti) an instance of the evolution.

8.2.4 Experimental Setup: A Max One Problem In-
stance

For this experiment, our phase state is the set of all binary matrices of sizes
n× n, our fitness function is defined as the Hamming distance

f(M) = H(Mt,M),

where Mt is the target matrix, and our convergence parameter is α = 0. In
other words, the evolution converges when we produce the target matrix,
guided only by the Hamming distance to it, which is defined as the number
of different bits between the input matrix and the target matrix.

The stated setup was chosen since it allowed me to easily define and
control the descriptive complexity of the fitness function by controlling the
target matrix and, therefore also control the complexity of the evolutionary
system itself. It is important to note that our setup can be seen as a gen-
eralization of the Max One problem [64], where the initial state is a binary
“target gene” and the target matrix is the “target gene”; when we obtain a
Hamming distance of 0 we have obtained the gene equality.
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8.2.5 Evolution Dynamics

The main goal of this experiment was to contrast the speed of the evolution
when choosing between two approaches to determining the probability of
mutations:

• When the probability of a given set of mutations has a uniform dis-
tribution. That is, all possible mutations have the same probability of
occurrence, even if under certain constraints.

• When the probability of a given mutation occurring is given by an ap-
proximation to the universal distribution. As the UD is non-computable,
we will approximate it by approximating the algorithmic complexity K
by means of the Block Decomposition Method (BDM, with no overlap-
ping, chapter 7).

• I will also investigate the results by running a number of experiments
using Shannon Entropy instead of BDM to approximate K.

Each evolution instance was computed by iterating over the same dynamic.
I started by defining the set of possible mutations as those that are within
a fixed n number of bits from the input matrix. In other words, for a given
input matrix M , the set of possible mutations in a single instance is defined
as the set

M(M) = {M ′|H(M ′,M) ≤ n}.
Then, for each matrix in M, I computed the probability P (M ′) is defined as:

• P (M) = 1
|M| in the case of the Uniform Distribution.

• P (M) = β
2BDM(M) for the BDM Distribution and

• P (M) = β′

h(M)
or P (M) = β′′

2h(M) for Shannon entropy (for an uninformed
observer with no access to the possible deterministic or stochastic na-
ture of the source),

where β, β′ and β′′ are normalization factors such that the sum of the re-
spective probabilities are 1.
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For implementation purposes, I used a minor variation to the entropy
probability distribution to be used and compared to BDM. The probability
distributions for the set of possible mutations using entropy were built using
two heuristics: Let M ′ be a possible mutation of M , then the probability
of obtaining M ′ as a mutation is defined as either, β′

h(M ′)+ε
or β′′

2h(M
′) . The

first definition assigns a linearly higher probability to mutations with lower
entropy. The second definition is consistent with our use of BDM in the
rest of the experiments. The constant ε is an arbitrary small value that
was included to avoid undefined (infinite) probabilities. For the presented
experiments ε was set at 1−10.

Once the probability distribution was computed, I set the number of steps
as 0 and then, using a (pseudo)random number generator (RNG), we proceed
to stochastically draw a matrix from the sated probability distributions and
evaluate its fitness with the function f , adding 1 to the number of steps. If
the resultant matrix does not show an improvement in fitness, I draw another
matrix and add another 1 to the number of steps, not stopping the process
until we obtain a matrix with better fitness or reach the extinction threshold.
I can choose to either replace the drawn matrix or leave it out of the pool
for the next iterations. A visualization of the stated work flow for a 2 × 2
matrix is shown in Figure 8.1.

To get a complete evolution sequence, I iterated the stated process until
either convergence or extinction is reached. As stated before, I could choose
to not replace an evaluated matrix from the set of possible mutations in each
instance, but I chose to not keep track of evaluated matrices after an instance
was complete. This was done in order to keep open the possibility of dynamic
fitness functions in future experiments.

In this case, the evolution time is defined as the sum of the number of steps
(or draws) it took the initial matrix to reach equality with the target matrix.
When computing the evolution dynamics by one of the different probability
distribution schemes we will denote it by uniform strategy, BDM strategy or
h strategy, respectively. That is, the uniform distribution, the distribution
for the algorithmic probability estimation by BDM, and the distribution by
Shannon entropy.
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Figure 8.1: An evolution instance. The instances are repeated by updating
the input matrix until convergence or extinction is reached.

8.2.6 The Speed-Up Quotient

We will measure how fast (or slow) a strategy is compared to the uniform by
the speed-up quotient, which I define as:

Definition 8.1. The speed-up quotient, or simply speed-up, between the
uniform strategy and a given strategy f is defined as

δ =
Su
Sf
,

where Su is the average number of steps it takes a sample (a set of initial
state matrices) to reach convergence under the uniform strategy and Sf is
the average number of steps it takes under the f strategy.
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Table 8.1: Results obtained for the ‘Random Graphs’

Strategy Shifts Average SE
Uniform 1 214.74 3.55
hb 1 214.74 3.55
h 1 215.53 3.43
h2
b 1 214.74 3.55
h2 1 213.28 3.33
Uniform 2 1867.10 78.94
hb 2 1904.52 79.88
h 2 2036.13 83.38
h2
b 2 1882.46 78.63
h2 2 1776.25 81.93

8.3 Results

8.3.1 Cases of Negative Speed-up

In order to better explain the choices I have made to our experimental setup,
first I will present a series of cases where I obtained no speed-up or slow-
down. Although these cases were expected, they shed important light on the
behavior of the system.

Entropy vs. Uniform on Random Matrices

For the following experiments, I generated 200 random matrices separated
into two sets: initial matrices and target matrices. After pairing them based
on their generation order I evolved them using 10 strategies: the uniform
distribution, block Shannon’s entropy for blocks of size 4× 4, denoted below
by hb, entropy for single bits denoted by h, and their variants where we divide
by h2 and h2

b respectively. The strategies were repeated for 1-bit and 2-bit
shifts (mutations).

The results obtained are summarized in the table 8.1, which lays out the
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strategy used for each experiment, the number of shifts/mutations allowed,
the average number of steps it took to reach convergence, as well as the stan-
dard error of the sample mean. As we can see, the differences in the number
of steps required to reach convergence are not significant, validating our as-
sertion that, for random matrices, entropy evolution is not much different
than the uniform evolution.

Because the algorithmic complexity of a network makes sense only in
its unlabeled version in general, and in most of the cases. In [85, 81, 86]
it was shown, both theoretically and numerically, that approximations of
algorithmic complexity of adjacency matrices of labeled graphs are a good
approximation (up to a logarithmic term or the numerical precision of the
algorithm) of the algorithmic complexity of the unlabeled graphs. This means
that we can consider any adjacency matrix of a network a good representation
of the network disregarding graph isomorphisms.

Entropy vs. Uniform on a Highly Structured Matrix

For this set of experiments, I took the same set of 100 8× 8 initial matrices
and evolved them into a highly structured matrix, which is the adjacency
matrix of the star with 8 nodes. For this matrix, I expected entropy to be
unable to capture its structure, and the results obtained accorded with my
expectations. The results are shown in table 8.2.

As we can see from the results, entropy was unable to show a statistically
significant speed-up compared to the uniform distribution. Over the next
sections I will show that I have obtained a statistically significant speed-up
by using the BDM approximation to algorithmic probability distributions,
which is expected because BDM manages to better capture the algorithmic
structures of a matrix rather than just the distribution of the bits which en-
tropy measures. Based on the previous experiments, I conclude that entropy
is thus not a good approximation for K, and we will omit its use in the rest
of the article.
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Table 8.2: Results obtained for the ‘Star’
Strategy Shifts Average SE
Uniform 1 216.24 3.48
hb 1 216.71 3.54
h 1 212.74 3.41
h2
b 1 216.71 3.54
h2 1 211.74 3.69
Uniform 2 1811.84 85.41
hb 2 1766.69 88.18
h 2 1859.11 75.73
h2
b 2 1764.03 84.52
h2 2 1853.04 74.48

8.3.2 The Causes of Extinction

For the uniform distribution, the reason is simple: the number of 3-bit shifts
on 8 × 8 matrices gives a space of possible mutations of

(
8×8

3

)
= 41664

matrices, which is much larger than the number of possible mutations present
within 2-shifts and 1-shift (mutation), which are

(
8×8

2

)
= 2016 and 8×8 = 64

respectively. Therefore, as we get close to convergence, the probability of
getting the right evolution, if the needed number of shifts is two or one, is
about 0.04%, and removing repeated matrices does not help in a significant
way to avoid extinction,since 41 664 is much larger than 2500.

Given the values discussed, I chose to set the extinction threshold at 2500
and the number of shifts at 2 for 8× 8 matrices, as allowing just 64 possible
mutations for each stage is a number too small for showing a significant
difference in the evolutionary time between the uniform and BDM strategies,
while requiring evolutionary steps of ˜41 664 for an evolutionary stage is
too computationally costly. The threshold of 2500 is close to the number
of possible mutations and has been shown to consume a high amount of
computational resources. For 16× 16 matrices, I performed 1-bit shifts only,
and occasionally 2-bit shifts when computationally possible.
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The BDM Strategy, Extinctions and Persistent Structures

The interesting case is the BDM strategy. As we can see clearly in Figure 8.2
for the 8 × 8 3-bit case, the overall number of steps needed to reach each
extinction is often significantly higher than 2500 under the BDM strategy.
This behavior cannot be explained by the analysis done for the uniform
distribution, which predicts the sharp drop observed in the blue curve.
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Figure 8.2: Fitness graph for random 8 × 8 matrices with 3-bit shifts (mu-
tations). Evolution convergence is reached at a fitness of 0. The curves are
polynomial approximations computed for visual aid purposes.

After analyzing the set of matrices drawn during failed mutations (all
the matrices drawn during a single failed evolutionary stage), I found that
most of these matrices have in common highly regular structures. We will
call these structures persistent structures. Formally, regular structures can
be defined as follows:

Definition 8.2. Let M be the description used for an organism or population
and Γ a substructure of M in a computable position such that K(M) =
K(Γ)+K(M−Γ)−ε, where ε is a small number and M−Γ is the codification
M without the contents of S. We will call Γ a regular structure of degree
γ if the probability of choosing a mutation M ′ with the subsequence Γ is
1− 2−(γ−ε).

Now, note that γ grows in inverse proportion to K(Γ) and the difference
in algorithmic complexity of the mutation candidates and K(Γ): Let M
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contain Γ in a computable position. Then the probability of choosing M ′ as
an evolution of M is

1

2K(M ′)
≥ 1

2K(M ′−Γ)+K(Γ)+O(1)
.

Furthermore, if the possible mutations of M can only mutate a bounded
number of bits and there exists C such that, for every other subsequence of
Γ′ that can replace Γ we have it that K(Γ′) ≥ K(Γ) + C, then:

P (M ′ contains Γ) ≥ 1−O(2−C).

The previous inequality is a consequence of the fact that the possible muta-
tions are finite and only a small number of them, if any, can have a smaller
algorithmic complexity than the mutations that contain Γ; otherwise we con-
tradict the existence of C. In other words, as Γ has relatively low complexity,
the structures that contain Γ tend to also have low algorithmic complexity,
and hence a higher probability of being chosen.

Finally, as shown in the section 8.3.2, we can expect the number of muta-
tions with persistent structures to increase in factorial order with the number
of possible mutations and in polynomial order with respect to the size of the
matrices that compose the state space.

Proposition 8.3. As a direct consequence of the last statement, we have it
that, for systems evolving as described in the section 8.2.5 under the Universal
Distribution:

• Once a structure with low descriptive complexity is developed, it is ex-
ponentially hard to get rid of it.

• The probability of finding a mutation without the structure decreases in
factorial order with respect to the set of possible mutations.

• Evolving towards random matrices is hard (improbable).

• Evolving from and to unrelated regular structures is also hard.

Given the fourth point, we will always choose random initial matrices from
now on, as the probability of drawing a mutation other than an empty matrix
(of zeroes), when one is present in the set of possible mutations, is extremely
low (below 9× 10−6 for 8× 8 matrices with 2 shifts).
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Randomly Generated Graphs

For this set of experiments, I generated 200 random 8 × 8 matrices and
600 16 × 16 matrices, both sets separated into initial and target matrices.
I then proceeded to evolve the initial matrix into the corresponding target
by the following strategies: uniform and BDM within 2-bit and 3-bit shifts
(mutations) for the 8×8 matrices and only 2-bit shifts for the 16×16 matrices
due to computing time. The results obtained are shown in the Figure 8.3. In
all cases, I did not replace drawn matrices and the extinction threshold was
set at 2500.
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Figure 8.3: Randomly generated 8× 8 and 16× 16 matrices.

From the results we can see two important behaviors for the 8×8 matrices.
The matrices generated are of high BDM complexity and evolving the system
using the uniform strategy tends to be faster than using BDM for these highly
random matrices. Secondly, although increasing the number of possible shifts



102 CHAPTER 8. EXPLORING ALGORITHMIC EVOLUTION

by 1 seems, at a first glance, a small change in our setup, it has a big impact
on our results: the number of extinctions has gone from 0 for both methods
to 92 for the uniform strategy and 100 for BDM. This means that most
evolutions will rise above our threshold of 2500 drafts for a single successful
evolutionary step, leading to an extinction. As for the 16× 16 matrices, we
can see a formation of two easily separable clusters that coincide perfectly
with the Uniform and BDM distributions respectively.

8.3.3 Positive Speed-Up Instances

In the previous section, we established that the BDM strategy yields a neg-
ative speed-up when targeting randomly generated matrices, which are ex-
pected to be of high algorithmic information content or unstructured. How-
ever, as stated in section 8.2.2, that behavior is within our expectations. In
the next section I will show instances of positive speed-up, including cases
where previously entropy failed to show significant speed-up or was outper-
formed by BDM.

Manually Built Structured Matrices

For the following set of experiments I manually built three 8 × 8 matrices
that encode the adjacency matrices of three undirected non-random graphs
with 8 nodes that are intuitively structured : the complete graph, the star
graph and a grid. The matrices used are shown in Figure 8.4.

Figure 8.4: Adjacency matrices for the labelled complete, star, and grid
graphs.

After evolving the same set of 100 randomly generated matrices for the
three stated matrices, I can report that I found varying degrees of positive
speed-up, that correspond to their respective descriptive complexities as ap-
proximated by their BDM values. The complete graph, along with the empty
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graph, is the graph that has the lowest approximated descriptive complexity
with a BDM value of just 24.01. As expected, we get the best speed-up
quotient in this case. After the complete graph, the star intuitively seems
to be one of the less complex graphs we can draw. However, its BDM value
(105.434) is significantly higher than the grid (83.503). Accordingly, the
speed-up obtained is lower. The results are shown in the Figure 8.5.
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Figure 8.5: The logarithm of the speed-up obtained for the matrices in Fig-
ure 8.4.

As we can see from the Figure 8.5, a positive speed-up quotient was
consistently found within 2-bit shifts without replacements. We have one
instance of negative speed-up with one shift with replacements for the grid,
and negative speed-up for all but the complete graph with two shifts.

However, it is important to say that almost all the instances of negative
speed-up are not statistically significant, as we have a very high extinction
rate of over 90%, and the difference between the averages is lower than two
standard errors of the mean. The one exception is the grid at 1-bit shift,
which had 45 extinctions for the BDM strategy. The complete tables are
presented in the appendix of the full article [41].
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8.3.4 Mutation Memory

The cause of the extinctions found in the grid are what I will call maladaptive
persistent structures (definition 8.2), as they occur at a significantly higher
rate under the BDM distribution. Also, as the results suggest, a strategy to
avoid this problem is adding memory to the evolution. In our case, I will not
replace matrices already drawn from the set of possible mutations.

I do not believe this change to be contradictory to the stated goals, since
another way to see this behavior is that the universal distribution dooms
(with very high probability) populations with certain mutations to extinc-
tion, and evolution must find strategies to eliminate these mutations fast from
the population. This argument also implies that extinction is faster under
the universal distribution than regular random evolution when a persistent
maladaptive mutation is present, which can be seen as a form of mutation
memory. This requirement has the potential to explain evolutionary phe-
nomena such as the Cambrian explosion, as well as mass extinctions: once
a positively structured mutation is developed, further algorithmic mutations
will keep it (with a high probability), and the same applies to negatively
structured mutations. The same mechanic can also explain the recurring
structures found in the natural world. Degradation of a structure is still
possible, but will be relatively slow. In other words, evolution will remember
positive and negative mutations (up to a point) when they are structured.

From now on, I will assume that our system has memory (no replacement)
and that mutations are not replaced when drawn from the distribution.

8.3.5 The Speed-Up Distribution

Having explored various cases, and found several conditions where negative
and positive speed-up are present, the aim of the following experiment was
to offer a broader view of the distribution of speed-up instances as functions
of their algorithmic complexity.

For the 8×8 case, I generated 28 matrices by starting with the undirected
complete graph with 8 nodes, represented by its adjacency matrix, and then
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I removed one edge at a time until the empty graph (the diagonal matrix)
was left, obtaining our target matrix set. It is important to note that the
resultant matrices are always symmetrical. The process was repeated for the
16× 16 matrices, obtaining a total of 120 16× 16 target matrices.

For each target matrix in the first target matrix set, I generated 50 random
initial matrices and evolved the population until convergence was reached us-
ing the two stated strategies: uniform and BDM, both without replacements.
I saved the number of steps it took for each of the 2800 evolutions to reach
convergence and computed the average speed-up quotient for each target
matrix. The stated process was repeated for the second target matrix set,
but by generating 20 random matrices for each of the 120 target matrices to
conserve computational resources. The experiment was repeated for shifts
of 1 and 2 bits and the extinction thresholds used were 2500 for 8 × 8 and
10 000 for 16× 16 matrices.

As we can see from the results in Figure 8.6, the average number of steps
required to reach convergence is significantly lower when using the BDM
distribution for matrices with low algorithmic complexity, but the difference
drops along with the complexity of the matrices but never crosses the ex-
tinction threshold. This suggests that symmetry over the diagonal is enough
to guarantee a degree of structure that can be captured by BDM. It is im-
portant to report that I found no extinction case for the 8 × 8 matrices, 13
in the 16 × 16 matrices with 1-bit shifts, all for the BDM distribution, and
1794 with 2-bit shifts, mostly for the uniform distribution.

This last experiment was computationally very expensive. Computing the
data required for the 16×16, 2-bit shifts sequence took 12 days, 6 hours and
22 minutes on a single core of an i5-4570 PC with 8GB of RAM. Repeating
this experiment for 3-bit shifts is infeasible with our current setup, as it would
take us roughly two months shy of 3 years.

Now, by combining the data obtained for the previous sequence and the
random matrices used in section 8.3.2, we can approximate the positive speed-
up distribution. Given the nature of the data, this approximation (Figure 8.7)
is given as two curves, each representing the expected evolution time from a
random initial matrix as a function of the algorithmic information complexity
of the target matrix for both strategies, uniform and BDM respectively. The
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Sequence of Generated Target Matrices
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Figure 8.6: The Speed-Up quotient is defined as δ = Su

SBDM
, where Su is

the average number of steps it took to reach convergence under the uniform
strategy and SBDM for BDM, and ‘Ext.’ is the difference Eu−EBDM where
each factor is the number of extinctions obtained for the universal and BDM
distribution, respectively. In the case of an extinction, the sample was not
used to compute the average number of steps. The red (dashed) line des-
ignates the Speed-Up threshold at y = 1: above this line we have positive
speed-up and below it we have negative speed-up. The blue (continuous)
line represents a cubic fit by regression over the data points.

positive speed-up instances are those where the the BDM curve is below the
uniform curve.

The first result we get from Figure 8.7 is a confirmation of an expected
behavior: unlike the uniform strategy, the BDM strategy is highly sensitive
to the algorithmic information content of the target matrix. In other words,
it makes no difference for a uniform probability mutation space whether the
solution is structured or not, while an algorithmic probability driven mutation
will naturally converge faster to structured solutions.

The results obtained expand upon the theoretical development presented
in section 8.3.2. As the set of possible mutations grows, so do the instances of
persistent structures and the slow-down itself. This behavior is evident given
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The Speed−Up Distribution
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Figure 8.7: The positive speed-up instances are those where the coral curve,
computed as a cubic linear regression to all the evolution times for the BDM
strategy, are below the teal line, which is a cubic approximation to the evo-
lution times for the uniform strategy. The black line is the expected BDM
value for a randomly chosen matrix. The large gap in the data reflects the
fact that is hard to find structured (non-random) objects.

that, when we increase the dimension of the matrices, we obtain a wider
gap within the intersection point of the two curves and the expected BDM
value, which corresponds to the expected algorithmic complexity of randomly
generated matrices. However, we also increase the number of structured
matrices, ultimately producing a richer and more interesting evolution space.

8.3.6 Chasing Biological and Synthetic Dynamic Nets

Chasing A Biological Network

I now set as target the adjacency matrix of a biological network corresponding
to the topology of an ERBB signaling network [45]. The network is involved
in responses ranging from cell division, death, motility, and adhesion and
when dysregulated it has been found to be strongly related to cancer [77, 61].
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As one of my main hypotheses is that algorithmic probability is a better
model for explaining biological diversity, it is important to explore whether
naturally occurring structures are more likely to be produced under the BDM
strategy than the uniform strategy, which is equivalent to showing them
evolving faster.
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Figure 8.8: Adjacency matrix (left) of an ERBB signalling network (right).

The binary target matrix is shown in Figure 8.8 and it has a BDM of
349.91 bits. For the first experiment, I generated 50 random matrices that
were evolved using 1-bit shift mutations for the Uniform and BDM distri-
butions, without repetitions. The BDM of the matrix is at the right of the
intersection point inferred by the cubic models shown in Figure 8.7. There-
fore we predict a slow-down. The results obtained are shown in the table
8.3.

Table 8.3: Results obtained for the ERBB Network
Strategy Shifts Average SE Extinctions
Uniform 1 1222.62 23.22 0
BDM 1 1721.86 56.88 0

As the results show, we obtained a slow-down of 0.71, without extinctions.
However, as mentioned above, the BDM of the target matrix is relatively
high, so this result is consistent with the previous experiments. However, for
this case the strategy can be significantly improved.
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The Case for Localized Mutations and Modularity

As previously mentioned in the proposition 8.3, the main causes of slow-
down under the BDM distribution are maladaptive persistent structures.
These structures will negatively impact the evolution speed in factorial order
relative to the size of the state space. One direct way to reduce the size set
of possible mutations is to reduce the size of the matrices we are evolving.
However, doing so will reduce the number of interesting objects we can evolve
towards too. Another way to accomplish the objective while using the same
heuristic is to rely on localized (or modular) mutations. That is, we force the
mutation to take place on a submatrix of the input matrix.

The way we implement the stated change is by adding a single step in our
evolution dynamics: at each iteration, we will randomly draw, with uniform
probability, one submatrix of size 4×4 out of the set of adjacent submatrices
that compose the input matrix, with no overlap, and force the mutation to
be there by computing the probability distribution over all the matrices that
contain the bit-shift only at the chosen place. We will call this method the
local BDM method.

It is important to note that, within 1-bit shifts (point mutations), the
space of total possible mutations remains the same when compared to the
uniform and BDM strategies. Furthermore, the behavior of the uniform strat-
egy would remain unchanged if the extra step is applied using the Uniform
distribution.

We repeated the experiment shown in the table 8.3 with the addition of
the local BDM strategy and the same 50 random initial matrices. Its results
are shown in the table 8.4. As we can see from the results obtained, local
BDM obtains a statistically significant speed-up of 1.25 when compared to
the uniform.

Table 8.4: Results obtained for the ERBB Network
Strategy Shifts Average SE Extinctions
Uniform 1 1222.62 23.22 0
BDM 1 1721.86 56.88 0
Local BDM 1 979 25.94 0
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One potential explanation of why we failed to obtain speed-up for the
network with the BDM strategy is that, as an approximation to K, the
model depends on finding global algorithmic structures, while the sample
is based on a substructure which might not have enough information about
the underlying structures we hypothesize govern the natural world and make
possible scientific models and predictions.

However, biology evolves modular systems [58], such as genes and cells,
that in turn build building blocks such as proteins and tissues. Therefore,
local algorithmic mutation is a better model. This is a good place to recall
that local BDM was devised as a natural solution to the problem presented
by maladaptive persistent structures in global algorithmic mutation. Which
also means that this type of modularity can be evolved by itself given that
it provides an evolutionary advantage, as our results demonstrate.

I will further explore the relationship between BDM and local BDM
within the context of global structures in the next section. My current setup
is not optimal for further experimentation in biological and local structured
matrices, as the computational resources required to build the probability
distribution for each instance grows in quadratic order relative to matrix
size.

Chasing Synthetic Evolving Networks

The aim of the next set of experiments was to follow, or chase, the evolution
of a moving target using our evolutionary strategies. In this case, I chased 4
different dynamical networks : the ZK graphs [80], K-ary trees, an evolving
N -star graph and a star-to-path graph dynamic transition artificially created
for this project (see Appendix for code). These dynamical networks are
families of directed labeled graphs that evolve over time using a deterministic
algorithm, some of which display interesting graph-theoretic and entropy-
fooling properties [80]. As the evolution dynamics of these graphs are fully
deterministic, we expected BDM to be significantly faster than the other two
evolutionary strategies, uniform probability and local BDM.

I chased these dynamics in the following way: Let S0, S1, . . ., Sn, . . .
be the stages of the system we are chasing. Then the initial state S0 was
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represented by a random matrix and, for each evolution Si 7→ Si+1, the input
was defined as the adjacency matrix corresponding to Si, while the target
was set as the adjacency matrix for Si+1. In order to normalize the matrix
size, I defined the networks as always containing the same number of nodes
(16 for 16 × 16 matrices). I followed each dynamic until the corresponding
stage could not be defined in 16 nodes.

The results which were obtained, starting from 100 random graphs and
100 different evolution paths at each stage, are shown in Figure 8.9. It is
important to note that, since the graphs were directed, the matrices used
were non-symmetrical.

Dynamic Graphs: Accumulated Averages
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Figure 8.9: Each point of the graph is composed of the average accumulated
time from 100 samples. All evolutions were carried out with 1-bit shifts
(mutations).

From the results we can see that local BDM consistently outperformed
the uniform probability evolution, but the BDM strategy was the faster by a
significant margin. The results are as expected and confirm our hypothesis:
uniform evolution cannot detect any underlying algorithmic cause of evolu-
tion, while BDM can, inducing a faster overall evolution. Local BDM can
only detect local regularities, which is good enough to outrun uniform BDM
in these cases. However, as the algorithmic regularities are global, local BDM
is slower than (global) BDM.
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Chapter 9

Conclusions

The Open-Ended Evolution question.

Is undecidability a requirement for OEE? In order to formally prove that
undecidability of adaptation is a requirement for OEE, I presented a formal
and general mathematical model for adaptation within the framework of
computable dynamical systems. This model exhibits universal properties
for all computable dynamical systems, including the set of Turing machines.
Among other results, I have given formal definitions for open-ended evolution
(OEE) and strong open-ended evolution and supported the latter on the basis
that it allows us to differentiate between trivial and non-trivial systems.

I have also shown that decidability imposes universal limits on the
growth of complexity in computable systems, as measured by sophis-
tication, coarse sophistication and busy beaver logical depth. I showed that
time dominates the descriptive algorithmic complexity of the states, therefore
the complexity of the evolution of a system tightly follows that of natural
numbers, implying the existence of non-trivial states but the non-existence
of an algorithm for finding these states or any subsequence of them, which
makes the computations for harnessing or identifying them undecidable.

Furthermore, as a direct implication of corollary 5.2 and theorem 5.3,
the undecidability of adapted states and the unpredictability of the behavior
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of the system at each state is a requirement for a system to exhibit strong
open-ended evolution with respect to the complexity measures known as so-
phistication, coarse sophistication and busy beaver logical depth, providing
rigorous proof that undecidability and irreducibility of future behavior is a
requirement for the growth of complexity in the class of computable dynami-
cal systems. I conjecture that these results can be extended to any adequate
complexity measure that assigns low complexity to random objects.

Finally, I provided an example of an (incomputable) evolutionary system
that exhibits strong OEE and supplied arguments for its adequacy as a model
of evolution, which I claim supports my characterization of strong OEE. This
model was proposed by Chaitin within the framework of metabiology and
introduces the concept of algorithmic probable mutations (definition
6.7) and algorithmic probability driven evolution in order to evolve toward
non-trivially complex functions. I assert that this model is a good analogue
to biological evolution, given that adaptation can be seen as analogue to
the problem of finding the values of the busy beaver function, producing
complexity and long lasting simplicity as a byproduct. It is my believe that
algorithmic probability driven evolution establishes a new line of research in
artificial and biological evolution.

Finding a good computable approximation to m(s).

The function m(s) is the probability of a randomly chosen Turing machine
or, equivalently, any computable process to produce the string s. This prob-
ability function is known as the universal distribution. A good computable
approximation for it is required in order to do numerical experiments in
algorithmic probability driven evolution.

The Block Decomposition Method is a theoretically sound and robust
measure of complexity that connects two of the main branches of informa-
tion theory, classical and algorithmic. The methods used are scalable in var-
ious ways, including native n-dimensional variations of the same measure.
The properties and numerical experiments are in alignment with theoreti-
cal expectations and represent the only truly different alternative and more
accurate measure of algorithmic complexity currently available [86].
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Furthermore, by means of CTM, BDM is a very good approximation
for the algorithmic complexity of relative small binary matrices. With this
measure I was able to define a good approximation to m(s) for matrices of
size up to 16×16 and, using the coding theorem 6.4, it allowed us to define a
computable approximation to the probable mutations distribution for these
matrices within a restricted number of shifts. This distributions were used
for the experimental part of this work.

Exploring algorithmic probability driven evolution.

The experiments show that algorithmic probability driven evolution con-
verges faster towards no-trivial complex structures than the alternative: that
all mutations have the same probability.

These findings demonstrate that key aspects of life may be better ex-
plained with this algorithmic account and that the empirical observation of
the rate of biological evolutionary convergence emerges naturally, unlike the
alternative—and generally assumed–hypothesis.

By assuming this new approach to explain novelty in evolution, we can
answer questions ranging from the apparition of sudden major stages of evo-
lution, the emergence of ‘subroutines’ in the form of modular persistent struc-
tures and the need of an evolving memory carrying information organized in
such modules that drive the speed-up in the process of evolution by selection.

The interplay of the evolvability of organisms from the persistence of such
structures also explains two opposed phenomena: recurrent explosions of di-
versity and mass extinctions, phenomena which have occurred during the
history of life on earth that have not been satisfactorily explained under the
uniform mutation assumption. By taking the informational and computa-
tional aspects of life based on modern synthesis to the ultimate and natural
consequences, the present approach based on weak assumptions of determin-
istic dynamic systems could offer a novel framework of algorithmic evolution
within which to study both biological and artificial evolution.

Furthermore, the success of obtaining faster than random evolution by
experimentation reinforces the theoretical framework presented during the
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first half of this dissertation.

9.1 Final Remarks

On the Origin of Non-Trivial Information

While discussing this work with colleagues from different fields I have noticed
that most disagreements come from a different understanding of the origin of
complexity and randomness. For example, one criticism to the evolutionary
model presented in chapter 8 is that it seems too simple for it to convey all
the properties I assign to it. However, my model is capable of non-trivial
evolution not because of its mechanics, which are indeed simple, but from
the underlying approximation to the universal distribution. I consider such
comments a misunderstanding of the nature of information. The database
my system uses took exhaustive amounts of computational resources to be
compiled (12 days of calculation with a supercomputer of medium size: 25×
86− 64 CPUs running at 2,128 MHz each with 4 GB of memory each [83]).

Like HP , Ω and BB, m(s) is an object that contains an infinite amount
of information that can be exploited by computable means if we have access
to it. Trivial sets, like the set of natural numbers N, contain all the answers,
but the problem lies in knowing which of all the binary strings encodes the
correct proof of Goldbach’s conjecture. Knowing the location of the answer
is as hard as knowing the answer itself; this is the essence of undecidability
and for this reason no computable object can generate more discoverable
information than what it was originally encoded within it. Everything you
can discover with a decidable function was set a priori during its definition.

Even if you feed this computable system with new information, like the
natural numbers (discrete time) or stochastically chosen real numbers (reg-
ular evolution), a computable function has no way of discerning between
trivial or non-trivial information. Otherwise we would find a contradiction
to randomness itself. It follows that a system will not evolve non trivial struc-
tures over long periods of times unless its being feed non trivial information
to begin with, which is what the universal distribution does for algorithmic
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probability driven evolution.

For a computable dynamical system, the mechanics and its initial condi-
tions become increasingly irrelevant as times goes on. Time (or randomness)
will eventually overwhelm what little structure there was at the beginning.
However, when the feedback it is receiving comes from an object of high in-
formation, then structure (non-trivial information) will prevail in its place.
Am I just changing the origin of randomness? In a sense, the origin of ran-
domness is everything, as any amount of information a model can start with
is minuscule compared to the amount of the information contained on the
evolution of the system itself.

Most scientific research has been centered in models aimed at controlling
randomness. As I showed in the first part of my thesis, this approach has
inherent restrictions that are, in a way, more stringent and fundamental
than conventional, widespread and understood scientific limits such as chaos
and the uncertainty principle. The alternative, randomness controlling the
evolution of a model, should be seriously looked at, as I have showed this
approach has the potential to explain scientific phenomena.
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