

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIAS DE LA TIERRA INSTITUTO DE GEOFÍSICA

ESTRUCTURA CORTICAL EN EL ISTMO DE TEHUANTEPEC USANDO TIEMPOS DE LLEGADA DE ONDAS SP

TESIS QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN CIENCIAS DE LA TIERRA

PRESENTA: THALÍA ELIZABETH LARA RODRÍGUEZ

TUTOR O TUTORES PRINCIPALES: DR. RAÚL VALENZUELA WONG INSTITUTO DE GEOFÍSICA, UNAM.

MIEMBROS DEL	COMITÉ TUTOR:
DR. ALLEN HUSKER	INSTITUTO DE GEOFÍSICA, UNAM.
DR. ARTURO IGLESIAS	INSTITUTO DE GEOFÍSICA, UNAM.
DR. MARCO GUZMÁN SPEZIALE	CENTRO DE GEOCIENCIAS, UNAM.
DR. VLAD CONSTANTIN MANEA	CENTRO DE GEOCIENCIAS, UNAM.

CIUDAD DE MÉXICO, ABRIL, 2018

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. "Declaro conocer el Código de Ética de la Universidad Nacional Autónoma de México, plasmado en la Legislación Universitaria. Con base en las definiciones de integridad y honestidad ahí especificadas, aseguro mediante mi firma al calce que el presente trabajo es original y enteramente de mi autoría. Todas las citas de, o referencias a, la obra de otros autores aparecen debida y adecuadamente señaladas, así como acreditadas mediante los recursos editoriales convencionales".

AGRADECIMIENTOS

A mis padres por brindarme siempre su apoyo incondicional.

A mis familiares por su tolerancia.

Al Dr. Raúl Valenzuela Wong por dirigir este trabajo, brindarme su apoyo, paciencia, conocimientos, charlas y anécdotas durante el proceso.

Al Dr. Allen Husker y al Dr. Arturo Iglesias por haber sido excelentes profesores de clase y por haberme apoyado durante el procesamiento de los datos y revisión de tesis.

Al Dr. Marco Guzmán y al Dr. Vlad Manea por la revisión y comentarios de este trabajo que ayudaron a enriquecerlo.

A mis amigos Nadx, Irving, Iris, Karlita y Tere, por escucharme, alegrarme y hacerme muy feliz con su amistad después de tantos años, los quiero muchísimo.

A los amigos que hice en la maestría Alan, Alinne, Miguel, Itzel, Yuri, Carmen y Ángel por estar ahí para platicar, comer, tomar café, jugar, ayudarme a programar o simplemente para reír, me siento muy afortunada de tenerlos en mi vida.

A Araceli, Laurita y Paty por tener siempre buena actitud, una sonrisa y sobretodo paciencia con nuestros trámites, problemas y ocurrencias.

Al Instituto de Geofísica, a CONACyT y al proyecto VEOX.

LISTA DE FIGURAS
LISTA DE TABLAS
RESUMENVIII
ABSTRACT
INTRODUCCIÓN1
1 ANTECEDENTES
2 MARCO TEÓRICO
2.1 Tipos de ondas
2.1.1 Ondas de cuerpo
2.1.2 Ondas de superficie9
2.1.3 Ondas convertidas11
2.2 Localización de sismos12
2.2.1 Localización con una estación13
2.2.2 Localización con varias estaciones14
2.2.3 Localización con tiempos de arribo en Seisan14
2.3 Ley de Snell 16
2.4 Diferencia entre tiempos de arribo de ondas S y Sp17
2.5 Isostasia
3 PROCESAMIENTO DE DATOS
4 RESULTADOS
5 DISCUSIÓN Y CONCLUSIONES
5.1 Discusión
5.2 Conclusiones y recomendaciones
BIBLIOGRAFÍA
ANEXOS

CONTENIDO

LISTA DE FIGURAS

Figura 1. Movimiento de particula de onda F
Figura 2. Movimiento de partícula de onda S
Figura 3. Movimiento de partícula de onda Rayleigh10
Figura 4. Movimiento de partícula de onda Love
Figura 5. Ejemplo de fases de ondas de cuerpo12
Figura 6. Ejemplo de conversión de ondas Sp y Ps12
Figura 7. Ejemplo del método de los círculos para la localización de un sismo14
Figura 8. Ejemplo de ley de Snell para una onda P incidente17
Figura 9. Modelo físico utilizado para el cálculo de diferencias entre tiempos de
arribo18
Figura 10. Modelo para el estudio del rayo Sp y análisis del trayecto de viaje del
rayo Sp en cada medio
Figura 11. Modelos de isostasia de Airy y Pratt24
Figura 12. Localización de las estaciones de VEOX con sus códigos y ubicación del
área de estudio
Figura 13. Ejemplo de sismograma, con las fases P, S y Sp, registrados por la
estación CERQ del sismo del 2008/01/2127
Figura 14. Ejemplo de identificación de las fases P, S y Sp en la componente
vertical, registrado por las estaciones IXTE y MAZH, del sismo del 2008/06/2927
Figura 15. Ejemplo de identificación de las fases P, S y Sp en la componente vertical
registrado por las estaciones RIVA, SAJO, AGUA, ESMA Y CONU del sismo de
2008/12/20
Figure 46. Figure los de trazas ecomododos nor distancia enjocatival de los
Figura 16. Ejemplos de trazas acomodadas por distancia epicentral, de las
Figura 16. Ejemplos de trazas acomodadas por distancia epicentral, de las estaciones SAJO, AGUA, CERQ y SARO, en las componentes norte-sur y vertical,
Figura 16. Ejemplos de trazas acomodadas por distancia epicentral, de las estaciones SAJO, AGUA, CERQ y SARO, en las componentes norte-sur y vertical, del sismo del 2008/10/24
Figura 16. Ejemplos de trazas acomodadas por distancia epicentral, de las estaciones SAJO, AGUA, CERQ y SARO, en las componentes norte-sur y vertical, del sismo del 2008/10/24
Figura 16. Ejemplos de trazas acomodadas por distancia epicentral, de las estaciones SAJO, AGUA, CERQ y SARO, en las componentes norte-sur y vertical, del sismo del 2008/10/24
Figura 16. Ejemplos de trazas acomodadas por distancia epicentral, de las estaciones SAJO, AGUA, CERQ y SARO, en las componentes norte-sur y vertical, del sismo del 2008/10/24
Figura 16. Ejemplos de trazas acomodadas por distancia epicentral, de las estaciones SAJO, AGUA, CERQ y SARO, en las componentes norte-sur y vertical, del sismo del 2008/10/24
Figura 16. Ejemplos de trazas acomodadas por distancia epicentral, de las estaciones SAJO, AGUA, CERQ y SARO, en las componentes norte-sur y vertical, del sismo del 2008/10/24
Figura 16. Ejemplos de trazas acomodadas por distancia epicentral, de las estaciones SAJO, AGUA, CERQ y SARO, en las componentes norte-sur y vertical, del sismo del 2008/10/24
Figura 16. Ejemplos de trazas acomodadas por distancia epicentral, de las estaciones SAJO, AGUA, CERQ y SARO, en las componentes norte-sur y vertical, del sismo del 2008/10/24
Figura 16. Ejemplos de trazas acomodadas por distancia epicentral, de las estaciones SAJO, AGUA, CERQ y SARO, en las componentes norte-sur y vertical, del sismo del 2008/10/24
Figura 16. Ejemplos de trazas acomodadas por distancia epicentral, de las estaciones SAJO, AGUA, CERQ y SARO, en las componentes norte-sur y vertical, del sismo del 2008/10/24
Figura 16. Ejemplos de trazas acomodadas por distancia epicentral, de las estaciones SAJO, AGUA, CERQ y SARO, en las componentes norte-sur y vertical, del sismo del 2008/10/24
Figura 16. Ejemplos de trazas acomodadas por distancia epicentral, de las estaciones SAJO, AGUA, CERQ y SARO, en las componentes norte-sur y vertical, del sismo del 2008/10/24
Figura 16. Ejemplos de trazas acomodadas por distancia epicentral, de las estaciones SAJO, AGUA, CERQ y SARO, en las componentes norte-sur y vertical, del sismo del 2008/10/24
Figura 16. Ejemplos de trazas acomodadas por distancia epicentral, de las estaciones SAJO, AGUA, CERQ y SARO, en las componentes norte-sur y vertical, del sismo del 2008/10/24
Figura 16. Ejemplos de trazas acomodadas por distancia epicentral, de las estaciones SAJO, AGUA, CERQ y SARO, en las componentes norte-sur y vertical, del sismo del 2008/10/24

igura 26. Espesores promedio para el Conrad con escala de profundidad41
igura 27. Representación de los espesores en el Conrad, con desviación estándar,
btenidos bajo las estaciones donde se identificaron fases P, S y Sp42
igura 28. Comparación de los espesores corticales en este estudio con los valores
le 0° $\leq \Phi_{\rm B} \leq 360^{\circ}$ de Melgar y Pérez-Campos45
igura 29. Comparación de los espesores corticales obtenidos sin interpolar,
nterpolados con los valores interpolados (Figura 7) de Melgar y Pérez-Campos46
igura 30. Comparación de profundidades obtenidas por Ligorría et al. (1993) con
staciones portátiles y las mostradas en este estudio para el Moho48
igura 31. Comparación de profundidades obtenidas por Ligorría et al. (1993) con
staciones portátiles y las mostradas en este estudio para el Conrad49

LISTA DE TABLAS

Tabla 1. Comparación de los espesores corticales de Narcía et al., (2003) con los
obtenidos por el código en Matlab, para las estaciones de Ar, Co, Ta y Tu30
Tabla 2. Valores del espesor cortical promedio para cada estación, con el número
de mediciones utilizadas en cada una de ellas
Tabla 3. Valores del espesor en el Conrad promedio para cada estación, con el
número de mediciones utilizadas
Tabla 4. Comparación de espesores corticales promedio obtenidos en este estudio
con los de Melgar y Pérez-Campos (2011). Tabla 1 columna con mediciones usando
todos los back azimuts.
Tabla 5. Comparación del espesor cortical de la estación TUXT obtenido en este
estudio con el obtenido nor M Rodríguez (2013)
Tabla 6. Valores para el Conrad y Moho obtenidos por Ligorría et al. (1993)47
Apéndice A. Ubicación geográfica de las estaciones del arreglo VEOX
Apéndice B. Lista de estaciones del SSN utilizadas para las relocalizaciones de
sismos
Apéndice C. Lista de sismos localizados con Seisan y los tomados de la tesis de
Castro (2010), que se presentan sin valor rms
Apéndice D. Tablas con los valores de distancia horizontal, diferencias de TS-TSp
observados y espesor en la discontinuidad del Moho para cada estación.
Anéndice E Tablas con los valores de distancia horizontal diferencias de TS-TSn
abearvadas vaspasor on la discontinuidad dal Conrad para cada astación
observatus y espesor en la discontinuidad der contrad para cada estacioni

RESUMEN

El lstmo de Tehuantepec se encuentra en el sureste de la República Mexicana y es la región continental meridional más estrecha de México. Frente a las costas del Pacífico está la Trinchera Mesoamericana (TMA) donde la placa oceánica de Cocos subduce a la placa Norteamericana.

El arreglo Veracruz-Oaxaca (VEOX), utilizado en este estudio, se diseñó para analizar la subducción de la placa de Cocos, es un transecto lineal con 46 estaciones sísmicas de banda ancha, distribuidas a lo largo de un perfil norte-sur en el lstmo de Tehuantepec. El periodo de funcionamiento fue de julio del 2007 a marzo del 2009.

El objetivo de este estudio es conocer la estructura cortical en el lstmo de Tehuantepec, utilizando sismos locales, mediante diferencias entre tiempos de arribo de fases S y Sp. La fase Sp inicia su trayecto en el hipocentro como una onda S que viaja hacia arriba por el manto, se convierte en onda P en el Moho y se registra en la estación.

En este trabajo, se analizaron datos de sismos con profundidades mayores a 50 km registrados por el arreglo VEOX. Se usó un modelo físico que involucra dos medios isotrópicos, homogéneos y elásticos, para representar los tiempos de viaje de las ondas S y Sp en el manto y la corteza. El procesado consistió en la identificación de fases P, S y Sp en los sismogramas. Posteriormente, se realizó el cálculo teórico de diferencias de tiempos S y Sp. Luego se compararon los datos observados con los teóricos, se obtuvieron los valores rms a diferentes profundidades y se seleccionó el valor de espesor correspondiente al menor error para cada estación.

De 331 sismos se identificaron fases Sp en 209 de ellos. Para tener un mejor control de calidad de los datos, se realizó también la relocalización de aproximadamente 150 sismos en Seisan y con las nuevas localizaciones se obtuvieron espesores corticales de 21.5 a 38.5 km.

Se encontraron también espesores con profundidades menores o iguales a 20 km que se consideraron como identificaciones de fases Sp en la discontinuidad de Conrad, en algunos sismogramas hay ejemplos con dobles fases Sp. Los valores de los espesores obtenidos van de 12 a 20 km.

ABSTRACT

The lsthmus of Tehuantepec is located in southeast Mexico and is the narrowest zone in the southern part of the country. In front of the Pacific coast is the Middle American Trench (MAT) where the Cocos plate subducts beneath the North American plate.

The Veracruz-Oaxaca array (VEOX) used in this study, was designed to analyze the subduction of the Cocos plate. It is a linear transect with 46 broadband stations, distributed along a north-south profile in the lsthmus of Tehuantepec. It ran from July, 2007 to March, 2009.

The objective of this study is to determine the cortical structure at the lsthmus of Tehuantepec, with local earthquakes by using differences between S and Sp phases arrival times. The Sp phase starts its course at the hypocentre as a S wave wich travels up through the mantle, then it becomes a P wave in the Moho discontinuity and it's registered at the station.

In this work, data from earthquakes with depths greater than 50 km, registered by the VEOX transect, was analyzed. The physical model used consisted of two elastic, homogeneous and isotropic media representative of the S and Sp waves travel times in the mantle and the crust. Data processing consisted of the P, S and Sp phases identifying in the seismograms and finding the differences from the computed theoretical arrivals. The observed and theoretical data were compared in order to obtain rms values at several depths and the thickness correspond corresponding to the minor error was selected for each station.

Sp phases were identified in 209 of 331 earthquakes. For quality control of the data ~150 earthquakes were relocated in Seisan. Cortical thicknesses from 21.5 to 38.5 km were obtained with the new locations.

Thicknesses less than or equal to 20 km were obtained also, and they were considered as Sp phases identifications in the Conrad discontinuity, where double Sp phases where found in some seismograms. The values of these thicknesses were from 12 to 20 km.

INTRODUCCIÓN

Muchos de los fenómenos naturales que ocurren en nuestro planeta son difíciles de explicar, ya que la Tierra no es homogénea, diversas técnicas han sido desarrolladas para poder comprender mejor nuestro entorno. Con el paso de los años se ha investigado acerca del interior y exterior de la Tierra, por medio de métodos directos e indirectos, permitiendo conocer la dinámica de muchos procesos de la vida cotidiana.

México, como muchas partes del mundo, se encuentra en una zona de alta actividad sísmica, porque interactúan cinco placas tectónicas: la placa de Rivera, la placa de Cocos, la placa del Pacífico, la placa Norteamericana y la placa del Caribe. De acuerdo con Menard y Fisher (1958), la cordillera de Tehuantepec es considerada, por su batimetría, como una de las zonas de fractura del noreste del Pacífico y separa la placa de Cocos en dos secciones tectónicas diferentes.

Se ha observado que hay una variación lateral en el ángulo de subducción de la placa de Cocos, aproximadamente a -96° de longitud, donde éste cambia de ~10° en la parte noroeste de la zona de fractura de Tehuantepec a ~45° en la parte sureste (Ponce et al., 1992; Pardo y Suárez, 1995; Espíndola, 1996). Sedlock et al. (1993), explicaron que esta variación podría deberse a la diferencia de empuje o flotabilidad que hay en ambos lados de la cordillera de Tehuantepec, o bien, por la triple unión de las placas de Cocos, Caribe y Norteamérica.

Guzmán-Speziale et al. (2016) estudiaron las diferencias y similitudes de la convergencia de las placas de Cocos con Norteamérica y Cocos con Caribe, encontraron un ángulo de subducción diferente, más superficial en la parte que subduce a Norteamérica y es más profundo hacia la subducción en la placa del Caribe. Compararon su modelo de subducción con el trabajo de Hayes et al. (2012), quienes determinaron la geometría tridimensional de la mayoría de las zonas de subducción a nivel global, comprobando que la placa de Cocos que subduce a la de Norteamérica cambia su ángulo a lo largo de 1024 km de la trinchera.

Por otra parte, se han realizado varios estudios para inferir la discontinuidad en el Moho utilizando datos de satélite GOCE con la finalidad de obtener modelos globales y particulares a partir de observaciones de datos de sísmicos, de gravedad y topografía, así como aplicando diferentes técnicas de teoría de inversión (Reguzzoni et al., 2013; Sampietro et al., 2014; Abrehdary et al., 2017).

La estructura de velocidades, así como el espesor de la corteza, en esta región fue determinada por Chen y Clayton (2012) utilizando la técnica de tomografía sísmica, y la geometría de la placa que se está subduciendo fue obtenida por Melgar y Pérez-Campos (2011) y Kim et al. (2011) usando la técnica de

funciones receptor con registros telesísmicos. Para el sureste de México se han hecho trabajos usando tiempos de llegada de la fase Sp para conocer el espesor cortical (Castro Escamilla., 1980; Ligorría y Ponce, 1993; Narcía et al., 2002; Bravo et al., 2004). Sin embargo, no se han utilizado las fases Sp empleando datos de VEOX para conocer con mayor precisión la estructura cortical.

El experimento MASE (llamado así por sus siglas en inglés: Meso-American Subduction Experiment), realizado por el Instituto de Tecnología de California (Caltech), la Universidad de California Los Ángeles (UCLA) y la Universidad Nacional Autónoma de México (UNAM), tuvo como objetivo estudiar y modelar la geodinámica de la zona de subducción mexicana, comenzó en diciembre del 2004 con 100 estaciones instaladas a lo largo del centro de México (Pérez-Campos et al., 2008). Como continuación de este proyecto, Caltech y la UNAM, en julio del 2007, relocalizaron las estaciones más hacia el sur, donde se instalaron 46 de ellas a lo largo de un nuevo perfil lineal llamado VEOX (nombrado así porque atraviesa los estados de Veracruz y Oaxaca) en el lstmo de Tehuantepec, que va del sur de la población de San Mateo del Mar, Oaxaca hasta el norte en Montepío, Veracruz (Melgar y Pérez-Campos, 2011). La localización de algunas de las estaciones del arreglo fue modificada, cambiando un poco la geometría del perfil a cambio de obtener mayor seguridad para las estaciones y evitar pérdidas materiales, de esta manera sólo sufrieron actos de vandalismo dos paneles solares y una antena de GPS (Pérez-Campos, 2008).

El objetivo principal de este trabajo es la determinación del espesor de la corteza continental en el lstmo de Tehuantepec, por medio de la identificación de fases S y Sp, utilizando sismos profundos, con las estaciones de VEOX y la diferencia entre los tiempos de arribo (teóricos y observados) de dichas fases.

En el capítulo uno se hablará sobre algunos antecedentes, así como las características del lstmo de Tehuantepec.

El método utilizado en este proyecto para realizar el cálculo de la estructura cortical, involucra la diferencia entre tiempos de arribo de las ondas S y Sp, así como la relocalización de sismos ocurridos en el periodo comprendido de julio del 2007 a marzo del 2009, son explicados en el capítulo dos.

En el capítulo tres se describe la metodología para el procesamiento de datos para la identificación de fases S y Sp y la obtención de los espesores corticales.

Los resultados obtenidos mediante gráficas, mapas y tablas de los datos después del procesamiento, son presentados en el capítulo cuatro.

Finalmente, en el capítulo cinco se discuten los resultados, se comparan con otros estudios y se muestran conclusiones y recomendaciones de este trabajo.

1 ANTECEDENTES

La República Mexicana pasó por un proceso de formación geológica muy complejo para llegar a ser tal y como la conocemos en la actualidad, sufrió varios cambios de transgresiones marinas, deformaciones, desplazamientos de bloques, extensiones y más procesos al pasar del tiempo geológico.

México se encuentra en interacción principalmente con cinco placas tectónicas: la placa de Cocos, la placa del Caribe, la placa de Rivera, la placa de Norteamérica y la placa de Norteamérica, que generan complejas interacciones entre ellas y zonas con alta sismicidad.

El lstmo de Tehuantepec es el lugar en el que se enfoca este estudio y se localiza en la parte sureste de Oaxaca entre 15° 59' y 16° 58' de latitud y 94° 12' y 95° 40' de longitud, tiene elevaciones que van de 10 a 1550 m.s.n.m. Colinda al norte con el Distrito Mixe y el estado de Veracruz, al sur con el Golfo de Tehuantepec, al este con Chiapas y al oeste con los Distritos de Pochutla y Yautepec. Cuenta con una extensión territorial de 19 975.57 km².

Se encuentra distribuido en dos distritos: Juchitán y Tehuantepec, comprenden 41 municipios, el lstmo oaxaqueño representa el 15.7% de la población total del estado, aunque en Juchitán de Zaragoza, Matías Romero y Salina Cruz se concentra casi el 40% de la población total de la región (INEGI, 2010).

El lstmo de Tehuantepec es la región continental meridional más estrecha de México, donde convergen las placas de Norteamérica, Cocos y el Caribe. Una de las características más importantes en esta zona es la dorsal de Tehuantepec, que de acuerdo con Bravo et al., (2004) es una falla que separa a la placa de Cocos que dos partes: la que subduce a la placa Norteamericana y la que subduce a la placa del Caribe. Además, algunos autores proponen que tienen diferencias de edades de 8, 10 y 12 m. a. (Wilson, 1996; Couch y Woodcock, 1981; Klitgord y Mammerickx, 1982).

Desde un punto de vista geotectónico, el estado de Oaxaca es muy complejo, Hernández Santana et al. (2008), hicieron una clasificación de las principales unidades de relieve del territorio oaxaqueño, cuya complejidad estratigráfica se ve reflejada en los diferentes complejos lito-estratigráficos y edades de emplazamiento que les permitieron fundamentar el nivel jerárquico del basamento geológico en los siguientes grupos:

 a) Complejos metamórficos e intrusivos precámbricos (Proterozoico tardío). El basamento metamórfico más antiguo es del terreno Zapoteco, representado por el Complejo Oaxaqueño, constituido por una secuencia paragnéisica sobreyaciendo a un complejo ortognéisico de composición gabroideanortosítica.

- b) Complejos metamórficos (Complejo Acatlán), intrusivos batolíticos (Chiapas) y sedimentarios plegados paleozoicos. La composición del Complejo Acatlán comprende cuatro unidades metasedimentarias y una de origen magmáticos, cortadas por tres unidades de intrusiones graníticas. En el basamento paleozoico se incluyen secuencias sedimentarias marinas con secuencias alternas de ascensos tectónicos y erosión, subsidencia y acumulación.
- c) Complejos metamórficos, intrusivos, sedimentarios y vulcano-sedimentarios mesozoicos (Complejo Mazateco). Constituye un prisma de rocas de arco volcánico y oceánicas deformadas en el Jurásico superior-Cretácico inferior compuesto por milonitas, rocas metasedimentarias, calizas, granitoides, etc.
- d) Complejos metamórficos e intrusivos mesozoicos (Complejo Xolapa). Se extiende como una franja a lo largo de las planicies y montañas costeras del Pacífico representando al Terreno Chatino en contacto con el terreno Guerrero y emplazado sobre los terrenos Zapoteco y Mixteco, intrusionado por granitoides terciarios, pegmatitas graníticas y diques máficos de enjambre
- e) Complejos sedimentarios plegados y subhorizontales de las cuencas terciario-cuaternarias superpuestas, y complejos intrusivos y extrusivos terciarios. Ocupan sectores de la zona costera del Pacífico, las depresiones de Tehuacán-Oaxaca y los Valles Centrales de Oaxaca, elevaciones plegadas y planicies estructurales de Veracruz; el basamento de este relieve tiene fragmentos de todos los terrenos descritos antes y se encuentra sobre formaciones cenozoicas.

Se han realizado diversos trabajos para entender mejor la dinámica de nuestro país, la parte sur es una región complicada porque involucra la zona de subducción central de México y parte de la subducción en Centroamérica, donde se ven involucradas principalmente las placas de Cocos, Norteamérica y el Caribe.

En 1980, Castro Escamilla obtuvo un modelo cortical para el sur de México, por medio de la conversión de ondas Sp, analizando amplitudes y calculando factores de calidad Qs y Qp. Utilizó 15 estaciones y 26 sismos profundos, encontrando como parte de sus resultados velocidades de 8.2 km/s y 6.6 km/s para el manto superior y la corteza, respectivamente utilizando 43 km de profundidad.

Ligorría y Ponce (1993) utilizaron ondas convertidas para determinar la estructura cortical en el lstmo de Tehuantepec utilizando también las fases Sp y factores de calidad Qs y Qp para la corteza, con una red de estaciones portátiles instaladas para un estudio de microsismicidad de 1986 (Ponce et al., 1992) y 40 sismos con profundidades de 70 a 180 km, encontrando en total 179 fases

convertidas, de las cuales 105 pertenecían al Moho y 74 fueron atribuidas a la discontinuidad en el Conrad en registros de papel ahumado. Finalmente encontraron valores con grosor promedio de 36 ± 3.2 km, con espesores mayores hacia la parte central y relativamente menores en la costa del Pacífico por lo que sugieren que la evolución tectónica ahí es diferente a la de los Macizos de Chiapas y Oaxaca, donde son profundidades de 43 y 50 km respectivamente, mientras que para el Conrad obtuvieron 22 ± 23 km.

En el 2002, Narcía et al. calcularon el espesor cortical en Chiapas usando ondas S y Sp, desarrollando un método para obtener espesores corticales y velocidades de onda S en el manto superior y la corteza con datos de una red sísmica que estuvo en operación de 1993 a 1998, sólo utilizaron 4 estaciones digitales ubicadas en las ciudades de Arriaga (Ar), Comimtán (Co), Tapachula (Ta) y Tuxtla Gutiérrez (Tu). Propusieron un modelo con una capa sobre un semiespacio con una frontera sólido-sólido donde los esfuerzos y desplazamiento se transmitían del medio inferior al medio superior. Obtuvieron los menores espesores corticales en las estaciones cercanas a la trinchera, 17 km en Ta y 28 km en Ar y espesores mayores para las estaciones que se adentran más al continente, 49 y 53 km para Tu y Co, respectivamente.

En el 2004, Bravo et al., obtuvieron la geometría y el estado de esfuerzos para la zona de Wadati-Benioff en el Golfo de Tehuantepec, utilizando una red de 13 estaciones análogas distribuidas en Oaxaca y Chiapas. Hicieron un análisis de actividad sísmica de enero de 1999 a septiembre del 2002, así como inferencias sobre la profundidad de la corteza usando ondas convertidas Sp. Localizaron los hipocentros usando HYPO71 en al menos 4 estaciones encontrando hasta 6 o más fases. A partir de los valores rms estimaron una profundidad del Moho de 28.5 ± 3.5 km. Registraron el evento del 30 de septiembre d 1999 con magnitud de 4.6 a 50 km de profundidad y sus réplicas hasta junio del 2000, encontrando que el sismo principal y 5 réplicas indican que los eventos intraplaca fueron fallas normales con el strike paralelo a la TMA con hipocentros de 12 a 50 km.

Kim et al. (2011) hicieron un estudio usando funciones receptor y estaciones del arreglo VEOX, usando en total 40 estaciones y 68 telesismos de magnitud mayor a 6.1 y distancias de 30° a 90° presentan evidencia de una placa buzando al suroeste en el sur de México, encontrando una imagen clara donde la placa buza a 35°, aproximadamente a 250 km de longitud, por lo que suponen que la placa se creó por subducción oceánica antes de la colisión del bloque de Yucatán con México hace 12 Ma.

Chen et al. (2012) obtuvieron la estructura para el centro y sur de México a partir de tomografía de atenuación y velocidad, usando datos de los arreglos de

MASE y VEOX, así como estaciones del SSN. Analizaron 894 eventos con magnitudes locales de 3.5 a 5 y profundidades mayores a 50 km en su mayoría, encontraron que el ángulo de inclinación cambia de ser casi horizontal en el centro de Guerrero a un ángulo de inclinación de 30° en el sureste de Oaxaca. También encontraron anomalías de alta atenuación y baja velocidad en la corteza bajo el TMVB y la cuenca de Veracruz y una estructura de alta velocidad del lado del Golfo de México, cerca del Istmo de Tehuantepec, posible evidencia de la colisión del bloque de Yucatán y México en el Mioceno, como explicaron Kim et al. (2011).

En el 2011, Melgar y Pérez-Campos hicieron un trabajo utilizando las estaciones de VEOX para estudiar la subducción de la placa de Cocos y la topografía del Moho en el Istmo de Tehuantepec por medio de funciones receptor. Procesaron 110 eventos telesísmicos, donde 38 de las estaciones del arreglo les fueron útiles para estudiar la geometría de la placa y 35 para el análisis del Moho. Utilizaron el modelo IASPEI 91, y consideraron valores de velocidad de onda P de 6.5 km/s para la mayoría de las estaciones, excepto las que están más al norte (a partir de COYO) donde usaron 6.35 km/s. Proyectaron las funciones receptor interpoladas sobre un perfil perpendicular a la TMA. Compararon sus resultados con la sismicidad local de la base de datos del SSN, eventos relocalizados de Castro Artola (2010) y curvas de isoprofundidad de Pardo y Suárez (1995), encontrando que la posición de la placa es similar a la de Pardo y Suárez (1995) pero con cobertura diferente.

2 MARCO TEÓRICO

Cuando se origina un sismo, la energía se propaga a través del terreno y es registrada por receptores en superficie, que nos proporcionan sismogramas (representaciones gráficas del movimiento del suelo) de donde podemos obtener información sobre la fuente y el medio por el que se propagaron las ondas. Generalmente se hacen registros del movimiento del terreno en tres componentes: norte-sur, este-oeste y vertical.

2.1 Tipos de ondas

Una onda sísmica es la propagación de energía liberada por una fuente, que puede ser natural o artificial, viajando a través de un medio. Pueden ser de dos tipos: ondas de cuerpo y ondas de superficie. En los sismogramas pueden verse diferentes arribos de ondas sísmicas, que son llamadas fases y se identifican con diversas nomenclaturas que describen el trayecto de la onda entre la fuente y el receptor.

En este estudio, se consideró importante conocer los diferentes tipos de ondas sísmicas para entender mejor su comportamiento y saber identificarlas en los sismogramas, así como proponer sus trayectorias de viaje. A continuación, en los apartados del 2.1.1 al 2.1.3, se explican los tipos de ondas y se muestran algunos ejemplos de posibles conversiones entre ellas.

2.1.1 Ondas de cuerpo

Son transmitidas a través del material, pasando por procesos de refracción, reflexión, compresión o cizalla. Son las más rápidas, y por lo tanto, son las primeras que se registran en los sismómetros. Se dividen en ondas P y ondas S.

 Ondas P. También son llamadas ondas Primarias, son longitudinales o de compresión, viajan con una mayor velocidad y por lo tanto son las primeras en llegar. Se transmiten por medio de compresiones y dilataciones del medio, como los cambios de volumen, pueden propagarse a través de sólidos, líquidos y gases, y el movimiento de sus partículas es paralelo a la dirección de propagación (Figura 1).

Figura 1. Movimiento de partícula de onda P (Tomada del portal USGS).

Ondas S. Son ondas secundarias, transversales o de corte, se transmiten por deformaciones de corte, así que dependen de la elasticidad de las rocas y no involucran cambios de volumen, sólo se propagan en medios sólidos (ya que los líquidos y gases no tienen propiedades elásticas) y el movimiento de sus partículas es perpendicular a la dirección de propagación (Figura 2). Se pueden dividir, a su vez, en ondas SV (si la dirección del movimiento de partícula es de manera vertical) y SH (si la dirección del movimiento de partícula es horizontal).

2.1.2 Ondas de superficie

Estas ondas se transmiten por la superficie con poca penetración en el material, así que su energía se queda concentrada en esta zona, de manera que a

distancias grandes de la fuente se ven de manera más prominente en los sismogramas. Arriban después de las ondas de cuerpo y son mayormente responsables de los daños y destrucciones materiales durante un sismo y son dispersivas, es decir, la velocidad de propagación de la onda depende de su frecuencia. Se dividen en dos tipos: ondas Rayleigh y ondas Love.

 Ondas Rayleigh. Son una combinación de ondas P y SV, su movimiento sobre la superficie de la Tierra podría verse como un movimiento elíptico y retrogrado (Figura 3).

Figura 3. Movimiento de partícula de onda Rayleigh (Tomada del portal USGS).

 Ondas Love. Provienen de la interacción entre ondas SH, son más rápidas que las ondas Rayleigh, su movimiento de partícula es paralelo a la superficie pero perpendicular a la dirección de propagación (Figura 4).

Figura 4. Movimiento de partícula de onda Love (Tomada del portal USGS).

2.1.3 Ondas convertidas

Este tipo de ondas aparecen cuando una onda de cuerpo viaja a través de un medio e incide en la interfaz con otro medio, donde parte de la energía se transmite y otra parte de ella se refleja.

Podemos entender el comportamiento de las ondas de cuerpo al encontrarse con alguna zona de transición interfiriendo en su trayectoria; en la Figura 5 se presentan algunos ejemplos de conversión de fases sísmicas, el punto negro ubicado en la parte superior es la fuente o hipocentro de donde parten todos los rayos. Si una onda P viaja por el manto, incide en la superficie de manera compresional y vuelve a hacer el mismo recorrido, es nombrada onda PP, ya que se reflejó en la superficie; si la onda P se reflejara dos veces en la superficie, se convertiría en una onda PPP. Una onda pP representa a la onda P que asciende del hipocentro y se refleja en la superficie.

De acuerdo con la nomenclatura, la letra "K" representa a una onda P que pasa por el núcleo exterior, "I" significa una onda P que atraviesa el núcleo interior, "J" es una onda S que atraviesa el núcleo interior, "c" representa una onda que se refleja en la frontera entre el manto y el núcleo, mientras que "i" suele indicar que una onda se refleja en la frontera entre el núcleo interior y exterior. Entonces, si una onda P incide en el núcleo exterior y se registra en la superficie, es llamada onda PcP, a diferencia de una onda P que atravesara el núcleo exterior y llegara a la superficie, sería llamada PKP; si el mismo rayo atravesara el núcleo interior y continuara su recorrido hasta la superficie, sería una onda PKIKP.

En 1909, Andrija Mohorovicic identificó una onda directa (Pg) y una onda refractada (Pn, que viajó parcialmente en el manto superior) durante el estudio de un sismo en Croacia, calculando velocidades de 5.6 km/s y 7.9 km/s, respectivamente, identificando el incremento de velocidad a 54 km, ésta discontinuidad sísmica es ahora llamada discontinuidad de Mohorovicic o Moho, se encuentra en la frontera del manto y la corteza, su promedio es generalmente 33 km pero puede ser muy variable dependiendo de la región (Lowrie, 2007).

Cuando una onda P viaja por el manto puede experimentar una conversión a onda S en la interfaz con el Moho, y transmitirse hacia la superficie, es conocida como onda Ps. Lo mismo ocurre cuando una onda S que viaja por el manto, al encontrarse con el Moho se transmite y es registrada en superficie como onda P, convirtiéndose en una onda Sp, como se muestra en la Figura 6. Esta tesis se enfoca a determinar el espesor de la corteza continental empleando observaciones de la onda Sp. Más adelante, se explica la ley de Snell que describe el trayecto de estas ondas.

Figura 5. Ejemplo de fases de ondas de cuerpo (Modificado de Stein y Wysession, 2003).

Figura 6. Ejemplo de conversión de ondas Sp (naranja) y Ps (azul).

2.2 Localización de sismos.

En sismología, para obtener mejores resultados, se acostumbra revisar las localizaciones de los eventos y frecuentemente se realiza una relocalización. Como se explica más adelante, utilicé algunas relocalizaciones de Castro (2010) y

adicionalmente, relocalicé otros eventos. La relocalización de estos eventos es un resultado importante de mi trabajo, pero no es el principal resultado.

Para el mejor estudio de un sismo, es importante la determinación del hipocentro, para esto, se necesita conocer cuatro parámetros: el tiempo de origen, la latitud, longitud y profundidad.

Los sismos pueden tener profundidades muy diversas, según William Spencer et al. (1989), el rango de ellas se divide en tres: someros (0-70 km), intermedios (70-300 km) y profundos (300-700 km).

Existen varias maneras para localizar un sismo, a continuación se mencionan algunas técnicas utilizadas frecuentemente. Si se conoce la distribución de velocidades sísmicas cerca de la fuente, se puede determinar la profundidad del sismo bajo la superficie mediante la diferencia de tiempos entre la onda directa P y sus fases. A continuación se presentan algunas técnicas de localización.

2.2.1 Localización con una estación

La localización de un sismo con una sola estación es posible, pero quizás no se obtenga la mejor precisión, aunque sí puede acercarse a la ubicación aproximada. Se necesita de una estación con 3 componentes que registre el movimiento del suelo.

Como las ondas P se polarizan de manera radial y vertical se pueden usar para determinar la dirección de la posición del epicentro, analizando el arribo de esta onda en las componentes horizontales se puede encontrar su proyección a lo largo del azimut hacia la fuente sísmica. Lay W. et al. (1995) proponen la siguiente ecuación para hacer el cálculo:

$$D = \frac{\alpha(Ts - Tp)}{\sqrt{3} - 1} = 1.37(\Delta T)(\alpha), \quad (1)$$

Donde α es la velocidad de la onda P, Ts y Tp son los tiempos de arribo de las ondas S y P, y D es la distancia. A partir de la ecuación de velocidad:

$$\alpha = \frac{D}{Tp - To}, \quad (2)$$

Donde To es el tiempo de origen, se puede calcular el tiempo de viaje, despejando de la ecuación 2 se obtiene:

$$To = Tp - \frac{D}{\alpha}, \quad (3)$$

2.2.2 Localización con varias estaciones

Cuando se tiene información de varias estaciones la localización del sismo es más precisa, si las fases P y S son claras, y se identifican sus tiempos de arribo, se puede encontrar la distancia epicentral y el tiempo de origen como se describió anteriormente.

El método gráfico, o de los círculos, es útil cuando se tienen al menos tres estaciones; consiste en dibujar un círculo sobre un mapa que tenga de radio la distancia epicentral, calculada previamente, con la ubicación de la estación al centro. Repitiendo ese proceso con las demás estaciones, al final se encontrará un punto de intercepción entre las circunferencias, el cual sería la localización del epicentro como se muestra en la Figura 7.

2.2.3 Localización con tiempos de arribo en Seisan

Seisan es un software usado en el análisis de sismos, desarrollado por Lars Ottemöller, Jens Havskov y Peter Voss, utilizado para diversas tareas como: importar datos, crear bases de datos, almacenar información, analizar y procesar señales, determinar localización y magnitud de sismos, obtener mapas de sismicidad, mecanismos focales. Básicamente, es un conjunto de programas, escritos en su mayoría en Fortran, algunos en C, disponible para varios sistemas operativos (Sun Solaris, Linux, MacOSX y Windows). En el manual de Seisan, se explica que el software utiliza 3 programas para hacer localización:

- 1. Hypocenter. Es una versión modificada del programa "hypocenter" de Lienert et al. (1986); Lienert (1991); Lienert y Hascov (1995). Se caracteriza por aceptar muchas identificaciones de fases (P, Pg, Pn, S, Sg, Sn, etc), funciona bien en la localización de telesismos, así como localización acimutal con una sola estación, puede calcular diferentes magnitudes (MI, Mc, Ms, Mb, Mw). Para localizaciones globales utiliza el software de tiempos de viaje IASPEI91 (Buland y Chapman, 1983) y Kennett y Engdahl (1991). Básicamennte comienza la localización probando los rms en cada fase, relacionando su distancia epicentral, y selecciona el valor menor. También puede hacer localización por el método de inversión de búsqueda de malla, donde solicita el rango de latitud y longitud, así como el espaciamiento de la malla; el punto con menor valor rms es tomado como el de la mejor localización.
- Hypo71. Es un programa que determina hipocentro, magnitud y el primer patrón de movimiento de sismos locales, desarrollado por Lee et al. (1972), es su versión modificada para Seisan donde se requiere introducir los datos de los tiempos de arribo, coordenadas de la estación y el modelo de la corteza.
- 3. Hypoinverse. El programa original fue desarrollado por Klein (2014) y se adaptó a Seisan para usarse a partir de archivos de entrada y de salida. No funciona bien a distancias mayores a 1000 km, por lo que se usa solo para sismos locales. Se puede operar de manera manual, a partir de la creación de los archivos estándar (instrucciones, estaciones y modelo) y de manera directa escribiendo el comando sobre la terminal.

En esta tesis se consideró importante hacer las relocalizaciones de los sismos para tener un mejor control de calidad de los datos de las localizaciones epicentrales, y se utilizó Seisan para realizar esta tarea.

Para procesar datos en este software es necesario convertir los archivos con la información a formato Seisan. Una vez obtenidos los datos con el formato indicado se tiene que crear un directorio en el que se indique la fecha de inicio y la fecha de término de los eventos del catálogo deseado.

Posteriormente, se crea un archivo que contiene la lista de todos los sismos y se especifican las características de ellos, tales como si son sismos locales o regionales, si se desean copiar los archivos originales. A continuación se accede a los eventos por medio de la fecha del sismo que se quiere analizar y el directorio creado al principio, donde después de pegar las trazas, se procede a la identificación de las fases P y S. Seisan ofrece varios filtros como parte del menú, pero si se requiere, se pueden especificar los parámetros para filtrar la señal; también posee características para indicar si la onda es impulsiva o emergente, así como el grado de confiabilidad que se le da al picado de la fase de 0 a 100% para tener una localización más acertada, entre otras ventajas.

Después de la identificación manual de fases, Seisan hace automáticamente la localización del hipocentro arrojando los valores de la fecha, hora, coordenadas, profundidad, valor rms, distancia, azimut y tiempos observados. Se procuró que los valores rms fueran menores a 1, para tener una localización confiable.

2.3 Ley de Snell

La refracción se refiere al cambio de dirección y velocidad experimentado por una onda al pasar de un medio a otro, se produce cuando la onda incide sobre la superficie de separación entre los dos medios, siempre y cuando haya índices de refracción (relacionan la velocidad de la luz en el vacío con su velocidad en el medio) diferentes entre ellos.

La ley de Snell considera la relación de los ángulos de incidencia de ondas transmitidas y reflejadas acercándose a la superficie de separación de dos medios diferentes.

Si suponemos una onda incidente P en un medio 1 con ángulo de incidencia θ_1 y una velocidad de propagación α_1 generaría una onda P reflejada en el mismo medio, con la misma velocidad y ángulo de incidencia; sin embargo, al refractarse al medio 2 se generaría una onda P transmitida, con un ángulo θ_2 y velocidad α_2 , como se ejemplifica en la Figura 8.

Figura 8. Ejemplo de ley de Snell para una onda P incidente (Modificado de Stein y Wysession, 2003).

Para este caso, la ley de Snell se puede expresar de la siguiente manera:

$$\frac{\alpha_1}{\sin\theta_1} = \frac{\alpha_2}{\sin\theta_2},\tag{4}$$

2.4 Diferencia entre tiempos de arribo de ondas S y Sp

La representación gráfica del modelo utilizado en este estudio (Figura 9), es similar al propuesto por Narcía et al. (2002), donde se suponen dos medios elásticos, homogéneos e isotrópicos, representados por la corteza (medio 1) y el manto superior (medio 2), proponiendo una fuente a una profundidad H (equivalente al hipocentro del sismo), que a su vez se divide en dos espesores: E1 (espesor cortical) y E2 (espesor desde la fuente hasta la interfaz con el Moho, atravesando el manto superior). También se representan las trayectorias de los rayos S (líneas punteadas) y P (línea continua) hasta llegar a la estación, así como los ángulos de incidencia θ_{Sp1} y θ_{Sp2} para la fase Sp y θ_{S1} y θ_{Sp2} para la onda S. Por último, se muestra la distancia horizontal Δ , que es la distancia total del recorrido de ambos rayos, y se compone a su vez de la suma de Δ_{Sp2} y Δ_{Sp1} para el rayo Sp, y Δ_{S2} y Δ_{S1} para el rayo S.

Figura 9. Modelo físico utilizado para el cálculo de diferencias entre tiempos de arribo (Modificado de Narcía, et al., 2004).

En ese mismo trabajo de Narcía et al., (2004) se utiliza una ecuación, como función objetivo, que realiza el cálculo teórico de la resta entre tiempos de arribo de ondas S y Sp, que además involucra los elementos de la Figura 10, y es la misma que se usó en este estudio. Por lo que se considera de relevancia la deducción de esta fórmula para entender mejor el método, y se muestra a continuación:

Si recordamos la ecuación de velocidad:

$$v = \frac{r}{T}, \qquad (5)$$

Donde v es la velocidad (km/s), r es la distancia (km) y T es el tiempo (s).

Para estudiar mejor los casos de los dos rayos (S y Sp) es conveniente analizarlos por separado, para el caso del rayo Sp, se puede modificar el modelo mostrado anteriormente, como se muestra en la Figura 9, y a su vez descomponer el rayo como dos triángulos rectángulos.

Figura 10. Modelo para el estudio del rayo Sp (parte superior) y análisis del trayecto de viaje del rayo Sp en cada medio (parte inferior).

De esta manera, podemos inferir algunas propiedades de los triángulos, como las siguientes:

 $sen\theta Sp_2 = \frac{\Delta_{Sp_2}}{Sp_2},$ (6) $sen\theta Sp_1 = \frac{\Delta_{Sp_1}}{Sp_1},$ (9)

$$\cos\theta Sp_2 = \frac{H - E_1}{Sp_2} = \frac{E_2}{Sp_2},$$
 (7) $\cos\theta Sp_1 = \frac{E_1}{Sp_1},$ (10)

$$\tan \theta Sp_2 = \frac{\Delta_{Sp_2}}{H - E_1} = \frac{\Delta_{Sp_2}}{E_2},$$
 (8) $\tan \theta Sp_1 = \frac{\Delta_{Sp_1}}{E_1},$ (11)

Donde θ Sp₂y θ Sp₁ son los ángulos de incidencia, Sp₂y Sp₁ son las distancias hipocentrales, y Δ Sp₂y Δ Sp₁ las distancias horizontales que recorre la onda como

S en el medio 2 y como P en el medio 1; H es la profundidad del sismo, E_1 es el espesor cortical y E_2 es la profundidad H menos el espesor cortical E_1 .

Ahora, para poder calcular las distancias Sp₂ y Sp₁, se puede utilizar la siguiente ecuación:

$$Sp_2 = \sqrt{\Delta_{Sp2}^2 + E_2^2}$$
, (12) $Sp_1 = \sqrt{\Delta_{Sp1}^2 + E_1^2}$, (13)

También podemos despejar éstas distancias de las ecuaciones 7 y 10.

$$Sp_2 = \frac{E_2}{\cos\theta Sp_2}$$
, (14) $Sp_1 = \frac{E_1}{\cos\theta Sp_1}$, (15)

Si adaptamos la ecuación (5) para el rayo Sp, se obtendría:

$$\beta_2 = \frac{Sp_2}{T_{Sp_2}},$$
 (16) $\alpha_1 = \frac{Sp_1}{T_{Sp_1}},$ (17)

Donde α_1 y β_2 son las velocidades de las ondas P en el medio 1 y S en el medio 2.

El tiempo del rayo Sp tiene la contribución de los tiempos de viaje de ambas ondas se puede calcular con:

$$T_{Sp} = (T_{Sp2} + T_{Sp1}) = \frac{Sp_2}{\beta 2} + \frac{Sp_1}{\alpha 1},$$
 (18)

Donde Tsp1 y Tsp2 son los tiempos de arribo de los rayos P y S.

Si se sigue el mismo procedimiento para el rayo S, se obtienen las siguientes ecuaciones:

$$S_{2} = \sqrt{\Delta_{S2}^{2} + E_{2}^{2}}, \quad (19) \qquad S_{1} = \sqrt{\Delta_{S1}^{2} + E_{1}^{2}}, \quad (20)$$
$$S_{2} = \frac{E_{2}}{\cos\theta S_{2}}, \quad (21) \qquad S_{1} = \frac{E_{1}}{\cos\theta S_{1}}, \quad (22)$$
$$\beta_{2} = \frac{S_{2}}{T_{S2}}, \quad (23) \qquad \beta_{1} = \frac{S_{1}}{T_{S1}}, \quad (24)$$
$$T_{S} = (T_{S2} + T_{S1}) = \frac{S_{2}}{\beta 2} + \frac{S_{1}}{\beta 1}, \quad (25)$$

Donde S₁ y S₂ son las distancias hipocentrales, Δ S₁ y Δ S₂ las distancias horizontales, θ S₁ y θ S₂ son los ángulos de incidencia, β ₁ y β ₂ son las velocidades de la onda S en los medios 1 y 2.

Entonces, para obtener la diferencia entre los tiempos de arribo de S menos Sp:

$$T_S - T_{Sp} = \left(\frac{S_2}{\beta_2} + \frac{S_1}{\beta_1}\right) - \left(\frac{Sp_2}{\beta_2} + \frac{Sp_1}{\alpha_1}\right), \quad (26)$$

El cociente de velocidades entre las ondas P y S está dado por $\Omega = \alpha/\beta$, entonces la ecuación 26 puede escribirse de la siguiente manera:

$$T_{S} - T_{Sp} = \frac{S_{2} - Sp_{2}}{\beta_{2}} + \frac{S_{1}}{\beta_{1}} - \frac{Sp_{1}}{\alpha_{1}} = \frac{S_{2} - Sp_{2}}{\beta_{2}} + \frac{S_{1}}{\left(\frac{\alpha_{1}}{\Omega}\right)} - \frac{Sp_{1}}{\alpha_{1}} = \frac{S_{2} - Sp_{2}}{\beta_{2}} + \frac{\Omega S_{1} - Sp_{1}}{\alpha_{1}}, \quad (27)$$

Factorizando, se obtiene:

$$T_{S} - T_{Sp} = \frac{1}{\beta_{2}} (S_{2} - Sp_{2}) + \frac{1}{\alpha_{1}} (\Omega S_{1} - Sp_{1}), \quad (28)$$

Podemos sustituir los valores de S y Sp en ambos medios con las ecuaciones 12, 13, 19 y 20:

$$T_{S} - T_{Sp} = \frac{1}{\beta_{2}} \left(\sqrt{\Delta_{S2}^{2} + E_{2}^{2}} - \sqrt{\Delta_{Sp2}^{2} + E_{2}^{2}} \right) + \frac{1}{\alpha_{1}} \left(\Omega \sqrt{\Delta_{S1}^{2} + E_{1}^{2}} - \sqrt{\Delta_{Sp1}^{2} + E_{1}^{2}} \right), \quad (29)$$

Se puede reescribir la ecuación 29 en términos de las velocidades de la onda S. Además, recordando que Δ es la suma de las distancias horizontales, podemos sustituir y quedarnos sólo con términos de Δ S₂ y Δ Sp₂, obteniendo:

$$T_{S} - T_{Sp} = \frac{1}{\beta_{2}} \left(\sqrt{\Delta_{S2}^{2} + E_{2}^{2}} - \sqrt{\Delta_{Sp2}^{2} + E_{2}^{2}} \right) + \frac{1}{\beta_{1}\Omega} \left(\Omega \sqrt{(\Delta - \Delta_{S2})^{2} + E_{1}^{2}} - \sqrt{(\Delta - \Delta_{Sp2})^{2} + E_{1}^{2}} \right), \quad (30)$$

La ecuación 30 también puede escribirse en términos de cosenos, sustituyendo las ecuaciones 14, 15, 21 y 22:

$$T_{S} - T_{Sp} = \frac{S_{2} - Sp_{2}}{\beta_{2}} + \frac{S_{1}}{\beta_{1}} - \frac{Sp_{1}}{\Omega\beta_{1}} = \frac{\frac{E_{2}}{\cos\theta S_{2}} - \frac{E_{2}}{\cos\theta Sp_{2}}}{\beta_{2}} + \frac{\frac{E_{1}}{\cos\theta S_{1}} - \frac{E_{1}}{\Omega\cos\theta Sp_{1}}}{\beta_{1}}, \quad (31)$$

Por último, si factorizamos:

$$T_S - T_{Sp} = \frac{E_2}{\beta_2} \left(\frac{1}{\cos\theta S_2} - \frac{1}{\cos\theta Sp_2} \right) + \frac{E_1}{\beta_1} , \quad (32)$$

2.5 Isostasia

El equilibrio que hay entre la corteza y el manto se conoce como isostasia y es debida a la fuerza de gravedad y el contraste de densidades en diversas partes de la Tierra. El término de isostasia fue introducido por C. E. Dutton, en 1889, definido como la compensación de una carga topográfica, producida por una estructura subsuperficial menos densa (Lowrie, 2007).

Airy y Pratt en 1855 y 1859, respectivamente, propusieron explicaciones sobre la isostasia, sus hipótesis tenían en común la compensación de la masa extra de una montaña sobre el nivel del mar por una región de menor densidad (raíz) pero diferían en la manera de lograr la compensación. Algunos modelos de isostasia son explicados a continuación:

Modelo Airy-Heiskanen

Este modelo supone que la compensación isostática se logra cuando la deficiencia de masa en las raíces es igual al exceso de carga que hay en la superficie y considera que la presión es hidrostática, es decir, sobre toda la columna del material es igual como si el interior se comportara como un fluido.

Entre 1924 y 1938, W. A. Heiskanen derivó un conjunto de tablas para calcular las correcciones isostáticas basándose en las hipótesis de Airy, esta compensación isostática ha sido referida como el esquema Airy-Heiskanen. Este modelo propone que una capa de la Tierra flota sobre un sustrato más denso, en este caso el manto, donde las densidades de los dos medios se asumen como constantes y el espesor de la raíz varía en proporción a la elevación de la topografía.

Por ejemplo en una montaña, la compensación isostática local, se encontraría directamente debajo de ella, como se muestra en la Figura 11(a). La altura de la montaña sobre el nivel del mar es mucho menor que el espesor de la corteza debajo de ella, y las densidades de la corteza y el manto se asumen como constantes, el espesor de la zona de raíz varía en proporción a la topografía. De acuerdo con Lowrie (2007), la zona de raíz puede calcularse con la siguiente expresión:

$$r_1 = \frac{\rho_c}{\rho_m - \rho_c} h_1$$
, (33)

Donde ρ_c es la densidad de la roca, ρ_m es la densidad en el manto, h₁ corresponde a la columna vertical de la montaña y r₁ es el valor de la zona de raíz.

El cálculo se haría de manera similar, para una raíz r2 debajo de una altura h2. El valor de la raíz ro para la corteza oceánica debajo de una cuenca oceánica con densidad y profundidad de agua pw y d se realizaría así:

$$r_0 = \frac{\rho_c - \rho_w}{\rho_m - \rho_c} d, \qquad (34)$$

Modelo de Pratt-Hayford

El modelo de Pratt involucra una capa exterior de la Tierra que descansa sobre un sustrato de magma y considera que la expansión diferencial del material en una columna vertical aporta a la topografía de la superficie, así que entre más alta sea la columna sobre una base común, menor será la densidad de la superficie de su base a una profundidad bajo el nivel del mar (Lowrie, 2007).

Entre 1909 y 1910, J. F. Hayford derivó un modelo matemático para describir la hipótesis de Pratt, en un esquema que es llamado compensación isostática de Pratt-Hayford.

De acuerdo con Lowrie (2007), si el material debajo de una montaña, como se muestra en la Figura 11(b), cuya elevación hi (i=1,2...) tiene una densidad pi y una columna vertical con profundidad hacia su base D, la presión en la base del modelo está dada por pi (hi+D). Bajo una cuenca oceánica la presión es debida a el agua con profundidad d y densidad pw en la cima de la columna de roca con espesor (D-d) y densidad po; esto es igual a pwd+po (D-d). Igualando las presiones se obtiene:

$$\rho_i = \frac{D}{h_i + D} \rho_c, \qquad (35)$$

Para la densidad debajo de la elevación topográfica hi

$$\rho_0 = \frac{\rho_c D - \rho_w d}{D - d}, \qquad (36)$$

Para la densidad debajo de una cuenca oceánica de profundidad d. LA compensación de profundidad D es cerca de 100 km.

3 PROCESAMIENTO DE DATOS

Para este trabajo se analizaron sismos ocurridos entre julio del año 2007 y marzo del 2009, localizados previamente por Casiano Jiménez del Servicio Sismológico Nacional (SSN). En un principio se tenían ~3200 sismos locales, de los cuales se decidió estudiar solamente los que tuvieran profundidades mayores a 50 km, Mc mayor a 3.5, se encontraran ubicados en un rango entre -90° y -97° de longitud, y 14° y 20° de latitud, reduciendo la cantidad de eventos a 330 sismos; se seleccionaron únicamente los sismos con dichas características para asegurar la identificación de fases Sp en los sismogramas.

En la Figura 12 se presenta la ubicación del área de estudio, así como las estaciones de VEOX y sus códigos, en el apéndice A se anexa la localización de las estaciones.

Para facilitar la identificación de sismos, se numeraron y acomodaron en carpetas, conteniendo los archivos de las estaciones que los habían registrado, y se procedió a analizar los sismogramas en el programa SAC (Seismic Analysis Code), identificando las fases P, S y Sp. En la mayoría de los casos, se logró identificar las ondas P y Sp en la componente vertical (HHZ), y la onda S en alguna de las componentes horizontales (este-oeste=HHE o norte-sur=HHN), donde fuera más claro el arribo (Figura 13).

Sin embargo, algunos registros sólo contienen información en la componente vertical; en los ejemplos claros de estos casos, se realizó la identificación de las ondas de interés sólo en esa componente como se muestra en la Figura 14 para un sismo del 2008/06/29 en las estaciones IXTE y MAZH, y un ejemplo más, en la Figura 15 del 2008/12/20 para las estaciones RIVA, SAJO, AGUA, ESMA y CONU.

Figura 12. Localización de las estaciones de VEOX con sus códigos y ubicación del área de estudio.

Figura 13. Ejemplo de sismograma, con las fases P, S y Sp, registrados por la estación CERQ del sismo del 2008/01/21 (Figura obtenida con Seismic Analysis Code-SAC).

Figura 14. Ejemplo de identificación de las fases P, S y Sp en la componente vertical, registrado por las estaciones IXTE y MAZH, del sismo del 2008/06/29 (Figura obtenida con Seismic Analysis Code-SAC).

Figura 15. Ejemplo de identificación de las fases P (rojo), S (azul) y Sp (verde) en la componente vertical, registrado por las estaciones RIVA, SAJO, AGUA, ESMA Y CONU del sismo del 2008/12/20 (Figura obtenida con Seismic Analysis Code-SAC).

Se pudieron identificar fases P y S en la mayoría de los sismos, sin embargo, las fases Sp (que son necesarias para este estudio) se identificaron en ~210 sismos con claridad, con una cantidad mínima de una estación y máxima de 25 estaciones para cada evento. Para facilitar la identificación de arribos, se acomodaron las trazas por distancia epicentral (Figura 16), de esta manera, se puede observar la posible tendencia de la llegada de las fases, así como las formas de onda.

Figura 16. Ejemplos de trazas acomodadas por distancia epicentral, de las estaciones SAJO, AGUA, CERQ y SARO, en las componentes norte-sur y vertical, del sismo del 2008/10/24 (Figura obtenida con Seismic Analysis Code-SAC).

También se realizó un código en Matlab, donde se calcularon los tiempos de arribo teóricos entre las fases S y Sp (se programó la ecuación 30 detallada en el capítulo anterior), se utilizaron los tiempos de arribo observados e identificados en SAC, se obtuvieron los valores rms y se encontraron los espesores cortical para cada estación.

Para el cálculo de los espesores corticales se asumieron velocidades de onda P en la corteza y el manto de α_1 =6.5 km/s y α_2 =8.2 km/s, respectivamente, un cociente de velocidades P y S de Ω = $\sqrt{3}$, y velocidades de onda S en la corteza y el manto de β_1 = α_1/Ω y β_2 = α_2/Ω , tomados como referencia del artículo de Ligorría et al. (1993).

Para corroborar que el código funcionara bien, se hicieron algunas pruebas utilizando datos del artículo de Narcía et al. (2003). En dicho estudio, hicieron una determinación del espesor cortical y el modelo de velocidades debajo de Chiapas utilizando ondas S y Sp, con 4 estaciones: Arriaga (Ar), Comitán (Co), Tapachula (Ta) y Tuxtla (Tu).

A continuación se presenta la Tabla 1, donde se muestra una comparación de los espesores corticales obtenidos en el artículo y los valores promedio calculados con el código en Matlab con su medición particular mínima y máxima, utilizando los mismos datos de localización, profundidad y diferencia entre tiempos de arribo observados.

Estación	Espesor Cortical Narcía (km)	Espesor Cortical promedio en Matlab (km)
Ar	28±4	35 (28, 41)
Со	53±10	45 (41, 52)
Та	17±31	21 (18, 23)
Tu	49±11	43 (39, 48)

Tabla 1. Comparación de los espesores corticales de Narcía et al., (2003) con los obtenidos por el código en Matlab, para las estaciones de Ar, Co, Ta y Tu.

Se puede ver en la Tabla 1 que la mayoría de los valores promedio calculados se encuentran dentro del rango de espesores presentados en el artículo mencionado, a excepción de la estación Ar, donde el valor calculado es mayor que el esperado, sin embargo, los valores de las mediciones particulares sí se encuentran dentro del rango. Esta diferencia puede ser explicada por la diferencia entre ambas metodologías, ya que Narcía et al., (2003) realizan una inversión para obtener sus resultados y en este estudio se resuelve el problema directo.

Para tener un mejor control calidad de los datos, se utilizó un catálogo de sismos relocalizados por el método de diferencias dobles (Castro, 2010). Dicho catálogo proporcionó un total de 67 localizaciones útiles. Sin embargo, para el desarrollo del presente trabajo fue necesario relocalizar 140 sismos adicionales utilizando el software Seisan y el modelo de velocidades de Campillo et al. (1996). El modelo de Campillo y colaboradores es uno de los que han proporcionado los mejores ajustes a las observaciones y se emplea también por el SSN. Se identificaron las fases P y S que fueran más claras y se prestó atención a tener valores de error "rms" menores a 1. Para las relocalizaciones se utilizaron estaciones de VEOX y el SSN (Apéndices A y B).

La lista con la identificación de número del sismo, así como la fecha, hora y localizaciones nuevas, con su respectivo valor rms se presentan en el Apéndice C, donde también se incluyeron los datos utilizados de Castro (2010) sin valor rms.

En la Figura 17, se presenta un mapa que contiene las localizaciones originales proporcionadas por el SSN (círculos rojos) y las localizaciones realizadas en Seisan (círculos verdes) unidos por una línea negra para dar conocer de la diferencia entre localizaciones. Las relocalizaciones que yo obtuve en Seisan emplean las estaciones de VEOX y las del SSN, mientras que las localizaciones originales solamente emplean datos del SSN. Por lo tanto, considero que las relocalizaciones en Seisan, mostradas a continuación, son más confiables.

Figura 17. Mapa comparativo de las localizaciones proporcionadas por el SSN (rojo) y las realizadas con Seisan (verde). La línea negra une ambas ubicaciones (Mapa generado con Generic Mapping Tools-GMT).

En la Figura 18, se muestra otro mapa, donde aparecen las estaciones del arreglo VEOX (color blanco), los sismos localizados con Seisan (color verde) y los sismos utilizados de la tesis de Castro (2010) (color morado).

Figura 18. Mapa con los sismos localizados con Seisan (verde), sismos tomados de la tesis de Castro-Artola (morado) y estaciones del arreglo VEOX representadas con triángulos (Mapa generado con Generic Mapping Tools-GMT).

Se hizo un control de calidad de los registros que tuvieron llegadas de ondas Sp claras y éstos fueron usados para el cálculo de los espesores corticales en cada estación. No se calcularon los espesores en: SAMM, CHIL, MARO, MOGO, ZAPO, INUV y EBTT, porque no era clara la identificación de arribos o no se identificó ningún sismograma con fase Sp. Además, tampoco se obtuvo el espesor de las estaciones: 3MAY, ESPE y GUIV, ya que no pudieron ser instaladas debido a inundaciones en los sitios antes de que llegara la campaña de instalación (Melgar y Pérez-Campos, 2011). En la Figura 19 se muestran las localizaciones de los sismos que se utilizaron para el cálculo de espesores, acomodados por escala de profundidad.

Figura 19. Sismos utilizados con escala de profundidad (Mapa generado con Generic Mapping Tools-GMT).

4 RESULTADOS

Después de realizar el procesamiento de datos, se obtuvieron mediciones del espesor cortical particular para cada sismo donde se identificaron fases P, S y Sp en cada estación, obteniendo así muchas mediciones puntuales de la corteza, presentadas en el Apéndice D.

La distribución de las localizaciones de los espesores corticales obtenidos de las mediciones particulares se muestran en la Figura 20, donde se muestran todas las mediciones que se utilizaron representados por colores en escala de profundidad de 20 a 50 km, donde de manera general puede verse que las profundidades menores se encuentran hacia las costas del Pacífico y el Golfo de México, y las profundidades mayores se concentran en la zona central del Istmo de Tehuantepec.

Figura 20. Distribución de los espesores corticales particulares acomodados por escala de profundidad (Mapa generado con Generic Mapping Tools-GMT).

Se calculó el promedio de todas las mediciones en cada estación como se muestra en la Tabla 2, además se añadió a esta tabla el número de mediciones que se utilizaron después de hacer el control de calidad de la revisión de los sismogramas con arribos de fases claros.

Estación	Espesor Cortical Promedio (km)	Desviación Estándar	No. Mediciones
ROLI	29.7	6.4	9
XADA	35.5	2.1	2
JUCH	32.7	5.7	9
IXTA	30.1	6.4	16
IXTE	30.0	7.2	21
MAZH	34.0	7.3	41
ELME	33.7	7.8	37
CHIV	33.8	6.6	30
RIVA	33.2	6.4	29
MARO	35.7	7.2	18
PARE	33.7	6.7	9
PALO	35.8	5.6	30
TOLO	36.5	4.4	16
DONA	35.8	5.7	6
LACU	34.2	6.6	34
SUCH	34.3	5.1	4
JECA	38.5	3.1	11
NUMO	36.8	7.1	8
MACA	32.3	9.2	13
GUVI	33.9	6.1	12
CANU	34.1	6.5	7
CUAU	31.4	6.2	8
SAJO	35.5	6.0	25
CAUD	32.0	9.1	10
AGUC	34.6	7.7	21
CERQ	33.6	8.2	17
AGUA	32.4	5.9	19
ESMA	32.4	7.1	23
CONU	31.0	3.7	10
COYO	31.8	2.1	4
RACI	28.3	4.2	8
MANG	25.5	2.2	15
SARO	24.7	3.2	10
CATE	30.0	0.0	1
SONT	26.0	0.0	1

MONT	21.5	0.7	2
TUXT	27.3	6.4	27
abla 2. Valoros dol osr	basar cartical prom	odio para cada	ostación con o

 Tabla 2. Valores del espesor cortical promedio para cada estación, con el número de mediciones utilizadas en cada una de ellas.

Se obtuvieron espesores corticales promedio de 21.5 a 38.5 km como se muestra en la Figura 21 donde se presentan las estaciones utilizadas, acomodadas por escala de profundidad, así como un perfil (color gris) que se trazó perpendicular a la TMA (comienza la TMA y termina en un punto en las costas del Golfo de México) para posteriormente realizar el cálculo de la distancia horizontal con cada una de las estaciones (exceptuando la estación TUXT, ya que no se encuentra alineada con el resto de las estaciones de VEOX), que pueden apreciarse en la Figura 22, donde también se presentan los valores de las mediciones promedio obtenidas para la discontinuidad del Conrad, que se explicará más adelante.

Figura 21. Espesores corticales promedio de VEOX con escala de profundidad (Mapa generado con Generic Mapping Tools-GMT).

Figura 22. Representación de los espesores corticales en el Moho, con su respectiva desviación estándar, obtenidos bajo las estaciones (triángulos) donde se identificaron fases P, S y Sp acomodados por distancia horizontal.

De acuerdo con Persaud et al. (2007) los valores mínimos para corteza continental en México son de 20 km, por lo que los valores que se encontraron menores a dicho espesor en este estudio fueron interpretados como si pertenecieran a la discontinuidad del Conrad.

En 1925, V. Conrad estudió un sismo de 1923, al este de los Alpes, encontró los arribos Pg y Sg en una capa superior cortical y arribos de ondas P* y S* que viajaron más rápido en una capa mucho más profunda, con velocidades de 6.29 km/s y 3.57 km/s, respectivamente, que son menores a las velocidades correspondientes al manto superior para esa zona, por que propuso la existencia de una capa cortical inferior; la interface que separa la corteza continental en una capa superior y una capa inferior es la discontinuidad de Conrad. En contraste con el Moho, que se identifica en cualquier parte, el Conrad está pobremente definido o ausente en algunas áreas (Lowrie, 2007).

Se revisaron nuevamente aquellos sismos donde se tenían espesores menores o iguales a 20 km, y se encontraron algunas algunos ejemplos con dobles fases Sp. En la Figura 23 se presenta un ejemplo donde se observan las fases P, S y dos Sp, para la estación ELME del sismo del 21/08/2008, donde la fase Sp más cercana a la onda S, y se consideró como discontinuidad en el Conrad, y la fase Sp más lejana a la S, como discontinuidad en el Moho. Se calcularon las diferencias entre tiempos de arribo de cada onda Sp, así como sus respectivos valores rms a

diferentes profundidades presentados en la Figura 24, obteniendo 19 km para el Conrad y 35 para el Moho.

Figura 23. Sismogramas del 21/08/2008 con fases P, S y 2 fases Sp identificadas para el Moho y Conrad (Figura obtenida con Seismic Analysis Code-SAC).

Figura 24. Ajuste de valores rms para las fases convertidas del Moho y Conrad de la estación ELME, con el sismo No. 188.

Se encontraron en total 18 mediciones, correspondientes a 9 estaciones, con valores de espesor menores a 20 km y se consideraron como del Conrad (Apéndice E). Se realizó un mapa de mediciones particulares en el Conrad, representados por escala de profundidad (Figura 25) donde se puede ver que los valores de menor profundidad se encuentran hacia la costa, en este caso debido a la escases de mediciones, sólo es la costa del Pacífico ya que, en este caso, por la escases de mediciones, solo se cuenta con datos en esta región. Los valores de mayor profundidad se encuentran hacia el centro de la región.

Figura 25. Distribución de las mediciones particulares para el Conrad acomodados por escala de profundidad (Mapa generado con Generic Mapping Tools-GMT).

Los valores promedio para dichas estaciones se encuentran listados en la Tabla 3 y se presenta su distribución así como escala de profundidad en la Figura 26. También se calculó la distancia horizontal desde la TMA hacia las estaciones con mediciones en el Conrad, presentadas en la Figura 27.

Estación	Espesor Conrad (km)	No. Mediciones
IXTE	13	3
MAZH	10	3
ELME	19	2
CHIV	11	2
LACU	16	1
AGUA	13	1
CONU	18.5	2

MANG	17.5	2
TUXT	15.5	2

Tabla 3. Valores del espesor en el Conrad promedio para cada estación, con el número de mediciones utilizadas.

Figura 26. Espesores promedio medidos para el Conrad con escala de profundidad (Mapa generado con Generic Mapping Tools-GMT).

Figura 27. Representación de los espesores en el Conrad, con su respectiva desviación estándar, obtenidos bajo las estaciones (triángulos) donde se identificaron fases P, S y Sp acomodados por distancia horizontal.

5 DISCUSIÓN Y CONCLUSIONES

5.1 Discusión

En los capítulos anteriores, se ha hablado sobre los antecedentes del lstmo de Tehuantepec, los tipos de ondas sísmicas, el procedimiento para calcular las diferencias entre tiempos de arribo de fases S y Sp y cómo se llevó a cabo el procesamiento de datos en este proyecto para cumplir con el objetivo de encontrar el espesor cortical utilizando sismos locales registrados por el arreglo VEOX.

Se hicieron los cálculos de espesor cortical para cada sismo en cada estación (después del control de calidad de los datos), donde se observaron espesores de 21.5 a 38.5 km para la discontinuidad de Mohorovicic. Se encontraron algunos espesores \leq 20 km que se justificaron como posibles fases en la discontinuidad de Conrad donde los resultados fueron de 10 a 19 km.

En los resultados obtenidos en la Tabla 2, representados en la Figura 21, puede verse la tendencia general de la gráfica de tener menores espesores hacia las costas del Pacífico y del Golfo de México, y mayores espesores conforme nos acercamos al continente (un comportamiento similar se observa en la Figura 20 de mediciones particulares de los espesores corticales). Allenby y Schnetzler (1983) y Meissner (1986) hicieron mapas de profundidades en la discontinuidad del Moho para Europa y Estados Unidos, respectivamente, donde los espesores de menor grosor se encuentran también en las zonas costeras y los mayores espesores se ven al adentrarse al continente, lo cual es consistente con los resultados en este trabajo.

También algunas estaciones consecutivas donde se presentan incrementos seguidos por decrementos del espesor, esto se debe a que la Tierra no es homogénea y las discontinuidades de ella tienen topografía; también tiene que ver la diferencia entre la cantidad de mediciones entre una estación y otra, ya que contamos con estaciones donde sólo se identificó un arribo de onda Sp en un sismograma claro, y en algunas otras más de cuarenta. Otra de las razones que podría explicar ese comportamiento es que el modelo de velocidades es muy general para la región.

Se realizó una comparación de los resultados obtenidos con el estudio que realizaron Melgar y Pérez Campos (2011), presentada en la primera columna de la Tabla 4 donde utilizaron funciones receptor para modelar la topografía del Moho y encontrar la geometría de la placa subducida bajo el lstmo de Tehuantepec, y se obtuvieron diferencias entre los resultados de -14.6 a 6.1 km.

Estación	Espesor Cortical	Espesor Cortical	Diferencia
	Melgar (km)	Promedio (km)	(km)
	0° ≤ Φ _B ≤ 360°		
ROLI		29.7	
XADA		35.5	
JUCH	27.3	32.7	5.4
IXTA	30.5	30.1	-0.4
IXTE	29.7	30.0	0.3
MAZH	27.9	34.0	6.1
ELME	33.8	33.7	-0.1
CHIV	32.4	33.8	1.4
RIVA	28.8	33.2	4.4
MARO	33.8	35.7	1.9
PARE	29.3	33.7	4.4
PALO		35.8	
TOLO	40.5	36.5	-4.0
DONA	41.1	35.8	-5.3
LACU	33.3	34.2	0.9
SUCH	39.5	34.3	-5.3
JECA	37.1	38.5	1.4
NUMO	42.1	36.8	-5.4
MACA		32.3	
GUVI	45.8	33.9	-11.9
CANU	30.9	34.1	3.2
CUAU	46	31.4	-14.6
SAJO	35.5	35.5	0.0
CAUD	35.2	32.0	-3.2
AGUC	35.2	34.6	-0.6
CERQ	37.3	33.6	-3.7
AGUA	39.5	32.4	-7.1
ESMA	41.3	32.4	-8.9
CONU	37.7	31.0	-6.7
COYO	30.6	31.8	1.2
RACI		28.3	
MANG	28.9	25.5	-3.4
SARO	27.4	24.7	-2.7
ZAPO	27.9		
CATE	31.4	30.0	-1.4
INUV	36.8		
SONT	25	26.0	1.0

EBTT	31.2		
MONT	23.5	21.5	-2.0

Tabla 4. Comparación de espesores corticales promedio obtenidos en estecon los de Melgar y Pérez-Campos (2011), Tabla 1 columna con mediciones usandotodos los back azimuts.

Se hizo también una gráfica para comparar los datos mostrados en la tabla anterior, de esta manera, en la Figura 28 se pueden ver los valores de espesores corticales, de las estaciones de VEOX, orientados hacia un perfil perpendicular a la TMA. Cabe mencionar que Melgar y Pérez-Campos (2011) utilizaron 35 estaciones para el análisis de la topografía del Moho, mientras que en este estudio fueron 36, y 31 de ellas coinciden en ambos estudios.

Elevación (msnm)

Figura 28. Comparación de los espesores corticales en este estudio (color azul) con los valores de $0^{\circ} \le \Phi_B \le 360^{\circ}$ de Melgar y Pérez-Campos (color rojo).

Para la obtención del modelo final del Moho, Melgar y Pérez-Campos (2011) realizaron una interpolación de los diferentes espesores corticales, mostrados en la Figura 7 de su artículo. Para este trabajo, se hizo también una interpolación de los espesores corticales, y se comparan ambos resultados en la Figura 29. Se observan mayores diferencias entre espesores para las estaciones que se encuentran más cercanas a la costa del Pacífico, o más hacia el sur del arreglo VEOX, y menores diferencias hacia el norte del mismo, pero de manera general, la tendencia del perfil es de espesores menores hacia las costas y mayores al alejarse de ellas y adentrarse al continente. También se observa que en la parte sur del arreglo los

espesores corticales que yo obtuve son mayores que los de Melgar y Pérez-Campos (2011), mientras que al norte del arreglo esta tendencia se invierte, es decir los espesores corticales que yo obtuve son menores mayores que los de Melgar y Pérez-Campos (2011).

Elevación (msnm)

Figura 29. Comparación de los espesores corticales obtenidos sin interpolar (color azul), interpolados (color negro) con los valores interpolados (Figura 7) de Melgar y Pérez-Campos (color rojo).

Una de las razones que podría explicar las diferencias en espesores corticales entre el modelo de Melgar y Pérez Campos (2011) y el del presente estudio es que las técnicas y los datos utilizados para determinar el espesor en el Moho fueron diferentes a pesar de tratarse del mismo arreglo de estaciones. Ellos utilizaron funciones receptor con datos telesísmicos y principalmente la conversión de la fase Ps, que se ve registrada en los sismogramas después de la onda P. En esta tesis utilicé la fase Sp de sismos intraplaca locales.

La estación TUXT se comparó con los resultados de Rodríguez-Domínguez (2013), quien determinó la estructura sísmica debajo de la estación con funciones receptor encontrando la discontinuidad de Mohorovicic a 30.6 km (28.2, 33.6), presentando una diferencia de 3.3 km con este trabajo (Tabla 5).

Estación	Espesor Cortical Promedio (km)	Espesor Cortical M. Rodríguez (km)
TUXT	27.3	30.6

 Tabla 5. Comparación del espesor cortical de la estación TUXT obtenido en este

 estudio con el obtenido por M. Rodríguez (2013).

Se encontraron valores en el Conrad que van de 13 a 19 km comparables con el estudio realizado por Ligorría et al. (1993), quienes obtuvieron valores de 22 ± 2.3 km para el Conrad y 36 ± 3.2 km para el Moho (Tabla 6). En las Figuras 30 y 31 se presentan los mapas comparativos entre el trabajo mencionado anteriormente y el presente estudio para espesores calculados para el Moho y el Conrad respectivamente.

Estación	Espesor Moho (km)	Espesor Conrad (km)
CUA	35±2.8	18±2.4
CIR	38±3.2	25±2.5
EZO	29±3.2	20±2.0
CEV	34±3.0	20±3.3
TIO	37±1.8	24±2.5
VEN	37±3.5	23±3.1
HUI	33±3.4	21±1.5
SFM	32±4.6	21±1.0

Tabla 6. Valores para el Conrad y Moho obtenidos por Ligorría et al. (1993).

Figura 30. Comparación de profundidades obtenidas por Ligorría et al. (1993) con estaciones portátiles (cuadrados) y las mostradas en este estudio (círculos) para el Moho (Mapa generado con Generic Mapping Tools-GMT).

5.2 Conclusiones y recomendaciones

La estructura cortical promedio estimada para el lstmo de Tehuantepec en este estudio es de 32.4 km, mientras que la calculada para la discontinuidad del Conrad es de 14.8 km. El valor de menor espesor para el Moho es de 21.5 km en la estación MONT, que se encuentra en el extremo norte del arreglo VEOX en la costa del Golfo de México y la de mayor grosor es JECA con 38.5 km localizada en la parte central del arreglo entre los límites de Veracruz y Oaxaca, mientras que para el Conrad es de 13 km en las estaciones IXTE y AGUA, y 19 km en la estación ELME.

Se ha demostrado en este estudio que la técnica de diferencias entre tiempos de arribo de fases S-Sp en el lstmo sugiere que la estructura del Moho es más delgada hacia las costas del Pacífico y del Golfo de México y más gruesa en la parte central. Los espesores que se encuentran hacia el Golfo de México son menores que los espesores en el lado del Golfo de Tehuantepec.

Consideramos que el espesor propuesto en este estudio no compensa la topografía isostáticamente, ya que el lstmo de Tehuantepec no es caracterizado por tener topografía abrupta, muchas de las estaciones tienen elevaciones cercanas al nivel del mar. Las estaciones con mayor elevación se encuentran hacia el norte del arreglo, cerca del Golfo de México, y ésta no rebasa un kilómetro de altura. En dicha zona se encuentra el campo volcánico de los Tuxtlas, donde los conos de San Martín y Santa Martha se encuentran a más de 1700 metros sobre el nivel del mar. Las dimensiones máximas del arreglo en dirección norte-sur son de ~270 km. Esta distancia es suficientemente pequeña que la rigidez de la litosfera debe ser capaz de soportar la carga topográfica.

El reconocimiento de la fase Sp en los sismogramas es primordial para el desarrollo de esta técnica, los arribos de las ondas Sp identificados en los sismogramas se caracterizan por verse más claros en las componentes verticales, después de la llegada de la onda P y un poco antes de la onda S. Los valores promedio entre diferencias de tiempos de arribo calculados para la discontinuidad del Conrad son de 3.7 segundos y para el Moho son de 4.6 segundos.

Al tener pocas mediciones de espesores en el Conrad, se recomienda realizar una revisión de los sismogramas, con objetivo principal encontrar las fases Sp de dicha discontinuidad.

En algunos casos se observaron también fases Ps después de las ondas P, por lo que se recomienda buscar estos arribos y realizar un estudio futuro con tiempos de arribo de fases P y Ps.

BIBLIOGRAFÍA

Abrehdary, M., Sjöberg, L. E., Bagherbandi, M. y Sampietro, D. (2017). Towards the Moho depth and Moho density contrast along with their uncertainties from seismic and satellite gravity observations. Journal of Aplplied Geoddesy, 11(4). Doi: 10.1515/jag-2017-0019.

Allenby, R. J. y Schnetzler, C. C. (1983). United States cristal thickness. Tectonophysics, V. 93, 13-31.

Bravo H., Rebollar C. J., Uribe A. y Jiménez O. (2004). Geometry and state of stress of the Wadati-Benioff zone in the Gulf of Tehuantepec, Mexico. Journal of Geophysical Research, 109, B04307. Doi: 10.1029/2003JB002854.

Buland, R. y Chapman, C. H. (1983). The computation of seismic travel times. Bulletin of the Seismologiccal Society of America, V 73(5):1271-1302.

Campillo, M., Singh, S. K., Shapiro, N., Pacheco, J., y Herrmann, R. B. (1996). Crustal structure south of the Mexican Volcanic Belt, based on group velocity dispersion. Geofísica Internacional, 35(4):361-370.

Castro Escamilla Raúl (1980). Un modelo de la corteza terrestre para el sur de México mediante el uso de sismos profundos. Tesis licenciatura, Facultad de Ingeniería, Universidad Nacional Autónoma de México, 74 pp.

Castro-Artola, O. A. (2010). Caracterización de la geometría de la zona de Benioff con una red densa de banda ancha en el lstmo de Tehuantepec. Tesis licenciatura, Facultad de Ingeniería, Universidad Nacional Autónoma de México, México, 65 pp.

Chen, T. y Clayton R. W. (2012). Structure of central and southern Mexico from velocity and attenuation tomography. Journal of Geophysical Research, V. 117, B09302. Doi: 10.1029/2012JB009233.

Couch, R. y Woodcock, S. (1981). Gravity structure of the continental margins of southwestern Mexico and northwestern Guatemala. Geotimes, 27, 23-25.

Espíndola Castro, V. H. (2009). Modelos de velocidad cortical utilizando funciones de receptor aplicado a estaciones de banda ancha del SSN, Mexico. Tesis doctoral, Instituto de Geofísica, Universidad Nacional Autónoma de México, D.F., México.

Guzmán-Speziale, M. y Zúñiga, F. R. (2016). Differences and similarities in the Cocos-North America and Cocos-Caribbean convergence, as revealed by seismic moment tensors. Journal of South American Earth Sciences, V. 71, 296-308.

Hayes, G. P., Wald, D. J. y Johnson R. L. (2012). Slab 1.0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research, 117, B01302. Doi: 10.1029/2011JB008524.

Havskov, J. y Ottemoller, L. (1999). Seisan earthquake analysis software, Seismological Research Letters, 70(5), 532. Doi: 10.1785/gssrl.70.5.532.

Hernández Santana, J., Ortiz Pérez, M. A. y Mah Eng, M. F. (2008). Análisis morfoestructural del Estado de Oaxaca, México: Un enfoque de clasificación tipológica del relieve. Investigaciones geográficas. Boletín del Instituto de Geografía, UNAM, 68, 7-24.

Kennett, B. L. N. y Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophysical Journal International, V 105, 429-465, Doi: 10.1111/j.1365-246X.1991.tb06724.x.

Kim, Y., Clayton R. W. y Keppie F. (2011), Evidence of a collision between the Yucatán Block and Mexico in the Miocene. Geophysical Journal International, 187,989–1000, Doi:10.1111/j.1365-246X.2011.05191.x.

Klein, F. W. (2014). User's Guide to HYPOINVERSE-2000, a Fortran program to solve earthquake locations and magnitudes. Open file report 02-171, USGS.

Klitgord, K. D. y Mammerickx, J. (1982). Northern east pacific rise; magnetic anomaly and bathymetric framework. Journal Geophysical Research, 87, 138, 6725-6750.

Lay W. y Wallace, T. (1995). Modern Global Seismology, Academic Press. San Diego, pp. 521.

Lee, W. H. K., Bennett, R. E. y Meagher, L. (1972). A method for estimating magnitude of local earthquakes from signal duration. Open file report, USGS.

Lienert, B. R. E. (1991). Report on modifications made to Hypocenter. Technical report, Institute of Solid Earth Physics, University of Bergen, Bergen, Norway.

Lienert, B. R. E., Berg, E. y Frazer, L. N. (1986). Hypocenter: An earthquake location method usig centered, scaled and adaptively least squares. Bulletin of the Seismologiccal Society of America, 76:771-783.

Lienert, B. R. E. y Havskov, J. (1995). A computer program for locating earthquakes both locally and globally. Seis. Res. Lett., 66:26-36.

Ligorría, J. P. y Ponce, L. (1993). Estructura cortical en el lstmo de Tehuantepec, México, usando ondas convertidas. Geofísica Internacional, 32, 89–98.

Lowrie, W. (2007). Fundamentals of Geophysics, Cambridge University Press, second edition.

Meissner, R. (1986). The continental crust: A geophysical approach. Academic, Orlando.

Melgar, D. y Pérez-Campos, X. (2011). Imaging the Moho and Subducted Oceanic Crust at the Isthmus of Tehuantepec, Mexico, from Receiver Functions. Pure and Applied Geophysics. 168. 1449–1460. Doi: 10.1007/s00024-010-0199-5.

Menard, H. W. (1955). Deformation of the Northeastern Pacific Basin and the West Coast of North America. Geological Society of America Bulletin, V. 66, p. 1149-1198.

Menard, H. W. y Fisher, R. L. (1958). Clipperton fracture zone in the northeastern equatorial Pacific. The Journal of Geology, 86, 9248-9258.

Narcía-López, C. (2002). Espesor de la corteza en Chiapas usando ondas directas y convertidas, MSc Thesis, CICESE, Ensenada, Baja California, México.

Pardo, M. y Suarez, G. (1995). Shape of the subducted Rivera and Cocos plate in southern Mexico, seismic and tectonic implications. Journal of Geophysical Research, 100, 12, 357-12, 373.

Perez-Campos, X., Kim, Y., Husker, A., Davis, P. M., Clayton, R. W., Iglesias, A., Pacheco, J. F., Singh, S. K., Manea, V. y Gurnis, M. (2008). Horizontal Subduction and truncation of the Cocos Plate beneath central Mexico, Geophysical Research Letters, 35, L18303. Doi: 10i.1029/2008GL035127.

Persaud, P., Pérez-Campos, X. y Clayton, R. W. (2007). Crustal thickness variations in the margins of the Gulf of California from receiver functions. Geophysical Journal International, 170, 687-669. doi:10.1111/j.1365–246X.2007.03412.x.

Ponce L., Gaulon R., Suárez G. y Lomas E. (1992), Geometry and state of stress of the downgoing Cocos plate in the lsthmus of Tehuantepec, Mexico. Geophysical Research Letters, 19, 773-776.

Reguzzoni, M., Sampietro, D. y Sansò, F. (2013). Global Moho from the combination of the CRUST2.0 model and GOCE data. Geophysical Journal International, V 195, p 222-237. Doi: 10.1093/gji/ggt247.

Sampietro, D., Reguzzoni, M. y Braitenberg, C. (2014). The GOCE Estimated Moho Beneath the Tibetan Plateau and Himalaya. Earth on the Edge: Science for a Sustainable Planet. International Association of Geodesy Symposia, Springer, Berlin, Heidelberg, 139, 391-397, doi: 10.1007/978-3-642-37222-3_52.

Sedlock, R. L., Ortega-Gutiérrez, F. y Speed, R. C. (1993). Tectonostratigraphic Terranes and Tectonic Evolution of Mexico, The Geological Society of America, Special Paper 278, 1-161.

Servicio Sismológico Nacional, Instituto de Geofísica, Universidad Nacional Autónoma de México, México, doi:10.21766/SSNMX/SN/MX

Stein, S. y Wysession, M. (2003). An Introduction to Seismology, Earthquakes and Earth Structure, Blackwell Publishing 1a Ed. E.U.

Wilson, D. S. (1996). Fastest known spreading on the Miocene Cocos-Pacific plate boundary. Geophysical Research Letters, 23, 21,3003-3006.

Referencias de páginas de internet

http://www.inegi.org.mx

https://www.gob.mx/inafed

https://www.gob.mx/conagua

https://www.gob.mx/semarnat

https://earthquake.usgs.gov/learn/glossary/?term=S%20wave

https://earthquake.usgs.gov/learn/glossary/?term=P%20wave

https://earthquake.usgs.gov/learn/glossary/?term=love%20wave

https://earthquake.usgs.gov/learn/glossary/?term=Rayleigh%20wave

http://www.ssn.unam.mx

ANEXOS

Estación	Longitud (°)	Latitud (°)	Localidad
SAMM	-94.9944	16.2082	San Mateo del Mar, Tehuantepec, Oax.
ROLI	-95.102	16.3151	Santa Rosa de Lima, Oax.
XADA	-95.0234	16.3677	Santa María Xadani, Oax.
JUCH	-95.0122	16.4497	Juchitán de Zaragoza, Oax.
IXTA	-95.0591	16.5036	Asunción Ixtaltepec, Oax.
IXTE	-95.1223	16.5635	lxtepec, Oax.
MAZH	-94.9474	16.6325	Mazahua, Asunción Ixtaltepec, Oax.
ELME	-94.9577	16.6939	El Mezquite, Asunción Ixtaltepec, Oax.
CHIV	-94.9947	16.7311	Chivela, Asunción Ixtaltepec, Oax.
RIVA	-95.0289	16.7643	Rincón Vaquero, Oax.
CHIL	-95.0023	16.8317	Chigola, Oax.
MARO	-95.0362	16.882	Matías Romero Avendaño, Oax.
MOGO	-95.0283	17.0054	Mogoñé Viejo, San Juan Guichicovi, Oax.
PARE	-95.046	17.0742	Paso Real, Sarabia, Oax.
PALO	-95.0659	17.1414	Palomares, Oax.
TOLO	-95.0466	17.195	Tolosita, Oax.
DONA	-95.0592	17.2301	Donají, Oax.
ESPE	-95.1064	17.2929	La Esperanza, Oax.
LACU	-95.0497	17.3334	La Cumbre, Matías Romero, Oax.
SUCH	-94.9888	17.3801	Suchilpan, Ver.
JECA	-95.024	17.4307	Jesús Carranza, Ejido de Santa Lucrecia, Ver.
NUMO	-95.0848	17.5269	Nuevo Morelos, Jesús Carranza, Ver.
MACA	-95.021	17.5964	Macaya, Ver.
GUVI	-95.0886	17.6398	Guadalupe Victoria, Ver.
MEAG	-95.0266	17.6637	Medias Aguas, Sayula, Ver.
CANU	-95.0709	17.7052	Campo Nuevo, San Juan Evangelista, Ver.
CUAU	-95.0518	17.7516	Cuauhtémoc, San Juan Evangelista, Ver.
SAJO	-95.0698	17.7704	San José, San Juan Evangelista, Ver.
CAUD	-95.0667	17.8204	La Caudalosa, San Juan Evangelista, Ver.
AGUC	-95.0371	17.8777	Aguacatillo, San Juan Evangelista, Ver.
CERQ	-95.0494	17.9083	La Cerquilla, Ver.
AGUA	-95.1114	17.9735	Aguapinole, Acayucan, Ver.
ESMA	-95.0466	18.0176	Esperanza Malota, Acayucan, Ver.
CONU	-95.1196	18.1106	Corral Nuevo, Ver.
COYO	-95.1177	18.153	Coyol de Domínguez, Hueyapan de Ocampo, Ver.

Apéndice A. Ubicación geográfica de las estaciones del arreglo VEOX.

RACI	-95.0838	18.1808	Ranchi Cerro del Indio, Camino Hueyapan- Coyol-Sabaneta, Ver.
MANG	-95.1247	18.2375	Los Mangos, Hueyapan de Ocampo, Ver.
SARO	-95.1174	18.2969	Santa Rosa, Hueyapan de Ocampo, Ver.
ZAPO	-95.0976	18.3329	Zapopam de Cabañas, Ver.
CATE	-95.1238	18.3997	Carretera Fed. Catemaco-Acayucam, Ver.
INUV	-95.0458	18.4595	Carretera Fed. Catemaco-Montepío,
			Nanciyaga, Ver.
SONT	-95.0352	18.504	Sontecomapan, Catemaco, Ver.
03-may	-95.0636	18.5371	3 de mayo, Ver.
EBTT	-95.074	18.5842	Reserva ecológica de Los Tuxtlas, Ver.
MONT	-95.0944	18.6387	Monte Pío, Ver.
TUXT	-96.1642	18.0121	Tuxtepec, Oax.
EGIP	-91.9752	17.2648	Egipto, Chiapas.

Apéndice B. Lista de estaciones del SSN utilizadas para las relocalizaciones de sismos.

Estación	Longitud	Latitud	Localidad
TUIG	-94.4225	18.0338	Tuzandépetl, Ver.
CMIG	-94.8838	17.0910	Matías Romero, Oax.
HUIG	-96.1084	15.7692	Huatulco, Oax.
OXIG	-96.7329	17.0725	Oaxaca, Oax.
TGIG	-93.1223	16.7782	Tuxtla Gutiérrez, Chis.
PEIG	-97.1472	15.9986	Puerto Escondido, Oax.
PCIG	-93.2190	15.7046	Pijijiapan, Chis.

Apéndice C. Lista de sismos localizados con Seisan y los tomados de la tesis de Castro (2010), que se presentan sin valor rms.

Fecha (A/M/D)	Hora	No. Sismo	Longitud (°)	Latitud (°)	Profundidad (°)	rms
2007/07/06	17:05	1	-94.654	17.387	159.4	0.2
2007/07/23	14:22	3	-95.334	17.043	123.3	0.3
2007/07/28	8:58	4	-94.87	17.277	95.3	0.6
2007/07/28	19:28	6	-94.962	17.459	142.8	0.4
2007/07/29	12:02	7	-94.663	16.621	109	0.7
2007/07/30	00:14	8	-95.436	17.097	111.6	0.4
2007/08/11	1:56	11	-95.106	16.988	137.1	0.5
2007/08/14	17:23	12	-94.404	17.202	194.9	0.3
2007/08/20	1:01	13	-94.317	17.094	131.7	0.2

2007/08/20	20:02	14	-92.552	15.882	227.9	0.2
2007/08/31	6:51	20	-94.39	17.365	150.5	0.8
2007/09/05	14:57	23	-93.933	16.962	170.3	0.2
2007/09/09	23:22	24	-94.074	17.197	180.996	
2007/09/12	17:47	27	-92.194	15.352	178.7	0.5
2007/09/27	16:53	30	-93.874	16.987	195	0.9
2007/10/01	14:41	31	-94.359	17.29	143.615	
2007/10/01	20:16	32	-95.07	16.847	99.577	
2007/10/04	3:23	34	-94.728	17.253	137.782	
2007/10/05	3:52	35	-94.671	17.162	134.894	
2007/10/12	22:11	36	-94.541	17.329	139.034	
2007/10/19	5:13	38	-94.53	17.64	151.5	
2007/11/09	18:55	40	-94.787	16.96	124.5	0.1
2007/11/30	6:55	44	-94.16	16.995	154.054	
2007/12/01	10:19	47	-95.026	16.863	127.8	0.3
2007/12/03	4:31	48	-94.626	17.342	146.567	
2007/12/05	19:22	50	-95.085	17.004	116.233	
2007/12/09	18:48	51	-94.71	17.289	139.604	
2007/12/09	20:37	52	-95.014	16.816	128.5	0.6
2007/12/13	17:08	54	-96.423	17.286	156.3	0.7
2007/12/14	2:38	55	-91.531	15.135	255	0
2007/12/21	14:52	57	-95.366	17.198	110.095	
2007/12/24	5:43	58	-94.73	17.161	160.3	0.4
2007/12/25	18:07	59	-94.287	17.156	134.6	0.5
2007/12/27	14:57	60	-94.939	17.4	134.37	
2007/12/28	9:21	61	-94.849	17.609	149.3	0.2
2008/01/04	14:20	62	-94.739	17.06	126.6	0.6
2008/01/05	17:53	63	-94.127	16.84	155.9	0.4
2008/01/09	4:03	65	-96.458	16.842	75.5	0.5
2008/01/12	15:47	66	-95.236	17.647	122.984	
2008/01/13	23:08	67	-93.538	16.387	160.7	0.3
2008/01/14	9:16	69	-92.332	15.652	216.9	0.3
2008/01/18	13:21	71	-93.134	16.334	201.4	0.3
2008/01/18	21:34	72	-95.113	16.87	104.182	
2008/01/20	4:20	74	-94.293	16.772	127.371	
2008/01/21	1:53	75	-94.66	17.51	148.7	
2008/01/21	9:37	76	-94.842	17.826	170.5	0.1
2008/01/25	3:16	78	-94.71	17.81	158.5	
2008/02/06	10:05	84	-94.263	17.08	151.6	0.1
2008/02/07	11:39	86	-93.86	16.895	185.7	0.5
2008/02/26	12:04	91	-94.647	17.41	143.438	

				1		1
2008/02/27	4:50	92	-94.843	17.482	138.754	
2008/03/03	2:30	94	-94.951	17.303	135.043	
2008/03/04	14:27	95	-93.414	16.564	188.8	0
2008/03/08	16:24	98	-94.797	17.22	133.048	
2008/03/12	4:51	100	-93.096	15.148	107.7	0.9
2008/03/12	18:19	101	-94.566	16.683	102.46	
2008/03/16	3:21	102	-94.67	17.39	157.8	0.1
2008/03/17	8:35	103	-95.173	17.506	123.923	
2008/03/18	3:43	104	-94.084	17.031	159.196	
2008/03/18	21:58	105	-94.327	16.907	128.3	0.2
2008/03/19	7:53	106	-94.91	17.408	137.015	
2008/03/27	20:37	111	-95.305	16.886	114.5	0.2
2008/03/31	11:22	113	-93.72	16.427	176.5	0.7
2008/04/02	00:29	114	-93.451	16.645	194.8	0.3
2008/04/03	9:26	115	-94.482	17.095	140.7	0.3
2008/04/11	5:10	118	-95.363	16.988	101.132	
2008/04/12	5:46	119	-94.621	17.087	139.5	0.1
2008/04/15	12:12	120	-95.238	17.094	127.8	0.4
2008/04/17	1:52	121	-93.511	15.428	100.8	0.8
2008/04/21	12:02	123	-94.94	17.43	136.3	
2008/04/23	7:32	124	-93.357	15.693	106.6	0.4
2008/04/23	14:34	125	-93.172	15.492	102.3	0.3
2008/04/24	3:17	126	-94.512	17.299	168.7	0.2
2008/04/24	12:51	127	-95.037	17.048	137	0.5
2008/04/30	10:47	128	-92.859	15.224	129.6	0.6
2008/05/01	00:02	129	-91.34	14.696	198.8	0.4
2008/05/03	5:46	130	-95.418	17.126	104.96	
2008/05/06	4:08	131	-94.95	17.619	137.236	
2008/05/08	17:19	133	-94.975	17.149	132.5	0.2
2008/05/09	7:07	134	-95.207	17.023	124.4	0.7
2008/05/12	4:37	135	-95.338	16.974	102.394	
2008/05/13	4:02	136	-94.286	17.213	170.5	0.2
2008/05/13	7:25	137	-94.656	16.889	129.7	0.4
2008/05/14	12:48	138	-94.288	17.002	140.5	0.6
2008/05/14	13:39	139	-94.994	16.954	131.8	0.3
2008/05/18	9:09	140	-95.333	17.129	106.923	
2008/05/19	10:58	141	-93.292	15.515	103	0.3
2008/05/25	5:45	142	-91.898	15.223	211.9	0.4
2008/06/05	5:11	147	-94.031	15.703	147.7	0.6
2008/06/19	15:25	153	-94.52	16.731	127.9	0.7
2008/06/20	3:06	154	-95.232	17.162	138.2	0.1

2008/06/21	2:54	156	-94.763	17.515	146.494	
2008/06/22	5:15	157	-93.867	16.91	171.8	0.4
2008/06/26	10:23	159	-94.965	17.422	151.8	0.8
2008/06/28	9:51	160	-95.198	16.914	106.759	
2008/06/29	14:28	161	-94.743	17.477	150.213	
2008/07/02	9:02	163	-94.49	16.768	138.8	0
2008/07/03	2:24	164	-94.041	17.116	171.781	
2008/07/03	12:24	165	-94.837	17.436	142.456	
2008/07/04	16:31	166	-94.086	17.097	170.635	
2008/07/05	7:04	167	-92.323	14.963	104.8	0.1
2008/07/07	21:14	168	-93.143	15.454	106	0.4
2008/07/10	7:20	169	-94.662	16.802	131.1	0.4
2008/07/11	1:57	170	-95.475	17.165	109.6	0.1
2008/07/11	10:42	171	-94.152	16.836	128.394	
2008/07/16	00:50	172	-94.705	17.181	143.652	
2008/07/16	13:35	173	-95.442	16.879	108.2	0.3
2008/07/16	16:49	175	-94.768	17.395	164	0.4
2008/07/21	12:51	176	-93.164	15.54	104.2	0.5
2008/07/23	15:03	177	-95.152	16.837	110.2	0.1
2008/07/28	00:27	182	-93.681	16.731	156.5	0.6
2008/07/30	10:23	183	-96.061	16.153	40.5	0.9
2008/08/02	11:29	185	-95.253	16.933	112.1	0.3
2008/08/21	00:45	188	-95.307	17.057	117	0.5
2008/09/01	9:31	191	-93.909	17.326	222.2	0.2
2008/09/05	5:57	193	-95.198	17.538	124.963	
2008/09/10	3:57	195	-94.314	16.977	150	0.1
2008/09/11	15:08	196	-94.944	16.726	95.022	
2008/09/17	19:44	197	-93.588	15.853	117	0.7
2008/09/18	12:13	198	-94.63	16.682	110.7	0.4
2008/09/20	16:30	199	-91.899	15.276	226.3	0.3
2008/09/23	3:48	202	-93.448	15.558	96.3	0.6
2008/09/27	7:13	203	-94.279	16.934	145.9	0.2
2008/10/03	19:03	205	-95.27	16.931	108.4	0.5
2008/10/04	10:50	206	-95.044	17.154	62.1	0.7
2008/10/05	7:12	207	-95.544	17.202	110.4	0.1
2008/10/11	22:35	209	-93.661	16.87	176.8	0.7
2008/10/13	2:36	210	-92.029	15.491	224.3	0.3
2008/10/13	21:05	212	-94.19	17.015	158.977	
2008/10/14	1:08	213	-94.323	16.911	129.892	
2008/10/14	3:18	214	-94.91	17.07	57.2	
2008/10/18	12:04	218	-94.944	17.424	167.5	0.2

	2008/10/21	00:27	219	-94.884	17.523	145.2	0.1
	2008/10/23	10:59	221	-94.556	17.28	149.9	0.4
	2008/10/24	5:14	222	-95.032	17.097	122.123	
	2008/10/27	12:18	223	-93.989	17.167	149.4	0.1
	2008/10/30	14:28	224	-94.404	16.723	141.1	0.1
ľ	2008/10/31	8:34	225	-96.603	16.851	71.4	0.3
	2008/11/04	22:32	226	-94.949	17.081	66.2	0.1
	2008/11/05	4:34	227	-94.702	16.638	105.7	0.3
	2008/11/07	20:13	228	-95.175	16.926	105.186	
	2008/11/09	7:39	229	-91.874	15.241	189.7	0.4
	2008/11/11	9:33	230	-92.596	15.169	103.1	0.7
	2008/11/14	4:42	231	-93.473	16.322	161.7	0.5
	2008/11/16	20:33	233	-94.987	17.573	141.5	0.6
	2008/11/17	8:41	234	-93.78	16.931	145.2	0.3
	2008/11/20	20:59	235	-95.255	17.11	128	0.6
	2008/11/23	18:06	236	-94.078	17.131	168.41	
	2008/11/23	18:25	237	-94.188	17.042	148.565	
	2008/11/24	5:48	238	-93.575	15.618	88.4	0.5
	2008/11/24	17:36	240	-94.96	16.92	113.3	
	2008/11/24	23:14	241	-94.806	17.414	160.4	0.2
	2008/11/28	12:00	242	-94.997	16.772	96.184	
	2008/11/29	6:40	244	-94.91	17.06	123.5	
	2008/12/03	16:51	248	-94.849	17.111	139.3	0.2
	2008/12/06	21:24	249	-94.888	17.257	133.3	0.1
	2008/12/08	00:24	251	-94.364	17.391	157.6	0.3
	2008/12/08	8:22	252	-94.483	16.855	114.382	
	2008/12/09	2:46	253	-95.101	16.799	102.1	0.1
	2008/12/18	10:22	257	-94.646	17.342	150.613	
	2008/12/19	1:40	258	-95.309	17.407	134.6	0.5
	2008/12/19	2:03	259	-94.888	16.713	108.5	0.5
	2008/12/20	21:11	261	-94.085	17.129	169.281	
	2008/12/24	5:34	263	-94.626	17.073	134.611	
	2008/12/31	14:21	265	-94.551	17.212	149.005	
	2009/01/01	11:44	266	-91.388	14.684	190.2	0.4
	2009/01/04	11:19	268	-94.744	16.967	137.4	0.8
	2009/01/05	2:34	270	-94.754	17.268	145.1	0
	2009/01/05	4:52	271	-94.596	17.093	159.6	0.5
	2009/01/08	22:55	272	-94.958	17.232	127.681	
	2009/01/09	16:51	273	-95.077	17.239	126.265	
	2009/01/10	4:54	274	-95.066	17.017	57.3	0.5
	2009/01/10	12:53	275	-94.966	17.008	136.6	0.8

2009/01/14 11:10 276 -94.726 16.9 122.9 0.1 2009/01/18 00:49 278 -95.4 17.787 136.6 0.5 2009/01/18 10:23 279 -92.949 15.987 162.4 0.2 2009/01/20 9:01 281 -94.617 17.18 132.826 0.3 2009/01/20 9:08 282 -95.294 16.941 114.4 0.1 2009/01/21 6:35 284 -94.887 17.093 137.4 0.7 2009/01/22 19:17 287 -92.86 15.837 178.1 0.3 2009/01/24 6:07 290 -95.027 16.871 113.1 0.1 2009/01/24 8:19 291 -94.792 17.407 169.6 0.3 2009/01/29 14:02 293 -94.856 17.529 140.278 2009/01/21 16:34 292 -94.762 16.997 134.6 0.7 2009/02/05 <td< th=""><th></th><th>1</th><th></th><th></th><th></th><th></th><th></th></td<>		1					
2009/01/18 00:49 278 -95.4 17.787 136.6 0.5 2009/01/18 10:23 279 -92.949 15.987 162.4 0.2 2009/01/20 9:01 280 -95.217 17.046 125.8 0.3 2009/01/20 9:01 281 -94.617 17.18 132.826 - 2009/01/20 19:08 282 -95.294 16.941 114.4 0.1 2009/01/21 6:35 284 -94.887 17.093 137.4 0.7 2009/01/23 19:17 287 -92.86 15.837 178.1 0.3 2009/01/23 14:9 289 -94.895 16.851 122.2 0 2009/01/24 6:07 290 -95.027 16.871 113.1 0.1 2009/01/24 8:19 291 -94.79 17.407 169.6 0.3 2009/01/29 14:02 293 -94.856 17.529 140.278 0.1 2009/02/05	2009/01/14	11:10	276	-94.726	16.9	122.9	0.1
2009/01/18 10:23 279 -92.949 15.987 162.4 0.2 2009/01/20 9:01 280 -95.217 17.046 125.8 0.3 2009/01/20 9:01 281 -94.617 17.18 132.826 2009/01/20 19:08 282 -95.294 16.941 114.4 0.1 2009/01/21 6:35 284 -94.887 17.093 137.4 0.7 2009/01/23 19:17 287 -92.86 15.837 178.1 0.3 2009/01/24 6:07 290 -94.895 16.851 122.2 0 2009/01/24 8:19 291 -94.797 17.407 169.6 0.3 2009/01/24 8:19 291 -94.79 17.407 169.6 0.3 2009/01/29 14:02 293 -94.856 17.529 140.278 0.1 2009/02/05 12:15 297 -95.246 16.986 114.9 0.1 2009/02/11 <td< td=""><td>2009/01/18</td><td>00:49</td><td>278</td><td>-95.4</td><td>17.787</td><td>136.6</td><td>0.5</td></td<>	2009/01/18	00:49	278	-95.4	17.787	136.6	0.5
2009/01/19 6:30 280 -95.217 17.046 125.8 0.3 2009/01/20 9:01 281 -94.617 17.18 132.826 2009/01/20 19:08 282 -95.294 16.941 114.4 0.1 2009/01/21 6:35 284 -94.887 17.093 137.4 0.7 2009/01/22 19:17 287 -92.86 15.837 178.1 0.3 2009/01/24 6:07 290 -95.027 16.871 113.1 0.1 2009/01/24 6:07 290 -94.79 17.407 169.6 0.3 2009/01/24 8:19 291 -94.79 17.407 169.6 0.3 2009/01/29 14:02 293 -94.856 17.529 140.278 0.1 2009/01/21 14:02 293 -94.856 17.334 139.2 0.1 2009/02/05 12:15 297 -95.246 16.986 114.9 0.1 2009/02/14 <t< td=""><td>2009/01/18</td><td>10:23</td><td>279</td><td>-92.949</td><td>15.987</td><td>162.4</td><td>0.2</td></t<>	2009/01/18	10:23	279	-92.949	15.987	162.4	0.2
2009/01/209:01281-94.61717.18132.8262009/01/2019:08282-95.29416.941114.40.12009/01/216:35284-94.88717.093137.40.72009/01/2219:17287-92.8615.837178.10.32009/01/231:49289-94.89516.851122.202009/01/246:07290-95.02716.871113.10.12009/01/246:07290-95.02716.871113.40.72009/01/248:19291-94.7917.407169.60.32009/01/2616:44292-94.76216.997134.60.72009/01/2914:02293-94.85617.529140.2782009/01/2914:02293-94.85617.529140.2782009/02/0512:15297-95.24616.986114.90.12009/02/0512:15297-95.24616.986114.90.12009/02/1616:33298-94.96517.334130.90.22009/02/1616:33304-94.73416.759111.5121062009/02/185:41306-94.67116.806118.80.22009/02/185:42307-95.1417.697139.00911.5122009/02/185:45315-92.84316.047248.40.72009/02/186:22307-94.73516.83	2009/01/19	6:30	280	-95.217	17.046	125.8	0.3
2009/01/2019:08282-95.29416.941114.40.12009/01/216:35284-94.88717.093137.40.72009/01/2219:17287-92.8615.837178.10.32009/01/231:49289-94.89516.851122.202009/01/246:07290-95.02716.871113.10.12009/01/248:19291-94.7917.407169.60.32009/01/2616:44292-94.76216.997134.60.72009/01/2914:02293-94.85617.529140.2782009/01/2914:02293-94.53417.205151.9832009/02/0512:15297-95.24616.986114.90.12009/02/0512:15297-95.21617.334139.20.12009/02/0616:33298-94.96517.334139.20.12009/02/1112:43301-95.21617.618130.90.22009/02/1218:36303-94.04217.1451760.32009/02/1218:36304-94.73416.759111.5120.12009/02/185:41306-94.67116.806118.80.22009/02/185:41306-94.73316.83118.20.12009/02/186:22307-94.7316.83118.20.12009/02/172:12312-95.1417.297<	2009/01/20	9:01	281	-94.617	17.18	132.826	
2009/01/216:35284-94.88717.093137.40.72009/01/2219:17287-92.8615.837178.10.32009/01/231:49289-94.89516.851122.202009/01/246:07290-95.02716.871113.10.12009/01/248:19291-94.7917.407169.60.32009/01/2616:44292-94.76216.997134.60.72009/01/2914:02293-94.85617.529140.2782009/01/2914:02293-94.53417.205151.9832009/02/0512:15297-95.24616.986114.90.12009/02/0512:15297-95.21617.334139.20.12009/02/0616:33298-94.96517.344130.90.22009/02/1112:43301-95.21617.618130.90.22009/02/1218:36303-94.04217.1451760.32009/02/1218:36304-94.73416.759111.5120.12009/02/185:41306-94.67116.806118.80.22009/02/185:41306-94.73316.83118.20.12009/02/185:41306-94.75517.297139.0092009/02/172:12312-95.1417.297139.0092009/02/172:12315-92.84316.047248.4<	2009/01/20	19:08	282	-95.294	16.941	114.4	0.1
2009/01/2219:17287-92.8615.837178.10.32009/01/231:49289-94.89516.851122.202009/01/246:07290-95.02716.871113.10.12009/01/248:19291-94.7917.407169.60.32009/01/2616:44292-94.76216.997134.60.72009/01/2914:02293-94.85617.529140.27812009/01/316:55295-94.53417.205151.98312009/02/0512:15297-95.24616.986114.90.12009/02/0616:33298-94.96517.334139.20.12009/02/1112:43301-95.21617.618130.90.22009/02/1218:36303-94.04217.1451760.32009/02/141:53304-94.73416.759111.51212009/02/161:53304-94.73416.83118.80.22009/02/185:41306-94.67116.806118.80.22009/02/185:41306-94.78517.297139.0092009/02/172:12312-95.1417.591126.1182009/03/052:55315-92.84316.047248.40.72009/03/068:49317-94.25817.067179.30.42009/03/0811:46318-94.70417.287 <td>2009/01/21</td> <td>6:35</td> <td>284</td> <td>-94.887</td> <td>17.093</td> <td>137.4</td> <td>0.7</td>	2009/01/21	6:35	284	-94.887	17.093	137.4	0.7
2009/01/231:49289-94.89516.851122.202009/01/246:07290-95.02716.871113.10.12009/01/248:19291-94.7917.407169.60.32009/01/2616:44292-94.76216.997134.60.72009/01/2914:02293-94.85617.529140.278-2009/01/316:55295-94.53417.205151.983-2009/02/0512:15297-95.24616.986114.90.12009/02/0616:33298-94.96517.334139.20.12009/02/1112:43301-95.21617.618130.90.22009/02/1218:36303-94.04217.1451760.32009/02/1411:53304-94.73416.759111.512-2009/02/185:41306-94.67116.806118.80.22009/02/186:22307-94.7316.83118.20.12009/02/186:22307-94.7316.83118.20.12009/02/1900:22308-94.78517.297139.009-2009/02/272:12312-95.1417.591126.118-2009/03/052:55315-92.84316.047248.40.72009/03/068:49317-94.25817.067179.30.42009/03/0811:46318-94.704	2009/01/22	19:17	287	-92.86	15.837	178.1	0.3
2009/01/246:07290-95.02716.871113.10.12009/01/248:19291-94.7917.407169.60.32009/01/2616:44292-94.76216.997134.60.72009/01/2914:02293-94.85617.529140.27812009/01/316:55295-94.53417.205151.98312009/02/0512:15297-95.24616.986114.90.12009/02/0616:33298-94.96517.334139.20.12009/02/1112:43301-95.21617.618130.90.22009/02/1218:36303-94.04217.1451760.32009/02/161:53304-94.73416.759111.51212009/02/185:41306-94.67116.806118.80.22009/02/186:22307-94.7316.83118.20.12009/02/186:22307-94.7316.83118.20.12009/02/186:22307-94.78517.297139.00912009/02/272:12312-95.1417.591126.11812009/03/052:55315-92.84316.047248.40.72009/03/068:49317-94.25817.067179.30.42009/03/0811:46318-94.70417.287142.5362009/03/0811:46318-94.661	2009/01/23	1:49	289	-94.895	16.851	122.2	0
2009/01/248:19291-94.7917.407169.60.32009/01/2616:44292-94.76216.997134.60.72009/01/2914:02293-94.85617.529140.2782009/01/316:55295-94.53417.205151.9832009/02/0512:15297-95.24616.986114.90.12009/02/0616:33298-94.96517.334139.20.12009/02/1112:43301-95.21617.618130.90.22009/02/1218:36303-94.04217.1451760.32009/02/161:53304-94.73416.759111.5121762009/02/185:41306-94.67116.806118.80.22009/02/186:22307-94.7316.83118.20.12009/02/186:22307-94.7316.83118.20.12009/02/272:12312-95.1417.297139.009126.1182009/03/052:55315-92.84316.047248.40.72009/03/068:49317-94.25817.067179.30.42009/03/0811:46318-94.70417.287142.5362009/03/0817:19319-94.6615.84198.10.32009/03/0900:44320-92.60615.84198.10.32009/03/1000:36321-93.5516.491 <td< td=""><td>2009/01/24</td><td>6:07</td><td>290</td><td>-95.027</td><td>16.871</td><td>113.1</td><td>0.1</td></td<>	2009/01/24	6:07	290	-95.027	16.871	113.1	0.1
2009/01/2616:44292-94.76216.997134.60.72009/01/2914:02293-94.85617.529140.2782009/01/316:55295-94.53417.205151.9832009/02/0512:15297-95.24616.986114.90.12009/02/0616:33298-94.96517.334139.20.12009/02/1112:43301-95.21617.618130.90.22009/02/1218:36303-94.04217.1451760.32009/02/161:53304-94.73416.759111.5122009/02/185:41306-94.67116.806118.80.22009/02/186:22307-94.7316.83118.20.12009/02/2000:22308-94.78517.297139.0092009/02/272:12312-95.1417.591126.1182009/03/052:55315-92.84316.047248.40.72009/03/068:49317-94.25817.067179.30.42009/03/0811:46318-94.70417.287142.5362009/03/0811:46318-94.70417.84198.10.32009/03/0811:46318-94.70415.84198.10.32009/03/0811:46320-92.60615.84198.10.32009/03/0900:44320-93.5516.491163.40.3<	2009/01/24	8:19	291	-94.79	17.407	169.6	0.3
2009/01/2914:02293-94.85617.529140.2782009/01/316:55295-94.53417.205151.9832009/02/0512:15297-95.24616.986114.90.12009/02/0616:33298-94.96517.334139.20.12009/02/1112:43301-95.21617.618130.90.22009/02/1218:36303-94.04217.1451760.32009/02/161:53304-94.73416.759111.51212009/02/185:41306-94.67116.806118.80.22009/02/186:22307-94.7316.83118.20.12009/02/186:22307-94.7316.83118.20.12009/02/2000:22308-94.78517.297139.00912009/02/272:12312-95.1417.591126.11812009/03/052:55315-92.84316.047248.40.72009/03/068:49317-94.25817.067179.30.42009/03/0811:46318-94.70417.287142.5362009/03/0817:19319-94.14117.194176.4852009/03/0900:44320-92.60615.84198.10.32009/03/1000:36321-93.5516.491163.40.32009/03/112:54322-93.93517.15161.80	2009/01/26	16:44	292	-94.762	16.997	134.6	0.7
2009/01/316:55295-94.53417.205151.9832009/02/0512:15297-95.24616.986114.90.12009/02/0616:33298-94.96517.334139.20.12009/02/1112:43301-95.21617.618130.90.22009/02/1218:36303-94.04217.1451760.32009/02/161:53304-94.73416.759111.5120.12009/02/185:41306-94.67116.806118.80.22009/02/186:22307-94.7316.83118.20.12009/02/186:22307-94.7316.83118.20.12009/02/2000:22308-94.78517.297139.00902009/02/272:12312-95.1417.591126.1180.72009/03/052:55315-92.84316.047248.40.72009/03/068:49317-94.25817.067179.30.42009/03/0811:46318-94.70417.287142.5362009/03/0811:46318-94.60615.84198.10.32009/03/0900:44320-92.60615.84198.10.32009/03/1000:36321-93.5516.491163.40.32009/03/112:54322-93.93517.15161.80.1	2009/01/29	14:02	293	-94.856	17.529	140.278	
2009/02/0512:15297-95.24616.986114.90.12009/02/0616:33298-94.96517.334139.20.12009/02/1112:43301-95.21617.618130.90.22009/02/1218:36303-94.04217.1451760.32009/02/161:53304-94.73416.759111.51212009/02/185:41306-94.67116.806118.80.22009/02/186:22307-94.7316.83118.20.12009/02/186:22307-94.78517.297139.00912009/02/2000:22308-94.78517.297139.00912009/02/272:12312-95.1417.591126.11812009/03/052:55315-92.84316.047248.40.72009/03/068:49317-94.25817.067179.30.42009/03/0811:46318-94.70417.287142.5362009/03/0817:19319-94.14117.194176.48512009/03/0900:44320-92.60615.84198.10.32009/03/1000:36321-93.5516.491163.40.32009/03/112:54322-93.93517.15161.80.1	2009/01/31	6:55	295	-94.534	17.205	151.983	
2009/02/0616:33298-94.96517.334139.20.12009/02/1112:43301-95.21617.618130.90.22009/02/1218:36303-94.04217.1451760.32009/02/161:53304-94.73416.759111.512-2009/02/185:41306-94.67116.806118.80.22009/02/186:22307-94.7316.83118.20.12009/02/186:22307-94.7316.83118.20.12009/02/2000:22308-94.78517.297139.009-2009/02/272:12312-95.1417.591126.118-2009/03/052:55315-92.84316.047248.40.72009/03/068:49317-94.25817.067179.30.42009/03/0811:46318-94.70417.287142.5362009/03/0817:19319-94.14117.194176.485-2009/03/0900:44320-92.60615.84198.10.32009/03/1000:36321-93.5516.491163.40.32009/03/112:54322-93.93517.15161.80.1	2009/02/05	12:15	297	-95.246	16.986	114.9	0.1
2009/02/1112:43301-95.21617.618130.90.22009/02/1218:36303-94.04217.1451760.32009/02/161:53304-94.73416.759111.5122009/02/185:41306-94.67116.806118.80.22009/02/186:22307-94.7316.83118.20.12009/02/2000:22308-94.78517.297139.0092009/02/272:12312-95.1417.591126.1182009/03/052:55315-92.84316.047248.40.72009/03/068:49317-94.25817.067179.30.42009/03/0811:46318-94.70417.287142.5362009/03/0817:19319-92.60615.84198.10.32009/03/0900:44320-92.60615.84198.10.32009/03/1000:36321-93.5516.491163.40.32009/03/112:54322-93.93517.15161.80.1	2009/02/06	16:33	298	-94.965	17.334	139.2	0.1
2009/02/1218:36303-94.04217.1451760.32009/02/161:53304-94.73416.759111.5122009/02/185:41306-94.67116.806118.80.22009/02/186:22307-94.7316.83118.20.12009/02/2000:22308-94.78517.297139.0092009/02/272:12312-95.1417.591126.1182009/03/052:55315-92.84316.047248.40.72009/03/068:49317-94.25817.067179.30.42009/03/0811:46318-94.70417.287142.5362009/03/0817:19319-94.14117.194176.4852009/03/0900:44320-92.60615.84198.10.32009/03/1000:36321-93.5516.491163.40.32009/03/112:54322-93.93517.15161.80.1	2009/02/11	12:43	301	-95.216	17.618	130.9	0.2
2009/02/161:53304-94.73416.759111.5122009/02/185:41306-94.67116.806118.80.22009/02/186:22307-94.7316.83118.20.12009/02/2000:22308-94.78517.297139.009-2009/02/272:12312-95.1417.591126.118-2009/03/052:55315-92.84316.047248.40.72009/03/068:49317-94.25817.067179.30.42009/03/0811:46318-94.70417.287142.536-2009/03/0817:19319-94.14117.194176.485-2009/03/0900:44320-92.60615.84198.10.32009/03/1000:36321-93.5516.491163.40.32009/03/112:54322-93.93517.15161.80.1	2009/02/12	18:36	303	-94.042	17.145	176	0.3
2009/02/185:41306-94.67116.806118.80.22009/02/186:22307-94.7316.83118.20.12009/02/2000:22308-94.78517.297139.0092009/02/272:12312-95.1417.591126.1182009/03/052:55315-92.84316.047248.40.72009/03/068:49317-94.25817.067179.30.42009/03/0811:46318-94.70417.287142.5362009/03/0817:19319-94.14117.194176.4852009/03/0900:44320-92.60615.84198.10.32009/03/1000:36321-93.5516.491163.40.32009/03/112:54322-93.93517.15161.80.1	2009/02/16	1:53	304	-94.734	16.759	111.512	
2009/02/186:22307-94.7316.83118.20.12009/02/2000:22308-94.78517.297139.0092009/02/272:12312-95.1417.591126.1182009/03/052:55315-92.84316.047248.40.72009/03/068:49317-94.25817.067179.30.42009/03/0811:46318-94.70417.287142.5362009/03/0817:19319-94.14117.194176.4852009/03/0900:44320-92.60615.84198.10.32009/03/1000:36321-93.5516.491163.40.32009/03/112:54322-93.93517.15161.80.1	2009/02/18	5:41	306	-94.671	16.806	118.8	0.2
2009/02/2000:22308-94.78517.297139.0092009/02/272:12312-95.1417.591126.1182009/03/052:55315-92.84316.047248.40.72009/03/068:49317-94.25817.067179.30.42009/03/0811:46318-94.70417.287142.536-2009/03/0817:19319-94.14117.194176.485-2009/03/0900:44320-92.60615.84198.10.32009/03/1000:36321-93.5516.491163.40.32009/03/112:54322-93.93517.15161.80.1	2009/02/18	6:22	307	-94.73	16.83	118.2	0.1
2009/02/272:12312-95.1417.591126.1182009/03/052:55315-92.84316.047248.40.72009/03/068:49317-94.25817.067179.30.42009/03/0811:46318-94.70417.287142.5362009/03/0817:19319-94.14117.194176.4852009/03/0900:44320-92.60615.84198.10.32009/03/1000:36321-93.5516.491163.40.32009/03/112:54322-93.93517.15161.80.1	2009/02/20	00:22	308	-94.785	17.297	139.009	
2009/03/052:55315-92.84316.047248.40.72009/03/068:49317-94.25817.067179.30.42009/03/0811:46318-94.70417.287142.536-2009/03/0817:19319-94.14117.194176.485-2009/03/0900:44320-92.60615.84198.10.32009/03/1000:36321-93.5516.491163.40.32009/03/112:54322-93.93517.15161.80.1	2009/02/27	2:12	312	-95.14	17.591	126.118	
2009/03/068:49317-94.25817.067179.30.42009/03/0811:46318-94.70417.287142.5362009/03/0817:19319-94.14117.194176.4852009/03/0900:44320-92.60615.84198.10.32009/03/1000:36321-93.5516.491163.40.32009/03/112:54322-93.93517.15161.80.1	2009/03/05	2:55	315	-92.843	16.047	248.4	0.7
2009/03/0811:46318-94.70417.287142.5362009/03/0817:19319-94.14117.194176.4852009/03/0900:44320-92.60615.84198.10.32009/03/1000:36321-93.5516.491163.40.32009/03/112:54322-93.93517.15161.80.1	2009/03/06	8:49	317	-94.258	17.067	179.3	0.4
2009/03/0817:19319-94.14117.194176.4852009/03/0900:44320-92.60615.84198.10.32009/03/1000:36321-93.5516.491163.40.32009/03/112:54322-93.93517.15161.80.1	2009/03/08	11:46	318	-94.704	17.287	142.536	
2009/03/0900:44320-92.60615.84198.10.32009/03/1000:36321-93.5516.491163.40.32009/03/112:54322-93.93517.15161.80.1	2009/03/08	17:19	319	-94.141	17.194	176.485	
2009/03/1000:36321-93.5516.491163.40.32009/03/112:54322-93.93517.15161.80.1	2009/03/09	00:44	320	-92.606	15.84	198.1	0.3
2009/03/11 2:54 322 -93.935 17.15 161.8 0.1	2009/03/10	00:36	321	-93.55	16.491	163.4	0.3
	2009/03/11	2:54	322	-93.935	17.15	161.8	0.1

Apéndice D. Tablas con los valores de distancia horizontal, diferencias de TS-TSp observados y espesor en la discontinuidad del Moho para cada estación.

ROLI	No. Sismo	Delta (km)	Tiempo S-Sp (s)	H Cortical (km)
	72	61.4173	3.3567	25
	135	77.1413	4.17	29
	137	79.3594	4.865	36
	159	123.3628	5.5226	37
	165	127.2182	4.6918	30

	175	124.6948	3.7747	26
	228	68.0511	3.2414	24
	263	98.0381	2.7897	21
	306	71.1808	5.1922	39
	No.	Delta	Tiempo S-Sp	H Cortical
XADA	Sismo	(km)	(s)	(km)
	57	97.7469	5.7225	37
	69	298.7481	7.5062	34
	No.	Delta	Tiempo S-Sp	H Cortical
JUCH	Sismo	(km)	(s)	(km)
	127	66.265	4.3795	35
	140	82.5905	4.9316	35
	199	357.8362	6.852	24
	222	78.7945	3.9566	29
	236	124.9085	5.0042	35
	244	68.413	3.0754	24
	268	63.9944	5.0483	40
	306	53.664	4.4844	36
	307	51.7448	4.4067	36
	No.		Tiempo S-Sp	H Cortical
ΙΧΤΑ	No. Sismo	Delta (km)	Tiempo S-Sp (s)	H Cortical (km)
ΙΧΤΑ	No. Sismo 94	Delta (km) 82.9576	Tiempo S-Sp (s) 3.6001	H Cortical (km) 27
ΙΧΤΑ	No. Sismo 94 127	Delta (km) 82.9576 60.2901	Tiempo S-Sp (s) 3.6001 4.1814	H Cortical (km) 27 34
ΙΧΤΑ	No. Sismo 94 127 139	Delta (km) 82.9576 60.2901 50.3226	Tiempo S-Sp (s) 3.6001 4.1814 3.3698	H Cortical (km) 27 34 28
ΙΧΤΑ	No. Sismo 94 127 139 140	Delta (km) 82.9576 60.2901 50.3226 75.1128	Tiempo S-Sp (s) 3.6001 4.1814 3.3698 4.6212 2.5446	H Cortical (km) 27 34 28 33 22
IXTA	No. Sismo 94 127 139 140 193 106	Delta (km) 82.9576 60.2901 50.3226 75.1128 115.4246	Tiempo S-Sp (s) 3.6001 4.1814 3.3698 4.6212 3.5446 2.7806	H Cortical (km) 27 34 28 33 22 24
ΙΧΤΑ	No. 94 127 139 140 193 196	Delta (km) 82.9576 60.2901 50.3226 75.1128 115.4246 27.5044	Tiempo S-Sp (s) 3.6001 4.1814 3.3698 4.6212 3.5446 2.7806 7.7676	H Cortical (km) 27 34 28 33 22 24 24
IXTA	No. Sismo 94 127 139 140 193 196 199 210	Delta (km) 82.9576 60.2901 50.3226 75.1128 115.4246 27.5044 364.6647	Tiempo S-Sp (s) 3.6001 4.1814 3.3698 4.6212 3.5446 2.7806 7.7676 5.0315	H Cortical (km) 27 34 28 33 22 24 27 41
IXTA	No. 94 127 139 140 193 196 199 219 236	Delta (km) 82.9576 60.2901 50.3226 75.1128 115.4246 27.5044 364.6647 114.3443 125 5255	Tiempo S-Sp (s) 3.6001 4.1814 3.3698 4.6212 3.5446 2.7806 7.7676 5.9315 4.1471	H Cortical (km) 27 34 28 33 22 24 27 41 29
IXTA	No. Sismo 94 127 139 140 193 196 199 219 236 244	Delta (km) 82.9576 60.2901 50.3226 75.1128 115.4246 27.5044 364.6647 114.3443 125.5255 63.5912	Tiempo S-Sp (s) 3.6001 4.1814 3.3698 4.6212 3.5446 2.7806 7.7676 5.9315 4.1471 3.3133	H Cortical (km) 27 34 28 33 22 24 27 41 29 26
IXTA	No. 94 127 139 140 193 196 199 219 236 244 263	Delta (km) 82.9576 60.2901 50.3226 75.1128 115.4246 27.5044 364.6647 114.3443 125.5255 63.5912 78.1174	Tiempo S-Sp (s) 3.6001 4.1814 3.3698 4.6212 3.5446 2.7806 7.7676 5.9315 4.1471 3.3133 3.1707	H Cortical (km) 27 34 28 33 22 24 27 41 29 26 24
IXTA	No. Sismo 94 127 139 140 193 196 199 219 236 244 263 306	Delta (km) 82.9576 60.2901 50.3226 75.1128 115.4246 27.5044 364.6647 114.3443 125.5255 63.5912 78.1174 53.2364	Tiempo S-Sp (s) 3.6001 4.1814 3.3698 4.6212 3.5446 2.7806 7.7676 5.9315 4.1471 3.3133 3.1707 3.8465	H Cortical (km) 27 34 28 33 22 24 27 41 29 26 24 24 31
IXTA	No. Sismo 94 127 139 140 193 196 199 219 236 244 263 306 312	Delta (km) 82.9576 60.2901 50.3226 75.1128 115.4246 27.5044 364.6647 114.3443 125.5255 63.5912 78.1174 53.2364 120.647	Tiempo S-Sp (s) 3.6001 4.1814 3.3698 4.6212 3.5446 2.7806 7.7676 5.9315 4.1471 3.3133 3.1707 3.8465 6.5416	H Cortical (km) 27 34 28 33 22 24 27 41 29 26 24 31 41
IXTA	No. Sismo 94 127 139 140 193 196 199 219 236 244 263 306 312 318	Delta (km) 82.9576 60.2901 50.3226 75.1128 115.4246 27.5044 364.6647 114.3443 125.5255 63.5912 78.1174 53.2364 120.647 94.5914	Tiempo S-Sp (s) 3.6001 4.1814 3.3698 4.6212 3.5446 2.7806 7.7676 5.9315 4.1471 3.3133 3.1707 3.8465 6.5416 2.7716	H Cortical (km) 27 34 28 33 22 24 27 41 29 26 24 31 41 21
IXTA	No. Sismo 94 127 139 140 193 196 199 219 236 244 263 306 312 318 321	Delta (km) 82.9576 60.2901 50.3226 75.1128 115.4246 27.5044 364.6647 114.3443 125.5255 63.5912 78.1174 53.2364 120.647 94.5914 161.1289	Tiempo S-Sp (s) 3.6001 4.1814 3.3698 4.6212 3.5446 2.7806 7.7676 5.9315 4.1471 3.3133 3.1707 3.8465 6.5416 2.7716 5.8922	H Cortical (km) 27 34 28 33 22 24 27 41 29 26 24 31 41 21 36
IXTA	No. Sismo 94 127 139 140 193 196 199 219 236 244 263 306 312 318 321 322	Delta (km) 82.9576 60.2901 50.3226 75.1128 115.4246 27.5044 364.6647 114.3443 125.5255 63.5912 78.1174 53.2364 120.647 94.5914 161.1289 139.5421	Tiempo S-Sp (s) 3.6001 4.1814 3.3698 4.6212 3.5446 2.7806 7.7676 5.9315 4.1471 3.3133 3.1707 3.8465 6.5416 2.7716 5.8922 5.6747	H Cortical (km) 27 34 28 33 22 24 27 41 29 26 24 31 41 29 26 24 31 41 21 36 37
IXTA	No. Sismo 94 127 139 140 193 196 199 219 236 244 263 306 312 318 321 322	Delta (km) 82.9576 60.2901 50.3226 75.1128 115.4246 27.5044 364.6647 114.3443 125.5255 63.5912 78.1174 53.2364 120.647 94.5914 161.1289 139.5421	Tiempo S-Sp (s) 3.6001 4.1814 3.3698 4.6212 3.5446 2.7806 7.7676 5.9315 4.1471 3.3133 3.1707 3.8465 6.5416 2.7716 5.8922 5.6747	H Cortical (km) 27 34 28 33 22 24 27 41 29 26 24 31 41 21 36 37
13	103.9885	3.8852	26	
--	---	--	--	
52	30.2367	2.4639	21	
63	110.474	6.0008	43	
72	33.934	3.19	27	
75	115.7359	5.9613	41	
118	53.5302	3.2753	25	
119	78.8112	2.7401	21	
120	59.9904	3.2181	26	
130	69.7729	3.7416	27	
137	61.4025	2.5362	21	
138	101.3199	4.3857	31	
139	45.3288	3.6488	31	
161	108.2591	6.4213	45	
188	58.0546	4.2014	33	
193	108.1488	5.6957	37	
199	373.3805	6.6146	21	
263	77.3153	3.2512	25	
304	46.7318	4.0757	33	
306	55.1123	3.8361	31	
307	51.1904	4.2519	34	
318	91.6332	4.0948	30	
No.	Delta	Tiempo S-Sp	H Cortical	
No. Sismo	Delta (km)	Tiempo S-Sp (s)	H Cortical (km)	
No. Sismo 11	Delta (km) 65.2703	Tiempo S-Sp (s) 3.4639	H Cortical (km) 26	
No. Sismo 11 12	Delta (km) 65.2703 85.5775	Tiempo S-Sp (s) 3.4639 5.5486	H Cortical (km) 26 45	
No. Sismo 11 12 52	Delta (km) 65.2703 85.5775 21.5134	Tiempo S-Sp (s) 3.4639 5.5486 2.5324	H Cortical (km) 26 45 22	
No. Sismo 11 12 52 72	Delta (km) 65.2703 85.5775 21.5134 31.6636	Tiempo S-Sp (s) 3.4639 5.5486 2.5324 3.5375	H Cortical (km) 26 45 22 30	
No. Sismo 11 12 52 72 75	Delta (km) 65.2703 85.5775 21.5134 31.6636 101.8179	Tiempo S-Sp (s) 3.4639 5.5486 2.5324 3.5375 3.1049	H Cortical (km) 26 45 22 30 22	
No. Sismo 11 12 52 72 75 94	Delta (km) 65.2703 85.5775 21.5134 31.6636 101.8179 74.2047	Tiempo S-Sp (s) 3.4639 5.5486 2.5324 3.5375 3.1049 4.0749	H Cortical (km) 26 45 22 30 22 31	
No. Sismo 11 12 52 72 75 94 114	Delta (km) 65.2703 85.5775 21.5134 31.6636 101.8179 74.2047 159.6544	Tiempo S-Sp (s) 3.4639 5.5486 2.5324 3.5375 3.1049 4.0749 5.2494	H Cortical (km) 26 45 22 30 22 31 35	
No. Sismo 11 12 52 72 75 94 114 126	Delta (km) 65.2703 85.5775 21.5134 31.6636 101.8179 74.2047 159.6544 87.1269	Tiempo S-Sp (s) 3.4639 5.5486 2.5324 3.5375 3.1049 4.0749 5.2494 5.5992	H Cortical (km) 26 45 22 30 22 31 35 44	
No. Sismo 11 12 52 72 75 94 114 126 127	Delta (km) 65.2703 85.5775 21.5134 31.6636 101.8179 74.2047 159.6544 87.1269 46.9637	Tiempo S-Sp (s) 3.4639 5.5486 2.5324 3.5375 3.1049 4.0749 5.2494 5.5992 5.5051	H Cortical (km) 26 45 22 30 22 31 35 44 46	
No. Sismo 11 12 52 72 75 94 114 126 127 137	Delta (km) 65.2703 85.5775 21.5134 31.6636 101.8179 74.2047 159.6544 87.1269 46.9637 42.0844	Tiempo S-Sp (s) 3.4639 5.5486 2.5324 3.5375 3.1049 4.0749 5.2494 5.5992 5.5051 4.8517	H Cortical (km) 26 45 22 30 22 31 35 44 46 41	
No. Sismo 11 12 52 72 75 94 114 126 127 137 139	Delta (km) 65.2703 85.5775 21.5134 31.6636 101.8179 74.2047 159.6544 87.1269 46.9637 42.0844 35.9248	Tiempo S-Sp (s) 3.4639 5.5486 2.5324 3.5375 3.1049 4.0749 5.2494 5.5992 5.5051 4.8517 3.1737	H Cortical (km) 26 45 22 30 22 31 35 44 46 41 27	
No. Sismo 11 12 52 72 75 94 114 126 127 137 139 161	Delta (km) 65.2703 85.5775 21.5134 31.6636 101.8179 74.2047 159.6544 87.1269 46.9637 42.0844 35.9248 95.9607	Tiempo S-Sp (s) 3.4639 5.5486 2.5324 3.5375 3.1049 4.0749 5.2494 5.5992 5.5051 4.8517 3.1737 5.3271	H Cortical (km) 26 45 22 30 22 31 35 44 46 41 27 39	
No. Sismo 11 12 52 72 75 94 114 126 127 137 139 161 170	Delta (km) 65.2703 85.5775 21.5134 31.6636 101.8179 74.2047 159.6544 87.1269 46.9637 42.0844 35.9248 95.9607 81.4408	Tiempo S-Sp (s) 3.4639 5.5486 2.5324 3.5375 3.1049 4.0749 5.2494 5.5992 5.5051 4.8517 3.1737 5.3271 4.1154	H Cortical (km) 26 45 22 30 22 31 35 44 46 41 27 39 29	
No. Sismo 11 12 52 72 75 94 114 126 127 137 139 161 170 172	Delta (km) 65.2703 85.5775 21.5134 31.6636 101.8179 74.2047 159.6544 87.1269 46.9637 42.0844 35.9248 95.9607 81.4408 65.9669	Tiempo S-Sp (s) 3.4639 5.5486 2.5324 3.5375 3.1049 4.0749 5.2494 5.5992 5.5051 4.8517 3.1737 5.3271 4.1154 5.4999	H Cortical (km) 26 45 22 30 22 31 35 44 46 41 27 39 29 44	
No. Sismo 11 12 52 72 75 94 114 126 127 137 139 161 170 172 173	Delta (km) 65.2703 85.5775 21.5134 31.6636 101.8179 74.2047 159.6544 87.1269 46.9637 42.0844 35.9248 95.9607 81.4408 65.9669 65.9669	Tiempo S-Sp (s) 3.4639 5.5486 2.5324 3.5375 3.1049 4.0749 5.2494 5.5992 5.5051 4.8517 3.1737 5.3271 4.1154 5.4999 4.3563	H Cortical (km) 26 45 22 30 22 31 35 44 46 41 27 39 29 44 35	
No. Sismo 11 12 52 72 75 94 114 126 127 137 139 161 170 172 173 188	Delta (km) 65.2703 85.5775 21.5134 31.6636 101.8179 74.2047 159.6544 87.1269 46.9637 42.0844 35.9248 95.9607 81.4408 65.9669 65.9669 60.6272	Tiempo S-Sp (s) 3.4639 5.5486 2.5324 3.5375 3.1049 4.0749 5.2494 5.5992 5.5051 4.8517 3.1737 5.3271 4.1154 5.4999 4.3563 4.2761	H Cortical (km) 26 45 22 30 22 31 35 44 46 41 27 39 29 44 35 33	
No. Sismo 11 12 52 72 75 94 114 126 127 137 139 161 170 172 173 188 191	Delta (km) 65.2703 85.5775 21.5134 31.6636 101.8179 74.2047 159.6544 87.1269 46.9637 42.0844 35.9248 95.9607 81.4408 65.9669 65.9669 65.9669 60.6272 134.6104	Tiempo S-Sp (s) 3.4639 5.5486 2.5324 3.5375 3.1049 4.0749 5.2494 5.5992 5.5051 4.8517 3.1737 5.3271 4.1154 5.4999 4.3563 4.2761 4.71	H Cortical (km) 26 45 22 30 22 31 35 44 46 41 27 39 29 44 35 33 35	
No. Sismo 11 12 52 72 75 94 114 126 127 137 139 161 170 172 173 188 191 193	Delta (km) 65.2703 85.5775 21.5134 31.6636 101.8179 74.2047 159.6544 87.1269 46.9637 42.0844 35.9248 95.9607 81.4408 65.9669 65.9669 60.6272 134.6104 103.7011	Tiempo S-Sp (s) 3.4639 5.5486 2.5324 3.5375 3.1049 4.0749 5.2494 5.5992 5.5051 4.8517 3.1737 5.3271 4.1154 5.4999 4.3563 4.2761 4.71 5.1494	H Cortical (km) 26 45 22 30 22 31 35 44 46 41 27 39 29 44 35 33 35 33 35 34	

MAZH

196	10.3537	3.4363	30
199	359.214	8.5462	32
209	139.6585	5.8705	40
212	91.1525	3.6404	28
213	73.3589	2.7022	21
219	98.783	3.5483	26
221	82.9027	4.7004	36
244	47.4781	3.2927	27
257	84.8268	4.3231	33
259	10.9322	2.3301	21
261	107.0664	5.907	44
263	59.579	4.0243	32
272	66.3557	4.0274	31
273	68.5258	5.1666	40
275	41.603	3.5448	30
301	112.7494	6.0709	40
304	26.7214	3.2927	28
312	108.04	6.3372	42
318	76.9325	5.0537	39
319	106.028	5.7574	43
004	140 0640	5 361/	34
321	149.9040	5.5014	54
321	122.1294	6.6809	47
321 322 No.	122.1294 Delta	6.6809	47 H Cortical
321 322 No. Sismo	149.9648 122.1294 Delta (km)	6.6809 Tiempo S-Sp (s)	47 H Cortical (km)
321 322 No. Sismo 35	149.9648 122.1294 Delta (km) 60.1359	6.6809 Tiempo S-Sp (s) 4.0532	47 H Cortical (km) 33
321 322 No. Sismo 35 57	149.9648 122.1294 Delta (km) 60.1359 70.7323	6.6809 Tiempo S-Sp (s) 4.0532 3.738	47 H Cortical (km) 33 28
321 322 No. Sismo 35 57 66	Delta (km) 60.1359 70.7323 109.5534	6.6809 Tiempo S-Sp (s) 4.0532 3.738 5.5306	47 H Cortical (km) 33 28 36
321 322 No. Sismo 35 57 66 75	149.9648 122.1294 Delta (km) 60.1359 70.7323 109.5534 95.7124	6.6809 Tiempo S-Sp (s) 4.0532 3.738 5.5306 4.3559	47 H Cortical (km) 33 28 36 32
321 322 No. Sismo 35 57 66 75 76	149.9648 122.1294 Delta (km) 60.1359 70.7323 109.5534 95.7124 125.892	6.6809 Tiempo S-Sp (s) 4.0532 3.738 5.5306 4.3559 6.005	47 H Cortical (km) 33 28 36 32 42
321 322 No. Sismo 35 57 66 75 76 76 78	149.9648 122.1294 Delta (km) 60.1359 70.7323 109.5534 95.7124 125.892 126.2963	6.6809 Tiempo S-Sp (s) 4.0532 3.738 5.5306 4.3559 6.005 6.4149	47 H Cortical (km) 33 28 36 32 42 42 44
321 322 No. Sismo 35 57 66 75 76 78 103	Delta (km) 60.1359 70.7323 109.5534 95.7124 125.892 126.2963 92.7466	6.6809 Tiempo S-Sp (s) 4.0532 3.738 5.5306 4.3559 6.005 6.4149 4.7768	47 H Cortical (km) 33 28 36 32 42 42 44 33
321 322 No. Sismo 35 57 66 75 76 78 103 119	Delta (km) 60.1359 70.7323 109.5534 95.7124 125.892 126.2963 92.7466 56.3872	6.6809 Tiempo S-Sp (s) 4.0532 3.738 5.5306 4.3559 6.005 6.4149 4.7768 3.5234	47 H Cortical (km) 33 28 36 32 42 42 44 33 29
321 322 No. Sismo 35 57 66 75 76 78 103 119 126	Delta (km) 60.1359 70.7323 109.5534 95.7124 125.892 126.2963 92.7466 56.3872 82.0789	6.6809 Tiempo S-Sp (s) 4.0532 3.738 5.5306 4.3559 6.005 6.4149 4.7768 3.5234 5.3897	47 H Cortical (km) 33 28 36 32 42 42 44 33 29 43
321 322 No. 35 57 66 75 76 78 103 119 126 127	Delta (km) 60.1359 70.7323 109.5534 95.7124 126.2963 92.7466 56.3872 82.0789 40.0845	6.6809 Tiempo S-Sp (s) 4.0532 3.738 5.5306 4.3559 6.005 6.4149 4.7768 3.5234 5.3897 2.5149	47 H Cortical (km) 33 28 36 32 42 42 44 33 29 43 21
321 322 No. Sismo 35 57 66 75 76 78 103 119 126 127 131	Delta (km) 60.1359 70.7323 109.5534 95.7124 125.892 126.2963 92.7466 56.3872 82.0789 40.0845 102.382	6.6809 Tiempo S-Sp (s) 4.0532 3.738 5.5306 4.3559 6.005 6.4149 4.7768 3.5234 5.3897 2.5149 3.9692	47 H Cortical (km) 33 28 36 32 42 44 33 29 43 29 43 21 28
321 322 No. 35 57 66 75 76 78 103 119 126 127 131 138	Delta (km) 60.1359 70.7323 109.5534 95.7124 125.892 126.2963 92.7466 56.3872 82.0789 40.0845 102.382 79.099	6.6809 Tiempo S-Sp (s) 4.0532 3.738 5.5306 4.3559 6.005 6.4149 4.7768 3.5234 5.3897 2.5149 3.9692 4.5067	47 H Cortical (km) 33 28 36 32 42 42 44 33 29 43 21 28 35
321 322 No. 35 57 66 75 76 78 103 119 126 127 131 138 153	149.9648 122.1294 Delta (km) 60.1359 70.7323 109.5534 95.7124 125.892 126.2963 92.7466 56.3872 82.0789 40.0845 102.382 79.099 46.8633	6.6809 Tiempo S-Sp (s) 4.0532 3.738 5.5306 4.3559 6.005 6.4149 4.7768 3.5234 5.3897 2.5149 3.9692 4.5067 3.2828	47 H Cortical (km) 33 28 36 32 42 44 33 29 43 29 43 21 28 35 27
321 322 No. Sismo 35 57 66 75 76 78 103 119 126 127 131 138 153 164	149.9648 122.1294 Delta (km) 60.1359 70.7323 109.5534 95.7124 125.892 126.2963 92.7466 56.3872 82.0789 40.0845 102.382 79.099 46.8633 108.263	6.6809 Tiempo S-Sp (s) 4.0532 3.738 5.5306 4.3559 6.005 6.4149 4.7768 3.5234 5.3897 2.5149 3.9692 4.5067 3.2828 5.0767	47 H Cortical (km) 33 28 36 32 42 42 44 33 29 43 21 28 35 27 38
321 322 No. 35 57 66 75 76 78 103 119 126 127 131 138 153 164 171	149.9648 122.1294 Delta (km) 60.1359 70.7323 109.5534 95.7124 125.892 126.2963 92.7466 56.3872 82.0789 40.0845 102.382 79.099 46.8633 108.263 87.3325	6.6809 Tiempo S-Sp (s) 4.0532 3.738 5.5306 4.3559 6.005 6.4149 4.7768 3.5234 5.3897 2.5149 3.9692 4.5067 3.2828 5.0767 3.06	47 H Cortical (km) 33 28 36 32 42 44 33 29 43 29 43 21 28 35 27 38 22
321 322 No. 35 57 66 75 76 78 103 119 126 127 131 138 153 164 171 173	149.9648 122.1294 Delta (km) 60.1359 70.7323 109.5534 95.7124 125.892 126.2963 92.7466 56.3872 82.0789 40.0845 102.382 79.099 46.8633 108.263 87.3325 55.5402	6.6809 Tiempo S-Sp (s) 4.0532 3.738 5.5306 4.3559 6.005 6.4149 4.7768 3.5234 5.3897 2.5149 3.9692 4.5067 3.2828 5.0767 3.06 4.2975	47 H Cortical (km) 33 28 36 32 42 44 33 29 43 21 28 35 27 38 22 34
321 322 No. 35 57 66 75 76 78 103 119 126 127 131 138 153 164 171 173 175	149.9648 122.1294 Delta (km) 60.1359 70.7323 109.5534 95.7124 125.892 126.2963 92.7466 56.3872 82.0789 40.0845 102.382 79.099 46.8633 108.263 87.3325 55.5402 80.1738	6.6809 Tiempo S-Sp (s) 4.0532 3.738 5.5306 4.3559 6.005 6.4149 4.7768 3.5234 5.3897 2.5149 3.9692 4.5067 3.2828 5.0767 3.06 4.2975 4.0334	47 H Cortical (km) 33 28 36 32 42 44 33 29 43 21 28 35 27 38 22 34 32

ELME

209	139.6087	5.4578	37
212	89.1981	4.7153	36
221	77.6989	5.8769	46
235	55.8863	3.6878	30
236	105.468	5.0513	38
244	40.8303	2.599	22
261	104.7047	6.2173	46
263	54.857	2.5496	21
265	71.861	5.9924	48
270	67.1348	3.7617	30
273	61.6456	2.6964	21
280	47.7639	3.0766	25
290	20.9411	3.1861	28
303	109.5845	3.5133	26
315	236.997	6.9148	42
318	70.979	5.8494	46
319	103.1074	5.2099	40
321	151.893	5.7653	36
322	120.0749	5.4333	38
No.	Delta	Tiempo S-Sp	H Cortical
Sismo	(km)	(s)	(km)
0.00	()	(-)	(min)
12	81.6934	5.1352	42
12 44	81.6934 93.6195	5.1352 4.485	42 34
12 44 51	81.6934 93.6195 68.7832	5.1352 4.485 3.6896	42 34 29
12 44 51 78	81.6934 93.6195 68.7832 123.1822	5.1352 4.485 3.6896 4.9916	42 34 29 34
12 44 51 78 98	81.6934 93.6195 68.7832 123.1822 58.0585	5.1352 4.485 3.6896 4.9916 3.9249	42 34 29 34 32
12 44 51 78 98 104	81.6934 93.6195 68.7832 123.1822 58.0585 102.5564	5.1352 4.485 3.6896 4.9916 3.9249 4.1004	42 34 29 34 32 30
12 44 51 78 98 104 114	81.6934 93.6195 68.7832 123.1822 58.0585 102.5564 164.9275	5.1352 4.485 3.6896 4.9916 3.9249 4.1004 3.0953	42 34 29 34 32 30 21
12 44 51 78 98 104 114 115	81.6934 93.6195 68.7832 123.1822 58.0585 102.5564 164.9275 67.8616	5.1352 4.485 3.6896 4.9916 3.9249 4.1004 3.0953 3.9394	42 34 29 34 32 30 21 31
12 44 51 78 98 104 114 115 127	81.6934 93.6195 68.7832 123.1822 58.0585 102.5564 164.9275 67.8616 35.3593	5.1352 4.485 3.6896 4.9916 3.9249 4.1004 3.0953 3.9394 3.7617	42 34 29 34 32 30 21 31 32
12 44 51 78 98 104 114 115 127 139	81.6934 93.6195 68.7832 123.1822 58.0585 102.5564 164.9275 67.8616 35.3593 24.668	5.1352 4.485 3.6896 4.9916 3.9249 4.1004 3.0953 3.9394 3.7617 4.6277	42 34 29 34 32 30 21 31 32 40
12 44 51 78 98 104 114 115 127 139 140	81.6934 93.6195 68.7832 123.1822 58.0585 102.5564 164.9275 67.8616 35.3593 24.668 56.9018	5.1352 4.485 3.6896 4.9916 3.9249 4.1004 3.0953 3.9394 3.7617 4.6277 3.7753	42 34 29 34 32 30 21 31 32 40 29
12 44 51 78 98 104 114 115 127 139 140 191	81.6934 93.6195 68.7832 123.1822 58.0585 102.5564 164.9275 67.8616 35.3593 24.668 56.9018 133.0283	5.1352 4.485 3.6896 4.9916 3.9249 4.1004 3.0953 3.9394 3.7617 4.6277 3.7753 5.5038	42 34 29 34 32 30 21 31 32 40 29 41
12 44 51 78 98 104 114 115 127 139 140 191 195	81.6934 93.6195 68.7832 123.1822 58.0585 102.5564 164.9275 67.8616 35.3593 24.668 56.9018 133.0283 77.4768	5.1352 4.485 3.6896 4.9916 3.9249 4.1004 3.0953 3.9394 3.7617 4.6277 3.7753 5.5038 4.3862	42 34 29 34 32 30 21 31 32 40 29 41 34
12 44 51 78 98 104 114 115 127 139 140 191 195 196	81.6934 93.6195 68.7832 123.1822 58.0585 102.5564 164.9275 67.8616 35.3593 24.668 56.9018 133.0283 77.4768 5.4357	5.1352 4.485 3.6896 4.9916 3.9249 4.1004 3.0953 3.9394 3.7617 4.6277 3.7753 5.5038 4.3862 3.6649	42 34 29 34 32 30 21 31 32 40 29 41 34 32
12 44 51 78 98 104 114 115 127 139 140 191 195 196 209	81.6934 93.6195 68.7832 123.1822 58.0585 102.5564 164.9275 67.8616 35.3593 24.668 56.9018 133.0283 77.4768 5.4357 142.9977	5.1352 4.485 3.6896 4.9916 3.9249 4.1004 3.0953 3.9394 3.7617 4.6277 3.7753 5.5038 4.3862 3.6649 6.0963	42 34 29 34 32 30 21 31 32 40 29 41 34 32 41
12 44 51 78 98 104 114 115 127 139 140 191 195 196 209 213	81.6934 93.6195 68.7832 123.1822 58.0585 102.5564 164.9275 67.8616 35.3593 24.668 56.9018 133.0283 77.4768 5.4357 142.9977 74.3108	5.1352 4.485 3.6896 4.9916 3.9249 4.1004 3.0953 3.9394 3.7617 4.6277 3.7753 5.5038 4.3862 3.6649 6.0963 2.712	42 34 29 34 32 30 21 31 32 40 29 41 34 32 41 21
12 44 51 78 98 104 114 115 127 139 140 191 195 196 209 213 219	81.6934 93.6195 68.7832 123.1822 58.0585 102.5564 164.9275 67.8616 35.3593 24.668 56.9018 133.0283 77.4768 5.4357 142.9977 74.3108 88.4285	5.1352 4.485 3.6896 4.9916 3.9249 4.1004 3.0953 3.9394 3.7617 4.6277 3.7753 5.5038 4.3862 3.6649 6.0963 2.712 5.6409	42 34 29 34 32 30 21 31 32 40 29 41 34 32 41 34 32 41 21 42
12 44 51 78 98 104 114 115 127 139 140 191 195 196 209 213 219 221	81.6934 93.6195 68.7832 123.1822 58.0585 102.5564 164.9275 67.8616 35.3593 24.668 56.9018 133.0283 77.4768 5.4357 142.9977 74.3108 88.4285 76.6311	5.1352 4.485 3.6896 4.9916 3.9249 4.1004 3.0953 3.9394 3.7617 4.6277 3.7753 5.5038 4.3862 3.6649 6.0963 2.712 5.6409 3.7603	42 34 29 34 32 30 21 31 32 40 29 41 34 32 41 32 41 21 42 29
12 44 51 78 98 104 114 115 127 139 140 191 195 196 209 213 219 221 222	81.6934 93.6195 68.7832 123.1822 58.0585 102.5564 164.9275 67.8616 35.3593 24.668 56.9018 133.0283 77.4768 5.4357 142.9977 74.3108 88.4285 76.6311 40.6882	5.1352 4.485 3.6896 4.9916 3.9249 4.1004 3.0953 3.9394 3.7617 4.6277 3.7753 5.5038 4.3862 3.6649 6.0963 2.712 5.6409 3.7603 3.3683 4.9022	42 34 29 34 32 30 21 31 32 40 29 41 34 32 41 34 32 41 21 42 29 28 28
12 44 51 78 98 104 114 115 127 139 140 191 195 196 209 213 219 221 222 236	81.6934 93.6195 68.7832 123.1822 58.0585 102.5564 164.9275 67.8616 35.3593 24.668 56.9018 133.0283 77.4768 5.4357 142.9977 74.3108 88.4285 76.6311 40.6882 107.2114	5.1352 4.485 3.6896 4.9916 3.9249 4.1004 3.0953 3.9394 3.7617 4.6277 3.7753 5.5038 4.3862 3.6649 6.0963 2.712 5.6409 3.7603 3.3683 4.8833	42 34 29 34 32 30 21 31 32 40 29 41 34 32 41 21 42 29 28 36 24

CHIV

	242	4.5329	3.2922	29
	257	77.13	4.0836	32
	261	106.4417	6.5464	49
	263	54.541	3.5962	29
	272	55.5719	3.4485	28
	273	56.8884	5.081	41
	293	89.5292	4.9672	37
	318	68.8694	3.8763	31
	319	104.3633	6.083	46
	No.	Delta	Tiempo S-Sp	H Cortical
RIVA	Sismo	(km)	(s)	(km)
	57	59.9378	5.154	40
	61	95.4231	5.2917	39
	74	78.4636	3.9898	30
	84	88.757	5.3553	41
	91	82.2117	4.2788	33
	92	81.8551	4.124	31
	104	104.9106	5.1497	38
	115	68.8004	3.6211	29
	137	42.0729	2.9756	25
	139	21.3207	3.1195	27
	140	51.7516	4.1328	33
	170	64.9916	4.7027	36
	172	57.5902	5.5129	45
	173	45.8242	3.707	30
	175	75.1215	4.3237	35
	182	143.7705	4.4184	28
	191	134.4577	3.2924	25
	198	43.5036	2.7402	23
	199	373.2587	10.4218	39
	210	350.452	8.1689	31
	212	93.59	4.5587	34
	235	45.2079	4.5555	38
	236	109.1129	5.3871	40
	252	59.0484	3.7287	29
	257	75.8226	4.6776	37
	258	77.1232	5.4904	42
	259	16.0613	2.7934	25
	261	108.3393	5.7852	43
	276	35.6055	2.662	23

	No.	Delta	Tiempo S-Sp	H Cortical
MARO	Sismo	(km)	(s)	(km)
	12	76.0541	5.3003	44
	13	80.1027	4.4703	34
	20	87.0983	4.2616	32
	27	347.9885	8.9683	25
	30	124.3452	5.9528	44
	36	72.2828	3.7424	29
	61	82.8851	4.7655	37
	62	37.2821	4.7276	40
	63	97	5.7509	43
	94	47.4666	3.0084	25
	98	45.2516	3.738	31
	126	72.4062	4.9973	41
	127	18.3713	2.9491	26
	131	82.079	3.907	29
	137	87.8657	5.8416	46
	153	57.5063	4.1679	34
	159	60.2409	5.1759	43
	164	109.0938	5.455	40
	No.	Delta	Tiempo S-Sp	H Cortical
PARE	Sismo	(km)	(s)	(km)
	57	32.7173	4.1343	35
	62	66.5323	4.3572	34
	66	219.7535	5.4021	30
	71	86.909	5.8809	43
	74	83.3466	4.9355	38
	84	45.2589	2.6296	22
	119	40.9588	3.1846	27
	123	98.8025	4.7854	33
	175	46.2024	4.8374	41
	No.	Delta	Tiempo S-Sp	H Cortical
PALO	Sismo	(km)	(s)	(km)
	13	79.8701	5.501	41
	20	76.0176	4.9445	39
	36	59.5606	4.889	40
	58	35.8056	4.4101	38
	74	91.9142	5.3044	38
	84	85.7174	5.0181	38
	91	53.55	4.0056	33
	94	21.6615	3.5387	31

02	20 0005	3 5076	21
90 126	29.9003 61 4412	3.3970 1 7907	۵۱ ۵۱
137	51 8188	3 2045	- 1 0 26
153	73 7859	4 1118	31
159	32 856	3 504	30
164	109.0993	5,2519	39
193	46.0841	3.9433	33
199	396.5566	8.714	27
219	46.4488	3.8327	32
221	56.364	5.0183	42
222	6.0962	2.6891	24
236	105.1276	5.0702	38
257	48.3202	4.2749	36
261	104.3864	5.3255	40
273	10.866	4.2191	37
275	18.1943	3.0319	27
284	19.7778	5.1418	45
301	55.1063	3.9113	32
303	108.949	5.3699	40
308	34.4845	4.8838	42
318	41.73	4.9291	42
322	120.336	5.8066	41
No.	Delta	Tiempo S-Sp	H Cortical
No. Sismo	Delta (km)	Tiempo S-Sp (s)	H Cortical (km)
No. Sismo 20	Delta (km) 72.305	Tiempo S-Sp (s) 4.3788	H Cortical (km) 35
No. Sismo 20 23	Delta (km) 72.305 121.3059	Tiempo S-Sp (s) 4.3788 5.7332	H Cortical (km) 35 41
No. Sismo 20 23 31	Delta (km) 72.305 121.3059 73.877	Tiempo S-Sp (s) 4.3788 5.7332 4.3034	H Cortical (km) 35 41 34
No. Sismo 20 23 31 36	Delta (km) 72.305 121.3059 73.877 55.7719	Tiempo S-Sp (s) 4.3788 5.7332 4.3034 4.9849	H Cortical (km) 35 41 34 41
No. Sismo 20 23 31 36 38	Delta (km) 72.305 121.3059 73.877 55.7719 73.7441	Tiempo S-Sp (s) 4.3788 5.7332 4.3034 4.9849 5.027	H Cortical (km) 35 41 34 41 40
No. Sismo 20 23 31 36 38 58	Delta (km) 72.305 121.3059 73.877 55.7719 73.7441 33.8908	Tiempo S-Sp (s) 4.3788 5.7332 4.3034 4.9849 5.027 4.9514	H Cortical (km) 35 41 34 41 40 43
No. Sismo 20 23 31 36 38 58 63	Delta (km) 72.305 121.3059 73.877 55.7719 73.7441 33.8908 105.5034	Tiempo S-Sp (s) 4.3788 5.7332 4.3034 4.9849 5.027 4.9514 5.4411	H Cortical (km) 35 41 34 41 40 43 39
No. Sismo 20 23 31 36 38 58 63 63	Delta (km) 72.305 121.3059 73.877 55.7719 73.7441 33.8908 105.5034 53.9203	Tiempo S-Sp (s) 4.3788 5.7332 4.3034 4.9849 5.027 4.9514 5.4411 3.8404	H Cortical (km) 35 41 34 41 40 43 39 31
No. Sismo 20 23 31 36 38 58 63 63 66 84	Delta (km) 72.305 121.3059 73.877 55.7719 73.7441 33.8908 105.5034 53.9203 84.3472	Tiempo S-Sp (s) 4.3788 5.7332 4.3034 4.9849 5.027 4.9514 5.4411 3.8404 4.8736	H Cortical (km) 35 41 34 41 40 43 39 31 37
No. Sismo 20 23 31 36 38 58 63 63 66 84 91	Delta (km) 72.305 121.3059 73.877 55.7719 73.7441 33.8908 105.5034 53.9203 84.3472 48.6926	Tiempo S-Sp (s) 4.3788 5.7332 4.3034 4.9849 5.027 4.9514 5.4411 3.8404 4.8736 3.3834	H Cortical (km) 35 41 34 41 40 43 39 31 37 28
No. Sismo 20 23 31 36 38 58 63 63 66 84 91 94	Delta (km) 72.305 121.3059 73.877 55.7719 73.7441 33.8908 105.5034 53.9203 84.3472 48.6926 15.6918	Tiempo S-Sp (s) 4.3788 5.7332 4.3034 4.9849 5.027 4.9514 5.4411 3.8404 4.8736 3.3834 4.4235	H Cortical (km) 35 41 34 41 40 43 39 31 37 28 39
No. Sismo 20 23 31 36 38 58 63 66 84 91 94 98	Delta (km) 72.305 121.3059 73.877 55.7719 73.7441 33.8908 105.5034 53.9203 84.3472 48.6926 15.6918 26.6937	Tiempo S-Sp (s) 4.3788 5.7332 4.3034 4.9849 5.027 4.9514 5.4411 3.8404 4.8736 3.3834 4.4235 3.6206	H Cortical (km) 35 41 34 41 40 43 39 31 37 28 39 31
No. Sismo 20 23 31 36 38 58 63 66 84 91 94 94 98 123	Delta (km) 72.305 121.3059 73.877 55.7719 73.7441 33.8908 105.5034 53.9203 84.3472 48.6926 15.6918 26.6937 28.3698	Tiempo S-Sp (s) 4.3788 5.7332 4.3034 4.9849 5.027 4.9514 5.4411 3.8404 4.8736 3.3834 4.4235 3.6206 4.6689	H Cortical (km) 35 41 34 41 40 43 39 31 37 28 39 31 41
No. Sismo 20 23 31 36 38 58 63 66 84 91 94 94 98 123 164	Delta (km) 72.305 121.3059 73.877 55.7719 73.7441 33.8908 105.5034 53.9203 84.3472 48.6926 15.6918 26.6937 28.3698 107.3503	Tiempo S-Sp (s) 4.3788 5.7332 4.3034 4.9849 5.027 4.9514 5.4411 3.8404 4.8736 3.3834 4.4235 3.6206 4.6689 4.4527	H Cortical (km) 35 41 34 41 40 43 39 31 37 28 39 31 41 33
No. Sismo 20 23 31 36 38 58 63 66 84 91 94 94 98 123 164 182	Delta (km) 72.305 121.3059 73.877 55.7719 73.7441 33.8908 105.5034 53.9203 84.3472 48.6926 15.6918 26.6937 28.3698 107.3503 154.244	Tiempo S-Sp (s) 4.3788 5.7332 4.3034 4.9849 5.027 4.9514 5.4411 3.8404 4.8736 3.3834 4.4235 3.6206 4.6689 4.4527 5.7578	H Cortical (km) 35 41 34 41 40 43 39 31 37 28 39 31 41 33 35

TOLO

	No.	Delta	Tiempo S-Sp	H Cortical
DONA	SISMO	(KM)	(S)	(KM)
	48	47.6948	4.7583	40
	58	35.8433	4.8585	42
	62	38.9253	4.2643	36
	63	108.2308	4.1534	30
	75	52.5302	4.6433	39
	164	109.0573	3.7449	28
	No.	Delta	Tiempo S-Sp	H Cortical
LACU	Sismo	(km)	(s)	(km)
	12	70.1821	4.7009	39
	13	82.3126	4.6663	35
	20	70.2047	4.5415	36
	31	73.5837	4.8239	38
	36	54.0754	4.4148	36
	58	38.9845	4.8157	41
	63	112.3669	3.6338	26
	75	45.786	4.3339	37
	91	43.6282	4.5535	39
	98	29.6545	2.4107	21
	127	57.2868	4.5673	38
	131	33.3385	2.8311	24
	135	50.2269	2.829	22
	156	36.4949	4.4075	38
	161	36.2587	4.6353	40
	175	30.7058	4.4717	39
	182	160.2462	5.585	33
	209	156.4399	4.7611	30
	219	27.3926	4.1812	36
	221	52.8171	4.3978	37
	227	26.2272	4.2957	37
	235	32.9835	3.8719	33
	236	105.7428	4.1742	31
	263	53.4936	4.8294	40
	265	54.7016	4.775	40
	268	51.9807	3.3045	27
	273	10.8402	3.7477	33
	275	37.0938	4.0214	34
	304	71.9037	2.7189	21
	306	70.9323	2.6719	21
	308	36.2826	4.5447	39
	318	37.1073	4.6288	40

	321	184.9778	8.3109	47
	322	120.2713	5.0647	35
SUCH	No. Sismo	Delta (km)	Tiempo S-Sp (s)	H Cortical (km)
	11	64.3918	3.6072	27
	12	65.2258	4.2492	36
	13	78,1485	5.1195	39
	20	63.6586	4.3409	35
	No.	Delta	Tiempo S-Sp	H Cortical
JECA	Sismo	(km)	(s)	(km)
	30	131.8107	5.2456	38
	31	72.3717	4.6201	36
	34	37.1037	4.4468	38
	35	47.8839	5.1368	43
	36	52.5479	4.7539	39
	38	57.3401	4.0228	33
	58	43.2198	5.0726	43
	84	89.7517	4.7964	36
	91	40.1201	4.3617	37
	98	33.5569	4.3857	38
	135	60.5824	5.5498	42
	No.	Delta	Tiempo S-Sp	H Cortical
NUMO	Sismo	(KM)	(S)	(ĸm)
	7	109.8504	6.3276	39
	20	75.9533	4.6698	37
	24	113.4625	5.4533	40
	44	114.6127	5.5539	39
	48	52.8635	5.0974	42
	51	47.7407	2.4837	21
	57	47.097	4.112	33
	75	45.1476	5.0443	43
	No.	Delta	Tiempo S-Sp	H Cortical
	SISMO	(KM)	(S)	(KM)
	3	69.7008	5.42/1	42
	4	38.819	2.5961	21
	6	16.4469	2.9982	26
	-		0 0000	00
	7	114.4745	6.3922	38
	7 57	114.4745 57.3411	6.3922 5.121	38 40

	75	39.5018	4.7862	41
	91	44.7562	2.602	22
	92	22.7487	2.7745	24
	106	23.9525	4.8377	42
	123	20.326	2.2706	21
	126	63.3015	5.0406	42
	127	60.7169	5.1205	41
	No.	Delta	Tiempo S-Sp	H Cortical
GUVI	Sismo	(km)	(s)	(km)
	6	24.1056	4.5807	40
	31	86.6296	5.157	39
	34	57.4459	4.6882	38
	36	67.5704	5.104	41
	57	57.0914	4.151	33
	60	30.9308	4.3412	38
	66	15.6618	3.8016	33
	74	128.0059	4.4061	26
	75	47.7122	4.4339	37
	91	53.3443	4.7276	39
	252	108.1273	3.6337	22
	~ - ~	~~ ~~~	~ ~ / ~ ~	
	253	93.0623	3.2102	21
	253 No.	93.0623 Delta	3.2102 Tiempo S-Sp	21 H Cortical
CANU	253 No. Sismo	93.0623 Delta (km)	3.2102 Tiempo S-Sp (s)	21 H Cortical (km)
CANU	253 No. Sismo 7	93.0623 Delta (km) 127.5966	3.2102 Tiempo S-Sp (s) 6.0518	21 H Cortical (km) 33
CANU	253 No. Sismo 7 8	93.0623 Delta (km) 127.5966 77.6908	3.2102 Tiempo S-Sp (s) 6.0518 4.3063	21 H Cortical (km) 33 31
CANU	253 No. Sismo 7 8 31	93.0623 Delta (km) 127.5966 77.6908 88.4738	3.2102 Tiempo S-Sp (s) 6.0518 4.3063 5.2019	21 H Cortical (km) 33 31 39
CANU	253 No. Sismo 7 8 31 57	93.0623 Delta (km) 127.5966 77.6908 88.4738 64.2939	3.2102 Tiempo S-Sp (s) 6.0518 4.3063 5.2019 4.1307	21 H Cortical (km) 33 31 39 31
CANU	253 No. Sismo 7 8 31 57 75	93.0623 Delta (km) 127.5966 77.6908 88.4738 64.2939 48.6691	3.2102 Tiempo S-Sp (s) 6.0518 4.3063 5.2019 4.1307 4.4234	21 H Cortical (km) 33 31 39 31 37
CANU	253 No. Sismo 7 8 31 57 57 75 91	93.0623 Delta (km) 127.5966 77.6908 88.4738 64.2939 48.6691 55.6124	3.2102 Tiempo S-Sp (s) 6.0518 4.3063 5.2019 4.1307 4.4234 4.9093	21 H Cortical (km) 33 31 39 31 37 40
CANU	253 No. Sismo 7 8 31 57 75 91 135	93.0623 Delta (km) 127.5966 77.6908 88.4738 64.2939 48.6691 55.6124 85.7598	3.2102 Tiempo S-Sp (s) 6.0518 4.3063 5.2019 4.1307 4.4234 4.9093 4.1903	21 H Cortical (km) 33 31 39 31 37 40 28
CANU	253 No. Sismo 7 8 31 57 75 91 135 No.	93.0623 Delta (km) 127.5966 77.6908 88.4738 64.2939 48.6691 55.6124 85.7598 Delta	3.2102 Tiempo S-Sp (s) 6.0518 4.3063 5.2019 4.1307 4.4234 4.9093 4.1903 Tiempo S-Sp	21 H Cortical (km) 33 31 39 31 37 40 28 H Cortical
CANU	253 No. Sismo 7 8 31 57 75 91 135 No. Sismo	93.0623 Delta (km) 127.5966 77.6908 88.4738 64.2939 48.6691 55.6124 85.7598 Delta (km)	3.2102 Tiempo S-Sp (s) 6.0518 4.3063 5.2019 4.1307 4.4234 4.9093 4.1903 Tiempo S-Sp (s)	21 H Cortical (km) 33 31 39 31 37 40 28 H Cortical (km)
CANU	253 No. Sismo 7 8 31 57 75 91 135 No. Sismo 57	93.0623 Delta (km) 127.5966 77.6908 88.4738 64.2939 48.6691 55.6124 85.7598 Delta (km) 69.7685	3.2102 Tiempo S-Sp (s) 6.0518 4.3063 5.2019 4.1307 4.4234 4.9093 4.1903 Tiempo S-Sp (s) 3.0319	21 H Cortical (km) 33 31 39 31 37 40 28 H Cortical (km) 22
CANU	253 No. Sismo 7 8 31 57 75 91 135 No. Sismo 57 72	93.0623 Delta (km) 127.5966 77.6908 88.4738 64.2939 48.6691 55.6124 85.7598 Delta (km) 69.7685 97.7859	3.2102 Tiempo S-Sp (s) 6.0518 4.3063 5.2019 4.1307 4.4234 4.9093 4.1903 Tiempo S-Sp (s) 3.0319 4.9089	21 H Cortical (km) 33 31 39 31 37 40 28 H Cortical (km) 22 31
CANU	253 No. Sismo 7 8 31 57 75 91 135 No. Sismo 57 72 91	93.0623 Delta (km) 127.5966 77.6908 88.4738 64.2939 48.6691 55.6124 85.7598 Delta (km) 69.7685 97.7859 57.235	3.2102 Tiempo S-Sp (s) 6.0518 4.3063 5.2019 4.1307 4.4234 4.9093 4.1903 Tiempo S-Sp (s) 3.0319 4.9089 4.6331	21 H Cortical (km) 33 31 39 31 37 40 28 H Cortical (km) 22 31 38
CANU	253 No. Sismo 7 8 31 57 75 91 135 No. Sismo 57 72 91 182	93.0623 Delta (km) 127.5966 77.6908 88.4738 64.2939 48.6691 55.6124 85.7598 Delta (km) 69.7685 97.7859 57.235 184.4186	3.2102 Tiempo S-Sp (s) 6.0518 4.3063 5.2019 4.1307 4.4234 4.9093 4.1903 Tiempo S-Sp (s) 3.0319 4.9089 4.6331 4.5527	21 H Cortical (km) 33 31 39 31 37 40 28 H Cortical (km) 22 31 38 24
CANU	253 No. Sismo 7 8 31 57 75 91 135 No. Sismo 57 72 91 182 222	93.0623 Delta (km) 127.5966 77.6908 88.4738 64.2939 48.6691 55.6124 85.7598 Delta (km) 69.7685 97.7859 57.235 184.4186 72.478	3.2102 Tiempo S-Sp (s) 6.0518 4.3063 5.2019 4.1307 4.4234 4.9093 4.1903 Tiempo S-Sp (s) 3.0319 4.9089 4.6331 4.5527 5.0934	21 H Cortical (km) 33 31 39 31 37 40 28 H Cortical (km) 22 31 38 24 39
CANU	253 No. Sismo 7 8 31 57 75 91 135 No. Sismo 57 72 91 182 222 236	93.0623 Delta (km) 127.5966 77.6908 88.4738 64.2939 48.6691 55.6124 85.7598 Delta (km) 69.7685 97.7859 57.235 184.4186 72.478 124.175	3.2102 Tiempo S-Sp (s) 6.0518 4.3063 5.2019 4.1307 4.4234 4.9093 4.1903 Tiempo S-Sp (s) 3.0319 4.9089 4.6331 4.5527 5.0934 4.6666	21 H Cortical (km) 33 31 39 31 37 40 28 H Cortical (km) 22 31 38 24 39 33
CANU	253 No. Sismo 7 8 31 57 75 91 135 No. Sismo 57 72 91 182 222 236 257	93.0623 Delta (km) 127.5966 77.6908 88.4738 64.2939 48.6691 55.6124 85.7598 Delta (km) 69.7685 97.7859 57.235 184.4186 72.478 124.175 62.5409	3.2102 Tiempo S-Sp (s) 6.0518 4.3063 5.2019 4.1307 4.4234 4.9093 4.1903 Tiempo S-Sp (s) 3.0319 4.9089 4.6331 4.5527 5.0934 4.6666 4.5064	21 H Cortical (km) 33 31 39 31 37 40 28 H Cortical (km) 22 31 38 24 39 33 37

8410	No. Siama	Delta	Tiempo S-Sp	H Cortical
SAJU	3151110	(KIII) 04.0704	(5)	(KIII)
	20	84.9784	5.1931	40
	23	152.8885	3.4417	21
	30 70	74.4210	4.0909	30 20
	12	99.7557	5.9967	30
	75	52.17	5.2174	44
	91	60.0427	4.6543	38
	94	53.2455	4.0196	33
	106	43.548	3.9771	34
	123	40.1141	3.8552	33
	126	78.9289	5.1017	41
	135	97.3876	4.4314	28
	139	90.7122	5.0951	37
	140	76.1781	5.8784	42
	175	106.292	4.6821	29
	182	187.2006	4.5784	24
	188	82.8796	4.6519	33
	196	116.3578	7.3434	40
	222	74.6362	5.0964	38
	257	65.3638	5.0138	41
	261	126.4244	5.6337	39
	263	90.4469	5.3262	39
	265	82.7962	3.8257	29
	273	58.8176	3.51	28
	318	66.1132	5.0696	41
	322	138.7254	5.8976	39
	No.	Delta	Tiempo S-Sp	H Cortical
CAUD	Sismo	(km)	(s)	(km)
	8	89.1556	4.1158	28
	72	105.299	5.9742	36
	74	142.2289	3.8419	21
	131	25.4973	4.6564	41
	135	98.0097	3.9066	24
	140	81.5807	4.925	34
	182	190.3806	4.9205	25
	263	95.0475	3.464	25
	318	70.4831	6.314	50
	322	141.252	5.5146	36

	No.	Delta	Tiempo S-Sp	H Cortical
AGUC	Sismo	(km)	(s)	(km)
	20	89.0858	5.0965	39
	31	80.5187	5.4094	42
	36	80.3774	5.3623	41
	48	73.6141	4.4667	35
	57	82.9366	5.3812	38
	72	111.8172	4.7559	28
	78	35.4727	4.5987	40
	91	66.2802	4.999	40
	98	77.1262	4.9589	38
	106	53.7059	3.5762	29
	118	104.3766	4.7212	28
	131	30.0859	4.5297	39
	140	88.6208	5.1926	35
	182	192.0681	4.1681	21
	219	42.4842	2.3255	21
	222	86.4058	5.6028	40
	236	131.1622	3.9022	27
	244	91.5003	4.8281	34
	263	99.1882	6.5208	46
	318	74.3258	5.5719	44
	321	220.4045	4.5073	21
	No.	Delta	Tiempo S-Sp	H Cortical
CERQ	Sismo	(km)	(s)	(km)
	20	92.2619	5.258	39
	36	83.7975	4.8941	37
	48	77.1192	4.9355	38
	75	56.5184	4.8198	40
	78	37.5821	6.0357	52
	40	69.7466	4.9747	39
	118	107.1632	4.0118	23
	135	107.8524	4.386	26
	140	91.3557	3.7644	25
	161	57.7517	4.8183	40
	171	152.2464	4.0389	21
	193	43.9103	3.9551	33
	219	46.112	3.8236	32
	222	89.8098	4.21	30
	236	134.3158	3.3956	23
	318	77.9257	5.1494	40
	321	223.6974	7.0683	33

AGUA	No. Sismo	Delta (km)	Tiempo S-Sp (s)	H Cortical (km)
	31	109.9903	5.7373	40
	36	93.5491	4.6806	34
	38	71.8464	4.3	34
	63	163.3319	4.083	23
	75	66.2727	4.5343	36
	78	46.2253	4.3126	37
	91	79.478	5.1203	39
	98	89.8236	5.1334	37
	118	112.2958	5.2485	30
	135	113.2074	4.0742	23
	171	161.9881	4.3449	22
	182	204.9911	5.4734	26
	193	49.0673	4.0404	33
	213	144.3686	6.1848	35
	222	97.3727	4.8745	33
	236	143.9844	4.5098	29
	261	143.5638	4.0818	27
	263	112.2021	5.7593	38
	308	87.4187	5.1469	39
	No.	Delta	Tiempo S-Sp	H Cortical
τυχτ	Sismo	(km)	(s)	(km)
	20	201.3877	6.1361	29
	23	263.9302	5.6771	21
	31	207.5541	6.2756	28
	35	184.3212	4.9916	23
	36	188.0841	5.4464	26
	51	173.8257	4.3471	22
	57	123.6755	4.0319	22
	91	174.1885	4.3241	22
	94	150.7663	5.612	31
	103	119.108	3.2137	21
	127	160.344	5,7593	31
	131	135.877	6.0465	37
	137	202.7745	6.9676	29
	139	170.7632	6.351	32
	156	158.4488	3.9168	22
	157	272.7962	4.0443	23
	159	142.9891	5.63	35

	193	115.1098	5.4218	34
	212	236.911	5.7977	24
	219	146.1502	4.643	28
	257	177.3278	5.7608	31
	263	193.5836	5.6826	25
	268	190.075	6.023	28
	275	168.9362	4.2115	21
	278	84.7242	4.2992	32
	312	118.168	5.5476	35
	No.	Delta	Tiempo S-Sp	H Cortical
ESMA	Sismo	(km)	(s)	(km)
	11	121.2223	5.0308	29
	24	137.4936	5.4087	37
	31	108.6648	4.829	34
	36	93.198	4.9582	36
	38	68.8884	4.6668	38
	78	42.4258	4.6327	40
	91	79.4915	4.841	37
	94	79.7376	5.1084	39
	103	58.1876	4.6122	37
	106	69.0071	4.6721	37
	118	118.8016	5.2094	29
	123	66.0096	4.6614	37
	126	97.6886	5.3089	40
	165	68.101	4.4537	35
	171	161.6616	3.9955	21
	182	203.3125	5.0982	24
	209	194.4144	3.9882	22
	219	57.3924	4.5144	37
	222	101.8998	3.6907	24
	228	121.5798	4.6569	26
	236	142.1296	3.5767	23
	261	141.7472	3.1311	21
	308	84.4458	5.5387	42
	No.	Delta	Tiempo S-Sp	H Cortical
CONU	Sismo	(km)	(s)	(km)
	74	172.2171	5.7337	27
	118	126.9033	5.5133	29
	126	110.5572	4.9212	36
	139	128.7	4.8106	29
	165	80.4526	3.678	28

	222	112.5661	4.7313	30
	261	154.4627	4.9441	31
	265	116.3225	4.4306	30
	273	96.5719	4.4569	31
	308	96.7898	5.3609	39
	No.	Delta	Tiempo S-Sp	H Cortical
COYO	Sismo	(km)	(s)	(km)
	1	98.007	4.5649	34
	8	121.658	5.1691	30
	31	124.8966	5.0792	33
	38	84.2744	3.9408	30
	No.	Delta	Tiempo S-Sp	H Cortical
RACI	Sismo	(km)	(s)	(km)
	34	109.4024	4.5011	31
	38	83.8214	4.3378	33
	91	97.0708	3.681	27
	123	84.4843	3.8327	29
	126	114.9027	4.5851	33
	131	63.7759	3.5486	28
	135	136.2621	4.6882	23
	213	162.0954	4.3572	22
	No.	Delta	Tiempo S-Sp	H Cortical
MANG	Sismo	(km)	(s)	(km)
	1	106.5414	3.7878	27
	20	124.0676	4.0181	27
	48	112.3354	3.8336	26
	51	113.8173	3.5514	24
	57	117.8618	3.4684	21
	60	94.7608	3.4282	24
	66	66.4117	3.4881	27
	75	94.3862	3.9882	29
	78	64.5538	3.2449	27
	103	81.1234	3.6084	26
	106	94.587	3.1755	23
	123	91.4925	3.7179	27
	140	124.66	4.3303	23
	219	83.0925	3.6619	28
	308	110.1493	3.5446	24

	No.	Delta	Tiempo S-Sp	H Cortical
SARO	Sismo	(km)	(s)	(km)
	38	95.6946	3.6235	27
	50	143.1354	4.1088	21
	106	100.8085	3.7169	26
	126	127.743	3.7328	26
	135	148.2736	4.531	21
	139	149.2033	4.5295	25
	188	138.6951	3.9179	21
	193	84.4279	3.9926	29
	222	133.1104	3.8888	22
	308	116.1433	4.3857	29
OATE	No.		Tiempo S-Sp	H Cortical
CATE	No. Sismo	Delta (km)	Tiempo S-Sp (s)	H Cortical (km)
CATE	No. Sismo 78	Delta (km) 78.6023	Tiempo S-Sp (s) 3.8601	H Cortical (km) 30
CATE	No. Sismo 78 No.	Delta (km) 78.6023 Delta	Tiempo S-Sp (s) 3.8601 Tiempo S-Sp	H Cortical (km) 30 H Cortical
CATE	No. Sismo 78 No. Sismo	Delta (km) 78.6023 Delta (km)	Tiempo S-Sp (s) 3.8601 Tiempo S-Sp (s)	H Cortical (km) 30 H Cortical (km)
CATE	No. Sismo 78 No. Sismo 6	Delta (km) 78.6023 Delta (km) 115.9208	Tiempo S-Sp (s) 3.8601 Tiempo S-Sp (s) 3.9502	H Cortical (km) 30 H Cortical (km) 26
CATE SONT MONT	No. Sismo 78 No. Sismo 6 No. Sismo	Delta (km) 78.6023 Delta (km) 115.9208 Delta (km)	Tiempo S-Sp (s) 3.8601 Tiempo S-Sp (s) 3.9502 Tiempo S-Sp (s)	H Cortical (km) 30 H Cortical (km) 26 H Cortical (km)
CATE SONT MONT	No. 78 No. Sismo 6 No. Sismo 6	Delta (km) 78.6023 Delta (km) 115.9208 Delta (km) 131.3212	Tiempo S-Sp (s) 3.8601 Tiempo S-Sp (s) 3.9502 Tiempo S-Sp (s) 3.3364	H Cortical (km) 30 H Cortical (km) 26 H Cortical (km) 21

Apéndice E. Tablas con los valores de distancia horizontal, diferencias de TS-TSp observados y espesor en la discontinuidad del Conrad para cada estación.

IXTE	No. Sismo	Delta (km)	Time S-Sp (s)	H Conrad (km)
	124	211.9766	3.1072	10
	125	240.0456	4.0732	11
	272	76.0247	2.4586	18
	No.	Delta	Time S-Sp	H Conrad
MAZH	Sismo	(km)	(s)	(km)
	128	272.5647	5.4423	10
	141	216.0154	4.0308	10
.	No.	Delta	Time S-Sp	H Conrad
CHIV	Sismo	(km)	(S)	(km)
	141	226.4551	5.0249	12

176 236.0403 4.892

10

No. Delta Time S-Sp H Conrad LACU Sismo (km) (s) (km) 235 85.4007 2.3529 16 No. Delta Time S-Sp H Conrad ELME Sismo (km) (s) (km) 54.7678 2.3379 19 188 228 34.5827 2.2356 19 No. Time S-Sp H Conrad Delta AGUA Sismo (km) (s) (km) 321 228.8812 3.8946 13 No. Delta Time S-Sp H Conrad CONU Sismo (km) (s) (km) 171 174.5322 4.2222 19 236 154.8358 2.8443 18 No. Delta Time S-Sp H Conrad MANG Sismo (km) (s) (km) 213 169.6948 3.532 16 222 126.6097 3.2406 19 No. Delta Time S-Sp H Conrad TUXT Sismo (km) (s) (km) 113 313.6106 4.8715 12 322 255.1436 5.1889 19