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Abstract

Shapes in Quantum Mechanics is the joint of the two research lines we (my advisor, colleagues

and I) work in my PhD studies’ period, where the common concept is the shape of an object. In

the first part of the text, we deal with the shape of a n-body quantum system, its evolution and

its consequences on the orientational degrees of freedom. We give the analogy of the classical

behavior with coherent states and another purely quantum examples in the three body and four

body system. How is it seen the landing of a free falling quantum cat? What if the shape

of the cat is in a quantum superposition? What can one expect of an evolution with the less

“coherent” shape, an anticoherent shape state? Can we prepare the shape quantum state of a

system for a desired orientational behavior? This kind of questions are explored.

The second part of our work is the study of the shape of spin-s states in the projective Hilbert

space P. The Majorana stellar representation helps us to associate a physical “shape”. More

over, it is useful to discover additional information hidden in the usual way to express a spin

state. In particular, we concentrate the study in the set of the most “classical” spin states, which

are the set of the spin coherent states. It has the property that for all spin s, it is a 2-sphere

S2
SC . We address several questions regarding this sphere, in particular its possible intersections

with complex lines, which is a criterion to know when a state can be written as a superposition

of two coherent states. We also find that, like Dali’s iconic clocks, S2
SC extends in all possible

directions in P, and plot its image, assuming light in P propagates along Fubini-Study geodesics.

In the last part of the text, we generalize the geometric phase formalism given by Mukunda and

Simon to the non-abelian case. We find a realization of a robust non-abelian geometric phase

using k-planes of spin states which are anticoherent. Having in mind these applications, we

define and characterize the Majorana representation for k-planes of spin states.
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Resumen

Shapes in Quantum Mechanics es la conjunción de dos ĺıneas de investigación en las que mi

tutor, colegas y yo trabajamos durante el periodo de mis estudios de doctorado, en los cuales el

concepto común es el de la forma de un objeto. En la primera parte del texto, tratamos con la

forma de un sistema cuántico de n-cuerpos, su evolución y sus consecuencias sobre los grados de

libertad orientacionales. Damos el análogo del comportamiento clásico con estados coherentes

y otros ejemplos puramente cuánticos en el sistema de 3 y 4 cuerpos. ¿Cómo se ve el aterrizaje

de un gato cuántico en cáıda libre? ¿Qué ocurre si la forma del gato está en una superposición

cuántica? ¿Qué espera uno de una evolución con el estado de formas menos “coherente”, un

estado de formas anticoherente? Podemos preparar el estado cuántico de formas de un sistema

para un particular comportamiento orientacional? Este tipo de preguntas son exploradas.

La segunda parte de nuestro trabajo consiste en el estudio de las formas de los estados

de esṕın en el espacio proyectivo de Hilbert P. La representación de Majorana nos ayuda a

asociar una “forma” f́ısica. Más aún, es útil para descubrir información adicional escondida en

la forma usual de expresar un estado de esṕın. En particular, concentramos nuestro estudio en

el conjunto de los estados más clásicos permitidos, que son el conjunto de los estados de esṕın

coherentes. Este conjunto tiene la propiedad de que para todo esṕın forman una 2-esfera S2
SC .

Proponemos varias preguntas con respecto a esta esfera, en particular sus posibles intersecciones

con ĺıneas complejas, el cual es un criterio para saber cuando un estado puede ser escrito como

una superposición de dos estados coherentes. También encontramos que, como los endémicos

relojes de Dali, S2
SC se extiende en todas las direcciones posibles en P, y graficamos su imagen,

asumiendo que la luz en P se propaga sobre geodésicas de la métrica de Fubini-Study. En la

última parte del texto, generalizamos el formalismo de Mukunda y Simon para la fase geométrica

a el caso no-abeliano. Exponemos una realización de una fase geométrica no-abeliana usando

k-planos de estados de esṕın que son anticoherentes. Teniendo en mente este tipo de aplicaciones

f́ısicas, definimos y caracterizamos la representación de Majorana para k-planos de estados de

esṕın.
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Introduction

A system of n isolating point particles has 3n coordinates which can be divided in: three for

the position of the center of mass, three to the global orientation of the system and 3n − 6

to describe the shape of the system. The last coordinates are related with the vibrational

modes in small oscillations. In general, the coordinates of orientation and shape doesn’t evolve

independently, which is the origin to many phenomena, since the explanation of how a falling cat,

or a diver can re-oriented by himself even with null total angular momentum, to the rovibrational

spectre of molecules. Our first contact (and for many people interested in control theory) in

this branch of physics relying in the free falling cat problem. Free falling cats, relying on their

feline righting reflex, manage to land on their feet, even if released upside-down, and with zero

initial angular momentum — all they need is a minimal distance of about thirty centimeters

to the ground, although claims of much shorter distances exist, including the five centimeters

reported by Maxwell [22]. The phenomenon is puzzling, as it seems to violate conservation of

angular momentum, but a careful analysis, first carried through by Kane and Scher [49], shows

that cats don’t rotate despite angular momentum conservation, but, rather, because of it.

The emergence of geometrical methods in the study of the n-body problem, pioneered by

Guichardet [39], revived the interest in the falling cat problem, leading to subsequent refine-

ments and extensions [92], including the influential work of Shapere and Wilczek [90], that

embedded the subject in mainstream, application-oriented physics. On the more formal front,

the culmination came with the Falling Cat Theorem, by Montgomery [75], converting this prob-

lem to the prototype of a whole class of classical dynamical systems exhibiting anholonomy.

The quantum version of this approach has shed a new, bright light on molecular dynamics

(see, e.g., [62, 63, 60, 61]) providing far deeper insights than those accessible to the traditional

approaches.
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For our goals is sufficient to use systems with three and four point like particles, which have

been studied before, both in the classical and the quantum case. Of the recent literature, we

single out the treatment in [76], as the most relevant to our own, at the classical level, and

that of [47], at the quantum level. A much wider body of work exists related to applications

to molecular physics. In this case, the presence of an electron cloud around the nuclei, and its

adiabatic treatment in the Born-Oppenheimer scheme, gives rise to another gauge structure,

distinct from the one mentioned above, which manifests itself in subtle phase effects — see for

example [42, 73] and especially [72] for a review.

The scope of possible applications for the N-body problem is actually considerably wider

than molecules. The rotovibrational spectra of more complicated systems, like, for example, the

12C nucleus, can be modelled surprisingly well by triangular configurations of α-particles [15, 68]

and the 16O nucleus by a tetrahedral α-particle cluster models of nuclei like [16], which are

the configuration that we consider. More over, systems atoms-light can be another scenary to

observe the phenomena between orientational degrees of freedom and another internal degrees.

For instance, it’s already known anticoherent states of light can be produced (see [25]), which

are states of interest in our work.

Our first aim we consider is to provide a quantum description of the falling, rotating cat,

using the above mentioned geometrical approach. Our cat model is oversimplified: we study a

triangular, quasi-rigid cat. But the essence of the phenomenon is captured already by such a

simple model. In the quantum case, the system will be described by a superposition of states

with non-vanishing probability to have every orientation and every shape in general and, to

monitor its evolution, we need to use expectation values of physical quantities. In particular,

we can imagine more exotic scenarios purely quantum, and some of them are discussed. In the

three body quasi rigid model, shape changes can only induce rotations along one axis, and then

this do not capture the non-abelian character of SO(3), so the next step in our work is the study

of the four body model, around the tetrahedron as a equilibrium configuration. For this case, we

will compare two extreme cases: when its shape wavefunction is described by a coherent state

and when it is described by an anticoherent one.

Nowadays, scientists have found and synthesized molecules which act like machines [54,

29, 30], i.e., with some degrees of freedom which can be combined to do an specific motion

as a translation, rotation, etc. The motion is described in a semi-classical way, because the
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molecules and its constituents of the machines are still too big to have a purely quantum

behavior. However, we are not far away to have this kind of systems as one could think. One may

envisage, in a not-so-distant future, the use of the effect studied here in the manipulation, with

extreme accuracy, of the orientation of nanostructures. Suitably large molecular populations

could be set to vibrate, causing an entire nanostructure containing them to reorient itself. Some

experiments with this flavour have been done [31], but only in orientational degrees. We finish the

first part of the text engineering a shape state to obtain a desired orientational evolution, where

we choose an axial evolution of the orientational wavefunction in the angle-axis representation

of SO(3).

In the second part of the text, we consider a system of s spin 1/2 states, where its degrees of

freedom can be separated in: three of global orientation, and the rest to the shape of the state.

We just consider totally symmetric pure states. In this case the system is equivalent to a spin-s

state, with 2s degrees of freedom. In the totally symmetric case, each state of spin s, |ψ〉 is

identified one-to-one with 2s indistinguishable points (stars) on the unit sphere (constellation),

which is called the Majorana stellar representation [66]. With the constellation of a state, its

“shape” can be imagined.

Quantum theory’s predominantly algebraic beginnings have given way, in the last decades,

to an intense interest in its geometric aspects, including the use of the stellar representation

[20, 65, 83]. Although quantum dynamics has also benefited by this trend (see, e.g., [5, 89,

6, 19]), it mostly kinematical considerations are the principal object of study being the space

of quantum states, particularly in its finite dimensional incarnation. Properties of states, like

entanglement, that are deemed essential for quantum information processing, are seen to admit

natural characterizations in purely geometrical terms [27, 55, 78, 95, 45, 7, 23, 69, 69, 9], and the

gradual assimilation, by the community, of an ever expanding mathematical arsenal (e.g., [74,

43, 44]) promises to shed a new, bright light on familiar, yet not sufficiently understood concepts.

We are interested in the spin coherent (SC) ones [82], which are the “most classical” ones,

just like their harmonic oscillator infinite dimensional counterparts, and generalizations thereof.

They are characterized by their vanishing entanglement, yet, they have been shown to serve

in classifying that same quantity as it pertains to other symmetric states [67]. In paper, a

generic spin state can be expanded in a linear combination of appropriate SC states [67, 87],

while in the laboratory, it can be reconstructed by a knowledge of corresponding transition
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probabilities [3], the relation between these two statements being less trivial than one might

assume. SC states have also appeared in the characterization of the polarization of light [17],

and, there too, correspond to maximally classical behavior, that has recently been studied also

experimentally [18]. Our study revolves around basic questions about the geometry and topology

of quantum state space: going beyond the standard folklore, we aim at an intuitive grasp of what

“living in quantum state space” might be like. For example, it is an elementary fact that the SC

states form a topological 2-sphere, for any value of the spin of the system, but we feel there is

much more to know about this, that is simply absent from the literature: assume one stands on

a particular state |Ψ〉 in quantum state space and looks around, using light that travels along

geodesics of the natural Fubini-Study (FS) metric — what does one see? Would the SC sphere

look like a distant moon in the sky? Would it look spherical? What part of the sky would it

cover? How many times would a light ray intersect its surface, assuming transparency? We do

not deny that we would pose these questions in any case for the sheer pleasure of finding out the

answer, but it is also true that they have direct physical implications: for example, if looking

at the “SC moon” from |Ψ〉 one can see both a front surface and a rear one, this implies that

|Ψ〉 (a lift of [Ψ] in the overlying Hilbert space) can be written as a linear combination of two

SC states. This, in turn, implies that an experimentalist, equipped with a magnetic field and a

beam of particles in a SC state (and a picture of the SC moon taken from |Ψ〉!), can split the

beam in two, rotate one component with the magnetic field to produce a second SC state, and

then reconstruct |Ψ〉 by recombining the two SC states and rotating the superposition in its final

orientation. The same comment holds true in the case the seemingly esoteric statement that

there is a certain complex line going through |Ψ〉 and intersecting the SC sphere in two points,

is valid. Formalizing the above discussion, we are led to consider geodesics of the FS metric,

and complex lines, that pass through an arbitrary state |Ψ〉, and study how they intersect the

SC sphere, as |Ψ〉 is moved around the quantum state space. Others before us have explored

quantum state space with a similar geometric/visual point a view (see, e.g., [55, 46, 21]) and an

extensive treatment of the subject is in [11].

Berry’s discovery of geometric phases, and their description as holonomies in a principal

bundle [79], fueled a renaissance of the theory that continues to our days, further impulsed by

advances in quantum computing. One of the challenges in quantum computing is the imple-

mentation of the fundamental logical operators effectively, where some ideas are englobed and
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called geometrical and topological quantum computation [98, 33]. In the last chapter of this

text, we explained an idea to solve this aim, using a generalization of a non-Abelian geometric

phase, inspired by the work of Mukunda and Simon. It is also used a notion of a Majorana

representation, but now for k-planes (vectorial subspaces of dimension k) in the spin Hilbert

space P. An idea of the association of a polynomial of one variable to a subspace of P has been

formulated and studied in algebraic geometry [88, 28]. However, its application to quantum

mechanics, and moreover, the study of the mapping of a k-plane to a constellation, has not been

exploited. We give some advantages to these lines and apply the new results to anticoherent

subspaces [80] which has not been studied in a stellar way before.

The text consists of four chapters. In chapter one, we give the geometrical framework for the

n-body problem in its classical and quantum version. To do the calculations as analytically as

possible without missing the phenomena we can studied, we use the quasi-rigid approximation.

Also, the tensor operators and the Majorana representation are explained in this chapter. In

the last section, we give the classes of quantum states that we will used later. In chapter

two we explain the three and four body problem with an equilateral triangle and tetrahedron

as the equilibrium configuration, respectively. We study the classical case and implement its

analogy in the quantum version using coherent states. Then, we explore another examples in

the quantum realm, as the superposition of two coherent shape states. We explore the evolution

of the orientation wavefunction when the shape is the less coherent one, which is given by

an anticoherent state. Finally, we invent a shape state which produce axial evolution in the

orientational part of the system.

In the second part of the text, we expose our results in the Hilbert space of spin states. The

chapter three is focused in the set of the spin coherent states. First, we review the Majorana

representation, which is our main tool. We give the construction of the Hilbert space as a

principal fiber bundle, with fiber diffeomorphic to SO(3), and explained how this construction

is useful with a first application: the quantum GPS. The last two sections explain algebraic

and geometrical properties of the set of the spin coherent states in the Hilbert space P. In the

last chapter, we generalize the Majorana representation for k-planes, i.e. linear subspaces of

dimension k. To obtain this result, we give the notion of coherent k-planes and an inner product

between k-planes, inspired in the usual product for lines. We prove several properties of the

constellation of a k-plane, and give several examples. A definition of anticoherent subspaces is

ix



given and it is proved that they are useful for a robust non-abelian geometric phase, inspired by

the geometric phase of Mukunda and Simon that is explained in the first section.
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Quantum system of n-point particles
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Chapter 1

Geometrical formulation of n-body

dynamics

The existence of mysterious relations between all

these different domains is the most striking and

delightful feature of mathematics.

V. I. Arnold

In this chapter, we introduce the mathematical tools for the n-body problem and for the

ro-vibrational phenomena. The geometrical formulation of the classical and quantum n-body

problem are discussed in sections 1.1 and 1.2, respectively, following the reference [63]. In section

1.3, we explain the quasi-rigid approximation which simplifies our calculations. For the quantum

case, the notions of the tensor operators and the Majorana representation will be useful, which

are presented in sections 1.4 and 1.5, respectively. Finally, in section 1.6 we present some classes

of quantum states which we use in the next chapter.

1.1 The classical description

We consider an isolated deformable body, modeled by n point-like particles, interacting among

themselves through a potential V . The configuration space of the body is Ctot = R3n and its

Lagrangian is given by

Ltot =
1

2

n∑
α=1

mα|ṙsα|2 − V (rs,1, . . . , rs,n) , (1.1)

3



4 CHAPTER 1. GEOMETRICAL FORMULATION OF N -BODY DYNAMICS

where rsα ∈ R3 is the α-th particle’s position vector with respect to a fixed (or space) frame

(hence the s sub-index), and mα its mass (α = 1, 2, . . . , n), while overdots denote time deriva-

tives. The absence of external forces suggests the elimination of the translational degrees of

freedom by introducing relative coordinates, e.g., the mass-weighted Jacobi coordinates,

ρsα =
√
µα

n∑
β=1

Tαβrsβ, α = 1, . . . , n− 1, (1.2)

where the µα are reduced masses and T is a transformation matrix such that

Tnα =
mα

M
,

n∑
β=1

Tαβ = 0 , α = 1, . . . , n− 1 . (1.3)

These conditions in T guarantee the separation of the translational degrees of freedom.

With the coordinate transformation (1.2), the kinetic energy of the center of mass separates

from the total kinetic energy, and thus the Lagrangian can be written as Ltot = LCM + L, with

LCM =
1

2
M |Ṙs|2 , L =

1

2

n−1∑
α=1

|ρ̇sα|2 − V (ρs,1, . . . ,ρs,n−1) . (1.4)

Likewise, in these coordinates it is clear that the total configuration space can be written as

R3n = R3 × C , where C = R3n−3 is the translation-reduced configuration space, on which

(ρs,1, . . . ,ρs,n−1) are coordinates. The center of mass dynamics is irrelevant for us, then we

assume that Rs(t = 0) = Ṙs(t = 0) = 0 and refer to C simply as the configuration space. A

point in C is specified once the body’s shape and orientation are given. Now, rigid rotations to

the whole system leave the potential invariant. This allows us to factorize C as a principal fiber

bundle with fibers diffeomorphic to SO(3) and base space S = R3n−3/SO(3). The base space

is called the shape space, and its 3n− 6 coordinates qµ correspond to independent functions on

configuration space, invariant under proper rotations, i.e.,

qµ(ρs,1, . . . ,ρs,n−1) = qµ(Qρs,1, . . . ,Qρs,n−1) , for all Q ∈ SO(3) . (1.5)

The functions qµ, which we will called shape coordinates, are scalar quantities in the sense

mentioned above. They are built by a combination of dot and cross products between the

weighted Jacobi vectors. Defining the body’s orientation, on the other hand, requires (i) an

orthonormal frame to compare with the space frame, fixed to the body for each shape, given by

relations ρα = ρα(qµ), α = 1, . . . , n − 1, and (ii) the rotation R ∈ SO(3) that maps the above
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body frame to the fixed space frame, parametrized, for example, by Euler angles, R = R(θi).

The quantities referred to the body frame are written without the sub-index s. Fixing a body

frame for each shape is a gauge choice (and section Σ in the fiber bundle), that defines the

reference orientation as the one where the body and space frames coincide. This fiber bundle is,

in general, non-trivial, so that a section cannot be chosen globally, in other words, there is no

smooth assignment of a body frame to all shapes.

In terms of these orientation and shape coordinates, (θi, qµ), and a section ρα(qµ) as above,

a point (ρs,1, . . . ,ρs,n−1) in C is defined by

ρs,α = R(θi)ρα(qµ), α = 1, . . . , n− 1. (1.6)

The above relation expresses the fact that given a shape of the body qµ, and a reference orien-

tation ρα(qµ), any configuration of the body, with that shape, can be reached through a unique

rotation R(θi). For the tangent space TC , it will be convenient to use an anholonomic basis,

such that the velocity vector v of the system has components va = (ω, q̇µ), where

ωi = −1

2
εijk(RT · Ṙ)jk (1.7)

is the i-th component of the angular velocity of the body frame w.r.t. the space frame, referred

to the body frame. The corresponding basis vectors satisfy the so(3) Lie algebra. In the above

expression, and in what follows, we employ the Einstein summation convention for repeated

indices.

The Lagrangian (1.4) in the new coordinates and velocities v(ω, q̇µ) is

L =
1

2
Gabv

avb − V (q) , (Gab) ≡

 M MAν

AT
νM gµν + Aµ ·M ·Aν

 , (1.8)

where (Gab) is the metric in configuration space C , defined by the kinetic energy, and

M =
n−1∑
α=1

ρα ⊗ ρα − |ρα|2 1 , (1.9)

Aµ = M−1
n−1∑
α=1

ρα ×
∂ρα
∂qµ

, (1.10)

gµν =

n−1∑
α=1

∂ρα
∂qµ
· ∂ρα
∂qν
−Aµ ·M ·Aν , (1.11)
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with M the inertia tensor, Aµ the (Coriolis) gauge potential and gµν the metric on shape space

S , respectively.

A velocity vector of the form va = (ω, 0) is purely rotational, or vertical, since q̇µ = 0 implies

the body’s shape is not changing. A complementary notion of horizontality is furnished by

decreeing a velocity vector horizontal if the corresponding motion of the system has zero total

angular momentum. It turns out that horizontal and vertical vectors are orthogonal according

to the above metric Gab. In the anholonomic basis introduced earlier, the angular momentum,

referred to the body frame, is given by

(R)−1Ls = L = M · (ω + Aµq̇
µ) , (1.12)

and thus, vanishing angular momentum implies

ωdt = n̂dω = −Aµdq
µ , (1.13)

where n̂dω is an infinitesimal rotation dω along the n̂ axis. In this case, the last equation is a

connection, and Aµ maps infinitesimal changes in shape space to infinitesimal rotations, so that

the horizontal lift in C of a given path qµ(t) in shape space has orientational coordinates given

by

R(t) = P exp

(
−
∫ q(t)

q0

Aµdq
µ

)
, (1.14)

where the space and body frames were assumed in coincidence at t = 0, P exp is the path-ordered

exponential (the composition of rotations is non-abelian), and the antisymmetric matrix Aµ is

related to the gauge potential via (Aµ)ij = −εijkAkµ. The acquired rotation for a path on the

base space is only independent of the gauge if the path is closed. We obtain that the connection

has anholonomy with n ≤ 3 particles, and therefore the horizontal lift produces open curves.

With the gauge potential, it is possible to define an associated curvature 2-form B, called

the Coriolis tensor, with components given by

Bµν = ∂µAν − ∂νAµ −Aµ ×Aν , (1.15)

such that a cyclic deformation in shape space, with L = 0, around the infinitesimal parallelogram

spanned by the vectors yµ and zµ, produces the gauge-covariant infinitesimal rotation generated

by ωdt = −Bµνy
µzν . Note that R 6= I requires both a non-zero enclosed area by the closed path

qµ(t) in shape space and B 6= 0 in at least one point of the enclosed area.
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The dynamics of the system can also be described by means of the gauge-covariant Hamil-

tonian

H =
1

2
L ·M · L +

1

2
(pµ −Aµ · L)gµν(pν −Aν · L) + V (q) , (1.16)

where pµ = gµν q̇
ν + Aµ · L is the momentum conjugate to the shape coordinate qµ. For L = 0,

(1.16) shows that the shape and orientation degrees of freedom decouple and one can solve

independently for qµ(t), plug it into expression (1.14), and obtain the orientation trajectory in

SO(3). For the case of L 6= 0, the total rotation acquires time dependent contribution (M−1L)dt

in addition to the obtained by shape deformations.

1.2 Quantum version

In the quantum case, the configuration of the system doesn’t have an specific shape and orien-

tation, instead of that the general quantum state will be described by a wavefunction Ψ(R, q) on

C which codifies the probability to find our system in the configuration (R, q) for each point of

C 1. The closed circuit qµ(t) in shape space, considered in the classical case, will be replaced by

a similar circuit of the expectation value 〈Ψ|qµ|Ψ〉, while the resulting classical rotation at the

end of the cycle will correspond to a vertical shift in the support of Ψ. Similarly, the classical

condition L = 0 will have to be replaced by the vanishing of the expectation value of each of

the components of L. In the last case, we can’t restrict the study to the state with quantum

number l = 0 because is homogeneous in all the fiber, and then it is impossible to keep track of

a rotation of the state. Also, if 〈Ls〉 = 0, it is not necessary that 〈L〉 is zero. This is understood

by the fact that the rotation relating the body frame and space frame for each shape R(qµ), is

now an operator.

The quantum Hamiltonian is equal to (1.16), with the same ordering, plus an additional

potential

V2(q) =
~2

2
D−1/4 ∂

∂qµ

(
gµν

∂D1/4

∂qν

)
, (1.17)

with D = (detM)(det gµν). With the approximations that we will use, V2(q) = 0. The hamil-

tonian H commutes with L2 and Lsz, so its eigenfunctions can be chosen to be simultaneous

1In the case that is considered the center of mass degrees of freedom, the wavefunction has the additional factor

Ψ(R). For a potential invariant under rotations and translations, the eigenbasis of Ψ(R) are the wave planes.
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eigenfunctions of all three operators, with eigenvalues, say, E, l, m, respectively, which we denote

by ψlm(R, q), suppressing the index E. From the theory of angular momentum, (see, e.g., [58],

§58), if we know the wavefunction over a section Σ

χlk(q) =
1√

2l + 1
ψlk(I, q) , (1.18)

we know the whole wavefunction,

ψlm(R, q) =

l∑
k=−l

χlk(q)D
l
mk(R)∗ , (1.19)

where Dl
km(R) are the Wigner functions corresponding to the (2l + 1) × (2l + 1) irreducible

matrix representation of R ∈ SO(3). In this way, the orientational part of the problem has

been taken care of by group theory — substituting the above ψlm in (1.16), H becomes a 2l+1-

dimensional matrix, with entries depending on the operators qµ, pν , acting on the column vector

(χlk), whose components, indexed by k, depend on q. The resulting eigenvalue equation which,

with a slight abuse of notation, we write as Hχlk = Eχlk, is still a formidable problem to solve,

because M, Aµ, gµν , V , are all, in general, complicated functions of the q’s. However, for our

purposes it is unnecessary to solve the eigenvalue equation exactly, instead, we will consider

some approximations.

1.3 Quasi-rigid approximation

We imagine now that the interaction potential V is due to elastic, but stiff, rods, that connect

the n point masses. At their equilibrium length, the rods give the body the shape q0, which

we assume non-collinear and the body can have small deformations around q0, qµ = qµ0 + λxµ,

with λ a small dimensionless parameter. Expanding the potential V around q0, we obtain a

system of coupled harmonic oscillators, small vibrations of which will provide the cyclic shape

change we seek. So far the shape coordinates qµ have been taken arbitrary, but we now have

enough motivation to choose them in a very special way: first, the directions ∂µ ≡ ∂/∂qµ will

be taken to be those of the normal modes of the system, so that the expansion of V around q0

is diagonalized,

V (q) =
1

2

3n−6∑
µ=1

ω2
(µ)

λ2
xµx

µ , (1.20)
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where we have assumed that V (q0) = 0 and that ∂2
µV = ω2

(µ)/λ
4. This latter assumption simply

means that we chose the scale of the masses of the particles so that the resulting oscillation

frequencies are of order λ−2. Having fixed the directions ∂µ, we now extend the q-lines (or,

what is the same, the x-lines) so that they be geodesics of the S -metric gµν , obtaining Riemann

normal coordinates on S . This latter property of the coordinates guarantees that no linear

terms appear in the expansion of the metric around q0,

gµν(x) = δµν +
1

3
λ2Rµαβν(0)xαxβ +O(λ3) , (1.21)

where the zeroth order term was made equal to the unit matrix by suitable normalization of

the q’s. Expression (1.21) implies that the corresponding Christoffel symbols satisfy Γαµνx
µxν =

O(λ2).

There is one final simplifying choice we can make, related with the gauge potential Aµ. We

opt for the Poincaré (or, transversal) gauge, centered at q0, so that

Aµ(x) =
λ

2
Bµα(0)xα +O(λ2) , (1.22)

which, on the one hand, makes Aµ(0) equal to zero, and, on the other, expresses H in terms of

the gauge-covariant tensor B. The above expression for A in terms of B can be obtained by ap-

plying the Poincaré homotopy operator, appropriately generalized to the non-abelian case [41].

In geometrical terms, the corresponding section Σ is the horizontal lift of radial lines, in the

coordinates used, emerging from the equilibrium configuration. When the coordinates are Rie-

mann normal coordinates, as above, the section is flat, and the corresponding choice of body

frame is that of Eckart [64].

Finally, we rescale various quantities according to

pµ → pµ/λ , H → λ2H , M→ λ2M , Aµ → λAµ , L→ L , (1.23)

and express Rµαβν in terms of Bµν ,

2Rµνστ = Bµν ·M ·Bστ + Bµ[τ ·M ·Bσ]ν , (1.24)

(cf. relation (5.61) from [63]), so that H can be expanded as

H =
1

2

3n−6∑
µ=1

pµpµ + ω2
(µ)x

µxµ

+
1

2
λ2(L− S) ·M−1 · (L− S) . (1.25)
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The metric gµν implicit in the above expression, as well as M−1, are both evaluated at q0 (and

then numerical quantities), and we have introduced the “internal angular momentum” S, and

the “shape angular momentum” S,

S =
1

4
M ·BµνS

µν , Sµν = xµpν − xνpµ , (1.26)

with Bµν also evaluated at q0. The shape and orientation degrees of freedom are only coupled

by the cross terms, proportional to L ·M−1 ·S and S ·M−1 ·L in (1.25), which can be interpreted

as infinitesimal rotations about the unit vector M̂−1 · S by an angle |M−1 ·S|, both of the latter

quantities being operators in shape space. Spite of that the Hamiltonian (1.25) is valid upto

second order of λ, there are systems and models where it is indeed the exact one (for instance,

see [16], [68]), and therefore we will consider it exact. We are sure that our results are also

observed in more general Hamiltonians, in a more complex manner.

1.3.1 The commutation relations of [Si,Sj]

In this subsection, we prove that the vector S is indeed an angular momentum operator. We

start calculating the commutator between the components of Sµν ,

[Sµν , Sαβ] = [qµpν , qαpβ]− [qνpµ, qαpβ]− [qµpν , qβpα] + [qνpµ, qβpα]

= i (qαpνδµβ − qµpβδνα

+qνpβδαµ − qαpµδβν
+qµpαδβν − qβpνδαµ

+qβpµδνα − qνpαδµβ)

= i
(
Sανδµβ + Sβµδνα + Sνβδαµ + Sµαδβν

)
.

(1.27)

And then,

[Si, Sj ] =
[

1
4(MBµν)iS

µν , 1
4(MBαβ)jS

αβ
]

=
(

1
4

)2
(MBµν)i(MBαβ)j

[
Sµν , Sαβ

]
= i

16(MBµν)i(MBαβ)j
(
Sανδµβ + Sβµδνα + Sνβδαµ + Sµαδβν

)
= i

8 [(MBµα)i(MBµβ)j − (MBµα)j(MBµβ)i]S
αβ .

(1.28)

The factor of Sαβ is only shape dependent {qµ} , then we can use the classical results to

calculate this part. We begin with one identity of the eq.(5.61) of [63], given by the calculation
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of one Riemann tensor’s component in the configuration space

0 =
1

4
(M;αM

−1M;β)ij−
1

4
(M;βM

−1M;α)ij+
1

2
εijk(MBαβ)k+

1

4

[
(MBµα)i(MBµ

β)j − (MBµβ)i(MBµ
α)j

]
,

(1.29)

where

M;µ = M,µ − [Aµ,M] , (1.30)

is the covariant derivative of M, M,µ the ordinary derivative, and Aµ is the antisymmetric matrix

associated to Aµ. Taking M, gµν and Aµ, evaluated in the configuration equilibrium, the inertia

tensor and the metric are constants, and Aµ is zero. Therefore M;µ = 0, MBµ
α = MBµα and

[(MBµα)i(MBµβ)j − (MBµβ)i(MBµα)j ] = −2εijk(MBαβ)k . (1.31)

And finally, eq. (1.28) is equal to

[Si, Sj ] == − i
4
εijk(MBαβ)kS

αβ = −iεijkSk , (1.32)

which are the commutation relations for an angular momentum operator in the body frame.

1.4 Tensor operators

Let us consider the Hilbert space generated by spin-s states. A tensor (multipolar) operator

of range σ [1, 14, 36] consists of elements of an irreducible set of linear operators {Tσµ : µ =

σ, σ − 1, . . . ,−σ} transforming under the action of SU(2) according to the σ irreducible matrix

representation R(σ)(g),

R(g)TσµR(g)−1 =
σ∑

µ′=−σ
R(σ)(g)µ′µTσµ′ ,

R(g)T †σµR(g)−1 =
σ∑

µ′=−σ
R(σ)(g)−1

µµ′T
†
σµ′ .

(1.33)

Under infinitesimal rotations, the transformation laws are

[S+, Tσµ] = [(σ − µ)(σ + µ+ 1)]1/2Tσ,µ+1 ,

[S−, Tσµ] = [(σ + µ)(σ − µ+ 1)]1/2Tσ,µ−1 ,

[S3, Tσµ] = µTσµ .

(1.34)



12 CHAPTER 1. GEOMETRICAL FORMULATION OF N -BODY DYNAMICS

The explicit expression of Tσµ can be given in terms of the 3j-symbols or the Clebsh-Gordan

coefficients,

Tσµ =
√

2σ + 1
∑
m,m′

(−1)s−m

 s σ s

−m µ m′

 |sm〉〈sm′ | = √2σ + 1

2s+ 1

∑
m,m′

Csm
′

smσµ|sm〉〈sm
′ | .

(1.35)

From the latter expression, it is easy to deduce 0 ≤ σ ≤ 2s, and the following properties of Tσµ:

Tr(T †σ1µ1
Tσ2µ2) = δσ1σ2δµ1µ2 , T †σµ = (−1)µTσ,−µ . (1.36)

The set {Tσµ : 0 ≤ σ ≤ 2s, −σ ≤ µ ≤ σ} is an orthogonal basis for the (2s + 1) × (2s + 1)

matrices with the property (1.33). In other words, the Tσµ are the matrix analogs of the spherical

harmonic functions Ylm(θ, φ), which span the space of real functions valued on the sphere f(θ, φ).

We write the expressions of Tσµ, for small values of σ, in terms of the components of the operator

S,

T10 =

(
3

s(s+ 1)(2s+ 1)

)1/2

S3 , T1,±1 = ±
(

3

2s(s+ 1)(2s+ 1)

)1/2

S± , (1.37)

T20 =

(
5

(2s+ 3)(s+ 1)(2s+ 1)(2s− 1)

)1/2

(3S2
3 − S2) . (1.38)

The operators Tσµ can be obtained recursively from the top component Tσσ the operator S−

Tσµ =

[
(σ + µ)!

(2σ)!(σ − µ)!

]1/2

[S−, Tσσ]σ−µ . (1.39)

Furthermore, by (1.34), Tσσ must be proportional to the product of σ times S+, and Tσµ can be

written as a linear combination of operators of the form Sa1Sa2 . . . Saσ , where Sai is a component

of S. This result allows us to define a parity property for Tσµ; with the transformation S→ −S,

Tσµ is mapping to (−1)σTσµ.

Scalar operators under rotations have well defined expansions in terms of tensor operators.

For our problem, we are interested in two types of them, (n̂ · S)k and (L · S)k, for an arbitrary

value of k, where n̂ is the unit vector in direction (θ, φ), and B and S are angular momentum

operators of spin b and s, respectively. Their expansions must be of the form

(n̂ · S)k =
2s∑
σ=0

A(k)
σ (s)

σ∑
µ=−σ

Y ∗σµ(θ, φ)T (s)
σµ , (1.40)

(B · S)k =

2j∑
σ=0

α(k)
σ (b, s)

σ∑
µ=−σ

T (b)†
σµ ⊗ T (s)

σµ , (1.41)
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where j = min(b, s), A
(k)
σ (s) and α

(k)
σ (b, s) depends only of s and b. In the appendix C we deduce

recursive expressions for these constants and include a closed formula to calculate A
(k)
σ found in

[25].

1.5 Majorana Representation

In a relatively little known 1932 paper [66], E. Majorana showed how to characterize, up to an

overall phase, a normalized spin-s state |Ψ〉 by a set of 2s points (stars) on the unit sphere, the

latter known as the Majorana constellation corresponding to |Ψ〉. The construction generalizes

the well known characterization of a spin-1/2 state, up to phase, by a single point on the

Bloch sphere. The precise statement is that points in the projective Hilbert space P = CPN

of a spin-s system (N ≡ 2s) are in one-to-one correspondence with unordered sets of (possibly

coincident) 2s points on the unit sphere. Here we explain the original construction of the

Majorana constellation. There are additional ways to understand this construction, another

more intuitive that we will expose in the second part of the thesis. In this part, it is only used

as a mathematical tool to observe rotations in simple quantum states.

Given an arbitrary spin-s state, expressed in the Sz-eigenbasis,

|Ψ〉 =
s∑

m=−s
cm|s,m〉 , (1.42)

we associate to it its Majorana polynomial p|Ψ〉(ζ),

p|Ψ〉(ζ) =
s∑

m=−s
(−1)s−m

√(
2s

s−m

)
cm ζ

s+m , (1.43)

where ζ is an auxiliary complex variable. The N roots ζi ∈ C, i = 1, . . . , N , of p|Ψ〉 can be

mapped to N points n̂i on the 2-sphere via stereographic projection from the south pole. The

resulting constellation, made up of the N stars, is the stellar representation of the state |Ψ〉.

If the polynomial turns out of a lower degree, i.e., if cm = 0 for m = s, s − 1, . . . , s − k, then

ζ =∞ is considered a root of multiplicity k+ 1, resulting in the appearance of k+ 1 stars at the

south pole of S2. The particular choice of coefficients in (1.43) results in that a transformation

D(R) of |Ψ〉 in Hilbert space, where D(R) is the spin-s irreducible representation of R ∈ SU(2),

corresponds to a rotation R of the corresponding constellation on S2 (see figure 1.1). In the next

section we plot the constellation of several states.
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Figure 1.1: A rotation D(R) of state |ψ〉 corresponds to a rotation R of its constellation.

1.6 Some quantum states classes

In the thesis, we will mostly use three types of states: the canonical coherent states, the spin

coherent states and the anticoherent states. In the second part of the thesis, the spin coherent

states are extensively studied. To this part, we use the references [35, 82, 48].

1.6.1 Canonical coherent states

We start with a brief description of the canonical coherent states generated by the annihilation

and creation operators a and a†. The canonical coherent states are defined, for each complex

number z ∈ C, by a unitary transformation of the vacuum state,

|z〉 = D(z)|0〉 = eza
†−z̄a|0〉 = e−|z|/2

∞∑
n=0

1√
n!
zn|n〉 , (1.44)

with |n〉 the eigenstate of the number operator N |n〉 = n|n〉 and D the displacement operator.

These states are eigenvectors of the annihilation operator (it is proved with the latter equation)

a|z〉 = z|z〉 . (1.45)

Between the properties of the canonical coherent states are the following: Two coherent states

are never orthogonal,

〈z1|z2〉 = e−
1
2(|z1|2+|z2|2)+z1z̄2 . (1.46)
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There exists a resolution of the identity with the coherent states

π−1

∫
|z〉〈z|d2z = I , (1.47)

Finally, they are the most localized states in some point of the phase space. They minimize the

uncertainty relation with isotropic dispersion ∆x = ∆p = 1/
√

2.

In the next chapter, we will consider coherent states in at most a 3-dimensional space,

then they will be labeled with three complex numbers ~α = (α1, α2, α3), and its wavefunction

ψ(x) = ψ~α(x1, x2, x3) will be given by

ψ~α(x1, x2, x3) = 〈x1 , x2 , x3|D1(α1)D2(α2)D3(α3)|0 , 0 , 0〉 =
1

π3/4

3∏
i=1

e−
1
2

(xi−〈xi〉)2
ei〈pi〉(xi−

1
2
〈xi〉) ,

(1.48)

with Di(α) the displacement operator associated of the i-th coordinate. The expectation values

of the position and momentum are

〈~x〉 =
√

2Re(~α) , 〈~p〉 =
√

2Im(~α) . (1.49)

The state (1.48) has an expectation value of the angular momentum operator 〈L〉 = 2Re(~α) ×

Im(~α).

1.6.2 Spin coherent states

The spin coherent states (also called Bloch coherent states) are similar to the canonical coherent

states, but now their definition uses the angular momentum operators. Let us consider a spin

state with spin s and the eigenstates of Sz, Sz|s,m〉 = m|s,m〉 for m = −s,−s+1, . . . , s. The set

of the spin coherent states is the orbit of the eigenstate of maximal projection, R|s, s〉 under the

action of the rotation SO(3) group. We characterize every spin coherent state with the direction

n̂ where its expectation value of the operator n̂ · S is maximal, |n̂〉. A canonical rotation to

obtain |n̂〉 starting in |ẑ〉 = |s, s〉 is

|n̂〉 = ezS−e− ln(1+|z|2)Sze−z̄S+ |s, s〉 , (1.50)

with z = tan(θ/2)eiφ the stereographic projection of n̂. From the calculations we obtain

|n̂〉 = (1 + |z|2)s
s∑

m=−s
zs−m

√(
2s

s+m

)
|s,m〉 . (1.51)



16 CHAPTER 1. GEOMETRICAL FORMULATION OF N -BODY DYNAMICS

The square of the overlap between two spin coherent states |n̂〉 and |n̂′〉 is

|〈n̂′|n̂〉|2 =
1

2

(
1 + cos θ cos θ′ + sin θ sin θ′ cos

(
φ− φ′

))2s
=

(
cos

Φ

2

)4s

, (1.52)

with Φ the angle between n̂ and n̂′. The set of the spin coherent states has a resolution of the

identity

1 =
2s+ 1

4π

∫
|n̂〉〈n̂| sin θdθdφ . (1.53)

The Majorana representation of the spin coherent states is just one star with multiplicity 2s (see

figure 1.2) and therefore they are the spin states with the more compact constellation. In the

second part of the thesis, we study several geometrical properties of the set of the spin coherent

states in the Hilbert space.

1.6.3 Anticoherent states

An spin-s state is q-anticoherent [99] if the expectation values of (n̂ ·S)k, seen as functions fk(n̂),

satisfy

fk(n̂) = 〈(n̂ · S)k〉 = const. , (1.54)

for every k ≤ q. The l.h.s.of condition (1.54) can be written in terms of tensor operators (section

1.4) as

〈(n̂ · S)k〉 =
2s∑
σ=0

A(k)
σ (s)

σ∑
µ=−σ

Y ∗σµ(n̂)ρσµ , (1.55)

with ρσµ = 〈Tσµ〉. The anticoherence condition (1.54) is translated into ρσµ = 0 for 0 < σ ≤ q

and −σ ≤ µ ≤ σ, cf. [38]. The value of ρ00 only depends on s: ρ00 = 1/
√

2s+ 1. The

q-anticoherence property is invariant under rotations, and therefore states with same shape

constellation have the same order of anticoherence. Opposite to the spin coherent states, the

stars in the Majorana representation for the anticoherent states tend to spread uniformly on

the 2-sphere [99]. In the figure 1.2 we plot the constellation of a spin coherent state and the

1-anticoherent state for s = 1 (2 stars), |1, 0〉. The latter has a constellation formed by two

antipodal stars. For s = 1 there is not q-anticoherent states with q ≤ 2. On the other hand,

for each value of spin s ≥ 1, there exists a 1-anticoherent state. An example is the GHZ states

defined for each spin s as

|GHZs〉 =
1√
2

(|s, s〉+ |s,−s〉) . (1.56)
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Figure 1.2: The constellation of the spin coherent state (left) of s = 1 in the direction (θ, φ) =

(π/2, 5π/4) and the 1−anticoherent state (right) |s,m〉 = |1, 0〉

.

Their constellations are regular polygons (see figure 1.3) on the Equator. Adding a relative

phase between the states |s, s〉 and |s,−s〉 corresponds to a rotation along the ẑ, and therefore

it has the same shape constellation. For s = 1, the GHZ state is the state |1, 0〉 rotated.

The platonic solids have an important place in the anticoherent states [99]. For instance,

the first 2-anticoherent state (in increasing order of the spin s) appears in s = 2, which is the

state with constellation like tetrahedron |ψtet〉 = (−|2, 2〉 +
√

2|2,−1〉)/
√

3. In the same way,

the first 3-anticoherent state is found in s = 3 and has a constellation with octahedron’s shape,

|ψoct〉 = (|3, 2〉−|3,−2〉)/
√

2. And so on for the next platonic states. On the other hand, we can

build spin states inspired of geometrical objects. For instance, a triangular prism defines a s = 3

spin state, and a state with this shape is given by |ψPT 〉 = (
√

2|3, 3〉 +
√

5|3, 0〉 +
√

2|3, 3〉)/3,

which by the particular choice of ratio between the lengths of the triangular prism, is a 2-

anticoherent state. In the figure 1.4, we plot the constellation of |ψtet〉, |ψoct〉 and |ψTP 〉. The

octahedron and triangular prism state will be used in the subsection 2.5.2.
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Figure 1.3: The constellation of the GHZ states for s = 3/2, 3 which are the equilateral triangle

and the regular hexagon on the Equator, respectively.

Figure 1.4: The constellations of the states |ψtet〉, |ψoct〉 and |ψTP 〉.



Chapter 2

Three and four body quantum

systems

What we observe as material bodies and forces

are nothing but shapes and variations in the

structure of space.

E. Schrödinger

In this chapter, we study the three and four body systems. In the first two sections, we

explain the three body model and its quasi-rigid approximation. In section 2.3 we discuss the

quantum case and give several examples. In sections 2.4 and 2.5 we give the four body model,

in its classic and quantum version respectively. We study several examples in the last section.

2.1 Three-body model

Let us consider three particles with masses {mα}3α=1 and position vectors {rsα}3α=1, respectively.

In this case the shape space has dimension 3n−6 = 3 and we can define n−1 = 2 Jacobi vectors

as

ρs1 =
√
µ1(rs2 − rs1) , ρs2 =

√
µ2(rs3 −Rs,12) , (2.1)

where

µ1 =
m1m2

m1 +m2
, µ2 =

m3(m1 +m2)

m1 +m2 +m3
, Rs,12 =

m1rs1 +m2rs2
m1 +m2

, (2.2)

19
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are the reduced masses and the center of mass of each particles’ cluster. The hamiltonian (1.16)

of the three body system can be found exactly [63] with a particular set of coordinates in shape

space (shape coordinates).

q1 = ρ2
s1 − ρ2

s2 , q2 = 2ρs1 · ρs2 , q3 = 2|ρs1 × ρs2| ≥ 0 , (2.3)

mapping S to the upper half of R3. The q3 coordinate measures the area of the (triangular)

body, so that the plane q3 = 0 corresponds to collinear shapes. In the q3 axis are the equilateral

triangular shapes (whose inertia tensor is degenerate) and when q2 6= 0 and q1 = 0, are the

isosceles triangle’s shape. In the figure 2.1 is plotted the shape space and in some particular

points and we draw the respective triangle. In the last equation, we switch to lower indices for

typographical convenience. In the literature, there are many, even radically different coordinates

in the space of triangles, see e.g., [13]. In the principal-axis gauge, A is given by

Aµdq
µ =

q1dq2 − q2dq1

2q(q2
1 + q2

2)
ẑ , (2.4)

with q = ρ2
s1 + ρ2

s2 = (q2
1 + q2

2 + q2
3)1/2, while Bµν turns out to be

Bµν =
1

2q3
εµναq

α ẑ . (2.5)

The last two expressions show that A has a string singularity along the q3-axis, while B resembles

a magnetic monopole located at the origin of S . The string singularity of A is related to the fact

that, on the q3-axis, the principal axis frame is itself singular, that is, the functions ρα(qµ) that

define the body frame are not differentiable there [60]. In fact, it is easy to show that in going

around the q3 axis once in a circle the principal axes in the plane of the triangle reverse their

direction, and this holds true regardless of the radius of the circle, a classical fact that is echoed

in the sign change of the wavefunction in going around “diabolical points” in the spectrum

of multiparametric hamiltonians (see, e.g., [42, 13]). This singularity is relevant because the

section wavefunction χlk(q
µ) is itself singular at the same places the gauge potential is, but can

be relocated by changing the gauge (it cannot be eliminated though). One of these gauges is

the so-called “north-regular gauge”,

ρ1 =
1

2
√
q + q3

(q + q3 + q1, q2, 0) , ρ2 =
1

2
√
q + q3

(q2, q + q3 − q1, 0) , (2.6)

which its gauge potential is

Aµdq
µ =

q1dq2 − q2dq1

2q (q + q3)
ẑ . (2.7)
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Figure 2.1: Shape space of the three body system. The gray triangles are the shapes of the

system in the red points (q1, q2, q3) = (0, 0, 1), (0, 0, 2), (1, 0, 1), (0, 1, 1), (−1,−1, 1), respectively,

when the particle masses are equal. The blue points and the dashed lines mark the position of

the red points.

The singularity is relocated to the negative q3 axis, which is not part of S [63]. On the other

hand, the singularity of B is immune to gauge transformations. With the shape coordinates and

gauge, it may be calculated the other quantities of interest,

M =


q−q1

2 − q2
2 0

− q2
2

q+q1
2 0

0 0 q

 , M−1 =


2(q+q1)
q2
3

2q2
q2
3

0

2q2
q2
3

2(q−q1)
q2
3

0

0 0 q−1

 , gµν = 4q(dq2
1 + dq2

2 + dq2
3) .

(2.8)
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The final Hamiltonian for the three-body system is the following,

H =

(
q + q1

q2
3

)
L2
x+

(
q − q1

q2
3

)
L2
y+

(
1

q + q3

)
L2
z+

(
2q2

q2
3

)
LxLy−

2Lz
q + q3

(−q2p1 + q1p2)+2q(p2
1+p2

2+p2
3)+V (q) .

(2.9)

2.2 Quasi-rigid three body system

In this section, let’s consider the masses of the particles equal mα = m = 1. The singular

behavior of the wavefunction can be avoided in this case by adopting the north regular gauge,

which is also an Eckart, and Poincaré gauge, centered on the equilibrium point q0 = (q1
0, q

2
0, q

3
0) =

(0, 0, 1) (an equilateral triangle shape of unit distance between the masses).

We make a linear coordinate transformation,

q̃1 = −1

3
q1 +

√
2

3
q2 , q̃2 = −

√
2

3
q1 −

1

3
q2 , q̃3 = −1

2
q3 , (2.10)

so that q̃0 = (0, 0,−1/2), and the x’s, defined in the standard way by q̃µ = q̃µ0 + λxµ, are

normal modes. x3 corresponds to the (highest frequency) breathing mode with ω3 =
√

2 (in

natural units), while x1 and x2 are degenerate orthogonal modes of frequency ω1 = ω2 = 1. The

corresponding patterns of oscillation are illustrated in Fig. 2.2. The moment of inertia tensor

for the equilibrium shape is

M =


1/2 0 0

0 1/2 0

0 0 1

 , (2.11)

while the only non-trivial component of the Coriolis tensor is B12 = 2ẑ and therefore the

internal angular momentum reduces to S = S12ẑ, where S12 = x1p2 − x2p1 is the shape angular

momentum in the x1-x2 plane. Accordingly, the Hamiltonian takes the form

H =
1

2

(
p2

1 + p2
2 + x2

1 + x2
2

)
+

1

2

(
p2

3 + 2x2
3

)
+ λ2

(
L2 − 1

2
L2
z − LzS12 +

1

2
S2

12

)
. (2.12)

2.2.1 Three-body classic model

As mentioned before, in the classical case the condition of vanishing angular momentum makes it

possible to find the solutions of the equations of motion for the shape coordinates independently
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x1 x2 x3

Figure 2.2: The normal modes of oscillation of the three body system when the equilibrium

shape corresponds to an equilateral triangle. From left to right, the breather (or symmetric

stretching) mode x3, the bending mode x2, and the asymmetric stretching mode x1, the latter

two being degenerate in frequency.

of the orientation ones. For the above hamiltonian, S12 is a constant of the motion, with xµ(t)

being harmonic oscillators, to leading order in λ,

xµ(t) = xµ0 cosωµt+
pµ0
ωµ

sinωµt, (2.13)

with frequencies ωµ = (1, 1,
√

2) and pµ(t) = ẋµ(t). In fact, the degeneracy of the normal modes

x2, x3 implies that S(t) is a constant of motion and therefore both, the rotation axis n̂ = Ŝ

and the angular velocity φ̇ = λ2
√
S · S, do not change as a function of time. This result is

valid whenever the evolution of the shape coordinates is given by degenerate normal modes.

Eq. (1.14) then gives

R(t) =


cos
(
λ2S12t

)
sin
(
λ2S12t

)
0

− sin
(
λ2S12t

)
cos
(
λ2S12t

)
0

0 0 1

 , (2.14)

which represents a rotation about ẑ by an angle α(t) = −λ2S12t, so that the cyclic shape change

(2.13) with x3(t) = 0 = p3(t) gives rise to α(2π) = −2πλ2S12. In Fig. 2.3 we show the cyclic

deformation sequence that produces the rotation (2.14), for S12 = 4, and a total time interval

of one period, 0 ≤ t ≤ T = 2π/ω1. Note that the triangle is deformed, w.r.t. the equilateral
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Figure 2.3: Sequence of the orientation change produced by a cyclic deformation in the x1-

x2 plane of shape space, for the three body problem. The top row and middle row are the

snapshots of the deformation in the body (blue) and space (green) frames in t = 0, 2π/5, . . . , 2π,

for S12 = 4 and λ = 0.5. In each snapshot we plot the whole trajectory of each particle. Each

particle rotates counterclockwise around a certain point, and to preserve the vanishing total

angular momentum, the whole system must rotate clockwise, as it is observed in the space frame.

For purposes of illustration, the deformation w.r.t. the equilibrium equilateral configuration, has

been visually exaggerated by a factor of 4. The ball on the bottom row is SO(3) in the axis-angle

representation. The red dot close to the origin of SO(3) represents the rotation that connects

the (blue) body frame with the (green) space frame. The downwards motion of the dot signals

a clockwise rotation of the body frame around the z-axis.

configuration, at all times, since its trajectory in shape space is a circle centered on (and, hence,

never passing through) that configuration. Flipping the sign of S12 gives rise to a rotation in

the opposite sense.
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2.3 Quantum case

Turning now to the quantum case, we define the annihilation and creation operators for excita-

tions along the three coordinate axes in shape space (~ = 1, µ = 1, 2, 3),

aµ =
1√
2

(√
ω(µ) xµ +

i
√
ω(µ)

pµ

)
, a†µ =

1√
2

(√
ω(µ) xµ −

i
√
ω(µ)

pµ

)
, (2.15)

as well as the circular analogues of the first two,

a± =
1√
2

(a1 ∓ ia2) , a†± =
1√
2

(
a†1 ± ia

†
2

)
, (2.16)

and the associated number operators

Nµ = a†µaµ , N± = a†±a± . (2.17)

In terms of these operators, the hamiltonian (2.12) takes the form (ω1,2 = 1)

H = (N + 1) + ω3

(
N3 +

1

2

)
+ λ2

(
L2 − L2

z

2
− SLz +

S2

2

)
, (2.18)

with N = N+ + N− and S = N+ − N−, acting on the Hilbert space L2(C , d3q dR), where dR

is the normalized Haar measure in SO(3). A complete set of mutually compatible operators,

commuting with the hamiltonian, is {N,S,N3,L
2, Lsz, Lz} (see [58]), so the hamiltonian eigen-

states are labeled as |n, s, n3, l,m, k〉, with n3, n, l ∈ {0, 1, 2, . . .}, m, k = −l,−l + 1, . . . , l − 1, l

and s = −n,−n + 2, . . . , n − 2, n. We are now ready to see the re-orientation of a system by

a cyclic shape deformation, which it can be thought as the quantum version of the falling cat

problem (a feline who changes its shape to re-orient its body).

2.3.1 Rotations with the Majorana’s stellar representation

We take as initial state of the system,

|Ψ〉 =
1√
2

(
|n, s, n3, 1, 0, 1〉+ |n, s, n3, 1, 0,−1〉

)
≡ |n, s, n3〉 ⊗ |Φ〉 , (2.19)

where |Φ〉 ≡ (|1, 0, 1〉 + |1, 0,−1〉)/
√

2 is the rotational state of the triangle, with Majorana

polynomial1

p|Φ〉(ζ) =
1√
2

(
ζ2 + 1

)
, (2.20)

1Formally, the states of the orientational part do not have the Majorana representation. However, in the case

when the state is an eigenstate of Lsz (or Lz) with m = 0 (k = 0), the states are equivalent to spin states (see,

e.g., [58], §58).
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Figure 2.4: The stellar representation of the state |Φ(t)〉. The asterisk correspond to t = 0 while

the dots to t = π/6.

the roots of which are ζ± = ±i, and is therefore represented on S2 by the pair of points

(x±, y±, z±) = (0,±1, 0) (see Fig. 2.4). It is easily seen that 〈φ|L|φ〉 = 〈φ|Ls|φ〉 = 0 holds,

and that the only non-trivial time evolution of |Ψ(t)〉 ≡ |n, s, n3〉 ⊗ |Φ(t)〉 comes from the term

−λ2LzS in the hamiltonian, resulting in the Majorana polynomial for |Φ(t)〉

p|Φ(t)〉(ζ) ∼ ζ2 + e−2iλ2st , (2.21)

the roots of which are ζ± = ±ie−iλ2st, with the corresponding stars at (x±, y±, z±) = ±
(
sin (λ2st), cos (λ2st), 0

)
(Fig. 2.4). Thus, the state |Ψ(t)〉 rotates with time about ẑ by an angle −λ2st, in complete

agreement with what we found classically. Even so, the correspondence with the example in

subsection 2.2.1 is incorrect because |Ψ(t)〉 is not a state of well defined shape or orientation,

nor is it obvious that the rotation found can be somehow associated with a cyclic change of the

body’s shape. We can do better, in this respect, by considering coherent states in shape space.
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2.3.2 Coherent state

Now we will reproduce the simplified free falling quantum cat case. We consider now the state

(α± ∈ C)

Ψ(R, q) = ψα+,α−(x1, x2)ψ0(x3)Φ(R) , (2.22)

where ψα+,α−(x1, x2) is a coherent state with

〈xi〉 =
√

2 Re(αi) , 〈pi〉 =
√

2 Im(αi) , i = 1, 2 , (2.23)

α1 =
1√
2

(α+ + α−) , α2 =
i√
2

(α+ − α−) , (2.24)

ψ0(x3) is the breathing mode ground state (α3 = 0), and Φ(R) a wavefunction in SO(3). An

orientation wavefunction localized in some point of SO(3) is given by Φ(η) = Φ(Rn̂(η)) =

NΦe
cos η in the axis-angle representation (n̂, η). The orientation wavefunction probability density

PΦ = |Φ(η)|2 has a maximum at the origin (η = 0) and decays monotonically and isotropically

with increasing η. Φ(η) itself describes a superposition of various orientations of the body frame,

the amplitude for each of which depends only on the rotation angle η, and is independent on

the axis of rotation n̂ between the two frames (body and space). In appendix B, we prove

that any wavefunction on SO(3) that does not depend of the rotation axis can be written as a

superposition of the characters of SU(2) χl(η) [94], Φ(R) =
∑

l clχ
l(η), where

χl(R) =
l∑

m=−l
Dl
mm(R) = χl(η) =

sin[(2l + 1)η2 ]

sin η
2

, (2.25)

Compared to the quantum state considered in the previous subsection, Ψ provides localization

in both shape and orientation space, and is thus more appropriate for recovering the classical

behavior.

We compute now the time evolution of the wavefunction (2.22). The hamiltonian (2.18) can

be separated into three mutually commuting terms, HS = (N + 1) + ω3(N3 + 1/2) + λ2S2/2,

acting on the shape variables q, HO = λ2(L2 − L2
z/2), acting on the orientation variables R,

and HI = −λ2SLz, that couples q and R. The time evolution operator factorizes accordingly to

compute the action of e−iHOt on Φ, we expand the latter in the HO eigenfunctions {Dl
km},

Φ(η(α, β, γ)) =
∑
lkm

clkmD
l
km(α, β, γ) , (2.26)
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with

clkm =
2l + 1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0
dαdβdγ sinβDl

km(α, β, γ)∗Φ(η(α, β, γ)) , (2.27)

and cos (η /2) = cos β2 cos α+γ
2 . When the orientation wavefunction Φ doesn’t depend of the

rotation axis, clkm = clδkm holds. This result is proved in the Appendix B and characterize all

the orientational wavefunctions of the type Φ(η). The time-evolved orientation wavefunction

then becomes

Φt(α, β, γ) =
∑
lkm

clkme
−iλ2(l(l+1)−k2/2)tDl

km(α, β, γ) . (2.28)

Next we easily find for ψα+,α−,t(x1, x2) ≡ e−iHStψα+,α−(x1, x2),

ψα+,α−,t(x1, x2) = e−iλ
2t(α+∂̃α+−α−∂̃α− )2/2ψα+e−it,α−e−it(x1, x2) , (2.29)

since the action of the λ-independent part of HS simply multiplies the α’s by e−it, while it is

easily shown that N±|α±〉 = α±∂̃α± |α±〉 ≡ α±(∂α± + α∗±/2)|α±〉.

The third coupling term is the most interesting. Using the identity eµN±f(a±) = f(eµa±)eµN± ,

where f is an arbitrary analytic function, we find

Ψt(α, β, γ, x1, x2, x3) = ψ0(x3, t)
∑
lkm

clkm(t)ψ(k)
α+,α−(x1, x2, t)D

l
km(α, β, γ) , (2.30)

where

ψ0(x3, t) = e−iω3t/2ψ0(x3) (2.31)

clkm(t) = clkme
−iλ2(l(l+1)−k2/2)t (2.32)

ψ(k)
α+,α−(x1, x2, t) = e−iλ

2t(α+∂̃α+−α−∂̃α− )2/2ψ
α+e−i(1+kλ2)t,α−e−i(1−kλ

2)t(x1, x2) . (2.33)

Eq. (2.30) is valid, with the appropriate coefficients clkm, for an arbitrary initial orientation

wavefunction. Taking into account the particular form of these coefficients for the Φ(η) we

assumed above, the expression for Ψt simplifies to (omitting the arguments of functions)

Ψt = ψ0

∑
lk

cle−iλ
2(l(l+1)−k2/2)tψ(k)

α+,α−D
l
kk . (2.34)

To be able to monitor visually the system’s evolution, we start from the probability density

Pt(R, q) = |Ψt(R, q)|2 and compute marginal (reduced) densities

PSt (q) =

∫
Pt(R, q)dR , POt (R) =

∫
Pt(R, q)

√
g d3n−6q , (2.35)
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Figure 2.5: Sequence of the orientation change produced by a cyclic deformation in the x1-x2

plane in shape space for the three body problem, in the quantum case. The middle row depicts

SO(3), as in Fig. 2.3, while the top row contains plots of the reduced orientation probability

density POt (R), restricted to the xz plane of SO(3) (elsewhere in SO(3), POt is obtained by

rotation around the z-axis). Shown is the time evolution of the probability density associated

with the initial wavefunction Ψ(R, q), given by (2.22), for t = 2πn/4, n = 0, 1, . . . , 4, λ = 0.2, and

(α+, α−) = (2, 0). The little dark spot in the top and middle rows is the POt (R) = .90 max (POt )

surface. The plots in the bottom row are of the reduced shape probability density PSt (x1, x2). As

the gaussian wavefunction rotates in the x1x2 plane of shape space, the orientation wavefunction

gets displaced along the z-axis — this is the quantum analogue of the classical cat rotation.

in shape space and SO(3), respectively. In Fig. 2.5 we show the quantum version of the cyclic

deformation and the corresponding rotation sequence, as time increases, for (α+, α−) = (2, 0),

which implies that 〈S〉 = 4, just as in the classical situation shown in Fig. 2.3. The system

rotates clockwise as its shape changes, in a fashion similar to its classical counterpart. We note

as well that the surface of constant POt (R) (the little dark spot in the top and middle rows) and

the width of PSt (q) increase their size with time. Both effects are related to the dispersion of the

wavefunction, the latter one due to the term λ2S2/2 of HS . Let us imagine that the three body

system is a living being, as a quantum, quasi-rigid, triangular cat that is left to free fall with
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its “feet” upwards (imagine the triangle with its plane vertical, and one of its vertices pointing

upwards, marking the position of the “feet”), should change its shape cyclically (oscillating in

the x1-x2 plane) enough times for the little dark spot in Fig. 2.5 to reach the surface of the ball,

which corresponds to a rotation (in the average sense) of π, allowing it to land safely on its feet.

2.3.3 Quantum righting reflex and Schroedinger cats

More exotic scenarios are of course imaginable in the quantum realm. For example, as mentioned

before, if the cat oscillates in shape space in the opposite sense, then its rotation in physical

space will also be in the opposite sense. Imagine then a cat that starts free falling as above, but

executes a quantum superposition of the above two oscillations in shape space. In other words,

its shape space wavefunction consists of two gaussians that rotate in the x1-x2 plane in opposite

senses (Fig. 2.6, bottom row). During the fall, the cat will be in a superposition of orientation

states, as it rotates both, say, clockwise and anticlockwise in physical space. As we see in the

top and middle rows of Fig. 2.6, there will be two little dark spots inside the SO(3) ball, moving

in opposite directions. If lucky, the cat can still land on its feet, if the two “copies” rotate by

±π.

Something slightly more interesting will happen if the cat does exactly as above, but is

released with its feet pointing sideways (horizontally), and only has half the time available

before landing. Then one copy in the quantum superposition lands on its feet, and survives the

fall, while the other lands on its back, and gets killed, instantly converting the falling feline into

a Schroedinger cat.

We could also fix as our initial state a wavefunction like (2.22), with (α+, α−) = (
√

2,
√

2)

or, equivalently, with (α1, α2) = (2, 0), which corresponds to a coherent state oscillating along

x1, with 〈S〉 = 0. Also, we put λ = 0.35 to observe only the dispersion effects. Then, comparing

with the analogous classical case, the system would not be expected to rotate. Contrary to

the classical case though, if left oscillating long enough, the system manages to access, with

significant probability, orientations quite distinct from its initial one — see the ellipsoidal-shaped

surface inside the SO(3) ball in Fig. 2.7 at t = 2π. Of course, wavefunctions tend to disperse with

time, but what distinguishes this case is that the spreading out is somehow channeled along the

z-axis. The term S2 of the Hamiltonian tends to split the initial gaussian of PSt (x1, x2) (bottom

row of Fig. 2.7). To end this section, we mention that the effects studied here ought to be
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Figure 2.6: Evolution of the sum of the two coherent states (α1
+, α

1
−) = (3, 0) and (α2

+, α
2
−) =

(0, 3). Visual conventions are as in Fig. 2.5, with λ = 0.18. The reduced shape probability

in the bottom row consists of two gaussians rotating in opposite senses. This particular cyclic

deformation initially elongates and eventually splits the little dark spot into two, one climbing up

the z-axis and the other going down (top and middle rows). This is a purely quantum scenario

that can give rise to a Schroedinger cat.

experimentally verifiable. Thus, e.g., a triatomic molecule, like H+
3 , set to vibrate in a state

with non-zero s and vanishing angular momentum expectation value, ought to “rotate” w.r.t.

the lab. More accurately, its quantum state after one period of the vibration should be related to

the initial one by a rotation, intermediate states being, in general, quite distinct. Our analytical

results are only valid for nonlinear molecules but, other than this limitation, do not require any

particular symmetry. In fact, the presence of asymmetry may provide the means to detect the

rotation. For example, if the molecule possesses permanent electric dipole moment, and a large

enough population is polarized so that a macroscopic dipole moment can be measured in the

lab, the excitation of suitable vibrational modes, without imparting angular momentum, should

cause the dipole moment to rotate.
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Figure 2.7: Conventions as in Fig. 2.5, with λ = 0.35 and (α+, α−) = (
√

2,
√

2), which implies

(α1, α2) = (2, 0). The gaussian wavefunction in this case simply oscillates along the x1-axis, with

its expectation value tracing a curve that encloses zero area. The central peak of the orientation

wavefunction (dark spot at the origin of SO(3)) stays initially still, but gets gradually elongated

along the z-axis.

2.4 Four body model

We’ve seen that in the three body model, we can model the falling cat problem in a simplified

but quantum version. Even more, we could study other examples with purely quantum char-

acteristics. One part which is missing in the quasi rigid three body problem, is that the shape

deformations can only induce rotations along one axis, and then we cannot observe quantum

effects given by non-commuting relations of the components of L. This part can be analyzed in

the four body problem. The shape space in the four-point case, is six dimensional, with a very

complicated topological structure [62, 61] — but still, a quasi-rigid model, with its wavefunction

concentrated around some equilibrium shape, should be manageable.

It is sufficient to consider a simple system consisting of four point-like particles of equal

masses m interacting with each other through a harmonic potential in the quasi-rigid approx-

imation, such that it mildly oscillates around its equilibrium configuration assumed to be a

tetrahedron of length a (see Fig. 2.8).
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Figure 2.8: The equilibrium configuration of the four-body system.

As in the three body system, we consider the free traslational dynamics of the system, with

3 coordinates defining its orientation and 6 rotation-invariant coordinates defining its shape. As

usual, the body’s orientation is defined by a rotation, Rn̂(φ) in the angle-axis representation

(φ, n̂), and the shape coordinates will be the normal modes xµ (µ = 1, . . . , 6), see Appendix

A. In Fig. 2.9 the normal modes are shown: the set (x1, x2, x3) forms a triplet, while (x4, x5)

is a doublet and x6 is the breathing mode, with frequencies ω =
√

2, 1, 2, respectively. In the

4-body case, any possible rotation can be induced by a change of its shape involving only the

triplet modes, so for the sake of simplicity we set x4(t) = x5(t) = x6(t) = 0 for the rest of the

chapter. It can be shown then that the dynamics of the (simplified) 4-body is governed by the

quasi-rigid Hamiltonian which is equivalent to a 3D-isotropic harmonic oscillator coupled to a

spherical rigid rotor (see Appendix A),

H =
1

2
(p2

1 + p2
2 + p2

3) +
1

2
(x2

1 + x2
2 + x2

3) +
λ2

2
(L− S)2 , (2.36)

where λ is a dimensionless parameter, L is the angular momentum expressed in the body frame,

pi is the momentum conjugate to the shape coordinate xi, and the internal angular momentum

S given by

Sx = −1

2
S23 , Sy = −1

2
S31 , Sz = −1

2
S12 , (2.37)

with Sij = xipj − xjpi. Notice that S is a vector in the physical space, while Sij is the angular

momentum in the xi − xj plane of shape space (i, j = 1, 2, 3).
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Figure 2.9: Normal modes of the four body system. The dashed tetrahedron corresponds to the

equilibrium shape. The gray triangle represents the projection of the normal mode in the x− y

plane.
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As in the three body problem, the vanishing angular momentum condition gives us the

connection n̂ φ̇ = −λ2S(t) and the shape evolution up to leading order in λ xi(t) = x0i cosωit+

p0i/ωi sinωit. Consequently the evolution of the orientation is already fixed by the connection.

By the symmetry of the equilibrium configuration, any path in shape space involving only the

doublet modes cannot produce a rotation in the 4-body problem. To prove the latter statement,

let us suppose that a solution of the equations of motion s(t) given by the doublet (x4, x5)

induces a rotation about the axis n̂ with angular velocity η̇. The tetrahedron configuration has

a point non-axial symmetry group2, and then there exists an element of this group such that

its action on the solution s′(t) induces a rotation about an axis n̂′, but this action does not

change the frequency. Therefore, s′(t) must correspond to a linear combination of the same

doublet modes and then n̂′ ∝ n̂, concluding n̂=0. We can generalize this result to the following

statement: A system with a point non-axial symmetry group in its equilibrium configuration,

cannot change its orientation by a cyclic change of shapes created by a doublet normal modes.

2.5 The quantum case

Let us start with the quantum version of the Hamiltonian (2.36). The internal angular mo-

mentum in the shape space (2.37) is analog to the orbital angular momentum in the physical

space, except for a “−2” factor which can be absorbed in by a redefinition S→ −2S, so that its

components satisfy the usual angular momentum relations

[Si, Sj ] = iεijkSk . (2.38)

We perform this redefinition in (2.36) without actually relabeling the operator S, then the

Hamiltonian takes the form:

H =
√

2

(
N +

3

2

)
+
λ2

2

(
L2 + L · S +

1

4
S2

)
, (2.39)

where N = N1 +N2 +N3 and Ni is the number operator associated with the shape coordinate

xi. We shall omit the constant term in (2.39) all along the text. The previous Hamiltonian is

split into four commuting terms,

H1(x) =
√

2N , H2(x) =
λ2

8
S2 , HI(R, x) =

λ2

2
L · S , HO(R) =

λ2

2
L2 , (2.40)

2A point non-axial group G is a group consisting of space transformations such that there is not an invariant

line under all the elements of G.
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so that the evolution operator U(t) = e−iHt = U1(t)U2(t)UI(t)UO(t) can be calculated separately

for each of them.

We remind the reader that the total angular momentum in the body frame L is a left invariant

vector field [63], and thus its components satisfy the commutation relations [Li, Lj ] = −iεijkLk.

Therefore all the expressions defined in terms of L differ from those defined in terms of the usual

angular momentum operator. In Appendix D we show how to translate expressions written in

terms of the left invariant vector L from those written in terms of the usual angular momentum

operator, see also [14].

2.5.1 Coherent states

Let us reproduce the “most classical” state as in the three body problem: a coherent state. We

consider that, at t = 0, the state of the system is Ψ(R, x) = ψ(x)Φ(R), with ψ(x) = ψ~α(x1, x2, x3)

a coherent state in shape space associated to the normal modes. For the orientational wavefunc-

tion we use the same that in the three body problem Φ(R) = NΦe
cos η. The result of applying

U1(t) and UO(t) on Ψ(R, x) is

U1(t)UO(t)Ψ(R, x) = ψ~αt(x)
∑
lkm

clkm(t)Dl
km(α, β, γ) , (2.41)

where ~αt = ~αe−iωt, clkm(t) = clkme
−i l(l+1)

2
λ2t and ω =

√
2. However, the applications of U2(t) and

UI(t) are not trivial when the shape wavefunction corresponds to a coherent state, so we calculate

them perturbatively. The evolution is explored with the reduced probability densities (2.35).

As it is expected, the time-evolution of the coherent state in shape space induces a displacement

of the orientation reduced density in SO(3) in any direction, a feature which makes this system

fundamentally different w.r.t.the three body problem. The effects of the shape wavefunction

evolution on the orientation of the system, to order O(λ2), are encoded in 〈Si〉, and to O(λ4)

in 〈SiSj〉. In particular, for the shape coherent state ψ~α(r)(x) with ~α(r) = r/
√

2
(
θ̂ + iϕ̂

)
=

r/
√

2 (cos θ cosϕ− i sinϕ, cos θ sinϕ+ i cosϕ,− sin θ), 〈S〉 = r2r̂, and then the time-evolution

of ψ~α(r)(x) induces a rotation of the state along r̂ = (cosϕ sin θ, sinϕ sin θ, cos θ). In Fig. 2.10

we plot the evolution of the state initially given by a product of a shape coherent state ψ~α(r)(x)

and the orientation state Φ(η), with r = 2, θ = π/4, ϕ = π/4, λ = 0.3, for t = 2πn/4ω,

n = 0, 1, . . . , 4. It can be observed that the locus of points in SO(3) where the system is most

probably oriented (dark spot) is moving in the direction 〈S〉, resembling a classical-like behavior
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Figure 2.10: Sequence of the orientation change along the direction r̂ (red arrow) with θ =

ϕ = π/4 and r = 2, produced by a coherent state ψ~α(r)(x). The top row depicts the reduced

orientation probability density POt (R) in SO(3), where the little dark spot corresponds to the

region POt (R) ≥ 0.90max (POt ), for t = 2πn
4ω , n = 0, 1, . . . , 4. The bottom row is analogous to the

top one but with PSt (x) in the shape space. The middle row depicts PSt (x) in the shape space,

restricted to the plane of rotation.

and as expected for the “most classical” quantum state. The dispersion of the orientation-

reduced probability POt (R) will take place for a time scale much larger than the one when the

change of its orientation occurs since, as discussed, the former is of order λ4 while the latter is

of order λ2.

2.5.2 Anticoherent states

We will next consider the evolution of the opposite case, the “less localized” state in shape space:

an anticoherent one. The initial state describing the orientation degrees of freedom will, as in
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the other examples, be the localized state Φ(R) = NΦe
cos η. Thus, the initial total state in this

case will be given by the tensor product of Φ(R) and an anticoherent state in the shape space

sector.

We can apply exactly all the evolution operators Ui(t) to the initial state except for the

one generated by the interacting Hamiltonian HI . To compute the action of UI let us write

UI(t) = eiΛB·S =
∑
µ

(iΛ)µ (B · S)µ/µ! where Λ = λ2t/2 and we have introduced the auxiliary

operator B = −L (see Appendix D). The operator (B · S)k for each k can be further expressed

in terms of tensor operators (subsection 1.4) as

(B · S)k =

j∑
σ=0

α(k)
σ (l, s)

σ∑
µ=−σ

T (l)†
σµ ⊗ T (s)

σµ , (2.42)

where j = min(2l, 2s, k), and k and σ must have the same parity (see Appendix C). The

evolution of the state of the system, described by the density matrix ρ(t) = |Ψ(t)〉〈Ψ(t)|, is thus

given by

ρ(t) = UI(t)ρUI(t)
† =

∞∑
N=0

(iΛ)N

N !
[B · S, . . . , [B · S, ρ]] . . . ] , (2.43)

where ρ can be written as a linear combination of operators of the form ρl⊗ρs = |m1, l
k1
1 〉〈m2, l

k2
2 |⊗

|n1, s
m1s
1 〉〈n2, s

m2s
2 |, where the states |m1, l

k1
1 〉 and |n1, s

m1s
1 〉 are eigenstates of (L2, Lz, Lsz) and

(N,S2, S3) with eigenvalues (l(l + 1), k,m) and (n, s(s+ 1),ms), respectively (see Appendix D).

Since equation (2.43) is linear, the time evolution of the system for any state ρ can be computed

as the sum of its constituent blocks ρl ⊗ ρs.

The orientation-reduced probability density can therefore be written as

POt (R) = 〈R|Trs(ρ(t))|R〉 =:

∞∑
N=0

(iΛ)N

N !
P

(N)
t (R) , (2.44)

where 〈R|m, lk〉 = 〈α, β, γ|m, lk〉 = Dl∗
mk(α, β, γ) and Trs stands for the partial trace over the

shape degrees of freedom. As it can be observed, the computation of POt (R) reduces to calculate

terms of the form Trs((B ·S)hρ(B ·S)h
′
), with h, h′ ∈ N, which can be written in terms of tensor

operators as

Trs((B · S)hρ(B · S)h
′
) =

∑
σ,σ′

α(h)
σ (l1, s1)α

(h′)
σ′ (l2, s2)

∑
µ,µ′

(
T (l1)†
σµ ρlT

(l2)†
σ′µ′

)
⊗ Trs

(
T (s1)
σµ ρsT

(s2)
σ′µ′
)
.

(2.45)
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The above expression is nonzero only if s1 = s2 = s and n1 = n2 = n, in which case the

density matrix associated with the shape state can be expressed as ρs =
∑
KQ

ρsKQT
†
KQ with

ρsKQ = Tr(ρsTKQ), and therefore

Trs
(
(B·S)hρ(B·S)h

′)
=
∑
σ,σ′

α(h)
σ (l1, s)α

(h′)
σ′ (l2, s)

∑
µ,µ′

∑
KQ

ρKQTrs(TσµT
†
KQTσ′µ′)

(T (l1)†
σµ ρlT

(l2)†
σ′µ′

)
.

(2.46)

In particular, when h′ = 0, the following relation holds

Trs
(
(B · S)hρ

)
=

∑
σ
α

(h)
σ (l1, s)

∑
µ

(∑
KQ

ρKQTrs(TσµT
†
KQ)

)(
T

(l1)†
σµ ρl

)
=

∑
σ
α

(h)
σ (l1, s)

∑
µ
ρσµ
(
T

(l1)†
σµ ρl

)
,

(2.47)

and a similar one is satisfied for h = 0. When h, h′ 6= 0, the general expression of the trace

of three tensor operators (C.8) must be used. The term P
(N)
t (R) contains only contributions

of the form Trs

(
(B · S)hρ(B · S)h

′
)

with h + h′ = N or, in tensor operators, of the form

Trs

(
Tσµρ

sTσ′µ′
)

, with σ′ ≤ h′, σ ≤ h. Then, due to Eq. (C.8) and the triangle condition on

the 3j-symbols, P
(N)
t (R) involves only coefficients ρsαβ with α ≤ σ + σ′. Based on the previous

discussion, we conclude that for the density matrix ρ = ρl ⊗ ρs = ρb ⊗ ρa(x), where ρa(x) is the

density matrix corresponding to a q-anticoherent state,

Trs

(
(B · S)hρ(B · S)h

′
)

= 1
2s+1Trs

(
(B · S)h(ρb ⊗ 1)(B · S)h

′
)

= 1
2s+1

2s∑
σ=0

α
(h)
σ (l1, s)α

(h′)
σ (l2, s)

∑
µ
T

(l1)†
σµ ρbT

(l2)
σµ ,

(2.48)

for all h, h′ such that h + h′ ≤ q. From the properties of αhσ(l, s) (see Appendix C) it follows

that Trs

(
(B · S)hρ(B · S)h

′
)

= 0 when h and h′ have different parity, and therefore PNt (R) = 0

for N ≤ q and N odd.

With the help of the above results, it can be finally proved that the orientation reduced

probability density for anticoherent states of order q ≥ 3 to order O(Λ3) is

POt (R) = 〈R|ρb|R〉 − Λ2

2(2s+1)

( (
α

(0)
0 (l1, s)α

(2)
0 (l2, s) + α

(0)
0 (l2, s)α

(2)
0 (l1, s)

)
〈R|T (l1)†

00 ρbT
(l2)
00 |R〉

−2α
(1)
1 (l1, s)α

(1)
1 (l2, s)

∑
µ
〈R|T (l1)†

1µ ρbT
(l2)
1µ )|R〉

)
= 〈R|ρb|R〉 − Λ2s(s+1)

6

( (
l1(l1 + 1) + l2(l2 + 1)

)
〈R|ρb|R〉

−2
√
l1(l1+1)(2l1+1)l2(l2+1)(2l2+1)

3

∑
µ
〈R|T (l1)†

1µ ρbT
(l2)
1µ |R〉

)
,

(2.49)
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Figure 2.11: Evolution of Pt(R) in SO(3) and in the cutoff plane xy of SO(3) for Λ = 0.08n

with n = 0, 1, . . . , 5, when the shape state is 3-anticoherent and has s = 3.

which, by virtue of the expressions of T
(l)
1µ in terms of the components of L (see Appendix C),

takes the form

POt (R) =

(
1− Λ2 s(s+ 1)

6
L2

)
PO0 (R) + O(Λ4) . (2.50)

The latter result is also valid for any density matrix ρ =
∑
cli,si |l1〉〈l2| ⊗ |s1〉〈s2|, where the

sum is over li and si for i = 1, 2 with li = (mi, l
ki
i ) and si = (ni, s

msi
i ). The time evolution

does not distinguish a preferred direction, and then gives rise to an isotropic evolution, in the

sense that POt (R) evolves at the same rate in each direction of SO(3) as seen in the angle-axis

representation. We plot in Fig. 2.11 POt (R) when the shape state corresponds is the octahedron

state |ψoct〉 (see subsection 1.6.3), a 3-anticoherent spin-3 state. We see that the evolution is

isotropic, as the dark region in figure 2.11 is expanding uniformly in all directions. Meanwhile,

in fig. 2.12 we present the plot of POt (R) when the shape state is the triangular prism |ψTP〉,

which is a 2-anticoherent spin-3 state. Comparing both evolutions, we can appreciate a similar

evolution up to the last two frames, where the Λ3 term becomes significant and then the evolution

turns into anisotropic.

We can calculate explicitly the anisotropic evolution of POt (R) = POt (R(η, n̂(θ, ϕ)) with its

expansion in spherical harmonics for each Λ and η

POt (R) =
∑
lm

flm(η,Λ)Ylm(θ , ϕ) , (2.51)
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Figure 2.12: Evolution of Pt(R) in SO(3) and in the cutoff plane xy of SO(3) for Λ = 0.08n

with n = 0, 1, . . . , 5, when the shape state is the triangular prism, which is 2-anticoherent and

has s = 3.

with the rotational invariant quantities cl(η ,Λ)

cl(η ,Λ) :=

(
l∑

m=−l
|flm(η,Λ)|2

)1/2

. (2.52)

An isotropic evolution occurs when cl(η,Λ) = 0 for l > 0 for all Λ, which is the case for the

octahedral state up to third order of Λ. While, for the triangular prism case, c3 is different to

zero. In Fig. 2.13 we present the plots of c0(η,Λ) and c3(η,Λ). Due to the spread of c0(η,Λ), the

values of c3(η,Λ) become comparable and for that reason we can see the anisotropy evolution

in the figure 2.12. c0(η,Λ) is the same for the octahedral and the triangular prism case.

To finish with this section, we calculate perturbatively the shape reduced density PSt (q) for

states with orientational part as given in the last examples. Considering only the interaction

term of the Hamiltonian UI = λ2

2 L · S, it’s obtained that

PSt (q) =

(
1− c2

1Λ2

2
S2

)
PS0 (q) + O(Λ4) . (2.53)

The evolution is similar than the case of the orientational reduced density POt (R) when the

shape state is at least 3-anticoherent. When the shape state is eigenvector of the N and S2

operators, the shape wavefunction ψ and also its probability density PSt (q) is factorizable in two

normalized functions PSt (q) = R(r, t)χ(θ, φ, t), where (r, θ, φ) are the spherical coordinates in

the shape space. The octahedron and triangular prism states satisfy this property and they have
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Figure 2.13: Coeffcients c0 y c3 to measure the anisotropy of POt (R) when the internal state is

the triangular prism. To the octahedral case, we have the same function of c0 but c3(η,Λ) = 0.

1 2 3 4 5 6
r

0.05

0.10

0.15

R(r)

Figure 2.14: Radial function R(r) of the shape reduced density PSt (q) when the orientational

wavefunction is Φ(η) = NΦe
cos(η) and the shape state satisfy N |ψ〉 = 3|ψ〉, S2|ψ〉 = 3(3 + 1)|ψ〉,

like the octahedron and the triangular prism states.

the same radial function R(r) which is constant over time (see Fig. 2.14). On the other side,

the angular function written in the spherical harmonics basis, we turn out all the coefficients

decreasing as Λ2, except the coefficient associated of Y 0
0 (θ, φ). It means the evolution will

decreased the inhomogeneous part of the state, as we can see in the Figs. 2.15 and 2.16 for

octahedron and triangular prism cases, respectively. The radius in the direction n̂(θ, φ) is equal

to the value of χ(θ, φ). We can observe the symmetries of the constellations in the shape reduced

probabilities densities, and how the graphs are only reescaled with respect to the time. In the

last screen of the graphics (Λ = 0.4), we obtain a scaling of 5/6 and the shape of the functions

doesn’t change.
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Figure 2.15: Evolution of the angular function of PSt (q), χ(θ, φ) of the octahedron state for

Λ = 0.08n, with n = 0, 1, . . . , 5. The radius in the direction n̂(θ, φ) is equal to the value of

χ(θ, φ). The function is only rescaled by 5/6 in the last snapshot.

Figure 2.16: Evolution of the angular function of PSt (q), χ(θ, φ) of the triangular prism state

for Λ = 0.08n, with n = 0, 1, . . . , 5. The radius in the direction n̂(θ, φ) is equal to the value of

χ(θ, φ). The function is only rescaled by 5/6 in the last snapshot.

The evolved state with the octahedron internal state is a superposition of states with a

rotation in every axis, which is the opposite evolution that in the coherent case. Suppose we

have a cluster of particles which fits with our model and we are monitoring the evolution of its

dipole moment, which has an initial expectation value 〈P〉0 = r. If the internal state is coherent

in each period of cyclic shape evolution, we observe that the expectation value of P has rotated,

〈P〉t = R r. However, if the internal state is an anticoherent one, 〈P〉 would decrease by the

isotropic evolution. With these two extreme cases we explained how an experimentalist can

predict properties of the internal states via monitoring the orientations evolution. The internal

state of the system is not always admissible to the experimenter, however, it’s encoded in the

orientations evolution, and indeed, it doesn’t depend to the initial orientations state. In fact,

if it’s possible to observe the evolution with different orientations states, one is able to obtain

more information of the internal state.
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2.5.3 Shape states with axial symmetry

To conclude this chapter, we give an idea of the engineering in the shape state to do an specific

orientational evolution. In the last two subsections, we obtain that the coherent and anticoherent

states in the shape space sector induce a directional or isotropic evolution in the orientational

wavefunction, respectively. Now, we will build shape states with axial symmetry and observe

that the induced evolution is also axial. In all the examples that we will exposed later we have

observed that the S2 term of the hamiltonian only increases the dispersion of PSt (x) over time.

To focus in the effects of the interaction term of the Hamiltonian, we don’t consider the S2 term.

Let us remember that a coherent state with ~α ∈ C3 and such that

Re(~α(θ, φ)) = r√
2
θ̂ = r√

2
(cos θ cosφ, cos θ sinφ,− sin θ) ,

Im(~α(θ, φ)) = r√
2
φ̂ = r√

2
(− sinφ, cosφ, 0) ,

(2.54)

has an expectation value of the angular momentum, and then induces a rotation along the axis

Re(~α) × Im(~α). Now, we consider a superposition of the coherent states ψ~α(θ,φ)(x1, x2, x3) for

every φ ∈ (0, 2π), with

ψ(x1, x2, x3; r, θ) = N
∫
ψ~α(x1, x2, x3) dφ ,

= Ne−
1
2(x2

1+x2
2+(x3+r sin θ)2) ∫ exp [(x2 cos θ − ix1)r sinφ+ (x1 cos θ + ix2)r cosφ)] dφ

= Ne−
1
2(x2

1+x2
2+(x3+r sin θ)2)J0

(
r sin θ

√
x2

1 + x2
2

)
,

(2.55)

where N is the normalization factor

N−1 = π3/4e−
(r sin θ)2

4

√
I0

(
(r sin θ)2

2

)
, (2.56)

and Jn(z) is the Bessel function of the first kind, and In(z) the modified Bessel function of the

first kind.

We show in the figure 2.17 the locus expectation values of the position (blue arrow and cone),

the momentum (red arrow and cone) in the shape space (x1, x2, x3), and the expectation value

of the angular momentum in the physical space (purple arrow and cone), of the constituent

coherent states of (2.55) for θ = π/2 and π/3.

We can also obtain its decomposition over the eigenstates of the 3D-isotropic harmonic

oscillator (see Appendix E), with a uniform distribution of N states around the ring, and taking
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Figure 2.17: The blue (red) cone shows the direction of the expectation value of the position

(momentum) of each constituent coherent state of (2.55) in the shape space (x1, x2, x3), and the

purple cone are the respective rotation axes of each coherent state in the physical space (x, y, z),

for θ = π/2 (left) and θ = π/3 (right).

the N →∞ limit for θ = π/2,

|ψ〉 = N0

∑N−1
k=0

∣∣∣ r√
2
(−i sin 2πk

N
, i cos 2πk

N
,−1)

〉
= N0

∣∣∣− r√
2

〉
3

∑∞
n1,n2=0

(
i r√

2

)n1+n2 (−1)n1√
n1!
√
n2!

∑N−1
k=0

1
N

(
sin 2πk

N

)n1
(
cos 2πk

N

)n2 |n1, n2〉

limN→∞ = N0

∣∣∣− r√
2

〉
3

∑∞
n1,n2=0

(
i r√

2

)n1+n2 (−1)n1√
n1!
√
n2!

∫ 2π

0
(sinx)n1 (cosx)n2 dx|n1, n2〉

= N0

∣∣∣− r√
2

〉
3

∑
n1,n2

(
− r2

2

)n1+n2
√

(2n1)!(2n2)!

4n1+n2n1!n2!(n1+n2)!
|2n1, 2n2〉 ,

(2.57)

with N−1
0 = 2π

√
I0

(
r2

2

)
.

The equation (2.55) tells us that a non-trivial time evolution of POt (R) is seen up to second

order of λ2. Now, we calculate the time evolution of this state. The evolution operator U1(t)

changes r → re−i
√

2t (except in the normalization constant). The figure 2.18 shows us the time

evolution of (2.55) for λ = 0.3, r = 2.3 and θ = π/2 (top row). We can see POt (R) spreads

uniformly along the x-y plane.

In the fig. 2.19, we use θ = π/3, r = 2.3 and λ = 0.3. We were expecting that the state

rotates around the purple cone of figure 2.17. However, our state doesn’t lift in the z direction,



46 CHAPTER 2. THREE AND FOUR BODY QUANTUM SYSTEMS

Figure 2.18: The top (bottom) row is POt (R) (PSt (xi)) of the wavefunction (2.55) with t = 2πk/n,

n = 0, 1, . . . , 4, θ = π/2, r = 2.3 and λ = 0.3 PSt (xi) initially is concentrated in the x3 axis,

then it spreads uniformly around the x1 − x2 plane, getting its maximum where t = π/2. After

that, the wavefunction concentrates again in the positive x3 axis and reversed the evolution.

Meanwhile, POt (R) spreads uniformly in the x-y plane.

and is because the superposition has a destructive interference along this component. We need

to add a relative phase in the superposition,

ψ(x1, x2, x3; r, θ) = N

∫
eif(φ)ψ~α(x1, x2, x3) dφ , (2.58)

where f(φ+ 2π) = f(φ). In particular, we use f(φ) = nφ. Then

ψ(x1, x2, x3; r, θ) = NJn(r sin θρs)e
− 1

2(ρ2
s+(x3+r sin θ)2)+inφs , (2.59)

with

N−1 = π3/4e−
(r sin θ)2

4

√
In

(
(r sin θ)2

2

)
, (2.60)

where x1 = ρs cosφs, x2 = ρs sinφs. We plot the state for n = 2, 4, in figures 2.20 and 2.21, with

λ = 0.3, r = 2.3, θ = π/2, like the state shown in fig. (2.18) (which is the case with n = 0). The

probability density of orientation raises up in the z axis and spread uniformly in the x−y plane.

This can be understand in this way: the n = 0 case is, by construction, an infinite superposition

of coherent states, all with initial position (t = 0) concentrated in x3 = r. Every coherent state

has a momentum on a different direction in the x1−x2 plane, and then, to t > 0, each one moves
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Figure 2.19: The top (bottom) row is POt (R) (PSt (xi)) of the wavefunction (2.55) with t = 2πk/n,

n = 0, 1, . . . , 4, θ = π/3, r = 2.3 and λ = 0.3. Spite of the initial coherent states, which lift

POt (R) in the z direction, the final state doesn’t, only spreads uniformly in the x − y plane.

PSt (xi) initially is concentrated in the x3 axis, and then it spreads uniformly around the x1−x2

plane, getting its maximum when t = π/2.

to its respective direction, turning the localized state to one with same probability in a ring of

the x1 − x2 plane. After that, the state concentrates again in the x3 axis but now in x3 = −r.

Now, if we put the relative phase einφ of each coherent state, we add an additional momentum

with direction φ̂, magnitude proportional to n, and sense sgn (n). Each coherent state raises up

and twists in the shape space, given n cycles in a period. In conclusion, n = 0 case only spreads

and comprises around the x1 − x2 plane in its evolution, and with n 6= 0, the state spreads and

comprises while twists in all its evolution. PSt with n 6= 0 is never concentrated in the x3 axis,

because there are destructive interference in this axis, the contrary situation that in n = 0.
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Figure 2.20: The evolution of the system (2.59) with n = 2 and the same values of the state

shown in fig. 2.18. POt spreads uniformly in the xy plane while raises up in the z axes.

Figure 2.21: The evolution of the system (2.59) with n = 4 and the same values of the state

shown in fig. 2.18. We see that the ring in PSt has a bigger radius and POt raises up in the z

axes more quickly than the n = 2 case.
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Chapter 3

Geometry of the spin coherent states

Geometry is knowledge of the eternally existent.

Pythagoras

In this chapter, we study algebraic and geometric properties of the Hilbert space of spin-s

states, in particular those related to the set of the most classical states, which is the set of the

spin coherent states. One of our key tools is the Majorana representation, which is extensively

reviewed section 3.1 . In section 3.2 we discuss the Hilbert space as a principal fiber bundle

with the group SO(3) (or SU(2)). In the last two sections, we concentrate in the algebraic and

geometric properties of the set of spin coherent states.

We make some conventions of our notation, different to the first part of the text. General

directions in physical R3 will be denoted by c, n, m, etc., while x, y, z will be reserved for

the cartesian axes. We denote by |n〉 the spin coherente (SC) state in the direction n in a

general spin-s, and reserve the symbol |n̂〉 for the spin-1/2 states, so that we can write without

problems the formula |n〉 = |n̂〉 ⊗ . . . ⊗ |n̂〉. Our discussion takes place either in the Hilbert

space H N+1 of the system, or in the projective Hilbert space P(H N+1) ≡ PN , where points

are equivalence classes of normalized states differing by a phase factor, and can be identified

with the corresponding density matrix. We often omit the superindex when the dimension of

the spin state space is clear from the context. Accordingly, we denote the projection of the

state |Ψ〉 ∈ H by [Ψ] or ρΨ ∈ P. Finally, the Majorana constellation of a state |Ψ〉 (or [Ψ]),

consisting of the stars {nk}Nk=1 is denoted by |n1, n2, . . . , nN 〉, note that the ordering of the stars

is irrelevant. We also sometimes refer the Majorana stars of a state with their corresponding

51
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(via stereographic projection) complex numbers, say, {γ1, . . . , γN}.

3.1 Majorana representation revisited

In section 1.5, we give the most abstract definition of the Majorana representation, which indeed

is the first definition given by Majorana [66]. Now, to extract all the information that this

representation can give us, we expose three more intuitive constructions.

3.1.1 Spin-s state from spin-1/2 constituents

It is well known that the spin-s state space is mathematically equivalent to the totally symmetric

sector of the 2s-fold tensor power of the spin-1/2 state space. In other words, even though a

particular spin-s system might owe its angular momentum to, say, a pair of particles orbiting

each other, the properties, in a certain state of the system, under rotations, are indistinguishable

from those of a system of 2s spin-1/2 particles, in a particular, totally symmetric (under exchange

of any pair of particles) state. The latter can always be obtained by considering first a separable

state |n̂1〉 ⊗ . . . ⊗ |n̂N 〉, where |n̂〉 is a spin-1/2 state, and subsequently symmetrizing it by

summing over all permutations of the particles in the available tensor factors, to obtain the

totally symmetric state |Ψ〉,

|Ψ〉 = |n1, . . . , nN 〉 =
AΨ

N !

∑
σ∈SN

|n̂σ1〉 ⊗ . . .⊗ |n̂σN 〉 , (3.1)

where AΨ is a normalization factor,

A2
Ψ =

N !∑
σ∈SN 〈n̂1|n̂σ1〉 . . . 〈n̂N |n̂σN 〉

, (3.2)

and SN is the permutation group of N objects. Thus, any spin-s state is equivalent to a state

|Ψ〉 as in (3.1), and the Majorana constellation of the former is the set of unit vectors {ni},

i = 1, . . . , N , that appears in (3.1).

3.1.2 A laboratory definition

The above considerations lead us to an operational definition of the N (possibly coinciding)

directions ni associated to an arbitrary spin-s state |Ψ〉 (see, e.g., [3]). Independent that if

the system in question is made up of spin-1/2 particles, we may use the representation of |Ψ〉
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in (3.1) to conclude that there are, in general, N directions in space such that, if a Stern-Gerlach

apparatus is pointed along them, the probability of measuring the minimal spin projection −s

is zero. Indeed, if the apparatus is pointed to an arbitrary direction m, and the total spin

projection in that direction is measured to be −s, this means that, in the constituent spin-1/2

picture, each spin-1/2 was measured to have projection −1/2. If now the direction m coincides

with one of the stars ni, the probability that that particular spin, which “points along” ni, will

project to −1/2 is zero (since |n̂i〉 and | −n̂i〉 are orthogonal states), and hence the probability

that the total projection of the system is measured to be −s is also zero. In fact, that same

reasoning reveals that if ni has multiplicity k (i.e., there are k stars coinciding there), then a

measurement of the spin projection along that direction has zero probability of producing any

of the values −s, −s+ 1, . . . , −s+ k − 1.

3.1.3 Majorana polynomial as a transition amplitude

In view of the above, it should not come as a surprise that the inner product 〈−n|Ψ〉 is actually

proportional to the Majorana polynomial p|Ψ〉(ζ), where ζ = tan θ
2e
iφ is the stereographic image

of n = (sin θ cosφ, sin θ sinφ, cos θ).

We begin by clarifying the relation, alluded to above, between p|Ψ〉(ζ) and 〈−n|Ψ〉. For a

spin-1/2 state we have

|n̂〉 = cos
θ

2
|ẑ〉+ eiφ sin

θ

2
|−ẑ〉 , |−n̂〉 = sin

θ

2
|ẑ〉 − eiφ cos

θ

2
|−ẑ〉 , (3.3)

so that

〈−n̂|n̂i〉 = cos
θ

2
cos

θi
2
e−iφ(ζ − ζi) = cos

θ

2
e−iφ

ζ − ζi√
1 + |ζi|2

. (3.4)

Using (3.1) for |Ψ〉 we then find

〈−n|Ψ〉 = AΨ

(
cos

θ

2
e−iφ

)N N∏
i=1

ζ − ζi√
1 + |ζi|2

. (3.5)

On the other hand, the coefficient cs of the maximal power of ζ in p|Ψ〉(ζ) is equal to 〈z|Ψ〉, so

that

p|Ψ〉(ζ) = 〈z|Ψ〉
N∏
i=1

(ζ − ζi) = AΨ

N∏
i=1

(ζ − ζi)√
1 + |ζi|2

, (3.6)

since 〈ẑ|n̂i〉 = cos θi/2 = (1 + |ζi|2)−1/2. Comparing the last two equations we arrive at

〈−n|Ψ〉 =

(
cos

θ

2
e−iφ

)N
p|Ψ〉(ζ) . (3.7)
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3.2 Spin states space as a principal fiber bundle

The Hilbert space of spin-s states PN (N = 2s), has a natural action of SO(3), where for a state

|Ψ〉 =
∑
m

cm|s,m〉 , (3.8)

the action of a rotation R is R|Ψ〉 =
∑

m,m′ cmD
(s)
mm′(R)|s,m′〉, with D

(s)
mm′ the Wigner D-matrices

in the s representation. We can define a equivalence relation such that two states |Ψ1〉, |Ψ2〉

are equivalent iff |Ψ1〉 = R|Ψ2〉 for some R ∈ SO(3). Then, as in the n-body problem studied

in the first part of the text, a principal fiber bundle is defined, where the total space is PN , the

fibers are diffeomorphic to SO(3), and the base space is the quotient PN/SO(3) ≡ S . Each

point of S represents the orbit of a state |Ψ〉 under the action of SO(3). With the help of the

Majorana representation, we can visualize the points of S . Each equivalence class consists of all

the states with same constellation shape, differ only by their orientation in the Bloch sphere; for

that reason we also call S the shape space. Generically all the states have a fiber diffeomorphic

to SO(3), except for those with axial symmetry, which are the classes of the states |s,m〉. For

these classes, the fiber is reduced to a 2-dimensional subset of SO(3). In terms of quantum

information, our equivalence relation are the local unitary (LU) transformations, which for the

symmetric states of qubits are collective SU(2) rotations, and the base space is labelled by the

invariant quantities under LU transformations. One important application to this is that the

entanglement (independent to which definition you take) is a function in the base space, i.e.,

only depends by LU invariants [32].

The coordinates of S in terms of the coefficients cm in (3.8) are scalar quantities invariant

under the Wigner functions of the respective s representation which, in general, are not trivial

to find [37]. Using the expansion of the density matrix in terms of the tensor operators Tµν

or the tensor representation defined in [38], one can find shape coordinates in a methodical

way. Another way is via Majorana representation, where the coordinates of the total space

are the roots {ζk}Nk=1 of PΨ(ζ). Shape coordinates can be given by scalar quantities of the

stars’ direction, i.e., scalar quantities of the unitary vectors {nk}Nk=1 obtained via stereographic

projection of {ζk}Nk=1.

Let us give some examples. For s = 1/2, the shape space is only one point, because all the

constellations of one star are equivalent via a rotation. For s = 1, the total space is P2 which is
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of (real) dimension 4s = 4, and the dimension of the shape space S is 1. An immediate shape

coordinate is the arclength between the stars θ ∈ [0, π]. The orbit of the spin coherent states,

which its constellation is one star with degeneracy N (see Fig. 1.2) has shape coordinate θ = 0

and we will see below that the fiber is a 2-sphere. On the other hand, the orbit of the state

|1, 0〉, which constellation is a pair of antipodal stars, has shape coordinate θ = π and the fiber

is diffeomorphic to RP 2. The other points in S have a fiber diffeomorphic to SO(3)/Z2 [11].

This decomposition of P2 into subsets (in this case, the fibers) topologically different is called a

stratification of P2. For more discussion to the constellation shapes of orbits with s > 1, see [8].

The Hilbert space PN = CPN is, by definition, the space of rays in CN+1, i.e., the space of

equivalent classes of CN+1/{0} where p1, p2 ∈ CN+1/{0} are equivalent if p1 = λp2, with λ ∈ C.

For the subset of points in CN+1, p = (Z0, . . . , ZN ) with Zk 6= 0, we define the affine coordinates

(z0, . . . , zk−1, zk+1, . . . zN ) with zj = Zj/Zk. The affine coordinates are also coordinates in a

subset (chart) of PN in a subset (chart). For the spin-s states, we choose as the coordinates

(also called the homogeneus coordinates) (Z0, . . . , ZN ), the coefficients cm in equation (3.8) and

then the affine coordinates in terms of their ratios. The metric induced in PN by CN+1 is the

Fubini-Study metric [11]

g ≡ 2gab̄dz
adz̄b̄ =

1

1 + |z|2

(
dzadz̄a −

z̄adz
adzbz̄

b

1 + |z|2

)
, (3.9)

with z = (z1, . . . , zn). The coefficients of the metric gab̄ can be written in terms of the derivatives

of a function K = ln
√

1 + |z|2. These properties proved that PN is a Kähler manifold. and K

is called the Kähler potential [10].

Returning to our principal fiber bundle, we can calculate the metric induced in an orbit of

a state (in a fiber). This reduced metric has been calculated for some families which appear in

every spin value s (see [57, 56]). We will only calculate the case of interest for us, which is the

orbit of the spin coherent states. Using the expansion of a general SC state (1.51), we obtain

that 1 + |z|2 = (1 + ζζ̄)2s with ζ = tan(θ/2)eiφ is the stereographic projection of the direction of

the SC state |n〉. Also, the transformation between the affine coordinates and the coordinates

(ζ, ζ̄) is holomorphic, and therefore the metric in the new coordinates is just

g = gζζ̄dζdζ̄ , gζζ̄ = ∂ζ∂ζ̄ ln(1 + ζζ̄)2s . (3.10)
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With some algebra we obtain

gζζ̄ =
2s(

1 + ζζ̄
)2 , (3.11)

which is the metric of a 2-sphere induced byR3 with radius r =
√
s/2, in the complex coordinates

given via stereographic projection. With this result, we obtain that the orbit of the spin coherent

states for each value of s is indeed “round”, i.e., is isometric to a 2-sphere. The spin coherent

sphere will be denoted as S2
SC . On the other hand, there is an induced metric in the shape

space, however, for s ≥ 3/2 is a hard task to find it. For s = 1, because is one dimensional, the

induced metric doesn’t have a fundamental meaning.

3.2.1 An obvious application: the quantum GPS

Let us take an ensemble of pure generic spin s states |ψi〉 = |ψ〉, with an specific shape and

orientation. We assume that they were affected in a period of time by some magnetic field,

or interaction, such that our initial states obtain an unknown rotation |ψf 〉 = R|ψ〉. Now, we

take samples of our final state and measure the overlap with SC states, which is equivalent to

knowing the value of the Husimi function Hψf (n) [11] of |ψf 〉 in the direction n,

Hψf (n) ≡ |〈n||ψf 〉|2 = |〈n|R|ψ〉|2 . (3.12)

The question is the following: how many measurements like (3.12) we need to do to figure out

the unknown rotation? The question can be rephrased in terms of the principal fiber bundle.

We are interested to find the point R|ψ〉 in the fiber associated to the state |ψ〉1. Now, imposing

the equation |〈n1〉ψf |2 = M2
1 for known |n1〉 and M1 ∈ R, is equal to requiring that |ψf 〉 must

live in the sphere centered in |n1〉 with radius M1 (Fubini-Study distance). The question is now

the following, how many spheres centered in a point of the SC states’ orbit we need to obtain a

unique intersection with the orbit of |ψ〉 in |ψf 〉?

The level surfaces of the Husimi function of a general state are: empty, a finite set of points,

or a finite set of closed curves which are topologically circles (see Fig. 3.1, and also Fig. 3.3).

Let C1 be one closed curve in the 2-sphere such that H|ψ〉(v) = M1 for each v ∈ C1. Now, let

us remark that HRψ(v) = Hψ(RT v), and then we can think that we rotate the SC state instead

of |ψ〉. For each direction v ∈ C1, the locus of rotations such that RT v0 = v is 1-dimensional

1The initial orientation of the state |ψ〉 is our zero, and the other points in the fiber are labeled with R|ψ〉
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Figure 3.1: (Left) Husimi function for a particular state H|ψ〉(n) over the 2-sphere, where warmer

colors correspond to bigger values of H. We draw some level surfaces, and mark one of them in

brown. (Right) Choosing one point ~v in the brown curve of the left image, now we ask about

the locus of rotations R such that for an initial point v̂0, satisfy that v̂ = Rv̂0, for instance the

rotations R1 and R2 shown in the figure. The rotations have its rotation axis in the red curve

and, for each rotation axis there is a unique rotation angle modulo 2π satisfying the required

condition. Then, each point of the red curve specifies one rotation, and only the rotations of

antipodal directions are the same. Even with this antipodal equivalence, the set of rotations

that sends v̂0 to v̂ is topologically a circle.

and is topologically a circle (The explanation is given in Fig. 3.1). With this we conclude that

the intersection of a sphere centered in the SC states’ orbit with the orbit of |ψ〉 is topologically

a finite set of tori (see Fig. 3.2). The intersection is two-dimensional, so we will need two ad-

ditional equations like (3.12) to obtain a 0-dimensional solution. In general, the intersection of

three spheres with the orbit of a state is a finite set of points, and, to distinguish between them

it is used another sphere. Therefore, the answer of our question is 4. When the state has some

symmetry, the rotation is obtained modulo the rotations which leaves the state invariant. In Fig.

3.2 we draw an intersection of two spheres with the orbit of |ψ〉 in the axis-angle representation.
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Figure 3.2: Locus of points (rotations) of SO(3) in the angle-axis representation which satisfies

the equation Hψ(nk) = Mk for a particular state |ψ〉 and two values of nk and Mk, respectively.

We can observe that both locus are topologically a set of tori, where we remember that the

antipodal points in the shell of the SO(3) sphere are identified. The intersection of both sets is

a one dimensional set which is marked in red color.

Each sphere intersects the orbit of |ψ〉 in a finite set of tori, and the intersection between them

is 1-dimensional. We called this procedure the quantum GPS by the similarity (and indeed, the

inspiration) of a GPS system. Below we give the equivalent terms. The obtention of a rotation

with quantum systems is a search field in many areas, in special in quantum metrology [18, 24],

where there are experiments in process. Of course, our situation doesn’t considered deviations

and experimental error, and to do a more realistic protocol we need to take them into account.

GPS Quantum GPS

Total space R3 PN

The point of interest lives in a 2-sphere fiber diff. to SO(3)

The intersection are circles set of tori

3.3 Algebraic properties of S2
SC

3.3.1 Spin Coherent bases

The constellation shape associated to S2
SC consists of a star with degeneracy N . As we mention

before, the unit operator may be resolved in SC states, 1 = (2s + 1)
∫
|n〉〈n|dΩ/4π, implying

that any state can be written as an infinite linear combination of SC states. The following

theorem shows that, in fact, any N + 1 SC states will do [81, 87]:
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Theorem 1. Any set of N + 1 distinct SC states {|ck〉}Nk=0 forms a basis in the Hilbert space

H N+1.

Proof. Let γk be the complex number associated, via stereographic projection, to the direction

ck and let |Ψ〉 be an arbitrary state with N associated complex numbers {ζk}Nk=1 (i.e., the ζk’s

are the roots corresponding to the stars of |Ψ〉). The expansion

|Ψ〉 =
N∑
k=0

α′k|ck〉 (3.13)

implies the following relation for the corresponding Majorana polynomials

N∏
j=1

(ζ − ζj)
(1 + |ζj |2)1/2

=
N∑
k=0

αk

(1 + |γk|2)N/2
(ζ − γk)N , (3.14)

with αk = α′kAnk/AΨ = α′k/AΨ, and where the A’s are the normalization factors introduced

in (3.1), (3.2) (note that for an SC state |n〉, An = 1). Expanding each side we obtain

N∑
j=0

(−1)N−jζjbN−j =
N∑
j=0

(−1)N−jζj
(
N

j

) N∑
k=0

α̃kγN−jk , (3.15)

where

α̃k =
αk

(1 + |γk|2)N/2

(
N∏
m=1

(
1 + |ζm|2

)1/2)
, (3.16)

and bj are the symmetric polynomials of the numbers {ζk}Nk=1, with bN =
∏N
i=1 ζi and b0 = 1.

Comparing the powers of ζ on both sides in (3.16), we obtain the following system of equations
1 1 . . . 1

γ0 γ1
. . . γN

...
. . .

. . .
...

γN0 γN1 . . . γNN




α̃0

α̃1

...

α̃N

 =


b̃0

b̃1
...

b̃N

 , (3.17)

with b̃j =
(
N
j

)−1
bj . The matrix in the left hand side of the above equation, which we will

denote by V, is of the Vandermonde form, and is invertible if and only if all the numbers γi are

distinct.

Using the known formula for the inverse of a Vandermonde matrix [93] we find that (V−1)ij is

the coefficient of the term ζj in the polynomial Pi(ζ)/Pi(γi), where Pi(ζ) =
∏N
k=0,k 6=i(ζ − γk)
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(the indices in these formulas run from 0 to N). We remark that the last theorem says that

any set of N + 1 SC states B = {|ck〉}Nk=0 forms a basis without any restriction whatsoever

on their relative positions, proximity, etc. For every non-orthogonal basis, as B, the dual basis

B∗ = {|ck〉}Nk=0 is defined as the set of states |ck〉 such that

〈cj |ci〉 = δji , i, j = 0, . . . , N . (3.18)

The definition of the dual basis implies a resolution of the unity,

N∑
i=0

|ci〉〈ci| = 1 . (3.19)

For a generic basis, the only way to obtain the dual basis is solving system of equations (3.18).

However, to a SC basis B it is easy to obtain B∗. It is easy to see that a spin state |Ψ〉 =

|n1, . . . , nN 〉 is orthogonal to any SC state whose direction is antipodal to one of the stars

associated to |Ψ〉, 〈−ni|Ψ〉 = 0. In particular, if |Ψ〉 has no degeneracy (i.e., coincident stars),

it is orthogonal to N SC states, which shows that the dual basis element |ci〉 is given by

|ci〉 =
| −c0,−c1, . . . , −̂ci, . . . ,−cN 〉
〈ci| −c0,−c1, . . . , −̂ci, . . . ,−cN 〉

, (3.20)

where the wide hat denotes omission. Note that the denominator in (3.20) is nonzero, since |ĉi〉

is only orthogonal to |−ĉi〉 and no other spin-1/2 state. We remark also that (3.19) implies that

|Ψ〉 = 〈ci|Ψ〉|ci〉 , (3.21)

which is an alternative to solving (3.17). Note that 〈ci|ci〉 6= 1.

3.3.2 Adapted SC bases

We now wish to associate (i.e., one with N distinct stars), an adapted SC basis {|ci〉}Ni=0, the

elements of which, as the name suggests, are all SC states. For |Ψ〉 = |n1 , . . . , nN 〉, the elements

{ci}Ni=1 are just given by the stars of |Ψ〉, ci = ni, i = 1, . . . , N . The remaining element |c0〉 is

defined as follows: there is a unique 1D linear subspace that is orthogonal to all |ni〉, i = 1, . . . , N .

In fact, it consists of the complex multiples of the state |Ψ̃〉 antipodal to |Ψ〉, i.e., the state whose

stars are antipodal to those of |Ψ〉, |Ψ̃〉 = |−n1, . . . ,−nN 〉. This state is not itself SC, but has,

generically, a single closest SC state, in the FS metric of P — this latter state is chosen as
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|c0〉. Central inversion of a constellation is an isometry for the FS metric, such that, if |c0〉 is

the closest SC state to |Ψ̃〉, the SC state |−c0〉 is the one closest to |Ψ〉. The above may be

summarized neatly as follows: the N + 1 elements of the SC basis adapted to a generic state |Ψ〉

are defined by the antipodes of the extremal points (one maximum and N minima) of its Husimi

function HΨ(n) = |〈n|Ψ〉|2.

We give some examples of the adapted spin basis. Denote by ni, i = 1, . . . , N , the stars of the

state |Ψ〉 and by ζi their projections in the complex plane. Similarly, denote by ck, k = 0, . . . , N ,

the stars of an arbitrary SC basis, and by γk their complex projections. Finally, denote by αk,

k = 0, . . . , N the expansion coefficients in (3.14).

Adapted SC basis for spin 1/2

Any two distinct SC states form a basis in the Hilbert space H 2. For |Ψ〉 = |n̂〉 the adapted

SC basis is (|ĉ0〉, |ĉ1〉) = (|−n̂〉, |n̂〉) and the corresponding expansion coefficients are trivially

(α0, α1) = (0, 1).

Adapted SC basis for spin 1

For s = 1, any set of 3 SC states forms a basis in H 3. Relations (3.17) become

(
1 + ζ1ζ̄1

)1/2(
1 + ζ2ζ̄2

)1/2


α0

1+γ0γ̄0

α1

1+γ1γ̄1

α2

1+γ2γ̄2

 ≡


α̃0

α̃1

α̃2

 =


s11s22+s12s21

2γ01γ02

s10s22+s12s20
2γ10γ12

s10s21+s11s20
2γ20γ21

 , (3.22)

where sij ≡ ζi − γj , and γij ≡ γi − γj . We orient the constellation of |Ψ〉 so that the two stars

are in the x-y plane, bisected by the x axis. Then, ζ1 = γ1 = eiφ and ζ2 = γ2 = e−iφ, with

0 < φ < π/2. The SC state closest to |Ψ〉 has its star at x, so γ0 = −1. Relations (3.22) give


α0

α1

α2

 =


1− cosφ

e−iφ/2

eiφ/2

 . (3.23)
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Adapted SC basis for spin 3/2

Our last example is a state with s = 3/2. For the general case, the (tilded) expansion coefficients

are 
α̃0

α̃1

α̃2

α̃3

 =



s11s22s33+s12s23s31+s13s21s32
3γ01γ02γ03

s10s22s33+s12s23s30+s13s20s32
3γ10γ12γ13

s10s21s33+s11s23s30+s13s20s31
3γ20γ21γ23

s10s21s32+s11s22s30+s12s20s31
3γ30γ31γ32

 , (3.24)

where 
α̃0

α̃1

α̃2

α̃3

 ≡
(

3∏
i=1

(
1 + ζiζ̄i

)1/2)


α0

(1+γ0γ̄0)3/2

α1

(1+γ1γ̄1)3/2

α2

(1+γ2γ̄2)3/2

α3

(1+γ3γ̄3)3/2


, (3.25)

and with the associated SC basis, {γ0, γi = ζi}Ni=1, they reduce to
α̃0

α̃1

α̃2

α̃3

 =


0

−(γ2−γ3)2

3(γ1−γ2)(γ1−γ3)

−(γ3−γ1)2

3(γ2−γ1)(γ2−γ3)

−(γ1−γ2)2

3(γ3−γ1)(γ3−γ2)

 , (3.26)

independent of the choice of γ0. Note that α0 = 0, and α1, α2, α3 do not depend of γ0. This

result can be generalized to any half-integer spin state, as the following proposition asserts, and

originates in the fact that, for such states, 〈Ψ|T |Ψ〉 = 0, where T is the time-reversal operator,

that acts like the antipode map on constellations.

Proposition 2. The expectation value of the time-reversal operator T in a half-integer spin

state vanishes.

Proof. For s = 1/2, T = −iσyK, where K is the complex conjugate operator — for higher

spins, T is just the tensorial power of this expression. It is easily seen that T 2|n1, . . . , nN 〉 =

(−1)N |n1, . . . , nN 〉, and T is antiunitary, (T |Ψ1〉, T |Ψ2〉) = (|Ψ2〉, |Ψ1〉), where we denote the

inner product between two states as (·, ·). With these properties of T in mind, we compute

(−1)N (|Ψ〉, T |Ψ〉) = (T 2|Ψ〉, T |Ψ〉) = (|Ψ〉, T |Ψ〉), and therefore, for N = 2s odd, (|Ψ〉, T |Ψ〉) =

0.



3.3. ALGEBRAIC PROPERTIES OF S2
SC 63

In our case, for |Ψ〉 = |n1, . . . , nN 〉, we have |c0〉 ∝ |−n1, . . . ,−nN 〉, so that α0 ∝ 〈c0|Ψ〉 = 0

for s half-integer (N odd).

3.3.3 Extrema of the Husimi function

We derive a necessary and sufficient condition for an SC state |n0〉 to be closest to a generic

state |Ψ〉. SC states |n〉, nearby |n0〉, can be obtained by a rotation,

|n〉 = R|n0〉 = e−ibS−e−iaSze−icS+ |n0〉 , (3.27)

where the reference frame has been rotated so as to make n0 coincide with z, and a, b, c ∈ C

are functions of the rotation parameters (see, e.g., the supplementary material in [38]). With

S+|n0〉 = 0 and Sz|n0〉 = s|n0〉, we get

HΨ(n) = e2s=(a)〈Ψ|e−ibS− |n0〉〈n0|eib̄S+ |Ψ〉 , (3.28)

where = denotes imaginary part. Taking the derivative with respect to b, and setting it equal

to zero, at b = 0, gives

〈Ψ|S−|n0〉〈n0|Ψ〉 = 0 . (3.29)

When the second factor in the left hand side above vanishes, |n0〉 is orthogonal to |Ψ〉, and

we get an SC state at maximal distance (equal to π/2) from |Ψ〉 — this only happens for n0

antipodal to any of the stars of |Ψ〉. For |n0〉 to be closest to |Ψ〉 the first factor must vanish,

implying that

〈n0, s− 1|Ψ〉 = 0 , |n0, s− 1〉 ≡ | − n0, n0, . . . , n0〉 , (3.30)

where (n0 · S)|n0, k〉 = k|n0, k〉. We turn now to a characterization of the nature of the critical

points of the Husimi function HΨ.

Theorem 3. Consider a critical point n0 of the Husimi function HΨ and expand |Ψ〉 in the

n0 · S eigenbasis, |Ψ〉 =
∑s

m=−s ρme
iαm |n0,m〉. Then

1. If ρs = 0 then n0 is a global minimum of HΨ ( [n0] is at a maximal distance from [Ψ]).

2. If ρs−1 = 0, and
√
sρs >

√
2s− 1ρs−2, then n0 is a local maximum of HΨ ( [n0] is at a

minimal distance from [Ψ]).
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3. If ρs−1 = 0, and
√
sρs <

√
2s− 1ρs−2, then n0 is a saddle point of HΨ: moving along

the φ = (αs−2−αs)/2 mod π direction on the sphere n0 is a local minimum, while in the

orthogonal direction it is a local maximum.

Proof. If ρs = |〈n0|Ψ〉| = 0 then HΨ attains a global minimum at n0 since it is either positive or

zero. For the other critical points, the condition for criticality is ρs−1 = |〈n0, s − 1|Ψ〉| = 0, as

we have already proved. To further characterize the critical points, we will expand the Husimi

function around them, up to second order in the angular distance. Assume, as before, that n0

is along the z axis and consider an SC state close to |z〉 characterized by the angles θ and φ.

Then we have, up to second order in θ,

HΨ =
∣∣∣〈Ψ|e−iSzφe−iθSy |z〉∣∣∣2

=

∣∣∣∣〈Ψ|((1− sθ2

4
)|z〉 +

θ2

4
e2iφ

√
s(2s− 1)|z, s− 2〉

)∣∣∣∣2
= (1− sθ2

2
)ρ2
s +

θ2

2

√
s(2s− 1)ρs−2ρs cos(2φ−αs−2+αs)

= H(z)− θ2

2
∆ + O(θ3) ,

where

∆ ≡ sρ2
s −

√
s(2s− 1)ρs−2ρs cos(2φ− αs−2 + αs) ,

and ρs−1 = 0 was used. In order for HΨ to have a local maximum, it is necessary for ∆ to be

positive for all φ. On the other hand, the minimum value of ∆ is obtained when 2φ−αs−2 +αs =

2kπ, k ∈ Z, and for that minimum to be positive it must hold

√
sρs >

√
2s− 1ρs−2 ,

which proves the second case of the theorem. If the previous inequality is reversed the minimum

value of ∆ will be negative. Given that its maximal value is evidently positive, we have a

saddle point, and the stated principal directions follow easily. This concludes the last case of

the proof.

It has been shown in [67] that a spin-s state |Ψ〉, with maximal star degeneracy less than

b(N + 1)/2c, can be written as a linear combination of at most b(N + 1)/2c SC states, which

depend on |Ψ〉 (b·c denotes integer part). Note that the moduli of the expansion coefficients
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〈ci|Ψ〉 in that equation are invariant under rotations of |Ψ〉— whether they provide coordinates

in the quotient (shape) space S is an open question.

For the maxima of the Husimi function of a state |Ψ〉, it turns out that the level curves

around them have a universal circular behavior. Consider a state |Ψ〉 = |c1, . . . , cN 〉 and the

corresponding Husimi function defined over S2
SC. Note that HΨ(−ci) = 0, i = 1, . . . , N . We

assume, without loss of generality, that a particular −ci points toward the north pole. This

implies that in the expansion of |Ψ〉 in Sz-eigenstates, the maximal projection eigenstate is

absent, |Ψ〉 =
∑N−1

k=−N 〈z, k|Ψ〉|z, k〉. Given any nearby SC state |n〉, characterized by the angles

(θ, φ), with θ � 1, we compute

HΨ(n) = |〈z|eiθSyeiφSz |Ψ〉|2

= |〈z|(1+ iθSy)e
iφSz |Ψ〉|2 +O(θ)3

=
1

16
|2
√

2sθeiφ(s−1)〈z, s− 1|Ψ〉|2 +O(θ3)

=
s

2
|〈z, s− 1|Ψ〉|2θ2 +O(θ3) ,

where we used the expression of |Ψ〉 in terms of the eigenstates of Sz to obtain the last line. Since

there is no φ dependence, to this order in θ, we conclude that the level curves are circles. In

Fig. 3.3 we plot the Husimi function of a particular state in the complex plane (via stereographic

projections) and it is observed that the maxima are circular peaks.

3.3.4 Closest SC states

In the last subsections, we give a criteria to the closest SC state to a general state |Ψ〉, and with

this we define an adapted basis. To obtain a well defined and unique adapted basis, we should

have only one closest SC state, otherwise we should pick one of them. However, most of the

states have only a unique closest SC state.

Remark. The set of states such that the closest SC state is not unique is of measure zero. In

fact, this set is at most of dimension 4s− 1.

Proof. Consider two distinct SC states [c1] and [c2] and let [Ψ] be any state such that [c1] and

[c2] are both the closest SC states of [Ψ]. As shown in (3.30) this implies that 〈c1, s − 1|Ψ〉 =

〈c2, s− 1|Ψ〉 = 0. These are two complex equations so that the locus of states that satisfy them
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Figure 3.3: Top left sphere: constellation of the spin-2 state [Ψ] ≈ (0.634, 0, 0.417 +

0.292i, 0.053+ 0.048i, 0.553+ 0.167i), which has two closest SC states. Top right and bottom

two spheres: Plots of S2
SC, from different viewpoints, with level curves of the Fubini-Study

distance to [Ψ]. Warmer colors correspond to shorter distances. The two red points denote

the two closest SC states to [Ψ]. Right plot: The above distance function, plotted over the

stereographic projection of S2
SC on the complex plane. The conical maxima correspond to the

directions antipodal to the stars of [Ψ].

has real dimension 4s−4. Since they must also satisfy the condition |〈c1|Ψ〉| = |〈c2|Ψ〉| for them

to be equidistant, the dimension of all the states whose closest SC state are [c1] and [c2] is at

most 4s− 5. Finally note that the space of the pair of SC states [c1] and [c2] is of dimension 4.

Because of these observations, the space of states where the closest SC state is not unique is of

dimension at most 4s− 1, as claimed.

For s = 1, there are no states with more than one closest SC state, except for those whose

stars are antipodal — in this latter case the closest SC states form a great circle in the plane

that bisects perpendicularly the diameter connecting the antipodal points. For s = 3/2 all states

with two closest SC states possess a symmetry plane, as is shown below. For s = 2 there are

states with more than one closest SC states that have no particular symmetry — an example is
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shown in figure 3.3.

Theorem 4. Let [Ψ] be a spin-3/2 state with two closest SC states. Then the constellation

associated to |Ψ〉 is symmetric with respect to the plane that bisects perpendicularly the segment

connecting the stars of the closest SC states.

Proof. Suppose, without loss of generality, that the closest equidistant coherent states point in

the directions n1 = (θ, φ = π/2) and n2 = (θ, φ = 3π/2) — the bisecting plane is then the x-z

plane. This implies that

〈n1, 1/2|Ψ〉 = 0 , 〈n2, 1/2|Ψ〉 = 0 , 〈n2|Ψ〉 = eiγ〈n1|Ψ〉 , (3.31)

with γ a real number. Writing |Ψ〉 = (A,B,C,D) and imposing the above conditions leads to

A = λ(1 + 3 cos θ) cos(γ/2) ,

B = 2λ
√

3 sin(γ/2) cos2(θ/2) cot(θ/2) ,

C = −
√

3λ cos(γ/2)(1 + cos θ) ,

D = −λ(1− 3 cos θ) sin(γ/2) cot3(θ/2) ,

where λ, which can be taken as real, and it is fixed by the normalization condition on |Ψ〉. The

important point here is that all components of |Ψ〉 are real, implying that the coefficients of the

corresponding Majorana polynomial are also real. Therefore, all the roots of the latter are either

real or come in conjugate pairs, so that, when projected stereographically onto the sphere, they

give rise to a constellation symmetric with respect to the x-z plane, as claimed.

3.4 Geometrical properties of S2
SC

3.4.1 Intersectology with complex lines

A complex line is defined as a two (complex) dimensional subspace of CN+1 projected in PN .

This definition can be generalized for k-planes, which will be studied in the next chapter. Given

two orthogonal states |ψ1〉, |ψ2〉, each point (state) in its complex line L can be parametrized as

|ψ〉 = |ψ1〉+ ζ|ψ2〉 ∈ L , with ζ ∈ C ∪∞. Taking as homogeneous coordinates (Z0, Z1) = (1, ζ),

we calculate the induced metric (3.9) in the complex line

gL =
dζdζ̄(

1 + ζζ̄
)2 . (3.32)
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Therefore, any complex line is isometric to a 2-sphere. In this subsection we will explore how

these 2-spheres intersect S2
SC . Theorem 1 places severe restrictions in this regard.

Corollary 5. For s ≥ 1, any complex line in P intersects S2
SC at most twice.

Proof. Suppose a complex line ` goes through three SC states {|nk〉}3k=1, then another (non-SC)

state |Ψ〉 on ` can be written in the form |Ψ〉 = α1|n1〉+ α2|n2〉 and also |Ψ〉 = β1|n1〉+ β2|n3〉.

Combining the two equations we obtain (α1 − β1)|n1〉 + α2|n2〉 − β2|n3〉 = 0. However, by

theorem 1, any 3 SC states are linearly independent for s ≥ 1, implying that |n1〉 = |Ψ〉, which

is a contradiction.

Interestingly, Fermat’s (last) theorem for polynomials, a classic result in the Diophantine

inequalities literature [59], is relevant in this regard, as it states that for A(ζ), B(ζ), C(ζ)

relatively prime polynomials, the equation

A(ζ)n +B(ζ)n = C(ζ)n , (3.33)

only has solutions for n ≤ 2. Taking all three polynomials of the first degree, we deduce that no

linear combination of SC states can itself be SC, for s ≥ 3/2 — our result above is stronger, as

it includes the s = 1 case.

The following particular case is also of interest:

Proposition 6. Given two spin-1 states [Z], [Ξ ], with constellations {ζ1, ζ2}, {ξ1, ξ2}, respec-

tively, the complex line they define intersects S2
SC

1. in two points, if the states have no star in common

2. in the single point [χ], if the two states have the star χ in common.

Proof. We set a linear combination of the two states equal to an SC state, with associated

complex root γ, which, in terms of Majorana polynomials, implies

α1(z − ζ1)(z − ζ2) + α2(z − ξ1)(z − ξ2) = (z − γ)2 . (3.34)
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Solving for γ, α1, α2, gives

γ =
ζ1ζ2−ξ1ξ2±

√
(ζ1−ξ1)(ζ1−ξ2)(ζ2−ξ1)(ζ2−ξ2)

ζ1+ζ2−ξ1−ξ2
(3.35)

α1 =
2γ − ξ1 − ξ2

ζ1 + ζ2 − ξ1 − ξ2
(3.36)

α2 =
−2γ + ζ1 + ζ2

ζ1 + ζ2 − ξ1 − ξ2
. (3.37)

If the stars of [Z] are different from those of [Ξ ], the radical in the right hand side of (3.35)

is nonzero, and one obtains two distinct solutions, i.e., the complex line intersects S2
SC in two

distinct points. On the other hand, if the two states have one star in common, say, ζ1 = ξ1 = χ,

then (3.35) implies γ = χ, i.e., the complex line intersects S2
SC in only one point, the SC state

[χ] corresponding to the common star.

Fixing the state [Z] in the previous proposition, and letting [Ξ ] range over P, one arrives at

Corollary 7. For s = 1, every complex line through a non SC state [Z] = [n1, n2] intersects

S2
SC twice, except for two lines, each of which intersects S2

SC once, at [ni], i = 1, 2.

Another interesting implication is contained in

Corollary 8. Given a spin-1 state |Ξ 〉, with constellation {ξ1, ξ2}, and an arbitrary SC state

|n〉, with single (multiple) star ζ, ζ 6= ξ1, ξ2, there exists a unique SC state |n′〉 such that |Ξ 〉

can be written as a linear combination of |n〉, |n′〉.

Proof. Put ζ1 = ζ2 = ζ in (3.35) to find

γ =
(ξ1 + ξ2)ζ − 2ξ1ξ2

2ζ − (ξ1 + ξ2)
, (3.38)

i.e., the complex number γ corresponding to n′ is a Möbius transform of the one corresponding

to n, with coefficients that depend on |Ξ 〉.

The fact that projective lines, defined by pairs of points in S2
SC, pass through every point

in P2 can be phrased in terms of secant varieties [97]: the k-secant variety Sk(A,P) of a variety

A in a projective space P is the (Zariski closure of) the union of all secant k-planes to A (i.e.,

k-planes defined by k + 1 (non-k-coplanar) points of A).

Corollary 9. For s = 1, the first secant variety of the spin coherent sphere coincides with the

ambient projective space, S1(S2
SC, P2) = P2.
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For higher values of spin, we have the following

Corollary 10. Through a point [Ψ] in PN , N ≥ 3, passes at most one line intersecting S2
SC

twice.

Proof. Assume there are two lines through [Ψ] and intersecting S2
SC twice, at [n1], [n2], and

[m1], [m2], respectively. Then the relation α1|n1〉+ α2|n2〉 = β1|m1〉+ β2|m2〉 may be inferred,

and by linear independence of the SC states, |Ψ〉 = 0 follows.

Note that, as a consequence, for N ≥ 3, if a state |Ψ〉 can be written as a linear combination

of two SC states, that decomposition is unique. In P, the linear span of two SC states has real

dimension at most 6, hence, for s ≥ 2, there will be states which cannot be expressed as a linear

combination of two SC states. For s = 3/2 such a decomposition is possible, and unique, for

most of the states, as the following proposition asserts

Proposition 11. For s = 3/2, any state [Ψ] without degenerate constellation lies on a complex

line defined by two SC states.

Proof. Setting |Ψ〉 equal to a linear combination of the SC states |n1〉, |n2〉, implies for the

corresponding Majorana polynomials

(z − ζ1)(z − ζ2)(z − ζ3) = α1(z − γ1)3 + α2(z − γ2)3 . (3.39)

Solving for γ1, γ2, α1, α2, we get

γ1,2 = A−1
(
ζ2

1 (ζ2 + ζ3) + ζ2
2 (ζ3 + ζ1) + ζ2

3 (ζ1 + ζ2)

− 6ζ1ζ2ζ3 ± i
√

3ζ12ζ23ζ31

)
(3.40)

α1 =
−3γ2 + ζ1 + ζ2 + ζ3

3(γ1 − γ2)
(3.41)

α2 =
3γ1 − ζ1 − ζ2 − ζ3

3(γ1 − γ2)
, (3.42)

with ζik ≡ ζi − ζk and

A ≡ 2
(
ζ2

1 + ζ2
2 + ζ2

3 − ζ1ζ2 − ζ2ζ3 − ζ3ζ1

)
.



3.4. GEOMETRICAL PROPERTIES OF S2
SC 71

Consider, as an example, the two representative, s = 3/2, non-biseparable states, |GHZ〉 and

|W〉 [27]. The constellation of the first is a maximal equilateral triangle that can, by a suitable

rotation, be placed on the equator, with one star on the positive x-axis. For this orientation,

the decomposition in two SC states of proposition 11 is |GHZ〉 = 1√
2
(|z〉+ |−z〉). This result is

also found in [34].

On the other hand, the constellation of the state |W〉 consists of two coincident stars, and

a third one, antipodal to the other two. As suggested by proposition 11, such a state cannot

be written as a superposition of two SC states, which is also consistent with the results of [67]

mentioned earlier. Still, it is of interest to inquire what exactly happens if eqs. (3.40), (3.41),

(3.42), are pushed to their limit in this case. It is easily seen that as ζ3 → ζ2 in (3.39), eq. (3.40)

implies that γ1 and γ2 tend to ζ2, while both α1, α2 blow up. However, a slight reaccommodation

of (3.39),

(z − ζ1)(z − ζ2)(z − ζ3) = (α1 + α2)(z − γ1)3 + α2

(
(z − γ2)3 − (z − γ1)3

)
, (3.43)

fixes all problems: the coefficient of the first term on the right hand side is constant, α1 +α2 = 1,

while the exploding α2 in the second term is matched with the vanishing difference (ζ − γ2)3 −

(ζ − γ1)3, their product having a finite limit,

(z − ζ1)(z − ζ2)2 = (z − ζ2)3 + lim
ζ3→ζ2

α2

(
(ζ − γ2)3−(ζ − γ1)3

)
= (ζ − ζ2)3 + (ζ2 − ζ1)(ζ − ζ2)2 .

Clearly, what transpires here is that the spin-3/2 state with a double degeneracy lies on a complex

line defined by an SC state and a vector tangent to S2
SC at that same state. Thus, states with

degenerate constellations are also in S1(S2
SC,P3) and, combining this with proposition 11 we

arrive at a statement analogous to corollary 9, for s = 3/2:

Corollary 12. S1(S2
SC, P3) = P3 .

The next result gives us a way to imagine the constellations corresponding to the points

(states) of a complex line passing through two SC states.

Theorem 13. Given two spin-s SC states with roots γ1, γ2 ∈ C, respectively. The roots ζk(t),

k = 0, . . . , N − 1, of a linear combination of their Majorana polynomials

αN1 (ζ − γ1)N − αN2 (ζ − γ2)N

where α1 = cos t, α2 = eiΩ sin t, trace out circles that intersect equiangularly at γ1, γ2.
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Proof. We compute

αN1 (z−γ1)N−αN2 (z−γ2)N =
N∏
k=1

(
α1(z − γ1)− ξkα2(z − γ2)

)
=
(
αN1 − αN2

) N∏
k=1

(
z − γ1α1 − γ2ξ

kα2

α1 − ξkα2

)
,

(3.44)

with ξ = ei2π/N a primitive Nth root of unity, which shows that

ζk(t) =
γ1 cos t− γ2e

iΩξk sin t

cos t− eiΩξk sin t
. (3.45)

Consider now the Möbius transformation M(ζ) = (ζ − γ1)/(ζ − γ2) and substitute from (3.45)

to find

M(ζk(t)) = ei(Ω+2πk/N) tan t , (3.46)

which is a line through the origin making an angle Ω + 2πk/N with the real axis. The proof is

completed by noting that Möbius transformations are conformal.

Some related comments:

1. The theorem could be stated in terms of a linear combination of the states themselves —

passing to the corresponding Majorana polynomials involves a rescaling of the coefficients

in the linear combination.

2. As usual, “circles” in the complex plane, include the case of straight lines through the

origin (see, e.g., left aside of figure 3.4).

3. Given that stereographic projection is also conformal, we may conclude that the trajecto-

ries of the stars on the Bloch sphere are also circles intersecting equiangularly. This result

has been pointed out before for s = 1 [34].

4. The theorem provides a proof of the fact that a superposition of two SC states cannot

produce a state with degenerate stars, as suggested, for s = 3/2, in proposition 11.

A particular s = 3/2 case is depicted in figure 3.4.

We end this subsection with a general statement about the number of distinct stars of a

linear combination of any two states. To begin with, note that if the states share a star n, with

multiplicities, say, r, s, respectively, then a linear combination of them will also have n as a star,

with multiplicity equal to min(r, s). Clearly, an analogous result holds in the case of several
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Figure 3.4: Plot of the curves ζk(t) in (3.45) in the complex plane (left) and its stereographic

projection (right), for s = 3/2, γ1 = (1 + i)/5, γ2 = (1 + i)/
√

2 and Ω = 0. The solid part of

each circle takes a root ζi from γ1 to γ2, for 0 ≤ t ≤ π/2, while the dashed part returns it from

γ2 to γ1, for π/2 ≤ t ≤ π. The red arrows at γ1, in the top figure, are the vectors tangent to the

curves at t = 0, with an angle 2π/3 between any two of them. The solid dots and little circles

denote the configuration of the constellation at t = 0.1 and t = 0.45, respectively.

stars {ni} in common, each with different multiplicities {ri}, {si}, in the two states. When

factoring the linear combination of the two corresponding Majorana polynomials, such common

factors may be canceled, and the problem reduces to that of a lower spin, without common stars.

Therefore, we may assume, without loss of generality, that the states in question have no stars

in common (note that each state may have stars with multiplicity). Then the following result

holds

Theorem 14. Consider two spin-s states, |Ψ1〉, |Ψ2〉, with n1, n2 distinct stars respectively

(each with possible multiplicity) of which none are in common between the two states. Then an

arbitrary linear combination |Φ〉 = a|Ψ1〉+ b|Ψ2〉 has itself at least N −n1−n2 + 1 distinct stars

(each with possible multiplicity).
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Proof. The statement is an immediate consequence of Mason’s theorem [71, 70, 59]. Let n0(F (ζ))

denote the number of distinct roots of the complex polynomial F (ζ). Let A, B, C be relatively

prime polynomials such that A+B = C. Then Mason’s theorem states that

max deg{A,B,C} ≤ n0(ABC)− 1 . (3.47)

To apply this to our case, put

A = apΨ1 , B = bpΨ2 , C = pΦ ,

with the Majorana polynomials, so that n0(A) = n1, n0(B) = n2, and, say, n0(C) = n3. With

our assumption about no common roots, if one of the |Ψi〉 has a star at the south pole, and,

hence, the degree of its Majorana polynomial is less than N , the other cannot also have a star

there, and the left hand side of (3.47) is, in all cases, equal to N . Note also that if C shared a

root with, say, A, then it would have to also share it with B, which contradicts our assumptions,

so all n3 distinct roots of C are different from those of A and B. Then the number of distinct

roots of the product ABC is n0(ABC) = n1+n2+n3, and the statement follows from (3.47).

For the case of two SC states, n1 = n2 = 1, we get n3 ≥ N − 1, which is weaker than our

result that in fact n3 = N . On the other hand, for two states with star multiplicities, such that

n1 + n2 < N , we get n3 ≥ 2, which is a new result: the complex line through such states does

not intersect S2
SC.

3.4.2 S2
SC immersed in the projective Hilbert space

In this final subsection, we study some properties of the immersion of the S2
SC . As we said

before, S2
SC is isometric to the 2-sphere, but, how is this 2-sphere living in the projective Hilbert

space? A starting point to imagine this embedding is with the answer of the following question:

how many independent directions does S2
SC explore in P? We find that, just like Dali’s iconic

clocks (topological discs) cannot be contained in any 2-plane, the spin coherent 2-sphere extends

in all available directions in P. The precise statement is the following

Theorem 15. Consider an arbitrary state [Ψ] in P and let expΨ be the exponential map defined

with the Fubini-Study metric from T[Ψ]P, the tangent space at [Ψ], to P. The inverse image of

S2
SC under this map, logΨ(S2

SC), is of maximal dimension in T[Ψ]P.
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Proof. We represent [Ψ] ∈ P by the density matrix ρΨ = |Ψ〉〈Ψ|. Then, a tangent vector in T[Ψ]P

is represented by the matrix |Ψ〉〈ϕ| + |ϕ〉〈Ψ| for some |ϕ〉 ∈ H satisfying 〈ϕ|Ψ〉 = 0. Suppose

that log(S2
SC) is contained in an affine subspace of T[Ψ]P of real dimension lower than 4s. Then

there exists a tangent vector X in T[Ψ]P,

X = |Ψ〉〈χ|+ |χ〉〈Ψ| , with 〈χ|Ψ〉=0 , (3.48)

such that the inner product between X and vn ≡ logΨ ρn, ρn ≡ |n〉〈n|, is constant, say, equal to

λ, for all SC states [n]. Using the explicit expression for vn in eqs. (3.57) and (3.58) below, we

find

λ =
1

2
Tr(vnX) =

ωnΨ

2 sinωnΨ

(
eiηnΨ〈χ|n〉+ e−iηnΨ〈n|χ〉

)
, (3.49)

where 〈n|Ψ〉 ≡ cosωnΨe
iηnΨ , ωnΨ ∈ [0, π/2]. The condition ηnΨ = 0 fixes the phase of all |n〉,

except for the isolated points where 〈n|Ψ〉 = 0 — since this latter set is of measure zero, it does

not affect our argument below. From (3.49) we find

<〈χ|n〉 =
sinωnΨ

ωnΨ
λ , (3.50)

where < denotes real part. Now we will consider two cases, λ = 0 and λ 6= 0. If λ = 0 then, by

equation (3.50), 〈n|χ〉 is imaginary,

〈n|χ〉 = cosωnχe
iηnχ = ±i cosωnχ . (3.51)

The crucial observation at this point is that the real function f(n) = −i〈n|χ〉 = ± cosωηχ, where

one of the two possible signs is chosen, cannot change sign on the sphere, since it only has a

finite number of isolated zeros. Indeed, assuming that f takes both positive and negative values,

one may always choose a curve on the sphere that connects the corresponding points without

passing through any of the isolated zeros of f , leading to absurdum, as, by the intermediate

value theorem, f must have a zero in a certain point of the curve. Having established this fact

about f , we use the completeness relation for |n〉 to arrive at

0 = 〈Ψ|χ〉 =
2s+ 1

4π

∫
〈Ψ|n〉〈n|χ〉dΩ = ±i2s+ 1

4π

∫
cosωnΨ cosωnχdΩ , (3.52)

which is impossible, since the integrand is non-negative.

If λ 6= 0, equation (3.50), and the fact that 〈n|Ψ〉 is real, imply

<(〈χ|n〉)〈n|Ψ〉 =
cosωnΨ sinωnΨ

ωnΨ
λ ,
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so that ∫
<(〈χ|n〉)〈n|Ψ〉dΩ = λ

∫
cosωnΨ sinωnΨ

ωnΨ
dΩ .

By the same argument that lead to (3.52), the left hand side is zero, but the integrand in the

right hand side is positive almost everywhere, leading again to absurdum, which shows that such

X does not exist, and the proof is complete.

The last result implies that if you want to do a “picture” of S2
SC using the exponential map,

you will always need a 4s-dimensional picture to observe the correct image wherever which point

(state) [Ψ] you are in P.

The image of S2
SC becomes stranger than before with the following thought. Consider a

geodesic (4s − 1)-sphere of radius r, Sr, centered at [Ψ], i.e., the locus of points in P that

are a fixed geodesic (Fubini-Study) distance r from [Ψ] . The intersection points of Sr with

S2
SC give those SC states that are at a distance r from [Ψ]. For [Ψ] non-SC, and r sufficiently

small, the intersection is null. As r increases, it reaches a critical value rc at which Src just

touches S2
SC at, generically, a single point [n0]. The value of rc is the geometrical measure of

entanglement of [Ψ] [19], which is defined as the minimum of the distant between [Ψ] and the

S2
SC . For r > rc, the intersection is one-dimensional, consisting, generically, of the union of

topological circles. When r reaches its maximal value π/2, S2
SC is tangent to Sπ/2 “from the

inside”, touching it at exactly N points, which are the SC states antipodal to the stars (assumed

distinct) of [Ψ] — the collection of these states, lifted arbitrarily in H , forms a basis of the

orthogonal complement of |Ψ〉 in H . It is a bit puzzling then that the above two spheres remain

tangent at N points, for any position of the center [Ψ] of Sπ/2 (the N points of tangency, of

course, change, as [Ψ] is moved around in P). Looking at figure 3.3, and trying to imagine

the surface depicted there wrapped around S2
SC, we arrive at the cartoon in figure 3.5, where,

for simplicity, we have assumed that s = 1, so that there are only two “peaks” on S2
SC. But

this image is hardly convincing: for example, how are the peaks compatible with the known

fact that the restriction of the Fubini-Study metric on S2
SC gives a perfectly “round” sphere,

with constant curvature? And how can Sπ/2 remain tangent to S2
SC when [Ψ] is moved freely in

P? Worse still, how many peaks does S2
SC really have, if any? Now, some of these puzzles are

simply byproducts of vague phrasing, naively drawn cartoons, and other easily fixable looseness.

For example, Sπ/2 in figure 3.5 is actually a codimension-1 object (e.g., 3D for s = 1), which
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Figure 3.5: Artist’s rendition of the geodesic sphere Sπ/2 (outlying circle), centered at [Ψ], and

of S2
SC (cat shaped curve), tangent to Sπ/2 at two points (assuming s = 1).

is certainly not what that image conveys. To get a visual idea, we will explicitly do the same

calculation as the last theorem for s = 1. We assume that the light used to take the picture

follows Fubini-Study geodesics, and use the inverse of the exponential map, based at [Ψ], to lift

the image of S2
SC into the tangent space at [Ψ] — the result is what we called logΨ(S2

SC). The

4(s = 1)-dimensional object will be projected in a 3-plane. We sketch the calculation, fixing,

for simplicity, s = 1, and identifying a point [Ψ] with the density matrix ρΨ = |Ψ〉〈Ψ|. The two

stars n1, n2, of |Ψ〉 are taken in the x-z plane, symmetrically with respect to the z-axis, and

making an angle α ∈ [0, π/2] with it, i.e.,

n1 = (sinα, 0, cosα) , n2 = (− sinα, 0, cosα) . (3.53)

The corresponding state, in the Sz-basis (1, 0,−1), is

|Ψ〉 = 2b−1
(

cos2 α

2
, 0,− sin2 α

2

)
, (3.54)

with b ≡
√

3 + cos 2α. The SC states corresponding to the stars are

|n1〉 =

(
cos2 α

2
,

1√
2

sinα, sin2 α

2

)
, |n2〉 =

(
cos2 α

2
,− 1√

2
sinα, sin2 α

2

)
. (3.55)

The curve

|c(t)〉 = (cos t− cotω sin t)|Ψ〉+ eiη sin t cscω|n〉 , (3.56)
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in H , where 〈n|Ψ〉 ≡ cosω eiη, projects to a geodesic ρc(t) in P, starting, at t = 0, at ρΨ and

reaching, at t = ω, the SC state ρn. The tangent vector ∂tρc(t)|t=0 ≡ ρ̇c(0) is given by

ρ̇c(0) = −2 cotωρΨ + cscω
(
eiη|n〉〈Ψ|+ e−iη|Ψ〉〈n|

)
, (3.57)

and is of unit length, as t is arclength along ρc(t). Then

vn ≡ logΨ ρn = ωρ̇c(0) , (3.58)

is the sought image of ρn in TΨP, since ω is the geodesic distance between ρΨ and ρn. We choose

an orthonormal hermitian basis {h1, h2, h3, h4} in TΨP, where

H1 ≡ h1+ih2 = 2b−1


0 0 0

cosα+1 0 cosα−1

0 0 0

 , H2 ≡ h3+ih4 = b−2


1−cos 2α 0 −8 sin4 α

2

0 0 0

3+cos 2α+4 cosα 0 cos 2α−1

 ,

(3.59)

and compute the corresponding components vin = 1
2Tr(vnhi),

v1
n + iv2

n =

√
2e−iφωχ sin θ

b sinω cosω
, v3

n + iv4
n =

4e−i2φωχξ

b2 cosω sinω
, (3.60)

where

χ = cos2 α

2
cos2 θ

2
− ei2φ sin2 α

2
sin2 θ

2
, ξ = cos2 α

2
sin2 θ

2
+ ei2φ sin2 α

2
cos2 θ

2
, (3.61)

and the phase of the SC states was chosen so that 〈n|Ψ〉 = cosω ≥ 0. We plot the projection of

logΨ S
2
SC in the 123-plane, for α = π/12, π/3, and π/2, in figure 3.6. Since normal coordinates,

centered at ρΨ, are being used, ρΨ lies at the origin in the figure and Fubini-Study geodesics

through it look like straight lines. A notable, and initially puzzling, feature of the surface shown

in that figure, supposedly the image of a topological 2-sphere, is that it seems to have a boundary:

one sees a self-intersecting surface that ends on two ellipses (highlighted in blue/violet). The

latter are the projections, in the 123-plane, of two circles in the full, 4D tangent space. In their

turn, the circles are the inverse images, under the exponential map, of the SC states in the

directions antipodal to the stars of ρΨ. What happens here is that |Ψ〉 = |n1, n2〉 is orthogonal

to |−ni〉, i = 1, 2, so that [Ψ] and, say, [−n1], are antipodal points on the projective line (real

2-sphere) they define. Then [−n1] is in the cut locus of expΨ and all vectors tangent to the

above 2-sphere at [Ψ], of length π/2, “point” to [−n1] — the circles (ellipses) in the figure are
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Figure 3.6: Plot of logΨ(S2
SC) with |Ψ〉 as in (3.54), for α = π/12 (left), π/3 (center), π/2 (right)

(projection in the plane 123). The state [Ψ] is at the origin where the axes intersect (not visible).

The highlighted ellipses are the inverse images, under expΨ, of the SC states [−n1], [−n2] in

directions antipodal to the stars of [Ψ] — the singularities of logΨ there blow up individual

points to entire circles. The color coding assigns warmer colors to the SC states closest to [Ψ]

(red for the north pole of S2
SC in the first two plots, yellow for the 23 meridian in the third plot),

and blue to those farthest away (above mentioned ellipses). The rapid brightness modulation

marks equidistance from [Ψ] — note how it slows down near the above mentioned extrema.

just the loci of those tangent vectors. Going one dimension up, in the full tangent space, the

geodesic sphere Sπ/2 would look like a euclidean 3-sphere centered at the origin, where [Ψ] lies,

and the above circles are great circles on that sphere. This last statement, of course, needs to

be taken with a grain of salt, as Sπ/2 is in its entirety in the cut locus of expΨ, but it can be

made precise in a limiting sense.

Two further “snapshots” of S2
SC for α = π/3, from different viewpoints, are shown in figure 3.7

(left and middle plots). In the middle one, the complex line defined by [n1], [n2], is also plotted

— rather than a topological 2-sphere, it looks like a spherical cap, the reason being that the state√
2/3(|n1〉 − |n2〉), which belongs to that complex line, is orthogonal to |Ψ〉, so its logarithm

is, as we have seen above, an entire circle (the boundary of the cap). Note that this is the rule

rather than the exception: any generic complex line |φ1〉 + ζ|φ2〉 contains a single state |Ψ〉⊥

orthogonal to a given state |Ψ〉, corresponding to ζ = −〈Ψ|φ1〉/〈Ψ|φ2〉. That state will blow up
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Figure 3.7: Left and middle: Shown is the surface in the middle of Fig. 3.6 (logΨ(S2
SC) for

α = π/3), from two different viewpoints. The two little spheres on the surface denote the

position of the SC states [n1], [n2] (see (3.55)), corresponding to the stars of [Ψ] ([Ψ] itself is at

the origin). The “spherical cap” superimposed in the figure in the middle is the complex line `

passing through [n1], [n2] — although topologically a 2-sphere, it appears to have a boundary

because the state |Ψ〉⊥ =
√

2/3(|n1〉 − |n2〉), which belongs to ` and is orthogonal to |Ψ〉, is

blown up into a circle (the boundary of the cap) under logΨ. Note that (the projection of) S2
SC,

rather than a moon-like object in the horizon, appears to “wrap around the sky” when viewed

from [Ψ]. Note also that, in the full (4D) TΨP2, ` only intersects S2
SC in the two points [n1],

[n2] — additional intersections appearing in the figure are an artifact of the projection in the

123-hyperplane. Right: Stereographic projection from the south 4-pole to the equatorial 123-

hyperplane in TΨP of the image of S2
SC under the map ρ̇c(0) : S2

SC → S3 ⊂ TΨP in equation (3.57).

The color coding in all three plots is as in figure 3.6.

into a full circle under logΨ, and, accordingly, the complex line, rather than a 2-sphere, will look

like a cap, with logΨ([Ψ]⊥) at its boundary.

Another way to visualize S2
SC is to use ρ̇c(0), in equation (3.57), to map S2

SC to a surface in

the unit tangent sphere S3 at [Ψ]. Thus, the radial information about S2
SC is erased, and the

above mentioned surface only records the direction in which each point of S2
SC is viewed from

[Ψ]. That surface, in turn, may be stereographically projected from the “south” 4-pole to the

123-equatorial plane in TΨP — the result is plotted in the right in figure 3.7. Note that the two

circles that correspond to the SC states [−n1], [−n2] are linked.

A further interesting result can be inferred from (3.57). To begin with, that relation is valid
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with |n〉 being replaced by a general (i.e., not necessarily SC) state |a〉. We use the notation

〈a|Ψ〉 = cosωaΨe
iηaΨ for any pair of states. Call va the unit vector tangent at [Ψ], pointing

towards [a], and similarly for vb. Then, the angle Θab between va, vb, is found to be

cos Θab =
1

2
Tr(vavb) =

cosωab cos Ω− cosωaΨ cosωbΨ
sinωaΨ sinωbΨ

, (3.62)

where Ω = ηab + ηbΨ + ηΨa is the phase of the Bargmann invariant of the three states involved,

〈a|b〉〈b|Ψ〉〈Ψ|a〉 = ReiΩ , (3.63)

where R,Ω ∈ R. Note that, for Ω = 0, (3.62) reduces to the formula for the angle of a

spherical geodesic triangle in terms of the lengths (angles) of its sides. This is not an accident,

in fact (3.62) is the spherical trigonometric formula, only expressed in terms of projective space

quantities. To see this, consider the real version of the Hilbert space H , with H 3 |Ψ〉 =

(x0 + iy0, . . . , xN + iyN )→ (x0, . . . , xN , y0, . . . , yN ) = Ψ ∈ R2N+2, so that normalized kets in H

are mapped to the unit sphere S2N+1 in R2N+2. The euclidean inner product between two such

vectors Ψ, Φ, is easily seen to be given by Ψ · Φ = <〈Ψ|Φ〉, so that the angle s between them

satisfies

cos s = Ψ · Φ = <〈Ψ|Φ〉 = cosωΨΦ cos η , (3.64)

where 〈Ψ|Φ〉 = cosωΨΦe
iη, and ωΨΦ is the FS distance between [Ψ], [Φ] in P. When the two

states are in phase, i.e., their inner product is positive, their distance on S2N+1 is equal to the

FS one of their images in P — (3.62) then follows, keeping in mind that the SC states where

assumed in phase with |Ψ〉.
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Chapter 4

k-planes in Hilbert space and

applications

If we create a universe, let it not be abstract or

vague but rather let it concretely represent

recognizable things.

M. C. Escher

4.1 Motivation: A robust non-abelian geometric phase

In 1984, more than 50 years since the birth of the formulation of quantum mechanics, Berry

discovered [12] that the phase of an adiabatic cyclic evolution of a state has two contributions:

the old known dynamical part Fd =
∫
Edt and an additional one proportional to the area of the

curve in the parametric space of the Hamiltonian. Simon writes this geometric phase in terms

of an anholonomy in a principal fiber bundle given by a Berry connection [91]. It has been

generalized, step by step, improving the definition for non-adiabatic, non-unitary, non-cyclic

situations [2, 86, 77], and finally it converges in a general definition of the geometric phase for

any path in the projective Hilbert space given by Mukunda and Simon [79]. To understand this

geometric phase let P be a finite projective Hilbert space, and consider it as the base space of

a principal fiber bundle with fibers diffeomorphic to U(1), where for any two points |ψ〉, |ψ′〉 in

the same fiber [ψ] there exists eiα ∈ U(1) such that |ψ′〉 = eiα|ψ〉. The total space would be

the Hilbert space of unitary vectors. Now, taking a gauge choice in the total space, consider a

83
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one-parameter smooth curve C = {|ψ(s)〉|s ∈ [s1, s2]} in the total space, and the next functional

F [C ]

F [C ] = arg〈ψ(s1)|ψ(s2)〉 − =
∫ s2

s1

〈ψ(s)|ψ̇(s)〉ds , (4.1)

where = is the imaginary part. The functional is invariant under reparametrizations, because

|ψ̇(s)〉ds = d|ψ〉(s). If we now perform a gauge transformation, it takes C into a new curve C ′,

with |ψ′(s)〉 = eiα(s)|ψ(s)〉 and

F [C ′] = arg〈ψ′(s1)|ψ′(s2)〉 − =
∫ s2

s1

〈ψ′(s)|ψ̇′(s)〉ds (4.2)

= arg〈ψ(s1)|ψ(s2)〉+ α(s2)− α(s1)−=
∫ s2

s1

(
〈ψ(s)|ψ̇(s)〉+ iα̇(s)

)
ds = F [C ] . (4.3)

With the gauge and reparametrization invariance, we prove that F [C ] is a geometric quantity

that only depends on the projection of the curve C in the base space π(C ) ⊂ P. When the curve

is given by a Hamiltonian evolution, the second term of (4.1) is the argument of the dynamic

phase, and the first term of the total phase, recovering that eiF [C ] is the usual geometric phase.

In some cases the evolution doesn’t return to the same state, and we wonder about properties

of the unitary transformation between the initial and final states. For instance, if the initial state

|ψi〉 is degenerated, it may not end in the same state even in the adiabatic case, but the final

state must be in the degenerate subspace of |ψi〉, and we are interested to associate the unitary

transformation U restricted in the degenerated subspace such that |ψf 〉 = U |ψi〉, where U is

the called non-abelian geometric phase1 [96]. As in the “abelian” case, there are generalizations

to the adiabatic non-abelian phase, see for instance [4]. Following the ideas of Mukunda and

Simon, we define a non-abelian geometric phase. In this case, the base space will be the complex

Grassmannian Grk,P manifold, i.e., the space of the (complex) vector subspaces of P, of dimension

k. Note that Gr(1,P) = P and Gr(N + 1,P) = {P}, and that dim (Gr(k,P)) = k(N + 1 − k),

where N = 2s. For each point, we associate a fiber diffeomorphic to U(k). The total space,

called Stiefel manifold of P [53], is the set of the k-orthonormal frames of P. The non-Abelian

geometric phase of a curve C in a specific section in the base space is written as

Ugeo[C ] = Qp[C ]F [C ] , (4.4)

1The name shall not be taken literaly since is a matrix transformation instead to a phase. However, we follow

the same notation given in papers and textbooks.
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with

F [C ] ≡P exp

[
−
∫ s2

s1

A(s)ds

]
, Aij(s) = 〈φi(s)|φ̇j(s)〉 , (4.5)

and Qp is the polar part of the matrix Q (see below), with entries Qij = 〈φi(s1)|φj(s2)〉. In the

next theorem, we prove that Ugeo is a covariant matrix.

Theorem 16. Ugeo is a covariant matrix, i.e., under gauge transformations, U ′geo = U †(t1)UgeoU(t1).

Proof. Let us choose a section in the principal fiber bundle, Σ, and define a curve C (s) in the

total space, {|φj〉(s)}kj=1. A gauge transformation to Σ′, defines a new curve C ′(s) given by

|φ′j〉(s) = |φµ〉(s)Uµj(s) for each j =, 1, . . . , k. The entries of the matrix A(s) as

A′ij = 〈φ′i|φ̇′j〉 = U †iν〈φν |φ̇µ〉Uµj + U †iµU̇µj (4.6)

or in a compact way,

A′ = U †AU − U̇ †U . (4.7)

Now, we define the path integral of this matrix along the curve

F (s1, s2) ≡P exp

[
−
∫ s2

s1

A(s)ds

]
, (4.8)

which is indeed the only solution of the following equations [26]

F (s1, s1) = 1 , ∂s1F (s1, s2) = F (s1, s2)A(s1) , ∂s2F (s1, s2) = −A(s2)F (s1, s2) . (4.9)

To see how F (s1, s2) transforms under gauge transformations, let us prove that

F ′(s1, s2) ≡ U †(s2)F (s1, s2)U(s1) , (4.10)

satisfies the equations in (4.9). The first equation is trivial, and the proof of the last one is very

similar to the second. Then, let us focus in the proof of the second equation,

∂s2

(
F ′U †(s1)

)
= U̇ †(s2)F + U †(s2)∂s2F (4.11)

=
(
U̇ †(s2)U(s2)− U †(s2)A(s2)U(s2)

)
U †(s2)F (4.12)

= −A′(s2)U †(s2)F (4.13)

= −A′(s2)F ′U †(s1) . (4.14)
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The matrix F (s1, s2) will be the equivalent of the second term of the abelian case. Now, let us

define the matrix Q, with entries

Qij = 〈φi(s1)|φj(s2)〉 , (4.15)

which transforms to Q′ = U †(s1)QU(s2) under gauge transformations. For Q, we calculate the

equivalent of the “phase” of a matrix, which is obtained using the polar decomposition of a

matrix [40]. For each matrix Q, the singular value decomposition is Q = WQdV
†, where W,V

are unitary matrices, and Qd is diagonal. Qd is unique (up to change of ordering of the diagonal

entries), but W and V aren’t unique. The polar part of Q is defined by Qp = WV † which is

unique. Now, let us see how Qp changes under gauge transformations. First we calculate W ′

and V ′

Q′ = U †(s1)QU(s2) =
(
U †(s1)W

)
Qd

(
V †U(s2)

)
, (4.16)

and by the uniqueness of Qd in the singular value decomposition, Q′d = Qd and then W ′ =

U †(s1)W and V ′ = U †(s2)V . Finally,

Q′p = W ′V ′† = U †(s1)WV †U(s2) = U †(s1)QpU(s2) . (4.17)

Qp is the matricial equivalent of the first term of the abelian case. The non-abelian geometric

phase is given by Ugeo ≡ QpF which under gauge transformations, using eqs. (4.17) and (4.10),

changes covariantly

U ′geo = Q′pF = U ′†(s1)UgeoU(s1) . (4.18)

In the 1-dimensional case, the last equation is reduced to the exponential of the abelian case

(see eq. 4.1). By the covariance and reparametrization invariance of Ugeo, we conclude that is a

geometric quantity associated to the projection in the base space of the curve C , π(C ).

We are interested in curves produced by rotations, |φj(s)〉 = R(s)|φj(s1)〉 = ei~ω(s)·S|φj(s1)〉.

In this case, Aij(s) = i~ω′(s) · 〈φi(s)|S|φj(s)〉. Now, if the curve passes only for 1-anticoherent

states, then Aij(s) = 0 and Ugeo = Qp, which implies that (4.4), more than geometric, is now a

topological quantity. This result have been studied in the abelian case for the states |j,m = 0〉

in [84]. This topological phase means that only depends of the initial and final points in the base

space, it doesn’t matter the curve, and for practical applications, it doesn’t change if the curve
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has some noise, for instance, deviations to the magnetic field given in the laboratory producing

the rotations, or even the magnetic field by the Earth. A geometric phase with these properties

is what we called a robust geometric phase. For k > 1 we can generalized the same construction,

but now we need 1-anticoherent k-planes, i.e., vectorial subspaces S of dimension k such that

for each pair of states |ψ1〉, |ψ2〉 ∈ S , they satisfy that 〈ψ1|S|ψ2〉 = 0. This application inspires

us to get a better understanding between the k-planes in P and its crossover with the action of

SO(3). Also, it is important to study the generalization of the anticoherent states, and discover

a methodical way to find anticoherent multiplets with a subset of states with the same shape.

4.2 The Majorana constellation of a k-plane

As we have said before, the SC states are the spin states that maximize the squared of the spin

expectation value 〈S〉, which is a set isometric to a 2-sphere, and each state is denoted by a

direction |n〉 such that n ·S|n〉 = s|n〉. The notion of SC states is sufficient to built the Majorana

polynomial of a state |ψ〉, defined as the polynomial proportional to the overlap 〈−n|ψ〉 ∝ pψ(ζ),

with ζ the stereographic projection of n. One may generalizes this procedure for a k-plane Π in

P considering the trace restricted to Π of the spin vector S,

TrΠS ≡
k∑
j=1

〈ψµ|S|ψµ〉 . (4.19)

TrΠS is basis-independent and, under rotations of the k-plane D(R), it rotates to RTrΠS. One

may define a coherent k-plane as one that maximizes the squared of the (4.19). The coherent

k-planes can be identified and, indeed, they are a topological sphere, as in the k = 1 case.

Theorem 17. The set of the coherent k-planes is a topological sphere.

Proof. As we mentioned before, for a k-plane Π, TrΠS rotates as a vector and we can assume

that it points along the ẑ axis. Let us take an orthonormal basis {|ψµ〉}kµ=1 for Π. With the

previous observation we have∑
µ

〈ψµ|Sx|ψµ〉 =
∑
µ

〈ψµ|Sy|ψµ〉 = 0 , (4.20)

so that we only need to look for the subspace (or subspaces) that maximize TrΠSz. The proof

will be by induction and its core is the following mathematical result,
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Let A be a Hermitian operator with eigenvalues λ1 < · · · < λN . Then, for all normalized

states |ψ〉 the inequality 〈ψ|A|ψ〉 ≤ λN holds. Furthermore, the equality is attained if and only

in |ψ〉 is an eigenvector of A with eigenvalue λN .

Let Π be a k-plane such that TrΠSz is maximized. We will prove that the set {|s, s −

j〉}k−1
j=0 ⊂ Π and therefore Π = span{|s, s〉, . . . , |s, s − k + 1〉}. First, suppose that |s〉 is not in

Π. Denote as P to the projection operator of the subspace Π and consider |ψ1〉 = QP |s〉 ∈ Π

(Q is a normalization constant. If P |s〉 = 0, the following argument will still hold with a few

modifications). Consider |ψ2〉, . . . , |ψk〉 ∈ Π orthonormal to |ψ1〉. Then, TrΠSz can be computed

as follows,

TrΠSz = 〈ψ1|Sz|ψ1〉+

k∑
µ=2

〈ψµ|Sz|ψµ〉 < 〈s|Sz|s〉+

k∑
µ=2

〈ψµ|Sz|ψµ〉 = TrΠ′Sz , (4.21)

where we used the fact that |s〉 is an eigenvector with the highest eigenvalue of possible of Sz

(and |ψ1〉 is not) and Π′ = span{|s〉, |ψ2〉, . . . , |ψk〉}. The last equality can be checked by noting

that the basis {|s〉, |ψ2〉, . . . , |ψk〉} is orthonormal (so we can use it to compute the trace) since,

for any µ > 1,

〈ψµ|(|s〉 − P |s〉) = 0⇒ 〈ψµ|s〉 = 0 , (4.22)

where the first equality stems from the definition of the projection operator P and the second

one can easily deduced by remembering that the basis {|ψµ〉} is orthogonal by construction with

|ψ1〉 ∝ P |s〉. Clearly (4.21) is a contradiction since TrΠSz was assumed maximal. Therefore,

|s〉 is an element of Π. Now we will prove that |s − 1〉 is also in Π and the reasoning for the

remaining states will be completely analogous. Consider the linear subspace orthogonal to |s〉,

O⊥. Clearly Sz leaves this space invariant and Π2 = span{|ψ2〉, . . . , |ψk〉} ⊂ O⊥, since all of

them are orthogonal to |s〉 as noted in (4.22). Call S
(2)
z : O⊥ → O⊥ to the restriction of Sz to

O⊥. Then we have

TrΠSz = 〈s|Sz|s〉+
k∑

µ=2

〈ψµ|Sz|ψµ〉 = 〈s|Sz|s〉+

k∑
µ=2

〈ψµ|S(2)
z |ψµ〉 = 〈s|Sz|s〉+ TrΠ2S(2)

z . (4.23)

Note that the eigenstate of S
(2)
z with the highest eigenvalue is |s− 1〉. Because of this, by using

the same argument we used to prove that |s〉 ∈ Π, we can prove that, if |s− 1〉 is not an element

of Π2, we can find a k − 1 plane Π′2 ⊂ O⊥ that contains |s− 1〉 such that

TrΠ2S(2)
z < TrΠ′2S(2)

z
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and hence for Π′ = span{Π′2, |s〉}, TrΠ′Sz would be higher than TrΠSz a contradiction. Using

the same argument k − 2 times more we can prove that Π = span{|s〉, . . . , |s− k + 1〉}. Finally,

note that this Π satisfy (4.20).

What we just proved was that if Π is such that TrΠS points along the ẑ axis and its squared

norm is maximal, then Π = span{|s〉, . . . , |s − k + 1〉}. Because of this and the rotational

properties of TrΠS, the remaining coherent subspaces can be obtained by rotating Π. Since

rotations around the ẑ axis leave Π invariant, the space of coherent planes is contained in a

sphere, each coherent plane associated to a direction in the sphere. What remains to prove is

that different directions define different planes. This is trivial, however, (as long as k 6= N = 2s)

by the following argument. Consider the following planes

Πn̂ = span{|n̂, s〉, . . . , |n̂, s− k + 1〉} , Πm̂ = span{|m̂, s〉, . . . , |m̂, s− k + 1〉} ,

with n̂ 6= m̂. Clearly both spaces are different since |n̂,−s〉 is orthogonal to all the elements

of Πn̂ but is not orthogonal to |m̂, s〉 (the only coherent state orthogonal to it is |m̂,−s〉), an

element of Πm̂. Taking all this in consideration, we can conclude the coherent subspaces is

topologically a sphere.

With the last result we describe the generalization of the spin coherent states. To define

the inner product between k-planes, let us review the notion of inner product in states (which

would be 1-planes, or lines in H N ). A point |ψ〉 in the Hilbert space H N is a state that for

the moment we do not consider normalized and with an associated phase. The inner product in

H N is given by

〈ψ1|ψ2〉H ≡ 〈ψ1|ψ2〉 , (4.24)

which is just the usual overlap between two states. Now, the inner product in P, can be written

in terms of the elements of H , taking into account the normalization of the states, and omitting

the phase associated to the U(1) fiber in H ,

〈ψ1|ψ2〉P ≡
|〈ψ1|ψ2〉H |√

|〈ψ1|ψ1〉H |
√
|〈ψ2|ψ2〉H |

, (4.25)

As a summary, the last equation is an inner product in P because, between any representative

element of the classes [ψ1], [ψ2] ∈ P, the product (4.25) gives the same value. We generalize the

last construction for k frames H k and Grassmanians Grk,N which will be the analogous to H

and P, respectively.
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For two (not necessarily orthonormal) k-frames |Ψ1〉 = {|ψ1µ〉}, |Ψ2〉 = {|ψ2 ν〉}, 1 ≤ µ, ν ≤

k, we define their inner product as

〈Ψ1|Ψ2〉 = det〈Ψ1 |⊗Ψ2〉 , (4.26)

where 〈Ψ |⊗Φ〉 is a matrix of inner products, 〈Ψ |⊗Φ〉µν = 〈ψµ|φν〉. The standard properties

〈aΨ|Φ〉 = ā〈Ψ|Φ〉 , 〈Ψ|aΦ〉 = a〈Ψ|Φ〉 , 〈Φ|Ψ〉 = 〈Ψ|Φ〉 , (4.27)

are satisfied, but non-zero linearly dependent frames have zero norm-squared |Ψ|2 = 〈Ψ|Ψ〉,

which we will not consider. The group GL(k,C) acts on Hk by right matrix multiplication, and

the space of orbits is the Grassmannian Grk,N , since all frames in the same orbit span the same

non-degenerate k-plane. Denote by ΠΨ the k-plane spanned by |Ψ〉, viewed as an equivalence

class of frames, with two frames being equivalent if they span the same plane. Finally, inspired

by eq. (4.25), for two k-planes Π1, Π2 with (not necessarily orthogonal) bases {|ψjµ〉}kµ=1, with

j = 1, 2, we define the inner product

〈Π1|Π2〉 ≡
det |〈Ψ1 |⊗Ψ2〉|√

det |〈Ψ1 |⊗Ψ1〉|
√

det |〈Ψ2 |⊗Ψ2〉|
, (4.28)

The equation (4.28) is the volume of the projection of Π1 into Π2 (and viceversa). In fact, if

there is a state |ψ〉 ∈ P1 orthogonal to Π2, then 〈Π1,Π2〉 = 0.

Lemma 18. Let Π1 and Π2 be two k−planes. Then, 〈Π1,Π2〉 = 0 if and only if there is an

element |φ〉 ∈ Π2 orthogonal to Π1.

Proof. Let |ψµ〉 and |φµ〉 (µ = 1, . . . , k) be basis for Π1 and Π2 respectively. Let P1 denote the

projection operator associated to the subspace Π1. Suppose the basis |ψµ〉 for Π1 is orthonormal.

Then,

P1 =

k∑
µ=1

|ψµ〉〈ψµ| . (4.29)

Now, consider the operator P1 restricted to the space Π2. With respect to the basis |ψµ〉,

µ = 1, . . . , k for Π1 and |φµ〉, µ = 1, . . . , k for Π2, the matricial expression for the restricted

operator P1|Π2 can be deduced as follows,

P1|Π2 |φµ〉 =
k∑

µ=1

〈ψν |φµ〉|ψν〉 ⇒ (P1|Π2)νµ = 〈ψν |φµ〉 , (4.30)
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Now, we know that the determinant of this matrix is zero if and only if the kernel of P1|Π2 is

non-trivial. Since P1 is a projection operator, the kernel is not trivial if and only if there is a

state |φ〉 in Π2 orthogonal to Π1.

Finally, we define the Majorana polynomial of the k-plane Π as

pΠ(ζ) ≡ 〈Π−n,Π〉 , (4.31)

with ζ the stereographic projection of n, and the zeros of pΠ(ζ) define the Majorana constellation

of the k-plane Π. In the next theorem, we found a familiar to the Majorana polynomial of a

k-plane, and its proof is in appendix F.

Theorem 19. The Majorana polynomial pΠ(z) of a k-plane Π with basis {|ψµ〉}kµ=1 is, up to a

numerical factor, equal to the Wronskian of the Majorana polynomials of the basis {pψ(z)}kµ=1

,

pΠ(ζ) =

∣∣∣∣∣∣∣∣∣∣∣∣

pψ0(ζ) p
(1)
ψ0

(ζ) . . . p
(k−1)
ψ0

(ζ)

pψ1(ζ) p
(1)
ψ1

(ζ) . . . p
(k−1)
ψ1

(ζ)
...

...
...

...

pψk−1
(ζ) p

(1)
ψk−1

(ζ) . . . p
(k−1)
ψk−1

(ζ)

∣∣∣∣∣∣∣∣∣∣∣∣
. (4.32)

For the Majorana representation of a state |ψ〉, we have the interpretation that n is a star

of pψ(ζ) if and only if 〈−n|ψ〉 = 0. In this case, it’s different. For convenience, let us denote as

Cψ and CΠ the constellations of the state |ψ〉 and the k-plane Π, respectively.

Theorem 20. Let Π be a k-plane. Then, CΠ has a star in n̂ if and only if there is a state

|φ〉 ∈ Π such that Cφ has k (or more) stars in the direction n̂.

Proof. Suppose CΠ has a star in the direction n̂. By definition, this happens if and only if

〈Π−n̂,Π〉 = 0. As noted in lemma 18, this product is zero if and only if there is a state |φ〉

orthogonal to all the elements of Π−n̂. Consider the basis | − n̂, s〉, . . . , | − n̂, s+ 1− k〉 for this

plane. Then, the previous statement is equivalent to the following,

〈−n̂,m|φ〉 = 〈n̂,−m|φ〉 = 0, m = s, . . . , s− k + 1 .

If we measure the spin for the state |φ〉 in the direction n̂, this means that the probability of

getting the measure −m is zero. By considering the operational definition of the Majorana
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representation we see that this happens if and only if Cφ has at least k stars in the direction

n̂.

For the last result, there is an immediate generalization in one direction

Corollary 21. Let Π be a k-plane. If there is a state |ψ〉 ∈ Π with a star n with multiplicity

K ≥ k, then CΠ has a star in n with multiplicity K − k + 1.

However, it is not the unique way to have a star with multiplicity in the constellation of a

k-plane.

Corollary 22. Let Π be a k-plane. If Π has a basis {|ψµ〉}k−1
µ=0 with a common star n (and then,

all the states of Π), CΠ has a star in n with multiplicity k.

Proof. Let us write the Majorana polynomial of each state |ψµ〉 as pψ(ζ) = (ζ − γ)p̃ψ(ζ), where

γ is the complex number associated to n. Then, the Majorana polynomial of Π is

pΠ(ζ) =

∣∣∣∣∣∣∣∣∣∣∣∣

(ζ − γ)p̃ψ0(ζ) p̃ψ0(ζ) + (ζ − γ)p̃
(1)
ψ0

(ζ) . . . (k − 1)p̃k−2
ψ0

(ζ) + (ζ − γ)p̃
(k−1)
ψ0

(ζ)

(ζ − γ)p̃ψ1(ζ) p̃ψ1(ζ) + (ζ − γ)p̃
(1)
ψ1

(ζ) . . . (k − 1)p̃k−2
ψ1

(ζ) + (ζ − γ)p̃
(k−1)
ψ1

(ζ)
...

...
...

...

(ζ − γ)p̃ψk−1
(ζ) p̃ψk−1

(ζ) + (ζ − γ)p̃
(1)
ψk−1

(ζ) . . . (k − 1)p̃k−2
ψk−1

(ζ) + (ζ − γ)p̃
(k−1)
ψk−1

(ζ)

∣∣∣∣∣∣∣∣∣∣∣∣
,

(4.33)

where in a recursive manner, we can erase the factors of each column without the multiplicand

(ζ − γ), reducing the determinant to

pΠ(ζ) =

∣∣∣∣∣∣∣∣∣∣∣∣

(ζ − γ)p̃ψ0(ζ) (ζ − γ)p̃
(1)
ψ0

(ζ) . . . (ζ − γ)p̃
(k−1)
ψ0

(ζ)

(ζ − γ)p̃ψ1(ζ) (ζ − γ)p̃
(1)
ψ1

(ζ) . . . (ζ − γ)p̃
(k−1)
ψ1

(ζ)
...

...
...

...

(ζ − γ)p̃ψk−1
(ζ) (ζ − γ)p̃

(1)
ψk−1

(ζ) . . . (ζ − γ)p̃
(k−1)
ψk−1

(ζ)

∣∣∣∣∣∣∣∣∣∣∣∣
, (4.34)

which clearly has a factor (ζ − γ)k.

Corollary 23. Let Π be a k-plane. If Π has a basis {|ψµ〉}k−1
µ=0 with a common star n with

multiplicity t, the constellation of Π has a star in n with multiplicity kt.

Factorizing the common star in the states, we have a new Wronskian associated to states

with spin 2s− t, where the criteria of stars multiplicity must be applied with this new value of

spin.
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Given two polynomials of one variable p1(z) and p2(z) and an arbitrary complex number

z0, it is possible to make a linear combination ap1(z) + bp2(z) with a root in z0. In particular,

if both polynomials have a common root, then there is a linear combination with a root of

multiplicity two. In the same way, with k polynomials (of degree at least k) and an arbitrary

complex number, there is a linear combination with z0 as a root with multiplicity k − 1, and

the multiplicity increases if the k polynomials have a common root. Then we conclude that the

corollary 22 implies 21, but in the opposite sense is not true, a counter example is given in the

next section.

Remark. If Π has a basis {|ψµ〉}k−1
µ=0 with a common star n with multiplicity t, then there is a

state |φ〉 ∈ Π with a star in n with multiplicity t+ k − 2.

We show some examples in the next section, where they have evidence that the only conse-

quences of degenerated stars in the constellation of a k-plane are the mentioned by the corollaries

21-22.

4.3 Examples

4.3.1 k-planes of spin coherent states

Consider a k-plane Π consisting of the subspace generated by k spin coherent (SC) states

{|nk〉}kj=1. The Majorana polynomial of Π is

PΠ(z) =

∣∣∣∣∣∣∣∣∣∣∣∣

(z − ζ1)N N(z − ζ1)N−1 . . . N !
(N−k+1)!(z − ζ1)N−k+1

(z − ζ2)N N(z − ζ2)N−1 . . . N !
(N−k+1)!(z − ζ2)N−k+1

...
...

. . .
...

(z − ζk)N N(z − ζk)N−1 . . . N !
(N−k+1)!(z − ζk)

N−k+1

∣∣∣∣∣∣∣∣∣∣∣∣
(4.35)

where N = 2s and ζj is the complex number associated to nj via stereographic projection. In

each row there is a common factor (z − ζj)N−k+1 and in each column a numerical factor. Then
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the Wronskian is equal to

PΠ(z) ∝

 k∏
j=1

(z − ζj)N−k+1


∣∣∣∣∣∣∣∣∣∣∣∣

(z − ζ1)k−1 (z − ζ1)k−2 . . . 1

(z − ζ2)k−1 (z − ζ2)k−2 . . . 1
...

...
. . .

...

(z − ζk)k−1 (z − ζk)k−2 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣
(4.36)

=

 k∏
j=1

(z − ζj)N−k+1

 k∏
1=µ<ν

(ζµ − ζν) . (4.37)

Therefore, CΠ consists of k stars in the directions of the constituents SC states, where each star

has multiplicity N − k+ 1. This result gives us a criterion to deduce when a subspace has a SC

basis (i.e., a basis consisting only by SC states), we just need to observe the constellation of the

subspace.

4.3.2 k-planes for s=1

For spin s = 1, the only non-trivial k-planes are with k = 2, which are the complex lines2. The

2-planes’ constellations have k(2s + 1 − k) = 2 stars. Let us consider first Π generated by two

states, where one has a star doubly degenerated, i.e., a SC state, Π = span{|n〉, |n1, n2〉}, with

associated complex numbers, γ, γ1 and γ2, respectively. Using eq. (4.32) we obtain that the

roots of pΠ(ζ) are

ζ1 = γ , ζ2 =
γ (γ1 + γ2)− 2γ1γ2

2γ − (γ1 + γ2)
. (4.38)

In another case, when Π = span{|n, n1〉, |n, n2〉}, the new constellation consists of ζ1,2 = γ.

Also, the SC state |n〉 belongs to the last 2-plane. These results are in agreement with the

interpretation of the stars mentioned in the last section. We conclude that when the 2-plane Π

is such that all the states |ψ〉 ∈ Π have a common star n, the constellation of Π is a star in n

with multiplicity 2, which indeed is the antipodal constellation to the SC state |−n〉, the unique

orthogonal state to Π. This is not a coincidence, as we prove below.

Corollary 24. Let Π be a 2s-plane of spin-s states with a constellation without degenerated

stars. The antipodal of CΠ is the constellation of |ψ〉 ⊥ Π.

2It’s a bit confusing the terminology, that complex lines are the 2-planes. To avoid confusions, in this chapter

we won’t use the term “complex lines” anymore.
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Proof. The constellation of Π has N = 2s stars {nj}Nj=1. By the corollary 21, the SC states

{|nj〉}Nj=1 ∈ Π, which, as we discuss in the previous chapter (subsection 3.3.2), are linearly

independent. Then, the unique orthogonal state to all of them is | − n1, . . . ,−nN 〉.

As a last observation we remark that these calculations imply also the results for s = 1 in

section 3.4.1 in an easier way, and therefore, it could be used to generalize these results.

4.3.3 k-planes for s=3/2

Let us first study the 3-planes, which they have a constellation of k(2s + 1 − k) = 3 stars. In

this part, let us denote by Πm the set of the 3-planes such that the star with most multiplicity is

with multiplicity m. Π1 are the 3-planes conformed by the linear combination of three different

SC states Π = span{|nj〉}3j=1, which has orthogonal complement Π⊥ = | − n1,−n2,−n3〉. On

the other hand, Π3 are the 3-planes Π such that all the states in Π have a common star n,

and Π⊥ = | − n〉. We are missing the 3-planes Π whose orthogonal complement is of the type

Π⊥ = |−n1,−n2,−n2〉, which must be set Π2. Doing some calculations, we can obtain that the

3-plane given by {|n1, n1, n1〉, |n2, n2, n2〉, |n2, n2, n
′〉} with n′ 6= n2, has the constellation n1, n2

and n2. We summary all this information in the next table, with the convention that ni 6= nj

for each pair of directions.

s = 3/2 Class of 3-planes Π⊥

Π1 {|n1〉, |n2〉, |n3〉} | − n1,−n2,−n3〉

Π2 {|n1〉, |n2〉, |n2, n2, n3〉} | − n1,−n2,−n2〉

Π3 {|n1〉, |n1, n2, n2〉, |n1, n2, n3〉} | − n1〉

(4.39)

Now, we study the 2-planes, with 4 stars in their constellations. We do a similar table as the

above one for this case. To avoid large calculations, the directions pj depend of the directions

nj . Also, here it could be more than one star with degeneracy. This case is a constellation

with two stars doubly degenerated and will be denoted by Π2,2. For each Πm, there is only

one class except for the cases Π2 and Π2,2. Moreover, there are no distinction between the

constellations of the two classes of Π2. For instance, the 2-planes Π1 = {|−z,
√

3
2 x+ 1

2z,−
√

3
2 x+

1
2z〉, | − z,

−
√

3
2 x + 1

2z,−
√

3
2 x + 1

2z〉} and Π2 = {| − z〉, |z, x,−x〉} or in terms of polynomials,

Π1 = {(z − 1/
√

3)2, (z + 1/
√

3)2} and Π2 = {1, z(z − 1)(z + 1)}, have the same constellation.
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Therefore, different k-planes may give the same constellation.

s = 3/2 Class of 2-planes Π⊥

Π1 {|n1, n2, n3〉, |n4, n5, n6〉} · · ·

Π2 {|n1〉, |n2, n3, n4〉} {| − n1,−n1, p2〉, | − n1, p3, p4〉}

Π2 {|n1, n1, n2〉, |n1, n3, n4〉} {| − n1〉, |p1, p2, p3〉}

Π2,2 {|n1〉, |n2〉} {| − n1,−n2,−n3〉, | − n1,−n2,−n4〉}

Π2,2 {|n1, n2, n3〉, |n1, n2, n4〉} {| − n1〉, | − n2〉}

Π3 {|n1〉, |n1, n2, n3〉} {| − n1〉, | − n1, p2, p3〉}

Π4 {|n1〉, |n1, n1, n2〉} {| − n1〉, | − n1,−n1, n3〉}

(4.40)

4.4 Anticoherent Multiplets

We define a t-anticoherent multiplet {|Ψi〉}ki=1 as a set of l.i. states such that 〈Ψi|Tσµ|Ψj〉 = 0

with 1 ≤ σ ≤ t, −σ ≤ µ ≤ σ for 1 ≤ i, j ≤ k, with Tσµ the tensorial operators (see section 1.4).

By the 3j-symbol of Tσ,µ, 〈j,m|Tσµ|j,m′〉 must satisfy that µ + m′ = m. For our case, we are

interested in 1-anticoherent multiplets, then we look for sets of states such that

〈Ψi|T1µ|Ψj〉 = 0 , (4.41)

for each value of µ = 0,±1. The last condition is satisfied for any couple of states |s,m1〉 ,

|s,m2〉 such that |m1−m2| > 1. As a first step, we observe that the sets {|s,−s+ 2k〉}[s]k=0 and

{|s,−s+ 2k + 1〉}[(2s−1)/2]
k=0 satisfy the last equation, except when the bra and ket states are the

same and with m = 0, because in this case 〈s,m|T10|s,m〉 6= 0. This expectation value vanishes

when we consider the states |s,−s+2k〉+|s, s−2k〉 and we omit the state |s, 1/2〉+|s,−1/2〉 when

is necessary (the last one must be omitted because (〈s, 1/2|+〈s,−1/2|)T10(|s, 1/2〉+|s,−1/2〉) 6=

0). The first example is obtained in s = 3. We give a table of examples (without normalization)
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for the first values of s.

s = 3

◦ |ψ1〉 = |s, 3〉+ |s,−3〉, |ψ2〉 = |s, 1〉+ |s,−1〉,

◦ |ψ1〉 = |s, 2〉+ |s,−2〉, |ψ2〉 = |s, 0〉,

s = 7/2

◦ |ψ1〉 = |s, 7
2〉+ |s,−7

2〉, |ψ2〉 = |s, 3
2〉+ |s,−3

2〉,

s = 4

◦ |ψ1〉 = |s, 4〉+ |s,−4〉, |ψ2〉 = |s, 2〉+ |s,−2〉, |ψ3〉 = |s, 0〉,

◦ |ψ1〉 = |s, 3〉+ |s,−3〉, |ψ2〉 = |s, 1〉+ |s,−1〉.

(4.42)

For these examples, the biggest multiplet for each value of spin s has [s/2] + 1 elements. We

plot in the next figures the constellations of some examples mentioned above, and the Majorana

constellation associated to its k-plane (k=2 or k=3, respectively).

We consider the 2-plane Π plotted in the figure 4.1, |ψ1〉 = |3, 2〉+ |3,−2〉, and |ψ2〉 = |3, 0〉.

CΠ has the roots

ρ1 = 0 , ρ2 =∞ , ρ3,4 = ±i , ρ5,6 = ±1 , (4.43)

with ρ1 and ρ2 a 3-degenerate root. A general state of the 2-plane is written as |ψ1〉 + α|ψ2〉.

It is easy to observe that when α = 2, the state has double degenerated roots in ±i, and when

α = −2, there are double degenerated roots in ±1. Only in these values of α, the polynomial

has an equal root as ρj with j = 3, 4, 5, 6. The whole 2-plane has the root 0 and ∞ once, and

only these roots have multiplicity (of order 3) when α = ∞, i.e., in the state |ψ2〉. All these

properties of the 2-plane are in accordance with the previous results (Cor. 21-22).

4.5 Anticoherent multiplets with the same shape

For reasons of convenience, we denote 1-anticoherent multiplets just as anticoherent multiplets.

We are interested in an anticoherent cuadriplet {|ψk〉}4k=1 such that each state can be obtained

from another making a rotation |ψj〉 = R|ψk〉. There are several 1-anticoherent states we know

and for which the last condition is easy to implement. In this part, we study the orbit of the

states of |s, 0〉 under SO(3).

Recall that a set of states A = {|ψk〉}Nk=1 is an anticoherent multiplet if 〈ψj |T1µ|ψk〉 = 0 for
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Figure 4.1: Majorana constellations of the states |3, 3〉 + |3,−3〉 (left), |3, 1〉 + |3,−1〉 (center),

and the associated 2-plane, with 10 stars (right). The red number denotes the multiplicity of

the stars. The left constellation is a regular hexagon.

Figure 4.2: Majorana constellations of the states |4, 4〉+ |4,−4〉 (left up), |4, 2〉+ |4,−2〉 (right

up), |4, 0〉 (left down) and the associated 3-plane, with 18 stars (right down). The left up

constellation is an octagon.
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each pair of A and µ = 0,±1. Imposing these conditions we obtain [94]

〈s, 0|R(α, β, γ)T10|s, 0〉 = 0 , (4.44)

〈s, 0|R(α, β, γ)T1±1|s, 0〉 ∝ ±e∓iγ
sinβ√
s(s+ 1)

P ′s(cosβ) , (4.45)

with Ps(x) the Legendre polynomials. We obtain that the condition of anticoherence for a pair

of states with the shape |s, 0〉 doesn’t depend of the angles α and γ. This is easy to understand

because the condition must only depend on relative angles between the states (i.e., between the

stars of the constellations). Now, our problem to find anticoherent multiplets with the shape

of |s, 0〉 is reduced to look for a configuration of stars in the 2-sphere such that their distances

(spherical distance) between them is a zero of P ′s(cosβ), which are well-known. If there exist

an angle β0 such that β0 ∈ (0, π) and P ′s(cosβ0) = 0, then we can always built an anticoherent

triplet, consisting in the directions of an equilateral (spherical) triangle with length β0. It

turns out that the angle with these properties exists for any integer value of spin s > 1. For an

anticoherent cuadriplet with equidistant stars, the only possible configuration is the tetrahedron.

Then we search in which value of spin s, P ′s(cosβt) = 0 with βt = arccos(−1/3) ≈ 1.91063. In

the values of s ∈ [1, 100], we don’t obtain an exact zero of the Legendre polynomial for βt, just

an approximate value. There are four zeros with a difference less than 0.001

s = 18 , β = 1.91082 , ∆β = 0.00019 ,

s = 41 , β = 1.91153 , ∆β = 0.00090 ,

s = 69 , β = 1.90984 , ∆β = 0.00079 ,

s = 92 , β = 1.91044 , ∆β = 0.00019 ,

For s = 18, we define the cuadriplet |ψ1〉 = |s, 0〉, |ψ2〉 = R(0, βt, 0)|s, 0〉, |ψ3〉 = R(2π/3, βt, 0)|s, 0〉

and |ψ4〉 = R(4π/3, βt, 0)|s, 0〉. The numerical value of the matrices 〈ψj |T1,µ|ψk〉 are

〈ψi|T10|ψj〉 = 10−4


0 0 0 0

0 0 1.5i −1.5i

0 −1.5i 0 1.5i

0 1.5i −1.5i 0

 , (4.46)
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〈ψi|T11|ψj〉 = 10−4


0 1.3 −0.65− 1.1i −0.65 + 1.1i

−1.3 0 0.65 + 0.37i 0.65− 0.37i

0.65 + 1.1i −0.65− 0.37i 0 −0.75i

0.65− 1.1i −0.65 + 0.37i 0.75i 0

 , (4.47)

and 〈ψi|T1−1|ψj〉 = 〈ψi|T1−1|ψj〉∗ This 4-plane, by construction has the tetrahedral symmetry,

i.e. RΠ = Π, for each rotation R belonging to the symmetry group of the tetrahedral, and only

these ones, as we can conclude seeing its constellation plotted in Fig. 4.3. We can observe

a constellation that only has the symmetries of the tetrahedron plus an antipodal symmetry.

However, the last one leaves the state invariant, and therefore, is a trivial operator for the basis.

To conclude, we obtain a quasi-anticoherent cuadriplet, where the states lives in the orbit

of the state |s, 0〉. In this cuadriplet there are the necessary set of operations to do in quantum

computing in the way to model logic gates. With this method we can also look for other

configurations of points on the 2-sphere such that, instead to having the same length between

each other, they have a (spherical) distance satisfying P ′s(cosβ) = 0, with this condition we can

obtain spherical parallelograms, where they are related to an anticoherent cuadriplet. However,

there is less symmetry of the configuration than the tetrahedron configuration (only 1 rotational

symmetry), and therefore, they are not useful for quantum computing.
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Figure 4.3: Majorana constellations of Π given by the quasi anticoherent cuadriplet. The con-

stellation consists of 132 stars, the red stars have multiplicity 15, and the blue ones are not

degenerated. The eight red stars conform two antipodal tetrahedrons (bottom), and the 12 blue

stars a cuboctahedron (right top).
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Chapter 5

Conclusions

Quantum system of n-point particles

We study the interplay between the dynamics of the shape and orientation degrees of freedom

in n-body quantum systems, using the geometric approach to the n-body problem developed in

the last decades. In the quasi-rigid approximation, the best shape coordinates are the normal

modes, obtaining a covariant Hamiltonian and a physical interpretation of its terms.

We presented a quantum description of the falling, reorienting, zero angular momentum cat,

modeled by a system of n = 3 and 4 particles. We recovered the classical picture assuming the

cat wavefunction in shape space to be a coherent state, and also explored other, more exotic,

purely quantum scenarios. Step by step, we assume more complex situations. For n = 3, we

study the evolution of a state where the shape is a superposition of two coherent states, with

internal angular momentum in antipodal directions, which ends in a Schroedinger cat. Also,

we present the case when the shape wavefunction doesn’t have internal angular momentum,

which, opposite to our classical intuition, its orientational wavefunction spreads in a particular

direction. For the tetrahedral case for n = 4, we exploit the result that we can induce rotations

in any direction with shape transformations. To obtain that anticoherent shape states produce

an isotropic evolution in the orientational wavefunction with respect to the axis of rotation. We

deduced that for a q−anticoherent internal state with q ≥ 3, the evolution is isotropic up to third

order in t. We have some perspective that this result is true for each order, and will be studied

in the near future. Finally, we design a shape state such that gives an axial evolution in the

orientational wavefunction, as an example of engineering shape states for a desired orientational

103
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evolution.

New features will appear considering systems with closed equilibrium configurations. For

instance, the appearance of degeneracy between shapes related by mirror reflection, as in the

ammonia molecule. In this case, we expect effects by the tunnelling between degenerate minima

of the potential. Such developments would also facilitate incursions to molecular and nuclear

dynamics.

There is one aspect of our approach that needs to be justified. The falling cat’s rotation was

visualized by essentially following the maximum of the marginal probability density in SO(3),

rather than focusing on the “average orientation”. The reason for this choice is that there is no

“average orientation” in a configuration space like SO(3) — to see this, consider the simpler case

of a particle with uniform probability density around a circle, there is no meaningful assignment

of an average position in this case. Thus, simply invoking Ehrenfest’s theorem, i.e., that the

quantum description of the system will be necessarily recovered, through expectation values,

the classical one, is not permissible here, at least not in the above naive form. Recently, there

are definitions of the Wigner quasi-probability function for the pair of angle and orbital angular

momentum canonical pair given by Kastrup [50, 51, 52], which can be used to define the average

orientation more formally.

Shapes in the Hilbert space of spin states

We study questions regarding the intersection of complex lines and Fubini-Study geodesics in

quantum projective state space P with the 2-sphere of spin coherent states S2
SC — a central role

in this discussion is played by our result of the linear independence of any N + 1 SC states.

We show that for a generic quantum state [Ψ], there exists an adapted SC basis, defined via

the extrema of its Husimi function. We also give a lower bound on the number of distinct

stars of a linear combination of two generic spin-s states, and find a simple expression for the

constellation of a linear combination of two spin-s SC states. Finally, we compute the image of

the SC 2-sphere, for s = 1, projected to a 3D subspace of the tangent space to P2, using (the

inverse of) the exponential map. As mentioned before, our motivation in delving into this sort

of questions, of a distinctly algebraic geometric flavor, is mainly rooted in our belief that the

answers naturally translate into statements that an experimentalist might find not only neat but

also useful. Our initial excursion into this territory has left many stones unturned. A basic piece
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of information that seems missing is the form of the Majorana constellation obtained by linearly

combining two given states. This leads back to the mostly open problem of factorizing a sum

of polynomials, but apart from a complete description of the result, which might be presently

untenable, one may also envisage partial answers in terms of bounds and inequalities, already

unearthed but hidden deeply in the mathematics literature.

For the problem to discover the unknown rotation for a spin state through overlaps with spin

coherent states, the visualization of the Hilbert space in a SO(3) principal fiber bundle is the

most convenient. We obtain a equivalent interpretation and solving to the latter question with

the GPS system. It should be a way to optimize the algorithm when the overlaps have some

error, as it could be in the real case. It is planned, in the future, to improve the algorithm for

unknown rotations for a realistic case, where the overlap measurements have some noise.

Another promising direction seems to be “intersectology”, hopefully streamlined by a more

substantial assimilation of algebraic geometric know-how. In particular, we would like to clarify

the role higher secant varieties might play in a wide array of problems, and whether direct

physical implications may be inferred from it. In the last chapter it is appreciated how our

generalization presented here of the Majorana representation to k-planes can become a tool in

this subject. The formulation and characterization of the Majorana representation is deeply

studied, extending the definition of coherent states and the inner product for k-planes. We

obtain the interpretation of the stars of a k-plane, which ends in a crucial difference with the

usual stellar representation for states, different k-planes could have the same constellation. We

are working to get a better understanding of this new Majorana representation.

Finally, we generalize the geometric phase given by Mukunda and Simon to the non-abelian

case. We find that anticoherent multiplets can produce a non-abelian case robust to noise (noise

that can produce rotations). We give several examples of the anticoherent multiples, and find

a cuasi anticoherent cuadriplet (up to 10−4), which could work for quantum computing. We

are still looking for new anticoherent cuadriplets. Also, it could be interesting to study some

questions given in the q-anticoherent states, now in q-anticoherent subspaces. For spin states,

we know that, at least for the first values of q, the first q-anticoherent state in each order q have

a platonic solid as constellation, will it be the same for k-planes?
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Appendix A

The quasi-rigid Hamiltonian for the

four-body system

In this appendix the Hamiltonian for the 4-body system (2.36) is derived in the context of the

quasi-rigid approximation (1.3). We consider a system consisting of four point-like particles with

mass mα and position in the space frame rsα (α = 1, . . . , 4). To define the shape coordinates we

use the following Jacobi vectors (see figure A.1 )

ρs1 =
√
µ1(rs1 − rs3) , ρs2 =

√
µ2(rs2 −Rs,13) , ρs3 =

√
µ3(rs4 −Rs,123) , (A.1)

where

Rs,13 =
m1rs1 +m3rs3
m1 +m3

, Rs,123 =
m1rs1 +m2rs2 +m3rs3

m1 +m2 +m3
, (A.2)

and µi are the reduced masses of the respective clusters,

µ1 =
m1m3

m1 +m3
, µ2 =

m2(m1 +m3)

m2 +m1 +m3
, µ3 =

(m1 +m2 +m3)m4

m1 +m2 +m3 +m4
. (A.3)

The shape space is defined as the quotient space R9/SO(3) which turns out to be R6, see [61].

For simplicity we choose the shape coordinates

q1 =
√
ρs1 · ρs1 ≥ 0 , q2 =

ρs1 · ρs2
q1

, q3 =
ρs1 · ρs3
q1

, (A.4)

q4 =
√
ρs2 · ρs2 − x2

2 ≥ 0 , q5 =
ρs2 · ρs3 − q2q3

q4
, q6 =

√
ρs2 · ρs2 − q2

3 − q2
5 ≥ 0 ,

which clearly are rotation-invariant and can generate all the right-handed configurations of

the four body system, with respect to the Jacobi vectors. For the particular system under
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Figure A.1: Jacobi vectors for the four-body system.

consideration, it is convenient to work with a new set of shape coordinates

q̃1

q̃2

q̃3

q̃4

q̃5

q̃6


=

1√
6



0
√

2 0 −1 0 0
√

2 0 −
√

2 0 1 0

1 0 1 0 0 −2

1 0 −1 0 −
√

2 0

0 −1 0
√

2 0 0
√

2 0
√

2 0 0
√

2





q1

q2

q3

q4

q5

q6


. (A.5)

To avoid ill-defined scenarios, we restrict our analysis to configurations of the body defined by

rsα = r0
sα +λxsα, where xsα represents the α-th particle’s displacement from its position in the

equilibrium configuration r0
sα

r0
s1 =

(
0, a√

3
,−h

3

)
,

r0
s2 =

(
−a

2 ,−
a

2
√

3
,−h

3

)
,

r0
s3 =

(
a
2 ,−

a
2
√

3
,−h

3

)
,

r0
s4 = (0, 0, h) ,

(A.6)

with h =
√

3a/
√

8, which corresponds to a tetrahedon of length a. Since any deformation of the

body can be described as a linear combination of the normal modes, we consider the case where
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xsα corresponds to the µ-th normal mode x(µ) = {x(µ)
s1 , . . . ,x

(µ)
s4 }:

x(1) =

{
(− 1

4
√

2
,− 5

4
√

6
, 1

2
√

3
), (− 1

4
√

2
,

√
3
2

4 , 0), ( 3
4
√

2
,− 1

4
√

6
,− 1

2
√

3
), (− 1

4
√

2
,

√
3
2

4 , 0)

}
,

x(2) =

{
(−

√
3
2

4 , 5
12
√

2
,−1

6), ( 5
4
√

6
, 5

12
√

2
, 1

3), ( 1
4
√

6
,− 7

12
√

2
,−1

6), (−
√

3
2

4 ,− 1
4
√

2
, 0)

}
,

x(3) =
{

(0, 1
3 ,

1
3
√

2
), (− 1

2
√

3
,−1

6 ,
1

3
√

2
), ( 1

2
√

3
,−1

6 ,
1

3
√

2
), (0, 0,− 1√

2
)
}
,

x(4) =
{

(−
√

3
4 ,

1
12 ,

1
3
√

2
), ( 1

4
√

3
, 1

12 ,−
√

2
3 ), (− 1

4
√

3
,− 5

12 ,
1

3
√

2
), (
√

3
4 ,

1
4 , 0)

}
,

x(5) =
{

(1
4 ,

1
4
√

3
, 1√

6
), (1

4 ,−
√

3
4 , 0), (−1

4 ,−
1

4
√

3
,− 1√

6
), (−1

4 ,
√

3
4 , 0)

}
,

x(6) =
{

(0,
√

2
3 ,−

1
6), (− 1√

6
,− 1

3
√

2
,−1

6), ( 1√
6
,− 1

3
√

2
,−1

6), (0, 0, 1
2)
}
.

(A.7)

Correspondingly, the deformation from the body’s equilibrium configuration by the µ-th normal

mode is given in shape space by q̃µ = q̃µ0 +λxµ, where the equilibrium configuration is represented

by the point q̃µ0 = (0, 0, 0, 0, 0,
√

3
2) and xµ represents the µ-th normal mode (see Fig. 2.5).

(x1, x2, x3) is a triplet, (x4, x5) a doublet, and x6 is the breathing mode, with frequencies ω =
√

2, 1, 2, respectively. We remark that only the modes in the doublet and the breathing mode

are commensurable.

The moment of inertia tensor corresponding to the equilibrium configuration is diagonal

M = I, and the Coriolis tensor Bµν is non-zero in each component

(B1)µν =



0 0 0 0 1 0

0 0 −1 1 0 0

0 1 0 −
√

2 0 0

0 −1
√

2 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 0


, (A.8)

(B2)µν =



0 0 1 1 0 0

0 0 0 0 −1 0

−1 0 0 0 −
√

2 0

−1 0 0 0 0 0

0 1
√

2 0 0 0

0 0 0 0 0 0


, (A.9)
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(B3)µν =



0 −1 0 −
√

2 0 0

1 0 0 0 −
√

2 0

0 0 0 0 0 0
√

2 0 0 0 0 0

0
√

2 0 0 0 0

0 0 0 0 0 0


. (A.10)

From the form of the previous matrices it can be deduced that in the Ls = 0 case: shape

deformations involving the breathing mode plus another normal, or involving only the normal

modes (x4, x5) cannot generate a rotation of the body – the latter being a general result that

applies to any n-body system whose equilibrium shape has at least three different planes of

symmetry (see the last part of 2.4). On the other hand, combinations of any mode of a doublet

(x4, x5) with any one of the triplet (x1, x2, x3) cannot give rise to finite cyclic trajectories in shape

space and, therefore, the inquiry on the generation of a corresponding rotation is meaningless

from the physical point of view.



Appendix B

Isotropic wavefunctions on SO(3)

In this appendix, we give a brief discussion of the wavefunction in SO(3) which do not depend

of the rotation axis’ angles (Θ,Φ), which we call isotropic wavefunctions on SO(3).

For a spin representation l, a general wavefunction on SO(3) Ψ(η; Θ, Phi) of the state is

given by (we omit the l index)

Ψ(η; Θ,Φ) =
∑
mk

cmkDmk(η; Θ,Φ) . (B.1)

The condition of isotropic wavefunction is equivalent to ask that Ψ(R) be invariant under rota-

tions of the coordinate system,

Ψ(R) = Ψ(URU−1) , ∀ U ∈ SO(3) . (B.2)

Well-known functions with this property are the characters χl(R) of the irrep of the rotation

group [94]

χl(η) = χl(R) =

m∑
m=−l

D(l)
mm(R) . (B.3)

We prove that they are the only functions with the isotropic property. First, we expand the eq.

(B.2) ∑
m,k

cmkDmk(R) =
∑

m,k,m′,m′′

cmkDmm′(U)Dm′m′′(R)Dm′′k(U
−1) , (B.4)

where we obtain

cm0k0 =
∑
m,k

cmkDmm0(U)Dk0k(U
−1) , (B.5)
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Figure B.1: The plot of |χl(η)|2 for l = 0, 1, 2, 3.

and the only way the last equation satisfies for every U ∈ SO(3) is with the relation

∑
m′′

Dmm′′(U)Dm′′m′(U
−1) = δmm′ , (B.6)

this relation imposes to the coeffcients the condition cmk = δmkc, which is the same expansion

found in the wavefunction Ψ(η).

The characters χl(η) have an easy expression [94]

χl(η) =
sin[(2l + 1)η2 ]

sin η
2

. (B.7)

We plot the probability density for the isotropic states |Ψ(R)|2 for l = 0, 1, 2, 3 in the figure

B.1. While bigger is the quantum number l, the state is more localized in the origin and then

it more localized in one orientation. Let us remember that a rotation η > π in the n̂ direction

is equivalent to a rotation in the antipodal direction for an angle η−π.



Appendix C

(n̂ · S)k and (B · S)k expanded in

tensor operators

In the 4-body model, we used the scalar operators (n̂ ·S)k or (B ·S)k for any positive value of k,

where n̂ is the unit vector defined by the angles (θ, ϕ), and B and S are angular momentum op-

erators of different Hilbert spaces, with spin b and s, respectively. For the rotational invariance,

their expressions must be of the form

(n̂ · S)k =

2s∑
σ=0

A(k)
σ (s)

σ∑
µ=−σ

Y ∗σµ(θ, ϕ)T (s)
σµ , (C.1)

(B · S)k =

2j∑
σ=0

α(k)
σ (b, s)

σ∑
µ=−σ

T (b)†
σµ ⊗ T (s)

σµ , (C.2)

where j = min(b, s), and A
(k)
σ (s) and α

(k)
σ (b, s) are functions of s y b. In what follows we deduce

recursive expressions to A
(k)
σ (s) and α

(k)
σ (b, s). First, we consider (n̂ · S)k. Let us start with

k = 0 so that (

uvn · S)0 = 1 = A
(0)
0 Y ∗0,0(θ, ϕ)T00, and then, A

(0)
0 (s) =

√
4π(2s+ 1). For k = 1,

uvn · S = A
(1)
1

∑
µ
Y ∗1µ(θ, ϕ)T1µ and, when it is evaluated at (θ, ϕ) = (0, 0), we find

S3 = A(s)Y ∗1µ(0, 0)T1µ =
A(s)

2

√
3

π
T10 . (C.3)

Using the explicit expression of T10 (1.37), we obtain

A(s) = A
(1)
1 (s) =

2

3

√
s(s+ 1)(2s+ 1)π . (C.4)
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With the expression of n̂ ·S it is straightforward to conclude that A
(k)
σ (s) = 0 for σ > k. Besides,

due to the parity of Tµν , σ and k must have the same parity. The last two results are valid even

when we substitute n̂ for a vector operator.

Now, for A
(k)
σ (s) with k > 1, we calculate the product of (n̂ · S) with a general rotation

invariant operator
∑
σ
Bσ
∑
µ
Y ∗σµ(θ, ϕ)Tσµ. The product of two invariant terms is invariant, and

then the result has the same form
∑
σ
B
′
σ

∑
µ
Y ∗σµ(θ, ϕ)Tσµ. Therefore the calculation is reduced

to obtain B
′
σ and can be expressed as

(n̂ · S)

(∑
σ

Bσ
∑
µ

Y ∗σµ(θ, ϕ)Tσµ

)
= M[n̂ · S]


B0

B1

...

B2j

 =


B
′
0

B
′
1

...

B
′
2j

 =
∑
σ

B
′
σ

∑
µ

Y ∗σµ(θ, ϕ)Tσµ .

(C.5)

M[n̂ · S] is a (2s+ 1) square matrix whose indexes run from 0 to 2s, and its elements are given

by

M[n̂ · S]r′r = A(s)
∑
µ,ν

Tr
[
Y ∗1µ Y

∗
rν Yr′0

]
Tr
[
T1µ Trν T

†
r′0

]
, (C.6)

where we denote the integration of the spherical harmonics over the sphere by their trace and

they are given by (see [1, 85])

Tr [Yl1m1Yl2m2Ylm] =

√
(2l + 1)(2l1 + 1)(2l2 + 1)

4π

 l1 l2 l

m1 m2 m

 l1 l2 l

0 0 0

 , (C.7)

Tr [Tl1m1Tl2m2Tlm] = (−1)l1+l2+l−2s
√

(2l + 1)(2l1 + 1)(2l2 + 1)

 l1 l2 l

m1 m2 m

 l1 l2 l

s s s

 ,

(C.8)

respectively. Using the previous expressions, after doing some algebra, we obtain

M [n̂ · S]r′r =
1

2

(
r

2r − 1

√
(2s+ 1− r)(2s+ 1 + r)δr′,r−1 +

r + 1

2r + 3

√
(2s− r)(2s+ 2 + r)δr′,r+1

)
.

(C.9)

And finally, the expression for A
(k)
σ (s) with k > 1 is

A(k)
σ (s) = A(s)

(
M [n̂ · S]k−1

)
σ1
. (C.10)

It is important to remark that each component of M [n̂ · S] is non negative, and then A
(k)
σ (s) = 0

only if σ > min(k, 2s), or σ and k have different parity. The first non zero coefficients A
(k)
σ (s)
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are:

A
(0)
0 (s) =

√
4π(2s+ 1) ,

A
(1)
1 (s) = 2

3

√
s(s+ 1)(2s+ 1)π ,

A
(2)
0 (s) = 2

3s(s+ 1)
√

(2s+ 1)π ,

A
(2)
2 (s) = 1

15

√
(2s− 1)(2s)(. . . )(2s+ 3)π ,

A
(3)
1 (s) = 2

15(3s2 + 3s− 1)
√
s(s+ 1)(2s+ 1)π ,

A
(3)
3 (s) = 1

70

√
(2s− 2)(2s− 1)(. . . )(2s+ 4)π .

(C.11)

These relations are also obtained with the closed formula found in [25],

A(k)
σ (s) =

√
4π

2s+ 1
ik−σ∂kφχ

s
σ(φ)

∣∣∣
φ=0

=

√
4π

2s+ 1

s∑
m=−s

mkcsmsm,σ0 , (C.12)

where χsσ(φ) are the generalized character of SU(2) (see [94]).

Let us now consider the case when n̂ is substituted for an angular momentum operator

B in the b spin states representation. The factor α1
1(b, s) can be obtained by calculating the

expectation value of B · S with the state |bb〉 ⊗ |ss〉 and using the formula,

〈jj |T jKQ|j
j〉 = δQ,0

√
2K + 1

 j K j

−j 0 j

 = δQ,0(2j)!

√
2K + 1

(2j −K)!(2j + 1 +K)!
, (C.13)

and then

α(b, s) := α1
1(b, s) =

1

12

√
2b(2b+ 1)(2b+ 2)

√
2s(2s+ 1)(2s+ 2) . (C.14)

For α
(k)
σ (b, s) with k > 1, we use the same procedure than before for (n̂ · S)k. In this case, the

equation (C.6) changes to

M [B · S]r′r = α(b, s)
∑
µ,ν

Tr
[
T b†1µ T

b†
rν T

b
r′0

]
Tr
[
T s1µ T

s
rν T

s†
r′0

]
, (C.15)

and it can be deduced that

M [B · S]r′r = 1
4

(
δr′,r−1

r
2r−1

√
(2b− r + 1)(2b+ r + 1)(2s− r + 1)(2s+ r + 1)

+ δr′,r+1
r+1
2r+3

√
(2b− r)(2b+ r + 2)(2s− r)(2s+ r + 2)

)
.

(C.16)

The α factors are calculated in the same form that in (C.10)

α(k)
σ (b, s) = α(b, s)

(
M [B · S]k−1

)
σ1
. (C.17)
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We write the first terms of α
(k)
σ (b, s)

α
(0)
0 (b, s) =

∏
j=b,s

√
2j + 1 ,

α
(1)
1 (b, s) = 1

3

∏
j=b,s

√
j(j + 1)(2j + 1) ,

α
(2)
0 (b, s) = 1

3

∏
j=b,s

j(j + 1)
√

(2j + 1) ,

α
(2)
2 (b, s) = 1

120

∏
j=b,s

√
(2j − 1)(2j)(. . . )(2j + 3) ,

α
(3)
1 (b, s) = α(b,s)

5 (12(b)(b+ 1)(s)(s+ 1)− 4(b(b+ 1) + s(s+ 1)) + 3) ,

α
(3)
3 (b, s) = 1

1120

∏
j=b,s

√
(2j − 2)(2j − 1)(. . . )(2j + 4) .

(C.18)



Appendix D

The auxiliar operator B and the

relation between L

Let us consider a 3D isotropic harmonic oscillator, with Hamiltonian given by

H =
1

2
(p2

1 + p2
2 + p2

3) +
1

2
(x2

1 + x2
2 + x2

3), (D.1)

and let us consider the set of states |n, sms〉 labeled by the quantum numbers

N |n, sms〉 = n|n, sms〉 ,

S2|n, sms〉 = s(s+ 1)|n, sms〉 ,

S3|n, sms〉 = ms|n, sms〉 ,

(D.2)

where Si = εijkxjpk and [Si, Sj ] = iεijkSk. Let us further assume that this system is coupled to

its angular momentum, as in the Hamiltonian (15),

H =
√

2N +
λ2

2

(
L +

1

2
S

)2

=
√

2N +
λ2

2

(
L2 + L · S +

1

4
S2

)
, (D.3)

where L is the total angular momentum in the body frame. The eigenstates |m, lk〉 of the

orientation part satisfy

L2|m, lk〉 = l(l + 1)|m, lk〉 ,

Lz|m, lk〉 = k|m, lk〉 ,

Lsz|m, lk〉 = m|m, lk〉 ,

(D.4)

where

[Li, Lj ] = −iεijkLk , [Lsi, Lsj ] = iεijkLsk . (D.5)
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The subindex s means that the vector is referred to the space (fixed) frame. A basis (that we call

the decoupled basis) of the Hilbert space is formed by |n,m, sms , lk〉, which are not eigenstates

of (D.3).

The ladder operators of the angular momentum in the body frame are

L± = Lx ∓ iLy , (D.6)

by the commutation relations of its components. Also, because of that, L cannot be coupled

with S in the usual way [14]. We use the auxiliar operator B = −L and its eigenstates |lmb〉b
where

B2|bmb〉b = b(b+ 1)|bmb〉b .

B3|bmb〉b = mb|bmb〉b .
(D.7)

To obtain the relation between the states |bmb〉b and |lk〉, we see that

l(l + 1)|lk〉 = L2|lk〉 = B2|lk〉

−k|lk〉 = −L3|lk〉 = B3|lk〉 .
(D.8)

Then |lk〉 = F |l−k〉b, with F a constant of unit norm. Now, if we consider |ll〉 = |l−l〉b, by

applying L− = −B+, we obtain

|ll−1〉 = −|l−l+1〉b , (D.9)

and the general relation turns out to be

|lk〉 = (−1)l−k|l−k〉b . (D.10)

Introducing the operator J = B + S, we find

B · S = −L · S =
1

2
(J2 − L2 − S2) . (D.11)

so that Eq. (D.3) yields

H =
√

2N +
λ2

4

(
3L2 +

3

2
S2 − J2

)
. (D.12)

The eigenstates of which are given by the basis |n,m, s, l, jmj 〉, where we couple the basis |sms〉

and |lk〉b.
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It is convenient to express T bKQ in terms of T lKQ

T bKQ =
∑
m,m′

(−1)l−m
√

2K + 1

 l K l

−m Q m′

 |lm〉b〈lm′ |b
=

∑
m,m′

(−1)l+m
′√

2K + 1

 l K l

−m Q m′

 |l−m〉〈l−m′ |
=

∑
m,m′

(−1)l−m
′√

2K + 1

 l K l

m Q −m′

 |lm〉〈lm′ |
= (−1)K−Q

∑
m,m′

(−1)l−m
√

2K + 1

 l K l

−m −Q m′

 |lm〉〈lm′ |
= (−1)K−QT lK,−Q

= (−1)KT l†KQ .

(D.13)

For example,

〈lk|T bKQ|lk
′〉 = (−1)l−k

′√
2K + 1

 l K l

k Q −k′

 δQ,k′−k . (D.14)
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Appendix E

Eigenbasis of the 3D isotropic

harmonic oscillator

For the shape’s wavefunction, we use the analogy with the 3D isotropic harmonic oscillator,

where we use two complete sets of mutually compatible operators {N,S2, Sz} and {N+, N−, N3},

where each one is associated with a basis, |n, s,ms〉 and |n+n−n3〉, respectively, and where n

and s must have the same parity. In this appendix, we give a list of the necessary tools to do a

basis’s transformation and expose the procedure for n = 0, 1, 2.

The application of the {S±, S3,S
2} operators in the states |n, s,ms〉 are

S2|n, s,ms〉 = s(s+ 1)|n, s,ms〉 ,

S±|n, s,ms〉 =
√

(s∓ms)(s±ms + 1)|n, s,ms ± 1〉

S3|n, s,ms〉 = ms|n, s,ms〉 .

(E.1)

These operators to be applied in the basis |n+, n−, n3〉 we use the eqs (44)

S2 = N(N + 1)− 4N+N− −N3(N3 − 1)− 2(a†3a
†
3a+a− + a†−a

†
+a3a3)

= (N+ −N−)2 + (2N3 + 1)(N+ +N− + 1)− 1− 2(a†3a
†
3a+a− + a†−a

†
+a3a3) ,

S+ =
√

2
(
a†3a− − a

†
+a3

)
,

S− =
√

2
(
a†−a3 − a†3a+

)
,

S3 = N+ −N− ,

(E.2)

It’s easy to check that |n, s = n,ms = n〉 = |n+ = n, 0−, 03〉 and |n, s = n,ms = −n〉 =

|n+, n− = n, 03〉, where the numerical values of the states in the basis |n, s,ms〉 are indexed with
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the labels n, s,m, respectively, and for the basis |N+, N−, N3〉 with the labels +,−, 3.

The case n = 0 is trivial,

|0n, 0s, 0m〉 = |0+, 0−, 03〉 . (E.3)

Now, for n = 1, we have only s = 1 and ms = 0,±1. We use the ladder operators to the state

with highest projection Sz, and we obtain

|1n, 1s, 1m〉 = |1+, 0−, 0−〉 ,

|1n, 1s, 0m〉 = −|0+, 0−, 13〉 ,

|1n, 1s,−1m〉 = −|0+, 1−, 03〉 .

(E.4)

As a final example, we do the case n=2, where the available in |nsms〉 basis are |2, 0s, 0m〉 and

|2n, 2s,ms〉 withms = 0,±1,±2, while in the |n+, n−, n3〉 are {|2+, 0−, 03〉 , |0+, 2−, 03〉, |0+, 0−, 23〉, |0+, 1−, 13〉, |1+, 0−, 13〉, |1+, 1−, 13〉}.

We apply S− to |2n, 2s, 2m〉 = |2+, 0−, 03〉.

|2n, 2s, 2m〉 = |2+, 0−, 03〉 ,

|2n, 2s, 1m〉 = −|1+, 0−, 13〉 ,

|2n, 2s, 0m〉 =
√

2
3 |0+, 0−, 23〉 −

√
1
3 |1+, 1−, 03〉,

|2n, 2s,−1m〉 = |0+, 1−, 13〉 ,

|2n, 2s,−2m〉 = |0+, 2−, 03〉 .

(E.5)

Finally, we obtain the state |2n, 2s, 0m〉 asking the orthogonality with |2n, 0s, 0m〉,

|2n, 0s, 0m〉 =
√

1
3 |0+, 0−, 23〉+

√
2
3 |1+, 1−, 03〉 . (E.6)



Appendix F

The equivalence of the Majorana

polynomial of a k-plane

In this appendix, we prove that the Majorana polynomial pΠ(z) of a k-plane Π, with basis

B = {|ψj〉}kj=1 only depends of z and not of z̄. Moreover, we obtain that pΠ(z) is proportional

to the Wronskian of B (theorem 19). Let us remember that pΠ(ζ) is equal to

pΠ(z) ≡ 〈Π−n,Π〉 =
det〈Ψ−n|Ψ〉√

det〈Ψ−n|Ψ−n〉
√

det〈Ψ|Ψ〉
, (F.1)

where Πn is the coherent k-plane in the direction n with associated complex number z,

|Ψn〉 = span{|n, s〉, |n, s− 1〉, . . . , |n, s− k + 1〉} , (F.2)

with |n,m〉 such that n·S|n,m〉 = m|n,m〉. Also, 〈Ψ1|Ψ2〉, is the matrix with entries 〈Ψ1|Ψ2〉ij =

〈ψ1i|ψ2j〉 with respect to a bases of Π1 and Π2. As we will show below, the equation (F.1) is, in

principle, a polynomial of z and zA = −1/z̄ (the antipodal point of n), and with a higher degree

than (2s + 1 − k)k. However, we obtained that the variables of zA vanish. First, we will write

the entry 〈ψ1µ|ψ2ν〉 as a polynomial.

The inner product of two states as a polynomial

A state of spin 1/2 oriented in the direction n(θ, φ) can be written as |n̂〉 = cos(θ/2) (|+〉+ z|−〉),

where z = tan(θ/2)eiφ. Now, the inner product with two spin 1/2 states has the next form

〈n̂2|n̂1〉 = cos(θ2/2) cos(θ1/2) (1 + z̄2z1) = cos(θ2/2) cos(θ1/2)z̄2

(
z1 − zA2

)
= Lz2Rz1

(
z1 − zA2

)
,

(F.3)
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where Lz2 = cos(θ2/2)z̄2 and Rz1 = cos(θ1/2). The generalization of the inner product of two

states given by a tensor product of N = 2s spin 1/2 states (in particular the totally symmetric

states) is straightforward. Let |φ1〉 = |c1〉 ⊗ |c2〉 ⊗ · · · ⊗ |cn〉 and |φ〉 = |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |nN 〉,

then

〈φ|φ1〉 = Q
N∏
j=1

(γj − zAj ) , (F.4)

with γj and zj the stereographic projection of cj and nj , respectively. The proportionality factor

Q is

Q =

N∏
j=1

LzjRγj . (F.5)

It is important to remark that is factorizable to each direction of the constituents states. Let

us denote the equation (F.4) with a polynomial of several variables, where the variables is given

by the antipodal directions of the state |φ〉,

Pφ1(z1, z2, . . . , zN ) :=
N∏
j=1

(γj − zj) ∝ 〈φA|φ1〉 , (F.6)

Observation 1. If one of the states has the same constituents spin 1/2 states but with another

order, the proportionality factor is the same. If |φ′1〉 = |c1P (1)〉 ⊗ |c1P (2)〉 ⊗ · · · ⊗ |c1P (n)〉, then

〈φ|φ′1〉 = Q

N∏
j=1

(γP (j) − zAj ) , (F.7)

or in terms of polynomials

Pφ′1(z1, z2, . . . , zN ) = Pφ1(zP−1(1), zP−1(2), . . . , zP−1(N)) (F.8)

Observation 2. If the state is a totally symmetric state |ψ〉 = |c1, . . . cN 〉, then

〈φ|ψ〉 = QNψ

∑
P

N∏
j=1

(
γP (j) − zAj

)
, (F.9)

with Nψ a normalization constant. In terms of a polynomial, if the state |φ〉 is a tensor product

state with the same constituent states of |ψ〉, then

Pψ(z1 . . . , zN ) =
∑
P

Pφ(zP (1) . . . , zP (N)) ∝ 〈φA|ψ〉 , (F.10)
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Observation 3. The inner product of two totally symmetric states |ψ〉 , |ψ1〉 is equal to

the product of one totally symmetric state |ψ1〉 and a tensor product state |φ〉 with the same

constituents 1/2 spin states of |ψ〉. With this, the polynomial is proportional to several inner

products between states

〈ψA|ψ1〉 = 〈φA|ψ1〉 ∝ Pψ1(z1 . . . , zN ) = Pψ1(zP (1) . . . , zP (N)) , (F.11)

with |ψ〉 = |n1, . . . , nN 〉 and |φ〉 = |n1〉 ⊗ · · · ⊗ |nN 〉, and the order of the variables z1, . . . , zN

doesn’t affect. Therefore, for each state of spin s, |ψ〉, we can associate a polynomial of N

variables (z1, . . . , zN ), which is proportional to the inner product 〈φA|ψ〉, where |φ〉 is the spin

s state with constellation given by the complex numbers zj and |φA〉 is the antipodal state of

|φ〉. In particular, if we put the same variable z in each entry of the polynomial, we recover the

Majorana polynomial,

〈−n, s|ψ〉 ∝ Pψ(z, . . . , z) , (F.12)

For instance, we also put the polynomial of the inner product of a generic state |ψ〉 with |n,m =

s− k〉,

〈−n,m|ψ〉 ∝ Pψ(z, . . . , z︸ ︷︷ ︸
s+m

, zA, . . . , zA︸ ︷︷ ︸
s−m

) . (F.13)

To simplify the last expression we define

Pψ(z(s+m), zA(s−m)) := Pψ(z, . . . , z︸ ︷︷ ︸
s+m

, zA, . . . , zA︸ ︷︷ ︸
s−m

) , (F.14)

Observation 4

Pψ(z(2s−1), zA(1)) = Pψ(z(2s), zA(0)) + (z − zA)P ′ψ(z(2s), zA(0)) , (F.15)

where P ′ψ(z(2s), zA(0)) is the derivative of Pψ(z(2s), zA(0)) with respect to z. There is a similar

result for Pψ(z(s+m), zA(s−m)),

Pψ(z(s+m), zA(s−m)) =

m∑
k=0

(z − zA)kP
(k)
ψ (z(2s), zA(0)) , (F.16)

The polynomial of the equation (F.1)

As a summary of the last subsection, we have that the inner product of two spin s states is

〈φ|ψ〉 = NψNφPψ(z1, . . . , zN ) , where |φ〉 = |z1 , . . . , zN 〉 and Nψ and Nφ are constants. Now,
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the equation (F.1) is proportional to

Pz(Π) ∝ det〈Π−z|Π〉 ∝

∣∣∣∣∣∣∣∣∣∣∣∣

〈n, s|ψ0〉 〈n, s− 1|ψ0〉 . . . 〈n, s− (k − 1)|ψ0〉

〈n, s|ψ1〉 〈n, s− 1|ψ1〉 . . . 〈n, s− (k − 1)|ψ1〉
...

...
...

...

〈n, s|ψk−1〉 〈n, s− 1|ψk−1〉 . . . 〈n, s− (k − 1)|ψk−1〉

∣∣∣∣∣∣∣∣∣∣∣∣
, (F.17)

Each column and row has a common factor (Nψ), and therefore the equation is proportional to

Pz(Π) ∝

∣∣∣∣∣∣∣∣∣∣∣∣

Pψ0(z2s, zA(0)) Pψ0(z2s−1, zA(1)) . . . Pψ0(z2s−(k−1), zA(k−1))

Pψ1(z2s, zA(0)) Pψ1(z2s−1, zA(1)) . . . Pψ1(z2s−(k−1), zA(k−1))
...

...
...

...

Pψk−1
(z2s, zA(0)) Pψk−1

(z2s−1, zA(1)) . . . Pψk−1
(z2s−(k−1), zA(k−1))

∣∣∣∣∣∣∣∣∣∣∣∣
. (F.18)

The proportionality factor has terms related to normalization factors, or factors which involve

irregularities of the coordinates (as cos θj/2). Then, the zeros of Pz(Π) are described to the

last equation, which gives us a polynomial of two variables, z and zA of order 2sk − (k−1)k
2 and

(k−1)k
2 , respectively. Using the equation (F.18), the last determinant can be rewritten as

Pz(Π) ∝

∣∣∣∣∣∣∣∣∣∣∣∣

Pψ0(z2s, zA(0)) (z − zA)P
(1)
ψ0

(z2s, zA(0)) . . . (z − zA)k−1P
(k−1)
ψ0

(z2s, zA(0))

Pψ1(z2s, zA(0)) (z − zA)P
(1)
ψ1

(z2s, zA(0)) . . . (z − zA)k−1P
(k−1)
ψ1

(z2s, zA(0))
...

...
...

...

Pψk−1
(z2s, zA(0)) (z − zA)P

(1)
ψk−1

(z2s, zA(0)) . . . (z − zA)k−1P
(k−1)
ψk−1

(z2s, zA(0))

∣∣∣∣∣∣∣∣∣∣∣∣
.

=(z − zA)(k−1)k/2

∣∣∣∣∣∣∣∣∣∣∣∣

Pψ0(z2s, zA(0)) P
(1)
ψ0

(z2s, zA(0)) . . . P
(k−1)
ψ0

(z2s, zA(0))

Pψ1(z2s, zA(0)) P
(1)
ψ1

(z2s, zA(0)) . . . P
(k−1)
ψ1

(z2s, zA(0))
...

...
...

...

Pψk−1
(z2s, zA(0)) P

(1)
ψk−1

(z2s, zA(0)) . . . P
(k−1)
ψk−1

(z2s, zA(0))

∣∣∣∣∣∣∣∣∣∣∣∣
.

=(z − zA)(k−1)k/2W , (F.19)

with W the Wronskian of the Majorana polynomials of the states |ψ0〉, . . . , |ψk−1〉. By the

degree of the polynomial of Pz(Π), the Wronskian is a polynomial of z of degree at most of

2sk− (k− 1)k = (2s+ 1− k)k. Therefore, every k-plane has an associated polynomial of degree

(2s+ 1− k)k.
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[34] W. Ganczarek, M. Ku, and K. Życzkowski. Barycentric measure of quantum entanglement.

Phys. Rev. A, 85(3):032314, 2012.

[35] J.-P. Gazeau. Coherent States in Quantum Physics. Wiley-VCH Press, 2009.

[36] H. Georgi. Lie Algebras in Particle Physics. The Benjamin/Cummings Publishing Com-

pany, 1982.



132 BIBLIOGRAPHY

[37] R. M. Gingrinch. Properties of entanglement monotones for three-qubit pure states. Phys.

Rev. A, 65:052302, 2002.

[38] O. Giraud, D. Braun, D. Baguette, T. Bastin, and J. Martin. Tensor representation of spin

states. Phys Rev Lett, 114:080401, 2015.

[39] A. Guichardet. On rotation and vibration motions of molecules. Ann. Inst. H. Poincaré,
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