

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

Geoquímica de tierras raras en fluorita hidrotermal como trazadora de fluidos y metales en el ambiente epitermal

TESIS Que para obtener el título de Ingeniera Geóloga

PRESENTA

Andrea Esther Sanromán W Reynoso

DIRECTOR DE TESIS

Dr. Aldo Ramos Rosique

Ciudad Universitaria, Cd. Mx., 2018.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Índice

No. de página

Agradecimientos	1
Resumen	2
Capítulo 1: Introducción	3
Capítulo 2: Marco Geológico	7
Capítulo 3: Marco Teórico	18
Capítulo 4: Metodología	37
Capítulo 5: Resultados	43
Capítulo 6: Discusión	74
Capítulo 7: Conclusiones	90
Bibliografía	92

Anexos

A0. Características litológicas	98
A1. EPMA y LAICPMS, Aspectos teóricos	105
A2. Petrografía	110
A3. Datos EPMA	121
A4. Datos LAICPMS	126
A5. Monitoreo de ablaciones	143

Agradecimientos

Este proyecto fue financiado por fondos del proyecto CONACYT 155652

Resumen

RESUMEN

El magmatismo de gran volumen asociado a las grandes provincias ígneas (LIP) tiene una estrecha relación con la formacón dediversos depósitos minerales. Estos magmas promueven la formación de sistemas hidrotermales gigantes que pueden formar yacimientos de clase mundial, ubicados en extensas provincias metalogenéticas.El estudio de la geoquímica de tierras raras en fluoritas provenientes de diversas tipologías de yacimientos minerales, hapermitido entender el sistema hidrotermal mineralizante con mayor detalle, al poder reconocer la firma de elementos traza delos fluidos, registrada en la estructura de los cristales de fluorita. Para realizar un modelo de lixiviación, circulación y depósito de metales en yacimientos epitermales, se estudió la variación en la distribución de tierras raras en fluorita de ganga, y se interpretó en conjunto con el contenido de tierras raras de las rocas encajonantes, así como con datos de microtermometría de inclusiones fluidas. Esta tesis presenta los resultados de un detallado microanálisis de fluoritas de varias etapas de cristalización en las vetas hidrotermales del distrito de San Martín de Bolaños, ubicado en el sector sur de la Sierra Madre Occidental.

Se observó que las fluoritas heredan la firma de tierras raras de las rocas encajonantes por las que circularon los fluidos hidritermales; sin embargo, presentan diferencias en las anomalías de Ce, Eu e Y, así como con los grados de enriquecimiento de tierras raras. Lo anterior se relaciona a las condiciones de óxido-reducción durante la cristalización, y a diferentes grados de interacción agua-roca. De forma particular, algunos cristales presentan una firma geoquímica sin ninguna similitud con aquella de las rocas.La distribución de tierras raras ligeras es mayor en fluoritas paragenéticamente tempranas, mientras que las tierras raras pesadas se ecuentran enriquecidas en las tardías. En conclusión, la distribución de tierras raras en las fluoritas estudiadas, indica la evolución de un fluido rico en flúor, involucrado en una intensa interacción agua-roca, provocando una elevada formación de complejos de tierras raras en un ambiente predominantemente oxidante. El uso de las tierras raras como herramienta de exploración debe utilizarse con precaución y sólo podría realizarse cuando se cuenta con microanálisis de fluoritas que pertenezcan a distintas etapas de cristalización.

2

1.1 Introducción

Esta tesis trata de contribuir con el entendimiento de los sistemas minerales asociados a grandes provincias (gneas (LIP's, por sus siglas en inglés) a través del análisis de la firma geoquímica de elementos de tierras raras en fluoritas hidrotermales; mediante el estudio de la composición de estos minerales puede observarse la naturaleza de los fluidos que los formaron.

Los grandes volúmenes de magma asociados a las LIP's desarrollan extensos sistemas hidrotermales, asociados a su vez, a la formación de una amplia variedad de tipologías de yacimientos minerales; es importante destacar, que algunas de estas provincias se encuentran asociadas a yacimientos de clase mundial (e.g. Olympic Dam, en la provincia Gawler Range, Australia). La Sierra Madre Occidental es la provincia silícica más grande del mundo y podría pensarse que los sistemas hidrotermales desarrollados fueron extensos, debido a que a ella se encuentra asociada la provincia de yacimientos epitermales más extensa del mundo; por lo que el potencial económico de esta provincia silícica podría ser considerablemente elevado y no sólo restringirse a esta tipología de yacimientos.

La zona de estudio (ver figura 1.1) se encuentra dentro del Graben de Bolaños y se asocia en espacio a la Sierra Madre Occidental, además, presenta fluorita asociada a la mineralización de minerales metálicos. Estas características hacen del distrito de San Martín de Bolaños un laboratorio natural accesible, el cual nos permite analizar las condiciones en las que se encontraban los fluidos al momento de cristalización, deducir cuál fue el mecanismo (o mecanismos) de precipitación, o cuáles fueron los agentes de transporte; el entendimiento de diversos factores puede guiarnos y dar diferentes pistas sobre la metalogenia del sistema hidrotermal.

Así mismo, la geoquímica de tierras raras en las fluoritas hidrotermales, en combinación con el análisis otros datos disponibles (geoquímica de las rocas del distrito, así como datos de inclusiones fluidas y de fundido), nos puede permitir estudiar los efectos del fraccionamiento de las tierras raras (y otros elementos) durante la acción de los procesos hidrotermales, así como el origen de los fluidos mineralizantes.

1.2 Hipótesis

- 1. Que la firma geoquímica de tierras raras en fluorita de ganga es indicativa del origen de los fluidos hidrotermales mineralizantes.
- 2. Los yacimientos epitermales del Graben de Bolaños se formaron a partir de fluidos que lixiviaron metales y ligandos de las rocas ígneas pre-existentes para después concentrar metales en vetas y brechas hidrotermales.
- 3. Al conocer la concentración de Tierras Raras en fluorita de un yacimiento epitermal se pueden hacer inferencias acerca de la metalogenia del depósito.

Figura 1.1. Vista satelital de la República Mexicana con detalle geológico del Graben de Bolaños (tomado de Ramos Rosique, 2013); el recuadro azul señala la zona de estudio.

1.3 Objetivos

Objetivo general

 Identificar/determinar la naturaleza de fluidos involucrados en la formación de yacimientos epitermales

Objetivo particular

• Conocer la composición de tierras raras en fluorita de ganga

1.4 Metas

Para obtener información que permita alcanzar los objetivos planteados, se realizó un:

- Estudio petrográfico
- Análisis de fluorita mediante microsonda electrónica (EMPA por sus siglas en inglés) para conocer la concentración de Ca y usarla como estándar interno en el análisis de Tierra Raras
- Análisis de fluorita mediante espectrometría de masas con ablación láser y plasma acoplado por inducción (LAICPMS por sus siglas en inglés) para conocer la concentración de Tierra Raras
- Proponer un modelo acerca de la naturaleza de los fluidos hidrotermales responsables de mineralización económica en ambientes epitermales.

1.5 Contenido de la tesis

Capítulo 2. Marco geológico.

Con base en estudios previos se explica la geología regional, el marco tectónico y la relación entre el magmatismo de la Sierra Madre Occidental y mineralización epitermal en México. Se destaca la relación espacio-temporal de los pulsos magmáticos, con estos yacimientos y los esfuerzos de extensión contemporáneos.

Capítulo 3. Marco teórico

-Yacimientos epitermales:

Definición, clasificación, metalogenia, ¿qué son, cómo se forman, modelo de formación?

-Geoquímica de Tierras Raras:

Se presenta una síntesis de las aplicaciones de la geoquímica de Tierras Raras en ciencias de la Tierra, con especial atención a la composición de fluorita en sistemas hidrotermales. Se explica cómo la concentración de Tierras Raras en fluorita hidrotermal puede dar información acerca del origen de fluidos hidrotermales.

Capítulo 4. Metodología.

En este capítulo se dan los detalles acerca de la recolección y preparación de las muestras de fluorita, así como de la aplicación de petrografía, microsonda electrónica (EMPA), y espectrometría de masa con ablación láser y plasma acoplado por inducción (LAICPMS) para su análisis.

Capítulo 5. Resultados.

Se presenta el contexto paragenético y petrográfico de las muestras de fluorita, así como su concentración de Tierras Raras. La información mineralógica y textural se encuentra en forma de descripciones petrográficas y fotomicrografías; mientras que la información geoquímica se presenta en forma de tablas y diagramas.

Capítulo 6. Discusión.

Se discute el significado de la concentración de Tierras Raras en las muestras de fluorita estudiadas, en cuanto a la metalogenia del yacimiento hidrotermal al que pertenecen. ¿Es la geoquímica de tierras raras en fluorita hidrotermal un indicador de la naturaleza de los fluidos mineralizantes? La información se encuentra en forma de diagramas de distribución o discriminación.

Capítulo 7. Conclusiones y recomendaciones.

Con base en la discusión y la información obtenida en los capítulos anteriores se propone un modelo de formación para el sistema estudiado; se destaca la relación entre los magmas y los fluidos hidrotermales, así como la circulación e interacción de éstos con su medio y la precipitación de metales.

Anexos

A1. Se describe la teoría básica detrás de las técnicas microanalíticas empleadas (EMPA y LAICPMS).

A2. Petrografía. Se presentan la información mineralógica y textural con fotomicrografías de las muestras analizadas.

A3. Datos EPMA. Se presentan en bruto los datos obtenidos mediante EPMA.

A4. Datos LA-CIP-MS. Se presentan en bruto los datos obtenidos mediante LA-ICP-MS.

A5. Monitoreo de ablaciones. Se presentan las fotomicrografías de los cráteres realizados mediante la ablación láser, así como los datos obtenidos en diagramas multielementales.

2.1 Grandes Provincias Ígneas

Las grandes provincias ígneas (Large Igneous Provinces, LIPs, por sus siglas en inglés) son: provincias magmáticas con extensiones > 0.1Mkm², volúmenes superiores a 0.1Mkm³ y cuya duración no excede los 50 Ma; tienen lugar y/o afinidad geoquímica con escenarios tectónicos intraplaca. Además, se caracterizan por tener picos de actividad de corta duración (1 a 5 Ma) en los que la mayor cantidad del volumen total (>75%) es emplazado (Bryan y Ferrari, 2013).

La génesis de estas provincias se relaciona íntimamente a los episodios de ruptura de continentes, en este tipo de eventos se producen riffs volcánicos, nuevas y extensas (>108 km²) cuencas oceánicas, así como pequeños continentes. Las grandes províncias ígneas son eventos intraplaca, en los que la composición magmática dominante es basáltica (e.g. Traps siberianas), sin embargo, dependiendo del escenario tectónico en el que se desarrollen podrán variar su composición y estar dominadas por magmatismo silícico (Silicic Large Igneous Provinces, SLIPs, por sus siglas en inglés). Ambas tipologías han sido atribuidas a la actividad de plumas del manto, sin embargo, el número de incosistencias geológicas con dicha hipótesis hace que ésta pierda fuerza para explicar el origen de estas provincias. La fusión parcial del manto es uno de los principales mecanismos para la generación de magmas, ésta puede tener lugar debido a (1) un aumento en la temperatura, (2) la depresión del punto de fusión por presencia de elementos volátiles o (3) un decremento de presión, por lo que diversos autores han sugerido procesos como descompresión del manto, roll-back de la placa subducida y extensión de la corteza como procesos formadores de estas provincias (Ferrari et al., 2005; Gill, 2010; Bryan y Ferrari, 2013). Una continua actividad de subducción permite el desarrollo de corteza inferior y manto litosférico hidratado que puede extenderse por cientos de km del margen activo (Davis et al., 1993). Dadas estas condiciones, los grados de fusión serán altos y producirán cuantiosos volúmenes de magmas, cuya composición estará en función del contenido de agua (de la placa subducida y sedimentos transportados), la composición de la corteza con la que interactúe y el aporte térmico del manto (Gill, 2010). Las provincias ígneas silícicas de mayor volumen ocurren a lo largo de márgenes continentales acrecionales, mientras que las provincias ígneas máficas (i.e. basaltos de inundación) se emplazan en o adyacentemente a cratones Arcaicos.

Las grandes provincias silícicas se encuentran en dos escenarios tectónicos: asociadas con magmatismo intraplaca y la ruptura de continentes (e.g. La provincia ChonAike en Sudamérica, ver figura 2.1), mientras que otras están asociadas a escenarios de márgenes continentales convergentes con extensión asociada (e.g. La Sierra Madre Occidental, ver figura 2.1).

Las SLIPs asociadas a la ruptura de continentes son dominadas por magmas de composición intermedia-silícica (>80% vol.), con basaltos en menor proporción. Estas provincias están caracterizadas por: (1) periodos prolongados de actividad (hasta 40 Ma), (2) dominio volumétrico de ignimbritas y (3) asociación espacio-temporal a otras provincias ígneas máficas. Las rocas volcánicas muestran afinidad calci-alcalina que asemeja a los actuales márgenes continentales convergentes, más que a un vulcanismo bimodal o vulcanismo alcalino asociado a basaltos de inundación y rifts continentales (Bryan et al., 2002).Por otro lado, las SLIPs asociadas a márgenes continentales convergentes se generarán durante los episodios de formación de cuencas de trasarco precedidas por extensión continental.

Figura 2.1. Distribución de las grandes provincias ígneas. PMAC: Provincia magmática del Atlántico Central (CAMP, por sus siglas en inglés); ZVT: Zona volcánica de Taupo(TVZ, por sus siglas en inglés); PIAN: Provincia ígnea del Atlántico Norte (NAIP, por sus siglas en inglés); RAJM: Basaltos Rajmahal; NW Aust: Plateauoceánico del noroeste de Australia. (Tomada de Bryan et al., 2002).

Existen dos modelos principales para explicar la génesis de estas provincias: el primero implica magmas derivados por anatexis y el segundo, propone magmas derivados por fusión parcial del manto en donde los procesos de asimilación de la corteza y cristalización fraccionada (AFC, por sus siglas en inglés) tendrán un papel importante en la formación de magmas silícicos. El kilométrico volumen de las SLIP's refleja la gran escala de anatexis en respuesta a la extensión litosférica y al aumento de temperatura relacionada a un aporte calorífico del manto subyacente. La fusión parcial de corteza hidratada de composición máfica-intermedia (anfibolítica) es crucial para la generación de grandes volúmenes de magma con una predominante firma de fundidos tipo I (Bryan et al., 2013).

2.1.1 Yacimientos asociados a Grandes Provincias Ígneas.

De acuerdo con Ernst y Jowitt (2013), las grandes provincias ígneas representan importantes reservorios de energía y metales que pueden contribuir a la formación y desarrollo de una variedad de depósitos minerales, este vínculo puede observarse de cuatro maneras (no necesariamente excluyentes entre sí):

- LIPs y yacimientos ortomagmáticos de sulfuros de Ni-Cu-PGE, óxidos de Fe-Ti-V y bandas monominerálicas de Cr; pueden encontrarse dentro o en ambientes proximales al foco de actividad magmática.
 Por otro lado, las LIPs han sido vinculadas a la formación de carbonatitas y kimberlitas por lo que también pueden estar asociados yacimientos diamantíferos, así como de REE y U, respectivamente.
- 2. El emplazamiento de grandes volúmenes de magma implicados en la formación de una LIP pueden transmitir energía y, en algunos casos, materia (fluidos, metales y ligandos) que favorecerá la formación de sistemas hidrotermales asociados a

mineralización. Esta relación puede explicarse mediante 3 modelos: (a) las LIPs pueden ser una fuente de energía que promueva la circulación de fluidos en el sistema, (b) las unidades litológicas que componen las LIPs pueden transformarse en una fuente de metales y ligandos para sistemas hidrotermales posteriores y (c) en algunos casos las LIPs actúan como una barrera estructural impermeable o reactiva que promueve los mecanismos de precipitación de metales.

- 3. La erosión en climas tropicales de las unidades máficas a ultramáficas que componen a las LIPs puede formar lateritas ricas en Ni y Co o bauxitas ricas en Al; la erosión de carbonatitas puede formar lateritas ricas en Nb-Ta y REE.
- 4. Las LIPs pueden ser utilizadas para la reconstrucción de paleo-ambientes para el rastreo de áreas con potencial económico.

En relación a la segunda categoría, la asociación de las LIPs y depósitos hidrotermales es una asociación espacio-temporal, que puede presentarse de diversas maneras, y cuya distribución estará en función de la distribución original del magmatismo y variará respecto a la intensidad o distancia al foco de la actividad magmática. La fusión y metamorfismo de las unidades de una LIP puede promover la liberación de metales base y preciosos que pueden ser posteriormente incorporados a sistemas formadores de mena; estos eventos pueden ocurrir durante el emplazamiento de la LIP y provocar la circulación de fluidos a escala regional, y la formación de diversos sistemas hidrotermales (Robb, 2005; Ernst y Jewitt, 2013).

Los eventos de LIPs como las provincias. Gawler, Sierra Madre Occidental o Paraná-Etendeka, ver figura 2.1)se encuentran relacionados al emplazamiento de grandes volúmenes de magmas anorogénicos silícicos en márgenes divergentes, que pueden presentar importantes concentraciones de flúor.

Durante las etapas pneumatolíticas asociadas a cuerpos intrusivos, se desarrollan eventos de ebullición magmática, lo que implica la exsolución de elementos volátiles e incompatibles del magma; esta ebullición implicará la exsolución de fluidos acuosos (fluidos magmáticos) los cuales podrán formar parte de sistemas de circulación convectiva, conocidos como sistemas hidrotermales. En la literatura hay datos experimentales (Bau & Dulski, 1995; Henderson, 1984) en los que se señala que el transporte de una gran variedad de metales en sistemas hidrotermales está controlado por la formación de complejos con los iones CI⁻, OH⁻ y F⁻, siendo éste último el más destacado para la movilización especies como las tierras raras o uranio, sin embargo, hay metales que no forman complejos con este elemento, es el caso del Cu y Ag (los cuales forman preferentemente complejos con el cloro) por lo que su solubilidad estará sujeta a las fases coexistentes (Ernst y Jewitt, 2013). Por otro lado, White et al. (1982) señalan que los magmas ricos en flúor forman complejos flúor-alcalinos con los elementos de tierras raras, Zr, Nb, Y y Ga.

Un gran número de yacimientos tipo IOCG (*Iron Oxide Copper Gold*) han sido relacionados al magmatismo silícico de las LIPs, incluido el depósito de clase mundial *Olympic Dam*, en el sur de Australia; éste, es el depósito más grande de Uranio y el cuarto más grande de Cobre, se encuentra relacionado a la provincia *Gawler Range* (ver figura 2.1) que tiene importantes componentes silícicos. La formación de yacimientos IOCG se encuentra directamente relacionada a fluidos magmáticos o la mezcla de ellos con salmueras de cuenca, así como a la presencia de flúor como ligando para la formación de complejos con los elementos metálicos, por lo que las intrusiones derivadas del magmatismo silícico de una SLIP adquieren importancia en la formación de estos yacimientos (Robb, 2005; Ernst y Jewitt, 2013).

Entonces, el magmatismo silícico asociado a las LIPs es un componente importante en la formación de sistemas minerales, ya sea por su contenido de metales y ligandos, como por su potencial energético para procurar la circulación de fluidos de sistemas hidrotermales.

La Sierra Madre Occidental es la mayor provincia silícica del Cenozoico y la mayor provincia epitermal de plata en el mundo; el magmatismo que dio origen a esta provincia se formó en un periodo de tiempo considerablemente corto, 34-18Ma (Bryan et al., 2002) y tuvo lugar durante la máxima divergencia entre la placa del Pacífico y la de Norteamérica, con extensión asociada al margen continental (Ward, 1995). La SMO está dominada por ignimbritas riolíticas (~66-78 wt% SiO₂), con rocas máficas (~50-58 wt% SiO₂) e intermedias (~60-66 wt% SiO₂) asociadas en menor escala (Bryan et al., 2008; Ferrari et al., 2007).

2.2 La Sierra Madre Occidental (SMO)

La Sierra Madre Occidental es la provincia silícica (SLIP) más grande del Cenozoico, se extiende desde la frontera con los Estado Unidos hasta la Faja Volcánica Trans-Mexicana; al oeste se encuentra limitada por el Golfo de California y al este por la Mesa Central ((ver figura 2.2). Sus dimensiones son de aproximadamente 1200 km de extensión con un espesor de 200 km, resultando en un volumen estimado de 300,000 km³ de ignimbritas riolíticas (Ferrari et al., 2007); a ella se encuentran relacionadas más de 350 calderas (con diámetros que oscilan de 10 a 30 km) que representan los principales centros eruptivos de los grandes volúmenes de magmatismo silícico. Las estructuras asociadas a esta provincia varían desde estructuras de hundimiento regional, hasta estructuras de colapso tectono-volcánico, controladas por esfuerzos tectónicos y la arquitectura cortical preexistente (Bryan et al., 2013). Para fines prácticos, el magmatismo y la tectónica durante el Cretácico-Terciario se describen dividiendo la SMO en tres sectores: norte (Sonora-Chihuahua), centro (Sinaloa-Durango) y sur (Nayarit-Jalisco-Zacatecas) (Ferrari et al., 2005; 2007) (ver Figura 2.2).

2.2.1 Geología y génesis

La SMO se emplazó en un basamento que varía de material Precámbrico a terrenos Fanerozoicos acrecionados en el margen continental durante el Mesozoico. Esta provincia está dominada por ignimbritas (de composiciones calcialcalinas de medio y alto K) con pequeños porcentajes asociados de rocas máficas a intermedias. Estas ignimbritas fueron emplazadas en dos pulsos principales: en el Oligoceno Tardío (~32-28 Ma) y durante el Mioceno Temprano (~24-20 Ma) (Ferrari et al., 2005)

De acuerdo con Ferrari et al. (2013) la historia magmática de la SMO está estrechamente relacionada con la evolución de la margen occidental de la placa Norteamericana y la historia de subducción de la placa Farallón. La evolución del magmatismo en la SMO se incluye en el patrón de migración del arco volcánico hacia el interior del continente y su posterior regreso hacia la trinchera; al principio del Cretácico Tardío, el arco se encontraba próximo a la trinchera, paulatinamente comenzó a migrar hacia el este, conforme e lslab modificó el ángulo de subducción y se volvió subhorizontal (durante este periodo tiene lugar la orogenia Laramide). Una vez cesada la contracción, a finales del Eoceno, inició el regreso del arco a medida que la placa subducida aumentó el ángulo de subducción (Ferrari et al., 2002, 2005)

Figura 2.2. Arriba, izquierda: Esquema tectónico de México mostrando la extensión de la SMO y la configuración actual de las placas tectónicas. Arriba, derecha: Extensión de los conjuntos ígneos que conforman la SMO. Modificado de Ferrari et al., 2002; Camprubí et al., 2003; Ferrari et al., 2005; Bryan et al., 2008; Ramos Rosique, 2013).

La SMO está compuesta (fisiográficamente) por cinco grandes complejos ígneos: (1) conformado por rocas plutónicas y volcánicas del Cretácico Superior al Paleoceno, (2) representado por rocas volcánicas andesíticas, en menor medida, dacítico-riolíticas del Eoceno; este grupo se conoce como el Complejo Volcánico Inferior (CVI), (3) compuesto por ignimbritas silícicas emplazadas principalmente en dos pulsos: Oligoceno Tardío (32-28 Ma) y Mioceno temprano (24-20 Ma), (4) conjunto constituido por coladas basáltico-andesíticas transicionales, intercaladas después de cada pulso ignimbrítico, (5) corresponde a coladas de basaltos alcalinos e ignimbritas emplazadas en diferentes episodios: durante el Mioceno Tardío, Plioceno y Cuaternario, comprende también depósitos sedimentarios continentales que rellenan cuencas extensionales (Ferrari et al., 2005).

Esta provincia silícica se encuentra sobre rocas que fueron emplazadas durante la actividad volcánica contemporánea a la deformación ocasionada por la orogenia Laramide en el oeste de Estados Unidos y Canadá (Ferrari et al., 2007).Los volúmenes producidos de rocas volcánicas y plutónicas durante este evento ha sido denominado como Complejo Volcánico Inferior por McDowell y Keizer (1977) (Bryan et al., 2008) (ver figura 2.2).

De acuerdo a Ferrari et al. (2005) las rocas más antiguas se encuentran hacia el noreste de Sonora, en donde el basamento se encuentra constituido por plutones graníticos, gneises y esquistos del Mesoproterozoico con afinidad con el cratón de Norteamérica. Hacia el Cretácico Tardío, en el noreste de Sonora se desarrollaron cuencas sintectónicas asociadas a la orogenia Laramide las cuales fueron rellenadas por sedimentos lacustres y fluviales suprayacidas por sedimentos clásticos gruesos que presentan horizontes de plantas, invertebrados y vertebrados, incluidos dinosaurios; este grupo es conocido como el Grupo Cabullona (Ferrari et al., 2002).

En general se acepta que las rocas del CVI fueron producidas durante la actividad magmática cordillerana asociada a la orogenia Laramide; durante este periodo, el magmatismo del norte de México, estuvo dominado por la actividad de un arco denominado de la misma manera. El CVI está formado por grandes batolitos graníticos que varían de composición diorítica-cuarzodiorítica a alcalina y por una secuencia volcánica de composición dominantemente andesítica conocida como la formación Tarahumara. (Ferrari et al., 2005)

Como provincia volcánica, la SMO se asocia generalmente a los grandes volúmenes de ignimbritas que cubren gran parte del occidente de México; a esta secuencia de ignimbritas se le conoce como Supergrupo (Serie) Volcánico Superior (SVS) y fue emplazada de manera discordante sobre las rocas del CVI y del arco del Eoceno. El SVS está compuesto por una potente secuencia de ignimbritas y lavas de composición silícica a intermedia, y en menor proporción, flujos de lava de composición máfica expuestos principalmente en los bordes de la provincia volcánica (Ferrari et al., 2005). La mayoría de las ignimbritas de la SMO contienen fenocristales de plagioclasa, cuarzo y óxidos de Fe y Ti; los feldespatos alcalinos son inusuales y las fases ferromagnesianas están dominadas por piroxeno, hornblenda y/o biotita; las ignimbritas en el norte de la SMO son predominantemente riolitas con piroxenos (Bryan et al., 2008).

Varios estudios han demostrado que el primer pulso (explosivo, silícico) tuvo lugar sincrónicamente a lo largo de la SMO durante el Oligoceno (~32-28 Ma), con una distribución con dirección general NNW sin aparente migración interna. El segundo pulso está más desplazado hacia el sur de la SMO, es de carácter efusivo-explosivo y bimodal, y ocurrió durante el Mioceno Temprano (~24-18Ma) (Ferrari et al., 2002, 2007).

2.2.1 Geoquímica y tectónica regional

Las rocas volcánicas de la SMO forman un conjunto típicamente calcialcalino, caracterizado por concentraciones de potasio intermedias a altas con un enriquecimiento relativamente bajo en hierro (Ferrari et al., 2005, 2007). Ferrari et al. (2005) presentan un diagrama de variación de sílice contra álcalis en donde se puede observar una distribución amplia de las rocas del sector norte de la SMO con variaciones de sílice entre 49 y 78% de SiO₂; sin embargo, es posible observar una distribución bimodal de dichas muestras. Una población que existe entre el rango de 66 a 78% de SiO₂ y otra entre 49 y 62%; el primer grupo corresponde a riodacitas y riolitas, que son las que caracterizan la secuencia ignimbrítica, mientras que el segundo grupo corresponde a andesitas, andesitas-basálticas y basaltos. Ambas tipologías tienen una firma geoquímica de elementos traza transicional entre un ambiente intraplaca y un margen convergente (Bryan et al., 2008); se considera que la distribución de los elementos traza en las rocas de la SMO estuvo controlada por procesos de cristalización fraccionada y asimilación cortical (AFC) (Ferrari et al., 2005, 2007; Bryan et al. 2008).

Conforme a lo expuesto por Ferrari et al. (2005), gran parte de la SMO ha sido afectada por una deformación dominantemente extensional durante diferentes episodios, siendo tres los principales: (1) Mioceno Temprano (~22-24 Ma), (2) en el Mioceno Tardío (~13-11 Ma) y (3) en el Plioceno-Cuaternario (~4-0 Ma). Durante el Cenozoico Medio y Tardío, la porción oeste de Norteamérica experimentó esfuerzos extensionales que formaron la provincia de Cuencas y Sierras (*Basin and Range*) (ver figura 2.2); en México, la mayor parte de la SMO fue afectada por este régimen extensional(Ferrari et al., 2007). La deformación afectó al núcleo de la SMO, que constituye una especie de división geográfica entre lo que se ha definido como el *Basin and Range* mexicano, al este, y al oeste como la Provincia Extensional del Golfo.

2.3 Yacimientos minerales en la SMO

La distribución de los diferentes estilos de mineralización no sucede de manera arbitraria en la corteza terrestre, éstos tienen una relación con la evolución de la corteza y el contexto tectónico en el que se desarrollaron (Robb, 2005; Hedenquist y Lowestern, 1994). En el caso de los depósitos epitermales mexicanos, su distribución espacial puede correlacionarse con la migración general del vulcanismo de la SMO; los principales pulsos ignimbríticos (Oligoceno tardío y Mioceno temprano) pueden ser relacionados en tiempo y espacio con los principales eventos de mineralización que formaron los depósitos epitermales de la SMO (Camprubí et al., 2003), la mayoría de ellos de baja (BS) o intermedia (IS) sulfuración (Camprubí y Albinson, 2007).

De acuerdo con Camprubí y Albinson (2007) la distribución de los depósitos epitermales en México puede definirse en tres rangos de edad principales:

1. Los más antiguos (~40 Ma): este rango de edades se corresponde con la orogenia Laramide en el norte de México. Estos depósitos están localizados al este o al oeste de la SMO.

2. Entre ~40 y ~27 Ma: la mayoría de los depósitos epitermales en México se formó en este periodo, dispuestos en un cinturón con orientación NW-SE desde Chihuahua al Estado de México, este intervalo corresponde con el primer episodio volcánico bimodal andesítico-riolítico en la SMO. Albinson (1988) indicó un rango preferencial entre 35 y 30 Ma para la formación de depósitos epitermales en la parte central del Altiplano Mexicano, lo que corresponde con el clímax de la actividad volcánica de composición intermedia.

3. Más recientes (~23 Ma): se encuentran localizados en la parte sur de la SMO, al norte de FVTM. Definen una tendencia WNW-ESE, que corresponde con el último pulso ignimbrítico de la SMO.

White y Hedenquist (1990) refieren que los principales factores que afectan las condiciones físicas del ambiente epitermal son: la geología regional de la zona en la que se encuentra el depósito, las características hidrológicas de la zona, las condiciones de presión y temperatura de los fluidos mineralizantes, las características químicas y el contenido total en gas de los fluidos mineralizantes, así como el posible desarrollo de permeabilidad contemporánea al hidrotermalismo y/o cambios en el gradiente hidráulico de la zona

2.4 Área de estudio: Graben de Bolaños, geología y mineralización

El distrito minero de San Martín de Bolaños se localiza aproximadamente a 30 km al sur del poblado de Bolaños, dentro del graben de Bolaños; fisiográficamente pertenece a la porción sur de la provincia volcánica de la Sierra Madre Occidental. El graben de Bolaños se encuentra principalmente limitado por una serie de fallas normales que tienen una orientación preferencial N-NW, la cual cambia al norte de la localidad (Scheubel et al., 1988).

Por otro lado, de acuerdo con Scheubel et al. (1988), el distrito minero de San Martín de Bolaños presenta intercalaciones de flujos de carácter bimodal con dominio de ignimbritas (emplazados durante el Mioceno Temprano); en el anexo A0, la tabla A0.1 resume las características de las unidades que conforman el distrito de acuerdo con Scheubel et al. (1988).

Ramos-Rosique (2013) describe la evolución del graben de Bolaños dividiéndola en dos estadios: pre-extensional y sin-extensional. El primer grupo está conformado por una intercalación rítmica de ignimbritas y depósitos epiclásticos, expuestos a los largo de la pared del graben, lo que muestra que tanto procesos volcánicos como sedimentarios tuvieron lugar en la región. Las ignimbritas pertenecientes a este periodo son de facies distales, depositadas a 10 km (aproximados) del conducto volcánico y pueden distinguirse en dos grupos principales: (1) ignimbritas pobres en cristales, altamente soldadas, vítreas (e.g. ignimbritas Ballenas o Pinolea, ver anexo A0, tabla A0.2) y (2) ignimbritas soldadas ricas en cristales (e.g. ignimbritas Gran Pómez, Escondida o Cascada (ver anexo A0, tabla A0.2); el rango de edades para las ignimbritas de este estadio, se encuentra entre 30 a ~25 Ma (Ramos-Rosique, 2013). Por otro lado, las rocas sin-extensionales están conformadas por domos riolíticos, emplazados a los largo de las fallas asociadas al graben, estos domos son pobres en cristales con alto contenido de sílice (~ 75 a 77% de SiO_2) y un rango de edad entre ~24.5 a 22.5 Ma, es importante destacar que presentan las concentraciones más elevadas de elementos traza (e.g. Y, U y Lu). Las ignimbritas asociadas a este periodo contienen menos del 5% de cristales, algunas de ellas fueron producto de erupciones fisurales (e.g. ignimbrita Alacrán) (ver anexo A0, tabla A0.2).

Geoquímicamente, las rocas pre-extensionales son riolitas calco-alcalinas (72-79 wt% SiO₂) las cuales desarrollan tendencias enriquecidas en elementos altamente incompatibles (Rb, Ta, Nd, Th) con patrones relativamente planos de tierras raras pesadas y ligeras anomalías negativas de Eu. Por otro lado, las riolitas sin-extensionales presentan un alto contenido en sílice (76 hasta 83 wt% SiO₂) y se encuentran más enriquecidas en elementos incompatibles (La, Sm, Eu) respecto a las rocas pre-extensionales; estas ignimbritas, son geoquímicamente similares a las riolitas topacíferas de la Mesa Central (e.g. Christiansen et al., 1986; Villareal-Fuentes et al., 2003), es decir, los patrones SPIDER que presentan las rocas sin-extensionales se encuentran enriquecidas en tierras raras ligeras (con concentraciones 100 veces mayores que los valores condríticos), además, desarrollan una pronunciada anomalía negativa de europio. Christiansen et al. (1986) señalan que las riolitas de la SMO presentan afinidad geoquímica con las riolitas en las localidades Black Range, Nuevo México y The Sheep Creek Range, Nevada; a la localidad The Sheep Creek, se encuentran asociados yacimientos de estaño, mientras que en la localidad Black Range, presentan valores elevados de Y(>100 ppm), pronunciadas anomalías negativas de Eu, valores bajos de las razones La/Lun y La/Cen (valores típicos de riolitas ricas en flúor), estas características podrían ser un indicio de que el potencial metalogenético de la SMO podría estar no sólo asociado a yacimientos epitermales.

Las concentraciones de flúor en los domos riolíticos del Mioceno Temprano reportadas por Ramos-Rosique (2013) son mayores que las de las unidades del Oligoceno Tardío y llegan a alcanzar 2900 ppm, mientras que las concentraciones de cloro en las ignimbritas del Oligoceno Tardío llegan a 3000 ppm; ambos grupos litológicos presentan concentraciones elevadas de K₂O (\sim 5< x <7 wt%). Este enriquecimiento de flúor en los magmas del Mioceno Temprano es también observable en los episodios post-mineralización, ya que los minerales de ganga asociados a los yacimientos epitermales de esta zona son minerales fluorados.

En San Martín de Bolaños, la estructura mineralizada más sobresaliente es la veta Zuloaga que alcanza los 2.5 km de extensión por un intervalo vertical en promedio de 300 m. La mineralización se encuentra en vetas localizadas al oeste del escarpe del graben y se está conformada por sulfuros de metales base: esfalerita, galena, galena argentífera, pirita, calcopirita y sulfosales con cantidades significativas de especularita en las porciones más profundas de la mina; covelita reemplazando a calcopirita o intercrecida

con los sulfuros y sulfosales; los minerales de ganga incluyen cuarzo, fluorita, barita, calcita y pirita (Scheubel et al., 1988; Albinson y Rubio, 2001).

Figura 2.3. Vista panorámica (oeste) del Graben de Bolaños, en el distrito minero de San Martín de Bolaños (Ramos, 2013).

Estudios de inclusiones fluidas realizados por Scheubel et al. (1988) y Albinson y Rubio (2001) en muestras de fluoritas del distrito de San Martín de Bolaños mostraron que las fluoritas fueron contemporáneas o inmediatas posteriores a los últimos episodios de mineralización en la zona. Las temperaturas de homogeneización en inclusiones primarias están un rango entre ~100 y ~ 130°C, mientras que en las inclusiones pseudosecundarias están entre ~118 a ~171°C. La salinidad para ambos tipos de inclusiones está determinada en 0.5 eq. wt% NaCl (Scheubel et al., 1988; Albinson y Rubio, 2001). Las observaciones petrográficas permiten tener información sobre la mineralogía y textura del yacimiento, lo que a su vez, permite inferir condiciones de formación y deposición del yacimiento mineral. La presencia de calcita hojosa es evidencia de ebullición de fluidos hidrotermales (Camprubí y Albinson, 2006), este proceso implica la separación de fases existentes en el sistema, lo que afectará los coeficientes de partición y conllevará el desarrollo de zonas mineralógicas con variaciones composicionales (e.g. la presencia de especularita en el distrito de San Martín de Bolaños se encuentra restringida a las zonas profundas de la mina (i.e. nivel San Carlos).

Estudios previos (Lyons, 1988; Scheubel et al., 1988; Bryan et al., 2008) señalan que la mineralización ocurrió durante el periodo sin-extensional, se aloja a lo largo de la (Ramos-Rosique, 2013). Ramos-Rosique (2013) señala que la edad de mineralización es de ±20.5 Ma y se encuentra estrechamente relacionada con el segundo pulso ignimbrítico (Mioceno Temprano) contemporáneo a la extensión tectónica, este contexto tectónico promovería la formación de magmas fértiles; la extensión facilitaría la formación y disposición de un sistema hidrotermal que implicaría la formación de depósitos epitermales durante los episodios menguantes de vulcanismo y extensión tectónica.

2.5 En conclusión,

Las grandes provincias ígneas comparten una estrecha relación con la formación de yacimientos hidrotermales ya que proveen de energía térmica, fluidos, metales y ligandos a estos sistemas; por lo que la relación que comparten no sólo es espacio-temporal sino también genética. La superposición de eventos que presenta la Sierra Madre Occidental entre los pulsos ignimbríticos, los episodios de extensión, desarrollo de sistemas hidrotermales y la formación de yacimientos epitermales, sugiere una estrecha conexión entre el magmatismo de esta provincia, los fluidos mineralizantes y su circulación, y la formación de yacimientos epitermales en la región.

Por otro lado, las concentraciones de flúor y cloro en los domos e ignimbritas permiten pensar que estos elementos fueron los principales ligandos para el transporte de los metales que se encuentran en los yacimientos epitermales del Graben de Bolaños; es importante destacar que uno de los principales minerales de ganga es la fluorita, lo que, por un lado, reafirma el alto contenido en flúor de los magmas de la SMO y por otro lado, al estar estrechamente relacionada a la mineralización, estudiar su composición y firma de elementos traza permitiría conocer la naturaleza de los fluidos hidrotermales implicados en la formación del yacimiento.

Así mismo, la identificación de zonas con ciertas características petrológicas (o composicionales), podrían permitir relacionar la naturaleza de los fluidos hidrotermales con firmas geoquímicas determinadas y las diferentes "zonas de mineralización". La relación entre la mineralización y el magmatismo durante el periodo de extensión en el distrito de San Martín de Bolaños, está determinada por la naturaleza fértil de los magmas de este periodo, producto de la re-fusión de rocas previamente formadas; además, la extensión facilitó la formación y establecimiento de un sistema hidrotermal que permitiría la

formación de yacimientos epitermales hacia el cese de la actividad volcánica y tectónica (extensión).

C3: Marco teórico

3.1 Yacimientos epitermales

Las clasificaciones genéticas distinguen los yacimientos minerales de acuerdo a tres procesos fundamentales: magmáticos, sedimentarios/superficiales, e hidrotermales. Por definición, un yacimiento mineral es una concentración anómala de metales (o algún otro elemento de interés) en la corteza terrestre; esta anomalía es el resultado de la evolución a través de diferentes episodios de procesos fundamentales a lo largo del tiempo geológico, como consecuencia, puede presentarse la superposición en espacio y tiempo de dichos eventos. De esta manera, cuando los sedimentos son depositados y sufren procesos de diagénesis o metamorfismo (debido al sepultamiento), la circulación de fluidos, alteración y aumento de temperatura en el sistema serán promovidos y a consecuencia de ello, los procesos que eran puramente sedimentarios se volverán sedimentario-hidrotermales. Por otro lado, la sobresaturación de volátiles en un magma, producto de su evolución (cristalización, enfriamiento, ascenso), puede implicar la evolución de procesos fundamentalmente magmáticos a magmático-hidrotermales (Lindgren, 1933; Camprubí y Albinson, 2007; Cooke y Simons 2000; Hedenquist et al., 2000; Robb, 2005).

En el esquema de los procesos magmáticos-hidrotermales, se encuentran tipologías de depósitos minerales como: pórfidos, skarns, sulfuros masivos vulcanogénicos (VMS, por sus siglas en inglés), depósitos de óxidos de Fe, cobre y oro (IOCG, por sus siglas en inglés) y epitermales. La diversidad de tipologías es extensa, sin embargo, todas comparten una estrecha relación con la presencia de fluidos acuosos de origen magmático mezclados en alguna proporcióncon aguas meteóricas o algún otro geofluido (e.g. salmuera de cuenca), así como la existencia de uno o varios procesos magmáticos. Su distribución se encontrará en función de la evolución de la corteza y del contexto tectónico en el que se desarrollan(Hedenquist et al., 2000; Robb, 2005; Camprubí y Albinson, 2007).

Lindgren (1933) definió los depósitos epitermales como aquellos yacimientos minerales que se encuentran en niveles someros de la corteza (epizona), se formaron a T <200 °C y en condiciones de presión moderadas; estudios posteriores demostraron que estos depósitos se forman típicamente a temperaturas entre los 160 y ~300°C (eventualmente mayores), a profundidades desde la superficie hasta ~2 km a presiones equivalentes a un rango entre los 50 a 1000 m (ver figura 3.1) (Cooke y Simons 2000; Hedenquist et al., 2000; Robb, 2005; Camprubí y Albinson, 2007)

Esta tipología de yacimientos minerales se encuentra estrechamente relacionada a zonas de subducción, en contexto con esfuerzos neutros a ligeramente extensionales, su formación está vinculada de forma espacial y temporal con vulcanismo subaéreo de carácter ácido a intermedio y a la presencia (y circulación) de fluidos de origen magmático y meteórico (predominantemente), que dan lugar a importantes concentraciones polimetálicas de metales base, Ag y Au, en forma de sulfuros, sulfosales o metales nativos (Hedenquist, 1987; Hedenquist y Lowestern, 1994; Hedenquist et al., 2000; Camprubí y Albinson, 2006).

Los estilos de mineralización que presentan estos yacimientos fueron inicialmente clasificados como epitermales de alta y baja sulfuración, actualmente también se consideran los yacimientos de sulfuración intermedia (ver tabla 3.1 con las características distintivas de estas tipologías); estas categorías se definen con respecto al estado de oxidación con el que se presenta el azufre en el fluido hidrotermal, así como por la mineralogía del sistema (ver tabla 3.1). Las clasificaciones de alta y baja sulfuración se consideran los miembros terminales de un continuo de procesos físico-químicos relacionados a los sistemas hidrotermales asociados a actividad magmática (Sillitoe y Hedenquits, 2003; Robb, 2005).

Figura 3.1. Esquema geológico de los ambientes de formación (inferidos) de depósitos metalíferos en pórfidos y depósitos epitermales. Los depósitos epitermales de alta sulfuración se encuentran asociados a los sistemas volcánicos-hidrotermales que incluyen desde exsolución de fluidos en los magmas hasta las fumarolas; por otro lado, los depósitos epitermales de baja sulfuración se asocian a la formación de sistemas geotérmicos que se caracterizan por presentar fuentes termales y géiseres con fluidos de pH neutro. Se sugiere que ambas tipologías presentan una relación espacio-temporal, aunque no siempre se encuentran asociadas. (Modificado de Hedenquist y Lowestern, 1994; Camprubí y Albinson, 2006).

White y Hedenquist (1990) refieren que los principales factores que afectan las condiciones físicas del ambiente epitermal y que, en último término, determinan el carácter y localización de la mineralización son: (a) la geología regional de la zona en la que se encuentra el depósito, (b) las características hidrológicas de la zona, es decir, la relación existente entre la permeabilidad y la topografía que controlan la circulación de fluidos, (c) las condiciones de presión y temperatura de los fluidos mineralizantes, (d) las características químicas y el contenido total en gas de los fluidos mineralizantes (factores

determinantes para la reactividad, capacidad para el transporte de metales y en la paragénesis mineral, tanto en la alteración de la roca encajonante como de la misma mineralización de los fluidos mineralizantes), (e) el posible desarrollo de permeabilidad contemporánea al hidrotermalismo y/o cambios en el gradiente hidráulico de la zona.

3.1.1Epitermales de Alta sulfuración (HS, por sus siglas en inglés)

Los yacimientos de alta sulfuración ocurren en ambientes proximales a la actividad magmática y son comúnmente encontrados en o muy cerca al conducto volcánico, además, los fluidos implicados en su formación son predominantemente fluidos magmáticos con pH ácido (1 a 3), que transportan en solución especies oxidadas (e.g. S⁴⁺o S⁶⁺) en forma de SO₂, SO₄ ²⁻, HSO₄-(White y Hedenquist, 1995). Estos yacimientos se encuentran en zonas de subducción, ante, intra y trascarco; en ambientes de esfuerzos neutros a ligeramente extensionales; las fallas a escala regional o intrusiones subvolcánicas actúan como controles estructurales en el emplazamiento de estos yacimientos; se forman a temperaturas entre 100 y 320 [°C] y a profundidades entre 500 y 2000 [m]. A estos yacimientos se encuentran principalmente asociados metales como Au-Ag, Cu, As-Sb, Sn, Zn, Pb, Bi, W, Mo, Hg (ver tabla 3.1)(Sillitoe y Hedenquist, 2003; Camprubí *et al.*, 2003; Camprubí y Albinson, 2006, 2007).

La naturaleza de los fluidos es primordialmente magmática con un porcentaje menor de aportaciones meteóricas; son fluidos ácidos (pH de 0 a 3), con alto potencial corrosivo que pueden lixiviar la mayoría de los metales contenidos en las rocas por las que circulen, este potencial es debido a la presencia de volátiles como HCl, H₂S, CO₂, SO₂⁻ (White y Hedenquist, 1995; Giggenbach, 1997); presentan una salinidad promedio de 24% wt. NaCl eq. y se encuentran generalmente asociados a rocas ígneas de composición andesitica a riodacítica. Estos yacimientos presentan vetilleo a escala local, así como brechamiento; la mena se encuentra diseminada y generalmente asociada a la alteración argílica avanzada. La mineralogía de mena está compuesta por sulfuros y sulfosales de Cu, enargita (mineral clave), tetraedrita-tenantita, Au nativo, covellita, acantita, estibinita, telururos y seleniuros de manera local; como minerales de ganga pueden encontrarse cuarzo de grano fino y oqueroso (*vuggy*). La alteración presenta caolinita, alunita, illita, dickita y pirofilita, en estos sistemas es característica la intensa alteración del ambiente por la lixiviación de Al, Na, Ca y K, principalmente (White y Hedenquist, 1995; Camprubí *et al.*, 2003).

3.1.2 Epitermales de Sulfuración Intermedia (IS, por sus siglas en inglés)

En el caso de estos yacimientos, la composición de los fluidos a partir de los cuales se formaron es una mezcla de fluidos magmáticos y meteóricos, yprevalece el carácter ácido de los fluidos magmáticos (Albinson et al., 2001; Einaudi et al., 2003; Sillitoe y Hedenquist, 2003). Al igual que los yacimientos de alta sulfuración se encuentran en ambientes de subducción, en zonas de ante, intra y trascarco, en ambientes neutros o ligeramente extensionales(Camprubí y Albinson, 2006; 2007). Estos yacimientos se encuentran asociados a rocas de composición andesítica a riodacítica, así como a vulcanismo riolítico y zonas de fractura estrechamente relacionados a centros volcánicos;

la mineralización se encuentra diseminada o en stockworks, esta disposición dependerá de la permeabilidad primaria y secundaria locales. Las temperaturas de formación estimadas para estos yacimientos son >200 °C, a profundidades estimadas entre 300 y 800 m (Sillitoe y Hedenquist, 2003; Camprubí *et al.*, 2003; Camprubí y Albinson, 2006; 2007).

Se presentan como minerales de alteración la sericita, cuarzo, rodocrosita, barita(se encuentra de manera local), anhidrita y adularia (poco común), los carbonatos son comunes, y el cuarzo suele presentarse en drusa, rellenando vetas o en peine; en ocasiones puede desarrollarse de manera local alteración argílica avanzada. La mineralogía de mena se compone de esfalerita (pobre en Fe), galena, tetraedrita-tenantita, calcopirita, arsenopirita, los telururos se encuentran de manera local y los seleniuros son poco comunes; dentro de los minerales de ganga pueden encontrarse cuarzo crustiforme rellenando vetas o en peine, calcita y minerales carbonatados (incluidas fases de Mn). La coexistencia de minerales como la calcopirita y tetraedrita-tenantita con esfalerita, arsenopirita y pirrotita es posible por la mezcla de características mineralógicas y geoquímicas de los sistemas de alta y baja sulfuración (Sillitoe y Hedenquist, 2003; Camprubí *et al.*, 2003; Camprubí *et al.*, 2003; Camprubí *et al.*, 2003; Camprubí y Albinson, 2006; 2007).

3.1.3 Epitermales de Baja sulfuración

Los depósitos epitermales de baja sulfuración suelen asociarse a etapas menguantes de la actividad magmática o bien, a ambientes distales al foco de la actividad; los fluidos implicados en la formación de estos vacimientos son fluidos con pH relativamente neutro, bajos en salinidad y ligeramente reductores. Los yacimientos de alta y baja sulfuración pueden considerarse los end-members de un continuo de procesos físico-químicos implicados en la circulación y evolución de los fluidos en estos sistemas hidrotermales (Hedenquist, 1987; Hedenquist y Lowestern, 1994; Hedenquist et al., 2000; Sillitoe y Hedenquits, 2003; Robb, 2005; Camprubí y Albinson, 2006); los fluidos mineralizantes en los depósitos epitermales de BS son, por lo general, originados mayoritariamente a partir de aquas meteóricas con una aportación menor de fluidos magmáticos; su pH es aproximadamente neutro y está determinado por la interacción de las celdas de convección de los fluidos con las rocas encajonantes a niveles intermedios en estos sistemas el azufre se presenta en especies reducidas como HS- y H₂S; esta tipología se asocia comúnmente a ambientes de régimen extensional que favorece el desarrollo de vulcanismo bimodal (Sillitoe y Hedenquist, 2003; Camprubí y Albinson, 2006). En este tipo de sistemas, las alteraciones están caracterizados por la asociación adularia-sericita, así como alteración propilítica extensa; los sistemas de baja sulfuración presentan profundidades de formación de 300 a 500 m, con temperaturas aproximadas a 220-230 °C (Hedenquist, 2013).

Tipología		Alta Sulfuración (HS)	Sulfuración Intermedia (IS)	Baja Sulfuración (LS)
Ambiente Tectónico		Subducción, zonas de ante, intra y trasarco; ambientes de regímenes neutros a ligeramente extensionales.	Subducción, zonas de ante, intra y trasarco; ambientes de regímenes neutros a ligeramente extensionales.	Zonas de subducción y etapas tempranas de rift; ambientes de régimen extensional.
Condiciones de formación		100 - 320 °C 500-2000 [m]	>200 °C 300-800 [m]	180-230 °C >300-500 [m]
Naturaleza de los fluidos		Predominantemente magmáticos con HCl, H2S, CO2, SO2-, en solución; pH ~0 a 3; salinidad promedio: 24% wt NaCl eq.	Mezcla de fluidos magmáticos y meteóricos, prevalece el carácter ácido de los fluidos magmáticos; ph ~3 a 5; salinidad promedio: ~7% wt NaCl eq.	Predominantemente meteóricos con iones HS- y H2S en solución; pH ~ 6 a 8; salinidad promedio: < 2% wt NaCl eq.
Rocas asociadas		Ígneas de composición andesítica a riodacítica.	Ígneas de composición andesítica a riodacítica con asociación a vulcanismo riolítico.	Vulcanismo bimodal
Mineralogía	Alteración	Argílica avanzada, presencia de caolinita, alunita, pirofilita, silicificación (cuarzo <i>vuggy</i>)	Sericita, cuarzo, rodocrosita, barita(se encuentra de manera local), anhidrita y adularia (poco común), los carbonatos son comunes, porpilítica.	Adularia, sericita, illita/smectita.
	Mena y ganga	Enargita, covellita, acantita, estibinita, bornita, tetraedrita- tenantita, sulfuros y sulfosales de Cu, Au nativo, telururos y seleniuros de manera local, cuarzo, y barita (típicamente tardia)	Esfalerita (pobre en Fe), galena, tetraedrita-tenantita, calcopirita, arsenopirita, los telururos se encuentran de manera local y los seleniuros son poco comunes, cuarzo rellenando vetas o en peine, calcita y minerales carbonatados (incluidas fases de Mn).	Esfalerita, arsenopirita, sulfuros y sulfosales de Ag, Pb y Zn, argentita, pirrotina, seleniuros y teleruros de manera local, cuarzo y calcedonia, barita y fluorita (de manera local)
Controles de emplazamiento // Texturas		Fallas a escala regional o intrusiones subvolcánicas // Vetilleo de manera local, brechamiento y diseminación de la mena.	Fallas o zonas de fractura estrechamente asociadas a centros volcánicos // <i>Stockwork</i> , vetas y cuarzo en peine.	Fallas o zonas de fractura estrechamente asociadas a centros volcánicos // <i>Stockwork</i> , sínter, vetas; calcedonia botroidal o en vetas.

Tabla 3.1 Características distintivas de las tipologías de yacimientos epitermales. Con base en Sillitoey Hedenquist (2003); Camprubí et al.(2003); Camprubí y Albinson(2006, 2007).

La mineralización principalmente se encuentra como rellenos de cavidades en vetas, y en stockwork; la diseminación y reemplazamiento de la mena es mucho menor, respecto a los sistemas de alta sulfuración y está compuesta por esfalerita, arsenopirita, sulfuros y sulfosales de Ag, Pb y Zn, argentita, pirrotina, seleniuros y teleruros de manera local. Los minerales de alteración son principalmente adularia-sericita con zonas de composición cuarzo/calcedonia en asociación con calcita-adularia-sericita-clorita; la presencia de calcedonia en bandas o de hábito botroidal es un rasgo distintitvo de estos yacimientos, aunque además es común encontrar cuarzo asociado con adularia de grano fino y calcita con illita y/o esmectita asociada (White y Hedenquist; 1995; Hedenquist, 2013; Sillitoe y Hedenquist, 2003;Camprubí y Albinson, 2006; 2007). Los metales predominantes en estos sistemas son Ag-Au, Pb y Zn con cantidades variables de Cu, Sb, As, Te, se, Mo, Bi y Hg (White y Hedenquist, 1995; Hedenquist, 1995; Hedenquist *et al.*, 2001).

3.2 Las Tierras Raras

"These elements (the rare earths) perplex us in our speculations and haunt us in our very dreams. They stretch like unknown sea before us, mocking, mystifying and murmuring strange revelations and possibilities"

-Sir William Crooke, en una carta a la Asociación Británica, el 16 de febrero de 1887.

3.2.1 Introducción

De acuerdo con la Unión Internacional de Química pura y aplicada (IUPAC por sus siglas en inglés) el grupo de las tierras raras consiste en 17 metales de transición que forman el grupo 3 en la tabla periódica, con números atómicos del 57al 71 (Tabla 3.3), incluido el Itrio (Y).

Los elementos con menor número atómico (La-Eu) son denominados tierras raras ligeras (LREE), mientras que sus contrapartes (Gd-Lu) se conocen como tierras raras pesadas (HREE); el Itrio se encuentra dentro del último grupo debido a su radio iónico, similar al del Holmio. Estos elementos generalmente se presentan con estado de oxidación 3+, a excepción del Eu y Ce, los cuales se presentan también como: Eu²⁺ y Ce⁴⁺ (ver figura 3.2).

Los lantánidos son elementos litófilos, por lo que prefieren aparecer en la estructura de los silicatos u óxidos, más que formar enlaces covalentes con compuestos metálicos o sulfurados. Además, son químicamente coherentes, es decir, ocurren conjuntamente en minerales y rocas y sus propiedades químicas dependen no sólo de su estructura atómica sino también de su tamaño (Henderson et al., 2011). La abundancia cortical de estos elementos es baja, con excepción del Itrio y Cerio cuya abundancia (43 ppm en la corteza continental (Walters-Lusky,2011) supera a la del Sn, Hg, Mo y todos los metales preciosos. Por otro lado, la formación natural del Pm¹⁴⁷ se debe a procesos de fisión y la cantidad producida equivale a 600 g en la corteza terrestre, tal cantidad hace al Pm virtualmente imposible de detectar y extraer (Chakhmouradian-Wall, 2012). Así, su ocurrencia mineral (ver Tabla 3.2) es de ~43% en silicatos, ~ 23% carbonatos, ~ 14% óxidos y ~14% oxisales (Chakhmouradian-Wall, 2012). Actualmente, se reconocen 270 minerales

Número	Símbolo	Configuración	Radio atómico	Radio iónico
atómico	químico	electrónica	(pm)	(Å)
39	Y	[Kr]4d ¹ 5s ²	180	1.019
57	La	[Xe]5d ¹ 6s ²	187	1.16
58	Ce ³⁺	[Xe]4f ¹ 5d ¹ 6s ²	182.5	1.143
	Ce4+			0.97
59	Pr	[Xe]4f ³ 6s ²	182.4	1.126
60	Nd	[Xe]4f ⁴ 6s ²	181.4	1.109
61	Pm	[Xe]4f ⁵ 6s ²	183.4	-
62	Sm	[Xe]4f ⁶ 6s ²	180.4	1.079
63	Eu ³⁺	[Xe]4f ⁷ 6s ²	185	1.066
	Eu ²⁺			1.25
64	Gd	[Xe]4f ⁷ 5d ¹ 6s ²	180.4	1.053
65	Tb	[Xe]4f ⁹ 6s ²	177.3	1.04
66	Dy	[Xe]4f ¹⁰ 6s ²	178.1	1.027
67	Но	[Xe]4f ¹¹ 6s ²	176.2	1.015
68	Er	[Xe]4f ¹² 6s ²	176.1	1.004
69	Tm	[Xe]4f ¹³ 6s ²	175.9	0.994
70	Yb	[Xe]4f146s2	193.3	0.985
71	Lu	[Xe]4f ¹⁴ 5d ¹ 6s ²	193.3	0.977

que contienen Itrio o lantánidos como componentes esenciales de su estructura cristalina y fórmula química.

 Tabla 3.2.
 Elementos de tierras raras. (Chakhmouradian-Wall, 2012).
 Chakhmouradian-Wall, 2012).
 Chakhmouradian-Wall, 2012.
 Chakhmouradian-Wall, 2012.</

Por otro lado, es importante destacar que las arcillas alojan tierras raras en su estructura debido a su capacidad de adsorción iónica; alrededor del 70% de las tierras raras se encuentran como cationes adsorbidos en la superficie de filosilicatos alumínicos, principalmente caolinita y halloysita (Walters-Lusty, 2011).

Dada su estructura electrónica, las tierras raras presentan características ópticas y magnéticas poco usuales, a excepción del Y, La, Yb, y Lu, estos elementos son altamente paramagnéticos (es decir, que tienden a alinearse paralelamente a un campo magnético) y presentan una fuerte anisotropía magnética (no homogeneidad de las propiedades magnéticas al ser medidas en diferentes direcciones del espacio)(Walters-Lusky,2011).

El uso de las tierras raras a lo largo de la historia ha estado condicionado al desarrollo de la tecnología así como de los avances en los campos de química y física aplicadas. El desarrollo de armas nucleares en las décadas de los 40's y 50's acentuó el ímpetu por el descubrimiento y exploración de las tierras raras, se pensaba que eran la clave para entender la metalurgia de los actínidos y que el entendimiento de su comportamiento nuclear era esencial para el proceso de fisión (Chakhmouradian-Wall, 2012). Con el paso del tiempo y el desarrollo de tecnología el aprovechamiento de las tierras raras comenzó a diversificarse; en el periodo que abarca de 1780-1950 estos elementos eran utilizados por

el ferromagnetismo que presenta el Gd y la superconductividad del La. Hacia 1970, los métodos para obtener metales en estado puro se encuentran en evolución constante, se descubre el efecto láser y se vislumbran las primeras aplicaciones en la fabricación de imanes, lentes y pigmentos.

Mineral	Fórmula	Contenido de óxidos de tierras raras (%)
Aeschynita- (Ce)	(Ce,Ca,Fe,Th)(Ti,Nb)₂(O,OH) ₆	32
Allanita- (Ce)	$(Ce,Ca,Y)_2(AI,Fe^{3+})_3(SiO_4)_3OH$	38
Apatita	Ca₅(PO₄)₃(F,CI,OH)	19
Bastnäsita-(Ce)	(Ce,La)(CO₃)F	75
Brannerita	(U,Ca,Y,Ce)(Ti,Fe)₂O₅	9
Britholita-(Ce)	$(Ce,Ca)_{5}(SiO_{4},PO_{4})(OH,F)$	32
Cebaita-(Ce)	Ba ₃ Ce ₂ (CO ₃) ₅ F ₂	32
Eudialyta	$Na(Ca,Ce)_{2}(Fe^{2+},Mn,Y)ZrSi_{8}O_{22}(OH,CI)_{2}$	9
Euxenita-(Y)	(Y,Ca,Ce,U,Th)(Nb, Ta, Ti)₂O ₆	24
Florencita-(Ce)	$CeAl_2(PO_4)_2(OH)_6$	32
Gadolinita-(Ce)	$(Ce,La,Nd,Y)_{2}Fe^{2+}Be_{2}Si_{2}O_{10}$	60
Monazita-(Ce)	(Ce,La,Nd,Th)PO ₄	65
Parisita-(Ce)	$Ca(Ce,La)_2(CO_3)_3F_2$	61
Samarskita-(Y)	(Y,Ce,U,Fe ³⁺) ₂ (Nb,Ta,Ti) ₅ O ₁₆	24
Synchysita-(Ce)	Ca(Ce,La)(CO₃)F	32
Xenotime	YPO4	61
Yttrocerita	(Ca,Ce,Y,La)F₃·nH₂O	53

Tabla 3.3.Listado de minerales de tierras raras. Fórmula química y porcentaje de tierras raras segúnBarthelmy (2014).

Actualmente, las tierras raras se encuentran en muchos de los artefactos que utilizamos día a día, con el desarrollo de tecnología se han descubierto que estos elementos pueden servir para la fabricación de imanes permanentes, son superconductores de alta temperatura, así como iridiscentes y magnetorresistentes, es decir, pueden variar su resistencia eléctrica al someterse a un campo magnético. Algunas de las aplicaciones que estos elementos tienen hoy en día son: imanes de Sm-Co utilizados en diferentes dispositivos aeroespaciales y de comunicación; el Nd, Pr, Tb, Dy para la fabricación de imanes para motores híbridos, discos duros, turbinas eólicas y refrigeración magnética; el La, Ce, Pr, Nd, e Y son utilizados (como aleaciones) para la fabricación de pilas y baterías y como catalizadores en la refinación de petróleo, convertidores analíticos y aditivos de diesel; el Ce, La, Pr, Nd, Gd, Er y Ho son utilizados para la fabricación de cristales con protección UV, pantallas LCD, pantallas táctiles; el Eu es el responsable de la nitidez de las imágenes en las pantallas actuales, paneles solares, lámparas de bajo consumo, láseres y fibra óptica (Henderson, 1984; Chackhmouradian-Wall,2012; Rowlatt, 2014).

3.2.2 Comportamiento geoquímico

En 1925, Viktor Goldschmidt, fundador de la cristaloquímica y geoquímica moderna, describió por primera vez "la contracción de los lantánidos" (ver figura 3.3), este fenómeno describe un decremento progresivo en el tamaño de átomos de las especies en estado 3⁺ en función de la carga nuclear efectiva; donde la carga nuclear efectiva es la carga positiva neta experimentada por un electrón en un átomo polielectrónico. En términos generales, la contracción de los lantánidos está en función del incremento del número atómico y el decremento en el radio iónico.

Figura 3.3. Esquematización de la contracción de los lantánidos (con base en White, 2005); en la parte superior se ilustra la relación del decremento en el tamaño del radio iónico versus el incremento en el número atómico, en la parte inferior puede observarse de manera gráfica la misma relación.

Debido a este fenómeno, los elementos de tierras raras presentan variaciones sistemáticas en la distribución fundido-cristales; la distribución de elementos traza en un sistema magmático dependerá de su coeficiente de partición, este concepto que relaciona la concentración de un elemento en dos fases coexistentes diferentes. Para los elementos incompatibles está determinado <<1, mientras que para los elementos compatibles es \geq 1 (estos valores están referidos a sistemas en fundidos silicatados y fases máficas o ultramáficas) (White, 2005).

Las tierras raras son elementos incompatibles, sin embargo, el grado de incompatibilidad es variable; decrece conforme el número atómico disminuye, es decir, las tierras raras ligeras son elementos más incompatibles que las tierras raras pesadas.Los elementos con número atómico impar tienen un protón "sin pareja" lo que los hace más susceptibles a capturar otro protón buscando estabilidad, incrementando así su número atómico y disminuyendo su abundancia. Por el contrario, los elementos con número atómico par no buscarán capturar alguno ya que su configuración electrónica es más estable, a consecuencia de ello su abundancia será mayor; este fenómeno es conocido como el efecto *Oddo-Harkins* y es la explicación al característico patrón aserrado que presentan estos elementos al ser graficados en diagramas de variación (*SPIDER*) sin normalizar los valores (ver figura 3.4).

Las concentraciones de tierras raras se muestran generalmente en un diagrama de enriquecimiento de elementos incompatibles (también conocido como diagrama SPIDER) (Gill, 2010), en el que se presentan las concentraciones de los elementos incompatibles en el *eje de las ordenadas* y en el *de las abcisas se* encuentran los elementos de tierras raras clasificados de manera decreciente de acuerdo a su grado incompatibilidad (*Ver* figura 3.4a, b y c). Al generar el gráfico correspondiente se obtendrán patrones aserrados (ver figura 3.4 a), por lo que, los valores se normalizarán respecto a un estándar o referencia, dependiendo de la finalidad de la investigación (ver figura 3.4 (b) y (c)), para así poder realizar el análisis correspondiente. Por ejemplo, los procesos evolutivos de los magmas derivados por fusión del manto pueden ser identificados utilizando los valores de normalización del manto primitivo (White, 2005).

Figura 3.4. a) Ilustración de la variación sistemática de las tierras raras en fluoritas, valores tomados de Bünh et al. (2003) y Eppinger (1988); así como la normalización de los valores respecto a b)
Condrita (McDonough & Sun, 1985) y c) Post Archean Australian Shale (PAAS, por sus siglas en inglés) (Nance & Taylor, 1986).

3.2.3 Fugacidad de oxígeno

La fugacidad es una medida relacionada con el potencial químico, el cual es definido como la tendencia de un componente a escapar de una fase determinada, de tal modo que si el potencial químico es alto, el elemento tenderá a salir lo más rápido posible de la fase en la que se encuentra, y viceversa. La distribución de las especies de tierras raras con diferentes estados de oxidación (i.e. Eu^{2+} y Ce^{4+}), estará controlada principalmente por la fugacidad de oxígeno en el sistema. En el caso particular del europio, al incrementar la temperatura y el pH, la relación de Eu^{3+}/Eu^{2+} aumentará significativamente (i. e. el equilibrio se desplaza a mayores fugacidades de O₂. Entonces, será sólo en ambientes medianamente reductores que el Eu^{2+} esté presente; en los límites de alta y baja fugacidad, sólo una de las dos especies predominará: Eu^{3+} (alta *fO*₂) o Eu^{2+} (baja *fO*₂) (Bau &Henderson, 1984; Drake, 1974; Bau, 1991; Dulski, 1995; Gargaud et al., 2011).

Por otro lado, el Cerio se comporta de manera diferente a los elementos que le rodean debido a su potencial de ionización en el estado trivalente, por lo que las condiciones en la fugacidad de oxígeno del sistema de formación jugará un papel importante en el desarrollo de anomalías de este elemento; las anomalías negativas de este elemento han sido atribuidas a ambientes oxidantes, en condiciones cercanas a la superficie terrestre (Seto & Akagi,2008; Schönenberg et al., 2008; Seng Gu et al., 2013).

3.2.4 REE en sistemas hidrotermales

En la literatura hay datos experimentales(Henderson, 1984; Bau& Dulski, 1995; Williams-Jones et al., 2012) en donde se refiere que el transporte de REE en sistemas hidrotermales está controlado por la formación de complejos con los iones Cl⁻, OH⁻ y F⁻, para la movilización estas especies; las asociaciones paragenéticas de las tierras raras con elementos como el Al, Fe, Be y Zr, así como con los ligandos Cl⁻, OH⁻ y F⁻, indican que tuvieron presencia simultánea en las soluciones mineralizantes. Es importante resaltar que el transporte de estos elementos debe llevarse mediante complejos, las HREE son más susceptibles a formar complejos que las LREE.

De acuerdo con la Ley de Coulomb, la temperatura, el radio y carga iónica son importantes parámetros a considerar durante la formación de complejos químicos y los procesos de retención y transporte de compuestos químicos disueltos en los fluidos mineralizantes:

- a. A mayor carga iónica, mayor la sorción de REE y por lo tanto, más estable la formación de complejos.
- b. A mayor radio iónico, menor será la sorción de REE y menos estables los complejos formados.
- c. A mayor temperatura, la estabilidad de los complejos es menor ya que la sorción de estos elementos es menor.

Durante la interacción fluido-roca con condiciones de pH < 7, el fluido exhibe razones La/Lu>1; si el Eu aparece en estado divalente el patrón de REE presentará una anomalía positiva de este elemento. En el caso de ambientes en el que el pH > 7, la razón La/Lu será <1, la formación de complejos extiende la estabilidad del Eu en estado trivalente aunque la fugacidad de oxígeno sea baja entonces, la anomalía de Eu que se podría esperar no se presente, por otro lado, la removilización de REE bajo estas condiciones será mayor (Henderson, 1984; Bau, 1991; Bau & Dulski, 1995;).

En fluoritas hidrotermales, el coeficiente Y/Ho ha sido reportado con valores mayores a 200 (el valor condrítico de esta razón es de 28), el fraccionamiento de estos elementos en sistemas hidrotermales puede estar relacionado a la formación y estabilidad de los complejos, la cual es mayor para el Ytrio que para el Holmio, resultando en valores elevados de la razón Y/Ho (Henderson, 1984; Bau y Dulski, 1995).

Bau y Dulski (1995) utilizan las razones Y/Ho y La/Ho como indicadores del fraccionamiento de las tierras raras; el Ytrio y Holmio son elementos que no son fraccionados debido a su carga o radio iónico, sino a la formación de complejos y la estabilidad de éstos durante la mineralización (en el caso de los complejos fluorados, su estabilidad aumenta conforme el radio iónico disminuye); entonces, la composición del fluido, la disponibilidad de ligandos, así como la temperatura, presión, pH y fugacidad de oxígeno serán factores de control destacados en el fraccionamiento de las tierras raras.

Estos autores proponen que las fluoritas cogenéticas presentarán valores similares de las razones Y/Ho y La/Ho; mientras que las fluoritas que cristalizaron en distintos episodios presentarán una correlación negativa entre las razones Y/Ho y La/Ho. Así mismo, proponen dos trayectorias (ver figura 3.5): (1) recristalización, relacionada a la pérdida de LREE durante este proceso; y (2) migración, relacionada con la formación y estabilidad de los complejos fluorados.

Figura 3.5. Diagrama de discriminación propuesto por Bau y Dulski (1995); la trayectoria A-B describe una tendencia gobernada por la formación de complejos durante la migración de un fluido, la trayectoria A-C, describe una tendencia gobernada por la pérdida de LREE debido a procesos de recristalización.

3.2.5 REE en Fluorita

El estudio de los elementos de tierras raras en fluoritas pertenecientes a diferentes ambientes y cuerpos mineralizados ha tenido la finalidad de proveer información sobre la evolución del sistema hidrotermal, de la interacción agua-roca, así como del comportamiento de estos elementos en sistemas pneumatolíticos. Además, el contenido de estos elementos en fluorita hidrotermal ha sido utilizado para vislumbrar la fuente de los fluidos (e.g. fluidos magmáticos vs. fluidos meteóricos), evaluar los mecanismos de depósito, desarrollar modelos conceptuales e inferir los potenciales de mineralización. (Gagnon et al., 2003; Schwinn y Markl, 2005; Schönenberg et al., 2008).

La fluorita (CaF₂) del latín *fluere "fluir"*, nombrado así en la antigüedad por su facilidad para fundirse en comparación con otros minerales, es un mineral del sistema isométrico y su estructura fue una de las primeras en ser investigada mediante rayos X;los iones de Ca se encuentran en la parte central de la látice cúbica, mientras que cada ion de flúor se encuentra en el centro de pequeños cubos que se obtienen de dividir la sección cúbica en ocho partes. Por lo tanto, cada ion de Ca²⁺ se encuentra coordinado con 8 iones de F⁻, mientras que cada ion de flúor se encuentra rodeado por cuatro iones de calcio ubicados en las esquinas del tetraedro regular (Dwight, 1997) (ver figura 3.6).Comúnmente, los contenidos de REE e Y en fluorita son bajos, pero se han llegado a reportar contenidos superiores a 13.7 wt% de Y y 14.1 wt% de Ce.

Figura 3.6 Esquema ilustrativo de la estructura cristalina de la fluorita (modificado de Dwight (1997)).

La distribución de las tierras raras en los fluidos hidrotermales es controlada por el pH, temperatura y la formación de complejos metal-ligando; la distribución de estos elementos cambia sistemáticamente conforme la cristalización avanza, Möller et al. (1976) describen una incorporación preferencial de los elementos de tierras raras ligeras durante etapas tempranas de cristalización en comparación de la incorporación preferencial de elementos de tierras raras pesadas en las etapas tardías de cristalización. Estos autores describen las etapas tempranas de cristalización como las etapas en las que los fluidos se

encuentran a temperaturas elevadas (>200°C) lo que permitirá la incorporación (preferencial) de los elementos más incompatibles (LREE) debido al tamaño de su radio iónico (estos elementos requieren de altas temperaturas para que la látice cristalina disponga de un mayor espacio); por otro lado, a las etapas tardías de cristalización corresponden temperaturas "bajas" (±100°C), lo que provocará la contracción de los espacios disponibles de la látice cristalina, entonces, los elementos menos incompatibles (HREE) se intercambiarán más fácilmente con el calcio. Möller et al. (1976), Lottermoser (1991), Schönenberg et al. (2008), destacan que la estabilidad de los complejos de tierras raras en soluciones acuosas es mayor para los elementos de HREE que para las LREE; por otro lado, de acuerdo a los datos presentados por Schönenberg et al. (2008), las fluoritas asociadas a sistemas alcalinos presentan patrones de tierras raras enriquecidos en LREE, contrastantemente, las fluoritas alojadas en sistemas de composición granítica presentan un enriquecimientos en HREE relacionado a un mayor contenido de sílice (Bau, 1991; Lottermoser, 1991; Bau & Dulski, 1995; Schönenberg et al., 2008).

En los sistemas hidrotermales, la interacción fluido-roca afecta la composición original del fluido hidrotermal, por lo que cambiará su reactividad con el sistema y la movilización de los elementos disponibles. La movilización de los elementos de tierras raras en este sistema (fluido-roca) se ve favorecida por largos periodos de circulación, razones fluido/roca elevadas, así como por la presencia de ligandos (tanto en el fluido hidrotermal, así como en la roca encajonante) para la formación de complejos metal-ligando (Lottermoser, 1991).

Möller et al. (1976), realizaron un gráfico de discriminación para las fluoritas de acuerdo a su ambiente de formación (ver figura 3.7), este gráfico presenta tres ambientes de clasificación: pneumatolítico, magmático-hidrotermal y sedimentario-hidrotermal. Las fluoritas ubicadas en el campo pneumatolítico, como su nombre lo indica, se encuentran relacionadas a cuerpos intrusivos en etapas tardías de cristalización; por otro lado, en el campo sedimentario-hidrotermal se encuentran ubicadas las fluoritas asociadas a yacimientos tipo SEDEX (sedimentarios exhalativos) o MVT (*Mississippi Valley Type*); por último, en el campo magmático-hidrotermal se ubican las fluoritas asociadas a yacimientos tipo pórfido, epitermales, skarn e IOCG (*Iron Oxide Copper Gold*). Entonces, este gráfico es útil para poder clasificar de manera general las fluoritas de acuerdo a ciertas características de formación, sin embargo, será necesario el análisis mediante otros gráficos e información para poder determinar con mayor precisión el ambiente de formación y naturaleza de los fluidos mineralizantes.

La relación Tb/Ca es utilizada como un indicador del ambiente de formación (Möller et al., 1976); en este gráfico es posible visualizar el comportamiento de las REE representadas por el La en los diferentes ambientes. En ambientes pneumatolíticos, la razón Tb/Ca varía de ~10-5 – 10-3 ppm; para las fluoritas de ambientes sedimentarios las razones corresponden a valores de ~10-9- 10-7 ppm; y los valores para las fluoritas hidrotermales varía en un rango de ~10-8 – 10-5 ppm.

Figura 3.7. Diagrama de discriminación del origen de formación de fluoritas en el eje de las abcisas se ubican los valores de los coeficientes Tb/La y en el eje de las ordenadas se encuentran los valores de los coeficientes Tb/Ca; cada punto representa los valores de ambos coeficientes para cada ejemplar analizado, viñetas iguales representan diferentes análisis de un mismo yacimiento o área (Möller et al.(1976)).

Gagnon et al. (2003) utilizan la composición de la fluorita como un indicador de la afinidad geológica, en su trabajo muestran que las fluoritas provenientes de las montañas Gallinas y el Cañón Creek (ambas localidades asociadas a magmatismo alcalino) (ver figura 3.8) se caracterizan por tener patrones relativamente planos o con enriquecimiento en tierras raras ligeras normalizadas respecto a valores condríticos, no muestran anomalía
de Eu y pueden desarrollar una ligera anomalía negativa de Ce, así como una ligera anomalía positiva de Y. En contraste, las fluoritas asociadas a South Plate y St. Lawrence (ambas localidades asociadas a magmatismo granítico)(ver figura 3.8) están caracterizadas por un patrón relativamente plano o enriquecido en tierras raras pesadas normalizadas respecto a valores condríticos, además los patrones muestran una distintiva anomalía negativa de Eu así como una anomalía positiva de Y.

Möller et al. (1976) menciona que la sustitución de tierras raras en fluorita es preferente para el Dy y Tb, mientras que Hill et al. (2000) señalan que los complejos para estos elementos son relativamente estables y en caso de haber disponibilidad, serán las LREE las que sean preferentemente incorporadas a la látice cristalina. Por otro lado, Eppinger (1980) y Eppinger y Closs (1990) destacan que las fluoritas provenientes de vetas de Au y Ag, relacionadas a elevadas concentraciones de cloro en los fluidos mineralizantes presentan anomalías positivas de Eu (Eu/Eu*>1), estas muestras se encuentran generalmente asociadas a depósitos de metales preciosos de baja salinidad.

Figura 3.8. Diagramas de variación de las muestras analizadas por Gagnon et al. (2003), los esquemas con muestras pertenecientes a las montañas Gallinas y al Cañón Creek, asociadas a magmatismo alcalino (azul), presentan anomalías positivas de Y con patrones relativamente planos de REE, respecto a *South Platte* y *St. Lawrence* (asociadas a magmas graníticos (verde)); por otro lado, las muestras asociadas a estas dos últimas localidades presentan un enriquecimiento relativo de las HREE respecto a las LREE, así como anomalías negativas de europio y positivas de ytrio.

Por otro lado, Hill et al. (2000) muestran que las razones Tb/Yb y Tb/La pueden ser utilizados como indicadores del grado de cristalización de las fluoritas en función de la

incorporación de LREE en el sistema; sugiere que las tierras raras ligeras son incorporadas preferentemente durante las etapas tempranas de cristalización lo que resultará en razones elevadas de (La/Yb)n y (Tb/Yb)n, mientras que las fluoritas que cristalicen en etapas tardías de cristalización incorporaran en mayor medida HREE por lo que desarrollarán razones (La/Yb)n bajas.

La razón (La/Lu)n es utilizada por Bau (1991) como un indicador de de los mecanismos de fraccionamiento de las tierras raras, así como del pH del sistema analizado. Este autor señala que si la razón (La/Lu)n < 1, entonces el fraccionamiento de las tierras raras se encuentra relacionado con la formación de complejos y el pH relacionado a estas condiciones será mayor a 7; por otro lado, si la razón (La/Lu)n >1 entonces se relaciona a condiciones en donde los procesos de sorción fueron los que controlaron el fraccionamiento de las tierras raras y los valores de pH relacionados a estas condiciones a 7.

3.3 En conclusión

Los yacimientos epitermales son sistemas magmático-hidrotermales desarrollados principalmente en zonas de subducción, de regímenes extensionales a ligeramente extensionales o neutros, que son clasificados en sistemas de alta, intermedia y baja sulfuración; esta denominación está en función del estado de oxidación con el que se presente el azufre en el fluido hidrotermal y la mineralogía del sistema.

La fluorita es un mineral que se presenta comúnmente en sistemas hidrotermales asociados a mineralizaciones de metales preciosos y base, por lo que el estudio de la distribución de elementos traza puede utilizarse para identificar las fuentes de fluidos (e.g. fluidos magmáticos vs. fluidos meteóricos), evaluar mecanismos de deposición, analizar la interacción agua-roca, desarrollar modelos genéticos y hacer inferencias del potencial metalogenético de los depósitos en los que ocurren.

La distribución de los elementos de tierras raras proveen características particulares de los diferentes tipos de rocas o minerales, esto porque presentan variaciones sistemáticas en su distribución; en sistemas silicatados dicha distribución está en función del coeficiente de partición de los elementos, mientras que en sistemas hidrotermales la distribución es afectada en mayor medida por la estabilidad de los complejos formados, la temperatura y el pH. La distribución de estos elementos cambia sistemáticamente conforme la cristalización avanza y en la literatura se hace una distinción en etapas de cristalización tempranas o primarias, las cuales son etapas de mayor temperatura cuyas condiciones favorecen la incorporación de LREE en la látice cristalina de la fluorita; por otro lado, las etapas tardías de cristalización se relacionan a condiciones de menor temperatura, así como a la incorporación preferencial de HREE a la estructura cristalina.

Las anomalías de europio se encuentran relacionadas a la fugacidad de oxígeno en el sistema. Las anomalías negativas de este elemento se encuentran relacionadas a su forma Eu²⁺ o bien, al empobrecimiento de este elemento en el sistema; las anomalías positivas podrán observarse cuando este elemento se presente en su forma Eu³⁺ (debido a

su menor radio iónico respecto al Eu²⁺, puede incorporarse con mayor facilidad a la látice cristalina de la fluorita).

Es importante destacar que la distribución de elementos de tierras raras en sistemas hidrotermales estará afectada principalmente por la formación de complejos (y su constante de estabilidad bajo las condiciones de formación), la disponibilidad de ligandos (en el fluido mineralizante) para la formación de complejos, el tamaño de radio iónico del ión intercambiable y el ión huésped, la temperatura, el pH del fluido, así como las razones fluido/roca y los periodos de interacción de los mismos.

4.1 Materiales

Se analizaron en total 21 muestras (Tabla 4.1) provenientes de la mineralización epitermal del distrito minero de San Martín de Bolaños (SMB) (Figura 4.1). Los ejemplares fueron embebidos en resina epoxi para elaborar superficiespulidas (13), y también se prepararon láminas delgadas pulidas (8). Las muestras fueron preparadas por personal del Taller de Laminación del Centro de Geociencias, UNAM, Juriquilla, Querétaro.

		Secciones pu	ılidas		
No.	Clave	Ubicación	Petrografía	EPMA	LA-ICP-MS
1	AR-188	Nivel San José	SÍ	SÍ	SÍ
2	AR-188-1	(~1200 msnm)	SÍ	SÍ	SÍ
3	AR-188-2	Sección: 7400	SÍ	SÍ	SÍ
4	AR-172-A	Nivel San Pablo (~1000 msnm)	SÍ	SÍ	SÍ
5	AR-172-B	Sección: 5450	SÍ	SÍ	SÍ
6	AR-172-C	Nivel San Pablo	SÍ	SÍ	SÍ
7	AR-172-D	(~1000 msnm) Sección: 5500	SÍ	SÍ	no
8	AR-172-E		SÍ	SÍ	no
9	Z-400-1	San Carlos	SÍ	SÍ	SÍ
10	Z-400-2	(~850 msnm) Sección: 7220	SÍ	SÍ	SÍ
11	Z-400-1-A	San Carlos	SÍ	SÍ	SÍ
12	Z-400-1-B	(~850 msnm)	SÍ	SÍ	SÍ
13	Z-400-1-C	Sección: 7206	SÍ	SÍ	SÍ
14	5702	San Carlos (~850 msnm) Sección 5800	SÍ	SÍ	SÍ
		Láminas delgadas (cor	nplementarias)		
15	a. Z-400 (1)	San Carlos	SÍ	SÍ	no
16	b. Z-400 (2)	(~850 msnm)	SÍ	SÍ	no
17	c. Z-400 (3)	Sección: 7220	SÍ	SÍ	no
18	d. Z-400 (4)		SÍ	SÍ	no
19	e. Z-400 (5)		SÍ	SÍ	no
20	a. Z-402	San Carlos	SÍ	SÍ	no
21	b. Z-402 (B)	(~850 msnm) Sección: 7220	SÍ	SÍ	no
21	AL-39	San Carlos (~850 msnm) Sección: 6450	SÍ	SÍ	no

Tabla 4.1. Inventario de las muestras analizadas en la presente tesis. Se indica clave y ubicación delas mismas. Ver Figura 4.1 para ubicar las muestras de acuerdo al Nivel y Sección en el que seencuentran dentro de la mina en la veta Zuloaga.

4.2 Análisis

La aplicación de diferentes técnicas analíticas en ciencias de la Tierra ha tenido como una de sus finalidades la caracterización mineral para su posterior análisis con fines de investigación, exploración o explotación.

Figura 4.1 Sección E-W de la veta Zuloaga en el Distrito de san Martín de Bolaños. las isotermas se marcaron con base en los datos de temperaturas de homogeneización medidos en minerales de ganga (cuarzo y fluorita) (Albinson y Rubio, 2001). Las muestras analizadas en este estudio se encuentran señaladas con un cuadrado y clave correspondiente.

Estas técnicas han sido clasificadas en dos grupos (Melgarejo et al., 2010; abreviaciones en inglés): (1) las "técnicas convencionales" que incluyen: (1a) difracción de rayos X (XRD), (1b) microscopio electrónico de barrido con analizador de energías (SEM-EDS), (1c) cátodo-luminiscencia (CL), (1d) microsonda electrónica (EPMA); y (2) las "técnicas no convencionales": (2a) emisión inducida de partículas de rayos X (IXE), (2b) espectrometría de masas de iones secundarios (SIMS) y (2c) ablación láser con espectrometría de masas con plasma acoplado inductivamente (LA-ICP-MS).

De acuerdo a los objetivos de esta tesis, las técnicas analíticas seleccionadas para la caracterización de la fluorita de ganga fueron: microsonda electrónica (EPMA) para determinar el porcentaje de Ca y F en los cristales de fluorita. Posteriormente, dichos cristales se analizaron mediante ablación láser acoplada a espectrometría de masas con plasma de acoplamiento inductivo (LA-ICP-MS), para determinar las concentraciones de elementos de tierras raras. Para ver los aspectos teóricos de las técnicas empleadas en esta tesis ver el Anexo A1.

4.2.1 Análisis petrográfico

Para realizar el análisis petrográfico las muestras se limpiaban con un paño de microfibra y una mezcla de agua destilada y etanol; se utilizó un microscopio estereoscópico Wild Heerbrugg M5A con iluminación incandescente de 25 watts, así como un microscopio polarizador Leitz Wetzlab SM-LUX-POL (luz reflejada y transmitida)(las características de este análisis se encuentran resumidas en la tabla 4.2).

Análisis	Instrumentación	Condiciones	Locación
Petrográfico	 Microscópio estereoscópico Wild Heerbrugg M5A. Microscopio polarizador Leitz Wetzlab SM-LUX-POL. 	 Iluminación: Lámpara incandescente de 25 watts. Luz reflejada y transmitida 	Facultad de Ingeniería, Ciudad Universitaria.
EPMA (Electron Probe Micro-Analysis)	 Microscopio electrónico de barrido marca Zeiss, modelo EVO MA10. 	Corriente: <u>15 nA.</u> Diferencia de potencial: <u>20 keV.</u> Diámetro del haz de electrones: <u>1 µm.</u> Estándar externo: <u>F 48.67%, Ca 51.33%.</u>	Laboratorio de microscopia electrónica y microanálisis, Instituto de Geología, Ciudad Universitaria.
LA-ICP-MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry)	 Láser ASI LPX Pro acoplado a un espectrómetro de masas Thermo Scientificic iCap Serie Q ICP- MS 	Frecuencia: <u>5 Hz.</u> Energía pulsada: <u>9 J.</u> Diámetro del disparo: <u>110 µm.</u> Estándar interno: <u>Ca⁴⁴.</u> Estándar externo: <u>Cristal</u> <u>NIST SRM 612.</u>	Laboratorio de estudios isotópicos, Centro de Geociencias (CGEO), Juriquilla, Querétaro.

Tabla 4.2 Resumen de las condiciones, locación e instrumentación de los diferentes análisisrealizados para este estudio.

4.2.2 Microsonda electrónica (EPMA, Electron Probe Micro-Analysis)

Para realizar el análisis EPMA, las muestras fueron sometidas a un baño ultrasónico con agua destilada para después ser recubiertos con una película de carbón; los análisis mediante microsonda electrónica fueron realizados en el Instituto de Geología de la Universidad Nacional Autónoma de México (ver figura 4.2). Estos análisis se llevaron a

cabo con ayuda de un microscopio electrónico de barrido marca Zeiss, modelo EVO MA10, a una corriente de 15 nA, una diferencia de potencial de 20 keV y un haz de electrones de 1 µm de diámetro, como estándar externo se utilizó un cristal sintético de fluorita, con composición: F 48.67% y Ca 51.33%)(las características de este análisis se encuentran resumidas en la tabla 4.2).

Figura 4.2. (Arriba, Izquierda) Muestras con película de carbón para análisis EPMA, (Arriba, Derecha) Ubicación de las muestras en la platina; (Abajo) Equipo para análisis de microsonda electrónica (ZEISS, Modelo EVO MA 10) del Laboratorio de microscopía electrónica y microanálisis del Instituto de Geología, Ciudad Universitaria.

4.2.3 Espectrometría de masas mediante ablación láser con plasma acoplado inductivamente (LAICPMS, Laser Ablation Inductively Coupled Plasma Mass Spectrometry)

Para las lecturas mediante ablación láser, las muestras fueron limpiadas con etanol para remover la película de carbón, devastadas ligeramente con pasta de diamante y sometidas, nuevamente, a un baño ultrasónico con agua destilada durante 20 minutos. Los análisis LA-ICP-MS tuvieron lugar en el Laboratorio de estudios isotópicos del Centro de Geociencias (CGEO) de la Universidad Nacional Autónoma de México en Juriquilla, Querétaro (ver figura 4.3), éstos análisis se realizaron con ayuda de un láser ASI LPX Pro acoplado con un espectrómetro de masas Thermo Scientificic iCap serie Q ICP-MS, utilizando como estándar interno Ca⁴⁴ y como externo el estándar un cristal NIST SRM 612 (la precisión del estándar 612, depende del elemento analizado, pero en general es menor al 0.5% (2 σ).

Figura 4.3. Laboratorio de estudios isotópicos y elementos traza del Centro de Geociencias, UNAM.

Después de realizar un promedio de 17 ablaciones puntuales y 4 análisis trazando una línea continua de ablación (*laser traverse*) en un cristal de fluorita (ver figura 4.4), las condiciones para optimizar los resultados se determinaron en una frecuencia de 5 Hz con una energía pulsada de 9 J, para un diámetro del disparo 110 µm; todas las lecturas se realizaron como ablaciones singulares en puntos localizados de las muestras.

Figura 4.4. Monitoreo de las pruebas para determinación de las condiciones de análisis. En la pantalla de la izquierda pueden observarse la línea continua de ablación a lo largo del cristal analizado, en la pantalla de la derecha pueden observarse las distintas líneas de ablación continuas realizadas en el cristal.

Durante la medición realizada con ablación láser, se monitoreó la forma y profundidad del cráter hecho para poder llevar un control entre la regularidad del cráter y la precisión de la lectura (para consultar dicho monitoreo, ver Anexo A5).

Los disparos se realizaron de manera sistemática, en el caso de los cristales euedrales de fluorita los disparos se realizaron en el centro, parte media y bordes del cristal; para los crecimientos masivos de fluorita, los disparos se realizaron siguiendo la dirección del crecimiento cristalino. Los datos obtenidos fueron discriminados con base en la desviación estándar de las lecturas realizadas y los datos elegidos se graficaron en diagramas multielementales (SPIDER).

4.3 Conclusiones

El uso de diferentes técnicas analíticas para la caracterización de las muestras analizadas permite complementar la información que se recaba singularmente; la metodología y sistematización de los análisis son necesarias para la optimización de los resultados.

Realizar una caracterización petrográfica de cada muestra permite determinar los cristales o agregados cristalinos de interés para posteriormente realizar las lecturas con microsonda electrónica para conocer con precisión la cantidad de Ca y así poder llevar a cabo los estudios mediante LAICPMS.

La preparación adecuada de las muestras, así como su caracterización integral mediante petrografía y geoquímica, permitió obtener resultados confiables, que se presentan y discuten en los capítulos posteriores.

5.1 Análisis petrográfico

Se muestra a continuación la descripción petrográfica de las muestras analizadas. Para un listado de las muestras y su localización, ver la Tabla 4.1 (Capítulo anterior). En el Anexo A2, se muestran imágenes de las muestras adquiridas con el microscopio electrónico y algunos detalles petrográficos no incluidos en este capítulo.

5.1.1 Muestra: AR-188. Nivel: San José, Sección: 7400.

Figura 5.1. Fotomicrografías de las tres superficies pulidas preparadas de la muestra AR-188: AR-188-0, AR-188-1 y AR-188-2. ank=ankerita, ba= barita, cc=calcita, fl= fluorita, ig=ignimbrita, py=pririta.

-Superficie: AR-188-0 (Figura 5.1, izquierda; Anexo A2)-

Se observa una secuencia de mineralización a partir de un fragmento de roca de aspecto porfirítico, probable ignimbrita, con alteración hidrotermal que consiste en calcita lechosa masiva intercrecida con menores cantidades de probable ankerita (?) y aún menores cantidades de carbonatos de REE (ver anexo A3: análisis puntuales con microsonda). La fluorita incolora subedral intercrecida con barita incolora culminando la secuencia

-Superficie: AR-188-1 (Figura 5.1, centro; Anexo A2)-

La secuencia de cristalización consiste de problable ankerita de aspecto fragmental, seguido de calcita lechosa que presenta pirita diseminada, muy fina. Seguida de fluorita incolora a ligeramente violeta subedral, que forma texturas triangulares en la calcita lechosa.

-Superficie: AR-188-2 (Figura 5.1, derecha; Anexo A2)-

La secuencia se forma a partir de un fragmento de ignimbrita que inicia con una banda de aproximadamente 1mm de espesor de cuarzo gris seguido de un intercrecimiento de calcita blanca a incolora y fluorita incolora a violeta, se presenta en texturas triangulares a cristales subedrales.

Interpretación:

Con base en las tres superficies descritas la muestra AR-188 representa una secuencia que indica un relleno de cavidades; dicha secuencia consiste en la cristalización inicial de cuarzo bandeado aris o con un intercrecimiento de carbonatos dominado por calcita blanca a incolora, subedral a masiva, asociada con probable ankerita y trazas de probables carbonatos REE. Además, de la diseminación de pirita en los carbonatos es característica. Por último, puede observarse fluorita incolora a ligeramente púrpura culminando la secuencia, esta fase puede observarse formando texturas triangulares en la calcita o bien cristales subedrales y se observa ocasionalmente barita incolora subedral acompañando a la fluorita.

Secuencia paragenética:

Ankerita	
Cuarzo	
Calcita	
Pirita	
Fluorita	
Barita	

5.1.2 Muestra: AR-172AB.Nivel: San Pablo; Sección: 5450.

Figura 5.2. Fotomicrografía muestras AR-172-A y AR-172-B; fl= fluorita, fl b.= fluorita botroidal, f gr= fase granular, f met.= fases metálicas, lt=fragmento lítico, qtz= cuarzo.

-Superficie: AR-172-A (Figura 5.2, izquierda; Anexo A2)-

Se observa una secuencia de mineralización a partir de un fragmento de roca de aspecto porfirítico, probable ignimbrita, con alteración hidrotermal (silicificación) seguida de un intercrecimiento de fluorita incolora subedral a masiva con fases metálicas con hábito similar al vermicular, con un ligero bandeamiento concéntrico, de espesores variables (ver figura A2.2, Anexo A2); posteriormente, pueden observarse bandas de color naranja-rosado de aspecto granular, en algunos sitios depositadas rítmicamente, de grano fino a muy fino. Seguido por un mosaico cristalino de fluorita incolora subedral a euedral a euedral a euedral, se encuentra en textura en peine en pequeñas cavidades.

-Superficie: AR-172-B (Figura 5.2, derecha; Anexo A2)-

Se observa una secuencia de mineralización similar a la observada en la superficie AR-172-A; sin embargo, esta muestra exhibe un mayor volumen de las bandas granulométricas color naranja rosado. La secuencia mineral se observa en orden similar a la muestra AR-172-A, es decir, se observa un intercrecimiento mineral de fluorita y fases metálicas con hábito similar al vermicular, en algunos sitios se observan texturas triangulares de relleno; en seguida de este mosaico cristalino, se observan bandas granulares naranja-rosadas y por último, se observa fluorita incolora de hábito botroidal.

Interpretación:

Con base en las superficies descritas anteriormente, la muestra AR-172-AB representa una secuencia que indica un relleno de cavidades; dicha secuencia consiste en la cristalización a partir de un fragmento de ignimbrita silicificado, seguido de la cristalización inicial de fluorita incolora subedral a masiva intercrecida con fases metálicas de hábito similar al vermicular. En seguida de este mosaico se observan bandas granulares y por último, puede observarse fluorita incolora de hábito botroidal.

Secuencia paragenética:

Fluorita		
Fases metálicas		
vermiculares	-	
Bandas		
granulares		
Fluorita botroidal		

5.1.3 Muestra: AR-172CDE.Nivel San Pablo; Sección: 5500.

Figura 5.3. Fotomicrografía muestras AR-172-C, AR-172-D y AR-172-E; fl=fluorita, f gr.= fase granular, f met.= fases metálicas, qtz= cuarzo, slf= sulfuros.

-Superficie: AR-172-C (Figura 5.3, izquierda; Anexo A2)-

Se observa una secuencia mineral formada a partir de un fragmento lítico(¿?) afírico de tonalidad rosa lechoso, seguido por intercrecimiento cristalino de cuarzo y

fluorita; el cuarzo se observa euedral a subedral, en algunas zonas pueden observarse cristales hexagonales, por otro lado, la fluorita se encuentra de forma subedral a masiva; este mosaico cristalino varía su tonalidad de verde a incoloro. Relacionados a este intercrecimiento íntimo de fluorita y cuarzo, se observan (en texturas triangulares y concentrados preferencialmente en algunas zonas) sulfuros (galena, calcopirita, covelita, pirita) y hematita; en algunas zonas se observan los cristales de pirita pervasivamente alterados, formando pseudomorfos de hematita a partir de pirita.

-Superficie: AR-172-D (Figura 5.3, centro; Anexo A2)-

La muestra AR-172-D exhibe una secuencia mineral similar a la descrita para la muestra AR-172-C, sin embargo, esta muestra no contiene ningún elemento lítico; por otro lado, el mosaico cristalino compuesto por cuarzo y fluorita, es predominantemente incoloro y se encuentra en mayor proporción que en la muestra anterior. Además, en esta muestra es posible observar la presencia de las fases metálicas de hábito similar al vermicular (presentes en las muestras AR-172-A y AR-172-B) intercrecidas con este mosaico cristalino, dispersamente dispuestas.

-Superficie: AR-172-E (Figura 5.3 derecha; Anexo A2)-

Se observa una secuencia de mineralización a partir de un fragmento lítico afírico de color naranja-rosado, que muestra halos de alteración naranjas, precedido del intercrecimiento de fluorita y cuarzo, cuyas coloraciones varían de verde a incoloro, en algunas secciones blancos; se encuentran presentes fases metálicas de hábito similar al vermicular intercrecidas con la fluorita y cuarzo, los sulfuros (galena, calcopirita, pirita, covelita) y óxidos (hematita) se encuentran como texturas triangulares en este mosaico cristalino.

Interpretación:

A partir de las muestras anteriormente descritas, puede identificarse que la muestra AR-172-CDE representa un relleno de cavidades completo representado por un mosaico cristalino compuesto por fluorita, cuarzo, sulfuros y óxidos. La fluorita y cuarzo se encuentran intercrecidos y en las muestras AR-172-D y AR-172-E las fases metálicas de hábito similar al vermicular se encuentran intercrecidas con las dos fases anteriores; los sulfuros (galena, calcopirita, pirita y covelita) y hematita, se encuentran presentes como texturas triangulares de relleno, finalizando la secuencia mineral.

Secuencia paragenética:

5.1.4 Muestra: Z-400. Nivel: San Carlos; Sección: 7220.

Figura 5.4. Fotomicrografía muestras Z-400-1 y Z-400-2; cc=calcita, esf= esfalerita, fl=fluorita, gal= galena, qtz= cuarzo, lt= fragmento lítico, slf= sulfuros.

-Superficie: Z-400-1 (Figura 5.4, derecha; Anexo A2)-

La muestra Z-400-1 exhibe una secuencia mineral compuesta por un intercrecimiento bandeado de fluorita, cuarzo y en menores cantidades, calcita hojosa (silicificada); la coloración de este mosaico bandeado varía de incoloro a lila, la fluorita subedral a masiva, de grano fino a medio presenta un bandeamiento de espesores variables (Ver figura 5.4 izq.). Intercrecidos con este mosaico, se encuentran esfalerita, galena y pirita de grano fino, diseminados. Culminando la secuencia se encuentra cuarzo lechoso subedral a euedral de grano fino a medio, en zonas con cavidades se encuentra como cuarzo en peine.

-Superficie: Z-400-2 (Figura 5.4, izquierda; Anexo A2)-

La muestra Z-400-2 exhibe una secuencia mineral a partir de esfalerita euedral a subedral de grano medio a grueso, intercrecida con galena subedral de grano medio; posteriormente, se encuentra un mosaico cristalino compuesto por fluorita, cuarzo y calcita hojosa silicificada, la coloración de este mosaico varía de incoloro a ligeramente blanco. Este mosaico contiene esfalerita, galena, pirita y hematita de grano fino, diseminadas, así como un cristal euedral (± 1mm de longitud) de apatita (ver figura A2.10, Anexo A2).

Interpretación:

Las superficies anteriores representan la mineralogía de una veta, la superficie Z-400-2 incluye las primeras fases de rrelleno de la veta. La superficie Z-400'1 representa las fases tardías del relleno. A partir de las dos muestras anteriores se puede concluir que la muestra Z-400 representa un relleno de cavidades incompleto; esta secuencia consiste en la cristalización de esfalerita euedral a subedral de grano medio a grueso intercrecida con galena subedral de grano medio, posteriormente se observa un mosaico cristalino bandeado de fluorita y cuarzo incoloros a blancos intercrecidos con sulfuros de grano fino (diseminados); contenido en este mosaico cristalino bandeado se observa un cristal euedral (espesor: ±1mm) de apatita; en las secciones paragenéticamente tardías de este mosaico se encuentra calcita hojosa silicificada. Posterior a este mosaico se encuentra

una zona con una mayor concentración de sulfuros de grano fino; esta zona es precedida por cuarzo subedral a masivo con tonos grises a lilas, el cual culmina la secuencia mineral.

Secuencia paragenética:

Fofolorito	
Estalenta	
Galena	
Pirita	
Hematita	
Fluorita	
Cuarzo	
Calcita h.	
Apatita	

5.1.5 Muestra: Z-400-1. Nivel: San Carlos; Sección: 7206.

Figura 5.5. Fotomicrografía superficies Z-400-1–A, Z-400-1–B y Z-400-1–C; cc=calcita, fl=fluorita, f met.= fases metálicas, qtz= cuarzo, lt= fragmento lítico.

-Superficie: Z-400-1-A (Figura 5.5, izquierda; Anexo A2)-

Esta muestra presenta una secuencia mineral compuesta por fluorita incolora subedral de grano medio, intercrecida con calcita hojosa (silicificada) de grano medio a grueso y cristales euedrales de grano fino de esfalerita y hematita; además, es posible observar un fragmento lítico amarillo afírico (espesor: ± 1cm).

-Superficie: Z-400-1-B (Figura 5.5, centro; Anexo A2)-

La secuencia mineral de esta muestra se encuentra compuesta por un intercrecimiento de fluorita y cuarzo, incoloros, subhedrales de grano medio, así como calcita hojosa silicificada; posteriormente, pueden observarse cristales euedrales de esfalerita, galena, pirita y hematita en forma de texturas triangulares de relleno. Por otro lado, es posible observar un fragmento lítico verde grisáceo, afírico.

-Superficie: Z-400-1-C (Figura 5.5, derecha; Anexo A2)-

La secuencia mineral de esta muestra se compone por el intercrecimiento cristalino de fluorita incolora subedral, cuarzo subedral incoloro a lechoso (en menor volumen que las muestras Z-400-1-A y Z-400-1-B), calcita hojosa silicificada y cristales subedrales a euedrales de grano fino de esfalerita, galena, pirita y hematita, dispersos en el mosaico cristalino.

Interpretación:

Con base en las tres superficies descritas la muestra Z-400-1 representa un relleno de cavidades; esta secuencia se conforma por la cristalización de fluorita, cuarzo, calcita hojosa (silicificada), así como cristales de grano fino subedrales a euedrales de esfalerita, galena, pirita y hematita. En algunas zonas de este mosaico la fluorita se encuentra rellenando los espacios formados entre el cuarzo y la calcita, en otras zonas, los espacios son rellenados por las fases metálicas, indicando que estas fases son posteriores a la cristalización de cuarzo y calcita.

Secuencia paragenética:

5.1.6 Muestra: 5702. Nivel: San Carlos; Sección: 5800.

Figura 5.6. Fotomicrografía y esquema ilustrativo de la muestra 5702; fl= fluorita, qtz= cuarzo, slf=sulfuros.

-Superficie: 5702 (Figura 5.6; Anexo A2)-

Para la descripción de esta muestra se realizó una representación por zonas (Figura 5.6 derecha), la muestra se encuentra compuesta de la siguiente manera: un intercrecimiento cristalino de fluorita y cuarzo, subedrales de grano medio, incoloros a ligeramente rosas (zona A), esta variación en tonalidad podría deberse a la presencia de cristales finos a muy finos de fases metálicas. Posterior a este mosaico, es posible observar un intercrecimiento de fluorita y cuarzo, subedrales de grano fino a medio, este mosaico cristalino varía de incoloro a ligeramente verde (zona B). La presencia de sulfuros (esfalerita, galena, pirita) se concentran en mayor medida en algunas zonas de la muestra (zona B') y en otras zonas es posible observarlos como texturas triangulares, rellenando los espacios entre la fluorita y el cuarzo (de tonalidades verdes). Por último, se observa un mosaico cristalino de cuarzo subedral incoloro a ligeramente lechoso (zona C).

Interpretación:

La muestra 5702 representa un relleno de cavidades que de acuerdo a las zonas descritas se compone de la siguiente manera: zona A, compuesta por un mosaico cristalino de fluorita y cuarzo subedrales, incoloros; zona B y B' intercrecimiento de fluorita y cuarzo subedrales, incoloros; zona B y B' intercrecimiento de fluorita y cuarzo subedrales, incoloros a verdes, con presencia de fases metálicas intercrecidas y concentradas en algunas zonas o como texturas triangulares de relleno; zona C, compuesta por cuarzo subedral a masivo, incoloro. El mosaico que compone la zona A, es similar al observado en la muestra Z-400-1-B, por otro lado, la presencia de dos generaciones de fluorita y cuarzo, así como el relleno de cavidades en algunas zonas, permiten identificar una superposición de eventos, en donde la zona C se interpreta como el último episodio de la secuencia mineral. Probablemente sea un relleno de brecha, en el cual los clastos de A y B están cementados por C.

Zono A	Fluorita	
Zona A	Cuarzo	
Zona B	Cuarzo	
Zona B'	Sulfuros	_
Zono C	Fluorita	
Lona C	Cuarzo	••

Secuencia paragenética:

5.1.7 Muestra: Z-400. Nivel: San Carlos; Sección: 7220.

-Superficie: Z-400(1) (Figura 5.7)-

Figura 5.7.Fotomicrografías de la lámina Z-400(1); (A) fotomicrografía (luz transmitida) que muestra inclusiones fluidas en fluorita, alineadas a algunos planos de fractura; (B) fotomicrografía de luz transmitida que muestra inclusiones fluidas en fluorita, alineadas a planos de crecimiento; (C) fotomicrografía de luz transmitida que muestra inclusiones fluidas alineadas a los planos de crecimiento de la esfalerita; (D) fotomicrografía de luz reflejada que muestra el intercrecimiento íntimo de argentita, esfalerita, hematita y galena., (Arg)= argentita, (Esf)= esfalerita, (Gal)= galena, (Hem)= hematita, (IF)= inclusiones fluidas.

La secuencia inicia con una banda poliminerálica (espesor ± 0.9 cm) compuesta por esfalerita (color miel, subedral), galena subedral y argentita de grano fino a medio; en algunos cristales de esfalerita es posible observar inclusiones fluidas alineadas a una de las caras de los cristales (ver Figura 5.7 C). La mineralización de plata se encuentra asociada a hematita acicular (especularita) de grano fino a medio (ver Figura 5.7 D), así como a calcita hojosa silicificada.Por secciones es posible observar la presencia de clorita en contacto con cristales subedrales de esfalerita y hematita.

Posteriormente, se observa un intercrecimiento cristalino de fluorita (subedral, incolora) y cuarzo (subedral, incoloro) de grano medio a fino; en la fluorita es posible observar inclusiones fluidas bifásicas (del tipo L+V) de atrapamiento homogéneo con ligeras variaciones en el grado de relleno. Algunas de estas inclusiones se observan alineadas a las caras de los cristales (inclusiones primarias) (ver Figura 5.7 B), así como a algunos planos de fractura (inclusiones secundarias o pseudosecundarias) (ver Figura 5.7 A).

La secuencia anterior se encuentra cortada por un mosaico cristalino compuesto por cuarzo subedral a euedral (en pequeñas cavidades se observa formando texturas en peine) y calcita masiva a subedral incolora.

-Superficie: Z-400(2) (Figura 5.8)-

Figura 5.8. Fotomicrografías de la superficie Z-400(2); (A) fotomicrografía de luz transmitida de la asociación de carbonatos y fases metálicas (e.g. hematita); (B) fotomicrografía de luz reflejada que presenta la concentración por zonas de fases metálicas (esfalerita, galena y hematita; (C) fotomicrografía de luz transmitida que presenta la asociación de fases metálicas diseminadas en contacto con clorita. (Cc) fases carbonatadas, (Cl)= clorita, (Esf)= esfalerita, (Gal)= galena, (Hem)= hematita, (Qtz)= cuarzo.

La muestra se encuentra compuesta por: cuarzo subedral a euedral (con variación de granulometría de fino a medio), en pequeñas cavidades se observa formando texturas en peine, fluorita incolora de grano fino subedral a euedral (en pequeñas cavidades pueden observarse cristales proyectados), fases carbonatadas (probablemente calcita) masivas a subedrales, en algunas zonas se encuentra en contacto con clorita y argentita (grano fino), esfalerita, galena y calcopirita, de grano fino a medio. Las zonas que presentan mayor concentración de fases metálicas coinciden con una mayor proporción de fases carbonatadas(e.g. ver Figura 5.8 A); por otro lado, la mineralización de mena varía su disposición: en algunos sitios se observan de grano fino a medio, concentradas en pequeñas vetas (espesor ± 1 cm) (ver Figura 5.8 B) mientras que en otros sitios pueden observarse de grano fino y diseminadas (ver Figura 5.8 C).

-Superficie: Z-400(3) (Figura 5.9)-

La muestra se encuentra compuesta por un intercrecimiento cristalino de cuarzo de grano fino a medio, asociado a zonas altamente cloritizadas con presencia de cristales de grano fino (diseminados) de esfalerita, calcopirita y galena, la cual se presenta con un tinte ligeramente rosa (ver Figura 5.9 A); estas fases sulfuradas se observan de grano medio a grueso, concentradas en una veta (±0.5 cm de espesor); además de las fases sulfuradas anteriormente mencionadas, puede observarse covelita en texturas triangulares de relleno (ver Figura 5.9 B) o bien afectando los bordes de los cristales de galena y esfalerita. Posterior a este mosaico cristalino es posible observar la presencia de fluorita y cuarzo, subedrales a euedrales de grano fino a medio, los cuales en pequeñas cavidades forman texturas en peine o bien texturas triangulares de relleno.

Figura 5.9. Fotomicrografías de la superficie Z-400(3); (A) fotomicrografía (luz reflejada) de texturas triangulares de galena; (B) (derecha) fotomicrografía de luz reflejada (nicoles cruzados) que muestra cristales subhedrales de grano fino de covelita, (izquierda) acercamiento con nícoles II a cristales de covelita.

-Superficie: Z-400(4 y 5) (Figura 5.10)-

Figura 5.10. Fotomicrografías de las superficies Z-400 (4) y Z-400 (5); (A) fotomicrografía de brecha Z-400(4), pueden observarse fragmentos líticos, cristales y matriz de tonalidad roja; (B) fotomicrografía (luz reflejada) en donde se observan cristales de grano medio de pirita, esfalerita (de granulometría fina-media) y galena y calcopirita de grano fino en contacto con fluorita; (C) fotomicrografía (luz reflejada) de asociación mineral esfalerita-galena en fluorita.

Ambas superficies representan brechas polimícticas, soportadas por matriz, de clastos subangulares, heterogranulares. Estas brechas se encuentran compuestas por fragmentos líticos (en su mayoría ignimbritas) de grano medio, cristales subedrales de grano fino de cuarzo fluroita, esfalerita y galena, cristales subedrales de grano medio de calcopirita; así también puede observarse fluorita subedral a masiva, incolora de grano medio intercrecida íntimamente con cuarzo subedral de grano medio. La mineralización de mena en estas muestras se encuentra diseminada, compuesta principalmente por calcopirita y en menor medida esfalerita y galena; la esfalerita se observa como esfalerita de alto hierro, en comparación de la esfalerita color miel (baja en Fe) de las muestras anteriores. La matriz presenta una tonalidad roja, podría deberse a la presencia de óxidos (e.g. hematita) de grano muy fino.

Interpretación:

Con base en las superficies descritas la muestra Z-400 representa una secuencia que indica un relleno de cavidades; dicha secuencia formada a partir de fragmentos de roca

encajonante, consiste en la cristalización inicial de una banda conformada por esfalerita, galena, argentita y hematita (especularita), con menor presencia de pirita.

Posteriormente cristalizaron fluorita (incolora) y cuarzo (blanco a incoloro), con diseminación de minerales de mena de grano fino (esfalerita, galena, calcopirita y pirita) subedrales de grano fino a medio.

Por último se observa, la presencia de fluorita asociada a la covelita; esta última fase se interpreta como una fase tardía ya que puede observarse en texturas triangulares de relleno (Figura 5.9B) o bien reemplazando los bordes de cristales de galena.

Se interpretan dos generaciones de fluorita y cuarzo: una asociada a la mineralización con galena y esfalerita, y otra asociada a la cristalización de covelita.

Secuencia paragenética Z-400:

Esfalerita		
Galena		
Pirita		
Calcopirita		
Covelita		
Fluorita		 ···
Cuarzo		
Brecha		

5.1.8 Muestra: Z-400(B). Nivel: San Carlos; Sección: 7400.

-Superficie: Z-400(B)-

En la muestra Z-400 (B) se observa una zona de concentración de mena con carbonatos de hábito similar a plumas de grano medio a grueso, la mena está compuesta por esfalerita de grano medio (en algunas zonas se observa opaca y en otras sigue conservando su cristalinidad) afectada por calcopirita (*chalcopyrite disease*) asociada a pirita subedral de grano fino a medio, posterior a esta zona de concentración de mena, se observa una abundante presencia de fluorita, cuarzo, clorita y carbonatos.Esta superficie fue colectada muy cerce de la muestra Z-400.

5.1.9 Muestra: Z-402. Nivel: San Carlos; Sección: 7220.

-Superficie: Z-402-

En la muestra Z-402 es posible observar la asociación: esfalerita (grano grueso)- argentita (grano medio a fino)- galena (grano medio a fino)- hematita (grano fino), las zonas que presentan la mayor concentración de mena se asocian a zonas con abundante presencia de carbonatos y calcita hojosa;

-Superficie: Z-402(B)-

la muestra Z-402 (B) presenta 2 zonas con abundante presencia de cristales subedrales de grano medio de calcopirita y covelita, estas zonas se encuentran divididas por vetas con cristales de fluorita y cuarzo proyectados hacia el sur de la muestra, así como abundantes carbonatos y en menor presencia clorita y hematita de grano fino.

Interpretación:

Esta superficie fue colectada muy cerce de la muestra Z-400. Junto con la superficie Z-400 (B) fue tomada en cuenta para lasecuencia paragenética de Z-400.

5.1.10 Muestra: AL-39. Nivel: San Carlos; Sección: 6450.

-Superficie: AL-39-

La superficie AL-39 presenta una mineralogía similar a la superficie Z-400(B), con una menor presencia de cristales de covelita.

5.1.11 Interpretación final

Tomando en cuenta la presencia de fluorita en todas las muestras analizadas, se puede establecer que en general, la fluorita ocurre en todas las etapas de mineralización registradas en San Martín de Bolaños. Por lo que se reconocen fluoritas tempranas intermedias y tardías en la secuencia de mineralización hidrotermal como se muestra en la Tabla 5.2.

Se identificó sólo una generación temprana de fluorita y se observó que el color y la forma de las fluoritas estudiadas no guardan semejanza entre las generaciones tempranas y tardías. Así mismo, la temperatura asociada a las diferentes generaciones de fluoritas no es exclusiva para cada una de ellas; por ejemplo, la fluorita identificada como paragenéticamente temprana (muestra AR-172-A) se encuentra asociada a fluidos de elevada temperatura (~320 °C), al igual que la muestra 5702, sin embargo esta muestra se identifica como una fluorita paragenéticamente tardía.

Las fluoritas que presentan un ligero bandeamiento, se encuentran íntimamente relacionadas a vetas de minerales metálicos; mientras que los crecimientos masivos mostrarán una relación más estrecha con la diseminación de cristales metálicos.

		T °C			
		(Albinson y	Temprana Intermedia	Tardía	Detalle
		Rubio, 2001)			
1	AR-172-A-2	~320 °C			Fluorita oscura, intercreida con metales
2	AR-172-A-4	~320 °C			Fluorita oscura, intercreida con metales
3	AR-172-A-5	~320 °C			Fluorita oscura, intercreida con metales
4	AR-172-B-1	~320 °C			incolora, botroidal
5	AR-172-B-4	~320 °C			incolora, botroidal
6	AR-172-B-5	~320 °C			incolora, botroidal
7	AR-172-B-6	~320 °C			incolora, botroidal
8	AR-172-B-8	~320 °C			incolora, botroidal
9	AR-172-C-2	~320 °C			verde, grano grueso
10	AR-172-C-3	~320 °C			verde, grano grueso
11	AR-188	>240 °C			incolora, grano grueso
12	AR-188-1-5	>240 °C			cristales euedrales, grano medio
13	AR-188-1-6	>240 °C		_	cristales euedrales, grano grueso
14	AR-188-2-3	>240 °C			cristales euedrales, grano grueso
15	Z-400-1-1	>240 °C			fluorita lila, masiva con ligero bandeamiento
16	Z-400-1-2	>240 °C			fluorita lila, masiva con ligero bandeamiento
17	Z-400-1-3	>240 °C		_	fluorita lila, masiva con ligero bandeamiento
18	Z-400-1-4	>240 °C		_	fluorita lila, masiva con ligero bandeamiento
19	Z-400-1-5	>240 °C		_	fluorita lila, masiva
20	Z-400-1-7	>240 °C			fluorita lila, masiva
21	Z-400-1-8	>240 °C		_	fluorita lila, masiva
22	Z-400-1-9	>240 °C		_	fluorita lila, masiva
23	Z-400-1-10	>240 °C			fluorita lila, masiva
24	Z-400-1-A-1	>240 °C			fluorita incolora, euedral grano grueso
25	Z-400-1-A-2	>240 °C			fluorita incolora, euedral grano grueso
26	Z-400-1-A-4	>240 °C			fluorita incolora, euedral grano grueso
27	Z-400-1-A-5	>240 °C			fluorita incolora, euedral grano grueso
28	Z-400-1-B-1	>240 °C			fluorita ligeramente lechosa, masiva
29	Z-400-1-B-2	>240 °C			fluorita ligeramente lechosa, masiva
30	Z-400-1-B-3	>240 °C			fluorita ligeramente lechosa, masiva
31	Z-400-1-B-4	>240 °C			fluorita ligeramente lechosa, masiva
32	Z-400-1-B-7	>240 °C			fluorita ligeramente lechosa, masiva
33	Z-400-1-C-1	>240 °C			fluorita incolora, subedral, grano medio
34	Z-400-1-C-3	>240 °C			fluorita incolora, subedral, grano medio
35	Z-400-1-C-4	>240 °C			fluorita incolora, masiva
36	Z-400-1-C-6	>240 °C			fluorita incolora, masiva
37	Z-400-1-C-7	>240 °C			fluorita incolora, masiva
38	Z-400-2-2	>240 °C			fluorita incolora, masiva
39	Z-400-2-3	>240 °C			fluorita incolora, masiva
40	Z-400-2-6	>240 °C			fluorita incolora, masiva
41	Z-400-2-7	>240 °C			fluorita incolora, masiva
42	Z-400-2-9	>240 °C			fluorita incolora, masiva
43	5702-1	~320 °C			fluorita ligeramente verde, subedral a masiva
44	5702-2	~320 °C			fluorita ligeramente verde, subedral a masiva
45	5702-3	~320 °C			fluorita ligeramente verde, subedral a masiva
46	5702-4	~320 °C			fluorita ligeramente verde, subedral a masiva
47	5702-5	~320 °C			fluorita ligeramente verde, subedral a masiva
48	5702-6	~320 °C			fluorita ligeramente verde, subedral a masiva

Tabla 5.2 Generaciones de fluorita hidrotermal en la mineralización epitermal de San Martín de
Bolaños (SMB).

5.2 Microsonda electrónica (EPMA)

Los análisis de cristales de fluorita mediante microsonda electrónica se presentan en la tabla 5.3 a continuación.

Muestra					AR-18	88-0				
Punto	1									
Ca wt %	48.512									
F wt %	45.823									
Muestra					AR-18	88-1				
Punto	1	2	3	4	5	6	7			
Ca wt %	50.803	52.354	52.348	52.804	52.164	51.975	52.051			
F wt %	48.603	46.78	47.191	46.982	50.989	50.25	47.806			
Muestra					AR-1	88-2				
Punto	1	2	3	4						
Ca wt %	49.65	49.578	49.546	50.452						
F wt %	44.389	45.338	45.907	44.938						
Muestra					Z-40	0-1				
Punto	1	2	3	4	5	6	7			
Ca wt %	52.179	52.594	51.908	53.089	52.747	52.755	52.434			
F wt %	47.148	47.695	46.715	46.771	47.267	47.836	48.085			
Muestra					Z-40	0-2				
Punto	1	2	3	4	5	6	7	8	9	
Ca wt %	50.502	50.716	50.068	51.208	51.361	50.485	51.252	50.964	51.201	
F wt %	49.547	48.883	49.95	50.333	49.304	51.097	50.069	49.883	50.261	
Muestra					Z-400	-1-A				
Punto	1	2	3	4	5	6				
Ca wt %	50.44	49.809	49.137	50.692	50.774	48.904				
F wt %	46.425	46.181	49.839	44.293	44.553	45.774				
Muestra					Z-400	-1-B				
Punto	1	2	3	4	5	6	7	8	9	10
Ca wt %	49.868	50.097	50.229	50.843	49.599	34.668	49.509	52.015	50.287	48.561
F wt %	44.326	44.825	44.507	44.418	44.854	0.339	45.503	44.39	44.251	44.035
Muestra					7-400	-1-C				
Punto	1	2	3	4	5	6	7	8	9	10
Ca wt %	49.881	51.21	50.122	50.559	50.844	52,638	51.079	51.842	51.74	52.874
F wt %	46.826	47.516	46.619	46.083	46.063	45.966	46.637	47.547	47.291	48.129
Muestra					AR-1	72-A				
Punto	1	2	3	4	5	6				
Ca wt %	51.078	49.105	49.445	50.372	52.067	51.96				
F wt %	47.246	48.904	48.981	48.238	47.474	47.638				
Muestra					AR-1	72-B				
Punto	1	2	3	4	5	6	7	8	9	
Ca wt %	48.683	48.532	48.034	49.598	50.122	49.874	47.08	48.439	47.923	
F wt %	43.179	44.569	42.004	43,283	43,213	44.088	43,901	44.274	43.647	

Muestra					AR-17	72-C				
Punto	1	2	3	4						
Ca wt %	51.043	50.673	50.68	48.142						
F wt %	46.7	48.631	48.227	47.54						
Muestra					AR-17	72-D				
Punto	1	2	3	4	5					
Ca wt %	50.954	51.868	50.96	50.59	50.43					
F wt %	49.032	48.905	48.88	49.11	50.552					
Muestra					AR-1	72-Е				
Punto	1	2	3	4	5					
Ca wt %	0.005	52.627	52.452	52.52	51.467					
F wt %	0	48.861	48.222	48.653	48.917					
Muestra					570)2				
Punto	1	2	3	4	5	6	7	8	9	10
Ca wt %	49.85	49.738	49.234	49.418	49.908	49.323	49.776	50.088	49.912	48.66
F wt %	44.28	43.617	42.721	42.757	43.839	42.857	44.117	43.214	43.782	43.399

Tabla 5.2. Resultados obtenidos mediante microanálisis con microsonda electrónica(EPMA).

Los resultados en la tabla 5.2muestran un contenido de Ca variable, lo que indica el hecho de que elementos incompatibles (como las Tierras Raras) se encuentren sustituyéndolo. Los resultados obtenidos mediante este análisis servirán para realizar una comparación con las lecturas obtenidas mediante ablación láser. Los datos en extenso de estas lecturas se encuentran en el Anexo A3.

5.3 Espectrometría de masa con ablación láser y plasma acoplado por inducción (LAICPMS).

Los análisis mediante ablación láser se presentan en la tabla 5.3 a continuación (los datos originales en extenso se encuentran en el Anexo A4).

Número	1	2	3	4	5	6	7	8
Muestra	AR-172-							
	A-2	A-4	A-5	B-1	B-4	B-5	B-6	B-8
Ti	271	259	261	281	274	268	255	259
Y	26.1	46.6	41.5	21.7	25	8.43	22.1	23.9
Ba	7.63	19.7	3050	9.77	12.9	8.58	9.53	13.99
La	50.9	49.9	37.1	27.1	34.2	13.62	27	32.6
Ce	41.4	48.2	33.5	28.8	34.1	15.54	26.6	32.1
Pr	8.43	9.67	8.6	5.14	6.43	2.78	5.06	6.11
Nd	34.8	41	36.5	20.65	25.2	11.64	19.88	24.6
Sm	5.8	8.41	7.5	3.71	4.27	1.97	3.66	4.21
Eu	1.072	1.87	1.547	0.58	0.681	0.303	0.536	0.67
Gd	4.78	8.08	6.5	3.27	3.84	1.547	3.27	3.83
Tb	0.788	1.281	1.153	0.62	0.74	0.293	0.613	0.697
Dy	5.88	8.56	8.3	4.86	5.37	2.43	4.76	5.56
Но	1.196	1.65	1.624	1.103	1.189	0.543	1.038	1.214
Er	3.32	4.37	4.33	3.33	3.46	1.733	3.04	3.63

C5: Resultados

aү	2.65	2.96	3.16	2.84	2.7	1.532	2.45	2.88
Lu	0.331	0.359	0.368	0.349	0.333	0.222	0.317	0.373
Са	491050	503720	520670	486830	495980	501220) 498740) 484390
Número	9	10	11	12	13	14	15	16
Muestra	AR-172-	AR-172-	AR-188	AR-188-	AR-188	3- AR-18	8- Z-400-	1-1 Z-400-1-2
	C-2	C-3		1-5	1-6	2-3		
Ti	255	281	2430	296.2	280	2440) 266	284
Y	3.95	5.13	786	60.4	99.9	328	16.9	9 42.4
Ba	7.7	49.1	45.9	2.29	2.11	10.3	bd	l 0.014
La	7.24	9.71	97.8	23.1	17.7	57.1	2.39	9 3.97
Ce	5.12	6.51	183	51.9	36.7	79.2	5.3	7.78
Pr	0.994	1.247	27.9	7.01	5.05	10.87	7 1.01	3 1.394
Nd	4.43	5.66	125.5	30.5	23.7	50.5	6.4	5 9.39
Sm	0.906	1.178	39.6	7.82	6.46	12.14	4 2.32	2 3.62
Eu	0.327	0.395	15.43	2.236	1.919	9 4.1	1.52	2 1.828
Gd	1.041	1.223	59	8.73	8.6	19.8	3.24	4 5.52
dl	0.114	0.151	16.78	1.576	1.516	3.76	0.42	0.832
Dy	0.707	0.845	146.9	11.12	10.59	26.1	2.4	9 5.03
HO Fr	0.126	0.144	34.2	2.28	2.164	3.95	0.40	0.951
Er	0.316	0.365	103.5	5.94	5.41	7.28	0.93	8 2.25
YD	0.152	0.229	105.4	5.02	3.80	2.83		1.549 0.001
Lu	0.0197	0.0343	10.23	0.09Z	0.032	0.34	7 0.08	
Ca	500750	500600	403120	521040	51975	0 49376	50 5217	90 525940
	1							
Número	17	18	19	20	21	22	23	24
Número Muestra	17 Z-400-1-	18 Z-400-1-	19 Z-400-1-	20 Z-400-1-	21 Z-400-1-	22 Z-400-1-	23 Z-400-1-	24 Z-400-1-A-2
Número Muestra	17 Z-400-1- 3	18 Z-400-1- 4	19 Z-400-1- 5	20 Z-400-1- 7	21 Z-400-1- 8	22 Z-400-1- 9	23 Z-400-1- 10	24 Z-400-1-A-2
Número Muestra	17 Z-400-1- 3 270	18 Z-400-1- 4 273 61 5	19 Z-400-1- 5 290 24.1	20 Z-400-1- 7 267	21 Z-400-1- 8 276 16 5	22 Z-400-1- 9 261 20 2	23 Z-400-1- 10 273 62 4	24 Z-400-1-A-2 284 20
Número Muestra Ti Y Ba	17 Z-400-1- <u>3</u> 270 48 0.011	18 Z-400-1- 4 273 61.5 0.028	19 Z-400-1- 5 290 34.1 0.006	20 Z-400-1- 7 267 9.5 bdl	21 Z-400-1- 8 276 16.5 bdl	22 Z-400-1- 9 261 29.3 0.01	23 Z-400-1- 10 273 63.4 0.008	24 Z-400-1-A-2 284 20 0.974
Número Muestra Ti Y Ba	17 Z-400-1- 3 270 48 0.011 3 44	18 Z-400-1- 4 273 61.5 0.028 3 74	19 Z-400-1- 5 290 34.1 0.006 4.09	20 Z-400-1- 7 267 9.5 bdl 3.23	21 Z-400-1- 8 276 16.5 bdl 3 28	22 Z-400-1- 9 261 29.3 0.01 3.31	23 Z-400-1- 10 273 63.4 0.008 3.84	24 Z-400-1-A-2 284 20 0.974 2 36
Número Muestra Ti Y Ba La Ce	17 Z-400-1- 3 270 48 0.011 3.44 6.6	18 Z-400-1- 4 273 61.5 0.028 3.74 7.31	19 Z-400-1- 5 290 34.1 0.006 4.09 6.38	20 Z-400-1- 7 267 9.5 bdl 3.23 5 5	21 Z-400-1- 8 276 16.5 bdl 3.28 5.26	22 Z-400-1- 9 261 29.3 0.01 3.31 5.64	23 Z-400-1- 10 273 63.4 0.008 3.84 7.67	24 Z-400-1-A-2 284 20 0.974 2.36 3.58
Número Muestra Ti Y Ba La Ce Pr	17 Z-400-1- 3 270 48 0.011 3.44 6.6 1.145	18 Z-400-1- 4 273 61.5 0.028 3.74 7.31 1.332	19 Z-400-1- 5 290 34.1 0.006 4.09 6.38 1.051	20 Z-400-1- 7 267 9.5 bdl 3.23 5.5 0.737	21 Z-400-1- 8 276 16.5 bdl 3.28 5.26 0.753	22 Z-400-1- 9 261 29.3 0.01 3.31 5.64 0.891	23 Z-400-1- 10 273 63.4 0.008 3.84 7.67 1.247	24 Z-400-1-A-2 284 20 0.974 2.36 3.58 0.575
Número Muestra Ti Y Ba La Ce Pr Nd	17 Z-400-1- 3 270 48 0.011 3.44 6.6 1.145 7.7	18 Z-400-1- 4 273 61.5 0.028 3.74 7.31 1.332 8.26	19 Z-400-1- 5 290 34.1 0.006 4.09 6.38 1.051 5.87	20 Z-400-1- 7 267 9.5 bdl 3.23 5.5 0.737 3.64	21 Z-400-1- 8 276 16.5 bdl 3.28 5.26 0.753 3.91	22 Z-400-1- 9 261 29.3 0.01 3.31 5.64 0.891 5.03	23 Z-400-1- 10 273 63.4 0.008 3.84 7.67 1.247 8.37	24 Z-400-1-A-2 284 20 0.974 2.36 3.58 0.575 2.67
Número Muestra Ti Y Ba La Ce Pr Nd Sm	17 Z-400-1- <u>3</u> 270 48 0.011 3.44 6.6 1.145 7.7 3.01	18 Z-400-1- 4 273 61.5 0.028 3.74 7.31 1.332 8.26 3.16	19 Z-400-1- <u>5</u> 290 34.1 0.006 4.09 6.38 1.051 5.87 2.11	20 Z-400-1- 7 9.5 bdl 3.23 5.5 0.737 3.64 1.111	21 Z-400-1- 8 276 16.5 bdl 3.28 5.26 0.753 3.91 1.171	22 Z-400-1- 9 261 29.3 0.01 3.31 5.64 0.891 5.03 1.835	23 Z-400-1- 10 273 63.4 0.008 3.84 7.67 1.247 8.37 3.22	24 Z-400-1-A-2 284 20 0.974 2.36 3.58 0.575 2.67 0.78
Número Muestra Ti Y Ba La Ce Pr Nd Sm Eu	17 Z-400-1- 3 270 48 0.011 3.44 6.6 1.145 7.7 3.01 1.267	18 Z-400-1- 4 273 61.5 0.028 3.74 7.31 1.332 8.26 3.16 1.09	19 Z-400-1- 5 290 34.1 0.006 4.09 6.38 1.051 5.87 2.11 2.02	20 Z-400-1- 7 9.5 bdl 3.23 5.5 0.737 3.64 1.111 1.047	21 Z-400-1- 8 276 16.5 bdl 3.28 5.26 0.753 3.91 1.171 0.717	22 Z-400-1- 9 261 29.3 0.01 3.31 5.64 0.891 5.03 1.835 1.8	23 Z-400-1- 10 273 63.4 0.008 3.84 7.67 1.247 8.37 3.22 1.227	24 Z-400-1-A-2 284 20 0.974 2.36 3.58 0.575 2.67 0.78 0.273
Número Muestra Ti Y Ba La Ce Pr Nd Sm Eu Gd	17 Z-400-1- 3 270 48 0.011 3.44 6.6 1.145 7.7 3.01 1.267 4.64	18 Z-400-1- 4 273 61.5 0.028 3.74 7.31 1.332 8.26 3.16 1.09 5.27	19 Z-400-1- 5 290 34.1 0.006 4.09 6.38 1.051 5.87 2.11 2.02 3.17	20 Z-400-1- 7 267 9.5 bdl 3.23 5.5 0.737 3.64 1.111 1.047 1.401	21 Z-400-1- 8 276 16.5 bdl 3.28 5.26 0.753 3.91 1.171 0.717 1.608	22 Z-400-1- 9 261 29.3 0.01 3.31 5.64 0.891 5.03 1.835 1.8 2.74	23 Z-400-1- 10 273 63.4 0.008 3.84 7.67 1.247 8.37 3.22 1.227 5.45	24 Z-400-1-A-2 284 20 0.974 2.36 3.58 0.575 2.67 0.78 0.273 1.35
Número Muestra Ti Y Ba La Ce Pr Nd Sm Eu Gd Tb	17 Z-400-1- 3 270 48 0.011 3.44 6.6 1.145 7.7 3.01 1.267 4.64 0.748	18 Z-400-1- 4 273 61.5 0.028 3.74 7.31 1.332 8.26 3.16 1.09 5.27 0.84	19 Z-400-1- 5 290 34.1 0.006 4.09 6.38 1.051 5.87 2.11 2.02 3.17 0.551	20 Z-400-1- 7 267 9.5 bdl 3.23 5.5 0.737 3.64 1.111 1.047 1.401 0.221	21 Z-400-1- 8 276 16.5 bdl 3.28 5.26 0.753 3.91 1.171 0.717 1.608 0.272	22 Z-400-1- 9 261 29.3 0.01 3.31 5.64 0.891 5.03 1.835 1.8 2.74 0.502	23 Z-400-1- 10 273 63.4 0.008 3.84 7.67 1.247 8.37 3.22 1.227 5.45 0.861	24 Z-400-1-A-2 284 20 0.974 2.36 3.58 0.575 2.67 0.78 0.273 1.35 0.277
Número Muestra Ti Y Ba La Ce Pr Nd Sm Eu Gd Tb Dy	17 Z-400-1- <u>3</u> 270 48 0.011 3.44 6.6 1.145 7.7 3.01 1.267 4.64 0.748 4.96	18 Z-400-1- 4 273 61.5 0.028 3.74 7.31 1.332 8.26 3.16 1.09 5.27 0.84 5.87	19 Z-400-1- 5 290 34.1 0.006 4.09 6.38 1.051 5.87 2.11 2.02 3.17 0.551 3.73	20 Z-400-1- 7 267 9.5 bdl 3.23 5.5 0.737 3.64 1.111 1.047 1.401 0.221 1.401	21 Z-400-1- 8 276 16.5 bdl 3.28 5.26 0.753 3.91 1.171 0.717 1.608 0.272 1.9	22 Z-400-1- 9 261 29.3 0.01 3.31 5.64 0.891 5.03 1.835 1.8 2.74 0.502 3.34	23 Z-400-1- 10 273 63.4 0.008 3.84 7.67 1.247 8.37 3.22 1.227 5.45 0.861 5.92	24 Z-400-1-A-2 284 20 0.974 2.36 3.58 0.575 2.67 0.78 0.273 1.35 0.277 2.54
Número Muestra Ti Y Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho	17 Z-400-1- 3 270 48 0.011 3.44 6.6 1.145 7.7 3.01 1.267 4.64 0.748 4.96 1.057	18 Z-400-1- 4 273 61.5 0.028 3.74 7.31 1.332 8.26 3.16 1.09 5.27 0.84 5.87 1.162	19 Z-400-1- 5 290 34.1 0.006 4.09 6.38 1.051 5.87 2.11 2.02 3.17 0.551 3.73 0.752	20 Z-400-1- 7 267 9.5 bdl 3.23 5.5 0.737 3.64 1.111 1.047 1.401 0.221 1.401 0.252	21 Z-400-1- 8 276 16.5 bdl 3.28 5.26 0.753 3.91 1.171 0.717 1.608 0.272 1.9 0.36	22 Z-400-1- 9 261 29.3 0.01 3.31 5.64 0.891 5.03 1.835 1.8 2.74 0.502 3.34 0.635	23 Z-400-1- 10 273 63.4 0.008 3.84 7.67 1.247 8.37 3.22 1.227 5.45 0.861 5.92 1.214	24 Z-400-1-A-2 284 20 0.974 2.36 3.58 0.575 2.67 0.78 0.273 1.35 0.277 2.54 0.555
Número Muestra Ti Y Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	17 Z-400-1- 3 270 48 0.011 3.44 6.6 1.145 7.7 3.01 1.267 4.64 0.748 4.96 1.057 2.57	18 Z-400-1- 4 273 61.5 0.028 3.74 7.31 1.332 8.26 3.16 1.09 5.27 0.84 5.87 1.162 3.21	19 Z-400-1- 5 290 34.1 0.006 4.09 6.38 1.051 5.87 2.11 2.02 3.17 0.551 3.73 0.752 1.95	20 Z-400-1- 7 267 9.5 bdl 3.23 5.5 0.737 3.64 1.111 1.047 1.401 0.221 1.401 0.252 0.646	21 Z-400-1- 8 276 16.5 bdl 3.28 5.26 0.753 3.91 1.171 0.717 1.608 0.272 1.9 0.36 1.087	22 Z-400-1- 9 261 29.3 0.01 3.31 5.64 0.891 5.03 1.835 1.8 2.74 0.502 3.34 0.635 1.816	23 Z-400-1- 10 273 63.4 0.008 3.84 7.67 1.247 8.37 3.22 1.227 5.45 0.861 5.92 1.214 3.24	24 Z-400-1-A-2 284 20 0.974 2.36 3.58 0.575 2.67 0.78 0.273 1.35 0.277 2.54 0.555 1.68
Número Muestra Ti Y Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb	17 Z-400-1- 3 270 48 0.011 3.44 6.6 1.145 7.7 3.01 1.267 4.64 0.748 4.96 1.057 2.57 1.97	18 Z-400-1- 4 273 61.5 0.028 3.74 7.31 1.332 8.26 3.16 1.09 5.27 0.84 5.87 1.162 3.21 2.72	19 Z-400-1- 5 290 34.1 0.006 4.09 6.38 1.051 5.87 2.11 2.02 3.17 0.551 3.73 0.752 1.95 1.64	20 Z-400-1- 7 267 9.5 bdl 3.23 5.5 0.737 3.64 1.111 1.047 1.401 0.221 1.401 0.252 0.646 0.538	21 Z-400-1- 8 276 16.5 bdl 3.28 5.26 0.753 3.91 1.171 0.717 1.608 0.272 1.9 0.36 1.087 0.966	22 Z-400-1- 9 261 29.3 0.01 3.31 5.64 0.891 5.03 1.835 1.8 2.74 0.502 3.34 0.635 1.816 1.595	23 Z-400-1- 10 273 63.4 0.008 3.84 7.67 1.247 8.37 3.22 1.227 5.45 0.861 5.92 1.214 3.24 2.68	24 Z-400-1-A-2 284 20 0.974 2.36 3.58 0.575 2.67 0.78 0.273 1.35 0.277 2.54 0.555 1.68 1.116
Número Muestra Ti Y Ba La Ce Pr Nd Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Lu	17 Z-400-1- 3 270 48 0.011 3.44 6.6 1.145 7.7 3.01 1.267 4.64 0.748 4.96 1.057 2.57 1.97 0.295	18 Z-400-1- 4 273 61.5 0.028 3.74 7.31 1.332 8.26 3.16 1.09 5.27 0.84 5.87 1.162 3.21 2.72 0.401	19 Z-400-1- 5 290 34.1 0.006 4.09 6.38 1.051 5.87 2.11 2.02 3.17 0.551 3.73 0.752 1.95 1.64 0.231	20 Z-400-1- 7 267 9.5 bdl 3.23 5.5 0.737 3.64 1.111 1.047 1.401 0.221 1.401 0.252 0.646 0.538 0.0783	21 Z-400-1- 8 276 16.5 bdl 3.28 5.26 0.753 3.91 1.171 0.717 1.608 0.272 1.9 0.36 1.087 0.966 0.1483	22 Z-400-1- 9 261 29.3 0.01 3.31 5.64 0.891 5.03 1.835 1.8 2.74 0.502 3.34 0.635 1.816 1.595 0.23	23 Z-400-1- 10 273 63.4 0.008 3.84 7.67 1.247 8.37 3.22 1.227 5.45 0.861 5.92 1.214 3.24 2.68 0.39	24 Z-400-1-A-2 284 20 0.974 2.36 3.58 0.575 2.67 0.78 0.273 1.35 0.277 2.54 0.555 1.68 1.116 0.163
Número Muestra Ti Y Ba La Ce Pr Nd Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Lu Ca	17 Z-400-1- 3 270 48 0.011 3.44 6.6 1.145 7.7 3.01 1.267 4.64 0.748 4.96 1.057 2.57 1.97 0.295 519080	18 Z-400-1- 4 273 61.5 0.028 3.74 7.31 1.332 8.26 3.16 1.09 5.27 0.84 5.87 1.162 3.21 2.72 0.401 530890	19 Z-400-1- 5 290 34.1 0.006 4.09 6.38 1.051 5.87 2.11 2.02 3.17 0.551 3.73 0.752 1.95 1.64 0.231 527470	20 Z-400-1- 7 267 9.5 bdl 3.23 5.5 0.737 3.64 1.111 1.047 1.401 0.221 1.401 0.252 0.646 0.538 0.0783 524340	21 Z-400-1- 8 276 16.5 bdl 3.28 5.26 0.753 3.91 1.171 0.717 1.608 0.272 1.9 0.36 1.087 0.966 0.1483 518420	22 Z-400-1- 9 261 29.3 0.01 3.31 5.64 0.891 5.03 1.835 1.8 2.74 0.502 3.34 0.635 1.816 1.595 0.23 517400	23 Z-400-1- 10 273 63.4 0.008 3.84 7.67 1.247 8.37 3.22 1.227 5.45 0.861 5.92 1.214 3.24 2.68 0.39 528740	24 Z-400-1-A-2 284 20 0.974 2.36 3.58 0.575 2.67 0.78 0.273 1.35 0.277 2.54 0.555 1.68 1.116 0.163 510780
Número Muestra Ti Y Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Lu Ca	17 Z-400-1- 3 270 48 0.011 3.44 6.6 1.145 7.7 3.01 1.267 4.64 0.748 4.96 1.057 2.57 1.97 0.295 519080 25	18 Z-400-1- 4 273 61.5 0.028 3.74 7.31 1.332 8.26 3.16 1.09 5.27 0.84 5.87 1.162 3.21 2.72 0.401 530890	19 Z-400-1- 5 290 34.1 0.006 4.09 6.38 1.051 5.87 2.11 2.02 3.17 0.551 3.73 0.752 1.95 1.64 0.231 527470 27	20 Z-400-1- 7 267 9.5 bdl 3.23 5.5 0.737 3.64 1.111 1.047 1.401 0.221 1.401 0.252 0.646 0.538 0.0783 524340	21 Z-400-1- 8 276 16.5 bdl 3.28 5.26 0.753 3.91 1.171 0.717 1.608 0.272 1.9 0.36 1.087 0.966 0.1483 518420 29	22 Z-400-1- 9 261 29.3 0.01 3.31 5.64 0.891 5.03 1.835 1.835 1.83 2.74 0.502 3.34 0.635 1.816 1.595 0.23 517400 30	23 Z-400-1- 10 273 63.4 0.008 3.84 7.67 1.247 8.37 3.22 1.227 5.45 0.861 5.92 1.214 3.24 2.68 0.39 528740 31	24 Z-400-1-A-2 284 20 0.974 2.36 3.58 0.575 2.67 0.78 0.273 1.35 0.277 2.54 0.555 1.68 1.116 0.163 510780
Número Muestra Ti Y Ba La Ce Pr Nd Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Lu Ca Número Muestra	17 Z-400-1- 3 270 48 0.011 3.44 6.6 1.145 7.7 3.01 1.267 4.64 0.748 4.96 1.057 2.57 1.97 0.295 519080	18 Z-400-1- 4 273 61.5 0.028 3.74 7.31 1.332 8.26 3.16 1.09 5.27 0.84 5.87 1.162 3.21 2.72 0.401 530890	19 Z-400-1- 5 290 34.1 0.006 4.09 6.38 1.051 5.87 2.11 2.02 3.17 0.551 3.73 0.752 1.95 1.64 0.231 527470 27 7-400-1-	20 Z-400-1- 7 267 9.5 bdl 3.23 5.5 0.737 3.64 1.111 1.047 1.401 0.221 1.401 0.252 0.646 0.538 0.0783 524340 28 Z-400-1-	21 Z-400-1- 8 276 16.5 bdl 3.28 5.26 0.753 3.91 1.171 0.717 1.608 0.272 1.9 0.36 1.087 0.966 0.1483 518420 29 Z-400-1-	22 Z-400-1- 9 261 29.3 0.01 3.31 5.64 0.891 5.03 1.835 1.835 1.835 1.8 2.74 0.502 3.34 0.635 1.816 1.595 0.23 517400 30 7-400-1-	23 Z-400-1- 10 273 63.4 0.008 3.84 7.67 1.247 8.37 3.22 1.227 5.45 0.861 5.92 1.214 3.24 2.68 0.39 528740 31 Z-400-1-	24 Z-400-1-A-2 284 20 0.974 2.36 3.58 0.575 2.67 0.78 0.273 1.35 0.277 2.54 0.555 1.68 1.116 0.163 510780 32 Z-400-1-B-
Número Muestra Ti Y Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Lu Ca Número Muestra	17 Z-400-1- 3 270 48 0.011 3.44 6.6 1.145 7.7 3.01 1.267 4.64 0.748 4.96 1.057 2.57 1.97 0.295 519080 25 Z-400-1- A-2	18 Z-400-1- 4 273 61.5 0.028 3.74 7.31 1.332 8.26 3.16 1.09 5.27 0.84 5.87 1.162 3.21 2.72 0.401 530890 26 Z-400-1- A-4	19 Z-400-1- 5 290 34.1 0.006 4.09 6.38 1.051 5.87 2.11 2.02 3.17 0.551 3.73 0.752 1.95 1.64 0.231 527470 27 Z-400-1- A-5	20 Z-400-1- 7 267 9.5 bdl 3.23 5.5 0.737 3.64 1.111 1.047 1.401 0.221 1.401 0.252 0.646 0.538 0.0783 524340 28 Z-400-1- B-1	21 Z-400-1- 8 276 16.5 bdl 3.28 5.26 0.753 3.91 1.171 0.717 1.608 0.272 1.9 0.36 1.087 0.966 0.1483 518420 29 Z-400-1- B-2	22 Z-400-1- 9 261 29.3 0.01 3.31 5.64 0.891 5.03 1.835 1.8 2.74 0.502 3.34 0.635 1.816 1.595 0.23 517400 30 Z-400-1- B-3	23 Z-400-1- 10 273 63.4 0.008 3.84 7.67 1.247 8.37 3.22 1.227 5.45 0.861 5.92 1.214 3.24 2.68 0.39 528740 31 Z-400-1- B-4	24 Z-400-1-A-2 284 20 0.974 2.36 3.58 0.575 2.67 0.78 0.273 1.35 0.277 2.54 0.555 1.68 1.116 0.163 510780 32 Z-400-1-B- 7

C5: Resultados

Y	4.11	4.31	5.15	48.4	38.4	10.1	28.9	7.32
Ba	0.517	0.427	0.514	0.652	1.218	0.65	0.484	0.46
La	0.446	0.515	1.188	3	3.43	1.23	2.6	0.942
Ce	0.667	0.75	1.625	3.87	5.15	1.66	3.81	1.289
Pr	0.115	0.111	0.236	0.601	0.889	0.255	0.634	0.195
Nd	0.569	0.531	1.115	2.76	4.37	1.09	3.37	0.93
Sm	0.183	0.185	0.336	0.933	1.411	0.258	1.18	0.259
Fu	0.073	0.086	0 1211	0 374	0.479	0.106	0.408	0.112
Gd	0.314	0.306	0.502	1 87	2.56	0.129	2	0.172
Th	0.014	0.000	0.002	0.469	0 500	0.427	0.4.4	0.470
	0.6075	0.647	0.0939	1 22	156	0.075	3 75	0.102
Цо	0.011	0.047	0.77	4.22	4.50	0.74	0.95	0.000
HU Fr	0.137	0.101	0.104	0.95	1.005	0.165	0.00	0.19
El	0.408	0.430	0.511	2.75	2.88	0.519	2.42	0.519
YD Lu	0.312	0.34	0.373	1.55	2.03	0.310	1.51	0.347
Lu	0.0485	0.0603	0.0639	0.169	0.289	0.0438	0.206	0.0477
Ca	491050	503720	520670	498680	500970	502290	508430	495090
Número	33	34	35	36	37	38	39	40
Muestra	Z-400-1-	Z-400-1-	Z-400-1-	Z-400-1-	Z-400-1-	Z-400-2-	Z-400-2-	Z-400-2-6
	C-1	C-3	C-4	C-6	C-7	2	3	
Ti	279.7	267	260	283	292	266	241	259
Y	87.72	232	118	57.7	54.8	30.1	24	37.9
Ba	0.022	0.029	0.013	0.03	bdl	0.374	0.456	0.186
La	5.349	7.52	4.39	3.45	3.28	3.66	3.14	6.68
Ce	10.69	12.94	7.42	5.01	4.88	7.15	6.34	11.77
Pr	1 46	1.87	12	0.736	0.671	1.349	1 218	2 13
Nd	6.8	9.38	6.05	3 39	3 38	93	7.93	12.13
Sm	2 853	4 15	2 4 4	1 194	1 1 3	3 4 2	2.67	4 1 4
Fu	1 10/	1 78	1 03	0.471	0.465	1 028	2.07	3.84
Gd	5 5 7	9.17	1.05	2 1 2	2.25	1.720	3 60	5 30
Th	1.576	0.17	4.00	0.555	0.510	4.00	0.400	0.724
	1.540	2.21	1.10	0.333 E 10	1.04	4.25	2 02	1 17
Dy	13.10	20.93		0.19	4.90	4.30	3.03	4.47
	2.773	4.07	Z.47 7.10	1.229	1.170	0.770	0.000	0.603
Eſ	7.4	13.94	7.13	3.72	3.32	1.872	1.223	1.977
d Y	5.29	8.25	4.24	2.18	1.9	1.422	0.896	1.387
Lu	0.657	0.813	0.424	0.219	0.193	0.203	0.1228	0.188
Ca	498810	501220	505590	526380	510790	507160	500680	504850
	41	42	43	44	45	46	47	48
Numero		7						
Muestra	Z-400-2-7	Z-400-2-	5702-1	5702-2	5702-3	5702-4	5702-5	5702-6
	050	9	05.40	0500	0540	0/00	0/40	0/00
	258	231	2540	2530	2510	2680	2640	2680
Y	25.8	15.12	15	/9./	4.06	43.3	183	1044
Ва	0.408	0.184	2.68	4.16	3.42	8.68	8.36	6.01
La	5.91	4.6/	1.68	0.//	1.91	16	20.8	32.1
Ce	10.43	8.76	2.08	1.49	2.72	25.9	43.6	62.3
Pr	1.89	1.56	0.57	0.293	0.666	4.71	12	14.7
Nd	10.97	8.91	2.9	2.31	4.4	25.6	94.3	122
Sm	3.54	2.7	1.83	1.31	1.41	6.17	43.6	66.3
Eu	3.42	2.5	2.75	1.04	5.13	69.5	95	49.5
Gd	4.19	3.17	2.23	3.96	2.9	6.22	73.3	142.9

Tb	0.586	0.412	0.381	0.707	0.459	0.702	9.1	23.2
Dy	3.47	2.35	2.57	4.89	1.71	3.96	44	142.8
Но	0.604	0.397	0.6	1.084	0.328	0.681	5.7	22.3
Er	1.435	0.92	0.92	2.52	0.662	1.55	9.21	45.1
Yb	1.029	0.658	1.78	1.48	0.79	1.09	4.98	27.3
Lu	0.1349	0.0965	0.271	0.265	0.183	0.192	0.674	3.67
Са	512520	512010	498500	497380	492340	494180	499080	490000

Tabla 5.3. Resultados obtenidos de análisis mediante ablación láser (LAICPMS). Todos los valores se encuentran en ppm. bdl=por debajo del límite de detección.Los valores de Ca son los correspondientes a los análisis EPMA (ver tabla 5.2), que sirvieron como estándar interno.

Los datos obtenidos fueron discriminados con base en la desviación estándar de las lecturas realizadas (ver Anexo A4 para datos en extenso), y los datos elegidos se graficaron en los diagramas que se muestran a continuación.

Durante la medición realizada con ablación láser, se monitoreó la forma y profundidad del cráter hecho para poder llevar un control entre la regularidad del cráter(ver Anexo A5 para monitoreo de ablaciones) y la precisión de la lectura.

Los resultados fueron normalizados respecto a los valores condríticos reportados por McDonough y Sun (1985), y con respecto a los valores del estándar de lutitapostarcaicaaustraliana (PAAS, Post ArcheanAustralianShale).

C5: Resultados

C5: Resultados

C5: Resultados

C5: Resultados

En general, las HREE se encuentran

Las concentraciones varían de ~0.01< x <10

enriquecidas respecto a las LREE.

ppm.

HREE se encuentran enriquecidas respecto

El elemento que presenta las mayores

concentraciones es el Y; en general, las REE

varían en un rango de 1< x <~200 ppm.

a las LREE.

72

6.1Geoquímica de tierras raras de las rocas del distrito de San Martín de Bolaños.

Las ignimbritas y domos del distrito de San Martín de Bolaños, estudiadas por Ramos Rosique (2013) presentan un enriquecimiento relativo de las tierras raras ligeras (LREE) respecto a las tierras raras pesadas (HREE), con un decremento gradual del La al Lu (ver Figura 6.1A), así como anomalías negativas de Eu y Ce (aunque el domo AR-147 presenta una anomalía positiva de este elemento).

El domo con clave AR-146 corresponde al domo La Mancha y es el único que presenta una distribución distinta de las tierras raras, éste presenta un enriquecimiento de las HREE respecto a las LREE, con un incremento gradual del La al Tb y un patrón relativamente plano del Tb al Lu.

Las anomalías negativas de Eu se pueden atribuir a la cristalización de feldespatos, los cuales lo incorporan a su estructura en su forma 2+, por lo que conforme el sistema vaya evolucionando, el Eu se encarecerá. Por otro lado, las anomalías positivas de Ce (AR-147, domo Cerro Colorado) se relacionan con ambientes oxidantes, al estar el Ce con valencia 4+ se incorporará más fácilmente a la látice cristalina de las fases que precipiten. Por el contrario, las anomalías negativas de este elemento se relacionan a la presencia de éste con valencia 3+ y debido al tamaño de su radio iónico, no tendrá un acomodo preferencial en las estructuras cristalinas.

Figura 6.1. Patrones de tierras raras normalizados con respecto a condrita (McDonough & Sun, 1995) de (A) ignimbritas y (B) domos riolíticos en el distrito minero de San Martín de Bolaños (SMB).AR-510: Domo Sierra 2, AR-146: Domo La Mancha, AR-147: Domo Cerro Colorado.(Tomado de Ramos Rosique, 2013).

6.2 Geoquímica de tierras raras de fluorita hidrotermal del distrito de San Martín de Bolaños y su relación con las rocas encajonantes.

6.2.1 Muestra AR-188

En general, estas muestras corresponden a etapas tardías en el sistema de San Martín de Bolaños, sin embargo, los análisis de esta muestra (4 puntos) presentan dos características distintivas: (1) los análisis de las muestras AR-188-1 y AR-188-2 presentan un enriquecimiento de LREE sobre las HREE (similar a los desarrollados por las ignimbritas y el domo Sierra 2, ver figura 6.2 incisos B y C), sin embargo las fluoritas presentan anomalías ligeramente negativas o nulas de Eu mientras que las rocas exhiben pronunciadas anomalías negativas de este elemento. Así mismo, estas fluoritas presentan anomalías positivas de Y, mientras que las rocas no presentan anomalías de este elemento. Por otro lado (2) la muestra AR-188-0 presenta un patrón (similar al domo La Mancha) enriquecido en HREE respecto a las LREE (ver figura 6.2 inciso A) no presenta anomalías de Eu o Y; el domo La Mancha no exhibe anomalía de Eu debido a que su concentración se encontraba por debajo de los límites de detección. El patrón de la fluorita AR-188-0 presenta el mayor enriquecimiento (>200 ppm) de REE (respecto a las muestras AR-188-1 y AR-188-2), el cual se por un orden de magnitud mayor al presentado por el domo La Mancha (a partir del cual heredó su firma geoquímica).

Las similitudes entre los patrones de tierras raras presentadas por las fluoritas y las rocas del distrito podrían considerarse como evidencia de la interacción agua/roca debido a que la firma geoquímica de las rocas pudo ser adquirida por los fluidos en circulación a partir de los que las fluoritas cristalizaron. Las anomalías negativas de Eu presentadas por las rocas del distrito, también las presentan las fluoritas estudiadas, por lo que se piensa que estas anomalías fueron adquiridas por los fluidos en circulación.

Figura 6.2.Patrones de tierras raras de las muestras: (A) AR-188-0 en comparación con la muestra AR-146 (domo La Mancha); (B) AR-188-1 en comparación con ignimbritas (AR-131, AR-504 y AR-505) del distrito y (C) AR-188-2 en comparación con la muestra AR-510 (domo Sierra 2). En azul se grafican las rocas y en grises los análisis que representan fluoritas hidrotermales.

Las anomalías positivas de Y en las fluoritas podrían considerarse como evidencia de la formación de complejos fluorados de este elemento (y posiblemente de otras HREE), los cuales, en sistemas ricos en flúor, se relacionan a fluidos de baja temperatura y etapas tardías de cristalización (Möller et al., 1976). Los datos de inclusiones fluidas presentados por Albinson y Rubio (2001) soportan la idea de fluidos de baja temperatura (<240 °C) como los responsables de la cristalización de estas fluoritas. De acuerdo con Bau y Dulski (1995) el enriquecimiento de tierras raras, en sistemas hidrotermales, se ve favorecido por largo periodos de la interacción agua/roca, así como un aumento de esta proporción;

éstas características pueden identificarse en la muestra AR-188-0 ya que presenta un mayor enriquecimiento de tierras raras en comparación con el domo La Mancha.

6.2.2 Muestra Z-400-1 (ABC)

Los puntos analizados para esta muestra corresponden a fluoritas paragenéticamente intermedias a tardías. Estas fluoritas presentan un patrón de tierras raras similar al del domo La Mancha, el cual se encuentra enriquecido en HREE respecto a las LREE; los diferentes análisis de esta muestra presentan enriquecimientos variables en los patrones desarrollados. Los análisis correspondientes a las muestras Z-400-1-A y Z-400-1-B presentan enriquecimientos de tierras raras menores a los que presenta el domo La Mancha (ver figura 6.3 incisos A y B), sin embargo, algunos puntos de la muestra Z-400-1-C presentan enriquecimientos mayores que el domo en comparación (ver figura 6.3 inciso C). Los patrones de la fluorita Z-400-1 presentan anomalías ligeramente negativas o nulas de Eu y anomalías ligeras a distintivamente positivas de Ytrio.

La similitud de los patrones presentados por la muestra Z-400-1 con el patrón desarrollado por el domo La Mancha podría interpretarse como evidencia de la interacción agua/roca. Así mismo, los diferentes grados de enriquecimiento indican que las fluoritas fueron formadas a partir de fluidos con diferentes grados de intensidad de la razón agua/roca; los patrones más enriquecidos indicarían un tiempo más prolongado de circulación de los fluidos a través de las rocas.

El hecho de que la muestra Z-400-1 no presente anomalías negativas de Eu podría interpretarse como que este elemento pudo incorporarse a la látice cristalina de la fluorita, en su forma Eu³⁺, lo que indicaría que las condiciones de formación fueron ligeramente más oxidantes para estas fluoritas que para las muestras que presentan anomalías negativas de este elemento. Las anomalías positivas de Ytrio pueden atribuirse a un alto fraccionamiento de este elemento debido a la formación de complejos fluorados (de éste y elementos de tierras raras pesadas), ya que en fluidos acuosos ricos en flúor de media temperatura ($\geq 250^{\circ}$ C) el Y actúa como un pseudolantánido más pesado que el Lu (Hill et al., 2000) lo que podría relacionarse con etapas tardías de cristalización y bajas temperaturas de los fluidos (Möller et al., 1976), estas características son concordantes con las características petrográficas de la muestra.

Adicionalmente, la presencia de calcita hojosa en asociación con las fluoritas estudiadas, es evidencia de ebullición como mecanismo de precipitación, lo cual concuerda con datos obtenidos mediante el estudio de inclusiones de fluidas en el sistema (Albinson y Rubio, 2001).

Figura 6.3. Distribución de tierras raras de las muestras Z-400-1-A, Z-400-1-B y Z-400-1-C en comparación con el domo AR-146 (La Mancha). En azul se grafican los domos riolíticos y en grises los análisis que representan fluoritas hidrotermales.

6.2.3 Muestras AR-172AB y AR-172C

Las muestras corresponden a etapas paragenéticamente tempranas y tardías; el patrón de tierras raras de las floritas son similares a los desarrollados por las ignimbritas del distrito, el cual se caracteriza por presentan un enriquecimiento de LREE sobre las HREE; esta muestra presenta una variación en el enriquecimiento de tierras raras. Las fluoritas analizadas presentan anomalías negativas de Ce, Eu e Y.

Figura 6.4. Distribución de tierras raras de las superficiesAR-172-A, AR-172-B y AR-172-C en comparación con las ignimbritas del distrito (área gris).

Los patrones desarrollados por estas fluoritas, similares a las ignimbritas del distrito, podrían interpretarse como evidencia de la interacción agua/roca; la variación en el enriquecimiento de tierras raras puede interpretarse como una variación en la intensidad

de la interacción agua/roca. Por otro lado, las anomalías negativas de Ce se encuentran asociadas a condiciones oxidantes en el sistema debido a que este elemento en su forma Ce⁴⁺ es más móvil; las anomalías negativas de Eu, más pronunciadas en la fluorita tardía, podrían indicar que este elemento se encontraba en su forma Eu²⁺ o bien, que estas anomalías fueron heredadas de las rocas del distrito. Las anomalías negativas de Eu son indicativas de un ambiente reductor (baja fO₂), al encontrarse el europio en su forma Eu²⁺, la sustitución en la látice cristalina de la fluorita por el Ca, no es favorecida. Sin embargo, esta anomalía negativa podría también relacionarse a condiciones de formación de temperatura elevada, ya que el Eu en condiciones mayores a 250°C es extremadamente divalente (Hill et al., 2000), esto concuerda con los datos de inclusiones fluidas presentados por Albinson y Rubio (2001), los cuales reportan temperaturas ~320 °C.

El desarrollo de anomalías negativas de Y (más pronunciadas en la fluorita tardía) podrían indicar que este elemento (y otras HREE) no formaron complejos con el fluor, lo que podría relacionarse a temperaturas elevadas debido a que los complejos de estos elementos son más estables a bajas temperaturas; lo que también concordaría con los datos reportados de inclusiones fluidas por Albinson y Rubio (2001).

Muestra AR-172-C

Esta fluorita paragenéticamente intermedia-tardía presenta un patrón muy similar a los desarrollados por las muestras AR-172-AB; sin embargo, la muestra AR-172-C presenta únicamente anomalías negativas de Ce, no así de Eu o Y, lo que permite sólo interpretar condiciones oxidantes del sistema con base en las anomalías presentadas.

6.2.4 Muestra Z-400

Estas fluoritas se asocian paragenéticamente a etapas intermedias a tardías; los patrones de tierras raras desarrollados por las fluoritas asociadas a etapas intermedias de cristalización muestran un patrón ligeramente enriquecido en LREE respecto a las HREE. Éstas fluoritas presentan anomalías ligeramente negativas de Ce, notablemente positivas de Eu y ligeramente positivas de Y; el patrón desarrollado por estas fluoritas (intermedias) presenta similitudes con el patrón de LREE del domo La Mancha, mientras que el patrón de las HREE desarrollado por la fluorita presenta mayor semejanza con las ignimbritas del distrito.

Las fluoritas asociadas a las etapas tardías de cristalización presentan un enriquecimiento de HREE respecto a las LREE y no presentan anomalías de Ce pero sí positivas de Eu e Y. Al igual que las fluoritas intermedias, guardan semejanza con el patrón de LREE desarrollado por el domo La Mancha, mientras que el patrón de HREE guarda mayor similitud con el desarrollado por las ignimbritas del distrito.

La semejanza entre los patrones de tierras raras desarrollados por las fluoritas con los del domo La Mancha e ignimbritas del distrito podría interpretarse como el resultado de la interacción agua/roca. El enriquecimiento en LREE en la fluorita intermedia y de HREE en la fluorita tardía es concordante con lo descrito por Möller et al. (1976), quienes describen que las LREE se incorporarán preferencialmente durante etapas tempranas de cristalización, mientras que las HREE se incorporarán con mayor facilidad durante las etapas tardías.

Las anomalías positivas de Eu están relacionadas a la presencia de este elemento en su forma Eu³⁺, asociado a ambientes con alta fugacidad de oxígeno (ambientes oxidantes). La presencia simultánea de las anomalías positivas de Eu y negativas de Ce, señalan al momento cristalización de las fluoritas, el sistema era altamente oxidante, ya que a pesar de las temperaturas de los fluidos, reportadas aproximadamente en ± 300°C por Albinson y Rubio (2001) el Eu se mantuvo con valencia 3+. A pesar de que este elemento se ha reportado con un comportamiento extremadamente divalente a temperaturas mayores a 250 °C (Hill et al., 2000).

Las anomalías positivas de Y se asocian a una mayor movilidad de este elemento debido a la estabilidad del complejo fluorado de este elemento (y elementos de HREE) promovida a bajas temperaturas, lo que concordaría con que estas fluoritas se identifiquen en etapas tardías de cristalización.

Figura 6.5. Distribución de tierras raras de las muestras Z-400-1-A, Z-400-1-B y Z-400-1-C en comparación con el domo AR-146 (La Mancha; en azul) e ignimbritas del distrito (área gris).

6.2.5 Muestra 5702.

Esta fluorita se asocia paragenéticamente a etapas tardías de cristalización, en esta muestra la variación en los grados de enriquecimiento de las tierras raras es muy amplia; algunos de los patrones desarrollados guardan semejanzas con la distribución de LREE del domo La Mancha, pero en general, los patrones desarrollados por las fluoritas no guardan similitudes con los patrones de tierras raras desarrollados por las rocas del distrito. Esta muestra presenta anomalías negativas de Ce y notablemente positivas de Eu; las anomalías de Y son variables, ya que se presentan anomalías negativas, positivas o nulas.

Las anomalías negativas de Ce se asocian a condiciones oxidantes en el sistema, al igual que las anomalías positivas de Eu. La ligera semejanza con los patrones de LREE de las rocas del sistema podría ser asociada a la interacción agua/roca; sin embargo los patrones que no guardan semejanzas con las rocas del distrito, podrían interpretarse como el resultado de una mezcla de fluidos, lo que podría relacionarse con los datos de inclusiones fluidas reportados por Albinson y Rubio (2001). Así mismo, la mezcla de fluidos podría explicar la variabilidad de las anomalías de Y en esta muestra.

Figura 6.6. Distribución de tierras raras de la muestra 5702 en comparación con los domos (en azul) AR-146 (La Mancha), AR-147 (Cerro Colorado), AR-510 (Sierra 2); e ignimbritas del distrito (área gris).

De acuerdo a las características geoquímicas observadas, se puede resaltar que:

- 1. La firma de tierras raras en las fluoritas analizadas es muy variable.
- 2. Algunas fluoritas presentan patrones similares a los desarrollados por las ignimbritas y algunos domos del distrito, con patrones (LREE/HREE)>1.
- 3. Algunas fluoritas presentan patrones similares a los desarrollados por el domo La Mancha, con patrones (LREE/HREE)<1.
- 4. Algunas fluoritas presentan patrones que no guardan semejanza con ninguna roca del distrito.
- 5. Las fluoritas presentan de forma variable, anomalías negativas de Ce, negativas y positivas de Eu y positivas y negativas e Ytrio.

Muestra	Patrón de Tierras Raras	Anomalía Eu	Anomalía Ce	Anomalía Y	Ti [ppm]	Mineralización asociada
AR-188	LREE< HREE, enriquecimiento progresivo hacia el Lu	No	N	Anomalia ligeramente negativa	(†) ~2500	Calcita euhedral, ankerita, barita.
AR-188-1	LREE a penas mayor que HREE; el patrón de HREE el plano.	N	0 N	2 de 3 puntos analizados muestran una ligera anomalia negativa	~ 290	Calcita lechosa, prita diseminada, ankerita.
AR-188-2	Empobrecimiento progresivo del Dy al Lu (sin considerar al $\gamma_{\rm J}$, LREE > HREE	Ligeramente negativa	Ligeramente negativa	Anomalia positiva	(†) ~2400	Calcita hojosa, cuarzo, calcita subhedral.
Z-400-1	Enriquecimiento progresivo del La al Eu, IREE> IRRE, las HREE muestran un ligero empobrecimiento progresivo, excepto por el Y.	Positiva	Negativa	Anomalia positiva	~ 300	Cuarzo, galena y esfalerita de grano medio, (esf, gal, py, hem) de grano fino y calcita hojosa silicíficada.
Z-400-2	LREE> HREE, empobrecimiento progresivo del Gd al Lu (excepto por el Y)	Positiva	Negativa	Anomalia ligeramente positiva	~ 250	Estalerita grano grueso, galena grano medio, cuarzo, calcita holosa silicificada, apatita, (est, gal, py,hem) de grano fino diseminadas.
Z-400-1-A	El patrón es plano con un ligero enriquecimiento de las HREE sobre las LREE	No	N	OZ	~ 265	Calcita hojosa silicificada, esfalerita y hematita de grano fino.
Z-400-1-B	LREE< HREE, erriquecimiento progresivo de Sm al Y, con un posterior empobrecimiento hacia el Lu	0 N	ON	Positiva	~ 265	Calcita hojosa, cuarzo y (esfalerita ± galena± hematita) en forma de texturas triangulares de relleno.
Z-400-1-C	LREE <hree, con="" el="" es="" hasta="" patrón="" plano="" posterior<br="" sm="" un="">erriquecimiento progresivo hasta el Y, el resto de HREE sufren empobrecimiento</hree,>	No	No	Ligeramente positiva	~ 276	Calcita, cuarzo y fases metálicas de grano fino.
5702	Los patrones son variados, hay un grupo que es concordante en concentraciones pero muestran diferentes concentraciones de Y, HREE y LREE con concentraciones variables	Positiva	Ligeramente negativa	Positiva, un patrón muestra anomalía negativa.	(†) ~2590	Cuarzo, (estalerita, galena, prina y hematita) en texturas triangularres de relleno, diseminadas o como hojuelas (estalerita) de grano muy fino.
AR-172-A	LREE- HREE, HREE muestran un patrón plano con un ligero empobrecimiento progresivo; las LREE muestran un patrón cóncavo del Ce hasta el Eu, las concentraciones más altas son del La.	Negativa	Negativa	Negativa	~ 263	Fases metalicas (lectura con EPMA → 11 Mn.S.Pb. Ba. (L)Ca), cuarzo y fase Jasperoide.
AR-172-B	LREE> HREE, patrones muy similares a muestra AR-172-A, se forman patrones concavos del Ce al Eu, del Eu al Y y del Y al Lu.	Negativa	Negativa	Negativa	- 267	Fases metálicas (lectura con EPMA → 11 Mn,S,Pb, Ba, (1)Ca), cuarzo y fase jasperoide.
AR-172-C	LREE > HREE con un empobrecimiento progresivo desde el Ce hasta el Lu, las concentraciones más altas corresponden al La.	Negativa	ON	° Z	~ 268	Cuarzo subhedral, fases metálicas (hem≞gal⊭chpy≢py) en texturas triangulares, pirita hematizada y óxidos.

En la Tabla 6.1 se resumen las características geoquímicas de las fluoritas analizadas, como referencia para las discusiones subsecuentes.

Tabla 6.1. Resumen de las características geoquímicas de las muestras analizadas. Las descripcionesse hicieron con datos normalizados con respecto a condrita (Sun y McDonough, 1995).

6.3 REE en fluorita como indicadoras del ambiente de formación

Diferentes diagramas de discriminación pueden emplearse para distinguir composiciones de fluorita, caracterizar y diferenciar su origen, así como hacer inferencias acerca de su ambiente de depósito (Möller et al., 1976; Hill et al., 2000; Ver Capítulo 3). Möller et al.(1976) emplearon las razones Tb/Ca - Tb/La para discriminar la ocurrencia de fluoritas de acuerdo a su afinidad pegmatítica (pneumatolítica), hidrotermal o sedimentaria (Figura 6.7). Además, interpretan las distribuciones de los datos en este diagrama, como resultado de:(1) una progresiva incorporación de REE en la fluorita durante la precipitación hidrotermal (tendencia cristalográfica –*crystallographic trend*-, ver figura 6.7), o debido a (2) diferencias en la estabilidad relativa de complejos fluorados (tendencia de remobilización –*remobilization trend*-, ver figura 6.7).Se hace aquí una examinación de los datos obtenidos en este proyecto usando el diagrama Tb/Ca - Tb/La de Möller et al. (1976), para contar con información útil y conocer el probable origen de las fluoritas estudiadas. Se empleó el valor de Ca determinado por análisis de microsonda electrónica (Ver Capítulo 5, Anexo A1) para calcular las relaciones Tb/Ca.

Al graficar las razones Tb/Ca y Tb/La de los cristales de fluorita analizados (Figura 6.7) se pudo observar que la mayoría de los puntos se grafican en el campo "hidrotermal", lo cual es coherente debido al carácter epitermal (hidrotermal) de las fluoritas estudiadas. Sin embargo, para algunas muestras, los puntos definen una trayectoria transicional entre el campo "hidrotermal" y el "pneumatolítico" (pegmatítico), lo que podría indicar que los fluidos hidrotermales que formaron a las fluoritas, interactuaron con las rocas del distrito, adquiriendo su firma geoquímica (ver sección 6.2). Esto indica que el diagrama de Möller et al. (1976) debe interpretarse cuidadosamente debido a que fluoritas hidrotermales pueden exhibir valores en el campo pneumatolítico, debido a la interacción agua/roca; esta aparente discrepancia entre la firma de tierras raras en la fluorita y su origen ya había sido reportado por otros autores (ver Gagnon et al., 2003).

Los valores correspondientes a las rocas del distrito aparecen dentro del campo pneumatolítico (ver figura 6.7, puntos en azul), y a diferencia de las fluoritas analizadas, las rocas presentan relaciones mayores de Tb/Ca y menores de Tb/La.

Möller et al. (1976) asocian el enriquecimiento de LREE a etapas tempranas de cristalización, mientras que el enriquecimiento en HREE se asocia a etapas de cristalización tardías. Este comportamiento se encuentra íntimamente relacionado a la formación de complejos de tierras raras y cristalización de estos elementos; estos autores refieren que la estabilidad de los complejos de tierras raras aumenta del La al Lu (se relaciona con el decremento del radio iónico). La incorporación de estos elementos a la látice cristalina de los minerales dependerá de la estabilidad de los complejos disponibles, así como del tamaño del radio iónico en proporción al espacio a ocupar. En su diagrama de discriminación (Tb/Ca- Tb/La) estos autores describen dos tendencias (trayectorias): (1) tendencia con pendiente de 45° la cual se relaciona al fraccionamiento de las REE durante la cristalización y (2) tendencia horizontal la cual se relaciona a la re-movilización

de las LREE debido a una mayor interacción entre el fluido y las fases sólidas (ver figura 6.7).

Figura 6.7. Relaciones de Tb/Ca y Tb/La de las muestras analizadas (en gris) y rocas del distrito (en azul) graficadas en diagrama de discriminación propuesto por Möller et al. (1976).

Al observar la distribución de los datos de las fluoritas analizadas pueden identificarse que algunas muestras presentan notables trayectorias de fraccionamiento (muestras Z-400-1, Z-400-2, Z-400-1-C y AR-172-ABC), en las que se puede observar como a medida en que avanza la cristalización ocurre un enriquecimiento en HREE. Otras fluoritas (5702) no despliegan una distribución definida de sus datos, sino una dispersión de ellos.

Las fluoritas más enriquecidas en HREE, cuya firma es similar a la del domo La Mancha, presenta las razones Tb/La más elevadas; por otro lado, las fluoritas más enriquecidas en LREE, cuya firma es similar a la de las ignimbritas y algunos domos del distrito, presentan menores valores de la razón Tb/La.

6.4 Secuencia de cristalización: Razones Tb/Yb - La/Yb.

De acuerdo con Möller et al. (1976) y Hill et al. (2000) (ver capítulo 3) las fluoritas que cristalizan en etapas tempranas están enriquecidas en LREE y presentan altos valores de

las razones La/Yb y Tb/Yb. Por otro lado, las fluoritas que cristalizan en etapas tardías están enriquecidas en HREE y presentan bajos valores de las razones La/Yb y Tb/Yb.

Las fluoritas estudiadas muestran valores de las relaciones Tb/Yb y La/Yb que concuerdan con los resultados petrográficos; siendo las fluoritas paragenéticamente más tempranas las que muestran los valores más elevados de las relaciones La/Yb y Tb/Yb.

Figura 6.8. Razones (Tb/Yb)_n y (La/Yb)_n de las muestras analizadas (gris) y rocas del distrito (azul).Los valores estánnormalizados con respecto a valores condríticos (Sun y McDonough, 1995).

6.5 Formación y estabilidad de complejos de tierras raras.

Al observar el diagrama La/Ho – Y/Ho (ver figura 6.9; ver figura 3.5; Bau y Dulski, 1995) puede observarse que, la mayoría de las fluoritas estudiadas presentan valores de la razón Y/Ho> 1, mientras que las rocas del distrito presentan valores muy similares a 1. Lo anterior indica una elevada movilidad del Y en los fluidos hidrotermales asociada a una elevada formación de complejos; en sistemas fluorados, como el estudiado, los complejos fluorados de Ytrio y otras HREE son más estables que los formados con las LREE.

Las superficies 5702 y Z-400 (ver figura 6.9) presentan tendencias similares a la trayectoria de migración de Bau y Dulski (1995) (ver capítulo 3), por lo que el fraccionamiento de las tierras raras en los fluidos mineralizantes estuvo controlado principalmente por la formación de complejos.

Figura 6.9. Razones Y/Ho y La/Ho de las muestras analizadas, en azul se grafican las ricas del distrito y en gris las fluoritas estudiadas.

Al observar el diagrama de la figura 6.10 también es evidente que la relación Y/Ho es mayor a 1 para las fluoritas estudiadas y cercano a 1 para las rocas del distrito, indicando que la formación y estabilidad de los complejos fluorados de Y y otras HREE. Valores cercanos a 1 de la relación Y/Ho indican que su distribución estuvo controlado por su carga y radio iónico; mientras que los valores diferentes a 1 indican que estos elementos fueron fraccionados debido a la formación de complejos. En sistemas fluorados la estabilidad de los complejos de tierras raras se incrementa del La al Lu, pero es mayor para los complejos formados con Ytrio.

Figura 6.10.Valores de Ytrio y de la razón (Y/Ho)n de las rocas (en azul) y fluoritas (grises) de San Martín de Bolaños.

6.6 pH de fluidos mineralizantes

Bau (1991) utiliza la razón (La/Lu)n como indicador de los mecanismos de fraccionamiento de las tierras raras, así como del pH del sistema analizado. Este autor señala que si la razón (La/Lu)n < 1, entonces el fraccionamiento de las tierras raras se encuentra relacionado con la formación de complejos y el pH relacionado a estas condiciones será con valores mayores a 7; por otro lado, si la razón (La/Lu)n >1 entonces se relaciona a condiciones en donde los procesos de sorción fueron los que controlaron el fraccionamiento de las tierras raras y los valores de pH relacionados a estas condiciones serán menores a 7.

En las fluoritas analizadas la mayoría de los valores de la relación (La/Lu)n son mayores a 1, por lo que, los valores relacionadas a pH < 7 y señala que el fraccionamiento de las tierras raras fue controlado por la formación de complejos. Esto confirma lo observado en el sistema y les permitirá, a los fluidos, lixiviar elementos de las rocas ígneas de la zona, adquiriendo metales y ligandos, que posteriormente serán acumulados en las zonas mineralizadas.

6.7. Sierra Madre Occidental (SMO) y mineralización epitermal.

De acuerdo con Ernst y Jowitt (2013), las grandes provincias ígneas (LIP's y SLIP's) representan importantes reservorios de energía y metales que pueden contribuir a la formación y desarrollo de una variedad de depósitos minerales hidrotermales, este vínculo podría darse cuando: (1) los magmas asociados al magmatismo de la provincia ígnea son fuente de fluidos, metales y ligandos para el sistema hidrotermal; o cuando (2) fluidos hidrotermales (posteriores a pico de magmatismo), circulan a través de las rocas ígneas de la provincia, lixiviándolas y obteniendo metales y ligandos.

En San Martín de Bolaños, la geoquímica de tierras raras de las fluoritas hidrotermales indica que la relación entre el magmatismo de la SMO y la metalogenia de yacimientos epitermales, concuerda más con el segundo escenario anteriormente descrito. La firma de tierras raras en fluorita es indicativa de una prominente interacción agua/roca, formación de complejos así como el transporte de elementos de tierras raras.

Las rocas en SMB son riolitas con alto contenido de flúor (domos) y cloro (ignimbritas) (Ramos Rosique, 2013; ver capítulo 2), lo cual representa una fuente ideal de dichos ligandos para los fluidos, lo que podría relacionarse con la formación de yacimientos minerales en la región.

6.8 En conclusión,

Los patrones de tierras raras en la mayoría de las fluoritas estudiadas, reflejan una gran semejanza con los desarrollados por las rocas encajonantes; sin embargo, las fluoritas presentan anomalías indicativas de las condiciones de cristalización.

Por otro lado, los diferentes grados de enriquecimiento en los patrones de tierras raras de las fluoritas indican una variación en los tiempos de interacción agua /roca; un mayor enriquecimiento indica un mayor tiempo de circulación de los fluidos a través de las rocas.

Las fluoritas paragenéticamente tempranas, se encuentran enriquecidas en LREE; mientras que las fluoritas tardías presentan un enriquecimiento en HREE.

El comportamiento relativo de estos elementos en el yacimiento estudiado, se asocia a valores de pH <7; lo que concuerda con la geoquímica de tierras raras en las fluoritas estudiadas, que demuestra una elevada formación de complejos durante la actividad del sistema hidrotermal.

7.1 Conclusiones

Con base en todos los datos obtenidos, así como su análisis y discusión, se enlistan las principales conclusiones a continuación:

- El patrón de tierras raras desarrollados por las fluoritas fue heredado de las rocas encajonantes.
- Es evidente que algunas fluoritas tienen una mayor influencia de los domos, algunas de las ignimbritas y otras, presentan una influencia de ambas firmas.
- La firma de tierras raras de las fluoritas en diagramas de discriminación, aparecen con características de ambientes hidrotermales y pneumatolíticos; por lo que el uso de estos diagramas debe realizarse con precaución ya que las firma de tierras raras puede estar afectada por la interacción agua/roca.
- Los diferentes grados de enriquecimiento observados en algunas fluoritas puede asociarse a la evolución de los fluidos, un mayor tiempo de circulación implicará un mayor enriquecimiento.
- Las fluoritas paragenéticamente tempranas presentan enriquecimientos en LREE, mientras que las fluoritas paragenéticamente tardías presentan enriquecimientos en HREE.
- Las anomalías positivas de Ytrio, así como la distribución relativa de las LREE contra las HREE, indican un elevado potencial para la formación de complejos de los fluidos a partir de los cuales cristalizaron las fluoritas estudiadas.
- Las anomalías de Ce y Eu varían entre las fluoritas estudiadas; sin embargo, la mayoría de los datos se asocian a condiciones de ligeras a considerablemente oxidantes.
- La razón (La/Lu)n, es de ayuda para reforzar la idea de que el fraccionamiento de las tierras raras fue debido a la formación de complejos; y por otro lado, que el pH de los fluidos fue menor a 7, por lo que los fluidos mineralizantes (de carácter ácido) pudieron lixiviar metales y ligandos de las rocas encajonantes.
- La geoquímica de tierras raras de las fluoritas se relaciona a la circulación (y migración) de fluidos ricos en flúor que formaron las vetas epitermales.
- La metalogénesis del distrito de San Martín de Bolaños puede ser explicada por una intensa interacción agua/roca (posiblemente promovida por la formación del graben y posterior infiltración de fluidos), en la que los fluidos obtuvieron (de los magmas fértiles de la LIP: ignimbritas y domos), metales y ligandos que posteriormente fueron acumulados en las fallas y fracturas de la zona (ver figura 7.1).

- El uso de la geoquímica de tierras raras como herramienta de exploración para yacimientos epitermales (u otras tipologías) debe emplearse con extremo cuidado debido a que la variación en la composición de las fluoritas es amplia y es necesario realizar microanálisis de varias generaciones de fluorita para poder interpretar información para la exploración.
- Al combinar la geoquímica de REE en fluorita hidrotermal, con la química de REE de las rocas encajonantes y la información de inclusiones fluidas disponible, se pudo proponer un modelo de: lixiviación, circulación y depósito de tierras raras y metales que se ilustra en la figura 7.1.

Figura 7.1. Modelo de lixiviación, circulación y depósito para el distrito de San Martín de Bolaños. Se ilustra la circulación de fluidos, favorecida por la presencia de fallas en el graben, también se ilustran los cuerpos intrusivos que no afloran, en puntos morados se ilustra la acumulación de metales. Los fluidos en circulación son producto de la mezcla de fluidos magmáticos y meteóricos. ARANDA-GÓMEZ, J. J., LUHR, J. F., HOUSH, T. B., VALDEZ-MORENO, G., & CHÁVEZ-CABELLO, G. (2005). EL VOLCANISMO TIPO INTRAPLACA DEL CENOZOICO TARDÍO EN EL CENTRO Y NORTE DE MÉXICO: UNA REVISIÓN. BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA, 57(3), 187–225.

ALBINSON, T., RUBIO, M.A., MINERALOGIC AND THERMAL STRUCTURE OF THE ZULOAGA VEIN, SAN MARTÍN DE BOLAÑOS DISTRICT, JALISCO, MÉXICO, 2001, SOCIETY OF ECONOMIC GEOLOGISTS, 115-132 P.

BAU, M., 1991, RARE EARTH MOBILITY DURING HYDROTHERMAL AND METAMORPHIC FLUID-ROCK INTERACTION AND THE SIGNIFICANCE OF THE OXIDATION STATE OF EUROPIOUM, CHEMICAL GEOLOGY, ELSEVIER SCIENCE PUBLISHER D.V., AMSTERDAM, 93 (1991), PP 210-230.

BAU, M. & DULSKI, P., 1995, COMPARATIVE STUDY OF YTTRIUM AND REE BEAHVIOURS IN FLUORINE-RICH HYDROTHERMAL FLUIDS, CONTRIBUTIONS TO MINERAL AND PETROLOGY, SPRINGER-VERLAG, 119, PP 213-223.

BAU, M., 1996, CONTROLS ON THE FRACTIONATION OF ISOVALENT TRACE ELEMENTS IN MAGMATIC AND AQUEOUS SYSTEMS, EVIDENCE OF Y/HO, ZR/HF AND LANTHANIDE TETRAD EFFECT, CONTRIBUTIONS TO MINERAL AND PETROLOGY, SPRINGER-VERLAG, 123, PP 323-333.

BELOUSOVA, E.A., GRIFFIN, W.L., O'REILY, S.Y. & FISHER, N.I., 2002. IGNEOUS ZIRCON: TRACE ELEMENT COMPOSITION AS AN INDICATOR OF SOURCE ROCK TYPE. CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 143: 602-622.

BRÄTTER, P., JACOB, K.H., LUCK, J., MÖLLER, P., RÖSICK, U., SZACKI, W: ZUR FRAKTIONIERUNG DER SELTENEN ERDEN IN FLUORITEN. -- ERZMETALL 25, 389-394 (1972).

BURNS, R.G. AND FYFE, W.S., 1967. TRACE-ELEMENT DISTRIBUTION RULES AND THEIR SIGNIFICANCE: A REVIEW. CHEM. GEOL., 2: 89-104.

BRYAN, S.E., EWART, A., STEPHENS, C.J., PARIANOS, J., Y DOWNES, P.J., 2000, THE WHITSUNDAY VOLCANIC PROVINCE, CENTRAL QUEENSLAND, AUSTRALIA: LITHOLOGICAL AND STRATIGRAPHIC INVESTIGATIONS OF A SILICIC-DOMINATED LARGE IGNEOUS PROVINCE: JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 99, 55–78.

BRYAN, S. E., RILEY, T. R., JERRAM, D. A., LEAT, P. T., STEPHENS, C. J., 2002, SILICIC VOLCANISM: AN UNDERVALUED COMPONENT OF LARGE IGNEOUS PROVINCES AND VOLCANIC RIFTED MARGINS, EN MENZIES, M.A., KLEMPERER, S. L., EBINGER, C. J., BAKER J., MAGMATIC RIFTED MARGINS: GEOLOGICAL SOCIETY OF AMERICA SPECIAL PAPER, 362, 97-118.

BRYAN, S.E., FERRARI, L., REINERS, P.W., ALLEN, C.M., PETRONE, C.M., RAMOS-ROSIQUE, A. & CAMPBELL, I.H., 2008. NEW INSIGHTS INTO CRUSTAL CONTRIBUTIONS TO LARGE-VOLUME RHYOLITE GENERATION IN THE MID-TERTIARY SIERRA MADRE OCCIDENTAL PROVINCE, MEXICO, REVEALED BY U-PB GEOCHRONOLOGY. JOURNAL OF PETROLOGY, 49: 47-77.

BRYAN, S. E. & FERRARI, L., 2013, LARGE IGNEOUS PROVINCES AND SILICIC LARGE IGNEOUS PROVINCES: PROGRESS IN OUR UNDERSTANDING OVER THE LAST 25 YEARS, GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 1-27.

CAMERON, K. L., NIMZ, G. J., KUENTZ, D., NIEMEYER, S., GUNN, S., 1989, SOUTHERN CORDILLERAN BASALTIC ANDESITE SUITE, SOUTHERN CHIHUAHUA, MEXICO; A LINK BETWEEN TERTIARY CONTINENTAL ARC AND FLOOD BASALT MAGMATISM IN NORTH AMERICA: JOURNAL OF GEOPHYSICAL RESEARCH, 94, 7817-7840.

CAMPA, M.F. & CONEY, P.J., 1983. TECTONO-STRATIGRAPHIC TERRANES AND MINERAL RESOURCE DISTRIBUTIONS IN MEXICO.CANADIAN JOURNAL OF EARTH SCIENCES, 20: 1040-1051.

CAMPRUBÍ, A., FERRARI, L., COSCA, M.A., CARDELLACH, E. & CANALS, A., 2003. AGES OF EPITHERMAL DEPOSITS IN MEXICO: REGIONAL SIGNIFICANCE AND LINKS WITH THE EVOLUTION OF TERTIARY VOLCANISM. ECONOMIC GEOLOGY, 98: 1029-1037.

CAMPRUBÍ A., ALBINSON T., 2006 (B), DEPÓSITOS EPITERMALES EN MÉXICO: ACTUALIZACIÓN DE SU CONOCIMIENTO Y RECLASIFICACIÓN EMPÍRICA: BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA, VOLUMEN CONMEMORATIVO DEL CENTENARIO, LVIII, 4, 27-81.

CAMPRUBÍ, A. Y ALBINSON, T., 2007. EPITHERMAL DEPOSITS IN MÉXICO-UPDATE OF CURRENT KNOWLEDGE, AND AN EMPIRICAL RECLASSIFICATION. IN: ALANIZ-ÁLVAREZ, S. & NIETO-SAMANIEGO, A. (EDITORS), GEOLOGY OF MÉXICO: CELEBRATING THE CENTENARY OF THE GEOLOGICAL SOCIETY OF MÉXICO. GEOLOGICAL SOCIETY OF AMERICA SPECIAL PAPER, 422: 377-415.

CENTENO-GARCÍA, E., GUERRERO-SUASTEGUI, M., TALAVERA-MENDOZA, O., 2008. THE GUERRERO COMPOSITE TERRANE OF WESTERN MEXICO: COLLISION AND SUBSEQUENT RIFTING IN A SUPRASUBDUCTION ZONE. IN: DRAUT, A., CLIFT, P. & SCHOLL, D. (EDITORS), FORMATION AND APPLICATIONS OF THE SEDIMENTARY RECORD IN ARC COLLISION ZONES. GEOLOGICAL SOCIETY OF AMERICA SPECIAL PAPER, 436, PP. 279- 308.

CHAKMOURADIAN, A.R., WALL,F., 2012, RARE EARTH ELEMENTS: MINERALES , MINES, MAGNETS (AND MORE), ELEMENTS, 8 (5), PP 333-340.

CLARK, K. F., P. E. DAMON, M. SHAFIQUILLAH, B. F. PONCE, D. CARDENAS., SECCIÓN GEOLÓGICA ESTRUCTURAL A TRAVÉS DE LA PARTE SUR DE LA SIERRA MADRE OCCIDENTAL, ENTRE FRESNILLO Y LA COSTA DE NAYARIT: ASOCIACIÓN DE INGENIERIOS MINEROS, METALURGISTAS Y GEÓLOGOS DE MEXICO, MEM. TÉC., XIV, 69-99.

COOKE, D.R. & SIMMONS, S.F. (2000) CHARACTERISTICS AND GENESIS OF EPITHERMAL GOLD DEPOSITS.REVIEWS IN ECONOMIC GEOLOGY, 13, 221–44.

COTTON, J., LE DEZ, A., BAU, M., CAROFF, M., MAURY, R.C., DULSKI, P., FOURCADE, S., BOHN, M., BROUSSE, R., 1993. ORIGIN OF ANOMALOUS RARE-EARTH ELEMENT AND YTTRIUM ENRICHMENTS IN SUBAREIALLY EXPOSED BASALTS: EVIDENCE FROM FRENCH POLYNESIA. CHEM. GEOL. 119, 115–138.

DAVID BARTHELMY, 2014, MINERALOGY DATABASE (EN LÍNEA), DISPONIBLE EN: HTTP://WEBMINERAL.COM/, CONSULTADO EN ABRIL DE 2016.

DAVIS, J.M., ELSON, W.E., &HAWKESWORTH, C.J., 1993, BASIC AND INTERMEDIATE VOLCANISM OF THE MOGOLLON-DATIL VOLCANIC FIELD: IMPLICATIONS FOR MID-TERTIARY TECTONIC TRANSITIONS IN SOUTHWESTERN NEW MEXICO, USA EN PRICHARD, H.M., ALABASTER, T., HARRIS, N.B.W., Y NEARY, C.R., EDS., MAGMATIC PROCESSES AND PLATE TECTONICS: GEOLOGICAL SOCIETY, 76, 469–488.

DERRILL, M. K., LELAND, B. E., Y JAMES, F. V., 1973, THE ROLE OF CARBON FILM THICKNESS IN ELECTRON MICROPROBE ANALYSIS, AMERICAN MINERALOGIST, EUA, VOL. 58, PP. 920 – 925.

DWIGHT, J., SALISBURY, E., 1997, DANA'S NEW MINERALOGY, GAINES, R., SKINNER, C., FOORD, E., MASON, B., ROSENZWEIG, A. EDITS., WILEY-INTERSCINECE, PP. 380-383.

ECHAVARRÍA, E.L., 2004, LOS FLUIDOS HIDROTERMALES FORMADORES DE LA MINERALIZACIÓN EPITERMAL EL DORADO-MONSERRAT, MACIZO DEL DESEADO, REVISTA DE LA ASOCIACIÓN GEOLÓGICA DE ARGENTINA, 59 (1): 70-82 PP.

ERNST, R. E. & JOWITT, S.M., 2013, LARGE IGNEOUS PROVINCES (LIPS) AND METALLOGENY, SOCIETY OF ECONOMIC GEOLOGIST, SPECIAL PUBLICATION 17, 17-31.

FERRARI, L.,LÓPEZ-MARTÍNEZ, M., AGUIRRE-DÍAZ, G., CARRASCO-NÚÑEZ G., SPACE-TIME PATTERNS OF CENOZOIC ARC VOLCANISM IN CENTRAL MEXICO: FROM THE SIERRA MADRE OCCIDENTAL TO THE MEXICAN VOLCANIC BELT. GEOLOGY, (4), 303–306.

FERRARI, L., LÓPEZ-MARTÍNEZ, M. & ROSAS-ELGUERA, J., 2002. IGNIMBRITE FLARE-UP AND DEFORMATION IN THE SOUTHERN SIERRA MADRE OCCIDENTAL, WESTERN MEXICO: IMPLICATIONS FOR THE LATE SUBDUCTION HISTORY OF THE FARALLON PLATE. TECTONICS, 21(4), PP.1–25.

FERRARI, L., VALENCIA-MORENO, M., BRYAN, S., 2005, MAGMATISMO Y TECTÓNICA EN LA SIERRA MADRE OCCIDENTAL Y SU RELACIÓN CON LA EVOLUCIÓN DE LA MARGEN OCCIDENTAL DE NORTEAMÉRICA: BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA, 3, 343-378.

FERRARI, L. & BRYAN, S., 2007. MAGMATISM AND TECTONICS OF THE SIERRA MADRE OCCIDENTAL AND ITS RELATION WITH THE EVOLUTION OF THE WESTERN MARGIN OF NORTH AMERICA, GEOLOGICAL SOCIETY OF AMERICA, 2422(01), PP1–39.

GAGNON, J. E., SAMSON I.M., FRYER, J. B., WILLIAMS-JONES, A. E., 2003, COMPOSITIONAL HETEROGENEITY IN FLUORITE AND THE GENESIS OF FLUORITE DEPOSITS: INSIGHTS FROM LA-ICP-MS ANALYSIS, THE CANADIAN MINERALOGIST, VOL. 41, PP 365-382.

GARGAUD, M., AMILS, R., CLEAVES, H.J, IRVINE, W.M., PINTI, D., VISO, M. (EDS.), 2011, ENCYCLOPEDIA OF ASTROBIOLOGY, SPRINGER, PP 1196.

GIGGENBACH, W.F., 1992, MAGMA DEGASSING AND MINERAL DEPOSITION IN HYDROTHERMAL SYSTEMS ALONG CONVERGENT PLATE BOUNDARIES: ECONOMIC GEOLOGY, V. 87, P. 1927-1944.

GILL, R., 2010, IGNEOUS ROCKS AND PROCESSES A PRACTICAL GUIDE, LONDRES, WILEY-BLACKWELL, PP20-92.

GONZÁLEZ, M. G. Y NOGUEZ, A. E., 2009, PRINCIPIOS DE MICROSONDA ELECTRÓNICA DE BARRIDO Y MICROANÁLISIS POR RAYOS X CARACTERÍSTICOS, FACULTAD DE QUÍMICA, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, MÉXICO, 97 PP.

GRAMMACOLI, C. M., DIELLA, V., DEMARTIN, F., 1999, THE ROLE OF FLUORIDE COMPLEXES IN REE GEOCHEMISTRY AND THE IMPORTANCE OF 4F ELECTRONS: SOME SAMPLES AND MINERALS, EUROPEAN JOURNAL OF MINERALOGY, 11, PP 983-992. HEDENQUIST, J.W., 1987, MINERALIZATION ASSOCIATED WITH VOLCANIC-RELATED HYDROTHERMAL SYSTEMS IN THE CIRCUM-PACIFIC BASIN, IN HORN, M.K., ED., CIRCUM PACIFIC ENERGY AND MINERAL RESOURCES CONFERENCE, 4TH, SINGAPORE, L986, TRANSACTIONS: AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS, P. 5L3–524.

HEDENQUIST, J.W. & LOWESTERN, J.B., 1994. THE ROLE OF MAGMAS IN THE FORMATION OF HYDROTHERMAL ORE DEPOSITS. NATURE, 370: 519-527.

HEDENQUIST J., IZAWA E., ARRIBAS A., WHITE N., 2001, YACIMIENTOS EPITERMALES DE ORO: TIPOS DE MINERALIZACION, CARACTERSTICAS Y EXPLORACIÓN: MUNDO MINERO, 205, 75-85.

HEDENQUIST, J., 2013, FORMATION OF HIGH- AND LOW-SULFIDATION DEPOSITS: SEG, SHORT COURSE, NEVADA, MAYO DE 2013.

HENDERSON, P., 1984, GENERAL GEOCHEMICAL PROPIERTIES AND ABUNDANCES OF THE RARE EARTH ELEMENTS, RARE EARTH ELEMENTS GEOCHEMISTRY, HENDERSON, P. (ED.) ELSEVIER, 1-32 P.

HENDERSON, P., GLUYAS, J., GUNN, G., WALL, F., WOLLEY A., FINLAY A., 2011, RARE EARTH ELEMENTS, A BRIEF NOTE BY THE GEOLOGICAL SOCIETY OF LONDON, THE GEOLOGICAL SOCIETY, LONDRES, 13P.

LAZNICKA, P., 2010, GIANT METALLIC DEPOSITS: FUTURE SOURCES OF INDUSTRIAL METALS, 2ND ED.: BERLIN, SPRINGER-VERLAG, 949 P.

LEVRESSE, G., GONZÁLEZ-PARTIDA, E., TRITLLA, J., CAMPRUBÍ, A., CIENFUEGOS-ALVARADO, E., MORALES-PUENTE, P., 2003, *FLUID CHARACTERISTICS OF THE WORLD-CLASS, CARBONATE-HOSTED LAS CUEVAS FLUORITE DEPOSIT (SAN LUIS POTOSÍ, MÉXICO)*, JOURNAL OF GEOCHEMICAL EXPLORATION, PP 537-543.

LINDGREN, W., 1933. MINERAL DEPOSITS, 4TH ED.: NEW YORK, MCGRAW-HILL, 930 P.

LOTTERMOSTER, B.G., 1991, RARE EARTH ELEMENTS AND HYDROTHERMAL ORE FORMATION, ORE GEOLOGY REVIEWS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, 7, PP 25-41.

LYMAN, C. E, GOLDSTEIN, J. I., ROMIG, A. D., ECHLIN, P., NEWBURY, D. E., WILLIAMS D. B., ARMSTRONG J. T., FIORI C. E., LIFSHIN, E. Y PETERS, K. R., 1990, SCANNING ELECTRON MICROSCOPY, X-RAY MICROANALYSIS AND ANALYTICAL ELECTRON MICROSCOPY, PLENUM PRESS, NEW YORK, 3 – 42 PP.

LYONS, J., GEOLOGY AND ORE DEPOSITS OF THE BOLAÑOS SILVER DISTRICT, JALISCO, MEXICO. ECONOMIC GEOLOGY, 83: 1560-1582.

MCDONOUGH, W.F., SUN, S.S., 1995, THE COMPOSITION OF THE EARTH, CHEMICAL GEOLOGY, 120 (3-4), PP 223-253.

MCLENNAN, S. M., 1994, RARE EARTH ELEMENT GEOCHEMISTRY AND THE "TETRAD EFFECT", GEOCHIMICA ET COSMOCHIMICA ACTA, ELSEVIER SCIENCE LTD, USA, VOL. 58-9, PP 2025-2033.

MOHAMED, F. H. Y EL-SAYED, M. M., 2005, POST-OROGENIC AND OROGENIC A-TYPE FLUORITE-BEARING GRANITOIDS, EASTERN DESERT, EGYPT: PETROGENETIC AND GEOTECTONIC IMPLICATIONS, CHEMIE DER ERDE, GEOCHEMISTRY, ELSEVIER, 68, 431-450.

NIETO-SAMANIEGO, A.F., ALANIZ-ÁLVAREZ, S.A. &CAMPRUBÍ Í CANO, A., 2005. LA MESA CENTRAL DE MÉXICO: ESTRATIGRAFÍA, ESTRUCTURA Y EVOLUCIÓN TECTÓNICA CENOZOICA: BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA, 58: 285-318.

POTTS, P. J., BOWLES, J. F., REED, S. J. & CAVE, M. R., 1995, MICROPROBE TECHNIQUES IN EARTH SCIENCES, CHAPMAN & HALL, LONDRES, 418 PP.

RAMOS-ROSIQUE, A., 2013, TIMING AND EVOLUTION OF LATE OLIGOCENE TO EARLY MIOCENE MAGMATISM AND EPITHERMAL MINERALIZATION IN THE CENTRAL BOLAÑOSGRABEN, SOUTHERN SIERRA MADRE OCCIDENTAL, MÉXICO, KINGSTON UNIVERSITY, TESIS DOCTORAL, 256 P.

RINALDI, R. Y LLOVET, X., 2015, ELECTRON PROBE MICROANALYSIS: A REVIEW OF THE PAST, PRESENT AND FUTURE, MICROSCOPY SOCIETY OF AMERICA, VOL. 21, PP. 1053 – 1069.

ROWLATT, J., 2014, EL SECRETO PODER DE LAS TIERRAS RARAS, BRITISH BROADCASTING CORPORATION, LONDRES, DISPONIBLE EN: [HTTP://WWW.BBC.COM/MUNDO/NOTICIAS/2014/04/140329_MINERALES_TIERRAS_RARAS_FI NDE_JP], CONSULTADO 09 DE AGOSTO DE 2016.

SCHEUBEL, F.R., CLARK, K.F. & PORTER, E.W., 1988. GEOLOGY, TECTONIC ENVIRONMENT, STRUCTURAL CONTROLS IN THE SAN MARTIN DE BOLANOS DISTRICT, JALISCO.ECONOMIC GEOLOGY, 83: 1703-1720.

SCHMIDT, J.M., AND ROGERS, R.K., 2007, METALLOGENY OF THE NIKOLAI LARGE IGNEOUS PROVINCE (LIP) IN SOUTHERN ALASKA AND ITS INFLUENCE ON THE MINERAL POTENTIAL OF THE TALKEETNA MOUNTAINS: GEOLOGICAL SOCIETY OF AMERICA SPECIAL PAPER 431, P. 623–648.

SCHWINN G. Y MARKL G., 2005, REE SYSTEMATICS IN HYDROTHERMAL FLUORITE, CHEMICAL GEOLOGY, ELSEVIER, ALEMANIA, 216, PP 225-248.

SILLITOE R. H., HEDENQUIST J. W., 2003, LINKAGES BETWEEN VOLCANOTECTONIC SETTINGS, ORE-FLUID COMPOSITIONS, AND EPITHERMAL PRECIOUS METAL DEPOSITS: SEG SPECIAL PUBLICATION 10, CAP. 18, 30 P.

SETO, M. & AKAGI, T., 2008, CHEMICAL CONDITION FOR THE APPEARANCE OF A NEGATIVE CE ANOMALY IN STREAM WATERS AND GROUND WATERS, GEOCHEMICAL JOURNAL, JAPÓN, VOL. 42, PP 371-380.

SEUNG-GU, L., YOSHIHIRO, A., TSUYOSHI, T., SEUNG RYEOL, L., TAEJONG, L., 2013, GEOCHEMICAL SIGNIFICANCE OF THE RB-SR, LA-CE AND SM-ND ISOTOPE SYSTEMS IN A-TYPE ROCKS WITH REE TETRAD PATTERNS AND NEGATIVE EU AND CE ANOMALIES: THE CRETACEOUS MUAMSA AND WEOLAKSAN GRANITES, SOUTH KOREA, CHEMIE DER ERDE, GEOCHEMISTRY, ELSEVIER, 73 (2013), PP 75-88.

THOMAS, R., 2001, A BEGINNER'S GUIDE TO ICP-MS, SPECTROSCOPY TUTORIAL, ADVANSTAR COMUNICATIONS, EUA, PP. 79.

VILLAREAL-FUENTES, J., LEVRESSE, G., TRITLLA, J., GONZÁLEZ-PARTIDA, E., SOLORIO-MUNGUÍA, J., BACA, S. Y RODRIGUEZ-SANTOS, A., 2005, *EL DEPÓSITO DE FLUORITA DE EL PILOTE COMO UNA CLAVE PARA ENTENDER EL ORIGEN Y MOVILIZACIÓN DEL FLÚOR EN EL NORESTE DE MÉXICO*, AIMMGM XXXVI CONVENCIÓN NACIONAL DE MINERÍA, VERACRUZ, MÉXICO.

WALTERS, A. LUSKY, P., 2011, RARE EARTH ELEMENTS- COMMODITY PROFILE. LONDRES: BRITISH GEOLOGICAL SURVEY, 1-54P.

WARD, P.L., 1995, ON PLATE TECTONICS AND THE GEOLOGIC EVOLUTION OF SOUTHWESTERN NORTH AMERICA: JOURNAL OF GEOPHYSICAL RESEARCH, 96, 12479-12496.

WEBBER, A.P., ROBERTS, S., TAYLOR, R.N., AND PITCAIRN, I.K., 2013, GOLDEN PLUMES: SUBSTANTIAL GOLD ENRICHMENT OF OCEANIC CRUST DURING RIDGE-PLUME INTERACTION: GEOLOGY, V. 41, P. 87–90.

WHITE, N.C., HEDENQUIST, J.W., 1990, EPITHERMAL ENVIRONMENTS AND STYLES OF MINERALIZATION: VARIATIONS AND THEIR CAUSES, AND GUIDELINES FOR EXPLORATION: JOURNAL OF GEOCHEMICAL EXPLORATION, 36, 445-474.

WHITE, N.C & HEDENQUIST J. W., 1995, EPITHERMAL GOLD DEPOSITS: STYLES, CHARACTERISTICS AND EXPLORATION: SEG NEWSLETTER, 23, 1, 9-13.

WHITE, W. M., 2005, GEOCHEMISTRY, WILEY-BLAWELL, CALIFORNIA, PP 258-306.

WOOD, S.A., 1990, THE AQUEOUS GEOCHEMISTRY OF THE REE AND Y, THEORICAL PREDICTIONS OF SPECIATION IN HYDROTHERMAL SOLUTIONS TO 350°C AT SATURATION WATER VAPOR PRESSURE, CHEMICAL GEOLOGY, ELSEVIER SCIENCE PUBLISHER D.V., AMSTERDAM, 88 (1990), PP 99-125.

Grupo Litológico	Descripción
Lahares	Discordantes sobre los sedimentos volcanoclásticos, se relacionan a las últimas etapas de fallamiento tectónico.
Flujos basálticos Ranchito y Mesa Prieta (>200 m de espesor)	Sobreyaciendo directamente a los sedimentos volcanoclásticos (correlacionables con el basalto Huila en Bolaños), ambos flujos poseen tres características principales: (1) sobreyacen sedimentos estratificados, (2) poseen una morfología basal en bloques volviéndose mas masiva hacia la parte superior y (3) son vitrófidos.
Sedimentos volcánicos (>200 m de espesor)	Sobreyaciendo de manera discordante al grupo Cerro el Piñón, las acumulaciones de sedimentos volcanoclásticos (>40 m de espesor). Posteriores a estos sedimentos se encuentran conglomerados derivados de los arroyos cercanos. Esta porción de la estratigrafía es correlacionable con la arenisca Mexquitic de Lyons (1988).
Grupo Cerro el Piñón (>100 m de espesor)	Ignimbritas post-mineralización, con una extensión lateral de >50 km .Este grupo sobreyace a la formación Carboneras y es correlacionable con las tobas San Martín y Chimal descritas por Lyons (1988).
Flujos indiferenciados de lava y ceniza (~1000 m de espesor)	Secuencia pre-mineralización de composición predominantemente riolítica con cantidades menores de andesitas y basaltos

Tabla A0.1. Características principales de las unidades del distrito de San Martín de Bolaños con baseen Scheubel et al. (1988).

Ignimbrita	Descripción
B. Norte	Ignimbrita masiva, gris a ligeramente morada, pobre
Los Pinos (~ 60 m de espesor)	en cristales, ± 73% SiO ₂ . Edad aproximada de 23.3 ± 0.6 Ma (U-Pb en zircones) y 18.7 ± 0.9 Ma (Ar/Ar en feldespatos). En su base se observa ligeramente soldada (± 5 m) con fragmentos de pómez ligeramente atenuados, hacia la cima se vuelve más masiva y coherente (similar a un flujo de lava); la parte superior se encuentra particularmente soldada con fragmentos de pómez de hasta 15 cm de largo, así como una fuerte alteración de fases de vapor; así mismo, contiene fragmentos líticos de grano fino de hasta 10 cm de diámetro y son consistentes con ser lavas máficas afaníticas. El ensamble fenocristalino consiste dominantemente de sanidino y en menor cantidad plagiocasa, así como cantidades traza de biotita de grano fino; no presenta cuarzo. Se interpreta como un flujo distal.
B. Norte	Se encuentra compuesta por una unidad piroclástica
$\frac{\text{Encino}}{(\sim 10 \text{ m de esposor})}$	rica con 1-2% de tenocristales de grano fino de cuarzo
(~ 10 m de espesor)	m de una arenisca ligeramente estratificada. Esta
	secuencia se encuentra cubierta por un extenso
	depósito derivado principalmente de la fragmentación
	y erosion de los domos riolíticos de la Sierra; se interpreta como un fluio distal
B. Norte Jabalí (~ 20 m de espesor)	Ignimbrita ligeramente amarilla a blanca, masiva, soldada, rica en cristales (± 28% de fenocristales), pobre en pómez y fragmentos líticos, rica en sílice (± 77% SiO ₂); suprayace ± 50 m de espesor de una secuencia epiclástica. Esta ignimbrita contiene cristales de feldespato de hasta 3 cm de largo, así como fenocristales subedrales a euedrales de grano medio de cuarzo.
B. Norte Pinolea (~ 60 m de espesor)	Ignimbrita masiva, soldada, pobre en cristales (± 4%), fragmentos líticos (± 17%), rica en sílice (± 78% SiO ₂). Se encuentra expuesta en el bloque Norte y suprayace depósitos epiclásticos en la cima de la ignimbrita San José, así mismo subyace a una delgada capa de depósitos epiclásticos. El ensamble mineral incluye cristales de grano fino de sanidino, cuarzo, plagioclasa y óxidos de hierro y titanio contenidos en una matriz altamente devitrificada.
B. Norte	Ignimbrita expuesta en la base del Bloque Norte del
San José (~ 60 m de espesor)	graben; masiva, blanca, rica en cristales (22% de fenocristales), alto contenido en sílice (78% SiO ₂), se ubica en el bloque de techo al norte de la Veta Zuloaga. El ensamble fenocristalino incluye cristales de grano medio a fino de sanidino, cuarzo y plagioclasa, así como cristales de grano fino de óxidos de hierro y titanio y cantidades traza de biotita. Los feldespatos se encuentran alterados a arcillas.

B. Norte San Carlos (~ 60 m de espesor)	Ignimbrita ubicada en el bloque de techo de la veta Zuloaga, de coloración gris a rosa, rica en cristales (contenido total de fenocristales: ~31%), con un alto contenido de fenocristales de grano medio a grueso de cuarzo, soldada, de composición riolítica; los fragmentos líticos son afaníticos, máficos, subangulares con una variación de tamaño de <1 a 7 cm.
B. Central Cerro Blanco 3	Ignimbrita soldada, masiva, silicificada, pobre en cristales, se encuentra suprayaciendo a la unidad Cerro Blanco 2 posicionándose en la cima del bloque Central del graben, presenta un alto grado de silicificación, evidencia de alteración
B. Central Cerro Blanco 2	Ignimbrita blanca, masiva, pobre en fragmentos líticos y cristales, se encuentra suprayaciendo a la unidad Cerro Blanco 1; esta unidad presenta kaolinización, silicificación y hematización, estas características indican su proximidad con la Veta Zuloaga. El ensamble fenocristalino se compone de cuarzo, feldespato alcalino, óxidos de hierro y titanio y en menor medida, muscovita.
B. Central Cerro Blanco 1 (~ 7 m de espesor)	Ignimbrita ligeramente rosa, masiva, rica en ceniza y cristales de plagioclasa, pobre en fragmentos líticos, soldada, se encuentra suprayaciendo a la ignimbrita Vultura. Presenta un ensamble de fenocristales (3%) compuesto por feldespatos de grano fino, cuarzo, óxidos de hierro y titanio, así como hornblenda.
B. Central Buitre (~ 7 m de espesor)	Ignimbrita blanca masiva, espesor aproximado 10m, rica en ceniza, soldada, pobre en cristales y fragmentos líticos; los cristales que presentan son de feldespatos alcalinos, cuarzo y óxidos de hierro y titanio, así como pequeños fragmentos de pómez. Esta unidad presenta fracturamiento columnar.
B. Central Águila (~ 10 m de espesor)	Ignimbrita de coloración rojiza-amarilla, soldada, pobre en cristales y fragmentos líticos, rica en ceniza; presenta cristales de grano fino de cuarzo, feldespatos y óxidos de Fe-Ti.
B. Central Cascabel (~ 10 m de espesor) Post-Pinolea	Ignimbrita soldada, blanca, rica en cristales, pobre en fragmentos líticos, con alto contenido de sílice (~78% SiO2); presenta fenocristales de grano fino a medio de feldespatos alcalinos, cuarzo, óxidos de Fe-Ti, en menor medida muscovita y cantidades traza de zircones. Esta unidad es sobreyacida por un depósito vulcanoclástico, rico en feldespato.
B. Central Indiferenciado	Intervalo compuesto por ignimbritas de espesores menores intercaladas con depósitos vulcanoclásticos ricos en feldespato, afectados por diques basálticos e intensa silicificación, así como vetillas de cuarzo

Vugular	rojiza, presenta silicificación y hematización, pobre en
(~ 20 m de espesor)	fragmentos líticos y cristales (~3%).
Post-Pinolea	
B Central	
	Ignimbrita soldada, rosa, rica en cristales (cristales
Venado	euedrales a subedrales de grano fino a medio de
(~ 20 m de espesor)	Ti v en menor medida biotita), espesor aproximado de
	20 m, baio contenido de fragmentos líticos y pómez.
Dest Dinelse	alto contenido de SiO2 (~77%)
Post-Pinolea B Central	lanimbrita masiva, alterada, soldada, fenocristales de
D. Central	feldespatos, de color morado: esta unidad se
	encuentra supra- y subyacida por depósitos
	epiclásticos. La concentración de de fragmentos líticos
Pinolea	y pómez aumenta hacia arrida de la unidad, los
(~ 40 m de espesor)	fragmentos líticos son afaníticos, máficos con tinte
	nagioclasa y sanidino, con un menor porcentaie de
	biotita v óxidos de Fe-Ti.
B. Central	Ignimbrita gris, piritizada y con presencia de arcillas,
	masiva, rica en cristales (30% de fenocristales),
Escondida	soldada, con ~72% SiO2. Esta unidad presenta
(~ 60 m de espesor)	variaciones en la concentración de fenocristales,
(28.1 Ma; 0-PD eff zircoffes)	interpreta como una ignimbrita distal, con un grado de
	soldadura moderado.
B. Central	Pobre en clastos, rica en ceniza, soldada, mesocrática
	(gris), 72% SiO2; presenta variaciones en el grado de
Dellener	soldadura, presentando hacia las partes más altas de
$\begin{array}{c} \text{Ballenas} \\ (a, 70 \text{ m de espesor}) \end{array}$	la unidad un mayor grado de soldadura, así como
(28.6 Ma: U-Pb en zircones)	características de esta unidad son consistentes con las
	facies distales de flujos piroclásticos, la intercalación
	con depósitos piroclásticos re-sedimentados indican
	erupciones explosivas de gran volumen tuvieron lugar
D. Control	en esta region pero tueron eventos intermitentes.
b. Central	bloque central y bloque de piso de la veta 7uloaga. se
Cangrejos	encuentra separada del grupo San Juan por depósitos
(~ 60 m de espesor)	epiclásticos.
B. Central	Brecha volcánica, clasto soportada, pobre en matriz;
Con luca	bloques y bombas afíricos, melanocráticos con
san Juan	oxidación termai. Está unidad se interpreta como depósito de caída basáltico subaéreo
B. Central	Intrusión máfica, de color morado oscuro, hematizada
2. 0011101	con glomerocristales de plagioclasa y presencia de
	enclaves; se encuentra expuesta en la base del Bloque
	Central e intruye las secuencias epiclásticas debajo de
Sill San Pablo	la ignimbrita Cangrejos. El socavón hacia el nivel San
(> 200 m de espesor)	rapio llega a la mina a través de esta unidad, en

	donde el sill muestra una fuerte cloritización y epidotización conforme se encuentra más cercano a la zona de mineralización.
B. Sur y Suroeste Intrusiones Rosario-Condesa	Se trata de un grupo extenso de intrusiones máficas presentes en los bloques Sur y Suroeste y ocurren en asociación con las fallas Cabrera y Condesa; el contenido de cristales de estas unidades máficas vería de 15-20% hasta 30-50% de plagioclasa a 1-3% hasta 5% de plagioclasa. Los flujos ricos en cristales tienden a ser de grano grueso con fenocristales de hasta 9 mm de largo, por otro lado, las unidades pobres en cristales tienden a ser de grano más fino, con fenocristales de 1-3 mm de largo. Estas rocas se encuentran afectadas pervasivamente por una alteración propilitica (cercana a las zonas de falla) en donde la clorita y epidota dan una coloración verde a la roca y fenocristales de plagioclasa. El brechamiento hidrotermal es prominente cerca de las zonas de falla, produciendo una brecha de "rompecabezas" (<i>jigsaw</i>), las vetas generalmente contienen epidota, clorita, calcita y cuarzo; por otro lado, puede observarse hematización y silicificación en las zonas alejadas de las fallas, pero afectan en general a todas las unidades. Esta unidad es interpretada por Scheubel et <i>al.</i> (1988) como un flujo andesitico descrito como el grupo Rosario fechado en 23.7 ± 0.6 Ma (K/Ar; concentrado de plagioclasa); estos autores interpretan estas unidades como la base de las unidades ignimbríticas, representando una unidad premineralización, sin embargo, Ramos-Rosique (2013) interpreta estas unidades como intrusiones de alto nivel
	fracturas.
B. Suroeste Cascada (~ 70 m de espesor)	Ignimbrita ligeramente amarilla, masiva, ligeramente bandeada, soldada, rica en cristales (± 22% fenocristales), pómez y fragmentos líticos, con alto contenido en sílice (±76% SiO2); apariencia vuggy característica. Se encuentra al sur de la Falla Cabrera, en donde forma acantilados verticales con fracturamiento columnar; esta unidad se encuentra en la parte más alta del bloque suroeste.
B. Sur	Ignimbrita ligeramente morada, masiva, fírica (17% de fenocristales), riolítica (± 72% SiO2, ligeramente soldada; se encuentra expuesta al sur de la Falla Huichola, en el bloque Sur; suprayace directamente a la ignimbrita Ballenas. Contiene fragmentos de pómez de hasta 10 cm de largo (característicos de de esta unidad, particularmente en la parte superior) son distintivos por contener cristales euedrales de grano medio de cuarzo y feldespato alcalino de hasta 2 cm de largo. La matriz contiene cristales euedrales de

Gran Pómez (~ 30 m de espesor)	grano medio de cuarzo, feldespato alcalino, cristales de grano fino de óxidos de hierro y titanio, en menor medida, muscovita y cantidades traza de zircón. Los pequeños fragmentos de pómez se encuentran (usualmente) altamente soldados, sin embargo, los fragmentos más largos se encuentran pobremente soldados. Se interpreta como una fase distal, petrográfica /composicionalmente zonada.
Domos riolíticos piroclásticos	Una gran cantidad de diques piroclásticos, presentan una orientación subvertical con fábrica eutaxítica, su espesor varía de <1 a 10 m, aunque raramente, algunos presentan espesores de hasta 25m. Su orientación es mayoritariamente N-S, algunos orientados NE-SW. Son típicamente ricos en cristales, líticos y los fragmentos de pómez presentan ligero soldamiento.
Diques riolíticos coherentes	Diques riolíticos comúnmente afaníticos a masivos; algunos presentan ligero bandeamiento, fenocristales de cuarzo y feldespato, pero en general, es bajo el contenido de cristales (<1-5%) mantienen la misma orientación que los diques basálticos de los bloques Central y Norte.
Diques basálticos	Afaniticos a masivos, algunos son profiríticos (± 10- 25% de fenocristales de grano medio), vesiculares, algunos altamente fracturados columnarmente; algunos de estos diques contienen cristales aislados de cuarzo. Es común observar diseminación de alteración propilítica, así como oxidación de hierro; el espesor de estos cuerpos varía de 1 a 15 m, se encuentran orientados NE o NW, y en menor medida N-S.
Flujo Correcaminos	Flujo riolítico ubicado entre el domo Cerro Colorado y Sur, porfirítico a afanítico, pobre en cristales (±5%), masivo a bandeado; es estratigráficamente la unidad volcánica más joven en el distrito y se encuentra emplazada dentro del graben. Forma un total de ± 0.075 km ³ de flujo de lava con presencia de auto- brechamiento en las partes marginales, así como en el frente del flujo en donde los bloques y flujo bandeado son caóticamente embebidos en una matriz granular. Scheubel et al. (1988) identificaron esta unidad como un flujo basáltico, probablemente debido a las vistas aéreas. Esta unidad se asocia con la falla Regional, así como a la zona de fallas, en el área de minado en la parte central del distrito.
Domos riolíticos Sierra	En la cima de la sierra en el distrito se encuentran dos domos alineados a lo largo de la falla La Mancha, el domo ubicado más hacia la parte norte es de coloración rosa, pobre en cristales, bandeado, con

	alto contenido en sílice (\pm 83% SiO ₂) con ligera diseminación de pirita; este domo contiene fenocristales de grano medio de plagioclasa (hasta 3 mm de largo) y en menor medida, cuarzo.
Domo Sur	Riolita afanítica, gris a ligeramente crema, ligeramente bandeada en algunas zonas, contiene ± 3% de fenocristales de grano fino de feldespatos; en la periferia del domo puede observarse una capa de brecha.
Domo Cerro Colorado	Domo gris, que presenta oxidación, pobre en cristales (afírico), de composición riolítica con alto contenido en sílice (±80% SiO ₂), con pirita diseminada; puede localizarse al sur del domo Norte y al este de la falla Regional. Se observan cristales esporádicos de grano fino de cuarzo y feldespato embebidos en una matriz devitrificada.
Domo Norte	Flujo riolítico bandeado, esferulítico, afírico, con tonalidad gris a rosa-rojiza, contiene cristales finos de cuarzo y feldespatos (±3%) altamente alterado a arcillas y pirita; se encuentra expuesto al este del Cerro La Mancha y la falla Regional y forma una serie de montañas alineadas con los domos Cerro Sur y Colorado a lo largo de la base de la pared del graben.
Domo Cerro La Mancha	Flujo bandeado, masivo, de coloración ligeramente roja con fenocristales de feldespato y cuarzo, riolítico con alto contenido de sílice (± 79% SiO2), presenta alteración argílica, así como pirita diseminada; se encuentra expuesta en la parte norte del distrito de SMB y al este de la falla regional. Atraviesa la secuencia compuesta por ignimbritas y depósitos epiclásticos expuesta en las paredes del graben. Este domo fue fechado en 24.5 ± 0.3 Ma (U-Pb; zircones) y 22.8 ± 0.4 Ma (Ar/Ar; feldespatos). La matriz se encuentra altamente devitrificada, contiene fenocristales finos de cuarzo y feldespato alcalino (8% total de fenocristales), los cristales de cuarzo son subedrales mientras que los feldespatos alcalinos se encuentran fracturados y ligeramente sericitizados.

Tabla A0.2. Características principales de las unidades del distrito de San Martín de Bolaños con baseen Ramos Rosique (2013).

A1.1 Microsonda electrónica (EPMA: Electron Probe Micro-Analysis).

La microsonda electrónica (EPMA) es una técnica analítica relativamente reciente, desarrollada en sus aspectos prácticos y teóricos por Castaing entre 1948 y 1952; utiliza el espectro producido por un haz de electrones dirigido, al incidir en una muestra sólida para así obtener un análisis químico localizado. Todos los elementos desde el Be (con número atómico 4), al U (número atómico 92) pueden ser detectados (Potts et al., 1995; González y Noguez, 2009).

Cuando un haz electrónico incide sobre la superficie de un sólido, se generan una serie de ondas electro-magnéticas, entre las que se encuentran la cátodoluminiscencia y los rayos X; éstos últimos se generan como consecuencia de la ionización que sufren los átomos al ser bombardeados por electrones. La energía que implica el salto de un electrón de una capa superior a una inferior produce la emisión de una radiación X cuya frecuencia (V) está relacionada con la diferencia de energía (E) del átomo antes y después de la transición (E=hV, en donde h es la constante de Planck). (Lyman et al., 1990; Potts et al., 1995). De igual manera, durante la incidencia del haz de electrones en el sólido, se produce la emisión de: electrones secundarios, Auger, retrodispersados y transmitidos (ver tabla 4.1).

Tipo de electrón	Descripción
Secundarios	Se producen cuando un electrón pasa muy cerca del núcleo de un átomo de la muestra. Estos electrones son de muy baja energía (por debajo de 5 eV), por lo que deben encontrarse muy cerca de la superficie para poder escapar, es por eso que proporcionan información topográfica de la muestra y son los utilizados principalmente en microscopía electrónica de barrido (SEM, pos sus siglas en inglés).
Retrodispersados	Producidos cuando un electrón del haz choca frontalmente con el núcleo de un átomo de la muestra, siendo repelido en sentido contrario (fuera de la muestra). La intensidad de dicho efecto varía proporcionalmente con el número atómico de la muestra. Por esta razón se utilizan para obtener un mapa con información sobre la composición superficial de la muestra, también utilizados en microscopía electrónica de barrido.
Auger	Cuando un electrón secundario es expulsado del átomo, un electrón externo puede saltar hacia el interior para <i>llenar</i> este hueco. El exceso de energía provocado por este desplazamiento puede ser corregido emitiendo un nuevo electrón de la capa más externa.
Transmitidos	Estos electrones son utilizados para crear imágenes de campo oscuro y alta resolución, que revela la estructura de las muestras.

Tabla A1.1. Características de electrones secundarios, retrodispersados, Auger y transmitidos (con
base en Lyman et al., 1990; Potts, 1995; González-Noguez, 2009)
Todos los elementos tienen una disposición electrónica semejante, sin embargo, cada elemento tiene una longitud de onda característica la cual es proporcional al número atómico y es independiente del estado de agregación en el que se encuentre el elemento (Potts et al., 1995).

La resolución espacial de esta técnica es controlada por la penetración y esparcimiento del haz de electrones en la muestra. Considerando que los electrones penetran una masa constante, la resolución estará en función de la densidad del material; para los silicatos ($\delta \sim 3 \text{ g/cm}^3$), la resolución nominal es de ~ 2 µm. Sin embargo, para una mejor resolución espacial, los especímenes deben ser montados en resina epoxi y posteriormente pulir las superficies de los bloques, de esta manera se evita una superficie irregular y con ello una afección en los resultados obtenidos (Potts et al., 1995; González y Noguez, 2009).

Muchas muestras geológicas no son eléctricamente conductoras por lo que es necesario aplicar una película delgada de carbón con un espesor sugerido de ~ 20 nm (González y Noguez, 2009); debe procurarse que la cobertura sea del mismo espesor tanto en las muestras analizadas como en los estándares utilizados (si se utiliza la cobertura) ya que apenas una ligera diferencia (i.e. 200 Å) de espesor de esta película en alguno de los materiales puede variar la precisión de los resultados en un 4% (Derril *et al.*, 1973).

Una microsonda electrónica convencional (figura A1.1) está constituida por tres partes fundamentales: cuerpo de sonda, cuerpo de muestra-microscopio óptico y espectrómetros de longitud de onda o energéticos. El cuerpo de sonda está integrado por el cañón de electrones y lentes electromagnéticas; el cañón de electrones es un tríodo que consiste en un filamento de tungsteno (cátodo) y un ánodo, entre los que se interpone una rejilla a la que se le suministra un potencial negativo (respecto al cátodo), este filamento se calienta a aproximadamente 2500 °C para así obtener una emisión termoiónica.

Debido a la diferencia de potencial aplicada entre el filamento y el ánodo, los electrones emitidos son potencialmente acelerados hacia el ánodo, la rejilla controlará los electrones que lleguen a éste; los voltajes de aceleración típicos se encuentran en un rango de 1kV a 40 kV. Por otro lado, el diámetro del haz de electrones dependerá de la geometría de las lentes electromagnéticas y de los potenciales aplicados, pero estos pueden variar de 0.1 a 1 μ m (Lyman et al., 1990; Potts et al., 1995; González y Noguez, 2005; Rinaldi y Llovet, 2015).

Figura A1.1. Esquema de una microsonda electrónica convencional (Modificado de, González y Noguez, 2016).

Un espectrómetro es un dispositivo capaz de detectar la absorción o emisión de radiación electromagnética a ciertas longitudes de onda que se relacionan con los diferentes niveles de energía implicados en una transición cuántica (e.g. choque elástico: cambio en el impulso de fotones \rightarrow rayos X) (Pérez, 2016). En el microanálisis, el espectro de rayos X es registrado mediante un espectrómetro de longitud de onda o por uno de dispersión de energía (González y Noguez, 2005).

Los espectrómetros de longitud de onda consisten en un fotómetro, así como de cristales de difracción, los cuales actúan como un monocromador, por lo que seleccionarán una longitud de onda a la vez, esto dependerá del ángulo de incidencia de los rayos X; los cristales son curvos, de tal manera que el ángulo en el punto de la muestra es constante (González y Noguez, 2005).

Espectrometría por dispersión de energía de rayos X (EDS: Se aplica en: (a) el estudio de la composición química de inclusiones o pequeñas partículas de material, (b) en el análisis de la distribución de la concentración de elementos químicos en una muestra heterogénea, o bien (c) en la determinación de la composición química de películas delgadas depositadas sobre un sustrato. Esta técnica permite realizar un análisis cualitativo de los elementos contenidos en la muestra, el cual se determina mediante los picos de energía presentes en el espectro obtenido y la posterior comparación con energías conocidas de emisión de rayos X.

Durante el análisis cualitativo se debe considerar que un elemento químico puede presentar más de un pico en el espectro de rayos X ya que al átomo, al perder su excitación, realiza una serie de transiciones que implican los orbitales K,L,M y N; generalmente, la línea K es la que se utiliza para identificar los picos de elementos con Z \leq 30, y para elementos con Z>30 se utilizan las líneas L y M ya que para estos elementos será más difícil la excitación de los electrones en el nivel K (González-Noguez, 2005).

Espectrometría de dispersión de longitud de onda (WDS, por sus siglas en inglés): Es utilizada para analizar la estructura electrónica de materiales mediante la excitación por rayos X; a diferencia de la técnica EDS, WDS registra solo una longitud de onda a la vez, por lo que no produce un espectro amplio de longitudes de onda o energía simultáneamente. (González y Noguez, 2005).

A1.2 Espectrometría de masamedianteablaciónláser con plasma inductivamenteacoplado (LA-ICP-MS: Laser Ablation Inductively Coupled Plasma Mass Spectrometry).

Esta técnica analítica utiliza un haz de láser pulsado de alta potencia que es focalizado a la superficie de la muestra (sólida) en una atmósfera de gas inerte (Argón; a veces He) a presión atmosférica; el láser liberará un pulso de fotones con energías típicas entre 0.5-1 J en un intervalo de tiempo de 10⁻⁶-10⁻⁹ s. Este pulso hará una ablación en la muestra y el material desprendido (vapor y micro-partículas de ~ 3µm de diámetro; se calculan entre 50-100 µg por una ablación de 100 µm de diámetro) será transportado por el argón a la fuente de plasma, ICP, en donde el plasma es propagado por radiofrecuencia a través de una antorcha de cuarzo acoplada al plasma mediante una bobina de cobre que rodea el final de la esta antorcha (ver figura A1.2 para un esquema de la instrumentación) (Potts et al., 1995).

La intensidad del campo de radiofrecuencia generado por la bobina, adicionado al gas inerte cargado de electrones, produce violentas colisiones oscilantes entre las especies cargadas, lo que conlleva la ionización del argón. La consecuencia inmediata de este proceso es un efecto óhmico, es decir, un aumento en la temperatura producido por la resistencia del material al paso de la corriente eléctrica, esto, generará una pequeña bola de fuego de plasma localizada al final de la antorcha, la cual llega a alcanzar temperaturas de hasta 10 000 K (> 9 700 °C) (se requiere de la circulación de un agente que baje la temperatura del sistema para evitar la fusión del cuarzo). El material que se desprende de la muestra es transportado hasta la fuente de plasma, en donde la energía disponible es tan elevada que ioniza todos los elementos a excepción de F, He, N y Ne. Sin embargo, los elementos que poseen potenciales de entre 10-15 eV son ionizados con poca eficiencia (incluidos Br, C, CI, Hg, I, O, P y S) (Potts et al., 1995; Thomas, 2001).

Figura A1.2. Esquema ilustrativo de la instrumentación para LA-ICP-MS, se muestra la disposición de los diferentes componentes, así como la trayectoria del láser y del material por analizar. En la pantalla puede observarse el cráter de la ablación realizada (modificado de Thomas, 2001).

Dentro del espectrómetro de masas, los iones son separados de acuerdo a su razón carga/masa. El espectrómetro más comúnmente utilizado es el cuadrupolo, que se compone de 4 barras alargadas en formación cuadrada, conectadas eléctricamente entre sí en pares opuestos. Una vez que los iones atraviesan el espectrómetro de masas, son contabilizados por un detector el cual transforma las lecturas realizadas por el espectrómetro en señales eléctricas que puedan ser medidas y relacionadas al número de átomos del elemento tratado, utilizando de referencia un estándar para calibrar la medición de las señales detectadas (Potts et al., 1995; Thomas, 2001).

A2.1 Análisis petrográficos

A continuación se presenta el análisis petrográfico de las muestras analizadas.

Figura A2.1. (Derecha) Fotomicrografía de la muestra AR-172-A; (Izquierda arriba) Secuencia paragenética individual; (Izquierda abajo) imagen de electrones retrodispersados, las fases metálicas presentan grises en tonalidades más claras respecto a los presentados por la fluorita.

Figura A2.2. (Derecha) Fotomicrografía de la muestra AR-172-B; (Centro) Secuencia paragenética individual; (Izquierda) imagen de electrones retrodispersados de las fases metálicas con hábito similar al vermicular, las zonas más claras indican la presencia de Mn.

Figura A2.3. (Derecha) Fotomicrografía de la muestra AR-172-C; (Izquierda arriba) Secuencia paragenética individual; (Izquierda abajo) imagen de electrones retrodispersados, las fases metálicas (sulfuros y hematita) presentan mayor reflectividad que la que presenta la fluorita; la calcopirita presentan tonos blancos, mientras que la galena, pirita y hematita presentan tonos grises (claros).

Figura A2.4. (Derecha) Fotomicrografía de la muestra AR-172-D; (Izquierda arriba) Secuencia paragenética individual; (Izquierda abajo, derecha) imagen de electrones retrodispersados, las fases metálicas (sulfuros y hematita) presentan mayor reflectividad que la que presenta la fluorita, de las fases metálicas, la que presenta la mayor reflectividad es la covellita; (Izquierda abajo, izquierda) imagen de electrones retrodispersados de pseudomorfos de hematita a partir de pirita (hematización).

Figura A2.5. (Derecha) Fotomicrografía de la muestra AR-172-E; (Izquierda arriba) Secuencia paragenética individual; (Izquierda abajo) imagen de electrones retrodispersados, crecimiento mineral íntimo entre fluorita y cuarzo, mientras que las fases metálicas se encuentran concentradas por zonas.

AR-188-0	Secuencia paragenética
(ba)-(fl) (cc) (ank)	Ankerita Cuarzo Calcita Fluorita Barita Imagen EPMA

Figura A2.6. (Derecha) Fotomicrografía de la muestra AR-188-0; (Izquierda arriba) Secuencia paragenética individual; (Izquierda abajo) imagen de electrones retrodispersados de crecimiento masivo de fluorita.

Figura A2.7. (Derecha) Fotomicrografía de la muestra AR-188-1; (Izquierda arriba) Secuencia paragenética individual; (Izquierda abajo) imagen de electrones retrodispersados de los cristales de fluorita analizados.

Figura A2.8. (Derecha) Fotomicrografía de la muestra AR-188-1; (Izquierda arriba) Secuencia paragenética individual; (Izquierda abajo, derecha) imagen de electrones retrodispersados de intercrecimiento mineral de fluorita y cuarzo; (izquierda abajo, izquierda) cristales de fluorita analizados.

Figura A2.9. (Derecha) Fotomicrografía de la muestra Z-400-1; (Izquierda arriba) Secuencia paragenética individual; (Izquierda abajo, derecha) imagen de electrones retrodispersados de crecimiento masivo de fluorita y (izquierda abajo, izquierda) contacto cristalino entre fluorita y cuarzo.

Figura A2.10. (Derecha) Fotomicrografía de la muestra Z-400-2; (Izquierda arriba) Secuencia paragenética individual; (Izquierda abajo, derecha) fotomicrografía de cristal euedral de apatita (longitud: ± 0.25 mm); (izquierda abajo, izquierda) fotomicrografía de cristales euedrales de hematita (longitud: ±0.50 mm).

Figura A2.11. (Derecha) Fotomicrografía de la muestra Z-401-A; (Izquierda arriba) Secuencia paragenética individual; (Izquierda abajo) imagen de electrones retrodispersados de cristales de fluorita analizados, la fluorita se presenta de un tono gris más claro respecto a la calcita y el cuarzo.

Figura A2.12. (Derecha) Fotomicrografía de la muestra Z-401-B; (Izquierda arriba) Secuencia paragenética individual; (Izquierda abajo) imagen de electrones retrodispersados de crecimiento íntimo entre fluorita, cuarzo y sulfuros.

Z-400-1-C	Descripción petrográfica
(qtz) (cc±qtz) (f met.)	Fluorita Cuarzo Calcita h. Esfalerita Galena Pirita Hematita
(cc)	Imágenes EPMA
	Fluorita

Figura A2.13. (Derecha) Fotomicrografía de la muestra Z-401-C; (Izquierda arriba) Secuencia paragenética individual; (Izquierda abajo) imagen de electrones retrodispersados de los cristales de fluorita analizados.

Figura A2.14. (Derecha) Fotomicrografía de la muestra 5702; (Izquierda arriba) Secuencia paragenética individual; (Izquierda abajo) esquema ilustrativo de la división por zonas que se realizó para entender la secuencia mineral.

Secuencia Z-400

Figura A2.15. Ficha petrográfica de muestra Z-400(1); figura (A) fotomicrografía (luz transmitida) que muestra inclusiones fluidas en fluorita, alineadas a algunos planos de fractura; figura (B fotomicrografía de luz transmitida que muestra inclusiones fluidas en fluorita, alineadas a planos de crecimiento; figura (C) fotomicrografía de luz transmitida que muestra inclusiones fluidas alineadas a los planos de crecimiento de la esfalerita; figura (D) fotomicrografía de luz reflejada que muestra el intercrecimiento íntimo de argentita, esfalerita, hematita y galena., (Arg)= argentita, (Esf)= esfalerita, (Gal)= galena, (Hem)= hematita, (IF)= inclusiones fluidas.

Figura A2.16. Ficha petrográfica de muestra Z-400(2); figura (A) fotomicrografía de luz transmitida de la asociación de carbonatos y fases metálicas (e.g. hematita); figura (B) fotomicrografía de luz reflejada que presenta la concentración por zonas de fases metálicas (esfalerita, galena y hematita; figura (C) fotomicrografía de luz transmitida que presenta la asociación de fases metálicas diseminadas en contacto con clorita. (Cc) fases carbonatadas, (Cl)= clorita, (Esf)= esfalerita, (Gal)= galena, (Hem)= hematita, (Qtz)= cuarzo.

Figura A2.17. Ficha petrográfica de muestra Z-400(3); figura (A) fotomicrografía (luz reflejada) de texturas triangulares de galena; figura (B) (derecha) fotomicrografía de luz reflejada (nicoles X) que muestra cristales subhedrales de grano fino de covelita, (izquierda) acercamiento con nícoles II a cristales de covelita.

Figura A2.18. Ficha petrográfica de muestra Z-400 (4) y Z-400 (5); figura (A) fotomicrografía de brecha Z-400(4), pueden observarse fragmentos líticos, cristales y matriz de tonalidad roja; figura (B) fotomicrografía (luz reflejada) en donde se observan cristales de grano medio de pirita, esfalerita (de granulometría fina-media) y galena y calcopirita de grano fino en contacto con fluorita; figura (C) fotomicrografía (luz reflejada) de asociación mineral esfalerita-galena en fluorita.

Secuencia paragenética Z-400

Esfalerita		
Galena		
Pirita		
Calcopirita		
Covelita		
Fluorita		
Cuarzo		
Brecha		

Interpretación:

Con base en las superficies descritas la muestra Z-400 representa una secuencia que indica un relleno de cavidades; dicha secuencia formada a partir de fragmentos de roca encajonante, consiste en la cristalización inicial de fluorita (incolora) y cuarzo (blanco a incoloro), con diseminación de minerales de mena de grano fino (esfalerita, galena, calcopirita y pirita) subhedrales de grano fino a medio. Posteriormente se observa la presencia de una veta conformada por esfalerita, galena, argentita y hematita (especularita), con menor presencia de pirita. Por último se observa, la presencia de fluorita asociada a la covelita; esta última fase se interpreta como una fase tardía ya que puede observarse en texturas triangulares de relleno (figura 5.1.17) o bien reemplazando los bordes de cristales de galena. Se interpretan dos generaciones de fluorita y cuarzo: una asociada a la mineralización "primaria", es decir intercrecida con las fases de mena y otra asociada a la cristalización de covelita.

A3.1 Datos obtenidos mediante microsonda electrónica.

Se presentan, en la siguiente tabla, los resultados obtenidos mediante las lecturas realizadas con microsonda electrónica.

		Página	1	
Grupo:	Dr.A	do R.	Muestra:	Cuant- Fluorita
No.	Ca	F	Total	Comment
1	50.928	48.32	99.248	Cuant-Frt-1
2	50.758	48.635	99.393	Cuant-Frt-2
3	51.259	49.385	100.644	Cuant-Frt-3
4	52.436	46.085	98.521	Z400-1-FI-1
5	50.132	45.982	96.114	Z400-1-FI-2
6	50.569	46.788	97.357	Z400-1-FI-3
7	50.898	47.034	97.932	Z400-1-FI-4
8	50.995	47.076	98.071	Z400-1-FI-5
9	49.874	44.9	94.774	AR188-FI-1
10	48.512	45.823	94.335	AR188-FI-2
11	50.502	49.547	100.049	Z400-2-FI-1
12	50.716	48.883	99.599	Z400-2-FI-2
13	50.068	49.95	100.018	Z400-2-FI-3
14	51.208	50.333	101.541	Z400-2-FI-4
15	51.361	49.304	100.665	Z400-2-FI-5
16	50.485	51.097	101.582	Z400-2-FI-6
17	51.252	50.069	101.321	Z400-2-FI-7
18	50.964	49.883	100.847	Z400-2-FI-8
19	51.201	50.261	101.462	Z400-2-FI-9
20	48.683	43.179	91.862	AR172-B-FI-1
21	48.532	44.569	93.101	AR172-B-FI-2
22	48.034	42.004	90.038	AR172-B-FI-3
23	49.598	43.283	92.881	AR172-B-FI-4
24	50.122	43.213	93.335	AR172-B-FI-5
25	49.874	44.088	93.962	AR172-B-FI-6
26	47.08	43.901	90.981	AR172-B-FI-7
27	48.439	44.274	92.713	AR172-B-FI-8
28	49.974	48.108	98.082	Std-FI-11

1	1	I	I	1
29	51.225	48.175	99.4	Std-FI-12
30	48.938	41.899	90.837	AR172-B-9
31	49.508	43.547	93.055	AR172-B-10
32	47.804	44.703	92.507	AR172-B-11
33	47.923	43.647	91.57	AR172-B-12
34	49.438	43.763	93.201	AR172-B-13
35	47.07	45.658	92.728	AR172-B-14
36	49.85	44.28	94.13	5702-FI-1
37	49.738	43.617	93.355	5702-FI-2
38	49.234	42.721	91.955	5702-FI-3
39	49.418	42.757	92.175	5702-FI-4
40	49.908	43.839	93.747	5702-FI-5
41	49.323	42.857	92.18	5702-FI-6
42	49.776	44.117	93.893	5702-FI-7
43	50.088	43.214	93.302	5702-FI-8
44	49.912	43.782	93.694	5702-FI-9
45	48.66	43.399	92.059	5702-FI-10
46	49.674	49.594	99.268	AR-BOL-FI-1
47	49.601	48.608	98.209	AR-BOL-FI-2
48	49.569	49.311	98.88	AR-BOL-FI-3
49	50.971	49.492	100.463	AR-BOL-FI-4
50	51.8	48.844	100.644	AR-BOL-FI-5
51	49.864	48.411	98.275	AR-BOL-FI-6
52	49.433	49.808	99.241	AR-172F-FI-1
53	48.666	50.032	98.698	AR-172F-FI-2
54	50.656	48.99	99.646	AR-172F-FI-3
55	49.673	47.861	97.534	AR-172F-FI-4
56	49.433	47.034	96.467	AR-172F-FI-5
57	49.741	48.15	97.891	AR-172F-FI-6
58	49.88	47.938	97.818	AR-172F-FI-7
59	49.65	44.389	94.039	188-2-FI-1
60	49.578	45.338	94.916	188-2-FI-2
61	49.546	45.907	95.453	188-2-FI-3
62	50.452	44.938	95.39	188-2-FI-4
63	48.142	47.54	95.682	AR172C-FI-1
64	51.043	46.7	97.743	AR172C-FI-2

1	1	L	1	1
65	50.673	48.631	99.304	AR172C-FI-3
66	50.68	48.227	98.907	AR172C-FI-4
67	51.67	46.308	97.978	Std-Fl-31
68	51.053	48.205	99.258	Std-FI-32
73	50.954	49.032	99.986	AR172D-FI-5
74	51.868	48.905	100.773	AR172D-FI-6
75	50.96	48.88	99.84	AR172D-FI-7
76	50.59	49.11	99.7	AR172D-FI-8
77	50.43	50.552	100.982	AR172D-FI-9
78	0.005	0	0.005	AR172E-FI-1
79	52.627	48.861	101.488	AR172E-FI-2
80	52.452	48.222	100.674	AR172E-FI-3
81	52.52	48.653	101.173	AR172E-FI-4
82	51.467	48.917	100.384	AR172E-FI-5
83	50.803	48.603	99.406	AR188-1-FI-1
84	52.704	46.758	99.462	AR188-1-FI-2
85	52.354	46.78	99.134	AR188-1-FI-3
86	52.348	47.191	99.539	AR188-1-FI-4
87	52.485	46.157	98.642	AR188-1-FI-5
88	52.804	46.982	99.786	AR188-1-FI-6
89	52.164	50.989	103.153	AR188-1-FI-7
90	51.975	50.25	102.225	AR188-1-FI-8
91	52.051	47.806	99.857	AR188-1-FI-9
92	19.16	0.181	19.341	AR188-1-FI-10
93	52.539	49.296	101.835	Std-Fl-41
94	51.976	48.516	100.492	Std-FI-42
95	52.479	48.108	100.587	Std-FI-43
96	51.54	48.37	99.91	AR172-A-FI-1
97	51.078	47.246	98.324	AR172-A-FI-2
98	50.118	48.081	98.199	AR172-A-FI-3
99	49.105	48.904	98.009	AR172-A-FI-4
100	49.445	48.981	98.426	AR172-A-FI-5
101	50.372	48.238	98.61	AR172-A-FI-6
102	52.067	47.474	99.541	AR172-A-FI-7
103	51.96	47.638	99.598	AR172-A-FI-8
104	50.44	46.425	96.865	401-A-FI-1

1	1	1	1	I
105	49.809	46.181	95.99	401-A-FI-2
106	49.137	49.839	98.976	401-A-FI-3
107	50.692	44.293	94.985	401-A-FI-4
108	50.774	44.553	95.327	401-A-FI-5
109	48.904	45.774	94.678	401-A-FI-6
110	52.953	48.746	101.699	Std-Fl-41
111	51.98	48.803	100.783	Std-FI-42
112	50.73	48.421	99.151	401-A-FI-4
113	50.428	46.585	97.013	401-A-FI-1
114	50.374	46.686	97.06	401-A-FI-2
115	49.496	50.115	99.611	401-A-FI-3
116	51.274	44.671	95.945	401-A-FI-4
117	50.544	44.334	94.878	401-A-FI-5
118	48.77	45.487	94.257	401-A-FI-6
119	49.868	44.326	94.194	401-B-FI-1
120	50.097	44.825	94.922	401-B-FI-2
121	50.229	44.507	94.736	401-B-FI-3
122	50.843	44.418	95.261	401-B-FI-4
123	49.599	44.854	94.453	401-B-FI-5
124	34.668	0.339	35.007	401-B-FI-6
125	49.509	45.503	95.012	401-B-FI-7
126	52.015	44.39	96.405	401-B-FI-8
127	50.287	44.251	94.538	401-B-FI-9
128	48.561	44.035	92.596	401-B-FI-10
129	53.094	49.379	102.473	Std-Fl-41
130	52.369	48.452	100.821	Std-FI-42
131	49.881	46.826	96.707	401-C-FI-1
132	51.21	47.516	98.726	401-C-FI-2
133	50.122	46.619	96.741	401-C-FI-3
134	50.559	46.083	96.642	401-C-FI-4
135	50.844	46.063	96.907	401-C-FI-5
136	52.638	45.966	98.604	401-C-FI-6
137	51.079	46.637	97.716	401-C-FI-7
138	0	0	0	400-2-FI-1
139	52.772	49.485	102.257	400-2-FI-2
140	52.567	49.663	102.23	400-2-FI-3

				<u>.</u>
141	52.237	50.663	102.9	400-2-FI-4
142	53.096	49.881	102.977	400-2-FI-5
143	52.806	50.875	103.681	400-2-FI-6
144	53.579	50.062	103.641	400-2-FI-7
145	52.537	50.315	102.852	400-2-FI-8
146	52.784	50.996	103.78	400-2-FI-9
147	53.628	49.583	103.211	Std-FI-51
148	52.804	47.992	100.796	Std-FI-52
149	52.846	49.412	102.258	Std-FI-53
150	52.179	47.148	99.327	400-1-FI-1
151	52.594	47.695	100.289	400-1-FI-2
152	51.908	46.715	98.623	400-1-FI-3
153	53.089	46.771	99.86	400-1-FI-4
154	52.747	47.267	100.014	400-1-FI-5
155	52.755	47.836	100.591	400-1-FI-6
156	52.434	48.085	100.519	400-1-FI-7
157	51.842	47.547	99.389	400-1-FI-8
158	51.74	47.291	99.031	400-1-FI-9
159	52.874	48.129	101.003	400-1-FI-10
160	52.225	49.31	101.535	Std-FI-51
161	51.922	48.393	100.315	Std-FI-52
162	52.19	48.285	100.475	Std-FI-53

Minimum	0	0	0
Maximum	53.628	51.097	103.78
Average	49.842	45.957	95.799
Sigma	6.477	7.742	13.872
No. of data	158		

A4. Datos obtenidos mediante ablación láser (LAICPMS).

SelectionLabel	'Source file'	'_Date_'	'_Time_'	'Duration(s)'	Comments	Ca43_CPS	Ca43_CPS_Int 2SE	Ti_ppm_m48	Ti_ppm_m48 _Int2SE	Y_ppm_m89	Y_ppm_m89_ Int2SE
G_NIST612_1	612-001	4/17/15	17:33:28	24.401	612-001	239200	9800	49.1	2.4	37.8	1.1
G_NIST612_2	612-002	4/17/15	17:34:46	24.118	612-002	207500	7300	43	1.6	37.74	0.9
G_NIST612_3	612-003	4/17/15	17:35:47	24.4	612-003	192400	4600	43.6	1.5	38.29	0.7
G_NIST612_4	612-004	4/17/15	17:36:49	24.403	612-004	195700	5400	43.6	1.1	37.91	0.64
G_NIST612_5	612-005	4/17/15	17:42:03	24.402	612-005	177300	3700	43.83	0.81	37.99	0.73
G_NIST612_6	612-006	4/17/15	17:46:22	24.402	612-006	161900	4500	44.07	0.8	38	0.64
G_NIST612_7	612-007	4/17/15	17:50:45	24.402	612-007	164100	4400	44.06	0.72	38.08	0.59
G_NIST612_8	612-008	4/17/15	17:56:04	24.404	612-008	159900	3900	44.49	0.95	38	0.64
G_NIST612_9	612-009	4/17/15	18:00:22	24.403	612-009	163800	4300	43.65	0.75	37.99	0.66
G_NIST612_10	612-010	4/17/15	18:04:40	24.402	612-010	164000	4700	43.91	0.82	38.01	0.64
G_NIST612_11	612-011	4/17/15	18:10:03	24.405	612-011	159100	3900	43.95	0.88	37.95	0.7
G_NIST612_12	612-012	4/17/15	18:11:10	24.403	612-012	158000	3300	44.87	0.88	38.06	0.65
G_NIST612_13	612.013	4/17/15	18:12:12	24.119	612.013	162100	4000	43.97	0.8	38.01	0.67
G_NIST612_14	612-014	4/17/15	18:13:14	24.403	612-014	163200	4100	43.53	0.82	37.98	0.63
Output_1_1	AR188-1	4/17/15	17:37:51	24.403	AR188-1	72000	12000	382	75	92	21
Output_1_2	AR188-2	4/17/15	17:38:58	24.401	AR188-2	62600	9300	343	60	34.3	5.7
Output_1_3	AR188-3	4/17/15	17:40:00	24.403	AR188-3	19600	3500	1550	540	124	40
Output_1_4	AR188-4	4/17/15	17:41:02	24.402	AR188-4	10500	2100	1420	750	100	32
Output_1_5	AR188-5	4/17/15	17:43:10	24.405	AR188-5	492000	12000	296.2	5.8	60.4	1.3
Output_1_6	AR188-6	4/17/15	17:44:18	24.402	AR188-6	441000	19000	280	17	99.9	8.7
Output_1_7	Ar188-7	4/17/15	17:45:20	24.401	Ar188-7	487000	16000	277.2	5.9	60.1	1.2
Output_1_8	Z400-1-c	4/17/15	17:47:29	24.401	Z400-1-c	818000	12000	279.7	2.5	87.72	0.88
Output_1_9	Z	4/17/15	17:48:36	24.4	Z_1	606000	28000	278	14	298	16
Output_1_10	Z	4/17/15	17:49:41	24.402	Z_2	772000	59000	267	13	232	15
Output_1_11	Z	4/17/15	17:51:51	24.402	Z_3	858000	57000	260	17	118	13
Output_1_12	Z	4/17/15	17:52:57	24.401	Z_4	723000	53000	268	13	3.06	0.29
Output_1_13	Z	4/17/15	17:54:00	24.402	Z_5	736000	56000	283	15	57.7	3.4
Output_1_14	Z400-1-c	4/17/15	17:55:02	24.118	Z400-1-c_1	694000	49000	292	15	54.8	2.8
Output_1_15	Z400-1	4/17/15	17:57:11	24.403	Z400-1_1	1.24E+06	120000	266	15	16.9	1.3
Output_1_16	Z	4/17/15	17:58:18	24.402	Z_6	1.47E+06	170000	284	11	42.4	1.8
Output_1_17	Z	4/17/15	17:59:20	24.119	Z_7	772000	73000	270	14	48	3
Output_1_18	Z	4/17/15	18:01:26	25.845	 Z_8	1.01E+06	110000	273	15	61.5	3.7
Output_1_19	Z	4/17/15	18:02:40	19.572	 Z_9	914000	96000	290	16	34.1	2.6
Output_1_20	Z	4/17/15	18:03:38	24.119	Z_10	1.09E+06	150000	283	13	28.8	1.6
Output_1_21	Z	4/17/15	18:05:48	24.402	Z_11	1.27E+06	150000	267	12	9.5	0.57

Se presentan, en la siguiente tabla, los resultados obtenidos mediante ablación láser (LAICPMS).

SelectionLabel	'Source file'	' Date '	' Time '	'Duration(s)'	Comments	Nb ppm m93	Nb_ppm_m93	Ba_ppm_m13	Ba_ppm_m13	La	La_ppm_m13
							Int2SE	7	7_Int2SE	-	9_Int2SE
G_NIST612_1	612-001	4/17/15	17:33:28	24.401	612-001	39.9	1.4	39.5	1.6	35.7	1.2
G_NIS1612_2	612-002	4/1//15	17:34:46	24.118	612-002	40	1	39.6	1.1	35.49	0.89
G_NIST612_3	612-003	4/17/15	17:35:47	24.4	612-003	40.25	0.79	40.12	0.94	36	0.64
G_NIST612_4	612-004	4/17/15	17:36:49	24.403	612-004	39.9	0.75	39.56	0.94	35.7	0.68
G_NIST612_5	612-005	4/17/15	17:42:03	24.402	612-005	39.99	0.62	39.68	0.75	35.8	0.51
G_NIST612_6	612-006	4/17/15	17:46:22	24.402	612-006	39.99	0.72	39.7	0.71	35.8	0.59
G_NIST612_7	612-007	4/17/15	17:50:45	24.402	612-007	40.01	0.61	39.71	0.66	35.8	0.51
G_NIST612_8	612-008	4/17/15	17:56:04	24.404	612-008	40	0.75	39.7	0.75	35.8	0.58
G_NIST612_9	612-009	4/17/15	18:00:22	24.403	612-009	39.99	0.68	39.69	0.83	35.79	0.6
G_NIST612_10	612-010	4/17/15	18:04:40	24.402	612-010	40.01	0.74	39.7	0.81	35.81	0.65
G_NIST612_11	612-011	4/17/15	18:10:03	24.405	612-011	39.94	0.76	39.67	0.67	35.78	0.56
G_NIST612_12	612-012	4/17/15	18:11:10	24.403	612-012	40.1	0.68	39.79	0.78	35.87	0.6
G_NIST612_13	612.013	4/17/15	18:12:12	24.119	612.013	39.94	0.77	39.62	0.84	35.73	0.63
G_NIST612_14	612-014	4/17/15	18:13:14	24.403	612-014	40	0.67	39.72	0.81	35.82	0.67
Output_1_1	AR188-1	4/17/15	17:37:51	24.403	AR188-1	1.23	0.46	284	68	11.1	1.8
Output_1_2	AR188-2	4/17/15	17:38:58	24.401	AR188-2	0.34	0.35	56	11	13.6	2.7
Output_1_3	AR188-3	4/17/15	17:40:00	24.403	AR188-3	3.1	1.5	2780	680	356	88
Output_1_4	AR188-4	4/17/15	17:41:02	24.402	AR188-4	6.1	5.1	900	2800	245	65
Output_1_5	AR188-5	4/17/15	17:43:10	24.405	AR188-5	-0.012	0.022	2.29	0.19	23.1	0.76
Output_1_6	AR188-6	4/17/15	17:44:18	24.402	AR188-6	0.047	0.024	2.11	0.15	17.7	1.2
Output_1_7	Ar188-7	4/17/15	17:45:20	24.401	Ar188-7	0.013	0.023	3.97	0.32	10.7	1.9
Output_1_8	Z400-1-c	4/17/15	17:47:29	24.401	Z400-1-c	0.022	0.014	1.057	0.075	5.349	0.073
Output_1_9	Z	4/17/15	17:48:36	24.4	Z_1	0.016	0.018	8.03	0.44	9.09	0.36
Output_1_10	Z	4/17/15	17:49:41	24.402	Z_2	0.029	0.019	1.83	0.13	7.52	0.39
Output_1_11	Z	4/17/15	17:51:51	24.402	Z_3	0.013	0.016	1.49	0.14	4.39	0.45
Output_1_12	Z	4/17/15	17:52:57	24.401	Z_4	0.021	0.019	0.598	0.085	0.38	0.036
Output_1_13	Z	4/17/15	17:54:00	24.402	Z_5	0.03	0.019	0.756	0.073	3.45	0.2
Output_1_14	Z400-1-c	4/17/15	17:55:02	24.118	Z400-1-c_1	-0.001	0.017	0.606	0.079	3.28	0.18
Output_1_15	Z400-1	4/17/15	17:57:11	24.403	Z400-1_1	-0.001	0.013	0.096	0.03	2.39	0.2
Output_1_16	Z	4/17/15	17:58:18	24.402	Z_6	0.014	0.013	0.195	0.035	3.97	0.18
Output_1_17	Z	4/17/15	17:59:20	24.119	Z_7	0.011	0.018	0.166	0.046	3.44	0.19
Output_1_18	Z	4/17/15	18:01:26	25.845	Z_8	0.028	0.018	0.148	0.033	3.74	0.25
Output_1_19	Z	4/17/15	18:02:40	19.572	Z_9	0.006	0.017	0.163	0.042	4.09	0.29
Output 1 20	Z	4/17/15	18:03:38	24.119	Z_10	-0.017	0.015	0.85	0.14	3.88	0.15
Output 1 21	Z	4/17/15	18:05:48	24.402	Z 11	-0.005	0.011	0.299	0.045	3.23	0.15
Output 1 22	Z	4/17/15	18:06:55	24.4	 Z 12	-0.017	0.011	0.098	0.026	3.28	0.18
Output 1 23	Z	4/17/15	18:07:59	24.402	_ Z 13	0.01	0.014	0.149	0.038	3.31	0.17
Output_1_24	Z400-1	4/17/15	18:09:00	24.403	 Z400-1_2	0.008	0.021	0.252	0.058	3.84	0.19 127

France France<	SelectionLabel	'Source file'	'_Date_'	'_Time_'	'Duration(s)'	Comments	Ce	Ce_ppm_m14 0_Int2SE	Pr	Pr_ppm_m14 1 Int2SE	Nd	Nd_ppm_m14 6_Int2SE
Sinstell 612.001 4/17/15 173328 24401 612.001 33.9 1.1 37 1.2 35.8 1.1 Sinstell 612.002 4/17/15 173.847 24.4 612.003 37.66 0.88 37.44 0.88 37.44 0.88 37.44 0.88 37.44 0.88 0.67 35.81 0.67 Ginstell 612.004 4/17/15 173.89 24.403 612.004 38.85 0.57 37.19 0.64 35.89 0.661 Ginstell 612.007 4/17/15 174.622 24.402 612.008 38.89 0.612 37.2 0.64 35.89 0.662 Ginstell 612.001 4/17/15 18.040 24.402 612.010 38.87 0.622 37.21 0.61 35.85 0.662 Ginstell 612.011 4/17/15 18.100 24.402 612.011 38.48 0.64 37.21 0.661 35.85 0.665 Ginstell 612.011												
§.NIST612_3 612.002 41/17.15 17.3446 24.118 612.002 37.44 0.88 37.44 0.88 37.44 0.88 37.44 0.88 37.44 0.88 37.44 0.88 37.44 0.71 37.63 0.71 6.NIST612_4 612.004 4/17/15 17.3649 24.402 612.005 38.55 0.57 37.19 0.64 38.88 0.67 6.NIST612_5 612.006 4/17/15 17.564 24.402 612.007 38.11 0.54 37.2 0.64 35.81 0.667 6.NIST612_5 612.007 4/17/15 17.564 24.402 612.007 38.11 0.54 37.21 0.61 35.81 0.651 6.NIST612_1 612.010 4/17/15 18.002 24.403 612.010 38.97 0.62 37.21 0.661 35.81 0.655 6.NIST612_1 612.011 41.402 612.013 38.97 0.62 37.21 0.661 35.85 0.677 6.N	G_NIST612_1	612-001	4/17/15	17:33:28	24.401	612-001	33.9	1.1	37	1.2	35.8	1.1
C.NST612.3612.0034/17/1517.354724.4612.00340.740.7497.420.736.030.711G.NST612.5612.0044/17/1517.42.03124.002612.00638.650.5737.190.6435.880.67G.NST612.7612.0064/17/1517.52.0524.402612.00638.810.6837.20.6335.890.66G.NST612.7612.0074/17/1517.56.4724.402612.00739.310.5437.20.6135.910.62G.NST612.6612.0074/17/1517.56.4724.402612.00838.890.6237.710.6135.890.65G.NST612.1612.0014/17/1518.04.0224.402612.01038.970.6237.210.6935.910.65G.NST612.1612.0114/17/1518.04.0324.402612.01338.990.6937.140.6435.010.68G.NST612.1612.0124/17/1518.11.0124.403612.01338.990.6937.140.6436.010.68G.NST612.1612.0134/17/1517.375.124.403A11.84562237.210.6135.810.66G.NST612.161.21.14/17/1517.375.124.403A11.8450.020.7137.110.6237.10.6237.10.6237.10.6237.10.6237.10.6136.9137.10.6637.21.6<	G_NIST612_2	612-002	4/17/15	17:34:46	24.118	612-002	37.46	0.88	37.14	0.88	35.83	0.97
C.NST612.4612.0044/17/151736.4924.03612.0044/00.700.670.58.110.67C.NST612.5612.0064/17/151736.2224.02612.00538.650.5737.20.6435.890.67G.NST612.5612.0074/17/151756.224.402612.00738.810.6337.20.6135.920.63G.NST612.3612.0074/17/1518.00224.403612.00737.810.6237.190.6135.890.65G.NST612.1612.0014/17/1518.00224.403612.01238.890.6437.200.6235.890.66G.NST612.1612.0114/17/1518.00224.403612.01238.990.6237.210.6235.890.66G.NST612.1612.014/17/1518.0224.403612.0138.890.6937.210.6435.890.66G.NST612.1612.014/17/1518.11.024.403612.0138.990.6937.140.6435.890.66G.NST612.1612.014/17/1517.37.1524.01612.0138.970.6637.210.6535.6135.890.66G.NST612.1612.014/17/1517.37.1524.01A18.8450.020.0136.710.5836.7136.91G.NST612.1614.1114/17/1517.37.1524.01A18.8450.021.0136.7151.8036.71	G_NIST612_3	612-003	4/17/15	17:35:47	24.4	612-003	40.54	0.74	37.42	0.7	36.03	0.71
G_NST612_5612-0034/17/1517/420324/402612-00538.650.6737.190.6435.880.66G_NST612_5612-0074/17/1517504224.402612-00739.310.6437.20.5835.890.661G_NST612_6612-0034/17/1517504524.402612-00937.880.6237.210.6135.890.663G_NST612_0612-0014/17/1518:00-2224.402612-00937.880.6237.210.6935.910.651G_NST612_10612-0104/17/1518:00-2224.402612-01038.970.6237.210.6935.910.651G_NST612_11612-0114/17/1518:00-324.402612-01239.910.6837.220.6135.850.661G_NST612_12612-0124/17/1518:11:1024.403612-01239.990.6937.410.6436.010.68G_NST612_13612-0144/17/1518:13:1424.403612-01438.470.6637.210.6135.860.57C_NST612_144/17/1517:37:5124.403AR188-15002203.670.5820.73.4Output_12AR188-44/17/1517:38:5824.401AR188-55102203.640.582.673.61Output_12AR188-44/17/1517:38:5824.401AR188-55102203.650.582.673.6<	G_NIST612_4	612-004	4/17/15	17:36:49	24.403	612-004	40	0.74	37.09	0.67	35.81	0.67
G_NNST612_6 612-006 4/17/15 17/4622 24.402 612-007 38.8 0.64 37.2 0.64 35.92 0.67 G_NNST612_8 612-008 4/17/15 175604 24.404 612-008 38.69 0.63 37.2 0.61 35.91 0.63 G_NNST612_10 612-009 4/17/15 175604 24.403 612-009 37.88 0.62 37.21 0.61 35.89 0.66 G_NNST612_11 612-010 4/17/15 18:003 24.405 612-011 38.89 0.66 37.21 0.61 35.85 0.66 G_NNST612_12 612-013 4/17/15 18:11:0 24.403 612-013 38.89 0.66 37.24 0.64 36.01 35.86 0.67 G_NNST612_14 612-013 4/17/15 18:31.4 24.403 612-013 38.87 0.66 37.24 0.64 36.01 37.84 0.64 36.01 36.89 0.66 G_NNST612_14 612-014 4/17/15	G_NIST612_5	612-005	4/17/15	17:42:03	24.402	612-005	38.65	0.57	37.19	0.64	35.88	0.6
G_NST612,7612-004/17/1517504022.402612-00739.310.6437.20.6835.890.66G_NST612,8612-0094/17/1518002224.403612-00937.580.6237.190.6135.810.63G_NST612,10612-0014/17/1518002224.403612-00937.580.6237.110.6135.810.65G_NST612,11612-0114/17/1518100324.402612-01038.970.6237.120.6235.910.66G_NST612,21612-0124/17/1518110124.403612-01239.90.6837.290.6135.850.66G_NST612,7612-01231.910.6837.290.6135.850.660.68G_NST612,7612-01218111024.403612-01238.990.6937.140.6436.010.68G_NST612,7612-01218111024.403A8188-130.26.57.140.6436.010.68G_NST612,77.1417.375124.403A8188-15002.0033.151.042.023.4Output_1,1AR188-14/17/1517.345024.403A8188-15002.013.40.223.61.4500Output_1,2AR188-44/17/1517.345024.403A8188-15002.013.40.223.51.150Output_1,4AR188-44/17/1517.3450	G_NIST612_6	612-006	4/17/15	17:46:22	24.402	612-006	38.8	0.68	37.2	0.64	35.92	0.67
G_NST612_8612-0084/17/15173504274.04612-00838.690.6237.210.6135.810.63G_NST612_01612-0004/17/1518.004224.003612-00037.580.6237.210.6135.880.65G_NST612_11612-0114/17/1518.00324.003612-01038.480.6437.150.6235.910.661G_NST612_12612-0124/17/1518.11024.003612-01239.90.6837.240.6436.0135.850.661G_NST612_13612-0134/17/1518.111024.003612-01238.990.6937.140.6436.010.68G_NST612_144/17/1518.112124.013612-01438.470.6637.210.6435.860.67G_NST612_144/17/1518.131424.003AR188-256223.670.484.144.14Output_1_1AR188-34/17/1517.375124.003AR188-2562203.671.42.44.8Output_1_3AR188-34/17/1517.410224.002AR188-351.92.01.450.03.15.05.11.1Output_1_4AR188-44/17/1517.410224.002AR188-551.92.07.010.223.051.1Output_1_5AR188-551.92.07.010.223.051.15.05.05.15.05.0<	G_NIST612_7	612-007	4/17/15	17:50:45	24.402	612-007	39.31	0.54	37.2	0.58	35.89	0.66
G_NST612612.0094/17/1518002224.403612.00937.580.6237.190.6135.880.65G_NST612.10612.01038.970.6237.210.6935.910.65G_NST612.12612.0114/17/1518:10024.405612.01138.480.6437.150.6235.900.66G_NST612.12612.0124/17/1518:11024.403612.01239.90.6837.290.6135.860.66G_NST612.13612.01318:11024.403612.01338.990.6937.140.6436.010.68G_NST612.14612.0144/17/1518:13:1424.403612.01438.470.6637.210.5635.860.57OUPUL1_1AR188.14/17/1517:37524.403AR188.256223.670.5820.73.4OuPUL1_2AR188.44/17/1517:385824.401AR188.4500210034.99.211450OuPUL1_3AR188.44/17/1517:435024.402AR188.450021034.99.211450OuPUL1_4AR188.44/17/1517:435024.402AR188.451.92.07.010.2230.51.12OuPUL1_5AR188.44/17/1517:435024.402AR188.451.92.35.050.352.3.71.12OuPUL1_5AR188.44/17/1517:435024.402AR18.	G_NIST612_8	612-008	4/17/15	17:56:04	24.404	612-008	38.69	0.63	37.2	0.61	35.91	0.63
G_NST612_10612-0104/17/1518.044024.402612-01038.870.6237.210.6935.910.65G_NST612_11612-0114/17/1518.103024.403612-012390.6837.150.6235.90.66G_NST612_12612-0124/17/1518.11:0024.403612-012390.6837.200.6135.850.66G_NST612_13612-0124/17/1518.12:1224.119612-01338.890.6937.140.6436.010.68G_NST612_14612-0144/17/1518.13:1424.403612-01438.470.6637.210.5635.860.57Output_1AR188-14/17/1517.35.824.403AR188-130.236.700.5820.73.4Output_1AR188-34/17/1517.36.824.403AR188-45026033.31512.560Output_13AR188-34/17/1517.41.0224.402AR188-45020.03.499.211.450Output_14AR188-44/17/1517.44.1824.402AR188-551.927.013.023.051.15Output_15AR188-54/17.1517.45.2024.401AR188-73.8122.990.512.81.2Output_14AR188-44/17.1517.45.2024.401AR188-71.31.40.0223.031.15Output_15AR188-5	G_NIST612_9	612-009	4/17/15	18:00:22	24.403	612-009	37.58	0.62	37.19	0.61	35.88	0.65
G_NST612_11612.0114/17/1518.100324.405612.01138.480.6437.150.6235.950.66G_NST612_12612.0124/17/1518.11.1024.403612.01239.90.6837.290.6135.850.66G_NST612_13612.0134/17/1518.12.1224.119612.01338.990.6937.410.6436.010.68G_NST612_14612.0144/17/1518.13.1424.403612.01438.470.6637.210.5635.860.57G_NST612_14612.0144/17/1517.37524.403AR188-130.26.55.21.424.224.8Output_1_1AR188-24/17/1517.735.1324.403AR188-2562.203.670.582.073.4Output_1_3AR188-34/17/1517.410224.402AR188-45002.1034.99.21.1450Output_1_4AR188-44/17/1517.410224.402AR188-551.92.35.050.352.3.71.5Output_1_4AR188-64/17/1517.413824.402AR188-7381.22.990.51.2.81.2.9Output_1_4AR188-74/17/1517.41382.4.022.37.420.631.20.119.380.56Output_1_5AR188-71.4.922.4.01A.188-73.6.11.3.20.3.11.2.80.5.6Output_1_6 <td< td=""><td>G_NIST612_10</td><td>612-010</td><td>4/17/15</td><td>18:04:40</td><td>24.402</td><td>612-010</td><td>38.97</td><td>0.62</td><td>37.21</td><td>0.69</td><td>35.91</td><td>0.65</td></td<>	G_NIST612_10	612-010	4/17/15	18:04:40	24.402	612-010	38.97	0.62	37.21	0.69	35.91	0.65
G_NST612_12612-0124/17/1518:11:1024.403612-012390.6837.290.6135.850.66G_NST612_13612.0134/17/1518:12:1224.119612.01338.990.6937.140.6436.010.68G_NST612_14612.0144/17/1518:13:1424.403612.01438.470.6637.210.5635.860.57Output_1AR188-14/17/1517.35.1524.403AR188-130.26.55.21.424.24.8Output_1.3AR188-34/17/1517.35.1524.401AR188-2562.53.671.424.24.8Output_1.4AR188-44/17/1517.410.224.402AR188-450.62.103.49.21.1450Output_1.4AR188-44/17/1517.431.024.402AR188-450.92.103.49.21.1450Output_1.5AR188-54/17/1517.431.024.402AR188-736.72.35.050.353.2.71.5Output_1.6AR188-64/17/1517.431.824.401A718-7381.22.990.51.2.81.2Output_1.7AR188-74/17/1517.432.02.4.01A71.41.7.420.762.6.30.141.2.780.66Output_1.9Z4/17/1517.433.62.4.42.117.420.661.161.4.60.0226.050.64	G_NIST612_11	612-011	4/17/15	18:10:03	24.405	612-011	38.48	0.64	37.15	0.62	35.9	0.66
G_NST612_11 612.013 4/17/15 1812:12 24.119 612.013 38.99 0.69 37.14 0.64 36.01 0.68 G_NST612_14 612.014 4/17/15 1813:14 24.403 612-014 38.47 0.666 37.21 0.55 35.86 0.57 Output_12 AR188-1 4/17/15 173751 24.403 AR188-1 30.2 6.55 5.2 1.4 24.22 4.8 Output_12 AR188-3 4/17/15 173858 24.401 AR188-3 600 260 33 15 125 600 Output_13 AR188-3 4/17/15 174.402 24.402 AR188-4 500 210 34.9 9.2 114 500 Output_15 AR188-4 4/17/15 174.412 24.402 AR188-4 500 2.3 5.05 0.35 2.3.7 1.5 Output_14 AR188-4 4/17/15 174.412 24.401 AR188-5 3.6.1 2.6.3 0.11	G_NIST612_12	612-012	4/17/15	18:11:10	24.403	612-012	39	0.68	37.29	0.61	35.85	0.66
G_NST612_14 612-014 4/17/15 18:13:14 24.403 612-014 38.47 0.66 37.21 0.56 35.86 0.57 Output 1_1 AR188-1 4/17/15 17:3751 24.403 AR188-2 56 5.2 3.67 0.58 20.7 3.4 Output 1_3 AR188-3 4/17/15 17:3558 24.401 AR188-2 56 22 3.67 0.58 2.07 3.4 Output 1_4 AR188-4 4/17/15 17:40:00 24.403 AR188-5 510 2.10 34.9 9.2 11.4 50 Output 1_6 AR188-6 4/17/15 17:41:02 24.401 AR188-5 51.9 2 7.01 0.22 3.05 1.1 Output 1_6 AR188-6 4/17/15 17:47:18 24.401 Ar188-7 38 12 2.99 0.55 1.2.8 0.15 Output 1_8 24001-c 4/17/15 17:47:29 24.401 2.400-1c 1.669 0.61 1.87	G_NIST612_13	612.013	4/17/15	18:12:12	24.119	612.013	38.99	0.69	37.14	0.64	36.01	0.68
Output_1 AR188-1 4/17/15 17:37:51 24.403 AR188-1 Go	G_NIST612_14	612-014	4/17/15	18:13:14	24.403	612-014	38.47	0.66	37.21	0.56	35.86	0.57
Output[_1] AR188-1 4/17/15 17.37.51 24.403 AR188-1 30.2 6.5 5.2 1.4 24.2 4.8 Output [_3] AR188-3 4/17/15 17.36.58 24.401 AR188-2 56 22 3.67 0.58 20.7 3.4 Output [_4] AR188-3 4/17/15 17.4000 24.402 AR188-4 500 210 34.9 9.2 114 500 Output [_4] AR188-5 4/17/15 17.43.10 24.402 AR188-6 51.9 2 7.01 0.22 30.5 1.1 Output [_4] AR188-7 4/17/15 17.43.10 24.402 AR188-7 38 12 2.99 0.5 12.8 1.2 Output [_1] AR175 17.49.11 24.402 Z.40 17.42 0.64 1.87 0.11 1.46 0.028 6.8 0.15 Output [_1] Z 4/17/15 17.49.41 24.402 Z_2 12.94 0.64 1.87		10100 1		47 27 54	24.402	10100 1	22.2	6.5		1.1	24.2	1.0
Output_12 AR188-2 41/1/15 17/3878 24.401 AR188-2 356 22 3.67 0.38 20.77 3.4 Output_13 AR188-3 4/17/15 17/4000 24.403 AR188-3 600 260 33 15 125 60 Output_14 AR188-3 4/17/15 17/41:00 24.402 AR188-3 600 210 34.99 9.2 1144 500 Output_16 AR188-5 4/17/15 17/41:00 24.402 AR188-6 36.7 2.3 5.05 0.35 23.7 1.51 Output_15 AR188-7 4/17/15 17/47:20 24.401 AR188-7 38 12 2.99 0.55 12.8 1.2 Output_19 Z400-1-c 4/17/15 17/47:20 24.401 Z400-1-c 10.69 0.11 1.46 0.028 6.8 0.56 Output_10 Z 4/17/15 17/47:20 Z.4 1.74 0.63 1.2 0.12 6.05 <t< td=""><td>Output_1_1</td><td>AR188-1</td><td>4/1//15</td><td>17:37:51</td><td>24.403</td><td>AR188-1</td><td>30.2</td><td>6.5</td><td>5.2</td><td>1.4</td><td>24.2</td><td>4.8</td></t<>	Output_1_1	AR188-1	4/1//15	17:37:51	24.403	AR188-1	30.2	6.5	5.2	1.4	24.2	4.8
Output13 ARI88-3 4/17/15 1740.00 244.03 ARI88-3 600 260 33 13 125 60 Output14 ARI88-4 4/17/15 1741.02 24.402 ARI88-5 51.9 210 34.9 9.2 30.5 1.1 Output16 AR188-6 4/17/15 1743:10 24.402 AR188-6 36.7 2.30 5.05 0.35 23.7 1.5 Output17 AR188-6 4/17/15 1745:20 24.401 Ar188-7 38 12 2.99 0.5 12.8 12.2 Output19 Z 4/17/15 1745:20 24.401 Ar18-7 10.69 0.11 1.46 0.028 6.8 0.15 Output19 Z 4/17/15 1749:41 24.402 Z.2 12.94 0.64 1.87 0.11 9.38 0.56 Output111 Z 4/17/15 1751:51 24.402 Z.5 5.01 0.052 0.097 0.011 0.66	Output_1_2	AR188-2	4/17/15	17:38:58	24.401	AR188-2	56	22	3.67	0.58	20.7	3.4
Output_14 Arlass4 4/17/15 17/41.02 24.402 Arlas4 300 210 34.9 9.2 114 50 Output_15 Arlass5 4/17/15 17/43:10 24.402 Arlas5 51.9 2 701 0.22 30.5 1.1 Output_16 Arlass5 4/17/15 17/43:10 24.402 Arlas6 36.7 2.3 5.05 0.35 23.7 1.5 Output_18 Arlass7 4/17/15 17/45:20 24.401 Arlas67 38 12 2.99 0.5 12.8 1.2 Output_19 Z 4/17/15 17/47:29 24.401 2400-1-c 10.69 0.11 1.46 0.028 6.8 0.15 Output_10 Z 4/17/15 17/49:41 24.402 7.2 1.742 0.76 2.63 0.14 12.78 0.66 Output_11 Z 4/17/15 17/59:41 24.402 Z_2 12.94 0.61 1.87 0.11 0.43 <td>Output_1_3</td> <td>AR188-3</td> <td>4/17/15</td> <td>17:40:00</td> <td>24.403</td> <td>AR188-3</td> <td>500</td> <td>260</td> <td>33</td> <td>15</td> <td>125</td> <td>50</td>	Output_1_3	AR188-3	4/17/15	17:40:00	24.403	AR188-3	500	260	33	15	125	50
Output_1 Arias-s 4/17/15 17.43.10 24.403 Arias-s 51.9 2 7.01 0.022 30.3 1.1 Output_1 Arias-s 4/17/15 17.43.10 24.403 Arias-s 36.7 2.3 5.05 0.35 2.28 1.2 Output_1 Arias-s 4/17/15 17.45.20 24.401 Arias-s 38 12 2.99 0.5 12.8 1.2 Output_1 Z400-1-c 4/17/15 17.43.36 24.4 Z_1 17.42 0.76 2.63 0.14 12.78 0.66 Output_10 Z 4/17/15 17.49.41 24.002 Z_2 12.94 0.64 1.87 0.11 9.38 0.55 Output_11 Z 4/17/15 17.51.51 24.402 Z_5 5.01 0.27 0.736 0.049 3.39 0.81 Output_113 Z 4/17/15 17.55.02 24.118 2400-1.2 4.88 0.25 0.671 0.032 3.	Output_1_4	AR100-4	4/17/15	17:41:02	24.402	AR100-4	500	210	7.01	9.2	20.5	50
Output_10 Arrasson	Output_1_5	AR100-5	4/17/15	17.43.10	24.403	AR100-5	26.7	2	5.05	0.22	30.5	1.1
Output_1/2 Ax 1887	Output_1_0	Ar188-0	4/17/15	17:44:18	24.402	Ar199 7	20	12	2.00	0.55	12.9	1.5
Output_1s Z40014 4/17/15 17.47.29 24.401 24.0014 10.05 0.11 1.40 0.020 0.013 0.013 Output_19 Z 4/17/15 17.48:36 24.4 Z_1 17.42 0.76 2.63 0.14 12.78 0.66 Output_110 Z 4/17/15 17.48:36 24.40 Z_2 12.94 0.64 1.87 0.11 9.38 0.56 Output_11 Z 4/17/15 17.51:51 24.402 Z_3 7.42 0.63 1.2 0.12 6.05 0.64 Output_113 Z 4/17/15 17:55:02 24.401 Z_4 0.631 0.052 0.097 0.011 0.467 0.057 Output_13 Z 4/17/15 17:55:02 24.118 2400-1-c_1 4.88 0.25 0.671 0.032 3.38 0.17 Output_14 Z400-1 4/17/15 17:58:18 24002 Z_6 7.78 0.32 1.394 0.064	Output_1_7	7400.1.c	4/17/15	17:43:20	24.401	7400.1.c	10.69	0.11	1.46	0.3	6.9	0.15
Output_19Z44/17/1517.48.3024.4Z17.420.702.030.1417.470.00Output_110Z44/17/1517.494124.402Z_212.940.641.870.119.380.56Output_11Z4/17/1517.51:5124.402Z_37.420.631.20.126.050.64Output_112Z4/17/1517.52:5724.401Z_40.6310.0520.0970.0110.4670.057Output_13Z4/17/1517.55:0224.402Z_55.010.270.7360.0493.390.18Output_114Z400-1-c4/17/1517.55:0224.118Z400-1-c14.880.250.6710.0323.380.17Output_115Z400-14/17/1517.57:1124.403Z400-15.30.41.0130.0796.450.52Output_116Z4/17/1517.59:2024.119Z_76.60.341.1450.0647.70.46Output_117Z4/17/1518.01:2625.845Z_87.310.481.3320.0928.260.56Output_19Z4/17/1518.03:3824.109Z_106.090.230.9190.0435.130.23Output_19Z4/17/1518.03:3824.402Z_115.560.210.7510.0363.640.19Output_120Z4/17/1518.05:48 <td< td=""><td>Output_1_8</td><td>7</td><td>4/17/15</td><td>17.47.23</td><td>24.401</td><td>7 1</td><td>17.42</td><td>0.11</td><td>2.40</td><td>0.028</td><td>12.79</td><td>0.15</td></td<>	Output_1_8	7	4/17/15	17.47.23	24.401	7 1	17.42	0.11	2.40	0.028	12.79	0.15
Output_1_10 Z 4/17/15 17.43.41 Z.402 Z_2 112.94 0.0.44 1.87 0.111 9.38 0.38 Output_1_11 Z 4/17/15 17.51.51 24.402 Z_3 7.42 0.63 1.2 0.12 6.05 0.64 Output_1_12 Z 4/17/15 17.52.57 24.401 Z_4 0.631 0.052 0.097 0.011 0.467 0.057 Output_1_13 Z 4/17/15 17.54.00 24.402 Z_5 5.01 0.27 0.736 0.049 3.39 0.18 Output_1.14 Z400-1-c 4/17/15 17.55.02 24.118 Z400-1-c 4.88 0.25 0.671 0.032 3.38 0.17 Output_1.16 Z 4/17/15 17.58.18 24.002 Z_6 7.78 0.32 1.394 0.062 9.39 0.41 Output_1.18 Z 4/17/15 18.01.26 25.845 Z_8 7.31 0.48 1.332 0.092	Output_1_9	7	4/17/15	17.40.30	24.4	Z_1 7.2	17.42	0.78	2.05	0.14	0.28	0.66
Output_1_11 Z 4/17/15 17.51:51 24.402 Z_5 7.42 0.635 1.2 0.12 6.03 0.63 Output_1_12 Z 4/17/15 17:52:57 24.401 Z_4 0.631 0.052 0.097 0.011 0.467 0.057 Output_113 Z 4/17/15 17:52:57 24.402 Z_5 5.01 0.27 0.736 0.049 3.39 0.18 Output_1_14 Z400-1-c 4/17/15 17:57:02 24.118 Z400-1_c 4.88 0.25 0.671 0.032 3.38 0.17 Output_1_15 Z400-1 4/17/15 17:57:11 24.402 Z_6 7.78 0.32 1.394 0.062 9.39 0.41 Output_1_17 Z 4/17/15 17:59:20 24.19 Z_7 6.6 0.34 1.145 0.064 7.7 0.466 Output_1_18 Z 4/17/15 18:01:26 25.85 Z_8 7.31 0.48 1.332 0.067	Output_1_10	7	4/17/15	17.49.41	24.402	Z_Z	7.42	0.64	1.07	0.11	9.56	0.56
Output_1_12Z4/17/1517.52.37Z4.401Z_40.05310.05320.0370.01110.04070.037Output_1_13Z4/17/1517.55.0024.402Z_55.010.270.7360.0493.390.18Output_1_14Z400-1-c4/17/1517.55.0224.118Z400-1-c14.8880.250.6710.0323.380.17Output_1_15Z400-14/17/1517.57:1124.403Z400-1_15.30.41.0130.0796.450.52Output_1_16Z4/17/1517.58:1824.402Z_67.780.321.3940.0629.390.41Output_1_17Z4/17/1517.59:2024.119Z_76.60.341.1450.0647.70.46Output_1_18Z4/17/1518:01:2625.845Z_87.310.481.3320.0928.260.56Output_1_19Z4/17/1518:01:2625.845Z_87.310.481.3320.0675.870.39Output_1_19Z4/17/1518:02:4019.572Z_96.380.421.0510.0675.870.39Output_1_20Z4/17/1518:03:3824.119Z_106.090.230.9190.0435.130.23Output_1_21Z4/17/1518:05:4824.402Z_115.50.210.7370.0363.640.19Output_1_22Z4/	Output_1_11	7	4/17/15	17.51.51	24.402	Z_3	0.621	0.052	0.007	0.12	0.03	0.04
Output_1_137.1 <td>Output_1_12</td> <td>7</td> <td>4/17/15</td> <td>17:52:57</td> <td>24.401</td> <td>Z_4</td> <td>5.01</td> <td>0.052</td> <td>0.736</td> <td>0.011</td> <td>3 20</td> <td>0.037</td>	Output_1_12	7	4/17/15	17:52:57	24.401	Z_4	5.01	0.052	0.736	0.011	3 20	0.037
Output_1_1Z400-144/17/1517.55.02Z4.118Z400-1444.880.0.250.0.710.0525.380.17Output_1_15Z400-14/17/1517:57:1124.403Z400-1_15.30.41.0130.0796.450.52Output_1_16Z4/17/1517:58:1824.402Z_67.780.321.3940.0629.390.41Output_1_17Z4/17/1517:59:2024.119Z_76.60.341.1450.0647.70.46Output_1_18Z4/17/1518:01:2625.845Z_87.310.481.3320.0928.260.56Output_1_19Z4/17/1518:02:4019.572Z_96.380.421.0510.0675.870.39Output_1_20Z4/17/1518:03:3824.119Z_106.090.230.9190.0435.130.23Output_1_21Z4/17/1518:05:4824.402Z_115.50.210.7370.0363.640.19Output_1_22Z4/17/1518:05:5524.4Z_125.260.230.7530.0393.910.21Output_1_23Z4/17/1518:07:5924.402Z_135.640.250.8910.0455.030.25Output 1 24Z400-14/17/1518:09:0024.403Z400-17.670.411.2470.0698.370.47	Output_1_13	7400-1-0	4/17/15	17:55:02	24.402	Z_3	1.88	0.27	0.730	0.032	3.35	0.18
Output_1_16Z 400-14/17/1517:58:1824.402Z 67.780.321.80130.0629.390.41Output_1_17Z4/17/1517:59:2024.119Z 76.60.341.1450.0647.70.46Output_118Z4/17/1518:01:2625.845Z 87.310.481.3320.0928.260.56Output_119Z4/17/1518:02:4019.572Z 96.380.421.0510.0675.870.39Output_120Z4/17/1518:03:3824.119Z 106.090.230.9190.0435.130.23Output_121Z4/17/1518:05:4824.402Z 115.50.210.7370.0363.640.19Output_122Z4/17/1518:05:5524.40Z 125.260.230.7530.0393.910.21Output_123Z4/17/1518:07:5924.402Z 135.640.250.8910.0455.030.25Output 1 24Z400-14/17/1518:09:0024.403Z 400-127.670.411.2470.0698.370.47	Output_1_14	7400-1	4/17/15	17:55:02	24.118	7400-1 1	5.2	0.25	1 013	0.032	6.45	0.17
Output_1_17Z4/17/1517.50:1024.402Z_07.706.60.341.1450.0647.70.46Output_1_18Z4/17/1518:01:2625.845Z_87.310.481.3320.0928.260.56Output_1_19Z4/17/1518:02:4019.572Z_96.380.421.0510.0675.870.39Output_1_20Z4/17/1518:03:3824.119Z_106.090.230.9190.0435.130.23Output_1_21Z4/17/1518:05:4824.402Z_115.50.210.7370.0363.640.19Output_1_22Z4/17/1518:06:5524.40Z_125.260.230.7530.0393.910.21Output_1_23Z4/17/1518:07:5924.402Z_135.640.250.8910.0455.030.25Output 1 24Z400-14/17/1518:09:0024.403Z400-127.670.411.2470.0698.370.47	Output_1_16	7	4/17/15	17:58:18	24.402	7.6	7 78	0.32	1 39/	0.062	9.39	0.32
Output_1_18 Z 4/17/15 18:01:26 25.845 Z_8 7.31 0.48 1.332 0.092 8.26 0.56 Output_1_19 Z 4/17/15 18:02:40 19.572 Z_9 6.38 0.42 1.051 0.067 5.87 0.39 Output_1_20 Z 4/17/15 18:03:38 24.119 Z_10 6.09 0.23 0.919 0.043 5.13 0.23 Output_1_21 Z 4/17/15 18:05:48 24.402 Z_11 5.5 0.21 0.737 0.036 3.64 0.19 Output_1_22 Z 4/17/15 18:06:55 24.40 Z_12 5.26 0.23 0.753 0.039 3.91 0.21 Output_1_22 Z 4/17/15 18:06:55 24.40 Z_12 5.26 0.23 0.753 0.039 3.91 0.21 Output_1_23 Z 4/17/15 18:07:59 24.402 Z_13 5.64 0.25 0.891 0.045 5.03 0.25 Output_1 24 Z400-1 4/17/15 18:09:00 24.403	Output 1 17	7	4/17/15	17:59:20	24.102	77	6.6	0.34	1 1 4 5	0.064	7.7	0.46
Output_1_19 Z 4/17/15 18:02:40 19:572 Z_9 6.38 0.42 1.051 0.067 5.87 0.39 Output_1_20 Z 4/17/15 18:03:38 24.119 Z_10 6.09 0.23 0.919 0.043 5.13 0.23 Output_1_21 Z 4/17/15 18:05:48 24.402 Z_11 5.5 0.21 0.737 0.036 3.64 0.19 Output_1_22 Z 4/17/15 18:06:55 24.40 Z_12 5.26 0.23 0.753 0.039 3.91 0.21 Output_1_22 Z 4/17/15 18:07:59 24.402 Z_13 5.64 0.25 0.891 0.045 5.03 0.25 Output_1_23 Z 4/17/15 18:09:00 24.403 Z400-12 7.67 0.41 1.247 0.069 8.37 0.47	Output 1 18	7	4/17/15	18:01:26	25.845	7.8	7 31	0.48	1 332	0.092	8.26	0.56
Output_1_20 Z 4/17/15 18:03:38 24.119 Z_10 6.09 0.23 0.919 0.043 5.13 0.23 Output_1_21 Z 4/17/15 18:05:48 24.402 Z_11 5.5 0.21 0.737 0.036 3.64 0.19 Output_1_22 Z 4/17/15 18:06:55 24.40 Z_12 5.26 0.23 0.753 0.039 3.91 0.21 Output_1_22 Z 4/17/15 18:06:55 24.40 Z_12 5.26 0.23 0.753 0.039 3.91 0.21 Output_1_23 Z 4/17/15 18:07:59 24.402 Z_13 5.64 0.25 0.891 0.045 5.03 0.25 Output 1 24 Z400-1 4/17/15 18:09:00 24.403 Z400-12 7.67 0.41 1.247 0.069 8.37 0.47	Output 1 19	- 7	4/17/15	18:02:40	19.572	0 7 9	6.38	0.42	1.051	0.067	5.87	0.39
Output_1_21 Z 4/17/15 18:05:58 24.402 Z_11 5.5 0.21 0.737 0.036 3.64 0.19 Output_1_22 Z 4/17/15 18:06:55 24.40 Z_12 5.26 0.23 0.753 0.039 3.91 0.21 Output_1_23 Z 4/17/15 18:07:59 24.402 Z_13 5.64 0.25 0.891 0.045 5.03 0.21 Output_1_23 Z 4/17/15 18:09:00 24.403 Z400-12 7.67 0.41 1.247 0.069 8.37 0.47	Output 1 20	7	4/17/15	18:03:38	24.119	7 10	6.09	0.23	0.919	0.043	5.13	0.23
Output_1_22 Z 4/17/15 18:06:55 24.40 Z_12 5.26 0.23 0.753 0.039 3.91 0.21 Output_1_23 Z 4/17/15 18:09:00 24.402 Z_13 5.64 0.25 0.891 0.045 5.03 0.25 Output 1 24 Z400-1 4/17/15 18:09:00 24.403 Z400-1 2 7.67 0.41 1.247 0.069 8.37 0.47	Output 1 21	- 7	4/17/15	18:05:48	24.402	7 11	5.5	0.21	0.737	0.036	3.64	0.19
Output_1_23 Z 4/17/15 18:07:59 24.402 Z_13 5.64 0.25 0.891 0.045 5.03 0.25 Output 1 24 Z400-1 4/17/15 18:09:00 24.403 Z400-1 2 7.67 0.41 1.247 0.069 8.37 0.47	Output 1 22	 Z	4/17/15	18:06:55	24.4	Z 12	5.26	0.23	0.753	0.039	3,91	0.21
Output 1 24 Z400-1 4/17/15 18:09:00 24:403 Z400-1 2 7.67 0.41 1.247 0.069 8.37 0.47	Output 1 23	 Z	4/17/15	18:07:59	24.402	Z 13	5.64	0.25	0.891	0.045	5.03	0.25
	Output 1 24	_ Z400-1	4/17/15	18:09:00	24,403	Z400-1 2	7,67	0.41	1.247	0.069	8.37	0.47

SelectionLabel	'Source file'	'Date '	' Time '	'Duration(s)'	Comments	Sm	Sm_ppm_m1	Fu	Eu_ppm_m15	Gd	Gd_ppm_m15
				2 41 4 1 6 1 (6)		0	47_Int2SE		3_Int2SE		7_Int2SE
G_NIST612_1	612-001	4/17/15	17:33:28	24.401	612-001	37.7	1.1	34.8	1	36.5	1.2
G_NIST612_2	612-002	4/17/15	17:34:46	24.118	612-002	38.2	1	34.88	0.84	36.74	0.99
G_NIST612_3	612-003	4/17/15	17:35:47	24.4	612-003	38.43	0.7	35.4	0.71	36.91	0.74
G_NIST612_4	612-004	4/17/15	17:36:49	24.403	612-004	37.89	0.68	34.84	0.66	36.59	0.66
G_NIST612_5	612-005	4/17/15	17:42:03	24.402	612-005	38.08	0.59	34.97	0.62	36.69	0.62
G_NIST612_6	612-006	4/17/15	17:46:22	24.402	612-006	38.11	0.64	35.01	0.59	36.71	0.69
G_NIST612_7	612-007	4/17/15	17:50:45	24.402	612-007	38.09	0.62	35	0.57	36.7	0.65
G_NIST612_8	612-008	4/17/15	17:56:04	24.404	612-008	38.11	0.58	35.02	0.63	36.7	0.62
G_NIST612_9	612-009	4/17/15	18:00:22	24.403	612-009	38.07	0.63	34.97	0.59	36.69	0.69
G_NIST612_10	612-010	4/17/15	18:04:40	24.402	612-010	38.13	0.68	35.04	0.65	36.7	0.64
G_NIST612_11	612-011	4/17/15	18:10:03	24.405	612-011	37.98	0.63	34.87	0.57	36.6	0.65
G_NIST612_12	612-012	4/17/15	18:11:10	24.403	612-012	38.34	0.65	35.2	0.59	36.89	0.71
G_NIST612_13	612.013	4/17/15	18:12:12	24.119	612.013	37.97	0.67	34.96	0.66	36.6	0.7
G_NIST612_14	612-014	4/17/15	18:13:14	24.403	612-014	38.11	0.61	34.97	0.58	36.72	0.63
Output 1 1	40100 1	4/17/15	17.27.51	24.402	40100 1	6.8	1.2	7 5	1.0	10.0	2
Output_1_1	AR100-1	4/17/15	17.37.51	24.405	AR100-1	6.0	1.2	7.5	1.0	7.4	2 1 F
Output_1_2	AR100-2	4/17/15	17.38.58	24.401	AR100-2	15	1.2	4.97	0.8	10.0	1.5
Output_1_3	AR100-5	4/17/15	17.40.00	24.403	AR100-5	15	5.0	10.6	1.0	10.0	4.4
Output_1_4	AR100-4	4/17/15	17.41.02	24.402	AR100-4	9.0	9.9	10.0	5.9	10	21
Output_1_5	AR188-5	4/17/15	17:43:10	24.405	AR188-5	7.82	0.27	2.236	0.079	8.73	0.29
Output_1_6	AR188-6	4/17/15	17:44:18	24.402	AR188-6	6.46	0.34	1.919	0.098	8.6	0.4
Output_1_7	Ar188-7	4/1//15	17:45:20	24.401	Ar188-7	3.36	0.12	1.108	0.043	5.62	0.24
Output_1_8	Z400-1-c	4/1//15	17:47:29	24.401	2400-1-c	2.853	0.067	1.194	0.032	5.57	0.15
Output_1_9	Z	4/17/15	17:48:36	24.4	Z_1	5.32	0.23	2.32	0.11	10.45	0.42
Output_1_10	Z	4/17/15	17:49:41	24.402	Z_	4.15	0.22	1.78	0.11	8.17	0.48
Output_1_11	Z	4/17/15	17:51:51	24.402	Z_3	2.44	0.28	1.03	0.11	4.85	0.51
Output_1_12	Z	4/17/15	17:52:57	24.401	Z_4	0.15	0.029	0.067	0.011	0.25	0.036
Output_1_13	Z	4/17/15	17:54:00	24.402	Z_5	1.194	0.069	0.471	0.03	2.13	0.14
Output_1_14	Z400-1-c	4/17/15	17:55:02	24.118	Z400-1-c_1	1.13	0.071	0.465	0.03	2.25	0.17
Output_1_15	Z400-1	4/17/15	17:57:11	24.403	Z400-1_1	2.32	0.19	1.52	0.13	3.24	0.22
Output_1_16	Z	4/17/15	17:58:18	24.402	Z_6	3.62	0.16	1.828	0.075	5.52	0.29
Output_1_17	Z	4/17/15	17:59:20	24.119	Z_7	3.01	0.17	1.267	0.067	4.64	0.28
Output_1_18	Z	4/17/15	18:01:26	25.845	Z_8	3.16	0.21	1.09	0.081	5.27	0.36
Output_1_19	Z	4/17/15	18:02:40	19.572	Z_9	2.11	0.14	2.02	0.14	3.17	0.26
Output_1_20	Z	4/17/15	18:03:38	24.119	Z_10	1.624	0.078	1.559	0.072	2.34	0.12
Output_1_21	Z	4/17/15	18:05:48	24.402	Z_11	1.111	0.056	1.047	0.049	1.401	0.093
Output_1_22	Z	4/17/15	18:06:55	24.4	Z_12	1.171	0.056	0.717	0.042	1.608	0.094
Output_1_23	Z	4/17/15	18:07:59	24.402	Z_13	1.835	0.081	1.8	0.092	2.74	0.16
Output_1_24	Z400-1	4/17/15	18:09:00	24.403	Z400-1_2	3.22	0.18	1.227	0.072	5.45	0.31

SelectionLabel	'Source file'	'_Date_'	'_Time_'	'Duration(s)'	Comments	Tb	Tb_ppm_m15	Dy	Dy_ppm_m16	Но	Ho_ppm_m16
							9_Int2SE		3_Int2SE		5_Int2SE
	612.001	4/17/15	17.22.20	24.401	612.001	25.7	1.1	25.0	1.1	277	1.1
G_NIST612_1	612-001	4/17/15	17:33:28	24.401	612-001	35.7	1.1	35.8	1.1	37.7	1.1
G_NIST612_2	612-002	4/17/15	17:34:40	24.118	612-002	35.95	0.92	35.96	0.9	37.73	0.94
G_NIST612_3	612-003	4/17/15	17:35:47	24.4	612-003	36.25	0.72	36.25	0.72	38.25	0.73
G_NIST612_4	612-004	4/1//15	17:36:49	24.403	612-004	35.87	0.69	35.88	0.69	37.88	0./1
G_NIST612_5	612-005	4/17/15	17:42:03	24.402	612-005	35.99	0.63	35.99	0.63	38	0.67
G_NIST612_6	612-006	4/17/15	17:46:22	24.402	612-006	36	0.55	36.01	0.65	38	0.59
G_NIST612_7	612-007	4/17/15	17:50:45	24.402	612-007	36	0.61	35.99	0.64	38	0.67
G_NIST612_8	612-008	4/17/15	17:56:04	24.404	612-008	36	0.64	36.01	0.56	38.01	0.65
G_NIST612_9	612-009	4/17/15	18:00:22	24.403	612-009	36	0.59	35.91	0.62	37.99	0.58
G_NIST612_10	612-010	4/17/15	18:04:40	24.402	612-010	36	0.66	36	0.65	38	0.66
G_NIST612_11	612-011	4/17/15	18:10:03	24.405	612-011	36.02	0.62	35.99	0.6	38.01	0.66
G_NIST612_12	612-012	4/17/15	18:11:10	24.403	612-012	35.98	0.59	36.03	0.58	37.97	0.62
G_NIST612_13	612.013	4/17/15	18:12:12	24.119	612.013	36.03	0.59	36	0.64	38.05	0.62
G_NIST612_14	612-014	4/17/15	18:13:14	24.403	612-014	35.98	0.55	35.99	0.58	37.98	0.61
Output_1_1	AR188-1	4/17/15	17:37:51	24.403	AR188-1	2.17	0.38	13.9	2.8	2.5	0.44
Output_1_2	AR188-2	4/17/15	17:38:58	24.401	AR188-2	0.9	0.17	4.95	0.76	1.15	0.21
Output 1 3	AR188-3	4/17/15	17:40:00	24.403	AR188-3	2.24	0.47	28.4	7.4	3.05	0.63
Output 1 4	AR188-4	4/17/15	17:41:02	24.402	AR188-4	2.47	0.93	23.6	9.2	5.6	1.9
Output_1_5	AR188-5	4/17/15	17:43:10	24.405	AR188-5	1.576	0.048	11.12	0.28	2.28	0.059
Output_1_6	AR188-6	4/17/15	17:44:18	24.402	AR188-6	1.516	0.063	10.59	0.36	2.164	0.085
Output 1 7	Ar188-7	4/17/15	17:45:20	24.401	Ar188-7	1.361	0.044	10.33	0.27	1.961	0.059
Output 1 8	Z400-1-c	4/17/15	17:47:29	24.401	Z400-1-c	1.546	0.028	13.15	0.2	2.773	0.045
Output 1 9	Z	4/17/15	17:48:36	24.4	Z 1	2.7	0.12	24.1	1.1	5.48	0.24
Output 1 10	Z	4/17/15	17:49:41	24.402	Z 2	2.21	0.11	20.95	0.93	4.67	0.21
Output 1 11	Z	4/17/15	17:51:51	24.402	Z 3	1.18	0.12	11.6	1.2	2.47	0.25
Output 1 12	Z	4/17/15	17:52:57	24.401	 Z 4	0.0558	0.0078	0.422	0.045	0.112	0.013
Output 1 13	Z	4/17/15	17:54:00	24.402	 Z 5	0.555	0.033	5.19	0.27	1.229	0.068
Output 1 14	Z400-1-c	4/17/15	17:55:02	24.118	 Z400-1-c 1	0.518	0.03	4.96	0.25	1.176	0.068
Output 1 15	Z400-1	4/17/15	17:57:11	24.403	 Z400-1 1	0.427	0.036	2.49	0.21	0.404	0.034
Output 1 16	z	4/17/15	17:58:18	24.402	 Z 6	0.832	0.041	5.03	0.22	0.951	0.046
Output 1 17	Z	4/17/15	17:59:20	24.119	_ Z 7	0.748	0.041	4.96	0.27	1.057	0.055
Output 1 18	Z	4/17/15	18:01:26	25.845	_ Z 8	0.84	0.056	5.87	0.41	1.162	0.073
Output 1 19	Z	4/17/15	18:02:40	19.572	Z 9	0.551	0.039	3.73	0.22	0.752	0.052
Output 1 20	Z	4/17/15	18:03:38	24.119	 Z 10	0,369	0.019	2.342	0.099	0.471	0.024
Output 1 21	Z	4/17/15	18:05:48	24.402	Z 11	0.221	0.015	1.401	0.075	0.252	0.019
Output 1 22	7	4/17/15	18:06:55	24.4	 Z 12	0.272	0.016	1.9	0.12	0.36	0.022
Output 1 23	 Z	4/17/15	18:07:59	24.402	Z 13	0.502	0.029	3.34	0.18	0.635	0.034
Output 1 24	Z400-1	4/17/15	18:09:00	24.403	Z400-1 2	0.861	0.045	5.92	0.31	1.214	0.068 130

SelectionLabel	'Source file'	'_Date_'	'_Time_'	'Duration(s)'	Comments	Er	Er_ppm_m16	Yb	Yb_ppm_m17	Lu	Lu_ppm_m17
							6_INT2SE		2_Int2SE		5_INT2SE
G_NIS1612_1	612-001	4/1//15	17:33:28	24.401	612-001	37.8	1.2	39	1.1	36.8	1
G_NIST612_2	612-002	4/17/15	17:34:46	24.118	612-002	37.97	0.98	39.3	1.1	36.87	0.95
G_NIST612_3	612-003	4/17/15	17:35:47	24.4	612-003	38.27	0.75	39.43	0.81	37.13	0.71
G_NIST612_4	612-004	4/17/15	17:36:49	24.403	612-004	37.86	0.71	39.05	0.77	36.77	0.69
G_NIST612_5	612-005	4/17/15	17:42:03	24.402	612-005	37.99	0.69	39.19	0.73	36.9	0.7
G_NIST612_6	612-006	4/17/15	17:46:22	24.402	612-006	38	0.63	39.2	0.67	36.9	0.62
G_NIST612_7	612-007	4/17/15	17:50:45	24.402	612-007	38	0.65	39.2	0.7	36.9	0.65
G_NIST612_8	612-008	4/17/15	17:56:04	24.404	612-008	38.01	0.63	39.2	0.68	36.9	0.63
G_NIST612_9	612-009	4/17/15	18:00:22	24.403	612-009	37.99	0.62	39.19	0.69	36.89	0.63
G_NIST612_10	612-010	4/17/15	18:04:40	24.402	612-010	38.01	0.67	39.19	0.69	36.9	0.68
G_NIST612_11	612-011	4/17/15	18:10:03	24.405	612-011	37.96	0.62	39.26	0.72	36.88	0.63
G_NIST612_12	612-012	4/17/15	18:11:10	24.403	612-012	38.11	0.63	39.16	0.66	36.97	0.62
G_NIST612_13	612.013	4/17/15	18:12:12	24.119	612.013	37.92	0.62	39.19	0.74	36.83	0.68
G_NIST612_14	612-014	4/17/15	18:13:14	24.403	612-014	38.02	0.61	39.21	0.63	36.91	0.61
Output 1 1	AR188-1	4/17/15	17:37:51	24.403	AR188-1	6.4	1.3	4.29	0.91	0.68	0.15
Output 1 2	AR188-2	4/17/15	17:38:58	24.401	AR188-2	2.74	0.51	3.4	1.3	0.43	0.11
Output 1 3	AR188-3	4/17/15	17:40:00	24.403	AR188-3	10.2	2.3	17.3	7.9	1.33	0.4
Output 1 4	AR188-4	4/17/15	17:41:02	24.402	AR188-4	8.4	2.5	8.5	3.4	1.76	0.58
Output 1 5	AR188-5	4/17/15	17:43:10	24.405	AR188-5	5.94	0.13	5.02	0.16	0.692	0.019
Output 1 6	AR188-6	4/17/15	17:44:18	24.402	AR188-6	5.41	0.2	3.86	0.2	0.532	0.033
Output_1_7	Ar188-7	4/17/15	17:45:20	24.402	Ar188-7	1 93	0.12	3.36	0.13	0.42	0.035
Output_1_9	7400.1.c	4/17/15	17:43:20	24.401	7400.1.c	7.4	0.12	5.30	0.13	0.657	0.015
Output_1_8	2400-1-0	4/17/15	17.47.25	24.401	2400-1-0	16.44	0.11	12.23	0.11	1 6 2 2	0.013
Output_1_9	2	4/17/15	17.40.30	24.4	2_1	10.44	0.75	15.55	0.39	1.055	0.069
Output_1_10	2	4/17/15	17:49:41	24.402	Z_Z	13.94	0.7	8.25	0.43	0.813	0.04
Output_1_11	Ζ	4/1//15	17:51:51	24.402	Z_3	7.13	0.79	4.24	0.47	0.424	0.048
Output_1_12	Ζ	4/1//15	17:52:57	24.401	Z_4	0.312	0.028	0.234	0.033	0.0402	0.0056
Output_1_13	Z	4/17/15	17:54:00	24.402	Z_5	3.72	0.18	2.18	0.13	0.219	0.014
Output_1_14	Z400-1-c	4/17/15	17:55:02	24.118	Z400-1-c_1	3.32	0.17	1.9	0.12	0.193	0.01
Output_1_15	Z400-1	4/17/15	17:57:11	24.403	Z400-1_1	0.938	0.074	0.563	0.052	0.0893	0.0088
Output_1_16	Z	4/17/15	17:58:18	24.402	Z_6	2.25	0.1	1.549	0.079	0.221	0.011
Output_1_17	Z	4/17/15	17:59:20	24.119	Z_7	2.57	0.12	1.97	0.12	0.295	0.017
Output_1_18	Z	4/17/15	18:01:26	25.845	Z_8	3.21	0.2	2.72	0.2	0.401	0.026
Output_1_19	Z	4/17/15	18:02:40	19.572	Z_9	1.95	0.13	1.64	0.13	0.231	0.016
Output_1_20	Z	4/17/15	18:03:38	24.119	Z_10	1.179	0.044	0.853	0.048	0.1144	0.006
Output_1_21	Z	4/17/15	18:05:48	24.402	Z_11	0.646	0.038	0.538	0.041	0.0783	0.006
Output_1_22	Z	4/17/15	18:06:55	24.4	Z_12	1.087	0.059	0.966	0.062	0.1483	0.0099
Output_1_23	Z	4/17/15	18:07:59	24.402	Z_13	1.816	0.087	1.595	0.093	0.23	0.014
Output_1_24	Z400-1	4/17/15	18:09:00	24.403	Z400-1_2	3.24	0.17	2.68	0.15	0.39	0.021 131

Constration Desire in the second of the second	SelectionLabel	'Source file'	' Date '	' Time '	'Duration(s)'	Comments	Pb_ppm_m20	Pb_ppm_m20	Th_ppm_m23	Th_ppm_m23	11 nnm m238	U_ppm_m238
G_NST612_1 612-001 4/17/15 1733-28 24.401 612-002 38.5 1.2 37.8 1.1 33.7 1.1 G_NST612_3 612-003 4/17/15 1733-46 22.118 612-002 38.8 1.1 37.9 1.1 37.36 0.99 G_NST612_5 612-004 4/17/15 1736-49 24.003 612-004 38.57 0.72 37.79 0.82 38.26 0.88 G_NST612_5 612-006 4/17/15 174-622 24.002 612-006 38.57 0.72 37.79 0.66 37.9 0.76 G_NST612_5 612-007 4/17/15 175.05 24.402 612-008 38.57 0.67 37.78 0.66 36.42 0.79 G_NST612_1 612-010 4/17/15 18:002 24.402 612-010 38.58 0.71 37.78 0.66 36.42 0.79 G_NST612_16 612-011 38.84 0.71 37.81 0.69 37.27 0.67	ScreetionLaber	Sourceme	_bate_		Duration(3)	comments	8	8_Int2SE	2	2_Int2SE	0_ppm_m230	_Int2SE
G_NBSTB1_2 612-001 4/17/15 173.828 24.401 612-001 38.5 1.2 37.8 1.1 31.7 1.1 G_NBSTB1_2 612-002 4/17/15 173.844 24.11 612-003 38.8 1.1 37.6 0.74 39.05 0.88 G_NBSTB1_2 612-004 4/17/15 173.647 24.402 612-005 38.57 0.72 37.15 0.71 37.47 0.71 G_NBSTB1_2 612-006 4/17/15 174.03 24.402 612-006 38.57 0.75 37.78 0.71 37.47 0.71 G_NBSTB1_2 612-008 4/17/15 175.054 24.402 612-008 38.57 0.67 37.8 0.67 37.81 0.77 G_NBSTB1_2 612-010 4/17/15 18.040 24.402 612-010 38.58 0.77 37.79 0.78 37.81 0.77 G_NSTB1_2.1 612-011 4/17/15 18.0101 24.405 612-011 38.7 0.67 37.												
0_NST612_2 612-002 4/17/15 173446 24.18 612-003 38.8 1.1 37.9 1.1 37.36 0.99 0_NNST612_4 612-004 4/17/15 17.3649 24.403 612-004 38.45 0.8 37.59 0.82 38.26 0.83 0_NNST612_6 612-006 4/17/15 17.3649 24.402 612-007 38.57 0.75 37.78 0.71 37.47 0.71 0_NNST612_6 612-006 4/17/15 17.3649 24.402 612-007 38.57 0.75 37.78 0.71 37.47 0.71 0_NNST612_6 612-008 4/17/15 18.0022 24.403 612-001 38.58 0.77 37.78 0.66 36.42 0.77 0_NNST612_10 612-011 4/17/15 18.003 24.405 612-011 38.58 0.71 37.81 0.69 37.77 0.77 0_NNST612_11 612-014 4/17/15 18.1010 24.403 612-011 38.58 0.71	G_NIST612_1	612-001	4/17/15	17:33:28	24.401	612-001	38.5	1.2	37.8	1.1	33.7	1.1
0_NST612_3 612-003 4/17/15 17/3547 24.4 612-003 38.59 0.76 38.01 0.74 39.05 0.88 0_NST612_5 612-004 4/17/15 17/3203 24.402 612-005 38.57 0.72 37.79 0.72 37.15 0.71 0_NST612_6 612-005 4/17/15 17/3203 24.402 612-005 38.57 0.73 37.79 0.76 37.78 0.71 37.47 0.71 0_NST612_5 612-009 4/17/15 17.5044 24.402 612-009 38.57 0.57 37.78 0.66 36.42 0.79 0_NST612_10 612-010 4/17/15 18.504.0 24.402 612-011 38.57 0.57 37.78 0.66 36.42 0.79 0_NST612_10 612-011 4/17/15 18.10.03 24.405 612-011 38.77 0.63 37.76 0.59 37.99 0.7 0_NST612_11 612-013 4/17/15 18.110 24.403 612-014	G_NIST612_2	612-002	4/17/15	17:34:46	24.118	612-002	38.8	1.1	37.9	1.1	37.36	0.99
0_NST612_4 612-004 4/17/15 17.36:49 24.403 612-004 38.45 0.8 37.59 0.22 38.26 0.88 C_NNST612_6 612-006 4/17/15 17.462.2 24.402 612-006 38.57 0.7 37.79 0.72 37.18 0.71 C_NNST612_6 612-006 4/17/15 17.56:04 24.402 612-008 38.57 0.67 37.8 0.66 36.42 0.79 C_NNST612_10 612-001 4/17/15 18.004.02 612-010 38.56 0.77 37.78 0.66 36.42 0.79 G_NNST612_10 612-011 4/17/15 18.104.02 612-011 38.58 0.77 37.78 0.69 37.27 0.67 G_NNST612_11 612-012 4/17/15 18.104.02 612-011 38.79 0.53 37.78 0.71 37.58 0.77 6.78 37.78 0.71 36.89 0.75 37.81 0.71 36.89 0.77 6.78 0.71 36.89	G_NIST612_3	612-003	4/17/15	17:35:47	24.4	612-003	38.59	0.76	38.01	0.74	39.05	0.88
C_MST612_5 612-005 4/17/15 1742.03 24.402 612-005 38.57 0.72 37.79 0.66 37.9 0.76 C_MST612_6 612-006 4/17/15 1756.04 24.402 612-007 38.57 0.77 37.78 0.66 37.47 0.71 G_MST612_7 612-007 4/17/15 1756.04 24.402 612-008 38.57 0.67 37.78 0.66 36.42 0.77 G_MST612_10 612-010 4/17/15 18:00.40 24.402 612-010 38.58 0.77 37.79 0.78 37.83 0.75 G_NST612_10 612-011 4/17/15 18:10.03 24.402 612-011 38.49 0.71 37.81 0.69 37.27 0.67 G_NST612_13 612-012 4/17/15 18:11.10 24.403 612-012 38.78 0.63 37.78 0.71 35.8 0.78 G_NST612_13 612-014 4/17/15 17:3751 24.403 612-014 38.58 0.65 <td>G_NIST612_4</td> <td>612-004</td> <td>4/17/15</td> <td>17:36:49</td> <td>24.403</td> <td>612-004</td> <td>38.45</td> <td>0.8</td> <td>37.59</td> <td>0.82</td> <td>38.26</td> <td>0.83</td>	G_NIST612_4	612-004	4/17/15	17:36:49	24.403	612-004	38.45	0.8	37.59	0.82	38.26	0.83
C_NST612_6 612-006 4/17/15 17-4522 24.402 612-006 38.57 0.7 37.78 0.66 37.9 0.76 G_NST612_5 612-009 4/17/15 175-604 24.402 612-009 38.57 0.67 37.78 0.67 37.18 0.71 37.47 0.71 G_NST612_9 612-009 4/17/15 18.00.22 24.403 612-009 38.56 0.77 37.78 0.66 36.42 0.77 G_NST612_10 612-010 4/17/15 18.10.03 24.402 612-010 38.58 0.77 37.78 0.66 36.42 0.79 G_NST612_11 612-011 4/17/15 18.10.03 24.403 612-011 38.49 0.71 37.81 0.66 37.9 0.76 G_NST612_13 612-014 4/17/15 18.11.10 24.403 612-011 38.89 0.75 37.83 0.71 37.53 0.78 G_NST612_14 612-014 4/17/15 17.3751 24.403 612-014 <td>G_NIST612_5</td> <td>612-005</td> <td>4/17/15</td> <td>17:42:03</td> <td>24.402</td> <td>612-005</td> <td>38.57</td> <td>0.72</td> <td>37.79</td> <td>0.72</td> <td>37.15</td> <td>0.71</td>	G_NIST612_5	612-005	4/17/15	17:42:03	24.402	612-005	38.57	0.72	37.79	0.72	37.15	0.71
C_MST612_7 612-007 4/17/15 175:043 24.402 612-007 38.57 0.67 37.78 0.67 37.78 0.67 37.88 0.71 37.78 0.67 37.88 0.77 G_MST612_9 612-009 4/17/15 150:002 24.403 612-009 38.56 0.77 37.78 0.66 36.42 0.79 G_NST612_10 612-010 4/17/15 18:04:00 24.402 612-011 38.88 0.77 37.78 0.66 36.42 0.79 G_NST612_12 612-011 4/17/15 18:10:03 24.402 612-012 38.7 0.63 37.76 0.59 37.97 0.77 G_NST612_13 612-014 4/17/15 18:12:12 24.119 612-013 38.38 0.75 37.88 0.71 37.58 0.71 37.58 0.71 37.58 0.71 37.58 0.71 37.58 0.71 37.58 0.71 37.58 0.71 37.58 0.71 37.58 0.71 37.58	G_NIST612_6	612-006	4/17/15	17:46:22	24.402	612-006	38.57	0.7	37.79	0.66	37.9	0.76
G_MST612_8 612-008 4/17/15 1756.04 24.404 612-009 38.57 0.67 37.8 0.67 37.8 0.67 37.8 0.67 37.8 0.66 36.42 0.77 G_MST612_9 612-000 4/17/15 1850022 24.402 612-010 38.56 0.77 37.78 0.66 36.42 0.77 G_NST612_10 612-010 4/17/15 18:1003 24.402 612-011 38.49 0.71 37.81 0.69 37.27 0.67 G_NST612_13 612-012 4/17/15 18:11:10 24.403 612-013 38.38 0.75 37.83 0.71 37.53 0.78 G_NST612_13 612-014 4/17/15 18:11:10 24.403 612-014 38.58 0.65 37.78 0.71 36.88 0.78 G_NST612_14 612-014 4/17/15 17:37:51 24.403 AR188-1 76 15 4 1.2 5.7 1.3 Output_1_1 AR188-1 4/17/15 </td <td>G_NIST612_7</td> <td>612-007</td> <td>4/17/15</td> <td>17:50:45</td> <td>24.402</td> <td>612-007</td> <td>38.57</td> <td>0.75</td> <td>37.78</td> <td>0.71</td> <td>37.47</td> <td>0.71</td>	G_NIST612_7	612-007	4/17/15	17:50:45	24.402	612-007	38.57	0.75	37.78	0.71	37.47	0.71
c_NIST612_9 612.009 4/17/15 180022 24.403 612.009 38.56 0.7 37.78 0.66 36.42 0.79 G_NIST612_10 612.010 4/17/15 180.440 24.402 612.010 38.58 0.77 37.79 0.78 37.33 0.75 G_NIST612_12 612.011 4/17/15 181.100 24.405 612.012 38.7 0.63 37.76 0.59 37.99 0.71 G_NIST612_13 612.013 4/17/15 181.112 24.119 612.013 38.38 0.75 37.83 0.71 37.53 0.78 G_NIST612_14 612.014 4/17/15 181.314 24.403 612.014 38.58 0.65 37.78 0.71 36.8 0.78 Output_1 AR188-1 4/17/15 17.3751 24.403 AR188-1 76 15 4 1.2 5.7 1.3 Output_12 AR188-3 4/17/15 17.4300 24.402 AR188-3 3002 68 83 </td <td>G_NIST612_8</td> <td>612-008</td> <td>4/17/15</td> <td>17:56:04</td> <td>24.404</td> <td>612-008</td> <td>38.57</td> <td>0.67</td> <td>37.8</td> <td>0.67</td> <td>37.18</td> <td>0.77</td>	G_NIST612_8	612-008	4/17/15	17:56:04	24.404	612-008	38.57	0.67	37.8	0.67	37.18	0.77
G_NST612_10 612-010 4/17/15 18:04:40 24:402 612-010 38:58 0.77 37.79 0.78 37.83 0.75 G_NST612_11 612-011 4/17/15 18:10:03 24:405 612-011 38:49 0.71 37.81 0.69 37.27 0.67 G_NST612_12 612-012 4/17/15 18:11:10 24:403 612-012 38.7 0.63 37.76 0.59 37.9 0.7 G_NST612_13 612.013 4/17/15 18:12:12 24.119 612.013 38.38 0.75 37.83 0.71 36.8 0.78 G_NST612_14 612-014 4/17/15 17:37:51 24.403 AR188-1 76 15 4 1.2 5.7 1.3 Output_1_A AR188-1 4/17/15 17:37:51 24.403 AR188-4 3500 710 302 68 83 18 Output_1_A AR188-4 4/17/15 17:43:10 24:402 AR188-4 4200 1100 172 <td>G_NIST612_9</td> <td>612-009</td> <td>4/17/15</td> <td>18:00:22</td> <td>24.403</td> <td>612-009</td> <td>38.56</td> <td>0.7</td> <td>37.78</td> <td>0.66</td> <td>36.42</td> <td>0.79</td>	G_NIST612_9	612-009	4/17/15	18:00:22	24.403	612-009	38.56	0.7	37.78	0.66	36.42	0.79
G_NIST612_11 612-011 4/17/15 18:10.03 24:405 612-011 38:49 0.71 37.81 0.69 37.27 0.67 G_NIST612_12 612-012 4/17/15 18:11:10 24:403 612-012 38.7 0.63 37.76 0.59 37.9 0.7 G_NIST612_13 612.013 4/17/15 18:12:12 24:119 612.013 38.38 0.75 37.83 0.71 37.53 0.78 G_NIST612_14 612-014 4/17/15 18:13:14 24:403 612-014 38.58 0.65 37.78 0.71 36.8 0.78 Output_1_1 AR188-1 4/17/15 17:38:58 24:401 AR188-2 96 13 121 0.35 1.34 0.38 Output_1_2 AR188-3 4/17/15 17:4102 24:402 AR188-4 4200 1100 172 48 45 12 Output_1_4 AR188-4 4/17/15 17:43:10 24:402 AR188-5 16 2.3 0.	G_NIST612_10	612-010	4/17/15	18:04:40	24.402	612-010	38.58	0.77	37.79	0.78	37.83	0.75
G_NST612_12 612-012 4/17/15 18:11:10 24.403 612-012 38.7 0.63 37.76 0.59 37.9 0.7 G_NST612_13 612.013 4/17/15 18:12:12 24.119 612.013 38.38 0.75 37.83 0.71 37.53 0.78 G_NST612_14 612-014 4/17/15 18:13:14 24.403 612-014 38.58 0.65 37.78 0.71 36.8 0.78 Output_1_1 AR188-1 4/17/15 17:375.1 24.403 AR188-1 76 15 4 1.21 0.35 1.34 0.38 Output_1_3 AR188-3 4/17/15 17:34:00 24.403 AR188-3 3500 710 302 68 83 18 Output_1_3 AR188-3 4/17/15 17:41:02 24.402 AR188-4 4/20 1000 172 48 45 12 Output_1_4 AR188-4 4/17/15 17:44:18 24.402 A81.88-5 146 2.3	G_NIST612_11	612-011	4/17/15	18:10:03	24.405	612-011	38.49	0.71	37.81	0.69	37.27	0.67
G_NST612_13 612.013 4/17/15 18:12:12 24.119 612.013 38.38 0.75 37.83 0.71 37.53 0.78 G_NST612_14 612-014 4/17/15 18:13:14 24.403 612-014 38.58 0.65 37.78 0.71 36.8 0.78 Output_1_1 AR188-1 4/17/15 17:37:51 24.403 AR188-1 76 15 4 1.2 5.7 1.3 Output_1_3 AR188-3 4/17/15 17:36:58 24.401 AR188-3 3500 710 302 68 83 18 Output_1_4 AR188-3 4/17/15 17:41:02 24.402 AR188-4 4200 1100 172 48 45 12 Output_1_6 AR188-6 4/17/15 17:41:82 24.402 AR188-6 14.43 0.67 0.018 0.0065 0.0266 0.0075 Output_1_7 Ar188-7 4/17.5 17:41:82 24.401 Ar188-7 26.3 2.3 0.047	G_NIST612_12	612-012	4/17/15	18:11:10	24.403	612-012	38.7	0.63	37.76	0.59	37.9	0.7
G_NST612_14 612-014 4/17/15 18:13:14 24.403 612-014 38.58 0.65 37.78 0.71 36.8 0.78 Output_1_1 AR188-1 4/17/15 17:37:51 24.403 AR188-1 76 15 4 1.2 5.7 1.3 Output_1_2 AR188-2 4/17/15 17:38:58 24.401 AR188-2 96 13 1.21 0.35 1.34 0.38 Output_1_3 AR188-3 4/17/15 17:40:00 24.402 AR188-4 4/200 1100 172 48 45 12 Output_1_6 AR188-5 4/6 2.3 0.0246 0.0074 0.059 0.017 Output_1_6 AR188-6 4/14/15 17:44:18 24.402 AR188-7 26.3 2.3 0.047 0.012 0.0175 0.0041 Output_1_8 24001-c 4/17/15 17:48:36 24.401 Ar188-7 26.3 2.3 0.047 0.012 0.0175 0.0041	G_NIST612_13	612.013	4/17/15	18:12:12	24.119	612.013	38.38	0.75	37.83	0.71	37.53	0.78
Output_1 AR188-1 4/17/15 17:37:5 24.403 AR188-1 76 15 4 1.2 5.7 1.3 Output_12 AR188-2 4/17/15 17:38:58 24.401 AR188-2 96 13 1.21 0.35 1.34 0.38 Output_13 AR188-3 4/17/15 17:40:00 24.402 AR188-3 3500 710 302 68 83 18 Output_14 AR188-5 4/17/15 17:41:02 24.402 AR188-5 46 2.3 0.0266 0.0074 0.059 0.017 Output_16 AR188-6 4/17/15 17:43:18 24.402 AR188-7 26.3 2.3 0.047 0.012 0.0175 0.004 Output_13 Z400-1-c A/17/15 17:47:29 24.401 24.002 3.76 0.11 0.0274 0.0036 0.0063 0.0063 0.0071 Output_19 Z 4/17/15 17:47:82 24.402 Z_2 0.038 0.011 0.	G_NIST612_14	612-014	4/17/15	18:13:14	24.403	612-014	38.58	0.65	37.78	0.71	36.8	0.78
Output_1_1 AR188-1 4/17/15 17:37:51 24:403 AR188-1 76 15 4 1.2 5.7 1.3 Output_1_2 AR188-2 4/17/15 17:38:58 24:401 AR188-2 96 13 1.21 0.35 1.34 0.38 Output_1_3 AR188-3 4/17/15 17:40:00 24:403 AR188-3 3500 710 302 68 83 18 Output_1_4 AR188-4 4/17/15 17:41:02 24:402 AR188-5 46 2.3 0.0246 0.0074 0.059 0.017 Output_1_7 AR188-6 4/17/15 17:44:18 24:402 AR188-7 26.3 2.3 0.047 0.012 0.0175 0.004 Output_1_8 24:00-1-c 4/17/15 17:45:20 24:401 Ar188-7 26.3 2.3 0.047 0.0036 0.0063 0.0015 Output_1_1 Z 4/17/15 17:45:20 24:401 2.4 0.37 0.012 0.014												
Output_12 AR188-2 4/17/15 17:38:58 24:401 AR188-2 96 13 1.21 0.35 1.34 0.38 Output_13 AR188-3 4/17/15 17:40:00 24:403 AR188-3 3500 710 302 68 83 18 Output_14 AR188-4 4/17/15 17:41:02 24:402 AR188-4 4200 1100 172 48 45 12 Output_15 AR188-6 4/17/15 17:41:10 24:402 AR188-6 14:43 0.67 0.018 0.0065 0.0266 0.0075 Output_19 AR188-7 4/17/15 17:47:19 24:401 Ar188-7 26.3 2.3 0.047 0.012 0.0175 0.004 Output_19 Z 4/17/15 17:47:29 24:401 Z 1 17:24 0.88 0.0518 0.0056 0.073 0.0071 Output_110 Z 4/17/15 17:55:57 24:401 Z_4 0.047 0.015 0.0199 </td <td>Output_1_1</td> <td>AR188-1</td> <td>4/17/15</td> <td>17:37:51</td> <td>24.403</td> <td>AR188-1</td> <td>76</td> <td>15</td> <td>4</td> <td>1.2</td> <td>5.7</td> <td>1.3</td>	Output_1_1	AR188-1	4/17/15	17:37:51	24.403	AR188-1	76	15	4	1.2	5.7	1.3
Output_13 AR188-3 4/17/15 17:40:00 24:403 AR188-3 3500 710 302 68 833 18 Output_14 AR188-4 4/17/15 17:41:02 24:402 AR188-4 4200 1100 172 48 45 12 Output_16 AR188-5 4/17/15 17:41:02 24:402 AR188-5 46 2.3 0.0246 0.0074 0.059 0.017 Output_16 AR188-6 4/17/15 17:43:18 24:402 AR188-7 26.3 2.3 0.047 0.012 0.0175 0.004 Output_19 Z 4/17/15 17:47:29 24:401 Z400-1-c 3.76 0.11 0.0274 0.0036 0.0063 0.0012 Output_110 Z 4/17/15 17:49:41 24:402 Z_2 0.038 0.019 0.0044 0.0667 0.012 Output_111 Z 4/17/15 17:51:51 24:402 Z_3 0.0483 0.0099 0.0064 0.031	Output_1_2	AR188-2	4/17/15	17:38:58	24.401	AR188-2	96	13	1.21	0.35	1.34	0.38
Output_14 AR188-4 4/17/15 17:41:02 24:402 AR188-4 4200 1100 172 48 45 12 Output_15 AR188-5 4/17/15 17:43:10 24:405 AR188-5 46 2.3 0.0246 0.0074 0.059 0.017 Output_17 Ar188-6 4/17/15 17:43:10 24:401 AR188-6 14:43 0.67 0.018 0.0065 0.0246 0.0075 0.0047 Output_17 Ar188-7 4/17/15 17:47:29 24:401 Ar188-7 26:3 2.3 0.047 0.012 0.0175 0.004 Output_19 Z 4/17/15 17:49:36 24.4 Z_1 17:24 0.88 0.0518 0.0056 0.073 0.0071 Output_110 Z 4/17/15 17:51:51 24:402 Z_2 0.038 0.011 0.019 0.0046 0.031 0.012 Output_112 Z 4/17/15 17:55:57 24:401 Z_4 0.047 0.015	Output_1_3	AR188-3	4/17/15	17:40:00	24.403	AR188-3	3500	710	302	68	83	18
Output_1_5 AR188-5 4/17/15 17:43:10 24:405 AR188-5 46 2.3 0.0246 0.0074 0.059 0.017 Output_1_6 AR188-6 4/17/15 17:44:18 24:402 AR188-6 14:43 0.67 0.018 0.0065 0.0266 0.0075 Output_1_7 Ar188-7 4/17/15 17:47:29 24:401 X400-1-c 3.76 0.11 0.0274 0.0036 0.0063 0.0015 Output_1_9 Z 4/17/15 17:47:29 24:401 Z400-1-c 3.76 0.11 0.0274 0.0066 0.0073 0.0071 Output_1.10 Z 4/17/15 17:48:36 24.4 Z_1 17.24 0.88 0.0518 0.0064 0.067 0.012 Output_1.11 Z 4/17/15 17:51:51 24:402 Z_3 0.0483 0.0099 0.0069 0.0031 0.067 0.012 Output_1.11 Z 4/17/15 17:55:57 24:401 Z_4 0.047 0.013	Output_1_4	AR188-4	4/17/15	17:41:02	24.402	AR188-4	4200	1100	172	48	45	12
Output_1_6 AR188-6 4/17/15 17:44:18 24.402 AR188-6 14.43 0.67 0.018 0.0065 0.0266 0.0075 Output_1_7 Ar188-7 4/17/15 17:45:20 24.401 Ar188-7 26.3 2.3 0.047 0.012 0.0175 0.004 Output_1_8 Z400-1-c 4/17/15 17:47:29 24.401 Z400-1-c 3.76 0.11 0.0274 0.0036 0.0063 0.0015 Output_1_9 Z 4/17/15 17:48:36 24.4 Z_1 17.24 0.88 0.0518 0.0056 0.073 0.0071 Output_1_10 Z 4/17/15 17:51:51 24.402 Z_2 0.038 0.019 0.0046 0.031 0.012 Output_112 Z 4/17/15 17:52:57 24.401 Z_4 0.047 0.015 0.0109 0.0046 0.031 0.012 Output_113 Z 4/17/15 17:55:02 24.118 Z400-1-c 1 0.056 0.014	Output_1_5	AR188-5	4/17/15	17:43:10	24.405	AR188-5	46	2.3	0.0246	0.0074	0.059	0.017
Output_1_7 Ar188-7 4/17/15 17:45:20 24.401 Ar188-7 26.3 2.3 0.047 0.012 0.0175 0.004 Output_1_8 Z400-1-c 4/17/15 17:47:29 24.401 Z400-1-c 3.76 0.11 0.0274 0.0036 0.0063 0.0015 Output_1_9 Z 4/17/15 17:47:29 24.402 Z_1 17.24 0.88 0.0518 0.0056 0.073 0.0071 Output_1_10 Z 4/17/15 17:49:41 24.402 Z_2 0.038 0.011 0.0119 0.004 0.067 0.012 Output_1_12 Z 4/17/15 17:52:57 24.401 Z_4 0.047 0.015 0.0109 0.0046 0.031 0.012 Output_1_13 Z 4/17/15 17:55:02 24.118 Z400-1-c_1 0.057 0.014 0.0093 0.0034 0.0246 0.0042 Output_1_15 Z400-1 4/17/15 17:57:11 24.402 Z_6 0.121 0.01	Output_1_6	AR188-6	4/17/15	17:44:18	24.402	AR188-6	14.43	0.67	0.018	0.0065	0.0266	0.0075
Output_1_8 Z400-1-c 4/17/15 17:47:29 Z4.401 Z400-1-c 3.76 0.11 0.0274 0.036 0.0063 0.0015 Output_1_9 Z 4/17/15 17:48:36 24.4 Z_1 17.24 0.88 0.0518 0.0056 0.073 0.0071 Output_1_10 Z 4/17/15 17:49:41 24.402 Z_2 0.038 0.011 0.0119 0.004 0.067 0.012 Output_1_11 Z 4/17/15 17:51:51 24.402 Z_3 0.0483 0.0099 0.0069 0.0031 0.067 0.018 Output_1_12 Z 4/17/15 17:52:57 24.401 Z_4 0.047 0.015 0.0109 0.0046 0.031 0.012 Output_1_13 Z 4/17/15 17:55:02 24.402 Z_5 0.092 0.03 0.0232 0.0054 0.013 0.013 Output_1_15 Z400-1 4/17/15 17:57:11 24.402 Z_6 0.121 0.01 0.08	Output_1_7	Ar188-7	4/17/15	17:45:20	24.401	Ar188-7	26.3	2.3	0.047	0.012	0.0175	0.004
Output_1_9 Z 4/17/15 17:48:36 24.4 Z_1 17.24 0.88 0.0518 0.0056 0.073 0.0071 Output_1_10 Z 4/17/15 17:49:41 24.402 Z_2 0.038 0.011 0.0119 0.004 0.067 0.012 Output_1_11 Z 4/17/15 17:51:51 24.402 Z_3 0.0483 0.0099 0.0069 0.0031 0.067 0.018 Output_1_12 Z 4/17/15 17:52:57 24.401 Z_4 0.047 0.015 0.0109 0.0046 0.031 0.012 Output_1_13 Z 4/17/15 17:55:02 24.418 Z400-1-c 0.057 0.014 0.0093 0.034 0.0246 0.0042 Output_1_15 Z400-1-c 4/17/15 17:58:18 Z4.002 Z_6 0.121 0.01 0.0897 0.0054 0.0133 0.013 Output_1_16 Z 4/17/15 17:58:18 Z4.002 Z_6 0.121 0.01 0.089	Output_1_8	Z400-1-c	4/17/15	17:47:29	24.401	Z400-1-c	3.76	0.11	0.0274	0.0036	0.0063	0.0015
Output_1_10 Z 4/17/15 17:49:41 24.402 Z_2 0.038 0.011 0.0119 0.004 0.067 0.012 Output_1_11 Z 4/17/15 17:51:51 24.402 Z_3 0.0483 0.0099 0.069 0.0031 0.067 0.018 Output_1_12 Z 4/17/15 17:52:57 24.401 Z_4 0.047 0.015 0.0109 0.0046 0.031 0.012 Output_1_13 Z 4/17/15 17:52:57 24.401 Z_4 0.047 0.015 0.0109 0.0046 0.031 0.012 Output_1_13 Z 4/17/15 17:52:57 24.402 Z_5 0.092 0.03 0.0232 0.0075 0.056 0.012 Output_1_14 2400-1-c 4/17/15 17:57:11 24.402 Z_6 0.121 0.01 0.0897 0.0069 0.1627 0.0092 Output_1_16 Z 4/17/15 17:59:20 24.119 Z_7 0.095 0.017 0.24 <td>Output_1_9</td> <td>Z</td> <td>4/17/15</td> <td>17:48:36</td> <td>24.4</td> <td>Z_1</td> <td>17.24</td> <td>0.88</td> <td>0.0518</td> <td>0.0056</td> <td>0.073</td> <td>0.0071</td>	Output_1_9	Z	4/17/15	17:48:36	24.4	Z_1	17.24	0.88	0.0518	0.0056	0.073	0.0071
Output_1_11 Z 4/17/15 17:51:51 24.402 Z_3 0.0483 0.0099 0.0069 0.0031 0.067 0.018 Output_1_12 Z 4/17/15 17:52:57 24.401 Z_4 0.047 0.015 0.0109 0.0046 0.031 0.012 Output_1_13 Z 4/17/15 17:55:02 24.402 Z_5 0.092 0.03 0.0232 0.0075 0.056 0.012 Output_1_14 Z400-1-c 4/17/15 17:55:02 24.118 Z400-1_c 0.057 0.014 0.0093 0.0034 0.0246 0.0042 Output_1_15 Z400-1 4/17/15 17:57:11 24.403 Z400-1_1 0.268 0.03 0.0526 0.0054 0.103 0.013 Output_1_16 Z 4/17/15 17:59:20 24.119 Z_7 0.095 0.017 0.24 0.016 0.133 0.011 Output_1_18 Z 4/17/15 18:01:26 25.845 Z_8 0.116 0.012	Output_1_10	Z	4/17/15	17:49:41	24.402	Z_2	0.038	0.011	0.0119	0.004	0.067	0.012
Output_1_12Z4/17/1517:52:5724.401Z_40.0470.0150.01090.00460.0310.012Output_1_13Z4/17/1517:54:0024.402Z_50.0920.030.02320.00750.0560.012Output_1_14Z400-1-c4/17/1517:55:0224.118Z400-1-c_10.0570.0140.00930.00340.02460.0042Output_1_15Z400-14/17/1517:57:1124.403Z400-1_10.2680.030.05260.00540.1030.013Output_1_16Z4/17/1517:58:1824.402Z_60.1210.010.08970.00690.16270.0092Output_1_17Z4/17/1517:59:2024.119Z_70.0950.0170.240.0160.1330.011Output_1_18Z4/17/1518:01:2625.845Z_80.1160.0120.3130.0220.1170.01Output_1_19Z4/17/1518:02:4019:572Z_90.05410.00560.06660.00720.0260.004Output_1_20Z4/17/1518:03:3824.119Z_104.31.50.02310.00360.0920.0035Output_1_21Z4/17/1518:05:4824.402Z_1115.32.40.02170.00310.02750.0035Output_1_22Z4/17/1518:05:5524.4Z_126.61.20.06150.00520.01390.0	Output_1_11	Z	4/17/15	17:51:51	24.402	Z_3	0.0483	0.0099	0.0069	0.0031	0.067	0.018
Output_1_13Z4/17/1517:54:0024.402Z_50.0920.030.02320.00750.0560.012Output_1_14Z400-1-c4/17/1517:55:0224.118Z400-1-c_10.0570.0140.00930.00340.02460.0042Output_1_15Z400-14/17/1517:57:1124.403Z400-1_10.2680.030.05260.00540.1030.013Output_1_16Z4/17/1517:58:1824.402Z_60.1210.010.08970.00690.16270.0092Output_1_17Z4/17/1517:59:2024.119Z_70.0950.0170.240.0160.1330.011Output_1_18Z4/17/1518:01:2625.845Z_80.1160.0120.3130.0220.1170.01Output_1_19Z4/17/1518:02:4019.572Z_90.05410.00560.06660.00720.0260.004Output_1_20Z4/17/1518:03:3824.119Z_1104.31.50.02110.00310.02750.0083Output_1_21Z4/17/1518:05:4824.402Z_11115.32.40.02170.00310.02750.0035Output_1_22Z4/17/1518:05:5524.4Z_126.61.20.06180.00520.01390.0022Output_1_23Z4/17/1518:07:5924.402Z_130.210.0350.07820.00810.0358 <t< td=""><td>Output_1_12</td><td>Z</td><td>4/17/15</td><td>17:52:57</td><td>24.401</td><td>Z_4</td><td>0.047</td><td>0.015</td><td>0.0109</td><td>0.0046</td><td>0.031</td><td>0.012</td></t<>	Output_1_12	Z	4/17/15	17:52:57	24.401	Z_4	0.047	0.015	0.0109	0.0046	0.031	0.012
Output_1_14 Z400-1-c 4/17/15 17:55:02 24.118 Z400-1-c_1 0.057 0.014 0.0093 0.034 0.0246 0.0042 Output_1_15 Z400-1 4/17/15 17:57:11 24.403 Z400-1_1 0.268 0.03 0.0526 0.0054 0.103 0.013 Output_1_16 Z 4/17/15 17:58:18 24.402 Z_6 0.121 0.01 0.0897 0.0069 0.1627 0.0092 Output_1_17 Z 4/17/15 17:59:20 24.119 Z_7 0.095 0.017 0.24 0.016 0.133 0.011 Output_1_18 Z 4/17/15 18:01:26 25.845 Z_8 0.116 0.012 0.313 0.022 0.117 0.01 Output_1_19 Z 4/17/15 18:02:40 19:572 Z_9 0.0541 0.0056 0.0666 0.0072 0.026 0.004 Output_1_20 Z 4/17/15 18:03:38 24.102 Z_111 15.3 2.4	Output_1_13	Z	4/17/15	17:54:00	24.402	Z_5	0.092	0.03	0.0232	0.0075	0.056	0.012
Output_1_15 Z400-1 4/17/15 17:57:11 24.403 Z400-1_1 0.268 0.03 0.0526 0.0054 0.103 0.013 Output_1_16 Z 4/17/15 17:58:18 24.402 Z_6 0.121 0.01 0.0897 0.0069 0.1627 0.0092 Output_1_17 Z 4/17/15 17:59:20 24.119 Z_7 0.095 0.017 0.24 0.016 0.133 0.011 Output_1_18 Z 4/17/15 18:01:26 25.845 Z_8 0.116 0.012 0.313 0.022 0.117 0.01 Output_1_19 Z 4/17/15 18:02:40 19:572 Z_9 0.0541 0.0056 0.0666 0.0072 0.026 0.004 Output_1_20 Z 4/17/15 18:03:38 24.119 Z_10 4.3 1.5 0.0231 0.0036 0.092 0.0083 Output_1_21 Z 4/17/15 18:05:58 24.4 Z_12 6.6 1.2 0.0615	Output_1_14	Z400-1-c	4/17/15	17:55:02	24.118	Z400-1-c_1	0.057	0.014	0.0093	0.0034	0.0246	0.0042
Output_1_16 Z 4/17/15 17:58:18 24.402 Z_6 0.121 0.01 0.0897 0.0069 0.1627 0.0092 Output_1_17 Z 4/17/15 17:59:20 24.119 Z_7 0.095 0.017 0.24 0.016 0.133 0.011 Output_1_18 Z 4/17/15 18:01:26 25.845 Z_8 0.116 0.012 0.313 0.022 0.117 0.01 Output_1_19 Z 4/17/15 18:01:26 25.845 Z_8 0.116 0.012 0.313 0.022 0.117 0.01 Output_1_19 Z 4/17/15 18:02:40 19:572 Z_9 0.0541 0.0056 0.0666 0.0072 0.026 0.004 Output_1_20 Z 4/17/15 18:03:38 24.119 Z_10 4.3 1.5 0.0231 0.0036 0.092 0.0083 Output_1_21 Z 4/17/15 18:05:48 24.402 Z_11 15.3 2.4 0.0217 0	Output_1_15	Z400-1	4/17/15	17:57:11	24.403	Z400-1_1	0.268	0.03	0.0526	0.0054	0.103	0.013
Output_1_17 Z 4/17/15 17:59:20 24.119 Z_7 0.095 0.017 0.24 0.016 0.133 0.011 Output_1_18 Z 4/17/15 18:01:26 25.845 Z_8 0.116 0.012 0.313 0.022 0.117 0.01 Output_1_19 Z 4/17/15 18:02:40 19:572 Z_9 0.0541 0.0056 0.0666 0.0072 0.026 0.004 Output_1_20 Z 4/17/15 18:03:38 24.119 Z_10 4.3 1.5 0.0231 0.0036 0.092 0.0083 Output_1_21 Z 4/17/15 18:05:48 24.402 Z_111 15.3 2.4 0.0217 0.0031 0.0275 0.0035 Output_1_22 Z 4/17/15 18:06:55 24.4 Z_12 6.6 1.2 0.0615 0.0052 0.0139 0.002 Output_1_23 Z 4/17/15 18:07:59 24.402 Z_13 0.21 0.0355 0.0782 <td< td=""><td>Output_1_16</td><td>Z</td><td>4/17/15</td><td>17:58:18</td><td>24.402</td><td>Z_6</td><td>0.121</td><td>0.01</td><td>0.0897</td><td>0.0069</td><td>0.1627</td><td>0.0092</td></td<>	Output_1_16	Z	4/17/15	17:58:18	24.402	Z_6	0.121	0.01	0.0897	0.0069	0.1627	0.0092
Output_1_18 Z 4/17/15 18:01:26 25.845 Z_8 0.116 0.012 0.313 0.022 0.117 0.01 Output_1_19 Z 4/17/15 18:02:40 19:572 Z_9 0.0541 0.0056 0.0666 0.0072 0.026 0.004 Output_1_20 Z 4/17/15 18:03:38 24.119 Z_10 4.3 1.5 0.0231 0.0036 0.092 0.0083 Output_1_21 Z 4/17/15 18:05:48 24.402 Z_111 15.3 2.4 0.0217 0.0031 0.0275 0.0035 Output_1_22 Z 4/17/15 18:06:55 24.4 Z_12 6.6 1.2 0.0615 0.0052 0.0139 0.002 Output_1_23 Z 4/17/15 18:07:59 24.402 Z_13 0.21 0.035 0.0782 0.0081 0.0358 0.0062 Output_1_23 Z 4/17/15 18:07:59 24.402 Z_13 0.21 0.0355 0.0782	Output 1 17	Z	4/17/15	17:59:20	24.119	Z 7	0.095	0.017	0.24	0.016	0.133	0.011
Output_1_19 Z 4/17/15 18:02:40 19:572 Z_9 0.0541 0.0056 0.0666 0.0072 0.026 0.004 Output_1_20 Z 4/17/15 18:03:38 24.119 Z_10 4.3 1.5 0.0231 0.0036 0.092 0.0083 Output_1_21 Z 4/17/15 18:05:48 24.402 Z_11 15.3 2.4 0.0217 0.0031 0.0275 0.0035 Output_1_22 Z 4/17/15 18:06:55 24.4 Z_12 6.6 1.2 0.0615 0.0052 0.0139 0.002 Output_1_23 Z 4/17/15 18:07:59 24.402 Z_13 0.21 0.035 0.0782 0.0081 0.0358 0.0062 Output_1_23 Z 4/17/15 18:07:59 24.402 Z_13 0.21 0.035 0.0782 0.0081 0.0358 0.0062 Output_1_24 7400.1 4/17/15 18:07:90 74.402 7400.1.2 0.475 0.037 0.343	Output 1 18	Z	4/17/15	18:01:26	25.845	 Z 8	0.116	0.012	0.313	0.022	0.117	0.01
Output_1_20 Z 4/17/15 18:03:38 24.119 Z_10 4.3 1.5 0.0231 0.0036 0.092 0.0083 Output_1_21 Z 4/17/15 18:05:48 24.402 Z_11 15.3 2.4 0.0217 0.0031 0.0275 0.0035 Output_1_22 Z 4/17/15 18:06:55 24.4 Z_12 6.6 1.2 0.0615 0.0052 0.0139 0.002 Output_1_23 Z 4/17/15 18:07:59 24.402 Z_13 0.21 0.035 0.0782 0.0081 0.0358 0.0062 Output_1_23 Z 4/17/15 18:07:59 24.402 Z_13 0.21 0.035 0.0782 0.0081 0.0358 0.0062 Output_1 24 Z400.1 4/17/15 18:09:00 24.402 Z_13 0.21 0.035 0.0782 0.0081 0.0358 0.0062	Output 1 19	Z	4/17/15	18:02:40	19.572	 Z 9	0.0541	0.0056	0.0666	0.0072	0.026	0.004
Output_1_21 Z 4/17/15 18:05:48 24.402 Z_11 15.3 2.4 0.0217 0.0031 0.0275 0.0035 Output_1_22 Z 4/17/15 18:06:55 24.4 Z_12 6.6 1.2 0.0615 0.0052 0.0139 0.002 Output_1_23 Z 4/17/15 18:07:59 24.402 Z_13 0.21 0.035 0.0782 0.0081 0.0358 0.0062 Output_1_24 Z400.1 A/17/15 18:07:59 24.402 Z_13 0.21 0.035 0.0782 0.0081 0.0358 0.0062 Output_1 24 Z400.1 A/17/15 18:09:00 24.402 Z_13 0.21 0.035 0.0782 0.0081 0.0358 0.0062 <td>Output 1 20</td> <td>Z</td> <td>4/17/15</td> <td>18:03:38</td> <td>24.119</td> <td>Z 10</td> <td>4.3</td> <td>1.5</td> <td>0.0231</td> <td>0.0036</td> <td>0.092</td> <td>0.0083</td>	Output 1 20	Z	4/17/15	18:03:38	24.119	Z 10	4.3	1.5	0.0231	0.0036	0.092	0.0083
Output_1_22 Z 4/17/15 18:06:55 24.4 Z_12 6.6 1.2 0.0615 0.0052 0.0139 0.002 Output_1_23 Z 4/17/15 18:07:59 24.402 Z_13 0.21 0.035 0.0782 0.0081 0.0358 0.0062 Output_1_24 Z400.1 24.402 Z_13 0.21 0.035 0.0782 0.0081 0.0358 0.0062	Output 1 21	Z	4/17/15	18:05:48	24.402	Z 11	15.3	2.4	0.0217	0.0031	0.0275	0.0035
Output_1_23 Z 4/17/15 18:07:59 24.402 Z_13 0.21 0.035 0.0782 0.0081 0.0358 0.0062 Output_1_24 7400.1 4/17/15 18:09:00 24.402 7400.1.2 0.475 0.027 0.342 0.031 0.1100 0.0001 122	Output 1 22	 Z	4/17/15	18:06:55	24.4	Z 12	6.6	1.2	0.0615	0.0052	0.0139	0.002
Output 1 24 7400 1 4/17/15 18:00:00 24 402 7400 1 2 0.475 0.027 0.242 0.001 0.030 0.0002	Output 1 23	7	4/17/15	18:07:59	24.402	7 13	0.21	0.035	0.0782	0.0081	0.0358	0.0062
0.0091132	Output 1 24	 Z400-1	4/17/15	18:09:00	24.403	 Z400-1 2	0.476	0.027	0.342	0.021	0.1169	0.0091 132

SelectionLabe	'Source file'	'_Date_'	'_Time_'	'Duration(s)'	Comments	Ca43_CPS	Ca43_CPS_Int	Ti_ppm_m48	Ti_ppm_m48	Y_ppm_m89	Y_ppm_m89_
							25E		Int2SE		INTZSE
G NIST612 1	612-001	4/17/15	17:33:28	24.401	612-001	239200	9800	49.1	2.4	37.8	1.1
G NIST612 2	612-002	4/17/15	17:34:46	24.118	612-002	207500	7300	43	1.6	37.74	0.9
G NIST612 3	612-003	4/17/15	17:35:47	24.4	612-003	192400	4600	43.6	1.5	38.29	0.7
G NIST612 4	612-004	4/17/15	17:36:49	24.403	612-004	195700	5400	43.6	1.1	37.91	0.64
G NIST612 5	612-005	4/17/15	17:42:03	24 402	612-005	177300	3700	43.83	0.81	37.99	0.73
G NIST612_6	612-006	4/17/15	17:46:22	24.402	612-006	161900	4500	44.07	0.8	38	0.64
G NIST612 7	612-007	4/17/15	17:50:45	24.402	612-007	164100	4400	44.06	0.72	38.08	0.59
G NIST612 8	612-008	4/17/15	17:56:04	24.404	612-008	159900	3900	44.49	0.95	38	0.64
G NIST612 9	612-009	4/17/15	18:00:22	24.403	612-009	163800	4300	43.65	0.75	37.99	0.66
G NIST612_1	012 005	4/1//15	10.00.22	24.405	012 005	105000		43.03	0.75	37.33	0.00
0	612-010	4/17/15	18:04:40	24.402	612-010	164000	4700	43.91	0.82	38.01	0.64
G_NIST612_1 1	612-011	4/17/15	18:10:03	24.405	612-011	159100	3900	43.95	0.88	37.95	0.7
G_NIST612_1 2	612-012	4/17/15	18:11:10	24.403	612-012	158000	3300	44.87	0.88	38.06	0.65
G_NIST612_1 3	612.013	4/17/15	18:12:12	24.119	612.013	162100	4000	43.97	0.8	38.01	0.67
G_NIST612_1 4	612-014	4/17/15	18:13:14	24.403	612-014	163200	4100	43.53	0.82	37.98	0.63
Output_1_1	AR188-1	4/17/15	17:37:51	24.403	AR188-1	72000	12000	382	75	92	21
Output_1_2	AR188-2	4/17/15	17:38:58	24.401	AR188-2	62600	9300	343	60	34.3	5.7
Output_1_3	AR188-3	4/17/15	17:40:00	24.403	AR188-3	19600	3500	1550	540	124	40
Output_1_4	AR188-4	4/17/15	17:41:02	24.402	AR188-4	10500	2100	1420	750	100	32
Output_1_5	AR188-5	4/17/15	17:43:10	24.405	AR188-5	492000	12000	296.2	5.8	60.4	1.3
Output_1_6	AR188-6	4/17/15	17:44:18	24.402	AR188-6	441000	19000	280	17	99.9	8.7
Output_1_7	Ar188-7	4/17/15	17:45:20	24.401	Ar188-7	487000	16000	277.2	5.9	60.1	1.2
Output_1_8	Z400-1-c	4/17/15	17:47:29	24.401	Z400-1-c	818000	12000	279.7	2.5	87.72	0.88
Output_1_9	Z	4/17/15	17:48:36	24.4	Z_1	606000	28000	278	14	298	16
Output_1_10	Z	4/17/15	17:49:41	24.402	Z_2	772000	59000	267	13	232	15
Output_1_11	Z	4/17/15	17:51:51	24.402	Z_3	858000	57000	260	17	118	13
Output_1_12	Z	4/17/15	17:52:57	24.401	Z_4	723000	53000	268	13	3.06	0.29
Output_1_13	Z	4/17/15	17:54:00	24.402	Z_5	736000	56000	283	15	57.7	3.4
Output_1_14	Z400-1-c	4/17/15	17:55:02	24.118	Z400-1-c_1	694000	49000	292	15	54.8	2.8
Output_1_15	Z400-1	4/17/15	17:57:11	24.403	Z400-1_1	1.24E+06	120000	266	15	16.9	1.3
Output_1_16	Z	4/17/15	17:58:18	24.402	Z_6	1.47E+06	170000	284	11	42.4	1.8
Output_1_17	Z	4/17/15	17:59:20	24.119	Z_7	772000	73000	270	14	48	3
Output_1_18	Z	4/17/15	18:01:26	25.845	Z_8	1.01E+06	110000	273	15	61.5	3.7
Output_1_19	Z	4/17/15	18:02:40	19.572	Z_9	914000	96000	290	16	34.1	2.6
Output_1_20	Z	4/17/15	18:03:38	24.119	Z_10	1.09E+06	150000	283	13	28.8	1.6
Output_1_21	Z	4/17/15	18:05:48	24.402	Z_11	1.27E+06	150000	267	12	9.5	0.57
Output_1_22	Z	4/17/15	18:06:55	24.4	Z_12	1.58E+06	180000	276	15	16.5	1.1
Output_1_23	Z	4/17/15	18:07:59	24.402	Z_13	1.36E+06	140000	261	13	29.3	1.7
Output_1_24	Z400-1	4/17/15	18:09:00	24.403	Z400-1_2	931000	98000	273	15	63.4	3.6

SelectionLabe	Course file!	L Data L	L Time e L		Commente	Nila mana ma 0.2	Nb_ppm_m93	Ba_ppm_m13	Ba_ppm_m13	1.0	La_ppm_m13
1	Sourceme	_Date_	_mme_	Duration(s)	Comments	ppm_m93	_Int2SE	7	7_Int2SE	La	9_Int2SE
G_NIST612_1	612-001	4/17/15	17:33:28	24.401	612-001	39.9	1.4	39.5	1.6	35.7	1.2
G_NIST612_2	612-002	4/17/15	17:34:46	24.118	612-002	40	1	39.6	1.1	35.49	0.89
G_NIST612_3	612-003	4/17/15	17:35:47	24.4	612-003	40.25	0.79	40.12	0.94	36	0.64
G_NIST612_4	612-004	4/17/15	17:36:49	24.403	612-004	39.9	0.75	39.56	0.94	35.7	0.68
G_NIST612_5	612-005	4/17/15	17:42:03	24.402	612-005	39.99	0.62	39.68	0.75	35.8	0.51
G NIST612 6	612-006	4/17/15	17:46:22	24.402	612-006	39.99	0.72	39.7	0.71	35.8	0.59
 G NIST612 7	612-007	4/17/15	17:50:45	24.402	612-007	40.01	0.61	39.71	0.66	35.8	0.51
 G NIST612 8	612-008	4/17/15	17:56:04	24.404	612-008	40	0.75	39.7	0.75	35.8	0.58
 G_NIST612_9	612-009	4/17/15	18:00:22	24.403	612-009	39.99	0.68	39.69	0.83	35.79	0.6
G NIST612 1											
0	612-010	4/17/15	18:04:40	24.402	612-010	40.01	0.74	39.7	0.81	35.81	0.65
G_NIST612_1 1	612-011	4/17/15	18:10:03	24.405	612-011	39.94	0.76	39.67	0.67	35.78	0.56
G_NIST612_1 2	612-012	4/17/15	18:11:10	24.403	612-012	40.1	0.68	39.79	0.78	35.87	0.6
G_NIST612_1 3	612.013	4/17/15	18:12:12	24.119	612.013	39.94	0.77	39.62	0.84	35.73	0.63
G_NIST612_1 4	612-014	4/17/15	18:13:14	24.403	612-014	40	0.67	39.72	0.81	35.82	0.67
Output_1_1	AR188-1	4/17/15	17:37:51	24.403	AR188-1	1.23	0.46	284	68	11.1	1.8
Output_1_2	AR188-2	4/17/15	17:38:58	24.401	AR188-2	0.34	0.35	56	11	13.6	2.7
Output_1_3	AR188-3	4/17/15	17:40:00	24.403	AR188-3	3.1	1.5	2780	680	356	88
Output_1_4	AR188-4	4/17/15	17:41:02	24.402	AR188-4	6.1	5.1	900	2800	245	65
Output_1_5	AR188-5	4/17/15	17:43:10	24.405	AR188-5	-0.012	0.022	2.29	0.19	23.1	0.76
Output_1_6	AR188-6	4/17/15	17:44:18	24.402	AR188-6	0.047	0.024	2.11	0.15	17.7	1.2
Output_1_7	Ar188-7	4/17/15	17:45:20	24.401	Ar188-7	0.013	0.023	3.97	0.32	10.7	1.9
Output 1 8	Z400-1-c	4/17/15	17:47:29	24.401	Z400-1-c	0.022	0.014	1.057	0.075	5.349	0.073
Output 1 9	Z	4/17/15	17:48:36	24.4	Z 1	0.016	0.018	8.03	0.44	9.09	0.36
Output 1 10	Z	4/17/15	17:49:41	24.402	Z 2	0.029	0.019	1.83	0.13	7.52	0.39
Output 1 11	Z	4/17/15	17:51:51	24.402	Z 3	0.013	0.016	1.49	0.14	4.39	0.45
Output 1 12	z	4/17/15	17:52:57	24.401	 Z 4	0.021	0.019	0.598	0.085	0.38	0.036
Output 1 13	Z	4/17/15	17:54:00	24.402	_ Z 5	0.03	0.019	0.756	0.073	3.45	0.2
Output 1 14	Z400-1-c	4/17/15	17:55:02	24.118	 Z400-1-c 1	-0.001	0.017	0.606	0.079	3.28	0.18
Output 1 15	Z400-1	4/17/15	17:57:11	24.403	Z400-1 1	-0.001	0.013	0.096	0.03	2.39	0.2
Output 1 16	Z	4/17/15	17:58:18	24.402	Z 6	0.014	0.013	0.195	0.035	3.97	0.18
Output 1 17	7	4/17/15	17:59:20	24 1 1 9	77	0.011	0.018	0.166	0.046	3 44	0.19
Output 1 18	7	4/17/15	18:01:26	25.845	7.8	0.028	0.018	0.100	0.033	3 74	0.25
Output 1 19	7	4/17/15	18:02:40	19.572	7 9	0.006	0.017	0.163	0.042	4.09	0.29
Output 1 20	7	//17/15	18.02.39	2/ 110	Z_0	-0.017	0.015	0.205	0.14	3 8 8	0.15
Output 1 21	7	4/17/15	18.05.38	24.113	7 11	-0.017	0.013	0.00	0.045	3.00	0.15
Output 1 22	7	4/17/15	18.06.55	24.402	11 7 10	-0.003	0.011	0.299	0.045	3.23	0.19
Output_1_22		4/17/15	10.00.55	24.4	<u> </u>	-0.017	0.011	0.098	0.020	3.20	0.10
Output_1_23	2	4/1//15	18:07:59	24.402	Z_13	0.01	0.014	0.149	0.038	3.31	0.17
Output_1_24	2400-1	4/1//15	19:00:00	24.403	2400-1_2	0.008	0.021	0.252	0.058	5.84	0.19

SelectionLabe	'Source file'	'Date '	' Time '	'Duration(s)'	Comments	Ce	Ce_ppm_m14	Pr	Pr_ppm_m14	Nd	Nd_ppm_m14
I							0_Int2SE		1_Int2SE		6_Int2SE
G_NIST612_1	612-001	4/17/15	17:33:28	24.401	612-001	33.9	1.1	37	1.2	35.8	1.1
G_NIST612_2	612-002	4/17/15	17:34:46	24.118	612-002	37.46	0.88	37.14	0.88	35.83	0.97
G_NIST612_3	612-003	4/17/15	17:35:47	24.4	612-003	40.54	0.74	37.42	0.7	36.03	0.71
G_NIST612_4	612-004	4/17/15	17:36:49	24.403	612-004	40	0.74	37.09	0.67	35.81	0.67
G_NIST612_5	612-005	4/17/15	17:42:03	24.402	612-005	38.65	0.57	37.19	0.64	35.88	0.6
G_NIST612_6	612-006	4/17/15	17:46:22	24.402	612-006	38.8	0.68	37.2	0.64	35.92	0.67
G_NIST612_7	612-007	4/17/15	17:50:45	24.402	612-007	39.31	0.54	37.2	0.58	35.89	0.66
G_NIST612_8	612-008	4/17/15	17:56:04	24.404	612-008	38.69	0.63	37.2	0.61	35.91	0.63
G_NIST612_9	612-009	4/17/15	18:00:22	24.403	612-009	37.58	0.62	37.19	0.61	35.88	0.65
G_NIST612_1 0	612-010	4/17/15	18:04:40	24.402	612-010	38.97	0.62	37.21	0.69	35.91	0.65
G_NIST612_1 1	612-011	4/17/15	18:10:03	24.405	612-011	38.48	0.64	37.15	0.62	35.9	0.66
G_NIST612_1 2	612-012	4/17/15	18:11:10	24.403	612-012	39	0.68	37.29	0.61	35.85	0.66
G_NIST612_1 3	612.013	4/17/15	18:12:12	24.119	612.013	38.99	0.69	37.14	0.64	36.01	0.68
G_NIST612_1 4	612-014	4/17/15	18:13:14	24.403	612-014	38.47	0.66	37.21	0.56	35.86	0.57
Output_1_1	AR188-1	4/17/15	17:37:51	24.403	AR188-1	30.2	6.5	5.2	1.4	24.2	4.8
Output_1_2	AR188-2	4/17/15	17:38:58	24.401	AR188-2	56	22	3.67	0.58	20.7	3.4
Output_1_3	AR188-3	4/17/15	17:40:00	24.403	AR188-3	600	260	33	15	125	60
Output_1_4	AR188-4	4/17/15	17:41:02	24.402	AR188-4	500	210	34.9	9.2	114	50
Output_1_5	AR188-5	4/17/15	17:43:10	24.405	AR188-5	51.9	2	7.01	0.22	30.5	1.1
Output_1_6	AR188-6	4/17/15	17:44:18	24.402	AR188-6	36.7	2.3	5.05	0.35	23.7	1.5
Output_1_7	Ar188-7	4/17/15	17:45:20	24.401	Ar188-7	38	12	2.99	0.5	12.8	1.2
Output_1_8	Z400-1-c	4/17/15	17:47:29	24.401	Z400-1-c	10.69	0.11	1.46	0.028	6.8	0.15
Output_1_9	Z	4/17/15	17:48:36	24.4	Z_1	17.42	0.76	2.63	0.14	12.78	0.66
Output_1_10	Z	4/17/15	17:49:41	24.402	Z_2	12.94	0.64	1.87	0.11	9.38	0.56
Output_1_11	Z	4/17/15	17:51:51	24.402	Z_3	7.42	0.63	1.2	0.12	6.05	0.64
Output_1_12	Z	4/17/15	17:52:57	24.401	Z_4	0.631	0.052	0.097	0.011	0.467	0.057
Output_1_13	Z	4/17/15	17:54:00	24.402	Z_5	5.01	0.27	0.736	0.049	3.39	0.18
Output_1_14	Z400-1-c	4/17/15	17:55:02	24.118	Z400-1-c_1	4.88	0.25	0.671	0.032	3.38	0.17
Output_1_15	Z400-1	4/17/15	17:57:11	24.403	Z400-1_1	5.3	0.4	1.013	0.079	6.45	0.52
Output_1_16	Z	4/17/15	17:58:18	24.402	Z_6	7.78	0.32	1.394	0.062	9.39	0.41
Output_1_17	Z	4/17/15	17:59:20	24.119	Z_7	6.6	0.34	1.145	0.064	7.7	0.46
Output_1_18	Z	4/17/15	18:01:26	25.845	Z_8	7.31	0.48	1.332	0.092	8.26	0.56
Output_1_19	Z	4/17/15	18:02:40	19.572	Z_9	6.38	0.42	1.051	0.067	5.87	0.39
Output_1_20	Z	4/17/15	18:03:38	24.119	Z_10	6.09	0.23	0.919	0.043	5.13	0.23
Output_1_21	Z	4/17/15	18:05:48	24.402	Z_11	5.5	0.21	0.737	0.036	3.64	0.19
Output_1_22	Z	4/17/15	18:06:55	24.4	Z_12	5.26	0.23	0.753	0.039	3.91	0.21
Output_1_23	Z	4/17/15	18:07:59	24.402	Z_13	5.64	0.25	0.891	0.045	5.03	0.25
Output_1_24	Z400-1	4/17/15	18:09:00	24.403	Z400-1_2	7.67	0.41	1.247	0.069	8.37	0.47

SelectionLabe	'Source file'	'_Date_'	'_Time_'	'Duration(s)'	Comments	Sm	Sm_ppm_m1	Eu	Eu_ppm_m15	Gd	Gd_ppm_m15
							47_m23E		5_111252		7_111252
G NIST612 1	612-001	4/17/15	17:33:28	24.401	612-001	37.7	1.1	34.8	1	36.5	1.2
G NIST612 2	612-002	4/17/15	17:34:46	24.118	612-002	38.2	1	34.88	0.84	36.74	0.99
G NIST612 3	612-003	4/17/15	17:35:47	24.4	612-003	38.43	0.7	35.4	0.71	36.91	0.74
G NIST612 4	612-004	4/17/15	17:36:49	24.403	612-004	37.89	0.68	34.84	0.66	36.59	0.66
G NIST612 5	612-005	4/17/15	17:42:03	24.402	612-005	38.08	0.59	34.97	0.62	36.69	0.62
G NIST612 6	612-006	4/17/15	17:46:22	24.402	612-006	38.11	0.64	35.01	0.59	36.71	0.69
G NIST612 7	612-007	4/17/15	17:50:45	24 402	612-007	38.09	0.62	35	0.57	36.7	0.65
G NIST612 8	612-008	4/17/15	17:56:04	24.404	612-008	38.11	0.58	35.02	0.63	36.7	0.62
G_NIST612_9	612-009	4/17/15	18:00:22	24 403	612-009	38.07	0.63	34.97	0.59	36.69	0.69
G NIST612_1	012 005	-,1,,15	10.00.22	24.405	012 005	50.07	0.05	54.57	0.55	30.03	0.05
0	612-010	4/17/15	18:04:40	24.402	612-010	38.13	0.68	35.04	0.65	36.7	0.64
G_NIST612_1 1	612-011	4/17/15	18:10:03	24.405	612-011	37.98	0.63	34.87	0.57	36.6	0.65
G_NIST612_1 2	612-012	4/17/15	18:11:10	24.403	612-012	38.34	0.65	35.2	0.59	36.89	0.71
G_NIST612_1 3	612.013	4/17/15	18:12:12	24.119	612.013	37.97	0.67	34.96	0.66	36.6	0.7
G_NIST612_1 4	612-014	4/17/15	18:13:14	24.403	612-014	38.11	0.61	34.97	0.58	36.72	0.63
Output_1_1	AR188-1	4/17/15	17:37:51	24.403	AR188-1	6.8	1.2	7.5	1.6	10.6	2
Output_1_2	AR188-2	4/17/15	17:38:58	24.401	AR188-2	6	1.2	4.97	0.8	7.4	1.5
Output_1_3	AR188-3	4/17/15	17:40:00	24.403	AR188-3	15	3.6	7.6	1.8	18.8	4.4
Output_1_4	AR188-4	4/17/15	17:41:02	24.402	AR188-4	9.6	9.9	10.6	5.9	10	21
Output_1_5	AR188-5	4/17/15	17:43:10	24.405	AR188-5	7.82	0.27	2.236	0.079	8.73	0.29
Output_1_6	AR188-6	4/17/15	17:44:18	24.402	AR188-6	6.46	0.34	1.919	0.098	8.6	0.4
Output_1_7	Ar188-7	4/17/15	17:45:20	24.401	Ar188-7	3.36	0.12	1.108	0.043	5.62	0.24
Output_1_8	Z400-1-c	4/17/15	17:47:29	24.401	Z400-1-c	2.853	0.067	1.194	0.032	5.57	0.15
Output_1_9	Z	4/17/15	17:48:36	24.4	Z_1	5.32	0.23	2.32	0.11	10.45	0.42
Output_1_10	Z	4/17/15	17:49:41	24.402	Z_2	4.15	0.22	1.78	0.11	8.17	0.48
Output_1_11	Z	4/17/15	17:51:51	24.402	Z_3	2.44	0.28	1.03	0.11	4.85	0.51
Output_1_12	Z	4/17/15	17:52:57	24.401	Z_4	0.15	0.029	0.067	0.011	0.25	0.036
Output_1_13	Z	4/17/15	17:54:00	24.402	Z_5	1.194	0.069	0.471	0.03	2.13	0.14
Output_1_14	Z400-1-c	4/17/15	17:55:02	24.118	Z400-1-c_1	1.13	0.071	0.465	0.03	2.25	0.17
Output_1_15	Z400-1	4/17/15	17:57:11	24.403	Z400-1_1	2.32	0.19	1.52	0.13	3.24	0.22
Output_1_16	Z	4/17/15	17:58:18	24.402	Z_6	3.62	0.16	1.828	0.075	5.52	0.29
Output_1_17	Z	4/17/15	17:59:20	24.119	Z_7	3.01	0.17	1.267	0.067	4.64	0.28
Output_1_18	Z	4/17/15	18:01:26	25.845	Z_8	3.16	0.21	1.09	0.081	5.27	0.36
Output_1_19	Z	4/17/15	18:02:40	19.572	 Z_9	2.11	0.14	2.02	0.14	3.17	0.26
Output_1_20	Z	4/17/15	18:03:38	24.119	Z_10	1.624	0.078	1.559	0.072	2.34	0.12
Output_1_21	Z	4/17/15	18:05:48	24.402	 Z_11	1.111	0.056	1.047	0.049	1.401	0.093
Output 1 22	Z	4/17/15	18:06:55	24.4	 Z_12	1.171	0.056	0.717	0.042	1.608	0.094
Output 1 23	Z	4/17/15	18:07:59	24.402	 Z_13	1.835	0.081	1.8	0.092	2.74	0.16
Output_1_24	Z400-1	4/17/15	18:09:00	24.403	 Z400-1_2	3.22	0.18	1.227	0.072	5.45	0.31

SelectionLabe	'Source file'	'_Date_'	'_Time_'	'Duration(s)'	Comments	Tb	Tb_ppm_m15	Dy	Dy_ppm_m16	Но	Ho_ppm_m16
I							9_Int2SE	•	3_Int2SE		5_Int2SE
G_NIST612_1	612-001	4/17/15	17:33:28	24.401	612-001	35.7	1.1	35.8	1.1	37.7	1.1
G_NIST612_2	612-002	4/17/15	17:34:46	24.118	612-002	35.95	0.92	35.96	0.9	37.73	0.94
G_NIST612_3	612-003	4/17/15	17:35:47	24.4	612-003	36.25	0.72	36.25	0.72	38.25	0.73
G_NIST612_4	612-004	4/17/15	17:36:49	24.403	612-004	35.87	0.69	35.88	0.69	37.88	0.71
G_NIST612_5	612-005	4/17/15	17:42:03	24.402	612-005	35.99	0.63	35.99	0.63	38	0.67
G_NIST612_6	612-006	4/17/15	17:46:22	24.402	612-006	36	0.55	36.01	0.65	38	0.59
G_NIST612_7	612-007	4/17/15	17:50:45	24.402	612-007	36	0.61	35.99	0.64	38	0.67
G_NIST612_8	612-008	4/17/15	17:56:04	24.404	612-008	36	0.64	36.01	0.56	38.01	0.65
G_NIST612_9	612-009	4/17/15	18:00:22	24.403	612-009	36	0.59	35.91	0.62	37.99	0.58
G_NIST612_1 0	612-010	4/17/15	18:04:40	24.402	612-010	36	0.66	36	0.65	38	0.66
G_NIST612_1 1	612-011	4/17/15	18:10:03	24.405	612-011	36.02	0.62	35.99	0.6	38.01	0.66
G_NIST612_1 2	612-012	4/17/15	18:11:10	24.403	612-012	35.98	0.59	36.03	0.58	37.97	0.62
G_NIST612_1 3	612.013	4/17/15	18:12:12	24.119	612.013	36.03	0.59	36	0.64	38.05	0.62
G_NIST612_1 4	612-014	4/17/15	18:13:14	24.403	612-014	35.98	0.55	35.99	0.58	37.98	0.61
Output_1_1	AR188-1	4/17/15	17:37:51	24.403	AR188-1	2.17	0.38	13.9	2.8	2.5	0.44
Output_1_2	AR188-2	4/17/15	17:38:58	24.401	AR188-2	0.9	0.17	4.95	0.76	1.15	0.21
Output_1_3	AR188-3	4/17/15	17:40:00	24.403	AR188-3	2.24	0.47	28.4	7.4	3.05	0.63
Output_1_4	AR188-4	4/17/15	17:41:02	24.402	AR188-4	2.47	0.93	23.6	9.2	5.6	1.9
Output_1_5	AR188-5	4/17/15	17:43:10	24.405	AR188-5	1.576	0.048	11.12	0.28	2.28	0.059
Output_1_6	AR188-6	4/17/15	17:44:18	24.402	AR188-6	1.516	0.063	10.59	0.36	2.164	0.085
Output_1_7	Ar188-7	4/17/15	17:45:20	24.401	Ar188-7	1.361	0.044	10.33	0.27	1.961	0.059
Output_1_8	Z400-1-c	4/17/15	17:47:29	24.401	Z400-1-c	1.546	0.028	13.15	0.2	2.773	0.045
Output_1_9	Z	4/17/15	17:48:36	24.4	Z_1	2.7	0.12	24.1	1.1	5.48	0.24
Output_1_10	Z	4/17/15	17:49:41	24.402	Z_2	2.21	0.11	20.95	0.93	4.67	0.21
Output 1 11	Z	4/17/15	17:51:51	24.402	Z 3	1.18	0.12	11.6	1.2	2.47	0.25
Output 1 12	Z	4/17/15	17:52:57	24.401	 Z 4	0.0558	0.0078	0.422	0.045	0.112	0.013
Output 1 13	z	4/17/15	17:54:00	24.402	_ Z 5	0.555	0.033	5.19	0.27	1.229	0.068
Output 1 14	Z400-1-c	4/17/15	17:55:02	24.118	Z400-1-c 1	0.518	0.03	4.96	0.25	1.176	0.068
Output 1 15	Z400-1	4/17/15	17:57:11	24.403	Z400-1 1	0.427	0.036	2.49	0.21	0.404	0.034
Output 1 16	7	4/17/15	17:58:18	24.402	7.6	0.832	0.041	5.03	0.22	0.951	0.046
Output 1 17	7	4/17/15	17:59:20	24.102	7 7	0.032	0.041	4 96	0.22	1 057	0.055
Output_1_18	7	4/17/15	18:01:26	25.845	7.8	0.84	0.056	5.87	0.41	1 162	0.073
Output 1 10	- 7	1/17/15	18.02.40	19 572	7.9	0.551	0.030	3 72	0.72	0.752	0.052
Output 1 20	7	4/17/15	18.02.40	2/ 110	<u> </u>	0.331	0.039	2.75	0.22	0.732	0.032
Output_1_20		4/17/15	10.05.30	24.119	Z_10	0.209	0.019	2.342	0.099	0.471	0.024
Output_1_21	۲ ۲	4/1//15	18:05:48	24.402	Z_11	0.221	0.015	1.401	0.075	0.252	0.019
Output_1_22	2	4/1//15	18:06:55	24.4	Z_12	0.272	0.016	1.9	0.12	0.36	0.022
Output_1_23	2	4/1//15	18:07:59	24.402	<u> </u>	0.502	0.029	3.34	0.18	0.635	0.034
Output_1_24	Z400-1	4/17/15	18:09:00	24.403	Z400-1_2	0.861	0.045	5.92	0.31	1.214	0.068

SelectionLabe	'Source file'	'_Date_'	'_Time_'	'Duration(s)'	Comments	Er	Er_ppm_m16 6_Int2SE	Yb	Yb_ppm_m17 2_Int2SE	Lu	Lu_ppm_m17 5_Int2SE
G_NIST612_1	612-001	4/17/15	17:33:28	24.401	612-001	37.8	1.2	39	1.1	36.8	1
G_NIST612_2	612-002	4/17/15	17:34:46	24.118	612-002	37.97	0.98	39.3	1.1	36.87	0.95
G_NIST612_3	612-003	4/17/15	17:35:47	24.4	612-003	38.27	0.75	39.43	0.81	37.13	0.71
G_NIST612_4	612-004	4/17/15	17:36:49	24.403	612-004	37.86	0.71	39.05	0.77	36.77	0.69
G_NIST612_5	612-005	4/17/15	17:42:03	24.402	612-005	37.99	0.69	39.19	0.73	36.9	0.7
G_NIST612_6	612-006	4/17/15	17:46:22	24.402	612-006	38	0.63	39.2	0.67	36.9	0.62
G_NIST612_7	612-007	4/17/15	17:50:45	24.402	612-007	38	0.65	39.2	0.7	36.9	0.65
G_NIST612_8	612-008	4/17/15	17:56:04	24.404	612-008	38.01	0.63	39.2	0.68	36.9	0.63
G_NIST612_9	612-009	4/17/15	18:00:22	24.403	612-009	37.99	0.62	39.19	0.69	36.89	0.63
G_NIST612_1 0	612-010	4/17/15	18:04:40	24.402	612-010	38.01	0.67	39.19	0.69	36.9	0.68
G_NIST612_1 1	612-011	4/17/15	18:10:03	24.405	612-011	37.96	0.62	39.26	0.72	36.88	0.63
G_NIST612_1 2	612-012	4/17/15	18:11:10	24.403	612-012	38.11	0.63	39.16	0.66	36.97	0.62
G_NIST612_1 3	612.013	4/17/15	18:12:12	24.119	612.013	37.92	0.62	39.19	0.74	36.83	0.68
G_NIST612_1 4	612-014	4/17/15	18:13:14	24.403	612-014	38.02	0.61	39.21	0.63	36.91	0.61
Output_1_1	AR188-1	4/17/15	17:37:51	24.403	AR188-1	6.4	1.3	4.29	0.91	0.68	0.15
Output_1_2	AR188-2	4/17/15	17:38:58	24.401	AR188-2	2.74	0.51	3.4	1.3	0.43	0.11
Output_1_3	AR188-3	4/17/15	17:40:00	24.403	AR188-3	10.2	2.3	17.3	7.9	1.33	0.4
Output_1_4	AR188-4	4/17/15	17:41:02	24.402	AR188-4	8.4	2.5	8.5	3.4	1.76	0.58
Output_1_5	AR188-5	4/17/15	17:43:10	24.405	AR188-5	5.94	0.13	5.02	0.16	0.692	0.019
Output_1_6	AR188-6	4/17/15	17:44:18	24.402	AR188-6	5.41	0.2	3.86	0.2	0.532	0.033
Output_1_7	Ar188-7	4/17/15	17:45:20	24.401	Ar188-7	4.93	0.12	3.36	0.13	0.42	0.017
Output_1_8	Z400-1-c	4/17/15	17:47:29	24.401	Z400-1-c	7.4	0.11	5.29	0.11	0.657	0.015
Output_1_9	Z	4/17/15	17:48:36	24.4	Z_1	16.44	0.73	13.33	0.59	1.633	0.069
Output_1_10	Z	4/17/15	17:49:41	24.402	Z_2	13.94	0.7	8.25	0.43	0.813	0.04
Output_1_11	Z	4/17/15	17:51:51	24.402	Z_3	7.13	0.79	4.24	0.47	0.424	0.048
Output_1_12	Z	4/17/15	17:52:57	24.401	Z_4	0.312	0.028	0.234	0.033	0.0402	0.0056
Output_1_13	Z	4/17/15	17:54:00	24.402	Z_5	3.72	0.18	2.18	0.13	0.219	0.014
Output_1_14	Z400-1-c	4/17/15	17:55:02	24.118	Z400-1-c_1	3.32	0.17	1.9	0.12	0.193	0.01
Output_1_15	Z400-1	4/17/15	17:57:11	24.403	Z400-1_1	0.938	0.074	0.563	0.052	0.0893	0.0088
Output_1_16	Z	4/17/15	17:58:18	24.402	Z_6	2.25	0.1	1.549	0.079	0.221	0.011
Output_1_17	Z	4/17/15	17:59:20	24.119	Z_7	2.57	0.12	1.97	0.12	0.295	0.017
Output_1_18	Z	4/17/15	18:01:26	25.845	Z_8	3.21	0.2	2.72	0.2	0.401	0.026
Output_1_19	Z	4/17/15	18:02:40	19.572	Z_9	1.95	0.13	1.64	0.13	0.231	0.016
Output_1_20	Z	4/17/15	18:03:38	24.119	Z_10	1.179	0.044	0.853	0.048	0.1144	0.006
Output_1_21	Z	4/17/15	18:05:48	24.402	Z_11	0.646	0.038	0.538	0.041	0.0783	0.006
Output_1_22	Z	4/17/15	18:06:55	24.4	Z_12	1.087	0.059	0.966	0.062	0.1483	0.0099
Output_1_23	Z	4/17/15	18:07:59	24.402	 Z_13	1.816	0.087	1.595	0.093	0.23	0.014
Output_1_24	Z400-1	4/17/15	18:09:00	24.403	Z400-1_2	3.24	0.17	2.68	0.15	0.39	0.021

I I	SelectionLabe	'Source file'	' Date '	' Time '	'Duration(s)'	Comments	Pb_ppm_m20	Pb_ppm_m20	Th_ppm_m23	Th_ppm_m23	U ppm m238	U_ppm_m238
G.NST612.1612-0014/17/151733/2824.401612-00138.51.237.81.133.71.1G.NST612.3612-0024/37/151734/4624.118612-00238.81.137.91.137.60.99G.NST612.5612-0044/17/151734/4924.403612-00438.590.7638.010.7438.050.88G.NST612.5612-0064/17/151742.0224.402612-00638.570.7237.790.6637.80.71G.NST612.5612-0064/17/151746.2224.402612-00638.570.7537.780.6737.470.71G.NST612.7612-0074/17/15175.0424.402612-00738.570.7537.80.6737.480.77G.NST612.7612-0014/17/1518.00224.403612-00138.580.7737.790.6636.420.79G.NST612.1612-0114/17/1518.00324.403612-01238.70.6737.810.6737.830.71G.NST612.1612-0134/17/1518.100324.403612-01238.70.6337.760.5937.90.67G.NST612.1612-0134/17/1518.100324.403612-01238.70.6737.830.7137.830.71G.NST612.3612-0124/17/1518.100324.403612-01338.840.7537.830.7137.930.8							8	8_Int2SE	2	2_Int2SE	pp	_Int2SE
G,NISTEL2 61.2001 4/17/15 173.328 24.001 612.001 37.8 1.1 37.8 1.1 37.3 0.09 G,NISTEL2 612.002 4/17/15 173.474 24.14 612.003 38.85 0.76 38.01 0.74 39.06 0.88 G,NISTEL2 612.004 4/17/15 173.484 24.40 612.003 38.57 0.72 37.15 0.72 37.15 0.71 G,NISTEL2 612.006 4/17/15 173.648 24.402 612.007 38.57 0.7 37.79 0.66 37.9 0.71 37.47 0.71 G,NISTEL2 612.009 4/17/15 175.60 24.400 612.009 38.57 0.67 37.8 0.66 36.42 0.79 G,NISTEL2 612.001 4/17/15 188.002 24.403 612.001 38.58 0.67 37.81 0.66 36.42 0.79 G,NISTEL2 612.011 4/4.07 612.011 38.58 0.77 37.81												
G.NISTI22 G.NISTI22 G.NISTI23 G.NISTI25 G.NISTI25 G.NISTI23 G.NISTI23 <thg.nisti23< th=""> <thg.nisti23< th=""> <thg< td=""><td>G_NIST612_1</td><td>612-001</td><td>4/17/15</td><td>17:33:28</td><td>24.401</td><td>612-001</td><td>38.5</td><td>1.2</td><td>37.8</td><td>1.1</td><td>33.7</td><td>1.1</td></thg<></thg.nisti23<></thg.nisti23<>	G_NIST612_1	612-001	4/17/15	17:33:28	24.401	612-001	38.5	1.2	37.8	1.1	33.7	1.1
G.NISTEL2, 612-003 4/17/15 173547 244 612-003 38.89 0.76 38.01 0.74 39.05 0.88 G.NISTEL2, 612-005 4/17/15 174203 24402 612-005 38.87 0.72 37.79 0.72 37.15 0.71 G.NISTEL2, 612-007 4/17/15 174203 24402 612-007 38.87 0.73 37.78 0.71 37.47 0.71 G.NISTEL2, 612-007 4/17/15 175045 24.402 612-007 38.87 0.67 37.8 0.71 37.47 0.71 G.NISTEL2, 612-009 4/17/15 18.0022 24.403 612-007 38.87 0.67 37.78 0.66 37.9 0.72 G.NISTEL2, 612-009 4/17/15 18.0022 24.403 612-009 38.57 0.67 37.78 0.66 37.9 0.78 G.NISTEL2, 612-009 4/17/15 18.0022 24.403 612-009 38.57 0.67 37.78 0.66 37.9 0.78 G.NISTEL2, 612-009 4/17/15 18.0022 24.403 612-009 38.57 0.67 37.78 0.66 37.9 0.78 G.NISTEL2, 612-010 4/17/15 18.040 24.402 612-010 38.88 0.77 37.78 0.66 37.9 0.78 G.NISTEL2, 612-011 4/17/15 18.103 24.403 612-012 38.7 0.63 37.76 0.59 37.9 0.7 G.NISTEL2, 612-012 4/17/15 18.11:10 24.403 612-012 38.7 0.63 37.76 0.59 37.9 0.7 G.NISTEL2, 612-014 4/17/15 18.11:10 24.403 612-014 38.58 0.77 37.83 0.71 37.53 0.78 G.NISTEL2, 612-014 4/17/15 18.11:10 24.403 612-014 38.58 0.75 37.83 0.71 37.53 0.78 G.NISTEL2, 612-014 4/17/15 18.11:10 24.403 612-014 38.58 0.75 37.83 0.71 37.53 0.78 G.NISTEL2, 612-014 4/17/15 17.3751 24.403 AR188-1 76 15 4 1.2 5.7 1.3 Output_1, AR188-4 4/17/15 17.3751 24.403 AR188-1 76 15 4 1.2 5.7 1.3 Output_1, AR188-4 4/17/15 17.3751 24.403 AR188-1 76 15 4 1.2 0.57 1.3 0.078 G.NISTEL2, 17/15 17.330 24.405 AR188-2 96 13 1.11 0.32 68 83 18 Output_1, AR188-4 4/17/15 17.418 24.403 AR188-1 76 15 4 1.2 0.57 1.3 0.071 G.NISTEL2, 17/15 17.4102 24.402 AR188-4 4200 1100 117 0.406 0.0074 0.0059 0.0017 Output_1, AR188-4 4/17/15 17.418 24.402 AR188-4 14.3 0.67 0.013 0.0065 0.0026 0.0071 Output_1, AR188-4 4/17/15 17.412 24.402 AR188-4 14.3 0.67 0.013 0.0066 0.0073 Output_1, AR188-4 4/17/15 17.418.24.402 AR188-4 14.4 0.007 0.0036 0.0036 0.0015 Output_1, Z 4/17/15 17.4260 24.4 Z_1 17.2 4.088 0.00318 0.0036 0.0037 0.0040 Output_1, Z 4/17/15 17.43.40 24.40 Z_2 0.0038 0.0019 0.0036 0.0021 0.0041 Output_1, Z 4/17/15 17.43.40 24.40 Z_2 0.0041 0.0059 0.0036 0.0031 0.0071	G_NIST612_2	612-002	4/17/15	17:34:46	24.118	612-002	38.8	1.1	37.9	1.1	37.36	0.99
G_NISTE12_4 612.004 4/17/15 1736.49 24.403 612.004 38.45 0.8 37.59 0.82 38.26 0.83 G_NISTE12_6 612.006 4/17/15 174.622 24.402 612.006 38.57 0.72 37.79 0.66 37.99 0.76 37.78 0.71 37.78 0.71 37.78 0.71 37.78 0.71 37.78 0.71 37.78 0.66 38.57 0.67 37.8 0.66 36.22 0.77 G_NISTE12_7 612-001 4/17/15 18.040 24.402 612-001 38.58 0.77 37.78 0.66 36.42 0.77 G_NISTE12_1 612-011 4/17/15 18.040 24.402 612-011 38.49 0.71 37.81 0.66 36.72 0.67 G_NISTE12_1 612-014 4/17/15 18.11.00 24.403 612-014 38.75 0.65 37.78 0.71 37.53 0.71 36.8 0.75 37.83 0.71 35.8	G_NIST612_3	612-003	4/17/15	17:35:47	24.4	612-003	38.59	0.76	38.01	0.74	39.05	0.88
G.NISTI2_5 612-005 4/17/15 174203 24.002 612-005 38.87 0.72 37.79 0.72 37.73 0.71 G.NISTO12_6 612-007 4/17/15 175642 24.002 612-007 38.57 0.75 37.78 0.66 37.74 0.71 G.NISTO12_6 612-007 4/17/15 175644 24.002 612-009 38.57 0.67 37.88 37.87 <td< td=""><td>G_NIST612_4</td><td>612-004</td><td>4/17/15</td><td>17:36:49</td><td>24.403</td><td>612-004</td><td>38.45</td><td>0.8</td><td>37.59</td><td>0.82</td><td>38.26</td><td>0.83</td></td<>	G_NIST612_4	612-004	4/17/15	17:36:49	24.403	612-004	38.45	0.8	37.59	0.82	38.26	0.83
G_NISTG12_0 G12.000 H/17/LS 174622 24.002 612.006 38.57 0.75 37.78 0.66 37.94 0.71 G_NISTG12_0 612.000 4/17/LS 175.054 24.004 612.000 38.57 0.75 37.88 0.67 37.88 0.67 37.88 0.71 37.78 0.66 36.42 0.77 G_NISTG12_1 612.000 4/17/LS 1840.02 24.003 612.001 38.58 0.77 37.78 0.66 37.87 0.76 G_NISTG12_1 612.010 4/17/LS 1840.40 24.002 612.011 38.58 0.77 37.87 0.66 37.87 0.76 G_NISTG12_1 612.013 4/17/LS 1841.12 24.003 612.013 38.38 0.75 37.83 0.71 37.53 0.78 G_NISTG12_1 612.013 4/17/LS 17.3751 24.003 Atl881 76 15 4 12 57 13 Output_1_1 Atl88.4 4/17/LS <td>G_NIST612_5</td> <td>612-005</td> <td>4/17/15</td> <td>17:42:03</td> <td>24.402</td> <td>612-005</td> <td>38.57</td> <td>0.72</td> <td>37.79</td> <td>0.72</td> <td>37.15</td> <td>0.71</td>	G_NIST612_5	612-005	4/17/15	17:42:03	24.402	612-005	38.57	0.72	37.79	0.72	37.15	0.71
G_NISTG12_7 G12_007 4/17/15 175045 24.02 612-007 38.57 0.67 37.78 0.71 37.77 0.71 G_NISTG12_8 612-000 4/17/15 155044 24.040 612-000 38.56 0.77 37.8 0.66 36.42 0.79 G_NISTG12_1 612-010 4/17/15 180440 24.02 612-010 38.58 0.77 37.78 0.66 36.42 0.79 G_NISTG12_1 612-011 4/17/15 189.040 24.002 612-012 38.79 0.67 37.88 0.69 37.78 0.69 37.78 0.67 37.88 0.71 37.83 0.71 37.83 0.77 0.78 0.59 37.99 0.67 G_NISTG12_1 612-012 4/17/15 181:10 24.003 612-012 38.78 0.65 37.78 0.71 36.80 0.71 37.88 0.71 37.88 0.71 37.88 0.71 37.88 0.71 37.88 0.71 37.88 <	G_NIST612_6	612-006	4/17/15	17:46:22	24.402	612-006	38.57	0.7	37.79	0.66	37.9	0.76
G_NIST612_8 612-008 4/17/15 175-604 24.403 612-009 38.57 0.67 37.8 0.67 37.18 0.67 G_NIST612_1 0 612-001 4/17/15 180022 24.403 612-001 38.58 0.77 37.78 0.66 36.42 0.79 G_NIST612_1 1 612-011 4/17/15 181003 24.405 612-012 38.58 0.77 37.81 0.69 37.27 0.67 G_NIST612_1 2 612-012 4/17/15 181:10 24.403 612-012 38.78 0.63 37.76 0.59 37.93 0.77 G_NIST612_1 2 612-014 4/17/15 181:314 24.403 612-014 38.58 0.65 37.78 0.71 36.8 0.78 G_NIST612_1 3 612-014 4/17/15 173.55 24.401 At188-2 0.65 37.78 0.71 36.8 0.78 G_NIST612_1 3 612-014 4/17/15 173.58 24.401 At188-1 76. 13 14 <td>G_NIST612_7</td> <td>612-007</td> <td>4/17/15</td> <td>17:50:45</td> <td>24.402</td> <td>612-007</td> <td>38.57</td> <td>0.75</td> <td>37.78</td> <td>0.71</td> <td>37.47</td> <td>0.71</td>	G_NIST612_7	612-007	4/17/15	17:50:45	24.402	612-007	38.57	0.75	37.78	0.71	37.47	0.71
G.NST612_9 612.009 4/17/15 18.0022 24.033 612.009 38.56 0.7 37.78 0.66 36.42 0.79 G.NST612_1 612.010 4/17/15 18.0440 24.402 612.010 38.58 0.77 37.79 0.78 37.83 0.75 G.NST612_1 612.011 4/17/15 18.1100 24.403 612.012 38.78 0.63 37.76 0.59 37.97 0.77 G.NST612_1 612.013 4/17/15 18.1120 24.403 612.013 38.88 0.75 37.83 0.71 37.83 <td>G_NIST612_8</td> <td>612-008</td> <td>4/17/15</td> <td>17:56:04</td> <td>24.404</td> <td>612-008</td> <td>38.57</td> <td>0.67</td> <td>37.8</td> <td>0.67</td> <td>37.18</td> <td>0.77</td>	G_NIST612_8	612-008	4/17/15	17:56:04	24.404	612-008	38.57	0.67	37.8	0.67	37.18	0.77
G.N.ST612-1 612-010 4/17/15 180440 24402 612-010 38.58 0.77 37.79 0.78 37.81 0.75 G.N.ST612-1 1 612-011 4/17/15 181:003 24405 612-011 38.49 0.71 37.81 0.69 37.27 0.67 G.N.ST612-1 2 612-012 4/17/15 181:12 24.013 612-012 38.78 0.63 37.76 0.59 37.93 0.77 G.N.ST612-1 2 612-012 4/17/15 181:12 24.013 612-012 38.58 0.65 37.78 0.71 35.83 0.78 G.N.ST612-1 3 612-014 4/17/15 181:314 24.403 AR188-1 76 15 47 0.71 35.83 1.34 0.78 Output_1 AR188-1 4/17/15 173.85 24.403 AR188-2 3500 710 302 68 83 18 Output_1 AR188-4 4/17/15 174.400 24.402 AR188-7 10.01 10.01<	G_NIST612_9	612-009	4/17/15	18:00:22	24.403	612-009	38.56	0.7	37.78	0.66	36.42	0.79
G-N/ST612 1 1 612-011 4/17/15 18:1003 24.405 612-011 38.49 0.71 37.81 0.69 37.27 0.67 G-N/ST612 1 2 612-012 4/17/15 18:1100 24.403 612-012 38.77 0.63 37.76 0.59 37.97 0.67 G-N/ST612 1 3 612-014 4/17/15 18:1212 24.119 612-014 38.88 0.75 37.83 0.71 37.85 0.78 G-N/ST612 1 4 612-014 4/17/15 18:13:14 24.403 612-014 38.88 0.65 37.78 0.71 36.84 0.78 Output 1 AR188 1 4/17/15 17.355 24.403 AR188-2 96 13 1.10 0.35 1.34 0.38 Output 1 AR188-4 4/17/15 17.40:00 24.403 AR188-4 4200 100 172 48 45 12 Output 1 AR188-4 4/17/15 17.418 24.402 AR188-5 14.41 0.012 0	G_NIST612_1 0	612-010	4/17/15	18:04:40	24.402	612-010	38.58	0.77	37.79	0.78	37.83	0.75
G.N.ST612.1 2 612.012 4/17/15 18.11:10 24.403 612.012 38.7 0.63 37.76 0.59 37.9 0.7 G.N.ST612.1 3 612.013 4/17/15 18.12:12 24.119 612.013 38.38 0.75 37.83 0.71 37.53 0.78 G.N.ST612.1 4 612.014 4/17/15 18.13:14 24.403 612.014 38.58 0.65 37.78 0.71 36.8 0.78 Output_1 AR188-1 4/17/15 173.755 24.403 AR188-1 76 15 4 1.2 57 1.3 Output_1 AR188-3 4/17/15 1738.58 24.401 AR188-3 3500 710 302 68 83 18 Output_1 AR188-4 4/17/15 1743.02 24.402 AR188-3 4500 10.07 30.26 6.07 6.075 Output_1 AR188-4 4/17/15 1743.102 24.402 AR188-3 4.65 0.011 0.0266 0.0266	G_NIST612_1 1	612-011	4/17/15	18:10:03	24.405	612-011	38.49	0.71	37.81	0.69	37.27	0.67
G.N.ST612.1 3 612.013 4/17/15 181212 24.19 612.013 38.88 0.75 37.83 0.71 37.53 0.78 G.NST612.1 4 612.014 4/17/15 181.314 24.03 612-014 38.58 0.65 37.78 0.71 36.88 0.78 Output_1 AR188-1 4/17/15 173.51 24.03 AR188-1 76 15 4 1.21 0.35 1.34 0.38 Output_1 AR188-3 4/17/15 173.858 24.401 AR188-3 3500 710 30.20 68 83 18 Output_1 AR188-3 4/17/15 173.410 24.402 AR188-4 3500 710 30.22 68 83 18 Output_1 AR188-3 4/17/15 173.410 24.402 AR188-4 46.67 0.018 0.0005 0.0266 0.0075 Output_1 AR188-4 4/17/15 173.410 24.402 AR188-7 26.3 0.018 0.0266 <th< td=""><td>G_NIST612_1 2</td><td>612-012</td><td>4/17/15</td><td>18:11:10</td><td>24.403</td><td>612-012</td><td>38.7</td><td>0.63</td><td>37.76</td><td>0.59</td><td>37.9</td><td>0.7</td></th<>	G_NIST612_1 2	612-012	4/17/15	18:11:10	24.403	612-012	38.7	0.63	37.76	0.59	37.9	0.7
G.NST612_1 4 612-014 4/17/15 18:13:14 24.403 612-014 38.58 0.65 37.78 0.71 36.8 0.78 Output_1 AR188-1 4/17/15 17:37:51 24.403 AR188-2 96 13 1.21 0.35 1.34 0.38 Output_1.2 AR188-3 4/17/15 17:38:58 24.401 AR188-2 96 13 1.21 0.35 1.34 0.38 Output_1.3 AR188-3 4/17/15 17:41.00 24.402 AR188-4 966 13 0.024 0.004 0.059 0.017 Output_1.5 AR188-4 4/17/15 17:41.00 24.402 AR188-5 46 2.3 0.0246 0.0074 0.0256 0.0075 Output_1.5 AR188-5 46 2.3 0.0247 0.0036 0.0015 0.0046 0.0056 0.0026 0.0015 Output_1.7 Ar188-7 4/17/15 17:42:92 2.401 2.40 3.76 0.11 0.0274 0.003	G_NIST612_1 3	612.013	4/17/15	18:12:12	24.119	612.013	38.38	0.75	37.83	0.71	37.53	0.78
Output_1 AR188 4/17/15 173751 24.403 AR188 76 15 4 1.2 5.7 1.3 Output_12 AR188-2 4/17/15 1737535 24.401 AR188-2 96 13 1.21 0.35 1.34 0.38 Output_13 AR188-3 4/17/15 1740:00 24.402 AR188-3 3500 710 302 68 83 18 Output_14 AR188-4 4/17/15 1740:02 24.402 AR188-5 46 2.3 0.0246 0.0074 0.0256 0.075 Output_15 AR188-5 4/17/15 1744:18 24.402 AR188-5 14.43 0.67 0.018 0.0055 0.0266 0.0075 Output_13 Z4001-c 4/17/15 1747:29 24.401 Ar188-7 26.3 2.3 0.047 0.012 0.0175 0.004 0.0067 0.012 0.0171 0.014 1.021 0.013 0.067 0.012 Output_14 Z4001-c <td>G_NIST612_1 4</td> <td>612-014</td> <td>4/17/15</td> <td>18:13:14</td> <td>24.403</td> <td>612-014</td> <td>38.58</td> <td>0.65</td> <td>37.78</td> <td>0.71</td> <td>36.8</td> <td>0.78</td>	G_NIST612_1 4	612-014	4/17/15	18:13:14	24.403	612-014	38.58	0.65	37.78	0.71	36.8	0.78
Output_1 AR188-1 4/17/15 17:37:51 24.403 AR188-1 76 15 4 1.2 5.7 1.3 Output_1 AR188-2 4/17/15 17:38:58 24.401 AR188-3 96 13 1.11 0.35 1.34 0.35 Output_1 AR188-3 4/17/15 17:41:02 24.402 AR188-3 4200 1100 172 48 45 12 Output_1.5 AR188-6 4/17/15 17:43:10 24.402 AR188-6 46 2.3 0.0246 0.0074 0.0266 0.0075 0.0266 0.0075 0.0266 0.0075 0.0040 0.017 0.0141 0.0141 0.0175 0.0141 0.0141 0.0274 0.0036 0.0015 0.0065 0.0266 0.0075 0.0101 Output_1.9 Z 4/17/15 17:47:29 24.401 Z400-1c 3.76 0.11 0.0274 0.0036 0.0067 0.0121 Output_1.9 Z 4/17/15 17:49:41												
Output_12 AR188-2 Image of the state of	Output_1_1	AR188-1	4/17/15	17:37:51	24.403	AR188-1	76	15	4	1.2	5.7	1.3
Output_14 AR188-3 4/17/15 1740:00 24.403 AR188-3 3500 710 302 68 83 18 Output_14 AR188-4 4/17/15 174:02 24.402 AR188-5 4200 1100 172 48 45 12 Output_15 AR188-5 4/17/15 174:10 24.402 AR188-5 14.43 0.024 0.014 0.0074 0.0059 0.0075 Output_15 AR188-6 4/17/15 174:18 24.402 AR188-7 2.63 0.017 0.012 0.0175 0.0041 Output_18 Z400-1c 4/17/15 174:29 24.401 Ar188-7 2.63 0.011 0.027 0.0036 0.0053 0.0041 Output_19 Z 4/17/15 174:94 24.402 Z.2 0.038 0.011 0.0191 0.0056 0.0051 0.0121 Output_11 Z 4/17/15 175:51 24.402 Z_3 0.048 0.0199 0.0034 0.024	Output_1_2	AR188-2	4/17/15	17:38:58	24.401	AR188-2	96	13	1.21	0.35	1.34	0.38
Output_14AR188-4 $4/17/15$ $17.41.02$ 24.402 AR188-5 4200 1100 172 48 45 12 Output_15AR188-5 $4/17/15$ $17.43.10$ 24.402 AR188-5 46 $0.23.$ 0.0246 0.0074 0.059 0.017 Output_16AR188-6 $4/17/15$ $17.43.18$ 24.402 AR188-7 26.3 $0.23.$ 0.047 0.0055 0.0055 0.0075 Output_17Ar188-7 $4/17/15$ $17.45.20$ 24.401 Ar188-7 26.3 0.31 0.0274 0.0036 0.0063 0.0075 Output_18Z400-1- $4/17/15$ $17.45.20$ 24.401 $Ar188-7$ 26.3 0.31 0.0274 0.0366 0.0056 0.0075 Output_19Z $4/17/15$ $17.47.29$ 24.401 $Z40-1-c$ 3.76 0.111 0.0274 0.0056 0.073 0.0011 Output_11Z $4/17/15$ $17.47.29$ 24.402 Z_2 0.038 0.011 0.0165 0.0056 0.073 0.0112 Output_11Z $4/17/15$ $17.57.51$ 24.402 Z_2 0.038 0.019 0.0046 0.031 0.012 Output_113Z $4/17/15$ $17.55.77$ 24.402 Z_2 0.023 0.0131 0.0046 0.031 0.012 Output_114Z $4/17/15$ $17.57.11$ 24.402 Z_2 0.024 0.0131 0.0046 0.0051 0.0051 0.0054 0.0051	Output_1_3	AR188-3	4/17/15	17:40:00	24.403	AR188-3	3500	710	302	68	83	18
Output_16AR188-54/17/1517:43:1024.405AR188-5462.30.02460.00740.0590.017Output_16AR188-64/17/1517:44:1824.402AR188-614.430.670.0180.00550.02660.0075Output_17AR188-74/17/1517:47:2024.401X408-72.30.0470.0130.00360.0016Output_18Z400-117:47:2924.401Z400-13.760.110.02740.03660.00530.0017Output_19Z4/17/1517:47:2924.401Z400-13.760.110.02740.0360.00630.0017Output_10Z4/17/1517:47:4924.402Z0.0380.0110.01940.0040.00740.0071Output_11Z4/17/1517:47:4924.402Z0.0380.0110.01940.0040.00710.012Output_11Z4/17/1517:51:5924.402Z0.0380.0110.01990.0040.00750.012Output_13Z4/17/1517:52:5724.402Z0.0270.01690.00310.02650.021Output_14Z400-1-c4/17/1517:52:5724.402Z0.0250.0130.0230.02640.012Output_14Z400-1-c4/17/1517:52:5724.402Z0.0250.0140.00540.02640.024Output_15Z400-117:52:5724.4	Output_1_4	AR188-4	4/17/15	17:41:02	24.402	AR188-4	4200	1100	172	48	45	12
Output_1_6AR188-64/17/1517:44:1824.402AR188-614.430.6770.0180.00650.02660.0075Output_1_7Ar188-74/17/1517:45:2024.401Ar188-726.32.30.0470.0120.01750.0041Output_1_8Z400-1c4/17/1517:47:3024.401Zu0-1c3.760.110.02740.00500.00530.0015Output_10Z4/17/1517:48:3624.40Z_117.240.880.0110.01190.0040.0670.0121Output_10Z4/17/1517:49:4124.402Z_20.0380.01010.01190.0040.0670.0131Output_11Z4/17/1517:51:5124.402Z_20.0380.01990.00590.00310.0670.012Output_113Z4/17/1517:51:0124.402Z_40.0470.0150.01990.00450.0310.012Output_114Z4/17/1517:51:0124.402Z_50.0920.030.02320.00750.0560.012Output_114Z400-1c4/17/1517:51:0124.402Z_50.0920.0140.0030.00340.02460.012Output_114Z400-1c4/17/1517:57:1124.403Z_00-1c0.0140.0140.0190.00560.00560.00560.0170.0130.014Output_125Z4/17/1517:57:1124.402Z_60.12<	Output_1_5	AR188-5	4/17/15	17:43:10	24.405	AR188-5	46	2.3	0.0246	0.0074	0.059	0.017
Output_17Ar188-74/17/1517.45.2024.401Ar188-726.32.30.0470.0120.01750.004Output_18Z400-1-c4/17/1517.47.2924.401Z400-1-c3.760.110.02740.03630.00630.0015Output_19Z4/17/1517.49.3024.402Z17.240.880.0110.01190.0040.0730.0071Output_110Z4/17/1517.49.3124.402Z0.0380.0190.01900.00400.0040.012Output_112Z4/17/1517.51.5124.402Z0.0380.01990.01900.00400.0670.018Output_113Z4/17/1517.52.5724.401Z0.0470.0150.01900.00400.0310.012Output_113Z4/17/1517.52.5724.402Z_50.0920.030.02320.03430.02460.012Output_14Z400-14/17/1517.52.5724.418Z400-10.0570.0140.00350.0340.02460.0042Output_14Z400-14/17/1517.55.0224.118Z400-10.0570.0140.00350.03640.0130.012Output_15Z400-14/17/1517.57.1324.402Z0.120.0140.0130.0140.0140.0140.014Output_16Z4/17/1517.57.1324.402Z0.120.0170.240.0160	Output_1_6	AR188-6	4/17/15	17:44:18	24.402	AR188-6	14.43	0.67	0.018	0.0065	0.0266	0.0075
Output_18Z400-1-c4/17/1517:47:2924.401Z400-1-c3.760.110.02740.00360.00630.00630.0011Output_10Z4/17/1517:48:3624.40Z_117.240.880.0110.01190.0040.00730.0071Output_11Z4/17/1517:49:4124.402Z_20.0380.0110.01190.0040.00670.012Output_11Z4/17/1517:515124.402Z_30.0480.0090.01690.00310.0670.012Output_11Z4/17/1517:527724.401Z_40.0470.0160.01990.00460.03100.01600.012Output_11Z4/17/1517:527724.401Z_40.0470.0140.0130.00460.0120.014Output_114Z00-1-4/17/1517:520724.401Z_40.0470.0140.0130.00340.02460.012Output_114Z400-1-4/17/1517:520724.402Z_10.0570.0140.0030.00340.02460.014Output_114Z400-1-4/17/1517:520724.403Z400-1-0.0570.0140.00340.00340.02460.014Output_115Z400-14/17/1517:520724.403Z400-1-0.0570.0140.01640.01540.01640.0164Output_115Z400-14/17/1518:012025.845Z_800.1610.0161<	Output_1_7	Ar188-7	4/17/15	17:45:20	24.401	Ar188-7	26.3	2.3	0.047	0.012	0.0175	0.004
Output_19Z4/17/1517:48:3624.4Z_117.240.880.05180.00560.0730.0071Output_10Z4/17/1517:49:4124.402Z_20.0380.0110.01190.0040.0670.012Output_11Z4/17/1517:51:5124.402Z_30.0430.00990.06990.00190.00460.01670.018Output_12Z4/17/1517:52:5724.401Z_40.0470.0150.01090.00460.0310.012Output_13Z4/17/1517:55:0224.402Z_50.0220.0330.0230.00340.02660.012Output_14Z000+c4/17/1517:55:0224.118Z400-1c0.0570.0140.00350.00340.02640.0042Output_15Z400+14/17/1517:55:0224.118Z400-1c0.0570.0140.00520.00540.01340.0134Output_14Z400+14/17/1517:55:0224.118Z400-1c0.0570.0140.00530.00540.01640.0134Output_15Z400+14/17/1517:55:0224.403Z60.1210.0140.08970.00540.01690.01620.0042Output_16Z4/17/1517:55:0224.403Z60.1210.0170.0230.0160.01330.0121Output_17Z4/17/1518:01:6625.845Z.80.1610.00560.06660	Output_1_8	Z400-1-c	4/17/15	17:47:29	24.401	Z400-1-c	3.76	0.11	0.0274	0.0036	0.0063	0.0015
Output_1_10Z4/17/1517:49:4124.402Z_20.0380.0110.01190.0040.0670.012Output_1_11Z4/17/1517:51:5124.402Z_30.04830.00990.00690.00310.0670.018Output_1_12Z4/17/1517:52:5724.401Z_40.0470.0150.01090.00400.0310.012Output_1_3Z4/17/1517:50:0024.402Z_50.0920.030.02320.00750.0560.012Output_1_4Z400-1c4/17/1517:50:0224.118Z400-1c0.0570.0140.00930.00340.02460.0042Output_1_5Z400-14/17/1517:57:1124.403Z400-1c0.0570.0140.00930.00540.01630.012Output_1_6Z4/17/1517:57:1124.403Z400-1c0.0570.0140.00930.00540.0040.004Output_1_15Z400-14/17/1517:57:1124.403Z400-10.0150.0570.0580.00540.00930.01620.0093Output_1_16Z4/17/1517:57:1324.402Z_60.120.0110.08970.01600.01630.012Output_1_17Z4/17/1518:01:6824.402Z_60.120.0170.240.0160.0120.004Output_1_2Z4/17/1518:01:6824.402Z_104.530.0160.0210.0163<	Output_1_9	Z	4/17/15	17:48:36	24.4	Z_1	17.24	0.88	0.0518	0.0056	0.073	0.0071
Output_11Z4/17/1517:51:5124.402Z0.04830.00990.00690.00310.0670.018Output_12Z4/17/1517:52:5724.401Z0.0470.0150.01090.00460.0310.012Output_13Z4/17/1517:52:0724.402Z0.0920.0330.02320.00750.05640.012Output_14Z400-1c4/17/1517:55:0224.118Z400-1c0.0570.0140.00330.00340.02460.0042Output_15Z400-14/17/1517:57:1124.403Z400-1c0.05680.0310.05690.00540.00540.00540.00540.00540.00540.00540.00540.00540.00540.00540.00540.00540.00540.00540.01690.01690.01630.01610.00540.00540.01640.01630.01640.00540.00540.0164 </td <td>Output_1_10</td> <td>Z</td> <td>4/17/15</td> <td>17:49:41</td> <td>24.402</td> <td>Z_2</td> <td>0.038</td> <td>0.011</td> <td>0.0119</td> <td>0.004</td> <td>0.067</td> <td>0.012</td>	Output_1_10	Z	4/17/15	17:49:41	24.402	Z_2	0.038	0.011	0.0119	0.004	0.067	0.012
Output_112Z4/17/1517:52:5724:401Z_40.0470.0150.01090.00460.0310.012Output_13Z4/17/1517:54:0024:402Z_50.0920.030.02320.00750.0560.012Output_14Z400-1c4/17/1517:55:0224:118Z400-1c0.0570.0140.00930.00340.02460.0042Output_15Z400-14/17/1517:57:1124:403Z400-10.0570.0140.08970.00590.01620.0092Output_16Z4/17/1517:57:1324:402Z_60.1210.0170.08970.01690.16270.0092Output_116Z4/17/1517:59:2024:119Z_70.0950.0170.2400.01690.1330.011Output_117Z4/17/1518:01:2625.845Z_80.1160.0120.3130.0220.1170.014Output_119Z4/17/1518:01:2625.845Z_80.1640.0120.3130.0220.1170.014Output_129Z4/17/1518:01:2619:572Z_90.05410.00560.06660.00720.0260.0083Output_120Z4/17/1518:03:3824:119Z_11015:32.40.02170.00310.02750.0035Output_121Z4/17/1518:05:4824:402Z_11415:32.40.02170.00150.00310.0275	Output_1_11	Z	4/17/15	17:51:51	24.402	Z_3	0.0483	0.0099	0.0069	0.0031	0.067	0.018
Output_1_1Z $4/17/15$ $17:54:00$ 24.402 Z_5 0.092 0.03 0.0232 0.0075 0.056 0.012 Output_1_4 $2400-1c$ $4/17/15$ $17:55:02$ 24.118 $2400-1c$ 0.057 0.014 0.0093 0.0034 0.0246 0.0042 Output_1_5 $2400-1$ $4/17/15$ $17:57:11$ 24.403 $2400-1_1$ 0.268 0.03 0.0566 0.0054 0.103 0.013 Output_1_6 Z $4/17/15$ $17:58:18$ 24.402 Z_6 0.121 0.01 0.0897 0.0695 0.0164 0.0022 Output_1_1 Z $4/17/15$ $17:59:20$ 24.119 Z_7 0.095 0.017 0.244 0.0166 0.1161 0.012 Output_1_18 Z $4/17/15$ $18:01:26$ 25.845 Z_8 0.0541 0.0126 0.0124 0.0166 0.017 0.0161 0.012 Output_1_19 Z $4/17/15$ $18:02:40$ $19:572$ Z_9 0.0541 0.0056 0.0072 0.0162 0.0041 Output_1_2 Z $4/17/15$ $18:03:88$ 24.119 Z_100 4.33 1.55 0.0231 0.0036 0.0072 0.0083 Output_1_2 Z $4/17/15$ $18:05:88$ 24.402 Z_110 15.33 2.44 0.0217 0.0031 0.0056 0.0072 0.0031 0.0275 0.0035 Output_1_2 Z $4/17/15$ $18:05:59$ 24.40 Z_120 <	Output_1_12	Z	4/17/15	17:52:57	24.401	Z_4	0.047	0.015	0.0109	0.0046	0.031	0.012
Output_1_14Z400-1-c $4/17/15$ $17:55:02$ 24.118 $Z400-1-c$ 0.057 0.014 0.0093 0.0344 0.0246 0.0042 Output_1_15Z400-1 $4/17/15$ $17:57:11$ 24.403 $Z400-1_1$ 0.268 0.03 0.0526 0.0054 0.013 0.013 Output_1_6Z $4/17/15$ $17:58:18$ 24.402 Z_6 0.121 0.011 0.0897 0.0699 0.1627 0.0092 Output_1_17Z $4/17/15$ $17:59:20$ 24.119 Z_7 0.095 0.017 0.244 0.016 0.133 0.011 Output_1_18Z $4/17/15$ $18:01:26$ 25.845 Z_8 0.116 0.012 0.313 0.022 0.117 0.011 Output_1_9Z $4/17/15$ $18:02:40$ $19:572$ Z_9 0.0541 0.0056 0.0666 0.0072 0.026 0.0083 Output_1_20Z $4/17/15$ $18:03:38$ 24.119 Z_10 4.3 1.5 0.0214 0.0036 0.0024 0.0083 Output_1_21Z $4/17/15$ $18:03:38$ 24.402 Z_110 4.3 1.5 0.0217 0.0031 0.0275 0.0035 Output_1_22Z $4/17/15$ $18:05:59$ 24.402 Z_13 0.21 0.0165 0.0081 0.0035 0.0081 0.0035 0.0081 0.0035 0.0081 0.0035 0.0091 0.0091 0.0091 0.0091 0.0091 0.0091 <td< td=""><td>Output_1_13</td><td>Z</td><td>4/17/15</td><td>17:54:00</td><td>24.402</td><td>Z_5</td><td>0.092</td><td>0.03</td><td>0.0232</td><td>0.0075</td><td>0.056</td><td>0.012</td></td<>	Output_1_13	Z	4/17/15	17:54:00	24.402	Z_5	0.092	0.03	0.0232	0.0075	0.056	0.012
Output_1_15Z400-1 $4/17/15$ $17:57:11$ 24.403 $Z400-1_1$ 0.268 0.03 0.0526 0.0054 0.103 0.013 Output_1_16Z $4/17/15$ $17:58:18$ 24.402 Z_6 0.121 0.01 0.0897 0.0069 0.1627 0.0092 Output_1_17Z $4/17/15$ $17:59:20$ 24.119 Z_7 0.095 0.017 0.24 0.016 0.133 0.012 Output_1_18Z $4/17/15$ $18:01:26$ 25.845 Z_8 0.116 0.012 0.313 0.022 0.117 0.011 Output_1_19Z $4/17/15$ $18:02:40$ $19:572$ Z_9 0.0541 0.0056 0.0666 0.0072 0.026 0.0024 Output_1_20Z $4/17/15$ $18:03:38$ 24.119 Z_100 4.33 1.55 0.0231 0.0035 0.0035 0.0031 0.0275 0.0036 0.0024 0.0035 Output_1_21Z $4/17/15$ $18:05:88$ 24.402 Z_110 4.33 1.53 0.0217 0.0031 0.0275 0.0035 Output_1_22Z $4/17/15$ $18:05:58$ 24.402 Z_12 6.66 1.2 0.0615 0.0051 0.0031 0.0275 0.0139 0.0027 Output_1_23Z $4/17/15$ $18:07:59$ 24.402 Z_13 0.214 0.027 0.0214 0.0214 0.0214 0.0214 0.0214 0.0215 0.0214 0.0215 0.0214	Output_1_14	Z400-1-c	4/17/15	17:55:02	24.118	Z400-1-c_1	0.057	0.014	0.0093	0.0034	0.0246	0.0042
Output_1_16Z $4/17/15$ $17:58:18$ 24.402 Z_66 0.121 0.01 0.0897 0.069 0.1627 0.0092 Output_1_17Z $4/17/15$ $17:59:20$ 24.119 Z_7 0.095 0.017 0.24 0.016 0.133 0.011 Output_1_18Z $4/17/15$ $18:01:26$ 25.845 Z_8 0.116 0.012 0.313 0.022 0.117 0.011 Output_1_19Z $4/17/15$ $18:02:40$ 19.572 Z_9 0.0541 0.0056 0.0666 0.0072 0.026 0.004 Output_1_20Z $4/17/15$ $18:03:38$ 24.119 Z_100 4.3 1.5 0.0211 0.0036 0.092 0.0083 Output_1_21Z $4/17/15$ $18:05:48$ 24.402 Z_110 15.3 2.4 0.0217 0.0031 0.0275 0.0035 Output_1_22Z $4/17/15$ $18:05:55$ 24.40 Z_12 6.6 1.2 0.0615 0.0081 0.0139 0.0021 Output_1_23Z $4/17/15$ $18:07:59$ 24.402 Z_13 0.21 0.035 0.0782 0.021 0.021 0.0358 0.0021 Output_1_24Z400-1 $4/17/15$ $18:09:00$ 24.403 $Z400-1_2$ 0.476 0.027 0.342 0.021 0.021 0.0169 0.0091_{12}	Output_1_15	Z400-1	4/17/15	17:57:11	24.403	Z400-1_1	0.268	0.03	0.0526	0.0054	0.103	0.013
Output_117Z $4/17/15$ $17:59:20$ 24.119 Z_77 0.095 0.017 0.24 0.016 0.133 0.011 Output_118Z $4/17/15$ $18:01:26$ 25.845 Z_8 0.116 0.012 0.313 0.022 0.117 0.011 Output_119Z $4/17/15$ $18:02:40$ $19:572$ Z_9 0.0541 0.0056 0.0666 0.0072 0.026 0.004 Output_120Z $4/17/15$ $18:03:38$ 24.109 Z_100 4.3 1.5 0.0217 0.0336 0.0275 0.0083 Output_121Z $4/17/15$ $18:05:48$ 24.402 Z_110 15.3 2.4 0.0217 0.0031 0.0021 0.0027 0.0035 Output_122Z $4/17/15$ $18:05:58$ 24.40 Z_122 6.66 1.2 0.0615 0.0052 0.0139 0.0027 Output_123Z $4/17/15$ $18:07:59$ 24.402 Z_13 0.214 0.027 0.0814 0.0281 0.0081 0.0358 0.0021 Output_124Z400-1 $4/17/15$ $18:09:00$ 24.403 $Z400-1_2$ 0.476 0.027 0.342 0.0214 0.0214 0.0021 0.0214 0	Output_1_16	Z	4/17/15	17:58:18	24.402	Z_6	0.121	0.01	0.0897	0.0069	0.1627	0.0092
Output_1_18Z $4/17/15$ $18:01:26$ 25.845 Z_8 0.116 0.012 0.313 0.022 0.117 0.01 Output_1_9Z $4/17/15$ $18:02:40$ 19.572 Z_9 0.0541 0.0056 0.0666 0.0072 0.026 0.004 Output_1_0Z $4/17/15$ $18:03:38$ 24.119 Z_100 4.3 1.5 0.0217 0.0360 0.092 0.0083 Output_1_21Z $4/17/15$ $18:05:48$ 24.402 Z_110 15.3 2.4 0.0217 0.0031 0.0275 0.0035 Output_1_22Z $4/17/15$ $18:05:55$ 24.4 Z_122 6.66 1.2 0.0615 0.0052 0.0139 0.002 Output_1_23Z $4/17/15$ $18:07:59$ 24.402 Z_13 0.214 0.027 0.342 0.021 0.0181 0.0091 Output_1_24Z400-1 $4/17/15$ $18:09:00$ 24.403 $Z400-1_2$ 0.476 0.027 0.342 0.021 0.1169 0.0091	Output_1_17	Z	4/17/15	17:59:20	24.119	Z_7	0.095	0.017	0.24	0.016	0.133	0.011
Output_1_19 Z 4/17/15 18:02:40 19:572 Z_9 0.0541 0.0056 0.0666 0.0072 0.026 0.004 Output_120 Z 4/17/15 18:03:38 24.119 Z_10 4.3 1.5 0.0217 0.0036 0.092 0.0083 Output_121 Z 4/17/15 18:05:48 24.402 Z_11 15.3 2.4 0.0217 0.0031 0.0275 0.0035 Output_122 Z 4/17/15 18:06:55 2.4.4 Z_12 6.6 1.2 0.0615 0.0052 0.0139 0.0027 Output_123 Z 4/17/15 18:07:59 24.402 Z_13 0.214 0.0358 0.0081 0.0052 0.0139 0.0021 Output_124 Z400-1 4/17/15 18:09:00 24.403 Z400-12 0.0476 0.027 0.342 0.021 0.1169 0.0091	Output_1_18	Z	4/17/15	18:01:26	25.845	Z_8	0.116	0.012	0.313	0.022	0.117	0.01
Output_1_20 Z 4/17/15 18:03:38 24.119 Z_10 4.3 1.5 0.0231 0.0036 0.092 0.0083 Output_1_21 Z 4/17/15 18:05:48 24.402 Z_11 15.3 2.4 0.0217 0.0031 0.0275 0.0035 Output_1_22 Z 4/17/15 18:05:55 24.4 Z_12 6.6 1.2 0.0615 0.0052 0.0139 0.0021 Output_1_23 Z 4/17/15 18:07:59 24.402 Z_13 0.211 0.035 0.0782 0.0081 0.0358 0.0062 Output_1_24 Z400-1 4/17/15 18:09:00 24.403 Z400-12 0.476 0.027 0.342 0.021 0.1169 0.0091	Output_1_19	Z	4/17/15	18:02:40	19.572	Z_9	0.0541	0.0056	0.0666	0.0072	0.026	0.004
Output_1_21 Z 4/17/15 18:05:48 24.402 Z_11 15.3 2.4 0.0217 0.0031 0.0275 0.0035 Output_1_22 Z 4/17/15 18:06:55 24.4 Z_12 6.6 1.2 0.0615 0.0052 0.0139 0.0027 Output_1_23 Z 4/17/15 18:07:59 24.402 Z_13 0.211 0.035 0.0782 0.0081 0.0358 0.0062 Output_1_24 Z400-1 4/17/15 18:09:00 24.403 Z400-1_2 0.476 0.027 0.342 0.021 0.1169 0.0091	Output_1_20	Z	4/17/15	18:03:38	24.119	Z_10	4.3	1.5	0.0231	0.0036	0.092	0.0083
Output_1_22 Z 4/17/15 18:06:55 24.4 Z_12 6.6 1.2 0.0615 0.0052 0.0139 0.002 Output_1_23 Z 4/17/15 18:07:59 24.402 Z_13 0.21 0.035 0.0782 0.0081 0.0358 0.0062 Output_1_24 Z400-1 4/17/15 18:09:00 24.403 Z400-1_2 0.476 0.027 0.342 0.021 0.1169 0.0091	Output_1_21	Z	4/17/15	18:05:48	24.402	Z_11	15.3	2.4	0.0217	0.0031	0.0275	0.0035
Output_1_23 Z 4/17/15 18:07:59 24.402 Z_13 0.21 0.035 0.0782 0.0081 0.0358 0.0062 Output_1_24 Z400-1 4/17/15 18:09:00 24.403 Z400-1_2 0.476 0.027 0.342 0.021 0.1169 0.0091	Output_1_22	Z	4/17/15	18:06:55	24.4	Z_12	6.6	1.2	0.0615	0.0052	0.0139	0.002
Output_1_24 Z400-1 4/17/15 18:09:00 24:403 Z400-1_2 0.476 0.027 0.342 0.021 0.1169 0.0091	Output_1_23	Z	4/17/15	18:07:59	24.402	Z_13	0.21	0.035	0.0782	0.0081	0.0358	0.0062
	Output_1_24	Z400-1	4/17/15	18:09:00	24.403	Z400-1_2	0.476	0.027	0.342	0.021	0.1169	0.0091

SelectionLabe I	'Source file'	'_Date_'	'_Time_'	'Duration(s)'	Comments	Ca43_CPS	Ca43_CPS_Int 2SE	Ti_ppm_m48	Ti_ppm_m48 _Int2SE	Y_ppm_m89	Y_ppm_m89_ Int2SE
G_NIST610_1	610	4/22/15	17:25:53	24.331	610	528000	25000	441	25	444	21
G_NIST610_2	610	4/22/15	17:27:15	24.33	610_1	530000	30000	437	26	464	22
G_NIST610_3	610	4/22/15	17:28:18	24.33	610_2	521000	30000	435	27	452	21
G_NIST610_4	610	4/22/15	17:29:20	24.33	610_3	517000	30000	435	27	439	20
G_NIST610_5	610	4/22/15	17:33:35	24.33	610_4	518000	18000	433	18	452	11
G_NIST610_6	610	4/22/15	17:37:55	24.331	610_5	531000	21000	418	17	450	15
G_NIST610_7	610	4/22/15	17:40:13	24.331	610_6	507000	17000	440	17	448	14
G_NIST610_8	610	4/22/15	17:44:35	24.331	610_7	464000	29000	440	35	448	26
G_NIST610_9	610	4/22/15	17:45:44	24.33	610_8	446000	19000	442	25	454	14
Output_1_1	57-02	4/22/15	17:30:22	24.332	57-02	1.56E+06	150000	2540	210	15	2.3
Output_1_2	57-02	4/22/15	17:31:30	24.329	57-02_1	1.92E+06	220000	2530	200	79.7	5.1
Output_1_3	57-02	4/22/15	17:32:33	24.331	57-02_2	1.73E+06	120000	2510	180	4.06	0.6
Output_1_4	57-02	4/22/15	17:34:43	24.332	57-02_3	2.89E+06	320000	2680	220	43.3	3.8
Output_1_5	57-02	4/22/15	17:35:49	24.331	57-02_4	2.48E+06	250000	2640	210	183	14
Output_1_6	57-02	4/22/15	17:36:53	24.33	57-02_5	2.43E+06	240000	2680	190	1044	70
Output_1_7	AR188	4/22/15	17:39:03	8.2451	AR188	1.68E+06	65000	2430	160	786	32
Output_1_8	AR188-2	4/22/15	17:41:31	14.948	AR188-2	1.47E+06	90000	2310	160	1380	100
Output_1_9	AR188-2	4/22/15	17:42:38	16.959	AR188-2_1	1.47E+06	35000	2432	96	1194	50
Output_1_10	AR188-2	4/22/15	17:43:47	9.9207	AR188-2_2	1.75E+06	81000	2440	180	328	14
SelectionLabe	'Source file'	'_Date_'	'_Time_'	'Duration(s)'	Comments	Ba_ppm_m13	Ba_ppm_m13	La	La_ppm_m13	Ce	Ce_ppm_m14
1						/	7_III123E		9_III(23E		0_111232
G_NIST610_1	610	4/22/15	17:25:53	24.331	610	432	20	458	21	447	19
G_NIST610_2	610	4/22/15	17:27:15	24.33	610_1	430	25	456	23	452	23
G_NIST610_3	610	4/22/15	17:28:18	24.33	610_2	436	28	457	26	444	22
G_NIST610_4	610	4/22/15	17:29:20	24.33	610_3	433	25	457	25	448	21
G_NIST610_5	610	4/22/15	17:33:35	24.33	610_4	448	16	465	15	449	14
G_NIST610_6	610	4/22/15	17:37:55	24.331	610_5	424	16	444	17	447	17
G_NIST610_7	610	4/22/15	17:40:13	24.331	610_6	433	16	455	15	448	14
G_NIST610_8	610	4/22/15	17:44:35	24.331	610_7	439	31	460	30	448	26
G_NIST610_9	610	4/22/15	17:45:44	24.33	610_8	439	21	464	21	450	18
Output_1_1	57-02	4/22/15	17:30:22	24.332	57-02	2.68	0.81	1.68	0.52	2.08	0.62
Output_1_2	57-02	4/22/15	17:31:30	24.329	57-02_1	4.16	0.82	0.77	0.15	1.49	0.45
Output_1_3	57-02	4/22/15	17:32:33	24.331	57-02_2	3.42	0.89	1.91	0.18	2.72	0.4
Output_1_4	57-02	4/22/15	17:34:43	24.332	57-02_3	8.68	0.77	16	1.1	25.9	1.6
Output 1 5	57-02	4/22/15	17:35:49	24 331	57-02 4	836	0.88	20.8	16	43.6	29
	57.02	1/22/15	17:36:52	24.331	57-02 5	6.01	0.65	20.0	1.0	62.2	2.5
Output 1 7	AR188	1/22/15	17:30:02	27.55 8 2/151	AR188	15.9	4.7	97.8	6.6	183	10
Output_1_7	AR188_2	4/22/13	17.39.03	1/ 0/2	AN100	43.9	4./	177	12	103	15
Output 1.0	AD190 2	4/22/13	17.41.31	16 050	AD100-2	19.6	1.2	1// 011 0	12 Q 0	205	11
Output 1 10	AR100-2	4/22/13	17.42.30	0.0207	AR100-2_1	10.0	1./	211.3 E7 1	0.0 2 7	295	
Juipui_1_10	AUT00-7	4/22/13	11.43.47	9.9207	HUT00-7-7	10.2	T.0	57.1	5.2	19.2	4.3

SelectionLabe I	'Source file'	'_Date_'	'_Time_'	'Duration(s)'	Comments	Pr	Pr_ppm_m14 1_Int2SE	Nd	Nd_ppm_m14 6_Int2SE	Sm	Sm_ppm_m1 47_Int2SE
G_NIST610_1	610	4/22/15	17:25:53	24.331	610	430	18	426	17	448	19
G_NIST610_2	610	4/22/15	17:27:15	24.33	610_1	428	22	438	21	454	22
G_NIST610_3	610	4/22/15	17:28:18	24.33	610_2	430	25	436	21	456	25
G_NIST610_4	610	4/22/15	17:29:20	24.33	610_3	432	23	429	21	449	23
G_NIST610_5	610	4/22/15	17:33:35	24.33	610_4	433	16	431	13	451	13
G_NIST610_6	610	4/22/15	17:37:55	24.331	610_5	427	17	428	14	450	17
G_NIST610_7	610	4/22/15	17:40:13	24.331	610_6	428	14	433	13	451	14
G_NIST610_8	610	4/22/15	17:44:35	24.331	610_7	432	29	423	25	452	30
G_NIST610_9	610	4/22/15	17:45:44	24.33	610_8	432	21	434	17	451	17
Output_1_1	57-02	4/22/15	17:30:22	24.332	57-02	0.57	0.18	2.9	0.44	1.83	0.37
Output_1_2	57-02	4/22/15	17:31:30	24.329	57-02_1	0.293	0.055	2.31	0.27	1.31	0.37
Output_1_3	57-02	4/22/15	17:32:33	24.331	57-02_2	0.666	0.095	4.4	0.39	1.41	0.36
Output_1_4	57-02	4/22/15	17:34:43	24.332	57-02_3	4.71	0.33	25.6	1.7	6.17	0.59
Output_1_5	57-02	4/22/15	17:35:49	24.331	57-02_4	12	1	94.3	6.8	43.6	3.5
Output_1_6	57-02	4/22/15	17:36:53	24.33	57-02_5	14.7	0.87	122	6.6	66.3	3.9
Output_1_7	AR188	4/22/15	17:39:03	8.2451	AR188	27.9	2.3	125.5	6.3	39.6	2
Output_1_8	AR188-2	4/22/15	17:41:31	14.948	AR188-2	36.2	2.2	189	13	40.9	3.1
Output_1_9	AR188-2	4/22/15	17:42:38	16.959	AR188-2_1	39.3	1.5	169	6.3	55.1	2.4
Output_1_10	AR188-2	4/22/15	17:43:47	9.9207	AR188-2_2	10.87	0.55	50.5	2.4	12.14	0.61
SelectionLabe I	'Source file'	'_Date_'	'_Time_'	'Duration(s)'	Comments	Eu	Eu_ppm_m15 3_Int2SE	Gd	Gd_ppm_m15 7_Int2SE	Tb	Tb_ppm_m15 9_Int2SE
SelectionLabe I G NIST610 1	'Source file' 610	'_Date_' 4/22/15	'_Time_' 17:25:53	'Duration(s)' 24.331	Comments 610	Eu 459	Eu_ppm_m15 3_Int2SE 17	Gd 442	Gd_ppm_m15 7_Int2SE 18	Tb 441	Tb_ppm_m15 9_Int2SE 22
SelectionLabe I G_NIST610_1 G_NIST610_2	'Source file' 610 610	'_Date_' 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15	'Duration(s)' 24.331 24.33	Comments 610 610 1	Eu 459 463	Eu_ppm_m15 3_Int2SE 17 25	Gd 442 445	Gd_ppm_m15 7_Int2SE 18 22	Tb 441 443	Tb_ppm_m15 9_Int2SE 22 24
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3	'Source file' 610 610 610	'_Date_' 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18	'Duration(s)' 24.331 24.33 24.33	Comments 610 610_1 610_2	Eu 459 463 463	Eu_ppm_m15 3_Int2SE 17 25 25	Gd 442 445 449	Gd_ppm_m15 7_Int2SE 18 22 22	Tb 441 443 447	Tb_ppm_m15 9_Int2SE 22 24 26
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4	'Source file' 610 610 610 610	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20	'Duration(s)' 24.331 24.33 24.33 24.33	Comments 610 610_1 610_2 610_3	Eu 459 463 463 464	Eu_ppm_m15 3_Int2SE 17 25 25 24	Gd 442 445 449 441	Gd_ppm_m15 7_Int2SE 18 22 22 20	Tb 441 443 447 442	Tb_ppm_m15 9_Int2SE 22 24 26 24
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5	'Source file' 610 610 610 610 610	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.33	Comments 610 610_1 610_2 610_3 610_4	Eu 459 463 463 464 464	Eu_ppm_m15 3_Int2SE 17 25 25 24 17	Gd 442 445 449 441 444	Gd_ppm_m15 7_Int2SE 18 22 22 20 13	Tb 441 443 447 442 444	Tb_ppm_m15 9_Int2SE 22 24 26 24 24 14
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_6	'Source file' 610 610 610 610 610 610	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.33 24.331	Comments 610 610_1 610_2 610_3 610_4 610_5	Eu 459 463 463 464 464 467 454	Eu_ppm_m15 3_Int2SE 17 25 25 24 17 17	Gd 442 445 449 441 444 444	Gd_ppm_m15 7_Int2SE 18 22 22 20 13 15	Tb 441 443 447 442 444 439	Tb_ppm_m15 9_Int2SE 22 24 26 24 24 14 14 17
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_6 G_NIST610_7	'Source file' 610 610 610 610 610 610 610 610	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.33 24.331 24.331	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6	Eu 459 463 463 464 467 454 459	Eu_ppm_m15 3_Int2SE 17 25 25 24 17 17 17 16	Gd 442 445 449 441 444 444 444	Gd_ppm_m15 7_Int2SE 18 22 22 20 13 15 15 13	Tb 441 443 447 442 444 439 444	Tb_ppm_m15 9_Int2SE 22 24 26 24 24 14 14 17 14
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_6 G_NIST610_7 G_NIST610_8	'Source file' 610 610 610 610 610 610 610 610 610	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.331 24.331 24.331	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7	Eu 459 463 463 464 467 454 459 455	Eu_ppm_m15 3_Int2SE 17 25 25 24 17 17 17 16 31	Gd 442 445 449 441 444 444 444 444 442	Gd_ppm_m15 7_Int2SE 18 22 22 20 13 15 15 13 26	Tb 441 443 447 442 444 439 444 445	Tb_ppm_m15 9_Int2SE 22 24 26 24 14 17 14 31
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_5 G_NIST610_6 G_NIST610_7 G_NIST610_8 G_NIST610_9	'Source file' 610 610 610 610 610 610 610 610 610	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35 17:45:44	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.331 24.331 24.331 24.331 24.331	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8	Eu 459 463 463 464 467 454 459 459 455 469	Eu_ppm_m15 3_Int2SE 17 25 24 17 17 16 31 21	Gd 442 445 449 441 444 444 444 444 442 445	Gd_ppm_m15 7_Int2SE 18 22 22 20 13 15 13 26 16	Tb 441 443 447 442 444 439 444 445 443	Tb_ppm_m15 9_Int2SE 22 24 26 24 14 17 14 31 19
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_5 G_NIST610_7 G_NIST610_8 G_NIST610_9 Output_1_1	'Source file' 610 610 610 610 610 610 610 610 610 57-02	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35 17:45:44 17:30:22	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.331 24.331 24.331 24.331 24.331 24.332	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8 57-02	Eu 459 463 463 464 467 454 459 455 469 2.75	Eu_ppm_m15 3_Int2SE 17 25 25 24 17 17 16 31 21 21 0.26	Gd 442 445 449 441 444 444 444 444 442 445 2.23	Gd_ppm_m15 7_Int2SE 18 22 20 13 13 15 13 26 16 16 	Tb 441 443 447 442 444 439 444 445 443 0.381	Tb_ppm_m15 9_Int2SE 22 24 26 24 14 17 14 31 19 19 0.07
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_5 G_NIST610_6 G_NIST610_7 G_NIST610_8 G_NIST610_9 Output_1_1 Output_1_2	'Source file' 610 610 610 610 610 610 610 610 610 57-02 57-02	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35 17:45:44 17:30:22 17:31:30	'Duration(s)' 24.331 24.33 24.33 24.33 24.331 24.331 24.331 24.331 24.331 24.331 24.332 24.332	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8 57-02 57-02_1	Eu 459 463 463 464 467 454 459 455 469 2.75 1.04	Eu_ppm_m15 3_Int2SE 17 25 24 17 17 16 31 21 0.26 0.13	Gd 442 445 449 441 444 444 444 442 445 2.23 3.96	Gd_ppm_m15 7_Int2SE 18 22 22 20 13 13 15 13 26 16 16 0.29 0.37	Tb 441 443 447 442 444 439 444 445 443 0.381 0.707	Tb_ppm_m15 9_Int2SE 22 24 26 24 14 17 14 31 19 0.07 0.076
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_5 G_NIST610_7 G_NIST610_7 G_NIST610_8 G_NIST610_9 Output_1_1 Output_1_2 Output_1_3	'Source file' 610 610 610 610 610 610 610 610 610 57-02 57-02	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35 17:44:35 17:45:44 17:30:22 17:31:30 17:32:33	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.331 24.331 24.331 24.331 24.332 24.332 24.329 24.331	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8 57-02 57-02_1 57-02_2	Eu 459 463 463 464 467 454 459 455 469 2.75 1.04 5.13	Eu_ppm_m15 3_Int2SE 17 25 25 24 17 17 16 31 21 0.26 0.13 0.41	Gd 442 445 449 441 444 444 444 442 445 2.23 3.96 2.9	Gd_ppm_m15 7_Int2SE 18 22 22 20 13 13 15 13 26 16 26 16 0.29 0.37 0.27	Tb 441 443 447 442 444 439 444 445 443 0.381 0.707 0.459	Tb_ppm_m15 9_Int2SE 22 24 26 24 14 17 14 31 19 0.07 0.076 0.063
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_6 G_NIST610_7 G_NIST610_8 G_NIST610_9 Output_1_1 Output_1_3 Output_1_4	'Source file' 610 610 610 610 610 610 610 610 610 57-02 57-02 57-02	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35 17:44:35 17:45:44 17:30:22 17:31:30 17:32:33 17:34:43	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.331 24.331 24.331 24.331 24.33 24.332 24.329 24.331 24.331	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8 57-02 57-02_1 57-02_2 57-02_3	Eu 459 463 463 464 467 454 459 455 469 2.75 1.04 5.13 69.5	Eu_ppm_m15 3_Int2SE 17 25 24 17 17 16 31 21 0.26 0.13 0.41 4.6	Gd 442 445 449 441 444 444 444 442 445 2.23 3.96 2.9 6.22	Gd_ppm_m15 7_Int2SE 18 22 20 13 15 13 26 16 0.29 0.37 0.27 0.49	Tb 441 443 447 442 444 439 444 445 443 0.381 0.707 0.459 0.702	Tb_ppm_m15 9_Int2SE 22 24 26 24 14 17 14 31 19 0.07 0.076 0.063 0.062
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_6 G_NIST610_7 G_NIST610_7 G_NIST610_7 G_NIST610_8 G_NIST610_9 Output_1_1 Output_1_2 Output_1_4 Output_1_5	'Source file' 610 610 610 610 610 610 610 610 57-02 57-02 57-02 57-02 57-02	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35 17:44:35 17:45:44 17:30:22 17:31:30 17:32:33 17:34:43 17:35:49	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.331 24.331 24.331 24.331 24.332 24.329 24.332 24.332 24.331	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8 57-02 57-02_1 57-02_1 57-02_2 57-02_3 57-02_4	Eu 459 463 463 464 467 454 459 455 469 2.75 1.04 5.13 69.5 95	Eu_ppm_m15 3_Int2SE 17 25 24 17 17 16 31 21 0.26 0.13 0.41 4.6 7	Gd 442 445 449 441 444 444 444 442 445 2.23 3.96 2.9 6.22 73.3	Gd_ppm_m15 7_Int2SE 18 22 22 20 13 15 13 26 16 26 16 20 20 20 20 20 20 20 20 20 20 20 20 20	Tb 441 443 447 442 444 439 444 445 443 0.381 0.707 0.459 0.702 9.1	Tb_ppm_m15 9_Int2SE 22 24 26 24 14 17 14 31 19 0.07 0.076 0.063 0.062 0.74
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_6 G_NIST610_7 G_NIST610_7 G_NIST610_8 G_NIST610_8 G_NIST610_9 Output_1_1 Output_1_2 Output_1_4 Output_1_5 Output_1_6	'Source file' 610 610 610 610 610 610 610 610 57-02 57-02 57-02 57-02 57-02 57-02	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35 17:44:35 17:45:44 17:30:22 17:31:30 17:32:33 17:34:43 17:35:49 17:36:53	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.331 24.331 24.331 24.331 24.332 24.332 24.329 24.329 24.331 24.331 24.331 24.331 24.331 24.332 24.332 24.331 24.332 24.331 24.332 24.331 24.333	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8 57-02 57-02_1 57-02_1 57-02_2 57-02_3 57-02_4 57-02_5	Eu 459 463 463 464 467 454 459 455 469 2.75 1.04 5.13 69.5 95 49.5	Eu_ppm_m15 3_Int2SE 17 25 24 17 17 16 31 21 0.26 0.13 0.41 4.6 7 2.7	Gd 442 445 449 441 444 444 444 442 445 2.23 3.96 2.9 6.22 73.3 142.9	Gd_ppm_m15 7_Int2SE 18 22 22 20 13 13 15 13 26 16 26 16 0.29 0.37 0.27 0.37 0.27 0.49 5.7 7.7	Tb 441 443 447 442 444 439 444 445 443 0.381 0.707 0.459 0.702 9.1 23.2	Tb_ppm_m15 9_Int2SE 22 24 26 24 14 17 14 31 19 0.07 0.076 0.063 0.063 0.062 0.74 1.2
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_6 G_NIST610_7 G_NIST610_7 G_NIST610_8 G_NIST610_8 G_NIST610_8 Output_1_1 Output_1_2 Output_1_4 Output_1_5 Output_1_7	'Source file' 610 610 610 610 610 610 610 610 610 57-02 57-02 57-02 57-02 57-02 57-02 57-02	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35 17:44:35 17:45:44 17:30:22 17:31:30 17:32:33 17:34:43 17:35:49 17:36:53 17:39:03	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.331 24.331 24.331 24.331 24.332 24.332 24.329 24.332 24.332 24.331 24.331 24.331 24.331 24.332 24.331 24.332 24.331 24.331 24.33	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8 57-02 57-02_1 57-02_2 57-02_3 57-02_3 57-02_4 57-02_5 AR188	Eu 459 463 463 464 467 454 459 455 469 2.75 1.04 5.13 69.5 95 49.5 15.43	Eu_ppm_m15 3_Int2SE 17 25 24 17 17 16 31 21 0.26 0.13 0.41 4.6 7 2.7 0.83	Gd 442 445 449 441 444 444 444 442 445 2.23 3.96 2.9 6.22 73.3 142.9 59	Gd_ppm_m15 7_Int2SE 18 22 22 20 13 15 13 26 16 26 16 0.29 0.37 0.27 0.37 0.27 0.49 5.7 7.7 2.2	Tb 441 443 447 442 444 439 444 445 443 0.381 0.707 0.459 0.702 9.1 23.2 16.78	Tb_ppm_m15 9_Int2SE 22 24 26 24 14 17 14 31 19 0.07 0.076 0.063 0.063 0.062 0.74 1.2 0.96
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_6 G_NIST610_7 G_NIST610_7 G_NIST610_8 G_NIST610_8 G_NIST610_8 Output_1_1 Output_1_2 Output_1_3 Output_1_4 Output_1_5 Output_1_7 Output_1_8	'Source file' 610 610 610 610 610 610 610 610 610 57-02 57-02 57-02 57-02 57-02 57-02 57-02 57-02 57-02 57-02	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35 17:44:35 17:45:44 17:30:22 17:31:30 17:32:33 17:34:43 17:35:49 17:36:53 17:39:03 17:41:31	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.33 24.331 24.331 24.331 24.33 24.332 24.329 24.329 24.329 24.331 24.332 24.332 24.331 24.33 8.2451 14.948	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8 57-02 57-02_1 57-02_2 57-02_3 57-02_3 57-02_4 57-02_5 AR188 AR188-2	Eu 459 463 463 464 467 454 459 455 469 2.75 1.04 5.13 69.5 95 49.5 15.43 12.65	Eu_ppm_m15 3_Int2SE 17 25 24 17 17 16 31 21 0.26 0.13 0.41 4.6 7 2.7 0.83 0.85	Gd 442 445 449 441 444 444 444 442 445 2.23 3.96 2.9 6.22 73.3 142.9 59 63.8	Gd_ppm_m15 7_Int2SE 18 22 22 20 13 13 15 13 26 16 26 16 0.29 0.37 0.27 0.37 0.27 0.37 0.27 0.49 5.7 7.7 2.2 4.5	Tb 441 443 447 442 444 439 444 445 443 0.381 0.707 0.459 0.702 9.1 23.2 16.78 10.25	Tb_ppm_m15 9_Int2SE 22 24 26 24 14 17 14 31 19 0.07 0.076 0.063 0.063 0.062 0.74 1.2 0.96 0.65
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_7 G_NIST610_7 G_NIST610_7 G_NIST610_8 G_NIST610_9 Output_1_1 Output_1_2 Output_1_3 Output_1_4 Output_1_5 Output_1_7 Output_1_8 Output_1_9	'Source file' 610 610 610 610 610 610 610 610 610 57-02 57-02 57-02 57-02 57-02 57-02 57-02 57-02 4R188	'_Date_' 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35 17:44:35 17:45:44 17:30:22 17:31:30 17:32:33 17:34:43 17:35:49 17:36:53 17:39:03 17:41:31 17:42:38	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.33 24.33 24.331 24.331 24.331 24.33 24.332 24.329 24.329 24.329 24.331 24.332 24.331 24.33 8.2451 14.948 16.959	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8 57-02 57-02_1 57-02_2 57-02_3 57-02_3 57-02_4 57-02_5 AR188 AR188-2_1	Eu 459 463 463 464 467 454 459 455 469 2.75 1.04 5.13 69.5 95 49.5 15.43 12.65 21	Eu_ppm_m15 3_Int2SE 17 25 24 17 17 16 31 21 0.26 0.13 0.41 4.6 7 2.7 0.83 0.85 0.95	Gd 442 445 449 441 444 444 444 442 445 2.23 3.96 2.9 6.22 73.3 142.9 59 63.8 98.3	Gd_ppm_m15 7_Int2SE 18 22 22 20 13 13 15 13 26 16 26 16 0.29 0.37 0.27 0.37 0.27 0.49 5.7 7.7 2.2 4.5	Tb 441 443 447 442 444 439 444 445 443 0.381 0.707 0.459 0.702 9.1 23.2 16.78 10.25 22.94	Tb_ppm_m15 9_Int2SE 22 24 26 24 14 17 14 31 19 0.07 0.076 0.063 0.063 0.062 0.74 1.2 0.96 0.65 0.94
Anexo A4. Datos LAICPMS (extenso).

SelectionLabe I	'Source file'	'_Date_'	'_Time_'	'Duration(s)'	Comments	Dy	Dy_ppm_m16 3_Int2SE	Но	Ho_ppm_m16 5_Int2SE	Er	Er_ppm_m16 6_Int2SE
G_NIST610_1	610	4/22/15	17:25:53	24.331	610	423	18	440	20	426	21
G_NIST610_2	610	4/22/15	17:27:15	24.33	610_1	436	22	462	23	424	23
G NIST610 3	610	4/22/15	17:28:18	24.33	610 2	426	22	453	22	431	24
G_NIST610_4	610	4/22/15	17:29:20	24.33	610_3	426	21	446	21	424	22
G NIST610 5	610	4/22/15	17:33:35	24.33	610 4	429	14	449	14	427	14
G NIST610 6	610	4/22/15	17:37:55	24.331	610 5	424	13	447	15	423	15
G NIST610 7	610	4/22/15	17:40:13	24.331	610 6	428	13	450	14	428	14
G NIST610 8	610	4/22/15	17:44:35	24.331	610 7	427	27	447	27	428	30
G NIST610 9	610	4/22/15	17:45:44	24.33	610 8	428	18	450	17	425	20
Output_1_1	57-02	4/22/15	17:30:22	24.332	57-02	2.57	0.47	0.6	0.12	0.92	0.18
Output_1_2	57-02	4/22/15	17:31:30	24.329	57-02_1	4.89	0.42	1.084	0.099	2.52	0.2
Output_1_3	57-02	4/22/15	17:32:33	24.331	57-02_2	1.71	0.24	0.328	0.053	0.662	0.093
Output_1_4	57-02	4/22/15	17:34:43	24.332	57-02_3	3.96	0.34	0.681	0.057	1.55	0.17
Output_1_5	57-02	4/22/15	17:35:49	24.331	57-02_4	44	3.1	5.7	0.45	9.21	0.72
Output_1_6	57-02	4/22/15	17:36:53	24.33	57-02_5	142.8	7.9	22.3	1.2	45.1	2.5
Output_1_7	AR188	4/22/15	17:39:03	8.2451	AR188	146.9	7.8	34.2	1.6	103.5	5.9
Output_1_8	AR188-2	4/22/15	17:41:31	14.948	AR188-2	69.3	4.7	13.8	0.9	30.3	2
Output_1_9	AR188-2	4/22/15	17:42:38	16.959	AR188-2_1	142.8	5.6	20.82	0.79	35.4	1.5
Output_1_10	AR188-2	4/22/15	17:43:47	9.9207	AR188-2_2	26.1	1.5	3.95	0.28	7.28	0.62
SelectionLabe I	'Source file'	'_Date_'	'_Time_'	'Duration(s)'	Comments	Yb	Yb_ppm_m17 2_Int2SE	Lu	Lu_ppm_m17 5_Int2SE	Hf_ppm_m17 9	Hf_ppm_m17 9_Int2SE
SelectionLabe	'Source file'	'_Date_'	'_Time_'	'Duration(s)'	Comments	Yb	Yb_ppm_m17 2_Int2SE	Lu 422	Lu_ppm_m17 5_Int2SE	Hf_ppm_m17 9	Hf_ppm_m17 9_Int2SE
SelectionLabe I G_NIST610_1	'Source file' 610	'_Date_' 4/22/15	'_Time_' 17:25:53	'Duration(s)'	Comments 610	Yb 439	Yb_ppm_m17 2_Int2SE 19	Lu 432	Lu_ppm_m17 5_Int2SE 20	Hf_ppm_m17 9 438	Hf_ppm_m17 9_Int2SE 21 22
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_2	'Source file' 610 610	'_Date_' 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15	'Duration(s)' 24.331 24.33	Comments 610 610_1 610_2	Yb 439 444	Yb_ppm_m17 2_Int2SE 19 22	Lu 432 438	Lu_ppm_m17 5_Int2SE 20 25 26	Hf_ppm_m17 9 438 433	Hf_ppm_m17 9_Int2SE 21 22 25
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4	'Source file' 610 610 610	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18	'Duration(s)' 24.331 24.33 24.33	Comments 610 610_1 610_2 610_2	Yb 439 444 461	Yb_ppm_m17 2_Int2SE 19 22 23 21	Lu 432 438 440	Lu_ppm_m17 5_Int2SE 20 25 26 23	Hf_ppm_m17 9 438 433 444	Hf_ppm_m17 9_Int2SE 21 22 25 21
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5	'Source file' 610 610 610 610	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35	'Duration(s)' 24.331 24.33 24.33 24.33 24.33	Comments 610 610_1 610_2 610_3 610_4	Yb 439 444 461 443 447	Yb_ppm_m17 2_Int2SE 19 22 23 21 13	Lu 432 438 440 433 435	Lu_ppm_m17 5_Int2SE 20 25 26 23 14	Hf_ppm_m17 9 438 433 444 433 431	Hf_ppm_m17 9_Int2SE 21 22 25 21 13
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_6	'Source file' 610 610 610 610 610	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.33	Comments 610 610_1 610_2 610_3 610_4 610_5	Yb 439 444 461 443 447 440	Yb_ppm_m17 2_Int2SE 19 22 23 21 13 15	Lu 432 438 440 433 435 433	Lu_ppm_m17 5_Int2SE 20 25 26 23 14 17	Hf_ppm_m17 9 438 433 444 433 431 420	Hf_ppm_m17 9_Int2SE 21 22 25 21 13 14
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_6 G_NIST610_7	'Source file' 610 610 610 610 610 610	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.331 24.331	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6	Yb 439 444 461 443 447 440 446	Yb_ppm_m17 2_Int2SE 19 22 23 21 13 15 12	Lu 432 438 440 433 435 433 436	Lu_ppm_m17 5_Int2SE 20 25 26 23 14 17 13	Hf_ppm_m17 9 438 433 444 433 431 420 434	Hf_ppm_m17 9_Int2SE 21 22 25 21 13 14 15
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_6 G_NIST610_7 G_NIST610_8	'Source file' 610 610 610 610 610 610 610	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.331 24.331 24.331	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7	Yb 439 444 461 443 447 440 446 443	Yb_ppm_m17 2_Int2SE 19 22 23 21 13 15 15 12 26	Lu 432 438 440 433 435 433 435 433 436 434	Lu_ppm_m17 5_Int2SE 20 25 26 23 14 17 13 30	Hf_ppm_m17 9 438 433 444 433 431 420 434 431	Hf_ppm_m17 9_Int2SE 21 22 25 21 13 14 15 27
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_6 G_NIST610_7 G_NIST610_8 G_NIST610_8 G_NIST610_9	'Source file' 610 610 610 610 610 610 610 610	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35 17:45:44	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.331 24.331 24.331 24.331	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8	Yb 439 444 461 443 447 440 446 443 447	Yb_ppm_m17 2_Int2SE 19 22 23 21 13 15 12 26 17	Lu 432 438 440 433 435 433 435 433 436 434 435	Lu_ppm_m17 5_Int2SE 20 25 26 23 14 17 13 30 19	Hf_ppm_m17 9 438 433 444 433 431 420 434 431 445	Hf_ppm_m17 9_Int2SE 21 22 25 21 13 14 15 27 20
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_6 G_NIST610_7 G_NIST610_8 G_NIST610_9	'Source file' 610 610 610 610 610 610 610 610 610	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35 17:45:44	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.331 24.331 24.331 24.331 24.331	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8	Yb 439 444 461 443 447 440 446 443 447	Yb_ppm_m17 2_Int2SE 19 22 23 21 13 15 12 26 17	Lu 432 438 440 433 435 433 436 434 435	Lu_ppm_m17 5_Int2SE 20 25 26 23 14 17 13 30 19	Hf_ppm_m17 9 438 433 444 433 431 420 434 431 431 445	Hf_ppm_m17 9_Int2SE 21 25 21 13 14 15 27 20
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_6 G_NIST610_7 G_NIST610_8 G_NIST610_9 Output_1_1	'Source file' 610 610 610 610 610 610 610 610 610 57-02	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:40:13 17:44:35 17:45:44 17:30:22	'Duration(s)' 24.331 24.33 24.33 24.33 24.331 24.331 24.331 24.331 24.331 24.331 24.331	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8 57-02	Yb 439 444 461 443 447 440 446 443 447 1.78	Yb_ppm_m17 2_Int2SE 19 22 23 21 13 15 12 26 17 0.67	Lu 432 438 440 433 435 433 436 434 434 435 0.271	Lu_ppm_m17 5_Int2SE 20 25 26 23 14 17 13 30 19 0.074	Hf_ppm_m17 9 438 433 444 433 431 420 434 431 445 6.2	Hf_ppm_m17 9_Int2SE 21 22 25 21 13 14 15 27 20 2.2
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_7 G_NIST610_7 G_NIST610_8 G_NIST610_9 Output_1_1 Output_1_2	'Source file' 610 610 610 610 610 610 610 610 610 57-02	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35 17:45:44 17:30:22 17:31:30	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.331 24.331 24.331 24.331 24.33 24.332 24.329	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8 57-02 57-02_1	Yb 439 444 461 443 447 440 446 443 447 1.78 1.48	Yb_ppm_m17 2_Int2SE 19 22 23 21 13 15 12 26 17 26 17 0.67 0.14	Lu 432 438 440 433 435 433 435 433 436 434 435 0.271 0.265	Lu_ppm_m17 5_Int2SE 20 25 26 23 14 17 13 30 19 	Hf_ppm_m17 9 438 433 444 433 431 420 434 431 445 6.2 2.17	Hf_ppm_m17 9_lnt2SE 21 22 25 21 13 14 15 27 20 20 2.2 0.75
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_6 G_NIST610_7 G_NIST610_8 G_NIST610_9 Output_1_1 Output_1_2 Output_1_3	'Source file' 610 610 610 610 610 610 610 610 610 57-02 57-02	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35 17:45:44 17:30:22 17:31:30 17:32:33	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.331 24.331 24.331 24.331 24.33 24.33 24.332 24.332 24.332 24.329 24.331	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8 57-02 57-02_1 57-02_2	Yb 439 444 461 443 447 440 446 443 447 1.78 1.48 0.79	Yb_ppm_m17 2_Int2SE 19 22 23 21 13 15 12 26 17 26 17 0.67 0.14 0.2	Lu 432 438 440 433 435 433 436 434 435 0.271 0.265 0.183	Lu_ppm_m17 5_Int2SE 20 25 26 23 14 17 13 30 19 	Hf_ppm_m17 9 438 433 444 433 431 420 434 431 445 6.2 2.17 8.2	Hf_ppm_m17 9_Int2SE 21 25 21 13 14 15 27 20 2.2 0.75 2.7
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_7 G_NIST610_7 G_NIST610_8 G_NIST610_8 G_NIST610_2 Output_1_1 Output_1_2 Output_1_4	'Source file' 610 610 610 610 610 610 610 610 610 57-02 57-02 57-02	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35 17:44:35 17:45:44 17:30:22 17:31:30 17:32:33 17:34:43	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.331 24.331 24.331 24.331 24.332 24.329 24.329 24.331 24.331	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8 57-02 57-02_1 57-02_2 57-02_3	Yb 439 444 461 443 447 440 446 443 447 1.78 1.78 1.48 0.79 1.09	Yb_ppm_m17 2_Int2SE 19 22 23 21 13 15 12 26 17 0.67 0.14 0.2 0.17	Lu 432 438 440 433 435 433 436 434 435 0.271 0.265 0.183 0.192	Lu_ppm_m17 5_Int2SE 20 25 26 23 14 17 13 30 19 	Hf_ppm_m17 9 438 433 444 433 431 420 434 431 445 6.2 2.17 8.2 2.9	Hf_ppm_m17 9_Int2SE 21 22 25 21 13 14 15 27 20 20 2.2 0.75 2.7 0.8
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_7 G_NIST610_7 G_NIST610_8 G_NIST610_8 G_NIST610_2 Output_1_1 Output_1_2 Output_1_4 Output_1_5	'Source file' 610 610 610 610 610 610 610 610 610 57-02 57-02 57-02 57-02	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35 17:44:35 17:45:44 17:30:22 17:31:30 17:32:33 17:34:43 17:35:49	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.331 24.331 24.331 24.331 24.332 24.329 24.329 24.331 24.331 24.331	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8 57-02 57-02_1 57-02_2 57-02_3 57-02_4	Yb 439 444 461 443 447 440 446 443 447 1.78 1.78 1.48 0.79 1.09 4.98	Yb_ppm_m17 2_Int2SE 19 22 23 21 13 15 12 26 17 0.67 0.14 0.2 0.17 0.41	Lu 432 438 440 433 435 433 435 433 436 434 435 0.271 0.265 0.183 0.192 0.674	Lu_ppm_m17 5_Int2SE 20 25 26 23 14 17 13 30 19 	Hf_ppm_m17 9 438 433 444 433 431 420 434 431 445 6.2 2.17 8.2 2.9 2.36	Hf_ppm_m17 9_Int2SE 21 22 25 21 13 14 15 27 20 20 2.2 0.75 2.7 0.8 0.6
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_7 G_NIST610_7 G_NIST610_8 G_NIST610_8 G_NIST610_9 Output_1_1 Output_1_2 Output_1_4 Output_1_5 Output_1_6	'Source file' 610 610 610 610 610 610 610 610 610 57-02 57-02 57-02 57-02 57-02 57-02	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35 17:44:35 17:45:44 17:30:22 17:31:30 17:32:33 17:34:43 17:35:49 17:36:53	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.331 24.331 24.331 24.332 24.329 24.329 24.332 24.332 24.332 24.332 24.331 24.331 24.331 24.331 24.331 24.331 24.332 24.332 24.332 24.331 24.333	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8 57-02 57-02_1 57-02_2 57-02_3 57-02_4 57-02_5	Yb 439 444 461 443 447 440 446 443 447 1.78 1.78 1.48 0.79 1.09 4.98 27.3	Yb_ppm_m17 2_Int2SE 19 22 23 21 13 15 12 26 17 0.67 0.14 0.2 0.17 0.41 1.3	Lu 432 438 440 433 435 433 435 433 436 434 435 0.271 0.265 0.183 0.192 0.674 3.67	Lu_ppm_m17 5_Int2SE 20 25 26 23 14 17 13 30 19 0.074 0.038 0.045 0.032 0.066 0.22	Hf_ppm_m17 9 438 433 444 433 431 420 434 431 445 6.2 2.17 8.2 2.9 2.36 2.48	Hf_ppm_m17 9_Int2SE 21 22 25 21 13 14 15 27 20 2.2 0.75 2.7 0.8 0.6 0.65
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_7 G_NIST610_7 G_NIST610_8 G_NIST610_9 Output_1_1 Output_1_2 Output_1_4 Output_1_5 Output_1_7	'Source file' 610 610 610 610 610 610 610 610 610 57-02 57-02 57-02 57-02 57-02 57-02 57-02 57-02	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35 17:45:44 17:30:22 17:31:30 17:32:33 17:34:43 17:35:49 17:36:53 17:39:03	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.33 24.331 24.331 24.331 24.332 24.329 24.329 24.329 24.331 24.332 24.332 24.332 24.332 24.332 24.331 24.33	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8 57-02 57-02_1 57-02_2 57-02_3 57-02_3 57-02_4 57-02_5 AR188	Yb 439 444 461 443 447 440 446 443 447 1.78 1.78 1.48 0.79 1.09 4.98 27.3 105.4	Yb_ppm_m17 2_Int2SE 19 22 23 21 13 15 12 26 17 0.67 0.14 0.2 0.14 0.2 0.17 0.41 1.3 4.9	Lu 432 438 440 433 435 433 436 434 435 0.271 0.265 0.183 0.192 0.674 3.67 16.23	Lu_ppm_m17 5_Int2SE 20 25 26 23 14 17 13 30 19 0.074 0.038 0.045 0.032 0.066 0.22 0.86	Hf_ppm_m17 9 438 433 444 433 431 420 434 431 445 6.2 2.17 8.2 2.9 2.36 2.48 8.1	Hf_ppm_m17 9_Int2SE 21 22 25 21 13 14 15 27 20 2.2 0.75 2.7 0.8 0.6 0.65 2.9
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_7 G_NIST610_7 G_NIST610_8 G_NIST610_9 Output_1_1 Output_1_2 Output_1_3 Output_1_5 Output_1_7 Output_1_7 Output_1_7 Output_1_8	'Source file' 610 610 610 610 610 610 610 610 610 610	'_Date_' 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35 17:44:35 17:45:44 17:30:22 17:31:30 17:32:33 17:34:43 17:35:49 17:36:53 17:39:03 17:41:31	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.33 24.331 24.331 24.331 24.332 24.329 24.329 24.329 24.332 24.332 24.332 24.331 24.33 24.34 24.34 24.34 24.34 24.34 24.34 24.34 24.34 24.34 24.34 24.34 24.3	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8 57-02 57-02_1 57-02_2 57-02_3 57-02_3 57-02_4 57-02_5 AR188 AR188-2	Yb 439 444 461 443 447 440 445 447 1.78 1.78 1.48 0.79 1.09 4.98 27.3 105.4 12.33	Yb_ppm_m17 2_Int2SE 19 22 23 21 13 15 12 26 17 0.67 0.14 0.2 0.14 0.2 0.17 0.41 1.3 4.9 0.96	Lu 432 438 440 433 435 433 436 434 435 0.271 0.265 0.183 0.192 0.674 3.67 16.23 1.31	Lu_ppm_m17 5_Int2SE 20 25 26 23 14 17 13 30 19 0.074 0.038 0.045 0.032 0.066 0.22 0.86 0.13	Hf_ppm_m17 9 438 433 444 433 431 420 434 431 445 6.2 2.17 8.2 2.9 2.36 2.48 8.1 2.18	Hf_ppm_m17 9_Int2SE 21 22 25 21 13 14 15 27 20 20 2.2 0.75 2.7 0.8 0.6 0.65 2.9 0.99
SelectionLabe I G_NIST610_1 G_NIST610_2 G_NIST610_3 G_NIST610_4 G_NIST610_5 G_NIST610_5 G_NIST610_7 G_NIST610_9 Output_1_1 Output_1_2 Output_1_3 Output_1_4 Output_1_5 Output_1_7 Output_1_8 Output_1_8 Output_1_8 Output_1_9	'Source file' 610 610 610 610 610 610 610 610 610 610	'_Date_' 4/22/15	'_Time_' 17:25:53 17:27:15 17:28:18 17:29:20 17:33:35 17:37:55 17:40:13 17:44:35 17:44:35 17:45:44 17:30:22 17:31:30 17:32:33 17:34:43 17:35:49 17:36:53 17:39:03 17:41:31 17:42:38	'Duration(s)' 24.331 24.33 24.33 24.33 24.33 24.33 24.331 24.331 24.331 24.33 24.332 24.329 24.329 24.329 24.331 24.332 24.332 24.331 24.33 8.2451 14.948 16.959	Comments 610 610_1 610_2 610_3 610_4 610_5 610_6 610_7 610_8 57-02 57-02_1 57-02_2 57-02_3 57-02_3 57-02_4 57-02_5 AR188 AR188-2_1	Yb 439 444 461 443 447 440 445 447 1.78 1.78 1.48 0.79 1.09 4.98 27.3 105.4 12.33 11.71	Yb_ppm_m17 2_Int2SE 19 22 23 21 13 15 12 26 17 0.67 0.14 0.2 0.14 0.2 0.17 0.41 1.3 4.9 0.96 0.59	Lu 432 438 440 433 435 433 435 433 436 434 435 0.271 0.265 0.183 0.192 0.674 3.67 16.23 1.31 1.26	Lu_ppm_m17 5_Int2SE 20 25 26 23 14 17 13 30 19 0.074 0.038 0.045 0.032 0.066 0.22 0.86 0.13 0.11	Hf_ppm_m17 9 438 433 444 433 431 420 434 431 445 6.2 2.17 8.2 2.9 2.36 2.48 8.1 2.18 3.6	Hf_ppm_m17 9_Int2SE 21 22 25 21 13 14 15 27 20 2.2 0.75 2.7 0.8 0.6 0.65 2.9 0.99 1

A5. Monitoreo de ablaciones.

En los siguientes formatos se muestran las fotomicrografías de los cráteres realizados mediante ablación láser y los resultados obtenidos graficados en diagramas de enriquecimiento de elementos incompatibles (SPIDER).

