

UNIVERSIDAD NACIONAL AUTÓNOMA DE MEXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS QUÍMICAS

NUEVOS CATALIZADORES HETEROGÉNEOS PARA LA PRODUCCIÓN DE BIODIESEL

TESIS

PARA OPTAR POR EL GRADO DE

MAESTRA EN CIENCIAS

PRESENTA

I.Q. PAMELA RAMÍREZ VIDAL

DRA. TATIANA E. KLIMOVA BERESTNEVA FACUTAD DE QUÍMICA, UNAM

CIUDAD UNIVERSITARIA, CD. MX., FEBRERO 2018.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

Presidente:	Dra. Silvia Elena Castillo Blum	Facultad de Química, UNAM
Vocal:	Dra. Julia Aguilar Pliego	UAM- Azcapotzalco
Vocal:	Dra. América Rosalba Vázquez Olmos	CCADET, UNAM
Vocal:	Dr. Ernesto Rivera García	Instituto de Inv. en Materiales, UNAM
Secretario:	Dr. Alfonso Ramón García Márquez	Facultad de Química, UNAM

Lugar donde se realizó la tesis:

Laboratorio de Nanocatálisis (LNC), edificio de Ingeniería Química, Conjunto E, Facultad de Química, UNAM.

Este trabajo fue presentado en:

XXVI International Materials Research Congress (IMRC)

International Conference on Polymers and Advanced Materials 2017 (POLYMAT)

Congreso Nacional de Estudiantes de Energías Renovables 2017 (CNEER)

TUTOR DE TESIS:

Dra. Tatiana E. Klimova Berestneva

FIRMA

Agradezco a la Universidad Nacional Autónoma de México por haberme permitido acceder a una educación de calidad mundial y por brindarme una formación integral.

A la Facultad de Química por la alta exigencia y rigor en sus programas de estudio enfocados a la preparación de egresados de excelencia.

Deseo expresar mi más grande agradecimiento a la Dra. Tatiana Klimova, tutora de esta investigación, por la orientación, seguimiento y supervisión de la misma.

Agradezco a los miembros del jurado: Dra. Silvia Elena Castillo Blum, Dra. Julia Aguilar Pliego, Dra. America Rosalba Vázquez Olmos, Dr. Ernesto Rivera García y Dr. Alfonso Ramón García Márquez, por la revisión del presente trabajo, así como por sus sugerencias encaminadas a la mejora del mismo.

Agradezco a CONACYT por la beca otorgada durante mis estudios de maestría con número de CVU/ becario: 739301/536765. Sin su apoyo no habría podido continuar mis estudios.

Al proyecto CONACYT CB-220175 y al proyecto DGAPA-UNAM IN-113715 por el apoyo financiero para la realización del presente trabajo.

Al I.Q. Ivan Puente Lee por su apoyo en la realización de SEM y TEM.

A la Q. I. María Cecilia Salcedo Luna por los análisis de DRX de polvos.

Al Q. Luis Pedro Hernández por la obtención de los espectros de RMN de ¹H.

A la Dra. Gabriela Díaz Guerrero y el Dr. Antonio Gómez Cortés por la realización de los TPD-CO₂, así como por su valiosa ayuda en la interpretación de los datos obtenidos.

Agradezco infinitamente a: la M en I. Haydee Vargas Villagrán, el Dr. Julio Cesar Morales Ortuño, el Dr. Franklin José Méndez Méndez, el M en I. Luis Jorge Rodríguez Castillo, la Dra. Lina Angélica Calzada Navarro, el Q. Mark E. Martínez Klimov, la M. en C. Yanelli Osorio Bautista, el M. en C. Ricardo Flores, el M. en I. Rodolfo Ruiz Trejo, el Sr. José Epifanio Olvera Bocanegra, el I.Q. Oscar Eduardo Franco López, la I.Q. Georgina Bravo Ascención, Gerardo Ramírez Muñoz, Manuel González Mota, Marco Flores Villeda y Diego Ramírez Suarez. Por compartir sus conocimientos. Gracias por fomentar un ambiente de trabajo ameno en el laboratorio. Por formar lazos de amistad que trasciende más allá de la relación profesional. Deseo expresar mi gratitud y afecto a mi familia, por estar conmigo en los buenos y malos momentos, por su apoyo incondicional.

A mis padres por el amor y cuidados que me han dado a lo largo de mi vida. Agradezco todas las oportunidades que me han dado. No existen palabras que puedan expresar la gratitud y afecto que siento de ser su hija.

Eric Jiménez, gracias por ser un amigo confiable, leal y honesto. Por siempre recomendarme actividades de esparcimiento y por su facilitación. Por el gran apoyo emocional que me has brindado a lo largo de los años.

Giordano Ponce, eres un amigo con quien puedo contar siempre y agradezco enormemente tu presencia en mi vida. Gracias por tus consejos ante las situaciones desafiantes y por todas las aventuras que hemos pasado (y pasaremos) juntos.

Carlos Osorno (Carlitos Zwei), Du hast ein freund in mir. Ich danke dir für deine freundschaft. Ich libe dich.

Javier Martínez y José Manuel Soto, a veces los amigos cercanos se encuentran en los extraños que no nos damos la oportunidad de conocer. Muchas gracias por ser personas espectaculares.

Ninive García, agradezco la bella amistad que seguimos conservado a través de los años. Gracias por siempre darme una perspectiva y visión diferente ante las situaciones conflictivas. Por estar para mí siempre, a pesar del tiempo y la distancia que a veces nos separa.

Julian Olvera, Tu est un de mes meilleurs amis. Je veux te remercie pour l'amitié qu'on a. Je suis sure qu'on y aura des aventures extraordinaires.

Abigail Balderas y Esmeralda Mendoza, gracias por su inigualable apoyo. Por explicarme una y otra vez conceptos que no entendía en clase. Por su valiosa e inigualable amistad.

Amigos del laboratorio 222 de nano catálisis, nuevamente deseo expresar mi estima y gratitud por su gran apoyo y amistad.

"Even the knowledge of my own fallibility cannot keep me from making mistakes. Only when I fall do I get up again"

Vincent Van Gogh 1853 - 1890

Sunflowers, Philadelphia Museum of Art, USA.

Abstract

One of the main problems of the biodiesel production is its higher cost compared to petroleum-derived diesel. The use of heterogeneous catalysts in the transesterification of vegetables oils or animals fats with a short chain alcohols has the potential to simplify the purification of products, reducing the operational cost and obtaining high quality methyl esters and glycerol [1].

In the present work, nanostructured metalic titanates (K and Na) enriched with K were synthesized, characterized and evaluated as catalysts for the production of biodiesel. The materials were synthesized by three methods: alkali hydrothermal treatment of TiO_2 with sodium hydroxide or potassium hydroxide, ionic exchange of Na⁺ for K⁺ in sodium trititanate and simple impregnation of K₂CO₃ on the sodium trititanate and potassium octatitanato materials.

The prepared catalysts were characterized by N₂ physisorption, X-ray diffraction, scanning electron microscopy SEM-EDX, transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR) and temperature-programmed desorption of CO₂ (TPD-CO₂).

Catalytic activity tests of the materials were performed in the transesterification of soybean oil with methanol in a 100 mL stainless steel batch reactor (Parr) equipped with a stirrer and temperature controller in presence of 0.5 g of the catalyst. For all experiments, a temperature of 80 °C and reaction time of 0.5 h were employed.

Methyl esters production were estimated based on ¹H NMR as described in [2]. The products' kinematic viscosity was measured to known the fulfillment of the obtained biodiesel standards (ASTM D6751-08 and EN14214).

Experimental results indicated that the incorporation method of potassium influenced textural and basic properties of the synthesized materials that affected their performance as catalysts in the tranesterification reaction. Materials where potassium was incorporated inside the cristaline structure, showed desirable textural properties (high surface area and pore volume), but a low catalytic activity (yields <10%).

In contrast, the addition of K_2CO_3 by a simple impregnation increased the total amount of strong basic sites in the materials producing a noticeable increase in their catalytic activity. High yields of biodiesel were achieved with the impregnated sodium titanate (92-95%) and potassium titanate (47%). However, a reduction in the specific superficial area and volume pore was observed due to the deposition of the compound in the support's pores. Therefore, the optimal K_2CO_3 loading was 5 % weight.

In order to investigate into the effect of the amount of the catalyst, temperature and time of the reaction on the yield of obtained methyl esters, a factorial design 2^3 (three variables at two levels) of experiments was executed for the sodium trititanate impregnate with 5 wt. % of K₂CO₃ (NTNa-KC5). It was found that the temperature and reaction time had the most significant impact on biodiesel yield.

Resumen

Uno de los principales problemas de la producción de biodiesel a nivel industrial es su alto costo operacional comparado con el diésel de origen fósil. El empleo de catalizadores heterogéneos en la reacción de transesterificación de aceites vegetales o grasas animales con un alcohol de cadena corta puede simplificar las operaciones unitarias asociadas a la purificación de productos, reducir los costos operacionales y permitir la obtención de esteres metílicos y glicerol de mayor calidad [1].

En el presente trabajo, se sintetizó, caracterizó y evaluó el desempeño catalítico de titanatos metálicos (Na y K) nanoestructurados enriquecidos con K para la reacción de transesterificación de aceite de soya con metanol.

Los materiales se sintetizaron mediante tres métodos: tratamiento hidrotérmico de TiO₂ con hidróxido de sodio o hidróxido de potasio, intercambio iónico de sodio por potasio en trititanato de sodio e impregnación por humedad incipiente de K₂CO₃ en trititanato de sodio y octatitanato de potasio. Los catalizadores preparados fueron caracterizados mediante fisisorción de nitrógeno, difracción de rayos X de polvos (DRX), microscopia electrónica de barrido (SEM-EDX), microscopia electrónica de transmisión (TEM), espectroscopia de infrarrojo (FT-IR) y desorción de CO₂ a temperatura programada (TPD-CO₂). La evaluación de la actividad catalítica de los materiales en la reacción de transesterificación de aceite de soya con metanol se realizó en un reactor de acero inoxidable batch de 100 ml (Parr) equipado con agitador y control de temperatura. Todas las reacciones se llevaron a cabo a 80 °C por 0.5 h en presencia de 0.5 g de catalizador.

La cantidad de métil esteres (ME) obtenidos fue calculada mediante RMN de ¹H siguiendo el procedimiento reportado en [2]. Para corroborar que el biodiesel obtenido cumpliera las normas ASTM D6751-08 y EN14214 se le midió la viscosidad cinemática.

Los resultados experimentales mostraron que el método de incorporación de potasio tiene influencia en las propiedades texturales y básicas del material, lo cual afecta su desempeño como catalizador en la reacción de transesterificación. Los materiales donde el potasio se incorporó dentro de la estructura cristalina, mostraron propiedades texturales deseables (alta área específica y volumen alto de poro), sin embargo los rendimientos de biodiesel obtenidos al usarlos fueron bajos (< 10%)

En contraste, la adición de K_2CO_3 mediante impregnación simple en los materiales aumenta la cantidad de sitios basicos fuertes y por ende su actividad catalitica. Altos rendimeintos de biodiesel fueron obtenidos para el trititanato de sodio impregnado (92-95 %) y el octatitanato de potasio imprenado (47%). No obstate, debido a la depósito del K_2CO_3 en la superfice de los soportes, se vio una reduccion en la superfice especifica de las muestras, observando que la carga óptima a usar eso fue 5% en peso de K_2CO_3 . Con el fin de estudiar el efecto de la cantidad de catalizador empleada, la temperatura y el tiempo de reacción, en el rendimiento de la reacción se realizó un diseño factorial de experimentos 2³ (tres variables a dos niveles) para el trititanato de sodio impregnado con 5% m/m de K₂CO₃ (NTNa-KC5). El modelo obtenido, mostró ser estadísticamente significativo y representativo del sistema. Se encontró que la temperatura y el tiempo de reacción son las variables con mayor impacto en el proceso de producción de biodiesel.

Tabla de contenido

Abstrac	t	5
Resume	en	7
1.	Introducción	1
2.	Marco Teórico	4
2.1.	Biocombustibles	5
2.1.1.	Primera generación	5
2.1.2.	Segunda generación	6
2.1.3.	Tercera generación	6
2.1.4.	Cuarta generación	7
2.2.	Biodiesel	7
2.2.1.	Antecedentes históricos del empleo del biodiesel	9
2.2.2.	Ventajas y desventajas del empleo del biodiesel	10
2.2.3.	Esterificación	12
2.2.4.	Transesterificación de aceites vegetales	13
2.2.4.1.	Temperatura y tiempo de reacción	16
2.2.4.2.	Relación alcohol:aceite vegetal	16
2.2.5.	Tipos de catálisis empleados en la producción de biodiesel	16
2.2.5.1.	Catálisis homogénea básica	17
2.2.5.2.	Catálisis heterogénea	18
2.3.	Catalizadores nanoestructurados	19
2.3.1.	Titanatos nanoestructurados	20
2.3.1.1.	Titanatos de potasio	21
2.3.1.2.	Trititanato de sodio	22
3.	Hipótesis	24
4.	Objetivos	25
4.1.	Objetivo general	25
4.2.	Objetivos particulares	25
5.	Procedimiento experimental	26

Índice

5.1.	Síntesis de catalizadores	_ 26
5.1.1.	Síntesis de titanato de potasio mediante tratamiento hidrotérmico	_ 26
5.1.2.	Síntesis de titanato de sodio mediante tratamiento hidrotérmico	_ 26
5.1.3.	Incorporación de potasio en titanato de sodio mediante intercambio iónico_	_ 27
5.1.4.	Preparación de catalizadores impregnados con K ₂ CO ₃	_ 27
5.2.	Caracterización de los catalizadores	_ 28
5.2.1.	Fisisorción de N ₂	_ 28
5.2.2.	Difracción de rayos X (DRX)	_ 33
5.2.3.	Microscopia electrónica de barrido (SEM- EDX) y de transmisión (TEM)	_ 36
5.2.4.	Desorción de dióxido de carbono a temperatura programada (TPD- CO ₂) _	_ 37
5.2.5.	Espectroscopia de infrarrojo (FT-IR)	_ 37
5.3.	Reacción de transesterificación	_ 38
5.3.1.	Viscosidad cinemática	_ 39
5.3.1.1.	Resonancia magnética nuclear de protón (RMN de ¹ H)	_ 39
6.	Resultados	_ 42
6.1.	Γ-Alúmina impregnada con K₂CO₃ (Al-KC5)	_ 42
6.1.1.	Difracción de rayos X	_ 42
6.1.2.	Microscopia electronica de barrido (SEM-EDX)	_43
6.1.3.	Fisisorcion de N ₂	_ 44
6.1.4.	Desorción de dióxido de carbono a temperatura programada (TPD-CO ₂)	_46
6.1.5.	Espectroscopia de Infrarrojo (FT-IR)	_ 48
6.1.6.	Evaluación de la actividad catalica	_ 50
6.2.	Titanato de potasio sintetizado mediante tratamiento hidrotérmico (NTK y N KC5)	TK- _ 51
6.2.1.	Difracción de rayos X	_ 51
6.2.2.	Microscopia electrónica de barrido (SEM-EDX)	_ 52
6.2.3.	Microscopia electrónica de transmisión (TEM)	_ 53
6.2.4.	Fisisorcion de N ₂	_ 54
6.2.5.	Desorción de CO ₂ a temperatura programada (TPD-CO ₂)	_ 56
6.2.6.	Espectroscopia de infrarrojo (FT-IR)	_ 57
6.2.7.	Evaluación de la actividad catalítica	58

Índice

6.3.	Titanatos de sodio- potasio preparados mediante intercambio iónico (NTNaXKY)	60
6.3.1.	Difracción de rayos X	60
6.3.2.	Microscopia electrónica de barrido (SEM- EDX)	61
6.3.3.	Microscopia electrónica de transmisión (TEM)	63
6.3.4.	Fisisorcion de N ₂	64
6.3.5.	Desorción de dióxido de carbono (TPD- CO ₂)	66
6.3.6.	Espectroscopia de Infrarrojo (FT-IR)	69
6.3.7.	Evaluación de la actividad catalítica	70
6.4.	Titanato de sodio impregnado con K2CO3	72
6.4.1.	Difracción de rayos X	72
6.4.2.	Microscopia electrónica de barrido (SEM-EDX)	73
6.4.3.	Microscopia electrónica de transmisión (TEM)	75
6.4.4.	Fisisorción de N ₂	76
6.4.5.	Desorción de CO ₂ a temperatura programada (TPD-CO ₂)	77
6.4.6.	Espectroscopia de Infrarrojo (FT-IR)	79
6.4.7.	Evaluación de la actividad catalítica	80
6.5.	Comparación entre los métodos de síntesis de los catalizadores	82
7.	Diseño de experimentos para el catalizador NTNa-KC5	84
8.	Conclusiones	89
9.	Referencias	91
10.	Anexos	101
10.1.	Anexo A	101
10.2.	Anexo B	103

Lista de abreviaturas

AGL	Ácido graso
BET	Brunnauer, Emmett y Teller
BJH	Barrett-Joyner-Halenda
CCD	Dispositivo de carga acoplada
CRT	Pantallas de rayos catódicos
DG	Diglicéridos
DRX	Difracción de rayos X de polvos
ECS	Comité Europeo para la Estandarización
FT-IR	Espectroscopia de infrarojo
GEI	Gases de efecto invernadero
GL	Glicerina
ME	Metil ésteres
MG	Monoglicéridos
PB	Punto de nube
PC	Punto de congelación
POFF	Punto de obstrucción de filtros
RMN ¹ H	Resonancia magnética nuclear de protón
S _{BET}	Área específica
SEM	Microscopia electrónica de barrido
TEM	Microscopia electrónica de transmisión
TG	Triglicéridos
TPD-CO ₂	Desorción de CO₂ a temperatura programada

1. Introducción

El agotamiento de las reservas mundiales de petróleo, así como el aumento de la preocupación por el cuidado del medioambiente han estimulado la búsqueda de combustibles renovables alternativos capaces de satisfacer una creciente demanda energética [3–6].

Actualmente el 80% de la energía que se consume a nivel mundial proviene de fuentes fósiles de ésta, el 58% se emplea en el sector de trasporte [7, 8]. En México, el panorama sigue la misma tendencia, para 2008 el consumo del sector transporte representó el 47 % del total de la energía consumida en el país; en este sector, el autotransporte consumió el 91 % del consumo energético [9].

En esta perspectiva, debido al aumento de la población nacional [10], se estima que entre 2015 y 2030 la demanda de combustibles para empleo en el sector de transporte experimentará un incremento de 40%, pasando de un requerimiento de 1,096 MBDPCE en 2015 a 1,534 MBDPCE en 2030. Del volumen total previsto en el 2030 se espera que las gasolinas sean las de mayor demanda, representado el 57.4% de esta, mientras que el diésel representará el 34.5%, resultado de un uso intensivo en el autotransporte. El resto de la demanda total será cubierta entre turbosina (6.3%), gas LP (1.6%) y gas natural (0.2 %) [11].

Por otra parte, el empleo de los combustibles fósiles provoca en la emisión de contaminantes a la atmosfera, los cuales además de disminuir la calidad del aire que respiramos, deterioran el medio ambiente mediante la propiciación de fenómenos como la lluvia acida y el cambio climático.

En México, las emisiones totales de gases de efecto invernadero (GEI) están estrechamente relacionadas con el consumo de combustibles fósiles, los cuales contribuyen en promedio, con 64% de éstas [12, 13]. Así mismo, las estimaciones, arrojan que para 2020 el sector transporte podría concentrar 39% de las emisiones [7]. Las fuentes de energía renovables (a menudo denominadas como energías alternativas) tienen el potencial de proporcionar servicios energéticos con cero o casi cero emisiones de contaminantes del aire y gases de efecto invernadero [8]. En este sector, se han intensificado los esfuerzos por desarrollar tecnologías que permitan la producción de biocombustibles (los cuales tienen un menor impacto ambiental) a un costo competitivo con los derivados del petróleo.

De 2001 a 2011 la producción de biocombustibles a nivel mundial creció en un 19.8%, siendo para 2011 equivalente al 3% del consumo mundial del sector del transporte.

Capítulo 1

Los principales biocombustibles producidos son el etanol (producido principalmente del maíz y caña de azúcar) y el biodiesel (producido a partir de aceites vegetales y grasas animales) [11]. El bioetanol y el biodiesel tienen el potencial para remplazar a la gasolina y el diésel fósil, respectivamente. En el caso del biodiesel, su empleo no se encuentra restringido a modificaciones en los motores de ignición para diésel y puede ser mezclado en todas proporciones con el diésel convencional. Su empleo más común es como aditivo en una mezcla de proporción 20% biodiesel y 80% diésel.

Debido a las numerosas ventajas que presenta este combustible (bajo impacto ambiental, biodegradabilidad y no toxicidad) su producción se ha incrementado notablemente en los últimos años. En 2011 la producción mundial de biodiésel fue de 21.4 millones de litros, de los cuales la Unión Europea lideraba en la producción con un 43% del total, seguida del continente americano con un porcentaje cercano a 30% [14, 15]. Con respecto a la producción por país, Estados Unidos y Alemania tenían la mayor aportación al mercado con una producción individual de 3.2 millones de litros, seguidos de Argentina 2.8 millones de litros, Brasil 2.7 millones y Francia con 1.6 millones de litros. La síntesis de biodiesel se puede llevar a cabo mediante distintos procesos, en general al realizar la reacción en presencia de un catalizador, los triglicéridos reaccionan con un alcohol de cadena corta para producir esteres metílicos. A nivel industrial el proceso más aplicado es mediante la reacción de transesterificación catalizada por una especie básica en fase homogénea.

Los catalizadores más empleadas son NaOH, KOH, metóxido de sodio y metóxido de potasio. Su amplio uso se encuentra relacionado con las condiciones moderadas de reacción que propician (20°C - 80°C y 1 atm), además de tener un costo asociado relativamente bajo. Sin embargo, el producto final es más caro que el proveniente de petróleo, debido a que posterior a la salida de los productos del reactor, se requiere aplicar distintas operaciones unitarias para separar el biodiesel y la glicerina de los reactivos que no reaccionaron (alcohol que se encontraba en exceso y el catalizador). En este caso el catalizador no se puede reutilizar, además de que se convierte en un residuo altamente alcalino, el cual requiere de un pretratamiento antes de ser desechado.

Ante este problema la comunidad científica ha propuesto distintas alternativas para hacer más competitivo el precio del biodiesel, entre las que destacan la disminución del costo de las materias primas (por el empleo de aceites remanentes del sector alimenticio [16, 17] y provenientes de cultivos no comestibles [18]), el empleo de sistemas vivos como enzimas y baterías [19, 20], así como el desarrollo de nuevos materiales capaces de catalizar la reacción en fase heterogénea [7, 21].

Capítulo 1

Esta última alternativa mejora la calidad de los esteres producidos y la glicerina, facilita la separación del catalizador (el cual puede ser reutilizado), disminuye los costos de purificación y por ende el costo total del proceso. A la fecha se han reportado el empleo de una amplia gama de compuestos sólidos, en la producción de biodiesel: óxidos de calcio activados [22–24], mezclas de óxidos metálicos [25], zeolitas [26], heteropoliacidos modificados con Cs [3], hidróxidos de metales alcalinotérreos soportados [27, 28], carbonato de potasio soportado [25, 29, 30] y titanatos de sodio nanoestructuados [31, 32] entre otros.

En el presente proyecto se realizó un estudio comparativo del desempeño en la transesterificación de materiales nanoestructurados de titania en los cuales se incorporó potasio por diferentes vías: síntesis hidrotérmica, intercambio iónico e impregnación por humedad incipiente.

2. Marco Teórico

Actualmente, la utilización de biomasa como combustible representa sólo el 3% del consumo energético de los países industrializados. Sin embargo, en los países en vías de desarrollo gran parte de la población rural (la cual es alrededor del 50% de la población mundial) depende de ésta, principalmente en forma de madera para combustible. En estos países, la energía proveniente de la combustión de biomasa representa el 35% de la producción nacional. De esta manera el 14% del consumo energético mundial proviene del empleo de biomasa [8, 33, 34].

La biomasa es definida por la directiva 2009/28/CE como la fracción biodegradable de los productos, desechos y residuos de origen biológico procedentes de actividades agrarias (incluidas las sustancias de origen vegetal y animal), de la silvicultura y de las industrias conexas, incluida la pesca y la agricultura, así como la fracción biológica degradable de los residuos industriales [35, 36] (Figura 2-1).

Figura 2-1. Tipos de biomasa [35].

La energía que acumula la biomasa tiene su origen en el sol: a partir de la fotosíntesis, las plantas absorben energía lumínica del sol, agua del suelo y CO₂ de la atmosfera, almacenando en ellas sustancias orgánicas (fuentes de energía) y liberando oxigeno durante el proceso (Figura 2-1). Posteriormente los animales incorporan y trasforman esta energía al alimentarse de las plantas por lo que los residuos de esta trasformación, también pueden ser utilizados como recursos energéticos [8, 35].

La explotación de las diversas fuentes de biomasa mediante los distintos procesos de trasformación de ésta en energía (combustión directa, pirólisis, gasificación, fermentación, digestión anaeróbica, etc.) permiten plantear una gran cantidad de posibles aplicaciones entre las que se destacan la producción de energía térmica, electricidad, biocombustibles y gases combustibles.

2.1. Biocombustibles

El término biocombustible se refiere a combustibles, ya sean solidos (biochar), líquidos (etanol, aceite vegetal, biodiesel) o gaseosos (biogás e hidrogeno) (Tabla 2-1) que son producidos principalmente a partir de biomasa, cuya finalidad es liberar la energía contenida en sus componentes químicos mediante una reacción de combustión [37].

Tipos de biocombustibles						
Sólidos	Líquidos	Gaseosos				
Paja	Alcoholes					
Leña sin procesar	Hidrocarburos	Biogás				
Astillas	Aceites vegetales	Hidrógeno				
Briquetas y pellets	Ésteres derivados de aceites vegetales					
Triturados finos	Aceites de pirólisis					
Carbón vegetal						

	Tabla 2-1. Lista de bioco	ombustibles t	ípicos [38].
--	---------------------------	---------------	----------	------

Existen diferentes tipos de biocombustibles, a los cuales comúnmente se les clasifica de acuerdo al insumo y a la tecnología empleada para producirlos. Debido a los avances en la tecnología, esta clasificación se realiza por generaciones [39].

2.1.1. Primera generación

Se denomina biocombustibles de primera generación, aquellos que son producidos principalmente a partir de insumos de origen agrícola y están formados por las partes alimenticias de las plantas, cuyo contenido de almidón, azúcares y aceite es alto [40, 41]. Su producción se basa en tecnologías convencionales como: la fermentación (para azúcares y carbohidratos), transesterificación (para aceites y grasas), y la digestión anaeróbica (para los desperdicios orgánicos).

De estos procesos se obtienen etanol, metanol y n-butanol (a partir de azúcares), biodiesel (a partir de los aceites y grasas), y biogás (mezcla de metano y dióxido de

carbono). Las ventajas que destacan de esos combustibles son: su facilidad de procesamiento y sus bajas emisiones de gas de efecto invernadero. No obstante, tienen la desventaja del desvío de recursos alimenticos hacia la producción de energéticos [38, 40].

2.1.2. Segunda generación

Los biocombustibles de segunda generación se producen a partir de residuos agrícolas o forestales compuestos por celulosa, por ejemplo: la paja de trigo, aserrín, hojas y ramas secas de árboles, el bagazo de la caña de azúcar, los tallos y las hojas de maíz [42]. Los procesos de producción tienen un nivel de complejidad más alto que los de primera generación. Se pueden destacar como ejemplos los procesos: sacarificación-fermentación y el proceso Fischer-Tropsch. Este último proceso también recibe el nombre de proceso GTL y proceso BTL, cuyas siglas en ingles proveniente de "Gas-To-Liquids y "Biomass-To-Liquid", respectivamente, los cuales consisten en la gasificación del carbono y de la materia lignocelulósica de la biomasa, para después sintetizar algún combustible líquido como etanol. A través de los procesos de segunda generación se fabrica etanol, metanol, gas de síntesis (mezcla de metano y dióxido de carbono), biodisel, 2.5-dimetilfurano (DMF) entre otros [40].

El empleo de los biocombustibles de segunda generación es ventajoso, en el aspecto de que no requiere una desviación de alimentos provenientes de la agricultura hacia el sector energético, no obstante tienen la desventaja de una poca ganancia en disminución de las emisiones de gases de efecto invernadero durante el procesamiento de los insumos, respecto a los biocombustibles de primera generación [38, 41].

2.1.3. Tercera generación

Los biocombustibles de tercera generación (bioetanol y biodiesel) se generan a partir de cultivos no alimenticios de crecimiento rápido. Como ejemplo de éstos se pueden mencionar: los pastos perennes, árboles y plantas de crecimiento rápido y las algas verdes y verde azules [42]. Dichos cultivos cuentan con una alta densidad energética almacenada en sus componentes químicos, por lo que se les denomina "cultivos energéticos". Las algas, por ejemplo, cuentan con un potencial energético que en el mejor de los casos puede llegar a ser 30 veces mayor que el de los cultivos energéticos en tierra, ya que capturan gran cantidad de energía solar y se reproducen rápidamente [39, 40].

Las ventajas de estos biocombustibles son el secuestro de dióxido de carbono para la producción de los insumos y un balance positivo de la emisión de gas de efecto invernadero [40, 41]. Sin embargo, tienen ciertos inconvenientes, puesto que por el

momento el empleo de esta tecnología a gran escala no es económicamente viable, además de que tiene la desventaja del uso de tierras comúnmente destinadas al cultivo de alimentos, excepto las algas verdes [39].

2.1.4. Cuarta generación

En esta clasificación entran los biocombustibles que son producidos a partir de microorganismos genéticamente modificados (bacterías y algas), las cuales emplean una fuente de carbono como dióxido de carbono (CO₂) para la producción de los mismos [19]. La aplicación de esta tecnología tiene ciertas ventajas, debido a que a pesar de que las microalgas crecen en un medio acuático, necesitan menos agua que los cultivos terrestres y pueden ser cultivadas en agua de mar o cuerpos de agua en tierras no cultivables, por lo que no compiten por recursos con la agricultura convencional. Además de que su cultivo no requiere herbicidas, ni pesticidas y los nutrientes requeridos por las microalgas pueden obtenerse de aguas residuales (especialmente nitrógeno y fósforo) [19]. Por otra parte, el proceso tiene limitaciones termodinámicas, debido a que el consumo energético que presenta es mayor al aporte que podría proporcionar el combustible por sí mismo. Esto se debe al alto consumo energético de las operaciones unitarias como en el bombeo de agua, la transferencia de CO₂, la mezcla de la suspensión de cultivo y la recolección-deshidratación de las algas [19].

2.2. Biodiesel

Se puede describir al biodiesel como una mezcla de ésteres monoalquilados de ácidos grasos de cadena larga derivados de fuentes renovables tales como aceites vegetales o grasas animales y que puede ser empleados en motores diésel [43]. El término biodiesel alude al combustible puro, denominado B100, el cual puede usarse en este estado, pero se usa con mayor frecuencia como aditivo para el combustible diésel convencional [44].

La proporción más común de las mezclas es 20% de biodiesel y 80% de diésel convencional. Las propiedades físicas y químicas del biodiesel dependen de la materia de origen, así como del proceso por medio del cual fue obtenido. No obstante, éste debe de cumplir con especificaciones establecidas con el fin de asegurar su calidad y correcto empleo como combustible en los motores de ignición.

Las especificaciones del biodiesel son reguladas en Estados Unidos por la ASTM (Sociedad Americana para Pruebas y Materiales) por medio de la norma ASTM D6751, y en la Unión Europea por la ECS (Comité Europeo para la Estandarización) por medio de la norma EN 14214 [42]. En la Tabla 2-2 se presenta un resumen de las propiedades del biodiesel que son especificadas en estas normas.

La alta viscosidad del biodiesel está relacionada con el gran tamaño de las moléculas que componen los triglicéridos. La viscosidad del líquido afecta las propiedades de flujo del combustible, como la atomización de espray, la vaporización y la mezcla de airecombustible [6].

Propiedades Físicas y Químicas del Biodiesel	Estados Unidos	Europa
Norma	ASTM D6751-08	ECS 14214
Punto Flash mínimo (°C)	93	105
Agua y sedimentos (vol. % máx.)	0.05	0.05
Viscosidad cinemática a 40 °C (cSt)	1.9-6	3.5-5
Número mínimo de cetano	47	51
Numero de acidez (mg KOH/g máx.)	0.5	0.5
Residuos de carbón (% m/m, máx.)	0.05	0.03
Total del glicerina libre (%m/m, máx.)	0.24	0.25
Contenido mínimo de esteres (%m/m)	-	96.5
Densidad a 15 °C (kg/ m ³)	-	860-900
Contenido máximo de sulfuros (%m/m)	0.0015	0.001
Contenido máximo de fosforo (%m/m)	0.001	0.0004

	0 D			le tra alta a a l	гo	4 5 1
Tabla 2	- Z . Pro	piedades	ae	piodiesei	Įð,	40J.

La combustión del biodiesel en los motores de ignición es una alternativa atractiva al empleo del diésel, debido a que no es necesario modificar el diseño de los motores de ignición existentes para el uso del mismo como aditivo en mezclas de diésel de origen fósil [6, 46]. Las propiedades que más deben ser consideradas durante la producción del biodiesel, para su empleo en motores de ignición-compresión, son: la viscosidad cinemática, la densidad, el número de cetano, la capacidad calorífica, el punto flash y la estabilidad oxidativa [47]. De éstas, la viscosidad cinemática, destaca por ser empleada para medir la calidad del biodiesel [42].

Figura 2-2. Esfuerzo simple sobre una capa de líquido.

La viscosidad es una propiedad reológica de todos los fluidos es función de la temperatura y presión. Se entiende como la resistencia que ofrecen un líquido o gas a fluir, debido a la fricción interna de un fluido sobre otro [48]. La viscosidad absoluta o dinámica, es la fuerza tangencial por unidad de área que se requiere para desplazar una superficie (A) de líquido, sobre una superficie (B) como se muestra en la Figura 2-2 [48].

La viscosidad cinemática por su parte es el cociente de la viscosidad absoluta entre la densidad del fluido (ecuación 2-1).

$$\nu = \frac{\mu}{
ho}$$
 (2-1)

2.2.1. Antecedentes históricos del empleo del biodiesel

El empleo de la biomasa sin procesar se remonta al descubrimiento del fuego por la humanidad y data de hace miles de años, sin embargo, no fue hasta finales del siglo XIX que comenzó la historia de los biocombustibles. La posibilidad del empleo de aceites vegetales como combustibles fue planteada por primera vez en la exposición mundial de 1900 con sede en París. Ahí se presentaron por primera vez, cinco modelos del motor diésel, uno de los cuales empleaba aceite de cacahuate como combustible [45].

Como describe el Dr. Rudolph Diésel, en su obra: "El desarrollo de los motores diésel" el prototipo de dicho motor, estaba previsto para funcionar con aceites vegetales, pero la alta viscosidad cinemática que presentaban los aceites vegetales ocasionaba la generación de depósitos indeseables, que perjudicaban la operación del motor [5, 49]. Ante este problema, los investigadores de esa época optaron por el uso del diésel proveniente del petróleo, el cual presentaba una menor viscosidad y cuyo costo de producción era bajo.

No fue hasta la crisis energética de 1970 - 1980 que surgió nuevamente el interés por la investigación de las fuentes de energía alternativas. En este contexto, los aceites vegetales fueron recordados y retomados como una fuente viable de diésel alternativo [49]. Hasta la actualidad, los investigadores han planteado cuatro posibles soluciones a

la alta viscosidad cinemática que presentan los aceites vegetales y animales: pirólisis, dilución de aceites en diésel derivado de petróleo, microemulsificación y transesterificación [50]. El presente trabajo se centrará es ésta última.

2.2.2. Ventajas y desventajas del empleo del biodiesel

Debido a que el biodiesel cuenta con propiedades diferentes a las del diésel convencional, su empleo presenta ventajas y desventajas con respecto a este.

Dentro de las múltiples cualidades que hacen al biodiesel un sustituto a los combustibles fósiles se pueden enumerar las siguientes:

- Es compatible con los motores diésel existentes. Tienen una alta lubricidad, lo que reduce las perdidas energéticas por fricción y extiende la vida útil de los motores [47].
- Tiene la capacidad de ser mezclado en cualquier proporción con combustible diésel proveniente del petróleo. La proporción más común se conoce como B20 y es una mezcla de 20 % de biodiesel y 80% de diésel de petróleo [51].
- Al provenir de fuentes renovables, biodegradables propicia una menor dependencia de los combustibles fósiles [50].
- Es menos tóxico que el diésel de petróleo [52].
- Debido a su punto de inflamación alto, es más seguro de transportar y almacenar.
- El empleo del biodiesel como combustible ayuda a reducir las emisiones de gases de efecto invernadero debido a que el CO₂ producido durante la combustión, es el mismo que el removido del ambiente mediante el proceso de fotosíntesis durante la producción de biomasa. Esto favorece un ciclo cerrado de CO₂ [8]. Tal como se observa en la Figura 2-3.
- Su perfil de emisión de SO_x es de 20 a 30 veces menor que el de los combustibles convencionales [51].
- Exhibe una combustión mejorada, debido a su alto contenido de oxígeno [53].
- Puede ser usado en calderas u hornos diseñados para usar aceites de calefacción o en equipos de iluminación alimentados con aceite [8].

Figura 2-3. Esquema del ciclo de vida del biodiesel [54].

Por otra parte dentro de las desventajas que presenta su empleo, se pueden mencionar las siguientes:

- Presenta una mayor viscosidad cinemática que el diésel convencional, lo que puede causar problemas de pérdidas de flujo a través de los filtros e inyectores [47].
- Tienen malas propiedades a bajas temperaturas, su punto de congelación (PC), punto de nube (PB) y su punto de obstrucción de filtros (POFF) son superiores al diésel convencional, lo que dificulta su empleo en invierno o lugares donde las temperaturas son bajas durante la mayor parte del año [51].
- Su empleo aumenta las emisiones de NO_x [55].
- Debido a su composición química ataca toda pieza construida a partir de caucho o goma, por ejemplo, las mangueras y juntas del motor [42].

2.2.3. Esterificación

La esterificación es la reacción que ocurre entre un ácido graso libre (AGL) y un alcohol en presencia de un catalizador ácido (en condiciones anhidras) para producir biodiesel. Para su realización, se requiere una materia prima con alto contenido en ácidos grasos libres [31]. En la Figura 2-4 se presenta el esquema general de la reacción de esterificación.

Capítulo 2

Figura 2-4. Reacción de esterificación.

Esta forma de producción es la segunda forma convencional de hacer el biodiesel. La idea es utilizar la esterificación de los triglicéridos con alcohol y un catalizador ácido, el más comúnmente empleado es el ácido sulfúrico aunque algunos autores prefieren el ácido sulfónico. Este tipo de catalizador da un rendimiento muy alto de ésteres, pero la reacción es muy lenta, requiriendo casi siempre más de un día para que se lleve a cabo [50].

De acuerdo al mecanismo de reacción (Figura 2-5) se pueden formar fácilmente ácidos carboxílicos por hidrólisis del carbocatión intermediario de reacción, formado tras la protonación del éster. Esto sugiere que la transesterificación catalizada por ácido debería ser llevada a cabo en ausencia de agua para evitar la formación competitiva de ácidos carboxílicos y la reducción concomitante en los rendimientos de ésteres alquílicos [42].

Por otra parte, en la práctica este proceso tiene varios inconvenientes, como el hecho de que el alcohol puede sufrir reacciones de eliminación formando olefinas, esterificación con el propio ácido sulfúrico o formación del éter y el ácido orgánico puede sufrir decarboxilación.

Figura 2-5. Mecanismo de reacción de la reacción de esterificación [42].

2.2.4. Transesterificación de aceites vegetales

El proceso para la producción de biodiesel que actualmente es más empleado es el catalizado en medio básico homogéneo, debido a que la reacción de transesterificación por un catalizador ácido es mucho más lenta que la reacción catalizada por la base. Los catalizadores básicos más comunes son hidróxido de potasio (KOH), hidróxido de sodio (NaOH), metóxido de sodio (OCH₃Na) y etóxido de sodio (OCH₂CH₃Na), debido a su gran actividad catalítica, condiciones moderadas de reacción y bajo costo [54].

A mediados del siglo XIX, se descubrieron tanto la reacción de alcohólisis catalizada en medio básico como la reacción de intercambio de ester inducida por la temperatura. Ambos son ejemplos de reacciones en las que un éster hecho de un ácido carboxílico y un alcohol reacciona para formar un éster diferente [56]. A pesar de que la reacción de transesterificación catalizada en medio básico se conoce desde los años 1880's, no fue hasta 1920 y 1921 que fue estudiada sistemáticamente [57].

Si el éster reacciona con un ácido carboxílico diferente, la reacción de intercambio de ésteres se denomina acidólisis, si reacciona con un alcohol se denomina alcohólisis o más específicamente metanólisis, etanólisis, glicerólisis, etc.

Figura 2-6. Reacción de transesterificación [58].

Cuando el ester reacciona con otro ester, el término que se utiliza generalmente es la interesterificación. Sin embargo, esta nomenclatura no está universalmente en vigor, la conversión de triglicéridos en biodiesel se denomina transesterificación [56].

En la reacción de transesterificación de aceites, triglicéridos reaccionan con alcohol (los más empleados comúnmente son metanol o etanol) para producir ésteres y glicerina. Para que la reacción se lleve a cabo se requiere el empleo de un catalizador [59]. La relación estequiométrica entre alcohol y aceite es de 3:1, sin embargo, se suele emplear un exceso de alcohol con el fin de desplazar el equilibrio de la reacción hacia la formación de productos (Figura 2-6).

Capítulo 2

Triglicéridos (TG)	+	R'OH	K1 K-1	Diglicéridos (DG)	+	R'COOR ₁
Diglicéridos (DG)	+	R'OH	K2 K-2	Monoglicéridos (MG)	+	R'COOR ₂
Monoglicéridos (MG)	+	R'OH	K3 K-3	Glicerina (GL)	+	R'COOR ₃

Figura 2-7. Esquema del proceso de transesterificación [59].

El proceso es normalmente una secuencia de tres etapas consecutivas, las cuales son reacciones reversibles. En la primera reacción triglicéridos reaccionan con alcohol para producir diglicéridos, posteriormente se generan monoglicéridos y por último éstos reaccionan para formar glicerina, como se observa en las Figuras 2-7 y 2-9. En cada una de estas reacciones se producen esteres [59].

En este proceso es mejor producir el alcóxido antes de la reacción para obtener una mejor eficiencia global (Figura 2-8).

Figura 2-8. Reacción de producción del alcóxido de sodio.

No obstante, la transesterificación presenta varios inconvenientes, dentro de los cuales destaca el requerimiento de materia prima de alta calidad, debido a que si se tiene un porcentaje mayor a 4% de ácidos grasos libres se necesita aplicar un pretratamiento para eliminarlos (esterificación ácida).

Capítulo 2

Figura 2-9. Mecanismo de reacción de la reacción de transesterificación de un triglicérido con metanol en presencia de un catalizador básico [42].

Las variables que se deben considerar para llevar a cabo esta reacción son: la temperatura de reacción, la relación alcohol-aceite vegetal, la naturaleza y cantidad de catalizador a emplear.

2.2.4.1. Temperatura y tiempo de reacción

En la reacción de transesterificación la temperatura tiene una notable influencia en la rapidez de reacción y la conversión de esteres. Se pueden emplear diferentes combinaciones de estos dos parámetros con el fin de obtener altos rendimientos de biodiesel, la selección de estos dependerá tanto de la naturaleza del catalizador empleado, así como del aceite y alcohol empleados [7, 59].

A una mayor temperatura disminuye la viscosidad de los productos obtenidos y se tienen un menor tiempo de reacción. Pero si la temperatura es aumentada a un nivel más allá del óptimo, se favorece la reacción de saponificación de los triglicéridos, con lo que disminuye la calidad del biodiesel obtenido [42, 60].

2.2.4.2. Relación alcohol:aceite vegetal

Una de las variables más importantes que afectan el rendimiento de la reacción de transesterificación es la relación molar entre reactivos (alcohol y aceite vegetal o grasa animal). La relación estequiométrica requiere 3 moles de alcohol por 1 mol de triglicérido para producir tres moles de ésteres alquílicos y 1 mol de glicerol. Sin embargo, la reacción de transesterificación es una reacción reversible, en donde un exceso en la concentración de alcohol es requerida para poder desplazar el equilibrio hacia productos (Figura 2-6) [8].

Otro factor importante es la naturaleza del alcohol debido a que mientras sean moléculas de una mayor cadena de carbonos, éstos tienden a tener un carácter menos polar, por lo que aumenta la solubilidad de los triglicéridos en estos. Esta situación puede generar emulsiones estables a temperatura ambiente lo que posteriormente hace más difícil la separación de los productos. Los alcoholes comúnmente empleados son el etanol y el metanol, en ambos los triglicéridos son inmiscibles a temperatura ambiente, por lo que se requiere agitación mecánica en los reactores con el fin de favorecer la transferencia de masa (el contacto entre los reactantes) [61]. A pesar de que el empleo de metanol en la reacción genera menos problemas de separación de los productos, su toxicidad y el hecho de que proviene de fuentes fósiles, hacen que tienda a preferir el uso de etanol [62].

2.2.5. Tipos de catálisis empleados en la producción de biodiesel

Se puede definir a un catalizador como una sustancia que es capaz de acelerar la rapidez de una reacción [63]. Esto pasa cuando el catalizador cambia el mecanismo de la reacción, por uno cuya energía de activación es menor al de la reacción original. Los catalizadores actúan en la reacciones mediante la formación y descomposición de compuestos intermediarios, regenerando el catalizador al final de la reacción [64].

La catálisis es clasificada con respecto a las propiedades del catalizador y el sistema reaccionante. Con respecto a las características del sistema, se suele clasificar la catálisis en tres tipos: homogénea, heterogénea y biocatálisis (enzimática) [63]. En la catálisis homogénea, tanto los reactivos como el catalizador se encuentran en la misma fase. En la catálisis heterogénea el catalizador se encuentra en una fase diferente a la de los reactantes, pero se encuentran en contacto mediante una interface (en la mayoría de

los casos el catalizador se encuentra en fase sólida y los reactivos se encuentran en fase liquida o gaseosa).

Por otra parte, la biocatálisis estudia las reacciones catalizadas por enzimas. La cinética enzimática se parece a la de los sistemas heterogéneos, sin embargo, discierne en algunos aspectos [65]. Por ejemplo, presentan una alta especificidad entre los reactivos (substrato) y el catalizador (enzima). En la mayoría de las ocasiones una enzima es capaz de catalizar solo una reacción con un substrato [66].

Al tomar en cuenta la naturaleza química del catalizador, la catálisis puede ser dividida en ácida y básica. La producción de biodiesel puede ser catalizada tanto por especies ácidas, como básicas y enzimas. Sin embargo, la catálisis básica es la más empleada en la producción industrial, debido a que es más eficiente y reactiva que la ácida, además de que al ser menos corrosiva con el equipo industrial permite el empleo de materiales menos costosos en las instalaciones.

2.2.5.1. Catálisis homogénea básica

Actualmente los catalizadores más empleados en la reacción de transesterificación para producir biodiesel son especies básicas en medio homogéneo. Los catalizadores básicos más comunes son hidróxido de potasio (KOH), hidróxido de sodio (NaOH), metóxido de sodio (CH₃ONa) y etóxido de sodio (CH₂CH₃ONa) [3].

A pesar de su amplia aplicación, el proceso homogéneo tiene varios inconvenientes, entre los que se encuentran el requerimiento de materia prima de alta calidad con un contenido máximo de 4% en ácidos grasos libres. Cuando éste se excede la materia prima requiere un pretratamiento para eliminarlos (esterificación ácida). Por otra parte, una vez finalizada la reacción, al estar el catalizador en la misma fase que los productos (biodiesel y glicerina) y los remanentes (metanol que no reaccionó) se pueden llegar a formar emulsiones que posteriormente dificultan la separación de los productos, incrementando notablemente las operaciones unitarias asociadas a la purificación del biodiesel y por lo tanto su costo de producción.

Así mismo, al finalizar la purificación de los productos, no se puede recuperar el catalizador para su posterior reuso, en lugar de esto se obtienen residuos alcalinos, los cuales se deben de neutralizar para no generar problemas ambientales.

2.2.5.2. Catálisis heterogénea

Debido a los problemas previamente expuestos, un amplio esfuerzo se ha hecho por desarrollar materiales capaces de catalizar heterogéneamente la reacción de transesterificación.

Catalizador	Materia prima	Temperatura de reacción	Tiempo (h)	Relación molar	Rendimiento de biodiesel	Ref.
		(°C)		(MeOH/	(%)	
Cianuro de	Aceite de	170	3	15·1	92	[67]
Fe-Zn	Girasol					[0,]
S-ZrO ₂	Aceite de soya	120	1	20:1	98.6	[68]
AI(HSO₄)₃	Mezcla de aceites vegetales usados	220	0.83	16:1	81	[69]
CaO/Al ₂ O ₃	Aceite de palma	65	1.3	12:1	98.4	[24]
CaO	Aceite de Jatropha	71	2.5	1:9	93	[70]
KF/ Al ₂ O ₃	Aceite de girasol	75	2	4:1	96	[71]
K2CO3/AI2O3	Aceite de palma	60	1	25:01	99	[72]
KNO3/AI2O3	Aceite de soya	65	7	15:01	87	[73]
MgO/TiO ₂	Aceite usado de cocina	170	6	50:01	91.6	[74]
MgO/SBA15	Aceite de canola	220	5	6.5:1 Etanol	96	[75]
K/TiO ₂	Aceite de canola	70	5	36:01	100	[76]

Tabla 2-3. Ejemplo de catalizadores heterogéneos estudiados en la obtención de biodiesel.

En este ámbito la cantidad y diversidad de los materiales evaluados en la producción de biodiesel es amplia (Tabla 2-3), aunque la mayoría se encuentra limitados a condiciones más severas de reacción y requieren un pretratamiento de calcinación a altas temperaturas. De esta manera el proceso heterogéneo puede presentar mayores costos

asociados a la energía y precursores necesarios para la síntesis del catalizador, además de que si no se tiene una agitación adecuada dentro del reactor, se pueden tener problemas de trasferencia de masa. Sin embargo, con ciertas modificaciones al proceso, dichos materiales tienen el potencial de ser empleados a escala industrial. Ejemplo de esto es el empleo de un catalizador basado en una mezcla de óxidos de zinc y aluminio desarrollado por el Instituto del Petróleo Francés [1]. Este material actualmente es empleado en una planta con una producción anual de 160,000 toneladas de biodiesel y ha demostrado aumentar la calidad de la glicerina obtenida. Sin embargo, el proceso se encuentra restringido a insumos de bajo contenido de ácidos grasos libres [1, 21].

2.3. Catalizadores nanoestructurados

Las propiedades de un sólido dependen de su composición química, arreglo atómico y microestructura. Al reducir la materia a nano escala, ésta muestra diferentes propiedades comparadas a las que exhiben en macro escala [77]. Por ejemplo, sustancias opacas se convierten en transparentes (tal como el Cobre), materiales estables se vuelven combustibles, sustancias que son sólidas a temperatura ambiente, pasan a estado líquido (oro), aislantes se convierten en conductores (silicón) [78].

Un nanomaterial es aquel en el cual al menos una de sus dimensiones se encuentra en un intervalo menor o igual a 100 nm [79]. De acuerdo a las dimensiones que tienen en nanoescala pueden ser clasificadas en cuatro grupos: cero dimensional, unidimensional, bidimensional y tridimensional (Figura 2-10) [80].

En los cero dimensional, sus tres dimensiones(X, Y, Z) son menores a 100 nm (nanoparticulas, fullerenos, partículas coloidales y nanoclusters). Los unidimensionales (1D) tienen dos dimensiones menores a 100 nm, ejemplo de estos son: los nanocables, nanotubos, nanofibras, nanovarillas, fibras poliméricas y nanocampanas. Los bidimensionales (2D) solo poseen una dimensión en nanoescala (<100 nm) tales como: las monocapas, nanorecubirmientos, películas poliméricas (nano). Mientras que los tridimensional (3D) ninguna dimensión es menor a 100 nm [78].

Los nanomateriales tienen un sin fín de aplicaciones en diferentes disciplinas debido a la versatilidad de sus propiedades. En la catálisis su empleo permite disponer de materiales con mayores áreas superficiales. Al disponer de una mayor área efectiva de contacto, se tendrían más sitios activos los cuales resultarían en un mejor catalizador con mayor actividad y selectividad.

Figura 2-10. Clasificación de materiales nanoestructurados: Cero dimensionales (0D), unidimensionales (1D), bidimensionales (2D) y tridimensional (3D) [80].

2.3.1. Titanatos nanoestructurados

Debido a la versatilidad de las propiedades las nanopartículas de dióxido de titanio, estas tienen múltiples aplicaciones en fotocatálisis, sensores de gases, medicina, soportes de catalizadores, pigmentos, cosméticos y celdas solares [81].

El dióxido de titanio (TiO₂) se puede encontrar en tres formas cristalinas: Rutilo, Anatasa y Brookita (Figura 2-11 y 2-12, a partir de las cuales se pueden sintetizar materiales nanoestructurados [82]. Existen varios métodos para sintetizar titania y titanatos nanoestructurados entre los cuales se pueden mencionar: tratamiento hidrotérmico, sol-gel, deposición química de vapor, deposición física de vapor, procesos electroquímicos, técnica de microemulsiones, empleo de micelas y micelas inversas, evaporación de plasma, entre otros. Los métodos más empleados son sol-gel e tratamiento hidrotérmico, debido a que éstos presentan un mayor control de la morfología, el tamaño de la partícula y la cristalinidad de los productos [81, 82].

En cuanto al desarrollo de catalizadores heterogéneos para la producción de biodiesel, las especies básicas soportadas en dióxido de titanio (TiO₂) han demostrado tener actividad catalítica para la reacción de transesterificación [74, 76, 83]. A pesar de ello, una de las mayores desventajas que presentan es su baja área específica.

Una solución planteada a este problema ha sido la síntesis de titanatos nanoestructurados [32, 84–86]. En el presente trabajo se estudió el desempeño de titanato de sodio y titanato de potasio nanoestructurados sintetizados mediante tratamiento hidrotérmico.

Figura 2-11. Celdas unitarias de las diferentes fases de TiO₂. Las esferas grises y moradas representan oxígeno y titanio, respectivamente [82].

Figura 2-12. Estructura cristalina del TiO₂ [82].

2.3.1.1. Titanatos de potasio

Las fibras de titanatos de potasio, con formula K_2O^* nTiO₂ (n= 2,4,6,8), son un grupo de materiales unidimensionales cuyo diámetro varía de 1 a 10 µm [87]. Sus propiedades y estructura cristalina dependen del valor de n. Los compuestos con un alto contenido de potasio (n = 2, 4) tienen una estructura de capa, además de una capacidad de intercalación distintiva y alta actividad catalítica. Mientras que en el caso de aquellos con bajo contenido de potasio (n = 6, 8), presentan una estructura de fibras, así como buenas propiedades de aislamiento térmico y estabilidad química [88]. Se tiene reportada la aplicación de titanatos de potasio nanoestructurados en la reacción de transesterificación [85].

En el presente trabajo se sintetizó octatitanato de potasio mediante síntesis hidrotermica, siguiendo el procedimiento reportado en [89, 90]. El octatitanato de potasio K₂Ti₈O₁₇ posee una estructura estable en forma de túnel, es decir, tiene un armazón que encierra estructuras de túnel formadas por octaedros de TiO₂ de borde y esquina compartidos.

2.3.1.2. Trititanato de sodio

El trititanato de sodio nanoestructurado ha demostrado tener una alta actividad catalítica en la reacción de transesterificación [31, 32, 76]. Recientemente, el grupo de Klimova investigó el desempeño de nanotubos de titania sódicos, sintetizados mediante tratamiento hidrotérmico en la producción de biodiesel, encontrando rendimientos altos de esteres metílicos (94-96%) a condiciones relativamente moderadas (temperatura de reacción: 80°C, tiempo de reacción de 1 h y relación molar aceite: metanol 1:20) [31, 32].

La síntesis mediante tratamiento hidrotérmico de los nanotubos de titania sódicos fue reportada por primera vez en 1998 por Kasuga y col. [91, 92]. El procedimiento de síntesis consiste en colocar TiO₂ (anatasa o rutilo) con una disolución de NaOH en un reactor batch, dejándolo reaccionar a una temperatura de 110 °C bajo agitación magnética durante 20 h. En el procedimiento descrito por Kasuga y col., una vez finalizado el tratamiento hidrotérmico, el producto obtenido es sometido a lavados. Sin embargo, posteriormente se descubrió que dicho paso no es fundamental en su formación [93]. De esta manera numerosos estudios se han realizado sobre el mecanismo de formación de los nanotubos de titania sódicos (Na₂Ti₃O₇) [93–95]. Actualmente el más aceptado es el propuesto por Wang y col. [96].

Mecanismo de formación de nanotubos sódicos [96]:

- 1. El enlace Ti-O-Ti de la fase anatasa octaédrica se rompe (Figura 2-13 a) mientras ocurre la reacción con NaOH durante el tratamiento hidrotérmico (Figura 2-13 b).
- Estos octaedros libres (Ti-O-Ti) se enlazan entre sí, formando puentes OH⁻ con los iones Ti⁴⁺, obteniendo una estructura en forma de zig-zag, lo que conduce al crecimiento unidireccional de la fase (100) (Figura 2-13).
- 3. Ocurre un crecimiento lateral por la formación de puentes oxo entre los centros de Ti (enlaces Ti-O-Ti) en la dirección (001), esto conduce a la formación de hojas cristalinas bidimensionales formadas por los octaedros (TiO₆) (Figura 2-13 d).
- 4. Con el tratamiento hidrotérmico a temperaturas altas, el número de enlaces insaturados aumenta sobre la superficie, para saturar estos enlaces y reducir la relación superficie/volumen, las hojas se en rollan disminuyendo así la energía total. El resultado de este proceso es la formación de nanotubos de trititanato de sodio (Figura 2-13 e).

Capítulo 2

Figura 2-13. Mecanismo de formación de nanotubos sódicos [96].

3. Hipótesis

El método de incorporación de potasio en materiales nanoestructurados con base en titanatos metálicos (Na, K) puede afectar la composición química, las propiedades básicas, texturales y estructurales de los catalizadores y por ende su desempeño catalítico en la reacción de transesterificación de aceite de soya con metanol. Una combinación adecuada de los precursores y método empleado en la síntesis de los titanatos metálicos resultaran en un mejor desempeño catalítico.

4. Objetivos

4.1. Objetivo general

Estudiar el efecto del método de la incorporación de potasio en materiales nanoestructurados con base en titanatos metálicos (Na y K): síntesis por tratamiento hidrotérmico, intercambio iónico e impregnación por humedad incipiente; en el desempeño de éstos como catalizadores de la reacción de transesterificación para la producción de biodiesel.

4.2. Objetivos particulares

- Sintetizar materiales nanoestructurados mediante tres métodos:
 - a) Tratamiento hidrotérmico de anatasa con hidróxido de potasio con una posterior impregnación del material obtenido de 5 %m/m de K₂CO₃.
 - b) Intercambio iónico de sodio con potasio en trititanato de sodio.
 - c) Impregnación mediante humedad incipiente de nanotubos de trititanato de sodio (Na₂Ti₃O₇) con cargas de 3, 5 y 10 % m/m de K₂CO₃.
- Caracterizar los materiales sintetizados mediante técnicas de microscopia electrónica de barrido (SEM) y transmisión (TEM), difracción de rayos X de polvos (DRX), fisisorción de nitrógeno, desorción de CO₂ a temperatura programada (TPD-CO₂) y espectroscopia de infrarrojo (FT-IR).
- Evaluar el desempeño de los materiales sintetizados como catalizadores para la reacción de transesterificación de aceite de soya con metanol, cuantificar el rendimiento del producto obtenido mediante resonancia magnética nuclear de protón (RMN de ¹H) y determinar la viscosidad cinemática del biodiesel obtenido.
- Estudiar el efecto de tres variables: temperatura, cantidad de catalizador y el tiempo de reacción para el catalizador con mayor actividad (Na₂Ti₃O₇, impregnado con 5 % m/m de K₂CO₃). A partir de los resultados experimentales plantear un diseño factorial de experimentos de tres variables a dos niveles (2³).

5. Procedimiento experimental

5.1. Síntesis de catalizadores

Se prepararon tres materiales nanoestructurados con base en titanatos metálicos (Na, K) y se les adicionó potasio mediante tres vías: síntesis por tratamiento hidrotérmico, intercambio iónico e impregnación por humedad incipiente. A continuación se describe el procedimiento de preparación de cada uno de los materiales.

5.1.1. Síntesis de titanato de potasio mediante tratamiento hidrotérmico

Se empleó el método descrito por Sikhwivhilu y col. [90]. Se colocaron 10 g de óxido de titanio, fase anatasa (TiO₂, Aldrich, 99.7%) junto con una solución de concentración 18 M de hidróxido de potasio (KOH, 85%) en un reactor de teflón. Después, se puso la mezcla en un autoclave a una temperatura de 120 °C con agitación magnética constate durante 20 horas.

Se dejó añejar la solución durante 72 horas, al final de las cuales se obtuvo un precipitado blanco. El polvo blanco obtenido de la reacción fue filtrado a vacío y lavado varias veces con agua desionizada. El material obtenido fue secado a una temperatura de 120 °C por 12 horas. Posteriormente se denominará este material con la nomenclatura de NTK.

5.1.2. Síntesis de titanato de sodio mediante tratamiento hidrotérmico

Se sintetizaron los nanotubos de trititanato de sodio mediante el tratamiento hidrotérmico alcalino siguiendo el procedimiento descrito por Kasuga y col. [91, 92]. Se empleó óxido de titanio fase anatasa (TiO₂, Aldrich, 99.7%) como precursor y una solución 10M de hidróxido de sodio (NaOH, Meyer, 97%).

En un reactor de teflón, se vertieron 10 g de TiO₂ con 150 mL de la solución 10M de NaOH. Posteriormente, se mantuvo la mezcla en un autoclave a una temperatura de 140 °C con agitación magnética constate durante 20 horas. El polvo blanco obtenido de la reacción fue filtrado a vacío y lavado varias veces con agua desionizada con el fin de retirar todos los remanentes de hidróxido de sodio que no reaccionaron.

Después el material se secó a 120 °C por 12 horas. En lo posterior se empleara la nomenclatura de NTNa para denominar a los nanotubos de trititanato sódico.

5.1.3. Incorporación de potasio en titanato de sodio mediante intercambio iónico

Se preparó una serie de catalizadores mediante intercambio iónico de K_2CO_3 con trititanato de sodio en agua. Se prepararon tres disoluciones de carbonato de potasio. En 50 mL de agua se adicionó 0.5, 1.34 y 3 g de carbonato de potasio (K_2CO_3 , Aldrich, 99%).

Se vertió en cada disolución 2g de titanato de sodio (previamente sintetizado) y se dejó bajo agitación magnética durante 6 horas. Se anexa la nomenclatura de los catalizadores (Tabla 5-1). El material obtenido fue secado a una temperatura de 120 °C por 12 horas.

Catalizador	NTNa (g)	K ₂ CO ₃ (g)
NTNa5K5	2	0.5
NTNa4K7	2	1.34
NTNa4K8	2	3

 Tabla 5-1. Nomenclatura de los catalizadores obtenidos mediante intercambio iónico.

5.1.4. Preparación de catalizadores impregnados con K₂CO₃

Se preparó una serie de catalizadores impregnados con carbonato de potasio (K₂CO₃, Aldrich, 99%). Se empleó como soportes: trititanato de sodio, octatitanato de potasio y γ -alúmina. El trititanato de sodio se impregnó con cargas de 3, 5 y 10% m/m, el octatitanato de potasio con una carga de 5% m/m y la γ -alúmina con una carga de 5% m/m. Dichas muestras se prepararon mediante el método de impregnación por humedad incipiente [97].

Se determinó el volumen de impregnación para un gramo de cada soporte, mójandolo con agua desionizada y homogenizándolo con el fin de promover la dispersión de líquido en el polvo. El procedimiento se repitió hasta que el soporte se encontró saturado de líquido. El volumen de impregnación de los nanotubos de sodio fue 0.9 mL g⁻¹. En el caso de los nanotubos potásicos (NTK) su volumen de impregnación fue 1.1 mL g⁻¹ y para la γ -alúmina de 0.8 mL g⁻¹.

Posteriormente, la masa correspondiente a la carga a impregnar de K_2CO_3 en las muestras (3, 5 o 10 %m/m) se disolvió en un volumen de agua destilada igual al de impregnación del soporte. De esta manera se preparó una disolución por muestra a impregnar. En la Tabla 5-2 se muestra la nomenclatura de los catalizadores, la carga de K_2CO_3 y la concentración de la disolución de impregnación.

Para cada catalizador preparado, se mojó el soporte con la disolución de impregnación previamente preparada y se homogenizó con el fin de promover la dispersión de líquido en el polvo. El material obtenido fue secado a una temperatura de 120 °C por 12 horas.

Tabla 5-2. Nomenciatura de catalizadores impregnados con K_2CO_3 .							
Catalizador	Soporte	K₂CO₃ %m/m	Concentración de la disolución de impregnación (g mL ⁻¹)				
AL-KC5	Al ₂ O ₃	5	0.066				
NTNa-KC3	Na₂ Ti₃ O⁊ xH₂O	3	0.035				
NTNa-KC5	Na₂ Ti₃ O⁊ xH₂O	5	0.059				
NTNa-KC10	Na ₂ Ti ₃ O ₇ xH ₂ O	10	0.125				
NTK-KC5	K2Ti8O18	5	0.048				

Tabla 5-2. Nomenclatura de catalizadores impregnados con K ₂ CO ₃ .
--

5.2. Caracterización de los catalizadores

Los catalizadores sintetizados fueron caracterizados mediante fisisorción de nitrógeno, difracción de rayos X de polvos (DRX), microscopia electrónica de barrido (SEM-EDX), microscopia electrónica de transmisión (TEM), espectroscopia de infrarrojo (FT-IR) y desorción de CO₂ a temperatura programada (TPD-CO₂).

5.2.1. Fisisorción de N₂

La mayoría de los catalizadores heterogéneos son sólidos porosos, cuyas propiedades texturales dependen de las sustancias precursoras y método de síntesis. La forma de los poros varía de un material a otro, ésta puede ser regular o irregular. Las formas típicas de los poros se muestran en la Figura 5-1 [98].

Figura 5-1. Tipos de poros.

Las geometrías empleadas para representar a los poros de forma son: rendijas, cilindro y los espacios vacíos conectados entre esferas sólidas (Figura 5-2).

Figura 5-2. Modelos comúnmente empleados para representar la forma de los poros.

Los poros son clasificados de acuerdo a su tamaño de la siguiente manera [63]:

- Microporos: tamaño ≤ 2 nm
- Mesoporos: tamaño entre 2 nm 50 nm
- Macroporos: tamaño ≥ 50 nm

Se pueden determinar las propiedades texturales de un sólido poroso, mediante diferentes técnicas experimentales, tales como: fisisorción de un gas inerte, porosimetría de mercurio, mojado incipiente [98]. El método más común para determinar el áreas superficial de un material, se basa en la adsorción física de un gas en la superficie del sólido [64].

Cuando un gas entra en contacto con un sólido, las moléculas y átomos del fluido interaccionan con la superficie del sólido de manera en que pueden ser quimisorbidos o fisisorbidos. La fisisorción se da debido a interacciones intermoleculares del tipo Van der Waals, estas interacciones son de largo alcance, pero débiles. La energía liberada cuando una partícula es fisisorbida es del mismo orden de magnitud que el de la entalpia de condensación [99].

El principio bajo el cual se mide el área superficial consiste en fisisorber un gas inerte tal como N₂, Ar, Ne o Kr y determinar el número de moléculas requeridas para llenar una monocapa. Generalmente se determina la cantidad de nitrógeno gaseoso adsorbido en equilibrio al punto de ebullición en un intervalo de presiones inferiores a 1 atm. Bajo estas circunstancias se pueden adsorber varias capas de moléculas sobre la superficie. Así mismo las moléculas del gas se pueden condensar en los poros pequeños [63, 64].

Dependiendo del tamaño y forma de los poros se pueden tener diferentes isotermas de adsorción-desorción, así como diferentes tipos de histéresis. Dentro del ciclo de adsorción- desorción, la desorción del gas en los materiales porosos se lleva a cabo a presiones más bajas, lo que da origen a la condensación- evaporación del gas dentro de los poros (histéresis). La IUPAC ha clasificado las isotermas de adsorción en seis tipos (Figura 5-3) y cuatro tipos de histéresis (Figura 5-4).

Figura 5-3 Diferentes tipos de isotermas de adsorción. [65].

Figura 5-4. Tipos de histéresis presentes en las isotermas de adsorción- desorción [98].

La teoría más ampliamente usada para explicar la adsorción física fue derivada por Brunnauer, Emmett y Teller en 1938. Este modelo, denominado BET, se basó en el propuesto por Langmuir en 1918 [100]. El desarrollo del modelo BET se basa en las siguientes suposiciones:

- El equilibrio es dinámico entre el adsorbato y el adsorbente: la rapidez de adsorción es igual a la de desorción.
- Todos los sitios de adsorción de la primera capa son iguales. La adsorción se lleva a cabo en una superficie homogénea, donde se adsorbe una molécula de adsorbato por cada sitio de adsorción.
- La cantidad máxima adsorbida corresponde a la monocapa
- La primera capa sirve como sitio de adsorción para la siguiente capa y así sucesivamente
- ✤ Las interacciones laterales entre las moléculas adsorbidas son despreciables.
- La energía de adsorción para las capas después de la primera son iguales a la energía de condensación.

La ecuación del modelo BET es la siguiente:

$$\frac{P}{V(P^{0}-P)} = \frac{1}{C * V_{m}} + \frac{C-1}{V_{m} * C} * \left(\frac{P}{P^{0}}\right)$$
(5-1)

Donde:

V= volumen adsorbido

V_m= volumen de la monocapa

P° = presión de saturación

P = presión del gas en equilibrio con capas adsorbidas

C= constante de equilibrio BET, donde C se define como en la Ecuación 5-2.

K1= constante de formación de la primera capa

K= constante de equilibrio de licuefacción del gas.

$$C = \frac{K_1}{K} \quad (5-2)$$

Considerando en la ecuación 5-1, se ajusta a un modelo lineal de la siguiente forma:

$$Y = mX + b \quad (5-3)$$

Donde:

$$Y = \frac{P}{V(P^0 - P)} \quad (5-4)$$
$$X = \left(\frac{P}{P^0}\right) \quad (5-5)$$
$$b = \frac{1}{C * V_m} \quad (5-6)$$
$$m = \frac{C-1}{V_m * C} \quad (5-7)$$

De esta manera, al realizar la regresión lineal, de la pendiente (m) y la ordenada al origen (b), se determina el volumen de la monocapa V_m, mediante la ecuación 5-8.

$$V_m = \frac{1}{m+b} = \frac{1}{\left(\frac{1}{C*V_m}\right) + \left(\frac{C-1}{V_m*C}\right)}$$
 (5-8)

El área específica del sólido se obtiene mediante la ecuación 5-9.

$$S_{BET} = \frac{V_m}{V} * N_A * \sigma$$
 (5-9)

Para los catalizadores obtenidos en este trabajo se realizó la fisisorción de nitrógeno en un analizador automático ASAP 2020 de Micromeritics. Las isotermas de adsorción-desorción fueron obtenidas a la temperatura de N₂ líquido. Previo a la caracterización de las muestras, se sometieron a un proceso de desgasificación a una presión menor de 10^{-1} Pa y a una temperatura de 250 °C durante 6 h. Se realizó el cálculo del área específica de los catalizadores (S_{BET}) mediante el empleo del método BET.

La efectividad de la superficie interna para reacciones catalíticas puede depender no solo de la cantidad de espacios vacíos (Vp), sino también del tamaño de las aberturas. Por consiguiente, es deseable conocer la distribución del volumen de espacios vacíos en unos catalizados en base al tamaño y a las aberturas [64].

El modelo de Barrett-Joyner-Halenda (BJH), propuesto en 1951, se basa en la ecuación de Kelvin y en el fenómeno de adsorción- condensación capilar [98, 101]. El modelo BJH se basa en que en la región de condensación capilar ($P/P_0 > 0.4$) cada incremento de presión causa un incremento en el grosor de la capa adsorbida sobre la pared de los poros. Se asume que los poros tienen forma cilíndrica y que el radio del capilar es igual al de la ecuación de Kelvin [98].

$$\ln\left(\frac{P^{0}}{P}\right) = \frac{2\sigma W_{m} cos(\alpha)}{RTr\rho} \quad (5-10)$$

Donde:

P⁰= presión de saturación del adsorbato

P= presión a la que se llena el poro

W_m= volumen molar del líquido.

 α = Angulo de mojado del líquido con la pared del tubo capilar

r= radio de la curvatura del menisco

p= densidad del liquido

R= constante universal de los gases

σ= Tensión superficial

Se asume entonces que el radio verdadero (r_V) es igual a la suma del radio de kelvin (r) más el grosor de la capa adsorbida t_e. De modo que el radio del poro se puede calcular de la siguiente manera:

$$r_{v} = t_{e} + r = t_{e} + \frac{2\sigma W_{m} \cos(\alpha)}{RT\rho \ln\left(\frac{P^{0}}{P}\right)} \quad (5-11)$$

El espesor t_e para el fenómeno de adsorción de nitrógeno se puede determinar por la ecuación experimental de Halsey (Ecuación 5-5) [102].

$$t_e(A^\circ) = 3.54 \left(\frac{5}{Ln\left(\frac{P^0}{P}\right)}\right)^{1/3}$$
 (5-12)

Por otra parte al graficar los datos de dV/dLogD en función del diámetro D, se obtiene la distribución de poro por tamaño.

Para la determinación del volumen total de poro se empleó la presión relativa de 0.98 de adsorción de N₂ y el diámetro de poro Dp_{ads} corresponde al máximo de la distribución de tamaño de poros obtenida de la isoterma de adsorción por el método BJH.

5.2.2. Difracción de rayos X (DRX)

Los rayos X interaccionan con la materia a través de los electrones que la forman y que se están moviendo a velocidades mucho menores a la de la luz. Cuando la radiación electromagnética X alcanza un electrón cargado, este se convierte en una fuente de radiación electromagnética secundaria dispersada, por lo que si se incide un haz de rayos X sobre un cristal, este choca con los átomos haciendo que los electrones que se encuentren en su trayectoria vibren con una frecuencia idéntica a la de la radiación incidente y se comporten como fuentes secundarias de nuevos frentes de onda de rayos X con la misma longitud de onda y frecuencia (Figura 5-5) [103, 104].

Figura 5-5. Esquema de la tecnica de difracción de rayos X [99].

La difracción de rayos X de polvos (DRX) es una técnica no destructiva que sirve para analizar una amplia gama de materiales, tales como minerales, polímeros, catalizadores, plásticos, compuestos farmacéuticos, cerámicos y semiconductores, entre otros. Es el único procedimiento de DRX que permite abordar el estudio cristalográfico de las especies que no se presentan o no es posible obtener en forma de monocristales [103, 105].

En este método, la muestra se pulveriza lo más finamente posible de forma que está constituida idealmente por partículas cristalinas en cualquier orientación. Para asegurar la orientación totalmente al azar de estas pequeñas partículas con respecto al haz incidente la muestra localizada en la cámara de polvo generalmente se hace girar en el haz de rayos X durante la exposición [103] (Figura 5-6).

Figura 5-6. Foto de equipo DRX [105].

Laboratorio de nanocatálisis Facultad de Química El principio de la técnica es que una radiación procedente de un tubo de rayos X de longitud de onda λ incide sobre una muestra. Si la muestra tiene estructura cristalina, este haz sale reflejado con un ángulo θ de acuerdo con la ley de Bragg (Ecuación 5-13) (Figura 5-7).

 $sen \theta = n\lambda/2d$ (5-13)

Donde:

 Θ = Es el ángulo entre los rayos incidentes y los planos de dispersión

n = Es un número entero

d = es la distancia entre los planos de la red cristalina

 λ = es la longitud de onda de los rayos X

El detector se mueve, variando el ángulo que forma con la muestra y va registrando dicho haz reflejado. El resultado de intensidad en función del ángulo proporciona información sobre la estructura cristalina de la muestra [106]. El análisis se efectúa mediante la comparación de patrones de difracción recopilados de una muestra desconocida con los patrones de difracción de compuestos conocidos [107].

Figura 5-7. Esquema de la ley de Bragg [104].

El análisis de DRX de las muestras se realizó en el equipo SIEMENS D 5000 a 35 KV y 30 mA con una rejilla de detector de 0.1 mm. El barrido se realizó en un intervalo de 3° a 80° en la escala de 2Θ, con una velocidad de 1° (2Θ)/min.

5.2.3. Microscopia electrónica de barrido (SEM- EDX) y de transmisión (TEM)

El microscopio electrónico de barrido y el microscopio electrónico de transmisión tienen componentes comunes como: el cañón de electrones, sistema de vacío, lentes condensadora y objetivo. La diferencia principal entre ellos es la manera en que forman y magnifican la imagen. La microscopia de transmisión permite el estudio de la ultra estructura de muestras a través de electrones que penetran una capa delgada de la misma y la microscopia de barrido posibilita conocer la morfología superficial [108, 109].

En la microscopia de barrido (SEM), el haz de electrones atraviesa la columna y llega a la muestra. Un generador de barrido es el responsable de producir el movimiento del haz, de manera que barra la muestra punto a punto. De la interacción entre los electrones incidentes con los átomos que componen las muestras se generan señales, las cuales pueden ser captadas con detectores específicos para cada una de ellas. El detector capta una señal y las convierte en una señal electrónica que es proyectada en una pantalla (CRT). El barrido de haz está sincronizado con el barrido del CRT y produce una relación uno a uno entre puntos de la muestra y puntos en el CRT [108].

En el microscopio de transmisión (TEM), un haz de electrones suficientemente acelerado colisiona con una muestra delgada. Cuando los electrones colisionan con la muestra, en función de su grosor y del tipo de átomos que la forman, parte de ellos son dispersados selectivamente, es decir, hay una diferencia entre los electrones que la atraviesan directamente y los que son totalmente desviados. Todos ellos son conducidos y modulados por unas lentes para formar una imagen final sobre un dispositivo de carga acoplada (CCD). La información que se obtiene es una imagen con distintas intensidades de gris que se corresponden al grado de dispersión de los electrones incidentes [110].

Se obtuvieron imágenes de microscopia de barrido de los catalizadores sintetizados mediante el microscopio de barrido JEOL 5900 LV y se analizó su composición química con el equipo OXFORD ISIS. Así mismo, se observó la morfología de las muestras mediante el empleo del microscopio electrónico de transmisión JEOL 2010 con un voltaje de aceleración de 200 kV y una resolución de punto a punto de 1.9 Å.

5.2.4. Desorción de dióxido de carbono a temperatura programada (TPD-CO₂)

Con el fin de obtener información sobre los sitios básicos de los catalizadores, se realizó la desorción de CO₂ a temperatura programada. Se colocó 0.1 g de la muestra en una cama fija dentro de reactor de cuarzo en U.

Se aplicó un pretratamiento, el cual consistió en hacer pasar un flujo de 30 mL min⁻¹ de un gas inerte (Ar) a 350 °C por 2 horas. Posteriormente se enfrió la muestra y se colocó en un flujo de gas de una mezcla al 50% CO₂/Ar con un flujo de 30 mL min⁻¹ durante 30 minutos a temperatura ambiente, seguida de una purga de Ar para eliminar el CO₂ remanente. Finalmente, se calentó la muestra con una rampa de 10°C/min desde temperatura ambiente hasta 600 °C en un flujo de Ar. El efluente de gas fue analizado por espectroscopia de masas (MS HPR20, Hyden Analytical). La intensidad del espectro de masas para CO₂ (M/e = 44) fue registrada como función de la temperatura.

Se estimó la cantidad de sitios básicos del catalizador a través del total de CO₂ desorbido a temperatura programada, por gramo de catalizador. Para esto, se supuso que el número total de moléculas desorbidas al adicionar energía cinética por medio del calentamiento fue igual al número de sitios de adsorción presentes en la superficie del catalizador.

5.2.5. Espectroscopia de infrarrojo (FT-IR)

La espectroscopia de infrarrojo es una técnica basada en la vibración de los átomos de una molécula. Comúnmente un espectro de infrarrojo es obtenido al pasar radiación infrarroja a través de una muestra y determinando la fracción de la radiación incidente absorbida a una determinada energía. La energía a la cual un pico en el espectro de absorción aparece corresponde a la frecuencia vibracional de una parte de la mólecula [111]. Mediante el empleo de espectroscopia de infrarrojo se puede estudiar la superficie de un catalizador heterogéneo. Esta técnica da información acerca de la estructura del catalizador, así como de las especies adsorbidas en la superficie [65]. Su uso puede ayudar a identificar especies que contienen los mismos elementos químicos y cuyas propiedades físicas son muy similares, un ejemplo de este caso son los isómeros [111].

La aplicación de la espectroscopia de infrarrojo presenta ciertas ventajas sobre otras técnicas analíticas, entre las que se puede mencionar el requerimiento de una cantidad relativamente pequeña de la muestra a analizar, además de que se puede recuperar la misma debido al carácter no destructivo de la técnica. El espectro de infrarrojo se divide principalmente en tres regiones: el lejano (< 400 cm⁻¹), el medio (4000 - 400 cm⁻¹) y el cercano (13000 - 4000 cm⁻¹) [111].

Para todos los catalizadores sintetizados, se obtuvieron los espectros de infrarrojo mediante un espectrómetro FT-IR 640-IR marca Varian, en un intervalo de frecuencia del barrido de 4000 - 400 cm⁻¹.

5.3. Reacción de transesterificación

Se evaluó el desempeño de los catalizadores en la reacción de transesterificación en un reactor Parr, equipado con un agitador mecánico (Figura 5-8). El reactor se cargó con 27 g de aceite de soya (grado alimenticio), 26 mL de metanol (CH₃OH, Aldrich, 99.8 %) manteniendo una relación molar 1:20 (aceite: metanol) y 0.5 g de catalizador, lo que corresponde al 1 % m/m de la mezcla reaccionante.

El sistema se calentó con una mantilla de calentamiento con control de temperatura hasta la 80°C. Se mantuvo el reactor a esta temperatura con agitación constante durante el tiempo de reacción. El tiempo de reacción fue de 30 minutos para todos los materiales sintetizados.

Figura 5-8. Fotografía del reactor.

Al finalizar el tiempo de reacción, se centrifugó la mezcla a 5000 rpm durante 10 minutos. Se separó el sólido y se colocó el líquido en un embudo de separación, el cual se dejó reposar hasta que se separó el biodiesel de la mezcla.

La muestra recuperada de los embudos de separación se sometió a lavados de agua con el fin de retirar cualquier residuo de especies polares que no reaccionaron. Una vez lavado el biodiesel fue secado con malla molecular A4.

5.3.1. Viscosidad cinemática

Se determinó la viscosidad cinemática del biodiesel sintetizado empleando el viscosímetro de Cannon-Fenske 100 (Figura 5-9). El procedimiento de la medición se describe a continuación: se cargó el viscosímetro (por la parte A del diagrama) con aproximadamente 5 mL de muestra y se calentó en un baño de agua hasta alcanzar la temperatura de 40 °C.

Figura 5-9. Diagrama de viscosímetro de Cannon- Fenske.

A esta temperatura se conectó una jeringa por la parte B del viscosímetro en la que se encuentra el capilar (sección derecha del diagrama) y se succionó la muestra hasta rebasar la marca de medición (Parte C). Se comenzó la medición, retirando la succión del viscosímetro y cronometrando el tiempo en que el líquido recorrió el capilar (desde la marca C hasta la D).

5.3.1.1. Resonancia magnética nuclear de protón (RMN de ¹H)

Esta técnica analítica permite determinar el contenido, pureza, así como la estructura química de los componentes de la muestra analizada. El principio bajo el cual funciona es que el núcleo del hidrogeno tiene spin y están cargados eléctricamente. Cuando un campo magnético externo es aplicado a este, se da una transición energética de un estado fundamental a uno de mayor energía. A este proceso le corresponde una longitud de onda en el intervalo de las radiofrecuencias, una vez que se retira el campo magnético externo el spin vuelve a su nivel fundamental, emitiendo la energía absorbida de esta

misma frecuencia. A la longitud de onda emitida se le asigna una señal, la cual se procesa y se produce un espectro [112, 113].

Aplicando la RMN de ¹H a muestras de biodiesel, Knothe y col. desarrollaron una ecuación que permite determinar el rendimiento de la transesterificación de aceites vegetales con un alcohol [2]. Ésta emplea los valores de integración de los desplazamientos para los protones α -CH₂ presentes en los ácidos grasos, así como los protones de ésteres metílicos. La ecuación se presenta a continuación:

$$X_E = 100 * \frac{2 * I_{ME}}{3 * I_{\alpha - CH_2}}$$
 (5-14)

Donde:

 X_E = Rendimiento de biodiesel (%)

 I_{ME} = Valor de la señal integrada correspondiente a los protones de esteres metílicos (3.6 ppm)

 $I_{\alpha-CH_2}$ = Valor de la señal integrada correspondiente a los protones α -CH₂ (2.3 ppm)

En el esquema de reacción (Figura 5-10) se señalan los protones del triglicérido y de los metil ésteres que se identifican en el espectro de RMN de ¹H y en la Figura 5-11 se muestran las señales de relevancia en un ejemplo de espectro para la ecuación de Knothe.

Figura 5-10. Protones de relevancia en el espectro RMN de ¹H [2, 42].

Se evaluó el rendimiento de biodiesel obtenido con los materiales sintetizados mediante la aplicación del procedimiento previamente descrito en esta sección. El análisis se llevó a cabo en un espectrómetro Unity Inova Varian de 300 MHz en CDCl₃, utilizando TMS como estándar interno.

Figura 5-11. Espectro de RMN de ¹H de una muestra de biodiesel. *"A"* corresponde a los protones α- CH₂ del aceite vegetal, *"G"* a los protones glicéricos del aceite vegetal, y *"M"* a los protones de ésteres metílicos [2, 42].

6. Resultados

6.1. γ-Alúmina impregnada con K₂CO₃ (Al-KC5)

Para estudiar la actividad catalítica inherente al carbonato de potasio sin la influencia de los soportes nanoestructurados sintetizados mediante tratamiento hidrotérmico (NTK y NTNa) se preparó una referencia empleando γ - alúmina como soporte. En lo siguiente se empleará la nomenclatura de Al-KC5 para este catalizador, donde 5 corresponde al porcentaje en masa de K₂CO₃ impregnado en la alúmina.

El catalizador AL-KC5 y el soporte γ-Al₂O₃ sin impregnar fueron caracterizados mediante microscopia electrónica de barrido (SEM) y de transmisión (TEM), difracción de rayos X de polvos (DRX), fisisorción de nitrógeno, desorción de CO₂ a temperatura programada (TPD-CO₂), espectroscopia de infrarrojo (FT-IR).

La actividad catalítica fue evaluada manteniendo las mismas condiciones que para los otros catalizadores presentados en este trabajo: en un reactor batch a 80 °C con un tiempo de reacción de 30 min.

6.1.1. Difracción de rayos X

En la Figura 6-1 se muestran los patrones de difracción de rayos X de polvos de la alúmina empleada como soporte y el catalizador AI-KC5. En el difractograma soporte se aprecian los picos correspondientes a la γ - Al₂O₃ con estructura cristalina cubica (Tarjeta JCPDS-ICDD 010-0425).

En el difractograma de la muestra impregnada con 5% m/m de K₂CO₃ (Al-KC5), no se aprecian cambios en las estructuras de la γ -alúmina posteriores a la impregnación de carbonato de potasio. No obstante, se presentan dos señales a 15.84 y 21.03 en la escala de 20 (°) los cuales corresponden al K₂CO₃ monoclínico (Tarjeta JCPDS-ICDD 016-0820). Esto se puede atribuir a que el carbonato de potasio no se dispersó uniformemente durante la impregnación.

Capítulo 6

Figura 6-1. Difractograma de la alúmina y alúmina impregnada con 5 %m/m de K₂CO₃.

6.1.2. Microscopia electronica de barrido (SEM-EDX)

En la Tabla 6-1 se presenta la composición química del catalizador Al-KC5. Se observa que el porcentaje de potasio detectado en el catalizador es cercano al agregado mediante impregnación incipiente ($K_2CO_3 = 5\%$ m/m, K=2.8% m/m), lo cual indica que éste se incorporó uniformemente. De esta manera se comprobó que el K_2CO_3 impregnado permaneció en el material posterior al secado del material.

Muostro		Composicio	Cantidad impregnada		
muestra	K	de K ₂ CO ₃ (%m/m)			
AL-KC5	2.7	44.7	52.20	0.37	4.68

Tabla 6-1. Composició	on del catalizador Al-KC5
-----------------------	---------------------------

En la Figura 6-2 se presentan las micrografías electrónicas de barrido del catalizador Al-KC5 (b) y de una muestra de γ -alúmina sin impregnar (a). Se ve que la impregnación del carbonato de potasio no alteró la morfología del soporte.

Figura 6-2. Micrografías electrónicas de barrido: a) γ- alúmina reportada en [114], b) AL-KC5.

6.1.3. Fisisorcion de N₂

En la Figura 6-2 se muestran las curvas de adsorción-desorción de N₂ para la γ -Al₂O₃ y el catalizador Al-KC5.

Figura 6-3. Isotermas de adsorción-desorción de N₂ de la γ -alúmina y el catalizador Al-KC5.

Siguiendo la clasificación de isotermas de adsorción de N₂ de la IUPAC, se ve que ambas muestras presentan isotermas típicas de materiales mesoporosos (isoterma tipo IV) con una histéresis H2. Este tipo de histéresis está asociada a materiales con porosos cilíndricos o espacios entre las estructuras no uniformes, también puede estar relacionada con poros en forma de tintero.

Se observa que después de la impregnación de K₂CO₃ en el material, se conservó la forma de la isoterma de fisisorción de N₂ por lo que la incorporación de K₂CO₃ no alteró la estructura porosa del material. No obstante, al comparar los valores de área específica y volumen de poro del soporte y del catalizador impregnado (Tabla 6-2), se aprecia un decremento en ambos, lo cual se debe a que al adicionar el K₂CO₃, éste se deposita sobre la superficie de la alúmina, con lo que aumenta la densidad del material y tapa los poros.

Muestra	S_{BET}^{a} (m ² /g)	Vp ^b (D _{ads} ^c (nm)	D _{des} ^d (nm)
		cm³/g)		
γ-Al ₂ O ₃	193	0.48	10.84	7.34
AI-KC5	181	0.46	10.85	7.20

Tabla 6-2. Propiedades texturales de las muestras γ-Al₂O₃ y AL-KC5.

^a Área calculada por método BET

^B Volumen total de poro

[°] Diámetro de poro corresponde al máximo de la distribución de poro calculado de la isoterma de adsorción por el método BJH

^d Diámetro de poro determinado de la isoterma de desorción por el método BJH

Mediante la aplicación del método BJH se obtuvieron las distribuciones de diámetros de poros para la adsorción y desorción de N₂ de los catalizadores γ -Al₂O₃ y Al-KC5 (Figura 6-4). Ambos materiales presentan una distribución monomodal, tanto para el proceso de adsorción como para el de desorción.

En general, los máximos de las distribuciones de adsorción y desorción corresponden al diámetro interno y la entrada de los poros, respectivamente. En el caso de los materiales presentados en esta sección, se ve que el diámetro interno de los poros ($D_{ads \gamma-Al2O3}$ = 10.84 nm y $D_{ads Al-KC5}$ = 10.85 nm) es mayor que la boca del poro ($D_{des \gamma-Al2O3}$ = 7.34 nm y $D_{des Al-KC5}$ = 7.20 nm), por lo que en ambos casos los poros tienen forma de tintero, lo que concuerda con la histéresis obtenida.

Por otra parte, se observa que al impregnar el K_2CO_3 en el soporte, no se aprecia un cambio en el diámetro interno de los poros. Sin embargo, si hay un pequeño cambio en el D_p de desorción, por lo que se puede intuir que esta especie se deposita en las entradas a los poros de la almunia y no en el interior de los poros.

Capítulo 6

Figura 6-4. Distribuciones de tamaño de poro obtenidas mediante el método BJH: a) adsorción y b) desorción.

6.1.4. Desorción de dióxido de carbono a temperatura programada (TPD-CO₂)

Una de las técnicas más aplicadas en el estudio de la basicidad de solidos es la desorción de CO₂ a temperatura programada, la cual permite cuantificar los sitios básicos de un catalizador y la fuerza de éstos.

Figura 6-5. Tipos de sitios básicos asociados a TPD-CO₂[115].

Con el fin de estimar la cantidad de sitios básicos se considera que el número total de moléculas desorbidas es igual al número de sitios de adsorción básicos presentes en la superficie del catalizador.

Por otra parte, la fuerza del sitio, está relacionada con la cantidad de energía requerida para superar la interacción del adsorbato (CO₂) con el adsorbente (el sólido), de esta manera sitios de mayor fuerza requieren una mayor energía y por ende serán desorbidos a una mayor temperatura.

Al aumentar la temperatura, la primera señal (Figura 6-6) se atribuye a la interacción de CO₂ con sitios de fuerza básica baja. Por su parte los sitios de fuerza básica media corresponden a la señal de desorción con un máximo en 205 °C. En la Tabla 6-3 se presentan los resultados de la cuantificación de la cantidad total de sitios básicos del soporte, así como su clasificación.

Con respecto a la alúmina impregnada con K_2CO_3 en el perfil de TPD-CO₂ se observan cuatro máximos, donde el primero (70°C) corresponde a los sitios básicos débiles, el segundo (227 °C) a los básicos medios y los últimos dos (326 y 424 °C) a los sitios básicos fuertes.

Se ve que la adición de K_2CO_3 originó la aparición de dos máximos asociados a la presencia de sitios fuertes (máximos a 326 y 424 °C), la cuales no se observaron en el soporte sin impregnar (Figura 6-6). En los sitios básicos débiles se ve un incremento en 144.6 y en los medio de 40.8 µmol/g con respecto al soporte sin impregnar (Tabla 6-3).

Figura 6-6. Perfiles de TPD- de CO_2 de γ -alumna y el catalizador AL-KC5.

662.									
Catalizador	Sitios básicos (µmol/g)								
	Total	Débiles	Débiles Medios Medios-fuertes Fuertes						
γ -Al ₂ O ₃	117.6	102.5	15.1	-	-				
		(31-166 °C)	(171-264 °C)						
AI-KC5	379.4	247.1	55.9	31.9	44.5				
		(44-162 °C)	(195-275 °C)	(298-362 °C)	(396-515 °C)				

Tabla 6-3. Resultados de basicidad de la γ-alúmina y el catalizador Al-KC5obtenidos mediante TPD-CO₂.

Se observa un incremento en la temperatura a la cual inicia la desorción del CO₂ para los sitios débiles (de 31 a 44 °C) y medios (de 171 a 195 °C), lo cual es indicio del requerimiento de una mayor energía en el proceso y por ende una interacción de mayor fuerza entre el CO₂ y el catalizador (sitios de mayor fuerza básica).

6.1.5. Espectroscopia de Infrarrojo (FT-IR)

En la Figura 6-7 se muestra el espectro de IR de K₂CO₃, de la γ -Al₂O₃ y del catalizador Al-KC5. El espectro de la γ - alúmina muestra una señal en el intervalo de 3300-3500 cm⁻¹, la cual corresponde a la vibración de los átomos de hidrógeno de agua en la superficie de la γ -Al₂O₃ [116].

Figura 6-7. Espectro de IR de las muestras γ -Al₂O₃, Al-KC5 y K₂CO₃.

El espectro del K₂CO₃ presenta las señales mostradas en la Tabla 6-4, donde también se presenta la asignación de cada frecuencia. Se observa que la señal más prominente se debe a la vibración de los enlaces del ion CO₃ ²⁻ de la molécula de K₂CO₃ (1371 cm⁻¹) [116].

Al comparar los espectros del soporte y del K_2CO_3 con el del catalizador Al-KC5 se ven dos señales correspondientes a la vibración de los enlaces de HCO_3^- , especie que se forma de la interacción entre los grupos hidróxido en la superficie de la γ -Al₂O₃ con el K_2CO_3 (1543 – 1427 cm⁻¹) [116], [117].

Numero de onda cm ⁻¹		Estructura asociada a	Tipo de vibración	
Al ₂ O ₃	AL-KC5	K ₂ CO ₃	la señal	
3300	3300		Al ₂ O ₃ H ₂ O	Tensión de los átomos de
3481	3448		OH-	hidrogeno
	1543		K⁺ - C	Tensión asimétrica
		1510	$\kappa = 0 \\ \kappa = 0 > c = 0$	Tensión en enlace C=O
	1427		0- OH C = 0	Tensión asimétrica del enlace ⁻ O=C-O ⁻
		1408		Tensión asimétrica
		1371	$\begin{array}{c} \kappa - 0 \\ \kappa - 0 \end{array} c = 0$	Tensión asimétrica del enlace O=C-O ⁻
		1049		Tensión simétrica
		877	к—о к—о>с=о	Tensión simétrica del enlace O=C-O ⁻

Tabla 6-4. Señales en IR y asignación de bandas [116, 118, 119].

6.1.6. Evaluación de la actividad catalica

En la Tabla 6-5 se muestran los resultados obtenidos en la transesterificación de aceite de soya con metanol, para la γ -alúmina y el catalizador Al-KC5.

Tabla 6-5. Resultados de la reacción de transesterificación de aceite de soya con metanol catalizada con los catalizadores γ -alúmina, Al-KC5 y la referencia (aceite inicial). Condiciones de reacción: 80°C, 30 min y relación molar aceite: metanol 1:20. La viscosidad del aceite inicial es de 32.6 Cst.

Catalizador	Viscosidad cinemática (cSt)	Rendimiento (%)
γ-Alúmina	30.6	1.17
AI-KC5	25.3	5.60

Al adicionar K₂CO₃, se aprecia que se aumenta la proporción de sitios básicos fuertes y como resultado la actividad catalítica es mayor (Figura 6-8). Tanto el soporte como el material impregnado presentan una mayor proporción de sitios básicos débiles (85% en la γ -alúmina y 65% en el catalizador Al-KC5) que medios o fuertes. Esto repercute en la actividad catalítica, resultando en rendimientos bajos de metil ésteres (menores de 6%).

Figura 6-8. Resultados de la actividad catalítica y la basicidad de los catalizadores de γ-alúmina y Al-KC5.

6.2. Titanato de potasio sintetizado mediante tratamiento hidrotérmico (NTK y NTK-KC5)

6.2.1. Difracción de rayos X

En la Figura 6-9 se presentan los difractogramas de rayos X de polvos del precursor (TiO₂) y el titanato de potasio sintetizado mediante tratamiento hidrotérmico (NTK). En el difractograma del precursor se aprecian solamente las señales correspondientes a la fase anatasa del TiO₂ (tarjeta JCPDS 21-1272).

Por otra parte, en el material (NTK) obtenido mediante el tratamiento hidrotérmico del precursor con una solución concentrada de KOH (NTK), no se observan las señales características de la anatasa, en su lugar se observan picos a 11.3, 29.8, 42.5, 48.2 en la escala 2 Θ (°). Estas señales son características de los planos del octatitanato de potasio monoclínico K₂Ti₈O₁₇ (tarjeta JCPDS 41-1100). Así mismo, no se detecta la presencia de señales correspondientes a otro tipo de titanatos de potasio (K₂Ti_nO_{2n+1}).

Figura 6-9. Difractogramas del precursor TiO₂ y del catalizador NTK.

En la Tabla 6-6 se reportan los planos cristalinos a los cuales corresponden cada una de las señales.

Angulo de barrido 2Θ	Distancia interplanar	Planos o	de refl	exión		
(°)	(A°)	h	k	I		
11.3	7.80	2	0	0		
29.8	3.00	-3	1	1		
42.5	2.13	-4	0	4		
48.2	1.89	0	2	0		

Tabla 6-6 picos de difracción de K₂Ti₇O₁₇.

6.2.2. Microscopia electrónica de barrido (SEM-EDX)

Mediante microscopía electrónica de barrido se determinó la composición química del titanato de potasio sintetizado, los porcentajes en peso se muestran en la Tabla 6-7. Se observa que al finalizar el tratamiento hidrotérmico existe una trasformación de los materiales precursores (TiO₂ y KOH) en uno nuevo, identificado previamente (mediante difracción de rayos X) como K₂Ti₈O₁₇.

Tabla 6-7 Com	nosición de los	s catalizadores l	NTK v NTK-KC5	determinada	mediante SEM-EDX
	posicion de los	Galalizauures	INTR Y NTR-ROJ	ueterminaua	

Muestra	Composición (%m/m)			Cantidad de K ₂ CO ₃	
	K	Ti	0	С	
NTK	11.6	48.1	40.3	0.0	0
NTK-KC5	13.7	45.7	39.9	0.7	5.04

Al comprar la composición del material sintetizado con la teórica para el octatitanato de potasio (composición en masa: %K= 11, %Ti= 52 y %O=37), no se ve una diferencia significativa, por lo que concuerda con los resultados de difracción de rayos X.

Figura 6-10. Imágenes de SEM: a) TiO₂ anatasa [42], b) NTK.

Laboratorio de nanocatálisis Facultad de Química En el caso del catalizador NTK-KC5, se observa un aumento en el porcentaje de potasio de 2.1% con respecto al octatitanato de potasio (NTK), este aumento es cercano a la cantidad de potasio agregada mediante impregnación incipiente (K = 2.8%), lo cual indica que este se impregnó adecuadamente.

Por otra parte en las imágenes obtenidas mediante esta técnica se pude observar los cambios morfológicos que tuvo el precursor al ser sometido al tratamiento hidrotérmico. En la Figura 6-10 se presentan las micrografías de TiO₂ y del catalizador NTK. Al comparar ambas microscopias, se aprecia que hubo un cambio en la estructura del material posterior al tratamiento hidrotérmico del precursor, lo cual evidencia la trasformación del TiO₂ en K₂Ti₈O₁₇. Debido a la escala de las micrografías no se logra apreciar si presenta una morfología nanoestructurada.

Figura 6-11. Microscopias de SEM de a) NTK, b) NTK-KC5

Por otra parte las micrografías del catalizador NTK-KC5 (Figura 6-11) evidencian que posterior a la impregnación de K_2CO_3 sobre el octatitanato no se aprecia algún cambio en la morfología del material.

6.2.3. Microscopia electrónica de transmisión (TEM)

Con el fin de determinar si el catalizador NTK presentaba una nanoestructura se sometió a análisis mediante microscopia electrónica de transmisión. A continuación se presentan las micrografías obtenidas (Figura 6-12).

Al observar las imágenes obtenidas se detectó la presencia de estructuras nanotubulares, alineadas y desordenadas. Los nanotubos del que se compone el material, se encuentran abiertos en ambos extremos y tienen varias capas (entre 3 y 5), con una distancia entre capas de aproximadamente 0.5 nm.

Respecto a las dimensiones de los tubos, el diámetro interno tiene un valor de 5 - 7.8 nm y el largo de 49- 240 nm, aproximadamente.

Figura 6-12. Imágenes de TEM del catalizador NTK.

$6.2.4. \ Fisisorcion \ de \ N_2$

En la Figura 6-13 se presentan las isotermas de adsorción-desorción de N₂ del octatitanato de potasio, la anatasa empleada en su síntesis y el octatitanato de potasio impregnado con 5% m/m de K₂CO₃ (NTK-KC5). Todas las isotermas corresponden al tipo IV con histéresis H3, de acuerdo con la clasificación de la UIPAC, típicas de materiales mesoporosos.

Figura 6-13. Isotermas de adsorción-desorción de N₂ de los catalizadores NTK, NTK- KC5 y el precursor utilizado TiO₂.

Muestra	S _{BET} ^a (m²/g)	V _p ^b (cm³/g)	D _{ads} c (nm)	D _{des} ^d (nm)
TiO ₂	47	0.30	51.1	31.1
NTK	221	0.58	7.6, 79.8	4.8, 46.6
NTK-KC5	207	0.50	8.6, 45.6	5.2, 31.0

 Tabla 6-8. Propiedades texturales de los catalizadores NTK y NTK-KC5.

^a Área calculada por método BET

^B Volumen de poro total

[°] Diámetro de poro correspondiente al máximo de la distribución de poro calculado de la isoterma de adsorción por el método BJH

^d Diámetro de poro determinado de la isoterma de desorción por el método BJH

Al comparar la isoterma de adsorción-desorción de N₂ del precursor con la del octatitanato de potasio, se aprecia que para cada presión relativa la cantidad adsorbida de nitrógeno en el material sintetizado es mayor. Lo cual corresponde a que con el tratamiento hidrotérmico se obtiene un material nanoestructurado, con un mayor volumen de poro y área superficial (Tabla 6-8). Este resultado concuerda con las imágenes obtenidas de TEM, en donde se ve una nanoestructura fibrosa.

Para la curva de adsorción-desorción de N₂ de la muestra NTK-KC5 se observa que la impregnación de K_2CO_3 no cambió la forma de la isoterma (tipo IV con histéresis H3), por ende no alteró la estructura porosa del material. Sin embargo, el catalizador NTK-KC5 muestra un área específica y volumen de poro menores que los del soporte (Tabla 6-8), lo cual se debe a que al impregnar K_2CO_3 , éste se depositó sobre la superficie del material NTK, aumentando su densidad.

En la Figura 6-14 se presenta la distribución de poro de adsorción y desorción de esta serie de catalizadores. El precursor TiO₂ presenta una distribución monomodal con un diámetro de poro de adsorción de 51 nm, el cual corresponde al espacio entre las partículas de TiO₂. Se ve que al ser diferentes los diámetros de adsorción y desorción ($D_{ads} = 51$ nm y $D_{des} = 31$ nm) la isoterma presenta una histéresis H3, debido a que los espacios entre partículas no son uniformes.

En el caso de las muestras NTK y NTK-KC5 se puede distinguir una distribución bimodal, el primer máximo es atribuido a los poros internos de las estructuras nanotubulares, mientras que el segundo es atribuido a los espacios entre los aglomerados de las estructuras nanotubulares (Figura 6-14 y Tabla 6-8).

Capítulo 6

Figura 6-14. Distribución de tamaño de poro de los catalizadores NTK y NTK-KC5 y el precursor utilizado TiO₂: a) adsorción, b) desorción.

Se observa que el primer máximo en la distribución de diámetros de poro de adsorción y desorción se mantiene prácticamente igual, posterior a la impregnación de K₂CO₃, no obstante el segundo pico sufre un desplazamiento en el eje X (mostrando menores diámetros) para ambos procesos (adsorción y desorción), por lo cual se puede suponer que el K₂CO₃ se deposita en los espacios entre los aglomerados de los nanotubos.

6.2.5. Desorción de CO2 a temperatura programada (TPD-CO2)

En la Figura 6-35 se presentan los perfiles de desorción de CO₂ a temperatura programada de los catalizadores NTK y NTK-KC5. El perfil de octatitanato de potasio (NTK) presenta tres máximos a 73, 231 y 335 °C.

Éstos son atribuidos a sitios básicos débiles, medios y fuertes, respectivamente. Por otra parte el catalizador NTK-KC5 presenta cuatro señales. En este caso el primer pico se debe a los sitios básicos débiles (71°C) el segundo a los sitios básicos medios (215°C) y los dos últimos a los sitios básicos fuertes (308 y 404 °C).

En la Tabla 6-9 se presentan los resultados de la cuantificación de la cantidad total de sitios básicos de los catalizadores (NTK y NTK-KC5), así como su clasificación.

Al comparar la cantidad de CO₂ desorbida en el catalizador NTK con el NTK- KC5, se observa un decremento en la cantidad de sitios básicos débiles y se ve un notable aumento en los sitios básicos medios y fuertes. Al igual que en el catalizador Al-KC5, en el NTK-KC5 se observa que la adición de K₂CO₃ incrementa la cantidad de sitios básicos fuertes.

Capítulo 6

Figura 6-15. TPD- CO₂ de los catalizadores NTK y NTK-KC5.

Га	bla	6-9.	esultados de basicidad del catalizador NTK y NTK-KC5 obtenidos mediante TPD-CO ₂ .

Catalizador	Sitios básicos (µmol/g)					
	Total	Débiles	Medios	Medios-	Fuertes	Muy
				fuertes		fuertes
NTK	273.3	224.6	34.4	14.3	-	-
		(37-163 °C)	(200-280°C)	(301-367 °C)		
NTK-KC5	336.3	198.7	55.8	33.0	48.8	-
		(30-160 °C)	(168-264 °C)	(268-354 °C)	(361-528 °C)	

6.2.6. Espectroscopia de infrarrojo (FT-IR)

En la Figura 6-16 se presentan los espectros IR de las muestras K₂CO₃, NTK y NTK-KC5. Se aprecia una banda a 3324 cm⁻¹, atribuida a los estiramientos vibracionales de grupos ⁻OH y una a 1635 cm⁻¹, correspondiente a vibraciones de deformación de tipo tijera de los protones provenientes de agua remante en los materiales [119].

Figura 6-16. Espectros de IR de las muestras NTK, NTK-KC5 y K₂CO₃.

En el espectro del octatitanato de potasio se observa una banda en 1336 cm⁻¹, la cual ha sido asociada a la vibración de enlaces Ti-O-H [120–122]. Se observa que al impregnarlo con K₂CO₃ el pico en 1340 cm⁻¹ se ensancha y aumenta de intensidad. Al comparar este espectro con el del K₂CO₃, se ve que la presencia de esta banda se puede asociar con la vibración del enlace O=C-O⁻, la cual indica la presencia del ion CO₃²⁻ en la superficie del material [116].

6.2.7. Evaluación de la actividad catalítica

En la Tabla 6-10 se muestran los resultados obtenidos en la transesterificación de aceite de soya con metanol, con los catalizadores NTK, NTK-KC5 y Al-KC5.

Tabla 6-10. Resultados de la reacción de transesterificación de aceite de soya con metanol catalizada con los catalizadores AI-KC5, NTK y NTK-KC5. Condiciones de reacción: 80°C, 30 minutos y relación molar 1:20 (aceite: metano). La viscosidad inicial del aceite es de 32.6 Cst.

Catalizador	Viscosidad cinemática (cSt)	Rendimiento (%)
AI-KC5	25.3	5.60
NTK	27.1	4.39
NTK-KC5	11.7	45.28

Capítulo 6

Se aprecia que al impregnar el $K_2Ti_8O_{17}$ con K_2CO_3 hay un notable incremento en la actividad catalítica de éste, pasando de 4.39% de rendimiento a 45.28%. Se puede atribuir este incremento al aumento de los sitios básicos fuertes en el catalizador impregnado (Figura 6-17).

Figura 6-17. Resultados de la evaluación de la actividad catalítica y la basicidad de los catalizadores AL-KC5, NTK y NTK-KC5.

Al comprar el rendimiento de biodiesel obtenido con el catalizador NTK-KC5 con el del Al-KC5, se observa que a pesar de que ambos tienen una cantidad similar de sitios básicos fuertes, la actividad catalítica del primero es superior. Esto se puede deber a la presencia de la especie K₂CO₃ en la superficie del K₂Ti₈O₁₇, ya que como se observó en los resultados de FT-IR, en el caso de la γ -alúmina, esta se descompone en otros compuestos al reaccionar con los OH⁻ presentes en la superficie de la alúmina.

Esto da indicio de que el aumento de la cantidad de sitios básicos de alta fuerza y por ende la actividad catalítica, está relacionado con la presencia de aniones CO_3^{2-} , provenientes del compuesto K_2CO_3 impregnado en los materiales.

6.3. Titanatos de sodio- potasio preparados mediante intercambio iónico (NTNaXKY)

6.3.1. Difracción de rayos X

En la Figura 6-18 se muestran los patrones de difracción de rayos X de polvos de los titanatos de sodio-potasio obtenidos mediante intercambio iónico.

Figura 6-18. Difractogramas de los tianatos de sodio-potasio NTNaXKY.

En el difractograma correspondiente a la muestra NTNa se observan las señales correspondientes al trititanato de sodio monoclínico (tarjeta JCPDS-ICDD 31-1329). Además de esto, no se observan señales correspondientes a la anatasa, por lo cual se puede afirmar que no quedaron remanentes de ésta sin reaccionar posterior al tratamiento hidrotérmico, lo cual concuerda con trabajos anteriores [31, 92].

Con respecto a los materiales sintetizados mediante intercambio iónico, se observa que a pesar de la incorporación de potasio en el trititanato de sodio, éste sigue mostrando únicamente las señales correspondientes al trititanato de sodio monoclínico.

6.3.2. Microscopia electrónica de barrido (SEM-EDX)

Mediante microscopia electrónica de barrido se determinó la composición química de los materiales sintetizados mediante intercambio iónico, estos resultados se presentan en Tabla 6-11.

Con respecto al material empleado como precursor en la síntesis de la serie de catalizadores NTNaXKY, se aprecia que la composición de la muestra NTNa es cercana a la esperada para el material identificado como Na₂Ti₃O₇ (%Nateo= 15, %Titeo= 48 y %Oteo= 37), lo que implica que prácticamente todo el precursor sometido al tratamiento hidrotérmico reaccionó, esto concuerda con el difractograma de la muestra, donde no se apreciaron señales correspondientes a la anatasa (Figura 6-18).

Al comparar las imagenes obtenidas (Figura 6-19) de la muestra TiO₂ y NTNa, se aprecia que las partículas esféricas de la anatasa (Figura 6-19 a) fueron completamente trasformadas en un material con una morfología de fibras (Figura 6-19 b).

Para los catalizadores obtenidos mediante intercambio iónico (NTNa5K5, NTNa4K7, NTNa4K8) se observa que a medida que se adicionó más carbonato de potasio a la mezcla precursora, hubo una mayor disposición de iones potasio en la disolución, con lo que aumentó la cantidad de potasio en el material (Tabla 6-11).

Así mismo, debido al intercambio iónico de las dos especies, conforme aumentó la cantidad de potasio adicionada hubo una disminución de la cantidad de sodio.

Muestre		Composición (%m/m)					de la mezcla a (%m/m)
Muestra	Na	0	Ti	К	С	NTNa	K ₂ CO ₃
NTNa	13.69	35.33	50.98	0	0	100	0
NTNa5K5	5.12	47.38	41.99	4.78	0.72	80	20
NTNa4K7	4.13	46.07	42.15	6.63	1.02	60	40
NTNa4K8	3.71	39.54	47.36	8.36	1.03	40	60

 Tabla 6-11. Composición de los catalizadores NTNa y la serie NTNaXKY determinada mediante SEM

 EDX.

Figura 6-19. Imágenes de SEM: a) TiO₂ fase anatasa [42], b) NTNa.

Figura 6-20. Imágenes SEM de a) NTNa, b) NTNa5K5, c)NTNa4K7, d) NTNa4K8

Laboratorio de nanocatálisis Facultad de Química En la Figura 6-20 se presentan las fotos de la microscopia electrónica de barrido de esta serie de materiales (NTNa, NTNa5K5, NTNa4K7, NTNa4K8). Al compararlas, no se percibe ningún cambio en la morfología característica del titanato de sodio, después de la incorporación del potasio, lo que indica que los materiales obtenidos mediante intercambio iónico mantuvieron la morfología fibrosa característica del trititanato de sodio nanoestructurado.

6.3.3. Microscopia electrónica de transmisión (TEM)

En trabajos anteriores se ha reportado que el trititanato de sodio obtenido mediante tratamiento hidrotérmico presenta una característica morfología en forma de nanoestructuras tubulares [31, 92]. Con el fin de determinar si posterior a la incorporación de potasio mediante intercambio iónico se alteraba la nanoestructura del material, se sometieron a análisis los catalizadores NTNa y NTNa4K8 mediante microscopia electrónica de transmisión (Figuras 6-21 y 6-22).

En las Figuras 6-21 y 6-22, se presentan las imágenes de las muestras NTNa y NTNa4K8, respectivamente. No se percibió algún cambio evidente en la nanoestructura del material NTNa posterior a la incorporación de potasio por intercambio iónico.

Figura 6-21. Micrografías electrónicas de transmisión de la muestra NTNa a diferentes aumentos.

En Figura 6-22 se aprecia la presencia de estructuras natubulares ya sea como grupos desordenados o alineados. Los nanotubos obtenidos son de multicapas (entre 3 y 5) con ambos extremos abiertos. Presentan una distancia entre paredes de 0.5-0.58 nm, diámetro interno de 7.5 nm y largo entre 100-400 nm aproximadamente.

6.3.4. Fisisorcion de N₂

En la Figura 6-23 se muestran las isotermas de adsorción-desorción de N₂ para el trititanato de sodio (NTNa) y la serie de materiales sintetizados mediante intercambio iónico (NTNa5K5, NTNa4K7, NTNa4K8). Las isotermas presentan una forma del tipo IV con una histéresis H3, lo cual confirma la presencia de mesoporos en los materiales.

Muestra	SBET ^a Vp ^b		Dads ^c	Ddes ^d
	(m²/g)	(cm³/g)	(nm)	(nm)
TiO ₂	47	0.30	51.12	31.1
NTNa	201	0.50	7.5, 30.9	3.21, 4.6
NTNa5K5	207	0.51	7.6, 30.9	3.3, 4.6
NTNa4K7	204	0.51	7.6, 30.9	3.3, 4.7
NTNa7K8	190	0.46	7.7, 31.2	3.3, 4.6

Tabla 6-12. Propiedades texturales de los catalizadores NTNaXKY.

^a Área calculada por método BET.

^B Volumen total de poro.

^c Diámetro de poro correspondiente al máximo de la distribución de poro calculado de la isoterma de adsorción por el método BJH.

^d Diámetro de poro determinado de la isoterma de desorción por el método BJH.

En el caso de el catalizador NTNa, se observa que mediante el tratamiento hidrotérmico se obtuvo un material con un área específica y volumen de poro superior al precursor empleado en la síntesis (Tabla 6-12). Esto se atribuye a la presencia de la morfología nanoestructurada en el trititanato de sodio (la cual se observó en las microscopias electrónicas de transmisión y barrido).

En el caso de los titanatos de sodio-potasio obtenidos mediante intercambio iónico, no se vio una disminución significativa en el área superficial, ni en el volumen de poro (Tabla 6-12) después de la incorporación de potasio, lo cual implica que el potasio no se depositó sobre la superficie del material, sino que entró en la red cristalina del material sustituyendo a los cationes de sodio.

Al obtener las distribuciones de diámetro de poro de adsorción y desorción (Figura 6-24), para los materiales presentados en esta sección, se apreció que el trititanato de sodio (NTNa), presenta dos máximos.

En el caso de la distribución de poros adsorción, el primer pico, con un valor de 7.5 nm, corresponde al diámetro interno de los nanotubos (valor que concuerda con las imágenes de microscopia electrónica de transmisión) y el segundo (30.9 nm) se atribuye a los espacios vacíos entre los agregados de nanotubos.

Después del intercambio iónico de NTNa, con carbonato de potasio, no se ven cambios notables en la distribución bimodal, la cual mantiene sus dos picos.

Nuevamente en la distribución de tamaño de poros de adsorción se asocia el primer valor $(D_{NTNa5K5}=7.6 \text{ nm})$ con el diámetro interno de los nanotubos y el segundo con los espacios entre agregados de los nanotubos $(D_{NTNa5K5}=30.9 \text{ nm})$.

Al comparar los valores de los diámetros de adsorción del catalizador NTNa con los de la serie obtenida mediante intercambio iónico, no se aprecia un cambio significativo, esto concuerda con las imágenes obtenidas mediante microscopia electrónica de transmisión y dan indicio de la conservación de la morfología nanotubular del material posterior al intercambio iónico.

Figura 6-24. Distribución de tamaño de poro de los materiales sintetizados mediante intercambio iónico: a) adsorción y b) desorción.

6.3.5. Desorción de dióxido de carbono (TPD- CO2)

En la Figura 6-25 se muestran los perfiles de TPD-CO₂ de la serie de catalizadores presentada en esta sección (NTNa5K5, NTNa4K7, NTNa4K8) y el precursor empleado en su síntesis (NTNa).

En el TPD-CO₂ del trititanato de sodio, el primer máximo corresponde a los sitios básicos débiles (70°C), el segundo (216 °C) a los sitios básicos de fuerza media y el tercero y cuarto (303 y 490 °C) a los sitios básicos fuertes.

En la Tabla 6-13 se presentan los detalles de la cantidad desorbida de CO₂ en cada señal y la clasificación correspondiente a esta. Los resultados obtenidos para el trititanato de sodio concuerdan con los reportados en otros trabajos [31, 42].

Capítulo 6

Figura 6-25 TPD- CO₂ de las muestras NTNaXKY.

En el caso de los materiales obtenidos mediante intercambio iónico (NTNa5K5, NTNa4K7, NTNa4K8) se observa que hay una disminución de la cantidad total de CO₂ desorbida (Tabla 6-13) con respecto al trititanato de sodio.

Respecto a la clasificación de las señales observadas en los TPD-CO₂ de las muestras después del intercambio iónico se ve que los dos primeros catalizadores de la serie presentan cinco máximos (NTNa5K5 = 74, 223, 333, 413 y 492 °C, NTNa4K7=77, 216, 309, 409 y 489 °C). En éstos, las dos primeras señales se atribuyen a los sitios básicos débiles y de fuerza media, mientras que las otras tres (observadas a una temperatura superior de 300 °C) se deben a sitios básicos fuertes.

Catalizador	Sitios básicos (µmol/g)					
	Total	Débiles	Medios	Medios-	Fuertes	
				fuertes		
NTNa	162.4	93.5	21.8	8.8	38.3	
		(32-165°C)	(180-270 °C)	(2373-377 °C)	(384-619 °C)	
NTNa5K5	125.4	70.0	14.0	15.6	25.8	
		(47-178°C)	(188-292 °C)	(312-364 °C)	(376-520 °C)	
NTNa4K7	128.3	66.1	17.3	7.8	37.1	
		(38-169 °C)	(176-263 °C)	(271-347 °C)	(355-517°C)	
NTNa4K8	115.1	62.1	20.0	6.6	26.4	
		(31-141 °C)	(160-243 °C)	(246-316 °C)	(347-505)	

 Tabla 6-13. Resultados de basicidad del catalizador NTNa y la serie de catalizadores NTNaXKY obtenidos mediante TPD-CO2.

En cuanto al catalizador NTNa4K8, presenta cuatro máximos en 60, 189, 285 y 407 °C. De estos, nuevamente los dos primeros se deben a sitios de fuerza básica baja y media (respectivamente), mientras los últimos dos, corresponden a sitos básicos fuertes. Al comparar la curva de desorción del catalizador NTNa4K8 con el del trititanato de sodio empleado en su síntesis (Figura 6-26) se observa que el catalizador NTNa4K8 tiene máximos de menor tamaño, lo cual corresponde a una menor cantidad de sitios básicos (Tabla 6-13).

Por otra parte se observa que las temperaturas a las que empieza la desorción de CO₂ de cada intervalo son menores para el catalizador NTNa4K8 que para el NTNa, lo cual da indicio de una menor fuerza básica en los sitios del material preparado mediante intercambio iónico con respecto al trititanato de sodio inicial.

Figura 6-26. TPD-CO2 de NTNa y NTNa4K8.

En la Figura 6-27 se presentan los espectros de infrarrojo del K₂CO₃, el trititanato de sodio (NTNa) y los materiales sintetizados mediante intercambio iónico (NTNa5K5, NTNa4K7, NTNa4K8).

Las bandas (3200 y 1649 cm⁻¹) se pueden atribuir a agua adsorbida en los catalizadores. La primera, observada a 3200 cm⁻¹ es atribuida a los estiramientos vibracionales de grupos –OH, mientras que la señal localizada a 1630 cm⁻¹ es asignada a vibraciones de deformación de tipo tijera de los protones [119]. La siguiente señal (1340 cm⁻¹) ha sido asignada a vibraciones de deformación del enlace Ti-O-H. La ultima banda de los materiales, observada a aproximadamente 898 cm⁻¹, es propia de vibraciones de los enlaces Ti-O. Esta pertenece a la forma octaédrica distorsionada del TiO₆ [120–122]. Se tiene reportado que este óxigeno sin compartir puede ser afectado por presencia de distintos iones en el material, debido a que la energía de modo vibracional depende de la naturaleza de los cationes intercalados en los nanotubos de trititanato. De esta manera, se ve un aumento en el número de onda a medida que aumenta el porcentaje de potasio detectado en el material, lo cual indica que se encuentra intercalado en los nanotubos.

Capítulo 6

Figura 6-27. Espectros de IR de las muestras NTNaXKX.

Al comparar los espectros de la serie NTNaXKY con el del K₂CO₃, no se perciben las señales correspondientes a la vibración de los enlaces propias de esta especie (1371, 1510,1049, 877 cm⁻¹) [116, 117, 119].

En particular se observa la ausencia de la señal a 1371 cm⁻¹ correspondiente a la vibración del ion $CO_3^{2^-}$. Esto da indicio de que solo el potasio proveniente de este compuesto se integró en el material mediante la sustitución de los iones sodio de la red cristalina de los nanotubos sódicos.

6.3.7. Evaluación de la actividad catalítica

En la Tabla 6-14 se muestran los resultados obtenidos en la transesterificación de aceite de soya con metanol, para los catalizadores AI-KC5, NTNa y los materiales sintetizados mediante intercambio iónico (NTNaXKY).

En el caso del titanato de sodio nanoestructurado (NTNa), en trabajos anteriores se ha observado que presenta actividad catalítica en la reacción de transesterificación [42, 62, 123]. En estos se reportan altas conversiones (97.8%) bajo condiciones de reacción de 80°C y 6 horas.

Se ve que a pesar de que los catalizadores Al-KC5 y NTNa desorben una cantidad total de CO₂ similar, la distribución de sitios de fuerza débil, media y alta cambia y por lo tanto su actividad catalítica. De esta manera es mayor la actividad del material con más sitios básicos fuertes (NTNa). Esta observación se puede extender a todos los materiales

estudiados en el presente trabajo, en los cuales se ve que la actividad catalítica de los materiales depende de la proporción de sitios básicos de alta fuerza.

Tabla 6-14. Resultados de la reacción de transesterificación de aceite de soya con metanol catalizada con los catalizadores Al-KC5, NTNa y los catalizadores preparados mediante intercambio iónico (NTNaXKY). Condiciones de reacción: 80°C, 30 minutos y relación molar 1:20 (aceite: metano). La viscosidad del aceite inicial es 32.6 cSt.

Catalizador	μ (cSt)	Rendimiento (%)
AI-KC5	25.3	5.60
NTNa	21.1	13.46
NTNa5K5	28.2	3.25
NTNa4K7	28.4	3.05
NTNa4K8	24.6	7.31

Como se discutió anteriormente, se aprecia que en los materiales sintetizados mediante intercambio iónico, más del 50% de sus sitos básicos son débiles, con entre el 11%-17% de sitios de fuerza media y fuertes 30-35 % (Figura 6-28). Esto resulta en una baja actividad catalítica y bajos rendimientos (menores de 8%). Es decir, una baja proporción de sitios básicos fuertes resulta en una baja actividad catalítica en la reacción de transesterificación.

Resumiendo todos los resultados de caracterización descritos en esta sección (DRX, SEM, TEM, fisisorción de N₂, TPD, FT-IR) y la evaluación de la activad catalítica, se aprecia que mediante el intercambio iónico el potasio se incorporó dentro de las estructuras nanotubulares remplazando algunos cationes de sodio. Esto aumentó la proporción de potasio, pero redujo la cantidad de sodio, en los materiales y por lo tanto hubo una reducción de las propiedades básicas del material.

En comparación con el Na₂Ti₃O₇, la serie NTNaXKY tiene una menor cantidad de sitios básicos (con proporción similar de los tipos de sitios: débiles, medios y débiles). De esta manera, la reducción de las propiedades básicas repercute en una disminución de la actividad catalítica de los materiales.

Figura 6-28. Resultados de la evaluación de la actividad catalítica y la basicidad de los catalizadores Al-KC5, NTNa y NTNaXKY.

6.4. Titanato de sodio impregnado con K₂CO₃

6.4.1. Difracción de rayos X

En la Figura 6-29 se presentan los difractogramas de rayos X de polvos correspondientes a las muestras de titanato de sodio impregnadas con diferentes porcentajes de carbonato de potasio (NTNa-KCX), así como el del titanato de sodio (NTNa) y el precursor empleado en su síntesis (TiO₂ fase anatasa).

Los patrones de difracción de rayos X correspondientes a los catalizadores NTNa-KCX presentan picos característicos del trititanato de sodio monoclínico (tarjeta JCPDS-ICDD 31-1329) (Tabla 6-15) de esta manera se ve que la adición de K₂CO₃ mediante impregnación por humedad incipiente no altera la estructura cristalina del soporte.

Los difractogramas de los catalizadores NTNa-KCX no muestran señales correspondientes al K_2CO_3 (tarjeta JCPDS-ICDD 016-0820) por lo que se puede inferir que éste se distribuyó uniformemente durante su adicción.

Figura 6-29 Difractograma de los catalizadores de la serie NTNa-KCX.

Angulo de barrido 20	ngulo de barrido 2Θ Distancia interplanar		Planos de reflexión		
(°)	(Å)	h	k	I	
10.5	8.40	0	0	1	
24.3	3.65	2	0	1	
28.4	3.14	1	1	1	
48.1	1.86	3	0	3	

Tabla 6-15. Planos del	trititanato de sodio.
------------------------	-----------------------

6.4.2. Microscopia electrónica de barrido (SEM-EDX)

Con el fin de comprobar que el K₂CO₃ tuviera una adecuada impregnación en el soporte (NTNa), se determinó la composición de la serie de catalizadores NTNa-KCX. En la Tabla 6-16 se presentan los resultados del análisis mediante microscopia electrónica de barrido.

Se observa que el porcentaje de K detectado es cercano a la cantidad impregnada mediante humedad incipiente para las tres muestras preparadas, teniendo una ligera diferencia en el último catalizador (NTNa-KC10). En éste la cantidad detectada de potasio es mayor a la impregnada, lo cual se debe probablemente al hecho de que una mayor cantidad de carbonato de potasio impregnado quedo en la superficie externa del soporte, teniendo puntos con aglomeración de esta especie.

Por otra parte es importante tomar en consideración la incertidumbre asociada al empleo de la técnica, la cual es semi-cuantitativa.

En la Figura 6-30 se muestran las imágenes obtenidas del análisis mediante microscopia electrónica de barrido del titanato de sodio impregnado con K₂CO₃. Para todas las cargas depositadas en el soporte, no se aprecia algún cambio en la morfología del material, es decir posterior a la impregnación el soporte mantiene la estructura de nanofibras.

		Compo		Cantidad de K ₂ CO ₃		
Muestra	Na	Ti	0	С	K	impregnada (%m/m)
NTNa	13.69	50.98	35.33	0.00	0.00	0.00
NTNa-KC3	9.78	39.22	49.22	0.21	1.49	3.03
NTNa-KC5	9.48	40.87	46.47	0.40	2.79	5.08
NTNa-						
KC10	7.61	33.54	50.93	0.98	6.87	11.52

Tabla 6-16. Composición de los catalizadores de la serie de NTNa-KCX.

Figura 6-30. Imágenes de microscopia electrónica de barrido de los catalizadores de la serie NTNa-KCX: a) NTNa, b) NTNa-KC3, c) NTNa-KC5, d) NTNa-KC10.

6.4.3. Microscopia electrónica de transmisión (TEM)

En las Figuras 6-31 y 6-32, se presentan las imágenes de la microscopia electrónica de transmisión del trititanato de sodio empleado como soporte (NTNa) y el material impregnado con 10% de K₂CO₃ (NTNa-KC10). En las imágenes, se aprecia la presencia de nanotubos abiertos de multicapa (3-5), con una distancia entre paredes de aproximadamente 0.5-0.58 nm, largo entre 100 y 400 nm y diámetro interno de 7.5 nm. Al comparar las muestras, no se aprecian cambios evidentes en la nanoestructura del catalizador NTNa posterior a la incorporación de K₂CO₃ mediante impregnación por humedad incipiente.

Figura 6-31. Imágenes de la microscopia electrónica de transmisión de la muestra NTNa.

Figura 6-32. Imágenes de la microscopia electrónica de transmisión de la muestra NTNa-KC10.

6.4.4. Fisisorción de N2

En la Figura 6-33 se muestran las isotermas de adsorción-desorción de N₂ para el trititanato de sodio, el precursor empleado en su síntesis (TiO₂) y el trititanato de sodio impregnado con diferentes porcentajes de K₂CO₃. Las isotermas presentan una forma del tipo IV con una histéresis H3, lo cual confirma la presencia de mesoporos en los materiales.

Posterior a la adición de K_2CO_3 mediante impregnación por humedad incipiente, no se ven cambios en la estructura porosa del soporte (se conservó la forma de las curvas de adsorción-desorción). Sin embargo, nuevamente se ve que éste se deposita sobre la superficie del soporte, disminuyendo el área específica y el volumen de poro (Tabla 6-17). De esta manera se ve una disminución del área a medida que aumenta la cantidad de K_2CO_3 impregnada.

En la Figura 6-34 se observan las distribuciones de volumen de poro, para el soporte (NTNa) y los catalizadores de la serie NTNa-KCX. En la distribución de poros de adsorción se ve que los nanotubos de titania sódicos (NTNa), presentan dos máximos, donde el primero (7.5 nm) corresponde al diámetro interno de los nanotubos y el segundo (30.9 nm) a la distancia entre los agregados de éstos.

Tabla 0-17. Tropledades texturales de los catalizadores nana-non.						
Muestra	S_{BET}^{a}	Vp ^b	D_{ads}^{c}	D_{des}^{d}		
	(m²/g)	(cm³/g)	(nm)	(nm)		
Ŧio	47	0.00	F 4 - 4	04.4		
ΠO_2	47	0.30	51.1	31.1		
NTNa	201	0.50	7.5, 30.9	3.2, 4.6		
NTNa-KC3	165	0.44	7.5, 32.3	3.3, 4.1		
NTNa-KC5	171	0.45	7.6, 30.8	3.3, 4.1		
NTNa-KC10	117	0.36	7.5, 30.6	3.2, 4.1		

 Tabla 6-17.
 Propiedades texturales de los catalizadores NTNa-KCX.

^a Área calculada por método BET

^B Volumen total de poro

[°] Diámetro de poro correspondiente al máximo de la distribución de poro calculado de la isoterma de adsorción por el método BJH

^d Diámetro de poro determinado de la isoterma de desorción por el método BJH.

Posterior a la impregnación de las diferentes cargas de K_2CO_3 , se ve que la distribución bimodal se conserva, pero el diámetro de desorción disminuye (pasa de 4.6 a 4.1 nm), lo cual da indicio de que el K_2CO_3 se depositó en el espacio entre los aglomerados de tubos.

6.4.5. Desorción de CO₂ a temperatura programada (TPD-CO₂)

En la Figura 6-35 se presentan las curvas de desorción de CO₂ a temperatura programada de los catalizadores preparados mediante impregnación incipiente de K₂CO₃ (NTNa-KC3, NTNa-KC5, NTNa-KC10) y del precursor empelado en su síntesis (NTNa), así mismo en la Tabla 6-18 se muestran los resultados de la cuantificación de la cantidad total de sitios básicos de estos y su clasificación.

Como se describió en la sección anterior, el trititanato de sodio presenta cuatro señales, de las cuales el primero corresponde a sitios básicos de fuerza débil, el segundo a sitios básicos de fuerza media y los últimos a sitios básicos fuertes. De esta manera la adición de K₂CO₃ en el soporte generó el ensanchamiento de los máximos atribuidos a los sitios básicos fuertes, así como la aparición de un quinto pico el cual también se debe a sitios básicos de fuerza alta, esto se traduce como un incremento en la cantidad de sitios básicos.

Figura 6-35. Curvas de TPD- CO₂ de NTNa y NTNa-KCX.

En general, se observa que la serie de catalizadores NTNa-KCX presentan perfiles de desorción con cinco máximos, de los cuales el primero es atribuido a sitios básicos débiles (32-180 °C), el segundo a sitios de fuerza media (200-296°C) y los otros (observados a temperaturas mayores de 300 °C) corresponden a los sitios básicos fuertes.

I abia	0-10. Resultau	us de pasicidad		VIIVA ODLEIIIUUS	mediante TFD-	-002.	
Catalizador	Sitios básicos (µmol/g)						
	Total	Debiles	Medios	Fuertes	Fuertes	Muy fuertes	
					medios		
NTNa	162.4	93.5	21.8	8.8	38.3		
		(32-165°C)	(180-270	(273-377	(384-	-	
			°C)	°C)	600°C)		
NTNa- KC3	336	154.3	44.0	22.2	34.8	80.7	
		(35-179 °C)	(203-293.6	(311-377.8	(407-470	(490-600	
			°C)	°C)	°C)	°C)	
NTNa-KC5	362.	111.9	38.9	28.2	39.0	144.7	
		(42-167 °C)	(190-271	(288-363	(383-446	(468-600	
			°C)	°C)	°C)	°C)	
NTNa-KC10	688.7	96.7	48.0	45.2	79.3	419.5	
		(33-180 °C)	(200-296 °C)	(311-398 °C)	(400-470 °C)	(481- 600°C)	

 Tabla 6-18. Resultados de basicidad del catalizador NTNa obtenidos mediante TPD-CO2.

De esta manera los resultados indican que al aumentar la cantidad de K₂CO₃ impregnada en el material, aumenta la cantidad de sitios básicos fuertes.

6.4.6. Espectroscopia de Infrarrojo (FT-IR)

En la Figura 6-36 se presentan los espectros de IR del Na₂Ti₃O₇, K₂CO₃ y de la serie de catalizadores NTNa-KCX. Nuevamente se observan las dos bandas asociadas con la presencia de agua adsorbida en el material a 3213 y 1649 cm⁻¹. Como se mencionó anteriormente, éstas están asociadas a las vibraciones de deformación y estiramiento del grupo OH [116].

Las siguientes dos señales (1371 y 1049 cm⁻¹) se asocian con la presencia de K_2CO_3 en el material. La señal a 1371 cm⁻¹ es propia de la tensión asimétrica del enlace O=C-O⁻, mientras que la banda a 1049 cm⁻¹ está relacionada con la tensión asimétrica del CO₃² [116,117]⁻. Ambas bandas aumentan de intensidad con respecto a la cantidad impregnada de K_2CO_3 , lo cual concuerda con los resultados obtenidos por SEM-EDX.

En el caso de la señal propia de la vibración de los enlaces Ti-O (898 cm⁻¹) no se aprecia un aumento en el número de onda con respecto al aumento del K_2CO_3 incorporado en el material. Esto junto a la presencia de las bandas asociadas al K_2CO_3 indican que el potasio proveniente de este compuesto no se incorporó dentro de las estructuras nanotubulares, sino que toda la especie se impregnó en el soporte.

Capítulo 6

Figura 6-36. Espectros de IR de las muestras NTNa-KCX.

6.4.7. Evaluación de la actividad catalítica

En la Tabla 6-19 se muestran los resultados obtenidos en la transesterificación de aceite de soya con metanol, para los catalizadores AI-KC5, NTNa y la serie de catalizadores NTNa-KCX. Se aprecia que a medida de que se aumentó la cantidad de K₂CO₃ impregnado en el trititanato de sodio, éste tuvo un notable incremento en la proporción de sitios básicos fuertes, pasado del 29% en el trititanato de sodio a 41, 58 y 79 % para los catalizadores NTNa-KC3, NTNa-KC5 y NTNa-KC10, respectivamente (Figura 6-37). Como resultado,los rendimientos obtenidos con los catalizadores modificados con K₂CO₃ en las mismas condiciones experimentales son altos (entre 79 y 94%).

En la serie NTNa-KCX, una vez más se ve el efecto de la cantidad de sitios básicos fuertes en la actividad catalítica de los materiales, donde ésta es mayor a medida que el porcentaje de sitios fuertes lo es.

De esta manera los resultados de caracterización descritos anteriormente (DRX, SEM, TEM, fisisorción de N₂, TPD, FT-IR) indican que el K₂CO₃ se incorporó sobre la superficie del material. Esto se ve en la disminución del área superficial y volumen de poro a medida que se aumenta la carga de K₂CO₃ incorporada en trititanato de sodio mediante impregnación por humedad incipiente.

Esto da indicio de que el aumento de la cantidad de sitios básicos fuertes, está en este caso estrechamente relacionada con la presencia del anión CO₃²⁻ en los materiales, el cual actúa en la reacción como una base de Lewis y de Brönsted.

Tabla 6-19. Resultados de la reacción de transesterificación de aceite de soya con metanol catalizada con los catalizadores Al-KC5, NTNa y los catalizadores preparados mediante impregnación por humedad incipiente (NTNa-KCX). Condiciones de reacción: 80°C, 30 minutos y relación molar aceite: metanol 1:20. La viscosidad del aceite inicial fue de 32.6 cSt.

Catalizador	μ (cSt)	Rendimiento (%)
γ-Alúmina	30.6	1.17
Al-KC5	25.3	5.60
NTNa	21.1	13.46
NTNa-KC3	5.6	78.79
NTNa-KC5	4.7	91.80
NTNa-KC10	4.4	94.29

Figura 6-37. Resultados de la evaluación de la actividad catalítica y la basicidad de los catalizadores NTNa y NTNa-KCX.

6.5. Comparación entre los métodos de síntesis de los catalizadores

Se esperaba que la incorporación de potasio mediante la síntesis por tratamiento hidrotérmico o intercambio iónico generara titanatos con una mayor basicidad. Esto debido a que el potasio, al tener una mayor electropositividad que el sodio produciría un titanato con una mayor disposición a donar un par de electrones, es decir una base más fuerte de Lewis. Sin embargo, se observó que los materiales obtenidos presentan una menor actividad catalítica.

En el caso del octatitanato de potasio (K₂Ti₈O₁₇), se ve que tienen una menor proporción de átomos metálicos dentro de la estructura cristalina en comparación con el trititanato de sodio (NTNa), lo cual se traduce en una menor cantidad de sitios básicos en el material y una menor actividad catalítica (Figura 6-38).

Con respecto al material sintetizado mediante intercambio iónico (NTNa5K5), se aprecia que el procedimiento empleado para su síntesis incrementó la cantidad de potasio en la red cristalina. No obstante, también disminuyó la cantidad de sodio en el material en comparación con el NTNa (Tabla 6-11). Esto resultó en una menor cantidad de sitios básicos fuertes y baja actividad catalítica (Figura 6-38).

Figura 6-38. Actividad catalítica de los catalizadores γ-alúmina, NTK, NTNa y NTNa5K5 y sus características básicas.

Figura 6-39. Actividad catalítica de los materiales impregnados con 5% de K₂CO₃ y sus características básicas.

Se observa que en los materiales nanotubulares que tienen el K₂CO₃ depositado en la superficie (NTNa-KCX y NTK-KC5) se tiene un aumento notable de la actividad catalítica en comparación con los soportes sin impregnar (Figura 6-39). Esto se puede atribuir a la presencia de los iones CO_3^{2-} en la superficie de los materiales impregnados, lo cual aumenta la cantidad de sitios básicos fuertes en estos. De esta manera se aprecia que el aumento de la basicidad del material no se debe la incorporación de K en la red cristalina de los materiales, sino al depósito de K₂CO₃ mediante impregnación incipiente.

7. Diseño de experimentos para el catalizador NTNa-KC5

Con el fin de estudiar el efecto que tienen la temperatura, cantidad empleada de catalizador y el tiempo de reacción en el rendimiento de la reacción, se aplicó un diseño factorial de experimentos 2³ (de tres variables con dos niveles) para el catalizador NTNa-KC5.

A pesar de que la muestra impregnada con 10% (NTNa-KC10) permitió obtener mayores rendimientos, la selección del catalizador NTNa-KC5 se basó en la consideración de que presentó mejores propiedades texturales (mayor área superficial y volumen de poro) que el material NTNa-KC10.

En la Tabla 7-1 se muestran los factores seleccionados y los valores superior e inferior para el plan de experimentos.

Factores	Dominio Experimental	
	Nivel (-)	Nivel (+)
A: Temperatura (°C)	70	80
B: Cantidad de catalizador (g)	0.25	0.5
C: Tiempo de reacción (h)	0.5	3

Tabla 7-1. Factores escogidos	y valores superior e inferior del diseño experimenta	al.
-------------------------------	--	-----

Se realizaron 8 corridas, en las cuales se variaron las condiciones experimentales, siguiendo la matriz de experimentos que se presenta en la Tabla 7-2. El plan de experimentos se llevó acabo en orden aleatorio con el fin de evitar errores sistemáticos.

Matriz de experimentos ^a			Plan de experimentos ^b				Respuesta
A	В	С	Orden de realización	Temperatura (°C)	Masa de catalizador (g)	Tiempo de reacción (h)	Rendimiento (%)
-	-	-	4	70	0.25	0.5	21.21
+	-	-	2	80	0.25	0.5	73.06
-	+	-	3	70	0.5	0.5	42.61
+	+	-	1	80	0.5	0.5	91.80
-	-	+	5	70	0.25	3	52.91
+	-	+	8	80	0.25	3	97.37
-	+	+	6	70	0.5	3	74.80
+	+	+	7	80	0.5	3	100

Tabla 7-2. Matriz de experimentos del diseño factorial 2³.

^a Los símbolos (+ y -) se refieren a los valores superior e inferior que toma cada variable.

^b En el plan de experimentos se presentan las condiciones de cada uno de los experimentos realizados.

La variable de respuesta estudiada para el diseño de experimentos fue el rendimiento de biodiesel, el cual se determinó mediante el análisis de los espectros de resonancia magnética nuclear de protón (Tabla 7-2).

El cálculo del diseño de experimentos se realizó en el programa Statgraphics Plus 4.0. A continuación se presentan los valores de coeficientes obtenidos (Tabla 7-3).

	reepaeeta premieate y	
Efecto	Símbolo	Valor del efecto
Promedio	b_0	69.21
A: Temperatura	b_A	42.72
B: Cantidad de catalizador	b_B	16.18
C: Tiempo de reacción	b _c	24.12
AB	b_{AB}	-5.52
AC	b_{AC}	-7.89
BC	b_{BC}	-3.92

 Tabla 7-3.
 Valores de la respuesta promedio y los efectos.

Los valores mostrados en la tabla corresponden a los coeficientes de un polinomio con el cual se puede determinar el valor de respuesta (rendimento de métil esteres) para cualquier combinacion de valores dentro del intervalo acotado por los parametros inferior y superior.

$$Y = b_0 + b_A X_A + b_B X_B + b_C X_C + b_{AB} X_A X_B + b_{AC} X_A X_C + b_{BC} X_C X_B$$
(7-1)

En la ecuación 7-1, cada coeficiente está representado con letras "b" y en subíndices se indica el efecto a que corresponde. Las X simbolizan cada uno de los valores que toman las variables de entrada (A,B y C) [124].

Al remplazar los coeficientes por los efectos, se obtiene la ecuación de respuesta del presente trabajo (ecuación 7-2).

$$R_{ME} = 69.21 + 42.72 * T + 16.18 * m_{cat} + 24.12 * t - 5.52 * T * m_{cat} - 7.89 * T * t - 3.92 * t * m_{cat}$$
(7-2)

La aplicación de esta ecuación para el catalizador NTNa-KC5 esta limitada al intervalo que comprende desde el valor inferior hasta el superior de los parámetros estudiados (Tabla 7-1).

El valor b_0 = 69.21 corresponde al valor predicho en el centro del intervalo estudiado, es decir a los valores intermedios de cada uno de los factores (75 °C, 0.375 g, 1.75 h). De esta manera con el fin de corroborar el modelo estadístico, dicho experimento fue realizado. El rendimiento obtenido fue de 72.46 %. La diferencia entre estos valores es de 5%, lo cual es indicio de que el modelo es representativo del sistema estudiado.

La magnitud de los efectos está estrechamente relacionada con cómo afecta cada factor a la respuesta (Tabla 7-3), en este caso se aprecia que la variable con mayor influencia es la temperatura con un efecto de + 42.72, seguida por el tiempo de reacción con valor de + 24.12. Finalmente, la cantidad de catalizador es el factor que tiene menor influencia (+16.18). Estos mismos resultados se pueden apreciar en el diagrama de Pareto (Figura 7-1). Así mismo se aprecia que el efecto combinado con mayor influencia es el de AB, correspondiente a la temperatura y el tiempo.

Figura 7-1. Diagrama de Pareto.

En la Figura 7-2 se presenta la gráfica de los efectos de las variables en el rendimiento de biodiesel. En esta gráfica, la longitud y la pendiente de las rectas están relacionada con la influencia de cada variable. A medida que aumenta la pendiente de la rectas es mayor la influencia que tienen sobre el rendimiento. Se aprecia, nuevamente, que la temperatura es la que tiene la mayor pendiente y por ende la mayor influencia en el rendimiento.

Figura 7-2. Representación gráfica de los efectos de diferentes variables en el rendimiento de biodiesel (ME).

En el caso del tiempo y la cantidad de catalizador, se ve que su impacto en el rendimiento es menor. Es decir, si se requiriera su empleo como variables de control del rendimiento, el cambio para obtener una repercusión en la variable de respuesta tendría que ser mucho mayor.

En la Figura 7-3 se muestran la representación gráfica de los efectos de las interacciones entre las variables. En estas se aprecia que las interacciones AB y AC, correspondientes a la temperatura- cantidad de catalizador y temperatura- tiempo de reacción, son las que presentan la mayor influencia. Esto se debe a que la temperatura es la variable con mayor impacto en el rendimiento de biodiesel.

Figura 7-4. Superficie de respuesta para el rendimiento.

El gráfico de superficie de respuesta para el tiempo 1.75 h (Figura 7-4) no muestra curvatura alguna, lo que indica que sigue un modelo lineal de primer orden. De esta manera se aprecia que el modelo propuesto es válido y representativo para el catalizador estudiado.

8. Conclusiones

En el presente trabajo se sintetizaron tres series de titanatos metálicos (Na⁺ y K⁺) enriquecidos con potasio mediante intercambio iónico e impregnación incipiente para su aplicación en la reacción de transesterificación de aceite de soya con metanol.

Posterior a la comparación de las propiedades de los materiales obtenidos, se realizó un estudio sobre el efecto de la temperatura, tiempo de reacción y cantidad de catalizador en el rendimiento de métil ésteres obtenido (diseño factorial de experimentos 2³) para el catalizador NTNa-KC5. La selección de este material, se realizó con base en sus propiedades texturales y su alta actividad catalítica.

Tomando en consideración los resultados obtenidos mediante las técnicas de caracterización de los materiales y los resultados obtenidos en su evaluación catalítica se pueden hacer las siguientes conclusiones:

- El tratamiento hidrotérmico del precursor TiO₂ con KOH permitió la obtención de K₂Ti₈O₁₇ nanoestructurado (NTK). Este material muestró una morfología en forma de nanofibras (SEM, TEM), lo cual contribuyó a su alta área específica y volumen de poro (fisisorción de N₂). Sin embargo, presentó una baja cantidad de sitios básicos fuertes (TPD- CO₂), lo que resultó en una baja actividad catalítica en la reacción de transesterificación. La impregnación de K₂CO₃ en NTK mediante humedad incipiente aumentó la cantidad de sitios básicos fuertes, generando un aumento de aproximadamente 6 veces en el rendimiento.
- En los materiales obtenidos mediante intercambio iónico (NTNaXKY) se logró incorporar cationes K⁺ en la red cristalina de Na₂Ti₃O₇. Mediante este procedimiento la cantidad de sodio en los materiales disminuyo a medida que aumentó la cantidad de potasio. No se alteró la morfología del material (SEM y TEM), ni su estructura porosa (fisisorción de nitrógeno), es decir, el material resultante conservó las propiedades texturales del precursor (alta área específica y volumen de poro). No obstante, la disminución de la cantidad de sodio repercutió en la cantidad de sitios básicos presentes. En comparación con el Na₂Ti₃O₇, la serie NTNaXKY exhibe menos sitios básicos fuertes y en consecuencia una menor actividad catalítica.
- Al adicionar K₂CO₃ mediante impregnación por humedad incipiente en Na₂Ti₃O₇ (NTNa), éste se depositó en la superficie del material, disminuyendo el área específica a medida que se aumentó la carga incorporada. La impregnación de esta especie no modificó la morfología en forma de nanofibras, ni la estructura mesoporosa de los nanotubos de sodio. Sin embargo, aumentó la cantidad de

sitios básicos fuertes en los catalizadores NTNa-KCX. Esto resultó en los materiales con un mejor desempeño catalítico.

Los catalizadores preparados mediante la impregnación de K₂CO₃ (NTNa-KCX y NTK-KC5) mostraron una mayor actividad catalítica en comparación con los soportes empleados en su preparación (NTNa y NTK, respectivamente). El aumentó se puede atribuir a la presencia de los iones CO₃²⁻ en la superficie de los materiales impregnados, lo cual aumenta la cantidad de sitios básicos fuertes en estos.

Respecto al diseño experimental planteado para el catalizador NTNa-KC5 se puede concluir que:

- El modelo estadístico obtenido para las variables: temperatura, cantidad de catalizador y tiempo sobre el rendimiento de biodiesel presentó una forma lineal de primer orden. Los resultados obtenidos para las tres variables y sus interacciones son estadísticamente significativos y representativos del sistema.
- La predicción realizada para el rendimiento del punto medio en el intervalo estudiado fue cercana al valor obtenido experimentalmente, lo cual lleva a bv afirmar que el modelo propuesto es representativo del comportamiento del sistema ante los cambios de las variables: temperatura (70-80 °C), cantidad de catalizador (0.25-0.5 g) y tiempo de reacción (0.5-3 h).
- La variable con mayor influencia en el rendimiento obtenido es la temperatura seguida por el tiempo de reacción. El mayor efecto combinado viene dado por la interacción temperatura-tiempo.

9. Referencias

- [1] L. Bournay, D. Casanave, B. Delfort, G. Hillion, & J. A. Chodorge, "New heterogeneous process for biodiesel production: A way to improve the quality and the value of the crude glycerin produced by biodiesel plants," *Catal. Today*, vol. 106, no. 1–4, pp. 190–192, 2005.
- [2] G. Knothe, "Monitoring a progressing transesterification reaction by fiber-optic near infrared spectroscopy with correlation to ¹H nuclear magnetic resonance spectroscopy," *J. Am. Oil Chem. Soc.*, vol. 77, no. 5, pp. 489–493, 2000.
- K. Narasimharao, D. R. Brown, A. F. Lee, A. D. Newman, P. F. Siril, S. J. Tavener, & K. Wilson, "Structure-activity relations in Cs-doped heteropolyacid catalysts for biodiesel production," *J. Catal.*, vol. 248, no. 2, pp. 226–234, 2007.
- [4] A. C. Pinto, L. L. N. Guarieiro, M. J. C. Rezende, N. M. Ribeiro, & A. Ednildo, "Biodiesel : An Overview," *J. Braz. Chem. Soc.*, vol. 16, no. 6, pp. 1313–1330, 2005.
- [5] G. Knothe & L. F. Razon, "Biodiesel fuels," *Prog. Energy Combust. Sci.*, vol. 58, pp. 36–59, 2017.
- [6] A. K. Agarwal & L. M. Das, "Biodiesel Development and Characterization for Use as a Fuel in Compression Ignition Engines," *J. Eng. Gas Turbines Power*, vol. 123, no. 2, pp. 440–447, 2001.
- [7] H. H. Mardhiah, H. C. Ong, H. H. Masjuki, S. Lim, & H. V. Lee, "A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils," *Renew. Sustain. Energy Rev.*, vol. 67, pp. 1225– 1236, 2017.
- [8] A. Demirbas, *Biodiesel : a realistic fuel alternative for diesel engines*. Springer.
- [9] R. Mexicano & D. E. Gases, Vol III. Reporte mexicano de cambio climá tico. .
- [10] "Proyecciones de la Población 2010-2050." [Online]. Available: http://www.conapo.gob.mx/es/CONAPO/Proyecciones. [Accessed: 31-Jul-2017].
- [11] SENER, "Prospectiva de Petróleo Crudo y Petrolíferos 2016-2030," p. 238, 2016.
- [12] H. Catalán & L. Sánchez, "Prospectiva del consumo de energíay su impacto en las emisiones de gases de efecto invernadero(GEI). El caso de México," *Econ. Inf.*, vol. 360, no. 5, pp. 6–21, 2009.
- [13] P. Nema, S. Nema, & P. Roy, "An overview of global climate changing in current scenario and mitigation action," *Renew. Sustain. Energy Rev.*, vol. 16, no. 4, pp.

2329–2336, 2012.

- [14] J. Valle-Pereña & H. Ortega-Navarro, "Prospectiva de Energías Renovables 2012-2026," *Secr. Energía*, pp. 1–156, 2012.
- [15] Castro Victior A., "Biorefinerías e integración industrial El mercado mundial de biocombustibles," Carbio, 2015.
- [16] A. Bilgin, M. Gülüm, İ. Koyuncuoglu, E. Nac, & A. Cakmak, "Determination of Transesterification Reaction Parameters Giving the Lowest Viscosity Waste Cooking Oil Biodiesel," *Procedia - Soc. Behav. Sci.*, vol. 195, pp. 2492–2500, 2015.
- [17] I. Nurfitri, G. P. Maniam, N. Hindryawati, M. M. Yusoff, & S. Ganesan, "Potential of feedstock and catalysts from waste in biodiesel preparation: A review," *Energy Convers. Manag.*, vol. 74, pp. 395–402, 2013.
- [18] M. Dalila, "La transestérification hétérogène de l'huile de tournesol sous alumine : Production du biodiesel EEHV .," Tesis de maestria de la universidad de abou bekr belkaid de tlemcen, 2012.
- [19] L. Rodolfi, G. C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini, & M. R. Tredici, "Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor," *Biotechnol. Bioeng.*, vol. 102, no. 1, pp. 100–112, 2009.
- [20] H. Pourzolfaghar, F. Abnisa, W. M. A. W. Daud, & M. K. Aroua, "A review of the enzymatic hydroesterification process for biodiesel production," *Renew. Sustain. Energy Rev.*, vol. 61, pp. 245–257, 2016.
- [21] M. Di Serio, R. Tesser, L. Pengmei, & E. Santacesaria, "Heterogeneous catalysts for biodiesel production," *Energy & Fuels*, vol. 22, no. 9, pp. 207–217, 2008.
- [22] R. Shan, C. Zhao, P. Lv, H. Yuan, & J. Yao, "Catalytic applications of calcium rich waste materials for biodiesel: Current state and perspectives," *Energy Convers. Manag.*, vol. 127, pp. 273–283, 2016.
- [23] M. L. Granados, M. D. Z. Poves, D. M. Alonso, R. Mariscal, F. C. Galisteo, R. Moreno-Tost, J. Santamaría, & J. L. G. Fierro, "Biodiesel from sunflower oil by using activated calcium oxide," *Appl. Catal. B Environ.*, vol. 73, no. 3, pp. 317– 326, 2007.
- [24] M. Zabeti, W. M. A. W. Daud, & M. K. Aroua, "Biodiesel production using aluminasupported calcium oxide: An optimization study," *Fuel Process. Technol.*, vol. 91, no. 2, pp. 243–248, 2010.
- [25] R. Shan, J. Shi, B. Yan, G. Chen, J. Yao, & C. Liu, "Transesterification of palm oil to fatty acids methyl ester using K₂CO₃ /palygorskite catalyst," *Energy Convers.*

Manag., vol. 116, pp. 142–149, 2016.

- [26] A. Brito, M. E. Borges, & N. Otero, "Zeolite Y as a heterogeneous catalyst in biodiesel fuel production from used vegetable oil," *Energy & Fuels*, vol. 21, no. 6, pp. 3280–3283, 2007.
- [27] Y. Hin Taufiq-yap, N. Fitriyah Abdullah, & M. Basri, "Biodiesel Production via Transesterification of Palm Oil Using NaOH/Al₂O₃ Catalysts," *Sains Malaysiana*, vol. 40, no. 6, pp. 587–594, 2011.
- [28] E. Rashtizadeh, F. Farzaneh, & M. Ghandi, "A comparative study of KOH loaded on double aluminosilicate layers, microporous and mesoporous materials as catalyst for biodiesel production via transesterification of soybean oil," *Fuel*, vol. 89, no. 11, pp. 3393–3398, 2010.
- [29] I. Lukić, J. Krstić, D. Jovanović, & D. Skala, "Alumina/silica supported K₂CO₃ as a catalyst for biodiesel synthesis from sunflower oil," *Bioresour. Technol.*, vol. 100, no. 20, pp. 4690–4696, 2009.
- [30] H. Liu, L. Su, F. Liu, C. Li, & U. U. Solomon, "Cinder supported K₂CO₃ as catalyst for biodiesel production," *Appl. Catal. B Environ.*, vol. 106, no. 3–4, pp. 550–558, 2011.
- [31] P. Hernández-Hipólito, M. García-Castillejos, E. Martínez-Klimova, N. Juárez-Flores, A. Gómez-Cortés, & T. E. Klimova, "Biodiesel production with nanotubular sodium titanate as a catalyst," *Catal. Today*, vol. 220–222, pp. 4–11, 2014.
- [32] P. Hernández-Hipólito, N. Juárez-Flores, E. Martínez-Klimova, A. Gómez-Cortés, X. Bokhimi, L. Escobar-Alarcón, & T. E. Klimova, "Novel heterogeneous basic catalysts for biodiesel production: Sodium titanate nanotubes doped with potassium," *Catal. Today*, vol. 250, pp. 187–196, 2015.
- [33] M. Balat & G. Ayar, "Biomass Energy in the World, Use of Biomass and Potential Trends," *Energy Sources*, vol. 27, no. 10, pp. 931–940, 2005.
- [34] D. O. Hall, F. Rosillo-Calle, & P. de Groot, "Biomass energy: Lessons from case studies in developing countries," *Energy Policy*, vol. 20, no. 1, pp. 62–73, 1992.
- [35] C. De lucas Herguedas, Ana Isab; Del Peso Taranco & P. Rodríguez García, Encarna; Prieto Paniagua, "Biomasa, Biocombustibles Y Sostenibilidad," pp. 1– 204, 2012.
- [36] PARLAMENTO-EUROPEO, "Directiva 2009/28/Ce Del Parlamento Europeo Y Del Consejo de 23 de abril de 2009," *D. Of. la Unión Eur.*, vol. 140, no. 2, pp. 16–62, 2009.
- [37] A. Demirbas, "Political, economic and environmental impacts of biofuels: A review," *Appl. Energy*, vol. 86, no. SUPPL. 1, pp. S108–S117, 2009.

- [38] E. Salinas Callejas & V. (UAM) Gasca Quezada, "Disponible en: http://www.redalyc.org/articulo.oa?id=32512739009," *El Cotid.*, vol. 157, no. 0186–1840, pp. 75–82, 2009.
- [39] A. Acevedo, "Tipos, generaciones y biomasas empleadas para su elaboración," *El Cons. los Prof. del Agro, Agroaliment. y Agroind.*, vol. 127, 2013.
- [40] C. Álvarez, "Biocombustibles: desarrollo histórico-tecnológico, mercados actuales y comercio internacional," *Econ. Inf.*, no. 359, pp. 63–89, 2009.
- [41] "Servicios de Agua y Drenaje de Monterrey I.P.D. Cuatro generaciones de biocombustible en búsqueda de la sustentabilidad." [Online]. Available: https://www.sadm.gob.mx/PortalSadm/jsp/prensa.jsp?id=313. [Accessed: 28-Mar-2017].
- [42] P. Hernández-Hipólito, "Desarrollo de nuevos materiales nanoestructurados para la producción de biodiésel," UNAM Facultad de Química, 2015.
- [43] "ASTM D6751 Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels." .
- [44] "ASTM International Standards Worldwide." [Online]. Available: https://www.astm.org/SNEWS/SPANISH/SPJF09/nelson_spjf09.html. [Accessed: 30-Mar-2017].
- [45] G. Knothe, J. Krahl, & J. V. Gerpen, *The Biodiesel Handbook.* Elsevier Science, 2015.
- [46] P. K. Sahoo & L. M. Das, "Combustion analysis of Jatropha, Karanja and Polanga based biodiesel as fuel in a diesel engine," *Fuel*, vol. 88, no. 6, pp. 994–999, 2009.
- [47] S. Dharma, H. C. Ong, H. H. Masjuki, A. H. Sebayang, & A. S. Silitonga, "An overview of engine durability and compatibility using biodiesel bioethanol diesel blends in compression-ignition engines," *Energy Convers. Manag.*, vol. 128, pp. 66–81, 2016.
- [48] D. S. Viswanath, *Viscosity of liquids : theory, estimation, experiment, and data*. Springer, 2007.
- [49] C. T. Hou & J.-F. Shaw, *Biocatalysis and bioenergy*. Wiley, 2008.
- [50] M. Fangrui, M. A. Hanna, F. Ma, & M. A. Hanna, "Biodiesel production : a review," *Bioresour. Technol.*, vol. 70, no. 1, pp. 1–15, 1999.
- [51] A. Demirbas, "Importance of biodiesel as transportation fuel," *Energy Policy*, vol. 35, no. 9, pp. 4661–4670, 2007.

- [52] S. A. Pereira, V. Q. Araújo, M. V. Reboucas, F. S. V Vieira, M. V. A. De Almeida, F. A. Chinalia, & I. A. Nascimento, "Toxicity of biodiesel, diesel and biodiesel/diesel blends: Comparative sub-lethal effects of water-soluble fractions to microalgae species," *Bull. Environ. Contam. Toxicol.*, vol. 88, no. 2, pp. 234– 238, 2012.
- [53] W. G. Wang, D. W. Lyons, N. N. Clark, M. Gautam, & P. M. Norton, "Emissions from nine heavy trucks fueled by diesel and biodiesel blend without engine modification," *Environ. Sci. Technol.*, vol. 34, no. 6, pp. 933–939, 2000.
- [54] N. Kaushik, K. Kumar, & S. Kumar, "Catalysts in production of Biodiesel: Review," *J. Biobased Mater. Bioenergy*, vol. 1, no. 3, pp. 301–314, Dec. 2007.
- [55] U. States, "Analysis of Biodiesel Impacts on Exhaust Emissions Draft Technical Report," *United States Environ. Prot. Agency*, no. October, p. 118, 2002.
- [56] A. J. Dijkstra, "Revisiting the mechanisms of low-temperature, base-catalysed ester interchange reactions," *OCL OI. Corps Gras Lipides*, vol. 15, no. 3, pp. 208–212, 2008.
- [57] J. Otera, "Transesterification," Chem. Rev., vol. 93, pp. 1449–1470, 1993.
- [58] U. Schuchardt, R. Sercheli, & R. M. Vargas, "Transesterification of Vegetable Oils: a Review," vol. 9, no. 1, pp. 199–210, 1998.
- [59] J. M. Marchetti, V. U. Miguel, & A. F. Errazu, "Possible methods for biodiesel production," *Renew. Sustain. Energy Rev.*, vol. 11, no. 6, pp. 1300–1311, 2007.
- [60] A. Demirbas, "Progress and recent trends in biodiesel fuels," *Energy Convers. Manag.*, vol. 50, no. 1, pp. 14–34, 2009.
- [61] L. C. Meher, D. Vidya Sagar, & S. N. Naik, "Technical aspects of biodiesel production by transesterification - A review," *Renew. Sustain. Energy Rev.*, vol. 10, no. 3, pp. 248–268, 2006.
- [62] N. Flores Juárez, "Síntesis, caracterización y evaluación de titanatos metálicos nanoestructurados en la producción de biodiesel," UNAM, 2013.
- [63] J. W. Niemantsverdriet & I. Chorkendorff, *Concepts of Modern Catalysis and Kinetics*. 2003.
- [64] J. M. Smith, Ingeniería de la Cinética Química. 1991.
- [65] G. Rothenberg, Catalysis: Concepts and Green Applications. 2008.
- [66] L. G. Arnaut, S. J. Formosinho, & H. Burrows, *Chemical kinetics : from molecular structure to chemical reactivity*. Elsevier, 2007.
- [67] S. J. Yoo, H.-S. Lee, B. Veriansyah, J. Kim, J.-D. Kim, & Y.-W. Lee, "Synthesis of

biodiesel from rapeseed oil using supercritical methanol with metal oxide catalysts.," *Bioresour. Technol.*, vol. 101, no. 22, pp. 8686–8689, 2010.

- [68] Z. Yang & W. Xie, "Soybean oil transesterification over zinc oxide modified with alkali earth metals," *Fuel Process. Technol.*, vol. 88, no. 6, pp. 631–638, 2007.
- [69] K. Ramachandran, P. Sivakumar, T. Suganya, & S. Renganathan, "Production of biodiesel from mixed waste vegetable oil using an aluminium hydrogen sulphate as a heterogeneous acid catalyst," *Bioresour. Technol.*, vol. 102, no. 15, pp. 7289–7293, 2011.
- [70] H. Zhu, Z. Wu, Y. Chen, P. Zhang, S. Duan, X. Liu, & Z. Mao, "Preparation of biodiesel catalyzed by solid super base of calcium oxide and its refining process," *Chinese J. Catal.*, vol. 27, no. 5, pp. 391–396, 2006.
- [71] M. Verziu, M. Florea, S. Simon, V. Simon, P. Filip, V. I. Parvulescu, & C. Hardacre, "Transesterification of vegetable oils on basic large mesoporous alumina supported alkaline fluorides-Evidences of the nature of the active site and catalytic performances," *J. Catal.*, vol. 263, no. 1, pp. 56–66, 2009.
- [72] A. Hayyan, M. Z. Alam, M. E. S. Mirghani, N. A. Kabbashi, N. I. N. M. Hakimi, Y. M. Siran, & S. Tahiruddin, "Sludge palm oil as a renewable raw material for biodiesel production by two-step processes," *Bioresour. Technol.*, vol. 101, no. 20, pp. 7804–7811, 2010.
- [73] W. Xie, H. Peng, & L. Chen, "Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst," *Appl. Catal. A Gen.*, vol. 300, no. 1, pp. 67–74, 2006.
- [74] Z. Wen, X. Yu, S.-T. Tu, J. Yan, & E. Dahlquist, "Biodiesel production from waste cooking oil catalyzed by TiO₂-MgO mixed oxides.," *Bioresour. Technol.*, vol. 101, no. 24, pp. 9570–9576, 2010.
- [75] E. Li & V. Rudolph, "Transesterification of Vegetable Oil to Biodiesel over MgO-Functionalized Mesoporous Catalysts Transesterification of Vegetable Oil to Biodiesel over MgO-Functionalized Mesoporous Catalysts," *Situ*, no. 18, pp. 145– 149, 2008.
- [76] D. Salinas, S. Guerrero, & P. Araya, "Transesterification of canola oil on potassium-supported TiO₂ catalysts," *Catal. Commun.*, vol. 11, no. 8, pp. 773– 777, 2010.
- [77] H. Gleiter, "Nanostructured materials: basic concepts and microstructure," *Acta Mater.*, vol. 48, no. 1, pp. 1–29, 2000.
- [78] S. Chaturvedi, P. N. Dave, & N. K. Shah, "Applications of nano-catalyst in new era," *J. Saudi Chem. Soc.*, vol. 16, no. 3, pp. 307–325, 2012.

- [79] "Nanomaterials." [Online]. Available: http://ec.europa.eu/health/scientific_committees/opinions_layman/nanomaterials/e n/. [Accessed: 17-Apr-2017].
- [80] "Clasificacion nano materiales." [Online]. Available: http://nuevastecnologiasymateriales.com/clasificacion-de-los-nano-materiales/. [Accessed: 17-Apr-2017].
- [81] P. Roy, S. Berger, & P. Schmuki, "TiO₂ nanotubes: Synthesis and applications," *Angew. Chemie Int. Ed.*, vol. 50, no. 13, pp. 2904–2939, 2011.
- [82] A. R. (Ali R. Khataee & G. A. (G. A. Mansoori, *Nanostructured titanium dioxide materials : properties, preparation and applications*. World Scientific, 2012.
- [83] M. Alsharifi, H. Znad, S. Hena, & M. Ang, "Biodiesel production from canola oil using novel Li/TiO₂ as a heterogeneous catalyst prepared via impregnation method," *Renew. Energy*, vol. 114, pp. 1077–1089, 2017.
- [84] J. Gardy, A. Hassanpour, X. Lai, M. H. Ahmed, & M. Rehan, "Biodiesel production from used cooking oil using a novel surface functionalised TiO₂ nano-catalyst," *Appl. Catal. B Environ.*, vol. 207, pp. 297–310, 2017.
- [85] E. A. Z. González, M. García-Guaderrama, M. R. Villalobos, F. L. Dellamary, S. Kandhual, N. P. Rout, H. Tiznado, & G. G. C. Arizaga, "Potassium titanate as heterogeneous catalyst for methyl transesterification," *Powder Technol.*, vol. 280, no. April, pp. 201–206, 2015.
- [86] L. L. Marciniuk, P. Hammer, H. O. Pastore, U. Schuchardt, & D. Cardoso, "Sodium titanate as basic catalyst in transesterification reactions," *Fuel*, vol. 118, pp. 48– 54, 2014.
- [87] C. Liu, M. He, X. Lu, Q. Zhang, & Z. Xu, "Reaction and Crystallization Mechanism of Potassium Dititanate Fibers Synthesized by Low-Temperature Calcination," *Cryst. Growth Des.*, vol. 5, no. 4, pp. 1399–1404, Jul. 2005.
- [88] T. Zaremba & D. Witkowska, "Methods of manufacturing of potassium titanate fibres and whiskers. A review," *Mater. Sci.*, vol. 28, no. 1, pp. 25–41, 2010.
- [89] Q. Chen, W. Zhou, G. H. Du, & L.-M. Peng, "Trititanate Nanotubes Made via a Single Alkali Treatment," *Adv. Mater.*, vol. 14, no. 17, pp. 1208–1211, Sep. 2002.
- [90] L. M. Sikhwivhilu, N. J. Coville, D. Naresh, K. V. R. Chary, & V. Vishwanathan, "Nanotubular titanate supported palladium catalysts: The influence of structure and morphology on phenol hydrogenation activity," *Appl. Catal. A Gen.*, vol. 324, no. 1–2, pp. 52–61, 2007.
- [91] T. Kasuga, M. Hiramatsu, A. Hoson, & T. Sekino, "Formation of Titanium Oxide Nanotube," *Langmuir*, vol. 7463, no. 5, pp. 3160–3163, 1998.

- [92] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, & K. Niihara, "Titania Nanotubes Prepared by Chemical Processing," *Adv. Mater.*, vol. 11, no. 15, pp. 1307–1311, Oct. 1999.
- [93] X. Sun & Y. Li, "Synthesis and characterization of ion-exchangeable titanate nanotubes," *Chem. A Eur. J.*, vol. 9, no. 10, pp. 2229–2238, 2003.
- [94] N. Liu, X. Chen, J. Zhang, & J. W. Schwank, "A review on TiO₂ -based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications," *Catal. Today*, vol. 225, pp. 34–51, 2014.
- [95] L. Torrente-Murciano, A. A. Lapkin, & D. Chadwick, "Synthesis of high aspect ratio titanate nanotubes," *J. Mater. Chem.*, vol. 20, no. 31, p. 6484, 2010.
- [96] W. Wang, O. K. Varghese, M. Paulose, C. a. Grimes, Q. Wang, & E. C. Dickey, "A study on the growth and structure of titania nanotubes," *J. Mater. Res.*, vol. 19, no. 2, pp. 417–422, 2011.
- [97] G. A. Somorjai & A. S. Mujumdar, "Introduction to Surface Chemistry and Catalysis," *Dry. Technol.*, vol. 13, no. 1, pp. 507–508, 1995.
- [98] G. Leofanti, M. Padovan, G. Tozzola, & B. Venturelli, "Surface area and pore texture of catalysts," *Catal. Today*, vol. 41, no. 1–3, pp. 207–219, 1998.
- [99] P. W. (Peter W. Atkins & J. De Paula, Atkins' Physical chemistry. .
- [100] J. E. House, Principles of chemical kinetics. Elsevier/Academic Press, 2007.
- [101] K. K. Aligizaki, Pore structure of cement-based materials: testing, interpretation and requirements. Taylor & Francis, 2006.
- [102] J. (Jean) Rouquerol, Characterization of porous solids III : proceedings of the IUPAC Symposium (COPS III), Marseille, France, May 9-12, 1993. Elsevier, 1994.
- [103] I. de B. (IBT) & U. A. de M. (UNAM), "Cristalografía," 2010.
- [104] V. Accordingly & I. Boxes, Principles of X-ray Diffraction. 2006.
- [105] "Difracción de Rayos X de Polvos." [Online]. Available: http://www.cciqs.uaemex.mx/index.php?option=com_content&view=article&id=76 &Itemid=78. [Accessed: 29-Jun-2017].
- [106] "Difractometría de Rayos X (Polvo)." [Online]. Available: http://laboratoriotecnicasinstrumentales.es/analisis-qumicos/difractometra-derayos-x-polvo. [Accessed: 29-Jun-2017].
- [107] "Caracterización XRD de polvos refractores mediante análisis de búsqueda/coincidencia | Rigaku - X-ray analytical instrumentation." [Online].

Available: https://www.rigaku.com/es/products/xrd/miniflex/app008. [Accessed: 29-Jun-2017].

- [108] A. M. Viviana S. de Lozano, María Julia Yáñez, *Principios y práctica de la Microscopía Elecrónica*. 2014.
- [109] R. F. Egerton, *Physical Principles of Electron Microscopy*, vol. 24, no. 5. 2005.
- [110] "Microscopia electrónica de transmisión : Servicio de Microscopía Electrónica : UPV." [Online]. Available: http://www.upv.es/entidades/SME/info/753329normalc.html. [Accessed: 05-Jul-2017].
- [111] B. (Barbara H. . Stuart, *Infrared spectroscopy : fundamentals and applications*. J. Wiley, 2004.
- [112] A. K. Pahari & B. S. Chaulan, *Engineering chemistry*. Laxmi Pub, 2006.
- [113] "What is NMR?" [Online]. Available: http://chem.ch.huji.ac.il/nmr/whatisnmr/whatisnmr.html. [Accessed: 21-Jul-2017].
- [114] S. R. Chauruka, A. Hassanpour, R. Brydson, K. J. Roberts, M. Ghadiri, & H. Stitt, "Effect of mill type on the size reduction and phase transformation of gamma alumina," *Chem. Eng. Sci.*, vol. 134, no. June, pp. 774–783, 2015.
- [115] D. P. Debecker, E. M. Gaigneaux, & G. Busca, "Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis," *Chem. -A Eur. J.*, vol. 15, no. 16, pp. 3920–3935, 2009.
- [116] T. J. Toops, D. B. Smith, & W. P. Partridge, "Quantification of the in situ DRIFT spectra of Pt/K/γ-Al₂O₃ NO_x adsorber catalysts," *Appl. Catal. B Environ.*, vol. 58, no. 3–4, pp. 245–254, 2005.
- [117] M. Kantschewa, V. E. Albano, G. Ertl, & H. Knozinger, "Infrared and X-ray photoelectron spectroscopy study of K₂CO₃/y-Al₂O₃," *Appl. Catal.*, vol. 8, pp. 71– 84, 1983.
- [118] T. Shirai, H. Watanabe, M. Fuji, & M. Takahashi, "Structural Properties and Surface Characteristics on Aluminum Oxide Powders," Annu. Rep. Adv. Ceram. Res. Cent. Nagoya Inst. Technol., vol. 9, pp. 23–31, 2009.
- [119] J. Hernadez-Enríquez, R. García- Alamilla, B. Zereño- Resendiz, T. Del Angel-Sánchez, & A. Cuento- Hérnandez, *Superficies y vacio.*, vol. 21, no. 4. Sociedad Mexicana de Ciencia y Tecnología de Superficies y Materiales A.C, 2008.
- [120] M. Junaid Bushiri, C. J. Antony, & A. Aatiq, "Raman and FTIR studies of the structural aspects of Nasicon-type crystals; AFeTi(PO₄)₃ [A=Ca, Cd]," *J. Phys. Chem. Solids*, vol. 69, no. 8, pp. 1985–1989, 2008.

- [121] A. Gajović, I. Friščić, M. Plodinec, & D. Iveković, "High temperature Raman spectroscopy of titanate nanotubes," *J. Mol. Struct.*, vol. 924–926, no. C, pp. 183– 191, 2009.
- [122] L. Qian, Z. L. Du, S. Y. Yang, & Z. S. Jin, "Raman study of titania nanotube by soft chemical process," *J. Mol. Struct.*, vol. 749, no. 1–3, pp. 103–107, 2005.
- [123] M. García Castillejos, "Evaluación de titanato de sodio nanoestructurado como catalizador para la producción de biodiesel," UNAM, Mexico, 2012.
- [124] D. C. Montgomery, *Dise. o y análisis de experimentos*. Limusa Wiley, 2003.

10. Anexos

10.1. Anexo A

Ecuaciones para el cálculo del efecto de los valores principales y sus interacciones dentro del diseño experimental.

Cada efecto se calculó a partir de las respuestas de todos los experimentos.

Tabla 10-1. Representación geométrica del diseño de experimentos 2³: a) Vista general [124] b) Vista del diseño planteado en el presente trabajo. Los valores en gris corresponden a los rendimientos obtenidos para cada corrida.

Tabla 10-2. Nomenclatura d	e las ecuaciones o	del diseño de experimento	s.
----------------------------	--------------------	---------------------------	----

Símbolo	Variable
b_0	Promedio
A	Efecto del tiempo
В	Efecto de la temperatura
С	Efecto del catalizador
AB	Efecto del tiempo y la temperatura
AC	Efecto del tiempo y el catalizador
BC	Efecto de la temperatura y el catalizador

Ecuaciones empleadas en el cálculo del valor de los efectos:

$$b_0 = \frac{1 + a + b + ab + c + ac + bc + abc}{8}$$
(10-1)

$$A = \frac{-1 + a - b + ab - c + ac - bc + abc}{4}$$
(10-2)

$$B = \frac{-1 - a + b + ab - c - ac + bc + abc}{4}$$
(10-3)

$$C = \frac{-1 - a - b - ab + c + ac + bc + abc}{4}$$
(10-4)

$$AB = \frac{+1 - a - b + ab + c - ac - bc + abc}{4}$$
(10-5)

$$AC = \frac{+1 - a + b - ab - c + ac - bc + abc}{4}$$
(10-6)

$$BC = \frac{+1 + a - b - ab - c - ac + bc + abc}{4}$$
(10-7)

$$ABC = \frac{-1 + a + b - ab + c - ac - bc + abc}{4}$$
(10-8)

Anexo B 10.2.

Tarjetas de difracción de rayos X

	1212								Aug	18, 201	1 1.0	SEN	n (Sr	10000
Status P Empirica Compour	rimary (Formula: nd Name:	QM: Star O2 Ti Titanium	Press Weight 9 Oxide	ure/Tem %: 040 Mineral	operatur 06 Ti59. Name:	e: Ambie 94 Ate Anatase,	ent Ch omic %: syn	emical Fe O66.67 T	ormula: 133.33	TI O2				
l/lc: 3.3														
SYS: Tet Author's AuthCell SS/FOM:	ragonal Cell [Auth MolVol: 3 F(30) = 74	SPGR: Cell a:*3 4.08] 5(0.0115	141/amd (3.7852 Å Author 5, 35)	141) Authors S Cell A Femp: 2	Cell c: 4 xial Rat 298.0 K (9.5139 Å io [c/a: Author pr	Autho 2.513] ovided te	Cell Vol: Densi mperature	136.31 Å ty [Dcal a) Col	³ Auth c: 3.893 g or: Colori	Cell Z /cm³] ess	: 4.00	D	
Space Gr Crystal D Crystal D Crystal D Crystal D Ceduced Reduced β	oup: I41/a ata [XtiCe 90.00° ata Axial F Cell [Red : 110.29°	md (141) II a: 3.78 XtiCell V Ratio [c/a Cell a: 3 RedC	Molec 35 Å X /ol: 136.3 a: 2.514 3.785 Å cell γ: 90.	cular We tlCell b: 31 Å ³ a/b: RedCe 00° F	aight: 7 3.785 XtiCell 1.000 II b: 3.7 RedCell	9.90 Å XUC Z: 4.00 c/b: 2.5 85 Å I Vol: 68.1	Cell c: 9, [[14] RedCell ([6 Å ³]	514 Å c: 5.458 /	XtiCell a Ă Rec	:: 90.00° iCellα: 1	XtiC 10.29°	Cell β:	90.0	00*
tomic pa rystal (S	arameters symmetry	are cros Allowed)	s-referen Centros	ced from symmetri	n PDF e	ntry 04-0	07-0701	ADP	: U 0	rigin: 01				
G Symme	try Operat	ors:	Onerate		Se	Oneral	~	Sea	Onerate		1			
X,Y,Z		5	-X,Y,Z		- 9	y+1/2,x	+1/2,-z+1/	2 13	-y+1/2,x+	+1/2,-z+1/2				
-x+1/2	2,-y+1/2,z+1	2 6	x+1/2,-y-	+1/2,2+1/	2 10	-yxZ	7+1/4	14	y x Z	7+1/4				
-xy4	1/2,-z+1/4	8	x,-y+1/2	-z+1/4	12	-y+1/2,-	x,z+3/4	16	y+1/2,-x.	z+3/4				
tomic Co	ordinates:													
tom Nu	m Wycko	ff Symm	etry x	Y Z	S	OF Uiso	AET							
2	4a 8e	-4m2	0.0	0.0 0.0) 1	0 0.005	8 5-8							
			0.0	0.0 0.2	20806 1	0 0.007	2 3#b							
nisotropi	c Displacer	nent Para	meters:	0.0 0.2	20806 1	0 0.007	2 3#b							
nisotropi tom Nu	c Displacer m Uani11	uani22	meters: Uani33	Uani12	0806 1	0 0.007	2 3#b							
nisotropi tom Nu 1 2	c Displacer m Uani11 0.0052 0.0117	0.0052 0.0027	Uani33 0.007 0.0072	Uani12 0.0 0.0 al Patter	Uani1: 0.0 0.0 n. Foren	0 0.007 3 Uani23 0.0 0.0 sic, Inorg	2 3#b	als & Allo	ys, Miner	al Related	(Miner	al, S	vnthe	tic), NBS
nisotropi itom Nu 1 2 iubfile(s) Prototype PF Proto Perototype Cross-Rel	c Displacer m Uani11 0.0052 0.0117 . Commor Pattern, Structure otype Structor Symbol: tl f PDF #'s:	enent Para Uani22 0.0052 0.0027 Phase, I Pharmac (Formul cture [Fo 12.00 00-001-0 04-002-2 04-006-9	United States St	Uani12 0.0 0.0 al Patter (cipient), Ti O2 der]: Ti eted), 01 mate), J	0.0000 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0 0.007 3 Uani23 0.0 0.0 0.0 sic, Inorg t/Dye type Stru 141 Li 56 (Altern: -2751 (Alt -0701 (Alt	2 3#b anic, Met anic, Met ature [Al PF Proto ate), ✓ 04 ernate), ernate)	als & Alio Ipha Orde type Stru 1-001-764 / 04-002-	ys, Miner er]: O2 1 icture [Al 1 (Alterna 8296 (Alte	al Related ĩ Ipha Orde ate), ✔ 04- emate), ✔	(Miner r]: 02 002-26 04-006	al , Sy 71,011 678 (A 5-1918	ynthe 2,141 Iterna 3 (Alte	tic), NBS ite), ✓ ernate),
nisotropi i <u>tom Nu</u> i 1 subfile(s) Prototype PF Proto Pearson S Cross-Rel Intry Date	c Displacer m Uani11 0.0052 0.0117 Commor Pattern, Structure Symbol: tl f PDF #'s: e: 09/01/1	Image: Number of the system Image: Number of the system 0.0052 0.0027 0.0052 0.0027 1 Phase, I Pharmace [Formulation of the system Image: Number of the system 0.00-001-0 00-001-0 0.04-002-2 04-006-9 971 1	Us uneters: Uani33 0.007 0.0072 Education eutical (E) a Order]: rmula Order 2562 (Dele 2750 (Alter 2240 (Alter	Uani12 0.0 0.0 0.0 al Patter (ccipient), Ti O2 der]: Ti (sted), 01 mate), J	Uani1: 0.0 0.0 0.0 Proto 02,ti12, -071-111 04-002 04-007	0 0.007 3 Uani23 0.0 0.0 sic, Inorg t/Dye type Stru 141 Li 56 (Altern: -2751 (Alt -0701 (Alt	2 3#b anic, Met ecture [Al PF Proto ate), ✓ 04 ernate),	als & Allo Ipha Orde type Stru 4-001-764 / 04-002-	ys, Miner er]: O2 1 icture [Al 1 (Alterna 8296 (Alt	al Related ĩi Ipha Orde ate), ✓ 04- ernate), ✓	(Miner r]: O2 002-26 04-006	al , Sy ? Ti,tl1 678 (A 5-1918	ynthe 2,141 Iterna 3 (Alte	tic), NBS tte), ✓ ernate),
Anisotropi Atom Nu Nu Nu Nu Nu Nu Nu Nu Nu Nu	c Displacer m Uani11 0.0052 0.0117 . Commor Pattern, Structure Symbol: tl f PDF #'s: e: 09/01/1 s:	Image: Number of the system Image: Number of the system 0.0052 0.0027 0.0052 0.0027 1 Phase, I Pharmace [Formulation of the system Image: Number of the system 0.00-001-0 00-001-0 0.04-002-2 04-006-9 971 Image: Number of the system	Us uniters: Uani33 0.007 0.0072 Education eutical (E) a Order]: rmula Order 2562 (Dele 2750 (Atter 2240 (Atter	Uani12 0.0 0.0 0.0 al Patter (ccipient), Ti O2 der]: Ti eted), 01 (mate), J	00006 1 0.0 0.0 0.0 Pigmen Proto 02,ti12, 04-002 04-007	0 0.007 3 Uani23 0.0 0.0 0.0 type Stru 141 Li 56 (Alterna 2751 (Alt	2 3#5 anic, Met acture [Al PF Proto ate), ✓ 04 ernate), ernate)	als & Allo Ipha Orde type Stru 4-001-764 / 04-002-	ys, Miner er]: O2 1 Icture [Al 1 (Alterna 8296 (Alt	al Related ĩi Ipha Orde ate), ✓ 04- ernate), ✓	(Miner r]: 02 002-26 04-006	ral , Sy ? Ti,tf1 578 (A 5-1918	2,141 Iterna 3 (Alte	tic), NBS nte), ✓ ernate),
isotropi <u>tom Nu</u> 1 2 iubfile(s) Prototype PF Proto PF Proto earson S cross-Rel intry Dat intry Dat intry Rel intry Rel	c Displacer m Uani11 0.0052 0.0117 Commor Pattern, Structure type Structure type Struc	Image: New York Number York 0.0052 0.0052 0.0052 0.0027 1 Phase, I Pharmacc Image: Ima	Luni33 Control Contro Control Control Control Control Control Control Control Control	Uani12 0.0 0.0 0.0 0.0 al Patter (cipient), Ti O2 der]: Ti sted), 01 mate), J (U. S.) M Source: L	00006 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0 0.007 3 Uani23 0.0 0.0 0.0 sic, Inorg t/Dye type Stru 141 Li 56 (Altern. 2751 (Alt 0701 (Alt 7, 82 (196	2 3#b anic, Met acture (Al PF Proto ate), ✓ 0. ernate), ernate)	als & Allo Ipha Orde type Stru 4-001-764 ⁄ 04-002-	ys, Miner er]: O2 1 icture [Al 1 (Alterna 8296 (Alt	al Related îi Ipha Orde ate), ✓ 04- ernate), ✓	(Miner r]: 02 002-26 04-006	ral , Sy 71,t11 578 (A 5-1911	, 2,141 Iterna 3 (Alte	tic), NBS tte), ✓ ernate),
Anisotropi tom Nu 1 1 2 Subfile(s) Prototype PF Proto Perrototype PF Prototype PF Protot	c Displacer m Uani11 0.0052 0.0117 Commor Pattem, Structure bype Struc Symbol: tl f PDF #'s: e: 09/01/1 s: px terence cture	Number Number 0.0052 0.0052 0.0052 0.0027 0.0052 0.0027 Phase, I Phamace IfFormulation IfFormulation 0.001-0 00-001-0 04-002-2 04-002-3 04-002-3 04-006-3 971 Natl. E Crystatic Communication USA, S: Polymin nutile Lead Cell D Cell D	Logical Content of Content o	Uani12 0.0 0.0 0.0 al Patter (cipient), Ti O2 der]: Ti bted), 01 mate), J mate), J (U. S.) M Source: L erns: See tern revi mt-in-Ad Phase Tr al) by he h Amboy se: Powd	Uani 1: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Proto 02,812, 071-116 04-002 04-002 04-007 0000gr. 25 PF. PDF 01 ewed by (1990). ansition ansition ansition	0 0.007 3 Uani 23 0.0 0.0 0.0 141 Li 141 Li 166 (Altern: 2751 (Alt 0701 (Alt 1-071-116 Holzer, J Agrees w Anatase ove 700 (#sey, US ction.	2 3#5 anic, Met anic, Met anic, Met pF Proto ate), ✓ 04 ternate), ernate), ernate) 9). 6. Validat ., McCarr vell with e and anol 2. Sample A. Tempe	ais & Allo Ipha Orde type Stru 4-001-764 / 04-002- ted by cal thy, G., No xperiment her polym 9 Source c reature of	ys, Miner er]: O2 1 icture [Al 1 (Alterna 8296 (Alterna 8296 (Alterna 8296 (Alterna 90 (Al	al Related i pha Ordente), / 04- ernate), / attern. Col ta State U loculated po pokite (orth r. Sample ection: Pa	(Miner r]: 02 002-26 04-006 or: Col niv, Fa attlems orhom obtaine ttern ta	ial, S Ti,tt1 578 (A 5-1918 iorless rgo, N bic), a sd fror iken a	ynthei 2,141 Iterna 3 (Alterna 3 (Alterna 3 (Alterna 1 (Alterna 3	tic), NBS tite), ✓ srnate), meral Dakota, nverted ional K. Unit
nisotropi tom Nu 2 subfile(s) rototype PF Prot earson S cross-Rel intry Dat eference ype rimary Rel rystal Stru	c Displacer m Uani11 0.0052 0.0117 Commor Pattern, Structure Symbol: fl f PDF #'s: e: 09/01/1 s: <u>DX</u> ference cture Comment	Number Number 0.0052 0.0052 0.0052 0.0027 1 Phase, I Pharmacc [Formul Cture [Fo 12.00 00-001-0 04-002-2 04-006-9 971 21 Refer Natl. E Crystat Additional State Crystat Additional State Crystat Additional State Crystat Additional State Crystat Reference Crystat Crystat Crystat Cell D Cell D	C. J	Uani12 0.0 0.0 0.0 al Patter (cipient), Ti O2 der]: Ti eted), 01 mate), J (U. S.) M (U.	Ugani 1: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Proto 02,tl12, 071-111('04-002''04-007'') 00nogr. 25 PF. PDF 010 000,restion ating ab New Jd er Diffra eed Slift 1''	0 0.007 3 Uani23 0.0 0.0 0.0 sic, Inorg t/Dye type Stru 141 Li 56 (Altern. 2751 (Alt 0701 (Alt 7, 82 (196 -0701, (Alt -0701, (2 3/b anic, Met anic, Met cture [Al PF Proto ate), / 04 ernate), ernate) 9). 6. Validan (, McCart ernate) 9). 6. Validan (, McCart ernate) 9).	als & Alloy Ipha Orde type Stru 4-001-764 / 04-002- 1-54056 Å	ys, Miner or]: 02 1 ccture [Al 1 (Alterna 8296 (Alth 8296 (Alth subscription of the contained of the contain	al Related i lpha Order ate), / 04- ernate), / attern. Col tats State U atterts to U atter (orthr r Sample ection: Pa	(Miner r]: 02 002-266 04-006 or: Col or: Col or: Vol atterns orhom botaine ttern ta	ial , S ? Ti,tt1 578 (A 5-1910 bic), a bic), a bic), a d from	ynthei 2,141 Iterna 3 (Alte Iorth are co n Nat t 298	tic), NBS ate), ✓ arnate), meral Dakota, nverted K. Unit
Inisotropi Itom Nu 1 2 Subfile(s) Prototype PF Prot Prototype PF Prot Cross-Rel Intry Dat Intry Dat Intry Rel Systal Stru Natabase -Spacing: 9 (°)	c Displacer m Uani11 0.0052 0.0117 . Commor Pattem, Structure type Structure type Stru	Number Number 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 Phase, I France (Formul Constant (Formul 00-001-0 04-002-2 04-006-9 971 04-006-9 01 Refer Natl. E Crystat Addition USA, St. Polym nutile Lead Cell D 02-00-02 I h	C. J C. L	Uani12 0.0 0.0 0.0 al Patter (cipient), Ti O2 der]: Ti eted), 01 mate), J (U. S.) M (U.	20806 1 Uani1: 0.0 0.0 0.0 n, Foren Pigmen Proto 0.2,tl12, -071-111('04-002''04-007'') 04-007''04-007'' onogr. 25 PF. PDF0 01 000''04-007'' onogr. 25 PF. PDF0 01 00''04-007'' onogr. 25 PF. POPE 01 00''04-007'' onogr. 25 PF. POPE 01 00''04-007'' onogr. 25 PF. POPE 02 00''04-007''04-007'' onogr. 25 PF. POPE 03 00''04-007''04-007''04-007''04-007'' onogr. 25 PF. POPE 04 00''04-007''04	0 0.007 3 Uani 23 0.0 0.0 0.0 0.0 sic, Inorg t/Dye type Stru 141 Li 56 (Altern. 2751 (Alt 0701 (Alt 7, 82 (196 -0701, (Alt -07	2 3/b anic, Met anic, Met cture [Al PF Proto ate), / 04 ermate), ermate) 9). 6. Validati , McCath ermate) 9). 6. Validati , McCath ermate) 9). 6. Validati , McCath ermate) - Sample A. Tempo	als & Alloy Ipha Orde type Stru 4-001-764 7 04-002-1 1-54056 Å 1 *	ys, Miner ar]: 02 1 course [Al 1 (Alterna 8296 (Alther 8296 (Alther coulated poor th Dako tal and cc sorph, bro or Locality Data Coll 20 (°)	al Related pha Order ate), / 04- ernate), / attern. Col tata State U atterde pookite (orthr r. Sample lection: Par d (Å)	(Miner r]: 02 002-266 04-006 or: Col 04-006 or: Col software orhom there ta there ta there ta there ta there ta there ta the ta	ral , Sy ? Ti,tt1 578 (A 5-1910 bic), s bic), s d fror laken a	ynthei 2,141 Iterna 3 (Alte i, Ger Iorth I rre co n Nat t 298	tic), NBS tic), ✓ srnate), ✓ srnate), nverted ional K. Unit
isotropi tom Nu 1 2 Subfile(s) Prototype PF Proto Perototype PF Proto PF Proto PE Proto PF Prot	c Displacer m Uani11 0.0052 0.0117 . Commor Pattem, Structure bype Structure bype Stru	Addition 0.0027 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 Phase, p 0.0027 0.0027 0.0027 0.0027 0.0027 Polymenutie Lead Cell D D D D D D D D D D D D D D D D D D D	C. J	Uani12 0.0 0.0 0.0 al Patter (cipient), Ti O2 der]: Ti eted), 01 mate), J mate), J (U. S.) M Source: L erns: See tern revi mt-in-Al Phase Tr al) by hep h Amboy e: Powd Stick, Fix 2 <u>9 (°)</u>	Uani1: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Proto 02,tl12, 071-111('04-002''04-007'') 0000gr. 25 PPF. PDF 01 ewed by (1990).ansition ating ab er Diffra ed Slit 10 d10 7 1.69	0 0.007 3 Uani 23 0.0 0.0 0.0 0.0 0.0 0.0 sic, Inorg t/Dye type Stru 141 Li 56 (Altern. 2751 (Alt 0701 (Alt 7, 82 (196 -071-116 Holzer, J Agrees w Anatase over 700 C presey, US ction	2 3#5 anic, Met icture [Al PF Proto ate), ✓ 04 ermate), ., ermate) 9). 6. Validat ., McCarl rell with e and anot 2. Sample A. Tempo - Cu Ko1 h.k. 1.0	als & Alloy Ipha Orde type Stru 4-001-764 7 04-002-1 14-001-764 1-54056 Å 1-54056 Å 1 = 1 5	ys, Miner r]: O2 1 icture [Al 1 (Alterna 8296 (Alterna 8296 (Alterna 0 orph, bro or Locality Data Coll 29 (°) 70,3087	al Related i lpha Orde ate), / 04- ernate), / attern. Col ta State U action. Pa bokite (orth r Sample (ection: Pa d (Å) 1.337890	(Miner r]: 02 002-26 04-000 or: Col 04-000 or: Col niv, Fa atterns orhom bbtaine thern ta	ral, S Ti,tt1 578 (A 5-1910 bic), a ed from aken a	ynthei 2,141 Iterna 3 (Alterna 3 (Alterna 1 1 298	tic), NBS tic), ✓ ernate), ✓ ernate), nverted ional K. Unit
isotropi tom Nu 1 2 Subfile(s) Prototype PF Proto Perototype PF Proto PF Proto	c Displacer m Uani11 0.0052 0.0117 Commor Pattem, Structure type Structure type Struct	Addition 0.0027 0.0052 0.0052 0.0027 Phase, Phamaco [Formul [Formul [Formul [Formul [Formul 00-001-0 04-002-2 04-002-3 971 DI Refer Natl. E Crysta Additi Cell D D2 - 00-02 I I I I 001 1001 1001 1001 1001	Comparison of the second	Uani12 0.0 0.0 0.0 al Patter (cipient), Ti O2 der]: Ti sted), 01 mate), J mate), J (U. S.) M Source: L ems: See term revi mt-in-Aid Phase Tr al) by he h Amboy e: Powd Stick, Fix 29 (°) 53.889 55.060 62.119	Uani 1: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Proto 02,812; 071-111('04-002''04-007'') 0000gr. 25; PF; 01(1990); 01(1990); 01(1490); 160 01(1490); 160; 01(1490);	0 0.007 3 Uani 23 0.0 0.0 3 Uani 23 0.0 0.0 3 Uani 23 0.0 0.0 3 Uani 23 5 (Altern: 2751 (Alt 0701 (Alt 7, 82 (196 -071-116 Holzer, J Agrees w Anatase ove 700 (rssey, US ction	2 3#5 2 3#5 2 anic, Met anic, Met icture [Al PF Proto ate), ✓ 04 ernate), ernate) 9). 6. Validat , McCar end anol 2. Sample A. Tempe - Cu Ko1 h k 1 0 2 1 2 1 2 1 2 1	ais & Alloy Ipha Orde type Stru 4-001-764 7 04-002-1 ted by call thy, G., No xperiment ther polym 5 Source c reature of 1.54056 Å 1 3	vs, Miner er]: O2 1 icture [Al 1 (Alterna 8296 (Alterna 8296 (Alterna 1 (Alterna 8296 (Alterna 73, 03087 (Alterna 75, 0296 (Alterna 8296 (Alterna 8206 (Al	al Related ipha Orde atte), / 04- ermate), / attern. Col ta State U laculated p pokite (orth r. Sample (ection: Pa 1.337800 1.279500 1.264900	(Miner r]: 02 002-26 04-000 or: Cola oftern ta terms orhomme term ta 6 2 10	ral , S; 2 Ti,tt1 578 (A 5-1912 bic), a ed from ken a <u>h k</u> 2 2 2 1 0	2,141 Iterna 3 (Alterna 3 (Alterna 1 Control 1 Nat 1 Control 7 5	tic), NBS tic), ✓ ternate), meral Dakota, ional K. Unit
nisotropi tom Nu 1 2 subfile(s) rototype PF Proto earson S coss-Rel intry Dath eference: ype rystal Stru batabase -Spacing: <u>0</u> (°) 5,2806 6,9459 7,8002	c Displacer m Uani11 0.0052 0.0117 . Commor Pattem, Structure bype Structure bype Stru	Addition 0.0021 0.0052 0.0052 0.0027 Phase, Phamace (formulation (formulation 0.001-0 0.4-002-2 04-002-3 04-002-3 04-002-4 04-002-3 04-004-3 971 DI Refer Natil. Crystat Lead Cell D D2 - 00-02 I D00-1 D2 - 00-02 I D00-1 D00-1 D100-1	Luni33 O.007 O.0072 Education eutical (E) a Order]: rmula Ord State Sta	Uani12 0.0 0.0 0.0 al Patter (cipient), Ti O2 der]: Ti sted), 01 mate), J mate), J (U. S.) M Source: L ems: See tem revi mt-in-Aid Phase Tr al) by he h Amboy e: Powd Stick, Fix 20 (°) 53.889 55.060 62.119 62.688	Uani 1: 0.0 0.0 0.0 0.0 0.0 n, Foren Pigmen Proto 0.2,812, 0.71-111('0.4-002''0.4-002''0.4-002''0.4-007'') 0.4-007''0.4-002''0.4-007'' onogr. 25 PF. PDF 01 ewed by (1(1990)). ansition ating ab, New J& er Diffra d (2) vecd Sitt 11 d (2) 1.65 2.1.66 0.1.434 1.484 1.444 1.484	0 0.007 3 Uani23 0.0 0.0 3 Uani23 0.0 0.0 0 5 Uani23 0.0 0 0 5 Uani23 5 Uan	2 3#5 2 3#5 2 anic, Met anic, Met icture [Al PF Proto ate), ✓ 04 ernate), ernate), 9). 6. Validat ., McCar eand anol 2. Sample A. Temper - Cu Ka1 h k 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	ais & Alloy Ipha Orde type Stru 4-001-764 7 04-002-1 ted by call thy, G., No xperiment ther polym 5 Source c reature of 1.54056 Å 1 1 3 4 6	ys, Miner er]: O2 1 icture [Al 1 (Alterna 8296 (Alterna 8296 (Alterna 9296 (Alterna 1 (Alterna 9296 (Alterna 1 (Alterna 9296 (Alterna 1 (Alterna 9296 (Alterna 9296 (Alterna 9297 (Alterna 9277 (Alterna	al Related i pha Ordente), attem, outen, attern, Color ta State United to the state United to the state United to the state United to the state of the s	(Miner r]: 02 002-266 04-006 or: Cola 04-006 or: Cola niv, Fa attems orhom bbtaine ttern ta	ral, S; Ti,tt1 578 (A 5-1918 bic), a d fror ken a bic), a d fror ken a 2 2 1 0	2,141 Iterna 3 (Alterna 3 (Alterna 3 (Alterna 1 0 7 5 1 0 7 5	tic), NBS ite), ✓ arnate), meral Dakota, nverted ional K. Unit

00-021	-1272											Aug	18,201	7 1:	09	PN	(5H	IB8C5J)
20 (°)	d (Å)	I	h	k	1	20 (°)	d (Å)	I	h	k	_	20 (°)	d (Å)	I	h	k	1	
82 1361	1,172500	2	3	0	3	101.2175	0.996700	2	3	2	3	121.7200	0.881900	2	4	1	3	
82,6594	1,166400	6	2	2	4	107.4437	0.955500	4	3	1	6	122.3307	0.879300	2	4	0	4	
83.1465	1.160800	4	3	1	2	108.9585	0.946400	4	4	0	0	131.0290	0.846400	2	4	2	0	
93.2174	1.060000	2	2	1	7	112.8361	0.924600	2	3	0	7	135,9910	0.830800	2	3	2	7	
94,1783	1.051700	4	3	0	5	113.8569	0.919200	2	3	2	5	137.3839	0.826800	4	4	1	5	
95,1394	1.043600	4	3	2	1	114.9041	0.913800	2	4	1	1	143.8785	0.810200	2	3	0	9	
98.3152	1.018200	2	1	0	9	118.4341	0.896600	4	2	1	9	150.0282	0.797400	4	4	2	4	
99.8007	1.007000	2	2	0	8	120.0989	0.889000	2	2	2	8	152.6219	0.792800	2	0	0	12	

.

© 2017 International Centre for Diffraction Data. All rights reserved.

Page 2/2

Laboratorio de nanocatálisis Facultad de Química

00-031-1329

Aug 18, 2017 1:10 PM (5HB8C5J)

Status Primary QM: Star Pressure/Temperature: Ambient Chemical Formula: Na2 TI3 07 Empirical Formula: Na2 O7 Ti3 Weight %: Na15.24 O37.13 Ti47.62 Atomic %: Na16.67 O58.33 Ti25.00 Compound Name: Sodium Titanium Oxide

Radiation: CuKa1 A: 1.5406 Å Intensity: Diffractometer

SYS: Monoclinic SPGR: P21/m (11) Author's Cell [AuthCell a: 9.1279 Å AuthCell b: 3.8032 Å AuthCell c: 8.5621 Å AuthCell β: 101.6° AuthCell Vol: 291.16 Å³ AuthCell Z: 2.00 AuthCell MolVol: 145.58] Author's Cell Axial Ratio [c/a: 0.938 a/b: 2.400 c/b: 2.251] Den Density [Dcalc: 3.441 g/cm³] SS/FOM: F(30) = 95.4(0.0087, 36) Temp: 298.0 K (Author provided temperature) Color: Colorless

 Space Group:
 P21/m (11)
 Molecular Weight:
 301.68

 Crystal Data [XtiCell a:
 9.128 Å
 XtiCell b:
 3.803 Å
 XtiCell c:
 8.562 Å
 XtiCell a:
 90.00°
 XtiCell β:
 101.60°

 XtiCell γ:
 90.00°
 XtiCell Vol:
 291.16 ų
 XtiCell Z:
 2.00]
 Crystal Data Axial Ratio [c/a: 0.938 a/b: 2.400 c/b: 2.251] Reduced Cell [RedCell a: 3,803 Å RedCell b: 8,562 Å RedCell c: 9,128 Å RedCell c: 101.60° RedCell 6: 90.00" RedCell y: 90.00" RedCell Vol: 291.16 Å3]

Atomic parameters are cross-referenced from PDF entry 04-008-9452 Crystal (Symmetry Allowed): Centrosymmetric SG Symmetry Operators:

Seq	Operat	or Seq	Operator	Seq	Opera	tor	Seq (Operat	or
1	x,y,z	2	-x,-y,-z	3	-x,y+1	12,-z	4 >	-y+1/2	z,z
Atom	ic Coore	dinates:							
Atom	Num	Wyckoff	Symmetry	×	Y	z	SOF	IDP	AET
0	1	2e	m	0.062	0.25	0.355	1.0		1#a
0	2	2e	m	0.186	0.25	0.115	1.0		2#a
Ti	3	20	m	0.2533	0.25	0.327	1.0		6-a
0	4	2e	m	0.279	0.25	0.805	1.0		2#a
Ti	5	20	m	0.358	0.25	0.0189	1.0		6-a
0	6	2e	m	0.36	0.25	0.527	1.0		2#a
Ti	7	2e	m	0.4722	0.25	0.7194	1.0		6-a
0	8	2e	m	0.503	0.25	0.255	1.0		2#a
0	9	20	m	0.595	0.25	0.969	1.0		2#a
0	10	2e	m	0.709	0.25	0.687	1.0		3#a
Na	11	20	m	0,818	0.25	0,405	1.0		9-a
Na	12	28	m	0.992	0.25	0.846	1.0		7-0

Subfile(s): Inorganic, NBS Pattern Pearson Symbol: mP24.00

Cross-Ref PDF #'s: 00-014-0085 (Deleted), 00-059-0666 (Primary), ✓ 04-008-9452 (Alternate), ✓ 04-009-3663 (Alternate), ✓ 04-009-387 (Alternate), ✓ 04-009-8329 (Alternate)

Entry Date: 09/01/1981

References:

Туре	DOI	Reference
Primary Reference Crystal Structure		Nati. Bur. Stand. (U. S.) Monogr. 25 16, 69 (1979). Crystal Structure Source: LPF.

Additional Patterns: To replace 00-014-0085. Color: Colorless. Additional Diffraction Lines: Plus 2 Database Comments: To replace 00-014-0005. Color: Coloress. Additional Diffraction Lines: Plus 2 reflections to 1.3347. Sample Preparation: The sample was prepared by dry heating "Na2 C O3" + "Ti O2" Database Comments: (anatase) at 1250 C. Since Na evaporated, NaOH plus moisture was added to make a paste. The sample was then heated for 45 minutes at 1000 C and then reheated for 17 hours at 950 C after correcting with "Ti O2". Temperature of Data Collection: Pattern taken at 298 K. Unit Cell Data Source: Powder Diffraction.

20 (°)	d (Å)	I	h	k	1		20 (°)	d (Å)	I	h	k	1	٠	20 (°)	d (Å)	I	h	k	1	
9.8745	8.950000	7	1	0	0		28.3821	3.142000	18	1	1	1		34.2221	2.618000	16	-2	0	3	
10.5228	8.400000	100	0	0	1		29.7051	3.005000	7	-3	0	1		34.6313	2.588000	7	1	1	2	
12.9321	6.840000	4	-1	0	1		29.9396	2.982000	20	3	0	0		35.2640	2.543000	6	-2	1	2	
15.8407	5.590000	30	1	0	1		30,8396	2.897000	6	2	1	0		35.4947	2.527000	6	1	0	3	
19.8457	4.470000	7	2	0	0		31.2935	2.856000	7	-2	1	1		38.1332	2.358000	3	-3	1	1	
21.1919	4.189000	2	0	0	2		31,7381	2.817000	8	0	1	2		38.3358	2.346000	4	3	1	0	
21.4982	4.130000	5	-1	0	2		31.9477	2,799000	12	-1	1	2		39,4549	2.282000	1	-3	0	3	
24.3525	3.652000	2	2	0	1		32.0417	2.791000	7	2	0	2		39.5995	2.274000	<1	-1	1	3	
25.1716	3.535000	1	1	0	2		33,1649	2.699000	5	-3	0	2		40.0213	2.251000	1	2	1	2	
25.6962	3.464000	35	0	1	1		33.8622	2.645000	8	3	0	1		40.3014	2.236000	2	4	0	0	
26.0171	3.422000	5	-2	0	2		33.9946	2.635000	9	2	1	1		41,5429	2.172000	2	3	1	1	
© 2017	Internat	o ional	-2 Ce	ent	re f	or D	Diffractio	n Data. A	ul rie	ahts	re	ser	ve	41.5429	2.1/2000	2	3	1	1	P

© 2017 International Centre for Diffraction Data. All rights reserved.

Anexos

00-03	1-1329			0							6			Aug 18,	201	7 1:	10	PN	A (5HB8C5J)
20 (°)	d (A)	I	h	k	1	20 (°)	d (A) b	I	h	k	1	*	20 (°)	d (Å)	I	h	k	1	*
41.8250	2.158000	1	-2	1	3	52.7700	1.733300	1	-4	1	3		61.6876	1,502400	2	-6	0	2	
42.9295	2,105000	3	1	1	3	52.9477	1.727900	<1	-1	2	2		62,1005	1,493400	1	-4	õ	5	
43.1014	2.097000	4	Ó	Ó	4	53,4784	1.712000	1	-1	ō	5		62.2487	1,490200	1	6	õ	õ	
43.8259	2.064000	35	-2	Ó	4	54,5280	1.681500	1	5	0	1		62,9203	1.475900	4	2	õ	5	
43.9154	2.060000	40	4	0	1	54.8780	1.671600	1	3	1	3	10.20	63,1061	1.472000	6	4	1	3	
46.3828	1.956000	6	-3	1	3	55.0673	1.666300	3	-5	0	3		64.6262	1.441000	6	-6	0	3	
47.1226	1.927000	2	4	1	0	55.8090	1.645900	7	-5	1	1		65.4057	1.425700	2	-1	0	6	
47.2527	1.922000	1	3	1	2	57,1200	1.611200	2	-5	1	2		66.1368	1.411700	5	-5	1	4	
47.8070	1.901000	20	0	2	0	57.2791	1.607100	3	-3	2	1		66.8695	1.398000	14	0	0	6	
48.9009	1.861000	2	3	0	3	57.4393	1.603000	5	3	2	0		66.9291	1.396900	14	4	2	1	
49.0695	1.855000	3	0	.2	1	57.6990	1.596400	2	4	0	3		67.4485	1.387400	1	6	1	0	
49.9016	1.826000	2	4	0	2	58.3674	1.579700	1	-1	2	3		68.0891	1.375900	6	2	1	-5	
50.2250	1.815000	10	-2	1	4	59.1272	1.561200	5	-1	1	5		68.8177	1.363100	2	1	2	4	
50.3436	1.811000	7	4	1	1	59.9682	1.541300	6	-2	1	5		69.5398	1.350700	1	3	0	5	
50.6790	1.799800	2	1	2	1	60.1188	1.537800	6	5	1	1								
51.6884	1.767000	1	2	0	4	60.9191	1.519500	4	1	2	3								

© 2017 International Centre for Diffraction Data. All rights reserved.

Page 2/2

Laboratorio de nanocatálisis Facultad de Química

Statu		320							_				Aug 18,	2017	1:15	PM	(5HB8	SC5J
Emp	us Prim irical F pound	ary ormula Name:	QM: In : C K2 Potas	ndexe 2 O3 Isium	d Pi Weig Carbon	ressur pht %: iate	C8.0	nperatu 59 K56.5	re: A 58 O34	mbien 1.73	Atom	ic %: C1	ormula: K2 6.67 K33.33	C O3 050.0	10			
Radi	ation:	CuKa1	λ:	1.540	6 Å	d-Spa	acing	: Guinie	er (Cutoff	50.00	Came	ra Diamete	er: 114	.60			
SYS: Auth Auth Auth SS/F	Mono or's Ce Cell Vo or's Ce OM: F(clinic II [Aut I: 377 II Axia (30) = 5	SPG hCell a .16 Å ³ Ratio 5.8(0.0	R: P2 a:*5.0 Au [c/a: 0087,	21/c (14 38 Å ithCell 1.220 62)	i) Aut Z: 4.) a/ Temp	hCell 00 b: 0. : 298	b: 9,84 AuthC 573 0 9.0 K (An	11 Å ell Mo c/b: 0 nbient	Aut Vol: .699] tempe	nCell c 94.29 D rature	: 6.876 Å] ensity [D assigned	AuthC calc: 2.43 by ICDD ed	ellβ: 9 4 g/cm³ litor)	98.66° ']			
Spac Crys XtiCe Crys Redu Redu	e Grou tal Data ell γ: 9 tal Data iced Ce cell β: 1	p: P21 (XtiC 0.00° Axial II [Rec 90.00°	/a (14) ell a: (XtiCe Ratio [dCell a Red	6.876 ell Vo [c/a: : 5.6 iCell	olecul: Å) : 377. 0.820 38 Å y: 98.6	ar Wei (tiCell 16 Å ³ a/t Red	ight: b: 9 Xi cell b RedC	138.21 .841 Å tiCell Z: 99 c 6.876 Cell Vol:	Xti 4.00 /b: 0. Å 377.	Cell c] 573] RedC 16 Å ³	5.638 ell c: 1	9.841 Å	Cell a: 90. RedCell (00° x: 90.0	XtiCe	II β: 1	98.66°	
Atom Cryst SG Sy	tal (Syr	nmeters nmetry v Opera	Allow	ross- ed):	referen Centro	symmetry	rom P etric	DF entr	y 04-0	12-71	09	ADP: B	i.					
Seq	Operat	or	Seq	Ope	rator		Seq	Operato	or	Se	Ope	rator						
1	X.Y.Z		2	-X)	z		3	-x,y+1/2,	-z+1/2	4	xy+	1/2, 2+1/2						
Atom	ic Coon	dinates		100				105										
Atom	Num	Wyck	off Sy	mmel	х ут	-	·	z	SOF	Biso	AET							
ĸ	1	40	1		0.2	418 0	.0831	0.2144	1.0	2.96								
K C	2	4e	1		0.7	391 0	1,2597	0.9754	1.0	2.49								
ŏ	4	40	1		0.7	35 0	044	0.199	1.0	3.45								
0	5	40	1		0.0	63 0	.348	0.276	1.0	3.04								
0							tom		- 01	mace	Incolu	Pearso	- Combale	mD24	00			
O Subfi Cros Entry Refer Type Prima Crysta	ile(s): s-Ref P / Date: rences: ry Refer al Structu	Commo DF #'s 09/01/ E ance Jre	on Pha: : 00-00 1966 OI Re Col	eferer Wolff rystal S	Ce P., Tec	hnisch	Physic e: LPF	Inorgani -012-710 sche Dien	c, Pha 09 (Alt	ernate	Netherla	as Numbe	Grant-in-Aid.	4-08-7	.00		8	
O Subfi Cross Entry Refer Type Prima Crysta	ile(s): s-Ref F / Date: rences: ry References: hase C	Comme PDF #'s 09/01/ ence yre	on Phas : 00-00 1966 OOI Re de Co nts: Ac	eferer Wolff ystal 3 394. V	ice P., Tec structure al Patt	thnisch Source erns: 1 : Line	Physic e: LPF fo reps with	Inorgani 012-710 sche Dien place 00- abs(del	c, Pha 99 (Alt 191, Del 191, D	ft, The 001. A neta)>(Netherla	al Diffracti EG. Unit C	Grant-in-Aid. on Lines: P	4-08-7 lus 14 a	additio	nal re Diffra	flection.	s to
O Subfi Cross Entry Refer Type Prima Crysta Datal	ile(s): s-Ref F y Date: rences: ry Refer al Structu base C acings (Comme PDF #'s 09/01/ ence are ommer 39) - K	on Phas : 00-00 1966 OOI Re Conts: Ac	eferer Wolff rystal 3 dditior 394. V	Acce P., Teo Structure Varning 16-082	hnisch Source erns: 1 1: Line	Physic e: LPF fo rep s with	Inorgani 012-710 sche Dien lace 00- abs(del	c, Pha 99 (Alt 191, Def 001-1 ta 2Th ntensi	ft, The 001. A heta)>(ducai C/ Netheria ddition 0.06 DE	al Diffracti EG. Unit C	Grant-in-Aid. on Lines: P	4-08-7 lus 14 urce: P	additio	nal re Diffra	flection.	s to
O Subfi Cros Entry Refer Type Prima Crysta Datal d-Spa	ile(s): s-Ref F y Date: rences: ry Refer al Structu base C acings () d ()	Comme PDF #'s 09/01/ ence are 39) - K	on Phas : 00-00 1966 OOI R de Col nts: Ac 2 C O3 - 1 I h	eferer Wolff ystal 3 dditior 394. V	Aucation (Del P., Teo Structure Varning 16-082	thnisch Source Erns: 1 Co (Stice 28 (1)	Physic Physic Coreps s with	Inorgani 012-710 sche Dien lace 00- abs(del ted Slit I (Å)	c, Pha 99 (Alt 109 (Alt 1001-1 1ta 2Th 1001-1 1	ft, The 001. A neta)>(heta)>(ddican Netheria ddition 0.06 DE	al Diffracti EG. Unit C 1.54056 Â 20 (*)	Grant-in-Aid. on Lines: P ell Data Sou	4-08-7 lus 14 a urce: P	additio owder	nal re Diffra	flection.	s to
O Subfi Cross Entry Refer Type Prima Crystr Datal d-Spa 20 (° 15.844 18.014	ile(s): s-Ref F y Date: rences: ry Refera Structu base C acings () d (/ 07 5.55	Comme PDF #'s 09/01/ ence are 39) - KC	on Phas : 00-00 1966 OI R de Col nts: Ac 1. 2 C O3 - 1 1 h 4 0 2 0	eferer Wolff ystal 3 dditior 394. V - 00-0 k 1 2	Ince P., Tec bructure Varning 16-082 1 0	thnisch Source : Line : Line : 29 (9 34.10 35.27	Physia e: LPF fo rep s with ck, Fix 2) (2) (13)	Inorgani 012-710 sche Dien blace 00- abs(del ced Slit I (Å) 2.627000 542000	c, Pha 99 (Alt est, Del 001-1 ta 2Th Ita 2Th I 20 2	ft, The 001. A leta)>(h k 1 1 3	Netheria ddition 0.06 DE 1 2 1	AS Numbe ands. ICDD al Diffracti EG. Unit C 1.54056 Å <u>20 (°)</u> 48.678(48.873)	Grant-in-Aid. Grant-in-Aid. on Lines: P ell Data Sol <u>d (Å)</u> 0 1.869000 0 1.862000	4-08-7 lus 14 aurce: P	additio owder <u>h k</u> -2 1 2 2	nal re Diffra	flection.	s to
O Subfi Cross Entry Refer Prima Crystr Datal d-Spa 20 (° 15.84(18.01/ 18.27(ile(s): s-Ref F y Date: rences: ry Referent structure base C acings () d () 07 5.55 4.7 4.92 59 4.88	Comme PDF #'s 09/01/ ence are 39) - K 00000 50000 50000	on Phas : 00-00 1966 OI R de Col Atts: Ac 1. 2 C O3 - I h 4 0 2 0 2 1	se, Ed 01-10 Wolff rystal 3 dditior 394. V - 00-0 k 1 2 1	Incetion P., Tec bructure val Patt Varning 16-082 1 0 0	thnisch Source (1): Line (2): Cine (2): Cine (Physia e: LPF fo rep s with	Inorgani 012-710 sche Dien blace 00- abs(del ced Slit I (Å) 2.627000 2.385000	c, Pha 99 (Alti est, Del 001-1 ta 2Tr ntensi 1 20 2 25	ft, The 001. A 1 1 1 3 -2 2	Netheria	as Number ands. ICDD al Diffracti C. Unit C L54056 Å 29 (°) 48.678 48.873 49.9411	Grant-in-Aid. Grant-in-Aid. on Lines: P ell Data Sou 1.869000 1.856000 1.856000 1.856000	4-08-7 lus 14 a urce: P	additio owder	nal re Diffra	effection action.	s to
0 Subfi Cross Entry Refer Type Prima Crystr Datal d-Spri 28 (° 15.84(1 18.27) 15.84(1 18.27) 21.033	ile(s): s-Ref P / Date: rences: ry Refer al Structu base C acings () d (07 5.55 4.92 59 4.84 44 4.22 84 3 44	Comme DF #'s 09/01/ ence ire 39) - K 00000 20000 20000 20000	on Phat : 00-00 1966 OI Re Col Atts: Ac Col Atts: Ac Col Atts: Ac Col Atts: Ac Col Atts: Ac Col Atts: Ac Col Atts: Ac Col Atts: Ac Col Atts: Ac Col Atts: Ac Atts:	eferer Wolff ystal 3 dditior 394. V - 00-0 k 1 2 1 1 0	Aucation (Del (De	hnisch Source erns: 1 2 Line 0 (Stie 34.10 35.27 37.68 38.99 38.99	Physia Physia e: LPF Fo rep s with ck, Fix P) 6 213 2 296 2 297 2 207 2 20	Inorgani 012-710 sche Dien lace 00- abs(del ted Slit I 4 (Å) .627000 2.542000 .385000 .385000	c, Pha 99 (Alt 151, Def 001-1 1ta 2Tr 162 20 22 56 18	ft, The 001. A heta)>(h k 1 1 3 -2 2 2 0 3 0 4	Netheria ddition 0.06 DE 1 1 2 1 2	AS Number al Diffracti EG. Unit C L.54056 Å 48,678 49,041 49,049 49,041	Grant-in-Aid. Grant-in-Aid. on Lines: P ell Data Sou <u>d (Å)</u> 0 1.865000 1.856000 1.856000 1.854000 1.844000 1.844000 1.844000	4-08-7 lus 14 a urce: P	additio owder -2 1 2 2 1 5 2 4 -3 1	nal re Diffra	flection.	s to
O Subfi Cros Entry Refer Type Prima Crystr Datal d-Spi 15.84(1))))))))))))))))))))))))))))))))))))	ile(s): s-Ref P / Date: rences: ry Refer al Structu base C acings () d () 07 5.55 4.7 4.92 59 4.84 4.4 4.22 84 3.46 55 3.11	Comme DF #'s 09/01/ ence re 39) - KC 00000 20000 20000 20000 20000 20000 20000 20000	m Phas 00-00 1966 00I Ru de Col nts: Ac 1. 2 C 03 I h 4 0 2 0 2 -1 14 0 2 -1 14 0	eferer • Wolff dditior 394. \ - 00-0 k 1 2 1 0 0	Acce P., Tec Structure Varning 16-082 1 1 0 1 2 2	hnisch Source erns: 1 2 Line 0 (Stie 34.10 35.27 37.68 38.90 38.90 38.90 38.90 38.90 38.91	Physic Physic EPF Fo reps s with bk, Fix 2151 2 2151 2 2151 2 2151 2 2157 2 257 2	Inorgani -012-710 sche Dien 	c, Pha 99 (Alt 109 (Alt 1111 a 2Th 1111 a 2Th 1120 2 25 6 18 1	ft, The 001. A heta)>(h k 1 1 3 -2 2 3 0 3 0 4	Netheria ddition 0.06 DE 1 1 2 1 3	AS Number al Diffracti EG. Unit C 1.54056 Å 49.041 49.058 49.041 49.058	Grant-in-Aid. Grant-in-Aid. on Lines: P ell Data Sou 1.862000 1.862000 1.844000 1.833000 1.833000 1.833000	4-08-7 lus 14 a urce: P	additio owder -2 1 2 2 1 5 2 4 -3 1 1 4	nal re Diffra	flection.	s to
O Subfi Cros Entry Refer Type Prima Crystr Datal d-Spri 28 (° 15.841 18.273 26.188 27.25.188 28.586 30.042	ile(s): s-Ref F / Date: rences: ry Referances: base C base C acings () d () d () 7 5.65 4.88 4.4 4.22 8.4 3.44 5.5 3.11 2.7 2.99 1.2 2.91 1.2 2.91	Comme DF #'s 09/01/ ence ire 39) - KC 39) - KC 39) - KC 30000 20000 20000 20000 20000 20000 20000 20000	m Phas 00-00 1966 001 Ru de Co nts: Ac 1. 2 C 03 1 h 4 0 2 0 2 1 14 0 2 -1 14 0 2 -1 14 0 2 -1 14 0 2 -1 14 0 2 -1 14 0 12 0	eferer b Wolff rystal 5 c 00-0 k 1 2 1 1 0 0 1 2 1 1 0 0 1 2 1 1 0 0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Incation (Del P., Tec structure tal Patt Varning 16-082 1 1 0 0 1 2 2 1	hnisch Source erns: 1 : Line 0 (Stie 29 (* 34.10 35.27 37.68 38.09 38.09 38.09 40.81 41.08	Physic Ph	Inorgani 012-710 ache Dien blace 00- abs(del ted Slit I 4 (Å) .527000 .542000 .385000 .385000 .385000 .195000	c, Pha 09 (Alt ust, Def 001-1 ta 2Tr ntensi 1 20 225 6 18 1 8 1 8	ft, The 001. A heta)>(h k 1 1 1 3 -2 2 0 3 0 4 0 1 2 2 2	ddittion .06 DE 1 2 1 1 2 1 3 1	AS Number ands. ICDD al Diffracti EG. Unit C L.54056 Å 48.8731 49.361 49.361 49.361 49.361 51.407	Grant-in-Aid. Grant-in-Aid. on Lines: P ell Data Sol 1.862000 1.862000 1.84000 1.84000 1.814000 1.814000 1.814000 1.814000	4-08-7 lus 14 a urce: P	additio owder <u>h k</u> -2 1 2 2 2 1 2 3 1 5 2 4 -3 1 -1 5 -3 1 -1 5 -3 1 -1 5 -3 1 -1 5 -3 1 -1 5 -3 5 -	nal re Diffra	effection.	s to
0 Subfi Cross Entry Refer Prima Crystz Datal d-Spa 20 (° 15.844 18.01 15.804 18.01 15.804 30.043 30.043 30.043	ile(s): s-Ref P / Date: rences: ry Referent structure base C acings () d (07 5.55 44 4.22 84 3.44 55 3.12 7 2.91 01 2.95 14 2.85 14 2.85 15 2.85 16 2.85	Comme DF #'s 09/01/ ence ire 39) - K 1 00000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000	DI R de COI R COI R COI R de COI R COI R CO	eferer b Wolff rystal 5 c 00-0 k 1 2 1 1 1 2 1 1 1 0 0 1 3 3	Acce P. Tec structure tal Patt Varning 16-082 1 1 0 1 2 2 1 0 0	hnisch Source erns: 1 7: Line 0 (Stik 20 (1 34.10 35.27 37.68 38.09 38.09 38.09 40.81 41.08 42.54 42.54	Physic Physic E LPF For repr s with Core physic Core physic Cor	Inorgani -012-710 sche Dien 	c, Pha 99 (Alt 09 (Alt 109 (Al	ft, The 001. A heta)>1 ity) - C h k 1 1 1 3 -2 2 0 3 0 4 0 1 2 2 3 -2 2 -2 3	ddition .06 DE u Kal 1 1 2 1 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2	AS Number al Diffracti EG. Unit C LS4056 Å 29 (°) 48.678 49.041 49.931 49.9011 50.254 51.657	Grant-in-Aid. Grant-in-Aid. on Lines: P ell Data Sol 1.865000 1.865000 1.856000 1.826000 1.814000 1.814000 1.814000 1.814000 1.814000 1.826000 1.826000 1.814000 1.776000 1.776000	4-08-7 lus 14 a urce: P I 2 2 8 4 2 4 2 4 4 2 4 4	additio owder -2 1 2 2 2 1 5 2 4 -3 1 -1 5 2 -2 2 -3 1 -1 5 2 -2 1 -2 2 -3 1	nal re Diffra 3 2 0 0 1 2 1 3 1	flection.	s to
O Subfi Cross Entry Refer Prima Crystz Datal d-Spa 20 (° 15.844 18.027 21.033 26.188 30.044 30.233 1.61 31.985	ile(s): s-Ref P / Date: rences: ry Refermal Structure base C acings () d (07 5.55 44 4.22 59 4.88 43.44 4.22 59 2.72 29 2.75 20 2.	Commer DF #'s 09/01/ cmmer 39) - K3 00000 200000 20000 20000	n Phase 00-1 Ref 00-1 Re	eferer • Wolff • Wolff • Wolff • Wolff • Wolff • 00-00 k 1 2 1 1 0 0 1 3 3 2 2 2	Lucation 1 (Del P., Teo Structure al Patt Varning 16-082 1 1 0 0 1 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 0 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	hnisch s Source erns: 1 1 2 20 (34.10 35.22 37.68 38.90 38.90 38.90 38.90 40.81 40.84 44.75	Physii ⇒ 04- Physii e: LPF Fo rep s with 113 2 2 113 2 2 115 2 115 2 115 2 115 2 115 2 115 2 115	Inorgani -012-710 sche Dien 	c, Pha 99 (Alt 001-1 1ta 2Th 1ta 2Th 20 2 25 6 18 1 8 <1 20 2 1 2 25 6 1 1 20 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	ft, The 001. A heta)> ty) - C h k 1 1 1 1 3 2 2 3 3 0 4 1 2 2 2 1 2 -1 2	Addition Additi	AS Number al Diffracti EG. Unit C L.54056 Â 49.041 49.051 49.051 49.051 49.051 49.051 50.254 51.6577 51.6577	Grant-in-Aid. Grant-in-Aid. on Lines: P ell Data Sou <u>d (Å)</u> 0 1.869000 1.856000 1.856000 1.856000 1.854000 0 1.826000 1.844000 0 1.826000 1.844000 0 1.826000 1.768000 1.768000 1.768000 1.768000 1.768000 1.768000 1.768000 1.768000 1.768000 1.768000 1.768000 1.768000 1.768000 1.768000 1.768000 1.77100 1.768000 1.77100 1.768000 1.77100 1.768000 1.77100 1.768000 1.77100 1.768000 1.77100	4-08-7 lus 14 i urce: P 1 2 2 8 4 2 4 2 4 4 2 4 4 2	addititio owder -2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 1 1 -1 5 2 2 2 4	nal re Diffra 3 2 0 0 1 2 1 3 1	effection.	s to
O Subfi Cross Entry Refer Prima Cryste Datal d-Spa 20 (° 15.844 18.01/ 18.27 28.58 30.04 30.23 30.04 30.23 31.61 31.98 32.084	ile(s): s-Ref F / Date: ry Referral Structu base C base C base C acings () d (2 07 5.55 4.84 3.44 4.92 5.9 4.84 3.12 2.7 2.97 0.1 2.92 0.1 2.92 2.77 2.9 2.77 2.9 2.77 2.7 2.9 2.77 2.7 2.77	Commen 09/01/	n Phase : 00-01 1966 001 Re Cr Cr Cr 2 C 03 - 1 h 4 0 2 2 - 1 - 1 4 0 2 2 - 1 - 8 0 100 1 1 8 0 2 - 1 - 8 0 - 1 8 0 - - - - - - - - - - - - -	eferer • Wolff • Wo	Location (Del)1 (Del)2 (D	nal Pai eted), hnisch Source erns: 1 3: Line 0 (Stid 20(34.10 35.27 37.66 38.90 40.81 41.06 42.54 42.84 44.76 45.47 77	Physical Physi	Inorgani -012-710 sche Dien 	c, Pna 99 (Alt 109 (Alt 001-1 ta 2Tr 100 2 2 25 6 18 1 8 <1 2 2 2 5 6 18 1 1 2 2 2 5 6 18 1 1 2 2 2 5 6 18	ft, The 001. A h k 1 1 3 -2 2 3 0 4 1 2 2 2 3 0 4 0 1 -2 2 2 3 0 4 -2 2 2 3 0 4 -2 2 2 3 -2 2 3 0 4 -2 3 -2 3 	Netherla ddition 0.06 DE 1 1 2 1 1 2 1 2 2 2 2 2	AS Number al Diffracti EG. Unit C L.54056 Å 49.041 49.058 49.9011 50.254 49.9011 51.4075 51.4075 51.4075 53.866 53.866	Grant-in-Aid. Grant-in-Aid. on Lines: P ell Data Sou 1.863000 1.863000 1.84000 1.814000 1.814000 1.776000 1.777000	4-08-7 lus 14 a urce: P 1 2 8 4 2 8 4 2 4 4 2 4 4 2 4 2 4 4 2 4 4 2 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4	addititio owder <u>h k k</u> -2 2 2 -3 1 1 -1 5 2 3 1 -1 4 -2 2 2 2 -3 1 1 -2 2 2 -3 1 1 -3 1 -2 2 2 2 4 1 0 -2 1 2 -3 1 1 -2 2 2 2 -3 1 -3 1 0 -2 -3 1 -3 1 0 -2 -3 1 0 	nal re Diffra 3 2 0 0 1 2 1 3 1 1 2 4	flection.	s to

© 2017 International Centre for Diffraction Data. All rights reserved.

Page 1/1

-		0425	M. Black	Dresser		moret	a Anti	ont	Char	last E	~	19 10, 20		1.13	F IVI	(SUPPOC
Em	pirical npoun	Formula: d Name:	Al2 O3 Aluminum	Weight % Oxide C	Al52	.93 O47 on Name	e: Ambi .07 Α e: γ-Αl2	ent tomic 03	%: Al4	0.00 O	60.00	a: AI2 O3				
Rad	liation	: CuKa	λ: 1.541	8 Å Filte	r: Ni	Beta	Intensity	r: Visu	ial							
SYS Aut Der Ten	S: Cut hor's (isity [np: 29	bic SPG Cell [Auth Dcalc: 3.1 8.0 K (Am	GR: Fd-3m Cell a: ⁴ 7 674 g/cm ³ bient temp	9Å Aut 9Å Aut] SS/F0 erature assi	hCell M DM: F igned I	Vol: 49 (12) = 4 by ICDD	3.04 Å ³ .3(0.093, editor)	Aut 30)	hCell Z	: 10.7	0	AuthCell	Mol\	/ol: 4	6.08	1
Spa Cry Ktic Cry Red Red	ice Gri stal Da Cell γ: stal Da luced ICell β	oup: Fd-3 ata [XtiCe 90.00° ata Axial F Cell [Red : 60.00°	m (227) II a: 7.90 XtiCell V Ratio [a/b Cell a: 5. RedCel	Molecular 0 Å XtiC ol: 493.04 Å : 1.000 586 Å R 586 Å R 1 Y: 60.00°	Weigi ell b: {3 c/b: 1 edCell Rec	ht: 101 7.900 Å XtiCell 3 .000] b: 5.58 iCell Vo	96 XHC Z: 10.70 86 Å F H: 123.2	ell c:] RedCe 6 ų]	7.900 / II c: 5.	586 Å	tiCell R	α: 90.00 edCellα:	e0.0	XtiCe 0°	II β:	90.00°
to	mic pa stal (S	arameters wmmetry	are cross Allowed):	-referenced	from	PDF en	try 04-00	7-261	5 (Origin:	01					
	Summa	dry Operat	one:	oontooyin	inouro											
Sec	0000	ator		Operator		5.	0.000	tor		Sec	000	rator				
1 2 3 4 5 6 7 8 9 10 11 12 Ato	x,y,z z,x,y y,z,x x,z,y y,x,z z,y,x x,-y,- x,-z,- y,-x,- z,-y,- mic Com	z y y z z v ordinates:	13 14 15 16 17 17 18 19 20 21 22 23 24	-x,y,-z -z,x,-y -y,z,-y -y,x,-y -y,y,-z,-y -y,-y,-y -z,-y,y -z,-y,y -z,-y,y -z,-y,y -z,-y,y -z,-y,y -z,-y,y -z,-y,y -z,-y,-z,		25 26 27 28 29 30 31 32 33 34 35 36	-x+1/4, -z+1/4, -y+1/4, -z+1/4	-y+1/4, -x+1/4, -z+1/4, y+1/4,z x+1/4,y y+1/4,z x+1/4,y x+1/4,y x+1/4,-z (+1/4,-z (+1/4,-z	-z+1/4 -y+1/4 -x+1/4 +1/4 +1/4 +1/4 +1/4 +1/4 +1/4 +1/4	37 38 39 41 42 44 44 44 46 47 48	-x+1/ -y+1/ -z+1/ -z+1/ -z+1/ x+1/4 y+1/4 z+1/4 x+1/4 y+1/4 z+1/4	4z+1/4y 4x+1/4z 4y+1/4x 4.z+1/4.y 4.z+1/4.z+ 4.y+1/4.x+ 1z+1/4.y+ 1x+1/4.y+ 1x+1/4.y+ 1.x+1/4z+ 1.y+1/4z+ 1.y+1/4z+	+1/4 +1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4			
0	1	326	.3m	0.37	0.37	0.37	1.0	13	-d							
AI	2	8a	-43m	0.25	0.25	0.25	0.503	14	-b							
Al	3	48f	2.mm	0.25	0.0	0.0	0.083	13	d b							
A	5	16c	3m	0.125	0.125	0.125	0.27	12	-6							
Sut Pro Pea Cro	file(s) totype rson \$ ss-Ref	Cement Superco Structure Symbol: c	and Hydra nducting M Formula F53.50 00-001-1 04-007-2	tion Produc Aaterial (Sup Order]: M 303 (Deleted 479 (Priman	t, Com ercone g Al2 (1), 00-4 (), √0	mon Ph ductor R 04 P 050-074 4-007-2	ase, Fore eaction f rototype 1 (Primar 515 (Prim	ensic, I Produc Struc y), √ (ary), √	norgani t) ture (A)4-005- / 04-00	c, Meta Ipha O 9696 (/ 7-2867	als & rder] Vitern (Alte	Alloys, Ph : Al2 Mg ate), ✓ 04 mate)	arma 04 -007-	ceutic 2478	al (E (Prin	xcipient), nary), ✓
CAS	S Num	ber - PR:	1344-28-1	Entry D	ate: (09/01/19	60	_			_					
Ref	rence		N. Def													
Prim	ary Ref	arence	Rookel	w X-Ray Ider	tificatio	n and Cr	vstal Struc	tures of	Clay 26	4/1951	1					
Crys	tal Stru	cture	Crystal	Structure Sou	irce: LF	PF.	yadan Su'Uc	wies 0	Ciay 20	4 (1931	<i>ŀ</i>					
Dat	abase	Comment	Addition abs(de	nal Patterns , page 384 (lta 2Theta)>	: To re 1961). 0.2 Di	eplace 0 Synthe EG. Unit	0-001-13 tic form. Cell Dat	03. Ge Slow tr a Sour	neral C ansitior ce: Pov	omme to cor vder Di	nts: S undu ffracti	imilar pov n at 1000 on.	der o C. W	lata g /amin	iven g: Lir	in second ies with
4.5	pacing	s (12) - Al2	03 - 00-0	10-0425 (St	ick, Fis	ed Slit)	(ntensity)	- Cu #	a1 1.54	1056 Å						
u-01	•)	d (Å)	Ihk	1 . 2	9 (°)	d (Å)	I	hk	1.	28 (•)	d (Å)	I	h	k	•
20 (and the second sec							the set of the set of the				
20 (502	4.560000	40 1 1	1 4	5.8618	1.9770	00 100	4 0	0	97.1	858	1.027000	10	7	3 1	
20 (19.4 31.9 37.6	502 359 033	4.560000 2.800000 2.390000	40 1 1 20 2 2 80 3 1	1 44 0 66 1 66	5.8618 0.8969 7.0323	1.9770	00 100 00 30 00 100	4 0 5 1 4 4	0 1 0	97.1 102 121	858 3103 2335	1.027000 0.989000 0.884000	10 10 10	7 8 8	3 1 0 0 4 0	

© 2017 International Centre for Diffraction Data. All rights reserved.

Page 1/1

6.2

00-050-0741	Aug 18, 2017 1:20 PM (5HB8C5J
Status Primary QM: Indexed Pressure/Temperature: Ambient Chemica Empirical Formula: Al2 O3 Weight %: Al52.93 O47.07 Atomic %: Al40.00 Compound Name: Aluminum Oxide Common Name: y-Al2 O3	al Formula: Al2 O3 O60.00
Radiation: CuKα1 λ: 1.5406 Å Filter: Quartz Mono d-Spacing: Guinier	Intensity: Visual
SYS: Cubic SPGR: Fd-3m (227) Author's Cell [AuthCell at 7.939(3) Å AuthCell Vol: 500.38 Å ³ AuthCell & Density [Dcalc: 3.722 g/cm ³] SS/FOM: F(9) = 72.0(0.0083, 15) Temp: 298.0 K (Ambient temperature assigned by ICDD editor)	Z: 11.00 AuthCell MolVol: 45.49]
Space Group: Fd-3m (227) Molecular Weight: 101.96 Crystal Data [XtlCell a: 7.939 Å XtlCell b: 7.939 Å XtlCell c: 7.939 Å KtlCell y: 90.00° XtlCell Vol: 500.38 Å ³ XtlCell Z: 11.00] Crystal Data Axial Ratio [a/b: 1.000 c/b: 1.000] Reduced Cell [RedCell a: 5.614 Å RedCell b: 5.614 Å RedCell c: 5.614 Å RedCell c: 5.614 Å RedCell β: 60.00° RedCell y: 60.00° RedCell Vol: 125.09 Å ³] Context	XtiCell α: 90.00° XtiCell β: 90.00° Ā RedCell α: 60.00°
Crystal (Symmetry Allowed): Centrosymmetric	
Subfile(s): Cement and Hydration Product, Common Phase, Forensic, Inorganic, M	etals & Alloys, Pharmaceutical (Excipient),
Prototype Structure [Formula Order]: Mg Al2 O4 Prototype Structure [Alpha Pearson Symbol: cF55.00 Cross-Ref PDF #'s: 00-010-0425 (Primary), ✓ 04-0 Entry Date: 09/01/2000	Order]: Al2 Mg O4 07-2478 (Primary)
References:	1
DOI Reference Primary Reference Liddell, K., Univ. of Newcastle, Dept. of Mechanical, Materials & Man Communication (1996).	ufacturing Engineering, England, UK. Private
Database Comments: Additional Patterns: See 00-010-0425 for additional reflection was set by the editor.	ns below 1.146. Warning: Lower quality mark
d-Spacings (9) - Al2 03 - 00-050-0741 (Stick, Fixed Slit Intensity) - Cu Ka1 1.54056 /	
28(°) d(Å) I hkl* 28(°) d(Å) I hkl* 28(<u>°) d(Å) I hkl*</u>
19.3474 4.584000 50 1 1 1 39.2756 2.292000 30 2 2 2 60.5 31.8542 2.807000 75 2 2 0 45.6665 1.985000 100 4 0 0 66.6 27.694 3.94000 0 2 4 1 56.665 1.985000 100 4 0 0 66.6	446 1.528000 75 5 1 1 001 1.403000 100 4 4 0 559 1.146000 30 4 4 4

© 2017 International Centre for Diffraction Data. All rights reserved.

Page 1/1

Laboratorio de nanocatálisis Facultad de Química

Statu	. Drive	200	04	Ste		Tassur	e/Tem	naratu	· .	mbier		ther	lical	Formula	K2 TR 0	17	.15	r rvi	(0)	100000
Empli	rical Fe	ormul Name	a: Ki : Pol	2 O17 tassiu	Ti8 um Tit	Weig anium (ht %: Dxide	K10.6	6. A	.09 Ti	52.24	/	tom	nic %: K7	.41 062.9	6 Ti29	.63	÷		
Radia	tion:	CuKa	,	: 1.5	5405	Å d-	Spaci	ng: Dif	f. li	ntensi	ty: [Diffra	tom	eter						
SYS: Autho Autho Autho SS/FC	Mono or's Ce Cell Vo or's Ce OM: F(clinic II [Au I: 703 II Axia 30) =	SF thCe 1.85 A 1 Rat 23.5(PGR: a:* 3 lio [0 0.015	C2/n 15.67 Auth c/a: (57, 81	n (12) 78(2) Å ICell Z: 0.762) Te	Au 2.00 a/b: mp: 2	thCell Aut 4.153 98.0 K	b: 3.7 hCell c/b (Ambi	775(1) MoIV : 3.16 ent te	Å ol: 3 6] mper	Aut 51.9 C	hCe 3] ens assi	ill c: 11.9 ity [Dcale igned by	51(1) Å c: 3.46 g/c CDD edito	Auti cm ³] r) (Cell	β: : W	95.6 /hite	57(1)°
pace rysta tiCel rysta educ edCo	e Grou al Data Il γ: 90 al Data ced Ce ell β: 1	p: C2 [Xtk).00° Axia II [Re 90.00°	/m (1 Cell a Xti Rati dCel F	2) :: 15 Cell o[c a: : tedC	Mole .678 / Vol: /a: 0. 3.775 ell γ:	cular V Xtt 703.85 762 Å F 103.54	Veight ICell b Å ³ a/b: tedCel	: 733.3 : 3.779 XtiCell 4.153 I b: 8.0 tedCell	9 5 Å 2: 2 c/b: 063 Å Vol:	XHC .00] 3.16 Rd 351.9	ell c: 6] edCe 3 Å ³]	11.9 c: 	951 / 11.9	Å XHC 951Å F	ell a: 90.0 RedCell a:	00° 95.5	X110	ell (B: 9	5.67*
omi	c para al (Syn	meter	s are y Alk	owed	ss-ref): Ce	erence entrosyn	d fron nmetri	PDF e	ntry (4-009	496	1	A	DP: B						
i Syr	Doerat	or	Sea	Oper	ator	Sec	Opera	tor	Sea	Opera	tor									
,	c,y,z	-	2	-xy.	-Z	3	X,-Y,Z		4	-x,y,-z										
tomi	c Coord	linate																		
tom	Num	Wyc	coff	Sym	metry	X 0.108	¥	2 0.450	SOF	Biso	2#	Ľ								
	2	4		m,		0.155	0.0	0.705	1.0	0.6	2#0									
	3 4	41 4i		m		0.275	0.0	0.428	1.0	0.6	4-a									
	5	41		m		0.482	0.0	0.364	0.32	1.4	6-0									
	7	4		m		0.364	0.0	0.913	1.0	0.6	3#a									
i.	8	4		m		0.4442	0.0	0.1935	0.68	0.7	6-a									
	10	4		m		0.1519	0.0	0.325	1.0	0.7	6-a									
	12	4		m		0.063	0.0	0.221	1.0	0.6	2#a									
11 15	13	2a		m 2/m		0.194/	0.0	0.0	1.0	0.6	0-a 2#b									
	15	4i		m		0.173	0.0	0.938	1.0	0.6	2#a					_	_			÷
ubfil ross	e(s): -Ref P	norga DF #'	nic s: 00	Pea -035-	arson -0089	Symbo (Delete	ol: m0 d), √	54.00 04-009-	4952 ((Prima	ıry), .	/ 04-	009-	4964 (Alte	mate)	Entry	Date	: 01	9/01	/1991
efere	inces:																			
/pe	Refere	nce	DOI	Sasa	ki T	National	Institut	e for Res	earch	in Inon	anic	Mater	ials I	baraki Jan	an Private (Comm	inicat	on (1989	N.
ontrib rystal tructu	uted Structu re	re	•	Ishiz Crys Watt	awa, N tal Stru s, J. J.	, Japan icture So Solid St	Privat urce: L ate Che	e Comm PF. m. 1, 31	unicatio 9 (1970	on (198 0).	9).									
atab	ase Co	omme	nts:	Addi by s H2 C	tional ubstit)" folk	Pattern uting fo owed by	s: To t r K+tt v the d	replace le half o ehydrat	00-03 f exch ion at	5-008 hangei 500 C	9. Co able p . Stru	lor: V protoi icture	Vhite ns in es: T	e. Sample the protor his compo	Preparatio nic layered ound is isos	n: The I tetrat structu	a con itana iral w	npou te "H ith "	IND I H2 T K3 T	s prepare 14 O9 ·x 118 O17".
Spac	cings (30) - N	2 Ti8	017	- 00-0	41-110	O (Stie	k, Fixe	l Slit I	intens	ity) -	Cu K	al 1.	.54056 Å						
(°)	d ()	000000	1	h	k I	<u>.</u>	20 (°)	d (Å	000	1	hi	1 1		20 (°)	d (A)	1	h	k	1 1	
1.334	8 7.80	0000	100	2	0 0		29.217	3.153	000	26	3	ő		38.4892	2.337000	2	-1	1	4	
2.951	1 6.83 8 5.94	0000	34	-2	0 1		29.755 30.622	3.000	000	5	3	1		39.8735 42.4848	2.259000 2.126000	<1 15	4	0	45	
7.832	0 4.97	0000	2	22	0 2		31.070	2.876	000	18	-2 (4		43.4058	2.083000	15	6	0	35	
2.764	8 3.90	3000	1	4	0 0		33.253	2.692	000	2	2 (4		46.3828	1.956000	i	-8	0	1	
	4 3.81 3 3.67	9000	1 20	-4	0 1		33.743 34.521	2.654	000	19	4 0	3		48.1569 49.2677	1.888000	21	0	0	5	
272		6000	1	-4	0 2		36.085	2.487	000	1	-4 0	4		49.6114	1.836000	2	2	2	0	
272	5 3.41																			
3.272 1.231 1.063	5 3.41			~		- Diff		- D-4		det.										

