

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE QUÍMICA

SIMULACIÓN Y OPTIMIZACIÓN DE UN PROCESO INDUSTRIAL DE OBTENCIÓN DE SHALE OIL Y SHALE GAS MEDIANTE RETORTING

TESIS

QUE PARA OBTENER EL TÍTULO DE

INGENIERO QUÍMICO

PRESENTA

César Alejandro Rodríguez Fernández

CIUDAD UNIVERSITARIA, CD. MX. 2018

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

PRESIDENTE:Profesor: Celestino Montiel MaldonadoVOCAL:Profesor: José Fernando Barragán ArrocheSECRETARIO:Profesor: Martín Rivera Toledo1er. SUPLENTE:Profesor: José Manuel García Anaya2° SUPLENTE:Profesor: Ileana Rodríguez Castañeda

SITIO DONDE SE DESARROLLÓ EL TEMA: LABORATORIO DE SIMULACIÓN Y Optimización

ASESOR DEL TEMA: CELESTINO MONTIEL MALDONADO

SUPERVISOR TÉCNICO (Si lo hay): ILEANA RODRÍGUEZ CASTAÑEDA

SUSTENTANTE (S): CÉSAR ALEJANDRO RODRÍGUEZ FERNÁNDEZ

RESUMEN

Esta tesis se enfoca al modelado de un proceso químico completo usando un simulador de procesos que funciona en estado estacionario. El objetivo es diseñar un proceso de retorting de oil shale con el fin de obtener combustibles líquidos, como una fuente de producción, el beneficio de usar el Simulador de procesos Aspen Plus (versión 8.8) es el poder determinar las condiciones de operación realizando diferentes escenarios de simulación, ya que es muy difícil reproducir el proceso a escala laboratorio.

Con la creciente demanda de productos derivados del petróleo y en especial de combustibles fósiles, existe un interés por el desarrollo y estudio de fuentes y procesos alternativos de obtención. La comercialización de dichos proceso depende de su estudio y optimización. Aspen Plus se considera una herramienta de modelado y simulación efectiva, capaz de predecir el comportamiento de un proceso.

En esta tesis se presenta el modelo de conversión de oil shale a petróleo, con varias zonas definidas del proceso, lo cual facilita la adaptación de éste modelo a otras condiciones de operación y composiciones de materia prima.

INDICE GENERAL

1.	INT	RODUCCION	1
	1.1.	Contexto	1
	1.2.	PROCESO DE RETORTING	6
2.	ME'	TODOLOGIA	9
	2.1.	Esquema de simulación del proceso	9
	2.2.	Primera zona	10
	2.3.	Segunda Zona	19
	2.4.	Tercera zona	25
	2.5.	Optimización de temperatura de operación	26
3.	RES	SULTADOS Y DISCUSION	32
4.	COI	NCLUSIONES	39
A.	Cód	igo en FORTRAN para la pirólisis de kerogeno	42

LISTA DE FIGURAS

1.1.	Comparación a nivel mundial de reservas de petróleo	1
1.2.	Comparación entre diferentes países de petróleo convencio-	
	NAL Y NO CONVENCIONAL.	3
1.3.	Distintas muestras de shale extraída de diferentes lugares	5
1.4.	Muestra de shale pulverizada	5
1.5.	Diagrama de bloques del proceso	8
2.1.	Esquema de simulación	10
2.2.	Esquema de la primera zona de simulación	11
2.3.	Especificando la entalpía específica	13
2.4.	Especificando a_i	14
2.5.	Definiendo atributos de los sólidos no convencionales	15
2.6.	Definiendo la humedad en la alimentación	16
2.7.	Definiendo atributos de los sólidos no convencionales	16
2.8.	Definiendo atributos de los sólidos no convencionales	17
2.9.	Esquema de la segunda zona de la simulación	19
2.10.	Especificaciones del primer reactor	20
2.11.	Especificaciones a la salida del primer reactor	20
2.12.	Definiendo la reacción del primer reactor	23
2.13.	Definiendo las reacciones del segundo reactor.	24
2.14.	Definición del tercer reactor	24

2.15.	Tercera zona del proceso "separación"	25
2.16.	Especificaciones de diseño en el tercer reactor	27
2.17.	Especificación del nombre del cambio de temperaturas	27
2.18.	Especificación de la variación del DUTY del tercer reactor.	28
2.19.	Definiendo delta T en FORTRAN	29
2.20.	Definiendo la temperatura de operación	29
2.21.	Definiendo el valor de la temperatura de operación	30
2.22.	Definiendo la variación de la recirculación de shale gastada.	31
3.1.	Producción de shale gas en función de la temperatura	32
3.2.	Producción de shale oil en función de la temperatura	33
3.3.	Emisiones de CO_2 en función de la temperatura	34

LISTA DE TABLAS

2.1.	Lista de componentes	12
2.2.	Composición de los sólidos no convencionales en la alimentación $[1]$ $\ .$	18
2.3.	Composición de alimentación $[1]$	18
2.4.	Factores estequiométricos por compuesto	22
3.1.	Resultados de la variación de la temperatura de operación (kilogramos) $\ $.	35
3.2.	Resultados de la variación de la temperatura de operación (Toneladas) $\ . \ .$	36
3.3.	Tabla de componentes de interés a 900K	37
3.4.	Condiciones de operación del reactor de pirolisis	38

CAPITULO 1

INTRODUCCION

1.1. Contexto

Las fuentes de petróleo convencional son típicamente aquellas fuentes en las que fluye libremente, cuando se accesa mediante excavación, debido a la presión que existe en las reservas, pero las fuentes no convencionales de obtención de hidrocarburos requieren pasar por distintos procesos, que varían de acuerdo al tipo de fuente de extracción, para mejorarlos a líquidos útiles como combustibles.

Figura 1.1: Comparación a nivel mundial de reservas de petróleo.

La figura 1.1 [2] muestra una comparación de reservas convencionales y no convencionales de petróleo a nivel mundial. Las fuentes no convencionales de petróleo son:

- Hidrocarburos pesados que pueden ser bombeados y refinados como petróleo convencional con la excepción que son más viscosos y tienen mas contaminantes de sulfuros y metales pesados. Necesitando tratamientos especializados antes de ser puestos en uso.
- Arenas de alquitrán que pueden ser explotadas mediante minería en superficie o técnicas de recolección in situ. Es más caro que extraer petróleo convencional, pero un ejemplo de la efectividad de este método está en la mina de arenas de alquitrán de Athabasca en Canadá.
- Oil shale se le llama a la materia prima antes de ser procesada y al producto de éste se le conoce como shale oil y requiere de un procesamiento extensivo el cual consume grandes cantidades de agua para su extracción. Sin embargo, sus reservas exceden a las de petróleo convencional [3].

Aunque estos métodos requieren un mayor costo para la recuperación de petróleo refinado, aún así existe un gran interés por estudiarlos, ya que estas reservas superan en cantidad extraíble de petroleo a los métodos convencionales.

La figura 1.2 [4] muestra como la adición de depósitos de petróleo no convencional, como el oil shale de Estados Unidos, las minas de arenas de alquitrán y el petróleo extra pesado afectan el inventario mundial de petróleo.

Varios procesos ex situ han sido desarrollados y usados para producir petróleo crudo sintético de arenas de alquitrán y de shale incluyendo:

• Extracción con agua caliente

- Gas caliente externo
- Calentamiento indirecto
- Combustión interna

Recientemente, varios procesos in situ han sido explorados como posibilidades inlcuyendo:

- Proceso in situ de Shell (ICP)
- Proceso electrofac de ExxonMobil
- El metodo de aire supercalentado de Petro Probe
- IEP Celda de combustible geotérmico

Figura 1.2: Comparación de distintos países y sus fuentes de petróleo.

El mayor reto para cualquier proceso in situ o ex situ está en transformar un proyecto piloto a una planta industrial. Este reto se encuentra en problemas ambientales incluyendo el uso y tratamiento de grandes cantidades de agua, emisiones de gases invernadero, y la obtención de un terreno. Aunque se han logrado grandes avances, los retos aún existen incluyendo eficiencia energética, demanda de agua, generación de dióxido de carbono, recuperabilidad de los recursos, pero sobre todo las complicaciones mecánicas y operacionales que ocurren al usar un material como el oil shale.

Un problema relacionado al impacto ambiental es el desecho del oil shale usado (arenas). Generalmente, este material es una excelente base para crear pavimento. Sin embargo, existe el problema de contaminación por metales pesados, así que requeriría un tratamiento previo antes de ser usado con tal fin.

También existen complicaciones para comercializar los procesos, ya que requieren un modelo completo y exhaustivo en el que se pueda establecer un perfil de riesgo económico aceptable para poder crear un plan de negocios claro y detallado.

Oil shale

Oil shale es una roca sedimentaria la cual al ser sometida a altas temperaturas bajo un ambiente de oxígeno controlado, lo cual se conoce como pirolisis empieza a volatilizar un gas combustible llamado gas de síntesis el cual puede ser convertido a combustible líquido u otros compuestos al ser sometido a un proceso químico. El kerogeno, el cual es el compuesto de interés en el oil shale, es una mezcla de compuestos orgánicos insolubles en disolventes orgánicos comunes debido a su alto peso molecular de sus componentes, shale extraído de Utah, Wyoming y Colorado tienen una proporción de componentes de Carbono 215 : Hidrógeno 330 : Oxígeno 12 : Nitrógeno 5 : Azufre 1. tiene una gran proporción de hidrógeno-carbono, dándole el potencial de ser mejor a petróleo pesado o carbón como fuente de combustible [5].

El shale se rompe en piezas delgadas y afiladas, puede tener un gran rango de colores variados como rojizo, café, verde, gris o negro, dependiendo de donde se extraiga y la composición del shale en ese lugar.

Figura 1.3: Muestras de shale de diferentes orígenes, de izquierda a derecha: Shale de Utah, Shale de Estonia, Shale de Jordania.

Figura 1.4: Shale pulverizada.

En los procesos ex situ, el oil shale es pulverizado en partículas finas antes de ser procesadas como se muestra en la figura 1.4 [6].

En esta tesis se verá como el cambiar parámetros de un reactor de procesado de oil shale proveniente de Utah, calentado mediante la recirculación del shale gastado en el reactor afecta el rendimiento del reactor de retorting y producción de gases de efecto invernadero.

El oil shale gastado sobrante puede usarse como relleno granular o como sub base (Sustituto de tierra para relleno) en la industria del cemento [7]

1.2. Proceso de retorting

El proceso de retorting que se modelara en el simulador de procesos Aspen Plus es un proceso ex-situ, lo que quiere decir que el oil shale se extrae y se transporta a la planta donde sera procesado. Antes de ser introducido al proceso el shale se tritura a partículas de un tamaño de aproximadamente menor a dos milímetros, una vez realizado este proceso el shale se alimenta a la primera zona del proceso, la zona de secado y precalentamiento.

Primera zona: "Secado"

Cuando se tiene el oil shale triturado al tamaño deseado se le precalienta a una temperatura determinada, esta selección de temperatura es importante ya que esta zona del proceso tiene el fin de eliminar la máxima cantidad posible de agua, ya que interfiere negativamente en la reacción si el oil shale es introducido al reactor con humedad presente. El oil shale precalentado es entonces transportado a la segunda zona del proceso.

Segunda Zona: "Pirolisis-Combustión"

El oil shale de la zona anterior entra al reactor de retorting, en donde se lleva a cabo la pirolisis (Descomposición termoquímica de materia orgánica en ausencia de oxígeno) del kerogeno contenido en el oil shale:

 $\label{eq:Kerogeno} \xrightarrow{} H_2 + H_2O + H_2S + CO + CO_2 + CH_4 + C_2H_6 + C_3H_8 + C_4H_{10} + OIL + CHAR$

Donde OIL es el shale oil que se consideró como n-dodecano $(C_{12}H_{26})$ y CHAR es el kerogeno que no se convirtió a shale oil y se quemó a un sólido no deseado.

En este modelo se consideró un paso extra que requiere de un reactor mas, en donde se lleva a cabo la combustión de los orgánicos (kerogeno) sobrantes y la descomposición térmica de los minerales presentes en el oil shale en un reactor de combustión al cual se le alimenta aire para introducir oxígeno y permitir la combustión, el calor necesario para llevarse a cabo lo genera la descomposición térmica de los minerales, lo cual sucede de manera espontánea debido a las temperaturas que alcanza el reactor anterior.

El propósito de este reactor extra es el de proporcionar energía al reactor de retorting mediante la recirculación de los sólidos a dicho reactor y los gases de combustión se aprovechan para el precalentamiento del oil shale que se alimenta al proceso. Las reacciones que se llevan a cabo en este reactor son:

• Combustión de compuestos orgánicos:

$$\begin{aligned} \mathrm{Kerogeno} + \mathrm{O}_2 &\longrightarrow \mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} + \mathrm{NO}_2 + \mathrm{SO}_2 \\ \mathrm{CHAR} + \mathrm{O}_2 &\longrightarrow \mathrm{CO}_2 + \mathrm{H}_2\mathrm{O} + \mathrm{NO}_2 + \mathrm{SO}_2 \end{aligned}$$

- Descomposición térmica de minerales
- Analcima:

$$Na(Si_2Al)O_6H_2O \longrightarrow Na(Si_2Al)O_6 + H_2O$$

Siderita:

$$3 \operatorname{FeCO}_3 \longrightarrow \operatorname{FE}_3 \operatorname{O}_4 + \operatorname{CO} + 2 \operatorname{CO}_2$$

Illita

$$\mathrm{K}(\mathrm{Al}_2)(\mathrm{Si}_3\mathrm{Al})\mathrm{O}_{10}(\mathrm{OH})_2 \longrightarrow \mathrm{KAl}\mathrm{Si}_3\mathrm{O}_8 + \mathrm{Al}_2\mathrm{O}_3 + \mathrm{H}_2\mathrm{O}_3$$

Dolomita

$$CaMg(CO_3)_2 \longrightarrow CaCO_3 + MgO + CO_2$$

Calcita

$$CaCO_3 \longrightarrow CaO + CO_2$$

Tercera Zona: "Separación"

La última zona del proceso tiene como finalidad la separación del oil shale y shale gas a una presión de una atmósfera y se recircula el 25 por ciento del shale gas al primer reactor.

Diagrama de bloques del proceso

Con la finalidad de simplificar y ejemplificar mejor lo dicho anteriormente se presenta el siguiente diagrama de bloques:

Figura 1.5: Diagrama de bloques del proceso.

CAPITULO 2

METODOLOGIA

En este capítulo se mostrará por pasos como fue que se introdujo de manera secuencial la información necesaria al simulador Aspen Plus para el modelado y simulación del proceso, así como la búsqueda de la temperatura de operación en la cual se obtenga la mayor producción de shale, cuidando la producción de gases de efecto invernadero

2.1. Esquema de simulación del proceso

La simulación en el simulador de procesos Aspen Plus es una herramienta de modelamiento válida para este proceso, contiene modelos de kerogeno, minerales y humedad combinados, con los cuales se puede definir la composición específica del oil shale. El modelo propuesto consiste en tres zonas que incluyen el secado del oil shale, la combustión y zona del reactor y finalmente la zona de recuperación y separación de shale oil y shale gas.

A continuación, se muestra el esquema de simulación del proceso en Aspen Plus V8.8 dicho proceso es conocido como retorting, el cual es similar a una pirolisis, con la diferencia que el proceso de retorting trata solo productos como vapores para condensar

Figura 2.1: Esquema de simulación del proceso en ASPEN PLUS v8.8 del proceso de retorting.

2.2. Primera zona

A continuación, en la figura 2.2 se describirá la primera zona de secado, empezando por la entrada de shale al proceso:

La entrada al proceso a la primera zona de secado es por la corriente llamada FD-SHALE, la cual después entra a un intercambiador de calor (SHA-HEAT), este intercambiador de calor normalmente obtiene la energía de combustión de gas natural (en este modelo lo obtiene de los gases de combustión). la temperatura de precalentamiento a seleccionar es muy importante, ya que como se mencionó anteriormente es un parámetro clave a

Figura 2.2: Esquema de simulación del proceso en ASPEN PLUS v8.8 con la primera zona "secado" resaltada.

manipular, pero de manera general para el proceso se recomienda una temperatura mínima de 370 K, después de ser precalentado entra a un tanque flash (MOIS-SEP) para remover toda la humedad posible, este paso es muy importante, ya que pequeñas cantidades de agua pueden afectar negativamente y en gran medida la conversión en el reactor de pirolisis.

Para los datos de alimentación (FD-SHALE), se consideraron los compuestos especificados en la tabla 2.1

Un par de observaciones importantes de la Tabla 2.1 son que para el shale oil se consideró como n-dodecano $(C_{12}H_{26})$ y el mineral illita se consideró como moscovita $(KAl_3Si_3O_{10}(OH)_2)$, esto es porque Aspen plus no tiene en sus bases de datos a la illita y la moscovita es el

Component ID	Туре	Component name	Alias
N2	Conventional	NITROGEN	N2
O2	Conventional	OXYGEN	O2
H2	Conventional	HYDROGEN	H2
H2O	Conventional	WATER	H2O
SO2	Conventional	SULFUR-DIOXIDE	O2S
H2S	Conventional	HYDROGEN-SULFIDE	H2S
NH3	Conventional	AMMONIA	H3N
NO2	Conventional	NITROGEN-DIOXIDE	NO2
СО	Conventional	CARBON-MONOXIDE	СО
CO2	Conventional	CARBON-DIOXIDE	CO2
CH4	Conventional	METHANE	CH4
C2H6	Conventional	ETHANE	C2H6
C3H8	Conventional	PROPANE	С3Н8
C4H10	Conventional	ISOBUTANE	C4H10-2
OIL	Conventional	N-DODECANE	C12H26
KEROGEN	Nonconventional		
CHAR	Nonconventional		
ILLITE	Solid	KAL3SI3O10(OH)2	MUSCOVITE
SILICA	Solid	SILICON-DIOXIDE	SIO2
KAOLINIT	Solid	AL2SI2O7*2H2O	KAOLINITE
CALCITE	Solid	CALCIUM-CARBONATE-CALCITE	CACO3
CASO4	Solid	CALCIUM-SULFATE	CASO4
PYRITE	Solid	IRON-DISULFIDE-PYRITE	FES2
DOLOMITE	Solid	DOLOMITE	CAMG(CO3)2
SZOMOL	Solid	FESO4*H2O	FESO4*W
FELDSPAR	Solid	SANIDINE	KALSI3O8
CAO	Conventional	CALCIUM-OXIDE	CAO
MGO	Conventional	MAGNESIUM-OXIDE	MGO

Tabla 2.1: Lista de componentes	
---------------------------------	--

mineral más parecido en estructura y composición disponible en dicha base de datos.

Para el método de propiedades termodinámicas de los compuestos convencionales, se especificó al simulador que usara la ecuación de estado de Redlich-Kwong-Soave, ya que es un modelo aceptable para procesos de hidrocarburos, como procesamiento de gas y procesos petroquímicos y de refinación.

Para calcular la entalpía de los sólidos (convencionales y no convencionales) que se encuentran mezclados en la gran mayoría del proceso con líquidos y gases, se especificó que se calculara con el modelo HGEN, el es polinómico y de la forma:

$$h = \Delta h_f^0 + \int_{298,15}^T Cp dT$$

donde h es la entalpía específica; Δh_f^0 es la entalpía de formación a 298.15 K y $Cp = a_1 + a_2T + a_3T^2 + a_4T^3$ y a_i son coeficientes específicos para cada componente sólido. A continuación, en las figuras 2.3 y 2.4, se muestra en donde se definieron dichos parámetros:

A* 1		- 🧠 🔚	(en +	N> 11		IN ⇒											And and a second second second
File		Home	View	/ C	usto	mize	R	esources									
K Co Ba Co Ba Pa Clipbo	ut opy aste oard	SI 🚰 Unit Se Unit	v ets s	Co Co Co	tho	onents ds Navi	Na ⁺ C M C Gate	Chemistry Customize Prop Sets	Draw Structu	v 🕹	Methods Assi Clean Parame Retrieve Parar Tools	stant ters neters	Data	ST CHEMA Source	Analysis Estimation Regression Run Mode	Next	Run Reset
Prope	erties	5		<	1	Pure (Compo	onents - M	IC-1 × -	÷							
All Ite	ms			-		🕝 In	put	Informati	ion								
▶ 😂 ▲ 🐼	Setu Con	p ponents pecificatio	ns			Param Non	eter conve	OHFG	EN omponent	→ param	J/kg eter		-	Tempe	rature units		~
		Molecular S Assay/Blend Light End Pro- Petro Chara Pseudocom Component Henry Com JNIFAC Gross Polymers	tructur I ropertie cterizat ponent Attrib ps oups	e is ion is utes			KER0	OGEN → 171e+06	CHAR 1.7254e+	+06	-						
▲ 🐼	Met S	hods pecificatio elected Me	ns thods														
4	4 Z	arameters Pure Cor ONC-1	mpone	nts													
Þ		 Binary In Electroly Electroly UNIFAC UNIFAC Results Routes C Props Tabpoly mistry 	teraction te Pair te Tern Groups Groups	ary Binary													
	Prop	perty Sets															

Figura 2.3: Especificando la entalpía de formación para compuestos no convencionales.

A 👔		- N		DI	KI =											-	-
File	Home	View	Cu	ustor	nize	F	Resources										
∦ Cut ≩ Copy ≩ Paste Clipboard	SI Unit Sets Units	•	✓ Seti Cor	up mpoi thod	nents Is Navi	Na [†] ; <u>2</u> (D) igate	Chemistry Customize Prop Sets	Drav	v 🕹	Methods Ass Clean Param Retrieve Para Tools	istant eters meters	Data	ST ECHEMA Source	Analysis Estimation Regression Run Mode	Next	Run R	Re:
Properties			<	P	ure	Comp	onents - N	IC-1 × -	+								
All Items			-		🖉 In	put	Informati	on									
 Setup Setup Com Sp N 	p iponents pecifications folecular Struc	cture		F	Paran Nor	neter nconv	HCGE	N Imponent	▼ param	J/kg-K eter		•	Tempe	erature units K			•))
 Assay/Blend Light End Properties Petro Characterization Pseudocomponents 			Assay/Blend Light End Properties Petro Characterization Pseudocomponents			KER 181.9 5.14	OGEN •	CHAR -1.519 46.31	•	-							
⊘ C □ H ⊘ U ▷ □ P	omponent At lenry Comps NIFAC Group: olymers	s	es			0	107	0	1								
Meth	nods pecifications elected Metho arameters	ods									E						
	Pure Compo ONC-1 Binary Intera	onent	s														
⇒ (c) ⇒ (c) ⇒ (c) ⇒ (c) ⊗ (N)	Electrolyte F Electrolyte T UNIFAC Gro UNIFAC Gro Results outes IC Props	Pair Ternar oups oups B	ry Binary														
	abpoly																

Figura 2.4: Especificando a_1, a_2, a_3, a_4 para los sólidos no convencionales.

Definir los dos parámetros anteriores solo es necesario para los compuestos no convencionales KEROGEN y CHAR, ya que estos son compuestos que se tienen que definir por no existir en la base de datos de ASPEN, para todos los demás sólidos convencionales, la base de datos de ASPEN ya cuenta con estos parámetros.

Para terminar de definir los componentes no convencionales, empezando por el kerogeno (KEROGEN en la Tabla 2.1), éste es el compuesto que en el reactor de pirolisis produce el shale oil y shale gas, pero además produce el compuesto CHAR, el cual es el material sólido de desperdicio que queda en la combustión del oil shale. Los atributos y modelos de cálculo de éstos compuestos se definen en la pestaña de NC PROPS de la pestaña Methods

Figura 2.5: Definiendo los atributos de los sólidos no convencionales.

Para el sólido no convencional CHAR, se define igual que KEROGEN.

Para definir la alimentación (FD-SHALE) en la pestaña de simulación, se especifica el flujo de humedad (agua) en la pestaña de STREAMS, sub pestaña de FD-SHALE (Ver las figuras 2.6, 2.7 y 2.8)

Simulation <	Economics			Energy				EDR Excha	inger
All Items 🔹	Capital Cost	Utility Cost		Available	Energ	gy Savings			
🕨 词 Setup 🔄 📩								Unknown	(
🛅 Property Sets	USD	USD/Year	off	MW		% of Actual	off	0	
🗀 Analysis				TEDIAL	-				_
Flowsheet	Main Flowsheet × Co	ontrol Panel X/FD-S	HALE (MI						
🔺 📷 Streams	Mixed OCI Solid	I 🕜 NC Solid 🛛 Fla:	sh Option	s EO Options	Costi	ng Information			
BUR-SHAL									
COM-PROD	 Specifications 								
COMB-GAS	Flash Type Te	emperature -	Pressur	e -	Con	position			
DSP-SHAL				-	Ma	ss-Frac		Ψ.	
▷ 🔂 FD-AIR	State variables —	· · · · · · · · · · · · · · · · · · ·							
FD-SHALE	Temperature	298.15	К	-		Component		Value	*
💽 Input	Pressure	101353	N/sqm	-		NO			
Results	Vapor fraction				-	NZ			
🛃 EO Variables					- P	02			
🕎 Stream Results (Cus	I otal flow basis	Mass •				H2			
FLDZ-GAS	Total flow rate	0.00377994	kg/sec	-		420			
FLUE-GAS	Solvent			-		1120	-		
D GAS					1	SO2			
Dia GAS-COOL	Reference Temperat	ure				H2S		Lets you type	the co
D GAS-OUT	Volume flow referen	ce temperature			1	NH3			
▷ 🔂 H2O	K	*				NIIIS			
H2O-SHAL	Commonweat common					NO2			
OIL-GAS	Component concen	tration reference temp	erature			CO			
DIL-OUT	K	*			1	CO2			
PRE-SHAL									

Figura 2.6: Definiendo la humedad en la alimentación.

Figura 2.7: Definiendo los atributos de los sólidos no convencionales.

Simulation	< Economics			Energy			EDR Exchanger
All Items	 Capital Cost 	Utility Cost		Available	e Energy Savings		
👂 📷 Setup	<u> </u>						Unknown C
🚞 Property Sets	USD	USD/Year	off	MW	% of Actual	off	0
📜 Analysis	Main Flaughast X	Control Danel X					
Flowsheet		Control Panel X	FD-SHALE (MAT	TERIAL) × +			
Kreams	Mixed 🛛 🛇 CI S	Solid ØNC Solid	d Flash Options	EO Options	Costing Informati	on	
BUR-SHAL	Constituentions		_				
COM-PROD							
DCOMB-GAS	- State variables —	2.10			Composition ———	28	
	Substream name	⊘ NC	•		Mass-Frac	•	-
FD-AIK	Temperature	298.15	к -		Component	Val	
@ Input	Pressure	101353	N/sam 🔻		VEROGEN	1	uc
Results					CLIAR	1- 10	
🧭 EO Variables	Total flow basis	Mass •		-	CHAR	1e-10	
🕎 Stream Results (Cus	Total flow rate	0.0191895	kg/sec 🔹		Tota	1 1	
FLDZ-GAS							
👂 📷 FLUE-GAS	🔄 🔿 🔗 Compon <u>ent</u>	Attribute					
🖻 📷 GAS	Component ID	KEROGEN	•				
GAS-COOL	Attribute ID		-				
👂 📷 GAS-OUT	Element	Value	• Ultimate	analysis in weid	ht % dry basis Use Heli	n for more inf	ormation
▷ 🔯 H2O	Liement	Value	e	unuiysis in weig		p for more in	
H2O-SHAL	AST CARDON	70.22					
OIL-GAS	CARBON	78.33					
	HYDROGEN	8.93					
P Lo PRE-SHAL	NITROGEN	2.56					
	CHLORINE	0					
	SULFUR	3.81					
	OXYGEN	6.37					
	Particle Size Dir	tribution					
	Particle Size Dis	indution					
Q SOLLD							

Figura 2.8: Definiendo los atributos de los sólidos no convencionales.

Para terminar de definir los sólidos, se debe introducir los datos ULTANAL, GENANAL y SULFANAL, los cuales son análisis de composiciones en porcentajes en peso de los compuestos:

ULTANAL								
ELEMENTOS	KEROGENO	CHAR						
CENIZAS	0 %	0%						
С	78.33%	81.47%						
Н	8.93%	0.53%						
Ν	2.56%	6.16%						
Cl	0 %	0%						
S	3.81%	9.23%						
О	6.37%	2.61%						
SI	ULFANAL							
ELEMENTOS	KEROGENO	CHAR						
Piríticos	0 %	0%						
Sulfatos	0 %	0%						
Orgánicos	3.81%	9.23%						

Tabla 2.2: Composición de los sólidos no convencionales en la alimentación $\left[1\right]$

	COMPUESTO	% WT
HUMEDAD	AGUA	3
KEROGENO	KEROGENO	15.23
	ILLITA	57.89
	SILICA	12.51
	KALONITA	5.89
	SULFATO DE CALCIO	0.16
	CALCITA	0.9
	PIRITA	2.94
	DOLOMITA	0.16
	SULFATO DE HIERRO (II)	0.82
	FELDSPAR	0.5

Tabla 2.3: Composición de alimentación [1]

2.3. Segunda zona

Figura 2.9: Segunda zona "pirólisis-combustión".

En una planta de retorting, hay un solo reactor en todo el proceso, pero para proporcionar energía al proceso se aprovecha el oil shale y sólidos sobrantes, los cuales se procesan en un reactor de combustión. En el primer reactor (RETORT en la imagen 2.10) en donde se lleva a cabo el retorting la reacción es modelada rigurosamente con una código en FORTRAN en un RCSTR (reactor CSTR), el segundo RYield (reactor estequiométrico) en donde se lleva la combustión de orgánicos sobrantes (kerogeno sin reaccionar) y el último como RGibbs para modelar equilibrio multifase (con el fin de modelar la descomposición térmica de los minerales). Éstos últimos reactores en realidad son uno solo en donde se lleva a cabo simultaneamente la combustión de orgánicos sobrantes y la descomposición térmica de los minerales, pero para fines de simplificación se dividió en dos reactores, el propósito de este reactor de combustión es el de proporcionar energía al reactor principal de retorting mediante la recirculación de oil shale y minerales a altas temperaturas, además los gases de dicha combustión se aprovechan para el precalentamiento del oil shale.

En el primer reactor (RETORT), se modela la pirolisis del kerogeno a shale oil y char:

		Reactions		KETOK		UN0-CC	
Specificat	ions	Streams	Reactions	; PSD Com	ponent Attr.	Utility	Catalys
Operating c	onditio	ns					
Pressure	onancio		101353	N/sqm	•		
Temperature							
Outy			0	0 Watt 👻			
Vapor fra	Vapor fraction						
Valid phases		Vapor-Liqu	ıid		-	2nd Li	iquid
	n type	Reactor vo	olume & Phase	volume fraction	-		
Specification	21						
Specification				- Phase			
Specification Reactor — Volume	0.014	1584 си	im 🔹	- Phase Phase	Vapor phase	e	
Reactor – Volume Resi. time	0.014	1584 cu	m ▼ c ▼	- Phase Phase Volume	Vapor phase	e cum	•
Specification Reactor — Volume Resi, time	0.014	1584 cu	m ▼ c ▼	Phase Phase Volume Volume frac	Vapor phase	e cum	-

Figura 2.10: Definiendo las especificaciones del primer reactor.

0	Specifications	Streams	Reactions	PSD	Component At					
Pro	oduct streams –	·								
	Nam	e	Phase							
•	SPT-SHAL	Lie	Liquid							
			Vapor							

Figura 2.11: Definiendo las fases de salida del primer reactor.

En la pestaña de Reactions en la figura 2.10, se introdujo una reacción definida por el usuario, ya que Aspen Plus no cuenta con un modelo para pirolisis, el código en FORTRAN que se utilizó se puede encontrar en el anexo A [8]

Éste código lo que hace es correr una simulación de una reacción de pirolisis de shale oil basada en el reporte de Diaz y Braun [8]

$$R(k) = k * Fk_0 + \left(\frac{Fk}{Fk_0}\right)^n$$

Donde R(k) es la velocidad de reacción en $\frac{kg}{s*m^3}$; $k = 6,9*10^{10}*e^{(\frac{-21790}{T})}$ es la constante cinética con unidades de s^{-1} , Fk_0 es la concentración inicial de kerogeno en $\frac{kg}{m_{shale}^3}$, Fk es la concentración final de kerogeno $\frac{kg}{m_{shale}^3}$ y n = 1,4 es el orden de reacción.

La producción de gas, oil shale y char de la pirolisis se calcula por medio de factores estequimétricos:

$$R = f * R(k)$$

Donde R es la velocidad de reacción $\frac{kgproducto}{s * m^3}$ y f es el factor estequimétrico por componente, en la siguiente tabla se muestran los valores del factor "f".

Compuesto	Factor de estequiometría (f)
H2	0.001
H20	0.0268
H2S	0.001
NH3	0.001
CO	0.0057
CO2	0.0359
CH4	0.0142
C2H6	0.0118
C3H8	0.0117
C4H10	0.0117
OIL	0.4767
CHAR	0.4025

Tabla 2.4: Factores estequiométricos por compuesto

En la pestaña "Stoichiometry", se define el tipo de reacción (cinética) y la estequiometría en la pestaña "kinetic" se define la fase que reacciona (vapor), en ASPEN la estequimetría se define como todo 1, ya que el cálculo verdadero se va a llevar a cabo en la sub-rutina en FORTRAN, en la pestaña llamada "Subroutine" (Ver figura 2.12).

Para el segundo reactor en la pestaña de "Specifications" solo se define la presión de operación (1 atmósfera) y en la pestaña "Reactions" se define que reacciona, en ambas reacciones se especificó un factor de conversión de 1. En este segundo reactor lo que se modela es la combustión de los sobrantes del retorting, se alimenta la cantidad estequiométrica de oxígeno para lograr el factor de conversión de 1 (ver la figura 2.13)

Finalmente, para el tercer reactor que se utilizó para modelar el equilibrio multifase, la descomposición térmica de los minerales y la separación de gases y sólidos (restos minerales, kerogeno sin reaccionar y char). En la pestaña "Specifications" se especifica la presión y duty de operación (1 atmósfera y 0 Watt, respectivamente), se especifica que calcule el equilibrio de fase y equilibrio químico en "Calculation options" y que incluya

ain Flowsheet $ imes$	Reactions - RT	Image: Construction of the second state of the second s
Stoichiometry	Equilibrium	Ø Kinetic Ø Subroutine Information
Rxn No.	Reaction type	Stoichiometry
1	linetic	KEROGEN> H2 + H2O + H2S + NH3 + CO + CO2 + CH4 + C2H6 + C3H8 + C4H10 + OIL + CHAR
New		Fit Delate Comu
INEW		IL Defete Copy Paste

Figura 2.12: Definiendo la reacción del primer reactor.

fase vapor. En "Inerts" se especifica que identifique los posibles productos (descomposición de minerales a dióxido de carbono) y en "Products" se especifica en que fases salen del equipo (figura 2.14)

En la salida de sólidos del tercer reactor (BUR-SHAL) se recircula el 30 % al primer reactor, este valor también será variable, ya que la temperatura de reacción se manipulará con esta variable, el método usado para lograr esto se discutirá en el capítulo 2.5, la salida de gases (COMB-GAS) se enfría, proporcionando energía para el calentamiento del secado de la alimentación, se mezcla con el vapor extraído en la zona de secado y se emiten como residuos contaminantes (FLUE-GAS). La segunda corriente de sólidos (DSP-SHAL) se aprovecha para calentar la entrada de aire del segundo reactor y finalmente se sacan desechos sólidos en SLD-OUT.

Specifications Reactions		Combusti	ion Heat of Reaction	Selectivity	PSD	Component Att					
Rea	actions —	-									
	Rxn No.	Specification	type	Stoichiometry							
•	1	Frac. conversion		KEROGEN + 02> CO2 + H2O + NO2 + SO2 CHAR + O2> CO2 + H2O + NO2 + SO2							
		For a comparison									

Figura 2.13: Definiendo las reacciones del segundo reactor.

Specifications OProdu	ucts 🛛 Assign Streams 📿 Inc	erts Restricted Equilibrium PSD Utility Infor	rmatio
RGibbs considers all compo	onents as products		
Identify possible products			
Define phases in which pro	ducts appear		
	aorous T		
Component	Valid phases		
▶ N2	Mixed		
02	Mixed		
H2	Mixed		
H20	Mixed		
SO2	Mixed		
H2S	Mixed		
NH3	Mixed		
NO2	Mixed		
со	Mixed		
CO2	Mixed	=	
CH4	Mixed		
C2H6	Mixed		
C3H8	Mixed		
C4H10	Mixed		
OIL	Mixed		
ILLITE	PureSolid		
SILICA	PureSolid		
KAOLINIT	PureSolid		
CALCITE	PureSolid		
CASO4	PureSolid		
PYRITE	PureSolid		
DOLOMITE	PureSolid		
SZOMOL	DuroColid		

Figura 2.14: Definición del tercer reactor.

2.4. Tercera zona

Para la tercer y última zona del proceso, que es la separación del oil shale y shale gas el intercambiador PRD-COOL garantiza que los productos salgan a una presión de 1 atmósfera y entren a un flash (GL-SEP) en donde se obtiene finalmente el oil shale (OIL-OUT) y se recircula el 25 % del shale gas al primer reactor y se obtiene el shale gas (GAS-OUT).

Figura 2.15: Tercera zona del proceso "separación".

2.5. Optimización de temperatura de operación

La temperatura de operación óptima se puede definir como la temperatura en la que se alcanza una buena conversión de reactivos, y por consecuente, una buena producción tanto de oil shale y oil gas, buscando generar la mínima producción de CO_2 liberado al ambiente. Se dio incrementos de 50 K desde 450 K a 1200 K.

Antes de dar incrementos a las condiciones de operación se necesitan garantizar ciertas especificaciones de diseño en Aspen Plus: Primero, se tiene que garantizar que, en el tercer reactor, la temperatura de entrada y de salida sean iguales, ya que, aunque se considere dos reactores para fines de simplificar la simulación, en realidad es uno solo, esto lo logramos especificando lo siguiente:

En la pestaña de "Design Specs" se agrega una nueva especificación que se nombró MIN-DECOM, se agregan las variables TIN (Temperatura de entrada al reactor) y TOUT (Temperatura de salida), se empieza definiendo TIN, en "Type" se selecciona "Stream-Var" ya que la temperatura no depende del flujo, en "Streams" se especifica de que flujo proviene la variable a controlar, en este caso la temperatura de entrada al reactor proviene del flujo "COM-PROD", se selecciona y se especifica que la variable a controlar es la temperatura en "Variable" y en "Units" las unidades de la variable. Para TOUT es el mismo procedimiento, con la diferencia que el flujo es "COMB-GAS". (Figura 2.16)

Después se nombra la especificación a manipular (un cambio de temperaturas) como DELT y se especifica cuanto se quiere que valga el cambio de temperaturas, en este caso se quiere un cambio de 0 grados, se introduce este valor en "Target", y después la tolerancia (se usó una tolerancia de $1 * 10^{-3}$). (Figura 2.17)

	Main Elourshast Y		PETPTDES						
PRD-COOL	Opefine Operation	Vary Sortr	an Declarat	ions QEO Options	Information				
RETORT	Contraction of Contraction								
> 📷 SHA-HEAT	Active								
SLD-COOL	Sampled variables (drag and drop varia	bles from form	n to the grid below)					
SSPLIT	Variable	Definition							
💽 Input	TIN	Stream-Var Strea	eam=COM-PROD Substream=MIXED Variable=TEMP Units=F						
Block Options	TOUT	Stream-Var Strea	m=COMB-GA	S Substream=MIXED V	ariable=TEMP Units=F	E			
🕨 📴 EO Modeling		Stream var Strea		S Substream - Mixteb Vi					
Results									
Stream Results	New Dele	zte Copy	Pa	ste Move Up	Move Down	View Variables			
🕎 Stream Results (Cus									
🛃 Summary	 Edit selected variabl 	e							
Utilities	Variable 🥥 TIN	-	Reference						
Reactions	Catagony		Туре	Stream-Var	-				
Convergence	Category		Stream:	COM-PROD	-				
Flowsheeting Options	III III		Substream	MIXED					
🐼 Design Specs	Blocks		Substream.	WILLED	aa				
A MINDECOM	O DIGUNS		Variable:	TEMP					
Input	Streams		Units:	F	-				
Le Results	Model Utility								
🐼 EO Variables	O Woder Ounty								
O Input	Property Parameters								
Summary	Peastions								
RETRTDES	Reactions								
Calculator	EO input								
Transfer	Open variable								
Stream Library	Open variable								
🗀 Balance	Description								
🗀 Measurement									

Simulation <	Economics	-				Ener	ах		
All Items 🔹	Capital Co:	st	Utility Cost				Available Energ	y Savings	
MINK-DEC MIXER MOIS-SEP	USD		USD/Year		off		MW	% of Actual	
▷ 🔯 ORG-COMB	Main Flowshee	t × M		RETRTD	ES ×	+			
 PRD-COOL RETORT 	Ø Define	Spec	🕑 Vary 🛛 🥥	Fortran	Decla	arations	Options	Information	
 Image: Sha-heat Image: Sld-cool 	Design specif Spec	ication e	xpressions —						
SSPLIT Input	Target Tolerance	0 1E-3							
 Block Options EO Modeling Results 									
Stream Results									
Summary									
🗀 Utilities									
Reactions									
Convergence									
Flowsheeting Options									
Design Specs									
MINDECOM									

Figura 2.17: Especificación del nombre del cambio de temperaturas.

Se define el tipo de variable a manipular como una variable de "bloque", o en otras palabras una variable del equipo como "Block-Var" en "Type", se especifica en que equipo se encuentra la variable en "Block" como se le llamó al tercer reactor "MINR-DEC" se selecciona ese bloque, defnimos la variable "DUTY" en "Variable", para que varíe el Duty del reactor y garantizar un cambio de temperatura de cero.

Simulation	<	Economics				Ener	ах			
All Items	-	Capital Cost	Utility Co	ost			Available E	nergy Sa	vings	
P Log MINK-DEC								_		
MIXER				ar 🗖			MW	% of	f Actual	
MOIS-SEP		030	050/16		on	_				on
ORG-COMB		Main Flowsheet ×	MINDECOM	RETRTD	DES ×	+				
PRD-COOL		Define Sner	- 🖉 Varv	Eortran	Deck	arations	EQ EQ Opt	ions I In	formation	
RETORT		obernie obper	- Valy	U I UIII	1 Deck	anacionis	1 Co opt		ronnacion	
SHA-HEAT		Manipulated variabl			Ма	ninulate	d variable lina	ite		
SLD-COOL						Inpulate				7
SSPLIT		Туре	Block-Var		LOV	ver	-100			_
💿 Input		Block:	MINR-DEC	•	Upp	ber	1E8			
Block Options		Variable: 🏦	DUTY	•	Ste	p size				
👂 詞 EO Modeling		Sentence:	PARAM		Ma	ximum s	tep size			
Results		u								
🕎 Stream Results		Units:	Btu/hr	•	Rep	ort labe	s			_
🕎 Stream Results (Cu						Line 1	Line 2	Line 3	Line 4	
🧭 Summary										
🛅 Utilities						A				
Reactions					EO	input —				_
Convergence					0.0	en variak	Je		(
Flowsheeting Options					Op					백
4 🔯 Design Specs					Des	cription				
MINDECOM										
💽 Input		Сору	Paste	Clear						
🕎 Results										
🧭 EO Variables										
FO Input										

Figura 2.18: Especificación de la variación del DUTY del tercer reactor.

Se define en Fortran a DELT (Se creó esa función en la figura 2.17):

Donde en la figura 2.19 se puede observar que simplemente es un cambio de temperaturas entre TIN y TOUT.

De manera similar, ahora para el reactor de donde se lleva a cabo la pirolisis (Primer reactor, "RETORT") se va a garantizar un reactor isotérmico:

Simulation <	Economics	Energy EDR	Exchar								
All Items 🔹	Capital Cost Utility Cost	Available Energy Savings									
🕨 📴 Setup		Uni	known								
Property Sets	USD USD/Year Off	MW % of Actual	0								
🚞 Analysis											
Flowsheet	Main Flowsheet × MINDECOM × RETRIDES ×	+									
Streams	⊘Define ⊘Spec ⊘Vary Fortran Declar	ations 🛛 🥑 EO Options Information									
Blocks											
🗀 Utilities	Active										
Reactions	Sampled variables (drag and drop variables from form to the grid below)										
Convergence	Variable Definition	Variable Definition									
Flowsheeting Options	TRETORT Stream-Var Stream=PYR-	PROD Substream=MIXED Variable=TEMP Units=K									
A log Design Specs											
MINDECOM											
A RETRTDES	New Delete Copy	Paste Move Up Move Down View Var	lables								
Input	 Edit selected variable 										
Results											
🛃 EO Variables		Time Streem Ver									
O Input	Category										
Summary	All Stream	Stream: PYR-PROD -									
Calculator	Substre	am: MIXED -									
Transfer	O Blocks Variabl	e: TEMP 🔻 🏦									
Stream Library	O Streams Units:	к -									
Balance											
Measurement	O Model Utility										
Pres Relief	Property Parameters										
Add Input											
Model Analysis Tools	Reactions										
EO Configuration	EQ input										
Lesuits Summary											
V Log Dynamic Configuration	Open variable										
	Description										

Figura 2.20: Definiendo la temperatura de operación isotérmica.

En la pestaña "Design Specs", se crea otra especificación que se llamó "RETRTDES". En la subpestaña creada se crea una nueva variable llamada "TRETORT", y se define de manera similar a las variables TIN y TOUT del caso anterior.

Simulation <	Economics					Energ	у					
All Items *	Capital C	ost	Utility Co	ost		A	vailable Ene	ergy Savings				
🕨 词 Setup												
🛅 Property Sets	USD		USD/Ye	ar (off		MW	% of Actual				
🚞 Analysis												
🕨 📷 Flowsheet	Main Flowsh	eet × M	INDECOM >	RETR	ATDES ×	+						
Streams	⊘ Define	Spec	⊘ Vary	Fortran	Declarat	tions 🛛 🥑	EO Options	Information				
Blocks												
🚞 Utilities	Design spec	cification e	xpressions –									
Reactions	Spec	TRET	ORT									
Convergence	Target	900										
Flowsheeting Options	Tolerance	1E-5	2									
🔺 🔯 Design Specs]				
MINDECOM												
RETRTDES												
🖉 Input												
Results												
🧭 EO Variables												
🖉 EO Input												
🧭 Summary												
L B CL LL												

Figura 2.21: Definiendo el valor de la temperatura de operación isotérmica.

Esta pestaña es de suma importancia, aquí es donde se le asigna el valor a la temperatura de operación del reactor, aquí es donde se varía la temperatura (Aparte de los equipos "SHA-HEAT", "AIR-HEAT" y "GAS-HEAT") de operación.

De manera similar al caso anterior, se define lo que deseado a manipular por Aspen Plus para lograr la especificación, para este caso lo que se varía es la fracción de Split (Recirculación en sentido físico del proceso) del equipo "SSPLIT", en específico la fracción de la corriente "REC-SHAL", la cual es la corriente de recirculación al reactor de pirolisis. En los límites de variación ("Manupulated Variable Limits") se especifica de 0 a 1, al tratarse de una fracción (ver figura 2.22).

Ahora, la temperatura de operación se varía en los equipos "SHA-HEAT", "AIR-HEAT"

y "GAS-HEAT" y en la pestaña de la figura 2.21.

	🔯 Setup Deroperty Sets		 USD		USD/Y	ear (off		M	W	_ % of	Actual	off
	Analysis	7	Main Flowsh	neet X Y	MINDECOM	× RETR	TDES	<u>+</u>					
P	of Flowsheet	ŕ				1							
Þ	log Streams		ØDefine	Spe	c 🛛 🕜 Vary	Fortran	Decla	arations	O E C	O Option	s Infor	mation	
Þ	📷 Blocks												
	🚞 Utilities		Manipulate	ed variab	le			Manipulat	ed var	iable lim	its ——		
Þ	📷 Reactions		Type		Block-Var		- L	ower	0				
Þ	📷 Convergence		DI L		CONT			Inner	1				
4	by Flowsheeting Options		BIOCK:	_	SSPLIT		· ·	phei	-				_
	🔺 脑 Design Specs		Variable:	#	FLOW/FRA	С	• 5	step size					
	MINDECOM		Sentence:		FLOW/FRAG	2	P	Maximum	step s	ize			
	A RETRTDES		ID1:		REC-SHAL		•) on ort lab	ala				
	🖉 Input						ſ	серопт нар	eis —				
	Results							Line	1	Line 2	Line 3	Line 4	
	🧭 EO Variables												
	🞯 EO Input												
	🧭 Summary						E	O input					
	Calculator						(Dpen vari	able			(
	🚞 Transfer											(-
	💿 Stream Library		(c.					rescriptio	n				
	🚞 Balance		Conv		Dacte	Clear							
	Measurement		Сору		raste	Ciear							

Figura 2.22: Definiendo la variación de la recirculación de shale gastada.

CAPITULO 3

RESULTADOS Y DISCUSION

Con un flujo de alimentación de 10.89 toneladas por día, y de variar la temperatura de operación en incrementos de 50 K se observa lo siguiente:

Figura 3.1: Producción de shale gas en función de la temperatura.

Figura 3.2: Producción de shale oil en función de la temperatura.

Como se puede ver en las Gráficas 3.1 y 3.2 ; la producción de shale gas y shale oil para el rango de temperaturas de 450-600 K se logra una producción muy pobre, de $0.2896 \frac{ton}{a\tilde{n}o}$ para 600 K, para 650 K se logra una producción $4.6218 \frac{ton}{a\tilde{n}o}$ y con un cambio de 50 grados en 700 K aumenta a $40.91 \frac{ton}{a\tilde{n}o}$, esta tendencia continúa hasta legar a 900 K donde la producción se ve que está llegando a un máximo cerca de una producción de $254.96 \frac{ton}{a\tilde{n}o}$, ya que un cambio de 300 K (Aumentar la temperatura de operación hasta 1200 K) la producción aumenta a $260.51 \frac{ton}{a\tilde{n}o}$, lo que representa un aumento de 2.24% para un delta de 300 grados. Por lo que la temperatura recomendada de operación es de 900 K.

Figura 3.3: Emisiones de CO_2 en función de la temperatura.

Para la producción de CO_2 ocurre algo interesante, como se observa en la Gráfica 3.3 y tabla ; la producción de CO_2 disminuye al aumentar la temperatura, esto puede ser debido a que al consumirse más kerogeno, es decir, al aumentar la producción de shale gas y oil, hay menos de este reactivo disponible para que se queme a CO_2 y agua.

A continuación se presentan los resultados completos de las corrientes de interés de cada corrida en el simulador Aspen Plus:

	Kg/s	Kg/s	Kg/s	Kg/s	Kg/s	Kg/s	Kg/s	Kg/s
Temperatura	- gas out	CH4 - gas out	C2H6 -gas out	C3H8 - gas out	C4H10 - gas out	CO2-FLUE GAS	OIL - OIL OUT	CO2 Total
450	4.22E-12	1.67E-12	1.38E-12	1.36E-12	1.36E-12	0.0553153	5.08E-11	5.53E-02
500	5.35E-10	2.12E-10	1.76E-10	1.73E-10	1.71E-10	0.0553153	6.44E-09	5.53E-02
550	2.81E-08	1.11E-08	9.22E-09	9.08E-09	8.98E-09	0.055314	3.39E-07	5.53E-02
600	7.62E-07	3.02E-07	2.50E-07	2.46E-07	2.43E-07	0.0552797	9.18E-06	5.53E-02
650	1.22E-05	4.82E-06	3.99E-06	3.93E-06	3.88E-06	0.0547469	1.47E-04	5.48E-02
700	1.08E-04	4.27 E- 05	3.53E-05	3.48E-05	3.44E-05	0.0502846	1.30E-03	5.04E-02
750	3.69E-04	1.46E-04	1.21E-04	1.19E-04	1.18E-04	0.0380641	4.45E-03	3.84E-02
800	5.68E-04	2.25E-04	1.86E-04	1.83E-04	1.81E-04	0.02877	6.84E-03	2.93E-02
850	6.45E-04	2.56E-04	2.12E-04	2.08E-04	2.06E-04	0.0251855	7.77E-03	2.58E-02
900	6.70E-04	2.66E-04	2.20E-04	2.16E-04	2.14E-04	0.0239807	8.08E-03	2.47E-02
950	6.79E-04	2.69E-04	2.23E-04	2.19E-04	2.17E-04	0.0235573	8.19E-03	2.42 E- 02
1000	6.83E-04	2.71E-04	2.24E-04	2.21E-04	2.18E-04	0.0233957	8.23E-03	2.41E-02
1050	6.84E-04	2.71E-04	2.25E-04	2.21E-04	2.19E-04	0.0233287	8.25E-03	2.40E-02
1100	6.85E-04	2.72E-04	2.25E-04	2.21E-04	2.19E-04	0.0232987	8.26E-03	2.40E-02
1150	6.85E-04	2.72E-04	2.25E-04	2.21E-04	2.19E-04	0.0232844	8.26E-03	2.40E-02
1200	6.85E-04	2.72E-04	2.25E-04	2.21E-04	2.19E-04	0.0232771	8.26E-03	2.40E-02
1250	6.86E-04	2.72E-04	2.25E-04	2.21E-04	2.19E-04	0.0232639	8.26E-03	2.39E-02

Tabla 3.1: Resultados de la variación de la temperatura de operación(kilogramos)

	Ton/año	Ton/año	Ton/año	Ton/año	Ton/año	Ton/año	Ton/año	Ton/año
Temperatura	CO2 - gas out	CH4 - gas out	C2H6 -gas out	C3H8 - gas out	C4H10 - gas out	CO2-FLUE GAS	OIL - OIL OUT	CO2 Total
450	1.33E-07	5.28E-08	4.37E-08	4.30E-08	4.30E-08	1744.42	1.60E-06	1744.42
500	1.69E-05	6.69E-06	5.53E-06	5.45E-06	5.39E-06	1744.42	2.03E-04	1744.42
550	8.86E-04	3.51E-04	2.91E-04	2.86E-04	2.83E-04	1744.38	0.01	1744.38
600	0.02	0.01	0.01	0.01	0.01	1743.30	0.29	1743.32
650	0.38	0.15	0.13	0.12	0.12	1726.50	4.62	1726.88
700	3.39	1.35	1.11	1.10	1.08	1585.78	40.91	1589.17
750	11.64	4.62	3.82	3.76	3.72	1200.39	140.28	1212.03
800	17.91	7.10	5.88	5.78	5.72	907.29	215.85	925.20
850	20.33	8.06	6.67	6.56	6.49	794.25	245.00	814.58
900	21.14	8.38	6.94	6.83	6.75	756.26	254.79	777.40
950	21.43	8.50	7.03	6.92	6.84	742.90	258.24	764.33
1000	21.54	8.54	7.07	6.95	6.88	737.81	259.55	759.34
1050	21.58	8.56	7.08	6.97	6.89	735.69	260.10	757.28
1100	21.60	8.57	7.09	6.98	6.90	734.75	260.34	756.35
1150	21.61	8.57	7.09	6.98	6.90	734.30	260.46	755.91
1200	21.62	8.57	7.09	6.98	6.90	734.07	260.51	755.68
1250	21.62	8.57	7.10	6.98	6.91	733.65	260.55	755.27

Tabla 3.2: Resultados de la variación de la temperatura de operación (Toneladas)

COMPUESTO	UNIDADES	GAS-OUT	OIL-OUT	FLUE-GAS
N2	Ton/año	0	0	8799.569
O2	Ton/año	0	0	2056.552
H2	Ton/año	0.5917877	0.00030997	0
H2O	Ton/año	15.29295	0.5752641	141.4611
SO2	Ton/año	0	0	45.07577
H2S	Ton/año	0.5869871	0.00511049	0
NH3	Ton/año	0.5863673	0.0057302	0
NO2	Ton/año	0	0	49.34122
CO	Ton/año	3.371513	0.00344504	0
CO2	Ton/año	21.15653	0.0997766	756.7749
CH4	Ton/año	8.389825	0.0179618	0
C2H6	Ton/año	6.943104	0.0436475	0
C3H8	Ton/año	6.831971	0.0955718	0
C4H10	Ton/año	6.757397	0.1701431	0
OIL	Ton/año	27.28504	254.9679	0
Flujo TOTAL	Ton/año	97.79347	255.9849	11848.77

Finalmente, en la tabla 3.3 se reportan los flujos de producción a 900 K

Tabla 3.3: Tabla de componentes de interés a 900K

En esta tabla solo se presentan la composición de las corrientes de interés, GAS-OUT es la corriente de salida de Shale gas en la zona de separación. OIL-OUT es la corriente de salida de Shale oil en la zona de separación. Y, finalmente, FLUE-GAS es la corriente de salida de los gases producidos en la pirolisis.

Como se puede ver en la figura 2.22, la fracción que se recircula al reactor de pirolisis varía en función de que temperatura se está operando, para el caso de la temperatura recomendada, ASPEN da un valor de Split de fracción de 0.6787, lo que representa un 67.87 % del flujo de salida de la corriente "BUR-SHAL".

Temperatura de entrada	900	К	
Temperatura de salida	900	К	
Presión de Salida	101352.932	N/sqm	
Fracción vapor de salida	1		
Duty	0	Watt	
Net Duty	0	Watt	
Volumen de reactor	0.014158	m3	
Fase Vapor	0.008495	m3	
Fase líquida	0	m3	
Fase condensada	0.005663	m3	
TIEMPOS DE RESIDENCIA DE:			
Reactor	1.0936	Segundos	
Fase Vapor	0.6586	Segundos	
Fase condensada	118.0487	Segundos	

En la tabla 3.4 se condensa las condiciones de operación del reactor de pirolisis:

Tabla 3.4: Condiciones de operación del reactor de pirolisis

CAPITULO 4

CONCLUSIONES

El proceso se simuló con datos reportados por J.R. Ammer, de shale extraída de New Albany, Ohio, en Estados Unidos.

Cabe mencionar que la temperatura de operación óptima solo es válida para la shale de New Albany y a un flujo de alimentación de 10.89 toneladas por día, ya que shale extraída de otros sitios tiene diferentes composiciones y diferentes tipos de minerales, sin embargo, se puede realizar exactamente el mismo procedimiento explicado en esta tesis, si se cuenta con datos concretos de composición de dicha shale.

El objetivo de crear un modelo de Aspen Plus que pueda simular satisfactoriamente un proceso de producción de Shale Oil y Gas se cumplió. Para el caso de oil shale de México, se necesitan los datos obtenidos a través de análisis de muestras de shale para llenar los campos de información que requiere Aspen Plus ULTANAL, GENANAL y SULFANAL los cuales son: para ULTANAL: un análisis de composición en porcentaje de carbono, hidrógeno, nitrógeno, cloro, azufre y oxígeno tanto del kerogeno, como de una muestra de kerogeno quemado. Para SULFANAL porcentaje de composición de compuestos piríticos, sulfatos y orgánicos, tanto del kerogeno sin procesar como de una muestra de kerogeno quemado. Para GENANAL se requiere un análisis de porcentaje de Agua, Kerogeno y Minerales presentes en una muestra completa de oil shale.

Para el caso particular expuesto en este trabajo, la temperatura de operación recomendada es de 900 K, ya que como se mencionó anteriormente y se puede observar en las gráficas 3.1, 3.2 y 3.3 un aumento de 300 K de temperatura representa un aumento mínimo de 2.24 % en la producción de Shale oil y gas, lo cual se traduce en un gran aumento de costos de operación con un mínimo aumento de ganancia. Además, el reactor deberá tener un volumen de 14.16 litros, un flujo de alimentación de 10.8862 toneladas por día; y una recirculación al reactor de pirolisis del 67.87 % de la corriente sólida de salida de éste mismo.

REFERENCIAS

- J. R. Ammer, Identification of data gaps found during the development of a zero-order model for a fluidized-bed retort/combustion process, Technical note submitted to U.S. DOE, Contract: DOE/METC-86/4024. 1986.
- [2] Y. S. O Edenhofer, R Madruga, Engineering International: the CIGR Ejournal. 2012.
- [3] "U.S. EIA International Energy Statistics." http://www.eia.gov/cfapps/ ipdbproject/IEDIndex3.cfm. Consulta: 2017-04-10.
- [4] P. McKendry, Energy production from biomass (part 1): Overview of biomass. Bioresource Technology, 2002.
- [5] N. B. A. B. R Klienberg, T Le Doan, Green River Oil Shale Pyrolysis:Semi-Open Conditions. DOI: 10.1021/ef401162p. 2006.
- [6] "San Leon Energy." http://www.sanleonenergy.com http://www.sanleonenergy. com/operations-and-assets/timahdit-oil-shale-benchtest.aspx. Consulta: 2017-04-12.
- [7] M. Winter, Spent Oil Shale use in Earthwork Construction. 2001.
- [8] R. B. J C Diaz, Process simulation model for a staged, fluidized-bed oil-shale retort with lift-pipe combustor, Lawrence Livemore National Laboratory. 1984.

ANEXO A

Código en FORTRAN para la pirólisis de kerogeno

C User Kinetics Subroutine for RCSTR.

	2 INT, NREAL, REAL, IDS, NPO,					
	3 NBOPST, NIWORK, IWORK, NWORK	K, WORK,				
	4 NC, NR, STOIC, RATES, FLUXI	И,				
	5 FLUXS, XCURR, NTCAT, RATCAT,	NTSSAT,				
	6 RATSSA, KCALL, KFAIL, KFLASH, N	ICOMP,				
	7 IDX, Y, X, X1, X2,					
	8 NRALL, RATALL, NUSERV, USERV,	NINTR,				
	9 INTR, NREALR, REALR, NIWR, IW	'R,				
	* NWR, WR, NRL, RATEL, NRV,					
	1 RATEV)					
C-						
С	Kerogen pyrolysis is expressed as a single nth-order	r reaction:				
С						
С	RK = K * FK0 * (FK/FK0)**N					
С						
С	Where:					
С	RK = kerogen reaction rate, kg/m**3 shale \cdot s.					
С	K = reaction rate, 1/s. In this model, $K = 6.9E10*EX$	(P(-21790/T),				
С	where T is temperature in kelvin.					
С	FK0 = original kerogen concentration, kg/m**3 shale	•				
С	FK = kerogen concentration, kg/m**3 shale.					
С	N = reaction order. $N = 1.4$ in this model.					
С						
С						
С	The subsequent production of each product from kee	rogen pyrolysis is				
С	calculated by means of stoichiometric factors:					

С	
С	Ri = Fi * RK
С	
С	Where:
С	Fi = stoichiometric factor of ith product, kg of ith product/kg kerogen.
С	Ri = reaction rate of ith product, kg of ith product/m**3 shale s.
С	
С	
С	The Fi for each product used in this model is modified based on the data
С	reported by Diaz and Braun:
С	
С	FH2 = 0.001
С	FH2O = 0.0268
С	FH2S = 0.001
С	FNH3 = 0.001
С	FCO = 0.0057
С	FCO2 = 0.0359
С	FCH4 = 0.0142
С	FC2H6 = 0.0118
С	FC3H8 = 0.0117
С	FC4H10= 0.0117
С	FOIL = 0.4767
С	FCHAR = 0.4025
C	
	IMPLICIT NONE
С	
С	DECLARE VARIABLES USED IN DIMENSIONING
С	

INTEGER NSUBS, NINT, NPO, NIWORK, NWORK,

+ NC, NR, NTCAT, NTSSAT, NCOMP,

+ NRALL, NUSERV, NINTR, NREALR, NIWR,

+ NWR

С

#include "ppexec_user.cmn"

EQUIVALENCE (RMISS, USER_RUMISS)

EQUIVALENCE (IMISS, USER_IUMISS)

#include "dms_ncomp.cmn"

#include "rxn_rcstrr.cmn"

#include "rxn_rprops.cmn"

EQUIVALENCE (TEMP, RPROPS_UTEMP)

EQUIVALENCE (PRES, RPROPS_UPRES)

EQUIVALENCE (VFRAC, RPROPS_UVFRAC)

EQUIVALENCE (BETA, RPROPS_UBETA)

EQUIVALENCE (VVAP, RPROPS_UVVAP)

EQUIVALENCE (VLIQ, RPROPS_UVLIQ)

EQUIVALENCE (VLIQS, RPROPS_UVLIQS)

EQUIVALENCE (B(1), IB(1))

С

#include "pputl_ppglob.cmn"
#include "dms_maxwrt.cmn"
#include "dms_plex.cmn"

C DECLARE ARGUMENTS

С

INTEGER IDXSUB(NSUBS), ITYPE(NSUBS), INT(NINT), IDS(2),

- + NBOPST(6,NPO), IWORK(NIWORK), IDX(NCOMP), INTR(NINTR),
- + IWR(NIWR), NREAL, KCALL, KFAIL,

```
+ KFLASH, NRL, NRV, I,
```

+ IMISS, KDIAG, KV, KER,

+ DMS_IFCMNC, LMW, LMWI

С

```
REAL*8 SOUT(1), WORK(NWORK), STOIC(NC,NSUBS,NR),
```

- + RATES(1), FLUXM(1), FLUXS(1), RATCAT(NTCAT),
- + RATSSA(NTSSAT),Y(NCOMP), X(NCOMP), X1(NCOMP),
- + X2(NCOMP)

```
С
```

```
REAL*8 RATALL(NRALL), USERV(NUSERV), REALR(NREALR),
```

```
+ WR(NWR), RATEL(1), RATEV(1), XCURR,
```

+ XMW(1), B(1), TEMP, PRES

С

```
REAL*8 REAL(NREAL), RMISS, XLEN, DIAM,
```

- + VFRAC, BETA, VVAP, VLIQ,
- + VLIQS, VMXV, DVMX

С

```
REAL*8 FACTH2, FACTH2O, FACTH2S, FACTNH3, FACTCO,
```

- + FACTCO2, FACTCH4, FACTC2H6, FACTC3H8, FACTC4H10,
- + FACTOIL, FACTCHAR, FKO, CKO, T,
- + FK, VBED, VOLR, K, RKEROGEN

```
С
```

```
REAL*8 RH2, RH2O, RH2S, RNH3, RCO,
```

- + RCO2, RCH4, RC2H6, RC3H8, RC4H10,
- + ROIL, RCHAR
- С

C BEGIN EXECUTABLE CODE

```
C-----
```

C INPUT DATA

C STOICHIOMETRIC FACTOR FOR EACH PYROLYSIS COMPONENT (KG EACH COMPONENT/KG KEROGEN)

FACTH2 = 0.0010

FACTH2O = 0.0268

FACTH2S = 0.0010

FACTNH3 = 0.0010

FACTCO = 0.0057

FACTCO2 = 0.0359

FACTCH4 = 0.0142

FACTC2H6 = 0.0118

FACTC3H8 = 0.0117

FACTC4H10= 0.0117

FACTOIL = 0.4767

FACTCHAR = 0.4025

C KEROGEN FLOW RATE (KG/S) AND CONCENTRATION (KG/M**3 SHALE) IN ORIGINAL SHALE

FKO = 0.0192

CKO = 323.66

C-----

C RETRIEVE REACTION TEMPERATURE (K) AND LEFT KEROGEN FLOW RATE (KG/S)

 $T = SOUT(IDXSUB(1)-1+NCOMP_NCC+2)$

FK = SOUT(IDXSUB(3)-1+1)

C RETRIEVE VOID FRACTION AND REACTOR VOLUME (M**3)

VBED = RCSTRR_VFRRC

VOLR = RCSTRR_VOLRC

C RETRIVE MOLECULAR WEIGHT OF EACH COMPONENT (KG/KMOL)

LMW = DMS_IFCMNC('MW')

DO I = 1,NCOMP_NCC

LMWI = LMW+I

= 6.9E10*EXP(-21790.0/T)

RKEROGEN = K * CKO * (FK/FKO)**1.4

TOTAL PYROLYSIS RATE OF KERGOEN (KG KEROGEN/M**3 SHALE/S)

REACTION RATE OF EACH COMPONENT (CONVENTIONAL: KMOL/S;

= RKEROGEN * FACTH2 / XMW(3) * (1.0-VBED) * VOLR

= RKEROGEN * FACTCO / XMW(9) * (1.0-VBED) * VOLR

= RKEROGEN * FACTCH4 / XMW(11) * (1.0-VBED) * VOLR

RH2O = RKEROGEN * FACTH2O / XMW(4) * (1.0-VBED) * VOLR

RH2S = RKEROGEN * FACTH2S / XMW(6) * (1.0-VBED) * VOLR

RNH3 = RKEROGEN * FACTNH3 / XMW(7) * (1.0-VBED) * VOLR

RCO2 = RKEROGEN * FACTCO2 / XMW(10) * (1.0-VBED) * VOLR

RC2H6 = RKEROGEN * FACTC2H6 / XMW(12) * (1.0-VBED) * VOLR

RC3H8 = RKEROGEN * FACTC3H8 / XMW(13) * (1.0-VBED) * VOLR

RC4H10 = RKEROGEN * FACTC4H10 / XMW(14) * (1.0-VBED) * VOLR

ROIL = RKEROGEN * FACTOIL / XMW(15) * (1.0-VBED) * VOLR

RCHAR = RKEROGEN * FACTCHAR * (1.0-VBED) * VOLR

RKEROGEN = -RKEROGEN * (1.0-VBED) * VOLR

WRITE(MAXWRT MAXBUF(1),200) XMW(15)

C 200 FORMAT(1X,"XMW=",F11.5)

INITIALIZE RATES

DO 100 I = 1, NC

RATES(I) = 0D0

CALL DMS_WRTTRM(1)

END DO

NONCONVENTIONAL: KG/S)

RH2

RCO

RCH4

С

С

С

С

С

Κ

$$(M(M(I) - B(I M(M))))$$

$$(MM(I) - B(IMM(I))$$

$$(M(M(I) - B(I M(M))))$$

$$(M(\Lambda)/(I) - B(I M(\Lambda)/I)$$

$$X M M (I) = B (I M M)$$

$$XMM/(I) = B(IMM/I)$$

$$XMW(I) = B(LMWI)$$

$$XMW(I) = B(IMWI)$$

$$(M(\Lambda)/(I) - B(I M(\Lambda)))$$

100 CONTINUE

- C REACTION RATE OF COMPONENTS
- C MIXED COMPONENTS
 - RATES(1) = 0.0D0
 - RATES(2) = 0.0D0
 - RATES(3) = RH2
 - RATES(4) = RH2O
 - RATES(5) = 0.0D0
 - RATES(6) = RH2S
 - RATES(7) = RNH3
 - RATES(8) = 0.0D0
 - RATES(9) = RCO
 - RATES(10) = RCO2
 - RATES(11) = RCH4
 - RATES(12) = RC2H6
 - RATES(13) = RC3H8
 - RATES(14) = RC4H10
 - RATES(15) = ROIL
- C CISOLID COMPONENTS
 - $RATES(NCOMP_NCC+16) = 0.0D0$
 - RATES(NCOMP_NCC+17) = 0.0D0
 - $RATES(NCOMP_NCC+18) = 0.0D0$
 - $RATES(NCOMP_NCC+19) = 0.0D0$
 - RATES(NCOMP_NCC+20) = 0.0D0
 - RATES(NCOMP_NCC+21) = 0.0D0
 - RATES(NCOMP_NCC+22) = 0.0D0
 - RATES(NCOMP_NCC+23) = 0.0D0
 - RATES(NCOMP_NCC+24) = 0.0D0

RATES(NCOMP_NCC+25) = 0.0D0 RATES(NCOMP_NCC+26) = 0.0D0 C NONCONVENTIONAL COMPONENTS RATES(NCOMP_NCC*2+1) = RKEROGEN RATES(NCOMP_NCC*2+2) = RCHAR RETURN

END