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Abstract

This study presents the implementation of the novel Smoothed Particle Hydro-
dynamics (SPH) meshless method regarding fluid solid interaction. To assess
the numerical approach five study cases have been carried out, namely the
classical benchmark problems; fluid flow around a fixed circular cylinder, and
flow around a square cylinder when it travels through a fluid at rest. The next
case concern the numerical simulation of the buoyancy effect on a circular
cylinder whose density value is lower than the media in which it is immersed.
The two last cases exposes the numerical analysis of a train when it travels
along a tunnel at a high velocity and the last case treats the numerical simu-
lation of the ascending motion of a submarine hull located at a certain depth
from the free surface. A comparison between numerical results and experimen-
tal previous solutions is exposed, showing that the SPH methodology provides
promising advantages in contrast with the conventional mesh-grid based meth-
ods. Concluding results in the train study case highlights a similar tendency
for pressures measurements in comparison with early works related to the same
phenomenon. Nevertheless it is concluded that special attention to the equa-
tion of state is required due to the increase in the density field variations during
the train passing. Finally in the study case of the submarine hull, the rolling
stability issue is effectively reproduced with no additional treatment like in
previous works usually do while using conventional mesh-grid approaches. It
is concluded that a substantial reduction in the height of the sail should be
carried out in order to reduce the effect that promotes instability flaws design
during the submarine ascending performance.
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Resumen

En este estudio se presenta la implementación del novedoso método no depen-
diente de mallado Smoothed Particle Hydrodynamics concerniente al problema
de la interacción fluido sólido. Para evaluar la metodología numérica, cinco
casos de estudio se han llevado a cabo, a saber, los ya clasicos problemas tipo
benchmark; flujo alrededor de un cilindro circular fijo y el flujo alrededor de
un cilindro cuadrado moviendose en un fluido en reposo. El siguiente caso con-
siste en la simulación numérica del efecto boyante sobre un cilindro circular
cuyo valor de densidad es menor al del fluido en el cual se encuentra inmerso.
Los últimos dos casos exponen el estudio numérico de un tren viajando a gran
velocidad a lo largo de un tunel y el caso final aborda la simulación numérica
del movimiento ascendente de un submarino posicionado a cierta profundidad
de la superficie libre. Así mismo, se expone una comparación entre resultados
obtenidos numéricamente y resultados experimentales previos, dando a resaltar
que la metodología del SPH provee ventajas prometedoras en contraste con los
métodos convencionales dependientes de un mallado. Resultados concluyentes
en el caso de estudio del tren, resaltan una tendencia similar en las medidas
de presión en comparación con trabajos previos relacionados con el mismo
fenómeno. Sin embargo, se requiere especial atención a la ecuación de estado
utilizada para el cálculo de presión debido al incremento de variaciones en el
campo de densidad, durante el paso del tren. Finalmente en el estudio del
submarino, el problema de la estabilidad en el Rolling es reproducido de forma
efectiva, sin tener que implementar un tratamiento adicional como sucede en
los métodos convencionales basados de mallado. Se concluye finalmente, que
se debe realizar una reducción sustancial de la altura del sail, para reducir
los efectos que promueven problemas de inestabilidad durante el movimiento
ascendente del submarino.
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1
Introduction

Arbitrary motion of solid bodies in a particular fluid flow appears in a diverse
range of applications, either in industrial or research fields. The great impor-
tance of acquiring a consistent understanding, and a continuous enhancement
of such issue demands not only an increasing endeavour to understand and
clarify the solid body dynamics, but also the prediction of the body behaviour
that results from the interaction with the fluid in which the body performs a
specific purpose.

Calculation of the resultant forces onto a body generated by the fluid flow
hydrodynamics is widely considered to be a vital factor of importance in the
design stage of engineering systems, since it allows researches and engineers
to model a suitable body shape to maintain a stable state condition, prevent
potential failures or even avoid fatal accidents. Forces that appear during any
solid-fluid interaction are obtained via experiment, implementing a numerical
simulation, and in some simplified cases an analytical solution can be obtained;
field variables like velocity, pressure, position, and density constitute the most
essential aspects that must be considered to calculate these forces. This study
is mainly focused on the numerical simulation of the solid-fluid interaction and
the resultant effect on the solid body dynamics. Implementing an experimental
campaign, and a successful technique that captures the aforementioned field
variables represent a more real support, since each measurement is taken from
the real flow interaction. Nevertheless while carrying out an experiment de-
mands most of the time highly building costs, waste of time concerning issues
of collocation, not to mention that the apparatus are usually restricted to just
one kind of measurement. Some examples of modern experimental techniques
used in the analysis of fluid flows are the particle-laden techniques. An excel-
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lent review of most modern particle-laden techniques is discussed in (Tu et al.,
2017). These visualizing techniques are used essentially for single-phase flows,
and present the limitation of providing only average measurements of some
field variables, and analysis in 2D.

Examples of experimental studies concerning solid-fluid interaction are:
(Havelock, 1936), who used an image method for the calculation of forces on
a circular cylinder. (Greenhow et al., 1982), that examined the problem of
the survival of Salter’s duck wave-energy device in extreme waves, both ex-
perimentally and theoretically. (Moyo and Greenhow, 2000) solved solid-fluid
interaction implementing the Vinje and Brevig method, for the submerging
and sinking of a cylinder. More recently (Ricco et al., 2007) who performed
an experimental analysis of the pressure generated of a train running through
a tunnel at a high speed.

Employing a numerical simulation, on the other hand, provides a more
practical option. This is because some engineering and physical phenomena
could be adequately simulated. For instance it is just a matter of few lines of
computational code to acquire relevant information of field variables in space,
and time in the domain of the numerical simulation. The numerical techniques
offer the advantage of simulating at a real scale, the phenomenon under study.
Furthermore, the simulations allow to control directly situations which are dif-
ficult to reach or maintain in real life.

Depending on the methodology adopted, the computational time in a nu-
merical approach can increase from some hours to many days. Until now
most of the numerical techniques are mesh dependent, which means that the
principal condition for a phenomenon to be accurately simulated is the con-
struction of a suitable mesh capable of representing the true physics or at least
an approximation. This mesh dependency causes many issues related to the
selection, construction, and time evolution of the mesh during a numerical
simulation. In this study a different numerical scheme is adopted in order to
overcome common shortcomings that appear in traditional mesh dependent
numerical methods.

In recent years meshless numerical techniques have become an alternative
tool that present many advantages in contrast with mesh methods. The novel
Lagrangian approach Smoothed Particle Hydrodynamics (henceforth referred
SPH) has emerged as a new numerical tool for solving difficult problems that
otherwise require an additional effort, and the application and coupling of
distinct techniques. Based on the meshless concept the SPH method is ideal,(as
it will be explained in the next chapters) for this sort of solid-fluid interaction
problems.

2



CHAPTER 1. INTRODUCTION

Recently the High Performance Computing (HPC), allows the massively
parallel architecture of GPUs and Clusters significantly accelerate simula-
tions regarding transient solid-fluid interaction phenomena. By combining
attributes from both numerical methodologies and HPC it is possible to pro-
vide a powerful numerical tool that open new branches of treating complex
problems that allow scientist understand a physical phenomenon. Figure 1.2
shows the global process of a numerical simulation based upon the author
experience.

 

Figure 1.1: General procedure of conducting a numerical simulation.
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The resultant effect of the forces exerted on the body as a consequence of
the solid-fluid interaction, carries a change of momentum in the body, causing
an instability on its degrees of freedom. Engineers and researchers are mainly
interested in the study of the influence that the fluid flow exerts to the degrees
of freedom of the body. There exist several applications in which the essential
ground of interest is the solid-fluid interaction, but only some of them are listed
below:

1. Overtopping

2. Slamming bodies

3. Offshore

4. Buoyancy driven bodies

5. Tsunamis

6. Turbines

7. Windmills

8. Moving rigid bodies

In this study five cases are simulated numerically. Three of them will as-
sess the reliability and accuracy of the numerical method implemented. The
other two cases concern a major attention due to their difficulty to be anal-
ysed. The first study case concerns the numerical simulation of the ascending
motion of a submarine hull (a buoyancy driven body) immersed in a viscous
fluid, the second case is related to the numerical simulation of a high veloc-
ity train (a moving rigid body), when it passes trough a tunnel. The software
DualSPHysics based on the novel numerical method Smoothed Particle Hydro-
dynamics is used to calculate Pitching, Yawing, and Rolling on the submarine
hull produced by the interaction with the fluid. For the second case, pressure
and velocity fields are calculated during the train travelling inside a tunnel.

4



CHAPTER 1. INTRODUCTION

1.1 Background
The numerical simulations concerning the interaction between a solid body and
a fluid flow are been carried out mainly using two different approaches, namely
mesh-grid methods, and meshfree methods. Mesh-grid methods have the avail-
ability of adopting either an Eulerian or a Lagrangian scheme. On the other
hand meshfree methods provide a numerical tool without the aid of a mesh.
Based upon the Lagrangian scheme meshfree methods are expected to over-
come shortcomings appearing in traditional mesh-grid numerical approaches.
During the last decades there have been efforts to implement an hybrid of
both methods(Lagrangian-Eulerian methods), enhancing the performance of
conventional mesh-grid techniques see (Liu and Liu, 2003).

1.2 Mesh-grid based methods
The principal idea of mesh-grid methods relies on the spacial domain division
into abstract entities (that carry field variables information), distributed along
a mesh. Following (Liu and Liu, 2003), a mesh is defined as any of the open
spaces between the strands of a net that is formed by connecting nodes in
a predefined manner. Entities in essence, are represented as cells, nodes or
elements depending of the numerical methodology. The main process of cal-
culation during a numerical simulation is performed on each of these abstract
computational entities by means of considering contributions of neighbours
preserving a certain topological relation. A global idea of the concepts above
described is exposed in Figure 1.2.

 

Figure 1.2: Concept of a Mesh-Grid and abstract entities.
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1.3. MESHFREE METHODS

Conventional and more common methodologies based upon mesh-grid meth-
ods are: Finite Element Method (FEM), (Liu and Quek, 2013; Zienkiewicz and
Taylor, 2000), Finite Differences Method (FDM), (Kleiber, 1998), and Finite
Volume Method (FVM), (LeVeque, 2002). The meshing process will be in fact
the fundamental aspect of these kind of conventional numerical methods.

Regarding mesh-grid based methods, remarkable works that treat the the
solid-fluid flow interaction are for example: (Greenhow et al., 1981), consid-
ered as the first consistent simulation method for two dimensional problem
concerning floating bodies. (S Peskin, 1977) who originally proposed the Im-
mersed Boundary Method (IBM). (Fekken, 2004) that implemented a coupled
FVM, and a different version of the (IBM). (Liu, 2004) published the study
of numerical simulation of two trains passing each other using an overset grid
scheme for the domain of the simulation and the overlap grid method for the
calculation of properties at some specific zones. (Hadžić et al., 2005) in which
the RANS and body dynamics equations are solved simultaneously by means
of the SIMPLE-algorithm. In that work the FVM is used, and moving-grids
for the solver are employed. Similar to this study (Zhang et al., 2013), carried
out the numerical simulation of the steady turning of a submarine using a com-
mercial software that implements a FVM. More recently (Chu et al., 2014),
who presented a a numerical study of two high trains when they cross by inside
a tunnel using a turbulence model based in the k-ε technique. (Bettle et al.,
2014a) used a commercial software CFX connected with Fortran subroutines
for evaluating an auxiliary coefficient-based model to solve simultaneously the
integration of the 6 DOF rigid body equations and the URANS equations in
time during the numerical simulation of a submarine hull ascending motion.

1.3 Meshfree methods
In meshfree methods the domain of interest is subdivided into scattered or arbi-
trarily distributed nodes called particles, nevertheless no predefined mesh/grid
is required. Each of the particles stores field variables locally as a result of the
contribution of neighbours(Liu and Liu, 2003) like in mesh-grid methods, but
no complex relation between particles exist. In this study a meshfree method
is adopted to perform the calculations of the solid-fluid interaction. Therefore
on the next paragraphs the focus will be maintained on these kind of numerical
approaches.

Some excellent reviews about meshfree methods can be found in (Be-
lytschko et al., 1996; Li and Liu, 2002). In the monograph on meshfree methods
(Li and Liu, 2002) the author has addressed the history, development, theory
and applications of the major existing meshfree methods.

6



CHAPTER 1. INTRODUCTION

Implementing a meshfree numerical scheme for solid-fluid interactions, it
is worth mentioning the previous work of (Koshizuka et al., 1998) where a
particle semi-implicit (MPS) method was used for solid-fluid interactions. In
(B. Kajtar and J. Monaghan, 2009) the authors presented a numerical simu-
lation of a 2-D fish-like movement in a fluid, aided with Lagrange multipliers
in the restrictions of the equations of motion, resulting in good agreement
with other related works. Other authors like (Monaghan et al., 2003) present
a comparison between Moving Particle semi-implicit Method and Smoothed
Particle Hydrodynamics while simulating numerically the fluid motion gener-
ated by impact. (Rogers et al., 2010) present the solid-fluid interaction based
in the idea of repulsive boundary force technique , additionally providing an
effectively sort of frictional force when two bodies collision. In (Ulrich and
Rung, 2012) a numerical simulation of a water entry of a cube is presented,
resulting in good agreement with experimental data. Later in (Omidvar et al.,
2013) an hybrid model using SPH and the ALE method is developed for the
study of floating bodies. The ground objective of this work was to include
a variable particle mass distribution in order to increase resolution where is
needed, and to improve computational costs. The comparison between SPH
and the experiment shows excellent agreement for the force and free surface
for motion.(Bouscasse et al., 2013) carried out numerical simulations using a
combination of SPH and ghost particle technique to reproduce the movement
of floating bodies interaction with non-linear water waves in free surface flows.
(Liu et al., 2014) treated the fluid-solid interface with a coupled dynamic algo-
rithm (CD-FSIT) and the SPH method, in this work solid particles move with
the rigid objects. (Canelas et al., 2015) performed numerical simulations of
buoyancy-driven motion with solid bodies using the SPH method. The results
were compared with experimental data obtaining good agreement.

Meshfree methods seem to be generating a considerable interest in the field
of Computational Fluid Dynamics. As seen before, these methods do not re-
quire special treatments or at least no too many as mesh-grid based methods
usually do. The studies presented above using these mesh independent numer-
ical schemes expose some of the advantages over the conventional mesh-grid
based methods for applications of solid-fluid interactions, driven motion of solid
bodies in free surfaces flows etc. Furthermore, the necessity of employing a
numerical scheme that is adequate for High Performance Parallel architectures
in the last years encourage the use of these numerical approaches.
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1.3. MESHFREE METHODS

There are largely two categories of numerical methods for solving the gov-
erning equations (PDEs) that rule a physical phenomenon: direct approach and
indirect approach1. Table 1.1 and 1.2 present a general framework regarding
mesh-grid and meshfree methods considering the aforementioned categories.

Mesh-Grid methods

Strong formulation PDE’s that rule the problem physics
are discretized and solved directly.

Weak formulation

PDE’s are not solved directly, but an
alternative equation with the highest
order of the initial derivative reduced
in one order. Solution of an integral
equation (averaged).

Table 1.1: Categories concerning Mesh-Grid methods

Meshfree methods

Strong formulation PDE’s that rule the problem physics
are discretized and solved directly.

Weak formulation

It does not represent a truly meshless
approach due to the requirement of a
mesh, as it is mandatory for the inte-
gration of the weak forms.

Particle formulation

Solution of an integral equation (aver-
aged). Additionally the differential op-
erator passes directly on the weighted
average operator.

Table 1.2: Categories concerning Meshfree methods

Special attention is given to the meshfree particle2 methods, since the SPH
approach adopted in this thesis pertains to this sort of methodologies.

Meshfree particle methods

Particle-based methods (or particle methods for abbreviation) in general refers
to a special class of meshfree methods that employ a set of finite number of
discrete particles to represent the computational domain of a system under
study. The initial state of the discretized domain and its evolution in time is
developed through the movement of the particles. A thoroughly discussion in

1 A more in-depth explanation can be found in (Liu and Han, 2003)
2 In (Li and Liu, 2007) a complete mathematical description of such techniques can be

found.
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relation to the advantages of meshfree particle methods over conventional grid-
based numerical methods is highlighted in (Liu and Liu, 2003). Nonetheless
the principal differences between the mesh-grid and meshfree particle methods
are mentioned next:

I The problem domain is discretized by means of a set of arbitrary dis-
tributed particles (Particle representation).

I Functions, derivatives and integrals in the governing equations are ap-
proximated using the particles rather than over a mesh ( Particle ap-
proximation).

Particle representation

In meshfree particle methods, there is no need of considering the connectivity
between such entities titled particles. Only an initial arbitrary distribution
(known as domain representation/discretization) of particles that represents
the discretized domain is required. Different ways of generating and populate
particles complex domains can be employed.

Figure 1.3 is an example of a particle representation of a complex CAD
model. Figures 1.3(a) and 1.3(c) show the isometric and frontal views of the
initial geometry. Figures 1.3(b), and 1.3(d) exhibit their final particle repre-
sentation respectively; the transformation from the solid to the particle repre-
sentation was carried out using the GenCase subrutine inside the DualSPHyics
software (Crespo et al., 2015).

(a) (b)

(c) (d)

Figure 1.3: Generation of a 3-D complex geometry formed by particles using
GenCase in DualSPHysics.
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Particle approximation

Numerical discretization in meshfree particle methods involves approximating
the values of functions, derivatives and integrals at a point (hereafter referred
as particle) through neighbouring particles averaged contributions (also known
as displacement interpolation). These contributions refer to a summation pro-
cess by using the information from all the neighbours that have a significant
influence on the particle considered. The area of influence of a particle is de-
termined by the so-called support domain which may remain at a constant
value or vary during the simulation evolve. Neighbouring particles within this
zone provide all the necessary and sufficient information to predict eventual
field variable values at the particle of interest.

For example, considering a field variable f evaluated at any particle p(x1, x2),
this function can be approximated or interpolated using values of neighbours
f(p∗)’s within the support domain of p, i.e.

fh(p) =
∑
i∈Sn

φifi(p
∗) (1.1)

where φi is a function (often called shape function). The evaluation of this
special function depends on the information extracted from all particles eval-
uated within the support domain of p. Sn is the set of particles (p∗)’s included
in a "small local domain" of p. Such local domain is commonly titled "support
domain" in most of SPH literature. Neighbouring particles populating this
zone are designated as "support particles". Figure 1.4 exposes these concepts
for a field variable calculation in 2D.

 

Figure 1.4: Domain representation of a 2D discretized domain and particles
in a local weighted support domain.
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1.4 Applications of the SPH method

From early applications of the SPH method, the most extensively addressed
are exposed below. For a more detailed description of each subject consult
(Liu and Liu, 2010a; Monaghan, 2012).

I Astrophysics (Firstly the main goal)
v Binary stars and stellar collisions (Benz, 1988; Monaghan, 1992; Rasio

and Lombardi, 1999)
v Supernova (Hultman and Pharasyn, 1999; Thacker and Couchman, 2001)
v Collapse and formation of galaxies (Berczik, 2000; Monaghan and Lat-

tanzio, 1991)
v Coalescence of black holes with neutron stars (Lee, 2000; Lee and Kluz-

niak, 1999)
v Single and multiple detonation of white dwarfs (García-Senz et al., 1999)
v Evolution of the universe (Monaghan, 1990)

I Fluid dynamics
v Multiphase flows (Colagrossi and Landrini, 2003; Hu and Adams, 2007;

Mokos et al., 2014)
v Surface tension (Colagrossi, 2005; Hunter, 1992; Mokos et al., 2014; Mon-

aghan, 1994)
v Liquid drops (Nugent and Posch, 2000)
v Generation of tsunamis (Monaghan and Kajtar, 2009)
v Rivers draining (Wells and Wettlaufer, 2005)
v Water wave impact (Crespo et al., 2007a; Dalrymple and Rogers, 2006;

Gómez-Gesteira and Dalrymple, 2004)
v Dambreak (Crespo et al., 2008)
v Sloshing and overtopping (Iglesias et al., 2004; Shao et al., 2006; Souto-

Iglesias et al., 2006)
v Heat and/or mass conduction (Chen et al., 1999; Cleary, 1998; Jeong

et al., 2003; Jiang and Sousa, 2006; Rook et al., 2007)
v High explosive detonation and explosion (Liu and Liu, 2003; Liu et al.,

2003c; Swegle and Attaway, 1995)
v Underwater explosions and water mitigation (Liu et al., 2002, 2003a)
v Fish-like swimming (Kajtar and Monaghan, 2010, 2008)
v Micro channels (Liu and Liu, 2005; Liu et al., 2003b)

I Geophysical flow
v Flood and river dynamics (Ghazali and Kamsin, 2008; Kipfer and West-

ermann, 2006)
v Landslides (Gallati et al., 2005; Pastor et al., 2009)
v Flow in fractures and porous media (Herrera et al., 2009; Tartakovsky

and Meakin, 2006)
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v Soil mechanics and mudflow (Bui et al., 2006, 2008; Laigle et al., 2007)

I Solid mechanics
v Elastic plastic flow (Gray et al., 2001; Libersky and Petschek, 1991;

Libersky et al., 1993; Zhou et al., 2007)
v Fracture and impact (Benz and Asphaug, 1994, 1995; Das and Cleary,

2010; Gray and Monaghan, 2004; Jutzi et al., 2008)
v Metal forming and high pressure die casting (Bonet and Kulasegaram,

2000; Cleary et al., 2006; Cleary and Ha, 2000; Ha and Cleary, 2000, 2005)
v Soft tissues (Hieber and Koumoutsakos, 2008)
v Cross rheological model (Hosseini et al., 2007; Shao and Lo, 2003)

I Non Newtonian flow
v Blood behaviour (Müller et al., 2004; Tanaka and Takano, 2005; TSUB-

OTA et al., 2006)
v Human organs (Hieber et al., 2004)

1.5 Objective and scope
The paramount objective of this thesis is to present the state of the art, the
fundamentals and the implementation of the meshfree numerical technique
called Smoothed Particle Hydrodynamics. This technique in its Weakly In-
compressible version has been successfully applied in the solution of fluid solid
interactions. The scope of the present work concerns problems related to the
arbitrary motion of buoyant bodies and bodies with an imposed motion law.
Therefore to achieve the main objective a remarkable initial point is to provide
an introduction to the fundamentals of the SPH numerical methodology. Then
the next essential point is to introduce a numerical code that implements the
SPH method providing significant and reliable solutions. The numerical simu-
lations are then carried out using DualSPHysics (Crespo et al., 2015) routines.
This numerical code has been developed based upon the SPH methodology to
simulate physical phenomena without the necessity of a meshing process. The
code of DualSPHysics has been designed to extend its capabilities to the actual
tendency of High Performance Computing (HPC), providing the simulations
to be massively parallelized.
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Thesis outline
From this section, throughout the subsequent chapters this work attends the
following structure:

Chapter 2 describes schematically the physical models of the study cases.
Three of them pertaining to the numerical validations, namely the square trav-
elling linearly through a fluid, the fluid flow around a square cylinder, and the
ascending motion of a cylinder submerged at an initial depth in a viscous fluid.
Dimensions and parameters of each of their configurations are depicted. In ad-
dition, a general overview involving the principal study cases are exposed. The
train passing through a tunnel at a high velocity and the submarine going up
to the surface. For both study cases dimensions and initial parameters are
assigned as well.

Chapter 3 describes the fundamental principles that govern the fluid dy-
namics upon the assumption of a Lagrangian scheme fluid model. Conservation
equations, namely continuity and momentum are presented in their material
approach considering low density variations.

Chapter 4 reviews the formality of the SPH method. The essential for-
mulation and principal ideas are exposed, including more common derivative
rules during the process of treating any function with SPH methodology. Fur-
thermore the concept of smoothing function is extended and at the end of the
chapter, the criteria to carry out the selection of smoothing functions is high-
lighted.

Chapter 5 depicts the process of discretizing the mathematical model that
governs the physics of the problems of interest, namely the continuity and
momentum equations. Then this chapter presents additional treatments com-
monly used in the SPH technique implementation in order to overcome short-
comings inherent to the numerical approach. To conclude the key ideas of the
fluid solid interaction are describe in detail.

Chapter 6 addresses the validations of the SPH numerical technique with
solutions published by other authors. Furthermore the results of the two main
interesting study cases obtained using DualSPHysics, and important parame-
ters regarding the numerical methodology are thoroughly discussed.

Chapter 7 finally presents the conclusion of this work, describing advan-
tages, issues and pitfalls of implementing numerical approaches using SPH, in
particular DualSPHysics for fluid solid interaction.
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2
Physical models

2.1 Flow around a moving square cylinder
This first study case regards the SPH numerical validation based upon the
benchmark test case No.6 from the SPH European Research Interest Commu-
nity (SPHERIC)web page http://spheric-sph.org/tests/test-6 see (Co-
lagrossi, 2011). It is worth emphasizing that due to the existence of bound-
aries at a short distance from the geometry numerical errors may decrease
the accuracy in numerical results. As a consequence the numerical domain
was extended as shown in Figure 2.1 pretending to mimic a similar effect of a
non-reflecting boundary as published by (Bouscasse et al., 2013). The square
length L is equal to 1m, and its change in position is prescribed according
to an imposed motion law showed in Figure 2.2. The gravity is considered
negligible.

 

Figure 2.1: Initial set up of the moving square test case.
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2.1. FLOW AROUND A MOVING SQUARE CYLINDER

 

Figure 2.2: Motion law from benchmark test case.

The square cylinder is surrounded by a fluid at rest. The center of the
geometry is located as previously indicated in Figure 2.1. Density is initialized
with a value of ρ = 1 kg m−3 and νo = 0.006666 m2 s−1. The square cylinder
starts an accelerated motion in the positive x-component direction, until a
velocity of U = 1 m s−1 is reached. Once this velocity value is is reached,
it is maintained constant during the translational motion and plays the role
of the characteristic velocity. The initial acceleration stage let the square
move smoothly maintaining a considerable non disturbed media. The total
trajectory described by the square cylinder lasts eight seconds from its starting
point.
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CHAPTER 2. PHYSICAL MODELS

2.2 Flow around a fixed circular cylinder
For the second test case, the configuration of a circular cylinder fixed in space
that perturbs the flow of a viscous fluid is executed. Similarly to the anterior
case, the processing calculations have been accomplished by means of Dual-
SPHysics. Figure 2.3 shows the general set up of the numerical domain and
the location of the circular cylinder. The influence of the gravity is considered
negligible like in the anterior case.

 

Figure 2.3: Initial set up of the fluid passing over a cylinder test case.

The free stream velocity is set to U = 1 m s−1. Boundaries are extended
20 times the cylinder diameter top and bottom so as to avoid the numerical
calculations to be affected. Complementary, an extension of the space from
the cylinder to the end of the container is required in order to permit the fluid
patterns to be fully developed. It is worth mentioning that the left and right
sides of the boundary numerical domain, are considered to behave as opened
boundaries to guarantee a constant flow rate. Moreover the next consideration
are assumed; the diameter of the cylinder is D = 1 m, the fluid density is
considered equal to ρ = 1 kg m−3, and finally νo = 0.01 m2 s−1.
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2.3 Ascending motion of a cylinder in a viscous
flow

The third case presents the results of the ascending motion of a circular cylinder
departing from a specific depth from the free surface. The ascending motion
of the cylinder is achieved due to the difference of densities of the cylinder
and the media in which it is immersed. Since the cylinder is deemed as a
floating body, a buoyant force governs the movement of the cylinder once the
simulation starts. Figure 2.4 describes the model to be computed. Furthermore
the numerical domain is also presented, where a distribution of particles is
initialized to populate the fluid zone and the boundary regions as well.

 

Figure 2.4: Dimensions and initial layout of a cylinder submerged in a viscous
fluid.

At the beginning of the simulation the fluid is at rest, then at time t = 0 s
due to the lower density value of the circular cylinder compared to that of
the fluid, a sudden acceleration produce a change in position guided to the
undisturbed free surface. Additional treatments for the free surface are not re-
quired, this will magnify the features of the SPH methodology as exposed later.

Important physical parameters involved in the experimental campaign are
initialised as follows, a density value of ρw = 998.2 kg m−3 is assumed for the
particles representing the fluid region. The diameter of the circular cylinder
adopts a a value of D = 0.30m and the position of its center is specified to be
located d = 0.46 m under the fluid free surface. The density of the cylinder is
considered ρc = 0.62ρw kg m−3.
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2.4 A single carriage train travelling through a
tunnel

Figure 2.5 shows the model domain of the tunnel. Dimensions of the tunnel
and train are taken from the experiment set up of (Ricco et al., 2007). Nu-
merical extensions are collocated at the entry and exit of the tunnel so as to
diminish the effects caused by high velocity at the entry of the train. The
tunnel diameter is D = 0.099 m with a thickness of t = 0.005 m.

 

Figure 2.5: Side view of the tunnel configuration.

 

Figure 2.6: Train dimensions.

Train dimensions are presented in Figure 2.6 where the former part of the
geometry has a conic angle of θ = 30 deg measured between the axis and the
directrix. The train initial location is d = 1 m from the tunnel entrance as
shown in Figure 2.7. The diameter of the train and the tunnel are assumed to
be concentric.

 

Figure 2.7: Train initial position.
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2.4. A SINGLE CARRIAGE TRAIN TRAVELLING THROUGH A
TUNNEL

The main objective of this study is to measure the pressure changes while
the train is travelling through the tunnel at velocity equal to vx = 30.6 m s−1.
The goal pressure behaviour is that experimentally reported by (Ricco et al.,
2007). To perform such a task, a numerical tool of planting particles at a
certain distance from the tunnel entrance is assessed. The early work of (Ricco
et al., 2007), set pressure sensors in order to capture the pressure variations
during the stages of the phenomenon, namely, the entering to the tunnel, the
train travelling, and the leaving of the train. These sensor are represented
numerically by means of a set of material particles in the same locations as the
real sensors are. Nevertheless just one measure particle numerical instrument
is analysed. Figure 2.8 highlights the location of the numerical particle sensor
of interest. During the simulation the next physical parameters are assumed;
the fluid density is set as ρ = 1.22 kg m−3, and νo = 1.516× 10−5 m2 s−1.

 

Figure 2.8: Sensor location for numerical particle measure tool.

The process of the train is as next; at the initial time t = 0 s the train ini-
tiate a vertical imposed motion in the x-component direction, with a velocity
of vx = 30.6 m s−1. Then the train travels inside the tunnel causing a pres-
sure rising effect from its enter until it leaves the tunnel. Pressure variations
are registered in order to compare and discuss the reliability of the meshless
SPH method. In general regarding numerical simulations of high speed trains
when they travel in a tunnel there exist two classical configurations, namely,
just one single carriage train travelling along the tunnel at a high speed or
two trains passing each other. This study is focused on the first configuration,
assuming the single carriage train entering in a tunnel at a high velocity. Ve-
locities achieved by nowadays high speed trains do not overcome the unity of
the Mach number. In fact the fastest train belongs to the new categorize of
MagLev (Magnetic Levitation) trains. Notwithstanding the high velocity these
MagLev trains could reached, their velocity remains below the Mach number
unity. It is worth mentioning that both categories, railways and MagLevs are
numerically studied without considering the technique implemented to travel,
instead dimensionless numbers like the length ratio, blockage ratio and the
Mach number are considered. Such numbers are defined as follows:

Lr = Ltunnel/Ltrain, Length ratio
Br = Atrain/Atunnel, Blockage ratio
M = Vref/Csound, Mach number
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For the present study case these numbers become,

Lr = 6 m/0.6 m = 10,

Br = 0.0011 m/0.0076 m = 0.14,

M = 30.6 m s−1/345 m s−1 = 0.088,

2.5 Ascending motion of a submarine hull
Regarding the numerical campaign for this study case, dimension are taken
from Mackay (2003). In that technical report a standard scheme of a subma-
rine hull is specified. Furthermore this report was the result of several exper-
imental tests carried out in different facilities, oriented to Defence Research
and Development in Canada. Experiments were prior accomplished either in
wind tunnels or towing tanks and later numerically represented. Notwith-
standing the good agreement between numerical simulations and experiments,
all measurements are still acquired assuming static hydrodynamic loads. Such
assumption does not represent the true behaviour which the submarine hull
structures challenge under real emergency situations.

The main objective of this study concerns one of those challenging cir-
cumstances, namely a rolling stability issue when a submarine describes an
emergency ascending motion, apparently caused by the tower like structure at
the top of the submarine hull known as the sail. There exist some early works
that attempt to capture the instability rolling movement like the early work of
(Bettle et al., 2009) and more recently (Bettle et al., 2014b). Notwithstanding
the good accuracy of the results, the used conventional numerical approaches
seems to demand an additional computational time and effort when treating
a meshing pre-process. Moreover a couple between equations of rigid body
motion and fluid dynamics equations is demanded adding one more difficulty
to conventional mesh-grid methods. In order to capture the real fluid solid
interaction a buoyant body is considered to represent the submarine hull. To
avoid additional treatments between the solid and the fluid, the calculations
are performed according to fluid solid interaction presented in 5.3. Figure 2.9
illustrates the submarine general dimensions adopted in this study. Figure 2.10
shows complementary nose and tail parameters of the geometry. Important
physical parameters are considered to be; D = 0.2 m, the fluid density is set
ρf = 1000kgm−3, the submarine hull density ρs = 0.9ρw kgm−3, the kinematic
viscosity νo = 1e − 6 m2 s−1. The initial layout is illustrated in Figures 2.11
and 2.12.
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Figure 2.9: DRDC standard submarine geometry. Reproduced from Mackay
(2003).

 

Figure 2.10: Complemetary dimensions. DRDC standard submarine geom-
etry. Reproduced from Mackay (2003).
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Figure 2.11: Initial layout.

 

Figure 2.12: Initial layout.

The calculations pretended to be performed, are very related to the mo-
ments developed by the submarine hull. The nature of the media in which the
submarine plays its role, supply the geometry with degrees of freedom that
if they are not controlled, can exert undesirable rotations(instabilities). To
speak in the same language Figure 2.13 illustrates the possible moments to be
analysed, being for the present study that related to the rolling instability.

23



2.5. ASCENDING MOTION OF A SUBMARINE HULL

 

Figure 2.13: Moments for a 6 degree of freedom geometry, taken from Mackay
(2003).

where N stands for the Yawing moment, M for the Pitching moment and
finally K represents the Rolling moment.
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3
Mathematical model

3.1 Governing equations
The mathematical apparatus in fluid mechanics for describing the behaviour of
a fluid assumed incompressible are based upon a series of fundamental physical
principles namely,

I Mass conservation.

I Momentum conservation.

and two representative schemes, early mentioned in chapter 1,

I Eulerian scheme.

I Lagrangian scheme.

depending on the adopted scheme, different mathematical representations (in-
tegral or differential forms) of fundamental physical principles are deduced.
As the continuum assumption is considered, then any function variable is sup-
ported by all the theorems pertaining to the calculus.

The implementation of each of fundamental principles relies on the prob-
lem layout and the field variables information demanded. Considering a La-
grangian representation of the governing equations seems to be more suitable
for this study, since the numerical methodology adopted was developed for
such scheme. Henceforth the continuity equation deduced from the mass con-
servation principle is expressed as next (Anderson, 1995),

Dρ

Dt
+ ρ∇ · v = 0, (3.1)
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and the momentum equation (Newton second law for fluid dynamics), consid-
ering a low density variations,

Dv
Dt

= −1

ρ
∇P +

1

ρ

(
∇ · ρνo∇

)
v + g (3.2)

Both equation appear in their material description i.e. the governing equations
of fluid dynamics in the Lagrangian scheme. Additionally they appear in their
Cartesian version. Observing the anterior equations they do not represent
indeed a true model of a fully incompressible fluid. This is due to the Weakly
Incompressible SPH approximation explained in later sections. The resulting
system of governing equations are referred as the Navier Stokes equations.
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4
The Smoothed Particle Hydrodynamics

method

The Smoothed Particle Hydrodynamics method often referred as SPH, is a
meshfree particle adaptive method that performs numerical approaches based
on the Lagrangian scheme. A crucial characteristic of the metodology is that
the entire computational domain turns into a set of distributed particles which
posses material properties. Partial differential equations that govern the phys-
ical system are converted into their integral representation by means of a con-
volution. Then, the convolution of the function is manipulated according to
the SPH methodology and discretized, leading to its particle representation.
Individual particle behaviour becomes a function of the designated interpola-
tion function, which performs a weighted average of all the values of the nearest
particles surrounding the particle of interest. Such average is carried out by a
summation process of the information held on each neighbour particle. Phys-
ical variables of interest are computed implementing such interpolation as well.

In this chapter a brief introduction to the formality of SPH will be briefed.
Basic concepts, and mathematical formulation to obtain the SPH approxima-
tion for PDEs are explained. Furthermore, issues related to the formulation are
highly discussed, and finally the construction process of interpolation function
are carried out.
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The SPH method was first introduced and formulated by (Gingold and
Monaghan, 1977; Lucy, 1977) to solve astrophysical problems. Since then SPH
has been extensively studied and extended to distinct fields. In this study the
SPH method will be implemented concerning the field of Computational Fluid
Dynamics. Figure 4.1 summarizes a general classification of the SPH method.

 

 

  

Figure 4.1: General classification of the SPH method.

The calculation process during the numerical simulations presented in later
chapters were obtained using the DualSPHysics software(Crespo et al., 2015).
Based on a weakly incompressible meshfree particle approach, this software has
been extended to a vast variety of applications, particularly in hydrodynamics
problems.

4.1 Formality of SPH
Pertaining to those methods based on the Integration technique, the SPH
methodology solves governing equations by means of a integral representation.
Such a straightforward process consists on passing the differential operator
acting on a given field function to an interpolating function (best known as
kernel function).
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This action reduces the requirement on the order of consistency of the
approximated field functions, turning SPH into a weak-like formulation (Liu,
2009).

The integral representation is performed through a convolution of field
functions like density, velocity, pressure, etc. For a better understanding of
the theoretical foundation1 of the SPH method it is often necessary a high
mathematical background, since a variety of abstract concepts are required to
stablish a basis from which the methodology is able to justify its performance,
accuracy, convergence, limitations, and novel applications. As an attempt to
exhibit a general overview of the mathematical background (that is regularly
a requirement to get introduced in numerical methods), Figure 4.2 highlights
the path to be followed for those interested on this sorts of topics.

 

Figure 4.2: Topic basis for understanding numerical methods.

Supposing an acceptable level of math, the next sections present the essen-
tial SPH formulation.

4.2 Essential formulation
The essential formulation of SPH relies mainly in two very important steps,
"The integral representation", and "The particle approximation".

The integral representation (subsequently titled kernel approximation)
of the field functions, consists of applying the convolution of a given arbitrary
function or derivative, with a weight(smoothing) function. The smoothing

1 Introductory concepts and a detailed explanation of the mathematical formality of
meshfree methods is addressed in (Liu, 2009; Liu and Zhang, 2013)
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function is designated as the kernel or kernel function. Given any arbitrary
function (material quantity) f evaluated on a particle i (whose position vector
is ri), i.e. f (ri), the interpolation via a convolution in SPH is such that,〈

f(ri)
〉

=

∫
∂Ω

f(rj)δ(ri − rj)drj, (4.1)

where
〈
·
〉
stands for the averaging operator, δ(ri − rj) is the Dirac delta

function, and ∂Ω denotes the domain that contains ri. Equation (4.1) is a
point support representation of function f due to the nature of the Dirac delta
function, therefore such equation cannot be implemented for establishing nu-
merical models (Liu and Liu, 2010b; Monaghan, 1992). In order for the latter
equation to be more suitable in a numerical approach, the Delta function is
replaced by a smoothing function W (ri− rj, h) with a finite spatial dimension
defined by h, which is called smoothing length and represents the support do-
main(coming up in the next sections) of W.

The equation (4.1), then becomes,〈
f(ri)

〉
=

∫
∂Ω

f(rj)W (ri − rj, h)drj, (4.2)

from (4.2), W (ri − rj, h) is demanded to satisfy the next conditions: for a
constant smoothing length h> 0.

1. Positivity,
∫
∂Ω

W (ri − rj, h) > 0 ∀j ∈ ∂Ω,

2. Compact support, W (ri − rj, h) = 0 ∀j ∈ ∂Ωc,

3. Unity,
∫
∂Ω

W (ri − rj, h)drj = 1, ∀j ∈ ∂Ω,

4. Delta function property, lim
h→0

W (ri − rj, h) = δ(ri − rj),

5. Decay, (ri−rj) ≤ (ri−rk)⇒ W (ri−rj, h) ≥ W (ri−rk, h) ∀j, k ∈ ∂Ω,

6. Symmetric, W (ri − rj, h) = W (−(ri − rj), h),

7. Smoothness, W (ri − rj, h) should be sufficiently smooth.

Other manner to express condition 2 is,

W (ri − rj, h) = 0 when |ri − rj| > kh,

where k is a constant related to the smoothing function for a point at ri, and
defines the effective area of such function. This effective area is called the
support domain, and will be clarified in this section.
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As it is always quoted in numerical methods, a classification in the order of
accuracy based on the order of the derivative (truncation error), exposes either
the diffusive or dispersive nature of any method. Carrying out an expansion in
Taylor series of eq.(4.2), makes evident that the truncation error is of second
order of accuracy, leading the methodology to a diffusive scheme see (Liu and
Liu, 2003). One of the primary objectives of this section is to explain the
process of the SPH formulation applied to functions like derivative operators.
This task often corresponds to the first contact with the method, however there
is a need of experience, skills, and tricks, that are not taught in literature, but
emphasized to acquire. The methodology starts similarly to eq.(4.2), but the

function
〈
f(ri)

〉
is replaced by

〈
∂f(ri)

∂xi

〉
, then,

〈
∂f(ri)

∂xi

〉
︸ ︷︷ ︸

Any function evaluated in i

=

∫
∂Ω

∂f(rj)

∂xj
W (ri − rj, h)drj,︸ ︷︷ ︸

The integral of the same function evaluated in j, multiplied by W

(4.3)
Keeping the anterior process in mind, and generalizing,〈

∇ · f (ri)
〉

=

∫
∂Ω

(∇ · f (rj))W (ri − rj, h)drj, (4.4)

where the derivative of the integral is operated with respect to the j-th coor-
dinate. Now considering the next identity, and substituting in the previous
equation,

[∇ · f (rj)]W (ri − rj, h) =∇ · [f (rj)W (ri − rj, h)]

− f (rj) · ∇ [W (ri − rj, h)] , (4.5)

substituting in eq.(4.4),

〈
∇ · f (ri)

〉
=

∫
∂Ω

∇ · [f (rj)W (ri − rj, h)] drj

−
∫
∂Ω

f (rj) · ∇ [W (ri − rj, h)] drj, (4.6)

using the divergence theorem in the first integral on the right hand side of
(4.6), in order to integrate over the surface of the domain of integration,

〈∇ · f (ri)〉 =

∫
S

f (rj)W (ri − rj, h) · ndS

−
∫
∂Ω

f (rj) · ∇ [W (ri − rj, h)] drj, (4.7)

As the smoothing function is defined to have a compact support, the first
integral on the right hand side becomes zero while considering particles inside
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the entire domain, otherwise a truncation of the smoothing function should be
applied for particles near/in the boundaries, consequently the order of the ker-
nel approximation via a Taylor expansion becomes larger and the first integral
is no longer zero. Considering the first case eq.(4.7) becomes,

〈∇ · f (ri)〉 = −
∫
∂Ω

f (rj) · ∇ [W (ri − rj, h)] drj, (4.8)

Equations (4.2) and (4.8), are examples of how the SPH method is applied
on arbitrary functions, in this case a function and its derivative, respectively.
From this section forward any function representation obtained through the
anterior process will be referred as kernel approximation.

The particle approximation is the next step to be exerted after the
kernel approximation. To achieve this, the entire (continuous)domain is sub-
divided in material particles that carries individual mass and occupy individ-
ual space. This process is called discretization, and it is performed once the
equations (4.2) and (4.8) have been obtained, then integral equations previ-
ously presented are converted into its discretized forms of summation over all
the particles in the support domain h of the kernel W. The corresponding dis-
cretized process of summation over the particles is commonly known as particle
approximation. The particle approximation is implemented as follows.
Beginning with equation (4.2),〈

f(ri)
〉

=

∫
∂Ω

f(rj)W (ri − rj, h)drj, (4.9)

if the infinitesimal volume drj, in the above integration at the location of
particle j is replaced by the finite volume of a particle 4V (rj) that is related
to the particle m(rj) by the equality,

m(rj) = 4V (rj)ρ(rj), ∀j ∈ ∂Ω (4.10)

where ρ(rj) is the density of particle j. Now from eq.(4.9),〈
f(ri)

〉
=

∫
∂Ω

f(rj) [W (ri − rj, h)] drj,

≈
N∑
j

f(rj)W (ri − rj, h)4 V (rj),

≈
N∑
j

f(rj)W (ri − rj, h)
ρ(rj)

ρ(rj)
4 V (rj),

≈
N∑
j

f(rj)W (ri − rj, h)
(ρ(rj)4 V (rj))

ρ(rj)
,

≈
N∑
j

f(rj)W (ri − rj, h)
m(rj)

ρ(rj)
,
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finally,

f(ri) =
N∑
j

f(rj)

ρ(rj)
W (ri − rj, h)m(rj), ∀j ∈ ∂Ω (4.11)

Following the same argument, the particle approximation can be achieved for
the spatial derivative operator. Remembering eq.(4.8),

〈∇ · f (ri)〉 =−
∫
∂Ω

f (rj) · ∇ [W (ri − rj, h)] drj,

≈−
N∑
j

f (rj) · ∇W (ri − rj, h)4 V (rj),

≈−
N∑
j

f (rj) · ∇W (ri − rj, h)
ρ(rj)

ρ(rj)
4 V (rj),

≈−
N∑
j

f (rj) · ∇W (ri − rj, h)
(ρ(rj)4 V (rj))

ρ(rj)
,

≈−
N∑
j

f (rj) · ∇W (ri − rj, h)
m(rj)

ρ(rj)
,

resulting,

∇ · f (ri) = −
N∑
j

f (rj)

ρ(rj)
· ∇W (ri − rj, h)m(rj), (4.12)

or more specific with the spatial derivative of the RHS with respect to ri,

∇i · f (ri) = −
N∑
j

f (rj)

ρ(rj)
· ∇jW (ri − rj, h)m(rj), ∀j ∈ ∂Ω (4.13)

4.2.1 Shape of a smoothing function

According to (Li and Liu, 2002), smoothing functions are preferred to be sym-
metric so that many important properties like conservation of linear momen-
tum and energy can be verified. Then most of the smoothing functions present
the next form:

W (rij, h) =
1

hd
f

(
||rij||
h

)
(4.14)

where d is the spatial dimension, and rij = riji i = (ri − rj)i i.

Now using the euclidean norm defined as ||rij|| :=
√

(ri − rj)i i · (ri − rj)i i,
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and differentiating eq.(4.14) with respect to ri, by chain rule,

∇iW (rij, h) =
∂W (||ri − rj||, h)

∂ri
i i, (4.15)

=
∂W (||ri − rj||, h)

∂||ri − rj||
∂||ri − rj||

∂ri
i i,

=
rij
||rij||

∂W (||ri − rj||, h)

∂||ri − rj||
, (4.16)

from the above a very effective identity can be obtained,

∇iW (rij, h) =
rij
||rij||

∂W (||ri − rj||, h)

∂||rij||
,

=− rji
||rji||

∂W (||ri − rj||, h)

∂||ri − rj||
,

=−∇jW (rij, h), (4.17)

finally, substituting eq.(4.17), into eq.(4.13),

∇i · f (ri) =−
N∑
j

f (rj)

ρ(rj)
· ∇jW (ri − rj, h)m(rj),

=
N∑
j

f (rj)

ρ(rj)
·
(
−∇jW (ri − rj, h)

)
m(rj),

=
N∑
j

f (rj)

ρ(rj)
· ∇iW (ri − rj, h)m(rj).

thus,

∇i · f (ri) =
N∑
j

f (rj)

ρ(rj)
· ∇iW (ri − rj, h)m(rj). (4.18)

showing that, the spatial derivative of any function in its particle approxima-
tion is highly dependent on the spatial derivative of the smoothing function.
Furthermore the minus sign that appears in a SPH discretization can be elim-
inated using eq.(4.17). Finally, before the average operator can be applied to
the equations of fluid dynamics, some of its properties (Liu and Liu, 2003), are
highlighted below,

Given two arbitrary functions f(ri), f(rj), and a constant c the next operations
exist,

〈f(ri) + f(rj)〉 = 〈f(ri)〉+ 〈f(rj)〉 (4.19)

and,
〈f(ri)f(rj)〉 = 〈f(ri)〉〈f(rj)〉 (4.20)
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it can be shown straightforward that the next properties are satisfied,

〈f(ri) + f(rj)〉 = 〈f(rj) + f(ri)〉 (4.21)

〈f(ri)f(rj)〉 = 〈f(rj)f(ri)〉 (4.22)

〈cf(ri)〉 = c〈f(ri)〉 (4.23)

4.3 SPH differentiation rules
There are some issues related when deriving the SPH version of any given func-
tion like in (4.18). Two different techniques are presented to overcome such is-
sues, the product-like, and quotient-like SPH function conversions (Monaghan,
1992). The next results are derived using such techniques; first the conversion
of the divergence operator into SPH methodology through each technique is
exposed. Furthermore in appendix B, an alternative procedure to obtain the
SPH version of the gradient operator is provided according to (E. Danis et al.,
2013). Both methods yield the same results and can be applied analogously.

4.3.1 Product-like SPH function conversion

Considering the divergence of the next product,

∇ · (ρ(ri)f (ri)) = ρ(ri)(∇ · f (ri)) + f (ri) · (∇ρ(ri)) (4.24)

and isolating the second term of the anterior equation,

∇ · f (ri) =
1

ρ(ri)

(
∇ · (ρ(ri)f (ri))− f (ri) · (∇ρ(ri))

)
(4.25)

applying now (4.18) to each derivative term of the right hand side of eq.(4.25),

∇i · f (ri) =
1

ρ(ri)

[ N∑
j

(ρ(rj)f (rj))

ρ(rj)
· ∇iW (ri − rj, h)m(rj)

− f (ri) ·
( N∑

j

ρ(rj)

ρ(rj)
∇iW (ri − rj, h)m(rj)

)]
,

=
1

ρ(ri)

[ N∑
j

f (rj) · ∇iW (ri − rj, h)m(rj)

− f (ri) ·
( N∑

j

∇iW (ri − rj, h)m(rj)
)]
,

=
1

ρ(ri)

[ N∑
j

m(rj)
(
f (rj)− f (ri)

)]
· ∇iW (ri − rj, h),
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results the product-like SPH conversion of the divergence operator,

∇i · f (ri) =
1

ρ(ri)

[ N∑
j

m(rj)
(
f (rj)− f (ri)

)]
· ∇iW (ri − rj, h). (4.26)

4.3.2 Quotient-like SPH function conversion

Beginning with the next identity,

∇ ·
(

f (ri)

ρ(ri)

)
=
∇ · f (ri)

ρ(ri)
− f (ri) · ∇ρ(ri)

ρ(ri)2
, (4.27)

and isolating the second term from the right hand side,

∇ · f (ri) = ρ(ri)

[
∇ ·
(

f (ri)

ρ(ri)

)
+

f (ri) · ∇ρ(ri)

ρ(ri)2

]
, (4.28)

once again, the next step consists of applying (4.18) to each derivative term
from the right hand side of eq.(4.28),

∇i · f (ri) =ρ(ri)

[ N∑
j

(
f (rj)

ρ(rj)

)
ρ(rj)

· ∇iW (ri − rj, h)m(rj)

]

+
f (ri)

ρ(ri)2
·
[ N∑

j

ρ(rj)

ρ(rj)
∇iW (ri − rj, h)m(rj)

]
,

=ρ(ri)

[ N∑
j

f (rj)

ρ(rj)2
· ∇iW (ri − rj, h)m(rj)

]

+
f (ri)

ρ(ri)2
·
[ N∑

j

∇iW (ri − rj, h)m(rj)

]
,

=ρ(ri)

[ N∑
j

m(rj)

(
f (rj)

ρ(rj)2
+

f (ri)

ρ(ri)2

)
· ∇iW (ri − rj, h)

]
,

therefore eq.(4.28) becomes,

∇i · f (ri) = ρ(ri)

[ N∑
j

m(rj)

(
f (rj)

ρ(rj)2
+

f (ri)

ρ(ri)2

)
· ∇iW (ri − rj, h)

]
. (4.29)

Following (Li and Liu, 2002), the last equation better represents the princi-
ple of momentum conservation, and for this reason this representation of the
divergence operator will be adopted.
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4.3.3 Additional concepts

In previous sections the kernel function denoted by W (ri − rj, h) has been
extensively described and incorporated into the SPH formulation. Actually,
referring to subsection 1.3, this kernel plays the role of the early mentioned
support domain. In addition to this, the concept of influence domain is ex-
tended below and both concepts are linked to the their analogous meaning in
the SPH terminology. Figures 4.3(a) and 4.3(b) illustrate the global idea of
the aforementioned domains.

 

(a)

 

h 

(b)

Figure 4.3: Support domain SpD(coloured with blue),and Influence domain
InfD(showed with points in red colour).

The Support domain is defined as the region from which the information
from all the particles p(rj) inside this zone contributes to obtain information
and predict future behaviour of a particle with vector position ri. Particles
carry material properties and they move according to the information obtained
from their neighbours via a the kernel W (ri − rj, h). This concept becomes
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relevant when treating a field variable evaluation.

The Influence domain is defined as the region from which a particle
p(rj) exerts its influence onto the particle of interest p(ri). When the concept
of influence domain is used, concerns only particles inside the kernel. In other
words Support and Influence domain seem to be the same when particle j per-
tains to the support domain of particle i Figure 4.3(a). Otherwise no Influence
domain exist at all as in the case of Figure 4.3(b).

4.4 Smoothing functions
Smoothing/Kernel functions are the main core of the SPH methodology; these
functions perform the task of measuring the influence of any particle inside the
support domain of the particle of interest, so as to assign an average value of
the material property that the particle of interest carries with it. Depending
on the distance from each of one of the particles to the main particle, the
interaction will be stronger when the distance between them is short, and it
will decrease monotonically as introduced in previous sections.

Every numerical method meets the challenging task of achieving a numer-
ical representation of a physical phenomenon; this relates one of the most
important issues of a numerical method to be satisfied, namely the consis-
tency, since it guarantees how well the methodology has the ability to exactly
represent governing equations. In order to achieve consistency in SPH, it is
necessary for a kernel to reproduce a function, and its derivatives at a given
order. Regarding SPH method the consistency appears during two of the SPH
essential steps, namely the kernel, and particle approximations.2

4.4.1 Selection of smoothing functions

Construction of kernels is mostly related to how well the kernel is defined,
so that it mimics the Dirac Delta function behaviour when the smoothing
length tends to zero in the limit. Generally, functions that are chosen for this
purpose might have the shape of polynomials or piecewise functions. In (Liu
and Liu, 2003) is exposed a more in-depth explanation about the entire process
of kernels construction; the entire process is constrained to satisfy conditions
for consistency as previously mentioned. In this section some of the more
implemented piecewise kernels are shown so their derivatives, and finally a
justification of the kernel to be used during the calculations is presented.

2 In (Liu, 2002), a detailed explanation about conditions for consistency in SPH can be
found.
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Quartic Kernel

Proposed by (Lucy, 1977), and defined as next:

W (ri − rj, h) = αd

{
(1 + 3q)(1− q)3 q 6 1

0 q > 1
(4.30)

where q =
|ri − rj|

h
,

The number αd, is equal to 5/4h, 5/πh2, and 105/16πh3 in one-, two-,
and three- dimensional domain respectively. It is worth mentioning that αd is
known as the dimensional factor, and assures that the kernel functions satisfy
the unity condition (Liu and Liu, 2003). Figure 4.4 shows the Quartic kernel
function, and its first derivative.
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Figure 4.4: Quartic Kernel.
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(a)

 

Particle under 

consideration 

Support 

Domain 

Arbitrary 

particle 

(b)

(c)

 

Particles inside the Support 

Domain of the Kernel derivative 

(d)

Figure 4.5: Quartic Kernel, and its first derivative as it might look like during
a 2D calculation.

Figures 4.5(a) and 4.5(c), exhibit the surface representation of the Quartic
kernel while Figures 4.5(b) and 4.5(d), present in a more comprehensible form,
the main idea of a particle interaction inside the compact support domain of
the kernel and its derivative respectively.
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Gaussian Kernel

This kind of kernel was proposed by (Monaghan, 1992), this work also
specifies that, in order to find a physical interpretation of a SPH equation
representation, the implementation of this kernel is preferred. The Gaussian
kernel is defined as next:

W (ri − rj, h) = αde
−q2 (4.31)

where αd, is equal to 11/π1/2h, 1/πh2, and 1/π3/2h3 in one-, two-, and three-
dimensional domain respectively. In Figure 4.6 the Gaussian kernel and its
derivative are plotted.
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Figure 4.6: Gaussian Kernel.
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(a)

 

(b)

(c)

 

(d)

Figure 4.7: Gaussian Kernel, and its first derivative as it might look like
during a 2D calculation.

Figures 4.7(a) and 4.7(c), shows the surface representation of the Gaussian
kernel, on the other hand Figures 4.7(b) and 4.7(d), present the main idea of
a particle interaction inside the compact support domain of the kernel and its
derivative respectively.
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Cubic Kernel

(Monaghan and Lattanzio, 1985) derived a Cubic kernel through spline
functions implementation. This kernel is expressed as next:

W (ri − rj, h) = αd


(2/3)− q2 + (1/2)q3 0 ≤ q < 1

(1/6)(2− q)3 1 ≤ q < 2

0 q > 2

(4.32)

where αd, is equal to 1/h, 15/7πh2, and 3/2πh3 in one-, two-, and three-
dimensional respectively. In Figure 4.8 the Cubic kernel and its derivative are
graphed.
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Figure 4.8: Cubic Kernel
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(a)

 

(b)

(c)

 

(d)

Figure 4.9: Cubic Kernel and its first derivative during a 2D calculation.

Figures 4.9(a) and 4.9(d), show the surface representation of the Cubic
kernel, furthermore Figures 4.9(b) and 4.9(d), present in a more suitable form,
the main idea of a particle interaction inside the compact support domain of
the kernel and its derivative respectively.
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Wendland Kernel

As presented in Wendland (1995), a new class of positive definite and com-
pactly supported function was devised. The expression that defines this sort
of kernel is the next:

W (ri − rj, h) = αd

(
1− q

2

)4

(2q + 1) 0 ≤ q ≤ 2 (4.33)

where αd, is equal to 7/4πh2, and 21/16πh3 in two-, and three- dimensional
respectively. Figure 4.10 presents the graph of the Wendland kernel so its
derivative.
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Figure 4.10: Wendland Kernel
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(a)

 

(b)

(c)

 

(d)

Figure 4.11: Wendland Kernel and its first derivative representation during
a 2D calculation.

Figures 4.11(a) and 4.11(c), show the surface representation of the Wend-
land kernel, additionally Figures 4.11(b) and 4.11(d), present in a more suit-
able form, the main idea of a particle interaction inside the compact support
domain of the kernel and its derivative respectively.
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Before continuing with the selection of the smoothing function, there are
some applications, and restrictions of the anterior kernels that seem to be
appropriated to mention. Commencing with the Quartic kernel, it can be
easily observed that the dimension of its compact support domain is smaller
from the other functions, causing during the kernel approximation to not to
consider enough number of neighbours, not to mention that its shape is far
from the goal subject Gaussian-like shape that, is necessary to mimic according
to (Monaghan, 1992). Continuing with the Gaussian kernel it is stated in (Liu
and Liu, 2003) that, although it is deemed to have a sufficient smoothness for
the differentiation process at higher derivative orders, it does not represent a
real compact support domain, unless the smoothing length tends to zero in the
infinite, nevertheless an advantage of this non real compact support is that, it is
very stable and accurate when treating with disordered particles. Now, in the
case of the Cubic smoothing function devised by (Monaghan and Lattanzio,
1985), not only a better smoothing dimension is defined, but also a more
suitable Gaussian-like shape is obtained. Unfortunately as it is mentioned
in (Monaghan, 1992), this function is piecewise defined, therefore the little
difficulty of its implementation becomes an extra task to deal with, compared
to the employment of one piece smoothing functions. Finally the Wendland
kernel seems to mimic accurately the Gaussian shape, and at the same time to
overcome the issues related to the piecewise cubic kernel function. Indeed such
a smoothing function has gained in recent years an increasing interest in SPH
applications. Figure 4.12, shows a comparison between smoothing functions.
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Figure 4.12: Kernels.
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Observing the anterior in more detail, the kernel that mimics almost com-
pletely the Gaussian function shape is that devised fromWendland. Within the
framework of this criterion the anterior comparisons suggest that a Wendland
kernel is an excellent choice to be considered during the methodology execu-
tion. Figure 4.13 exhibits the kernel derivatives, demonstrating again that,
the similarity between the Gaussian and Wendland functions is remarkable
contrary to other kernels.
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Figure 4.13: Kernel derivatives.
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5
Numerical discretization

For the equations of mass and momentum conservation, a similar process like
that shown in 4.2 at the beginning of chapter 4, is used.

Beginning with the continuity equation from chapter 3,
dρ

dt
= −ρ∇ · v , (5.1)

using eq.(4.24), and isolating the first term of the right hand side,

dρ(ri)

dt
=− ρ(ri)∇ · v(ri),

=v(ri) · (∇ρ(ri))−∇ · (ρ(ri)v(ri)), (5.2)

applying eq.(4.18) to the second term, and using the SPH gradient form ob-
tained in Appendix B,

v(ri) · (∇ρ(ri))−∇ · (ρ(ri)v(ri)) =v(ri) ·
[ N∑

j

m(rj)∇iW (ri − rj, h)
]
−

[ N∑
j

ρ(rj)v(rj)

ρ(rj)
· ∇iW (ri − rj, h)m(rj)

]
,

=
[ N∑

j

m(rj)
(
v(ri)− v(rj)

)]
· ∇iW (ri − rj, h),

therefore, the particle approximation of the continuity equation results,

dρ

dt
=
[ N∑

j

m(rj)
(
v(ri)− v(rj)

)]
· ∇iW (ri − rj, h). (5.3)
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which is the most common expression for the continuity equation in the SPH
methodology. It is worth mentioning that this equation permits the density
field to vary because the divergence does not equals to zero but only ap-
proaches; this means that eq.(5.3) admits density changes representing a com-
pressible medium. Permitting non-zero compressibility the current discretiza-
tion is titled Weakly Compressible Smooth Particle Hydrodynamics (hereafter
referred as WCSPH).

For the momentum equation, from chapter 3,

dv
dt

= −1

ρ
∇P +

1

ρ

(
∇ · ρνo∇

)
v + g (5.4)

Following a similar discretization process like in Appendix A for the Pressure
term, it yields to,

∇P (ri)

ρ(ri)
=
∑
j

mj

(
P (rj)

ρ(rj)2
+
P (ri)

ρ(ri)2

)
· ∇iW (ri − rj, h). (5.5)

this equality early used in (Liu and Liu, 2003; Monaghan, 1985, 1992), con-
serves both linear and angular momentum due to the existence of the action
reaction principle between particles. As a consequence this SPH version of the
Pressure term is considered a symmetrized and balanced approach. In the next
section some of the treatments for the diffusive term in momentum equation
is explained.

5.1 Viscosity treatment
Concerning the diffusive term in eq.(5.4) there exit at least three approaches.
The first of these was presented by (Monaghan and Gingold, 1983) to allow
shocks in tubes to be simulated. This numerical representation of the viscous
term provides the advantage of diminish instabilities caused by the non uniform
behaviour of the particles. The new viscous term is added commonly into the
Pressure gradient in the momentum equation, resulting as it is shown below,

∇P (ri)

ρ(ri)
=
∑
j

m(rj)

(
P (rj)

ρ(rj)2
+
P (ri)

ρ(ri)2
+ Πij

)
· ∇iW (ri − rj, h). (5.6)

where,

Πij =


αcijµij
ρij

v ij · r ij < 0

0 v ij · r ij > 0
(5.7)

with v ij = v i−v j, r ij = r i−r j, µij = hv ij ·r ij/rij+η2, and cij = c(ri)+c(rj)/2,
that represents the mean speed of sound. The number η2 = 0.01h2 is factor
inserted to prevent numerical divergences when two particles approach each
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CHAPTER 5. NUMERICAL DISCRETIZATION

other, and α is a coefficient that depends on the particle distance, therefore
it needs to be tuned depending on the study case so as to provide a proper
dissipation (Crespo et al., 2015). In this manner (5.4) becomes,

dv
dt

= −
∑
j

m(rj)

(
P (rj)

ρ(rj)2
+
P (ri)

ρ(ri)2
+ Πij

)
· ∇iW (ri − rj, h) + g (5.8)

The second model proposed to approach the viscous term was presented by
(Morris et al., 1997),

Πi =
N∑
j

m(rj)
4νor ij · ∇iW (ri − rj, h)

(ρ(ri) + ρ(rj))(ri − rj)2
. (5.9)

this model can be adapted in order to not to diverge when two particles ap-
proach each other (Lo and Shao, 2002), yielding to,

Πi =
N∑
j

m(rj)
4νor ij · ∇iW (ri − rj, h)

(ρ(ri) + ρ(rj))(rji)2 + η2
. (5.10)

thus, the version of the momentum equation using this approach yields,

dv
dt

=−
∑
j

m(rj)

(
P (rj)

ρ(rj)2
+
P (ri)

ρ(ri)2

)
· ∇iW (ri − rj, h)+

N∑
j

m(rj)
4νor ij · ∇iW (ri − rj, h)

(ρ(ri) + ρ(rj))(ri − rj)2 + η2
+ g , (5.11)

Both versions of the momentum equation are principally used when the case of
study involves a laminar regime. The third approach was published by (Dal-
rymple and Rogers, 2006). Such approach allows modelling a turbulence flow
based on the concept of Sub-Particle Scale first presented by (Gotoh et al.,
2004). In this thesis the first two approximations will be implemented.

To complete the system of equations an considering small variations of the
density field an equation of state is adopted. The most common equation of
state implemented in WCSPH methodology is that proposed by Tait (Batche-
lor, 2000) which is used to mimic barotropic fluids. The equation is described
as follows,

Pi =
ρ0Cs
γ

[(ρ0

ρi

)γ
− 1
]

(5.12)

where ρ0 is a reference density, Cs represents the sound velocity at the reference
density, γ acquires the value of 7 for fluids like water.
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5.2. DENSITY TREATMENT

5.2 Density treatment

The Lagrangian nature of the method carries a disordering in the particle
domain, consequently high-frequency low amplitude oscillations populates the
scalar field(Molteni and Colagrossi, 2009). These authors proposed to mitigate
the consequences of the natural disorder of particles trough the addition of a
diffusive term1 into the continuity equation (5.3) as shown below,

dρ

dt
=
[ N∑

j

m(rj)
(
v(ri)− v(rj)

)]
· ∇iW (ri − rj, h)+

2δφhc0

N∑
j

(ρj − ρi)
(r i − r j) · ∇iW (ri − rj, h)

r 2
ij

mj

ρj
. (5.13)

The anterior equality represents the formulation introduced by (Molteni and
Colagrossi, 2009), commonly referred as δ-SPH formulation because of the free
parameter δφ that is set to a suitable value. Formally it can be explained as
the addition of the Laplacian of the density field to the continuity equation.
Typically the value of the δφ parameter is 0.01.

5.3 Fluid solid interaction

Fluid solid interaction in SPH has been successfully modelled (Canelas, 2015),
assuming that any given body with an arbitrary shape will behave like a rigid
body. Therefore equations that govern the dynamics of the rigid body will
predict the resultant motion of a body under the influence of a fluid flow.
From a inertial reference frame, the equations that describe the rigid body
dynamics are:

MI
dVI
dt

=
∑
i

Fi, (5.14)

I
dΩI

dt
=
∑
i

(ri −RI)× Fi, (5.15)

where MI is the mass of the body I, VI its velocity, II its inertial tensor, ΩI ,
its angular velocity, and RI its center of mass, subjected to an arbitrary num-
ber of fluid particle forces Fi exerted at boundary particles referenced by ri.
Both equations stand for the 6 degrees of freedom of the body that describe
completely its dynamics.

Forces Fi that contribute to the motion of the rigid body are determined by
the total summation of the fluid particle forces exerted on each body particle.
The number of fluid particles that affects a particle on the body depends on

1 In (Antuono et al., 2012) the analysis of the influence of this term is deeply discussed
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the smoothing length of the kernel function. Thus, each boundary particle
pertaining to the body experiences a force (Crespo et al., 2015) per unit mass
expressed by,

Fi =
∑
w

Fiw, with w ∈ {Fluid-particles inside the kernel} (5.16)

where Fiw represents the force per unit mass that a particle of fluid exerts on
a body particle i. According to (Canelas, 2015), by using a particulate method
it is easy to handle sub sets of particles (the body I), whose variables are inte-
grated in time with a different set of equations. Therefore, using the resultant
force from momentum equation of Navier Stokes and Newton’s equations for
rigid body dynamics, eq.(5.14) and (5.15) can be now expressed as,

MI
dVI
dt

=
∑
i

mi
dviw
dt

, (5.17)

I
dΩI

dt
=
∑
i

mi(ri −RI)×
dviw
dt

, (5.18)

in both equations mi
dviw
dt

involves the force exerted upon a particle that per-
tains to the set of particles of body I. This force incorporates body forces,
and fluid particle resultant forces (from Navier Stokes momentum equation).
Finally the resultant motion of the body I is driven by the sum of individual
particle motions that follows,

vi = V + Ω× (ri −RI). (5.19)

The principal idea of the aforementioned is related to the previous work of
(Koshizuka et al., 1998) and applied successfully by (Canelas, 2015).

5.4 Boundary treatment

Dynamic boundary conditions

In this kind of boundary treatment particles belonging to the boundary do-
main are considered to behave like fluid particles. Under this proposal particles
representing any boundary shall satisfy both, continuity (5.3) and momentum
(5.11) equations. Nevertheless the boundary domain may appear either fixed or
experience an imposed law of motion. In the present study, boundary particles
are fixed while representing a fluid reservoir in which the numerical campaign
is carried out and just in one case there will appear an imposed motion law.
In (Crespo et al., 2007b) the foundation and properties of this boundary treat-
ment can be found, additionally a numerical and experimental comparison is
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presented. The author also clarifies the simplicity and advantages of the dy-
namic boundary implementation in SPH-based numerical approaches.

When implementing Dynamic boundary treatment fluid particles near or
approaching a boundary are subjected to a repulsive force. This force is the
result of increasing the density value of particles that belong to the boundary
when the distance of any fluid particle approaching it is below two times the
smoothing length. The repulsion effect to the fluid particle is presented in the
momentum equation due to the pressure term.

Periodic open boundaries

Periodic open boundaries algorithm let particles near an open lateral boundary
consider information of particles inside a periodic (complementary) support
domain. The complementary support domain on the opposite side of an open
boundary mimics a domain with no lateral boundaries in the region where such
implementation is applied. Figure 5.1 shows the idea of considering periodic
open boundaries.

 

Figure 5.1: Periodic open boundaries.

5.5 Time integration
The integration in time in this study will adopt an explicit second order in-
tegration Symplectic scheme (Leimkuhler et al., 1996). Mainly the procedure
involves two-half steps as it is explained below. Given the general term of
material property S evaluated at particle i,

dSn+1
i

dt
=
Sn+1
i − Sni

∆t
(5.20)

adding an adjustment to the anterior equation as follows,

dSn+1
i

dt
=
Sn+1
i + S

n+1/2
i − Sn+1/2

i − Sni
∆t

(5.21)
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then separating eq.(5.21),

1

2

dSni
dt

=
S
n+1/2
i − Sni

∆t
(5.22)

1

2

dS
n+1/2
i

dt
=
Sn+1
i − Sn+1/2

i

∆t
(5.23)

rearranging terms in both equations,

S
n+1/2
i = Sni +

1

2
∆t
dSni
dt

(5.24)

Sn+1
i = S

n+1/2
i +

1

2
∆t
dS

n+1/2
i

dt
(5.25)

commonly eq. (5.24), and (5.25) are referred as predictor and corrector steps.

Concerning the stability of the simulation the parameter that rules the
region where the methodology does not present numerical disturbances while
approaching an analytical solution is the Courant-Friedrichs-Lewy (CFL) con-
dition. Furthermore this number allows the time length step appropriated
for the information of a material function to travel through each discretizated
spatial region. Therefore the information behaves in a more realistic man-
ner. Based on the DualSPHysics software implementation the CFL number is
calculated as follows.

∆t = CFL ·min
(
∆tf ,∆tCV

)
(5.26)

where,

∆tf = mina

(√
h

|fa|

)

∆tCV = mina

(
h

cs +maxa

∣∣∣hvij · rij
r2
ij + η2

∣∣∣
)

High Performance Computing implementation

Due to the necessity of extending numerical calculations to parallel architec-
tures so as to reach admissible computational times, extraordinary efforts have
been recently developed in the usage of Graphic Processing Units best known
as GPU’s. Linked to this a high demand on adapting serial codes to clusters
arrays may appear to increase. As a consequence many of the actual softwares
let the user perform simulations using more than just one core in a desk-
top machine. This is the case speaking particularly about the DualSPHysics
software. The nature of the SPH methodology let the code be massively par-
allelized, since each material particle can be easily tracked and be treated as
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an individual entity. DualSPHysics provides the option of carrying out nu-
merical simulations in a GPU card implementing CUDA or in a cluster by
means of the Message Passing Interface standard. In this study a comparison
of two different parallel architectures will be exposed. A detailed explanation
about the High Performance Computing implementation in DualSPHysics can
be found in (Cercos-Pita, 2015; Crespo et al., 2015; Domínguez et al., 2013a,b;
Maruzewski et al., 2010; Moulinec et al., 2008; Valdez-Balderas et al., 2013).
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6
Results and validations

In this chapter the numerical results of implementing the Smoothed Parti-
cle Hydrodynamics methodology concerning the solution of the Navier-Stokes
equations are presented. The numerical approaches were carried out upon the
assumption of a quasi-incompressible viscous fluid. Initially the SPH method
is validated in accordance with other authors results. First the results of the
classical cases of immersed simple geometries in a viscous fluid are conducted.
In one of the cases the results of a moving square in accordance with an im-
posed motion law through a fluid at rest are exhibited. Similarly the case of
a fixed circular cylinder immersed in a fluid flow is exposed and discussed.
Furthermore the ascending motion of a circular cylinder located at a certain
depth from an undisturbed free surface is examined; the ascending motion is
a consequence of the density differences of the cylinder and the fluid. Simi-
larly the fluid flow through an open channel configuration, namely a fish-pass
structure, is investigated. The aforementioned study cases assess the perfor-
mance of the numerical methodology letting SPH be able to obtain results in
close agreement with previous solutions either numerical or experimental from
other authors work. Finally two interesting cases are discussed. First the a
numerical simulation of the submarine ascending motion to an undisturbed
free surface in an open channel is described. Following a similar procedure like
that in the ascending motion of the cylinder, a difference of densities between
the solid body and the media causes the buoyantly rising to the free surface.
To conclude a numerical approach of a train when it passes trough a tunnel is
studied.
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Flow around a moving square cylinder
Continuing with the process of conducting a numerical simulation, after having
described the physical phenomenon in chapter 2, a pre-processing stage is then
performed, namely the particle representation of the continuous domain as
shown below.

 

Figure 6.1: Initial particle representation.

Figure 6.1 shows the square (particles coloured by red) and fluid (parti-
cles coloured by blue) domains in their particle representation. The square
cylinder has been discretised into boundary particles, such particles have the
same properties of fluid particles but they remain linked during the travelling
(see motion law in Figure 2.2) along the x axis through the fluid. The entire
domain is not plotted in order to appreciate the subdivision in particles of the
geometry of interest.

The drag coefficient Cd is calculated according to (Colagrossi, 2011),

CD =
|Fx|

1

2
ρU2L

(6.1)

where Fx stands for the total force vector x-component exerted by the fluid to
the square. Important parameters like the diffusion coefficient δφ (see eq.(5.13))
are set as 0.1 as suggested in (Crespo et al., 2015), only extreme oscillations
may demand an increase in the coefficient value. A distance between particles
of dp = 0.03 m is adopted, the smoothing length is calculated resulting in
h = 0.044 m, and the CFL number is designated as 0.2. The number of
particles "np" for representing the computational domain was np=4M and the
Reynolds number obtained using the current physical parameters is Re=150.
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Results and comparison of the SPH numerical approaching with other au-
thors contributions are highlighted. The total drag force is plotted in Figure
6.2 and compared in Table 6.2 with previous solutions from (Bouscasse et al.,
2013) and (Franke et al., 1990).

 

Figure 6.2: Total drag force coeficcient.

Author CD

(Franke et al., 1990) 1.5
(Bouscasse et al., 2013) 1.72

Present result using DualSPHysics 1.45

Table 6.1: Comparison of previous numerical solutions of a moving square
cylinder at Re=150
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Flow around a fixed circular cylinder
This section present the results of the second study case early described in
chapter 2, for more details refer to Figure 2.3. Then conducting the particle
representation like in the previous section, Figure 6.3 illustrates the final set
of particles that represents the boundary (circular cylinder)and fluid domains.
Again not the entire domain is presented in order to scheme the zones of
interest, namely the circular cylinder. The Reynolds number calculated for
this phenomenon is Re=100.

 

Figure 6.3: Initial particle representation.

Regarding the numerical approach it is considered δφ = 0.1, the distance
between particles is dp= 0.03m. Additionally the calculated smoothing length
was h = 0.025m, and the CFL number remains equal to 0.2. The total number
of particles employed for the simulation was np=2M. In order to validate quan-
titatively the results obtained the lift and drag coefficients, and the Strouhal
number are compared with other published contributions. The lift and drag
coefficients are defined as follows,

CL =
|Fy|

1

2
ρU2D

(6.2)

In the case of the drag coefficient eq. (6.1) is adapted in the following manner,

CD =
|Fx|

1

2
ρU2D

(6.3)

where D is now the characteristic length. Both Fx and Fy represent the corre-
sponding force components in x and y directions of the resultant force vector
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applied to the cylinder by the fluid flow. The Strouhal number is defined as
St = D/TU being T the period of the regular vortex pattern generated "vor-
tex shedding", U is the far-field velocity and D is the characteristic length.
Table 6.2 outlines a comparison of previous works and the values measured in
this study case.

Author CD CL St
(Braza et al., 1986) 1.364 ± 0.25 -
(Liu et al., 1998) 1.350 ± 0.339 0.164
(Calhoun, 2002) 1.330 ± 0.298 0.175
(Ng et al., 2009) 1.368 ± 0.36 -
(Marrone et al., 2013) 1.36 ± 0.24 0.168
(Vacondio et al., 2013) 1.33 ± 0.33 0.16
Present results using
DualSPHysics 1.32 ± 0.25 0.18

Table 6.2: Comparison of previous solutions for CD, CL, and Strouhal number
of fluid passing a circular cylinder.
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Ascending motion of a cylinder in a viscous flow
This third study case previously detailed in chapter 2 (see Figure 2.4 for a
brief description) is discretised into particles as shown in Figure 6.4. Due to
the dimensions of the physical phenomenon a noteworthy difference is observed,
namely the complete particle distribution of the entire numerical domain.

 

Figure 6.4: Initial particle layout.

Figure 6.5 illustrates a detailed view applied to the geometry particle dis-
tribution.

 

Figure 6.5: Detail of the circular cylinder.
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The numerical parameters consist of δφ = 0.1, the distance between par-
ticles dp= 0.0025 m. Concerning the kernel attributes the smoothing length
results h = 0.0084m. Again CFL=0.2, and the number of particles np=335K.

 

(a) t=0.0s

 

(b) t=0.1s

 

 

 

 

 

 

 

 

 

 

 

(c) t=0.2s

 

(d) t=0.3s

 

(e) t=0.4s

 

(f) t=0.5s

 

(g) t=0.6s

 

(h) t=0.7s

 

(i) t=0.8s

 

Figure 6.6: Ascending motion of the cylinder exit from the free surface ρc =
0.62ρw kg m−3.
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Figure 6.6 exhibits different positions during the vertical ascending motion
of the cylinder until its exit from the fluid free surface.

 

(a) t=0.9s

 

(b) t=1.0s

 

(c) t=1.1s

 

(d) t=1.2s

 

(e) t=1.3s

 

(f) t=1.4s

 

Figure 6.7: Cylinder returning back motion.

Once the cylinder has reached its maximum position it presents a verti-
cal descending motion and drops again into the fluid domain. Eventually the
cylinder exhibits an oscillatory movement until the entire system reaches an
equilibrium steady state, such phenomenon is not discussed in this study, since
the main objective is the validation of the ascending motion. In Figure 6.7 lo-
cations at different time steps described by cylinder are depicted.

In order to assess quantitatively the numerical SPH capabilities, a compar-
ison with previous results of (Moshari et al., 2014) is carried out. The values of
maximum velocity and change in position along the vertical direction are then
plotted. Figures 6.8 and 6.9 show the maximum values of the velocity achieved
by the cylinder. Notwithstanding the slight discordance in the maximum ve-
locity value, the numerical simulation using the SPH method compared well
and exhibits a similar tendency like that in experimental results.
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CHAPTER 6. RESULTS AND VALIDATIONS

It is worth pointing that, in (Moshari et al., 2014) an air-liquid simulation
was performed using VOF method with a special interface treatment. There-
fore SPH seems to provide good results even when considering a single phase.

  

Figure 6.8: Present results using the SPH method.

 

Figure 6.9: Velocity values from (Moshari et al., 2014).
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Figure 6.10: Present results using the SPH method.

 

Figure 6.11: Distance of the center along the vertical axis till the free surface
(Moshari et al., 2014).

Figures 6.10 and 6.11 plot the vertical ascending motion described by the
cylinder. Finally Table 6.3 presents other authors solution and the final results
acquired using SPH.

Author Velocity m s−1 Height m
(Colicchio et al., 2009) 1.2 0.125
(Moshari et al., 2014) 1.22 0.14
Present results using
DualSPHysics 0.97 0.08

Table 6.3: Comparison with previous solutions.
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A single carriage train travelling through a tunnel

 

Figure 6.12: Original domain.

 

Figure 6.13: Particle distribution process.

  

Figure 6.14: Final particle domain representation.

Figures 6.12, 6.13 and 6.14, describes the process of particle representation
applied to the current numerical domain. This discretization process does
not imply a complex topological relation between particles unlike mesh based
methods. Only the process of particle representation is shown for solid bound-
aries in order to diminish confusion.
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Results of the numerical simulation Figure 6.15 shows that compared to
the solution obtained by (Ricco et al., 2007) shown in Figure 6.16 pressure
values apparently exist in the same range.

 

Figure 6.15: Pressure values during the train travelling along the tunnel.
Solution using DualSPHysics.

 

Figure 6.16: Pressure values during the train travelling along the tunnel,
travelling at vx = 30.6 m s−1. Comparison between experimental (•) and
numerical data with (—) and without (– –) the separation bubble model.
Results taken from (Ricco et al., 2007).
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Such tendency shown in experimental results is found to be the typical
pressure behaviour considering a single train travelling through a tunnel. In
the present study a crucial difference starts at t = 0.015 s where the parti-
cle located to measure the pressure field (see Figure 2.8) begins to detect the
presence of the train some seconds earlier than in the experimental facility.
This earlier pressure detection confirms that special treatments should be em-
ployed, since the numerical domain is assumed to be confined. Additionally it
seems that information of field variables do not travel through the media at
the right velocity. This may suggest an increase in the sound velocity so as to
achieve a correct pressure recording. Another interesting observable factor is
that, DualSPHysics was unsuccessful to predict low pressure reported values.
This is featured during the interval period of time t = [0.06 − 0.07] s where
the pressure values correspond to a minimum of P= −145 Pa which is higher
compared with value achieved in the experiments P< −500 Pa.

Important factors considered during the pre-processing stage, are the ex-
tension added (see Figure 2.5) to the numerical domain. Differences in pressure
measurements using different extensions in the numerical domain (not shown),
do highlight the necessity of consider a bigger domain as previously mentioned
so as to numerically approach more realistic solutions. Errors due to the re-
flected waves in the pressure field suggest that special boundary treatments
are needed to be performed. DualSPHysics apparently reproduced the values
obtained using the numerical code in (Ricco et al., 2007) when no separa-
tion bubble model is turned on. Nevertheless, quantitatively the results do
not match with any of the models presented in previous works, where the be-
haviour seems be more like the solution published by (Ricco et al., 2007).

Finally the oscillatory behaviour of the pressure measurement reinforce the
use of the δφ parameter. By increasing the value of such numerical aid, varia-
tions are expected to decrease. Unfortunately this study reveals the limitations
of DualSPHysics at least for this sort of studies. The compressibility thresh-
old required for matching experimental solutions when treating high speeds
accurately, is beyond the capabilities of the code. An attempt to modify the
code in order to add the equation of energy and modify the equation of state
is pretended to be performed in the future to become success in challenging
high speed problems.
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Ascending motion of a submarine hull
This study case covers the submarine hull ascending motion. Figures 6.17 and
6.17 describe a similar process of converting any complex geometry into its
particle distribution like that illustrated in the anterior section. For further
details refer Figures 2.11 and 2.12 in chapter 2.

 

Figure 6.17: Original domain.

 

Figure 6.18: Particle distribution process.
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Figure 6.19, illustrates a detailed view of the submarine hull. It can be ap-
preciated the level of detail once the particle distribution has been performed.
It is remarkable how the particles easily are able to reproduce the particle ver-
sion of solid parts like the appendages, which are those structures at the rear
(often called tail) part of the submarine. Also the sail (tower-like structure), at
the top of the submarine has accurately been discretised into particles. Is im-
portant to note that, no pitfalls about the division into particles in any study
case has been mentioned. This contributes to the ease of the SPH methodology
and in particular DualSPHysics to manage geometries even simple or complex
unlike traditional grid-based methods do.

 

Figure 6.19: Final particle domain representation using Gencase.

Figure 6.23 exhibits the vertical position change described by the submarine
hull during its ascending motion.

 

Figure 6.20: Position of the center of mass of the submarine during the
surfacing.
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Figure 6.21 illustrates the rotation in the x-component axis. This rotational
motion reveals a instability in the axial axis of the submarine hull. This results
confirm the previous findings (Bettle et al., 2009, 2014b) with the difference
that, they implemented a mesh-grid based method.

 

Figure 6.21: Final particle domain representation using Gencase.

As a consequence of the difference of densities between the body and the
media, causes an increase in the velocity field, in particular in the z-component
similarly to the case of the circular cylinder. However the contribution to the
rotational motion is due to the asymmetric submarine shape. This geometri-
cal issue let the vertical forces exerted in the body structure try to rotate the
submarine. Additionally the area of the sail at the top of the body permits the
forces to increase their effect by means of major area of application. Contribu-
tions of all forces even exerted by viscous or pressure terms cause a rotational
motion of approximately 70 deg, in contrast to the pitching Figure 6.22 and
yawing Figure 6.23 rotational motions. The resultant pitching developed with
respect to the y-component shows a tendency which is attributed to the initial
sudden acceleration. The sudden starting causes a difference in the current
position of the mass center and consequently unstable forces, in particular the
buoyant force will try to meet again an equilibrium. Until such equilibrium
is recovered all non-equilibrated forces components cause a movement, being
this movement higher where no equilibrium is encountered. Therefore it can
be conclude that the higher non equilibrium state is that where no signifi-
cant symmetry exist, in this case and viewing the submarine normal to the y
axis, the former part (where the sail is) and the rear part (where an array of
appendages appear).
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Figure 6.22: Final particle domain representation using Gencase.

 

Figure 6.23: Final particle domain representation using Gencase.

Observing the yawing rotation it is quite obvious that, as the horizontal
forces acting on the body are equal at equal levels of depth therefore no sig-
nificant during the ascending motion as it is depicted in Figure 6.23. The
following Figures illustrates each of the rotational motions in more detail dur-
ing the ascending. Figure 6.24(c) shows that the pitching rotation explained
in previous paragraphs starts being more evident at t=2.0s. The height of the
water level does not provide sufficient time for the submarine to even achieve
a terminal velocity, what causes en effect for a continuous non equilibrium
state. This is maintained until the submarine exits from the free surface. An
important point to mention is that, in all the next Figures just the particles
in the free surface are depicted to not contribute to confusion.

73

o 1 2 3 4 5 
Time Isl 

10 
~ 

'" '" 5 
~ 
CJ) 

'" .., 
O 

OJ) 

t: 
.~ -5 

" >< 
-10 

O 1 2 3 4 5 
Time Isl 



 

(a) t=0.0 s

 

(b) t=1.0 s

 

(c) t=2.0 s

 

(d) t=3.0 s

Figure 6.24: Submarine pitching rotational motion.
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(a) t=3.5 s

 

(b) t=4.0s

 

(c) t=4.5s

 

(d) t=5.0s

Figure 6.25: Submarine pitching rotational motion.
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Figure 6.26 shows that the rolling rotational motion appears from t=3.0s
Figure 6.26(b), confirming previous works where the more considerable effect
of this motion appear to be stronger near the free surface. After t=3.5s Figure
6.26(c) the rotational motion causes a major instability producing a rotation
of almost 75 degrees.

 

(a) t=2s

 

(b) t=3.0s

 

(c) t=3.5s

 

(d) t=4.0s

 

(e) t=4.5s

 

(f) t=5.0s

Figure 6.26: Submarine rolling rotational motion.
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Finally as discussed previously, the yawing rotational motion does not con-
tribute for the instability ascending surfacing problem. Figure 6.27 depicts
briefly the linear evolution in time of the submarine ascending normal to the
y-x plane. The behaviour is as expected since equilibrium forces on the hori-
zontal y-direction do not exert any rotation in the z-axis.

 

(a) t=0.0s

 

(b) t=1.0s

 

(c) t=2.0s

 

(d) t=3.0s

 

(e) t=3.5s

 

(f) t=4.0s

 

(g) t=4.5s

 

(h) t=5.0s

Figure 6.27: Submarine yawing rotational motion.
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Figure 6.27(a) reveals that the effect of the rolling instability becomes ev-
ident from t=3.0s Figure 6.21. Finally Figure 6.27(g) depicts the almost 75
degree motion near the free surface.
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7
Conclusions

This study has attended numerically the fluid solid interaction problem through
five study cases. The processing stage has been performed by means of a mesh-
less method, the Smoothing Particle Hydrodynamics using DualSPHysics. The
results analysed in the moving square cylinder shows the capabilities of the
software for reproducing published solution concerning the drag coefficient,
however additional extensions to the numerical domain are consider necessary
so as to not the results to be affected by waves reflected onto the boundaries.
This may represent a problem due to the increase in computational effort while
attending to 3-D problems. Therefore special attention should be given to the
enhancement of boundaries. Regarding the second validation case, a good nu-
merical agreement is highlighted regardless additional domain extensions are
needed. Results confirm the credibility of DualSPHysics but enhancements to
the boundaries may increase . This also turns into a motivation for the be-
ginner user of DualSPHysics to propose and modify the code according to the
phenomenon to be analysed. The third case confirms the accuracy of the soft-
ware and the method, achieving reasonable results compared to those obtained
in previous works studying fluid solid interactions. Although deviations may
appear, acceptable results demonstrates the accuracy of SPH while challenging
free surface physical phenomena. No extra effort has been introduced to deal
with the fluid free surface like that carried out in cited references. Furthermore
throughout all the numerical simulations no complex pre-processing stage has
been prior required. Due to the Lagrangian scheme adopted by the method-
ology the free surface appears to deform naturally, this easily handled task
accomplished by means of the SPH do present several difficulties in mesh-grid
based methods, revealing then, a truthfully advantage in contrast to conven-
tional mesh based methods.
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It has been also simulated the physical phenomenon of a train when it
travels at a high speed through a tunnel. This phenomenon has been accu-
rately simulated, but the pressure values of interest do not contribute to the
reliability of the SPH method for reproducing solutions obtained in previous
papers. Despite the discordance in the measurements the SPH technique at-
tempts quite effective to predict the tendency of experimental results. Finally
high level oscillations apparently caused by the velocity of the train in the fluid
domain do not contribute to consider DualSPHysics to be capable of predicting
variable fields in quite compressible phenomena. A remarkable effort to the
equation of state and the formulation concerning compressibility is demanded.

Finally a submarine hull ascending motion has been effectively reproduced
confirming previous evidence with other numerical solutions. In contrast to
the conventional mesh-grid based methods implemented in this kind of study
cases, an efficient and innovative fluid solid interaction algorithm using the
SPH technique has highlighted its advantage due to the no dependency of a
previous meshing process. What is more, no additional softwares are required
since the SPH is evidently is able o reproduce experimental phenomena while
including both, rigid body equations of motion and the equations pertaining
to the fluid dynamics.

In conclusion the Smoothed Particle Hydrodynamics numerical technique
seems to be an excellent numerical tool to analysed and predict phenomena
regarding fluid solid interactions. The SPH methodology in its weakly incom-
pressible version has been presented from its fundamentals and implemented
through the DualSPHysics software. The parallel scheme of DualSPHysics
aided to massively extend calculations and reduce runtime. Five cases have
been numerically reproduced finding good agreement with other authors so-
lutions. Meaningful results have been obtained and notwithstanding in one
case was no possible at all to achieve the expected measurements the novel
SPH methodology is evident to show significant advantages while challenging
problems where conventional mesh grid based methods find difficulties due to
mesh dependency , the complexity of the geometries involved and the time
consuming meshing process.
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CHAPTER 7. CONCLUSIONS

Current implementation and future of SPH

Most of the current noteworthy developments, challenges, and future issues
concerned to SPH are deeply presented and discussed in (Violeau and Rogers,
2016), from which the most relevant subjects are briefed below:

ITurbulence (Dalrymple and Rogers, 2006; Ferrand et al., 2013; Mayrhofer
et al., 2015; Shao, 2006; Violeau and Piccon, 2001).

I Multi-fluid SPH (Fourtakas et al., 2013; Grenier et al., 2009; Ulrich
et al., 2013).

I Numerical stability (Violeau and Leroy, 2014, 2015)

IVariable resolution (Barcarolo et al., 2014; Vacondio et al., 2012, 2013)

I Coupling (Altomare et al., 2014; Li et al., 2014a,b, 2015)

In (Violeau and Rogers, 2016), a general panorama as a bellwether in mov-
ing SPH forward is exhibited by considering the main activities either in In-
dustry or Research fields.
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A
Alternative formulation of the gradient

and divergence operators in SPH

What literature traditionally consider straightforward

The SPH formality

Beginning with equation (4.1)〈
f(ri)

〉
=

∫
∂Ω

f(rj)W (ri − rj)drj, (A.1)

now simplifying the notation as follows,

f(ri) = fi,

f(rj) = fj,

W (ri − rj) = Wij,

then equation (A.1) becomes〈
fi
〉

=

∫
∂Ω

fjWijdrj, (A.2)

multiplying and dividing the right hand side of the anterior equation by
ρj
ρj
,

〈
fi
〉

=

∫
∂Ω

ρj
ρj
fjWijdrj,

=

∫
∂Ω

fj
ρj
Wijρjdrj,
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as the region of integration is assumed to be a volume integral the term ρjdrj
may be change by mj, then

〈
fi
〉

=

∫
∂Ω

fj
ρj
Wijmj, (A.3)

performing the same process(particle representation) of reversing the Riemman
summation, the next discretized equality appears,

fi =
∑ mj

ρj
fjWij, (A.4)

it is worth mentioning once this point has been reached, that i and j denotes
the function evaluated at particle i and particle j respectively. Equation (A.5)
represents the most common SPH summation formula. Now if fi is considered
to be fi = ρi, using (A.5),

ρi =
∑ mj

ρj
ρjWij,

=
∑
j

mj
ρj
ρj
Wij,

=
∑
j

mjWij,

in this way,

ρi =
∑
j

mjWij, (A.5)

Following this idea, mathematical operators are developed in next subsections.

Derivative operator

Besides continuous, basic mathematical operators can be turn into the SPH
representation. In this case the derivative operator is obtained. Considering,

∂fi
∂ri

=
∂

∂ri

∫
∂Ω

fjWijdrj, (A.6)
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AND DIVERGENCE OPERATORS IN SPH

where the right hand side denotes the derivative of f with respect to r evaluated
in particle i. As fj and Wij are continuous and C1, then

∂

∂ri

∫
∂Ω

fjWijdrj =

∫
∂Ω

∂

∂ri
fjWijdrj,

=

∫
∂Ω

fj
∂Wij

∂ri
drj,

=

∫
∂Ω

ρj
ρj
fj
∂Wij

∂ri
drj,

=

∫
∂Ω

fj
ρj

∂Wij

∂ri
ρjdrj,

=

∫
M

fj
ρj

∂Wij

∂ri
dmj,

=
∑
j

fj
ρj

∂Wij

∂ri
mj,

rearranging terms,

∂fi
∂ri

=
∑
j

mj

ρj
fj
∂Wij

∂ri
, (A.7)

However the last equation is not able to equal to zero when a constant func-
tion is operated under the derivative operator. This is explained due to the
definition of the kernel. Following the idea of (Danis et al., 2013) the intro-
duction of the next product derivative shown below, enhances the derivative
SPH representation to better model an accurate constant derivative. Then
considering,

∂ (fi · 1)

∂ri
= 1 · ∂fi

∂ri
+ fi ·

∂1

∂ri
, (A.8)

isolating the first term on right hand side,

1 · ∂fi
∂ri

=
∂ (fi · 1)

∂ri
− fi ·

∂1

∂ri
,

∂fi
∂ri

=
∂fi
∂ri
− fi ·

∂1

∂ri
, (A.9)
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now applying the derivative operator SPH definition eq. (A.7),

∂fi
∂ri

=
∂fi
∂ri
− fi ·

∂1

∂ri
,

=
∑
j

mj

ρj
fj
∂Wij

∂ri
− fi ·

∑
j

mj

ρj
· 1 · ∂Wij

∂ri
,

=
∑
j

mj

ρj
fj
∂Wij

∂ri
− fi ·

∑
j

mj

ρj

∂Wij

∂ri
,

=
∑
j

mj

ρj
fj
∂Wij

∂ri
−
∑
j

mj

ρj
fi
∂Wij

∂ri
,

=
∑
j

mj

ρj
(fj − fi)

∂Wij

∂ri
,

therefore,

∂fi
∂ri

=
∑
j

mj

ρj
(fj − fi)

∂Wij

∂ri
. (A.10)

generalizing this formula for any conserved property, (fiρ
n
i ), the derivative of

such quantity applying (A.10) results,

∂ (fiρ
n
i )

∂ri
= ρni ·

∂fi
∂ri

+ nfiρ
n−1
i · ∂ρi

∂ri
, (A.11)

isolating the first term on the right hand side,

ρni ·
∂fi
∂ri

=
∂ (fiρ

n
i )

∂ri
− nfiρn−1

i · ∂ρi
∂ri

, (A.12)
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and conducting the same process like that for obtaining (A.7),

ρni ·
∂fi
∂ri

=
∂

∂ri

∫
∂Ω

(
fjρ

n
j

)
Wijdrj − nfiρn−1

i

∂

∂ri

∫
∂Ω

(ρjWij) drj,

=

∫
∂Ω

∂
(
fjρ

n
jWij

)
∂ri

drj − nfiρn−1
i

∫
∂Ω

∂ (ρjWij)

∂ri
drj,

=

∫
∂Ω

fjρ
n
j

∂Wij

∂ri
drj − nfiρn−1

i

∫
∂Ω

ρj
∂Wij

∂ri
drj,

=

∫
∂Ω

(
ρj
ρj

)
fjρ

n
j

∂Wij

∂ri
drj − nfiρn−1

i

∫
∂Ω

(
ρj
ρj

)
ρj
∂Wij

∂ri
drj,

=

∫
∂Ω

ρnj
ρj
fj
∂Wij

∂ri
ρjdrj − nfiρn−1

i

∫
∂Ω

ρj
ρj

∂Wij

∂ri
ρjdrj,

=

∫
M

ρn−1
j fj

∂Wij

∂ri
dmj − nfiρn−1

i

∫
M

∂Wij

∂ri
dmj,

=
∑
j

ρn−1
j fj

∂Wij

∂ri
mj − nfiρn−1

i

∑
j

∂Wij

∂ri
mj,

=
∑
j

mj

(
ρn−1
j fj − nfiρn−1

i

) ∂Wij

∂ri
,

then the next equality is obtained,

ρni ·
∂fi
∂ri

=
∑
j

mj

(
ρn−1
j fj − nfiρn−1

i

) ∂Wij

∂ri
, (A.13)

finally, isolating the derivative operator,

∂fi
∂ri

=
1

ρni

∑
j

mj

(
ρn−1
j fj − nfiρn−1

i

) ∂Wij

∂ri
. (A.14)

In SPH literature n can be set equal to 1 or -1. If n = 1 the derivative of
a constant is identically equal to zero, in contrast with the value of n = −1.
However a value of n = −1 provides an equation capable of manage the mo-
mentum conservation. Now each corresponding equality is deployed below.

for n = 1
∂fi
∂ri

=
1

ρi

∑
j

mj (fj − fi)
∂Wij

∂ri
, (A.15)

for n = −1,
∂fi
∂ri

= ρi
∑
j

mj

(
fj
ρ2
j

+
fi
ρ2
i

)
∂Wij

∂ri
. (A.16)

Continuing with the deduction of a mathematical SPH representation of the
operators that appear naturally in the Navier Stokes equations, the gradient
and divergence equivalence in SPH is now presented.
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Gradient of a function

Remembering the definition of the gradient operator,

∇ =
∂

∂r1
i 1 +

∂

∂r2
i 2 +

∂

∂r3
i 3 (A.17)

now considering the next scalar function evaluated in particle i as fi, and
applying the gradient operator,

∇fi =
∂fi
∂r1

i 1 +
∂fi
∂r2

i 2 +
∂fi
∂r3

i 3 (A.18)

then implementing equation (A.14) on each derivative term,

∇fi =
∂fi
∂r1

i

i 1 +
∂fi
∂r2

i

i 2 +
∂fi
∂r3

i

i 3,

=
1

ρni

∑
j

mj

(
ρn−1
j fj − nfiρn−1

i

)(∂Wij

∂r1
i

i 1 +
∂Wij

∂r2
i

i 2 +
∂Wij

∂r3
i

i 3

)
,

=
1

ρni

∑
j

mj

(
ρn−1
j fj − nfiρn−1

i

)(∂Wij

∂rki
i k

)
,

=
1

ρni

∑
j

mj

(
ρn−1
j fj − nfiρn−1

i

)
(∇iWij) ,

therefore,

∇fi =
1

ρni

∑
j

mj

(
ρn−1
j fj − nfiρn−1

i

)
(∇iWij) , (A.19)

once again, considering both values of n. The next equations are obtained for
n=1 and n=-1 respectively,

∇fi =
1

ρi

∑
j

mj (fj − fi)∇iWij, (A.20)

∇fi = ρi
∑
j

mj

(
fj
ρ2
j

+
fi
ρ2
i

)
∇iWij. (A.21)
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Divergence of a function

Given the divergence definition applied to a vectorial function evaluated in
particle i,

∇i · f i =
∂

∂rki
i k · f zi i z,

=
∂

∂rki
f zi (i k · i z) ,

=
∂

∂rki
f zi δkz,

=
∂fki
∂rki

.

with k ∈ {1, 2, 3}. Applying again equation (A.14),

∇i · f i =
∂fki
∂rki

,

=
1

ρni

∑
j

mj

(
ρn−1
j fkj − nfki ρn−1

i

)(∂Wij

∂rki

)
, (A.22)

turning back to index notation,

1

ρni

∑
j

mj

(
ρn−1
j fkj − nfki ρn−1

i

) ∂Wij

∂rki
δkz =

1

ρni

∑
j

mj

(
ρn−1
j f zj − nf zi ρn−1

i

) ∂Wij

∂rki
(i k · i z) ,

=
1

ρni

∑
j

mj

(
ρn−1
j f zj − nf zi ρn−1

i

)
i z ·

∂Wij

∂rki
i k,

using the distribution axiom from vectorial spaces, i z can be distributed as
follows,

1

ρni

∑
j

mj

(
ρn−1
j f zj i z − nf zi i zρn−1

i

)
· ∂Wij

∂rki
i k =

1

ρni

∑
j

mj

(
ρn−1
j f j − nf iρn−1

i

)
· ∂Wij

∂rki
i k,

finally,

∇i · f =
1

ρni

∑
j

mj

(
ρn−1
j f j − nf iρn−1

i

)
· ∇iWij (A.23)

if n=1,

∇i · f i =
1

ρi

∑
j

mj

(
f j − f i

)
· ∇iWij, (A.24)

if n=-1,

∇i · f i = ρi
∑
j

mj

(
f j
ρ2
j

+
f i
ρ2
i

)
· ∇iWij. (A.25)
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