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Chapter 1

Introduction.

Molecular clouds (MC) have been considered generally to be dense virialized structures
in the interstellar medium (ISM), supported by magnetic fields or turbulence, with
relatively long free-fall times and collapsing only locally at the scale of the dense cores
within them. Moreover, in recent years, several observational (e.g., Peretto et al., 2013;
Polychroni et al., 2013) and numerical works (e.g., Vázquez-Semadeni et al., 2007;
Heitsch and Hartmann, 2008; Heitsch et al., 2008; Vázquez-Semadeni et al., 2009, 2010,
2011; Ibáñez-Mej́ıa et al., 2016) have suggested that instead MCs may be in a state
of global hierarchical gravitational collapse (GHC), characterized by small structures
collapsing on timescales shorter than those of the larger-scale collapsing structures in
which they are hierarchically immersed.

Star formation occurs in the densest parts of MCs (the “dense cores”). The stan-
dard view of MC cores is that they start their lives as low-mass hydrostatic structures
(supported either by thermal pressure, turbulent pressure or magnetic fields) which
eventually become gravitationally unstable, either by mass accretion onto the hydro-
static cores (see e.g., the review of André et al., 2014) or by dissipation of the internal
supporting turbulence (e.g., Bergin and Tafalla, 2007)1. The notion of hydrostatic
cores within turbulent clouds, however, has been criticized by a number of authors
(e.g., Whitworth et al., 1996; Vázquez-Semadeni et al., 2005).

Moreover, recent observations have shown the ubiquity of filaments in MCs (see
André et al., 2014, and references there in), which in addition appear to be funneling
gas to dense cores (hubs) located at sites where various filaments converge (e.g., Galván-
Madrid et al., 2010; Schneider et al., 2010; Kirk et al., 2013; Peretto et al., 2013). Recent
numerical simulations of cloud formation by colliding flows naturally reproduce this
behavior (e.g., Gómez and Vázquez-Semadeni, 2014) and suggest that the filaments
constitute part of the collapse process. Nevertheless, existing models of filamentary
structures2 assume either radially hydrostatic structure (e.g., Ostriker, 1964; Fischera
and Martin, 2012) or radial accretion (e.g., Heitsch, 2013a,b; Hennebelle and André,

1See also Sec. 4.2.1 for the case of magnetic support.
2In general, filaments’ radial density (or column density) profile allows to determine their mass

per unit length, which in turn is used as a gravitational instability criterion to study the observed

evolutionary stage of the filaments.
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2013), but have not considered the longitudinal flow along the filament so far.
In this work we present idealized numerical simulations of gravitationally collapsing

cores and filaments embedded in globally unstable backgrounds, fully forgoing any
assumption of a hydrostatic state, with the aim of extracting the essential flow features
that develop in this scenario of global, hierarchical collapse.

In Chap. 2, we describe the theoretical foundations required for the numerical
and theoretical study of these collapsing structures, followed by a description of the
observational perspectives of star formation in molecular clouds, filaments and dense
cores, in Chap. 3. In Chap. 4, we describe the current state of several star formation
scenarios, including the main support mechanisms against gravitational collapse. We
next present the numerical work of the early stages in the evolution of prestellar cores
in Chap 5, and of filaments in Chap 6. Finally, some conclusions on the implications
of the GHC scenario are presented in Chap. 7.
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Chapter 2

Physical foundations

In this chapter we describe the theoretical frame necessary to describe the work in the
present thesis. In particular, the numerical simulations presented here represent the
gravitational collapse of a gas structure, which is described by means of the equations of
gas dynamics in the presence of gravity. We elaborate these equations in this chapter
together with other important equations such as the virial theorem and the Lane-
Emden equation. We later elaborate some of the basic configurations of spherical
density structures commonly used to describe the process of the collapse of molecular
clouds, and hence the origins of protostars in those clouds. Finally, a general review is
given on the classical theory of cloud collapse.

2.1 Fluid dynamics

2.1.1 The hydrodynamic approximation of fluids

We can study the ISM, treating it as a continuous medium using the fluid dynamics
approximation, by considering a volume element in the fluid with typical length-scale,
timescale and velocity much smaller than their macroscopic values1, on which the fluid
properties vary. This region must satisfy the following criteria: i) its size is much
smaller than a length scale for the change of any physically relevant quantity q,

lregion � L ∼ q/ |∇q |, (2.1)

where the scale length is the scale over which q varies by an order of unity; ii) It is
large enough to contain a sufficiently large number of particles to avoid fluctuations
due to their finite number (namely the discreteness noise),

nl3region � 1, (2.2)

1Where the fluid characteristic length-scale L, and timescale T, are related by a characteristic

velocity U ∼ L/T.
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2.1 Fluid dynamics

where n is the number density per unit volume. These conditions apply for any system
described as a fluid. Moreover, for a collisional fluid1, iii) the fluid element is large
enough that the constituent particles have a mean free path, λmfp, that satisfies:

lregion � λmfp. (2.3)

Note that if the particles in the fluid interact with each other (which does not necessarily
imply that they collide physically) and the aforementioned conditions are satisfied, then
it is possible to define a volume element (or fluid parcel) ∆V in space that contains
a sufficiently large number of particles so that local spatial and velocity averages can
be computed. Therefore, the fluid (or bulk) velocity and the mass density of a given
volume element can be defined as:

u ≡ lim
∆V−→0

1

N∆V

N∑

i=1

vi ≡ 〈v〉∆V ,

ρ ≡ lim
∆V−→0

1

∆V

N∑

i=1

mi,

where N is the number of particles within the volume element, and vi and mi are the
i -th particle total velocity and mass.

This makes possible to define the mean kinetic energy (internal energy) within the
volume of the fluid element. For instance, for a fluid with a single type of particles, the
resulting kinetic energy distribution equals the velocity distribution in the fluid. This
internal energy therefore determines the fluid temperature.

2.1.2 Description of fluid flows

There are two approaches to formulating the equations that describe the fluids:
In the Eulerian description of a fluid, given a small volume at a fixed spatial position,

the fluid flows through the volume with physical variables specified as functions of time
and the (fixed) position of the volume, e.g., q = q (r, t). The change of any measurable
quantity q as a function of time is the time derivative, ∂q/∂t, evaluated at the fixed
position.

In the Lagrangian description, one chooses a particular fluid element (labeled a)
and examines the change in any quantity (e.g., q (a, t)) within the flow as time goes on.
Thus, the reference system is comoving with the fluid. Therefore, the Lagrangian time
derivative, Dq/Dt2, has a term due to the rate of change at a fixed location (i.e., the
Eulerian time derivative), and an additional term due to the fact that the fluid element
has moved to a new location (with a velocity u) where the variable has a different value.

Dq

Dt
=
∂q

∂t
+ u ·∇q, (2.4)

where the last term is called the convective derivative.
1That in which the characteristic timescale is much longer than the frequency of the collisions in

the fluid.
2The notation D/Dt is referred to as the “total” time derivative.
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2.1 Fluid dynamics

2.1.3 The formulation of the fluid equations

As mentioned before, we can consider the ISM as a magnetized, compressible fluid1 ,
subject to a gravitational field. Thus, its behavior is governed by the hydrodynamic
equations. These equations are based on Newtonian dynamics, and express the con-
servations of mass, momentum and energy, and are also known as the Euler equations
when viscous effects are neglected. In addition, it is necessary to consider the magnetic
flux conservation equation. We thus have:

∂ρ

∂t
+ u ·∇ρ = −ρ∇ · u,mass conservation or continuity equation (2.5)

∂u

∂t
+ u ·∇u = −∇P

ρ
−∇Φ +

1

4πρ
(∇×B)×B,momentum conservation (2.6)

∂e

∂t
+ u ·∇e = −(γ − 1)e∇ · u + Γ− nΛ, internal energy conservation (2.7)

∂B

∂t
= ∇× (u×B),magnetic flux conservation, (2.8)

where u is the gas velocity, ρ is the mass density, e is the internal energy per unit mass,
B is the magnetic field2 and P is the thermal pressure, which we assume is given by
the ideal equation of state:

P = nkBT, (2.9)

where kB is the Boltzmann constant, n = ρ/(µmH) is the number density of particles,
µ is the mean weight per particle of gas, γ is the ratio between the specific heats at
constant pressure and at constant volume for the fluid, mH is the mass of the hydrogen
atom, and Φ is the gravitational potential that satisfies Poisson’s equation:

∇2Φ = 4πGρ. (2.10)

The equation relating the internal energy and the temperature is:

e = CV T (2.11)

where CV is the specific heat at constant volume. Finally, in eq. (2.7), Λ is the cooling
function and Γ is the heating function. Both Γ and nΛ have units of specific power
(energy per unit time per unit mass).

Note that in these equations we are ignoring the efects of viscosity, electric resis-
tivity, thermal conductivity and relativistic movements. Additionally we assume that
the fluid is newtonian (i.e., is isotropic and that any deformation is proportional to the
velocity gradient), having zero net charge and the electric fields at macroscopic scale
dissipate in times shorter than the systems characteristic timescale.

1For which a relative volume change is expected as a response to a pressure change, β =

− (1/V ) (∂V/∂p), where β is the compressibility of the fluid. For instance, for an isothermal com-

pressible flow, β = 1/p = 1/ρc2s .
2Which must satisfy ∇ ·B = 0 in order to avoid magnetic monopoles.
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2.2 Thermodynamics

Moreover, these equations can also be derived from a microscopic approach, treating
the fluid as a ensemble of particles that interact via collisions (i.e., that can be described
by a distribution function in the phase space), by calculating the zeroth, first and second
moment equations of the Boltzmann equation. For a collisional fluid, these equations
are called the Navier-Stokes equations, while for a collisionless fluid these are called
the Jeans equations. If the viscosity and conductivity of the fluid are ignored, the
Navier-Stokes equations reduce to the Euler equations.

The left-hand sides (LHS) of the first three equations represent the total rate of
change of the respective gas property of a fluid element, due to both changes at its
current position and change due to the motion of the fluid element with velocity u to
a new position (the second term is usually denoted as advective term). The right-hand
sides (RHS) of the equations represent source and sink terms, and are responsible for
changes in the gas properties. Specifically:

• In the mass conservation equation, the source term is due to a converging velocity
field at the position of the fluid element, resulting in a density increase (or vice
versa).

• In the momentum conservation equation, the fluid tends to move in the direction
toward low pressure regions and toward regions where the gravitational potential
is more negative. In this equation, the last term is the Lorentz force exerted by
the magnetic field.

• In the energy conservation equation, the first term in the RHS is the adiabatic
work PdV acting over the fluid parcel, for which e = 1

γ−1
P
ρ , and the sum of the

second and third terms is the net cooling that results from cooling and heating
processes.

2.2 Thermodynamics

The various components of the ISM are at very different ranges of temperature and
density, although roughly at the same pressure1, except at bubbles and molecular clouds
(Myers, 1978). Thus, it is important to study those components from a thermodynamics
point of view. For this reason we now will focus on the energy equation (2.7).

2.2.1 Heating and cooling

The heating and cooling functions (Γ and Λ, respectively) entering eq. (2.7) represent
a variety of processes that act at the atomic and molecular level (Wolfire et al., 1995;
Koyama and Inutsuka, 2002; Glover and Clark, 2014; Klessen and Glover, 2016). The

1With a variation of 5 orders of magnitude in temperature, and 3 orders of magnitude in density

(Ferrière, 2001; Klessen and Glover, 2016), while one order of magnitude in pressure (e.g., Audit and

Hennebelle, 2005).
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2.2 Thermodynamics

net rate of change of the gas temperature strongly depends on its temperature, density
and metallicity. The net cooling of the gas is defined as:

L ≡ nΛ− Γ (2.12)

The molecules that make up the molecular component of the ISM are formed
through very complex sequence of chemical reactions. Since Hydrogen is abundant
in the universe, H2 is the most abundant molecule and is thought to be formed by
recombination on the surface of grains of interstellar dust (Hollenbach and Salpeter,
1971). The next molecule in abundance is CO, identified in an ultraviolet stellar spec-
trum (Smith and Stecher, 1971). Despite being formed continuously, the unique regions
where these molecules can avoid dissociation by radiation are the interiors of dense
clouds and the deeper interiors of diffuse clouds. The observed temperatures of these
regions are explained as the result of the thermal balance between the heating by cos-
mic rays (and at the edges of the clouds, collisions with photoelectrons from dust grains
and with radioactively excited) and cooling by molecular emission lines (mainly of CO)
whose rate increases rapidly with the temperature (de Jong et al., 1980; Goldsmith,
1987; Hollenbach and Tielens, 1999). Collisions with dust grains also enter the thermal
balance depending on the dust temperature with respect to that of the gas (Burke
and Hollenbach, 1983). For instance, Koyama and Inutsuka (2002) have computed the
analytical fitting of the heating and cooling functions for the atomic and molecular
gas, including collisions with dust grains. More recently, Glover and Clark (2012) have
identified three main regimes with different heating and cooling dominant processes in
molecular clouds (see their Fig. 8): i) at low densities (n < 1000 cm−3), C+ is the
dominant coolant, while the main heating process is photoelectric emission from dust.
ii) for densities in the range 1000 cm−3 6 n 6 105 cm−3, C+ quickly gives way to CO as
the dominant coolant, reflecting the fact that the gas becomes CO dominated around
n = 1000 cm−3, while photoelectric heating quickly becomes irrelevant as dissipation
in shocks becomes the main source of heat. iii) At n > 105 cm−3, dust takes over from
CO as the most important coolant, and PdV heating becomes almost as important as
shock heating.

2.2.2 Cooling time

Since MCs emit radiation and thus cool, it is useful to calculate the cooling time. This
time essentially depends on the internal energy of the gas, e, and the rate at which the
gas emits energy due to its net cooling. Thus, we can define the cooling time as:

τcool ≈
e

|nΛ− Γ| . (2.13)

Frequently, if the gas is optically thin, the heating and cooling functions have charac-
teristic times much shorter than the dynamic crossing time of the fluid. In this case,
the heating and cooling functions balance mutually (nΛ = Γ), thus giving a relation
between the density and the temperature. This relation allows us to eliminate the
temperature dependence from the equation of state, resulting in a barotropic relation
where pressure depends only on density. Because the temperature regime of the MCs

14



2.3 The virial theorem

is approximately isothermal, in the rest of this work we will refer to the special case of
an isothermal gas in which P = c2

sρ, where cs =
√
kBT/µmH is the sound speed.

2.3 The virial theorem

The scalar virial theorem (VT) is obtained from the dot product of the momentum
equation (2.6) with the position vector x, and integrating of the product over some
volume V (see Vazquez-Semadeni, 1997). Traditionally, the volume V is taken in a
Lagrangian frame of reference. The VT states that:

1

2

d2I

dt2
= 2K +

(
2U −

∮

S
Px · dS

)
+

(
M +

∮

S
x ·T · ds

)
+W, (2.14)

where, d/dt is the total or Lagrangian derivative operator (see eq. [2.4]), I is the
moment of inertia, S is the surface enclosing the volume. W , K, U , and M are
respectively the gravitational, kinetic, internal, and magnetic energies contained within
the volume. T is the Maxwell’s magnetic stress tensor T ≡ Tij ≡ BiBj/4π−|B|2δij/8π,
such that the Lorentz force term satisfies (∇×B)×B/4π = ∇ ·Tij .

In particular, the virial equilibrium condition, d2I/dt2 = 0, establishes a balance
among all the energies in a system.

2.4 Stability analyses of density configurations

2.4.1 Pressure confinement

Let us consider a fluid with u = B = 0, neglecting self-gravity, and considering the
virial equilibrium condition. The VT reduces to 2U =

∮
S Px · dS. Therefore, there is

a balance between the internal and external pressures in the fluid’s surface. Thus, the
fluid is considered as pressure confined.

2.4.2 Hydrostatic equilibrium

One of the most basic equilibrium configurations for a fluid is hydrostatic equilibrium.
In particular, if u = B = 0 everywhere, and ∂/∂t = 0, the continuity equation is
trivially satisfied. The momentum equation, in which the only non-zero terms are now
gravity and pressure, which themselves must be mutually balanced, becomes

1

ρ
∇P = g = −∇Φ. (2.15)

Note that similarly, from the VT, considering the virial equilibrium condition, one can
obtain W = −2U . In addition, for barotropic cases where P = P (ρ), we can use
Poisson’s equation to solve for the density distribution corresponding to hydrostatic
equilibrium, and therefore provide solutions for the pressure and gravitational potential
everywhere, fully describing the fluid.
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2.4 Stability analyses of density configurations

2.4.3 Pressureless collapse

The simplest case of gravitational collapse is that of a spherical cloud in which the
internal pressure is negligible, and thus the gas will move towards the center of the
cloud in a regime near to free-fall (see Lin et al., 1965). Let us assume a cloud of with
initial radius r0. The equation of motion of a shell of material is:

d2r

dt2
= −GM(r)

r2
, (2.16)

where the RHS is the local gravitational acceleration of the shell, and M(r) is the
mass interior to a radius r. By integrating this equation over time, we obtain the infall
velocity of the shell after been contracted to a radius r1:

dr

dt
= −

[
2GM(r)

(
1

r
− 1

r0

)]1/2

. (2.17)

Note that since we are interested only in the surface that encloses M(r), we have
assumed that the mass interior to r remains constant during the collapse. Integrating
this equation, we get an expression for the position of the shell as a function of time:

r(M, t) = r0(M) cos2θ, (2.18)

where

θ +
1

2
sin2θ =

(
8π

3
Gρ0

)1/2

t, (2.19)

and ρ0 is the mean density of the sphere of radius r0. From here, the free-fall time
can be considered as the total time from the beginning of the contraction and until the
formation of the singularity (i.e., where the radius srinks to zero), and thus:

tff =

(
3π

32Gρ0

)1/2

. (2.20)

It is noteworthy that the free-fall time is independent of the initial cloud radius. There-
fore, if the initial sphere have uniform density, every shell of the cloud will span the
same collapsing time and the density will increase at the same rate everywhere. This
behavior is known as the homologous collapse. On the contrary, if the cloud were cen-
trally condensed at the beginning, then the free-fall time of the material close to the
center will be shorter than the free-fall time for the material at larger radii. Thus, the
central density will increase at a rate faster than for other cloud regions. In this case,
the collapse is referred as an inside-out collapse. We will discuss it later in Chaps. 5 &
6.

1See e.g., Ostlie and Carroll (2006) for the details on the development.
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2.4 Stability analyses of density configurations

2.4.4 The Jeans gravitational instability

Now, let us consider a fluid at rest, with uniform density and pressure, filling all space.
By considering a perturbation of the fluid variables

ρ = ρ0 + ρ′, (2.21)

P = P0 + P ′, (2.22)

Φ = Φ0 + Φ′, (2.23)

u = u′, (2.24)

in the equations of mass and momentum conservation (2.5, 2.6) and Poisson’s equation
(2.10), under the equilibrium condition u0 = 0, we obtain the set of equations:

∂ρ′

∂t
+ ρ0∇ · u = 0 (2.25)

∂u

∂t
= − 1

ρ0
∇P ′ −∇Φ′ (2.26)

∇2Φ′ = 4πGρ′. (2.27)

If the perturbations are adiabatic, the density and pressure perturbations are related
by:

P ′ = c2
sρ
′. (2.28)

We now expand all fluid variables as a superposition of traveling waves, so that all
quantities have the form exp (−ik · r + iωt), where k is the wave vector, r is the position
vector, ω is the frequency, and t is the time. Therefore, using the expression for the
perturbed pressure, P ′, in the set of equations, we obtain:

iωu = −ikc2
s

ρ′

ρ0
− ikΦ′ (2.29)

iω
ρ′

ρ0
+ ik · u = 0 (2.30)

−k2Φ′ = 4πGρ′, (2.31)

where k ≡ |k| is the wave number. Combining these equations, we obtain the dispersion
relation:

ω2 = k2c2
s − 4πGρ0. (2.32)

Note that in the absence of gravity (i.e., G = 0) we recover acoustic waves propagating
at the sound speed. Moreover, the presence of gravity modifies the waves by a frequency
ωG = (4πGρ0)1/2, with characteristic timescale τG = 2π/ωG = (π/Gρ0)1/2. If the
gravity term becomes large enough (which occurs at sufficiently large wavelengths),
then ω2 < 0, and gravitational instability sets in ( since at this point the fluctuations
cease to be traveling waves, and instead, their amplitude begins to grow exponentially
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2.4 Stability analyses of density configurations

in time). The critical wavelength at which this occurs is set by the condition ω2 = 0.
Thus remembering that the wave length, λ = 2π/k, we obtain the Jeans length as:

λJ =

√
πc2

s

Gρ0
. (2.33)

We can also define the critical Jeans mass as the mass contained in a sphere of radius
equal to λJ/2:

MJ =
4

3
πρ0

(
λJ

2

)3

(2.34)

Now let us consider a fluid element of size ∼ λ. Gravity acts on it, trying to make it
collapse on a timescale τG. Meanwhile, the pressure gradient provides support against
gravity, but adjacent fluid elements are also in communication with each other through
pressure. Since this communication occurs at the sound speed, (i.e., at a timescale
τs = λ/cs = τG

1 when λ = λJ), for fluid elements larger than the Jeans length (or
equivalently for fluid elements of mass larger than the Jeans mass), it cannot occur
quickly enough to prevent a gravitational collapse.

2.4.4.1 The Jeans swindle

It is noteworthy that, in the previous treatment, the initial unperturbed state is in-
consistent. That is, given that the density is uniform and that it is filling all space, it
cannot satisfy the unperturbed Poisson’s equation together with the condition ∇Φ = 0.
This inconsistency is known as the “Jeans-swindle”. The solution of this conundrum
requires the consideration that the background is not static, but rather expanding
or contracting, as was done by Einstein in the formulation of the General Theory of
Relativity.

2.4.5 Hoyle fragmentation

If we now consider an isothermal cloud in gravitational collapse, its density will increase
while the cloud is contracting and therefore the Jeans mass (eq. [2.34]) will be reduced,
producing unstable sub-volumes that will condense and collapse on their own. This so-
called Hoyle fragmentation (Hoyle, 1953) can continue until the gas opacity is so high
that radiation cannot escape from inside. Therefore, changing the effective equation of
state of the gas, and consequently stopping subsequent contraction and fragmentation.
The gravitational energy loss rate in the cloud is given by:

Ėgrav ∼
(
GM2/R

)

τcool
, (2.35)

1This can be easily understood if we think about τs as the sound crossing time, and τG as the

free-fall time.
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2.4 Stability analyses of density configurations

and considering that during collapse, the energy release process has an efficiency η, we
can express the radiated luminosity as:

Lrad = (4πR2)(ησBT
4), (2.36)

where σB is the Stefan-Boltzmann constant. If the cloud is optically thick, the emitted
energy is absorbed somewhere in the cloud and then re-emitted in other regions. In
this case, the fragment will radiate as a black body (η = 1, L = Lrad):

L = 4πσBR
2T 4. (2.37)

Then, by equating (2.35) and (2.37) we obtain a lower limit for the fragment mass as:

Mfrag ≥ π2

(
32

9

)1/4(k
µ

)9/4 T 1/4

G3/2σ
1/2
B

' 0.01 T
1/4
1 M�, (2.38)

where T1 = T/10K. This over-simplified fragmentation process of course does not
include influences by rotation, turbulence and magnetic fields.

2.4.6 Magnetic field. Support and mass-to-flux relation

Now we will consider another support mechanism against the gravity of a parcel of
gas, this time provided by the magnetic field, using a treatment based on the energy
balance.

Let us consider a sphere with uniform magnetic field B inside and a vanishing field
outside, and u = P = 0. The magnetic energy stored within the volume V (e.g., Shu,
1992), is:

M =
B2

8π
V =

B2R3

6
, (2.39)

and the magnetic flux passing on a cylindrical cross section of area A and radius R is:

φ = BA = πBR2. (2.40)

In absence of any diffusion or dissipation processes, the magnetic flux is conserved (in
agreement with the flux freezing condition, eq. [2.8]), and thus M = φ2/(6πR). The
gravitational energy of the sphere is W = −3GM2/5R. Therefore, the ratio of the
gravitational to magnetic energy is:

|W |
M

=
18π2G

5

(
M

φ

)2

, (2.41)

where the term between the parenthesis is named the mass-to-flux ratio. The collapse
condition |W | >M, implies that:

M

φ
>

(
M

φ

)

crit,sph

≡
√

5

18π2G
, (2.42)

19



2.4 Stability analyses of density configurations

where the numerical value depends on the geometry. Nakano and Nakamura (1978),
made the calculation for a cylindrical geometry, obtaining:

(
M

φ

)

crit,cyl

≡
√

1

4π2G
. (2.43)

Thus, clouds can be classified as:

• M
φ <

(
M
φ

)
crit

magnetically subcritical,

• M
φ >

(
M
φ

)
crit

magnetically supercritical.

A magnetically subcritical cloud can be supported by the magnetic field against its
own gravity, while a magnetically supercritical cloud cannot. It is noteworthy that the
magnetic surface term (which can explicitly appear in a more detailed version of energy
conservation equation, 2.7) includes the effects of both the external magnetic pressure
and the magnetic tension along the magnetic field lines, and thus, is not exclusively
confining. Moreover, if the magnetic field is uniform, the corresponding volume and
surface contributions of the magnetic field in the VT cancel one each other, indicating
balance between the internal and external stresses.

2.4.7 The Lane-Emden equation

Let us consider the density structure of a spherical cloud in hydrostatic equilibrium for
which:

−1

ρ
∇P −∇Φ = 0. (2.44)

This condition, together with the equation of state (eq. [2.9]), implies that ln ρ+ Φ/c2
s

is a spatial constant. Thus, assuming spherical symmetry, we can write:

ρ (r) = ρc exp
(
−Φ/c2

s

)
, (2.45)

where ρc is the central density and Φ = 0 at the cloud’s center. Therefore, by consid-
ering spherical symmetry, Poisson’s equation becomes:

1

r2

d

dr

(
r2dΦ

dr

)
= 4πGρc

(−Φ

c2
s

)
. (2.46)

It is useful to write this equation in dimensionless form by defining Ψ ≡ Φ/c2
s , and a

non-dimensional length:

ξ ≡
(

4πGρc
c2

s

)1/2

r. (2.47)

Thus, eq. (2.46) becomes the isothermal Lane-Emden equation:

1

ξ2

d

dξ

(
ξ2dΨ

dξ

)
= exp (−Ψ) . (2.48)
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2.4 Stability analyses of density configurations

This particular form is a special case of the generic Lane-Emden equation that governs
the structure of spherical polytropes (for which P ∝ ρ1+1/n) in the limit n → ∞. Its
first boundary condition is Ψ (0) = 0, while the second condition can be derived from
the Poisson’s equation by noting that the force produced by the gravitational potential
of the mass interior to a radius r, is −GM(r)/r2, and that close to the center this mass
approaches to (4π/3) ρcr

3. It follows that the force, and consequently dΨ/dξ, must
vanish as ξ goes to zero.

The Lane-Emden equation admits regular solutions (i.e., with finite values of the
variables at the origin) and singular solutions (for which some of the variables can have
singularities at the origin). This equation is solved numerically starting from the center
and integrating outwards.

2.4.8 The Singular Isothermal Sphere

Considering the ratio ρ/ρc which is given by exp (−Ψ) (see eq. [2.45]), we note that the
density, and consequently the pressure, drop monotonically at every radius away from
the center. This behavior is characteristic of all hydrostatic configurations, necessary
to produce a pressure gradient capable of overcoming the inward pull of gravity. The
singular solution of the Lane-Emden equation proposed by Shu (1977) is characterized
by the fact that at large distances (ξ � 1), the ratio ρ/ρc asymptotically approaches
to 2/ξ2, and thus the asymptotic solution is given by:

ρ (r) =
c2

s

2πGr2
, (2.49)

dΦ

dr
=

2c2
s

r
, (2.50)

and is known as the Singular Isothermal Sphere (SIS).
Note that the SIS has no outer radius, i.e., it occupies all space, and therefore

its total mass is infinite as M(r) grows linearly with r. Moreover, even though the
corresponding potential, Φ = ln(ξ2/2), does not satisfy the boundary conditions at
ξ = 0, the SIS is frequently used to estimate the cloud properties. Thus, its use
has been criticized because of the improbability that this particular configuration is
produced (e.g., Whitworth and Summers, 1985).

Taking in account that clouds are not infinite, the pressure does not really fall to
zero at their boundary, but to some value P0 and a corresponding density ρ0 at the
“edge” r0, and non-dimensional radius ξ0. Thus the ratio ρc/ρ0 indeed parametrizes
models of isothermal spheres with mass:

M = 4π

∫ r0

0
ρr2dr (2.51)

and a non-dimensional mass:

m =

(
4π
ρc
ρ0

)−1/2(
ξ2dΨ

dξ

)

ξ0

. (2.52)
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This function has an oscillatory behavior. We can know the value of ξ0 for each ρc/ρ0,
and therefore the last factor of the RHS of eq. (2.52) can be determined from Ψ (ξ).
First, when ρc/ρ0 = 1, ξ0 = 0, and thus m = 0. Then, with increasing density contrast,
m rises to a maximum value m1 = 1.18 at ρc/ρ0 = 14.1. The mass then drops to
a minimum value of m2 = 0.695, and so on, eventually approaching an oscillatory
fashion in which the asymptotic limit, m∞ = (2/π)1/2 = 0.798, corresponds to the
non-dimensional mass of the singular isothermal sphere, (see Fig. 9.2 of Stahler and
Palla, 2005).

2.4.9 Bonnor-Ebert spheres

The family of regular solutions of the Lane-Emden equation are known as the Bonnor-
Ebert spheres (BE, Ebert, 1955; Bonnor, 1956)1. It is noteworthy than only a limited
number of the models given by this equation and parametrized by the ratio ρc/ρ0 are
gravitationally stable.

For instance, let us consider a cloud of low density contrast ρc/ρ0 = exp(−Ψ) ≈ 1−
ξ2

0/6
2. Given the density distribution, the effective density, ρeff , can be approximated

by P0/c
2
s . Thus, considering that M = 4πr3ρeff , we obtain the cloud’s radius:

r3
0 ≈

3Mc2
s

4πP0
. (2.53)

Therefore, any rise of the internal pressure will act to expand the configuration of the
initial structure, thus providing stability to the cloud. For low density clouds, the fact
that in this equation the gravitational constant does not appear is usually interpreted
as the clouds being not self-gravitating, i.e., they are confined by external pressure.

On the contrary, for self-gravitating configurations (i.e., high density contrast clouds),
it would be more difficult for the central regions to expand after an increase in the ex-
ternal pressure. In particular, gravitationally unstable configurations are characterized
by ratios ρc/ρ0 > 14.1 or equivalently M > MBE , where the critical value, known as
the Bonnor-Ebert mass is given by:

MBE =
m1c

4
s

P
1/2
0 G3/2

. (2.54)

It is noteworthy that in order to be truncated, BE-spheres need to be immersed in a
warmer and rarefied medium, so that its weight over the sphere is negligible. Due to
its higher temperature, however, can be at the same pressure than that on the surface
of the sphere, and thus, be the pressure confining it. This particular configuration can
be achieved for instance, through a transition from the cold to the warm phase of the
ISM, at the sphere’s boundary. Nevertheless, there is no observational evidence that
the dense cores of MCs, which are the main candidates to be BE-spheres (e.g., Lada
et al., 2007), are surrounded by warm gas. See also Fig. 2.1 for various solutions of the
Lane-Emden equation.

1See Sipilä et al. (2015) for the non-magnetic case and Nejad-Asghar (2016) for the magnetic case

of non-isothermal BEs.
2For which a Taylor series expansion of Ψ(ξ) = ξ2/6 + O(ξ4) has been considered.
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2.4 Stability analyses of density configurations

Figure 2.1 Solutions of the Lane-Emden equation, showing two stable, two unstable

and the marginally stable (“critical”) configurations, together with the SIS. From Shu

(1977).

Moreover, any increase of the external pressure on isothermal spheres would create
internal oscillations around the equilibrium configuration. Let us consider a pertur-
bation in such configurations, mathematically described by e.g., ρ (r, t) = ρeq (r) +
δρ (r) exp (iωt). For any equilibrium cloud model characterized by the criterion ω2 > 0,
the density and all other physical quantities undergo oscillations of fixed amplitude.
On the contrary, for ω2 < 0 the perturbation can grow exponentially rendering it to be
unstable. In the interstellar environment in which molecular clouds are embedded it
is inevitable that a perturbation occurs. Thus, if the configuration is unstable, it will
necessarily be pushed away from equilibrium by the environmental perturbations.

2.4.10 Rescaling and self-similarity of flows

We have seen that generally, astrophysical fluids can be described via the principles
of conservation of mass, momentum, and energy in the presence of self-gravity in the
form of equations with boundary conditions. These equations can be expressed in such
a way that their LHS are formed by the total rate of change of some property q of the
fluid element (due to both the change of this property at its actual position or due to
the movement of the fluid element with a velocity u to a new position where it has a
different value), and the RHS expresses the source terms causing these space-temporal
changes (i.e., as the rate of change of q). An interesting aspect of this formulation is
that these rates of change correspond to different physical processes acting on the fluid,
and the corresponding characteristic time given by the ratio of the physical property
to its rate of change. Thus, in general, the behavior of the fluid will depend on the
ratios of the characteristic times for different involved physical processes. Therefore,
the different time ratios can be considered as dimensionless parameters that ultimately
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2.4 Stability analyses of density configurations

determine the evolution of the fluid.
Another interesting aspect is that the fluid equations can be rescalable, in the sense

that they can describe two flows of different physical scale but with the same dimension-
less parameters. Thus, the flow’s behavior must be identical, if all the system variables
has been rescaled in an adequate way. Moreover, a flow could be similar to itself at a
different time and space location. In this case, the fluid dynamics equations must have
invariant solutions as long as we introduce some similarity variables that satisfy the in-
variance conditions, i.e., nondimensional variables constructed as a combination of the
original spatial and temporal variables together with any relevant physical parameters
of the problem, that continue to satisfy the equations when written in terms of the new
variables. It is noteworthy that in general the flow self-similarity is only asymptotically
fulfilled when the initial and boundary conditions are compatible with it. Thus, the
self-similarity would be only achieved far enough from the boundaries and far enough
from initial conditions both in position and time.

2.4.10.1 Similarity analysis

Let us now consider the gravitational collapse of an arbitrarily extended spherical
isothermal cloud following the treatment of Shu (1977). Considering the cloud as
composed of spherical shells, from the mass and momentum conservation equations, we
obtain:

∂M

∂t
+ u

∂M

∂r
= 0, (2.55)

∂u

∂t
+ u

∂u

∂r
= −c

2
s

ρ

∂ρ

∂r
− GM

r2
, (2.56)

where M is the mass inside a shell of radius r, for which:

∂M

∂r
= 4πr2ρ, (2.57)

from continuity equation.
As we can see in equations (2.55)-(2.56), the only relevant physical parameters of

the problem are the sound-speed and the gravitational constant. Thus, we must use it
to obtain the equations in dimensionless form. This can be done by writing all physical
variables A (i.e., ρ, M , and u) as the product of a dimensional unit A0 that depends
on time, and a dependent dimensionless similarity variable a that depends on position
and time:

A(r, t) ≡ A0(t) a(x(r, t)), (2.58)

where the independent dimensionless similarity variable can be defined as:

x ≡ r

cst
. (2.59)

Note that with this assumption, the flow at a given time resembles its own configuration
at a different time, but at a different position (i.e., this describe the self-similarity of
the possible solutions of the problem).
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The units for A0 can be set by considering the dimensional analysis of the physical
variables involved. For instance, [G] = L3M−1T−2 = [ρ]−1[t]−2, suggesting the choice
of the dimensionless variables:

ρ(r, t) =
ρ̄(x)

4πGt2
, (2.60)

M(r, t) =
c3

s t

G
m(x), (2.61)

u(r, t) = csv(x), (2.62)

where ρ̄, m, and v are the dimensionless density, mass and velocity, respectively. There-
fore, taking in account the chain rule for derivatives, both in position and time, in
equations (2.55) and (2.57), we obtain:

dm

dx
= x2ρ̄, (2.63)

m+ (v − x)
dm

dx
= 0. (2.64)

Combining these equations, we obtain:

m = x2 ρ̄ (x− v). (2.65)

Thus, by substitution in our initial mass and momentum conservation equations we get
a nonlinear set of ordinary differential equations:

[
(x− v)2 − 1

] dv
dx

=

[
(x− v)ρ̄− 2

x

]
(x− v), (2.66)

[
(x− v)2 − 1

] 1

ρ̄

dρ̄

dx
=

[
ρ̄− 2

x
(x− v)

]
(x− v). (2.67)

This set of equations has two types of solutions: the first is a static unstable solution
corresponding to the SIS:

v = 0, ρ̄ =
2

x2
, m = 2x. (2.68)

Historically, this has been considered as the “natural” initial condition for subsequent
gravitational collapse (Shu, 1977). This choice, however, is unfortunate, since it ignores
the fact that the ISM is turbulent. For example, clumps and dense cores could have their
origin in density fluctuations dynamically formed due to the turbulence, and therefore
such unstable configurations will not arise naturally. This point has been noted by
Whitworth et al. (1996) and Vázquez-Semadeni et al. (2005), and more recently by us
as part of this thesis (see Naranjo-Romero et al., 2015, included in Chapter 5).

The second type is a dynamic solution that must be obtained numerically, which
has as an initial condition a hydrostatic sphere similar to the SIS, except that its mass
is m = (2 + ε)x, i.e., slightly larger than that for a SIS. From this solution, we can note
several important points:
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First, we can consider the SIS-like initial condition as the moment in which a pro-
tostar (i.e., the singularity) is formed at r = 0 with mass M =

∫
V ρdV = 0 due to that

dV → 0 even though ρ→∞.
The solutions for x > 0 correspond to times t > 0. At these times, the solutions

have the asymptotic form:

v → −
(

2m0

x

)1/2

, ρ̄→
(m0

2x3

)1/2
, m→ m0 (2.69)

in the limit x → 0, where m0 = 0.9751 is the non-dimensional mass that has been
accreted to the central object of mass:

M(0, t) =
m0c

3
s

G
t, (2.70)

with accretion rate:

Ṁ =
m0c

3
s

G
(2.71)

Note that at x = 1, the velocity v = 0, and thus, the sound wave has reached a radius
r = xcst. Beyond this radius, the system has not “noted” that its internal parts are
collapsing, because this requires the sound wave at speed cs, to reach to those regions,
and thus, they preserve their initial conditions. The accretion process is established
through a rarefaction wave located at x = 1. The material inside this radius is falling
toward the central object with infall velocity, vinf = (2GM/r)1/2, and the wave front,
located at a physical radius r = cst (for x = 1), propagates outwards at the sound
speed.

In the internal parts, 0 < x < 1, the flow has density and velocity profiles different
from those of the SIS, and in the most internal parts, i.e., for x→ 0, it approaches the
asymptotic solution given by:

| v |∝ r−1/2, ρ ∝ r−3/2. (2.72)

In the intermediate points, the material is being accelerated from zero velocity at x = 1
to the free-fall velocity at x→ 0. The collapse mode described here is called the inside-
out collapse, and is generally considered the standard mode of collapse of dense cores
in the star formation process.

Note that it is also valid to suppose an initial condition that is not an SIS, but
that has similar density structure to the SIS, with non-zero infall speed. For it, the
asymptotic solution in the limit x→∞ has the form:

v → −A− 2

x
, (2.73)

ρ̄→ A

x2
, (2.74)

m→ Ax, (2.75)

1This value can be obtained by numerically integrating the set of eqs. (2.66-2.67)
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where A > 2 in order to get a speed different from zero. This solution has no critical
points. Note that the value for the mass of the central object, m0, is related to A due
to the fact that the limit x→∞ could be considered as an initial condition because it
corresponds to t → 0, and thus, the expected accretion rate could be larger that that
for the hydrostatic condition corresponding to A→ 2+.

2.4.11 Classical solutions of collapsing self-gravitating isothermal gas

spheres

Even though there have been several classic seminal works on the collapse of self-
gravitating isothermal gas spheres (e.g., Penston, 1969; Larson, 1969; Hunter, 1977), a
compehensive description was given by Whitworth and Summers (1985). These authors
discovered that each of the discrete solutions previously found can be expressed as
a bounded two-parameter continuum of solutions (namely, the cloud’s initial central
density, z0 and the central point mass, w0, originated by the collapse, see Fig. 2.2).
They found that z0 characterizes the asymptotic form of the solution at early times,
reflecting how intrinsically unstable against contraction the cloud interior is from the
outset, while w0 characterizes the asymptotic form of the solution at very late times,
reflecting the importance of the external pressure in driving the compression. They
further argue that if the cloud interior is initially close to hydrostatic equilibrium, then
sound waves will propagate inwards, both providing support against the collapse and
for some regions the gas will flow outwards for a time. Thus, it is only the arrival of a
compression wave driven into the cloud by external pressure which converts the cloud
to overall contraction. On the other hand, if the cloud’s interior is far from hydrostatic
equilibrium, then it will immediately start an overall contraction, and a sound wave
will propagate inwards, amplifying any initial contraction, leaving a uniform velocity
field behind. This will eventually form a central point mass that will subsequently
grow by accretion, and then a rarefaction wave will propagate outwards through the
infalling gas, leaving a free-fall velocity field in the inner parts. Fig. 2.2, shows the
plane (Z,W ) splitted into discrete bands where any point represent a unique complete
solution1, in the sense that they provide a continuous description of the flow for all space
and all time, and are physically acceptable. They conveniently divided these complete
solutions into three consecutive paths in order to gain physical insight by tracing the
paths chronologically, by following the point xR(t) = R/cst at a fixed radius R: from
t = −∞ when xR = 0−; through t = 0 when xR goes from −∞ to +∞; to t = +∞ when
xR = 0+. This is: i) an early interior path, representing the behavior of the interior
of the cloud at early times and in which the flow is everywhere subsonic; ii) an early
exterior path, representing the behavior of the outer parts of the cloud it early times,
but after they have been overrun by the inward propagating compression wavefront,
and in which the flow is everywhere supersonic; and iii) a late path, representing the
behavior of the whole cloud at late times, as it is steadily accreted by the central point
mass, and in which the flow remains everywhere supersonic. They also found semi-
complete solutions that describe the flow for all space and through the late era but

1Note that the Larson, Penston, Hunter and Shu’s solutions fall at the apices of these bands
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Figure 2.2 Solutions of Whitworth and Summers (1985) for the collapse of self-

gravitating isothermal gas spheres fully parametrized by the initial central density (z0)

of the cloud and the central point mass originated by the collapse of the cloud (w0),

representing: intrinsically unstable (band 0), intrinsically stable (band 1) clouds, and

physically unnatural solutions (Band 2 and right-hand band ∞). Jagged boundary

bands extend indefinitely, except for the case of the band ∞ where the boundary is

simply indeterminate.

begin in a singular manner.
It is noteworthy that the ingredient that allowed them to provide a more complete

description of the collapse solutions was noting that the physically possible solutions
that passed through trans-sonic points1 were nodes (at which there are an infinity
of paths that represent different combinations of two linear eigensolutions) instead
of saddles (at which the only paths are the two linear eigensolutions). Moreover, this
trans-sonic points are identified as the head of the compression wave because the density
at fixed radius always increases after the pass of the wave at t = 0.

Band 0 solutions represent clouds whose interior is centrally rarified during early
times, or clouds whose interior initially has uniform density and retains uniform density
at least until overrun by the inward propagating compression wave, or clouds whose
interior is initially mildly centrally peaked. On the other hand, Band 0 early interior
paths, represent cloud interiors which from the outset are so far from hydrostatic equi-
librium that they immediately start to contract through their entire volume, without
requiring any external stimulus. Its behavior is expected to occur when a protostar
forms through the break-up of a shocked gas layer, or when a previously Jeans-stable
cloud is rendered Jeans-unstable by sudden cooling and/or molecular association. This
is numerically reproduced by taking an equilibrium configuration and then doubling
the density throughout, or by taking a density cloud with mass well in excess of the

1I.e., where the flow goes from been supersonic to being subsonic
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2.5 Filament stability

Jeans mass (e.g., Naranjo-Romero et al., 2015).
Band 1 solutions represent clouds which are not monotonically centrally peaked

(i.e., can have density profiles with a local minimum). A large number of this solutions
have a single sound wave propagating inwards through the cloud interior, ahead the
compression wave. Band 1 early interior paths represent cloud interiors which are
initially insufficiently close to hydrostatic equilibrium that overall contraction requires
some external stimulus, thus this are clouds marginally Jeans unstable or previously
Jeans-stable clouds that turns unstable by an increase in the external pressure.

Band 2 solutions represent clouds that are even more centrally peaked that those
in Band 1, and thus Band 2 early interior paths represent cloud interiors which are
initially even closer to hydrostatic equilibrium than those in Band 1. Only when the
cloud interior has been overrun by the inward propagating compression wave does it
convert to overall contraction; in the meantime it is traversed by a low amplitude sound
waves tending to stablish hydrostatic equilibrium by redistributing the mass.

In a more general description, the behavior of the cloud exterior is given by early
exterior paths describing the flow behind the inward propagating compression wavefront
associated with the trans-sonic node, and that have monotonic velocity profiles with
positive radial gradient, so the inward flow is always accelerated behind the compression
wavefront. The compression wave creates a central point mass, leaving behind an
uniform velocity field. After this (note that the subsequent behavior is described by
the late paths), the central point mass grows by accretion, and a rarefaction wave
propagates throughout the infalling gas adjusting the velocity to free-fall. Note that
all late paths thus have monotonic velocity and velocity profiles, both with negative
radial gradient. Thus, the different combination of an early interior path and a late
path represent strengths of the external pressures that ultimately produce a large point
mass during the late times.

Whitworth and Summers, concluded that all of Shu’s solutions originated in a rather
unnatural manner with density profiles infinitely centrally peaked, while Hunter’s so-
lutions whilst rather particular, are even less natural than Shu’s. Hunter’s solutions
represent clouds whose interiors are initially close to hydrostatic equilibrium, but are
overrun by an inward propagating compression wave driven by external pressure, and
thus overall contraction occurs in order to form a central point mass.

2.5 Filament stability

The radial profile of the observed filaments column density is well described by a
Plummer-like function (cf., Whitworth and Ward-Thompson, 2001; Arzoumanian et al.,
2011):

ρ(r) =
ρc[

1 + (r/Rflat)
2
]p/2 , (2.76)

where ρc is the central density and Rflat is the radius of its inner flat region (both
parameters characterize a pure Gaussian-like inner region comprising the most central
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2.5 Filament stability

and densest parts of the filament), and the parameter p characterize the power-law like
region of the profile at large radii (e.g., Rivera-Ingraham et al., 2016).

Analogous to the cloud mass in a spherical cloud, in the case of filaments, the mass
per unit length (e.g., Fischera and Martin, 2012) is given by:

M

l
(rcyl) =

∫ rcyl

0
2πrρ(r)dr =

2K

G

[
1− 1

1 + (rcyl/Rflat)
2

]
, (2.77)

where M is the mass, and l is the length, and K is related to the gas pressure and
density of the filament:

K =
P

ρ
=

TkB
µmH

. (2.78)

If the effective temperature equals the thermal or kinetic temperature, then K = c2
s .

The relation between K and Rflat is:

Rflat =
√

2K/πGρc. (2.79)

In the limit rcyl � Rflat the mass per unit length approaches a maximum value:

M

l
(rcyl) =

2K

G
= 16.4

(
T

10K

)
M�pc−1. (2.80)

Therefore, the gravitational state of the filament can be classified as:

• M
l <

(
M
l

)
crit

subcritical,

• M
l >

(
M
l

)
crit

supercritical.

A subcritical filament can be supported by the interior pressure against its own gravity,
while a supercritical filament cannot.

30



Chapter 3

General observational perspectives of

star formation

3.1 The Interstellar Medium

The ISM is a complex environment with three main phase components1 regulated
by several energy-injection mechanisms like supernova explosions, UV photoionizing
radiation, spiral arm passage, etc., in an inhomogeneous substrate, with a wide range
of properties (e.g., Cox and Smith, 1974; McKee and Ostriker, 1977). In disk galaxies,
the ISM is radially extended beyond the stellar disk to distances almost twice that of
the stellar radius (Binney, 1998). Its different components have different scale heights
(see e.g., Table 1 of Boulares and Cox (1990) and also Cox (2005)) with its thickness
determined by the gravitational potential of the stars and each component itself. The
ISM pressure is generated by the weight of the vertical column of gas, and it diminishes
with the height and thus, can be simply modeled as an stratified atmosphere (Boulares
and Cox, 1990; Ferrière, 2001).

In the Milky Way (MW), approximately half the volume is filled by a hot ionized
medium with n < 0.01 cm−3 and TK > 105K, and half is filled by some combination of
warm ionized medium (WIM) and warm neutral medium (WNM) with n ∼ 0.1−1 cm−3

and kinetic temperature, TK, of several thousand K (Cox, 2005; Kennicutt and Evans,
2012). The neutral gas is subject to a thermal instability that predicts segregation into
the warm neutral and cold neutral media (CNM, Field et al., 1969), the latter with
n > 10 cm−3 and TK < 100 K. Observations, however, suggest that this segregation is
not strict and thus, approximately 48% of the WNM may lie in the thermally unstable
phase (Dickey et al., 1977; Vázquez-Semadeni et al., 2000, 2003; Gazol et al., 2001;
Heiles and Troland, 2003; Kennicutt and Evans, 2012). With a mass of 1010M�, a 10-
15% of the total mass of the Galactic disk, the ISM is an extremely dilute mixture of gas,
mostly formed by atomic hydrogen (90.8% by number, 70.4% by mass), molecular or

1See also Table 1 of Ferrière (2001) for the descriptive physical parameters of the different compo-

nents of the interstellar gas.
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3.1 The Interstellar Medium

ionized hydrogen, helium (∼ 9.1% by number, ∼ 28.1% by mass), other complex traces
of heavier elements and dust, pervaded by a rather strong and irregular magnetic field
and cosmic rays (Ferrière, 2001; Cox, 2005).

3.1.1 Molecular Clouds

In the Milky Way, the ISM is arranged in large-scale structures of bubble walls, clouds,
sheets, and filaments of warm gas, within which close to the mid-plane there are sub-
sheets and filaments of cold dense material (Cox, 2005; Kennicutt and Evans, 2012).
Roughly half the interstellar mass is confined to discrete clouds occupying only ∼ 2 of
the interstellar volume. These interstellar clouds can be divided into (Ferrière, 2001):
i) dark clouds, which are made of very cold (T ∼ 10− 20 K) molecular gas that block
the light from background stars. ii), translucent clouds, which contain molecular and
atomic gases and have intermediate visual extinctions. iii) diffuse clouds, which consist
of cold (T ∼ 100 K) atomic gas, almost transparent to the background starlight, except
at some specific wavelengths.

In turn, the molecular gas is contained in discrete clouds organized hierarchically
from giant complexes (namely the giant molecular clouds, GMCs, with a size L of a
few tens of parsecs, a masses of 105−106M�, and a mean hydrogen number density
n ∼ 100 − 1000 cm−3), molecular clouds (L ∼ 5 − 10 pc, n ∼ 103 cm−3), clumps
(L ∼ 0.5 pc, n ∼ 104 cm−3) and small dense cores (L ∼ 0.1 pc, masses of ∼ 0.3−103M�,
n ∼ 104 − 106 cm−3), see e.g., Larson (1981); Blitz (1993); Ferrière (2001).

Recently, Herschel observations (Pilbratt et al., 2010) that have mapped the sky
from entire cloud complexes down to individual dense core scales (i.e., from > 10 pc
down to < 0.1 pc), have revealed ubiquitous intricate networks of filamentary substruc-
ture within the MCs irrespective of their star-forming content, suggesting that the
formation of filaments precedes star formation in the cold ISM, and is tied to processes
acting within the clouds themselves and therefore, favoring a scenario where filaments
and prestellar cores play an important role in the star formation process (e.g., André
et al., 2014; André, 2017). In this scenario, large-scale compressions (turbulent or not)
first produce sheet-like structures which contract first along their shortest dimension
to form filaments. Then, the densest filaments fragment into prestellar cores by gravi-
tational instability above the critical mass per unit length (see also Vázquez-Semadeni
et al., 2006, 2007; Gómez and Vázquez-Semadeni, 2014).

3.1.1.1 Filaments

Filamentary interstellar structure has been detected in a variety of observations since
long time ago. For instance, McClure-Griffiths et al. (2006) found a network of tenuous
CO filaments observed in HI self absorption, aligned with the surrounding magnetic
field, with lengths of ∼ 17 pc, widths of less than 0.1 pc and temperatures of ∼ 40K.
This filamentary structure has also been observed in infrared dark clouds (Busquet
et al., 2013), where quiescent filaments with temperatures of 10K and non-thermal
velocity dispersions σNT ∼ 0.6 km s−1 seem to feed star forming hubs of 15K and
σNT ∼ 1 km s−1, and also with cores within the filaments separated by a length of
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3.1 The Interstellar Medium

∼ 0.33 pc, consistent with fragmentation by gravitational instability of a thin gas layer
threaded by magnetic fields. Moreover, the filamentary structure seem to be present in
Herschel observations of nearby star forming molecular clouds1, namely Orion, Taurus,
Musca-Chamaeleon and Perseus, among other cold ISM individual molecular clouds,
GMCs and in the Galactic plane (see André et al., 2014, and references there in). In
the nearby clouds, the observed filaments are typically from ∼ 1 pc up to several tens of
pc long, which are in general quite linear with minimal curvatures, appearing co-linear
with their host MCs (André et al., 2014; André, 2017), and with a characteristic width
of ∼ 0.1 pc (c.f., Panopoulou et al., 2017). Usually, dense, self-gravitating filaments
tend to be parallel to the local magnetic field, while having associated perpendicular,
less dense, sub-filaments (called striations), through which material is funneled down
to the main filament (André et al., 2014; Palmeirim et al., 2013) with typical velocities
of ∼ 0.5 − 1 km s−1. Also, some filaments have been observed that appear to radially
feed material into hubs or ridges of active clustered star formation (e.g., Myers, 2009),
similarly to the tenuous CO filaments mentioned before.

In order to avoid overlapped structures in the plane of the sky, the observed filaments
are usually identified by analyzing the velocity channels in molecular line observations.
Once a filament has been identified, its velocity centroid usually does not show much
variation, and thus are considered as real velocity-coherent structures. Moreover, over-
lapping sub-filamentary structures (∼ 0.5 pc long) with small velocity differences and
linear mass densities close to the critical mass per unit length have also been identified
(e.g., Hacar and Tafalla, 2011; Hacar et al., 2013). These so-called fibers are also identi-
fied in Herschel data when large-scale emission is filtered out, suggesting that filaments
could be bundles of smaller and more stable fibers (Hacar et al., 2013). Nevertheless
not all filaments consist of multiple fiber-like structures (Cox et al., 2016). Moreover,
numerical simulation of star-forming self-gravitating clouds in magnetized media sug-
gest that these fibers could be a projection effect, and are more prone to be produced
by separated density enhancements superposed along the line of sight (Zamora-Avilés
et al., 2017).

In Sec. 2.5 we have seen that the radial profile of filament column density is well
described by a Plummer-like function (cf., Whitworth and Ward-Thompson, 2001; Ar-
zoumanian et al., 2011). At large radii, the observed filaments usually have a fitted
value of the power-law exponent p ≈ 2, while for a theoretical isothermal gas cylinder
in hydrostatic equilibrium, p = 4 Ostriker (1964). This difference could be due to the
fact that dense filaments are not strictly isothermal, and thus, a polytropic equation
of state with polytropic index γ . 1 describe it more exactly as has been suggested
(e.g., Palmeirim et al., 2013). We will discuss an alternative explanation to the discrep-
ancy in the values of p, later in Chap. 6, suggesting that filaments are not hydrostatic
but are collapsing structures immersed in large scale collapsing clouds in the GHC sce-
nario. In fact, models of polytropic cylindrical filamentary clouds ongoing gravitational
contraction have density profiles scaling as r2/(2−γ) (Kawachi and Hanawa, 1998; Naka-
mura and Umemura, 1999). In nearby clouds, the averaged diameter of the flat inner
part of the radial profile of the observed filaments is roughly constant, and it has been
suggested that the filament width corresponds to the sonic scale at which interstellar

1Here after we will use the term “filament” to refer to molecular filaments.
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turbulence becomes sub-sonic in the diffuse, non-star forming molecular gas (e.g., Ar-
zoumanian et al., 2011; Federrath, 2016), while for denser filaments that are expected
to radially contract with time, this width could be significantly overestimated by up to
a factor of a few (Seifried et al., 2017). On the other hand, recent works have suggested
that this quasi-universality is a bias due to the method and choice of parameters used
in measuring the filament widths (Panopoulou et al., 2017), (see also Ntormousi et al.,
2016; Seifried et al., 2017; Green et al., 2017).

3.1.1.2 Dense cores

Prestellar cores are observationally identified as not very elongated patches in submil-
limeter/millimeter continuum emission or optically/infrared absorption and also, can
be identified in line emission of molecules that do not suffer from freeze-out1 in the cold
dense gas (e.g., André et al., 2010, 2014). The density structure of dense cores is very
similar to that of a self-gravitating isothermal sphere that is critically stable according
to the Bonnor-Ebert (BE) criteria (Ebert, 1955; Bonnor, 1956), bounded by the ex-
ternal pressure of its parent cloud (e.g., Alves et al., 2001; Tafalla and Hacar, 2015).
Simpson et al. (2011) have proposed that cores evolve by accreting mass quasi-statically,
maintaining Bonnor-Ebert equilibrium and increasing in both mass and radius. When
a core crosses the limit of gravitational instability, it begins to collapse, decreasing in
radius. Nevertheless, Ballesteros-Paredes et al. (2003) have shown that even dynamical
structures can produce BE column density profiles, although with significant differences
between apparent and actual temperatures and with central densities obtained with the
BE fit that tend to be smaller than the actual central densities of the cores. They also
found that different projections of the same core may give very different values of the
BE fits, and thus fitting BE profiles to the observed cores is not an unambiguous test
of hydrostatic equilibrium.

Moreover, Herschel observations have shown that ∼ 70% of the bound prestellar
cores and embedded protostars are located within supercritical2 filaments with NH2 &
7× 1021 cm−2 (e.g., Polychroni et al., 2013). The rest of the prestellar core population
is not associated with any filament or only associated with subcritical filaments and
thus, are less massive (e.g., Polychroni et al., 2013). In this picture, complex networks
of long, thin filaments seem to form first within molecular clouds, and then the densest
filaments fragment into a number of prestellar cores (André et al., 2010). In this case,
one would expect that the cores and their associated filaments have similar kinematic
properties (André et al., 2014).

It also has been suggested that prestellar cores could grow by filamentary accretion
(e.g., Falgarone et al., 2001; Smith et al., 2011; Cox et al., 2016; Salji et al., 2015),
(see also Balsara et al., 2001). Moreover, numerical simulations have suggested that
filaments represent the locus where the flow radially accreted from the cloud is redi-
rected down to the dense cores within. In this case, the longitudinal draining of the
filament’s material accreted directly to its embedded cores would produce enhanced

1Due to the formation of ice mantles around refractory grain particles.
2I.e., with mass per unit length Mline > Mline,crit, where the latter is the threshold value for

gravitational collapse. We will return to this later in Chap. 6
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star formation, in contrast to isolated prestellar cores (Gómez and Vázquez-Semadeni,
2014).

3.1.2 Scaling relations

Molecular clouds and their substructure appear to follow scaling relations first noted by
Larson (1981) and later by other observational works (e.g., Dame et al., 1986; Solomon
et al., 1987; Falgarone et al., 1992; Caselli and Myers, 1995; Heyer and Brunt, 2004):

σ ∼ Lβ, (3.1)

ρ ∼ L−α, (3.2)

where ρ is the gas density, σ is the linewidth and L the size. The most favored values for
the exponents are α ≈ 1 and β ≈ 0.5 (Ballesteros-Paredes et al., 2011, and references
therein). These relations are valid in a range of six orders of magnitude in size, from the
scale of the dense clumps up to the scale of large cloud complexes (0.1 < L < 100 pc).
Since the ratio 2GM/σ2R, 1 is roughly constant, they have been interpreted as virial
balance between the gravitational energy and the kinetic energy (i.e., 2Ek = |Eg|)
(e.g., Larson, 1981; Myers and Goodman, 1988). Nevertheless, the fact that α ≈ 1 in
the second relation, would imply that the column density N = nL is approximately
constant.

3.1.2.1 A generalization of the scaling relations in MCs

Recently, Heyer et al. (2009) re-examined the MC scaling relations by comparing the
Solomon et al. (1987) data and new data from 13CO (J=1–0) emission as a lower opacity
tracer of molecular clouds. They found that these relations seem to be instead replaced
by a single relation where:

σv/R
1/2 ∝ Σ1/2, (3.3)

where the LHS is known as the Larson ratio, R = L/2 is the radius, and Σ2 is the
surface density. They claim that this relation is consistent with clouds being in self-
gravitational equilibrium. Nevertheless, Ballesteros-Paredes et al. (2011) pointed out
that this relation is also consistent with the clouds in a state of free-fall towards their
center of mass. We will discuss this later in Sec. 4.3. Moreover, Dobbs et al. (2011)
argued that Heyer’s results would imply that the molecular clouds are preferably gravi-
tationally unbound. Later, Ibáñez-Mej́ıa et al. (2016) and Camacho et al. (2016), how-
ever, have shown that the dense clumps in numerical simulations follow this generalized
energy equipartition relation and they interpret this relation as a natural consequence
of gravitational contraction at all scales rather than virial equilibrium. See also Fig.
3.1.

1where R = L/2 is implied by these relations
2Where Σ = µmHN , and for the molecular gas (µ = 2.36), 1M� pc−2 = 5.30 × 1019 cm−2.
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Figure 3.1 The variation of σv/R
1/2 with surface density Σ, for Milky Way GMCs from

Heyer et al. (2009) (black circles) and massive cores from Gibson et al. (2009) (blue

points). The solid and dotted black lines show loci corresponding to gravitationally

bound and marginally bound clouds respectively. The red dashed lines represent the

locus of constant turbulent pressure, while the red solid line represent the mean thermal

pressure of the local ISM. From the review of Dobbs et al. (2014). See also Ballesteros-

Paredes et al. (2011).

3.1.3 A “transition to coherence”

Dense cores exhibiting non-thermal velocity dispersions smaller than thermal motions
have been observed for a long time (e.g., Goodman et al., 1998). In particular, Myers
(1983) concluded that all of the Larson relations found for supersonic regions in fact ex-
tend into the subsonic regime and that if a turbulent energy cascade is present in dense
cores, then the dissipation of turbulence would be important for cloud heating and star
formation. Later, Barranco and Goodman (1998), Goodman et al. (1998) and Caselli
et al. (2002) found evidence of a so-called transition to coherence, where “coherence”
means that the non-thermal, turbulent, contributions to the line width are so small
that the observed velocity dispersion is nearly the sonic one and independent of scale
within the core. Thus, they interpreted this behavior as a transition between the outer
turbulent gas and the more quiescent gas close to the cores, taking place in regions
of ∼ 0.1 pc, forming primarily low-mass stars. Moreover, recent observations (Pineda
et al., 2010) have apparently observed this transition from a supersonic turbulent ve-
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locity dispersion down to a subsonic one (decreasing by a factor of 2, corresponding
to ∼ 3 km s−1pc−1) occurring over a physical scale of 0.06 pc, see also Fig. 3.2. Even
though the typical size of the sonic region is in rough agreement with the observed
width of filaments in Herschel data (André et al., 2014), this has been known to be the
mean size of low-mass pre- and protostellar cores (e.g., Jijina et al., 1999). Moreover,
Palau et al. (2015), combining interferometric and single-dish data of relatively nearby
massive dense cores that are actively forming stars, tested their “fragmentation level”
at scale of ∼ 0.1 pc and find that the best correlation between fragmentation level, ve-
locity dispersion, and number of fragments is more consistent with pure thermal Jeans
fragmentation than turbulent fragmentation (see also the review of Dobbs et al., 2014).
Thus, no turbulence dissipation would be needed for the cloud to be fragmented into
dense cores.

Figure 3.2 Left panel: Velocity dispersion map derived from fitting all NH3 (1,1) hyper-

fine components simultaneously. Right panel: Spectra of the main components of the

NH3 line, showing the centroid velocity and velocity dispersion for each position away

from the protostar. The image shows two main components (top) clearly separated due

to their low velocity dispersion (the coherent core), while outwards from the core the

lines get weaker and broader. From Pineda et al. (2010).
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Chapter 4

Star formation

4.1 Early scenarios of star formation

Giant molecular clouds have been generally considered to be dense virialized struc-
tures in the interstellar medium (e.g., Larson, 1981; Shu et al., 1987; McKee, 1989;
Mouschovias, 1991), with molecular-line widths corresponding to velocities larger than
their thermal speeds by about an order of magnitude (Wilson et al., 1970), and rela-
tively long lifetimes with respect to their free-fall time (Blitz and Shu, 1980). Initially,
Goldreich and Kwan (1974) found that the derived rate at which energy is radiated
from the optically thick CO lines exceeds the rate at which work is done by an adia-
batic compression of collapsing gas, implying the existence of an energy source which
maintains the temperature of the gas against the cooling due to radiative energy losses.
Thus, they suggested that MCs are in a state of gravitational collapse, and the observed
large motions can be interpreted as its manifestation. Shortly thereafter, Zuckerman
and Evans (1974) suggested that if molecular clouds were in a state of global contrac-
tion, they would exhibit systematic Doppler shifts (by comparison of molecular lines
from the center and the periphery), which were not observed. Therefore they conclude
that the observed data were dominated by local motions contained in fragments of
∼ 1000M�. Moreover, Zuckerman and Palmer (1974) noted that if MCs were in a state
of gravitational collapse, then their Star Formation Rate (SFR) should be roughly two
orders of magnitude larger than the observed Galactic SFR (∼ 2M� yr−1; Chomiuk
and Povich (2011)).

4.2 Support mechanisms against collapse

4.2.1 The magnetic support scenario

From the late 1970s to the late 1990s, the prevailing model for the state of MCs and the
regulation of star formation was based on the notion of magnetic support for the clouds
(e.g., Shu et al., 1987; Mouschovias, 1991). See also the review of (Vazquez-Semadeni,
1997). A problem with the Larson relations was that the observed linewidths imply

38



4.2 Support mechanisms against collapse

highly supersonic turbulence in the form of random motions, that should produce shocks
and rapidly dissipate, becoming subsonic (Mestel, 1965). At first, magnetic fields were
proposed as an alternative through Alfvén waves, which does not induce shocks, and
additionally that for clouds with a nearly critical max-to-flux ratio, the Alfvén velocity
nearly equals the virial velocity1 (Shu et al., 1987; Mouschovias, 1987). As noted in
Sec. 2.4.6, magnetically subcritical clouds can be supported against their self-gravity
by magnetic forces. This in fact would lead to no star formation at all. Since MCs are
only partially ionized2, however, a small fraction of the MCs mass is allowed to collapse
by the process known as ambipolar diffusion (AD), which can be understood as follows.

In a partially ionized medium such as an MC, the neutral particles are only indirectly
coupled to the magnetic field, through their collisions with the ions, which are the
only ones that experience the Lorentz force. When such a medium is located in a
gravitational potential well, the neutrals then tend to slip through the ions and sink
deeper into the potential well. This causes a redistribution of the magnetic flux, which
remains distributed over a large region, while the mass falls to the central most parts
of the cloud (a dense core). Thus, in practice, the dense cores increase their mass-
to-flux ratio, and eventually become magnetically supercritical, while their envelopes
remain magnetically subcritical, and thus supported against collapse. This situation
allows gravitational collapse of a small fraction of the mass of a magnetically subcritical
cloud.

Following the AD model, globally magnetically subcritical clouds subject to AD
correspond to low-mass star-forming regions, where the SFR and Star Formation Ef-
ficiency (SFE) are low, and no massive stars form. On the other hand, if an MC
happened to be magnetically supercritical as a whole, then it would not be supported
by magnetic forces, and will proceed to collapse as a whole. This case would give rise
to high SFRs and SFEs, and to the formation of massive stars, thus, in the magnetic
support model, magnetically supercritical clouds correspond to massive star-forming
regions.

4.2.2 The turbulent support scenario

The magnetic support scenario began to be disfavored some 15 years ago because nu-
merical simulations showed that MHD turbulence dissipates as rapidly as pure hydro-
dynamic turbulence (Mac Low et al., 1998; Stone et al., 1998; Padoan and Nordlund,
1999; Avila-Reese and Vázquez-Semadeni, 2001). Moreover, in the last decade Zee-
man observations revealed that GMCs tend in general to be magnetically supercritical
(e.g., Bourke et al., 2001; Crutcher et al., 2010), and thus the magnetic field cannot
provide support for most clouds. Thus, the previous magnetic interpretation of near-
equipartition between the non-thermal motions and the gravitational energy in GMCs
and their substructure (Larson, 1981; Heyer et al., 2009) was modified by the no-
tion that the non-thermal motions correspond to strongly supersonic turbulence, even
though it is well known that it requires continuous driving in order to be maintained
(e.g., Vazquez-Semadeni et al., 2000; Mac Low and Klessen, 2004; Ballesteros-Paredes

1A result obtained by equating magnetic and potential energies.
2MCs have an ionization fraction ∼ 10−5 or less.
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et al., 2007; McKee and Ostriker, 2007). The main driving mechanisms invoked were
feedback by supernovae and HII regions in massive star forming regions, massive-star
winds, protostellar outflows, the passage of spiral density waves, together with magneto-
rotational instabilities in the ISM (e.g., Mac Low and Klessen, 2004). In this so-called
turbulent support scenario, it has been proposed that the giant molecular clouds form
as density fluctuations induced by larger-scale interstellar turbulence (see Ballesteros-
Paredes et al., 1999) in the warm phase, via compressible motions such as those result-
ing from thermal instabilities or from the passage of shock fronts. On the other hand,
the velocity fluctuations in molecular clouds are known to be σv ∼ 2 − 5 km s−1 while
the sound speed is cs ∼ 0.2 km s−1, and thus they are strongly supersonic with Mach
number Ms ∼ 5 − 20. Thus, the overall picture in this scenario is that the supersonic
turbulence supports the clouds globally, while simultaneously it produces local nonlin-
ear density fluctuations (the clumps and cores). These small-scale fluctuations suffer a
local reduction of the Jeans mass, and therefore become gravitationally unstable and
collapse before their immediate parent structures do.

4.3 The global hierarchical collapse (GHC) scenario

Although the turbulent support scenario has been successful in roughly reproducing the
observed mass distribution of turbulent density fluctuations (Padoan and Nordlund,
2002; Hennebelle and Chabrier, 2008; Hopkins, 2012), it has been recently proposed
that the near-equipartition may be a consequence of gravitational collapse rather than
to virial equilibrium. In particular, Ballesteros-Paredes et al. (2011) conclude that al-
though hydrodynamic turbulence is necessary to produce the first condensations, the
forming clouds eventually become bounded and thus gravitational accelerations dom-
inate the motions within them. In particular they argued that during the cloud’s
collapse, the density and the internal pressure increase, and once the collapse has ad-
vanced sufficiently, the external pressure becomes negligible. They argued that energy
conservation implies that the kinetic energy gained during cloud’s collapse must come
from the gravitational energy released (i.e., |Ek| ≈ Eg ) and thus σ2

v ≈ 2GΣR, where Σ
is the surface density. Note that this relation is very similar to that from the virial re-
lation σ2

v/R ≈ GΣ, and therefore collapse is also in agreement with observational data
(e.g., Heyer et al., 2009). Moreover, they interpreted the scatter in the σv − R plane
and the dependence of the velocity dispersion on the surface density (σ2

v/R ∝ Σ) as the
molecular clouds being in a state of hierarchical and chaotic gravitational collapse, i.e.,
developing local centers of collapse throughout the whole cloud while the cloud itself is
also collapsing, making equilibrium unnecessary at all stages prior to the formation of
actual stars.

The still common virial-equilibrium interpretation, through the idea that stellar-
driven turbulence produces a hypothetical turbulent pressure that provides support
against cloud’s self-gravity, seems to face further problems. In particular, clouds with
little or no ongoing star formation also show near-equipartition (e.g., Maddalena and
Thaddeus, 1985), suggesting that local stellar feedback cannot be the driver of the
non-thermal motions. Even more, there seems to be no apparent reason why molecular
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4.3 The global hierarchical collapse (GHC) scenario

clouds should adjust themselves to balance the local-scale energy injection to maintain
a near-equilibrium at the larger scale of the whole cloud. Although it would be possible
to fulfill this condition in some idealized models in which local star formation is self-
regulated (e.g., Krumholz et al., 2006; Goldbaum et al., 2011), at least for clouds with
masses < 106 M�, full numerical simulations of ionization by feedback suggest that
when star formation is fully active overall in the cloud, it evaporates and partially
tears apart the parent cloud, disrupting it (Vázquez-Semadeni et al., 2010; Coĺın et al.,
2013; Dale et al., 2012, 2013). More recently, Coĺın et al. (2013) have found that
clouds can appear in near equipartition before stellar feedback begins to dominate the
dynamics, and are disrupted once feedback dominates.

Vázquez-Semadeni et al. (2009) and Gómez and Vázquez-Semadeni (2014) proposed
a return to the globally collapsing scenario, but instead of being monolithic as initially
proposed by Hoyle (1953), the collapse is instead hierarchical and filamentary. In this
scenario, the collapse initiates in a turbulent background containing non-linear density
fluctuations. The molecular clouds are born turbulent and in a state of global collapse,
but have a large collapse time-scale in comparison to their embedded density fluctua-
tions, due to their higher densities. In particular, Heitsch and Hartmann (2008) found
that turbulence generated through the cloud formation process provides a mechanism
to produce thermal and dynamical fragmentation, which is highly efficient in generat-
ing cold, high-density cloudlets. They claim that while the turbulence might slightly
decay during the formation of the cloud in the atomic phase, turbulence increases due
to gravity during the molecular phase of the cloud formation, in agreement with other
numerical works (Vazquez-Semadeni, 1998; Vázquez-Semadeni et al., 2007, 2008; Field
et al., 2008; Klessen and Hennebelle, 2010; Robertson and Goldreich, 2012; Murray
and Chang, 2015). Thus, molecular clouds consist of a hierarchy of collapses within
collapses in the large-scale ISM, rather than actual random turbulence entities. More-
over, Vázquez-Semadeni et al. (2010); Zamora-Aviles and Vazquez-Semadeni (2013)
argued that it is possible to destroy molecular clouds early in their evolution by stellar
feedback, even before ∼ 10% of their mass is converted into stars, thus solving the
Star Formation Rate (SFR) conundrum of Zuckerman and Palmer (1974), (see also
Dale et al., 2012; Zamora-Avilés et al., 2012; Coĺın et al., 2013; Zamora-Avilés and
Vázquez-Semadeni, 2014)

4.3.1 The hierarchical fragmentation model

In the GHC scenario (see Vázquez-Semadeni et al., 2010, for a review), the picture is
similar to that in the turbulent model, except that the clouds themselves are assumed to
undergo a long formation and evolutionary process. The clouds are born as the result of
transonic compressions in the warm atomic gas, as thin, low-column density cold atomic
clouds (Vázquez-Semadeni et al., 2006). The clouds keep accreting mass for a long time
(∼ 20 Myr) from the reservoir of material that originated the compression. At the locus
of the cloud, the collisions of the streams drive only moderately supersonic turbulence,
M ∼ 3, in agreement with other numerical works (e.g., Koyama and Inutsuka, 2002;
Audit and Hennebelle, 2005; Heitsch et al., 2005) and observations of the cold atomic
gas (Heiles and Troland, 2003). At the time of the formation of the cloud, no collapse
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4.3 The global hierarchical collapse (GHC) scenario

occur inside the clouds because the turbulent velocity field is not strong enough to
produce local decreases in the Jeans mass. Thus, the role of the turbulence is simply
to provide shocks that dissipate the supporting kinetic energy and generate structure
that act as seeds for the subsequent fragmentation (Clark and Bonnell, 2005). A few
Myr later, the thin-sheet clouds acquire enough mass to exceed their own Jeans mass
and begin to globally collapse. While this occurs, the average Jeans mass of the clouds
become smaller and smaller until it reaches the typical masses of turbulent clumps, and
thus, these structures collapse locally with shorter free-fall times than the large scale
collapsing structure. Moreover, the Star Formation Rate (SFR) increases in the parent
cloud due to the availability of more and more turbulent fluctuations originated by the
increasing density in the parent cloud and the reduction of the average Jeans mass.
The final stage in this scenario is the destruction of the clouds by energy feedback of
stars formed in the process, when ∼ 10% of the cloud’s mass has been converted to
stars (Zamora-Avilés et al., 2012; Zamora-Avilés and Vázquez-Semadeni, 2014).
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Chapter 5

Prestellar cores

In this chapter we present the numerical work of the early stages in the evolution of
prestellar cores that Naranjo-Romero et al. (2015) has developed as part of the present
thesis. This work has been motivated by recent numerical studies that suggest that
the picture of gravitational collapse is not limited to the scale of dense cores, but
instead may extend to the scale of the whole cloud (e.g., Vázquez-Semadeni et al.,
2007, 2009, 2010, 2011; Heitsch and Hartmann, 2008; Heitsch et al., 2008) and several
observational studies that have shown that the gravitational collapse extends at least
to parsec scales (e.g., Galván-Madrid et al., 2009; Peretto et al., 2013; Polychroni et al.,
2013). In particular, Ballesteros-Paredes et al. (2011), extending the data presented
by Heyer et al. (2009), have shown that the energy budget of giant molecular clouds
and high-mass star-forming clumps alike is consistent with generalized free-fall in these
structures. In this case, what has been previously interpreted as virialization, may just
as well be interpreted as free-fall.

In this paper, we have tested this hypothesis modeling a prestellar core as a small-
amplitude fluctuation embedded in a gravitationally unstable uniform density back-
ground. Our initial setup is similar to previous studies of the collapse of clouds that
are initially centrally peaked (Larson, 1969; Penston, 1969; Whitworth and Summers,
1985), our setup is far from hydrostatic equilibrium and collapses immediately. The
main distinction is the inclusion of a uniform background which is itself highly Jeans
unstable and thus also engaging in the collapse, as prescribed for molecular clouds in
the GHC scenario.
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ABSTRACT

We investigate the Hierarchical Gravitational Fragmentation scenario through numerical simulations of the
prestellar stages of the collapse of a marginally gravitationally unstable isothermal sphere immersed in a strongly
gravitationally unstable, uniform background medium. The core developes a Bonnor–Ebert (BE)-like density
profile, while at the time of singularity (the protostar) formation the envelope approaches a singular-isothermal-
sphere (SIS)-like r−2 density profile. However, these structures are never hydrostatic. In this case, the central flat
region is characterized by an infall speed, while the envelope is characterized by a uniform speed. This implies that
the hydrostatic SIS initial condition leading to Shuʼs classical inside-out solution is not expected to occur, and
therefore neither should the inside-out solution. Instead, the solution collapses from the outside-in, naturally
explaining the observation of extended infall velocities. The core, defined by the radius at which it merges with the
background, has a time-variable mass, and evolves along the locus of the ensemble of observed prestellar cores in a
plot of M/MBE versus M, where M is the coreʼs mass and MBE is the critical BE mass, spanning the range from the
“stable” to the “unstable” regimes, even though it is collapsing at all times. We conclude that the presence of an
unstable background allows a core to evolve dynamically from the time when it first appears, even when it
resembles a pressure-confined, stable BE-sphere. The core can be thought of as a ram-pressure confined BE-sphere,
with an increasing mass due to the accretion from the unstable background.

Key words: evolution – gravitation – ISM: clouds – ISM: kinematics and dynamics

1. INTRODUCTION

1.1. The Scenario of Hierarchical Gravitational Collapse

Molecular clouds (MCs) are associated with the bulk of star
formation in the Galaxy. With supersonic linewidths (Wilson
et al. 1970) that scale as R1/2, where R is the cloudʼs radius
(Larson 1981; Solomon et al. 1987), and low star formation
efficiencies (Myers et al. 1986). MCs have traditionally been
interpreted as being in a global state of virial equilibrium
between supersonic turbulence and self-gravity. On the
smallest scales, when the density increases, the turbulence is
believed to dissipate, allowing collapse to proceed (Goodman
et al. 1998; Tafalla et al. 2002; Pineda et al. 2010).

However, recent numerical studies suggest that the picture of
gravitational collapse is not limited to the scale of dense cores,
but instead may extend to the scale of the whole cloud (e.g.,
Vázquez-Semadeni et al. 2007, 2009, 2010, 2011; Heitsch &
Hartmann 2008; Heitsch et al. 2008). Moreover, several
observational studies have shown that gravitational collapse
extends at least to parsec scales (e.g., Galván-Madrid et al.
2009; Schneider et al. 2010; Peretto et al. 2013; Polychroni
et al. 2013). Finally, Ballesteros-Paredes et al. (2011),
extending the data presented by Heyer et al. (2009), have
shown that the energy budget of giant molecular clouds
(GMCs) and high-mass star-forming clumps alike is consistent
with generalized free-fall in these structures. In this case, what
has been previously interpreted as virialization, may just as
well be interpreted as free-fall, within the uncertainties, and in
fact, the data are marginally more consistent with free-fall than
with virial equilibrium.

In addition, recent observations (e.g., Gutermuth et al. 2008;
Myers 2009; André et al. 2010; Menʼshchikov et al. 2010;
Molinari et al. 2010; Arzoumanian et al. 2011) have revealed a

vast network of filaments everywhere inside the MCs, feeding
the clumps and the dense cores. Numerical simulations of cloud
formation (e.g., Burkert & Hartmann 2004; Hartmann &
Burkert 2007; Vázquez-Semadeni et al. 2007, 2009, 2011;
Heitsch et al. 2009; Gómez & Vázquez-Semadeni 2014) also
exhibit such filamentary structure, and Gómez & Vázquez-
Semadeni (2014) and Smith et al. (2014) have interpreted it as
the consequence of anisotropic, large-scale gravitational collapse
in the clouds. Observations of the kinematics in the filaments
(Schneider et al. 2010; Kirk et al. 2013; Peretto et al. 2014) are
consistent with the kinematics seen in those simulations.
In the scenario of global hierarchical gravitational collapse

and fragmentation, then, the entire cloud is gravitationally
collapsing. This is possible because of the coherent production
of cold atomic gas over large scales by large-scale shock-
compressed layers in the warm, diffuse medium, which
trigger thermal instability and a phase transition to the cold
phase (Ballesteros-Paredes et al. 1999; Hennebelle & Pérault
1999; Koyama & Inutsuka 2000, 2002; Audit & Hennebelle
2005; Heitsch et al. 2005; Vázquez-Semadeni et al. 2006). The
cold cloud formed by this mechanism is supersonically
turbulent, albeit, only moderately. Within these large-scale
unstable clouds, small-scale, nonlinear density fluctuations
produced by turbulence terminate their collapse before the
cloud at large does, because their free-fall times are shorter
(Heitsch & Hartmann 2008). This implies that the clumps and
cores constitute smaller-scale collapse events embedded within
larger-scale ones (at the whole cloud scale), amounting to a
hierarchical state of collapse that is moreover chaotic (with
multiple collapse centers and irregular geometries). Thus, in
this paper we investigate the collapse of an unstable core
embedded in a larger, also unstable cloud.
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1.2. Core Collapse Theory

Within this scenario of global, multi-scale collapse, it is
pertinent to re-examine some classical and recent works on the
collapse of dense cores. The seminal works of Larson (1969)
and Penston (1969), to which we collectively refer to as LP,
independently found solutions in which collapse proceeds
outside-in, developing an r−2 density profile in the core
envelope and a velocity profile that approaches a constant value
as the core accretes mass from its envelope. Larson (1969)
considered uniform initial densities, while Penston (1969)
considered slightly centrally condensed density configurations.
Thus, they considered the collapse starting from times earlier
than the development of a singularity (the protostar).

Shu (1977, hereafter S77) studied this problem analytically,
adopting a singular isothermal sphere (SIS) as the initial
equilibrium condition. This implies that he only considered the
evolution starting from the time of protostar formation. He
assumed that the SIS is somehow destabilized at t = 0, causing
the innermost regions to begin collapsing, and producing a
rarefaction wave that propagates outwards, leaving a free-
falling (ρ∝r−3/2, v∝r−1/2) region behind it, while the
region outside the front remains static. This is the well-known
“inside-out” collapse solution, which is generally assumed to
represent the velocity field inside the cores.

Some time later, Whitworth & Summers (1985,
hereafter WS85) investigated the parameter space of the initial
conditions, finding that the latter can be parametrized by the
initial density and the mass at the center of the collapsing
cloud. WS85 broadly divided these solutions in three bands
(see Figure 2 of that paper), considering, in general, the
contraction from times earlier than the formation of the
singularity. In particular, they noted that, if the collapsing core
starts out very far from equilibrium, it starts to contract
immediately at all radii. In this case, the overall evolutionary
pattern consists of a compression wave that starts far from the
coreʼs center and propagates inwards. This wave front divides
the core into an inner (r<rf, where rf is the instantaneous
radial position of the front) and an outer (r>rf) region. The
transition between the two regions is smooth, in spite of the fact
that eventually supersonic speeds develop in the outer region.
The density profile in the inner region is nearly uniform, while
outside of the front it decays as r−2. The velocity profile is
linear with radius in the inner region, and uniform in the outer
region. When the wave front reaches the center, a point of finite
mass is formed at the center (the protostar), and a rarefaction
wave propagates outward, leaving behind free-fall density and
velocity profiles.

Using numerical simulations, Foster & Chevalier (1993,
hereafter FC93) investigated the collapse of thermal-pressure
bounded spheres near hydrostatic equilibrium, finding results
consistent with the LP solution, and confirming that supersonic
velocities develop in the outer region, and eventually reach the
center. More recently, Simpson et al. (2011) have suggested
that prestellar cores accrete quasi-statically until they reach
their Jeans mass, and from that point onwards the cores
collapse dynamically. However, if the core is accreting it is
hard to understand why it would be hydrostatic out to a certain
radius in the first place. Mohammadpour & Stahler (2013,
hereafter MS13; see also Vorobyov & Basu 2005) have
explored a new set of boundary conditions for the problem,
using inflow boundaries, across which gas enters subsonically,
representing accretion onto the core. They again found that

supersonic velocities develop near the time of protostar
formation, and concluded that such a setup may not be
realistic, and that magnetic support may be necessary in order
to prevent supersonic infall velocities at the time of protostar
formation, as seemingly required by observations that low-
mass cores generally have subsonic infall velocities (e.g., Lee
et al. 1999, 2001; Tafalla et al. 2004; Pineda et al. 2010).
In addition, there is the well-known “luminosity problem”

(e.g., Kenyon et al. 1990) for Class 0 and Class I sources,
namely that their low luminosities would imply low accretion
rates, and therefore low infall speeds, if the material were to
accrete directly onto the protostellar surface. However, a
number of authors (e.g., Kenyon & Hartmann 1995; Whitworth
& Ward-Thompson 2001; Dunham & Vorobyov 2012) have
argued that this problem can be solved if the accretion of
material does not occur directly onto the protostar, but first onto
a disk and from there onto the protostar, and in an episodic
rather than uniform manner. Therefore, in this paper we shall
not be concerned with the luminosity problem.

1.3. Starless and Prestellar Cores

Traditionally, dense cores within MCs have been classified
as belonging to either of two main sub-classes, namely starless
and protostellar, depending on whether they lack or contain
protostellar objects, respectively. The “starless” class includes
both cores that may never form stars as well cores that will
eventually do so; the latter are called “prestellar,” and
operationally defined as a gravitationally bound starless core
(e.g., André et al. 2014, p. 27). Starless cores that appear
unbound are thought to require external pressure confinement
(e.g., Bertoldi & McKee 1992; Lada et al. 2008). Interestingly,
Foster et al. (2009) found that almost all cores in Perseus, even
prestellar cores, seem to be gravitationally bound (see Figure
11 in their paper), although it should be noted that Perseus
cores are more massive than those in the Pipe Nebula, which
appear pressure-confined (e.g., Lada et al. 2008). As already
mentioned in Section 1.2, prestellar cores exhibit infall profiles
suggesting subsonic infall velocities (Lee et al. 1999, 2001;
Tafalla et al. 2004), although Lee et al. (2001) noted that the
inward motions are too extended to be consistent with the
inside-out collapse model of S77.
Observations (e.g., Alves et al. 2001; Lada et al. 2007, p. 3)

have shown that prestellar cores have a Bonnor–Ebert (BE)-
like (Ebert 1955, 1957; Bonnor 1956) density profile which is
nearly flat in the innermost region, while at larger radii
resembles a SIS density profile (ρ∼ r−2). It is worth noting that
these profiles represent, respectively, the regular and singular
solutions of the Lane–Emden equation of hydrostatic balance,
although there have been suggestions that cores formed by
strong turbulent compressions can also evolve along a
sequence of BE-like density profiles (Ballesteros-Paredes
et al. 2003; Gómez et al. 2007; Gong & Ostriker 2009). On
the other hand, Keto et al. (2015) have concluded, by
comparing synthetic line profiles of several different models
of gravitational collapse with observations of the L1544 core,
that only the quasi-equilibrium contraction of an unstable BE-
sphere (Keto & Caselli 2010) is consistent with the observa-
tions. However, in this case, the initial BE-like profile is an
assumed initial condition, rather than an outcome of the
simulations.

2
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1.4. This Work

In the present paper, we investigate a more unified scenario
of the gravitational collapse of cores based on the notion that
MCs are collapsing as a whole, and that cores form, grow and
collapse within this globally collapsing environment. We start
with a generic low-amplitude Gaussian density fluctuation, to
which we refer to as “the core,” embedded within an unstable
uniform density distribution, to which we will refer to as “the
cloud,” allowing the core to develop its density and velocity
profiles self-consistently as it grows within the medium, thus
relaxing any initial assumptions about those profiles. This study
can be considered an extension of the work of MS13, by
allowing the presence of a large envelope of uniform density,
which represents the “background” often present in observa-
tions of cores (e.g., André et al. 2014, p. 27).

The paper is structured as follows: in Section 2 we describe
the numerical simulation. The results from the simulations are
described in Section 3. In Section 4.1 we compare the results of
the simulation with observations, in particular in terms of the
locus of observed cores in a diagram describing core stability,
while in Section 4.2, we discuss the evolution of the dense
cores in the context of earlier analytical solutions. Next, in
Section 4.3 we discuss some implications of our results.
Finally, in Section 5 we present a summary and some
conclusions.

2. THE SIMULATIONS

We have performed numerical simulations of the collapse of
a spherically symmetric clump inside a collapsing cloud, using
a spectral, fixed mesh numerical code (Leorat et al. 1990;
Vázquez-Semadeni et al. 2010). Because sink particles have
not been implemented into this code, and because it cannot
follow very large gradients in the variables, we limit our study
to the prestellar stage of the evolution of the dense core
collapse. However, this is sufficient for investigating the
development of the initial conditions for star formation.

We consider an isothermal gas with a mean density of
n 104á ñ = cm−3, a mean particle weight of 2.36, and a kinetic
temperature of T = 11.4 K, implying an isothermal sound
speed cs=0.2 km s−1 in a numerical box with periodic
boundaries. The gas is initially at rest and no gravity-
counteracting forces such as a magnetic field or small-scale
turbulence are included, so the gas is strongly Jeans-unstable.
We choose the box side as L L L10 3.16 0.71box J J= » »
pc, where LJ≈0.22 pc is the Jeans length. The box mass is
Mbox≈206 M.

The initial density field consists of a uniform background
with n≈104 cm 3- , on top of which we have added a density
fluctuation with a Gaussian profile, whose peak is at the box
center and has a density n≈1.5×104 cm−3 (or ∼50% above
the mean) and a FWHM≈0.06 pc. Because the fluctuation is
small in size (rcore∼0.14 pc) and mass (mcore≈7.35 M), the
background density is almost the same as the mean density,
which is exactly 104 cm 3- . The free-fall time for the back-
ground density is t G3 32 0.34 Myr.ff p r= » The evolu-
tion proceeds on a timescale longer than tff because the initial
gradient of the gravitational potential is very mild and of the
periodic boundary conditions. Our initial setup is within “band
0” of WS85, which corresponds to clouds that are initially
centrally peaked, far from hydrostatic equilibrium and

collapsing immediately (the LP solutions also fall within this
band, as noted by WS85).
We have also tested different sets of parameters for the

background density and the central density fluctuation, but the
behavior of these collapsing structures is qualitatively the same,
and thus we focus only on the simulation described above. The
only exception occurs in the cases when the central peak
contains less than the local Jeans mass. In these cases, the
density peak first expands and then collapses once enough mass
has been accreted at the center.
We have chosen this setup inspired by our observation of

how fragmentation proceeds in numerical simulations of cloud
formation and evolution (e.g., Vázquez-Semadeni et al. 2007,
2009, 2010; Heitsch & Hartmann 2008; Banerjee et al. 2009;
Colín et al. 2013; Gómez & Vázquez-Semadeni 2014). It has
been argued in these papers that a forming GMC (and its
atomic precursor) may rapidly acquire a large number of Jeans
masses if the converging flow that assembles it is coherent and
extended over a large region, as may be expected, for example,
in a spiral arm, or in the collect-and-collapse scenario at the
border of expanding shells (Elmegreen & Lada 1977). In this
case, Hoyle (1953)-type fragmentation may be expected, where
successively smaller scales may go unstable as the mean cloud
density increases and the average Jeans mass decreases due to
the global collapse in a nearly isothermal medium. The small-
scale density fluctuations located far from the trough of the
large-scale potential well may start growing locally while
simultaneously being transported by the large-scale flow
toward the remote collapse center, in a “conveyor belt” mode
(see, e.g., Gómez & Vázquez-Semadeni 2014; Longmore
et al. 2014, p. 291). As a first approximation, this type of flow
can be represented locally as a static unstable background with
a small clump collapsing within it, because the large-scale flow
toward the distant global collapse center locally appears as a
uniform bulk background motion, which is dynamically
irrelevant to the local collapse.

3. RESULTS

In Figure 1, we show various snapshots from the evolution
of the radial profiles of the density (left panel) and the velocity
(right panel) of the core and its environment, both with a linear
radial axis, to emphasize the external structure of the core and
its envelope. It can be seen from this figure that, by embedding
the core in a uniform background medium that is also
collapsing, the nature of the collapse deviates from the self-
similar asymptotic structure of the prestellar (or pre-singularity)
stages of the collapse, such as the LP solutions. The core has a
natural, well-defined “boundary,” namely the place where it
merges into the background. This boundary increases in radius
during the evolution, but the material outside the boundary
remains at the background density, and simply develops an
inflow velocity that is continuous across the boundary, steadily
accreting onto the core. On the other hand, in agreement with
previous studies (Larson 1969; Penston 1969; Foster &
Chevalier 1993; Mohammadpour & Stahler 2013), it can also
be seen from Figure 1 that the flow remains subsonic during
most of the prestellar evolution, although it eventually becomes
supersonic at a so-called sonic point. Subsequently, the sonic
point splits into two such points, to which we refer to as the
inner and outer sonic points. The inner sonic point approaches
the core center as time progresses, and finally reaches it at the
time of singularity formation.

3
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In Figure 2, we again show the density and velocity profiles
at six selected snapshots, together with the average column
density and the ratio of the mass to the mean Jeans mass inside
each radial position, M r M r .J( ) ( )m º In this figure, we use
a logarithmic radial axis to emphasize the internal structure of
the core. The selected snapshots are: t = 0 (panel a of Figure 2),
showing the initial conditions; t = 0.46 tff (panel b), where tff is
the free-fall time of the background density. At this time, the
gas has developed some moderate velocity in its external parts,
near the Jeans point (the radius at which the mass ratio μ
equals unity); t=0.92 tff (panel c), in which we begin to see a
radially linear subsonic velocity profile and a uniform density
profile within the region delimited by the Jeans point;
t=1.84 tff (panel d), at which the flow develops a sonic point
(v=cs) at r≈0.19 LJ≈0.05 pc, located very close to
the Jeans point (μ = 1) at r≈ 0.23 pc; t=2.01 tff (panel e),
at which the transonic point has already split into two points,
bounding a region of almost uniform supersonic inward
velocity (Mach number 1.40 ~ ); finally, t = 2.14 tff
(panel f), at which the core has an almost uniform supersonic
velocity profile everywhere, with Mach number 1.95, ~
while the density adopts a power-law profile, with a slope
approaching r−2. On the last panel, we have overploted an SIS
density profile (solid black line) for comparison to the actual
profile of our core, which is clearly more extended than an SIS,
although with a slope in its envelope that approaches the r−2

slope of the SIS. Table 1 lists various physical properties of the
core at the same six selected snapshots as in Figure 2.

4. DISCUSSION AND IMPLICATIONS

4.1. Comparison with Observations: Mcore/MBE

versus Mcore Diagram

Lada et al. (2008, hereafter L08) studied the stability of the
dense core population in the Pipe Nebula region. They defined
the cores using an extinction threshold of AV = 1.2 mag, and
derived median values of the density and mass of
n 7.1 10H

3
2 = ´ cm−3, Mcore∼0.2–20 M, respectively, and

argued that most of the cores are gravitationally unbound and
thermal-pressure-confined, with the external pressure

provided by the weight of the surrounding MC. They modeled
the cores as BE-spheres, assuming a temperature of 10 K,
in order to determine their stability, finding that the entire
population is characterized by a single critical BE-mass
(M n T M1.82 10 cm 10 KBE

4 3 0.5 1.5( ) ( )= á ñ - -
) of ∼2 M.

Most relevant to our interest here is that they plotted the ratio
of the cores’ mass to their BE-mass (Mcore/MBE) versus the
cores’ mass (see their Figure 9), finding that the observed core
sample occupies a well-defined locus in this diagram.
Subsequently, Rathborne et al. (2009, hereafter R09)

obtained a more robust determination of the physical properties
of the Pipe cores by combining extinction and molecular-
line data. They found mean radii R 0.09 pc,á ñ ~ densities
n 7.3 10 cm ,H

3 3
2 ~ ´ - non-thermal velocity dispersions

σnt∼0.18 km s−1, and masses 0.2 M�Mcore�19.4 M,
so in what follows we use the R09 sample for our discussion.
In addition, Ikeda et al. (2007, hereafter I07) have carried out a
core survey in the Orion A MC. They derived core masses in
the range of 2–80 M, with a mean mass of 12±12 M, a
mean density n∼2×104 cm−2, consistent with the critical
density of the H13CO+(1–0) transition, and mean velocity
dispersions of 0.52±0.17 km s−1. This corresponds to a more
massive and supersonic core sample than the Pipe sample, and
thus offers an interesting complementary set.
In order to compare our simulated core to the observational

data, we must precisely define its boundaries. This is one of the
most challenging tasks when investigating cores, because the
boundaries often depend on circumstantial factors such as the
tracer used, the signal-to-noise ratio, the background level, etc.
In practice, the coreʼs boundary is often defined by finding
gradient breaks in the column density profiles (e.g., André
et al. 2014, p. 27)—for example, the radial position of the point
where the core appears to merge with the background, where
the profile changes from a power law (the envelope) to a
uniform-density (the background). Our setup, embedding the
core in a uniform background, naturally lends itself to this
definition. Thus, we operationally define the coreʼs boundary as
the radius at which the density is a certain (small) multiple of
the background density. Specifically, we consider density

Figure 1. Evolution of the density (top panel) and velocity (bottom panel) profiles of the simulated core (See the text). The various lines in both panels represent the
timesteps listed in Table 1.
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Figure 2. μ ratio, density, column density, and velocity profiles of the collapsing core (see the text for a description). The panels correspond to snapshots 0, 14, 28, 56,
61, and 65, out of a total of 66 snapshots. The solid black line in the last panel represents an SIS density profile given by c Gr m2 1 ,s

2
w H( )( )p m where μw is the mean

particle weight and mH is the mass of hydrogen.
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thresholds of 1.125, 1.25, and 1.5 times the background density
as the boundary of the core.

Figure 3 shows the ratio Mcore/MBE versus Mcore for the
aforementioned observations and for our simulated core
throughout its evolution, as defined by the three density
thresholds (see also Table 2). The times corresponding to the
selected snapshots shown in Figure 2 are indicated by vertical
lines. For our core, we compute the BE-mass using the nominal
temperature of 11.4 K. For the observational core sample, no
explicit temperature information is provided by the authors.
R09 assume a gas temperature of 10 K in all cases, while I07
mention that the typical temperature in Orion is 20 K, but make
no explicit mention that this may be the actual temperature in
the dense cores. In fact, it is quite likely that the temperature
there is lower, because of the higher densities. Thus, we have

calculated the BE-mass for all the observed cores assuming
T≈11.5 K, and assigning error bars whose extremes corre-
spond to T = 10 and 13 K.
From Figure 3 we note that the Orion cores from the I07

sample essentially ocuppy the same locus as the Pipe cores
from the R09 sample in this diagram, although extending
toward higher masses and/or higher values of the mass ratio.
Also, we note that the evolutionary track of our core, as defined
by the threshold at 1.125 times the background density, tracks
almost exactly the locus of the observed cores. These results
strongly suggest that the sequences of observed (both low- and
high-mass) cores are all part of a self-similar collapse process,
only at different evolutionary stages and total masses,
including the apparently stable ones. The latter only appear
as stable because they are in an early stage of development,

Table 1
Physical Properties of the Simulated Core

Time ncore/ncloud Ncore/Ncloud vmax/cs rμ=1 Mμ=1 v c ,s 1m=

(tff) (Myr) (pc) (M)

0.00 0.00 1.50 1.09 0.00 0.133 6.39 0.00
0.46 0.16 1.49 1.10 0.08 0.130 6.18 0.08
0.92 0.31 1.57 1.14 0.19 0.124 5.98 0.19
1.84 0.62 8.05 2.10 1.07 0.072 3.47 1.06
2.01 0.67 31.43 3.61 1.63 0.043 2.09 1.56
2.14 0.72 4224.50 36.10 2.83 0.003 0.19 2.07

Note. The rows correspond to same snapshots as in Figure 2.

Table 2
Physical Properties of the Simulated Core at the Different Background Density Thresholds

1.125nbg 1.250nbg 1.50nbg

Time R M MBE ná ñ R M MBE ná ñ R M MBE ná ñ

(tff) (Myr) (pc) (M) (M) (104 cm−3) (pc) (M) (M) (104 cm−3) (pc) (M) (M) (104 cm−3)

0.00 0.00 0.74 1.73 1.99 1.23 0.52 0.66 1.92 1.33 L L L L
0.69 0.73 L L L L L L L L 0.05 5.74×10−4 1.81 1.49
2.14 2.27 1.93 35.44 1.77 1.57 1.57 25.26 1.58 1.97 1.27 17.99 1.36 2.64

Note. Only the initial and final derived values are shown. The snapshots corresponds to the same snapshots as in Figure 2.

Figure 3. Ratio of core mass to BE critical mass for the cores in Table 2 from Rathborne et al. (2009; green), Table1 from Ikeda et al. (2007; blue) and our simulated
core at different background density thresholds (continuous curves; see the text). Each point has a vertical error bar that spans the values of the BE-mass at
temperatures of 10 and 13 K (from top to bottom). The vertical lines denote the times shown in Figure 2.
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with only a small density contrast over ther background, but
they are nevertheless growing, as their entire background is
gravitationally unstable.

4.2. Comparison With Earlier Numerical
and Analytical Collapse Studies

In agreement with previous studies (e.g., Larson 1969;
Whitworth & Summers 1985; Vorobyov & Basu 2005; Gómez
et al. 2007, MS13), the density profile of the simulated
prestellar core resembles a BE-sphere at all times, being flat at
the center, and developing a power-law at the external parts, to
which we refer to as “the envelope.” As the collapse proceeds,
the central part increases in density while decreasing in radius.
A supersonic region then emerges, bounded by two transonic
points that become increasingly distant from each other, one
moving inwards and the other outwards, as time progresses. At
the latest stages, just before the formation of the protostar, the
density profile assumes a SIS-like shape, but truncated at the
radius at which the core merges with the background.

These results can be put in the context of early analytical
studies on spherical gravitational collapse that have commonly
used similarity techniques (Larson 1969; Shu 1977; Whitworth
& Summers 1985). As is well known, S77 considered the
collapse of a hydrostatic SIS, finding, among others, the
classical “inside-out” solution, characterized by a collapsing
inner region bounded by an expanding rarefaction wavefront,
beyond which the gas is static. Inside the transition front, the
core is characterized by density and infall velocity profiles that
scale as r−3/2 and r−2, respectively. However, a slightly less
well known fact is that S77 discussed, more generally, the
large-radius (or early-time) asymptotic behavior of those
solutions for which the velocity is not initially zero every-
where, but instead only approaches zero in this limit. These
solutions are characterized by an initial density profile of the
form

r
c A

G
r

4
, 1s

2
2( ) ( )r

p
= -

and initial velocity profile given by

u r c A
t

r
2 , 2s

2( ) ( ) ( )= - -

where the minus sign indicates that the velocity is directed
inwards, cs is the isothermal sound speed, and A is a constant
that determines whether the velocity is initially zero and
remains at that value (A = 2), or instead starts with a finite
value and further increases with time (A> 2). The former static
solution corresponds to a hydrostatic SIS, while the latter
dynamic solution corresponds to an SIS-like structure (i.e., with
an r−2 density profile) but with a larger mass and with an initial
inward velocity, so that it is gravitationally unstable and
collapses after t = 0. In this case, the outer parts of the core are
never at rest. It is important to recall that S77 also calculated
the accretion rate onto the protostar after the formation of the

singularity1 (the protostar itself) as

M
m c

G
, 30 s

3
˙ ( )=

where m0 is a constant related to A. The “canonical” value,
m0 = 0.975, corresponds to A 2 , + i.e., to a hydrostatic
initial condition. In addition, S77 argued that the earlier
similarity solution found by LP was unrealistic because its
asymptotic large-radius (or small-time before singularity
formation) limit consists of a uniform inward velocity of
−3.3cs and a density that is 4.4 times that of the SIS at each
radius, which he deemed “unlikely to occur in a natural way.”
However, subsequent analytical and numerical studies (Hun-
ter 1977; Whitworth & Summers 1985; Foster & Cheva-
lier 1993) that considered a larger region in parameter space,
showed the existence of a continuum of solutions and, in
particular, the numerical simulations of FC93 showed that the
LP solution is approached only over a finite radial extent,
ameliorating S77ʼs objection to it.
Moreover, S77ʼs inside-out solution has been criticized by

some authors (e.g., Whitworth et al. 1996; Vázquez-Semadeni
et al. 2005) because its initial condition, the hydrostatic SIS, is
an unstable equilibrium, onto which it is impossible for the
core to settle within the context of a turbulent, dynamic
medium such as a MC. It has also been reported that
observations of MC cores exhibit extended infall radial motions
that are inconsistent with the inside-out solution of S77 (e.g.,
Tafalla et al. 1998; Lee et al. 2001).
Most early numerical simulations considered the case of

bounded, marginally gravitationally unstable initial conditions,
neglecting the possibility of accretion onto the core during the
prestellar phase (prior to the formation of the central
singularity). More recently, accretion has been addressed by
various groups (Vorobyov & Basu 2005; Gómez et al. 2007;
Gong & Ostriker 2009, MS13). Gómez et al. (2007) and Gong
& Ostriker (2009) considered the formation and collapse or re-
expansion of a core formed by a spherically symmetric
compression. They found that cores formed in this way are
bounded by an accretion shock, inside of which the core
evolves along a sequence of BE-configurations, but with a
mass that increases over time due to the accretion until the
configuration becomes unstable and collapses, or else
rebounds, if the accretion is insufficient to render it Jeans-
unstable. On the other hand, MS13 considered a constant
accretion flow onto the core, imposed as a boundary condition.
Although their simulations behaved very similarly to ours, the
accretion they used was imposed rather than self-consistent,
and forced to be subsonic at all times.
Very recently, Keto et al. (2015) have investigated the

collapse process of various types of structures. Among other
cases, they considered the collapse of an SIS, of an unstable-
equilibrium (UE) BE-sphere2, and of a non-equilibrium (NE)
pseudo-BE-sphere.3 They found that the latter two configura-
tions retained a BE-like density profile, but that their velocity

1 In the earlier literature, the moment at which the singularity forms is referred
to as “core formation.” Here we avoid this nomenclature in order to avoid
confusion with the dense core of the MC.

2 I.e., a solution of the Lane–Emden equation, truncated out to a radius large
enough that the ratio of central to peripheral density is larger than that of a
critical BE-sphere, and slightly perturbed so that it proceeds to collapse.
3 This is not a true BE-sphere as it is not a solution of the Lane–Emden
equation. Instead, it is constructed by obtaining one such solution and then
increasing the density everywhere by 10%, so that the configuration is nowhere
in equilibrium anymore.
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profiles differed significantly, with the NE sphere developing
large velocities out to its truncation radius, while the UE one
retained a nearly zero velocity at its edge. However, accretion
was not included in their simulations.

Our simulation, instead, includes the novel feature of
enveloping the collapsing core in a globally gravitationally
unstable, uniform background, to mimic the physical condi-
tions of cores in globally, hierarchically collapsing clouds, and
the fact that cores are often observed to exist over a roughly
uniform background (e.g., di Francesco et al. 2007, p. 17;
André et al. 2014, p. 27, and references therein). This situation
falls within the “band 0” class of solutions investigated
by WS85, and essentially exhibits the behavior envisaged by
those authors: the pre-singularity (prestellar) collapse proceeds
in an outside-in fashion (i.e., at early times the maximum infall
speed occurs at the edge of the core; see also Gong &
Ostriker 2011) and consists of two main regions: an inner
region, characterized by a roughly flat density profile with an
infall velocity that increases linearly with radius, and an outer
region, characterized by an r−2 density profile with a uniform
infall velocity. However, in our simulation, this uniform-infall-
speed region is finite and bound by the outer transonic point,
beyond which the infall speed rapidly drops to zero again.4

These results are easy to understand intuitively. Since the
collapse is local, far from its center we should not expect any
motions directed toward it. Nevertheless, the outer transonic
point moves outwards, implying that the collapse spreads out to
larger regions. This is qualitatively similar to S77ʼs expanding
rarefaction wave although, in our case, the transition from
collapsing to static occurs smoothly, rather than through an
abrupt wavefront. Finally, inside the inner transonic point, the
flow exhibits an infall velocity that is linear with radius,
implying that the velocity smoothly approaches zero toward the
center during the entire prestellar evolution of the core. (See
further discussion of the implications of this property in
Section 4.3.)

Consequently, during its prestellar stage, our simulation
evolves through a sequence of BE-spheres of increasing
central-to-external density ratios, so that it appears like a
stable BE-sphere at early times and like an unstable one at later
times. The inner transonic point migrates inwards and reaches
the center at the time of singularity formation. At this time, the
entire core is characterized by a density configuration that
resembles a SIS, except that in our case this state is not
hydrostatic, but rather quite dynamic, with a uniform infall
velocity of ∼3 cs, thus corresponding to S77ʼs initial condition
with A> 2.

Our setup differs from studies that start with hydrostatic BE
or BE-like spheres (e.g., Foster & Chevalier 1993; Vorobyov &
Basu 2005; Keto et al. 2015). Instead, our simulation lets the
density and velocity profiles develop self-consistently, rather
than imposing them as initial conditions. Although it also starts
with hydrostatic conditions, these correspond to an early
enough stage that, by the time the core has developed a pseudo-
BE density profile, it is already collapsing everywhere, rather
than being hydrostatic. This can occur, in spite of the very
moderate amplitude of the initial density fluctuation, because
the whole background is unstable, so the fluctuation does not

need to exceed the critical central-to-peripheral density ratio in
order to begin collapsing. This is a reasonable situation since,
after all, the core must be assembled by moving material from
the surroundings into it, and this requires a non-zero,
convergent velocity field.
In order to produce a developed hydrostatic BE-sphere, as in

the standard practice of starting with hydrostatic BE-like
structures, the velocity field that assembled the core would
have to first decay to zero, and then resume again to continue
collapsing. This appears as a highly contrived process. Keto
et al. (2015) have suggested that one process that may
temporarily halt the contracting motions is the turbulent
pressure, which must then dissipate to allow the collapse to
resume. However, this implicitly assumes that the non-thermal
motions actually have a sufficiently random nature, and have
sufficiently small characteristic size scales, that they can
produce an effective pressure which provides support against
gravity. This notion that has been challenged recently
(Vázquez-Semadeni et al. 2008; Ballesteros-Paredes
et al. 2011; González-Samaniego et al. 2014).
Conversely, in the hierarchical gravitational collapse sce-

nario, the possibility of turbulent support is discarded from the
outset, and the motions are assumed to be dominated by an
inward component driven by gravity. Within this scenario, the
fragmentation occurs as forseen by Hoyle (1953), so that, as a
cloud contracts and becomes denser, the average Jeans mass
becomes smaller, and so progressively smaller density fluctua-
tions can collapse. However, because the cloud is turbulent, the
fluctuations are nonlinear, and thus have shorter free-fall times
than the cloud at large, implying that they terminate their
collapse earlier, as observed in numerical simulations of cloud
formation and evolution by converging flows (e.g., Vázquez-
Semadeni et al. 2007, 2009; Heitsch & Hartmann 2008;
Heitsch et al. 2009; Gómez & Vázquez-Semadeni 2014). In
this scenario, the clumps and cores produced by the turbulence
only act as seeds for local gravitational collapse, and are never
supported by non-thermal motions, but instead simply grow
gravitationally from the outset, as represented in the simulation
presented here. As shown in Section 4.1, this setup naturally
explains a fundamental property of observed dense cores: their
location in the Mcore/MBE versus Mcore diagram.

4.3. Implications for the Interpretation
of Observed Core Structure

In Section 3 we found that the core evolves along a sequence
of BE-like density profiles, but with a global infall velocity, so
that this profile is not indicative of a hydrostatic configuration,
not even during the apparently stable stages (when the central-
to-boundary density ratio is smaller than the critical value for
instability). This result provides a clear interpretation to the
ubiquity of BE-like profiles observed in prestellar cores without
introducing the conundrum that a core needs to grow in spite of
being hydrostatic. The resolution of this dilemma lies in the
fact that, although the density profile is BE-like, it is not a true
BE-sphere in the sense that it does not result as a solution of the
hydrostatic Lane–Emden equation, but rather as a dynamic
solution of the time-dependent hydrodynamic equations, which
is characterized by inwards motion at all times.
Moreover, in Section 4.1 we have shown that our simulated

core, with its boundary defined as the position where the
density becomes equal to the background, traces the locus of
the aforementioned core surveys in the Mcore/MBE versus

4 In our simulation, the infall motion cannot reach the boundary of the box
because of the periodic boundary conditions, but the boundaries are far enough
from the collapsing core that we do not expect them to significantly affect its
evolution during the time interval we explore.
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Mcore diagram. This result suggests the possibility that those
core ensembles actually represent random samplings of cores at
all possible evolutionary stages, so that their locus in that
diagram traces the evolutionary track of a single core. It also
suggests the possibility that the range of core masses in a given
low- or high-mass star-forming region is determined simply by
the mass increase of the cores during their evolution, but that
the initial fragmentation occurs at the same initial mass, which
corresponds simply to the Jeans mass of the background
medium. This is consistent with the result by L08 that their
whole sample is well characterized by a single BE-mass.
Indeed, since the prestellar stages of evolution lead to an
approach to an r−2 density profile above the background, for
which the mean density is only three times larger than the
density at the boundary, then the BE mass, proportional to the
inverse square root of the mean density (assuming isotherm-
ality), is at most within a factor 3 larger than that determined
by the background. Thus, in the present scenario, the BE mass
is essentially determined by the background density, rather than
by the local core properties. This is also consistent with the
recent finding by Palau et al. (2015) that the number of
fragmentats in massive cores appears to be determined simply
by the number of thermal Jeans masses contained in the core.

Also, we reported that the velocity field is smooth across the
core boundary (compare both panels of Figure 1). This implies
that, if one insists in describing the core as “pressure bounded,”
the confining pressure is ram pressure from the material
accreting onto the core, rather than thermal pressure maintaing
a hydrostatic configuration. But considering it as “pressure
bounded” is misleading, because any Lagrangian (i.e., moving
with the flow) spherical shell is moving inwards at any time
due to gravity, and thus no bounding is needed. The correct
physical description is that the core is the “tip of the iceberg” of
the globally collapsing cloud.

The fact that the velocity profile in the inner part of the core
is linear with radius during the prestellar evolution implies that
the velocities are smaller closer to the center. This, in turn,
implies that multi-tracer observations of the core would give
smaller velocity dispersions at higher densities/smaller radii,
giving the impression of a “transition to coherence” (e.g.,
Goodman et al. 1998). However, in our scenario, this is not due
to dissipation of turbulence, but rather to the fact that the infall
velocities are smaller in the inner part of the core. Finally, the
property that the largest velocities occur in the outer parts of the
core where the density begins to drop, implies that the line
profiles may be narrower than would correspond to those
largest velocities. We dicuss this at more length in Section 4.4.

4.4. Are the Supersonic Velocities Really a Problem?

Our simulation, like most other simulations of Larson–
Penston-like flow, develops supersonic velocities in the final
stages of evolution, which however correspond to the stages
most likely to be observed, as the core is most prominent at
those times. Such large velocities are generally not observed in
low-mass cores (see, e.g., the review by Bergin &
Tafalla 2007). MS13 noted this problem, and concluded that
their simulation (quite similar to ours) is not the correct model
for the collapse of actual cores, and that magnetic tension may
be necessary to render the collapse less dynamic. MS13 also
pointed out that the supersonic infall produces accretion rates
that are too high, leading to the so-called “luminosity problem”

(Kenyon et al. 1990). Our simulation, being spherically

symmetric, suffers from the same problems. However, it is
possible that the resolution of these issues does not lie in
invoking the magnetic field to provide support, but rather in
geometrical and/or observational-bias factors.
Concerning geometry, our simulation, like all other non-

magnetic, isothermal, spherically symmetric ones, represents
the most dynamic possible scenario for collapse. Indeed, recent
studies (Pon et al. 2012; Toalá et al. 2012) have shown that
flattened or filamentary structures collapse on longer timescales
than spherical structures of the same volume density. Thus,
considering the non-spherical nature of the cores may
contribute toward alleviating the problem. Moreover, the
luminosity problem may be resolved if the accretion does not
proceed directly onto the protostar, but rather it is mediated by
a circumstellar disk (Kenyon & Hartmann 1995; Whitworth &
Ward-Thompson 2001; Dunham & Vorobyov 2012), which is
also a non-spherical structure. The resolution of this issue must
await analysis of cores arising self-consistently in fully 3D
numerical simulations of MC evolution (e.g., Smith
et al. 2013).
Concerning possible observational biases, we note that

observational determinations of infall velocities depend on the
underlying assumptions for the topology of the velocity field in
the clump. Because a line profile is essentially a density-
weighted radial velocity histogram along the line of sight (with
possible self-absorption features), the fact that in our simulation
the largest velocities occur in the coreʼs envelope rather than at
the center may cause these large velocities to appear at the line
wings rather than at the central parts of the line, thus giving the
appearance that the infall speeds are smaller than they actually
are. We plan to address this possibility in a future contribution
(R.M. Loughnane et al. 2015, in preparation).

5. SUMMARY AND CONCLUSIONS

We have presented a highly idealized simulation of the
prestellar stages of the gravitational collapse of an isothermal
spherical core within the scenario of hierarchical gravitational
collapse. To accomplish this, we have embedded the core in a
uniform-density background that is, itself, gravitationally
unstable. The evolution of the core was followed since its
earliest stages, starting with a minor density fluctuation of
amplitude 1.5 times the background density, containing a mass
slightly larger than the Jeans mass of the background density,
and with a generic Gaussian profile. We have found the
following results.

1. The core evolves according to the “Band 0” solution
of WS85, which refers to objects that start out far from
equilibrium, and includes the LP solutions.

2. In agreement with previous studies, and with the
regularly observed structure of prestellar cores, the
simulated core develops a BE-like profile, with a nearly
uniform-density (or “flat”) central region, and a nearly
power-law envelope, but it is always in the process of
collapsing—even during the early stages, when the
central to background density contrast is smaller than
that of a critical BE sphere (ρc/ρb∼14), and the core
would be labeled as “stable.” This result removes the
apparent inconsistency between the apparently hydro-
static density structure of the cores (i.e., of stable BE-
spheres) and the need for them to grow in order to
eventually form stars. It also suggests that a smaller

9

The Astrophysical Journal, 814:48 (11pp), 2015 November 20 Naranjo-Romero, Vázquez-Semadeni, & Loughnane



fraction of cores are “starless” (in the sense that they will
never form stars) than usually thought. Instead, it is
possible that these are just in their very earliest stages of
growth.

3. The collapse proceeds in an “outside-in” fashion,
developing the largest (and nearly radially constant)
speeds in the power-law density envelope, and a linear-
with-radius velocity profile in the central flat region. This
implies that the velocities in the centermost parts of the
core are small and subsonic during the whole prestellar
evolution. This is contrary to the famous inside-out
solution of Shu (1977), which is not expected because its
initial condition, a hydrostatic SIS, is an unstable
equilibrium, and therefore unrealizable from a dynamical
previous evolution.

4. The boundary of the core, defined as the position where it
merges with the background, increases in radius as time
progresses, so that the core thus defined effectively grows
in mass and size. The velocity field is smooth across this
boundary, so that the material outside the boundary
accretes onto the core smoothly, although it does not
increase its density until it crosses the boundary.

5. The largest velocities in the system—those appearing in
the power-law envelope—are supersonic by the time the
core has grown enough to be clearly detectable (with at
least a tenfold enhancement over the background).
However, the fact that the largest velocities are located
at the envelope implies that they will receive a lower
density weighting for the production of a line profile, so
that infall profiles may underestimate the velocities. In a
future study we will investigate the nature of the lines
produced by our core (R.M. Loughnane et al. 2015, in
preparation).

6. The ratio of the coreʼs mass (Mcore) to the critical BE-
mass (MBE) increases as the coreʼs mass increases, and
traces the locus of observed cores in the Mcore/MBE

versus Mcore diagram, evolving from apparently stable to
apparently unstable configurations, although the core is
unstable at all times. Thus, the locus of observed cores in
this diagram can be interpreted as a random sample of
evolving collapsing cores within globally unstable
clouds. This result suggests that the sequences of
observed (both low- and high-mass) cores are all part
of a self-similar collapse process, only at different
evolutionary stages and total masses, including the
apparently stable ones.

We conclude that the evolution of marginally unstable cores
embedded in a strongly unstable environment, as prescribed by
the hierarchical gravitational collapse scenario, is not only
consistent with the observed density structure of MC cores and
their location in the Mcore/MBE versus Mcore diagram, but
provides a natural explanation to the problem of how a core
may grow in mass while appearing gravitationally stable.
Another conclusion is that the choice of initial conditions is
crucial for the subsequent evolution of the system, and thus
care must be exercised in choosing the most realistic initial
conditions within the realm of the physical problem at hand.

Some problems remain, of course, regarding the appearance
of supersonic speeds during the prestellar evolution, which are
generally not observed in low-mass cores, as pointed out
by MS13. In future contributions, we plan to investigate
whether this apparent discrepancy can be resolved in terms of a

non-spherical collapse geometry and/or the effects of the
outside-in velocity field on the formation of infall line profiles.

We thankfully acknowledge an anoymous referee, whose
insightful and sharp recommendations helped improve the
clarity and coherence of the paper. The numerical simulations
were performed in the cluster acquired with CONACYT grant
102488 to E.V.-S. Also, R.M.L. was supported with funds from
this grant.
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5.1 Implications of GHC for prestellar cores

5.1 Implications of GHC for prestellar cores

The evolution of marginally unstable cores embedded in a strongly unstable environ-
ment, as prescribed by the GHC scenario, is consistent with the observed density struc-
ture of MC cores and their location in the Mcore/MBE versus Mcore diagram and nat-
urally explains the mass growth of cores that appear gravitationally stable.

This approach solves the problem in the thermal pressure confinement scenario
whereby stable cores should never collapse if they were not part of a large scale collaps-
ing structure. In addition, our scenario predicts that the sequences of observed (both
low- and high-mass) cores are all part of a self-similar collapse process, only at different
evolutionary stages and total masses, including the apparently stable ones. The latter
only appear as stable because they are in an early stage of development, with only
a small density contrast over their background, but they are nevertheless growing, as
their entire background is gravitationally unstable.

One remaining problem with our scenario is that, observationally, low-mass cores
typically exhibit subsonic velocities only using infall tracers such as moderately opti-
cally thick molecular lines. Ours, instead, develop supersonic velocities close to the time
of protostar formation. This apparent contradiction, however, may possibly be solved
as follows. Line profiles are essentially density-weighted velocity histograms along the
line of sight. Therefore, observational determinations of infall velocities from line pro-
files depend on the underlying assumption for the shape of the infall velocity profile.
Consequently, Loughnane et al. in prep, have performed synthetic observations of the
prestellar core model of (Naranjo-Romero et al., 2015) at ∼ 0.63 Myr. The derived
infall speed from these observations is only ∼ 1/2 of cs, i.e., ∼ 4 times lower than
maximum actual speed. Thus, these diagnostics may systematically underestimate the
infall speeds. Moreover, we must emphasize that the standard inside-out collapse model
of Shu et al. (1987) is not likely to represent the actual dynamical state of prestellar
cores (e.g., Whitworth et al., 1996).

Our results highlight that the choice of initial conditions of numerical simulations
of prestellar cores is crucial for the subsequent evolution of the system, and thus care
must be exercised in choosing the most realistic initial conditions within the realm of
the physical problem at hand. In particular, it is crucial to first examine the funda-
mental processes, instead of starting with extremely detailed physical ingredients that
excessively increase the complexity of data analysis of density and velocity structures,
and hamper the identification of the dominating processes.
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Chapter 6

Prestellar filaments

In the previous chapter, we tested the implications of the scenario of GHC on the
formation and evolution of prestellar cores immersed in an unstable parent molecular
cloud constituting a simple two-level hierarchy with one element in each hierarchy. In
this chapter, we will study a deeper hierarchy level including the intermediate step of
filamentary structure. Additionally, we test the use a stratified density background
for the filament as suggested by the sheet-like molecular clouds found in numerical
simulations of MC formation (Heitsch et al., 2005; Vázquez-Semadeni et al., 2006; Folini
and Walder, 2006; Audit and Hennebelle, 2010). We wish to extend our results and
understand the observed structure of filaments and their dynamics, with the premise
that filaments are a channel funneling material accreted from the molecular cloud down
to prestellar cores. Our approach is quite different from previous work, because we
assume that the filaments are not hydrostatic structures as previously thought, in
agreement with self-consistent filament formation in numerical simulations of cloud
formation by colliding flows (Gómez and Vázquez-Semadeni, 2014).

For theoretical context, Vázquez-Semadeni et al. (2009) numerically studied the
effects of gravity on global and local scales in the formation of molecular clouds in
large-scale colliding flows including self-gravity. They found that the gravity at global
scale builds up large-scale filaments, while at the local scale, triggered by a combina-
tion of strong thermal and dynamical instabilities, facilitates the rapid formation of
massive protostellar cores of a few hundred solar masses (e.g., Sridharan et al., 2005;
Beuther et al., 2005; Garay, 2005). They found that the forming clouds do not reach
an equilibrium state, although they appear to be virialized. For observational context,
instance, Schneider et al. (2010) used molecular line data to discern whether or not
the massive star-forming gas in the DR21 region is in global gravitational collapse or
in an equilibrium state supported by turbulence or magnetic fields. They found that
dense cores have a lower velocity dispersion than their surrounding gas and velocity
gradients that are not (only) due to rotation, and obtained a typical infall speed of
∼ 0.5 km s−1, and mass accretion rates on the order of a few 10−3 M� yr−1 for the
two main clumps constituting the filament. They also conclude that this region was
formed by the convergence of flows on large scales and that it is in a state of global
gravitational collapse.

More recently, Gómez and Vázquez-Semadeni (2014) found that the forming cloud
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begins to undergo gravitational collapse because it rapidly acquires a mass much larger
than the average Jeans mass, collapsing in a nearly pressureless way, which proceeds
along its shortest dimension first, naturally producing filaments in the cloud and clumps
within the filaments. They also claimed that filaments are not in equilibrium at any
time, but instead are long-lived flow features continually replenished by accretion,
through which the gas flows from the cloud to the clumps. Moreover, the clumps also
exhibit a hierarchical nature, with the gas in a filament flowing onto a main central
clump but also other, smaller-scale clumps forming along the infalling gas.

In what follows, we present a simple, idealized model of the collapse of a cloud
in the presence of a filamentary perturbation, inside which a spherical perturbation
exists. Our goal is to characterize the fundamental flow patterns that develops, and
to investigate whether a stationary flow pattern develops, as suggested in the more
complex simulation of Gómez and Vázquez-Semadeni (2014).
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ABSTRACT

Recent observations have shown the ubiquity of filaments in molecular clouds, which appear to be
funneling gas to dense cores located at the sites where various filaments converge. On the other hand,
recent numerical simulations of cloud formation and collapse naturally reproduce this behaviour and
suggest that the filaments constitute part of the collapse flow. Nevertheless, existing models of
filamentary structures assume either radially hydrostatic structure or radial accretion, but have not
considered the longitudinal flow along the filament so far. We present idealized numerical simulations
of gravitationally collapsing cores and filaments embedded in globally unstable backgrounds, fully
forgoing any assumption of a hydrostatic state, with the aim of extracting the essential flow features
that develop in this scenario of global, hierarchical collapse. The evolution of the filamentary flow
seems to approach a stationary regime in which the filamentary structure acts as a “funneling”
channel, where the material radially accreted from the cloud is longitudinally “drained” down to the
core, although this stationary stage is not fully attained in the prestellar stage. The value of the
central flat part of the filament, fitted by a Plummer profile, approaches the typical observed values
of order 0.1 pc at the end of the simulations.

Keywords: ISM: clouds — ISM: evolution — Physical Data and Processes: gravitation
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1. INTRODUCTION

1.1. Molecular Cloud substructure and star formation

Although observation of Molecular Clouds (MCs) over many decades have shown that MCs are the
nurseries of star formation, the process through which MCs evolve to form stars has undergone major
transformations in recent years. Improved observations, especially with the Herschel Observatory
(see, e.g., the review by André et al. 2014, hereafter A14) and numerical simulations (e.g., Heitsch
et al. 2009; Smith et al. 2011; Gómez and Vázquez-Semadeni 2014) have shown that there is a number
of intermediate stages before the final formation of stars, identified as filaments, hubs and dense cores.
In particular, as discussed by A14, the Herschel continuum observations and surveys have revealed
that filamentary structures are ubiquitous in MCs, that they contain the majority of the prestellar
cores in MCs, and that the formation of filaments appears to precede star formation.

This multi-stage collapse process can be understood in terms of a global, hierarchical collapse,
in which small-scale collapses occur within larger-scale ones (collapses within collapses; Vázquez-
Semadeni et al. 2009). Moreover, the larger-scale collapses produce filamentary structures because
they occur in a nearly pressureless form, in which anisotropies are amplified (Lin et al. 1965; Gómez
and Vázquez-Semadeni 2014). Hence, filaments correspond to the intermediate-scale collapse, in-
between the cloud and the core scales. It is noteworthy that the latter authors argue that the
collapse of clouds proceeds from the cloud at large to sheet-like objects, then to filaments, and finally
to clumps, so it is possible that the filaments tend to be embedded in sheet-like clouds.

Observations from the Herschel Gould belt survey Arzoumanian et al. (e.g., 2011); Palmeirim et al.
(e.g., 2013) have also found that the filaments have radial column density profiles falling off as r−1.5

to r−2.5 at large radii, and flattened profiles at small radii, with typical widths ∼ 0.1 pc, although
the universality of this width has been questioned by Panopoulou et al. (2017), who argued that it
is an artifact of sampling a truncated power law with uncertainties.

Filaments appear to be highly dynamic entities. Rivera-Ingraham et al. (2017) have shown evi-
dence that the filaments evolve, as they reported a transition from a subcritical (i.e., stable; Inutsuka
and Miyama 1992) to a supercritical (i.e., unstable) regime by accretion from their environment in
recent observations of nearby (d < 500 pc) filaments (Rivera-Ingraham et al. 2016). They found
that self-gravitating filaments in dense environments (Av ∼ 3, NH2 ∼ 2.9 × 1020 cm−2) can become
supercritical on timescales of ∼ 1 Myr, and suggested that filaments evolve coeval with their envi-
ronment. Also, Arzoumanian et al. (2013) found that thermally subcritical filaments have transonic
velocity dispersions independent of their column density, while thermally supercritical filaments have
higher velocity dispersions scaling roughly as the square root of column density. They suggest that
the higher velocity dispersions of supercritical filaments may not directly arise from supersonic in-
terstellar turbulence, but instead may be driven by gravitational contraction/accretion. Finally, a
number of molecular-line studies of filaments have suggested that there is a net gas flow along the
filaments, perhaps feeding the hubs and clumps as a consequence of global collapse of the filaments
(e.g., Schneider et al. 2010; Peretto et al. 2013; Kirk et al. 2013).

Many existing analytical models (e.g., Ostriker 1964; Inutsuka and Miyama 1992; Fischera and
Martin 2012) consider hydrostatic equilibrium, while others (e.g., Heitsch 2013a,b; Hennebelle and
André 2013), together with some numerical simulations (e.g., Clarke et al. 2016), do consider accre-
tion. To our knowledge, however, the longitudinal flow along filaments, seen both in observations
(Schneider et al. 2010; Peretto et al. 2013; Kirk et al. 2013) and reported in simulations of MC evolu-
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tion (Gómez and Vázquez-Semadeni 2014) has not been discussed in analytical models or controlled
numerical simulations, to investigate the essentials of the flow regime.

In this work, we extend our previous study of the collapse of an idealized spherical core embedded
in a uniform, unstable background medium (Naranjo-Romero et al. 2015, hereafter Paper I), by
adding a filamentary perturbation that triggers non-spherical collapse motions. We investigate the
fundamental underlying flow pattern in a filamentary structure that is part of the collapse flow from
the clump scale (a few parsecs) down to the core scale (a few times 0.01 pc), and discuss whether or
not this regime is capable of explain some of the observed structural and kinematic features of MC
filaments. In Sec. 2, we first present the numerical simulations, and in Sec. 3 we present the results
concerning the flow pattern, the approximation to a stationary state, and the evolution of structural
features. Next, in Sec. 4 we discuss the results and compare with the observations. Finally, in Sec.
5 we present a summary and some discussions.

2. THE SIMULATIONS

We use a spectral, fixed mesh numerical code (Léorat et al. 1990; Vázquez-Semadeni et al. 2010) to
perform two numerical simulations of hierarchically collapsing density perturbations initially at rest.
These are modeled by a spherical density enhancement with a gaussian radial profile (“the core”)
embedded in a cylindrical perturbation, also with a radial density profile (“the filament”), which in
turn is immersed in a uniform density background (“the cloud”). The filament is in the z direction
of the numerical box. As in Paper I, we restrict our study to the prestellar stage of the evolution
because of the limitations of the numerical code, which does not have a prescription for the creation
of sink particles.

We consider an isothermal gas with mean particle weight µ = 2.36 at a temperature of T=11.4K,
and an isothermal sound speed of cs = 0.2 km s−1 in a numerical box of size Lbox ≈ 7.1 pc with
periodic boundaries and a resolution of 0.014 pc. The Jeans length is LJ = 2.24 pc, corresponding to
MJ = 34.21M�. The box contains 60.39MJ and the gas is initially at rest and no gravity-counteracting
forces such as a magnetic field or small-scale turbulence are included.

For the density background we have implemented two different configurations, corresponding to
each of our two simulations. The first, labeled RunA, has a uniform density background, so that
it has axial symmetry (i.e., axisymmetric), while the second (RunS) is stratified in the y direction,
i.e., perpendicularly to the filament, and uniform in the direction normal to this planar stratification
(see Fig. 1). This prescription emulates the case of a filament embedded in a sheet-like cloud (e.g.,
Vázquez-Semadeni et al. 2006; Heitsch et al. 2008; Heitsch 2013b).

In RunS, we will refer to the central plane perpendicular to the stratification direction as the dense
plane (or simply the central plane). We will discuss the variation of physical quantities in three
directions, one perpendicular to the dense plane, one parallel to it (on the plane, but perpendicular
to the filament), and one along the filament, to which we will refer as the longitudinal direction.

Fig. 2 shows the density profiles along each of these three orientations at the initial conditions for
the two simulations. The numbers next to the profiles indicate the measured FWHM for each profile.
The relative amplitudes of the core over the filament are a factor of ≈ 1.49 and ≈ 1.5 for RunA and
RunS, respectively, while the relative amplitudes of the filament over the central plane are ≈ 2.53 and
≈ 2.0, respectively. For RunS, the relative amplitude of the filament over the minimum density in the
box is ∼ 2.95. For both the core and the filament (which we generically refer to as the substructures),
the distance from the center at which they merge with their respective parent structure naturally
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Figure 1. Illustration of the setup for the density field in the stratified simulation, RunS.

defines their respective operational boundaries1, which are roughly one local Jeans length. That is,
each structure is marginally Jeans-unstable within its parent structure.

1 This is operationally equivalent to the way in which these objects are defined in observational column density
maps.
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RunA RunS

Figure 2. Density profiles at the initial conditions along the three main directions, passing through the
center of the computational box: the axisymmetric (RunA, left panel) and the stratified (RunS, right panel).
The red lines represent the direction perpendicular to the dense plane; the blue lines, represent the direction
parallel to (on) the plane (perpendicular to the filament), and the green lines, the longitudinal direction
(along the filament). The numbers next to each line correspond to the FWHM of the density peak for each
of the profiles. In RunA, the parallel and perpendicular profiles overlap due to the axial symmetry.

To identify the boundary on each substructure, we have chosen to use a density threshold criterion,
which is a small factor αfil or αcore over the density value of the corresponding parent structure:

ρbnd,fil =αfil 〈ρ〉box (1)

ρbnd,core =αcore ρax,l, (2)

where ρbnd,fil (respectively ρbnd,core) is the density at the filament (resp. core) boundary, and ρax,l is
the density at the axis of the filament but a distance l away from the border of the computational
box. The latter will be useful when measuring properties of the filament, away from the core. Finally,
αfil and αcore are constants slightly larger than unity.

Additionally, it is useful to identify two different regions along the filament, depending on whether
they contain the core or not (see Fig. 3) for comparison with observed cores and filaments, respec-
tively. We choose the off-core region roughly halfway between the center of the core and the border of
the computational box, a location safely removed from the core while not being too strongly affected
by the periodic boundaries of our box.

To investigate the evolution of the filament-core systems, we have selected several timesteps in both
runs (see Table 1).

3. RESULTS

In this section, we first describe the uniform-background, axisymmetric simulation (RunA), and
then the stratified-background simulation (RunS). All figures are labeled with the type of background
setup, the timestep, and the orientation along which we have calculated the plotted quantities for
each panel.
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Figure 3. Illustration of the selection of the core and non-core filament sections.

Table 1. Selected timesteps for
the runs.

Run Timestep Time

(tff) ( Myr)

RunA 0 0.00 0.00

1 0.30 0.11

16 0.53 1.77

33 1.09 3.64

RunS 0 0.00 0.00

1 0.03 0.11

16 0.53 1.77

31 1.02 3.42

3.1. Overall evolution

Figure 4 shows cross sections of the (volume) density field of the two simulations on various planes
passing through the center of the computational box (see labels), with the normalized velocity field
overlaid. It is noteworthy that RunS produces a ribbon-like filament instead of a cylindrical filament.
The ranges in the color scales correspond to the minimum and maximum values of the number density
(in cm−3) in the overall evolution for each run. The color bar also indicates the values of the density
at the boundaries of the filament and the core (labeled f and c), according to eqs. (1) and (2), with
αfil = 1.3 and αcore = 9. The horizontal lines define a slice across the filament at a fixed distance
LJ,init/2 ∼ 1.12 pc away from the boundary at the initial conditions, where we have computed various
physical quantities.
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In the axisymmetric run (left panels), the position of the filament’s boundary does not vary signifi-
cantly throughout the evolution (except in the on-core region), growing from ∼ 0.73 pc at the initial
conditions to ∼ 1.3 pc. A similar situation occurs for the stratified run in the direction perpendicular
to the plane. On the other hand, for the stratified run in the parallel direction (on the plane), the
filament boundary steadily moves outwards. Concerning the core boundary, it is seen that in all cases
it changes dramatically in shape, evolving from a nearly spherical shape to a highly elongated one.

The density field is almost uniform along the filament and away from the core, and in the background
region away from the filament. Also, as suggested in the less idealized simulation of Gómez and
Vázquez-Semadeni (2014), the velocity field smoothly changes direction as it approaches the filament,
being mostly perpendicular far from the filament to becoming longitudinal in the filament’s central
axis, pointing towards the core. It is important to note that no shocks develop during the prestellar
evolution. In addition, the velocity field direction remains quite constant throughout the evolution,
suggesting a stationary flow. We return to this point below in sec. 3.2.

Figure 5 shows the density profiles for the selected timesteps in both simulations, with RunA shown
on the two top panels and RunS shown in the three bottom panels, respectively. The various lines
shown correspond to the various timesteps we consider (see Table 1). The longitudinal-slice plots
(right panels on the two rows) show the core on top of the filament, while the other plots show the
filament on top of the background cloud.

The longitudinal slices (right top and bottom panels) confirm that the density in the filament, away
from the core, increases steadily in time through accretion from the cloud, although in RunA the
increase rate appears to decrease towards the final stages of the prestellar evolution. This slowing of
the increase might be suggestive of an approach to stationarity.

Figure 6 shows, in its top panels, the evolution of the mass of the whole filament (including the core,
labeled “fil+core”, shown with blue lines) and of the filament without the core (labeled “fil”, shown
with red lines). The bottom panels show the evolution of the linear mass density (often misleadingly
referred to as the “line mass” in the literature) for the filament+core system and the filament alone.
Finally, the green lines in the bottom panels show the linear density for the filament+core system
but only out to the fixed value of the filament’s radius from the initial conditions.

It is interesting to note that the filament evolution seems to transition from a regime of increasing
rates of mass and linear density growth to a regime of decreasing growth rates, again suggesting
an approximation to a stationary regime (which, however, does not seem to be reached during the
prestellar stage investigated in this paper).

Figure 7 shows the radial profile for the number density, column density and total velocity for RunA
(left column) and for RunS, both in the direction parallel to the dense plane (middle column) and
perpendicular to it (right column). The solid lines show the profiles at the center of the box (i.e., at
the position of the core), while the dashed lines show the profiles midway between the core and the
boundary; i.e., on the off-core region of the filament. In this figure, we use a logarithmic radial axis
to emphasize the internal structure of the filament.

From the solid lines, we can see that the collapse in the on-core position proceeds from the outside-
in, in a similar way as in the spherical case described in Paper I and other works (e.g., Gómez et al.
2007; Gong and Ostriker 2009). Early in the evolution, the velocities are largest at large radial
distances from the axis of the filament, while the inner parts develop a velocity profile roughly linear
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(RunA-00-par/perp) (RunS-00-par) (RunS-00-perp)

(RunA-16-par/perp) (RunS-16-par) (RunS-16-perp)

(RunA-33-par/perp) (RunS-31-par) (RunS-31-perp)

Figure 4. Density images for both simulations on the central plane (left and middle columns) and the
perpendicular plane (right column) at the initial conditions (top panels), an intermediate timestep (middle
panels) and at the end of the simulation (bottom panels). The labels indicate the run, timestep and
orientation of the each map. Velocity vectors are normalized to the maximum velocity on each simulation.
The evolution time for each panel corresponds to that on Table 1.
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(RunA-33-par/perp) (RunA-33-long)

(RunS-31-par) (RunS-31-perp) (RunS-31-long)

Figure 5. Evolution of the density profile for labeled runs at the end of each simulation. The evolutionary
steps shown in each panel corresponds to those listed in Table 1.

with radius. At timestep 9, t ≈ 0.3 tff ≈ 1.0 Myr2, a transonic point appears at ∼ 0.5 pc away from
the center of the filament, that then splits into two points that move in opposite directions (i.e., one
outwards and one inwards) from the position of the initial transonic point. At later timesteps, these
transonic points enclose a region of almost uniform supersonic inward velocity. The filament shows a
flattened density profile in the inner regions where the velocity is uniform, approaching an r−2 slope.

In contrast, from the dashed lines (i.e., in the off-core region), we can see that the filament develops
a uniform radial profile of the total velocity, almost over its full radial extension and throughout the
evolution, with no drop towards the central axis. Also, the volume density profile is seen to be flat
at the central parts of the filament and to approach a power-law at the external parts (towards the
end of the simulation), until the radius at which it merges with the uniform density background.
Together with the change in direction of the velocity from radial to longitudinal seen in Fig. 4 at the
off-core positions, this implies that the momentum is completely transferred from the radial to the
longitudinal direction near the filament axis.

Similarly to the Figure 7, Figure 8 shows the radial profiles along the longitudinal direction along
the filamentary structure in the last timestep of each simulation. The behaviour is quite similar
to that of the core on top of the uniform density background described in Paper I, with the main

2 From hereafter, tff is the free-fall time at the initial conditions
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RunA RunS

RunA RunS

Figure 6. Mass per unit length evolution of the identified filament regions.

difference that the flat inner part of the density and column density profiles for the core is more
extended.

Figure 9 shows the radial column density profile of the filament and a fit of a Plummer-like function
at the end of the simulations. The parameters of the fitting are the central flat part of the filament’s
radial profile, Rflat, its power-law exponent p, and Ap (see also Tables 8-2), which is a finite constant
factor for p > 1. For comparisons, it also shows the profile for an infinite, hydrostatic isothermal
cylinder, for which p = 4 (Ostriker 1964)3, and the derived profile for observed filaments, for which
p = 2 (Arzoumanian et al. 2011). It also shows the profile of an observed filament from Arzoumanian
et al. 2011, with the upper and lower errors denoted by the dotted lines. We can see that the fitted
values of the slope, p = 1.33 for RunA, and p = 1.7 and p = 1.25 for RunS in the perpendicular and

3 For an infinite isothermal filament in hydrostatic equilibrium, Ap = π/2, and Rflat corresponds to the thermal
Jeans length at the center of the filament.

-fil+core -fil+core 
- - - fiI - - - ti l 

100 c--_- 100 

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 
1/111 

- fi l+core - fi l+core 
- ti l - ti l 
- init fix - init fix 

100 100 

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 
tilll 



Filamentary Collapse Flow in Molecular Clouds 11

(RunA-00) (RunS-00-par) (RunS-00-perp)

(RunA-16) (RunS-16-par) (RunS-16-perp)

(RunA-33) (RunS-31-par) (RunS-31-perp)

Figure 7. Radial density, column density and velocity profiles on-core (solid) and off-core (dashed) for
labeled runs at the initial conditions (top), an intermediate timestep (middle) and final timestep (bottom).
The evolution time for each panel corresponds to that on Table 1.

parallel directions, respectively, are in general less than the observed slope, although it is possible
that the final slope is not attained until after the formation of a singularity (i.e., a protostar), which
we do not consider here.

Figure 10 shows the evolution of Rflat obtained by fitting the column density profiles (see Fig. 9)
for both runs. As we can see from both panels, even though at early times the fitted values of Rflat
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(RunA-33-long) (RunS-31-long)

Figure 8. Radial density, column density and velocity profiles on-core (solid) and off-core (dashed) for
labeled runs at final timestep. The evolution time for each panel corresponds to that on Table 1.

Table 2. Fitted parameters
for the column density pro-
file for RunA.

timestep Rflat p A

(pc)

0 0.81 1.20 4.03

16 0.61 1.23 3.65

33 0.18 1.32 0.06

are quite larger than the typical values ∼ 0.1 pc reported from Herschel observations, at later times,
this typical size scale is approached.

It is noteworthy that the evolution of Rflat in the perpendicular direction in RunS is very similar
to the evolution in RunA, decreasing by a factor ∼ 5 between the initial and final states. For the
parallel direction in RunS, the variation in Rflat is even lower, on the order of a factor of ∼ 2 between
the initial and final states. We speculate that, after singularity formation, Rflat may become constant
as a consequence of the stationarity of the system (as long as the gas supply from the cloud remains).
This may explain the apparent observed “universality” of the filament widths (e.g., Arzoumanian
et al. 2011; Palmeirim et al. 2013; André et al. 2014).
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Table 3. Fitted parameters
for the column density profile
for RunS along parallel (top)
and perpendicular (bottom)
orientations.

timestep Rflat p A

(pc)

0 1.48 1.67 2.59

16 1.02 1.71 2.78

31 0.19 1.69 0.73

0 0.945 1.15 3.41

16 0.78 1.18 2.77

31 0.36 1.24 0.16

3.2. The approach to a stationary regime and mass flux in the filament

As discussed in Sec. 3.1 (cf. Fig. 4), the velocity field in the simulations tends to remain constant
in space, in both magnitude and direction, as time advances, suggesting an approach to a stationary
regime. To further search for evidence of this, in Fig. 11 we plot the histogram of the angles of the
velocity vectors with respect to the horizontal axis at various times. It can be seen that, in both runs,
the relative frequency of these angles has an almost constant overall shape over time, its peak shifting
only few degrees throughout the evolution, reinforcing the view that the velocity field remains almost
constant in time.

In fact, an approach to stationarity is expected. At early times, when the filament density is
increasing, the longitudinal mass flux along the filament, ρvz, also increases, even if the longitudinal
velocity, vz, remains constant, precisely due to the the density increase. Eventually, the longitudinal
mass flux must become comparable to the radial mass flux onto the filament from the cloud. When
this happens, however, the filament density must begin to decrease again, reducing the longitudinal
flux. So, it appears that a stationary regime where the longitudinal mass flux balances the radial
one, may be an attractor for the flow.

To test numerically the hypothesis of a stationary regime, we have selected a slice of the filament
of thickness 10 pixels, at a distance l = LJ,init/2 from the boundary, to measure the mass per unit
length (the linear mass density, λ), as well as the longitudinal and radial mass fluxes in the filament.
This choice for the slice was made so that the slice is sufficiently removed both from the core, since
we are interested in the filament in this case, and from the boundary of the numerical box, where
the longitudinal flow velocity is forced to remain at zero.

If the flow approaches stationarity, then the mass flux into the slice, Ṁin (both through the top
“lid” of the slice, in the direction toward the core, as well as in the radial direction, due to accretion
from the cloud) must approach the flux out of the slice, Ṁout, through its bottom lid. That is, we
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(RunA-33)

(RunS-31-par) (RunS-31-perp)

Figure 9. Radial column density profiles of the filament at the off-core position (black) at the end of
the simulations. The green crosses indicate the points used for computing the best-fit parameters using
a Plummer-like function. For comparison, the plot shows the profile for a typical observed filament from
(Arzoumanian et al. 2011) (magenta continuous line) with errors delimited by the magenta dotted curves,
as well as the characteristic profile for an infinite isothermal filament (p = 4) and the observed filaments
(p = 2).

expect that the total mass change rate ratio,

µtot ≡
Ṁin

Ṁout

∼ 1, (3)

where

Ṁin =

∫

A

ρv · dA +

∫

B

ρv · dB,

Ṁout =

∫

C

ρv · dC, (4)

and A is the area of the top lid, B is the perimetral area of the slice, and C is the area of the bottom
lid (see Fig. 12).
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(RunA) (RunS)

Figure 10. Evolution of Rflat for both runs.

Figure 13 shows the evolution of µtot through the slice for the two runs. As we can see, the mass
flux ratio for the axisymmetric run has not yet reached unity by the time it stops, although µtot is
clearly approaching unity. For the stratified run, on the other hand, µtot does reach unity, although,
somewhat surprisingly, it exceeds this value at the end of the simulation and likely would continue to
grow. Although this behaviour may be transient, it is necessary to perform simulations that evolve
past the time of formation of a singularity (a protostar), which, however, requires us to use a different
numerical code. We therefore postpone this task to a future study.

Another relevant diagnostic is the ratio of the mass accretion rate onto the slice through the
perimetral area, Min,B, to the total mass rate of change of the slice itself, Ṁslice. These are respectively
given by

Ṁslice = Ṁin − Ṁout, (5)

and

Ṁin,B =

∫

B

ρv · dB. (6)

We then expect that, at early times, most of the mass change in the slice is due to the perimetral
accretion, and so the mass rate ratio

µB ≡
Ṁin,B

Ṁslice

(7)

should be close to unity. Instead, at late times, if the mass of the slice tends to a constant (Ṁslice → 0),
then this ratio should diverge, indicating that the mass accreted through the perimetral area, plus
the mass accreted through the top lid, is expelled through the bottom lid, and so the perimetral
accretion no longer contributes to an increase in the slice’s mass.

Figure 14 shows the evolution of µB for the two simulations. For both, this ratio is indeed close
to (although slightly larger than) unity at early stages. This means that the mass flux through the
perimetral area is close to, but slightly larger than, the total mass increase rate of the slice. This in
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(RunA)

(RunS-par) (RunS-perp)

Figure 11. Histogram of velocity vectors with respect to the horizontal axis for labeled runs. The initial
timestep is shown in blue and the final timestep in red.

Figure 12. Illustration of mass flow through the filament’s slice.

turn implies that, during the early stages, this perimetral mass flux is the main driver of the mass
growth of the slice, although some of it is lost by evacuation from the bottom lid.

On the other hand, at later times, the ratio begins to increase, indicating that the evacuation
(through the bottom lid) increases in relation to the perimetral inflow rate, so that the mass of
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(RunA) (RunS)

Figure 13. Evolution of the mass-flux rate ratio, µtot, (eq. [3]) in the slice. The blue solid lines indicate
the ratio calculated for the mass fluxes across the moving filament boundary defined by eq. (1). The red
dashed lines indicate the fluxes calculated across a boundary fixed at its initial position.

(RunA) (RunS)

Figure 14. Evolution of the ratio of perimetral accretion rate to total mass change rate, µB, (eq. [7]) for
the filament slice. The blue solid lines indicate the ratio calculated for the mass fluxes across the moving
filament boundary defined by eq. (1). The red dashed lines indicate the fluxes calculated across a boundary
fixed at its initial position.

the slice begins to approach constancy (its mass rate of change decreases); i.e., the slice approaches
stationarity. In fact, for RunS, after t ∼ 0.7tff , µB increases strongly and changes sign, indicating
that the total mass change rate for the slice becomes negative; i.e., the slice begins to lose mass. Fig.
15, however, shows the evolution of the mass of the slice (blue lines) for the two runs. Surprisingly,
the slice mass is growing monotonically in the two runs, a fact that appears inconsistent with the
conclusion from the mass change ratios that the slice begins to lose mass at t ≈ 0.93tff in RunS.
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This apparent inconsistency is resolved by noting that, so far, we have considered the boundary
of the filament (and thus the perimetral area of the slice) using the definition given by eq. (1). As
discussed in Sec. 3.1, with this definition the boundary of the filament in RunS moves outwards as
it evolves. Thus, the mass growth occurs because the filament radius increases, in spite of the fact
that the net instantaneous mass flux across the filament’s boundaries is negative. This behaviour is
confirmed by the red dashed lines in Figs. 13, 14, and 15, which show the evolution of the ratios of
mass increase and the slice mass when the boundary of the filament is forced to remain fixed at its
initial radius. In this case, it is seen in Fig. 14 that the ratio of the perimetral accretion rate to the
total mass rate of change, µB, remains close to unity, and, while it still increases, it does so much
more slowly than in the moving-boundary case.

(RunA) (RunS)

Figure 15. Slice mass vs. time. The blue solid lines indicate the mass contained within the moving filament
boundary defined by eq. (1). The red dashed lines indicate the mass contained within a boundary fixed at
its initial position.

It is also worth noting in Fig. 15 that, in the case when the filament boundary is defined dynamically
by eq. (1) (solid blue lines), the filament slice mass grows in two stages, first accelerating and then
decelerating, in both simulations. Instead, when the filament boundary is defined to remain fixed at
its initial position, the filament slice mass growth curve is always concave —i.e., always accelerating,
at least during the prestellar stage considered in this work. This behaviour suggests that the more
extended boundary represents a region where the approach to stationarity has advanced further than
the region enclosed by the fixed boundary, which remains further inside the filament.

3.3. Comparison with observations of prestellar cores

As in Paper I (see Sec. 4.1 and Fig. 3 there for further details about the observed prestellar cores
and the simulated core), Fig. 16 shows a plot of Mcore/MBE vs. Mcore, where Mcore is the core mass
and MBE is the Bonnor-Ebert mass for the mean density and temperature of the core. This diagram
was studied by Lada et al. (2008), who concluded that in the Pipe molecular cloud, most low-mass
cores are gravitationally unbound and confined by external pressure. In Fig. 16, we have plotted the
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(RunA) (RunS)

(RunA) (RunS)

Figure 16. Evolution in the diagram Mcore/MBE vs. Mcore (cf., Lada et al. 2008) of the cores (immersed
in the filaments) from the axisymmetric (left) and stratified (right) simulations and the observed cores from
Table 2 in (Rathborne et al. 2009), and Table 1 from (Ikeda et al. 2007). Each point has a vertical error bar
that spans the values of the BE-mass at temperatures of 10 and 13 K (top and bottom respectively). The
bottom panels show the same data as those in the top panel, but with a logarithmic vertical axis, to better
appreciate the location of the low-mass cores.

same sample of observed cores from the Pipe (Rathborne et al. 2009) and the Orion (Ikeda et al.
2007) clouds, as well as the evolutionary track in this diagram of our filament-embedded cores. Note
that in the case of the cores from the Pipe, even though not all prestellar cores in the sample of
(Rathborne et al. 2009) are extracted from the main filamentary structure, it has been suggested
that the molecular cloud is indeed formed by the collision of filaments (Frau et al. 2015). The
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Orion molecular cloud is more complex, but the sample includes prestellar cores from a filamentary
structure in the north part of the cloud and also prestellar cores within the south region of more
diffuse emission where no clear filamentary structure has been found (Ikeda et al. 2007).

From Fig. 16, we can see that the evolutionary track of our cores, with their boundaries defined by
eq. (2), using a threshold αcore = 9, tracks almost exactly the locus of the observed prestellar cores.

The agreement between the pictures of formation of prestellar cores immersed in both, a filamentary
structure (this work) and in apparent isolation4 (Paper I), indeed suggests that the GHC scenario
is a plausible mode for star formation from the large scale and down to the small scale (i.e., cloud-
sheet-filament-core), where the main physical mechanisms are the gravitational focusing and the direct
accretion from the different successive hierarchies in the sequence of collapse.

Note, that we had to choose here a factor αcore = 9 that is rather large compared to those (1.125,
1.2, and 1.5, respectively) utilized in Paper I. Lower choices of this factor resulted in the evolutionary
tracks being displaced to the right (higher masses) in this diagram. It remains to be tested whether
this choice is consistent with regular observational core-definition procedures, a task that we defer
to a future study.

4. DISCUSSION

The results from the previous section can be summarized as follows:

1. We have numerically simulated the collapse of a filamentary perturbation containing a spherical
enhancement (a core) in its center. We considered two variants of this filamentary collapse, one
with axial symmetry (RunA), and one with additional stratification in one of the directions
perpendicular to the filament (RunS). The latter represents the case in which the filament is
in turn embedded in a sheet-like cloud.

2. The presence of the filamentary perturbation changes the symmetry of the collapse flow which,
away from the core, proceeds first toward the filament, and smoothly changes direction as it
approaches the filament axis, to becoming longitudinal there, oriented towards the core. No
shocks develop at the filament axis.

3. To measure properties of the filament and the core, and intending to represent common ob-
servational procedures, we defined their boundaries in terms of a certain density enhancement
above their respective parent structures (eqs. [1] and [2]). Thus defined, both, the filament and
the core evolve by growing in mass. In RunS, the filament radius grows over time on the dense
central plane (the “parallel” direction). In the direction perpendicular to this plane, and in
RunA, the filament radius remains roughly constant in time.

4. The filament is never hydrostatic, and instead seems to approach a stationary regime in which
the material accreted through the boundary flows longitudinally toward the core. We suggested
that such a stationary regime may be an attractor for the evolution of the filament, because, if
the longitudinal “drainage” of material is lower than the peripheral accretion, the filament den-
sity must increase, increasing the longitudinal flux. Conversely, if the longitudinal flux exceeds
the peripheral accretion, then the filament density must decrease, reducing the longitudinal
flux.

4 Apparent, because the cloud itself indeed is their large-scale parent structure.
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5. In both runs, we measured the evolution of various mass flux rates, as well as the total rate of
mass change and their ratios, in a slice in the filament far from the core, to determine whether
or not the slice mass approaches stationarity, and if so, how it is approached. The mass fluxes
were measured across the perimetral boundary of the filament and along the filament. We
found that the perimetral mass flux first causes an increase in the filament mass, but later the
longitudinal flux tends to cancel this effect. The stationary state, however, is not fully attained
during the prestellar stage we have considered in this paper, and may require consideration of
the subsequent protostellar stages of evolution. We plan to address this possibility in future
work.

6. We found that the radial column density profile in the filament away from the core can be fitted
by a Plummer profile, and that the radius of the flat central part slowly decreases in time,
approaching the “typical” observed values of order 0.1 pc at the end of the simulations, near
the time of protostar formation in the core. The profile on the filament retains its flattened
shape near the filament axis even at the time when the central density in the core diverges
(the time of protostar formation). This behaviour is due to the fact that, while the mass is
accumulated at the core, it just “traverses” the filament but does not accumulate there, thus
never causing a divergence of the density in the filament axis. The filaments simply act as
intermediary “funnels” for the material to flow from the cloud to the core.

4.1. Comparison with previous work

Our results are consistent with those of simulations of the formation and evolution of turbulent
molecular clouds (e.g., Heitsch et al. 2009; Smith et al. 2011; Gómez and Vázquez-Semadeni 2014),
and reinforce the notion that the filaments constitute intermediate stages of the collapse. Our ide-
alized setup, of a perfectly cylindrical geometry with an initially spherical central core, allows us to
focus on the essential flow features of filament-core systems.

We find that, as in calculations of spherical collapse (e.g., Larson 1969; Penston 1969, see also
Paper I), a shock does not develop anywhere in the system before the formation of a singularity (the
time of protostar formation). Moreover, along the filament, the growth rate of the central density in
the filament slows down, so that it is nowhere near developing a singularity at the time when this
occurs in the core (the end time of our simulations). Indeed, the flow seems to approach a stationary
regime where the mass flux across the perimetral boundary of the filament is drained into the core by
a longitudinal mass flux. Since the entire prestellar stage, however, may be considered as a transient
phenomenon leading to a steady similarity flow arising after protostar formation, we only see the
approach to this steady flow during the prestellar stages we have investigated.

The approached steady state may be considered the filamentary analogue of the similarity flow
developing in spherical structures after singularity formation (e.g., Shu 1977; Whitworth and Summers
1985). For these, Murray et al. (2017) recently showed that the density at a given radius approaches
a constant, implying that the flow becomes stationary. In this spherical case, the mass is drained into
the singularity, so that the latter increases its mass, but the gaseous core may maintain a stationary
density and velocity configuration (neglecting the increase in the core mass). In the filament, our
results suggest that the drainage into the core allows the filament to also develop stationarity, with
our simulations approaching, but not quite reaching, it. Moreover, in the case of the filament, because
the ultimate mass sink (the center of the core) is far from the middle position on the filament, the
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stationary density at the filament axis remains at some finite value, and allows the radial density
and column density profiles to remain flat for a long time. Thus, although Rflat does evolve in
time during the prestellar stages, it does so rather slowly, and approaches a finite stationary value,
seemingly consistent with observed values (Arzoumanian et al. 2011; Palmeirim et al. 2013).

5. CONCLUSIONS

We conclude that the dynamic nature of filament-core systems embedded in globally unstable
clouds discussed in the present paper is an attractive model for the observed structure and dynamics
of molecular cloud filament-hub systems. Of course, several issues remain to be resolved, most
importantly the post-singularity evolution, to determine with greater certainty whether or not a
stationary regime develops. We will address this in a further contribution.

Raúl Naranjo Romero acknowledges financial support through PAPIIT project IA103517 from
DGAPA-UNAM
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Chapter 7

Conclusions

In this work, we have numerically tested and characterized the global hierarchical grav-
itational collapse scenario in which molecular clouds and their substructures are un-
stable, and we have determined the implications in comparison with the traditional
picture in which the molecular clouds are virialized structures.

In particular, we have found that the evolution of apparently isolated dense cores
and those within filamentary structures, both immerse into an highly Jeans-unstable
density background (both, uniform and stratified) are in agreement with observations
of both, “stable” and “unstable”, low- and high- mass prestellar cores in the Mcore/MBE

vs. Mcore diagram of Lada et al. (2008).
For the case of isolated prestellar cores (Naranjo-Romero et al., 2015), the collapse

proceeds outside-in, naturally explaining the observation of extended infall velocities
(Lee et al., 2001). Moreover, preliminary synthetic observations of these simulations
have shown a systematic underestimation of the actual infall speeds (Loughnane et al.
2017, in prep), explaining the apparent subsonic infall speeds. At early times, the radial
density profile of the core resembles Bonnor-Ebert spheres, even though it is collapsing
since the beginning. At late times it approaches the density structure of a Singular
Isothermal Sphere, but with a finite infall velocity, rather than being in a hydrostatic
state. In this case, prestellar cores can be thought as ram-pressure confined structures
increasing their masses due to the accretion from the unstable background, the latter
allowing the core to evolve dynamically.

On the other hand, the evolution of the filament+core system, presented in Chap.
6 indicates that the filamentary structure acts as a “funneling” channel, where the
material radially accreted from the cloud is longitudinally “drained” down to the core.
A simple estimate suggested that a stationary regime where the accretion from the
filament to the core balances the accretion from the cloud to the filament. The simu-
lation seems to approach this regime, but does not reach it before the core produces a
singularity. Moreover, the value of the central flat part of the filament, fitted to by a
Plummer profile, approaches the typical observed values of order 0.1 pc at the end of
the simulations.

These findings reinforce the GHC scenario as a plausible scenario for star formation
from the MC scale and down to the small core scale (i.e., the cloud-sheet-filament-core
system), due to accretion across the successive hierarchies in the sequence of collapse,
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at least in the prestellar stages.
Future work should extend the evolution of these large-to-small collapsing structures

to include the protostellar phase, and perform synthetic observations of the filamentary
flow, with different projection angles, in order to provide some clues on the infall velocity
profiles of the dense cores immerse into filamentary structure in the GHC scenario.
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Appendix A

Appendices

A.1



A.1 The numerical code

In this section, we discusse some of the details in the numerical code used for the
simulations, some of its caveats and future work plans.

A.1 The numerical code

In the present work, we have used the pseudo-spectral numerical code of Passot et al.
(1995); Vazquez-Semadeni et al. (1995). Spectral methods1 (Gottlieb and Orszag, 1977)
consist in solving the MHD equations in Fourier space, where the solution is assumed
to be a superposition of a set of basis functions truncated at some term, and solving the
system by finding the temporal evolution of the coefficients of the solution function. The
general advantage of these methods is that they allow to convert a set of coupled integro-
differential equations into a set of ordinary differential equations. In particular, pseudo-
spectral methods made use of the efficient discrete fast Fourier transform to compute the
coefficients of the solution at discrete (spatial or temporal) grid points, reaching roughly
the same accuracy as pure spectral methods. Although some computationally expensive
(O ∼ N2) non-linear terms could appear in the equations that describe the physical
problem (for instance, the advection term, which involve the convolution of the density
and velocity), the numerical technique consists in computing a representation of the
density and velocity components in real space through the inverse Fourier transform,
then computing the convolution and return back to Fourier space. This allows to
compute the convolution in ∼N log2 N operations. Note that in comparison with
finite difference numerical methods (O ∼ N), pseudo-spectral methods involve more
computations. For a more detailed description of the simplest original numerical code
and its tests see Passot and Pouquet (1987).

In the numerical code, the MHD equations are expressed in terms of dimensionless
variables using the region size, L/2π, the sound speed and the mean density ρ0 as
units. The dimensionless parameters of the code are: the Reynolds number R =
2πLV ρ0/µ (where µ is the dynamical viscosity), the acoustic coefficient M = U/c0

(where c0 is the flow speed in code units. 2. Thus, M is essentially the Mach number of
the characteristic speed U) and the gravitational coefficient J = (L/c0)(Gρ0/π)1/2 =
L/LJ. Table A.1 can be used to transform all the relevant code variables into physical
quantities through the relations, and also rescale the simulations in order to obtain
different setups essentially adjusting their box sizes, masses and densities through the
dimensionless variables and parameters.

1The term Spectral methods can come from the fact that a solution u(x, t) is expanded into a series

of orthogonal eigenfunctions of some linear operator L (with partial or ordinary derivatives) and thus,

the numerical solution is related to its spectrum of Fourier modes.
2In our simulations, we ignore viscosity effects due to the molecular viscosity is negligible in com-

parison to other transport coefficients and therefore we suppose an infinite Reynolds number
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Table A.1. Relation between physical and code units used for the numerical code.

See text.

Dimensionless variable Code units Physical units

L0 2π J LJ

U0
1

rma
= 1 cs

t0 = L0
U0

= 2π J LJ
cs

(
32
3

)1/2
J tff

A.1.1 Limitations

With respect to the choice of the periodic boundaries scheme adopted in the simula-
tions, it is a reasonable election as long as the scale of the physical processes acting
on the different setups (spherical geometry with uniform background, and cylindrical
geometry with axisymmetric uniform background, cylindrical geometry with sheet-like
background) lie between the largest scale in the simulation (i.e., the numerical box,
Lbox) and the maximum resolution of the box, lres = Lbox/512. This last is the main
reason why we restrict our study to the prestellar evolution of the dense cores, close to
the protostar formation (i.e., the central singularity). Namely, the Wilbraham-Gibbs
phenomenon (e.g., Gibbs, 1898; Hewitt and Hewitt, 1979) in the numerical code due to
that in Fourier space, the n-th partial sum of the Fourier series of a periodic, continu-
ous differentiable function behaves in a jump discontinuity increasing the maximum of
the partial sum above that of the function itself, thus presenting large oscillations near
the jump. Even though, in our simulations the timesteps in which this phenomenon
is even slightly present are only the very last and thus we discarded it, we have had
to restrict our study to the pre-singularity stages of the evolution. Moreover, although
one can think in adding more terms to the Fourier series and thus controlling the error
of the approximation (the oscillations) by reducing their width and energy, it turns out
that this converges to a fixed height. Instead, a sink-particle-like prescription should
be added to the code, a task we postpone for a future study.

A.2 Future work

As we have seen, the present work has been limited to the prestellar stage in the evo-
lution of the simulated dense cores. Therefore, it would be interesting to progressively
implement different relevant physical ingredients in the simulations using other numer-
ical codes publicly available. This has the advantage that some of them are already
implemented or instead would be almost effortless to implement. One of this would
be sink particle formation into an adaptive mesh refinement (or smoothed particle hy-
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drodynamics) code, in order to follow the evolution beyond the protostar formation.
Another simplification is that our models has only 2 to 4 levels in the hierarchy of the
initial density structures (from the cloud to dense core) in the GHC scenario, with a
smooth transition between successive substructures. One interesting feature that can
be easily implemented is the inclusion of random density fluctuations with their ampli-
tudes reflecting the values in the observations of this structures. Although this could
require a more detailed analysis1, it can mimic the effect of anisotropies in the flow, and
probably the formation of elongated flows features accreting material down filaments
(e.g., Cox et al., 2016) without requiring the inclusion magnetic fields Chen et al. (2017,
c.f.). Another aspect to improve is to run non-isothermal simulations with small tem-
perature variations through cooling functions that could derive in the fragmentation of
clumps and filaments. And later, implementing the formation of at least some basic
molecules and study its depletion effects (e.g., Caselli et al., 1999).

Moreover, in the case of the cloud-core system setups, one of the over-simplification
was to locate the dense core at the position of the center of the large-scale gravitational
potential on the initial conditions. Therefore, we could study the tidal effects due to the
differences in the gravitational potential at the extremes of the core. This would not
only stretch the core during the evolution, but also produce alteration in the velocity
and density profiles as well as earlier fragmentation of the core.

For the case of the filamentary setups, it would be relatively easy to avoid the
infinite length in the filament as well as to include more cores along the filament, in
order to study competitive accretion down-to the cores.

Specially interest must be put onto synthetic observations. Although we have a first
step in this direction in the work of Loughnane et al., (in prep.), we plan to present
synthetic observations of the filament+core system from different angles with respect
to the line of sight to determine the most probable observational aspect.

1In this case, it would be necesary to convolve the density field with a the beam-size used in the

observations as a first step to more directly compare simulations with observations
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Turrini, D., Rygl, K. L. J., Francesco, J. D., Benedettini, M., Busquet, G., di Giorgio,
A. M., Pestalozzi, M., Pezzuto, S., Arzoumanian, D., Bontemps, S., Hennemann,
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Vázquez-Semadeni, E., González, R. F., Ballesteros-Paredes, J., Gazol, A., and Kim,
J. (2008). The nature of the velocity field in molecular clouds - I. The non-magnetic
case. MNRAS, 390:769–780. 41

Vázquez-Semadeni, E., Kim, J., Shadmehri, M., and Ballesteros-Paredes, J. (2005).
The Lifetimes and Evolution of Molecular Cloud Cores. ApJ, 618:344–359. 8, 25

Vazquez-Semadeni, E., Ostriker, E. C., Passot, T., Gammie, C. F., and Stone, J. M.
(2000). Compressible MHD Turbulence: Implications for Molecular Cloud and Star
Formation. Protostars and Planets IV, page 3. 39

Vazquez-Semadeni, E., Passot, T., and Pouquet, A. (1995). A turbulent model for the
interstellar medium. 1: Threshold star formation and self-gravity. ApJ, 441:702–725.
A.2

Vázquez-Semadeni, E., Ryu, D., Passot, T., González, R. F., and Gazol, A. (2006).
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