
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO
PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

 ENERGÍA – PROCESOS Y USO EFICIENTE DE ENERGÍA

Experimental and Numerical Study of
Magnetohydrodynamic Flow Instabilities in a

Cylindrical Cavity

TESIS
QUE PARA OPTAR POR EL GRADO DE:

DOCTOR EN INGENIERÍA

PRESENTA:

James Pérez Barrera

TUTOR PRINCIPAL:
Dr. Sergio Cuevas García, Instituto de Energías Renovables

COMITÉ TUTOR:
Dr. Eduardo Ramos Mora, IER-UNAM

Dr. Mariano López de Haro, IER-UNAM
Dr. Rubén Ávila Rodríguez, Facultad de Ingeniería, UNAM

Dr. Raúl Alejandro Ávalos Zúñiga, CICATA-IPN

CIUDAD DE MÉXICO, Enero 2018



 

UNAM – Dirección General de Bibliotecas 

Tesis Digitales 

Restricciones de uso 
  

DERECHOS RESERVADOS © 

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL 
  

Todo el material contenido en esta tesis esta protegido por la Ley Federal 
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). 

El uso de imágenes, fragmentos de videos, y demás material que sea 
objeto de protección de los derechos de autor, será exclusivamente para 
fines educativos e informativos y deberá citar la fuente donde la obtuvo 
mencionando el autor o autores. Cualquier uso distinto como el lucro, 
reproducción, edición o modificación, será perseguido y sancionado por el 
respectivo titular de los Derechos de Autor. 

 

  

 





JURADO ASIGNADO:

Presidente: Dr. Mariano López de Haro, IER-UNAM

Secretario: Dr. Rubén Ávila Rodríguez, Facultad de Ingeniería, UNAM

Vocal: Dr. Sergio Cuevas García, IER-UNAM

1 er.   Suplente: Dr. Dmitry Krasnov, TUI, Ilmenau, Alemania

2 d o.   Suplente: Dr. Aldo Figueroa Lara, Facultad de Ciencias, UAEM

Lugar  o lugares  donde  se  realizó  la tesis: Instituto de Energías Renovables (IER-UNAM)
                                                                        Osservatorio Astronomico di Cagliari (Italia)
                                                                        Technische Universität Ilmenau (TUI, Alemania)

TUTOR  DE  TESIS:

Dr. Sergio Cuevas García

_____________________________
FIRMA





Contents

Resumen 3

Abstract 5

Introduction 7

1 Experimental setup and observations 15
1.1 Description of the experimental setup . . . . . . . . . . . . . . . . . . 15
1.2 Experimental observations with dye tracer . . . . . . . . . . . . . . . 18
1.3 PIV results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4 Visualizations using thermographics images . . . . . . . . . . . . . . . 32

2 Analytical solutions for the flow inside an MHD stirrer 37
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 Quasi-two-dimensional approximation . . . . . . . . . . . . . . . . . . 39
2.4 Solution for the liquid metal flow . . . . . . . . . . . . . . . . . . . . 40
2.5 Solution for the electrolytic flow . . . . . . . . . . . . . . . . . . . . . 45
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Numerical solutions of the governing equations 49
3.1 Axisymmetric solutions in Q2D and thin-layer approximations . . . . 50
3.2 Dimensionless equations . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 Applied magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.1 Mesh selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.2 Comparison with PIV measurements . . . . . . . . . . . . . . 65
3.5.3 Flow description and comparison with axisymmetric flows . . 67

1



2 Contents

3.5.4 Numerical evolution of the instability . . . . . . . . . . . . . . 70

Concluding remarks 79

A Mathematical problem formulation 83
A.1 Equations of fluid dynamics . . . . . . . . . . . . . . . . . . . . . . . 83
A.2 Equations of the electromagnetic field . . . . . . . . . . . . . . . . . . 84

A.2.1 Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . 84
A.2.2 Ohm’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.2.3 The Lorentz force . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.3 The MHD approximation . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.4 The φ - Formulation (Rm� 1) . . . . . . . . . . . . . . . . . . . . . 87

B The Fourier-Galerkin - Finite Volume method 89
B.1 Preliminary treatment of the governing equations . . . . . . . . . . . 89
B.2 Fourier series expansion and Galerkin approximation . . . . . . . . . 90
B.3 Finite Volume discretization in Fourier space . . . . . . . . . . . . . . 92
B.4 Velocity-pressure coupling (SIMPLEC algorithm) . . . . . . . . . . . 93
B.5 Some comments on the numerical technique . . . . . . . . . . . . . . 97

C Numerical solution of hyperbolic PDE 99
C.1 Hyperbolic conservation laws . . . . . . . . . . . . . . . . . . . . . . . 99
C.2 The Riemann problem . . . . . . . . . . . . . . . . . . . . . . . . . . 102
C.3 Godunov’s method (The REA algorithm) . . . . . . . . . . . . . . . . 103

C.3.1 Numerical examples using Godunov’s method . . . . . . . . . 106
C.3.2 Piecewise-linear reconstruction . . . . . . . . . . . . . . . . . . 107
C.3.3 Numerical results using piecewise-linear reconstruction . . . . 111

Bibliography 121



Resumen

En esta tesis se presenta un estudio experimental, anaĺıtico y numérico de la dinámica
del flujo en una capa delgada producido en un agitador electromagnético con ge-
ometŕıa ciĺındrica bajo distintas condiciones experimentales. El fluido de trabajo
empleado es una solución electroĺıtica de baja conductividad eléctrica sobre la que
actúa una fuerza de cuerpo electromagnética azimutal producida por la interacción
de una corriente eléctrica directa radial y un campo magnético externo esencialmente
vertical. La tesis se enfoca en el estudio teórico y experimental de una inestabili-
dad recien descubierta. Se utilizaron distintas formas de visualización y análisis
de los patrones de flujo que incluyen el uso de tinta trazadora, mediciones me-
diante Velocimetŕıa por Imágenes de Part́ıculas (PIV, por sus siglas en inglés) e
imágenes termográficas. Desde el punto de vista teórico se exploraron soluciones
cuasi-bidimensionales con diferentes condiciones de frontera y soluciones numéricas
tridimensionales de las ecuaciones de balance que modelan el sistema, mismas que
fueron resueltas utilizando una técnica numérica h́ıbrida volumen finito - Fourier
espectral. En el Caṕıtulo 1 se presenta la descripción detallada del dispositivo, las
condiciones experimentales de interés y las formas de visualización de los patrones de
flujo, aśı como la descripción del flujo que da lugar a la inestabilidad reportada, con-
sistente en el surgimiento de vórtices anticiclónicos en un flujo azimutal. Se muestra
que la técnica PIV no es capaz de capturar adecuadamente el campo de velocidades,
particularmente los vórtices que surgen cuando el flujo presenta la inestabilidad. Por
tanto, se muestran resultados preliminares de una técnica mejorada que permite vi-
sualizar los vórtices anticiclónicos. En el Caṕıtulo 2 se obtienen soluciones anaĺıticas
del flujo azimutal en el agitador tanto para el caso de un metal ĺıquido como de un
electrolito, utilizando una aproximación cuasi-bidimensional y considerando condi-
ciones generales de deslizamiento. En el tercer Caṕıtulo se presentan las soluciones
numéricas tridimensionales obtenidas aplicando el método h́ıbrido desarrollado por
Nuñez et al. (2012) considerando condiciones experimentales realistas. A partir de
dichas soluciones es posible describir de manera detallada la dinámica tridimensional
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4 Resumen

del flujo, tanto para flujos axisimétricos mayormente azimutales como para aquellos
donde se observa la inestabilidad. Los resultados numéricos se comparan satisfacto-
riamente con las observaciones experimentales, tanto cuantitativa como cualitativa-
mente.

Con el objetivo de que esta tesis sea autocontenida se incluyen tres apéndices. En
el Apéndice A se describen brevemente las ecuaciones fundamentales de la magne-
tohidrodinámica (MHD) que gobiernan el comportamiento de un fluido Newtoni-
ano, conductor, no magnetizable e incompresible. Haciendo uso de la aproximación
de bajo número de Reynolds magnético, dichas ecuaciones se expresan utilizando
la velocidad, la presión y el potencial eléctrico como variables primitivas. En el
Apéndice B se describe el método numérico empleado en el presente trabajo y se dis-
cuten algunas de sus principales ventajas. El Apéndice C describe algunas técnicas
de solución numérica de ecuaciones diferenciales parciales hiperbólicas de interés para
el estudio de flujos astrof́ısicos, y que fueron estudiadas durante una estancia corta
en el Osservatorio Astronomico di Cagliari, en Cagliari, Italia como parte de un
Programa de Entrenamiento para Jóvenes Investigadores (YITP, por sus siglas en
inglés) patrocinado por el gobierno italiano.



Abstract

In this thesis, an experimental, analytical and numerical study of the flow dynam-
ics in a thin layer produced by an electromagnetic stirrer with cylindrical geometry
under different experimental conditions, is presented. In the stirrer, an azimuthal
electromagnetic force generated by the interaction of a radial electric current and a
mainly vertical magnetic field drives a low conductivity electrolytic solution. The
thesis is focused on the theoretical and experimental characterization of a recently
discovered hydrodynamic instability. Different techniques of visualization and anal-
ysis of the flow patterns such as tracking of dye tracers, Particle Image Velocimetry
(PIV) measurements and thermographic images were used. From the theoretical
point of view, quasi-two-dimensional solutions considering different boundary condi-
tions and three-dimensional numerical solutions of the governing equations obtained
using a hybrid finite volume - Fourier spectral numerical technique were explored.
Chapter 1 presents the detailed description of the device, the experimental condi-
tions of interest and the visualization techniques of the flow patterns, as well as the
description of the flow that originates the reported instability, which consists in the
emergence of anticyclonic vortices on a base azimuthal flow. It is shown that PIV
technique is not capable of properly capturing the velocity field, particularly that
of the vortices that appear when the instability is triggered. Nevertheless, prelim-
inary results of an improved PIV technique which allows the measurement of the
anticyclonic vortices, are shown. In Chapter 2, solutions of the governing equations
using a quasi-two-dimensional approximation, are obtained for both liquid metal and
electrolyte flows, considering general slip conditions. Chapter 3 presents the three-
dimensional numerical solutions obtained by using the hybrid methodology proposed
by Nuñez et al. (2012), considering realistic experimental conditions. From these
solutions it is possible to describe in detail the three-dimensional dynamics of the
flow, both for the mainly azimuthal flows as well as for those flows where the insta-
bility is triggered. The numerical results are in good agreement, both qualitatively
and quantitatively, with the experimental observations.

5



6 Abstract

In an attempt to make this thesis self-contained, three appendices are included. Ap-
pendix A briefly describes the fundamental magnetohydrodynamic (MHD) equations
that govern the motion of a Newtonian, electrically conducting, non-magnetizable,
incompressible fluid. By applying the low magnetic Reynolds number approxima-
tion, such equations are expressed in terms of the velocity, pressure and electric
potential as primitive variables. Appendix B describes the numerical method used
in this work and discusses some of its main advantages. Appendix C describes some
numerical techniques to solve hyperbolic partial differential equations of interest for
the analysis of astrophysical flows that were studied during a short-term stay at
the Osservatorio Astronomico di Cagliari, in Cagliari, Italy as a part of a Young
Invertigators Training Program (YITP) supported by the Italian goverment.



Introduction

MagnetoHydroDynamics (MHD) is the branch of physics which combines the subjects
of fluid dynamics and electromagnetism to study the behavior of electrically conduct-
ing, non-magnetizable fluids interacting with magnetic fields. In nature, these kind
of phenomena appear in a wide range of situations from geophysical phenomena, like
the dynamo effect (which is the most accepted theory to explain the existence of
Earth’s magnetic field), to the formation and evolution of stars and galaxies [Ba-
chetti et al. (2010), Romanova et al. (2013)]. From the technological point of view,
MHD can be used to improve or control processes of industrial importance since,
in many technological applications, working fluids are electrically conducting, for
instance, liquid metals, electrolytes and molten salts. In such fluids, electromagnetic
forces can be used to control, stir, pump, levitate or enhance the heat transfer, thus
improving the energy usage and minimizing losses.

The non-intrusive nature of electromagnetic forces provides an alternative to mechan-
ical direct-contact forces for the handling of electrically conducting fluids. Due to
this fact, in the past few decades, several industrial processes have taken advantage of
the tools offered by MHD to achieve technological improvements [Asai (2012)]. Such
processes are employed, for instance, in the metallurgical and nuclear engineering
industries. In fact, the use of electromagnetic fields for handling, control, transport
and monitoring of electrically conducting fluids in different industrial applications
has been named Electromagnetic Processing of Materials (EPM). A good example is
the Czochralski’s method, used to manufacture crystalline silicon. In this method,
a silicon crystal seed is immersed and rotated in melted silicon and, after a cooling
process, a larger crystal with a homogeneous concentration of aditives, known as
dopants, is obtained. Since crystalline silicon is used in electronic devices, the crys-
taline structure and concentration of dopants are crucial because they greatly affect
the properties of the material. High quality silicon can be obtained by controlling
in a very precise way the crystallization and doping processes. As several authors,
Hjellming & Walker (1986) suggested the use of magnetic fields to control the motion
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8 Introduction

of liquid silicon and, as a result, obtain crystals with better electronic properties.

In many industrial processes, stirring and mixing of fluids is very important. In the
food, painting, chemical, metallurgical, pharmaceutical, and many others industries,
the efficiency of these processes has a major impact in the quality of the final prod-
ucts. In general terms, stirring refers to the creation of recirculating motion inside
the fluid, whereas mixing is normally used to obtain a homogeneous concentration
of a physical quantity from an originally inhomogeneous state. Effective stirring
and mixing can be achieved by means of electromagnetic forces either by inducing
electrical currents in a highly conducting fluid (v. e. a liquid metal) or by directly
injecting electrical currents in a conducting fluid (v. e. an electrolyte or a liquid
metal) and making it interact with an external magnetic field. In any case, MHD
flows have proven to be useful for the stirring and mixing of electrically conducting
fluids required in different industrial applications [Asai (2012)].

A major advantage of MHD-driven flows is the absence of direct contact of the
working fluid with an external agent, so that the purity of the fluid can be preserved
while the dynamics of the flow can be controlled in a precise way. The non-intrusive
nature of MHD phenomena is also very important in the so-called Lorentz force
velocimetry (LFV), which is a novel technique used to measure local and global
velocities in melted metals and electrolytes. LFV is a suitable alternative to the
traditional intrusive or optical techniques, particularly for liquid metals which are
opaque and often hot and aggresive [Thess et al. (2006), Thess et al. (2007)].

In the past few decades, many technological efforts have been focused in miniatu-
razing devices with the aim of using them in medical, biological and chemical appli-
cations. The idea is to build small scale devices capable of performing, for instance,
diagnostic tests or chemical reactions with a minimum volume of body fluids or re-
actants. Although the so-called Lab-on-a-chip systems have gained a lot of attention
in recent years [Li (2005), Ghallab & Badawy (2010)], still some challenges must
be overcome since, incidentally, building micro-sized components can be a difficult,
expensive task, not to mention the inherent difficulties of the accurate control of the
involved substances. The branch of fluid mechanics which deals with flows at micro
scales is the microfluidics and the potential application of MHD in this area has been
succesfully demonstrated [see, for instance, Yi et al. (2002), Qian & Bau (2009)]. In
fact, it has been shown that, as occur at larger scales, magnetic fields can be used in
microfluidic devices for different purposes such as stirring, pumping, controlling and
monitoring of conducting liquids, mainly electrolytes, chemical or biological fluids.

A not so evident application of MHD is the modeling of atmospheric and meteoro-
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logical phenomena at laboratory scale, as evidenced by the large amount of studies
performed in the former Soviet Union and Russia [Bondarenko & Gak (1978), Bon-
darenko et al. (1979), Dovzhenko et al. (1979), Ponomarev (1980), Dovzhenko et al.
(1981), Gak (1981), Krymov (1989), Manin (1989), Batchaev & Ponomarev (1989),
Dolzhanskii et al. (1990), Dolzhanskii et al. (1992), Bondarenko et al. (2002), Gledzer
et al. (2013) and references therein]. The so-called MHD method, consists in pro-
ducing Lorentz forces in a thin layer of an electrolyte through the injection of an
electric current that interacts with different configurations of an external magnetic
field. This method has been used to generate vortex patterns that resemble struc-
tures observed at geophysical or even planetary scale. The use of thin electrolyte
layers is justified by the fact that phenomena ocurring in the atmosphere are, in-
deed, very thin because they occur in horizontal scales of the order of hundreds of
kilometers, whereas its vertical scales span up to ten kilometers height, thus the
typical aspect ratio for these phenomena is around 0.1 or less. The latter statement
implies that, in principle, two-dimensional or quasi-two-dimensional approaches can
be succesfully applied to model approximately phenomena such as cyclones, tropical
storms or hurricanes, and the MHD method provides a very simple and efficient way
to create and control flows resembling those observed in the atmosphere.

As it can be seen from the previous descriptions, MHD has a large potential of ap-
plication in science, engineering and technology. With that in mind, the Renewable
Energy Institute of the National Autonomous University of Mexico (IER-UNAM),
has developed a research program on different MHD flows of fundamental and applied
interest. These include, for instance, the study of vortex dynamics and mixing in
thin layers of electrolytes and liquid metals driven by localized electromagnetic forces
[Figueroa (2010), Beltrán (2010)], the effect of a magnetic field in natural convection
[Nuñez (2012)], enhancement of heat transfer using electromagnetic forces [Román
(2012)], the liquid metal flow past localized magnetic fields [Domı́nguez (2013)] and
the use of MHD generators for wave energy conversion. In these studies, experimen-
tal, analytical and numerical techniques have been developed and applied to obtain
a better comprehension of the physical situations.

In the present work, experimental, analytical and numerical studies of the electro-
magnetically driven free surface flow of an electrolyte in a cylindrical geometry are
presented. The main motivation is the understanding and modeling of a new type
of instability recently discovered experimentally at IER-UNAM, which could be of
relevance for mixing purposes and the modeling of atmospheric phenomena. Magne-
tohydrodynamic flows in annular ducts have been widely explored both experimen-
tally and theoretically. From the experimental point of view, annular ducts avoid the
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difficulty of considering the entrance region that is present in rectilinear ducts under
a transversal magnetic field. In the most common configuration, the annular duct
is formed in the gap between two coaxial electrically conducting cylinders, limited
by insulating top and bottom walls. By placing the duct on top of a permanent
magnet or at the center of a magnetic solenoid, an approximately uniform magnetic
field parallel to the cylinder’s axis is induced. If an electric potential difference is ap-
plied between the coaxial cylinders, a radial electric current density will arise in the
conducting fluid. The interaction of the radial current with the axial magnetic field
produces an azimuthal Lorentz force that drives the flow. Some early works dealt
with this problem theoretically and analytical solutions for simplied models were ob-
tained [Chang & Lundgren (1959), Kessey (1964), Schweitzer & Soler (1970)]. Since
the pioneering works of Baylis (1971) and Baylis & Hunt (1971), attention has been
mainly focused on liquid metals at high Hartmann numbers, motivated by impor-
tant applications related to metallurgy and fusion blanket technologies. Moresco &
Alboussière (2004) used the annular duct configuration to investigate experimentally
the stability properties of the Hartmann layer and the transition to turbulence in
liquid metal flow. In turn, Mikhailovich (2010) performed an experimental study of
the rotaing flow of liquid metal driven by an azimuthal force in an annular container.
In a more recent study, Mikhailovich et al. (2012) analyzed the decay of mean ve-
locity components and turbulent fluctuations, as well as the peculiarities of spectral
characteristics of such flows. Zhao et al. (2011) explored numerically the centrifugal
instability between coaxial infinite conducting cylinders at large Hartmann numbers,
disregarding the Hartmann walls with the aim to understand better the role of the
sidewall layers. In a subsequent numerical study, Zhao & Zikanov (2012) considered
the existence of insulating top and bottom Hartmann walls in an annular (toroidal)
duct of square cross-section with the same geometry and parameter range used in
the experiment by Moresco & Alboussière (2004).

As shown in the previous paragraphs, there is a large body of literature devoted to
liquid metal MHD flows in cylindrical cavities and annular ducts. For the electrolyte
case, the number of studies is also high, and they are mostly addressed to the mod-
eling of atmospheric phenomena, as previously mentioned. However, the majority of
these studies are focused on shearing flows generated inside the annular flow region.
This is achieved by using concentric ring magnets with inverted polarity. Since the
direction of the Lorentz force is determined by the orientation of the current relative
to the direction of the magnetic field, this configuration leads to the formation of
a flow region where the Lorentz force changes abruptly from one direction to the
opposite, creating a shearing force that originates the appearance of hydrodynamic
instabilities. In this way it is very easy to generate vortical structures resembling
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large scale atmospheric phenomena, as shown in Fig. 1a) [Dovzhenko et al. (1981),
Dolzhanskii et al. (1990), Dolzhanskii et al. (1992)]. Although these studies present
interesting results, they focus in qualitative experimental observations or analytical
approaches and, to our knowledge, comprehensive numerical simulations or quanti-
tative measurements of the velocity field have not been reported in the literature.
On the other hand, experimental observations in a cylindrical electromagnetic stirrer
first reported by Pérez-Espinoza (2012) account for a new instability that leads to
very interesting flow patterns. Although they resemble those reported by the Soviet
researchers, there is a crucial difference: the magnetic field used by Pérez-Espinoza
(2012) has the same polarity in the whole flow region so that the azimuthal Lorentz
force remained with the same direction in the whole flow domain (see also Pérez-
Barrera et al. (2015)). That means that the mechanism responsible for the apperance
of the vortices in the Soviet experiments is absent, nevertheless, the instability vor-
tices are still clearly seen in the form of anticyclonic vortices, that is, vortices rotating
in the opposite direction to the global azimuthal flow (see Fig. 1b). It was found
that their patterns were very robust: they existed in layers of various thicknesses
regardless of the shape, size or strength of the magnets used and the direction of the
electric current, even though no mean counterflow was detected in the experiments.
Moreover, the vortex patterns were always observed near the outer cylinder. Our
experiments also demonstrated that the observed vortices arise on a background of
an essentially axisymmetric flow, and thus it is natural to consider them as grow-
ing perturbations on an axisymmetric base flow [Suslov et al. (2017)]. Preliminary
studies of this flow rised several intriguing questions that motivated the realization
of an extensive experimental and theoretical study that is reported on this thesis.
It includes flow visualization experiments, as well as Particle Image Velocimetry
(PIV) and thermographic measurements. From the theoretical side, both analyti-
cal solutions for some simplified flow models and full three-dimensional numerical
simulations that contain the essential features of the analyzed flow are presented.

The structure of this thesis is as follows. Chapter 1 describes the experimental setup,
the experimental conditions and the flow visualizations performed by means of dye
tracers and thermographic images for two magnetic field configurations, namely, a
magnetic field with the same polarity produced by a permanent bar magnet and an
array of two concentric cylindrical magnets with opposite polarity. The emergence
of the flow instability that leads to the appearance of anticyclonic vortices in the
first configuration is discussed and also analyzed using Particle Image Velocimetry
(PIV). In Chapter 2 the governing equations are analytically solved considering a
quasi-two-dimensional approach and general slip boundary conditions. The solutions
for a liquid metal and electrolyte flows are presented and discussed. The numerical
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(a) (b)

Figure 1: Comparison between the flow patterns observed by a) Dolzhanskii et al.
(1990) and b) Pérez-Espinoza (2012) created using the MHD method. In a) the
vortices appear in a shearing flow created by the change of polarity of the magnetic
field inside the electroylte layer whereas in b) the magnetic field has the same polarity
in the whole flow region. The resemblance between the two flows is remarkable.

solution of the equations for realistic experimental conditions is presented in Chapter
3. In order to solve numerically the problem, a hybrid Fourier-Galerkin - Finite
Volume scheme, as proposed by Nuñez et al. (2012), was implemented for the full
three-dimensional (3D) flow. Numerical results are compared with experimental data
finding both qualitative and quantitative agreement. The last Chapter presents the
concluding remarks of the work developed in this thesis.

In an attempt to make the content of this thesis self-contained three appendices
are included. In Appendix A, the fundamental equations for an incompressible,
Newtonian, non-magnetizable, electrically conducting fluid under a magnetic field
are obtained. To model the flow driven by the azimuthal Lorentz force in the
electromagnetic stirrer, the equations are expressed in the low magnetic Reynolds
number approximation considering the electric potential as electromagnetic variable
(φ−formulation). Appendix B briefly describes the numerical scheme implemented
in the present work. Finally, with the aim of describing the work carried out during
a short-term stay at the Osservatorio Astronomico di Cagliari (OAC), in Cagliari,
Italy, in Appendix C some classical, textbook problems regarding hyperbolic partial
differential equations, which are the equations appearing when modeling astrophysi-
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cal flows with MHD included, are presented. This stay was supported by the Italian
goverment as part of a Young Investigators Training Program.





Chapter 1

Experimental setup and
observations‡

This Chapter describes the experimental observations of the flow produced with an
electromagnetic stirrer with cylindrical geometry on top of a permanent magnet with
uniform polarity that generates an azimuthal Lorentz force in an electrolyte layer.
It starts with a brief description of the experimental device and conditions of in-
terest. Then qualitative observations using a dye tracer are presented for different
conditions, particularly, for those in which a hydrodynamic instability arises. These
observations are summarized by means of a map of qualitative behavior. Observa-
tions using an array of concentric cylindrical magnets of opposite polarity are also
analyzed. PIV measurements made at the free surface are presented and discussed.
In both magnetic field configurations thermographic images that allow to visualize
the temperature field distribution in the flow are presented.

1.1 Description of the experimental setup

The electromagnetic stirrer consists of an open cylindrical cavity of 85.7 mm in
diameter and 19.4 mm in depth made of acrylic. Two copper electrodes are placed
inside the cavity, one is made from a thin sheet which is wrapped around the inner
wall of the cavity, while the second can be set in any of two different configurations: a
concentric cylinder (Configuration I, see Fig. 1.1) or a coin embedded at the bottom
of the cavity (Configuration II), both with a diameter of 25.4 mm, so that, the
gap between the electrodes is 30.15 mm. The electrodes are connected to a source
of DC current and, to close the electrical circuit, the cavity is filled up to a certain

‡Part of this chapter was published in Pérez-Barrera et al. (2015), Instability of electrolyte flow
driven by an azimuthal Lorentz force. Magnetohydrodynamics, Vol. 51, pp. 203-210.
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16 Chapter 1. Experimental setup and observations

height, h, with a weakly conducting fluid consisting of an aqueous solution of Sodium
Bicarbonate (NaHCO3) 8% by weight so that a radial current circulates in the
electrolyte. Underneath the acrylic container a ferrite bar magnet (152.4 mm×101.6
mm×25.4 mm) is placed in such a way that the main component of the magnetic
field is perpendicular to the circular section of the cavity and covers the whole flow
region. The reference value of the magnetic field at the corner where the acrylic
bottom meets the inner electrode is 60 mT (see Fig. 1.1).

Figure 1.1: Sketch of the experimental setup depicting the electromagnetic stirrer
with concentric cylinders as electrodes (Configuration I). The inner and outer diam-
eters of the electrodes are D1 = 25.4 mm and D2 = 85.7 mm, respectively, so that
the gap between them is L = 30.15 mm. The thickness of the electrolyte layer, h,
varies form 2.5 mm to 10 mm, while d = 6 mm is the distance between the surface
of the magnet and the bottom of the cavity. B0 = 60 mT is a reference value for the
magnetic field taken at the bottom of the cavity at the interface between the outer
electrode and the fluid (black point).

When an electric potential difference is held between the electrodes, a radial electric
current travels through the conducting fluid from one electrode to the other. The
interaction of the radial current and the axial magnetic field generates a body force,
termed Lorentz force, which sets the fluid into azimuthal motion. The sense of
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rotation of the fluid depends on the direction of the current and the polarity of the
magnetic field according to the right-hand rule (see Fig. 1.2).

(a)

Electric current
Magnetic 
   field

Lorentz 
  force

(b)

Figure 1.2: Perspective view of the experimental setup. (a) The electrodes are
connected to a source of electric current and the gap between the electrodes is filled
with the electrolyte solution, thus closing the electrical circuit. (b) The interaction of
the radial electric current (black arrows) and the applied magnetic field whose main
component points out of the plane (yellow points) generates a Lorentz force (blue
arrow) in the azimuthal counterclockwise direction.

In order to do a systematic study of the flows observed in the experimental device,
the geometry, magnetic field distribution and fluid properties were fixed. This means
that the two parameters that can be varied freely (control parameters) are the applied
electric current I0 and the thickness of the electrolyte layer h. The experimental
procedure was as follows: once the control parameters were defined, the thickness of
the electrolyte layer was fixed at a certain value and a steady DC current was injected
through it. The electrolyte was at rest at the beginning of the experiment. In order
to visualize the flow patterns appearing at the free surface, a blob of edible dye
was dropped before the injection of the current. A camera placed above the device
allowed to record the flow evolution as function of time. The experiments were
carried out from one up to three minutes, mostly because the electrolysis in the fluid
produced many bubbles which could affect the flow dynamics and it also diminishes
the electrical conductivity of the electrolyte as time passes. This methodology was
repeated varying the electric current from 50 mA up to 300 mA using a 50 mA step.
The depth of the electrolyte layer was varied from 2.5 mm up to 10 mm with steps of
2.5 mm. Table 1.1 summarizes the experimental conditions of interest for the present
work.



18 Chapter 1. Experimental setup and observations

Table 1.1: Experimental conditions used in this work.

Experimental parameter Value
Inner electrode diameter, D1 25.4 mm
Outer electrode diameter, D2 80.57 mm

Gap between electrodes, L 30.15 mm
Dimensions of the magnet 15.24×10.16×2.54 cm3

Reference magnetic field, B0 60 mT
Conductivity of electrolyte, σ 6.98 (Ωm)−1

Conductivity of copper electrodes, σCu 5.7×107 (Ωm)−1

Mass density of electrolyte, ρ 1086 kg/m3

Kinematic viscosity of electrolyte, ν 1×10−6 m2/s
Electrolyte layer thickness, h 2.5 mm - 10 mm
Applied electric current, I0 50 mA - 300 mA

1.2 Experimental observations with dye tracer

At the beginning of the experiment, the fluid (originally at rest) starts moving in
the same direction as that of the azimuthal Lorentz force (clockwise or counter-
clockwise) and, depending on the value of the applied electric current and thickness
of the fluid layer, different flow patterns can be observed. If the applied current is
small (around 50 mA) then the fluid just rotates in the azimuthal direction for all
layer thicknesses explored. As time progresses, the tracer develops a spiral revealing
that the azimuthal component of the velocity field is dependent of the radial position.
Figure 1.3 shows the flow evolution revealed by the tracer at different times for the
concentric cylinders configuration with h = 7.5 mm and I0 = 50 mA. The electric
current flows radially inwards whereas the magnetic field points away from the plane
of the page, thus producing a counterclockwise flow.

When the applied electric current exceeds certain critical value, the initial azimuthal
flow destabilizes and several travelling vortices appear. These kind of vortices are
known as anticyclonic vortices due to the fact that their rotation is opposite to that
of the bulk motion [Marcus (1990), Bracco et al. (1999)]. Figure 1.4 shows the flow
evolution at different times for configuration I for an applied electric current of I0 =
150 mA and an electrolyte layer thickness of h = 7.5 mm. For these experimental
conditions the bulk motion is counterclockwise whereas the vortices spin clockwise.
Here, eight vortices can be clearly seen. As it is shown in the numerical simulations
presented in Chapter 4, the non-homogeneous magnetic field distribution produced
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(a) t = 0 s. (b) t = 5 s.

(c) t = 10 s. (d) t = 15 s.

(e) t = 20 s. (f) t = 25 s.

Figure 1.3: Flow evolution for configuration I for h = 7.5 mm and I0 = 50 mA.
The flow starts from rest (a) and when the Lorentz force is applied, it moves in the
azimuthal direction (b-c) so that the tracer forms a spiral as time progresses (d-f).
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(a) t = 0 s. (b) t = 5 s.

(c) t = 10 s. (d) t = 15 s.

(e) t = 20 s. (f) t = 25 s.

Figure 1.4: Flow evolution for configuration I with h = 7.5 mm and I0 = 150
mA. The flow starts from rest (a) and when the Lorentz force is applied it drives
an azimuthal flow that leads the tracer to form a spiral (b-c). Eventually, the flow
destabilizes (d) and serveral travelling anticyclonic vortices appear (e-f).
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by the permanent magnet seems to be very important in determining the appearance
of the instability and the number of vortices observed with different experimental
conditions. If the sense of rotation of the bulk is changed (either by changing the
direction of the injected current or the polarity of the magnetic field), the rotation
of the vortices is also changed in such a way that they remain anticyclonic. The
vortices are approximately equidistant and once they appear, they remain for long
periods of time. The number of observed vortices varies from 4 up to 11 depending on
the experimental conditions (applied electric current and electrolyte layer thickness).
The instability was observed to appear in both configurations I and II.

To illustrate different flow patterns observed, Fig. 1.5 shows four cases with different
number of vortices found with distinct experimental conditions. In all cases, vortices
are observed near the outer electrode regardless of the inner electrode configuration
and the directon of the electric current. In dimensionless terms, two governing pa-
rameters were defined, namely, the aspect ratio h/L, that is, the ratio of the layer
thickness to the gap between the outer and inner electrodes, and the applied electric
parameter I0/Imax, where Imax is the maxmimum applied current. From the varia-
tion of these quantities, it is possible to find the critical parameters for the occurrence
of the instability. In what follows, only results for configuration I are presented, but
similar results were found for the other configuration.

All experiments correspond to small aspect ratios (0.1 ≤ h/L < 0.4). For the
smallest value, the bottom friction inhibits the appearance of the instability in a
larger range of applied current, where a purely azimuthal flow was observed. In
fact, the smaller the layer thickness, the larger the current intensity required for the
onset of the instability. As the aspect ratio incresases, the current density required
for the emergence of vortices diminishes. These observations are summarized in
Table 1.2, where the number of vortices originated by the instability in configuration
I is presented for different experimental conditions.

The map of qualitative behavior for configuration I presented in Fig. 1.6 identifies
the region where outer anticyclonic vortices are formed for the given aspect ratio and
electric current parameter.

To illustrate the flow created by an imposed shearing force, the configuration with
a magnetic field distribution with an abrupt change in polariry was used. This flow
was explored using the experimental device with the central electrode embedded in
the bottom wall (Configuration II), placed on top of two cylindrical concentric ring
magnets with opposite polarities whose inner and outer diameters are 9.4 mm and
31.6 mm for the inner magnet, and 33.3 mm and 86 mm for the outer one, respec-
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(a)
(b)

(c) (d)

Figure 1.5: Dye visualization of the instability observed for a layer thickness of 10
mm. a) and b) correspond to configuration I. c) and d) correspond to configuration
II. The current density for a) and c) is 100 mA, and for b) and d) is 300 mA.
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Table 1.2: Experimental results for configuration I.

h [mm] h/L I0 [mA] I0/Imax No. of outer vortices
10 0.39 25-50 0.062-0.125 0
10 0.39 75-100 0.187-0.250 5
10 0.39 125-400 0.312-1.0 6
7.5 0.29 25-50 0.062-0.125 0
7.5 0.29 75-100 0.187-0.250 5, 6
7.5 0.29 125-400 0.312-1.0 5, 6, 7
5.0 0.19 25-180 0.062-0.450 0
5.0 0.19 190-400 0.475-1.0 8, 10, 11
2.5 0.10 25-250 0.062-0.625 0
2.5 0.10 275-400 0.6875-1.0 11
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Figure 1.6: Experimental map of qualitative behavior for configuration I. The
curved, red line marks the treshold where external anticyclonic vortices are formed for
the given aspect ratio (h/L) and applied current parameter (I0/Imax). The number
on top of the intervals indicate the number of vortices observed for the corresponding
conditions.
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tively. In this way, the inner magnet exceeded the diameter of the central electrode
by 6.2 mm, while the external magnet covered completely the flow domain. This
configuration of magnetic field generates a Lorentz force in two opposite directions,
thus rendering a shearing flow inside the flow region. As it was mentioned in the
Introduction, the flow created in this manner has been extensively studied, most
notably by Soviet and Russian researchers [Bondarenko & Gak (1978), Dovzhenko
et al. (1979), Ponomarev (1980), Dovzhenko et al. (1981), Krymov (1989), Manin
(1989), Gledzer et al. (2013)], since the generated flow patterns resemble atmospheric
phenomena. Figure 1.7 shows the observed flow patterns at different times for an
applied electric current I0 = 150 mA and an electrolyte layer thickness h = 5 mm
using the coin-shaped inner electrode. It can be observed the formation of a tripolar
vortex similar to those previously reported for hydrodynamic flows [see, for instance,
Van Heijst et al. (1991), Samimy et al. (2003)].

Starting from rest, when the electrical current is turned on the shearing flow starts
developing and two large vortices form and rotate very slowly in the counter-clockwise
direction whereas a third vortex (constrained by the other two) remains at the center
of the container (see Fig. 1.7).

1.3 PIV results

In order to obtain quantitative information of the flow field, Particle Image Ve-
locimetry measurements were performed. For that end, neutrally bouyant, 10 mm
in diameter, silver-covered, glass spheres were colocated in the electrolyte solution to
trace the fluid motion. Illumination of the free surface was achieved by means of a
laser sheet. To guarantee that the analyzed plane of flow corresponds mainly to the
free surface, PIV measurements were made using only previously selected tracers.
First, the tracers were centrifuged and only those that remained on the free surface
were selected. Using a videocamera, the motion of the spheres located at the free
surface was recorded and analyzed to obtain quantitative information of the flow.

Consistently with the dye tracer visualizations, the PIV analyses revealed that an
almost purely azimuthal flow ocurred in the cases where the instability did not de-
velop, corresponding to low applied electric current intensities. For all the subsequent
results, the experiments were one minute long. This duration was chosen considering
that the time interval was enough for the flow to reach either steady-state or a well
developed instability. Also, for longer time intervals the electrolysis of the solution
drastically changes the electrical properties of the electrolyte and many bubbles are
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(a) t = 0 s. (b) t = 2 s.

(c) t = 5 s. (d) t = 6 s.

(e) t = 6.5 s. (f) t = 7 s.

Figure 1.7: Experimental flow observed for an array of two cylindrical concentric
magnets with opposite polarities. a) Initial distribution of the tracer. b) Formation
of two large vortices which constraint the thrid central vortex. c)− f) The two large
vortices travel slowly counter-clockwise.
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formed at the electrodes, affecting the flow dynamics. Figure 1.8a) shows the steady-
state PIV velocity field at the free surface of a 5 mm thick electrolyte layer when
an applied electric current of 50 mA is applied. The existence of an almost purely
azimuthal motion can be corroborated in Fig. 1.8b), where the azimuthal velocity
component at a radial position r = 3.1 cm is plotted as a function of time. Starting
from rest, a linear growth of this component can be observed for small times (less
than 10 s), then the growth becomes slower to finally get to a steady-state flow,
as evidenced by the fact that the azimuthal component reaches a terminal value of
about 2.05 cm/s.
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Figure 1.8: PIV results for a purely azimuthal flow. a) Velocity field for the steady
flow. b) Azimuthal component as function of time at r = 3.1 cm and θ = 90◦ (red
cross). I0 = 50 mA and h = 5 mm.

As it was shown with the dye tracer results, increasing the intensity of the applied
electric current triggers the appearance of the instability of the flow. Even though
this instability was clearly seen with the tracers used for PIV, after processing the
videos it was found that the PIV toolkit was not capable of capturing the structure
of the anticyclonic vortices. Figure 1.9 shows the calculated velocity fields at the
free surface for an applied electric current of 150 mA at different instants of time.
When the flow starts developing, a purely azimuthal flow is observed, which is nicely
capturated by the PIV technique but, as the flow destabilizes and the anticyclonic
vortices appear, it is very clear that the measurements are not good anymore. The
right part of the images has a lot of noise because of the conduit drilled in the
container in order to connect the central electrode to the power source. Besides this
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detail, the presence of the vortices is not observed in the velocity field. This might be
due to the lack of tracers in the electrolyte, which are agglomerated by the vortices,
thus resulting in regions where no tracers can be used to calculate the local velocities,
as can be appreciated in Figs. 1.9c) and 1.9d). Another possible explanation for the
absence of vortices in the velocity field is the difference between the two scales of
velocity involved in the experiments, that is, the bulk azimuthal velocity and the
smaller velocity associated to the anticyclonic vortices. This difference in the scales
of velocity implies that two different spatial PIV resolutions are needed to capture
either the azimuthal flow or the anticyclonic vortices.

Since the PIV technique uses only one spatial resolution at a time, only the azimuthal
flow can be calculated properly. Even though it is not possible to capture the in-
stability with this technique, the PIV measurements of the azimuthal flow can be
used to validate the performed numerical simulations described in Chapter 4 of this
thesis. Figure 1.10 shows the measured azimuthal velocity as a function of time for
an applied electric current of 150 mA at two different radial positions (red crosses in
Fig. 1.9a) and θ = 90◦. It can be observed that the velocity near the outer electrode
where vortices appear (r = 3.1 cm) is not calculated properly, whereas the mainly
azimuthal flow far away from the vortices (r = 2.02 cm) is well resolved reaching
approximately a terminal value.

It is worth mentioning that these difficulties using the PIV technique led us to
try to improve the measurement technique in order to capture the observed flow
instability. The idea behind this improvement is to reduce the azimuthal flow, this
can be done by taking the PIV measurements in a reference frame rotating at the
mean translational velocity of the vortices. In this way the vortices remain at the
same position when observed from the laboratory reference frame. There are at
least two ways to achieve this effect, one is to rotate the camera with a constant
angular velocity while recording the experiments and processing the images with the
traditional PIV technique; the second one is to record the videos with the camera
fixed and then pre-process the images by rotating them with certain angular velocity.
As this technique is currently being developed, only preliminary results using the
pre-processing of the recorded images are presented next.

Figure 1.11 shows four images obtained with the improved technique for an applied
current of 150 mA at different instants of time. The mean translastional velocity of
the vortices was selected from the previously obtained PIV data taking the azimuthal
velocity at the radial position where the vortices are present. It can be clearly noticed
that the images are rotated as time progresses, nevertheless, the vortices remain at
the same position. With respect to the first image, the other three are rotated in
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(a) t = 2.6 s (b) t = 20 s

(c) t = 40 s (d) t = 60 s

Figure 1.9: Velocity fields measured with traditional PIV procedure at different
instants for I0 = 150 mA, h = 5 mm. First, the azimuthal flow develops (a), giving
rise to the appearance of the instability (b), and eventually to the formation of
anticyclonic vortices, (c and d). However, the PIV is not able to capture them.
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Figure 1.10: Azimuthal velocity component as a function of time for two distinct ra-
dial positions. Near the outer electrode (r = 3.1 cm), where anticyclonic vortices are
present, the azimuthal component is not well calculated showing large fluctuations in
very short periods of time and reaching almost null velocities (red line). Far from the
outer cylinder (r = 2.02 cm) the flow is almost azimuthal so the velocity component
is much better calculated (black line).

45◦ increments. The time interval between two images is about 0.7 s. It is worth
noting that this procedure was only applied once the instability was well developed.
The developing flow in the early stages is mainly azimuthal and it is well captured
by the traditional PIV technique.

Having fixed the vortices, the PIV processing was applied. Figure 1.12 displays
the same four images shown in Fig. 1.11 after PIV processing. As it was shown
previously, the conduit to connect the inner electrode causes a lot of noise in the
neighborhood region, nevertheless, away from it the structure of the vortices and
their velocity field can be appreciated. This example shows that this methodology
has the potential to allow the quantitative analysis of the observed vortices although
there are still some issues that must be addressed. For instance, the proper choice of
the angular velocity to rotate the images and the way to avoid the noise introduced
by conduit at the bottom of the container. Currently this work is in progess and it
is expected to submit it soon to an specialized journal.
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(a) θ = 0◦ (b) θ = 45◦

(c) θ = 90◦ (d) θ = 135◦

Figure 1.11: Images corresponding to different time instants for an applied electric
current of 150 mA and an electrolyte layer thickness of 5 mm. With respect to a)
the images are rotated by 45◦ increments. It can be appreciated that the vortices
remain at fixed positions due to the change of reference frame.
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(a) θ = 0◦ (b) θ = 45◦

(c) θ = 90◦ (d) θ = 135◦

Figure 1.12: PIV processing of the rotated images shown in the previous figure. It
can be seen the noise created by the conduit drilled to close the electrical circuit.
However, away from that region, the velocity field of the vortices is resolved.



32 Chapter 1. Experimental setup and observations

1.4 Visualizations using thermographic images

With the aim of complementing the experimental information obtained with dye
visualization and PIV, several experiments in which the flow was visualized by means
of images obtained with a thermographic camera, recently acquired at the Renewable
Energy Institute, were carried out. In order to perform this kind of experiments,
the electrolyte solution was heated up to around 60◦C and quickly poured into the
stirrer. Due to the temperature differences between the electrolyte and the cylindrical
cavity and mainly with the environment, an intense heat transfer is established that
leads to a time-dependent temperature distribution registered by the thermographic
camera. The camera used for these experiments is a FLIR x6540sc which has a spatial
resolution of 640 × 512 pixels and is capable of detecting temperature differences
of 20 mK. Since even slight temperature differences can be detected, thermographic
images can, in principle, be used to identify different flow structures which determine
the heat transfer characteristics. These experiments were also carried out using the
two different magnetic field configurations employed previously, namely, a single bar
magnet with uniform polarity and two concentric cylindrical magnets with opposite
polarities.

Figure 1.13 shows the temperature distribution observed at different times in an
electrolyte layer thickness of 5 mm and an applied electric current of 200 mA using
the single permanent bar magnet. Initially, the fluid is at rest, then the Lorentz force
is applied and the fluid starts moving in the azimuthal clockwise direction. After
some time, the flow destabilizes and several anticyclonic vortices are formed, which
remain rotating for long periods of time. It is remarkable that, for the long-time
behavior, eight anticyclonic vortices can be clearly observed very close to the outer
electrode, as ocurred in the isothermal flow. In fact, the flow is very similar to the one
observed using the dye tracer described in the previous sections. As a matter of fact,
the temperature differences do not seem to inhibit nor greatly alter the emergence
of the instability.

Figure 1.14 shows the temperature distribution, at different times, for a shearing
flow generated by two concentric, cylindrical magnets with opposite polarities, using
an applied current of 150 mA, where a complex pattern can be appreciated. Note
that there are also small vortices near the outer electrode that could not be ob-
served just using the dye tracer. This points out to the possibility that heat transfer
plays an important role in the observed dynamics for these experimental conditions.
From the described experiments, it is clear that the temperature distribution in the
electrolyte can be used to visualize the flow dynamics in non-isothermal magnet-
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(a) t = 0 s. (b) t = 5 s.

(c) t = 10 s. (d) t = 15 s.

(e) t = 20 s. (f) t = 103 s.

Figure 1.13: Temperature distribution at different times for h = 5 mm and I0 = 200
mA using a single bar magnet. a) The fluid is at rest and then (b-c) it starts moving
in the azimuthal direction. d) The flow destabilizes and e) several travelling vortices
appear. f) The vortices keep rotating for long periods of time.
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(a) t = 0 s. (b) t = 5 s.

(c) t = 20 s. (d) t = 50 s.

(e) t = 60 s. (f) t = 73 s.

Figure 1.14: Temperature distribution at different times for h = 5 mm and I0 = 150
mA using two concentric cylindrical magnets with inverted polarity. a) The fluid is
at rest and then (b-c) it starts moving in the azimuthal direction due to the shearing
force. d) The flow destabilizes and e) a central structure with several outer vortices
appears. f) The structure keeps rotating.
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ically driven flows at laboratory scale. However, the impact of the heat transfer
in the flow dynamics must be determined accurately in the future. So far, in the
preliminary experiments performed in this work there are cases in which the heat
transfer does not seem to affect (at least qualitatively) the flow dynamics, while in
other cases temperature gradients drastically affect the observed flow patterns. In
any case, the use of thermographic information opens new interesting possibilities
for future experimental studies as well as the numerical analysis of non-isothermal
electromagnetically driven flows.





Chapter 2

Analytical solutions for the flow
inside an annular MHD stirrer§

In this chapter, the flow of electrically conducting fluids in an annular MHD stirrer is
explored theoretically assuming that the layer of fluid in the annular gap is very thin.
A quasi-two-dimensional model that considers a linear friction due to the boundary
layer attached to the insulating bottom wall is implemented and analytical solutions
for the azimuthal flow are obtained for two different cases. The first corresponds to
a high conductivity fluid (a liquid metal) where the electric potential is coupled to
the fluid velocity. The second case considers a low conductivity fluid (an electrolyte)
where the electric potential is uncoupled from the fluid motion. The effect of slip
boundary conditions at the walls of the inner and outer cylinders, as well as the
space between them, is explored. This study is partly motivated by microfluidic
applications.

2.1 Introduction

As it was mentioned in the Introduction of this thesis, the use of electromagnetic
forces to control and manipulate electrically conducting fluids in microfluidic de-
vices has observed an increased interest in past years [Bau et al. (2003), Qian &
Bau (2009)]. In particular, it has been demonstrated that mixing of fluids can be
properly accomplished using electromagnetic forces and, with a properly designed
MHD stirrer, chaotic advection can substantially enhance mixing efficiency [Yi et al.
(2002)].

§Part of this chapter was published in Pérez-Barrera et al. (2016), Analysis of an annular MHD
stirrer for microfluidic applications, in Springer’s series Recent Advances in Fluid Dynamics
with Environmental Applications, pp. 275 - 288.
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This chapter is aimed at searching analytical solutions for electromagnetically driven
flows in annular channels. Although in some cases analytical treatments require
highly idealized assumptions, conditions imposed in this work are closer to realistic
microfluidic flows. Most analytical solutions reported in the literature for electro-
magnetically driven flows in annular configurations assume that coaxial cylinders are
infinite [see, for instance, Gleeson et al. (2004), Digilov (2007), Zhao et al. (2011),
Qin & Bau (2012)]. In this work, we use a quasi-two-dimensional (Q2D) model
based on an averaging procedure in the normal direction that considers the presence
of the bottom wall which originates either the Hartmann friction for high conductiv-
ity fluids [Sommeria (1988), Andreev et al. (2001)] or pure viscous friction effects for
low conductivity fluids [Satijn et al. (2001)]. In addition, given the relevance that
slippage may have at microfluidic scale, generalized Navier slip boundary conditions
are considered at the lateral walls which mainly determine the dynamic flow behavior
[Rivero & Cuevas (2012)]. According to the electrical conductivity of the working
fluid, two different cases are treated. The first case corresponds to a liquid metal flow
where induction effects cannot be neglected and the equation of motion and that for
the electric potential are coupled. In the second case, a solution is sought for a low
conductivity fluid, such as an electrolyte, where induction effects are negligible. This
implies that the electric potential is uncoupled from the fluid velocity and, therefore,
can be determined independently from the equations of motion.

2.2 Formulation

As in the device described in Chapter 1 (see Fig. 1.1) we consider a thin layer of fluid
with thickness h that lies in the gap between the inner and outer cylinders of radii
R1 and R2, respectively, which are assumed to be perfectly conductors. The bottom
wall of the annular container is electrically insulated. An electric potential difference
∆φ = φ2− φ1 is applied between the walls of the inner (φ1) and outer (φ2) cylinders
so that a DC current can circulate radially in the fluid layer. The current interacts
with a uniform applied magnetic field of strength B0 parallel to the cylinder’s axis,
and, therefore, a Lorentz force is produced in the azimuthal direction. As shown in
Appendix A, the governing MHD equations in the low magnetic Reynolds number
approximation that must be solved to determine the flow in this device are the
following:

∇· u = 0, (2.1)
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ρ

(
∂u

∂t
+ (u·∇)u

)
= −∇p+ η∇2u + j×B, (2.2)

j = σ (−∇φ+ u×B0) , (2.3)

∇2φ = ∇·(u×B0) , (2.4)

where u, p, B, j and φ are the velocity, pressure, applied magnetic field, electric
current density and electric potential, respectively, while ρ, η and σ are the mass
density, kinematic viscosity and electrical conductivity of the fluid, respectively. We
now search for solutions of these equations in the quasi-two-dimensional approxima-
tion.

2.3 Quasi-two-dimensional approximation

Different physical mechanisms may promote the quasi-two-dimensionalization of
flows, for instance, the force of gravity in a stratified flow, the Coriolis force in a
rotating homogeneous fluid or the surface tension in a soap film. A strong magnetic
field acting transversally to insulating walls that confine an MHD flow may also lead
to the supression of wall-normal motions. Quasi-two-dimensional (Q2D) flows also
occur when a significant geometrical confinement is imposed, as in motions generated
in shallow fluid layers, as it may occur in microfluidic applications. This condition is
satisfied when the relevant length scale in the plane of the flow is much larger than
the thickness of the fluid layer. Due to the supression of the wall-normal motion, the
Q2D approach assumes that the transport of momentum in the normal direction is
mainly diffusive, as a result, an averaging procedure, where the governing equations
are integrated in the normal direction (or along the lines of force when a magnetic
field is present) within the thickness of the fluid layer, can be applied. In this way,
the problem is formulated in terms of core (averaged) variables while the effect of
the boundary layer attached to the bottom of the wall is included through an addi-
tional linear term in the momentum equations accounting for the wall friction. In
liquid metal flows under strong magnetic fields, Hartmann layers must be considered
[Sommeria (1988), Andreev et al. (2001)], while in flows of low conductivity fluids
(v. e. electrolytes) with or without magnetic fields, the viscous boundary layer is
the relevant one [Satijn et al. (2001)].

In this work, the Q2D approach was used to look for steady laminar azimuthal ax-
isymmetric solutions, that is u = uθ(r)êθ, where uθ and êθ are the velocity component
and the unit vector in the azimuthal direction, respectively.
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In dimensionless form, the governing equations (2.1) - (2.4) expressed in cylindrical
coordinates reduce to the following form when the Q2D approach is considered

u2θ
r + α

=
dp

dr
, (2.5)

d2uθ
dr2

+
1

r + α

duθ
dr
− uθ

(r + α)2
− Ha

ε
uθ − jr = 0, (2.6)

jr = −dφ
dr

+Ha2uθ, (2.7)

1

r + α

d

dr

(
(r + α)

dφ

dr

)
=

Ha2

r + α

d

dr
((r + α)uθ) , (2.8)

where uθ, and the pressure, p, are normalized by u0 = σB0∆φR/ρν and ρu20, respec-
tively, with R = R2 − R1. In turn, the magnetic field is normalized by B0, while
the electric current density, jr, is normalized by σ∆φ/R. The dimensionless radial
coordinate, r, and electric potential, φ, are defined as r = (r′ − R1)/R = r′/R − α
and φ = (φ′ − φ1)/∆φ, where α = R1/R, r′ and φ′ being the dimensional radial
coordinate and electric potential, respectively. Note that the continuity equation
(Eq. 2.1) is identically satisfied.

The Hartmann number is defined as

Ha = B0R

√
σ

ρν
, (2.9)

which estimates the strength of magnetic forces compared with viscous forces. The
forth term in Eq. (2.6) is the linear friction that results from the averaging procedure
and considers the effect of Hartmann layers in the bottom wall [Sommeria (1988),
Andreev et al. (2001)], where ε = h/R is the aspect ratio. In the following sections,
analytical solutions for the system of equations (2.5)-(2.8), considering slip boundary
conditions for the cases of liquid metal and electrolyte flows, are obtained.

2.4 Solution for the liquid metal flow

We first proceed to obtain solutions for the case of a liquid metal flow. Integrating
Eq. (2.8) once we obtain

dφ

dr
= Ha2uθ +

C

r + α
, (2.10)
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where C is an integration constant. If Eq. (2.10) is substituted into Eq. (2.7) and
the result is inserted into Eq. (2.6), it yields

d2uθ
dr2

+
1

r + α

duθ
dr
−
(
β2 +

1

(r + α)2

)
uθ = − C

r + α
, (2.11)

where β2 = Ha/ε. Equation (2.6) is a non-homogeneous Bessel equation and has to
satisfy the general slip boundary conditions at the inner and outer cylinder’s walls,
that is,

uθ(0) = ls

(
duθ
dr
− uθ
r + α

) ∣∣∣∣
r=0

= ls (r + α)
d

dr

(
uθ

r + α

) ∣∣∣∣
r=0

, (2.12)

uθ(1) = −ls
(
duθ
dr
− uθ
r + α

) ∣∣∣∣
r=1

= −ls (r + α)
d

dr

(
uθ

r + α

) ∣∣∣∣
r=1

, (2.13)

where ls = Ls/R is the dimensionless slip length. The general solution of Equation
(2.6) can be expressed as

uθ(r) = C1J1(−iβ [r + α]) + C2Y1(−iβ [r + α]) +
C

β2

1

r + α
, (2.14)

where J1 and Y1 are the Bessel’s functions of order one of the first and second kind,
respectively. As usual, only the real part has to be taken into account for physical
interpretations. Constants C1 and C2 are obtained from the slip boundary conditions
(2.12) and (2.13) in the form C1 = CA1 and C2 = CA2, where

A1 =
1

γβ2

(
A(BY 1+α

1 − iβls(1 + α)Y 1+α
0 )

α
− B(AY α

1 + iβlsαY
α
0 )

1 + α

)
, (2.15)

A2 =
1

γβ2

(
A(BJ1+α

1 − iβls(1 + α)J1+α
0 )

α
− B(AJα1 + iβlsαJ

α
0 )

1 + α

)
, (2.16)

and

γ =
(
BJ1+α

1 − iβls(1 + α)J1+α
0

)
(AY α

1 + iβlsαY
α
0 )

− (AJα1 + iβlsαY
α
0 )
(
BY 1+α

1 − iβls(1 + α)Y 1+α
0

)
, (2.17)

A = α + 2ls, B = 1 + α− 2ls. (2.18)

Here, the superscripts α and 1 + α mean that the corresponding Bessel functions
are evaluated at −iβα and −iβ (1 + α), respectively. In addition, the constant C
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is obtained by integrating Eq. (2.10) and applying the boundary conditions for the
electric potential:

φ(0) = 0 , φ(1) = 1, (2.19)

therefore,

φ(r) = C ln |r + α|+ Ha2

iβ
C1J0(−iβ [r + α]) +

Ha2

iβ
C2Y0(−iβ [r + α]) +D, (2.20)

where

C =
1(

1 +
Ha2

β2

)
ln |κ|+ Ha2

iβ

[
A1

(
J1+α
0 − Jα0

)
+ A2

(
Y 1+α
0 − Y α

0

) ] , (2.21)

D = −

(
1 +

Ha2

β2

)
ln |α|+ Ha2

iβ

[
A1J

α
0 + A2Y

α
0

]
(

1 +
Ha2

β2

)
ln |κ|+ Ha2

iβ

[
A1

(
J1+α
0 − Jα0

)
+ A2

(
Y 1+α
0 − Y α

0

) ] , (2.22)

the constant κ being defined as κ = R2/R1 = 1 + 1/α. Figure 2.1 shows the
azimuthal velocity profile as a function of the radial coordinate for the case of non-
slip boundary conditions (ls = 0). In all analyzed cases, a very thin fluid layer
is assumed (ε = 0.1), which implies that the Hartmann friction is strong and the
velocity magnitude is much smaller than in the case of cylinders of infinite length
(ε → ∞). Velocity profiles in Fig. 2.1a) that correspond to Ha = 10, display a
marked asymmetry as the α parameter, which characterizes the gap between the
concentric cylinders, is varied from 0.01 to 1 (the gap is reduced as α increases).
The velocity does not present a monotonous behavior with α. First, it increases as
α grows, reaching a maximum for α = 0.1, and then decreases for higher values.
Figure 2.1b) shows the velocity profile as the Hartmann number is increased, for
the case α = 0.5, that is when the radius of the outer cylinder is three times that
of the inner cylinder. For Ha = 2 a parabolic-like profile is obtained and, as Ha
increases, the profile is flattened and the velocity decreases as a consequence of the
magnetic braking effects. Note that in both Figs. 2.1a) and 2.1b) the maximum value
of the azimuthal velocity lies closer to the inner cylinder. The effect of slip boundary
conditions on the velocity profile is clearly shown in Fig. 2.2a), where uθ is plotted
as function of the radial coordinate for Ha = 10, ε = 0.1, α = 0.5 and different
values of the dimensionless slip length parameter, ls. Higher velocities are found
close to the inner cylinder and a drastic increase on the slip velocity at the walls is
observed as ls varies from 0 to 100, where the latter value could be considered as



2.4. Solution for the liquid metal flow 43

 0

 0.002

 0.004

 0.006

 0.008

 0  0.2  0.4  0.6  0.8  1

u
θ

r

α=0.01

α=0.1

α=0.5

α=1.0

(a)

 0

 0.01

 0.02

 0.03

 0.04

 0  0.2  0.4  0.6  0.8  1

u
θ

r

Ha=2

Ha=4

Ha=6

Ha=8

Ha=10

(b)

Figure 2.1: a) Velocity profile as function of the radial coordinate for different values
of the α parameter. Ha = 10, ls = 0, ε = 0.1. b) Velocity profile as function of
the radial coordinate for different values of the Hartmann number. α = 0.5, ls = 0,
ε = 0.1.

perfect slip (ls →∞). Note, however, that the core flow remains mostly unchanged,
independently of the ls parameter. The effect of the slip at the boundaries can also be
assessed by calculating the volumetric flow rate, Q, in the gap between the cylinders.
By direct integration of the velocity profile, we get

Q = − iC1

β

[
J0(−iβ[1 + α])− J0(−iβα)

]
− iC2

β

[
Y0(−iβ[1 + α])− Y0(−iβα)

]
+
C

β2
ln |κ|. (2.23)

Figure 2.2b) shows the flow rate as function of the Hartmann number for different
values of the slip parameter. For Ha < 1, a substantial increase of Q is observed
as ls varies from 0 to 100, while for higher Hartmann number the reduction of Q is
approximately the same for all ls values. Figures 2.3a) and 2.3b) show the electric
potential for the liquid metal flow (Eq. 2.20) as function of the radial coordinate
for different values of Ha and α, respectively. From Fig. 2.3a) it is clear that the
variation of the Hartmann number does not affect the electric potential distribution,
while Fig. 2.3b) shows that this quantity is modified by the separation between the
concentric cylinders (electrodes). This behavior has a consequence on the electric
current distribution and, hence, in the Lorentz force.
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Figure 2.2: a) Velocity profile for liquid metal flow as function of the radial coor-
dinate for different values of the dimensionless slip length parameter, ls. Ha = 10,
α = 0.5, ε = 0.1. b) Liquid metal flow rate for different values of the dimensionless
slip length parameter as function of Ha. ε = 0.1, α = 0.5.
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Figure 2.3: a) Electric potential for the liquid metal flow as function of the radial
coordinate for different values of the Hartmann number. α = 0.5, ls = 0, ε = 0.1.
b) Electric potential for the liquid metal flow as function of the radial coordinate for
different values of the geometrical parameter α. Ha = 10, ε = 0.1, ls = 0.
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2.5 Solution for the electrolytic flow

It can be shown that for fluids of low electrical conductivity such as electrolytes,
induction effects are negligible and fluid velocity is uncoupled from the electromag-
netic equations [Figueroa et al. (2009)]. Also, in electrolytes under moderate mag-
netic fields the Hartmann number is very small (Ha� 1). In this case, the Poisson
equation for the electric potential (Eq. 2.4) reduces to a Laplace equation and the
solution for φ is expressed as

φ(r) = ln

(
r + α

α

)/
ln |κ|. (2.24)

In fact, this solution can be obtained from Equation (2.20) in the limit Ha→ 0.This
implies that the applied radial current is proportional to 1/(r + α). Under these
conditions, Equation (2.6) reduces to

d2uθ
dr2

+
1

r + α

duθ
dr
−
(

1

(r + α)2
+

1

εRe

)
uθ = − 1

ln |κ|
1

r + α
, (2.25)

which is again a non-homogeneous Bessel equation. In this case, the linear friction
term that appears in the Q2D approach due to the existence of a viscous boundary
layer in the bottom wall takes the form −uθ/(εRe) [Satijn et al. (2001)], where the
Reynolds number is given by Re = u0R/η. The solution of Eq. (2.25) under slip
boundary conditions (2.12) and (2.13) can be expressed as

uθ(r) = C3J1(−iβ [r + α]) + C4Y1(−iβ [r + α]) +
1

β2 ln |κ|
1

r + α
, (2.26)

where β2 = 1/(εRe). The constants C3 and C4 take the form

C3 =
1

γβ2 ln |κ|

(
A(BY 1+α

1 − iβls(1 + α)Y 1+α
0 )

α
− B(AY α

1 + iβlsαY
α
0 )

1 + α

)
, (2.27)

C4 =
1

γβ2 ln |κ|

(
A(BJ1+α

1 − iβls(1 + α)J1+α
0 )

α
− B(AJα1 + iβlsαJ

α
0 )

1 + α

)
, (2.28)

where γ, A and B are given by Equations (2.18) and (2.17). Figure 2.4 shows
the velocity profiles for the electrolytic flow as function of the radial coordinate for
Re = 0.1 and ε = 0.1. In Fig. 2.4a) profiles are displayed for different values of
the α parameter, assuming the non-slip condition (ls = 0). There is a resemblance
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with profiles obtained for the liquid metal flow (see Fig. 2.1a), but in this case the
magnitude of the velocity is almost 50% higher than for the liquid metal. This
can be explained since for liquid metals the Hartmann friction is stronger than the
viscous friction. Also, as in the liquid metal flow, the geometrical confinement has
a pronounced effect on the asymmetry of the profile: the smaller the value of α
(thick gap conditions) the stronger the asymmetry. Figure 2.4b) shows the profiles
for different values of the dimensionless slip length and α = 0.5. Again, the profiles
are similar to the ones obtained in the liquid metal case but the velocities are almost
50% higher.
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Figure 2.4: a) Velocity profiles for the electrolytic flow as function of the radial
coordinate for different values of the α parameter. Re = 0.1, ε = 0.1 and ls = 0.
b) Velocity profiles for the electrolytic flow as function of the radial coordinate for
different values of the dimensionless slip length parameter. Re = 0.1, ε = 0.1 and
α = 0.5.

Figure 2.5a) shows the velocity profile as function of the radial coordinate for Reynolds
numbers varying from 0.01 to 1, assuming non-slip conditions (ls = 0) and α = 0.5.
The velocity increases as Re grows while the profile presents a more parabolic shape,
although maximum velocity values are still closer to the inner cylinder. In Fig. 2.5b)
the volumetric flow rate is displayed as function of the Reynolds number for val-
ues of the dimensionless slip parameter ranging from 0 to 100, where this last value
represents perfect slip. By integrating the velocity profile in the gap between the
cylinders, the explicit form of the flow rate reads
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Q = − iC3

β

[
J0(−iβ[1 + α])− J0(−iβα)

]
− iC4

β

[
Y0(−iβ[1 + α])− Y0(−iβα)

]
+
C

β2
. (2.29)

In spite of the viscous friction at the bottom, the flow rate grows with Re while,
as expected, a substantial gain is also observed as the parameter ls increases. It is
observed that for ls →∞, the flow rate grows linearly with Re, reaching a saturation
value, as also occurs in other situations [Rivero & Cuevas (2012)].
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Figure 2.5: a) Velocity profiles for the electrolytic flow as function of the radial
coordinate for different Reynolds numbers. α = 0.5, ε = 0.1 and ls = 0. b) Elec-
trolytic flow rate as function of Re for different values of the dimensionless slip length
parameter. ε = 0.1, α = 0.5

2.6 Conclusions

In this Chapter, analytical solutions were provided for the azimuthal flow of a con-
ducting fluid in an annular MHD stirrer that has been proposed for microfluidic
applications [West et al. (2003), Gleeson et al. (2004), Gleeson (2005)]. The flow is
driven by an azimuthal Lorentz force created by the interaction of an imposed radial
current and an applied axial magnetic field. The cases of a highly conducting fluid
(a liquid metal) and a poorly conducting fluid (an electrolyte) were considered. Un-
like analytical solutions available in the literature, where the conducting concentric
cylinders are assumed to be infinitely long, MHD flows have been explored here using
a Q2D model that introduces a linear friction term that accounts for the existence
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of boundary layers (either Hartmann or viscous layers) attached to the bottom wall.
The bottom friction has a drastic effect in the flow behavior, reducing considerably
the magnitudes of the velocity and flow rate. In addition, slip boundary conditions
were considered at the lateral walls (conducting cylinders) and it was verified that
the maximum velocity and flow rate increase as the slip length parameter grows.
Further, it was found that the gap between the cylinders has a strong influence in
the shape of the velocity profile: the larger the gap, the more asymmetric the profile.

The solutions presented here can be used as the starting point for microfluidic mixing
studies, either with liquid metals or electrolytes, similarly to those performed with a
more idealized solution [Gleeson et al. (2004), Gleeson (2005)].



Chapter 3

Numerical solutions of the
governing equations\

This Chapter describes the three-dimensional numerical solutions of the governing
equations for the electrolytic flow inside the electromagnetic stirrer previously de-
scribed. It starts with a discussion of axisymmetric solutions based on quasi-two-
dimensional and thin layer approximations. It continues with a selection of rea-
sonable scales for the problem under consideration and the establishment of the
dimensionless equations to be solved. Further, the experimental magnetic field is ac-
curately modeled by means of analytical expressions reported in the literature. The
numerical results obtained are presented in the form of velocity field distributions and
velocity profiles, which are used to describe the full 3D behavior of the flow. More-
over, the numerical results are compared with experimental measurements, finding
a good quantitative and qualitative agreement. A numerical implementation of the
Lagrangian tracking of passive tracer particles was implemented in order to compare
with the experimental observations described in Chapter 1. It is shown that the flow
evolution is properly reproduced by the numerical simulation. This includes the ini-
tial axisymmetric flow as well as the triggering of the instability and the appearance
of the anticyclonic vortices.

\Part of this chapter was published in Suslov et al. (2017), Electromagnetically driven flow of
electrolyte in a thin annular layer: axisymmetric solutions. Journal of Fluid Mechanics, Vol.
828, pp. 573-600.
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3.1 Axisymmetric solutions in quasi-two dimen-

sional and thin-layer approximations

Before presenting the full three-dimensional numerical simulation using a realistic
magnetic field distribution we discuss some attempts to model the flow in the elec-
tromagnetic annular stirrer using simplified models. In fact, assuming that the fluid
is contained between two coaxial perfectly conducting cylinders of infinite length
under a uniform axial magnetic field the problem becomes 2D and an analytic solu-
tion is available [see for instance, Digilov (2007), Zhao et al. (2011)]. Even though
exact 2D solutions are a valuable resource to validate numerical codes and get some
insight of the flow, all our attempts to numerically reproduce the experimentally ob-
served instability using a 2D approach failed. Therefore, in the following we discuss
axisymmetric solutions obtained using quasi-two-dimensional and thin layer approx-
imations trying to improve the modeling of the flow. These solutions as well as
3D axisymmetric numerical solutions are presented in detail in Suslov et al. (2017)
and were obtained as a first step of an stability analysis currently being developed
in parallel to the present work. Here, only the main results are highlighted as a
background for the discussion of the numerical three-dimensional results. The quasi-
two-dimensional solutions were obtained using a disk magnet vertically polarized and
assuming a homogeneous magnetization. Experiments conducted with rectangular
magnets revealed that the observed flow patterns remain largely the same as those
arising when a smaller disk magnet is used as long as the horizontal dimensions of
the rectangular magnet are larger than the diameter of the disk magnet, and the
diameter of the magnet is not smaller than the outer diameter of the experimental
container, so that no magnetic field reversal occurs within the electrolyte layer.

The symmetry of the problem suggests that an approximate steady two-dimensional
solution u = (0, uθ(r, z), 0), j = (jr(r, z), 0, jz(r, z)), φ = φ(r, z) may exist. However,
since the component uθ(r, z) is enforced by the no-slip boundary condition at the
bottom of the layer, the pressure equations cannot be satisfied, indicating that the
problem solution is inherently three-dimensional with all velocity components being
non-zero. Strictly, the quasi-two-dimensional solution with p ≈ const. can only exist
in thin layers with a vanishing aspect ratio, ε → 0. It was found that assuming a
uniform magnetic field in the vertical direction (Bz = 1 in dimensionless terms), it
is possible to get an exact solution away from the cylindrical electrodes although
it does not satisfy the no-slip boundary conditions at the surface of the electrodes
where boundary layers are formed. The analytical solution was compared with a
high accuracy numerical spectral solution of the quasi-two-dimensional equation and
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results are shown in Fig. 3.1.

Figure 3.1: Quasi-two-dimensional azimuthal (dimensionless) velocity profiles corre-
sponding to a reference magnetic field intensity of B0 = 0.02 T, an applied current of
I0 = 0.05 A with a layer thickness of h = 2.5 mm. The inner and outer cylinders are
located at r = 1 and r = 2.8 while the bottom wall is at z = −1 and the free surface
at z = 1. The profiles are shown for z = 1.0, 0.5 and -0.5 in panel (a) (top to bottom),
and for r = 1.30, 1.98 and 2.60 (right to left) in panel (b). The solid and dashed
lines represent the numerical and exact solutions, respectively. The dash-dotted and
dotted lines show the depth-averaged profiles with two different procedures. [Suslov
et al. (2017)].

As seen from this figure, away from the cylindrical walls, the analytical and numerical
(dimensionless) solutions coincide within the plotting resolution, but deviate from
one another significantly in the boundary layers. It is important to note that in thin
electrolyte layers, the maximum of the azimuthal velocity is necessarily located near
the inner cylinder. As a result, the largest flow shear is found at small values of r.
This is where the shear instability would be expected to set first, which, however,
is not seen in our experiments. The variation of the geometry and strength of the
magnetic field created by a realistic magnet is expected to only enhance this effect,
as it weakens the driving Lorentz force near the outer edge of the layer.

Figure 3.1 also shows the approximate radial profile of the azimuthal velocity com-
ponent in the complete flow domain calculated using a depth-averaged model as the
one used in the previous Chapter [see also Pérez-Barrera et al. (2016)], assuming also
a uniform magnetic field. This approach is commonly used in studies of thin fluid
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layers [see Sommeria (1988), Andreev et al. (2001) for discussion in an MHD con-
text]. Such a model is obtained by integrating the governing equations over the layer
thickness and taking into account the proper boundary conditions. Two different
procedures were implemented and the solutions are virtually indistinguishable ex-
cept for a small difference in the boundary layers. On the other hand, it was found
that in the vicinity of cylindrical walls, the quasi-two-dimensional approximation un-
derestimates the bottom friction and thus predicts a slightly faster depth-averaged
velocity than the full set of equations.

When a realistic magnetic field is considered, no analytical solutions are readily
available. Thus, the quasi-two-dimensional equations were solved numerically us-
ing the Chebyshev pseudo-spectral collocation method. In Fig. 3.2, the azimuthal
velocity profiles obtained for realistic magnetic fields created by a disk magnet are
shown. Due to axial symmetry, the azimuthal component of the magnetic field is
zero, therefore, the applied magnetic field is of the form B = (Br(r, z), 0, Bz(r, z)).
To calculate the field the magnetostatic equations were solved with the same refer-
ence magnitude B0 as that of the uniform vertical magnetic field used in Fig. 3.1.
Comparison of the two figures demonstrates a remarkable robustness of the velocity
profiles. Even though the details of the magnetic fields used to obtain the two solu-
tions are drastically different, the velocity profiles remain qualitatively unchanged.
However, quantitatively, the velocity profiles become fuller in the middle part of the
flow region away from the electrodes: the profiles lie somewhat higher (to the right)
in Fig. 3.2a) (Fig. 3.2b) than the dashed lines representing the reference analytical
solutions.

Figure 3.2: The same as Fig. 3.1 but for a realistic magnetic field created by a disk
magnet placed 6 mm below the bottom of the electrolyte layer [Suslov et al. (2017)].
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Figure 3.3: Quasi-two-dimensional azimuthal profiles calculated numerically for an
electrolyte layer placed in a magnetic field created by a disk magnet at ε = 0.248.
The reference magnetic field intensity is B0 = 0.02 T and the applied current I0 = 0.2
A and the layer thickness h = 7.5 mm. The profiles are shown for z = 1.0, 0.5 and
-0.5 in panel (a) (top to bottom), and for r = 1.30, 1.98 and 2.60 (right to left) in
panel (b) [Suslov et al. (2017)].

This trend continues as the depth of the layer and the electric current increase,
and the shape of the velocity profile eventually deviates from that given by the
depth-averaged model, as is shown in Fig. 3.3. The curvature of the velocity profiles
becomes uniformly negative, but the largest velocity gradient is still found near
the inner cylinder. This suggests that a potential shear instability would still set
in preferentially near the inner cylinder. However, this is not what is observed
experimentally. The failure to reproduce some of the main features observed in the
experiment leads to the necessity of implementing a full three-dimensional numerical
approach.

3.2 Dimensionless equations

To express the governing equations in a convenient nondimensional form where di-
mensionless parameters appear, characteristc scales are first defined. The length
scale is taken as the gap between the electrodes (L = R2 − R1), the characteris-
tic magnetic field is taken as the strength of the magnet, B0, at certain position,
namely, at the bottom of the cavity at the interface between the inner electrode and
the fluid, as shown in Fig. 1.1; and the characteristic electric current is the applied
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electric current I0 used in the experiments, therefore, the current density is given
by J0 = I0/A, where A is the area through which the electric current is passing by,
depending on the type of inner electrode used in the analysis. The characteristic
velocity, which is related to the pressure drop caused by the Lorentz force, is taken
as

uc =

√
j0B0L

ρ
. (3.1)

The dimensionless variables are defined as

r∗ =
r

L
, B∗ =

B

B0

, u∗ =
u

uc
, j∗ =

j

j0
, (3.2)

p∗ =
p

ρu2c
, t∗ =

t

L/uc
, φ∗ =

φ− φ1

φ2 − φ1

, (3.3)

where φ1 and φ2 are the values of the electric potential at the inner and outer
electrodes, respectively, and the superscript (*) is used to refer to a dimensionless
variable.

Substituting the dimensionless variables in the governing equations (see Appendix A)
and dropping the superscript, the dimensionless governing equations can be expressed
as

∇· u = 0, (3.4)

∂u

∂t
+ (u·∇)u = −∇p+

1

Re
∇2u + j×B, (3.5)

j = −∇φ+
Ha2

Re
u×B0, (3.6)

∇2φ =
Ha2

Re
∇·(u×B0) . (3.7)

The set of equations (3.4)-(3.7) constitutes a well-posed system which can be solved
if suitable initial and boundary conditions are supplied.

3.3 Boundary conditions

In order to complete the set of governing equations and making it mathematically
solvable, the following boundary conditions for the velocity field and electric potential
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were implemented:
u = 0, at solid boundaries, (3.8)

∂u

∂z
=
∂v

∂z
= 0, w = 0 at the free surface, (3.9)

φ = 1, at the inner electrode; φ = 0, at the outer electrode. (3.10)

∂φ

∂z
= 0, at the bottom and top boundaries. (3.11)

Equation (3.8) is the standard no-slip boundary condition. For this case solid bound-
aries refer to the electrodes and the bottom of the container. Equation (3.9) implies
the absence of shear stress at the free surface and also that, for all intents and pur-
poses, the free surface remains flat. In fact, as soon as the fluid starts rotating the
free surface curves, but this deformation is very small and cannot be appreciated
with the naked eye. An estimation of the deformation of the free surface for this
particular flow can be found in Suslov et al. (2017), where it is shown that it can
be neglected. Equation (3.10) sets the potential difference between the electrodes
that establishes the current flow, whereas Eq. (3.11) implies that the bottom of the
cavity (which is made of acrylic) and the free surface (which is in contact with air)
are electrically insulated.

3.4 Applied magnetic field

In order to perform realistic numerical simulations it is necessary to feed the numer-
ical code with accurate information regarding the experimental conditions. In fact,
the accurate representation of the applied magnetic field distribution is crucial for
the realistic simulation of magnetohydrodynamic flows. The magnetic field of the
permanent magnet used in the experiments was measured by means of an automatic
device which consists of two highly-precise, perpendicular positioners controlled by
a computer, a magnetic probe attached to one of the positioners and a Gaussmeter,
as shown in Fig. 3.4. Measurements of the normal component of the magnetic field
were made in a plane located 3 mm away from the surface of the magnet, sweeping
an area of 10.1 cm × 15.1 cm (which is large enough to cover the whole flow region
of the electromagnetic stirrer) with a spatial resolution of 1 mm. In this way, a
map of the spatial distribution of the normal field component was obtained. Given
the size of the magnet and the spatial resolution of the measurements, about 15,000
measured data were obtained.
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Figure 3.4: Mesaurement device to characterize permanent magnets. The magnetic
probe is colocated in such a way that the normal component to the surface of the
magnet can be measured.

Figure 3.5 shows the mapping of the normal component of the magnetic field in a
plane 3 mm away from the magnet. It can be seen that due to the size of the magnet,
the maximum values of the normal component are located close to the corners of the
magnet, although decays very rapidly at the edges.

Once the magnet is characterized, the magnetic field distribution must be introduced
in the numerical code. This can be done by interpolating the measured values to
the numerical grid or using analytical expresions that reproduce this distribution.
Due to the fact that measurements were made only for a single plane from which we
cannot interpolate to other planes, it was chosen to use an analytical expression in the
numerical code. There are some accurate expressions for different magnet geometries
[v. e. McCaig (1977), Furlani (2001)] which can be fitted to the experimental
measurements.
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Figure 3.5: Experimental characterization 3 mm above the permanent magnet used
in the electromagnetic stirrer . (a) Isometric view. (b) Top view. Colors indicate the
magnetic field strength of the normal component.

Consider a rectangular permanent magnet of dimensions a, b and c along the x, y
and z coordinates, respectively, magnetized along the z-axis, as shown in Fig. 3.6.
This magnet will generate a static, 3D magnetic field in the surrounding space which
can be calculated according to Furlani’s analytical expressions for a finite-sized, bar
magnet [Furlani (2001)], namely:

Bx(x, y, z) =
µ0Ms

4π

2∑
k=1

2∑
m=1

(−1)k+m ln [F (x, y, z, xm, y1, y2, zk)] , (3.12)

where

F (x, y, z, xm, y1, y2, zk) =
(y − y1) + [(x− xm)2 + (y − y1)2 + (z − zk)2]1/2

(y − y2) + [(x− xm)2 + (y − y2)2 + (z − zk)2]1/2
, (3.13)

By(x, y, z) =
µ0Ms

4π

2∑
k=1

2∑
m=1

(−1)k+m ln [H(x, y, z, x1, x2, ym, zk)] , (3.14)

where

H(x, y, z, x1, x2, ym, zk) =
(x− x1) + [(x− x1)2 + (y − ym)2 + (z − zk)2]1/2

(x− x2) + [(x− x2)2 + (y − ym)2 + (z − zk)2]1/2
, (3.15)
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(a) (b)

Figure 3.6: Skecth of a permanent bar magnet of dimensions a, b, c. (a) Magneti-
zation and reference frame. (b) At some observation point P the magnet creates a
3D field with components Bx, By, Bz along the respective axes.

Bz(x, y, z) =
µ0Ms

4π

2∑
k=1

2∑
n=1

2∑
m=1

(−1)k+n+m tan−1
[

(x− xn)(y − ym)

(z − zk)
g(x, y, z, xn, ym, zk)

]
,

(3.16)
where

g(x, y, z, xn, ym, zk) =
1

[(x− xn)2 + (y − ym)2 + (z − zk)2]1/2
. (3.17)

In Equations (3.12) - (3.17) x1, x2, y1, y2, z1, z2 refer to the coordinates where the
vertices of the magnet are located (see Fig. 3.6b); µ0 = 4π × 10−7 Tm/A is the
magnetic permeability of vacuum (magnetic constant) and Ms is the magnetization
parameter of the magnet, given in A/m.

Qualitative agreement can be found by comparing the experimental isolines of Bz

and the isolines obtained with the analytical expressions, as shown in Fig. 3.7. It can
be seen that the distribution of the magnetic field is very inhomogeneous close to the
edges of the magnet whereas in the central region (where the flow domain is mostly
located) the isolines form elipses due to the rectangular shape of the magnet. This
fact renders a non-axisymmetric Lorentz force which is dependent on the spatial
position. In turn, this spatial dependence of the driving force is likely to be an
important factor to trigger the experimentally observed instability.

In order to use Furlani’s equations in the numerical code, the magnetization of the
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Figure 3.7: Isolines of the z-component of the magnetic field. (a) Experimental
measurements. (b) Furlani’s analytical expression. It can be observed that the
magnetic field is symmetric with respect to both the x- and y-axes.

magnet must be estimated, so the value of Ms was varied to match the measured
z-component of the magnetic field in the centerline along the x-coordinate. This
process was made at a distance of 3 mm away from the surface of the magnet, for
which the proposed value of the magnetization is Ms = 2.65 × 105 A/m. Keeping
this value fixed, the experimental measurements at a distance of 6 mm and 10 mm
away from the magnet were compared with the corresponding analytical calculations.
Figure 3.8 shows the comparison of the experimental measurements and Furlani’s
analytical expressions. For the three distances compared there is a good agreement
between the calculated and experimental values. It can be observed that close to the
surface of the magnet, the normal component of the magnetic field has an M -shaped
symmetrical profile with its maximum values near the edges of the magnet from
which it decays very fast, whereas in the center (where the flow domain is mostly
located) Bz is more uniform. When moving away from the magnet, the profile tends
to flatten in the center and it is expected that for a long enough distance the profile
becomes similar to a Gaussian distribution.

Figure 3.9 shows the computed magnetic field components for the domain of interest
at two different heights. It can be seen from Figs. 3.9a) - 3.9d) that the azimuthal
and radial components of the magnetic field barely change inside the electrolyte
layer. On the other hand the axial component drastically changes in both shape and
magnitude within the fluid layer.
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Figure 3.8: Comparison between the experimental measurements (black points) and
Furlani’s expression (solid line) for the z-component of the magnetic field along the
centerline of the magnet for different heights.



3.4. Applied magnetic field 61

(a) Bθ (b) Bθ

(c) Br (d) Br

(e) Bz (f) Bz

Figure 3.9: Computed components of the magnetic field (in mT) at the bottom of
the container (left column) and free surface (right column) of a 5 mm electrolyte
layer.
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3.5 Numerical results

In order to solve the governing equations numerically, a hybrid Fourier-Galerkin -
Finite volume technique, as described by Nuñez et al. (2012), was implemented.
Appendix B gives a brief description of the numerical method. The numerical code
was partially paralellized using OpenMP directives and the calculation of the Fast
Fourier Transform (FFT) as well as the solution of the linear systems of equations
were optimized by the implementation of Fishpack librariesa.

3.5.1 Mesh selection

A purely azimuthal experimental flow was measured using the PIV technique and
compared with the numerical solutions for different mesh sizes. Figure 3.10 shows
the comparison between the experimental measurements and the numerical solution
of the azimuthal velocity as function of time for two different meshes for an applied
electric current of 50 mA and an electrolyte layer thickness of 5 mm. It can be seen
that the numerical solution reaches terminal velocity faster than the experiment, but
both experimental and numerical velocity values are very close. It can also be noticed
that the finer the mesh, the closer the numerical results are to the experiment.

In order to select an optimal mesh for the numerical calculations, several mesh sizes
were used in the computations. By optimal it must be understood a mesh size that
is fine enough to yield results very close to the experimental observations while also
being coarse enough to render the numerical computations feasible, that is to say,
the computational time needed to solve the problem is not extremely long. Table
3.1 shows the terminal velocity calculated using different mesh sizes as well as the
difference with the measured velocity, which was averaged in the last 30 seconds of
a one minute long experiment and has a value of ∼ 2.05 cm/s. It can be seen that
changing the number of nodes in the θ-direction, nθ, does not affect the value of the
terminal velocity, since nθ is related to the number of Fourier modes considered in the
solution. Since spectral accuracy is obtained with a small number of Fourier modes,
it is expected that increasing the value of nθ (and thus the number of Fourier modes)
does not yield a significant improvement to the numerical solution. Therefore, in
order to get closer results to the experimental measurements, the number of control
volumes in the other two directions must be increased. Looking carefully at Table 3.1

aAll these improvements in the numerical code were performed during a stay at the Technische
Universität Ilmenau (TUI) in Ilmenau, Germany under the advise of Dr. Dmitry Krasnov.
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Figure 3.10: Comparison between the measured (black line) and calculated (blue
and red lines) azimuthal velocity as function of time at r = 3.1 cm for an azimuthal
flow. I = 50 mA and h = 5 mm.

it can also be seen that the value of nr has a larger impact in the computed solutions
than the value of nz since going from nr = 16 to nr = 32 reduces the difference with
the measured velocity from 0.13 cm/s to 0.02 cm/s whereas the increment of nz does
not improve the numerical solutions significantly. From the above considerations, the
optimal mesh chosen to produce the subsequent results was 64×64×32. This choice
was due to the fact that flows where vortices appear are more complex than a purely
azimuthal flow. Using the aforementioned mesh size and a time step ∆t = 2× 10−5,
the divergence of the velocity field was kept smaller than 10−5 and the divergence
of the computed electrical current density was less than 10−6, thus ensuring electric
charge conservation.

Since the PIV technique is capable of properly measuring the azimuthal flow, com-
parison between the experimental and numerical velocity profiles can be done. Figure
3.11 shows the numerically computed and experimentally measured steady-state ve-
locity profiles for θ = 90◦. The experimental conditions for this case are I0 = 50 mA
and h = 5 mm, which can be translated into Re = 297 for the numerical code. It can
be observed good agreement between both results. In fact, the numerical solution
is able to properly reproduce the marked asymmetry of the velocity profile, which
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Table 3.1: Terminal velocity for different mesh sizes.

nθ × nr × nz uT (cm/s) |uT − um| (cm/s)
16× 16× 16 1.92 0.13
32× 16× 16 1.92 0.13
64× 16× 16 1.92 0.13
128× 16× 16 1.92 0.13
16× 32× 16 2.07 0.02
16× 64× 16 2.04 0.01
32× 32× 16 2.07 0.02
32× 64× 16 2.04 0.01
64× 32× 16 2.07 0.02
64× 64× 16 2.04 0.01
128× 32× 16 2.07 0.02
128× 64× 16 2.04 0.01
16× 16× 32 1.93 0.12
16× 32× 32 2.08 0.03
32× 16× 32 1.93 0.12
32× 32× 64 2.08 0.03
32× 32× 128 2.08 0.03
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has its maximum value close to the outer electrode and a fast decay as the radial
distance approaches to the cylinder’s axis (r = 0). This behavior confirms that, as
the highest velocity gradient is closer to the outer electrode, it is more likely for
the instability to trigger in this region, which is corroborated experimentally by the
appearance of the anticyclonic vortices near the outer cylinder.
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Figure 3.11: Comparison between the numerical and experimental azimuthal velocity
profiles as a function of the radial coordinate for an applied electric current of 50
mA and an electrolyte layer thickness of 5 mm (Re = 297).

3.5.2 Comparison with PIV measurements

As it was shown in Chapter 1, the usual PIV technique is not capable of properly
measuring the flow when the instability is triggered, however, far from the vortices,
that is, at small radial positions, the flow is mostly azimuthal, thus letting us compare
the numerical calculations with the experimental measurements. Figure 3.12 shows
the azimuthal component of the velocity as a function of time for two different applied
electric currents, 150 mA and 200 mA, and two distinct radial positions, 2.02 cm and
3.1 cm, for an electrolyte layer thickness of 5 mm. In both cases, the electric current
intensity is large enough to trigger the instability.
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Figure 3.12: Azimuthal velocity component as a function of time for two different
electric currents and two different radial positions. I0 = 150 mA for upper row and
I0 = 200 mA for lower row. r = 2.02 cm for the left column and r = 3.1 cm for the
right column. The layer thickness is h = 5 mm.
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The upper row shows the results obtained for a current of 150 mA (Re = 514),
whereas the lower is for a current of 200 mA (Re = 594). The left column shows
the azimuthal component located at a radial position of 2.02 cm, where the flow is
mostly azimuthal. It can be seen that both experimental and numerical results agree
very nicely, even though the experimental results are a bit noisy, specially for the
current of 200 mA. For both cases there is a linear growth of the azimuthal velocity
for small times but this period seems to be smaller as the applied electric current
increases, then the velocity reaches a terminal value. On the other hand, the right
column shows the case for a radial position of 3.1 cm, it is clearly seen that the PIV
technique is not capable of measuring the velocities once the instability triggers. The
numerical results show the appearance of the instability by means of oscillations of
almost constant amplitude, thus supporting the idea that the observed vortices can
be considered as perturbations growing on a base azimuthal flow.

3.5.3 Flow description and comparison with axisymmetric
flows

Once the mesh size was selected, simulations were carried out using realistic experi-
mental conditions. Figure 3.13 shows the azimuthal velocity profiles for an applied
electric current of 50 mA, for which no instability was observed. Figure 3.13a) shows
the azimuthal velocity profile as a function of the radial position at different heights.
It can be seen that the maximum velocity near the free surface (z > 3 mm) is located
close to the outer cylinder, consistently with the experimental velocities measured
using PIV at the free surface (see Fig. 3.11). In turn, near the bottom of the container
the velocity profiles tend to flatten, and for z = 1.12 mm the maximum velocity is
closer to the inner cylinder. Figure 3.13b) shows the azimuthal velocity as a func-
tion of the axial coordinate for different radial positions. It can be seen that this
component presents a non-monotonus behavior since the maximum velocity is not at
the free surface, as predicted by the Q2D solutions, but somewhere inside the bulk
of the electrolyte layer. In fact, note that these profiles are strikingly different from
those found with the Q2D and thin layer approximations (see Section 3.1).

Figure 3.14 presents the visualization of the velocity field at the meridional plane as
well as streamlines and the azimuthal vorticity component projected onto this plane.
The three-dimensionality of the flow is clearly observed as a large vortex (torus),
in which the symmetry is broken due to the different boundary conditions imposed.
The fluid rises near the cavity’s axis and sinks close to the outer electrode, so that
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Figure 3.13: Behavior of the azimuthal velocity component as a function of the
a) radial coordinate for different heights and b) axial coordinate for different radii.
I0 = 50 mA, h = 5 mm.

in the free surface the fluid is moving radially outwards.

It is interesting to look at the other velocity components, ur and uz, which are
shown in Fig. 3.15 as functions of the radial position for different heights. The
first thing to notice is that they are one order of magnitude smaller than their
azimuthal counterpart, nevertheless, as it was shown in Suslov et al. (2017), they
have a pronounced effect in the overall flow and even in its stability. It seems
that the three-dimensionality of the flow has a strong influence in the onset of the
instability. The radial component has negative values near the bottom of the cavity
and positive values near the free surface while the axial component presents positive
values at the cylinder’s axis, due to the rising fluid and negative values near the outer
electrode where the fluid goes downwards.

As reported by Suslov et al. (2017) two distinct solutions can exist for the same
experimental conditions. The first one consists of an axisymmetric flow with one large
meridional torus (see Fig. 3.14), whereas the second one shows two counterotating
tori in the meridional plane, one large torus covering almost the whole plane, and a
smaller one in the upper outer corner of the meridional cross-section. Moreover, the
latter flow is more likely to present the observed instability. In fact, this kind of flow
was found for all the numerical simulations prior the triggering of the instability, as
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Figure 3.14: Velocity field (top), streamlines (middle) and azimuthal vorticity (bot-
tom) projected onto the meridional rz-plane for an applied electric current of 50 mA
and a layer thickness of 5 mm.
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Figure 3.15: a) Radial and b) axial components of the velocity field as functions of
r for an applied electric current of 50 mA. h = 5 mm.

it is shown if Fig. 3.16, where the velocity field in the meridional plane, streamlines
and azimuthal velocity component projected in that plane are shown for I0 = 150
mA and h = 5 mm. The corresponding velocity profiles are presented in Figs. 3.16
and 3.17.

The appearance of the smaller secondary vortex creates a noticeable radial counterflow
along the free surface, with a radial stagnation point some distance away from the
outer cylinder (see Figs. 3.16 and 3.18a). The existence of such a toroidal structure
was also indicated by experimental observations: the dye tracer released at the free
surface away from the side boundaries drifted towards the outer cylinder, confirming
the three-dimensional structure of the flow, with a non-zero radial component, but
never reached it and remained at a distance of approximately 12% of the total annular
width from the wall, as shown in Fig. 3.19. A careful inspection of the experimental
photograph in Fig. 3.19 also indicates that this toroidal vortex is the locus of the
instability giving rise to the formation of the anticyclonic vortices seen in Fig. 1.4.
Numerical results shown in the following section support this conclusion.

3.5.4 Numerical evolution of the instability

In order to compare the numerical simulations with the available experimental obser-
vations, a Lagrangian tracking of a passive “ink blob” was implemented. First, the
blob was created as a set of particles connected to form a circle at the free surface.
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Figure 3.16: Velocity field (top), streamlines (middle) and azimuthal vorticity (bot-
tom) projected onto the meridional rz-plane for an applied electric current of 150
mA and a layer thickness of 5 mm prior the triggering of the instability.
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Figure 3.17: Behavior of the azimuthal velocity component as a function of the
a) radial coordinate for different heights and b) axial coordinate for different radii.
I0 = 150 mA and h = 5 mm.
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Figure 3.18: a) Radial and b) axial components of the velocity field as functions of r
for an applied electric current of 150 mA. h = 5 mm. Notice that the radial profiles
corresponding to z = 4.12 mm and 5 mm account for the stagnation region created
by the existence of the secondary vortex in the upper outer corner. Axial profiles are
also clearly modified by the presence of this vortex.
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Figure 3.19: Torodial vortex visualization in an electrolyte layer of thickness h = 5
mm driven by a radial current of I0 = 100 mA. The stagnation line of the radial flow
visible on the free surface as a dark ring was located approximately 3 mm away from
the outer electrode.

The velocity field obtained from the numerical solution of the governing equations
was used to solve the advection equations for each particle of the blob, namely,

dx

dt
= u. (3.18)

Using the position of the corresponding particles at the previous time step as initial
condition, the new positions were calculated. This implementation allows to mimic
the advection of dye observed in the experiments.

For all the following results, the applied electric current goes radially outwards
whereas the axial magnetic field points away from the plane of flow, thus rendering
a clockwise Lorentz force.

In Fig. 3.20, the flow evolution leading to the instability is presented through the nu-
merical Lagrangian tracking of an “ink blob” in an electrolyte layer of 5 mm thickness
with an applied electric current of 150 mA, which correspond to Re = 514. Starting
from rest, in the early stages the fluid is advected in the azimuthal direction as a
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consequence of the applied Lorentz force. Due to the rotation of the fluid, the trac-
ers are first drifted towards the outer cylinder, but eventually, they are drifted back
from the electrode to reach a radial position where an azimuthal flow is established.
This state coincides with the experimental picture 3.19. At a later time, the flow
destabilizes and anticyclonic vortices appear. Comparing the numerical results with
the experimental observations (see Fig. 1.4), some similitudes and differences can be
observed. On the one hand, the experimental flow destabilizes long before its nu-
merical counterpart (in about 15 s in contrast with the 50 s needed to destabilize the
numerical simulation). On the other hand, the number of vortices observed in both
cases is different, being 8 for the experimental case and 12 for the numerical one.
Even though the number of vortices predicted numerically does not coincide pre-
cisely with the experiment, their qualitative behavior is very close to that observed
experimentally. Particularly, the vortices appear closer to the outer electrode and re-
main almost equidistant from one another. It is worth noting that the axisymmetric
flow patterns obtained with the present numerical method (namely, the single torus
and the two corotating tori) coincide to those obtained with a different numerical
method by Suslov et al. (2017) which correspond to two different solutions for the
same experimental parameters. This seems to indicate that the problem presents
multiple solutions, which could explain the disagreement between the experimental
observations and the numerical results.

Varying the applied electric current originates different flow patterns. Figure 3.21
shows the observed anticyclonic vortices for electric current intensities of 150, 200,
250 and 300 mA. In Fig. 3.21a), corresponding to 150 mA, twelve equally spaced
vortices can be clearly seen. In Figs. 3.21b) and 3.21c), corresponding to 200 and
250 mA, respectively, ten vortices are observed. Even though the number of vortices
is the same, some differences can be identified. For instance, for the case of 200
mA, all the vortices seem to have the same size, whereas for 250 mA there are two
diametrically opposite vortices bigger than the rest. The pattern obtained for 300
mA results more complicated and even the number of vortices cannot be identified
without ambiguity.

For the sake of illustration, Fig. 3.22 shows a qualitative comparison between the flow
patterns obtained through the numerical Lagrangian tracking in conditions where the
instability is triggered and experimental images of the instability obtained with the
thermographic camera under non-isothermal conditions (see Section 1.4). Although
the applied electric currents in the numerical simulation coincide with the experimen-
tal cases (150 and 200 mA), the non-isothermal conditions of the experimental flow
establish a different physical situation. Nevertheless, it is worth noticing some quali-
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(a) t = 0 s. (b) t = 3 s.

(c) t = 15 s. (d) t = 25 s.

(e) t = 47 s. (f) t = 60 s.

Figure 3.20: Numerical Lagrangian tracking of a “blob” for Re = 514 (I0 = 150
mA) which shows the evolution of the instability. (a) Initial blob position. (b) Early
stages of the advected blob. (c) Drifting of tracers very close to the outer cylinder.
(d) Confinement of tracers to a fixed radial position. (e) Onset of the instability. (f)
Formation of anticyclonic vortices.
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(a) 150 mA (b) 200 mA

(c) 250 mA (d) 300 mA

Figure 3.21: Numerical Lagrangian tracking of the flow instability showing different
flow patterns for an electrolyte layer thickness of 5 mm and distinct electric currents.
a) Re = 514, b) Re = 594, c) Re = 664 and d) Re = 727.
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tative similarities, in particular, the persistance of the instability when heat transfer
in present which confirms the robustness of the phenomena. For the case of 150
mA, twelve vortices are predicted in the numerical simulation in contrast with the
experimental case where only eight vortices are present. As previously mentioned,
this situation might be explained by the existence of multiple solutions [Suslov et al.
(2017)]. However, for 200 mA the number or vortices appearing in both cases is the
same and are qualitatively very similar. These results motivate a deeper exploration
of the instability under non-isothermal conditions which could be of interest for heat
transfer enhancement purposes.
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(a) (b)

(c) (d)

Figure 3.22: Qualitative comparison between the numerical Lagrangian tracking of
the flow instability (top row) and experimental images of the instability obtained
with the thermographic camera under non-isothermal conditions (bottom row). Left
column corresponds to 150 mA and right column to 200 mA.



Concluding remarks

In this thesis, the flow of a thin electrolyte layer driven by a Lorentz force created by
the interaction of a radial electric current and an axial magnetic field was methodolog-
ically analyzed experimentally and theoretically. The flow takes place in a cylindrical
electromagnetic stirrer with two coaxial electrodes on top of a permanent magnet
with uniform polarity. The main goal was the understanding and modeling of a new
type of hydrodynamic instability recently discovered experimentally at IER-UNAM.
The instability is characterized by the emergence of anticyclonic vortices on a back-
ground azimuthal flow and could be of relevance for mixing purposes, heat transfer
enhancement, and the modeling of atmospheric phenomena.

Three different experimental techniques were used to obtain information of the flow
dynamics. Dye was used as a tracer to visualize the fluid motion near the free sur-
face, while thermographic images allowed to visualize the flow under non-isothermal
conditions. Through the variation of the control parameters, namely, the applied
electric current and the electrolyte layer thickness, dye visualization allowed to build
a map of qualitative behavior in which two distinct regions were identified, namely,
a purely azimuthal flow and a flow with a varying number of anticyclonic vortices
depending on the experimental conditions. On the other hand, thermographic im-
ages revealed the persistence of the instability in non-isothermal conditions and, at
least qualitatively, the inferred flow patterns seem indistinguishable from dye visu-
alization. This points out that, in this case, although heat transfer is present, is not
able to inhibit the emergence of the instability. In turn, quantitative information
obtained from PIV measurements was used to validate numerical simulations and
establish the characteristic scales of velocity in the experimental flow. However, the
PIV technique failed to accurately capture the velocity field once the flow instability
is triggered. This failure motivated the development of an improved processing tech-
nique of the recorded images that is able to resolve the flow structures that appear
as a consequence of the instability. The technique is currently under development
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and will be published in the near future.

As a complement, the shear flow created by the use of an array of two concen-
tric cylindrical magnets with opposite polarities was also qualitatively explored. It
resulted in the appearance of a tripolar vortex similar to others reported for hydro-
dynamic cases [Van Heijst et al. (1991), Samimy et al. (2003)]. In contrast to results
obtained with a magnet with uniform polarity, in this case flow patterns inferred
from thermographic images revealed drastic changes with respect to dye visualiza-
tion experiments, indicating a major impact of heat transfer. In any case, the use
of thermographic images seems to be an useful tool to complement the information
required for the analysis of flow dynamics problems, but its accuracy and potential
application is still to be assessed.

Considering a simplified version of the studied problem, an analytical Q2D solution
with general slip boundary conditions was obtained for both an electrolyte and a
liquid metal. These solutions could be used as a starting point for microfluidic mix-
ing related studies, since they are based on less idealized assumptions than previous
investigations [Gleeson et al. (2004), Gleeson (2005)]. On the other hand, it was
found that thin-layer approximations such as depth-averaged models and quasi-two-
dimensional treatments are quickly invalidated as the thickness of the layer increases,
and cannot adequately describe even qualitative features of the flow such as the ve-
locity profiles observed in experiments. The flows remain axisymmetric but become
essentially three-dimensional, and have to be treated as such by employing the ap-
propiate numerical algorithms as the one developed in this work. This involved,
in the first place, the use of a realistic magnetic field distribution that reproduces
accurately the experimental meaurements. A hybrid finite volume - Fourier spectral
numerical technique was implemented for the solutions of the equations governing
the flow produced in the electromagnetic stirrer. One of the main contributions of
the present work was the succesful numerical simulation of the three-dimensional
dynamics of the flow. This includes the accurate reproduction of the main patterns
of the axisymmetric flow, as well as the flow evolution leading to the instability.
Numerical results were compared with experimental observations through the La-
grangian tracking of a passive scalar tracer that simulates the advection of dye in
the experiment, finding good qualitative agreement. Nevertheless, there are still some
interesting challenges for the future work, particularly, the fact that the number of
vortices predicted by the simulation does not coincide in all cases with experimental
observations. Also, the extension of the numerical algorithm to include the heat
transfer analysis of non-isothermal advection flows seems an interesting project for
future studies. Although the description of some scenarios for the appearance of the
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instability was advanced in [Suslov et al. (2017)], a complete stability analysis is still
a pending task.





Appendix A

Mathematical problem formulation

This appendix describes the mathematical formulation of the problem under consid-
eration. It starts with a brief description of the governing equations of a Newtonian,
incompressible fluid. Next, the equations of the electromagnetic field are explained
and combined alongside the fluid mechanics equations using the so-called MHD ap-
proximation to get the fundamental MHD equations. Finally, the equations are
expressed in terms of the electric potential φ, pressure and velocity fields.

A.1 Equations of fluid dynamics

Fluid dynamics is aimed to describe the flow of fluids (liquids or gases) subjected to
the action of external agents such as body forces, pressure gradients or temperature
differences. From a macroscopic view, the continuum hypothesis holds, so that fluid
variables (pressure, temperature, velocity, among others) can be univocally defined
at any spatial point and any instant of time, disregarding the microscopic behavior.
In this way, the fundamental physical laws of mass conservation, Newton’s second law
of motion and the first law of thermodynamics, alongside the constitutive equations
and thermodynamic relations from local equilibrium, can be used to obtain a set of
equations which describes the spatio-temporal behavior of fluids [Currie (2007)].

In many practical applications, both liquids and gases can be considered as incom-
pressible, which means that its mass density remains constant. Application of mass
conservation to an incompressible fluid results in the continuity equation:

∇· u = 0, (A.1)

where u is the velocity vector field which, in general, is space- and time-dependent.

In many cases, the working fluid can be considered as Newtonian, this means that
there is a linear relationship between the shear stress applied to the fluid and the
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rate of strain. This is the case for the most common electrically conducing fluids:
electrolytes and liquid metals. Application of Newton’s second law of motion to a
Newtonian fluid results in the well-known Navier-Stokes equation:

ρ

(
∂u

∂t
+ (u·∇)u

)
= −∇p+ η∇2u + ρf , (A.2)

where ρ and η are the mass density and dynamic viscosity of the fluid, respectively;
p is the scalar pressure field and f is used to represent any body force acting upon
the fluid.

For a Newtonian fluid, the first law of thermodynamics leads to the heat transfer
equation, namely,

∂T

∂t
+ (u · ∇)T = α∇2T + S, (A.3)

where T is the scalar temperature field, α is the thermal diffusivity of the fluid and
S represents any source of heat due to viscous or ohmic dissipation.

A.2 Equations of the electromagnetic field

The behavior of electric and magnetic fields is described, in general, by means of
relativistic equations, nevertheless, in MHD phenomena at laboratory and industrial
scales, the characteristic velocities are much smaller than the speed of light. In what
follows, we briefly present the electromagnetic field equations and then the MHD
approximation that allows to obtain the fundamental MHD equations.

A.2.1 Maxwell’s equations

Maxwell’s equations are a set of partial differential equations describing the spatio-
temporal behavior of electric and magnetic fields and are considered among the most
influential equations in science [Fleisch (2008)]. For a homogeneous, isotropic, linear
medium these equations are expressed as

∇· E =
ρe
ε
, (A.4)

∇·B = 0, (A.5)
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∇×E = −∂B
∂t
, (A.6)

∇×B = µj + µε
∂E

∂t
. (A.7)

Equation (A.4) is Gauss’ law for the electric field, where E is the electric field, ρe
is the total electric charge density and ε is the permitivity of the material medium.
This equation shows that the electric fields are produced by the electric charges
in such a way that the positive charges are “sources” of electric fields, whereas
negative charges are “sinks” of such fields. Equation (A.5) states the nonexistence
of magnetic monopoles, that is to say, magnets always posses two opposite poles, B
being the magnetic induction vector field. Equation (A.6), known as Faraday’s law
of induction, expresses that the temporal variation of a magnetic field is capable of
producing an electric field. Finally, Equation (A.7) is the Ampère-Maxwell law which
expresses that a magnetic field can be produced by a stationary current density j and
by a time-varying electric field. In this equation µ is the magnetic permeability of the
medium. For non-magnetizable materials, such as the electrolytes and liquid metals,
a good approximation is to consider µ = µ0, µ0 being the magnetic permeability of
free space [Davidson (2001)]. It is worth mentioning that the time-dependent term
in Equation (A.7) is a relativistic term known as Maxwell’s displacement current,
where 1/ (µε) = c2, c being the speed of light.

Note that taking the divergence of Equation (A.7) and using Gauss’ law for the
electric field (Eq. A.4) results in

∇·j +
∂ρe
∂t

= 0. (A.8)

This equation manifests electric charge conservation, that is to say, electric charge
is not created nor destroyed.

A.2.2 Ohm’s law

Ohm’s law is a constitutive equation which establishes that the electric current den-
sity inside an stationary conductor is proportional to the net force exerted upon its
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free charges [Davidson (2001)], and therefore, proportional to the applied electric
field, that is,

j = σE′, (A.9)

where the proportionality constant σ is a material property of the conductor known
as electrical conductivity and E′ is the electric field. When the conductor is moving
with velocity u with respect to a reference frame, Ohm’s law is modified considering
the effective field measured from such a frame, that is,

j = σ(E + u×B) + ρeu, (A.10)

where the first term of the right-hand side is the effective electric field and the second
term is the convection current [Cuevas (2004)].

A.2.3 The Lorentz force

In a material medium with an electric charge density ρe through which an electric
current density j flows, the electromagnetic force per unit volume acting upon such
medium is given by

f = ρeE + j×B. (A.11)

This body force is known as Lorentz force.

A.3 The MHD approximation

To study MHD phenomena is necessary to couple both equations for fluid dynamics
and electromagnetism. Flows studied in classical fluid dynamics occur at very low
velocities compared to the speed of light and the governing equations are Galilean
invariant, whereas Maxwell’s equations are relativistic and Lorentz invariant. To
couple both set of equations, the so-called MHD approximation is used. This ap-
proximation is based on the following considerations:

1. Fluid motion is non relativistic, that is, the characteristic velocities of the flows
are much smaller than the speed of light (|u| � c).

2. Flows take place in quasi-stationary magnetic fields or fields that vary at low
frequencies.
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3. The electric fields are of the order of magnitude of the electromotive force
induced by the fluid motion, that is, u×B.

Taking into account the above assumptions, it is possible to simplify the set of
equations in such a way that the resulting system is Galilean invariant so that the
Maxwell’s displacement current, the electric force ρeE and the convection current
ρeu, can be neglected [Cuevas (2004)].

With the previous considerations, the equations governing the behavior of a non-
magnetizable, electrically conducting fluid under the action of a magnetic field can
be reduced to

∇·B = 0 , ∇×E = −∂B
∂t
, (A.12)

∇×B = µ0j , j = σ(E + u×B) , (A.13)

∇· u = 0, (A.14)

ρ

(
∂u

∂t
+ (u·∇)u

)
= −∇p+ η∇2u + j×B. (A.15)

Note that taking the divergence of Ampère’s law results in

∇· j = 0, (A.16)

which states the conservation of electric charge for the considered approximation.

A.4 The φ - Formulation (Rm� 1)

Electrically conducting fluids of interest for the research being developed at the
Renewable Energy Institute are electrolytes and liquid metals. One of the main
differences between these two types of conducting fluids lies in their electrical con-
ductivity, being very small for electrolytes and about six orders of magnitude larger
for liquid metals. The difference in the conductivities of these fluids allows different
mathematical approximations and simplifications to the governing equations.

A dimensionless parameter of major importance in MHD is the magnetic Reynolds
number defined as

Rm =
ucL

ηm
= µ0σucL, (A.17)
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where ηm = 1/µ0σ is the magnetic diffusivity, L and uc are characteristic scales of
length and velocity, respectively. This parameter can be interpreted as the ratio of
the induced and applied magnetic fields [Davidson (2001)].

Commonly, in electrolyte or liquid metal flows, both at laboratory and industrial
scales, the magnetic field induced by the fluid motion under the applied fied is very
small when compared with the latter, therefore, Rm � 1. This means that the
applied magnetic field is not modified by the fluid motion.

Under this approximation, Faraday’s law is reduced to

∇×E = 0, (A.18)

and therefore, the electric field is potential, so that

E = −∇φ, (A.19)

where φ represents the electric potential inside the fluid.

Using Equation (A.19), Ohm’s law can be rewritten as

j = σ (−∇φ+ u×B0) . (A.20)

Taking the divergence of the above equation and using the conservation of electric
charge (Eq. A.16), a Poisson equation for the electric potential is obtained:

∇2φ = ∇·(u×B0) . (A.21)

Note that, the applied magnetic field must satisfy the magnetostatic equations

∇·B0 = 0 , ∇×B0 = 0. (A.22)

In summary, the fundamental MHD equations expressed in terms of the velocity field,
pressure and electric potential as primitive variables, corresponding to the so-called
φ - formulation [Smolentsev et al. (2010)] are

∇· u = 0, (A.23)

ρ

(
∂u

∂t
+ (u·∇)u

)
= −∇p+ η∇2u + j×B, (A.24)

j = σ (−∇φ+ u×B0) , (A.25)

∇2φ = ∇·(u×B0) , (A.26)

which is a complete system that can be solved if suitable boundary and initial con-
ditions are suplied, as it is done analytically and numerically in Chapters 2 and 3,
respectively, for the electromagnetically driven flow in the annular container.



Appendix B

The Fourier-Galerkin - Finite
Volume method

The numerical solution of the governing equations was obtained by means of a hybrid
methodology, which was proposed and has been succesfully applied to heat trans-
fer and MHD problems by Nuñez et al. (2012). Since the geometry of the problem
imposes periodicity in the azimuthal direction, it is natural to implement a Fourier
spectral method in the θ-direction. After that, the resulting equations are discretized
using a standard Finite Volume methodology. For the purposes of describing the nu-
merical method, only the 2D case will be presented with the unserstanding that the
extension to 3D problems (such as the one reported in the present thesis) is straight-
forward. Detailed explanations on the application of the spectral approximation can
be found in Peyret (2002), Canuto et al. (2006) and Korpiva (2009) whereas the
finite volume method is extensively described in Versteeg & Malalasekera (1995).

B.1 Preliminary treatment of the governing equa-

tions

We start from the 2D governing Navier-Stokes equations in cylindrical coordinates

1

r

∂ (rur)

∂r
+

1

r

∂uθ
∂θ

= 0, (B.1)

∂ur
∂t

+ (u · ∇)ur −
u2θ
r

= −∂p
∂r

+
1

Re

(
∇2ur −

ur
r2
− 2

r2
∂uθ
∂θ

)
+ fr, (B.2)

∂uθ
∂t

+ (u · ∇)uθ +
uruθ
r

= −1

r

∂p

∂θ
+

1

Re

(
∇2uθ −

uθ
r2

+
2

r2
∂ur
∂θ

)
+ fθ, (B.3)
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where uθ and ur are the azimuthal and radial components of the velocity field,
respectively; fr and fθ represent external forces acting upon the fluid in the respective
directions and the operators are defined as

(u · ∇) = ur
∂

∂r
+
uθ
r

∂

∂θ
, (B.4)

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
. (B.5)

In order to solve the system of equations, it must be rewritten in a simpler, more
convenient form

1

r

∂(rv)

∂r
+

1

r

∂u

∂θ
= 0, (B.6)

∂v

∂t
+Nv = −∂p

∂r
+ Γ∇2v − Γ

r2
v + ΓLv, (B.7)

∂u

∂t
+Nu = −1

r

∂p

∂θ
+ Γ∇2u− Γ

r2
u+ ΓLu, (B.8)

with Γ = 1/Re, u = uθ y v = ur, from where it is easy to find that

Nv = (u · ∇) v − u2

r
, Lv = − 2

r2
∂u

∂θ
+ fr, (B.9)

Nu = (u · ∇)u+
uv

r
, Lu =

2

r2
∂v

∂θ
+ fθ, (B.10)

where the letters L and N are used to indicate linear and nonlinear terms in the
governing equations, respectively.

B.2 Fourier series expansion and Galerkin approx-

imation

Taking advantage of the periodicity of the problem, the important quantities can be
expanded by means of a truncated Fourier series with nθ terms:

p =

nθ/2−1∑
k=−nθ/2

p̂ke
ikθ, (B.11)
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u =

nθ/2−1∑
k=−nθ/2

ûke
ikθ, Nu =

nθ/2−1∑
k=−nθ/2

N̂uke
ikθ, Lu =

nθ/2−1∑
k=−nθ/2

L̂uke
ikθ, (B.12)

v =

nθ/2−1∑
k=−nθ/2

v̂ke
ikθ, Nv =

nθ/2−1∑
k=−nθ/2

N̂vke
ikθ, Lv =

nθ/2−1∑
k=−nθ/2

L̂vke
ikθ, (B.13)

with p̂k, ûk, v̂k, N̂uk, N̂vk, L̂uk and L̂vk as the expansion coefficients for the respective
variables. It is worth noting that these coefficients depend on the radial coordinate
and time only, whereas the angular dependence is kept in the complex exponential
functions.

Substituting equations (B.11) - (B.13) into the governing equations (B.6) - (B.8),
multiplying by the complex conjugates of the exponential functions, integrating over
the interval θ ∈ [0, 2π] and using the orthogonality property (Galerkin approxima-
tion),

(
eikx, eilx

)
=

∫ 2π

0

eikxe−ilxdx =

∫ 2π

0

ei(k−l)xdx = 2πδkl =

{
2π, if k = l,

0, if k 6= l,
(B.14)

results in a set of equations for each wavenumber k:

1

r

∂(rv̂)

∂r
+
ik

r
û = 0, (B.15)

∂v̂

∂t
+ N̂v = −∂p̂

∂r
+ Γ

[
1

r

∂

∂r

(
r
∂v̂

∂r

)
− k2

r2
v̂ − 1

r2
v̂

]
+ ΓL̂v, (B.16)

∂û

∂t
+ N̂u = −ik

r
p̂+ Γ

[
1

r

∂

∂r

(
r
∂û

∂r

)
− k2

r2
û− 1

r2
û

]
+ ΓL̂u, (B.17)

where the subscript k as well as its range have been omitted for simplicity. A very
important feature of the system (B.15) - (B.17) is that it does not depend on θ
anymore, that is, the number of spatial variables was dimished by one, thus turning
a two dimensional, time-dependent problem into a set of one-dimensional ones. Note
that the new variables of these systems are the Fourier expansion coefficients rather
than the physical quantities, so from now on the problem is discretized and solved
in Fourier space.
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B.3 Finite Volume discretization in Fourier space

To obtain the discrete linear equations, the system (B.15) - (B.17) is integrated in
a control volume according to the classical finite volume method. In order to avoid
unphysical solutions due to the so-called checkerboard effect, is it costumary to use
a staggered grid as the one shown in Fig. B.1, where it can be seen that the Fourier
coefficients for the pressure and u component (in black) are located at the same
point, whereas the v component (in blue) is placed half a control volume above,
thus, two different grids are used to solve the equations.

Figure B.1: Staggered grid for the variables in the control volume. Uppercase red
letters are used to indicate the centers of the control volumes (N and S refer to the
north and south neighboring points, respectively), whereas lowercase gray letters are
used to denote the middle point of the boundaries of the control volume P . Sn and
Ss are the surface area of the north and south boundaries, respectively.

Using a first order differencing scheme for time discretization and the middle-point
rule for the diffusive term, the equation for the u component can be rewritten as∫

∆V

∂û

∂t
dV +

∫
∆V

N̂udV = −
∫

∆V

ik

r
p̂dV +Γ

∫
∆V

[
1

r

∂

∂r

(
r
∂û

∂r

)
− k2 + 1

r2
û

]
dV +Γ

∫
∆V

L̂udV, (B.18)

ûP − û0
P

∆t
∆V + N̂0

uP ∆V =− ik

rP
p̂P ∆V + Γ

(
Sn

∆r
(ûN − ûP )− Ss

∆r
(ûP − ûS)− k2 + 1

r2
P

∆V ûP

)
+ ΓL̂0

uP ∆V, (B.19)

where the superscript “zero” is used to indicate the previous time step and the sub-
scripts P , N and S represent the centers of the control volume and its corresponding
north and south neighbors, respectively (see Fig. B.1). The above equation can be
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rewritten in the form

aP ûP = aN ûN + aSûS −
ik

rP
p̂P∆V + Ŝup, (B.20)

with

aN =
ΓSn
∆r

, aS =
ΓSs
∆r

, ŜuP = û0P
∆V

∆t
+ ΓL̂0

uP∆V − N̂0
uP∆V, (B.21)

aP = aN + aS + Γ
k2 + 1

r2P
∆V +

∆V

∆t
. (B.22)

Similarly, the equation for the v component is expressed as

aP v̂P = aN v̂N + aS v̂S −
p̂n − p̂s

∆r
∆V + Ŝvp, (B.23)

where

aN =
ΓSn
∆r

, aS =
ΓSs
∆r

, ŜvP = v̂0P
∆V

∆t
+ ΓL̂0

vP∆V − N̂0
vP∆V, (B.24)

aP = aN + aS + Γ
k2 + 1

r2P
∆V +

∆V

∆t
. (B.25)

The discrete continuity equation (Eq. B.15) is

v̂nSn − v̂sSs +
ik

rP
∆V ûP = 0. (B.26)

B.4 Velocity-pressure coupling (SIMPLEC algo-

rithm)

Given the fact that the pressure is one of the main variables in the mathematical
formulation, but there is no transport equation nor boundary conditions for it, a
strategy to decouple the velocity and pressure fields must be applied. There are
several techniques to achieve this, but in this work a pressure-correction methodology
was implemented.
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The first step is to guess a pressure field, p̂∗, as initial approach. The corresponding
momentum equations for such a field are then

aP û
∗
P = aN û

∗
N + aSû

∗
S −

ik

rP
p̂∗P∆V + Ŝup, (B.27)

aP v̂
∗
P = aN v̂

∗
N + aS v̂

∗
S −

p̂∗n − p̂∗s
∆r

∆V + Ŝvp, (B.28)

where û∗ and v̂∗, in general do not satisfy mass conservation.

Now it is possible to define corrections for the variables:

û = û∗ + û′, v̂ = v̂∗ + v̂′, p̂ = p̂∗ + p̂′, (B.29)

the primed variables being small corrections that are added to the guessed variables
in order to find the correct velocity and pressure fields.

Substraction of Equations (B.27) and (B.28) from Equations (B.20) and (B.23) yields

aP (ûP − û∗P ) =
∑

anb (ûnb − û∗nb)−
ik

rP
∆V (p̂P − p̂∗P ) , (B.30)

aP (v̂P − v̂∗P ) =
∑

anb (v̂nb − v̂∗nb)−
p̂n − p̂s

∆r
∆V +

p̂∗n − p̂∗s
∆r

∆V, (B.31)

where the subscript nb is used to refer to the neighboring control volumes.

From Eq. B.29 the above equations can be written as

aP û
′
P =

∑
anbû

′
nb −

ik

rP
∆V p̂′P , (B.32)

aP v̂
′
P =

∑
anbv̂

′
nb −

p̂′n − p̂′s
∆r

∆V. (B.33)

Depending on the considerations made regarding the first terms of the right-hand side
in the previous equations, a family of methods can be constructed. The generic name
for such a family is SIMPLE, which stands for Semi-Implicit Method for Pressure-
Linked Equations. For the SIMPLEC algorithm (the “C” stands for “Consistent”)
the term

∑
anbû

′
P must be substracted from both equations, thus resulting in(
aP −

∑
anb

)
û′P =

∑
anb (û′nb − û′P )− ik

rP
∆V p̂′P , (B.34)
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(
aP −

∑
anb

)
v̂′P =

∑
anb (v̂′nb − v̂′P )− p̂′n − p̂′s

∆r
∆V. (B.35)

Since the corrections are considered to be small, the terms including the difference
between the central point and its neighbors (first term on the right-hand side) can
be neglected to obtain (

aP −
∑

anb

)
û′P = − ik

rP
∆V p̂′P , (B.36)

(
aP −

∑
anb

)
v̂′P = − p̂

′
n − p̂′s
∆r

∆V. (B.37)

Solving for the velocity corrections:

û′P = − ∆V

(aP −
∑
anb)

ik

rp
p̂′P = −du ik

rP
p̂′P , (B.38)

v̂′P = − 1

∆r

∆V

(aP −
∑
anb)

(p̂′n − p̂′s) = −dv (p̂′n − p̂′s) . (B.39)

Then, the velocity components can be calculated according to

û = û∗ − duik
rp
p̂′P , v̂ = v̂∗ − dv (p̂′n − p̂′s) . (B.40)

In order to correct the velocity field, corrections for the pressure must be known, this
can be achieved by substituting Equation B.40 into the discrete continuity equation
(Eq. B.26)(
v̂∗n− (dv)n (p̂′n − p̂′s)n

)
Sn−

(
v̂∗s − (dv)s (p̂′n − p̂′s)s

)
Ss +

ik

rP
∆V

(
û∗P − (du)P

ik

rp
p̂′P

)
= 0. (B.41)

Since the continuity equation was made discrete at the same point as the pressure, it
can be noted that the evaluation of the pressure differences at the north and south
boundaries can be calculated according to

(p̂′n − p̂′s)n = p̂′N − p̂′P , (p̂′n − p̂′s)s = p̂′P − p̂′S, (B.42)

from which the equation for the pressure corrections is expressed as(
v̂∗n − (dv)n (p̂′N − p̂′P )

)
Sn −

(
v̂∗s − (dv)s (p̂′P − p̂′S)

)
Ss +

ik

rp
∆V

(
û∗P − (du)P

ik

rp
p̂′P

)
= 0, (B.43)



96 Appendix B. The Fourier-Galerkin - Finite Volume method

or in a more simplified form

aP p̂
′
P = aN p̂

′
N + aS p̂

′
S + ŜpP , (B.44)

with

aN = (dv)nSn, aS = (dv)sSs, , (B.45)

aP = aN + aS +
k2

r2P
∆V (du)P , (B.46)

ŜpP = −
(
v̂∗nSn − v̂∗sSs +

ik

rp
∆V û∗P

)
. (B.47)

Note that the source term (Eq. B.47) for this pressure correction is nothing but the
negative of the discrete form of the divergence of the velocity field û∗.

Since the calculation of the pressure corrections was the only thing missing to com-
plete the numerical methodology, now it is possible to list the complete procedure
to follow in order to solve the governing equations:

1. Start with an initial guess for the pressure field, p̂∗.

2. Calculate the coefficients for the velocity components (Eqs. B.21, B.22, B.24
and B.25).

3. With the guessed pressure, solve Equations B.27 and B.28 to get û∗ and v̂∗.

4. Having û∗ and v̂∗, calculate the coefficients for the pressure corrections (Eqs. B.45,
B.46 and B.47).

5. Solve Eq. B.44 to get corrections for the pressure, p̂′.

6. Correct the pressure by means of p̂ = p̂∗ + p̂′.

7. With p̂′, correct the velocity field by means of Eq. B.40

8. Iterate until convergence is reached using the following criterion:

The correct pressure field is obtained when the solution of the
momentum equations yields a free-divergence velocity field.
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B.5 Some comments on the numerical technique

Given the nature of the numerical scheme used in the present work, it is worth
pointing out some important features of it. First, since the methodology combines a
spectral and a finite volume approach, it has some of the advantages of both: in the
one hand, the relative convergence of the solutions is better than the one obtained
with finite volume only, but is not as good as with the purely spectral techniques;
on the other hand, the structure of the linear systems of equations is similar to the
ones obtained with FV, that is, diagonal systems for which very efficient numerical
methodologies (such as TDMA) and computational libraries (like LAPACK or FISH-
PACK) have been developed. So, the hybrid scheme has a good balance between
high convergence and simplicity to solve the discrete governing equations.

Another advantage of the hybrid technique is the implementation of the boundary
conditions, which are exactly the same as for FV, except in the azimuthal direction,
where it does not have to be implemented since the Fourier series expansion satisfies
periodicity naturally. This way, the simplicity of FV method is conserved in the
hybrid technique.

Finally, the hybrid methodology implemented calculates the Fourier coefficients of
the variables of interest, this has the advantage that the calculation of the angular
derivatives of the linear and nonlinear terms can be easily done since in Fourier
space derivatives are calculated simply by multiplying by ik. In order to use this
this approach, the Fast Fourier Transform (FFT) and its inverse must be calculated
during the numerical solution of the governing equations, for which there are several
computational tools to make both calculations efficiently.





Appendix C

Numerical solution of hyperbolic
PDE

As part of the PhD studies, a short-term research stay was done at the Osservatorio
Astronomico di Cagliari (OAC), in Cagliari, Sardinia, Italy. The stay was supported
by the Associazone di Fondazione e di Casse di Risparmio Spa (ACRI), which is
an Italian independent, non-profit, apolitical association aimed to “search coopera-
tion oportunities between members and Italian and foreign entities, companies and
relevant organizations” in order to “provide strategic planning and organizational
asistance as well as develop international relations and arrange actions and projects
with third parties”. This stay was part of a Young Investigators Training Program
(YITP) which was held alongside the 10th PAMIR International Conference - Fun-
damental and Applied MHD in June 2016.

Since MHD phenomena play a major role in astrophysical flows, the objective of
the one-month stay was to learn about the mathematical nature of the equations
governing astrophysical flows and to develop numerical methods to solve them. This
Appendix briefly describes the basic mathematical and numerical aspects of the gov-
erning equations and some textbook problems that were solved during the aforemen-
tioned stay. An easy-to-follow, detailed description of the numerical methods as well
as its application to astrophysical flows, gas dynamics and many other phenomena
can be found in LeVeque (1992), LeVeque et al. (1998) and LeVeque (2004).

C.1 Hyperbolic conservation laws

The application of basic conservation principles to many physical situations results
in the so-called conservation laws. Consider a one-dimensional domain over which
the density of a conserved quantity q(x, t) is distributed. In a finite-sized control
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volume, the total amount Q(t) enclosed between the interval x ∈ [x1, x2] can be
calculated by means of

Q(t) =

∫ x2

x1

q(x, t)dx. (C.1)

If there are no sinks or sources of the physical quantity inside the control volume, the
only way its value can change is because of the flux through its boundaries, hence

dQ

dt
=

d

dt

∫ x2

x1

q(x, t)dx = F1(t)− F2(t) = f(q(x1, t))− f(q(x2, t)), (C.2)

where the fluxes are considered to depend on the value of the density q(x, t) in
order to consider the most general case. Figure C.1 shows the sketch of the physical
situation described above.

Figure C.1: Conservation of the physical quantity q(x, t) in a one-dimensional do-
main x ∈ [a, b]. Since there are no sinks/sources in the control volume, the to-
tal amount of the physical quantity can only change due to the fluxes through its
boundaries.

Equation C.2 is a conservation law and similar equations are encountered in very
many physical situations when modeling natural phenomena. Using standard calcu-
lus notation Equation C.2 can be rewritten as

d

dt

∫ x2

x1

q(x, t)dx = −f(q(x, t))

∣∣∣∣x2
x1

. (C.3)

If the above equation is to be solved, the identity of the fluxes must be specified. It is
common to relate the fluxes at the boundaries with the physical quantity of interest,
so some assumptions can be made, for instance, if the quantity is being transported
by a fluid (as it will be considered further in some examples), the flux at any point at
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time t can be considered as the product of the fluid velocity u(x, t) times the density
q:

f(q) = u(x, t)q.

If the velocity is constant, the flux becomes simpler as well as the equation itself.
Regardless of the considerations about the flux, Equation C.3 must hold over every
arbitrary interval [x1, x2], which can be a difficult task to achieve, so, instead of
tackling this equations directly, it can be converted into a partial differential equation
that can be handled by different techniques. To do so, it should be rewritten in the
form

d

dt

∫ x2

x1

q(x, t)dx = −
∫ x2

x1

∂

∂x
f(q(x, t))dx. (C.4)

By further manipulation it can be found that∫ x2

x1

∂

∂t
q(x, t)dx = −

∫ x2

x1

∂

∂x
f(q(x, t))dx, (C.5)

∫ x2

x1

[
∂

∂t
q(x, t) +

∂

∂x
f(q(x, t))

]
dx = 0. (C.6)

Since the values of x1 and x2 can be chosen arbitrarily, the only way the above
expression equals zero is if the integrand is also zero, hence the differential form of
the conservation law is

∂

∂t
q(x, t) +

∂

∂x
f(q(x, t)) = 0, (C.7)

which is a hyperbolic partial differential equation (HPDE).

As stated before, HPDEs arise in many physical situations, for example, consider
the Navier-Stokes equations for an incompressible viscous fluid

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u, (C.8)

where u is the velocity vector field, p is the pressure field, ρ and ν are the mass
density per unit volume and kinematic viscosity of the fluid, respectively. Now, if the
viscosity is neglected (ideal fluid) and the nonlinear term and the pressure gradient
are algebraically manipulated, the resulting equations are the Euler equations in the
form

∂u

∂t
+∇ ·

(
1

2
uu +

1

ρ
pI

)
= 0, (C.9)
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which are hyperbolic in nature. Mathematically speaking, removing the diffusive
term in Navier-Stokes changed its mathematical nature from parabollic to hyper-
bolic. It is woth noting that something similar happens in astrophysical level since
astrophysical fluids have little to no viscosity, hence the mathematical equations gov-
erning astrophysical magnetohydrodynamic flows are also hyperbolic. Gas dynamics,
relativistic flows and compressible fluids all are modeled using HPDE.

A very important feature of the hyperbolic equations is that they admit shockwaves
in their solutions. Although, physically speaking, shockwaves are very steep gradients
of a certain variable, mathematically they are discontinuities and, as such, must be
handled very carefully when solving numerically the conservation equations because
these discontinuities can appear even if the initial conditions are smooth.

C.2 The Riemann problem

Since hyperbolic systems are likely to develop discontinuities in their solutions, this
section is devoted to describe a classical problem where a simple discontinuity is
present.

Consider the conservation equation C.7 together with the initial condition

q(x, 0) = q0(x) =

{
ql, if x < 0,

qr, if x > 0,
(C.10)

that is, piecewise constant data with a single jump discontinuity (Fig. C.2). This

Figure C.2: The initial condition for the Riemann problem consist in a single jump
discontinuity at x = 0.
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problem, known as Riemann problem, is relatively easy to solve, but its solution
reveals many aspects of the solutions of more complicated problems and constitutes
the basis of many numerical methods for hyperbolic systems.

If the flux function is considered to be dependent on certain constant velocity ū, the
conservation law simplifies to the linear advection equation

∂q

∂t
+ ū

∂q

∂x
= 0. (C.11)

For this particular equation, it is easy to demonstrate that the solution has the form

q(x, t) = q0(x− ūt), (C.12)

that is to say, the initial discontinuity moves in the x-direction without changing its
original shape. Figure C.3 shows this behavior.

Figure C.3: If ū > 0, the discontinuity travels to the right as time passes.

The knowledge of this simple behavior of the solution to the linear advection equation
was the main idea employed by Godunov to develop the numerical scheme named af-
ter him. Although the ideas of Godunov’s method are simple, they are very powerful
as a basis to develop better, more accurate methods for HPDE.

C.3 Godunov’s method (The REA algorithm)

One of the first methods to numerically solve conservation equations was proposed
by Godunov (1959). Godunov’s original idea is based on the finite volume method:
the domain is discretized in several control volumes (closed intervals of size ∆x for
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Figure C.4: Initial condition and space discretization for a hyperbolic problem.

the one-dimensional case), each of which is denoted by the interval Ci = [xi−1, xi].
At the center of each cell, the value of the initial condition is Qi (see Fig. C.4). As in
the finite volume method, the first step in Godunov’s method is to calculate average
values for the variables of interest and assign this value to the whole cell. This can
be done by means of the integral

q̄i(x) =
1

∆x

∫ xi

xi−1

q0(x)dx ∀ x ∈ [xi−1, xi], (C.13)

or by simply taking the value at the mid-point of the cell:

q̄i(x) = Qi +O(∆x2) ∀ x ∈ [xi−1, xi]. (C.14)

The latter is a good approximation because has a good order of accuracy and is very
simple to do, so it is better to calculate average values using Eq. C.14.

Once the average values has been assigned, the initial condition is now represented
as a piecewise-constant reconstruction of the original distribution, as shown in
Fig. C.5. Here the reconstruction is denoted by q̄i(x, tn), where tn represents the
current time step. Note that this reconstruction has just created a discontinuity at
the cell interfaces, thus a Riemann problem for each control volume arises.

If the time step is not that big, then it is expected that the original piecewise-constant
function will only travel a small distance, so that the new solution is given by

q̄n+1
i (x) = q̄i(x− ū∆t, tn). (C.15)
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Figure C.5: Piecewise-constant reconstruction of the variable q using average values.
At the cell interfaces a Riemann problem is created as a result of the reconstruction.

So that, taking advantage of the behavior of the Riemann problem, the solution is
evolved one time step forward simply by moving the profile obtained in the previous
instant. Finally, the new average values can be found simply by calculating the
area under the curve in every cell (which for this case is the area of two rectangles
added together) and dividing it by ∆x (see Fig. C.6). As a result of this averaging
procedure, a new piecewise-constant function is obtained and the algorithm must be
repeated to continue advancing in time.

It is very important to point out that a necessary condition must be met in order
for Godunov’s method to be stable and converge to the correct solution: the CFL
condition (named after Courant, Friedrichs and Lewy), which stablishes that the
discontinuities must travel, at most, one cell from its previous position, that is to
say, the information must have a chance to propagate at the correct physical speed.
In mathematical terms

c =

∣∣∣∣ ū∆t

∆x

∣∣∣∣ 6 1, (C.16)

where c is the Courant number, which compares the distance traveled by the discon-
tinuity (ū∆t) with the length of the cell (∆x). This condition is necessary but not
sufficient to ensure the stability of the numerical code. As it will be shown in the
next examples, for the linear advection equation the best results are obtained when
c = 1.

Finally, to close this section, Godunov’s method (REA algorithm) can be summarized
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Figure C.6: The Riemann problem is evolved in time by moving the current distri-
bution a distance ū∆t. After that, new average values can be found by calculating
the area under the curve in every control volume.

in three steps:

1. Reconstruct a piecewise-constant function using average values for each cell.

2. Evolve (solve) the respective Riemann problems by means of exact or approx-
imate solutions taking into account the CFL condition.

3. Average the solutions obtained in the previous step over each cell to obtain
new cell averages.

C.3.1 Numerical examples using Godunov’s method

To show the behavior of the solutions obtained with the REA algorithm, the linear
advection equation (Eq. C.11) was solved in the interval x ∈ [−1, 1] using periodic
boundary conditions, a time step ∆t = 0.01 and ū = 1. The latter implies that the
initial condition and the numerical solution should coincide everytime a revolution is
completed (every unit time). Two different initial conditions, each with two different
values of the Courant number, were tested: a smooth function,

q0(x) = sin(2πx), (C.17)
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and a discontinuous function,

q0(x) =



1, −1 ≤ x ≤ −0.75,

0, −0.75 < x < −0.25,

1, −0.25 ≤ x ≤ 0.25,

0, 0.25 < x < 0.75,

1, 0.75 ≤ x ≤ 1.

(C.18)

Figure C.7 shows the solutions obtained using c = 0.5 and c = 1.0 for t = 2, that
is, after two revolutions have been completed. It can be seen that this method gives
very smeared solutions when the Courant number is equal to one half, and this
is because this method, in general, introduces too many numerical difussion; as a
result, the profiles get damped very fast as time passes and this cannot be avoided
even for the smooth initial conditions, let alone for the discontinuous one, for which
the discontinuities are completely absent in the numerical solution. On the other
hand, for c = 1 the numerical solution and the initial condition are indistinguishable
from each other (even for the discontinuous case) and this is because the piecewise-
constant profile travels exactly on cell each time step, so the average values calculated
at the end of the REA algorithm are the same as in the previous time step, thus the
shape of the profile is exactly the same since no numerical difussion is introduced
in the solution. Unfortunately, the absence of numerical difussion is expected to
happen only for very simple equations. If the velocity u is not constant or if the
conservation equation is nonlinear, then the discontinuities at each cell interface will
travel a different distance in the same time interval and the the numerical solution
will be damped.

In order to improve the numerical solutions given by Godunov’s method, different
reconstructions have have been proposed. The next section briefly describes some of
them.

C.3.2 Piecewise-linear reconstruction

The REA algorithm previously described makes a reconstruction by means of a
piecewise-constant function, then solves the Riemann problems arising at the cell
interfaces and finally averages over each cell to get a new reconstruction for the next
time step. One of the ways to improve the numerical method in order to increase
the order of accuracy is to make a higher-order reconstruction, thus the algorithm
remains the same and only the reconstruction based on the average values is modified.
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Figure C.7: Solutions for the linear advection equation using c = 0.5 (lower row) and
c = 1 (upper row) for a smooth (left column) and discontinuous (right column) initial
condition. Red line is the initial condition whereas the black line is the numerical
solution.
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A piecewise-linear reconstruction at every control volume has the form

q̄i(x, tn) = Qi + σi(x− x̄i) ∀ x ∈ [xi−1, xi], (C.19)

where σi is the slope of the linear function at the i-th cell and x̄i = 1
2
(xi−1 +xi) is the

middle-point of the interval (see Fig. C.8). This reconstruction has the advantage
that the average value in each cell equals the value of the linear function evaluated
at the middle-point, no matter what value the slope σi takes. The latter is crucial
in order for the method to be conservative.

(a) (b)

Figure C.8: Piecewise-linear reconstruction. (a) Choosing this reconstruction also
creates a Riemann problem at each interface. (b) The linear distribution is evolved
by moving the previous distribution to the right.

To implement this new approximation only one question remains: what values for
the slopes must be chosen?

Slope/flux limiters

It is clear that choosing σi = 0 results in the original Godunov’s method, so it is
desirable to chose nonzero values for the slopes. With this in mind and given the
fact that two points are nedeed to calculate the slope, three possibilities arise: use
the previous and current cells (i and i− 1), the next and current cells (i and i + 1)
or the previous and next cells (i + 1 and i − 1). Even though these three choices



110 Appendix C. Numerical solution of hyperbolic PDE

are the most natural to implement, many other choices, which can alternate between
the three basic ones, can be made. It is important to note that the choice of the
slopes is a very easy-to-grasp geometrical interpretation, but it can also be given a
physical one as the values chosen to limit the fluxes through the boundaries in each
cell. Since these fluxes are related to the spatial derivative of the function f(q(x, t)),
they can be approximated from

∆Qi

∆x
=
Qi+1 −Qi

∆x
, (C.20)

where ∆Qi is the jump discontinuity at the i-th interface.

For the linear advection equation, it can be shown that the discrete form of the fluxes
considering a linear reconstruction has the form

Fi = max(ū, 0)Qi + min(ū, 0)Qi+1 +
1

2
|ū|
(

1−
∣∣∣∣ ū∆t

∆x

∣∣∣∣)φ(θi)∆Qi, (C.21)

where it has been considered that the velocity ū can have positive or negative values.
φ is the flux-limiter function, which depends on the variable

θi =
∆QI

∆Qi

, with I =

{
i− 1, if ū > 0,

i+ 1, if ū 6 0.

Depending in the choice of the variable θ, different methods can be obtained. Ta-
ble C.1 shows different choices for the flux-limiter function.

Table C.1: Different methods for piecewise-linear reconstruction.

Method φ(θ)
Godunov 0

Lax-Wendroff 1
minmod minmod(1,θ)

Superbee max(0,min(1,2θ),min(2,θ))

MC max(0,min((1+θ)/2,2,2θ))

van Leer
θ + |θ|
1 + |θ|
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The function minmod is defined by

minmod(a, b) =


a, if |a| < |b| and ab > 0,

b, if |b| < |a| and ab > 0,

0, if ab 6 0.

C.3.3 Numerical results using piecewise-linear reconstruc-
tion

To show the improvements achieved with a higher-order reconstruction, the linear
advection equation was solved using the same inital conditions as for Godunov’s
method (Eqs. C.17 and C.18). Figure C.9 shows the comparison between the initial
condition and the numerical results obtained using the different methods pointed
out in Table C.1 considering a smooth initial condition, whereas Fig. C.10 shows the
same except that the initial condition is discontinuous. In both cases the Courant
number was chosen to be c = 0.5. Since the boundary conditions are periodic and
the value of the velocity is ū = 1, the initial condition and the numerical solution
must coincide everytime a whole revolution is completed. Both figures are shown for
t = 2.

For the smooth data, as it was previously seen, Godunov’s method introduces too
many numerical difussion, thus giving very smeared solutions. The other five numer-
ical solutions are second-order accurate, that is why they agree very well with the
initial condition. Among the five it can be noticed that Lax-Wendroff and the MC
limiter yield the most accurate solutions.

For the discontiuous data, again Godunov’s method gives smeared solutions and is
not capable of approximating the discontinuities of the problem. For this case the
worst solution is given by the Lax-Wendroff method, this is because Lax-Wendroff is
based in a linear reconstruction of the solution which calculates very large slopes/fluxes
near the discontinuities. These large slopes/fluxes eventually produce unphysical os-
cillations that grow as time goes by. To avoid these oscillations, slope/flux limiters
are implemented. The Superbee and MC-limiters are the most accurate solutions
because are able to track the discontinuities although they are somewhat smoothed.

From the shown examples, it can be clearly seen that increasing the order of the
reconstruction from order one to order two greatly increases the accuracy of the
numerical solutions, nevertheless Godunov’s method is still the most used approxi-
mation employed when simulating astrophysical flows [e. g. Bachetti et al. (2010),
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Figure C.9: Comparison between the analytical solution (in red) and numerical
solutions (in black) for the one-dimensional linear advection problem with periodic
boundary conditions and a smooth initial condition.
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Figure C.10: Comparison between the analytical solution (in red) and numerical
solutions (in black) for the one-dimensional linear advection problem with periodic
boundary conditions and a discontinuous initial condition.
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Romanova et al. (2013)]. Observing this behavior, the goal of the one-month stay
was to explore the possibility of implementing a global (spectral) approximation to
solve hyperbolic PDE. Since the idea behind spectral methods is to increment the
order of approximation so that the calculations are done considering all the points
in the domain, not just the immediate neighbors, at first glance it appears that this
is plausible, unfortunately, due to the short time available to focus on this project,
it was not possible to advance further to achieve this goal.
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[66] Suslov, S. A., Pérez-Barrera, J., & Cuevas, S. (2017). “Electtromagnetically
driven flow of electrolyte in a thin annular layer: axisymmetric solutions”. Journal
of Fluid Mechanics 828, 573–600.

[67] Thess, A., Votyakov, E. V., Knaepen, B., & Zikanov, O. (2007). “Theory of the
Lorentz force flowmeter”. New Journal of Physics 9, 28.

[68] Thess, A., Votyakov, E. V., & Kolesnikov, Y. (2006). “Lorentz Force Velocime-
try”. Physical Review Letters 96 (16), 164501–1–164501–4.

[69] Van Heijst, G. J. F., Kloosterziel, R. C., & Williams, C. W. M. (1991). “Lab-
oratory experiments on the tripolar vortex in a rotating fluid”. Journal of Fluid
Mechanics 225, 301–331.

[70] Versteeg, H. K. & Malalasekera, W. (1995). “An Introduction to Computational
Fluid Dynamics: the finite volume method”. Longman Scientific & Technical.



Bibliography 121

[71] West, J., Gleeson, J. P., Alderman, J., Collins, J. K., & Berney, H. (2003).
“Structuring laminar flows using annular magnetohydrodynamic actuation”. Sen-
sors and Actuators, B: Chemical 96, 190–199.

[72] Yi, M., Qian, S., & Bau, H. H. (2002). “A magnetohydrodynamic chaotic
stirrer”. Journal of Fluid Mechanics 468, 153–177.

[73] Zhao, Y. & Zikanov, O. (2012). “Instabilities and turbulence in magnetohydro-
dynamic flow in a toroidal duct prior to transition in Hartmann layers”. Journal
of Fluid Mechanics 692, 288–316.

[74] Zhao, Y., Zikanov, O., & Krasnov, D. (2011). “Instability of magnetohydrody-
namic flow in an annular channel at high Hartmann numbers”. Physics of Fluids
23, 084103.


	Portada 
	Content 
	Introduction 
	Abstract  
	Introduction
	Chapter 1. Experimental Setup and Observations 
	Chapter 2. Analytical Solutions for the Flow Inside an MHD Stirrer 
	Chapter 3. Numerical Solutions of the Governing Equations 
	Concluding Remarks 
	Appendixes
	Bibliography

