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Abstract

This thesis is mainly devoted to the experimental and numerical study of wakes gen-
erated by localized Lorentz forces, named magnetic obstacles, in both electrolytes and
liquid metals. As a complement, some experimental results of wake patterns behind a
solid circular disk are also presented. The motivation of the study arises from multiple
fluid systems of technological interest, mainly in energy related applications, where the
understanding of wake patterns behind obstacles is of prime importance. These include
problems of fluid-structure interaction, for instance in wind energy systems, as well as
heat transfer enhancement devices. The term magnetic obstacle refers to Lorentz forces
created in conducting fluids by the interaction of induced or applied electric currents with
localized external magnetic fields. In addition to offering an alternative to the production
of wakes in laboratory experiments, flows past magnetic obstacles are of importance in a
novel measurement technique called Lorentz force velocimetry. Likewise, these flows may
find important applications in heat exchangers. Firstly, the wakes generated in a thin
layer of electrolyte by traveling localized Lorentz forces produced by the interaction of
an applied electric current and the field of a moving magnet, are analyzed. Flow visual-
ization using dye along with Particle Image Velocimetry (PIV) were used to characterize
the flow. Different patterns were identified as well as the transition between them, while
the main characteristic features were reproduced through a quasi-two-dimensional (Q2D)
numerical model. This model was also used to investigate the wake patterns created by
a pair of magnetic obstacles placed side by side in a layer of electrolyte. By varying the
separation between the obstacles and the intensity of the applied electric current, the
characterization of different flow patterns was carried out. The resemblance with wake
patterns reported for a pair of solid obstacles is remarked. Further, with the aim of de-
termining the influence of the confining walls in the flow past a magnetic obstacle, an
experimental study was performed where the effect of the blockage parameter, namely
the ratio of the characteristic length of the magnet and the separation between the con-
fining lateral walls, was explored. Results allow to build a map of qualitative behavior
that characterize the flow patterns for four values of the blockage parameter in terms of
the dimensionless governing parameters, namely, the Reynolds number and the Lorentz
force parameter. The study was complemented with numerical simulations based on the
Q2D model. The present work also comprises the experimental and numerical analysis
of the flow past a magnetic obstacle in a liquid metal flow where a localized Lorentz
force is created by the interaction of currents induced by the fluid motion and an exter-
nal magnetic field spot. Experiments were carried out in a liquid metal loop driven by
an induction pump while measurements were obtained through Ultrasonic Doppler Ve-
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4 Abstract

locimetry. The main objective of the analysis was to understand the interplay of inertial,
viscous, and magnetic forces and demonstrate that a liquid metal vortex shedding flow
can be relaminarized when inertia overcomes the induced magnetic force. Using a Q2D
model, numerical simulations allowed to reproduce the main physical features of the flow.
Finally, a complementary study on the wake patterns behind a solid circular disk, carried
out during an internship at ESPCI, in Paris, France, is presented. The study involved PIV
measurements of velocity fields and the analysis of the longitudinal vorticity component
using the azimuthal Fourier decomposition technique with the aim at characterizing the
three-dimensional wake. The main findings of the present study are summarized in the
final conclusions.



Introduction

One of the fundamental problems of fluid dynamics that has occupied scientists and
engineers for many years is the flow past solid obstacles. From the basic point of view,
this problem poses a multitude of theoretical and experimental challenges since we are
dealing with complex dynamical systems with a vast wealth of behavior. Its study has
allowed fundamental advances in topics such as boundary layer, instability, chaos and
transition to turbulence, and despite the innumerable works reported in the specialized
literature, it is currently a relevant topic of research with different variants which are still
far from being fully understood. The great interest generated in the study of flows over
obstacles comes essentially from their presence in countless technological applications,
as well as in various natural phenomena. This problem is also related in many ways to
the transport and efficient use of energy. The optimal design of land, air and marine
vehicles, for example, requires an accurate knowledge of the behavior of the flows past on
these bodies. Equally important are flows driving wind turbines as well as those affecting
buildings or other constructions where structural aspects are of vital importance (Irwin,
Sept. 2010). Flows past obstacles are widely used in various heat exchangers in order
to improve heat transfer by generating vortices. Precisely, what characterizes the flows
past obstacles is the formation of wakes behind them, where vortices are generated due
to the detachment of the boundary layer initially adhered to the object. The nature of
these wakes depends mainly on the Reynolds number and it may exhibit steady or time-
dependent behavior and being laminar to turbulent, with a range of behaviors between
these regimes(Zdravkovich, 1997). While in certain applications it is desired to suppress or
minimize the existence of vortices in the wake behind objects, and thereby the associated
energy dissipation e.g., in the design of vehicles (Moin and Kim, January. 1997) in other
cases it is intended to generate the largest number of vortices that allow a greater energy
transport as in the heat exchangers (Fiebig, 1997). It has also been proposed the use of
the Bénard-von Kármán (BvK) wake to capture energy through a membrane placed in a
way that interacts with the wake (Allen and Smith, 2001).

Studies have also been carried out on the structures observed in wakes and the flow pat-
terns that are formed when flows interact with solid obstacles or oscillating aerodynamic
profiles. For instance, Godoy-Diana et al. (2008) analyzed a flow governed by three di-
mensionless parameters, the Reynolds number, the amplitude of a flapping aerodynamic
profile and the frequency of oscillation. They found three flow patterns, namely, the
Bénard-von Kármán street (BvK), alignment of vortices on a central axis and the reverse
Benárd-von Kármán street (rBvK). In the latter the direction of rotation of each vortex is
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6 Introduction

reversed with respect to the classical BvK-wake. In addition to these three flow patterns
there is a wide variety of wakes found behind a foil, some of them are the 2P wake (which
will be described later), the 2P+2S wake and a variety of wakes with up to 16 vortices
per oscillation period (Schnipper et al., 2009). As well as the oscillation of the solid
obstacle produces intriguing wake modifications, very interesting patterns are observed
when the wakes created by different obstacles interact (Peschard and Le Gal, 1996). In
fact, the flow patterns found behind a pair of solid obstacles depend, in addition to the
Reynolds number, on the proximity between them. It has been reported in experimental
and theoretical studies that a bistable flow pattern appears for certain values of the sep-
aration between the solid obstacles(Zdravkovich, 1985; Le Gal et al., 1990; Peschard and
Le Gal, 1996; Sumner et al., 1999). Another interesting question is how the wake behind
solid obstacles is modified when the wake interacts with a solid wall instead of another
solid obstacle. In fact, the flow pattern presents a steady behavior at higher Reynolds
numbers than those found in the unbounded case (Davis et al., 1984; Camarri and Gi-
annetti, 2007; Singha and Sinhamahapatra, 2010). The wakes previously mentioned such
as the BvK wake, the rBvK wake, the 2P wake and some others are examples of wakes
in two dimensional systems. Evidently, there are many flows past solid obstacles where
three dimensional effects are very important, for example in flows past a sphere, a disk
or a cube. It has been found that behind these three bodies appears the same transition
flow pattern as a function of the Reynolds number. At low Reynolds numbers, the first
observed flow pattern is an axisymmetric flow; by increasing the Reynolds number two
counter-rotating vortices appears and finally, for a high Reynolds number, the Hairpin
vortex is found (Gumowski et al., 2008; Bobinski et al., 2014; Klotz et al., 2014).

The interaction of viscous flows with solid obstacles is not the only way to create wake pat-
terns. In fact, localized electromagnetic forces generated by the interaction of an external
magnetic field with an applied or induced electrical current in an electrically conductive
fluid may act, under some conditions, as an obstacle for the fluid and reproduce flow
patterns observed behind solid obstacles although more complex patterns can also arise.
(Cuevas et al., 2006a; Afanasyev and Korabel, 2006b; Votyakov et al., 2007). Despite
the similarity between flows past a solid obstacle and flows generated by the action of a
localized electromagnetic force, it is recognized that there are important differences be-
tween them (Votyakov and Kassinos, 2009, 2010). Differences are originated owing to the
fact that while flows past solid obstacles are governed by a single parameter, namely, the
Reynolds number, flows interacting with a localized electromagnetic force involve a second
governing parameter: the Hartmann number. This parameter estimates the importance
of magnetic forces compared with viscous forces and it is usually larger in a liquid metal
due to its high electrical conductivity. The existence of a second governing parameter may
lead to flow behaviors very different from those observed in the flow past solid obstacles.
In the case of liquid metal flows, the relative motion between the fluid and the applied
magnetic field induces electric currents that interact with the magnetic field and generate
a localized Lorentz force that points in opposite direction to the fluid motion, acting as
an obstacle. (Cuevas et al., 2006a,b; Votyakov et al., 2007, 2008; Domı́nguez et al., 2015).
For this reason, Cuevas et al. (2006b) coined the term magnetic obstacle to refer to a lo-
calized Lorentz force that opposes the flow. Several theoretical and experimental studies
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have been developed on the flow past a magnetic obstacle (Votyakov et al., 2008; Ken-
jeres et al., 2011; Tympel et al., 2013; Domı́nguez et al., 2015). The presence of several
magnetic obstacles on the flow has been addressed numerically by Kenjeres (2012) and
the possibility of using arrangements of magnetic obstacles for heat transfer enhancement
has also been explored (Zhang and Huang, 2013).

Owing to the low electrical conductivity of electrolytes, induced currents are negligible
and do not produce a noticeable localized Lorentz force. However, a Lorentz force can
be created in electrolytes by applying an external electric current which interacts with
the applied magnetic field (Honji, 1991; Honji and Haraguchi, 1995; Afanasyev and Ko-
rabel, 2006b). Some experimental (Honji, 1991; Honji and Haraguchi, 1995; Afanasyev
and Korabel, 2006b; Alcalá and Cuevas, 2014; Román et al., 2017) and numerical studies
(Beltrán, 2010; Román et al., 2015) have explored these flows, however they are quite
few compared to those involving liquid metals. It has been observed that for a fixed elec-
tromagnetic force strength, the transition flow pattern in an electrolyte as the Reynolds
number increases presents a jet-like flow, a traveling dipole vortex and vortex shedding
(Román et al., 2017; Honji and Haraguchi, 1995; Afanasyev and Korabel, 2006b). The
experimental configuration used in the electrolyte studies mentioned above, consists of
a rectangular container with a layer of electrolyte where electrodes are placed along the
larger side of the container so that an external electric current can be applied transversally
while a permanent magnet is moved with a constant velocity underneath the container
perpendicularly to the applied current. A similar experimental configuration, although
without applied currents, has been also used to study vortex patterns in liquid metal flows
(Samsami et al., 2014; Prinz et al., 2016).

The main purpose of the present work is to contribute, through experimental studies
and numerical simulations, to the understanding of the dynamics of flows past magnetic
obstacles. This work comprises both, the study of the wake generated behind a magnetic
obstacle in a thin layer of electrolyte under different configurations and the study of the
wake generated behind a magnetic obstacle in a liquid metal duct flow. In addition, a
brief study of the wake behind a solid obstacle, which was performed during a stay at
the École Supṕrieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI-
ParisTech), is included. Apart from the present introduction, the thesis contains five
additional chapters.

In Chapter 1, the wake patterns behind a magnetic obstacle in an electrolyte layer are
studied. Flows are analyzed qualitatively by visualization from above using dye, and
through PIV measurements of velocity fields and vorticity distribution. Vorticity fields
as a function of time show the transition between Bénard-von Kármán wake (BvK wake)
and a 2P wake. It is important to remark that this transition in the flow behind a
magnetic obstacle in an electrolyte layer has not been reported in previous studies. The
experimental results are condensed in an experimental flow transition map. A quasi-two
dimensional (Q2D) numerical model is used to reproduce the experimental observations.
Numerical and experimental results confirm that, under certain parameter values, inertia
overcomes the electromagnetic braking force.
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Chapter 2 is mainly focused on the numerical analysis of the flow past a pair of mag-
netic obstacles, placed in side by side configuration, in an electrolyte layer. The flow is
simulated using a Q2D numerical model. The flow is analyzed for different values of the
separation distance between the magnetic obstacles for a fixed Reynolds number. Through
numerical Lagrangian tracking and Fourier analysis, the characteristic regimes of the flow
are identified and compared with those observed in flows past a pair of cylinders.

The experimental and theoretical study of the interaction between the wake behind a
magnetic obstacle and the lateral walls is presented in Chapter 3. The effect of the
walls in the flow patterns is explored through the variation of the blockage parameter, β,
which is the ratio between the length of the magnet and the width of the channel in the
cross stream direction. As the blockage parameter varies the flow patterns are analyzed
by visualization of the flow using dye and simulated numerically using a Q2D model.
Transition flow maps are obtained as a function of the Reynolds number and Lorentz force
parameter for the four values of the blockage parameter explored. Numerical simulations
reproduce the flow behavior and the transition flow maps and allow the identification of
two flow patterns that have not been reported in the literature.

In Chapter 4, an experimental study of the flow past a magnetic obstacle in liquid metal
duct flow is presented. The liquid metal (GaInSn eutectic alloy) circulated in a loop
driven by an induction electromagnetic pump along the channel length. Experimental
measurements of the u component of the velocity are made with an Ultrasonic Doppler
Velocimeter (UDV). These measurements show a transition from steady state to a time-
dependent flow as the Reynolds number increases, but if this number continues to grow,
the steady flow is again recovered. The Q2D numerical model captures the main physical
flow behavior and reproduces the experimental results satisfactorily.

In Chapter 5, as a complement to the study of wakes, the flow past a solid circular disk
immersed in a water channel is presented. The flow is explored experimentally in a plane
normal to the flow direction. The temporal evolution of the longitudinal component of
vorticity is analyzed using azimuthal Fourier decomposition with the aim at understanding
different wake patterns.

Finally, we present the main conclusions of this thesis.



Chapter 1

Experimental and numerical study of
wake patterns behind a magnetic

obstacle in an electrolyte layer

In this Chapter1, we present an experimental and numerical study of vortex wakes pro-
duced by a travelling localized Lorentz force in a thin layer of electrolyte. The fluid is
contained in an open rectangular channel with two parallel electrodes placed along the
longest walls so that a uniform DC current is supplied through the layer. A permanent
magnet located underneath the container is moved with a constant velocity so that the
interplay of the moving magnetic field and the applied transversal current generates a
Lorentz force. The variation of the applied current and the velocity of the magnet leads
to different vortex patterns such as jet-like flow, travelling vortex dipole, Bénard-von
Kármán wake and 2P wake, which are visualized with tracers and analyzed using Particle
Image Velocimetry. The flow is governed by the Reynolds number, based on the velocity
and size of the travelling magnet, and the Chandrasekhar number, based on the applied
current. An experimental map characterizing different flow patterns and the transition
among them is built in terms of these parameters. Numerical results using a quasi-two-
dimensional model reproduce the main features observed in the experiments.

1.1 Introduction

The study of vortex formation and evolution in wakes is of prime importance for countless
applications and natural phenomena involving fluid-structure interactions. For instance,
the mechanisms underlying different propulsion strategies in animals and man-made de-
vices or those that allow to optimize equipments for heat transfer enhancement, rely on
a deep understanding of the spatio-temporal behavior of wakes.

There is a wide variety of wakes reported in the literature of the flow past solid obstacles.
The best known is the classical Bénard-von Kármán (BvK) wake observed when a free
stream impinges on a fixed cylinder (Zdravkovich, 1997). This represents a drag wake
and is probably the most studied due to its ubiquity in many applications. In the reverse

1This Chapter is mainly based on the paper: Román, J., Figueroa A. Cuevas, S., 2017, “Wake
patterns behind a magnetic obstacle in an electrolyte layer”. Magnetohydrodinamics, 53, 55 - 66.
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Bénard-von Kármán (rBvK) wake the direction of rotation of each vortex is reversed with
respect to the classical BvK wake and is a feature of propulsive motion (Godoy-Diana
et al., 2008). Another wake that occurs behind oscillating structures such as cylinders and
aerofoils is the 2P wake where two vortex pairs are shed per oscillation period (Schnipper
et al., 2009). Interestingly, experimental studies have reported the transition from a one
kind of wake to another (Godoy-Diana et al., 2008).

Magnetohydrodynamic flows offer an alternative for the generation of wakes in electrically
conducting liquids in the absence of solid bodies. In fact, it has been shown that localized
Lorentz forces act as obstacles for the flow and produce vortex patterns that resemble,
in some aspects, the flows past solid obstacles (Cuevas et al., 2006a; Afanasyev and
Korabel, 2006b; Votyakov et al., 2007). When the conducting fluid is a liquid metal, the
relative motion of the fluid and a localized field induces electric currents that interact with
the same field to produce a Lorentz force that oppose the liquid (Cuevas et al., 2006a;
Votyakov et al., 2007, 2008; Domı́nguez et al., 2015). Although some vortex patterns are
observed in either electrolytes or liquid metals, some others like the six-vortex pattern
are distinctive features of liquid metal flows under specified conditions (Votyakov et al.,
2007). A variety of characteristic phenomena like the formation or suppression of vortices,
symmetry breakdown, and vortex shedding has been observed in flows driven in a liquid
metal layer by an external magnet in rectilinear motion (Samsami et al., 2014; Prinz et al.,
2016).

Wakes produced by localized electromagnetic forces in electrolytes have been less studied
than those in liquid metals. The few experimental studies reported in the literature
used similar setups in which a shallow layer of electrolyte is contained in a long open
rectangular channel, while a DC current is applied transversally to the long axis of the
channel. A permanent magnet located either upon or beneath the channel is moved at a
constant velocity along the center line of the container so that a travelling localized Lorentz
force is produced. In this way, using a single moving magnet Honji (1991) and Honji and
Haraguchi (1995) visualized different flow patterns such as vortex dipoles, vortex shedding
and a wavy wake. In turn, Afanasyev and Korabel (2006b) considered flows produced by
a single magnet as well as by two magnets with opposite orientations, aligned with the
direction of motion and separated by a short distance. They observed travelling dipoles
as well as stable and unstable wakes. Another experimental study by Alcalá and Cuevas
(2014) found that when the velocity of the magnet surpass a threshold, the Lorentz force
is able to generate a stationary wave pattern on the free surface. Finally, Román et al.
(2015) explored numerically the flow past a pair of magnetic obstacles side by side and
made a comparison of the flow regimes with those corresponding to the flow past solid
cylinders.

In this work, we use an experimental set up similar to the one described above to explore
different flow patterns generated by a travelling localized Lorentz force in a shallow elec-
trolyte layer. We take advantage of the transparency of the electrolyte to characterize the
flows through tracer visualization and Particle Image Velocimetry (PIV) measurements.
In particular, the study is focused on the analysis of the observed flow transitions which



1.2. Experimental set up 11

occur as the control parameters are varied. The study is complemented with numerical
simulations based on a quasi-two-dimensional numerical model.

1.2 Experimental set up

Figure 1.1: Experimental setup. A localized Lorentz force is created by a DC current
applied through parallel electrodes (1) and the field of a permanent magnet (2) moved
beneath the container with a linear actuator (3). The flow is studied at the observation
zone (4) with the aid of a camera (5), using dye visualization and PIV method.

The experimental set-up consists of an acrylic channel 100 cm long, 40 cm width, and 10
cm height. Two electrodes (square graphite rods of 1 cm2 of cross-section and 80 cm long)
were placed along the two long sides of the container and connected to a power supply
that provided a DC current from 0.5 to 5 A. Electrodes were located inside chambers
(bubble traps) that allow the electric current to flow at the bottom while preventing
the bubbles to invade the main flow region. The channel is partially filled with a weak
electrolytic solution of sodium bicarbonate (NaHCO3) at 8.6% by weight, forming a layer
of 3 mm deep. The mass density, kinematic viscosity and electrical conductivity of the
electrolyte are ρ = 1.09 × 103 Kg/m3, ν = 10−6 m2/s and σ = 6.36 S/m, respectively.
The channel is mounted on four supports and leveled up to get a horizontal layer of water
solution with uniform thickness. A square neodymium magnet with side length of 2.54
cm, height of 1.27 cm, and maximum magnetic strength on its surface of 0.33 T is placed
underneath the bottom wall of the channel and moved along its symmetry axis with a
constant velocity using a linear actuator (FESTO EGC-70-500-TB-KF- 0H-GK) driven
by a servo motor (FESTO EMMS-AS-70-M-RS) (see Figure 1.1). The interaction of the
DC current with the field of the moving magnet generates a travelling Lorentz force that
creates a flow pattern on the electrolyte. The flow was visualized from the top using dye
as tracer and pictures were taken with a Nikon D80 camera with a AF micro-nikkor 60
mm f/2.8 D lens. In order to ensure the contrast between the dye and the flow, the bottom
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wall was covered with a white sheet. In addition, PIV measurements were obtained using
a sequence of images obtained with a high-definition camera. The flow was seeded with
glass particles (10 µm diameter) and illuminated from the top using LEDs. The recorded
images were analyzed using PIVLab software (Thielicke and Stamhuis, 2014). Figure 1.1
shows an illustration of the experimental setup.

1.3 Numerical quasi-two dimensional model

The numerical model considers a change of reference system so that the permanent magnet
is fixed while the rectangular container with the liquid moves with a constant velocity
along the symmetry axis of the channel. The square magnet whose side length L is much
smaller than the distance between lateral walls, is placed beneath the bottom wall of the
container with an orientation such that the resulting Lorentz force oppose the oncoming
flow. Since the layer thickness is small compared with horizontal dimensions, we use a
quasi-two-dimensional (Q2D) model that only considers the normal component of the
applied magnetic field. Figure 1.2 shows a sketch of the considered problem.
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Figure 1.2: Sketch of the problem and boundary conditions.
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where velocity components, u and v, are normalized by U , while pressure, P , is normalized
by ρνU/L. Here, U and L are the velocity and side length of the magnet, respectively.
In the fourth term of Eq. (1.2), corresponding to the Lorentz force, the applied current
density j and magnetic field B0

z , are normalized by I/hXL and Bmax, respectively, where I,
Bmax, h, and XL are the applied current intensity, the maximum magnetic field strength,
the layer thickness, and the total length of the container, respectively. Dimensionless
coordinates x and y are normalized by L, while time, t, is normalized by L2/ν, while the
subindex ⊥ denotes the projection of the ∇ operator on the x-y plane. The non-uniform
magnetic field B0

z (x, y, z) is modeled by a dipolar field distribution created by square
magnetized surfaces uniformly polarized in the normal direction, for which an explicit
analytical expression is available (Cuevas et al., 2006a). Finally, Re = UL/ν is the
Reynolds number, which estimates the ratio of inertia to viscous forces, Ch = IBmaxL/ρν

2

is the Chandrasekhar number that represents the ratio of Lorentz to viscous forces (Duran-
Matute et al., 2011), and ε = h/L and δ = XL/L are the aspect ratios that characterize
the geometry of the flow domain. The third term on the right-hand-side of Eqs. (1.2)
and (1.3) represents the Rayleigh friction that involves a characteristic dimensionless time
scale τ , for the decay of vorticity due to dissipation in the viscous layers which is given
by

τ−1 =
1

ε2Re

γ(1− e−γ)
1
γ
(1− e−γ) + γ

2
e−γ − 1

, (1.4)

where γ = 0.51 is an empirical constant that quantifies the decay of the magnetic field
through the layer thickness (Román et al., 2015). As boundary conditions (see Fig. 1.2),
at the entrance we consider a uniform flow imposed in the x-direction, therefore

u = 1, v = 0, at x = 0, 0 ≤ y ≤ H. (1.5)

At the outlet, Neumann boundary conditions are used, that is,

∂u

∂x
=
∂v

∂x
= 0, at x = XL, 0 ≤ y ≤ H. (1.6)

Besides, we assume that the side walls move with the entrance constant velocity:

u = 1, v = 0, at y = 0, H, 0 ≤ x ≤ XL. (1.7)

Here, H is the separation between lateral boundaries which determines the solid blockage
(β = 1/H) of the confined flow. A finite volume method implemented with a SIMPLEC
algorithm is used to solve the governing equations (1.1)-(1.4) with boundary conditions
(1.5)-(1.7). A rectangular domain with a length of XL=40 dimensionless units in the
streamwise direction and H=16 units in the cross-stream direction, using an equidistant
orthogonal grid of 212 × 202 nodes, was considered. Upstream distance Xu = 10 and
downstream distanceXd = 30 guarantee that results are nearly independent of the location
of the magnet.
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a) b)

Figure 1.3: Experimental dye visualization of the flow pattern for Re = 500. a) Jet-like
flow: Ch = 2.6× 106. b) Travelling vortex dipole: Ch = 5.02× 106.

1.4 Experimental and numerical results

In this section we analyze the experimental flow patterns produced by the travelling
localized Lorenz force for different values of the magnet velocity and applied current and
show the comparison with numerical simulations. Since the velocity of the magnet took
values from 0.19 cm/s to 11.1 cm/s, the Reynolds number varied in the range 48 < Re <
2800. In turn, with the explored range of applied current (0.5 to 5 A), the corresponding
range of values taken by Chandrasekhar number was 2.33 × 106 < Ch < 1.63 × 107. In
all cases, the travelling magnet goes from left to right and the aspect ratios are ε = 0.11
and δ = 39.37. Figure 1.3 shows the visualization of flow patterns obtained for Re=500
and two different values of Ch. When Ch = 2.6 × 106, a jet-like flow was observed
(Fig. 1.3a) while the increase of this parameter to Ch = 5× 106, results in the formation
of a travelling vortex dipole (Fig. 1.3b). If the Chandrasekhar number is increased up

a) b)

Figure 1.4: Experimental dye visualization of the flow patterns for Ch = 1.16 × 107. a)
2P wake: Re=500. b) Bénard-von Kármán wake: Re=800.

to Ch = 11.6 × 106, a vortex shedding pattern is observed, displaying a 2P wake where
two vortex pairs are shed per oscillation period, as is shown in Fig. 1.4a). This kind of
wake has been observed, for instance, in flows produced by a flapping foil in a vertical
soap film (Schnipper et al., 2009). In order to explore the transition of the wake as
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the Reynolds number is increased, the former value of the Chandrasekhar number was
fixed to guarantee that vortex shedding is present. For values of the Reynolds number
of 600 and 700 , the vortex pattern still showed two vortex pairs per oscillation period
although the wake was deformed. When Re reached 800, the wake transformed into
a classical Bénard-von Kármán wake where only two vortices were shed per oscillation
period (see Fig 1.4b). Figures 1.5a) and 1.5b) show the velocity fields obtained from PIV
measurements for Re = 500 (2P wake) and Re = 800 (BvK wake), respectively, where
a green dot indicates the position of the center of the travelling magnet. As the magnet
travels a vortex dipole is formed in front of it, as is observed in both figures although
in Fig. 1.5b) the vortex dipole is tilted down. The difference for each Reynolds number
lies in the way that vortices are shed. In Fig. 1.5a), the pair of counter-rotating vortices
that was shed in half oscillation period is observed below the center of the magnet, in the
lower-left part. On the other hand, in Fig. 1.5b), only one elongated vortex shed in half
oscillation period is observed behind the center of the magnet.

 15

 20

 25

 30

 35

 15  20  25  30  35  40

y
 [

cm
]

x [cm]

a)

 15

 20

 25

 30

 35

 20  25  30  35  40  45  50  55

y
 [

cm
]

x [cm]

b)

Figure 1.5: Experimental velocity fields of the flow patterns for Ch=1.16 × 107. a) 2P
wake: Re=500. b) Bénard-von Kármán wake: Re=800. The green circle indicates the
location of the magnet center.

The structure of the wakes is more clearly understood by analyzing the time evolution of
the vorticity. Figures 1.6 and 1.7 show snap shots of the vorticity distribution obtained
from PIV measurements for both 2P and BvK wakes, respectively, during one oscillation
period. Figure 1.6 shows how positive vorticity (red color) is dragged from the upper lobe
towards the lower region forming a vortex dipole that is later shed, while negative vorticity
(blue color) is dragged from the lower lobe towards the upper region to form another vortex
dipole that is finally shed. In this way, vorticity of different sign is interchanged in one
oscillation period. In contrast, in the BvK wake shown in Fig. 1.7, positive and negative
vortices are shed alternately from the upper and lower regions without dragging vorticity
as in the 2P wake.

In Figs. 1.8a) and 1.8b) the plot of vorticity as a function of time measured with PIV
at a fixed point behind the magnet is shown for Re = 500 and 800, respectively (Ch =
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Figure 1.6: Snap shots of vorticity distribution corresponding to the 2P wake obtained
from PIV measurements during one oscillation period. Ch = 1.16× 107 and Re = 500.

1.16×107). In Figure 1.8a), it can be appreciated that for Re=500 two vorticity pulsations
appear during one oscillation period. A first pulsation appears in the time interval 20 <
t < 25 and a more intense one shows up in the interval 32 < t < 40. These two pulsations
with positive and negative vorticity peaks manifest the shedding of two vortex pairs per
oscillation period that characterizes the 2P wake (Schnipper et al., 2009). In contrast,
Fig. 1.8b) shows only one vorticity pulsation during one oscillation period for Re = 800
(see the intervals 12 < t < 20 and 22 < t < 26) indicating the shedding of two vortices
per period, typical of Bénard von Kármán wake (Schnipper et al., 2009).

Figure 1.9 shows the flow transition map, obtained from experimental visualization, built
by fixing the Reynolds number and rising the Chandrasekhar number. Although it does
not cover the full range of Reynolds number explored, it characterizes the main flow
patterns observed. Note that for Re = 300 and 400 the travelling vortex dipole found at
the lowest Ch value becomes a 2P wake as Ch grows. In turn, for Re = 500 and 600,
the flow patterns change from a jet-like flow to a travelling vortex dipole as Ch increases;
as this parameter grows even further, a vortex shedding with a 2P wake is observed. On
the other hand, from Re = 700 to 1000, the jet-like flow and the travelling dipole are
still found but as Ch is increased further vortex shedding appears in the form of a BvK
wake. In fact, for Re = 700 the BvK wake transforms into a 2P wake for higher values of
Ch. It was also found that the higher Re, the higher the value of Ch required to observe
the transition to a wake with vortex shedding. From Re = 1100 to 1300 only the jet-like
flow and the travelling vortex dipole are observed. It is also illustrative to observe the
different flow transitions by fixing Ch and increasing the Reynolds number. In this way,
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Figure 1.7: Snap shots of vorticity distribution corresponding to the BvK wake obtained
from PIV measurements during one oscillation period. Ch = 1.16× 107 and Re = 800.

for low values of Ch a travelling vortex dipole becomes a jet-like flow as Re increases.
The transitions 2P wake - travelling vortex dipole - jet-like flow and 2P wake - BvK
wake - travelling vortex dipole - jet-like flow are also found as Ch takes higher values.
This means that for a fixed Ch, the effect of the electromagnetic braking force (i.e. the
magnetic obstacle) become less important as the flow inertia increases. Results show the
clear trend that for a sufficiently high Re, inertia overcomes the braking Lorentz force and
vortex patterns disappear, while the flow recovers stability manifested in a jet-like flow.
This phenomenon has been recently reported in liquid metal duct flows past a magnetic
obstacle Domı́nguez et al. (2015) and will be presented in chapter 5.

The previous behaviour is clearly reproduced by the numerical model. By following the
procedure of Domı́nguez et al. (2015), we define the amplitudeA of the transversal velocity
oscillation v with respect to its average value 〈v〉 over the interval I at a given point, that
is, A = v − 〈v〉. In order to quantify the main contribution to the kinetic energy of the
flow, it is introduced the parameter L2, defined as

L2 =
1

I

∫ I

0

A2dt, (1.8)

where L2 is a function of the Chandrasekhar and Reynolds numbers and indicates the
average of the square of the amplitudeA in the interval I. Figure 1.10 shows the parameter
L2 as a function of the Reynolds number for Ch = 1.16 × 107, obtained from numerical
results at the point x = 16, y = 8, located at the mid line of the channel 6 unities
downstream the magnet. The interval I corresponds to 40 oscillation periods. From
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Re = 300 to Re = 600, the parameter L2 increases as the Reynolds number increases.
As observed from the experimental map (Fig. 1.9), this zone correspond to the 2P wake.
Note that the transition from 2P wake to BvK wake found in Fig. 1.9 from Re = 600
to Re = 700 is reproduced in the numerical simulation shown in Fig. 1.10 as a change
in the slope of the curve for the same interval of Reynolds numbers. The second change
in the slope direction appears for Re = 900, corresponding to the transition from BvK
wake to the travelling vortex dipole, where L2 has its maximum value; beyond this critical
value, as Re increases the parameter L2 starts decreasing. Finally, the transition from
the travelling vortex dipole to the jet-like flow found experimentally from Re = 1000 to
Re = 1100 (see Fig. 1.9), is also found numerically as a change in the slope in Fig. 1.10
but with a slight shift (from Re = 1100 to Re = 1200).

More detailed numerical results are displayed in Fig. 1.11 where vorticity distributions
of 2P and BvK wakes for the parameter values used for results presented in Fig. 1.8
are shown. Aside, the vorticity as a function of time at a given point is shown for each
case. Numerical results show qualitative agreement with the main features observed in
the experiment. In fact, the shedding of a vortex dipole which is a feature of the 2P wake,
as well as the alternated vortex shedding, characteristic of the BvK wake, are clearly
observed.
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Figure 1.8: Vorticity as a function of time for Ch = 1.16 × 107 measured with the PIV
method. a) At a point on the symmetry axis 8 cm behind the magnet for Re = 500. b)
At a point 2 cm above the symmetry axis and 8 cm behind the magnet Re=800.

1.5 Conclusions

Wake patterns created by a travelling localized Lorentz force in a shallow electrolyte layer
have been studied experimentally and numerically. The variation of the Reynolds and
Chandrasekhar numbers allowed to observe four characteristic patterns, namely, jet-like
flow, travelling vortex dipole, 2P wake and BvK wake. The time evolution of the vorticity
distribution showed the main features of the wakes such as the shedding of two vortex
pairs per oscillation period in the case of 2P and the shedding of two alternate vortices
per oscillation period in the case of BvK. A map of qualitative flow behavior as function
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Figure 1.9: Experimental flow transition map for different values of the governing flow
parameters, namely, Chandrasekhar and Reynolds numbers.

of the governing parameters shows different transitions that occur among the observed
flow patterns. It is interesting to note that for a fixed Chandrasekhar number, the jet-like
flow is always found for a high enough Reynolds number indicating that inertia overcomes
the electromagnetic braking force. This behavior is also found from the numerical model
through the calculation of the parameter L2 related with the main contribution to the
kinetic energy of the flow which also detects the flow transitions observed experimentally.
Although numerical results reproduce the characteristic flow behavior, some limitations
of the model were found at Reynolds numbers higher than 1100.
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Figure 1.10: The parameter L2 as a function of the Reynolds number for Ch = 1.16×107

obtained from numerical results.

Figure 1.11: Numerical vorticity distribution and vorticity as a function of time at a
point for Ch=1.16 ×107. For Re = 500, at a point on the symmetry axis 8 cm behind
the magnet and for Re=800 at a point 2 cm above the symmetry axis and 8 cm behind
the magnet. a) and b) 2P wake: Re=500. c) and d) BvK wake: Re=800.



Chapter 2

Numerical study of wake patterns
behind a pair of magnetic obstacles

in an electrolyte layer

In this Chapter1, we present the quasi-two-dimensional numerical simulation of the flow
in a thin layer of electrolyte past a pair of localized Lorentz forces, named magnetic
obstacles, placed side by side. Opposing Lorentz forces are produced by the interaction
of the magnetic field created by a pair of small permanent magnets and a D.C. current
applied transversally to the main flow. By varying the separation between the magnets
and the intensity of the applied current different flow regimes are analyzed. The attention
is focused in the interference of the wakes created by the magnetic obstacles.

2.1 Introduction

The flow past solid obstacles is certainly one of the most widely studied problems in fluid
dynamics and constitutes in itself a classic subject of research (Zdravkovich, 1997). Its
importance stems from countless applications where determining the behavior of flows
past bluff bodies is of practical interest. From the point of view of dynamical system,
the understanding of the spatiotemporal behavior of the wakes formed in flows past solid
obstacles presents interesting challenges. When more than one obstacle is present, to
investigate the interference of wakes becomes a relevant issue (Le Gal et al., 1996). In
fact, the behavior of coupled wakes created by a pair of cylinders placed side by side
in a uniform flow has been studied experimentally and theoretically by several authors
and different flow regimes have been identified according to the separation between the
cylinders (Zdravkovich, 1985; Le Gal et al., 1990; Peschard and Le Gal, 1996; Sumner
et al., 1999). But wakes are not only produced by solid obstacles. It has been shown
that localized magnetic forces in flows of electrically conducting fluids act as obstacles for
the flow. When the conducting fluid is a liquid metal, the relative motion of the fluid
and a localized magnetic field induces electric currents that interact with the same field to
produce a Lorentz force that brakes the liquid (Cuevas et al., 2006a; Votyakov et al., 2007).

1This Chapter is mainly based on the paper: Román, J.; Beltrán, A.; Cuevas, S. “Numerical Simulation
of the Flow Past a Pair of Magnetic Obstacles”. Selected Topics of Computational and Experimental
Fluid Mechanics. Springer International Publishing, 2015. p. 415-425.
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In the case of an electrolyte, due to the low conductivity of the fluid, induced currents
are negligible but an opposing Lorentz force can still be created if an electric current
is externally applied (Honji, 1991; Honji and Haraguchi, 1995; Afanasyev and Korabel,
2006b). In both cases, experimental and theoretical studies have shown the appearance
of different flow regimes such as steady vortices, vortex shedding, and even turbulent
wakes (Honji and Haraguchi, 1995; Afanasyev and Korabel, 2006b; Votyakov et al., 2008;
Kenjeres et al., 2011). In fact, the term magnetic obstacle was coined (Cuevas et al.,
2006a) to emphasize that localized Lorentz forces produce flow behaviors that in some
aspects resemble flows past solid obstacles, although very important differences exist.

So far, investigations of flows past magnetic obstacles have mainly addressed the problem
of a single obstacle in liquid metal flows (see, for instance, Votyakov et al. (2008); Ken-
jeres et al. (2011); Tympel et al. (2013)). Recently, the flow in an array of three magnetic
obstacles has been simulated numerically (Kenjeres, 2012), a situation that may have rel-
evance for heat transfer applications (Zhang and Huang, 2013). Flows of electrolytes past
magnetic obstacles have been less explored. Honji (1991) and Honji and Haraguchi (1995)
performed experiments in a shallow layer of salt water contained in a long tank, where a
D.C. current was applied transversally to the tank’s long axis while a permanent magnet
located externally was dragged at a constant velocity along the center line of the water
tank. Similar but more extensive experiments were performed by Afanasyev and Korabel
(2006b). These authors considered flows produced by a single magnet as well as by two
magnets with opposite orientations, aligned with the direction of motion and separated
by a short distance. However, to the best of our knowledge, the electrolytic flow created
by a pair of magnetic obstacles side by side has not been previously considered. This
problem is interesting since the analogous flow with solid obstacles has been investigated
extensively so that flow regimes are well characterized (Zdravkovich, 1985; Peschard and
Le Gal, 1996; Sumner et al., 1999). In the present study, we explore numerically the flow
past a pair of magnetic obstacles side by side and compare the flow regimes with those
corresponding to the flow past solid cylinders.

2.2 Formulation of the problem

We consider the flow of a shallow layer of an electrolyte in a rectangular container affected
by localized Lorentz forces, i.e. magnetic obstacles. The forces are produced by the
interaction of magnetic fields generated by two permanent magnets and a D.C. electrical
current applied transversally to the main flow through electrodes located in the lateral
walls and connected to a power source. Square magnets whose side length L is much
smaller than the distance between lateral walls, are placed beneath the bottom wall of
the container with an orientation such that resulting Lorentz forces oppose the oncoming
flow and generate vorticity.
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Fig. 1 Sketch of the electrolytic flow past a pair of magnetic obstacles side by side. See details in
the text

L is much smaller than the distance between lateral walls, are placed beneath the
bottom wall of the container with an orientation such that resulting Lorentz forces
oppose the oncoming flow and generate vorticity. Figure 1 shows a sketch of the
problem under consideration. Since the thickness of the fluid layer is assumed to be
small compared with horizontal dimensions, we use a quasi-two-dimensional (Q2D)
numerical model that only considers the component of the applied magnetic field
normal to the plane of motion. This component can be expressed as

B0
z (x, y, z) = B(x, y)g(z), (1)

where B(x, y) reproduces the variation of the magnetic field in the x–y plane and is
modeled by a dipolar field distribution created by a square magnetized surface uni-
formly polarized in the normal direction, for which an explicit analytical expression
is available (McCaig 1977; Cuevas et al. 2006). In fact, the shape of the magnets is
irrelevant provided the plane of flow is separated from the surface of the magnet, so
that border effects are smoothed out (Figueroa et al. 2009). In turn, g(z) = exp(−γ z)
models the decay of the magnetic field in the normal direction z (normalized by the
layer thickness h), where γ = 0.51 is an empirical constant obtained from fitting the
decay of the magnetic field in the vertical direction (Beltrán 2010) with experimental
data from a permanent magnet (Honji 1991). In addition, the Q2D model assumes
that the momentum transfer through the thin electrolytic layer is mainly diffusive so
that the velocity field can be expressed as

u(x, y, z, t) = [u(x, y, t) f (x, y, z), v(x, y, t) f (x, y, z), 0], (2)

Figure 2.1: Sketch of the electrolytic flow past a pair of magnetic obstacles side by side.

Figure 2.1 shows a sketch of the problem under consideration. Since the thickness of
the fluid layer is assumed to be small compared with horizontal dimensions, we use a
quasi-two-dimensional (Q2D) numerical model that only considers the component of the
applied magnetic field normal to the plane of motion. This component can be expressed
as

B0
z (x, y, z) = B(x, y)g(z), (2.1)

where B(x, y) reproduces the variation of the magnetic field in the x - y plane and is
modeled by a dipolar field distribution created by a square magnetized surface uniformly
polarized in the normal direction, for which an explicit analytical expression is available
(McCaig, 1977; Cuevas et al., 2006a). In fact, the shape of the magnets is irrelevant
provided the plane of flow is separated from the surface of the magnet, so that border
effects are smoothed out (Figueroa et al., 2009). In turn, g(z) = exp(−γz) models the
decay of the magnetic field in the normal direction z (normalized by the layer thickness h),
where γ = 0.51 is an empirical constant obtained from fitting the decay of the magnetic
field in the vertical direction (Beltrán, 2010) with experimental data from a permanent
magnet (Honji, 1991). In addition, the Q2D model assumes that the momentum transfer
through the thin electrolytic layer is mainly diffusive so that the velocity field can be
expressed as

u(x, y, z) = [ū(x, y, z)f(x, y, z), v̄(x, y, z)f(x, y, z), 0], (2.2)

where ū and v̄ are the mean velocity components in the x-y plane, while f(x, y, z) re-
produces the velocity profile in the layer thickness (Beltrán, 2010). Since the electrical
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conductivity of the electrolyte is low compared with that of liquid metals, and the mag-
netic field intensity of permanent magnets is weak, induced currents in the fluid are
negligible. Therefore, it becomes unnecessary to solve the induction equation to deter-
mine the induced magnetic field. Only the applied current is relevant for calculating the
Lorentz forces (Figueroa et al., 2009).

Substituting Eqs.(2.1) and (2.2) in the three-dimensional equations of motion and av-
eraging along the height of the fluid layer, we obtain the Q2D equations. A detailed
description of the averaging procedure can be found in Beltrán (2010) and Figueroa et al.
(2009). In dimensionless terms, the equations of motion in the Q2D approximation take
the form

∂u

∂x
+
∂v

∂y
= 0, (2.3)

∂u

∂t
+

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂P

∂x
+

1

Re
∇2
⊥u+

u

τ
−QB0

z , (2.4)

∂v

∂t
+

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂P

∂y
+

1

Re
∇2
⊥v +

v

τ
, (2.5)

where the overline in the velocity components was dropped and subindex ⊥ denotes
the projection of the ∇ operator on the x-y plane. The velocity components, u and
v, the pressure, P , the applied current density, j, and the applied magnetic field, B0

z ,
are normalized by U , ρU2, j0 and Bmax, respectively. Here, U is the uniform entrance
velocity, ρ is the mass density, Bmax is the maximum intensity of the magnetic field, and
j0 is the magnitude of the applied current density. Dimensionless coordinates x and y are
normalized by L, while time, t, is normalized by L/U . Dimensionless parameters Re and
Q stand for the Reynolds number Re = UL/ν, where ν the kinematic viscosity, and the
Lorentz force parameter Q = J0BmaxL/ρU

2 which is the ratio of a magnetic pressure drop
caused by the applied Lorentz force and the free-stream dynamic pressure. Essentially,
Q characterizes the strength of the Lorentz forces. The third term on the right-hand-
side of Eqs. (2.4) and (2.5) represents the Rayleigh friction. It involves a characteristic
dimensionless timescale, τ , for the decay of vorticity due to dissipation in the viscous
layers and is given by Beltrán (2010).

τ−1 =
γ(1− e−γ)

1
γ
(1− e−γ) + γ

2
e−γ − 1

, (2.6)

The considered boundary conditions are the following. At the entrance, a uniform flow is
imposed in the x-direction, therefore

u = 1, v = 0, at x = 0, 0 ≤ y ≤ H. (2.7)

At the outlet, Neumann boundary conditions are used, that is,

∂u

∂x
=
∂v

∂x
= 0, at x = XL, 0 ≤ y ≤ H. (2.8)
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At the side walls, we use non-slip conditions:

u = 0, v = 0, at y = 0, H, 0 ≤ x ≤ XL. (2.9)

Here, H is the separation between lateral boundaries which determines the solid blockage
of the confined flow, characterized by the blockage parameter β = 1/H. In turn, XL is
the total length of the channel. The magnetic obstacles are located at a distances Xu

from the entrance and Xd from the outlet. All the lengths are measured in dimensionless
units. The centers of the magnets are separated by a dimensionless distance D = d/L,
where d is the dimensional separation. Figure 2.2 shows a sketch of the flow conditions
considered for the numerical solution.
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Figure 2.2: Sketch of the geometry and boundary conditions considered for the analyzed
flow.

A finite volume method implemented with a SIMPLEC algorithm is used to solve the
governing equations (2.3)-(2.6) with boundary conditions (3.10)-(3.12). The diffusive and
convective terms are discretized using a central difference scheme. Accurate temporal
resolution is provided by choosing a small enough time step and employing a second order
scheme for the time integration. The numerical solution was obtained in a rectangular
domain with a length of XL = 35 dimensionless units in the streamwise direction and
H = 7 units in the cross-stream direction using an equidistant orthogonal grid of 212×202
nodes. It was determined that upstream distance Xu = 10 and downstream distance
Xd = 25 guarantee results that are nearly independent of the location of the obstacles.

2.3 Numerical results

In a similar way as when the obstacles are solid cylinders, flows past a pair of magnetic
obstacles side by side present different regimes according to the flow conditions. While
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hydrodynamic regimes are governed only by the Reynolds number and the dimensionless
separation distance D (provided three-dimensional effects are neglected), in the present
case flow regimes are controlled by Q, in addition to Re and D. The variation of these
parameters leads to steady or time-dependent regimes, as occurs in flows with a sin-
gle magnetic obstacle (Honji and Haraguchi, 1995; Afanasyev and Korabel, 2006b). We
present numerical results for a pair of magnetic obstacles side by side with a fixed Reynolds
number, Re = 1000, and investigate the variation of Q and D on the flow dynamics. We
consider flow conditions where vortex shedding is present and explore the effect of sepa-
ration distance D in the coupling of the wakes behind the obstacles.The parameter Q is
varied in the range 1.5 ≤ Q ≤ 10, and for a given D, the value of Q corresponds to the
minimum value where vortex shedding appears. In turn, four different values of D are
explored, namely, 1, 1.5, 2, and 3, which are of interest since results for the hydrodynamic
flow past a pair of solid obstacles are available in the literature for these cases (Peschard
and Le Gal, 1996; Zdravkovich, 1985). In hydrodynamic flows, it has been reported that
for large distance between the cylinders the pair of wakes presents a weak coupling where
in phase and out of phase vortex shedding can appear. In turn, for shorter distances a
strong coupling arises and only in phase shedding is observed which produces a unique
Bénard-von Kármán street (Peschard and Le Gal, 1996; Zdravkovich, 1985). At interme-
diate range of coupling, a bistable regime can emerge which is characterized by a biased
flow that gives two possible values for the vortex shedding frequency. In this case, the
biased flow through the gap divides asymmetric states with narrow and wide wakes which
can intermittently interchange between the two cylinders (Zdravkovich, 1985), apparently
driven by a random process (Peschard and Le Gal, 1996). We now show that similar
regimes are observed in the wakes created by a pair of magnetic obstacles side by side.

Figure 2.3 shows the Lagrangian tracking of flows obtained numerically for different values
of D, with the corresponding minimum value of Q where vortex shedding appears. For
the smallest separation distance, D = 1 (see Fig. 2.3a)), the magnets are in contact and
act as a larger magnetic obstacle that gives rise to a single wake similar to the Bénard-
von Kármán street. If the gap between the obstacles is increased to D = 1.5, we find a
bistable regime where the flow pattern is rather complex, as is observed in Fig. 2.3b). A
further increase to D = 2 (see Fig. 2.3c)) leads to a more structured flow pattern with
two interlaced wakes in phase. For the larger gap explored, namely D = 3, the separation
between the wakes is neatly defined and the in phase behavior still persists, as observed
in Fig. 2.3d).
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a) b)

c) d)

Figure 2.3: Lagrangian tracking of the numerically calculated flow past a pair of magnetic
obstacles side by side at different separation distances. Re = 1000. a) D =1, Q = 2.7. b)
D= 1.5, Q = 2.9. c) D= 2, Q = 2.4. d) D= 3, Q = 2.3.

To improve the understanding of the flow behavior and the coupling of the wakes behind
the magnetic obstacles, the velocity component in the x-direction is shown in Fig.2.4 as
a function of time at two distinct points located on the central line of each obstacle, five
dimensionless units downstream. For D = 1 (Fig. 2.4a)), corresponding to the single wake
of a large magnetic obstacle, the velocity signals oscillate in antiphase. This is consistent
with the fact that a large oscillating vortex structure is formed behind the obstacle so
that in the symmetrically located points where the signals are registered, the velocity in
the x-direction takes opposite values. For D = 1.5 that corresponds to the bistable flow,
velocity oscillations do not present a defined structure. This seems to be a characteristic
feature of this regime as it has been reported in the literature for the case of circular
cylinders (Zdravkovich, 1985; Peschard and Le Gal, 1996). Figure 2.4c) clearly shows in
phase oscillations of the velocity signals when D = 2 where even the amplitude of the
oscillations coincides. Finally, when D = 3 (Fig. 2.4d)), although velocity oscillations are
in phase, amplitudes do not coincide which indicate a weaker coupling of the wakes.
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Figure 2.4: Velocity component in the x-direction as a function of time at two different
points. Blue (red) line corresponds to the point located at the central line of the upper
(lower) obstacle five dimensionless units downstream.. Re = 1000. a) D = 1, Q = 2.7. b)
D = 1.5, Q = 2.9. c) D = 2, Q = 2.4. d) D = 3, Q = 2.3.

Important information can also be obtained from the Fourier analysis of the temporal
behavior of the velocity signals, particularly for determining the dominant dimensionless
frequency of the flow, that is, the Strouhal number. It is precisely at this frequency
at which the greatest amount of energy in the flow is transported. Figure 2.5 shows the
power spectrum obtained through the fast Fourier transform of the corresponding velocity
signals presented in Fig. 2.4 for different values of D. Only the spectrum at one point is
shown since it coincides with the one at the other point. In Fig. 2.5a) (D = 1), a clear
dominant characteristic frequency of 0.152 and its corresponding harmonics are shown.
This frequency is close to the ones obtained experimentally by Honji and Haraguchi
(1995) for the flow past a single magnetic obstacle. Further, it almost coincides with the
value of 0.150 corresponding to the flow past a solid cylinder (Zdravkovich, 1997). For
the bistable flow at D = 1.5 (Fig. 2.5b)), it does not exist a clear dominant frequency
since this local analysis does not capture the global behavior of the biased flow that
may present two distinct characteristic frequencies for the vortex shedding. Finally, Figs.
2.5c) and 2.5d) display very similar Strouhal numbers of 0.235 and 0.237 for D = 2 and
D = 3, respectively. It could be expected that for a large enough separation distance, the
dominant frequency of each wake should be close to that of a single magnetic obstacle
(≈ 0.152). The difference with the latter case for D = 2 and D = 3 manifest that the
coupling of the wakes is still present at these separation distances. In fact, for the flow
past a pair of solid cylinders side by side, the uncoupling of the wakes is observed at
D ≈ 5.5 (Le Gal et al., 1990).
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Figure 2.5: Power spectrum calculated by the Fast Fourier Transform of the velocity
signals presented in Fig. 2.4. Re = 1000. a) D = 1, Q = 2.7. b) D = 1.5, Q = 2.9. c)
D = 2, Q = 2.4. d) D = 3, Q = 2.3.

A characteristic feature of the bistable regime is the tendency of the flow in the gap
between the obstacles to tilt towards one obstacle at a given time and towards the other
obstacle at a later time. This deflection breaks the symmetry of the flow pattern (Le Gal
et al., 1990). Figure 2.6 illustrates this phenomenon through the instantaneous velocity
fields at two different times for the bistable regime observed when D = 1.5.
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Figure 2.6: Instantaneous velocity fields for the bistable regime. Re = 1000, Q = 2.9 and
D = 1.5. a) t = 1975, b) t = 1992.

Although in previous results only time-dependent flows were considered, at lower values
of Q steady flow patterns displaying a vortex pair are found (Román, 2013). With the
aim of describing the studied flow in a more complete way, Fig. 2.7 presents a map that
shows the regions of steady and time-dependent behavior in terms of the analyzed values
of Q and D, for Re = 1000. The transition zone between steady and unsteady flows is
presented with a gray strip since it is not possible to determine an exact value for this
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transition. This map is built based on the time behavior of the velocity signals. It is
observed that for a fixed D, vortex shedding disappears as Q decreases.

Vortex shedding 

Q 

D 

Permanent 
pair of vortex 

Figure 2.7: Flow transition map of the flow past a pair of magnetic obstacles side by
side. The gray strip displays the transition zone between steady and time-dependent
flow. Re = 1000.

2.4 Concluding remarks

In this Chapter, we have investigated numerically using a Q2D model the flow past a pair
of magnetic obstacles side by side at a fixed Reynolds number, Re = 1000. We analyzed
the coupling of the wakes behind the magnetic obstacles under vortex shedding conditions
for different values of the dimensionless separation distance, namely, D = 1, 1.5, 2, and 3.
From the numerical velocity field, Lagrangian trajectories were obtained which allow to
visualize different flow structures. A strong coupling was found for D = 1 where the pair
of obstacles act as a large magnetic obstacle that produces a single wake whose dominant
frequency is close to the one found experimentally (Honji and Haraguchi, 1995) and almost
coincide with that of the flow past a solid cylinder. A more complex pattern was found
for D = 1.5 where an intermediate coupling leads to a bistable regime, characterized by a
biased flow with asymmetric flow structures. Finally, a weaker coupling of the wakes was
found for D = 2 and D = 3, where well defined in-phase wakes are observed. In general
terms, it can be stated that the flow past a pair of magnetic obstacles side by side present
similar regimes as those observed in the wakes created by a pair of solid cylinders.



Chapter 3

Flow past a magnetic obstacle in a
narrow channel

In this Chapter1, a theoretical-experimental study of the flow past a magnetic obstacle in
a narrow channel is presented. The experimental setup and methodology are very similar
to those presented in Chapter 1 but in this case the attention is focused on the effect of the
lateral walls on the flow patterns. Numerical simulations using a quasi-two-dimensional
model agree qualitatively with experimental visualizations. Further, flow transition maps
built from experimental and numerical results are presented.

3.1 Vortex streets in a narrow channel

The vortex wakes generated in the flows past solid obstacles have been widely studied. The
main configuration is the unbounded fluid flow past a solid cylinder which remains fixed.
Another case of study is the interaction of two or more wakes (Zdravkovich, 1985, 1997; Le
Gal et al., 1996) promoted by two or more solid obstacles. With the aim of understanding
the mechanism of vortex wake generation, Godoy-Diana et al. (2008) presented a study of
flow pattern transition using a moving airfoil as the obstacle in a wind tunnel. In the cited
work, the authors reported three flow patterns: the Bénard-von Kármán street (BvK),
aligned vortices and reverse Bénard-von Kármán street (rBvK). The latter is a wake
vortex street with the sign of vorticity of each vortex inverted with respect to the typical
Bénard-von Kármán. But flow transitions can also occur when the wake interacts with
the confining walls. In fact, the interaction of vortex streets with the side walls has been
widely studied. This case is of particular importance because of their potential application
in heat transfer enhancement. Davis et al. (1984) presented a numerical and experimental
study of the oscillation of the wake and the drag coefficient for two different values of the
blockage parameter β, that is, the relationship between the obstacle’s length in crosswise
direction and the distance between the channel walls. They found that the drag coefficient
and the oscillation frequency of the wake increase as the blockage parameter increases.
Camarri and Giannetti (2007) studied the inversion of the BvK street behind a square
solid obstacle for a blockage parameter within the range 1

10
≤ β ≤ 1

6
. They showed that

the inversion of the BvK street appears at a fixed distance behind of the solid obstacle

1This Chapter is mainly based on the paper: Roman, J., Uriostegui, K, Guerrero, W., Figueroa, A.,
Vázquez, F., Cuevas, S., 2017, “Vortex streets in a narrow channel”. In preparation.
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which depends on the Reynolds number Re and the blockage parameter. Singha and
Sinhamahapatra (2010) investigated the behavior of the vortex street in a confined region
at within the range 50 ≤ Re ≤ 250. They found that for a small blockage a larger
Re is required to get vortex shedding, which indicates that small values of the blockage
parameter increase the flow stability. In turn, Wang and Alben (2015) studied numerically
the effect of the side walls on both the BvK street and the rBvK street regardless of how
the flow patterns are generated. In order to do so, they imposed as an input condition the
flow patterns through an analytical solution. When the input flow was a rBvK street, the
flow pattern did not change along the channel, unlike what happened with the BvK, where
vortices moved away from the wall so that they crossed the symmetry axis of the solid
obstacle. In fact, a vortex with positive vorticity that initially was below the symmetry
axis moved above that axis, while a vortex with negative vorticity placed above the axis
moved below it.

As we have shown in previous chapters, localized electromagnetic forces, named magnetic
obstacles, are an alternative to the use of solid obstacles to generate vortices. (Cuevas
et al., 2006a; Votyakov et al., 2007). The braking force generated by the interaction of
electric currents and applied magnetic fields is able to create vorticity and lead to the
generation of wake patterns. For instance, different flow patterns such as steady vortices
and vortex shedding appear in many experimental and theoretical studies (Cuevas et al.,
2006a,b; Votyakov et al., 2007; Beltrán, 2010; Kenjeres et al., 2011; Votyakov et al., 2008;
Tympel et al., 2013; Kenjeres, 2012; Zhang and Huang, 2013). The majority of the
studies involve liquid metal flows such as the one by Votyakov et al. (2008) who performed
experiments and numerical simulation of the flow of liquid metal past a magnetic obstacle
in a duct. These authors studied the effect of what they defined as the constrainment
factor κ, which coincides with the definitions of the blockage parameter, that is, is, the
ratio between the characteristic length of the external magnet and the separation between
the wall ducts in the spanwise direction. They reported different flow patterns depending
on the value of the constrainment factor, namely, a vortex dipole for κ = 0.02, a six-
vortex pattern for κ = 0.4, and no vortex pattern for κ = 1.0. On the other hand, Zhang
and Huang (2013) performed a numerical simulation of the flow of liquid metal past an
array of three magnetic obstacles. They studied the fluid dynamics and the heat transfer
considering the blockage parameter and reported that for β = 0.2 the effect of the side
walls is negligible. For values between 0.2 < β < 0.4 the flow pattern is highly influenced
by the side wall, while for β = 0.4, the jet flow between the side wall and the magnetic
obstacles governs the flow dynamics.

Although magnetic obstacle flows with electrolytes have been less studied than liquid
metals flows, interesting patterns and behaviors have been found by different authors
(Honji, 1991; Honji and Haraguchi, 1995; Ikehata et al., 1996; Afanasyev and Korabel,
2006b; Afanasyev and Deacon, 2006; Afanasyev, 2006; Afanasyev and Korabel, 2006a;
Cruz et al., 2010; Beltrán, 2010; Román, 2013). Former studies have noted that the side
walls of the duct may have important effects on the flow behavior, however, this effects
have not been investigated deeply. In this work, we study experimentally and numerically
the flow of an electrolyte past a magnetic obstacle in a narrow channel, with the aim of
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Figure 3.1: Sketch of the experimental device, not drawn to scale. (a) Plan view. (b)
Cross-section along the y-axis. The velocity of the moving magnet is denoted by U ,
whereas the imposed electrical current density by j0 and the main direction of the Lorentz
force by F 0. Within the layer, the magnetic field B0 points mainly in the positive z-
direction.

identifying the effect of the blockage parameter on the vortex structures and the vortex
shedding behavior in order to get a better understanding of the magnetic obstacle flows
that could be of relevance for heat transfer enhancement applications.

3.2 Experimental procedure

In order to widen the range of the explored blockage parameters, two different containers
were used. The first container is the one described in Chapter 1, while the second is
an acrylic channel with 110 cm long, 10 cm width and 10 cm height. In this channel,
copper electrodes were placed along the two sides in the longer direction and connected
to a DC voltage power supply. Current intensities in both setups were in the range of
0.01 to 9 A. The channels were partially filled with a weak electrolytic solution of sodium
bicarbonate (NaHCO3) at 8.6% by weight. The mass density, kinematic viscosity and
electrical conductivity of the electrolyte are ρ = 1.09 × 103 Kg/m3, ν = 10−6 m2/s, and
σ = 6.36 S/m, respectively. The channels were mounted on supports and level up to get
a horizontal layer of water solution with uniform thickness of 0.5 cm. The characteristic
length of the flow is controlled by using both channels and magnets of different sizes so that
it is possible to vary the blockage parameter. Three different magnets were used for this
purpose. The first one is a cylindrical magnet with a diameter of 0.9 cm, a height of 0.5
cm and a maximum strength of 0.21 T. The second magnet is a rectangular parallelepiped
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with a side length of 2.54 cm, height of 1.27 cm and maximum strength of 0.33 T. Finally
a squared shaped magnet with a side length, height and maximum strength are 5.08 cm,
2.54 cm and 0.33 T, respectively, is used. Magnets were placed beneath the bottom wall
of the channel and the maximum strength of magnetic field reported was measured above
the bottom wall of the channel. It has to be mentioned that at this location, the shape of
the magnet is irrelevant. The magnet is moved along the symmetry axis of the channel
with a uniform velocity (see Figure 3.1) using a linear actuator (FESTO EGC-70-500-
TB-KF-0H-GK) driven by a servo motor (FESTO EMMS-AS-70-M-RS), in which the
velocity of the magnets can be controlled. The velocity of the magnet varied within the
range 1.9-111 mm/s. The flow visualization was made by depositing dyed water on top
of the free surface. The dye is illuminated in volume using two symmetrically located
lamps. As the electrolyte is a transparent medium, the bottom wall was covered with a
white sheet for ensuring good contrast in the visualization. The flow was captured with
a Nikon D80 camera with a AF micro-nikkor 60 mm f/2.8 D lens.

3.3 Numerical model

The velocity fields of the explored experimental flows were numerically simulated using a
quasi-two-dimensional (Q2D) model presented in previous works (Figueroa et al., 2009,
2011; Figueroa, 2010) and adapted to the present problem. This model is based on
averaging the balance equations in the normal direction so that flows are described in
terms of two-dimensional core variables with a linear friction that accounts for the effects
of the boundary layers on the channel walls and the presence of the electromagnetic
forces. Within this approximation, only the component of the magnetic field normal to
the vertical walls is considered. The decay of the magnetic field in the direction normal
to the fluid layer is also considered. In summary, the model can be regarded as a first
approach that captures the dominant physical effects without going into the complexities
of a full three dimensional model. In contrast with the experiment, the magnet is kept
fixed at the origin (x = 0, y = 0), while a uniform flow at the inlet moves from left to
right within the channel in the presence of the braking Lorentz force. However, the latter
is consistent with the experimental conditions by using a Galilean transformation. The
coordinate system is placed at the bottom wall of the container in such a way that x− y
planes remain parallel to this wall and the normal coordinate points in the z-direction.
The coordinates are scaled with the side length of the magnet L. The main assumption of
the Q2D model is that the transport of momentum in the z-direction is mainly diffusive
so that the velocity components can be expressed in the form

u(x, y, z, t) = ũ(x, y, t)f(x, y, z), v(x, y, z, t) = ṽ(x, y, t)f(x, y, z), (3.1)

where ũ and ṽ are the z-averaged velocity components in the x- and y-directions, respec-
tively. The velocity components in the x− and y-direction, u and v, are normalized by
V = U + u0, where U is the velocity of the uniform inlet flow and u0 = ν/L, ν being the
kinematic viscosity of the fluid, respectively. The function f considers the variation of the
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velocity profile in the z-direction and must satisfy the normalization condition
∫ ε

0
fdz = 1,

where ε = h/L is the aspect ratio, h being the layer thickness. The friction function f can
be obtained from the following balance between the viscous force, the pressure gradient
and the Lorentz force

d2f

dz2
= Re

∂P

∂x
+ αKB0

z , (3.2)

where the pressure field is denoted by P , normalized by ρV 2, where ρ is the density of the
fluid. The Reynolds number is defined as Re = V L/ν and K = U0/V denotes the ratio
of characteristic velocity U0 = j0BmaxL

2/ρν, obtained from a balance between viscous
and Lorentz forces, and the other characteristic velocity V (Figueroa et al., 2009). The
normal component of the magnetic field B0

z is normalized by the maximum magnetic field
strength Bmax. Due to the decay of the magnetic field in the normal direction, the Lorentz
force term in equation (3.2) includes the damping factor α given by (Figueroa et al., 2011)

α =
1

ε

∫ ε

0

η exp(−γz)dz, (3.3)

where η = 1, 1.19, 1.20 and γ=2.01, 2.17, 2.11 are the values obtained from experimental
measurements for the three magnets whose characteristic length are 9 mm, 25.4 mm and
50.8 mm, respectively. The f function satisfies the no slip condition at the bottom wall,
f(z = 0) = 0, and free slip at the free surface, df(z = h)/dz = 0. The solution that
satisfies the boundary and normalization conditions has the form

f =
3εγe−γz

{
2KB0

zη (eεγ + zγezγ)− e(ε+z)γ
(
2KB0

zη +Re∂P
∂x

(z − 2ε)zγ2
)}

3KB0
zη (ε2γ2 − 2) + eεγ

(
Re∂P

∂x
ε3γ3 + 3KB0

zη(1− εγ)
) . (3.4)

The pressure gradient in eq. (3.4) can be calculated from the mass conservation by
evaluating the volumetric flow rate at the channel’s entrance (plug flow) and in the zone
of developed flow (Poiseuille flow). Thus by equating both volumetric flow rates, the
pressure gradient reads

∂P

∂x
=

12
Re

U
V

h2

{
1−

∞∑
n, odd

[
192
n5π5

h
y

tanh
(
nπy
2h

)]} . (3.5)

In order to obtain the z-average from the conservation equations, we substitute expressions
(3.1) and (3.4) into the governing equations and integrate in the z-direction. Dropping
the tilde, the dimensionless averaged equations of motion take the form

∂u

∂x
+
∂v

∂y
= 0, (3.6)
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u

Re τ
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u
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∂y
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1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
+

v

Re τ
, (3.8)

where time t is normalized by V/L. The last term on the right-hand side of equation
(3.7) considers the Lorentz force created by the non-uniform magnetic field distribution
B0
z (x, y), and the applied electric current density in the negative y-direction, namely, j0

y

which is normalized by the current density amplitude j0. Here, B0
z is the normal compo-

nent of the non-uniform magnetic field at a given height z. The dimensionless parameter
Q = j0BmaxL/ρV

2 estimates the ratio of the pressure drop due to the electromagnetic
force and free stream pressure. Note that both equations (3.7) and (3.8) contain a cor-
rection factor ζ in the advective terms, as well as a linear friction term, called Rayleigh
friction, which involves a characteristic dimensionless time scale, τ , for the damping of
vorticity due to dissipation in the viscous layers at the bottom wall. These parameters
are given by

τ−1 =
1

ε

∫ ε

0

d2f

dz2
dz, ζ =

1

ε

∫ ε

0

f 2dz. (3.9)

According to the shallow flow approximation, the aspect ratio ε = h/L is assumed to be
less than unity. In the experiments, the layer depth is constant h = 5 mm, therefore, the
values of ε are 0.55, 0.2 and 0.1 for the characteristic magnet lengths L equal to 9 mm,
25.4 mm and 50.8 mm, respectively. The system of equations (3.6-3.8), along with the
factor α (eq. (3.3)), the 2D distribution of the magnetic field B0

z , and the friction model
(eq. (3.9)), was solved numerically in a rectangular domain using a finite difference code
based on Griebel et al. (1998) extended for magnetohydrodynamic flows. The considered
boundary conditions are the following.

At the entrance, a uniform flow is imposed in the x-direction, therefore

u = 1, v = 0, at x = 0, 0 ≤ y ≤ H. (3.10)

At the outlet, Neumann boundary conditions are used, that is,

∂u

∂x
=
∂v

∂x
= 0, at x = XL, 0 ≤ y ≤ H. (3.11)

At the side walls, we use non-slip conditions:

u = 0, v = 0, at y = 0, H, 0 ≤ x ≤ XL. (3.12)

Here, H is the dimensionless separation between lateral boundaries defined as

H =
Xh

L
, (3.13)
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where Xh is the separation between the lateral walls of the channel (in the cross-stream
direction). Note that the blockage parameter, β, and H, are related by

β =
1

H
. (3.14)

Once the Eulerian velocity field is known, the coordinates of passive tracer particles can
be found by integrating the (dimensionless) advective equations

dx

dt
= u(x, y, t),

dy

dt
= v(x, y, t). (3.15)

3.4 Results

The interaction of the moving magnetic field and the electric current generates a traveling
localized Lorenz force that tends to produce a vortex dipole, that is, two counter-rotating
vortices with a central jet in the negative x−direction. The predominance of this structure
depends on the flow conditions. As it has been previously stated (Honji and Haraguchi,
1995; Román et al., 2017), depending on the value of the control parameters Re and Q,
three flow patterns can be distinguished when the localized Lorentz force acts on the fluid
at rest: an open-streamline flow, a vortex pair and a vortex shedding flow. However,
by adjusting the distance H between the lateral walls, and consequently the blockage
parameter, the three flow patterns can be achieved for the same set of values of the control
parameters Re and Q, as is observed in Figure 3.2. This figure shows experimental flow
patterns visualized with dye for different values of the blockage parameter β, keeping
Re = 100 and Q = 6. As the parameter β is larger, the effect of the lateral wall is
more important. Figure 3.2a) shows a classical (unbounded) BvK wake (β → 0), whereas
Figure 3.2b) presents the effect of a slight confinement in the wake (β = 1/11). The
presence of the wall constraints the flow to a square-like wake structure, with oval-shaped
vortices where the longer shaft is transversal to the stream direction while the center
of the vortices moves away from the wall, becoming aligned with the symmetry axis of
the channel. Although the walls have an important effect, the wake still presents a BvK
structure. When the blockage parameter increases to β = 1/4, the wall friction brings
stability to the flow and delays the transition to the unsteady wake regime, (see figure
3.3c) giving rise to a vortex pair flow pattern. When the blockage parameter increases to
β = 1/2, an open-streamline flow is observed (see figure 3.2d).

Figure 3.3 shows experimental visualizations with their corresponding numerical simula-
tions for two different values of the blockage parameter, namely, β = 1/4 for figures 3.3a)
and 3.3b), and β = 1/2 for figures 3.3c) and 3.3d). In both cases, a classical BvK wake
is found although the strong interaction with the walls causes marked deformations in
the wakes. In figures 3.3a) and 3.3b) (β = 1/4), the centers of the alternated vortices
approach closer to the center line of the channel (x−axis) than in the case of unbounded
flow (see figure 3.2a)). As the the blockage parameter is larger, i. e. β = 1/2, the de-
formation of the vortices is even stronger observing not-well defined shapes in the wake
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a)

b)

c)

d)

Figure 3.2: Experimental visualization of the flow patterns generated by the moving
magnetic obstacle as a function of the blockage paremeter β. The squares denote the
footprint of the magnets. a) β → 0. b) β = 1/11. c) β = 1/4. d) β = 1/2. Re = 100, Q =
6.
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as a result of an intense interaction with the walls. In fact, this interaction induces a
downstream jet-like flow close to the wall. This flow generates opposite sign vorticity
which promotes the downstream displacement of the vortices towards the center line of
the channel. Notice also that the larger the size of the permanent magnet the larger the
vortices in the wake and the stronger the interaction with the walls. This interaction
deeply modifies the structure of the vortex streets. In general, the numerical simulations
agree qualitatively with the experimental observations.

Figure 3.4 shows the flow transition maps as function of the parameters Re and Q, for the
explored values of the blockage parameter. The left and right panels of this figure corre-
spond to numerical and experimental results, respectively, while each row corresponds to
one of the explored values of the blockage parameter, that is, β → 0, 1/11, 1/4, and 1/2.
For blockage parameter values of β = 1/4 and 1/2, three zones, separated by continuous
lines in figures 3.4c) and 3.4d), are clearly identified. In these two cases, for a fixed Re
the transition goes from a jet-like flow to a traveling dipole vortex and finally, to a vortex
shedding flow, as the parameter Q increases. Note that when the blockage parameter
increases from 1/4 to 1/2, the zone where the traveling dipole vortex appears becomes
larger. This means that as the lateral walls are closer, the traveling dipole vortex is more
stable. Note also that this zone decreases as Re grows, that is, as the inertial effects
increase. For blockage parameters β ≤ 1/11, only two zones concerning the jet-like flow
and vortex shedding flow are present (see figures 3.4a) and 3.4b). Note that as β is larger
a higher value of Q is required to observe the vortex shedding. On the other hand, as the
blockage parameter is also reduced, the value of Q required to promote a vortex shedding
flow is reduced. In general, numerical results agree quantitatively with the available exper-
imental results. The agreement is better for larger values of the blockage parameter (1/4
and 1/2) since in these conditions the flow approaches better to quasi-two-dimensionality.
In contrast, as β is reduced three-dimensional effects seem to be stronger. We must note
that two patterns not observed experimentally were found through numerical simulation,
namely, a wall-bouncing vortex pair with β = 1/4 and a wavy-streamlined flow with
β = 1/11 (see figures 3.4b) and 3.4c). It must be mentioned that in a numerical study
of the flow past a solid obstacle for Re = 100 and β = 1/2 reported in the literature
(Singha and Sinhamahapatra, 2010) as well as in an experimental study for Re ≤ 108 and
β = 1/3 (Rehimi et al., 2008), the flow is stable. Evidently, the possibility of varying the
strength of the Lorentz forces introduces an additional degree of freedom that allows to
modify the relation between inertia and (the magnetic) braking effect. It appears that in
the flow past a solid obstacle in the previous cases, walls do not allow the development of
instabilities in the recirculation zone behind the obstacle due to the increased friction.

3.5 Conclusions

In this Chapter, we analyzed the effect of the blockage parameter on wake patterns cre-
ated by a traveling magnetic obstacle in a narrow channel. This parameter, that relates
the characteristic length of the magnet that produces the magnetic obstacle with the sep-
aration of the lateral walls, was varied by using two different channels and three magnets
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a)

b)

c)

d)

Figure 3.3: Comparison of numerical simulation and experimental visualization of flows
produced by a traveling magnetic obstacle. The squares denote the footprint of the
magnets. a) and b) β = 1/4, Re = 250, Q = 8. c) and d) β = 1/2, Re = 250, Q = 45. a)
and c) experimental visualization. b) and d) numerical simulations.
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Figure 3.4: Flow transition maps. Left column: Numerical results. Right column:
Experimental results. The square � denotes the jet-like flow. The triangle 4 denotes the
traveling dipole vortex. The circle � denotes the vortex shedding flow. The filled circle •
denotes the wall-bouncing vortex pair. The rhomb � denotes the wavy-streamline flow.
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of different sizes. Through visualization of the flow using dye the effects of the walls
separation on the wake patterns were clearly observed. It was found that as the blockage
parameter increases the flow recovers stability in such a way that the flow pattern changes
from a Benárd-von-Kármán wake to a traveling dipole and a jet-like flow. Experimental
and numerical maps of qualitative flow behavior as function of the governing parameters
Re and Q for different values of the blockage parameter show a good agreement in the
description of the flow transitions among the observed wake patterns. It is interesting to
note that when the blockage parameter increases a higher value of Q is required to get
the vortex shedding which indicates that a stronger electromagnetic force is required to
destabilize the flow when the effect of the wall friction becomes more intense. Although
the simplified quasi-two-dimensional numerical model correctly captures the main phys-
ical effects of this flow, numerical results display a better agreement with experimental
results for larger values of the blockage parameter for which the flow approaches better
the quasi-two dimensional behavior.



Chapter 4

Experimental and theoretical study
of wake patterns behind a magnetic

obstacle in a liquid metal flow

In this Chapter1, we present an experimental and theoretical study of the dynamics of
wakes generated by magnetic obstacles. The experimental magnetic obstacle was realized
by circulating a liquid metal inside a closed loop with a slender cross-section and imposing
a fixed localized magnetic field in a specific spot of the loop. Experimental observations
made with an Ultrasonic Doppler Velocimeter include records of the axial velocity of liquid
metal as a function of the axial coordinate in the region where the wake of the obstacle is
formed. This information reveals important features of the stability and dynamics of the
wake of the magnetic obstacle. The theoretical study is based on a numerical solution of a
quasi-two dimensional model of the MHD balance equations whose non-dimensional form
indicates that the flow can be described in terms of two parameters, the Reynolds and
the Hartmann numbers. The numerical model considers the induced magnetic field as
an electromagnetic variable (B-formulation). Theoretical studies predict that for a given
Hartmann number, the flow transits from a steady state to a time-dependent state as
the Reynolds number is increased as occurs in the wake of a rigid obstacle, but in sharp
contrast to this last case, when the Reynolds number is increased further, the flow becomes
steady again. Our experimental observations confirm that this prediction is correct.

4.1 Introduction

The term magnetic obstacle is used to denote the braking Lorentz force that opposes the
flow of an electrically conducting fluid due to the presence of a localized magnetic field.
The relative motion between the fluid and the applied magnetic field induces electric cur-
rents that interact with the field and generate a localized Lorentz force that acts as an
obstacle for the flow. In the 1970’s, it was realized that complex velocity structures could
appear in flows under non-uniform magnetic fields (Gelfgat et al., 1978), although exper-
imental results were not able to confirm this fact (Gelfgat and Olshanskii, 1978). In the

1This Chapter is mainly based on the paper: Domı́nguez, D. R., Beltrán, A., Román, J., Cuevas, S.,
and Ramos, E. “Experimental and theoretical study of the dynamics of wakes generated by magnetic
obstacles.” Magnetohydrodynamics, 51, 215-224 (2015).
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last decade, several studies (mainly theoretical) have explored the flow past magnetic ob-
stacles and described important physical features (Cuevas et al., 2006a,b; Votyakov et al.,
2007, 2008; Votyakov and Kassinos, 2009, 2010; Kenjeres et al., 2011; Tympel et al., 2013;
Andreev et al., 2009; Ramos et al., 2008). The first studies used a numerical approach to
provide a quasi-two-dimensional description of the flow in conditions where inertial effects
were not negligible (Cuevas et al., 2006a), and under creeping flow conditions (Cuevas
et al., 2006b). It was shown that both time-dependent and steady vortical flows that
in some aspects resemble flows past bluff bodies, may appear. Through numerical sim-
ulation and experiments, other studies revealed that a steady six-vortex pattern that is
not observed in hydrodynamic flows could appear in the wake of a magnetic obstacle at
certain values of the Reynolds number Re, interaction parameter N (or equivalently the
Hartmann number Ha) and constrainment factor κ defined as the ratio of the lateral size
of the magnet exposed to the oncoming flow to the width of the channel (Votyakov et al.,
2007, 2008). The analogy between flows past solid and magnetic obstacles has been inves-
tigated, recognizing that important differences exist between these two physical situations
(Votyakov and Kassinos, 2009, 2010). Other numerical simulation studies have shown that
the imposition of magnetic fields of different strengths may give rise to transitional flow
regimes for a fixed Re and different values of the interaction parameter, observing vortex
shedding phenomena as well as sustained turbulent bursts close to the magnetic wake
region (Kenjeres et al., 2011). Recently, the influence of a localized non-uniform magnetic
field on liquid metal flow in the quasi-static approximation was investigated numerically
(Tympel et al., 2013). These authors analyzed the three-dimensional flow transformation
and the generation of vortex structures by a strong magnetic dipole field in a liquid metal
duct flow. An important feature of the wakes generated by magnetic obstacles, detected
with the ultrasonic velocity profile method, is that the length of the recirculation region
behind the magnetic obstacle increases with the Reynolds number to reach a maximum
and then decreases (Andreev et al., 2009). Preliminary, theoretical studies indicate that
for large enough Hartmann numbers, increasing the Reynolds number results in the for-
mation of a wake behind the magnetic obstacle with a characteristics, similar to a Bénard
von-Kármán vortex street that occurs behind a rigid obstacle, but in sharp contrast to
the dynamic behavior of the wake formed by a rigid obstacle a further increase of the
Reynolds number leads to a reduction of vortex shedding behind the magnetic obsta-
cle (Ramos et al., 2008). In the present contribution, we extend the study presented in
(Ramos et al., 2008) by describing the experimental recordings that were made to detect
the axial velocity of the flow of liquid metal in the presence of a magnetic obstacle with
the objective of determining representative properties of the wake. The observations show
that for a fixed Hartmann number, the energy contained in the vortices of the wake does
present a maximum as a function of the Reynolds number, indicating that the obstacle
sheds vorticity to the ambient in a finite range of Reynolds numbers. Using a numerical
solution, we infer the dynamics of the whole structure of the wake.
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4.2 Experimental set up

The experimental device used in the observations is a rectangular loop made from acrylic
(Polymethyl methacrylate) walls with a rectangular effective cross-section of 1 cm × 8 cm.
The lengths of the large and short legs of the duct are 85.8 cm and 40 cm, respectively. The
loop is built in sections joined with flanges and the whole system is fixed with mounts
that separate it from the floor of the table, making it easier to detect possible leaks.
By straddling one of the long legs at the central region, an MHD induction pump with
rotating permanent magnets is located. The pump consists of a motor that spins two
disks, where 24 permanent neodymium magnets are mounted radially; this device sets
the liquid metal in motion around the loop. The velocity of the liquid metal is measured
by a Signal Processing ultrasonic Doppler velocimeter (UDV) using a probe of 0.8 cm in
diameter and a wave frequency of 4 MHz. With this equipment, it is possible to determine
one component of the velocity along the propagation line of the acoustic wave emerging
from the emitter. The ultrasonic gauge was fixed at the downstream end of the region of
analysis to detect the axial velocity along the axial coordinate. An appropriate mount was
used to place the gauge at different vertical positions. The flow generated by the pump is
characterized using the Reynolds number defined as Re = UL/ν, where U is the average
axial velocity, L is the hydraulic diameter of the cross-section and ν is the kinematic
viscosity of the working fluid (see below). Given that the geometry of the duct and the
physical properties of the fluid are fixed, the range of Reynolds numbers available with
the experimental equipment depends on the power delivered by the pump (or equivalently
the pressure difference) and on the resistance of the duct. We determined the range of
the Reynolds number available through direct measurement of the axial velocity. Our
measurements indicated that 869 < Re < 4960. A photograph of the experimental device
indicating the position of the MHD pump, the magnets and the UDV system, is shown in
Figure 4.1. The design of our equipment follows closely that of similar facilities developed
at the Technical University of Ilmenau, Germany (see, for instance, (Jian and Karcher,
2012) and (Heinicke, 2013)). A sketch showing the position of the magnets and the UDV,
together with some details of the flow, and the axes of coordinates used in the numerical
study are shown in Figure 4.2.

The working fluid is a Ga(68%)In(20%)Sn(12%) eutectic alloy which has a melting tem-
perature of 10.5◦C and a kinematic viscosity of ν = 3.3 × 107 m2/s. The magnetic obstacle
is created by two 2.54 cm × 2.54 cm × 1.25 cm neodymium magnets placed on the outer
side of the opposite vertical walls of the central part of one of the long legs. The magnets
are located 30 cm away from the upstream corner and 4 cm from the lower horizontal
wall of the duct. With this magnet arrangement, the maximum magnetic field that can
be obtained at the center of the duct is 0.23 T, and the constrainment factor is κ = 0.31
(the side of the magnet/height of the duct). A second non dimensional parameter that
characterizes the flow is the Hartmann number defined as Ha = B0D

√
σ/ρν, where B0

is the maximum strength of the magnetic field at the center of the duct, D is the gap
between the vertical walls of the duct, and σ and ρ are the electric conductivity and the
density of the working fluid, respectively. For GaInSn, σ = 3.46 × 106 1/Ωm and ρ =
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Fig. 1. The experimental liquid metal loop. The MHD pump is in the far long leg.
The disks with permanent magnets and the liquid metal rotate in the counterclockwise
direction. The magnet that generates the magnetic obstacle is close to the central part
of the near long leg, 30 cm away from the upstream corner and 4 cm above the lower wall
of the duct. The ultrasonic gauge is in the far right of the picture near the duct corner.
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Fig. 2. Sketch of the observation zone and position of the axis of coordinates. 1 –
upstream velocity profile, 2 – magnets, 3 – wake of the magnetic obstacle, 4 – line for
ultrasonic Doppler velocity recordings, 5 – ultrasonic Doppler velocimetry probe.

our equipment follows closely that of similar facilities developed at the Technical
University of Ilmenau, Germany (see, for instance, [14] and [15]). A sketch showing
the position of the magnets and the UDV, together with some details of the flow,
and the axes of coordinates used in the numerical study are shown in Fig. 2.

The working fluid is a Ga(68%)In(20%)Sn(12%) eutectic mixture which has
a melting temperature of 10.5○C and a kinematic viscosity of ν = 3.3 × 10−7 m2/s.
The magnetic obstacle is created by two 2.54 cm×2.54 cm×1.25 cm neodymium
magnets placed on the outer side of the opposite vertical walls of the central part
of one of the long legs. The magnets are located 30 cm away from the upstream
corner and 4 cm from the lower horizontal wall of the duct. With this magnet

135

Figure 4.1: The experimental liquid metal loop. The MHD pump is in the far long leg.
The disks with permanent magnets and the liquid metal rotate in the counterclockwise
direction. The magnet that generates the magnetic obstacle is close to the central part of
the near long leg, 30 cm away from the upstream corner and 4 cm above the lower wall
of the duct. The ultrasonic gauge is in the far right of the picture near the duct corner.

6360 kg/m3. The range of Hartmann numbers available depends on the intensity of the
permanent magnets used and their relative position with respect to the liquid metal, but
increasing the distance of the magnets to the vertical walls reduces the effective magnitude
of the magnetic field inside the duct and also reduces the Hartmann number. In figure
4.3, we show the distribution of the normal component of the magnetic field for distances
of 3.1cm and 3.6 cm between the magnets. These conditions yield Hartmann numbers
of 58 and 75, respectively. As can be appreciated, both magnetic fields have similar to
Gaussian distributions, but with different spread and maximum values. As it is usual in
liquid metal MHD duct flows, the magnetic Reynolds number defined as Rm = µ0σUD
is very small.

4.3 Numerical model

A quasi two-dimensional (Q2D) model is proposed to simulate the MHD flow through a
spatially localized magnetic field produced by magnets fixed to the channel walls. This
simplified model can be regarded as a first approach that captures the dominant physical
effects without going into the complexities of a full three dimensional model. Within this
approximation, only the component of the magnetic field normal to the vertical walls is
considered. The origin of the axis of coordinates is located on the line that joins the
geometrical center of the magnets and the halfway between the vertical walls of the duct
(see Figure 4.3). The dimensionless axial (x) and vertical (y) coordinates increase in
the downstream and upward directions, respectively, and are scaled with the side length
of the magnet L. The traversal coordinate (z) is defined in the direction perpendicular
to the vertical walls and scaled by D. The main assumption of the Q2D model is that
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our equipment follows closely that of similar facilities developed at the Technical
University of Ilmenau, Germany (see, for instance, [14] and [15]). A sketch showing
the position of the magnets and the UDV, together with some details of the flow,
and the axes of coordinates used in the numerical study are shown in Fig. 2.

The working fluid is a Ga(68%)In(20%)Sn(12%) eutectic mixture which has
a melting temperature of 10.5○C and a kinematic viscosity of ν = 3.3 × 10−7 m2/s.
The magnetic obstacle is created by two 2.54 cm×2.54 cm×1.25 cm neodymium
magnets placed on the outer side of the opposite vertical walls of the central part
of one of the long legs. The magnets are located 30 cm away from the upstream
corner and 4 cm from the lower horizontal wall of the duct. With this magnet
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Figure 4.2: Sketch of the observation zone and position of the axis of coordinates. 1 -
upstream velocity profile, 2 - magnets, 3 - wake of the magnetic obstacle, 4 - line for
ultrasonic Doppler velocity recordings, 5 - ultrasonic Doppler velocimetry probe.

the transport of momentum in the z-direction is mainly diffusive so that the velocity
components can be expressed in the form

u(x, y, z, t) = ũ(x, y, t)f(x, y, z), v(x, y, z, t) = ṽ(x, y, t)f(x, y, z), (4.1)

where ũ and ṽ are the z-averaged velocity components in the x- and y-directions, respec-
tively. The velocity components are scaled by the average axial velocity U . The function
f considers the variation of the velocity profile in the z-direction and must satisfy the

normalization condition
∫ 1/2

−1/2
fdz = 1. Its dependence on the x and y coordinates must

reflect the different flow regions due to the localization of the magnetic field. Details of the
quasi-two dimensional model can be found in Cuevas et al. (2006a). The friction function
f can be obtained from the following balance between the viscous and the Lorentz force

d2f

dz2
− (HaB0

z (x, y))2f = ε2Re
dp

dx
, (4.2)

where ε is the aspect ratio D/L. The terms on the left-hand side correspond to the
viscous and induced Lorentz forces, while the term on the right-hand side is an externally
imposed axial pressure gradient which generates the duct flow and is constant. It should
be noted that due to the normalization for f , this parameter does not appear explicitly
in the solution. The function f must satisfy no-slip conditions at both vertical walls
f(z = ±1/2) = 0. The solution that satisfies the boundary and normalization conditions
has the form

f = −Ha e−Ha(z+0.5) × eHa − e2Ha − eHa(z+0.5) + eHa(1+2z) − e2Ha(1+z)

4eHa + (1− e2Ha)(eHa + 2)
(4.3)
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Fig. 3. Magnetic field distribution at the center of the duct for Hartmann numbers
58 (left) and 75 (right). The central circles represent 0.125 T and 0.175 T for Hartmann
numbers 58 and 75, respectively. In the two cases, the contours are 0.025 T separated.

arrangement, the maximum magnetic field that can be obtained at the center of
the duct is 0.23 T, and the constrainment factor is κ = 0.31 (the side of the mag-
net/height of the duct). A second non dimensional parameter that characterizes
the flow is the Hartmann number defined as Ha = B0D

√
σ/ρν, where B0 is the

maximum strength of the magnetic field at the center of the duct, D is the gap
between the vertical walls of the duct, and σ and ρ are the electric conductivity
and the density of the working fluid, respectively. For GaInSn, σ = 3.46×106 1/Ωm
and ρ = 6360 kg/m3. The range of Hartmann numbers available depends on the
intensity of the permanent magnets used and their relative position with respect
to the liquid metal, but increasing the distance of the magnets to the vertical walls
reduces the effective magnitude of the magnetic field inside the duct and also re-
duces the Hartmann number. In Fig. 3, we show the distribution of the normal
component of the magnetic field for distances of 3.1 cm and 3.6 cm between the
magnets. These conditions yield Hartmann numbers of 58 and 75, respectively. As
can be appreciated, both magnetic fields have similar to Gaussian distributions,
but with different spread and maximum values. As it is usual in liquid metal MHD
duct flows, the magnetic Reynolds number defined as Rm = µ0σUD is very small.

2. Numerical model. A quasi two-dimensional (Q2D) model is proposed
to simulate the MHD flow through a spatially localized magnetic field produced
by magnets fixed to the channel walls. This simplified model can be regarded as a
first approach that captures the dominant physical effects without going into the
complexities of a full three dimensional model. Within this approximation, only
the component of the magnetic field normal to the vertical walls is considered. The
origin of the axis of coordinates is located on the line that joins the geometrical
center of the magnets and the halfway between the vertical walls of the duct
(see Fig. 2). The dimensionless axial (x) and vertical (y) coordinates increase in
the downstream and upward directions, respectively, and are scaled with the side
length of the magnet L. The traversal coordinate (z) is defined in the direction
perpendicular to the vertical walls and scaled by D. The main assumption of
the Q2D model is that the transport of momentum in the z-direction is mainly
diffusive so that the velocity components can be expressed in the form

u(x, y, z, t) = ũ(x, y, t)f(x, y, z), v(x, y, z, t) = ṽ(x, y, t)f(x, y, z), (1)
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Figure 4.3: Magnetic field distribution at the center of the duct for Hartmann numbers
58 (left) and 75 (right). The central circles represent 0.125 T and 0.175 T for Hartmann
numbers 58 and 75, respectively. In the two cases, the contours are 0.025 T separated.

where Ha = HaB0
z is defined as the local Hartmann number. In order to obtain the

z-average from the conservation equations, we substitute expressions (4.1) and (4.3) into
the governing MHD equations and integrate in the z-direction. Dropping the tilde, the
dimensionless averaged equations of motion take the form

∂u

∂x
+
∂v

∂y
= 0, (4.4)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂P

∂x
+

1

Re
∇2
⊥u+

u

τ
+
Ha2

ε2Re
jyB

0
z , (4.5)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂P

∂y
+

1

Re
∇2
⊥v +

v

τ
− Ha2

ε2Re
jxB

0
z , (4.6)

where the pressure p, the electric current density components jx and jy, and the applied
field B0

z (x, y) are scaled by ρU2, σUB0, and B0, respectively. The sub index ⊥ denotes
the projection of the nabla operator on the (x,y)-plane. The time t is normalized by L/U .
The model shows that there are two nondimensional parameters, the Reynolds (Re) and
the Hartmann (Ha) number (for definitions see Section 4.2). The third term on the right-
hand side of Eqs. (4.5) and (4.6) represents the Hartmann-Rayleigh friction and arises
due to the boundary layers at the Hartmann walls. The Hartmann-Rayleigh friction can
be conveniently represented in terms of a characteristic dimensionless timescale τ , which
indicates the decay of vorticity due to dissipation in the Hartmann and viscous layers.
The inverse of this time scale is given by

τ−1 =
1

ε2Re

df

dz

∣∣∣∣1/2
−1/2

= − 1

ε2Re

2Ha2(eHa + 1)2

4eHa + (1− e2Ha)(Ha+ 2)
. (4.7)
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In the quasi-static approximation the magnetic induction equation takes the form

∇2
⊥bz − u

∂B0
z

∂x
− v∂B

0
z

∂y
= 0, (4.8)

where the induced magnetic field bz has been normalized by RmB0. Once bz is determined,
the Ampere’s law gives an expression to calculate electric currents, namely,

jx =
∂bz
∂y

, jy = −∂bz
∂x

, (4.9)

A solution to the quasi two-dimensional model given in Eqs. (4.4)-(4.9) is sought via
numerical methods. The finite volume method described in Versteeg and Malalasekera
(1995) on an orthogonal equidistant grid was used to solve the conservation equations
(4.4)-(4.8). The distribution of the applied magnetic field B0

z (x, y) required for the nu-
merical solution is a fit of the experimental magnetic field (Figure 4.3) with the expression
given by McCaig (1977) for a square surface magnetized in the normal direction. The
numerical solution was obtained in a rectangular domain of 35 × 3.2 non-dimensional
units using a grid of 700 × 256. The boundary conditions consider no-slip conditions for
the velocity components at y = ±1.6. At the inlet (x = −10), a uniform velocity pro-
file is used, whereas Neumann boundary conditions are imposed at the outlet (x = 25).
We assume that the induced magnetic field is zero bz = 0 at all boundaries. The stan-
dard time marching procedure (Euler method) was used for the time integration with a
non-dimensional time step of 5× 10−4.

4.4 Results

Exploratory observations indicate that the flow generated by the magnetic obstacle is
a very complex, three dimensional, time dependent phenomenon, whose comprehensive
description would require a large research program. In the present study, we concentrate
on a very specific aspect of this flow, namely, in the detection of vortical structures in the
wake as functions of the Reynolds number. Before we present quantitative results, it is
convenient to describe some qualitative features of the flow. The axial velocity u in the
(x, t) space and for the vertical position y = 12.7 mm is plotted in figure 4.4. The left panel
displays the experimental recordings obtained with UDV for Ha = 75 and Re = 2300, and
the right panel shows similar results obtained with the numerical solution using Ha = 80
and Re = 2500. A zoom is provided for the experimental results. An interesting feature
of the experimental records is that the axial velocity just upstream the magnetic obstacle
is reduced (red-purple vertical strip at -50 mm < x < 0 mm) and then it increases in
the region 0 mm< x <140 mm. The inclined, red and purple parallel strips in the region
x > 170 mm indicate the transit of a periodic perturbation in time for a fixed point in
space, or in space for a snapshot. This velocity pattern is consistent with vortex shedding
with an approximate characteristic time of the order of 1.0 s. The results obtained with
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the numerical solution display similar features, with periodic inclined parallel strips that
indicate the transit of periodic structures.
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where the induced magnetic field bz has been normalized by RmB0. Once bz is
determined, the Ampere’s law gives an expression to calculate electric currents,
namely,

jx = ∂bz

∂y
and jy = −∂bz

∂x
. (9)

A solution to the quasi two-dimensional model model given in Eqs. (4)–(9) is
sought via numerical methods. The finite volume method described in [16] on an
orthogonal equi-distant grid was used to solve the conservation equations (4)–(8).
The distribution of the applied magnetic field B0

z(x, y) required for the numerical
solution is a fit of the experimental magnetic field (Fig. 3) with the expression given
by [13] for a square surface magnetized in the normal direction. The numerical
solution was obtained in a rectangular domain of 35 × 3.2 non-dimensional units
using a grid of 700× 256. The boundary conditions consider no-slip conditions for
the velocity components at y = ±1.6. At the inlet (x = −10), a uniform velocity
profile is used, whereas Neumann boundary conditions are imposed at the outlet
(x = 25). We assume that the induced magnetic field is zero bz = 0 at all boundaries.
The standard time-marching procedure (Euler method) was used for the time
integration with a non-dimensional time step of 5 × 10−4.

3. Results. Exploratory observations indicate that the flow generated by
the magnetic obstacle is a very complex, three dimensional, time dependent phe-
nomenon, whose comprehensive description would require a large research pro-
gram. In the present study, we concentrate on a very specific aspect of this flow,
namely, in the detection of vortical structures in the wake as functions of the
Reynolds number. Before we present quantitative results, it is convenient to de-
scribe some qualitative features of the flow. The axial velocity u in the (x, t)
space and for the vertical position y = 12.7 mm is plotted in Fig. 4. The left
panel displays the experimental recordings obtained with UDV for Ha = 75 and
Re = 2300, and the right panel shows similar results obtained with the numerical
solution using Ha = 80 and Re = 2500. A zoom is provided for the experimental
results. An interesting feature of the experimental records is that the axial ve-
locity just upstream the magnetic obstacle is reduced (red-purple vertical strip at
–50mm < x < 0mm) and then it increases in the region 0mm< x <140mm. The
inclined, red and purple parallel strips in the region x > 170mm indicate the tran-
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Fig. 4. Map of the axial velocity u in the (x,t) space, y = 12.7 mm. Left: experimental
observations for Ha = 75, Re = 2300. Right: numerical calculation for Ha = 80, Re = 2500.
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Figure 4.4: Map of the axial velocity u in the (x, t) space, y = 12.7 mm. Left: experimental
observations for Ha = 75, Re = 2300. Right: numerical calculation for Ha = 80,
Re = 2500.
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Fig. 5. Experimental axial velocity u as a function of time at the point x = 400mm,
y = 12.7 mm for Ha = 75. Starting from the top, traces were obtained for Re = 1272, 3163
and 4568. Note the different scales in the ordinates of the three graphs and that the
largest amplitude corresponds to Re = 3163.

sit of a periodic perturbation in time for a fixed point in space, or in space for
a snapshot. This velocity pattern is consistent with vortex shedding with an ap-
proximate characteristic time of the order of 1.0 s. The results obtained with the
numerical solution display similar features, with periodic inclined parallel strips
that indicate the transit of periodic structures.

In order to a make a more specific analysis, we show in Fig. 5 a sample of
the axial velocity traces observed at a fixed point (x = 400 mm, y = 12.7mm) as
a function of time for Ha = 75 and Re = 1272, 3163 and 4568. The sampling
frequency was 20 Hz. The original traces were smoothed with a moving average
filter of 15 points, equivalent to a sampling rate of 0.75 s. As seen, the traces are
irregular, with many Fourier modes involved, and also the average amplitude of
the perturbations is not a monotonous function of the Reynolds number. Note
that the time average of the signals increases with the Reynolds number, as ex-
pected, but in contrast, we find that the amplitude of the velocity fluctuations is
larger for the case Re=3163 than for of the other two cases in Fig. 5. With the
velocity traces alone, it is difficult to quantify the amplitude difference between
the different cases and, in the following, we will develop methods to obtain a more
quantitative assessment. The average velocity obtained by experimental and nu-
merical methods is of the same order of magnitude, indicating that this feature is
correctly captured with the model. However, the oscillations superimposed to the
average flow calculated numerically have single or few Fourier modes, with periods
of approximately 3.7 non-dimensional units. See also the right panel of Fig. 4.

An alternative way of displaying the previous results that is more amenable
for comparison is to plot the parameter A defined by

A = u − ⟨u⟩, (10)

where ⟨u⟩ is the average axial velocity over a time interval I0. In Fig. 6, we show
40 s of the readings of the variable A as a function of time for the same Reynolds
numbers analyzed in Fig. 5 and using I0 = 53 s (103 readings). Inspection indicates
that the amplitude of the traces is of the order of 10 mm/s and that the amplitude
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Figure 4.5: Experimental axial velocity u as a function of time at the point x = 400 mm,
y = 12.7 mm forHa = 75. Starting from the top, traces were obtained for Re = 1272, 3163
and 4568. Note the different scales in the ordinates of the three graphs and that the largest
amplitude corresponds to Re = 3163.

In order to a make a more specific analysis, we show in Figure 4.5 a sample of the
axial velocity traces observed at a fixed point (x= 400 mm, y = 12.7 mm) as a function
of time for Ha = 75 and Re = 1272, 3163 and 4568. The sampling frequency was
20Hz. The original traces were smoothed with a moving average filter of 15 points,
equivalent to a sampling rate of 0.75 s. As seen, the traces are irregular, with many Fourier
modes involved, and also the average amplitude of the perturbations is not a monotonous
function of the Reynolds number. Note that the time average of the signals increases
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with the Reynolds number, as expected, but in contrast, we find that the amplitude of
the velocity fluctuations is larger for the case Re=3163 than for of the other two cases
in Figure 4.5. With the velocity traces alone, it is difficult to quantify the amplitude
difference between the different cases and, in the following, we will develop methods to
obtain a more quantitative assessment. The average velocity obtained by experimental
and numerical methods is of the same order of magnitude, indicating that this feature
is correctly captured with the model. However, the oscillations superimposed to the
average flow calculated numerically have single or few Fourier modes, with periods of
approximately 3.7 non-dimensional units. See also the right panel of Figure 4.4. An
alternative way of displaying the previous results that is more amenable for comparison
is to plot the parameter A defined by

A = u− 〈u〉, (4.10)

where 〈u〉 is the average axial velocity over a time interval I0. In Figure 4.6, we show 40s
of the readings of the variable A as a function of time for the same Reynolds numbers
analyzed in Figure 4.5 and using I0 = 53s (103 readings). Inspection indicates that
the amplitude of the traces is of the order of 10 mm/s and that the amplitude of the
perturbations obtained with Re = 3163 is larger than that found in the other cases. The
corresponding properties of the flow obtained with numerical integration show that the
amplitude of the oscillation is much smaller (of the order of 0 ± 25 mm/s), which is by a
factor of 20 smaller than the observed experimental value.D.R.Domı́nguez, A. Beltrán, J.J. Román, S. Cuevas, E.Ramos
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Fig. 6. The parameter A as a function of time for three Reynolds numbers: Re = 1272
(blue line-dots), 3163 (black continuous line) and 4568 (red dots).
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Fig. 7. The parameter L̃2 as a function of the Reynolds number. Left panel: ex-
perimental observations. Ha = 58 (blue line with squares) and Ha = 75 (red line with
asterisks). The lines are fits to the experimental data. The fits of L̃2 attain maxima at
Re = 3190 and 2750 for Ha = 58 and 75, respectively. Right panel: theoretical calcula-
tions. Ha = 80, the maximum is attained at approximately Re = 600.

of the perturbations obtained with Re = 3163 is larger than that found in the
other cases. The corresponding properties of the flow obtained with numerical
integration show that the amplitude of the oscillation is much smaller (of the order
of 0±25mm/s), which is by a factor of 20 smaller than the observed experimental
value.

In order to make a quantitative comparison, we define the parameter L2 as

L2 = 1
I
∫ I

0
A2dt. (11)

Note that L2 is a function of the Hartmann and Reynolds numbers only and
indicates the average of the square of the amplitude of the axial velocity oscillation
with respect to its average value in the interval I which is related to the kinetic
energy of the vortices in the wake.

In the left panel of Fig. 7 we show the experimental results for L2 at Ha = 58
and 75 as functions of the Reynolds number. The actual data shown in the
figure and denoted by L̃2 are normalized with the maximum (smoothed) value
of L2(Ha = 75). As it can be seen from the figure, the trends of L̃2 are not
monotonous but display maxima. Our experimental device allows us to capture
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Figure 4.6: The parameter A as a function of time for three Reynolds numbers: Re =
1272 (blue line-dots), 3163 (black continuous line) and 4568 (red dots).

In order to make a quantitative comparison, we define the parameter L2 as

L2 =
1

I

∫ I

0

A2 dt. (4.11)
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Fig. 6. The parameter A as a function of time for three Reynolds numbers: Re = 1272
(blue line-dots), 3163 (black continuous line) and 4568 (red dots).
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Fig. 7. The parameter L̃2 as a function of the Reynolds number. Left panel: ex-
perimental observations. Ha = 58 (blue line with squares) and Ha = 75 (red line with
asterisks). The lines are fits to the experimental data. The fits of L̃2 attain maxima at
Re = 3190 and 2750 for Ha = 58 and 75, respectively. Right panel: theoretical calcula-
tions. Ha = 80, the maximum is attained at approximately Re = 600.

of the perturbations obtained with Re = 3163 is larger than that found in the
other cases. The corresponding properties of the flow obtained with numerical
integration show that the amplitude of the oscillation is much smaller (of the order
of 0±25mm/s), which is by a factor of 20 smaller than the observed experimental
value.

In order to make a quantitative comparison, we define the parameter L2 as

L2 = 1
I
∫ I

0
A2dt. (11)

Note that L2 is a function of the Hartmann and Reynolds numbers only and
indicates the average of the square of the amplitude of the axial velocity oscillation
with respect to its average value in the interval I which is related to the kinetic
energy of the vortices in the wake.

In the left panel of Fig. 7 we show the experimental results for L2 at Ha = 58
and 75 as functions of the Reynolds number. The actual data shown in the
figure and denoted by L̃2 are normalized with the maximum (smoothed) value
of L2(Ha = 75). As it can be seen from the figure, the trends of L̃2 are not
monotonous but display maxima. Our experimental device allows us to capture
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Figure 4.7: The parameter L2 as a function of the Reynolds number. Left panel: ex-
perimental observations. Ha = 58 (blue line with squares) and Ha = 75 (red line with

asterisks). The lines are fits to the experimental data. The fits of L̃2 attain maxima at Re
= 3190 and 2750 for Ha = 58 and 75, respectively. Right panel: theoretical calculations.
Ha = 80, the maximum is attained at approximately Re = 600.

Note that L2 is a function of the Hartmann and Reynolds numbers only and indicates the
average of the square of the amplitude of the axial velocity oscillation with respect to its
average value in the interval I which is related to the kinetic energy of the vortices in the
wake.

In the left panel of Figure 4.7 we show the experimental results for L2 at Ha = 58 and 75
as functions of the Reynolds number. The actual data shown in the figure and denoted

by L̃2 are normalized with the maximum (smoothed) value of L2 (Ha = 75). As it can

be seen from the figure, the trends of L̃2 are not monotonous but display maxima. Our
experimental device allows us to capture data for very small values, which leads us to
determine the critical Reynolds number, where the first bifurcation occurs, i.e. where

the wake of the magnetic obstacle becomes time dependent; L̃2 is zero for Reynolds
numbers smaller than the critical ones. The first critical Reynolds number is found at
approximately 900 for the two cases explored. The experimental equipment prevents us
to obtain data for Reynolds numbers larger than approximately 5000 for Ha = 58 and
75, but in the two cases, the data display an unmistakeable trend towards smaller values.

Extrapolating the experimental data available, the Reynolds number where L̃2 reduces
to zero, is approximately 6000 for Ha = 75, but for Ha = 58 it is difficult to estimate
the Reynolds number, where the energy of the perturbations in the wake vanishes. The
maxima of the smoothed data are attained at Re = 3190 and 2750, respectively, for

Ha = 58 and 75. The trend displayed by L̃2 obtained with the numerical solution and
considering Ha = 80 is shown in the right panel of Figure 4.7. The data have been

normalized with its maximum value. The variable L̃2 obtained by numerical calculations
displays qualitative features similar to those observed in the experiment, and the range
of Reynolds numbers where the wake of the obstacle sheds vortices, is approximately the
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same for theory and experiment, but the amplitude is not. The latter is a consequence
of the fact that the model underestimates the amplitude of the velocity fluctuations, as
indicated in the discussion of Figure 4.6.

4.5 Conclusions

Experimental records of the wake formed by a magnetic obstacle in a liquid metal flow
made by an ultrasonic velocimeter are presented. The velocity readings show intermittent
perturbations that indicate vortex shedding from the magnetic obstacle. We observe that
for small Reynolds numbers (300 < Re < 700) the energy of the perturbations in the
wake increases to reach a maximum that depends on the Hartmann number. Then the
energy reduces monotonically up to the maximum Reynolds number that can be reached
with our experimental equipment. This indicates that the oscillatory wake is present in
the flow only in a finite range of Reynolds numbers. This observation is in qualitative
agreement with a quasi-two-dimensional theory also presented in this report. Although
a more detailed study of the behavior near the first critical Reynolds number, where the
steady flow becomes time dependent is required, the data available evidence that the first
bifurcation is a supercritical Hopf bifurcation (for a definition see Lynch (2004)). The
first critical Reynolds number detected is much larger than the rigid cylindrical obstacle
(approximately 45 (Williamson, 1996)); this effect may be due to the stabilizing effect
of the lateral walls. Unfortunately, our experimental equipment prevents us to explore
the nature of the inverse bifurcation found at large Reynolds numbers, but the numerical
solution suggests that it is an inverse supercritical Hopf bifurcation. The numerical model
used to simulate the specific feature of the flow analyzed in this contribution does capture
the magnitude of the average velocity correctly, but fails to give good results on the
complexity and magnitude of the velocity fluctuations.





Chapter 5

Experimental study of wake patterns
behind a solid disk

In this Chapter1, we study experimentally a flow past a circular disk immersed in a water
channel at high Reynolds numbers. The disk is located at the center of the channel so
that its symmetry axis is aligned with the direction to the flow. Using a rear view configu-
ration in which the laser sheet is perpendicular to the direction of the flow, we analyze the
flow pattern using Particle Image Velocimetry. Measurements were made with Reynolds
numbers in the range from 250 to 550, where oscillatory instabilities appear. In order to
obtain a more detailed description of the flow, an azimuthal Fourier decomposition was
performed using an algorithm implemented in a MATLAB code. The Fourier decompo-
sition allow us to reconstruct the azimuthal modes of the original vorticity field. It was
found that the temporal evolution of the longitudinal component of the vorticity, shows
an instability that may have a long-term frequency.

5.1 Introduction

As we have already mentioned, the flow past solid obstacles and the wake patterns gen-
erated behind them, have been extensively studied in the literature (Zdravkovich, 1997).
Within this topic, an interesting and important phenomenon is the study of the vortex
shedding behind three-dimensional bluff bodies, for example a sphere, a disk or a cube.

In fact, one of the subjects of interest of the research group led by Dr. Wesfreid at PMMH-
ESPCI (Bobinski et al., 2014; Gumowski et al., 2008; Klotz et al., 2014) is the study of
vortex shedding behind axisymmetric solid obstacles as those just mentioned in which
three dimensional wake structures can be identified (Bobinski et al., 2014). For instance,
in the flow behind a sphere, three different flow regimes have been reported. For Re < 212,
the wake of the sphere has an axisymmetric stationary ring structure. At Re = 212 two
parallel and counter-rotating vortices appear. The transition between a steady structure
and a time dependent structure occurs at Re = 275 (Gumowski et al., 2008). This flow
pattern is known as the hairpin vortex shedding where small pieces of counter-rotating

1This Chapter is mainly based on the results obtained during the internship at PMMH-EPSCI
(Physique et Mécanique des Milieux Hétérogènes-École de Physique et de Chimie Industrielles) of Paris-
Tech in Paris, France, under the supervision of Dr. Ramiro Godoy-Diana, Dra. Sophie Goujon-Durand
and Dr. José Eduardo Wesfreid.
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vortices are produced by stages of strong modulation and reconnection of two marginal
longitudinal vortices (Gumowski et al., 2008). The flow structures generated behind a disk
have also been investigated experimentally, observing the same three flow patterns found
in the flow past the sphere. The first observed pattern is a steady axisymmetric flow with
a toroidal recirculation zone behind the disk. By increasing the Reynolds number the
toroidal recirculation zone becomes a non-axisymmetric structure formed by two counter-
rotating vortices. By increasing the Reynolds number the flow structure is transformed
giving rise to the hairpin vortex shedding (Bobinski et al., 2014). It has been observed
that the value of the Reynolds number at which the transition of the steady flow pattern
to the one where vortices appear varies according to the thickness of the disk. For a very
thin disk the transition between the flow patterns occurs at higher Reynolds numbers
(Bobinski et al., 2014). Figures 5.1 shows the experimental patterns for the flow past a
circular disk (Klotz et al., 2014). In turn, figure 5.2 shows flow patterns for the flow past
a cube where a close resemblance with the patterns found with the sphere and the disk
can be observed.

In this chapter, we carry out an experimental study of the flow past a circular disk at high
Reynolds with the motivation of searching for flow patterns that were found numerically
by Gushchin and Matyushin (2006) in the analysis of the flow past a sphere at high
Reynolds numbers. For Reynolds number in the range of 275 < Re < 375 they found
that about a plane can be observed in the wake behind the sphere. However, if the
Reynolds number increases, being in the range of 375 ≤ Re ≤ 380, the wake starts to
rotate slowly around the plane of symmetry.

T. BOBINSKI, S. GOUJON-DURAND, AND J. E. WESFREID PHYSICAL REVIEW E 89, 053021 (2014)

FIG. 1. (Color online) Visualization patterns (streaklines) for dif-
ferent flow regimes. Images at top and bottom are the side view
and top view, respectively. (a) Steady axisymmetric flow (Re = 50).
(b) Steady flow with planar symmetry (Re = 135). (c) Unsteady flow
with hairpin shedding (Re = 180) for a disk with d/h = 6.

!x = 0.8 mm one may determine the instantaneous vorticity
error to be !ωz = 0.23 s−1.

III. EXPERIMENTAL RESULTS

A. Flow regimes

Three different flow regimes were distinguished experimen-
tally for each disk (Fig. 1). The first is a steady axisymmetric
flow with a toroidal recirculation zone behind the body. As
the Reynolds number increases, the flow remains steady after
a first transition, the toroidal recirculation zone distorts and
becomes nonaxisymmetric while two longitudinal counter-
rotating vortices are observed in the wake. With a subsequent
increase in flow velocity, a second transition leads to unsteady
flow with a regular hairpin shedding.

B. Onset values for different aspect ratios

To determine the onset values, the transversal velocity
field was measured in a channel cross section to obtain the
corresponding streamwise vorticity field. This measurement
was possible because the end section of the channel has a
transparent window perpendicular to the flow, which allows
optical access without distortion. The longitudinal component
of vorticity ωz was measured in planes perpendicular to the
mean flow velocity at different distances from the disk. The
maximum value of vorticity was observed at a distance of
1.25d behind the disk (see Fig. 2).

The first bifurcation from the steady axisymmetric base
flow (ωz = 0) to the steady planar symmetric flow with two
counter-rotating vortices in the wake (ωz "= 0) is illustrated
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FIG. 2. (Color online) Maximum magnitude of longitudinal vor-
ticity as a function of distance from the disk (d/h = 2, Re = 221).
Blue squares correspond to negative vorticity (clockwise eddy). Red
circles correspond to positive vorticity (anticlockwise eddy).
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FIG. 3. (Color online) PIV images. (left) Steady axisymmetric
flow (d/h = 24, Re = 54). (right) Steady asymmetric flow with
two counter-rotating vortices (d/h = 24, Re = 129), obtained in a
channel cross section at z = 1.25d .

in Fig. 3. The onset values of the steady instability Rec1 are
presented for different disks, with different ratios of d/h in
Table I as well as in Fig. 5, showing higher onset for thicker
disks.

The subsequent second bifurcation leads to unsteady flow
with periodic shedding in the form of hairpins. The time
evolution of the obtained longitudinal vorticity field for this
regime is shown in Fig. 4. The onset of unsteady instability is
shown in Fig. 5 by circles. The onset dependence on Reynolds
number is qualitatively similar as for the case of the first
bifurcation.

For the thickest disks (d/h = 1.33 and d/h = 1), the first
onset occurs for the highest Reynolds number, and in these
cases it is possible to identify how the instabilities appear, first
with small oscillations of the wake (values of onset given by
triangles in Fig. 5) and later with hairpins. This is the same
phenomenon described by Gumowski et al. [11] as “peristaltic
oscillations.”

From the hydrodynamic point of view, increasing h pro-
vides more space to develop a thicker boundary layer. For
the same Re value this implies lower shear strength U0/δ
and in consequence higher Re of the onset for the same
regime of shear instability. This effect is strongly amplified by
the opening of the streamlines behind a thicker body, which
weaken the shear (Roshko [12]).

C. Effect of disk aspect ratio on magnitude of vorticity

The maximum magnitude of longitudinal vorticity max ωz

was chosen as an order parameter for further investigation.
This value was extracted from 100 frames of successive PIV
measurements (which corresponds to nearly two cycles of
oscillations in the unsteady regime). In the case of a steady
regime with two counter-rotating vortices, the maximum

TABLE I. Onset values.

Rec1 Reperistaltic Rec2

d/h = 24 108 146
d/h = 6 120 172
d/h = 3 142 202
d/h = 2 179 238
d/h = 1.33 218 305 317
d/h = 1 230 310 333

053021-2

Figure 5.1: Visualization patterns of different regimes in the flow past a disk with d
h

=
6. a) Steady axisymmetric flow (Re = 50). (b) Steady flow with planar symmetry (Re =
135). (c) Unsteady flow with hairpin shedding (Re = 180) (Bobinski et al., 2014).
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FIGURE 2. Visualisations patterns of three consecutive regimes: (a,b) the basic flow at
Re = 100, (c,d) the two counter-rotating vortices regime at Re = 250, (e, f ) the hairpin
vortex shedding regime at Re = 300.

(a)

(b)

FIGURE 3. Peristaltic oscillation of the two trails of counter-rotating vortices prior to
regular shedding of hairpin vortices at Re = 277: (a) side view, (b) top view.

it was possible to distinguish these four pairs of vortices using the PIV method (see
figure 4a) where red and blue correspond to anti-clockwise and clockwise longitudinal

Figure 5.2: Visualization patterns of different regimes for the flow past a cube: a) and b)
Basic flow at Re = 100, c) and d) Pattern with two counter-rotating vortices at Re = 250
and e) and f) hairpin vortex shedding regime at Re = 300 (Klotz et al., 2014).

5.2 Experimental setup.

The experimental setup, whose sketch is shown in figure 5.3, has been used previously
for similar studies at low Reynolds numbers (Bobinski et al., 2014; Klotz et al., 2014;
Thiria et al., 2006). It consists of a horizontal water channel with 860 mm in length and
a cross-section viewing area of 100 mm × 100 mm. The flow is produced by a constant
pressure gradient generated by gravity, using a tank located at a constant height above
the channel. Two honeycomb type filters are used before the test zone. The flow velocity
in the channel is controlled by means of two throttling valves. We used a disc with a
diameter of D = 20 mm and a thickness of 3 mm, which gives us a blocking ratio of
0.12, i.e. the ratio of the diameter of the disc and the width of the channel. Water
average speed range from 1.12 to 2.49 cm/s giving a Reynolds number in the range of
250< Re <550. The Reynolds number is defined as Re = UD

ν
where U is the velocity of
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free stream flow measured far from the obstacle, D is the diameter of the disk, and ν is
the kinetic viscosity of the water. The disk is attached by a hollow capillary tube through
which dye is injected for visualization. The particle image velocimetry (PIV) method
was used to obtain quantitative measurements of the velocity field. It comprises a CCD
camera that works at 14 Hz, a YAG double-pulsed laser, a timing box to synchronize the
laser with the camera and an optical module to produce the laser sheet. Spheres of 11
µm diameter were used as tracers to perform the PIV. All PIV measurements were made
in the rear view configuration, i.e. the laser sheet was perpendicular to the direction of
the flow and located x = 40 mm downstream the obstacle.
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FIGURE 1. (Colour online) Schematic of the water channel.

the cube remains perpendicular to the inflow velocity. The main aim is to explore
the sequence of transitions for a such a bluff body. As far as we know this is
the first full experimental investigation of the wake behind a cube. The results
obtained are compared with the numerical simulation carried out by Saha (2004). In
§ 2 the experimental set-up used in our experiments is described. Results obtained,
such as the evolution of the longitudinal vorticity component !x as a function of
Reynolds number, as well as distance in the streamwise direction, the length of
the recirculation zone, the frequency and the Strouhal number, are presented in
§ 3. Section 4 consists of two kinds of analysis of experimental data, namely an
azimuthal Fourier decomposition of !x as a function of Reynolds number as well as
the extraction of the components corresponding to each of the investigated regimes.
Finally, § 5 is devoted to conclusions.

Unless otherwise stated, on all figures presented the direction of the flow is from
the left to the right.

2. Experimental set-up

The present experiments were carried out in a horizontal water channel adapted for
low Reynolds numbers and used previously in similar experiments (see Thiria, Goujon-
Durand & Wesfreid 2006 and Marais 2011). It is presented schematically in figure 1.
The internal dimensions of its cross-section and the length of the test section were
100 mm ⇥ 100 mm and 860 mm respectively.

The flow was induced by gravity, using a constant-level tank to provide a constant
pressure gradient. Two honeycomb-type filters were present in the front of the test
section to make the flow fully uniform. The turbulence level was lower than 2 %,
obtained by considering the temporal standard deviations of measured velocity. It was
demonstrated for the wake of a sphere that this level of free-stream turbulence has
negligible influence on the vortex shedding (see Wu & Faeth 1994, Mittal 2000 and

Figure 5.3: Experimental setup (Klotz et al., 2014).

5.3 Short term results

In this section, we present short term results of the vortex shedding for a flow past a disk
at Re= 266 with the aim at comparing with the vorticity field that has been reported
previously for this flow (Bobinski et al., 2014). The whole experiment in this section
was observed along 50 seconds. Figure 5.4 shows the time evolution of the longitudinal
vorticity fields for one period of the hairpin vortex obtained through PIV measurements
taken at 14 Hz. The red color corresponds to positive vorticity and blue color to negative
vorticity. It is found that our PIV measurements reproduce the results previously obtained
by Bobinski et al. (2014) shown in figure 5.5.
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Figure 5.4: Experimental longitudinal vorticity fields for unsteady flow past a disk for
one period of hairpin vortex shedding. Re = 266. d

h
= 2. The time elapsed between two

consecutive panels is 1/14 s.
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FIG. 4. (Color online) Vorticity fields for unsteady regime; one
period of hairpin shedding (d/h = 24, Re = 220).

value of the vorticity component was determined from the
averaged vorticity field. Thereby, the estimated relative error
in this regime was less than 1%. In the unsteady regime,
the maximum value of vorticity was searched in each frame.
The average value of maxima present in the signal was taken
as the more approximate contribution to the vorticity from
the legs of the hairpins, parallel to the horizontal base flow.
Two maximum values were determined for each snapshot,
one corresponding to clockwise vorticity and the second
corresponding to anticlockwise vorticity. The measurement
error in this regime was estimated to be less than 5%.

Figure 6(a) shows typical bifurcation branches for a disk
with d/h = 3.After the first bifurcation, the vorticity increases
regularly in the regime with two steady counter-rotating
vortices. After a second unsteady bifurcation, a significant
change in the slope can be observed. This behavior was
identified for different disk aspect ratios, as presented in
Fig. 6(b). The behavior of maximum vorticity, by crossing
the onset, seems to suggest a weak discontinuity. However,
no systematic measurements were performed to identify the
hysteresis of this phenomenon (by increasing and decreasing
the Reynolds number). This weak jump may still result from
inefficient resolution of the measurements. In the case of
disks with d/h = 1 and d/h = 1.33, we did not observe a
significant difference between the cases of steady flow with
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planar symmetry and unsteady flow with hairpin shedding,
corresponding to the peristaltic oscillations regime.

Returning to the stationary regime, we calculated the square
of longitudinal vorticity (Fig. 7) and compared it with the
predictions of a Landau model, where ωz ∼ (Re − Rec1)1/2,
as discussed in the conclusions.

From the evolution of the maximum of ω2
z as a function

of Re, we estimated the law of the nonlinear evolution as
max ωz = g−1/2[(Re − Rec1)/Rec1]1/2, where g stands for the
Landau constant, presented in Table II. We are aware that
the disk support and the marginal inclination of the disk [13]
introduce additional weak vorticity into the flow. However,
following earlier results of Gumowski et al. [11], we expect
that these perturbations are responsible only for fixing of the
symmetry plane and producing the imperfect supercritical
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FIG. 7. (Color online) Square of maximum longitudinal vorticity
for steady regime with two counter-rotating vortices for disk with
d/h = 3 (broken line denotes the prediction of a Landau model).
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Figure 5.5: Experimental vorticity fields for unsteady flow past a disk for one period of
hairpin shedding. Re = 220, d

h
= 24. (Bobinski et al., 2014)
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With the purpose of understanding the structure of the hairpin vortex flow pattern, figure
5.6 presents a side and top views of the visualized flow pattern (upper panels) and, four
cross-sections of the corresponding vorticity field, marked with an arrow, obtained with
PIV at different times (lower panels). The vorticity fields are numerated from right to left.
In the field number 1 four vortices are observed, two internal vortices and two external
vortices surrounding the internal ones. A dipole is observed in the center which is formed
by a positive vortex (red color) that is above an imaginary horizontal symmetry axis and
a negative vortex (blue color) that is below the horizontal symmetry axis. The external
vortices have opposite vorticity sign with respect to the internal vortices, i.e., the negative
vortex is above the horizontal symmetry axis while the positive vortex is below this axis.
As we move in the wake from right to left we observe that the external vortices tend to
move towards the center, as observed in the vorticity field 2. In the vorticity field 3 four
vortices appear again, two internal and two external but with opposite sign of vorticity
with respect to those observed in the vorticity field 1. Finally, in the vorticity field 4 the
external vortices tend to move towards the center as in the vorticity field 2 but with an
opposite sign of vorticity.

In the previous explanation we considered a picture of the flow at a given time and
analyzed different sections of the wake. It is worth remembering that in our experiment
the laser sheet is fixed and the flow is the one that moves so that for our experiment the
velocity fields correspond to different instants of time taken in the same position of the
laser.

Figure 5.6: Upper panel: Hairpin vortex structure visualized from the side and top views.
Lower panel: Vorticity fields of the wake cross-section obtained from PIV at different
times.

In order to have a better understanding of the flow for Reynolds numbers where vortex
detachment occurs, the group has implemented a MATLAB code to analyze the longitu-
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dinal vorticity field by means of the azimuthal Fourier decomposition. In what follows,
we offer a brief description of the algorithm(Bobinski et al., 2014).

First, the axial vorticity, ωz, in cartesian coordinates is transformed to a mesh in polar
coordinates. In this way, ωz is expressed as discrete arrays that are functions of the radius
rj and the angle θn. After that, azimuthal Fourier transformation was performed in one
direction

ω̂azim(rj,m) =
∑
n

ωz(rj, θn)exp(−imθn), (5.1)

and later integrated in radial direction.

ω̂m =
∑
j

ω̂azim(rj,m)rjδr, (5.2)

obtaining the azimuthal modal coefficients of the longitudinal vorticity.

Using the MATLAB code, we analyzed the results obtained with the PIV technique. In
figure 5.7 the comparison between the original vorticity field and the results obtained by
azimuthal Fourier decomposition, is presented. A good agreement between the original
longitudinal vorticity field and the sum of the modes obtained by the azimuth Fourier
decomposition is observed. We also observe the decomposition of the instantaneous vor-
ticity fields for the first 6 modes and the sum of the modes without considering the mode
0. We notice that the figure with the sum of modes without mode 0 reproduces quite
well the original vorticity field. Mode 1 and mode 2 are the most influential modes in the
flow, as we can observe in the value of the vorticity of these modes. Note that the values
of the mode 1 are an order of magnitude greater than the rest of the modes .
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s

Figure 5.7: Azimuthal Fourier decomposition of vorticity fields: In the upper left corner
the field obtained directly from the PIV is presented. In the first row, the central panel
corresponds to the sum of the modes obtained from the azimuthal decomposition. In the
upper right corner, the sum of the modes minus the zero mode is presented. The rest of
the figures corresponds to the indicated modes. Re = 266.
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Figure 5.8: Temporal evolution of the longitudinal component of the vorticity, ωz, calcu-
lated from the velocity measured in the laser plane located normally to the free-stream
velocity. Re = 266. Sum of modes 0, 1, and 2.

Figure 5.9: Temporal evolution of the longitudinal component of the vorticity, ωz, calcu-
lated from the velocity measured in the laser plane located normally to the free-stream
velocity. Re = 266. Sum of modes 1 and 2.
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Finally, we present figures of the temporal evolution of the longitudinal component of the
vorticity, ωz. If we compare the figures of the sum of the modes against the sum of the
modes without mode 0, namely , figures 5.8 and 5.9 respectively, we observe that there is
no appreciable difference between them so we conclude that Mode 0 does not introduce a
clear modification in the behavior of the flow.

Figure 5.10: Temporal evolution of the longitudinal component of the vorticity, ωz, calcu-
lated from the velocity measured in the laser plane positioned normally to the free-stream
velocity. Re = 266. Mode 1.

In the figure 5.10 the temporal evolution for the mode 1 of the longitudinal vorticity is
shown. Notice the alternation in the sign of vorticity for two and a half periods of the
hairpin vortex.

5.4 Long term results for 250 ≤ Re ≤ 550

In order to make a better flow analysis it was necessary to have a larger sample in time.
Therefore, for the results we present hereafter, the data acquisition was obtained with a
frequency of 2 Hz. The experiments presented in this section consisted of increasing the
Reynolds number and analyzing the results as in the case presented previously. Experi-
mental Reynolds numbers in the range 250 < Re < 550 were varied with increments of 50.
Figure 5.11 shows the time-dependent vorticity fields for one period of the hairpin vortex
shedding and Re = 250. Unlike the results shown for Re = 266 these results have not
been subject to a post processing so the image quality is not as good as in the previous
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results, however it is possible to see in the vorticity field number 3 the four vortices, two
internal and two external, as those shown in the previous section. This structure can also
be appreciated in the vorticity field number 9 but the sign of the vorticity is inverted with
respect to the vorticity field number 3.

1 2 3 4

5 6 7 8

9 10 11 12 

Figure 5.11: Vorticity fields for the unsteady flow past a disk for one period of the hairpin
vortex shedding. Re = 250.

Figures 5.12 and 5.13 show the time-dependent vorticity fields for one period of the hairpin
vortex shedding with Re = 350. The figures correspond to the same experiment but at
different time intervals. In figure 5.12, the vorticity field number 9 shows the structure
of the hairpin vortex characterized by the pair of internal vortices surrounded by two
external vortices. After time, we observe that the external vortices move towards the
central region. Figure 5.13 shows also a pattern of four vortices, two internal and two
external but now we can notice a rotation in the symmetry axis. In order to appreciate
this rotation more clearly, in figure 5.14 two vorticity fields of the same experiment taken
at different times are shown, where a dotted line is drawn to serve as an axis to illustrate
the rotation. It is clearly observed that there is a 90 degrees rotation of the hairpin vortex
structure.
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Figure 5.12: Vorticity fields for the unsteady flow past a disk for one period of the hairpin
vortex shedding. Re = 350. Time interval: t = 5− 12s.
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Figure 5.13: Vorticity fields for the unsteady flow past a disk for one period of the hairpin
vortex shedding. Re = 350. Time interval:t = 49− 56s.
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Figure 5.14: Vorticity fields for the unsteady flow past a disk at two time instants of the
hairpin vortex shedding. Re = 350. a)t = 8s y b) t = 50s.

Finally, figures 5.15 and 5.16 present the temporal evolution of longitudinal vorticity,
ωz, for Re = 250 and Re = 350, respectively. In figure 5.15 the alternation between
negative and positive vorticity is observed along 172 seconds. In figure 5.16 the rotation
of the vortex is not observed so clearly, and a change in the behavior of the structure
can be observed at 70 and 140 seconds, which seems to indicate that there is a hidden
frequency in the phenomenon that requires measurements over longer time to explore if
this alteration is repeated.

Figure 5.15: Temporal evolution of the longitudinal component of the
vorticity, ωz, calculated from the velocity measured in the laser plane
positioned normally to the free-stream velocity. Re = 250.
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Figure 5.16: Temporal evolution of the longitudinal component of the
vorticity, ωz, calculated from the velocity measured in the laser plane
positioned normally to the free-stream velocity. Re = 350.

5.5 Conclusions.

In this Chapter, we have present experimental results performed during a research stay at
the facilities of the PMMH-EPSCI (Physique et Mécanique des Milieux Hétérogènes-Ecole
de Physique et de Chimie Industrielles) of ParisTech in Paris, France. The flow past a
circular disk immersed completely in a water channel was studied varying the Reynolds
numbers in the range of 250 ≤ Re ≤ 550. From PIV measurements taken in the rear
view configuration, the longitudinal vorticity field was obtained as a function of time. To
get a better understanding of the flow pattern, the temporal evolution of the longitudinal
vorticity was analyzed using an azimuthal Fourier decomposition. For high Reynolds
numbers, results show a rotation of the symmetry axis of the characteristic flow pattern,
known as hairpin vortex. Results obtained so far are not concluding, therefore, long-
term experiments are needed to determine the possible existence of hidden frequencies.
The question remains whether the hairpin vortex present a complete rotation for which a
further analysis is required in order to find a definitive answer.



Conclusions

This thesis was devoted to the experimental and numerical study of wake patterns created
by localized Lorentz forces acting as (magnetic) obstacles in flows of an electrically con-
ducting fluid either an electrolyte or a liquid metal. An additional case of the wake created
by the flow past a solid circular disk was also analyzed. The knowledge of wake patterns
is relevant in multiple interesting problems such as animal locomotion, vehicle design,
wind energy devices, structure design, heat transfer enhancement, and many others. To
deepen the knowledge of this topic, laboratory experiments and numerical simulations are
indispensable. In this context, the use of localized electromagnetic forces in conducting
fluids provides an alternative for the controlled generation of wake patterns in laboratory,
and makes it possible to study a wider variety of physical behaviors than those found in
the flow past solid obstacles.

First, it was presented the study of the wake generated in the flow created by a traveling
localized Lorentz force in an electrolyte layer. The flow was analyzed experimentally and
the results were compared with numerical solutions obtained by a Q2D code. Different
flow patterns were identified as the dimensionless parameters controlling the flow were
varied. The results showed the presence of a 2P wake pattern and the transition to the
BvK wake by increasing the Reynolds number. Through measurement of the kinetic
energy in the wake it was shown that by increasing Re, the inertia force overcomes the
electromagnetic braking force .

Additionally, the flow past a pair of magnetic obstacles side by side in an electrolyte layer
at a fixed Reynolds number was studied numerically. We analyzed the interaction of the
wakes created behind the obstacles for different values of the dimensionless separation
distance. The results presented similar regimes as those observed in the wakes created by
a pair of solid cylinders, including the bistable regime. In order to have a more complete
understanding, it is necessary to explore the flow at different Reynolds numbers, for
example, it would be of interest to observe the coupling of 2P wakes since these may be
relevant for heat transfer enhancement applications. In addition, it is required to obtain
experimental results that can be used to validate the developed numerical models. With
the experimental equipment presented in this work, these results could easily be obtained

The wall effect on wake patterns generated in the flow past a magnetic obstacle in a narrow
channel was also explored by varying the Reynolds number, the Lorentz force parameter
and the blockage parameter. Results revealed that as the blockage parameter increase,
the flow recovers stability. Results were presented in condensed form through transition
maps obtained both experimentally and with numerical simulations using a Q2D code.

69
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Simulations show a good agreement with the experimental results. It is worth mentioning
that, contrary to what happened in the case of wakes past solid obstacles, the wake past
a magnetic obstacle may become unstable for values of Re = 100 and β = 1/2 because
there is an additional governing parameter, namely, the Lorentz force parameter, through
which the braking force can be modulated.

In addition, an experimental and theoretical study of the liquid metal flow past a magnetic
obstacle was carried out. The flow was characterized through the measurement of the
longitudinal velocity component by Ultrasound Doppler Velocimetry (UDV). It was found
that the energy of the perturbations in the wake that characterize the vortex shedding
behind the magnetic obstacle increases with the Reynolds number to reach a maximum
that depends on the Hartmann number. Then the energy reduces monotonically up to the
maximum Reynolds number reached in the experiment. This indicates that the oscillatory
wake is present in the liquid metal flow only in a finite range of Reynolds numbers. This
behavior is completely different from the observed in the flow past a solid obstacle.

Finally, some experimental results obtained in the flow past a solid circular disk immersed
in a water channel were presented. The experiments were carried out for high Reynolds
numbers ( 250 ≤ Re ≤ 550). Using PIV measurements, longitudinal vorticity fields
were obtained. The hairpin vortex flow pattern was found at Re=250. Interestingly, for
Re=350 the structure of the hairpin vortices presented a rotation in the symmetry axis
although it is still necessary a deeper study to fully characterize this observation. In order
to obtain more information of the flow, the temporal evolution of the longitudinal vortic-
ity component was analyzed. Results seem to indicate the presence of a hidden frequency,
however, it is necessary to carry out long-term experiments to determine it. These exper-
iments were performed at the facilities of the PMMH-EPSCI (Physique et Mécanique des
Milieux Hétérogènes-École de Physique et de Chimie Industrielles) of ParisTech in Paris,
France, during a research stay and it is planned to continue this collaboration to complete
the study.

The experimental and numerical study carried out in this thesis is expected to contribute
to a better understanding of the flow past a magnetic obstacle and to motivate the appli-
cation of the generated knowledge in technological devices, particularly, for heat transfer
enhancement. The experimental data will also be a valuable information for the validation
and improvement of computational tools.
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