
UNIVERSIDAD NACIONAL AUTÓNOMA DE MEXICO
PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS MATEMÁTICAS Y

DE LA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA
 

 

THE BOLTHAUSEN-SZNITMAN COALESCENT: GENERAL
THEORY AND APPLICATIONS IN POPULATION GENETICS

QUE PARA OPTAR POR EL GRADO DE:
MAESTRO EN CIENCIAS

PRESENTA:
ALEJANDRO HERNANDEZ WENCES

DIRECTOR DE TESIS:
ARNO SIRI-JEGOUSSE

INSTITUTO DE INVESTIGACIONES EN MATEMÁTICAS APLICADAS Y EN
SISTEMAS 

CIUDAD UNIVERSITARIA , CD. MX.
OCTUBRE 2017



 

UNAM – Dirección General de Bibliotecas 

Tesis Digitales 

Restricciones de uso 
  

DERECHOS RESERVADOS © 

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL 
  

Todo el material contenido en esta tesis esta protegido por la Ley Federal 
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). 

El uso de imágenes, fragmentos de videos, y demás material que sea 
objeto de protección de los derechos de autor, será exclusivamente para 
fines educativos e informativos y deberá citar la fuente donde la obtuvo 
mencionando el autor o autores. Cualquier uso distinto como el lucro, 
reproducción, edición o modificación, será perseguido y sancionado por el 
respectivo titular de los Derechos de Autor. 

 

  

 



The Bolthausen-Sznitman Coalescent: General
Theory and Applications in Population

Genetics



Introduction

The general theory of coalescent processes aims to provide a rigorous math-
ematical framework that can be used to model natural phenomena where a
collection of particles may fuse together and form new particles as the system
evolves over time. It has a variety of applications in distinct disciplines such
as Physics and Biology. In the biological realm, particularly in the field of
Population Genetics, it is used to model the parental relations of a given
population as we track the ancestry of the individuals backwards in time,
thus leading to the construction of a genealogical tree. In this interpretation
the fusion of particles occurs at the time when a set of individuals meet a
common ancestor in the past. Once we have a suitable coalescent model that
describes the evolution of a particular population we can use it to study ques-
tions of biological relevance such as determining the time needed to reach the
last common ancestor, the expected genetic diversity for neutral positions of
the genome, or whether natural selection has played an important role in the
evolution of the population.

The Bolthausen-Sznitman coalescent (BSC) is a well known example of a
simple coalescent process that contemplates the fusion of multiple particles
in a single event; it was first introduced in the study of spin glasses in physics
but was rapidly adopted for the study of genealogical trees. It has been de-
scribed as a limit process for the genealogies of different population evolution
models, including models where the reproductive success of the individuals
is determined by a fitness function (i.e. the population is under the pressure
of natural selection).

From a mathematical perspective, coalescent processes are Markov pro-
cesses that take values on the space of partitions of N. In Chapter 1 we
rigorously define this space and the random variables that take values on
it. We then define exchangeable random partitions and prove a fundamental
representation theorem, Kingman’s representation, which is reminiscent of
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de Finetti’s theorem for exchangeable random sequences. In Chapter 2 we
first define the coagulation operator, which is the operator on the space of
partitions that will allow us to formalize the idea of ‘fusing particles’. We will
then formally define exchangeable coalescent processes in the most general
setting and provide a basic construction based on Poisson point processes.
Finally, we end Chapter 2 with a representation theorem for coagulation
rates which allows for a characterization of coalescent processes in terms of
measures on the simplex. In Chapter 3 we leave the general setting to fo-
cus on the particular case of simple coalescents. We provide an alternative
construction for simple coalescents due to Pitman [12] and a simpler proof
for the characterization of its coagulation rates. Then we formally define
the Bolthausen-Sznitman coalescent and describe a recent construction in
terms of random recursive trees. We then use this construction to prove an
asymptotic result on the time to absorption of the BSC. Lastly, we spend the
rest of the chapter to present a recently developed coupling technique that
has proven to be very prolific in the study of different functionals for the
BSC such as the total branch length, the total internal and external branch
lengths, and the total number of jumps. As an example we present the proof
published in the original work [4] where a weak limit law for the number of
jumps in the BSC was obtained. Finally, in Chapter 4 we define the Site Fre-
quency Spectrum (SFS) and interpret it in biological terms as the principal
measure of the genetic diversity present in a population. We then prove a
new result that gives an explicit expression for the expected SFS of the BSC
for frequencies greater than 1/2, and an upper bound for frequencies below
1/2. To conclude, we show an application of the SFS as a model selection
tool in the study of a population evolution model that contemplates the ef-
fect of natural selection but that has escaped a rigorous treatment due to its
complexity.
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Chapter 1

Random Partitions

1.1 Partitions

In this section we will define the basic mathematical structures that will help
us represent and study coalescent processes.

Definition 1.1.1. Let B be a subset of N and π be a countable collection of
subsets of B . We call π a partition of B if:

• Bi ∩ Bj = ∅ for all Bi and Bj in π

• ∪i≥1Bi = B .

We call {B ⊂ N : B ∈ π} the blocks of π.

If we denote the block of π that contains k by π(k), we can define an
equivalence relation in N by:

i
π
∼ j ⇐⇒ π(i) = π(j).

Conversely, given an equivalence relation in N we can define a partition π
whose blocks are the corresponding equivalence classes. Given a set A ⊂ B

we define the restriction of π to A as:

π
∣∣
A
:= {B ∩ A : B ∈ π}.

Also, given a set B ⊂ N we will denote the collection of all partitions of B by
PB . We will typically work with the sets {1, . . . , n} so we will denote them
by [n], and write Pn instead of P[n], P∞ instead of PN, and π

∣∣
n
instead of

π
∣∣
[n]
.

4
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Definition 1.1.2. A sequence of partitions {πn}n∈N with πn ∈ Pn is compat-

ible if πn

∣∣
k
= πk for all k ≤ n, n ∈ N.

Lemma 1.1.1. A sequence of partitions {πn}n∈N is compatible if and only if
there exists a partition π∞ ∈ P∞ such that π∞

∣∣
n
= πn for all n ∈ N.

Proof. The reverse implication is readily seen. For the forward implication
we set q1 = 1 and consider {πn(q1)}n∈N. Note that this is an increasing
sequence of sets since {πn}n∈N is compatible. Define:

Bq1 =
⋃

N

πn(q1)

and let q2 = min {n ∈ N : n /∈ Bq1}. Following the same procedure define
recursively:

Bqk = ∪Nπn(qk), qk+1 = min {n ∈ N : n /∈ Bqk}

and let π∞ = {Bqk : k ∈ N}. It is easily seen that π∞ is a partition of N; also,
for fixed k, if qj > k we have that Bqj

∣∣
k
= ∅ whereas if qj ≤ k we have by

the compatibility of {πn}n∈N:

Bqj

∣∣
[k]

=
k⋃

n=1

πn(qj) = πk(qj).

So π∞

∣∣
k
= πk for all k ∈ N, which finishes the proof.

When working with partitions, particularly with compatible sequences
of partitions or, equivalently, with partitions in P∞, it is often helpful to
consider the partition tree. The partition tree is a labeled tree whose nodes
at level n are labeled with the set Pn, and such that the children of π ∈ Pn

are all the nodes in level n+ 1 with labels in Pn+1 whose restriction to n is
equal to π. Thus, the last common ancestor of the partition tree is labeled
{{1}}, its descendants are labeled {{1, 2}} and {{1}, {2}}, the descendants
of, say, {{1, 2}}, are the nodes with labels {{1, 2}, {3}} and {{1, 2, 3}}, and
so forth (see Figure 1.1). The above lemma tells us that to each infinite path
starting at node {{1}} and descending through the partition tree by choosing
one children at a time corresponds to a unique partition π in P∞ and vice
versa, thus, we can think of P∞ as the leaves of the partition tree.
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Figure 1.1: Partition Tree
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Definition 1.1.3. Let B be any subset of N, and π be any partition of N.

• We say that a set B has an asymptotic frequency if the following limit
exists:

|B| := lim
n→∞

1

n

n∑

i=1

1B(i)

where 1B is the usual indicator function for B.

• We say that π has asymptotic frequencies if π is such that |B| exists
for all B ∈ π. In this case we define |π|↓ as the sequence of asymptotic
frequencies of π written in decreasing order, and write:

|π|↓ = (|π|↓1, · · · ).

Note that by definition we have
∑

|π|↓i ≤ 1.

1.2 Exchangeable Random Partitions

Let us formalize the measurable space in which we will define random par-
titions. We will consider the set P∞ and endow it with a distance function
which will allow us to define a Borel σ-algebra.

Definition 1.2.1. We define a distance δ in P∞ by:

δ(π1, π2) = 1/max
{
n ∈ N : π1

∣∣
n
= π2

∣∣
n

}
.

It is again useful to use the partition tree in order to visualize the closed
balls given by δ. Fix a partition π ∈ P∞ and consider the subtree given by
all the possible paths starting from π

∣∣
n
and descending through all the levels

of the tree; then, the corresponding partitions in P∞ (leaves) associated with
these paths form the closed ball {π′ ∈ P∞ : δ(π, π′) ≤ 1/n}. We will use
subtrees such as the one just described later in the text so let us make a
general definition.

Definition 1.2.2. Let π ∈ Pn and m ≥ n. We will denote by Pm(π) the set
of all partitions π′ ∈ Pm such that π′

∣∣
n
= π, or, in other words, the set of

all descendants of π at level m.
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Observe that in the discussion above we have

P∞(π
∣∣
n
) = {π′ ∈ P∞ : δ(π, π′) ≤ 1/n},

or, equivalently:

P∞(π
∣∣
n
) =

{
π′ ∈ P∞ : δ(π, π′) <

1

n− 1

}
.

Theorem 1.2.1. (P∞, δ) is a compact metric space.

Proof. Let {πn}
∞
n be a sequence of partitions in P∞ and let π1 := {1}.

There exists a partition π2 ∈ P2 such that π
∣∣
2
= π2 for an infinite number

of partitions π in the sequence {πn}
∞
n , pick one of these and denote it by

π̂1. Then, in a recursive way, for every k ∈ N we can choose a partition
πk ∈ Pn such that πk

∣∣
j
= πj for all j ≤ k and a partition π̂k−1 ∈ {πn}

∞
n

with π̂k−1

∣∣
k
= πk. The sequence of partitions {πk}∞k is compatible so there

exists a partition π∞ ∈ P∞ such that π∞
∣∣
k
= πk for every k ∈ N and, by

construction, π̂k
δ
→ π∞.

Definition 1.2.3. Let F be the Borel σ-algebra in P∞ induced by δ. A
random partition Π is a random element of (P∞,F ).

We will only be concerned with a particular type of random partitions:
the exchangeable random partitions. We will see that this type of partitions
have a nice representation reminiscent of the one assured by de Finetti’s
theorem for exchangeable random sequences. Similar to the context of de
Finetti’s theorem in which permutations of random sequences are defined,
let us first define permutations of partitions.

Definition 1.2.4. A finite permutation of N is a bijective function σ : N → N

with the property that there exists and integer M such that σ(j) = j for all
j ≥ M .

Definition 1.2.5. Let σ be a permutation of N and π be a partition in P∞.
We define σ(π) the permutation of π given by σ to be the partition:

σ(π) :=
{
σ−1(B) : B ∈ π

}
.

Note that the blocks of σ(π) are given by the inverse images of the blocks
of π under σ and not by {σ(B) : B ∈ π}, actually, one should not expect

that if i
π
∼ j then σ(i)

σ(π)
∼ σ(j), but rather that σ−1(i)

σ(π)
∼ σ−1(j).
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Proposition 1.2.2. Let σ be a permutation of N, then the map π 7→ σ(π) is
continuous and, thus, measurable.

Proof. By definition there is an N ∈ N such that for all j ≥ N we have
σ(j) = j. If δ(π, π′) ≤ 1/M with M ≥ N we have that π

∣∣
M

= π′
∣∣
M

and

σ(π
∣∣
M
) = σ(π′

∣∣
M
). Since σ(π

∣∣
M
) = σ(π)

∣∣
M

and σ(π′
∣∣
M
) = σ(π′)

∣∣
M

we see
that δ(σ(π), σ(π′)) ≤ 1/M .

Definition 1.2.6. Let Π be a random partition. We say that Π is an exchange-

able random partition if for every permutation σ we have:

Π
d
= σ(Π).

Note that in particular for all A ∈ F we have:

P(Π ∈ A) = P(σ(Π) ∈ A) = P(Π ∈ σ−1(A)).

Notice that if π has asymptotic frequencies then |π|↓ = |σ(π)|↓ since for every
block B of π the block σ−1(B) of σ(π) has the same asymptotic frequency
as B (σ permutes only a finite number of elements of N). The definition of
exchangeable random partitions can intuitively be interpreted by saying that
the only thing that determines P(Π = π) are the asymptotic frequencies of π
and not the particular composition of its blocks. We will see that, indeed, ex-
changeable random partitions do have asymptotic frequencies almost surely;
also, in the following section we will give a construction of exchangeable ran-
dom partitions whose only input is a sequence of “asymptotic frequencies”.
This construction will turn out to be exhaustive, that is, all exchangeable
random partitions can be derived from it (in a sense specified further ahead)
thus evincing that the intuition given above is correct.

1.3 Mass Partitions

Definition 1.3.1. Let ρ = (ρ1, ρ2, · · · ) be a sequence of real numbers in [0, 1]
such that:

• ρi ≥ ρj for all i ≥ j

•
∑∞

i=0 ρi ≤ 1.
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Such a sequence is called a mass partition. Let P[0,1] be the space of all mass
partitions and endow it with the supremum norm in ℓ1 and its corresponding
Borel σ-algebra M .

Given a mass partition ρ define ρ0 as:

ρ0 := 1−
∞∑

i=1

ρi.

We call ρ0 the dust of ρ. We say that ρ is proper if ρ0 = 0 and improper oth-
erwise. We will interpret a mass partition as the sequence of strictly positive
asymptotic frequencies of a partition π, and ρ0 as the asymptotic frequency of
the set formed by the union of all the blocks of π whose asymptotic frequency
is equal to zero (thus justifying the term “dust”).

Given a mass partition ρ = (ρ1, ρ2, · · · ) we can construct a countable
collection of open intervals {Ii}i∈N such that:

• Ii
⋂
Ij = ∅ for all i 6= j

• λ(Ii) = ρi for all i ∈ N

• ρ0 = λ
(
[0, 1] \

⋃
Ii
)

with λ being the Lebesgue measure on [0, 1]. We call such a collection of
intervals an interval representation of ρ. Conversely, given an open set O in
[0, 1] we can find a countable collection of open intervals {Ii}i∈N such that:

•
⋃

N
Ii = O

•
∑

N
λ(Ii) = λ(O) ≤ 1

• λ(Ii) ≥ λ(Ij) for all i ≥ j

so we can construct a mass partition ρ given by (λ(I1), λ(I2), · · · ). We will
now use an interval representation {Ii}i∈N of a mass partition ρ in order to
construct an exchangeable random partition Π. Let A0 be:

A0 = [0, 1] \
⋃

Ii.

Also, consider a sequence numbers {ui}i∈N ∈ [0, 1]N and construct π by defin-
ing the blocks

Bk = {j ∈ N : uj ∈ Ik}, k ∈ N
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and setting

π = {Bk : k ∈ N}
⋃

{{j} : uj ∈ A0}.

In other words, all the indices j ∈ N such that uj falls in A0 become singletons
whereas all the indices such that uj falls in Ik constitute the block Bk, for
all k ∈ N. Clearly this procedure generates a partition π ∈ P∞ for each

sequence (u1, u2, · · · ), that is, we have a map [0, 1]N
h
→ P∞ which is easily

seen to be measurable; thus, if {Ui}i∈N is a sequence of independent uniformly
distributed random variables then Π := h(U1, U2, · · · ) is a random partition.
In order to see that Π is exchangeable we just need to note that for every
permutation σ we have:

(U1, U2, · · · )
d
= (Uσ(1), Uσ(2), · · · )

since {Ui}i∈N are independent and identically distributed. Also, note that if

(u1, u2, · · · )
h
7→ π

then
(uσ(1), uσ(2), · · · )

h
7→ σ(π)

and thus Π
d
= σ(Π), which is the condition for being an exchangeable random

partition.
Observe that if ρ = (ρ1, ρ2, · · · ) then the law of large numbers ensures

that |Bk| = λ(Ik) = ρk for all k ∈ N. Also, if

B0 := {j : Uj ∈ A0}

then |B0| = ρ0 since ρ0 = 1− λ(
⋃
Ii) = λ(A0).

The construction described above is called the paint-box construction [10].
In the next section we will show that any exchangeable random partition can
be constructed by setting an appropriate distribution on P[0,1] and perform-
ing a paint-box process with a randomly chosen mass partition ρ according
to this distribution. More precisely, if for any fixed ρ ∈ P[0,1] we denote by
̺ρ the probability measure on P∞ induced by the corresponding paint-box
construction, for every exchangeable partition Π there exists a distribution
Q(dρ) on P[0,1] such that:

P(Π ∈ ·) =

∫

P[0,1]

̺ρ(·)Q(dρ).

This result is called the Kingman’s Representation for exchangeable random
partitions.
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1.4 Kingman’s Representation

The goal of this section is to prove Kingman’s representation theorem for
exchangeable random partitions. We will first use de Finetti’s theorem to
show that exchangeable random partitions have asymptotic frequencies al-
most surely. We will then show that the blocks of an exchangeable random
partition can either have a positive asymptotic frequency or have a single
element (i.e. blocks can either be singletons or have an infinite number of
elements). Finally these two results will help us prove Kingman’s represen-
tation.

Definition 1.4.1. A sequence of random variables {Xi}
∞
i=1 is said to be ex-

changeable if for any finite collection of integers ℓ1, · · · , ℓk and any permuta-

tion σ of these integers we have: (Xσ(ℓ1), · · · , Xσ(ℓk))
d
= (Xℓ1 , · · · , Xℓk).

Theorem 1.4.1 (de Finetti). Let {Xi}i∈N be a sequence of exchangeable ran-
dom variables defined on a probability space (Ω,Σ,P) with values in R. Then:

• For every A ∈ B(R) the limit

lim
n→∞

1

n

n∑

i=1

1A(Xi)

exists almost surely.

• If we define µ(ω,A) := limn→∞
1
n

∑n
i=1 1A(Xi(ω)) then µ is a probabil-

ity kernel from Ω to R.

• For every finite collection of indices {j1, · · · , jk} and Borel sets {A1, · · · , Ak}
we have:

P(Xj1 ∈ A1, · · · , Xjk ∈ Ak) =

∫

Ω

k∏

i=1

µ(ω,Ai) P(dω).

Observe that
∏k

i=1 µ(ω,Ai) is G-measurable where G is the σ-algebra
generated by the random variables {µ(·, A)}A∈B(R). Thus, in particular,
{Xi}i∈N are conditionally independent given µ.

The proof of this theorem has been extensively reviewed elsewhere [8][3].
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Lemma 1.4.2. Let Π be an exchangeable random partition, then Π has
asymptotic frequencies almost surely.

Proof. Fix an index j ∈ N and for all i 6= j define the random variable:

δΠj (i) =

{
1 if Π(i) = Π(j)

0 otherwise,

then {δΠj (i)}i 6=j is an exchangeable random sequence. Indeed, notice that the
exchangeability of Π ensures that for every permutation σ of N with σ(j) = j,
and any collection of zero-one digits d1, · · · , dk we have:

P(δΠj (i1) = d1, · · · , δ
Π
j (ik) = dk) = P(δ

σ(Π)
j (i1) = d1, · · · , δ

σ(Π)
j (ik) = dk)

= P(δΠj (σ(i1)) = d1, · · · , δ
Π
j (σ(ik)) = dk)

where the second equality holds since σ(j) = j and, therefore, σ(Π)(j) =
σ−1(Π(j)), and σ(Π)(i) = σ(Π)(j) if and only if Π(σ(i)) = Π(j). By de
Finetti’s theorem, the limit:

|Π(j)| = lim
n→∞

1

n

n∑

i=1

δΠj (i)

= lim
n→∞

1

n

n∑

i 6=j

δΠj (i)

exists almost surely. Since the choice of j was arbitrary we conclude that Π
has asymptotic frequencies almost surely.

Lemma 1.4.3. If Π is an exchangeable random partition then the blocks of
Π are either singletons or have an infinite number of elements almost surely.

Proof. We will prove this by contradiction. Denote by #Π(j) the cardinality
of the block Π(j). Let j ∈ N and assume that P(#Π(j) = m) > 0 for some
m ∈ N,m > 1. We will construct a probability measure P

′ on N
m−1 which

will turn out to be “uniform”, thus leading to a contradiction. For every
(m-1)-tuple of integers (n1, · · · , nm−1) define:

P
′(n1, · · · , nm−1) =

P(Π(j) = {j, n1, · · · , nm−1})

P(#Π(j) = m)
.
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P’ is easily checked to be a probability measure. Now, if (ℓ1, · · · , ℓm−1) is
another collection of integers and σ is a permutation such that:

σ(n1) = ℓ1
...

σ(nm−1) = ℓm−1

σ(k) = k for all k 6∈ {n1, · · · , nm−1}

then, by the exchangeability of Π, it follows that

P
′(n1, · · · , nm−1) =

P(Π(j) = {j, n1, · · · , nm−1})

P(#Π(j) = m)

=
P(σ(Π)(j) = {j, n1, · · · , nm−1})

P(#Π(j) = m)

=
P(Π(j) = {j, σ(n1), · · · , σ(nm−1)})

P(#Π(j) = m)

=
P(Π(j) = {j, ℓ1, · · · , ℓm−1})

P(#Π(j) = m)

= P
′(ℓ1, · · · , ℓm−1).

Since this is true for any collection of integers (ℓ1, · · · , ℓm−1) it follows that all
the elements of Nm−1 have the same probability under P′, which is impossible
since P′ is a probability measure and N

m−1 is an infinite set. Since the choice
of j and m was arbitrary, for all j and m > 1 in N we have:

P(#Π(j) = m) = 0.

The preceding lemmas tell us a lot about the structure of exchangeable
random partitions, they say that if Π is an exchangeable random partition
then, almost surely, it takes values in a set that is much smaller than all of
P∞, particularly we may assume that Π takes values on the measurable set

{π ∈ P∞ : ∀B ∈ π, |B| exists and (|B| = 0 ⇐⇒ B is a singleton )}.

Moreover, using the same techniques as in the lemmas above, it is easy to
show that, with probability one, B0 has an asymptotic frequency and is
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either empty or has an infinite number of elements. Thus, for every ω ∈
Ω we may construct a block B0(ω) as the union of all the singletons of
Π(ω). Also, we may arrange the blocks of Π(ω) that have strictly positive
asymptotic frequencies by decreasing size thus constructing a sequence of
blocks (B1(ω), B2(ω), · · · ,) such that |Bi(ω)| ≥ |Bj(ω)| whenever i ≤ j. The
only ambiguity comes up in the case where multiple blocks of a partition have
the same asymptotic frequency, leading to multiple admissible orderings of its
blocks; however, this is easily fixed by arbitrarily picking one of the possible
arrangements. In practice we will want to work with measurable functions
and sets, so we will break ties in asymptotic frequencies by ordering the
blocks by their least elements. Formally, we will construct the sequence of
blocks {Bi}

∞
i=1 in a way such that

• Π = {B1, B2, · · · }
⋃
{{k} : k ∈ B0}

• |Bi| ≥ |Bj| whenever i ≤ j

• min{k : k ∈ Bi} ≤ min{k : k ∈ Bj} whenever i ≤ j and |Bi| = |Bj|.

Definition 1.4.2. Let Π be an exchangeable partition and fix any j ∈ N.
Define bΠj : Ω → N ∪ {0} by

bΠj (ω) = i if j ∈ Bi(ω).

That is, bΠj = i if j is in the ith block of (B0, B1, · · · ), where (B0, B1, · · · ) is
constructed from Π as explained before.

It is easily seen that Π can be recovered from {bΠj }
∞
j=1. With this in hand we

can finally prove Kingman’s Representation Theorem.

Theorem 1.4.4 (Kingman’s Representation). Let Π be an exchangeable ran-
dom partition defined on a probability space (Ω,Σ,P). Then, there exists a
probability measure Q on P[0,1] such that

P(Π ∈ A) =

∫

P[0,1]

̺ρ(A) Q(dρ) ∀A ∈ F ,

where we use the notation ̺ρ for the probability measure on P∞ induced by
the paint-box construction directed by ρ introduced in Section 1.3.
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Proof. We first characterize the law of an exchangeable random partition
Π̂ when it is given by the paint-box construction for a fixed mass parti-
tion ρ = (ρ1, ρ2, · · · ). If {In}n∈N is an interval representation of ρ and if
A0 = [0, 1] \

⋃
In, then for any collection of integers (ℓ1, · · · , ℓk) in N ∪ {0}

we have:

̺ρ(b
Π̂
j1
= ℓ1, · · · , b

Π̂
jk
= ℓk) =

k∏

i=1

P(Uj1 ∈ Iℓi)

=
k∏

i=1

λ(Iℓi)

=
k∏

i=1

|Bℓi |

where the last equality follows from an application of the law of large num-
bers. Now, returning to the general exchangeable random partition Π, we
note that {bΠn}n∈N is an exchangeable random sequence since for any permu-
tation σ of {j1, · · · , jk} we have:

P(bΠj1 = ℓ1, · · · , b
Π
jk
= ℓk) = P(b

σ(Π)

σ−1(j1)
= ℓ1, · · · , b

σ(Π)

σ−1(jk)
= ℓk)

= P(bΠσ−1(j1)
= ℓ1, · · · , b

Π
σ−1(jk)

= ℓk)

where we used that

{
ω ∈ Ω : bΠj1 = ℓ1, · · · , b

Π
jk
= ℓk

}
=
{
ω ∈ Ω : b

σ(Π)

σ−1(j1)
= ℓ1, · · · , b

σ(Π)

σ−1(jk)
= ℓk

}

for the first equality, and the exchangeability of Π for the second. Thus, by
de Finetti’s theorem we have:

P(bΠj1 = ℓ1, · · · , b
Π
jk
= ℓk) =

∫

Ω

k∏

i=1

µ(ω, ℓi) P(dω)

where µ(ω, ℓ) = limn→∞
1
n

∑n δℓ(b
Π
i ) = |Bℓ|, ℓ ∈ N ∪ {0}. Let G be the

σ-algebra generated by µ, and let ρ(Π) be the random variable in P[0,1]

defined by ρ(Π) := (|B1|, |B2|, · · · ); then the σ-algebra generated by ρ(Π)
is identically G since ρ(Π) = (µ(·, 1), µ(·, 2), · · · ). Let Q be the probability
measure induced on P[0,1] by ρ(Π), and Π̂ be the random partition given by
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the paintbox construction with mass partition ρ(Π), then, since

k∏

i=1

µ(·, ℓi) =
k∏

i=1

|Bℓi | = ̺ρ(Π)(b
Π̂
j1
= ℓ1, · · · , b

Π̂
jk
= ℓk),

substituting in the integral above we have:

P(bΠj1 = ℓ1, · · · , b
Π
jk
= ℓk) =

∫

Ω

k∏

i=1

µ(ω, ℓk) P(dω)

=

∫

Ω

̺ρ(Π)(b
Π̂
j1
= ℓ1, · · · , b

Π̂
jk
= ℓk) P(dω)

=

∫

P[0,1]

̺ρ(b
Π̂
j1
= ℓ1, · · · , b

Π̂
jk
= ℓk)Q(dρ)



Chapter 2

Coalescent Processes

2.1 Coagulation

Exchangeable coalescents are going to be defined as a stochastic process
in continuous time, with values in P∞. The evolution of these processes
will be determined by a binary operator defined in P∞, the coagulation
operator, whose increments will be stationary over time. In order to define
the coagulation operator Coag we first need to introduce the ordering of the
blocks of a partition π by their least element. That is, for a partition π we
construct an ordered sequence of blocks (π1, π2, · · · ) such that:

• πj ∈ π for all j ∈ N

• π =
⋃∞

i=1{πi}

• min{k : k ∈ πj} ≥ min{k : k ∈ πi} for all j ≥ i in N.

From now on, when we refer to the kth block of π we mean the kth block
under the order just described. Also, we will sometimes use the notation [π]k
instead of πk to make emphasis that we are referring to the kth block of π,
specially when the notation for the partition within the brackets is large.

Definition 2.1.1. Let A be any set, we define #A to be the cardinality of A.
In particular, if π is a partition, #π gives the number of blocks of π.

Definition 2.1.2 (Coagulation). Let π′ ∈ Pm with m ∈ N ∪ {∞}. Then, for
any partition π such that #π ≤ m the pair (π, π′) is called an admissible

18
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pair, and we define the coagulation of π and π′ as:

Coag(π, π′) = (π̂1, π̂2, · · · ),

where π̂k is given by

π̂k :=
⋃

j∈π′

k

πj,

where πj is set to ∅ if j > #π.

We now show that (Pm,Coag) is a monoid. Indeed, note that if π =
{{1}, · · · , {m}}, then Coag(π, π′) = π′ and π′ = Coag(π′, π) whenever (π, π′)
and (π′, π) are admissible pairs. In other words, the partition {{1}, · · · , {m}}
is the neutral element of Pm of the coagulation operator. For this reason we
define 0m := ({1}, · · · , {m}).

Lemma 2.1.1 (Associativity). Let (π, π′) and (π′, π′′) be admissible pairs. We
have:

Coag(π,Coag(π′, π′′)) = Coag(Coag(π, π′), π′′).

Proof. Let π̂ = Coag(π, π′) = (π̂1, · · · ) and π̃ = Coag(π′, π′′) = (π̃1, · · · ). By
definition we have that

[Coag(π,Coag(π′, π′′))]k =
⋃

j∈π̃k

πj where π̃k =
⋃

i∈π′′

k

π′
i

and, thus

[Coag(π,Coag(π′, π′′))]k =
⋃

i∈π′′

k

⋃

j∈π′

i

πj

=
⋃

i∈π′′

k

[Coag(π, π′)]i

= [Coag(Coag(π, π′), π′′)]k.

Also, another important property of the coagulation operator which is
easily seen is that:

(2.1) Coag(π, π′)
∣∣
n
= Coag(π

∣∣
n
, π′) = Coag(π

∣∣
n
, π′
∣∣
n
)

for any n ∈ N.
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Theorem 2.1.2. Let Π and Π′ be two independent exchangeable random
partitions. Then Π̂ = Coag(Π,Π′) is an exchangeable partition.

Proof. Let σ be any permutation, then the blocks of Π̂ are given by {σ−1(Π̂k)}k∈N
where for each k ∈ N we have:

σ−1(Π̂k) = σ−1

( ⋃

j∈Π′

k

Πj

)

=
⋃

j∈Π′

k

σ−1
(
Πj

)
.

Notice that in general we should not expect that σ−1(Πj) = [σ(Π)]j so it is

not true that σ(Π̂) = Coag(σ(Π),Π′). However, we can define a map from
P∞ to the set of all permutations, π 7→ σ̂π, where σ̂π is given by:

σ−1(πj) = [σ(π)]σ̂π(j) ∀ j ∈ N.

Since there exists an integer M such that σ(k) = k for all k ≥ M it follows
that σ−1(πk) = πk for all k ≥ M , therefore σ̂π(k) = k for all k ≥ M which
proves that σ̂π is indeed a permutation. Furthermore, since the latter is
true for every partition π, the map just described takes values on the set
of permutations of the first m − 1 integers, which is finite. Now let σ̂Π be
its composition with Π. Then σ̂Π is independent of Π′ since Π is, and σ̂Π

induces a discrete probability measure on the set of all possible permutations.
Moreover, for every k ∈ N we have:

σ−1
(
Π̂k

)
=
⋃

j∈Π′

k

σ−1(Πj)

=
⋃

j∈Π′

k

[σ(Π)]σ̂Π(j)

=
⋃

j∈σ̂Π
−1
(
Π′

k

)[σ(Π)]j.

For every k ∈ N there is a unique ℓ ∈ N such that [σ̂Π(Π
′)]ℓ = σ−1

Π

(
Π′

k

)
and

viceversa, thus
σ(Π̂) = Coag(σ(Π), σ̂Π(Π

′)).
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Let A be the finite range of σ̂Π, then, by the independence of (Π, σ̂Π) and Π′,
and the exchangeability of Π and Π′, for any measurable sets A,B ∈ P∞ we
have

P

(
σ(Π) ∈ A

⋂
σ̂Π(Π

′) ∈ B
)
=
∑

σ′∈A

P

(
σ(Π) ∈ A

⋂
σ̂Π = σ′

⋂
σ′(Π′) ∈ B

)

=
∑

σ′∈A

P

(
σ(Π) ∈ A

⋂
σ̂Π = σ′

)
P

(
σ′(Π′) ∈ B

)

=
∑

σ′∈A

P

(
σ(Π) ∈ A

⋂
σ̂Π = σ′

)
P

(
Π′ ∈ B

)

= P

(
σ(Π) ∈ A

)
P

(
Π′ ∈ B

)

= P

(
Π ∈ A

)
P

(
Π′ ∈ B

)

= P

(
Π ∈ A

⋂
Π′ ∈ B

)

thus proving that (σ(Π), σ̂Π(Π
′))

d
= (Π,Π′). Finally, it follows that:

σ
(
Coag(Π,Π′)

)
= Coag(σ(Π), σ̂Π(Π

′))
d
= Coag(Π,Π′).

Definition 2.1.3. Let {πi}mi=1 be a collection of admissible partitions. We
define

m

CO
i=1

πi

to be the partition given by the recurrence:

2

CO
i=1

πi := Coag(π1, π2)

m+1

CO
i=1

πi := Coag
( m

CO
i=1

πi, πm+1
)
.

To end this section we note that if {Πi}mi=1 is a collection of independent
exchangeable partitions then, using the preceding theorem in an induction
argument, we see that COm

i=1 Πi is also an exchangeable partition.
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2.2 Exchangeable Coalescents

We now follow the lines of Jean Bertoin [2] in order to define exchangeable
coalescent processes.

Definition 2.2.1. Let Π = (Π(t), t > 0) be a Markov process in continuous
time with values in Pm for some m ∈ N ∪ {∞}. Π is an exchangeable

coalescent if Π(0) is an exchangeable partition and the transition kernels of
Π satisfy:

P(Π(t+ h) ∈ A |Π(t) = π) = P(Coag(π, Π̃h) ∈ A)

where A is any measurable set in Pm and Π̃h is an exchangeable random
partition that depends only on h. We call the collection (Π̃h)h∈R+ the station-
ary increments of Π. Also, if Π(0) = 0m we call Π a standard exchangeable

coalescent.

Because the values of (Π(t), t > 0) are determined by the stationary

increments (Π̃h)h∈R+ in a way that resembles the definition of Lévy processes,
coalescent processes may be loosely interpreted as Lévy processes where the
binary operation is Coag in the set Pn, instead of the usual sum operation
in R.

Lemma 2.2.1. If Π is a stadard exchangeable coalescent, then for all h > 0
we have:

Π̃h
d
= Π(h).

Proof. Since Π(0) = ({1}, {2}, · · · ), for any measurable set A we have:

P(Π(h) ∈ A) = P(Coag(Π(0), Π̃h) ∈ A)

= P(Π̃h ∈ A).

If Π is an exchangeable coalescent with values in Pm then
(Coag(π,Π(t)), t > 0) is also an exchangeable coalescent whenever π ∈ Pm.
In particular, ifΠ is standard then Coag(π,Π(0)) = π, so (Coag(π,Π(t)), t >
0) is an exchangeable coalescent that starts at π, and whose probability
kernels are determined by the stationary increments {Π(h)}h∈R+ . For this
reason we will only consider standard coalescents from now on.
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The following two results tell us that if Π is an exchangeable coalescent
with values in P∞, then we can equivalently study the process Π or the
collection of consistent processes (Π

∣∣
n
, n ∈ N). The latter is easier to study

since Π
∣∣
n
is a Markov process that takes values on the finite space Pn and

thus is entirely described by its finite array of jumping rates.

Lemma 2.2.2. If Π is an exchangeable coalescent in Pm, m ∈ N∪ {0}, with

increments Π̃h, then, for every n ≤ m, Π
∣∣
n
:=
(
Π(t)

∣∣
n
: t > 0

)
is again an

exchangeable coalescent with stationary increments given by
{
Π̃h

∣∣∣
n

}
h∈R+

.

Proof. For any measurable set A we have:

P

(
Π
∣∣
n
(t+ h) ∈ A

∣∣∣Π
∣∣
n
(t) = π

)
=

P

(
Π
∣∣
n
(t+ h) ∈ A

⋂
Π
∣∣
n
(t) = π

)

P

(
Π
∣∣
n
(t) = π

) .

Using definition 1.2.2 of the set Pm(π), and equation (2.1), we get:

P

(
Π
∣∣
n
(t+ h) ∈ A

∣∣∣Π
∣∣
n
(t) = π

)
=

∫
Pm(π)

P

(
Π
∣∣
n
(t+ h) ∈ A

∣∣∣Π(t) = π′
)
P(dπ′)

P

(
Π
∣∣
n
(t) = π

)

=

∫
Pm(π)

P

(
Coag

(
π′, Π̃h

)∣∣∣
n
∈ A

)
P(dπ′)

P

(
Π
∣∣
n
(t) = π

)

=

∫
Pm(π)

P

(
Coag

(
π′
∣∣
n
, Π̃h

∣∣∣
n

)
∈ A

)
P(dπ′)

P

(
Π
∣∣
n
(t) = π

)

=

P

(
Coag

(
π, Π̃h

∣∣∣
n

)
∈ A

)∫
Pm(π)

P(dπ′)

P

(
Π
∣∣
n
(t) = π

)

= P

(
Coag

(
π, Π̃h

∣∣∣
n

)
∈ A

)

where, for the fourth equality, we used that π′
∣∣
n
= π for every π′ ∈ Pm(π).
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Thus, since Π
∣∣
n
(t) and Π̃h

∣∣∣
n
are both exchangeable partitions, Π

∣∣
n
is an

exchangeable coalescent with the desired property.

Theorem 2.2.3. IfΠ takes values on P∞ and is such thatΠ
∣∣
n
is an exchange-

able coalescent for every n ∈ N, then Π is an exchangeable coalescent.

Proof. To prove this theorem we just note that for every t > 0 the collection
of exchangeable partitions {Π

∣∣
n
(t) : n ∈ N} is consistent and, therefore, Π(t)

is an exchangeable partition. Also, for any A ∈ F , if A
∣∣
n
:= {π

∣∣
n
: π ∈ A},

we have:
{
Π(t+ h) ∈ A

⋂
Π(t) = π

}
=
⋂

n∈N

{
Π
∣∣
n
(t+ h) ∈ A

∣∣
n

⋂
Π
∣∣
n
(t) = π

∣∣
n

}

and, similarly:

{
Coag(π,Π(h)) ∈ A

}
=
⋂

n∈N

{
Coag(π,Π(h))

∣∣
n
∈ A

∣∣
n

}
.

Therefore:

P(Π(t+ h) ∈ A |Π(t) = π) = lim
n→∞

P

(
Π
∣∣
n
(t+ h) ∈ A

∣∣
n

∣∣∣Π
∣∣
n
(t) = π

∣∣
n

)

= lim
n→∞

P

(
Coag(π

∣∣
n
, Π
∣∣
n
(h)) ∈ A

∣∣
n
)

= lim
n→∞

P

(
Coag(π,Π(h))

∣∣
n
∈ A

∣∣
n
)

= P(Coag(π,Π(h)) ∈ A).

So Π is an exchangeable coalescent with increments Π(t).

Let Π be an exchangeable coalescent taking values in P∞. Since Π
∣∣
n

takes values on the finite set Pn its trajectories are entirely determined by
its jumping rates:

αn(π
′, π) = lim

t→0

1

t
P

(
Π
∣∣
n
(t) = π

∣∣∣Π
∣∣
n
(0) = π′

)
with π′ 6= π in Pn.

If (π′, π) is a pair of admissible partitions in Pn and π is distinct from 0n,
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we have:

αn(π
′,Coag(π′, π)) = lim

t→0

1

t
P

(
Π
∣∣
n
(t) = Coag(π′, π)

∣∣∣Π
∣∣
n
(0) = π′

)

= lim
t→0

1

t
P
(
Coag(π′, Π(t)) = Coag(π′, π)

)

= lim
t→0

1

t
P
(
Π
∣∣
n
(t) = π

)

= αn(0n, π).

In other words, αn(0n, π) is the jumping rate of Π
∣∣
n
from π′ to Coag(π′, π).

On the other hand, if π cannot be written in the form π = Coag(π′, π′′) for
any π′′ ∈ Pn, then

P

(
Π
∣∣
n
(t) = π

∣∣∣Π
∣∣
n
(0) = π′

)
= 0

so αn(π
′, π) = 0. The last two results combined tell us that the set

{αn(0n, π) : π ∈ Pn \ 0n, n ∈ N}

completely determines the trajectories of Π
∣∣
m

for every m ∈ N, and, thus,
also the trajectories of Π. To ease notation from now on we will write απ

instead of αn(0n, π).

Theorem 2.2.4. The set {απ : π ∈ Pn \ 0n, n ∈ N} determines a unique
measure µ on P∞ such that µ(0∞) = 0, and

µ(P∞(π)) = απ

for every π ∈ Pn \ 0n, n ∈ N. We call µ the coagulation rate of Π.

Proof. The idea of the proof is to use Charatheodory’s extension theorem
in order to construct a measure on P∞ \ 0∞ and then define µ(0∞) := 0.
Towards this, note that the set

S := {P∞(π) : π ∈ Pn \ 0n, n ∈ N}

is a semiring. Define a measure µ̂ in S by

µ̂(P∞(π)) = απ.
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Note that if π ∈ Pm and n ≥ m, then

P∞(π) =
⋃

π′∈Pn(π)

P∞(π′).

Hence, in order to prove that µ̂ is finitely additive we need to verify that

µ̂(P∞(π)) =
∑

π′∈Pn(π)

µ̂(P∞(π′)).

Observe that

{ω ∈ Ω : Π
∣∣
m
= π} =

⋃

π′∈Pn(π)

{ω ∈ Ω : Π
∣∣
n
= π′},

thus, the rate at which 0m jumps to π, equals the rate at which 0n jumps to⋃
π′∈Pn(π)

{Π
∣∣
n
= π′}. Since the sets on the last union are pairwise disjoint,

the rate at which the latter occurs is∑

π′∈Pn(π)

απ′ =
∑

π′∈Pn(π)

µ̂(P∞(π′))

so µ̂ is finitely additive. To see that µ̂ is infinitely additive note that for
any partition π ∈ Pn (n ∈ N), P∞(π) is closed and, by theorem 1.2.1,
compact. Therefore, if there exists a collection of partitions {πi}

∞
i such

that {P∞(πi)}
∞
i=1 are pairwise disjoint and P∞(π) = ∪∞

i=1P∞(πi), then,
since {P∞(πi)}

∞
i=1 is an open cover of P∞(π), it must be the case that

P∞(πi) = ∅ for all but finitely many i ∈ N. By the finite additivity of µ̂ we
then have the equality µ̂(P∞(π)) =

∑∞
i=1 µ̂(P∞(πi)). By Charatheodory’s

theorem, µ̂ can be uniquely extended to a measure µ on P∞\0∞, and setting
µ(0∞) := 0 finishes the proof of the theorem.

Remark. Note that µ(P∞(Pn \ 0n)) < ∞ for every n ∈ N and, therefore, µ
is a σ-finite measure.

To end this section we note that if π 6= 0n then for every permutation σ
we have

αn(0n, π) = lim
t→0

1

t
P(Π

∣∣
n
(t) = π)

= lim
t→0

1

t
P(σ(Π

∣∣
n
(t)) = π)

= lim
t→0

1

t
P(Π

∣∣
n
(t) = σ−1(π))

= αn(0n, σ
−1(π)).
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Starting with σ(π) instead of π above, we see that αn(0n, σ(π)) = αn(0n, π)
and, therefore, the coagulation rate µ is invariant under permutations. More
precisely, for any permutation σ and any measurable set A we have:

µ(A) = µ(σ(A)).

2.3 Poissonian Construction

In this section we will construct an exchangeable coalescent Π on P∞ from
any measure µ that satisfies the three properties described for coagulation
rates in the previous section, mainly:

• µ(Pn \ 0n) < ∞ for all n ∈ N

• µ(σ(A)) = µ(A) for any measurable set A and permutation σ

• µ(0∞) = 0.

In other words, we will see that any measure µ satisfying these properties
is the coagulation rate of an exchangeable coalescent. Let M be a Poisson
random measure on R

+ ×P∞ with intensity λ⊗ µ. For each n ∈ N define a
random measure Mn on R

+ × Pn by:

Mn([0, t]× π) := M([0, t]× P∞(π)) (∀π ∈ Pn)

and note that Mn is a Poisson random measure on R
+ × Pn with intensity

λ⊗ µn, where µn is the measure on Pn given by:

µn(π) = µ(P∞(π)) (∀π ∈ Pn).

Since µn(Pn \ 0n) < ∞, Mn has a finite number of atoms in [0, t]×Pn \ 0n

with probability one. Also, if (t1, π
1) and (t2, π

2) are two atoms of Mn in
[0, t]× Pn \ 0n, then t1 6= t2 with probability one; that is, the atoms of Mn

in [0, t] × Pn \ 0n occur at different times with probability one. Therefore,
for every n ∈ N the atoms of Mn in [0, t]×Pn \0n can be ordered according
to their first coordinate and we may define the sequence of random vectors
{(Ti,Πi)}i∈N given by this ordering. Using the latter, we consider the process
Πn with values in Pn such that for every t ≥ 0, Πn(t) is given by the ordered
coagulation:

Πn(t) = CO
{i:0<Ti≤t}

Πi.
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From now on we will write CO0<Ti≤t Πi instead of CO{i:0<Ti≤t} Πi.
Note that it is possible to construct the Poisson random measure Mn

through the following procedure: let µ̂n := µn(Pn \ 0n) and consider a
sequence of independent identically distributed random partitions {Π}i∈N
with values in Pn \ 0n and law µn(π)/µ̂n. Let P be an independent Poisson
process in R

+ with parameter µ̂n, and denote its jumping times by {Ti}
∞
i=1.

Finally, define the atoms of Mn in R
+ ×Pn \ 0n to be the points {(Πi, Ti)}.

To see that this indeed generates a Poisson random measure on R
+×Pn\0n

with intensity λ⊗ µn we compute for any π ∈ Pn \ 0n and t1, t2 ∈ R
+:

P
(
Mn(π × [t1, t2]) = k

)
=

∞∑

j=k

P(Mn(Pn × [t1, t2]) = j)P(Mn(π × [t1, t2]) = k|Mn(Pn × [t1, t2]) = j)

=
∞∑

j=k

P(P (t2)− P (t1) = j)

(
j

k

)(µn(π)

µ̂n

)k( µ̂n − µn(π)

µ̂n

)j−k

=
∞∑

j=k

e−µ̂n(t2−t1)
[µ̂n(t2 − t1)]

j

j!

(
j

k

)(µn(π)

µ̂n

)k( µ̂n − µn(π)

µ̂n

)j−k

=
e−µ̂n(t2−t1)[µn(π)(t2 − t1)]

k

k!

∞∑

j=k

[(µ̂n − µn(π))(t2 − t1)]
j−k

(j − k)!

=
e−µ̂n(t2−t1)[µn(π)(t2 − t1)]

ke(µ̂n−µn(π))(t2−t1)

k!

=
e−µn(π)(t2−t1)[µn(π)(t2 − t1)]

k

k!
.

So Mn([t1, t2]×π) is Poisson distributed with parameter µn(π)(t2− t1). By a
similar calculation it is easy to see that for any measurable sets A and B such
that A ∩ B = ∅, the random variables Mn(A) and Mn(B) are independent.

Theorem 2.3.1. The process Πn with values in Pn given by:

Πn(0) = 0n

Πn(t) = CO
0<Ti≤t

Πi

is a standard exchangeable coalescent.

Proof. It is clear that if A is any measurable set and t1, · · · , tn ∈ [0, t] then:

P
(
Πn(t+ h) ∈ A

∣∣Πn(t)
)
= P

(
Πn(t+ h) ∈ A

∣∣Πn(t), Πn(t1), · · · , Π
n(tn)

)
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so Πn is a Markov process. Now, consider the sequence of atoms {(Ti,Πi)}i∈N
of Mn in R

+ × Pn \ 0n. Since µ is invariant under permutations then µn is
also invariant under permutations. Thus, for every i ∈ N and any permuta-
tion σ we have P(Πi = π) = P(Πi = σ(π)), that is, Πi is an exchangeable
partition. Also, by the construction of the Poisson random measure Mn de-
scribed above, we see that the random partitions {Πi} are independent and
identically distributed. We also have that

Mn((0, h]× Pn \ 0n)
d
= Mn((t, t+ h]× Pn \ 0n)

since Mn is a Poisson random measure. Therefore

CO
t<Ti≤t+h

Πi
d
= CO

0<Ti≤h
Πi.

Now, since Πn(t+ h) is given by

Πn(t+ h) = Coag
(
Πn(t), CO

t<Ti≤t+h
Πi

)
,

we only need to show that CO0<Ti≤h Πi is an exchangeable partition. To prove
this we note that for any finite collection of indices J ⊂ N, the partition

CO
i∈J

Πi

is exchangeable since the partitions {Πi : i ∈ J} are independent and ex-
changeable. Using the latter we compute:

P

(
CO

0<Ti≤h
Πi = π

)
=

∞∑

k=1

P

(
Tk ≤ h < Tk+1

⋂ k

CO
i=1

Πi = π
)

=
∞∑

k=1

P

(
Tk ≤ h < Tk+1

⋂
σ
( k

CO
i=1

Πi

)
= π

)

= P

(
σ
(

CO
0<Ti≤h

Πi

)
= π

)
.

Theorem 2.3.2. For any fixed t > 0, the sequence of partitions {Πn(t)}n∈N
is consistent.
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Proof. For any pair of integers n > m let {(Ti,Πi)}
∞
i=1 be the atoms of Mn

and {(Tki ,Πki)}
∞
i=1 be the subsequence of {(Ti,Πi)}

∞
i=1 such that Πi

∣∣
m
6= 0n.

Then we note that the atoms of Mm are given by {(Tki ,Πki

∣∣
m
)}∞i=1 and:

Πn
∣∣
m
(t) =

(
CO

0<Ti≤t
Πi

)∣∣∣∣
m

= CO
0<Ti≤t

Πi

∣∣
m

= CO
0<Tki

≤t
Πki

∣∣
m

= Πm(t).

Finally, by Lemma 1.1.1 and Theorem 2.2.3, the exchangeable coalescents
{Πn}n∈N determine a unique (in law) exchangeable coalescent Π in P∞.
Since Πn is a Markov chain for every n, and since for every π ∈ Pn \ 0n we
have P(Πn(T1) = π) = µ(P∞(π))/µ(Pn \ 0n), then it follows that

απ = lim
t→0

1

t
P
(
Πn(t) = π

)
= µ(P∞(π)),

so Π has coagulation rate µ.

2.4 Representation of Coagulation Rates

In this section we will present an exhaustive way of constructing coagulation
rates. In pursuance of this, let us first describe the two types of coagulation
rates that will be the basis of our construction.

For each pair of integers i, j consider the partition πi∼j given by the
block {i, j} and the singletons {{k} : k 6= i, k 6= j}. Kingman’s coagulation

rate µK is the measure on P∞ given by atoms of size one at the points
{πi∼j : 1 ≤ i < j < ∞}. Note that the coalescent process determined by
this coagulation rate evolves through coagulations of exactly two blocks at a
time.

For the second type of coagulation rate consider any measure ν on P[0,1]

such that ν(0) = 0 and

(2.2)

∫

P[0,1]

∞∑

i=1

ρ2i ν(dρ) < ∞.
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Then, using the measures (̺ρ, ρ ∈ P[0,1]) given by the paintbox construction
introduced in section 1.3, define the measure µν on P∞ by:

µν(·) :=

∫

P[0,1]

̺ρ(·) ν(dρ).

It follows that µν is a coagulation rate. To see this notice that ̺ρ is invariant
under permutations and, hence, µν is also invariant under permutations.
Also, µν(0∞) = 0 since ν(0) = 0. Finally, note that µν(P∞(Pn \ 0n)) < ∞
for every n ∈ N, since for every π ∈ Pn \ 0n there exists i, j such that i ∼ j
and:

µν(P∞(π)) ≤ µν

(
P∞

(
{π : i ∼ j}

))

=

∫

Pm

∞∑

i=1

ρ2i ν(dρ) < ∞.

Since µK and µν are coagulation rates it is easily seen that for every c > 0,
the measure µ := cµk+µν is again a coagulation rate. The following theorem
states that all coagulation rates can be constructed in this way.

Theorem 2.4.1. Let µ be any coagulation rate. There exists a constant c > 0
and a measure ν in P[0,1] that satisfies ν(0) = 0 and (2.2) such that

µ = cµK + µν .

Proof. First, we construct a measure ν on P[0,1] such that for every measur-
able set A ⊂ P∞ we have:

µ
(
A
⋂

|π|↓ 6= 0
)
=

∫

P[0,1]

̺ρ(A) ν(dρ).

For this, fix any n ∈ N and consider the measure µn on P∞ given by:

µn(A) := µ
(
A
⋂{

π
∣∣
n
6= 0n

})
(∀A ∈ F ).

Note that µn is finite and invariant under permutations. In particular, for
any permutation σ such that σ(k) = k for every k ∈ {1, · · · , n}, and any
measurable set A, we have µn(A) = µn(σ(A)). Therefore, if µ̂n is the image
measure of µn under the translation by n (denoted T n) given by

π
Tn

→
(
i ∼ j ⇐⇒ i+ n

π
∼ j + n

)
,
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then µ̂n is also invariant under permutations and finite. By Kingman’s Rep-
resentation, if νn is the image measure of µ̂n under the map π → |π|↓, we
have

µ̂n(·) =

∫

P[0,1]\0

̺ρ(·)νn(dρ)

and
∫

P[0,1]

∞∑

i=1

ρi νn(dρ) = µ̂n

(
{π : 1 ∼ 2}

)
(2.3)

= µn

(
{π : 1 + n ∼ 2 + n}

)

= µ
(
{π : 1 + n ∼ 2 + n}

⋂
P∞(Pn \ 0n)

)

≤ µ
(
{π : 1 ∼ 2}

)
< ∞.

Note that |π|↓ = |T n(π)|↓, so νn is also the image measure of µn under the
map π → |π|↓. Since µn ↑ µ it follows that νn ↑ ν̂ where ν̂ is the image
measure of µ under the same map. By taking the limit as n goes to infinity
in (2.3) we see that ∫

P[0,1]

∞∑

i=1

ρi ν̂(dρ) < ∞,

so if ν := 1

{
|π|↓6=0

}ν̂, then ν(0) = 0 and µν is a coagulation rate. It remains

to show that

µ
(
A
⋂

|π|↓ 6= 0
)
=

∫

P[0,1]

̺ρ(A) ν(dρ),

or equivalently that
µν = 1

{
|π|↓6=0

}µ.

For this we compute for any π′ ∈ Pk \ 0k and any integer n ≥ k:

µ
(
P∞(π′)

⋂
|π|↓ 6= 0

)
= µn

(
P∞(π′)

⋂
|π|↓ 6= 0

)

= µn

(
P∞(π′)

⋂
|π|↓ 6= 0

⋂
π
∣∣
k+1,··· ,k+n

6= 0{k+1,··· ,k+n}

)

where the last equality holds since, by Kingman’s representation, µn is sup-
ported on partitions of N whose blocks are singletons if and only if their
asymptotic frequency is identically zero; therefore, we have:

µn({|π|
↓ 6= 0} \ {π

∣∣
k+1,··· ,k+n

6= 0{k+1,··· ,k+n}}) = 0.
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Now, for fixed n let σ be the permutation such that 1 → n+1, · · · , k → n+k
and k + 1 → 1, · · · , k + n → n. Then, by the exchangeability of µ and the
definition of µ̂n, we have:

µ
(
P∞(π′)

⋂
|π|↓ 6= 0

)
= µn

(
P∞(σ(π′))

⋂
|π|↓ 6= 0

⋂
σ
(
π
∣∣
k+1,··· ,k+n

6= 0{k+1,··· ,k+n}

))

= µn

(
P∞(σ(π′))

⋂
|π|↓ 6= 0

⋂
π
∣∣
n
6= 0n

)

= µ̂n

(
P∞(π′)

⋂
|π|↓ 6= 0

)

=

∫

P[0,1]

̺ρ(P∞(π′)) ν(dρ).

Since this holds for every π′ ∈ Pk \ 0k and n ≥ k, we conclude that µν =
1

{
|π|↓6=0

}µ. Let us now characterize 1{
|π|↓=0

}µ. Let µ̃ be the restriction of

µ to the set P∞({1, 2})∩ {π ∈ P∞ : |π|↓ = 0}. Then, the image measure of
µ̃ under the translation by 2 is a finite exchangeable measure, with support
on the set of partitions with asymptotic frequencies equal to zero and, thus,
by Kingman’s representation, is entirely concentrated on 0∞. Therefore, µ̃
almost-everywhere, the block containing 1 and 2 can either be of the form
{1, 2}, or {1, 2, j} for some j ∈ N. Since µ̃ is finite and µ is exchangeable,
using a similar argument as in Lemma 1.4.3 (i.e. constructing a ‘uniform’
finite measure on N), we see that the block containing 1 and 2 is actually
{1, 2} µ̃-a.e. Thus µ̃ is entirely concentrated on the partition π1∼2 and, in
fact, µ̃(π1∼2) = µ(P∞({1, 2})∩ |π|↓ = 0). Let c := µ(P∞(1 ∼ 2)∩ |π|↓ = 0),
then by the exchangeability of µ we have

1

{
|π|↓=0

}µ = cµK ,

since µ(P∞({1, 2}) ∩ |π|↓ = 0) = µ(P∞({i, j}) ∩ |π|↓ = 0) for every pair of
integers i, j. Thus, joining both equalities we get:

µ = cµK + µν .



Chapter 3

The Bolthausen-Sznitman
Coalescent

In this chapter we will first introduce the class of simple coalescents, provide
an alternative construction of this class due to Pitman, and also alternative
proof for the existence and characterization of their coagulation rates. Then
we will specialize in a particular type of simple coalescent: the Bolthausen-
Sniztman (BS) coalescent. We will describe an alternative construction of
BSC based on random recursive trees, and a copuling method with random
walks that will provide elegant proofs for the study of different functionals
on the BS coalescent such as the total number of jumps.

3.1 Simple Coalescents

3.1.1 Definition

The poissonian construction given in Section 2.3 tells us that we can intu-
itively think of exchangeable coalescents as a process where one selects a
number of time points {Ti}i∈N according to a Poisson process on R

+ and
then for each time point Ti one picks an “increment” Πi according to some
distribution in P∞. The coalescent process at time t is then constructed
through the sequential coagulation prescribed by all the increments that oc-
cur before time t. Until now we have considered the general case in which the
increments {Πi}i∈N may prescribe the simultaneous coalescence of multiple
groups of blocks at the same time; we will now focus on processes whose

34
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infinitesimal increments prescribe the coalescence of at most one group of
blocks at a time. The following definitions make this intuition precise.

Definition 3.1.1. Let π ∈ P∞ be a partition, and Π be an exchangeable
coalescent.

• We say that π is a simple partition if all its blocks, except possibly one,
are singletons.

• We say that Π is simple if its coagulation rate is supported on simple
partitions.

We note that if µ is the coagulation rate of a simple coalescent then the
image measure of µ on P[0,1] under the map π → |π|↓ is supported on mass
partitions of the form ρ = (p, 0, 0, · · · ), p ∈ [0, 1]. Therefore, if ν is the
measure on P[0,1] such that µ = cµK + µν , then ν is also supported on mass
partitions of this form, so we can simplify ν to a measure Λ on [0, 1] by
setting Λ(A) = ν(A × 0) for every borel set A in [0, 1]. In this case we also
have that Λ(0) = 0 and, by equation (2.2):

∫

[0,1]

p2 Λ(dp) < ∞.

The above discussion can also be read in reverse, that is, for any measure
Λ in [0, 1] such that Λ(0) = 0 and

∫
[0,1]

p2 Λ(dp) < ∞ we can construct a

measure ν on P[0,1] which corresponds to a simple coalescent. For this reason
from now on we will write ν instead of Λ for the measure on [0, 1] associated
to a simple coalescent and, by a slight abuse of notation, we will say that
the coagulation rate µ of a simple coalescent is given by µ = cµK +µν where
ν is a measure on [0, 1]. Given the coagulation rate of a simple coalescent
µ = cµK + µν we interpret c as the intensity with which increments coalesce
pairs of blocks, and µν as the intensity with which a proportion p of all the
blocks is coalesced instead. Also, if we consider the restriction of Π to Pn,
then, for any simple partition π ∈ Pn \ 0n such that its non-singleton block
has k elements (k ∈ [n] \ {1}), we have

απ = c1k=2 +

∫

[0,1]

pk(1− p)n−k ν(dp);

so if we define αn,k := c1k=2 +
∫
[0,1]

pk(1 − p)n−k ν(dp), then αn,k gives the

intensity with which any particular collection of k blocks coalesce whenever
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there are n ≥ k blocks. Moreover, the intensities αn,k satisfy the recursion

(3.1) αn,k = αn+1,k + αn+1,k+1

since the rate at which a collection of k blocks coalesce when there are n
blocks equals the rate, when there are n + 1 blocks, at which they coalesce
along with the (n+1)th block plus the rate at which they coalesce excluding
the (n+1)th block; more precisely, if B is the non-singleton block of a simple
partition π ∈ Pn, and π′, π′′ are the simple partitions in Pn+1 with non-
singleton blocks B and B ∪ {n + 1} respectively, then, by the additivity of
the coagulation rate, we have:

απ = απ′ + απ′′ ,

so (3.1) follows.
Furthermore, if Ak is the set of all simple partitions in Pn such that their

non-singleton element has k elements (k ∈ [n] \ {1}), then

λn,k :=
∑

π∈Ak

απ

= (#Ak)αn,k

=

(
n

k

)
αn,k

gives the rate at which a coalescence of exactly k blocks occurs, whenever
there are n ≥ k blocks; and

αn :=
n∑

k=1

λn,k

gives the total coagulation rate.

3.1.2 Pitman’s Construction of Simple Coalescents [12]

In Chapter 2 we described a characterization of coalescent processes via its
coagulation rate µ on P∞. In this chapter we describe Pitman’s construction
of simple coalescents whose only input is an array of nonnegative numbers
(αn,k, 2 ≤ k ≤ n < ∞) satisfying recursion (3.1). The construction is based
on an application of Kolmogorov’s consistency theorem. In pursue of this
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we will first introduce another definition of the set P∞ in terms of product
spaces. By Lemma 1.1.1 there is a one to one correspondence between P∞

and compatible sequences of partitions (π1, π2, · · · ) ∈ ⊗∞
k=1Pk, so we may

consider P∞ as a subset of ⊗∞
k=1Pk. Furthermore, we can endow P∞ with

the topology it inherits from the product topology in ⊗∞
k=1Pk, where each

Pk is endowed with the discrete topology. A coalescent Π is then a process
that takes values in P∞, with càdlàg paths, and such that for every pair
s < t ∈ R

+, Π(t) is the result of a coagulation operation on Π(s). On the
other hand, coalescent processes in Pn can be constructed as Markov chains
satisfying the same restriction for Π(t) and Π(s) (s < t) as above.

Theorem 3.1.1. For each n ∈ N let Πn be a coalescent processes in Pn

with transition rates given by the rule that, whenever there are b blocks, any
given collection of k blocks coalesce into a single block with intensity αb,k.
Then, equation (3.1) holds if and only if for every pair of integers m < n,
the processes Πm and Πn

∣∣
m
have the same distribution.

Proof. By the theory of Markov processes we need only verify that the transi-
tion rates of the two processes Πm and Πn

∣∣
m
coincide. This is done following

the same lines as in the proof of the additivity of the measure µ̂ in Theorem
2.2.4.

By the previous theorem, if the collection of nonnegative numbers (αn,k, 2 ≤
k ≤ n < ∞) satisfies (3.1), then the corresponding collection of processes
{Πn}∞n=1 generates a consistent family of probability measures {µn}

∞
n=1 on

⊗n
k=1P

R
+

k and, by Kolmogorov’s consistency theorem, there exists a stochas-
tic process Π on ⊗∞

k=1P
R
+

k with finite dimensional distributions {µn}
∞
n=1.

Since the probability measures µn are supported on compatible sequences of
partitions (again by theorem 3.1.1), then Π takes values on P∞ ⊂ ⊗∞

k=1Pk.
Furthermore, since {Πn}∞n=1 are coalescent processes, it is easily seen that
for any pair s < t ∈ R

+, Π(t) is the result of a coagulation operation on
Π(s), so Π is indeed a coalescent process.

Finally, the next result makes use of de Finetti’s theorem to give an
alternative proof for the existence of a finite nonnegative measure µ on [0, 1]
which characterizes the coagulation rate of a simple coalescent Π.

Theorem 3.1.2. There exists a bijection between collections of nonnegative
numbers (αn,k, 2 ≤ k ≤ n < ∞) that satisfy (3.1), and finite nonnegative
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measures µ on [0, 1], that satisfy:

(3.2) αi+j+2,i+2 =

∫

[0,1]

xi(1− x)jµ(dx).

Proof. Note that if αi+j+2,i+2 =
∫
[0,1]

xi(1− x)jµ(dx) for some finite measure

µ on [0, 1], then substituting the integrals in (3.1) we get:

αi+j+2+1,i+2 + αi+j+2+1,i+2+1 =

∫

[0,1]

xi(1− x)j+1µ(dx) +

∫

[0,1]

xi+1(1− x)jµ(dx)

=

∫

[0,1]

(1− x)j(xi(1− x) + xi+1)µ(dx)

=

∫

[0,1]

(1− x)jxiµ(dx)

= αi+j+2,i+2

so (3.1) does hold.
Now, for the reverse implication we will make use of the preceding theorem

and interpret the collection (αn,k, 2 ≤ k ≤ n < ∞) as the transition rates of
a simple coalescent Π. For each n ≥ 2 let τn be the first jumping time of
Π
∣∣
n
. For n ≥ 2 define the probability measure µn on {0, 1}n by the following

procedure: let ∆ = (δ1, · · · , δn) be a n-tuple of zero-one digits and construct
π∆ as the partition given by putting all the indices i with δi = 1 in a single
block and leaving the rest to form singletons. Then define:

µn(∆) = P

(
Π
∣∣
n
(τn) = π∆

∣∣∣∣Π
∣∣
2
(τn) = {1, 2}

)
.

We now show that if µ1 is given by µ1({1}) = 1, then {µn}n≥1 is a consistent
family of probability measures. Indeed, for any sequence ∆ = (δ1, · · · , δn) in
{0, 1}n with δ1 = δ2 = 1 let k =

∑n
i=1 δi and note that by the additivity of

the transition rates in Theorem 3.1.1 we have:

µn(∆) =
αn,k

α2

=
αn+1,k+1 + αn+1,k

α2

=µn+1(∆ ∪ δn+1 = 1) + µk+1(∆ ∪ δn+1 = 0)

=µn+1(∆× {0, 1})

=µn+1

∣∣
{0,1}n

(∆);
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whereas if δ1 = 0 or δ2 = 0 then µ(∆) = 0 = µn+1

∣∣
{0,1}n

(∆). Now define

X1 = 1 and for k ≥ 2:

Xk :=

{
1 if k participates in the first coalescence event of Π

∣∣
k
along with 1 and 2.

0 otherwise.

By the exchangeability ofΠ, and thus ofΠ
∣∣
k
for every k ≥ 2, and conditional

on the event X1 = X2 = 1, the sequence {Xk}
∞
k=1 is exchangeable. Therefore

by de Finetti’s theorem there exists a probability measure µ̂ on [0, 1] such
that, for any ∆ = (δ1, · · · , δn) with δ1 = δ2 = 1, i+2 =

∑
δk, and i+2+j = n,

we have:

P(X3 = δ3, · · · , Xn = δn |X1 = X2 = 1) =

∫

[0,1]

xi(1− x)jµ̂(dx).

On the other hand, by the consistency of the sequence {µn}n≥2 we can com-
pute the same conditional probability using the coagulation rates of Π

∣∣
i+j+2

,

we have:

αi+j+2,i+2

α2,2

=
αi+j+2,i+2

αi+j+2

αi+j+2

α2,2

=
P(X1 = 1, X2 = 2, X3 = δ3, · · · , Xi+j+2 = δi+j+2)

P(X1 = 1, X2 = 1)

= P(X3 = δ3, · · · , Xi+j+2 = δi+j+2|X1 = X2 = 1)

Hence, if µ := α2,2µ̂, we obtain (3.2).

3.1.3 The Bolthausen-Sznitman Coalescent

The Bolthausen-Sznitman (BS) coalescent is the simple coalescent given by
the coagulation rate µ = µν where ν(dx) = x−2dx, that is, the intensity of
pair-wise coalescence is zero and the intensity of coalescing a proportion dx
of all the blocks is given by ν(dx) = x−2dx. From the discussion in Section
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3.1 we obtain the equations

αn,k =

∫

[0,1]

pk(1− p)n−kν(dp)

=

∫

[0,1]

pk−2(1− p)n−kdp

=
Γ(k − 1)Γ(n− k + 1)

Γ(n)

=
(k − 2)!(n− k)!

(n− 1)!
,

and

λn,k =

(
n

k

)
(k − 2)!(n− k)!

(n− 1)!

=
n!

(n− k)!k!

(k − 2)!(n− k)!

(n− 1)!

=
n

k(k − 1)
.

We also have:
αn = n− 1.

The BS coalescent is a particular case of the Beta coalescent. The Beta
coalescent of parameter a, 0 < a ≤ 2, is the simple coalescent given by the
coagulation rate µ = µν where ν(dx) = x−2Beta(2 − a, a)dx, and Beta(2 −
a, a) is the kernel of the Beta distribution of parameters (2− alpha, alpha);
that is:

ν(dx) = x−2 1

Γ(2− a)Γ(a)
x1−a(1− x)a−1.

Thus, the BS coalescent is the Beta coalescent of parameter 2.

3.2 Random Recursive Trees and the BSC

3.2.1 Construction of the BSC through Random Recursive
Trees

In this section we will present a construction of the BS coalescent using ran-
dom recursive trees due to Goldschmidt and Martin [1]. Let L = {B1, · · · , Bn}
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be a partition of [m] for some m ∈ N, or a subset of such a partition, and
endow L with the total order given by ordering the blocks of a partition by
their least elements as described in Section 2.1. A recursive tree on n vertices
with labels L is a tree rooted at {B1}, and such that the paths from the root
to the leaves are increasing according to the order of its labels. A random

recursive tree on {B1, · · · , Bn} is a tree chosen uniformly at random among
the (n − 1)! possible recursive trees. We can construct a random recursive
tree by fixing the root at the node with the label B1 and adding the rest
of the nodes sequentially, by uniformly choosing a parent from the already
existing nodes. We also define a cutting-merge procedure on such trees which
consists of selecting one edge uniformly at random (cutting), and merging
all the nodes below the edge with the node above it (merge); thus obtaining
a new recursive tree on a set of labels that constitute a new partition of [n],
or a subset of such a partition (see Figure 3.1).

{1,3}

{4} {2}

{5,7} {6} {9}

{8,10}

{1,3}

{4,6,8,10} {2}

{5,7} {9}

Figure 3.1: On the left, an example of a recursive tree whose labels constitute
a partition of {1, · · · , 10} with 7 blocks. On the right, the resulting recursive
tree after a cutting-merge procedure performed on the marked edge (dashed
line) of the first tree.
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Lemma 3.2.1. Let T be a random recursive tree on a set of n labels, then the
tree resulting from performing a cutting-merge procedure on T is a random
recursive tree on the resulting set of labels.

Proof. Let T be a random recursive tree on the set of labels L := {B1, · · · , Bn},
Lk be a subset of L of size k, B̂m be the minimal element of Lk, and

B̂ :=
⋃

B∈Lk

B.

We need to show that, conditionally on the event that the resulting tree
after the cutting-merge procedure performed on T has labels {L\Lk}∪{B̂},
the resulting tree is uniformly distributed on the set of all possible recursive
trees on that label set. It is easy to see that the tree resulting from a cutting-
merge procedure performed on a recursive tree is again a recursive tree. Now,
fix any recursive tree T ′ on the set of labels {L \ Lk} ∪ {B̂}, then all the
trees on the label set {B1, · · · , Bn} that end in T ′ after a cutting-merge
procedure can be constructed by replacing the label B̂ with the label B̂m on
T ′, and picking a recursive tree T ∗ on the label set Lk \ {B̂m} and joining
T ∗ with T ′ by adding an edge between the root of T ∗ and the node with
label B̂m on T ′. Since the number of possible recursive trees on the label set
Lk \ {B̂m} is (k − 2)!, the total number of initial configurations of T that
result on T ′ after a cutting-merge procedure is (k − 2)!. On the other hand,
all the configurations of T that result in a recursive tree on the label set
{L \Lk} ∪ {B̂} can be constructed by picking two recursive trees T ′ and T ∗,
the former on the label set {L \ Lk} ∪ {B̂m} and the latter on Lk \ {B̂m},
and joining them by adding an edge between the root of T ∗ and the node
with label B̂m on T ′. Thus, since there are (n − k)! possible recursive trees
on {L \ Lk} ∪ {B̂m}, and (k − 2)! possible recursive trees on Lk \ {B̂m},
the total number of initial configurations of T that result in a recursive tree
on the label set {L \ Lk} ∪ {B̂} is (n − k)!(k − 2)!. Finally, since T is
uniformly distributed among all possible recursive trees on {B1, · · · , Bn},
the probability of obtaining any particular recursive tree on the label set
{L \Lk} ∪ {B̂}, conditioned on obtaining precisely this label set, is given by

(k−2)!
(n−k)!(k−2)!

= 1
(n−k)!

. Since this probability is the same for any such tree, we
have proven that the resulting recursive tree after a cutting-merge procedure
on T is again a random recursive tree on the resulting set of labels.

Theorem 3.2.2. Let T be a random recursive tree with labels 0n. Associate to
each edge of T an independent exponential random variable with mean 1. The
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exponential variables will be the time at which a cutting-merge procedure
will occur at a particular edge, with the addition that all the labels on the
subtree below that edge will be instantly added to the node above. If for
each time we construct a partition Π(t) of [n] whose blocks are given by the
labels on each of the nodes of T , then Π = (Π(t), t > 0) is a BS coalescent
restricted to [n].

Proof. We need to show that the probability with which any particular set
of k blocks coalesces whenever there are b blocks is (k−2)!(b−k)!

(b−1)!(b−1)
, since in this

case the coagulation rate of the selected blocks would be (k−2)!(b−k)!
(b−1)!

as in the
BS coalescent. The latter follows from the fact that the total coagulation
rate is b − 1, since there are b − 1 possible coagulations given by a cutting-
merge procedure on a recursive tree with b blocks. Using a similar argument
as in the preceding lemma we note that the probability that any set of k
blocks coalesces when there are b blocks can be computed by counting the
number of recursive trees on the label set π = {B1, · · · , Bb} that result in
the coalescence of the selected k blocks, denoted by Lk. This is the same
as counting the number of recursive trees on {B1, · · · , Bb} that result in a
recursive tree on the set of labels {{B1, · · · , Bb}\Lk}∪B̂ with B̂ as in Lemma
3.2.1, where we also proved that this number is (b− k)!(k − 2)!. Since there
are (b− 1)!(b− 1) possible ways of performing a cutting-merge procedure on
the set of all recursive trees on {B1, · · · , Bb} (i.e. there are (b − 1)!(b − 1)
recursive trees with a single marked edge), we see that the probability of
coalescing the selected set of k blocks is

(b− k)!(k − 2)!

(b− 1)!(b− 1)
,

so the coagulation rates do coincide with those of the BSC.
Finally, by Lemma 3.2.1, the recursive tree resulting from a cutting-merge

procedure performed on T is again a recursive tree on the resulting set of
labels and, therefore, the process is markovian.

From the previous theorem we observe that to each random recursive
tree on 0n with exponential variables associated to its edges corresponds
a path of the BSC with values in Pn. We can also define the coalescent
process Π in Pn of the previous theorem as follows: construct a random
recursive tree T on 0n and associate to each edge an independent standard
exponential random variable as before. For each t > 0 define Π(t) to be
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the random partition constructed from the tree resulting from performing a
cutting-merge procedure on all the edges of T whose associated exponential
variable is less than t. The resulting process has the same distribution as
the process in Theorem 3.2.2. To see this let Et be the collection of edges
of T whose associated exponential variable is less than t, and let Nt be the
collection of edges not contained in Et and such that the path from the root
to the node above does not contain any edge in Et; then the path of Π after
time t is entirely determined by the subsequent cutting-merge procedures
performed on the edges in Nt since any cutting-merge procedure scheduled
for time t + s, s > 0, on any other edge of T is ineffectual in terms of the
resulting random partition Π(t+ s) (see Figure 3.2). Thus the next jump of
Π after time t is determined in exactly the same way as in Theorem 3.2.2
and, therefore, Π is a BSC on [n].

{1}

{2} {3}

{4} {5} {6}

{7}

Figure 3.2: An example of a recursive tree on [7] with marked edges at time t.
The dashed edges correspond to Et, the dotted edges correspond to Nt, and
the dash-dotted edge marks an ineffectual cutting-merge procedure scheduled
after time t. It is clear that the behavior of Π after time t is determined by
Nt in the same way as in Theorem 3.2.2
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3.2.2 The Last Jump of the BSC [1]

In this section we will study the behavior as n → ∞ of the distribution of Jn,
the size of the last jump of the BSC restricted to [n]. For this we will use the
representation of the BSC in terms of a random recursive tree T as described
in the previous section. However, this time it will be helpful to consider the
construction of T as a process in continuous time, which will allow us to make
a connection with Yule processes. The Yule process is a birth process starting
with one individual at time 0, and letting the individuals present at time t
duplicate with intensity 1 independently from the rest of the population and
from the previous generations, thus increasing the total population size by
1. Formally, a Yule process is a continuous time Markov chain on N starting
at 1, and with transition rates α(n, n+1) = n and α(n, k) = 0 for k 6= n+1.
In order to construct a random recursive tree as a continuous-time process
start with the root labeled {1} at time 0, and think of the nodes of T as
arriving sequentially, where node n + 1 arrives and attaches to the existing
n nodes with intensity 1 and in an independent manner. In particular we
see that the total size of the tree is a Yule process and, moreover, the size of
the growing subtree rooted at any given node is also a Yule process. Also,
the number of children of {1} is a Poisson process with rate 1. As explained
in the previous section, we associate an independent standard exponential
random variable to each of the edges of the arriving nodes. Thus, the arriving
times of the children of {1} along with their associated exponential variables
behave as the atoms of a Poisson random measure on R

+×R
+ with intensity

dt ⊗ e−xdx, where the first coordinate represents the arrival times of the
children and the second coordinate represents the value of their associated
exponential variable. Now, we may stop the construction of T at time t and
obtain a recursive tree Tt on {1, · · · ,m} where m is a random variable; to
such tree corresponds a path of the BSC on [m] as described in the previous
section. The time of the last jump of the BSC thus constructed is given by
the maximum of all the exponential variables associated to the children of
{1} that are present at time t, denote this maximum by Et. Now let Ct be
the child of {1} associated to Et and let T 0

Ct
be the subtree of Tt rooted at

Ct. For s > 0 define T s
Ct

to be the tree resulting from performing all the
cutting-merge procedures on T 0

Ct
scheduled before time s according to the

exponential variables of the edges of T 0
Ct
. Then the size of the last jump (i.e.

the number of nodes involved in the last jump) of the BSC constructed in
this way, say Jt, is equal to 1 plus the number of nodes in TEt

Ct
.
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{1}

Ct

Et

Ct

Et

T
0

Ct
T

Et

Ct

Figure 3.3: A schematic representation of the idea discussed in the main text.
On the left we show the tree Tt with the node Ct, its associated exponential
variable Et, and its subtree T 0

Ct
marked. On the right we show the same tree

after performing all the cutting-merge procedures scheduled before time Et,
i.e. the tree that describes the last jump.

We want to determine the distribution of Jt. As mentioned before, the
size of T 0

Ct
grows as a Yule process, so if 0 ≤ At ≤ t is the arrival time of Ct to

{1}, then the size of T 0
Ct

has distribution Y (t−At), where Y is a Yule process.
Similarly, for any s ∈ R

+, the size of T s
Ct

is distributed as Y (e−s(t − At)).

Indeed, more generally we have that if Ŷ is the process constructed as a Yule
process but with the addition that its increments are kept with probability

p and discarded with probability 1− p, p ∈ (0, 1), then Ŷ (t)
d
= Y (pt) for all

t > 0. In our case the size of TEt

Ct
grows as a Yule process whose increments

are kept with probability e−Et ; therefore, Jt, which equals 1 plus the size of
TEt

Ct
, is distributed as 1 + Y (e−Et(t − At)). Now, using the Poisson random

measure described above for the arrival times of the children of {1} and the
values of their associated exponential variables, we see that At is uniformly
distributed on [0, t], and that the distribution function of Et is given by:

(3.3) P(Et ≤ u) = e−te−u
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which is the probability that the Poisson random measure on [0, t]× (u,∞)
is equal to zero. Thus, if U1 and U2 are two independent uniform random
variables on [0, 1], then

At
d
= tU1

and

e−Et
d
=

− log(U2)

t
d
=

E

t
,

where E is a standard exponential random variable. Therefore Jt has distri-
bution:

Jt
d
= 1 + Y (e−Et(t− At))

d
= 1 + Y

(
E

t
tU1

)
= 1 + Y (EU1)

where E and U1 are independent.

Theorem 3.2.3. Let Jn be the size of the last jump of the BSC with n initial
blocks. Then, as n → ∞ we have:

Jn d
→ 1 + Y (EU)

where Y , E and U are independent; Y is a Yule process, E is a standard
exponential variable, and U is a uniform variable.

Proof. In the above discussion we derived the distribution of Jt, the last
jump of a BSC constructed from random a recursive tree, and whose number
of initial blocks was random and distributed as Y (t) with Y a Yule process.
However, we want to study the distribution of the size of the last jump of
the BSC starting with precisely n ∈ N blocks, and determine the limiting
distribution as n → ∞. In order to tackle this consider the stopping time
τn := inf{t ∈ R

+ : Tt has n nodes}, where Tt is as above. We first study the
behavior of τn as n → ∞ in order to establish deterministic lower and upper
bounds for τn, say t−n and t+n , with high probability as n → ∞. This in turn
will allow us to approximate Jτn by Jt−n and Jt+n . In pursue of this, note that
the distribution of τn is given by:

τn
d
= E1 +

E2

2
+ · · ·+

En

n

where {Ej}j∈N are independent standard exponential variables. Thus,

E(τn) = 1 +
1

2
+ · · ·+

1

n− 1
= log n+O(1),
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and

V (τn) = 1 +
1

22
+ · · ·+

1

(n− 1)2
.

Therefore we have as n → ∞:

E((τn − log n)2)

log n
=

V (τn) + E((τn − E(τn))O(1)) +O(1)

log n
→ 0,

and by Markov’s inequality:

P(|τn − log n| > (log(n))1/2) → 0 as n → ∞;

that is, if t−n := log n− (log n)1/2 and t+n := log n+ (log n)1/2, then:

(3.4) P(τn ∈ (t−n , t
+
n )) → 1 as n → ∞.

Now, for Ct as above, we prove that

P(Ct−n
= Cτn = Ct+n

) → 1 as n → ∞.

For this, note that

P(Ct−n
= Cτn = Ct+n

) ≥ P(τn ∈ (t−n , t
+
n ), Ct−n

= Ct+n
)

so, by (3.4), we need only see that

P(Ct−n
= Ct+n

) → 1 as n → ∞.

The latter follows from the fact that Ct−n
6= Ct+n

if and only if At+n
∈ (t−n , t

+
n ),

where we use the notation At for the arrival time of Ct to {1} as before.
Since At+n

is uniformily distributed on [0, t+n ], we have:

P(At+n
∈ (t−n , t

+
n )) =

t+n − t−n
t+n

→ 0 as n → ∞.

Observe that on the set Gn := {τn ∈ (t−n , t
+
n ), Ct−n

= Ct+n
} we also have that

Et−n
= Eτn = Et+n

almost surely, and, therefore, Jt−n ≤ Jτn ≤ Jt+n . Thus, using
the distributions of Jt−n and Jt+n derived above, we have:

lim
n→∞

P(Jτn ≤ m) = lim
n→∞

P(Jτn ≤ m,Gn)

≥ lim
n→∞

P(Jt+n ≤ m,Gn)

= lim
n→∞

P(Jt+n ≤ m)

= P(1 + Y (EU) ≤ m),
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and, similarly:

lim
n→∞

P(Jτn ≤ m) ≤ lim
n→∞

P(Jt−n ≤ m)

= P(1 + Y (EU) ≤ m);

that is:
Jτn

d
→ 1 + Y (EU) as n → ∞.

Finally, since Jτn
d
= Jn we see that Jn d

→ 1 + Y (EU) as n → ∞.

From the derived distribution of Et and from equation (3.4) we can also
determine the limit distribution of the time to absorption of the BSC on [n]
as n → ∞; that is, the limit distribution of Eτn as n → ∞.

Theorem 3.2.4. We have, as n → ∞:

Eτn − log log n
d
→ − logE,

where E is a standard exponential random variable.

Proof. From the definition of Et, i.e. the maximum of the exponential vari-
ables associated to the children of {1} present at time t, we see that if s < t
then Es ≤ Et. Therefore, if t

−
n , t

+
n , and τn are as before, then from equation

(3.4) we see that:

P(Et−n
≤ Eτn ≤ Et+n

) → 1 as n → ∞

Now, from equation (3.3) we see that

lim
n→∞

P(Et−n
− log log n ≤ x) = lim

n→∞
exp

(
−

t−n
log n

e−x
)

= exp
(
− e−x

)
;

that is,

Et−n
− log log n

d
→ − log

(
− logU

) d
= − logE

where U is a uniform random variable and E is a standard exponential vari-
able. Following the same lines for t+n we also obtain

Et+n
− log log n

d
→ − logE.
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Therefore:

lim
n→∞

P(Eτn − log log n ≤ x) = lim
n→∞

P(Eτn − log log n ≤ x,Et−n
≤ Eτn)

≥ lim
n→∞

P(Et−n
− log log n ≤ x)

= P(− logE ≤ x);

and, similarly:

lim
n→∞

P(Eτn − log log n ≤ x) ≤ lim
n→∞

P(Et+n
− log log n ≤ x)

= P(− logE ≤ x).

3.3 Random Walks with Barrier and the BSC

Random walks with barrier have been extensively used in the study of the
BSC, in particular in the study of the Markov process given by the evolution
of the number of its blocks. In short, in [7] Iksanov and Möhle prove that for
large n this process behaves as a random walk with barrier. In this section we
present the techniques they used to prove this result and its application to the
study of the total number of jumps of the BSC. This result and the techniques
developed in [7] have also been used in the study of the total branch length
of the BSC [4], and the length of external and internal branches [9].

3.3.1 Number of Jumps of the BSC [7]

Let Xn be the number of coalescence events that occur before arriving at
the state {1, · · · , n} in a simple coalescent with values in Pn; that is, the
number of coalescence events until all blocks have coalesced. The aim of this
section is to derive a weak law for Xn as n → ∞ in the particular case of the
BS coalescent. We will prove that

(log n)2

n
Xn − log n− log log n

d
→ Z as n → ∞

where Z is a stable random variable with index 1 and characteristic function
t 7→ exp

(
− π

2
|t|+ it log|t|

)
, t ∈ R .
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In pursue of this, we will consider the coupled process (Rn
k , Sk)

∞
k=0, which

depends on n ∈ N, where S := (Sk)
∞
k=0 is a random walk with increments in

N, and Rn := (Rn
k)

∞
k=0 is the same random walk but with barrier n. That

is, if (ξk)
∞
k=1 is a collection of independent identically distributed random

variables with values in N, consider the coupled process:

(Rn
0 , S0) := (0, 0),

(Rn
k , Sk) := (Rn

k−1, Sk−1) +

{
(ξk, ξk) if Rk−1 + ξk < n

(0, ξk) otherwise.

Also consider the measurable function on the canonical space M : NN → N

given by X 7→ #{k ∈ N : Xk 6= Xk−1}, and define the random variables
Mn := M(Rn), i.e. the number of jumps of Rn. We will show that under

a suitable choice for the distribution of ξ we have Mn
d
= Xn. First, observe

that Mn satisfies the distributional recursion:

(3.5) P(Mn = j) =
n−1∑

ℓ=1

P(ξ = ℓ)

1− P(ξ ≥ n)
P(Mn−ℓ = j − 1).

Indeed, since Rn is a Markov process, and τ := inf{k ∈ N : Rn
0 6= Rn

k} (the
time of first jump) is a stopping time, by the strong Markov property we
have:

P(Mn = j) = P(Rn
τ < n,M(θτ ◦R

n) = j − 1)

=
n−1∑

ℓ=1

P(Rn
τ = ℓ)P(M(θτ ◦R

n) = j − 1 | Rn
τ = ℓ).

where θ is the usual shift operator on stochastic processes. Then, since

P(M(θτ ◦R
n) = j − 1 |Rn

τ = ℓ) = P(M(Rn−ℓ) = j − 1)

= P(Mn−ℓ = j − 1)

and

P(Rτ = ℓ) =
P(ξ = ℓ)

1− P(ξ ≥ n)
,

we obtain (3.5).
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Lemma 3.3.1. If the distribution of the random variable ξ above is given by:

P(ξ = ℓ) =
1

ℓ(ℓ+ 1)
,

then Xn
d
= Mn.

Proof. To prove this we will see that both Xn and Mn satisfy the same distri-
butional recurrence. By the recursion derived above for Mn, and substituting
both P(ξ = ℓ) and P(ξ ≥ n), we have:

P(Mn = j) =
n−1∑

ℓ=1

1

ℓ(ℓ+ 1)(1− 1/n)
P(Mn−ℓ = j − 1)

=
n−1∑

ℓ=1

n

ℓ(ℓ+ 1)(n− 1)
P(Mn−ℓ = j − 1).

In order to derive the same recursion for Xn we construct the Markov chain
(Yk)

∞
k=1 given by the difference in the number of blocks after each jump of the

BS coalescent starting with n blocks. Using the coagulation rates of the BSC,
λn,ℓ+1 =

n
ℓ(ℓ+1)

and αn = n−1, we see that P(Y1 = ℓ) =
λn,ℓ+1∑n
j=2 λn,j

= n
ℓ(ℓ+1)(n−1)

and, by the Markov property at time 1, we have:

P(Xn = j) =
n−1∑

ℓ=1

P(Y1 = ℓ)P(Xn−ℓ = j − 1)

=
n−1∑

ℓ=1

n

ℓ(ℓ+ 1)(n− 1)
P(Xn−ℓ = j − 1).

Hence Mn and Xn satisfy the same distributional recurrence.

Now, in order to derive the distributional limit of Mn as n → ∞ we will
first need to study the distribution of the stopping time Nn := inf{k ∈ N :
Sk ≥ n}. The following lemmas describe the limiting behavior of Nn and
SNn

as n → ∞; and the last theorem relates these two, along with Mn, in
order to derive the desired weak limit for Mn.

Lemma 3.3.2. For Nn defined above, we have:

(log n)2

n
Nn − log n− log log n

d
→ Z
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where Z is a stable random variable with index 1 and characteristic function
t 7→ exp

(
− π

2
|t|+ it log|t|

)
, t ∈ R.

Proof. By the theory of stable distributions [5] we have that:

Sn

n
− log n

d
→ Z as n → ∞,

where Z is a stable random variable with index 1 and characteristic function
t 7→ exp

(
− π

2
|t| − it log|t|

)
, t ∈ R. Also, if Fn is the distribution function of

Sn

n
−log n, and F is the distribution function of Z, then, since F is continuous,

Fn(x)
n→∞
−→ F (x) uniformly on x ∈ R. For this reason, if {xn}n∈N is a sequence

of real numbers that converges to x, then Fn(xn) converges to F (x) as n → ∞.
Now, note that for any pair of integers k and n we have:

P(Nk ≤ n) = P(Sn ≥ k) = P

(
Sn

n
− log n ≥

k

n
− log n

)
= 1−Fn

(
k

n
− log n

)
,

so if k and n are functions of each other, chosen in a way such that

(3.6)
k

n
− log n → x as n → ∞

(or, alternatively, as k → ∞), then, by the uniform convergence mentioned
above:

lim
k→∞

P(Nk ≤ n) = lim
n→∞

1− Fn

(
k

n
− log n

)
= 1− F (x),

On the other hand we have:

P(Nk ≤ n) = P

(
(log k)2

k
Nk− log k− log log k ≤

(log k)2

k
n− log k− log log k

)
,

so if we prove that (log k)2

k
n − log k − log log k converges to −x as k → ∞,

then, taking the limit in the above equation and equating it with the previous
computation of the same limit, we see that:

lim
k→∞

P

(
(log k)2

k
Nk − log k − log log k ≤ −x

)
= 1− F (x);

that is,
(log k)2

k
Nk − log k − log log k

d
→ −Z as k → ∞.
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Thus, it only remains to show that (log k)2

k
n−log k−log log k → −x as k → ∞.

Note that from (3.6), for sufficiently large n we have:

n(x− ǫ) + n log n ≤ k ≤ n(x+ ǫ) + n log n,

hence:

(3.7) lim
n→∞

k

n log n
= 1

and, therefore:

(3.8) lim
n→∞

log(k)− log(n)− log log n = lim
n→∞

log
k

n log n
= 0.

Since log log n
logn

→ 0, and using the above limit, we have:

lim
n→∞

log k

log n
− 1 = lim

n→∞

log(k)− log(n)− log log n

log n
= 0.

Thus limn→∞
log k
logn

= 1, and

(3.9) lim
n→∞

log log k − log log n = 0.

Now, from (3.6) and (3.8) we have:

k

n
− log k + log log n → x,

and by (3.9), we get:

(3.10) log k
n log k − k

n log k
− log log k = −

(
k

n
− log k + log log k

)
→ −x.

Now, since limn→∞
log k
logn

= 1, and using (3.7), we also have:

lim
n→∞

k

n log k
= lim

n→∞

k

n log k

log n

log n
= 1.

Thus, multiplying (3.10) by n log k
k

, we obtain:

log k
n log k − k

k
−

n log k

k
log log k → −x,
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and

(3.11) log k
n log k − k

k
−

(
n log k

k
− 1

)
log log k − log log k → −x.

Multiplying the above expression by log log k
log k

we see that

(3.12) log log k
n log k − k

k
−

(
n log k

k
− 1

)
(log log k)2

log k
−

(log log k)2

log k
→ 0,

but since
(log log k)2

log k
→ 0,

and
k

n log k
→ 1,

the two terms on the right converge to zero and, hence:

log log k
n log k − k

k
= log log k

(
n log k

k
− 1

)
→ 0.

Finally, substituting this in (3.11), we obtain:

log k
n log k − k

k
− log log k =

(log k)2

k
n− log k − log log k → −x,

which finishes the proof of the lemma.

Lemma 3.3.3. As n → ∞, (logn)2

n
(n− 1− SNn−1) converges in probability to

0.

Proof. To prove this lemma we use the Corollary to Theorem 6 (arithmetic
version) in [5] and see that

(3.13)
log(n− 1− SNn−1)

log(n− 1)

d
→ U as n → ∞,

where U is a standard uniform random variable. To connect notation in
our case we define Yn := n − SNn+1−1 and use m1(t) := log t instead of the

truncated mean m(t) :=
∫ t

0
P(ξ > x) dx as explained in Remark 1 of the

same theorem. We now use this result in order to prove that

(log n)2

n
(n− 1− SNn−1)

P
→ 0.
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Note that for any ǫ > 0:

P

(
(log n)2

n
(n− 1− SNn−1) > ǫ

)
= P

(
log(n− 1− SNn−1)

log(n− 1)
>

log
(
ǫ n
(logn)2

)

log(n− 1)

)

= P

(
log(n− 1− SNn−1)

log(n− 1)
>

log ǫ+ log n− 2 log log n

log(n− 1)

)
.

Since
log ǫ+ log n− 2 log log n

log(n− 1)
→ 1 as n → ∞,

for any 0 < δ < 1 and sufficiently large n, we have

δ <
log ǫ+ log n− 2 log log n

log(n− 1)
.

Thus, using the above estimate and (3.13), we see that

P

(
(log n)2

n
(n− 1− SNn−1) > ǫ

)
≤ P

(
log(n− 1− SNn−1)

log(n− 1)
> δ

)
→ 1− δ.

Finally, since δ was arbitrary we get:

P

(
(log n)2

n
(n− 1− SNn−1) > ǫ

)
→ 0.

Theorem 3.3.4. We have, as n tends to infinity:

(log n)2

n
(Mn −Nn)

P
→ 0,

and
(log n)2

n
Mn − log n− log log n

d
→ Z.

where Z is a stable random variable as in Lemma 3.3.2

Proof. Note that Rn
Nn−1 = SNn−1 and, therefore, Rn has at most Nn − 1 +

(n − 1) − SNn−1 increments, otherwise it would eventually be greater than
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n− 1 which is impossible by definition. Thus, we have 0 ≤ Mn ≤ Nn − 1 +
(n− 1)− SNn−1 and, since Nn − 1 ≤ Mn,

0 ≤
(log n)2

n
(Mn −Nn + 1) ≤

(log n)2

n
((n− 1)− SNn−1).

Since (log n)2

n
((n− 1)−SNn−1)

P
→ 0 as n → ∞, we conclude that (logn)2

n
(Mn −

Nn)
P
→ 0. Finally, since

(log n)2

n
Mn−log n−log log n =

(log n)2

n
Nn−log n−log log n+

(log n)2

n
(Mn−Nn),

by Lemma 3.3.2 and Slutsky’s theorem we get

(log n)2

n
Mn − log n− log log n

d
→ Z.



Chapter 4

Site Frequency Spectrum of the
BSC

4.1 Definition of the SFS

In this chapter we will first define the Site Frequency Spectrum (SFS) of
a coalescent process, then we will describe previous studies related to the
SFS of the BSC, and then we will present a new result: the derivation of the
expected value of the SFS for the BSC. Finally we will give a brief application
of the use of the SFS for model selection in the case of population evolution
studies.

The SFS of a coalescent process with n initial blocks, say Π := (Π(t), t ≥
0), is a collection of n − 1 random variables constructed as follows: at time
0 the blocks of Π(t) have zero marks, and at any time t the blocks of Π(t)
acquire a new mark at a constant rate θ. Then, for each integer 1 ≤ b ≤ n−1
we count the number of marks that fell on blocks of size b from time 0 until
the absorption time; we call these counts SFSn,b, and the total number of
marks (i.e. the sum of the latter) SFSn. On the other hand, SFSn,b can also
be interpreted, and even alternatively defined, in the following way: given a
path of Π we construct a genealogical tree in the natural way according to
the evolution of its blocks, and using the exponential jumping times in order
to determine the lengths of the branches, and throw points to the branches
of the resulting tree according to a Poisson process of rate θ; these points are
interpreted as neutral mutations that occur in the associated lineages and
thus are inherited to all the individuals in generation 0 that are below each

58
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mark. Each mutation is assumed to occur at a different place in the genome
thus creating a new segregating site. Finally, for each integer 1 ≤ b ≤ n− 1
we count how many mutations (segregating sites) are shared by a proportion
b/n of individuals in generation 0 (see Figure 4.1).

Figure 4.1: Schematic representation of a Poisson process on a genealogical
tree. In this example we have: SFS5,1 = 5, SFS5,2 = 4, SFS5,3 = 2, and
SFS5,4 = 0.

Let n be the number of initial blocks of a coalescent process Π. Consider
the corresponding genealogical tree and for 1 ≤ b ≤ n− 1 define Ln,b as the
total length of the branches associated to blocks of size b; note that, given
Ln,b, SFSn,b is Poisson distributed with parameter θLn,b. Similarly, if Ln,T is
the total length of the tree then, given Ln,T , the total number of mutations
is also Poisson distributed with parameter θLn,T . In both cases we have:

E[SFSn,b] = E[E[SFSn,b|Ln,b]] = θE[Ln,b].

In the case of the BSC, an asymptotic limit for the number of mutations
occurring in both internal and external branches has been derived in [9].
Note that the number of mutations occurring in external branches is the
same as SFSn,1 since, by definition, external branches are the branches of
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the tree associated to blocks of size 1; similarly, the number of mutations
occurring in internal branches is just SFSn − SFSn,1. In particular they
show that as n → ∞:

(log n)2

n
SFSn,1 → θ

and

(log n)2

n

(
SFSn − SFSn,1

)
− θ log n− θ log log n

d
→ θ(Z − 1)

where Z is the stable random variable of index 1 that appears in Lemma
3.3.2. The method they use relies on representing the total internal branch
length

∑n−1
b=2 Ln,b as:

n−1∑

b=2

Ln,b
d
=

Xn−1∑

k=1

C
(k)
n,1

Ek

C
(k)
n − 1

where Xn is as in Section 3.3.1, C
(k)
n and C

(k)
n,1 are the total number of blocks

and the number of blocks of size 1, after k coalescence events; and {Ei}
Xn−1
i=1

is a collection of independent standard exponential random variables. Then

they prove that (logn)2

n

∑n−1
b=2 Ln,b

P
→ 1 as n → ∞ by using the coupling

method introduced in [7] (and also described in Section 3.3.1) in order to
study the evolution of the number of blocks of the BSC; and use this result
in order to prove the limit for SFSn,1. To prove the second limit they combine
the limit for SFSn,1 and the asymptotic result for SFSn derived in [4], mainly
that:

(log n)2

n
SFSn − θ log n− θ log log n

d
→ θZ

as n → ∞.
On the other hand, in [1] the Allelic Frequency Spectrum (AFS) is studied

for the BSC, the AFS is defined similarly to the SFS but with the difference
that instead of considering all ancestral mutations for each individual in gen-
eration 0 only the most recent mutation is considered. Again the number of
mutations shared by a proportion b/n (1 ≤ b ≤ n− 1) of individuals in gen-
eration 0 is computed and denoted by AFSn,b. For example in Figure 4.1 by
ignoring ancestral mutations we see thatAFS5,1 = 3, AFS5,2 = 1, AFS5,3 = 1
and AFS5,4 = 0. In [1] it is proved that, as n → ∞:

log n

n
AFSn,1

P
→ θ
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and
(log n)2

n
AFSn,b

P
→

θ

b(b− 1)
.

Note that the SFS is deeply related to the branch lengths (jumping times)
and the sizes and number of blocks of each coalescence event in a coalescent
process; it can be regarded as a summary of these attributes that can be read
directly from the population at time zero, which in applications is typically
the only information available. Although the correspondence between the
SFS and exchangeable coalescents may not be one to one, the SFS is often
used in biology as a model selection tool for the study of the evolutionary
history of a population when the only information available is a present
day genotype sample of evolutionarily neutral positions of the genome. In
particular, since the experimental tools used to measure the SFS of a given
population produce reliable results for large frequencies of individuals but
are strongly biased by noise for low frequencies, the SFS for large frequencies
is of special importance in applications.

4.2 Derivation of E[SFSn,b] for the BSC

In this section we will derive two new results: an explicit expression for
E[SFSn,b] when ⌊n/2⌋ < b ≤ n− 1, and an upper bound for E[SFSn,b] when
2 ≤ b ≤ ⌊n/2⌋. To begin, define Cn,b(t) as the number of blocks of Π(t) with
exactly b elements, and note that:

Ln,b =

⌊n/b⌋∑

k=1

kλ({t ∈ R
+ : Cn,b(t) = k})

=

∫ ∞

0

Cn,b(t)dt,

where λ is the Lebesgue measure. Using Tonelli’s theorem for interchanging
the order of integration we have:

E[SFSn,b] = E[θLn,b]

= θE

[∫ ∞

0

Cn,b(t)dt

]

= θ

∫ ∞

0

E[Cn,b(t)]dt.
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So if we knew the distribution of the number blocks and block sizes at time
t then we should be able to compute E[SFSn,b]. Also, from the expression
above we may assume θ = 1 since for other values one needs only multiply
the derived expressions by θ. In the particular case of the BSC we will use
the random tree construction described in Section 3.2.1 in order to compute
E[Cn,b(t)]. Although the same techniques can be used to compute E[Cn,b(t)]
for any combination of n and b such that 2 ≤ b ≤ n− 1, in this work we will
only derive the exact expression in the case where ⌊n/2⌋ < b ≤ n− 1 (since
this simplifies the computations considerably), and obtain an upper bound
for E[Cn,b(t)] when 2 ≤ b ≤ ⌊n/2⌋.

Theorem 4.2.1. For ⌊n/2⌋ < b ≤ n− 1 we have:

E[SFSn,b] =
n

(n− b)b

∫ 1

0

[
b−1∏

i=1

1−
p

i

][
n−1−b∏

i=1

p

i
+ 1

]
dp.

Proof. First, note that:

E[Cn,b(t)] =

⌊n/b⌋∑

k=1

P(Cn,b(t) ≥ k),

and since n/b < 2 we have:

E[Cn,b(t)] = P(Cn,b(t) = 1).

Now, using the exchangeability of Π(t), and the fact that Π(t) cannot have
more than one block of size b, we obtain:

P(Cn,b(t) = 1) =

(
n

b

)
P

(
Π
∣∣
b
(t) = {1, 2, · · · , b},

n⋂

i=b+1

b⋂

j=1

i ≁ j

)

=

(
n

b

)
P(Π

∣∣
b
(t) = {1, 2, · · · , b})P

( n⋂

i=b+1

b⋂

j=1

i ≁ j

∣∣∣∣Π
∣∣
b
(t) = {1, 2, · · · , b}

)
.

We now use the random tree construction for computing the latter probabil-
ities. To that end we consider the arriving nodes with labels {2}, · · · , {n}
and their associated exponential variables E2, · · · , En, and note that:

P(Π
∣∣
b
(t) = {1, 2, · · · , b}) =P(2 ∼ 1)P(3 ∼ 1 | 2 ∼ 1) · · ·P(b ∼ 1 | 1 ∼ 2 ∼ · · · ∼ b− 1)

=P(E2 ≤ t)
b∏

i=3

(1− P(Ei > t, i attaches to 1))
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Also, using the same reasoning we find:

P

( n⋂

i=b+1

b⋂

j=1

i ≁ j

∣∣∣∣Π
∣∣
b
(t) = {1, 2, · · · , b}

)
=P

( b⋂

j=1

b+ 1 ≁ j

∣∣∣∣Π
∣∣
b
(t) = {1, 2, · · · , b}

)
×

n∏

i=b+2

P

( b⋂

j=1

i ≁ j

∣∣∣∣Π
∣∣
b
(t) = {1, 2, · · · , b},

i−1⋂

k=b+1

b⋂

j=1

k ≁ j

)

=P(Eb+1 > t, b+1 attaches to 1)×
n∏

i=b+2

P

({
Ei > t, i attaches to 1

}⋃ i−1⋃

k=b+1

i attaches to k

)

=

(
e−t

b

) n∏

i=b+2

(
e−t

i− 1
+

i− 1− b

i− 1

)

=

(
e−t

b

) n−1−b∏

i=1

(
e−t

b+ i
+

i

b+ i

)

=
e−t

b

(n− 1− b)!∏n−1−b
i=1 b+ i

n−1−b∏

i=1

(
e−t

i
+ 1

)
.

where the term
∏n−1−b

i=1

(
e−t

i
+ 1

)
is set to 1 if n− 1− b ≤ 0. Thus, joining

the last two expressions we get:

P(Cn,b(t) = 1) =

(
n

b

)[ b−1∏

i=1

(
1−

e−t

i

)][
(n− 1− b)!∏n−1−b

i=1 b+ i

e−t

b

n−1−b∏

i=1

(
e−t

i
+ 1

)]

=
n

(n− b)b
e−t

[
b−1∏

i=1

1−
e−t

i

][
n−1−b∏

i=1

e−t

i
+ 1

]
.

Therefore, making the change of variable dp = e−tdt, we obtain:

E[SFSn,b] =

∫ ∞

0

n

(n− b)b
e−t

[
b−1∏

i=1

1−
e−t

i

][
n−1−b∏

i=1

e−t

i
+ 1

]
dt

=
n

(n− b)b

∫ 1

0

[
b−1∏

i=1

1−
p

i

][
n−1−b∏

i=1

p

i
+ 1

]
dp.
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Using the same rationale we can obtain an upper bound for P(Cn,b(t) ≥ k)
and any n, b, k with kb ≤ n, which can be used to get an upper bound for
E[SFSn,b].

Theorem 4.2.2. For any n, b with 2 ≤ b ≤ n−1, and k with kb ≤ n, we have:

∫ ∞

0

P(Cn,b(t) ≥ k) dt ≤





1
(n−kb∨1)bk−1

∫
1

0
pk−2

[
∏b−1

i=1 1−
p
i

]k
dp if n− kb = 0.

n
(n−kb∨1)bk

∫
1

0
pk−1

[
∏b−1

i=1 1−
p
i

]k
dp if n− kb = 1.

n
(n−kb∨1)bk

∫
1

0
pk−1

[
∏b−1

i=1 1−
p
i

]k[∏n−1−kb
i=1 1 + pk

i

]
dp if n− kb > 1.

Proof. Note that for any n, b, k with kb ≤ n we have:

P(Cn,b(t) ≥ k) ≤
n!

k!(b!)k(n− kb)!
P

(
Π
∣∣
kb
(t) = {1, 2, · · · , b}, · · · , {(k − 1)b, · · · , kb},

n⋂

i=kb+1

kb⋂

j=1

i ≁ j

)

=
n!

k!(b!)k(n− kb)!
P(Π

∣∣
kb
(t) = {1, 2, · · · , b}, · · · , {(k − 1)b+ 1, · · · , kb})×

P

( n⋂

i=b+1

b⋂

j=1

i ≁ j

∣∣∣∣Π
∣∣
kb
(t) = {1, 2, · · · , b}, · · · , {(k − 1)b+ 1, · · · , kb}

)
.

where n!
k!(b!)k(n−kb)!

is just the number of ways in which we can construct k
blocks of size b when there are n elements. Observe that the latter is just an
overestimate since multiplying the probability

P

(
Π
∣∣
kb
(t) = {1, 2, · · · , b}, · · · , {(k − 1)b, · · · , kb},

n⋂

i=kb+1

kb⋂

j=1

i ≁ j

)

by the number of combinations considered in the factor n!
k!(b!)k(n−kb)!

does not
account for the events where, apart from the k initial blocks of size b con-
structed with the kb initial nodes, the remaining nodes {kb+1, · · · , n} form
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one or more additional blocks of size b; in these cases, some of the permuta-
tions considered in n!

k!(b!)k(n−kb)!
do not actually produce a different partition,

thus causing these events to be accounted for multiple times. Continuing
with the computation and using the random recursive tree construction as
before, we get:

P(Cn,b(t) ≥ k) ≤





1
(n−kb∨1)bk−1 e

−t(k−1)

[
∏b−1

i=1 1−
e−t

i

]k
if n− kb = 0.

n
(n−kb∨1)bk

e−tk

[
∏b−1

i=1 1−
e−t

i

]k
if n− kb = 1.

n
(n−kb∨1)bk

e−tk

[
∏b−1

i=1 1−
e−t

i

]k[∏n−1−kb
i=1 1 + e−tk

i

]
if n− kb > 1.

Thus, using the change of variable dp = e−tdt to integrate the latter expres-
sions with respect to t from 0 to ∞ we get the desired result.

Finally, since

E[SFSn,b] =

∫ ∞

0

E[Cn,b(t)] dt

=

∫ ∞

0

⌊n/b⌋∑

k=1

P(Cn,b(t) ≥ k) dt,

we can use the upper bounds for
∫∞

0
P(Cn,b(t) ≥ k) dt derived above to obtain

an upper bound for E[SFSn,b] by summing them over all the values of k such
that 1 ≤ k ≤ ⌊n/b⌋. The expressions thus obtained are very easily computed
using a computer program that integrates polynomials. In Figure 4.2 we
show how these theoretic expressions compare to actual simulations of the
SFS for the BSC. Note that for frequencies greater than 1/2 the theoretic
expression for SFSn,b does match the simulations; on the other hand, for
frequencies equal or below 1/2 the theoretic upper bound does lie above the
simulated values; moreover, for frequencies approaching 1/2 from the left we
see that the bound becomes tighter.
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Figure 4.2: The expressions for the SFS with parameter θ = 10 of the BSC
derived above are compared against simulated data. For proportions less
than or equal to ⌊n/2⌋ the obtained upper bound is plotted, for proportions
greater than ⌊n/2⌋ the exact theoretic SFS is shown. The simulations are on
initial populations with 100 individuals.

4.3 Population Evolution Models and the BSC

In this section we will describe the population evolution model introduced
by Neher and Hallatschek [11]. This model has the property that the re-
productive success of an individual is determined by a fitness function; that
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is, it considers the effect of natural selection in the evolution of the popula-
tion. The simplest models of population evolution consider a population of
individuals evolving in discrete time, where each time point corresponds to
a non-overlapping generation. The model then aims to describe the way in
which generation g+ 1 is related to generation g by determining which indi-
viduals of generation g + 1 are descendants of each individual in generation
g (including the possibility that an individual in generation g may not have
any descendancy) through a probabilistic process. The way in which this
is typically done is by giving a distribution on the number of descendants
for each individual in generation g, and choosing them uniformly at random
from generation g + 1. For example, one of the better studied models of
population evolution is Cannings model; in this model the population size
N remains fixed and the offspring sizes of every individual in any particular
generation is given by an indepent copy of an exchangeable random vector
(ξ1, · · · , ξN) with the property that

∑N
i=1 ξi = N . Given a population evo-

lution model we may construct a coalescent process with values in Pn by
choosing n individuals from the last generation and tracking the associated
genealogy backwards in time. As an example, in [13] and [14] respectively,
Sagitov and Schweinsberg study two different Cannings models of population
evolution where all the individuals have the same fitness and reproductive
success (i.e. there is no natural selection); they give conditions under which
the associated coalescent processes, after an appropriate time normalization,
converge to the exchangeable coalescents described so far, in particular to
the BSC.

We now describe Neher-Hallatschek’s model and some of its properties.
In this model we consider a population of Ng individuals at generation g,
each with an associated fitness that determines its reproductive success. The
fitness of individual j in generation g, j ∈ [Ng], is represented by a real
number sj that determines the distribution of its offspring size, which is set
to be Poisson distributed with parameter:

λ := exp{sj − S + 1−Ng/N},

where S := 1
Ng

∑Ng

i=1 si is the mean population fitness, and N is the objective

population size (typically N = N0). The term 1 − Ng/N in the expresion
above indeed ensures that Ng stays roughly at N as the population evolves
over time. Once generation g reproduces, the fitness of each individual in
generation g+1 is inherited from that of its parent and updated in a two step
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process: first the individual is mutated according to a fixed probability µ,
and then the difference in fitness (δ) caused by the mutation is sampled from
a fixed distribution D with values in R. That is, the fitness of individual j
in generation g + 1 is set to:

sj := sp +mδ,

where m ∼ Bernoulli(µ), δ ∼ D, and sp is the fitness of its parent. Finally we
consider the associated coalescent process Πg

n,N given by selecting n individ-
uals from generation g and tracking their genealogy backwards in time. Here
we make emphasis on the starting generation g used for the construction of
the coalescent process since, a priori, the distribution of family sizes and of
parental relations is not constant across generations, i.e. the evolution of the
population is not exchangeable over time.

This model is much more complicated than the well studied Cannings
models of Sagitov and Schweinsberg, firstly because in contrast to the lat-
ter the population size at generation g is a random variable, and secondly,
and most importantly, because the offspring distribution of the individuals
in generation g + 1 is not independent from that of their parents, since it
depends on the inherited fitness; that is, there is a strong dependency of the
reproductive success of individuals accross generations.

Here we will use simulations to observe some properties of this model, for
example that the fitness distribution of the poupulation evolves as a traveling
wave of Gaussian shape, and that the SFS associated to this model can be
roughly approximated by that of the BSC.

As a case study we simulated populations with mutation probability
µ = 1 and Normally distributed mutational effects; in particular we sim-
ulated two populations with δ ∼ Normal(mean = 0, sd = 0.1) and δ ∼
Normal(mean = 0, sd = 0.1) respectively, and an objective/intial popula-
tion size N = N0 = 105. In Figure 4.3 we show that the centered fitness
distribution converges to a Gaussian distribution as the population evolves
over time, and that the fitness distribution evolves as a traveling wave of
Gaussian shape. Note that even though in both cases the centered fit-
ness distribution converges to a Normal distribution with zero mean and
standard deviation s = 0.39 and s = 0.08 respectively, and, moreover,
the offspring size distribution also converges to the distribution given by
X | f ∼ Poisson(f), f ∼ Normal(0, s), the evolution of the population
cannot be approximated by that of a Schweinsberg population with these
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offspring size distributions, the reason is that in the latter case the repro-
duction of any generation is independent from the rest, while in the Neher-
Hallatschek model this requirement is not met. Indeed, by Theorem 4 in
[14] the coalescent process associated to the Schweinsberg population with
offspring distribution X | f ∼ Poi(f), f ∼ N(0, s) is Kingman’s coalescent,
since, as shown below, the distribution of offspring size X has a finite second
moment:

E[X2] = E[E[X2 | f ]]

= E[e2f + ef ]

= es
2

+ es
2/4

< ∞;

whereas, as shown in Figure 4.4, the SFS of the Neher-Hallatschek popula-
tion is much more similar, and can indeed be very well approximated by that
of the BSC and not by that of Kingman’s coalescent. The fact that the asso-
ciated coalescent has jumps where multiple blocks coalesce can be intuitively
explained by the following rationale: since the distribution of offspring sizes
depends heavily on the fitness of each individual, and since the fitness is in-
herited, the population evolves through a series of selective sweeps where only
the descendants of individuals with high fitness in early generations survive,
thus after some generations have passed all the individuals in the population,
or at least the grand majority, will be descendants of the few high fitness in-
dividuals in early generations. This has the effect that family sizes tend to
be much larger than those of the populations associated to Kingman’s coa-
lescent and gives rise to events where multiple blocks coalesce. In Figure 4.4
we show the simulated SFS with rate θ = 1 of the Neher-Hallatschek popula-
tions, where we have scaled the time of the associated coalescents according
to:

1. Making the expected absorption time equal to that of BSC.

2. Making the expected tree length equal to that of the BSC.

3. Finding the factor that when multiplied to the SFS of the Neher-
Hallatschek model, the sum of squared distances of the function log(SFS)
between the BSC and the Neher-Hallatschek populations is minimized.

4. Considering each generation as a unit of time (i.e. no time normaliza-
tion).
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Figure 4.3: On the left we show the evolution of the fitness distribution for
a single population with parameters µ = 1, δ ∼ Normal(mean = 0, sd =
0.1) and δ ∼ Normal(mean = 0, sd = 0.01) respectively, and N = N0 =
105. Only ten generations separated by 100 generations and starting from
generation 5×105 are shown. On the right, the centered fitness distribution is
shown for the same set of generations, algonside a Normal distribution, shown
in red, with zero mean and standard deviation set to the mean standard
deviation of the fitness distributions from generation 5 × 105 to generation
106, that is, set to 0.39 and 0.08 respectively.
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Exploring these four normalizations is justified since the Neher-Hallatschek
model has not been studied thoroughly and the appropriate time normaliza-
tion has not been described yet. The resulting SFS are compared against
the SFS of the Bolthausen-Sznitman and Kingman’s coalescents. Accord-
ing to these graphs the SFS of the Neher-Hallatschek model can be roughly
approximated by that of the BSC under a suitable time normalization.

However, the associated coalescents may not converge as processes as
suggested by the difference in the distributions of the total number of jumps
and T2, the number of jumps until the coalescence of two randomly chosen
individuals (i.e. the number of jumps until the first common ancestor), as
shown in Figure 4.5. Finally, it is worth mentioning that apart from Cannings
model of population evolution [13], which is a generalization of the Wright-
Fisher model, and from the models based on supercritical Galton-Watson
processes [14], the BSC has also been recently shown, in a rigorous way,
to arise in other population models that contemplate the effect of natural
selection which are similar in spirit to the Neher-Hallatschek model described
in the present text [15].
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Figure 4.4: For both set of parameters (s = 0.1 and s = 0.01) 4000 popula-
tions where simulated and the mean SFS was obtained for each proportion of
individuals. Then the SFS of the Neher populations were modified according
to each of the time normalizations described in the main text and compared
against that of the Bolthausen-Sznitman and Kingman’s coalescents. The
time normalization computed using the least squares method gives a very
good approximation of the SFS for the BSC.
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Figure 4.5: On the top, the empirical distribution of the total number of
jumps is shown for the BSC and the two Neher-Hallatschek populations
(s = 0.1 and s = 0.01). Below, the empirical distribution of the number
of jumps needed to reach the first common ancestor of two randomly chosen
individuals. The distributions for the BSC coalescent were estimated from
16000 simulations, while 4000 simulations where used to estimate those of
the Neher-Hallatschek populations.
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