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INSTITUTO DE CIENCIAS FÍSICAS
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licó el artı́culo. Arik ha resultado para mi un verdadero ejemplo de profesionalismo, disposición y
buena voluntad en cada aspecto en que convivimos. Continuando, mi gran agradecimiento para
Francois A. Leyvraz, una persona impresionante con quien espero tener muchas más charlas, dis-
cusiones o proyectos. Somos afortunados todos los del instituto de tener a alguien ası́ de fuerte y
que sea tan cercano y accesible para dedicarnos tiempo de manera holgada. Particularmente gra-
cias Francios por la paciencia y el apoyo en todo momento, que me ayudó a resolver los aspectos
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portivo generado con Nápoles, C. Fı́sicas, Necaxa, UNAM campus Morelos, Fı́sica, Barbas, Mam-
bas, Zombies, Radicales, Panteras, etc. Gracias a Braulio, Adri, Yoab, Jaz y Remi por ser eslabones
fuertes para vivir cotidianamente esto. También todo lo hecho y generado alrededor de la música,
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Descripción general de la contribución del trabajo

En este trabajo es presentado el proyecto de investigación desarrollado en colaboración con el
Dr. Arik Yochelis de la Universidad Ben-Gurion de Israel, cuyos resultados fueron publicados en
abril del presente año en la revista Chaos (http://aip.scitation.org/doi/10.1063/1.4981394).

El trabajo muestra un mecanismo genérico para la formación de estados localizados en el es-
pacio, inmersos en un entorno oscilatorio en el tiempo. En el marco de un sistema no lineal oscila-
torio forzado con acomplamiento de frequencia 2:1. La localización de estos estados es del modo
Turing, en un dominio espacial bidimensional y tiene una forma de peine. Puede verse tanto en el
la region intermedia de un frente de oscilaciones de Hopf, divididas por un desplazamiento de π

en la phase, o también puede verse en el centro de espirales de Hopf. Especı́ficamente, los estados
localizados aparecen en un rango de parámetros más amplio en donde no se sostiene la dinámica
flip-flop que es muy conocida que ocurre dominios espaciales de una sola dimensión y en una
vecindad de la bifurcation Hopf-Turing.

Se realizó tanto análisis lineal como análisis no-lineal débil para obtener resultados analı́ticos
respecto a la amplitud de los modos Hopf y Turing, tomando en cuenta dos direcciones perpen-
diculares del modo Turing. Con las ecuaciones de amplitud se realizó trabajo analı́tico como
numérico. El trabajo muestra cómo el frente de Hopf rompe la simetrı́a y propicia la formación de
estados localizados de Turing en dirección perpendicular al frente.

Los resultados obtenidos concuerdan, dentro de los márgenes de precisión, con que la dinámica
del modo Turing perpendicular al frente de Hopf es el mismo mecanismo que permite la existen-
cia de los estados localizados dentro de espirales de Hopf. Dentro del contexto de resonancia no
lineal 2:1, estos resultados muestran que existe una region más amplia donde se pueden encon-
trar estados con resonancia, aunque no en todo el dominio sino en una región localizada. Esto
lleva a implicaciones particulares que ya han sido vistas en reacciones quı́micas tipo Belousov-
Zhabotinsky y medio granular.
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Chapter 1

Introduction

1.1 Thesis structure

This thesis work is conformed by three main sections: the preliminaries, the research work, and
the appendix.

The objective of chapter “Preliminaries” is to provide a glimpse of the pattern formation as a field
of research, to give introduction and intuition of the mathematical framework used on it and to
present the previous work that preceded our research project. The first part is about pattern forma-
tion phenomena: natural appearance, our understanding of the phenomena through dynamical
systems, reaction-diffusion equations and the different types of instabilities; and some experimen-
tal realizations. Then the section focuses in introducing the mathematical methods commonly
used in this area, and also we will show important results that are the backbone of this study (for
example, the amplitude equation for a periodically forced system with a Hopf instability, called
the Forced Complex Ginzburg Landau (FCGL) equation). At the end of the chapter we will show
some of the previous research that was important to frame this research project. As the objective
of this part is not the production of didactic material, but only to present the field in general and
to present the theoretical framework that is used in the research work, I will simply use the same
way to introduce the concepts and topics as some of the references do. The structure of this chap-
ter and also many of the particular examples and the general scope of the topic were mainly based
on the book of Ehud Meron, Nonlinear physics of ecosystems [Mer15].

In the research work chapter, we present the results of our research project, which also have been
recently published [MCY17]. First we talk about some characteristics of the region at the border
of the resonance tongue, and specify the parameter region where the comb-like Turing pattern ap-
pears. Then we explain why this particular Hopf-Turing coexistence is of a different nature than
the 1D case (flip-flop). Amplitude equations near the codimension-2 Hopf-Turing instability, with
Hopf and two perpendicular Turing modes are presented. It is shown how a Hopf front breaks the
symmetry of the perpendicular Turing modes and it is possible to identify their different interac-
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12 Chapter 1. Introduction

tions. At the end we compared the results taken from amplitude equations, in which we obtained
the length domain of the perpendicular mode for different gamma, with respect to the length of
comb-like patterns that appear in the original system.

In the appendix we present the step by step calculations for the weakly non-linear analysis to
obtain the amplitude equations that were a crucial part of the research.

1.2 Research work abstract

Chemical reactions are frequently being used as case models to elucidate generic and rich mech-
anisms of spatiotemporal dynamics, such as the spatial periodic Turing patterns, spiral wave
dynamics, bistability, domain walls, and spot replication [MPC97, KM10, Mur02, KS98] (and
the references therein) by providing insights into mathematical mechanisms (e.g., linear, nonlin-
ear, absolute, and convective instabilities) that give rise to pattern selection [CH93, BDDW+02,
Pis06]. Among the more popular and exploited reactions are Belousov-Zhabotinsky and chlorite-
iodide-malonic-acid (CIMA) [ES96, BDDW+02]. Besides interests in chemical controls [DKBE90,
BDDW+02, VE08, SCT+12], these reactions are also used as phenomenological models for biolog-
ical and ecological systems, examples of which include morphogenesis, cardiac arrhythmia, and
vegetation in semi-arid regions [CH93, VP09, ES96, Mer15].

An intriguing type of pattern formation phenomenon, demonstrating stationary spatial localiza-
tion embedded in an oscillatory background, has been found experimentally in the CIMA reac-
tion [DKPBE94]. Such localized states have been observed in one- and two-space dimensions (1D
and 2D, respectively) [BJP+95, DBDW+95], and attributed to a Turing core emerging in a oscillat-
ing Hopf background. In 1D the oscillatory background obeyed phase shifts of π , a behavior that
is typical in the vicinity of a codimension-2 bifurcation [DKPBE94, JPM+94, MHM09], a.k.a. a flip-
flop behavior or “1D-spiral” [PDWD+93, Bha07, DWLDB96]. The 2D localization was attributed to
the phase singularity that forces a vanishing Hopf amplitude and thus in turn emergence of a Tur-
ing state [DKPBE94, JPM+94, MHM09]. In the mathematical context, it was shown that the spatial
localization in the 1D Hopf-Turing bifurcation [TMB+13, JPM+94] bears a similarity to the spa-
tial localization mechanism in systems with a finite wavenumber instability due to the homoclinic
snaking structure [TMB+13].



Chapter 2

Preliminaries

2.1 Pattern formation overview

Natural phenomena

Patterns in nature are visible regularities of form found in the natural world, some examples are
shown in Fig. 2.1. These patterns recur in different contexts and can sometimes be modelled
mathematically. Natural patterns include symmetries, trees, spirals, meanders,explosions, waves,
foams, tessellations, cracks and stripes, among others [Ste15]. Spontaneous pattern formation in
nature is an intriguing phenomenon that has kept the attention in different fields, first to under-
stand their underlying mechanisms of formation and then to obtain better means of control to get
desired state configurations in the evolution of particular systems.

The general idea given by the principle of macroscopic uniformity is that a system made of a
huge number of particles achieves a stationary state when the maximum entropy is reached and,
at this point, homogeneous macroscopic characteristics should appear [Ste08]. But patterns and
structures found everywhere in nature prove that there are obviously mechanisms that lead to
non-homogenity in stationary states. Diverse mechanisms are the cause for each case, but here we
are especially interested in patterns whose particular shapes were not crafted by an external factor
directly, but by its own dynamics behavior or, more precisely, the dynamics of its constituents at
local scale.

Self-organization is a process where some order or some global structure arise due to local inter-
actions that can start even from a disordered initial state. There exist some systems which exhibit
self-organization due to positive feedbacks in its dynamics that lead to the pattern formation that
we are interested in. When a system starts from a macroscopically homogeneous state, which has
translational symmetry, and evolves into a patterned state, it means that the symmetry was bro-
ken at some point, this phenomenon is called a symmetry breaking instability [Mer15]. Although
it can not be really proven that patterns found in nature come from symmetry breaking instabili-
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Figure 2.1: From left to right. A spotted cheetah and a king cheetah patterns [Bon12], cloud
stripes [Oel14], vegetation patterns [Wik17] and sand ripples [Bal15].

ties, nowadays there are simulations from mathematical models and also experiments that give a
strong confidence in it, and it’s a good aspect of the theory that there is no need of a special initial
configuration for the emergence of the pattern and it can work with random initial conditions.
Certainly, it is thoroughly unlikely to find systems in nature standing in a unstable equilibrium,
but it is much more plausible to witness a system in a stable equilibrium that changes until the
equilibrium becomes unstable and the breaking of symmetry occurs. In the models, the parame-
ters of the system could change the condition of a stable equilibrium into an unstable one; when
there is a parameter λ that can make this change it is called the control parameter, when the con-
trol parameter reaches a certain treshold λc, then the equililbrium goes from stable to unstable. It
is called a bifurcation when this stability characteristic changes and occurs when λ = λc [CH93].

Alan Turing submitted in 1951 an article in which he intended to explain morphogenesis (the bio-
logical process that generates the shape of an organism, from a spherically symmetric blastula to
an embryo) based on the chemical reactions of substances that could occur in the blastula [Tur52].
Obviously, the blastula is spherically symmetric only in a macroscopic point of view, but it has
small fluctuations that make possible an unsymmetrical further evolution. Citing Turing’s paper:
“It was assumed that the deviations form spherical symmetry in the blastula could be ignored be-
cause it makes no particular difference what form of asymmetry there is. It is, however, important
that there are some deviations, for of them, tend to grow. If this happens a new and stable equi-
librium is usually reached, with the symmetry entirely gone. The variety of such new equilibria
will normally not be so great as the variety of irregularities giving rise to them”. Turing presented
simplyfied examples of reaction-diffusion systems in which a small deviation from a equilibrium
accentuates the differences and others where spatial oscillations appear. Turing also showed dif-
ferent possible kinds of solutions: stationary flat, flat but oscillating in time, stationary but with
finite wavelengths and oscillating with a finite wavelength (traveling waves).

Turing presented some characteristics or conditions that a chemical reaction process should have
in order to be plausible the equation systems that he presented as example.

Another feature of the pattern formation is their universality in the following sense: different sys-
tems that present the same type of instability, when the control parameter is near the bifurcation,
also show the same kind of pattern [Mer15].
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Reaction-diffusion equations

In a mathematical framework, pattern formation is studied by modelling the physical system with
a set of partial differential equations which is called the dynamical system.

The quantity u of some characteristic that can be measured in space (charge, mass, concentration,
temperature, biomass,etc..) could be modeled as a density function that specifies a value u(r) ∈ R

for each point r ≡ (x, y, z). The density function u defines the state of the system. If a dynamical
model is desired, then the state function u will depend on time, so the explicit function u(r, t) will
specify the evolution of the state.

If there is a dynamical behaviour, then we can specify a vector field called the flux J(r, t), which is
a vector whose direction points to the velocity of the substance characterised by u, and its magni-
tude is equal to the infinitesimal quantity of the substance that passes through a plane orthogonal
to the velocity direction per unit of time. When the total amount of the quantity is conserved,
i.e., when

∫
r u(r, t0)dr =

∫
r u(r, t)dr for any t, then at each point r the change of the density u(r, t)

should be equal to the negative of the divergence of the flux J(r, t):

∂u

∂t
= −∇ · J. (2.1)

Diffusion occurs when the movement of the quantity u has a tendency to spread out, i. e., a
tendency to not have relative maximum or minimum levels, so the movements of the substance
will go from the regions that have high levels to the regions that have low ones. Specifically, when
the movement of u is only driven by diffusion, then the flux J in each point goes into the oposite
direction of the gradient of u at that point, with a magnitude specified by a coefficient of diffusion
D, i.e., J = −D∇u, which is known as Fick’s law. Then, to describe the evolution of u due to
diffusion, eq. (2.1) takes the form:

∂u

∂t
= D∇2u, (2.2)

which naturally is called the diffusion equation.

Let us consider now two variables to be measured in space that interact among them, let’s say u
and v. Each one of them diffuses at different rates: Du and Dv. This variables, for instance, could
be chemical concentrations of two substances or biomass of prey and predator species. Now we
are not longer hold the conservation restriction, but will allow creation or anihilation of each of
the variables, due to its own level and the level of the other variable. So, for each variable, we
will add to eq. (2.2) an aditional term as function of u and v. In a chemical context fu(u, v) and
fv(u, v) are called the reaction terms because they indicate the addition or dissapearance of each
substance due to the reactions of both or due to an auto-catalytic process. Then, for two variables,
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the reaction-diffusion equation system has the form:

∂u

∂t
= fu(u, v) + Du∇2u, (2.3a)

∂v

∂t
= fv(u, v) + Dv∇2v. (2.3b)

The reaction terms fu(u, v) and fv(u, v) are in general non-linear functions of u and v. Except for
very simplified cases, it is not possible to find an analytical solution of (2.3), but a numerical inte-
gration is requiered to trace the evolution from a chosen initial state u0(r) and v0(r). In general,
a reaction-diffusion equation system may consist of N variables and also crossed diffusion terms,
which means that a current of some substances is also afected by the gradient of another one, see
eq. (2.27). Although some times we are going to refer about the general case of N variables, most
of the systems and examples in this thesis work will use N = 2.

Stationary and oscillatory instabilities

It is important to define what is considered as an instability within this framework, and we will
use two examples that help us to identify stationary instabilities from oscillatory instabilities.

Steady state or stationary solutions of a reaction-diffusion equation system as (2.3) are states us(r)
and vs(r) such that ∂

∂t us = ∂
∂t vs = 0, which means that if they are used as initial condition, then

the system at the start is in some sort of equilibrium that generates no change in their subsequent
evolution. In principle, there could be several (even infinite) of these steady state solutions, but
the simplest task to do is to look for flat solutions. i.e., functions us(r) = ũ and vs(r) = ṽ with a
constant value along the space.

In order to search for this flat solutions it is convenient to restrict the problem in a way that only
allows flat evolution, i.e., in which only flat states are permited: u(r, t) = u(t) and v(r, t) = v(t).
So, the system (2.3) turns into a system of ODE. For a general case with N variables, it will have
the form:

d

dt
u = f(u, λ), (2.4)

where u = (u1, ..., uN) is the vector of real variables that represent the state and λ a parameter and
f = [ f1(u, λ), ..., fN(u, λ)] is a vectorial function of the variables. The set of equations represented
by (2.4) is the dynamical system and the space generated by the variables u1,...,uN is the phase
space, thus, each point in phase space represent a particular state u. The evolution u(t) from some
initial condition u(0) = u0 is a curve in phase space that indicates a particular trajectory starting
at the point u0. The vectorial function f represent a vector field in the phase space, i.e., it assigns a
vector for each point of the phase space which, in particular, is tangent to the trajectory that passes
at that point. Here, a steady state solution is a point ũ in the phase space such that f(ũ, λ) = 0, so
there are not a tangent vector because the whole trajectory only consist in a single point ũ; steady
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state solutions are also called equiliblrium points.

Right side of eq. (2.4) can be expanded by Taylor’s series around a fixed point ũ. So in a vicinity
of ũ the eq. system (2.4) at first order approximation is a linear system with the form:

d

dt
(u − ũ) =∇∇∇f(u − ũ), (2.5)

where ∇∇∇f is the Jacobian matrix such that ∇∇∇fi, j = ∂ fi

∂u j

∣∣∣
u=ũ

. This linear system has solutions of

the form u − ũ ∝ eσit + c.c., i.e. the solutions are vectors that point to some direction but with
exponential behaviour in time.1 The complex conjugate is to ensure real values in the solutions,
considering that we are dealing with measurable quantities. The values of σi (i = 1..N), that
satisfy the linear equations system correspond to the N eigenvalues of J, which are, in general,
complex. If there is a σi such that Re(σi) > 0, then the steady-state ũ is unstable or we also say
that there is an instability at the equilibrium point ũ, because a state u(t) = ũ + δu(t) made of
a small perturbation from ũ, within the linear regime only will depend on the evolution of the
perturbation which will grow exponentially within the linear regime. If all the eigenvalues fulfill
Re(σi) < 0 then the steady-state is stable and if the eigenvalue with the highest real part is equal
to zero, then the steady-state is called to be marginally stable. The eigenvaluesσi are functions of
the parameter λ. A bifurcation point is a critical value λc of the parameter λ where the fixed point
ũ loses or gain stability. When λ = λc the system is marginally stable. Let’s assume by convention
that if λ < λc then the system is the stable and with λ > λc unstable.

For systems extended in space, i.e., systems whose states are also function of the space (u =
u(r, t; λ) when there is a perturbation around an unstable flat stationary solution, commonly the
system evolves going away from the instability and approaching to another steady state but sta-
ble solution, or to a time-periodic solution; those instabilities are called stationary instability and
oscillatory instability, respectively. In the following we will present very simple and typical ex-
amples of these two kind of instabilities to provide a better intuition of what are they about.

Stationary instabilities

Let us consider the next ODE with N = 1:

du

dt
= λu − u3. (2.6)

If λ > 0 it has three real stationary solutions: ũ0 = 0, for any λ and ũ± = ±
√
λ; if λ < 0 there exists

only ũ0 = 0 as stationary solution. Let’s check the stability properties of each solution. The jaco-
bian is only a 1 × 1 matrix with element f ′(ui) being also the only eigenvalue. We have f ′(0) = λ,
so ũ0 = 0 is stable when λ < 0, and unstable when λ > 0, being λ = 0 the point of bifurcation.
And f ′(±

√
λ) = −2λ, as the pair of stationary solutions ũ± = ±

√
λ exist only with λ > 0, then

they are always stable points. In the fig. 2.2 it is shown a bifurcation diagram, in which are plotted

1Taking into account that the exponential behaviour is only valid mwhile |u − ũ| is small enough to fulfill the first
order approximation.
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the stationary solutions as function of λ: continous line represent stable stationary solutions and
dashed lines represent instable solutions.

−5 0 5 10

λ

Figure 2.2: Stationary solutions of u with respect to the parameter control λ. Solid/dashed
lines stands for stable/unstable solutions. The bifurcation is located at λ = 0.

The linearization around fixed points only describes a exponential behaviour that occurs in a vicin-
ity of the points, but doesn’t show a further trajectory for instabilities points where the state u(t)
goes away from instability. In 1D systems, when the trajectory goes away from an instability,
whether it goes infinitely far or whether fall into a stable fixed point that finds in its way. So, as
the one in the example (2.6), there are instabilities called stationary instabilities in which a small
fluctuation from them carries the state into another stationary but stable solution, thus the state in
time asymptotically gets steady.

For systems extended in space, small fluctuations around a stationary instability (a flat and unsta-
ble stationary solution) are sufficient to take the state into a some steady state, which could have
many different shapes, including spatial oscillatory behaviour.

Oscillatory instabilities

The existence of an oscillatory instability in a ODE system requires N > 1. A common example
that illustrates this behaviour is the following system of non-linear ODE with N = 2:

d

dt
u1 = λu1 −ωu2 −

(
u2

1 + u2
2

)
u1, (2.7a)

d

dt
u2 = ωu1 + λu2 −

(
u2

1 + u2
2

)
u2, (2.7b)

whith a change of variables where u1 = ρ cosϕ and u2 = ρ sinϕ the system gets a simpler and
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decoupled form:

d

dt
ρ = λρ− ρ3, (2.8a)

d

dt
ϕ = ω. (2.8b)

Equation (2.8b) implies that the variable ϕ advances at a constant rate ω with respect to time. As
the equations are decoupled, eq. (2.8a) can be analyzed as eq. (2.6) since has exactly the same form:
with λ < 0 the only fixed point is a stable stationary state with ρ = 0, but with λ > 0 the fix point
ρ = 0 becomes unstable and appear two more stable points at ρ =

√
λ and ρ = −

√
λ (but in this

particular case ρ cannot be negative as a polar variable). Then, with λ > 0, and due to the dynam-
ics of ρ and the constant angular velocityω, it can be noticed that near the stationary value ρ =

√
λ

there are trajectories that converge to the circle u1 =
√
λcos(ωt +φ0) and u2 =

√
λsin(ωt +φ0)

that is called the limit cycle. An oscillatory instability is an unstable fixed point such that small
fluctuations from it gets a trajectory that converges to a limit cycle. The bifurcation at λ = 0 that
turns on the ocillatory instability it is often called Hopf bifurcation.

Patterns classification

Nonequilibrium spatial patterns can be classified by the kind of linear instability that presents
some uniform stationary solution. The instabilities appear when some control parameter R of the
system exceeds a particular threshold. The instabilities can be divided according to the values of
their characteristic wave vector k0 or the characteristic frequency ω0 that reveals at the instability
threshold. Patterns with wave vectors or frequencies centered around this characteristic values
will grow in the linear regime [CH93].

Non-uniform stationary instabilities present periodic behaviour in space and stationary in time.
There is a lot a patterns with this spatial periodic structure. In 1D, if λ is at the threshold,
the pattern will be a single wave with wavelength equal to 2π/k0, where k0 = |k0|. In two
or three dimensions other regular patterns, as rolls, squares, labyrinths, hexagons, cubes,
etc., can be achieved by a superposition of stationary waves with wavevector in different
directions and different amplitude through the space.

Uniform oscillatory instabilities are the ones that induce flat solutions in space but with an os-
cillatory motion in time.

Non-uniform oscillatory instabilities are instabilities in which the evolution present oscillatory
behaviour in time and also in space, so traveling waves appear. In two dimensions can give
rise to spiral waves.

Experimental realization of pattern formation

Chemical reactions

The oscillatory behaviour of chemical systems was an outstanding phenomena, not well received
at the 1930’s by the chemical community when Bray and Liebhafsky published the first exper-
imental results. During the 1950’s, Belousov found cyclic behaviour of the color of a mixture
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of bromate and cerium ions with citric acid in sulfuric acid; later work of Zhabotinksy on those
recipes and characterization of the chemistry led to the recognition among the community un-
til the late 1960’s. Zhabotinksy was the first one to use malonic acid to substitute citric acid. In
the late 1970’s the Bray-Liebhafsky and Belousov-Zhabotinsky (BZ), both accidentally discovered,
and its variants were the only known oscillator reactions that could be replicated in experiments.
Theoretical framework developed previously as Lotka-Volterra model, Brusselator model or Oreg-
onator model gave rise during the 1980’s to the systematic design of chemical oscillators, based
on autocatalytic reactions. In 1990, Kepper and Boissonade presented the chlorite-iodide autocat-
alytic reaction, that exhibits most of the dynamical behavior of BZ reaction: periodic oscillation,
bistability, chemical waves and pattern formation; but simpler than BZ to explain its mechanism
and had nice agreement with numerical simulations. Same year, Castest, Dulos Boissonade and
Kepper reported the first experimental observation of the emergence of Turing pattern in a non-
equilibrium system, using the chlorite-iodide reaction but adding malonic acid. In Epstein and
Showalter [ES96] it is shown an overview of experimental works of the chemical oscillators and
other nonlinear dynamics as patterns and chaos.

Kepper, Perraud, [DKPBE94] found in the chlorite-iodide-malonic acid (CIMA) reaction a quasi-
2D behavior where there is coexistence between Hopf and Turing modes. They reported a dy-
namics driven mostly by plane waves but with the exception of isolated Turing spots in the core
of spirals, see Fig. 3.1. Alghough Turing spot could be difficult to be seen in the tip of spiral, they
show it by making time-averaged image. References [DKPBE94] and [JPM+94] claim that the 2D
Turing-Hopf spiral is the extended case of the 1D spirals or flip-flop.

2.2 Pattern formation analysis

This section is focused on the linear stability analysis of uniform states in spatial extended sys-
tems, where by spatial extended systems we mean that the state u depends also on some space
coordinates r. With this linear analysis we will show the mechanisms of the emergence of oscilla-
tions with particular characteristic frequency in time or space from an instability and also the role
that diffusion plays.

Instabilities generated by diffusion

Let’s consider a reaction system of two species (N = 2), u and v, with no diffusion, i.e., Du =
Dv = 0 in (2.3), in a one-dimensional extended space and, for the sake of simplicity, a flat station-
ary solution in ũ(x) = 0, ṽ(x) = 0. Since (2.3) is a system extended in space, the linear analysis
is made taking into account a small variation around a flat solution: u(x, t) = ũ + δu(x, t) and
v(x, t) = ṽ + δv(x, t), where δu(x, t) and δv(x, t) are functions (perturbations) whose values are
infinitesimally small.



2.2. Pattern formation analysis 21

Figure 2.3: Schematic example of small variation around a flat stationary solution as initial
condition: u(x, 0) = ũ + δu(x, 0) and v(x, 0) = ṽ + δv(x, 0). Flat yellow lines stand for ũ
and ṽ, respectively.

These perturbations (if they are smooth), as any smooth function, can be represented as Fourier
integrals, δu(x, t) =

∫
αλ(t)e

iλxdλ and δv(x, t) =
∫
βλ(t)e

iλxdλ. Within the linear regime it is
enough to calculate separately one of the modes and the evolution of the perturbations δu(x, t)
and δv(x, t) will be the integral of the evolution of all the λ-modes.

For example, only analysing the evolution of the k-mode, the perturbations will have the simple
form:

δku(x, t) = αk(t)e
ikx + c.c., (2.9a)

δkv(x, t) = βk(t)e
ikx + c.c., (2.9b)

where αk(t) and βk(t) are complex values that determine the amplitude and phase of the mode,
and c.c. indicates the complex conjugate to restrict perturbations to real quantities.

We had assumed that the perturbations δku and δkv are around the zero solution ũ = 0, ṽ = 0,
thus, now it is only needed to substitute (2.9) in the original system (2.3), with Du = Dv = 0, to
obtain the linear system around the flat stationary solution. A linear ODE system of the Fourier
coeficients will arise: [

dαk/dt
dβk/dt

]
=

[
a11 a12

a21 a22

] [
αk(t)
βk(t)

]
, (2.10)

where ai j = ∇∇∇fi, j are the coefficients of the jacobian matrix A, and f =
[

fu(u, v, ), fv(u, v)
]

are the
reaction functions. The solution to this system has an exponential form:

[
αk(t)
βk(t)

]
=

[
c1

c2

]
eσ t , (2.11)
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where σ = σ(k;λλλ) is a complex value that can be function of k and also of the parameters of the
system λλλ = (λ1, λ2, ...). The vector (c1, c2)T is complex but with constant elements and the only
dependence on time is on the exponential behaviour. Placing (2.11) in (2.10), a eigenvalue problem
is obtained:

σ

[
c1

c2

]
= A

[
c1

c2

]
, (2.12)

which implies that σ is an eigenvalue of A and (c1, c2)T its corresponding eigenvector.

In this case, the coefficients of A do not depend on k therefore, neither does σ , which means that
the amplitudesαk(t) and βk(t) of any mode k will grow or decay at the same rate, indicated by the
greatest real part of the eigenvalues. The eigenvalues are σ± = 1

2 trA ± 1
2

√
(trA)2 − 4detA, which

implies that the trace of A determines the stability, and the case where detA is negative we have
eigenvalues of different sign.

Let us assume that
[
ũ(x) = 0, ṽ(x) = 0

]
is a stable point, implying that the real part of both eigen-

values of A,σ1 and σ2 are negative thus:
i) trA < 0,
ii) detA > 0.

The case where both a11 and a22 are negative is of no interest on this text, and the case with both
positive does not fulfill the condition i) trA < 0. Thus, a11 and a22 have oposite sign, let’s assign
a11 > 0 and a22 < 0 to work with. It means that the reaction functions at first order have a positive
feedback for the u species, and negative for v. Then, conditions i) and ii) imply |a11| < |a22| and
also that a12 and a21 have oposite sign.

Now we are going to add diffusion for both species, with diffusion coefficients Du and Dv, recall-
ing eq. (2.3), and with the same reaction functions as in the jacobian matrix A (2.10).

Substituting (2.9) in (2.3):
[

dαk/dt
dβk/dt

]
=

[
a11 − Duk2 a12

a21 a22 − Dvk2

] [
αk

βk

]
. (2.13)

And now A′ = A + k2

[−Du 0
0 −Dv

]
the new coefficient matrix for the system (2.16).

The condition that we need to switch the stability property with the inclusion of diffusion is for
the real part of one of the eigenvalues to become positive, and it is obtained when detA′ < 0,
which gives eigenvalues of oposite sign.

detA′ = a11a22 − k2(Dua11 + Dva22) + k4DuDv − a12a21.

The only term that could contribute negatively to detA′ is −k2(Dua11 + Dva22). If the diffusion
coeficients are of equal magnitude, then that term reduces to −k2Du(trA) which is positive, since
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trA < 0. So, Du has to be sufficiently bigger than Dv not only to make Dua11 + Dva22 a posi-
tive quantity, but also to ensure that k2(Dua11 + Dva22) > detA + k4DuDv to fulfill the condition
detA′ > 0.

In summary, if the diffusion of the species that has positive feedback is sufficiently larger than the
diffusion of the other species, then the original stability without diffusion can be broken.

Dispersion relations and growth rate curves.

The coefficient σ = σ(k;λλλ) of the exponential function (2.11) that determine the evolution of the
amplitudes of the Fourier modes, characterized by different k and a set of parameters λλλ, plays a
protagonist role in pattern formation theory. Only in the linear approximation - in a vicinity of the
flat stationary solution (ũ, ṽ)- a solution dependent on time from any initial small perturbation
can be seen as a superposition of Fourier’s modes

[
u(x, t)
v(x, t)

]
=

[
ũ
ṽ

]
+

∫

k

[
α(t; k, λ)
β(t; k, λ)

]
eikxdk + c.c.,

where the Fourier amplitudes have only an exponential dependence on time:
[
α(t; k, λ)
β(t; k, λ)

]
=

[
c1(k; λ)
c2(k; λ)

]
eσ(k,λ) t.

As each Fourier amplitude grows or decays at different rates, the whole shape of the solutions
will change over time. In this example we assumed that we have a single control parameter λ.
The exponential function can be factorized as eσR teiσI t, where σR ≡ Re(σ) and σI ≡ Im(σ). The
imaginary part of σ gives temporal oscillations with frequency ωc = σI , which is called the Hopf
mode. The real part of σ is what determines the growth rate. The explicit function σR(k) of the
growth rate with respect to the mode k is called dispersion relation, and the plot σR against k is
known as growth-rate curve.

By varying the control parameter λ, the whole growth-rate curve changes. The stability bifurca-
tion occurs when the control parameter takes a value λc such that there is at least one point that
touches the k-axis at kc with the rest of the curve is below it, thus, when λ = λc only the mode kc is
marginally stable and the rest of the modes will decay with time; that is, λc is the parameter such
that there exists a kc which fulfills: σR(kc; λc) = 0, σ ′

R(kc; λc) = 0 (where σ ′
R(k; λ) is the derivative

of σR with respect to k) and d2σR/dk2
∣∣
k=kc

< 0, i.e, σR(k; λc) has relative maximum in kc with a

level of zero.

So, from an initial condition containing the kc mode in a Fourier decomposition, the evolution of
the system will hold only the kc mode and, if ωc 6= 0, it will also hold the Hopf mode:

[
u(x, 0)
v(x, 0)

]
t→∞−−−→

[
c1

kc
(λ)

c2
kc
(λ)

]
eiωct eikcx + c.c.. (2.14)
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If λ is not equal to λc but slightly greater, then the mode kc and some of the modes in a small
interval around kc will have an exponential growth in the linear regime, the growth of the mode
kc will be bigger than any other. For example, if kc = 0 and ωc 6= 0 then a uniform but oscillatory
behaviour in time will prevail. Then the instability in 1D is defined by kc and ωc which are called
characteristic wave number and characteristic frequency, respectively. In a space of more than one
dimension there is a characteristic wave vector kc. In fact, particularly in isotropic systems, there
can be several wave vectors coexisting in a pattern. This can give rise to crystalline patterns as
discussed, for instance, by W. Klein and coauthors [KL06].

This is the main mechanism of pattern formation. From an arbitrary initial condition
(
u(x), v(x)

)

that is near a flat stationary but unstable solution indicated by a control parameter that is placed
very near the bifurcation point, the modes with wave number k ∈ [kc − ε1, kc + ε2] and frequency
ωc in time, will grow while the rest of the modes will decay; where [kc − ε1, kc + ε2] is the inter-
val in which σR(k) is positive. That means that, under some conditions, from a random initial
configuration of a system made out of small fluctuations from an instability, even when each ran-
dom initial configuration is very different, in all cases the further evolution will generate a similar
global structure that is carved in a general form by kc and ωc.

The shape of the growth-curves shows the types of instabilities that a determined system could
present, see Fig. 2.4.

Figure 2.4: Different types of growth-rate curves, taking λc = 0. Figure from [Mer15].

From the explicit expresion of the surviving mode in the linear regime, previously expressed
in (2.14) we can easily identify four types of instability, due to their linear exponential response
which is determined by the particular shape of the growth-rate curve:

- Uniform stationary instability (ωc = 0, kc = 0). This instability push the evolution into dif-
ferent but stable flat solutions. When there are, for example, two different stable solutions as in
Fig. 2.2, we say that bistability exists and the asymptotic solution in a extended 1D space could be
a combination of both, divided by a transition region that is called a front or domain wall.
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-Non-uniform stationary instability (ωc = 0, kc 6= 0). This is the case when a Turing mode arises
in the bifurcation instability. It evolves into stationary patterns with spatial oscillations.
-Uniform non-stationary instability (ωc 6= 0, kc = 0). The case when a Hopf mode is the principal
in the bifurcation, it evolves as a flat but oscillatory state.
-Non-uniform non-stationary instability (ωc 6= 0, kc 6= 0). It corresponds to a mixed state which
evolves into traveling waves. It occurs when the maximum wavenumber k is greater than zero
but also ωc 6= 0.

Non-uniform stationary instability

In the rest of the section we are going to use the FitzHugh-Nagumo (FHN) model only as an ex-
ample of a reaction-diffusion equation to show the basic mechanisms of pattern formation from
certain type of instabilities. It is a model that was developed by Richard FitzHugh (published in
1961) when he was trying to simplify the Hodgkin and Huxley’s equations for the flow through
the squid giant axon membrane of sodium and potassium ions. At relatively the same time, Jin-
Ichi Nagumo built a circuit whose behaviour was similar to the simplified equations.

The FHN model has two types of substances or fields in space: u(r) and v(r), where u generates a
positive feedback (activator) for both substances, while v provides a slower negative feedback; and
the reaction function of the activator u has a nonlinear component which depends negatively in u.
Along the time, FitzHugh-Nagumo model has been widely used by mathematicians, physicists,
biologists and engineers, and is one of the prototypical example to understand instabilities and
pattern formation [IF06].

The specific version of the FHN model that we are going to use is:

∂tu = u − u3 − v +∇2u, (2.15a)

∂tv = ǫ(u − av) + δ∇2v. (2.15b)

Looking at the lineal behaviour around the flat stationary solution u(x) = 0 and v(x) = 0, the
substance u acts as an activator that contributes positively to the growth of u and v, while v acts
as an inhibitor. All the coefficients (a,ǫ, δ) are positive real values and a < 1.

As the last examples, the linearization is obtained by using a Fourier mode k (2.9) as a perturbation
function from the zero solution u(x) = 0 and v(x) = 0. The resultant linear ODE system is

[
dαk/dt
dβk/dt

]
=

[
1 − k2 −1

ǫ −ǫa − δk2

] [
αk

βk

]
. (2.16)

As in any linear system of ODEs, we will look for exponential solutions with growth rateσR. The
dispersion relations of the system are:

σ±( k ; ǫ, a, δ) =
1

2

(
1 − k2 −ǫa − δk

)
± 1

2

√(
1 − k2 +ǫa + δk

)2 − 4ǫ. (2.17)
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In this example let us consider the case ǫ > 1/a.

For low values of k the expression inside the square root is negative (taking into account that
a < 1), so the real part of σ is 1

2

(
1 − k2 −ǫa − δk

)
, when k = 0 we have σR(0) = 1/2 −ǫa/2 < 0

due to the premise on ǫ. As k increases from zero, σR(k) decreases, until the expression inside the
square root becomes positive so Re

[
σ+(k)

]
= σ+(k).

We are going to take δ as our control parameter. The next step is to find for which δ (in terms of the
other parameters a and ǫ), the growth curve touches the k-axis in just one point kc, and to specify
that point kc also in terms of the rest of the parameters. To find δc and kc we have two non-linear
equations that must hold: σ+(kc; δc) = 0 and σ ′

+(kc; δc) = 0, where σ ′ stands for the derivative of
sigma with respect to k; and also we have to ensure that the second derivative evaluated in kc is
negative.

With some algebra the non-linear system reduces to this pair of equations:

0 = (1 − k2
c )(ǫa + δckc)−ǫ, (2.18a)

0 = δc(1 − k2
c )− 2kc(ǫa + δckc). (2.18b)

With the command Solve of the software Wolfram Mathematica 11.0 four analytical solutions of
the system (2.18) were obtained. Among the four solutions we took only the one in which kc and
δc were real and positive. The explicit expression in terms of the parameteres a and ǫ are:

kc =
√

Ψ(a), (2.19a)

δc = 1
2 aǫ

[
9/a − 5 + 3Ψ(a)

]√
Ψ(a), (2.19b)

where Ψ(a) = 1 − 3
2a +

√
9−8a
2a .

To get the complete expression similar to (2.14) of the first mode kc to grow beyond the bifurcation
point δc, it is necessary to solve the eigenvector problem of the linear matrix with components
evaluated in kc and δc:

[
0
0

]
=

[
1 − k2

c −σ+(kc; δc) −1
ǫ −ǫa − δck2

c −σ+(kc; δc)

] [
c1

kc

c2
kc

]
,

=

[
1 − Ψ(a)− 0 −1

ǫ 1
2 aǫ

[
9/a − 3 + 3Ψ(a)

]
Ψ(a)− 0

] [
c1

kc

c2
kc

]
.

Once we have the corresponding eigenvector

[
c1

kc

c2
kc

]
∝

[
1

1 − Ψ(a)

]
,
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we get the complete expression of the first mode kc that emerges from the instability at the bifur-
cation point δc: [

1
1 − Ψ(a)

]
eikc x + c.c.. (2.20)

The instability bifurcations that lead to a non-uniform stationary state are called Turing bifurca-

tion and the spatial oscillations for each wave number are called Turing modes. In our example,
the Turing bifurcation is found at δc.

Uniform oscillatory instability

We are going to use the same FitzHugh-Nagumo model, but this time with no diffusion for the
substance v, i.e., with δ = 0:

∂tu = u − u3 − v +∇2u, (2.21a)

∂tv = ǫ(u − av). (2.21b)

Again, the coefficients (a,ǫ) are positive real values and a < 1.

In this case (δ = 0), the dispersion relation is:

σ±( k ; ǫ, a) =
1

2

(
1 − k2 −ǫa

)
± 1

2

√(
1 − k2 +ǫa

)2 − 4ǫ. (2.22)

Now we are going to take ǫ as the control parameter.

There are two possibilities, the square root term is real or imaginary at the bifurcation point ǫc.

Lets assume that the square root is a real value. If this is the case, then, there are two ways in
which we can make σ reach a value of zero: either both terms of σ( k ; ǫ, a) are zero or they cancel
each other. Let’s check if it is possible for the magnitude of both terms to be equal. Comparing the
squares of each term,with ǫ 6= 0 we have:

(
1 − k2 +ǫa

)2 − 4ǫ <

(
1 − k2 +ǫa

)2 − 4ǫa = (1 − k2)2 − 2k2ǫa − 2ǫa +ǫ2a2

< (1− k2)2 + 2k2ǫa− 2ǫa+ǫ2 a2 =
(
1− k2 −ǫa

)2
,

Since
(
1 − k2 + ǫa

)2 − 4ǫ <
(
1 − k2 − ǫa

)2
for any case where ǫ 6= 0, then we can not get

Re
[
σ±( kc ; ǫc, a)

]
= 0 if the square root term is real, which means that at the bifurcation point

σ is complex.
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The real part ofσ isσR(k;ǫ, a) = 1
2 (1− k2 −ǫa) and its derivative with respect to k,σ ′

R(k;ǫ, a) = −k
(and the double derivative is negative). Then the maximum value of the growth-rate curve is lo-
cated at k = 0, and the value of ǫ that modifies the curve to getσR(0;ǫc, a) = 0 is ǫc = 1/a.

The characteristic frequency is ωc =
1
2

√
4ǫc −

(
1 − k2

c +ǫca
)2

=
√

1 − a/
√

a. Since the character-
istic wave number is kc = 0, the first mode growing in the instability consists of a uniform solution
for u and v that oscillates in time, which is called the Hopf mode:

[
1

1 − i
√

1−a√
a

]
eiωct + c.c.. (2.23)

The imaginary value in the second element of the eigenvector indicates the shift in the phase of
the oscillations of v with respect to u.

Codimension-2 Hopf-Turing instability

Let’s revisit the FitzHugh-Nagumo model (2.15) with the positive parameters (a,ǫ, δ), and a < 1.
We can adjust both ǫ and δ in order to make the growth-rate curve touch the k-axis in two points
without exceedingσR = 0, having simultaneously two marginal stable points: one with k = 0 and
ωc 6= 0, the other with kc 6= 0 andω = 0. With this particular selection of parametersǫc and δc, the
stationary solution u(x) = 0 and v(x) = 0 becomes a Hopf-Turing instability. Codimension-n
refers to the number n of parameters that are needed to adjust to get a particular bifurcation point.

Then, the codimension-2 point Hopf-Turing instability of the system (2.15) is reached with

ǫc = 1/a, (2.24)

δc = 1
2

[
9/a − 5 + 3Ψ(a)

]√
Ψ(a), (2.25)

where Ψ(a) = 1 − 3
2a +

√
9−8a
2a . The characteristic frequency for the Hopf mode is ωc =

√
1 − a/

√
a

and the characteristic wavenumber of the Turing mode is kc =
√

Ψ(a).

Since almost all the Fourier components of the perturbation will decay within a first order approx-
imation, the evolution of the state around the zero solution will be mainly driven by the Hopf and
Turing modes:

[
u(x, t)
v(x, t)

]
≈

[
1

1 − i
√

1−a√
a

]
H(x, t)eiωct +

[
1

1 − Ψ(a)

]
T(x, t)eikc x + c.c., (2.26)

where H(x, t) and T(x, t) are the amplitudes of the Hop f mode and the Turing mode, respectively,
which are defined in time and space.



2.2. Pattern formation analysis 29

−50 −25 0 25 50

t =50.0
u

v

−50 −25 0 25 50

t =51.8
u

v

−50 −25 0 25 50

t =53.6
u

v

Figure 2.5: A 1D example of a system with its parameters located near codimension-2 point
Hopf-Turing instability. Purple/yellow colors stands for u(activator)/v(inhibitor), re-
spectively; when x is sufficiently larger than zero only Hopf mode holds, and when x
is sufficiently lower than zero only Turing mode takes place. Around x = 0 is a mixed
mode, which consists in the Hopf-Turing front that divide both regions.

Weak non-linear analysis: Amplitude equations

The analysis of last section was restricted to the linear behaviour of a reaction-diffusion systems
(2.27), from infinitesimal fluctuations around a flat stationary solution, and only gives a descrip-
tion of the mode corresponding to the characteristic wave number kc or the characteristic fre-
quency ωc of the system. One step further is to deal with a tiny or weak effect of non-linearity of
the system.

When the control parameter λ is slightly above λc, not only the mode kc grows exponentially as
well as some continuous range of k around it, this range being that in which the growth-rate curve
is above zero. The approximation of this behaviour does not involve integrating the different sur-
vival modes in this narrow range of k, and instead we consider that as all the modes within the
unstable range are very similar to kc, the interference will be considerable only at long distances
with respect to the space wavelength or long times with respect the period of time oscillations
-depending on the type of instability-, so the effect of this slow interference will be expressed only
as changes of the complex amplitude A of the characteristic mode. The amplitude will then be a
function of space and time, A = A(x, t), and the weak non-linear analysis is the deduction of a
differential equation from which A(x, t) can be obtained. If it is a codimension-n instability, then
the analysis will bring a system of n coupled complex amplitude equations. The deduction of the
amplitude equations is based on a perturbation method, using expansion series around a station-
ary flat solution and around the bifurcation point of the control parameter λ. Since the amplitudes
change slowly in time and space with respect to the oscillation modes, slow variables scaled by
powers of λ are used in this analysis to separate the behaviour of the amplitude and the expo-
nential factor of the mode. At the end, some equations generated from the expansion will give
conditions that have to fulfill the amplitude of the first term of the expansion, which corresponds
to the associated critical mode. In the following it is shown how this analysis method works.

Consider a general reaction-diffusion type system:

∂

∂t
|u〉 = f (|u〉) + D∇2|u〉, (2.27)

where |u〉 ≡ (u1, . . . , uN)
T are density functions of chemical substances (with N being an inte-
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ger), f (|u〉) are functions containing linear and nonlinear terms of the functions ui that corre-
spond to chemical reactions or interactions, and D is a matrix associated with diffusion and cross-
diffusion [VE09].

If the state is in a vicinity of a non-uniform stationary instability, then it can be approximated as:

|u(r, t)〉 ≈ |ũ〉+ |eT〉A(r, t)eikcx + c.c., (2.28)

or if it is in a vicinity of a uniform oscillatory instability:

|u(r, t)〉 ≈ |ũ〉+ |eH〉A(r, t)eiωct + c.c., (2.29)

where |ũ〉 is a stationary and spatially uniform state, and |ei〉 is the corresponding eigenvector
evaluated at the bifurcation point (with i ∈ {H, T}).

The derivation of a system of two equations for the real and imaginary part of the amplitude
A(r, t) is called weak nonlinear analysis, because it is valid only when we consider the following
two points:
1. The amplitudes are small enough so that the state is near the instabililty point.
2. The control parameter is near the bifurcation point.

The idea of this approach is to consider that the variations in the space domain and time of the
amplitude A(r, t) are small or “weak”. So, it could be natural to think about different scales, the
scale of the oscillation period of the growing mode and the scales in each direction and time in
which the variation of the amplitude is considerable. For the sake of this method, it is useful
to define slow space and time variables so the amplitude only will be a function of them, while
the oscillation term in (2.28) or (2.29) remains as a function of the space (or time) variable of the
original scale. To exemplify the idea, let us consider a 1D space domain and also assume that
|ũ〉 = |0〉 is a uniform oscillatory instability (in this case, |0〉 stands for null vector). So

|u〉 ≈ |eH〉Ã(X, T)eiωct + c.c., (2.30)

and only depends on the regular variable t and the slow variables X = λpx and T = λqt, where
p and q are the exponents of λ that define the scale of each one of the slow variables. The explicit

function Ã of the slow variables comes from the original amplitude function A(x, t) from eq. (2.29):

Ã(X, T) = A(λ−pX, λ−qT). As there is no harmonic term oscillation in space, the amplitude is the
only factor that varies along the x-axis but at a slow pace, so only a slow space variable X and
not regular variable x appears in the state |u〉. Due to the use of different scales in the domain
variables, this method is also called multiple-scale analysis.

Let λ be the control parameter, and let us set λc = 0 as the point of the Hopf bifurcation. An
approximation of the state |u〉 near the bifurcation point λ = 0 can be made with an expansion of
|u〉 in powers of λs, that goes beyond than (2.30) with higher order terms:

|u〉 = λs|u0〉+ λ2s|u1〉+ λ3s|u2〉+ · · · . (2.31)
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After expansion, the expression (2.31) is needed to be substituted into the original equation system
(2.27) at some order. But the expansion terms |u j〉, in principle, explicitly depend on normal and
slow variables, which has to to be taken into account in the derivative operators by carefully
applying the chain rule; it will be equivalent to make the following substitution:

∂

∂t
→ ∂

∂t
+ λq ∂

∂T
, (2.32)

∂

∂x
→ λp ∂

∂X
, (2.33)

then non linear equations of the variables in |u j〉 will be obtained for each corresponding order
j = 0, 1, 2,.. of the form

M|u j〉 = |R j〉, (2.34)

where M is a linear operator and |R j〉 is vector column that depends on lower order ( j − 1) con-
tributions of the solution.

What follows is to obtain the explicit form of the different |R j〉. For j = 0 we have the equation
M|u0〉 = |0〉, that corresponds with the linearization of the system around the instability. The
growing mode has the characteristic frequency ωc, so:

|u0〉 = |eH〉B(X, T)eiωct + c.c., (2.35)

First, with explicit solution |u0〉 we get |R1〉, and solving the respective differential equation we
will get |u1〉 which is needed for explicit expression of |R2〉, and so on.

For each |R j〉 that we get, we have to ensure that equation (2.34) has solution; it will be needed
that the terms R j fulfill its respective solvability condition, which will be explained in the follow-
ing subsection. At the end, the solvability conditions will provide the amplitude equations that
we are looking for.

Solvability conditions

We got equations of the form M|u j〉 = |R j〉 for each order j, and we are interested in states whose
dependence in regular (not slow) variables is periodic and bounded, so they can be expressed in
terms of trigonometric polynomials. But the linear operator M has no inverse, thus it is not clear
that these equations have solution, the two possibilities are: the solutions do not exist or they have
infinite solutions.

In our example (2.35) the only regular variable is t; thus some arbitrary vector |w〉 with the char-

acteristics desired can be seen as a trigonometric polynomial series: |w〉 = ∑n

[
an

bn

]
eniωct + c.c.,

where an and bn are complex functions of the slow variables (X, T).
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When the operator M acts on |w〉 it give rise to another vector |z〉 which also can be viewed as a
trigonometric polynomial series:

M|w〉 = |z〉 =
[

c0

d0

]
+

[
c1

d1

]
eiωct +

[
c2

d2

]
e2iωct +

[
c3

d3

]
e3iωct + · · · + c.c.. (2.36)

As |w〉 is an arbitrary vector, the right side of (2.36) is the general form of the image of M. For
each term in |w〉, the operator M does not change the order of eniωct but only transforms the vector
coefficients corresponding to each order.

A common feature of the linear operators M that comes from reaction-diffusion equations of two
variables (u, v) is that their null space is not trivial but has dimension one and is proportional
to the first order trigonometric term eiωct, which has a particular implication on the image. Then

the image (2.36) has a restriction: the vector

[
c1

d1

]
can not be any arbitrary vector in C2 but only a

vector that belongs to a certain subspace of dimension one; let us suppose that the vector |g〉 ∈ C2

generate the subspace that defines this part of the image, i.e.,

[
c1

d1

]
=κ|g〉, whereκ is some complex

coefficient.

It is convenient to use an orthogonal basis of C2 related to the image:
{|g〉, |h〉}, given some inner

product 〈·|·〉, where |g〉 generates the coefficient vector (c1, d1)
T of the image of M and |h〉 is

orthogonal to |g〉, i.e., 〈h|g〉 = 0. Now we have a way to check if eq. (2.34) has infinite solutions or
not a single one. The key is to look for the terms of |R j〉:

|R j〉 =
[

q j0

s j0

]
+

[
q j1

s j1

]
eiωct +

[
q j2

s j2

]
e2iωct +

[
q j3

s j3

]
e3iωct + · · · + c.c.,

and focus on the coefficients of the first order term; the term

[
q j1

s j1

]
eiωct must be in the image of M,

thus it is required for |r j1〉 ≡
[

q j1

s j1

]
to be proportional to |g〉 or orthogonal to |h〉. As q j1 and s j1 are

functions of the amplitudes B(X, T) and its complex conjugate, some conditions can be imposed
on B(X, T) to ensure |r j1〉 to be orthogonal to |h〉.

The orthogonality is prescribed by the equation:

〈h|r j1〉 = 0. (2.37)

The equations (2.37) for i = 0, 1,.. are the so called solvability conditions, and from those condi-
tions, a partial differential equation for the complex amplitude B(X, T) can emerge, with the form
∂B
∂T = F̃(B, B̄), where F̃(B, B̄) is some nonlinear function of B, B̄ its complex conjugate and its
spatial derivatives.

Let us recall that B is only the amplitude of |u0〉 but we are looking for the state |u〉 which will be
approximated up to the first term of expansion (2.31) and also we want to express it in terms of
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regular variables:

|u〉 ≈ λs|u0〉 = |eH〉A(x, t)eiωct + c.c., (2.38)

so B(λpx, λqt) = λ−s A(x, t) and substituting it in the partial equation for B and changing the
differential operators by the chain rule to rescale (X, T) so that we can work now only with the
regular variables x and t, obtaining finally the complex amplitude equation with the form:

∂A

∂t
= F(A, Ā), (2.39)

where F(A, Ā) = λqF̃(λ−s A, λ−s Ā).

When two modes simultaneously grow from an unstable state, two complex amplitude equations
are needed (or four equations of real functions). For example if we are in a Hopf and Turing
bifurcation, the amplitude equations system will have the form:

∂H

∂t
= FH(H, H̄, T, T̄), (2.40a)

∂T

∂t
= FT(H, H̄, T, T̄), (2.40b)

where H(x, t) is the complex amplitude of Hopf mode and T(x, t) the complex amplitude for the
Turing mode; H̄ and T̄ are the complex conjugates of H and T.

In the appendix we show the deduction of the amplitude equations from a complex Ginzburg-
Landau system in 2D, which takes the Hopf and two perpendicular Turing modes (3.1) thus, we
obtained three complex amplitude equations (3.2).

Amplitude equations for uniform oscillations

The FitzHugh-Nagumo model, with δ = 0 and a < 1 (2.21) has a uniform oscillating instability
(kc = 0,ωc 6= 0), as we have seen previously, that is reached when ǫ = ǫc (having found pre-
viously that ǫc = 1/a), and becomes unstable when ǫ < ǫc. In this example the extended space
will consist of a 2D domain. Our goal is to obtain the amplitude equation, which will be a partial
differential equation having A(x, y, t) as the unknown multivariate function. When ǫ / ǫc an
approximation of the state near the zero solutions has the form of (2.29):

[
u
v

]
≈

[
c1

c2

]
A(x, y, t)eiωct + c.c.. (2.41)

It is useful to change the control parameter by µ = (ǫc − ǫ)/ǫc because µ measures the devia-
tion from the Hopf bifurcation point in a dimensionless scale; the bifurcation is located at µ = 0
and with µ > 0 the system becomes unstable. As we are in a 2D space, instead of a character-
istic wave number, we have a wave vector k = kxi + kyj. The growth-rate curve is given by
σ(µ) = (µ − k2)/2, where k2 = k2

x + k2
y. When µ > 0, the range of k that contains the unstable
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modes is the one in which σ(k) ≥ 0, and that occurs when k ∈
[
0,
√

2µ
]
. The maximum growth

rate is µ/2 located at k = 0. As the region of unstable modes grows proportionally to
√
µ, then the

slow spatial variables will be scaled by
√
µ, i.e., X =

√
µx and Y =

√
µy. The maximal growth

rate corresponds to the mode kc = 0 and its magnitude scales linearly with µ, as this mode does
not contribute with oscillations in space, but only in time at frequency ωc, the slow variable in
time will scale also in a linear form: T = µt.

Expansion (2.31) (with µ instead of λ) will be placed in both sides of the FHN system (2.15), so it
will be derived by the operators ∂/∂t and ∇2. The amplitudes of the approximation will depend
exclusively on the slow variables (X, Y, T) and only the exponential factors will have dependence
on the regular variables. Since there is no eikc x nor eikc y, the right side of (2.31) won’t depend on
the regular spatial variables, but only on (X, Y, t, T). Thus, when we place expansion (2.31) into
(2.15), we have to take into account the chain rule to replace the derivative operators:

∂

∂t
→ ∂

∂t
+ µ

∂

∂T
,

∂

∂x
→ √

µ
∂

∂X
,

∂

∂y
→ √

µ
∂

∂Y
. (2.42)

The smallest order for µ in the expansion (2.31) is µs. When the expansion is substituted in the
cubic term u3 of eq. (2.21a), the term of minimum order that comes out from it is proportional to
µ3s, and the term of minimum order that comes out from ∇2u = µ∇2

[X,Y]u is proportional to µs+1

(where ∇2
[X,Y] ≡ ∂2

X + ∂2
Y ). We need the two terms to be of the same order, thus s = 1/2. Then, the

expansion (2.31) around u(x, y) = 0, v(x, y) = 0 and around µ = 0 takes the form:

[
u
v

]
≈ √

µ

[
u0

v0

]
+ µ

[
u1

v1

]
+µ3/2

[
u2

v2

]
. (2.43)

The form of the first term is proposed as the characteristic mode with frequency ωc and its ampli-
tude B(X, Y, T) depending only in slow variables:

[
u0

v0

]
=

[
c1

c2

]
B(X, Y, T)eiωct + c.c., (2.44)

the term (u1, v1)
T will be deduced to get |R2〉 and it won’t be necessary to deduce (u2, v2)

T since
with |R2〉 we’ll be able to get the solvability condition that gives rise to the amplitude equation.

Substituting the expansion (2.43) into (2.21) and taking into account the slow variables in the
derivative operators, we get rid of terms of an order greater than 3/2 and three equations are
obtained, corresponding to each different order of µ.

For
√
µ order:

∂u0

∂t
= u0 − v0, (2.45a)

∂v0

∂t
= ǫc(u0 − av0). (2.45b)
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For µ order:

∂u1

∂t
= u1 − v1, (2.46a)

∂v1

∂t
= ǫc(u1 − av1). (2.46b)

For µ3/2 order:

∂u2

∂t
+

∂u0

∂T
= u2 − v2 − u3

0 +
∂2u0

∂X2
+

∂2v0

∂X2
, (2.47a)

∂v2

∂t
+

∂v0

∂T
= ǫc(u2 − av2)−ǫc(u0 − av0). (2.47b)

The linear operator corresponding to this example is:

M =

[
∂
∂t − 1 1

−ǫc
∂
∂t + 1

]
. (2.48)

The solution of M
[

u0

v0

]
=

[
0
0

]
fixes the direction of the eigenvector proposed in (2.44), whose

components can be selected as e = 1, f = 1 − iωc. The equations (2.45) and (2.46) are identical,
thus they share the same family of solutions. Using this solution as the explicit form of (u0, v0)

T

and (u1, v1)
T that can be substituted in (2.47), and gives the explicit form of M

[
u2

v2

]
= |R2〉:

M



u2

v2


 =




− ∂B
∂T − 3|B|2B + ∂2B

∂X2 +
∂2B
∂Y2

−(1 − iωc)
∂B
∂T −ǫcB + (1 − iωc)B


 eiωct +



−B3

0


 e3iω0t + c.c.. (2.49)

But there is an important issue to take into account: from subsection 2.2 in the linear analysis,
we knew that the null space of M is not trivial but it has dimension one. Recalling eq. (2.23), is
straightforward that the kernel of M can be spanned by the vector |e1〉eiωct,

where |e1〉 =
[

1
1 − iωc

]
, with ωc =

√
1 − a/

√
a.

Let us take as inner product in C2 the canonical hermitian inner product. First we want to find the
image that corresponds only to terms proportional to eiωct, as the image is of dimension one, it is
only needed a vector |e2〉 that does not belong to the null space, to get M|e2〉eiωct which generates
the image of the order desired. If we select some vector |e2〉 orthogonal to |e1〉 we ensure that does
not belong to the null space.

Selecting |e2〉 =
[−1 − iωc

1

]
we have 〈e2|e1〉 = 0.

As |e2〉 do not belong to the null space, the image that is proportional to eiωct will be for sure
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generated by the vector

M|e2〉eiωct =

[
∂
∂t − 1 1

−ǫc
∂
∂t + 1

] [−(1 + iωc)eiωct

eiωct

]

= b

[
1

(1 + iωc)

]
eiωct, with b = (1 + a)/a. (2.50)

As we can see in (2.50), this term of the image is generated by |g〉eiωct where |g〉 =

[
1

1 + iωc

]
.

Now we can get a vector |h〉 orthogonal to |g〉:

|h〉 =
[−1 + iωc

1

]
. (2.51)

In eq. (2.49) we can see the trigonometric polynomial expansion of |R2〉, where the vector coeffi-
cient |r21〉 of first order trigonometric term eiωct is

|r21〉 ≡




− ∂B
∂T − 3|B|2B + ∂2B

∂X2 +
∂2B
∂Y2

−(1 − iωc)
∂B
∂T −ǫcB + (1 − iωc)B


 (2.52)

To restrict |r21〉eiωct to be in the image of M, the solvability condition 〈h|r21〉 = 0 is imposed and
gives the equality

0 = 2
∂B

∂T
+ 3(1 + iωc)|B|2B − (1 + iωc)

(
∂2B

∂X2
+

∂2B

∂Y2

)
−ωc(ωc + i)B. (2.53)

Now, if we combine (2.44) with the expression (2.43) approximated only at first order we have that
[

u
v

]
≈ √

µ

[
1

1 − iωc

]
B(X, Y, T)eiωct + c.c.,

and comparing this expression with the original form of the Hopf mode presented in (2.41), we
see that A(x, y, t) =

√
µ B(

√
µx,

√
µy,µt). From the solvability condition (2.53) we obtained an

equation for the complex amplitude A:

∂A
∂t

=
1

2
µωc(ωc + i)A− 3

2
(1 + iωc)|A|2A+

1

2
(1 + iωc)∇2A, (2.54)

which is the desired amplitude equation.

Equation (2.54) has the following general form that can be adjusted by three parameters (α,β,µ)
and is known as the Complex Ginzburg-Landau equation:

∂A
∂t

= µA− (1 + iβ)|A|2A+ (1 + iα)∇2A. (2.55)

This equation describes the behaviour of the amplitude of the characteristic mode ωc near the bi-
furcation of any Hopf instability.
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Frequency locking

Nonlinear systems with a Hopf instability have, naturally, a self-sustained oscillator near the in-
stability bifurcation. If an external periodic force is applied it could, under certain conditions,
synchronise its frequency, changing its original frequency ω0 into another different but similar
frequency driven by the forcing. This phenomenon is a nonlinear resonance mechanism known
as frequency locking. The synchronization occurs when the amplitude γ of the forcing is strong
enough and when a rational scalar of the forcing frequency ω f is near the original frequency ω0,
i. e., when (m/n)ω f ≈ ω0, with integers m and n. When the locking occurs, the system deviates
from its original frequency ω0 and instead takes a frequency equal to (m/n)ω f determined by
the external forcing, and is called the n : m resonance [PR07, Knu99]. The difference between the
original frequency and the synchronised one is called the detuning: ν = ω0 − (m/n)ω f . As |ν| is
set bigger, a stronger forcing is needed to lock the oscillations of the system; the region in the ν−γ

parameter space where the frequency locking takes place is called the Arnold resonance tongue.

Let us assume that system (2.27) goes through a primary oscillatory Hopf instability and is also
externally forced at a certain frequency [LHMS04]. Near the onset and depending on the forcing
amplitude and frequency, the medium will exhibit either unlocked or locked oscillations which
will obey the forced complex Ginzburg-Landau (FCGL) equation [Gam85, EIT87, CE92, EHM99]:

∂A

∂t
= (µ+ iν)A − (1 + iβ)|A|2 A + (1 + iα)∇2 A + γĀn−1, (2.56)

where A is a complex amplitude of the primary Hopf mode weakly varying in space and time, Ā
complex conjugate, n is an integer associated with the n : 1 resonance, µ is the distance from the
Hopf onset, ν is the difference between natural and the forcing frequencies, and γ is the forcing
amplitude. In this context, frequency locking corresponds to asymptotically stationary solutions
to (2.56).

Equation (2.56) can be derived by symmetry considerations [Mer15]. The n : 1 resonance takes
place when an original system (2.27) has a Hopf instability with characteristic frequency ω0 and
is subjected to periodic forcing with frequency ω f ≈ nω0. In the vicinity of the Hopf bifurcation,
the state has the form:

|u〉 ≈ |eH〉Aeiω0t + c.c. = |eH〉Ae−iνteiω0t + c.c. = |eH〉Aei(ω f /n)t + c.c.. (2.57)

The new variable A = Aeiνt is introduced, where ν = ω0 −ω f /n. The solutions such that A is
stationary, correspond to resonant or frequency locked oscillations, which implies that the oscil-
lations get restrained to the frequency ω f /n.

The amplitude equation for A can be obtained by subtituting A = Ae−iνt in CGL equation (2.55)
and by adding another term that will be proportional to the forcing amplitude. The periodic
forcing breaks the continuous time translation symmetry that the system (2.55) had, but leaves a
discrete time translation symmetry: the equation should be invariant under translations that are
multiple of the forcing period τ f = 2π/ω f . Applying the translation t → t + τ f to the state (2.57),
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the amplitude takes the form Aei(ω f /n)(t+τ f ) = Aei(ω f /n)tei(2π/n)t thus, the amplitude equation
should be invariant under the transformation A → Aei(2π/n)t. Eq. (2.55) is already unaffected
by this transformation, but if we want to add a term proportional to the forcing amplitude, this
term has to be of the form Ān−1 in order to be invariant under the transformation. In summary,
substitution of A = Ae−iνt in CGL equation (2.55) will give an equation for the amplitude A of
resonant oscillations, the time derivative will display the term iνA and the addition of the forcing
term needs to be a γĀn−1. This way eq. (2.56) is obtained.

Since the Hopf-Turing bifurcation in (2.56) arises only for n = 2, the study of Hopf-Turing spatially
localized states applies to only in 2:1 frequency locking. In the 2:1 resonance case, Eq. 2.56 admits
two uniform non-trivial (π shifted) solutions that exist for [CE92, YHM+02, YEHM04b]

γ > γb =
|ν − µβ|√

1 −β2
. (2.58)

This bistability region is commonly called the classical (Arnold) 2:1 resonance tongue even in the
context of the spatially extended media, see region I in Figs. 3.1(b,c). Moreover, bistability of uni-
form π shifted states, can also lead to formation of inhomogeneous solutions [CL90, GCOSM90,
YEHM04b, BYK08], such as labyrinthine patterns, spiral waves, and spatially localized (a.k.a. os-
cillons). However, it has been shown that nonuniform 2:1 resonant patterns may in fact exist also
outside the 2:1 resonance [YHM+02], γ < γb, i.e., in a region where stationary non-trivial uniform
solutions are absent. The resonant condition is obtained through stripe (Turing state) nucleation
due to the propagation of a Hopf-Turing front, i.e., an interface that bi-asymptotically connects
Hopf and Turing states, as shown in Fig. 3.1(a).

1D localized patterns and homoclinic snaking

When there is bistability (coexistence) of two modes in a 1D domain system, front solutions can ex-
ist. A single front regularly moves in time towards some direction, until one of the modes invades
completely the other. The direction of the moving front is regulated by the control parameter λ.
The velocity of the front is zero for some λ = λm, which is called Maxwell point. Having a solu-
tion with two fronts, these fronts separate the domain making one of the modes to be localized or
pinned in a region. For some systems, such that one of the modes is non-uniform, this region is
stationary not only in the Maxwell point, but in a range around it, λ1 < λm < λ2.

Having two modes in 1D domain, there is a lot of possible localized pattern solutions, simply by
changing the pinning domain or the phase of wavelength. The aim is to find the stable localized
pattern solutions.

Let us first take two stationary modes: uniform stationary mode and Turing mode (non-uniform
stationary). A way to analyze the possible stable localized solutions, is to solve the time-independent
version of eq. 2.27 selecting a parameter near Maxwell point λm. There are several numerical meth-
ods to solve non-linear ODE. The solution will be a stationary profile |uλ(x)〉 that fulfils certain
conditions selected; it can be stable or unstable. Then we change slightly the parameter λ and see
how it changes the previous solution; as we move λ back when reaches a bifurcation, the new
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solutions will present hysteresis. Usually for some λ near λm there are multiple stationary states.
To make a schematic way to present the solutions, their stability and bifurcations it is convenient
to obtain a scalar from the solution state |uλ(x)〉. A particular election could be the L2-norm:
||uλ(x)||2 = 〈uλ(x)|uλ(x)〉. Then the bifurcation diagram can be made by plotting ||uλ|| vs λ; the
curve near the Maxwell point commonly has a snaking behaviour, see Fig. 2.6.

In the book [Mer15], Meron uses the modified Swift-Hohenberg equation: ∂tu = λu +αu2 − u3 −
(∇2 + k2

c )
2u as example. There is a range in the parameter space where uniform stationary solu-

tion and stationary periodic pattern coexist. In the example, the pinned or localized mode will be
the uniform one, and the periodic pattern around it. In the bifurcation diagram Fig. 2.6 different
stable localized solutions are presented in the region λ1 < λ < λ2.

Figure 2.6: Bifurcation diagram of stationary solutions of the modified SH equation.The ver-
tical axis ||u|| represents de L2 norm of u(x). At the left of the plot are represented u(x)
stationary profiles, each with different size of the localized mode, and each represented
by a dot in the bifurcation diagram. Solid/dashed lines stands for stable/unstable solu-
tions. The vertical line is at the Maxwell point λ = λm. Figure and caption from [Mer15].

“The complete bifurcation diagram of solutions is more involved and contains more periodic-
pattern branches and many more hybrid states involving mixtures of uniform and periodic pattern
domains of different sizes. Since this localized solutions are homoclinic orbits in some appropi-
ately defines phase space, this behaviour si called homoclinic snaking; where a homoclinic orbit
in this context is a trajectory in phase space that emanates from a saddle point at x → −∞ and
returns to it at x → +∞” [Mer15].

When one of the modes is a Hopf mode, then there are no stationary solutions, but we can still
have a stable pinning behaviour. Thus, the procedure to obtain the bifurcation diagram, although
is very similar than the one just described above, but it has to take into account also time integra-
tion over the the Hopf period [TMB+13].
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2.3 Previous research in the field

Coexistence of periodic stationary and temporal patterns: Hopf-Turing bifurcation

In a vicinity of the codimension-2 Hopf-Turing instability, the solution |u(x, t)〉 can be approxi-
mated by:

|u〉 ≈ |ũ〉+ |eH〉H̃(
√
ǫx,ǫt)eiωct + |eT〉T̃(

√
ǫx,ǫt)eikc x + c.c.,

where |ũ〉 is a spatially uniform state that goes through an instability, c.c. is complex conjugate,

H̃ and T̃ are slowly varying Hopf and Turing amplitudes in space and time, |eH〉 and |eT〉 are
eigenvectors of the critical Hopf frequency (ωc) and Turing wavenumber (kc) at a codimension-2
onset, respectively. Multiple-scale analysis using the above ansatz, leads to a generic set of Hopf
and Turing (HT) amplitude equations [Kee76, Kid80, JBB+01, DW99]:

∂H

∂t
= m1H − m2|H|2H − m3|T|2H + m4

∂2H

∂x2
, (2.59a)

∂T

∂t
= n1T − n2|T|2T − n3|H|2T + n4

∂2T

∂x2
, (2.59b)

where m1,2,3,4 ∈ C and n1,2,3,4 ∈ R, with the explicit functions H(x, t) = H̃(
√
ǫx,ǫt) and T(x, t) =

T̃(
√
ǫx,ǫt). Notably, system (2.59) is a reduction of (2.27) and reproduces well the flip-flop be-

havior [DKPBE94, JPM+94, Bha07, DWLDB96, DBDW+95], i.e., a spatially localized Turing state
embedded in π shifted Hopf oscillations.

Frequency locking outside the resonant region

The intriguing and rich dynamics of the Hopf-Turing bifurcation have been demonstrated not
only in the CIMA reaction [DKPBE94, DKBE90] but also have been found to be fundamental in
broadening the 2:1 frequency locking behavior in the periodically forced Belousov-Zhabotinsky
chemical reaction [YHM+02]. Consequently, we focus here on the framework of frequency lock-
ing in spatially extended oscillatory media to study both the 2D Hopf-Turing localization and its
relation to further increase of the 2:1 resonance region, in general.

Particularly in this research project we work on the FCGL equation (2.56) with n = 2 (the 2:1
frequency locking), let us present it in terms of the real and imaginary part of the amplitude,
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u = Re(A) and v = Im(A):

∂u

∂t
= (µ+γ)u − ν v +∇2u −α∇2v (2.60a)

+(−u +βv)(u2 + v2),

∂v

∂t
= ν u + (µ−γ)v +α∇2u +∇2v (2.60b)

+(−βu − v)(u2 + v2),

which have the form of a reaction-diffusion equation(2.27) with linear and non-linear terms of
the reaction functions of u and v, and also diffusion and cross-diffusion terms. In a linear regime
around the zero solution, with a forcing amplitude γ bigger than µ, u acts as an activator and v as
an inhibitor.

The codimension-2 Hopf-Turing bifurcation is an instability of the trivial uniform state A = 0 at
λ = 0 and γ = γc [YEHM04b], with ωc = να/ρ, k2

c = να/ρ2, γc = ν/ρ and ρ =
√

1 +α2. Notably,
the Hopf-Turing bifurcation occurs outside the resonance region as γc < γb. Multiple time scale
analysis resulted with coefficients [YEHM04b] for the Hopf-Turing amplitude equations (2.59):

m1 = λ− i
γ − γc

α
, m2 = 4 + i2β

2ρ2 + 1

αρ
, (2.61a)

m3 = 8ρ(α + ρ) + i

{
4β

2αρ(α + ρ) + 3ρ+α

α
− 4(α + ρ)

}
, m4 = 1 + iρ, (2.61b)

n1 = λ+ ρ
γ− γc

α
, n2 = 6ρ(α + ρ)

(
1 − β

α

)
, (2.61c)

n3 = 4

(
2 − 3

β

α

)
, n4 = 2ρ2. (2.61d)

Specifically, stability analysis of pure Hopf and Turing modes showed that for β = βc < 5α/9
these two uniform states coexist and thus it is possible to form a heteroclinic connection between
them [YEHM04b], i.e., a front solution. The Hopf-Turing front is stationary (Fig. 2.10(b)) at

γN = γc +
µ

ρ

[√
3

4
(2α − 3β)(α −β) − α

]
, (2.62)

and propagates otherwise [OGB98], withγ > γN the Turing state invades the Hopf state (Fig. 2.10(a))
and vice-verse (Fig. 2.10(c)). Moreover, the presence of the stationary front serves as an organiz-
ing center for the homoclinic snaking phenomena [TMB+13] that would be discussed in the next
subsection.

The dominance of the asymptotically stationary Turing mode in region II, γN < γ < γb, ex-
tends thus, the classical frequency locking domain (region I) once spatially extended patterns
are formed [YHM+02, YEHM04a]. Notably, Turing type solutions are in fact standing-waves
in the context of the original system (2.27). Figures 3.1(b,c) show the classical resonance region
for a single oscillator (region I) and the extended frequency locked region due to the dominance
of a spatially extended Turing mode (region II). Our interest is thus, in the unlocked region III
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(γT < γ < γN in Figures 3.1(b,c)) where, despite the Hopf mode dominance (i.e., Hopf state is
favorable over the Turing state), 2D resonant localized comb-like states may still form (see Fig-
ure 3.1(a)), with

γT = γc −
µ

4ρ
(α + 3β), (2.63)

which is the stability onset of the Turing mode [YEHM04b]. For γ < γT only Hopf oscillations
persist, i.e., region IV.

In what follows, we use γ as a control parameter while keeping all other parameters constant. No-
tably, we limit the scope to the coexistence region between the Hopf and Turing modes [YEHM04b],
with (β < 5α/9) and γT < γ < min{γH ,γb}, where γH = γc + µ(α − 3β)/ρ, see Figure 2.11. As
such the localized 2D solutions in region III are resonant states and thus extend further the fre-
quency locking boundary, as portrayed in Figure 3.1.



2.3. Previous research in the field 43

Flip-flop dynamics, depinning and homoclinic snaking

The behaviour known as “flip-flop” occurs when a small 1D stripe structure made of few wave-
lengths is surrounded on both sides by Hopf oscillations, each side oscillates with a phase jump
of π , see Fig. 2.7. The amplitude of the oscillations reaches zero in the core of the Turing struc-
ture [JPM+94]. This behaviour has been observed in experiments with chemical reactions [DKPBE94]
and also in numerical simulations [PDWD+93].

In Fig. 2.8(a) we show the evolution in time of the field u = Re(A); while in Fig. 2.8(b) we show
the profile of the Hopf and Turing amplitudes corresponding to flip-flop.
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Figure 2.7: 1D space domain x in horizontal axis. Direct numerical integration of (2.60) in 1D,
showing the flip-flop and the depinning dynamics; purple/yellow colors stands for u/v,
respectively; γ = 2.01 while other parameters µ = 0.5, ν = 2.2, β = 0, α = 0.5.
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Figure 2.8: Two different pictures are shown, FCGL and HT amplitude equations:
(a) Time in horizontal axis and position x in vertical axis. Direct numerical integration of (2.60)
in 1D, showing the flip-flop and the depinning dynamics; light/dark colors indicate max/min
value of the u = Re(A) field, respectively. γ = 2.01.
(b) Position in horizontal axis and amplitudes in vertical axis. A snapshot (with the time fixed
in t=217.2) from numerical integration of Hopf-Turing amplitude equations (2.59) corresponding
to FCGL, i.e. with parameters mi and ni taken from (2.61), γ = 2.02. Continous gray lines
correspond to Hopf ammplitudes uH = Re(H), vH = Im(H) and dashed line to RH = |H|. Blue
line correspond to the absolute value of Turing amplitude mode, R‖ = |T‖|. Starting in t = 0

with a Hopf-front, the Turing spot (blue line) in the middle of the front emerges and becomes
stable while the Hopf amplitude remains constant outside the Turing domain.γ = 2.01.
* The notation T‖ is used to emphasize that the Turing mode direction is parallel to the direction of the Hopf front. In 1D
has no relevance, but it is important to specify it in a 2D domain.
The other parameters are µ = 0.5, ν = 2.2, β = 0,α = 0.5 for both insets.
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Hopf-Turing spatial localization, pinning, and depinning in 1D have been studied in detail with
the Brusselator model by Tzou et al. (2013), who have shown the relation to the homoclinic snaking
phenomenon [TMB+13].

The Brusselator model used by Tzou was

∂tu = D∂2
xu + E − (B + 1)u + vu2,

∂tv = ∂2
xv + Bu − vu2.

Specifically, two snaking behaviours were outlined, see Fig. 2.9:

(i) Standard (vertical) snaking: if the Turing mode is embedded in Hopf background that is oscil-
lating in phase;

(ii) Collapsed snaking: if the Turing mode is embedded in Hopf background that oscillates with a
phase shift of π . This case corresponds to the “flip-flop” behaviour.

(a) (b)

Figure 2.9:
(a) Complete bifurcation diagram of stationary solutions of the Brusselator model, with

D as control parameter. In this case the norm is L2 f ≡
√∫ 1

0 ∑k[û
2
k(t) + v̂2

k(t)]dt, where

f̂k is the amplitude of the kth mode of the Fourier transform. Surrounded by blue circle
is the vertical snaking branches, BP0 and BPπ . And in some way conected with this
branches are two different branches BC1 and BC2 which present the collapsed snaking
behaviour.
(b) Is shown a zoom to see more detail of the branches BC1 and BC2 in the collapsed
snaking region. The solutions in this region correspond to the flip-flop behaviour.
Figures from [TMB+13].

Both cases form in the vicinity of a stationary front (Maxwell-type heteroclinic connection) be-
tween the Hopf (oscillatory) and the Turing (periodic) states, i.e., around γ = γN in the context of
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FCGL [see Eq. 2.62]. The width of the snaking regime is, however, rather narrow and depinning
effects become dominant at small deviations from γN . Indeed, numerical integrations of (2.56)
confirm this result also in the context of FCGL (see Fig. 2.10): for γ > γN (γ < γN) the Tur-
ing (Hopf) state invades the Hopf (Turing) state [YEHM04b], and thus the localized Turing state
(centered at x = 0) expands (collapses), respectively.

(a)

(b)
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Figure 2.10: Direct numerical integration of (2.60) in 1D, showing the flip-flop and the de-
pinning dynamics; light/dark colors indicate max/min value of the u = Re(A) field,
respectively. (a) γ = 2.015 > γN ≃ 2.01 (region II in Fig. 3.1), (b) γ = γN ≃ 2.01, (c)
γ = 2.002 < γN ≃ 2.01 (region III in Fig. 3.1), while other parameters µ = 0.5, ν = 2.2,
β = 0, α = 0.5.
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Figure 2.11: Schematic diagram that shows the stability regions of Hopf and Turing modes
with γ as the control parameter. Also shows in a descriptive way the tiny region around
γN , where flip-flop exists.
The reader should be careful with this diagram because is not an accurate plot, in fact,
for the sake of simplicity, we omit to show γb, the boundary of the resonance tongue.
In this diagram is assumed that γb > γH. But if γb were lesser than γH, then γb would
be the upper limit of the stable Hopf mode, instead of γH.
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Research work

This chapter is meant to present the important aspects and results of the research project that
we made with the collaboration and guidance of Dr. Arik Yochelis from Ben-Gurion Univer-
sity of the Negev. This section contains the main aspects that were published recently on April
2017 [MCY17]. The patterns of interest are the comb-like Turing patterns and the spiral waves
with a Turing core, illustrated in Fig. 3.1(a). We use the Forced Complex Ginzburg-Landau (FCGL)
equation (2.56). In previous studies, spiral waves with Turing core were related as a 2D extension
of the flip-flop behaviour [DKPBE94, JPM+94]. In this work we show that the comb-like Turing
pattern which is embedded in Hopf oscillations is generated by a different mechanism than flip-
flop: the emergence of a Turing mode with a wave vector perpendicular to the Hopf front is the
key of this comb-like pattern. In addition, we claim that the the Turing core inside the Hopf spiral
waves is formed by the same mechanism, which is consistent with the region of the parameter γ
(forcing amplitude) where it appears, and also with the change of the size of the core with respect
to this parameter. The physical relevance of this comb-like pattern is that it represents a structure
where resonance 2:1 takes place (although only in a localized 2D domain) and this resonant be-
haviour occurs in a parameter region that is outside the hitherto known locking region.

This chapter is organized as follows: first we show how the parameter space is divided by differ-
ent regions according to the resonant behaviour and the stability of the Hopf and Turing modes.
In the previous section was shown the narrow parameter interval where 1D flip-flop is stable; now
we introduce the comb-like Turing pattern embedded in a Hopf front within a 2D domain, and
show numerically that these planar 2D comb-like localized states exist in a wide parameter range
where flip-flop behavior is not present. Then, we present the corresponding amplitude equations
obtained by a multiple scaling analysis, which takes into account three modes: Hopf mode, and
two perpendicular Turing modes. Linear stability analysis is performed and also numerical inte-
gration of the amplitude equations. Then, in section 3.3, we exploit these insights to explain the
comb-like spiral core; at the end, we show the results of the numerical integration of amplitude
equations (with special attention on the amplitude corresponding to the Turing mode perpendicu-
lar to the front) are compared with the size of localized Turing patterns embedded in a Hopf front
or spiral waves. Finally, we conclude in section 3.4.

47



48 Chapter 3. Research work

3.1 Comb-like patterns and its parameter region

In this study, we focus on spatially localized comb-like structures in 2D, see for example Fig. 3.1(a).
We show that these localized states emerge via an alternative pinning mechanism over a much
wider range of parameters and specifically, in a region where 1D homoclinic snaking is absent.
We exploit the context of frequency locking and show that the Hopf-Turing localization in 2D
further extends the resonant behaviour outside of the resonance tongue [YHM+02, YEHM04b].
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Figure 3.1: (a) Direct numerical integration of (2.56) in 2D, showing snapshots of comb-like
localizations inside a spiral wave (top panel) and in between π shifted planar Hopf os-
cillations (bottom panel); light/dark colors indicate max/min value of the Re(A) field,
respectively. Neumann boundary conditions with no-flux were used on spatial domains
of x ∈ [0, 50], y ∈ [0, 50] (top panel) and x ∈ [0, 30], y ∈ [0, 75] (bottom panel). (b)
Applied forcing parameter plane (ν-γ) showing four distinct regions (see text for details
and definitions): Region I, which is the classical 2:1 frequency locking region, γ > γb;
Region II, in which frequency locking is extended due to dominance of Turing states,
γN ≤ γ ≤ γb; Region III, in which Hopf states are dominant but localized comb-like
Turing states can emerge (solutions such as presented in (a), with location indicated by
(�) symbol), γT ≤ γ ≤ γN ; Region IV that supports only unlocked oscillations, γ < γT.
(c) Parameter plane (β-γ) showing the limit (βc = 5α/9) of region III that corresponds to
presence of pure Turing and Hopf modes (see text for details) while other symbols as in
(b). Parameters: µ = 0.5, α = 0.5 and for (a) γ = 2, ν = 2.2, β = 0.
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3.2 Comb-like localized states

In this section, we show that localized comb-like states are formed due to pinning of a Turing
mode that is perpendicular to the π phase shifted Hopf oscillations. Namely, we look for planar
localized states, as shown in Figs. 3.2(d,e). At first, we derive the respective amplitude equations,
then we obtain uniform solutions along with their stability properties, and finally confirm the re-
sults by direct numerical integrations. The numerical integration along this work was made with
a finite differences method at first order approximation.

The robustness of comb-like structures (e.g., Fig. 3.1(a)) as compared to the narrow existence in
the parameter space of the flip-flop, suggests that the emergence mechanism is distinct. Indeed,
direct numerical simulations in 2D show that comb-like localized patterns emerge in a parameter
range in which flip-flop ceases to exist γT < γ < γ̃N , where γ̃N / γN is considered to be the
left limit of the depinning region and computed here numerically, see Fig. 2.10. Notably, since the
snaking region is very narrow as compared to the rest of the domain, we define in what follows
region III to lie within γT < γ < γN . Moreover, the width (Γ ) of the localized comb-like region
increases with γ, as shown in Fig. 3.2. To quantify Γ , we employed a discrete Fourier transform
(DFT) for every grid point. The dark shading marks the frequency with the highest contribution,
as shown in the furthermost right panels in Fig. 3.2. These results indeed confirm that comb-like
states (see Fig. 3.1) are related to a distinct 2D pinning mechanism and not just a spatial extension
of flip-flop dynamics [PDWD+93, Bha07, DWLDB96, JPM+94, MHM09].
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(a) t=0 (b) t=0
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γ
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(e)
t=246.24 t=247.51 t=249.4 Γ

Figure 3.2: Direct numerical integration of (2.56) in 2D using (a) and (b) as initial conditions
(at t = 0) for (d) γ = 1.94 and (e) γ = 2, respectively, as also indicated in top panel (c) by
(�) symbols, respectively. The Re(A) field is presented where light/dark colors indicate
max/min values, respectively. The far right column, also with x and y axis, represents
the frequencies with the highest amplitude obtained by discrete Fourier transform for
the case (see text for details), respectively. Here, the gray color corresponds to 4/(τ∆t),
where τ = 40 is the number of elements in the evaluated time series and ∆t = 0.633
corresponds to time steps within the interval, thus, the time window length which was
taken corresponds to τ(∆t) = 25.32. The width of the comb-like state is then approx-
imated by Γ which corresponds to the black color of vanishing amplitude value. The
calculations were conducted on a spatial domain x ∈ [0, 75], y ∈ [0, 31.5], with no-flux
boundary conditions in x and periodic in y. Parameters: µ = 0.5. ν = 2.2, β = 0,
α = 0.5. See moving frames at https://youtu.be/Uf0fq__9bYk .

https://youtu.be/Uf0fq__9bYk
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Weakly nonlinear analysis

Derivation of amplitude equations in 2D follows, in fact the same steps as for the 1D case but with
two Turing complex amplitudes (both varying slowly in space and time)

[
Re(A)
Im(A)

]
≈

[
(1 + iα)/ρ

1

]
H̃

(√
ǫx,

√
ǫy,ǫt

)
eiωct

+

[
(α + ρ)

1

]
T̃‖

(√
ǫx,

√
ǫy,ǫt

)
eikcx (3.1)

+

[
(α + ρ)

1

]
T̃⊥

(√
ǫx,

√
ǫy,ǫt

)
eikc y

+c.c.,

The two Turing modes T̃‖ and T̃⊥ are explicit function of the slow variables and are defined as
parallel and perpendicular to the considered π phase shifted Hopf oscillations (hereafter, Hopf
front), respectively. Following the multiple time scale method (see [YEHM04b] for details), we
obtain (after some algebra that is shown in the Appendix)

∂H

∂t
= m1H − m2|H|2H − m3

(
|T⊥|2 + |T‖|2

)
H

+m4∇2H, (3.2a)

∂T‖
∂t

= n1T‖ − n2

(
|T‖|2 + 2|T⊥|2

)
T‖ − n3|H|2T‖

+n4

∂2T‖
∂x2

, (3.2b)

∂T⊥
∂t

= n1T⊥ − n2

(
2|T‖|2 + |T⊥|2

)
T⊥ − n3|H|2T⊥

+n4
∂2T⊥
∂y2

. (3.2c)

Besides the standard Hopf-Turing solutions [YEHM04b], uniform solutions to (3.2) that involve
non-vanishing T⊥ contributions, are obtained through the amplitudes (|H|, |T‖|, |T⊥|) := (RH, R‖, R⊥) =

(R̃H, R̃‖, R̃⊥):

(i) Pure Turing modes (stripes),

R̃⊥ =

√
µα + ρ(γ− γc)

6ρ(α + ρ)(α −β)
, R̃H = R̃‖ = 0; (3.3)

(ii) Unstable mixed Turing mode (stationary squares),

R̃⊥ = R̃‖ =

√
µα + ρ(γ−γc)

18ρ(α + ρ)(α −β)
, R̃H = 0; (3.4)
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(iii) Unstable mixed Hopf-Turing mode (oscillating squares),

R̃H =
1

2

√
(18β− 2α)µ + 16ρ(γ − γc)

14α − 30β
,

R̃⊥ = R̃‖ =

√
(α − 3β)µ − ρ(γ− γc)

ρ(α + ρ)(14α − 30β)
. (3.5)

Stability and Hopf fronts

After obtaining uniform solutions, we proceed to the selection mechanism by focusing on the
spatial symmetry breaking that is induced by the Hopf front. Consequently, we associate (3.2) with
only one spatial dependence (here we use x), which corresponds to the direction of a Hopf front. In
addition, for convenience we use polar form H = RH exp (iΦ) and consider only the amplitudes
of Turing fields (spatial dependence H cannot be decoupled as for T‖,⊥). Hence, system (3.2)
becomes

∂RH

∂t
= µRH − 4R3

H − 8ρ (α + ρ)
(

R2
‖ + R2

⊥
)

RH

−
[(

∂Φ

∂x

)2

+ ρ
∂2Φ

∂x2

]
RH − 2

∂Φ

∂x

∂RH

∂x
,

+
∂2RH

∂x2
(3.6a)

∂Φ

∂t
= −γ− γc

α
− ν1R2

H − ν2

(
R2
‖ + R2

⊥
)

−
[
ρ

(
∂Φ

∂x

)2

− ∂2Φ

∂x2

]
+

2

RH

∂Φ

∂x

∂RH

∂x

+
ρ

RH

∂2RH

∂x2
, (3.6b)

∂R‖
∂t

=

[
µ+

ρ(γ− γc)

α

]
R‖ − 4

(
2 − 3

β

α

)
R2

HR‖

−6ρ(α + ρ)

(
1 − β

α

)(
R2
‖ + 2R2

⊥
)

R‖

+2ρ2
∂2R‖
∂x2

, (3.6c)

∂R⊥
∂t

=

[
µ+

ρ(γ− γc)

α

]
R⊥ − 4

(
2 − 3

β

α

)
R2

HR⊥

−6ρ(α + ρ)

(
1 − β

α

)(
2R2

‖ + R2
⊥
)

R⊥, (3.6d)

where ν1 = 2β(2ρ2 + 1)/(αρ), and ν2 = 4β[2αρ(α + ρ) + 3ρ +α]/α − 4(α + ρ). Notably, the
spatial symmetry breaking is reflected in (3.6d) through the absence of a diffusive term.
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Figure 3.3: Direct numerical integration of (3.2) showing snapshots of the amplitudes
(RH , R‖, R⊥) at (a) γ = 1.94 and (b) γ = 2 (as also indicated in Fig. 3.2(c)). The cal-
culations were conducted on a 1D spatial domain x ∈ [0, 75], under no-flux boundary
conditions, and parameters: µ = 0.5. ν = 2.2, β = 0, α = 0.5. See moving frames at
https://youtu.be/pEYVGSI9jZM .

The fixed point analysis (linear stability to spatially uniform perturbations) of (3.6) is identical
to the standard Hopf-Turing analysis [YEHM04b], and thus, the pure Hopf and pure Turing co-
existence regime remains the same, β < 5α/9. However, to gain insights into the emergence
of the T⊥ mode at the Hopf front region, we examine the linear stability of the trivial solution

(R̃H, R̃‖, R̃⊥)T=(0, 0, 0)T to non-uniform perturbations, for which the Hopf amplitude and phase
can be decoupled: 


RH

R‖
R⊥


−




R̃H

R̃‖
R̃⊥


 ∝ eσ t−ikx + c.c., (3.7)

which mean that the absolute value of the difference between the state (RH , R‖, R⊥)T and the sta-

tionary solution (R̃H, R̃‖, R̃⊥)T will be a vector that grow or decay exponentially and oscillates in
space with the k-mode; where σ is the growth rate that correspond to the wavenumber k. Substi-
tution of (3.7) in (3.6) and solving to a leading order, yields three dispersion relations:

σH = µ− k2, (3.8)

σ0 = µ+ ρ
γ−γc

α
. (3.9)

σk = µ+ ρ
γ−γc

α
− 2ρ2k2. (3.10)

As expected, the three growth rates show instability for k = 0, where the vector flow is rather
isotropic (Fig. 3.4). For completeness, we have computed the trajectories after linearizing (3.6)
about all the fixed points with RH = 0, and show them on the (R‖, R⊥) plane. The results are con-
sistent with the stability of pure Turing modes (3.3) and the saddle for a mixed Turing mode (3.4).
As k is increased, we observe a symmetry breaking betweenσ0 andσk, which occurs forσk = 0 or
equivalently for

k2
f =

µα + γρ− ν

2ρ2
. (3.11)

https://youtu.be/pEYVGSI9jZM
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(a)

k=0.45 k=0.5 k=1

(b)

k=0.42 k=0.47 k=1

Figure 3.4: Streamline of linearized vector flow for (3.6) about four fixed points at (a) γ = 1.94
and (b) γ = 2, plotted on the (R‖, R⊥) plane, and calculated for four distinct wavenum-
bers, as shown from left to right: k → 0, k . k f , k & k f , and k > k f , where k f is given

in (3.11). The axis units are
√

6R̃‖,⊥ according to (3.3), and parameters: µ = 0.5, ν = 2.2,
β = 0, α = 0.5.

Figure 3.4 shows that the perturbations about (R‖, R⊥) = (0, 0) favor the attractor (R‖, R⊥) =

(0, R̃⊥). The increasing value of the wavenumber is also consistent with the basin of attraction
which corresponds to a rather narrow spatial region due to the Hopf front location, i.e., already

for k = 1 the flow indicates ultimate preference toward (R‖, R⊥) = (0, R̃⊥).

Numerical results

Next, we check the above obtained results vs. direct numerical integrations of (3.2). We set a sharp

Hopf front by using the Hopf amplitude as an initial condition: RH(x = 0 . . . ± L) = ∓R̃H and
R‖ = R⊥ = 0. Due to diffusion in the Hopf field, at first a front solution is indeed formed and
after additional transient, an asymptotic localized T⊥ Turing state emerges inside the Hopf front
region, as shown in Fig. 3.3. The results are in accord with the linear stability analysis of the trivial
state, showing that perturbations at the mid front location x = 0, are in the basin of attraction of

the fix point (RH, R‖, R⊥) = (0, 0, R̃⊥) which corresponds to the comb-like structure in Fig. 3.2.
The width of the T⊥ Turing localized state increases with γ, which agrees well with numerical
integration of (2.56), as shown in Fig. 3.5. This could be an important feature that explains the
different size of Turing core embedded in spiral waves. We note that in the narrow vicinity of
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Figure 3.5: Width (Γ ) of the comb-like state as obtained from direct numerical integrations
of (2.56) in two space dimensions, and a localized T⊥ Turing state using (3.2). Parameters:
µ = 0.5. ν = 2.2, β = 0, α = 0.5. Notably, although µ is about order 1 from the co-
dimension 2 onset (µ = 0), the width of T⊥ obtained from integration of (3.2) is well
within the range of comb-like solutions to (2.56).

γN both Turing modes, T⊥ and T‖, coexist and can emerge depending on the initial perturbations
within the Hopf front.

The Turing mode that is parallel to the Hopf front (T‖) is being described by a partial differential
equation (3.6c) and thus in the absence of a pinning mechanism such as, homoclinic snaking, is
being directly subjected to diffusive fluxes, which are overtaken by the oscillatory Hopf mode. On
the other hand, the perpendicular Turing mode (T⊥) obeys only a local dynamics via an ordinary
differential equation (3.6d). The spatial decoupling in (3.6d) allows thus, under certain initial

conditions, pinning of the Hopf amplitude (local selection of the (RH, R‖, R⊥) = (0, 0, R̃⊥) fixed
point), which in turn results effectively in a π phase shifted front. This, however, is sensitive to
domain size or initial conditions due to the secondary zig-zag and Eckhaus instabilities [CH93,
Mer15]. For example, the length of y dimension should be an integer of the typical wavenumber
which is close to kc and within the Eckhaus stable regime; details of the Busse balloon for this
problem are given in [YEHM04b]. If this condition is not fulfilled, the nonlinear terms become
dominant and the comb-like structures are destroyed and instead a spiral wave with a comb-like
core is formed, see Fig. 3.6.
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t=79.78 t=86.74 t=96.24 t=111.44

Figure 3.6: Direct numerical integration of (2.56) in 2D, showing snapshots of the Re(A) field
for γ = 1.94 < γN ; light/dark colors indicate max/min values, respectively. Initial
condition was the same illustrated in Fig. 3.2(a). The calculations were conducted on a
spatial domain x ∈ [0, 75], y ∈ [0, 30] with no-flux boundary conditions. Other parame-
ters: µ = 0.5. ν = 2.2, β = 0, α = 0.5.

3.3 Spiral waves with comb-like core

To capture the emergence of the Turing core embedded inside a Hopf spiral, we start with a pure
Hopf spiral wave obtained forγ = 1.9, as an initial condition. As for the planar front case (Fig. 3.2),
direct numerical integration of (2.56) for γT < γ < γN shows formation of a Turing spot inside
the core due to the vanishing amplitude of the Hopf amplitude within that region, see Fig. 3.7. As
expected, also here, the Turing core size increases with γ.

To quantify the size of the Turing core, we use again DFT for each grid point within a window
of 128 time steps, where each time step is made out of 100 discrete time iterations. Consequently,
each grid point corresponds to a 128-dimensional vector with the amplitude calculated from DFT,
where only the elements with the highest amplitude value are selected, as shown in the bottom
panel of Fig. 3.7. The frequency contrast allows us to define a criterion for the width (Γ ) of the
Turing spot. The spiral core width is found to agree with results obtained via the planar front
initial condition, as shown Fig. 3.5. In the depinning region above the stationary Hopf-Turing
front condition γN < γ < γb, the spiral core expands by invasion into the Hopf oscillations due
to the dominance of the Turing mode and the domain is filled with a periodic pattern [YHM+02]
(not shown here).

3.4 Conclusions

In summary, we have presented a distinct pinning mechanism for 2D spatial localization that is
associated with the emergence of comb-like structures embedded in a temporally oscillatory back-
ground. These spatially localized states emerge in a planar form inside π phase shift oscillations
(Fig. 3.2) or as a spiral wave core (Fig. 3.7). The mechanism requires coexistence of periodic stripes
in both x and y directions and uniform oscillations, a behavior that is typical in the vicinity of
a codimension-2 Hopf-Turing bifurcation. Unlike the homoclinic snaking mechanism that gives
rise to localized states over a narrow range of parameters about a stationary Hopf-Turing front in
1D (a.k.a. flip-flop dynamics) [TMB+13], the comb-like states are robust (i.e., do not require any
Maxwell type construction) and exist over the entire coexistence range even though the Hopf state
is dominant over the Turing (γT < γ < γN), as shown in Figs. 3.1 and 3.5.
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γ=1.9 γ=1.92 γ=1.94 γ=1.96 γ=1.98 γ=2 γ=2.02

Γ

Figure 3.7: Direct numerical integration of (2.56) in 2D, showing snapshots of the Re(A) field
for various values of γ as indicated for each frame in the middle panel and also indicated
in top panel by (�) symbols, respectively; light/dark colors indicate max/min values,
respectively. Bottom panel represents the frequencies with highest amplitude obtained
by discrete Fourier transform for the case in the middle panel (see text and Fig. 3.2 for
details), respectively. The calculations were conducted on a spatial domain x ∈ [0, 50],
y ∈ [0, 50] with no-flux boundary conditions. Parameters: µ = 0.5. ν = 2.2, β = 0,
α = 0.5. See moving frames at https://youtu.be/DsuJLwP9B4k .

In the context of 2:1 frequency locking, the comb-like states correspond to spatially localized res-
onances that further extend the frequency locking regime outside the resonance tongue. Notably,
localized comb-like states have been also observed in vibrating granular media and referred to
as “decorated fronts” [BAC+00]. However, in these experiments they seem to form near reso-
nant domain patterns and thus, their formation mechanisms may be unrelated to the Hopf-Turing
bifurcation.

To this end, using the generic amplitude equation framework, we have presented a selection
mechanism that allows us to understand and robustly design spatially localized reaction-diffusion
patterns in two dimensional geometries [VE08, DBDW+95, BJP+95]. Specifically, these results
indicate the origin of intriguing spiral waves with stationary cores that have been observed in
CIMA chemical reaction [DKPBE94, JPM+94] and suggest the formation of localized resonant
patterns outside the classical 2:1 frequency locking region, as such in the case of periodically
driven Belousov-Zhabotinski chemical reaction [YHM+02]. A detailed analysis/comparison with
reaction-diffusion models for chemical reactions is however, beyond the scope of this work and
should be addressed in future studies.

https://youtu.be/DsuJLwP9B4k
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Appendix

.1 Multiple scales and weakly non-linear analysis

The codimension-2 Hopf-Turing instability bifurcation is located at µ = 0 and γ = γc; to fa-
cilitate calculations we will use the auxiliary parameter d̃ = d/µ, where d = (γ − γc) Near de
codimension-2 point bifurcation, the solution at first approximation takes into account only a sin-
gle frequency ωc in time and a wavenumber kc for oscillations in space; but we will consider
exclusively two perpendicular Turing modes, in x and y direction:

[
u0

v0

]
=

[
c
1

]
BHeiωct +

[
η

1

]
BXeikcx +

[
η

1

]
BYeikc y + c.c., (1)

where the amplitudes BH, BX and BY are not constant, but depend on slow variables T = µt,
X =

√
µx and Y =

√
µy, which describes just weak modulations of the periodic pattern.

FCGL solution can be expanded:

[
u
v

]
=

√
µ

[
u0

v0

]
+ µ

[
u1

v1

]
+µ3/2

[
u2

v2

]
+ · · · (2)

Placing (2) in eq.(2.60), where u = Re(A) and v = Im(A), we obtain three differential equations
corresponding to

√
µ, µ and µ3/2 order. For each equation we have to impose the solvability

conditions in order to avoid resonant terms; this imposition leads to equations of the amplitudes
BH(T, X, Y), BX(X, Y, T), BY(X, Y, T). Finally, the equations are rescaled back to the fast time and
space variables, to obtain the amplitude equations desired.

After expansion (2) is needed to substite it into FCGL equation (2.56) for real and imaginary part.
But the expansion terms ui and vi (for i = 0, 1, 2) explicitly depend on normal and slow variables,
which has to to be taken into account in the derivative operators by carefully applying the chain
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rule; or, equivalently, to make the following substitution in the equation:

∂

∂t
→ ∂

∂t
+µ

∂

∂T
,

∂

∂x
→ ∂

∂x
+
√
µ

∂

∂X
,

∂

∂y
→ ∂

∂y
+
√
µ

∂

∂Y
, (3)

then will be obtain three non linear equation of [ui, vi] for each order i = 0, 1, 2, of the form:

M
[

u0

v0

]
= |R0〉, (4)

M
[

u1

v1

]
= |R1〉, (5)

M
[

u2

v2

]
= |R2〉, (6)

where M is a linear operator and |Ri〉 is a two-dimensional vector column that depends on lower
order contributions of the solution. In this case the operator is:

M =



γc +∇2 − ∂t −ν−α∇2

ν +α∇2 −γc +∇2 − ∂t


 .

And the equations up to the 3/2 order get the following form.

For
√
µ order:

M
[

u0

v0

]
=

[
0
0

]
≡ |R0〉. (7)

For µ order:

M
[

u1

v1

]
= −L1

[
u0

v0

]
≡ |R1〉, (8)

where L1 ≡ 2(∂X∂x + ∂Y∂y)




1 −α

α 1


.

For µ3/2 order:

M
[

u2

v2

]
= −L1

[
u1

v1

]
−L0

[
u0

v0

]
+N0

[
u0

v0

]
≡ |R2〉, (9)
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where L0 ≡




1 + d̃ +∇2
[X,Y]− ∂t −α∇2

[X,Y]

α∇2
[X,Y]

1 − d̃ +∇2
[X,Y]

− ∂t


, and N0 ≡ (u2

0 + v2
0)




1 −β

β 1


,

whith ∇2
[X,Y]

≡ ∂2
X + ∂2

Y.

[
u0

v0

]
is solution of eq. (7) and it is needed to specify |R1〉. In the same manner

[
u1

v1

]
is solution of

the following order equation (8) and, along with explicit form of

[
u0

v0

]
, it is needed to specify |R2〉.

To solve equation (7) we can take as guess two solutions, the former consists in Hopf-mode (os-

cilations in time):

[
u0

v0

]

t

=

[
c
1

]
eiωct, and the latter is in Turing-mode (oscilations in space whose

direction is specified by ϕ):

[
u0

v0

]

ϕ

=

[
η

1

]
eikc(cosϕx+sinϕy), where c and η are constant that will

specify the direction of the solution vector.

Because of linearity of equation (4), any linear combination is also a solution. So as general solu-
tion we have:

[
u0

v0

]
= Bt

[
(1 + iα)/ρ

1

]
eiωct (10)

+

[
α + ρ

1

] ∫ π

0
Bϕeikc(cosϕx+sinϕy)dϕ+ c.c.

Bt and Bϕ are undetermined coefficents. The complex conjugate (c.c.) is added to give only real
solutions and integral takes into account all the posible direction of Turing modes.

But in the present work we are going to be only concern on two perpendicular Turing modes
(ϕ = 0 andϕ = π/2):

[
u0

v0

]
=

[
c
1

]
BHeiωct +

[
η

1

]
BXeikcx +

[
η

1

]
BYeikc y + c.c.. (11)

Let us remind the value of some important quantities in terms of the parameters of the FCGL
equation (2.56):

ωc = να/ρ, γc = ν/ρ, η = α + ρ,

k2
c = να/ρ2 , c = (1 + iα)/ρ, ρ =

√
1 +α2.

In the Appendix .3 some useful equations and identities are presented.
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What follows is to obtain the explicit form of |R1〉 and |R2〉. First, with explicit solution

[
u0

v0

]
we

get |R1〉, and solving differential equation (5) we will get

[
u1

v1

]
which is needed for explicit expres-

sion of |R2〉.

For each |R j〉 that we get, we have to ensure that |R j〉 fulfills its respective solvability condition,
that will be explained in the following. At the end, solvability conditions corresponding to |R2〉
will give the amplitude equations that we are looking for.

Equations (4-6) can be written as
M|u j〉 = |R j〉, (12)

where |u j〉 =
[

u j

v j

]
, for j = 0, 1, 2.

Since we take into account the coexistence of only three modes, an arbitrary periodic and bounded
vector |w〉 will be a series of trigonometrical polynomials of the form:

|w〉 = ∑
n

∑
m

∑
p

[
anmp

bnmp

]
eniωcteikc(mx+py).

The null space of M has dimension three, and it is generated by the following vectors, see (11):

[
c
1

]
eiωct,

[
η

1

]
eikcx, ,

[
η

1

]
eikc y.

It is easy to find coefficient vectors that are orthogonal for the null space of each mode:

[
1

−c∗

]
,

[
1
−η

]

and

[
1
−η

]
, respectively.

Let us get the vectors | ft〉, | fx〉 and | fy〉 that generate the image for each mode:

M
[

1
−c∗

]
eiωct = 2ν

[
c∗

1

]
eiωct, (13)

M
[

1
−η

]
eikc x =

2ν

ρ

[
1

α + ρ

]
eikcx. (14)

Then we have: |gt〉 =
[

c∗

1

]
, |gx〉 = |gy〉 =

[
1

α + ρ

]
, and the first order polynomial trigonometric

terms of the image are generated by:

|gt〉eiωct, |gx〉eikcx, |gy〉eikc y, (15)
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and it can be verified that the following vectors are orthogonal to each of the vectors |gt〉, |gx〉 and
|gy〉, respectively:

|ht〉 =
[−c∗

1

]
, |hx〉 = |hy〉 =

[
1

α − ρ

]
, with c∗ =

1 − iα

ρ
.

|R0〉 =
[

0
0

]
, so there is no need to impose a solvability condition.

Now let’s get explicit form of |R1〉. Then we can solve eq. (5).

Substituting (11) in (8) we have:

|R1〉 = −2ikc

[
(∂XBX)e

ikc x + (∂YBY)e
ikc y

] 


ρ

αη+ 1


+ c.c.

(16)

It is easily seen that

[
ρ

αη+ 1

]
= ρ

[
1

α + ρ

]
= ρ|gx〉 = ρ|gy〉, thus |R1〉 already belongs to the image

of M.

Now that we have |R1〉, we can solve the equation (5). As both elements of |R1〉 are not explicitly
dependent on t, only on eikcx and eikc y (and its respective complex conjugate), then the guess solu-
tion will only have dependence on those exponential.

As particular solution of the equation (5) is proposed the following:
[

u1

v1

]

p

=

[
a1

a2

] (
ikc∂X BX

)
eikcx +

[
b1

b2

] (
ikc∂YBY

)
eikc y + c.c.

Testing it in the left side of equation (5) we get infinite solutions for the coeficients a1, a2, b1 and
b2, with two conditions where we can pick arbitrarily any a1 and b1 to specify some a2 and b2; the

easiest election is a1 = b1 = 0, so a2 = b2 = 2ρ3

ν
.

The complete solution of eq. (5) is the sum of an homogenous and a particular solution. But
homogenous solution can be multiplied by an atribtrary constant, that for simplicity we select to
be zero. [

u1

v1

]
= ikc

[
0

2ρ3/ν

] [(
∂X BX

)
eikcx +

(
∂YBY

)
eikc y

]
+ c.c. (17)

Now with

[
u0

v0

]
and

[
u1

v1

]
we have all the information needed to get an explicit expression of |R2〉.

One we have |R2〉 we can impose the solvability conditions and from them we will get equations
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of the amplitudes BH, BX and BY.

Recalling (9) and (6), we have:

|R2〉 = −2(∂X∂x + ∂Y∂y)




1 −α

α 1






u1

v1


 (18)

−




1 + d̃ +∇2
[X,Y]− ∂t −α∇2

[X,Y]

α∇2
[X,Y] 1 − d̃ +∇2

[X,Y]− ∂t







u0

v0




+(u2
0 + v2

0)




1 −β

β 1








u0

v0



 .

u0 and v0 are linear combinations of {e±iωct, e±ikcx, e±ikc y}. Because of the terms (u2
0 + v2

0)u0 and
(u2

0 + v2
0)v0, elements of |R2〉 are going to be linear combinations of triple products {e±ia · e±ib ·

e±ic}, where a, b and c takes all the posible values within the set {ωct, kcx, kc y}, that is, linear
combination of all cubic terms (pure and cross-terms).

As we are interested solely in the solvability condition which corresponds to |R2〉, we do not need
to obtain the complete expression of |R2〉, but only the first order trigonometric polynomial terms,
which are proportional to eiωct, eikcx and eikc y. It is not trivial that these terms of |R2〉 belong to the
image of M, since the image is spanned by the vectors presented in (15), so we need to impose
that condition.

Thus, let’s now only present the eiωt , eikcx and eikc y terms:

(
u2

0 + v2
0

)
u0 =

[
ΦtU

]
eiωct +

[
ΦxU

]
eikcx +

[
ΦyU

]
eikc y

+
[
Φ∗

tU

]
e−iωct +

[
Φ∗

xU

]
e−ikcx +

[
Φ∗

yU

]
e−ikc y

+ the other cubic terms, (19)

and
(

u2
0 + v2

0

)
v0 =

[
ΦtV

]
eiωct +

[
ΦxV

]
eikc x +

[
ΦyV

]
eikc y

+
[
Φ∗

tV

]
e−iωct +

[
Φ∗

xV

]
e−ikcx +

[
Φ∗

yV

]
e−ikc y

+ the other cubic terms, (20)

where

ΦtU ≡ (4c + 2/ρ)|BH |2BH + 4η(ηc + 1)BH

(
|BX|2 + |BY|2

)
+ 2c(η2 + 1)BH

(
|BX|2 + |BY|2

)
,(21)

ΦxU ≡ 4(2η+ 1/ρ)|BH|2BX + 3η(η2 + 1)|BX|2BX + 6η(η2 + 1)|BY|2BX, (22)

ΦyU ≡ 4(2η+ 1/ρ)|BH|2BY + 3η(η2 + 1)|BY|2BY + 6η(η2 + 1)|BX|2BY. (23)
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ΦtV ≡ (4 + 2c/ρ)|BH |2BH + 4(ηc + 1)BH

(
|BX|2 + |BY|2

)
+ 2(η2 + 1)BH

(
|BX|2 + |BY|2

)
,(24)

ΦxV ≡ 4(η/ρ+ 2)|BH|2BX + 3(η2 + 1)|BX|2BX + 6(η2 + 1)|BY|2BX, (25)

ΦyV ≡ 4(η/ρ+ 2)|BH|2BY + 3(η2 + 1)|BY|2BY + 6(η2 + 1)|BX|2BY. (26)

.2 Solvability conditions

Let’s show explicit expression of each term of |R2〉, in left side of (9 ). In particular, we want to get
a expression with the form:

|R2〉 = |Ψt〉eiωct + |Ψx〉eikcx + |Ψy〉eikc y + c.c

+ the rest of pure and cross-cubic terms. (27)

Once we get the explicit expressions of |Ψt〉, |Ψx〉 and |Ψy〉, we have to apply the solvability con-
ditions:

〈ht|Ψt〉 = 0, (28a)

〈hx|Ψx〉 = 0, (28b)

〈hy|Ψy〉 = 0, (28c)

to make sure that the get the terms |Ψt〉eiωct, |Ψx〉eikcx and |Ψy〉eikc y belong to the image of M. From
the three conditions (28) we will be obtain the amplitude equations for BH(X, Y, T), BX(X, Y, T)
and BY(X, Y, T).

We can continue to develop each term of right side of eq. (18), until we get |R2〉 as a polynomial
trigonometric series :

−L1




u1

v1


 = 4αρ

(
∂2

XBX

)


−α

1


 eikcx

+ 4αρ
(
∂2

YBY

)


−α

1


 eikc y + c.c..

−L0




u0

v0


 =



−c(1 + d̃)BH + c∂T BH − (c −α)∇2

[X,Y]BH

−(1 − d̃)BH + ∂TBH − (αc + 1)∇2
[X,Y]

BH


 eiωc t

+




−η(1 + d̃)BX + η∂TBX − ρ∇2
[X,Y]

BX

−(1 − d̃)BX + ∂TBX − (αη+ 1)∇2
[X,Y]

BX


 eikcx

+




−η(1 + d̃)BY + η∂TBY − ρ∇2
[X,Y]

BY

−(1 − d̃)BY + ∂TBY − (αη+ 1)∇2
[X,Y]BY


 eikc y + c.c.
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N0




u0

v0


 =



(u2

0 + v2
0)u0 −β(u2

0 + v2
0)v0

β(u2
0 + v2

0)u0 + (u2
0 + v2

0)v0


 .

Let’s present each element separately. Reminding the outcome of (u2
0 + v2

0)u0 and (u2
0 + v2

0)v0 in
(19,20):

(u2
0 + v2

0)u0 −β(u2
0 + v2

0)v0 =
[
ΦtU −βΦtV

]
eiωct +

[
ΦxU −βΦxV

]
eikcx +

[
ΦyU −βΦyV

]
eikc y + c.c. + other cubic terms.

β(u2
0 + v2

0)u0 + (u2
0 + v2

0)v0 =
[
βΦtU +ΦtV

]
eiωct +

[
βΦxU +ΦxV

]
eikcx +

[
βΦyU +ΦyV

]
eikc y + c.c. + other cubic terms.

Now that we have explicit expressions of the vectors |Ψt〉, |Ψx〉 and |Ψy〉 we can apply the solv-
ability conditions (28) each of which will provide us an equation for the amplitudes BH, BX and
BY, respectively.

Calculating inner product in eq. (28a), gives:

0 = 〈ht |Ψt〉 =



−c∗

1



† 

−c(1 + d̃)BH + c∂TBH − (c −α)∇2

[X,Y]BH

−(1 − d̃)BH + ∂TBH − (αc + 1)∇2
[X,Y]

BH




+



−c∗

1



† 

ΦtU −βΦtV

βΦtU +ΦtV


 ,

0 = (c2 − 1)BH + (c2 + 1)d̃BH − (c2 − 1)∂TBH + (c2 − 2αc − 1)∇2BH

+
{
− c

[
4(c −β) +

2

ρ
(1 −βc)

]
+

[
4(βc + 1) +

2

ρ
(β+ c)

] }
|BH |2BH

+
{

4(ηc + 1)
[
(βη+ 1)− c(η−β)

]
+ 4ρη

[
(βc + 1)− c(c −β)

]}
BH

( |BX|2 + |BY|2
)
,

simplifying and using algebra results in (41), (42) and (44), with a1 and a2 defined in (35), finally we obtain the first
amplitude equation:

∂TBH =

(
1 − i

α
d̃

)
BH + (1 + iρ)∇2BH − ( 4 + ia1)|BH |2BH − (8ρη+ ia2)BH

(
|BX|2 + |BY|2

)
. (29)
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Continuing with eq. (28b):

0 = 〈hx |Ψx〉 = 4αρ(∂2
XBX)




1

α − ρ



† 

−α

1


+




1

α − ρ



† 


−η(1 + d̃)BX + η∂TBX − ρ∇2
[X,Y]BX

−(1 − d̃)BX + ∂TBX − (αη+ 1)∇2
[X,Y]BX




+




1

α − ρ



† 

βΦxU +ΦxV

βΦxU +ΦxV


 ,

0 = −4αρ2(∂2
XBX)− 2(α + ρd̃)BX + 2α∂TBX +

[
− ρ− (α − ρ)(αη+ 1)

]
∇2

[X,Y]BX

+
{

4
[
2(η−β) +

1

ρ
(1 −βη)

]
+ 4(α − ρ)

[
2(βη+ 1) +

1

ρ
(β+ η)

]}|BH |2BX

+ 3
[
(η−β) + (α − ρ)(βη+ 1)

]
(η2 + 1)

(
|BX|2 + 2|BY|2

)
BX ,

taking into account some algebra identities (36, 40, 46, 45), we have

∂TBX = 2ρ2(∂2
XBX) +

(
1 +

ρ

α
d̃

)
BX − 4

(
2 − 3

β

α

)
|BH |2BX − 6ρη

(
1 − β

α

) (|BX|2 + 2|BY|2
)
BX . (30)

The condition that comes from 〈hy|Ψy〉 = 0, eq. (28b), is simlialr that the previous one obtained
for 〈hx|Ψx〉 = 0. Due to the symmetry, it can be deduced the third amplitude equation for the
evolution of BY; this third equation will preserve the form of eq. (30) but exchanging Bx by By.

But we wish to have equations that do not depend in slow variables but only in terms of the
regular ones, and we have to rescale. If A(x, y, t) were the rescaled amplitude, it means that:

A(x, y, t) = µ1/2B
(√

µx,
√
µy,µt

)
. (31)

.

After rescaling the three equations: eq. (29) for Hopf amplitude H, (30) for x Turing amplitude T‖
and the corresponding eq. for y Turing amplitude T⊥, the amplitude equations are obtained;

∂H

∂t
=

(
µ − i

α
d

)
H + (1 + iρ)∇2 H − (4 + ia1)|H|2H − (8ρη+ ia2)(|T‖|2 + |T⊥|2)H, (32)

∂T‖
∂t

=

(
µ +

ρ

α
d

)
T‖ + 2ρ2

∂2T‖
∂x2

− 4

(
2 − 3

β

α

)
|H|2T‖ − 6ρη

(
1 − β

α

)(|T‖|2 + 2|T⊥|2
)
T‖, (33)

∂T⊥
∂t

=

(
µ +

ρ

α
d

)
T⊥ + 2ρ2 ∂2T⊥

∂y2
− 4

(
2 − 3

β

α

)
|H|2T⊥ − 6ρη

(
1 − β

α

)(
2|T‖|2 + |T⊥|2

)
T⊥, (34)

where

a1 =
2β

αρ
(2ρ2 + 1), a2 =

4β

α

[
2αρ(α + ρ) + 3ρ+α

]− 4η. (35)
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.3 Useful identities and some algebra simplifications

η2 + 1 = 2(αη+ 1) = 2ρη (36)

1/c = c∗, → |c|2 = c c∗ = 1. (37)

c2 − 1 =
2αi

ρ
c, (38)

1

c2 − 1
= − ρ

2α
c∗i (39)

−ρ− (α − ρ)(αη+ 1) = 0 (40)

1 − i
ρ

α
c∗ = − i

α
. (41)

( ρ

2α
c∗i

) {
c
[
4(c −β) +

2

ρ
(1 −βc)

]
−

[
4(βc + 1) +

2

ρ
(β+ c)

] }

= −( 4 + ia1). (42)

2
(

2η+ 3ρ+ 2αρη+ ρη2
)

= 4
[
α + 3ρ+ 2αρ(α + ρ)

]
.

(43)

Result (43) is useful to do the following simplification:

− ρ

2α
c∗i

{
4(ηc + 1)

[
(βη+ 1)− c(η−β)

]
+ 4ρη

[
(βc + 1)− c(c −β)

]}

= −(8ρη+ ia2). (44)

2(η−β) +
1

ρ
(1 −βη) + (α − ρ)

[
2(βη+ 1) +

1

ρ
(β+ η)

]

= 4α − 6β. (45)

(η−β) + (α − ρ)(βη+ 1) = 2(α −β). (46)

.
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supercritical turing-hopf bifurcation in a two-dimensional reaction-diffusion system.
Phys. Rev. E, 64:026219–1–026219–12, 2001. 40

[JPM+94] O. Jensen, V. O. Pannbacker, E. Mosekilde, Dewel G., and P. Borckmans. Localized
structures and front propagation in the lengyel-epstein model. Phys. Rev. E, 50:736,
1994. 12, 20, 40, 43, 47, 49, 57

[Kee76] James P Keener. Secondary bifurcation in nonlinear diffusion reaction equations.
Studies in Applied Mathematics, 55(3):187–211, 1976. 40

[Kid80] Hideyuki Kidachi. On mode interactions in reaction diffusion equation with nearly
degenerate bifurcations. Progress of Theoretical Physics, 63(4):1152–1169, 1980. 40

[KL06] W. Klen and F. Leyvraz. Crystalline nucleation in deeply quenched liquids. Phys.
Rev. Lett., 57:2845, 2006. 24

[KM10] Shigeru Kondo and Takashi Miura. Reaction-diffusion model as a framework for
understanding biological pattern formation. Science, 329(5999):1616–1620, 2010. 12

[Knu99] Carsten Knudsen. Frequency locking in forced oscillators, 1999. 37

[KS98] J. Keener and J. Sneyd. Mathematical Physiology. Springer-Verlag, New York, 1998. 12



BIBLIOGRAPHY 71

[LHMS04] Anna L Lin, Aric Hagberg, Ehud Meron, and Harry L Swinney. Resonance
tongues and patterns in periodically forced reaction-diffusion systems. Phys. Rev.
E, 69(066217):1539–3755, 2004. 37

[MCY17] Paulino Monroy Castillero and Arik Yochelis. Comb-like turing patterns embed-
ded in hopf oscillations: Spatially localized states outside the 2:1 frequency locked
region. Chaos, 27:043110–1–043110–8, 2017. 11, 47

[Mer15] Ehud Meron. Nonlinear Physics of Ecosystems. CRC Press, 2015. 11, 12, 13, 14, 24, 37,
39, 55

[MHM09] Yair Mau, Aric Hagberg, and Ehud Meron. Dual-mode spiral vortices. Phys. Rev. E,
80:065203–1–065203–4, 2009. 12, 49

[MPC97] Philip Maini, Kevin Painter, and Helene Nguyen Phong Chau. Spatial pattern for-
mation in chemical and biological systems. Journal of the Chemical Society, Faraday
Transactions, 93(20):3601–3610, 1997. 12

[Mur02] J. D. Murray. Mathematical Biology. Springer, New York, 2002. 12

[Oel14] Thomas Oelmann. more cloud stripes, 2014. 14

[OGB98] M Or-Guil and M Bode. Propagation of turing-hopf fronts. Physica A, 249:174–178,
1998. 41

[PDWD+93] J-J Perraud, Anne De Wit, Etiennette Dulos, Patrick De Kepper, Guy Dewel, and
Pierre Borckmans. One-dimensional “spirals”: Novel asynchronous chemical wave
sources. Physical Review Letters, 71(8):1272, 1993. 12, 43, 49

[Pis06] L. M. Pismen. Patterns and Interfaces in Dissipative Dynamics. Springer-Verlag, Berlin,
2006. 12

[PR07] A. Pikovsky and M. Rosenblum. Synchronization. Scholarpedia, 2(12):1459, 2007.
revision #128276. 37
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