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Abstract

This work studies a class of non-independent-increment, stationary, Markov processes.
In particular, we aim at constructing processes in such a class with tractable transition
probabilities, and with given but arbitrary invariant distributions. Designed with these
features, the resulting processes provide several advantages. The non-independence of the
increments presents a realistic approach in many fields of application where empirical data
suggest the existence of complex dependence structures. The stationarity and Markovian-
ity force the processes to a stable behavior that allows for prediction. The full control
of the transition densities leads to efficient simulation and estimation methods, while the
control over the invariant distributions provides flexibility and a clear trade-off between
marginal and conditional properties, since one can have different dependence structures
in a model while retaining the same stationary distribution. All of these advantages lead
to a powerful class of processes.

The class may be applied in a wide spectrum of contexts. Specifically, we explore its
usefulness in the context of stochastic volatility, and in the context of time-dependent
density estimation models. The proposed approaches are illustrated with real financial
datasets. Both approaches provide a good approximation to the observed data behavior,
and prove not to compromise their generality when confronting them with other models
available in the literature.





Resumen

Este trabajo estudia una clase de procesos de Markov, estacionarios con incrementos no
independientes. En particular, nuestro objetivo es la construcción de procesos dentro
de esa clase con probabilidades de transición manejables y con distribuciones invariantes
dadas, pero arbitrarias. Diseñados con dichas características, los procesos resultantes
proporcionan varias ventajas. La no independencia de los incrementos presenta un en-
foque realista en muchos campos de aplicación en los que datos empíricos sugieren la
existencia de estructuras complejas de dependencia; la estacionariedad y markovianiedad
forzan a los procesos a un comportamiento estable que permite la predicción; el control
total de las densidades de transición conduce a métodos de simulación y estimación efi-
cientes, mientras que el control sobre las distribuciones invariantes ofrece flexibilidad y un
claro equilibrio entre las propiedades marginales y condicionales, ya que uno puede tener
diferentes estructuras de dependencia en un modelo conservando la misma distribución
estacionaria. Todas estas ventajas conducen a una poderosa clase de procesos.

La clase se puede aplicar en un amplio espectro de contextos. Específicamente, se
explora su utilidad en el contexto de volatilidad estocástica y en el contexto de modelos
de estimación de densidades que varían en el tiempo. Los enfoques propuestos se ilus-
tran con conjuntos de datos financieros reales. Ambos enfoques proporcionan una buena
aproximación al comportamiento observado en los datos y demuestran no comprometer
su generalidad al enfrentarlos con otros modelos disponibles en la literatura.
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1 Introduction

The assumption of independent increments is a dominant characteristic within many
stochastic modeling applications. However, in certain situations, empirical data suggest
the existence of more complex dependence structures. For this reason, in various areas of
application it is of interest to consider dependent increment processes that, while mod-
eling better, remain statistically tractable. Diverse stability assumptions help to make
this possible. Throughout this project, we chose to focus on non-independent-increment
processes that are stationary and Markovian. In particular, we aim at constructing pro-
cesses in such a class with tractable transition probabilities, and with given but arbitrary
invariant distributions. This document presents the research advances we have achieved
in such a class of processes and their applications.

The theory on stable behaviors of processes has been developed almost exclusively
for Markov processes and, most importantly, the Markov property assures we can make
predictions for the future of the process based solely on its present state. However, in some
parts of the thesis we will relax this property, and discuss ways to deal with the prediction
of the resulting processes, which need to have another kind of stability compensating the
non-Markovianity. The stationarity assumption assures the random processes will not
change their probabilistic structure with time. Hence, a long-enough path allows for
prediction. With these two premises, a natural starting point is to look for transition
mechanisms that retain a particular distribution of interest invariant over time. In fact,
all Markovian process with a unique invariant distribution are stationary, and some of
the drawbacks typically supporting the use of non-stationary models can be outmatched
by increasing the flexibility of the invariant distribution.

Constructing Markov models with prescribed invariant distributions has been achieved
repeatedly in the literature. A popular construction procedure is using a thinning argu-
ment, which implies decomposing the random variable at a fixed time as a thinned ver-
sion of the immediate past plus an innovation term. For instance, Barndorff-Nielsen and
Shephard (2001) use the property of self-decomposability to attain such thinning, char-
acterizing a class of continuous-time stationary models termed Ornstein-Uhlenbeck type
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CHAPTER 1. INTRODUCTION 3

processes. McKenzie (2003) uses thinning operators to define discrete-valued time series
with Poisson, negative binomial, and geometric marginals. Joe (1996) and Jørgensen and
Song (1998) present discrete-time Markov processes with invariant distributions in the
infinitely divisible convolution-closed exponential family, and Bibby et al. (2005) explore
one-dimensional stationary diffusion processes of the mean reverting type, by specifying
a particular form of the diffusion coefficient modulating the process.

The above constructions are very appealing in statistical applications but, in most
cases, no general expression for the transition probabilities is available, particularly in
the continuous-time setting. However, full control of the transition probabilities driving
a Markov process is always a desirable feature as estimation, simulation and prediction
procedures become accessible. Other constructions leading to tractable transition prob-
abilities include the one developed by Pitt et al. (2002), where stationary first order au-
toregressive processes with arbitrary marginal distributions are defined based on a Gibbs
sampler representation, Contreras-Cristan et al. (2009); Mena and Walker (2005), where
autoregressive processes are produced combining the idea of Pitt et al. (2002) with a non-
parametric approach for modeling the transition density, and Mena and Walker (2009)
where a continuous-time stationary Markov model is constructed based also on Pitt et al.
(2002) latent representation of the transition probabilities.

In this work, we explore two simple yet powerful methods to construct stationary
Markov processes with tractable transition probabilities and given invariant distributions.
The first one arises from an extension of Harris recurrent Markov chains to continuous
time being stationary, Feller, and Harris recurrent. Therefore, we named the resulting
subclass of processes as stationary-Feller-Harris processes (SF-Harris processes). Most of
the work on SF-Harris processes can be also found in Anzarut and Mena (2016). The
second construction is based on a Poisson-type transform modulating the dependence
structure, so we named this subclass as f -stationary Poisson-driven Markov processes,
where f refers to the stationary density. Part of the work on f -stationary Poisson-driven
Markov processes can be found in Anzarut et al. (2017).

The thesis is divided in six chapters. Chapter 2 defines some concepts and properties
that are used along the work. The first part of the chapter deals with stability properties,
while the second one treats distributions that are utilized either in the construction of
SF-Harris and Poisson-driven Markov processes, or as invariant distributions to such
processes in specific scenarios.
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Chapter 3 directs the attention to the study of SF-Harris processes. The chapter starts
with a motivation for such processes definition, it continues with the study of interesting
mathematical and statistical properties, and it ends with the development of inference
procedures, which are illustrated for some invariant distributions, and proved with robust
simulation tests.

Chapter 4 features a first application of SF-Harris processes. A new stochastic volatil-
ity model, where the spot volatility follows a SF-Harris process, is proposed. The proposal
allows for a simple tradeoff between independence and full dependence and, at the same
time, possesses several stability properties and distributional flexibility.

A second application of SF-Harris processes, this time to a time-dependent density
model, is presented over Chapter 5. The processes are used to model the particles and
weights of a Bayesian nonparametric mixture model. The result is a simple and flexi-
ble strategy for time-dependent density estimation, allowing the construction of a great
variety of models while preserving computational simplicity.

Chapter 6 focuses on f -stationary Poisson-driven Markov processes. Over this chap-
ter, the processes definition is motivated, mathematical properties are studied, inference
methods are thoroughly developed and tested, and a number of possible applications
are presented. In the discrete-time case, special attention is placed to generalized in-
verse Gaussian stationary densities. In the continuous case, the focus is on Gamma
distributions, which are then extended to cover other invariant distributions, such as the
Generalized Extreme Value class.

We conclude the thesis in Chapter 7 with some final remarks about our current work
on each of these topics, as well as future research directions. To perform all the reported
calculations we used the R project for statistical computing.



2 Some concepts and properties

In this chapter, we present certain definitions that are used throughout the work, and
may vary widely depending on the consulted literary source. First, we give a minimal de-
scription of a number stability properties. Afterwards, we introduce some probability dis-
tributions used either in the construction of stationary Markov processes with prescribed
invariant distributions, or as invariant distributions of such constructed processes.

2.1 Stability properties

With ‘stability properties’ we mean a range of similar but very different conditions that
assure stable behaviors of processes. The stability (or instability) of a process has both
important performance engineering implications and fundamental mathematical conse-
quences. Over the section we assume that W = (Wt)t≥0 is a time-homogeneous Markov
process with state space (E,E), transition probabilities Pt(w,A) = P(Wt ∈ A|W0 = w),
and starting point W0 ∼ µ, where µ denotes the initial distribution. Additionally, we
assume that the state space E is a locally compact and separable metric space, and that
E is the Borel field on E. Let us begin by recalling the definition of a Lévy process. For
more on the theory of Lévy processes we refer to Bertoin (1998); Kyprianou (2006).

Definition 1. The process W is said to be a Lévy process if it possesses the following
properties:

(i) The paths of W are almost surely right continuous with left hand limits.

(ii) It has stationary increments, meaning that for 0≤ s≤ t, Wt−Ws is equal in distri-
bution to Wt−s.

(iii) It has independent increments, meaning that for 0≤ s≤ t, Wt−Ws is independent
of {Wu : u≥ s}.

5
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A Markov process possessing independent increments is said to be spatially homoge-
neous.

Much of the application of continuous time Markov processes is confined to the sub-
class of Lévy processes. The popularity of the Lévy class is in part due to the existing
mechanisms to deal with them. Their theory is documented on thousands of articles;
methods have been proposed that permit one to simulate paths of any Lévy process al-
most to an arbitrary level of accuracy (see e.g. Asmussen and Rosiński, 2001; Tankov,
2003); and various studies are devoted to their statistical estimation (see e.g. Comte et al.,
2010; Figueroa-López and Houdré, 2006; Neumann et al., 2009; Nolan, 2003).

Nevertheless, on occasions, empirical data or theoretical considerations suggest the
phenomena have a different dependence structure. Böttcher (2010) documents this issue
well, providing examples in areas such as hydrology, geology, and mathematical finance,
where state space dependent models provide a better fit. A natural extension to Lévy
processes are Feller processes, which are Markov processes that include Lévy processes as
a special case, but need not be spatially homogeneous.

Definition 2. The semigroup operator Tt associated to the probability kernel Pt is
given by

Ttf(x) = (Ttf)(x) =
∫
Pt(x,dy)f(y), x ∈ E, t≥ 0.

where f : E→ R is assumed to be measurable and either bounded or non-negative.

Definition 3. The process W is said to be a Feller process if its semigroup operator T
meets the following conditions:

(i) For all t≥ 0, Tt maps C0 into itself.

(ii) For any f ∈ C0 and x ∈ E, Ttf(x)→ f(x) when t ↓ 0.

Where C0 denotes the space of real-valued continuous functions that vanish at infinity.

The Chapman-Kolmogorov relation

Pt+s(x,A) =
∫
Ps(x,dy)Pt(y,A),
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met for any x ∈E and A ∈ E by every Markov process, turns into the semigroup property
TsTt = Ts+t. This suggests a formal representation Tt = etA in terms of a generator A.
Under the two Feller conditions we can define a generator A that describes the infinitesimal
evolution of the underlying process W .

Definition 4. The infinitesimal generator of a Feller process with semigroup T is
given by the uniform limit

Af = lim
t↓0

Tt−f
t

.

A function f ∈ C0 is said to be in the domain of the generator if the uniform limit
exists in C0.

Definition 5. The resolvent of order λ of a Feller process with semigroup T is given
by

Rλf(x) =
∫ ∞

0
e−λtTtf(x)dt, x ∈ E.

These two key operators uniquely determine the semigroup. Over the work we will see
which processes in our proposed construction are Feller, and some interesting implications
this entails. For more on Feller processes see, e.g., Böttcher et al. (2013); Kallenberg
(2002); Liggett (2010).

Let us now turn the attention to other stability properties, for which our main source
is the book of Meyn and Tweedie (2012).

Definition 6. An invariant (or stationary) probability distribution is a distri-
bution µ over (E,E) satisfying

∫
Pt(y,A)µ(dy) = µ(A) for all A ∈ E and for all t≥ 0.

Overall, µ does not have to be unique but, if it is, then is the limit distribution,
meaning that Pt(w,A)→ µ(A) when t→∞ for all A ∈ E . In general, it is difficult to find
invariant distributions, and the following definition makes the work easier.

Definition 7. W is µ-reversible if for all A,A′ ∈ E and for all t ≥ 0 it follows that∫
APt(y,A′)µ(dy) =

∫
A′ Pt(y,A)µ(dy).
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If a process is µ-reversible then, in particular, for any A ∈ E it follows that∫
Pt(y,A)µ(dy) =

∫
A
Pt(y,E)µ(dy) =

∫
A
µ(dy) = µ(A).

Hence, µ is an invariant distribution.

Definition 8. W is strongly stationary when all its finite-dimensional distributions
are invariant under translations of the indices. This is, if t1, ..., tk ≥ 0, A1, ...,Ak ∈ E, and
τ ≥ 0, then,

P(Wt1 ∈A1, ...,Wtk ∈Ak|W0 =w) = P(Wt1+τ ∈A1, ...,Wtk+τ ∈Ak|Wτ =w) for all w ∈E.

In this work, when we talk about stationary processes, we mean stationary in the
strong sense. We will also assume that when a process has a stationary distribution,
this one matches the initial distribution. As a consequence, any homogeneous Markov
process with stationary distribution is stationary (Kallenberg, 2002, Theorem 7.11, page
25). Hence, it is simple to verify that the process has stationary increments.

Definition 9. Let τB = inf{t≥ 0 :Wt ∈B}. W is µ-irreducible if there exists a measure
µ over (E,E) such that for any B ∈ E, µ(B)> 0 implies

P(τB <∞|W0 = w)> 0 for all w ∈ E. (2.1)

Moreover, we say that a process is recurrent if it is µ-irreducible and the average time
spent on any B ∈ E is infinite.

Definition 10. A Markov process W is recurrent if for all B ∈ E and w ∈ E,

E
[∫ ∞

0
δWt(B)dt

∣∣∣∣W0 = w
]

=∞ for all w ∈ E. (2.2)

The notion of recurrence can become even stronger by asking, rather than an infinite
number of expected visits to any state, an infinite number of visits almost surely.

Definition 11. A Markov process W is Harris recurrent if there exists a σ-finite
measure µ in (E,E) such that for any B ∈ E, µ(B)> 0 implies

P
{∫ ∞

0
δWt(B)dt=∞|W0 = w

}
= 1 for all w ∈ E. (2.3)
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Getoor (1980) proves that every Harris recurrent process has a unique (up to constant
multiples) invariant measure. A Harris recurrent process with finite invariant measure is
called positive Harris recurrent. Note that the finite invariant measure can be normalized,
so it reduces to the case of an invariant probability measure.

Let us denote by µf =
∫
f(x)µ(dx) for a measure µ and any measurable function

f :E→R, then, when a processW is positive Harris recurrent with invariant distribution
µ, it follows that

lim
t→∞

1
t

∫ t

0
g(Ws)ds→ µg

for any function g :E→R such that µ|g|<∞ (see Azéma et al., 1969). The convergence
can be made stronger by asking the process to be ergodic.

Definition 12. A process is ergodic if it has an invariant probability measure µ and

lim
t→∞

{
sup
A∈E
|Pt(w,A)−µ(A)|

}
= 0

The above result points out that the process will eventually converge to the invariant
measure, but it does not detail the speed of convergence. A common measure used to
analyze the speed of convergence is the order of the total variation distance, given by
supA∈E |Pt(w,A)−µ(A)|.

Definition 13. Let µ be the invariant probability measure, if

sup
A∈E
|Pt(w,A)−µ(A)| ≤M(w)ρt

for some finite function M and ρ < 1, we say that the process is geometrically (or
exponentially) ergodic with rate ρ. Furthermore, if M is bounded, we say that the
process is uniformly ergodic.

The term geometrically ergodic is usually applied for discrete-time processes while the
term exponentially ergodic is used for continuous-time processes.

Finally, let us mention a few words about regeneration. Harris recurrence implies the
existence of regeneration sets, so it is a type of regeneration that can occur in a process.
More generally, a stochastic process is regenerative in the classical sense if there are
random times where it starts afresh independently of the past, like a recurrent Markov
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chain at the times of visits to a fixed state. The regeneration times form a renewal
process, and split the stochastic process into a sequence of cycles that are independent
and identically distributed. Wide-sense regeneration allows the future after regeneration
to depend on the past, as long as it does not depend on the past regeneration times. In this
case, the cycles are not necessarily independent. For more on the theory of regeneration
we refer to Asmussen (2003); Sigman and Wolff (1993).

Contentions between the stability properties

We mentioned that Lévy process are a subclass of Feller processes, which themselves are a
subclass of Markov processes. Regarding the other stability properties defined in Section
2.1 we have that, in continuous time, there is not a clear order between them. In discrete
time, positive Harris recurrence is equivalent to wide-sense regeneration. In particular,
when the chains are Markovian, these will additionally imply strong stationarity and, as
a consequence, ergodicity. Therefore, a Venn diagram of the discrete-time properties in
a Markovian setting is easy to picture (see Figure 2.1). The classification becomes very
confuse as we move towards the continuous-time setting.

Some authors have managed to make such a classification assuming additional condi-
tions. For example, Kunita (1997) proves that a strongly Feller irreducible process has
at most one invariant measure and, when it has an invariant measure, such a measure is
ergodic. A process with generator T is called strongly Feller if for every bounded measur-
able function f , Ttf is bounded and continuous. Strong Feller continuity is an interesting
property, needed in many applications. However, it seems to be too restrictive.

Meyn and Tweedie (1993) identify a number of connections between the stability
properties of a process and its skeleton chains, which they define as the chains sampled
from the process at the times (tk)k∈N of a renovation process. For example, they prove
that if a process is positive Harris recurrent with invariant probability measure µ, then
the process is ergodic if and only if some skeleton chain is irreducible. Consequently, there
are positive Harris recurrent processes which are not ergodic.

We can also prove that a process can be strongly stationary without being ergodic.
For instance, if W is the strongly stationary process with invariant probability measure µ
defined by the transition functions Pt(w,A) = δw(A) with W0 ∼ µ, then W is not ergodic
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since

lim
t→∞

{
sup
A∈E
|Pt(w,A)−µ(A)|

}
= sup
A∈E
|δw(A)−µ(A)| 6= 0.

On the other hand, an autoregresive process of the first order W = (Wn)n∈N, defined
as

Wn = aWn−1 + εn, W0 = w, a ∈ (−1,1),

with independent identically distributed standard Gaussian random variables (εn)n∈N, is
not strongly stationary since by induction, one easily verifies that

Wn = anx+
n−1∑
i=0

aiWn−i ∼N
(
anx,

1−a2n

1−a2

)
.

Therefore, its mean is dependent on n. The n-step transition probability is given by

Pn(w,A) =N

(
anx,

1−a2n

1−a2

)
.

As n→∞, Pn(w,A)→ µ in total variation, where

µ=N
(

0, 1
1−a2

)

is the unique stationary distribution. However, the convergence is geometric, but not
uniform in w, since

lim
t→∞

{
sup
A∈E
|Pn(w,A)−µ(A)|

}
= 1

for any n ∈ N, so the process is geometrically ergodic.

Wide-sense regenerative processes are also not necessarily stationary or ergodic, and
the question about the equivalence between positive Harris recurrence and wide-sense
regeneration has not been answered in continuous time (Glynn, 2011). We believe that a
Venn diagram in continuous time would look as Figure 2.2. However, to fully understand
how restrictive we are in choosing one or another stability property, a deep mathematical
study of the contentions between these properties in continuous time is still missing in
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the literature. Let us finish the section by recalling that in this work we are aiming
at constructing a class of statistically tractable non-independent increment processes.
Stability properties make the tractability of a process possible, and become important
when working on the inference and application to real data sets.

2.2 On some probability distributions

This section deals with probability distributions that are used later on in the construction
of stochastic processes or as invariant distributions in some scenarios. The common
distributions, such as the Gamma, Inverse Gamma, Exponential, etc., are set out to
clarify the parameterization we will use in the thesis, however, to dig into their theoretical
properties we refer to Ross (2014). The more unconventional families of Generalized
Inverse Gaussian and Generalized Extreme Value distributions are defined, along with a
number of useful properties. Also, the Poisson Weighted Density is introduced.

• The discrete Uniform distribution with parameters k1,k2, ...,kn for some n > 0, is a
discrete probability distribution with probability mass function given by

U(ki|k1,k2, ...,kn) = 1
n
, i ∈ {1, ...,n}

Therefore, a finite number of outcomes are equally likely to happen.

• The continuous Uniform distribution with parameters a,b ∈ R, a < b, is a continuous
probability distribution with density function given by

U(x|a,b) = 1
b−a

, x ∈ [a,b].

Hence, all intervals of the same length on the support are equally probable.

• The Normal (or Gaussian) distribution with parameters µ ∈ R, σ2 > 0, is a continuous
probability distribution with density function given by

N(x|µ,σ2) = 1√
2πσ2

exp
{
− 1

2σ2 (x−µ)2
}
, x ∈ R.

• The Inverse Gaussian distribution with parameters λ,µ > 0, is a continuous probability
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distribution with density function given by

IG(x|λ,µ) =
(

λ

2πx3

)1/2
exp

{
− λ

2µ2x
(x−µ)2

}
, x > 0.

• The Gamma distribution with parameters a,b > 0, is a continuous probability distribu-
tion with density function given by

Ga(x|a,b) = ba

Γ(a)x
a−1e−bx, x > 0.

• Let p be a positive integer. The Wishart distribution with parameters V∈Rp×p positive
definite, and n> p−1, is a continuous probability distribution with density function given
by

Wp(X|V,n) = |X|(n−p−1)/2 exp
{

tr(V−1X)/2
}{

2np/2|V|n/2Γp

(
n

2

)}−1
,

where X ∈Rp×p is a positive definite matrix, Γp is the multivariate Gamma function, |X|
denotes the determinant of X, and tr denotes the trace function.

The Wishart is in fact a generalization to multiple dimensions of the Gamma distri-
bution.

• The Exponential distribution with parameter λ > 0, is a continuous probability distri-
bution with density function given by

Exp(x|λ) = λe−λx, x > 0.

Notice that Ga(x|1,λ) = Exp(x|λ).

• The Inverse Gamma distribution with parameters a,b > 0, is a continuous probability
distribution with density function given by

IGa(x|a,b) = ba

Γ(a)x
−a−1e−bx

−1
, x > 0.

It is easy to see that if X ∼ Ga(a,b), then X−1 ∼ IGa(a,b).

• The Generalized inverse Gaussian (GIG) is a three-parameter family of continuous
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probability distributions with density function

GIG(x|λ,δ,γ) = 1
2Kλ(

√
δγ)

(
γ

δ

)λ/2
xλ−1 exp

{
−1

2(δx−1 +γx)
}
, x > 0,

where λ ∈ R, (λ,γ) ∈Θλ,

Θλ =


δ ≥ 0,γ > 0, if λ > 0,
δ > 0,γ > 0, if λ= 0,
δ > 0,γ ≥ 0, if λ < 0,

and Kν is the modified Bessel function of the third kind with index ν.

Some distributions are special cases of the GIG family, for example,

GIG(x|λ,0,γ)∝ xλ−1 exp
{
−1

2γx
}
.

Therefore, when λ> 0, δ = 0, and γ > 0, we have that X has a Ga(x|λ,γ/2) density. Now,

GIG(x|λ,δ,0)∝ xλ−1 exp
{
−1

2δx
−1
}
.

Hence, if γ = 0 and λ < 0 then δ > 0 and we get the case of a IGa(x|λ,δ/2) density. Also,
when λ=−1/2 and δ,γ > 0, we have that

GIG
(
x | −1

2 , δ,γ
)
∝ x−3/2 exp

{
−1

2(δx−1 +γx)
}

= x−3/2 exp
{
− 1

2xγ
(
δγ−1 +x2

)}
∝ x−3/2 exp

{
− 1

2xγ
(√

δγ−1 +x
)2}

,

which is the kernel of a IG
(
x|γ,

√
δγ−1

)
random variable.

The GIG class is very flexible and allows to obtain various explicit results. For instance,
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let us compute the moment generating function.

MGIG(λ,δ,γ)(u) =
∫ ∞

0
eux

[
1

2Kλ(
√
δγ)

(
γ

δ

)λ/2
xλ−1 exp

{
−1

2(δx−1 +γx)
}]
dx

= 1
2Kλ(

√
δγ)

(
γ

δ

)λ/2 ∫ ∞
0

xλ−1 exp
[
−1

2{δx
−1 + (γ−2u)x}

]
dx

= 1
2Kλ(

√
δγ)

(
γ

δ

)λ/2
2Kλ

{√
δ(γ−2u)

}(
δ

γ−2u

)λ/2

=
Kλ

{√
δ(γ−2u)

}
Kλ(
√
δγ)

(
γ

γ−2u

)λ/2
,

With the restriction 2u< γ. It follows that GIG distributions have moments of any order,
in particular, if we take the first two derivatives with respect to u, and evaluate them at
u= 0 we obtain that for X ∼ GIG(λ,δ,γ),

(i) E[X] = Kλ+1(
√
δγ)

Kλ(
√
δγ)

(
δ

γ

)1/2
,

(ii) Var(X) =
Kλ+2(

√
δγ)

Kλ(
√
δγ) −

(
Kλ+1(

√
δγ)

Kλ(
√
δγ)

)2 δ
γ
.

In the following theorem we compute the expected value of some transformations of a
random variable with GIG distribution. These transformations become important because
the Kullback-Leibler divergence depends on them and, when making the estimation of the
parameters of a GIG distribution, we use the divergence as a measure of the amount of
information lost by working with the estimated model instead of the real one.

Theorem 2.2.1. Let X ∼ GIG(λ,δ,γ), then

(i) E
[
X−1

]
= Kλ+1(

√
δγ)

Kλ(
√
δγ)

(
γ

δ

)1/2
− 2λ

δ
,

(ii) E[logX] = 1
2 log

(
δ

γ

)
+

d

dλ
Kλ(
√
δγ)

Kλ(
√
δγ) .
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Proof. Let Z =X−1, then denoting with f̂ to the distribution function of Z we have that

f̂(z)∝ z−(λ−1) exp
{
−1

2(δz+γz−1)
}
z−2

= z−λ+1 exp
{
−1

2(δz+γ−1)
}
,

implying Z ∼ GIG(−λ,γ,δ). Using properties of the Bessel function it follows that

E[Z] = K−λ+1(
√
δγ)

K−λ(
√
δγ)

(
γ

δ

)1/2

= Kλ−1(
√
δγ)

Kλ(
√
δγ)

(
γ

δ

)1/2

=
Kλ+1(

√
δγ)− 2λ√

δγ
Kλ(
√
δγ)

Kλ(
√
δγ)

(
γ

δ

)1/2

= Kλ+1(
√
δγ)

Kλ(
√
δγ)

(
γ

δ

)1/2
− 2λ

δ
.

Let us consider now the random variable W = logX,

E
[
euW

]
= E[Xu]

= 1
2Kλ(

√
δγ)

(
γ

δ

)λ/2 ∫ ∞
0

xλ+u−1 exp
{
−1

2(δx−1 +γx)
}
dx

= 1
2Kλ(

√
δγ)

(
γ

δ

)λ/2
2Kλ+u(

√
δγ)

(
δ

γ

)(λ−u)/2

= Kλ+u(
√
δγ)

Kλ(
√
δγ)

(
δ

γ

)u/2
.

Therefore,

E[W ] =
d

dλ
Kλ(
√
δγ)

Kλ(
√
δγ) + 1

2 log
(
δ

γ

)
.

The following parametrization is sometimes useful for some GIG family calculations,
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specifically for the development of estimation methods. Let us take δ = κη and γ = κ/η,
then

√
δγ = κ and η =

√
δ/γ so it follows

GIG(x|λ,κ,η) = 1
2Kλ(κ)

(
1
η

)λ
xλ−1 exp

{
−κ2

(
η

x
+ x

η

)}
, x > 0, (2.4)

where λ ∈ R, (λ,γ) ∈Θλ with

Θλ =

 κ≥ 0,η > 0, if λ 6= 0,
κ > 0,η > 0, if λ= 0.

Making Rλ(κ) =Kλ+1(κ)/Kλ(κ), it follows directly that for X ∼ GIG(λ,κ,η),

(i) E[X] =Rλ(κ)η.

(ii) E
[
X−1

]
= η−1

(
Rλ(κ)−2λκ−1

)
.

(iii) E[logX] = log(η) + d

dλ
Kλ(κ)(Kλ(κ))−1 .

The advantage of this parametrization is that, as it is simple to verify, when X ∼
GIG(λ,κ,η), then X = ηZ, where Z ∼ GIG(λ,κ,1).

The Kullback-Leibler divergence is a non-symmetric similarity measure between two
probability distribution functions p and p̂ sharing a support X, defined as

KL(p, p̂) =
∫
X
p(x) log p(x)

p̂(x)dx.

If p(x) = GIG(x|λ,κ,η) and p̂(x) = GIG(x|λ̂, κ̂, η̂), it follows that

p(x)
p̂(x) =

Kλ̂(κ̂)
Kλ(κ)

η̂λ̂

ηλ
xλ−λ̂ exp

{
−κ2

(
η

x
+ x

η

)
+ κ̂

2

(
η̂

x
+ x

η̂

)}

=
Kλ̂(κ̂)
Kλ(κ)

η̂λ̂

ηλ
xλ−λ̂ exp

[
−1

2

{
(κη− κ̂η̂) 1

x
+
(
κ

η
− κ̂
η̂

)
x

}]
.
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Table I: KL divergence between p(x) = GIG(x|0,3,4) and p̂(x) = GIG(x|λ̂, κ̂, η̂)

KL(p, p̂) 0.06 0.36 2.48 6.05 49.75
λ̂ 3.5 -1 2 7 50
κ̂ 0.8 2 10 3 20
η̂ 0.6 10 6 4 4

Consequently,

log p(x)
p̂(x) = f(λ,κ,η, λ̂, κ̂, η̂) + (λ− λ̂) logx− 1

2

{
(κη− κ̂η̂) 1

x
+
(
κ

η
− κ̂
η̂

)
x

}
,

where f(λ,κ,η, λ̂, κ̂, η̂) = logKλ̂(κ̂)− logKλ(κ) + λ̂ log η̂−λ logη.

Therefore, taking X ∼ p,

KL(p, p̂) = f(λ,κ,η, λ̂, κ̂, η̂) + (λ− λ̂)E[logX]− 1
2

{
(κη− κ̂η̂)E

[
X−1

]
+
(
κ

η
− κ̂
η̂

)
E[X]

}
.

As an example, we set λ = 0, κ = 3, and η = 4, and compute the KL divergence
for different approximations (Table I and Figure 2.3). We can observe that in certain
situations, although the parameters are extremely different from the actual, the approxi-
mation is good. Because of this, the divergence is used to measure the fit, rather than an
established measure for each parameter.

• The Gumbel distribution with parameters µ ∈ R, β > 0, is a continuous probability
distribution with density function given by

Gum(x|µ,β) = 1
β

exp
[
−
{
x−µ
β

+ exp
(
−x−µ

β

)}]
, x ∈ R.

• The Weibull distribution with parameters λ,k > 0, is a continuous probability distribu-
tion with density function given by

Wei(x|λ,k) = k

λ

(
x

λ

)k−1
exp

{
−
(
x

λ

)k}
, x≥ 0.

• The Fréchet distribution with parameters µ ∈ R, σ > 0, and α > 0, is a continuous
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probability distribution with density function given by

Fr(x|µ,σ,α) = α

σ

(
x−µ
σ

)−1−α
exp

{
−
(
x−µ
σ

)−α}
, x > µ.

The Fréchet is also known as the inverse Weibull distribution because whenX ∼Fr(x|0,σ,α),
X−1 ∼Wei(x|α,σ−1).

• The Generalized Extreme Value (GEV) distribution with parameters µ ∈ R, σ > 0, and
ν ∈R, is a continuous probability distribution, often defined by its cumulative distribution
function

Ḡ(x|µ,σ,ν) = exp
−{1 + ν(x−µ)

σ

}−1/ν ,
whose support S⊂ R is given by

S =


(
−∞, µ− σ

ν

)
, if ν < 0,

(−∞, ∞), if ν = 0,(
µ− σ

ν , ∞
)
, if ν > 0.

We will save the notation GEV(x|µ,σ,ν) for the GEV density function with parameters
µ ∈ R, σ > 0, and ν ∈ R.

The Gumbel, Fréchet, and Weibull distributions can be derived from the GEV. In
fact, the GEV family was developed within extreme value theory to combine the Gumbel,
Fréchet and Weibull families also known as type I, II and III extreme value distributions.
By the extreme value theorem, the GEV distribution is the only limit distribution of
the normalized maxima of a sequence of independent and identically distributed random
variables. Hence, the GEV is often used as an approximation to model the maxima of
large sets of random variables.

For the Gumbel, notice that

lim
ν→0

Ḡ(x|µ,σ,ν) = exp
{
−exp

{
x−µ
σ

}}
,

which is the cumulative distribution function of a Gum(x|µ,σ) distribution. Now, if
X ∼ GEV(x|µ,σ,1/α) for some α > 0, then Y = µ+σ+ X−µ

α ∼ Fr(y|µ,σ,α) with y > µ.
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This implies that, Ỹ = σ+ X
α ∼ Fr(y|0,σ,α), and Ỹ −1 ∼Wei(x|α,σ−1).

• The Poisson distribution with parameter λ > 0 is a discrete probability distribution
with probability mass function given by

Po(k|λ) = e−λ
λk

k! , k = 0,1,2, ...

• Let f be an absolutely continuous probability density function supported on R+. The
f-Poisson weighted distribution with parameters φ > 0, y ∈ {0,1,2, ...}, introduced in An-
zarut et al., is a continuous probability distribution with density function given by

f̂(x|y,φ) = xye−xφf(x)
ξ(y,φ) , x > 0, (2.5)

where

ξ(y,φ) :=
∫
R+
zye−zφf(z)dz.

The density function (2.5) is well defined since ξ(y,φ) can be seen as a moment of an
exponentially tilted positive random variable, which always exists for φ > 0. Moreover,
when φ ↓ 0, the Poisson weighted density reduces to the size-biased density of f and, when
y = 0, it reduces to the Esscher transform of f . The density (2.5) can also be seen as the
posterior density of a Poisson distribution with parameter φx, denoted as Po(φx), with
prior f on x. This latter aspect, combined with the general idea of weighted distributions
introduced by Rao (1965), explains the name attributed to (2.5).

If X has density (2.5), then is direct that the moments of order r are given by

E[Xr] =
∫
R+

xyxre−xφf(x)
ξ(y,φ) dx= ξ(y+ r,φ)

ξ(y,φ) , (2.6)

and the Laplace transform is

E[e−λX ] =
∫
R+

xye−xλe−xφf(x)
ξ(y,φ) dx= ξ(y,φ+λ)

ξ(y,φ) .
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Figure 2.1: Venn diagram of the stability properties in discrete time.
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Figure 2.2: Venn diagram of the stability properties in continuous time.
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Figure 2.3: In solid appears the GIG(0,3,4) density function. The dotted lines are different
approximations of the GIG class to such a distribution along with their KL divergence.



3 SF-Harris process

In this chapter we focus in a subclass of processes that, apart from belonging to our study
class of stationary, non-independent increment Markov processes, are Feller, wide-sense
regenerative, and Harris recurrent. The first natural question that raises up is if all of
these stability conditions are highly restrictive. Should these be the minimal conditions
we impose? We will start by motivating why to focus on such a subclass and discussing
how flexible it is.

Working with Feller processes in general has not been very attractive in applications.
This could be for various reasons. First, their literature is sparse compared to the one
of Lévy processes. Second, their construction is in general difficult. The standard con-
struction methods possess a number of technical conditions, and they have to deal with
the problem of proving the very existence of the processes. (see e.g. Bass, 1988; Böttcher,
2010; Böttcher and Schnurr, 2011; Hoh, 1998; Jacob, 2005; Stroock, 2003). Third, sim-
ulating any Feller process is non-trivial (see e.g., Böttcher, 2010; Böttcher and Schnurr,
2011; Stroock, 2003). Last, to our knowledge, inference of the general class of Feller
processes has not been fully resolved.

To be able to model more accurately some scenarios, while keeping at a range of
tractable models, certain stability aspects can be assumed for the Feller class. The main
motivation for the stability properties we chose to focus on emerged from what we con-
sider to be an indispensable condition. For the processes to be tractable, their inference
should be achievable from a single, sufficiently long sample. This follows because it is
common in applications that a single realization of the processes is observed. Within the
Lévy framework, the increments of such a realization form an independent sample of a
probability distribution. As a consequence, inference is simple.

Outside the Lévy case, strong stationarity implies the random processes will not change
their probabilistic structure with time; and ergodicity implies statistical sampling can be
performed at one instant across a group of identical processes, or sampled over time on
a single process with no change in the measured result. Hence, when these properties

24
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are simultaneously assumed, inference can be performed from a single, sufficiently long
sample.

In fact, there is a vast literature on strong stationarity and ergodicity for continuous-
time Markov processes. Various central limit theorems have been established and predic-
tion problems addressed (see e.g., Oodaira and Yoshihara, 1972; Urbanik, 1967; Volnỳ,
1993). The most applied theories have been developed for diffusion processes, or for pro-
cesses with some form of regeneration sets, known as Harris recurrent processes (see e.g.,
Asmussen, 2003; Sigman and Wolff, 1993). Harris recurrent processes own the practical
advantage of allowing limiting results, which serve as a tool for statistical analysis, while
permitting a vast range of sample behaviors. Therefore, we may see them as a middle
ground between the Lévy processes tractability, and the Feller processes generality.

Wide-sense regeneration implies the existence of certain times which allow the trajec-
tories of the processes to be split into identically distributed cycles. As a consequence,
it can be exploited in the development of numerical algorithms, specifically in Monte
Carlo simulation-based methods. When a Harris recurrent strong Markov process has a
recurrent atom it is possible to see it is wide-sense regenerative. However, for general
Harris processes, at least without further assumptions, recurrent atoms do not exist. For
discrete-time Harris chains, Nummelin (1978) gives a way of constructing a recurrent atom
on an extended probability space, provided the transition operator of the chain satisfies
a minorisation condition. This construction, called splitting, assures discrete-time Harris
chains automatically exhibit a wide-sense regenerative structure.

The question of how to define an exhaustive class of Harris recurrent and wide-sense
regenerative processes in continuous time remains open. To build a non-independent
increment subclass of processes that are stationary, Feller, wide-sense regenerative, and
Harris recurrent we can extend the chains obtained with the splitting technique, and then
seek conditions to guarantee the membership to our research subclass is preserved. That
is exactly how the SF-Harris processes are obtained.

Lastly, the answer to the question about these being the minimal stability conditions
is nontrivial. It is hard to define minimal conditions since, as we saw in Section 2.1, in
continuous time there is not a clear order between the properties that can be supposed to
simplify the statistic work. The investigation on non-independent increment processes has
been extensive in numerous directions, and there is still much to explore. In this chapter,
we targeted a portion of these models which is narrow enough to assure us the existence
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of simulation and inference methods, while being broad enough to suit different scenarios
when applied to real data. In Chapter 6 we will study another subclass of processes
satisfying these features. Alternative classes of processes such as diffusions, which must
meet some conditions for the existence of stationary, ergodic or Harris recurrent solutions,
are extensively used in applications.

3.1 Definition

In the discrete-time case, a Harris recurrent Markov process is known as a Harris chain
(see, e.g., Asmussen and Rosiński, 2001). When an aperiodic Harris chain X = (Xn)n∈N
takes values in a separable metric space (E,E), the transition probabilities can be written
as a weighted sum between two probability measures, one depending on the starting point,
and the other one independent. So for ε ∈ [0,1],

K(x,A) = (1− ε)Q(A) + εµx(A), (3.1)

where A ∈ E , K(x,A) = P(Xn+1 ∈ A|Xn = x), Q is a probability measure, and µx is a
probability for each x ∈ E.

Harris chains exhibit a wide-sense regenerative structure and the representation (3.1)
has the advantage of explicitly marking it. The process will be dependent on the previ-
ous point x with probability ε, or it will take a new value, independent of x, with the
complimentary probability, thus starting a new cycle.

The structure of (3.1) also clarifies that the chain flexibility relies in two aspects.
One is the dependence structure µx, and the other is the model distributional properties,
build upon Q. A trade-off between the generality of distributions µx and Q is usually
made since, often, a flexible model can be obtained by focusing solely on the generality
of one of them. For instance, by letting Q to be multimodal, it is possible to model
with stationary processes trajectories typically associated to non-stationarity (see, e.g.,
Antoniano-Villalobos and Walker, 2016). Hence, a flexible enough Q allows a simple
choice of µx. In the opposite direction, complex dependence structures may compensate
simple choices of distributional features. Such is the case, for example, of some non-linear
autorregresive processes.
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Here, we will let Q to be arbitrary, and restrict ourselves to a simple dependence
structure. The simplest kind we can think of is to set µx as a degenerate probability
distribution in the value x, meaning that

P (x,A) = (1− ε)Q(A) + εδx(A), (3.2)

where P (x,A) = P(Yn+1 ∈ A|Yn = x), being Y = (Yn)n∈N a Harris chain, and δx(A) the
Dirac measure, which equals one when x ∈A, and zero otherwise. When ε= 0 transitions
(3.2) correspond to an independent process, and ε= 1 results in a completely dependent
process with constant paths.

We can extend a chain with transition functions (3.2) to a continuous-time Markov pro-
cessH = (Ht)t≥0 by making the parameter ε a function of time, t→ ε(t). Such an extension
preserves entirely the chain virtues. Indeed, the resulting non-independent-increment pro-
cess will be Harris recurrent, and will model in a simple manner the similarity between ob-
servations, while providing a flexible approach. Performing this extension, the Chapman-
Kolmogorov equation leads to the condition ε(s+ t) = ε(s)ε(t). Hence, ε(t) = e−αt for
some α > 0, and the Markov process transition probabilities Pt(x,A) =P(Ht ∈A|H0 = x)
are given by

Pt(x,A) = (1− e−αt)Q(A) + e−αtδx(A). (3.3)

As we saw in Section 2.1, by contrast to the discrete case, in continuous time, whether
all Harris recurrent Markov processes have a wide-sense regenerative structure is an open
problem. This has caused the definition of Harris processes to be somewhat combined in
the literature. We will say a continuous-time stochastic process is Harris if it is strongly
Markovian, Harris recurrent, and wide-sense regenerative. The extension of Harris chains
to (3.3) falls in this class, since the wide-sense regenerative structure follows automatically.
The process has piecewise constant paths, it stays in its current state an exponential time,
before jumping to another state randomly sampled from Q.

Let us consider for a moment what kind of process we would obtain if we extend the
wider class of chains (3.1) to continuous time. The transition probabilities

Kt(x,A) = (1− e−αt)Q(A) + e−αtµx(A) (3.4)

are Markovian, since Kt(x,A) =
∫
Pt(y,A)µx(dy), where Pt denotes the transition proba-
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bilities (3.3). It also follows the associated processes are wide-sense regenerative. However,
if κ is an invariant measure for (3.4), then for every time t it follows that

Q(A)(1− e−αt) + e−αt
∫
µx(A)κ(dx) = κ(A)

Taking t= 0 we get ∫
µx(A)κ(dx) = κ(A),

and making t→∞ we obtain Q(A) = κ(A). Hence, only a subclass of (3.4) possesses a
unique invariant measure, integrated by the kernels µx which keep Q invariant. Notice
this is automatically fulfilled by the kernel δx. Hence, the SF-Harris process has a unique
invariant measure and it is, as a consequence, strongly stationary.

Moreover, the semigroup operator T̂ corresponding to (3.4) is given by

T̂tf(x) = (1− e−αt)
∫
f(y)Q(dy) + e−αt

∫
f(y)µx(dy). (3.5)

Thus, it meets the Feller conditions only when µx = δx, in which case we return to
(3.3). Due to this, the term SF-Harris process is justified.

Definition 14. The SF-Harris process {Ht}t≥0 (Anzarut and Mena, 2016) is a stochas-
tic process taking values in (E,E), evolving in continuous time, and driven by the tran-
sition probability functions Pt : E ×E → [0,1] given by (3.3), where Pt(x,A) = P(Ht ∈
A|H0 = x), (E,E) is a measurable space, Q is a probability, and α > 0. We will assume a
random starting point x with distribution Q.

We let E be a Polish space, although this could be potentially relaxed. Figures 3.1 and
3.2 illustrate some SF-Harris process paths; we can observe the distribution Q modulates
the marginal behavior at each time, and the parameter α sets the rate at which the
process jumps. Let us emphasize that (E,E) can be any measurable space. For example,
we could let E be the space of positive definite matrices with real values. Setting Q as
the Wishart distribution, we would obtain a stationary, non-independent increment, and
easy to simulate process moving in this space of matrices.
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Figure 3.1: Trajectories of the SF-Harris process, where Q is a standard Normal.
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Figure 3.2: Trajectory of the SF-Harris process, where Q is a U(1,2,3,4,5) and α = 2.
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3.2 Properties

We stated that the SF-Harris process is Feller, Harris recurrent and it has stationary, non-
independent increments. Once it is known that a process is Feller, many useful properties
follow, such as the existence of right-continuous with left-hand limits paths modifications,
the strong Markov property, and right-continuity of the filtration. Moreover, the resolvent
Rλ of the process and the infinitesimal generator A are given by:

Rλf(x) =
∫ ∞

0
e−λt

{
(1− e−αt)Qf(x) + e−αtf(x)

}
dt

=Qf(x)
∫ ∞

0
e−λt− e−(λ+α)tdt+f(x)

∫ ∞
0

e−(λ+α)tdt

=Qf(x)
(1
λ

+ 1
λ+α

)
+f(x) 1

λ+α
;

and

Af = lim
t↓0

1− e−αt
t

(Qf −f)

= α(Qf −f),

where f ∈ C0.

Using the semigroup operator is straightforward to check the SF-Harris process has
constant mean and variance which match the ones of the distribution Q. Given this, we
have that for any t,h > 0

E[HtHt+h] =
∫ ∫ ∫

yzPt(x,dy)Ph(y,dz)Q(dx)

=
∫ ∫

yzPh(y,dz)Q(dy)

=
∫
yQ(dy)Thy

=
∫
yQ(dy)

{
(1− e−αh)Qy+ e−αhy

}
= (1− e−αh)(Qy)2 + e−αhQy2

= (Qy)2 + e−αh
{
Qy2− (Qy)2

}
.

Consequently, it follows that Cor(Ht,Ht+h) = e−αh.

We defined the SF-Harris process through its transition probabilities but there exists a
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unique Feller process with right-continuous with left-hand limits paths driven by transition
probabilities (3.3). An explicit representation can be found by uniformizing the chain Y
with transition probabilities (3.2). Let us expand on this. Assuming ε∈ (0,1), consider the
process YN = (YNt)t≥0, where N = (Nt)t≥0 is a Poisson process of rate λ> 0 stochastically
independent of Y .

The 2-step transition functions of Y , P 2(x,A) = P(Y2 ∈ A|Y0 = x), are given by

P 2(x,A) =
∫
P (x,dy)P (y,A)

= (1− ε2)Q(A) + ε2δx(A);

and indeed, the k-step transitions, P k(x,A) = P(Yk ∈ A|Y0 = x), follow the recursion

P k(x,A) =
∫
P k−1(x,dy)P (y,A).

Hence, it is easy to prove inductively

P k(x,A) = (1− εk)Q(A) + εkδx(A).

Therefore, the transition functions of YN are given by

Pt(x,A) =
∞∑
k=1

P k(x,A)(λt)ke−λt
k!

=

1− e−λt
∞∑
k=1

(λtε)k
k!

Q(A) +

e−λt
∞∑
k=1

(λtε)k
k!

δx(A)

=
(
1− e−λt(1−ε)

)
Q(A) + e−λt(1−ε)δx(A).

By making λ=α(1−ε)−1, we recover (3.3). Consequently, we have the following stochastic
representation.

Theorem 3.2.1. Let Y = (Yn)n∈N be a Markov chain with transition functions given by
(3.2), where ε ∈ [0,1), Y0 ∼ Q, and Q is a probability distribution. If N = (Nt)t≥0 is a
Poisson process with rate λ = α(1− ε)−1 independent of Y , then the SF-Harris process,
with marginal distribution Q and jump parameter α, has the stochastic representation
Ht = YNt for all t≥ 0.

Theorem 3.2.1 implies the SF-Harris process is a pseudo-Poisson Process, defined by
Feller (1966) as a continuous-time process that can be obtained from discrete time Markov
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chains by subordination with a Poisson process. Pseudo-Poisson Process are a special kind
of Markov jump process. In fact, every Feller process can be approximated in a natural
way by pseudo-Poisson processes (see Kallenberg, 2002, Chapter 10).

The case ε= 1 in Theorem 3.2.1 corresponds to the limit α→∞, where no jumps occur
so the process has constant paths. The case ε= 0 corresponds to independent identically
distributed random variables (Yn)n∈N, it is included in the theorem taking into account
that P 0(x,A) = δx(A) for any ε≥ 0.

Notice that the parameter λ = α(1− ε)−1 ranges in the positive real line. Fixing a
value for α, when ε grows λ gets smaller. In other words, when the dependence in the
paths of the Harris chain Y grows, then the Poisson process N introduces less dependence,
in order to get exactly the same dependence rate α in the uniformized process H = YN .
For the construction or simulation of a SF-Harris process using Theorem 3.2.1 any value
ε can be used. In particular, we stick to the simpler case ε = 0 which results in λ = α.
The following immediate corollary is useful for some calculations.

Corollary 1. Let Y be as in Theorem 3.2.1, and let (Tn)n∈N be a sequence of ran-
dom variables independent of Y . Suppose the increments (Sn)n∈N, defined as Sn =
Tn−Tn−1, are exponential, independent, and identically distributed with mean (1− ε)α−1(
Sn ∼ Exp

{
α(1− ε)−1

})
. Then the SF-Harris process, with marginal distribution Q and

jump parameter α, has the stochastic representation

Ht = x1t<T1 +
∞∑
n=1

Yn1t∈[Tn,Tn+1), for all t≥ 0. (3.6)

As of yet, we have three representations that give an intuition about the SF-Harris
process, and facilitate the study of distinct features. For instance, using the transition
probability functions (3.3), it can be easily checked the SF-Harris process is time-reversible
with invariant measure Q, and so a strongly stationary process. On the other hand, with
the representation in Corollary 1 can be shown that for any state B such that Q(B)> 0,
we have that

∫∞
0 δHt(B)dt is infinite almost surely. This means that when Q(B)> 0, the

state B is visited infinitely often with probability one. Since Q is a finite measure, the
process is positive Harris recurrent.

As a consequence of the Harris recurrence, the process will eventually converge to Q.



CHAPTER 3. SF-HARRIS PROCESS 33

Moreover, the total variation distance is given by

sup
A∈E
|Pt(x,A)−Q(A)|= e−αt sup

A∈E
|δx(A)−Q(A)|= e−αt,

which translates to the process being uniformly ergodic. Lastly, the process regenerative
property is evidenced in a natural way from Corollary 1 taking ε= 0. The independent and
identically distributed (Sn)n∈N are inter-regeneration times were the process starts afresh.
Hence, they form a renewal process, and split the stochastic process into a sequence of
identically distributed cycles.

3.3 Integrated SF-Harris process

The features shown in the previous section about H allow us to derive in a simple manner
similar properties for the integrated SF-Harris process denoted with H∗ = (H∗t )t≥0, where
H∗t =

∫ t
0Hsds. For example, the stochastic representation in Corollary 1 provides the

means to derive a similar representation for H∗.

Theorem 3.3.1. Let Y , (Tn)n∈N, and (Sn)n∈N be as in Corollary 1 . If Nt = max{n ∈
N : Tn ≤ t}, then the integrated process H∗ = (H∗t )t≥0 has the stochastic representation

H∗t =
Nt−1∑
n=0

(Yn−YNt)Sn+1 +YNtt,

where we let Y0 and T0 be constant random variables equal to x and 0 respectively.

Proof. Due to Corollary 1

H∗t =
∫ t

0
{x1s<T1 +

∞∑
n=1

Yn1s∈[Tn,Tn+1)} ds

= x
∫ t∧T1

0
ds+

∞∑
n=1

Yn

∫ t∧Tn+1

t∧Tn
ds.

Since Y0 = x and T0 = 0, it follows

H∗t =
∞∑
n=0

Yn{(t∧Tn+1)− (t∧Tn)}.
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Equivalently,

H∗t =
Nt−1∑
n=0

Yn(Tn+1−Tn) +YNt(t−TNt)

=
Nt−1∑
n=0

YnSn+1 +YNt

t−Nt−1∑
n=0

Sn+1


=
Nt−1∑
n=0

(Yn−YNt)Sn+1 +YNtt.

Note that, once again, N is a Poisson process of rate α. Let us proceed by highlighting
some second order properties about the integrated process.

Proposition 1. Denote with ξ = E[Ht] and σ2 = Var(Ht). Then, for any t,h > 0, it
follows that

(i) E[H∗t ] = ξt.

(ii) Var(H∗t ) = 2σ2

α2

(
e−αt+αt−1

)
.

(iii) Cov(H∗t ,H∗t+h) = σ2

α2

(
e−α(t+h) + e−αt− e−αh+ 2αt−1

)
.

Proof. Property (i) is direct. Property (ii) is a consequence of

Var(H∗t ) =
∫ t

0

∫ t

0
Cov(Hu,Hv)dudv

=
∫ t

0

∫ t

0
σ2e−α|u−v|dudv

= 2σ2
∫ t

0

∫ v

0
e−αududv;

and property (iii) arises from

Cov(H∗t ,H∗t+h) =
∫ t

0

∫ t+h

0
Cov(Hu,Hv)dudv

= Var(H∗t ) +
∫ t

0

∫ t+h

t
Cov(Hu,Hv)dudv

= 2σ2

α2

(
e−αt+αt−1

)
+
∫ t

0

∫ t+h

t
σ2e−α(u−v)dudv.
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Two interesting observations that follow from Proposition 1 are that Cor(H∗t ,H∗t+h)
is always positive, and it does not depend on σ2. Thus, it is the same for any marginal
distribution Q. Further, the ergodicity of H implies that

lim
t→∞

H∗(t)
t

= ξ

almost surely.

3.4 A semi-Markovian extension

The SF-Harris process is a short-memory process because its correlation decays exponen-
tially at a rate determined by one of the parameters. However, long-memory structures
are often observed in real data, examples can be found in fields as econometrics, hydrology
or telecommunications (see, e.g. Samorodnitsky, 2007, for a review). To capture these
dependence structures we could consider to model the time between jumps with a heavy-
tailed distribution, rather than an exponential one. That is, taking Y as in Theorem 3.2.1,
we can define a more general process ξ = (ξt)t≥0, given by

ξt = x1t<R1 +
∞∑
n=1

Yn1t∈[Rn,Rn+1), (3.7)

where (Rn)n∈N is a sequence of random variables independent of Y whose increments
(Vn)n∈N, defined as Vn = Rn −Rn−1, are positive with probability one, independent,
identically distributed, and with an arbitrary cumulative distribution function G.

When the increments (Vn)n∈N are exponential, we recover the SF-Harris process, in
which case the lack of memory property of the exponential distribution causes the process
to be Markovian. Otherwise, the process will be non-Markovian. However,

P (Yn+1 ∈ A,Rn+1 ≤ t|Ym = ym,Rm = rm,m≤ n)
= P (Yn+1 ∈ A,Rn+1−Rn ≤ t− rn|Yn = yn).

This implies that the process ξ is a particular case of a semi-Markov processes.
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Semi-Markov processes were introduced by Lévy (1954) and Smith (1955) almost
simultaneously. For these processes, the Markov property is not fulfilled in general. How-
ever, the processes can be embedded in a Markov process on a higher dimensional state
space. The class of semi-Markov processes has been thoroughly developed and applied in
many fields. The majority of authors study the case of finite or countable state space.
Given that the case of interest in this study is possibly in uncountable state space, we
refer to the work of Vega-Amaya (2012).

The characteristic feature of the process (3.7) and, in fact, of any semi-Markov process,
is a set of intervals of constancy in their trajectory. Since this structure is similar to the
SF-Harris process we can deduct a number of properties. For example, the process (3.7)
has non-independent increments, its mean and variance match the ones of the distribution
Q, while its autocorrelation function is given by r(t) = 1−G(t). We also have that for
any A ∈ E ,

Px(ξt ∈ A) =G(t)Q(A) +{1−G(t)}δx(A).

Therefore, the process is wide-sense regenerative, it stays in its current state for a time
depending on distribution G, before jumping to another state sampled from Q.

It is immediate to see as well that Px(ξt ∈ A)→ Q(A) when t→∞. This implies Q
is the limit distribution. Even more,

sup
A∈E
|Px(ξt ∈ A)−Q(A)|= {1−G(t)} sup

A∈E
|δx(A)−Q(A)| ≤ 1−G(t).

Hence,

lim
t→∞

{
sup
A∈E
|Px(ξt ∈ A)−Q(A)|

}
= 0

and the process is always ergodic. If G is a light-tailed distribution, meaning its tail is
exponentially bounded, then the process is uniformly ergodic.

When Q(B)> 0 it is easy to verify that

Px

{∫ ∞
0

δξt(B)dt=∞
}
≥ Px

{ ∞∑
n=1

VnδYn(B) =∞
}

= 1.

Therefore, the process (3.7) is positive Harris recurrent. Additionally, we have the follow-
ing results, whose proofs are analogous to the corresponding SF-Harris process case.
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Theorem 3.4.1. Let ξ = (ξt)t≥0 be as in (3.7). If Kt = max{n∈N :Rn ≤ t}, and K0 = 0,
then K = (Kt)t≥0 is stochastically independent of Y and ξt = YKt for all t≥ 0.

Notice that K is a renewal counting process representing the number of arrivals of the
process (3.7) in the interval (0, t].

Theorem 3.4.2. Let ξ = (ξt)t≥0 be as in (3.7); and let K be as in Theorem 3.4.1. The
integrated process, ξ∗ = (ξ∗t )t≥0, where ξ∗t =

∫ t
0 ξsds, is given by

ξ∗t =
Kt−1∑
n=0

(Yn−YKt)Vn+1 +YKtt,

defining Y0 = x.

Proposition 2. Let ξ = (ξt)t≥0 be as in (3.7). Denote with ξ̂ = E[ξt] and σ̂2 = Var(ξt).
Then, the integrated process defined in Theorem 3.4.2 has the following second order
properties.

For any t,h > 0,

(i) E[ξ∗t ] = ξ̂t.

(ii) Var(ξ∗t ) = σ̂2 ∫ t
0
∫ t
0G(u−v)dudv.

(iii) Cov(ξ∗t , ξ∗t+h) = Var(ξ∗t ) + σ̂2 ∫ t
0
∫ t+h
t G(u−v)dudv.

3.5 Inference

3.5.1 Estimation methods

In this section we develop estimation methods for the SF-Harris process parameters. We
deal with the one-dimensional case, although all methods can be extended in a natural
way to higher dimensions. We assume that x1, ...,xn is a discrete realization of the process
at times t̂1 < · · ·< t̂n, and develop four different methods.
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The no difference no jump method (NDNJ)

In this method we assume that when two observations are different it occurs because the
process jumped exactly at that moment, and when they are the same, it occurs because
the process did not jump. Following this reasoning, we equate the expected value of α
with its sample mean, and then estimate the parameters of Q with the observations in
the sample that are distinct. This natural method is likely to show problems when Q has
a high probability of repeated values, or when few observations are available.

Maximum likelihood estimation (MLE)

The MLE consists in the maximization of the likelihood or, equivalently, the log-likelihood
function, which in this case is given by

logL(α,β) = logQ(x0|β) +
n∑
i=1

log
{

(1− e−αti)Q(xi|β) + e−αtiδxi(xi−1)
}
,

where β denotes the set of parameters of Q, ti = t̂i− t̂i−1 for i = 1, ...,n, and t0 = 0. We
maximize it numerically.

Expectation-maximization algorithm (EM)

The EM algorithm is an iterative procedure to compute maximum likelihood estimates of
parameters in statistical models depending on unobserved latent variables, or in problems
which can be posed in a similar form. The EM iteration alternates between performing
an expectation (E) step, which creates a function for the conditional expectation of the
augmented likelihood, evaluated using the current estimate for the parameters; and a
maximization (M) step, which computes parameters maximizing the expectation found
on the E step. These parameter estimates are then used to determine the distribution
of the latent variables in the next E step. Convergence is assured since the algorithm is
guaranteed to increase the likelihood at each iteration.

In this case, we introduce the latent variables z0, ..., zn, where zi equals one if xi comes
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from Q, or zero otherwise. Including these variables the augmented likelihood results in

La(α,β) =
n∏
i=1

f(xi, zi|α,β)

=Q(x0|β)
n∏
i=1

{
(1− e−αti)Q(xi|β)

}zi {
e−αtiδxi(xi−1)

}1−zi
.

Therefore, as z0 = 1,

logLa(α,β) =
n∑
i=1

{
zi log(1− e−αti) + (1− zi)(−αti)

}
+

n∑
i=0

zi logQ(xi|β).

Now f(zi|xi,α,β)∝ f(xi, zi|α,β) so it follows that zi|(xi,α,β)∼ Ber(pi) with

pi = (1− e−αti)Q(xi|β)
(1− e−αti)Q(xi|β) + e−αtiδxi(xi−1) .

Properties of the Bernoulli distribution imply

Ezi|xi,α(k−1),β(k−1) [z] =

(
1− e−α(k−1)ti

)
Q
(
xi|β(k−1)

)
(
1− e−α(k−1)ti

)
Q
(
xi|β(k−1)

)
+ e−α

(k−1)tiδxi(xi−1)
.

Denoting by p(k−1)
i = Ezi|xi,α(k−1),β(k−1) [z], at each step of the EM we maximize the func-

tion G
{

(α,β) |
(
α(k−1),β(k−1)

)}
, given by

n∑
i=1

{
p

(k−1)
i log(1− e−αti) + (1−p(k−1)

i )(−αti)
}

+
n∑
i=0

p
(k−1)
i logQ(xi|β),

either numerically or analytically; depending on the difficulty of the distributional form
of Q.

Gibbs sampler

The Gibbs sampler is a Markov chain Monte Carlo algorithm for obtaining a sequence
of observations from a specified probability distribution when direct sampling is difficult.
The idea is to construct a Markov chain that has the desired distribution as its equilibrium
distribution. Since the algorithm generates a sequence of observations, when comparing
it to the other methods we use the modes as estimators.
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We assign prior distributions π(α),π(β) for α and β. Since α is a positive real number
we choose π(α) = Exp(c) for some c > 0. On the other hand, the choice of π(β) will depend
on the form of Q. Consequently, the joint posterior distribution is

π(α,β|x1, ...,xn)∝
n∏
i=1

{
(1− e−αti)Q(xi|β) + e−αtiδxi(xi−1)

}
e−αcπ(β).

The joint posterior distribution has 2n terms. Rather than dealing with it, we work
again with the variables z1, ..., zn. Under this scheme, denoting with x = (x1, ...,xn) and
z = (z1, ..., zn), we have that f(x,z,α,β)∝ La(α,β)π(β). As a result

π(β|α,x,z)∝
n∏
i=1

{
(1− e−αti)Q(xi|β)

}zi
π(β),

so the choice of π(β) can cause the full conditional distribution of β to have a tractable
form. To simulate from the full conditional distribution of α we consider two options:

(a) (Gibbs-a) We apply Adaptive Rejection Metropolis Sampling (ARMS) (Gilks et al.,
1995) to simulate at each iteration from

logπ(α|β,x,z) =
n∑
i=1

{
zi log(1− e−αti) + (1− zi)(−αti)

}
− cα.

(b) (Gibbs-b) We use an additional set of artificial random variables. Let m be the
number of zi = 1, that is m = ∑n

i=0 zi, then j0, ..., jm will be the ordered times
where the variables zi equal one. Since j1−j0, j2−j1, ..., jm−jm−1 are independent,
identically distributed variables with distribution Exp(α), denoting by j= (j0, ..., jm)
we have that

π(α|j) =
m∏
i=1

αexp{−α(ji− ji−1)}exp{−αc}

= αm exp{−α
m∑
i=1

ji− ji−1}exp{−αc}

= αm exp{−αjm}exp{−αc}
= αm exp{−α(jm+ c)}.

Consequently, α|j∼ Gamma(m+ 1, jm+ c).
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3.5.2 Simulation study

We run a simulation study to account the performance of the four estimation methods.
As we will see, the main characteristics which affect the performance are the number of
available observations, and the probability of repeated values in Q. Consequently, the
best method to apply will depend on the context. To exemplify this, we vary the number
of observations on the samples, and test the methods with two marginal distributions.

The first distribution is a discrete uniform, U(1,2,3,4,5). This distribution serves as a
good example for two reasons. First, it makes easy to follow each estimation method, since
the only parameter to estimate is α. Second, it points to the fact that with a high proba-
bility of repeated values the methods performance differs from the one obtained when Q
is continuous. The second distribution is a GIG. This specific continuous distribution is
chosen since it will later be used in the SV model.

Roughly, the testing procedure comprises two steps:

I. We choose 100 parameter values randomly. This is done by simulating from a
continuous uniform distribution at reasonable intervals for the parameters.

II. For the sample sizes k = 20, 100, 500, and 1000:

i. We simulate a process sample of length k for each parameter value.

ii. We estimate each parameter value with the four methods.

iii. We calculate an estimation error for each method using the accuracy for the
100 parameters estimation.

A testing procedure of this kind has a number of advantages. First, it proves the
estimation is working for a wide range of parameter sets and for different combinations
of them. Second, it assures that any user can run the method without problems since the
starting conditions are computed at random. Third, it provides a highly accurate estima-
tion error because there is no subjectivity involved neither in which set of parameters is
selected to display, nor in which starting point to use for each run.
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Q is a discrete uniform on {1,2,3,4,5}

Let us start with the discrete uniform case. Figure 3.2 illustrates a 28-day trajectory.
It is natural to expect that the NDNJ method and the Gibbs-b, which is its Bayesian
equivalent, underestimate the value of α. This is because the process is likely to jump
and fall back to the previous state. However, in the NDNJ or Gibbs-b methods, if two
consequent observations are equal, is assumed that it occurs because the process did not
jump. Following the testing procedure confirms this forecast. In step I, we draw the
parameters α1, ...,α100 from a uniform distribution over (0,30). In step II, we compute
the error as Eα = 1

100
100∑
i=1

∣∣∣αi−α̂i30

∣∣∣. The results are shown in Table II. Gibbs-a outperforms
all methods.

Table II: Estimation errors for the SF-Harris process parameters
in the case of Q being U(1,2,3,4,5)

Sample size ENDNJα EMLE
α EEMα EGibbs−aα EGibbs−bα

20 0.45 0.94 0.75 0.32 0.44
100 0.40 0.12 0.10 0.15 0.39
500 0.28 0.03 0.04 0.04 0.26
1000 0.22 0.03 0.03 0.02 0.18

Q is a generalized inverse Gaussian

We will use the GIG alternative parameterization developed in Section 2.2, given by equa-
tion (2.4). To illustrate the process dynamics we simulate a 40-day trajectory, appearing
in Figure 3.3. The estimation with the four methods may be developed further, using the
shape and properties of the GIG family.

NDNJ method

The algorithm we follow is:

1. We locate J = {j : xj 6= xj−1},

2. If J = ∅ then α̂ = 0, otherwise α̂ =
(

1
|J |
∑
j∈J tj

)−1
,
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3. To obtain (λ̂, κ̂, η̂) we maximize numerically L(λ,κ,η) =∑
j∈J logGIG(xj |λ,κ,η) us-

ing the BFGS quasi-Newton algorithm (named after Broyden, Fletcher, Goldfarb,
and Shanno). Such an algorithm has proven to have good performance for non-
smooth optimizations (see, e.g., Nocedal and Wright, 2006).

Maximum likelihood estimation

The corresponding log-likelihood is four-dimensional. Because of the convoluted form of
its gradient we apply the Nelder-Mead method (Nelder and Mead, 1965) to maximize it.

Expectation-maximization algorithm

It remains to expand the expression
n∑
i=0

p
(k−1)
i logQ(xi|β), which in this case is proportional

to
n∑
i=0

p
(k−1)
i

[
− log{Kλ(κ)}−λ log(η) + (λ−1) log(xi)−

κ

2

(
η

xi
+ xi
η

)]

or, alternatively,

−m(k−1) log{Kλ(κ)}−m(k−1)λ log(η) + (λ−1)S(k−1)
1 − κ2

(
ηS

(k−1)
2 + 1

η
S

(k−1)
3

)
,

where m(k−1) =
n∑
i=1

p
(k−1)
i , S(k−1)

1 =
n∑
i=1

p
(k−1)
i log(xi), S(k−1)

2 =
n∑
i=1

p
(k−1)
i /xi, and S(k−1)

3 =
n∑
i=1

p
(k−1)
i xi.

We maximize numerically at each iteration, using BFGS algorithm.
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Gibbs sampler

We assume π(λ,κ,η) =π(λ)π(κ)π(η), with λ∼N(µλ,σ2
λ), κ∼Ga(aκ, bκ), and η∼Ga(aη, bη).

The final log-joint density function is

logπ(λ,κ,η|α,x,z) =
n∑
i=1

zi logQ(xi|β) + logπ(λ) + logπ(κ) + logπ(η).

With an analogous calculation to the one done in the EM method we obtain

n∑
i=0

zi logQ(xi|β) =−m log{Kλ(κ)}−mλ log(η) + (λ−1)S1−
κ

2

(
ηS2 + 1

η
S3

)
,

where m =∑n
i=1 zi, S1 =∑n

i=1 zi log(xi), S2 =∑n
i=1 zi/xi, and S3 =∑n

i=1 zixi. Therefore,
the full conditional log-distributions are:

logπ(λ|α,κ,η,x,z) =−n log{Kλ(κ)}−λn log(η) + (λ−1)S1−
1

2σ2
λ

(λ−µλ)2,

logπ(κ|α,λ,η,x,z) =−n log{Kλ(κ)}− κ2

(
ηS2 + 1

η
S3

)
+ (aκ−1) log(κ)− bκκ,

logπ(η|α,λ,κ,x,z) =−λn log(η)− κ2

(
ηS2 + 1

η
S3

)
+ (aη−1) log(η)− bηη.

They have no known form so we use the ARMS method to simulate them.

We program these methods, and follow the testing procedure again. In step I, we
simulate the values α1, ...,α100, λ1, ...,λ100, κ1, ...,κ100, and η1, ...,η100 from a uniform
distribution over the intervals (0,30), (−5,5), (0,50), and (0,4) respectively. In step II,
the errors are calculated as:

Eα = 1
100

100∑
i=1

∣∣∣∣∣αi− α̂i30

∣∣∣∣∣ and EQ = 1
100

100∑
i=1

KL
{

GIG(λi,κi,ηi),GIG(λ̂i, κ̂i, η̂i)
}
,

The results are presented in Table III. On this occasion, the NDNJ method is the one
that provides the best results. The MLE, EM, and Gibbs-a methods are poor for the
estimation of α, while the Gibbs-b performs well for large samples.
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Table III: Estimation errors for the SF-Harris process parameters
in the case of Q being GIG(λ,κ,η)

Sample size ENDNJα EMLE
α EEMα EGibbs−aα EGibbs−bα

20 0.51 1.76 1.49 0.33 0.51
10 0.44 1.59 1.29 0.15 0.44
500 0.28 1.56 1.29 1.09 0.25
1000 0.19 1.51 1.29 1.86 0.17

ENDNJQ EMLE
Q EEMQ EGibbs−aQ EGibbs−bQ

20 0.09 0.09 0.1 0.77 0.84
100 0.02 0.02 0.03 0.31 0.31
500 0.01 0.04 0.07 0.16 0.18
1000 0.01 0.05 0.09 0.09 0.12

3.5.3 Prediction procedure

A procedure for obtaining a set ofm trajectories in new times tn+1 < · · ·< tn+k is available
by, first, simulating m parameter values from the posterior distributions, and, second, for
each one of the m values, simulating a realization of H starting on xn at time tn and
parameterized by such a value.

Given a SF-Harris process trajectory in the case where Q is U(1,2,3,4,5), we draw
a large number of realizations in future times employing the Gibbs-a method, obtaining
a set from which we can make predictions. We could calculate highest posterior density
intervals (HPD intervals), but that would not be truly meaningful since, after the process
jumps, it will randomly fall in some state 1,2,3,4,5. Hence, the most interesting aspect
is when the next jump will occur, or the probability of the first jump being before certain
time. Indeed, the mean value of the first jump time in the Figure 3.2 trajectory is 28.60,
and the probability of the first jump being before one day is 0.79. In the GIG density
case, it does make sense to apply the prediction procedure to find HPD intervals. As an
example, we took away the last ten days from the trajectory in Figure 3.3 and performed
this; simulating 1000 realizations using the Gibbs-b method and calculating with them
HPD intervals.



CHAPTER 3. SF-HARRIS PROCESS 46

3.6 Concluding remarks

SF-Harris processes arise from an extension of Harris recurrent Markov chains to con-
tinuous time being stationary, Feller, and Harris recurrent. Such processes exhibit a
wide-sense regenerative structure, they have a unique invariant distribution which can be
tailored to fit different scenarios, and they are uniformly ergodic. The structure of their
transition probabilities makes it easy to develop several representations and accurate in-
ference methods. In addition, the transitions offer a clear trade-off between independence
and full dependence.

SF-Harris processes may be applied in a wide spectrum of contexts, we explored two of
them, stochastic volatility modeling, which comes in the next chapter, and time-dependent
density estimation, which comes in the chapter following the next.
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Figure 3.3: Trajectory of the SF-Harris process, where Q is a GIG(−2,4,1) and α = 3;
plus 0.9-HPD intervals computed with the first 40 days.



4 A stochastic volatility model

Over this chapter we develop a novel stochastic volatility (SV) model where the spot
volatility follows a SF-Harris process. Continuous-time models offer the natural frame-
work for theoretical option pricing. Hence, they have dominated the literature since
mid-1980s; being the major process used a Brownian motion timed changed by a random
clock representing the volatility. Assuming friction-less markets, a weak no-arbitrage con-
dition implies the asset log-price will be a semimartingale. This leads to the formulation
Yt = At +Bτ∗t , where A is a finite variation process and Bτ∗t is a local martingale. A
popular choice for A is At = µt+βτ∗t for a pair of constants µ and β, often referred to as
the drift and the risk premium. The time change τ∗ is a random clock, which we define
as a real-valued process with non-negative and non-decreasing sample paths.

At the outset, τ∗ was assumed to be a Lévy subordinator (Clark, 1973). However,
empirical data suggested that the amplitude of returns is positively autocorrelated in time.
Surveys on this matter are given by Bollerslev et al. (1994); Ghysels et al. (1996); and
Shephard (1996). To deal with the non-independence of the increments new continuous-
time models have arisen. A popular class among them is the diffusion-based models. In
this approach, the volatility is given as the solution to a univariate stochastic differential
equation (see, e.g., Hull and White, 1987; Wiggins, 1987).

Because of the Dambis-Dubins-Schwarz theorem, the diffusions are in fact special
cases of time-changed Brownian motions, where the time change is an integrated process,
τ∗t =

∫ t
0 τsds. The process τ , identified as the spot volatility, is assumed to have almost

surely locally square integrable sample paths, while being positive and stationary. The
adoption of integrated processes makes sense theoretically, since they are a natural choice
to consider the unobserved volatility period which appears when working with a time
discretization. The Brownian motion is a martingale and τ∗t =

∫ t
0 τsds is continuous and

non-decreasing. Hence, for the process Y to be a semimartingale, E
[√
τt
]
<∞, since this

is necessary and sufficient to ensure that E
[
|Bτ∗t |

]
<∞.

Several models may originate by assuming different spot volatility processes τ . In

48
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particular, the SV model introduced here lies in this class, where τ is the SF-Harris process
in the case of Q being a positive distribution. Other examples are the standard Black-
Scholes model, which is recovered when τ is a positive constant, and the notorious models
proposed in Barndorff-Nielsen and Shephard (2001) (which we will term the BNS models),
where τ follows an Ornstein-Uhlenbeck-type equation. An overview on SV models is given
by Shephard and Andersen (2009).

4.1 The GIG-Harris SV model

To implement the proposed model, we will restrict our attention to the subclass in which
the spot volatility has a one-dimensional marginal GIG distribution. This restriction
enables us to perform a deeper study in the following sections; in which we develop its
estimation, prediction, and its application to a real data set. Formally,

Definition 15. We term the GIG-Harris SV model to the process

Yt = µt+βτ∗t +Bτ∗t , (4.1)

where τ∗t =
∫ t
0 τsds, µ,β ∈R, B = (Bt)t≥0 is a Brownian motion independent of τ = (τt)t≥0,

and τ is the SF-Harris process when Q is a GIG distribution.

Although any positive marginal distribution Q defines a spot volatility model, we
choose to use GIG distributions for various reasons. First, special cases, such as the
Gamma, Inverse Gamma, or Inverse Gaussian, have been extensively used as spot volatil-
ities in different kinds of models. Second, they have been proven to accurately fit real
data (see, e.g., Gander and Stephens, 2007). Third, they can adjust to different scenarios
since the choice of parameters will change their shape, skewness, and tail weight. Finally,
GIG distributions meet some desirable properties; among them the property of being
self-decomposable and, as a consequence, infinitely divisible.

Over Section 3.3 we developed properties for the integrated SF-Harris process, which
is the process of integrated volatility in the GIG-Harris SV model. Similar properties
may be derived for the return process. For example, second order results can be found
in Barndorff-Nielsen and Shephard (2001), where they deal with the general case of the
process τ in (4.1) being any second order or covariance stationary process. Also, we
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saw that as t→∞, t−1H∗(t)→ ξ almost surely. As a consequence, the returns tend to
normality. This desirable result is known as aggregational Gaussianity (Barndorff-Nielsen
and Shephard, 2003).

4.2 Comparison with the BNS model

The BNS model and the GIG-Harris SV model share a number of attractive properties
and differ in a few important ones. Let us start with the ones they share. In the BNS
model, the spot volatility follows a stationary process of Ornstein-Uhlenbeck type (OU
type); with the restriction that the background driving Lévy process (BDLP) has posi-
tive increments and no drift. This implies that the spot volatility jumps when the BDLP
does it, and decays exponentially in-between. Therefore, in both models the spot volatil-
ity is a stationary and ergodic process, with positive jumps, and with an exponential
autocorrelation function.

Moreover, in the BNS model, given a self-decomposable distribution, there is a unique
BDLP that will generate that specific marginal distribution for the volatility. Hence, the
modeler is allowed to choose the marginal distribution, in the same manner as in the
SF-Harris process. In particular, when Q is self-decomposable, we can choose a BDLP in
a way that the OU type and the SF-Harris process share also the mean and variance. As a
consequence, the integrated volatility and the return processes will also be equivalent up
to second order. Many of the powerful results which have been developed for estimating
and forecasting returns rely only on second moments so they can be equally applied to
the GIG-Harris SV model. Examples of these results may be found in Barndorff-Nielsen
and Shephard (2001) or Sørensen (2000).

Now, among the similarities we stated that both processes are ergodic, meaning they
will eventually converge to their invariant measure. However, the order of the speed
of convergence is not the same. The SF-Harris process is uniformly ergodic, while the
OU type processes are exponentially ergodic. Uniform ergodicity is a special case of
exponential ergodicity, where the convergence to the invariant distribution is bounded
independently of the starting point, so it leads to stronger ergodic theorems (in the terms
of total variation convergence). We refer to Down et al. (1995) for more on this results.

Finally, an important difference between both models is the simplicity of their infer-
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ence. Estimating the BNS model has not been easy. Novel simulation strategies have
been developed over the years which allow us to test a part of them in real data (see, e.g.,
Gander and Stephens, 2007; Griffin and Steel, 2006, 2010). Nevertheless, we believe such
difficulties have prevented the wide spread of this class of SV models in applications. For
this reason, an easily tractable yet flexible model is of significant importance. The simple
form of the transition functions of the SF-Harris process allows to develop the estimation
methods of Section 3.5. These methods serve a basis to propose an efficient estimation
procedure for the GIG-Harris SV model.

4.3 Extending the memory of the model

We mentioned that in both the SF-Harris and the OU type processes the spot volatility
correlation decays exponentially. This will imply the resulting SV models, GIG-Harris
and BNS, are short-memory models. Various authors have found empirical evidence
suggesting that, in certain data sets, the dependence on the volatility structure decays at
a hyperbolic rate for shorter lags; which is much slower than the exponential time-decay
(see, e.g., Andersen and Bollerslev, 1997a).

Two streams of extensions for short-range models have been mainly applied to induce
long-memory. The first one is to alter directly the short-memory volatility process by
using superpositions. Generalizations of this kind are developed in Barndorff-Nielsen
and Shephard (2003), where the BNS model is extended employing a weighted sum of
independent OU type processes. A first case is to consider a finite number of independent
processes. A new process σ2 is defined as a superposition of OU type processes, σ2

1, ...,σ
2
m,

with different persistence rates λ1, ...,λm, and independent BDLP Z1, ...,Zm through

σ2(t) =
m∑
j=1

wjσ
2
j (t), (4.2)

where the positive weights w1, ...,wm add up to one. The autocorrelation function

r(t) =
m∑
j=1

wje
−λjt (4.3)

is a weighted sum of exponentials. Thus, some of the volatility components may represent
short term variations, while others represent long term movements. Many results from the
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case m = 1 carry over to the superposition process. In particular, the integrated process
can be derived explicitly.

In general, it is difficult to find a suitable value of m in equation (4.2). An alternative,
given by Griffin (2010), is to assume an infinite number of components of which only a
finite number have non-negligible weight. Now, while this aggregation mechanism provides
a possible explanation of the long-range dependence in a time series, the models are still
of short-memory. Formally, we shall say that a stationary stochastic process exhibits
long-memory if its autocorrelation function has an asymptotic power-like behavior.

A second option to extend the BNS model that may lead to long-memory is to use an
infinite number of independent OU type process. A new process σ2 is defined as a super-
position of OU type processes, σ2

η, with different persistence rates λη, and independent
BDLP Zη through

σ2(t) =
∫
R
σ2
η(t)F (dη)

where F is a probability distribution over R⊂ R+. For example, when F is a Ga{2(1−
H),1} law, the autocorrelation function is given by

r(t) = (1 + t)−2(1−H) (4.4)

with H ∈ (1
2 ,1) being the long memory parameter.

Aiming for similar extension results with the SF-Harris process, we consider the fol-
lowing special case of the process ξ defined in (3.7).

Definition 16. We define the mixture SF-Harris process χ = (χt)t≥0 as a pro-
cess given by (3.7), where we let Y be as in Theorem 3.2.1, (Rn)n∈N be a sequence of
random variables independent of Y . We suppose the increments (Vn)n∈N, defined as
Vn = Rn−Rn−1, are exponentially distributed, Vn ∼ Exp(ρn), and {ρn}n∈N are indepen-
dent identically distributed random variables with some distribution F .

It is direct to verify that

Px(χt ∈ A) =
∫ ∞

0

{
(1− e−ρ1t)Q(A) + e−ρ1tδx(A)

}
F (dρ1).

Hence, the transition functions of the mixture SF-Harris process are a mixture of the
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SF-Harris process transitions.

Now, the autocorrelation function of the mixture SF-Harris process matches the gen-
erating function of F since

r(t) = P(V1 > t) =
∫ ∞

0
e−tρ1F (dρ1).

Therefore, subject to the dependence structure in a time series, an adequate function F
can be chosen. For instance, when F is a degenerated distribution on the value α, the
mixture SF-Harris process reduces to the SF-Harris process case, where r(t) = e−αt. When
F is a discrete distribution that takes the value λj with probability wj for j = 1, ...,m, we
recover the autocorrelation (4.3) of the finite superposition of OU type processes. Even
more, if F is a discrete distribution that may take a countably infinite number of values
we get the extension of Griffin (2010). Last, when F is a Ga{2(1−H), t+ 1}, then the
autocorrelation function is given by (4.4), so it matches the autocorrelation of the infinite
superposition of OU type processes.

More general long-memory models can be obtained by using any heavy-tailed distri-
bution F , and, as we saw in Section 3.4, a number of stability properties fulfilled by
the SF-Harris process, such as wide-sense regeneration, ergodicity, and positive Harris
recurrence, follow directly for the general model. Also, the integrated process can be
derived explicitly. However, the process is neither uniformly nor exponentially ergodic.
This makes sense since observations far away in the past remain correlated.

The second stream of extensions consists in leaving the volatility process unaltered
while changing the shape of equation (4.1). This has been achieved by replacing the
Brownian motion in the equation with a fractional Brownian motion; which is a gener-
alization of Brownian motion that can have correlated increments (see, e.g., Comte and
Renault, 1998). Indeed, fractional Brownian motion exhibits long-range dependence for
certain parameters set (when the Hurst index H ∈ (1

2 ,1)). Should the observed data need
it, this construction could be further explored to extend our proposal of SV model. This
would consist in replacing the Brownian motion by a normal approximation to fractional
Brownian motion, assuring the no-arbitrage condition is maintained (see, e.g., Gander
and Stephens, 2007).
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4.4 Inference

4.4.1 Estimation method

In this section we develop a method to simulate from the posterior distributions of the
parameters of the GIG-Harris SV model. Suppose we observe a high-frequency, discretized
realization of the log-price process Y at times t1 < · · ·< tn. Then, the model is adjusted
to returns, defined as Ri = Yti −Yti−1 , for i = 1, ...,n, where we assume Yt0 = 0. Given
such returns, a series of filters are required to obtain a set of observations of the SF-Harris
process. These are summarized in the following diagram.

Given the returns
(Rti)ni=1

We filter to measure
the process of

integrated volatility
(H∗ti)

n
i=1

We filter to measure
the process of
spot volatility

(Hti)ni=1

We estimate α and
the parameters of Q:

λ,κ,η

We estimate
µ y β

The measurement of the integrated volatility process is performed using a common
procedure based on the semimartingales quadratic variation. The procedure, found in
Barndorff-Nielsen et al. (2002), consists in approximating the quadratic variation of Y
with the realized variance. If S is a local semimartingale right continuous with left limits,
then it follows that S = A+M , where A is a predictable process of locally bounded
variation, and M is a local continuous martingale. The quadratic variation of S, denoted
by [S], is defined as

[S](t) = lim
M→∞

M−1∑
j=0
{S(tj+1)−S(tj)}2 ,

where {t1, ..., tM} is any partition of the interval [0, t] in M points. Indeed, when A is
continuous, then [S] = [M ]. Therefore, is direct to verify the quadratic variation of the
GIG-Harris SV model matches the Brownian motion random clock, H∗

Assuming h is a reasonable division of the time in which we observed the trajectory, for
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example, days, let M be the number of daily observations. The intra-day high frequency
observations are defined as

rj,i =R

{
(i−1)h+ hj

M

}
−R

{
(i−1)h+ h(j−1)

M

}
,

and the realized variance as

[RM ]i =
M∑
j=1

r2
j,i.

The procedure of Barndorff-Nielsen et al. (2002) is based on the fact that

[RM ]i→ [R]i = [R](hi)− [R]{h(i−1)}

in probability when M →∞. Hence, the realized variance is a good estimator of the
integrated volatility when M is large. This method has proven to work well for irregular
time intervals, and when the random clock is continuous, as is the integrated SF-Harris
process case. Now, given the integrated volatility observations, we perform the measure-
ment of the spot volatility process by applying the common right-hand side derivative
approximation.

Hti ≈
H∗ti−H

∗
ti−1

ti− ti−1
.

In the literature, there are multiple alternatives to filter both the integrated and
spot volatility. In order to choose the best method to apply, we tried out a number of
these alternatives, comparing them by computational time, and by the estimation errors
obtained, which are computed with 100 simulated trajectories and add up the errors of
all of the estimation steps (see Section 4.4.2). The errors show that the path properties,
such as the jump rate and the values it ranges in, are well preserved with these simple
filtering methods. If, however, we are interested in using the filtration for other purpose
than the estimation of the SF-Harris process parameters, other methods could be tried
out.

For filtering univariate integrated volatility, other methods include the bipower realized
variation, which is used later on for the jump detection procedure, the two-time scales
and the multi-scale estimator (Zhang, 2006; Zhang et al., 2005), and the realized kernel
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estimators of Barndorff-Nielsen et al. (2008). Regarding the spot volatility, examples
of alternative methods are the estimation by rolling and block sampling filters (Foster
and Nelson, 1996), the kernel-weighted estimators (Kanaya and Kristensen, 2016) and
the nonparametric kernel methods of Bandi and Renò (2009) which are robust to the
presence of jumps.

Having the spot volatility observations, we proceed using such an approximation to
estimate α and the parameters of Q, by means of the Gibbs-b method of Section 3.5.1.

Finally, for the estimation of µ and β, we have that

Ri ∼N(µ(ti− ti−1) +βH∗i ,H
∗
i ),

where H∗i = H∗ti−H
∗
ti−1 . To facilitate the calculations display we assume that times are

equidistant and h denotes the distance between them. Assigning π(µ,β) = π(µ)π(β), with
µ∼ N(mµ,σ

2
µ), and β ∼ N(mβ,σ

2
β), the joint posterior density is given by

π(µ,β|R1, ...,Rn−1) = f(R1, ...,Rn−1|µ,β)π(µ,β),

where

f(R1, ...,Rn−1|µ,β) = f(R1, ...,Rn−1|H∗1 , ...,H∗n−1,µ,β)f(H∗1 , ...,H∗n−1|µ,β)

∝ exp


n−1∑
i=1
− 1

2H∗i
(Ri−µh−βH∗i )2

 ,
since R1|H∗1 , ...,Rn−1|H∗n−1 are independent, and H∗1 , ...,H∗n−1 do not depend on µ or β.

After some algebra we obtain that, making

R̄ = 1
n−1

n−1∑
i=1

Ri, R̄2 = 1
n−1

n−1∑
i=1

Ri
H∗i

, H̄∗ = 1
n−1

n−1∑
i=1

H∗i , and H̄∗2 = 1
n−1

n−1∑
i=1

1
H∗i

,

the last expression becomes

f(R1, ...,Rn−1|µ,β)∝ exp
{
−1

2
(
µ2h2H̄∗2 −2µhR̄2 + 2hµβ+β2H̄∗−2βR̄

)}
.
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Since

π(µ)∝ exp
{
− 1

2σ2
µ

(
µ2−2µmµ

)}
and π(β)∝ exp

− 1
2σ2

β

(
β2−2βmβ

) ,
taking A = h2H̄∗2 + (σ2

µ)−1, B = hR̄2 + (mµ)(σ2
µ)−1, C = h, D = H̄∗+ (σ2

β)−1, and
E = R̄+ (mβ)(σ2

β)−1, we get

π(µ,β|R1, ...,Rn−1)∝ exp
{
−1

2
(
µ2A−2µB+ 2µβC+β2D−2βE

)}
.

Now marginalizing,

π(µ|R1, ...,Rn−1)∝ exp
{
−1

2
(
µ2A−2µB

)}∫
exp

[
−1

2
{
β2D−2β(E−µC)

}]
dβ

∝ exp
{
−1

2
(
µ2A−2µB

)}
exp

{
−1

2

(
−µ

2C2−2µEC
D

)}

∝ exp
[
−1

2

(
A− C

2

D

){
µ−

(
DB−EC
AD−C2

)}2]
.

So if we set F =AD−C2, then µ|(R1, ...,Rn−1)∼N(m̃µ, σ̃2
µ), with m̃µ = (DB−EC)F−1,

and σ̃2
µ =DF−1.

With an analogous calculation it can be proven that β|(R1, ...,Rn−1) ∼ N(m̃β, σ̃
2
β),

with m̃β = (EA−BC)F−1, and σ̃2
β = AF−1.

4.4.2 Simulation study

To validate the estimation procedure described in the previous section we run a simulation
study. Notice that the stochastic representation from Theorem 3.3.1 makes possible to
simulate trajectories of the integrated SF-Harris process in a simple way. The testing
procedure we employ is similar to the one presented in Section 3.5.2. We begin by drawing
100 values for µ, β, α, λ, κ, and η from a uniform distribution over the intervals (−2,2),
(−2,2), (0,30), (−5,5), (0,50), and (0,4) respectively. With these parameter values,
we proceed with the simulation of 100 series of spot volatility, integrated volatility, and
returns. Subsequently, we run all of the estimation steps, and calculate the estimation
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errors as:

Eµ = 1
100

100∑
i=1

∣∣∣∣∣µi− µ̂i4

∣∣∣∣∣ , Eβ = 1
100

100∑
i=1

∣∣∣∣∣∣βi− β̂i4

∣∣∣∣∣∣ , Eα = 1
100

100∑
i=1

∣∣∣∣∣αi− α̂i30

∣∣∣∣∣ , and
EQ = 1

100

100∑
i=1

KL
{

GIG(λi,κi,ηi),GIG(λ̂i, κ̂i, η̂i)
}
.

Such estimation errors are shown in Table IV. The errors of µ, β, and α are easily
interpretable since they are relative errors, ponderated by each simulation interval length.
However, that is not the case of the KL divergence, which can take any non-negative value.
To get a sense of the measure of similarity that the KL divergence represents we refer to
Figure 2.3; in which we fix a GIG distribution, and calculate the KL divergence for different
approximations.

Table IV: Estimation errors for the
GIG-Harris SV model parameters

Eµ 0.18
Eβ 0.10
Eα 0.22
EQ 0.20

4.4.3 Empirical analysis

Data and cleaning procedure

In this section, we apply the GIG-Harris SV model to the stock prices of IBM (Interna-
tional Business Machines). Let us start with an explanation of the data and the cleaning
procedure applied. The three-year series we use, obtained from Kibot (2015), covers the
period from January 2012 until December 2014. It records at every minute the open, high,
low, and close prices, and the volume of IBM stocks; in the regular times of the US trading
session, between 9:30 AM and 4:00 PM on workdays. The data are provided adjusted,
using appropriate split and dividend multipliers adhering to the Center for Research in
Security Prices standards.

To clean the data we implemented the step-by-step procedure proposed by Barndorff-
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Nielsen et al. (2009). Part of the procedure is to delete (or replace) entries with a repeated
time stamp, a zero transaction price, or a time stamp outside the exchange hours. No
entries were found in any of these cases. Hence, we proceeded by creating a single variable
that represents the stock price. We computed the standard deviation between the open
and close price for each observation, finding it is less than 0.1 for 95 percent of the sample.
This suggests that creating such a new variable by averaging the open and close prices
makes sense, we call it average price.

Two remaining steps of the cleaning procedure were run using the average price. The
first one is to delete entries for which the average price exceeds by more than 50 times the
median on that day. Once again no entries were removed. The second step is to replace
entries for which the average price deviated by more than 10 mean absolute deviations
from a rolling centered median (excluding the observation under consideration) of 50
observations (25 observations before and 25 after). This was performed in a slightly
different way, restricting the observations from the rolling median to be on the same day.
A total of 154 entries was replaced in this step, which is around 0.05 percent of the sample
size.

In Section 4.4.2 we proved we have the means to estimate and predict the GIG-Harris
SV model satisfactorily so, at this point, we could have fitted the model to the cleaned
data. However, performing an initial exploratory analysis we noticed that, as is common
in practice, the estimation accuracy should be better when introducing a jump and a
periodic component to the model. For this reason, in the next subsections we continue
as follows. First, we introduce a jump component to the returns, and approximate the
integrated and spot volatility processes. Next, we add a periodic component to the spot
volatility. Taking into account both components, we then proceed with full estimation of
the process, and, last, we conclude by testing such an estimation.

Adding a jump component

Figure 4.1 displays the trajectories of the log-average price and the returns. Sudden
changes in the price level can be observed, which result in extremely large or extremely
small returns, compared to the rest of them. To reflect this behavior, a customary practice
is to model log-prices Y = (Yt)t≥0 generalizing the semimartingale (4.1) by adding a finite
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Figure 4.1: Log-prices and returns for IBM from 2012 to 2014.
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activity jump process J = (Jt)t≥0. That is

Yt = µt+βτ∗t +Bτ∗t +Jt, where τ∗t =
∫ t

0
τsds, and Jt =

Nt∑
j=1

Cj , (4.5)

The jump process J is assumed to be independent of B and τ . The process N = (Nt)t≥0

counts the number of jumps that have occurred in the interval [0, t]; and C = (Ct)t≥0 is a
process such that for all t, (i) Ct <∞, and (ii) ∑Nt

j=1C
2
j <∞. These properties ensure the

quadratic variation of Y is finite. For reviews of process (4.5) see, for instance, Andersen
et al. (2007). As done in the GIG-Harris SV model, we suppose τ is the SF-Harris process
in the case of Q being a GIG distribution.

The change in the model affects the measurement of the integrated volatility process, as
the realized variance approximates the quadratic variation of Y ; which in this case is given
by τ∗(t) +∑Nt

j=1C
2
j . To deal with this, we first implement a jump-detection procedure,

and then perform the measurement of the integrated volatility without taking the jumps
into consideration. When deleting the jumps from the sample, the remaining data can
be modeled with the GIG-Harris SV model, where the quadratic variation matches the
integrated SF-Harris process. Since realized variance approximates quadratic variation
also when the observations are not equally spaced, there is no need to replace the jump
entries, the crucial part is to detect them.

Many options to detect jumps are available, we explored a few of them, finding the
best results were obtained when using the bipower variation, with which we detected
around 90 percent of the jumps. The bipower variation, introduced in Barndorff-Nielsen
and Shephard (2004), equals the quadratic variation of the continuous component and, in
a range of cases, it produces an estimator of integrated volatility in the presence of jumps.
It can be consistently estimated, and the estimator is called realized bipower variance.

The difference between the realized variance and the realized bipower variance is,
consequently, a good indicator for the squared jumps; but nothing prevents this difference
from becoming negative in a given finite sample. Thus, following Barndorff-Nielsen and
Shephard (2004) suggestion, we calculate at every fifteen minutes the maximum value
between such a difference and zero. The top 0.1 percent values are considered intervals
with jumps. We explore individually those fifteen minute intervals, marking the entry
that differs the most from the interval mean as a jump. Notice we mark exactly one jump
in each interval. This could be restrictive and is fixed by running the procedure a few
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times. We found that in these data it suffices to run it twice, so around 0.2 percent of
the sample observations were considered as jumps and deleted.

Next, we proceeded with the measurement of the integrated and spot volatility pro-
cesses, H∗ and H, as described in Section 4.4.1. In doing so, the realized variance was
computed based on fifteen minutes returns.

Adding a periodic component

Recurring events, such as opening, lunch, and closing of financial markets, cause the return
volatility to vary systematically over the trading days and weeks. Taking into account this
periodic structure may improve the volatility modeling. We present a general procedure
to extract the periodic component of a spot volatility process τ ; and prove it works for
the special case of the SF-Harris process.

The main idea is based on Boudt et al. (2011). Following them, we make a partition
of the data time interval in smaller time intervals of length d, called local windows; and
consider the time transformation c(s) indicating the position of s in the periodicity cycle.
So, accordingly, c(s) = s mod L, where the cycle repeats itself every L days. Next, we
define the periodicity function f : [0,d]→ R+ as

f(t) = E

 τt
1
d

∫ d
0 τsds

,
and the periodicity factor for each time t as f(c(t)). Finally, the process τ̂t = τt

f{c(t)} is
called the periodically adjusted volatility.

Notice two important properties. First, when τ is a strongly stationary process, for
any tr ∈ [(r−1)d,rd],

E

 τ(tr)
1
d

∫ rd
(r−1)d τsds

= E

 τ{c(t)}
1
d

∫ d
0 τsds

.
Therefore, it suffices to define the function f in the first local window, [0,d], and then
extend it to the rest of local windows. Second, by definition, f is a measurable function
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and

1
d

∫ d

0
f(s)ds= 1. (4.6)

To clarify the meaning of f let us think of local windows as days. Then f is the
expected value of the spot volatility τ , divided by the average daily volatility 1

d

∫ d
0 τsds.

That is, when removing the daily volatility, we would expect that the changes in the
remainder volatility were due to the periodicity. This is evident considering τt as a
periodic factor depending on t multiplied by a constant effect of the volatility within each
day; meaning that the spot volatility, after filtering out the periodicity, is approximately
constant over each day. That is the main premise in the studies of Andersen and Bollerslev
(1997b); and Boudt et al. (2011); and, with such a premise, is direct to verify that

E

 τt
1
d

∫ d
0 τsds

= f(t). (4.7)

In the case of the GIG-Harris SV model, the spot volatility after filtering out the pe-
riodicity is the SF-Harris process. This implies that, instead of assuming the periodically
adjusted volatility constant within each day, we are thinking of it as a piece-wise constant
process; with jumps determined by independent and identically distributed exponential
random variables. Because of the Theorem 3.2.1, the following proposition ensures equal-
ity (4.7) holds in this case.

Proposition 3. Let (Yn)n∈N be a sequence of positive, finite mean, and exchangeable
random variables, stochastically independent of a Poisson process N . Let d > 0, and
f : [0,d]→ R+ be a measurable function such that 1

d

∫ d
0 f(s)ds = 1. Then, for t ∈ [0,d], it

follows that

E

 f(t)YNt
1
d

∫ d
0 f(s)YNsds

= f(t).

The following lemma will be used in the proof of Proposition 3

Lemma 1. For any sequence of exchangeable random variables X1, ...,Xn, and any a1, ...,an ∈
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R whose sum is nonzero, it holds that

E
[

Xj∑n
i=1aiXi

]
= 1∑n

i=1ai
, j = 1, ...,n.

Proof of Lemma 1. Let

k = E
[

Xj∑n
i=1aiXi

]

for all j = 1, ...,n, then,

1 = E
[∑n

i=1aiXi∑n
i=1aiXi

]
=

n∑
i=1

aiE
[

Xi∑n
i=1aiXi

]
= k

n∑
i=1

ai.

Proof of Proposition 3. The case Nd = 0 is trivial, hence, we assume Nd > 0. We will
treat a simpler case first. If f is a measurable simple function, meaning that

f(t) =
m∑
j=1

Bj1(bj−1,bj ](t),

where 0 = b0 < b1 < · · ·< bm−1 < bm = d, and B1, ...,Bm ∈R. Then, it follows that, taking
Fd = σ(Ns : s≤ d),

E

 YNt
1
d

∫ d
0 f(s)YNsds

= E

E
 YNt

1
d

∫ d
0 f(s)YNsds

∣∣∣∣∣∣ Fd
.

Now, denoting with S1,S2, ... the time between jumps of N ; given Fd, let n = Nd. We
define J0 = 0, Ji =∑i−1

k=0Sk, for i= 1, ...,n−1, and Jn = d. Next, we create a new partition
of the interval [0,d] by taking the common refinement of partitions 0 = b0 < · · ·< bm = d

and 0 = J0 < · · ·<Jn = d (consisting of all different points from the two partitions renamed
in order). Suppose we get the partition 0 = v0 < · · · < vr = d. There is a representation
of f in terms of such a partition,

f(t) =
r∑
j=1

B̂j1(vj−1,vj ](t),



CHAPTER 4. A STOCHASTIC VOLATILITY MODEL 65

and, consequently,

∫ d

0
f(s)YNsds=

r∑
j=1

B̂jYj(vj−vj−1).

Moreover, Nt ∈ {0, ...,Nd}, so S0, ...,SNd−1, Nt, and Nd are Fd-measurable. Therefore,
applying Lemma 1 we get

E

 YNt
1
d

∫ d
0 f(s)YNsds

∣∣∣∣∣∣ Fd
= 1

1
d

∑r
j=1 B̂j(vj−vj−1)

,

but

1
d

r∑
j=1

B̂j(vj−vj−1) = 1
d

∫ d

0
f(s)ds= 1.

So we obtain the desired equality for measurable simple functions.

Now, if f is any measurable function, then there is an increasing sequence (fn)n∈N of
measurable simple functions which converge to f (almost surely). Thus, as is customary in
proofs, the desired equality follows using the case proven for measurable simple functions,
and applying the Monotone Convergence Theorem.

The most natural method for the periodic component estimation is to approximate
the expected value with the sample mean,

f̂(t) = 1
|G(t)|

∑
r∈G(t)

τr
1
d

∫
w(r) τsds

, (4.8)

with G(t) = {r : c(r) = t}, and w(r) the local window which contains r; standardizing such
an approximation so it meets condition (4.6). Nonetheless, estimator (4.8) may be biased
in the presence of jumps. Since we have eliminated the sample jumps, we can apply it
without such a concern. Still if, for a given t, the standard deviation of the G(t) values
exceeded the standard deviation of the sample; we computed the mean with those values
lying below the 0.9-quantile. It is noteworthy that, when evidence of jump presence is
found, robust estimation methods can be further explored; extending the ideas exposed
in Boudt et al. (2011) to the GIG-Harris process.
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We set d to one day and L to five, meaning the cycle repeats itself every week of
five trading days, as is common in practice. The resulting periodic component graphic
appears in Figure 4.2. After this, we continued with the measurement of the periodically
adjusted volatility, to which we adjusted the SF-Harris process. In view of such a process
having piece-wise constant paths; when two observations differed by less than a small
value ε (we fixed ε≈ 10−5), we considered this as measurement noise, and assumed them
to be equal to their average.

Results

To test the modeling we broke the sample into an estimation period (first 80 percent of
the data), and a subsequent forecasting period (last 20 percent of the data). Next, we
predicted probability intervals for the forecasting period with 1000 simulated trajectories.
Repeating this for different values of interval probabilities, we computed Table V. If the
procedure works correctly, as is occurring, the percentage of the original trajectory that
falls within the prediction intervals should be similar to the interval probability. Therefore,
the empirical results suggest the GIG-Harris SV model, including a jump and a periodic
component, may be useful for forecasting.

Table V: Percentage of the original trajectory of IBM stock prices
that falls within HPD intervals of probability p

p %
0.25 25
0.50 51
0.75 75
0.85 84
0.90 89
0.95 93
1.00 97

Numeric comparison to the BNS model

We mentioned before that SF-Harris processes are equivalent up to second order to OU
type processes. As an example, we developed for the IBM data the case of a Gamma
stationary distribution. Here, there is a direct inference algorithm for the OU type process
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since the BDLP is a compound Poisson process. Using this, we estimated point-wise the
IBM data parameters with maximum likelihood estimation. As for the Gamma-SF-Harris
process, we applied the EM method for the estimation. The empirical KL divergence from
the estimated stationary Gamma distribution in the SF-Harris process and the one in the
OU type process is 0.0064. Hence, the stationary distributions are very similar. For many
other choices of marginal distribution, the BDLP of the OU type process will be a Lévy
process with infinite rather than finite activity, so the estimation becomes harder and the
comparison drags subjectivity since it depends on the applied estimation method.

4.5 Concluding remarks

In this chapter, we formulated a SV model based on SF-Harris processes. The model
shares various attractive properties with the BNS model (Barndorff-Nielsen and Shep-
hard, 2001), it generalizes Boudt et al. (2011) model (in which volatility is approximately
constant over each day) when considering periodicity, and it provides a good approxi-
mation to observed market behavior when the marginal distributions belong to the GIG
class. In this case, a Bayesian estimation technique was proposed and rigorously tested,
and an example with IBM data was developed.

There are numerous possible extensions to the proposed SV model. Among the work
we mentioned, (i) considering the microstructure noise, (ii) inducing long memory either
using the mixture of SF-Harris processes or replacing the Brownian motion in the equation
(4.1) by a normal approximation to fractional Brownian motion, and (iii) exploring jump
robust estimation methods for the periodic component. In addition, all the methodologies
can be equally applied to any marginal distribution so a different family of marginal
distributions may be explored. It should also be noted that this study dealt with the
one-dimensional case, yet the SV model definition, and its respective research, can be
extended to multidimensional cases.

In the following chapter we will introduce another application of SF-Harris processes,
this time to time-dependent density models.
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Figure 4.2: Approximation of the periodicity function of IBM stock prices. Average of
the spot volatility standardized by daily volatility over all the values which have the same
position in the periodicity cycle.



5 Time dependent density estimation

This chapter introduces the reader to the construction of an infinite mixture model in a
non-parametric Bayesian paradigm. Based on SF-Harris processes, we introduce a new
class of nonparametric prior distributions on the space of continuously varying densities.

A key problem in statistical modeling is model selection, how to choose a model at
an appropriate level of complexity. This problem appears in many settings, one of them
is choosing the number of clusters in mixture models. Traditional finite mixture models
group data into a fixed number of latent clusters. A common solution to address the
problem of choosing the number of clusters is, first, to fit several models with different
numbers of clusters, and then to choose one using model selection metrics. Bayesian non-
parametric methods side-step this issue by allowing the data to determine the complexity
of the model. The approach consists in fitting a single mixture model that can adapt
its complexity to the data. This is done by allowing the mixture to have infinite terms,
setting a prior over the mixing distribution and a prior over the cluster parameters.

A simple case of a nonparametric mixture is when we are interested in estimating a
single distribution from an independent and identically distributed sample y1, ...,ym, and
we assume the observations come from a convolution

yt ∼
∫
k(·|φ)G(dφ), t= 1, ...,m,

where k(·|φ) is a density function with parameter φ, and G is a mixing distribution, which
is assigned a flexible prior.

We say that G follows a stick-breaking prior, with centering measure G0, and shape
measure H on (0,1), if and only if it admits a representation of the form:

G(·) =
∞∑
l=1

wlδθl(·),

where the particles {θl}∞l=1 are independent and identically distributed from G0 and the

69
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weights {wl}∞l=1 are defined by

wl = vl
∏
r<l

(1−vr),

For a set of sticks {vl}∞l=1 independently distributed from H. For example, assuming
that G follows a Dirichlet process prior leads to the well known Dirichlet process mixture
models, introduced by Lo (1984).

To model the situation where the underlying mixing distribution evolves with time, the
simplest mixture model may be modified by making the distribution G time dependent.
Hence, we are interested in estimating a set of distributions {Gt}t≥0 from a time dependent
sample y1, ...,ym, and we assume the observations come from a convolution

yt ∼
∫
k(·|φ)Gt(dφ), t= 1, ...,m, (5.1)

where k(·|φ) is a density function with parameter φ, and for each t, Gt is a random density
given by

Gt(·) =
∞∑
l=1

wl(t)δθl(t)(·), (5.2)

where

wl(t) = vl(t)
∏
r<l

{1−vr(t)}, (5.3)

and {{θl(t)}∞l=1}t≥0 and {{vl(t)}∞l=1}t≥0 are independent collections of independent stochas-
tic processes each taking values on X⊂ R and (0,1) respectively. Indeed, with this defi-
nition, ∑lwl(t) = 1 for any t≥ 0.

Moreover, the observations need not be equidistant and there may be multiple data
points available at every time. Therefore, we can assume more generally that we have
p independent random realizations of the time dependent variables yt1 , . . . ,ytm , where
t1 ≤ . . .≤ tm are not necessarily equally spaced. The data structure can be organized in
a p×m matrix Y,

Y =


y11 · · · y1m
... . . . ...
yp1 · · · ypm

 ,
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where each row represents a time dependent trajectory, and each column represents in-
dependent identically distributed realizations. Such data structure is habitually found
for example in longitudinal data analysis, where patients or units samples are observed
repeatedly over time and each patient or unit can be assumed to be independent of each
other.

The design of such models is a challenging task because, on one hand, there is a need
for priors with large enough support and, on the other, the prior choice may easily lead to
identifiability issues or fall within the class of ill-posed problems. Hence, the collections of
stochastic processes generating the particles and the weights need to have ability to share
information between times, flexibility to capture the changes in the density, and simplicity
to allow for estimation algorithms. A class of stochastic models satisfying those conditions
is the one of SF-Harris processes.

5.1 SF-Harris BMP

We propose a novel approach to construct rich and flexible families of nonparametric
priors, inducing the time dependence through both the weights and particles with in-
dependent collections of SF-Harris processes. The fact that the transition densities are
known explicitly and, even more, tractable, makes SF-Harris processes an attractive al-
ternative.

Definition 17. The SF-Harris Bayesian mixture process (SF-Harris BMP) is given by
Equations (5.1)-(5.3), where {{θl(t)}∞l=1}t≥0 and {{vl}∞l=1}t≥0 are independent collections
of independent SF-Harris process, meaning that, for each l = 1,2, ...,

Slt(θ0,B) := P(θl(t) ∈B|θl(0) = θ0) = (1−αtθ)G0(B) +αtθδθ0(B),
T lt (v0,B) := P(vl(t) ∈B|vl(0) = v0) = (1−αtv)πv(B) +αtvδv0(B),

where αθ,αv ∈ (0,1), and G0 and πv are probability distributions over R and (0,1) respec-
tively.

The transition probabilities in definition 17 match the SF-Harris process tranistions
by making αθ = e−νθ and αv = e−νv for some νθ,νv > 0.

Notice this proposal implies that the jump process for the sticks and particles induces
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positive correlation. As an example, if πv coincides with a Be(1,M) distribution, then
the invariant distribution of Gt is a Dirichlet process centered at E[Gt] =G0. We can also
prove the SF-Harris BMP is non-Markovian. However, the Markov property is retained
with respect to the filtration generated by (w(·), θ(·)), implying that the process is a
particular case of a semi-Markov processes, property which makes prediction possible
after the inference.

The nonparametric Bayesian mixture model approach has been studied by various au-
thors using different strategies. Of particular interest for the purposes of this work are the
developments of dependent processes moving in time, meaning that the random proba-
bility measures are as in (5.2), time dependent. In this regard we mention, among others,
Dunson (2006), who models the dependent process as an autoregression with Dirichlet dis-
tributed innovations; Griffin and Steel (2011), who construct strictly stationary measures
(5.2) with stick-breaking marginals by reducing the innovation to a single atom sampled
from the centering measure; Caron et al. (2008), who model the noise in a dynamic linear
model with a Dirichlet process mixture; Rodriguez and Ter Horst (2008), who induce
the dependence in time only via the particles making them a random walk; Rodriguez
and Dunson (2011), who construct the weights of the process as probit transformations
of normal random variables; and Mena and Ruggiero (2016), who use one-dimensional
Wright-Fisher diffusions for the sticks. Our proposal will add to this literature by intro-
ducing a model with the time dependence in both the weights and the particles that still
remains statistically tractable.

5.2 Correlation between the random measures

Part of the ability of time dependent density models to capture the changes in the shape of
the density across time is given by the r-lagged correlation between the random measures.
The following proposition provides a general expression for such a correlation.

Proposition 4. Let Gt(·) be the random measure of the SF-Harris BMP defined in (5.2)
then

Corr[Gt(B),Gt+r(B)] = {2µv−µ(2)
v }(αrvσv +µ2

v)αrθ
µ

(2)
v (2µv−µ2

v−αrvσv)
(5.4)



CHAPTER 5. TIME DEPENDENT DENSITY ESTIMATION 73

where, taking v ∼ πv, µv := E[v], µ(2)
v := E

[
v2
]
, and σv := Var(v).

Proof. To simplify the notation let t′ = t+ r, then,

Cov[Gt(B),Gt′(B)] = E[Gt(B)Gt′(B)]−G2
0(B),

where

E [Gt(B)Gt′(B)] =
∞∑
k=1

∞∑
l=1

E[wk(t)wl(t′)δθk(t)(B)δθl(t′)(B)]

=
∞∑
k=1

E[wk(t)wk(t′)]E[δθk(t)(B)δθk(t′)(B)]

+
∞∑
k=1

∞∑
l=k+1

E[wk(t)wl(t′)]E[δθk(t)(B)δθl(t′)(B)]

+
∞∑
l=1

∞∑
k=l+1

E[wk(t)wl(t′)]E[δθk(t)(B)δθl(t′)(B)].

Now,

E[wk(t)wk(t′)] = E

vk(t)k−1∏
j=1
{1−vj(t)}vk(t′)

k−1∏
j=1
{1−vj(t′)}


= E

[
vk(t)vk(t′)

]k−1∏
j=1

E
[
1−vj(t′)−vj(t) +vj(t)vj(t′)

]

= ϕtt′
k−1∏
j=1

(1−2µv +ϕtt′)

= ϕtt′(1−2µv +ϕtt′)k−1,

where ϕtt′ := E [vk(t)vk(t′)] and µv := E[vk(t)] = E[vk(t′)].

On the other hand, we have that

E[δθk(t)(B)δθk(t′)(B)] = E
[
E[1B{θk(t)}1B{θk(t′)} | θk(t) = θ0}]

]
= E

[
E[1B{θ0}1B{θk(t′)} | θk(t) = θ0}]

]
= G0(B){(1−αrθ)G0(B) +αrθ}
= (1−αrθ)G2

0(B) +αrθG0(B).
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For l > k, we have

E[wk(t)wl(t′)] = E

vk(t)vl(t′){1−vk(t′)}k−1∏
j=1
{1−vj(t)}{1−vj(t′)}

l−1∏
s=k+1

{1−vs(t′)}


= E

{vk(t)vl(t′)−vk(t)vl(t)vk(t′)}k−1∏
j=1
{1−vj(t′)−vj(t) +vj(t)vj(t′)}


×E

 l−1∏
s=k+1

{1−vs(t′)}


=
{
E[vl(t′)]E[vk(t)]−E[vl(t)]E[vk(t)vk(t′)]

}k−1∏
j=1

E[1−vj(t′)−vj(t) +vj(t)vj(t′)]

×
l−1∏

s=k+1
E[1−vs(t′)]

= µv(µv−ϕtt′)(1−2µv +ϕtt′)k−1(1−µv)l−k−1,

and, since θl and θk are independent processes,

E[δθk(t)(B)δθl(t′)(B)] = P{θk(t) ∈B}P{θl(t′) ∈B}=G2
0(B).

Finally, for l < k we obtain

E[wk(t)wl(t′)] = E

vk(t)vl(t′){1−vk(t′)} l−1∏
j=1
{1−vj(t)}{1−vj(t′)}

k−1∏
s=l+1

{1−vs(t′)}


= E

{vk(t)vl(t′)−vk(t)vl(t)vk(t′)} l−1∏
j=1
{1−vj(t′)−vj(t) +vj(t)vj(t′)}


× E

 k−1∏
s=l+1

(1−vs(t′))


=
{
E[vl(t′)]E[vk(t)]−E[vl(t)]E[vk(t)vk(t′)]

}
×

l−1∏
j=1

E[1−vj(t′)−vj(t) +vj(t)vj(t′)]
k−1∏
s=l+1

E[1−vs(t′)]

= µv(µv−ϕtt′)(1−2µv +ϕtt′)l−1(1−µv)k−l−1,
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and

E[δθk(t)(B)δθl(t′)(B)] = G2
0(B).

Therefore,

E [Gt(B)Gt′(B)] =
∞∑
k=1

ϕtt′(1−2µv +ϕtt′)k−1[(1−αrθ)G2
0(B) +αrθG0(B)]

+
∞∑
k=1

∞∑
l=k+1

G2
0(B)µv(µv−ϕtt′)(1−2µv +ϕtt′)k−1(1−µv)l−k−1

+
∞∑
l=1

∞∑
k=l+1

G2
0(B)µv(µv−ϕtt′)(1−2µv +ϕtt′)l−1(1−µv)k−l−1

= {(1−αrθ)G2
0(B) +αrθG0(B)}ϕtt′

∞∑
k=1

(1−2µv +ϕtt′)k−1

+ G2
0(B)µv(µv−ϕtt′)

∞∑
k=1

(1−2µv +ϕtt′)k−1
∞∑

l=k+1
(1−µv)l−k−1

+ G2
0(B)µv(µv−ϕtt′)

∞∑
l=1

(1−2µv +ϕtt′)l−1
∞∑

k=l+1
(1−µv)k−l−1

= {(1−αrθ)G2
0(B) +αrθG0(B)}ϕtt′
2µv−ϕtt′

+ 2G
2
0(B)(µv−ϕtt′)

2µv−ϕtt′

= {(1−αrθ)G2
0(B) +αrθG0(B)}ϕtt′+G2

0(B)(2µv−2ϕtt′)
2µv−ϕtt′

= αrθG0(B)ϕtt′+G2
0(B)(2µv−ϕtt′−αrθϕtt′)

2µv−ϕtt′
.

This implies the following equality for the covariance

Cov[Gt(B),Gt′(B)] = E[Gt(B)Gt′(B)]−G2
0(B)

= αrθG0(B)ϕtt′+G2
0(B)(2µv−ϕtt′−αrθϕtt′−2µv +ϕtt′)

2µv−ϕtt′

= αrθG0(B)ϕtt′+G2
0(B)(−αrθϕtt′)

2µv−ϕtt′

= αrθϕtt′G0(B){1−G0(B)}
2µv−ϕtt′

.
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Consequently the variance is given by

Var[Gt(B)] = ϕttG0(B){1−G0(B)}
2µv−ϕtt

,

and, using that ϕtt = ϕt′t′ , we have that the correlation is given by

Corr[Gt(B),Gt′(B)] = ϕtt′(2µv−ϕtt)αrθ
ϕtt(2µv−ϕtt′)

.

Replacing the value of ϕtt′ and ϕtt in the last expression we obtain 5.4.

Corollary 2. From Proposition (4) we have the following

a) When αv = αθ = 0 then

Slt(θ,B) = G0(B),
T lt (v,B) = πv(B).

This corresponds to the case of complete time independence, meaning that Gt(B) and
Gt+r(B) are independent for any r > 0 and state B. As a consequence, yt1 , ...,ytn
in 5.1 are independent. Clearly, in this case Corr[Gt(B),Gt+r(B)] = 0.

b) When αv = αθ = 1

Slt(θ,B) = δθ(B),
T lt (v,B) = δv(B).

which implies that for any t > 0

Gt(B) =
∞∑
l=1

wl δθl(B),

so it reduces to the simplest mixture model described.

This corresponds to the case of complete time dependence, meaning that Gt(B) =
Gt+r(B) for any B. As a consequence Corr[Gt(B),Gt+r(B)] = 1, and yt1 , ...,ytn in
5.1 are identically distributed.
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c) When αθ = 1, αv ∈ (0,1), and πv has positive variance,

Gt(B) =
∞∑
l=1

wl(t)δθl(B). (5.5)

Hence, the particles are random but do not vary with time, and the dependence is
induced only via the weights, which is the case considered, for example, by Mena
and Ruggiero (2016). In this case, as r→∞

Corr[Gt(B),Gt+r(B)] → µ2
v{2µv−µ

(2)
v }

µ
(2)
v (2µv−µ2

v)
. (5.6)

Notice Equation (5.6) is less than one if and only if

2µvµ2
v < 2µvµ(2)

v ,

which follows since σv = µ
(2)
v −µ2

v > 0.

Now, if v ∼ πv we have that 0 < v < 1. Hence, 0 < v2 < v and, consequently, 0 <
µ

(2)
v < µv. Therefore,

2µv−µ2
v > 2µv−µ(2)

v > 2µv−µv = µv > 0,

and Equation (5.6) is always positive. This implies the existence of an upper bound
for the correlation of all dependent processes whose particles are fixed, which could
be an important restriction in some applications.

d) When αθ ∈ (0,1) and αv = 1,

Gt(B) =
∞∑
l=1

wl δθl(t)(B), (5.7)

meaning that the time dependence is induced only via the particles. This is the case
studied, for example, by Rodriguez and Ter Horst (2008). In this setting, as r→∞

Corr[Gt(B),Gt+r(B)]→ 0.

Therefore, the correlation does not have a lower bound. However, there are a num-
ber of theoretical and practical advantages of having time-dependent weights. For
example, models with time-dependent weights have richer support. In fact, when
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the weights are not time-dependent the models cannot generate a set of independent
measures (MacEachern, 2000).

e) When αv ∈ (0,1) and αθ ∈ (0,1), as r→∞

Corr[Gt(B),Gt+r(B)]→ 0.

Consequently, under our proposal, the correlation between the random measures
reaches the limits 0 and 1 for some conditions, avoiding the disadvantage of working
with a lower bound as in constant-particles models, and providing richer support than
constant-weights models.

As an example, let us present the correlation of a dependent Dirichlet process presented
in MacEachern (2000). In this process, the stick-breaking weights are defined through
independent realizations {vk(t)}t≥0 for k= 0,1, ... from a stochastic process with marginals
vk(t) ∼ Beta(1,M) for M > 0. Notice that for any fixed t, such a construction yields a
Dirichlet process prior distribution for Gt. For the Beta(1,M) distribution we have that
µv = 1

1+M , µ(2)
v = 2

(1+M)(2+M) and σv = M
(1+M)2(2+M) . Hence, using (5.4), we obtain

Corr[Gt(B),Gt+r(B)] =

{
2

1+M −
2

(1+M)(2+M)

}{
αrv

M
(1+M)2(2+M) + 1

(1+M)2

}
αrθ

2
(1+M)(2+M)

{
2

1+M −
1

(1+M)2 −αrv M
(1+M)2(2+M)

}
=

{
2

2+M

}{
Mαrv+2+M

(1+M)2(2+M)

}
αrθ

2
(1+M)2(2+M)

{
2− 1

(1+M) −αrv
M

(1+M)(2+M)

}
=

{
Mαrv+2+M

(1+M)2(2+M)

}
αrθ

1
(1+M)2

{2(1+M)(2+M)−(2+M)−αrvM
(1+M)(2+M)

}
= (1 +M)(Mαrv + 2 +M)αrθ

2(1 +M)(2 +M)− (2 +M)−αrvM

= (1 +M)(Mαrv + 2 +M)αrθ
(2 +M)(1 + 2M)−αrvM
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5.3 Current research

In this chapter we explored the use of SF-Harris processes in time-dependent density
models. We proposed an approach to construct nonparametric priors for BMP inducing
the time dependence through the weights and particles with independent collections of
SF-Harris processes. These implies the correlation between the random measures reaches
the limits zero and one for some conditions, avoiding the disadvantage of working with a
lower bound as in constant-particles models, and providing richer support than constant-
weights models.

The posterior computation and a real-data application are still under development.
The main difficulty with a Gibbs sampler is that there are an infinite number of random
variables that need to be sampled. To circumvent this problem, Walker (2007) proposes
to use slice sampling (Neal, 2003) to truncate the representation adaptively to a finite
number of features. A couple of years later Kalli et al. (2011) made a proposal to make
the algorithm more efficient. We will base our strategy for posterior computation on this
latest modification.

We denote with vk(t) := {vl(t)}kl=1, θk(t) := {θl(t)}kl=1 for k = 1, ...,∞, and ft{· |
v∞(t), θ∞(t)} :=

∫
k(· | φ)Gt(dφ) which, using (5.2), can be written as

ft{y | v∞(t), θ∞(t)}=
∞∑
l=1

wl(t)k{y | θl(t)}. (5.8)

Now, we apply the slice algorithm in Kalli et al. (2011), augmenting the density (5.8)
to

ft{y,u,s | v∞(t), θ∞(t)}= 1
ψs
1(u<ψs)ws(t)k{y | θs(t)},

where s 7→ ψs is a N−valued decreasing function with known inverse ψ∗. The latent vari-
able s indexes the specific kernel k{·|θs(t)} that better captures the mass at y and, given
s, u∼ U(0,ψs).
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Next, denoting with v(m)
k := {vk(tj)}mj=1 , θ(m)

k := {θk(tj)}mj=1, for k = 1, ...,∞,

S =


s11 · · · s1m
... . . . ...
sp1 · · · spm

 , and U =


u11 · · · u1m
... . . . ...
up1 · · · upm

 ,

the conditional augmented likelihood is given by

L
{

Y,U,S | v(m)
∞ , θ(m)

∞
}

=
p∏
i=1

m∏
j=1

1
ψsij

1(uij<ψsij )

vsij (tj) ∏
k<sij

{1−vk(tj)}
 k{yij | θsij (tj)}.

Setting N := max{bψ∗(u1,t1)c, . . . ,bψ∗(up,t1)c, . . . ,bψ∗(u1,tm)c,bψ∗(up,tm)c} (where bpc
denotes the largest integer not greater than p) we have that

L
{
v(m)
∞ , θ(m)

∞ | Y,U,S
}
≈ L

{
v

(m)
N , θ

(m)
N | Y,U,S

}
∝ L

{
Y,U,S | v(m)

N , θ
(m)
N

}
L{v(m)

N )L(θ(m)
N },

where

L{v(m)
N }=

N∏
l=1
L{v(m)

l }=
N∏
l=1

πv{vl(h1)}
m∏
j=2

T lhj{vl(tj−1),vl(tj)}

and

L(θ(m)
N }=

N∏
l=1
L{θ(m)

l }=
N∏
l=1

G0{θl(h1)}
m∏
j=2

Slhj{θl(tj−1), θl(tj)},

denoting with h1 = t1 and hj = tj− tj−1 for j = 2, ...,m.

Next, we need to worry about the updating of the particles processes, the weights
processes, the slice and membership variables, and the jump parameters. In theory, this
should not be hard since the particles and weights processes are Markovian with known
transitions. For the slice variable it follows that

L(uij | · · ·) = U(0,ψsij ),

and for the membership variable

L(sij = k | · · ·)∝ 1
ψk

wk(tj)k{yij | θk(tj)}1(
sij∈

{
k:ψsij>uij

}).
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Notice that since
{
k : ψsij > uij

}
is a finite set, this latter distribution is easy to sample

from sij = 1, . . . ,bψ∗(uij)c.

For the updating of the jump parameters we have the methods presented in Section
3.5. However, as we saw in that section, the estimation of the dependence parameters
is extremly sensitive, certain properties of smoothness of the trajectories must be kept
under the approximation for the estimation to be good. Even though for some particular
parameter values we obtain reasonable results, the simulation-based tests we are using
among the work are exhaustive, based on thousands of simulated parameters and, overall,
the previous algorithm still fails to give us satisfactory-enough results regarding the jump
parameters. Therefore, a revision of the algorithm is still under development.



6 Poisson driven Markov processes

This chapter is a continuation of the model initiated by Nava (2013), and part of it is
presented in Anzarut et al. (2017). Here, we consider another stationary Markov process,
focusing again on transition mechanisms that retain a particular distribution of inter-
est invariant over time. The process is constructed exploiting a symmetry induced by
a Poisson-type transform. Such a construction works for prescribed arbitrary invariant
distributions supported on R+ but it may be extended, by means of simple transforma-
tions, to processes with invariant distributions supported on R or other state-spaces, while
preserving the appealing transition probability tractability.

In the discrete-time case, attention is focused on the class of GIG distributions. In the
continuous-time setup, we use the Gamma distribution as basic building block and obtain,
via suitable transformations, a richer class of diffusion processes with known transition
density. These include, for instance, diffusions with GEV invariant distributions which,
to our knowledge, have not been derived before.

In order to perform Bayesian estimation for such processes, we derive a Gibbs sampling
algorithm, based on slice sampler techniques. Later on, we implement the algorithm in a
simulation study, and in the analysis of three financial datasets.

6.1 The construction in discrete time

Let f̂(·|y,φ) denote the Poisson weighted distribution with parameters φ> 0,y ∈{0,1,2, ...},
previously defined in Section 2.2. The time-homogeneous one-step ahead Markovian tran-

82
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sition

P (xn−1,xn) =
∞∑
y=0

f̂(xn|y,φ)Po(y|xn−1φ)

= exp{−φ(xn+xn−1)}f(xn)
∞∑
y=0

(xnxn−1φ)y
y!ξ(y,φ) , (6.1)

satisfies the detailed balance condition

P (xn−1,xn)f(xn−1) = P (xn,xn−1)f(xn)

for all xn−1,xn ∈ R+. Therefore, it leads automatically to a strongly stationary f -
reversible Markov process, where f is the invariant distribution.

Definition 18. The stationary Markov process, driven by transition density (6.1) and
with stationary density f , is termed f-stationary Poisson-driven Markov process.

Constructions of strongly stationary, reversible Markov processes of this type where
introduced in continuous time by Mena and Walker (2009). The “latent” representation of
the transition density, as given in (6.1), provides with an instrumental way of dealing with
the law of the process useful for the implementation of efficient estimation procedures.

The combination of the moments equation (2.6) and equation (6.1), leads to the fol-
lowing conditional moments for the f-stationary Poisson-driven Markov process.

E[Xr
n |Xn−1 = xn−1] =

∞∑
y=0

ξ(y+ r,φ)
ξ(y,φ) Po(y|xn−1φ).

Consequently, provided that f admits second moment, the autocorrelation can be ex-
pressed as

Corr(Xn,Xn−1) = 1
σ2
f

 ∞∑
y=0

{
ξ(y+ 1,φ)2

ξ(y,φ)

}
φy

y! −µ
2
f

 , (6.2)

where µf and σ2
f denote the mean and variance of f . For example if f is chosen to be a

Ga(a,b) distribution, correlation (6.2) reduces to φ

b+φ
.

Once the form of f is chosen, the dependence in the model is driven by the parameter
φ. See, for example, Figure 6.1. In particular, when φ goes to infinity, the correlation
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tends to one. As a consequence, the function f can be selected by the nature of the
phenomenon under study, while the dependence in the data is modeled trough φ.

Next, we focus on densities f belonging to the family of GIG distributions. We
denote with A(λ,δ,γ) = (δ/γ)λ 2Kλ(δγ) to the normalizing constant of a GIG(x|λ,δ,γ)
distribution. Developing further the construction, we obtain

ξ(y,φ) =
∫
R+

zye−zφ GIG(z|λ,δ,γ)dz

= δy

(γ2 + 2φ)y/2
γλ

(γ2 + 2φ)λ/2
Ky+λ

(
δ
√
γ2 + 2φ

)
Kλ(δγ)

=
A(λ+y,δ,

√
γ2 + 2φ)

A(λ,δ,γ) .

It is then straightforward to see that,

f̂(x|y,φ) = GIG(x|λ+y,δ,
√
γ2 + 2φ).

Hence, the Poisson weighted distribution generated by a GIG density is also GIG, mean-
ing that the GIG family is closed under Poisson weighted transformations, an appealing
feature for simulation and estimation purposes. Given this, the corresponding transition
density (6.1) is

P (xn−1,xn) =
∞∑
y=0

GIG
(
xn|λ+y,δ,

√
γ2 + 2φ

)
Po(y|xn−1φ)

= xλ−1
n exp

{
−φ(xn+xn−1)− 1

2

(
δ2

xn
+γ2xn

)} ∞∑
y=0

(xn−1xnφ)y

y! A(λ+y,δ,
√
γ2 + 2φ)

.

Some particular cases offering further simplifications are at hand. For example, for λ=
−1

2 , we obtain the inverse Gaussian distribution, meaning that IG(δ,γ) = GIG(−1/2, δ,γ).
So for the IG–stationary Poisson-driven Markov process

ξ(y,φ) =
A(y− 1

2 , δ,
√
γ2 + 2φ)

A(−1
2 , δ,γ)

=
√

2
π
eδγ δy+ 1

2

(√
γ2 + 2φ

) 1
2−y

Ky− 1
2

(
δ
√

2φ+γ2
)
,
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Figure 6.1: Simulation of GIG(1,2,3)-stationary Poisson-driven Markov processes. The
top panel displays 1500 simulated data with φ = 1. The bottom repeats the simulation
for φ= 80.
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and the corresponding transition density is

P (xn−1,xn) =exp
{
−φ(xn−1 +xn)− 1

2
(
δ2x−1

n +γ2xn
)}

x
− 3

2
n

 δ√
γ2 + 2φ


1
2

×
∞∑
y=0

(
φ xn−1 xn

√
γ2 + 2φ δ−1

)y
y! 2Ky− 1

2
(δ
√
γ2 + 2φ)

.

For δ= 0, the Gamma distribution is recovered, i.e. Ga(λ,β) = GIG(λ,0,γ) where β = γ2/2
resulting in

ξGa(y,φ) = βλ

Γ(λ)
Γ(λ+y)

(β+φ)y+λ , (6.3)

with corresponding transition density

P (xn−1,xn) = exp{−[φ(xn+xn−1) +βxn]}
(φ+β)−(λ+1)/2φ(λ−1)/2

(√
xn
xn−1

)λ−1
Kλ−1

(
2
√
xn−1xnφ(φ+β)

)
,

where Kν is the modified Bessel function of the third kind with index ν.

Also, the IGa-stationary Poisson-driven Markov process can be recovered noticing that
for γ = 0, a GIG random variable reduces to the inverse distribution, i.e. GIG(−λ,δ,0) =
IGa(a,b) with a=−λ,b= δ2

2 . This leads to

ξ(y,φ) = 2 b
1
2 (a+y)φ

1
2 (a−y)

Γ(a) Ky−a(2
√
bφ),

and

P (xn−1,xn) = x−a−1
n exp

{
−φ(xn+xn−1)− b

xn

}(
b

φ

)a
2 ∞∑
y=0

(
φ xn−1 xn

√
φ
b

)y
y!2Ky−a(2

√
bφ) .

The particular case of a= 1/2 corresponds to the positive 1/2 – stable distribution.
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6.2 Extension to continuous time

As we did in the definition of SF-Harris processes in Section 3.1, we can extend a chain with
transition functions (6.1) to a continuous-time Markov process X = (Xt)t≥0 by making
the parameter φ a function of time, t→ φ(t), and then verifying which functions φ(t)
meet the Chapman-Kolmogorov equation.

In terms of Laplace transforms the Chapman-Kolmogorov equation is given by

LXt+s|X0(λ) = E
[
LXt+s|Xs(λ)

∣∣∣X0
]
, (6.4)

where

LXt|X0(λ) = E
[
e−λXt

∣∣∣X0
]

=
∞∑
y=0

Po{y|x0φ(t)}ξ{y,φ(t) +λ}
ξ{y,φ(t)} .

Therefore, provided φ(t) satisfies (6.4), the transition functions

Pt(x0,xt) = exp{−φ(t)(x0 +xt)} f(xt)
∞∑
y=0

{xtx0φ(t)}y
y!ξ{y,φ(t)} (6.5)

define a continuous-time Markov process. Once more, the extension preserves entirely the
chain virtues. The resulting process is strongly stationary with invariant distribution f .

Let us focus on a particular case of the GIG-stationary Poisson-driven Markov process,
the case of the Gamma invariant distribution. Such an invariant distribution can be
utilized for the construction of other continuous models and, its appealing feature, is
the availability of an explicit functional form for φ(t) assuring the Chapman-Kolmogorov
equation is fulfilled.

Mena and Walker (2009) showed that, in the Ga(a,b) case, the Chapman-Kolmogorov
equation is fulfilled if and only if

φ(t) = b

ect−1 , (6.6)

for some c > 0. Even more, they proved the process satisfies

lim
h↓0

1
h
E[ |Xt+h−Xt|p |Xt = xt] = 0 for p > 2. (6.7)
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Hence, X cannot have jump discontinuities, and it is indeed a diffusion process charac-
terized by its infinitesimal conditional mean and variance coefficients given by

µ(x,t) = lim
h↓0

1
h
E[Xt+h−Xt |X0 = x] and σ2(x,t) = lim

h↓0

1
h
E[(Xt+h−Xt)2 |X0 = x].

Computing the limits, X can be represented as the solution of the stochastic differential
equation

dXt = c
(
a

b
−Xt

)
dt+

√
2c
b
Xt dWt, (6.8)

where W = (Wt)t≥0 denotes a standard Brownian motion. Therefore, X is in fact a
reparametrization of the mean reverting Cox-Ingersoll-Ross model (Cox et al., 1985),
commonly used to model nominal interest rates.

Based on this construction, we can build up different continuous-time Markov pro-
cesses by the means of simple transformations. In particular, let us assume that we
want to construct an f -stationary Poisson-driven Markov process, where f is the density
corresponding to a random variable Y = h(Z) with Z ∼ Ga(z|a,b), and h is a R-valued
function with known and differentiable inverse (notice that this implies that the model
can be extended to cover marginals f with support R).

Letting g(x) := h−1(x) and J (x) := |g′(x)|, we have that f(x) = Ga{g(x)|a,b}J (x),
and using equation (2.5) it follows directly that

f̂(x|y,φ) = g(x)ye−g(x)φGa{g(x)|a,b}J (x)
ξ(y,φ,g) ,

where

ξ(y,φ,g) =
∫
R+
g(w)ye−g(w)φGa{g(x)|a,b}J (x)dw

=
∫
R+
zye−zφGa(z|a,b)dw

= ξGa(y,φ)

Therefore,

f̂(x|y,φ) =f̂Ga{g(x)|y,φ}J (x) = Ga{g(x)|a+y,b+φ}J (x). (6.9)
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The corresponding transition probability is given by

Pt(x0,xt) =
∞∑
y=0

f̂{xt|y,φ(t)}Po{y|g(x0)φ(t)}

=
∞∑
y=0

f̂Ga{g(x)|y,φ}J (x)Po{y|g(x0)φ(t)}

= PGa
t {g(x0),g(xt)}J (xt). (6.10)

where PGa
t denotes the transition of a Ga-stationary Poisson-driven Markov process

Z = (Zt)t≥0. Therefore, the Gamma case leads to a large class of tractable continuous
stationary Poisson-driven Markov processes X = {Xt = h(Zt)}t≥0.

When the transformation h is twice differentiable, applying Itô’s lemma to (6.8) we
can find the associated stochastic differential equation. By setting h′(Zt) = ∂h(Zt)/∂Zt
and h′′(Zt) = ∂2h(Zt)/∂2Zt it follows that

dXt = dh(Zt)

= h′(Zt)dZt+
1
2 h
′′(Zt)(dZt)2

= h′(Zt)

c(a/b−Zt)dt+
√

2c
b
Zt dWt

+ 1
2h
′′(Zt)

c(a/b−Zt)dt+
√

2c
b
Zt dWt


2

= c
{
h′(Zt)(a/b−Zt) +h′′(Zt)

Zt
b

}
dt+h′(Zt)

√
2c
b
Zt dWt

= c

[
h′ {g(Xt)}{a/b−g(Xt)}+h′′ {g(Xt)}

g(Xt)
b

]
dt+h′ {g(Xt)}

√
2c
b
g(Xt)dWt.

(6.11)

The key aspect to remark, which represents a highly attractive feature in terms of
practical implementation, is that we still have the explicit representation (6.10) for the
transition density, with the same function φ(t) in equation (6.6). Hence, this derivation
allows us to avoid the challenging task of having to solve the Chapman-Kolmogorov
equation directly for each case.

As an example, let us illustrate the case of the inverse Gamma distribution. We
saw in Section 2.2 that the inverse Gamma can be obtained from the Gamma using the
transformation h(z) = 1/z. Hence, g(x) = 1/x, J (x) = 1/x2, and substituting in (6.9) we
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get that

f̂(x|y,φ) = IGa(x|y+a,φ+ b)

Since h is twice differentiable, h′(x) =−1/x2 and h′′(x) = 2/x3, the associated stochas-
tic differential equation (6.11) is given by

dXt = c

[
−X2

t

{
a/b−X−1

t

}
+ 2X3

t
X−1
t

b

]
dt−X2

t

√
2c
b
X−1
t dWt

= cXt

(
1−Xt

a−2
b

)
dt−

√
2c
b
X3
t dWt.

The same can be done for other transformations of the Gamma, for example, for
the GEV family and, consequently, for the Gumbel, Fréchet, and Weibull distributions,
which are particular cases of the GEV. These are displayed in Table VI, together with the
resulting conditional distributions. The stochastic differential equations corresponding to
each of the resulting f -stationary Poisson driven processes are reported in Table VII.
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6.3 Inference

6.3.1 Estimation method

In this section we focus on estimation in the continuous-time case, since the discrete-time
case can be easily recovered from it. We let x = (x1, . . . ,xN ) be a set of observations in
the times t1 < ... < tN (with xn = xtn), and φτn be the homogeneous time effect (φτn =
φ(tn)−φ(tn−1)), with τn = tn− tn−1.

The likelihood of x is given by

Lx(θ) = f(x1|θ)
N∏
n=2

P (xn−1,xn|θ),

where P is as in equation (6.5), and θ denotes, generically, the set of parameters of f and
the ones inherent to the dependency function φ(t).

The choice of f may not allow to perform the summation in (6.5) analytically. Hence,
we propose a Gibbs sampler using slice-technique ideas. The Gibbs sampler is based on
an augmented representation of transition density (6.5), given by

Pt(x0,xt,u,y) = 1
ψy
1(u<ψy) exp{−φ(t)(xt+x0)}f(xt|θ) {xtx0φ(t)}y

y!ξ{y,φ(t)|θ} ,

where y 7→ ψy is a positive decreasing invertible function, and the latent variable u is
uniformly distributed given y. With this, if y = (y2, . . . ,yN ) and u = (u2, . . . ,uN ),

Lx,u,y(θ) = exp

−
N∑
n=2

φτn(xn+xn−1)




N∏
n=1

f(xn|θ)


×


N∏
n=2

(xnxn−1φτn)yn
yn!ξ(yn,φτn|θ)ψyn

1(un<ψyn)

 ,
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leading to a log-likelihood

lx,u,y(θ) =−
N∑
n=2

φτn(xn+xn−1) +
N∑
n=1

log{f(xn|θ)}+
N∑
n=2

[
log{1(un<ψyn)}− log(ψyn)

]

+
N∑
n=2

[yn log(xnxn−1φτn)− log{yn!ξ(yn,φτn |θ)}] , (6.12)

Now, denoting with π the prior distribution on θ, the corresponding full log-posterior
distribution can be simplified by separating the parameters in the stationary distribu-
tion, θ(st), and the parameters referring to the transition probability θ(tr). Under the
assumption of independent prior distributions for θ(st) and θ(tr), the full log-posterior
distributions reduce to

logπ{θ(st) | · · ·} ∝ logπ{θ(st)}+
N∑
n=1

log[f{xn|θ(st)}]−
N∑
n=2

log{ξ(yn,φτn|θ)},

and

logπ{θ(tr) | · · ·}∝ logπ{θ(tr)}+
N∑
n=2

yn log(φτn)−
N∑
n=2

φτn(xn+xn−1)−
N∑
n=2

log{ξ(yn,φτn|θ)}.

Therefore, simulating from the full posteriors can be easily achieved, for instance, using
the ARMS algorithm.

The full conditional distributions for the latent variables can be obtained componen-
twise via

π(un | · · ·) = U{un|0,ψ(yn)}, (6.13)

π(yn | · · ·)∝
(xnxn−1φτn)yn

yn!ξ(yn,φτn|θ)ψyn
1(un<ψyn),

for n= 2, . . . ,N . Note that the above distribution has support yn = 0, . . . ,bψ∗(un)c, where
ψ∗ denotes the inverse of ψ. This is the advantage of using the slice mechanism, we only
need to sample from a finite support instead of a distribution supported on N.

In particular, for the Gamma transformed models in continuous time, we may assign
independent unitary exponential priors to θ(st) = (a,b,c). Hence, the corresponding log-
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posteriors are given by

logπ(a | · · ·)∝a

log(b)−1 +
N∑
n=1

log(b+φτn) +
N∑
n=1

logg(xn)

− logΓ(a)−
N∑
n=2

logΓ(yn+a),

logπ(b | · · ·)∝ log(b)
a+ 2

N∑
n=2

yn+aN

− b


N∑
n=1

g(xn) + 1

−
N∑
n=2
{g(xn) +g(xn−1)} φτn ,

logπ(c | · · ·)∝−
N∑
n=2
{g(xn) +g(xn−1)}φτn + log(φτn)

2
N∑
n=2

yn+aN

+ c

 N∑
n=2

yn+aN −1
 .

The log-posterior for θ(tr) is

logπ{θ(tr) | · · ·} ∝ logπ{θ(tr)}+
N∑
n=1

logJ {xn|θ(tr)}+ (a−1)
N∑
n=1

logg(xn)− b
N∑
n=1

g(xn)

−
N∑
n=2
{g(xn) +g(xn−1)}φτn +

N∑
n=2

yn {logg(xn) + logg(xn−1)} , (6.14)

which can be sampled with the ARMS method and, depending on the specific transfor-
mation, may admit further simplifications.

The remaining full conditionals to be considered in the Gibbs sampler are (6.13) and

π(yn | · · ·)∝
{g(xn−1)g(xn)φτn (b+φτn)}yn

yn!Γ(a+yn)ψyn
1{yn<ψ−1(un)}.

6.3.2 Simulation study

Over this section we test the estimation procedure by simulating Poisson-driven Markov
processes with GIG and GEV stationary distributions in discrete and continuous time,
respectively. These choices are done given their relevance in areas such as Economics and
Finance. See, e.g., Nakajima et al. (2012).

The GIG case consists in two series of 1500 simulated observations from a discrete-
time model with GIG(1,2,3) invariant distribution. In the first series φ = 1, while in the
second one φ= 80. The two series paths appear in Figure 6.1. We can notice that, as the
dependence parameter φ gets larger, cluster structures appear in the data.
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We assign independent unitary exponential priors to δ, γ, and φ, an independent stan-
dard normal prior for λ, and then derive the full conditional distributions. Additionally,
we set the truncation function ψy equal to e−ηy with η = 0.4, this choice allows to have a
known inverse ψ∗ and, therefore, to immediately identify the support of the latent variable
y.

In this case, for a set of observations x = (x1, . . . ,xN ) at times (1, . . . ,N), the augmented
log-likelihood (6.12) is given by

lx,u,y(θ)=−φ
N∑
n=2

(xn+xn−1)+(λ−1)
N∑
n=1

log(xn)−1
2

N∑
n=1

(δ2x−1
n +γ2xn)−log{A(λ,δ,γ)}

+
N∑
n=2

[
yn log(xnxn−1φτn)− log{yn!A(λ+yn, δ,

√
γ2 + 2φ)}

]

+
N∑
n=2

[
log{1(un<ψyn)}− log(ψyn)

]
,
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Hence, the corresponding full log-posterior distributions are

logπ(λ | · · ·)∝− λ
2

2 +λ
N∑
n=1

log(xn) +λ
{
−N log(δ) + log(γ) + N −1

2 log(γ2 + 2φ)
}

− log{Kλ(δγ)}−
N∑
n=2

log
{
Kλ+yn

(
δ
√
γ2 + 2φ

)}
,

logπ(δ | · · ·)∝− δ− 1
2δ

2
N∑
n=1

x−1
n − log{Kλ(δγ)}− log(δ)

λN +
N∑
n=2

yn


−

N∑
n=2

log
{
Kλ+yn

(
δ
√
γ2 + 2φ

)}
,

logπ(γ | · · ·)∝−γ− 1
2γ

2
N∑
n=1

xn− log{Kλ(δγ)}+λ log(γ) + 1
2 log(γ2 + 2φ)

N∑
n=2

(λ+yn)

−
N∑
n=2

log
{
Kλ+yn

(
δ
√
γ2 + 2φ

)}
,

logπ(φ | · · ·)∝−φ+ log(φ)
N∑
n=2

yn−φ
N∑
n=2

(xn+xn−1) + 1
2 log(γ2 + 2φ)

N∑
n=2

(λ+yn)

−
N∑
n=2

log
{
Kλ+yn

(
δ
√
γ2 + 2φ

)}
.

Finally, for n= 2, . . . ,N ,

logπ(yn | · · ·)∝yn log
xnxn−1φ

√
γ2 + 2φ
δ

− log(yn!) +ηyn+ log{1(un<e−ηy)}

− log
{
Kλ+yn

(
δ
√
γ2 + 2φ

)}
.

We perform the estimation method on the two data sets. The KL-divergence between
the real invariant distribution and the estimated one is 0.0011 for the first data series, and
0.0019 for the second one (see Figure 6.2). For the φ parameter, the posterior distribution
mode is given by 1.299 in the first series, and 66.236 in the second one. Hence, there is
clear evidence of the good performance of the proposed model.

Again, an immediate procedure for obtaining a set of m trajectories in new times is
available by, first, simulating m parameter values from the posterior distributions, and,
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Figure 6.2: In black and solid appears the GIG(1,2,3) density. In black and dashed appears
the estimated denisty for the GIG(1,2,3)-stationary Poisson-driven Markov processes with
φ = 1. In gray and dotted appears the estimated denisty for the GIG(1,2,3)-stationary
Poisson-driven Markov processes with φ= 80.

second, for each one of them values, simulating a realization of the process starting on the
last observation and parameterized by such a value. As an example, we computed highest
posterior density intervals of probability 0.9 for both series. This appears in Figure 6.3.

The GEV illustration is in continuous time. We consider two simulated data sets with
1000 observations, the first one with a type I GEV (or Gumbel) distribution with density
f1(x) = Gum(x|1,4), and the second one with a type II GEV distribution with density
f2(x) = GEV(x|1,0.8,0.7). Additionally, we set the parameter θ(tr) = c= 1 in both cases.

We assign independent unitary exponential priors to σ, ν, and c, and an independent
standard normal to µ. For expositions’ sake, we set τn = 1 for n = 1,2, . . . ,N , wn =
(xn−µ)/σ and zn = 1+(xn+µ)/σ. The symbols Gum and GEV will be used to distinguish
the distributions corresponding to, respectively, type I and II GEV.
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Figure 6.3: The first 1500 observations are simulations of the GIG(1,2,3)-stationary
Poisson-driven Markov processes for φ = 1 (top panel), and φ = 80 (bottom panel). The
remaining 500 observations are the mode of the predictive distribution computed with
1000 simulated paths together with prediction intervals of 0.9 probability.
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The corresponding full log-posterior distributions for the Gumbel are

logπGum(c1 | · · ·)∝−
1

ec1−1

N∑
n=2

(
e−wn + e−wn−1

)
− log(ec1−1)

2
N∑
n=2

yn+N


+ c1

 N∑
n=2

yn+N −1
 ,

logπGum(µ | · · ·)∝− µ
2

2 −
N∑
n=2

{
(1 +φ1)e−wn +φ1e

−wn−1
}

+ µ

σ

N + 2
N∑
n=2

yn

− e−w1 ,

logπGum(σ | · · ·)∝−σ−
N∑
n=2

{
(1 +φ1)e−wn +φ1e

−wn−1
}
−

N∑
n=2
{(1 +yn)wn+ynwn−1}

− e−w1−w1−N log(σ).

The full log-posterior distributions for the type II GEV are

logπGEV(c2 | · · ·)∝−
1

ec2−1

N∑
n=2

(
z
− 1
ν

n + z
− 1
ν

n−1

)
− log(ec2−1)

2
N∑
n=2

yn+N −1


+ c2

 N∑
n=2

yn+N −1
 ,

logπGEV(µ | · · ·)∝− µ
2

2 −
ν+ 1
ν

log(z1)− z−
1
ν

1 −
N∑
n=2

{
(1 +φ1)z−

1
ν

n +φ1 z
− 1
ν

n−1

}

− 1
ν

N∑
n=2
{(yn+ν+ 1)log(zn) +yn log(zn−1)} ,

logπGEV(σ | · · ·)∝−σ− ν+ 1
ν

log(z1)− z−
1
ν

1 −
N∑
n=2

{
(1 +φ1)z−

1
ν

n +φ1 z
− 1
ν

n−1

}

− 1
ν

N∑
n=2
{(yn+ν+ 1)log(zn) +yn log(zn−1)}−N log(σ),

logπGEV(ν | · · ·)∝−ν− ν+ 1
ν

log(z1)− z−
1
ν

1 −
N∑
n=2

{
(1 +φ1)z−

1
ν

n +φ1 z
− 1
ν

n−1

}

− 1
ν

N∑
n=2
{(yn+ν+ 1)log(zn) +yn log(zn−1)} .

which again can be easily sampled by the ARMS method.

Last, the following full conditional distributions complete the description of the Gibbs
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Figure 6.4: The histograms correspond to 1000 simulated data from type I (left) and
type II (right) GEV-Poisson driven Markov processes, together with their corresponding
estimated stationary distributions.

sampler

πGum(yn | · · ·)∝
[exp{−(wn−1 +wn)} φ1 (1 +φ1)]yn

yn!Γ(1 +yn),ψyn
1{yn<ψ−1(un)},

πGEV(yn | · · ·)∝

{
(zn−1 zn)−

1
ν φ1 (1 +φ1)

}yn
yn!Γ(1 +yn),ψyn

1{yn<ψ−1(un)}.

The KL-divergence between the real invariant distribution and the estimated one is
0.00003 in the I GEV case, and 0.00037 in the II GEV case (see Figure 6.4). For the
c parameter, the posterior distribution mode is given by 1.044 in the I GEV case, and
0.998 in the II GEV case. Therefore, the evidence suggests the estimation method works
correctly for type I and II GEV distributions, and we can proceed by applying it to real
data.

6.3.3 Empirical analysis

The f -stationary Poisson-driven Markov process can be an appealing alternative for the
analysis of financial series. Indeed, a number of common stylized features typically ob-
served in these type of data, such as heavy tail distributions and volatility clustering,
can be well captured with the appropriate choice of stationary density f and through the



CHAPTER 6. POISSON DRIVEN MARKOV PROCESSES 102

non-linear dependence driven by φ. We illustrate this by means of three datasets.

The first dataset consists of 937 daily estimations of the realized volatility of the FTSE
100 equity index, from October 31, 2003 to May 31, 2007. The estimations are provided
in Heber et al. (2009). The open price, with its corresponding log-returns and realized
volatility are displayed in Figure 6.5. Given the positive support, cluster pattern, and
heavy tail behavior of the realized volatility, it seems plausible to adopt the discrete-time
model with GIG stationary distribution described in Section 6.3.2.

The data is first cleaned, one outlier is replaced by a missing value and, with it,
around four percent of the data is missing seemingly completely at random. The missing
data are imputed using the predictive mean matching method provided in Buuren and
Groothuis-Oudshoorn (2011) mice R package. After the cleaning, the estimation method
is implemented on the realized volatility multiplied by 300. The posterior estimate for the
stationary density is displayed in Figure 6.6. The posterior modes of the model parameters
(λ,δ,γ,φ) are equal to (−2.837,0.173,0.316,37.247).

To test the modeling, we break the sample into an estimation period (from October
31, 2003 to December 31, 2006), and a subsequent forecasting period (from January 1,
2007 to May 31, 2007). Next, we predict probability intervals for the forecasting period
with 1000 simulated trajectories. The intervals appear in Figure 6.7. Indeed, 92 percent
of the sample falls within the prediction intervals of probability 0.95. Therefore, we may
conclude the method is working correctly for this data.

The other two data sets are the minimum daily stock returns occurring during a month
of the S&P 500 and the Tokyo Stock Price Index (TOPIX). The S&P 500 is one of the
most representative market indexes and rests upon the common stock prices of 500 top
publicly traded American companies. TOPIX measures the market value changes of the
common stocks in the Tokyo Stock Exchange. For our analysis the S&P 500 series has
a coverage period of almost 12 years, from January 3, 2000 to July 9, 2012, whereas the
TOPIX data are based on a 22 years period, from January 1, 1990 to July 31, 2012.

In both cases we compute daily returns taking log-differences multiplied by 100 and
then compute the monthly minima. Hence, it seems plausible to adopt the models with
extreme value distributions described in Section 6.3.2. Two series consisting of 151 and
271 observations are obtained for S&P 500 and TOPIX, respectively. The extracted series
are displayed in Figure 6.8.
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Figure 6.5: Log open prices, returns, and realized volatility series for FTSE 100 from
October 31, 2003 to May 31, 2007
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Figure 6.6: Histogram and estimate of the stationary density based on a GIG–Stationary
Poisson driven model for FTSE 100 series.
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Figure 6.7: FTSE 100 realized volatility series from January 1, 2007 to May 31, 2007, along
with highest posterior density intevals of probability 0.95. The intervals are computed
using the estimation period from October 31, 2003 to December 31, 2006, with 1000
simulated trayectories.

We perform the estimation with both type I and type II GEV models. In the type I
GEV case the posterior modes of (µ,σ,c) are given by (0.721,0.384,0.828) for S&P 500,
and by (0.808, 0.412,0.725) for the TOPIX dataset. In the type II GEV case the posterior
modes of (µ,σ,ν,c) are (0.618, 0.372, 0.041, 0.399) for the S&P 500 case, and (0.779, 0.385,
0.152, 0.702) for the TOPIX dataset. The posterior estimates of the stationary densities
are displayed in Figure 6.9. We may conclude that the heavy tails, clearly observable in
both datasets, can be satisfactorily captured by GEV-stationary Poisson-driven Markov
processes.

6.4 Comparison to the SF-Harris process

In the following, we adjust the GIG-Harris SV model (see Definition 4.1) to the FTSE
equity index. First, the cleaning and imputation of the data is conducted exactly as it was
described in the previous section. Then, we proceed by estimating the periodicity func-
tion, appearing in Table VIII . Notice that we have daily observations, so the function only
has one value per day. In fact, the values on weekdays are similar, indicating that there is
no strong periodic component in these data. Next, we compute the periodically adjusted
volatility, to which we adjusted the SF-Harris process using the method of Section 4.4.1.
The posterior estimate for the stationary density is in Figure 6.11. The posterior modes
of the model parameters (α,λ,κ,η) are equal to (0.70,−3.14,0.32,0.68). In terms of the
GIG parametrization used in the GIG-stationary Poisson-driven Markov process the pos-
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Figure 6.8: S&P 500 and TOPIX series of log monthly minima from January 3, 2000 to
July 9, 2012, and from January 1, 1990 to July 31, 2012, respectively. The values are
multiplied by -1 to accommodate the GEV stationary distribution.

terior modes (λ,δ,γ,α) equal (−3.14,0.21,0.46,0.70). Hence, the stationary distributions
adjusted using the GIG-Harris SV model and the GIG-stationary Poisson driven Markov
model are very similar (see Figure 6.10), indeed the empirical KL-divergence between
both of them is 0.021.

Table VIII: Approximation of the periodicity function of FTSE stock prices.
Average of the spot volatility standardized by daily volatility

Day f̂

Monday 0.13
Tuesday 0.14

Wednesday 0.16
Thursday 0.16
Friday 0.16

Saturday 0.24

Once more, we break the sample into an estimation period (from October 31, 2004 to
December 31, 2006) and a subsequent forecasting period (from January 1, 2007 to May
31, 2007), and we predict 0.95 probability intervals for the forecasting period with 1000
simulated trajectories. The intervals appear in Figure 6.12. Comparing this figure to
Figure 6.7 we can observe that the data sets falling out of the intervals are exactly the
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Figure 6.9: Histograms of the S&P 500 (upper panel) and TOPIX (lower panel) series
together with the corresponding estimated stationary densities in the type I (solid line)
and type II (dashed line) GEV cases.
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Figure 6.10: In black and dashed appears the estimated denisty for the GIG-Harris SV
model. In gray and solid appears the estimated denisty for the GIG-stationary Poisson
driven Markov model.
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Figure 6.11: Histogram and estimate of the stationary density based on a GIG-Harris SV
model for FTSE 100 series. The data are periodically adjusted.
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Figure 6.12: FTSE 100 realized volatility series from January 1, 2007 to May 31, 2007,
along with highest posterior density intevals of probability 0.95 based on a GIG-Harris
SV model. The intervals are computed using the estimation period from October 31, 2003
to December 31, 2006, with 1000 simulated trayectories.

same. As a matter of fact, the same 92 percent of the sample falls within the prediction
intervals. This is because a short-memory stationary process modeling the volatility has a
strong dependence in the stationary distribution adjusted. In fact, the same has occurred
when comparing the SF-Harris process to the OU type process, the prediction results
are equally good. However, let us stress two important issues. First, the SF-Harris
process has a direct way of estimating the periodicity that, although it was not the case
of this data, can improve the adjustment notably in scenarios with systematic variations.
Second, the mathematical structure of the transition probabilities of the SF-Harris process
is much simpler than the one of OU type processes or f -stationary Poisson driven Markov
processes. This is the strength of the GIG-Harris SV model, it is easily tractable and yet
equally flexible.

6.5 Comparison to Taylor’s SV model

In this section we adjust Taylor (1986) benchmark model to the FTSE equity index. Here,
the returns Rt from an asset at time t follow

Rt = exp(τt/2)εt,
τt = γ+φτt−1 +ηt,
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where {εt}t≥0 and {ηt}t≥0 are i.i.d. Gaussian distributed random variables with zero mean
and variances 1 and σ2

η respectively. The volatility process {τt}t≥0 is a standard Gaussian
AR(1) process and, if |φ| < 1, {τt}t≥0 is strictly stationary. In order to estimate this
model we use the stochvol R package, that provides an efficient estimation algorithm via
MCMC methods. Algorithmic details can be found in Kastner and Frühwirth-Schnatter
(2014).

Once again, we break the sample into the same estimation period (from October 31,
2003 to December 31, 2006), and a subsequent forecasting period (from January 1, 2007
to May 31, 2007), and we predict 0.95 probability intervals for the forecasting period
with 1000 simulated trajectories. As noted in Hansen and Lunde (2005), the fact that
the volatility is unobserved has made difficult to evaluate and compare different models.
It is not clear which criteria one should use to compare. In their analysis, they compare
GARCH-type models in terms of loss functions, some of which are more robust to outliers.
Retaining the same idea, we compare the GIG-Harris SV model, the GIG-stationary
Poisson-driven Markov process and Taylor’s SV model, according to the following loss
functions:

MSE2 = n−1
n∑
i=1

(
τ̂2
i −m2

i

)2
, MSE1 = n−1

n∑
i=1

(τ̂i−mi)2 ,

MAD2 = n−1
n∑
i=1

∣∣∣τ̂2
i −m2

i

∣∣∣ , MAD1 = n−1
n∑
i=1
|τ̂i−mi| ,

R2LOG= n−1
n∑
i=1

{
log(τ̂2

i m
−2
i

}2
,

where τ̂i denotes the approximated volatility and mi is the mode of the predictive distri-
bution.

The results appear in Table IX. With two loss functions the GIG-Harris SV model
performs slightly better than the GIG-Po-driven SV model, and they both outperform
Taylor’s model. However, errors are very small, some of the order of 1e−18. Even more,
the criteria MAD2 and MAD1 are more robust to outliers and are also the ones showing
less difference between the three methods. Therefore, we believe that the three methods
have a very good predictive performance. However, the GIG-Harris SV model and the
the GIG-Po-driven SV model also work for continuous data.
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Table IX: Five criteria for SV models comparison

Criteria GIG-Harris GIG-Po-driven Taylor order
MSE2 17 17 48 1e−18
MSE1 9 10 17 1e−10

R2LOG 28 30 39 1e−1
MAD2 15 15 33 1e−10
MAD1 19 19 29 1e−6

6.6 Concluding remarks

In this chapter we introduced the f -stationary Poisson-driven Markov processes, another
class of strongly stationary Markov models with arbitrary but given invariant distribu-
tions. Given a choice of invariant density f , the dependence in the processes is introduced
via a Poisson weighed density, which in turn leads to a well defined Markov process. Un-
like other existing approaches in the literature, the proposed construction has a useful
representation of the underlying transition probability. This leads to an effective MCMC-
based estimation procedure. We also showed how the construction can be extended to
build new stationary models, without compromising the transition density representation.
Particular emphasis was placed on the general classes of GIG and GEV stationary dis-
tributions, which themselves constitute interesting choices of models for econometric or
financial applications. However, the construction can be applied to any other distribution
supported on R+, leading to alternative approaches in other areas where model stability
is a requirement.

Given that the specific dependence of f -stationary Poisson-driven Markov processes
is induced by the choice of invariant density f , one is naturally inclined to choose f as
general as possible. Two future research directions we plan to pursue to achieve more
generality is to adopt phase-type distributions or nonparametric hierarchical mixtures for
f (Lo, 1984).



7 Conclusion

Throughout this thesis, we exposed the research advances we have achieved on the class of
non-independent-increment, stationary, Markov processes. In particular, our work focuses
on methods to construct processes in this class with tractable transition probabilities
and given invariant distributions. Such processes are an interesting alternative when
empirical data, or theoretical considerations, suggest a phenomenon have a state-space
dependent structure. Indeed, they offer distributional flexibility, since the user can choose
the marginal distribution, and they have efficient estimation methods, which is a rare
quality for continuous-time processes with non-independent increments.

We first introduced SF-Harris processes, which arise extending Harris recurrent Markov
chains to continuous time. We proved several stability properties, developed the in-
ference, and applied the processes in two contexts, stochastic volatility modeling and
time-dependent density models. In the context of stochastic volatility, we used SF-Harris
processes to model spot volatility. The resulting model has a simple transition mechanism
driving its dependence, and proves not to compromise its generality when confronting it
with other popular models available in the literature. In the context of time-dependent
density estimation, we proposed to induce the time dependence of a Bayesian mixture
model through both the weights and particles, using independent collections of SF-Harris
processes. This is a more elaborated way of modeling the dependence than the existing
approaches and it eliminates some of the disadvantages typically found.

After SF-Harris processes, we introduced the f -stationary Poisson-driven Markov pro-
cesses, another class of strongly stationary Markov models with arbitrary but fixed in-
variant distributions. Given an invariant density f , we induced the dependence in the
processes with a Poisson weighted density. Once again, the proposed construction has
a useful representation of the underlying transition probability, leading to an effective
MCMC-based estimation procedure. We studied the case of a Gamma invariant distri-
bution, and showed how the construction can be used to build new stationary models,
without compromising the transition density representation. We also made a numerical
comparison between the SF-Harris process and the GIG-stationary Poisson driven Markov

111



CHAPTER 7. CONCLUSION 112

process. The results showed that the estimation of the stationary density is very similar
in both cases and, as a consequence, the prediction results are equally good.

We mentioned possible extensions for the GIG-Harris SV model, such as considering
the microstructure noise, inducing long memory, and exploring jump robust estimation
methods for the periodic component (see Section 4.5). We also mentioned two future
research directions to achieve more generality for the f -stationary Poisson-driven Markov
processes. One is to adopt phase-type distributions and the other is to use nonparametric
hierarchical mixtures for f (see Section 6.6). Additionally, the full development of the
time-dependent density model is still pending (see Section 5.3).

Apart from that, there is still much to do with the processes class that was studied.
To begin with, other stability properties allowing statistical treatability could be chosen.
To fully understand how restrictive we are in choosing one or another property, a deep
mathematical study of the contentions between the stability properties in continuous time
is still missing in the literature. In particular, the question about the contention between
Harris recurrence and wide-sense regeneration seems interesting. Emphasizing another
direction of research, let us remember that Feller processes estimation in general has been
scarcely developed and more efficient simulation techniques would allow us to apply them
in a wide range of contexts, gaining more flexibility. Finally, the study of the prediction
of semi-Markovian processes would immediately generate a wide class of long-memory
processes that could be used with financial data.

We hope that this short work in the broad class of stochastic processes, serves to
demonstrate its great power when applied in real data, which computational methods
and devices have put at our disposal in the last few years.
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