

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE FILOSOFÍA Y LETRAS COLEGIO DE GEOGRAFÍA

VARIABILIDAD GEOMORFOLÓGICA DE LOS CONOS DE ESCORIA DE LA PORCIÓN CENTRO-ORIENTAL DE LA SIERRA CHICHINAUTZIN A PARTIR DE MODELOS DIGITALES DE ELEVACIÓN

TESIS

para obtener el título de:

LICENCIADO EN GEOGRAFÍA

PRESENTA:

GUSTAVO VIVÓ VÁZQUEZ

DIRECTORA DE TESIS:

DRA. MARIE-NOËLLE GUILBAUD

Ciudad Universitaria, México

2017

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. "Para investigar la verdad es preciso dudar, en cuanto sea posible, de todas las cosas, una vez en la vida" René Descartes"

Dedicada a mi abuelito Luis; a mis padres Rita y Gustavo; a mis hermanos Oscar, Diana y Vale; a mis queridos sobrinos Jonathan, Samantha y Nahim; a mis tías Eca y Eva; a mi primo Towi y a TODA mi familia. Los amo.

Agradecimientos

A la Universidad Nacional Autónoma de México, en particular, al Instituto de Geofísica por brindarme el apoyo económico durante mi estancia en el departamento de vulcanología y, a la Facultad de Filosofía y Letras por recibir de ella mi educación profesional.

Agradezco de manera especial a la Dra. Marie-Noëlle Guilbaud, por el tiempo que invirtió en la dirección de esta investigación, por la paciencia y la buena disposición. Muchas gracias por involucrarme en las diversas salidas a campo; en verdad aprendí mucho de ellas.

A los integrantes del sínodo: Dr. José Juan Zamorano Orozco, Mtro. Sergio Salinas Sánchez, Dr. Lorenzo Vázquez Selem y Mtro. Frank Gustavo García Rodríguez. Les agradezco la lectura, la amabilidad y el humor con el que me recibieron, además de los valiosos e invaluables comentarios que ayudaron a mejorar esta investigación.

A los profesores de quienes recibí cátedra: Dra. Marie-Noëlle Guilbaud, Dr. Claus Siebe Grabach, Dr. José Luis Arce Saldaña, Dr. José Juan Zamorano Orozco, Dra. Rosa María Bonilla Burgos, Mtro. Sergio Salinas Sánchez, Mtro. Sergio Yussim Guarneros, Mtro. Mauricio Galeana Pizaña y Lic. Tobyanne Berenberg. Gracias por las excelentes clases de vulcanología, geomorfología, estadística geología estructural, sistemas de información geográfica y geografía política; todas fueron fundamentales para completar mi formación académica.

A mis compañeros de vulcanología: Athziri Hernández, Juan Ramón, Ainhoa Lorenzo y Néstor López, por hacer más agradable el ambiente dentro del Instituto de Geofísica y en las salidas a campo. En especial a Néstor, por el apoyo que me brindó durante el Congreso de Geología.

A mis amigos de geografía: Marie, Leo, Irlanda, Omar, Manuel, Obed, Roberto, Gallardo y Yatzil, por el simple hecho de acompañarme a lo largo de la carrera.

Investigación realizada gracias al programa UNAM-PAPIIT IN113517. Gracias.

Índice general

Índice de figuras	
Resumen	. 1
Introducción	. 2
1. Conos de escoria: importancia y evolución	. 3
1.1. Planteamiento de problema	. 3
1.2. Justificación	. 3
1.3. Objetivo	. 4
1.4. Objetivos particulares	. 4
1.5. Hipótesis	. 5
1.6. Implicaciones	. 5
1.6.1. Recurrencia de la actividad	. 5
1.6.2 Evaluación de los riesgos	. 5
1.6.3 Estudio de la tectónica	. 6
1.6.4. Nueva Metodología	. 6
2. Marco teórico conceptual	. 8
2.1. Conos de escoria	. 8
2.1.1. Procesos pre-eruptivos y eruptivos	11
2.1.2 Procesos post-eruptivos	12
2.2. Morfometría	13
2.3 Modelos Digitales de elevación (MDE) y datos LiDAR	14
3. Campo Volcánico de la Sierra Chichinautzin	16
3.1 Localización	16
3.2 Tectónica, geología y litología	17
3.3. Estudios recientes de conos de escoria del CVSC	18
4. Metodología	20
4.1. Datos cartográficos	20
4.2. Parámetros morfométricos	23
4.2.1 Volcanes sencillos	23
4.2.2 Volcanes complejos	25
4.2.3 Pendientes y volúmenes para todos los volcanes2	27
4.3. Catálogo geomorfológico y trabajo de campo	30

5. Resultados	31
5.1. Descripción general	31
5.1.1 Histogramas de volcanes sencillos	31
5.1.2. Histogramas de volcanes complejos	36
5.2. Edad y morfología	31
5.2.1. Volcanes del Holoceno (<11,000 AP)	39
5.2.2. Volcanes del Pleistoceno superior (100,000-11,000 AP)	44
5.2.3. Volcanes del Pleistoceno inferior (1-0.1 Ma)	46
5.3. Parámetros morfométricos y edades	48
6. Discusión: procesos de construcción y degradación de los conos	52
6.1. Procesos de construcción	52
6.2. Procesos de degradación	53
Conclusiones	55
Apéndice 1. Catálogo de los conos de escoria	57
Apéndice 2. Descripción de cárcavas y barrancos6	37
Apéndice 3. Base de datos: parámetros morfométricos7	76
Referencias	78

Índice de Figuras

Figura 1. Ejemplo de un volcán sencillo: El Teuhtli	. 10
Figura 2. Secuencia que ilustran el proceso de erosión por salpicadura	. 13
Figura 3. Parámetros morfométricos convencionales	. 14
Figura 4. Mapa de localización del Campo Volcánico de la Sierra Chichinautzin (CVSC)	. 16
Figura 5. Sombreado de la porción centro-oriental del CVSC	. 21
Figura 6. Mapa altimétrico del área de estudio	. 22
Figura 7. Ejemplos de las mediciones realizadas en volcanes sencillos	. 24
Figura 8. Factor de elongación para el cono (Eco) y cráter (Ecr)	. 25
Figura 9. Ilustración de la extracción de los datos morfométricos en volcanes complejos	. 27
Figura 10. Polígono principal para el volcán Ocoxusco	. 27
Figura 11. Modelos de elevación LiDAR mediante algebra de mapas	. 29
Figura 12. Volcanes sepultados	. 30
Figura 13. Histogramas de la altura de los conos (Hco) para v. sencillos	. 32
Figura 14. Histogramas del diámetro de los conos (Wco) para v. sencillos	. 33
Figura 15. Histogrmas del diámetro de los conos (Wcr) para v. sencillos	. 33
Figura 16. Histogramas de profundidad de los crateres (Dcr) y pendientes (Sco) de v. sencillos	. 34
Figura 17. Histogramas de elongación de los conos (Eco) y crateres (Ecr) de v. sencillos	. 35
Figura 18. Histogramas de volumen (Vco) y relaciones (Hco/Wco) y (Wco/Wcr) de v. sencillos	. 35
Figura 19. Histogramas de la altura de los conos (Hco) para v. complejos	. 36
Figura 20. Histogrmas del diámetro de los conos (Wcr) para v. complejos	. 37
Figura 21. Histogramas de profundidad de los crateres (Dcr) y pendientes (Sco) de v. complejos	. 37
Figura 22. Histogramas de elongación de los conos (Eco) y crateres (Ecr) de v. complejos	. 38
Figura 23. Histogramas de volumen (Vco) y relaciones (Hco/Wco) de v. complejos	. 39
Figura 24. Cárcavas de volcanes del Holoceno	. 41
Figura 25. Cárcavas del volcán C. Del Agua	. 42
Figura 26. Barrancos de voclanes del Holoceno	. 43
Figura 27. Volcanes sin barrancos	. 45
Figura 28. Barrancos en volcanes más antiguos	. 47
Figura 29. Conos alineados ya sepultados (C. Renata y C. Coxtocal)	. 47
Figura 30. Volcán Loma de Tepenacasco	. 48
Figura 31. Gráficos de volumen vs altura	. 49
Figura 32. Gráficos de pendiente exterior vs altura máxima	. 50
Figura 33. Gráficos de relación Hco/Wco vs altura máxima	. 51
Figura 34. Gráficos del factor de elongación vs altura máxima	. 51

Resumen

En este estudio se presenta un análisis cualitativo y cuantitativo sobre la morfología de los conos de escoria de la porción centro-oriental del Campo Volcánico de la Sierra Chichinautzin (CVSC). El objetivo consiste en definir algunos de los factores que condicionan la morfología de los conos de escoria al momento de su formación y durante su degradación a lo largo del tiempo. La metodología consta de una serie de técnicas y procesamientos realizados con modelos digitales de elevación (MDE) de alta resolución LiDAR, publicados por el Instituto Nacional de Estadística y Geografía (INEGI, 2010).

Con base en la información obtenida de los MDE, se determinaron los siguientes parámetros morfométricos: área de la base, volumen del edificio, altitud del borde del cráter (mínima, máxima, promedio), nivel promedio de la base, altura del edificio (mínima, máxima, promedio), diámetro del cono y del cráter (mínimo, máximo, promedio), profundidad máxima del cráter, pendiente promedio exterior e interior, número y tipo de barrancos (ladera interior y exterior), además de la elongación del cono y del cráter. Posteriormente, los conos se clasificaron en tres grupos de edades: Holoceno, Pleistoceno superior y Pleistoceno medio. Para ello se tomó como referencia, la morfología de los conos datados por ¹⁴C y los principios estratigráficos de sobreposición y relación de corte. El trabajo de campo permitió confirmar algunos de los rasgos observados en los MDE e identificar conos de escoria sepultados.

En total se contaron 149 conos de escoria, los cuales fueron divididos en volcanes sencillos (de un sólo cráter) y volcanes complejos (múltiples crateres y varios conos imbricados). Los resultados permiten discutir los factores que intervienen en su construcción y destrucción. En particular, no se observa una relación lineal entre la morfometría y la edad de los conos de escoria de la Sierra Chichinautzin, debido a la complejidad de los procesos eruptivos y erosivos que ocurren en el campo.

Introducción

Los conos de escoria son edificios volcánicos de pequeñas dimensiones que pueden presentar una geomorfología diversa, resultado de la interacción de los procesos formadores del relieve (endógenos) con aquellos que están relacionados con su modelado (exógenos). Por lo tanto, los estudios de carácter morfológico y morfométrico pueden utilizarse para deducir los procesos ocurridos antes, durante y después de una actividad eruptiva, además de ser útiles en la construcción de modelos evolutivos del relieve (Grosse et al., 2009). Con base en la idea anterior, se ha realizado un análisis geomorfológico para 149 conos de escoria de la porción centro-oriental del Campo Volcánico de la Sierra Chichinautzin (CVSC), ya que cuenta con una amplia variabilidad de volcanes monogenéticos, para los cuales existen modelos digitales de elevación (MDE) de tipo terreno y superficie, con una resolución horizontal de 5 m y vertical de 1 m, disponibles en la página oficial del Instituto de Nacional de Estadística y Geografía (INEGI).

La estructura desarrollada para este trabajo es la siguiente:

- Capítulo 1. Conos de escoria: importancia y evolución.
- Capítulo 2. Marco teórico conceptual
- Capítulo 3. Campo Volcánico de la Sierra Chichinautzin
- Capítulo 4. Metodología
- Capítulo 5. Resultados
- Capítulo 6. Discusión: procesos de construcción y degradación

Finalmente se presentan las conclusiones y el apéndice. Éste último conformado por el catálogo de los volcanes agrupados por edad, la descripción de los diferentes tipos de barrancos y la base de datos con los parámetros morfométricos recopilados para los 149 conos de escoria.

1. Conos de escoria: importancia y evolución

1.1. Planteamiento de problema

Estudios recientes han permitido reconstruir la historia eruptiva de algunos de los conos de escoria del CVSC mediante dataciones absolutas y el análisis estratigráfico, petrológico y geoquímico de sus productos (Siebe et al., 2004a; Siebe et al., 2005; Guilbaud et al., 2009a; Agustín-Flores et al., 2011; Lorenzo-Merino 2016). Sin embargo, se desconoce la edad de la gran mayoría de estos volcanes. Tampoco existen estudios a detalle sobre la morfología de los conos y su relación con procesos eruptivos y evolutivos. Este trabajo de investigación propone subsanar esta falta de información, colectando nuevos datos morfométricos a partir de MDE y generar un catálogo de la porción centro-oriental del CVSC.

1.2. Justificación

Los estudios de carácter físico-geográfico y morfológico en los volcanes de México, se han enfocado principalmente en la cartografía de los volcanes poligenéticos y en la dinámica fluvio-glaciar de sus laderas. En el primer caso se pueden mencionar como ejemplo, los mapas de peligros volcánicos (Katrin-Sieron et al., 2014) y los de tipo geomorfológico (Mendoza-Margáin, 2010; Figuera-García, 2016). Y en el segundo, los trabajos realizados en las laderas del PopocatépetI por Castillo-Rodríguez et al. (2015) y Bollschweiler et al. (2010). Por otro lado, investigaciones propias de la rama de la vulcanología, suelen anexar pequeños apartados con descripciones morfológicas de los conos de escoria y su respectivo análisis morfométrico dentro de publicaciones más amplias que tratan aspectos más afines a la geología y geoquímica de sus productos (Siebe et al., 2004a; Siebe et al., 2005; Guilbaud et al., 2009a; Agustín-Flores et al., 2011). Lo anterior refleja que los estudios geomorfológicos en los volcanes monogenéticos como interés principal, son escasos en la región del

centro de México (Lugo-Hubp, 1984; Inbar et al. 1994; Lugo-Hubp et al. 1994) en comparación con los de tipo poligenético.

Pese a que los estratovolcanes son rasgos geográficos típicos de las zonas de subducción (Davidson y De Silva, 2000), la provincia del FVTM contiene únicamente una decena de ellos con actividad en el Holoceno (*Global Volcanism Program, Smithsonian Institution*) contra al menos 13 volcanes monogenéticos holocénicos, sólo en el área de Tacámbaro-Michoacán (Guilbaud et al., 2012) y otros más en el CVSC. El alto número de volcanes monogenéticos a lo largo de la FVTM, es un rasgo peculiar para el cual no existe todavía una explicación. Es por ello que se considera fundamental incrementar el número de estudios en este tipo de estructuras, en particular los de tipo geomorfológico.

1.3. Objetivo

 Determinar los procesos de construcción y degradación que controlan la morfología de los conos de escoria de la porción centro-oriental del CVSC a través un análisis morfométrico y de campo de los conos.

1.4. Objetivos particulares

- Establecer una metodología de cálculos morfométricos en el CVSC que sea aplicable en zonas con alta concentración de edificios volcánicos y en terrenos irregulares.
- Realizar un catálogo exhaustivo de los conos de escoria del CVSC, organizado por grupos de edad.
- Relacionar los resultados del análisis morfométrico con observaciones de campo.

1.5. Hipótesis

Los conos de escoria del CVSC muestran estructuras complejas que pueden estar relacionadas con procesos ocurridos antes, durante o después de las erupciones. La morfología y disposición de los conos y sus crateres, pueden usarse en conos jóvenes para estimar la geometría del (o de los) conducto(s). Al contrario, la morfología de los conos más viejos puede usarse para estudiar los procesos de degradación.

1.6. Implicaciones

Un conocimiento detallado de la morfología de los conos de escoria del Campo Volcánico de la Sierra Chichinautzin (CVSC) y la relación de éstos con la edad y los procesos tectónicos, permitirá la deducción, evaluación y mejora de los siguientes aspectos:

1.6.1. Recurrencia de la actividad

Estudios estratigráficos y radiométricos (principalmente fechamiento de paleosuelos) en algunas zonas de actividad reciente en el campo volcánico Michoacán-Guanajuato, han permitido evaluar las tasas de recurrencia eruptiva para el Holoceno. Sin embargo, en el CVSC las tasas de recurrencia para el mismo período son aún desconocidas, en gran parte por la escasez de datos geocronológicos. Este tipo de estudio podrá ayudar a estimar la edad de volcanes en el Holoceno y en periodos más antiguos y así poder reevaluar las tasas mínimas de ocurrencia de erupciones.

1.6.2 Evaluación de los riesgos

Los datos anteriores indican que CVSC es una subprovincia volcánica potencialmente activa, cuya actividad futura tendrá importantes impactos sobre la ciudad de México y la zona metropolitana (Lorenzo-Merino, 2016). Los conos de escoria corresponden a la actividad con mayor área de afectación (en comparación con la formación de domos), debido a la producción de volúmenes

importantes de cenizas que pueden ser transportadas por los vientos, y alcanzan distancias considerables. Como ejemplo el volcán Paricutin, en el campo Michoacán-Guanajuato, generó columnas con alturas de 2 a 6 km (Ordoñez, 1947). Datos publicados por el Centro Nacional de Prevención de Desastres (CENAPRED, 2014) informan que la acumulación de caída de ceniza en espesores de 2 a 3 cm puede ocasionar colapsos de techos y estructuras de mala calidad, cuyo peso puede aumentar un 50% debido a la interacción de la lluvia, además de ocasionar daños en el drenaje y a la salud. Por ello es importante conocer la tasa de recurrencia de la formación de conos de escoria.

1.6.3 Estudio de la tectónica

La morfología y distribución (alineación) de conos y de crateres en su caso, que pertenecen a un mismo episodio eruptivo, es un indicador confiable de la dirección de los diques que alimentan a los volcanes, la cual está relacionado con la dirección de esfuerzos en la corteza. El estudio de la morfología y distribución de los conos puede entonces, permitir establecer con más precisión tal distribución de esfuerzos, y su posible relación con los procesos eruptivos. En comparación con el estudio de Márquez et al. (1999) sobre la alineación de centros eruptivos en la Sierra Chichinautzin, la existencia de datos de elevación de mayor precisión permitirá hacer un estudio más detallado en esta tesis.

1.6.4 Nueva Metodología

Este proyecto también pretende mejorar la metodología del estudio morfológico de los conos de escoria, considerando otras variables relacionadas con la naturaleza de la actividad volcánica, el ambiente de construcción y los productos volcánicos posteriores.

El método clásico para cuantificar la morfología de esto volcanes es mediante la relación existente entre su altura y el diámetro de su base (Hco/Wco), y el diámetro del cráter con respecto al de su base (Wcr/Wco), así como el decrecimiento en el ángulo de inclinación de la pendiente (Wood, 1980a).

6

En la actualidad, estos parámetros siguen utilizándose como principios para determinar los procesos de degradación y edad relativa en los conos de escoria. No obstante, la toma de datos para estos cálculos pueden complicarse por varios factores: 1) el cubrimiento del cono por flujos de lava provenientes de volcanes adyacentes o del mismo volcán (como ocurrió durante la erupción del Paricutin); 2) el rompimiento de una de las laderas exteriores por salida de material lávico (*breached cinder cone*); 3) el relleno del cráter por ceniza de otras erupciones posteriores cercanas al cono; 4) la construcción del edifico sobre pendientes abruptas que puede estabilizar las laderas; 5) la morfología alargada de los conos relacionada con su formación a lo largo de una fisura o, 6) incluso cambios en la etapa final a una fase eruptiva más explosiva que genera la acumulación de depósitos de caída alrededor del cono, modificando así su diámetro de base. El error se multiplica, si en una pequeña zona se concentra una alta densidad de volcanes de edad cercana y establecidos sobre un terreno irregular, factores que podemos identificar en el CVSC, donde realizar un estudio morfométrico clásico resulta poco relevante, ya que la mayoría de los conos se muestran alargados, emplazados sobre estructuras volcánicas antiguas y con presencia de tres o más crateres alineados.

En la mayoría de los casos, los aspectos tectónicos a los que se pueden asociar estas formas de relieve (fallas-fisuras), se encuentran cubiertos por depósitos volcánicos y epiclásticos, lo cual impide la identificación del sistema de diques y a su vez la dirección de esfuerzos en la corteza, siendo necesario considerar nuevas relaciones morfométricas además de la alineación de los conos. Por consecuencia el estudio morfométrico de cada cono debe combinarse con un análisis extensivo de los factores que modelan su morfología final.

2.1. Conos de escoria

Los conos de escoria son las estructuras volcánicas más abundantes y comunes sobre la superficie terrestre (Wood, 1980a). Por lo general, suelen concentrarse en decenas a cientos de centros eruptivos llamados campos volcánicos monogenéticos (Connor y Conway, 2000), aunque también pueden presentarse de forma alineada en los flancos de los estratovolcanes y sobre las laderas de los volcanes escudo (por ejemplo Nakamura, 1997). Con frecuencia suelen ser identificados por los términos de: conos de escoria, de ceniza, de tefra, cineríticos o piroclásticos (*scoria, cinder, tephra, cinerític o pyroclastic cones*) y más recientemente como volcanes basálticos de pequeño volumen (*small-volume basaltic volcanoes*) (Vespermann y Schmincke, 2000; Keating et al, 2008; Kervyn et al, 2012). Aunque este último término no aplica para muchos de los campos monogenéticos de México, ya que los volcanes allí son principalmente de composición andesítica.

Cada uno de los términos ya mencionados describe la morfología, el tamaño, el material que los conforma o la composición química que los caracteriza; incluso, el término *pyroclastic ejecta constructs* incluido en el trabajo de Riedel et al. (2003) refleja un poco, sobre la dinámica de construcción en este tipo de estructuras.

En cuanto a su morfología, se les ha definido como pequeños edificios cónicos que son truncados en la parte superior por la presencia de un cráter en forma de embudo (McDonald, 1972). Algunos de ellos suelen presentar edificios elongados si la erupción se desarrolló a partir de un fisura (Vespermann y Schmincke, 2000; Schmincke, 2004); mientras que otros, se distinguen por su forma de herradura, resultado del colapso de uno de sus flancos por la inestabilidad generada al emplazarse en una pendiente inclinada o sobre un escarpe de falla (Tibaldi, 1995). En estudios recientes, DónizPáez (2015) ha propuesto una nueva subdivisión morfológica para los conos de escoria basada en perfiles topográficos y observaciones realizadas en planta. La subdivisión que propone es la siguiente:

- Conos con forma de anillo (*ring-shaped cones*): Básicamente es la misma estructura tipo-cráter que describió McDonald (1972) y es caracterizada por presentar conos circulares y ligeramente elípticos, con crateres cerrados. Esta categoría puede ser dividida en dos subgrupos: 1) conos simétricos (*symetrical ring cone*) y 2); conos asimétricos (*asymetrical ring cone*)
- Conos con forma de herradura (horseshoe-shaped volcanoes): Se distinguen por presentar edificios con paredes en forma de anfiteatro, con una amplia variedad de morfologías debido a los diversos factores que conforman su arquitectura. Se reconocen tres tipos según su aspecto en planta y el tamaño y forma de su abertura: 1) conos típicos en forma de herradura (*Typical horseshoe-shaped cones*); 2) con vértice extendido (*Extended vertex, "tuning fork", horseshoe cones*) y 3); con vértice ligeramente extendido (*slightly extended vertex horseshoe cones*) o edificios arqueados (arched edifices).
- Volcanes múltiples (Multiple volcanoes): Son resultado de una historia eruptiva de bastante complejidad, que termina por construir edificios coalescentes y grupos de volcanes alineados que pueden estar totalmente cerrados o abiertos. También son comunes las estructuras que presentan un sólo edificio con uno o varios crateres separados.
- Volcanes sin cráter (Volcanoes without crater): Pequeños montículos que en sección vertical señalan geometrías de carácter convexo y en plana figuras semi circulares. Sus atributos morfológicos son la ausencia de un cráter y la acumulación de material retrabajado (diluvión) alrededor de los edificios. Este tipo de morfologías son producto de los intensos procesos de erosión que las han afectado y corresponden a los volcanes más viejos.

En relación con su tamaño, los conos de escoria tienen un diámetro base promedio de 800 m (Wood, 1980a), miden 50 a 200 m de altura y el diámetro del cráter varía entre 50 y 600 m

(Schmincke, 2004) (**Figura 1**). En los conos jóvenes, las pendientes pueden presentar valores cercanos a los 30° que es el ángulo de reposo de los materiales granulares (Wood, 1980a); no obstante, pueden encontrarse conos con grados de inclinación hasta de 36° si están conformados por un alto grado de material aglutinado (*spatter*) (Porter, 1972; Aranda-Gómez, 2003). En los conos más antiguos, se ha señalado que la altura y la pendiente de los conos, así como la profundidad de sus crateres disminuyen, mientras que el diámetro de la base aumenta, transformando a los perfectos conos iniciales en pequeñas colinas poco visibles en el paisaje (Wood, 1980b; Hooper y Sheridan, 1998).

Figura 1. Ejemplo de un volcán Sencillo: El Teuhtli. Se ubicado en el CVSC, datado ~31,000 AP (Guilbaud et al. 2015); el diámetro promedio de la base (Wcoprom) para este volcán es de 629 m, tiene una altura máxima (Hcomax) de 117 m, el diámetro máximo del cráter (Wcrmax) es de 274 m y tiene una profundidad (Dcr) de 38 m, el promedio de la pendiente exterior es de 28° y presenta barrancos con un profundidad máxima de 10 m.

Los conos de escoria son construidos por la acumulación de material piroclástico en torno a una abertura y/o fisura en la superficie en una cantidad < 1 km³ (Kereszturi y Németh, 2012), este volumen es pequeño en comparación con el de los flujos de lava con los que suelen asociarse; por lo tanto, el cono representa una pequeña fracción de todo el magma emitido (Cas y Wright, 1987).

En secciones dentro del cono es común encontrar secuencias de partículas gruesas (>64 mm), entre ellas bombas y material aglutinado (Cas y Wright, 1987); además de diques que intersectan o

cortan a dichas secuencias (Guilbaud et al., 2009b) y evidencia de la acumulación de lagos de lava en el fondo del cráter, que ya han solidificado y muestran estructuras de disyunción columnar *(columnar jointing)* (Kereszturi y Németh, 2012).

Observaciones de erupciones históricas indican que la vida eruptiva de los conos de escoria, abarca un período corto que va desde poco más de cinco meses (Eldfell, Islandia) hasta nueve años (Paricutin, México), y por ello son definidos como volcanes monogenéticos (Cas y Wrigth, 1987). Rara vez pueden ser poligenéticos, como en el caso del volcán Cerro Negro en Nicaragua, cuya primera fase eruptiva inició en 1850, y que desde entonces presentó al menos otras 26 erupciones, siendo la última en 1999 (Schmincke, 2004).

La erupción del volcán Paricutin nos ha mostrado que los conos de ceniza pueden crecer rápidamente en los primeros años de actividad (Ordoñez, 1947; Luhr y Simkin, 1993). Durante ésta, pueden sufrir varios colapsos y desarrollar crateres alineados y volcanes adventicios (por ej. el Zapichu) y su base puede ser recubierta por sus propios derrames de lava. Sus emisiones de tefra modifican su entorno, rellenando los crateres y barrancos de otros volcanes cercanos. Las lavas emitidas por el mismo volcán pueden recubrir de manera parcial o total volcanes cercanos más antiguos.

2.1.1. Procesos pre-eruptivos y eruptivos

Kereszturi y Németh (2012), los definen como los procesos involucrados en la construcción de los volcanes monogenéticos a lo largo de toda su historia eruptiva. Se han dividido en factores internos y externos. Los primeros hacen referencia a las propiedades de los magmas y a la migración de sus centros eruptivos en diferentes puntos. En cambio, los externos están conformados por la interacción del material magmático con algún cuerpo de agua subterránea o superficial; la topografía donde se produce la erupción y la dirección de los vientos (éste último fue identificado por Porter, 1972).

11

De acuerdo con Kereszturi y Németh (2012), la combinación de dichos factores produce una gran variedad de estilos eruptivos como el hawaiano, estromboliano, estromboliano violento, vulcaniano o freatomagmático. La complejidad de la morfología final de los conos de ceniza resulta, por lo general, del número de fases eruptivas implicadas en su formación y del proceso que predominó sobre los demás (por ejemplo, magmático sobre freatomagmático o viceversa).

2.1.2 Procesos post-eruptivos

Aunque todas las formas del relieve son esculpidas por diferentes agentes erosivos, como las olas del mar, los glaciares y los vientos, uno de los más comunes es la escorrentía, puesto que los agentes anteriores están concentrados sólo en ciertas áreas del globo terráqueo (Strahler, 1996).

De acuerdo con Strahler (1996), la erosión de la pendiente comienza en las partes topográficas más altas, donde el flujo de agua tiende a transportar las partículas de suelo que son esparcidas por el golpeteo de la lluvia, un proceso conocido como erosión por salpicadura *o splash erosion* (**Figura 2**). De esta forma, una lluvia torrencial puede remover hasta 225 toneladas por hectárea. Las partículas que son esparcidas bloquean los espacios naturales por donde el agua podría infiltrarse, lo que reduce la permeabilidad de los suelos y aumenta la erosión, principalmente el proceso conocido como erosión laminar (*sheet erosion*); es decir, la perdida de una capa fina de suelo. En pendientes inclinadas, la escorrentía se vuelve más efectiva, desarrollando una serie de surcos o canales en la superficie (*rill erosion*); sí el proceso continua, estos surcos se unen para ser más grandes y profundos, a los que se les da el nombre de cárcavas (*gullies*).

Estos procesos pueden ser importantes cuando se desarrolla un suelo arriba del cono de escoria, ya que produce una superficie impermeable susceptible a la erosión por salpicadura. En el caso de la ausencia de suelo (volcanes recientes), el cono de escoria se comporta como monte de arena, y los procesos de erosión inician con la formación de lloraderos al encontrarse con algún obstáculo (roca, rugosidad de la superficie, planta), los cuales concentran el flujo de agua, promoviendo la erosión por

acción fluvial. Con el tiempo los lloraderos se convierten en hilillos, y éstos a su vez en arroyadas, luego en canalillos (tamaño de teja invertida), surcos (tamaño similar que en campos agrícolas), cárcava (<1.5 m), barrancos y en la última etapa, puede llegar a formar el valle de un río.

Figura 2. Secuencia que ilustran el proceso de erosión por salpicadura *(splash erosion)* o también como erosión pluvial; donde una gota de lluvia impacta contra la superficie, generando un pequeño cráter (en la imagen a la derecha) que termina por esparcir fragmentos de suelo (tomado de: Strahler, 1996).

2.2. Morfometría

El estudio de la morfología de los conos de escoria se ha visto apoyado al utilizar las siguientes mediciones: altura del cono (Hco), diámetro de la base del cono (Wco), diámetro del cráter (Wcr), profundidad del cráter (Dcr) y el ángulo de inclinación (**Figura 3**), que son los parámetros básicos desarrollados en la década de los setentas y ochentas (Porter 1972; Wood 1980a y b).

Los primeros trabajos enfocados a la morfometría corresponden a Scott y Trask (1971) quienes utilizan el máximo ángulo de pendiente y la relación radio/altura del cono (Rco/Hco) para determinar la edad relativa de 15 conos en un campo volcánico de Crater of the Moon (Arizona). Porter (1972) contribuye con el primer estudio para cuantificar las variaciones en los parámetros morfométricos, examinando la distribución, morfología y tamaño por frecuencia en los conos de escoria del Mauna Kea. Bloomfield (1975) realiza un trabajo sobre la morfología de los conos de escoria, así como los

flujos de lava de la parte oeste del campo volcánico Sierra del Chichinautzin, en el valle de Toluca, combinando algunas relaciones morfométricas (altura del cono, diámetro del cráter) con el fechamiento por radiocarbono de paleosuelos encontrados debajo de algunos productos, para obtener la edad relativa de 41 conos. Desarrollando la misma técnica, Martin del Pozzo (1982) determina un mayor número de parámetros geomorfológicos (altura, radio, diámetro del cráter y de la base de los conos; espesor promedio, máximo largo, relación de aspecto, ancho, área, volumen) para definir la edad relativa de 146 conos y sus lavas en la región central del mismo campo volcánico (CVSC).

Entre otros estudios morfométricos en conos de escoria en México, destacan los realizados por Hasenaka y Carmichael (1985a; 1985b) quienes obtienen la edad de siete conos por métodos radiométricos y a su vez, determinan sus respectivos rasgos morfométricos, con el fin de compáralos con el resto de los edificios volcánicos del campo Michoacán-Guanajuato, así deducen que 78 conos de un total de aproximadamente 900 tienen una edad menor a 40,000 años.

Figura 3. Parámetros morfométricos convencionales. Hco= altura del cono; Wco= Ancho del cono; Wcr= ancho del cráter, Dcr= profundidad del cráter y α= ángulo de inclinación (Wood 1980b).

Wood (1980b) señala la posibilidad de usar los parámetros morfométricos para determinar la edad aproximada de los conos; utiliza modelos simples para cuantificar la degradación de éstos por la erosión y establece que la relación entre Hco/Wco es por lo regular de 0.18 para conos jóvenes y decrece con la edad. Hace hincapié en la importancia del clima sobre la erosión y que los estudios morfométricos pueden proporcionar información sobre los climas del pasado. Debe especificarse que su trabajo fue realizado principalmente con datos del campo de San Francisco (Arizona), aunque los compara con datos en otros campos.

2.3 Modelos Digitales de elevación (MDE) y datos LiDAR

Existen dos maneras de representar los procesos naturales dentro de un Sistema de Información Geográfica; ya sea como un archivo de tipo raster (conjunto de celdas), o a partir de un archivo en formato vectorial (puntos, líneas o polígonos). Un Modelo Digital de Elevación (MDE), es un ejemplo de archivo raster, donde la información numérica de los valores de altitud es almacenada y distribuida en celdas o pixeles que representan una porción específica de la superficie. Esta forma de estructurar la información, permite realizar operaciones sencillas dentro de uno, o varios raster con la finalidad de obtener nuevos datos del terreno. El lenguaje computacional utilizado para efectuar estas operaciones, es conocido como álgebra de mapas o *Map Algebra*.

De los MDE se pueden generar varios subproductos, como los modelos digitales de terreno que informan sobre la topografía (MDT) y los de superficie, que informan sobre la cobertura vegetal (MDS). En la actualidad los MDE de mayor precisión se han desarrollado a partir de datos LiDAR (del acrónimo *Light Detection And Ranging* ó *Laser Imaging Detection And Ranging*). Estos se pueden obtener a partir de vuelos aéreos realizados con avionetas o drones, que llevan consigo un sensor activo que emite pulsos de láser o luz interrumpidamente y que a su vez registra los retornos de esos mismos pulsos, conocidos como ecos, rebotes o retornos. Los primeros rebotes corresponden a la interacción del láser con la vegetación y permiten construir el MDS, mientras los segundos rebotes corresponden al terreno (MDT). El tiempo que tarda en regresar el láser, permite calcular la altimetría del terreno, puesto que en estos vuelos se incluye un GPS (Li et al., 2004).Estos tipos de datos son los más precisos disponibles hasta ahora para la zona de estudio.

15

3. Campo Volcánico de la Sierra Chichinautzin

3.1 Localización

El Campo Volcánico de la Sierra Chichinautzin (CVSC) se encuentra ubicado dentro de la Faja Volcánica Trans-Mexicana (FVTM) (**Figura 4**). Contiene aproximadamente 220 centros eruptivos; la mayoría son conos de escoria que están asociados a diversos flujos de lava, aunque también existe domos volcánicos y espesos derrames de lavas (Siebe et al., 2004a). La mayor parte de las rocas expuestas son de composición andesítica que, junto a depósitos piroclásticos y sedimentos lacustres, cubren un área de 2,500 km² (Siebe et al. 2004a).

Figura 4. Mapa de elevación y de sombreado del Campo Volcánico de la Sierra Chichinautzin (CVSC) y su ubicación dentro de la Faja Volcánica Trans-Mexicana (FVTM). Para delimitar el polígono del CVSC se utilizaron MDE construidos con curvas de nivel escala 1:50 000; además de un MDE de la República mexicana con 90 m de resolución. Se localizan a los volcanes Iztaccíhuatl, Popocatépetl y Toluca que limitan al CVSC. La porción central-oriental (zona analizada en éste estudio) separa la cuenca de México de los valles de Cuautla y Cuernavaca.

3.2 Tectónica, geología y litología

Se ha propuesto que la parte central de la CVSC representa un bloque levantado (horst) bordeado por un sistema de fallas normales en una dirección preferencia E-W. Dentro de éstas, se encuentra la falla Xochimilco al norte del CVSC; mientras que al sur se ha identificado la falla de la Pera (Siebe, et al., 2004b). Márquez et al. (1999) relacionan la alineación general de los volcanes con la orientación de los esfuerzos tectónicos regionales, destacando una dirección de extensión N-S con un componente de deslizamiento.

Según Arce et al. (2008), la litología de esta región consta de:

- El Campo Volcánico de la Sierra Chichinautzin y depósitos lacustres más recientes.
- La Sierra de las Cruces que está integrada por secuencias de piroclastos, depósitos de avalancha y lahares.
- La Formación Tepoztlán, que incluye secuencias volcanoclásticas de epiclástos andesíticos junto con depósitos de caída (Lenhardt y Gotz, 2011)
- La Formación Buenavista compuesta de flujos de lava de composición andesítica-dacítica intercalados con secuencias de ignimbrita (soldada) de composición riolítica.
- La Formación Tilzapotla característica por sus delgadas capas de ignimbrita (soldada y no soldada) en tonos rosados.
- La Formación Balsas con coloración rojiza, conformada por conglomerados, arcosa, depósitos de limolita y toba intercalados por flujos de lava de composición basáltica y andesítica y depósitos lacustres.
- Una secuencia de rocas calizas del Mesozoico (Formación Xochicalco, Morelos, Cuautla y Mexcala)

3.3. Estudios recientes de conos de escoria del CVSC

Para este estudio es importante revisar la información disponible sobre la edad, composición química y estilo de erupción de conos de escoria recientes en el CVSC. Uno de los volcanes que ha sido estudiado por su importancia en hallazgos prehistóricos e impacto sobre las civilizaciones antiguas, es el volcán Xitle, el cual fue datado en <1,670±35 AP (Antes del Presente; Siebe 2000). Otros volcanes con morfologías jóvenes han sido estudiados por Siebe et al. (2005), quienes identifican los rasgos morfométricos, el volumen, la química y la edad de los conos de escoria: Tláloc, Tlacotenco, Cuauhtzin, Hijo del Cuautzin, Teuhtli y Ocusacayo. Para el Tláloc se identificó una edad de <6,200±35 años AP, para el Tlacotenco una edad de entre 14,100 y 6,200 AP, el Cuautzin una edad de entre 8,225±30 y 7,360±120 AP, y el Hijo de Cuautzin de <20,895 años AP. El Teuhtli y Ocusacayo, fueron datados en edades de >14,100 y >21,675 años AP. Todos estos volcanes son de composición andesítica.

El volcán Pelagatos fue estudiado por Guilbaud et al. (2009a), cuya erupción ocurrió hace menos de 14,100 años AP. Su actividad inicio con una fisura y una fase efusiva que emplazo un flujo de lava de 7 km de largo, y continuo con una fase intercalada entre emisiones efusivas y explosivas que construyeron un cono principal de 50 m de alto en el extremo occidental de la fisura inicial, además de crestas de escoria marginales y un flujo de lava que relleno la depresión entre las lavas preexistentes. La erupción término con un pequeño flujo que rompió una de las laderas del cono, este último evento fue acompañado de pequeñas erupciones cerca del cráter. Los productos son de composición basaltoandesita con microcristales ricos en Mg. La estructura interna del cono de Pelagatos fue descrita a partir de una cantera localizada en el flanco SW. Agustín-Flores et al. (2011), realiza más estudios sobre la geoquímica, estratigrafía y la datación de los volcanes Dos Cerros, Pelagatos y Cerro del Agua. Arce et al. (2013) publica las primeras dataciones por ⁴⁰Ar/³⁹Ar de esta zona para cinco volcanes antiguos localizados en los extremos sur y oeste de CVSC: Pueblo Viejo, Juchimilpa, Villa Guerrero, Cuescontepec y Tlacotepec. Estos estudios sugieren que los productos volcánicos más antiguos corresponden a Villa Guerrero con una edad de 1.20±0.5 millones de años, mientras que Pueblo Viejo presenta la datación más joven con edad de 0.08±0.02 millones de años. Basado en estas nuevos fechamientos, en conjunto con análisis isotópicos y de roca total, Arce et al (2013) indica que el vulcanismo en el CVSV debió iniciar hace 1.2 millones de años (y no hace 40 mil como lo propuso Márquez (1999), valor que coincide con la actividad eruptiva ocurrida en los volcanes poligenéticos de la Sierra de las Cruces (San Miguel, La Corona y Zempoala). Junto a las nuevas unidades datadas, estiman una nuevo volumen de 515 km³ dentro de un área de 2,680 km², y de acuerdo con el nuevo período de inicio para el CVSC de 1.2 millones de años, calculan una tasa eruptiva promedio de 0.016 km³/100 años. Finalmente, las investigaciones más recientes son las de Arce et al. (2015), quienes inician la discusión sobre el volcán más reciente del CVSC al revelar las dataciones para el volcán Jumento, que fue estimado ~2,000 AP; sin embargo, no descartan la posibilidad que pueda ser de menor edad. Por otro lado, Guilbaud et al. (2015) realizaron nuevas dataciones para los volcanes cercanos a la excavación de un mamut encontrado en el poblado de Santa Ana Tlacotenco, cuya muerte se creía estar relacionada con la actividad volcánica. Más tarde Lorenzo-Merino (2016), estudia con detalle la actividad eruptiva del volcán Pelado.

En temas geomorfológicos, Parrot (2007) calcula el material removido por la erosión en el volcán C. Del Aire, mediante la resta de (MDE) que simula el estado anterior a la degradación del cono y el MDE que muestra el estado actual del C. Del Aire. Zarazúa-Carbajal (2015), propone un nuevo método para calcular la edad de los conos con base en datos morfométricos de los conos calculados con las curvas de nivel interpoladas de los DEMs del INEGI. Sin embargo, usa una base de datos de edades más pequeña, colecta un número menor de parámetros y no relaciona sus resultados con el proceso de degradación de los conos.

19

4. Metodología

4.1. Datos cartográficos

Para la elaboración de la cartografía regional del área de estudio (**Figura 4**), se utilizaron las siguientes cartas topográficas de INEGI (en formato *shape*): Ciudad de México (E14A39); Chalco (E14B31); Milpa Alta (E1449); Amecameca (E14B41); Tenancingo (E14A58); Cuernavaca (E14A59); Cuautla (E14B51) y Jojutla (E14A69); todas a escala 1:50 000. Y un MDE de toda la República Mexicana con una resolución horizontal de 90 m.

Para el análisis geomorfológico y morfométrico, se implementó un insumo cartográfico de mayor precisión, el cual consistió en la descarga de modelos digitales de alta resolución de tipo terreno (120) y de superficie (48) elaborados a partir de datos LiDAR, ambos con una resolución horizontal de 5 m y vertical de 1 m; éstos archivos corresponden a la porción centro-oriental de la Sierra Chichinautzin (aproximadamente 75% del área total del campo; Nota: No existen datos para la parte restante).

A partir de la unión de los modelos digitales de alta resolución se generó un mosaico de imágenes (llamado aquí como MDE mosaico). De éste se obtuvo una capa de falso sombreado, una de pendiente y otra con curvas de nivel interpoladas a cada 5 m; todas indispensables para la interpretación, digitalización y toma de medidas morfométricas de los conos.

A la capa de sombreado se le agregó la ubicación de los conos de escoria con un código de identificación (Figura 5) que también viene incluido en el catálogo y en la base de datos. Los valores del MDE mosaico fueron reclasificados para elaborar un mapa altimétrico y observar la distribución de los conos de escoria según la altitud (Figura 6). Por último, se implementó como apoyo visual, una imagen satelital Spot (5 m de resolución) y se estudiaron imágenes satelitales del programa Google Earth. Cada insumo fue procesado en la plataforma de ArcMap y ArcScene de ArcGis 10.1.

Figura 5. Sombreado de la porción centro-oriental del Campo Volcánico de la Sierra Chichinautzin (CVSC), con la ubicación de los crateres de los conos de escoria analizados en este estudio. Los números son los reportados en el catálogo en Apéndice 1.

Figura 6. Mapa altimétrico del área de estudio con la ubicación de los crateres de los volcanes analizados. Los números son los reportados en el catálogo en Apéndice 1.

1,274.01001 - 1,400
1,400.000001 - 1,600
1,600.000001 - 1,800
1,800.000001 - 2,000
2,000.000001 - 2,200
2,200.000001 - 2,400
2,400.000001 - 2,600
2,600.000001 - 2,800
2,800.000001 - 3,000
3,000.000001 - 3,200
3,200.000001 - 3,400
3,400.000001 - 3,600
3,600.000001 - 3,800
3,800.000001 - 4,000

Elevación msnm

Cráter

4.2. Parámetros morfométricos

Los parámetros morfométricos se calcularon para un total de 149 volcanes que, de acuerdo con su morfología, fueron divididos en dos grupos: volcanes sencillos y volcanes complejos. Para cada una de estas categorías se utilizó un procedimiento distinto que será explicado con detalle en los siguientes apartados.

4.2.1 Volcanes sencillos

Los conos de escoria aislados y cuyo centro existe un sólo cráter, fueron clasificados como volcanes sencillos (**Figura 7**). En éste grupo, el análisis morfométrico se inició con el reconocimiento del límite exterior (o base) del edificio (líneas punteadas en color blanco, **Figura 7**); con esto se dejó fuera a los abanicos de detritos que suelen desarrollarse en la base de los conos cineríticos a lo largo del tiempo, criterio cartográfico que también ha sido considerado por Grosse et al. (2009).

En cuanto a la medición de la altura relativa (Hco), se elaboraron ocho perfiles topográficos que al pasar por el centro cortan en partes iguales a cada cono de escoria. La información contenida en los perfiles se exportó a una hoja de Excel, donde se identificaron los valores máximos, mínimos y los promedios de altitud (en msnm). También se reconocieron los puntos que definen la base del edificio para obtener un promedio de la altitud y determinar un nivel base (**Figura 7a**). En la medición de éste último, no se consideró ninguna las partes de los perfiles con flancos cortados por colapsos (**Figura 7b**) o aquellos colmatados por derrames de lava. A partir de la resta de los datos de altitud máxima, mínima y promedio, y el valor de altitud del nivel base, se obtuvo la altura relativa máxima (Hco max), mínima (Hco min) y promedio (Hco prom) respectivamente. Para volcanes ubicados en sectores con un fuerte gradiente altitudinal (por ej. El Xitle en **Figura 7a**), Favalli et al. (2009) propone realizar un cálculo más efectivo de altura mediante la construcción de un plano inclinado. No obstante, al aplicar este mismo método sobre conos con situaciones similares en la Sierra Chichinautzin, no se observó que la relación Hco/Wco (Wco=diámetro del cono) se aproximará al valor idea de 0.18 propuesto por

Porter (1972) para conos jóvenes (como fue observado por Favalli et al. 2009), por lo cual se decidió no usar este método descrito.

Figura 7. Ejemplos de las mediciones realizadas en volcanes sencillos. En (a) se muestra uno de los 8 perfiles usados para calcular el nivel base, el cual sirve para medir la altura relativa del cono Hco (ver detalles en texto). En (b) se puede observar algunas de las medidas que se tomaron para la caracterización de los parámetros para volcanes con aberturas, y (c) ilustra uno de los centros eruptivos donde no se capturó dato para el diámetro y profundidad del cráter (Wcr y Dcr) ya que el edificio carece de este rasgo geomorfológico.

El diámetro mínimo y máximo de la base del cono (Wco min, Wco max) y del ancho del cráter (Wcr min, Wcr max), fueron medidos directamente en el software usando la regla, y se calculó la media de estos dos datos (Wco pro, Wcr prom). La profundidad del cráter (Dcr), se determinó con la extracción de un MDE de la zona correspondiente, a partir de la diferencia de altitud entre el borde más elevado y el fondo del cráter. Cabe notar que estos datos no fueron determinados para los conos que no presentaban un cráter definido sino cimas semi-planas o convexas, resultados de crateres totalmente colmatados (**Figura 7c**).

Por último, el factor de elongación (o excentricidad) tanto del cono (Eco) como del cráter (Ecr), se definió como el cociente de su eje mayor y su eje menor. De acuerdo con el resultado de la operación anterior, los conos se clasificaron en los siguientes seis grupos (**Figura 8**): circular (1); semicircular (1.1 y 1.2); semielíptico (1.3 a 1.5); elíptico (1.6 a 1.9); elíptico-elongado (2.5 a 3); del mismo modo que se realizó en Dóniz-Páez (2015).

Figura 8. Factor de elongación para el cono (Eco) y cráter (Ecr), definido como el cociente del eje mayor y su eje menor (elaborado a partir de Dóniz-Páez, 2015).

4.2.2 Volcanes complejos

Se consideró como volcanes complejos, a todos los conos en cuyo centro existen dos o más crateres que pueden estar imbricados (por ejemplo Guespalapa), separados (por ejemplo El Cuatepel)

o colmatados por un domo de lava (por ejemplo Cerro Del Agua), además de los conos que se sobreponen los unos a los otros (por ejemplo Los Cardos, Ocusacayo). A diferencia de la gran mayoría de los volcanes sencillos, donde se puede medir un sólo valor para cada parámetro morfométrico y después calcular las respectivas relaciones Hco/Wco y Wcr/Wco; los de tipo complejo, debido a su condición morfológica, pueden presentar más de dos valores de altura (Hco) y hasta más de tres de ancho y profundidad de cráter (Wcr y Dcr). De acuerdo con la recopilación bibliográfica desarrollada en el capítulo 2, desde los trabajos clásicos de Porter (1972), Settle (1979) y Wood (1980a), hasta los más recientes como los de Dóniz-Páez (2015), no se ha especificado el modo más adecuado para capturar los parámetros morfométricos en este tipo de volcanes. El tema tampoco se ha tratado o puesto a discusión en los estudios involucrados directamente con el CVSC (Bloomfield, 1975; Martin Del Pozzo, 1982; Márquez, 1999 y Zarazúa-Carbajal, 2015).

Debido a lo anterior, se optó por elaborar una metodología distinta a la de los volcanes sencillos, que considera a los de tipo complejo como una sola unidad, ya que no están separados físicamente. De este modo, la línea que define el límite exterior del polígono de los volcanes complejos y la línea del borde de sus crateres, se reeditó y transformó en un archivo raster con la herramienta "*Topo to Raster*"; y posteriormente, se extrajeron las estadísticas básicas por zona con la herramienta "*Zonal Statiscs as Table*" de las cuales se obtuvieron los promedios del nivel base y de la altitud en el borde (**Figura 9**). Con la resta de los datos anteriores se derivaron Hco max, Hco min y Hco prom, mientras que la determinación de Wco min, Wco max, Wco prom y el factor de elongación (Eco) no presentó ninguna dificultad y sus valores se determinaron del mismo modo que en los volcanes sencillos. Se midieron la profundidad (Dcr) y ancho (Wcr) de cada uno de los múltiples crateres de los volcanes complejos, pero no se efectuó la relación Wcr/Wco, ya que carecen de sentido. Finalmente, se puede señalar que con la implementación de esta nueva metodología se facilitó la cuantificación morfométrica de los conos de escoria, la cual podría ser aplicada en futuros volcanes sencillos, teniendo el debido cuidado de no considerar las partes fragmentadas del cono o cubiertas por espesos flujos de lava.

26

Figura 9. Ilustración de la extracción de los datos morfométricos en volcanes complejos Las líneas en color verde oscuro y claro, representan los contornos interpolados del nivel base y dele borde del cráter respectivamente. Al lado de la imagen se incluye la estadística correspondiente.

	N°	Área	Min	Max	Rango	Prom
	pixeles	m²	m	m	m	m
Base	428	10700	254	2654	105	2589
Cima	425	10625	2640	2781	140	2711

4.2.3 Pendientes y volúmenes para todos los volcanes

Una segunda fase del estudio morfométrico consiste de un procesamiento más riguroso de los archivos raster creados anteriormente (ver 4.1) Para ello, se implementó el tratamiento convencional, usando las funciones predeterminadas del software, en específico las herramientas de pendiente *(Slope)* y de estadísticas zonal como tabla (*Zonal Statistics as Table)* para el cálculo del promedio de las pendientes exteriores e interiores (**Figura 10**). Con respecto a "*Slope*" el cálculo se realiza al identificar una celda o pixel y a partir de ella y sus ocho vecinas, se identificó la diferencia de elevación máxima, según un plano imaginario (ver Manual ArcGis).

Figura 10. Polígono principal para el volcán Ocoxusco; dividido en tres subunidades geomorfológicas: pendiente exterior, interior y el fondo del cráter. Abajo se añade la estadística.

	N°	Área	Min	Max	Rango	Prom
	Pixeles	m²	(°)	(°)	(°)	(°)
Exterior	16936	423400	1	40	39	27
Interior	3166	79150	0	34	34	19
Fondo	856	21400	0	19	19	7

Para el caso del volumen se utilizaron los siguientes tres métodos:

En el primero, el procesamiento algebraico o *Map Algebra* se utilizó para determinar el volumen según las siguientes formulas:

Fórmula 1: $RASTERh_{cono} = DEMcono - DEMcono_{min}$

Fórmula 2: $V = \sum [(L_r * L_r) * RASTERh_{cono}]$

Donde *MDEcono* es un modelo digital de elevación para cada cono de escoria (**Figura 11a**), que fue extraído del mosaico inicial (ver apartado 4.1) y *MDEcono_{min}* es el valor mínimo de altitud en ese mismo modelo. Mediante la resta de las variables anteriores se obtuvo *RASTERh_{cono}*, es decir, un archivo que contiene un dato de altura por cada uno de los pixeles que conforman al polígono del cono (**Figura 11b**). Para obtener el volumen, se multiplicó el área que representa cada uno de estos pixeles por su valor de altura, lo cual produjo un archivo con valores de volumen de los conos (RASTERv_{cono}) (**Figura 11c**). Finalmente, se realizó la sumatoria de toda la malla de *RASTERv_{cono}* para obtener el valor del volumen (Fórmula 2). El área de los pixeles está condicionada a la resolución del raster (L_r), ya que estos representan una porción de la superficie terrestre, en este caso representan 5 m. Como en esta operación se usa el valor mínimo de altitud del cono, el volumen calculado por este método debe ser considerado como un valor máximo (este modelo no considera la posibilidad de existencia de una superficie inclinada debajo del cono).

En el segundo método, se múltiplo el área de la base del cono (reportada en la tabla de estadísticas) por la altura promedia del cono (Hco prom). En el tercero, se extrajo las curvas de nivel del cono a partir de la cual se elaboró una red de triangulación irregular o TIN por sus siglas en inglés (*Triangulated Irregular Network*). Se obtuvo el valor de volumen a partir del TIN usando la herramienta *Poligon volume*. Cabe notar que los valores calculados aquí son volúmenes totales, no corregidos por los espacios vacíos (caso de volúmenes de equivalente en roca densa).

Los resultados obtenidos para el cono del Jumento son similares a los reportados por Arce et al. (2015) quienes usaron los mismos modelos de elevación.

Figura 11. Esquema del procesamiento de los modelos de elevación LiDAR mediante algebra de mapas. Del lado izquierdo se encuentran representados 8 pixeles contiguos y su valor en el archivo MDE/RASTER reportado a la derecha (los valores son de la altitud en msnm para a, altura relativa en m para b, y volumen en m³ para c). Ver detalles en el texto.

4.3. Catálogo geomorfológico y trabajo de campo

Las variables morfológicas y morfométricas de los volcanes, fueron recopiladas a manera de un catálogo en una tabla de Excel, incluyendo la localización del centro eruptivo en grados decimales y organizando cada volcán según su edad absoluta y relativa. En lo que respecta a la edad, se realizó una revisión bibliográfica sobre las dataciones y los marcadores estratigráficos ya reconocidos y publicados para la zona de estudio, además de incorporar información aún en proceso de publicación, que fue proporcionada por la asesora de ésta tesis. La compilación de estos datos, las relaciones morfométricas (principalmente Hco/Wco) y la aplicación de los principios estratigráficos de sobreposición y relación de corte, permitieron estimar la edad de los conos que carecen de algún análisis radiométrico.

La finalidad del trabajo de campo consistió en la verificación y evaluación de la cartografía realizada en gabinete, además del reconocimiento de estructuras que proporcionen información sobre los procesos pre y post-eruptivos que condicionan el estado final geomorfológico de estos pequeños volcanes monogenéticos (**Figura 12**).

Figura 12. Volcanes sepultados. Identificados en campo y que no habían sido observados en las imágenes LiDAR. Arriba se muestra el interior del volcán ubicado cerca del pueblo de Tenango del Aire. La línea punteada en color rojo indica el límite superior del cono. Nótese el espesor pronunciado de los suelos, en particular en la zona del cráter (a la izquierda) donde presenta intercalaciones de capas de cenizas de caída.

5. Resultados

En esta sección se presentan los resultados de los datos morfométricos obtenidos para los 149 conos de escoria que se identificaron en este trabajo (mapas en **Figuras 5 y 6**). En el apartado 5.1 se muestran los histogramas de frecuencia de los volcanes sencillos y los complejos. En el apartado 5.2 se describen los criterios utilizados para clasificar los volcanes por grupos de edades. Y, Finalmente, en el apartado 5.3 se comparan los parámetros morfométricos de estos dos tipos de volcanes con los grupos de edades clasificados anteriormente (apartado 5.2).

5.1. Descripción general

5.1.1 Volcanes sencillos

Para este grupo se identificaron 118 volcanes. Sin embargo, para el análisis se descartaron 36 de ellos debido a que se encuentran fuertemente sepultados por flujos de lava; y por lo tanto, se desconocen los parámetros reales de altura (Hco) y ancho de la base (Wco).

Los 82 conos restantes presentan valores de altura con una distribución normal ligeramente sesgada hacia los valores máximos (**Figura 13**). Valores de alturas mínimas (Hco min) varían de 14 a 199 m, con la moda (23%) en el intervalo 80-100 m (**Figura 13a**), mientras valores máximas (Hco max) varían de 28 y 228 m, con la moda en el intervalo 100-120 m (**Figura 13b**) y valores promedio (Hco prom) varían de 28 a 212 m, con la media en intervalo 100-120 m (**Figura 13c**). La diferencia marcada entre los valores de Hco min y Hco max puede atribuirse a procesos que favorecen a la deposición preferencial de material en un lado especifico del cono, por ejemplo la prevalencia de una dirección del viento (caso del Volcán Pelado, Lorenzo Merino 2016; ver también Porter, 1972), o a la inclinación del terreno pre-existente que promueve valores más altos de la altura en el sector ubicado pendiente arriba (caso del Volcán Jalatlalco 1). El predominio de volcanes con alturas alrededor de 90 m es similar a lo observado en el campo de Michoacán-Guanajuato (Hasenaka y Carmichael 1985) aunque

en este último, los conos abarcan un mayor rango de variación, posiblemente relacionado con una actividad que inició en el Pleistoceno inferior (Guilbaud et al. 2012).

Figura 13. Histogramas de frecuencia (en % de número de volcanes) de las alturas mínimas (Hco min), máximas (Hco max), y promedias (Hco prom) en metros, para volcanes sencillos. Notase la distribución normal con ligero sesgado hacia valores más bajos.

Para el diámetro de la base (Wco), las distribuciones son más sesgadas (Figura 14). Valores mínimas (Wco min) varían entre 238 y 1204 m, con una moda en el rango 500-600 m (Figura 14a), mientras que valores máximas (Wco max) varían entre 273 y 1571 m, con un pico marcado en el intervalo 600-700 m (Figura 14b). Valores promedio (Wco prom) cubren un rango de 292-1172 m, con la mayoría de volcanes en el intervalo 600-700 m. Las diferencias entre Wco min y Wco max pueden resultar en parte por un control fisural sobre la emisión de los piroclástos, pero también de la topografía pre-existente que favorece el deslizamiento de los productos en la dirección de la pendiente. Por ejemplo, el volcán Teuhtli tiene un ancho homogéneo en todas direcciones (volcán N° 40 en Apéndice 1), probablemente resultado de su emplazamiento en un terreno plano. Lo contrario sucede con el Xitle, cuyo ancho máximo está en la dirección de la pendiente (volcán N° 1 en Apéndice 1).

Figura 14. Histogramas de frecuencia (en % de número de volcanes) de los valores del diámetro mínimo (Wco min), máximo (Wco max) y promedio (Wco prom) en metros, para volcanes sencillos. Los gráficos muestran una distribución irregular y variada entre los tres parámetros, prueba de la influencia de varios factores sobre la deposición y remoción preferente del material de caída (ver texto).

Los datos de diámetros del cráter presentan una distribución más irregular y variable entre valores mínimos, máximos y promedios (**Figura 15**). Valores mínimos (Wco min) varían entre 102 y 481 m, con un pico en el intervalo 200-250 m (**Figura 15a**). Los máximos (Wco max) abarcan un rango mayor, entre 140 y 627 m, con moda bien definida (**Figura 15b**). El promedio varía entre 121 a 554 m, sin ningún pico bien definido (**Figura 15c**). Valores de profundidad de crateres presentan también una distribución altamente irregular (**Figura 16a**).

Figura 15. Histogramas de frecuencia (en % de número de volcanes) de los valores de diámetro del cráter mínimo (Wcr min), máximo (Wcr max) y promedio (Wcr prom) en metros, para volcanes sencillos.

La irregularidad de los histogramas anteriores puede explicarse si se toma en cuenta que los crateres de los conos son el rasgo geomorfológico más dinámico de todo el edificio volcánico. Prueba de ello es la erupción del Paricutin, donde se reportaron cambios rápidos y significativos en el número, distribución y tamaño de los crateres dentro del cono principal (Krauskopf 1948). En canteras dentro de crateres observamos en los rellenos de cráter, una abundancia de depósitos de caída de volcanes cercanos más recientes. Éste efecto es sin duda variable a través de toda la zona de estudio; por lo tanto, es un factor que puede explicar la variabilidad ya mencionada.

Figura 16. Histogramas de frecuencia (en % de número de volcanes) de la profundidad del cráter (Dcr) en metros, y de la pendiente exterior (Sco ex) e interior (Sco in) en grados, para los volcanes sencillos.

Los valores de pendientes presentan distribuciones irregulares, con un mayor número de volcanes con pendientes exteriores e interiores entre 18 y 30° (**Figura 16b, c**). El rango con mayor frecuencia es de 26-28° para pendientes exteriores, lo cual coincide con datos reportados para volcanes del Pleistoceno superior y Holoceno de Hooper and Sheridan (1998) y es de acuerdo con la edad reciente del campo de la Sierra Chichinautzin. Pendientes interiores llegan a valores más bajos que las exteriores, probablemente por el efecto del colmatado de cráteres con productos de inestabilidad de laderas y depósitos de volcanes cercanos (**Figura 16c**).

En relación con el factor de elongación del cono (Eco) y del cráter (Ecr), se identifica de manera contundente, una mayor proporción de estructuras semicirculares y semielípticas (**Figura 17a y b**), lo cual es indicativo del control estructural fuerte sobre la morfología de los conos, pero también del efecto de la pendiente del terreno en ciertos casos.

Figura 17. Histograma de frecuencia (en % de número de volcanes) de elongación del cono (Eco) y del cráter (Ecr) para volcanes sencillos.

El volumen de los conos (Vco) varía entre 0.006 y 0.23 y la mayoría de los volcanes tiene un volumen de 0.06 km³ (**Figura 17c**). Estos valores son similares para el campo Michoacán-Guanajuato, aunque en éste último existen también algunos volcanes más grandes (Hasenaka y Carmichael, 1985).

Figura 18. Histogramas de frecuencia (en % de número de volcanes) para el volumen de los conos (Vco, en km³), y la relación altura versus ancho (Hco/Wco) y ancho del cráter versus ancho de la base (Wcr/Wco) para volcanes sencillos. Ver descripción en texto. Nota: La relación Hco/Wco fue obtenida con la Hco max y Wco prom de igual forma que Hooper y Sheridan (1998).

Finalmente, la relación Hco/Wco se distingue por presentar una distribución normal, con mayor frecuencia en los intervalos que van de 0.1 a 0.22 (**Figura 18a**), lo cual coincide con valores de los volcanes del Pleistoceno tardío hasta Holoceno reportados para el campo San Francisco (Arizona) por Hooper y Sheridan (1998).

La relación Wcr/Wco varía entre 0.2 y 0.7, con el mayor número de datos entre 0.25 y 0.5 (**Figura 18b**), también acorde con la edad joven del campo y los valores aproximados de 0.4 para conos recientes en Mauna Kea reportados por Porter (1972).

5.1.2. Histogramas de volcanes complejos

Los volcanes complejos quedan conformados por 34 edificios, en cuyos histogramas se identifican alturas mínimas (Hco min) de 10 a 184 m, con mayor frecuencia entre 60 y 80 m (**Figura 19a**) y máximas (Hco max) de 42 a 207 m, donde sobresale un grupo entre 110 y 145 m (**Figura 19b**); mientras que los datos del promedio (Hco prom) se concentran entre 105 y 140 m, con mayor concentración entre 36 y 132 m (**Figura 19c**). El alto grado de variabilidad e irregularidad en la distribución de alturas con respecto a los volcanes sencillos, se puede atribuir a que los complejos constan de varios conos de distintos tamaños (por ejemplo el Guespalapa N° 4 y 5 en **Apéndice 1**).

Figura 19. Histogramas de frecuencia (en % de número de volcanes) de alturas mínimas (Hco min), máximas (Hco max), y promedios (Hco prom), en metros, para los volcanes complejos.

Los valores de diámetro presentan una distribución irregular en comparación con los volcanes sencillos (en parte consecuencia del número menor de volcanes estudiados) y existen diferencias importantes entre los valores mínimos, máximos y promedios (**Figura 20c**), lo cual resulta de la formación de volcanes complejos en diversos conos alineados.

Figura 20. Histogramas de frecuencia (en % de número de volcanes) de valores de diámetro de base del cono mínimos (Wco min), máximos (Wco max), y promedios (Wco prom), en metros, para volcanes complejos. Ver texto para mayor información.

Figura 21. Histogramas de frecuencia (en % de número de volcanes) de valores de profundidad del cráter (Dcr) en metros, y pendientes exteriores (Sco ex) e interiores (Sco in) en grados, para volcanes complejos. Ver texto para mayor información.

La profundidad de los crateres notablemente cubre un rango más amplio que para los volcanes sencillos (15-231 m) y presenta una distribución distinta que éstos, concentrándose principalmente en el rango de 15 y 75 m. Los valores de pendientes presentan distribuciones y rango de valores similares que para los volcanes sencillos (**Figura 20b y c**). La geometría de los volcanes complejos resulta, de manera previsible, principalmente semi-elíptica (**Figura 22a y b**), por la influenza de un control estructural sobre la disposición de los conos.

Figura 22. Histogramas de frecuencia (en % de número de volcanes) de la elongación del cono (Eco) y del cráter (Ecr) para volcanes complejos.

En cuanto al volumen, los volcanes complejos varían de 0.006 a 0.155 km³, con >30% de los volcanes entre 0.02 y 0.04 km³ (**Figura 23**). Estos valores son más bajos que en los volcanes sencillos, lo cual concuerda con valores de altura más bajos. Esto resulta a priori contradictorio con la formación de varios edificios durante la actividad. Una posibilidad es que la erupción de los magmas de volumen más bajo esté más controlada por la tectónica, formando así conos alineados sobre una fisura (volcanes complejos). La relación Hco/Wco es más variable que para volcanes sencillos (entre 0.097 y 0.406). La mayoría de los volcanes complejos presentan valores de entre 0.12 y 0.2, similar a los volcanes sencillos.

Figura 23. Histograma de frecuencia de volúmenes (en km³) y de la relación Hco/Wco para los volcanes complejos. Se nota que llega a valores más altos que para volcanes sencillos. Para el volumen los tres métodos usados dan valores comparables.

5.2. Edad y morfología

Con base en los datos existentes en geocronología y la descripción e interpretación de su morfología, los conos de escoria del CVSC se subdividieron en volcanes del Holoceno (<11,000 AP), del Pleistoceno superior (100,000-11,000 AP) y del Pleistoceno medio (1-0.1 Ma) (**Apéndice 1**). Nota: esta clasificación no es definitiva, ya que se requiere de un número más alto de fechamientos absolutos. La determinación de los criterios asociados a diferentes grupos de edades se apoyó en el estudio morfológico y geocronológico de los volcanes del sur de Michoacán por Guilbaud et al. (2012), donde se cuenta además de la morfología y grado de disección de los conos, las características morfológicas de las lavas asociadas a cada volcán, los cuales reflejan el espesor de suelo sobrayaciente.

5.2.1. Volcanes del Holoceno (<11,000 AP)

Este grupo está conformado por 12 conos de escoria. Independientemente de su configuración morfológica (volcanes sencillos o complejos), todos ellos se caracterizan por presentar derrames de

lava que conservan sus características primarias (antes de la erosión); es decir, de pendientes pronunciadas y con estructuras internas de flujo como las crestas (*ridges*) y *levées*.

Para los conos, las pendientes exteriores van desde los 19 a 31° de inclinación, donde los valores más bajos no corresponden necesariamente a los volcanes complejos. En cuanto a las estructuras de disección, se observa una relación interesante entre éstas y el rango de altitud de los conos de escoria. En este trabajo se identificaron los siguientes dos tipos: cárcavas (*gullies*) y barrancos (*ravines*) (**Figura 24 y 26**). Éstos se describen a detalle en el **Apéndice 2.**

Las cárcavas (*gullies*) se distribuyen densamente sobre las laderas exteriores de los conos ubicados a 3,000-3,200 msnm (**Figura 24**). Son de forma recta y medianamente paralelos y su longitud es distinta según el tamaño del edificio volcánico. Pueden extenderse de manera continua desde la base hasta la cima de la ladera, o concentrarse únicamente en la base. Algunos de ellos se extienden de forma interrumpida, es decir, comienzan en la base hasta perderse pendiente arriba y volver a ser identificables en una porción más elevada. En un perfil topográfico, esta discontinuidad es señalada con la presencia de pequeños escalones. En cuanto al tamaño, apenas son perceptibles para distinguirlos en capa de falso sombreado y muestran perfil transversal en forma de un "V" irregular, con una profundidad ~3 m; en campo estas medidas fueron comprobadas al cuantificar estas estructuras con profundidades < 3 m; de acuerdo con las mediciones realizadas en campo.

Existen otras cárcavas que tienen una configuración más sencilla (más comunes en volcanes del Pleistoceno superior); se distinguen por ser estrechos, profundos (>3m) y con un perfil transversal en forma de "V" y son menos numerosos. Afectan a conos ubicados en altitudes más bajas. En el caso particular del volcán C. Del Agua (**Figura 25**), este tipo cárcavas se concentran del lado del edificio volcánico, orientado pendiente abajo, esto probablemente promovió el mayor escurrimiento de agua de lluvia y transporte de sedimentos en masa. El resto del grupo del Holoceno conformado por el Chichinautzin, Jumento, Ocusacayo, Los Cardos y el C. Tepeyahualco, no presentan ningún indicio de disección (N° 2, 3, 7, 10 y 11 en **Apéndice 1**).

Figura 24. A la izquierda se muestran los volcanes del Holoceno y sus respectivas cárcavas en un modelo digital del terreno (MDT). A la izquierda se muestran los mismos volcanes pero con un modelo digital de superficie (MDS). La intención es observar la relación entre el desarrollo de cárcavas y la cobertura vegetal.

Figura 25. Cárcavas del Volcán C. Del Agua. A la izquierda, un DMT que muestra las cárcavas en la ladera sur del C. Del Agua. En la imagen de la derecha, se observa el alto índice de vegetación que cubre de manera homogénea a todo el edificio volcánico, factor que posiblemente condicione el menor desarrollo de la erosión.

Los barrancos (*ravines*) están presentes en volcanes con altitudes mayores a los 3,200 msnm, en zonas que rebasan el límite de la vegetación arbórea (*timberline*) (**Figura 26** lado izquierdo); y por lo tanto, sometidos a procesos meteorológicos extremos (lluvia, viento) y a la inestabilidad de las laderas. Son profundos (hasta 15 m) y en forma de una "V" pero más anchos que las cárcavas (ejemplo del Pelado, **Figura 26**). El ancho de estos barrancos incrementa hacia la parte alta del cono, debido a la erosión remontante. Se desarrollan en la ladera sur o suroeste de los conos (por ejemplo el Pelado, el Cuautzin y el Tláloc en **Figura 26**), posiblemente por la mayor insolación, menor humedad y menor densidad de vegetación (por lo tanto, mayor erosión) en este sector. En la **Figura 26**, también se observa que las circos de erosión capturan a los barrancos vecinos, generando relictos geomorfológicos en la parte inferior parecidos a las facetas triangulares o planézes (Francis y Oppenheimer, 2004).

En cuanto a los crateres, el Xitle es el único cono de esta edad en contener un cráter muy profundo (128 m) en forma de embudo, cerrado y perfectamente bien definido. Mientras los demás presentan crateres parcialmente colmatados, probablemente por capas de tefra provenientes de otros volcanes cercanos o el retrabajo de sus propias pendientes interiores, lo que ocasiona que su profundidad disminuya y se encuentre entre 110 y 130 m (el Caballito y el Cuautzin) o incluso hasta 60 y 80 m (Guespalapa, Tláloc, Pelado). Por último, se identifican crateres deformados por colapsos y ocupados por domos de lava (C. Del Agua).

Figura 26. Volcanes del Holoceno fuertemente disectados, con barrancos (*ravines*) profundos en forma de "V" más ensanchada, localizados principalmente en el sector sur. La imagen de la derecha, además de la vegetación, también señala la altitud (en puntos rojos) a la que se encuentran estos conos de escoria

5.2.2. Volcanes del Pleistoceno superior (100,000-11,000 AP)

Este grupo está conformado por 68 conos de escoria. Morfológicamente, estos volcanes presentan derrames de lava que van de un buen estado de conservación (Por ejemplo el Pelagatos, Dos Cerros y el Hijo de Cuautzin; N° 15, 16 y 32 en **Apéndice 1**) a un estado donde las irregularidades de la superficie ya han sido modeladas por los procesos erosivos y acumulativos; condición que les confiere, un aspecto mucho más homogéneo; además de que estos flujos se encuentran por debajo de otros de menor edad (las Raíces-El Cajete N° 18, **Apéndice 1**). Lo anterior está estrechamente relacionado con los espesores del suelo (<50cm) que cubren los flujos de lava.

Los edificios de los volcanes sencillos (La Ninfa, Tezpomayo N° 16, Cuatepel N° 37 en **Apéndice 1**) y el de los complejos presentan morfologías en buen grado de conservación y algunos otros están ligeramente modelados (las Raíces-El Cajete N° 16 en **Apéndice 1**).

Las pendientes van de 13 a 30°, las más bajas corresponden a conos de escoria cuyo edificio volcánico ya ha sido parcial o totalmente sepultado por flujos de lava de volcanes adyacentes; mientras que los conos con crateres en forma de herradura tienen pendientes promedio iguales de 27° (Ocotecatl; Tuxtepec I; el Capulín; el Pelagatos) (**Figura 27**).

A diferencia de los volcanes del Holoceno, los del Pleistoceno superior prácticamente no presentan barrancos en sus laderas (el Negro N° 26, Jalatlalco I N° 27, Jalatlalco II N° 28, **Apéndice 1**); sólo un pequeño grupo se caracteriza por presentar cárcavas estrechas, profundas (>3m) y con un perfiles transversales en forma de "V", concentradas sólo en algunos sectores del edifico (el Suchiool N° 33, Otates N° 35, Cuatepel N° 37 y Chalchihuites N° 39 en **Apéndice 1**).

En relación con las características de sus crateres, la profundad pueden llegar hasta los 150 m (el Suchiool, parte inferior de la **Figura 27**), aunque por lo regular tienden a variar entre 20 a 80 m y todos están parcialmente colmatados.

Figura 27. Las dos primeras imágenes (DTM y DSM) ejemplifican a los conos de escoria sin ningún indicio de disección, la morfología de estos edificios es en forma de herradura. La imagen inferior ilustra al volcán Suchiool y volcanes adyacentes; nótese la alta concentración de *gullies* en las laderas sur y/o suroeste.

5.2.3. Volcanes del Pleistoceno medio (1-0.1 Ma)

Los volcanes dentro de esta categoría presentan lavas con superficies homogéneas, semiplanas y cuyos suelos está ocupados por campos de cultivo; por lo cual, puede inferirse que ya cuentan con un espesor de suelo considerable (>2 m en el Huipilo, N° 84 en **Apéndice 1**). Nótese que este suelo tiene depósitos de caída y de flujos de escombros.

El edificio volcánico puede estar fuertemente disectado por barrancos profundos que pueden estar distribuidos por toda la pendiente exterior (o únicamente en algunas partes de ella) e intercalarse con otros barrancos rectos y profundos; muy similar a un patrón de drenaje de radio de sombrilla o parasol ribbing (Figura 28) (terminología en Francis y Oppenheimer, 2004). Por otro lado, sus crateres están colmatados completamente, lo que les da una apariencia morfológica de cimas semi-planas; además de presentan pendientes altas de 30 a 33°, resultado de su alto grado de disección (Del Aire N° 83, Huipilo Nº 84 en Apéndice 1). Otros edificios presentan una base más redondeada y extrañamente, presentan un sólo barranco que se muestra recto, estrecho y hasta de 10 m de profundidad (Figura 28). También existen otras variantes, que fueron identificadas en campo como pequeñas colinas sin barrancos, con cimas convexas y pendientes suaves de tal forma que, el límite externo del cono no puede definirse con precisión como es el caso del volcán Loma de Tepenacasco (N° 149 en Apéndice 1). En éste último se observa en un corte el recubrimiento de las pendientes del cono, un espesor de suelo considerable intercalado con depósitos de caída (Figura 30). Estos volcanes se encuentran ubicados principalmente en partes bajas o en fondo de los valles que se forman entre volcanes escudos, por lo que son sepultados por los sedimentos (coluviones y aluviones) que la degradación de los conos ubicados cuesta arriba va generando. Un caso extremo es el de la loma Coxtocal-Retana (no incluida en el catálogo) que consiste de un alineamiento de conos enterrados bajo una pila de >20 m de espesor de paleosuelos intercalados con horizontes de ceniza provenientes de los volcanes más jóvenes circundantes (Figura 29).

46

Figura 28. En la parte superior, volcanes con barrancos en forma de "V" ensanchada, que suelen rodear toda la ladera; al unirse la cabecera de los barrancos, en la parte inferior quede un relicto denominado Planéze o flat iron. En la parte inferior, se presenta un ejemplo de un cono de escoria que cuentan normalmente con un sólo barranco. Además se incluye un perfile topográfico de ambos tipo de barrancos.

Figura 29. Conos alineados ya sepultados (C. Retana y C. Coxtocal). Estos volcanes no fueron identificados en las imágenes LIDAR, ya que apenas se percibían como pequeñas colinas, pero identificados en el campo gracias a canteras en sus flancos.

Figura 30. Volcán Loma de Tepenacasco. La línea punteada representa el edificio principal del cono de escoria, que ya ha sido recubierto un suelo de ≤12 m de espesor. La superficie queda horizontal.

5.3. Parámetros morfométricos y edades

Una vez obtenidos los parámetros morfométricos y recopilados en un nuestro catálogo geomorfológico (**Apéndice 3**), se decidió graficar algunas de las variables más representativas, separando los volcanes en tipo (sencillo versus complejo) y en grupos de edades con la finalidad de estudiar la relación entre estas variables.

En la **Figura 31** se muestran las gráficas de volumen (Vol) contra la altura máxima del cono (Hco max). Se observa una relación linear entre ambas variables, lo cual es natural ya que un mayor volumen indica un mayor espesor del depósito (Wood, 1980). Entre los 50 y 150 m de altura y debajo de los 0.10 km³ se concentra la mayor parte de los datos analizados. Por arriba de los 150 m y 0.10 km³, los datos se dispersan de manera considerable y siguen una tendencia de mayor aumento en el volumen con la altura (mayor relación Volumen/Altura). Lo anterior indica que la altura de los conos no

puede superar los 250 m, probablemente a que sufre procesos de inestabilidad y remoción de materiales. En cuanto a la edad, los volcanes del Holoceno siguen una tendencia más clara que los volcanes más antiguos, los cuales presentan mayor dispersión, debido a que los procesos de degradación afectan de forma variable los valores de su altura. Se observa que los volcanes del Holocenos no presentan altura mayor a 200 m, ni volumen mayor a 0.15 m³. En cuanto al tipo de volcán, los de tipo complejo presentan menos dispersión y un menor rango en volumen y altura que los volcanes sencillos; confirmando los resultados ya mencionados en el apartado de los histogramas (**5.1.1** y **5.1.2**). Los datos pueden ser aproximados por líneas de tendencia linear con factores de correlación (R²) de 0.7 para volcanes del holoceno y 0.6 para el pleistoceno superior y medio; así como 0.6 para volcanes sencillos y 0.7 para complejos.

Figura 31. Gráficos de volumen vs altura (Hcomax); por edad (izquierda) y tipo de volcán (derecha). Se distingue una mayor concentración de datos para volúmenes < 0.10 km3 y Hco < 15 m. Ver más detalles en el texto.

Los gráficos de pendiente exterior versus altura máxima presentan una dispersión muy marcada, con una tendencia ligera hacia un incremento de la pendiente con la altura (**Figura 32**). Los datos para los volcanes del Holoceno presentan menor dispersión que para volcanes más antiguos y se concentran en valores de pendientes mayores (31-27°), excepto por algunos conos que corresponden en ciertos casos a volcanes complejos (por ejemplo Los Cardos con 19 y 24°, N° 10 en **Apéndice 1**), condición que puede alterar la pendiente. Los datos para volcanes del Pleistoceno superior tienden a concentrarse en la parte media del gráfico (pendiente alrededor de 20°) y los del Pleistoceno medio presentan el mayor rango de variación, llegando a los valores de pendientes más bajos (<15°). Para el Pleistoceno medio, es de llamar la atención que algunos volcanes de gran altura, sobrepasan de los 30° de inclinación. De éstos se menciona como ejemplo al volcán C. Del Aire (N° 83 en **Apéndice 1**), quizá por la presencia de barrancos con pendientes fuertes que aumenta la pendiente promedio. Los volcanes sencillos presentan mayor dispersión que los volcanes complejos. Los factores de correlación linear (R²) para volcanes del Holoceno son de 0.8, para el Pleistoceno superior de 0.2, y para el Pleistoceno medio de 0.3, confirmando la menor dispersión de los primeros. Estos son de 0.3 para volcanes sencillos y de 0.6 para volcanes complejos, confirmando la menor dispersión de los ditimos.

Figura 32. Gráficos de pendiente exterior vs altura máxima (Hcomax); por edad (Izquierda) y tipo de volcán (derecha).

El valor del factor de relación Hco/Wco (graficado contra la altura máxima en **Fig. 33**) es coherente con los trabajos previos para los volcanes del Holoceno, ya que la mayoría de ellos se concentra por debajo de los 0.20; muy cercano al valor asignado para los conos jóvenes (0.18, Porter, 1972). Los volcanes del Pleistoceno superior y medio presentan mayor dispersión hacia valores más altos y más bajos; pero esta variación no es sistemática, por lo que este parámetro no puede usarse como criterio para determinar la edad de los conos (**Figura 33**).

Los gráficos de elongación de los conos contra altura, edad y tipo de cono, indican que los volcanes más viejos (Pleistoceno superior y medio) tienden a ser más redondeados al ser suavizados por los procesos erosivos a diferencia de los volcanes del Holoceno. En cuanto al tipo de volcán, los sencillos representan los valores más semicirculares y semielípticos; mientras que los complejos tienden a ser más alargados (**Figura 34**). Lo anterior coincide con los resultados expuestos en el apartado de los histogramas (**5.1.1 y 5.1.2**) y es coherente con control estructural que favorece la geometría alargada de los volcanes complejos.

Figura 33. Gráficos de relación Hco/Wco vs altura máxima (Hco max); por edad (izquierda) y tipo de volcán (derecha).

Figura 34. Gráficos del factor de elongación vs altura máxima (Hco max), por edad (izquierda) y tipo de volcán (derecha).

6. Discusión: procesos de construcción y degradación de los conos

6.1. Procesos de construcción de los conos

Ciertos aspectos de la morfología de los conos están indudablemente determinados por los procesos endógenos que se relacionan con el magmatismo y con la tectónica. El más importante de éstos, es la formación durante una sola erupción de un cono con un sólo cráter (volcanes sencillo) o de un cono con varios crateres o varios conos imbricados (volcanes complejos). Estudiar este aspecto y su relación con los parámetros morfométricos, es más adecuado en los volcanes recientes (Holoceno) que han sufrido menores grados de alteración por procesos pos-eruptivos.

La morfología de tipo sencillo o complejo de los volcanes expresa la distribución de los puntos de emisión de los piroclastos. En el primer caso, la actividad se concentró en un punto principal como lo fue en el volcán Paricutin; y en el segundo, en varios puntos como en el caso del Jorullo (Guilbaud et al. 2010). La mayor parte de los conos o crateres de los volcanes complejos se encuentran alineados (el Ocusacayo N° 7, Tláloc N° 8 y los Cardos N° 10 en **Apéndice 1**) y, en consecuencia, estos volcanes son alargados en la misma dirección de alineación. Por lo tanto, estos volcanes tienen mayores grados de elongación (**Figura 22**) con respecto a los volcanes sencillos (**Figura 17**). Estos datos sugieren que los volcanes complejos fueron producto del ascenso de cuerpos de magmas en forma de diques que formaron fisuras al interceptarse con la superficie. Aunque es probable que varios volcanes sencillos se hayan formados también a lo largo de una fisura (varios son alargados y presentan puntos de emisión de lavas alineados com la dirección de elongación). En estos casos la actividad se concentró al final en un sólo punto, como fue observado en el volcán Paricutin, en enero de 1946 (Krauskopf, 1948).

Al considerar la base de datos obtenida de los volcanes, los sencillos llegan a ser más voluminosos (**Figura 17**). Además de que en los volcanes del Holoceno no se observa una relación clara entre volumen y tipo de volcán (sencillo o complejo en **Apéndice 1**). El alineamiento de volcanes ha sido relacionado con el ascenso de magmas a lo largo de fallas orientadas en la dirección del estrés principal, lo cual facilita la dilatación de las fallas para dejar paso al magma (Connor y Conway 2000). En este caso, los alineamientos son paralelos a fallas principales en el basamento y a la dirección regional del estrés (Haug y Strecker 1995). En este estudio, la dirección de los alineamientos tiene una variación entre E-O (Xitle, Chichinautzin N° 1 y 2 en **Apéndice 1**) a SO-NE (C. Del Agua) en los volcanes del Holoceno, incluyendo diferentes direcciones en el caso de volcanes formados durante una sola erupción (Guespalapa N° 4-5, Ocusacayo N° 7 en **Apéndice 1**), lo cual sugiere una configuración de fallas compleja, asociado con variaciones locales en la orientación del estrés principal (Connor et al. 2000).

Otros procesos sin-eruptivos influyeron en la morfología de los conos tales como: 1) el colapso de un sector del volcán, relacionado con la pendiente del terreno (estos se ubican comúnmente sobre laderas de volcanes escudo, o en relieve accidentado como el V. Jumento), 2) actividad sismotectónica durante la erupción que en el caso del V. Chichinautzin, abrió el cono principal en dos (ver la falla que partió al cono en dos partes, la depresión rellenándose con lavas tardías, N°2 en **Apénidce1**).

6.2. Procesos de degradación

El modelo evolutivo desarrollado a partir de la década de los 70's y 80's para los conos de escoria (Scott y Trask, 1971; Wood, 1980a; 1980b; Hooper y Sheridan, 1998); sugiere que estos edificios volcánicos terminan su actividad eruptiva construyendo pendientes exteriores entre 30 y 33° de inclinación. Posteriormente, dicho valor disminuye según el tiempo de exposición a los procesos erosivos, ya que los materiales expuestos en la cima son removidos hacia los alrededores del cono, suavizando la pendiente original, reduciendo la altura (Hco) y ensanchando la base (Wco). Por lo tanto,

la relación de altura con respecto al ancho (Hco/Wco) y la pendiente, son los parámetros más utilizados para caracterizar a los conos de escoria en diferentes grupos de edad (Wood, 1980b). No obstante, los trabajos de Rech et al. (2000) y McGuire et al. (2014), han revelado que el modelo anterior resulta demasiado simplista, puesto que los agentes erosivos actúan de manera distinta según la ubicación geográfica. La inclinación de la Tierra y el grado de exposición al sol en el hemisférico norte, generan que las pendientes orientadas al sur estén más expuestas a la radiación solar, lo que ocasiona zonas microclimáticas adversas, es decir, la radiación favorece la evaporación, y ésta a su vez la menor densidad de vegetación y el aumenta la intensidad de la erosión (Rech et al., 2000; McGuire et al., 2014). Estos procesos influyen en el CVSC junto con las variaciones de altitudes y topográficas que existen. El análisis desarrollado en este trabajo ha identificado que el contexto topográfico de un volcán en la Sierra Chichinautzin juega un papel importante en los patrones de erosión que presenta. En particular, en las partes más elevadas del CVSC, los conos de escoria son disectados con mayor intensidad en el sector sur del edificio, formando barrancos profundos en forma de "V" ensanchada a pesar de su edad holocénica (por ejemplo el Tláloc Nº 8, el Cuautzin Nº 9 y el Pelado N° 12 en Apéndice 1); y se observa que en el caso de conos de mayor edad ubicados en zonas relativamente altas en el sector sureste, la disección se extiende por todos los flancos (C. Del Aire), reflejando la persistencia de estos procesos con el tiempo. En contraste, en las zonas más bajas, los conos son sepultados por la acumulación de los sedimentos provenientes de la erosión de los volcanes circundantes y estos procesos son más importantes para conos ubicados en valles formados entre varios volcanes escudo (Por ejemplo los conos Toxtepec, Tenango del Aire, Loma de Tepenacasco en el sector este del campo). En las partes medias, se encuentran volcanes en proceso tanto de erosión por alteración de sus pendientes ubicadas hacia abajo como de acumulación por deposición de sedimentos en sus partes ubicadas arriba (por ejemplo Tulmeac N° 101, Malacatepec N° 103 y Menzotepec N° 105 en Apéndice 1).

Conclusiones

El análisis morfológico y morfométrico de los conos de escoria de la porción centro-oriental del CVSC, permitió reconocer los siguientes aspectos:

- El mecanismo de construcción de los conos de escoria, el cual está relacionado con el ascenso del magma a través de diques que forman fisuras al interceptarse en la superficie. Cuando la actividad se concentra en un sólo punto se forman los llamados volcanes sencillos (un edificio y un cráter); por el contrario, si la actividad permanece a lo largo de la fisura el resultado es la formación de los volcanes complejos (varios edificios o conos imbricados).
- La morfología de los volcanes complejos refleja un sistema de fallas superficiales de mayor complejidad que controlan la distribución de la actividad eruptiva.
- Los mecanismos de degradación en los conos de escoria según su altitud. En las partes altas, los conos son disecados con mayor intensidad en el sector sur del edificio, formando barrancos en forma de "V" ensanchada (independientemente de su edad holocénica y su morfología sencilla o compleja). En las partes bajas, los conos son sepultados por la acumulación de los sedimentos provenientes de los volcanes circundantes, principalmente en conos ubicados en valles formados entre varios volcanes escudo. En las partes medias, los conos se encuentran en una etapa de transición entre los dos procesos ya mencionados.
- La identificación y clasificación de los barrancos fue primordial para entender los procesos involucrados en la degradación de los conos de escoria.
- El empleo de modelos digitales de elevación de alta resolución permitió realizar avances significativos en la observación, interpretación, clasificación y cuantificación de los conos de

escoria, en contraste con las cartas topográficas y fotografías aéreas que se han utilizado en estudios anteriores

- Las nuevas técnicas propuestas para colectar datos morfométricos en volcanes con morfología compleja (conos con varios crateres, conos imbricados) permitió realizar un estudio completo de los volcanes tipo cono de escoria en este campo.
- No se encontró una relación lineal entre los parámetros morfométricos convencionales y la edad de los conos de escoria del CVSC, ya que las variaciones en su morfología están determinadas por la interacción de factores internos (tectónica y magmatismo) y factores externos (topografía y orientación de la ladera) que por lo general, no son considerados dentro del análisis morfométrico clásico.
- El CSVS ha presentado altas tasas de actividad, así como la formación de volcanes tipo escudo voluminosos que han cambiado drásticamente la topografía local y por lo tanto los procesos de erosión en diferentes partes del campo.

Apéndice 1. Catálogo de los conos de escoria

Volcanes del Holoceno.

Volcanes Pleistoceno superior (parte 1).

Volcanes del Pleistoceno superior (parte 2).

Volcanes del Pleistoceno superior (parte 3).

Volcanes del Pleistoceno superior (parte 4).

Volcanes del Pleistoceno medio (parte 1).

Volcanes del Pleistoceno medio (parte 2).

Volcanes del Pleistoceno medio (parte 3).

Volcanes del Pleistoceno medio (parte 4).

Volcanes del Pleistoceno medio (parte 5).

Apéndice 2. Descripción de cárcavas y barrancos

ID/Nombre	Descripción General
	gullies (cárcavas) y <i>ravines</i> (barrancos)
4. Caballito	Exterior: Más de 13 cárcavas (quizá menos).
(Guespalapa)	Características: Estrechos, sub-paralelos y de poca profundidad.
	Localización: Se distribuyen en la sección S-SW del cono.
	Arreglo o estructura: En forma de microcanales confinados a la base del cono.
	Cobertura vegetal: De mediana densidad, los pinos están ligeramente separados. En una
	parte del cono, la cobertura es prácticamente nula debido a la presencia de una posible
	cantera.
	Interior: Contiene 2 crateres en su interior, en el de mayor dimensión hay apenas 6
	pequeños canalillos; mientras que en el cráter pequeño no se distingue ninguno.
	Características: Rectos y cortos.
	Arreglo o estructura: Ninguna en particular.
	Cobertura vegetal: Escasa en el fondo de sus crateres.
4. Palomito	Exterior: Más de 15 cárcavas (quizás menos).
(Guespalapa)	Características: Muy estrechos, sub-paralelos y de poca profundidad; difíciles de
	contabilizar debido a su pequeño desarrollo.
	Localización: En la porción W y E.
	Arreglo o estructura: En forma de microcanales, largos o cortos.
	Cobertura vegetal : Muy alta, y distribuida alrededor de toda la pendiente.
	Interior: Ninguna.
	Cobertura vegetal: Totalmente nula en el fondo de los crateres.
1. Xitle	Exterior: 15 cárcavas.
	Características: Estrechos, sub-paralelos y de poca profundidad.
	Localización: En la dirección S y SE del cono, además de otros múltiples surcos (difíciles
	de cuantificar) en la porción oriental y concentrados sólo en la base.
	Arregio o estructura: Del número anterior, sólo 1 resalta de los demás debido a su
	mayor amplitud a lo ancho, ocupa ¾ partes del edificio volcánico y termina con un
	pequeño abanico aluvial. Los demás se extienden de la base a la cima de manera recta y
	muy pocos de forma discontinua. Algunos únicamente se han desarrollado en la parte
	baja del edificio.
	Cobertura vegetal : Distribuida alrededor de toda la pendiente, con mayor concentración
	al N.
	Interior: 8 canalillos.
	Características: Muy estrechos, a veces ramificados.
	Arregio o estructura: En forma de drenaje centrípeto.
	Localización : Alrededor de toda la pendiente, principalmente en porción NW.
	Cobertura vegetal: Sólo un pequeño grupo al interior de la ladera oriental. En general
	escasa.
5. Manteca	Exterior: Alrededor de 21 cárcavas.

(Guspalapa)	Características: Estrechos, sub-paralelos y de poca profundidad.
	Localización: Principalmente en la parte S y E con una amplitud no mayor a la mitad del
	edificio volcánico.
	Arreglo o estructura: Distribuidos de forma radial, como canales rectos, cortos,
	continuos y discontinuos. De un modo similar al Xitle, se presenta del número anterior, 1
	cárcava de mayor profundidad en la porción septentrional.
	Cobertura vegetal: Escasa en la porción meridional, el resto de la pendiente presenta
	densidades medias.
	Interior: Ninguno
	Cobertura vegetal: Escasa.
79. La Panza	Exterior: 25 cárcavas.
	Características: Estrechos, sub-paralelos y de poca profundidad.
	Localización: Distribuidos entre la pendiente SW y NE. Por otro lado; en porción NW y las
	paredes internas de los costados del cono abierto (en la base) también presentan
	múltiples surcos apenas identificables.
	Arreglo o estructura: Pueden ser alargados, cortos, continuos y discontinuos.
	Cobertura Vegetal: De mayor concentración al NW; en el resto de los cuadrantes la
	cobertura es escasa.
	Interior: 1 barranco.
	Características: En forma de embudo. En términos geomorfológicos se distinguen tres
	partes; la zona superior, con un circo de erosión y un escarpe de 15 m; la parte media,
	con una pendiente en forma cóncava y; la sección baja, conformada por un canal que
	recibe los aportes de los afluentes aguas arriba.
	Localización: La parte superior se localiza justo en la abertura del cráter, mientras que el
	canal borde una de las laderas internas del cono.
	canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa.
6. El Hoyo	canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa. Exterior: Alrededor de 40 cárcavas.
6. El Hoyo (Guespalapa)	Canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa. Exterior: Alrededor de 40 cárcavas. Características: Estrechos, sub-paralelos y de poca profundidad.
6. El Hoyo (Guespalapa)	 Canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa. Exterior: Alrededor de 40 cárcavas. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Principalmente en la parte N, W y S.
6. El Hoyo (Guespalapa)	Canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa. Exterior: Alrededor de 40 cárcavas. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Principalmente en la parte N, W y S. Arreglo o estructura: De forma radial, como microcanales totalmente rectos o
6. El Hoyo (Guespalapa)	 Canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa. Exterior: Alrededor de 40 cárcavas. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Principalmente en la parte N, W y S. Arreglo o estructura: De forma radial, como microcanales totalmente rectos o interrumpidos, que se extienden hasta un poco más de la mitad del cono; mientras que obre áriente a parte N.
6. El Hoyo (Guespalapa)	 Canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa. Exterior: Alrededor de 40 cárcavas. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Principalmente en la parte N, W y S. Arreglo o estructura: De forma radial, como microcanales totalmente rectos o interrumpidos, que se extienden hasta un poco más de la mitad del cono; mientras que otros únicamente se concentran en la base.
6. El Hoyo (Guespalapa)	 Canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa. Exterior: Alrededor de 40 cárcavas. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Principalmente en la parte N, W y S. Arreglo o estructura: De forma radial, como microcanales totalmente rectos o interrumpidos, que se extienden hasta un poco más de la mitad del cono; mientras que otros únicamente se concentran en la base. Cobertura vegetal: De mediana densidad (existen algunos espacios entre los pinos), pero bien distribuidas alreadadar de toda la paradiante.
6. El Hoyo (Guespalapa)	 Canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa. Exterior: Alrededor de 40 cárcavas. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Principalmente en la parte N, W y S. Arreglo o estructura: De forma radial, como microcanales totalmente rectos o interrumpidos, que se extienden hasta un poco más de la mitad del cono; mientras que otros únicamente se concentran en la base. Cobertura vegetal: De mediana densidad (existen algunos espacios entre los pinos), pero bien distribuidos alrededor de toda la pendiente.
6. El Hoyo (Guespalapa)	 Canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa. Exterior: Alrededor de 40 cárcavas. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Principalmente en la parte N, W y S. Arreglo o estructura: De forma radial, como microcanales totalmente rectos o interrumpidos, que se extienden hasta un poco más de la mitad del cono; mientras que otros únicamente se concentran en la base. Cobertura vegetal: De mediana densidad (existen algunos espacios entre los pinos), pero bien distribuidos alrededor de toda la pendiente. Interior: Ninguno. Cobertura vegetal: Nula
6. El Hoyo (Guespalapa)	 Canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa. Exterior: Alrededor de 40 cárcavas. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Principalmente en la parte N, W y S. Arreglo o estructura: De forma radial, como microcanales totalmente rectos o interrumpidos, que se extienden hasta un poco más de la mitad del cono; mientras que otros únicamente se concentran en la base. Cobertura vegetal: De mediana densidad (existen algunos espacios entre los pinos), pero bien distribuidos alrededor de toda la pendiente. Interior: Ninguno. Cobertura vegetal: Nula.
6. El Hoyo (Guespalapa) 67	 Canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa. Exterior: Alrededor de 40 cárcavas. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Principalmente en la parte N, W y S. Arreglo o estructura: De forma radial, como microcanales totalmente rectos o interrumpidos, que se extienden hasta un poco más de la mitad del cono; mientras que otros únicamente se concentran en la base. Cobertura vegetal: De mediana densidad (existen algunos espacios entre los pinos), pero bien distribuidos alrededor de toda la pendiente. Interior: Ninguno. Cobertura vegetal: Nula. Exterior: 5 barrancos. Características: Estrechos, sub-paralelos y de poca profundidad.
6. El Hoyo (Guespalapa) 67	 Canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa. Exterior: Alrededor de 40 cárcavas. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Principalmente en la parte N, W y S. Arreglo o estructura: De forma radial, como microcanales totalmente rectos o interrumpidos, que se extienden hasta un poco más de la mitad del cono; mientras que otros únicamente se concentran en la base. Cobertura vegetal: De mediana densidad (existen algunos espacios entre los pinos), pero bien distribuidos alrededor de toda la pendiente. Interior: Ninguno. Cobertura vegetal: Nula. Exterior: 5 barrancos. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Concentrados sólo en la base (dirección SE)
6. El Hoyo (Guespalapa) 67	 canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa. Exterior: Alrededor de 40 cárcavas. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Principalmente en la parte N, W y S. Arreglo o estructura: De forma radial, como microcanales totalmente rectos o interrumpidos, que se extienden hasta un poco más de la mitad del cono; mientras que otros únicamente se concentran en la base. Cobertura vegetal: De mediana densidad (existen algunos espacios entre los pinos), pero bien distribuidos alrededor de toda la pendiente. Interior: Ninguno. Cobertura vegetal: Nula. Exterior: 5 barrancos. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Concentrados sólo en la base (dirección SE). Arreglo o estructura: Rectos y continuos de pequeño desarrollo difícil de estimar su
6. El Hoyo (Guespalapa) 67	 canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa. Exterior: Alrededor de 40 cárcavas. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Principalmente en la parte N, W y S. Arreglo o estructura: De forma radial, como microcanales totalmente rectos o interrumpidos, que se extienden hasta un poco más de la mitad del cono; mientras que otros únicamente se concentran en la base. Cobertura vegetal: De mediana densidad (existen algunos espacios entre los pinos), pero bien distribuidos alrededor de toda la pendiente. Interior: Ninguno. Cobertura vegetal: Nula. Exterior: 5 barrancos. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Concentrados sólo en la base (dirección SE). Arreglo o estructura: Rectos y continuos, de pequeño desarrollo, difícil de estimar su profundidad.
6. El Hoyo (Guespalapa) 67	 canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa. Exterior: Alrededor de 40 cárcavas. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Principalmente en la parte N, W y S. Arreglo o estructura: De forma radial, como microcanales totalmente rectos o interrumpidos, que se extienden hasta un poco más de la mitad del cono; mientras que otros únicamente se concentran en la base. Cobertura vegetal: De mediana densidad (existen algunos espacios entre los pinos), pero bien distribuidos alrededor de toda la pendiente. Interior: Ninguno. Cobertura vegetal: Nula. Exterior: 5 barrancos. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Concentrados sólo en la base (dirección SE). Arreglo o estructura: Rectos y continuos, de pequeño desarrollo, difícil de estimar su profundidad. Presenta un arreglo similar a los barrancos anteriores, con la diferencia de ser más fáciles de identificar y distribuidos en pequeños grupos
6. El Hoyo (Guespalapa) 67	 canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa. Exterior: Alrededor de 40 cárcavas. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Principalmente en la parte N, W y S. Arreglo o estructura: De forma radial, como microcanales totalmente rectos o interrumpidos, que se extienden hasta un poco más de la mitad del cono; mientras que otros únicamente se concentran en la base. Cobertura vegetal: De mediana densidad (existen algunos espacios entre los pinos), pero bien distribuidos alrededor de toda la pendiente. Interior: Ninguno. Cobertura vegetal: Nula. Exterior: 5 barrancos. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Concentrados sólo en la base (dirección SE). Arreglo o estructura: Rectos y continuos, de pequeño desarrollo, difícil de estimar su profundidad. Presenta un arreglo similar a los barrancos anteriores, con la diferencia de ser más fáciles de identificar y distribuidos en pequeños grupos. Cobertura vegetal: De mediana densidad, cubriendo gran parte de la pendiente (deiando
6. El Hoyo (Guespalapa) 67	 canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa. Exterior: Alrededor de 40 cárcavas. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Principalmente en la parte N, W y S. Arreglo o estructura: De forma radial, como microcanales totalmente rectos o interrumpidos, que se extienden hasta un poco más de la mitad del cono; mientras que otros únicamente se concentran en la base. Cobertura vegetal: De mediana densidad (existen algunos espacios entre los pinos), pero bien distribuidos alrededor de toda la pendiente. Interior: Ninguno. Cobertura vegetal: Nula. Exterior: 5 barrancos. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Concentrados sólo en la base (dirección SE). Arreglo o estructura: Rectos y continuos, de pequeño desarrollo, difícil de estimar su profundidad. Presenta un arreglo similar a los barrancos anteriores, con la diferencia de ser más fáciles de identificar y distribuidos en pequeños grupos. Cobertura vegetal: De mediana densidad, cubriendo gran parte de la pendiente (dejando algunos huecos sin vegetación).
6. El Hoyo (Guespalapa) 67	 canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa. Exterior: Alrededor de 40 cárcavas. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Principalmente en la parte N, W y S. Arreglo o estructura: De forma radial, como microcanales totalmente rectos o interrumpidos, que se extienden hasta un poco más de la mitad del cono; mientras que otros únicamente se concentran en la base. Cobertura vegetal: De mediana densidad (existen algunos espacios entre los pinos), pero bien distribuidos alrededor de toda la pendiente. Interior: Ninguno. Cobertura vegetal: Nula. Exterior: 5 barrancos. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Concentrados sólo en la base (dirección SE). Arreglo o estructura: Rectos y continuos, de pequeño desarrollo, difícil de estimar su profundidad. Presenta un arreglo similar a los barrancos anteriores, con la diferencia de ser más fáciles de identificar y distribuidos en pequeños grupos. Cobertura vegetal: De mediana densidad, cubriendo gran parte de la pendiente (dejando algunos huecos sin vegetación). Interior: Ninguno.
6. El Hoyo (Guespalapa) 67	 Canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa. Exterior: Alrededor de 40 cárcavas. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Principalmente en la parte N, W y S. Arreglo o estructura: De forma radial, como microcanales totalmente rectos o interrumpidos, que se extienden hasta un poco más de la mitad del cono; mientras que otros únicamente se concentran en la base. Cobertura vegetal: De mediana densidad (existen algunos espacios entre los pinos), pero bien distribuidos alrededor de toda la pendiente. Interior: Ninguno. Cobertura vegetal: Nula. Exterior: 5 barrancos. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Concentrados sólo en la base (dirección SE). Arreglo o estructura: Rectos y continuos, de pequeño desarrollo, difícil de estimar su profundidad. Presenta un arreglo similar a los barrancos anteriores, con la diferencia de ser más fáciles de identificar y distribuidos en pequeños grupos. Cobertura vegetal: De mediana densidad, cubriendo gran parte de la pendiente (dejando algunos huecos sin vegetación). Interior: Ninguno. Cobertura vegetal: De mediana densidad, cubriendo gran parte de la pendiente (dejando algunos huecos sin vegetación).
6. El Hoyo (Guespalapa) 67 35. Otates	 Canal borde una de las laderas internas del cono. Cobertura vegetal: Escasa. Exterior: Alrededor de 40 cárcavas. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Principalmente en la parte N, W y S. Arreglo o estructura: De forma radial, como microcanales totalmente rectos o interrumpidos, que se extienden hasta un poco más de la mitad del cono; mientras que otros únicamente se concentran en la base. Cobertura vegetal: De mediana densidad (existen algunos espacios entre los pinos), pero bien distribuidos alrededor de toda la pendiente. Interior: Ninguno. Cobertura vegetal: Nula. Exterior: 5 barrancos. Características: Estrechos, sub-paralelos y de poca profundidad. Localización: Concentrados sólo en la base (dirección SE). Arreglo o estructura: Rectos y continuos, de pequeño desarrollo, difícil de estimar su profundidad. Presenta un arreglo similar a los barrancos anteriores, con la diferencia de ser más fáciles de identificar y distribuidos en pequeños grupos. Cobertura vegetal: De mediana densidad, cubriendo gran parte de la pendiente (dejando algunos huecos sin vegetación). Interior: Ninguno. Cobertura vegetal: Concentrada en los bordes del cráter. Exterior: 6 barrancos.

	transversales en forma de "V".
	Localización: En la porción SW.
	Arreglo o estructura: Rectos, continuos y concentrados en pequeños grupos (la inflexión
	en las curvas es más clara para identificarlos).
	Profundidad aproximada: Pueden rebasar los 3 m.
	Cobertura vegetal: Alta y de distribución homogénea.
	Interior: Ninguno.
	Cobertura vegetal: Abundante en las paredes interiores, escasa en el fondo del cráter.
39. Chalchihuites	Exterior: Más de 17 barrancos.
	Características: Estrechos, sub-paralelos, de mediana profundidad, y con perfiles en
	forma de "V" o "V" irregular.
	Localización: Principalmente al S.
	Arreglo o estructura: Rectos, continuos y concentrados en pequeños grupos.
	Cobertura vegetal: De mayor densidad al N; mediana concentración al S.
	Interior: Ninguno.
59. Yecahuazac	Exterior: 8 barrancos.
	Característica: Estrechos y anchos de profundidades medias con perfiles en forma de un
	"V" abierta.
	Localización: 4 al N y 4 al S.
	Arregio o estructura: Concentrados en pequeños grupos, los más estrechos y largos al N
	y los más amplios y cortos al S.
	Cobertura vegetal: Media.
	Interior del cráter: Ninguno.
33. Suchiool	Exterior: Al menos 20 barrancos.
	Características: Estrechos, sub-paralelos, de mediana profundidad y con secciones
	transversales en forma de "V".
	Localización: Principalmente en la parte S-SW del cono; mientras que 2 de ellos se ubican
	al N, entre los dos edificios que conforman al Suchiool.
	Arregio o estructura: De forma recta, cortos, alargados y continuos, similar a los regueros
	de los voicanes el Xitle y El noyo, del complejo Guespalapa, pero de mayor dimension. I
	de los barrancos al N, manciene un arregio estrecho cerca del nivel base, y una mayor
	Brofundidad aprovimado: En promodio, corea do los 4 m. con un máximo valor do 12 m.
	Cobortura vagatal: Alta y homogénea, a vagas con huagos que dejan var la superficie del
	cono
	Interior: Apopas upos incipientos canalillo
	Arregio o estructura: Ninguna en particular
	Cobertura vegetal: Amplia, dejando nequeños espacio que dejan ver la superficie
27 Jalatlalco I	Exterior: 4 harrancos
	Características : Rectos, estrechos, profundos y con perfiles transversales en forma de
	"V".
	Localización: En la dirección SE, restringidas únicamente a la base.
	Arregio o estructura: Presentes en pequeños grupos que cortan la base del cono.
	Profundidad: Con profundidades ente 4 y 8 m.
	Cobertura vegetal: Mayor concentración al N, el resto de la pendiente contiene
	densidades bajas.
	Interior: 16 canales.
	Características: Rectos, estrechos y poco profundos.

	Arreglo o estructura: En forma de drenaje centrípeto, confinado a la base.
	Cobertura vegetal: Escasa.
28. Jalatlalco II	Interior: 1 barranco.
	Características: Estrecho en la parte inferior y muy amplio pendiente arriba.
	Localización: En la pared norte.
	Arregio o estructura: Presenta un aspecto de embudo o triángulo invertido y termina con
	un abanico aluvial en el fondo del cráter. La parte superior se distingue por la formación
	de una cabecera ancha y ligeramente escarpada, y dentro de ella, dos cauces con
	diferente nivel de incisión. Con respecto al tamaño, la cárcava tiene un área de 9115 m ²
	Cobertura vegetal: Densa sólo en la parte del barranco.
37. Cuatepel	Exterior: 7 barrancos.
	Características: Rectos, cortos y profundos y medianamente profundos.
	Localización: Principalmente en la parte N del cono.
	Arreglo o estructura: Presentes en pequeños grupos que cortan la base del cono.
	Cobertura vegetal : Muy escasa, limitada a la pared NW; gran separación entre los pinos.
	Interior: 3 barrancos.
	Características: Anchos con cabecera en la parte superior.
	Localización: En la ladera N.
	Arregio o estructura: Presentan un aspecto de embudo o triangulo invertido y terminan
	con un abanico aluvial en el fondo del crater (similar al poligono 45). Y de ellos es
	Cobertura vegetal: Abundante en las laderas interiores S.
50. Joyacan	Exterior: 2 barracos.
	Características: Anchos con cabecera en la parte superior.
	Localización: En la pendiente S.
	Arregio o estructura: Presentan un aspecto de embudo, triangulo invertido o cuenca
	nidrografica.
	Cohertura vegetal: Abundante en la parte Nulas demás ladoras precentan una vegetación
	más disporsa
65 Costzontla	Fyterior: 1 harranco
05. Coatzontie	Características : Estrecho, de mediana profundidad y con perfil en forma de "V"
	Localización: En la norción oriental
	Arregio o estructura: Totalmente recto, continuo y con una longitud de 204 m (Ouizá la
	cárcava se encuentre en un parte que no corresponda al, cono (posible un fluio de lava)
	Profundidad aproximada: Con una profundidad máxima de hasta 5m
	Cobertura vegetal : Con alta densidad.
31. Emepenciano	Exterior: 1 barraco.
	Características : Estrecho, de mediana profundidad y con perfiles en forma de "V".
	Localización: Ubicada en la base hasta la porción abierta del cráter, en la sección SW se
	puede distinguir la formación de un incipiente canal.
	Arregio o estructura: Totalmente recto, continuo y con una longitud de 186 m.
	Profundidad aproximada: Con una profundidad máxima de hasta 10 m.
	Cobertura vegetal: Abundante.
105. Menzotepec	Exterior: 1 barranco.
	Características : Estrecho y ramificado, con perfiles en forma de "V".
	Localización: Al NW.
	Arregio o estructura: Estrecho en la base y se ramifica en 2 canales en la parte superior,

	cubriendo ¾ partes del cono.
	Profundidad aproximada: 5m
	Cobertura vegetal: De mediana a baja.
125	Exterior: 1 barranco
	Características: Estrecho, profundo y con un perfil longitudinal en forma de "V".
	Localización: Al Oeste.
	Arreglo o estructura: Recto continuo y con una longitud de 98 m.
	Profundidad aproximada: Mantiene una profundidad de hasta 8 m o más.
	Cobertura vegetal: Alta.
51. Acopiaxco	Exterior: 2 barrancos.
	Características: Estrechos, alargados y profundos con perfiles en forma de "V".
	Localización: En la porción E.
	Arreglo o estructura: Se organizan como 2 barrancos q dividen al edifico principal (ya
	modelado) de otra estructura cónica.
	Profundidad aproximada: 5 m.
	Cobertura vegetal: Abundante.
61. Oyameyo	Exterior: 3 barrancos.
	Características : 1 resalta por su profundidad y perfil en forma de "V", con paredes muy
	verticales.
	Localización: En el cuadrante W.
	Arregio o estructura: Recto, continuo y amplio (más de 50 m de longitud), de fuerte
	disección y con escarpe de 25 m en la parte superior. Este tipo de cárcavas se presenta
	en conos modelados, cercanos a otros centros eruptivos más recientes.
	Profundidad aproximada: alrededor de 20 m.
	Cobertura vegetal: Cobertura densa al N.
103. Malacatepec	Exterior: 3 barrancos.
	Características : 1 sobre sale por ser estrecho, profundo y de perfil en forma de "V".
	Localización: Todos en la parte SE.
	Arregio o estructura: Se distinguen por presentar solo un barranco protundo,
	acompanado de pequenos regueros, y en areas cercanas a otros voicanes recientes (p. ej.
	EIC. Pelado). Profundidad annovimada: Do 15 m
	Cobortura vagatal: Dansa v distribuida da manara homogánoa
101 Tulmooo	Eventional Vegetal. Densa y distribuida de manera nomogenea.
101. Tuimeac	Características: Estrecho, profundo y con perfil transversal en forma de " V "
	Localización: Ubicado en el cuadrante S-SW
	Arregio o estructura: Se distingue por presentar un sólo barranco, en un cono modelado
	cercano a otros centros eruntivos de actividad reciente
	Profundidad aproximada: Con una profundidad máxima entre 15 y 20 m.
	Cobertura vegetal : Con valores altos tanto en la parte N como en el barranco mismo.
102. La Comalera	Exterior: 1 barranco.
	Características : Estrecho, profundo y con un perfil longitudinal en forma de "V".
	Localización: En la región meridional.
	Arreglo o estructura: Se distingue por presentar un sólo barranco sobre un cono
	modelado. En la misma dirección, se alojan 6 cárcavas, que no se tomaron en cuenta
	debido a que ya están fuera del polígono del cono (en una especie de talud).
	Profundidad aproximada: mayor de 12 m.
	Cobertura vegetal: Escasa.

13. C. Del Agua	Exterior: Alrededor de 8 barrancos.
	Características : Estrechos, alargados y de mediana profundidad con perfiles en forma de
	"V".
	Localización: Principalmente en la ladera S.
	Arreglo o estructura: Arreglo de barrancos de mediana profundidad a acompañados de
	regueros.
	Cobertura vegetal: abundante.
49. C. Cilcuayo	Exterior: Alrededor de 17 barrancos.
	Características: 2 de ellos son los más representativos por mostrarse estrechos,
	profundos y con perfiles en forma de "V".
	Localización: En la dirección W y E.
	Arreglo o estructura: Se distinguen por presentar barrancos estrechos y profundos,
	acompañados de otros con menor desarrollo (regueros).
	Profundidad aproximada: Mayor de 5 y menor de 20 m.
	Cobertura vegetal : La vegetación cubre una franja (de mayor a menor densidad) que va
	en sentido de las manecillas del reloj, de N hacia a S, dejando libra la porción W y la cima
	de los 2 edificios que componen al C. Cilcuayo.
100	Exterior: 1 barranco.
	Características: Estrecho, profundo y con perfiles en forma de "V".
	Arreglo o estructura: Se presenta sólo, en un cono modelado, cubierto por cenizas de
	otros volcanes y rodeado de lavas.
	Profundidad aproximada: 15 m.
	Cobertura vegetal: Densa.
40. Teuhtli	Exterior: 19 barrancos.
	Características: 2 de ellos se muestran estrechos y alargados con perfiles topográficos en
	forma de "V" (ligeramente abierta), los demás pueden considerarse como regueros .
	Localización : Distribuidas entre la ladera N y E. Los regueros se agrupan principalmente
	en la ladera S.
	Arregio o estructura: Agrupados de forma radial, algunos logran llegar a la cima y otros
	quedan confinados a la base. 1 barranco en la porción oriental se desarrolla de forma
	singular (ya se ha extendido hasta el segundo borde del cráter y de forma muy amplia),
	formando una especie de cabecera o cavidad donde convergen varios fluentes para
	unirse en un arroyo principal muy delgado.
	Profundidad aproximada: 10 m.
	Cobertura vegetal: Muy escasa.
	Interior: Ninguno.
41. Ocoxusco	Exterior: Alrededor de 10 barrancos.
	Características: anchos, protundos y con perfiles en forma de "v" ensanchada.
	Localización: En la pendiente IV, W y S.
	Arregio o estructura: Organización radial de barrancos (muy tenues) anchos separados
	pol nuges. Drefundided: Dueden lleger beste los 6 m
	Cobertura vegetal: Amplia alrededer del cono
	Evterior: 21 harrances
	Exterior . St udifiditus.
	"" " " " " " " " " " " " " " " " " " "
	V ensanchada
	Localización: Principalmente al S y otros al N.

resultado la formación de valles en formas de "V" reparados por <i>ridges</i> ; en pendientes
altas los barrancos anchos tienden a forma cabeceras y en las partes baias, facetas
triangulares, <i>planézes</i> o <i>flatirons</i> . En la parte norte se distingue un patrón inusual: donde
2 barrancos son ramificados y los otros 2 rectos con formación de cabeceras y facetas
triangulares.
Profundidad aproximada: 10 m
Cobertura vegetal: Muy escasa
Interior: 9 canalillo
Características: Cortos y rectos, apenas percentibles
Cabartura vogetal: Escara
Cobertula Vegetal: Estasa. Exterior: Alredodor do 11 horrancos
5. Cuautzin Exterior. Aneuedor de 11 barrancos.
Características . Anchos, profundos y con permes en forma de V ensanchada.
Localización : La mayoría en la parte S y 1 al N.
Arregio o estructura: Distribución radial de barrancos anchos separados por <i>ridges</i> , que
surgen como respuesta a los procesos de erosion lateral; al N su morfologia en planta es
parecida a la de una cuenca hidrográfica.
Profundidad aproximada: Carcavas anchas con profundidades de 15 m y cauces en
forma de "U" (similares a las del volcán Pelado).
Cobertura vegetal: Con mayor cobertura en la porción N.
Interior: 9 canales.
Características: Rectos, estrechos, apenas perceptibles.
Localización: Ladera interior S y N.
Cobertura vegetal: Escasa.
12. PeladoExterior : 14 barrancos.
Características : Anchos, rectos, profundos y con perfiles en "V" ensanchada.
Localización: Principalmente en la sección N y S.
Arregio o estructura: En la parte meridional resaltan los barrancos anchos; su arregio
morfológico es estrecho en las zonas cercas al nivel base, y se expanden en la parte
superior como resultado de la erosión remontante. Se ha observado que las cabeceras
logran extenderse hasta el punto de engullir a los barrancos vecinos, generando un
relicto geomorfológico en la parte inferior conocido como facetas triangulares o planézes
(estructuras mejor identificadas en estratovolcanes en proceso de degradación). En la
dirección N el arreglo es distinto; ya que los barrancos se conservar rectos, más amplios y
profundos cerca de los cimientos del edificio y más estrecho pendiente arriba.
Profundidad aproximada: 15 m en estructuras en forma de "U" y, 10 m en canales con
aspecto de "V".
Cobertura vegetal: Las zonas disecadas son las de mayor cobertura vegetal.
Interior: 4 canales.
Características : Rectos y cortos, apenas identificables.
Localización: En la parte W.
Cobertura vegetal : Únicamente pastos o arbustos en el borde del cráter.
42. C. Tenavo Exterior: 10 barrancos.
Características : Anchos, profundos y con perfiles transversales en forma de "V"
ensanchada.
Localización : Con mayor concentración al S: 3 barrancos al N v 1 al E.
Arregio o estructura: En la primera zonificación los barrancos remontan hacia la cima de
forma recta o ligeramente curveada: y se expanden de manera semicircular en la parte

	anchas, profundas en la parte baja y no siempre llegan hasta el borde del cráter.
	Profundidad aproximada: Hasta de 60 m.
	Cobertura vegetal: Con una densidad baja a intermedia en la porción septentrional, y
	muy escasa en el sector meridional.
	Interior: Ninguno.
	Cobertura vegetal: Densa en la pendiente interior y escasa en el fondo del cráter.
44. C. Tapeixte	Exterior: 21 barrancos.
	Características: Anchos, profundos, con perfiles transversales en forma de "V"
	ensanchada.
	Localización: Alrededor de la pendiente, excepto en la región W del cono.
	Arregio o estructura: Arregio radial de barrancos anchos y estrechos separados por
	ridges. En cuanto al arreglo mismo de los barrancos, éstos se muestran estrechos en la
	parte inferior y con desarrollo de cabeceras en la parte superior.
	Profundidad aproximada: con una máxima de 15 m.
	Cobertura vegetal : Alta hacia el N e intermedia al S.
	Interior: Ninguno.
	Cobertura vegetal: Restringida a las paredes interiores.
43. C. La Joya	Exterior: 8 barrancos.
	Características: Anchos, protundos y con perfiles en forma de "V" ensanchada.
	Localización: Zona NW y SE.
	Arregio o estructura: Distribución de barrancos (muy tenues) en forma radial separados
	por <i>riuges</i> , con desarrono de facetas triangulares y cabeceras.
	Cohortura vagatal: Con mayor dencidad al N
	Interior: Ninguno
	Cobertura vegetal: Sólo en las naredes interiores, dejando libre tanto el borde como el
	fondo de cráter
84 Huinilo	Exterior: 16 barrancos
e in nuipile	Características : Anchos, profundos y con secciones transversales en forma de "V"
	ensanchada.
	Localización: Alrededor de todo el edificio.
	Arreglo o estructura: Distribución radial de barrancos anchos separados por ridges;
	formado cabeceras y facetas.
	Profundidad aproximada: 10 m.
	Cobertura vegetal: concentrado con mayor densidad al N.
85. C Escobeta	Exterior: 12 barrancos.
	Características: Anchos, profundos y con perfiles transversales en forma de "V"
	ensanchada.
	Localización: Alrededor de todo el edificio.
	Arregio o estructura: Distribuidos de forma radial, siguiendo caminos rectos o curveados.
	Profundidad aproximada: 40 m.
	Cobertura vegetal : Alta y distribuida de manera homogénea por toda la pendiente.
93. C. Tlalamac	Exterior: 16 barrancos.
	Caracteristicas : Anchos, de mediana profundidad y con perfiles en forma de "V"
	ensanchada.
	Localización: Alrededor de toda la pendiente.
	Arregio o estructura: Organizados de forma radial, barrancos anchos reparados por
	crestas (<i>ridges)</i> .

	Profundidad aproximada. La máxima es de 10 m; pero en su mayoría son pocos														
	profundos.														
	Cobertura vegetal: La mitad del cono está cubierta por pinos y la otra porción de														
	arbustos y pequeños grupos de árboles.														
82. Atlalcorra	Exterior: Alrededor de 13 barrancos.														
	Características: Estrechos y ramificados														
	Localización: Principalmente en la dirección N, NE y E.														
	Arreglo o estructura: Ninguna en particular.														
	Cobertura vegetal: Escasa, llena de cultivos.														
109. La Silva	Exterior: 6 barrancos														
	Características: Estrechos y ramificados con perfiles en forma de "V".														
	Localización: En la pendiente W, S y E.														
	Arreglo o estructura: Se organizan de forma radial con un canal estrecho y profundo en														
	la parte inferior y con diversos barrancos laterales en la parte alta.														
	Profundidad aproximada: Hasta 10 m.														
	Cobertura vegetal: Escasa, sólo en la parte N y al S justo en el barranco más profundo, la														
	falta de vegetación se debe a los campos de cultivos.														

Apéndice 3. Base de datos: parámetros morfométricos

			1	Ubio	ación por cráter	Número de		Volum	ien en Km³ a partir	an Km³ a partir de un: Valores de Alti					Valores de Altura en m (Hco)			Valores de d	diámetro basal e	n m (Wco)	a (Wco) Valores de diámetro del cráter e			rofundidad del Relación		Edades		Pendiente pr	omedio en ° (S)	N° de Ba	rrancos Elonga	ción (E)	Ge	ometría
ID	Clasificación	Nombre del cono	N° de Crater	es		pixeles por	Área (Km²)							Nivel base (m)										cráter en m			Absoluta	Exterior	Interior					
			por cono	Latitu	d N Longuitud W	polígono		MDE	MDE	TIN	Minimos	Máximos	Promedios		Minimos	Máximos	Promedios	Minimo	Máximo	Promedio	Minimos	Máximos	Promedio	(Dcr) He	o/Wco Wcr/Wc	Relativa	(Edad convencional B.P.)	(Sco ex)	(Sco in)	Exterior	Interior Cono (Eco)	Cráter (Ecr)	Cono	Cráter
1	Sencillo Xitle		1	19.	-99.2	17245	0.43	0.04	0.04	0.04	2935	3126	3036	2982	110	143	123	685	801	743	343	374	359	128	0.19 0.48	Holoceno (<11 ka)	<1.670+35	30	35	15	8 1.2	1.1	Semicircular	Semicircular
2	Sencillo Chichi	inautzin	1	19.	-99.1	9683	0.24	0.03	0.03	0.03	3296	3481	3406	3350	110	130	124	505	610	557				43	0.23	Holoceno (<11ka)	<1835:<1980+/-75	30	28	~	1.2		Semicircular	
3	Sencillo Jumer	nto	1	19.	-99.3	16157	0.40	0.04	0.04	0.04	3618	3804	3717	3662	122	141	135	655	827	741	275	324	300	43	0.19 0.40	Holoceno (<11 ka)	~2,000	30	33		1.3	1.2	Semielíptico	Semicircular
	Palorr	nito (Guespalapa)	1	19.	-99.2																			70				27	18	~15				
4	Complejo Caball	lito (Guernalana)	2	19.	-99.2	23953	0.60	0.06	0.06	0.06	3085	3278	3185	3131	76	147	109	684	999	842				110	0.17	Holoceno (<11 ka)	<5,000	29	34	12	1.5		Semielíptico	
	Cabai	iito (odespaiapa)	2	19.	-99.2																			98				28	38					
5	Sencillo Mante	eca (Guespalapa)	1	19.	-99.2	8887	0.22	0.01	0.01	0.01	3109	3234	3176	3137	87	96	92	487	559	523	120	155	138	33	0.18 0.26	Holoceno (<11 ka)	<5,000	26	28	~21	1.1	1.3	Semicircular	Semielíptico
6	Sencillo El Hoy	yo (Guespalapa)	1	19.	-99.2	10123	0.25	0.02	0.02	0.01	3061	3182	3124	3087	81	93	84	473	618	546	255	309	282	62	0.17 0.52	Holoceno (<11ka)	<5,000	28	23	~40	1.3	1.2	Semielíptico	Semicircular
				19.	-99.1										I	I	I	I			170	220	195	42					25			1.3		Semielíptico
				19.	-99.1																									-				
1	Complejo Ocusa	асауо	5	19.	-99.1	10792	0.27	0.02	0.02	0.02	3040	3186	3133	3105	46	82	6/	509	/2/	618	124	144	134	37	0.13	Holoceno (11ka)	>21,675?;<6,200**	24	25	-	1.4	1.2	Semieliptico	Semicircular
				19.	-99.1							I	I		I	I	I	I			8/	182	135	28					20	4		2.1	-	Eliptico-elongado
				19.	-99.1																93	99	96	15					20			1.1		Semicircular
	Complete Titles			19.	-99.0	26260	0.65	0.07	0.07	0.07	2409	2602	2604	75.45	115	142	177	876	1010		233	235	234	66	0.15	Helesens (stilks)	46 200485	20	24		0 12	1.0	Comisionales	Circular
•	complejo maloc		2	19.	-99.0	20200	0.00	0.07	0.07	0.07	3430	5092	5004	3343	115	140	125	020	1019	922	197	282	239	60	0.15	Holocello (<11ka)	<0,200105	25	23	51	5 1.2	1.4	Semicircular	Semieliptico
	Consillo Cusut	tala	1	19.	-99.0	20450	0.72	0.15	0.15	0.14	2200	2512	2407	2242	135	170	144	601	1090	1600	210	310	470	116	0.10 0.39	Helesene (s11ka)	7 260+120 8 225+120	20	22	~11	0 1 9	1.5	Flinting	Semieireuler
9	Sencillo Los Co	andes I (Les Candes)	1	19.	-99.1	29430	0.73	0.13	0.13	0.14	3209	3315	3407	3342	100	1/0	107	501	1089	1090	400	496	4/9	110	0.10 0.28	Holoceno (<11ka)	7,5001120-8,2251150	20	20	11	9 1.6	1.1	Eliptico	Seriiciculdi
	Sencillo Los Ca	ardos II (Los Cardos)	1	19.	-99.5	2105	0.29	0.05	0.05	0.05	2965	2119	2099	2076	22	29	25	220	227	272	230	224	97	44	0.19 0.29	Holoceno (<11ka)	<8000	10	21		1.1	1.0	Semicircular	Somicircular
	Sencino Los Ca	aluus II (LUS Caluus)	1	19.	-99.5	3105	0.08				3037	5110	5066	3076	32	30	35	220	327	2/3	04	176	159	19	0.14 0.52	Holocello (<11ka)	<0000	19	21		1.5	1.1	Semienptico	Semicircular
10	Los Ca	ardos III (Los Cardos)	3	19.	99.3							I	I		I	I	I	I			141	175	160	16				27	12	1		1.2	1	Semicircular
	Complejo	(203 curdos)	1	19		13684	0.34	0.04	0.04	0.04	3010	3190	3115	3061	29	127	94	589	726	657	157	219	188	81	0.19	Holoceno (<11ka)	<8000		24	1	1.2	1.4	Semicircular	Semielíntico
	Los Ca	ardos IV (Los Cardos)	1	19.	-99.3										I	I	I	I			110	128	119	30				25	25			1.7	1	Semicircular
11	Sencillo C. Ter	pevahualco	1	19.	-99.2	4814	0.12	0.01	0.01	0.00	2954	3040	3003	2975	9	60	40	216	601	409		110		74	0.15	Holoceno (<11ka)	<10.000**	20	24		2.8		Superelíptico	Serricirculur
12	Sencillo Pelad	0	1	19.	-99.2	33342	0.83	0.12	0.12	0.12	3378	3627	3519	3439	158	187	175	863	1179	1021	362	492	427	83	0.18 0.42	Holoceno (<11ka)	10.000	31	23	14	4 1.4	1.4	Semielíptico	Semielíntico
		-		19.	-99.0																							-						
13	Complejo C. Del	I Agua	2	19.	-99.0	19746	0.49	0.08	0.08	0.08	3208	3485	3372	3301	165	183	176	678	894	786					0.23	Holoceno (<11 ka)	10,845±290/-280	31	1	8	1.3		Semielíptico	
	Complete OL 1	aud.	-	19.	-99.2	21	0.52	0.00	0.00	0.07	3924	2020	205.5	2005	115	131	177	607	007	001	247	350	299	53	0.16 0.77	Bleisteren Granden (200 an)	(13.000	~	23			1.4	ComicKente	Semielíptico
14	compiejo Ulolizi	qui	2	19.	-99.2	21144	0.53	0.06	U.U6	0.06	2834	3038	2956	2906	110	151	123	031	905	801	112	113	112	15	0.10 0.37	Pleistoceno Superior (100-11ka)	<13,000	26	12	1 I	1.3	1.0	semieliptico	Circular
15	Sencillo C. Pel	agatos	1	19.	-99.0	70850	0.07				2946	3025	2987	2963	51	62	56	299	302	300	102	140	121	66	0.21 0.40	Pleistoceno Superior (100-11ka)	<14,000	29	28		1.0	1.4	Circular	Semielíptico
16	Sencillo La Nir	nfa (Dos Cerros)	1	19.	-98.9	20681	0.52	0.05	0.05	0.05	2826	2998	2921	2874	104	123	112	757	854	805	411	486	449	113	0.15 0.56	Pleistoceno Superior (100-11ka)	<15 COD / CD	28	31	2	1.1	1.2	Semicircular	Semicircular
17	Sencillo Tezpo	omayo (Dos Cerros)	1	19.	-98.9	14182	0.35	0.04	0.04	0.04	2911	3083	3013	2980	92	102	99	549	639	594	198	222	210	42	0.17 0.35	Pleistoceno Superior (100-11ka)	×10,000+/-50	27	22	1	1.2	1.1	Semicircular	Semicircular
	Compleie Las Ra	aicar	2	19.	-99.3	25166	0.62	0.05	0.05	0.05	2009	2152	2090	2022	116	121	121	880	800	990	295	304	299	54	0.15	Plaintocopo Superior (100-11ka)	15 570+200	22	20		10	1.0	Circular	Circular
	complejo cas na	aices	-	19.	-99.3	25100	0.05	0.05	0.05	0.05	2550	3103	3080	3022	110	151	121	880	833	883	158	232	195	32	0.15	Pleistoceno Superior (100-11ka)	13,3701300		12		1.0	1.5	Circular	Semielíptico
18				19.	-99.2							I	I		I	I	I	I			397	412	405	75					22			1.0		Circular
	Compljeo El Caje	ete	3	19.	-99.2	41032	1.03	0.13	0.13	0.13	2962	3184	3084	3008	149	175	166	919	1348	1134	225	270	248	61	0.15	Pleistoceno Superior (100-11ka)	15,570±300	25	24		1.5	1.2	Semielíptico	Semicircular
				19.	-99.3																195	201	248	16					12			1.0		Circular
19	Sencillo San M	liguel	1	19.	-99.0	6006	0.15	0.01	0.01	0.01	2787	2890	2864	2812	68	78	74	397	503	450	272	292	282	29	0.17 0.63	Pleistoceno Superior (100-11ka)	16,670	23	17		1.3	1.1	Semielíptico	Semicircular
20	Sencillo Xistur	e	1	19.	-99.0	7907	0.20	0.02	0.02	0.02	2965	3112	3052	2986	113	126	121	473	500	487	187	205	196	46	0.26 0.40	Pleistoceno Superior (100-11ka)	16,850±60	24	20		1.1	1.1	Semicircular	Semicircular
21	Sencillo Ocote	ecalt	1	19.	-99.0	23243	0.58	0.07	0.07	0.07	3246	3486	3372	3306	133	179	154	805	997	901	292	328	310	144	0.20 0.34	Pleistoceno Superior (100-11ka)	Sin datación	27	27		1.2	1.1	Semicircular	Semicircular
22	Sencillo Tesoy	10	1	19.	-99.2	25808	0.65	0.07	0.07	0.07	2992	3205	3097	3049	129	154	137	681	1046	864	353	459	406	127	0.18 0.47	Pleistoceno Superior (100-11ka)	<18,165+/-135	27	30		1.5	1.3	Semielíptico	Semielíptico
23	Sencillo Tezon	ntle	1	19.	-99.3	29432	0.74	0.09	0.09	0.09	2748	2979	2875	2782	185	196	192	756	1451	1103	264	350	307	56	0.18 0.28	Pleistoceno Superior (100-11ka)	Sin datación	26	24		1.9	1.3	Elíptico	Semielíptico
	La Cin	na I	1	19.	-99.2	4079	0.10				3014	3087	3042	3021	51	65	57	297	393	345	149	176	162	70	0.19 0.47			24	33		1.3	1.2	Semieliptico	Semicircular
24	Complejo La Cin	na II	1	19.	-99.2	12347	0.31	0.02	0.02	0.02	2998	3134	3058	3035	39	53	47	267	316	292					0.18	Pleistoceno Superior (100-11ka)	>14,100**	16	23		1.2		Semicircular	
- 25	La Cin	na III	0	19.	-99.2	7947	0.20	0.02	0.01	0.01	3007	3088	3040	3013	60	121	104	432	852	642	402	200	204	50	0.19	Philipping Consults (400 Adds)	C'a data a' (a	26	28		2.0		Eliptico-elongado	o Noaplica
25	Sencillo El Mu	neco	1	19.	-99.3	7258	0.18	0.02	0.02	0.02	35/4	3/25	3669	3640	/2	84	/9	314	5/4	444	193	209	201	50	0.19 0.45	Pleistoceno Superior (100-11ka)	Sin datación	2/	1/		1.8	1.1	Eliptico	Semicircular
26	Sencillo Negro)	1	19.	-99.4	19015	0.48	0.06	0.06	0.05	2994	3222	3111	3047	131	1/3	152	770	836	803	202	2/8	240	81	0.22 0.30	Pleistoceno Superior (100-11ka)	Sin datación	29	2/		1.1	1.4	Semicircular	Semieliptico
27	Sencilio Jalatia	aco I	1	19.	-99.4	2/586	0.69	0.10	0.10	0.10	3340	3018	3481	3438	90	180	135	112	922	847	240	3//	308	139	0.21 0.36	Pleistoceno Superior (100-11ka)	Sin datación	23	29		1 1.2	1.6	Semicircular	Eliptico
28	Complejo Jalatla	aco II	2	19.	-99.4	38329	0.96	0.16	0.16	0.15	3364	3667	3526	3461	176	204	195	1018	1092	1055	312	384	348		0.19 0.33	Pleistoceno Superior (100-11ka)	Sin datación	25	25	4	16 1.1	1.2	Semicircular	Semicircular
20	Consillo Tunto	naa	1	19.	-99.3	8470	0.21	0.01	0.01	0.01	2000	2112	2052	2006	00	105	100	510	544	527	174	920	201	80	0.30 0.39	Disistence Cupation (100 11kg)	Cin datasián	27	26		11	1.2	Comisireular	Comiolístico
29	Sencillo El Car	pec i	1	19.	-99.5	12042	0.21	0.01	0.02	0.01	2999	2100	2109	2050	110	105	100	560	544	527	1/4	194	167	70	0.20 0.38	Pleistoceno Superior (100-11ka)	Sin datación	27	28		1.1	1.3	Semicircular	Semieirpulor
30	Sencillo Ercap	enciano	1	19.	-99.5	9784	0.33	0.03	0.03	0.03	2951	3083	3015	7981	77	101	87	510	577	543	150	189	177	51	0.25 0.28	Pleistoceno Superior (100-11ka)	Sin datación	25	24	1	1.1	1.2	Semicircular	Semicircular
32	Sencillo Hiio d	e Cuautzin	1	19.	-99.1	6453	0.16	0.01	0.01	0.01	3213	3325	3287	3261	52	63	59	325	583	454	163	176	169	30	0.14 0.37	Pleistoceno Superior (100-11ka)	>20.895	23	23	-	1.8	1.1	Elíptico	Semicircular
				19.	-99.1																410	464	437	158				29	37			1.1		Semicircular
33	Complejo Suchio	lool	3	19.	-99.1	38971	0.97	0.12	0.12	0.11	3068	3306	3186	3109	144	194	163	1150	1170	1160	93	107	100	23	0.17	Pleistoceno Superior (100-11ka)	Sin datación	28		~20	1.0	1.2	Circular	Semicircular
				19.	-99.1										I	I	I	I			98	120	109					29	1	1		1.2	1	Semicircular
				19.	-99.1																216	226	221	227					29			1.0		Circualr
34	Complejo Miqui	lixtepec o Quimixtepec	3	19.	-99.1	13238	0.33	0.02	0.02	0.02	3087	3224	3156	3119	65	105	80	631	649	640	123	158	140	163	0.16	Pleistoceno Superior (100-11ka)	Sin datación	26	22]	1.0	1.3	Circular	Semielíptico
				19.	-99.1																107	156	131									1.5		Semielíptico
35	Sencillo Otate	s	1	19.	-99.1	15214	0.38	0.03	0.03	0.03	3067	3249	3152	3103	58	144	100	622	793	708	249	258	254	94	0.20 0.36	Pleistoceno Superior (100-11ka)	Sin datación	27	28	6	1.3	1.0	Semielíptico	Circular
36	Compleio Sin no	ombre (poli 60)	2	19.	-99.1	10707	0.27	0.02	0,02	0.07	3047	3181	3107	3081	60 T	100	88 T	593	638	616	178	434	306	98	0.16	Pleistoceno Superior (100-11ka)	Sin datación	27	29	l l	1.1	2.4	Semicircular	Elíptico-elongado
		- w		19.	-99.1								1.1								81	116	98						-			1.4		Semielíptico
37	Complejo Cuate	pel	2	19.	-98.9	30556	0.76	0.08	0.08	0.08	2549	2781	2660	2589	51	192	122	905	1070	988	245	355	300	88	0.19 0.30	Pleistoceno Superior (100-11ka)	~25,000	30	26	7	3 1.2	1.5	Semicircular	Semielíptico
			l .	19.	-98.9	00							2007	-							268	356	312	153					30			1.3	Constant of	Semielíptico
38	Sencillo Aholo	hihuitee	1	19.	-98.9	8866	0.22	0.02	0.02	0.02	2569	2/27	2655	2655	49	/2	59	498	5/7	537	111	158	135	28	0.13 0.25	Pleistoceno Superior (100-11ka)	Sin datación	29	22	~~~~	1.2	1.4	Semicircular	Semieliptico
39	Soncillo Tallo	imurtes	1	19.	-99.3	12204	0.95	0.20	0.20	0.20	3035	2715	3230	31//	100	117	108	546	1000	-112/	243	202	203	29	0.13 0.23	Plaintocono Superior (100-11ka)	~21.000	20	21	1/	1.4	1.2	Somicircula	Semicircular
40	Sencillo Ocorr		1	19.	-99.0	20059	0.55	0.05	0.05	0.05	2,02	2/13	2040	2,30	90	145	117	743	863	802	317	2/4	250	50	0.18 0.40	Pleistoceno Superior (100-11/m)	Sin datación	20	10	~10	1.1	1.2	Semicircular	Semiclíotico
41	Sencillo C Tor	navo	1	19.	-30.3	20330	0.52	0.05	0.05	0.05	2035	2037	2679	2032	115	207	169	830	202	821	2/0	350	200	94	0.25 0.26	Pleistoceno Superior (100-11/a)	Sin datación	2/	26	10	1.2	1.5	Circular	Semielíptico
42	Sencillo C. La	lova	1	19.	-98.8	16776	0.42	0.04	0.04	0.04	2522	2699	2623	2552	103	140	117	700	705	702	240	390	339	57	0.20 0.48	Pleistoceno Superior (100-11ka)	Sin datación	29	19	8	1.0	1.3	Circular	Semielíptico
44	Sencillo C. Tar	neixte	1	19.	-98.8	37630	0.94	0.12	0.12	0.12	2522	2774	2652	2586	151	188	165	702	1294	998	422	519	471	133	0.19 0.47	Pleistoceno Superior (100-11ka)	Sin datación	28	27	21	1.8	1.2	Elíptico	Semicircular
			-	19.	-99.0																													
				19.	-99.0											I					225	253	239	42					20			1.1		Semicircular
45	Complejo Oyam	etepelt o Ametepelt	5	19.	-99.0	27945	0.70	0.06	0.06	0.06	3124	3291	3206	3147	100	144	126	232	477	355	224	299	262	67	0.41 0.67	Pleistoceno Superior (100-11ka)	Sin datación	24	28	1	2.1	1.3	Elíptico-elongado	o Semielíptico
				19.	-99.0										I	I	I	I			121	192	156	32					19	1		1.6	1	Elíptico
				19.	-98.9															1003	369	550	459	111					24			1.5		Semielíptico
46	Sencillo Huehu	uei	2	19.	-99.0	33391	U.83	0.08	U.08	0.07	2905	3102	2995	2932	58	169	11/	890	1117		150	173	162	44	0.1/ 0.46	Pleistoceno Superior (100-11ka)	Sin datación	24	21		1.3	1.2	Semieliptico	Semicircular
			-	19.	-98.9																278	353	316	64			-		23			1.3		Semielíptico
4/	compiejo Cohua	dzdiU	2	19.	-98.9	12213	0.31	0.02	0.02	0.02	2088	2819	2/6/	2/44	22	/5	54	213	801	100/	137	147	142	31	0.11	Pleistoceno Superior (100-11ka)	Sin datación	23	20	1 I	1.6	1.1	EIIPTICO	Semicircular
48	Sencillo Ahuaz	zatepelt	1	19.	-98.9	22786	0.57	0.06	0.06	0.06	2770	2953	2881	2835	29	118	94	741	958	849	395	536	465	86	0.14 0.55	Pleistoceno Superior (100-11ka)	Sin datación	25	23		1.3	1.4	Semielíptico	Semielíptico
40	Complein C cit-		1	19.	- 99.0	46202	1.15	0.14	0.14	0.12	22/54	2590	2492	2420	05	160	120	000	1265	1127	242	291	267	44	0.15	Plaintanana Sumarian (100, 11/-)	Sin datasián	21		~17	1.5	1.2	Cominification	Semicircular
49	compiejo C. Cilo	Luayo	1	19.	-99.0	40203	1.10	0.14	U.14	U.13	5304	5009	2462	54ZU	32	103	103	000	1000	1127	236	356	296	77	0.13	Pleistocerio Superior (100-11ka)	Smidatacion	31		17	1.5	1.5	semieliptico	Semielíptico
50	Complete	án	2	19.	-98.8	20920	1.00	0.12	0.12	0.12	2510	3740	7641	7570	135	162	142	1022	1220	1172	191	429	310	71	0.14	Plaintanana Sumarian (100, 11/-1	Sin datasián	77			1.3	2.2	Cominification	Elíptico-elongado
50	compiejo Joyaci	aii	2	19.	-98.8	22622	1.00	0.12	U.12	U.12	8162	2740	2041	23/8	120	102	192	1023	1520	11/2	260	304	282	62	0.14	Pleistocerio Superior (100-11ka)	Smidatacion	21	27	2	1.5	1.2	semieliptico	Semicircular
51	Sencillo Acopi	axco	1	19.	-99.2	29121	0.73	0.09	0.09	0.09	3100	3318	3229	3179	132	135	131	846	1163	1005	241	254	247	25	0.13 0.25	Pleistoceno Superior (100-11ka)	>10,000	22	14	2	1.4	1.1	Semielíptico	Semicircular
52	Sencillo Calder	ra del Guarda	1	19.	-99.2	15437	0.39	0.03	0.03	0.03	3092	3216	3172	3122	81	93	87	672	737	704	373	375	374	46	0.13 0.53	Pleistoceno Superior (100-11ka)	>14,100	19	19		1.1	1.0	Semicircular	Circular
53	Sencillo Sin no	ombre (poli 115)	1	19.	-99.0	19566	0.49	0.03	0.03	0.03	3456	3579	3512	3483	51	96	73	735	853	794	139	256	198	39	0.12 0.25	Pleistoceno Superior (100-11ka)	Sin datación	19	16		1.2	1.8	Semicircular	Elíptico
54	Sencillo C. El C	Suarda	1	19.	-99.0	4212	0.11				2897	2968	2931	2909	31	58	47	315	454	384	164	182	173	33	0.15 0.45	Pleistoceno Superior (100-11ka)	Sin datación	23	20		1.4	1.1	Semielíptico	Semicircular
55	Sencillo C. Soc	chol	1	19.	-99.0	16362	0.41	0.02	0.02	0.02	2905	3015	2958	2923	77	92	87	554	573	564	227	240	234	35	0.16 0.41	Pleistoceno Superior (100-11ka)	Sin datación	19	19		1.0	1.1	Circular	Semicircular
56	Sencillo Huehu	uelcon	1	19.	-98.9	12845	0.32	0.03	0.03	0.03	2826	2979	2918	2873	63	105	90	603	610	607	244	283	263	56	0.17 0.43	Pleistoceno Superior (100-11ka)	Sin datación	27	25		1.0	1.2	Circular	Semicircular
57	Sencillo Moyo	calco	1	19.	-98.9	8614	0.22	0.01	0.01	0.01	2761	2855	2819	2782	49	74	61	391	611	501	193	283	238	33	0.15 0.48	Pleistoceno Superior (100-11ka)	Sin datación	24	23	0	1.6	1.5	Elíptico	Semielíptico
		ninal	2	19.	-99.2	21247	0.53	0.05	0.05	0.05	2999	3172	3098	3948	13	123	65	802	866	834	218	338	278	43	0.15 0.33	Pleistoceno Superior (100-11ka)	Sin datación	25	20	4	1.1	1.5	Semicircular	Semielíptico
58	Compleio El Ma		· ·	1 40										~								207	242	110			2	1 ~	1 25	. 1				Elíptico
58	Complejo El Ma	Timat		19.	-99.2			-			ļ ļ	Į									190	297	240	110				-	25			1.0		1 × × ×
58	Complejo El Mar Sencillo Yecah	nuazac	1	19.	-99.2	25271	0.63	0.05	0.05	0.05	3030	3174	3111	3061	106	113	109	783	1038	910	190 393	493	443	50	0.12 0.49	Pleistoceno Superior (100-11ka)	>1835;<1980+/-78	24	17	8	1.3	1.3	Semielíptico	Semielíptico

61 Sencillo	Oyameyo	1	19.2	-99.2	47373	1.18	0.23	0.23	0.23	2993	3323	3187	3110	195	213	206	1204	1280	1242	283	343	313	25	0.17	0.25	Pleistoceno Superior (100-11ka)	>14,100	25	9	3,		1.1	1.2	Semicircular	Semicircular
62 Complejo	C. Ayaqueme (Dos Cerros)	2	19.2	-99.0	17507	0.44	0.05	0.05	0.05	2754	2953	2860	2818	109	133	123	585	868	727					0.18		Pleistoceno Superiro(100-11ka)	>14,100	27		2		1.5		Semielíptico	
63 Sencillo	C. Cuaimac (Dos Cerros)	1	19.2	-98.9	8693	0.22	0.01	0.01	0.01	2382	2490	2437	2402	74	88	88	356	584	470					0.19		Pleistoceno Superior (100-11ka)	>14.000	23	26	0		1.6		Flíntico	+
64 Sencillo	C.Cuilotepec	1																								Pleistoceno Superior (100-11ka)	>1,670±36								
65 Sencillo	Coatzontle Sin nombre (noli 57)	1	19.2	-99.2	17004	0.43	0.04	0.04	0.04	2830	2987	2924	2926	45	60 72	52	508	517	512	344	381	363	68	0.12	0.71	Pleistoceno Superior (100-11ka) Pleistoceno Superior (100-11ka)	>1,670±35	25	27	1		1.0	1.1	Circular	Semicircular
67 Sencillo	sin nombre (poli 57)	1	19.1	-99.1	10597	0.26	0.02	0.02	0.01	3089	3227	3175	3098	104	129	115	509	658	583	260	267	263	43	0.22	0.45	Pleistoceno Superior (100-11ka)	>1835;<1980+/-75	23	20	5		1.2	1.0	Semielíptico	Circular
68 Sencillo	Sin nombre (poli 58)	1	19.1	-99.1	999	0.02	0.02	0.02	0.02	3147	3186	3173	3154	27	31	28	119	199	159	55	127	91		0.19	0.57	Pleistoceno Superior (100-11ka)	>1835;<1980+/-77	23	12			1.7	2.3	Elíptico	Elíptico-elongado
70 Sencillo	Sin nombre (poli 83)	1	19.1	-99.0	13915	0.15	0.02	0.02	0.02	3333	3517 3245	3446	3373	64	145	74	433	454	443					0.33		Pleistoceno Superior (100-11ka) Pleistoceno Superior (100-11ka)	>6,200±85	17		++		1.0		Semicircular	-
71 Sencillo	Sin nombre (poli 84)	1	19.1	-99.0	13915	0.35	0.03	0.03	0.03	3106	3245	3195	3133	82	112	100	546	837	692	370	397	384	36	0.16	0.55	Pleistoceno Superior (100-11ka)	>6,200±85	17	15			1.5	1.1	Semielíptico	Circular
72 Complejo	Sin nombre (poli 70)	2	19.1	-99.0	9207	0.23	0.02	0.02	0.02	3082	3238	3179	3121	96	117	106	455	524	490				<u> </u>	0.24		Pleistoceno Superiro(100-11ka)	>6,200±85	18		- I		1.2		Semicircular	
73 Sencillo	Sin nombre (poli 71)	1	19.1	-99.0	5595	0.14	0.01	0.01	0.01	3054	3199	3147	3087	77	112	95	315	669	492					0.23		Pleistoceno Superior (100-11ka)	>6,200±85	19				2.1	Elíj	ptico-elongado	٥
74 Compleio	Cin nombro		19.2	-99.0	4604	0.12				2045	2017	2002	2056	40	50		262	405	774				<u> </u>	0.17		Plaintagene Superior (100,11kg)	> 5 2004.95	15		- I		1.		Comiolístico	
74 Complejo	Sin nombre	3	19.2	-99.0	4004	0.12				2343	5017	2362	2930	*0	30	32	202	400	554					0.17		Pleistoceno Superior (100-11ka)	20,200265	15		1 1		1.5		Sernieliptico	
75 Sencillo	Sin nombre (poli 75)	1	19.1	-99.0	2820	0.07				3458	3526	3497	3472	44	54	51	280	328	304	146	194	170	39	0.18	0.56	Pleistoceno Medio (1-0.1 Ma)	Sin datación	23	22			1.2	1.3	Semicircular	Semielíptico
76 Complejo	Sin nombre (poli 65)	2	19.2	-99.1	7471	0.19	0.01	0.01	0.01	3022	3139	3095	3049	61	89	75	366	569	468	194	232	213	33	0.19	0.46	Pleistoceno Surior (100-11ka)	>7,360±120; 8225±130	21	20	- /		1.6	1.2	Elíptico	Semicircular
77 Compleio	Sin nombre (noli 105)	2	19.1	-99.0	7948	0.20	0.02	0.02	0.02	2993	3193	3095	3033	74	137	107	340	700	520	180	214	197		0.26		Pleistoceno Superior (100-11ka)	Sin datación	22		<u> </u>		21	Flő	ntico-elongado	
	Testered	-	19.1	-99.0	1040	0.10	0.01	0.01	0.01	2000	2407	2200	2055	20		207	272		320	186	347	266		0.14	0.50		. 40.000							Contraction data	Constational and
79 Sencillo	C. La Panza	1	19.2	-99.2	4818	0.12	0.01	0.01	0.01	3308	3407 3597	3369	3352	89	109	37	576	732	392	219	376	315	40	0.14	0.58	Pleistoceno Superior (100-11ka) hasta Pleistoceno Superior (100-11ka)	Sin datación	23	25	25	1	1.1	1.5	Semicircular	Semicircular
80 Sencillo	Valle el tezontle	1	19.2	-99.3	1688	0.04				3453	3505	3476	3480	8	25	20	197	256	226	123	157	140	51	0.11	0.62	Pleistoceno Superior (100-11ka)	Sin datación	20	29			1.3	1.3	Semielíptico	Semielíptico
81 Sencillo	C. Zoceyuca	1	19.1	-98.9	12859	0.32	0.03	0.03	0.03	2638	2806	2742	2701	86	105	99	643	693	668	229	310	269	49	0.16	0.40	Pleistoceno Medio(1-0.1 Ma)	Sin datación	25	19	~12		1.1	1.4	Semicircular	Semielíptico
83 Sencillo	C. Del Aire	1	19.1	-98.9	12020	0.30	0.04	0.04	0.07	2330	2441	2357	2300	109	133	102	484	724	604	168	436	180	17	0.21	0.30	Pleistoceno Medio (1-0.1 Ma)	Sin datación	30	13	~8		1.5	1.1	Semielíptico	Semicircular
84 Sencillo	Huipilo	1	19.1	-98.9	33547	0.84	0.13	0.13	0.13	2513	2822	2674	2593	171	228	205	835	1058	946	253	354	304	55	0.24	0.32	Pleistoceno Medio (1-0.1 Ma)	Sin datación	32	15	16		1.3	1.4	Semielíptico	Semielíptico
85 Sencillo 86 Sencillo	C. Escobeta C. El Tesovo (noli 130)	1	19.0	-98.9	23486	0.59	0.08	0.08	0.08	2487	2764 2605	2618	2581	181	183	182	740	1018	879					0.21		Pleistoceno Medio (1-0.1 Ma) Pleistoceno Medio (1-0.1 Ma)	Sin datación Sin datación	29		~7		1.4		Semielíptico Flíptico	+
87 Sencillo	C. Chinconquiat	1	19.2	-98.8	54906	1.37	0.19	0.19	0.19	2613	2924	2751	2685	158	238	191	924	1243	1083					0.22		Pleistoceno Medio (1-0.1 Ma)	Sin datación	25		~15		1.3		Semielíptico	
88 Sencillo	Sin nombre	1	19.2	-98.8	7431	0.19	0.02	0.02	0.02	2568	2735	2653	2597	126	138	134	494	572	533					0.26		Pleistoceno Medio (1-0.1 Ma)	Sin datación	26		3		1.2		Semicircular	+
89 Compleio	Sin nombre (poli 100) Sin nombre (poli 100)	1	19.2	-98.8	11072	0.28	0.02	0.02	0.02	2594	2719	2668	2640	64	79	76	475	790	632					0.13		Pleistoceno Medio (1-0.1 Ma)	Sin datación	23		\vdash		1.7		Elíptico	
	Sin nombre (poli 100)	1	19.2	-98.8		_									-		-	-																	
90 Sencillo	C. Huiztamayo	1	19.0	-98.9	10919	0.27	0.04	0.04	0.04	2355	2589	2495	2446	134	141	137	550	658	604					0.23		Pleistoceno Medio (1-0.1 Ma)	Sin datación	28		~5		1.2		Semicircular	+
91 Sencillo 92 Sencillo	Sin nombre (poli 134)	1	19.0	-98.9	9246	0.23	0.02	0.02	0.01	2548	2686	2680	2645	42	63	55	522	673	598					0.19		Pleistoceno Medio (1-0.1 Ma) Pleistoceno Medio (1-0.1 Ma)	Sin datación	24		-4		1.2		Semicircular	+
93 Sencillo	C. Tlalamac	1	19.0	-98.8	50388	1.26	0.13	0.13	0.13	1991	2251	2093	2025	173	225	193	1021	1505	1263					0.18		Pleistoceno Medio (1-0.1 Ma)	Sin datación	23		16		1.5		Semielíptico	
94 Sencillo	Sin nombre (poli 120) Sin nombre (poli 121)	1	19.0	-99.1	9674	0.24	0.02	0.02	0.02	2918	3082	3016	2985	89	97	94	530	616	573					0.17		Pleistoceno Medio (1-0.1 Ma)	Sin datación Sin datación	23		6		1.2		Semicircular	+
96 Sencillo	C. Sacromonte	0	19.0	-98.8	16886	0.42	0.02	0.02	0.01	2454	2567	2509	2466	85	100	97	539	718	628					0.16		Pleistoceno Medio (1-0.1 Ma)	Sin datación	26	31	~5	5	1.3		Semielíptico	-
97 Sencillo	C. Zitlaltepetl	1	19.0	-98.9	26801	0.67	0.05	0.05	0.05	1835	1995	1910	1870	94	122	113	756	1213	984					0.12		Pleistoceno Medio (1-0.1 Ma)	Sin datación	22		~6		1.6	Elíj	ptico-elongado	د
98 Sencillo 99 Sencillo	El Cerro	1	19.0	-98.8	27506	0.69	0.08	0.08	0.07	2250	2453	2364	2317	90 84	137	111	927	1040	984					0.14		Pleistoceno Medio (1-0.1 Ma) Pleistoceno Medio (1-0.1 Ma)	Sin datación Sin datación	23		10		1.1		Semicircular	
100 Sencillo	Sin nombre (poli 117)	1	19.1	-99.0	15162	0.38	0.04	0.04	0.04	3099	3272	3215	3136	112	120	100	579	681	630					0.19		Pleistoceno Medio (1-0.1 Ma)	Sin datación	19		1		1.2		Semicircular	-
101 Sencillo	Tulmeac o Tulmiac	1	19.1	-99.1	34383	0.86	0.08	0.08	0.08	3153	3334	3251	3187	108	117	112	1018	1123	1070	282	364	323	36	0.11	0.30	Pleistoceno Medio (1-0.1 Ma)	Sin datación	20	12	1		1.1	1.3	Semicircular	Semielíptico
102 Sencillo 103 Sencillo	La Comalera Malacatepec	1	19.1	-99.1	42807	1.07	0.16	0.16	0.16	3085	3262	3186	3122	128	140	134	918	1056	987	313	457	327	39	0.14	0.33	Pleistoceno Medio (1-0.1 Ma) Pleistoceno Medio (1-0.1 Ma)	Sin datación	19		3		1.2	1.1	Circular	Semielíptico
104 Sencillo	Tetzalcoalt	1	19.1	-99.1	19938	0.50	0.05	0.05	0.05	3133	3313	3234	3195	108	117	112	668	904	786	166	211	189		0.15	0.24	Pleistoceno Medio (1-0.1 Ma)	Sin datación	19				1.4	1.3	Semielíptico	Semielíptico
105 Sencillo	Menzotepec	1	19.2	-99.2	22973	0.57	0.04	0.04	0.04	3337	3487	3410	3360	122	128	126	755	923	839					0.15		Pleistoceno Medio (1-0.1 Ma)	Sin datación	18		1		1.2		Semicircular	+
108 Selicilio	Sin nombre (poir 129)	1	19.2	-99.3	2/341	0.09	0.03	0.03	0.05	3372	3710	5041	3610	100	107	104	320	1005	1011					0.11		Pleistoceno Medio (1-0.1 Ma)	Sin datación	14	+	++		1.1		Semicircular	
107 Complejo	Amoloc	2	19.1	-98.9	19251	0.48	0.03	0.03	0.03	2536	2670	2607	2556	76	112	95	/36	/50	/43	221	422	321	23	0.15	0.43	Pleistoceno Medio (1-0.1 Ma)	Sin datación	24				1.0	1.9	Circular	Eliptico
108 Sencillo	Zoyazal	1	19.1	-98.9	13801	0.35	0.02	0.02	0.02	2585	2688	2644	2600	68	87	80	664	674	669					0.13		Pleistoceno Medio (1-0.1 Ma)	Sin datación Sin datación	25		+		1.0		Circular	
110 Sencillo	Tuxtepec II	1	19.1	-99.1	11209	0.28	0.02	0.02	0.01	3001	3097	3057	3030	44	67	55	574	642	608				57	0.10		Pleistoceno Medio (1-0.1 Ma)	Sin datación	22				1.1		Semicircular	
111 Sencillo	San Bartolo	1	19.1	-99.1	13726	0.34	0.02	0.02	0.02	3120	3226	3184	3156	57	71	66	582	722	652					0.11		Pleistoceno Medio (1-0.1 Ma)	Sin datación	17				1.2		Semicircular	
112 Sencillo	Pipiritillo	1	19.1	-99.1	9283	0.23	0.01	0.01	0.00	30/2	3120	3097	3081	14	39	28	480	5/6	528					0.07		Pleistoceno Medio (1-0.1 Ma)	Sin datación	13		+		1.2		Semicircular	-
113 Complejo	Chingueriteria	2	19.1	-99.1	12353	0.31	0.02	0.02	0.02	3039	3144	3098	3076	10	67	36	485	782	633					0.11		Pleistoceno Medio (1-0.1 Ma)	Sin datación	15				1.6		Eliptico	
114 Sencillo	Sin nombre (poli 81)	1	19.2	-99.3	14147	0.35	0.03	0.03	0.02	3429	3560	3501	3481	7	77	45	665	705	685					0.11		Pleistoceno Medio (1-0.1 Ma)	Sin datación	15		+		1.1		Semicircular	-
115 Sencillo	C. Tleotilco	1	19.1	-99.3	12403	0.33	0.03	0.03	0.02	1950	2040	2004	1976	33	64	46	477	721	599					0.14		Pleistoceno Medio (1-0.1 Ma)	Sin datación	19	+	++		1.5		Semielíptico	
117 Sencillo	Sin nombre (poli 77)	1	19.2	-99.3	10173	0.25	0.02	0.02	0.02	3379	3491	3452	3431	35	60	52	516	644	580	215	315	265	74	0.10	0.46	Pleistoceno Medio (1-0.1 Ma)	Sin datación	16	18			1.2	1.5	Semicircular	Semielíptico
118 Sencillo	C. La Cadena Sin nombre (noli 80)	1	19.1	-99.3	12973	0.32	0.05	0.05	0.05	3447	3650	3591	3541	98	108	104	481	793	637	223	299	261	33	0.17	0.41	Pleistoceno Medio (1-0.1 Ma) Pleistoceno Medio (1-0.1 Ma)	Sin datación Sin datación	23	22	+		1.6	1.3	Eliptico	Semieliptico
120 Sencillo	Sin nombre (poli 79)	1	19.1	-99.3	4868	0.12	0.01	0.01	0.01	3348	3467	3419	3385	71	81	78	366	379	372	164	273	218	103	0.22	0.59	Pleistoceno Medio (1-0.1 Ma)	Sin datación	21	23			1.0	1.7	Circular	Elíptico
121 Sencillo	Sin nombre (poli 52)	1	19.2	-99.2	4536	0.11	0.01	0.01	0.00	3358	3439	3403	3371	62	67	65	324	453	388	207	243	225	55	0.17	0.58	Pleistoceno Medio (1-0.1 Ma)	Sin datación	25	13	+7	— F	1.4	1.2	Semielíptico	Semicircular
122 Sencillo 123 Sencillo	Sin nombre (poli 149)	1	19.0	-98.8	7606	0.16	0.01	0.01	0.01	2302	2393	2353	2276	49	36	34	335	516	426	191	289	240		0.14	0.56	Pleistoceno Medio (1-0.1 Ma)	Sin datación	13	15			1.5	1.1	Semielíptico	Semielíptico
124 Sencillo	Sin nombre (poli 148)	1	19.0	-98.8	4469	0.11				2248	2326	2286	2271	37	54	47	322	390	356	163	219	191	77	0.15	0.54	Pleistoceno Medio (1-0.1 Ma)	Sin datación	24	28			1.2	1.3	Semicircular	Semielíptico
125 Sencillo	Sin nombre (poli 15)	1	19.1	-99.0	4680	0.12	0.02	0.02	0.02	3304	3387	3347	3320	35	67	51 97	363	383	373	140	144	142	31	0.18	0.38	Pleistoceno Medio (1-0.1 Ma)	Sin datación Sin datación	22		1		1.1	1.0	Semicircular	Circular
127 Sencillo	Sin nombre (poli 108)	1	19.1	-98.9	1416	0.20	0.02	0.02	0.02	2759	2792	2730	2771	17	21	19	126	281	203					0.10		Pleistoceno Medio (1-0.1 Ma)	Sin datación	18	15			2.2	Elíp	ptico-elongado	٥
128 Complejo	Teteconzin	2	19.1	-99.0	5703	0.14	0.01	0.01	0.01	3094	3173	3137	3114	28	59	48	350	461	406	94	123	108		0.14		Pleistoceno Medio (1-0.1 Ma)	Sin datación	21	17	1		1.3	1.3	Semielíptico	Semielíptico
129 Sencillo	C. Partido I	1	19.1	-99.0	6480	0.16	0.01	0.01	0,01	1956	2067	2014	1976	78	91	83	437	454	446	/8	103	91	+ +	0.20		Pleistoceno Medio (1-0.1 Ma)	Sin datación	25	11	1		1.0	1.3	Circular	Semieliptico
130 Sencillo	C. Partido II	1	19.0	-98.9	1921	0.05				1981	2034	2008	1995	36	38	37	238	273	256					0.15		Pleistoceno Medio (1-0.1 Ma)	Sin datación	20				1.1		Semicircular	
131 Sencillo	C. Texquixtle	1	19.0	-98.9	12437	0.31	0.02	0.02	0.01	1945	2047	1995	1963	72	84	79	496	736	616					0.14		Pleistoceno Medio (1-0.1 Ma)	Sin datación	20		+		1.5		Semielíptico	+
132 Sencillo 133 Sencillo	C. Santa Barbará C. Mirador	1	19.0	-98.9	9887	0.25	0.02	0.02	0.01	1888	2012 2174	2099	2059	ъ4 102	100	108	620	830	585				+ +	0.17		Pleistoceno Medio (1-0.1 Ma) Pleistoceno Medio (1-0.1 Ma)	Sin datación Sin datación	28	1	10		1.1		Semicircular	+
134 Compleio	C. Yeteco	2	18.9	-98.8	27236	0.68	0.05	0.05	0.05	1980	2110	2055	2019	62	90	79	589	1275	932	351	404	378	29	0.10		Pleistoceno Medio (1-0.1 Ma)	Sin datación	19				2.2	1.2 Flú	pitco-elongado	oSemicircular
135 Sencillo	C. Chalchuca	1	18.9	-98.8	19759	0.49	0.07	0.07	0.07	2783	3077	7973	2815	150	211	185	637	845	741	319	473 386	396	42 80	0.29	0.51	Pleistoceno Medio (1-0.1 Ma) Pleistoceno Medio (1-0.1 Ma)	Sin datación Sin datación	26	21	+		1.3	1.5	Semielíntico	Semielíptico Circular
136 Sencillo	Sin nombre (poli 87)	1	19.1	-99.0	21013	0.53	0.04	0.04	0.04	2954	3118	3036	2974	78	143	119	806	870	838	481	627	554	133	0.17	0.66	Pleistoceno Medio (1-0.1 Ma)	Sin datación	19	20			1.1	1.3	Semicircular	Semielíptico
137 Sencillo	Sin nombre (poli 152)	1	19.0	-98.9	20353	0.51	0.06	0.06	0.06	2357	2544	2477	2435	55	108	81	730	939	834					0.13		Pleistoceno Medio (1-0.1 Ma)	Sin datación	24	_	2		1.3		Semielíptico	
138 Sencillo 139 Sencillo	Sin nombre (poli 153) C. Tepevahualco (noli 144)	1	19.0	-99.0	15841	0.40	0.05	0.05	0.04	2270	2448	2391 1935	2372	49 147	69 168	62 161	497	711 847	604 697				+ +	0.24		Pleistoceno Medio (1-0.1 Ma) Pleistoceno Medio (1-0.1 Ma)	Sin datación Sin datación	32		3		1.4		Semielíptico Semielíptico	+
140 Sencillo	Oclayuca	1	19.0	-99.1	8332	0.21	0.02	0.02	0.02	3004	3151	3085	3046	92	105	101	478	516	497					0.21		Pleistoceno Medio (1-0.1 Ma)	Sin datación	28		3		1.1		Simicircular	
141 Sencillo	Sin nombre (poli 150)	1	19.0	-98.9	4800	0.12	0.01	0.01	0.04	2376	2437	2417	2389	34	48	41	376	403	390				+	0.12		Pleistoceno Medio (1-0.1 Ma)	Sin datación	18		\square		1.1		semicircular	+
142 Sencillo 143 Sencillo	Sin nombre (poli 118) Sin nombre (poli 66)	1 1	19.0	-99.0	5315	0.18	0.01	0.01	0.01	2981 2983	3066	3037	3011 3002	38 53	55 68	49	337	44b 560	413 449				+ +	0.13		Pleistoceno Medio (1-0.1 Ma) Pleistoceno Medio (1-0.1 Ma)	Sin datación Sin datación	14	1	+		1.2		Elíptico	+
144 Sencillo	Toxtepec	1	19.2	-99.2	2706	0.07				2876	2923	2906	2893	22	31	26	284	302	293	153	164	159		0.10	0.54	Pleistoceno Medio (1-0.1 Ma)	Sin datación	20				1.1	1.1	Semicircular	Semicircular
145 Sencillo	Sin nombre (poli 72)	1	19.1	-99.1	1157	0.03	-			3037	3074	3060	3045	23	27	26	183	205	194				+	0.14		Pleistoceno Medio (1-0.1 Ma)	Sin datación	20		+		1.1		Semicircular	+
146 Complejo	Sin nombre (poli 97)	2	19.0	-99.2	3959	0.10				2858	2918	2898	2876	34	42	39	251	414	333	163	212	187	1	0.13		Pleistoceno Medio (1-0.1 Ma)	Sin datación	16	15			1.6	1.3	Elíptico	Semielíptico
147 Sencillo	Sin mobre (poli 104)	1	19.1	-98.9	1152	0.03				2591	2610	2603	2599	3	10	8	185	199	192	113	131	122		0.05	0.64	Pleistoceno Medio (1-0.1 Ma)	Sin datación	14				1.1	1.2	Semicircular	Semicircular
148 Sencillo	Tenango del Aire	0	19.2	-98.9	2526	0.06		1		2346	2436	2390	2360	53	71	62	285	288	287				I	U.25		Pleistoceno Medio (1-0.1 Ma)	Sin datación	32	-			1.0		Circular	

Referencias

Artículos

Aranda-Gómez, J. J., Luhr, J. F., Housh, T. B., Connor, C. B., Becker, T., Henry, C. D. (2003) Synextensional Pliocene–Pleistocene eruptive activity in the Camargo volcanic field, Chihuahua, México. *Geological Society of America Bulletin*, *115*(3), 298-313.

Arce, J. L., Macías, R., Palomo, A. G., Capra, L., Macías, J. L., Layer, P., Rueda, H. (2008) Late Pleistocene flank collapse of Zempoala volcano (Central Mexico) and the role of fault reactivation. *Journal of Volcanology and Geothermal Research*, *177*(4), 944-958.

Arce, J.L., Layer, P. W., Lassiter, J.C., Benowitz, J.A, Macías, J. L., Ramíres-Espinoza, J. (2013) 40Ar/39Ar dating, geochemistry, and isotopic analyses of the quaternary Chichinautzin volcanic field, south of Mexico City: implications for timing, eruption rate, and distribution of volcanism. *Bulletin of Volcanology*, *75*(12), 1-25.

Arce, J. L., Muñoz-Salinas, E., Castillo, M., Salinas, I. (2015) The~ 2000yr BP Jumento volcano, one of the youngest edifices of the Chichinautzin Volcanic Field, Central Mexico. *Journal of Volcanology and Geothermal Research*, 308, 30-38.

Agustín-Flores, J., Siebe, C., Guilbaud, M-N., (2011) Geology and geochemistry of Pelagatos, Cerro del Agua, and Dos Cerros monogenetic volcanoes in the Sierra Chichinautzin volcanic field, south of México City. *Journal of Volcanology and Geothermal Research*, 201(1), 143-162.

Bloomfield, K. (1975) A late-Quaternary monogenetic volcano field in central Mexico. *Geologische Rundschau,* 64(1), 476-497.

Bollschweiler, M., Stoffel, M., Vázquez-Selem, L., Palacios, D. (2010) Tree-ring reconstruction of past lahar activity at Popocatépetl volcano, Mexico. *The Holocene*, *20*(2), 265-274.

Castillo, M., Muñoz-Salinas, E., & Arce, J. L. (2015). Evaluación del sistema erosivo fluvial en el volcán Popocatépetl (México) mediante análisis morfométricos. *Boletín de la Sociedad Geológica Mexicana, 67*(2), 167-183.

Connor, C. B., Stamatakos, J. A., Ferrill, D. A., Hill, B. E., Ofoegbu, G. I., Conway, F. M., Trapp, J. (2000) Geologic factors controlling patterns of small-volume basaltic volcanism: Application to a volcanic hazards assessment at Yucca Mountain, Nevada. *Journal of Geophysical Research: Solid Earth*, *105*(B1), 417-432.

Dóniz-Páez, J. (2015). Volcanic geomorphological classification of the cinder cones of Tenerife (Canary Islands, Spain). *Geomorphology, 228*, 432-447.

Favalli, M., Karátson, D., Mazzarini, F., Pareschi, M. T., Boschi, E. (2009) Morphometry of scoria cones located on a volcano flank: a case study from Mt. Etna (Italy), based on high-resolution LiDAR data. *Journal of Volcanology and Geothermal Research*, *186*(3), 320-330.

Ferrari, L., Orozco-Esquivel, T., Manea, V., Manea, M. (2012) The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. *Tectonophysics*, *522*, 122-149.

Grosse, P., van Wyk de Vries, B., Petrinovic, I.A., Euillades, P.A., Alvarado, G., 2009. Morphometry and evolution of arc volcanoes. *Geology*, *37*(7), 651-654.

Guilbaud, M-N., Siebe, C., Agustín-Flores, J., (2009a) Eruptive style of the young high basaltic-andesite Pelagatos scoria cone, Southeast of México City. *Bulletin of Volcanology*, *71*(8), 859-880.

Guilbaud, M. N., Siebe, C., & Salinas, S. (2009b). Excursions to Paricutin and Jorullo (Michoacán), the youngest volcanoes of the Trans-Mexican Volcanic Belt. *Impretei, México DF, 31*.

Guilbaud, M. N., Siebe, C., Layer, P., Salinas, S., Castro-Govea, R., Garduño-Monroy, V. H., & Le Corvec, N. (2010). Geology, geochronology, and tectonic setting of the Jorullo Volcano region, Michoacán, México. *Journal of Volcanology and Geothermal Research*, 201(1), 97-112.

Guilbaud, M. N., Siebe, C., Layer, P., Salinas, S. (2012) Reconstruction of the volcanic history of the Tacámbaro-Puruarán area (Michoacán, México) reveals high frequency of Holocene monogenetic eruptions. *Bulletin of volcanology* 74(5), 1187-1211.

Guilbaud, M. N., Arana-Salinas, L., Siebe, C., Barba-Pingarrón, L. A., Ortiz, A. (2015). Volcanic stratigraphy of a high-altitude Mammuthus columbi (Tlacotenco, Sierra Chichinautzin), Central México. *Bulletin of Volcanology*, 77(3), 1-16.

Hasenaka, T., Carmichael, I.S.E. (1985a) The cinder cones of Michoacán-Guanajuato, central Mexico: their age, volume and distribution, and magma discharge rate. *Journal of Volcanology and Geothermal Research*, *25*(1), 105-124-

Hasenaka, T., Carmichael, I.S.E. (1985b) A compilation of location, size, and geomorphological parameters of volcanoes of the Michoacán-Guanajuato volcanic field, central Mexico. *Geofísica Internacional*, 24(4).

Haug, G. H., & Strecker, M. R. (1995). Volcano-tectonic evolution of the Chyulu Hills and implications for the regional stress field in Kenya. *Geology*, *23*(2), 165-168.

Hooper, D. M., Sheridan, M. F., (1998) Computer-simulation model of scoria cone degradation. Journal of Volcanology and Geothermal Research, 83(3), 241-267.

Inbar, M., Hubp, J. L., Ruiz, L. V. (1994) The geomorphological evolution of the Paricutin cone and lava flows, Mexico, 1943–1990. *Geomorphology*, *9*(1), 57-76.

Keating, G. N., Valentine, G. A., Krier, D. J., Perry, F. V. (2008) Shallow plumbing systems for small-volume basaltic volcanoes. *Bulletin of Volcanology*, *70*(5), 563-582.

Kervyn, M., Ernst, G. G. J., Carracedo, J. C., Jacobs, P. (2012). Geomorphometric variability of "monogenetic" volcanic cones: evidence from Mauna Kea, Lanzarote and experimental cones. *Geomorphology*, *136*(1), 59-75.

Krauskopf, K. B. (1948) Mechanism of eruption at Paricutin volcano, Mexico. *Geological Society of America Bulletin*, *59*(8), 711-732.

Lockwood, J. P., y Hazlett, R. W. (2010) Volcanoes: global perspectives. Ed. John Wiley y Sons. 541 pp.

Lugo-Hubp, J., Mooser, F., Pérez-Vega, A., Zamorano-Orozco, J. (1994).Geomorfología de la Sierra Santa Catarina, D.F., México. *Revista Mexicana de Ciencias Geológicas*, *11*(1), 13-52.

McGuire, L. A., Pelletier, J. D., & Roering, J. J. (2014) Development of topographic asymmetry: Insights from dated cinder cones in the western United States. *Journal of Geophysical Research: Earth Surface, 119*(8), 1725-1750.

Marquez, A., Verma, S., Anguita, F.,Oyarzun, R., Brande, J. (1999) Tectonics and volcanism of Sierra Chichinautzin: extension at the front of the central Transmexican volcanic belt. *Journal of Volcanology and Geothermal Research*, *93*, 125–150.

Martin Del Pozzo, A. L. (1982) Monogenetic volcanism in sierra Chichinautzin, Mexico. Bulletin Volcanology, 45(1), 9-24.

Nakamura, K. (1977). Volcanoes as possible indicators of tectonic stress orientation—principle and proposal. *Journal of Volcanology and Geothermal Research*, 2(1), 1-16.

Parrot, J. F. (2007) Study of Volcanic Cinder Cone Evolution by Means of High Resolution DEMs. In MODSIM 2007 International Congress on Modelling and Simulation; 2007: Modelling and Simulation Society of Australia and New Zealand.

Pioli, L., Azzopardi, B. J., Cashman, K. V. (2009) Controls on the explosivity of scoria cone eruptions: Magma segregation at conduit junctions. *Journal of Volcanology and Geothermal Research*, *186*(3), 407-415.

Porter, S.C. (1972) Distribution, morphology, and size frequency of cinder cones on Mauna Kea volcano, Hawaii. *Geological Society of America Bulletin, 83*(12), 3607-3612

Rech, J. A., Reeves, R. W., & Hendricks, D. M. (2001) The influence of slope aspect on soil weathering processes in the Springerville volcanic field, Arizona. *Catena*, *43*(1), 49-62.

Riedel, C., Ernst, G. G. J., Riley, M. (2003) Controls on the growth and geometry of pyroclastic constructs. *Journal of Volcanology and Geothermal Research*, 127(1), 121-152.

Scott, D.H., Trask, N.J. (1971) Geology of the Lunar Crater Volcanic Field, Nye County: NV.U.S. Geol. Surv., Prof. Paper, vol. 599-I. 22 pp.

Settle, M. A. R. K. (1979). The structure and emplacement of cinder cone fields. *American Journal of Science*, 279(10), 1089-1107.

Siebe, C., (2000) Age and archaeological implications of Xitle volcano, southwestern Basin of Mexico-City. *Journal of Volcanology and Geothermal Research*, *104*(1), 45-64.

Siebe, C., Rodríguez-Lara V., Schaaf P., Abrams M. (2004a) Geochemistry, Sr-Nd isotope composition, and tectonic setting of Holocene Pelado, Guespalapa, and Chichinautzin scoria cones, south of Mexico City. *Journal of Volcanology and Geothermal Research*, *130*(3), 197-226.

Siebe, C., Rodríguez-Lara, V., Schaaf, P., Abrams, M. (2004b) Radiocarbon ages of Holocene Pelado, Guespalapa, and Chichinautzin scoria cones, south of Mexico City: implications for archaeology and future hazards. *Bulletin of Volcanology, 66*(3), 203-225.

Siebe, C., Arana-Salinas, L., Abrams, M. (2005) Geology and radiocarbon ages of Tlaloc, Tlacotenco, Cuauhtzin, Hijo del Cuauhtzin, Teuhtli, and Ocusacayo monogenetic volcanoes in the central part of the Sierra Chichinautzin, Mexico. *Journal of Volcanology and Geothermal Research*, 141(3), 225-243.

Siebe, C., Macías, J. L. (2006) Volcanic hazards in the Mexico City metropolitan area from eruptions at Popocatépetl, Nevado de Toluca, and Jocotitlán stratovolcanoes and monogenetic scoria cones in the Sierra Chichinautzin Volcanic Field. *Special Papers-Geological Society of America*, 402, 253-329.

Sieron, K., Capra, L., & Rodríguez-Elizararrás, S. (2014) Hazard assessment at San Martín volcano based on geological record, numerical modeling, and spatial analysis. *Natural hazards, 70*(1), 275-297.

Tibaldi, A. (1995) Morphology of pyroclastic cones and tectonics. *Journal of Geophysical Research, 100*(B12), 24521-24.

Wood, C.A. (1980a) Morphometric evolution of cinder cones. *Journal of Volcanology and Geothermal Research* 7(3), 387-413.

Wood, C. A. (1980b) Morphometric analysis of cinder cone degradation. *Journal of Volcanology and Geothermal Research*, *8*(2-4), 137-160.

Libros o capítulos de libros

Cas, R. A. F., Wright, J. V. (1987) Volcanic Successions, Modern and Ancient: A Geological Approach to Processes, Products and Successions, 528 pp.

Connor, C.B., Conway, F.M. (2000) Basaltic volcanic fields. In: Sigurdsson, H. (Ed.) Encyclopedia of Volcanoes. Academic Press, San Diego, 331-343 pp

Davidson, J., De Silva, S. (2000). Composite volcanoes. In: Sugurdssonn, H. (Ed). Encyclopedia of volcanoes. *Academic Press, San Diego, 663*-681 pp.

Francis, P., Oppenheimer, C., (2004) Volcanoes. Oxford University Press. London. 521pp.

Kereszturi, G., Németh, K., (2012) Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology, and degradation. In: Németh, K., Updates in volcanology-new advances in understanding volcanic systems. InTech Open. Croatia. 3-89.

Li, Z., Zhu, C., & Gold, C. (2004). Digital terrain modeling: principles and methodology. CRC press.

Lockwood, J. P., y Hazlett, R. W. (2010) Volcanoes: global perspectives. Ed. John Wiley y Sons. 541 pp.

Lugo-Hubp, J. (1984) Geomorfología del Sur de la Cuenca de México: Instituto de Geografía, Universidad Nacional Autónoma de México, Serie Varia, v. 1, No. 8, 95 pp.

Luhr, J. F., Simkin, T., Cuasay, M. (1993). Parícutin: the volcano born in a Mexican cornfield. US Geoscience Press.

McDonald, G.A., 1972. Volcanoes. Prentice-Hall, Englewood Cliffs. 1–510

Ordoñez, E. (1947) El volcán Paricutin. Fantasía, Mexico, 181pp.

Schmincke, H.U., 2004. Volcanism. Springer. Germany. 323.

Strahler, A., (1996) Introducing Physical Geography. John Wiley & Sons, Bosto University,632 pp.

Vespermann, D., Schmincke, H.U., 2000. Scoria cones and tuff rings. In: Sigurdsson, H., Encyclopedia of volcanoes. Academic Press. San Diego. 683-694.

Tesis

Figuera-García, J. E. (2016) Cartografía geomorfológica del volcán de Colima, México. Tesis de licenciatura. Tesis de licenciatura. Facultad de Filosofía y Letras, UNAM. 129 pp.

Lorenzo-Merino, A. (2016) Historia Eruptiva del Volcán Pelado (Sierra Chichinautzin, México). Tesis de maestría. Instituto de Geofísica, UNAM. 96 pp.

Mendoza-Margáin, C.E. (2010) Cartografía geomorfológica del Complejo Volcánico de Tacaná, México-Guatemala. Tesis de licenciatura. Facultad de Filosofía y Letras, UNAM. 123 pp.

Zarazúa-Carbajal, M.C. (2015) Estimación de edades de conos monogenéticos a partir de sus características morfométricas. Aplicación al Campo Volcánico Sierra Chichinautzin. Tesis de maestría. Instituto de Geofísica, UNAM. 85 pp.

Páginas Web consultadas

Global Volcanism Program, Smithsonian Institution, National Museum of Natural History, consultado en el año 2015 en www.volcano.si.edu

Instituto Nacional de Estadística y Geografía (INEGI), consultado en el año 2015 en www.inegi.org.com

CENAPRED, (2014) Volcanes, consultado en el año 2015 en www.cenapred.org.com