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Gracias a todos los profesores que me han formado, en especial: al Dr. Claudio Pita, por
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Abstract

The electromagnetic interaction between fast electrons and small metallic nanoparticles can be

both attractive or repulsive, depending on the electron’s velocity and the impact parameter

between the two particles. This assertion has been recently demonstrated both theoretically

[23] and experimentally [5]. A way to study this interaction is by means of the total linear

momentum transferred from the swift electron to the nanoparticle. In this work, we present

the developments achieved regarding the total linear momentum transferred within the dipole

approximation. This approximation stands for the contribution of the first multipole of the

scattered field to the linear momentum transfer mechanism—in the interaction between the

electron and the metallic nanoparticle.

The dissertation aims two main goals: the first is to study an analytical approach to the

spectral contribution of the momentum transfer, that is, to point out a path for calculating a

closed expression of the surface integral of the Maxwell stress tensor—involved in the momentum

transfer calculations—, composed by both the electromagnetic field produced by the electron

and the electromagnetic field scattered by the nanoparticle. The second goal is to study the

contribution of the first multipole (` = 1) of the scattered field to the total linear momentum

transferred. For this second part, numerical calculations were performed in order to compare

the dipole approximation and previous results (for ` = 15 multipoles) for aluminium [25], [10]

and for gold [23] nanoparticles.
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Resumen

La interacción electromagnética entre electrones rápidos y pequeñas nanopart́ıculas metálicas

puede ser atractiva o repulsiva, dependiendo de la rapidez con la que viajan los electrones y del

parámetro de impacto presente entre ambas part́ıculas. Esta afirmación ha sido corroborada

tanto teórica [23] como experimentalmente [5] para nanopart́ıculas metálicas, y una forma de

analizar dicha interacción es mediante la transferencia de momento lineal total cedido por el

electrón rápido a la nanopart́ıcula. En este trabajo se presentan los desarrollos teóricos que

muestran la contribución por parte del primer multipolo del campo esparcido por la NP, a la

transferencia de momento lineal. A ésta la denominamos como aproximación dipolar.

La tesis tiene dos objetivos principales: el primero de ellos consiste en estudiar un en-

foque anaĺıtico a la contribución espectral del momento transferido, esto es, indicar un camino

para calcular una expresión anaĺıtica de la integral de superficie del tensor de esfuerzos de

Maxwell—presente en los cálculos de momento lineal transferido—, compuesto tanto por el

campo electromagnético producido por el electrón como por el campo electromagnético espar-

cido por la nanopart́ıcula. El segundo objetivo consiste en estudiar la contribución del primer

multipolo (` = 1) del campo esparcido al mecanismo de la transferencia de momento lineal. Para

esta segunda parte se realizaron cálculos numéricos con los cuales se comparó la aproximación

dipolar con resultados previamente calculados (para ` = 15 multipolos) para nanopart́ıculas de

aluminio [25], [10] y oro [23].
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CHAPTER

ONE

INTRODUCTION

During the past few years an interest has been directed towards understanding optical phe-

nomena related to the electromagnetic response of nanometer-sized metals, where collective

charge densities—called plasmons—naturally emerges from the description of such response.

Plasmonics, is a rather new physics research field which promises to understand the coupling

between light and subwavelenght objects. In fact, plasmonics glamour and its accelerated growth

rely in the nanoscale bridge brought as for example: in ultra-sensitive molecular detectors [1]; in

novel biomedical applications such as bio-imaging [2] and cancer detection [3]; and in the same

level of importance, the quality to enhance local electric fields which is useful in experimental

methods like Surface-Enhanced Raman Spectroscopy (SERS) [4]. Indeed, plasmonics points out

a path to find out the excitations a “small” object can sustain.

This thesis is devoted to study the interaction between swift electrons and small metallic

nanoparticles (NPs). Particularly, we are interested in the total linear momentum transferred

from a fast electron to a NP as a mechanism to quantify the “push” or the “pull” felt by the

NP due to the presence of the electron. The motivation to address this problem arouse in 2008,

where experimental results regarding Scanning and Transmission Electron Microscopy (STEM)

of gold NPs reported movement in clusters of Au atoms when pumped by electron beams. This

sub-Ångstrom microscopy was achieved using a modified VG Microscope HB501 STEM with an

energy pumping beam of 120 keV (almost 60% the speed of light), while Au atoms were put onto

a thin amorphous carbon substrate [5]. Figure 1.1 resembles the movements observed during

the experiments. In Fig. 1.1(a) a sequence of images is shown where groups of 20-30 Au atoms

that, happen to be close to a large Au island, coalesce. This pair of islands remained separated

for almost 50 s under the beam, and then, during about 0.6 s, the smaller island moved toward

the larger island, and merged with it. In Fig. 1.1(b) the coalescence between two 4-nm-diameter

islands occur when a ×4 magnification in the illumination is performed.

Further experiments and theoretical calculations1 were also reported in 2010 [7] related to the

observation of electromagnetic forces in groups of nanoscale metallic particles, derived from the

plasmonic response to the passage of a swift electron beam. In this experiments, the coalescence

phenomena between Au NPs is suggested to be a function of electron’s velocity and it’s impact

parameter (distance between the electron’s trajectory and the studied sample).

1The first theoretical calculation regarding the interaction between fast electrons and metallic nanoparticles
was reported in 1999 by Prof. Javier Garćıa de Abajo [6].
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2 Chapter 1. Introduction

Figure 1.1. Two different experiments of Au NPs being pumped with an STEM electrons, showing the
induced coalescence effects. (a) Shows a heterodimer composed of one ∼ 1 nm diameter NP and a second
NP of ∼ 5 nm in diameter. (b) Shows a homodimer compose by similar Au NPs of 2 nm in diameter each.
The images were taken from [5].

Figure 1.2 exhibits the attractive and repulsive motion of a 1.5 nm in diameter Au NP on

amorphous carbon while being observed using two effective impact parameter in the pumped

electron beam, ∼ 4.5 nm and ∼ 1 nm . These images were obtained from [7], and were achieved

using the same microscopy technique (STEM) as the one discussed previously for the movement

of Au clusters reported in [5]. Figure 1.2(a) displays a sequence of images where a 1.5 nm Au

NP is attracted to the electron beam with an effective impact parameter of ∼ 4.5 nm. The

movement of the 1.5 nm Au NP is measured using a larger ∼ 5 nm radius NP as reference. The

conditions of the experiment were such that the scanning probe-pair geometry was chosen to

minimize forces between the electron probe and the ∼ 5 nm particle. On the other hand, Fig.

1.2(b) displays a sequence of images where now the 1.5 nm Au NP is repelled from the electron

beam when a zoom in the resolution of the image is performed. This zoom leads to a lower

effective impact parameter of ∼ 1 nm, compared to ∼ 4.5 nm used in Fig. 1.2(a).

Figure 1.2. Time sequence of the position of a 1.5 nm in diameter Au NP while interacting with an
electron beam, using the vertical (white) dashed line as a reference. Figure (a) shows attraction to the
electron beam for an effective impact parameter of ∼ 4.5 nm, and Figure (b) shows repulsion to the
electron beam for an effective impact parameter of ∼ 1 nm. The images were taken from [7].



Chapter 1. Introduction 3

The theoretical model [Fig. 1.3(b)] used to describe the interaction between the electron

beam and the nanoparticle cluster on one hand starts from considering the metallic island

samples as a metallic non magnetic homogeneous sphere centered at origin, embedded in vacuum,

with radius a and frequency dependent bulk dielectric function εi. On the other hand, the

electron beam produced in STEM experiments is simulated as one electron, with charge e,

traveling along the ẑ direction with constant velocity v and impact parameter x0. This model

is in agreement with experimental results since the beam current in the STEM varied from

50-150 pA [8], which results in a mean pumped time for each electron of 1 ns, while the lifetime

of bulk plasmons, for example in Au, are almost 1 fs as reported in [9]. Thus, when one pumped

electron interacts with the sample, the plasmons and all other excitations vanishes when another

electrons is approaching.

The scanning process within the microscopy technique is depicted in Fig. 1.3(a), where it is

shown how the STEM form images by scanning the sample area (white lines) with a x−y raster

using, for example, scattered electron signals. The scanned area, encloses small target particles

located within a larger neighborhood which may include other, non-moving large particles. At

the beginning of each line in the scanned area, the electron beam is stopped for about 20% of the

line time (waiting for a synchronization signal), producing an aloof beam current density with

respect to the Au particle, schematically illustrated by the pencil-shaped probe in Fig. 1.3(a).

Thus, the particles are influenced by the electron beam during x − y scanning, but they also

experience electric fields from a stopped beam, positioned at the beginning of each line, to the

left of the scanned area. Therefore an effective impact parameter can be considered between the

waiting line and the sample2.

Figure 1.3. (a) represents a schematic diagram of the electron beam (cyan cone) pumped by the STEM
over the scanned area (imaging a Au NP). (b) depicts a schematic diagram of the theoretical model for a
metallic nanoparticle (grey sphere) with dielectric function εi(ω), embedded in vacuum, interacting with
an electron (yellow spot) traveling in the ẑ direction with velocity v and impact parameter x0.

2The largest contribution to the movement of the Au NPs is due to the electron beam standing by 20% of
the time line, given that when the electron beam passes through the scanned area, the friction between the NP
and the substrate prevents the sample to move.



4 Chapter 1. Introduction

Structure of the thesis

The thesis is divided into three main Chapters. Chapter 2 aims at providing the theoretical

basis for calculating the linear momentum transfer as a function of frequency by means of the

linear momentum conservation law in classical electrodynamics. The linear momentum transfer

involves a spatial-surface and a frequency integral of Maxwell stress tensor composed by both,

the electromagnetic field generated by the moving electron and the scattered field spread by the

nanoparticle due to the presence of the electron, for this reason both fields are constructed in

the frequency domain in the first two sections.

In Chapter 3 the theoretical part is then used to obtain a closed expression for the induced

electric and magnetic fields, taking only into account the first multipole (` = 1) in the scattered

field, named in this thesis as the dipole approximation. With this expression, an analytical

approach to the Maxwell stress tensor surface integral is presented and pointed out that the

total linear momentum transferred, from the electron to the nanoparticle, is determined only by

two spectral contributions: the spectral contribution given solely by the electromagnetic field

scattered by the nanoparticle and the spectral contribution given by the coupling between the

electromagnetic field produced by the electron and the induced one.

Chapter 4 represents the essential outcome of the contribution of this dissertation. In this,

numerical results concerning the total momentum transfer within the dipole approximation are

discussed and furthermore, numerical comparisons between the latter and an approximation

presented in [10], where the nanoparticle is modeled as a pure point-like dipole, are analyzed.

After the conclusions and outlooks, the last part of the thesis is dedicated to supplementary

material, such as Appendices and cross-reference index. In Appendix A further calculations

related to the extended Mie solution are presented in order to elucidate some key steps in the

construction of the scattered electromagnetic field. Appendix B is devoted to prove, in a general

covariant way, that the flux of the external (the one the electron produces) Maxwell stress

tensor over a surface not intersecting the trajectory of the electron and integrated along the

whole trajectory of the latter is equal to zero. Finally, in Appendix C, details of the Python

program code are discussed and, in fact, the numerical code for the dipole approximation is

exhibited.

A list of symbols is given at the beginning of this document to state the convention used

along the research work.



CHAPTER

TWO

THEORETICAL FRAMEWORK: SWIFT ELECTRON INTERACTING

WITH A SPHERICAL NANOPARTICLE

The problem studied in this thesis corresponds to the theoretical analysis and numerical

calculations of the total linear momentum transfer from a fast electron, like those typically

used in STEM [5], to a single nanoparticle. In the theoretical approach to the problem, in the

framework of classical electrodynamics, the following assumptions were taken: the nanoparticle

was considered as a non magnetic homogeneous spherical particle centered at the origin, char-

acterized by a bulk dielectric function, while the electron was assumed to travel, in an aloof

trajectory, with constant velocity in a straight line. The electromagnetic field produced by the

electron is obtained in the nanoparticle’s frame of reference, for both time and frequency domain.

And using an extended Mie solution, the scattered electromagnetic field spread by the spherical

nanoparticle is obtained, in the frequency domain, through the scalar function method [6].

2.1 Electromagnetic field produced by the electron

In the problem addressed (a fast electron interacting with a spherical nanoparticle as shown

in Fig. 1.3(b)) the electron transfers linear momentum to the NP via the electromagnetic field

produced by the charged particle. At the same time, the electron induces charges and currents

within the NP and as the result of this induction a second electromagnetic field appears along

the region of interest: the space surrounding the NP. For these reasons, the electromagnetic field

produced by the electron is taken as the external field source, while the electromagnetic field

produced by the induced charges and currents is considered as the scattered—or induced—one

by the NP, due to the presence of the electron.

The theoretical model considered is a spherical metallic nanoparticle with radius a, which is

centered at origin and a particle traveling in straight-line along the êz direction with charge e,

constant velocity v = vêz and impact parameter x0 with respect to the origin, Fig. 2.1. Thus,

the electromagnetic field produced by the electron is equivalent to the field that a charge particle

produces in it’s own frame of reference and then “looked” in the NP’s frame of reference.

Electromagnetic field in the time domain of the nanoparticle

Let us denote the NP’s frame of reference by S and the electron’s frame of reference by S′,

as it is shown in Fig. 2.1. According to the principle of relativity, the electromagnetic quantities

5



6 Chapter 2. Theoretical Framework: Swift Electron Interacting with a Spherical Nanoparticle

Figure 2.1. Schematic diagram of the two frames of references involved in the interaction electron-
nanoparticle. S′ stands for the frame of reference of the electron with constant velocity v and impact
parameter x0, while S stands for the frame of reference of the nanoparticle. Any space point P can
be described in both frames of references: by r if it is looked from S or by r′ if it is looked from S′.

(scalars, vectors and tensors) between both frames of reference S and S′ are related via Lorentz

transformations, given that the electron is traveling with constant velocity v = vêz with respect

to an observer in S. Then, the electric E(r; t) and magnetic B(r; t) fields in S as components of

the electromagnetic field-strength1 tensor Fµν are related to the electric E′(r′; t′) and magnetic

B′(r′; t′) fields in S′ by [11]

Fµν = Λµα′Λ
ν
β′F

α′β′ , (2.1)

where Λµν′ is the Lorentz transformation matrix between the reference frames S and S′, given

by [12]

Λµν′ =
∂xµ

∂xν′
=


γ 0 0 γβ

0 1 0 0

0 0 1 0

γβ 0 0 γ

 , (2.2)

with xµ = (x0, x1, x2, x3) = (ct, x, y, z) and xν
′

= (x0
′
, x1

′
, x2

′
, x3

′
) = (ct′, x′, y′, z′) the position

4-vectors in S and S′, respectively; c is the speed of light; γ = 1/
√

1− β2 is the Lorentz factor

and β = v/c with v the electron’s velocity, therefore β = v/c. Moreover, Faraday’s matrix

tensor referred to S′ is given explicitly by [12]

Fµ
′ν′ =


0 −Ex′ −Ey′ −Ez′
Ex′ 0 −Bz′ By′

Ey′ Bz′ 0 −Bx′
Ez′ −By′ Bx′ 0

 . (2.3)

Thus, substituting Eqs. (2.2) and (2.3) into Eq. (2.1), it is straightforward to obtain the

electromagnetic field-strength tensor in S system, if the electromagnetic field-strength tensor

1Also known as Faraday’s tensor.
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is known in S′ system. When the matrix product Λµα′Λ
ν
β′F

α′β′ is computed, the electric and

magnetic components in S and S′ can be identified with the following relations

E⊥ = γ
(
E′⊥ − β ×B′

)
,

E‖ = E′‖ ,

B⊥ = γ
(
B′⊥ + β ×E′

)
,

B‖ = B′‖ ,

(2.4a)

(2.4b)

(2.4c)

(2.4d)

where the subindex “‖” stands for the component of the electric or magnetic fields parallel

(longitudinal) to the electron’s velocity, while the subindex “⊥” stands for the component of the

electric or magnetic fields perpendicular (transverse) to the electron’s velocity2. With this tool in

hand is immediate to obtain the electromagnetic fields produced by the electron, traveling with

constant velocity v = vêz, in the frame of reference of the NP. Since, in S′ the electromagnetic

field produced by the electron will be the same as the one produced by a static charged particle.

Thus, in the field point P with coordinates r′ = x′êx′ + y′êy′ + z′êz′ , observed from S′, the

electromagnetic field produced by the electron, in CGS units, is

E′(r′; t′) = − e

|r′|2
êr′ = − e

[(x′)2 + (y′)2 + (z′)2]3/2
[x′êx′ + y′êy′ + z′êz′ ] (2.5a)

and

B′(r′; t′) = 0, (2.5b)

and according to Eqs. (2.4) the electromagnetic field produced by the electron in P but now

observed from S is given by

E⊥ = γE′⊥ = γ
(
Ex′ + Ey′

)
, (2.6a)

E‖ = Ez′ , (2.6b)

B⊥ = γ β ×E′ , (2.6c)

B‖ = 0 , (2.6d)

with Ei′ = Ei′ êi′ and i′ = {x′, y′, z′}. However, Eqs. (2.6) are not the complete description of

the electromagnetic field in P “looked” from S since Ei′ is written in terms of the time t′ and

the position vector r′ associated with an observer in S′. Denoting the time and position vector

of P measured in S by t and r = x êx + y êy + z êz, respectively, the two spacetime events (t, P )

and (t′, P ) are related via the Lorentz transformation

xµ
′

= Λµ
′
ν x

ν , (2.7)

which in components reads

x′ = x− x0 , (2.8a)

y′ = y , (2.8b)

z′ = γ(z − vt) , (2.8c)

2It must be noted that E = E‖ + E⊥ and B = B‖ + B⊥.
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ct′ = γ(ct− βz). (2.8d)

Hence, substituting Eqs. (2.8) into Eqs. (2.5), in terms of t and r, the electromagnetic field the

electron produces in P viewed in its own frame of reference is

E′(r; t) = − e

[(x− x0)2 + (y)2 + γ2(z − vt)2]3/2
[(x− x0)êx + y êy + γ(z − vt)êz] (2.9a)

and

B′(r; t) = 0, (2.9b)

where êi′ = êi as it is shown in Fig. 2.1. Finally, substituting Eqs. (2.9) into Eqs. (2.6) the

electromagnetic field produced by the electron at P , observed from S, results in

Eext(r; t) = − eγ

|(x, y, γ z)− (x0, 0, γ vt)|3
[r− (x0, 0, vt)] ,

Bext(r; t) = − eγ

|(x, y, γ z)− γ (x0, 0, vt)|3
β × [(x, y, γ z)− (x0, 0, vt)] .

(2.10a)

(2.10b)

Defining R2 = (x− x0)2 + y2, Eqs. (2.10) can be written in cartesian components as

Eext
x (r; t) = − eγ

[R2 + γ2(z − vt)2]3/2
(x− x0),

Eext
y (r; t) = − eγ

[R2 + γ2(z − vt)2]3/2
y,

Eext
z (r; t) = − eγ

[R2 + γ2(z − vt)2]3/2
(z − vt),

(2.11a)

(2.11b)

(2.11c)

for the electric field, and for the magnetic field

Bext
x (r; t) =

eγβ

[R2 + γ2(z − vt)2]3/2
y,

Bext
y (r; t) = − eγβ

[R2 + γ2(z − vt)2]3/2
(x− x0),

Bext
z (r; t) = 0.

(2.12a)

(2.12b)

(2.12c)

Electromagnetic field in the frequency domain: Fourier Transform

The total electromagnetic field in any region of the space corresponds to the superposition

of the electromagnetic field produced by the fast electron (Eext,Hext) plus the electromagnetic

field scattered by the nanoparticle (Escat,Hscat) and, given that the scattered electromagnetic

field will be obtained in Section 2.2 as function of frequency, it is essential to figure out the

electromagnetic field produced by the electron in ω’s space. The usual method to achieve the

latter is through a time Fourier Transform3 of each field, electric and magnetic.

3The time Fourier Transform will be performed in the nanoparticle’s frame of reference. As must be noted,
the time Fourier Transform of a function is not a covariant operation. A way to define it as Lorentz invariant is
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The time Fourier Transform of a “well-behaved”4 function f(t) : R→ R is defined by [13]

f(ω) =

∫ ∞
−∞

f(t) eiωt dt, (2.13)

and its inverse is given by

f(t) =
1

2π

∫ ∞
−∞

f(ω) e−iωt dω. (2.14)

Thus, the cartesian components of the time Fourier Transform for the electric field produced

by the electron [Eqs. (2.11)], according to Eq. (2.13), are given by

Eext
x (r;ω) = −eγ(x− x0)

∫ ∞
−∞

eiωt

[R2 + γ2(z − vt)2]3/2
dt, (2.15a)

Eext
y (r;ω) = −eγy

∫ ∞
−∞

eiωt

[R2 + γ2(z − vt)2]3/2
dt, (2.15b)

Eext
z (r;ω) = −eγ

∫ ∞
−∞

eiωt

[R2 + γ2(z − vt)2]3/2
(z − vt) dt, (2.15c)

and for the magnetic field [Eqs. (2.12)] are given by

Bext
x (r;ω) = eγβy

∫ ∞
−∞

eiωt

[R2 + γ2(z − vt)2]3/2
dt, (2.16a)

Bext
y (r;ω) = −eγβ(x− x0)

∫ ∞
−∞

eiωt

[R2 + γ2(z − vt)2]3/2
dt, (2.16b)

Bext
z (r;ω) = 0. (2.16c)

Now, using the change of variable η = γ(z − vt)/R, Eqs. (2.15) and (2.16) can be rewritten as

follows

Eext
x (r;ω) = − e

R2 v
(x− x0) eiωz/vF1

(
ωR

vγ

)
, (2.17a)

Eext
y (r;ω) = − e

R2 v
y eiωz/vF1

(
ωR

vγ

)
, (2.17b)

Eext
z (r;ω) = − e

R vγ
eiωz/vF2

(
ωR

vγ

)
, (2.17c)

and

Bext
x (r;ω) =

e β

R2 v
y eiωz/vF1

(
ωR

vγ

)
, (2.18a)

presented in [14], where the Fourier Transform takes also into account the spatial coordinates as

f(k) =

∫
R1,3

f(x)eikµx
µ

d4x,

where R1,3 is the Minkowski spacetime, kµ = (ω/c,k) is the wave 4-vector and d4x is the Lorentz invariant
4-volume element.

4A well-behaved function [15] is the one that is differentiable everywhere any number of times and such that
it and all its derivatives are O(|x|−N ) as |x| → ∞ for all N ∈ N.
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Bext
y (r;ω) = − e β

R2 v
(x− x0) eiωz/vF1

(
ωR

vγ

)
, (2.18b)

Bext
z (r;ω) = 0, (2.18c)

where

F1

(
ωR

vγ

)
=

∫ ∞
−∞

e−i(ωR/vγ)η f1(η) dη and F2

(
ωR

vγ

)
=

∫ ∞
−∞

e−i(ωR/vγ)η f2(η) η dη, (2.19)

can be thought as the inverse Fourier Transform of functions f1(η) = 1/(1 + η2)3/2 and f2(η) =

η/(1 + η2)3/2 with respect to the variables ξ = ωR/vγ and η. In addition, functions f1(η) and

f2(η) obey the following relations

f1(η) = −1

η

d

dη

[
1

(1 + η2)1/2

]
and f2(η) = − d

dη

[
1

(1 + η2)1/2

]
. (2.20)

Hence, Eqs. (2.19) read as

F1(ξ) = −
∫ ∞
−∞

1

η

d

dη

[
1

(1 + η2)1/2

]
e−i ξη dη (2.21)

= i

∫ ∫ ∞
−∞

d

dη

[
1

(1 + η2)1/2

]
e−i ξη dη dξ

= −i
∫
F2(ξ) dξ

and

F2(ξ) = −
∫ ∞
−∞

d

dη

[
1

(1 + η2)1/2

]
e−i ξη dη (2.22)

= − e−i ξη

(1 + η2)1/2

∣∣∣∣η=∞
η=−∞︸ ︷︷ ︸

=0

−iξ
∫ ∞
−∞

[
1

(1 + η2)1/2

]
e−i ξη dη

= −iξ
∫ ∞
−∞

e−i ξη

(1 + η2)1/2
dη.

From [16]5, it is known that∫ ∞
−∞

e
ν

sinh η

(1 + η2)1/2
e−i ξη dη

|Re(ν)|<1
=

{
2e−

1
2
νπiKν(ξ) if ξ > 0 ,

−2e
1
2
νπiKν(−ξ) if ξ < 0.

, (2.23)

with Kν the modified Bessel functions of the second kind. Thus, taking ν = 0 in Eq. (2.23) it

follows that ∫ ∞
−∞

e−i ξη

(1 + η2)1/2
dη =

{
2K0(ξ) if ξ > 0 ,

2K0(−ξ) if ξ < 0
= 2K0(|ξ|). (2.24)

5It is important to highlight that Eq. (2.23) as written in [16] is mistaken. Since integral in Eq. (2.23) for

ξ > 0 results in 2e−
1
2
νπiKν(ξ), as can be obtained from [17], Eq. (9.6.21), which states that

K0(ξ) =

∫ ∞
0

cos(ξη)

(1 + η2)1/2
dη =

1

2

∫ ∞
−∞

e−i ξη

(1 + η2)1/2
dη,

where the last equality follows from the even and odd parity of the cosine and sine functions, respectively.
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Then, substituting Eq. (2.24) into Eq. (2.22), the function F2(ξ) yields

F2(ξ) = −i 2 ξK0(|ξ|), (2.25)

and substituting F2(ξ) into Eq. (2.21) the function F1(ξ) results in the following integral

F1(ξ) = −2

∫
ξ K0(|ξ|) dξ, (2.26)

which can be solved using the relation fulfilled in general by modified Bessel functions K0 of the

second kind [18] ∫
ξ K0(|ξ|) dξ = −|ξ|K1(|ξ|). (2.27)

So using relation (2.27) into Eq. (2.26), function F1(ξ) yields

F1(ξ) = −2

∫
ξ K0(|ξ|) dξ,= 2 |ξ|K1(|ξ|). (2.28)

Finally, substituting Eqs. (2.25) and (2.28) into Eqs. (2.17) and (2.18), turns out that the

electromagnetic field produced by the electron (in the reference frame of the NP) in the frequency

domain is given by

Eext
x (r;ω) = − 2 e

R v2γ
|ω| eiωz/vK1

(
|ω|R
vγ

)
(x− x0),

Eext
y (r;ω) = − 2 e

R v2γ
|ω| eiωz/vK1

(
|ω|R
vγ

)
y,

Eext
z (r;ω) = i

2 e

v2γ2
ω eiωz/vK0

(
|ω|R
vγ

)
,

(2.29a)

(2.29b)

(2.29c)

for the electric field components, and for the magnetic field components

Bext
x (r;ω) = − 2 e β

R v2γ
|ω| eiωz/vK1

(
|ω|R
vγ

)
y,

Bext
y (r;ω) =

2 e β

R v2γ
|ω| eiωz/vK1

(
|ω|R
vγ

)
(x− x0),

Bext
z (r;ω) = 0.

(2.30a)

(2.30b)

(2.30c)

Both expressions can be summarized in vector notation as

Eext(r;ω)=−2eω

v2γ
eiω

z
v

{[
sgn(ω)

R
K1

(
|ω|R
vγ

)]
[(x− x0)êx + yêy]−

i

γ
K0

(
|ω|R
vγ

)
êz

}
,

Bext(r;ω)=
2eβ

Rv2γ
|ω|eiω

z
vK1

(
|ω|R
vγ

)
[yêx− (x− x0)êy],

(2.31a)

(2.31b)

where sgn stands for the sign function. In Figs. 2.2, we show the modulus for each component (in

cartesian coordinates) of the electric and magnetic fields produced by the electron as a function
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of frequency. The plots correspond to the external electromagnetic field in the space coordinates

r = (0, 1, 0) nm, considering the electron traveling with velocity 0.5c in the ẑ direction and with

an impact parameter of 5 nm. The electric and magnetic fields are expressed in atomic units,

whereas the frequency is expressed in eV.

Figure 2.2. Plots of the magnitude of (a) the electric field and (b) the magnetic field components pro-
duced by an electron (traveling with constant velocity 0.5c in the ẑ direction and 5 nm impact parameter)
versus frequency. The fields are evaluated in the field point r = (0, 1, 0) nm.

2.2 Electromagnetic field scattered by the nanoparticle: an ex-

tended Mie solution

The NP theoretically modeled as a sphere rather naturally invites to describe the scattered

field due to the presence of the electron in a similar way such as Mie theory6 is addressed.

However, the electromagnetic field produced by the electron is not a single plane wave with a

defined frequency, but a superposition of infinite plane waves as Fig. 2.2 indicates. This is the

reason why an extended Mie solution which takes into account more than one monochromatic

plane wave must be considered to calculate the scattered electromagnetic field by the NP in the

presence of the electron. Nowadays, Mie solution is understood as the exact solution for the

absorption and scattering by a sphere with arbitrary radius and dielectric function ε embedded

in a linear, isotropic, homogeneous medium illuminated with a plane monochromatic wave. The

outline of the solution is as follows: construct vector harmonics N and M, and a generating

function ψ, which satisfy [13]

∇2ψ + k2ψ = 0, (2.32a)

M = ∇× (rψ), (2.32b)

N =
∇×M

k
; (2.32c)

with k = ω/c the magnitude of the wave vector. Then, seek for solutions of the generating func-

tion convenient to the symmetry involved. That is, look for ψ (satisfying Helmholtz equation) in

spherical coordinates and construct with Eqs. (2.32a) and (2.32b) the vector harmonics N and

6In fact, Mie theory is the solution of Maxwell’s equations for an incident plane wave on a sphere. Thus, it
should be strictly referred to, as Mie solution.
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M7. Due to linear independence and completeness of vector harmonics, the incident plane wave,

the scattered and the inside of the sphere electromagnetic fields are expanded as a superposition

of N and M, where in addition the time dependence of the fields are assumed to be the same

as the incident wave, harmonic. Thus, imposing boundary conditions between the sphere and

the surrounding medium the expansion coefficients are determined for the electromagnetic field

inside the sphere and the scattered one, which at the same time give rise to a close solution for

the Mie problem.

In order to tackle down the extended Mie solution, it shall be considered as a fundamental

block of the solution the steps followed to solve Mie problem. For instance, it is convenient to

expand the incident electromagnetic field (the one the electron produces), the scattered field and

field inside the NP in vector multipoles. According to Helmholtz theorem, any smooth vector

field F(r) can be expanded into two orthogonal projections (longitudinal and transverse) [19]

F(r) = ∇ψ1(r) +∇×Q. (2.33)

The transverse component ∇×Q can also be separated into two orthogonal projections as8 [20]

F(r) = ∇ψ1(r) + Lψ2(r)− i∇× Lψ3(r), (2.34)

where L = −ir × ∇ stands for the quantum mechanical orbital-angular momentum operator.

Since {∇,L,−i∇×L} constitute a set of three orthogonal operators [20], ψ1(r), ψ2(r) and ψ3(r)

can be calculated projecting F(r) in each direction. In other words

∇ · F(r) = ∇2ψ1(r), (2.35a)

L · F(r) = L2ψ2(r), (2.35b)

−i(L×∇) · F(r) = (∇× L) · (∇× L)ψ3(r) = ∇2L2ψ3(r). (2.35c)

With this tool in hand, the electric field can be decomposed into three scalar functions as

E(r;ω) = ∇ψL(r;ω) + LψM (r;ω)− i

k
∇× LψE(r;ω) (2.36)

where L stands for longitudinal, M for magnetic and E for electric. Moreover, according to Eqs.

(2.35)

∇2ψL(r;ω) = ∇ ·E(r;ω) = 4πρ(r;ω),

L2ψM (r;ω) = L ·E(r;ω),

∇2L2ψE(r;ω) = −ik(L×∇) ·E(r;ω).

(2.37a)

(2.37b)

(2.37c)

Thus, Eq. (2.37a) establishes the instant propagation of the longitudinal modes, since Laplace

equation does not take into account any retardation effects, and as consequence, leading to

7Since separation of variables is the method commonly used to solve Helmholtz equation in different coor-
dinates systems, the generating function and the vector harmonics will generally appear as a superposition of
solutions of the partial differential equation. Then, M and N inherit the linear independence and completeness
of the set of solutions for ψ.

8In the case of Mie solution the three orthogonal projections correspond to ∇ψ, M and N.
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instant propagation in Eq. (2.37c) since outside the charge distribution ∇2ψE = 0 once ∇2ψL =

0. Hence, longitudinal modes are explicitly left out imposing ψL = 0, whereas in vacuum, free

of charge and currents, the transverse scalar functions ψM and ψE obey Helmholtz equation [6]

∇2ψ{E,M}(r;ω) + k2ψ{E,M}(r;ω) = 0, (2.38)

since in vacuum, the electromagnetic field satisfy Helmholtz equation. So using the fact that

∇2 and L2 commutes9, Eqs. (2.37b) and (2.37c) read

ψM (r;ω) =
1

L2
L ·E(r;ω),

ψE(r;ω) =
i

k

1

L2
(L×∇) ·E(r;ω).

(2.39a)

(2.39b)

with L2 = `(`+ 1) the eigenvalues of L2 operator.

On the other hand, substituting Faraday-Henry-Lenz law ∇× E(r;ω) = ikH(r;ω) into Eq.

(2.36), the magnetic field results in

H = − i
k
∇× LψM − 1

k2
∇×

[
∇× LψE

]
= − i

k
∇× LψM +

1

k2
∇2LψE. (2.40)

Using Eq. (2.38) and the commutation relation between ∇2 and L, the magnetic field can be

rewritten as

H(r;ω) = − i
k
∇× LψM (r;ω)− LψE(r;ω). (2.41)

Equations (2.36), (2.39) and (2.41) gives rise to a recipe for calculating the electromagnetic

fields in the absence of charges and currents once the two transverse scalar functions ψM and ψE

are known. This procedure is known as the scalar function method. Now, as it is of interest to

expand in vector multipoles the electromagnetic field produced by the swift electron, it is worth

noting that the external electromagnetic field has to be made up of spherical waves with no net

flux, since a particle with constant velocity gives no radiation. Thus, the scalar functions which

describe this external field must have the following form [6]

ψM , ext(r;ω) =

∞∑
`=1

∑̀
m=−`

i`j`(kr)Y`m(Ωr)ψ
M , ext
`,m , (2.42)

ψE, ext(r;ω) =
∞∑
`=1

∑̀
m=−`

i`j`(kr)Y`m(Ωr)ψ
E, ext
`,m , (2.43)

where j` are the spherical Bessel functions, (r,Ωr) are the spherical coordinates of r, Y`m are

the scalar spherical harmonics functions and ψM , ext
`,m , ψE, ext`,m are expansion coefficients to be

determined. Equations (2.42) and (2.43) are only fulfilled within free of charges and currents

regions, in particular they will be satisfied in the region between the NP and the electron

trajectory. That is, for a < r < x0 − a, as it was discussed in Section 2.3.

9In [21] it is shown that [Li, pj ] = iεijkp
k in atomic units, where p = −i∇ is the linear momentum operator

and εijk is the Levi-Civita symbol. Thus, [L2,p2] = 2iεijk(Lipjpk + pjpkLi) = 2iεijkT
ijk, but tensor T ijk is

symmetric in the last two indices therefore [L2,p2] = 0. Analogously, [Li,p
2] = 2iεijkp

jpk = 0.
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On the other side, transverse scalar functions ψM , ext(r) and ψE, ext(r) can be obtained from

Eq. (A.19) which establishes that the external electric field can be written in atomic units as

Eext(r;ω) =

(
∇− i ωv

c2

)∫ ∞
−∞

eiωtG0(r− rt) dt, (2.44)

where G0 is the Green function of Helmholtz equation and rt = (x0, 0, vt) is the electron’s

position vector. Now, expanding the Green function of Helmholtz equation in multipoles, sub-

stituting this expansion into Eq. (2.44) and using Eqs. (2.39), it is found in [6] that

ψM , ext
`,m = −4πi1−`kv

c2
mA+

`m

`(`+ 1)
Km

(
ωx0
vγ

)
,

ψE, ext`,m = −2πi1−`k

cγ

B`m
`(`+ 1)

Km

(
ωx0
vγ

)
,

(2.45a)

(2.45b)

by a comparison between the multipole expansion of Eq. (2.44) and its analytical solution.

Moreover, A+
`,m and B`,m are coefficients given by

A+
`,m =

1

β`+1

∑̀
j=m

(i)`−j (2`+ 1)!!α`,m

γj 2j (`− j)!
[
j−m
2

]
!
[
j+m
2

]
!
I`,mj,`−j , (2.46a)

B`,m = A+
`,m+1

√
(`+m+ 1) (`−m)−A+

`,m−1
√

(`−m+ 1) (`+m), (2.46b)

with (2`+ 1)!! = (2`+ 1)(2`− 1)(2`− 3) · · · 3 · 1 the double factorial10 of (2`+ 1),

α`,m =

√
2`+ 1

4π

(`−m)!

(`+m)!
, (2.47)

and I`,mj,`−j are numbers satisfying the following recurrence relation

(`−m) I`,mi1,i2 = (2`− 1) I`−1,mi1,i2+1 − (`+m− 1) I`−2,mi1,i2
, (2.48)

with initial values Im−1,mi1,i2
= 0, Im−2,mi1,i2

= 0 and

Im,mi1,i2
=

{
(−1)m (2m− 1)!!B

(
i1+m+2

2 , i2+1
2

)
, if i2 is even

0, if i2 is odd,
(2.49)

where B (z, u) is the Beta function. Further details of these calculations are shown in Appendix

A.

In the same way, scalar functions corresponding to the scattered electromagnetic field by the

NP, by means of the scalar method, can be expanded into spherical waves with the restriction

that they must be a combination of only outgoing spherical waves [6]. In other words,

ψM , scat(r;ω) =
∞∑
`=1

∑̀
m=−`

i`h
(+)
` (kr)Y`m(Ωr)ψ

M , scat
`,m , (2.50)

10The double factorial of negative arguments can be performed via the recurrence relation n!! = n · (n− 2)!!
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ψE, scat(r;ω) =
∞∑
`=1

∑̀
m=−`

i`h
(+)
` (kr)Y`m(Ωr)ψ

E, scat
`,m . (2.51)

with h
(+)
l the spherical Hankel functions of the first kind multiplied by the imaginary unit

i, as defined in [22]. Thus, applying boundary conditions to the external and the scattered

electromagnetic field (for a spherically symmetric medium) it is found that

ψM , scat
`,m = tM` ψ

M , ext
`,m ,

ψE, scat`,m = tE` ψ
E, ext
`,m ,

(2.52a)

(2.52b)

with

tE` =
εi j` (xi) [x j` (x)]

′
− j` (x) [xi j` (xi)]

′

h
(+)
` (x) [xi j` (xi)]

′ − εi j` (xi)
[
xh

(+)
` (x)

]′ , (2.53a)

tM` =
j` (xi) [x j` (x)]

′
− j` (x) [xi j` (xi)]

′

h
(+)
` (x) [xi j` (xi)]

′ − j` (xi)
[
xh

(+)
` (x)

]′ , (2.53b)

where x = ka = ωa
√
εµ is the size parameter, xi = x

√
εi and ε, µ stand for the permittivity

and permeability, respectively, of the medium where the sphere is embedded. The prime symbol

denotes derivative with respect to the argument.

In this manner, Eqs. (2.45) and (2.52)—together with the multipole expansions of ψM , ext
`,m ,

ψM , scat
`,m and ψE, ext`,m , ψE, scat`,m —describe the external and induced electromagnetic fields in terms

of spherical waves, as it was pursued in order to achieve the prescription set up by Mie solution.

Therefore, both external and induced fields can be calculated using Eqs. (2.36) and (2.41). In

particular, the scattered electromagnetic field in spherical coordinates results in [23]

Escat (r;ω) =
∞∑
`=1

∑̀
m=−`

eimϕ

{
êrD

E
`,m ` (`+ 1) P m

` (cos θ)
h
(+)
` (k0r)

k0r

− êθ

[
CM
`,m

m

sin θ
h
(+)
` (k0r)P

m
` (cos θ) +DE

`,m

(
(`+ 1)

cos θ

sin θ
P m
` (cos θ)

− (`−m+ 1)

sin θ
P m
`+1 (cos θ)

)(
(`+ 1)

h
(+)
` (k0r)

k0r
− h(+)

`+1(k0r)

)]

+ (i) êϕ

[
CM
`,m h

(+)
` (k0r)

(
(`+ 1)

cos θ

sin θ
P m
` (cos θ)− (`−m+ 1)

sin θ

× P m
`+1 (cos θ)

)
+ DE

`,m

m

sin θ
P m
` (cos θ)

(
(`+ 1)

h
(+)
` (k0r)

k0r

− h(+)
`+1 (k0r)

)]}
,

(2.54)
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and

Hscat (r;ω) =
∞∑
`=1

∑̀
m=−`

eimϕ

{
êr C

M
`,m ` (`+ 1) P m

` (cos θ)
h
(+)
` (k0r)

k0r

+ êθ

[
DE
`,m

m

sin θ
h
(+)
` (k0r)P

m
` (cos θ)− CM

`,m

(
(`+ 1)

cos θ

sin θ
P m
` (cos θ)

− (`−m+ 1)

sin θ
P m
`+1 (cos θ)

)(
(`+ 1)

h
(+)
` (k0r)

k0r
− h(+)

`+1(k0r)

)]

+ (i) êϕ

[
CM
`,m

m

sin θ
P m
` (cos θ)

(
(`+ 1)

h
(+)
` (k0r)

k0r
− h(+)

`+1(k0r)

)

− DE
`,m h

(+)
` (k0r)

(
(`+ 1)

cos θ

sin θ
P m
` (cos θ)− (`−m+ 1)

sin θ

× P m
`+1 (cos θ)

)]}
,

(2.55)

with

CM
`,m = (i)`

√
2`+ 1

4π

(`−m)!

(`+m)!
tM` ψM , ext

`,m , (2.56a)

DE
`,m = (i)`

√
2`+ 1

4π

(`−m)!

(`+m)!
tE` ψ

E, ext
`,m . (2.56b)

2.3 Linear momentum transferred from the electron to the nano-

particle

The traveling electron produces electromagnetic field which at the same time induces charges

and currents within the NP, as the result of this induction a second electromagnetic field ap-

pears along the region of interest. Thus the total electromagnetic field in any region of space

corresponds to the superposition11 of the electromagnetic fields produced by the fast electron

(Eext,Hext) plus the electromagnetic fields scattered by the nanoparticle (Escat,Hscat), i.e.,

E (r;ω) = Eext (r;ω) + Escat (r;ω) , (2.57a)

H (r;ω) = Hext (r;ω) + Hscat (r;ω) . (2.57b)

Besides this induction, the external electromagnetic field carries mechanical properties such

as linear momentum which will be transferred to the NP. The total linear momentum12 trans-

11It is important to emphasize that the superposition principle in electrodynamics is postulated for the time
domain fields, that is: α (r; t) = α(1) (r; t)+α(2) (r; t), where again α = {E,B}. However, due to linearity of Fourier
Transform, the superposition principle is also valid in the frequency domain: α (r;ω) = α(1) (r;ω) + α(2) (r;ω) .

12A similar analysis can be performed for the total angular momentum, that is, from the angular momentum
conservation law in classical electrodynamics, it can be derived the total angular momentum transferred from the
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ferred by the swift electron to the nanoparticle can be obtained from the linear momentum

conservation law [24]

− ∂

∂t
g(r; t) +∇ ·

↔
T(r; t) = ρind(r; t) E(r; t) +

1

c
Jind(r; t)×B(r; t) = f(r; t), (2.58)

where E(r; t) and B(r; t) are the total electric and magnetic fields (the one the electron produces

plus the one scattered by the NP) acting on the induced charge and induced current distributions

ρind(r; t) and Jind(r; t), g(r; t) is the electromagnetic linear momentum density of the total

electromagnetic field,
↔
T(r; t) is the Maxwell’s stress tensor (that can be identified with the flux

of the total electromagnetic linear momentum density) and f(r; t) is the Lorentz force density

which can be understood as the force per unit volume that the total electromagnetic fields

executes over the induced charge and current distributions in the NP. Alternatively, f(r; t) can

be though as the time rate change of a linear momentum density associated with Lorentz force.

That is,

f(r; t) =
∂

∂t
p(r; t) = ρind(r; t) E(r; t) +

1

c
Jind(r; t)×B(r; t), (2.59)

where p(r; t) is the total mechanical linear momentum density that the collection of induced

charges have. In CGS units g(r; t) and
↔
T(r; t) are given by [24]

g(r; t) =
S(r; t)

c2
=

E(r; t)×B(r; t)

4πc
, (2.60)

↔
T(r; t) =

1

4π

[
E(r; t)E(r; t)+B(r; t)B(r; t)−

↔
I

2

(
E(r; t) ·E(r; t) + B(r; t) ·B(r; t)

)]
, (2.61)

where S(r; t) is the Poynting vector and
↔
I is the unit dyadic.

For the calculation of the total linear momentum (∆P) transferred by the electron to the NP,

it is necessary to consider the linear momentum conservation law in an integral form. Hence,

the integration of Eq. (2.58) over a volume V—which is constant in time and encloses the

nanoparticle but does not intersect the electron’s path13—yields

∂

∂t

∫
V

p(r; t) d3r = − ∂

∂t

∫
V

g(r; t) d3r +

∮
S

↔
T(r; t) · n̂ da, (2.62)

where S is the boundary of V with surface element da = n̂ da. For numerical purposes, the inte-

gration surface S will be always considered as a sphere of radius R larger than the nanoparticle’s

radius a, but smaller than the electron’s impact parameter x0, as shown in Fig. 1.3(b). Defining

∂

∂t

∫
V

p(r; t) d3r =
∂

∂t
P(t) and

∂

∂t

∫
V

g(r; t) d3r =
∂

∂t
G(t), (2.63)

Eq. (2.62) becomes

electron to a nanoparticle.
13This restriction imposed on V (not intersecting the electron’s path) is due to the fact that the electron

carries, besides electromagnetic momentum, mechanical linear momentum mev. So it must be taken into account
in the total linear mechanical momentum inside V but only when the electron (strictly, the linear momentum
mev) is inside the integration volume V . Nevertheless, the calculation of ∆P does not depend on the choice of
integration volume.
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d

dt
P(t) = − d

dt
G(t) +

∮
S

↔
T(r; t) · n̂ da, (2.64)

where, according to Eqs. (2.59) and (2.60), P(t) and G(t) are the mechanical and electromag-

netic linear momentum at time t inside the volume V .

As it is of interest to obtain the total linear momentum transferred from the electron to the

NP along the whole trajectory of the electron, Eq. (2.64) must be integrated in time from the

beginning of the interaction—between the electron and the NP—until the end of it. Thus, the

total momentum transferred can be calculated as

∆P = −∆G +

∮
S

∫ ∞
−∞

↔
T(r; t) · n̂ dt da, (2.65)

with ∆P = P(∞)−P(−∞) and ∆G = G(∞)−G(−∞). Since the nanoparticle is not charged,

it is worth noting that at the beginning, when the electron is far from the nanoparticle, the total

electromagnetic linear momentum inside V is zero. That is,

G(t = −∞) = 0, (2.66)

because close to the nanoparticle the total electromagnetic fields are zero, given that the elec-

tron’s electromagnetic field vanish as 1/r2 and therefore there will not be induced charges nor

currents on the NP. In addition, when the electron has already interacted with the nanoparticle

and is far from it, due to dissipation effects, there will not be induced electric and magnetic

fields. In other words, when the electron has already interacted with the NP and is far from it,

it is expected that all induced charges and currents within the metallic sphere will disappear,

and therefore, inside the volume V the total electromagnetic fields will vanish again. Then,

G(t =∞) = 0. (2.67)

Thus, substituting Eqs. (2.66) and (2.67) into Eq. (2.65), the total linear momentum transferred

from the electron to the NP is given by

∆P =

∮
S

∫ ∞
−∞

↔
T(r; t) · n̂ dt da =

∮
S

↔
T(r;ω = 0) · n̂ da, (2.68)

since the time Fourier Transform of Maxwell’s stress tensor is

↔
T(r;ω) =

∫ ∞
−∞

↔
T(r; t) eiωt dt. (2.69)

Equation (2.69) establishes a direct method to calculate the total linear momentum trans-

ferred from the electron to the NP, where
↔
T(r;ω = 0) is given explicitly by

↔
T(r;ω = 0) =

∫ ∞
−∞

↔
T(r; t) dt =

1

4π

∫ ∞
−∞

{
E(r; t)E(r; t) + B(r; t)B(r; t) (2.70)

−
↔
I

2

[
E(r; t) ·E(r; t) + B(r; t) ·B(r; t)

]}
dt,

and replacing the electric and magnetic fields with their time Fourier Transform, Eq. (2.70) can
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be written as

↔
T(r;ω = 0) =

1

4π

1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

{
E(r;ω′)E(r;ω′′) + B(r;ω′)B(r;ω′′) (2.71)

−
↔
I

2

[
E(r;ω′) ·E(r;ω′′) + B(r;ω′) ·B(r;ω′′)

]}
e−it(ω

′+ω′′) dω′ dω′′ dt.

In this way E(r;ω) and B(r;ω) are written in the frequency domain and they do not depend

anymore on the variable t, thus Eq. (2.71) results in

↔
T(r;ω = 0) =

1

8π2

{∫ ∞
−∞

∫ ∞
−∞

{
E(r;ω′)E(r;ω′′) + B(r;ω′)B(r;ω′′)

−
↔
I

2

[
E(r;ω′) ·E(r;ω′′) + B(r;ω′) ·B(r;ω′′)

]}
dω′ dω′′

}
(2.72)

×
{

1

2π

∫ ∞
−∞

e−it(ω
′+ω′′) dt

}
,

where the last term in the right hand side of Eq. (2.72) can be identified with [11]

1

2π

∫ ∞
−∞

e−it(ω
′−ω) dt = δ(ω′ − ω). (2.73)

Hence, Eq. (2.72) reads

↔
T(r;ω = 0) =

1

8π2

∫ ∞
−∞

{
E(r;ω′)E(r;−ω′) + B(r;ω′)B(r;−ω′) (2.74)

−
↔
I

2

[
E(r;ω′) ·E(r;−ω′) + B(r;ω′) ·B(r;−ω′)

]}
dω′.

Moreover, the electric and magnetic fields in the time domain are real functions, therefore

E∗(r; t) = E(r; t) and B∗(r; t) = B(r; t), (2.75)

with (∗) denoting complex conjugation. In the frequency domain this restriction, Eqs. (2.75),

implies that

E∗(r;ω) =

∫ ∞
−∞

E∗(r; t) e−iωt dt =

∫ ∞
−∞

E(r; t) ei(−ωt) dt = E(r;−ω), (2.76a)

B∗(r;ω) =

∫ ∞
−∞

B∗(r; t) e−iωt dt =

∫ ∞
−∞

B(r; t) ei(−ωt) dt = B(r;−ω). (2.76b)

Thus, substituting Eqs. (2.76) into Eq. (2.74)

↔
T(r;ω = 0) =

1

8π2

∫ ∞
−∞

[
E(r;ω′)E∗(r;ω′)−

↔
I

2
E(r;ω′) ·E∗(r;ω′) + B(r;ω′)B∗(r;ω′)

−
↔
I

2
B(r;ω′) ·B∗(r;ω′)

]
dω′ =

↔
TE(r;ω = 0) +

↔
TB(r;ω = 0),

(2.77)
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where

↔
TE(r;ω = 0) =

1

8π2

∫ ∞
−∞

[
E(r;ω′)E∗(r;ω′)−

↔
I

2
E(r;ω′) ·E∗(r;ω′)

]
dω′ and (2.78a)

↔
TB(r;ω = 0) =

1

8π2

∫ ∞
−∞

[
B(r;ω′)B∗(r;ω′)−

↔
I

2
B(r;ω′) ·B∗(r;ω′)

]
dω′, (2.78b)

are the electric and magnetic contributions to
↔
T(r;ω = 0), respectively. Furthermore, Eqs.

(2.78) can be simplified using the parity property of the integrands. Let α denote the electric

(E) or magnetic (B) contribution to
↔
T(r;ω = 0), then Eqs. (2.78) can be written in components

as

T
(α)
ij (r;ω = 0) =

1

8π2

∫ ∞
−∞

[
αi(r;ω′)α∗j (r;ω′)− δij

2
|α(r;ω′)|2

]
dω′. (2.79)

Separating the integral over the intervals (−∞, 0) and (0,∞), Eq. (2.79) reads

T
(α)
ij (r;ω = 0) =

1

8π2

∫ 0

−∞

[
αi(r;ω′)α∗j (r;ω′)− δij

2
|α(r;ω′)|2

]
dω′ (2.80)

+
1

8π2

∫ ∞
0

[
αi(r;ω′)α∗j (r;ω′)− δij

2
|α(r;ω′)|2

]
dω′,

and replacing ω′ → −ω′ in the first integral of the right hand side in Eq. (2.80)

T
(α)
ij (r;ω = 0) =

1

8π2

∫ ∞
0

[
αi(r;−ω′)α∗j (r;−ω′)− δij

2
|α(r;−ω′)|2

]
dω′ (2.81)

+
1

8π2

∫ ∞
0

[
αi(r;ω′)α∗j (r;ω′)− δij

2
|α(r;ω′)|2

]
dω′.

Taking account of the reality nature of the electromagnetic fields into Eq. (2.81), it follows that

T
(α)
ij (r;ω = 0) =

1

8π2

∫ ∞
0

[
α∗i (r;ω′)αj(r;ω′)− δij

2
|α(r;ω′)|2

]
dω′

+
1

8π2

∫ ∞
0

[
αi(r;ω′)α∗j (r;ω′)− δij

2
|α(r;ω′)|2

]
dω′ (2.82)

=
1

8π2

∫ ∞
0

[ (
αi(r;ω′)α∗j (r;ω′) + α∗i (r;ω′)αj(r;ω′)

)
− 2

δij
2
|α(r;ω′)|2

]
dω′

=
1

4π2

∫ ∞
0

Re

[
αi(r;ω′)α∗j (r;ω′)− δij

2
|α(r;ω′)|2

]
dω′,

where Re denotes the real part of a complex number.

In consequence, by substituting Eq. (2.82) into Eq. (2.68), the components of the total

linear momentum transferred by the electron to the nanoparticle are given by

∆Pi =

∮
S
Tij(r;ω = 0)nj da =

∑
α={E,B}

∮
S
T
(α)
ij (r;ω = 0)nj da, (2.83)
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then

∆Pi =
∑

α={E,B}

∮
S

1

4π2

∫ ∞
0

Re

[
αi(r;ω′)α∗j (r;ω′)− δij

2
|α(r;ω′)|2

]
dω′ nj da, (2.84)

=
1

4π2

∫ ∞
0

∮
S

Re

 ∑
α={E,B}

αi(r;ω′)α∗j (r;ω′)− δij
2
|α(r;ω′)|2

 nj da dω′,
where Einstein’s summation convention have been used for repeated indices. In a more compact

expression

∆Pi =

∫ ∞
0
Pi (ω) dω, (2.85)

with

Pi (ω) =
1

4π2

∮
S

Re

[
Ei(r;ω)E∗j (r;ω) +Bi(r;ω)B∗j (r;ω)

− δij
2

(
E(r;ω) ·E∗(r;ω) + B(r;ω) ·B∗(r;ω)

)]
nj da,

(2.86)

which can be understood as the spectral contribution to the total linear momentum, that is, the

differential linear momentum transferred per unit frequency.



CHAPTER

THREE

LINEAR MOMENTUM TRANSFER WITHIN THE DIPOLE

APPROXIMATION

Regarding the interaction between the swift electron and the spherical NP, we are interested

in calculating the total electromagnetic field in any region of space, which is given by the sum of

both the external and the induced fields, as it was obtained in Chapter 2. Therefore, the total

linear momentum is computed numerically by: i) calculating the total electromagnetic field on

each point of the discretized spherical integration surface (a sphere enclosing the NP), ii) then

obtaining the spectral contribution to the total momentum transferred from the electron to the

NP for several frequencies, and iii) finally integrating the spectral contribution to the momentum

transferred in order to fulfill Eqs. (2.85) and (2.86). Steps i) and ii) may exceed computing

capacities [25] if either the number of multipoles in the scattered field is large or the NP’s

radius is larger than few nanometers. This motivates the search of analytical solutions of the

spectral contribution to the total linear momentum transfer, and the study of the contribution

given by each multipole to the total momentum transferred. In this Chapter, the first step of

this process is presented by examining only the ` = 1 term in the scattered field, named as

the dipole approximation. The Maxwell stress tensor and its surface integral are treated in the

following two Sections, with the intention of understanding characteristic behaviors of the linear

momentum transfer.

3.1 Scattered field produced by the nanoparticle

The aim of this Chapter is to elucidate explicit expressions for the scattered electric and

magnetic fields, the surface integral of Maxwell stress tensor and the spectral contribution to

the linear momentum transferred from the swift electron to the NP taking only into account the

dipole contribution, i. e., ` = 1. In this Section, we perform the calculations related to explicit

expressions for the induced fields with ` = 1, by splitting the electric and magnetic fields in

spherical coordinates. It is worth noting that the scattered electromagnetic field, Eqs. (2.54)

and (2.55), depend on the functions ψE, ext`,m , ψM , ext
`,m and P m

` , yet to be calculated. Therefore,

the task of figuring out explicit expressions for the scattered electromagnetic field with ` = 1 is

equivalent to computing ψE, ext1,m , ψM , ext
1,m , P m

1 and P m
2 with m = −1, 0, 1. Given that

A+
`,−m = (−1)mA+

`,m, (3.1)

23



24 Chapter 3. Linear Momentum Transfer within the Dipole Approximation

which can be derived from the property

M+
`,−m (x0, 0, 0) = (−1)mM+

`,m (x0, 0, 0) , (3.2)

as shown in Appendix A, the calculations concerning to the extended Mie solution can be

restricted only to m ≥ 0. In this way, substituting ` = 1 into Eqs. (2.45) and using Eq. (2.46b),

the scalar functions for the dipole approximation are given by

ψE, ext1,−1 = −ψE, ext1,1 = −
√

2
πk0
c γ

A+
1,0K1

(
ωx0
vγ

)
, (3.3a)

ψE, ext1,0 = −2
√

2
πk0
c γ

A+
1,1K0

(
ωx0
vγ

)
, (3.3b)

ψM , ext
1,−1 = ψM , ext

1,1 = −2πk0 v

c2
A+

1,1K1

(
ωx0
vγ

)
, (3.3c)

ψM , ext
1,0 = 0, (3.3d)

where the following relation for the modified Bessel functions (Kν) [17]

K−ν (z) = Kν (z) , (3.4)

was used, and the numbers A+
1,0, A

+
1,1 can be calculated using Eq. (2.46a) as

A+
1,0 =

1

β2

1∑
j=0

3 (i)1−j α1,0

γj 2j (1− j)!
[
j
2

]
!
[
j
2

]
!
I1,0j,1−j = 3

α1,0

β2

(
i I1,00,1 +

I1,01,0

2γ
[
1
2

]
!
[
1
2

]
!

)
, (3.5a)

A+
1,1 =

1

β2

1∑
j=1

3 (i)1−j α1,1

γj 2j (1− j)!
[
j−1
2

]
!
[
j+1
2

]
!
I1,1j,1−j = 3

α1,1

β2
I1,11,0

2γ
. (3.5b)

An explicit expression for the coefficients α1,0 and α1,1 is obtained in accordance to Eq. (2.47).

So, it is straightforward to obtain

α1,0 =
√

3/4π and α1,1 =
√

3/8π. (3.6)

The numbers I1,00,1 , I
1,0
1,0 and I1,11,0 , in Eqs. (3.5), are calculated using the initial values set by Eq.

(2.48) as

I1,00,1 = I0,00,2 = (−1)!! B

(
1,

3

2

)
= B

(
1,

3

2

)
= 2/3, (3.7a)

I1,01,0 = I0,01,1 = 0, (3.7b)

I1,11,0 = − (1!!) B

(
2,

1

2

)
= −B

(
2,

1

2

)
= −4/3. (3.7c)

Hence, substituting α1,0, α1,1, I
1,0
0,1 , I

1,0
1,0 , I

1,1
1,0 into A+

1,0 and A+
1,1

A+
1,0 =

√
3

π

i

β2
and A+

1,1 = −
√

3

2π

1

γβ2
. (3.8)
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Finally, substituting coefficients given by Eq. (3.8) into the Eqs. (3.3), the functions ψE, ext1,m and

ψM , ext
1,m results in

ψE, ext1,1 = −ψE, ext1,−1 = i
√

6π
k0
cγβ2

K1

(
ωx0
vγ

)
, ψE, ext1,0 =

√
3π

2k0
cγ2β2

K0

(
ωx0
vγ

)
,

ψM , ext
1,1 = ψM , ext

1,−1 =
√

6π
k0v

c2γβ2
K1

(
ωx0
vγ

)
, and ψM , ext

1,0 = 0.

(3.9a)

(3.9b)

In order to obtain an explicit expression for the scattered electromagnetic field in the dipole

approximation (` = 1), besides the functions ψE, ext1,m and ψM , ext
1,m , the analytic expressions for the

Legendre functions P m
1 and P m

2 are also required. For negative values of m in the Legendre

functions, the following relation [11] was considered

P−m` (x) = (−1)m
(`−m)!

(`+m)!
Pm` (x) . (3.10)

With this tool in hand and substituting Eqs. (3.9) into Eqs. (2.54) and (2.55), the spherical

components of the scattered electric field for ` = 1 are given by

Escat
r, `=1 = 6 tE1

h
(+)
1 (k0r)

k0r

k0
cγβ2

[
sin θ cosϕK1

(
ωx0
vγ

)
+
i

γ
cos θK0

(
ωx0
vγ

)]
,

Escat
θ, `=1 =

3 k0
cγβ2

{
i tM1 h

(+)
1 (k0r)β K1

(
ωx0
vγ

)
cosϕ+ tE1

[
2
h
(+)
1 (k0r)

k0r
− h(+)

2 (k0r)

]

×
[
K1

(
ωx0
vγ

)
cos θ cosϕ− i

γ
K0

(
ωx0
vγ

)
sin θ

]}
,

Escat
ϕ, `=1 = − 3 k0

cγβ2
sinϕK1

(
ωx0
γv

){
tE1

[
2
h
(+)
1 (k0r)

k0r
− h(+)

2 (k0r)

]
+ i tM1 h

(+)
1 (k0r)

β cos θ

}
,

(3.11a)

(3.11b)

(3.11c)

and for the scattered magnetic field are given by

Hscat
r, `=1 = 6 tM1

h
(+)
1 (k0r)

k0r

k0
cγβ

K1

(
ωx0
vγ

)
sin θ sinϕ,

Hscat
θ, `=1 =

3k0
cγβ2

K1

(
ωx0
vγ

)
sinϕ

{
tM1

[
2
h
(+)
1 (k0r)

k0r
− h(+)

2 (k0r)

]
β cos θ + i tE1

× h(+)
1 (k0r)

}
,

Hscat
ϕ, `=1 =

3k0
cγβ2

{
tM1

[
2
h
(+)
1 (k0r)

k0r
− h(+)

2 (k0r)

]
β K1

(
ωx0
vγ

)
cosϕ

+ tE1 h
(+)
1 (k0r)

[
iK1

(
ωx0
vγ

)
cos θ cosϕ+

1

γ
K0

(
ωx0
vγ

)
sin θ

]}
,

(3.12a)

(3.12b)

(3.12c)
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where the explicit expressions of the Legendre functions P 1
1 , P

0
1 , P

0
2 were used, according to the

convention stablished in [11] for the Legendre Rodrigues’ formula. It is important to emphasize

that Mie coefficients tE1 and tM1 are functions of the NP’s radius and frequency.

In Fig. 3.1 we show the magnitude of the induced electromagnetic field (in free space H=B)

in the dipole approximation. The plots correspond to the electromagnetic field evaluated at

z = 0, that is, in the XY plane orthogonal to the electron’s trajectory. On top of each 3D

graph [Figs. 3.1(a) and 3.1(c)] we show a 2D projection. For a better appreciation, in Figs.

3.1(b) and 3.1(d) we show again the 2D plots in a grayscale. The parameters used for Fig. 3.1

were: a 1 nm radius aluminium NP modeled as a Drude-type material with ~ωp = 15.1 eV and

~Γ = 0.15 eV; an impact parameter of the electron’s trajectory of x0 = 0.5 nm and an electron’s

speed of 0.5c. We set up a frequency of ~ω = 8.71 eV corresponding to the dipolar plasmon

mode for the aluminium Drude-like NP. As it was expected, the plots for the magnitude of the

induced fields [Fig. 3.1] with ` = 1 correspond to an electric [Fig. 3.1(a)] and magnetic [Fig.

3.1(b)] dipoles, respectively.

Figure 3.1. Three dimensional (3D) plots and 2D projections on top, of the magnitude of (a) the
electric and (c) the magnetic induced fields in the dipole approximation surrounding a a = 1 nm radius
NP, modeled as a Dude-type material. Right to each 3D plot, the 2D projection in grayscale for (b)
the electric and (d) the magnetic field magnitude are presented. The external electromagnetic field is
set up with an impact parameter of x0 = 1.5 nm, an electron’s speed of v = 0.5c and a frequency of
~ω = 8.71 eV. The electromagnetic field is expressed in atomic units [a.u.].
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Since expressions (3.11) and (3.12) represent a closed form for the induced electromagnetic

field, it is rather naturally to construct the Maxwell stress tensor for the total electromagnetic

field in the dipole approximation, and then write explicitly the integrals involved in the spectral

contribution to the total momentum transferred. The next two Sections will be dedicated to

construct both the Maxwell stress tensor and its surface integral within the dipole approximation.

3.2 Maxwell stress tensor

Concordant with Maxwell stress tensor definition given by Eq. (2.61), as

↔
T =

1

4π

[
EE + BB−

↔
I

2

(
E ·E + B ·B

)]
,

if the electric E and magnetic B fields come from a sum of two different electric and magnetic

fields, for instance

E = E1 + E2 and B = B1 + B2, (3.13)

then
↔
T can be separated into four contribution, as

↔
T =

↔
T1 +

↔
T2 +

↔
T12 +

↔
T21, (3.14)

where

↔
T1 =

1

4π

[
E1E1 + B1B1 −

↔
I

2

(
E1 ·E1 + B1 ·B1

)]
, (3.15a)

↔
T2 =

1

4π

[
E2E2 + B2B2 −

↔
I

2

(
E2 ·E2 + B2 ·B2

)]
, (3.15b)

↔
T12 =

1

4π

[
E1E2 + B1B2 −

↔
I

2

(
E1 ·E2 + B1 ·B2

)]
, (3.15c)

↔
T21 =

1

4π

[
E2E1 + B2B1 −

↔
I

2

(
E2 ·E1 + B2 ·B1

)]
. (3.15d)

Furthermore,
↔
T12 =

↔
T ᵀ

21, (3.16)

with (ᵀ) denoting matrix transpose. Therefore,
↔
T(12) =

↔
T12 +

↔
T21 is a symmetric tensor with

mixed terms of both fields and due to the conjugate symmetry property of the scalar product

↔
T(12) =

1

4π

[
E1E2 + E2E1 + B1B2 + B2B1 −

↔
I
(
E1 ·E2 + B1 ·B2

)]
. (3.17)

Then Eq. (3.14) can be rewritten by means of
↔
T1,

↔
T2 and

↔
T(12) being entitled, respectively,

as the contribution given solely by the label 1 electromagnetic field, plus the contribution given

merely by the label 2 electromagnetic field and the coupled contribution between fields 1 and 2.

In particular, concerning to the problem in question, the total electromagnetic field is given
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by a combination of the external and the induced fields as

E = Eext + Escat and B = Bext + Bscat. (3.18)

Thus, the Maxwell stress tensor can be separated in accordance to Eqs. (3.14)-(3.16), as

↔
T =

↔
Text +

↔
Tscat +

↔
T(ext, scat), (3.19)

with

↔
Text =

1

4π

[
EextEext + BextBext −

↔
I

2

(
Eext ·Eext + Bext ·Bext

)]
, (3.20a)

↔
Tscat =

1

4π

[
EscatEscat + BscatBscat −

↔
I

2

(
Escat ·Escat + Bscat ·Bscat

)]
, (3.20b)

↔
T(ext, scat) =

↔
Text, scat +

↔
Tscat, ext. (3.20c)

Then, using Eq. (2.68) the total linear momentum transferred from the electron to the NP is

given by three contributions

∆P =

∫ ∞
−∞

∮
S

↔
T(r; t) · n̂ da dt =

∫ ∞
−∞

∮
S

[
↔
Text(r; t) +

↔
Tscat(r; t) +

↔
T(ext, scat)(r; t)

]
· n̂ da dt

=

∫ ∞
−∞

∮
S

[
↔
Tscat(r; t) +

↔
T(ext, scat)(r; t)

]
· n̂ da dt, (3.21)

where the last equality follows from the fact that the Maxwell stress tensor flux (over a closed

surface not intersecting the electron’s path and integrated in time) of the electromagnetic field

produced by the electron is zero, as it is demonstrated in Appendix B.

Finally, recalling that [Eq. (2.84)]

∆P =

∮
S

↔
T(r;ω = 0) · n̂ da.

=

∫ ∞
0

1

4π2

∮
S

Re

 ∑
α={E,B}

α(r;ω)α∗(r;ω)−
↔
I

2
|α(r;ω)|2

 · n̂ da dω
=

∫ ∞
0

P
(
ω′
)
dω′.

Equation (3.21) may be rewritten as

∆P =

∫ ∞
0

[
Pscat

E (ω) + Pscat
B (ω) + P (ext, scat)

E (ω) + P (ext, scat)
B (ω)

]
dω, (3.22)

with each term of the spectral contribution P given by,

Pscat
E (ω) =

1

4π2

∮
S

Re

{
Escat(r;ω)[Escat(r;ω)]∗ −

↔
I

2
|Escat(r;ω)|2

}
· n̂ da, (3.23a)
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Pscat
B (ω) =

1

4π2

∮
S

Re

{
Bscat(r;ω)[Bscat(r;ω)]∗ −

↔
I

2
|Bscat(r;ω)|2

}
· n̂ da, (3.23b)

P (ext, scat)
E (ω) =

1

4π2

∮
S

Re

{
Eext(r;ω)[Escat(r;ω)]∗ + Escat(r;ω)[Eext(r;ω)]∗ (3.23c)

−
↔
I Eext(r;ω) · [Escat(r;ω)]∗

}
· n̂ da,

P (ext, scat)
B (ω) =

1

4π2

∮
S

Re

{
Bext(r;ω)[Bscat(r;ω)]∗ + Bscat(r;ω)[Bext(r;ω)]∗ (3.23d)

−
↔
I Bext(r;ω) · [Bscat(r;ω)]∗

}
· n̂ da.

This general decomposition of the spectral contribution to the total linear momentum trans-

fer, by virtue of the Maxwell stress tensor decomposition, concludes that the linear momentum

transferred from the electron to the NP is set up by two main contributions: the electromagnetic

field scattered by the nanoparticle and the coupling between the electromagnetic field produced

by the electron and the induced one.

3.3 Analytical solutions to the spectral linear momentum

The intention of Section 3.2 is to point out a path in order to address the problem of

finding analytical solutions to the closed surface integral of the Maxwell stress tensor in spite of

numerical limitations.

Within the dipole approximation, the electric field scattered by the NP can be rewritten in

accordance to Eqs. (3.11) as

Escat
r, `=1 = Er1 sin θ cosϕ+ Er2 cos θ, (3.24a)

Escat
θ, `=1 = Eθ1 cosϕ+ Eθ2 cos θ cosϕ+ Eθ3 sin θ, (3.24b)

Escat
ϕ, `=1 = Eϕ1 sinϕ+ Eϕ2 cos θ sinϕ, (3.24c)

and the scattered magnetic field (H = B in free space) in accordance to Eqs. (3.12) as

Bscat
r, `=1 = Br1 sin θ sinϕ, (3.25a)

Bscat
θ, `=1 = Bθ1 cos θ sinϕ+ Bθ2 sinϕ, (3.25b)

Bscat
ϕ, `=1 = Bϕ1 cosϕ+ Bϕ2 cos θ cosϕ+ Bϕ3 sin θ, (3.25c)

with

Er1 =
6k0
cγβ2

tE1
h
(+)
1 (k0r)

k0r
K1

(
ωx0
vγ

)
; Er2 =i

6k0
cγ2β2

tE1
h
(+)
1 (k0r)

k0r
K0

(
ωx0
vγ

)
;

Eθ1 = i
3 k0
cγβ

tM1 h
(+)
1 (k0r)K1

(
ωx0
vγ

)
; Eϕ2 =− i3 k0

cγβ
tM1 h

(+)
1 (k0r)K1

(
ωx0
γv

)
;

Eθ2 =
3 k0
cγβ2

tE1

[
2
h
(+)
1 (k0r)

k0r
− h(+)

2 (k0r)

]
K1

(
ωx0
vγ

)
; (3.26)

Eθ3 = −i 3 k0
cγ2β2

tE1

[
2
h
(+)
1 (k0r)

k0r
− h(+)

2 (k0r)

]
K0

(
ωx0
vγ

)
;
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Eϕ1 = − 3 k0
cγβ2

tE1

[
2
h
(+)
1 (k0r)

k0r
− h(+)

2 (k0r)

]
K1

(
ωx0
γv

)
and

Br1 =
6k0
cγβ

tM1
h
(+)
1 (k0r)

k0r
K1

(
ωx0
vγ

)
; Bθ2 = i

3k0
cγβ2

tE1 h
(+)
1 (k0r)K1

(
ωx0
vγ

)
;

Bθ1 =
3k0
cγβ

tM1

[
2
h
(+)
1 (k0r)

k0r
− h(+)

2 (k0r)

]
K1

(
ωx0
vγ

)
;

Bϕ1 =
3k0
cγβ

tM1

[
2
h
(+)
1 (k0r)

k0r
− h(+)

2 (k0r)

]
K1

(
ωx0
vγ

)
; (3.27)

Bϕ2 = i
3k0
cγβ2

tE1 h
(+)
1 (k0r)K1

(
ωx0
vγ

)
; Bϕ3 =

1

γ
tE1 h

(+)
1 (k0r)K0

(
ωx0
vγ

)
,

functions which only depend on the frequency (ω), the electron’s velocity (v), the NP’s radius

(a) and the magnitude of the position vector (r) where the total electromagnetic field will be

evaluated1. It is worth noting that these functions do not depend on the angular variables (θ, ϕ).

Thus, substituting Eqs. (3.24) and (3.25) into Eqs. (3.23a) and Eqs. (3.23b), the electric and

magnetic spectral contributions of the scattered field, in the dipole approximation, are given in

spherical components by

PscatE, r (ω) =
r2

12π
Re[2Er1E∗r1 + 2Er2E∗r2 − 3Eθ1E∗θ1 − Eθ2E∗θ2 − 4Eθ3E∗θ3

− Eϕ1E∗ϕ1 − Eϕ2E∗ϕ2],

PscatE, θ (ω) =
r2

8
Re[Eθ1 E∗r1],

PscatE, ϕ (ω) = 0,

(3.28a)

(3.28b)

(3.28c)

and

PscatB, r (ω) =
r2

12π
Re[2Br1B∗r1 − Bθ1B∗θ1 − 3Bθ2B∗θ2 − 3Bϕ1B∗ϕ1 − Bϕ2B∗ϕ2 − 4Bϕ3B∗ϕ3],

PscatB, θ (ω) =
r2

8
Re[Bθ2 B∗r1],

PscatB, ϕ (ω) = 0.

(3.29a)

(3.29b)

(3.29c)

In a similar way, according to Eqs. (2.29) and (2.30), the electromagnetic field produced by

the electron can be rewritten as

Eext
x (r;ω) = −ξ(ω)

eiωz

R
K1

(
ωR

vγ

)
(x− x0), (3.30a)

Eext
y (r;ω) = −ξ(ω)

eiωz

R
K1

(
ωR

vγ

)
y, (3.30b)

1In the calculation of the total linear momentum transferred, r corresponds to the integration surface radius.
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Eext
z (r;ω) = i

ξ(ω)

γ

eiωz

R
K0

(
ωR

vγ

)
, (3.30c)

and

Bext
x (r;ω) = −βξ(ω)

eiωz

R
K1

(
ωR

vγ

)
y, (3.31a)

Bext
y (r;ω) = βξ(ω)

eiωz

R
K1

(
ωR

vγ

)
(x− x0), (3.31b)

Bext
z (r;ω) = 0, (3.31c)

where R =
√

(x− x0)2 + y2, ξ(ω) = 2eω/v2γ and |ω| = ω since the integration of the spectral

contribution to the total linear momentum transferred [Eq. (3.22)] is performed for positive

frequencies. Then, writing the external electromagnetic field in spherical coordinates and sub-

stituting these expressions into Eqs. (3.23c) and (3.23d), the coupling—between the external

electromagnetic field and the electromagnetic field scattered by the NP—spectral contribution

is given in spherical components by

P (ext, scat)
E, r (ω) =

r2

4π2
ξ(ω)

∫ 2π

0

∫ π

0
Re
[
TEr
]

sin θ dθ dϕ,

P (ext, scat)
E, θ (ω) =

r2

4π2
ξ(ω)

∫ 2π

0

∫ π

0
Re
[
TEθ
]

sin θ dθ dϕ,

P (ext, scat)
E, ϕ (ω) =

r2

4π2
ξ(ω)

∫ 2π

0

∫ π

0
Re
[
TEϕ
]

sin θ dθ dϕ,

(3.32a)

(3.32b)

(3.32c)

with

TEr =
1

γR

{
e−izω/v

[
− iK0

(
ωR

vγ

)
cos θ + γK1

(
ωR

vγ

)(
(x0 − x) sin θ cosϕ

− y sin θ sinϕ

)][
Er1 sin θ cosϕ+ Er2 cos θ

]
− eizω/v

[
− iK0

(
ωR

vγ

)
sin θ

+ γK1

(
ωR

vγ

)(
(x0 − x) cos θ cosϕ− y cos θ sinϕ

)][
E∗θ1 cosϕ+ E∗θ2 cos θ (3.33a)

× cosϕ+ E∗θ3 sin θ

]
+ eizω/vγK1

(
ωR

vγ

)[
y sinϕ cosϕ+ (x0 − x) sin2 ϕ

]

×

[
E∗ϕ1 + E∗ϕ2 cos θ

]}
,

TEθ =
1

γR

{
e−izω/v

[
− iK0

(
ωR

vγ

)
cos θ + γK1

(
ωR

vγ

)(
(x0 − x) sin θ cosϕ

− y sin θ sinϕ

)][
Eθ1 cosϕ+ Eθ2 cos θ cosϕ+ Eθ3 sin θ

]
+ eizω/v× (3.33b)

×

[
− iK0

(
ωR

vγ

)
sin θ + γK1

(
ωR

vγ

)(
(x0 − x) cos θ cosϕ− y cos θ sinϕ

)]
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×

[
E∗r1 sin θ cosϕ+ E∗r2 cos θ

]}
,

TEϕ =
1

γR

{
e−izω/v

[
− iK0

(
ωR

vγ

)
cos θ sinϕ+ γK1

(
ωR

vγ

)(
(x0 − x) sin θ sinϕ

× cosϕ+ y sin θ sin2 ϕ

)][
Eϕ1 + Eϕ2 cos θ

]
− γeizω/vK1

(
ωR

vγ

)[
(x0 − x) (3.33c)

× sinϕ+ y cosϕ

][
E∗r1 sin θ cosϕ+ E∗r2 cos θ

]}
,

and

P (ext, scat)
B, r (ω) =

r2

4π2
ξ(ω)

∫ 2π

0

∫ π

0
Re
[
TBr
]

sin θ dθ dϕ,

P (ext, scat)
B, θ (ω) =

r2

4π2
ξ(ω)

∫ 2π

0

∫ π

0
Re
[
TBθ
]

sin θ dθ dϕ,

P (ext, scat)
B, ϕ (ω) =

r2

4π2
ξ(ω)

∫ 2π

0

∫ π

0
Re
[
TBϕ
]

sin θ dθ dϕ,

(3.34a)

(3.34b)

(3.34c)

with

TBr =
β

R
K1

(
ωR

vγ

){
e−izω/v

[
− sin2 θ sinϕ

(
y cosϕ+ (x0 − x) sinϕ

)
Br1

]

+ eizω/v cos θ sinϕ

[
y cosϕ+ (x0 − x) sinϕ

][
B∗θ1 cos θ + B∗θ2

]
(3.35a)

+ eizω/v

[
(x0 − x) cosϕ− y sinϕ

][
B∗ϕ1 cosϕ+ B∗ϕ2 cos θ cosϕ

+ B∗ϕ3 sin θ

]}
,

TBθ = − β
R
K1

(
ωR

vγ

)
sin θ sinϕ

[
y cosϕ+ (x0 − x) sinϕ

][
Bθ1 e−izω/v cos θ (3.35b)

+ Bθ2 e−izω/v + B∗r1 eizω/v cos θ

]
,

TBϕ =
β

R
K1

(
ωR

vγ

)
sin θ

{
− e−izω/v

[
y cosϕ+ (x0 − x) sinϕ

][
Bϕ1 cosϕ

+ Bϕ2 cos θ cosϕ+ Bϕ3 sin θ

]
+ B∗r1 eizω/v

[
y sin2 ϕ− (x0 − x) sinϕ (3.35c)

× cosϕ

]}
,

where (x, y, z) are functions of (r, θ, ϕ) in the usual way cartesian and spherical coordinates are

related [19].

In general, we have not yet solved integrals (3.32) and (3.34) analytically. Nonetheless, for
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large impact parameters compared with the NP’s radius, the following relations are satisfied

x0 � a and x0 � r, (3.36)

then

(x, y, z) ∼ 0 and R ∼ x0. (3.37)

For this particular case, integrals (3.32) and (3.34), together with functions T{E,B}{r,θ,ϕ}, have ana-

lytical solutions given by

P (ext, scat)
E, r (ω;x0 � a) =

r2

6π
ξ(ω)

[
2

x0γ
K0

(
ωx0
vγ

)
Re
(
i 2E∗θ3 − iEr2

)
+K1

(
ωx0
vγ

)

× Re
(

2Er1 − E∗θ2 + 3E∗ϕ1
)]
,

P (ext, scat)
E, θ (ω;x0 � a) =

r2

8
ξ(ω)K1

(
ωx0
vγ

)
Re
(
Eθ1
)
,

P (ext, scat)
E, ϕ (ω;x0 � a) = 0,

(3.38a)

(3.38b)

(3.38c)

and

P (ext, scat)
B, r (ω;x0 � a) =

r2

6π
β ξ(ω)K1

(
ωx0
vγ

)
Re
(
B∗θ1 + 3B∗ϕ1 − 2Br1

)
,

P (ext, scat)
B, θ (ω;x0 � a) = −r

2

8
β ξ(ω)K1

(
ωx0
vγ

)
Re
(
Bθ2
)
,

P (ext, scat)
B, ϕ (ω;x0 � a) = 0.

(3.39a)

(3.39b)

(3.39c)



CHAPTER

FOUR

NUMERICAL RESULTS FOR THE MOMENTUM TRANSFER WITHIN

THE DIPOLE APPROXIMATION

As a first glance for solving closed surface integral of the Maxwell stress tensor for the total

linear momentum transfer, the dipole approximation elucidates the kind of integrals involved

within the calculations of the spectral contribution, and even though they may or may not be

analytically solved it is relevant to study (at least in a numerical approach) the contribution given

by this first multipole to the total linear momentum transferred. Indeed, studying the part played

by the multipole ` = 1 in the attraction-repulsion effect—inside the linear momentum transfer

mechanism—provides us with information for a better understanding of such phenomenon. In

this Chapter we study the numerical results for metallic nanoparticles (aluminium and gold)

within the dipole approximation in order to answer the question to whether the first multipole

contribution is sufficient to have a repulsion effect or not. The first Section is devoted to study

the characteristic behavior of the transverse and longitudinal spectral contributions for both

aluminium and gold nanoparticles. In Section 2 we present a comparison between the dipole

approximation and a model proposed in [10], where the nanoparticle is considered as a pure

point-like dipole. Finally, the last Section is committed to discuss the problematic concerning

the attraction-repulsion phenomenon in the dipole approximation by means of general results

obtained from the total linear momentum against the electron’s velocity.

4.1 Metallic nanoparticles: Aluminium and gold characteristic

behavior

Our initial interest in studying metallic1 nanoparticles arose from the fact that the first

STEM experiments in 2008 involved gold (Au) NPs as samples [5]. In these experiments, the

Au NPs on a thin carbon substrate displayed an attraction-repulsion effect when pumped with

electron beams, as explained in Chapter 1. Moreover, in 1999 the first calculations of the

total linear momentum transferred were accomplished using aluminium (Al) [6], and in 2010

theoretical calculations predicted a transition in the transverse component of the total linear

momentum transfer from attractive (positive linear momentum) to repulsive (negative linear

1As matter of fact, novel calculations have been made concerning dielectric materials such as MgO and SiC,
showing that the dielectric materials may or may not exhibit an attraction-repulsion transition [26].

34
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momentum) for gold dimer NPs [23]. Motivated with those results, it is of interest to study

the contribution given by the dipole approximation to the differential momentum transfer per

unit frequency (P) for materials such as Al and Au; and also to obtain the spectral information

of the particle response to the broadband probing electron in order to observe the sign of the

differential momentum contributed by each frequency. For this reason, a numerical programming

code (see Appendix C) was developed for calculating the spectral contribution and the total

linear momentum transferred, for both Al and Au materials, within the dipole approximation.

It is also important to note that for a spherical scattering source the resonance of each mode

is determined by Mie coefficient denominators, since the electromagnetic field scattered by the

sphere was obtained in multipolar contributions, constructed explicitly in Chapter 2. According

to Eqs. (2.36), (2.41) and (2.52)

E(r;ω) = LψM (r;ω)− i

k
∇× LψE(r;ω),

H(r;ω) = − i
k
∇× LψM (r;ω)− LψM (r;ω),

ψM , scat
`,m = tM` ψ

M , ext
`,m ,

ψE, scat`,m = tE` ψ
E, ext
`,m ,

then, the electric and magnetic scattered fields can be rewritten in the general form2,

Escat(r;ω) =

∞∑
`=1

(
tM` EM

` + tE` EE
`

)
and Bscat(r;ω) =

∞∑
`=1

(
tM` BM

` + tE` BE
`

)
. (4.1)

In this way, the contribution given by the ` multipole to the induced field will dominate against

the other multipoles when tM` and tE` achieved a maximum value, that is, when the denominator

of Mie coefficients tE` and tM` are equal to zero. For instance, this last condition implies on tE`

tE` =
εi j` (xi) [x j` (x)]

′
− j` (x) [xi j` (xi)]

′

h
(+)
` (x) [xi j` (xi)]

′ − εi j` (xi)
[
xh

(+)
` (x)

]′ ,
that for a certain frequency (or several frequencies) ω`,

h
(+)
` (x) [xi j` (xi)]

′
− εi(ω`) j` (xi)

[
xh

(+)
` (x)

]′
= 0. (4.2)

Thus, expanding Eq. (4.2) in the small particle limit3 and taking the following expressions at

the origin for spherical Bessel and Hankel functions [17]

j`(z → 0) =
z`

(2`+ 1)!!
, (4.3a)

h
(+)
` (z → 0) = ih

(1)
` (z → 0) =

(2`− 1)!!

z`+1
, (4.3b)

2In Eqs. (4.1) repeated indices do not imply sum over them, they only play the role of dummy labels
corresponding to the electric (E) and the magnetic (M) components defined in the scalar decomposition method.

3The small particle limit considers the particle radius smaller than the wavelength of the incident electromag-
netic field. Thus, x = ka = 2π a

λ
� 1 and similarly xi = x

√
εi � 1.
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it is straightforward to find out that

εi(ω`) = −`+ 1

`
, (4.4)

as obtained in a similar way in [27] for the Mie solution in the small particle approximation.

Therefore, Eq. (4.4) establishes a way to calculate the eigenfrequencies of the spherical nano-

particle embedded in vacuum, once its dielectric function is known. Particularly, for a material

modeled as a free electron gas, like metals used to be considered in first approach, the dielectric

function is specified according to the Drude’s model [11]. Whilst for a more sophisticated electric

response, several models are suggested in order to reproduce experimental data like for example

a superposition of Lorentz functions [28], as will be shown as follows.

Nanoparticle modeled as a Drude-type aluminium material

The NP modeled as aluminium was characterized by a dielectric function εi(ω) determined

in the free electron gas model, also known as Drude model, given by, see [11] and [9],

εi(ω) = 1−
ω2
p

ω(ω + iΓ)
, (4.5)

with ωp =
√

4πne2/me the bulk plasma frequency, n the number of electrons per unit volume,

me the electron’s mass and Γ the phenomenological damping constant.

Figure 4.1. Real (blue line) and imaginary (red line) parts of the Al dielectric function modeled as a
Drude-type material. The frequency in which the intersection between both lines happens is equal to
the bulk plasma frequency, which for aluminium is ~ωp = 15.1 eV. The dielectric function is displayed in
arbitrary units [arb. units].

The case of aluminium corresponds to plasma frequency ~ωp = 15.1 eV and to electron gas

damping ~Γ = 0.19 eV [29]. However, since the peaks of the spectral contribution to the total

linear momentum are related to plasmon resonances in metals, the width of each resonance is

inversely proportional to the mean lifetime of plasmons, and for a Drude-type model this time

corresponds to the inverse of the damping constant [30]. Thus, the electron gas damping for

the Al studied was set up as ~Γ = ~ωp/100 = 0.151 eV in order to clarify the visualization of
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each peak in the spectral contribution plots. In Fig. 4.1 Drude’s dielectric function is displayed

with the parameters set up for the Al. The real (blue curve in Fig. 4.1) and the imaginary (red

curve in Fig. 4.1) parts of the dielectric function were plotted according to the decomposition

εi(ω) = ε′i(ω) + iε′′i (ω), since in general, the dielectric function in the frequency domain is a

complex function.

Moreover, multipolar resonances can be obtained by substituting Eq. (4.5) into Eq. (4.4). In

this way, the resonance frequency of the `-plasmon mode is determined by the following relation

ω2
`

ω2
p

+ i
Γ

ω2
p

ω` =
`

2`+ 1
, (4.6)

and separating the eigenfrequency as ω` = ω′` + iω′′` , the `-resonance frequency ω` results in

ω′` = ωp

√
`

2`+ 1
−
(

Γ

2ωp

)2

,

ω′′` = −Γ

2
.

(4.7a)

(4.7b)

Hence, in the limit when Γ→ 0

ω′` ≈ ωp
√

`

2`+ 1
. (4.8)

Equation (4.8) indicates that frequency bandwidth for which plasmonics resonances should be

expected relies within the interval

ωl ∈ [ωp/
√

3, ωp/
√

2], (4.9)

with ωd = ωp/
√

2 the eigenfrequency associated with the dipolar (` = 1) plasmon mode and

ωs = ωp/
√

2 the eigenfrequency associated with the surface (` → ∞) plasmon mode. For the

aluminium, since Γ/ωp = 1/100 < 1, it is expected that dipolar plasmon mode should be closed

to the resonance frequency

ωd ≈
ωp√

3
= 8.72 eV. (4.10)

In Figure 4.2 we show, in SI units, the calculations concerning the longitudinal [component

parallel to the electron’s velocity, Fig. 4.2(a)] and the transverse [component orthogonal to

the electron’s velocity, Fig. 4.2(b)] spectral contributions against frequency, for an aluminium

nanoparticle and six different electron velocities: 0.15c, 0.2c, 0.3c, 0.4c, 0.5c, 0.99c. In order

to compute these spectral contributions the following parameters were considered: the metallic

NP was modeled as an aluminium Drude-type material with radius equal to a = 1 nm and the

electron’s impact parameter was set up as x0 = 1.5 nm. As shown in Fig. 4.2, the spectral

intensity decreases as the electron’s velocity is increased, and both the transverse [Fig. 4.2(a)]

and longitudinal [Fig. 4.2(b)] spectral contributions are almost the same order of magnitude

for each velocity. However, the longitudinal component is always positive indicating that the

longitudinal momentum transferred (area under P‖ curve) is always positive. These results are

in agreement with previously theoretical calculations obtained, as for example, in [23] and [31].



38 Chapter 4. Numerical Results for the Momentum Transfer within the Dipole Approximation

On the other hand, the transverse spectral contribution exhibits a positive-negative transition

suggesting, remarkably, that the total transverse momentum transferred (area under P⊥ curve)

may be positive or negative4. In addition, the highest contribution in both graphs are located

close to the eigenfrequency ~ω = 8.72 eV, as predicted by Eq. (4.10).

Figure 4.2. (a) transverse and (b) longitudinal components of the spectral contribution to the total
linear momentum transferred from the fast electron, with different velocities, to an aluminium Drude-type
NP of radius a = 1 nm, with an impact parameter of the electron’s trajectory equal to x0 = 1.5 nm.

Figure 4.3 shows, the transverse [Fig. 4.3(a)] and the longitudinal [Fig. 4.3(b)], spectral

contributions to the total linear momentum transferred for an electron impact parameter equal

to x0 = 11 nm. The NP’s radius was left the same as before, 1 nm.

Figure 4.3. (a) transverse and (b) longitudinal components of the spectral contribution to the total
linear momentum transferred from the fast electron, with different velocities, to an aluminium Drude-type
NP of radius a = 1 nm, with an impact parameter of the electron’s trajectory equal to x0 = 11 nm.

Important differences arouse between Figs. 4.2 (x0 = 1.5 nm) and 4.3 (x0 = 11 nm). The first

one is that, near the dipole resonance, the spectral contribution profiles in Figs. 4.2 are larger for

small velocities (compared with the speed of light) than for ultra-relativistic velocities. While in

Figs. 4.3, near the dipole resonance, the profiles of the spectral contribution does not behave in

a descendant way, instead, 0.15 and 0.2c velocity curves are below 0.3c, 0.4c, 0.5c, 0.7c and 0.99c

4Even though the transverse spectral curves [Fig. 4.2(a)] appear to be odd functions, they are not, since the
area under each velocity curve is different from zero, as will be shown in Section 4.3.
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velocity profiles. The second difference relies in the fact that for lower and higher frequencies

than the dipole resonance frequency (8.72 eV), the contribution in Figs. 4.2 is negligible in

comparison to the one given close to the dipole resonance. Whilst, for low frequencies, the

spectral contribution in Figs. 4.3, for 0.15c and 0.2c velocity curves, is almost half the intensity

they present around the resonance frequency.

Nanoparticle modeled as a Lorentz-type gold material

The dielectric function for the NP modeled as gold was taken from [28], obtained from

experimental REELS (Reflection Electron Energy Loss Spectroscopy) data and fitted5 with a

superposition of one Drude term (when ωj = 0) and nine Drude-Lorentz terms [32], given by

εi(ω) = 1 +
10∑
j=1

Aj
ω2
j − ω(ω + iΓj)

, (4.11)

where, in addition to free electrons, each bound electron in the material is modeled as a particle

bounded to massive nucleus by spring with natural frequency ωj , and each oscillator strength

given by Aj . Also, Γj represents—as in Drude model—the phenomenological damping constant

simulating dissipative forces, see [32].

Figure 4.4 shows the dielectric function εi = ε′i + iε′′i (real part in blue and imaginary part in

red) for the gold fitted model (Eq. (4.11)) as a function of frequency, using the data reported

in [28] (see Table 4.1 for the specific values of Ai, Γj and ωi). For better appreciation, inset in

Fig. 4.4 displays the dielectric function between 0 to 40 eV.

Figure 4.4. Plots of the real (blue line) and imaginary (red line) parts of the Au dielectric function
modeled as a superposition of Drude-Lorentz oscillators. The inset shows the structure of the dielectric
function within the 0-40 eV range.

According to Eq. (4.4), the resonances of the `-mode in the Drude-Lorentz model shall be

5Recent studies on analytical models for the dielectric response of gold demonstrated that causality property
of fitting functions are essential to obtain physically sound results for the total linear momentum transferred from
electrons to NPs.
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determined by the relation

2`+ 1

`
+

10∑
j=1

Aj
ω2
j − ω`(ω` + iΓ)

= 0, (4.12)

which in general corresponds to an eighteenth order polynomial in ω`. In spite of the non-

analyticity of Eq. (4.12) we can infer gold electric response behavior by looking at Fig. 4.4. In

this, five resonances (~ω = 0 eV is the resonance corresponding to the Drude’s model) appeared

between 0 to 40 eV and, furthermore, when Γi → 0 it is expected a resonance frequency around

ωj , as indicated by Eq. (4.12).

Natural frequency ωj Damping Γj Oscillator strength Aj
[eV] [eV] [eV2]

0.000 0.027 139.3
1.0 7.9 138.2
5.4 7.2 161.8
9.5 0.5 8.6
13.7 7.5 92.5
18.3 1.9 6.5
25.5 3.6 2.3
36.8 4.9 108.4
45.1 7.6 180.6
70.4 70.0 411.2

Table 4.1. Table of the parameters ωj , Γj and Aj taken from [28] to fit
experimental gold data through Eq. (4.11).

In Figure 4.5 we show the transverse and the longitudinal components of the spectral con-

tribution to the total linear momentum transferred from the electron to a gold nanoparticle.

The NP’s radius was set up equal to 1 nm, the electron’s impact parameter equal to 1.5 nm and

different electron velocities, which relies from 0.1c up to 0.99c, were taken. In agreement to

aluminium results, the most intense contributions of P emerged close to the resonance frequen-

cies, as can be observed from a comparison between the dielectric response (Fig. 4.4) and the

spectral contributions (Fig. 4.5). Moreover, slower velocity profiles (0.15c, 0.2c, 0.3c) dominate

over fast velocity curves (0.4c, 0.5c and 0.99c) in the same way obtained for an aluminium NP.

Therefore, we can conclude that as the velocity is increased the spectral contribution decreases

when the electron has an impact parameter equal to 1.5 nm.

As it is of our interest to study the behavior of the spectral contribution (and the total linear

momentum transferred) for different impact parameters, we calculated the spectral contribution

when the electron is x0 = 11 nm separated from the nanoparticle. In Fig. 4.6 we present the

results concerning the spectral contribution for a 1 nm gold NP and an electron impact parameter

equal to 11 nm. In both Figs. 4.6(a) and 4.6(b), the magnitude of the spectral profiles decreases

four orders of magnitude in comparison to the profiles obtained with an impact parameter equal

to 1.5 nm [Figs. 4.5(a) and 4.5(b)]. Also, Fig. 4.6 shows that the spectral contribution, for

x0 = 11 nm, is higher for frequencies between 0 to 10 eV and for frequencies higher than 10 eV,

the spectral contribution is negligible.
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Figure 4.5. (a) transverse and (b) longitudinal components of the spectral contribution to the total
linear momentum transferred from the fast electron, with different velocities, to a gold NP of radius
a = 1 nm, with an impact parameter equal to x0 = 1.5 nm.

It is worth noting that for both impact parameters (x0 = 1.5 nm. and x0 = 11 nm.) the

transverse component of the spectral contribution [Figs. 4.5(a) and 4.6(a)] exhibits a positive-

negative transition for frequencies higher than ~ω = 15 eV, while the longitudinal components

[Figs. 4.5(b) and 4.6(b)] are always positive.

Figure 4.6. (a) transverse and (b) longitudinal components of the spectral contribution to the total
linear momentum transferred from the fast electron, with different velocities, to a gold NP of radius
a = 1 nm, with an impact parameter equal to x0 = 11 nm.

4.2 Comparison: pure dipole and dipole approximation

Chapter 3 is devoted to obtain analytical solutions of the spectral contribution to the total

linear momentum transferred from the swift electron to the nanoparticle. In Section 3.3, surface

integrals concerning the first multipole—the dipole approximation—of the scattered electromag-

netic field are studied. Nevertheless, for our research group, the study of the first multipole in

the scattered electromagnetic field has also been an important key to understand and compare

an approximation proposed in [10] where the NP is modeled as a bare point-like dipole (named

in this thesis as pure dipole approximation). This dipole has dipole moment given in SI units by
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[10]

p(ω) = ε0α(ω)Eext(r = 0;ω), (4.13)

where ε0 stands for the permittivity of free space; α(ω) stands for the NP polarizability given

by

α(ω) = 4πa3
εi(ω)− ε0
εi(ω) + 2ε0

, (4.14)

and Eext(r = 0;ω) stands for the electromagnetic field produced by the swift electron, in the

frequency domain, evaluated at the center of the sphere. Thus, a time Fourier Transform can be

performed to the dipole moment p(ω) [Eq. (4.13)] in order to have a description of the dipole

response as a function of time. Then, using Lorentz force

F(t) = (p(t) · ∇)Eext(r = 0; t) +
dp(t)

dt
×Bext(r = 0; t), (4.15)

with Bext(r = 0;ω) the external magnetic field, in the time domain, evaluated at the center of

the NP, the total momentum transferred from the electron to the NP can be calculated as

∆P =

∫ ∞
−∞

F(t) dt. (4.16)

In this way, Eq. (4.15) establishes a recipe to study the interaction between the electron

and the nanoparticle (at least in a first approach) in the time domain. Moreover, a comparison

between the pure dipole and the ` = 1 approximations can be achieved by means of the total

momentum transferred, determined by Eqs. (2.86) and (4.15) in each case.

In this Section we present a comparison between the dipole (` = 1) and the pure dipole

approximations. Figures 4.7(a) and 4.7(b) display, respectively, the transverse and the longitu-

dinal components of the total momentum transferred from the electron to the NP as a function

of the electron’s velocity. The parameters considered for the numerical calculations were: a NP

modeled as a Al Drude-type material, with a radius equal to 1 nm, and two different electron

impact parameters, x0 = 1.5 nm and x0 = 11 nm.

The total linear momentum transferred from the electron to the NP, for ` = 1 approximation

was calculated by integrating in frequency the results obtained in Section 4.1 for the nanoparticle

modeled as a Al Drude-type material. That is, by computing the area under the curves of Figs.

4.2 (for 1.5 nm impact parameter) and 4.3 (for 11 nm impact parameter). On the other hand, the

total linear momentum transferred for the pure dipole approximation was calculated by Jesús

Castrejón, following the steps in accordance to fulfill Eq. (4.16) [10].

While the calculations of the longitudinal component [Fig. 4.7(b)] for the ` = 1 approxima-

tion coincides with the calculations of the longitudinal component for the pure dipole approxi-

mation (for both impact parameters considered, x0 = 1.5 nm and x0 = 11 nm). The calculations

remarkably differ for the transverse components [Fig. 4.7(a)], particularly at high electron ve-

locities, as can be shown in the inset of Fig. 4.7. We believe that these differences are due to

the fact that close to the NP (that is, small impact parameters compared with the NP’s radius)

the pure dipole approximation is no longer valid, because it was developed in the dipolar limit

which takes into account that the electron is far from the NP (large impact parameters compared

with the NP’s radius). Whilst the dipole approximation does not exhibit any restriction in the
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closeness and the remoteness of the electron from the nanoparticle, indeed, it only represents

the first multipole of the total scattered electromagnetic field without any further assumptions.

However, numerical calculations (Figs. 4.8) for larger than 1.5 an 11 nm impact parameters

show that the ` = 1 approximation recovers the calculations performed with the pure dipole

approximation.

Figure 4.7. Comparison between the dipole and the pure dipole approximations to the total linear
momentum transferred from the electron to the NP along (a) the transverse and (b) longitudinal directions
as a function of the electron’s velocity. The NP was modeled as an aluminium Drude-type material with
radius a = 1 nm and two different electron impact parameters: x0 = 1.5 nm and x0 = 11 nm (scaled by a
factor of 103 for a better appreciation). Dashed lines correspond to the dipole approximation while solid
lines correspond to the pure dipole approximation.

In Fig. 4.8(b) the transverse component of the total linear momentum transferred is com-

pared for both approaches the dipole and the pure dipole approximations, for a NP’s radius of

1 nm and an electron impact parameter of 20 nm. As can be appreciated in Fig. 4.8(b), the

pure dipole approximation curve (solid blue curve) coincides with the ` = 1 approximation curve

(dashed magenta curve) for almost all velocities, except in the ultra-relativistic regime, that is,

for high velocities. This behavior can be explained by the dependance of the external electro-

magnetic field in the impact parameter, which is given through the modified Bessel functions as

[Eq. (2.31)]

Eext(r;ω)=−2eω

v2γ
eiω

z
v

{[
sgn(ω)

R
K1

(
|ω|R
vγ

)]
[(x− x0)êx + yêy]−

i

γ
K0

(
|ω|R
vγ

)
êz

}
,
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Bext(r;ω)=
2eβ

Rv2γ
|ω|eiω

z
vK1

(
|ω|R
vγ

)
[yêx− (x− x0)êy],

with R2 = (x− x0)2 + y2. Thus, if the impact parameter is larger than the NP’s radius, and as

consequence larger than the radius of the integration surface where the Maxwell stress tensor is

calculated6, R ∼ x0 and only low frequencies (large wavelengths compared with the NP’s radius)

will contribute, as it is shown in Fig. 4.9. Therefore, if the impact parameter x0 increases, the

more similar is the small particle limit—and so the pure dipole approximation—to the dipole

approximation.

Again, the ` = 1 and the pure dipole approximations show a similar tendency for the

longitudinal component of the total linear momentum transferred, see Fig. 4.7(b). Nonetheless,

it should be noticed that the longitudinal component of the total momentum transferred exhibits

a change in its behavior as a function of the impact parameter. For x0 = 1.5 nm there is no

maximum value in the momentum transferred, while for x0 = 11 nm there is a maximum close

to the velocity 0.25c, as shown in Fig. (b). This anomalous behavior in the linear momentum

transferred may be fully understood once we have the analytical solution to the problem.

Figure 4.8. Comparison between the dipole and the pure dipole approximations of the total linear
momentum transferred from the electron to the NP along (a) the transverse and (b) longitudinal direction
as function of the electron’s velocity. The NP was modeled as an aluminium Drude-type material with
radius a = 1 nm and an electron impact parameter of x0 = 20 nm. Dashed lines correspond to the dipole
approximation while solid lines correspond to the pure dipole approximation.

6For numerical purposes the integration radius is considered to be close (half nanometer away) to the NP.
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The importance of understanding the equivalence between both approximations lies in the

fact that the pure dipole approximation exhibits a prescription for studying the total linear

momentum transferred from the electron to the NP in the time domain. Whereas, in the dipole

approximation, a time Fourier Transform and the electromagnetic linear momentum must be

calculated in order to obtain a description of the problem in the time domain, which may cause

numerical noise.

4.3 Linear momentum as function of electron’s velocity

One of the most interesting mechanisms inside the total momentum transferred from the

electron to the NP is the attraction-repulsion transition exhibited by the transverse component

of the total linear momentum transferred, for certain combinations of electron velocities and

impact parameters. So a deep understanding in the momentum transferred mechanism should

answer the question to whether the attraction-repulsion effect can be obtained in all kind of

materials or if it is only restricted to a particular dielectric responses. For this reason, it makes

sense to ask how many multipoles in the scattered field should be considered in order to achieve

such transition and in this way if the first multipole, that is the dipole contribution, exhibits

such behavior, given that the dipole and the pure dipole approximations are not quite the same7.

An alternative proof for the latter assertion is given by the following argument.

Figure 4.9. Plots of the magnitude of (a) the electric field and (b) the magnetic field components
produced by the electron, traveling with constant velocity in ẑ direction and 5 nm impact parameter,
versus frequency. The fields are evaluated in the field point r = (0, 1, 0) nm for an electron velocity
of 0.9c, while insets show both (a) the electric and (b) the magnetic field magnitudes for an electron
traveling with constant velocity of 0.5c.

Scattering coefficients tE` and tM` , given by Eqs. (2.53), can be expanded according to [13]

as

tE1 = A1x
3 +A2x

5 +A3x
6 +O(x7), (4.17a)

tM1 = B1x
5 +O(x7), (4.17b)

where x = k0a is the size parameter and

7One of the main conclusions set in [10] is that the pure dipole approximation describes only attractive
interactions.
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A1 =
2

3

εi − 1

εi + 2
, A2 =

2

5

(εi − 2)(εi − 1)

(εi + 2)2
, A3 =

4

9

(
εi − 1

εi + 2

)2

and B1 =
1

45
(εi − 1).

It can be demonstrated [13] that in the small particle limit tE1 ∼ A1x
3 and tM1 ∼ 0. In Figs. 4.10

we show two different calculations of the total linear momentum transferred from the electron

to the NP. The first calculation is related to the linear momentum transferred—black dashed

curves in Figs. 4.10—when Mie coefficient tE1 was considered as defined by Eq. (2.53), while

the second calculation is related to the total linear momentum transferred—green solid curves

in Figs. 4.10—assuming that Mie coefficient tE1 ∼ A1x
3 and tM1 was equal to zero. Both

calculations were performed for an Al Drude-type NP of 1 nm radius and an electron’s impact

parameter of 1.5 nm. Figures 4.10(a) and 4.10(b) show the results concerning the transverse

and the longitudinal components, respectively, of the total linear momentum transferred. In the

insets of Figs. 4.10 we display the difference (δP) between the calculation performed with the

complete expression for tE1 and when it was approximated by it’s first term in the expansion

(4.17).

Figure 4.10. Comparison plots of the total linear momentum transferred against electron’s velocity
between calculations made for an Al Drude-type NP considering the complete scattering coefficient tE1
(dashed grey curve) and approximating it as tE1 ∼ A1x

3 (green solid curve). The parameters used were:
NP’s radius of 1 nm and impact parameter of 1.5 nm.

The differences, for instance, in the transverse component [inset in Fig. 4.10(a)] establishes

that indeed the dipole approximation is not the same as the small particle limit. Moreover,

insets in Figs. 4.10 exhibit that both approaches will be the same for ultra-relativistic velocities,
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since increasing the velocity is almost the same as increasing the range in frequency for the

external electromagnetic field (see Figs. 4.9). Thus, the dipolar resonance frequency (ωd, equal

to 8.72 eV for the Aluminium considered) will be present in both calculations and, as shown

in Figs. 4.2 and 4.3, the highest spectral contributions take place close ωd. This is the reason

why in the ultra-relativistic limit, for Al Drude-type material, there is no difference between

calculating the linear momentum transferred considering tE1 ∼ A1x
3 or tE1 . We expect that this

similarity will disappear by changing the material (dielectric function).

On the other hand, in this last Section we present the results concerning the total linear

momentum transferred against the electron’s velocity and a comparison with previous calcula-

tions obtained in [25], for both Al and Au, where up to 15 multipoles in the scattered field were

considered for computing the total linear momentum transferred.

Once again, the momentum transferred within the dipole approximation was obtained by

calculating the area under the curves of Fig. 4.2 for the Al NP, and of Fig. 4.5 for the Au NP.

Whilst the results of the total linear momentum transferred with ` = 15 multipoles were accom-

plished using the Boundary Element Method (BEM) [33]-[35] to calculate the electromagnetic

field scattered by the NP. In these calculations, 15 multipoles were considered for working out

the scattered electromagnetic field, then the data given out by BEM numerical program was

managed in a Mathematica notebook in order to compute the surface and frequency integrals

involved in the determination of the total linear momentum transferred.

Figure 4.11. Comparison between ` = 1 and ` = 15 computations of the total linear momentum transfer
along (a) the transverse and (b) the longitudinal direction as function of the electron’s velocity for both
Al and Au NPs of radius a = 1 nm and impact parameter of x0 = 1.5 nm.
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Both ` = 1 and ` = 15 calculations were performed with a nanoparticle of 1 nm radius and an

electron’s impact parameter of 1.5 nm. Figure 4.11(a) shows that the transverse components for

` = 1, for aluminium (blue dashed curve) and gold (red dashed curve) nanoparticles, are positive

(meaning attractive interaction between the electron and the NP) for all velocities. While the

transverse components of the total momentum transferred exhibit a transition from positive

to negative (meaning attractive interaction between the electron and the NP) when they are

calculated considering ` = 15 multipoles in the scattered field. These transitions take place close

to the velocity 0.85c for Al (green solid curve) and to the velocity 0.97c for Au (purple solid

curve). Both changes are highlighted in Fig. 4.11(a) with a yellow spot.

The longitudinal component of the total linear momentum transferred remains positive for all

velocities [Fig. 4.11(b)] and both metals: aluminium and gold. This last result is in agreement

with the results obtained in Figs. 4.2(b), 4.3(b), 4.5(b) and 4.6(b), where the longitudinal com-

ponents of the spectral contribution displayed a positive behavior for all frequencies. This can be

understood as a consequence of the electron transferring linear momentum to the nanoparticle.

It is worth noting that the calculations within the dipole approximation, of the total linear

momentum transferred, are the same order of magnitude as the calculations performed with

` = 15 multipoles, and both have almost the same behavior except in the ultra-relativistic

limit. Moreover, the computation of the total linear momentum transferred with ` = 1 gives an

accurate description of the momentum transferred from the electron to the NP when large impact

parameters (compared with the NP’s radius) are considered, and it gives an insight of the general

behavior of the total momentum transferred as a function of the electron’s velocity. Even though

the calculations of the total linear momentum transferred would have been done with more than

` = 15 multipoles in the scattered field, we believe that for sub-relativistic velocities none

positive-negative transition would have appeared. Thus, the dipole approximation reproduces

the slow velocities behavior of the total momentum transferred, and we expect that attractive-

repulsive transitions for this regime must be looked up when the dipole contribution is negligible.

Further calculations on separating the electric and magnetic contributions of the total linear

momentum transferred will allow us to answer the question to which component of the electro-

magnetic field is attributed the positive-negative transition in the transverse component of the

total linear momentum transfer. Nevertheless, these calculations are out of the scope of this

thesis. Moreover, based upon models where the NP is considered as an electric quadrupole, we

believe that adding the second multipole (` = 2), of the scattered electromagnetic field, into

the calculations of the total linear momentum transferred, will recover the attractive-repulsive

transition. Some other important questions are left for future works, for instance, we have not

yet develop a theoretical description of the moving electron, so we do not know what happens to

the electron when transferring linear momentum to the NP, which may be interesting for EELS

experiments. Besides these assignments, attention must be paid to the analytical solutions of

the total linear momentum transferred which will ultimately explain the mechanism behind the

attractive-repulsive transition. Although, in this thesis we present the first steps to the analyti-

cal approach, there is a lot of work to do regarding the integrals that appear when the scattered

electromagnetic field is considered beyond the dipole approximation.
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CONCLUSIONS AND OUTLOOKS

Conclusions

In this work we have discussed important aspects concerning the total linear momentum

transferred from a swift electron to a small metallic nanoparticle within the dipole approxima-

tion. From the theoretical analysis and the numerical calculations we can conclude that:

• The computation of the total momentum transferred both analytical and numerical is a hard

task to address. In particular, if the NP’s radius or the number of multipoles in the scattered

field are increased, several numerical problems arises. For this reason, it is important to study

the contribution given by each multipole of the scattered electromagnetic field to the total

linear momentum transfer.

• In this direction, the first multipole ` = 1 in the scattered field is the beginning of our two

main goals: analytical solutions to the total momentum transferred and the description of the

interaction between the swift electron and the NP in the time domain. General behaviors of

the momentum transferred as a function of the electron’s velocity can be reproduced within

the dipole approximation, although it does not reproduce the positive-negative transition in

the transverse component of the total linear momentum transferred.

• The comparison between the dipole approximation and the pure dipole approximation point’s

out an alternative path to study the interaction between the swift electron an the NP in the

time domain. Since our construction of this interaction is in the frequency domain.

Outlooks

There are several topics left out in this thesis and which will allow a deeper understanding

of the interaction between the electromagnetic field produced by the electron and the metallic

nanoparticle. This research work shall be continued in:

• Analyzing the contribution given by higher multipoles to the scattered field. I believe, based on

models where the nanoparticle is considered as an electric quadrupole, that the next multipole

` = 2 in the scattered field will exhibit the attractive-repulsive transition, expected for the

transverse momentum transfer versus the electron’s velocity plots.
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• Separating the linear momentum transferred in electric and magnetic contributions, to proof

wether our hypothesis for the attractive-repulsive transition is correct or not.

• Studying the momentum transferred modeling the nanoparticle as a dielectric material.

• Developing calculations of the momentum transfer as a function of the electron’s impact

parameter.

• Developing theoretical expression which may help to explain what happens to the electron

and it’s trajectory when interacting with the nanoparticle.

• Studying the total angular momentum transferred from the electron to the nanoparticle, since

the external field carries angular momentum. Thus, an analysis of the total angular velocity

of the nanoparticle versus the electron’s velocity (or impact parameter) can be obtained.

• Studying the classical and semi-classical theories related to the quantification of the temper-

ature the nanoparticle reaches.



APPENDIX

A

SUPPLEMENTARY CALCULATIONS ON THE EXTENDED MIE

SOLUTION

The present Appendix is devoted to show in detail the calculations used in the development

of the extended Mie solution.

Maxwell equations in CGS units are given by [24]

∇ ·E (r; t) = 4πρtot (r; t) , ∇×E (r; t) = −1
c
∂
∂tB (r; t) ,

∇ ·B (r; t) = 0 , ∇×B (r; t) = 4π
c Jtot (r; t) + 1

c
∂
∂tE (r; t) .

(A.1)

Due to magnetic Gauss law and Faraday-Henry-Lenz law, it is known that the electric and

magnetic fields can be rewritten in terms of scalar φ(r; t) and vector A(r; t) potentials [11] as

E (r; t) = −∇φ (r; t)− 1

c

∂A (r; t)

∂t
, (A.2a)

B (r; t) = ∇×A (r; t) . (A.2b)

In the Lorentz gauge

∇ ·A(r; t) +
1

c

∂

∂t
φ(r; t) = 0, (A.3)

the potential φ(r; t) and A(r; t) satisfy the inhomogeneous wave equation, that is,

∇2φ(r; t)− 1

c2
∂2φ(r; t)

∂t2
= −4πρtot(r; t), (A.4a)

∇2A(r; t)− 1

c2
∂2A(r; t)

∂t2
= −4π

c
Jtot (r, t) . (A.4b)

On the other hand, the space and time Fourier Transform of an arbitrary well-behaved vector

function F(r; t) is given by [13]

F(k;ω) =

∫ ∞
−∞

∫ ∞
−∞

F(r; t) e−i(k·r−ωt) d3r dt, (A.5)

and its inverse is given by

F(r; t) =
1

(2π)4

∫ ∞
−∞

∫ ∞
−∞

F(k;ω) ei(k·r−ωt) d3r dt. (A.6)
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Calculating the time and space Fourier Transform to wave Eqs. (A.4), they read as

−k2φ(k;ω) +
ω2

c2
φ(k;ω) = −4πρtot(k;ω), (A.7a)

−k2A(k;ω) +
ω2

c2
A(k;ω) = −4π

c
Jtot (k, ω) , (A.7b)

and, since Jtot(r; t) = ρtot(r; t)v, the scalar and vector potentials in the frequency and reciprocal

space are given by

φ(k;ω) =
4π

k2 − ω2/c2
ρtot(k;ω), (A.8a)

A(k;ω) =
4πv/c

k2 − ω2/c2
ρtot(k;ω) =

v

c
φ(k;ω). (A.8b)

Furthermore, calculating the space and time Fourier Transform to Eq. (A.2a), the electric field

in the frequency and reciprocal space results in

E(k;ω) = −ikφ(k;ω) + i
ω

c
A(k;ω). (A.9)

Substituting Eqs. (A.8b) into (A.9) the electric field as function of the scalar potential φ in the

frequency and reciprocal space, is

E(k;ω) =

(
−ik +

i ωv

c2

)
φ(k;ω). (A.10)

Now, as it is of interest to obtain the electric field in the real space and in the frequency domain,

an inverse space Fourier Transform must be taken into Eq. (A.10), therefore

E(r;ω) =
1

(2π)3

∫ ∞
−∞

E(k;ω)eik·r d3k

=
1

(2π)3

[
−
∫ ∞
−∞

ikφ(k;ω)eik·r d3k +
i ωv

c2

∫ ∞
−∞

φ(k, ω)eik·r d3k

]
(A.11)

=

(
−∇+

i ωv

c2

)
1

(2π)3

∫ ∞
−∞

φ(k;ω)eik·r d3k =

(
−∇+

i ωv

c2

)
φ(r;ω),

where the last equality follows from the definition of the inverse space Fourier Transform of

φ(r;ω). In conclusion,

E(r;ω) =

(
−∇+

i ωv

c2

)
φ(r;ω). (A.12)

In a similar way, taking the space and time Fourier Transform to Eq. (A.2b), the magnetic field

in the frequency and reciprocal space yields

B(k;ω) = ik×A(k;ω) = ik× v

c
φ(k;ω), (A.13)

where the last equality follows form Eq. (A.8b). Thus,
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B(r;ω) =
1

(2π)3

∫ ∞
−∞

B(k;ω)eik·r d3k = ∇φ(r;ω)× v

c
. (A.14)

Let us consider the case of a traveling electron with constant velocity v = vêz and impact

parameter x0 with respect the origin. The charge density that describes such scenario is

ρtot(r; t) = −eδ(r− rt), (A.15)

with e the electron’s charge and rt = (x0, 0, vt) the electron’s position vector. Calculating

the time Fourier Transform to Eq. (A.4a) and substituting the electron’s charge density, it is

obtained that the scalar potential φ(r;ω) in the frequency domain for a moving electron with

constant velocity, satisfies the inhomogeneous Helmholtz equation, given by

∇2φ(r;ω) + k2φ(r;ω) = −4πe

∫ ∞
−∞

eiωtδ(r− rt) dt, (A.16)

leading to the solution [36]

φ(r;ω) = −e
∫
V ′
G0(r− r′)

∫ ∞
−∞

eiωtδ(r′ − rt) dt d
3r′

= −e
∫ ∞
−∞

eiωt
∫
V ′
G0(r− r′) δ(r′ − rt) d

3r′ dt (A.17)

= −e
∫ ∞
−∞

eiωtG0(r− rt) dt,

where

G0(r− rt) =
eik|r−rt|

|r− rt|
, (A.18)

is the Green function of Helmholtz equation and V ′ stands for an integration over all prime

space. Substituting Eq. (A.17) into Eq. (A.12), this gives for the electric field produced by the

electron

Eext(r;ω) = e

(
∇− i kv

c

)∫ ∞
−∞

eiωtG0(r− rt) dt. (A.19)

Indeed, Eq. (A.19) gives an alternative way, to the one presented in Section 2.1, for calculating

the electric field produced by the traveling electron, since the time Fourier Transform of the

Green function of Helmholtz equation can be performed analytically as [6]∫ ∞
−∞

eiωtG0(r− rt) dt =

∫ ∞
−∞

eiωt
eik|r−rt|

|r− rt|
dt =

2

v
K0

(
ω

vγ

√
(x− x0)2 + y2

)
eiωz/v, (A.20)

hence, substituting Eq. (A.20) into Eq. (A.19), the electric field produced by the electron in

atomic units is

Eext(r;ω) =
2

v

(
∇− i kv

c

)
K0

(
ωR

γv

)
eiωz/v, (A.21)
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On the other side, expanding Helmholtz Green’s function in terms of multipoles [6]

G0(r− rt) = 4πk

∞∑
`=1

∑̀
m=−`

i`j`(kr)h
(+)
` (krt)Y`m(Ωr)Y

∗
`m(Ωrt), (A.22)

which is only valid for r < rt and where h
(+)
` are the spherical Hankel functions of the first kind

multiplied by the imaginary unit i, as defined in [22]. Hence, substituting expansion (A.22) into

Eq. (A.20),

4πk

∞∑
`=1

∑̀
m=−`

j`(kr)Y`m(Ωr)M
+
`,m(x0, 0, 0) =

2

v
K0

(
ωR

γv

)
eiωz/v, (A.23)

with1

M+
`,m(x0, 0, 0) =

φ`,m
4πk

=

∫ ∞
−∞

eiωth
(+)
` (krt)Y

∗
`m(Ωrt) dt. (A.24)

By solving analytically Eq. (A.24), as shown in [6], it is found out that

φ`,m = 4πk
A+
`,m

ω
Km

(
ωx0
vγ

)
, (A.25)

where

A+
`,m =

1

β`+1

∑̀
j=m

(i)`−j (2`+ 1)!!α`,m

γj 2j (`− j)!
[
j−m
2

]
!
[
j+m
2

]
!
I`,mj,`−j , (A.26)

with

α`,m =

√
2`+ 1

4π

(`−m)!

(`+m)!
, (A.27)

and I`,mj,`−j are numbers satisfying the following recurrence relation

(`−m) I`,mi1,i2 = (2`− 1) I`−1,mi1,i2+1 − (`+m− 1) I`−2,mi1,i2
, (A.28)

whose initial values are given by Im−1,mi1,i2
= 0, Im−2,mi1,i2

= 0 and

Im,mi1,i2
=

{
(−1)m (2m− 1)!!B

(
i1+m+2

2 , i2+1
2

)
, if i2 is even

0, if i2 is odd,
(A.29)

where B (z, u) is the Beta function defined as [17].

1It must be noted that

M+
`,−m(x0, 0, 0) =

∫ ∞
−∞

eiωth
(+)
` (krt)Y

∗
`,−m(Ωrt) dt = (−1)mM+

`,m(x0, 0, 0),

since Y ∗`m(θ, ϕ) = (−1)mY`,−m(θ, ϕ) according to [22]. Thus, it is enough to consider m ≥ 0, and as a consequence

A+
`,−m = (−1)mA+

`,m.
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B

FLUX OF THE MAXWELL STRESS TENSOR FOR THE BARE SWIFT

ELECTRON

For numerical purposes the integration surface S related to the computation of the total

linear momentum transfer is considered as a sphere of radius R greater than the nanoparticle’s

radius a, but less than the electron’s impact parameter x0. For this reason, and as pointed out

by Stokes theorem [37], it is expected that the time and the surface integral of the external

(produced by the electron) Maxwell stress tensor is zero, that is,∫ ∞
−∞

∮
S

↔
Text · n̂ da dt = 0. (B.1)

In this Appendix such claim will be demonstrated using a covariant formalism, but let’s first

consider the static scenario where the electron and the NP are in rest.

Let us consider the electron centered at the origin and an empty volume V with surface

boundary S separated by a distance r0 = z0êz from the electron, see Fig. B.1(a). As it is well

known, the Maxwell stress tensor produced by a charge particle in rest, at a point r0 + R in the

sphere, is

↔
Text(r0 + R) =

e2

4π

(r0 + R)(r0 + R)

|r0 + R|3
−
↔
I

2

1

|r0 + R|4

 , (B.2)

and, since the sphere has surface element da = êR da, the flux of the external Maxwell stress

tensor around the empty sphere is given by

Φ ext =

∮
S(r0)

↔
Text(r0 + R) · êR da =

e2

4π

∮
S(r0)

[
(r0 + R)(r0 + R) · êR

|r0 + R|6
− 1

2

↔
I · êR
|r0 + R|4

]
da, (B.3)

with |R| = R and S(r0) stands for the integration sphere located at r0. Thus, using spherical

coordinates to parameterize the sphere, Eq. (B.3) is written as

Φ ext =
e2

8π

∫ 2π

0

∫ π

0

2z0(z0 cos θ +R)êz + (R2 − z20)êR
(z20 +R2 + 2z0R cos θ)3

R2 sin θ dθ dϕ, (B.4)

where the unit dyadic was written in the form
↔
I = êRêR+ êθêθ+ êϕêϕ. Therefore, the cartesian
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components for the flux of the external Maxwell stress tensor results in1

Φ ext · êx =
e2

4π

∫ 2π

0

∫ π

0

R2(R2 − z20)

2(z20 +R2 + 2z0R cos θ)3
êR · êx sin θ dθ dϕ (B.5)

=
e2R2(R2 − z20)

8π

∫ 2π

0
cosϕdϕ︸ ︷︷ ︸
=0

∫ π

0

sin2 θ

(z20 +R2 + 2z0R cos θ)3
dθ = 0,

Φ ext · êy =
e2

4π

∫ 2π

0

∫ π

0

R2(R2 − z20)

2(z20 +R2 + 2z0R cos θ)3
êR · êy sin θ dθ dϕ (B.6)

=
e2R2(R2 − z20)

8π

∫ 2π

0
sinϕdϕ︸ ︷︷ ︸
=0

∫ π

0

sin2 θ

(z20 +R2 + 2z0R cos θ)3
dθ = 0,

Φ ext · êz =
e2

4π

∫ 2π

0

∫ π

0

2z0(z0 cos θ +R) + (R2 − z20)êR · êz
(z20 +R2 + 2z0R cos θ)3

R2 sin θ dθ dϕ

=
e2

4

∫ π

0

2z0R+ (z20 +R2) cos θ

(z20 +R2 + 2z0R cos θ)3
sin θ dθ (B.7)

=
e2

4

{
1

(z0 −R)4
− 1

(z0 +R)4
+

[
z20 +R2

(2z0R)2

] [
z20 +R2 − 4z0R

(z0 −R)4

−z
2
0 +R2 + 4z0R

(z0 +R)4

]}
= 0.

In this way, the surface integral of the external Maxwell stress tensor over an empty volume

with boundary S enclosing or not the electron, is zero. As it should be expected in accordance

to the linear momentum conservation law [Eq. (2.58)], given that in the one hand there are not

charges and currents densities inside the volume which may feel Lorentz force, and on the other

hand a particle can not be self accelerated. Now, if a charge particle Q is added to the center of

the integration surface, by means of the Maxwell stress tensor decomposition shown in section

3.2, the flux of the stress tensor over the spherical surface, due to both charged particles, is

calculated as

Φ =

∮
S(r0)

↔
T · n da =

∮
S(r0)

[
↔
Text(r0 + R) +

↔
T in(R) +

↔
T(ext, in)(r0 + R,R)

]
· n̂ da, (B.8)

with the superindex (in) refers to the particle inside the sphere. However, the first term in

Eq. (B.8) represents the same as Eq. (B.3): Maxwell stress tensor flux of the external—to the

surface—charged particle, so it is equal to zero. The second term in Eq. (B.8) corresponds to

Eq. (B.8) setting r0 = 0, which also leads to zero. Thus, the total flux of the Maxwell stress

tensor over the sphere is only determined by the coupling term of both fields, in other words

Φ =

∮
S(r0)

↔
T · n da =

∮
S(r0)

↔
T(ext, in)(r0 + R,R) · n̂ da. (B.9)

1The flux of Maxwell stress tensor over a surface enclosing the electron is equal to zero. This statement follows
straightforward by setting up z0 = 0 in Eq. (B.4).
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In fact, by performing the integral (B.9) and taking the limit when R→ 0, Coulomb’s force law

is recovered, as anticipated for the force exerted by one charged particle onto another.

Using the results for Eq. (B.9), concerning an electron outside S and a charge Q inside S,

and recalling that the nanoparticle can be thought as a composite of N − 1 particles system

with density (see [38])

ρ(r) =

N−1∑
i=1

Qiδ(r− (r0 + Ri)), (B.10)

where Qi is the charge of particle labeled i and Ri defined in Fig. B.1(b). The flux of Maxwell

stress tensor over the surface enclosing the nanoparticle for the complete system (electron plus

charge distribution) is given by the following expression

Φ =

∮
S(r0)

[
↔
Text(r0 +R)+

N−1∑
k=1

↔
T in
k (R−Rk)+

1

2

N∑
j=1
j 6=k

N∑
k=1

↔
T(k, j)(R−Rk,R−Rj)

]
· n̂ da, (B.11)

where the last double sum takes into account the electron outside the integration sphere, that

is why the limits are extended to N particles. Again, the first and the second integrals in Eq.

(B.11) stand for the contributions given by Eq. (B.8), so they are equal to zero. Consequently,

the flux of the Maxwell stress tensor is governed by the coupling term as

Φ =
1

2

N∑
j=1
j 6=k

N∑
k=1

∮
S(r0)

↔
T(k, j)(R−Rk,R−Rj) · n̂ da. (B.12)

Which proof, at least in the static case, statement (B.1).

Figure B.1. Schematic representation of (a) the electron (yellow spot) outside the closed surface S (grey
sphere) and (b) the N − 1 charged particles Qi, which compose the nanoparticle, and the external—to
the integration surface—electron showing the elements involved in Eq. (B.12): the integration surface
S(r0) and the position vectors Ri of each particle with respect to S.

The demonstration given above left out a missing link: from the nanoparticle’s frame of
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reference the electron is moving with velocity v. Hence, an integration in space-time should be

done in order to ensure that external Maxwell stress tensor is equal to zero. Due to the difficulties

integrating the Maxwell stress tensor produced by the moving electron over a spherical surface,

this task will be addressed in the covariant formulation of classical electrodynamics, where

the covariant quantity which encompasses the conservation of energy and momentum is the

symmetrical electromagnetic energy-momentum tensor Θµν defined as [39]

Θµν =
1

4π

(
ηµβFβαF

αν +
1

4
ηµνFαβF

αβ
)
, (B.13)

which is divergenceless—in the absence of charge and current densities—and traceless. Moreover,

Fµν stands for the Faraday’s tensor and ηµν stands for the Minkowski metric tensor whose

elements are defined by the matrix

ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (B.14)

Let us denote the nanoparticle’s frame of reference by S and the electron’s frame of reference

by S′, as it is shown in Fig. 2.1. The covariant momentum 4-vector of the electromagnetic field

is defined in S as [39]

Pµ =
1

c

∫
σ

Θµν dσν , (B.15)

where σ represents a spacelike surface (three dimensional surface at time t) and dσµ the surface

element on such plane given by

dσµ = nµdσ, (B.16)

with nµ the unit normal 4-vector in the direction of the 4-velocity of S relative to S′, and dσ an

invariant surface element which can be determined by an observer in S, where nµ = (1, 0, 0, 0).

Thus in the frame of reference with normal nµ = (1, 0, 0, 0), the derivative of momentum

4-vector with respect the proper time is

dPµ

dτ
=

1

c

∫
σ

dΘµν

dτ
dσν , (B.17)

and recalling that nα = −c ∂τ∂xα = (1, 0, 0, 0), the change of momentum 4-vector with respect the

proper time is

dPµ

dτ
= −

∫
σ

dΘµν

dτ

∂τ

∂xν
dσ = −

∫
σ

∂Θµν

∂xν
dσ. (B.18)

However, in free space the symmetrical electromagnetic energy-momentum tensor is diver-

genceless, so Eq. (B.18) results in

dPµ

dτ
= −

∫
σ

∂Θµν

∂xν
dσ = 0, (B.19)

from which is followed straightforward (since Pµ is a covariant quantity) that the integral co-
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variant form of the conservation laws2 for the total electromagnetic field energy and momentum,

in a space-time region free of charge and current densities, is given by

Pµ = constant. (B.20)

Expanding Eq. (B.19) in components, it is obtained for the spatial coordinates3 in S that

dP

dτ
=

∫
σ

∂g

∂t
dσ −

∫
σ
∇ ·

↔
Text dσ = 0. (B.21)

Therefore integrating Eqs. (B.21) and using the fact that g is equal to zero far away the

integration sphere, ∫ ∞
−∞

∫
σ
∇ ·

↔
Text dσ dτ = constant. (B.22)

Nonetheless, the constant can be set up to zero since far away the surface σ there is no elec-

tromagnetic momentum inside σ. Consequently, Eq. (B.22) proof’s assertion (B.1) for any

spacelike surface σ, in particular for a sphere.

2In reference [39] a careful analysis is presented in relation to the covariant formalism and the non relativistic
treatment of the energy and momentum conservation laws for the electromagnetic field. In addition, it is demon-
strated that tensor Pµ contains all the information about the energy and momentum of the electromagnetic field
in a region of space-time, regardless the frame of reference where Pµ is computed.

3The time coordinates results in Poynting’s theorem in the reference frame S.



APPENDIX

C

PROGRAM CODE FOR CALCULATING THE TOTAL LINEAR

MOMENTUM TRANSFERRED

In the following Appendix the Python program code for calculating the total linear momen-

tum transferred from the electron to the NP, within the dipole approximation, is presented. The

program is written in atomic units, whereas the results are written in SI units.

The program works as follows:

1. The total electromagnetic field and the Maxwell stress tensor, in the dipole approximation,

are calculated for a spherical grid in accordance to the Legendre-Gauss Quadrature, as it

is shown in [40]. It is also worth to mention that Mie coefficients, Eqs. (2.53), are recast

in terms of the Riccati-Bessel functions

ψ`(x) = xj`(x), (C.1a)

ξ`(x) = xh
(+)
` (x), (C.1b)

as

tE` =

√
εi ψ` (xi)ψ

′
` (x)− ψ` (x)ψ

′
` (xi)

ξ` (x)ψ
′
` (xi)−

√
εi ψ` (xi) ξ

′
` (x)

, (C.2a)

tM` =
ψ` (xi)ψ

′
` (x)−√εi ψ` (x)ψ

′
` (xi)√

εi ξ` (x)ψ
′
` (xi)− ψ` (xi) ξ

′
` (x)

, (C.2b)

since they are more suited for numerical calculations than Eqs. (2.53) [13].

2. Then, the surface integral of Maxwell stress tensor is computed via a Legendre-Gauss

Quadrature.

3. Moreover, steps 1 and 2 are repeated for a given partition in frequency.

4. Finally, the frequency (ω) and the cartesian components of the spectral contribution (Pi)
are written in a “.dat” file.

Note: The frequency integral in Eq. (2.85) is performed later in a Mathematica notebook via

a Newton-Cotes formula, see for example [17] and [41].

60
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Program Code

0#−−−−−−L i b r a r i e s

import math

import cmath

import s c ipy . s p e c i a l as sp

import numpy as np

#−−−−−−−−−−−−−−−−−−−−−#

# General D e f i n i t i o n s #

#−−−−−−−−−−−−−−−−−−−−−#

#−−−−−−Global v a r i a b l e s

global c

10global omegap

global damping

c =137.035999139

omegap=0.555

damping=0.00555

#−−−−−−Units Conversion

global Lnmat

global Eatcgs

global Batcgs

global Oatcgs

20global DinNew

Lnmat=1/0.052917721067

Eatcgs =4.149004710E−10

Batcgs =4.149004710E−10

Oatcgs =4.13414E16

DinNew=1E−5

#−−−−−−Function Distance

def d i s t ance (x , y , b ) :

f=math . s q r t ( ( x−b)∗∗(2)+( y )∗∗ ( 2 ) )

return f ;

30#−−−−−−Function Gamma

def gamma( v ) :

f =1/(math . s q r t (1−(v/c )∗∗2) )

return f ;

#−−−−−−−−−−−−−−−−−−#

# Mie C o e f f i c i e n t s #

#−−−−−−−−−−−−−−−−−−#

#−−−−−−Function Drude Model

def Drude ( omega ) :

f =1−(omegap )∗∗2/( ( omega)∗∗2+1 j ∗omega∗damping )

40return f ;

#−−−−−−Function S p h e r i c a l Be s s e l

def jnu (n , x ) :

j20=sp . sph jn (2 , x )

j 2=j20 [ 0 ] [ 2 ]

j 1=j20 [ 0 ] [ 1 ]

j 0=j20 [ 0 ] [ 0 ]

i f n==0:

return j 0 ;

i f n==1:

50return j 1 ;

i f n==2:

return j 2 ;

#−−−−−−Function S p h e r i c a l Be s s e l
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def ynu (n , x ) :

y20=sp . sph yn (2 , x )

y2=y20 [ 0 ] [ 2 ]

y1=y20 [ 0 ] [ 1 ]

y0=y20 [ 0 ] [ 0 ]

i f n==0:

60return y0 ;

i f n==1:

return y1 ;

i f n==2:

return y2 ;

#−−−−−−Function S p h e r i c a l Hankel

def hplus (n , x ) :

j 2=jnu (2 , x )

y2=ynu (2 , x )

j 1=jnu (1 , x )

70y1=ynu (1 , x )

j 0=jnu (0 , x )

y0=ynu (0 , x )

h2=j2+1j ∗y2

h1=j1+1j ∗y1

h0=j0+1j ∗y0

hplus2=1j ∗h2

hplus1=1j ∗h1

hplus0=1j ∗h0

i f n==0:

80return hplus0 ;

i f n==1:

return hplus1 ;

i f n==2:

return hplus2 ;

#−−−−−−Fuction Psi and dPsi

def Psi ( component , x ) :

Ps i1=x∗ jnu (1 , x )

Psi0=x∗ jnu (0 , x )

dPsi1=Psi0−Psi1 /x

90i f component==”normal” :

return Psi1 ;

e l i f component==” d e r i v a t i v e ” :

return dPsi1 ;

#−−−−−−Fuction Xi and dXi

def Xi ( component , x ) :

Xi1=x∗hplus (1 , x )

Xi0=x∗hplus (0 , x )

dXi1=Xi0−Xi1/x

i f component==”normal” :

100return Xi1 ;

e l i f component==” d e r i v a t i v e ” :

return dXi1 ;

#−−−−−−Function Mie c o e f f i c i e n t s

def t1 ( component , omega , a ) :

normal=”normal”

d e r i v a t i v e=” d e r i v a t i v e ”

k0=omega/c

xx0=k0∗a
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xxi=xx0∗cmath . s q r t ( Drude ( omega ) )

110i f component==”e” :

te1aux=cmath . s q r t ( Drude ( omega ) )∗ Psi ( normal , xx i )∗ Psi ( d e r i v a t i v e , xx0)−
Psi ( normal , xx0 )∗ Psi ( d e r i v a t i v e , xx i )

te1aux2=Xi ( normal , xx0 )∗ Psi ( d e r i v a t i v e , xx i )−cmath . s q r t ( Drude ( omega ) )∗
Psi ( normal , xx i )∗Xi ( de r i v a t i v e , xx0 )

te1=te1aux / te1aux2

return te1 ;

e l i f component==”m” :

tm1aux=Psi ( normal , xx i )∗ Psi ( d e r i v a t i v e , xx0)−cmath . s q r t ( Drude ( omega ) )∗
Psi ( normal , xx0 )∗ Psi ( d e r i v a t i v e , xx i )

120tm1aux2=cmath . s q r t ( Drude ( omega ) )∗Xi ( normal , xx0 )∗ Psi ( d e r i v a t i v e , xx i )−
Psi ( normal , xx i )∗Xi ( de r i v a t i v e , xx0 )

tm1=tm1aux/tm1aux2

return tm1 ;

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

# Elect ron ’ s Elect romagnet ic F i e ld #

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

#−−−−−−Elect ron ’ s E l e c t r i c F i e ld in Cartes ian Coordinates

def Ee lec t ron ( component , x , y , z , omega , v , b ) :

i f component==’ xx ’ :

130f =−2∗(omega /( v∗∗2∗(gamma( v ) )∗ d i s t ance (x , y , b ) ) )∗
( cmath . exp (1 j ∗( omega∗z )/ v ) )∗ ( sp . k1 ( ( omega∗ d i s t ance (x , y , b ) )/

( v∗gamma( v ) ) ) ) ∗ ( x−b)

return f ;

e l i f component==’ yy ’ :

f =−2∗(omega /( v∗∗2∗(gamma( v ) )∗ d i s t ance (x , y , b ) ) )∗
( cmath . exp (1 j ∗( omega∗z )/ v ) )∗ ( sp . k1 ( ( omega∗ d i s t ance (x , y , b ) )/

( v∗gamma( v ) ) ) ) ∗ y

return f ;

e l i f component==’ zz ’ :

140f =2∗1 j ∗( omega /( v∗∗2∗(gamma( v ) )∗∗2 ) )∗ ( cmath . exp (1 j ∗( omega∗z )/ v ) )∗
( sp . k0 ( ( omega∗ d i s t ance (x , y , b ) ) / ( v∗gamma( v ) ) ) )

return f ;

#−−−−−−Elec t rons ’ s Magnetic F i e ld in Cartes ian Coordinates

def Belect ron ( component , x , y , z , omega , v , b ) :

i f component==’ xx ’ :

f =2∗(omega /( v∗gamma( v )∗ c∗ d i s t ance (x , y , b ) ) ) ∗ ( cmath . exp (1 j ∗
( omega∗z )/ v ) )∗ ( sp . k1 ( ( omega∗ d i s t ance (x , y , b ) ) / ( v∗gamma( v ) ) ) ) ∗ y

return f ;

e l i f component==’ yy ’ :

150f =−2∗(omega /( v∗gamma( v )∗ c∗ d i s t ance (x , y , b ) ) )∗
( cmath . exp (1 j ∗( omega∗z )/ v ) )∗ ( sp . k1 ( ( omega∗ d i s t ance (x , y , b ) )/

( v∗gamma( v ) ) ) ) ∗ ( x−b)

return f ;

e l i f component==’ zz ’ :

f=0

return f ;

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

# Scat te red Electromagnet ic F i e ld #

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

160#−−−−−−Scat te r ed E l e c t r i c F i e ld in S p h e r i c a l Coordinates

def Enpsph ( component , r , theta , phi , omega , v , a , b ) :

e=’ e ’

m=’m’
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k0=omega/c

i f component==’ r r ’ :

f =6∗t1 ( e , omega , a )∗ ( hplus (1 , k0∗ r )/ ( k0∗ r ) )∗
( k0 /( c∗gamma( v )∗ ( v/c )∗∗2 ) )∗ ( math . s i n ( theta )∗math . cos ( phi )∗
sp . k1 ( ( omega∗b )/( v∗gamma( v )))+(1 j /gamma( v ) )∗math . cos ( theta )∗
sp . k0 ( ( omega∗b )/( v∗gamma( v ) ) ) )

170return f ;

e l i f component==’ t t ’ :

f =3∗(k0 /( c∗gamma( v )∗ ( v/c )∗∗2 ) )∗ ( 1 j ∗ t1 (m, omega , a )∗ hplus (1 , k0∗ r )∗ ( v/c )∗
sp . k1 ( ( omega∗b )/( v∗gamma( v ) ) )∗math . cos ( phi)+t1 ( e , omega , a )∗
(2∗ hplus (1 , k0∗ r )/ ( k0∗ r)−hplus (2 , k0∗ r ) )∗ ( sp . k1 ( ( omega∗b )/( v∗gamma( v ) ) )∗
math . cos ( theta )∗math . cos ( phi )−(1 j /gamma( v ) )∗
sp . k0 ( ( omega∗b )/( v∗gamma( v ) ) )∗math . s i n ( theta ) ) )

return f ;

e l i f component==’pp ’ :

f =−3∗(k0 /( c∗gamma( v )∗ ( v/c )∗∗2) )∗math . s i n ( phi )∗
180sp . k1 ( ( omega∗b )/( v∗gamma( v ) ) ) ∗ ( t1 ( e , omega , a )∗ (2∗ hplus (1 , k0∗ r )/ ( k0∗ r)−

hplus (2 , k0∗ r ))+1 j ∗ t1 (m, omega , a )∗ hplus (1 , k0∗ r )∗ ( v/c )∗math . cos ( theta ) )

return f ;

#−−−−−−Scat te r ed E l e c t r i c F i e ld in Cartes ian Coordinates

def Enpcart ( component , r , theta , phi , omega , v , a , b ) :

r r=’ r r ’

t t=’ t t ’

pp=’pp ’

i f component==’ xx ’ :

f 1=Enpsph ( rr , r , theta , phi , omega , v , a , b )∗ ( math . s i n ( theta ) )∗ ( math . cos ( phi ) )

190f 2=Enpsph ( tt , r , theta , phi , omega , v , a , b )∗ ( math . cos ( theta ) )∗ ( math . cos ( phi ) )

f 3=Enpsph (pp , r , theta , phi , omega , v , a , b )∗ ( math . s i n ( phi ) )

f=f1+f2−f 3

return f ;

e l i f component==’ yy ’ :

f 1=Enpsph ( rr , r , theta , phi , omega , v , a , b )∗ ( math . s i n ( theta ) )∗ ( math . s i n ( phi ) )

f 2=Enpsph ( tt , r , theta , phi , omega , v , a , b )∗ ( math . cos ( theta ) )∗ ( math . s i n ( phi ) )

f 3=Enpsph (pp , r , theta , phi , omega , v , a , b )∗ ( math . cos ( phi ) )

f=f1+f2+f3

return f ;

200e l i f component==’ zz ’ :

f 1=Enpsph ( rr , r , theta , phi , omega , v , a , b )∗ ( math . cos ( theta ) )

f 2=Enpsph ( tt , r , theta , phi , omega , v , a , b )∗ ( math . s i n ( theta ) )

f=f1−f 2

return f ;

#−−−−−−Scat te r ed Magnetic F i e ld in S p h e r i c a l Coordinates

def Bnpsph ( component , r , theta , phi , omega , v , a , b ) :

e=’ e ’

m=’m’

k0=omega/c

210i f component==’ r r ’ :

f =6∗t1 (m, omega , a )∗ ( hplus (1 , k0∗ r )/ ( k0∗ r ) )∗ ( k0 /( c∗gamma( v )∗ ( v/c ) ) )∗
sp . k1 ( ( omega∗b )/( v∗gamma( v ) ) )∗math . s i n ( theta )∗math . s i n ( phi )

return f ;

e l i f component==’ t t ’ :

f =3∗(k0 /( c∗gamma( v )∗ ( v/c )∗∗2) )∗ sp . k1 ( ( omega∗b )/( v∗gamma( v ) ) )∗
math . s i n ( phi )∗ ( t1 (m, omega , a )∗ (2∗ hplus (1 , k0∗ r )/ ( k0∗ r)−hplus (2 , k0∗ r ) )∗
( v/c )∗math . cos ( theta )+1 j ∗ t1 ( e , omega , a )∗ hplus (1 , k0∗ r ) )

return f ;
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e l i f component==’pp ’ :

220f =3∗(k0 /( c∗gamma( v )∗ ( v/c )∗∗2 ) )∗ ( t1 (m, omega , a )∗ (2∗ hplus (1 , k0∗ r )/ ( k0∗ r )

−hplus (2 , k0∗ r ) )∗ ( v/c )∗ sp . k1 ( ( omega∗b )/( v∗gamma( v ) ) )∗math . cos ( phi)+

t1 ( e , omega , a )∗ hplus (1 , k0∗ r )∗ (1 j ∗ sp . k1 ( ( omega∗b )/( v∗gamma( v ) ) )∗
math . cos ( theta )∗math . cos ( phi )+(1/gamma( v ) )∗
sp . k0 ( ( omega∗b )/( v∗gamma( v ) ) )∗math . s i n ( theta ) ) )

return f ;

#−−−−−−Scat te r ed Magnetic F i e ld in Cartes ian Coordinates

def Bnpcart ( component , r , theta , phi , omega , v , a , b ) :

r r=’ r r ’

t t=’ t t ’

230pp=’pp ’

i f component==’ xx ’ :

f 1=Bnpsph ( rr , r , theta , phi , omega , v , a , b )∗ ( math . s i n ( theta ) )∗ ( math . cos ( phi ) )

f 2=Bnpsph ( tt , r , theta , phi , omega , v , a , b)∗math . cos ( theta )∗ ( math . cos ( phi ) )

f 3=Bnpsph (pp , r , theta , phi , omega , v , a , b)∗math . s i n ( phi )

f=f1+f2−f 3

return f ;

e l i f component==’ yy ’ :

f 1=Bnpsph ( rr , r , theta , phi , omega , v , a , b )∗ ( math . s i n ( theta ) )∗ ( math . s i n ( phi ) )

f 2=Bnpsph ( tt , r , theta , phi , omega , v , a , b )∗ ( math . cos ( theta ) )∗ ( math . s i n ( phi ) )

240f 3=Bnpsph (pp , r , theta , phi , omega , v , a , b )∗ ( math . cos ( phi ) )

f=f1+f2+f3

return f ;

e l i f component==’ zz ’ :

f 1=Bnpsph ( rr , r , theta , phi , omega , v , a , b )∗ ( math . cos ( theta ) )

f 2=Bnpsph ( tt , r , theta , phi , omega , v , a , b )∗ ( math . s i n ( theta ) )

f=f1−f 2

return f ;

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

# Total Electromagnet ic F i e ld #

250#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

#−−−−−−Total E l e c t r i c F i e ld in c a r t e s i a n coo rd ina t e s

def Etot ( component , r , theta , phi , omega , v , a , b ) :

x=r ∗(math . cos ( phi ) )∗ ( math . s i n ( theta ) )

y=r ∗(math . s i n ( phi ) )∗ ( math . s i n ( theta ) )

z=r ∗(math . cos ( theta ) )

i f component==’ xx ’ :

Etotx1=Ee lec t ron ( component , x , y , z , omega , v , b)

Etotx2=Enpcart ( component , r , theta , phi , omega , v , a , b )

Etotx=Etotx1+Etotx2

260return Etotx ;

e l i f component==’ yy ’ :

Etoty1=Ee lec t ron ( component , x , y , z , omega , v , b)

Etoty2=Enpcart ( component , r , theta , phi , omega , v , a , b )

Etoty= Etoty1 + Etoty2

return Etoty ;

e l i f component==’ zz ’ :

Etotz1=Ee lec t ron ( component , x , y , z , omega , v , b )

Etotz2=Enpcart ( component , r , theta , phi , omega , v , a , b )

Etotz=Etotz1+Etotz2

270return Etotz ;

#−−−−−−Total Magnetic F i e ld in c a r t e s i a n coo rd ina t e s

def Btot ( component , r , theta , phi , omega , v , a , b ) :

x=r ∗(math . cos ( phi ) )∗ ( math . s i n ( theta ) )
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y=r ∗(math . s i n ( phi ) )∗ ( math . s i n ( theta ) )

z=r ∗(math . cos ( theta ) )

i f component==’ xx ’ :

Btotx1=Belec t ron ( component , x , y , z , omega , v , b)

Btotx2=Bnpcart ( component , r , theta , phi , omega , v , a , b )

Btotx=Btotx1 + Btotx2

280return Btotx ;

e l i f component==’ yy ’ :

Btoty1=Belec t ron ( component , x , y , z , omega , v , b)

Btoty2=Bnpcart ( component , r , theta , phi , omega , v , a , b )

Btoty= Btoty1 + Btoty2

return Btoty ;

e l i f component==’ zz ’ :

Btotz1=Belec t ron ( component , x , y , z , omega , v , b )

Btotz2=Bnpcart ( component , r , theta , phi , omega , v , a , b )

Btotz=Btotz1 + Btotz2

290return Btotz ;

#−−−−−−−−−−−−−−−−−−−−−−−#

# Maxwell S t r e s s Tensor #

#−−−−−−−−−−−−−−−−−−−−−−−#

def Mij ( i , j , Ax , Ay, Az ) :

i f ( i==1 and j ==1):

f 1 =(0 .5 )∗ ( (Ax)∗ ( np . conjugate (Ax) ) )

f 2 =(0 .5)∗ (Ay∗(np . conjugate (Ay) ) )

f 3 =(0 .5)∗ (Az∗(np . conjugate (Az ) ) )

f=f1−f2−f 3

300return f ;

e l i f ( i==1 and j ==2):

f=Ax∗(np . conjugate (Ay) )

return f ;

e l i f ( i==1 and j ==3):

f=Ax∗(np . conjugate (Az ) )

return f ;

e l i f ( i==2 and j ==1):

f=Ay∗(np . conjugate (Ax) )

return f ;

310e l i f ( i==2 and j ==2):

f 1 =(0 .5)∗ (Ax∗(np . conjugate (Ax) ) )

f 2 =(0 .5)∗ (Ay∗(np . conjugate (Ay) ) )

f 3 =(0 .5)∗ (Az∗(np . conjugate (Az ) ) )

f=f2−f1−f 3

return f ;

e l i f ( i==2 and j ==3):

f=Ay∗(np . conjugate (Az ) )

return f ;

e l i f ( i==3 and j ==1):

320f=Az∗(np . conjugate (Ax) )

return f ;

e l i f ( i==3 and j ==2):

f=Az∗(np . conjugate (Ay) )

return f ;

e l i f ( i==3 and j ==3):

f 1 =(0 .5)∗ (Ax∗(np . conjugate (Ax) ) )

f 2 =(0 .5)∗ (Ay∗(np . conjugate (Ay) ) )

f 3 =(0 .5)∗ (Az∗(np . conjugate (Az ) ) )
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f=f3−f1−f 2

330return f ;

#−−−−−−−−−−−−−−−−#

# S p h e r i c a l Grid #

#−−−−−−−−−−−−−−−−#

def sphe rg r id (n ) :

g r i d=np . z e ro s ( ( n ,2∗n , 2 ) )

deg=n

deg2=2∗n
x ,w=np . polynomial . l e gendre . l e ggaus s ( deg )

x2 , w2=np . polynomial . l e gendre . l e ggaus s ( deg2 )

340for i in range ( len ( x ) ) :

theta=math . p i ∗( x [ i ]+1 . 0 )/2 . 0

for j in range ( len ( x2 ) ) :

phi= math . p i ∗( x2 [ j ]+1 .0)

g r id [ i ] [ j ] [ 0 ] = theta

g r id [ i ] [ j ] [ 1 ] = phi

return g r id

#−−−−−−#

# Main #

#−−−−−−#

350#f i l e 2=open ( ’ EBtot . dat ’ , ’w ’ )

xx=’ xx ’

yy=’ yy ’

zz=’ zz ’

#−−−−−−I n t e g r a t i o n Var iab l e s

i n t r a d i u s =1.05 #nm

beta =0.99

v=beta ∗c #atomic

a=1. #nm

b=1.5 #nm

360f i l e 1=open( ’ dP a=%snm v=%sc b=%snm . dat ’ % ( a , beta , b ) , ’w ’ )

#−−−−−−Omega P a r t i t i o n

omegai=1E−6

omegai2=0

omegaf =0.8

nomega=100

nomega2=1000

homega=(omegaf−omegai )/ nomega

homega2=(omegaf−omegai )/ nomega2

omegadipolar=omegap/math . s q r t (3 )

370#−−−−−−Theta and Phi P a r t i t i o n s

ntheta=20

nphi=2∗ntheta

deg=ntheta

deg2=nphi

x ,w=np . polynomial . l e gendre . l e ggaus s ( deg )

x2 , w2=np . polynomial . l e gendre . l e ggaus s ( deg2 )

g r id=np . z e r o s ( ( ntheta , nphi , 2 ) )

g r id=sphe rg r id ( ntheta )

#−−−−−− I n i t i a l i z i n g

380dPEx , dPEx1 , dPEx2 , dPEx3 , dPEx4=0 ,0 ,0 ,0 ,0

dPEy , dPEy1 , dPEy2 , dPEy3 , dPEy4=0 ,0 ,0 ,0 ,0

dPEz , dPEz1 , dPEz2 , dPEz3 , dPEz4=0 ,0 ,0 ,0 ,0

dPBx , dPBx1 , dPBx2 , dPBx3 , dPBx4=0 ,0 ,0 ,0 ,0
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dPBy , dPBy1 , dPBy2 , dPBy3 , dPBy4=0 ,0 ,0 ,0 ,0

dPBz , dPBz1 , dPBz2 , dPBz3 , dPBz4=0 ,0 ,0 ,0 ,0

omega=omegai

omegaprint , i , iprev , iprev2 , l =0 ,0 ,0 ,0 ,1

#−−−−−−Sur face I n t e g r a l

while ( omega<=omegaf ) :

390i f ( omega>=omegadipolar −0.01 and omega<=omegadipolar +0.01) :

omega=omegai2+l ∗homega2

omegaprint=nomega2

omegai=omega

iprev2=ipr ev

l=l+1

i=1

else :

omega=omegai+i ∗homega

omegaprint=nomega

400omegai2=omega

ip r ev=i

i=i+1

for j in range (0 , ntheta ) :

i f ( omegaprint==nomega ) :

print ( ”%s/%s − %s \n” % ( i+iprev2 , omegaprint , j ) )

e l i f ( omegaprint==nomega2 ) :

print ( ”%s/%s − %s \n” % ( l , omegaprint , j ) )

for k in range (0 , nphi ) :

theta=gr id [ j ] [ k ] [ 0 ]

410phi=gr id [ j ] [ k ] [ 1 ]

#−−−−−Total F i e l d s

Etotx=Etot ( xx , i n t r a d i u s ∗Lnmat , theta , phi , omega , v , a∗Lnmat , b∗Lnmat)∗Eatcgs

Etoty=Etot ( yy , i n t r a d i u s ∗Lnmat , theta , phi , omega , v , a∗Lnmat , b∗Lnmat)∗Eatcgs

Etotz=Etot ( zz , i n t r a d i u s ∗Lnmat , theta , phi , omega , v , a∗Lnmat , b∗Lnmat)∗Eatcgs

Btotx=Btot ( xx , i n t r a d i u s ∗Lnmat , theta , phi , omega , v , a∗Lnmat , b∗Lnmat)∗Batcgs

Btoty=Btot ( yy , i n t r a d i u s ∗Lnmat , theta , phi , omega , v , a∗Lnmat , b∗Lnmat)∗Batcgs

Btotz=Btot ( zz , i n t r a d i u s ∗Lnmat , theta , phi , omega , v , a∗Lnmat , b∗Lnmat)∗Batcgs

#−−−−−X Component

#E l e c t r i c

420dPEx1=(Mij (1 , 1 , Etotx , Etoty , Etotz ) ) ∗ ( ( math . s i n ( theta ) )∗∗2)∗
(math . cos ( phi ) )

dPEx2=(Mij (1 , 2 , Etotx , Etoty , Etotz ) ) ∗ ( ( math . s i n ( theta ) )∗∗2)∗
(math . s i n ( phi ) )

dPEx3=(Mij (1 , 3 , Etotx , Etoty , Etotz ) )∗ ( math . s i n ( theta ) )∗
(math . cos ( theta ) )

dPEx4=dPEx1+dPEx2+dPEx3

dPEx=(dPEx4 . r e a l )∗w[ j ]∗w2 [ k ] ∗ ( ( math . p i )∗∗2 ./2 . )+dPEx

#Magnetic

dPBx1=(Mij (1 , 1 , Btotx , Btoty , Btotz ) ) ∗ ( ( math . s i n ( theta ) )∗∗2)∗
430(math . cos ( phi ) )

dPBx2=(Mij (1 , 2 , Btotx , Btoty , Btotz ) ) ∗ ( ( math . s i n ( theta ) )∗∗2)∗
(math . s i n ( phi ) )

dPBx3=(Mij (1 , 3 , Btotx , Btoty , Btotz ) )∗ ( math . s i n ( theta ) )∗
(math . cos ( theta ) )

dPBx4=dPBx1+dPBx2+dPBx3

dPBx=(dPBx4 . r e a l )∗w[ j ]∗w2 [ k ] ∗ ( ( math . p i )∗∗2 ./2 . )+dPBx

#−−−−−Y Component

#E l e c t r i c
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dPEy1=(Mij (2 , 1 , Etotx , Etoty , Etotz ) ) ∗ ( ( math . s i n ( theta ) )∗∗2)∗
440(math . cos ( phi ) )

dPEy2=(Mij (2 , 2 , Etotx , Etoty , Etotz ) ) ∗ ( ( math . s i n ( theta ) )∗∗2)∗
(math . s i n ( phi ) )

dPEy3=(Mij (2 , 3 , Etotx , Etoty , Etotz ) )∗ ( math . s i n ( theta ) )∗
(math . cos ( theta ) )

dPEy4=dPEy1+dPEy2+dPEy3

dPEy=(dPEy4 . r e a l )∗w[ j ]∗w2 [ k ] ∗ ( ( math . p i )∗∗2 ./2 . )+dPEy

#Magnetic

dPBy1=(Mij (2 , 1 , Btotx , Btoty , Btotz ) ) ∗ ( ( math . s i n ( theta ) )∗∗2)∗
(math . cos ( phi ) )

450dPBy2=(Mij (2 , 2 , Btotx , Btoty , Btotz ) ) ∗ ( ( math . s i n ( theta ) )∗∗2)∗
(math . s i n ( phi ) )

dPBy3=(Mij (2 , 3 , Btotx , Btoty , Btotz ) )∗ ( math . s i n ( theta ) )∗
(math . cos ( theta ) )

dPBy4=dPBy1+dPBy2+dPBy3

dPBy=(dPBy4 . r e a l )∗w[ j ]∗w2 [ k ] ∗ ( ( math . p i )∗∗2 ./2 . )+dPBy

#−−−−−Z Component

#E l e c t r i c

dPEz1=(Mij (3 , 1 , Etotx , Etoty , Etotz ) ) ∗ ( ( math . s i n ( theta ) )∗∗2)∗
(math . cos ( phi ) )

460dPEz2=(Mij (3 , 2 , Etotx , Etoty , Etotz ) ) ∗ ( ( math . s i n ( theta ) )∗∗2)∗
(math . s i n ( phi ) )

dPEz3=(Mij (3 , 3 , Etotx , Etoty , Etotz ) )∗ ( math . s i n ( theta ) )∗
(math . cos ( theta ) )

dPEz4=dPEz1+dPEz2+dPEz3

dPEz=(dPEz4 . r e a l )∗w[ j ]∗w2 [ k ] ∗ ( ( math . p i )∗∗2 ./2 . )+dPEz

#Magnetic

dPBz1=(Mij (3 , 1 , Btotx , Btoty , Btotz ) ) ∗ ( ( math . s i n ( theta ) )∗∗2)∗
(math . cos ( phi ) )

dPBz2=(Mij (3 , 2 , Btotx , Btoty , Btotz ) ) ∗ ( ( math . s i n ( theta ) )∗∗2)∗
470(math . s i n ( phi ) )

dPBz3=(Mij (3 , 3 , Btotx , Btoty , Btotz ) )∗ ( math . s i n ( theta ) )∗
(math . cos ( theta ) )

dPBz4=dPBz1+dPBz2+dPBz3

dPBz=(dPBz4 . r e a l )∗w[ j ]∗w2 [ k ] ∗ ( ( math . p i )∗∗2 ./2 . )+dPBz

#−−−−−Writing the (omega , dPx , dPy , dPz) in a . dat f i l e in SI

dPx=((( i n t r a d i u s ∗1E−7)/(2∗math . p i ) )∗∗2 )∗ (dPEx+dPBx)

dPy=((( i n t r a d i u s ∗1E−7)/(2∗math . p i ) )∗∗2 )∗ (dPEy+dPBy)

dPz=((( i n t r a d i u s ∗1E−7)/(2∗math . p i ) )∗∗2 )∗ ( dPEz+dPBz)

f i l e 1 . wr i t e ( ”%s %s %s %s \n” % ( omega∗Oatcgs , dPx∗DinNew , dPy∗DinNew , dPz∗DinNew ) )

480#−−−−−− I n i t i a l i z i n g

dPEx , dPEx1 , dPEx2 , dPEx3 , dPEx4=0 ,0 ,0 ,0 ,0

dPEy , dPEy1 , dPEy2 , dPEy3 , dPEy4=0 ,0 ,0 ,0 ,0

dPEz , dPEz1 , dPEz2 , dPEz3 , dPEz4=0 ,0 ,0 ,0 ,0

dPBx , dPBx1 , dPBx2 , dPBx3 , dPBx4=0 ,0 ,0 ,0 ,0

dPBy , dPBy1 , dPBy2 , dPBy3 , dPBy4=0 ,0 ,0 ,0 ,0

dPBz , dPBz1 , dPBz2 , dPBz3 , dPBz4=0 ,0 ,0 ,0 ,0

dPx , dPy , dPz=0 ,0 ,0
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[29] M. I. Marković and A. D. Rakić, “Determination of optical properties of aluminium includ-

ing electron reradiation in the Lorentz-Drude model”, Opt. Laser Technol, 22 (6), 394-398

(1990).



72 Bibliography

[30] S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer, United States, 2007).
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H
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Lorentz transformations

Lorentz factor, 6
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principle of relativity, 5

spacetime events, 7
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Maxwell equations, 51

Maxwell stress tensor
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external flux, 55
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scattered contribution, 28

time Fourier Transform, 19
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O
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Phenomenological damping constant, 36, 39
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Plasmons
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Polarizability, 42
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Poynting vector, 18

Poynting’s theorem, 59

Programming code, 60

Proper time, 58

Pure dipole approximation, 41

R
Reciprocal space, 52

REELS, 39

Resonance frequency

`-mode, 35

Drude material, 37
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dipolar plasmon mode, 37
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multipole representation, 35

scalar function method, 14

scalar functions, 13

scattering coefficients, 16, 45

second multipole, 48

SERS, 1

Size parameter, 16, 45

Small particle limit, 35, 46

Spacelike surface, 58

Spectral contribution

analytical solutions, 33

decomposition, 28

Spherical Bessel functions, 14

behavior at origin, 35

Spherical Hankel functions, 16

behavior at origin, 35

Spherical harmonic functions, 14

STEM

attraction, 2

beam current, 3

coalescence, 1

effective impact parameter, 2

electron beams, 1

gold NPs, 1

repulsion, 2

scanning process, 3

Stokes theorem, 55

Symmetrical electromagnetic

energy-momentum tensor, 58

T
Total angular momentum, 17

Total angular momentum transferred, 50

Total charge distribution, 51

Total current distribution, 51

Total linear momentum transferred

attraction-repulsion, 45

comparison, 47–48

computation steps, 23

dielectric NP

MgO, 34

SiC, 34

Dipole approximation, 42

integration surface, 18

integration volume, 18

large impact parameters, 44

metallic NP

Al, 35

Au, 35

Pure dipole approximation, 42

push or pull, 1

spectral contribution, 22

time domain, 45

U
Ultra-relativistic limit, 47

Unit dyadic, 18

V
Vector potential, 51

Velocity 4-vector, 58

W
Wave 4-vector, 9
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