

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA

Absorción de metales en anillos de árboles de zonas volcánicas

T E S I S QUE PARA OBTENER EL TÍTULO DE: BIÓLOGO P R E S E N T A:

ARMANDO DANIEL ANGELES SALINAS

DIRECTORA DE TESIS M. en C. GALIA GONZÁLEZ HERNÁNDEZ

ASESOR INTERNO M. en C. GERMÁN CALVA VÁSQUEZ

Ciudad de México, 2017

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

FACULTAD DE ESTUDIOS SUPERIORES

"ZARAGOZA"

Vniveradad Nacional AvFnºma de Mexico DIRECCIÓN

H. Y and

JEFE DE LA UNIDAD DE ADMINISTRACIÓN ESCOLAR P R E S E N T E.

Comunico a usted que el alumno ANGELES SALINAS ARMANDO DANIEL, con número de cuenta 307111681, de la carrera de Biología, se le ha fijado el día 19 de septiembre de 2017 a las 09:00 hrs., para presentar examen profesional, el cual tendrá lugar en esta Facultad con el siguiente jurado:

PRESIDENTE M. en C. ARMANDO CERVANTES SANDOVAL

VOCAL M. en C. GALIA GONZÁLEZ HERNÁNDEZ*

SECRETARIO M. en C. GERMÁN CALVA VÁSQUEZ

SUPLENTE Dra. ESTHER MATIANA GARCÍA AMADOR

SUPLENTE Dr. EFRAÍN REYES ÁNGELES CERVANTES

El título de la tesis que presenta es: Absorción de metales en anillos de árboles de zonas volcánicas.

Opción de titulación: Tesis

Agradeceré por anticipado su aceptación y hago propia la ocasión para saludarle.

DE BETUDIOS ATENTAMENTE 124 63 "POR MI RAZA HABLARA EL ESPÍRITU" -3 Ciudad de México, a 07 de agosto de 2017 a 12 02 DR. VICTOR MANUEL MENDOZA NUÑEZRAGOZA ECCION DIRECTOR VO. BO. RECIBÍ OFICINA DE EXÁMENES M. en C. ARMANDO CERVANTES SANDOVAL PROFESIONALES Y DE GRADO JEFE DE CARRERA

Este trabajo se lo dedico a mi Familia. Gracias por su amor, apoyo y comprensión.

Agradecimientos

A la Universidad Nacional Autónoma de México y a la Facultad de Estudios Superiores Zaragoza por mi formación académica.

A la M. en C. Galia González Hernández por darme la oportunidad de desarrollar este trabajo.

A la M. en C. Galia González Hernández y al M. en C. Germán Calva Vásquez por su apoyo y dirección en este trabajo de tesis.

Al laboratorio de Geoquímica Ambiental del Instituto de Geología de la UNAM por brindarme el espacio para desarrollar el trabajo experimental de mi tesis, así mismo, quiero agradecer al M. en C. Luis Gerardo Martínez Jardines, al M. en C. Daniel Ramos Pérez y a la QFB Fabiola Vega García por todo su apoyo durante mi estancia en el laboratorio.

Al M. en D.R. Christian Arnulfo Angeles Salinas y a la Bióloga Adonis Mingüer Rodríguez por su apoyo en la redacción de este trabajo.

Al Dr. Efraín Reyes Ángeles Cervantes, al M. en C. Armando Cervantes Sandoval y a la Dra. Esther Matiana García Amador por sus observaciones y comentarios que ayudaron a enriquecer el contenido de este trabajo.

Y al Instituto de Geofísica de la UNAM por la beca que me fue otorgada.

ÍNDICE

RESUMEN		
INTRO	DUCCIÓN	3
a.	Planteamiento del problema	6
b.	Objetivos	9
	i. General	9
	ii. Particulares	9
c.	Hipótesis	9
MAR	CO TEÓRICO	10
a.	Pinus hartwegii Lindl	10
	i. Taxonomía	11
	ii. Reconocimiento en campo	11
	iii. Estructura de la madera	14
	iv. Distribución	18
	v. Importancia ecológica	20
b.	Actividad volcánica	21
	i. Volcanes de México	21
	ii. Volcán Popocatépetl	21
	iii. Naturaleza de las erupciones volcánicas	23
	iv. Los volcanes y el clima	24
	v. Monitoreo volcánico	24
c.	Biomonitores	25
d.	Dendrocronología	25
	i. Base del método	26
	ii. Fundamentos dendrocronológicos	26
	iii. Fechado cruzado (<i>cross-dated</i>)	28
	iv. Dendroquímica	29
e.	Historia de los métodos espectroscópicos de análisis	30
	JMEN INTRO a. b. c. MAR a. b. c. d.	JMEN INTRODUCCIÓN a. Planteamiento del problema b. Objetivos i. General ii. Particulares c. Hipótesis MARCO TEÓRICO a. Pinus hartwegii Lindl i. Taxonomía ii. Reconocimiento en campo iii. Estructura de la madera iv. Distribución v. Importancia ecológica b. Actividad volcánica i. Volcanes de México ii. Naturaleza de las erupciones volcánicas iv. Los volcanes y el clima v. Monitoreo volcánico. c. Biomonitores d. Dendrocronología ii. Fundamentos dendrocronológicos iii. Fechado cruzado (cross-dated). iv. Dendroquímica e. Historia de los métodos espectroscópicos de análisis

	i. Fluorescencia de rayos X (FRX)	.30
	ii. Aplicaciones de la FRX portátil	.31
	f. Área de estudio	.33
III.	ANTECEDENTES	.35
IV.	METODOLOGÍA	.37
	a. Selección y tratamiento de las muestras	.37
	b. Dendrocronología	.38
	i. Identificación y conteo de los anillos de crecimiento anual	.38
	c. Fluorescencia de Rayos X portátil	.42
	i. Calibración del equipo de Fluorescencia de Rayos X portátil	.42
	ii. Análisis químico de los anillos de crecimiento anual	.44
V.	RESULTADOS Y DISCUSIÓN	.46
	a. Evaluación del potencial dendrocronológico de Pinus hartwegii Lindl	.46
	i. Influencia de las variables climáticas (temperatura y precipitación)	
	en el crecimiento de Pinus hartwegii Lindl	.47
	ii. Relación de la actividad volcánica con la dendrocronología	.49
	b. Absorción de metales en los anillos de Pinus Hartwegii Lindl	.51
	i. Potasio	.52
	ii. Manganeso	.54
	iii. Calcio	.56
	iv. Estroncio	.58
	v. Hierro	.60
	vi. Titanio	.62
	vii. Zinc	.64
	viii. Cobre	.66

VI.	CONCLUSIONES
VII.	LITERATURA CITADA
ANEXO	S 90
ANEXO de Hojas	I. Material de Referencia Estándar internacional de Agujas de Pino SRM 1575a y de Durazno SRM 154790
ANEXO	II. Nomenclatura de las muestras colectadas101
ANEXO internos j	III. Curvas de calibración (K, Mn, Ca, Sr, Fe, Ti, Zn y Cu) de los estándares para el equipo de FRX portátil
ANEXO	IV. Resultados de las concentraciones elementales de cada viruta analizada114
ANEXO elemento	V. Tablas con los valores de los coeficientes de correlación de Pearson entre s analizados para cada viruta
ANEXO variables	VI. Tablas con los valores de los coeficientes de correlación de Pearson entre climáticas y la estandarización de los anillos de crecimiento
ANEXO 2014a	VII. Graficas de fechado cruzado realizado con el software WinDENDRO density
Índice de	e Figuras
Figura 1.	Erupción de cenizas del volcán Popocatépetl8
Figura 2.	Bosque comunales de <i>Pinus hartwegii</i> Lindl13
Figura 3.	Estructura de un tronco en un corte transversal17

Figura 4. Distribución de <i>Pinus hartweii</i> Lindl. en México18
Figura 5. Perfil de las comunidades vegetales en la Sierra Nevada19
Figura 6. Localización del volcán Popocatépetl22
Figura 7. Esquema de un fechado cruzado (cross dating) usando graficas de crecimiento de los anillos
Figura 8. Forma en la que opera el equipo de Fluorescencia de Rayos X portátil XL3t Ultra
Figura 9. Muestras colectadas, montadas en los bastidores, lijadas y pulidas
Figura 10. Escaneo de muestras
Figura 11. Conteo de la serie de anillos de crecimiento
Figura 12. Fechado cruzado (cross dating) entre series de crecimiento con una correlación de 0.8333
Figura 13. Grafica de la distribución normal de los anillos de crecimiento medidos41
Figura 14. Elaboración de los estándares internos43
Figura 15. Vista de los anillos a través de la cámara del equipo de FRX portátil44
Figura 16. Análisis elemental de las virutas con el equipo de FRX portátil Thermo Scientific Niton XL3t Ultra

Figura 17. Grosor promedio de los anillos de crecimiento en Pinus hartwegii Lindl. de
1943 a 2014
Figura 18. Diagrama de la correlación de Pearson47
Figura 19. Grosor estandarizado de los anillos de crecimiento de 1943 a 2013
Figura 20. Variaciones climáticas de 1943 a 2009 en Amecameca de Juárez
Figura 21. Muestras dañadas por ceniza volcánica caliente
Figura 22.Concentración de K en los anillos (resolución anual) y grosor de los anillos52
Figura 23. Concentración de Potasio, A) resolución anual, B) resolución bienal y C) resolución quinquenal
Figura 24. Concentración de Mn en los anillos (resolución anual) y grosor de los anillos54
Figura 25. Concentración de Manganeso, A) resolución anual, B) resolución bienal y C) resolución quinquenal
Figura 26. Concentración de Ca en los anillos (resolución anual) y grosor de los anillos56
Figura 27. Concentración de Calcio, A) resolución anual, B) resolución bienal y C) resolución quinquenal
Figura 28. Concentración de Sr en los anillos (resolución anual) y grosor de los anillos58
Figura 29. Concentración de Estroncio, A) resolución anual, B) resolución bienal y C) resolución quinquenal

Figura 30. Concentración de Fe en los anillos (resolución anual) y grosor de los anillos60

Figura 31. Concentración de Hierro, A) resolución anual, B) resolución bienal y C) resolución quinquenal		
Figura 32. Concentración de Ti en los anillos (resolución anual) y grosor de los anillos62		
Figura 33. Concentración de Titanio, A) resolución anual, B) resolución bienal y C) resolución quinquenal		
Figura 34. Concentración de Zn en los anillos (resolución anual) y grosor de los anillos64		
Figura 35. Concentración de Zinc, A) resolución anual, B) resolución bienal y C) resolución quinquenal		
Figura 36. Concentración de Cu en los anillos (resolución anual) y grosor de los anillos		
Figura 37. Concentración de Cobre, A) resolución anual, B) resolución bienal y C) resolución quinquenal		
Figura 38. Comportamiento del Mn, Fe y Cu del periodo 1984 a 2014		
Índice de Cuadros		
Cuadro 1. Taxonomía de Pinus hartwegii Lindl11		
Cuadro 2. Composición de los estándares internos		

Cuadro 3. Edad de los árboles	17
-------------------------------	----

Cuadro 4. Correlación de Pearson elaborada con el software estadístico SPSS con un nivel de confianza del 0.05 entre las variables climáticas y el grosor de los anillos estandarizados47

RESUMEN

La actividad del volcán Popocatépetl iniciada en diciembre de 1994 se ha caracterizado por explosiones, exhalaciones y emisiones de ceniza y gases. Estas cenizas se han depositado en el suelo alterando la composición química del mismo, favoreciendo la disponibilidad de ciertos elementos químicos para ser absorbidos por los árboles, en este caso *Pinus hartwegii* Lindl. Esta especie suele producir un anillo de crecimiento cada año, en los cuales, se quedan registrados los elementos químicos relacionados con emisiones volcánicas pasadas.

La presente tesis de investigación analiza el potencial dendrocronológico y dendroquímico del Pino de altura (*Pinus hartwegii* Lindl.) en la zona de Tlamacas, Parque Nacional Iztaccíhuatl Popocatépetl.

El trabajo se desarrolló con virutas obtenidas del Pino de altura, en las cuales se contaron, midieron y fecharon los anillos de crecimiento anual empleando el Software WinDENDRO density 2014a con ayuda de un escáner Epson modelo Perfection V800 Photo. Los anchos de cada anillo de crecimiento, de 1943 a 2009, se estandarizaron para remover el crecimiento producido por la edad del árbol o cambios en la geometría del mismo, con la finalidad de observar la influencia climática y otros factores ambientales que están determinando su crecimiento. Se observó que no existe una estrecha relación entre las variables climáticas (temperatura y precipitación) con el crecimiento de los anillos, debido a la caída de ceniza y emisiones de CO₂ durante los periodos eruptivos, los cuales influyen en el crecimiento de los árboles.

Utilizando el equipo de Fluorescencia de Rayos X portátil Thermo Scientific Niton XL3t Ultra se determinaron las concentraciones de K, Ca, Sr, Cu, Zn, Fe, Mn y Ti en los anillos de crecimiento para el periodo de 1984 a 2014; se observó que a partir de 1994 las concentraciones de Mn, Fe, Ti y Cu aumentaron, mientras que las de K, Ca, Sr y Zn disminuyeron con relación a los anillos de años anteriores al periodo eruptivo, lo cual probablemente se deba a la acidificación del suelo, causada por la presencia de ceniza.

Se concluyó que *Pinus hartweggi* Lindl. es capaz de registrar en su estructura evidencia de emisiones volcánicas pasadas, y que el equipo de Fluorescencia de Rayos X portátil Thermo Scientific Niton XL3t Ultra es una alternativa útil y económica para realizar estudios dendroquímicos.

I. INTRODUCCIÓN

Las erupciones volcánicas afectan las condiciones atmosféricas y la ecología del suelo, mediante las emanaciones gaseosas o las lluvias de ceniza, generando un impacto en el medio ambiente, determinando la composición y las propiedades de la madera de los árboles que crecen en la región (Cruz-Muñoz *et al.*, 2007; Renfrew y Bahn, 2007).

Desde 1994 el Popocatépetl ha presentado numerosas erupciones las cuales han producido lluvia de ceniza y lapilli en las poblaciones cercanas, produciendo depósitos discontinuos que cubren, en forma amplia, la topografía (Ivlev *et* al., 1995; Macías, 2005; Espinasa, 2012; Martín del Pozzo y Mendiola, 2014; Quaas *et al.*, 2014). En erupciones estudiadas con rigor se ha observado que el H₂O, CO₂ y SO₂ son los principales componentes gaseosos, mientras que, entre los componentes de menor concentración, se encuentran Ar, He, Cl₂, N₂, O₂ y H₂. Los sublimados, cuyos compuestos más frecuentes son cloruros y sulfatos (de Na, K, Ca, Mg, Al y Fe), así como algunos óxidos (de Si y Fe), constituyen aerosoles que se depositan como costras en el suelo. Estos compuestos pueden incorporarse al ecosistema a través del agua del deshielo de la parte superior del volcán y quedar disponibles para ser absorbidos por los árboles (Araña y Ortiz, 1984; Calva-Vázquez *et al.*, 2007).

La mayoría de los árboles producen un nuevo anillo de madera cada año y esos círculos de crecimiento pueden verse con facilidad en un corte transversal del tronco de un árbol talado. Estos anillos no tienen el mismo grosor, debido a que se hacen más estrechos a medida que aumenta la edad del árbol y porque el crecimiento sufre las fluctuaciones del clima (Renfrew y Bahn, 2007).

La dendrocronología es la ciencia que se encarga de estudiar el número y crecimiento de los anillos de los árboles. Teniendo una particular importancia en la reconstrucción climática, correlacionando el crecimiento de los anillos como resultado de los cambios ambientales. Los estudios dendrocronológicos son cada vez más comunes en México, particularmente en bosques de coníferas del género *Pinus*, debido a la capacidad de sus especies para producir anillos de crecimiento anual bien definidos (Villanueva *et al.*, 2015).

El pino de altura (*Pinus hartwegii* Lindl.) es la especie arbórea propia de las grandes altitudes o límite de la distribución alpina, en volcanes y áreas montañosas que superan los 3,000 msnm, principalmente en el centro de México. En estos lugares, los suelos en general son de origen volcánico y poco desarrollados. No obstante, árboles con más de 400 años se han detectado en el Nevado de Colima, Cofre de Perote y Pico de Orizaba. En Cerro Potosí, Nuevo León, se localizaron ejemplares con más de 600 años de edad que con seguridad son los más longevos conocidos de dicho taxón (Villanueva *et al.*, 2010).

Es posible realizar estudios dendroquímicos para conocer los elementos que componen a cada anillo y llevar un registro de sus concentraciones año con año (Copenheaver y Abrams, 2003; Cruz-Muñoz *et al.*, 2007). En estudios dendroquímicos la técnica de fluorescencia de rayos X puede ser conveniente debido a que "realiza un análisis simultáneo de múltiples elementos con una buena sensibilidad" (Rouessac, 2003).

La fluorescencia de Rayos X es utilizada en el análisis químico para obtener información cualitativa o cuantitativa acerca de la composición elemental de la muestra. El fundamento del método se basa en irradiar la muestra con un haz de rayos X o bien por un bombardeo de partículas, generalmente electrones. Los rayos X poseen una energía tal que al incidir sobre la muestra pueden ionizarla expulsando electrones de las capas más internas, estos iones son altamente inestables y esas vacantes son ocupadas por electrones de capas superiores en cascada. Estos saltos de electrones de un nivel de mayor energía a uno de menor desprenden una radiación característica que es la fluorescencia de rayos X, formando un espectro característico para cada elemento (Rouessac, 2003; Gutiérrez-Ginés, 2010).

Existe una amplia variedad de analizadores e instrumentos polivalentes que abarcan desde instrumentos móviles y poco sofisticados hasta espectrómetros muy complejos de rayos X adaptados a microscopios electrónicos de barrido para realizar análisis casi puntuales o cartografías químicas (Rouessac, 2003). El Niton XL3t Ultra analizador portátil Thermo Scientific de fluorescencia de rayos X combina la electrónica con un diseño ergonómico y un software fácil de usar, capaz de proporcionar un análisis rápido y confiable, además de la posibilidad de mantener integra la muestra que se quiere analizar. La posibilidad de hacer un análisis directo y rápido de una gran cantidad de materiales, explica el éxito de este método no destructivo.

En general los árboles se pueden considerar como instrumentos capaces de registrar todos los fenómenos que ocurren en el medio que los rodea (Villanueva *et al.*, 2004), y son la dendrocronología junto con la dendroquímica las disciplinas que nos permiten interpretar dicho registro ambiental.

a. Planteamiento del problema

El volcán Popocatépetl (Figura 1) se encuentra a 70 km al sureste de la Ciudad de México y desde diciembre de 1994 ha aumentado significativamente su actividad eruptiva, teniendo que ser supervisado continuamente. Varias exhalaciones de gases, polvo y cenizas han logrado alcanzar zonas de la Ciudad de México, Estado de México, Morelos y Puebla. Estos eventos han afectado las condiciones atmosféricas del entorno, perturbando también, las condiciones ecológicas de los suelos (Cruz-Muñoz *et al.*, 2007; Juárez, *et al.* 2003; Marin- Armengol, 2008).

Las 25 millones de personas que habitan a menos de 100 km del cráter del Popocatépetl, lo convierten en uno de los volcanes más peligrosos del planeta (Franco-Corona, 2015). Por lo tanto, localizar los cambios físicos o químicos que anteceden la actividad del volcán son de particular interés. Martín del Pozzo en 2012 mencionó que la actividad del volcán Popocatépetl, que comenzó el 21 de diciembre de 1994, fue precedida por cambios en temperatura y concentración de sulfatos y cloruros en el lago del cráter y en la presión parcial de CO_2 (p CO_2) de los manantiales, además de un descenso en el pH varios meses antes de la erupción.

Además, determinar la historia eruptiva es trascendental para conocer el comportamiento del volcán, por ejemplo, antes de 1980 se consideraba al monte St. Helens uno de los volcanes de la sierra Cascade (Estados Unidos) con más probabilidades de hacer erupción, porque los estudios detallados indicaban que ha tenido un expediente de actividad explosiva en los últimos 4,500 años (Wicander y Monroe, 1999). Por esta razón Renfrew y Bahn en 2007 resaltaron la necesidad de revisar el registro de la actividad volcánica

preservado en las rocas. Por otra parte, Calva-Vásquez y colaboradores (2006) realizaron un estudio utilizando anillos de crecimiento de *Pinus montezumae* y *Abies religiosa* ubicados en el Valle de México, el cual demostró que las concentraciones de Fe y Zn en los anillos se podían correlacionar con la actividad eruptiva del volcán Popocatépetl.

Las secuencias dendrocronológicas obtenidas a partir de anillos de crecimiento de coníferas, demostraron que éstos tienen la capacidad de registrar los cambios ambientales ocurridos en su entorno. Estos cambios ambientales pueden ser estudiados determinando la composición química de la madera (dendroquímica) de los anillos de crecimiento, empleando diferentes técnicas de análisis elemental y multielemental, permitiendo identificar eventos ambientales ocurridos en el pasado (Pearson *et al.*, 2005; Cruz-Muñoz *et al.*, 2007). Así mismo el uso de materiales biológicos como monitores de los cambios ambientales resultan ser baratos y confiables (Chrzan, 2015). Por lo tanto, es trascendental evaluar especies de árboles para obtener herramientas que nos puedan ser útiles en el estudio y monitoreo de los volcanes.

Figura 1. Erupción de cenizas del volcán Popocatépetl, abril de 1996 (Espinasa, 2007).

b. Objetivos

i. General

• Evaluar la influencia que ejercen las emisiones volcánicas del Popocatépetl sobre *Pinus hartwegii* Lindl., y así determinar si esta especie puede ser empleada como una herramienta para estimar las actividades volcánicas.

ii. Particulares

• Determinar la composición química de los anillos de crecimiento empleando el equipo de Fluorescencia de Rayos X portátil Thermo Scientific Niton XL3t Ultra.

• Determinar si existen correlaciones entre la variabilidad de las concentraciones de los elementos químicos presentes en los anillos de *Pinus hartwegii* Lindl. y la actividad volcánica del Popocatépetl durante el último periodo eruptivo.

c. Hipótesis

El *Pinus hartwegii* Lindl. con gran distribución en las laderas de volcanes activos, registra las condiciones ambientales en las que crece, por lo que permitirá evaluar las actividades eruptivas de manera espacial y temporal al analizar la composición química de los anillos de crecimiento del árbol empleando la técnica de FRX portátil.

II. MARCO TEÓRICO

a. *Pinus hartwegii* Lindl.

El género *Pinus* comprende alrededor de 100 especies, casi todas ellas crecen en estado natural en el Hemisferio Norte, con una mayor área de distribución dentro de regiones templadas, pero sin traspasar el Ecuador para dispersarse en el Hemisferio Sur, a excepción de *P. merkusii* que traspasa unos grados el Ecuador (Bejarano-Solís, 2011).

Los bosques templados de pino ocupan una superficie total de 21 millones de hectáreas a nivel nacional, por lo que es considerado uno de los más importantes en México. Además, cabe destacar que los bosques templados de México resguardan el 40% del total de las especies de *Pinus* a nivel mundial y el 85% de estas son endémicas. De entre las 50 a 70 especies y subespecies que se distribuyen en el país, *Pinus hartwegii* Lindl. se destaca porque sus poblaciones se ubican en cotas altitudinales que van desde los 2,900 hasta los 4,200 msnm, correspondiendo esta última al límite altitudinal arbóreo en México. A esta elevada altura, los terrenos se caracterizan por presentar una topografía muy irregular y heterogénea, por lo que *Pinus hartwegii* Lindl. se puede encontrar en terrenos, en laderas con poca pendiente y en sitios con pendientes muy pronunciadas, como cañadas. Cabe destacar que el *Pinus hartwegii* Lindl. Ilega a las mayores altitudes registradas para un pico en el mundo, por lo que comúnmente se le conoce como pino de las alturas (Gutiérrez-Uribe, 2011; Franco-Corona, 2015).

i. Taxonomía

Cuadro 1. Taxonomía de Pinus hartwegii Lindl.

Reino	Plantae
División	Espermatofita
Subdivisión	Gimnospermas
Orden	Coniferales
Familia	Pinaceae
Género	Pinus
Especie	Pinus hartwegii Lindl.
-	

ii. Reconocimiento en campo

El *Pinus hartwegii* Lindl. (Figura 2) es un pino grande de 20 a 30 m de altura y alrededor de 1 m de diámetro. En los árboles maduros las ramas bajas son largas, gruesas e inclinadas, y las ramas altas en la copa son horizontales a significativamente ascendentes formando una capa redondeada y gruesa. Los árboles jóvenes tienen una forma piramidal con una copa densa (González-Espinosa, 2005; Rizo-Zárraga, 2009).

Su corteza en árboles viejos y maduros es color café-rojiza, gruesa y dividida por fisuras horizontales y verticales angostas a lo largo, es plana y con láminas escamosas. En árboles jóvenes es áspera con surcos, pero no está dividida en láminas (Rizo-Zárraga, 2009).

Sus ramillas son gruesas, rígidas, erectas, ásperas y cafés; en la base de las hojas las brácteas son prominentes y decurrentes. Las hojas, generalmente en fascículos de 3, pero frecuentemente en fascículos de 4 y 5 gruesas, rígidas, erectas, de 8 a 16 cm de longitud, ocasionalmente de 5 a 8 cm producidas en grupos o racimos al final de las ramillas. Los márgenes de las hojas son finamente aserrados, presenta estomas sobre las superficies dorsal y ventral; tiene canales resiníferos variables en número de 3 a 12, usualmente de 6 o 7, en el centro ocasionalmente 1 o 2 internos; las paredes exteriores de los endodermos son delgadas, ocasionalmente ligeramente engrosadas, tiene 2 haces fibrovasculares muy cerrados, casi juntos, diferentes y frecuentemente con un número de células contiguas reforzando. Las vainas de los fascículos son persistentes, cafés y de 5 a 10 mm de longitud (Rizo-Zárraga, 2009).

Los conillos son oblongos-ovoides, color púrpura oscuro, en racimos de 2 a 6 en pedúnculos robustos y escamosos. Los conos son ovoides-largos, casi simétricos, ligeramente curvados, generalmente con alrededor de 8 a 10 cm de longitud, aunque ocasionalmente arriba de los 17 cm; nacen en pares y grupos de 3, 4 y 5 muy cortos (5 a 10 mm), con pedúnculos fuertes casi escondidos por escamas basales del cono. Los conos tienen un color distintivo purpura oscuro, casi negros y son semipermanentes; cuando caen, el pedúnculo con algunos restos de escamas básales del cono quedan adheridas en las ramillas. Las escamas de los conos son delgadas, endebles, flexibles, la apófisis aplanada, transversalmente volteadas; el umbo dorsal plano a depreso, muy oscuro y con una pequeña púa frágil pero persistente. Las semillas son casi negras, alrededor de 5 mm de longitud, tienen las semillas un ala articulada, color café pálido de 10 a 11 mm de longitud y presentan cotiledones en números de 5 a 6 (Rizo-Zárraga, 2009).

El *Pinus hartwegii* Lindl. requiere de un periodo de descanso en invierno, su fase de crecimiento principal es en la temporada de verano. Las semillas de este tipo de pino se caracterizan por germinar favorablemente a una temperatura mínima de 10°C, óptima de 30°C y máxima de 35°C, a pesar de que la especie es de clima frío requiere temperaturas relativamente altas para su germinación (Franco-Corona, 2015).

Figura 2. Bosques comunales de Pinus hartwegii Lindl. (Moreno, 2010).

iii. Estructura de la madera

El árbol, al igual que todo organismo vivo experimenta procesos de crecimiento los cuales permiten el incremento dimensional de los mismos. Este crecimiento se produce en zonas especializadas que reciben el nombre de meristemos. Todos aquellos tejidos constituidos por células que poseen capacidad de división reciben el nombre de tejidos meristemáticos, mientras que aquellos tejidos constituidos por células diferenciadas, que no tienen capacidad de división, son conocidos con el nombre de tejidos permanentes (León, 2001).

El crecimiento primario es un crecimiento de tipo longitudinal y se origina como consecuencia de la producción de nuevas células en la zona correspondiente al meristema apical. Este meristema se encuentra en el ápice del tallo, ramas y raíces y, a través de procesos de división celular, va a formar tejidos meristemáticos primarios. En el cuerpo primario de la planta, el tejido vascular se encuentra agrupado en estructuras que reciben el nombre de haces vasculares. Cada haz vascular se encuentra constituido de xilema y floema, los cuales se encuentran separados entre sí por el tejido meristemático. El xilema primario va a ser el encargado de la conducción de agua y sales minerales absorbidas a través de la raíz hacia partes superiores de la planta, mientras que el floema primario va a encargarse de la conducción de los compuestos obtenidos durante la fotosíntesis (León, 2001).

El crecimiento secundario es el incremento en diámetro o grosor del tallo, ramas y raíces de las plantas, y comienza con la formación del cambium vascular. El cambium vascular es un meristema de tipo lateral e intercalar y normalmente forma una capa continua localizada periféricamente del ápice hasta la raíz. El cambium de cada uno de los haces vasculares se conecta entre sí formando un cilindro vascular alrededor de la planta para formar xilema secundario hacia el lado interno del cambium y floema secundario hacia el lado externo (León, 2001).

La médula es la porción central que se observa en la sección transversal del tronco, está constituida por células de naturaleza parenquimática, y cumple la función de almacenamiento de sustancias de reserva, se origina a partir del meristema fundamental y es un tejido permanente primario (León, 2001).

El termino corteza se utiliza para hacer referencia a todos los tejidos que se encuentran hacia el lado externo del cambium vascular. En un árbol adulto se pueden distinguir dos tejidos principales en la corteza, el floema secundario y la peridermis. Esto permite diferenciar dos partes, la porción externa llamada corteza muerta o ritidoma y la porción interna conocida como corteza viva o floema secundario (León, 2001).

La madera en general proviene de dos grupos de árboles:

- Las gimnospermas comúnmente llamadas coníferas. En este grupo se encuentra la madera de *Pinus hartwegii* Lindl.
- 2. Las angiospermas o latifoliadas (hojas caducas) (León, 2001).

Los anillos de crecimiento de *Pinus Hartwegii* Lindl. están dispuestos de manera regular, aproximadamente dos anillos por centímetro. Los anillos de crecimiento constan de dos zonas claramente diferenciadas, la madera temprana y la madera tardía. Una se forma en primavera (madera temprana) y es de color amarillo claro, en la cual predominan los vasos gruesos que conducen la sabia hasta las hojas (tejido vascular), las traqueidas son anchas y poseen paredes celulares delgadas de constitución porosa. La otra tiende a ser menos gruesa que la madera temprana y comienza a formarse en verano (madera tardía), tiene los vasos más pequeños y apretados, sus fibras forman el tejido de sostén y usualmente es de color café obscuro. Los canales resiníferos se encuentran distribuidos en todo el anillo, pero son más abundantes en la madera tardía, la transición entre el crecimiento de primavera y verano es de forma gradual. El periodo de crecimiento comienza en primavera y cesa en otoño (Razo-Ángel, 2005; Hernández-Tapia, 2007; Ávila-Campuzano, 2008; Rizo-Zárraga, 2009; Ferreyra-Aranda, 2010).

En un corte transversal del tronco (Figura 3) se puede distinguir el duramen y la albura. El duramen es de color café obscuro, está constituido por los anillos más viejos y no funcionales, los cuales con el paso del tiempo han quedado obstruidos por depósitos de minerales. Mientras que la albura se compone de los anillos más claros, jóvenes y aún funcionales (Razo-Ángel, 2005). El ancho de cada anillo se ve afectado por el clima, la humedad, estrés y la contaminación por ello, la dendrocronología ha podido basarse en el estudio de estos anillos para estimar las condiciones climáticas y las variaciones del medio ambiente en épocas pasadas (Razo-Ángel, 2005). A partir de este planteamiento de Razo-Ángel (2005) se considera relevante aprovechar las características del Pino de altura para conocer y estudiar emisiones volcánicas pasadas.

Figura 3. Estructuras de un tronco en un corte transversal (Hernández-Tapia, 2007).

Además del oxígeno, el hidrogeno y el carbono, que el árbol toma de la atmosfera, el árbol necesita tomar del suelo diversos elementos químicos. Estos pueden clasificarse en Macroelementos (N, P, K, S, Ca, Mg) los cuales necesita en cantidades relativamente altas, y Microelementos (Fe, Zn, Mn, Mo, B, Cl) que los árboles necesitan en cantidades muy pequeñas (Casas-Flores, 2011).

Figura 4. Distribución de Pinus hartwegii Lindl. en México (Ferreyra-Aranda, 2010).

iv. Distribución

Los bosques de *Pinus hartwegii* Lindl. son medianamente densos a abiertos y pueden formar bosques puros o cohabitar con otras especies de árboles. Además, es la especie arbórea propia de las grandes altitudes o límite de la distribución alpina en volcanes y áreas montañosas principalmente en el centro de México. En estos lugares los suelos en general son de origen volcánico y poco desarrollado (Sandoval-González, 2010; Villanueva-Díaz *et al*, 2010). En México se distribuye en Nuevo León, Tamaulipas, Zacatecas, Jalisco, Nayarit, Michoacán, Estado de México, Ciudad de México, Morelos, Puebla, Guerrero, Oaxaca y Chiapas (Figura 4). También se encuentra en Guatemala, Honduras y El Salvador (Navare-Flores y Taylor, 1997). Suele habitar en climas templados, subhúmedos, mesotermos, con lluvias deficientes en invierno, del tipo Cwc (semifrío húmedo con verano corto). Entre los 3,700 y los 4,200 msnm el *Pinus hartwegii* Lindl. (Figura 5) es domiante, debido a que esta mejor adaptado a las bajas temperaturas, a la pobreza de suelo y a que no tiene competencia con otras especies, aunque a menor altitud compite con *Pinus Moctezumae* (Bejarano-Solis, 2011; Rizo-Zárraga, 2009; Ferreyra-Aranda, 2010).

Figura 5. Perfil de las comunidades vegetales en la Sierra Nevada (Franco-Corona, 2015).

v. Importancia ecológica

De acuerdo con Hernández-Tapia (2007), la captura de carbono y la formación del suelo son las principales fortalezas de este pino, además de ser un nicho de diferentes especies y marcar el límite altitudinal arbóreo en México.

Los bosques de *Pinus hartwegii* Lindl. que se encuentran al sur de la Ciudad de México ofrecen servicios ecosistémicos, como la infiltración y el abastecimiento de agua, la reducción de la erosión y la compactación del suelo, la purificación del aire, la fijación del carbono, así como diversos productos no maderables y maderables, entre otros. Con respecto a éste último punto, los bosques de *Pinus hartwegii* Lindl. cobran importancia económica al ser utilizados en la producción de celulosa y papel (CONANP, 2015; Gutiérrez-Uribe, 2011).

b. Actividad volcánica

i. Volcanes de México

La mayor concentración de volcanes en México se encuentra en la Faja Volcánica Transmexicana (FVTM), en donde se tiene una gran variedad de formas volcánicas como estratovolcanes majestuosos con elevaciones en torno a los 4000 msnm. Al interior de la misma FVTM existen cadenas de estratovolcanes que tienen una alineación general N-S y NE-SW. Los volcanes activos de estas cadenas están ubicados en el extremo sur de las mismas. Estas cadenas están formadas por los volcanes Cántaro-Nevado de Colima-Colima, Tláloc-Telapón-Iztaccíhuatl-Popocatépetl y Cofre de Perote-Las Cumbres-Pico de Orizaba-Sierra Negra (Macías, 2005).

ii. Volcán Popocatépetl

El volcán Popocatépetl forma parte de la Sierra Nevada junto con los volcanes Iztaccíhuatl, Tláloc y Telapón. Es el segundo más alto del país con una altitud de 5,452 msnm. Se encuentra ubicado entre los 19°03' latitud Norte y 98°35' longitud Oeste (Figura 6) y ocupa una superficie aproximada de 500 km², entre los estados de México, Puebla y Morelos. Y como el resto de los estratovolcanes de la Sierra Nevada, el Popocatépetl tiene una orientación N-S (Franco-Corona, 2015).

Ha presentado varias etapas de crecimiento que formaron al menos tres volcanes previos, los cuales fueron destruidos por erupciones extraordinariamente grandes: el Nexpayantla hace 400,000 años, el Ventorrillo hace 23,000 y el Fraile hace 14,500 años. El

21

cono moderno está constituido sobre los restos de estos volcanes como consecuencia de las fracturas localizadas en el Cinturón Volcánico Transmexicano, su desarrollo tiene lugar durante el Neogéno-Cuaternario (Espinasa-Pereña, 2012; Franco-Corona, 2015).

Figura 6. Localización del Volcán Popocatépetl (Franco-Corona, 2015).

El Popocatépetl es uno de los volcanes más activos del Cinturón Volcánico Transmexicano. A lo largo de su historia ha mostrado un amplio espectro de formas de actividad eruptiva. En términos generales puede decirse que en el pasado, este volcán ha producido numerosas erupciones. Las 25 millones de personas que habitan a menos de 100 km del cráter lo convierten en uno de los volcanes más peligrosos del planeta, motivo por el cuál es un sitio de interés científico (De la Cruz et al., 1995; Franco-Corona, 2015).

iii. Naturaleza de las erupciones volcánicas

La actividad volcánica suele percibirse como un proceso que produce una estructura pintoresca en forma de cono que, como el monte St. Helens, Estados Unidos, hace erupción de manera violenta con cierta periodicidad. Algunas erupciones pueden ser muy explosivas, pero muchas no lo son. Los principales factores que influyen son la composición del magma, su temperatura y la cantidad de gases disueltos. Además las cenizas varían en apariencia, dependiendo del tipo del volcán y de la forma de la erupción. Así, su color puede ir desde un tono gris claro hasta el negro (Tarbuck y Lutgens, 2010; The International Volcanic Health Hazard Network *et al.*, 2016).

Desde 1994 el Popocatépetl ha presentado numerosas erupciones pequeñas que han producido lluvia de ceniza (<2mm) y lapilli (2-64 mm) en las poblaciones cercanas. La caída de ceniza del Popocatépetl produce depósitos discontinuos que cubren, en forma amplia, la topografía. La mayor parte de la ceniza gruesa cae sobre el cono y la fina en un radio de 100 km. Las cenizas actuales del Popocatépetl son rocas volcánicas pulverizadas compuestas principalmente de fragmentos de los domos, algunos cristales y en pocas ocasiones pómez. Asimismo, el volcán presenta exhalaciones secas (principalmente emisiones de cloruros de sodio y potasio), ácidas (ácido clorhídrico y sulfúrico) y alcalinas (cloruro de amonio). Las mayores exhalaciones de los últimos años ocurrieron en los periodos de diciembre de 1994 a agosto de 1995, de marzo de 1996 a noviembre del 2003 y

23
de enero de 2005 a enero de 2006 (Calva-Vásquez et al., 2007; Martín Del Pozzo y Mendiola, 2014).

iv. Los volcanes y el clima

Actualmente, se cree que las emisiones de dióxido de azufre provocan efectos aún más importantes en la temperatura que las cenizas. Por ejemplo, la erupción de El Chichón (1982), México, que tuvo lugar dos años después que la del St. Helens (1980), en Estados Unidos, arrojo una cantidad semejante de cenizas, pero muy superior de dióxido de azufre (Buckley *et al.*, 2004). Los controles y estudios realizados después de la erupción de El Chichón indicaron que su efecto de enfriamiento de la temperatura media global era mayor que en el monte St. Helens (Tarbuck y Lutgens, 2010).

v. Monitoreo volcánico

Muchos métodos para el monitoreo de los volcanes activos fueron desarrollados en el Observatorio Volcánico Hawaiano. Estos métodos consisten en grabar y analizar diversos cambios, tanto en los atributos físicos como en los químicos de los volcanes. Los inclinómetros o medidores de inclinación se usan para detectar cambios en las laderas de un volcán cuando este se dilata o infla por la inyección de magma, mientras que el geodímetro utiliza un haz láser para medir distancias horizontales, las cuales cambian también cuando el volcán se infla. Los geólogos vigilan también las emisiones de gas y los cambios en los campos locales, tanto magnéticos como eléctricos de los volcanes (Wicander y Monroe, 1999; Quaas-Weppen *et al.*, 2014).

Asimismo, es importante conocer la historia eruptiva de un volcán. Por ejemplo, antes de 1980 se consideraba al monte St. Helens uno de los volcanes de la sierra Cascade (Estados Unidos) con más probabilidades de hacer erupción, porque los estudios realizados en rocas indicaban que había tenido un expediente de actividad explosiva en los últimos 4,500 años (Wicander y Monroe, 1999).

c. Biomonitores

Son organismos empleados *in situ*, los cuales se relacionan con la calidad del medio ambiente (Markert, 2007), por ejemplo, los anillos de crecimiento en el tronco de *Pinus hartwegii* Lindl., debido a que su incremento, concentración y composición elemental están condicionados a los cambios que el medio les imponga (Cruz-Muñoz, 2007). "Estos cambios pueden influir en la histología, morfología y procesos metabólicos del organismo, así como en la estructura y comportamiento de la población" (Markert, 2007).

d. Dendrocronología

La dendrocronología (del griego *dendros* [árbol], *kronos* [tiempo] y *logia* [conocimiento]) consiste en la identificación de los anillos de crecimiento anual de los árboles y su asociación con un año determinado. Fue establecida como ciencia recién en el siglo XX gracias a los trabajos pioneros de investigadores estadounidenses como A. E. Douglass, E. Schulman, C. W. Ferguson, H. C. Fritts, y V. C. LaMarche. (Salcedo, 2011; Correa-Díaz *et al.*, 2014). La práctica y la diversificación de la dendrocronología ha sido moldeada por las

especies localmente disponibles, y básicamente se obtiene información sobre cambios climáticos (Schweingruber, 1988; Heinrich y Allen, 2012).

i. Base del método

La mayoría de los árboles producen un anillo de madera cada año, y el grosor de éstos está determinado por las condiciones climáticas y edad del árbol. Los árboles de la misma especie que crecen en la misma zona presentaran, por lo general, el mismo patrón de anillos, de forma que se puede comparar la secuencia del crecimiento de troncos cada vez más antiguos para elaborar una cronología de la zona (Worbes *et al.*, 2003; Renfrew y Bahn, 2007; Feliksik y Wilczynski, 2008; Pompa-García *et al.*, 2014).

ii. Fundamentos dendrocronológicos

- Los árboles deben presentar sólo un anillo para cada estación de crecimiento. No se pueden usar especies que agreguen más de un anillo anual durante una estación de crecimiento.
- 2. Aunque el crecimiento total es resultado de muchos factores interrelacionados, como genéticos y medioambientales, sólo un factor medioambiental debe dominar y limitar el crecimiento. Por ejemplo, en el sureste de Estados Unidos de América y norte de México, este factor limitante es la precipitación.

- El crecimiento que se propicia por el factor limitante clima debe variar en intensidad de año a año, y los anillos anuales resultantes deben reflejar tal variación en su anchura de crecimiento.
- La variable ambiental limitante debe ser uniforme sobre un área geográfica extensa (Villanueva-Díaz *et al.*, 2004).

En los años en que la cantidad de precipitaciones y las temperaturas son adecuadas, el árbol crece relativamente más y el anillo correspondiente será relativamente más ancho y en los años en que el clima es particularmente severo, el árbol crece menos, produciendo anillos estrechos. Si se mide el ancho de los anillos se tendrá una serie que representará de alguna manera el comportamiento del clima en la zona. Por lo tanto, resulta de gran interés recurrir a indicadores o archivos ambientales que puedan proveer registros climáticos de alta resolución, los suficientemente largos, como para poder caracterizar en forma apropiada la variabilidad climática natural de una región (Ávila-Campuzano, 2008).

Entre estos indicadores de alta resolución, los anillos de los árboles ocupan un lugar muy particular, debido a que proveen series continuas, precisamente datadas con un nivel de resolución anual, que normalmente se extienden por varias centurias, y en algunos casos, por varios milenios, lo cual permite la calibración del método de datación de carbono 14 casi hasta los diez mil años, gracias a las largas series obtenidas a partir de secuoyas, pinos y robles (Garanger *et al.*, 2002; Ávila-Campuzano, 2008).

Las series de ancho de anillos pueden ser modeladas para reconstruir, con gran precisión, las variaciones anuales o estacionales de la temperatura y la precipitación durante las últimas centurias o milenios. Estas reconstrucciones de las variaciones climáticas

27

pasadas pueden ser obtenidas para una localidad en particular, o para toda una región, si se dispone de una red de cronologías de anillos de árboles que cubran un área extensa. Asimismo los registros dendrocronológicos pueden proporcionar pruebas de la incidencia de la actividad volcánica (Biondi *et al.,* 2004; González-Elizondo *et al.,* 2005; Ávila-Campuzano, 2008; Álvarez *et al.,* 2015).

iii. Fechado cruzado (cross-dated)

Este proceso es otro de los pilares básicos de la dendrocronología debido a que los arboles de la misma especie ubicados en la misma localidad tienden a tener patrones similares de crecimiento (Stokes y Smiley, 1996; Urrutia-Jalabert, 2002; Ávila-Campuzano, 2008).

El fechado cruzado o *cross-dated* consiste fundamentalmente en la identificación y corrección de irregularidades como heridas o anillos múltiples, discontinuos o ausentes mediante diferentes técnicas visuales, gráficas y estadísticas de comparación por solapamiento entre numerosas series de crecimiento hasta conseguir un conjunto de secuencias adecuadamente sincronizadas (Figura 7), en las que se puede hacer corresponder cada medición de anillo con el año concreto en que fue formado (Ávila-Campuzano, 2008; Balouet *et al.*, 2009)

Figura 7. Esquema de un fechado cruzado (Cross-dated) usando gráficas del crecimiento de los anillos (Schweingruber, 1988).

iv. Dendroquímica

La dendroquímica analiza la composición química de los anillos de crecimiento anuales de los árboles, se ha utilizado como un método para explorar la cronología de la exposición a elementos tóxicos en el suelo o el aire y para establecer situaciones de estrés padecidas debido a factores naturales, como las emisiones volcánicas (Baes *et al.*, 1984; Martí-Ezpeleta, 2003; Pearson *et al.*, 2005; Razo-Ángel, 2005; Cheng *et al.*, 2007).

El principio básico es que la composición química de los anillos producidos anualmente puede actuar, al menos parcialmente, como un archivo de la química del entorno durante el crecimiento del árbol. El tipo de roca, la química del suelo, direcciones del viento y el clima pueden determinar los niveles de concentración de los elementos disponibles para la absorción (Pearson *et al.*, 2005).

e. Historia de los métodos espectroscópicos de análisis

A finales del siglo XIX, la espectroscopia se limitaba a la absorción, emisión y dispersión de la radiación electromagnética visible, ultravioleta o infrarroja. Durante el siglo XX, el método se fue ampliando para incluir otras formas de radiación electromagnética (espectroscopia de fotones) como rayos X, las microondas y las ondas de radio, así como partículas de energía (espectroscopia de partículas), tales como electrones y los iones (Harvey, 2002).

El uso de la fluorescencia en el análisis cualitativo y el análisis semicuantitativo puede rastrearse hasta comienzos o mediados del siglo XIX, aunque los métodos cuantitativos más exactos aparecieron en los años 1920. Los aparatos para espectroscopia de fluorescencia que utilizaban filtros y selectores monocromáticos para seleccionar longitudes de onda surgieron, respectivamente, en los años 1930 y 1950 (Harvey, 2002).

i. Fluorescencia de rayos X (FRX)

La fluorescencia de rayos X se utiliza actualmente en análisis químicos para obtener información cualitativa o cuantitativa acerca de la composición elemental de la muestra. El fundamento del método se basa en irradiar la muestra con un haz de rayos X o bien por un bombardeo de partículas, generalmente electrones. Los rayos X poseen una energía tal que al incidir sobre la muestra pueden ionizarla expulsando electrones de las capas más internas, estos iones son altamente inestables y esas vacantes son ocupadas por electrones de capas superiores en cascada. Estos saltos de electrones de un nivel de mayor energía a uno de menor desprenden una radiación (Figura 8), la cual forma un espectro característico y único para cada elemento e independiente de las combinaciones químicas en las que se encuentre (Rouessac y Rouessac, 2003; Gutiérrez-Ginés, 2010).

ii. Aplicaciones de la FRX portátil

Inicialmente la fluorescencia de rayos X se utilizaba fundamentalmente en las industrias que trataban metales de primera fusión o aleaciones, y de manera general, en la gran industria minera (siderurgia, industrias cementeras, de cerámica, de vidrio, etc.). Con la comodidad de los equipos actuales el campo de aplicación se ha extendido a otros dominios como la industria de semiconductores (control de impurezas en láminas de silicio), industria petrolera, geología, papelería, análisis de elementos "ultraligeros" como el nitrógeno, toxicología, medio ambiente (polvo, humos de combustión, metales pesados en vertidos, tales como Pb, As, Cr, Cd, etc.) (Rouessac y Rouessac, 2003; Quiroz-Jiménez, 2012). Los equipo de Fluorescencia de Rayos X portátil Thermo Scientific Niton proporcionan un análisis elemental rápido y exacto para una exploración de metales intensiva en suelos, sedimentos o afloramientos e incluso, con algunos modelos portátiles Thermo Scientific Niton, virutas o núcleos (Thermo Fisher Scientific, 2011).

El carácter universal del fenómeno y la posibilidad de hacer un examen directo y rápido de una gran cantidad de materiales, explican el éxito de esta técnica de análisis no

destructiva (Rouessac y Rouessac, 2003). Es por ello que la FRX portátil tiene un gran potencial para el análisis de la composición elemental de la madera en las secuencias de anillos de crecimiento de árbol.

Figura 8. Forma en la que opera el equipo de Fluorescencia de Rayos X portátil Thermo Scientific Niton XL3t Ultra.

f. Área de estudio

El área de estudio está ubicada en la zona de Tlamacas, la cual forma parte del Parque Nacional Iztaccíhuatl Popocatépetl, situado en la parte central del Eje Volcánico Transmexicano ocupando parte de la Sierra Nevada en su porción sur y la Sierra de Río Frío en la parte norte. Este parque se localiza entre las siguientes coordenadas extremas 18°59'00.43" y 19°28'09.44" de Latitud Norte y 98°34'55.88" y 98°46'40.95" de Longitud Oeste, abarca una superficie de 39 mil 819.086 hectáreas divididas entre el Estado de México, con 28 mil 307.487112 hectáreas (71.09%); Puebla con 11 mil 072.918088 hectáreas (27.81%); y Morelos con 438.6808 hectáreas (1.10%). Forma parte de los municipios de Texcoco, Ixtapaluca, Chalco, Tlalmanalco, Amecameca, Atlautla y Ecatzingo, en el Estado de México; Santa Rita Tlahuapan, San Salvador el Verde, Huejotzingo, San Nicolás de los Ranchos y Tochimilco, en Puebla; y Tetela del Volcán, en Morelos (Hernández-García y Granados-Sánchez, 2006; CONANP, 2013).

Las geoformas del Parque (sierra, conos volcánicos y laderas) son de origen volcánico, predominando rocas basálticas y andesitas. Debido a la continua actividad volcánica el material parental de los suelos está compuesto por rocas ígneas extrusivas de pómez y por acumulación de cenizas de diferentes etapas de actividad volcánica. La múltiple superposición de capas de tefras (pómez) y cenizas, además de los efectos del intemperismo hídrico y eólico, ejercen diferentes efectos sobre los procesos de formación de los suelos característicos de esta región que son los andosoles, los cuales debido a su composición y a la acción combinada de estos factores pueden ser húmicos, mólicos y ócricos (CONANP, 2013).

El parque tiene una variedad de climas que van del templado húmedo a los climas frío y muy frío, la temperatura disminuye con la altura a razón de 0.68°C por cada 100 metros. Existe una red de estaciones meteorológicas dentro y fuera del parque, sin embargo, no se cuenta con estaciones a una altura mayor a los 4 mil msnm, por lo que no se tienen registros de las zonas más frías donde están los glaciares (CONANP, 2013).

Los tipos de vegetación dominantes en la zona de estudio son el bosque de encino, bosque mixto, bosque de oyamel, bosque de pino o zacatonal alpino. Entre los 2,900 y 3,400 msnm predominan los oyameles (*Abies religiosa*) que crecen principalmente en las cañadas, mientras que en las laderas son dominantes los pinos y cedros. Entre los 3,500 y 3,900 msnm se encuentra el bosque de pino con abundantes gramíneas amacolladas, la especie más común de este estrato arbóreo es el *Pinus hartwegii*, que se mezcla con otros pinos (*Pinus montezumae y Pinus ayacahite*) (Franco-Corona, 2015).

Los recursos hídricos que se originan en el Parque Nacional se forman principalmente por el deshielo de los glaciares y la precipitación pluvial la cual es abundante en la región, y sobrepasa los mil milímetros anuales. Las corrientes superficiales pueden ser permanentes o intermitentes, éstas últimas son innumerables durante la época lluviosa y también se produce gran infiltración de agua que va a alimentar las corrientes subterráneas. Los ecosistemas de la Sierra Nevada efectúan procesos que permiten la recarga de acuíferos y de los mantos freáticos que abastecen buena parte de la Zona Metropolitana de la Ciudad de México, del Valle de Puebla y Tlaxcala (CONANP, 2013).

III. ANTECEDENTES

Varios son los trabajos que se reportan en la literatura científica utilizando plantas como bioindicadores y biomonitores en estudios ambientales, por ejemplo Astorga y colaboradores en 2011 monitorearon las partículas suspendidas totales (PST) utilizando follaje de *Pinus halepensis* para estimar las concentraciones de elementos químicos y determinar la posible utilización de la especie como biomonitor pasivo de la calidad del aire. El estudio se realizó en la zona industrial "Nombre de Dios", Chihuahua, México, en el periodo de noviembre de 2007 a mayo de 2008, empleando el método EPA I0-2.1. concluyendo que la utilización de hojas de *Pinus halepensis* como biomonitor pasivo de PST es una alternativa viable en estudios de mediano y largo plazo. Por su parte, Lageard *et al.* (2008) midieron las concentraciones de plomo de la madera de *Pinus sylvestris* distribuidos en Darley Dale, Inglaterra, demostrando que esta especie se puede utilizar para estimar el momento de los episodios de contaminación por plomo.

Existen diversas técnicas para realizar análisis múltielemental, por ejemplo, Pearson y colaboradores en 2005 utilizaron la técnica de Espectrometría de masas con plasma acoplado inductivamente (ICP-MS) enfrentándose a limitaciones como el largo procedimiento de preparación de muestras, la destrucción de cantidades relativamente grandes de la muestra original y las numerosas oportunidades para la contaminación. Sheppard y colaboradores (2008) aplicaron la misma técnica en el volcán Paricutín, pero para el análisis de los metales traza, las muestras se analizaron utilizando un ICP-MS con sector magnético lo que permitió eliminar la mayoría de las interferencias causadas por iones moleculares propias de los ICP-MS con cuádruplos.

35

Cruz-Muñoz (2007) realizó un estudio en *Pinus montezumae* en las periferias del volcán Popocatépetl para monitorear la actividad del volcán, utilizando la técnica de Emisión de Rayos X Inducida por Partículas (PIXE), los resultados indican que los cambios en la composición elemental de la madera de los pinos se relacionan más con las exhalaciones volcánicas del Popocatépetl que con sus emisiones de ceniza. Refiere también que la interpretación de los datos obtenidos es compleja debido a una serie de factores a considerar, como la biología natural del árbol, vientos, condiciones hidrológicas y actividades antropogénicas.

Augusto da Col y Maretti-Silveira Bueno (2009) hicieron un análisis multielemental en muestras extraídas de troncos de árboles de Acacias ubicados en una zona contaminada de la ciudad de Campinas en el estado de Sao Paulo, Brasil, utilizando Fluorescencia de Rayos X, para determinar posibles fuentes de contaminación.

Pearson (2009) trabajó con Microscopia de Escaneo de Fluorescencia de Rayos X con Radiación Sincrotrón (SXFM) desarrollando un análisis multielemental (S, Fe, Ca, Sr, Mn, Zn) no destructivo en anillos de crecimiento en *Pinus longaeva*, evaluando el potencial de esta especie para datar erupciones volcánicas pasadas.

La ventaja que ofrece la técnica de FRX portátil en comparación con otras técnicas de análisis multielemental es que requiere relativamente poca cantidad de muestra y el análisis no es destructivo por lo que se pueden conservar las muestras para otras mediciones, además no se requiere de pretratamientos químicos previos ni de reactivos químicos. Es una técnica versátil y económica que permite analizar matrices orgánicas e inorgánicas.

IV. METODOLOGÍA

a. Selección y tratamiento de las muestras

Las muestras analizadas fueron previamente colectadas por el Laboratorio Universitario de Radiocarbono (LUR) del Instituto de Geofísica de la UNAM en el Parque Nacional Iztaccíhuatl Popocatépetl. Los muestreos se realizaron en el mes de enero de los años 2013 y 2015.

Figura 9. Muestras colectadas, montadas en los bastidores, lijadas y pulidas.

Se trabajó con 20 núcleos colectados de árboles ubicados en la zona de Tlamacas empleando un taladro tipo Pressler [10 muestras por cada año (6 muestras de 5 mm de ancho y 4 de 12 mm de ancho en el 2013, y 10 de 12 mm de ancho en el 2015)] (Figura 9), tomando dos virutas por cada árbol. Los núcleos fueron montados en los bastidores y

secados en un horno por más de 48 horas a 50°C de temperatura. Para hacer visibles los anillos de crecimiento, las virutas se pulieron con lijas de granulometría de gruesa a fina, según la metodología descrita en Villanueva-Díaz *et al.*, 2004.

b. Dendrocronología

i. Identificación y conteo de los anillos de crecimiento anual

Los anillos de crecimiento fueron contados en el Laboratorio de Geoquímica Ambiental del Instituto de Geología de la UNAM, empleando el Software WinDENDRO density 2014a con ayuda de un escáner Epson modelo Perfection V800 Photo, calibrado para el uso de softwares Regent (Figura 10). Asimismo, este equipo permitió cuantificar el grosor de cada anillo de crecimiento.

Figura 10. Escaneo de muestras.

Figura 11. Conteo de la serie de anillos de crecimiento.

Cada anillo de crecimiento fue fechado, utilizando el software WinDENDRO density 2014a (Figura 11), mediante la técnica dendrocronológica estándar denominada "Cross Dating", que permite determinar el año exacto de formación de cada anillo con base en la similitud de los patrones de crecimiento (Figura 12). Generalmente es deseable tener un valor de correlación superior a 0.5 entre series de crecimiento (Gutiérrez-García, 2003; Berger *et al.*, 2004; Sheppard *et al.*, 2008; Cerano-Paredes *et al.*, 2014; France *et al.*, 2014).

Luego de realizar el fechado cruzado (Cross dating) se hizo una estandarización (Dentrending) de las series de crecimiento con el software WinDENDRO density 2014a, el cual removió el índice de crecimiento, de cada anillo, producido por la edad del árbol, obteniendo únicamente el incremento anual influenciado por el clima y posiblemente por la actividad volcánica. "Este proceso consiste en transformar las series de crecimiento a través de la división del ancho del anillo por un valor estimado en una curva para cada año en

particular, el valor obtenido se conoce como índice de crecimiento" (Neira y Lara, 2000; Urrutia-Jalabert, 2002).

Figura 12. Fechado cruzado (Cross dating) entre series de crecimiento con una correlación de 0.8333. Las líneas roja (punteada) y azul (continua) representan los paths de las virutas analizadas, en los cuales se puede apreciar la variación en grosor (mm) de los anillos año a año. Mientras que la línea negra se crea a partir de la media cuadrática del grosor de los paths visualizados y se le nombra serie de referencia.

Con ayuda del Software estadístico Statistical Package for the Social Sciences (SPSS) se verificó la normalidad de los datos mediante la prueba Kolmogórov-Smirnov (Figura 13). Además, se evaluó la correlación (Coeficiente de Pearson) entre los datos obtenidos en la estandarización con los registros del Sistema Meteorológico Nacional (Temperatura y Precipitación) en Amecameca de Juárez, de 1943 a 2009.

Figura 13. Grafica de la distribución Normal del grosor de los anillos de crecimiento medidos.

c. Fluorescencia de Rayos X portátil

Se utilizó el equipo de Fluorescencia de Rayos X portátil Thermo Scientific Niton XL3t Ultra del Laboratorio de Geoquímica Ambiental del Instituto de Geología de la UNAM. Este método se basó en emisiones de Rayos X sobre las muestras, lo cual proporcionó información sobre algunos elementos encontrados en las virutas y sus respectivas concentraciones.

i. Calibración del equipo de Fluorescencia de Rayos X portátil

Debido a que en un análisis cuantitativo se requiere una previa calibración del equipo de FRX portátil con muestras de matrices similares a las que se analizaron (Rouessac y Rouessac, 2003) y a la falta de materiales certificados en el mercado para maderas, se utilizaron estándares certificados elaborados con agujas de pino SRM 1575a y con hojas de durazno SRM 1547 (anexo I), con los cuales se pueden analizar los elementos Cu, Zn, Sr y Mn. Además se prepararon compuestos con los elementos antes mencionados, incluyendo K, Ca, Fe y Ti, para elaborar estándares internos con sus respectivas curvas de calibración, con una desviación estándar relativa (RSD) menor al 20%. El procedimiento se redacta a continuación.

 Se hizo un análisis de barrido de las muestras con el equipo de FRX portátil, con la finalidad de determinar los elementos químicos que aparecían constantemente en las repeticiones del análisis. Se seleccionaron 8 elementos (K, Mn, Ca, Sr, Fe, Ti, Zn, y Cu) y se elaboraron estándares internos con almidón y combinaciones de sales (Figura 14), las cuales contenían en su composición los elementos antes mencionados, obteniendo 3 estándares internos (Cuadro 2).

Cuaulo 2. Composición de los estanuales internos	Cuadro 2.	Composición	de los	estándares	internos.
--	-----------	-------------	--------	------------	-----------

	Estándar A		Estándar B		Estándar C	
	Compuesto	Peso (mg)	Compuesto	Peso (mg)	Compuesto	Peso (mg)
	KH ₂ PO ₄	346.9	TiO ₂	33.4	SrCl ₂ -6H ₂ O	61
	MnCl ₂ -H ₂ O	52.1	(CH ₃ COO) ₂ Zn -2H ₂ O	67.5	Almidón	9,939
	$Ca(H_2PO_4)_2-H_2O$ 633.2 (CH ₃ CC		$(CH_3COO)_2$ Cu-H ₂ O	63		
	Almidón	8,967.8	FeSO ₄ -7H ₂	101		
			Almidón	9,735.1		
Total		10,000		10,000		10,000

- Se construyeron curvas de calibración para cada uno de los elementos con 9 puntos de dilución en cada curva, incluyendo los estándares certificados de agujas de pino y de hojas de durazno (Anexo III).
- 4. El análisis estadístico de las curvas de calibración se realizó en Excel, el cual forma parte del paquete de office Microsoft, con una regresión lineal. Obteniendo un coeficiente de determinación de 0.99 y una ecuación de tipo y = a + bx para cada elemento (ecuación 1).

Dónde:

- "a" y "b" = pendiente y ordenada al origen, las cuales son constantes
- "y" = cuentas por segundo (CPS)
- "x" = concentración (ppm)

Figura 14. Elaboración de los estándares.

ii. Análisis químico de los anillos de crecimiento anual

Sólo las virutas de 12 mm de diámetro (10 muestras) fueron analizadas debido a que tienen el ancho necesario para ser cubierto por el área de emisión de rayos X del equipo de FRX portátil.

La resolución del análisis es de 1, 2 y 5 años dependiendo del ancho de los anillos (Figura 15).

El equipo de FRX portátil cuenta con una cámara que permite observar dónde inciden aproximadamente los rayos X sobre la muestra.

Anual

Bienal

Quinquenal

Figura 15. Vista de los anillos a través de la cámara del equipo de FRX portátil.

Se analizaron los anillos correspondientes al periodo de 1984 a 2014, sin embargo no en todos los casos fue posible debido a que los árboles eran más jóvenes. Cada anillo (o grupo de anillos) fue analizado durante 270 segundos (Figura 16).

El equipo arroja los datos en conteos por segundo (CPS), para la obtención de las concentraciones se procedió a despejar la ecuación obtenida en las curvas de calibración, quedando de la siguiente manera:

Ecuación 2
$$x = \frac{y+a}{b}$$

 $x = \frac{y+a}{b}$
Dónde:
 $a \neq b = pendiente y ordenada al origen, las
y = cuentas por segundo (CPS)
 $x = concentración (ppm)$$

De esta forma se pudieron obtener las concentraciones en ppm para cada elemento analizado.

Por último, se evaluó la correlación entre los elementos analizados para observar si la absorción de un elemento, por parte del árbol, suprime o estimula la absorción de otro.

Figura 16. Análisis elemental de las virutas con el equipo de FRX portátil Thermo Scientific Niton XL3t Ultra.

V. RESULTADOS Y DISCUSIÓN

a. Evaluación del potencial dendrocronológico de Pinus hartwegii Lindl.

En la figura 17 se muestra el grosor promedio anual de los anillos de *Pinus hartwegii* Lindl. Se aprecia un incremento en el ancho de los anillos de 1990 a 1995 y un decremento de 1996 en adelante. Otra observación interesante es la desviación estándar, la cual es considerablemente grande en algunos años. "Se sabe que existe una disminución del crecimiento de los anillos relacionada con la edad del árbol" (Neira y Lara, 2000; Urrutia-Jalabert, 2002) por lo tanto los primeros anillos de una serie de crecimiento tenderán a ser más anchos. Los años en lo que se presenta esta situación coinciden con los primeros años de edad de los árboles muestreados (Cuadro 3). Cuatro de las veinte muestras examinadas no pudieron ser fechadas, principalmente por la formación de más de un anillo por año de crecimiento.

Figura 17. Grosor promedio de anillos de crecimiento en Pinus hartwegii Lindl. de 1943 a 2014.

Muestra	Año de colecta	Edad del árbol	Intervalo de tiempo
02a y 02b	2013	50	1939-1989
03a y 03b	2013	22	1990-2012
04a y 04b	2013	23	1989-2012
05a y 05b	2013	26	1985-2011
01b	2015	27	1987.2014
02a y 02b	2015	31	1983-2014
05b	2015	72	1942-2014
06a y 06b	2015	64	1950-2014
08a y 08b	2015	muestra incompleta	1958-2014

Cuadro 3. Edad de los árboles muestreados. Por cada árbol se colectaron dos núcleos, exceptuando las muestras 01 y 05 del 2015, las cuales sólo cuentan con un núcleo por árbol.

i. Influencia de las variables climáticas (temperatura y precipitación) en el crecimiento de *Pinus hartwegii* Lindl.

Los resultados obtenidos del cálculo del coeficiente de correlación de Pearson entre la estandarización del grosor de los anillos (Figura 19) con las variables temperatura y precipitación (Figura 20) se muestran en la Cuadro 4.

Como se puede observar ambas variables muestran una correlación débil y no significativa con el grosor de los anillos, posiblemente por la influencia de la actividad volcánica.

Cuadro 4. Correlación de Pearson elaborada con el Software estadístico SPSS con un nivel de confianza del 0.05 entre las variables climáticas y el grosor de los anillos estandarizados.

Figura 18. Diagrama de la correlación de Pearson.

Figura 19. Grosor estandarizado de los anillos de crecimiento de 1943 a 2014.

Figura 20. Variaciones climáticas de 1943 a 2009 en Amecameca de Juárez. Los años vacíos no presentan datos registrados (Sistema Meteorológico Nacional, 2016).

ii. Relación de la actividad volcánica con la dendrocronología

Hacia finales de 1992 y principios de 1993, de forma gradual inició la actividad del volcán Popocatépetl. En los siguientes meses se reportaron cambios en la temperatura y pH del lago del cráter, y un incremento continuo de gases y vapor de agua, y para el 21 de diciembre de 1994 se produjo la primera emisión de ceniza en cerca de 70 años de inactividad (Espinasa, 2012; Valdés *et al.*, 2014).

Coincidiendo con Biondi *et al.* (2004), Calva-Vásquez *et al.* (2007), Cruz-Muñoz (2007) y Marin-Armengol (2008), a partir del año 1996 se aprecia un decremento en el grosor de los anillos posiblemente influenciado por la caída de ceniza, debido a que esta repercute en el proceso de la fotosíntesis. Esta respuesta de las coníferas puede manifestarse un año o dos inmediatamente después de la erupción volcánica.

Las cenizas volcánicas se depositan sobre las copas de los árboles impidiendo el intercambio de gases entre la epidermis de la planta y la atmósfera provocando un daño metabólico, el cual se puede reflejar en un crecimiento asimétrico de la madera. Además las cenizas que cubren el suelo disminuyen la aireación de las raíces, lo que a su vez afecta la absorción de agua y nutrientes. Además, la ceniza provoca cambios en la química del suelo (Biondi *et* al., 2004; Marin-Armengol, 2008).

Un par de los árboles muestreados (muestras 01 "a" y "b" (5mm de diámetro) del 2013 y 03 "a" y b" del 2015 (12 mm de diámetro), ver anexo VII) presentaron anillos dobles, falsos o, estrechos y además un crecimiento asimétrico con respecto a las demás muestras colectadas, imposibilitando su datación dendrocronológica. Schweingruber (1988) menciona que la ceniza, además de obstruir tejido fotosintético e impedir la aireación de las

raíces, daña la estructura del tronco cuando esta se encuentra caliente, siendo esto otro indicador de actividad volcánica (Figura 21).

Figura 21. Muestras dañadas por ceniza volcánica caliente [Figura A corresponde a *Nothofagus dombeyi* y *Araucaria* (Schweingruber, 1988); Figura B corresponde a muestras de *Pinus hartwegii* Lindl. colectadas en Tlamacas para este estudio].

Los anillos correspondientes al año de 1995 muestran un incremento en su grosor, mientras que de 1996 en adelante se observa un decremento, lo cual puede ser influenciado por las emisiones de CO_2 del volcán Popocatépetl. De acuerdo con Dajoz (2002), los arboles crecen rápidamente en una atmosfera enriquecida en CO_2 , pero el efecto de contenidos elevados de este gas sobre el crecimiento de plantas se anula rápidamente, a veces después de sólo seis semanas.

Sheppard (*et al.*, 2008) y France (*et al.*, 2014), sugieren emplear la dendrocronología junto con otras técnicas para identificar los periodos de actividad volcánica, debido a que la interpretación de los cambios en el ancho del anillo como evidencia de una erupción es potencialmente riesgosa, ya que otros procesos de perturbación forestal como el fuego, la

defoliación de insectos, el clima extremo y los terremotos pueden causar cambios similares en la anchura de los anillos. Por los resultados obtenidos del análisis dendrocronológico aunado a que en este estudio se tuvo el cuidado de muestrear árboles de apariencia sana sin evidencia de haber estado expuestos a incendios forestales ni a plagas; y por la cercanía inmediata al volcán Popocatépetl podemos inferir con cierto grado de confianza que la variación en el grosor de los anillos esté relacionada con la actividad eruptiva del volcán.

b. Absorción de metales en los anillos de Pinus Hartwegii Lindl.

La biodisponibilidad se define, como la fracción del metal que puede interactuar con un organismo biológico y ser incorporado a su estructura. Como consecuencia de dicha asimilación, puede causar algún efecto negativo o positivo en el organismo. Los mecanismos de absorción pueden realizarse en la raíz, la corteza o en las hojas. La captación a través de la corteza y follaje pueden dar lugar a la disposición mucho más directa de los metales en el anillo más externo del xilema y de este modo un registro más preciso del cambio elemental anual (Razo-Ángel, 2005; Marin-Armengol, 2008; Pearson *et al.*, 2009).

i. Potasio (K)

La importancia del K en plantas, en forma de ion K+, radica en mantener la turgencia de las células vía ósmosis, también participa en la apertura y cierre de los estomas y contribuye en el aumento de tamaño de la célula (Cruz-Muñoz, 2007; Hernández-Tapia, 2007).

Los resultados para el Potasio oscilaron entre 1069 y 2116 ppm, siendo 1987 y 1988 los años de menor concentración (Figura 23 B). Mientras que el periodo comprendido entre 1990 a 1994 fue el de mayor concentración (Figura 23 C).

En la Figura 23 (B y C) se observa un decremento a partir de 1994, el cual coincide con la primera emisión de ceniza del Popocatépetl. Así mismo es interesante notar que la actividad del volcán inició gradualmente a partir de 1992 (Espinasa, 2012; Valdés *et al.*, 2014) periodo que coincide con la mayor concentración de potasio en las virutas analizadas, posiblemente por un enriquecimiento de potasio en el suelo (Figura 22).

Figura 22. Concentración de K en los anillos (resolución anual) y grosor de los anillos.

Figura 23. Concentración de Potasio de 1984-2014. A) Resolución anual, B) Resolución bienal, C) Resolución quinquenal.

ii. Manganeso (Mn)

El Mn es absorbido por las plantas cuando se presenta en forma soluble en el suelo, es esencial para muchas funciones de la planta, por ejemplo, la asimilación de dióxido de carbono en la fotosíntesis, la síntesis de clorofila y en la asimilación de nitratos. Además es útil en la reconstrucción de los cambios en la acidez del suelo, debido a emisiones de elementos ácidos a la atmósfera, tales como óxidos de azufre (Cruz-Muñoz, 2007; Vaitkute y Baltrenas, 2011).

Los resultados de Mn se encuentran entre 41 y 155 ppm. Se observó la mayor concentración en los años 2013 y 2014 del análisis bienal (Figura 25 B) y la menor en el año 1994 del análisis anual (Figura 25 A).

El Mn presentó un decremento de 1990 a 1994 (Figura 23 A) coincidiendo con el inicio de la actividad del Popocatépetl (Figura 24). Mientras que de 1995 a 1999 (Figura 25 C) presentó un ligero incremento, probablemente influenciado por las emisiones de SO₂ del volcán.

Figura 24. Concentración de Mn en los anillos (resolución anual) y grosor de los anillos.

Figura 25. Concentración de Manganeso de 1984-2014. A) Resolución anual, B) Resolución bienal, C) Resolución quinquenal.

iii. Calcio (Ca)

El Ca activa varios sistemas enzimáticos que controlan el crecimiento de la planta, se incorpora en forma de ion Ca^{2+} en solución. La disminución de la concentración de Ca en los anillos de crecimiento, está directamente asociada con el grado de decline del bosque y en consecuencia con la disminución en el grosor de los anillos (Cruz-Muñoz, 2007; Hernández-Tapia, 2007).

Los resultados de Ca se encuentran entre 900 a 2100 ppm. El análisis bienal de los años 2007 y 2008 (Figura 27 B) presentó la menor concentración, mientras que en el periodo de 1990 a 1994, en el análisis quinquenal (Figura 27 C), se observó la mayor concentración.

Se observa un decremento constante a partir del año 1990 (Figura 27) el cual se puede asociar con la disminución en el grosor de los anillos (análisis dendrocronológico de este trabajo) y con el inicio de la actividad del volcán Popocatépetl (Figura 26).

Figura 26. Concentración de Ca en los anillos (resolución anual) y grosor de los anillos.

Figura 27. Concentración de Calcio de 1984-2014. A) Resolución anual, B) Resolución bienal, C) Resolución quinquenal.

95~99

00~04

Año

05~09

10~14

Inicio del periodo eruptivo

500

0

84-89

90~94

iv. Estroncio (Sr)

El Sr es un metal muy común en la corteza terrestre debido a la degradación de los minerales que lo contienen. Puede competir con el calcio a nivel de absorción y aunque no puede realizar algunas de sus funciones bioquímicas, si puede sustituirlo en las paredes celulares formando puentes de estroncio en las pectinas acidas (Bravo *et al.*, 2015).

El Sr presentó concentraciones entre 17 y 22 ppm. La concentración más alta se observó en 1991 y la más baja en 2010 (Figura 29 A).

Las concentraciones de Sr disminuyeron en 1994 seguido de un ligero aumento hasta 1998 (Figura 29 B y C), esto se puede atribuir a la ceniza presente en el suelo la cual influye en la función de las raíces, y a la dificultad del Sr para transportarse de las raíces a otras partes del árbol (Bravo *et al.*, 2015).

Figura 28. Concentración de Sr en los anillos (resolución anual) y grosor de los anillos.

Figura 29. Concentración de Estroncio de 1984-2014. A) Resolución anual, B) Resolución bienal, C) Resolución quinquenal.
v. Hierro (Fe)

El Fe influye en la síntesis de clorofila, la cual es indispensable en el proceso de fotosíntesis. Además interviene en las reacciones de óxido-reducción por su capacidad de intercambiar electrones (Razo-Ángel, 2005; Cruz-Muñoz, 2007; Hernández-García, 2007).

Los resultados del Fe oscilaron entre 24 a 70 ppm, siendo los años 2013 y 2014, en el análisis bienal (Figura 31 B), los que presentaron la mayor concentración, y en el año 1995 se observó la menor concentración (Figura 31 A).

Coincidiendo con Calva-Vázquez y colaboradores (2006) del año 1994 al 2004 (Figura 31 C) se observó un incremento en la cantidad de Fe. Este incremento se puede relacionar con la actividad del volcán Popocatépetl (Figura 30) debido a los altos contenidos de Fe en las emisiones volcánicas. Por su parte, Miranda (citado por Calva-Vázquez *et al.*, 2006) realizó una medición elemental de aerosoles del Valle de México en el 2001, encontrando que las cantidades de Fe fueron aumentando a partir de 1996.

Figura 30. Concentración de Fe en los anillos (resolución anual) y grosor de los anillos.

Figura 31. Concentración de Hierro de 1984-2014. A) Resolución anual, B) Resolución bienal, C) Resolución quinquenal.

vi. Titanio (Ti)

De entre los elementos de transición, con posibilidad de cambio de valencia y por tanto, con potencial participación en los procesos de transferencia electrónica ligados a la fotosíntesis, está el Titanio, el cual influye sobre la germinación y en el rendimiento de la producción de biomasa (Carvajal *et al.*, 1992).

Los resultados de Ti se encuentran entre 2 y 23 ppm. En los años 1983 y 1984, análisis bienal (Figura 33 B), se encontró la menor concentración, mientras que en el periodo de 2010 a 2014, análisis quinquenal (Figura 33 C), se observó la mayor concentración. Hubo un incremento en la cantidad de este elemento de 2010 a 2014. Además cabe mencionar que el Ti tiene una débil correlación positiva con el Fe.

Figura 32. Concentración de Ti en los anillos (resolución anual) y grosor de los anillos.

Figura 33. Concentración de Titanio de 1984-2014. A) Resolución anual, B) Resolución bienal, C) Resolución quinquenal.

vii. Zinc (Zn)

El Zn es un importante constituyente de todas las células, su deficiencia es dramáticamente mostrada a través de clorosis o un crecimiento vegetativo anormal. La precipitación pluvial es determinante para la absorción de este elemento (Cruz-Muñoz, 2007; Marin-Armengol, 2008).

Las concentraciones de Zn oscilaron entre 11 a 29 ppm, la menor concentración se encontró en el año 2005 (Figura 35 A) y la mayor se observó en los años 1995 y 1999, del análisis quinquenal (Figura 35 C).

Coincidiendo con las observaciones de Cruz-Muñoz (2007), se observó que la concentración de Zn va decreciendo con el paso de los años, lo cual está relacionado con la disminución de la precipitación pluvial en Amecameca de Juárez (Figura 20). Pero se puede observar un incremento en la concentración de Zn el año 1997 (Figura 35 A, B y C), año en que la precipitación aumentó.

Figura 34. Concentración de Zn en los anillos (resolución anual) y grosor de los anillos.

Figura 35. Concentración de Zinc de 1984-2014. A) Resolución anual, B) Resolución bienal, C) Resolución quinquenales.

viii. Cobre (Cu)

El Cu es un elemento traza, por lo tanto, la concentración de este elemento, para un óptimo crecimiento en plantas, es baja. Es fácilmente absorbido por las plantas cuando se encuentra disuelto en el suelo (Marin-Armengol, 2008).

Los resultados para Cu están entre 2 y 14 ppm, siendo el año 1995 el de menor concentración (Figura 37 A), mientras que en el análisis correspondiente a los años 2013 y 2014 (Figura 37 B) se encontró la mayor concentración. Se observó un incremento en la cantidad de Cu de 1995 a 1998 (Figura 37 B y C). De acuerdo con Calva-Vázquez y colaboradores (2006) la concentración de Cu puede aumentar en los anillos de árboles debido a la actividad volcánica (Figura 36), por lo tanto, el aumento de Cu en ese periodo pudo ser una respuesta a las emisiones del volcán Popocatépetl.

Figura 36. Concentración de Cu en los anillos (resolución anual) y grosor de los anillos.

Figura 37. Concentración de Cobre de 1984-2014. A) Resolución anual, B) Resolución bienal, C) Resolución quinquenal.

Finalmente se observó que, coincidiendo con Marin-Armengol (2008), los elementos Cu, Fe y Mn guardaban una correlación positiva (Figura 38).

Figura 38. Comportamiento del Mn, Fe y Cu del periodo 1984 a 2014. A) Análisis anual 1991-2010, B) Análisis bienal 1989-2014, C) Análisis bienal 1984-2014.

Los suelos en el área de Tlamacas presentan un pH entre 4 y 7, esta variación se debe a que el volcán arroja diferentes tipos de minerales. Estos minerales dan origen a suelos de tipo andosoles, en el cual se desarrollan preferentemente plantas con tolerancia a medios ácidos (Marin-Armengol, 2008).

De acuerdo con Vaitkute y Baltrenas (2011), la disminución del pH en el suelo provoca la pérdida de los cationes básicos Ca y K, y el aumento en las concentraciones de Mn y Fe, los cuales son cationes ácidos.

También es importante resaltar que los elementos químicos se pueden distribuir por varios anillos, no sólo en el anillo en crecimiento, afectando la calidad de los análisis dendroquímicos. Esto se debe a que los iones absorbidos por la raíz se transportan por el floema y xilema, proceso conocido como translocación (Razo-Ángel, 2005; Sheppard *et al.*, 2008). Sin embargo, las correlaciones, encontradas entre los diferentes patrones de variación de las concentraciones de los elementos estudiados, nos indican que *Pinus hartwegii* Lindl. transloca los elementos a la madera sin presentar movilidad radial y que las tendencias a aumentar o disminuir de las concentraciones de los diferentes elementos responden a los cambios en el ambiente, producto de las erupciones volcánicas.

VI. CONCLUSIONES

- 1. El *Pinus hartwegii* Lindl. puede ser utilizado como una herramienta para evaluar la actividad eruptiva del volcán Popocatépetl.
- El grosor de los anillos de crecimiento de la especie *Pinus hartwegii* Lindl. disminuye por las emisiones volcánicas.
- 3. No se presenta una buena correlación entre el grosor de los anillos de crecimiento con la precipitación o temperatura, debido a la presencia de ceniza en el suelo y en las copas de los árboles, la cual influye en la absorción de nutrientes y en la fotosíntesis de *Pinus hartwegii* Lindl.
- Los elementos analizados en los anillos mostraron cambios en su concentración a partir de 1994, lo cual coincide con el inicio del último periodo eruptivo del volcán Popocatépetl.
- 5. Aunque el equipo de Fluorescencia de Rayos X portátil Thermo Scientific Niton XL3t Ultra tiene limitaciones para analizar elementos presentes en bajas concentraciones, además de que actualmente no existen en el mercado estándares certificados para análisis elementales en madera, es funcional y confiable para realizar investigaciones dendroquímicas en zonas volcánicas activas debido a que permite realizar análisis multielementales y establecer posibles correlaciones con los periodos eruptivos.

 Como se aprecia en este estudio, los análisis dendroquímicos pueden ayudar a establecer cronologías de eventos pasados como las erupciones volcánicas.

VII. Literatura citada

- Alonso-Peña, J. R. 2011. Manual de histología vegetal. Editorial Mundi-Prensa. Madrid, España. 344 Pp.
- Altuzar-Coello, P. 2015. Fluorescencia de Rayos X. Instituto de Energías Renovables, Universidad Nacional Autónoma de México. Consultado el 11 de octubre del 2015 en: http://xml.ier.unam.mx/xml/ms/fluorescencia.xml
- Álvarez, C.; Veblen, T. T.; Christie, D. A. y González-Reyes Á. 2015. Relationships between climate variability and radial growth of Nothofagus pumilio near altitudinal treeline in the Andes of northern Patagonia, Chile. Forest Ecology and Management 342, 112-121.
- Araña-Saavedra, V. y Ortiz-Ramis, R. 1984. *Volcanología*. Editorial Rueda. Madrid, España; 510 Pp.
- Astorga-Bustillos, F. R.; Sosa-Cerecedo, M.; Herrera-Peraza, E. F.; Moreno-López, M. V.; Tena-Vega, M. y Campos-Trujillo, A. 2011. Pinus halepensis Mill. como indicador de contaminación atmosférica en una zona industrial urbana. Revista Mexicana de Ciencias Forestales, vol. 2, núm. 7, septiembre-octubre, pp. 79-86
- Augusto da Col, J. y Maretti-Silveira Bueno, M. I. 2009. Emprego da Fluorescência de Raios X por dispersao de energia para o mapeamento de troncos de árvores em Campinas, Sao Paulo. Quim. Nova, Vol. 32, No. 9, 2407-2411.
- Ávila-Campuzano, G. A. 2008. Factores ambientales que influyen en la formación de anillos de crecimiento con anomalías en Abies religiosa de los Parques Nacionales Izta-Popo y DDLL. Tesis de Licenciatura. Facultad de Estudios Superiores Zaragoza. Universidad Nacional Autónoma de México. 87 Pp.

- 8. Baes, C. F. III y McLaughlin S. B. 1984. *Trace elements in tree rings: evidence of recent and historical air pollution*. Science, Vol. 224.
- Balouet, J. C.; Smith, K. T.; Vroblesky, D. y Oudijk, G. 2009. Use of Dendrochronology and Dendrochemistry in Environmental Forensics: Does it Meet the Daubert Criteria? Environmental Forensics, 10:268-276,2009.
- 10. Bejarano-Solis, M.d.I.L. 2011. Evaluación in vitro del efecto antibacteriano y antifúngico de Pinus hartwegii Lindl. y Abies religiosa (H.B.K.) Cham. & Schlecht., del Parque Nacional Izta-Pop. Tesis de Licenciatura. Facultad de Estudios Superiores Zaragoza. Universidad Nacional Autónoma de México. 118 Pp.
- 11. Berger, T. W.; Köllensperger, G. y Wimmer, R. 2004. Plant-soil feedback in spruce (Picea abies) and mixed spruce-beech (Fagus sylvatica) stands as indicated by dendrochemistry. Plant and Soil 264: 69-83, 2004.
- Biondi, F.; Galindo-Estrada, I.; Gavilanes-Ruíz, J. C. y Elizalde-Torres, A. 2004. Tree growth response to the 1913 eruption of Volcán de Fuego de Colima, México. Quaternary Research 59 (2003) 293-299.
- Biondi, F. y Waikul K. 2004. DENDROCLIM2002: A C ++ program for statistical calibration of climate signals in tree-ring chronologies. Computer & Geosciences 30 (2004) 303-311.
- 14. Bravo, S.; Amorós, J. A.; Higueras, P. L.; García, F. J.; Pérez de los Reyes, C. y Sánchez M. 2015. Estroncio (Sr) acumulado en hojas de viña (Vitis vinifera L.) en Castilla-La Mancha. I Jornadas del Grupo de Viticultura y Enología de la SECH – Retos actuales de I+D en Viticultores.
- Buckley, B.; Hopkins, E. J. y Whitaker, R. 2004. *Meteorología*. Editorial CEAC. Barcelona, España. 303 Pp.

- 16. Calva-Vázquez, G.; Razo-Angel, G.; Rodríguez-Fernández, L. y Ruvalcaba-Sil, J. L. 2006. Study of Z > 18 elements concentration in tree rings from surroundings forests of the Mexico Valley using external beam PIXE. Nuclear Instruments and Methods in Physics Research, doi. 10.1016/j.nimb.2006.03.061.
- 17. Calva-Vázquez, G.; Hernández-Tapia, R.; Rodríguez-Fernandez, L. y Ruvalcaba-Sil, J. L. 2007. Study of the elemental concentration variation of Mn, Fe, Cu, Zn and Pb in rings of growth of Abies religiosa and Pinus montezumae from Mexico Basin Surroundings. Tree Rings in Archaeology, Climatology and Ecology. Vol 5.
- Carvajal, M.; Frutos, M. J.; Giménez, J. L.; Alcaraz, C. F. y Martínez-Sánchez, F. 1992. Aporte foliar de titanio a plantas de pimiento pimentonero. Influencia Influencia sobre el balance nutriente en pericarpo de fruto. Suelo y Planta 2, 551-562.
- 19. Casas-Flores, R. 2011. El suelo de cultivo y las condiciones climáticas. Editorial Paraninfo. España. 235 Pp.
- 20. Cerano-Paredes, J.; Villanueva-Díaz, J; Cervantes-Martínez, R.; Vázquez-Selem, L.; Trucios-Caciano, R. y Guerra de la Cruz, V. 2014. Reconstrucción de precipitación invierno-primavera para el Parque Nacional Pico de Tancítaro, Michoacán. Investigaciones Geográficas, Boletín, núm. 83, Instituto de Geografía, UNAM, México. Pp. 42-55.
- 21. Cheng, Z.; Buckley, B. M.; Katz, B.; Wright, W.; Bailey, R.; Smith, K. T.; Li, J.; Curtis, A.; van Green, A. 2007. Arsenic in tree rings at a highly contaminated site. Science of the Total Environment, 324-334.
- 22. Chrzan, A. 2015. Necrotic bark of common pine (Pinus sylvestris L.) as a bioindicator of environmental quality. Environ Sci Pollut Res Int.; 22(2): 1066–1071.

- 23. Comisión Nacional de Áreas Naturales Protegidas (CONANP). Parque Nacional Iztapopo. Consultado el 20 de Noviembre de 2015 en: http://iztapopo.conanp.gob.mx/documentos/fichas de especies/Pinus harwegii.pdf
- 24. Comisión Nacional de Áreas Naturales Protegidas (CONANP). Programa de Manejo Parque Nacional Iztaccíhuatl Popocatépetl. Primera edición diciembre de 2013. México.
- 25. Copenheaver, C. A. y Abrams M. D. 2003. *Dendroecology in young stands: case studies from jack pine in northern lower Michigan*. Forest Ecology and Management 182, 247–257.
- Correa-Díaz, A.; Gómez-Guerrero, A.; Villanueva-Díaz, J.; Castruita-Esparza, L.
 U.; Martínez-Trinidad, T. y Cervantes-Martínez, R. 2014. Análisis dendroclimático de Ahuehuete (Taxodium macronatum Ten.) en el centro de México. Agrociencia vol. 48 no. 5, México jul./ago. 2014.
- 27. Cruz-Muñoz, A. R. 2007. Dendrocronología y PIXE para la Evaluación del Crecimiento de pino Influenciado por el Cambio del Régimen Climático y la Contaminación Atmosférica en el Iztapopo. Tesis de licenciatura. Facultad de Estudios Superiores Zaragoza. Universidad Nacional Autónoma de México. 109 Pp.
- 28. Cruz-Muñoz, A. R.; Rodríguez-Fernández, L.; Calva-Vázquez, G. y Ruvalcaba-Sil, J. L. 2008. Effects due to Popocatepetl volcano eruptions on the elemental concentrations in tree growth rings. Wiley InterScience, X-Ray Spectrom; 37: 163– 168.
- 29. Dajoz, Roger. 2002. *Tratado de Ecología*. 2da edición. Editorial Mundi-Prensa. México, D.F. 600 Pp.

- 30. De la Cruz Reyna, S.; Quezada J. L.; Peña, C.; Zepeda O. y Sánchez T. 1995. Antecedentes históricos, historia de la actividad reciente del Popocatépetl (1354-1995). En Zepeda O. y Sánchez T. A. (coord.), Volcán Popocatépetl, estudios realizados durante la crisis de 1994-1995 (Pp. 3-23). México, D. F. CENAPRED.
- Spinasa-Pereña, R. 2007. Evolución Morfoestratigráfica del volcán Popocatépetl. Tesis de Doctorado. Universidad Nacional Autónoma de México. 143 Pp.
- 32. Espinasa-Pereña, R. 2012. *Historia de la Actividad del Volcán Popocatépetl, 17 años de erupciones*. Centro Nacional de Prevención de Desastres. México, D.F. 69 Pp.
- Feliksik, E. y Wilczynski, S. 2008. Tree-ring chronology as a source of information on susceptibility of sitka spruce to climatic conditions of Pomerania (Northern Poland). Geochronometria 30. Pp 79-82.
- 34. Fenn, M. E.; de Bauer, L. I.; Hernández-Tejada, T. 2002. Urban Air Pollution and Forest, Resources at Risk in the Mexico City Air Basin. Ecological Studies series, eds. New York: Springer-verlag.
- 35. Ferreyra-Aranda, Sinue. 2010. Dendrocronología y estructura de Pinus hartwegii en la cuenca del río Magdalena México, D.F. Tesis de Licenciatura. Facultad de Ciencias. Universidad Nacional Autónoma de México. 60 Pp.
- 36. France, C. A. M.; Sheppard, P. R.; Cano, N.; Little, N. C. y Speakman, R. J. 2014. Stable isotopic and chemical indicators of volcanic eruptions in tree rings from Parícutin, México. Open Journal of Archaeometry; volumen 2: 5261.
- 37. Franco-Corona, A. 2015. Cambios recientes en el límite superior del bosque del volcán Popocatépetl. Tesis de Licenciatura. Facultad de Filosofía y Letras. Universidad Nacional Autónoma de México. 158 Pp.

- García-Nogales, A. 2011. Elementos de Bioestadística. Editorial de la Universidad de Extremadura, 3ra edición. Cáceres, España. 363 Pp.
- 39. Gonzales-Elizondo, M.; Jurado, E.; Návar, J.; González-Elizondo, M. S.; Villanueva, J.; Aguirre, O. y Jiménez, J. 2005. Tree-rings and climate relationships for Douglas-fir chronologies from the Sierra Madre Occidental, México: A 1681-2001 rain reconstruction. Forest Ecology and Management 213; 39-53.
- 40. González-Espinosa, M. I. 2005. Variación anatómica foliar de Abies religiosa (H. B. K.) Schelent. & Cham. Y Pinus hartwegii Lindl. (Pinacea)en tres sitios contrastantes. Tesis de licenciatura. Facultad de Estudios Superiores Zaragoza. Universidad Nacional Autónoma de México. 62 Pp.
- 41. Guarnaschelli, A. B. y Garau A. M. 2009. Árboles, una guía esencial para la selección, el cultivo y el mantenimiento de diversas especies de árboles. Editorial Albatros. Buenos Aires, Argentina. 110 Pp.
- 42. Gutiérrez-García, G. 2003. Análisis dendrocronológico y económico de Abies vejari, Pinus hartwegii, Pinus strobiformis y Pinus teocote en la sierra de Peña Nevada, Nuevo Leon. Tesis de Licenciatura. Facultad de Ciencias biológicas. Universidad Autónoma de Nuevo León. 105 Pp.
- 43. Gutiérrez-Ginés, M. J. y Ranz, I. 2010. Utilización de un equipo portátil de fluorescencia de rayos X para el estudio de metales pesados en suelos: puesta a punto y aplicación a vertederos. Departamento de Ecología, Universidad de Alcalá. Madrid, España. 120 Pp.
- 44. Gutiérrez-Uribe, M. 2011. Establecimiento y supervivencia de Pinus hartwegii Lindl., en una zona perturbada de la cuenca alta del río Magdalena. Tesis de Licenciatura. Facultad de Ciencias. Universidad Nacional Autónoma de México. 55 Pp.

- 45. Harvey, D. 2002. *Química analítica moderna*. Editorial S.A. McGraw-Hill/Interamericana de España. Madrid, España. 579Pp.
- 46. Heinrich, I. y Allen, K. 2012. Current Issues and Recent Advances in Australian Dendrochronology: Where to Next?. Geographical Research, volumen 51, Issue 2, pages 180-191.
- 47. Hernández-García, M.A. y Granados-Sánchez, D. 2006. El parque nacional Iztaccíhuatl-Popocatépetl-Zoquiapan y el impacto ecológico social de su entorno. Revista Chapingo Serie de Ciencias Forestales y del Ambiente 12(2):101-109.
- 48. Hernández-Tapia, R. 2007. Dendroquímica y dendroecología de árboles pino-oyamel en una zona de transición del Parque Nacional Zoquiapan. Tesis de Licenciatura. Facultad de Estudios Superiores Zaragoza. Universidad Nacional Autónoma de México. 112 Pp.
- 49. Ivlev, L. S.; Galindo, I. y Kudryashov V. I. 1995. Estudio de aerosoles y cenizas dispersados durante la erupción del volcán Popocatépetl del 21 de diciembre de 1994.-Resultados preliminares*. En Zepeda O. y Sánchez T. A. (coord.). Volcán Popocatépetl. Estudios realizados durante la crisis de 1994-1995. (Pp. 257-288) México, D.F. CENAPRED.
- 50. Juárez, A.; Gay, C. y Flores, Y. 2005. Impact of the Popocatepetl's volcanic activity on the air quality of Puebla City, México. Scielo, Atmósfera, 57-69.
- 51. Lageard, J. G. A.; Howell, J. A.; Rothwell, J. J. y Drew, I. B. 2008. The utility of Pinus sylvestris L. in dendrochemical investigations: Pollution impact of lead mining and smeltingin Darley Dale, Derbyshire, UK. Environmental Pollution 153; 284-294.

- 52. León, H. 2001. Crecimiento del árbol. Tejidos del tallo adulto. Universidad de los Andes, Facultad de Ciencias Forestales y Ambientales, Escuela de Ingeniería Forestal. Departamento de Botánica, cátedra de anatomía de maderas. Mérida, Venezuela.
- 53. Leroi-Gourhan, A. 2002. La prehistoria en el mundo. Editorial Akal. Madrid, España.
 752 Pp.
- 54. Macías, J. L. 2005. Geología e historia eruptiva de algunos de los grandes volcanes activos de México. Boletín de la Sociedad Geológica Mexicana Volumen Conmemorativo del Centenario. Temas Selectos de la Geología Mexicana Tomo LVII, núm. 3, 2005, p. 379-424. Departamento de Vulcanología, Instituto de Geofísica, Universidad Nacional Autónoma de México.
- 55. Marin-Armengol, M. 2008. Determinación de metales pesados (Pb, Cd, Zn, Mn y Cu) en cenizas del volcán Popocatépetl. Tesis de Licenciatura. Facultad de Estudios Superiores Zaragoza. Universidad Nacional Autónoma de México. 89 Pp.
- 56. Markert, Bernd. 2007. *Definitions and principles for bioindication and biomonitoring of trace metals in the environment*. Jounarl of Trace Elements in Medicine and Biology 21; S1, 77-82.
- 57. Martín del Pozzo, A. L. 2012. Precursors to eruptions of Popocatépetl Volcano, Mexico. Geofísica Internacional, 51-1: 87-107.
- 58. Martín del Pozzo, A. L.; Mendiola, F. 2014. Las Cenizas Volcánicas. En Zepeda Ramos O. (coord.), Las cenizas volcánicas del Popocatépetl y sus efectos para la aeronavegación e infraestructura aeroportuaria (Pp. 43-50). México, D.F. CENAPRED.

- 59. Martí-Ezpeleta, A. 2003. *Clima y calidad ambiental*. VI reunión nacional de climatología, asociación de geógrafos españoles, Santiago de Compostela, 14-16 de septiembre de 2000. Universidade de Santiago de Compostela Publicacións.
- 60. Mendenhall, W.; Beaver, R. J. y Beaver, B. M. 2010. *Introducción a la probabilidad y estadística*. Editorial Cengage Learning, México, D.F. 780 Pp.
- 61. **Milton, J. S.** 2007. *Estadística para Biología y Ciencias de las Salud*. Editorial McGraw-Hill, 3ra edición ampliada. Madrid, España. 744 Pp.
- 62. Moreno-Cano, N. B. 2010. Estimación de captura de carbono en bosques comunales de Pinus hartwegii Lindl. en la zona de Amecameca, Estado de México. Tesis de licenciatura. 41 Pp.
- Narave-Flores, H. y Taylor, K. 1997. *Flora de Veracruz, "Pinaceae"*. Fascículo 98.
 Publicada por el Instituto de Ecología, A. C. Xalapa, Veracruz, México.
- 64. Neira, E. y Lara, A. 2000. Desarrollo de cronologías de ancho de anillos para alerce (Fitzroya cupressoides) en Contao y Mirador, Chile. Revista Chilena de Historia Natural 73:693-703.
- 65. Nutsch, W. 2000. *Tecnología de la madera y el mueble*. Editorial Reverte. Barcelona, España.515 Pp.
- 66. Pearson, C. L.; Manning, S. W.; Coleman, M. y Jarvis, K. 2005. Can tree-ring chemistry reveal absolute dates for past volcanic eruptions? Journal of Archaeological Science 32; 1265-1274.

- 67. Pearson, C. L.; Dale, D.S.; Brewer, P. W.; Salzer, M. W.; Lipton, J. y Manning, S. W. 2009. Dendrochemistry of White Mountain bristlecone pines: An investigation via Synchrotron Radiation Scanning X-Ray Fluorescence Microscopy. Journal of Geophysical Research, Vol. 114.
- Pompa-García, M.; Dávalos-Sotelo, R.; Rodríguez-Téllez, E..; Aguirre-Calderón,
 O. A. y Treviño-Garza, E. J. 2014. Sensibilidad climática de tres versiones dendrocronológicas para una conífera mexicana. Madera y Bosques, vol. 20, núm. 3: 139-151, Otoño 2014.
- 69. Quaas-Weppen, R.; Guevara-Ortiz, E.; de la Cruz-Reyna, S.; Valdés-González, C. y Castelán, G. 2014. Sistema de monitoreo y vigilancia del volcán Popocatépetl. En O. Zepeda Ramos (coord.), Las cenizas volcánicas del Popocatépetl y sus efectos para la aeronavegación e infraestructura aeroportuaria (Pp. 83-88). México, D.F. CENAPRED.
- 70. Quiroz-Jiménez, J. D. 2012. Variabilidad climática de los últimos 80 KA CAL AP en el norte de México con proxies geoquímicos en sedimentos lacustres. Tesis de Maestría. Universidad Nacional Autónoma de México. 134 Pp.
- 71. Razo-Ángel, G. 2005. Registro de los metales pesados con PIXE en anillos de crecimiento de árboles de los parques Nacionales Desierto de los Leones y El Chico, Hgo. Tesis de Licenciatura. Facultad de Estudios Superiores Zaragoza. Universidad Nacional Autónoma de México. 112 Pp.
- Renfrew, C. y Bahn, P. 2007. Arqueología. Teorías, Métodos y Prácticas. Editorial Akal. Madrid, España. 637 Pp.
- 73. Rizo-Zárraga, Víctor. 2009. Tolerancia a bajas temperaturas en individuos de cinco procedencias de Pinus hartwegii Lindl. Tesis de Licenciatura. Facultad de Ciencias. Universidad Nacional Autónoma de México. 65 Pp.

- 74. Rouessac, F. y Rouessac, A. 2003. Análisis Químico, Métodos y Técnicas Instrumentales Modernas. Editorial McGraw-Hill/Interamericana. Madrid, España. Pp 441.
- 75. Sandoval-González, I. 2010. Efecto de los hongos ectomicorrizógenos en el crecimiento y supervivencia de plátulas de Pinus hartwegii Lindl. y Abies religiosa (Kunth Schltdl. et Cham.): Un enfoque para la restauración de ambientes deteriorados en la Cuenca del Río Magdalena D.F. Tesis de Maestría. Universidad Nacional Autónoma de México. 109 Pp.
- 76. Schweingruber, F. H. 1988. *Tree Rings: Basics and Applications of Dendrochronology*. Editorial Springer. Dordrecht, Holanda. 276 Pp.
- 77. Sheppard, P. y Witten, M. 2005. *Laser trimming tree-ring cores for dendrochemistry of metals*. Tree-ring research, vol. 61 (2) pp. 87-92.
- 78. Sheppard, P.; Ort, M.; Anderson, K.; Elson, M.; Vázquez-Selem, L.; Clemens, A.; Little, N. y Speakman, R. 2008. Multiple dendrochronological signals indicate the eruption of Paricutín volcano, Michoacán, México. Tree-Ring Research .Vol. 64(2), pp. 97–108.
- 79. Sistema Meteorológico Nacional. Consultado el 17 de Enero de 2017 en: http://smn.cna.gob.mx/es/informacion-climatologica-ver-estado?estado=mex
- 80. Solís, R. L. 2002. Contribución al conocimiento de la población de Pinus hartwegii Lindley en el Pico de Orizaba, Veracruz, México. Tesis de Maestría. Instituto de Genética forestal, Xalapa, Veracruz. 130 Pp.
- Stokes, M. A. y Smiley, T. L. 1996. An Introduction to Tree-Ring Dating. Editorial The University of Arizona press. 73 Pp.

- 82. Tarbuck, E. y Lutgens F. 2010. *Ciencias de la Tierra, una introducción a la geología física*. Editorial Pearson Educación. Madrid, España.712 Pp.
- 83. Tardif, J. y Stevenson D. 2001. Radial growth-climate association of Thuja occidentails L.at the northwestern limit of its distribution, Manitoba, Canada. Dendrochronologia 19 (2) 2001:179-187.
- 84. The International Volcanic Health Hazard Network (IVHHN); U. S. Geological Survey (USGS) e Instituto de Geología y Ciencias Nucleares de Nueva Zelanda (GNS). 2016. Los peligros de las cenizas volcánicas para la salud, guía para el público. Consultado el 10 de octubre de 2016 en: http://www.ivhhn.org/images/pamphlets/Health Guidelines Spanish WEB.pdf
- 85. Thermo Fisher Scientific. 2011. Analizadores FRX Niton de Thermo Scientific. Consultado el 26 de mayo de 2017 en: http://www.tawadascientific.com/pdf/mining_brochure_spanish_low_res_2011sep05.pd f
- 86. Urrutia-Jalabert, R. B. 2002. Desarrollo de una cronología de anchos de anillos para alerce (Fitzroya cupressoides) y reconstrucción de la historia de incendios en el área de Abtao, Parque Nacional Chiloé, X Región. Tesis de licenciatura. Pontificia Universidad Católica de Chile. 83 Pp.
- 87. Valdés, C.; de la Cruz, S.; Martínez, A.; Quaas-Weppen, R. y Guevara-Ortíz, E. 2014. Resumen de la actividad del volcán Popocatépetl de diciembre 1994 a mayo 2001. En O. Zepeda Ramos (coord.), *Las cenizas volcánicas del Popocatépetl y sus efectos para la aeronavegación e infraestructura aeroportuaria* (Pp. 21-42). México, D.F. CENAPRED.

- 88. Vaitkute, D. y Baltrenas P. 2011. Manganese trends in tree rings of Pinus Sylvestris L.-Monitoring soil chemical changes. Environmental engineering. The 8th International conference. Vilnius Gediminas technical university, Vilnius, Lithuania.
- 89. Villanueva-Díaz, J.; Cerano-Paredes, J.; Stahle, D. W.; Therrel, M. D.; Cleaveland, M. K. y Sánchez-Cohen, I. 2004. Elementos básicos de la dendrocronología y sus aplicaciones en México. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Centro Nacional de Investigación Disciplinaria en relación Agua-Suelo-Planta-Atmósfera. CENID-RASPA.
- 90. Villanueva-Díaz, J.; Cerano-Paredes, J.; Stahle, D.; Constante-García, V.; Vázquez-Selem, L.; Estrada-Ávalos, J. y de Dios Benavides Solorio, J. 2010. Ensayo. Árboles Longevos de México. Revista Mexicana de Ciencias Forestales, Vol.1, Núm. 2, Julio-Diciembre 2010.
- 91. Villanueva-Díaz, J.; Cerano-Paredes, J.; Vázquez-Selem, L.; Stahle, D.; Fulé, P.; Yocom, L.; Franco-Ramos, O. y Ruíz-Corral, J. 2015. Red dendrocronológica del pino de altura (Pinus hartwegii Lindl.) para estudios dendroclimáticos en el noreste y centro de México. Investigaciones Geográficas, Boletín del Instituto de Geografía, UNAM. ISSN 0188-4611, núm. 86, pp. 5-14.
- 92. Villanueva-Díaz, J.; Vázquez-Selem, L.; Gómez-Guerrero, A.; Cerano-Paredes, J.; Aguirre-Gonzáles, N. A. y Franco-Ramos, O. 2016. Potencial dendrocronológico de Juniperus montícola Martínez en el monte Tláloc, México. Rev. Fitotec. Mex. Vol. 39(2): 175-185.
- 93. Wicander, R. y Monroe, J. 1999. Fundamentos de geología. Editorial International Thomson. México, D.F. 445 Pp.

94. Worbes, M.; Staschel, R.; Roloff, A.; Junk, W. J. 2003. Tree ring analysis reveals age structure, dynamics and wood production of natural forest stand in Cameroon. Forest Ecology and Management 173, 105-123.

ANEXOS

ANEXO I. Material de Referencia Estándar de Agujas de Pino SRM 1575a.

National Institute of Standards and Technology

Certificate of Analysis

Standard Reference Material® 1575a

Trace Elements in Pine Needles

(Pinus Taeda)

This Standard Reference Material (SRM) is intended primarily for use in the evaluation of techniques employed in the analysis of pine needles and materials of a similar matrix. A unit of SRM 1575a consists of approximately 50 g of dried, jet-milled, radiation sterilized, and blended pine needles.

Certified Values: The certified concentrations for twelve elements, expressed as mass fractions [1] on a dry basis, are provided in Table 1. The certified value for mercury is based on results from a single NIST primary method, cold vapor isotope dilution inductively coupled plasma mass spectrometry, and was confirmed by radiochemical neutron activation analysis at NIST. Certified values for other elements are based on results from two or more critically evaluated independent analytical techniques. Analyses were performed at NIST and at United States Geological Survey (USGS), Denver, CO. A NIST certified value is a value for which NIST has the highest confidence in its accuracy in that all known or suspected sources of bias have been investigated or taken into account [2].

Reference Values: The reference values for eleven constituents, expressed as mass fractions on a dry basis, are provided in Table 2. The reference values are based on results obtained from a single NIST analytical method. Reference values are noncertified values that are estimates of the true value. However, the values do not meet the NIST criteria for certification and are provided with associated uncertainties that may not include all sources of uncertainty [2].

Information Values: Information values for two elements are provided in Table 3. An information value is a value that may be of interest to the SRM user, but insufficient information is available to assess the uncertainty associated with the value [2].

Expiration of Certification: The certification of SRM 1575a is valid, within the measurement uncertainties specified, until 01 August 2022 provided the SRM is handled and stored in accordance with the instructions given in this certificate (see "Instructions for Use"). This certification is nullified if the SRM is contaminated, contaminated or otherwise modified.

Maintenance of SRM Certification: NIST will monitor this SRM over the period of its certification. If substantive technical changes occur that affect the certification before the expiration of this certificate, NIST will notify the purchaser. Registration (see attached sheet) will facilitate notification.

The coordination of the technical measurements leading to certification was performed by E.A. Mackey of the NIST Analytical Chemistry Division. A complete list of analysts is given in Table 5.

Statistical analyses were provided by H-k. Liu and J. Lu of the NIST Statistical Engineering Division.

Support aspects involved in the issuance of this SRM were coordinated through the NIST Measurement Services Division.

The protocol used for obtaining the pine needles was developed by D.A. Becker of the NIST Analytical Chemistry Division. The needles were collected by members of the Forest Nutrition Cooperative of North Carolina State University.

Stephen A. Wise, Chief Analytical Chemistry Division

Gaithersburg, MD 20899 Certificate Issue Date: 13 June 2012 Certificate Revision History is on Last Page Robert L. Watters, Jr., Chief Measurement Services Division

Page 1 of 5

SRM 1575a

Preparation of SRM 1575a was performed by C.N. Fales of the NIST Standard Reference Materials Group.

INSTRUCTIONS FOR USE

Sampling: The SRM should be thoroughly mixed by repeatedly inverting and rotating the bottle horizontally before sampling. A minimum sample mass of 250 mg should be used for analytical determinations to be related to elemental concentration values provided. The SRM should be stored in its original, tightly sealed bottle away from sunlight and intense sources of radiation.

Drying: In order to relate measurements to the certified and reference values that are expressed on a dry mass basis, users should determine a drying correction at the time of each analysis by desiccator drying for five days over fresh magnesium perchlorate or equivalent. Freeze-drying for six days at 1 Pa with a condenser temperature of 50° C, initial shelf temperature of -10° C and final shelf temperature of 5° C provided equivalent results. The average mass loss measured at NIST using these two methods for SRM 1575a was 2.9 % (1 s = 0.2 %, n = 14). No significant difference between these two methods was observed. The amount of moisture in this material may vary depending on storage and environmental conditions.

SOURCE, PREPARATION, AND ANALYSIS

The pine needles for this SRM were collected from loblolly pine trees (*Pinus taeda*) in North Carolina from freshly felled trees of approximately the same age and origin. The needles were dried at 70 °C for 48 h, coarse ground to pass through a 2 mm sieve and shipped to NIST where the material was jet-milled to pass a 100 µm sieve, blended, radiation sterilized, and bottled. Measurements confirmed that the jet-milling process resulted in a powder with particle sizes equivalent to spheres ranging in diameter from approximately 1 µm to 100 µm.

Chromium was found to be inhomogenously distributed in this material (for a sample size of 250 mg). Analysis of a total of 58 portions yielded chromium mass fraction values ranging from approximately 0.3 mg/kg to 0.5 mg/kg.

Analyses of this material used for certification were performed at NIST and at USGS. The analytical techniques used for each element are listed in Table 4 and the analysts are listed in Table 5.

Table 1. Certified Mass Fraction Values (Dry Basis) in SRM 1575a

Minor Constituents

Elements	Mass Fraction (%)				
Phosphorus	0.107	±	0.008		
Potassium	0.417	±	0.007		
Calcium	0.25	±	0.01		

Trace Elements

Elements	Mass Fraction (mg/kg)		Elements	Mass Fraction (mg/kg)			
Aluminum	580	±	30	Copper	2.8	±	0.2
Barium	6.0	±	0.2	Iron	46	±	2
Cadmium	0.233	+	0.004	Mercury	0.0399) ±	0.0007
Chlorine	421	±	7	Rubidium	16.5 38	± +	0.9

The certified values are the average values from two or more analytical methods and the uncertainty values represent expanded uncertainties, which include components of uncertainty from each method with a Type B distribution for between method uncertainty, combined according to the method described in reference 3 in compliance with the ISO Guide [4].

SRM 1575a

Page 2 of 5

Table 2. Reference Mass Fraction Values (Dry Basis) for SRM 1575a

Minor Constituent

3.5	Carlos and
Magn	esium

Element

0.106 ± 0.017

Mass Fraction (%)

Trace Elements

Elements Mass Fraction (mg/kg)		Elements	Mass Fraction (mg/kg)				
Arsenic	0.039	±	0.002	Manganese	488	±	12
Boron	9.6	±	0.2	Nickel	1.47	±	0.10
Cesium	0.2.83	±	0.009	Scandium	0.0101	±	0.0003
Cobalt	0.061	±	0.002	Selenium	0.099	±	0.004
Lead	0.167	±	0.015	Sodium	63	±	1

Reference values are based on results of one analytical method at NIST and the uncertainty values represent the expanded uncertainties, which include the combined Type A, and Type B with a coverage factor, combined according to the method described in reference 5 in compliance with the ISO Guide [4].

Table 3. Information Mass Fraction Values (Dry Basis) for SRM 1575a

Elements	Mass Fraction (mg/kg)
Cerium	0.11
Chromium (inhomogeneous)	0.3 - 0.5

Page 3 of 5

Table 4. Methods of Analysis for SRM 1575a

Method

Element Aluminum Arsenic Barium Boron Cadmium Calcium Cerium Cesium Chlorine Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Phosphorus Potassium Rubidium Scandium Selenium Sodium

INAA, ICP-AES USGS INAA INAA, ICP-MS PGAA ICP-MS, RNAA (and confirmed by ICP-AES^{UBGS}, ICP-MS^{UBGS}) INAA, ICP-MS^{UBGS}, ICP-AES^{UBGS} INAA INAA PGAA, INAA INAA, ICP-MS^{USGS}, ICP-AES^{USGS} INAA RNAA, ICP-AES^{USGS} INAA, ICP-AES^{USGS} ICP-MS INAA (and confirmed by ICP-AES^{USGS}) INAA CV-ID-ICP-MS (and confirmed by RNAA) ICP-MS RNAA, ICP-AES^{USGS} INAA, PGAA (and confirmed by ICP-AES^{USGS}) ICP-MS^{USGS}, INAA INAA INAA INAA INAA, ICP-AES USGS

Methods:

Zinc

ICP-AES USGS	Inductively coupled plasma atomic emission spectrometry at USGS
ICP-MS ^{USGS}	Inductively coupled plasma mass spectrometry at USGS
INAAUSGS	Instrumental neutron activation analysis at USGS
CVAAS ^{USGS}	Cold vapor atomic absorption spectrometry at USGS
ICP-MS	Inductively coupled plasma mass spectrometry at NIST
CV ID-ICP-MS	Isotope dilution, cold vapor, inductively coupled plasma mass spectrometry at NIST
INAA	Instrumental neutron activation analysis at NIST
PGAA	Prompt gamma-ray activation analysis at NIST
RNAA	Radiochemical neutron activation analysis at NIST

Table 5. Analysts for SRM 1575a

NIST Analytical Chemistry Division

W.R. Kelly	R.D. Oflaz
R.M. Lindstrom	B.J. Porter
S.E. Long	R.L. Paul
E.A. Mackey	L.J. Wood
J.L. Mann	L.L. Yu

USGS, Denver, CO

S.A. Wilson	P.H. Briggs
Z.A. Brown	J. Budahn

Page 4 of 5

REFERENCES

- Taylor, B.N.; Guide for the Use of the International System of Units (SI); NIST Special Publication 811; 1995 Ed. (1995); available at http://www.nist.gov/pml/pubs/index.cfm/ (accessed June 2012).
 May, W.; Parris, R.; Beck, C.; Fassett, J.; Greenberg, R.; Guenther, F.; Kramer, G.; Wise, S.; Gills, T.;
- [2] May, W.; Parris, R.; Beck, C.; Fassett, J.; Greenberg, R.; Guenther, F.; Kramer, G.; Wise, S.; Gills, T.; Colbert, J.; Gettings, R.; MacDonald, B.; *Definitions of Terms and Modes Used at NIST for Value-Assignment of Reference Materials for Chemical Measurements;* NIST Special Publication 260–136; U.S. Government Printing Office: Washington, DC (2000); available at http://www.nist.gov/srm/publications.cfm (accessed June 2012).
- [3] Levenson, M.S.; Banks, D.L.; Eberhardt, K.R.; Gill, L.M.; Guthrie, W.F.; Liu, H.-k.; Vangel, M.G.; Yen, J.H.; Zhang, N.F.; J. Res. NIST 105, pp. 571-549 (2000).
- [4] Guide to the Expression of Uncertainty in Measurement, ISBN 92-67-10188-9, 1st Ed. ISO, Geneva, Switzerland, (1993); see also Taylor, B.N.; Kuyatt, C.E.; Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results; NIST Technical Note 1297, U.S. Government Printing Office, Washington, DC (1994); available at http://www.nist.gov/pml/pubs/index.cfm (accessed June 2012).
- [5] Taylor, B.N.; Kuyatt, C.E.; Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results; NIST Technical Note 1297; U.S. Government Printing Office: Washington, DC (1994); available at http://www.nist.gov/pml/pubs/index.cfm (accessed June 2012).

Certificate Revision History: 13 June 2012 (Extension of certification period; editorial changes); 17 September 2002 (Original certificate date).

Users of this SRM should ensure that the Certificate of Analysis in their possession is current. This can be accomplished by contacting the SRM Program: telephone (301) 975-2200; fax (301) 948-3730; e-mail srminfo@nist.gov; or via the Internet at http://www.nist.gov/srm.

SRM 1575a

Page 5 of 5

Certificate of Analysis

Standard Reference Material® 1547

Peach Leaves

This Standard Reference Material (SRM) is intended primarily for use in validating analytical methods for the determination of major, minor, and trace elements in botanical materials, agricultural food products, and similar materials. This SRM can also be used for quality assurance when assigning values to in-house control materials. A unit of SRM 1547 consists of 50 grams of dried peach leaves of the Coronet variety.

Certified Mass Fraction Values: Certified mass fraction values for elements in SRM 1547, reported on a dry-mass basis, are provided in Table 1. A NIST certified value is a value for which NIST has the highest confidence in its accuracy in that all known or suspected sources of bias have been investigated or taken into account [1]. Analyses for value assignment were performed by NIST and collaborating laboratories. Certified values were calculated using the results from a single definitive method or the weighted means of results from two or more different analytical methods combined using the DerSimonian-Laird procedure [2–4]. The associated uncertainties are expressed at an approximately 95 % level of confidence [5,6].

Information Mass Fraction Values: Information mass fraction values for several elements are provided in Table 2 as additional information on the composition of the material. A NIST information value is a value that may be of interest to the SRM user, but insufficient information is available to assess the uncertainty associated with the value, and therefore no uncertainty is provided [1]. Values are reported on a dry-mass basis in mass fraction units [7]. Information values cannot be used to establish metrological traceability.

Maintenance of SRM Certification: NIST will monitor this SRM over the period of its certification. If substantive technical changes occur that affect the certification before the expiration of this certificate, NIST will notify the purchaser. Registration (see attached sheet or register online) will facilitate notification.

Coordination of the technical measurements leading to the certification of this SRM was performed by D.A. Becker of the former NIST Inorganic Analytical Research Division. Revision of this certificate was coordinated by L.J. Wood of the NIST Chemical Sciences Division.

Analytical measurements at NIST were performed by I.L. Barnes, E.S. Beary, D.A. Becker, D.S. Braverman, C.A. Clements, M.S. Epstein, R.R. Greenberg, L.B. Jassie, H.M. Kingston, J.R. Moody, T.J. Murphy, P.J. Paulsen, K.W. Pratt, T.A. Rush, G. Sleater, S.F. Stone, G.C. Turk, T.W. Vetter, R.D. Vocke, L.J. Wood, and X. Zhen of the NIST Chemical Sciences Division.

Statistical analysis was provided by W.F. Guthrie and S.B. Schiller of the NIST Statistical Engineering Division.

Support aspects involved in the issuance of this SRM were coordinated through the NIST Office of Reference Materials.

Carlos A. Gonzalez, Chief Chemical Sciences Division

Steven J. Choquette, Director Office of Reference Materials

Gaithersburg, MD 20899 Certificate Issue Date: 21 April 2017 Certificate Revision History on Last Page

SRM 1547

Page 1 of 7

Analyses for value assignment were also performed by D.L. Anderson (Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD), A.R. Byrne and B. Smodis (Jozef Stefan Institute, Ljubljana, Slovenia), J. Kucera (Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rez, Czech Republic), and N. Miller-Ihli, (Nutrient Composition Laboratory, U.S. Department of Agriculture, Beltsville, MD).

NOTICE AND WARNING TO USERS

SRM 1547 IS INTENDED FOR RESEARCH USE ONLY.

INSTRUCTIONS FOR STORAGE AND USE

Storage: The SRM should be stored in the dark at controlled room temperature (20 °C to 25 °C) in its original unopened bottle, until required for use. The SRM should not be exposed to intense sources of radiation. The bottle can be resealed and test portions removed and analyzed until the material reaches its expiration date.

Use: The contents of the bottle should be thoroughly mixed by rotating and/or rolling the bottle before each use. Allow the contents to settle for one minute prior to opening to minimize the loss of fine particles. To relate analytical determinations to the certified values in this certificate, the test portion mass indicated in the description of the NIST analyses for each group of analytes (see "Source, Preparation, and Analysis" below) should be used. Test portions should be taken by gently tapping material needed from the SRM bottle. Results in this certificate are reported on a dry-mass basis; sample(s) need to be dried using one of the recommended techniques (see "Determination of Moisture") to compare results to certified values found in this certificate. Results obtained in analyses should include their own estimates of uncertainty and can be compared to the certified values using procedures described in reference 8.

Determination of Moisture: Moisture content of SRM 1547 was determined at NIST by (1) drying over fresh anhydrous magnesium perchlorate in a desiccator at room temperature for 120 h (sample depth should not exceed 1 cm) and (2) freeze drying for 24 h at a pressure of 13.3 Pa or lower and a shelf temperature of -5 °C or lower after having frozen the sample (not to exceed 1 cm in depth) at -40 °C or lower for at least 1 h. At the end of the 24-h period, samples were placed immediately in a desiccator with fresh anhydrous magnesium perchlorate. Samples were weighed after allowing a minimum of 4 h to establish temperature equilibrium. It is preferable to analyze volatile elements such as mercury from the bottle without drying, determine the moisture content on a separate sample from the same bottle, and correct the analytical results to a dry-mass basis.

Vacuum drying at room temperature and oven drying at elevated temperatures have resulted in excessive mass losses and therefore are **NOT** recommended.

SOURCE, PREPARATION, AND ANALYSIS⁽¹⁾

Source and Preparation: The material for this SRM is leaves representative of healthy Georgia peach trees, variety "Coronet", picked from a field in Peach County, GA (150 miles south of Athens, GA). The plant material for this SRM was collected and prepared under the direction of R.A. Isaac, Soil Testing & Plant Analysis Laboratory, The University of Georgia College of Agriculture. Fungicide and insecticide sprays were controlled to minimize heavy metal contamination. The leaves were dried and ground in a stainless-steel mill to pass a 1 mm screen. At NIST, the ground leaves were jet milled and air classified to a particle size of approximately 75 μ m (200 mesh). Prior to bottling, the material was irradiated by ⁶⁰Co to an estimated minimum absorbed dose of 27.8 kGy for microbial control.

Analytical Approach for Determination of Elements: Value assignment of the mass fractions of elements in SRM 1547 was based on measurements provided by NIST and collaborating laboratories, where appropriate. NIST provided measurements by using cold-vapor atomic absorption spectrometry (CVAAS), direct current plasma optical emission spectrometry (DCP-OES), flame atomic emission spectrometry (FAES); inductively coupled plasma optical emission spectrometry (ICP-OES), isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS), isotope dilution thermal ionization mass spectrometry (ID TIMS), instrumental neutron activation analysis (INAA), Kjeldahl nitrogen determination (KJEL), laser-enhanced ionization spectrometry (LEIS), polarography (POL), and radiochemical neutron activation analysis (RNAA).

Page 2 of 7

⁽¹⁾ Certain commercial equipment, instruments or materials are identified in this certificate to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose. SRM 1547

NIST Analyses for Hg by CVAAS: The mass fraction of mercury was determined by CVAAS from duplicate, nominal 2 g test portions taken from three bottles of SRM 1547. Samples were placed in digestion flasks with 10 mL HNO3 and 5 mL H₂SO₄ and heated gently for 2 h. Next, 5 mL of HClO₄ were added to each flask, and the solutions were heated to sulfuric acid fumes. Solutions were transferred to volumetric flasks where K₂Cr₂O₇ was added until each solution turned yellow. Solutions were diluted to 100 mL. Quantification was based on a five-point calibration curve.

NIST Analyses for Fe, Na, P, and Rb by DCP-OES or FAES: Mass fractions of iron and phosphorus were determined by DCP-OES. Mass fractions of rubidium and sodium were determined by FAES. For each technique, duplicate, nominal 1 g test portions were taken from three bottles of SRM 1547. Samples were mixed with 1 g lithium metaborate in a platinum crucible, placed in a muffle furnace, allowed to reach a temperature of 1000 °C, and held for 1 h. When cool, the crucibles were placed in a beaker and shaken overnight in 5 % HNO3. Solutions were diluted to 100 mL. Quantification was based on the method of standard additions using the SRM 3100 series single element standard solutions.

NIST Analyses for Al and P by ICP-OES: Mass fractions of aluminum and phosphorus were determined by ICP-OES from duplicate, nominal 1 g test portions taken from three bottles of SRM 1547. Samples for P analyses were placed in Teflon beakers and wet ashed with a HNO₃/HF/HCIO₄ acid mixture. Samples for Al analyses were mixed with 1 g lithium metaborate in a platinum crucible, placed in a muffle furnace, allowed to reach a temperature of 1000 °C, and held for 1 h. When cool, the crucibles were placed in a beaker and shaken overnight in 5 % HNO₃. Solutions were diluted to 100 mL. Quantification for Al and P was based on the method of standard additions using the SRM 3100 series single element standard solutions.

NIST Analyses for B, Ba, Cd, Mo, Ni, and Sr by ID ICP-MS: Mass fractions of boron, barium, molybdenum, nickel, and strontium were determined by ID-ICP-MS from duplicate, nominal 1.0 g test portions taken from each of three bottles of SRM 1547. Single 2.0 g test portions were taken from each of six bottles for cadmium measurements. Samples were spiked with isotopically enriched ¹³⁵Ba, ¹¹¹Cd, ⁹⁷Mo, ⁶²Ni, and ⁸⁶Sr and then wet ashed with a HNO₃/HF/HCIO4 acid mixture in Teflon beakers. For boron, samples were spiked with isotopically enriched ¹³⁵Ba, ¹¹¹Cd, ⁹⁷Mo, ⁶²Ni, and ⁸⁶Sr and then wet ashed with a then were dissolved in quartz flasks with reflux condensers using a HNO₃/H₂O₂ mixture. The digests were placed on either a cation or an anion exchange column to selectively remove the elements of interest. The isotopic ratios were measured by ICP-MS using standard operating conditions. Quantification for the above analyses was based on the method of spiked calibrations using precisely weighed high purity metals of known origin.

NIST Analyses for Ca, Pb, Mg, and K by ID TIMS: Mass fractions of calcium, lead, magnesium, and potassium in SRM 1547 were determined by ID TIMS from duplicate, nominal 1.0 g test portions taken from each of three bottles of SRM 1547. Samples were spiked with isotopically enriched ⁴²Ca, ²⁰⁶Pb, ⁴¹K and ²⁶Mg and then wet ashed with a HNO₃/HF/HClO4 acid mixture in Teflon beakers. The digests were placed on either an anion or cation exchange column to selectively remove the elements of interest. Thermal ionization was performed using a triple filament procedure and internal normalization of measured ratios. Quantification for the above analyses was based on the method of spiked calibrations using precisely weighed high purity metals of known origin.

NIST Analyses for N by KJEL: The mass fraction of nitrogen was determined by KJEL from single, nominal 2 g test portions taken from six bottles of SRM 1547. Sample preparation was based on the AOAC method 2.057, Improved Method for Nitrate-Free Samples, 14th edition.

NIST Analyses for Mn and Ni by LEIS: Mass fractions of manganese and nickel were determined by LEIS from duplicate, nominal 0.5 g test portions taken from each of three bottles of SRM 1547. Samples were digested in a microwave sample preparation system with subsequent hot plate digestion using a HNO₃/HF/HClO₄ acid mixture. Single wavelength excitation was performed at 279.83 nm for manganese and 300.25 nm for nickel. Quantification was based on the method of standard additions using SRM 3132 Manganese (Mn) Standard Solution and high purity metals of known origin.

NIST Analyses for Al, Ba, Ca, Cl, Fe, K, Mg, Mn, Na, Rb, V, and Zn by INAA: Mass fractions of aluminum, barium, calcium, chlorine, iron, potassium, magnesium, manganese, rubidium, sodium, vanadium, and zinc in SRM 1547 were determined by INAA from single, nominal 0.1 g test portions taken from each of 15 bottles of SRM 1547. Samples, controls, and standards were pressed into cylindrical pellets, packaged individually in clean polyethylene bags, and irradiated for 60 s. For determination of aluminum and vanadium, radioactive decay was counted for 6 min after a decay of 2 min. For determination of calcium and magnesium, radioactive decay was counted for 12 min after a decay of 9 min. For determination of chlorine, radioactive decay was counted for 5 h to 8 h after a decay of 60 min. For determination of iron, rubidium, and potassium, radioactive decay was counted for 5 h to 8 h after a

SRM 1547

Page 3 of 7

decay of 60 d to 120 d. Quantification was based on pure elements or compounds on compressed filter papers and foil fluence monitors.

NIST Analyses for Cd, Cu, and Mo by RNAA: Mass fractions of cadmium, copper, and molybdenum were determined by RNAA from duplicate, nominal 0.15 g test portions taken from each of three bottles of SRM 1547. Samples were placed in quartz vessels and irradiated for 2 h at 19 MW. After several days, samples were transferred to Teflon vessels using a HNO₃/HF/ HClO₄ acid mixture. Samples were heated, the acid reduced, and samples brought up to volume in 1 mol/L HNO₃. Samples were passed through a column and fractions separated. Fractions were counted after a 24 h decay for Cd and Cu and after a 48 h decay for Mo. Quantification was based on irradiated and un-irradiated standard solution carriers added to sample materials.

NIST Analyses for Cu and Zn by POL: Mass fractions of copper and zinc in SRM 1547 were determined by polarography from duplicate, nominal 0.7 g test portions taken from each of three bottles of SRM 1547. Samples were weighed into PFA pressure vessels with 5 g HNO₃, 2 g HF, and 10 g HClO₄ and heated for 12 h. Additional HF and HClO₄ were added and the vessels were heated for 30 h. Determinations were performed by differential pulse polarography using a PAR 384B electrode stand. Copper was determined in 0.5 mol/L HNO₃ using the method of standard additions. Zinc was determined in 0.25 mol/L CH₃COOH + 0.25 mol/L NH₄CHOO buffer, pH 4.7, using a 3-point calibration curve.

Homogeneity Assessment: The homogeneity was assessed at NIST using INAA and test portion sizes described above from randomly selected bottles of SRM 1547. No evidence of statistically significant inhomogeneity was observed.

Value Assignment: Calculations of assigned values are based on results from a single definitive method or on weighted means of multiple assessments of the mass fraction of each element made using different chemical methods or in different laboratories. Weighted means were calculated using the DerSimonian-Laird procedure [2], which weights the results from each method in proportion to the inverse of the square of its uncertainty. The weights include uncertainty contributions from both between- and within-method dispersion of values.

Certified Mass Fraction Values for Elements: Each certified mass fraction value is the combined mean from the means of NIST data and the results provided by collaborating laboratories, where appropriate. The uncertainty provided with each value is an expanded uncertainty about the mean to cover the measurand with approximately 95 % confidence. The expanded uncertainty is calculated as $U = ku_c$, where u_c incorporates the observed difference between the results from the methods and their respective uncertainties and an uncertainty component for moisture correction, consistent with the JCGM Guide and with its Supplement 1, k is a coverage factor corresponding to approximately 95 % confidence used to control the level of confidence, and uc is intended to represent, at the level of one standard deviation, the combined effect of all between- and within-method components of uncertainty [5-6]. The measurand is the total mass fraction for each element, on a dry-mass basis, listed in Table 1. Metrological traceability is to the SI derived unit for mass fraction (expressed as milligrams per kilogram).

Table 1. Certified Mass Fraction Values for Elements in SRM 1547

	Mass Fraction (mg/kg)			Coverage Factor, k	
Aluminum (Al)(a,b)	248.9	±	6.5	2.02	
Boron (B)(c,d)	28.73	±	0.81	2.02	
Barium (Ba) ^(b,c)	123.7	±	5.5	2.03	
Cadmium (Cd) ^(c,e)	0.0261	±	0.0022	2.02	
Calcium (Ca) ^(b,f)	15590	±	160	1.96	
Chlorine (Cl) ^(b,d)	361	±	14	2.03	
Copper (Cu)(e,g)	3.75	±	0.37	1.98	
Iron (Fe) ^(b,h)	219.8	±	6.8	2.01	
Lead (Pb) ^(f)	0.869	±	0.018	2.32	
Magnesium (Mg) ^(b,f)	4320	±	150	2.02	
Manganese (Mn) ^(b,i)	97.8	±	1.8	2.01	
Mercury (Hg)(j,k)	0.0317	±	0.0043	2.03	
Molybdenum (Mo) ^(c,e,l)	0.0603	±	0.0068	2.00	
Nickel (Ni)(c,i)	0.689	±	0.095	2.01	
Nitrogen (Total) (N)(d,m)	29650	±	540	2.37	
Phosphorus (P) ^(a,h)	1371	±	82	2.06	
Potassium (K) ^(b,f)	24330	±	380	1.98	
Rubidium (Rb)(b,n)	19.65	±	0.89	2.02	
Sodium (Na) ^(b,n)	23.8	±	1.6	1.99	
Strontium (Sr)(c,o)	53.0	±	5.0	2.05	
Vanadium (V) ^(b,1)	0.367	±	0.038	2.02	
Zinc (Zn) ^(b,g)	17.97	±	0.53	2.00	

(a) NIST ICP-OES

(*) NIST INAA (*) NIST ID ICP-MS

^(d) Collaborating laboratories. Reported methods included PGAA.

(e) NIST RNAA

(f) NIST ID TIMS

(E) NIST POL (h) NIST DCP-OES

(i) NIST LEIS (i) NIST CVAAS

⁽¹⁾ Collaborating laboratories. Reported methods included RNAA and CVAAS.
 ⁽¹⁾ Collaborating laboratories. Reported methods included RNAA.

(m) NIST KJEL (n) NIST FAES

(0) Collaborating laboratories. Reported methods included INAA.

SRM 1547

Page 5 of 7
Information Mass Fraction Values for Elements: Each information mass fraction value is the mean result from analyses provided by NIST. No uncertainty is provided because there is insufficient information available for its assessment. Information values cannot be used to establish metrological traceability.

Table 2. Information Mass Fraction Values for Elements in SRM 1547

	Mass Fraction (mg/kg)
Nitrogen (N) ^(a)	29600
Sulfur (S)	2000
Antimony (Sb)	0.02
Bromine (Br)	11
Cerium (Ce)	10
Chromium (Cr)	1
Cobalt (Co)	0.07
Europium (Eu)	0.17
Gadolinium (Gd)	1
Iodine (I)	0.3
Lanthanum (La)	9
Neodymium (Nd)	7
Samarium (Sm)	1
Scandium (Sc)	0.04
Terbium (Tb)	0.1
Thorium (Th)	0.05
Uranium (U)	0.015
Ytterbium (Y)	0.2

(a) NIST KJEL. Although total nitrogen is certified, nitrogen determined by the Kjeldahl procedure is not.

REFERENCES

- [1] May, W.; Parris, R.; Beck II, C.; Fassett, J.; Greenberg, R.; Guenther, F.; Kramer, G.; Wise, S.; Gills, T.; Colbert, J.; Gettings, R.; MacDonald, B.; Definition of Terms and Modes Used at NIST for Value-Assignment of Reference Materials for Chemical Measurements; NIST Special Publication 260-136; U.S. Government Printing Office: Washington, DC (2000); available at http://www.nist.gov/srm/upload/SP260-136.PDF (accessed Apr 2017).
- [2] DerSimonian, R; Laird, N.; Meta-Analysis in Clinical Trials; Controlled Clin. Trials, Vol. 7, pp. 177–188 (1986).
- [3] Rukhin, A.L.; Weighted Means Statistics in Interlaboratory Studies; Metrologia, Vol. 46, pp 323-331 (2009).
- [4] Possolo, A.; RandomEffects-Functions-2011-08-25a.R, working file of R source code for fitting Gaussian random effects models (2011).
- [5] JCGM 100:2008; Evaluation of Measurement Data Guide to the Expression of Uncertainty in Measurement, (GUM 1995 with Minor Corrections), Joint Committee for Guides in Metrology (JCGM) (2008); available at http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (accessed Apr 2017); see also Taylor, B.N.; Kuyatt, C.E.; Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results; NIST Technical Note 1297, U.S. Government Printing Office: Washington, DC (1994); available at http://www.nist.gov/pml/pubs/index.cfm (accessed Apr 2017).
- [6] JCGM 101:2008; Evaluation of Measurement Data Supplement 1 to the "Guide to the Expression of Uncertainty in Measurement" - Propagation of Distributions using a Monte Carlo Method; JCGM (2008); available at http://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf (accessed Apr 2017).
- [7] Thompson, A.; Taylor, B.N.; Guide for the Use of the International System of Units (SI); NIST Special Publication 811; U.S. Government Printing Office: Washington, DC (2008); available at http://www.nist.gov/pml/pubs/sp811/index.cfm (accessed Apr 2017).
- [8] Sharpless, K.E.; Lippa, K.A.; Duewer, D.L.; Rukhin, A.L.; The ABCs of Using Standard Reference Materials in the Analysis of Foods and Dietary Supplements: A Practical Guide; NIST Special Publication 260-181; U.S. Government Printing Office: Washington, DC (2014); available at http://www.nist.gov/srm/upload/SP260-181.pdf (accessed Apr 2017).

ANEXO II. Nomenclatura de las muestras colectadas.

Mu	iestra	Año	Diámetro	Clave
01	a	2013	5 mm	01a-2013
	b			01b-2013
02	a	2013	12 mm	02a-2013
	b			02b-2013
03	a	2013	12 mm	03a-2013
	b			03b-2013
04	a	2013	5 mm	04a-2013
	b			04b-2013
05	a	2013	5 mm	05a-2013
	b			05b-2013
01	b	2015	12 mm	01b-2015
02	a	2015	12 mm	02a-2015
	b			02b-2015
03	a	2015	12 mm	03a-2015
	b			03b-2015
05	b	2015	12 mm	05b-2015
06	a	2015	12 mm	06a-2015
	b			06b-2015
08	a	2015	12mm	08a-2015
	b			08b-2015

Tabla con la relación de muestras utilizadas en el análisis dendrocronológico.

Tabla con la relación de muestras analizadas por FRX portátil.

	Muestras colectadas para análisis químico											
Mu	iestra	Año de colecta	Resolución									
02	a	2013	Bienal									
	b											
03	a	2013	Anual									
	b											
01	b	2015	Bienal									
02	a	2015	Bienal									
	b											
05	b	2015	Quinquenal									
08	a	2015	Quinquenal									
	b											

ANEXO III. Curvas de calibración (K, Mn, Ca, Sr, Fe, Ti, Zn y Cu) de los estándares internos para el equipo de FRX portátil.

Tabla con los resultados de las concentraciones de los estándares analizados por FRX portátil. Las diluciones se presentan de mayor a menor concentración, expresadas en mg/kg y CPS.

ra	K (mg/kg)	K CPS/ua	Sr (mg/kg)	Sr CPS/ua	Ca (mg/kg)	Ca CPS/ua	Mn (mg/kg)	Mn CPS/ua
Std A							1989.84643	7.545
Std A							1989.84643	7.481
Std A							1989.84643	7.641
Std A							1989.84643	7.545
Std A							1989.84643	7.481
Std A							1989.84643	7.641
Std A							1989.84643	7.952
Std A							1989.84643	7.757
Std A							1989.84643	7.993
Std C			2000.58898	301.937				
Std C			2000.58898	301.461				
Std C			2000.58898	302.974				
Std C			2000.58898	301.937				
Std C			2000.58898	301.461				
Std C			2000.58898	302.974				
A-1b	2975.62488	8.555	601.916568	144.651	2987.80554	22.637	595.31587	4.484
A-1b	2975.62488	8.611	601.916568	146.184	2987.80554	22.586	595.31587	4.507
A-1b	2975.62488	8.465	601.916568	145.807	2987.80554	22.531	595.31587	4.538
A-1b					2987.80554	19.19	595.31587	4.785
A-1b					2987.80554	19.548	595.31587	4.739
A-1b					2987.80554	19.12	595.31587	4.689
A-2a	1988.87711	5.666	400.251058	96.578	1997.01854	13.306	397.903014	3.619
A-2a	1988.87711	6.021	400.251058	97.518	1997.01854	13.062	397.903014	3.502
A-2a	1988.87711	5.909	400.251058	96.845	1997.01854	12.951	397.903014	3.519
A-2a	1988.87711	5.713	400.251058	90.627	1997.01854	12.258	397.903014	3.266
A-2a	1988.87711	5.746	400.251058	91.481	1997.01854	12.204	397.903014	3.312
A-2a	1988.87711	5.731	400.251058	91.17	1997.01854	12.151	397.903014	3.43
A-2a	1988.87711	5.446	400.251058	89.965	1997.01854	14.137	397.903014	3.395
A-2a	1988.87711	5.619	400.251058	89.763	1997.01854	14.03	397.903014	3.357
A-2a	1988.87711	5.562	400.251058	89.83	1997.01854	14.113	397.903014	3.334
A-2b	1988.87711	5.913	400.251058	98.413	1997.01854	11.993	397.903014	3.319
A-2b	1988.87711	5.895	400.251058	97.888	1997.01854	12.019	397.903014	3.233
A-2b	1988.87711	5.822	400.251058	97.87	1997.01854	11.987	397.903014	3.332
A-2b	1988.87711	5.311			1997.01854	13.193	397.903014	3.205
A-2b	1988.87711	5.596			1997.01854	13.36	397.903014	3.244

1								
A-2b	1988.87711	5.389			1997.01854	13.296	397.903014	3.18
A-2b	1988.87711	5.335			1997.01854	13.324		
A-2b	1988.87711	5.356			1997.01854	13.566		
A-2b	1988.87711	5.345			1997.01854	13.232		
A-3a	995.465485	2.738	200.565309	49.676	999.540404	6.783	199.156959	2.284
A-3a	995.465485	2.806	200.565309	50.404	999.540404	6.673	199.156959	2.325
A-3a	995.465485	2.894	200.565309	50.252	999.540404	6.802	199.156959	2.419
A-3a	995.465485	3.587	200.565309	42.026	999.540404	6.714	199.156959	1.954
A-3a	995.465485	3.764	200.565309	41.942	999.540404	6.553	199.156959	2.027
A-3a	995.465485	3.661	200.565309	41.852	999.540404	6.746	199.156959	2.083
A-3a	995.465485	2.832			999.540404	6.202		
A-3a	995.465485	2.994			999.540404	6.275		
A-3a	995.465485	2.88			999.540404	6.138		
A-3b	995.465485	2.756	200.565309	48.258	999.540404	6.379	199.156959	2.278
A-3b	995.465485	2.895	200.565309	48.193	999.540404	6.554	199.156959	2.353
A-3b	995.465485	2.752	200.565309	48.495	999.540404	6.54	199.156959	2.346
A-3b	995.465485	3.208	200.565309	44.633	999.540404	9.221	199.156959	2.362
A-3b	995.465485	3.27	200.565309	44.853	999.540404	9.218	199.156959	2.371
A-3b	995.465485	3.234	200.565309	44.98	999.540404	9.272	199.156959	2.335
A-3b	995.465485	3.297	200.565309	44.924	999.540404	7.445		
A-3b	995.465485	3.186	200.565309	45.302	999.540404	7.546		
A-3b	995.465485	3.333	200.565309	44.686	999.540404	7.486		
A-4a	498.345835	1.479	100.106095	17.345	500.385804	4.268	99.7011372	1.478
A-4a	498.345835	1.426	100.106095	17.291	500.385804	4.428	99.7011372	1.495
A-4a	498.345835	1.473	100.106095	17.511	500.385804	4.349	99.7011372	1.38
A-4a	498.345835	1.39	100.106095	19.602	500.385804	3.914	99.7011372	1.515
A-4a	498.345835	1.422	100.106095	19.779	500.385804	3.91	99.7011372	1.529
A-4a	498.345835	1.428	100.106095	19.615	500.385804	3.768	99.7011372	1.489
A-4a	498.345835	1.507	100.106095	17.15	500.385804	4.954	99.7011372	1.31
A-4a	498.345835	1.374	100.106095	17.344	500.385804	5.043	99.7011372	1.271
A-4a	498.345835	1.371	100.106095	16.973	500.385804	4.888	99.7011372	1.209
A-4b	498.345835	1.355	100.106095	27.692	500.385804	3.435	99.7011372	1.188
A-4b	498.345835	1.408	100.106095	27.79	500.385804	3.495	99.7011372	1.194
A-4b	498.345835	1.283	100.106095	27.559	500.385804	3.376	99.7011372	1.248
A-4b	498.345835	1.868	100.106095	22.155	500.385804	3.268	99.7011372	1.276
A-4b	498.345835	1.775	100.106095	22.234	500.385804	3.435	99.7011372	1.321
A-4b	498.345835	1.877	100.106095	21.775	500.385804	3.322	99.7011372	1.289
A-4b	498.345835	1.494	100.106095	23.608	500.385804	3.439	99.7011372	1.206
A-4b	498.345835	1.521	100.106095	23.376	500.385804	3.618	99.7011372	1.195
A-4b	498.345835	1.518	100.106095	23.527	500.385804	3.776		
A-5a	100.096795	0.659	20.2005619	2.928	100.50654	0.942	20.0257806	0.939

A-5a	100.096795	0.641	20.2005619	3.056	100.50654	0.984	20.0257806	0.963
A-5a	100.096795	0.729	20.2005619	2.85	100.50654	0.921	20.0257806	0.947
A-5a	100.096795	0.738	20.2005619	3.715	100.50654	1.08	20.0257806	1.013
A-5a	100.096795	0.767	20.2005619	3.791	100.50654	1.082	20.0257806	1.012
A-5a	100.096795	0.834	20.2005619	3.842	100.50654	1.052	20.0257806	0.961
A-5a	100.096795	0.907	20.2005619	4.101	100.50654	1.027	20.0257806	0.914
A-5a	100.096795	0.753	20.2005619	4.001	100.50654	0.999		
A-5a	100.096795	0.816	20.2005619	4.169	100.50654	0.982		
A-5b	100.096795	0.761	20.2005619	3.581	100.50654	1.382	20.0257806	1.168
A-5b	100.096795	0.815	20.2005619	3.772	100.50654	1.339	20.0257806	1.188
A-5b	100.096795	0.802	20.2005619	3.471	100.50654	1.313	20.0257806	1.241
A-5b	100.096795	0.74	20.2005619	3.685	100.50654	1.179	20.0257806	1.134
A-5b	100.096795	0.745	20.2005619	3.971	100.50654	1.109	20.0257806	1.077
A-5b	100.096795	0.73	20.2005619	3.889	100.50654	1.093	20.0257806	1.06
A-5b	100.096795	0.8	20.2005619	3.818	100.50654	1.048		
A-5b	100.096795	0.802	20.2005619	3.778	100.50654	1.036		
A-5b	100.096795	0.799	20.2005619	3.897	100.50654	1.012		
A-6a	51.6849609	0.483	10.0629226	3.233	51.8965323	1.09	10.3403079	0.928
A-6a	51.6849609	0.498	10.0629226	3.116	51.8965323	1.043	10.3403079	0.918
A-6a	51.6849609	0.491	10.0629226	3.088	51.8965323	1.1	10.3403079	0.84
A-6a	51.6849609	0.518	10.0629226	2.572	51.8965323	0.83	10.3403079	0.846
A-6a	51.6849609	0.539	10.0629226	2.492	51.8965323	0.818		
A-6a	51.6849609	0.529	10.0629226	2.486	51.8965323	0.844		
A-6a	51.6849609	0.527	10.0629226	2.127	51.8965323	0.65		
A-6a	51.6849609	0.506	10.0629226	2.078	51.8965323	0.686		
A-6a	51.6849609	0.484	10.0629226	2.034	51.8965323	0.622		
A-6b	51.6849609	0.606	10.0629226	2.51	51.8965323	0.859	10.3403079	0.916
A-6b	51.6849609	0.615	10.0629226	2.535	51.8965323	0.87	10.3403079	0.974
A-6b	51.6849609	0.6	10.0629226	2.465	51.8965323	0.93	10.3403079	0.914
A-6b	51.6849609	0.595	10.0629226	2.537	51.8965323	0.799	10.3403079	0.897
A-6b	51.6849609	0.611	10.0629226	2.567	51.8965323	0.778	10.3403079	1.021
A-6b	51.6849609	0.598	10.0629226	2.538	51.8965323	0.783	10.3403079	0.897
A-6b	51.6849609	0.583	10.0629226	2.755	51.8965323	0.772	10.3403079	0.953
A-6b	51.6849609	0.669	10.0629226	2.736	51.8965323	0.81		
A-6b	51.6849609	0.66	10.0629226	2.799	51.8965323	0.807		
A-7a	25.191601	0.578	5.13381829	3.186	25.2947223	0.657	5.03993631	0.991
A-7a	25.191601	0.607	5.13381829	3.117	25.2947223	0.607	5.03993631	0.965
A-7a	25.191601	0.572	5.13381829	3.144	25.2947223	0.583	5.03993631	0.932
A-7a	25.191601	0.544	5.13381829	4.205	25.2947223	0.57	5.03993631	0.914
A-7a	25.191601	0.501	5.13381829	4.144	25.2947223	0.593	5.03993631	0.923
A-7a	25.191601	0.545	5.13381829	4.173	25.2947223	0.586	5.03993631	0.918

A-7a	25.191601	0.524	5.13381829	3.797	25.2947223	0.494	5.03993631	0.935
A-7a	25.191601	0.539	5.13381829	3.929	25.2947223	0.55	5.03993631	0.975
A-7a	25.191601	0.548	5.13381829	3.967	25.2947223	0.525	5.03993631	0.926
A-7b	25.191601	0.426	5.13381829	2.558	25.2947223	0.61	5.03993631	0.899
A-7b	25.191601	0.503	5.13381829	2.63	25.2947223	0.595	5.03993631	0.853
A-7h	25 191601	0 482	5 13381829	2 565	25 2947223	0 582	5 03993631	0 807
A-7b	25.191601	0.487	5 13381820	3 207	25 29/7223	0.57	5.03003631	0.829
A 76	25.191601	0.492	5.13381820	2.165	25.2547225	0.57	5.03555051	0.025
A-70	25.191001	0.482	5.13381829	3.105	25.2947223	0.538	5.03993031	0.802
A-7b	25.191601	0.502	5.13381829	3.19	25.2947223	0.537	5.03993631	0.843
A-7b	25.191601	0.509	5.13381829	2.648	25.2947223	0.545	5.03993631	0.755
A-7b	25.191601	0.476	5.13381829	2.392	25.2947223	0.512	5.03993631	0.792
A-7b	25.191601	0.438	5.13381829	2.514	25.2947223	0.519	5.03993631	0.747
almid ón	0	0.534	0	2.156	0	0.564	0	0.917
almid								
ón almid	0	0.56	0	2.168	0	0.521	0	0.943
ón	0	0.516	0	2.014	0	0.503	0	0.9
almid	0	0 501	0	1 925	0	0 526	0	0.97
almid	0	0.591	0	1.825	0	0.520	0	0.87
ón	0	0.538	0	1.801	0	0.493	0	0.863
almid ón	0	0.565	0	1.852	0	0.518	0	0.782
pino							488	4.574
pino							488	4.509
pino							488	4.635
pino							488	4.526
pino							488	4.596
pino							488	4.489
pino							488	4.445
duraz								
no			53	6.767			98	1.201
no			53	6.758			98	1.511
duraz			52	6 710			0.0	1 401
no duraz			53	6.719			98	1.421
no			53	6.697			98	1.493
duraz no			53	6.578				
duraz				5.0.0				
no			53	6.787				
no			53	6.789				

Std A= Estándar A Std C= Estándar C

Pino= Estándar certificado de agujas de pino Durazno= Estándar certificado de hojas de durazno

Las diluciones se presentan de mayor a menor concentración llegando al almidón, el cual se consideró muestra blanco.

Muestra	Zn (mg/kg)	Zn CPS/ua	Cu (mg/kg)	Cu CPS/ua	Fe (mg/kg)	Fe CPS/ua	Ti (mg/kg)	Ti CPS/ua
Std B	2004.94152	118.39	1959.71474	103.419	2014.91817	29.769	1975.50631	63.767
Std B	2004.94152	118.476	1959.71474	103.569	2014.91817	29.974	1975.50631	62.913
Std B	2004.94152	118.796	1959.71474	103.683	2014.91817	30.006	1975.50631	62.866
Std B	2004.94152	118.39	1959.71474	103.419	2014.91817	29.769	1975.50631	63.767
Std B	2004.94152	118.476	1959.71474	103.569	2014.91817	29.974	1975.50631	62.913
Std B	2004.94152	118.796	1959.71474	103.683	2014.91817	30.006	1975.50631	62.866
Std B	2004.94152	117.483	1959.71474	103.921	2014.91817	30.915	1975.50631	60.262
Std B	2004.94152	117.93	1959.71474	101.837	2014.91817	30.895	1975.50631	61.088
Std B	2004.94152	116.81	1959.71474	101.955	2014.91817	30.927	1975.50631	61.075
B-1a	622.56164	44.827	608.518109	30.893	625.659525	11.977	613.421607	19.169
B-1a	622.56164	45.479	608.518109	31.165	625.659525	11.67	613.421607	19.266
B-1a	622.56164	44.222	608.518109	30.685			613.421607	18.685
B-1a	622.56164	45.974	608.518109	31.753			613.421607	19.154
B-1a	622.56164	45.351	608.518109	32.026			613.421607	19.176
B-1a	622.56164	46.091	608.518109	32.273			613.421607	19.333
B-1a	622.56164	45.954	608.518109	32.449			613.421607	18.676
B-1a	622.56164	45.959	608.518109	32.409			613.421607	18.684
B-1a	622.56164	46.298	608.518109	32.716			613.421607	19.034
B-1b	622.56164	38.855	608.518109	30.194	625.659525	10.946	613.421607	20.077
B-1b	622.56164	38.671	608.518109	30.316	625.659525	10.725	613.421607	19.609
B-1b	622.56164	38.887	608.518109	30.356	625.659525	10.989	613.421607	19.771
B-1b	622.56164	38.678	608.518109	30.51	625.659525	11.023	613.421607	19.644
B-1b	622.56164	38.577	608.518109	30.237	625.659525	10.987	613.421607	19.807
B-1b	622.56164	38.633	608.518109	30.312	625.659525	11.003	613.421607	19.318
B-1b	622.56164	39.108	608.518109	32.123	625.659525	10.941	613.421607	19.882
B-1b	622.56164	39.056	608.518109	31.72	625.659525	10.897	613.421607	19.715
B-1b	622.56164	39.368	608.518109	31.708	625.659525	10.975	613.421607	20.08
B-2a	401.415839	24.268	392.360839	22.214	403.413296	7.925	395.522521	13.236
B-2a	401.415839	24.119	392.360839	21.942	403.413296	8.029	395.522521	13.24
B-2a	401.415839	23.868	392.360839	21.742	403.413296	7.755	395.522521	13.481
B-2a	401.415839	25.292	392.360839	23.59	403.413296	7.414	395.522521	13.348
B-2a	401.415839	25.144	392.360839	23.881	403.413296	7.094	395.522521	13.169
B-2a	401.415839	25.345	392.360839	23.642	403.413296	7.59	395.522521	13.161
B-2a	401.415839	24.563	392.360839	22.025	403.413296	8.191	395.522521	12.989
B-2a	401.415839	24.97	392.360839	21.723	403.413296	8.156	395.522521	13.025
B-2a	401.415839	24.366	392.360839	22.214	403.413296	7.969	395.522521	13.005
B-2b	401.415839	25.749	392.360839	21.688	403.413296	7.285	395.522521	13.444
B-2b	401.415839	25.745	392.360839	21.733	403.413296	7.32	395.522521	13.386
B-2b	401.415839	26.299	392.360839	21.427	403.413296	7.356	395.522521	13.576
B-2b	401.415839	24.896	392.360839	20.487	403.413296	7.156	395.522521	13.308

B-2b	401.415839	24.626	392.360839	20.78	403.413296	7.11	395.522521	13.296
B-2b	401.415839	24.683	392.360839	20.463	403.413296	7.157	395.522521	13.278
B-2b	401.415839	24.555	392.360839	20.54	403.413296	7.345	395.522521	13.378
B-2b	401.415839	24.832	392.360839	20.369	403.413296	7.117	395.522521	13.412
B-2b	401.415839	24.733	392.360839	20.349	403.413296	7.015	395.522521	13.513
B-3a	200.601032		196.075943	12.756	201.599229	4.745	197.655942	6.95
B-3a	200.601032		196.075943	13.039	201.599229	4.703	197.655942	6.874
B-3a	200.601032		196.075943	12.908	201.599229	4.635	197.655942	6.887
B-3a	200.601032		196.075943	12.204	201.599229	4.667	197.655942	7.116
B-3a	200.601032		196.075943	12.507	201.599229	4.774	197.655942	7.03
B-3a	200.601032		196.075943	12.127	201.599229	4.786	197.655942	7.151
B-3b	200.601032		196.075943	13.634	201.599229	4.833	197.655942	6.952
B-3b	200.601032		196.075943	14.083	201.599229	4.761	197.655942	7.015
B-3b	200.601032		196.075943	14.007	201.599229	4.979	197.655942	7.072
B-3b	200.601032	15.655	196.075943	12.607	201.599229	4.57	197.655942	6.922
B-3b	200.601032	15.581	196.075943	12.627	201.599229	4.947	197.655942	6.975
B-3b	200.601032	15.764	196.075943	12.503	201.599229	4.712	197.655942	6.918
B-3b	200.601032	16.004	196.075943	13.738	201.599229	4.797	197.655942	7.259
B-3b	200.601032	16.037	196.075943	13.837	201.599229	4.776	197.655942	7.371
B-3b	200.601032	15.962	196.075943	13.881	201.599229	4.919	197.655942	7.186
B-4a	100.547717	7.253	98.2795961	7.231	101.048045	3.071	99.0715426	4.073
B-4a	100.547717	7.358	98.2795961	7.213	101.048045	3.111	99.0715426	4.036
B-4a	100.547717	7.137	98.2795961	7.347	101.048045	3.055	99.0715426	3.893
B-4a	100.547717	6.456	98.2795961	6.679	101.048045	3.381	99.0715426	4.028
B-4a	100.547717	6.573	98.2795961	6.644	101.048045	3.357	99.0715426	4.001
B-4a	100.547717	6.48	98.2795961	6.778	101.048045	3.437	99.0715426	4.016
b4a	100.547717	7.094	98.2795961	7.21	101.048045	3.035	99.0715426	3.923
b4a	100.547717	7.023	98.2795961	7.359	101.048045	2.833	99.0715426	3.976
b4a	100.547717	7.026	98.2795961	7.247	101.048045	2.872	99.0715426	4.002
B-4b	100.547717	6.191	98.2795961	7.226	101.048045	3.482	99.0715426	3.904
B-4b	100.547717	6.165	98.2795961	7.099	101.048045	3.555	99.0715426	4.003
B-4b	100.547717	6.298	98.2795961	6.96	101.048045	3.673	99.0715426	4.143
B-4b	100.547717	6.389	98.2795961	7.109	101.048045	3.704	99.0715426	4.162
B-4b	100.547717	6.349	98.2795961	6.936	101.048045	3.922	99.0715426	4.143
B-4b	100.547717	6.467	98.2795961	7.318	101.048045	3.564	99.0715426	4.01
B-4b	100.547717	6.14	98.2795961	7.007	101.048045	3.119	99.0715426	4.016
B-4b	100.547717	6.243	98.2795961	6.949	101.048045	3.156	99.0715426	4.038
B-4b	100.547717	6.175	98.2795961	6.908	101.048045	3.037	99.0715426	4.154
B-5a	20.5665999	2.073	19.9071772	4.22	20.4679447	1.613	20.0675911	1.487
B-5a	20.5665999	2.144	19.9071772	4.186	20.4679447	1.608	20.0675911	1.471
B-5a	20.5665999	2.117	19.9071772	4.186	20.4679447	1.631	20.0675911	1.649

B-5a	20.5665999	2.038	19.9071772	3.525	20.4679447	1.601	20.0675911	1.571
B-5a	20.5665999	2.007	19.9071772	3.507	20.4679447	1.714	20.0675911	1.644
B-5a	20.5665999	2.105	19.9071772	3.457	20.4679447	1.746	20.0675911	1.512
B-5a	20.5665999	2.189	19.9071772	4.755	20.4679447	1.588	20.0675911	1.483
B-5a	20.5665999	2.178	19.9071772	5.024	20.4679447	1.568	20.0675911	1.491
B-5a	20.5665999	2.055	19.9071772	4.943	20.4679447	1.622	20.0675911	1.595
B-5b	20.5665999	2.937	19.9071772	3.505	20.4679447	1.553	20.0675911	1.516
B-5b	20.5665999	2.955	19.9071772	3.602	20.4679447	1.46	20.0675911	1.584
B-5b	20.5665999	2.868	19.9071772	3.571	20.4679447	1.642	20.0675911	1.513
B-5b	20.5665999		19.9071772	2.917	20.4679447	1.41	20.0675911	1.578
B-5b	20.5665999		19.9071772	2.923	20.4679447	1.421	20.0675911	1.663
B-5b	20.5665999		19.9071772	2.832	20.4679447	1.487	20.0675911	1.564
B-5b	20.5665999		19.9071772	3.871	20.4679447	1.4	20.0675911	1.45
B-5b	20.5665999		19.9071772	3.746	20.4679447	1.469	20.0675911	1.578
B-5b	20.5665999		19.9071772	3.851	20.4679447	1.38	20.0675911	1.475
B-6a	10.1566776	1.258	9.92756674	2.601	10.2072175	1.354	10.007564	1.314
B-6a	10.1566776	1.262	9.92756674	2.523	10.2072175	1.364	10.007564	1.278
B-6a	10.1566776	1.334	9.92756674	2.588	10.2072175	1.409	10.007564	1.287
B-6a	10.1566776	1.456	9.92756674	2.62	10.2072175	1.504	10.007564	1.206
B-6a	10.1566776	1.462	9.92756674	2.592	10.2072175	1.532	10.007564	1.181
B-6a	10.1566776	1.393	9.92756674	2.652	10.2072175	1.509	10.007564	1.306
B-6a	10.1566776	1.325	9.92756674	2.776	10.2072175	1.556	10.007564	1.279
B-6a	10.1566776	1.286	9.92756674	2.714	10.2072175	1.564	10.007564	1.282
B-6a	10.1566776	1.3	9.92756674	2.765	10.2072175	1.616	10.007564	1.259
B-6b	10.1566776	1.212	9.92756674	2.895	10.2072175	1.537	10.007564	1.235
B-6b	10.1566776	1.159	9.92756674	3.089	10.2072175	1.421	10.007564	1.163
B-6b	10.1566776	1.213	9.92756674	2.988	10.2072175	1.544	10.007564	1.232
B-6b	10.1566776	1.259	9.92756674	2.776	10.2072175	1.47	10.007564	1.261
B-6b	10.1566776	1.367	9.92756674	2.673	10.2072175	1.485	10.007564	1.188
B-6b	10.1566776	1.32	9.92756674	2.799	10.2072175	1.533	10.007564	1.234
B-6b	10.1566776	1.3	9.92756674	2.703	10.2072175	1.482	10.007564	1.307
B-6b	10.1566776	1.347	9.92756674	2.744	10.2072175	1.467	10.007564	1.322
B-6b	10.1566776	1.345	9.92756674	2.554	10.2072175	1.435	10.007564	1.185
B-7a	5.14533051	1.078	5.02926392	2.602	5.17093383	1.523	5.06979022	1.088
B-7a	5.14533051	1.081	5.02926392	2.675	5.17093383	1.59	5.06979022	1.159
B-7a	5.14533051	1.168	5.02926392	2.709	5.17093383	1.591	5.06979022	1.132
B-7a	5.14533051	1.048	5.02926392	2.657	5.17093383	1.541	5.06979022	1.154
B-7a	5.14533051	1.033	5.02926392	2.46	5.17093383	1.59	5.06979022	1.189
B-7a	5.14533051	1.02	5.02926392	2.616	5.17093383	1.51	5.06979022	1.101
B-7a	5.14533051	1.05	5.02926392	2.61	5.17093383	1.611	5.06979022	1.07
B-7a	5.14533051	1.021	5.02926392	2.747	5.17093383	1.563	5.06979022	1.116

B-7a	5.14533051	1.025	5.02926392	2.645	5.17093383	1.553	5.06979022	1.094
B-7b	5.14533051	1.068	5.02926392	2.673	5.17093383	1.41	5.06979022	1.075
B-7b	5.14533051	0.993	5.02926392	2.69	5.17093383	1.412	5.06979022	1.101
B-7b	5.14533051	1.045	5.02926392	2.843	5.17093383	1.516	5.06979022	1.072
B-7b	5.14533051	1.029	5.02926392	2.604	5.17093383	1.46	5.06979022	1.085
B-7b	5.14533051	1.015	5.02926392	2.658	5.17093383	1.519	5.06979022	1.115
B-7b	5.14533051	0.999	5.02926392	2.737	5.17093383	1.426	5.06979022	1.183
B-7b	5.14533051	0.996	5.02926392	2.79	5.17093383	1.394	5.06979022	1.05
B-7b	5.14533051	1.049	5.02926392	2.81	5.17093383	1.441	5.06979022	0.983
B-7b	5.14533051	0.98	5.02926392	2.677	5.17093383	1.396	5.06979022	1.05
almidón	0	0.728	0	2.52	0	1.406	0	0.968
almidón	0	0.83	0	2.503	0	1.399	0	0.971
almidón	0	0.822	0	2.497	0	1.361	0	1.014
almidón	0	0.764	0	2.34	0	1.312	0	0.89
almidón	0	0.744	0	2.293	0	1.322	0	0.948
almidón	0	0.762	0	2.357	0	1.321	0	0.961
almidón	0	0.734	0	2.369	0	1.315	0	0.916
almidón	0	0.756	0	2.406	0	1.361	0	0.988
almidón	0	0.714	0	2.458	0	1.401	0	0.945
durazno	17.9	1.202	3.7	1.724				2.547
durazno	17.9	1.163	3.7	1.771				2.429
durazno	17.9	1.186	3.7	1.681				2.577
durazno	17.9	1.23	3.7	1.693				2.502
durazno	17.9	1.184	3.7	1.688				2.56
durazno	17.9	1.201	3.7	1.608				2.686
durazno	17.9	1.202	3.7	1.705				2.6
durazno	17.9	1.58	3.7	2.088				2.55
durazno	17.9	1.583	3.7	2.109				2.601
durazno	17.9	1.563	3.7	2.203				2.706

Std B= Estándar B Durazno= Estándar certificado de hojas de durazno

Las diluciones se presentan de mayor a menor concentración llegando al almidón, el cual se consideró muestra blanco.

Graficas de las curvas de calibración para los diferentes elementos de los estándares analizados por la FRX portátil.

Análisis anual

03-a 2013	Mn	Fe	Sr	Cu	Zn	K	Ca	Ti
1991	92.149254	41.16129	22.079003	9.515528	18.273616	1839.0612	1613.8193	12.343234
1992	63.522388	27.909677	19.667512	6.1118012	17.335505	1780.898	1508.3976	9.2607261
1993	80.490405	32.663594	21.702155	7.8923395	18.735691	1595.8134	1473.3236	7.1098538
1994	87.104478	38.348387	21.892269	7.242236	18.612378	1773.7551	1413.506	8.990099
1995	42.179104	20.077419	18.133925	2.4389234	13.527687	1820.2449	1325,4096	7.0891089
1996	54.567164	27.303226	19.043093	3.6604555	14.570033	1913.0612	1421.747	8.0066007
1997	39.731343	15.716129	18.027461	0.0828157	12.81759	1868.449	1304.6145	4.8514851
1998	53.253731	24.916129	19.036333	5.3457557	14.547231	1944.898	1357.0482	8.6534653
1999	68.731343	29.795699	19.751021	5.552795	14.220413	1994.8027	1296.6426	7.5247525
2000	53.134328	25.247312	18.719476	3.8688751	13.487514	1793.9864	1229.1727	6.8591859
2001	50.298507	25.064516	18.327982	3.7066943	15.102606	1754.0884	1196.2811	5.3245324
2002	51.442786	22.268817	18.018166	2.5334714	15.270901	1869.8707	1219.1325	5.3960396
2003	58.768657	24.241935	17.954795	3.3322981	14.20684	1726.3163	1103.8012	4.9587459
2004	52.238806	26.467742	17.698141	2.6180124	13.168567	1772.0816	1058.5	6.3283828
2005	56.81592	32.784946	18.31742	4.3347136	12.789902	1719.0544	1127.8876	6.5621562
2006	69.253731	38.064516	19.091255	8.4927536	14.28013	1637.1837	1080.759	6.039604
2007	72.487562	44.752688	18.868047	7.4195997	14.356135	1645.2109	1061.6024	7.5027503
2008	71.134328	41.974194	18.089142	6.4140787	13.726384	1814.3265	1060.1325	7.8481848
2009	68.731343	31.989247	17.818899	5.4941339	12.730185	1759.2585	932.82731	5.0550055
2010	73.552239	44.83871	17.638783	7.0517598	12.915309	2106.1633	1030.1566	7.6765677

03-b-2013	Mn	Fe	Sr	Cu	Zn	K	Ca	Ti
1992	68.358209	54.129032	19.085622	2.7232574	16.777416	1657.8639	1533.3695	10.033003
1993	64.825871	33,677419	18.812421	2.4126984	16,17481	1823.3741	1481.8032	9.0319032
1994	45.373134	22.365591	17.228137	0.2097999	14.605863	1769.7007	1360.0361	5.59956
1995	40.497512	28.365591	17.376003	1.4741201	16.196526	1880.517	1423.008	6.1166117
1996	52.189055	26.301075	18.489931	2.7508627	15.821933	1932.966	1359.755	6.4576458
1997	71.243781	53.827957	19.133502	4.1794341	16.180239	1908.8844	1336.3414	9.2519252
1998	65.671642	31.741935	18.777214	5.5044859	15.865364	1977.3878	1239.8353	7.5467547
1999	50.970149	27.645161	17.978031	2.8509317	13.555375	1832.3878	1207.4458	5.2145215
2000	62.736318	35.397849	19.413745	4.0207039	13.682953	2086.7755	1261.0803	7.0187019
2001	62.985075	35.956989	19.133502	6.0220842	13.769815	1996.9796	1326.3414	7.8217822
2002	68.308458	37.806452	19.870018	5.7391304	13.769815	1879.8367	1263.7711	9.6369637
2003	70.099503	39.698925	19.715111	6.5396825	13.134636	1647.4558	1188.6707	8.2068207
2004	67.910448	44.494624	19.44191	7.0641822	12.34202	1590.9932	1241.1606	10.924092
2005	54.378109	31.526882	18.79693	4.9868875	10.675353	1571.5374	1241.3213	8.1738174
2006	64.079602	37.698925	19.517955	5.0006901	12.076004	1527.4558	1184.1727	8.679868
2007	77.064677	38.473118	20.123504	8.2374051	13.254072	1830.517	1229.755	9.5929593
2008	44.776119	27.548387	17.642163	0.0248447	10.148751	1679,7007	1061.4016	7.8217822
2009	56.044776	27.483871	17.877693	3.9741201	11.096091	1740.0408	990.45783	7.879538
2010	63.164179	60.529032	17.809463	5.1801242	13.830619	1772.7755	1018.2048	16.158416
2011	65.462687	39.290323	18.232784	6.4761905	13.110749	1737.6735	955.31325	14.231023

02-a-2013	Mn	Fe	Sr	Cu	Zn	K	Ca	Ti
84-85)	86.492537	37.322581	18.599071	9.0517598	14.589577	1129,5306	925.09639	3.0528053
86-87)	77.960199	47.268817	19.239121	10.224983	15.800217	1294.2585	1043.9317	7.3047305
(88-89)	74.079602	29.763441	18.035065	5.5044859	12.62975	1269.3605	914.49398	6.7656766

Ausencia de los anillos correspondientes de 1990 a 2012 para las muestras 02 "a" y "b" 2013.

01-b-2015	Mn	Fe	Sr	Cu	Zn	K	Ca	Ti
(89-90)	140.84577	45.548387	20.051683	9.3830228	17.14658	2424.1224	1339.755	18.910891
(91-92)	144.02985	41.505376	20.27982	8.1131815	16.65798	2187.2517	1157,1446	15.214521
(93-94)	142.0398	39.483871	18.922264	7.0572809	15.745928	1846.6395	1018.1084	15.973597
(95-96)	164,72637	46.709677	19.946064	9.3278123	16.12595	2130.9252	1178.2289	23.850385
(97-98)	149.55224	43.419355	19.526405	9.1966874	16.136808	1938.8163	1014.1325	15.610561
(99-00)	152.53731	44.924731	18.830728	6.3878537	14.953312	2075.9592	1337.747	21.045105
(01-02)	154.70149	55.612903	20.020701	9.320911	15.705212	1915.551	1161.3012	23.679868
(03-04)	135.89552	41.129032	19.158851	9.7971014	13.840391	1802.4898	873.22892	16.848185
(05-06)	151.54229	42.666667	19.733418	10.556246	13.449511	1824.8707	969.63454	18.613861
(07-08)	133.63184	41.935484	18.725109	8.4651484	11.32139	1564.2585	831.12048	13.0033
(09-10)	137.61194	89.741935	19.855936	11.981366	14.247557	1842.4898	889.37349	16.914191
(11-12)	131.49254	40.580645	18.569497	10.004141	12.179153	1730.9592	826	16.40264
(13-14)	165.44776	67.516129	19.475708	12.923395	18.612378	1816.3673	1034.1325	23.745875

02-a-2015	Mn	Fe	Sr	Cu	Zn	K	Ca	Ti
(89-90)	128.95522	41.096774	20.189692	8.8033126	19.57329	1749.6327	1548.2289	19.174917
(91-92)	164.10448	47.032258	20.808619	9.9627329	20.819218	1788.2041	1470.6988	16.419142
(93-94)	137.61194	49.064516	21.349387	9.5383023	18.107492	2130.8571	1544.9759	25.247525
(95-96)	126.64179	47.483871	22.194339	13.761905	16.112378	1643.7143	1245.3373	15.19802
(97-98)	137.46269	54.548387	23.520913	16.763975	20.892508	1528	1424.1928	14.50495
(99-00)	133.35821	51.258065	22.667512	13.94824	16.942997	1512.898	1245.3976	13.679868
(01-02)	125.07463	43.935484	21.64512	11.194617	16.788274	1636.5714	1292.6867	10.29703
(03-04)	116.1194	38.096774	21.148711	10.925466	16.446254	1630.449	1242.747	11.30363
(05-06)	107.46269	43.290323	20.242501	10.94617	16.193811	1586.5714	1169.3133	15.115512
(07-08)	75.671642	43.806452	18.937051	5.1387164	12.798046	1656.2653	972.44578	16.947195
(09-10)	102.98507	46.064516	20.324884	8.057971	16.299674	1963.3061	1101.3614	16.732673
(11-12)	113.58209	52	20.878327	13.006211	16.022801	1935.9592	1145.9398	12.623762
(13-14)	145.22388	72.967742	21.119138	15.221532	16.071661	1875.3469	1120.3373	17.673267

02-b-2015	Mn	Fe	Sr	Cu	Zn	K	Ca	Ti
(91-92)	140.37313	45.064516	18.806084	4.6004141	15.224756	1571.5714	1279.9759	17.310231
(93-94)	147.53731	39.677419	18.920152	6.6397516	14.296417	1390.1429	1111	11.765677
(95-96)	128.28358	41.064516	18.620194	5.4285714	13.734528	1398.5102	1145.6386	13.531353
(97-98)	136.56716	46.258065	19.120828	7.9751553	13.970684	1461.5714	1131.3614	13.745875
(99-00)	118.8806	47.548387	19.427123	9.9006211	18.083062	1554.6327	1111.9036	13.39934
(01-02)	100.07463	40.774194	18.920152	5.0351967	13.669381	1538.6122	1124.5542	14.257426
(03-04)	103.43284	44.741935	20.062949	7.5610766	14.899023	1670.3469	1150.4578	15.660066
(05-06)	94.477612	40.516129	19.613012	6.5672878	16.478827	1963.3061	1083.5904	14.422442
(07-08)	114.62687	39.225806	19.340515	7.3022774	12.977199	1814.6327	1135.1566	12.227723
(09-10)	107.01493	34.83871	18.816646	3.3374741	11.90228	1679.8367	1092.9277	10.429043
(11-12)	101.86567	37.290323	19.43346	6.6604555	15.493485	1848.2041	1022.3253	13.745875
13	97.38806	39.193548	18.928602	5.1076605	10.884365	2347.0816	1016.8434	15.478548

Análisis quinquenal

Mn	Fe	Sr	Cu	Zn	K	Ca	Ti
152.18905	40.903226	18.504014	6.5327812	25.528773	2093.3061	3022.8876	14.587459
144.37811	39.849462	18.042107	3.1235335	22.928339	1948.068	3759.996	22.255226
176.56716	51.806452	18.47444	6.1325052	25.724213	2270.0408	3482.6064	19.009901
147.31343	44.301075	17.812562	4.7660455	21.95114	2136.6395	2806.1807	22.112211
88.00995	37.096774	17.253485	2.8543823	15.653637	2073.7143	2474.0924	22.39824
79.800995	49.16129	17.702718	4.4830918	12.228013	2323.3061	1996.0201	31.936194
	Mn 152.18905 144.37811 176.56716 147.31343 88.00995 79.800995	Mn Fe 152.18905 40.903226 144.37811 39.849462 176.56716 51.806452 147.31343 44.301075 88.00995 37.096774 79.800995 49.16129	Mn Fe Sr 152.18905 40.903226 18.504014 144.37811 39.849462 18.042107 176.56716 51.806452 18.47444 147.31343 44.301075 17.812562 88.00995 37.096774 17.253485 79.800995 49.16129 17.702718	Mn Fe Sr Cu 152.18905 40.903226 18.504014 6.5327812 144.37811 39.849462 18.042107 3.1235335 176.56716 51.806452 18.47444 6.1325052 147.31343 44.301075 17.812562 4.7660455 88.00995 37.096774 17.253485 2.8543823 79.800995 49.16129 17.702718 4.4830918	Mn Fe Sr Cu Zn 152.18905 40.903226 18.504014 6.5327812 25.528773 144.37811 39.849462 18.042107 3.1235335 22.928339 176.56716 51.806452 18.47444 6.1325052 25.724213 147.31343 44.301075 17.812562 4.7660455 21.95114 88.00995 37.096774 17.253485 2.8543823 15.653637 79.800995 49.16129 17.702718 4.4830918 12.228013	Mn Fe Sr Cu Zn K 152.18905 40.903226 18.504014 6.5327812 25.528773 2093.3061 144.37811 39.849462 18.042107 3.1235335 22.928339 1948.068 176.56716 51.806452 18.47444 6.1325052 25.724213 2270.0408 147.31343 44.301075 17.812562 4.7660455 21.95114 2136.6395 88.00995 37.096774 17.253485 2.8543823 15.653637 2073.7143 79.800995 49.16129 17.702718 4.4830918 12.228013 2323.3061	Mn Fe Sr Cu Zn K Ca 152.18905 40.903226 18.504014 6.5327812 25.528773 2093.3061 3022.8876 144.37811 39.849462 18.042107 3.1235335 22.928339 1948.068 3759.996 176.56716 51.806452 18.47444 6.1325052 25.724213 2270.0408 3482.6064 147.31343 44.301075 17.812562 4.7660455 21.95114 2136.6395 2806.1807 88.00995 37.096774 17.253485 2.8543823 15.653637 2073.7143 2474.0924 79.800995 49.16129 17.702718 4.4830918 12.228013 2323.3061 1996.0201

08-a-2015	Mn	Fe	Sr	Cu	Zn	K	Ca	Ti
(84-89)	172.01493	69.806452	24.144064	22.985507	19.67101	1258.5102	951.60241	16.023102
(90-94)	124.72637	53.11828	22.918885	15.228433	21.641694	2674.5306	1321.0803	17.634763
(95-99)	113.53234	46.215054	20.816364	14.075914	17.108578	1829.8367	959.39357	10.220022
(00-04)	95.124378	50.451613	19.040558	11.073844	15.371336	1749.2245	926.26104	13.113311
(05-09)	108.45771	45.182796	19.502464	11.142857	14.747014	1836.5714	859.03213	11.507151
(10-14)	103.73134	54.172043	20.484016	13.323671	13.916395	1638.4082	1065.3373	19.636964

08-6-2015	Mn	Fe	Sr	Cu	Zn	K	Ca	Ti
(84-89)	101.74129	44.387097	19.802422	8.679089	28.465798	1793.034	1569.5141	14.510451
(90-94)	100.89552	56.774194	20.095339	9.6866805	18.79696	1725.7551	1238.6305	12.992299
(95-99)	122.93532	72.946237	19.212364	13.020014	46.543974	1688.5442	1168.5502	14.664466
(00-04)	131.74129	89.935484	19.168709	12.612836	34,52443	1751.2653	1118.4699	19.911991
(05-09)	103.78109	63.139785	19.398254	11.163561	14.899023	1348.9524	930.43775	24.477448
(10-14)	116.71642	64.064516	19.624982	12.115942	13.465798	1536.3673	761	17.447745

ANEXO V. Tablas con los valores de los coeficientes de correlación de Pearson entre elementos analizados para cada viruta.

Muestras "03 a y b-2013"

		Mn	Fe	Sr	Cu	Zn	К	Ca	Ti
Mn	Correlación de Pearson	1	.621**	.771**	.853**	.441*	214	.212	.570**
	Sig. (bilateral)		.003	.000	.000	.045	.351	.357	.007
	Ν	21	21	21	21	21	21	21	21
Fe	Correlación de Pearson	.621**	1	.151	.606**	.015	177	191	.729**
	Sig. (bilateral)	.003		.514	.004	.947	.442	.407	.000
	N	21	21	21	21	21	21	21	21
Sr	Correlación de Pearson	.771**	.151	1	.582**	.747**	087	.703**	.228
	Sig. (bilateral)	.000	.514		.006	.000	.707	.000	.320
	N	21	21	21	21	21	21	21	21
Cu	Correlación de Pearson	.853**	.606**	.582**	1	.165	238	037	.613**
	Sig. (bilateral)	.000	.004	.006		.476	.300	.872	.003
	Ν	21	21	21	21	21	21	21	21
Zn	Correlación de Pearson	.441*	.015	.747**	.165	1	.220	.897**	.191
	Sig. (bilateral)	.045	.947	.000	.476		.337	.000	.406
	Ν	21	21	21	21	21	21	21	21
к	Correlación de Pearson	214	177	087	238	.220	1	.211	026
	Sig. (bilateral)	.351	.442	.707	.300	.337		.358	.911
	Ν	21	21	21	21	21	21	21	21
Ca	Correlación de Pearson	.212	191	.703**	037	.897**	.211	1	065
	Sig. (bilateral)	.357	.407	.000	.872	.000	.358		.780
	N	21	21	21	21	21	21	21	21
Ti	Correlación de Pearson	.570**	.729**	.228	.613**	.191	026	065	1
	Sig. (bilateral)	.007	.000	.320	.003	.406	.911	.780	
	Ν	21	21	21	21	21	21	21	21

*. La correlación es significante al nivel 0,05 (bilateral).

**. La correlación es significativa al nivel 0,01 (bilateral).

Muestras "02 a y b-2013"

		Mn	Fe	Sr	Cu	Zn	к	Са	Ti
Mn	- Correlación de Pearson	1	.521*	.758**	.620**	.344	.843**	.449	.822**
	Sig. (bilateral)		.022	.000	.005	.149	.000	.054	.000
	Ν	19	19	19	19	19	19	19	19
Fe	Correlación de Pearson	.521 [*]	1	.367	.685**	.144	.515	051	.559 [*]
	Sig. (bilateral)	.022		.123	.001	.557	.024	.837	.013
	Ν	19	19	19	19	19	19	19	19
Sr	Correlación de Pearson	.758**	.367	1	.555	.597**	.446	.673**	.410
	Sig. (bilateral)	.000	.123		.014	.007	.056	.002	.081
	Ν	19	19	19	19	19	19	19	19
Cu	Correlación de Pearson	.620**	.685**	.555*	1	.254	.454	.036	.493 [*]
	Sig. (bilateral)	.005	.001	.014		.295	.051	.883	.032
	Ν	19	19	19	19	19	19	19	19
Zn	Correlación de Pearson	.344	.144	.597**	.254	1	.067	.830**	104
	Sig. (bilateral)	.149	.557	.007	.295		.784	.000	.672
	Ν	19	19	19	19	19	19	19	19
к	Correlación de Pearson	.843**	.515	.446	.454	.067	1	.235	.943**
	Sig. (bilateral)	.000	.024	.056	.051	.784		.332	.000
	Ν	19	19	19	19	19	19	19	19
Ca	Correlación de Pearson	.449	051	.673**	.036	.830**	.235	1	.097
	Sig. (bilateral)	.054	.837	.002	.883	.000	.332		.694
	Ν	19	19	19	19	19	19	19	19
Ti	Correlación de Pearson	.822**	.559*	.410	.493 [*]	104	.943**	.097	1
	Sig. (bilateral)	.000	.013	.081	.032	.672	.000	.694	
	Ν	19	19	19	19	19	19	19	19

*. La correlación es significante al nivel 0,05 (bilateral).

**. La correlación es significativa al nivel 0,01 (bilateral).

Muestras "02 a y b-2015"

		Mn	Fe	Sr	Cu	Zn	к	Ca	Ti
Mn	Correlación de Pearson	1	.387	441	.125	.116	702 [*]	.590 [*]	071
	Sig. (bilateral)		.214	.152	.698	.720	.011	.043	.827
	Ν	12	12	12	12	12	12	12	12
Fe	Correlación de Pearson	.387	1	.273	.636*	.575	372	.532	.533
	Sig. (bilateral)	.214		.390	.026	.050	.234	.075	.074
	N	12	12	12	12	12	12	12	12
Sr	Correlación de Pearson	441	.273	1	.623*	.492	.242	167	.190
	Sig. (bilateral)	.152	.390		.031	.104	.449	.603	.554
	N	12	12	12	12	12	12	12	12
Cu	Correlación de Pearson	.125	.636*	.623*	1	.647 [*]	159	077	.010
	Sig. (bilateral)	.698	.026	.031		.023	.621	.813	.976
	N	12	12	12	12	12	12	12	12
Zn	Correlación de Pearson	.116	.575	.492	.647 [*]	1	323	.219	.214
	Sig. (bilateral)	.720	.050	.104	.023		.306	.494	.504
	N	12	12	12	12	12	12	12	12
к	Correlación de Pearson	702 [*]	372	.242	159	323	1	579 [*]	.240
	Sig. (bilateral)	.011	.234	.449	.621	.306		.049	.452
	N	12	12	12	12	12	12	12	12
Са	Correlación de Pearson	.590*	.532	167	077	.219	579 [*]	1	.375
	Sig. (bilateral)	.043	.075	.603	.813	.494	.049		.229
	N	12	12	12	12	12	12	12	12
Ті	Correlación de Pearson	071	.533	.190	.010	.214	.240	.375	1
	Sig. (bilateral)	.827	.074	.554	.976	.504	.452	.229	
	N	12	12	12	12	12	12	12	12

*. La correlación es significante al nivel 0,05 (bilateral).

**. La correlación es significativa al nivel 0,01 (bilateral).

Muestras "08 a y b-2015"

		Mn	Fe	Sr	Cu	Zn	К	Са	Ti
Mn	Correlación de Pearson	1	.221	.609	.769	.928**	.122	.766	914 [*]
	Sig. (bilateral)		.674	.199	.074	.008	.818	.076	.011
	Ν	6	6	6	6	6	6	6	6
Fe	Correlación de Pearson	.221	1	413	.119	.380	.050	175	.027
	Sig. (bilateral)	.674		.416	.823	.458	.926	.740	.960
	Ν	6	6	6	6	6	6	6	6
Sr	Correlación de Pearson	.609	413	1	.701	.320	.156	.688	509
	Sig. (bilateral)	.199	.416		.120	.537	.767	.131	.303
	Ν	6	6	6	6	6	6	6	6
Cu	Correlación de Pearson	.769	.119	.701	1	.566	305	.351	599
	Sig. (bilateral)	.074	.823	.120		.242	.556	.495	.209
	Ν	6	6	6	6	6	6	6	6
Zn	Correlación de Pearson	.928**	.380	.320	.566	1	.225	.705	904 [*]
	Sig. (bilateral)	.008	.458	.537	.242		.668	.118	.014
	Ν	6	6	6	6	6	6	6	6
к	Correlación de Pearson	.122	.050	.156	305	.225	1	.605	085
	Sig. (bilateral)	.818	.926	.767	.556	.668		.203	.873
	N	6	6	6	6	6	6	6	6
Ca	Correlación de Pearson	.766	175	.688	.351	.705	.605	1	780
	Sig. (bilateral)	.076	.740	.131	.495	.118	.203		.067
	N	6	6	6	6	6	6	6	6
Ti	Correlación de Pearson	914 [*]	.027	509	599	904 [*]	085	780	1
	Sig. (bilateral)	.011	.960	.303	.209	.014	.873	.067	
	Ν	6	6	6	6	6	6	6	6

*. La correlación es significante al nivel 0,05 (bilateral).

**. La correlación es significativa al nivel 0,01 (bilateral).

ANEXO VI. Tablas con los valores de los coeficientes de correlación de Pearson entre variables climáticas y la estandarización de los anillos de crecimiento.

Correlaciones						
	-	ETla	Precipitación	Tmax	Tmin	Tpromedio
ETla	Correlación de Pearson	1	109	.017	187	140
	Sig. (bilateral)		.428	.904	.171	.308
	Ν	56	55	55	55	55
Precipitación	Correlación de Pearson	109	1	270 [*]	.189	086
	Sig. (bilateral)	.428		.046	.167	.533
	Ν	55	59	55	55	55
Tmax	Correlación de Pearson	.017	270 [*]	1	332*	.623**
	Sig. (bilateral)	.904	.046		.013	.000
	Ν	55	55	55	55	55
Tmin	Correlación de Pearson	187	.189	332 [*]	1	.531**
	Sig. (bilateral)	.171	.167	.013		.000
	Ν	55	55	55	55	55
Tpromedio	Correlación de Pearson	140	086	.623**	.531**	1
	Sig. (bilateral)	.308	.533	.000	.000	
	N	55	55	55	55	55

*. La correlación es significante al nivel 0,05 (bilateral).

**. La correlación es significativa al nivel 0,01 (bilateral).

N= número de datos analizados.

ETla = anillos estandarizados Tmax = temperatura máxima Tmin = temperatura mínima Tpromedio = temperatura promedio

ANEXO VII. Graficas de fechado cruzado realizado con el software WinDENDRO density 2014a.

Las líneas roja y azul representan los paths de las virutas analizadas, en los cuales se puede apreciar la variación en grosor (mm) de los anillos año a año. Mientras que la línea negra se crea a partir de la media cuadrática del grosor de los paths visualizados y se le nombra serie de referencia.

A) Muestras "01 a y b-2013", coeficiente de correlación 81.41, sin embargo se tuvieron que realizar diversos ajustes, como la búsqueda anillos dobles, falsos o demasiado estrechos, para lograr un coeficiente de correlación deseable. Debido a esta situación se optó por descartar esta muestra. Línea roja continua y línea azul punteada.

B) Muestras "02 a y b-2013", coeficiente de correlación 68.89. Línea azul continua y línea roja punteada.

C) Muestras "03 a y b-2013", coeficiente de correlación 95.24. Línea roja continua y línea azul punteada.

D) Muestras "04 a y b-2013", coeficiente de correlación 81.25. Línea roja continua y línea azul punteada.

E) Muestras "05 a y b-2013", coeficiente de correlación 95.45. Línea azul continua y línea roja punteada.

F) Muestras "01b y 05b-2015", coeficiente de correlación 100. Línea azul continua y línea roja punteada.

G) Muestras "02 a y b-2015", coeficiente de correlación 83.33. Línea azul continua y línea roja punteada.

H) Muestras "03 a y b-2015", coeficiente de correlación 72.45, sin embargo se tuvieron que realizar diversos ajustes, como la búsqueda anillos dobles, falsos o demasiado estrechos, para lograr un coeficiente de correlación deseable. Debido a esta situación se optó por descartar esta muestra. Línea roja continua y línea azul punteada.

I) Muestras "06 a y b-2015", coeficiente de correlación 84.38. . Línea roja continua y línea azul punteada.

J) Muestras "08 a y b-2015", coeficiente de correlación 85.71. . Línea roja continua y línea azul punteada.