

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE MEDICINA VETERINARIA Y ZOOTECNIA

GENOTIPIFICACIÓN DE GUACAMAYAS VERDES (Ara militaris)

EN CAUTIVERIO

TESIS

QUE PARA OBTENER EL TÍTULO DE **MÉDICA VETERINARIA ZOOTECNISTA** PRESENTA

DIANA FABIOLA CORTÉS TENORIO

Asesores:

Dra. Patricia Escalante Pliego (IB, UNAM)

Dr. Carlos González Rebeles-Islas (FMVZ, UNAM)

M en MVZ Marcela Priscila Franco Ochoa (DGVS, SEMARNAT)

Ciudad Universitaria, Cd. Mx., 2017

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

DEDICATORIAS

A Dios y a mi mamá... por infinitamente tanto.

A mi hermana, a mi papá, a mis primas y primos, tías y tíos.

A mis amigas, por ser la familia que escogí, por su apoyo incondicional, palabras de ánimo y mucho más: Yezenia, Berenice, Dafne, Yadira, Ana Teresa, Daniela, Úrsula, Lisa... más que mis amigas, son mis hermanas.

A mis animalitos de compañía, que fueron y también son mi familia.

A las especies en peligro de extinción y a "Petra" que seguirá volando libre (más que suerte fue destino).

AGRADECIMIENTOS

A mi asesora principal, Dra. Patricia Escalante Pliego, por su paciencia y confianza, por haberme brindado la oportunidad de trabajar en el Laboratorio de Genética de la Conservación (I.B. UNAM) y haber subsidiado los materiales y análisis necesarios para la realización de este proyecto.

A la Dra. Noemí Matías Ferrer, por haberme apoyado directamente en el procesamiento y análisis de las muestras con paciencia y ánimo.

A mi asesor interno, Dr. Carlos González-Rebeles Islas, por su paciencia, apoyo y ánimo recibido durante la realización de este proyecto.

A mi asesora externa, M en MVZ Marcela Priscila Franco Ochoa, por todo el apoyo en la obtención de los permisos y colecta de muestras en CIVS, Gdl. y por los consejos y ánimo recibidos durante la realización de esta tesis.

Al Biól. Jonathan Morales Contreras, por haberme apoyado en el procesamiento de las muestras de laboratorio.

Al Dr. Alejandro Villegas, por haberme apoyado en la revisión final y análisis técnico del presente estudio.

Al Parque Eco arqueológico Xcaret y a las MVZ Karol Sepúlveda González y MVZ Gabriela Lara Martínez, por haberme permitido muestrear a las aves y brindarme todo el apoyo y equipo necesario dentro de sus instalaciones. Gracias también, a la MVZ Imelda Martínez Valladares, MVZ Lorena Macías, a Christian Marina y Marta Yeh Jiménez, por haberme apoyado durante el manejo y toma de muestras sanguíneas.

Al Centro para la Conservación e Investigación de la Vida Silvestre (CIVS) Guadalajara, Jal. y al responsable del manejo: MVZ Andrés Gonzáles Rodríguez y al Biól. Luis Alberto Cayo, por haberme permitido muestrear a las aves y apoyarme durante el manejo.

Al Parque Villa Fantasía, Guadalajara, Jal. y a la responsable del manejo: Biól. Berenice Díaz Varela, por haberme permitido tomar muestras de las aves.

Al Parque Agua azul y al MVZ responsable del manejo: Noé Pérez González y a la MVZ. Gabriela González Olson, por haberme permitido tomar muestras de las aves y apoyado en el manejo.

Al Zoológico de Guadalajara y al MVZ responsable del manejo: Francisco Rodríguez Herrejón, por haberme permitido tomar muestras de las aves y apoyarme junto con su equipo de trabajo en el manejo.

A AFRICAM Safari, y al MVZ responsable: Marco Antonio Benítez, por haberme permitido tomar muestras de las aves y apoyarme junto con su equipo de trabajo en el

manejo.

A la Organización para la Conservación, Análisis y Estudio de la Naturaleza AC

(O.C.E.A.N. AC) y Reavyfeex, al MVZ Francisco Acevedo Arteaga y Juan Carlos Orraca Corona, por haberme permitido tomar muestras de las aves y apoyado durante el manejo.

Se agradece de igual forma, el aporte de la única muestra silvestre del Sótano del Barro y del ejemplar liberado.

A la M. en C. Yamel Rubio, quien aportó muestras silvestres de la Concordia,

Sinaloa para la realización de este trabajo de investigación.

Al Biól. César Gaona Gaona, por haberme apoyado en la toma de muestras

sanguíneas de las aves de Africam Safari.

Al MVZ. Benedict López Iglesias, por haberme apoyado con sus consejos en la

realización de esta tesis.

Al M. en C. Canek Rivera, por haberme apoyado con sus consejos en la

interpretación del análisis estructural.

A mis compañeros del proyecto de Reintroducción de Guacamayas Rojas: Biól. Miguel Demeneghi y Biól. Mauricio Cuevas, por procurarme en la selva y apoyarme con

tiempos para acabar la tesis.

A Daniel Saavedra, por el ánimo y por las clases de matemáticas.

A los honorables miembros que conforman el Jurado:

Presidente: Biól. Carlos Gustavo Vázquez Peláez

Vocal: MVZ. Gary García Espinosa

Secretario: MVZ. Valeria Aguilar Sánchez

Suplente: MVZ. Carlos González Rebeles Islas

IV

CONTENIDO

I.	RESUMEN1
II.	INTRODUCCIÓN
III.	ANTECEDENTES5
	a. Generalidades de la especie5
	i. Información taxonómica5
	ii. Descripción5
	iii. Características reproductivas5
	iv. Distribución6
	v. Hábitat12
	b. Descripción morfológica de la especie y subespecies14
	c. Descripción de la especie a nivel genético
	d. Estrategias de conservación contra el tráfico ilegal de psitácidos
	silvestres en México21
	i. Estatus general de riesgo de los psitácidos mexicanos21
	ii. Estado de conservación de la guacamaya verde22
	iii. Cifras de extracción de la vida silvestre23
	iv. Marco legal23
	v. Estrategias para la conservación de psitácidos silvestres en
	México24
	vi. Genotipificación de fauna silvestre como herramienta para
	la conservación25

	vii. Genotipificación de <i>Ara militaris</i>	.29
IV.	HIPÓTESIS	.33
V.	OBJETIVOS	.34
VI.	MATERIAL Y MÉTODOS	.35
	1. Para la estandarización de la técnica de genotipificación	con
	primers no específicos en la especie Ara militaris	.35
	i. Permisos obtenidos	.35
	ii. Ejemplares de estudio	.35
	iii. Recolección y almacenamiento de las muestras para	ı el
	estudio genético	39
	iv. Extracción de las muestras para el estudio genético	.41
	v. Amplificación de fragmentos	.43
	vi. Genotipificación	.47
	2. Para analizar la estructura genética existente en los individ	uos
	nacidos en cautiverio y tráfico ilegal	.48
	3. Para estimar parámetros de variabilidad genética (A, Ae, He,	Ho,
	Fit, Fis, Fst,) entre los individuos de las diferentes UMAs	.48
VII.	RESULTADOS	.50
VIII.	DISCUSIÓN	.84
IX.	CONCLUSIÓN	88
X.	REFERENCIAS	.89
XI.	LISTADO DE FIGURAS Y CUADROS	97
XII.	APÉNDICES	103

I. RESUMEN

CORTÉS TENORIO DIANA FABIOLA. Genotipificación de guacamayas verdes (*Ara militaris*) en cautiverio [bajo la dirección de: Dra. Patricia Escalante Pliego (IB, UNAM), Dr. Carlos González Rebeles-Islas (FMVZ, UNAM), M en MVZ Marcela Priscila Franco Ochoa (DGVS, SEMARNAT)]

La guacamaya verde (Ara militaris) es una especie de psitácido vulnerable a nivel global y en peligro de extinción en México, donde se distribuye en dos vertientes: una a lo largo del océano Pacífico y otra en el Golfo de México. Estudios a partir del uso de microsatélites como marcadores moleculares sugieren que existe estructura genética en Ara militaris mexicanus dada por la separación geográfica entre ambas vertientes, dos grupos genéticos (k=2) y una diversidad genética moderada He= 0.63. El desconocimiento del origen poblacional de los individuos en cautiverio y sus semejanzas o diferencias genéticas con los individuos silvestres, impide llevar a cabo proyectos adecuados para la conservación de la especie. Para lograr la genotipificación se estandarizó el uso de cebadores diseñados para amplificar loci de microsatélites de otras especies de psitácidos. A partir de 99 muestras obtenidas de individuos provenientes de tráfico ilegal y criados en cautiverio y de 12 muestras de individuos silvestres de las vertientes del Golfo y Pacífico se obtuvieron las frecuencias alélicas, y con ello, la estructura genética existente, parámetros de diversidad genética (A, Ae, Ho y He) y coeficientes de endogamia (Fst, Fit y Fis). Los resultados indican 2-3 grupos genéticos (K) tanto en individuos silvestres como cautivos, sin una diferenciación estructural por origen poblacional y con similitud de alelos que revela que todos los individuos estudiados pertenecen a la subespecie mexicanus. En los individuos cautivos se obtuvo una diversidad genética moderada (Ho=0.629/ He=0.570) y una diferenciación genética moderada (Fst=0.089), sin evidencia de endogamia en la población total (Fit=0) y entre los diferentes grupos (Fis=-0.097) debido a cruzamientos no aleatorios.

II. INTRODUCCIÓN

La guacamaya verde (Ara militaris) es una especie de psitácido que se distribuye de manera fragmentada desde México hasta Argentina. En México se distribuye en dos vertientes: una a lo largo del océano Pacífico y otra en el Golfo de México, habitando los bosques tropicales caducifolios y subcaducifolios. La población mundial de guacamayas verdes se estima que es menor a los 10,000 individuos, presentando además una tendencia decreciente debido a la destrucción global del hábitat y al comercio ilegal para la venta como mascotas, considerándose así, una especie vulnerable a nivel mundial y prohibiéndose el comercio internacional de especímenes en el apéndice I de la Convención Sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres (CITES) (Arizmendi 2008, Birdlife International 2013, CITES 2001, Rivera-Ortiz 2014). En México, la Norma Oficial Mexicana NOM-059-ECOL-2001 declara a esta especie en peligro de extinción (NOM-059-ECOL-2001), y se enlistan bajo esta categoría otras 10 especies nativas de psitácidos desde el año 2010 (NOM-059-SEMARNAT-2010). En el año 2008, a la Ley General de Vida Silvestre (LGVS) se le adicionó el artículo 60 bis 2, donde se establece que "Ningún ejemplar de ave correspondiente a la familia Psittacidae o psitácido, cuya distribución natural sea dentro del territorio nacional, podrá ser sujeto de aprovechamiento extractivo con fines de subsistencia o comerciales" (Diario Oficial de la Federación 2008). La fragmentación del hábitat reduce la diversidad genética global de las poblaciones. Las poblaciones fragmentadas tienden a que sus tamaños poblacionales se reduzcan, se aíslen y disminuyen gradualmente el flujo genético y el tamaño efectivo de la población y, por consiguiente, se incrementa la probabilidad de los apareamientos entre parientes (endogamia) ocasionando una reducción en la diversidad genética (Rivera-Ortiz 2014). "Se estima que la pérdida de la cobertura vegetal en el área de distribución potencial de la guacamaya verde ha disminuido en 30% en los últimos 40 años" (Birdlife International 2013), por ello, es menester crear propuestas para la conservación de la especie y mantener la estructura y diversidad genética, en conjunto con la recuperación de su hábitat. El tráfico ilegal de la especie también está repercutiendo en la viabilidad y tasa de recuperación de la población silvestre. Adicionalmente, la biología reproductiva del género Ara conlleva el nacimiento

de muy pocos individuos al año, donde los polluelos deben enfrentar las elevadas tasas de extracción para el comercio ilegal "ocupando la especie el quinto lugar en aseguramientos por PROFEPA" (Cantú et al. 2007). También se ha reportado que "el número de individuos decomisados o entregados de manera voluntaria en los Centros para la Conservación e Investigación de la Vida Silvestre en México (CIVS), ha ido aumentando con los años, y, al igual que en muchos centros de rescate a nivel mundial, a veces existe la imposibilidad de albergar numerosos individuos, sin la posibilidad de liberarlos" (Franco-Ochoa 2013). Uno de los factores que contribuyen a esto es el desconocer el lugar de origen de los individuos, ya que las redes de tráfico ilegal de la especie no sólo ocurren dentro del territorio nacional, sino en todo el continente. Un estudio genético previo realizado por Rivera-Ortiz (2014) en la especie Ara militaris, indica que la diversidad genética de las poblaciones silvestres mexicanas es moderada o intermedia (HE = 0.63), lo cual parece indicar que bajo este precepto, la especie no corre peligro todavía. Sin embargo, es imperativo contar con estrategias que permitan aumentar el número de ejemplares en las poblaciones decrecientes para evitar efectos negativos a futuro como la endogamia y cuellos de botella. Dentro de estas estrategias es importante en la mayor medida posible, contar con individuos genéticamente semejantes a los individuos de la población original que refuercen las poblaciones silvestres, y para ello los zoológicos, otras UMAS, e incluso los CIVS, desempeñan un papel fundamental. Actualmente existen factores que dilatan las acciones de conservación en estos centros, siendo uno de ellos la falta de conocimiento a nivel genético de las colonias de individuos reproducidos en cautiverio y los provenientes del tráfico ilegal.

A partir del uso de microsatélites como marcadores moleculares, se ha encontrado en estudios previos que para la especie *Ara militaris*, subespecie *mexicanus*, existe estructura genética entre las poblaciones que se encuentran en las vertientes del Golfo y el Pacífico mexicanos como posible resultado de las barreras naturales que las separan: el Eje Neovolcánico y Altiplano Central" (Rivera-Ortiz 2014). Apoyando esta noción, recientemente se obtuvieron resultados a partir de secuencias mitocondriales que muestran también diferencias entre ambas vertientes (Eberhard et al. 2015). Debido al desconocimiento del origen poblacional de los individuos cautivos y sus semejanzas o diferencias con los individuos silvestres, no se han podido llevar a cabo proyectos

adecuados para el refuerzo de poblaciones de vida libre, liberaciones de individuos decomisados o provenientes del tráfico ilegal o incluso reintroducciones. Es posible que los individuos analizados en este estudio presenten diversos orígenes debido al tráfico ilegal e intercambios entre zoológicos de individuos con origen desconocido, e incluso podría haber individuos de diferentes subespecies. Para contrarrestar esta deficiencia, en el presente estudio se analizó el origen poblacional que presentan individuos nacidos en cautiverio y provenientes del tráfico ilegal con base en la estructura genética obtenida a partir de microsatélites, así como parámetros de diversidad genética útiles para el manejo en cautiverio y actividades de conservación de la especie. Los resultados obtenidos se compararon con diferentes muestras de individuos silvestres y estudios anteriores como referencia.

Los microsatélites son marcadores moleculares ubicados en el DNA, se constituyen por secuencias cortas de 1 a 6 pares de bases nucleotídicas repetidas en "tándem" un elevado número de veces (SSRs, *Short Sequence Repeats*). Presentan herencia mendeliana simple y son codominantes (pudiéndose diferenciar los individuos homócigos de los heterócigos), y presentan un alto número de alelos para un mismo locus, lo que da lugar a la variación de los caracteres (altamente polimórficos) (Zane et al. 2002, González 2003, Allendorf y Lukart 2007). "Son particularmente útiles, y en general, son los marcadores ideales en casos de asignación de un individuo a un grupo de origen probable" (González 2003).

En el presente estudio, se plantearon como objetivos (1) estandarizar y aplicar la técnica de genotipificación en 99 ejemplares de *Ara militaris* provenientes de cautiverio (nacidos en cautiverio y provenientes de decomisos y tráfico ilegal) para lograr (2) asignar a cada individuo un grupo genético aproximado resultado del origen y de los posibles manejos reproductivos realizados en zoológicos y comparar los resultados con 12 muestras de referencia de vida silvestre y estudios anteriores en *Ara militaris*. Se pretende también (3) obtener parámetros de variación genética. De este modo se podrá establecer una línea base de estudio para los manejos de apareamientos de guacamayas verdes en las colonias cautivas con fines de conservación de linajes genéticos y futuras acciones en pro de conservación de la especie.

III. ANTECEDENTES

a. Generalidades de la especie

i. Información taxonómica

Reino: ANIMALIA

Phylum: CHORDATA

Clase: AVES

Orden: PSITTACIFORMES

Familia: PSITTACIDAE

Nombre científico: Ara militaris (Linnaeus 1766)

Nombres comunes: guacamaya verde. Guaca. Guacamaya militar. Guacamaya soldado. Guacamayo. Papagayo. Papagayo verde. Lapa verde. Military macaw (Inglés) (Monterrubio-Rico et al. 2005; Escalante et al. 2014).

ii. Descripción.

La guacamaya verde (*Ara militaris*) es una especie de psitácido que se distribuye a lo largo del continente americano desde México hasta Argentina; al igual que otras especies del género *Ara*, carece de plumas en el rostro; es un ave grande (hasta 800 mm de longitud) que ocupa el sexto lugar en tamaño del género *Ara* (Monterrubio-Rico et al. 2005). Más adelante, se detallan las características físicas o morfológicas de la especie *Ara militaris* y sus subespecies (Pág.15-20).

iii. Características reproductivas.

Es una especie altricial, es decir, los polluelos nacen sin plumas y también nacen con los ojos cerrados. Como todos los psitácidos, requieren de cuidado parental y sus tasas de crecimiento son lentas. En esta especie, como la mayoría de guacamayas del género *Ara*, sólo un porcentaje reducido de individuos se reproduce cada temporada de anidación (entre 10 y 20%) (Monterrubio-Rico et al. 2005). La especie alcanza la madurez sexual aproximadamente a los cinco años de edad en vida libre. Las parejas parecen formarse de manera permanente (monógamas) y las crías

permanecen con los padres después de abandonar el nido por algún tiempo, esta conducta se observa también en otras especies de guacamayas (Monterrubio-Rico et al. 2005). La nidada es de 2 a 3 huevos elípticos y de color blanco, con un peso aproximado de 32 gr y dimensiones de 52.2 x 35.7 mm. La especie presenta alta eclosión de los huevos, superior al 80% (Carreón 1997). En un estudio realizado por Carreón en 1997, las guacamayas presentaron una productividad promedio de 1 volantón/pareja reproductiva, con una depredación natural de 35% de los pollos, y un saqueo ilegal de 32% de los pollos en el estado de Jalisco (Carreón 1997).

iv. Distribución

Distribución a nivel mundial:

Ara militaris ocupa un área de distribución amplia desde México hasta Argentina, sin embargo, en la mayor parte de su distribución las poblaciones son localizadas y distantes (Birdlife International 2016). Actualmente, a la especie se le puede encontrar en México, Colombia, Venezuela, Perú, Ecuador, Bolivia y Argentina (Birdlife International 2016) y pudo haber existido en Guatemala (Bonilla, Reyes y Santiago 2007) (Figura 1). Por subespecie, la distribución de la guacamaya verde es la siguiente:

Ara militaris militaris:

Colombia: Habita en el norte desde la Península de la Guajira y la Sierra Nevada de Santa Marta a través de las Sierras de Perijá y de San Lucas; en el sur, a lo largo de la pendiente de Los Andes con poblaciones locales en la vertiente del pacífico en Chocó, el Valle de Cauca, la cabecera del Valle de la Magdalena, las montañas de la Macarena y ocurriendo ocasionalmente en el valle Dagua (Monterrubio-Rico et al. 2005, Birdlife International 2016). Una nueva población de guacamayas verdes ha sido reportada en el Parque Nacional de Catatumbo-Barí en la frontera entre Colombia y Venezuela (Avendaño 2011).

Venezuela: Se encuentra muy restringida al norte y noroeste del país habiendo avistamientos en la sierra de Zulia, Mérida, Falcón, la cordillera costera de Aragua y el Distrito Federal, y la

cordillera interior en Miranda y Guárico (Monterrubio-Rico et al. 2005, Juárez et al. 2012, Birdlife International 2016).

Ecuador: Existen poblaciones aisladas al este del país desde Napo a Morona Santiago, incluyendo el reciente hallazgo de una población en serranías de la provincia de Sucumbíos (Juárez et al. 2012).

Perú: Se encuentra al norte del país distribuyéndose en los departamentos de Cajamarca, Amazonas, San Martín, Ucayali, Huánuco, Pasco, Junín, Ayacucho, Cusco y Madre de Dios (Cornejo 2009, Juárez et al. 2012).

Ara militaris bolivianus

Bolivia: En Bolivia se encuentra en Beni, La Paz, Cochabamba, Santa Cruz de la Sierra, Chuquisaca y Tarija (Juárez et al. 2012). En el sur, en 21 localidades de Los Yungas, se ha encontrado una población de 37 individuos (Birdlife International 2013).

Argentina: La especie se encuentra al noroeste del país, actualmente está presente en la provincia de Salta y Juyui, donde recientemente se ha hallado una población residente de aproximadamente 50 individuos en las Serranías de Tartagal, departamento de Gral. San Martín y se avistaron aproximadamente 5 individuos entre los años de 2005-2007 en la Finca Itaguazuti (Chebez 2008, Juárez et al. 2012, Monterrubio-Rico et al. 2005).

Ara militaris mexicana

Endémica de México.

Distribución histórica. La subespecie se encontraba en las regiones montañosas de la vertiente del Pacífico a lo largo de la Sierra Madre Occidental y Sierra Madre del Sur desde el centro de Sonora y hasta algunas regiones costeras hacia Oaxaca y Chiapas, donde se estima que fue extirpada a inicios del siglo pasado (Álvarez del Toro 1952). En el Golfo de México, su distribución en la vertiente atlántica, incluyó la Sierra Madre Oriental desde el este de Nuevo León hasta el noreste de Querétaro (Howell y Webb 1995). Sin embargo, existe un consenso en que la especie ha sido extirpada en muchas localidades de su rango de distribución e incluso de regiones enteras (Monterrubio-Rico et al. 2005).

Distribución actual. La distribución actual de la especie en México es a lo largo de la vertiente del Pacífico en el oeste desde el centro de Sonora a Jalisco y de Colima hasta Guerrero y norte de Oaxaca (Bonilla, Reyes y García 2007), y en la vertiente Atlántica por el este (Golfo de México) desde el este de Nuevo León y Tamaulipas hasta San Luis Potosí (Howell y Webb 1995, Arizmendi y Márquez 2000) y hacia el centro en Michoacán, Querétaro, Guanajuato, Estado de México, Morelos y Puebla (Howell y Webb 1995, Ramírez-Albores 2016). En el caso de Ara militaris mexicanus, se menciona que la pérdida de distribución en la costa del Pacífico de México se ha dado desde principios de la década de 1980, registrándose declive y desaparición de sus poblaciones. Además, la pérdida de distribución también ha ocurrido en los estados de Oaxaca y Chiapas y en extensas áreas de zonas costeras de Sinaloa, Nayarit, Jalisco y Michoacán en los últimos 30 años (Monterrubio-Rico et al. 2011). Existen 10 regiones terrestres prioritarias descritas en la ficha técnica de Ara militaris (año 2000): San Juan de Camarones RTP 23, Barranca Sinforosa RTP 27, Yécora-El Reparo RTP36, Bavispe-El Tigre RTP 44, Manantlán-Volcán de Colima RTP 64, El Cielo RTP 90, Sierra Gorda- Río Moctezuma RTP 101, Sierra de Coalcomán RTP 115 y Sierras de Taxco-Huahutla RTP 120, Valle de Tehuacán-Cuicatlán RTP 121. La especie se reporta también en 15 Áreas de Importancia para la Conservación de las Aves en México (AICAS): Sótano del Barro en Querétaro, AcahizotlaAgua del Obispo y Omitelmi en Guerrero, cuenca baja del Balsas y Coalcomán-Pomaro en Michoacán, El Carricito, Sierra de Manantlán y Presa Cajón de Peñas en el estado de Jalisco, San Juan de Camarones, Río Presidio-Pueblo Nuevo y Guacamayita en Durango, San Antonio-Peña 4 Nevada en Nuevo León, El Cielo en Tamaulipas, Cuenca del Río Yaqui y Álamos- Río Mayo y Sahuaripa en Sonora; Gómez Farías, Tamaulipas; El Naranjo, San Luis Potosí; Camino del Pánuco, Sinaloa; El Mirador del Águila, Nayarit y El Tuito, Jalisco (Monterrubio-Rico et al. 2005). (Figura 2).

Con toda esta información, notamos que a lo largo de casi medio siglo, desde Álvarez del Toro en 1952, se ha registrado el declive de la especie en México (Álvarez del Toro 1952) por la pérdida de su hábitat, sin mencionar, que el tráfico ilegal para el mercado de mascotas es también uno de los factores en contra de la recuperación de la especie. A pesar de que se ha generado información significativa de la especie en México, hacen falta acciones para disminuir las causas que están provocando su extinción.

Figura 1. Distribución de *Ara militaris* en el continente Americano. Las líneas diagonales rojas muestran los lugares donde la especie es nativa y residente. Las líneas diagonales café claro muestran los lugares donde la especie se encuentra posiblemente extinta. Mapa de Birdlife International 2013.

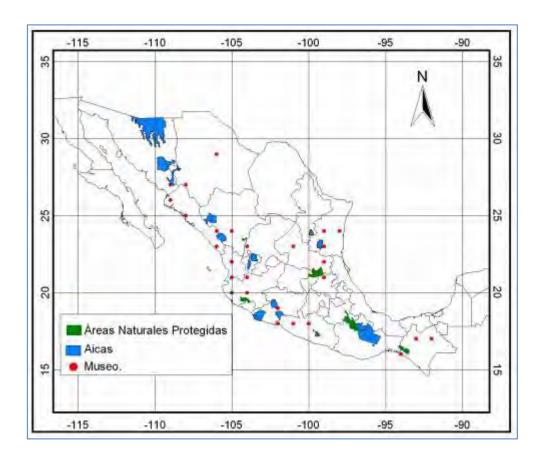


Figura 2. Distribución de la guacamaya verde (*Ara militaris*) en México. Se muestran las Áreas Naturales Protegidas (en verde) y las Áreas Importantes para la conservación de las Aves (AICAS en azul), donde ha sido registrada la guacamaya verde. Adicionalmente se muestran los sitios de colecta para la especie (puntos rojos), proveniente de la base de datos ornitológica del Museo de Zoología Alfonso L.Herrera. en la Fac.de Ciencias UNAM. (Figura 5 en Arizmendi 2008).

v. Hábitat

Las guacamayas tienen una extensa zona de distribución y se han adaptado a diferentes condiciones ambientales y presiones antropomórficas, por lo que ha sido dificil determinar patrones específicos de hábitat. Por ejemplo, se menciona que la especie puede encontrarse en altitudes entre los 300-2300 msnm y condiciones de precipitación entre 470 y 1000 mm (Juárez et al. 2012). Estas características climáticas y las del terreno resultan tanto en bosques de tipo tropical y subtropical, como secos a semihúmedos y también de caducifolios a subcaducifolios. Los cañones, valles profundos y altas paredes sin vegetación, se reportan como lugares muy utilizados como dormideros o sitios de nidificación (Collar 1997), motivo por el cual se la considera una especie asociada a paredes rocosas o acantilados (Stotz et al. 1996). Dichos lugares, son por los regular inaccesibles y alejados de las actividades humanas, esto favorece a que los individuos persistan en estos sitios. Sin embargo, la especie se adapta (o se ha tenido que adaptar) entonces a varias configuraciones de paisaje, utilizando ambientes como selvas en galería, selvas bajas, bosques piedemontanos siempreverdes y secos, bosques xeromórficos, bosques húmedos de pinos (*Pinus spp.*) y robles (*Quercus spp.*), e incluso zonas agrícola-ganaderas y zonas perturbadas (Juárez et al. 2012).

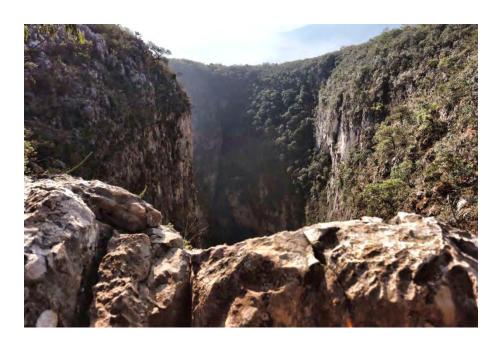


Figura 3. Sótano del Barro, Querétaro. Hábitat de guacamayas verdes. Juan Carlos Orraca 2016.

Figura 4. Guacamayas verdes volando en el Sótano del Barro. Juan Carlos Orraca 2016.

Figuras 5. Fotografía del Sótano del Barro y guacamayas verdes en la Sierra Gorda Querétaro. Se aprecia el hábitat con cañadas. Juan Carlos Orraca 2016.

b. Descripción morfológica de la especie y subespecies

Al igual que las demás especies del género *Ara*, carecen de plumas en la región del rostro, o bien pueden presentar bandas de pequeñas plumas. La especie presenta algunas plumas a manera de 5 a 6 bandas de color rojo carmesí y la piel del rostro es de color rosado claro. Es un ave grande, mide entre 675 y 750 mm, lo que la hace ocupar el sexto lugar en tamaño dentro del género *Ara*. Presenta color verde, tono mate en la nuca, cuello y corona. Las plumas cobertoras y secundarias de las alas presentan un color verde olivo oscuro; frente y mejillas color rojo carmesí, la rabadilla y coberteras de la cola presentan color azul turquesa. El pico es negro mate y el iris es color amarillo, patas y dedos color gris oscuro. Los juveniles son similares, excepto por las plumas escapulares o cobertoras del ala con borde distal color verde pálido y las plumas de la garganta con tono café, el iris va de color amarillo pálido a café claro (Monterrubio-Rico et al. 2005).

Se reconocen tres subespecies de *Ara militaris*: *A. m. militaris* (Linnaeus 1766), *A. m. bolivianus* (Reichenow 1908) y *A. m. mexicanus* (Ridgway 1915) (ITIS 2015). Sin embargo, se ha mantenido esta clasificación hasta la actualidad más por su área de distribución que por algún estudio significativo a nivel morfológico o genético.

Algunas características morfológicas para diferenciarlas son las siguientes:

Ara militaris militaris: Lineo describe por primera vez esta subespecie en 1776 con la siguientes características: "Cuerpo verde, alas azules, frente roja, frente de la cola con plumas rojas, mejillas desnudas con líneas de plumas, rabadilla azul, ápice de las plumas rectrices azul, pico negro" (Linnaeus 1776). Se mencionan las siguientes medidas: 700 mm de longitud, cuerda alar en machos de 360 mm y en hembras de 356 mm (Monterrubio-Rico et al. 2005) (Figura 6).

Figura 6. Fotografía de guacamaya militar (*Ara militaris*). Fotografía tomada en el zoológico de Santa Fe, Medellín, Colombia. Weimar 2008.

Ara militaris mexicanus: Es la subespecie más grande llegando a medir hasta 800 mm de longitud (Monterrubio-Rico et al. 2005), aunque se mencionan también 700 a 710 mm y un peso de 972 a 1134g (Collar 1997) con una cuerda alar promedio en machos de 375 mm y en hembras de 369 mm, la coloración verde y roja es más tenue que en la subespecie Ara militaris militaris (Monterrubio-Rico et al. 2005). Ridgway (1915), menciona algunas medidas de esta subespecie: largo del ala 385mm, largo de la cola 435 mm y tarso 34.5 mm. (Ridgway 1915). Howell y Webb (1995) mencionan una diferencia en la coloración del pico entre las guacamayas de la vertiente del Golfo (Sierra Madre Oriental) y del Pacífico (Sierra Madre Occidental), las primeras parecen tener un pico más claro que las segundas (Figuras 7 y 8).

Figura 7. Fotografía de Ara militaris mexicanus en México. Gregg 2009.

Figura 8. Fotografía de *Ara militaris mexicanus* en el Zoológico Los Coyotes, México. Gary Dennes 2008.

Ara militaris bolivianus: difiere de A. m. militaris en que la garganta es color café rojizo (Reichenow 1908), las plumas que cubren los oídos tienen la base rojiza y en las plumas rémiges o remeras así como en la punta de las plumas rectrices o timoneras presenta un azul más oscuro que A.m. mexicanus. Llega a medir 700 mm, pero la cuerda alar promedio mide 369 mm en machos y 358 mm en hembras (Monterrubio-Rico et al. 2005) (Figura 9).

Figura 9. Fotografía de *Ara militaris bolivianus*. Fotografía tomada en Bolivia, refugio los Volcanes, Santa Cruz. Paul Jhones 2011.

En la siguiente tabla (Cuadro 1), se resumen algunas características morfológicas de las tres subespecies encontradas en las primeras descripciones de la especie que se han venido utilizando casi sin modificaciones (Reichenov 1908, Ridgway 1915, Collar 1997, Monterrubio-Rico et al. 2005), no existen estudios recientes a nivel morfológico que muestren diferencias significativas entre subespecies.

Características	Ara militaris mexicanus	Ara militaris bolivianus	Ara militaris militaris			
Longitud	800 mm*	700 mm*	700 mm*			
Cuerda alar	369-375 mm*	358-369 mm*	356-360mm*			
Otros	Verde un poco más claro* Largo de ala:385mm** Largo de cola:435mm** Largo de tarso:34.5mm** Peso: 972 a 1134g ° Las guacamayas de la vertiente del Pacífico tienen pico más obscuro que las del Golfo de México.+	Garganta café rojizo ^{oo}	Verde un poco más oscuro*			
* Monterrubio-Rico	et al. 2005.					
° Collar 1997.	005					
+ Howell y Webb 19 ** Ridgway 1915.	993.					

c. Descripción de la especie a nivel genético

oo Reichenow 1908.

A nivel general, se sabe que *Ara militaris* es un organismo diploide con 29 pares de cromosomas (2n=58). Poseen 11 pares de macrocromosomas y 17 pares de microcromosomas homólogos y 1 par de cromosomas sexuales o heterólogos, donde la hembra poseé la configuración ZW (heterogamética) y el macho ZZ (homogamético) (Stelle et al. 2003).

En cuanto a estudios genéticos relacionados con la utilización de marcadores moleculares con fines de identificación individual y de origen, recientemente, se realizó un estudio con secuencias militaris para comparar a la especie *Ara ambiguus* con las subespecies de *Ara militaris: Ara militaris bolivianus* y *Ara militaris mexicanus* (Eberhard et al. 2015), donde los resultados muestran que sí hay una diferencia entre los ejemplares de *Ara militaris mexicanus* y *Ara militaris bolivianus* y se separan un poco también las poblaciones de mexicanus de las vertientes del Golfo y el Pacífico (Figura 10). Estos resultados son compatibles con los obtenidos por Rivera-Ortiz (2014) quien a partir de su estudio con 8 microsatélites encuentra dos grupos genéticos/clusters (k=2) y separa estructuralmente a los individuos de las vertientes mexicanas pues presentan diferentes frecuencias de presencia de dichos clusters en cada una (Figuras 11, 12 y 15). Aún haría falta realizar un estudio con mayor número de muestras y comparar a las tres subespecies de *Ara militaris* para constatar que existen diferencias genéticas demarcadas por la región geográfica en el continente Americano.

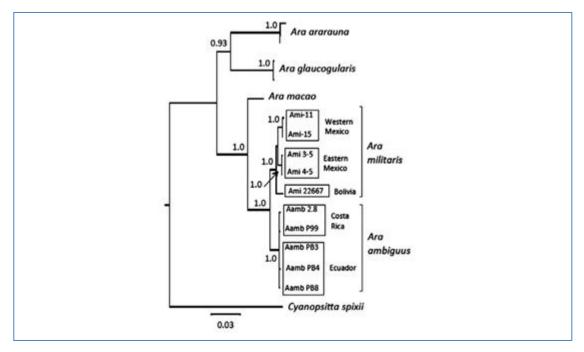


Figura 10. Árbol filogenético obtenido por análisis bayesiano utilizando secuencias mitocondriales del ND2 (En: Eberhard et al. 2015, figura 2).

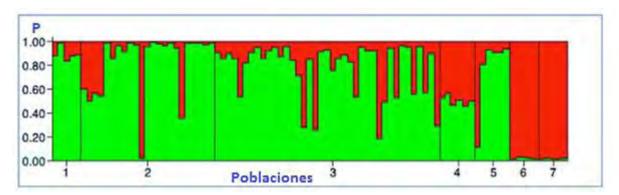


Figura 11. Gráfica de la estructura genética obtenida por Rivera-Ortiz (2014) donde se muestran dos grupos genéticos (k=2). Las barras verticales representan a cada individuo coloreadas en proporción al grupo genético que pertenece (Probabilidad de ancestría= P). Las poblaciones 1 a 5 corresponden a la vertiente del Pacífico (Sierra Madre Occidental) y las poblaciones 6 y 7 corresponden a la Vertiente del Golfo (Sierra Madre Oriental).

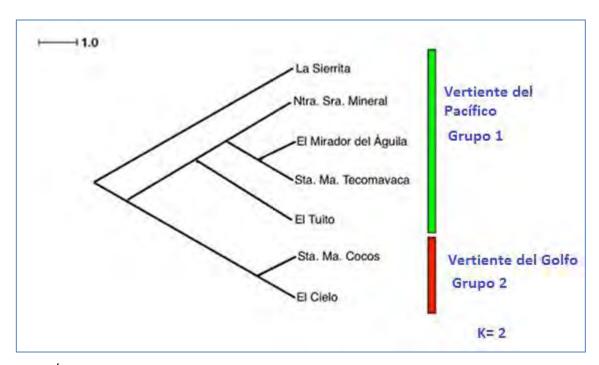


Figura 12. Árbol UPGMA (Unweighted Pair Group Method with Arithmetic Means) obtenido por Rivera-Ortiz (2014) a partir de las distancias genéticas entre pares de poblaciones (FST). La relación de mezcla del grupo de poblaciones está representado por genotipos de color verde y rojo obtenido a partir de los resultados de k = 2 de análisis Bayesiano. Rivera-Ortiz 2014, en figura 5.

Utilizando ambos antecedentes podemos suponer que es posible diferenciar individuos por la frecuencia de presencia de los clusters (k) e inferir si su origen poblacional corresponde a las vertientes del Golfo o del Pacífico. Del mismo modo, se puede suponer que habrá diferencias estructurales entre las poblaciones cautivas y las aves silvestres debido a circunstancias asociadas posiblemente al tráfico ilegal que existe en el continente (podría haber individuos genéticamente diferentes procedentes de otros países), por intercambio de individuos con origen desconocido entre zoológicos (mexicanos o no mexicanos), o por cambio en la estructura genética entre subpoblaciones cautivas debido a fijación alélica por endogamia o aislamiento reproductivo (cruzamientos no aleatorios). Entonces, si se someten muestras de individuos provenientes de cautiverio y tráfico ilegal a un análisis de estructura semejante al mencionado con anterioridad y se comparan con muestras de referencia silvestres, será posible asignar los individuos a las superpoblaciones utilizando la estructura descrita en anteriores estudios de individuos silvestres, así como apreciar semejanzas o diferencias en parámetros de diversidad genética. El presente trabajo de investigación se desarrolla alrededor de esta hipótesis.

d. Estrategias de conservación contra el tráfico ilegal de psitácidos silvestres en México

i. Estatus general de riesgo de los psitácidos mexicanos

De acuerdo a la Norma Oficial Mexicana NOM 059 (2010), de las 22 especies de pericos mexicanos, 21 se encuentran en algún estado de riesgo, 11 están clasificadas en peligro de extinción, 6 amenazadas y 4 bajo protección especial, sólo una especie se encuentra sin clasificar. Esto quiere decir que el 95% de las especies mexicanas se encuentran bajo alguna categoría de riesgo y que el 50% están en riesgo de desaparecer. Las principales amenazas que enfrentan los psitácidos en México son la pérdida del hábitat y la captura ilegal para el mercado de mascotas.

ii. Estado de conservación de la guacamaya verde

La guacamaya verde *Ara militaris mexicanus* se encuentra enlistada en el apéndice I de la Convención Sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres (CITES) (CITES 2001). En el marco jurídico mexicano, la Norma Oficial Mexicana NOM-059-ECOL-2001, considera a esta especie, desde 2001, en peligro de extinción, y se enlista junto con otras 10 especies nativas de psitácidos bajo esta categoría en 2010 (NOM-059-SEMARNAT-2010). Como una estrategia de conservación, a partir del año 2008, la Ley General de Vida Silvestre (LGVS) adicionó el artículo 60 bis 2, donde se establece que "Ningún ejemplar de ave correspondiente a la familia Psittacidae o psitácido, cuya distribución natural sea dentro del territorio nacional, podrá ser sujeto de aprovechamiento extractivo con fines de subsistencia o comerciales" (Diario Oficial de la Federación 2008). A nivel mundial, la especie se encuentra categorizada como "Vulnerable" en la Lista Roja de Especies Amenazadas de la Unión Internacional para la Conservación de la Naturaleza (UICN). Se encuentra además legalmente protegida en Venezuela, Perú y la provincia de Salta en Argentina (Birdlife International 2013). La subespecie *Ara militaris mexicana* forma parte del Programa de Especies Europeas Amenazadas de la Asociación Europea de Zoológicos y Acuarios EAZA (Birdlife International 2013).

El tamaño de la población mundial se encuentra en decremento y se estima en 10,000-19,999 individuos, esto equivale a 6,000-15,000 individuos maduros (Birdlife International 2013). Existen poblaciones razonablemente saludables en las Reservas de la Biósfera del Cielo y la Sierra Gorda (Birdlife International 2013) y una población remanente pequeña, pero estable en la Reserva de la Biósfera de Tehuacán-Cuicatlán Oaxaca en México (Bonilla, Reyes y Santiago 2007; Bonilla, Reyes y García 2007). En otros países del continente americano, existen poblaciones en los Parques Nacionales Madidi y Amboró, Reserva de la Biósfera Pilon Laias y Área de Manejo Integrada Nacional Apolobamba en Bolivia, y Reserva de la Biósfera de Manu y Parque Nacional Bahuaja Sonene en Perú (Birdlife International 2013).

iii. Cifras de extracción de la vida silvestre

En un estudio realizado por Cantú et al. (2007) se realizaron entrevistas con capturadores de psitácidos mexicanos y se estimó que la captura asciende entre los 65,000 y 78,500 pericos cada año. La tasa de mortalidad general para pericos capturados del medio silvestre, excede el 75% antes de llegar al consumidor final, lo que se traduce entre 50,000 y 60,000 pericos muertos cada año. Esto significa que 8 de cada 10 pericos muere, o visto de otra forma, por cada perico que la gente compra, cuatro mueren en el camino al mercado. También se determinó la tasa de aseguramientos de pericos realizados por los inspectores de la Procuraduría Federal de Protección al Ambiente (PROFEPA): los aseguramientos de la PROFEPA representan un promedio de alrededor del 2% del tráfico ilegal anual, se determinó también que sólo un pequeño porcentaje de la captura ilegal anual se contrabandea fuera del país. Alrededor de entre el 86% y el 90% de los pericos mexicanos que se capturan permanecen en el comercio interno. La guacamaya verde ocupa el quinto lugar de las 22 especies de psitácidos mexicanos en saqueo (Pericos Mexicanos en Peligro 2016).

iv. Marco legal

Desde el 14 de octubre de 2008, la Ley General de Vida Silvestre (LGVS) adicionó el artículo 60 bis 2, donde se establece que "Ningún ejemplar de ave correspondiente a la familia Psittacidae o psitácido, cuya distribución natural sea dentro del territorio nacional, podrá ser sujeto de aprovechamiento extractivo con fines de subsistencia o comerciales". La Secretaría establece que sólo podrá otorgar autorizaciones de aprovechamiento extractivo con fines de conservación o investigación científica, que únicamente se otorgarán autorizaciones para investigación científica a instituciones académicas acreditadas. En esta modificación se prohíbe la importación, exportación y reexportación de cualquier ejemplar de ave correspondiente a la familia Psittacidae o psitácido, cuya distribución natural sea dentro del territorio nacional (Diario Oficial de la Federación 2008).

El artículo 420 del Código Penal Federal (última reforma en 2009), impone una pena de hasta 9 años de cárcel y hasta 3000 días de multa, para aquellas personas que poseen o que transporten algún espécimen de vida silvestre y hasta mil días adicionales o tres años más de prisión

a aquel que tenga o posea animales con intención de comercializarlos. Este documento fija además penas administrativas a quienes comercialicen con psitácidos o cualquier tipo de vida silvestre, posean, transporten, o dañen alguna especie que van desde amonestaciones, multas, arrestos por 36 horas, decomisos del espécimen y el pago de los gastos que se generen durante la rehabilitación de la especie (Código Penal Federal 2009).

v. Estrategias para la conservación de psitácidos silvestres en México

En síntesis, la situación actual de las guacamayas verdes está definida por una elevada tasa de extracción, sumada a la pérdida progresiva del hábitat, pocos nacimientos anuales y en general una baja tasa de recuperación. Actualmente, la recuperación de poblaciones silvestres en peligro de extinción amerita atacar y evitar las causas que llevan a la extinción y ponen en peligro a las especies evitando que estas mismas causas se presenten de nuevo. Las estrategias específicas consisten en la conservación y recuperación del hábitat y la conservación y recuperación de las especies con refuerzos poblacionales, reintroducciones y el resguardo y reproducción de ejemplares de valioso material genético en UMAs. El Subcomité Técnico Consultivo para la Conservación, Manejo y Aprovechamiento Sustentable de los Psitácidos de México (dentro del entonces llamado, Programa de Recuperación de Especies Prioritarias, de la Secretaría de Medio Ambiente y Recursos Naturales) estableció desde el año 2000 una serie de estrategias y escenarios meta para la conservación de los psitácidos mexicanos, con fundamento en aplicaciones especiales de zootecnia para lograr su cría en cautiverio y obtener pies de cría a partir de las Unidades de Manejo para la Conservación de la Vida Silvestre (conocidas como UMAs). Para esto, recomendaron que los ejemplares provinieran exclusivamente de decomisos o criaderos, con el objeto de disminuir o evitar su extracción a partir de poblaciones silvestres. Asimismo, establecía que se desarrollaran las investigaciones y estudios necesarios para promover su reproducción en cautiverio, garantizar un manejo genético adecuado de los mismos, y reintroducir aquellas especies que así lo requirieran (SEMARNAP-INE 2000). Estas metas sirvieron como base para los actuales Programas de Acción para la Conservación de las Especies (PACE) (SEMARNAT 2012). El presente estudio, aporta datos para colaborar con el logro de dichas metas y realizar recomendaciones para las propuestas de conservación y recuperación de la especie a partir de estudios genéticos, de tal forma que se evalúe la factibilidad de integrar dentro de las estrategias para la recuperación de las poblaciones silvestres a los individuos provenientes del tráfico ilegal y aquellos criados en cautiverio, considerando para ello, los resultados de su estudio, así como también se debe considerar de manera práctica la revisión de protocolos de manejo zoosanitario, de rehabilitación, liberación y reproducción de psitácidos. Con el presente estudio, se puede evaluar el brindar la oportunidad individual a los ejemplares que viven decomisados o en cautiverio, de ser liberados en sus regiones probables de origen sin crear alteraciones en la estructura de poblaciones, o bien, ser canalizados hacia programas reproductivos de conservación o recuperación de la especie.

vi. Genotipificación de fauna silvestre como herramienta para la conservación

La técnica de genotipificación puede ser definida como el método utilizado para la determinación del perfil genético de un individuo o una población y sus variantes genéticas con base en marcadores moleculares previamente seleccionados. Un marcador genético o marcador molecular es un segmento de DNA con una ubicación física identificable en un cromosoma y cuya herencia genética se puede rastrear. Los microsatélites son marcadores repetitivos constituidos por secuencias cortas o fragmentos de 1 a 6 pares de bases nucleotídicas (di, tri, tetra, penta nucleótidos, etc.) que se repiten en tándem un elevado número de veces (SSRs, *Short Sequence Repeats*), por ejemplo: (CA)n. La variación en el número de repeticiones (n) crea diferentes alelos. Entre una de las ventajas para el análisis de microsatélites es que presentan herencia mendeliana simple y son codominantes (pudiéndose diferenciar los individuos homocigóticos de los heterocigóticos), son altamente mutables y tienen un número muy alto de alelos en un mismo locus (polimórficos) (Falconer y Mackay 1996, González 2003, Allendorf y Lukart 2007). "Son particularmente útiles, y en general, los marcadores ideales en casos de asignación de un individuo a un grupo de origen probable" (González 2003). Generalmente se encuentran en zonas no codificantes del ADN

(Heterocromatina), sin embargo se les puede encontrar también en regiones codificantes (Eucromatina) asociados a la detección de enfermedades y presencia de características morfológicas (Hancock 1999, Carrington et al. 1999, Shibata 1999, Utsch et al. 2002, Sears et al. 2007). Son utilizados como marcadores moleculares en una gran variedad de aplicaciones como pueden ser parentescos y estudios de poblaciones. Esto se debe a su capacidad para generar una huella genética personal o perfil genético. Actualmente, se pueden diseñar dichos marcadores moleculares para varias especies ya que los microsatélites están más o menos distribuidos a lo largo de todo el genoma de los organismos eucariontes (Hancock 1999, Chistiakov et al. 2006, Allendorf y Lukart 2007). El uso de los microsatélites ha tenido un gran impacto en el estudio de la genética de animales, plantas y seres humanos desde su descubrimiento en 1989. (Weber y May 1989) Del mismo modo, los estudios de ligamiento hacen de los microsatélites una herramienta útil en la detección de enfermedades (Carrington et al. 1999, Shibata 1999, Utsch et al. 2002). Los microsatélites se conforman, cada uno, por un motivo repetitivo, en el cual se encuentra contenido la secuencia repetida que denota la variación según el número de repeticiones (n), y dos regiones flanqueantes, las cuales se encuentran a ambos lados del motivo repetitivo y a partir de ellos se pueden diseñar los primers, iniciadores o cebadores (Figura 13). Para que un microsatélite sea considerado útil como marcador molecular, toda la variación de la secuencia o polimorfismo debe hallarse dentro del motivo repetitivo, mientras que las regiones flanqueantes deben estar altamente conservadas, al punto de no presentar ninguna variación de secuencia para que pueda ser un marcador identificable en un segmento de DNA. (Hancock 1999, González 2003, Allendorf y Lukart 2007).

Para poder diferenciar dos microsatélites que varían sólo en su número de repeticiones, necesitamos hacer una Reacción en Cadena de la Polimerasa (PCR), ya que ésta nos permite replicar un alto número de veces el segmento de interés, generando copias del mismo peso molecular correspondientes al número de repeticiones del motivo repetitivo. Para ello, se diseñan *primers* o iniciadores (también llamados cebadores), que son pequeños fragmentos de DNA complementarios a las regiones flanqueantes (altamente conservadas), y que permiten amplificar o producir un alto número de copias del microsatélite (Vázquez-Lobo y Morales-García 2014). Los

fragmentos producidos son separados de acuerdo a su longitud en pares de bases a través de la técnica de electroforesis, los fragmentos más pesados se separarán de los más ligeros pues éstos últimos migrarán más rápido hacia el polo positivo (recordando que el DNA posee moléculas cargadas negativamente) (Fierro 2014), visualizándose en forma de banda. Con una escalera de referencia en pares de bases (pb) podemos darnos una idea más o menos precisa de la longitud del fragmento de interés en pb.

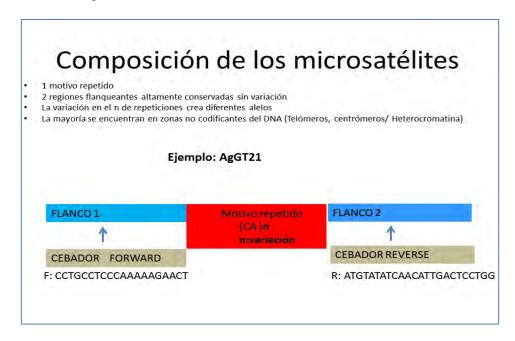


Figura 13. Composición de los microsatélites. Ejemplo de primer AgGT21 diseñado para la especie *Amazona guildingui*. Los cebadores se diseñan con base en los flancos altamente conservados.

Una vez realizada la electroforesis, podemos comparar unos microsatélites con otros, siempre y cuando sean alelos de un mismo motivo repetitivo. Estos alelos se heredarían de manera codominante, es decir, que en cada locus un individuo podría presentar uno o más alelos dependiendo la variación del microsatélite. Las guacamayas verdes, y las aves en general, son organismos diploides, es decir, poseen dos juegos completos de cromosomas y por lo tanto para un locus de un microsatélite, pueden presentar un alelo (si ambos progenitores transmitieron alelos de la misma secuencia y tamaño) o dos alelos (si cada progenitor heredó un alelo de tamaño diferente).

Actualmente, los microsatélites desarrollados para especies particulares pueden con frecuencia ser aplicadas a especies emparentadas donde se evalúa que se presente "amplificación cruzada", pero el porcentaje de loci que se amplifican satisfactoriamente puede disminuir cuando aumenta la distancia genética (Gebhardt y Waits 2008, Presti et al. 2011). Gracias a investigaciones donde se emplean los microsatélites, se han determinado parámetros genéticos importantes como el grado de variabilidad genética en varias especies de psitácidos (Nader et al. 1999, Caparroz et al. 2003, Gebhardt y Waits 2008, Presti et al. 2011).

En cuanto a las aplicaciones para la conservación de las especies silvestres, podemos encontrar con estas técnicas las características que distinguen a un individuo haciéndolo único "huella genética", es posible identificarlo dentro del mercado ilegal cuando se estandaricen varios microsatélites con diferentes longitudes nucleotídicas, ya que los más útiles son los tetranucleótidos, aunque pueden incluso ser di, tri o pentanucleótidos. Para los seres humanos, sobre todo en Ciencias forenses y criminalísticas, se necesitan de 13-20 microsatélites que generan combinaciones únicas y precisas para cada individuo (CODIS FBI.org 2015; Hares 2015). Se podrían identificar también dentro de los centros de decomiso e incluso UMAS o PIMVS evitando el lavado de individuos y devolviendo individuos decomisados a su probable población de origen. Del mismo modo, cuando se observa la diversificación de una población o un grupo de individuos, es posible crear estrategias de manejo en cautiverio asegurando la calidad genética de los individuos para mantener un "reservorio" (Woodworth et al. 2002, Frankham 2015) que permita ayudar a las poblaciones silvestres con refuerzos poblacionales, selección de entrecruzamientos cautiverio evitando parientes, etc. Para este fin, se han utilizado incluso desde 3 microsatélites (Soberanes-González 2008) y para comprobación de especies de psitácidos cercanos se ha utilizado incluso 1 microsatélite (AgGT17) (Abe et al. 2012).

Ya de manera práctica en las tareas experimentales, los microsatélites tienen generalmente características que se deberían tomar en cuenta para ser utilizados en los estudios de diversidad de las poblaciones silvestres. A continuación se enlistan algunas de las características observadas que hacen de los microsatélites herramientas de utilidad para los estudios genéticos:

- Alta variabilidad
- Herencia estable
- Repetibilidad y precisión en la amplificación
- No presencia de alelos nulos
- Condiciones de amplificación fáciles, rápidas, económicas y automatizables
- Sensibilidad a bajas concentraciones de DNA
- Segregación independiente

vii. Genotipificación de Ara militaris

Con anterioridad se describieron los estudios relacionados con el uso de microsatélites como marcadores moleculares enfocados en la filogeografía de *Ara militaris*, donde Rivera-Ortiz, en 2014, a partir de 8 microsatélites (Figuras 11, 12 y 15) encuentra una separación genética entre dos grupos poblacionales silvestres al parecer demarcados por las barreras geográficas del Eje Neovolcánico Transversal y Altiplano Central. También se muestran individuos con ambos genotipos e individuos en el Pacífico con genotipo totalmente correspondiente al Golfo, esto puede deberse a que aún no se ha eliminado ese genotipo del Pacífico o a migraciones, u otras causas de flujo de genes entre ambas vertientes (Figura 11).

Locus	Sequence (5'-3')	T°	Allelic size range	Genetic Diversity					
Locus				N _T	NAE	Ho	HE	Fis	
UnaCT21	CTTTCCCATACTTAGCCATA	58	153-277	29	4	0.48	0.63	0.23	
UnaCT32	TCTTGCTTATTCTTCCCCAG	56	248-268	27	4	0.78	0.72	-0.09	
UnaCT43°	TCATCCTATCACCAGAAGG	60	184-216	14	3	0.68	0.70	0.01	
UnaCT74°	CTGGACTGCTGCTCTTAAA	58	138-190	15	3	0.57	0.63	0.08	
UnaGT55°	TCTGCCCTCTGTCTTATGCC	58	181-257	13	4	0.76	0.75	-0.01	
AgGT17°	CCTGGATGTGCTCTGTGAG	60	134-242	21	3	0.81	0.65	-0.25	
AgGT19 ⁺	CCTGCCTCCCAAAAGAACT	60	167-189	12	2	0.66	0.64	-0.03	
AgGT32 ⁺	ACCCAGCTTCAGGTTTGTA	60	78-120	20	4	0.56	0.65	0.12	
Overall				151	28	0.66	0.67	0.005	
*Caparroz et	al. 2003, Russello et al. 2001, *Russe	llo et al.	2005						
*HWD, Boni	ferroni correction P > 0.05								

Figura 14. Tabla de microsatélites y medidas de la diversidad genética obtenidos por Rivera-Ortiz (2014).

Figura 15. Mapa elaborado por Rivera-Ortiz (2014) que muestra K=2 (2 clusters) (colores verde y rojo) distribuidos de manera diferente en las vertientes del Golfo y del Pacífico.

Para describir la constitución genética de un grupo de individuos (diploides), en palabras simples, tenemos que especificar sus genotipos (AA, Aa, aa) y decir cuántos individuos existen en cada uno de ellos, su proporción y porcentaje. Se describe por el conjunto de frecuencias génicas, es decir, por la especificación de los alelos presentes en cada *locus* y el número o proporción de los de los diferentes alelos en cada *locus*. Las frecuencias génicas de un *locus* concreto en un grupo de individuos pueden determinarse a partir del conocimiento de las frecuencias genotípicas (Falconer y Mackay 1996). Entre las utilidades del estudio con microsatélites como marcadores moleculares, se encuentra el cálculo de parámetros de la diversidad genética a partir de las frecuencias alélicas (genotípicas). La medida utilizada generalmente para cuantificar la cantidad de variación genética debido a *loci* polimórficos es la heterocigosis, H, que es simplemente la frecuencia de heterocigotos. H puede expresarse como un valor observado (Ho) o como un valor esperado (He) calculado a partir de las mencionadas frecuencias génicas observadas. Estos valores serán diferentes

si la población no está en equilibrio Hardy-Weinberg, la ley menciona que en una población grande con apareamientos aleatorios, sin selección, mutación o migración las frecuencias génicas y genotípicas permanecerán constantes de generación en generación (Falconer 1996) (p2, 2pq, q2). Es común que las poblaciones naturales se subdividan en pequeñas poblaciones, en cautiverio las poblaciones y colonias reproductivas son generalmente pequeñas, por lo tanto es muy posible que ocurra el llamado "proceso dispersivo" que generará cambios en el equilibrio Hardy-Weinberg teniendo en general consecuencias como la deriva génica, diferenciación entre subpoblaciones, uniformidad dentro de las subpoblaciones e incremento de la homocigosis (consanguinidad). Existe un límite al proceso dispersivo llamado índice de fijación (F), "cuando un alelo alcanza la frecuencia de 1, se dice que se ha fijado, y si es de 0 se dice que se ha perdido y los individuos de esta línea son altamente consanguíneos" (Falconer y Mackay 1996) siendo resultado del apareamiento entre individuos emparentados por ascendencia o endogámicos. Wright, en 1951 (Piñeiro et al. 2008), introdujo un método para partir el coeficiente de endogamia en una población subdividida (Fit) entre el componente debido a apareamientos no aleatorios dentro de poblaciones (Fis) y la subdivisión entre poblaciones (Fst). Así, la endogamia total tendría un componente generado por la cruza entre parientes dentro de una población (Fis) y otro por el balance entre deriva génica o procesos de dispersión y flujo génico (Fst) (Piñeiro et al. 2008). Los valores de Fst indicarán qué tan aislada estará una población para indicar que existe deriva genética, o si bien, no hay divergencia o diferenciación genética (<0.05 pequeña, 0.05 a 0.15 moderada, 0.15 a 0.25 grande y >0.25 muy grande) (De Vicente et al. 2004).

Con el uso de los microsatélites entonces, podemos estimar parámetros de variación genética. Ya en un enfoque práctico, el nivel de heterocigosis que se encontró utilizando microsatélites como marcadores moleculares para las poblaciones silvestres de *Ara militaris mexicanus* es moderado o intermedio (HE = 0.63) lo cual podemos interpretar como que las presiones ambientales y antropomórficas aún no han afectado drásticamente a dichas poblaciones. En comparación con otras especies de psitácidos donde también se emplearon microsatélites, *Cyanopsitta spixii*, *Anodorhynchus leari* y *Anodorhynchus hyacinthinus* presentan niveles de heterocigosidad más bajos con He: 0.36-0.51 y se contrasta con *Ara macao* y *Ara ararauna* que

presentan He: 0.86 y 0.80 respectivamente. (Nader et al. 1999, Caparroz et al. 2003, Faria et al. 2006, Presti et al. 2011, Rivera-Ortiz 2014).

Los microsatélites, como ya se mencionó, pueden presentar amplificación cruzada con otras especies; los que han sido utilizados para *Ara militaris* tienen motivos repetidos correspondientes a dinucleótidos y fueron diseñados para *Ara araraun*a y *Amazona guildingui* (Rusello et al. 2001, Rusello et al. 2005, Caparroz et al. 2003).

En el presente estudio se utilizarán cebadores diseñados para otras especies de psitácidos correspondientes a motivos repetitivos dinucleótidos que presentan amplificación cruzada con varias especies de psitácidos y alto grado de polimorfismo para determinar la variabilidad genética de las poblaciones cautivas, así como posibles grupos genéticos diferentes o estructuras genéticas diferentes presentes en los individuos provenientes del tráfico ilegal y colonias reproducidas en cautiverio en el país debido al intercambio de ejemplares de origen desconocido entre zoológicos y el tráfico ilegal.

IV. HIPÓTESIS

Hipótesis nula:

Es posible que las poblaciones cautivas del país provengan de *Ara militaris mexicanus*, y que en las mismas se presenten grados de endogamia y menor diversidad genética comparadas con las poblaciones silvestres.

Hipótesis alterna:

Es posible que en las poblaciones cautivas del país se encuentren grupos genéticos diferentes a los reportados en las poblaciones silvestres debido al intercambio de ejemplares de origen desconocido y tráfico ilegal.

V. OBJETIVOS

a. GENERAL

Aplicar la técnica de genotipificación en individuos de *Ara militaris* provenientes de cautiverio y tráfico ilegal para determinar parámetros de diversidad genética útiles en las actividades de conservación de la especie.

b. ESPECÍFICOS

- 1. Estandarización de la técnica de genotipificación con primers no específicos en la especie *Ara militaris*.
- 2. Analizar la estructura genética existente en los individuos nacidos en cautiverio y tráfico ilegal tomando como referencia muestras de individuos silvestres de las vertientes del Golfo y Pacífico y observar las posibles diferencias existentes con los grupos genéticos naturales debido al intercambio de individuos con origen geográfico desconocido.
- 3. Estimar parámetros de variabilidad genética con base en frecuencias alélicas (H&WE, A, Ae, He, Ho, Fst, Fis, Fit) entre los individuos de las diferentes UMAs y con base en esta información hacer propuestas en cuanto al manejo reproductivo de las colonias.

VI. MATERIAL Y MÉTODOS

Para lograr la genotipificación se ajustó y estandarizó con base en trabajos anteriores el uso de cebadores "primers" diseñados para amplificar los *loci* de los microsatélites de otras especies de psitácidos (no específicos para *Ara militaris*) que han presentado amplificación cruzada y variabilidad, ya que no existen cebadores diseñados específicamente para la especie *Ara militaris* (1). Posteriormente, tomando como referencia muestras de individuos silvestres de las vertientes del Golfo y/o Pacífico, se analizó la estructura genética existente en los individuos nacidos en cautiverio y tráfico ilegal, observando las posibles diferencias de origen debido al entrecruzamiento entre individuos de origen geográfico desconocido (2). Se estimó con la matriz de datos generada a partir de muestras tomadas de individuos provenientes de tráfico ilegal y de cautiverio, la variabilidad genética existente en las poblaciones de las diferentes UMAs y parámetros genéticos como el número de alelos obtenidos por locus (A), el número efectivo de alelos por locus (Ae), la heterocigosidad observada y esperada (Ho y He) y estadísticos F (Fis, Fst y Fit) que generarán información útil para el manejo de las colonias en cautiverio (3).

1. Para la estandarización de la técnica de genotipificación con primers no específicos en la especie *Ara militaris*

i. Permisos obtenidos

Se obtuvo el permiso de colecta para 100 muestras sanguíneas en individuos de la especie *Ara militaris* cautiverio OFICIO NÚM.SGPA/DGVS/06462/14 (Apéndice I)

ii. Ejemplares de estudio

Previo a la toma de muestra sanguínea de los ejemplares, se realizó un examen físico general básico (Figuras 16-19) con el apoyo y supervisión de los Médicos Veterinarios encargados del Área

y de acuerdo a lo descrito por Franco-Ochoa (2013). No se colectaron muestras sanguíneas de aquellos ejemplares con signos de enfermedad que comprometieran la vida del animal ante la toma de muestra. Se obtuvieron 99 muestras sanguíneas en tarjetas FTA Whatman ® de individuos de *Ara militaris* provenientes de diferentes zoológicos y del CIVS Guadalajara (Cuadro 2). En el Apéndice II se muestran las identificaciones de cada ejemplar correspondientes al estudio y el anillo, microchip o marcaje temporal propio del lugar de procedencia.

Figura 16. Examen físico general en individuo adulto: Auscultación.

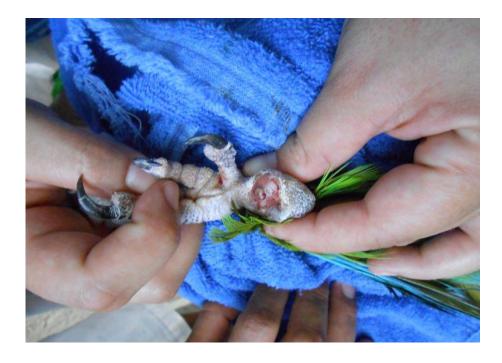


Figura 17.Examen físico general: herida en tarso provocada por un objeto punzocortante.

Figura 18. Examen físico general en polluelo.

Figura 19. Examen físico general. Pesaje: Se colocó al individuo en un saco obscuro con ventilación.

O 1 0 NT/	1 , 1	. 1 1	. 1 1	4 .1	
Cuadro 2. Número o	te muectrac anal	172dac de	1nd1V1d110c	Ara militaric en	COLITIVATIO
Cuaulo 2. Nullicio (ic illucoltao allat	izauas uc	marviduos.	лти тишить сп	cautiverio

LUGAR DE PROCEDENCIA	N	TOTAL: 99	TEJIDO
Parque ecoarqueológico XCARET (QROO)	29		Sangre en FTA
CIVS Guadalajara(Gdl.JAL)	21		Sangre en FTA
Parque Agua Azul (Juriquilla, JAL.)	8		Sangre en FTA
Villa Fantasía (Gdl.JAL)	5		Sangre en FTA
Zoológico de Guadalajara (gdl, JAL)	15		Sangre en FTA
AFRICAM safari (PUE.)	14		Sangre en FTA
Reavyfeex (QRO)	7 inclu	yendo «Petra» RFEXQT328*	Sangre en FTA

^{*}El ejemplar RFEXQT328 perteneciente a Reavyfeex se liberó en Sótano del Barro por parte de un proyecto de investigación, en este estudio se podrá corroborar si el individuo se asemeja a los individuos silvestres de esa población.

Se obtuvieron 12 muestras de individuos silvestres obtenidos para el estudio de referencia perteneciente a la Colección Nacional de Aves y el Laboratorio de Genética de la Conservación, Instituto de Biología, UNAM Cuadro 3).

Cuadro 3. Número de muestras de individuos	silvestr	es e informac	ión de colecta
LUGAR DE PROCEDENCIA E IDENTIFICACIÓN	N	TOTAL: 11	TIPO DE TEJIDO
Culiacán Sinaloa.(Tiberio Monterrubio Colector) 510TM CNAV UNAM) 55TM CNAV UNAM.	2		Extracción de pluma
Sonora (1959) SP01398TP CNAV UNAM	1		"Toe Pad" de Museo
Jalisco	2		
SPAA46 CNAV UNAM			Sangre FTA
JALSILV CNAV UNAM			Pluma
Michoacán (1965) P001124 CNAV UNAM P001125 CNAV UNAM	2		"Toe Pad" de Museo
Guerrero (1987) P01126 CNAV UNAM	1		Piel
La Concordia Sinaloa (Yamel Rubio Colector) SCON1R CNAV UNAM SCON2R CNAV UNAM SCON3R CNAV UNAM	3		Pluma
Sierra Gorda Querétaro (Reeavyfeex Colector) SGQ2014 CNAV UNAM	1		Pluma

iii. Recolección y almacenamiento de las muestras para el estudio genético

La muestra sanguínea de los individuos procedentes de cautiverio se obtuvo de la vena ulnar superficial con aguja calibre 23G y jeringas de 1ml, previa desinfección de la zona con clorhexidina y alcohol 70% respetando un volumen de extracción seguro de 0.1ml (menor a 0.3-0.6 ml por cada 100g de peso corporal) (FAO 2007) y sin anticoagulante (Figura 20). Los individuos se contuvieron físicamente con una toalla evitando la compresión de la cavidad celómica. Una vez extraídas, las

muestras de sangre periférica se vertieron en tarjetas Whatman FTA® (Solarte-Portilla et al. 2009, Perozo et al. 2006) (Figura 21). Las muestras se dejaron secar a temperatura ambiente en un lugar aséptico y libre de humedad evitando la contaminación, posteriormente se almacenaron en sobres de papel con identificación propia del individuo y sobres de silicón adsorbente de humedad. Las muestras de plumas se mantuvieron en sobres de papel libres de humedad con la identificación correspondiente y las muestras de pieles secas se mantuvieron en tubos Eppendorf®.

Figura 20. Toma de muestra sanguínea a partir de vena ulnar superficial.

Figura 21. Muestra sanguínea en tarjeta FTA Whatmann® almacenada en sobre con identificación (Especie, número de tarjeta, microchip o anillo, lugar de procedencia, fecha de colecta, Colector)

iv. Extracción de las muestras para el estudio genético.

El procesamiento de las muestras se realizó con el equipo y materiales del Laboratorio de Genética de la Conservación, en el Instituto de Biología, UNAM. La Extracción de DNA de plumas y pieles secas se realizó siguiendo el protocolo del kit de purificación QIAGEN DNeasy ® Blood & Tissue Kit (Figura 22) (QIAGEN 2011) y la extracción de DNA de las tarjetas FTA se realizó siguiendo el protocolo fenol-cloroformo: alcohol isoamílico utilizando 2 discos de 2mm de diámetro (QIAGEN modificado, 2006; Villafañe y Posso-Duque modificado, 2009) (Figuras 21, 23, 24). Para validar la obtención de DNA se realizaron geles de agarosa (2μL de DNA, 2 μL de Tinción fluorescente Gel Red, 2 μL de Buffer LB y 2 μL de Escalera 50pb) al 2% visualizados con Rayos Ultravioleta (Figura 25) y la pureza de la extracción se comprobó utilizando tecnología de refractometría con NanoDrop 2000 (Thermo Fisher Scientific 2009) considerando una DO 260/280 (Densidad Óptica) y una concentración de DNA mayor a 30 nanogramos por microlitro para

extracción desde FTA. Las extracciones de museo mostraron concentraciones menores a 10 nanogramos por microlitro.

Figura 22.Tubo contenedor QIAGEN DNeasy®Blood and Tissue Kit con muestra.

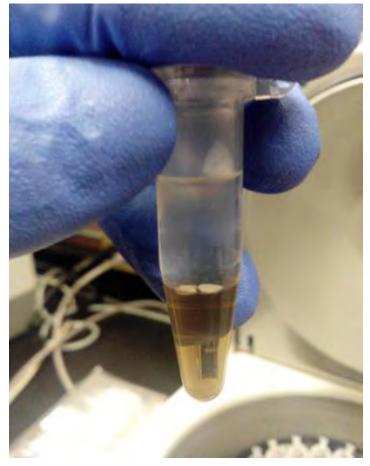


Figura 23. Extracción con fenolcloroformo. Después de la centrifugación, la fase transparente corresponde al fenol y la fase obscura al cloroformo con la muestra sanguínea. En la parte central se observan los discos de la tarjeta FTA.

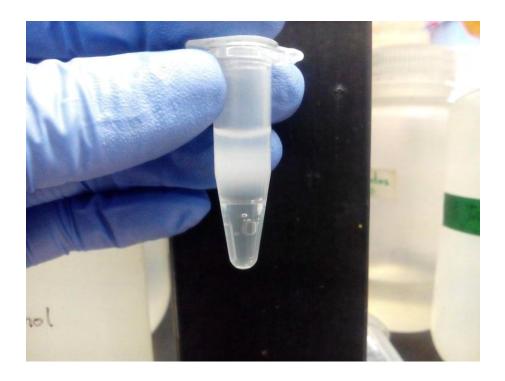


Figura 24. Precipitación del DNA con alcohol, en protocolo de extracción fenol-cloroformo.

v. Amplificación de fragmentos

Se seleccionaron 11 primers/cebadores para loci microsatélites polimórficos nucleares diseñados para las especies *Amazona guildingui* (Rusello et al. 2001, Rusello et al. 2005) *y Ara ararauna* (Caparroz et al.2003) con alta variabilidad y que presentaron amplificación cruzada para otras especies de psitácidos (Gebhardt y Waits 2008, Presti et al. 2011) Siete de los microsatélites seleccionados fueron utilizados por Rivera-Ortiz para *Ara militaris*. (Rivera-Ortiz 2014). En el Cuadro 4 se muestran los primers/cebadores para los loci seleccionados con el número de acceso en GenBank (NCBI 2015), así como la secuencia correspondiente a los flancos conservados y motivo repetitivo del microsatélite.

Cuadro 4. Primers para Loci microsatélites seleccionados, secuencia y unidad de repetición

Primers/Locus seleccionado, nº acceso de GenBank y especie	Secuencia de iniciadores: Forward-Reverse (5'-3')	Unidad de repetición
UnaCT21	F:CTTTCCCATACTTAGCCATA	(GT)n(CTT)(GT)n
(AYZ44483) (Ara ararauna)	R:AGACATTTCAAGACCGTGCC	
UnaCT32	F: TCTTGCTTATTCTTCCCCAG	(GT)n
(AYZ44484) (A.ararauna)	R:ACCACCACCAGGAAGCACGG	
UnaCT43	F: TCATCCTATCACCAGAAGGG	(GT)n
(AYZ44486) (A.ararauna)	R:CTTGAGGACAGTGCAGAGGG	
UnaCT74	F: CTGGACTGCTGCTCTTAACA	(GT)n
(AYZ44487) (A.ararauna)	R:AGCCTGAAGTGAACTGCATG	
UnaGT55	F: TCTGCCCTCTGTCTTATGCC	(GT)n(AT)n
(AYZ44488) (A.ararauna)	R: ACTTTGGTTTGTCCCTGC	
AgGT17	F: TGAGTAAGGGCTGTGCAATG	(GT)n
(AF339759) (Amazona guildingui)	R:GCCTCAAGTTCTCCATTTCC	
AgGT19	F: CCTGCCTCCCAAAAAGAACT	(CA)n
(AY878248) (A. guildingui)	R:ATGTATATCAACATTGACTCCTGG	
AgGT32	F:GCCTGATCTCAGAAGGAAGG	(CA)n
(AY878251) (A. guildingui)	R: CCTTGCGTTACTCCCACCT	
AgGT21	F: TCCCAGGCCAACACATTTAC	(GT)n
(AF339760) (A. guildingui)	R: GCTTAGTGCATATCCCAAGCTA	
AgGT42	F:GGCAGTCAGAAGCACCACAT	(GT)n
(AY878252) (A. guildingui)	R: TGGGGTAATGGAAGGAGTGA	
AgGT90	F:TCCACAATTCTACCGAAGTGG	(GT)n
(AY878255) (A. guildingui)	R: ACAGACACATCACTCCCCAAC	

Se utilizó una concentración de 10ng/ microlitro de los primers seleccionados. Para obtener el marcaje de las curvas patrón de los alelos se utilizaron colorantes fluorescentes (fluoróforos o fluorocromos) diferentes (FAM/azul, PET/rojo,VIC/verde, NED/negro) con una concentración de 5picomol/μL: Una CT21 (marcado con FAM), UnaCT32 unido al oligonucleótido M13 marcado con VIC; UnaCT74 marcado con PET; UnaGT55 unido al oligonucleótido M13 marcado con VIC; UnaCT74 marcado con NED; AgGT19 marcado con VIC; AgGT32 unido al oligonucleótido M13 marcado con VIC; AgGT21 marcado con VIC; AgGT42 marcado con VIC y AgGT90 marcado con FAM (Cuadros 5 y 6). Se realizó la amplificación a partir de Reacción en Cadena de la Polimerasa (PCR) con termocicladora eppendorf vapo.protect ® y utilizando el Quit de amplificación Qiagen multiplex PCR kit ® (Contiene DNA Polimerasa, Magnesio, dNTPs: dATP,dCTP,dGTP,dDTTP) iniciando con un programa de amplificación stándard (QIAGEN 2010) para amplificaciones con primers marcados con

fluorocromos, y con un programa de amplificación modificado (Bayona 2013)para amplificaciones con primers marcados con fluorocromos unidos a oligonucleótidos M13. En general, se utilizó un volumen de reacción de 5-6 µL con 0.5-2 µL de templado (DNA) y realizando las modificaciones pertinentes a las variables para estandarizar el método. Primero se realizaron reacciones individuales para cada primer (Cuadro 5 en APÉNDICE III) y posteriormente se realizaron reacciones en multiplex (Cuadro 6 en APÉNDICE IV) para aminorar la cantidad de reactivos en la genotipificación de todas las muestras. Para validar la amplificación de fragmentos se realizaron geles de agarosa al 2% que posteriormente a la realización de electroforesis (115 volts por 45 minutos en Buffer Tris-Borato-EDTA/TBE al 1%) se visualizaron con rayos UV (1μL de DNA, 2 μL de Tinción fluorescente Gel Red®, 2 µL de Buffer Litio/Borato LB y 2 µL de Escalera 50pb) (Figuras 25 y 26). Los rangos de referencia para identificar los fragmentos de interés se obtuvieron a partir de los estudios de amplificación cruzada realizados por Presti et al. (2011) y Gebhardt y Waits (2008) para otras especies del género Ara y del tamaño de los fragmentos obtenidos por Rivera-Ortiz (2014) para Ara militaris (Cuadro 7). Se repitieron los análisis por primer individual y multiplex al menos 3 veces para validar la repetibilidad del método y considerar la estandarización de las condiciones de amplificación.

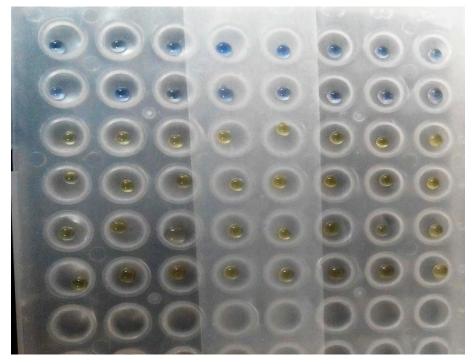


Figura 25.Mezcla de 1μL de DNA, 2 μL de Tinción fluorescente Gel Red®, 2 μL de Buffer Litio/Borato LB y 2 μL de Escalera 50pb para visualización con rayos UV.

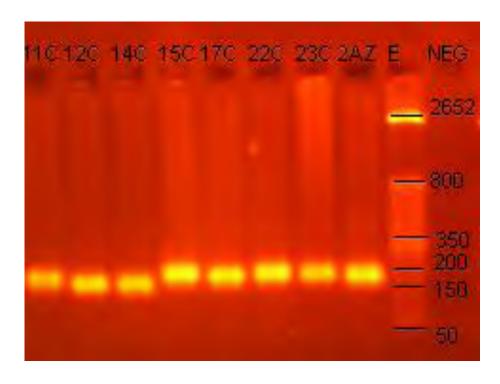


Figura 26. Visualización de bandas de DNA amplificado con Rayos Ultra Violeta. Muestras de DNA: 11c, 12c, 14c, 15c, 17c, 22c, 23c, 2az, escalera (E) de 50pb y blanco negativo. Peso molecular del microsatélite: 150 a 200 pb

Cu	adro 7. Rango	s de referencia o	del tamaño de los	s fragmentos
Locus	Fluoróforo	Referencia para el tamaño de los fragmentos		
		Rivera-Ortiz (2014) para Ara militaris	Presti et al.(2011) para Ara macao	Gebhardt y Waits (2008) para <i>Ara</i> <i>macao</i>
AgGT17°	NED	134-242	222-246	107-133
UnaCT21*	FAM	153-277	243-273	152-190
AgGT19°	VIC	167-189	190-202	172-188
AgGT21°	VIC	NT	299-333	174-200
UnaCT74*	PET	138-190	245-267	155-177
UnaCT43*	FAM	184-216	191-215	145-153
AgGt90°	FAM	NT	NT	186-212
o Diseñados	para <i>Amazona</i>	guildingui: Ruse	llo et al.2001, Rus	sello et al.2005.

Genotipificación

Una vez obtenida la visualización óptima de los productos amplificados en gel de agarosa, los productos de la PCR fueron mezclados con formamida, escalera Gene Scan LIZ 500 (Applied Biosystems) y desnaturalizados por 5 min a 95°C para su análisis por electroforesis capilar con secuenciador Life technology 3500xl (24 capilares) en el Laboratorio de Secuenciación de la Biodiversidad y la Salud del Instituto de Biología de la UNAM. A partir de los electroferogramas resultantes de la electroforesis capilar, se utilizaron los softwares analizadores de genotipo GENE MARKER HID ® (Figuras 27-35), GENE MAPPER v 4.1® y TÁNDEM con la finalidad de obtener los rangos de alelos de cada microsatélite para la especie Ara militaris, con los cuales se creó una matriz de datos con los perfiles genéticos de cada individuo para sus respectivos análisis (Cuadro 8 en APÉNDICE V). Con el programa GENALEX 6.3 se calcularon las probabilidades de la combinación genotípica de cada individuo para utilidad de identificación individual o huella genética así como la identificación de los genotipos iguales y la aproximación de los grados de parentesco en los diferentes grupos de cautiverio de acuerdo al estimador de Queller y Goodnight (1999) (Cuadros 9 y 10).

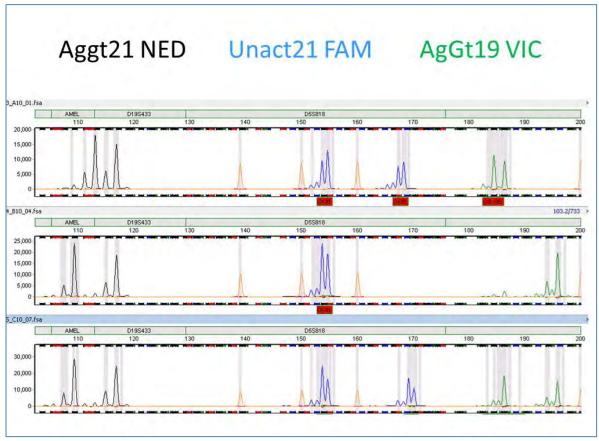
^{*}Diseñados para *Ara ararauna*: Caparroz et al.2003.

2. Para analizar la estructura genética existente en los individuos nacidos en cautiverio y tráfico ilegal.

Tomando como referencia muestras de individuos silvestres de las vertientes del Golfo y Pacífico y para observar las posibles diferencias con los grupos genéticos naturales, la matriz de datos de genotipos se sometió a un análisis estructural con el programa STRUCTURE 2.3.4 (Rivera-Ortiz 2014, Rueda-Zozaya et al. 2016) que mediante el análisis bayesiano de grupos/clusters infiere la probabilidad de cada individuo asignándolo a una población con base en las diferencias significativas en frecuencias alélicas (Figura 39) (Cuadro 11) . El procedimiento utiliza las Cadenas Markov de Monte Carlo (MCMC) para aproximar y calcular los posibles grupos/clusters K. La simulación fue ejecutada utilizando 1,000,000 de periodos "burn" y 5,000,000 de interacciones MCMC utilizando como "población" la UMA o zoológico al que los individuos pertenecen o si pertenecen a la vida silvestre. Con el método de Evanno utilizado por el programa Harvester 0.6.92 (Evanno et al. 2005, Earl y Von-Holdt 2012), se seleccionó el número de clusters K con mejor aproximación ΔK (Figuras 40,42). Adicionalmente, con el programa GENALEX 6.3 se realizó un análisis de asignación de grupo "proveniente de Tráfico ilegal o cautiverio" o grupo "silvestre" de acuerdo al logaritmo de máxima similitud entre las frecuencias alélicas (Figura 43) (Cuadro 12 en APÉNDICE VIII).

3. Para estimar parámetros de variabilidad genética (A, Ae, He, Ho, Fit, Fis, Fst,) entre los individuos de las diferentes UMAs.

Como primer paso, se obtuvo el cálculo de las desviaciones del equilibrio de Hardy-Weinberg(H&W) utilizando el test exacto de Fischer con el programa GENEPOP 4.2 ,con 100,000 Cadenas Marcov de Monte Carlo y 100,000 repeticiones (dememorisation) (Cuadro 13) (Villalobos-Cortés et al. 2009, Rueda-Zozaya et al. 2016). Adicionalmente se calculó la significancia del desequilibrio Hardy-Weinberg (H&W) con GENALEX 6.3 (Cuadro 14).Con


GENEPOP 4.2 se realizaron además pruebas de ligamiento de alelos (Cuadro 15). Con MICROCHECKER se probó la ausencia o presencia de alelos nulos (Figura 44). Para obtener las frecuencias alélicas (Cuadro 16) (Figura 45), el número total de alelos por loci (N_T ó A), número efectivo de alelos (Ae), la heterocigosis observada y esperada (He, Ho) y los estadísticos F de Wright (Fis, Fst, Fit) (Cuadros 17-19 y Cuadro 20) se utilizó el programa GENALEX 6.3 (Rivera-Ortiz 2014, Rueda-Zozaya et al. 2016). Con GENALEX 6.3, también se realizó el análisis de la varianza Molecular AMOVA (Cuadro 22) y se comparó la diferenciación genética entre pares de grupos (Fst) (Cuadro 21).

VII. RESULTADOS

Amplificación de fragmentos

En los cuadros 5 y 6 (APÉNDICES III Y IV) se muestra detalladamente las diferentes condiciones que se utilizaron para lograr la amplificación de los fragmentos de interés estandarizando el método para el uso de los microsatélites seleccionados y genotipificación de la especie *Ara militaris*. Las figuras (Figuras 25-33) concatenadas al Cuadro 5 (APÉNDICE III) muestran la visualización de los alelos en el programa GeneMarker HID (2014). De los 11 primers, se seleccionaron únicamente 7 (UnaCT21, AgGT17, AgGT19, UnaCT43, UnaCT74, AgGT21 y AgGT90) ya que los primers UnaGT55 y AgGt42 resultaron monomórficos (Figuras 31 y 34), AgGT32 presentó baja variabilidad (2 alelos en el locus) y UnaCT32 presentó inconsistencias en la amplificación (Figura 28).Los *loci* AgGT21, con 11 alelos y AgGT90, con 10 alelos mostraron ser altamente polimórficos. UnaCT21 presentó 4 alelos, AgGT17 presentó 6 alelos, AgGT19: 7, UnaCT43: 6 y UnaCT74: 5 (Cuadro 5 en APÉNDICE III). El tamaño de los fragmentos obtenido fue el siguiente por locus: UnaCT21 (149-170 pb), AgGT17 (107-121 pb), AgGT19 (184-200 pb), UnaCT43 (197-221 pb), UnaCT74 (148-164 pb), AgGT21 (177-197pb) y AgGT90 (188-208pb) (Cuadro 16).

Figura 27. Visualización de escaleras y alelos marcados con diferentes fluorocromos en Gene
Marker HID ${\mathbb R}$

^{*}LocusAgGT21 (marcado con NED); Locus UnaCT21 (Marcado con FAM); Locus AgGT19 (marcado con VIC)

Figura 28. Visualización de escaleras y alelos para el Locus Una
CT32 (marcado con FAM). Gene Marker HID ${\mathbb R}$

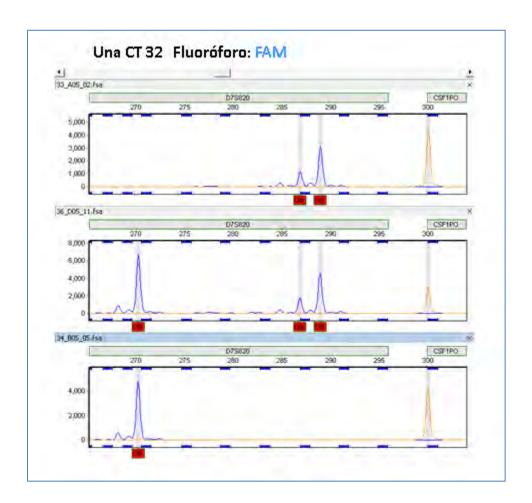


Figura 29. Visualización de escaleras y alelos en GeneMarker HID.Locus UnaCT43 (marcado con FAM) y UnaCT74 (marcado con PET).

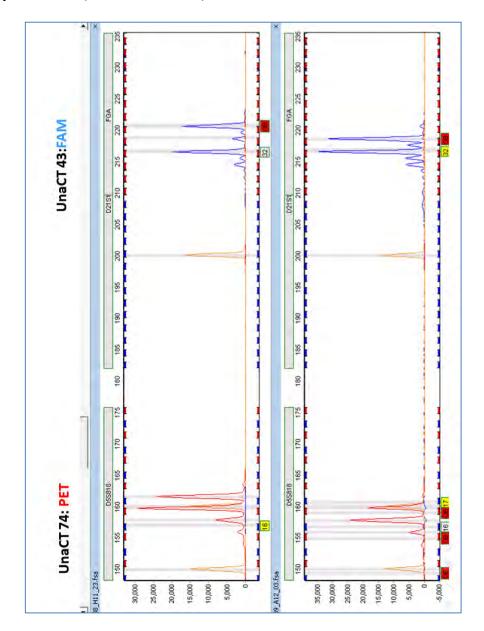


Figura 30. Visualización de genotipos Heterocigóticos (alelos 158/160 y 160/164) y Homocigótico (alelo 160/160) para el Locus UnaCT74 (marcado con PET) en GeneMarker HID

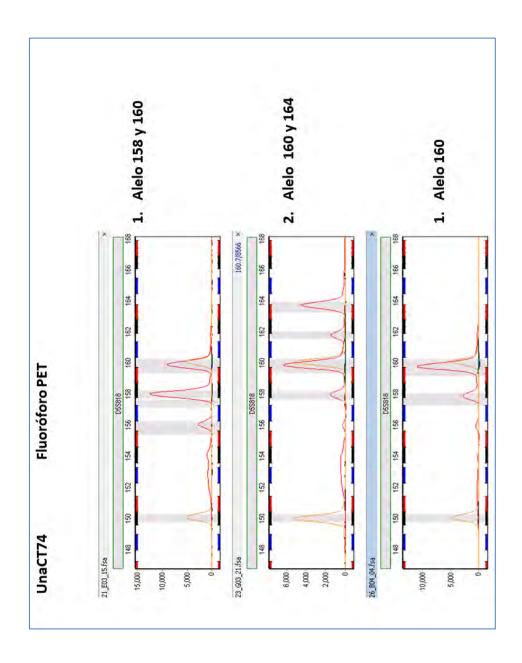


Figura 31. Visualización de Locus Monomórfico UnaGT55 en GeneMarker HID donde se muestra el único alelo 203.

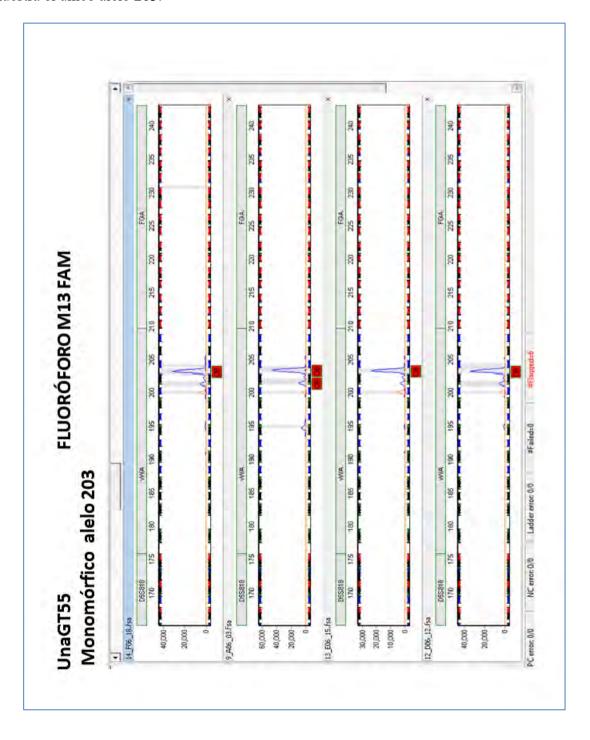


Figura 32. Visualización de Heterocigóticos (109/117 y 113/117) y Homocigótico (109/109) para el Locus AgGt17 marcado con NED en GeneMarker HID

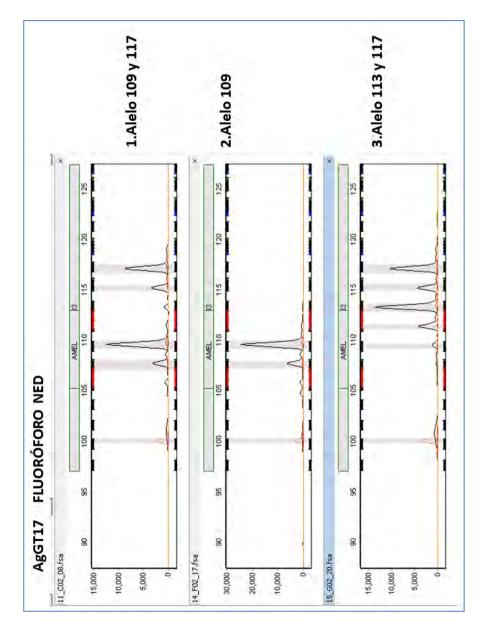


Figura 33. Visualización de individuos Heterocigóticos para el Locus AgGT21 (180/182 y 184/190) con GeneMarker HID

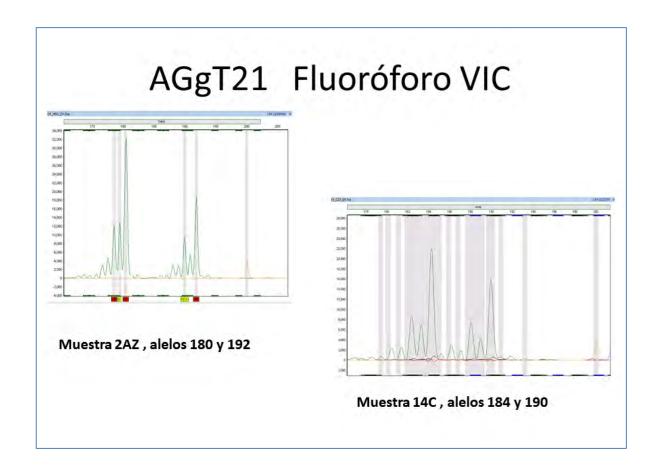


Figura 34. Visualización de Locus Monomórfico AgGT42 en GeneMerker HID donde se muestra el único alelo 255

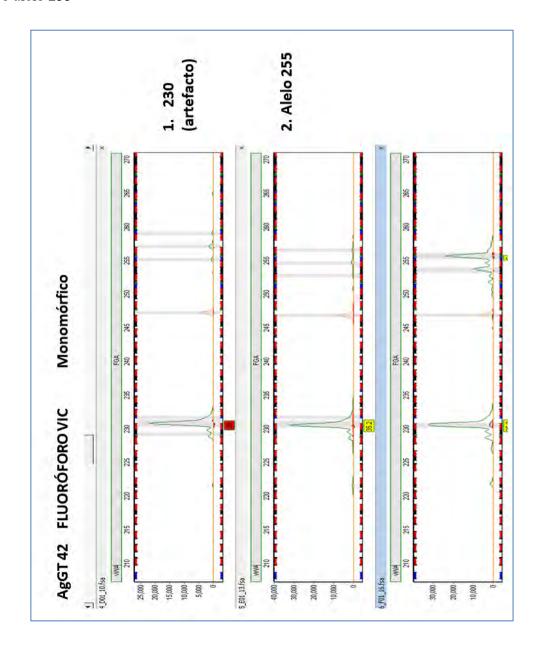
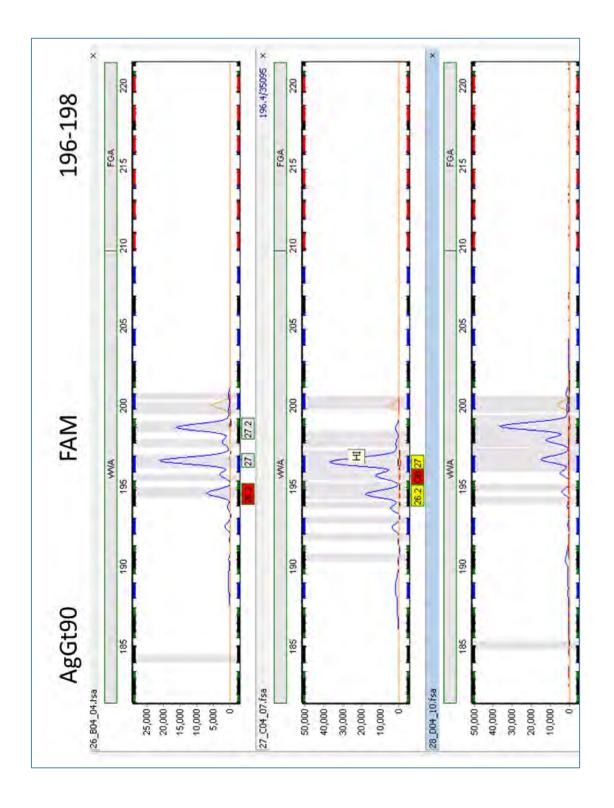
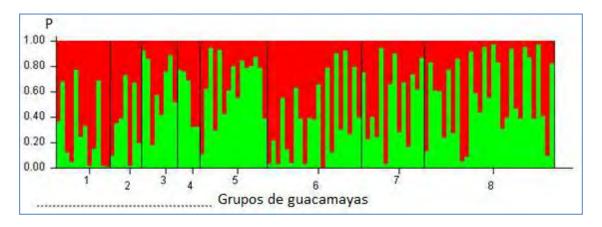



Figura 35. Visualización de Alelos (196 y 198) en el Locus AgGT90 marcado con FAM en GeneMarker HID


Genotipificación

Los tamaños precisos de los alelos para cada individuo se obtuvieron a partir de los programas GENE MARKER HID, GENE MAPPER v 4.1 y TÀNDEM. En las muestras que presentaron problemas para la amplificación se colocó un cero. La matriz resultante se muestra en el Cuadro 8 (APÉNDICE V). Las probabilidades y porcentaje de la combinación genotípica de cada individuo se muestran en el Cuadro 9 (APÉNDICE VI). La menor probabilidad de combinación genotípica fue de $4x10^{-10}$ (aproximadamente 1 individuo en 10 000 millones) y la mayor probabilidad de combinación fue cercana a 0.25 (1 individuo de 4) correspondiente a las muestras 13C y 1ZG de las que sólo se obtuvo la información para un locus y por lo cual presentan un genotipo idéntico (los genotipos repetidos en su totalidad sólo lo presentan estas dos muestras). La aproximación de las relaciones de parentesco R en pares por grupo de individuos de cautiverio se obtuvo con el estimador asimétrico 1 Queller & Goodnight (1999) y se muestra en el Cuadro 10 (APÉNDICE VII). Los valores se estiman de -1 a 1, siendo 1 el valor asignado para gemelos homogaméticos con genotipo idéntico(sin embargo esto puede ocurrir por falta de información en los loci del genotipo ,como en el caso de las muestras 13c y 1zg); de 0.625 a 0.375 se asigna a relaciones parentales de primer grado: padres, gemelos dicigóticos, hermanos e hijos; de 0.375 a 0.125 se asigna a relaciones de parentesco de segundo grado: abuelos, tíos, medios hermanos, sobrinos; 0.125 a 0 se asigna a relaciones parentales de tercer grado incluyendo bisabuelos, bisnietos y primos hermanos; los valores negativos de R indican que es altamente improbable que este par de individuos se encuentren emparentados. En el Cuadro 10 (APÉNDICE VII), los estimadores de parentesco se presentan en valores de mayor a menor, siendo los valores más altos las posibles relaciones de parentesco de mayor grado. Los resultados se compararon con registros reales de algunas UMAs, la asertividad resultante del presente análisis es de aproximadamente 70%.

Estructura genética

Con el programa STRUCTURE 2.3.4 y STRUCTURE Harvester se obtuvieron bajo diferentes modelos de programación de 2 a 3 grupos genéticos probables (clusters) K=2-3 incluyendo las muestras de referencia de individuos de vida silvestre siguiendo el método de Evanno (Evanno et al. 2005, Earl y Von-Holdt 2012) (Figuras 36-41). El 100 % de los grupos muestreados en cautiverio, comparten cierto porcentaje de ambos grupos genéticos (Cuadro 11), (Figuras 36-38). El 100% de las muestras de referencia silvestres correspondientes a la vertiente del Pacífico muestran también que existen 2 grupos genéticos en su estructura (Cuadro 11) (Figuras 36-38). La muestra de referencia SGQ correspondiente al Sótano del Barro (Vertiente del Golfo) mostró un 99% de pertenencia a un solo grupo genético correspondiente al cluster rojo (Cuadro 11). Con el programa GENALEX 6.3, se realizó una prueba de asignación de grupo a cada individuo a partir del cálculo de logaritmos de máxima similitud de las frecuencias alélicas que presentaron los individuos divididos en 2 grupos: "individuos silvestres" y "procedentes de cautiverio y tráfico ilegal". El 76% de los individuos pertenecen al propio grupo y el 24% es más similar a otro grupo. De los 99 individuos pertenecientes al grupo "procedente de cautiverio o tráfico ilegal", 22 resultaron más similares a los individuos silvestres, y de los 12 individuos del grupo "individuos silvestres", 5 resultaron más similares a los grupos de cautiverio. La gráfica de asignación de grupo obtenida no muestra diferencias marcadas entre la estructura genética del grupo de individuos silvestres y los individuos procedentes del tráfico ilegal y cautiverio. (Figura 42) (Cuadro 12 en APÉNDICE VIII).

Figura 36.Gráfica de la estructura genética obtenida en los 7 grupos de cautiverio (UMAs y procedentes del tráfico ilegal) y el grupo silvestre a partir de un modelo en el programa STRUCTURE simulando grupos de individuos no mezclados con frecuencias alélicas correlacionadas. Las barras verticales representan a cada individuo con segmentos coloreados en proporción al grupo genético que pertenece (rojo y verde) K=2. Grupo 1: Silvestres; Grupo 2: Reavyfeex, Qro; Grupo 3: Parque Agua Azul, Jal; Grupo 4: Villa Fantasía, Jal.; Grupo 5: Zoológico de Guadalajara, Jal; Grupo 6: CIVS, Guadalajara, Jal.; Grupo 7: Africami. Safari, Pue.; Grupo 8: XCARET, QRoo.

Grupo	K in	feridos	n de individuos
	1	2	
1:	0.710	0.290	12
2:	0.649	0.351	7
3:	0.359	0.641	8
4:	0.425	0.575	5
5.	0.347	0.653	15
6:	0.618	0.382	21
7:	0.462	0.538	14
8.	0.422	0.578	29

Figura 38.Proporción de pertenencia por grupo de individuos a cada uno de los clusters o grupos genéticos (cluster 1: rojo, cluster 2: verde) K=2. Grupo 1: Silvestres; Grupo 2: Reavyfeex, Qro; Grupo 3: Parque Agua Azul, Jal; Grupo 4: Villa Fantasía, Jal.; Grupo 5: Zoológico de Guadalajara, Jal; Grupo 6: CIVS, Guadalajara, Jal.; Grupo 7: Africami. Safari, Pue.; Grupo 8: XCARET, QRoo.

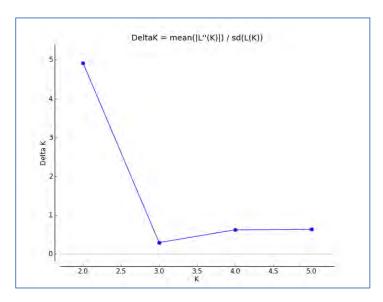
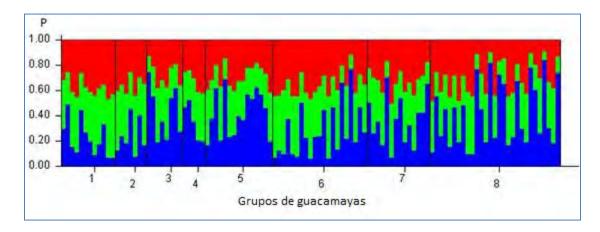



Figura 39. Gráfica de Évano obtenida en STRUCTURE Harvester que muestra los grupos o clusters genéticos (K) probables en las muestras silvestres de referencia, y cautiverio (procedentes de UMAs y tráfico ilegal) (k=2).

Figura 40.Gráfica de la estructura genética obtenida en los 7 grupos de cautiverio (UMAs y procedentes del tráfico ilegal) y el grupo silvestre a partir de un modelo en el programa STRUCTURE simulando grupos de individuos mezclados con frecuencias alélicas correlacionadas. Las barras verticales representan a cada individuo con segmentos coloreados en proporción al grupo genético que pertenece (rojo, verde y azul) K=3. Grupo 1: Silvestres; Grupo 2: Reavyfeex, Qro; Grupo 3: Parque Agua Azul, Jal; Grupo 4: Villa Fantasía, Jal.; Grupo 5: Zoológico de Guadalajara, Jal; Grupo 6: CIVS, Guadalajara, Jal.; Grupo 7: Africami. Safari, Pue.; Grupo 8: XCARET, QRoo.

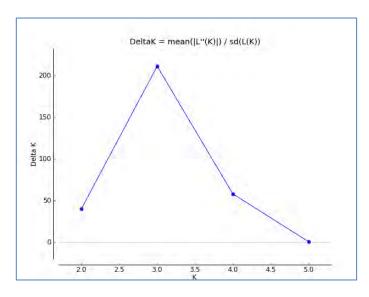
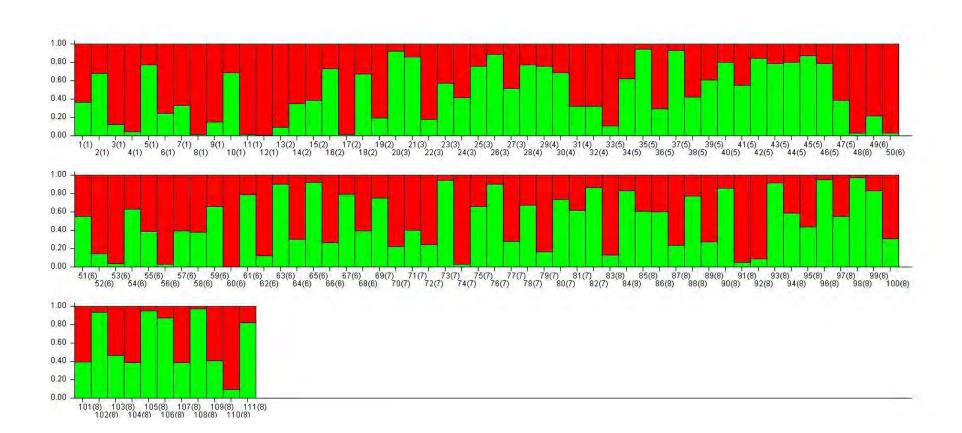



Figura 41. Gráfica de Évano obtenida en STRUCTURE Harvester que muestra los grupos K (clusters) probables en las muestras de referencia, cautiverio y tráfico ilegal (k=3).

Figura 37 .Gráfica de estructura genética. Cada barra representa un individuo enumerado del 1 al 111 y el grupo al que pertenece entre paréntesis (eje x). y su probabilidad (0-1) de pertenencia al cluster verde o rojo K=2 (eje y). Grupo 1: Silvestres; Grupo 2: Reavyfeex, Qro; Grupo 3: Parque Agua Azul, Jal; Grupo 4: Villa Fantasía, Jal.; Grupo 5: Zoológico de Guadalajara, Jal; Grupo 6: CIVS, Guadalajara, Jal.; Grupo 7: Africam. Safari, Pue.; Grupo 8: XCARET, QRoo.

Cuadro 11. Proporción de pertenencia por individuo a los diferentes clusters

	Ancestría inferio	da por individuo (STRUC	TURE 2.3.4)	
Muestra	% de datos faltantes	Grupo	Cluster 1 (rojo)	Cluster 2(verde)
1 SP01398	(0)	1 :Silvestre/Sonora	0.633	0.367
2 S10TM	(0)	1 :Silvestre/Sinaloa	0.315	0.685
3 S5TM	(0)	1 :Silvestre/Sinaloa	0.878	0.122
4 SCON1R	(28)	1 :Silvestre/Sinaloa	0.951	0.049
5 SCON2R	(0)	1 :Silvestre/Sinaloa	0.224	0.776
6 SCON3R	(14)	1 :Silvestre/Sinaloa	0.754	0.246
7 SJALSILV	(0)	1 :Silvestre/Jalisco	0.665	0.335
8 SPAA046	(14)	1 :Silvestre/Jalisco	0.979	0.021
9 SP01126	(57)	1 :Silvestre/Guerrero	0.843	0.157
10 SP01124	(14)	1 :Silvestre/Michoacán	0.310	0.690
11 SP01125	(42)	1 :Silvestre/Michoacán	0.979	0.021
12 SGQR	(14)	1 :Silvestre/Querétaro	0.991	0.009
13 1rf	(0)	2:Reavyfeex	0.904	0.096
14 2rf	(0)	2 :Reavyfeex	0.650	0.350
15 3rf	(0)	2 :Reavyfeex	0.613	0.387
16 4rf	(0)	2 :Reavyfeex	0.266	0.734
17 5rf	(28)	2 :Reavyfeex	0.985	0.015
18 6rf	(14)	2 :Reavyfeex	0.324	0.676
19 7rf	(0)	2 :Reavyfeex	0.800	0.200
20 1az	(0)	3 :Agua azul	0.075	0.925
21 2az	(0)	3 :Agua azul	0.138	0.862
22 3az	(0)	3 :Agua azul	0.815	0.185
23 4az	(0)	3 :Agua azul	0.427	0.573
24 5az	(0)	3 :Agua azul	0.581	0.419
25 6az	(85)	3 :Agua azul	0.241	0.759
26 7az	(14)	3 :Agua azul	0.110	0.890
27 8az	(57)	3 :Agua azul	0.483	0.517
28 1vf	(57)	4 :Villa fantasía	0.225	0.775
29 2VF	(57)	4 :Villa fantasía	0.239	0.761
30 4vf	(42)	4 :Villa fantasía	0.314	0.686
31 5vf	(57)	4 :Villa fantasía	0.675	0.325
32 6vf	(42)	4 :Villa fantasía	0.673	0.327
33 10zg	(0)	5 :Zoológico de GDL.	0.892	0.108
34 11zg	(42)	5 :Zoológico de GDL.	0.377	0.623
35 12zg	(0)	5 :Zoológico de GDL.	0.053	0.947
36 13zg	(0)	5 :Zoológico de GDL.	0.701	0.299
37 15zg	(14)	5 :Zoológico de GDL.	0.069	0.931
38 16ZG	(0)	5 :Zoológico de GDL.	0.574	0.426
39 17zg	(0)	5 :Zoológico de GDL.	0.388	0.612
40 19zg	(0)	5 :Zoológico de GDL.	0.195	0.805
41 1zg	(85)	5 :Zoológico de GDL.	0.447	0.553
42 3zg	(14)	5 :Zoológico de GDL.	0.151	0.849
43 4zg	(42)	5 :Zoológico de GDL.	0.208	0.792
44 5zg	(85)	5 :Zoológico de GDL.	0.197	0.803
45 7zg	(0)	5 :Zoológico de GDL.	0.126	0.874
46 8zg	(0)	5 :Zoológico de GDL.	0.213	0.787

45 0	(1.0)	7 7 1/ : 1 CDI	0.611	0.200
47 9zg	(14)	5 :Zoológico de GDL.	0.611	0.389
48 10c	(0)	6 :CIVS, GDL.	0.970	0.030
49 11c	(0)	6 :CIVS, GDL.	0.784	0.216
50 12c	(0)	6 :CIVS, GDL.	0.965	0.035
51 13C	(85)	6 :CIVS, GDL.	0.446	0.554
52 14c	(0)	6 :CIVS, GDL.	0.856	0.144
53 15c	(0)	6 :CIVS, GDL.	0.961	0.039
54 16c	(0)	6 :CIVS, GDL.	0.366	0.634
55 17c	(0)	6 :CIVS, GDL.	0.608	0.392
56 18c	(0)	6 :CIVS, GDL.	0.969	0.031
57 19c	(0)	6 :CIVS, GDL.	0.605	0.395
58 1c	(0)	6 :CIVS, GDL.	0.620	0.380
59 20c	(0)	6 :CIVS, GDL.	0.339	0.661
60 21c	(14)	6 :CIVS, GDL.	0.997	0.003
61 22c	(0)	6 :CIVS, GDL.	0.210	0.790
62 23c	(0)	6 :CIVS, GDL.	0.876	0.124
63 24c	(57)	6 :CIVS, GDL.	0.097	0.903
64 3c	(42)	6 :CIVS, GDL.	0.700	0.300
65 4c	(0)	6 :CIVS, GDL.	0.075	0.925
66 5c	(57)	6 :CIVS, GDL.	0.735	0.265
67 6c	(28)	6 :CIVS, GDL.	0.203	0.797
68 9c	(0)	6 :CIVS, GDL.	0.601	0.399
69 10acs	(14)	7 :Africam Safari	0.250	0.750
70 11acs	(0)	7 :Africam Safari	0.775	0.225
71 12acs	(0)	7 :Africam Safari	0.599	0.401
72 13acs	(57)	7 :Africam Safari	0.751	0.249
73 14acs	(14)	7 :Africam Safari	0.057	0.943
74 1acs	(42)	7 :Africam Safari	0.968	0.032
75 2acs	(42)	7 :Africam Safari	0.336	0.664
76 3acs	(0)	7 :Africam Safari	0.093	0.907
77 4acs	(0)	7 :Africam Safari	0.715	0.285
78 5acs	(0)	7 :Africam Safari	0.323	0.677
79 6acs	(14)	7 :Africam Safari	0.831	0.169
80 7acs	(0)	7 :Africam Safari	0.260	0.740
81 8acs	(28)	7 :Africam Safari	0.381	0.619
82 9acs	(42)	7 :Africam Safari	0.132	0.868
83 10x	(0)	8 :Xcaret	0.870	0.130
84 11x	(57)	8 :Xcaret	0.170	0.830
85 12x	(0)	8 :Xcaret	0.392	0.608
86 13x	(42)	8 :Xcaret	0.400	0.600
87 14x	(0)	8 :Xcaret	0.758	0.242
88 15x	(0)	8 :Xcaret	0.222	0.778
89 16x	(0)	8 :Xcaret	0.722	0.278
90 17x	(0)	8 :Xcaret	0.138	0.862
91 18x	(14)	8 :Xcaret	0.949	0.051
92 19x	(0)	8 :Xcaret	0.909	0.091
93 1x	(0)	8 :Xcaret	0.079	0.921
94 20x	(42)	8 :Xcaret	0.414	0.586
95 21x	(0)	8 :Xcaret	0.563	0.437
96 22x	(0)	8 :Xcaret	0.044	0.956

97	23x	(0)	8 :Xcaret	0.448	0.552
98	24x	(0)	8 :Xcaret	0.028	0.972
99	26x	(0)	8 :Xcaret	0.169	0.831
100	27x	(0)	8 :Xcaret	0.690	0.310
101	28x	(0)	8 :Xcaret	0.604	0.396
102	29x	(0)	8 :Xcaret	0.059	0.941
103	2x	(0)	8 :Xcaret	0.532	0.468
104	30x	(0)	8 :Xcaret	0.611	0.389
105	3x	(0)	8 :Xcaret	0.048	0.952
106	4x	(0)	8 :Xcaret	0.126	0.874
107	5x	(0)	8 :Xcaret	0.613	0.387
108	6x	(0)	8 :Xcaret	0.026	0.974
109	7x	(42)	8 :Xcaret	0.588	0.412
110	8x	(42)	8 :Xcaret	0.902	0.098
111	9x	(0)	8 :Xcaret	0.174	0.826

^{*} Las muestras remarcadas corresponden a la muestra de un ejemplar silvestre del Sótano del Barro (Muestra n12 SGQR) con 0.991 de probabilidad de pertenencia según sus frecuencias alélicas al clúster rojo. El ejemplar liberado (muestra n13 rf1) presenta una probabilidad de pertenencia también al clúster rojo de 0.904. El clúster rojo se asocia a los ejemplares que ancestralmente pertenecen a la vertiente del Golfo de México.

Resumen o	Resumen de Cuadro 12. Asignación de pertenencia al propio grupo (n de individuos)							
Grupo	Propio grupo	Otro grupo						
Cautiverio (zoo)	77	22						
Silvestre (silv)	7	5						
Total	84	27						
%	76%	24%						

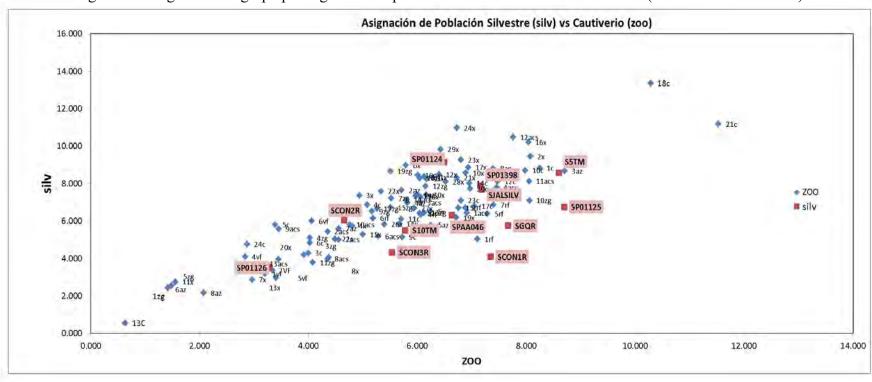


Figura 42. Asignación de grupo por logaritmo de probabilidad de las frecuencias alélicas (Silvestre vs Cautiverio)

Parámetros de variabilidad genética (A, Ae, He, Ho, Fit, Fis, Fst), Equilibrio Hardy-Weinberg, pruebas de ligamiento, alelos nulos y similitud entre grupos.

Equilibrio Hardy Weinberg. Se utilizaron los programas GENALEX 6.3 y GENEPOP 4.2. Con base en el estadístico exacto de Fischer, las poblaciones de cautiverio y procedentes del tráfico ilegal resultaron estar en Equilibrio Hardy-Weinberg y no se encontraron evidencias significativas para la mayoría de los *loci* y poblaciones en cautiverio que indicaran un desequilibrio (Cuadros 13 y 14). Las muestras de referencia de vida silvestre indican un desequilibrio significativo debido a endogamia por déficit de heterocigóticos con valores de p= 0.0029 (\leq p= 0.01) ya que son pocas muestras pertenecientes a poblaciones aisladas (Cuadro 13).

Cuadro 13. Prueba de equilibrio Hardy Weinberg									
(GENE POP)									
Prueba de equilibrio Hardy Weinberg (Gene Pop)									
H1= Endogamia por déficit de heterocigóticos (p=0.01)									
Resultados por grupo (test multi-locus)									
Grupo P-val S.E. switches (ave.)									
acs 0.1732 0.0029 119448.86									
az 0.4969 0.0020 176703.43									
1c 0.1290 0.0026 126358.86									
rf 0.9984 0.0001 147784.00									
vf 0.8170 0.0012 127301.00									
xcar 0.7057 0.0036 208100.71									
zg 0.7642 0.0025 197458.86									
silv 0.0029 0.0002 208988.43									
*silv. Grupo de ejemplares silvestres									
rf. Grupo de individuos de la UMA Reavyfeex									
az. Grupo de individuos del Zoológico Agua azul									
vf.Grupo de individuos del Zoológico Villa Fantasía zg. Grupo de individuos del Zoológico de Guadalajara									
civs. Grupo de individuos del CIVS, Guadalajara.									
Xcar. Grupo de individuos del Civis, Guadanajara.									
Acs.Grupo de individuos de Africam Safari									

Cuadro 14.	Test de Equilibr	io Hardy Wei	nberg con C	hi 2 en GENA	LEX 6.3
Pob	Locus	DF	ChiSq	Prob	Signif
silv	AgGT17NED	15	14.213	0.509	ns
silv	AgGT19VIC	6	3.651	0.724	ns
silv	AgGT21VIC	21	17.211	0.698	ns
silv	AgGT90FAM	3	4.671	0.198	ns
silv	UnaCT21FAM	1	4.688	0.030	*
silv	UnaCT43FAM	3	1.750	0.626	ns
silv	UnaCT74PET	6	10.156	0.118	ns
rf	AgGT17NED	10	7.809	0.647	ns
rf	AgGT19VIC	6	3.938	0.685	ns
rf	AgGT21VIC	21	17.500	0.680	ns
rf	AgGT90FAM	15	12.500	0.641	ns
rf	UnaCT21FAM	1	3.938	0.047	*
rf	UnaCT43FAM	3	1.500	0.682	ns
rf	UnaCT74PET	1	0.050	0.824	ns
az	AgGT17NED	6	5.640	0.465	ns
az	AgGT19VIC	3	4.667	0.198	ns
az	AgGT21VIC	10	9.000	0.532	ns
az	AgGT90FAM	3	2.987	0.394	ns
az	UnaCT21FAM	1	1.852	0.174	ns
az	UnaCT43FAM	6	5.911	0.433	ns
az	UnaCT74PET	3	0.521	0.914	ns
vf	AgGT17NED	1	0.222	0.637	ns
vf	AgGT19VIC	6	6.000	0.423	ns
vf	AgGT21VIC	Monomorphi	C		
vf	AgGT90FAM	3	4.000	0.261	ns
vf	UnaCT21FAM	Monomorphi	C		
vf	UnaCT43FAM	3	3.000	0.392	ns
vf	UnaCT74PET	6	9.000	0.174	ns
zg	AgGT17NED	6	4.277	0.639	ns
zg	AgGT19VIC	3	5.671	0.129	ns
zg	AgGT21VIC	28	30.000	0.363	ns
zg	AgGT90FAM	6	2.885	0.823	ns
zg	UnaCT21FAM	1	0.274	0.601	ns
zg	UnaCT43FAM	3	3.644	0.303	ns
zg	UnaCT74PET	6	7.175	0.305	ns
civs	AgGT17NED	10	6.789	0.745	ns
civs	AgGT19VIC	10	10.139	0.428	ns

civs	AgGT21VIC	36	35.334	0.500	ns
civs	AgGT90FAM	15	8.875	0.884	ns
civs	UnaCT21FAM	3	0.550	0.908	ns
civs	UnaCT43FAM	10	26.071	0.004	**
civs	UnaCT74PET	10	6.291	0.790	ns
acs	AgGT17NED	6	3.866	0.695	ns
acs	AgGT19VIC	6	27.521	0.000	***
acs	AgGT21VIC	28	21.770	0.792	ns
acs	AgGT90FAM	15	22.334	0.099	ns
acs	UnaCT21FAM	3	0.480	0.923	ns
acs	UnaCT43FAM	6	8.278	0.218	ns
acs	UnaCT74PET	3	10.044	0.018	*
xcar	AgGT17NED	10	8.412	0.589	ns
xcar	AgGT19VIC	10	3.793	0.956	ns
xcar	AgGT21VIC	28	43.034	0.035	*
xcar	AgGT90FAM	21	12.025	0.939	ns
xcar	UnaCT21FAM	1	0.978	0.323	ns
xcar	UnaCT43FAM	6	2.016	0.918	ns
xcar	UnaCT74PET	6	16.241	0.013	*

Clave: ns=no significantivo, * P<0.05, ** P<0.01, *** P<0.001

- rf. Grupo de individuos de la UMA Reavyfeex
- az. Grupo de individuos del Zoológico Agua azul
- vf.Grupo de individuos del Zoológico Villa Fantasía
- zg. Grupo de individuos del Zoológico de Guadalajara
- zg. Grupo de marvidaos del 20010gieo de Guadarajar
- civs. Grupo de individuos del CIVS, Guadalajara.
- Xcar. Grupo de individuos de Xcaret
- Acs. Grupo de individuos de Africam Safari.

^{*}silv. Grupo de ejemplares silvestres

Desequilibrio por ligamiento. Con el programa GENEPOP 4.2 no se mostraron evidencias significativas de locus ligados, por lo tanto, los 7 marcadores se consideran independientes (p>0.05). (Cuadro 15). Con MICROCHEKER se comprobó además que no existen alelos nulos (Figura 43).

Cuadro 15. T				2 4.2 con test exacto de Fischer
	Valor P par	ra cada par de locus		los grupos
		(Método de Fi		
Pares	de locus	Chi2	df	P-Valor
AgGT17N	& AgGT19V	23.796924	14	0.048476
AgGT17N	& AgGT21V	6.295981	14	0.958471
AgGT19V	& AgGT21V	3.950242	14	0.995758
AgGT17N	& AgGT90F	13.455403	14	0.491019
AgGT19V	& AgGT90F	8.588157	14	0.856495
AgGT21V	& AgGT90F	3.103126	12	0.994771
AgGT17N	& UNACT21F	20.427778	14	0.117221
AgGT19V	& UNACT21F	20.776991	14	0.107485
AgGT21V	& UNACT21F	4.882860	14	0.987377
AgGT90F	& UNACT21F	10.347222	14	0.736383
AgGT17N	& UNACT43F	6.852922	14	0.940233
AgGT19V	& UNACT43F	12.111605	14	0.597340
AgGT21V	& UNACT43F	3.976914	14	0.995603
AgGT90F	& UNACT43F	5.778489	14	0.971769
UNACT21F	& UNACT43F	18.462531	14	0.186519
AgGT17N	& UNACT74P	16.508844	14	0.283297
AgGT19V	& UNACT74P	22.245928	14	0.073700
AgGT21V	& UNACT74P	6.497019	14	0.952369
AgGT90F	& UNACT74P	4.695405	12	0.967387
UNACT21F	& UNACT74P	3.897828	14	0.996050
UNACT43F	& UNACT74P	14.800489	16	0.539297
		P= 0.05	<u> </u>	

Summary Statistics Null Allele Estimates Locus **Null Present** Dosterhout Chakraborty Brookfield 1 Brookfield 2 Locus 1 -0.0267-0.0233-0.02010.2117no 0.00850.2561 Locus 2 no 0.010.0066-0.0019 Locus 3 no -0.0012-0.00110.2791Locus 4 0.0185 0.0188 0.0152 0.2763 no 0.014 Locus 5 no 0.02380.0286D.286 Locus B no. -0.0319-0.0139-0.0110.3366 -0.04590.103 Locus 7 -0.0684-0.0552no No loci show evidence for a null allele. This population is probably in Hardy Weinberg equilibrium. More Info Close

Figura 43. Resultados estadísticos de MICROCHECKER para la presencia/ausencia de alelos nulos

Parámetros de diversidad genética: A, Ae, He, Ho, Fit, Fis, Fst. El número total de alelos por locus (A o Na), o abundancia de variables alélicas, encontrados entre los individuos de Ara militaris se muestran en los cuadros de Frecuencias Alélicas y Parámetros de Variabilidad genética (Cuadros 16-20) (Figura 44). Los locus con mayor polimorfismo corresponden a AgGT90 y AgGT21 con 10 y 11 alelos respectivamente (Cuadro 16). El locus con menor polimorfismo, con 4 alelos corresponde al Locus UnaCT21 con 4 alelos. El número efectivo de alelos (Ne o Ae) por locus, por grupo de individuos, así como el promedio para todos los individuos muestreados en cautiverio indica que todos los *loci* del estudio son polimórficos, con un promedio de 4 alelos por *locus* (Cuadros 17-19). La heterocigosidad observada y esperada para cada grupo se muestra en el Cuadro 16, el grupo con mayor diversidad genética observada corresponde al de individuos de Reeavyfeex (Ho=0.772) y el grupo con menor diversidad genética observada corresponde al de las muestras de referencia silvestres (Ho=0.456) siendo el grupo con mayor índice de fijación F=0.266 (muy alto), este resultado se debe a que son muestras de poblaciones aisladas. De los grupos de cautiverio, Africam Safari presenta un índice de fijación moderado (F=0.117) y una diversidad genética

^{*}Ningún Loci mostró evidencia de alelos nulos. La población se encuentra probablemente en Equilibrio Hardy Weinberg

observada Ho= 0.540, el cual corresponde al valor más bajo entre los grupos. En los grupos restantes, se observa una diversidad genética moderada: El grupo del Zoológico de Guadalajara tiene una diversidad genética observada de Ho=0.634; Parque Agua Azul: Ho= 0.622; CIVS GDL: 0.620; XCARET y Villa Fantasía: Ho= 0.607 (Cuadro 18). Dichos parámetros se calcularon en total para los individuos procedentes de cautiverio y del tráfico ilegal, en promedio resulta una diversidad genética observada moderada de Ho=0.629 y esperada He=0.570 (Cuadro 19).

Cuadro 16. Frecuencias alélicas por grupo										
Locus	Alelo s	silv	rf	az	vf	zg	civs	acs	Xcar	
AgGT17NED	107	0.04	0.07	0.16	0.25	0.15	0.22	0.20	0.24	
		2	1	7	0	0	5	8	1	
	109	0.45	0.35	0.41	0.75	0.55	0.32	0.45	0.39	
	445	8	7	7	0	0	5	8	7	
	113	0.12	0.21	0.16	0.00	0.20	0.12	0.00	0.08	
	115	5	4	7	0	0	5	0	6	
	115	0.08	0.21 4	0.00	0.00	0.00	0.02 5	0.08	0.05 2	
	117	0.20	0.14	0.25	0.00	0.10	0.30	0.25	0.22	
	/	8	3	0.23	0.00	0.10	0.50	0.23	4	
	121	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
		3	0	0	0	0	0	0	0	
Locus	Alelo	silv	rf	az	vf	zg	civs	acs	Xcar	
	S					J				
AgGT19VIC	184	0.15	0.21	0.16	0.00	0.00	0.05	0.04	0.01	
		0	4	7	0	0	0	2	7	
	186	0.35	0.57	0.50	0.25	0.45	0.60	0.66	0.50	
		0	1	0	0	5	0	7	0	
	188	0.35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	400	0	0	0	0	0	0	0	0	
	192	0.00	0.14	0.00	0.25	0.27	0.10	0.00	0.15	
	194	0.00	0.00	0.00	0.25	0.00	0.10	0.04	0.00	
	154	0.00	0.00	0.00	0.25	0.00	0.10	0.04	0.00	
	196	0.15	0.07	0.33	0.25	0.27	0.15	0.25	0.31	
	130	0.13	1	3	0.23	3	0.13	0.23	0.31	
	200	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	
		0	0	0	0	0	0	0	7	
Locus	Alelo	silv	rf	az	vf	zg	civs	acs	Xcar	
	s									

AgGT21VIC	177	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
AGUIZIVIC	1//	0.00	0.00	0.00	0.00	0.00	9	0.00	0.00
	179	0.00	0.00	0.00	0.00	0.04	0.00	0.03	0.00
		0	0	0	0	2	0	8	0
	181	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		5	0	0	0	0	0	0	0
	183	0.00	0.14	0.25	0.00	0.08	0.02	0.07	0.08
	185	0.31	3 0.14	0.00	0.00	0.04	9 0.08	7 0.23	7 0.10
	103	8	3	0.00	0.00	2	8	0.23	9
	187	0.13	0.07	0.33	0.00	0.20	0.08	0.11	0.10
		6	1	3	0	8	8	5	9
	189	0.09	0.07	0.16	1.00	0.12	0.20	0.26	0.10
		1	1	7	0	5	6	9	9
	191	0.18	0.28	0.08	0.00	0.16	0.17	0.07	0.15
	102	2	6	3	0	7	6	7	2
	193	0.18 2	0.14 3	0.00 0	0.00	0.00	0.26 5	0.00 0	0.13 0
	195	0.00	0.00	0.16	0.00	0.16	0.05	0.07	0.23
		0	0	7	0	7	9	7	9
	197	0.04	0.14	0.00	0.00	0.16	0.05	0.11	0.06
		5	3	0	0	7	9	5	5
Locus	Alelo	silv	rf	az	vf	zg	civs	acs	Xcar
	S 400	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.01
AgGT90FAM	188	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.01
	190	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.03
	130	0.00	0.00	0.00	0.00	0.00	6	0.00	6
	192	0.00	0.08	0.00	0.00	0.03	0.00	0.05	0.00
		0	3	0	0	6	0	0	0
	194	0.28	0.33	0.21	0.25	0.39	0.28	0.40	0.21
		6	3	4	0	3	9	0	4
	196	0.21	0.16 7	0.35 7	0.37	0.28	0.18 4	0.10	0.12
	198	0.50	0.25	0.42	5 0.37	6 0.28	0.42	0.35	5 0.50
	130	0.50	0.23	9	5	6	1	0.55	0.50
		0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.01
	200	0.00	0.00	0.00	0.00	0.00			
	200	0.00	0.00	0.00	0.00	0	0	0	8
	200	0.00	0.08	0.00	0.00	0.00	0.02	0.00	0.00
	204	0.00 0	0 0.08 3	0.00 0	0.00 0	0.00 0	0.02 6	0.00	0.00
		0.00 0.00	0 0.08 3 0.08	0.00 0.00	0.00 0.00	0.00 0.00	0.02 6 0.00	0.00 0 0.05	0.00 0 0.00
	204	0 0.00 0 0.00 0	0 0.08 3 0.08 3	0 0.00 0 0.00 0	0 0.00 0 0.00 0	0.00 0.00 0.00	0.02 6 0.00 0	0.00 0 0.05 0	0.00 0 0.00 0
	204	0 0.00 0 0.00 0	0 0.08 3 0.08 3 0.00	0 0.00 0 0.00 0	0 0.00 0 0.00 0	0 0.00 0 0.00 0	0.02 6 0.00 0	0.00 0 0.05 0	0.00 0 0.00 0 0.08
	204	0 0.00 0 0.00 0	0 0.08 3 0.08 3	0 0.00 0 0.00 0	0 0.00 0 0.00 0	0.00 0.00 0.00	0.02 6 0.00 0	0.00 0 0.05 0	0.00 0 0.00 0
Locus	204 206 208	0 0.00 0 0.00 0 0.00	0 0.08 3 0.08 3 0.00 0	0 0.00 0 0.00 0 0.00	0 0.00 0 0.00 0 0.00	0 0.00 0 0.00 0 0.00	0.02 6 0.00 0 0.00 0	0.00 0 0.05 0 0.00	0.00 0 0.00 0 0.08 9
Locus	204	0 0.00 0 0.00 0	0 0.08 3 0.08 3 0.00	0 0.00 0 0.00 0	0 0.00 0 0.00 0	0 0.00 0 0.00 0	0.02 6 0.00 0	0.00 0 0.05 0	0.00 0 0.00 0 0.08

UnaCT21FAM	149	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00
		0	0	0	0	0	0	2	0
	156	0.66	0.57	0.75	1.00	0.86	0.80	0.83	0.84
		7	1	0	0	4	0	3	5
	163	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
		0	0	0	0	0	5	0	0
	170	0.33	0.42	0.25	0.00	0.13	0.17	0.12	0.15
		3	9	0	0	6	5	5	5
Locus	Alelo	silv	rf	az	vf	zg	civs	acs	Xcar
	S								
UnaCT43FAM	197	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00
		0	0	0	0	0	3	0	0
	213	0.00	0.00	0.00	0.00	0.00	0.09	0.04	0.02
		0	0	0	0	0	4	5	1
	215	0.66	0.66	0.35	0.50	0.65	0.34	0.36	0.45
	-1-	7	7	7	0	4	4	4	8
	217	0.22	0.16	0.42	0.33	0.26	0.31	0.36	0.35
	210	2	7	9	3	9	3	4	4
	219	0.11	0.16 7	0.14	0.16 7	0.07 7	0.18	0.22 7	0.16 7
	221	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00
	221	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00
		U	U	1	U	U	0		0
Locus	Alelo	silv	rf	az	vf	zg	civs	acs	Xcar
2000	s	3114	••	u_	••	-6	0.00	405	, cai
UnaCT74PET	148	0.05	0.00	0.00	0.33	0.11	0.13	0.00	0.02
		0	0	0	3	5	3	0	1
	158	0.05	0.00	0.07	0.16	0.03	0.03	0.05	0.00
		0	0	1	7	8	3	0	0
	160	0.80	0.91	0.78	0.16	0.65	0.73	0.75	0.81
		0	7	6	7	4	3	0	3
	162	0.10	0.08	0.14	0.33	0.19	0.03	0.20	0.08
		0	3	3	3	2	3	0	3
	164	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.08
		0	0	0	0	0	7	0	3

^{*}silv. Grupo de ejemplares silvestres rf. Grupo de individuos de la UMA Reavyfeex az. Grupo de individuos del Zoológico Agua azul

vf.Grupo de individuos del Zoológico Villa

Fantasía
zg. Grupo de individuos del Zoológico de
Guadalajara
civs. Grupo de individuos del CIVS, Guadalajara.
Xcar. Grupo de individuos de Xcaret

Acs.Grupo de individuos de Africam Safari.

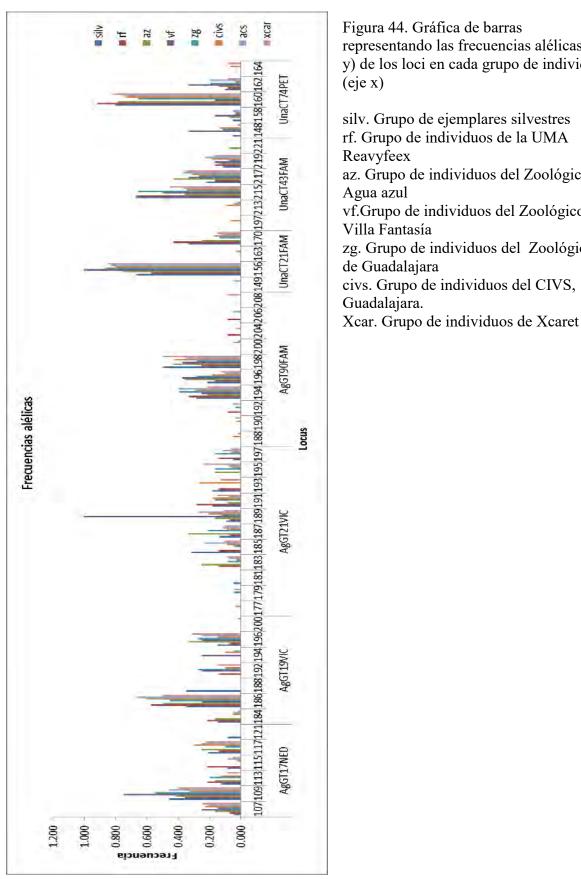


Figura 44. Gráfica de barras representando las frecuencias alélicas (eje y) de los loci en cada grupo de individuos (eje x)

silv. Grupo de ejemplares silvestres rf. Grupo de individuos de la UMA Reavyfeex az. Grupo de individuos del Zoológico Agua azul vf.Grupo de individuos del Zoológico Villa Fantasía zg. Grupo de individuos del Zoológico de Guadalajara civs. Grupo de individuos del CIVS, Guadalajara.

Cuadro 17. Parámetros de variabilidad genética por locus									
Grupo	Locus	N	Na	Ne	Но	He	F		
silvestres	AgGT17NED	12	6.000	3.512	0.667	0.715	0.068		
	AgGT19VIC	10	4.000	3.448	0.700	0.710	0.014		
	AgGT21VIC	11	7.000	5.042	0.727	0.802	0.093		
	AgGT90FAM	7	3.000	2.649	0.286	0.622	0.541		
	UnaCT21FAM	12	2.000	1.800	0.167	0.444	0.625		
	UnaCT43FAM	9	3.000	1.976	0.444	0.494	0.100		
	UnaCT74PET	10	4.000	1.527	0.200	0.345	0.420		
Reavyfeex	AgGT17NED	7	5.000	4.083	0.857	0.755	-0.135		
	AgGT19VIC	7	4.000	2.513	0.857	0.602	-0.424		
	AgGT21VIC	7	7.000	5.765	1.000	0.827	-0.210		
	AgGT90FAM	6	6.000	4.500	1.000	0.778	-0.286		
	UnaCT21FAM	7	2.000	1.960	0.857	0.490	-0.750		
	UnaCT43FAM	6	3.000	2.000	0.667	0.500	-0.333		
	UnaCT74PET	6	2.000	1.180	0.167	0.153	-0.091		
Agua azul	AgGT17NED	6	4.000	3.429	0.667	0.708	0.059		
	AgGT19VIC	6	3.000	2.571	0.667	0.611	-0.091		
	AgGT21VIC	6	5.000	4.235	1.000	0.764	-0.309		
	AgGT90FAM	7	3.000	2.800	0.571	0.643	0.111		
	UnaCT21FAM	6	2.000	1.600	0.167	0.375	0.556		
	UnaCT43FAM	7	4.000	2.970	0.857	0.663	-0.292		
	UnaCT74PET	7	3.000	1.556	0.429	0.357	-0.200		
Villa fantasía	AgGT17NED	2	2.000	1.600	0.500	0.375	-0.333		
	AgGT19VIC	2	4.000	4.000	1.000	0.750	-0.333		
	AgGT21VIC	1	1.000	1.000	0.000	0.000	#N/A		
	AgGT90FAM	4	3.000	2.909	0.750	0.656	-0.143		
	UnaCT21FAM	2	1.000	1.000	0.000	0.000	#N/A		
	UnaCT43FAM	3	3.000	2.571	1.000	0.611	-0.636		
	UnaCT74PET	3	4.000	3.600	1.000	0.722	-0.385		
Zoológico de Guadalajara	AgGT17NED	10	4.000	2.667	0.800	0.625	-0.280		
	AgGT19VIC	11	3.000	2.814	0.727	0.645	-0.128		
	AgGT21VIC	12	8.000	6.545	0.917	0.847	-0.082		
	AgGT90FAM	14	4.000	3.136	0.643	0.681	0.056		
	UnaCT21FAM	11	2.000	1.308	0.273	0.236	-0.158		
	UnaCT43FAM	13	3.000	1.977	0.692	0.494	-0.401		
	UnaCT74PET	13	4.000	2.086	0.385	0.521	0.261		
Civs GDL.	AgGT17NED	20	5.000	3.810	0.800	0.738	-0.085		
	AgGT19VIC	20	5.000	2.469	0.600	0.595	-0.008		

	AgGT21VIC	17	9.000	5.959	0.882	0.832	-0.060
	AgGT90FAM	19	6.000	3.343	0.737	0.701	-0.051
	UnaCT21FAM	20	3.000	1.490	0.300	0.329	0.087
	UnaCT43FAM	16	5.000	3.793	0.688	0.736	0.066
	UnaCT74PET	15	5.000	1.779	0.333	0.438	0.239
Africam Safari	AgGT17NED	12	4.000	3.097	0.750	0.677	-0.108
	AgGT19VIC	12	4.000	1.959	0.250	0.490	0.489
	AgGT21VIC	13	8.000	5.828	1.000	0.828	-0.207
	AgGT90FAM	10	6.000	3.333	0.800	0.700	-0.143
	UnaCT21FAM	12	3.000	1.405	0.333	0.288	-0.157
	UnaCT43FAM	11	4.000	3.143	0.545	0.682	0.200
	UnaCT74PET	10	3.000	1.653	0.100	0.395	0.747
XCARET	AgGT17NED	29	5.000	3.625	0.793	0.724	-0.095
	AgGT19VIC	29	5.000	2.696	0.724	0.629	-0.151
	AgGT21VIC	23	8.000	6.915	0.826	0.855	0.034
	AgGT90FAM	28	7.000	3.111	0.679	0.679	0.000
	UnaCT21FAM	29	2.000	1.355	0.310	0.262	-0.184
	UnaCT43FAM	24	4.000	2.749	0.667	0.636	-0.048
	UnaCT74PET	24	4.000	1.483	0.250	0.326	0.232

Cuadro 18. Promedio de parámetros de variabilidad genética por grupo									
Pop		N	Na	Ne	Но	He	F		
silvestres	promedio	10.143	4.143	2.850	0.456	0.590	0.266		
	SE	0.670	0.670	0.470	0.092	0.063	0.096		
Reavyfeex	promedio	6.571	4.143	3.143	0.772	0.586	-0.318		
	SE	0.202	0.738	0.628	0.109	0.088	0.084		
Agua azul	promedio	6.429	3.429	2.737	0.622	0.589	-0.024		
	SE	0.202	0.369	0.362	0.103	0.060	0.114		
Villa fantasía	promedio	2.429	2.571	2.383	0.607	0.445	-0.366		
	SE	0.369	0.481	0.459	0.171	0.124	0.067		
Zoológico GDL	promedio	12.000	4.000	2.933	0.634	0.578	-0.105		
	SE	0.535	0.724	0.645	0.086	0.072	0.082		
CIVS GDL	promedio	18.143	5.429	3.234	0.620	0.624	0.027		
	SE	0.800	0.685	0.574	0.085	0.069	0.043		
Africam safari	promedio	11.429	4.571	2.917	0.540	0.580	0.117		
	SE	0.429	0.685	0.568	0.124	0.073	0.141		
XCARET	promedio	26.571	5.000	3.133	0.607	0.587	-0.030		
	SE	1.043	0.756	0.703	0.087	0.081	0.053		

Cuadro 19. Parámetros de variabilidad genética totales en cautiverio								
		N	Na	Ne	1	Но	He	F
Total	Mean	11.939	4.163	2.926	1.084	0.629	0.570	0.089
	SE	1.114	0.263	0.206	0.069	0.041	0.030	0.039

Los valores de Fis para la mayoría de los Loci en cada una de las regiones indican que hay un exceso de heterócigos, a excepción de UnaCT74 que indica un déficit de heterócigos moderado. Los valores promedio para todos los *loci* indican un coeficiente de endogamia bajo en el total de individuos de cautiverio con tendencia al equilibrio Hardy-Weinberg (Fit=0) sin evidencia de apareamientos no aleatorios dentro de los diferentes grupos de cautiverio ya que se muestra un exceso de heterócigos bajo en el muestreo (Fis=-0.097). Se obtuvo un índice de fijación o una diferenciación de las frecuencias alélicas moderada entre los grupos de cautiverio (Fst=0.089). El grado de diferenciación de poblaciones es determinado por el estadístico Fst, los *loci* microsatélites con los valores máximos se reportan para AgGT21 y UnaCT74 (Fst= 0.165 y 0.155 respectivamente) indicando que estos *loci* son los más informativos y que contribuyen al resultado promedio Fst (Cuadro 20).

Cuadro 20. Parámetros FST, FIT y FIS por locus en grupos									
en cautiverio									
Locus	Fis	Fit	Fst						
AgGT17	-0.123	-0.054	0.061						
AgGT19	-0.117	-0.038	0.070						
AgGT21	-0.136	0.052	0.165						
AgGT90	-0.071	-0.031	0.037						
UnaCT21	-0.132	-0.024	0.095						
UnaCT43	-0.183	-0.136	0.040						
UnaCT74	0.085	0.227	0.155						
Promedio	-0.097	0.000	0.089						
SE	0.033	0.043	0.020						

Se realizaron todas las combinaciones posibles entre pares de poblaciones (grupos) para todos los loci microsatélites de acuerdo a los valores Fst. En este análisis, el grupo con mayor diferenciación genética respecto a los demás grupos corresponde a Villa Fantasía (Cuadro 21).

Cuadro 21. Diferenciación genética (Fst) entre pares de grupos								S
Silv	rf	az	vf	zg	civs	acs	Xcar	
0.000								silv
0.000	0.000							rf
0.004	0.008	0.000						az
0.139	0.198	0.045	0.000					vf
0.030	0.019	0.000	0.052	0.000				zg
0.021	0.007	0.000	0.125	0.027	0.000			civs
0.002	0.005	0.000	0.099	0.008	0.000	0.000		acs
0.037	0.022	0.009	0.184	0.034	0.000	0.013	0.000	xcar

No se mostraron valores con diferencia significativa* (P>0.01)

El AMOVA determinó que un 3% de toda la variabilidad genética está asociada a la diferenciación entre los grupos o poblaciones estudiadas, mientras que el 72% se atribuye a la variación entre los individuos (Figura 45). El resultado Fst en este análisis indica una diferenciación genética moderada entre los grupos (Cuadro 21).

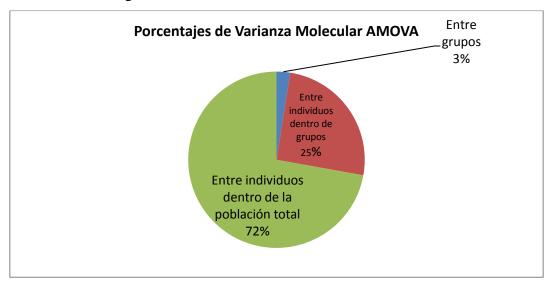


Figura 45. Gráfica de Varianza Molecular AMOVA

Cuadro 22. Resumen de Análisis de Varianza Molecular AMOVA									
Fuente de variación	Grados	Suma de	Media de	Varianza	Porcentaje				
	de	cuadrados	cuadrados		de				
	Libertad				variación				
Entre Grupos	7	32.931	4.704	0.062	3%				
Entre individuos dentro	103	314.218	3.051	0.629	25%				
de grupos									
Entre individuos dentro	111	199.000	1.793	1.793	72%				
de la población total									
Total	221	546.149		2.484	100%				
Fst = 0.025 ; P=0.001									

VIII. DISCUSIÓN

Amplificación y estandarización

De los 11 loci microsatélites, únicamente 7 fueron de utilidad para este estudio, ya que UnaGT55 y AgGt42 resultaron monomórficos (Cuadro 5 en APÉNDICE III) (Figuras 29 y 32). El locus AgGT32 presentó baja variabilidad con únicamente 2 alelos detectados, por lo cual también se descartó del estudio (Cuadro 5 en APÉNDICE III). UnaCT32 presentó inconsistencias en la amplificación, ya que se utilizaron elevadas cantidades de reactivos y varios ciclos de termociclado que no mostraron alelos con refracción suficiente para su lectura (Figura 26; Cuadro 5 en APÉNDICE III). En otros estudios realizados para la especie Ara militaris UnaGT55 y AgGT32 sí presentaron variabilidad y UnaCT32 también fue utilizado (Rivera-Ortiz 2014). Las diferencias e inconsistencias observadas en cuanto a los métodos de amplificación, longitud de los fragmentos y variabilidad de los locus se han observado también en otras especies que en diferentes estudios han utilizado primers para locus microsatélites con amplificación cruzada, es decir, inespecíficos para las especies estudiadas (Gebhardt y Waits 2008, Presti et al. 2011), para evitar estas inconsistencias, es sugerible diseñar primers específicos para las especies de interés a analizar con microsatélites como marcadores moleculares, de este modo, se puede lograr un control óptimo de las variables y también se disminuiría la presencia de inconsistencias entre diferentes trabajos de investigación. Por otro lado, se debe tomar en cuenta el diseño de primers tri o tetranucleótidos, ya que la lectura e interpretación de los dinucleótidos es más compleja y menos específica. Sin embargo, bajo las características de los microsatélites ideales observadas en este estudio, los 7 primers para locus microsatélites seleccionados se estandarizaron y mostraron variabilidad, herencia estable, no presentaron alelos nulos ni alelos ligados y con bajas concentraciones de DNA se pudieron amplificar los fragmentos de interés (incluso de pieles secas y plumas). De estos 7 primers, los correspondientes a los loci AgGT21 con 11 alelos y AgGT90 con 10 alelos mostraron ser altamente polimórficos (Cuadro 16).

Genotipificación

La genotipificación de la especie Ara militaris en cautiverio fue llevada a cabo en el presente estudio, bajo condiciones propias del Laboratorio de Genética de la Conservación del Instituto de Biología de la UNAM y es posible que dichas condiciones deban ser modificadas por estudios subsecuentes por las diferencias metodológicas mencionadas, sin embargo, los resultados finales en cuanto a diversidad genética son muy similares entre los estudios. Para lograr las condiciones óptimas para la amplificación de fragmentos, genotipificación y comparación de resultados entre diferentes estudios, es sugerible, para cualquier especie, diseñar cebadores específicos con estructura compleja (tri o tetranucleótidos). Las probabilidades de la combinación genotípica de cada individuo obtenidos a partir de los 7 loci microsatélites llegaron a un mínimo de 4x10⁻¹⁰ (Aproximadamente 1 individuo en 10 000 millones) lo cual indica una precisión muy alta y de utilidad para la identificación de cada individuo siempre y cuando en el genotipo se encuentre la mayoría de los datos alélicos (los datos faltantes aumentan la probabilidad de repetición del genotipo como en el caso de las muestras 13 c y 1 zg. En cuanto a las relaciones parentales, es más aconsejable contar con una base de datos que recaude la información de los apareamientos entre los individuos (madres y padres supuestos, así como sexos) y de este modo calcular los valores exactos de parentesco siguiendo una metodología semejante a la descrita por Soberanes-González (2008). En este estudio, el resultado de las relaciones parentales tuvo una efectividad aproximada del 70% al comparar el análisis con registros reales de apareamientos (asumiendo que los registros son correctos y cuenta con la información ancestral de todos los individuos). Sin embargo, de no contar con suficientes datos, tal es el caso del grupo de individuos procedentes del tráfico ilegal, se puede generar una aproximación de estas relaciones para evitar los apareamientos entre individuos con genotipos semejantes.

Estructura Genética

Es posible llevar a cabo la comparación con los resultados obtenidos por Rivera-Ortiz (2014), ya que del mismo modo se obtuvieron 2 posibles grupos genéticos. El color rojo obtenido en este estudio, bajo esta comparación, también representaría el genotipo de la primera vertiente (Golfo), ya que la muestra de referencia del Golfo de México (pluma SGQ) pertenece al Sótano del Barro, Querétaro y muestra un 99% de probabilidad de pertenencia a este grupo. El grupo con color verde y rojo representaría a los individuos semejantes a los silvestres de la vertiente del Pacífico. A pesar de las diferencias metodológicas en la utilización de microsatélites, en ambos estudios se han obtenido estructuras semejantes y comparables. Tomando en cuenta el bajo número de muestras obtenidas en ambos estudios de la vertiente del Golfo y debido a la fuerte estructura marcada en esta zona, es necesario obtener un mayor número de muestras de vida silvestre para corroborar que en este sitio, tal como lo indica Rivera-Ortiz (2014) no existe contaminación con el grupo del Pacífico, de ser así, y mientras se comprueba esta hipótesis, la vertiente del Golfo debería mantenerse intacta para poder preservar su estructura como Unidad de Manejo (MU) o como una Unidad Evolutiva Significativa (ESU), evitando la contaminación con individuos que no presenten evidencias de pertenencia genética a esta zona. Con un estudio con marcadores mitocondriales se puede corroborar si existe también una separación ancestral, y no reciente, entre las poblaciones, por lo que para efectos de conservación, es necesario este estudio. El ejemplar liberado en la vertiente del Golfo muestra una compatibilidad con este grupo genético de 0.904 (90.4%) en cuanto a sus frecuencias alélicas (Cuadro 11), sin embargo, no es un resultado concluyente para definición de origen geográfico, ya que en la vertiente del Pacífico se encuentran ambos grupos genéticos. Se sugiere realizar el estudio con marcadores mitocondriales.

Parámetros de variabilidad genética (A, Ae, He, Ho, Fit, Fis, Fst), Equilibrio Hardy-Weinberg, pruebas de ligamiento y similitud entre grupos.

El número de alelos obtenidos por *locus* fue de 4-11, no siendo tan elevado como los reportados por Rivera-Ortiz en 2014 (16 a 19). Es posible que exista un mayor número de variantes alélicas en las poblaciones naturales. Sin embargo, la heterocigosidad observada y esperada en este estudio para los grupos en cautiverio (Ho=0.629/ He=0.570) es casi la misma que la obtenida por Rivera-Ortiz (2014) para los grupos silvestres (Ho= 0.69- 0.51 / He= 0.76-0.54). Otro punto importante a resaltar, es que en este estudio, todos los grupos cautivos mostraron mayor heterocigosidad y menor índice de fijación y endogamia que en las muestras de referencia de vida silvestre (a pesar de que las muestras de referencia pertenecen a poblaciones separadas), esto puede ocurrir debido a que cada población en cautiverio posiblemente proviene de diferentes poblaciones naturales. El grupo con mayor diversidad genética observada corresponde al grupo de aves de Reavyfeex Ho=0.772 (alta), los demás grupos (Parque Agua Azul, Villa Fantasía, Zoológico de Guadalajara, CIVS Guadalajara, XCARET y Africam Safari) muestran una diversidad genética moderada, siendo Africam Safari el grupo con menor diversidad genética observada (Ho=0.540) y mayor índice de fijación o endogamia dentro de los grupos de cautiverio (F=0.117) por lo que es recomendable el intercambio ocasional de ejemplares para los apareamientos.

IX. CONCLUSIÓN

En cuanto a las hipótesis, aunque no se incluyeron grupos externos, se encontró dentro de los individuos silvestres y cautivos una similitud de alelos y grupos genéticos, que parece indicar que todos pertenecen a la subespecie Ara militaris mexicanus. Con el estudio de los microsatélites seleccionados y su estandarización se logró observar que los grupos cautivos y el grupo procedente del tráfico ilegal no mostraron altos coeficientes de endogamia y resultaron con una diversidad genética moderada, muy semejante a la de los individuos silvestres. Se sugieren apareamientos entre los grupos de cautiverio para evitar la endogamia. Por otro lado, los grupos de cautiverio y provenientes del tráfico ilegal mostraron dos clusters (grupos genéticos) dentro de su estructura, del mismo modo que los individuos silvestres, y no se comprobó una mayor cantidad de grupos genéticos que indicaran fijación de alelos por aislamiento reproductivo y tampoco la posible presencia de individuos traficados ilegalmente procedentes de otros países con una estructura genética diferente. Debido a los antecedentes y resultados de este trabajo, es necesario prestar atención a la vertiente del Golfo, ya que al parecer, sus poblaciones han estado separadas de las del Pacífico Mexicano lo suficiente para acumular una diferenciación genética y se sugiere un estudio con genes mitocondriales para comprobar que ambos grupos genéticos deben ser reconocidos como Unidades Evolutivas y de Manejo (EMU's). Hasta contar con esta información, no se recomienda la liberación de individuos procedentes de cautiverio o tráfico ilegal. Con la matriz de datos obtenida, fue posible además obtener los genotipos de cada uno de los individuos estudiados y se comprobó una alta precisión para la identificación individual (huella genética). El uso de los microsatélites como marcadores moleculares resulta útil para la realización de manejos en cautiverio en pro de la Conservación de las especies y es preferible el diseño de cebadores específicos para cada especie.

X. REFERENCIAS

Abe H, Hayano A, Inoue-Murayama M. 2012. Forensic species identification of large macaws using DNA barcodes and microsatellite profiles. *Mol Biol Rep* (2012) 39:693–699.DOI 10.1007/s11033-011-0787-1

Allendorf FW y Luikart GH. 2007. Genetic Variation in Natural Populations. En: *DNA Conservation and the Genetics of Populations*. Main Street, Malden, MA, USA: Blackwell Publishing.4: pp.64-82.

Álvarez Del Toro M. 1952. New records of birds from Chiapas, Mexico. Condor 54:112–114.

Arizmendi MC. 2008. Conservación de la guacamaya verde (*Ara militaris*) en la Reserva de la Biosfera Tehuacán-Cuicatlán, México: un estudio de abundancia y reproducción en la zona de la Cañada. Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Iztacala. Informe final SNIB-CONABIO proyecto No. DT006. México, D. F.

Arizmendi MC y Márquez LV. 2000. Áreas de importancia para la conservación de las aves en México. CONABIO, 420p.México D.F.

Avendaño JE. 2012. La avifauna de las tierras bajas del Catatumbo, Colombia: inventario preliminar y ampliaciones de rango. *Boletín de la Sociedad Antioqueña de Ornitología* 21:evAP3

Bayona N. 2013. Protocolo para amplificar microsatélites con M13 en el Laboratorio de Genética de Organismos Acuáticos [Sin Publicar]. Posgrado en Ciencias Del Mar y Limnología. Cd.México: Universidad Nacional Autónoma de México.

Birdlife International (Actualización Feb-2016). 2013. Birdlife's online world bird database. Species factsheet: *Ara militaris*. http://www.Birdlife.org [Consulta: 12 Abr 2015].

Birdlife International (Actualización Feb-2016) .2016. Birdlife's online world bird database. Species factsheet: *Ara militaris*. http://www.Birdlife.org [Consulta: 15 Abr 2015].

Bonilla C, Reyes GM y Santiago LC. 2007. Ámbito hogareño de la guacamaya verde (*Ara militaris*) en la cañada Oaxaqueña. *Mesoamericana*, 11: 54-61.

Bonilla C, Reyes GM y García R. 2007. Observations of the military macaw (Ara militaris) in Northern Oaxaca, Mexico. *Wilson Journal of Ornithology*, 119: 731-734

Cantú JC, Sánchez ME, Grosselet M y Silva J. 2007 Tráfico Ilegal de Pericos de México: Una Evaluación Detallada. CDMX, México: Defenders of Wildlife y Teyeliz.

Caparroz R, Miyaki Y, Baker AJ. 2003. Characterization of microsatellite loci in Blueand-gold Macaw, *Ara ararauna* (Psittaciformes: Aves). Molecular. *Ecology Notes*. 3: 441–443.

Carreón AG. 1997. Estimación poblacional, biología reproductiva y ecología de la nidificación de la Guacamaya verde (Ara militaris) en una selva estacional del oeste de Jalisco, México [Tesis de Licenciatura]. CDMX, México: Facultad de Ciencias, Universidad Nacional Autónoma de México.

Carrington M, Marti D, Wade J,Klitz W, Barcellos L, Thomsom G, Chen J, Truedsson L, Sturfelt G, Alper CH, Awdhe Z, Huttley G. 1999. Microsatellite markers in complex disease: mapping disease-associated regions within the human major histocompatibility complex. En: *Microsatellites: evolution and applications*. Goldstein DB y Schlotterer C (Eds).Oxford, NY, EUA: Oxford University Press. pp. 98-114.

CITES. Appendice I. 2001. http://www.cites.org/sites/default/files/eng/app/2014/E-Appendices-2014-06-24.pdf [Consulta: 8 Abr 2014]

Código Penal Federal [20 agosto 2009]. Diario Oficial de la Federación de México. Cámara de Diputados del H. Congreso de la Unión, LXI Legislatura, DOF 20-08- 2009. http://www.cddhcu.gob.mx/LeyesBiblio/pdf/9.pdf [Consulta: 20 oct 2014].

Collar NJ .1997. Family Psittacidae (parrots). En: Del hoyo J, Elliott A Y Sargatal J (Eds) *Handbook of the birds of the world*. Volume 4. Sandgrouse to cuckoos. Barcelona, España: Lynx Editions.pp. 280-477

Cornejo CJ. 2009. Actualización de la distribución geográfica en el Perú del Guacamayo Militar - Ara militaris (Linnaeus 1766) y su relación con actividades humanas y otras especies de guacamayos [Tesis de grado]. Lima, Perú: Universidad Peruana Cayetano Heredia.

Chebez JC. 2008. Los que se van: fauna argentina amenazada. Tomo 2. Buenos Aires, Argentina: Editorial Albatros.

Chistiakov DA, Hellemans B, Volckaert FAM. 2006. Microsatellites and their genomic distribution, evolution, function and applications: A review with special reference to fish genetics. *Aquaculture*. 255 (1–4): 1–29. DOI:10.1016/j.aquaculture.2005.11.031.

De Vicente MC, López C y Fulton, T (Eds). 2004. Genetic Diversity Analysis with Molecular Marker Data: Learning Module. International Plant Genetic Resources Institute (IPGRI), Roma, Italia.

Diario Oficial de la Federación. 2008. Artículo adicionado DOF 14-10-2008. En: Ley General de Vida Silvestre, Ley Pub. Núm. X Estatuto (Julio, 3, 2000). México.

Earl D, Von-Holdt MB. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. *Conservation Genet Resour* (2012) 4:359–361. DOI 10.1007/s12686-011-9548-7.

Eberhard JR, Iñigo-Elias E,Enkerlin-Hoeflich E y Cun PE. 2015. Phylogeography of the military macaw (*Ara militaris*) and the great green macaw (*A. ambiguus*) based on MTDNA sequence data. *The Wilson Journal of Ornithology* 127(4):661–669, 2015

Escalante PP, Sada MA, Robles GJ. 2014. Listado de nombres comunes de las aves de México. CDMX, México: Instituto de Biología. Universidad Nacional Autónoma de México.

Evanno G, Regnaut S, Goudet J .2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. *Mol Ecol* 14:2611–2620

Falconer DS, Mackay FC.1989. Introduction to Quantitative Genetics. 4th edition. Edinburg Gate, Harlow, Inglaterra: Longman Group .

[FAO] Organización de las Naciones Unidas para la Agricultura y la Alimentación.2007. Vigilancia de la Influenza Aviar altamente patógena en las aves silvestres: Toma de muestras de aves sanas, enfermas y muertas. Rose K, Newman S, Uhart M, Lubroth J (Eds).Roma, Italia.

Faria PJ, Miyaki CY.2006. Molecular markers for population genetic analyses in the family Psittacidae (Psittaciformes, Aves) *Genet Mol Biol*. 2006;29:231–240

FBI.gov.(Actualización Jul-206). Official site of the U.S. government. U.S. Department of Justice FBI Services: laboratory: CODIS (Combined DNA Index System).https://www.fbi.gov/services/laboratory/biometric-analysis/codis [Consulta: 10 Jul 2016].

Fierro FF. 2014. Electroforesis de ADN. En: *Herramientas moleculares aplicadas en ecología: aspectos teóricos y prácticos*. Amelia Cornejo Romero, Alejandra Serrato Díaz, Beatriz Rendón Aguilar, Martha Graciela Rocha Munive (Eds). CDMX, MEXICO: SEMARNAT. INECC.

Franco-Ochoa MP. 2013. Evaluación y recomendación para el mejoramiento de la situación de los psitácidos en el centro para la conservación e investigación de la vida silvestre Los Reyes [Tesis de Maestría]. CDMX, México: Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México

Frankham R .2015. Genetic rescue of small inbred populations: metaanalysis reveals large and consistent benefits of gene flow. *Mol Ecol Early View*. DOI:10.1111/mec.13139

Gebhardt KJ y Waits LP. 2008. Cross-species amplification and optimization of microsatellite markers for use in six Neotropical parrots. *Molecular Ecology Resources* 8, 835–839. GeneMarker. 2014. http://www.softgenetics.com/GeneMarker.html. [Consulta: 11 May 2014].

González EG. 2003. Microsatélites: sus aplicaciones en la Conservación de la Biodiversidad. *Graellsia*, 59(2-3): 377-388

ITIS. *Integrated Taxonomic Information System* 2000. *Ara militaris* (Linnaeus, 1766). Guala G (director). Taxonomic Serial No.:554897, actualización 21-Nov-2016. Geological Survey ,Sunrise Valley, EUA: Subcommitte on Biodiversity and Ecosystem Dynamics. http://www.itis.gov [Consulta: 13 sep 2015].

Hancock MJ. 1999. Microsatellites and other simple sequences:genomic context and mutational mechanisms. En: *Microsatellites: evolution and applications*. Goldstein DB y Schlotterer C (Eds).Oxford, NY, EUA: Oxford University Press.pp 1-6.

Hares DR. 2015. Selection and implementation of expanded CODIS core loci in the United States. 2015. Combined DNA Index System. Forensics Sci. Int. USA. *Genetics* 17:33-34 (2015) https://www.fbi.gov/services/laboratory/biometric-analysis/codis.

Howell GSN y Webb S. 1995. Ara militaris. En: A guide to the birds of Mexico and Northern Central America. Oxford, N Y, EUA: Oxford University Press

Juárez M, Marateo G, Grilli PG, Pagano L, Rumi M, Silva CM. Estado del conocimiento y nuevos aportes sobre la historia natural del Guacamayo Verde (Ara militaris). *Hornero* [Internet]. 2012 Jun [Consulta: 22 Nov 2015]; 27(1): 5-16.http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0073-34072012000100002&lng=es.

Linnaeus.1766. Psittacus militaris. En: Systema Naturae per regna tria naturae.ed.12 p.139

Monterrubio-Rico TC, de Labra-Hernández M C, Ortega-Rodríguez JM, Cancino-Murillo R y Villasenor-Gómez F. 2011. Distribución actual y potencial de la guacamaya verde en Michoacán, México. *Revista Mexicana de Biodiversidad*, 82, 1311–1319.

Monterrubio-Rico TC, Renton K y Carreón G. 2005. Ficha técnica de Ara militaris. En: Escalante-1,2 Pliego, P. (compilador). Fichas sobre las especies de Aves incluidas en el Proyecto de Norma Oficial Mexicana PROY-NOM-ECOL-2000. Parte 2. Instituto de Biología, Universidad Nacional Autónoma de México. Bases de datos SNIB-CONABIO. Proyecto No. W042. CDMX.México.

Nader W, Werner D, Wink M (1999) Genetic diversity of scarlet macaws *Ara macao* in reintroduction studies for threatened populations in Costa Rica. *Biol Conserv* 87:269–272.

[NCBI] National Center for Biotechnology Information (Actualizacion Nov- 2015). 2015. GenBank.https://www.ncbi.nlm.nih.gov/genbank/ [Consulta: 24 feb 2015].

[NOM] Norma Oficial de la Federación. [06 Mar 2002]. NOM-059-ECOL-2001. Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. México: DOF-Segob.

[NOM] Norma Oficial de la Federación. [30 Dic 2010]. NOM-059-SEMARNAT-2010. Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. México: DOF-Segob.

Pericos Mexicanos en Peligro. 2016. Guacamaya verde .http://www.pericosmexico.org/especies/guacamayaverde.html [Consulta: 4 Feb 2016].

Perozo F, Villegas P, Alvarado I, Estévez C, Rivera S, Mavárez Y. 2006. Utilización de las tarjetas FTA® para el diagnóstico molecular del virus de la enfermedad de Newcastle en muestras de fluido alantoideo. *Revista Científica*, *FCV-LUZ* / Vol. XVI, Nº 2, 118 – 123.

Piñeiro DA, Barahona L, Eguiarte A, Rocha O y Salas L. 2008. La variabilidad genética de las especies: aspectos conceptuales y sus aspectos y perspectivas en México. In: Soberón, J., G. Halffter y J. Llorente-Bousquets (comps.). *Capital natural de México, Vol. I: Conocimiento actual de la biodiversidad*. Conabio. México, D. F., México. pp. 415-435

Presti FT, Oliveira-Marques A, Caparroz R, Biondo C, Miyaki C. 2011. Comparative analysis of microsatellite variability in five macaw species (Psittaciformes, Psittacidae): Application for conservation. *Genetics and Molecular Biology*, 34, 2, 348-352

Queller DC y Goodnigh KFT. 1989. Estimating relatedness variance using molecular markers. *Evolution* 43: 258–275.

QIAGEN. QIAGEN Multiplex PCR Handbook . 2010. https://www.qiagen.com/us/resources/download.aspx?id=a541a49c-cd06-40ca-b1d2 563d0324ad6c&lang=en [Consulta: 23 Ene 2015].

QIAGEN. DNeasy® Blood & Tissue Handbook.2006. http://diagnostics1.com/MANUAL/General Qiagen.pdf[Consulta: 23 Ene 2015].

Ramírez-Albores JE. 2016. La Guacamaya verde (Ara militaris) en la Sierra Gorda de Guanajuato, México. [Military macaw (Ara militaris) in Sierra Gorda, Guanajuato, Mexico]. *Acta Zoológica Mexicana (n.s.)*, 32(2): 182-185.

Reichenow.1908. Ara militaris boliviana. Orn. Monatsb. 16. p13.

Ridgway.1915. Ara militaris mexicana. Proc. Biol. Soc. Wash. 28.p106.

Rivera-Ortiz FA. 2014. Genética de la conservación, pérdida y caracterización del hábitat de la Guacamaya Verde en México [Tesis de posdoctorado]. CDMX, México: Centro de Investigaciones en Ecosistemas y Escuela Nacional de Estudios Superiores Unidad Morelia. Universidad Nacional Autónoma de México,

Rueda-Zozaya P, D. Mendoza-Martínez G, Martínez-Go'mez D, Monroy-Vilchis O, Godoy JA, Sunny A, Palomares F, Cha'vez C, Herrera-Haro J. 2016. Genetic variability and structure of jaguar (*Panthera onca*) in Mexican zoos. *Genetica*. DOI 10.1007/s10709-015-9878-6

Russello M, Calcagnotto D, Desalle R, Amato G .2001. Characterization of microsatellite loci in the endangered St. Vincent Parrot, *Amazona guildingii*. *Molecular Ecology Notes* 1: 162–164.

Russello M, Lin K, Amato G, Caccone A . 2005. Additional microsatellite loci for the endangered St. Vincent parrot, *Amazona guildingii*. *Conservation Genetics* 6: 643-645.

Sears KE, Goswami A, Flynn JJ, Niswander LA. 2007. The correlated evolution of Runx2 tandem repeats, transcriptional activity, and facial length in Carnivora. *Evol. & Dev.* 9 (6): 555–565. DOI: 10.1111/j.1525-142X.2007.00196.x.

[SEMARNAP-INE]. Secretaría de Medio Ambiente, Recursos Naturales Y Pesca, Instituto Nacional de Ecología .2000. *Proyecto de Recuperación de Especies Prioritarias*: Proyecto Nacional para la Conservación, Manejo y Aprovechamiento Sustentable de los Psitácidos de México. Instituto Nacional de Ecología. CDMX, México.

[SEMARNAT] Secretaría de Medio Ambiente Y Recursos Naturales.2012. Comisión Nacional de Áreas Naturales Protegidas: Programa de Acción para la Conservación de la Especie: Guacamaya Verde (*Ara militaris*). Oropeza Hernández P, Rendón-Hernández E. (Eds).CDMX, México.

Shibata D. 1999. Microsatellite analysis of human tumours. En: *Microsatellites : evolution and applications*. Goldstein DB y Schlotterer C (Eds).Oxford, New York, USA:oxford University Press. pp. 266-273.

Soberanes-González CA. 2008. Conservación de la guacamaya verde (Ara militaris): Análisis genéticos [Tesis de maestría].CDMX, México: Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.

Solarte-Portilla CE, Rosero-Galindo CY, Cárdenas-Henao H, Burgos-Paz WO, Eraso- Cabrera JM, Zambrano-Burbano GL.2009. Identificación de polimorfismos del gen de la Kappa caseína bovina: Nariño-Colombia. *Revista lasallista de investigación* - Vol. 6 No. 2.

Stelle C, Jiménez LM, Sánchez CA.2003. Caracterización citogenética de cuatro especies de guacamayas (*Ara ararauna, Ara chloroptera, Ara macao y Ara militaris*) *Rev Col Cienc Pec* Vol. 16, Suplemento 2003.

Stotz DF, Fitzpatrick JW, Parker TA III, Moskovits DK.1996. Neotropical birds: ecology and conservation. University of Chicago Press, Chicago, USA.

Thermo Fisher Scientific. 2009. NanoDrop 2000/2000c Spectrophotometer V1.0 User Manual. Wilmington, Delaware, USA.

Utsch B, Becker K, Brock D, . Lentze JM, Bidlingmaier F, Ludwig M. 2002. *A novel stable stable polyalanine [poly(A)] expansion in the HoxA13 gene associated with hand-foot-genital syndrome: proper function of poly(A)-harbouring transcription factors depends on a critical repeat length?*". Hum. Gen. 110 (5): 488–494. DOI::10.1007/s00439-002-0712-8.PMID 12073020.

Vázquez-Lobo AY y Morales-García AE. 2014. Microsatélites. En *Herramientas moleculares aplicadas en ecología: aspectos teóricos y prácticos*. Amelia Cornejo Romero, Alejandra Serrato Díaz, Beatriz Rendón Aguilar, Martha Graciela Rocha Munive (Eds). CDMX, México: SEMARNAT. INECC.

Villafañe C y Posso-Duque D. 2009. Protocolos de extracción de ADN total de animales utilizando Fenol: Cloroformo. Protocolos de laboratorio UEG..Altos de Pipe, Venezuela: Instituto Venezolano de Investigaciones Científicas.

Villalobos-Cortés AI, Martínez AM, Vega-Pla JL y Delgado JV .2009. Caracterización genética de la población bovina guabalá mediante microsatélites. *Arch. Zootec.* 58 (Supl. 1): 485-488.

Weber J, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chhain reaction. *Am J Hum Genet* 44: 388-396

Woodworth LM, Montgomery ME, Briscoe DA, Frankham R. 2002. Rapid genetic deterioration in captive populations: causes and conservation implications. *Conserv Genet* 3(3):277–288. DOI:10.1023/A:1019954801089

Zane L, Bargelloni L y Patarnello, T. 2002. Strategies for microsatellite isolation: a review. *Molecular Ecology*, 11: 1–16. DOI:10.1046/j.0962-1083.2001.01418.

Fotografías:

Figura 3. Juan Carlos Orraca 2016. Sótano del Barro, Querétaro. Hábitat de guacamayas verdes..

Figura 4. Juan Carlos Orraca 2016. Guacamayas verdes volando en el Sótano del Barro.

Figuras 5. Juan Carlos Orraca 2016. Fotografía del Sótano del Barro y guacamayas verdes en la Sierra Gorda Querétaro. Se aprecia el hábitat con cañadas.

Figura 6. Weinmar.2008. *Ara militaris militaris*. Fotografía tomada en el zoológico de Santa Fe, Medellín, Colombia Weimar - Trabajo propio, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4319691.[Consultado: septiembre 30, 2015] . Archivo:Ara macaw militaris.jpg. Creado el: 1 de julio de 2008

Figura 7. Gregg .2009. *Ara militaris mexicanus*: Guacamayas verdes en México.De Gregg - originally posted to Flickr as YOU WANT SOME?, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=6592837. [Consultado: 30 sep 2015] Creado el: 16 de abril de 2009. Archivo: Ara militaris-Mexico-8b.jpg

Figura 8. Gary Denness .2009. *Ara militaris mexicanus* en el Zoológico Los Coyotes, México. Creado el: 9 de noviembre de 2008.De Gary Denness - originally posted to Flickr as Squawk No Evil, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=7891443. [Consultado: 30 sep 2015] Archivo: Ara militaris-Zoológico Los Coyotes-three-8a.jpg

Figura 9. Paul Jhones.2011. *Ara militaris bolivianus*. Fotografía tomada en Bolivia, Refugio de los Volcanes, Santa Cruz 1 de Julio de 2011. https://www.flickr.com/photos/paulbjones/6167695340/in/album-72157627759803756/. [Consultado: 30 sep 2015]

XI. LISTADO DE FIGURAS Y CUADROS

LISTADO DE FIGURAS

- Figura 1. Distribución de *Ara militaris* en el continente Americano. Las líneas diagonales rojas muestran los lugares donde la especie es nativa y residente. Las líneas diagonales café claro muestran los lugares donde la especie se encuentra posiblemente extinta. Mapa de Birdlife International 2013.
- Figura 2. Distribución de la guacamaya verde (*Ara militaris*) en México. Se muestran las Áreas Naturales Protegidas (en verde) y las Áreas Importantes para la conservación de las Aves (AICAS en azul), donde ha sido registrada la guacamaya verde. Adicionalmente se muestran los sitios de colecta para la especie (puntos rojos), proveniente de la base de datos ornitológica del Museo de Zoología Alfonso L.Herrera. en la Fac.de Ciencias UNAM. (Figura 5 en Arizmendi 2008).
- Figura 3. Sótano del Barro, Querétaro. Hábitat de guacamayas verdes. Juan Carlos Orraca 2016.
- Figura 4. Guacamayas verdes volando en el Sótano del Barro. Juan Carlos Orraca 2016.
- Figuras 5. Fotografía del Sótano del Barro y guacamayas verdes en la Sierra Gorda Querétaro. Se aprecia el hábitat con cañadas. Juan Carlos Orraca 2016.
- Figura 6. Fotografía de guacamaya militar (*Ara militaris*). Fotografía tomada en el zoológico de Santa Fe, Medellín, Colombia. Weimar 2008.
- Figura 7. Fotografía de *Ara militaris mexicanus* en México. Gregg 2009.
- Figura 8. Fotografía de Ara militaris mexicanus en el Zoológico Los Coyotes, México. Gary Dennes 2008.
- Figura 9. Fotografía de *Ara militaris bolivianus*. Fotografía tomada en Bolivia, refugio los Volcanes, Santa Cruz. Paul Jhones 2011.
- Figura 10. Árbol filogenético obtenido por análisis bayesiano utilizando secuencias mitocondriales del ND2 (En: Eberhard et al. 2015, figura 2).
- Figura 11. Gráfica de la estructura genética obtenida por Rivera-Ortiz (2014) donde se muestran dos grupos genéticos (k=2). Las barras verticales representan a cada individuo coloreadas en proporción al grupo genético que pertenece (Probabilidad de ancestría= P). Las poblaciones 1 a 5 corresponden a la vertiente del Pacífico (Sierra Madre Occidental) y las poblaciones 6 y 7 corresponden a la Vertiente del Golfo (Sierra Madre Oriental).

- Figura 12. Árbol UPGMA (Unweighted Pair Group Method with Arithmetic Means) obtenido por Rivera-Ortiz (2014) a partir de las distancias genéticas entre pares de poblaciones (FST). La relación de mezcla del grupo de poblaciones está representado por genotipos de color verde y rojo obtenido a partir de los resultados de k = 2 de análisis Bayesiano. Rivera-Ortiz 2014, en figura 5.
- Figura 13. Composición de los microsatélites. Ejemplo de primer AgGT21 diseñado para la especie *Amazona guildingui*. Los cebadores se diseñan con base en los flancos altamente conservados.
- Figura 14. Tabla de microsatélites y medidas de la diversidad genética obtenidos por Rivera-Ortiz (2014).
- Figura 15. Mapa elaborado por Rivera-Ortiz (2014) que muestra K=2 (2 clusters) (colores verde y rojo) distribuidos de manera diferente en las vertientes del Golfo y del Pacífico.
- Figura 16.Examen físico general en individuo adulto: Auscultación.
- Figura 17. Examen físico general: herida en tarso provocada por un objeto punzocortante.
- Figura 18. Examen físico general en polluelo.
- Figura 19. Examen físico general. Pesaje: Se colocó al individuo en un saco obscuro con ventilación.
- Figura 20. Toma de muestra sanguínea a partir de vena ulnar superficial.
- Figura 21. Muestra sanguínea en tarjeta FTA Whatmann® almacenada en sobre con identificación (Especie, número de tarjeta, microchip o anillo, lugar de procedencia, fecha de colecta, Colector).
- Figura 22. Tubo contenedor QIAGEN DNeasy®Blood and Tissue Kit con muestra.
- Figura 23. Extracción con fenol-cloroformo. Después de la centrifugación, la fase transparente corresponde al fenol y la fase obscura al cloroformo con la muestra sanguínea. En la parte central se observan los discos de la tarjeta FTA.
- Figura 24. Precipitación del DNA con alcohol, en protocolo de extracción fenol-cloroformo.
- Figura 25.Mezcla de 1μL de DNA, 2 μL de Tinción fluorescente Gel Red®, 2 μL de Buffer Litio/Borato LB y 2 μL de Escalera 50pb para visualización con rayos UV.
- Figura 26. Visualización de bandas de DNA amplificado con Rayos Ultra Violeta. Muestras de DNA: 11c, 12c, 14c, 15c, 17c, 22c, 23c, 2az, escalera (E) de 50pb y blanco negativo. Peso molecular del microsatélite: 150 a 200 pb

- Figura 27. Visualización de escaleras y alelos marcados con diferentes fluorocromos en GeneMarker HID ®. LocusAgGT21 (marcado con NED); Locus UnaCT21 (Marcado con FAM); Locus AgGT19 (marcado con VIC)
- Figura 28. Visualización de escaleras y alelos para el Locus UnaCT32 (marcado con FAM). GeneMarker HID ®.
- Figura 29. Visualización de escaleras y alelos en GeneMarker HID.Locus UnaCT43 (marcado con FAM) y UnaCT74 (marcado con PET).
- Figura 30. Visualización de genotipos Heterocigóticos (alelos 158/160 y 160/164) y Homocigótico (alelo 160/160) para el Locus UnaCT74 (marcado con PET) en GeneMarker HID.
- Figura 31. Visualización de Locus Monomórfico UnaGT55 en GeneMarker HID donde se muestra el único alelo 203.
- Figura 32. Visualización de Heterocigóticos (109/117 y 113/117) y Homocigótico (109/109) para el Locus AgGt17 marcado con NED en GeneMarker HID.
- Figura 33. Visualización de individuos Heterocigóticos para el Locus AgGT21 (180/182 y 184/190) con GeneMarker HID.
- Figura 34. Visualización de Locus Monomórfico AgGT42 en GeneMerker HID donde se muestra el único alelo 255.
- Figura 35. Visualización de Alelos (196 y 198) en el Locus AgGT90 marcado con FAM en GeneMarker HID.

Figura 36.Gráfica de la estructura genética obtenida en los 7 grupos de cautiverio (UMAs y procedentes del tráfico ilegal) y el grupo silvestre a partir de un modelo en el programa STRUCTURE simulando grupos de individuos no mezclados con frecuencias alélicas correlacionadas. Las barras verticales representan a cada individuo con segmentos coloreados en proporción al grupo genético que pertenece (rojo y verde) K=2. Grupo 1: Silvestres; Grupo 2: Reavyfeex, Qro; Grupo 3: Parque Agua Azul, Jal; Grupo 4: Villa Fantasía, Jal.; Grupo 5: Zoológico de Guadalajara, Jal; Grupo 6: CIVS, Guadalajara, Jal.; Grupo 7: Africami. Safari, Pue.; Grupo 8: XCARET, QRoo.

Figura 37 .Gráfica de estructura genética. Cada barra representa un individuo enumerado del 1 al 111 y el grupo al que pertenece entre paréntesis (eje x). y su probabilidad (0-1) de pertenencia al cluster verde o rojo K=2 (eje y). Grupo 1: Silvestres; Grupo 2: Reavyfeex, Qro; Grupo 3: Parque

Agua Azul, Jal; Grupo 4: Villa Fantasía, Jal.; Grupo 5: Zoológico de Guadalajara, Jal; Grupo 6: CIVS, Guadalajara, Jal.; Grupo 7: Africam. Safari, Pue.; Grupo 8: XCARET, QRoo.

Figura 38.Proporción de pertenencia por grupo de individuos a cada uno de los clusters o grupos genéticos (cluster 1: rojo, cluster 2: verde) K=2. Grupo 1: Silvestres; Grupo 2: Reavyfeex, Qro; Grupo 3: Parque Agua Azul, Jal; Grupo 4: Villa Fantasía, Jal.; Grupo 5: Zoológico de Guadalajara, Jal; Grupo 6: CIVS, Guadalajara, Jal.; Grupo 7: Africami. Safari, Pue.; Grupo 8: XCARET, QRoo.

Figura 39. Gráfica de Évano obtenida en STRUCTURE Harvester que muestra los grupos o clusters genéticos (K) probables en las muestras silvestres de referencia, y cautiverio (procedentes de UMAs y tráfico ilegal) (k=2).

Figura 40.Gráfica de la estructura genética obtenida en los 7 grupos de cautiverio (UMAs y procedentes del tráfico ilegal) y el grupo silvestre a partir de un modelo en el programa STRUCTURE simulando grupos de individuos mezclados con frecuencias alélicas correlacionadas. Las barras verticales representan a cada individuo con segmentos coloreados en proporción al grupo genético que pertenece (rojo, verde y azul) K=3. Grupo 1: Silvestres; Grupo 2: Reavyfeex, Qro; Grupo 3: Parque Agua Azul, Jal; Grupo 4: Villa Fantasía, Jal.; Grupo 5: Zoológico de Guadalajara, Jal; Grupo 6: CIVS, Guadalajara, Jal.; Grupo 7: Africami. Safari, Pue.; Grupo 8: XCARET, QRoo.

Figura 41. Gráfica de Évano obtenida en STRUCTURE Harvester que muestra los grupos K (clusters) probables en las muestras de referencia, cautiverio y tráfico ilegal (k=3).

Figura 42. Asignación de grupo por logaritmo de probabilidad de las frecuencias alélicas (Silvestre vs Cautiverio)

Figura 43.Resultados estadísticos de MICROCHECKER para la presencia/ausencia de alelos nulos. Ningún Loci mostró evidencia de alelos nulos. La población se encuentra probablemente en Equilibrio Hardy Weinberg.

Figura 44. Gráfica de barras representando las frecuencias alélicas (eje y) de los loci en cada grupo de individuos (eje x). Silv: Grupo de ejemplares silvestres. Rf: Grupo de individuos de la UMA Reavyfeex. Az: Grupo de individuos del Zoológico Agua azul. Vf: Grupo de individuos del Zoológico Villa Fantasía. Zg: Grupo de individuos del Zoológico de Guadalajara. Civs: Grupo de individuos del CIVS, Guadalajara. Xcar: Grupo de individuos de Xcaret.

Figura 45. Gráfica de Varianza Molecular AMOVA

LISTADO DE CUADROS

- Cuadro 1. Descripción morfológica de las subespecies de Ara militaris
- Cuadro 2. Número de muestras analizadas de individuos Ara militaris en cautiverio
- Cuadro 3. Número de muestras de individuos silvestres e información de colecta
- Cuadro 4. Primers para Loci microsatélites seleccionados, secuencia y unidad de repetición
- Cuadro 5. Condiciones estandarizadas para la amplificación individual de los primers seleccionados y tamaño de los fragmentos obtenidos (APÉNDICE III).
- Cuadro 6. Condiciones estandarizadas para la amplificación en multiplex de los primers seleccionados (APÉNDICE IV).
- Cuadro 7. Rangos de referencia del tamaño de los fragmentos
- Cuadro 8. Matriz de datos de genotipado por individuo obtenida con GENE MARKER HID, GENEMAPPER y TANDEM (APÉNDICE V).
- Cuadro 9. Probabilidad de Genotipo (identidad) de cada individuo deacuerdo a la combinación de alelos en los diferentes Loci (APÉNDICE VI).
- Cuadro 10. Aproximación del grado de Parentesco entre pares de individuos de los diferentes grupos de cautiverio con GENALEX 6.3 (Estimador QGM : Queller y Goodnight 1989). APÉNDICE VII.
- Cuadro 11. Proporción de pertenencia por individuo a los diferentes clusters.
- Cuadro 12. Asignación de grupo (Silvestre o cautiverio) por logaritmo de máxima similitud de frecuencias alélicas (APÉNDICE VIII).
- Cuadro 13. Prueba de equilibrio Hardy Weinberg (GENE POP).
- Cuadro 14. Test de Equilibrio Hardy Weinberg con Chi 2 en GENALEX.
- Cuadro 15. Test de Ligamiento obtenido con GENEPOP 4.2 con test exacto de Fischer.
- Cuadro 16. Frecuencias alélicas por grupo.
- Cuadro 17. Parámetros de variabilidad genética por locus.

- Cuadro 18. Promedio de parámetros de variabilidad genética por grupo.
- Cuadro 19. Parámetros de variabilidad genética totales en cautiverio.
- Cuadro 20. Parámetros FST, FIT y FIS por locus en grupos en cautiverio
- Cuadro 21. Diferenciación genética (Fst) entre pares de grupos
- Cuadro 22. Análisis de Varianza Molecular AMOVA

APÉNDICE I. PERMISOS

SUBSECRETARIA DE GESTION PARA LA PROTECCIÓN AMBIENTAL

DIRECCION GUNERAL DE VIDA SILVESTRE

OFICIO NUM. SGPA/DGVS/

MÉXICO, D. F., A 17 JUL 2014

"2014, Año de Octavio Paz",

P. DE MVZ. DIANA FABIOLA CORTÉS TENORIO FACULTAD DE MEDICINA VETERINARIA Y ZOOTECNIA DE LA UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO **RANCHO MIRADORES 56-303** COLONIA LOS GIRASOLES, DELG. COYOACAN C.P. 04920 MEXICO, D.F. TEL. 045 553 1383887, e-mail: diantcf@hotmail.com

Considerando que ha dado cumplimiento a los requisitos establecidos para efectuar investigación y colecta científica de flora y fauna silvestres en territorio mexicano y con fundamento en el Articulo 32 Bis fracciones I, III, XXII, XXXIX de la Ley Orgánica de la Administración Pública Federal, Artículo 19 fracción XXV y 32 fracción VI, XVIII, XXI, XXIV del Reglamento Interior de la Secretaria de Medio Ambiente y Recursos Naturales, publicado en el Diario Oficial de la Federación el 26 de noviembre de 2012, 79, 80 fracción I, 82, 83 y 87 párrafo cuarto de la Ley General del Equilibrio Ecológico y la Protección al Ambiente. Artículos 9º. Fracción XII, 97 y 98 de la Ley General de Vida Silvestre; 12, 123 Fracción IV y 126 del Reglamento de la Ley General de Vida Silvestre, Artículo 85, Artículo 88, fracciones I y II, Artículo 105. fracciones II y III del Reglamento de la Ley General del Equilibrio Ecológico y la Protección al Ambiente en Materia de Áreas Naturales Protegidas (ANP's), las disposiciones relativas de la Norma Oficial Mexicana NOM-126-SEMARNAT-2000, por la que se establecen las especificaciones para la realización de actividades de colecta científica de material biológico de especies de flora y fauna silvestres y otros recursos biológicos en el territorio nacional; la Norma Oficial Mexicana NOM-059-SEMARNAT-2010, protección ambiental-especies nativas de México de flora y fauna silvestrescategorias de riesgo y especificaciones para su inclusión, exclusión o cambio-lista de especies en riesgo, la Dirección General de Vida Silvestre autoriza la Colecta Científica por proyecto sobre especies o poblaciones en riesgo o sobre hábitat crítico, para realizar las siguientes actividades inherente al Proyecto denominado "Genotipificación de guacamaya verde (Ara militaris) en cautiverio":

- De ejemplares de "guacamaya verde" Ara militaris en cautiverio, obtener hasta cien (100) muestras de sangre (1ml), una muestra por ejemplar, para realizar únicamente estudios genéticos y de homoparasitos.
- Colecta de hasta cien (100) muestras de heces (3gr) procedentes de encierros de "guacamaya verde" Ara militaris, para realizar unicamente estudios de endoparásitos.

Las actividades se llevarán a cabo en el CIVS Guadalajara y el CIVS Los Reyes, así como en instalaciones de Xcaret, zoológicos y UMA's que cuenten con ejemplares debidamente registradas de "guacamaya verde" Ara militaris. Esta autorización tendrá una vigencia a partir de la expedición de la presente al 31 de diciembre de 2014.

La presente se expide con el aval del Departamento de Zoología del Instituto de Biología de la UNAM y queda sujeta a las siguientes condicionantes:

1.- Cumplir con las disposiciones Administrativas, Fiscales y de Sanidad exigibles por las autoridades competentes en la materia, sean Federales, Estatales o Municipales, así como con las disposiciones establecidas en la Ley General del Equilibrio Ecológico y la Protección al Ambiente y su Reglamento en Materia de Áreas Naturales Protegidas y demás disposiciones legales aplicables.

> Continua al reverso.../ Hoja 1 de 2

volución 1425, Nivel 1, Col. Tiecopec San Ange ción Álvaro Obregón, C. P. 01040, México, D. F ino 01(55) 56-24-33-09, Fax 01(55)56-24-36-42

SUBSECRETARÍA DE GESTIÓN PARA LA PROTECCIÓN AMBIENTAL DIRECCIÓN GENERAL DE VIDA SILVESTRE

OFICIO NÚM. SGPA/DGVS/ 0 6 4 6 2 /14 MÉXICO, D. F., A 17 JUL 2014

"2014, Año de Octavio Paz".

La presente autorización es personal e intransferible y habrá de mostrarse a las Autoridades Federales, Estatales y Municipales cuantas veces lo soliciten. Así mismo y tomando en consideración lo establecido por el Artículo 87 de la Ley de General de Vida Silvestre, el titular de la presente deberá contar con el consentimiento previo, expreso e informado de los legítimos propietarios o representante legal del (los) predio(s) donde pretende desarrollar el proyecto.

El incumplimiento de las condiciones aquí establecidas, dará origen a la instauración de un procedimiento administrativo ante la autoridad competente, para proceder a la cancelación de la autorización y a la aplicación de la legislación correspondiente, según sea el caso.

EL DIRECTOR GENERAL

JORGE MAKSABEDIAN DE LA ROQUETTE

C.c.p- C. Joel González Moreno.- Director General de Inspección de Vida Silvestre, Recursos Marinos y Ecosistemas Costeros, PROFEPA. e-mail:

vida silvestre@profepa.gob.mx, imeia@profepa.gob.mx

C. César Murillo Juárez - Coordinador de Asesores de la Subsecretaria, e-mail: cesar.murillo@semarnat.gob.mx

C. Mónica de la Fuente Galicia - Departamento de Control y Remediación, e-mail: monica.galicia@semarnat.gob.mx

C. Fernando Sánchez Camacho - Departamento de Análisis para el Aprovechamiento de Otras Especies e-mail: fsanchez@semarnat.gob.mx

Archivo General 09/K5-0794/07/14

c:Permiso_ Diana Fabiola Cortés Tenorio (Ara militaris)

"Por uso eficiente del papel, las copias de conocimiento de este asunto son remitidas via electrónica".

Hoja 2 de 2

Av. Revolución 1425, Nivel 1, Col. Tiacopec San Ángel Delegación Álvaro Obregón, C. P. 01040, Mexico, D. F. Teléfono 01(55) 56-24-33-09, Fax 01(55)56-24-36-42

APÉNDICE II. LISTADO DE INDIVIDUOS MUESTREADOS EN CAUTIVERIO

	NFORMACI	ÓN POR INDIVIDUO, PI	ROCEDENCIA Y FECHA	DE MANEJO.		
ESPECIE: Ara militaris PROCEDENCIA: Parque Ecoarqueológico Xcaret Responsable del manejo: MVZ Karol Sepúlveda	ESPECIE: Ara militaris PROCEDENCIA: Centro para la conservación e Investigación de la vida silvestre (CIVS) Guadalajara, Jal. Responsable del manejo: MVZ Andrés Gonzáles Rodríguez.	ESPECIE: Ara militaris PROCEDENCIA: Parque Villa Fantasía, Guadalajara, Jal. Responsables del manejo: Biól. Berenice Díaz Varela	ESPECIE: Ara militaris PROCEDENCIA: Parque Agua azul Responsable del manejo MVZ. Noé Pérez González	ESPECIE: Ara militaris PROCEDENCIA: Zoológico de Guadalajara Responsable del manejo MVZ. Francisco Rodríguez Herrejón	ESPECIE: Ara militaris PROCEDENCIA: Africam safari, Valsequillo, Puebla. Responsable del manejo MVZ. Marco Antonio Benítez	ESPECIE: Ara militaris PROCEDENCIA: Reavyfeex. Responsable del manejo MVZ. Francisco Acevedo Arteaga
1x. ID:ANILLO 2577Q8561AE0415 XCA FECHA DEL MANEJO:29/07/20 14	1C. ID: Marcaje temporal I FECHA DE MANEJO: 27/08/2014	VF1. ID:Marcaje temporal I FECHA DE MANEJO: 28/08/2014	AZ1. ID:Anillo:PAA011 FECHA DE MANEJO: 29/08/2014	ZG1. ID: anillo GZOOG041 FECHA DE MANEJO: 29/08/2014	ACS1. ID: anillo AFRIB014 FECHA DE MANEJO: 24/09/2014	RF1. ID:RFEXQT328 FECHA DEL MANEJO:25/08/20 15
2x. ID:ANILLO ESAZA1498 FECHA DEL MANEJO:29/07/20 14	2C .Marcaje temporal II FECHA DE MANEJO: 27/08/2014	VF2. ID: Marcaje temporal II FECHA DE MANEJO: 28/08/2014	AZ2. ID: Anillo:PAA012 FECHA DE MANEJO: 29/08/2014	ZG2. ID:anilloGZOOA07 7 FECHA DE MANEJO: 29/08/2014	ACS2. ID: anillo AFRIB54 FECHA DE MANEJO: 24/09/2014	RF2. ID:007003081 FECHA DEL MANEJO:25/08/20 15
3x. ID:ANILLO 78XCAR8561AEPO 5Q FECHA DEL MANEJO:29/07/20 14	3C Marcaje temporal III FECHA DE MANEJO: 27/08/2014	VF3. ID: Microchip:AVID*0 08*85*306 FECHA DE MANEJO: 28/08/2014	AZ3. ID: Anillo:PAA045 FECHA DE MANEJO: 29/08/2014	ZG3. ID:anilloGZOOB036 FECHA DE MANEJO: 29/08/2014	ACS3. ID: anillo AFRICAM82A97 FECHA DE MANEJO: 24/09/2014	RF3. ID:006547842 FECHA DEL MANEJO:25/08/20 15
4x. ID:ANILLO XCARETB033 FECHA DEL MANEJO:29/07/20 14	4C Marcaje temporal IV FECHA DE MANEJO: 27/08/2014	VF4. ID:Microchip:AVID *008*092*092 FECHA DE MANEJO: 28/08/2014	AZ4. ID:Sin marca (Pareja de PAA045) FECHA DE MANEJO: 29/08/2014	ZG4. ID:anilloGZOOB087 FECHA DE MANEJO: 29/08/2014	ACS4. ID: anillo AFRIB390/368 FECHA DE MANEJO: 24/09/2014	RF4. ID:007562788 FECHA DEL MANEJO:25/08/20
5x. ID:ANILLO XCARETB 093 FECHA DEL MANEJO:30/07/20 14	6C. Marcaje temporal VI FECHA DE MANEJO: 27/08/2014	VF5. ID:Microchip:AVID *008*054*845 FECHA DE MANEJO: 28/08/2014	AZ5. ID:Sin marca, exhibición(1AZ x 2AZ) FECHA DE MANEJO: 29/08/2014	ZG5. ID: anilloGZOOA096 FECHA DE MANEJO: 29/08/2014	ACS5. ID: anillo AFRIB081 FECHA DE MANEJO: 24/09/2014	RF5. ID:005322842 FECHA DEL MANEJO
6x. ID:ANILLO XCARETB 144 FECHA DEL MANEJO:30/07/20 1	5C. Marcaje temporal V FECHA DE MANEJO: 27/08/2014	VF6. ID:Microchip:AVID 008*075*084 FECHA DE MANEJO: 28/08/2014	AZ6. ID:Sin marca (hijo de 3AZ) FECHA DE MANEJO: 29/08/2014	ZG6. ID:anilloGZOOB064 FECHA DE MANEJO: 29/08/2014	ACS6. ID: anillo AFRIB120 FECHA DE MANEJO: 24/09/2014	RF6. ID:019338120 FECHA DEL MANEJO

	,			_	1	
7x. ID: MICROCHIP	7C.		AZ7.	ZG7.	ACS7.	RF7.
AVID040-278-638	Marcaje temporal		ID:Sin Marca	ID:	ID: anillo	ID:AVIC6
(SIN ANILLO)	VII		(Aviario, donación)	FECHA DE	AFRIB0294	FECHA DEL
FECHA DEL	FECHA DE		FECHA DE	MANEJO:	FECHA DE	MANEJO:25/08/20
MANEJO:	MANEJO:		MANEJO:	29/08/2014	MANEJO:	15
31/07/2014	27/08/2014		29/08/2014		24/09/2014	
8x.	8C.		AZ8.	ZG8.	ACS8.	
ID: ANILLO	Marcaje temporal		ID:Sin marca	ID:Chip 048302021	ID: anillo AFRIB131	
ARA 146	VIII		(Aviario, donación	FECHA DE	FECHA DE	
			•			
FECHA DEL	FECHA DE		particular)	MANEJO:	MANEJO:	
MANEJO:30/07720	MANEJO:		FECHA DE	29/08/2014	24/09/2014	
1	27/08/2014		MANEJO:			
			29/08/2014			
9x.	9C.			ZG9.	ACS9.	
ID: ANILLO	Marcaje temporal			ID:anillo	ID: anillo	
ESAZA1476	IX			GZOOA086	ARARFEX116	
FECHA DEL	FECHA DE			FECHA DE	FECHA DE	
MANEJO:	MANEJO:			MANEJO:	MANEJO:	
31/07/2014	27/08/2014			29/08/2014	24/09/2014	
10x.	10C.			ZG10.	ACS9.	
ID: ANILLO				2G10. Chip 048261801	ID: anillo AFRIB357	
	Marcaje temporal					
2560Q85AE0415XC	X			FECHA DE	FECHA DE	
Α	FECHA DE			MANEJO:	MANEJO:	
FECHA DEL	MANEJO:			29/08/2014	24/09/2014	
MANEJO:	27/08/2014					
31/07/2014						
11x.	11C.			ZG11.	ACS10.	
ID: ANILLO	Marcaje temporal			Chip 048266344	ID: anillo AFRIB365	
XCARETB058	XI			FECHA DE	FECHA DE	
FECHA DEL	Anillo con marca			MANEJO:	MANEJO:	
MANEJO:31/07/20	indistinguible			29/08/2014	24/09/2014	
14	_			23/06/2014	24/03/2014	
14	FECHA DE					
	MANEJO:					
	27/08/2014					
12x.	12C.			ZG12.	ACS12.	
ID: ANILLO	Marcaje temporal			Chip 092827518	ID: anillo AFRIB369	
MARCARE077	XII			FECHA DE	FECHA DE	
FECHA DEL	FECHA DE			MANEJO:	MANEJO:	
MANEJO:31/07/20	MANEJO:			29/08/2014	24/09/2014	
14	27/08/2014					
13x.	13C.			ZG13.	ACS13.	
ID: ANILLO	Marcaje temporal			Chip 028879344	ID: anillo AFRIB396	
XCARETB006	XIII			FECHA DE	FECHA DE	
FECHA DEL	FECHA DE			MANEJO:	MANEJO:	
MANEJO:01/08/20	MANEJO:			29/08/2014	24/09/2014	
14	27/08/2014					
14x.	14C.			ZG14.		
ID: ANILLO	Marcaje temporal			Chip 056608775		
XCARETB032	XIV			FECHA DE		
FECHA DEL	FECHA DE			MANEJO:		
MANEJO:01/08/20	MANEJO:			29/08/2014		
14	27/08/2014					
15x.	15C.			ZG15.		
ID:ANILLO	Marcaje temporal			ID : Sin ID 1		
ESAZA1443	XV			FECHA DE		
FECHA DEL	FECHA DE			MANEJO:		
	MANEJO:			29/08/2014		
MANEJO: 01/08/2014				23/00/2014		
	27/08/2014					
		Î		7010		
16x.	16C.			ZG16.		
				ZG16. ID : Sin ID 2 FECHA DE		

FECHA DE					
17 x	FECHA DEL	FECHA DE		MANEJO:	
17 x	MANEJO:	MANEJO:		29/08/2014	
17 x				-,,	
ID-ANILLO Marciple temporal ID-chip ABASEASP1 FECHA DE				7G17	
JURNITUK STATE S					
FECHA DE MANEIO: MAN					
MANLID:					
19/08/2014 27/08/2014 29/08/2014 29/08/2014 29/08/2014 29/08/2014 29/08/2014 20/08/2014 20/08/2014 20/08/2014 20/08/2014 20/08/2014 29/					
18X					
ID-ANILLO Marcaje temporal ID : chip	02/08/2014	27/08/2014		29/08/2014	
JUSSMEK XVIII FECHA DE FE	18x.	18C		ZG18.	
FECHA DE	ID:ANILLO	.Marcaje temporal		ID : chip	
MANEID: MANEID: 27/08/2014 27/08/	JLK88MEX	XVIII		056614299	
MANEID: MANEID: 27/08/2014 27/08/	FECHA DEI	FECHA DE		FECHA DE	
02/08/2014 27/08/2014 29/					
19X. 19C. 1DANILLO Marcaje temporal ESAZB878 XIX MANEJO: 297/08/2014 277/08/2014 277/08/2014 277/08/2014 277/08/2014 277/08/2014 277/08/2014 277/08/2014 277/08/2014 277/08/2014 277/08/2014 277/08/2014 277/08/2014 277/08/2014 277/08/2014 277/08/2014 277/08/2014 27. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20					
ID-ANILLO					
ESA28878					
FECHA DEL MANEIO: 29/08/2014 20x. DC. DANILLO Marcaje temporal XX X X X X X X X X X X X X X X X X X					
MANEIO:02 MANEIO: 29/08/2014 27/0					
02/08/2014 27/08/2014	FECHA DEL	FECHA DE		MANEJO:	
DANILLO	MANEJO:02	MANEJO:		29/08/2014	
DANILLO	02/08/2014	27/08/2014			
IDANILLO Marcaje temporal XX XX XX XX XX XX XX					
MARCAR E 075 FECHA DEL MANEJO:03/08/201 MANEJO: 21/NS/2014 MANEJO: 21/NS/2014 MANEJO:					
FECHA DEL MANEJO: 27/08/2014 21x. 21C		, ,			
MANEJO: 03/08/20					
14 27/08/2014					
21x					
D:ANILLO XXI FECHA DE FECHA DE					
XCARET B045 FECHA DEL MANEJO: 03/08/20 MANEJO: 27/08/2014 22 x. 22C ID:ANILLO MANEJO: 27/08/2014 23 x. EDAD:POLLUELO FECHA DE MANEJO: 27/08/2014 23 x. 23C ID:ANILLO JSIN MARCA 1 FECHA DE MANEJO: 27/08/2014 24 x. 24C ID:SIN ANILLO MANEJO: 27/08/2014 25 x. 25C MANEJO: 27/08/2014 26 x. 24C MANEJO: 27/08/2014 27 x. 26C MANEJO: 27/08/2014 28 x. 27 x. 28C MANEJO: 27/08/2014 29 x. 29	21x.	21C			
FECHA DEL MANEIO: MARIANEIO: MARIANEIO: MARIANEIO: MARIANEIO: MARIANEIO: MARIANEIO: MARIANEIO: MANEIO:	ID:ANILLO	.Marcaje temporal			
MANEJO: 03/08/20	XCARET B045	XXI			
MANEIO: 03/08/20 MANEIO: 27/08/2014	FECHA DEL	FECHA DE			
14 27/08/2014 22 X. 22C		MANEIO:			
22 x					
ID:ANILLO					
XCARETB 057 FECHA DE MANEJO:04/08/20 14 23 x. 23C ID:ANILLO SIN MARCA 1 MAREJO:04/08/20 27/08/2014 24 x. 24C ID:SIN ANILLO SIN MARCA 2 FECHA DE MANEJO: 4 27/08/2014 25 x. 10:SIN ANILLO SIN MARCA 2 FECHA DE MANEJO: 4 25 x. 10:SIN ANILLO SIN MARCA 2 FECHA DE MANEJO: 4 MANEJO: 5/08/2014					
FECHA DE MANEJO:04/08/20 FECHA DE MANEJO: 27/08/2014 23 x. 23C					
MANEJO:04/08/20					
14					
27/08/2014 23 x.	MANEJO:04/08/20				
23 x. 23 C	14	MANEJO:			
ID:ANILLO		27/08/2014			
ID:ANILLO	23 x.	23C			
MARCARE039 FECHA DEL MANEJO: 27/08/2014 24 x. D:SIN ANILLO 675WA8561AEXCA RET MANEJO: 27/08/2014 MANEJO: 505/08/2014 25 x. D:ANILLO SIN MARCA 3 634WA8561AEXCA RET ECHA DEL MANEJO: 634WA8561AEXCA RET MANEJO: 655WA8561AEXCA RET MANEJO: 656WA8561AEXCA RET MANEJO: 6575WA8561AEXCA RET		SIN MARCA 1			
FECHA DEL MANEJO: 27/08/2014 14 24 x. 24C ID:SIN ANILLO SIN MARCA 2 675WA8561AEXCA FECHA DE MANEJO: 27/08/2014 MANEJO: 05/08/2014 25 x. 25C. ID:ANILLO SIN MARCA 3 634WA8561AEXCA FECHA DE FECHA DE MANEJO: 05/08/2014 RET FECHA DEL SIN MARCA 3 634WA8561AEXCA FECHA DE FECHA DE MANEJO: 05/08/2014 RET FECHA DEL SIN MARCA 3 FECHA DEL MANEJO: 05/08/2014					
MANEJO:04/08/20 27/08/2014 24 x.					
14					
24 x. ID:SIN ANILLO SIN MARCA 2 675WA8561AEXCA RET MANEJO: FECHA DEL MANEJO: 05/08/2014 25 x. ID:ANILLO SIN MARCA 3 634WA8561AEXCA EDAD:ADULTO RET FECHA DE MANEJO: MANEJO: 75 CHA DE MANEJO: MANEJ		2//00/2014			
ID:SIN ANILLO 675WA8561AEXCA RET MANEJO: FECHA DEL MANEJO: 05/08/2014 25 x. ID:ANILLO SIN MARCA 3 634WA8561AEXCA EDAD:ADULTO RET FECHA DE MANEJO: MANEJO: 27/08/2014 EDAD:ADULTO RET FECHA DE MANEJO: MANEJO: MANEJO: MANEJO: MANEJO: 27/08/2014		240			
675WA8561AEXCA					
RET MANEJO: FECHA DEL 27/08/2014 MANEJO: 05/08/2014 25 x. 25 C. ID:ANILLO SIN MARCA 3 634WA8561AEXCA EDAD:ADULTO RET FECHA DE FECHA DE MANEJO: MANEJO: 27/08/2014					
FECHA DEL	675WA8561AEXCA	FECHA DE			
MANEJO: 05/08/2014 25C.	RET	MANEJO:			
MANEJO: 05/08/2014 25C.	FECHA DEL	27/08/2014			
05/08/2014 25 C. ID:ANILLO SIN MARCA 3 634WA8561AEXCA EDAD:ADULTO RET FECHA DE FECHA DEL MANEJO: MANEJO: 27/08/2014					
25 x. 25C. ID:ANILLO SIN MARCA 3 634WA8561AEXCA EDAD:ADULTO RET FECHA DE MANEJO: MANEJO: 27/08/2014					
ID:ANILLO		25C			
634WA8561AEXCA					
RET FECHA DE FECHA DE MANEJO: MANEJO: 27/08/2014					
FECHA DEL MANEJO: MANEJO: 27/08/2014					
MANEJO: 27/08/2014					
		27/08/2014			
05/08/2014	0 = 10 0 10 0 4 4		1		

26x. ID:ANILLO			
641WA8561AEXCA			
RET			
FECHA DEL			
MANEJO:			
05/08/2014			
27 x.			
ID:ANILLO			
669WA8561AEXCA			
RET			
FECHA DEL			
MANEJO:05/08/20			
14			
28 x.			
ID:ANILLO			
619WA8561AEXCA			
RET			
FECHA DEL			
MANEJO:2014			
07/08/			
29 x.			
ID:ANILLO			
254WA8561AEXCA			
RET			
FECHA DEL			
MANEJO:			
07/08/2014			
30 x.			
ID: ANILLO			
435WA8561AEXCA			
RET			
FECHA DEL			
MANEJO:			

APÉNDICE III.

Cuadro 5. Condiciones estandarizadas para la amplificación individual de los primers seleccionados y tamaño de los fragmentos obtenidos

Locus	Temperatura de amplificación	Fluorocromo	Condiciones de amplificación	Tamaño de los fragmentos	FIGURAS
UnaCT21	58°C	FAM	MASTER MIX. 2x Qiagen Multiplex PCR master mix: 2.5 μL UnaCT21F: 0.1 μL UnaCT21R: 0.1 μL H2o: 2.3 μL DNATemplado:0.5 μL TERMOCICLADO: Activación inicial: 15 min 95°C Desnaturalización:30 seg 94°C Alineamiento:90 seg 58°C Extensión:90seg 72°C N° de cliclos:35 Extensión final:10 min 72°C	4(149-170)	Figura 27
UnaCT32	58°C	M13 FAM	DILUCIÓN PARA SECUENCIADOR 1:2 MASTER MIX. 2x Qiagen Multiplex PCR master mix: 2.5 μL UnaCT32F: 0.1 μL UnaCT32R: 0.2μL M13 FAM:0.2 μL H20:2 μL DNATemplado:0.5 μL TERMOCICLADO: Activación inicial: 5 min 95°C Desnaturalización:30 seg 94°C Alineamiento:45seg 58°C Extensión:90seg 72°C 30 ciclos Desnaturalización 2: 30 seg 94°C Alineamiento 2: 30 seg 55°C Extensión 2: 10 min 72°C 8 ciclos	3 (270-293) Presentó problemas en la amplificación pues el espectro del alelo es bajo a pesar de utilizar alta cantidad de primer.	Figura 28

			Extensión final: 10 min 72°C DILUCIÓN PARA SECUENCIADOR 1:1		
UnaCT43	60°C	M13 VIC	MASTER MIX. 2x Qiagen Multiplex PCR master mix: 2.5 μL UnaCT43F: 0.05 μL UnaCT43R: 0.1μL M13 VIC:0.15 μL H2o:2.2 μL DNATemplado:0.5 μL TERMOCICLADO: Activación inicial: 5 min 95°C Desnaturalización:30 seg 94°C Alineamiento:45seg 60°C Extensión:90seg 72°C 28 ciclos Desnaturalización 2: 30 seg 94°C Alineamiento 2: 45seg 57°C Extensión 2: 45seg 72°C 8 ciclos Extensión final: 10 min 72°C DILUCIÓN PARA SECUENCIADOR 1:1	6 (197-221)	Figura 29
UnaCT74	56°C	PET	MASTER MIX. 2x Qiagen Multiplex PCR master mix: 2.5 μL UnaCT21F: 0.1 μL UnaCT21R: 0.1 μL H2o: 2.3 μL DNATemplado:0.5 μL TERMOCICLADO: Activación inicial: 15 min 95°C Desnaturalización:30 seg 94°C Alineamiento:90 seg 56°C Extensión:90seg 72°C N° de cliclos:35 Extensión final:10 min 72°C DILUCIÓN PARA SECUENCIADOR 1:2	5(148-164)	Figura 29 y 30

UnaGT55	58°C	M13 FAM	MASTER MIX.	1 (203)	Figura 31
			2x Qiagen Multiplex PCR master mix: 2.5 μL	MONOMÓR-	C
			UnaCT43F: 0.05 μL	FICO	
			UnaCT43R: 0.1μL		
			M13 FAM:0.1 μL		
			H2o:2.25 μL		
			DNATemplado:1.0 μL		
			TERMOCICLADO:		
			Activación inicial: 5 min 95°C		
			Desnaturalización:30 seg 94°C		
			Alineamiento:45seg 58°C		
			Extensión:45seg 72°C		
			28 ciclos		
			Desnaturalización 2: 30 seg 94°C		
			Alineamiento 2: 30seg 55°C		
			Extensión 2: 45seg 72°C		
			8 ciclos		
			Extensión final: 10 min 72°C		
			DILUCIÓN PARA SECUENCIADOR 1:1		
AgGT17	58°C	NED	MASTER MIX.	6 (107-121)	Figura 32
			2x Qiagen Multiplex PCR master mix: 2.5 μL		
			UnaCT21F: 0.1 μL		
			UnaCT21R: 0.1 μL		
			H2o: 2.3 μL		
			DNATemplado:0.5 μL		
			TERMOCICLADO:		
			Activación inicial: 15 min 95°C		
			Desnaturalización:30 seg 94°C		
			Alineamiento:90 seg 58°C		
			Extensión:90seg 72°C		
			Nº de cliclos:35		
			Extensión final:10 min 72°C		
			DILUCIÓN PARA SECUENCIADOR 1:1		

AgGT19	60°C	VIC	MASTER MIX.	7(184-200)	Figura 27
1150117	00 0	, 10	2x Qiagen Multiplex PCR master mix: 2.5 μL	(10.200)	1 18414 27
			UnaCT21F: 0.1 μL		
			UnaCT21R: 0.1 μL		
			H2o: 2.3 μL		
			DNATemplado:1.0μL		
			TERMOCICLADO:		
			Activación inicial: 15 min 95°C		
			Desnaturalización:30 seg 94°C		
			Alineamiento:90 seg 60°C		
			Extensión:90seg 72°C		
			Nº de cliclos:35		
			Extensión final:10 min 72°C		
			DILUCIÓN PARA SECUENCIADOR 1:1		
AgGT32	58°C	M13VIC	MASTER MIX.	2(256 Y 260)	
			2x Qiagen Multiplex PCR master mix: 2.5 μL		
			UnaCT43F: 0.05 μL		
			UnaCT43R: 0.1µL		
			M13 VIC:0.15 μL		
			H2o:2.25 μL		
			DNATemplado:0.5 μL		
			TERMOCICLADO:		
			Activación inicial: 5 min 95°C		
			Desnaturalización:30 seg 94°C		
			Alineamiento:45seg 58°C		
			Extensión:45seg 72°C		
			30 ciclos		
			Desnaturalización 2: 30 seg 94°C		
			Alineamiento 2: 30seg 55°C		
			Extensión 2: 45seg 72°C		
			8 ciclos		
			Extensión final: 10 min 72°C		
			DILUCIÓN PARA SECUENCIADOR		
			1:1		

AgGT21	58°C	VIC	MASTER MIX.	11 (177-197)	Figura 27 y 33
· ·			2x Qiagen Multiplex PCR master mix: 2.5 μL		
			UnaCT21F: 0.1 μL		
			UnaCT21R: 0.1 μL		
			H2o: 2.3 μL		
			DNATemplado:0.5 μL		
			TERMOCICLADO:		
			Activación inicial: 15 min 95°C		
			Desnaturalización:30 seg 94°C		
			Alineamiento:90 seg 58°C		
			Extensión:90seg 72°C		
			Nº de cliclos:35		
			Extensión final:10 min 72°C		
			DILUCIÓN PARA SECUENCIADOR 1:1		
AgGT42	59°C	VIC	MASTER MIX.	1(230) artefacto	Figura 34
			2x Qiagen Multiplex PCR master mix: 2.5 μL	,255	
			UnaCT21F: 0.3 μL		
			UnaCT21R: 0.3 μL		
			H2ο: 2.9 μL		
			DNATemplado:1.0 μL		
			TERMOCICLADO:		
			Activación inicial: 15 min 95°C		
			Desnaturalización:30 seg 94°C		
			Alineamiento:90 seg 59°C		
			Extensión:90seg 72°C		
			Nº de cliclos:35		
			Extensión final:10 min 72°C		
			DILUCIÓN PARA SECUENCIADOR 1:1		

AgGT90	56°C	FAM	MASTER MIX.	10(188 -208)	Figura 35
<u> </u>			2x Qiagen Multiplex PCR master mix: 2.5 μL		
			UnaCT21F: 0.5 μL		
			UnaCT21R: 0.5 µL		
			H2o: 2.5 μL		
			DNATemplado:1.0 μL		
			TERMOCICLADO:		
			Activación inicial: 15 min 95°C		
			Desnaturalización:30 seg 94°C		
			Alineamiento:90 seg 56°C		
			Extensión:90seg 72°C		
			Nº de cliclos:40		
			Extensión final:10 min 72°C		
			DILUCIÓN PARA SECUENCIADOR 1:1		

APÉNDICE IV.

Cuadro 6. Condiciones estandarizadas para la amplificación en multiplex de los primers seleccionados

Primers /Locus seleccionados	Temperatura de amplificación	Fluoróforo	Condiciones de amplificación
UnaCT21	59°C	FAM	MASTER MIX.
AgGT17		NED	2x Qiagen Multiplex PCR master mix: 2.5 μL
AgGT19		VIC	UnaCT21F: 0.07 μL
			UnaCT21R: 0.07 μL
			AgGT17F:0.085 μL
			AgGT17R:0.085 μL
			AgGT19F:0.21 μL
			AgGT19R:0.21 μL
			H2o: 1.77 μL
			DNATemplado:1.5 μL
			TERMOCICLADO:
			Activación inicial: 15 min 95°C
			Desnaturalización:30 seg 94°C
			Alineamiento:90 seg 59°C
			Extensión:45seg 72°C
			Nº de cliclos:35
			Extensión final:15min 72°C
			DILUCIÓN PARA SECUENCIADOR 1:1

UnaCT43 UnaCT74	61°C	M13 FAM PET	MASTER MIX. 2x Qiagen Multiplex PCR master mix: 2.5 μL UnaCT74F: 0.5 μL UnaCT43F: 0.5 μL UnaCT43R: 0.05 μL UnaCT43R: 0.05 μL M13FAM: 0.05 μL H2o: 2.25 μL DNATemplado: 1.0 μL TERMOCICLADO: Activación inicial: 15 min 95°C Desnaturalización:30 seg 94°C Alineamiento: 90 seg 61°C Extensión: 90 seg 72°C N° de cliclos: 35 Extensión final: 10 min 72°C DILUCIÓN PARA SECUENCIADOR 1:1
AgGT21	58°C	VIC	MASTER MIX. 2x Qiagen Multiplex PCR master mix: 2.5 μL UnaCT21F: 0.1 μL UnaCT21R: 0.1 μL H2o: 2.3 μL DNATemplado:0.5 μL TERMOCICLADO: Activación inicial: 15 min 95°C Desnaturalización:30 seg 94°C Alineamiento:90 seg 58°C Extensión:90seg 72°C N° de cliclos:35 Extensión final:10 min 72°C DILUCIÓN PARA SECUENCIADOR 1:1
AgGt90	56°C	FAM	MASTER MIX. 2x Qiagen Multiplex PCR master mix: 2.5 μL UnaCT21F: 0.5 μL UnaCT21R: 0.5 μL H2o: 2.5 μL DNATemplado:1.0 μL

TERMOCICLADO:
Activación inicial: 15 min 95°C
Desnaturalización:30 seg 94°C
Alineamiento:90 seg 56°C
Extensión:90seg 72°C
N° de cliclos:40
Extensión final:10 min 72°C
DILUCIÓN PARA SECUENCIADOR 1:1

APÉNDICE V.

Cuadro 8. Matriz de datos de genotipado por individuo obtenida con GENE MARKER HID, GENEMAPPER y TANDEM.

MUESTRA	РОВ	AgG	T17	AgG	T19	AgG	T21	AgG	T90	Una	CT21	Una	CT43	Una	CT74
SP01398	silv	115	117	186	186	185	185	196	196	156	170	215	219	160	160
S10TM	silv	109	115	186	196	185	185	198	198	156	156	215	215	160	160
S5TM	silv	107	117	184	188	187	191	198	198	156	170	215	217	158	160
SCON1R	silv	109	117	188	188	185	193	198	198	156	156	0	0	0	0
SCON2R	silv	109	109	186	196	191	197	194	198	156	156	215	215	160	160
SCON3R	silv	109	109	186	188	185	187	0	0	156	156	215	219	160	160
SJALSILV	silv	109	117	184	196	187	189	194	194	170	170	215	215	160	160
SPAA046	silv	109	117	0	0	181	193	194	196	170	170	215	217	160	160
SP01126	silv	109	121	0	0	0	0	0	0	156	156	0	0	148	160
SP01124	silv	109	109	184	186	185	191	0	0	156	156	217	217	162	162
SP01125	silv	113	113	188	188	189	191	0	0	170	170	0	0	0	0
SGQR	silv	113	121	186	188	193	193	0	0	156	156	215	215	160	160
1rf	rf	113	115	184	186	185	193	194	198	156	170	215	215	160	160
2rf	rf	113	115	184	186	183	191	194	198	156	170	215	217	160	160
3rf	rf	107	109	186	192	189	191	192	194	156	156	215	217	160	160
4rf	rf	109	115	186	196	183	191	194	196	156	170	215	215	160	160
5rf	rf	113	117	184	186	193	197	198	206	156	170	0	0	0	0
6rf	rf	109	117	186	192	187	191	0	0	156	170	215	219	160	162
7rf	rf	109	109	186	186	185	197	196	204	156	170	215	219	160	160
1az	az	113	117	186	196	187	195	198	198	156	156	215	219	160	162
2az	az	107	117	186	186	183	187	196	196	156	156	215	217	160	160
3az	az	109	117	184	196	183	187	194	198	170	170	217	221	160	160
4az	az	109	109	186	186	183	189	196	198	156	156	215	217	158	160
5az	az	109	109	184	196	187	189	194	194	156	170	215	217	160	160
6az	az	0	0	0	0	191	195	0	0	0	0	0	0	0	0
7az	az	107	113	186	196	0	0	196	198	156	156	215	219	160	162
8az	az	0	0	0	0	0	0	196	198	0	0	217	217	160	160
1vf	vf	0	0	0	0	0	0	196	198	0	0	215	217	148	162
2VF	vf	0	0	0	0	0	0	194	198	0	0	215	219	148	162
4vf	vf	109	109	192	196	0	0	194	198	156	156	0	0	0	0
5vf	vf	0	0	0	0	0	0	196	196	0	0	215	217	158	160
6vf	vf	107	109	186	194	189	189	0	0	156	156	0	0	0	0
10zg	zg	113	117	186	186	179	191	196	198	156	170	215	215	158	160

11zg	zg	0	0	0	0	187	197	196	196	0	0	215	215	160	160
12zg	zg	109	117	186	196	183	189	194	198	156	156	215	217	162	162
13zg	zg	109	113	186	192	185	187	194	196	156	170	215	219	160	160
15zg	zg	0	0	186	186	191	195	196	198	156	156	215	215	148	162
16ZG	zg	109	113	186	192	195	197	194	194	156	170	215	217	160	160
17zg	zg	109	109	192	196	189	191	194	196	156	156	215	217	160	160
19zg	zg	107	109	192	196	183	189	194	196	156	156	215	217	160	160
1zg	zg	0	0	0	0	0	0	194	198	0	0	0	0	0	0
3zg	zg	109	113	186	196	0	0	198	198	156	156	215	217	160	162
4zg	zg	0	0	0	0	187	195	194	196	0	0	215	217	148	160
5zg	zg	0	0	0	0	187	195	0	0	0	0	0	0	0	0
7zg	zg	107	109	192	196	187	191	198	198	156	156	215	219	160	160
8zg	zg	107	109	186	186	197	197	194	194	156	156	215	215	148	162
9zg	zg	109	109	192	196	0	0	192	194	156	156	215	217	160	160
10c	civs	113	113	186	194	193	197	194	198	156	156	213	215	160	160
11c	civs	109	117	186	196	189	193	194	194	156	170	217	217	160	160
12c	civs	113	117	186	192	187	193	188	198	156	170	215	219	160	160
13C	civs	0	0	0	0	0	0	194	198	0	0	0	0	0	0
14c	civs	109	113	186	192	185	191	194	198	156	170	217	217	160	164
15c	civs	109	109	186	194	193	193	194	198	156	170	217	219	160	160
16c	civs	107	109	186	186	189	195	190	198	156	156	215	219	160	160
17c	civs	113	117	184	186	189	191	198	198	156	170	217	217	160	162
18c	civs	107	117	192	194	193	197	188	194	156	156	215	217	148	164
19c	civs	107	117	186	186	189	193	196	196	156	156	217	219	160	160
1c	civs	107	109	186	196	185	193	196	198	156	156	213	215	148	148
20c	civs	117	117	184	186	191	195	196	198	156	156	215	219	148	160
21c	civs	109	115	186	186	177	185	194	194	156	163	197	197	0	0
22c	civs	109	117	186	196	187	189	196	198	156	156	215	217	160	160
23c	civs	109	117	186	186	189	193	196	198	156	156	213	215	158	160
24c	civs	107	107	196	196	0	0	0	0	156	156	0	0	0	0
3c	civs	109	117	186	196	0	0	194	204	156	156	0	0	0	0
4c	civs	107	109	186	186	183	187	198	198	156	156	215	219	160	160
5c	civs	107	117	192	194	0	0	0	0	156	156	0	0	0	0
6c	civs	107	109	186	186	191	191	196	198	156	156	0	0	0	0
9c	civs	109	117	186	186	189	191	194	198	170	170	215	215	160	160
10acs	acs	109	109	186	186	183	189	198	198	156	170	215	217	0	0
11acs	acs	109	115	186	196	179	197	194	198	156	170	219	219	160	160
12acs	acs	107	117	186	186	189	195	194	194	149	156	219	219	160	160

13acs	acs	0	0	0	0	189	191	0	0	0	0	213	215	160	160
14acs	acs	109	117	186	196	187	195	0	0	156	170	215	217	162	162
1acs	acs	0	0	0	0	185	189	200	206	0	0	217	217	160	160
2acs	acs	117	117	196	196	189	197	0	0	156	156	0	0	0	0
3acs	acs	107	109	186	186	185	189	194	198	156	156	215	217	162	162
4acs	acs	107	109	186	186	185	191	192	194	156	156	215	219	158	160
5acs	acs	109	117	196	196	185	197	196	198	156	156	217	217	160	160
6acs	acs	109	109	184	194	0	0	194	196	156	156	215	217	160	160
7acs	acs	107	109	186	186	185	189	194	198	156	156	215	215	160	160
8acs	acs	109	115	186	186	185	187	194	198	156	156	0	0	0	0
9acs	acs	107	117	186	186	183	187	0	0	156	156	0	0	0	0
10x	xcar	109	117	186	192	189	193	190	196	156	156	217	219	160	160
11x	xcar	107	109	186	196	0	0	0	0	156	156	0	0	0	0
12x	xcar	107	109	186	192	191	191	196	208	156	156	215	217	160	160
13x	xcar	115	117	186	186	0	0	196	198	156	156	0	0	0	0
14x	xcar	109	117	186	196	185	193	194	198	156	156	215	217	160	164
15x	xcar	109	117	186	196	187	191	194	196	156	156	215	219	160	160
16x	xcar	107	117	192	196	189	193	198	200	156	156	217	217	160	162
17x	xcar	107	113	186	192	187	191	194	198	156	156	215	217	162	162
18x	xcar	113	117	186	192	0	0	188	198	156	170	217	217	160	160
19x	xcar	109	117	184	186	191	193	190	194	156	156	215	217	160	160
1x	xcar	107	115	186	196	183	195	198	198	156	170	215	215	160	160
20x	xcar	107	115	186	186	0	0	194	198	156	170	0	0	0	0
21x	xcar	107	109	192	196	185	193	196	208	156	156	215	217	160	160
22x	xcar	107	109	186	196	183	195	198	198	156	170	215	215	160	160
23x	xcar	107	109	192	196	185	189	194	208	156	156	217	219	160	160
24x	xcar	107	107	186	196	183	195	194	194	156	156	217	217	160	162
26x	xcar	109	109	186	196	185	195	198	198	156	170	215	219	160	160
27x	xcar	109	109	186	186	193	197	194	208	156	156	215	217	160	160
28x	xcar	117	117	186	192	189	191	198	198	156	156	215	215	160	164
29x	xcar	107	109	196	196	183	195	198	208	156	156	215	217	160	160
2x	xcar	109	113	186	196	187	189	196	198	156	156	219	219	148	164
30x	xcar	109	117	192	196	185	191	194	198	156	156	215	217	160	164
3x	xcar	109	117	186	196	195	195	198	198	156	156	215	217	160	160
4x	xcar	107	109	186	196	187	197	194	198	156	156	215	215	160	160
5x	xcar	109	109	186	186	187	197	198	198	156	170	213	215	160	160
6x	xcar	107	109	196	196	195	195	194	198	156	156	215	219	160	160
7x	xcar	109	113	186	186	0	0	196	198	156	170	0	0	0	0

8x	xcar	109	113	186	200	0	0	198	198	156	170	0	0	0	0
9x	xcar	117	117	186	186	195	195	198	198	156	170	215	219	160	160

^{*}silv. Grupo de ejemplares silvestres.

rf. Grupo de individuos de la UMA Reavyfeex

az. Grupo de individuos del Zoológico Agua azul.

Vf .Grupo de individuos del Zoológico Villa Fantasía.

zg. Grupo de individuos del Zoológico de Guadalajara.

civs. Grupo de individuos del CIVS, Guadalajara.

Xcar. Grupo de individuos de Xcaret.

Acs.Grupo de individuos de Africam Safari

APÉNDICE VI.

A	D 1	1 C +:	AgGT17	AgGT19	AgGT21	AgGT90	UnaCT21	UnaCT43	UnaCT74	DOD CENTE A IE 1/100
Muestra	Pob	Genotipo								PORCENTAJE 1/100
SP01398	silv	115117186186185185196196156 170215219160160g	3.5E-02	4.3E-03	4.3E-04	2.0E-05	8.8E-06	1.3E-06	8.3E-07	0.00008332483079957830%
510TM	silv	109115186196185185198198156 156215215160160g	7.6E-02	8.0E-03	8.1E-04	2.0E-04	9.0E-05	4.0E-05	2.6E-05	0.00256640478862701000%
5TM	silv	107117184188187191198198156 170215217158160g	1.7E-02	1.8E-03	9.0E-05	2.3E-05	1.0E-05	3.0E-06	2.4E-07	0.00002380709451416520%
CON1R	silv	109117188188185193198198156 1560000g	1.9E-01	2.3E-02	2.7E-03	6.8E-04	3.0E-04	3.0E-04	3.0E-04	0.03007505611672280000%
CON2R	silv	109109186196191197194198156 156215215160160g	2.1E-01	2.2E-02	3.6E-04	1.0E-04	4.6E-05	2.1E-05	1.3E-05	0.00131687242798354000%
CON3R	silv	109109186188185187001561562 15219160160g	2.1E-01	5.1E-02	4.5E-03	4.5E-03	2.0E-03	2.9E-04	1.9E-04	0.01882030178326470000%
JALSILV	silv	109117184196187189194194170 170215215160160g	1.9E-01	8.6E-03	2.1E-04	1.7E-05	1.9E-06	8.6E-07	5.5E-07	0.00005497148354291210%
PAA046	silv	109117001811931941961701702 15217160160g	1.9E-01	1.9E-01	3.2E-03	3.9E-04	4.3E-05	1.3E-05	8.1E-06	0.00081439234878388300%
P01126	silv	10912100000015615600148160g	7.6E-02	7.6E-02	7.6E-02	7.6E-02	3.4E-02	3.4E-02	2.7E-03	0.27160493827160500000%
SP01124	silv	109109184186185191001561562 17217162162g	2.1E-01	2.2E-02	2.6E-03	2.6E-03	1.1E-03	5.6E-05	5.6E-07	0.00005601280292638320%
SP01125	silv	113113188188189191001701700 000g	1.6E-02	1.9E-03	6.3E-05	6.3E-05	7.0E-06	7.0E-06	7.0E-06	0.00070305325987144200%
GQR	silv	113121186188193193001561562 15215160160g	2.1E-02	5.1E-03	1.7E-04	1.7E-04	7.5E-05	3.3E-05	2.1E-05	0.00213311566846920000%
rf	rf	113115184186185193194198156 170215215160160g	9.2E-02	2.2E-02	9.2E-04	1.5E-04	7.5E-05	3.3E-05	2.8E-05	0.00279859327899321000%
rf	rf	113115184186183191194198156 170215217160160g	9.2E-02	2.2E-02	1.8E-03	3.1E-04	1.5E-04	3.3E-05	2.8E-05	0.00279859327899321000%
rf	rf	107109186192189191192194156 156215217160160g	5.1E-02	8.3E-03	3.4E-04	1.9E-05	6.2E-06	1.4E-06	1.2E-06	0.00011516844769519400%
rf	rf	109115186196183191194196156 170215215160160g	1.5E-01	1.2E-02	1.0E-03	1.1E-04	5.6E-05	2.5E-05	2.1E-05	0.00207303205851349000%
rf	rf	113117184186193197198206156 1700000g	6.1E-02	1.5E-02	6.1E-04	2.5E-05	1.2E-05	1.2E-05	1.2E-05	0.00124895898401350000%
rf	rf	109117186192187191001561702 15219160162g	1.0E-01	1.7E-02	6.8E-04	6.8E-04	3.3E-04	7.4E-05	1.1E-05	0.00113074475918918000%
rf	rf	109109186186185197196204156 170215219160160g	1.3E-01	4.2E-02	1.7E-03	4.7E-05	2.3E-05	5.1E-06	4.3E-06	0.00043188167885697700%
az	az	113117186196187195198198156 156215219160162g	8.3E-02	2.8E-02	3.1E-03	5.7E-04	3.2E-04	3.3E-05	7.3E-06	0.00073045669746449200%
az	az	107117186186183187196196156	8.3E-02	2.1E-02	3.5E-03	4.4E-04	2.5E-04	7.6E-05	4.7E-05	0.00470802168287661000%

		156215217160160g								
3az	az	109117184196183187194198170 170217221160160g	2.1E-01	2.3E-02	3.9E-03	7.1E-04	4.4E-05	2.7E-06	1.7E-06	0.00016739632650227900%
4az	az	109109186186183189196198156 156215217158160g	1.7E-01	4.3E-02	3.6E-03	1.1E-03	6.2E-04	1.9E-04	2.1E-05	0.00214000985585300000%
5az	az	109109184196187189194194156 170215217160160g	1.7E-01	1.9E-02	2.1E-03	9.8E-05	3.7E-05	1.1E-05	7.0E-06	0.00069748469375949700%
6az	az	000019119500000000g	1.0E+00	1.0E+00	2.8E-02	2.8E-02	2.8E-02	2.8E-02	2.8E-02	2.7777777777778000000%
7az	az	107113186196001961981561562 15219160162g	5.6E-02	1.9E-02	1.9E-02	5.7E-03	3.2E-03	3.3E-04	7.3E-05	0.00730456697464492000%
8az	az	00000019619800217217160160g	1.0E+00	1.0E+00	1.0E+00	3.1E-01	3.1E-01	5.6E-02	3.5E-02	3.47113022635126000000%
1vf	vf	00000019619800215217148162g	1.0E+00	1.0E+00	1.0E+00	2.8E-01	2.8E-01	9.4E-02	2.1E-02	2.08333333333333000000%
2VF	vf	00000019419800215219148162g	1.0E+00	1.0E+00	1.0E+00	1.9E-01	1.9E-01	3.1E-02	6.9E-03	0.69444444444444400000%
4vf	vf	109109192196001941981561560 000g	5.6E-01	7.0E-02	7.0E-02	1.3E-02	1.3E-02	1.3E-02	1.3E-02	1.318359375000000000000%
5vf	vf	00000019619600215217158160g	1.0E+00	1.0E+00	1.0E+00	1.4E-01	1.4E-01	4.7E-02	2.6E-03	0.26041666666666700000%
6vf	vf	107109186194189189001561560 000g	3.8E-01	4.7E-02	4.7E-02	4.7E-02	4.7E-02	4.7E-02	4.7E-02	4.6875000000000000000000%
10zg	zg	113117186186179191196198156 170215215158160g	4.0E-02	8.3E-03	1.1E-04	1.9E-05	4.4E-06	1.9E-06	9.5E-08	0.00000949115132647870%
11zg	zg	000018719719619600215215160 160g	1.0E+00	1.0E+00	6.9E-02	5.7E-03	5.7E-03	2.4E-03	1.0E-03	0.10361048647835800000%
12zg	zg	109117186196183189194198156 156215217162162g	1.1E-01	2.7E-02	5.7E-04	1.3E-04	9.5E-05	3.3E-05	1.2E-06	0.00012387091665524000%
13zg	zg	109113186192185187194196156 170215219160160g	2.2E-01	5.5E-02	9.5E-04	2.1E-04	5.0E-05	5.0E-06	2.2E-06	0.00021533049571948500%
15zg	zg	001861861911951961981561562 15215148162g	1.0E+00	2.1E-01	1.1E-02	1.9E-03	1.4E-03	6.0E-04	2.7E-05	0.00265193934122199000%
16ZG	zg	109113186192195197194194156 170215217160160g	2.2E-01	5.5E-02	3.0E-03	4.7E-04	1.1E-04	3.9E-05	1.7E-05	0.00165804481704004000%
17zg	zg	109109192196189191194196156 156215217160160g	3.0E-01	4.5E-02	1.9E-03	4.2E-04	3.1E-04	1.1E-04	4.7E-05	0.00472542772856411000%
19zg	zg	107109192196183189194196156 156215217160160g	1.7E-01	2.5E-02	5.1E-04	1.1E-04	8.6E-05	3.0E-05	1.3E-05	0.00128875301688112000%
1zg	zg	000000194198000000g	1.0E+00	1.0E+00	1.0E+00	2.2E-01	2.2E-01	2.2E-01	2.2E-01	22.44897959183670000000%
3zg	zg	109113186196001981981561562 15217160162g	2.2E-01	5.5E-02	5.5E-02	4.5E-03	3.3E-03	1.2E-03	2.9E-04	0.02940470341546940000%
4zg	zg	000018719519419600215217148 160g	1.0E+00	1.0E+00	6.9E-02	1.6E-02	1.6E-02	5.5E-03	8.3E-04	0.08281668642387810000%
5zg	zg	000018719500000000g	1.0E+00	1.0E+00	6.9E-02	6.9E-02	6.9E-02	6.9E-02	6.9E-02	6.94444444444444000000%
7zg	zg	107109192196187191198198156 156215219160160g	1.7E-01	2.5E-02	1.7E-03	1.4E-04	1.0E-04	1.0E-05	4.5E-06	0.00044632139112766100%

8zg	zg	107109186186197197194194156 156215215148162g	1.7E-01	3.4E-02	9.5E-04	1.5E-04	1.1E-04	4.7E-05	2.1E-06	0.00020682019120116000%
9zg	zg	109109192196001921941561562 15217160160g	3.0E-01	4.5E-02	4.5E-02	1.3E-03	9.4E-04	3.3E-04	1.4E-04	0.01417628318569230000%
10c	civs	113113186194193197194198156 156213215160160g	1.6E-02	1.9E-03	5.8E-05	1.4E-05	9.1E-06	5.9E-07	3.2E-07	0.00003157535296993170%
11c	civs	109117186196189193194194156 170217217160160g	2.0E-01	3.5E-02	3.8E-03	3.2E-04	9.0E-05	8.8E-06	4.7E-06	0.00047141015254327600%
12c	civs	113117186192187193188198156 170215219160160g	7.5E-02	9.0E-03	4.2E-04	1.9E-05	5.2E-06	6.7E-07	3.6E-07	0.00003616813158373990%
13C	civs	000000194198000000g	1.0E+00	1.0E+00	1.0E+00	2.4E-01	2.4E-01	2.4E-01	2.4E-01	24.37673130193910000000%
14c	civs	109113186192185191194198156 170217217160164g	8.1E-02	9.8E-03	3.0E-04	7.4E-05	2.1E-05	2.0E-06	2.0E-07	0.00001978896088335940%
15c	civs	109109186194193193194198156 170217219160160g	1.1E-01	1.3E-02	8.9E-04	2.2E-04	6.1E-05	7.1E-06	3.8E-06	0.00038202588985325300%
16c	civs	107109186186189195190198156 156215219160160g	1.5E-01	5.3E-02	1.3E-03	2.8E-05	1.8E-05	2.3E-06	1.3E-06	0.00012538285615696500%
17c	civs	113117184186189191198198156 170217217160162g	7.5E-02	4.5E-03	3.3E-04	5.8E-05	1.6E-05	1.6E-06	7.7E-08	0.00000774952314313374%
18c	civs	107117192194193197188194156 156215217148164g	1.4E-01	2.7E-03	8.4E-05	2.6E-06	1.6E-06	3.5E-07	6.3E-09	0.00000062628799279203%
19c	civs	107117186186189193196196156 156217219160160g	1.4E-01	4.9E-02	5.3E-03	1.8E-04	1.2E-04	1.3E-05	7.3E-06	0.00072500663765587700%
1c	civs	107109186196185193196198156 156213215148148g	1.5E-01	2.6E-02	1.2E-03	1.9E-04	1.2E-04	7.9E-06	1.4E-07	0.00001398899634809110%
20c	civs	117117184186191195196198156 156215219148160g	9.0E-02	5.4E-03	1.1E-04	1.7E-05	1.1E-05	1.4E-06	2.8E-07	0.00002805770207708310%
21c	civs	109115186186177185194194156 16319719700g	1.6E-02	5.9E-03	3.0E-05	2.5E-06	1.0E-07	4.0E-10	4.0E-10	0.00000003975460891746%
22c	civs	109117186196187189196198156 156215217160160g	2.0E-01	3.5E-02	1.3E-03	2.0E-04	1.3E-04	2.7E-05	1.5E-05	0.00146279998849792000%
23c	civs	109117186186189193196198156 156213215158160g	2.0E-01	7.0E-02	7.7E-03	1.2E-03	7.6E-04	4.9E-05	2.4E-06	0.00023936727084511500%
24c	civs	10710719619600001561560000g	5.1E-02	1.1E-03	1.1E-03	1.1E-03	7.3E-04	7.3E-04	7.3E-04	0.072900000000000000000%
3c	civs	109117186196001942041561560 000g	2.0E-01	3.5E-02	3.5E-02	5.3E-04	3.4E-04	3.4E-04	3.4E-04	0.03422493074792240000%
4c	civs	107109186186183187198198156 156215219160160g	1.5E-01	5.3E-02	2.7E-04	4.8E-05	3.1E-05	4.0E-06	2.1E-06	0.00021494203912622600%
5c	civs	10711719219400001561560000g	1.4E-01	2.7E-03	2.7E-03	2.7E-03	1.7E-03	1.7E-03	1.7E-03	0.172800000000000000000%
6c	civs	107109186186191191196198156 1560000g	1.5E-01	5.3E-02	1.6E-03	2.5E-04	1.6E-04	1.6E-04	1.6E-04	0.01627810484141510000%
9c	civs	109117186186189191194198170 170215215160160g	2.0E-01	7.0E-02	5.1E-03	1.2E-03	3.8E-05	4.5E-06	2.4E-06	0.00024199054497221500%
10acs	acs	109109186186183189198198156 17021521700g	2.1E-01	9.3E-02	3.9E-03	4.7E-04	9.9E-05	2.6E-05	2.6E-05	0.00261006404168797000%

0.00	100115186106170107104108156	7.6F.02	2.5E.02	2.3E.04	6.3E.05	1.3E.05	6 8E 07	3 8F 07	0.00003830429386318810%
acs	170219219160160g								
acs	107117186186189195194194149 156219219160160g	1.0E-01	4.6E-02	1.9E-03	3.1E-04	2.1E-05	1.1E-06	6.2E-07	0.00006190592947585960%
acs	00001891910000213215160160g	1.0E+00	1.0E+00	4.1E-02	4.1E-02	4.1E-02	1.4E-03	7.7E-04	0.07702088121668540000%
acs	109117186196187195001561702 15217162162g	2.3E-01	7.6E-02	1.4E-03	1.4E-03	2.8E-04	7.5E-05	3.0E-06	0.00029884645269260700%
acs	000018518920020600217217160 160g	1.0E+00	1.0E+00	1.2E-01	6.2E-04	6.2E-04	8.2E-05	4.6E-05	0.00462125287300113000%
acs	117117196196189197001561560 000g	6.3E-02	3.9E-03	2.4E-04	2.4E-04	1.7E-04	1.7E-04	1.7E-04	0.01685388929980280000%
acs	107109186186185189194198156 156215217162162g	1.9E-01	8.5E-02	1.1E-02	3.0E-03	2.1E-03	5.4E-04	2.2E-05	0.00216940387880559000%
acs	107109186186185191192194156	1.9E-01	8.5E-02	3.0E-03	1.2E-04	8.4E-05	1.4E-05	1.0E-06	0.00010376612940715500%
acs	109117196196185197196198156	2.3E-01	1.4E-02	7.6E-04	5.3E-05	3.7E-05	4.9E-06	2.8E-06	0.00027579091581495400%
acs	109109184194001941961561562	2.1E-01	7.3E-04	7.3E-04	5.8E-05	4.1E-05	1.1E-05	6.0E-06	0.00060281635802469100%
acs	107109186186185189194198156	1.9E-01	8.5E-02	1.1E-02	3.0E-03	2.1E-03	2.7E-04	1.5E-04	0.01525362102285180000%
acs	109115186186185187194198156	7.6E-02	3.4E-02	1.8E-03	5.1E-04	3.5E-04	3.5E-04	3.5E-04	0.03515596464314410000%
acs	107117186186183187001561560	1.0E-01	4.6E-02	8.2E-04	8.2E-04	5.7E-04	5.7E-04	5.7E-04	0.05707137117393530000%
xcar	109117186192189193190196156	1.8E-01	2.8E-02	7.8E-04	7.0E-06	5.0E-06	5.9E-07	3.9E-07	0.00003884602797654870%
xcar	10710918619600001561560000g	1.9E-01	5.9E-02	5.9E-02	5.9E-02	4.2E-02	4.2E-02	4.2E-02	4.24043650601924000000%
xcar	107109186192191191196208156 156215217160160g	1.9E-01	3.0E-02	6.9E-04	1.5E-05	1.1E-05	3.6E-06	2.3E-06	0.00023488151210820200%
xcar	115117186186001961981561560 000g	2.3E-02	5.8E-03	5.8E-03	7.2E-04	5.2E-04	5.2E-04	5.2E-04	0.05171598611442980000%
xcar	109117186196185193194198156 156215217160164g	1.8E-01	5.5E-02	1.6E-03	3.4E-04	2.4E-04	7.8E-05	1.1E-05	0.00105183091136501000%
xcar	109117186196187191194196156	1.8E-01	5.5E-02	1.8E-03	9.8E-05	7.0E-05	1.1E-05	7.0E-06	0.00070379862451629400%
xcar	107117192196189193198200156	1.1E-01	1.0E-02	3.0E-04	5.3E-06	3.8E-06	4.7E-07	6.4E-08	0.00000639743143241974%
xcar	107113186192187191194198156	4.2E-02	6.5E-03	2.1E-04	4.6E-05	3.3E-05	1.1E-05	7.4E-08	0.00000736639434252144%
xcar	113117186192001881981561702	3.9E-02	6.0E-03	6.0E-03	1.1E-04	2.8E-05	3.5E-06	2.3E-06	0.00023248158579842700%
xcar	109117184186191193190194156	1.8E-01	3.1E-03	1.2E-04	1.9E-06	1.3E-06	4.3E-07	2.8E-07	0.00002848708718280240%
xcar	107115186196183195198198156	2.5E-02	7.7E-03	3.2E-04	8.1E-05	2.1E-05	4.4E-06	2.9E-06	0.00029295239449526800%
	acs	170219219160160g	170219219160160g acs	170219219160160g acs 107117186186189195194194149 1.0E-01 4.6E-02 156219219160160g acs 00001891910000213215160160g 1.0E+00 1.0E+00 acs 109117186196187195001561702 2.3E-01 7.6E-02 15217162162g acs 000018518920020600217217160 1.0E+00 1.0E+00 160g acs 117117196196189197001561560 6.3E-02 3.9E-03 000g acs 107109186186185189194198156 1.9E-01 8.5E-02 156215217162162g acs 107109186186185197192194156 1.9E-01 8.5E-02 156215219158160g acs 109117196196185197196198156 2.3E-01 1.4E-02 156217217160160g acs 1091091841944001941961561562 2.1E-01 7.3E-04 15217160160g acs 109109184194001941961561562 2.1E-01 7.3E-04 15217560160g acs 109115186186185189194198156 1.9E-01 8.5E-02 156215219150160g acs 109115186186185189194198156 7.6E-02 3.4E-02 156215217160160g acs 109117186192189193190196156 1.8E-01 2.8E-02 156215217160160g acs 109117186192189193190196156 1.8E-01 2.8E-02 156215217160160g acs 107109186192191191196208156 1.9E-01 3.0E-02 156215217160160g acs 107117186196185193194198156 1.9E-01 3.0E-02 156215217160160g acs 107117186196185193194198156 1.8E-01 5.5E-02 156215217160160g acs 107117186196185193194198156 1.8E-01 5.5E-02 156215217160160g acs 107117186196187191194196156 1.8E-01 5.5E-02 156215217160160g acs 107117186196187191194198156 1.8E-01 5.5E-02 156215217160160g acs 107117186196187191194198156 1.8E-01 5.5E-02 156215217160160g acs 107117186192187191194198156 1.8E-01 3.0E-02 156215217160160g acs 1071171861961881981956 2.5E-02 6.0E-03 17217160160g acs 107115186196183195198198156 2.5E-02 7.7E-03 acs 107115186196183195198	170219219160160g	170219219160160g	170219219160160g	170219219160160g	acs 00001871910000215215160160g 1.0E+00 1.0E+00 4.1E+02 4.1E+03 4.1E+02 4.1E+03 7.7E+04 acs 00001891910000215215160160g 1.0E+00 1.0E+00 4.1E+03 4.1E+03 4.1E+02 4.1E+03 7.7E+04 acs 00001891910000215215160160g 2.3E+01 7.6E+02 1.4E+03 1.4E+03 2.8E+04 7.5E+05 3.0E+06 15217162162g acs 00001851890020600217217160 1.0E+00 1.0E+00 1.2E+01 6.2E+04 6.2E+04 8.2E+05 4.6E+05 1608g acs 1171171961981997001561560 6.3E+02 3.9E+03 2.4E+04 2.4E+04 1.7E+04 1.7E+04 1.7E+04 0.00g acs 107109186186185189194198156 1.9E+01 8.5E+02 3.0E+03 1.2E+04 8.4E+05 1.4E+05 1.0E+06 1.56215217162162g acs 107109186186185191192194156 1.9E+01 8.5E+02 3.0E+03 1.2E+04 8.4E+05 1.4E+05 1.0E+06 1.5621521918160g acs 109117196196185197196198156 2.3E+01 1.4E+02 7.6E+04 5.3E+05 3.7E+05 4.9E+06 2.8E+06 1.56217217160160g acs 109109184194001941961561562 2.1E+01 7.3E+04 7.3E+04 5.8E+05 4.1E+05 1.1E+05 6.0E+06 1.5217160160g acs 109109184194001941961561562 2.1E+01 7.3E+04 7.3E+04 5.8E+05 4.1E+05 1.1E+05 6.0E+06 1.562152115186186185189194198156 1.9E+01 8.5E+02 1.1E+02 3.0E+03 3.5E+04 3.5E+0

20x	xcar	107115186186001941981561700 000g	2.5E-02	6.2E-03	6.2E-03	1.3E-03	3.5E-04	3.5E-04	3.5E-04	0.03507269387980170000%
21x	xcar	107109192196185193196208156 156215217160160g	1.9E-01	1.8E-02	5.2E-04	1.2E-05	8.3E-06	2.7E-06	1.8E-06	0.00017851656092671200%
22x	xcar	107109186196183195198198156 170215215160160g	1.9E-01	5.9E-02	2.5E-03	6.2E-04	1.6E-04	3.4E-05	2.2E-05	0.00224596835779705000%
23x	xcar	107109192196185189194208156 156217219160160g	1.9E-01	1.8E-02	4.4E-04	1.7E-05	1.2E-05	1.4E-06	9.3E-07	0.00009273587580608440%
24x	xcar	107107186196183195194194156 156217217160162g	5.8E-02	1.8E-02	7.5E-04	3.5E-05	2.5E-05	3.1E-06	4.2E-07	0.00004186216670650040%
26x	xcar	109109186196185195198198156 170215219160160g	1.6E-01	4.9E-02	2.5E-03	6.3E-04	1.7E-04	2.5E-05	1.7E-05	0.00167718416329001000%
27x	xcar	109109186186193197194208156 156215217160160g	1.6E-01	3.9E-02	6.7E-04	2.6E-05	1.8E-05	5.9E-06	3.9E-06	0.00039150179569222200%
28x	xcar	117117186192189191198198156 156215215160164g	5.0E-02	7.8E-03	2.6E-04	6.4E-05	4.6E-05	9.7E-06	1.3E-06	0.00013089974417332000%
29x	xcar	107109196196183195198208156 156215217160160g	1.9E-01	1.8E-02	7.7E-04	6.8E-05	4.9E-05	1.6E-05	1.0E-05	0.00104729715743671000%
2x	xcar	109113186196187189196198156 156219219148164g	6.8E-02	2.1E-02	5.0E-04	6.3E-05	4.5E-05	1.2E-06	4.3E-09	0.00000043144148173668%
30x	xcar	109117192196185191194198156 156215217160164g	1.8E-01	1.7E-02	5.7E-04	1.2E-04	8.7E-05	2.8E-05	3.8E-06	0.00038083532997698700%
3x	xcar	109117186196195195198198156 156215217160160g	1.8E-01	5.5E-02	3.2E-03	7.9E-04	5.6E-04	1.8E-04	1.2E-04	0.01206428142191680000%
4x	xcar	107109186196187197194198156 156215215160160g	1.9E-01	5.9E-02	8.4E-04	1.8E-04	1.3E-04	2.7E-05	1.8E-05	0.00178656573915675000%
5x	xcar	109109186186187197198198156 170213215160160g	1.6E-01	3.9E-02	5.6E-04	1.4E-04	3.7E-05	7.0E-07	4.6E-07	0.00004605903478732020%
6x	xcar	107109196196195195194198156 156215219160160g	1.9E-01	1.8E-02	1.1E-03	2.3E-04	1.6E-04	2.5E-05	1.6E-05	0.00162639087978407000%
7x	xcar	109113186186001961981561700 000g	6.8E-02	1.7E-02	1.7E-02	2.1E-03	5.6E-04	5.6E-04	5.6E-04	0.05601888605801660000%
8x	xcar	109113186200001981981561700 000g	6.8E-02	1.2E-03	1.2E-03	2.9E-04	7.7E-05	7.7E-05	7.7E-05	0.00772674290455401000%
9x	xcar	117117186186195195198198156 170215219160160g	5.0E-02	1.3E-02	7.2E-04	1.8E-04	4.7E-05	7.2E-06	4.7E-06	0.00047478825576101400%

APÉNDICE VII.

Cuadro 10. Aproximación del grado de Parentesco entre pares de individuos de los diferentes grupos de cautiverio con GENALEX 6.3 (Estimador QGM : Queller y Goodnight 1989)

Africam Safari				Zoo Guadalaj	ara		
Muestras	1	2	QGM	Muestras	1	2	QGM
	2acs	5acs	0.720		12zg	1zg	1.000
	3acs	8acs	0.548		4zg	5zg	1.000
	7acs	8acs	0.548		17zg	9zg	0.805
	13acs	7acs	0.527		17zg	19zg	0.667
	1acs	5acs	0.512		1zg	3zg	0.650
	4acs	7acs	0.454		1zg	7zg	0.650
	13acs	6acs	0.447		16ZG	1zg	0.588
	4acs	8acs	0.391		1zg	8zg	0.588
	10acs	3acs	0.371		19zg	9zg	0.586
	3acs	7acs	0.358		10zg	15zg	0.563
	8acs	9acs	0.326		11zg	13zg	0.513
	12acs	9acs	0.323		16ZG	9zg	0.422
	10acs	7acs	0.316		12zg	3zg	0.372
	4acs	9acs	0.311		15zg	8zg	0.347
	14acs	3acs	0.286		10zg	11zg	0.339
	3acs	9acs	0.272		16ZG	4zg	0.329
	7acs	9acs	0.272		13zg	16ZG	0.313
	5acs	6acs	0.260		11zg	19zg	0.298
	11acs	12acs	0.234		11zg	4zg	0.292
	1acs	6acs	0.233		11zg	17zg	0.286
	13acs	2acs	0.211		13zg	5zg	0.267
	12acs	4acs	0.178		3zg	7zg	0.259
	10acs	8acs	0.176		15zg	5zg	0.225
	3acs	4acs	0.165		16ZG	5zg	0.225
	6acs	7acs	0.132		16ZG	17zg	0.210
	10acs	14acs	0.114		16ZG	8zg	0.208
	12acs	13acs	0.107		11zg	5zg	0.200
	12acs	7acs	0.099		5zg	7zg	0.200
	1acs	2acs	0.094		15zg	3zg	0.181
	14acs	2acs	0.085		12zg	8zg	0.149
	11acs	8acs	0.067		16ZG	19zg	0.148
	10acs	13acs	0.059		7zg	9zg	0.139

-						
		4acs	0.043	13zg		
	13acs	1acs	0.020	17zg	7zg	0.126
	11acs	5acs	-0.009	13zg	9zg	0.121
	10acs	1acs	-0.029	13zg	4zg	0.109
	10acs	9acs	-0.043	12zg	15zg	0.104
	14acs	9acs	-0.047	11zg	9zg	0.094
	1acs	7acs	-0.067	11zg	7zg	0.076
	10acs	6acs	-0.077	10zg	3zg	0.076
	10acs	11acs	-0.087	19zg	4zg	0.070
	11acs	13acs	-0.092	19zg	7zg	0.062
	11acs	2acs	-0.094	13zg	7zg	0.047
	12acs	8acs	-0.106	17zg	4zg	0.045
	14acs	8acs	-0.119	4zg	9zg	0.043
	12acs	1acs	-0.129	13zg	19zg	0.037
	14acs	5acs	-0.143	11zg	16ZG	0.019
	2acs	9acs	-0.145	11zg	15zg	0.015
	10acs	4acs	-0.146	1zg	5zg	0.000
	4acs	6acs	-0.156	3zg	5zg	0.000
	11acs	4acs	-0.165	5zg	9zg	0.000
	10acs	5acs	-0.165	10zg	8zg	-0.029
	6acs	8acs	-0.173	11zg	8zg	-0.051
	11acs	7acs	-0.183	10zg	13zg	-0.086
	13acs	5acs	-0.191	15zg	4zg	-0.102
	12acs	2acs	-0.199	4zg	8zg	-0.126
	1acs	3acs	-0.202	10zg	7zg	-0.158
	12acs	3acs	-0.205	12zg	19zg	-0.174
	11acs	6acs	-0.232	10zg	12zg	-0.207
	2acs	6acs	-0.243	1zg	9zg	-0.215
	5acs	7acs	-0.252	3zg	9zg	-0.222
	5acs	8acs	-0.267	12zg	17zg	-0.224
	11acs	1acs	-0.267	13zg	8zg	-0.259
	3acs	6acs	-0.275	10zg	16ZG	-0.270
	3acs	5acs	-0.332	16ZG	3zg	-0.271
	12acs	6acs	-0.348	15zg	7zg	-0.279
	1acs	8acs	-0.366	17zg	3zg	-0.289
	5acs	9acs	-0.375	16ZG	7zg	-0.306
	10acs	12acs	-0.380	12zg	9zg	-0.311
	13acs	9acs	-0.384	11zg	3zg	-0.314
	1acs	4acs	-0.384	3zg	8zg	-0.314

	14acs	1acs	-0.440		10zg	1zg	-0.361
	12acs	5acs	-0.452		15zg	1zg	-0.361
	14acs	6acs	-0.460		8zg	9zg	-0.369
	14acs	7acs	-0.466		12zg	16ZG	-0.371
	4acs	5acs	-0.471		19zg	8zg	-0.377
	13acs	3acs	-0.492		12zg	7zg	-0.386
	11acs	14acs	-0.518		13zg	15zg	-0.389
	2acs	3acs	-0.524		15zg	16ZG	-0.400
	2acs	7acs	-0.524		5zg	8zg	-0.400
	13acs	8acs	-0.529		17zg	8zg	-0.412
	12acs	14acs	-0.532		10zg	17zg	-0.416
	11acs	9acs	-0.551		10zg	5zg	-0.432
	11acs	3acs	-0.560		12zg	5zg	-0.432
	2acs	8acs	-0.580		19zg	5zg	-0.432
	14acs	4acs	-0.595		4zg	7zg	-0.461
	6acs	9acs	-0.616		10zg	4zg	-0.473
	10acs	2acs	-0.616		19zg	3zg	-0.500
	1acs	9acs	-0.619		7zg	8zg	-0.503
	2acs	4acs	-0.620		17zg	5zg	-0.506
	13acs	14acs	-0.656		13zg	3zg	-0.518
Promedio			-0.095		10zg	19zg	-0.539
Mediana			-0.129		13zg	1zg	-0.556
Desviación Estánda	ar		0.340		17zg	1zg	-0.556
					19zg	1zg	-0.556
XCARET					1zg	4zg	-0.556
Muestras	1	2	QGM		11zg	12zg	-0.585
	11x	22x	1.000		15zg	17zg	-0.588
	11x	4x	1.000		12zg	4zg	-0.621
	1x	22x	0.870		10zg	9zg	-0.704
	2x	7x	0.736		12zg	13zg	-0.707
	13x	9x	0.718		15zg	19zg	-0.733
	3x	9x	0.717		3zg	4zg	-0.945
	11x	29x	0.713		15zg	9zg	-0.975
	11x	6x	0.713		11zg	1zg	-1.256
	11x	24x	0.707	Promedio			-0.080
	5x	7x	0.688	Mediana			-0.051
	5x	8x	0.688	Desviación Es	tándar		0.425
	11x	26x	0.642				
	29x	6x	0.620	Villa Fanta	sía		

26x 3x 0.597 2VF 4vf 1.000 22x 3x 0.591 1vf 6vf 0.000 22x 2yx 0.581 2VF 6vf 0.000 26x 8x 0.568 5vf 6vf 0.000 26x 8x 0.562 1vf 2VF -0.147 11x 27x 0.547 1vf 4vf -0.667 11x 5x 0.547 4vf 6vf -1.000 4x 5x 0.536 2VF 5vf -1.040 21x 23x 0.518 Promedio -0.313 13x 20x 0.514 Promedio -0.147 26x 6x 0.504 Desviación Estándar 0.656 13x 7x 0.498 Auge Parque Agua Azul 3x 6x 0.496 Parque Agua Azul 0.656 13x 7x 0.498 Parque Agua Azul 0.656 1x <th>22x</th> <th>26x</th> <th>0.599</th> <th>Muestras</th> <th>1</th> <th>2</th> <th>QGM</th>	22x	26x	0.599	Muestras	1	2	QGM
22x 29x 0.581 2VF 6vf 0.000 22x 4x 0.568 5vf 6vf 0.000 26x 8x 0.562 1vf 2VF -0.147 26x 5x 0.549 1vf 5vf -0.147 11x 27x 0.547 1vf 4vf -0.667 11x 5x 0.536 2VF 5vf -1.040 21x 23x 0.518 4vf 5vf -1.133 14x 30x 0.514 Promedio -0.313 13x 20x 0.511 Mediana -0.147 26x 6x 0.504 Desviación Estándar 0.656 13x 7x 0.498 Parque Agua Azul 3x 6x 0.494 Muestras 1 2 QGM 7x 8x 0.486 1az 7az 0.541 1x 20x 0.485 2az 8az 0.461 1x	26x	3x	0.597		2VF	4vf	1.000
22x 4x 0.568 5vf 6vf 0.000 26x 8x 0.562 1vf 2VF -0.147 26x 5x 0.549 1vf 5vf -0.147 11x 27x 0.547 1vf 4vf 6vf -1.000 4x 5x 0.536 2VF 5vf -1.040 21x 23x 0.518 4vf 5vf -1.133 14x 30x 0.514 Promedio -0.313 13x 20x 0.511 Mediana -0.147 26x 6x 0.504 Desviación Estándar 0.656 13x 7x 0.498 Parque Agua Azul 0.656 3x 6x 0.496 Parque Agua Azul 0.656 13x 7x 0.498 Parque Agua Azul 0.656 13x 7x 0.498 Parque Agua Azul 0.656 13x 7x 0.498 Parque Agua Azul 0.656 <td< th=""><th>22x</th><th>3x</th><th>0.591</th><th></th><th>1vf</th><th>6vf</th><th>0.000</th></td<>	22x	3x	0.591		1vf	6vf	0.000
26x 8x 0.562 1vf 2VF -0.147 26x 5x 0.549 1vf 5vf -0.147 11x 27x 0.547 1vf 4vf -0.667 11x 5x 0.547 4vf 6vf -1.000 4x 5x 0.536 2VF 5vf -1.040 21x 23x 0.518 4vf 5vf -1.133 14x 30x 0.514 Promedio -0.313 13x 20x 0.511 Mediana -0.147 26x 6x 0.504 Desviación Estándar 0.656 13x 7x 0.498 Parque Agua Azul -0.147 3x 6x 0.494 Muestras 1 2 QGM 7x 8x 0.486 1az 7az 0.541 1x 20x 0.485 2az 8az 0.460 1y 27x 0.476 4az 8az 0.460 <	22x	29x	0.581		2VF	6vf	0.000
26x 5x 0.549 1vf 5vf -0.147 11x 27x 0.547 1vf 4vf -0.667 11x 5x 0.547 4vf 6vf -1.000 4x 5x 0.536 2VF 5vf -1.040 21x 23x 0.518 4vf 5vf -1.133 14x 30x 0.514 Promedio -0.313 13x 20x 0.511 Mediana -0.147 26x 6x 0.504 Desviación Estándar 0.656 13x 7x 0.498 O.498 O.498 22x 6x 0.496 Parque Agua Azul O.541 3x 6x 0.494 Muestras 1 2 QGM 7x 8x 0.486 1az 7az 0.541 1az 2az 8az 0.460 1az 2az 4az 0.460 1az 2az 4az 0.440 1az 2az 4az	22x	4x	0.568		5vf	6vf	0.000
11x 27x 0.547 1vf 4vf -0.667 11x 5x 0.547 4vf 6vf -1.000 4x 5x 0.536 2VF 5vf -1.040 21x 23x 0.518 4vf 5vf -1.133 14x 30x 0.514 Promedio -0.313 13x 20x 0.511 Mediana -0.147 26x 6x 0.504 Desviación Estándar 0.656 13x 7x 0.498 O.498 Desviación Estándar 0.656 3x 6x 0.496 Parque Agua Azul 0.656 3x 6x 0.494 Muestras 1 2 QGM 7x 8x 0.486 1az 7az 0.541 1x 20x 0.485 2az 8az 0.461 1x 3x 0.476 4az 8az 0.440 1x 29x 0.468 3az 8az 0.386 27x 5x 0.461 2az 4az 0.178	26x	8x	0.562		1vf	2VF	-0.147
11x 5x 0.547 4vf 6vf -1.000 4x 5x 0.536 2VF 5vf -1.040 21x 23x 0.518 4vf 5vf -1.133 14x 30x 0.514 Promedio -0.313 13x 20x 0.511 Mediana -0.147 26x 6x 0.504 Desviación Estándar 0.656 13x 7x 0.498 O.498 O.486 O.486 22x 6x 0.496 Parque Agua Azul O.504 O.504 O.504 3x 6x 0.496 Parque Agua Azul O.504 O.50	26x	5x	0.549		1vf	5vf	-0.147
4x 5x 0.536 2VF 5vf -1.040 21x 23x 0.518 4vf 5vf -1.133 14x 30x 0.514 Promedio -0.313 13x 20x 0.511 Mediana -0.147 26x 6x 0.504 Desviación Estándar 0.656 13x 7x 0.498 Parque Agua Azul 0.656 3x 6x 0.494 Muestras 1 2 QGM 7x 8x 0.486 1az 7az 0.541 1x 20x 0.485 2az 8az 0.461 1x 29x 0.468 3az 8az 0.440 1x 29x 0.468 3az 8az 0.386 27x 5x 0.461 2az 4az 0.178 1x 4x 0.449 1az 6az 0.167 28x 9x 0.449 2az 7az 0.000 29x 3x 0.436 6az 8az 0.000 17x <th>11x</th> <th>27x</th> <th>0.547</th> <th></th> <th>1vf</th> <th>4vf</th> <th>-0.667</th>	11x	27x	0.547		1vf	4vf	-0.667
21x 23x 0.518 4vf 5vf -1.133 14x 30x 0.514 Promedio -0.313 13x 20x 0.511 Mediana -0.147 26x 6x 0.504 Desviación Estándar 0.656 13x 7x 0.498 Parque Agua Azul 0.656 3x 6x 0.494 Muestras 1 2 QGM 7x 8x 0.486 1az 7az 0.541 1x 20x 0.485 2az 8az 0.461 1x 3x 0.478 3az 5az 0.460 19x 27x 0.476 4az 8az 0.440 1x 29x 0.468 3az 8az 0.386 27x 5x 0.461 2az 4az 0.178 1x 4x 0.449 1az 6az 0.167 28x 9x 0.449 2az 7az 0.000 29x 3x 0.436 6az 8az 0.000 17x <th>11x</th> <th>5x</th> <th>0.547</th> <th></th> <th>4vf</th> <th>6vf</th> <th>-1.000</th>	11x	5x	0.547		4vf	6vf	-1.000
14x 30x 0.514 Promedio -0.313 13x 20x 0.511 Mediana -0.147 26x 6x 0.504 Desviación Estándar 0.656 13x 7x 0.498 Parque Agua Azul 0.656 3x 6x 0.494 Muestras 1 2 QGM 7x 8x 0.486 1az 7az 0.541 1x 20x 0.461 1az 7az 0.541 1x 20x 0.461 1az 7az 0.541 1az 7az 0.541 1az 0.461 1az 7az 0.541 1az 0.641 1az 0.461 1az 0.460 1az 0.460 1az 0.460 1az 0.440 1az 8az 0.440 0.440 1az 2az 0.440 1az 2az 0.440 1az 2az 0.167 2az 4az 0.178 1az 0.000 1az 2az 0.222 0.000 0.000 2az 7az 0.000 0.000 1az 3az 0.000 0.000 <th>4x</th> <th>5x</th> <th>0.536</th> <th></th> <th>2VF</th> <th>5vf</th> <th>-1.040</th>	4x	5x	0.536		2VF	5vf	-1.040
13x 20x 0.511 Mediana -0.147 26x 6x 0.504 Desviación Estándar 0.656 13x 7x 0.498 Parque Agua Azul 3x 6x 0.494 Muestras 1 2 QGM 7x 8x 0.486 1az 7az 0.541 1x 20x 0.485 2az 8az 0.461 1x 3x 0.478 3az 5az 0.460 19x 27x 0.476 4az 8az 0.440 1x 29x 0.468 3az 8az 0.386 27x 5x 0.461 2az 4az 0.178 1x 4x 0.449 1az 6az 0.167 28x 9x 0.449 2az 7az 0.000 29x 3x 0.436 6az 8az 0.000 17x 20x 0.432 5az 8az -0.012 3x 8x 0.431 4az 5az -0.040 22x <	21x	23x	0.518		4vf	5vf	-1.133
26x 6x 0.504 Desviación Estándar 0.656 13x 7x 0.498 Parque Agua Azul 22x 6x 0.496 Parque Agua Azul 4x 0.541 0.601 0.601 0.601 0.601 0.601 0.601 0.601 0.601 0.601 0.702 <th>14x</th> <th>30x</th> <th>0.514</th> <th>Promedio</th> <th></th> <th></th> <th>-0.313</th>	14x	30x	0.514	Promedio			-0.313
13x 7x 0.498 22x 6x 0.496 Parque Agua Azul 3x 6x 0.494 Muestras 1 2 QGM 7x 8x 0.486 1az 7az 0.541 1x 20x 0.485 2az 8az 0.461 1x 3x 0.478 3az 5az 0.460 19x 27x 0.476 4az 8az 0.440 1x 29x 0.468 3az 8az 0.386 27x 5x 0.461 2az 4az 0.178 1x 4x 0.449 1az 6az 0.178 1x 4x 0.449 1az 6az 0.167 28x 9x 0.449 2az 7az 0.122 20x 24x 0.444 6az 7az 0.000 29x 3x 0.436 6az 8az 0.000 17x 20x 0.432 5az 8az -0.012 3x 8x 0.428 2a	13x	20x	0.511	Mediana			-0.147
22x 6x 0.496 Parque Agua Azul 3x 6x 0.494 Muestras 1 2 QGM 7x 8x 0.486 1az 7az 0.541 1x 20x 0.485 2az 8az 0.460 1x 3x 0.478 3az 5az 0.460 19x 27x 0.476 4az 8az 0.440 1x 29x 0.468 3az 8az 0.386 27x 5x 0.461 2az 4az 0.178 1x 4x 0.449 1az 6az 0.167 28x 9x 0.449 2az 7az 0.122 20x 24x 0.444 6az 7az 0.000 29x 3x 0.436 6az 8az 0.000 17x 20x 0.432 5az 8az -0.012 3x 8x 0.431 4az 5az -0.040 22x 8x 0.428 2az 3az -0.228 <t< th=""><th>26x</th><th>6x</th><th>0.504</th><th>Desviación Es</th><th>tándar</th><th></th><th>0.656</th></t<>	26x	6x	0.504	Desviación Es	tándar		0.656
3x 6x 0.494 Muestras 1 2 QGM 7x 8x 0.486 1az 7az 0.541 1x 20x 0.485 2az 8az 0.461 1x 3x 0.478 3az 5az 0.460 19x 27x 0.476 4az 8az 0.440 1x 29x 0.468 3az 8az 0.386 27x 5x 0.461 2az 4az 0.178 1x 4x 0.449 1az 6az 0.167 28x 9x 0.449 2az 7az 0.122 20x 24x 0.444 6az 7az 0.000 29x 3x 0.436 6az 8az 0.000 17x 20x 0.432 5az 8az -0.012 3x 8x 0.431 4az 5az -0.040 22x 8x 0.428 2az 3az -0.228 22x 5x 0.424 1az 3az -0.281	13x	7x	0.498				
7x 8x 0.486 1az 7az 0.541 1x 20x 0.485 2az 8az 0.461 1x 3x 0.478 3az 5az 0.460 19x 27x 0.476 4az 8az 0.440 1x 29x 0.468 3az 8az 0.386 27x 5x 0.461 2az 4az 0.178 1x 4x 0.449 1az 6az 0.167 28x 9x 0.449 2az 7az 0.122 20x 24x 0.444 6az 7az 0.000 29x 3x 0.436 6az 8az 0.000 17x 20x 0.432 5az 8az -0.012 3x 8x 0.431 4az 5az -0.040 22x 8x 0.428 2az 3az -0.228 22x 8x 0.424 1az 3az -0.281 12x 21x 0.417 1az 2az 5az	22x	6x	0.496	Parque A	gua Azı	اد	
1x 20x 0.485 2az 8az 0.461 1x 3x 0.478 3az 5az 0.460 19x 27x 0.476 4az 8az 0.440 1x 29x 0.468 3az 8az 0.386 27x 5x 0.461 2az 4az 0.178 1x 4x 0.449 1az 6az 0.167 28x 9x 0.449 2az 7az 0.002 29x 3x 0.436 6az 8az 0.000 29x 3x 0.436 6az 8az 0.000 17x 20x 0.432 5az 8az -0.012 3x 8x 0.431 4az 5az -0.040 22x 8x 0.428 2az 3az -0.228 22x 8x 0.424 1az 3az -0.281 12x 21x 0.417 1az 2az 5az -0.328 1x 9x 0.408 4az 7az	3x	6x	0.494	Muestras	1	2	QGM
1x 3x 0.478 3az 5az 0.460 19x 27x 0.476 4az 8az 0.440 1x 29x 0.468 3az 8az 0.386 27x 5x 0.461 2az 4az 0.178 1x 4x 0.449 1az 6az 0.167 28x 9x 0.449 2az 7az 0.000 29x 3x 0.444 6az 7az 0.000 29x 3x 0.436 6az 8az 0.000 17x 20x 0.432 5az 8az -0.012 3x 8x 0.431 4az 5az -0.040 22x 8x 0.428 2az 3az -0.228 22x 5x 0.424 1az 3az -0.281 12x 21x 0.417 1az 2az 5az -0.328 1x 9x 0.408 4az 7az -0.348 1x 6x 0.399 3az 4az	7x	8x	0.486		1az	7az	0.541
19x 27x 0.476 4az 8az 0.440 1x 29x 0.468 3az 8az 0.386 27x 5x 0.461 2az 4az 0.178 1x 4x 0.449 1az 6az 0.167 28x 9x 0.449 2az 7az 0.122 20x 24x 0.444 6az 7az 0.000 29x 3x 0.436 6az 8az 0.000 17x 20x 0.432 5az 8az -0.012 3x 8x 0.431 4az 5az -0.040 22x 8x 0.428 2az 3az -0.228 22x 8x 0.424 1az 3az -0.281 12x 21x 0.417 1az 2az 5az -0.328 1x 9x 0.408 4az 7az -0.348 1x 6x 0.399 3az 4az -0.368 2x 8x 0.394 1az 8az	1x	20x	0.485		2az	8az	0.461
1x 29x 0.468 3az 8az 0.386 27x 5x 0.461 2az 4az 0.178 1x 4x 0.449 1az 6az 0.167 28x 9x 0.449 2az 7az 0.122 20x 24x 0.444 6az 7az 0.000 29x 3x 0.436 6az 8az 0.000 17x 20x 0.432 5az 8az -0.012 3x 8x 0.431 4az 5az -0.040 22x 8x 0.428 2az 3az -0.228 22x 8x 0.424 1az 3az -0.281 12x 21x 0.417 1az 2az -0.290 13x 28x 0.417 2az 5az -0.328 1x 9x 0.408 4az 7az -0.348 1x 6x 0.399 3az 4az -0.368 2x 8x 0.393 1az 4az -0.427 </th <th>1x</th> <th>3x</th> <th>0.478</th> <th></th> <th>3az</th> <th>5az</th> <th>0.460</th>	1x	3x	0.478		3az	5az	0.460
27x 5x 0.461 2az 4az 0.178 1x 4x 0.449 1az 6az 0.167 28x 9x 0.449 2az 7az 0.122 20x 24x 0.444 6az 7az 0.000 29x 3x 0.436 6az 8az 0.000 17x 20x 0.432 5az 8az -0.012 3x 8x 0.431 4az 5az -0.040 22x 8x 0.428 2az 3az -0.228 22x 5x 0.424 1az 3az -0.281 12x 21x 0.417 1az 2az -0.290 13x 28x 0.417 2az 5az -0.328 1x 9x 0.408 4az 7az -0.348 1x 6x 0.399 3az 4az -0.368 2x 8x 0.394 1az 8az -0.423 26x 9x 0.393 1az 4az -0.427<	19x	27x	0.476		4az	8az	0.440
1x 4x 0.449 1az 6az 0.167 28x 9x 0.449 2az 7az 0.122 20x 24x 0.444 6az 7az 0.000 29x 3x 0.436 6az 8az 0.000 17x 20x 0.432 5az 8az -0.012 3x 8x 0.431 4az 5az -0.040 22x 8x 0.428 2az 3az -0.228 22x 5x 0.424 1az 3az -0.281 12x 21x 0.417 1az 2az -0.290 13x 28x 0.417 2az 5az -0.328 1x 9x 0.408 4az 7az -0.348 1x 6x 0.399 3az 4az -0.368 2x 8x 0.394 1az 8az -0.423 26x 9x 0.393 1az 4az -0.427 27x 7x 0.391 7az 8az -0.476	1x	29x	0.468		3az	8az	0.386
28x 9x 0.449 2az 7az 0.122 20x 24x 0.444 6az 7az 0.000 29x 3x 0.436 6az 8az 0.000 17x 20x 0.432 5az 8az -0.012 3x 8x 0.431 4az 5az -0.040 22x 8x 0.428 2az 3az -0.228 22x 5x 0.424 1az 3az -0.281 12x 21x 0.417 1az 2az -0.290 13x 28x 0.417 2az 5az -0.328 1x 9x 0.408 4az 7az -0.348 1x 6x 0.399 3az 4az -0.368 2x 8x 0.394 1az 8az -0.423 26x 9x 0.393 1az 4az -0.427 27x 7x 0.391 7az 8az -0.476	27x	5x	0.461		2az	4az	0.178
20x 24x 0.444 6az 7az 0.000 29x 3x 0.436 6az 8az 0.000 17x 20x 0.432 5az 8az -0.012 3x 8x 0.431 4az 5az -0.040 22x 8x 0.428 2az 3az -0.228 22x 5x 0.424 1az 3az -0.281 12x 21x 0.417 1az 2az -0.290 13x 28x 0.417 2az 5az -0.328 1x 9x 0.408 4az 7az -0.348 1x 6x 0.399 3az 4az -0.368 2x 8x 0.394 1az 8az -0.423 26x 9x 0.393 1az 4az -0.427 27x 7x 0.391 7az 8az -0.476	1x	4x	0.449		1az	6az	0.167
29x 3x 0.436 6az 8az 0.000 17x 20x 0.432 5az 8az -0.012 3x 8x 0.431 4az 5az -0.040 22x 8x 0.428 2az 3az -0.228 22x 5x 0.424 1az 3az -0.281 12x 21x 0.417 1az 2az -0.290 13x 28x 0.417 2az 5az -0.328 1x 9x 0.408 4az 7az -0.348 1x 6x 0.399 3az 4az -0.368 2x 8x 0.394 1az 8az -0.423 26x 9x 0.393 1az 4az -0.427 27x 7x 0.391 7az 8az -0.476	28x	9x	0.449		2az	7az	0.122
17x 20x 0.432 5az 8az -0.012 3x 8x 0.431 4az 5az -0.040 22x 8x 0.428 2az 3az -0.228 22x 5x 0.424 1az 3az -0.281 12x 21x 0.417 1az 2az -0.290 13x 28x 0.417 2az 5az -0.328 1x 9x 0.408 4az 7az -0.348 1x 6x 0.399 3az 4az -0.368 2x 8x 0.394 1az 8az -0.423 26x 9x 0.393 1az 4az -0.427 27x 7x 0.391 7az 8az -0.476	20x	24x	0.444		6az	7az	0.000
3x 8x 0.431 4az 5az -0.040 22x 8x 0.428 2az 3az -0.228 22x 5x 0.424 1az 3az -0.281 12x 21x 0.417 1az 2az -0.290 13x 28x 0.417 2az 5az -0.328 1x 9x 0.408 4az 7az -0.348 1x 6x 0.399 3az 4az -0.368 2x 8x 0.394 1az 8az -0.423 26x 9x 0.393 1az 4az -0.427 27x 7x 0.391 7az 8az -0.476	29x	3x	0.436		6az	8az	0.000
22x 8x 0.428 2az 3az -0.228 22x 5x 0.424 1az 3az -0.281 12x 21x 0.417 1az 2az -0.290 13x 28x 0.417 2az 5az -0.328 1x 9x 0.408 4az 7az -0.348 1x 6x 0.399 3az 4az -0.368 2x 8x 0.394 1az 8az -0.423 26x 9x 0.393 1az 4az -0.427 27x 7x 0.391 7az 8az -0.476	17x	20x	0.432		5az	8az	-0.012
22x 5x 0.424 1az 3az -0.281 12x 21x 0.417 1az 2az -0.290 13x 28x 0.417 2az 5az -0.328 1x 9x 0.408 4az 7az -0.348 1x 6x 0.399 3az 4az -0.368 2x 8x 0.394 1az 8az -0.423 26x 9x 0.393 1az 4az -0.427 27x 7x 0.391 7az 8az -0.476					4az	5az	-0.040
12x 21x 0.417 1az 2az -0.290 13x 28x 0.417 2az 5az -0.328 1x 9x 0.408 4az 7az -0.348 1x 6x 0.399 3az 4az -0.368 2x 8x 0.394 1az 8az -0.423 26x 9x 0.393 1az 4az -0.427 27x 7x 0.391 7az 8az -0.476	22x	8x	0.428		2az	3az	-0.228
13x 28x 0.417 2az 5az -0.328 1x 9x 0.408 4az 7az -0.348 1x 6x 0.399 3az 4az -0.368 2x 8x 0.394 1az 8az -0.423 26x 9x 0.393 1az 4az -0.427 27x 7x 0.391 7az 8az -0.476	22x	5x	0.424		1az	3az	-0.281
1x 9x 0.408 4az 7az -0.348 1x 6x 0.399 3az 4az -0.368 2x 8x 0.394 1az 8az -0.423 26x 9x 0.393 1az 4az -0.427 27x 7x 0.391 7az 8az -0.476	12x	21x	0.417		1az	2az	-0.290
1x 6x 0.399 3az 4az -0.368 2x 8x 0.394 1az 8az -0.423 26x 9x 0.393 1az 4az -0.427 27x 7x 0.391 7az 8az -0.476	13x	28x	0.417		2az	5az	-0.328
2x 8x 0.394 1az 8az -0.423 26x 9x 0.393 1az 4az -0.427 27x 7x 0.391 7az 8az -0.476	1x	9x	0.408		4az	7az	-0.348
26x 9x 0.393 1az 4az -0.427 27x 7x 0.391 7az 8az -0.476	1x	6x	0.399		3az	4az	-0.368
27x 7x 0.391 7az 8az -0.476	2x	8x	0.394		1az	8az	-0.423
	26x	9x	0.393		1az	4az	-0.427
22x 9x 0.385 1az 5az -0.501	27x	7x	0.391		7az	8az	-0.476
	 22x	9x	0.385		1az	5az	-0.501

21x	29x	0.382		4az	6az	-0.524
28x	30x	0.361		5az	6az	-0.667
1x	26x	0.361		5az	7az	-0.699
16x	18x	0.353		2az	6az	-0.867
19x	10x	0.340		3az	6az	-0.867
4x	6x	0.331		3az	7az	-0.870
27x	4x	0.328	Promedio			-0.195
8x	9x	0.328	Mediana			-0.285
20x	9x	0.327	Desviación Est	tándar		0.428
20x	4x	0.325				
15x	4x	0.324	Reavyfeex			
26x	7x	0.318	Muestras	1	2	QGM
7x	9x	0.313		1rf	2rf	0.455
26x	29x	0.310		1rf	5rf	0.374
3x	5x	0.303		6rf	7rf	0.191
18x	10x	0.297		2rf	4rf	0.118
13x	5x	0.294		3rf	6rf	0.080
15x	19x	0.286		4rf	7rf	0.041
26x	4x	0.285		1rf	4rf	0.021
20x	5x	0.281		2rf	5rf	-0.011
17x	24x	0.272		3rf	4rf	-0.039
14x	27x	0.269		4rf	6rf	-0.088
11x	1x	0.268		3rf	7rf	-0.152
11x	21x	0.268		5rf	7rf	-0.182
11x	23x	0.268		2rf	3rf	-0.200
5x	9x	0.259		1rf	7rf	-0.274
12x	27x	0.257		5rf	6rf	-0.336
12x	19x	0.254		1rf	3rf	-0.441
23x	29x	0.248		1rf	6rf	-0.591
13x	1x	0.247		2rf	6rf	-0.604
16x	24x	0.242		3rf	5rf	-0.622
12x	15x	0.232		2rf	7rf	-0.631
29x	4x	0.231		4rf	5rf	-0.724
1x	8x	0.230	Promedio			-0.182
20x	7x	0.227	Mediana			-0.152
23x	6x	0.225	Desviación Es	tándar		0.322
1x	5x	0.222				
6x	9x	0.222	CIVS Gdl.			
18x	9x	0.221	Muestras	1	2	QGM

23x	10x	0.220	10c	13C	1.000
27x	10x	0.217	13C	14c	1.000
18x	3x	0.217	13C	15c	1.000
14x	26x	0.211	18c	5c	1.000
13x	10x	0.204	13C	9c	1.000
1x	28x	0.203	1c	24c	0.726
21x	27x	0.199	16c	4c	0.660
13x	18x	0.194	11c	13C	0.648
28x	8x	0.193	13C	21c	0.648
11x	12x	0.193	13C	17c	0.568
11x	2x	0.193	13C	4c	0.568
20x	27x	0.193	11c	3c	0.466
23x	24x	0.192	4c	6c	0.458
21x	10x	0.191	11c	15c	0.443
14x	3x	0.190	19c	23c	0.413
24x	29x	0.183	16c	6c	0.406
14x	19x	0.175	19c	22c	0.391
18x	8x	0.170	22c	4c	0.377
15x	6x	0.167	14c	17c	0.366
13x	3x	0.165	22c	23c	0.363
15x	27x	0.164	23c	6c	0.361
22x	28x	0.162	1c	6c	0.360
24x	6x	0.161	22c	3c	0.355
28x	3x	0.158	19c	6c	0.336
7x	10x	0.152	16c	19c	0.323
15x	10x	0.147	16c	23c	0.316
12x	23x	0.146	20c	6c	0.292
18x	7x	0.142	18c	24c	0.291
20x	22x	0.140	24c	5c	0.291
14x	28x	0.140	16c	22c	0.286
12x	10x	0.140	12c	4c	0.277
12x	7x	0.137	23c	4c	0.270
16x	23x	0.131	11c	14c	0.269
26x	27x	0.129	20c	5c	0.236
3x	7x	0.126	10c	12c	0.232
15x	5x	0.125	12c	9c	0.227
16x	10x	0.124	19c	20c	0.218
3x	4x	0.121	11c	9c	0.208
22x	7x	0.120	1c	23c	0.207

4 =	•	2.11=	20	•	0.000
15x	9x	0.117	23c	3c	0.200
13x	15x	0.117	11c	22c	0.196
17x	8x	0.116	14c	6c	0.195
11x	14x	0.107	22c	6c	0.173
11x	15x	0.107	19c	4c	0.163
11x	20x	0.107	20c	23c	0.161
11x	3x	0.107	16c	9c	0.152
15x	26x	0.106	21c	3c	0.151
16x	17x	0.097	11c	19c	0.150
 16x	21x	0.096	14c	15c	0.137
17x	7x	0.088	10c	4c	0.133
23x	30x	0.087	15c	4c	0.129
23x	27x	0.086	4c	9c	0.117
28x	5x	0.078	20c	22c	0.117
26x	30x	0.071	10c	15c	0.109
18x	19x	0.069	16c	20c	0.109
15x	7x	0.065	19c	5c	0.104
13x	2x	0.061	15c	9c	0.104
21x	6x	0.061	17c	9c	0.103
21x	30x	0.053	10c	23c	0.101
11x	7x	0.053	22c	24c	0.101
14x	5x	0.049	24c	3c	0.101
14x	9x	0.049	11c	17c	0.097
9x	10x	0.049	23c	9c	0.097
30x	3x	0.048	17c	6c	0.091
14x	4x	0.046	12c	15c	0.090
12x	18x	0.042	20c	4c	0.084
18x	28x	0.039	18c	1c	0.072
19x	30x	0.033	20c	3c	0.070
13x	8x	0.024	11c	21c	0.066
21x	4x	0.024	1c	3c	0.059
23x	26x	0.021	6c	9c	0.056
12x	30x	0.018	22c	9c	0.052
12x	29x	0.017	10c	16c	0.049
19x	5x	0.010	15c	16c	0.045
19x	9x	0.010	10c	5c	0.042
19x	4x	0.007	15c	19c	0.039
13x	27x	0.007	1c	20c	0.038
16x	29x	0.005	19c	3c	0.032

 4,,	0.4	0.004	110	0.0	0.020
4x	9x	0.004		9c	
26x	2x	0.003	12c	19c	0.029
15x	30x	0.000	17c	20c	0.027
17x	28x	-0.001	12c	16c	0.022
20x	8x	-0.002	1c	4c	0.020
14x	22x	-0.004	17c	22c	0.013
21x	26x	-0.008	12c	22c	0.011
22x	27x	-0.011	12c	20c	0.001
27x	3x	-0.016	13C	24c	0.000
15x	23x	-0.016	13C	5c	0.000
27x	8x	-0.017	16c	3c	-0.006
19x	21x	-0.018	19c	24c	-0.008
20x	28x	-0.020	14c	21 c	-0.008
14x	21x	-0.023	18c	3c	-0.014
12x	5x	-0.025	16c	24c	-0.017
21x	22x	-0.027	24c	4c	-0.017
 28x	4x	-0.027	24c	6c	-0.017
12x	4x	-0.027	21 c	9c	-0.019
30x	6x	-0.030	10c	18c	-0.031
12x	17x	-0.031	15c	23c	-0.035
18x	24x	-0.031	15c	21 c	-0.046
16x	30x	-0.032	20c	9c	-0.049
19x	28x	-0.037	3c	6c	-0.050
29x	30x	-0.039	21c	6c	-0.055
15x	2x	-0.039	3c	4c	-0.062
16x	28x	-0.042	10c	19c	-0.063
27x	29x	-0.043	19c	1c	-0.067
28x	7x	-0.046	17c	19c	-0.078
19x	3x	-0.048	10c	22c	-0.082
18x	27x	-0.048	16c	1c	-0.085
15x	21x	-0.051	15c	22c	-0.086
12x	28x	-0.052	12c	17c	-0.088
18x	30x	-0.053	10c	9c	-0.092
24x	27x	-0.053	15c	3c	-0.094
2x	5x	-0.055	12c	23c	-0.095
1x	7x	-0.056	17c	4c	-0.101
26x	28x	-0.059	10c	11c	-0.109
18x	23x	-0.061	10c	14c	-0.113
13x	19x	-0.061	10c	1c	-0.117

13x	14x	-0.061	1c	22c	-0.117
15x	28x	-0.070	15c	6c	-0.119
15x	22x	-0.071	18c	20c	-0.121
29x	5x	-0.074	10c	6c	-0.122
29x	9x	-0.075	10c	17c	-0.129
15x	3x	-0.076	1c	5c	-0.130
14x	15x	-0.076	10c	3c	-0.133
12x	22x	-0.077	16c	21c	-0.134
17x	18x	-0.080	15c	17c	-0.135
18x	5x	-0.081	21c	4c	-0.135
5x	10x	-0.081	10c	21c	-0.145
2x	10x	-0.081	11c	18c	-0.147
5x	6x	-0.081	12 c	5c	-0.153
27x	9x	-0.085	19c	9c	-0.154
14x	8x	-0.085	10c	24c	-0.160
14x	20x	-0.087	11c	23c	-0.161
1x	24x	-0.088	11c	12c	-0.179
16x	3x	-0.089	22c	5c	-0.179
30x	4x	-0.089	3c	5c	-0.179
19x	20x	-0.093	10c	20c	-0.185
21x	24x	-0.096	11c	16c	-0.189
4x	8x	-0.097	14c	18c	-0.189
12x	13x	-0.098	14c	4c	-0.196
13x	26x	-0.102	18c	19c	-0.200
23x	4x	-0.105	17c	23c	-0.202
14x	6x	-0.106	16c	5c	-0.205
18x	21x	-0.107	4c	5c	-0.205
24x	4x	-0.108	5c	6c	-0.205
14x	7x	-0.113	21c	23c	-0.209
12x	24x	-0.114	19c	21c	-0.209
14x	29x	-0.115	16c	17c	-0.217
19x	24x	-0.119	12c	14c	-0.226
1x	21x	-0.120	13C	3c	-0.229
28x	10x	-0.121	15c	1c	-0.235
13x	22x	-0.121	23c	5c	-0.241
18x	20x	-0.122	13C	18c	-0.244
4x	7x	-0.126	20c	24c	-0.246
19x	7x	-0.126	14c	22c	-0.253
22x	30x	-0.127	1c	21c	-0.257

-	1 1	10.	0.137	150	100	0.360
	14x	16x	-0.127	15c	18c	-0.269
	20x	26x	-0.128	12c	18c	-0.273
	12x	20x	-0.130	3c	9c	-0.293
	26x	10x	-0.130	14c	19c	-0.294
	2x	9x	-0.139	11c	4c	-0.303
	20x	3x	-0.139	13C	16c	-0.316
	15x	29x	-0.142	11c	24c	-0.317
	14x	1x	-0.145	18c	6c	-0.326
	22x	24x	-0.146	14c	16c	-0.337
	19x	23x	-0.147	12c	13C	-0.339
	2x	6x	-0.150	12c	6c	-0.348
	17x	4x	-0.151	18c	21c	-0.349
	24x	3x	-0.152	14c	3c	-0.375
	12x	1x	-0.154	18c	23c	-0.376
	3x	10x	-0.156	1c	9c	-0.393
	17x	30x	-0.165	14c	1c	-0.396
	27x	6x	-0.167	20c	21 c	-0.397
	14x	24x	-0.170	17c	18c	-0.412
	13x	17x	-0.171	11c	6c	-0.418
	15x	1x	-0.172	11c	20c	-0.424
	19x	26x	-0.177	15c	20c	-0.430
	17x	2x	-0.180	17c	21c	-0.439
	28x	2x	-0.182	11 c	1c	-0.452
	21x	3x	-0.183	18c	4c	-0.454
	12x	26x	-0.191	18c	22c	-0.458
	18x	29x	-0.194	21c	22c	-0.471
	14x	23x	-0.197	14c	23c	-0.482
	19x	22x	-0.197	17c	1c	-0.482
	17x	5x	-0.202	14c	20c	-0.486
	14x	18x	-0.204	12c	1c	-0.489
	30x	9x	-0.204	16c	18c	-0.490
	27x	30x	-0.204	15c	5c	-0.493
	23x	2x	-0.205	13C	1c	-0.497
	29x	8x	-0.206	13C	20c	-0.497
	12x	16x	-0.206	13C	22c	-0.497
	14x	10x	-0.206	13C	23c	-0.497
	1x	27x	-0.206	13C	6c	-0.497
	12x	3x	-0.218	23c	24c	-0.500
	30x	5x	-0.220	18c	9c	-0.529

18x	1x	-0.220		12 c	21 c	-0.531
16x	9x	-0.226		17c	5c	-0.536
16x	19x	-0.231		12c	3c	-0.579
24x	30x	-0.234		15c	24c	-0.580
17x	1x	-0.237		17c	3c	-0.589
15x	20x	-0.237		14c	5c	-0.603
16x	6x	-0.237		21c	24c	-0.608
12x	6x	-0.240		24c	9c	-0.707
21x	5x	-0.242		17c	24c	-0.738
6x	8x	-0.242		12 c	24c	-0.796
1x	30x	-0.243		21c	5c	-0.819
12x	9x	-0.244		14c	24c	-0.828
20x	6x	-0.244		5c	9c	-0.841
19x	6x	-0.245		11c	5c	-0.900
24x	9x	-0.248		13C	19c	-1.340
30x	8x	-0.250	Promedio			-0.066
18x	26x	-0.265	Mediana			-0.072
19x	29x	-0.269	Desviación Es	stándar		0.361
17x	9x	-0.284				
16x	1x	-0.284				
19x	1x	-0.288				
22x	23x	-0.288				
23x	3x	-0.295				
15x	24x	-0.297				
18x	22x	-0.297				
30x	10x	-0.302				
17x	22x	-0.307				
17x	27x	-0.315				
24x	10x	-0.316				
28x	6x	-0.320				
20x	2x	-0.321				
27x	28x	-0.325				
13x	24x	-0.325				
6x	10x	-0.327				
23x	5x	-0.329				
17x	19x	-0.332				
16x	22x	-0.354				
13x	16x	-0.359				
28x	29x	-0.360				

	4.6		0.252
	16x	2x	-0.363
	1x	23x	-0.364
	29x	10x	-0.367
	16x	27x	-0.368
	19x	8x	-0.370
	11x	16x	-0.374
	20x	23x	-0.381
	15x	17x	-0.381
	27x	2x	-0.384
	15x	18x	-0.386
	21x	7x	-0.387
	2x	4x	-0.389
	17x	23x	-0.389
	8x	10x	-0.390
	22x	2x	-0.390
	20x	10x	-0.392
	16x	8x	-0.395
	16x	20x	-0.397
	11x	17x	-0.398
	2x	3x	-0.398
	24x	7x	-0.403
	11x	8x	-0.406
	12x	8x	-0.420
	21x	28x	-0.422
	24x	2x	-0.426
	14x	2x	-0.426
	23x	9x	-0.426
	17x	6x	-0.429
	4x	10x	-0.430
	1x	2x	-0.433
	17x	3x	-0.443
	22x	10x	-0.444
	17x	21x	-0.447
	20x	29x	-0.450
	29x	2x	-0.450
	12x	14x	-0.453
	11x	30x	-0.453
	2x	30x	-0.461
	16x	26x	-0.462
-			

24x	26v	0.462
	26x	-0.463
24x	5x	-0.466
14x	17x	-0.471
21x	9x	-0.478
18x	2x	-0.481
16x	5x	-0.486
11x	13x	-0.486
11x	19x	-0.486
12x	2x	-0.488
16x	4x	-0.488
29x	7x	-0.490
13x	4x	-0.491
11x	9x	-0.494
18x	4x	-0.499
23x	28x	-0.500
17x	29x	-0.501
1x	10x	-0.515
 18x	6x	-0.517
6x	7x	-0.533
21x	2x	-0.536
17x	26x	-0.537
17x	10x	-0.542
13x	30x	-0.548
24x	8x	-0.561
15x	8x	-0.563
13x	21x	-0.577
24x	28x	-0.577
20x	30x	-0.586
15x	16x	-0.594
11x	10x	-0.597
21x	8x	-0.618
20x	21x	-0.621
30x	7x	-0.626
13x	29x	-0.647
23x	8x	-0.660
13x	6x	-0.697
23x	7x	-0.710
19x	2x	-0.715
16x	7x	-0.731

	13x	23x	-0.894		
	11x	28x	-1.018		
	11x	18x	-1.084		
Promedio			-0.036		
Mediana			-0.054		
Desviación Estánd	lar		0.342		

^{*}Valores del coeficiente de parentesco:

^{+1:} Gemelo monogamético (Puede ocurrir por falta de datos en el genotipo de alguno de los individuos).

^{0.625-0.375:} Padre, gemelo dicigótico, hermanos, hijos.

^{0.375-0.125:} Abuelos, tíos, medios hermanos, sobrinos.

^{0.125-0:} Bisabuelo, bisnieto, primos hermanos.

⁰ a -1: No emparentado

APÉNDICE VIII.

Cuadro 12. Asignación de grupo (Silvestre o cautiverio) por logaritmo de máxima verosimilitud de frecuencias alélicas

VALORES DE ASIGNACIÓ	N DE GRUPO	CON LOGARITMO DE S	IMILITUD POR IND	IVID	DUO
Muestra	Grupo	ZOO(cautiverio)	Silv(silvestre)	Grı	
	1	(. (,		gnado
10acs	Z00	4.759	5.812	1	
11acs	Z00	8.053	8.136	1	Z00
12acs	Z00	7.760	10.478	1	Z00
13acs	Z00	3.201	3.550	1	Z00
14acs	Z00	5.805	7.143	1	Z00
1acs	Z00	6.907	6.437	2	silv
2acs	Z00	4.357	5.445	1	Z00
3acs	ZOO	6.053	6.992	1	Z00
4acs	Z00	7.458	7.788	1	Z00
5acs	Z00	6.043	6.427	1	Z00
6acs	Z00	5.285	5.187	2	silv
7acs	Z00	4.558	5.010	1	Z00
8acs	Z00	4.356	3.987	2	silv
9acs	Z00	3.459	5.589	1	Z00
1az	Z00	5.990	7.406	1	Z00
2az	ZOO	5.716	7.649	1	Z00
3az	Z00	8.705	8.674	2	silv
4az	Z00	5.821	6.976	1	Z00
5az	Z00	6.241	5.793	2	silv
6az	Z00	1.422	2.439	1	Z00
7az	Z00	4.556	5.607	1	Z00
8az	Z00	2.077	2.169	1	Z00
10c	Z00	7.983	8.708	1	Z00
11c	ZOO	5.710	6.119	1	Z00
12c	Z00	7.473	8.118	1	Z00
13C	Z00	0.636	0.544	2	silv
14c	Z00	6.955	8.031	1	Z00
15c	Z00	6.755	6.710	2	silv
16c	Z00	6.011	8.446	1	Z00
17c	Z00	7.051	6.799	2	silv
18c	Z00	10.287	13.365	1	Z00
19c	ZOO	5.978	7.343	1	ZOO

1-	700	0.350	0.000		700
1c	Z00	8.250	8.832	1	Z00
20c	Z00	6.965	7.728	1	Z00
21c	Z00	11.532	11.188	2	silv
22c	Z00	4.493	5.047	1	Z00
23c	Z00	6.800	7.105	1	Z00
24c	Z00	2.876	4.760	1	Z00
3c	Z00	4.001	4.293	1	Z00
4c	Z00	5.082	6.872	1	Z00
5c	Z00	3.394	5.812	1	Z00
6c	Z00	4.030	4.832	1	Z00
9c	Z00	5.725	5.156	2	silv
1rf	Z00	7.104	5.039	2	silv
2rf	Z00	6.879	6.718	2	silv
3rf	Z00	6.123	8.371	1	Z00
4rf	Z00	6.063	6.345	1	Z00
5rf	ZOO	7.284	6.396	2	silv
6rf	Z00	5.188	6.156	1	Z00
7rf	ZOO	7.398	6.872	2	silv
1vf	Z00	3.206	3.197	2	silv
2VF	Z00	3.336	3.373	1	Z00
4vf	Z00	2.839	4.097	1	Z00
5vf	Z00	3.407	2.963	2	silv
6vf	Z00	4.061	6.008	1	ZOO
10x	Z00	6.890	8.575	1	Z00
11x	Z00	1.557	2.749	1	Z00
12x	Z00	6.395	8.496	1	ZOO
13x	Z00	3.234	3.392	1	Z00
14x	Z00	5.673	5.855	1	Z00
15x	Z00	5.002	5.290	1	Z00
16x	ZOO	8.039	10.219	1	Z00
17x	Z00	6.935	8.866	1	
18x	ZOO	6.057	7.291	1	ZOO
19x	Z00	6.716	6.195	2	silv
1x	ZOO	6.278	8.336	1	ZOO
20x	Z00	3.452	3.966	1	ZOO
21x	ZOO	6.726	8.320	1	ZOO
22x	Z00	5.336	7.596	1	ZOO
23x	Z00	6.801	9.274	1	ZOO
24x	Z00	6.726	10.981	1	
		3.7.20			

26x	Z00	5.398	5.830	1	Z00
27x	Z00	5.945	6.689	1	Z00
28x	Z00	6.522	8.100	1	Z00
29x	Z00	6.425	9.839	1	Z00
2x	Z00	8.077	9.455	1	Z00
30x	Z00	6.162	7.399	1	Z00
3x	Z00	4.939	7.374	1	Z00
4x	Z00	4.807	5.746	1	Z00
5x	Z00	6.239	6.519	1	Z00
6x	Z00	5.796	8.985	1	Z00
7x	Z00	2.966	2.874	2	silv
8x	Z00	4.376	4.050	2	silv
9x	Z00	6.167	8.252	1	Z00
10zg	Z00	8.061	7.105	2	silv
11zg	Z00	4.085	3.791	2	silv
12zg	Z00	6.152	7.863	1	Z00
13zg	Z00	6.125	6.445	1	Z00
15zg	Z00	5.515	6.725	1	Z00
16ZG	Z00	6.043	8.300	1	Z00
17zg	Z00	5.261	6.668	1	Z00
19zg	Z00	5.509	8.668	1	Z00
1zg	Z00	0.636	0.544	2	silv
3zg	Z00	3.920	4.198	1	Z00
4zg	Z00	4.030	5.102	1	Z00
5zg	Z00	1.483	2.564	1	Z00
7zg	Z00	5.525	7.223	1	Z00
8zg	Z00	7.388	8.807	1	Z00
9zg	Z00	5.170	6.518	1	Z00
S10TM	Silv	5.783	5.498	2	silv
S5TM	Silv	8.597	8.582	2	silv
SCON1R	Silv	7.346	4.093	2	silv
SCON2R	Silv	4.663	6.051	1	Z00

^{*} Bajo este estudio el 76% de los individuos pertenecen al propio grupo y el 24% es más similar a otro grupo.