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Preface

The objective of this thesis is to build transition probabilities that drive a class
of reversible Markov processes. Then, given these, we use them as signal processes
within the stochastic filtering framework. In particular, appealing expressions for the
optimal and prediction filters, associated to such signals, are provided. Furthermore,
the conditional probability structure used to build the afore transitions guarantees
the existence of a dual process. This allows to obtain an alternative way to compute
the mentioned filters. Furthermore, the structure of our proposal is extendible to
nonparametric processes.

The first chapter of this thesis reviews some relevant background material. For
instance, we present concepts of the theory of Markov processes, which are borrowed
from Ethier and Kurtz [8]. Our purpose here is to identify conditions under which a
Markov process can be constructed from a valid set of transition probabilities. Also,
we present the concepts of duality and stochastic filtering, dragged from Jansen and
Kurt [15] and Cappé [3]. The final part of this chapter will introduce the reader to
the nonparametric version of our proposal.

The discrete-time case of the construction is developed in Chapter 2. Here,
besides explaining the methodology, we found the form of the corresponding dual and
filters. Additionally, we present two remarkable models fall within two frameworks:
the construction of AR(1) models, introduced by Pitt, Chatfield andWalker [37], and
a novel set of processes derived from the Lancaster probabilities (cf. Lancaster [22]
and Koudou [19]). This later class is related to the work of Diaconis, Khare and
Saloff-Coste [6]. These models have an interest by their own, however their purpose
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is to derive a mechanism that could potentially be generalized to the continuous-time
case.

In Chapter 3 we look for the continuous-time framework. Thus, based on the
preliminar idea by Mena andWalker [30], we derive new properties associated to such
of models, in particular when we use in stochastic filtering. Unlike the discrete-time
case, here the Markovianity of the dual process can not always guaranteed. However,
the whole structure of the model helps to build a Markovian dual. With these
results, we are then able to find an alternative recursion for the filters computation.
On other hand, in order to specify the model, we need two main components, namely
two probability measures. Here is when the models described in Chapter 2 become
helpful. In particular, we find that the relation between orthogonal polynomials and
stochastic processes is a useful tool in this context.

The last chapter of this work is devoted to the nonparametric version of our
proposal. In this context, the construction of random probability measures will play
an important rol in the construction. Indeed, such measures will be the invariant
measures associated to measure-valued Markov processes. Thus, using similar pro-
jective properties, as those used by Papaspiliopoulos, Ruggiero and Spanó [34], we
will generalize the whole model to the nonparametric case.



Notation and abbreviations

Symbol

P Probability measure
E Expectation operator

Var/Cov/Corr Variance/Covariance/Correlation operator.
R Real numbers
Z Integer numbers

σ(X) The σ-algebra generated by the measurable space X.
B(X) The set of all real-valued, bounded, Borel measurable functions on X.
X ∼ F The random variable X is distributed according to F .
L (X) The law of the random variable X.
N(γ, τ) Normal distribution with mean γ and variance τ .
Ga(a, b) Gamma distribution with parameters (a, b).
Be(a1, a2) Beta distribution with parameters (a1, a2).
Po(λ) Poisson distribution with mean λ.
Bin binomial
NB negative-binomial

Hypgeo hypergeometric
ED exponential dispersion
∝ proportional to
I{·} the indicator function
a.s. almost sure
Γ(·) gamma function
B(·) beta function
i.i.d independent and identically distributed
i.e. that is
e.g. for example
d
= equally in distribution
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Chapter 1
Introduction

This thesis uses a conditional probability structure to build transition probabilities
that drive reversible Markov processes, with arbitrary but given invariant distribu-
tions. Then, we use them as signal processes within the stochastic filtering frame-
work. In particular, appealing expressions for the optimal and the prediction filters,
associated to such signals, are presented. As a byproduct, we are able to obtain
expressions for statistics corresponding to the filters. Moreover, our construction
guarantees the existence of a dual process resulting in an alternative way to com-
pute the filters. Furthermore, the flexibility of the model allows us to generalize the
construction to a Bayesian nonparametric framework.

The rest of the chapter is organized as follows. First, we present some widely
known distributional symmetries that are used throughout this work namely: ex-
changeability, stationarity and reversibility. Then, we provide some relevant back-
ground concerning to stochastic processes, which will help us, among other things,
to define random measures in Chapter 4. Later, we summarize some basic concepts
related to the theory of Markov process, to be precise, we focus on how to charac-
terize this kind of processes via their transition probabilities. Thus, we will be ready
to introduce the reader the concepts of stochastic filtering and duality between two
Markov processes. In the final part we describe the Bayesian nonparametric model.

1



2 CHAPTER 1. INTRODUCTION

1.1 Distributional symmetries

The symmetry known as exchangeability implies that the probability law of a se-
quence of random variables is unaltered under finite permutation of any subse-
quences. The following definition gives us the mathematical implication of such
symmetry.

Definition 1. Consider a complete and separable metric space Y endowed with its
Borel σ-algebra Y . A sequence {Yn}n≥1 of Y-valued random variables, defined in
some probability space (Ω,F ,P), is said to be exchangeable, if the probability distri-
bution of the random vector (Y1, ..., Yn) coincides with the probability distribution of
(Yτ(1), ..., Yτ(n)), for any n ≥ 1 and any permutation τ of the indices {1, ..., n}.

In this context, de Finetti’s representation theorem allows to express the joint
probability distribution of any subsequence of an exchangeable sequence as the in-
tegral of a product of conditionally independent probabilities. In fact, some cases
conceive such probabilities as the empirical limit attained to a set of observations.
Our proposal uses a conditional probability structure generated from exchangeability
to build stationary and reversible Markov models.

Let us recall that, stationarity states that the probability law of a sequence of
random variables does not change under shift translations. That is to say, a sequence
Y = {Yn}n≥1 is called stationary if for any finite subsequence (Y1, ..., Yn) of Y , its
joint probability satisfies the following,

P
[
Y1 ∈ A1, ..., Yn ∈ An

]
= P

[
Y1+s ∈ A1, ..., Yn+s ∈ An

]
,

for any n, s ≥ 1 and any measurable collection of sets {Ai}i≥1. On other hand,
reversibility implies that the probability law of a sequence of observations does not
change under a time reversibility, i.e.

P
[
Y1 ∈ A1, ..., Yn ∈ An

]
= P

[
Yn ∈ A1, ..., Y1 ∈ An

]
,

for any n ≥ 1. Later, these distributional symmetries will play an important rol
in our construction. For instance, the mechanism that we will use to build a set of
transition probabilities allows us to find a duality between two Markov processes.
Before to introduce the reader the concept of such duality, let us give a brief review
of the theory of stochastic processes.
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1.2 Stochastic processes

Letting (Ω,F ,P) a probability space, (X,X ) be a measurable space and T be a
completely ordered set. A standard definition of a stochastic process is given below.

Definition 2. A stochastic process with common state-space (X,X ) is a collection
of random variables {X(t, ω); t ∈ T , ω ∈ Ω} such that X(t) : (Ω,F ,P) → (X,X ),
for any fixed t ∈ T . Moreover, the function X : (Ω,F ,P)→ (XT ,X T ) is referenced
to the realized path of the stochastic process.

In practice, it is common for the set T to be a subset of R+ ∪ {0}. Hence,
hereafter, if T is countable we will denote the process by {Xn}n∈T , letting clear that
is a discrete-time process. Whereas, {Xt}t∈T will denote a continuous-time process.
Thus, we associate the letter n to the discrete case and the t for the continuous
case. Now, recall that, a process X is measurable if X : T × (Ω,F ,P) → (X,X )

is T ×F -measurable, where T = B(T ). Additionally, we say that X is (almost
sure) continuous (right continuous, left continuous) if for (almost) every ω ∈ Ω, the
sample path X(·, ω) is continuous (right continuous, left continuous).

Stochastic filtering problems, as we will see below, deal with the information
available of a random phenomenon in order to assign it a probability measure. Hence,
clearly, this is related with the filtration associated to a stochastic process. Then, a
collection {Ft}t∈T of σ-algebras of sets in F is a filtration if Ft ⊂ Ft+s, for t, s ∈ T .
Thus Ft correspond to the information known at time t. In particular, for a process
X we define {FX

t }t∈T by FX
t = σ(Xs; s ≤ t); that is, FX

t is the information
obtained by observing X up to time t. Then, a process X is adapted to the filtration
{Ft}t∈T if X is Ft-measurable for each t ≥ 0. Hence, since Ft is increasing in t, X
is Ft-adapted if and only if FX

t ⊂ Ft, for each t ≥ 0. Additionally, a process X is
Ft-progressive if for each t ≥ 0 the restriction of X to T ×Ω is T ×Ft-measurable.
Then, every right (left) continuous Ft-adapted process is Ft-progressive.

Furthermore, let us present the formal definition of the set of finite dimensional
distributions associated to any stochastic process, which allows to give the necessary
conditions to prove their existence.

Definition 3. Let T̃ = {(t1, ..., tn); 0 ≤ t1 ≤ · · · ≤ tn, n = 1, 2, ...} be the collection
of all finite increasing sequences in T . The set of finite dimensional distributions
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associated to the stochastic process X = {Xt}t∈T is the collection of functions P =

{P(t1,...,tn)(·); (t1, ..., tn) ∈ T̃ } such that

P(t1,...,tn)(A) = P
[

(Xt1 , ..., Xtn) ∈ A
]
,

for any measurable set A ∈X n.

Recall that, when working with discrete-time stochastic processes, the above
definition is commonly written in terms of consecutive and finite sequences of T .

Letting πFE : (XF ,X F )→ (XE,X E) be the projections defined by πFE((ft)t∈F ) =

(ft)t∈E, where E ⊂ F ⊂ T̃ . It is known that, the product σ-algebra X F coincides
with the minimum σ-algebra over XF with respect to which the projections {πFt }t∈F
are measurable. Hence, one can easily prove that the family P(t1,...,tn)(A) satisfies
the following consistency conditions,

PE = PF ◦
[
πFE
]−1

, ∀E ⊂ F. (1.1)

Conversely, the so-called Kolmogorov extension theorem tells us that, given a family
of probabilities, there exists a stochastic process with finite dimensional distributions
that coincides with that family if and only if these probabilities satisfy the consis-
tency condition (1.1).

The above finite dimensional distributions help to derive some notions of equiv-
alence between two stochastic processes. In particular, if X and Y are stochastic
processes with the same finite dimensional distributions, we say that Y is is a version
of X. In this case, these processes do not need to be defined in the same probability
space. Also, if X and Y are defined in the same probability space and for each t ≥ 0,
P[Xt = Yt] = 1, then we say that Y is a modification of X. Finally, if there exists
N ∈ F such that P[N ] = 0 and X(·;ω) = Y (·;ω) for all ω /∈ N , then we say that
X and Y are indistinguishable.

1.3 Markov processes

Markov processes are one of the most important class of stochastic processes that
are useful for modeling phenomena with limited historical dependency. Indeed, the
evolution of a Markov process at a future time, conditioned on its present and past
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values, depends only on its present value. In order to present a formal definition of
these class of processes, consider a stochastic process X = {Xt}t∈T , where T is a
completely ordered set, defined over the filtered probability space (Ω,F ,P, {Ft}t∈T )

and with state space (X,X ).

Definition 4. A stochastic process X is said to be Markov, with respect to the
filtration {F}t∈T , if Xt is Ft-adapted and,

E
[
f(Xt)

∣∣Fs

]
= E

[
f(Xt)

∣∣Xs

]
,

for any X -measurable and bounded function f and, 0 ≤ s < t. Equivalently, if

P
[
Xt ∈ A

∣∣Fs

]
= P

[
Xt ∈ A

∣∣Xs

]
,

for A ∈X . The above equality is commonly called the Markov property.

Hereafter, we consider Markov processes with respect to its canonical filtration.
Then, the probability law of {Xt}t∈T is characterized by a system of probabilities
P[Xt ∈ A|Xs], here denoted by ks,t(Xs, A), termed as a system of transition proba-
bility functions. Moreover, the kernel ks,t : X×X → [0, 1] is a transition probability
function if it satisfies the following conditions: ks,t(x, ·) is a probability measure on
(X,X ), for any x ∈ X; the function ks,t(·, A) is X -measurable, for any A ∈ X ;
and

ks,t(x,A) =

∫
ks,r(x, dv)kr,t(v,A),

for 0 ≤ s < r < t. The last equality is known as Chapman-Kolmogorov’s property.
In particular, we will say that X is a standard Markov process if ks,t is a transition
probability function and limt≥0 ks,s+t(x0, dx) = δx(x0), for x0 ∈ X. Also, if the
transition probability function ks,t only depends on t − s, i.e. when ks,t = k0,t−s,
then we say that ks,t, and so {Xt}t∈T , is time-homogeneous. Hence, we denote it by
k0,t = kt. In this case, Chapman-Kolmogorov’s equations takes the form

kt+s(x,A) =

∫
X
ks(x, dv)kt(v,A), (1.2)

for x ∈ X, A ∈ A and t, s > 0. It is worth noticing that, if {Xt}t∈T is not time-
homogeneous, then the bivariate process {(t,Xt)}t∈T is time-homogeneous. Hence,
in what follows we only consider time-homogeneous Markov processes.
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The collection of finite dimensional distributions associated to a time-homogeneous
Markov process is composed by elements of the form,

P[(Xt1 , ..., Xtn) ∈ B] =

∫
· · ·
∫
B
ktn−1(xtn−1 , dxtn) · · · kt1(xt1 , dxt2)π(dxt1),

for 0 ≤ t1 < · · · < tn and any set B ∈ X n, where π is the initial distribution of
the process, i.e. the law of X0. Clearly, the law of a time-homogeneous Markov
process is completely characterized by specifying the family of transition probability
functions and some initial distribution. For the discrete case, the family of transition
probability functions {kt}t∈T is determined by the one-step transition probability
function via kn = kn. Thus, the existence of the probability law of the whole process,
induced by the invariant measure and transition distribution functions, follows form
the Kolmogorov existence theorem. As a matter of fact, if (X,X ) is complete and
separable, then there exists a Markov process whose finite dimensional distribution
are given by (1.3). This is precisely the result on which our construction is based,
borrowed from the book of Ethier and Kurtz [8].

Now, let us link the distributional symmetries of the previous section with the
context of Markov processes. First, we say that π is an invariant measure of {Xt}t∈T
if its transition probability functions satisfy the following equation

π(A) =

∫
X
π(dx)kt(x,A), (1.3)

for A ∈ X . As a consequence, if the initial distribution of a Markov process X
is an invariant measure, then X is a stationary process. Also, a time-homogeneous
Markov process is reversible with invariant measure π if π(X) <∞ and∫

B′
π(dx)kt(x,B) =

∫
B
π(dx)kt(x,B′), (1.4)

for B,B′ ∈ X . Then, if π is finite, then any reversible Markov process is also
stationary. Moreover, the invariant distribution function is unique, and all the
transition distribution functions will eventually converge to the invariant distribution
of the process.

Furthermore, the transition probabilities associated to Markov processes allow
us to define an operator, known as infinitesimal generator, which also serves to
characterize such processes. Hence, let us present its formal definition and some of
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its properties. Let Tt be a bounded linear operator defined by

Ttf(x) ≡
∫
X
f(x)kt(x, dv)

for x ∈ X and f ∈ B(X), where B(X) denotes the set of all real-valued, bounded,
Borel measurable functions on X. The family of operators {Tt}t∈T defines a con-
traction semigroup on B(X), i.e. ||Ttf || ≤ ||f ||, T0 = 1 and Ts+t = TsTt. Now, the
infinitesimal generator A associated to the contraction semigroup {Tt}t∈T , or to the
Markov process {Xt}t∈T , is the linear operator defined by

A f(x) = lim
t↓0

Ttf(x)− f(x)

t
(1.5)

for all f ∈ B(X), such that the right side converges to some function uniformly in
x. The class of all function f such that the limit (1.5) exists determines the domain
of A , denoted by DA . A widely known property that satisfy this operator is the
well-known Backward equation, i.e.

A Ttf =
∂

∂t
Ttf

for all f ∈ B(X). The above equation is used in this work within the dual framework
in Chapter 3.

Some classical examples of Markov are commonly specified via its infinitesi-
mal generator. Next, we will give a brief review of birth and death processes and,
diffusion processes. This models are used throughout this work, in particular, those
that fall into our construction. Also, we will give a review of processes with in-
dependent and stationary increments. These are commonly used in the Bayesian
nonparametric framework. Hence, they will be helpful in Chapter 4.

1.3.1 Birth and death processes

Birth and death processes play an important role in the theory and applications in
continuous-time Markov chains. These class of models are continuous-time Markov
process with parameter set T = [0,∞) and state space X = {−1, 0, 1, 2, ...} with
stationary transition probabilities, denoted by pi,j(t) = kt(i, j) for i, j ∈ X,

a. pi,i+1(h) = λih+ o(h) as h→ 0, i ∈ X;
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b. pi,i−1(h) = µih+ o(h) as h→ 0, i ≥ 0;

c. pi,i(h) = 1− (λi + µi)h+ o(h) as h→ 0, i ∈ X;

d. pi,j(h) = δi,j ;

e. p−1,−1(t) = 1, p−1,i(t) = 0, for t ≥ 0, i 6= −1,

with µ0 ≥ 0, λ0 > 0, λi, µi > 0, for i ≥ 1. The parameters λi and µi are called,
respectively, the birth and death rates. In postulates (a.) and (b.) is assumed that
if the process starts in state i, then in a small interval of time the probabilities of
going one state up or down are essentially proportional to the length of the interval.

If µ0 > 0 then we have an absorbing state −1; once we enter we can never
leave it. If µ0 = 0 we have a reflecting state 0. After entering to 0 we will always go
back to state 1 after some time. In this case the state −1 can never be reached and
so we ignore it and take X = {0, 1, 2, ...}. Thus, the infinitesimal generator A of a
birth and death process is given by

A f(i) = λif(i+ 1)− (λi + µi)f(i) + µif(i− 1), (1.6)

for i ≥ 0 and all bounded real-valued function f ∈ B(X). Later, we will make some
connection between the operator (1.6) with the theory of orthogonal polynomials.

1.3.2 Diffusion processes

A continuous-time stochastic process which possesses the strong Markov property
and for which the sample paths are almost always continuous functions of the time
is called a diffusion process. In fact, the theory of diffusion processes introduces
a dependency between second order differential operators of the Markov processes.
Thus, given Xs = x, for (infinitesimal) small times t, the displacement Xs+t−Xs =

Xs+t − x has mean and variance tµ(x) and tσ2(x), respectively. Here, µ(x) and
σ2(x) are functions of the state x. The existence of infinitesimal mean and variance
parameters, that does not require the existence of finite moments, can be guaranteed
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as following. Let ε > 0 and consider the equalities

E[(Xt+s −Xs)I{|Xt+s−Xs|≤ε}|Xs = x] = tµ(x) + o(t) (1.7)

E[(Xt+s −Xs)
2I{|Xt+s−Xs|≤ε}|Xs = x] = tσ2(x) + o(t) (1.8)

P[|Xt+s −Xs| > ε|Xs = x] = o(t) (1.9)

where IA = 1 if A holds and is zero otherwise. We say that a Markov process Xt

on the state space X = (a, b) is a diffusion with drift coefficient µ(x) and diffusion
coefficient σ2 > 0, if it has continuous sample paths, and the relations (1.7)-(1.9)
hold for all x ∈ X.

Thus, all twice continuously differentiable functions f , vanishing outside a
closed bounded subinterval of X, belong to DA , which implies that its infinitesimal
generator takes the form

A f(x) = µ(x)f ′(x) +
1

2
σ2(x)f ′′(x).

for every f . In Chapter 3 we will use the above operator in order to derive an expres-
sion for the spectral representation of the transition probability density associated
to it. This will help us to relate, as the birth and death processes, with the theory
of orthogonal polynomials.

1.3.3 Processes with independent and stationary increments

Let X = (Xt)t≥0 be a stochastic process taking values in Rd and 0 ≤ t1 < t2.
The random variable Xt2 − Xt1 is called the increment of the process X over
the interval [t1, t2]. Then, a stochastic process is said to be a process with inde-
pendent increments if the increments over non overlapping intervals are stochas-
tically independent, i.e. Xt has càdlàg sample paths and the random variables
Xt0 , Xt1 − Xt0 , Xt2 − Xt1 , ..., Xtn − Xtn−1 , are independent, for n > 0. Hence, dis-
continuities of the process can only occur by jumps.

Additionally, if the distribution of the increments Xt+s −Xs depends only on
t, i.e. Xt+s −Xs

d
= Xt for all s, t, > 0, then we say that the process has stationary

increments. As a consequence, stationary increments excludes the possibility of hav-
ing fixed jumps. A stochastic process with stationary and independent increments is
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known as Lévy process. From these assumptions it is also clear that a Lévy process
satisfies the Markov property and thus a Lévy process is a special type of Markov
process.

It is known that, if X is a Lévy process then there exists a continuous function
ψ : Rd → R called the exponent characteristic of X, such that

E
[
eiuXt

]
= exp {t ψ(u)},

where

ψ(u) = −1

2
uAu+ iγu+

∫
Rd

(
eiux − 1− iuxI|x|≤1

)
ν(dx).

with A ∈ Rd × Rd is a positive defined matrix, γ ∈ Rd and ν is a positive Radon
measure on Rd such that:∫

|x|≤1
|x|2ν(dx) <∞ and

∫
|x|≥1

ν(dx) <∞.

The measure ν is known as the Lévy measure and the value ν(A) represents the
expected number, per unit time, of jumps whose size belong to A. The vector
(A, γ, ν) is called the characteristic triplet of X. The expression for the exponent ψ
is known as the Lévy-Khinchin representation. Moreover, if d = 1 and ν(R) = ∞
(infinite activity case), the set of jump times of every trajectory of the Lévy process
is countably infinite and dense in [0,∞).

Furthermore, one can prove that if X is a Lévy process then the distribution
of Xt has an infinitely divisible distribution, for every t ≥ 0. Thus, the Lévy-
Khinchin formula also gives a general representation for the characteristic function
of any infinitely divisible distribution. Conversely, if F is an infinitely divisible
distribution, then there exists a Lévy process X such that the distribution of X1

has distribution F .

Increasing Lévy processes are also called subordinators because they can be
used as time changes for other Lévy processes. Thus, a Lévy process is a subordi-
nator if any of the following statements hold:

• Xt ≥ 0 a.s. for some t ≥ 0.

• Sample paths of X are almost surely nondecreasing: t < s⇒ Xt ≥ Xs.
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• The characteristic triplet of X satisfies the following A = 0, ν((−∞, 0]) = 0,∫∞
0

(x ∧ 1)ν(dx) <∞ and b > 0.

The most common examples of infinitely divisible laws are: the Gaussian distribu-
tion, the gamma distribution and the α-stable distributions. The class of increasing
Lévy processes turn out to be useful for defining random measures.

1.4 Duality

The conditional probability structure used to built reversible Markov processes guar-
antees the existence of a dual processes. In this sense, duality of Markov processes
with respect to a duality function has been used to develop the connections of funda-
mental structures or properties of Markov processes, such as time reversal, stochastic
monotonicity, intertwining, to name a few. However, the existence of the dual as-
sociated to a given Markov process has not been yet fully resolved. Such property
and some new results in this field were presented by Jansen and Kurt [15], who
also made a recent review of a theoretical background. It is worth to mention that,
the existence of the dual for a given Markov processes implies that the associated
martingale problem is well defined. Thus, besides guaranteeing the existence of the
dual, the construction unveils the form of the duality function. A formal definition
of this kind of duality goes as follows.

Definition 5. Let X and Y be two Markov processes with state spaces (X,X ) and
(Y,Y ), respectively, and h : X × Y → R a bounded measurable function. Then X

and Y are dual to each other with respect to the duality function h if and only if

E[h(Xt; y)|X0 = x] = E[h(x;Yt)|Y0 = y]. (1.10)

for all x ∈ X, y ∈ Y and t ≥ 0.

Letting A and G be the infinitesimal generators associated to X and Y , with
domains D(A ) and D(G ), respectively. It is straightforward to prove that if h(x; ·) ∈
D(G ) and h(·; y) ∈ D(A ), then

A h(·; y)(x) = G h(x; ·)(y),
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for x ∈ X and y ∈ Y. The converse is true as well, under certain conditions. See
Jansen and Kurt [15].

In order to illustrate the mentioned duality consider two Markov processes
defined over the same Polish space X with a partial order ≤, and h(x, y) := I{x≤y}.
These processes are dual with respect to the duality function h if and only if,

P[Xt ≤ y|X0 = x] = P[x ≤ Yt|Y0 = y].

This kind of duality occurs in many contexts. For instance, the Brownian motion
reflected at 0 and the Brownian motion absorbed at 0 are dual in this sense. This
type of duality, sometimes called Siegmund duality, is related to time reversal in a
sense that it reverses the role of entrance and exit laws.

The Wright-Fisher model represents another example that possesses the above
duality. In fact, such discrete-time model widely used for genetic evolution consists
of a finite haploid population of size 2N and where each individual is of type A or
a. Time start at n = 0 and at each time n ∈ N, each individual randomly chooses
an individual from the previous generation and adopt its type. This procedure
follows until one of the types fixates in the population, i.e. until only one of the
types remains due to extinction of the other. In this case, the transition probability
function is given by a binomial kernel and, the probability that type a goes extinct
equals the initial fraction of A’s in the population. An interesting question is what
we can say about the time until fixation, denoted by τ . In particular, the expectation
of τ is computed using the generic variability H’n of the population at time n, i.e.
the probability that two different individuals, randomly drawn from the population
at time n, are of different type. Hence, it is hereby useful to look at the population’s
genealogical history. Indeed, the backward ancestral path, which generates the dual
of the Wright-Fisher model, leads us to the equality E[τ ] = 2NH0. Thus, duality
lets us to derive explicit formulas for the more complicated process from the simpler
one.

It is worth noticing that, since we require (1.10) holds for any arbitrary initial
condition, Markov process duality is in fact a property of the transition kernels of two
Markov processes, rather than two concrete processes (cf. Sturm and Swart [41]).
Nonetheless, this property turns out to be the one which allows to obtain an alter-
native way to compute the filters.
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Figure 1.1: Dynamics of a hidden Markov model

1.5 Stochastic filtering

The aim of stochastic filtering is to estimate an evolving dynamical system, the sig-
nal, customarily modeled by a stochastic process. Such signal can not be measured
directly, however a partial measurement can be obtained, via an observation pro-
cess. See Cappé [3]. In this thesis, we build transition probabilities, kt, that drive
reversible Markov signals, X = (Xt)t≥0, with invariant measure π. We will denote
by Y = {Yt}t≥0 the observation process whose conditional distribution {Yt|Xt} is
denoted by f(Yt;Xt), known as emission density. Clearly, the signal parametrizes
the law of the observations. Then, considering a discrete-time sample {Xtn}n≥0 of
X and, a sequence of conditionally independent observations {Yn}n≥0. The model
{(Xtn , Yn)}n≥0 is called a hidden Markov model and its dynamics can be seen in
Figure 1.1.

Let Y = {Yt}t≥0 be the filtration generated by the observation process Y , i.e.
Yt = σ(Ys, s ∈ [0, t]), for t ≥ 0. Thus, the σ-algebra Yt is the information available
from observations up to time t. Such information is used to make inferences about
the signal. In particular, the computation or approximation of quantities of the
form E[ϕ(Xt)|Yt], where ϕ is a real-valued function. Each of these statistics will
provide fragments of information about Xt. Mathematically, this means computing
the conditional distribution of Xt given Yt, which is progressively measurable with
respect to Yt so that

E
[
ϕ(Xt)

∣∣Yt ] =

∫
X
ϕ(x)P

[
Xt ∈ dx

∣∣Yt ], (1.11)

for all statistics ϕ, for which both terms of the above identity make sense. Thus,
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knowing P[Xt ∈ dx|Yt] allows us, at least theoretically, to compute any inference of
Xt given Yt.

The filters are given by the laws of the signal at different times given past and
present observations, i.e.

L (Xtk |Y1, ..., Yn) (1.12)

for n ≥ 0. When tk = n, the law (1.12) is termed as the optimal or exact filters;
if tk > n then the law (1.12) is known as prediction filter and otherwise the law
(1.12) is called as marginal smoothing filter. These filters may be calculated re-
cursively by explicit algorithms, however iterations become rapidly intractable and
exact formulae are usually difficult to obtain.

Without loss of generality, we consider observations equally spaced in time,
i.e. tn+1 − tn = ∆ for all n ≥ 0 and ∆ > 0. Letting νn := L (Xn|Y0:n), with
Y0:n := (Y0, ..., Yn), the exact or optimal filters, starting with ν−1 = π, are given by
the recursion

νn = φZn(ψ(νn−1)),

for n ≥ 0. Here, the update operator φ is obtained via Bayes’ theorem and, the
prediction operator is associated to the transition function k := k1. Thus,

φy(ν)(dx) =
f(y;x)ν(dx)

mν(y)
, with mν(y) =

∫
X
f(dy;x)ν(dx);

and

ψ(ν)(dx) =

∫
X
ν(v)k∆(v, dx)dv.

See Papaspiliopoulos and Ruggiero [33].

On the other hand, the predictor filters are obtained via the recursion ψ(νn),
for n ≥ 0. Since π is an invariant measure of the transition kt, we have that
ψ(νπ) = νπ. One of the main problems of stochastic filtering is to derive computable
or tractable expression for the filters. The signals proposed will allow to obtain
appealing expression for the optimal and the prediction filters. As a result, we will
be able to compute statistic associated to them.
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1.6 Bayesian nonparametric paradigm

The last part of this thesis extends our construction to a Bayesian nonparametric
approach. This will be done using the conditional probability structure inherit in
exchangeable random variables, without the parametric simplification. That is to
say, in the full extend of exchangeability, that leads us to infinite dimensional spaces.
For this purpose, we will borrow the construction of random probability measures
from the Bayesian nonparametric literature. These measures, commonly referred as
nonparametric priors distributions, will be invariant measures of the signal processes.

Let Y = (Yn)n≥1 be an infinite sequence of (Y,Y )-valued random variables
over the probability space (Ω,F ,P). Also, let PX be the space of all probability
measures on (X,X ), the topology of the weak convergence makes such a space
Polish. The sequence Y is exchangeable if and only if there exists a probability
measure Π on PY such that the joint distribution of any finite subsequence of Y
has the following integral representation

P
[

(Y1, ..., Yn) ∈ A
]

=

∫
PY

n∏
i=1

µ(Ai)Π(dµ), (1.13)

for any n ≥ 1 and A = (A1, ..., An) ∈ X(n). The probability measure Π is commonly
named as de Finetti’s measure of Y . Furthermore, it is very common to formulate
the exchangeability assumption as following,

Yi|µ ∼ µ, for i ≥ 1,

µ ∼ Π.

Thus, the random probability measure µ, which is PX-valued, has prior distribution
Π. Note that, given µ, the conditional distribution of (Y1, ..., Yn) is µ(u) =

∏n
i=1 µ.

Let us notice that, in order to carry out our proposal, we will require mathemati-
cal tractability of the posterior distributions associated to such prior distributions.
Hence, part of the Chapter 4 reviews some literature concerning to random proba-
bility measure.

Then, the conditional probability structure obtained from (1.13) will be used
to build transition probabilities that drive measure-valued Markov processes. Also,
using similar projective properties, as those used in Papaspiliopoulos, Ruggiero and
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Spanó [34], we will obtain that the sequence Y and µ are dual to each other with re-
spect to a duality function. Mathematically, the projective properties consider mea-
surable partitions A = (A1, ..., Ak) of Y, for any k ≥ 1, such that (µt(A1), ..., µt(Ak))

is distributed according to Πα(A), where α is the parameter of Π and α(A) =

(α(A1), ..., α(Ak)). Thus, we will also be able to compute the optimal and the
prediction filters.



Chapter 2
A discrete-time Markov construction for
filtering problems

The construction of discrete-time stationary Markov models with known stationary
distributions has been widely studied in the literature. In particular, stationary
time series models with non-normal marginal have been proposed by Lawrence and
Lewis [24] and Jacobs and Lewis [13] for the case of exponential margins; models
with gamma, Poisson and negative binomial margins can be found in Lawrence [23],
McKenzie ([27], [28]), Lewis, McKenzie and Hugus [25], Al-Osh and Aly [1], to
name a few. Later, a unification and generalization of some of these models was
proposed by Joe [16], his work was based on a thinning operation applied to some
class of infinite divisible distributions closed under convolutions. This idea was also
used by Jorgensen and Song [17] with the difference that they considered expo-
nential dispersion margins. A generalization of this kind of models was proposed
by Pitt, Chatfield and Walker [37]. Although, such work restricted their attention
to purely autoregressive processes. Having this in mind, Pitt and Walker [38] ex-
tended the later methodology to state-space models and autoregressive conditional
heteroscedasticity models (ARCH); also, they proved that these class of models
perform well compared with competing methods for the applications considered.
A more extensive review about how to built stationary Markov model via latent
processes can be found in Mena and Walker [29], who also proposed an stationary
version of the generalized hyperbolic ARCH model.

17
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This chapter provides a mechanism to built transition probabilities that drive
discrete-time reversible Markov processes. This methodology unifies some of the
models mentioned above. Indeed, there exists a resemblance to the conditional dis-
tributional properties of the Gibbs sampler method. The unification of this kind
of time-discrete models allows us to derive some new properties for all the models
belonging to our proposal. To be precise, these models fit perfectly into the stochas-
tic filtering setting, in particular we derive an expression for the optimal and the
prediction filters. Thus, one can obtain information of an unobservable process, the
signal, from the observation process. For instance, the structure of the construction
generates tractable filters, in the sense that it lets us to derive expressions for some
appealing statistics associated to them. Additionally, the construction falls into the
duality framework described in the previous chapter. On other hand, the appropri-
ate choice of measures that specifies the model needs to be treated separately. For
this purpose, the last two sections of this chapter presents two remarkable models
that fall into our proposal. The construction of AR(1) models, introduced by Pitt,
Chatfield and Walker [37], and a novel set of processes derived from the Lancaster
probabilities (cf. Lancaster [22] and Koudou [19]). This later class is related to
the work of Diaconis, Khare and Saloff-Coste [6]. It is worth to mention that, this
chapter will set a basis for the continuous-time case in Chapter 3.

2.1 Construction

Let X and Y be two subsets of Rd, for d ≥ 1, X = σ(X) and Y = σ(Y). Also,
let π be a probability measure over (X,X ) and, for x ∈ X, let f (·;x) be a proba-
bility measure over (Y,Y ). When it is clear, for the sake of notation, we make no
distinction between probability measures and their corresponding density function,
assuming that they exist. Also, we assume that density functions are continuous
with respect to the Lebesgue measure, letting clear that they can be continuous with
respect to the count measure.

The model uses the measure π as the prior knowledge of a given phenomenon
and, given some initial value x, the measure f(·;x) represents a conditional distribu-
tion. Thus, one can define a joint distribution over the product space (X×Y,X ×Y )
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as following ∫
B

∫
A
f (u; v)π(v)dvdu, (2.1)

for A ∈X and B ∈ Y . Clearly, the marginal distributions of (2.1) over the spaces
(X,X ) and (Y,Y ) are given by the probability measures π and

mπ( · ) =

∫
X
f ( · ; v)π(v)dv,

respectively. Hereafter, we are assuming that the support of π coincides with the
set {x ∈ X : f ( · ;x) > 0}. Thus, Bayes’ theorem allows us to obtain the posterior
distribution for π that takes the form

ν0(dx; y) =
f (dy;x)π(dx)

mπ(dy)
, (2.2)

for x ∈ X, y ∈ Y. Notice that, the measure (2.2) is well-defined because mπ(dy) > 0

for all y ∈ Y. Hence, ν0(dx; y) is indeed a probability measure. In what follows, if
ν0 and π belong to the same family of distributions, then we say that π is conjugate
with respect to f.

Thus, once the measures π and f are specified, one can define an homoge-
neous discrete-time process, X = (Xn)n≥0, with state space (X,X ), driven by the
transition probability function

k(xn, dxn+1) =

∫
Y
ν0(dxn+1;u)f (u;xn)du, (2.3)

for xn, xn+1 ∈ X. Moreover, the transition (2.3) has π as invariant measure, i.e. k
satisfies (1.3). The last statement follows by noticing that

k(xn, dxn+1) =

∫
Y
ν0(dxn+1;u)

[
ν0(dxn;u)mπ(u)

π(dxn)

]
du,

which implies that

π(dxn)k(xn, dxn+1) = π(dxn+1)

∫
Y
ν0(dxn;u)

[
ν0(dxn+1;u)mπ(u)

π(dxn+1)

]
du

= π(dxn+1)

∫
Y
ν0(dxn;u)f (u;xn+1)du

= π(dxn+1)k(xn+1, dxn).
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As a consequence, the process X is reversible with invariant distribution π. Also,
under the above construction, reversibility implies stationarity. In fact, integrating
both sides of the last equation with respect to xn+1 leaves

π(dxn) =

∫
X
k(xn+1, dxn)π(xn+1)dxn+1,

for xn ∈ X. Therefore, as long as the space X is Polish, the transition probabil-
ity function k and its invariant measure π characterize the law of a discrete-time
reversible and stationary Markov process (See Section 1.3).

In general, knowing the transition probability kernel of a Markov process is
a fundamental tool to make inferences. However, the expression of such kernel is
not always tractable, it is here that the structure of the operator (2.3) eases this
point. In fact, when one wants to define a transition for some process, one of the
properties that one would look for is that it is computable, i.e. achieved at low cost.
Having this in mind, given that (2.3) is built based on the product of two probability
measures, it is seen that the construction generates computable probability kernels.

On other hand, similarly to the operator (2.3), one can define another tran-
sition probability kernel Y-valued that share almost the same properties that k.
Indeed, let us define the operator

p(zn, dzn+1) =

∫
X
f (dzn+1; v)ν0(dv; zn)dv, (2.4)

for zn, zn+1 ∈ Y. It is straightforward to prove that the transition operator p satisfies
the following equalities

mπ(dzn)p(zn, dzn+1) = mπ(dzn+1)p(zn+1, dz),

mπ(dzn) =

∫
Y

mπ(zn+1)p(zn+1, dzn)dzn+1.

Therefore, we can associate the well-defined transition probability function p to a
time-homogeneous reversible Markov process, denoted by Z = (Zn)n≥0, with invari-
ant measure mπ.

Furthermore, the conditional probability structure used to define X and Z

allows us to derive a relationship between them, this is precisely the duality intro-
duced in Chapter 1. Indeed, considering the function h : X × Y → R+ defined as
the Radon-Nikodyn derivative between the posterior and prior distribution of the
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probability measure π, i.e.

h(x; y) =
ν0(x; y)

π(x)
=

f(y;x)

mπ(y)
. (2.5)

Then, using the fact that X is reversible and the definition of h it follows that∫
X
h(v; y)k(x, v)dv =

∫
X

ν0(v; y)

π(v)

[
π(v)

π(dx)
k(v, dx)

]
dv

=

∫
X

ν0(v; y)

π(dx)

(∫
Y
ν0(dx;u)f(u; v)du

)
dv

=

∫
Y
h(x;u)

[∫
X
f(u; v)ν0(v; y)dv

]
du

=

∫
Y
h(x;u)p(y, du).

Denoting by Ex[g(Xt)] the expected value of g(Xt), for any measurable function g,
given the initial value X0 = x. Thus, the previous equality can be written as

Ex[h(Xt; y)] = Ey[h(x;Yt)], x ∈ X, y ∈ Y, t ∈ R+. (2.6)

In this case, it is said that X is dual to Z with respect to the duality function
h. Since we require (2.6) holds for any arbitrary initial condition, Markov process
duality is in fact a property of the transition kernels of two Markov processes (cf.
Sturm and Swart [41]). The following proposition summarizes the above results and
provides us an expression for the predictor operators of X and Y in terms of their
corresponding h-dual.

Proposition 1. Let π be a probability measure over the measurable space (X,X )

and {f (·;x);x ∈ X}t≥0 be a probability model over the measurable space (Y,Y ).
Also, let X and Z be two Markov processes driven by the transition probability func-
tions (2.3) and (2.4), respectively. Then, X and Z are dual to each other with
respect to the duality function (2.5). Moreover,∫

X
ν0(v; z0)k(v, dx)dv =

∫
Y
ν0(dx;u)p(z0, u)du, (2.7)

and ∫
Y
f(u;x0)p(u, dz)dz =

∫
X
f(dy; v)k(x0, v)dv, (2.8)
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for x ∈ X, y ∈ Y, and where ν0(·; y) is given by (2.2).

Proof. The first assertion was already proved. Now, for x ∈ X and y ∈ Y it follows
that ∫

X
ν0(v; z0)k(v, dx)dv =

∫
X
h(v; z0)π(v)k(v, dx)dv

= π(dx)

∫
X
h(v; z0)k(x, v)dv

=

∫
Y
ν0(dx;u)p(z0, u)du,

where the second equality holds by reversibility and the last by duality. The proof
of (2.8) is obtained similarly.

Thus, duality allows us to calculate explicit formulas of the most complicated
process using the transition of the simplest process. All processes derived from our
proposal share this property.

2.2 Filtering

Let {(Xn, Yn)}n≥0 be a hidden Markov model, where X = (Xn)n≥0 is driven by the
transition probability kernel (2.3) and, given the signal, the sequence of observations
{Yn}n≥0 are conditionally independent. The emission distribution, i.e. the law of
{Yn|Xn}, is chosen so that it matches with the probability measure f ( · ;x). Then,
denoting by Y0:n := (Y0, ..., Yn) and letting νn := L (Xn|Y0:n), the exact or optimal
filter, starting with ν−1 = π, can be obtained through the recursion

νn = φYn(ψ(νn−1)), for n ≥ 0, (2.9)

where φ and ψ are known as the update and the predictor operators of the signal,
respectively. That is to say,

φy(ν)(dx) =
f (y;x)ν(dx)

mν(y)
, mν(y) =

∫
X
f (dy;x)ν(x)dx,

and

ψ(ν)(dx) =

∫
X
ν(v)k(v, dx)dv.
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for x ∈ X. From the recursion (2.9) is clear that the measure νn depends on y(n) =

(y0, y1, ..., yn). Notice that, we denote intentionally the posterior distribution of π
as the first step of the optimal filters, i.e. ν0. Hence, for the sake of notation,
we dropped the dependence of y(n) in νn, only making it explicit for ν0 when such
dependence is different of y0, i.e. ν0(·;u).

On other hand, the prediction filters are obtained from the recursion ψ(νn) for
n ≥ 0. Clearly, ψ(ν−1) = π since π is an invariant measure of the transition kernel
k. Moreover, in this case, the first step in the recursion, which turns out to be the
predictor operator of the process X, takes the form

ψ(ν0)(dx1) =

∫
Y
ν0(dx1;u)mν0(u)du. (2.10)

for x1 ∈ X. Here, the measure mν0(dy) is the transition of the dual. This implies
that we can compute (2.10) through an integral defined over the domain of the dual.

Thus, such duality exemplifies the effect that the conditional probability struc-
ture of the kernel k has on the calculation of the filters. Furthermore, based on the
equality (2.10) one obtains

mψ(ν0)(dy1) =

∫
Y

mν0(u)mν0(u)(y1)du,

ν1(dx1) =

∫
Y
ω(y(1), u)φy1(ν0(u))(dx1)du,

ψ(ν1)(dx2) =

∫
Y
ω̃(y(1), u)ν0(dx2;u)du,

where

ω(y(1), u) =
mν0(u)mν0(u)(y1)

mψ(ν0)(dy1)
,

ω̃(y(1), u) =

∫
Y
ω(y(1), u)p(y1, z, u)du,

q(y1, z, u) =

∫
X
φy1(ν0(u))(dx1)f (z;x1)dx1.

for x0, x1 ∈ X and y0, y1 ∈ Y. We used the following notation in the above equalities
mν0(u)(y1) =

∫
X f (y1;x)ν0(x;u)dx and φy1(ν0(u))(x1) = f(y1;x1)ν0(x1;u)/mν0(u)(y1).

The above equalities are obtained using (2.10) and applying Fubini’s theorem to the
recursion (2.9).
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The next theorem provides an expression for the optimal an the prediction
filters associated to X.

Theorem 1. Let {(Xn, Yn)}n≥0 be a hidden Markov model, where the signal X =

{Xn}n≥0 is driven by the transition probability function k and; given the signal, the
observations Yn are conditionally independent, with emission distribution f (·;x). If
k is given by (2.3) then the optimal and prediction filters, starting at

ω̃(y0, u) = mν0(u) ν0 = φy0(π),

are given by the following expressions,

νn+1(dxn+1) =

∫
Y
ω(y(n+1), u)φyn+1(ν0(u))(dxn+1)du, (2.11)

ψ(νn)(dxn+1) =

∫
Y
ω̃(y(n), u)ν0(dxn+1;u)du, (2.12)

where

mψ(νn)(dyn+1) =

∫
Y
ω̃(y(n), u)mν0(u)(yn+1)du,

ω
(
y(n+1), u

)
=

ω̃
(
y(n), u

)
mν0(u)(yn+1)

mψ(νn)(dyn+1)
,

ω̃(y(n), u) =

∫
Y
ω(y(n), k)q(yn, u, z)dz

q(yn, u, z) =

∫
X
φyn(ν0(z))(dxn)f (u;xn)dxn,

for n ≥ 0.

Proof. The proof of the theorem easily follows by induction.

Let us notice that, if π is conjugate with respect to f(·;x), then ν0 and φy(ν0)

belong to the same class of distributions as π. This implies that, νn and ψ(νn) are
mixtures of distributions belonging to the class of distributions of π. In addition,
the probability measures mν0 and q belong to the same class of distributions as mπ.
Hence, one of the advantages of having a conjugate model is that it saves us the
computation of the integrals corresponding to mν0 and q. Nonetheless, such property
limits the choice of the signal.
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The above result exemplifies the importance of the transition probability kernel
of the signal in order to compute the filters. It is worth mentioning that, although
the expression of the filters seems to be tractable, their computation is not simple,
even for the conjugate case. This since it is still necessary to compute the weights
ω and ω̃.

Additionally, since the expressions in Theorem 1 of νn+1 and ψ(νn) only depend
on xn+1 through ν0 and φyn+1(ν0), respectively. The computation of statistics of the
form E[ϕ(Xtn)|Yt] and E[ϕ(Xtn+1)|Yt] can be reduced to the computation of the
corresponding statistics associated to φyn+1(ν0(u)) and ν0, respectively. That is to
say,

E
[
ϕ(Xtn+1)

∣∣∣Y (n+1)
]

=

∫
Y
ω(y(n+1), u)

(∫
X
ϕ(xn+1)φyn+1(ν0(u))(dxn+1)

)
du,(2.13)

E
[
ϕ(Xtn+1)

∣∣∣Y (n)
]

=

∫
Y
ω̃(y(n), u)

(∫
X
ϕ(xn+1)ν0(dxn+1;u)

)
du, (2.14)

where ω and ω̃ are given by the previous theorem. As before, if π is conjugate with
respect to f, then the above computation reduces to the computation of statistics
of the form E[ϕ(Xtn)], where the expectation is taken with respect to a measure
belonging to the same class of distribution of π. In this case, in order to compute
the above statistics we still have to deal with the problem of computing the weights
ω and ω̃.

2.3 Examples

Now, we present a couple of examples that allow us to illustrate the construction
proposed in this chapter. In fact, these examples are discrete-time versions of widely
known continuous-time models, thus will ease the transition to such models.

2.3.1 Gamma-Poisson model

Let π and f(·;x) be two probability measures with gamma(a, b) distribution and
Poisson(xφ) distribution, for φ > 0, respectively. In this case, an application of
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Bayes’ theorem results in the following

ν0(x; z) =
(b+ φ)a+z

Γ(a+ z)
xa+z−1e−(b+φ)x.

i.e. ν0 has gamma(a+z, b+φ) distribution. Hence, the distribution of π is conjugate
with respect to f(·;x). Then, one can define a reversible Markov process X =

{Xn}n≥0 driven by the well-defined one-step transition probability kernel,

k(xn, xn+1) = e−xnφ−(b+φ)xn+1

∞∑
z=0

(xnφ)z

z!

(b+ φ)a+z

Γ(a+ z)
xa+z−1
n+1 ,

for xn, xn+1 ∈ R+. Moreover, the first moment associated to the operator k satisfies
a linear relation in the mean, i.e.

E[Xn+1|Xn = x] = (1− ρ)µ+ ρx,

where ρ = φ/(b+φ) and µ = E[X]. The above result can be obtained by computing
the following E[E[Xn+1|Y ] |Xn]. It is worth noticing that, given that ρ ∈ [0, 1], the
conditional mean of {Xn+1|Xn = x} is a convex combination between the expected
value of the invariant distribution π and the initial value x. Additionally, the auto-
correlation function for this model is given by ρr. The model that characterizes the
process X is known as the gamma-Poisson model.

On other hand, let Z = {Zn}n≥0 be a reversible Markov process driven by the
transition probability function

p(zn, zn+1) =
Γ(a+ zn + zn+1)

Γ(a+ zn)zn+1!

(
b+ φ

b+ 2φ

)a+zn ( φ

b+ 2φ

)zn+1

,

for zn, zn+1 ∈ Z ∪ {0}. Also, the process Z has invariant negative-binomial(a +

1, φ/(b+φ)) distribution, i.e. its invariant measure has density probability function

mπ(z) =
Γ(a+ z)

Γ(a)z!

(
b

b+ φ

)a( φ

b+ φ

)z
.

As we mentioned, conjugacy of π implies that the probability measure mπ and q
belong to the same class of distributions, in this case they are negative-binomial
distribution. Hence, the transition of the dual is negative-binomial measure rather
than the integral of the product of two probability measure. In this sense, conjugacy
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saves an integral when we compute the filters.

Furthermore, as a result of the construction, X and Z are dual to each other
with respect to to the duality function h, which is define as the Radon-Nikodym
between the measures ν0 and π, i.e.

h(x; z) =
Γ(a)

Γ(a+ z)

(b+ φ)a+z

ba
xze−φx,

for x ∈ X and y ∈ Y.

Now, consider the hidden Markov model where X is the signal, Y = (Yn)n≥0

is the observation process and f is the emission density. Starting with the measures
ν0 and ω̃(y0, u), which are Ga(x0; a + y0, b + φ) and NB(u; a + y0 + 1, b/(b + 2φ))

distributions, respectively. The optimal and the prediction filters are given by

νn+1(dxn+1) =

∞∑
u=0

ω
(
y(n+1), u

)
Ga
(
dxn+1; a+ u+ yn+1, b+ 2φ

)
,

ψ(νn)(dxn+1) =
∞∑
u=0

ω̃(y(n), u) Ga
(
dxn+1; a+ u, b+ φ

)
,

respectively, where

mψ(νn)(dyn+1) =
∞∑
u=0

ω̃(y(n), u) NB
(
dyn+1; a+ u+ 1,

b

b+ 2φ

)
,

ω
(
y(n+1), u

)
=

ω̃
(
y(n), u

)
NB
(
yn+1; a+ u+ 1, b

b+2φ

)
mψ(νn)(dyn+1)

,

ω̃(y(n), u) =
∞∑
k=0

ω(y(n), k)NB
(
k; a+ u+ y1 + 1,

φ

b+ 3φ

)
.

for n ≥ 0. Additionally, as we mentioned, one can compute statistics of the form
(1.11), for instance the moment generating function of the optimal and prediction
filters take the form

E
[
eλXtn+1

∣∣∣Y (n+1)
]

=

∫
Y
ω(y(n+1), u)

(
1− λ

b+ 2φ

)−(a+u+yn+1)

du,

E
[
eλXtn+1

∣∣∣Y (n)
]

=

∫
Y
ω̃(y(n), u)

(
1− λ

b+ φ

)−(a+u)

du,

where ω and ω̃ are given as before. The above expressions are possible due to the
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conjugacy of π. Later we will see that non-conjugate cases have more complicated
expressions. Notice that, the computation of both, the filters and their moment
generating functions requires the computation of ω

(
y(n+1), u

)
and ω̃(y(n), u).

2.3.2 Generalized Poisson model

The generalized Poisson model, proposed by Anzarut, Mena, Nava and Prünster [?],
is an extension of the gamma-Poisson model. Indeed, it replaces the gamma mea-
sure for any R+-valued probability measure. Specifically, let π be an absolutely
continuous probability density function supported on R+, and as before let f(·;x)

be a Poisson(xφ) measure for some positive value φ. This implies that,

ν0(x; z) =
xze−xφπ(x)

ξ(z, φ)
, (2.15)

where ξ(z, φ) =
∫∞

0
uze−uφπ(u)du, for z ∈ N ∪ {0}. The function (2.15) is defined

as the Poisson weighted density. Moreover, the Laplace transform associated to
measures with density function of the form (2.15) are given by,

LX(λ) =
ξ(z, φ+ λ)

ξ(z, φ)
, (2.16)

where LX(λ) := E[e−λX ]. Then, one can define a reversible Markov process X =

{Xn}n≥0 driven by the one-step transition probability kernel

k(xn, xn+1) = exp {−φ(xn+1 + xn)}π(xn+1)
∞∑
z=0

(xn+1xnφ)z

z!ξ(z, φ)
,

for xn, xn+1 ∈ R+ and with invariant distribution π. Additionally, the Laplace
transform associated to the operator k takes the form

LXn+1|Xn(λ) =
∞∑
z=0

e−xφ
(xφ)z

z!

ξ(z, φ+ λ)

ξ(z, φ)
.

Clearly, the computation of the above operator is characterized by ξ, which depend
of π. As a consequence, there is not a general expression for the first moment of the
kernel k, so there is no linear relation for the mean as in the gamma case.

On other hand, let Z = {Zn}n≥0 be a reversible Markov process driven by the
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following transition probability kernel,

p(zn, zn+1) =
φzn+1

ξ(zn, φ)zn+1!

∫ ∞
0

xzn+zn+1e−2xφπ(x)dx,

for zn, zn+1 ∈ Z ∪ {0}. Also, the invariant measure of the process Z takes the form
mπ(z) = ξ(z, φ)φz/z!. Furthermore, the process X and Z are dual to each with
respect to the function h(x; z) = xze−xφ/ξ(z, φ).

It is worth noticing that, given that in general π is not conjugate, so the
expression of the filters can not be reduced to simpler expressions. Nevertheless,
the computation of the filters is still tractable in the sense that the integral seen
as a finite sum of positive summands can be truncated. In fact, the optimal and
prediction filters are given by (2.11) and (2.12), where ν0 is (2.15) and

φyn+1(ν0(u))(dxn+1) =
f(yn+1;xn+1)ν0(xn+1;u)

mν0(u)(yn+1)
.

Similarly, the statistic associated to the filters cannot be reduced to a simpler ex-
pression, so one has to replace directly the corresponding measures. Thus, these two
examples show the advantages of using conjugate models. Additionally, to the best
of our knowledge, the gamma case is the only one with a continuous-time version
within this class.

2.3.3 Beta-binomial model

The beta-binomial model, found in Pitt, Chatfield and Walker [37], is constructed
based on a thinning operation. Indeed, let π be a beta(a) measure and {f(z1;x);x ∈
(0, 1)} be a set of binomial(z1; |z|, x) measures, where a = (a1, a2) and |z| = z1 + z2

is fixed. Hence, the measure π is conjugate with respect to f, which implies that

ν0(x; z) =
xa1+z1−1(1− x)a2+z2−1

B(a + z)
, for x ∈ [0, 1],

where B is the beta function, i.e. B(a) = Γ(a1)Γ(a2)/Γ(|a|), with |a| = a1 + a2.
Then, one an define a Markov processes X = {Xn}n≥0 driven by the transition
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probability function,

k(xn, xn+1) =

|z|∑
z1=0

bin(z1; |z|, xn)beta(xn+1; a + z),

for xn, xn+1 ∈ (0, 1). Additional, the process X has invariant beta(a) distribution.

On other hand, we define the reversible Markov process Z = {Zn}n≥0 driven
by the transition probability function,

p(zn, zn+1) =

(
|zn+1|
zn+1

1

)
B(a + zn + zn+1)

B(a + zn)

for zn = (zn1 , z
n
2 ) and zn+1 = (zn+1

1 , zn+1
2 ) such that |zn| = |zn+1| for all n ≥ 0.

Hence, the invariant distribution associated to p is given by

mπ(z1, |z|) =

(
|z|
z1

)
B(a + z)

B(a)
,

for y ∈ {0, 1, ..., n}. Thus, mπ and p are conjugate belonging to the class of beta-
binomial distributions. Furthermore, for this model, the duality function takes the
form

h(x; z) =
B(a)

B(a + z)
xz1(1− x)z2 .

This duality suggests a bivariate version of the moment duality attained for the
Wright-Fisher model. In fact, such a model helps us to make clear that reversibility
plays an important role in duality. Indeed, the dual to the Wright-Fisher model can
be seen as a process that goes back in time.

Now, in order to provide an expression for the filters notice that ν0 and
ω̃(m0,u) are Beta(a + m0) and beta-binomial(|zn+1|, a + zn), respectively. Thus,
the optimal and prediction filters take the form

νn+1(dxn+1) =
∑

u∈Z2
+

ω
(
m(n+1),u

)
Beta(xn+1; a + u + mn+1),

ψ(νn)(dxn+1) =
∑

u∈Z2
+

ω̃(m(n),u) Beta(xn; a + u),
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where

mψ(νn)(dmn+1) =
∞∑
u=0

ω̃(m(n),u)

(
|mn+1|
m1
n+1

)
B(a + u + mn+1)

B(a + u)
,

ω
(
m(n+1),u

)
=

ω̃
(
m(n),u

) (|mn+1|
m1
n+1

)B(a+u+mn+1)
B(a+u)

mψ(νn)(dmn+1)
,

ω̃(m(n),u) =
∞∑
k=0

ω(m(n),k)

(
|k|
k1

)
B(a + u + mn + k)

B(a + u + mn)
.

for n ≥ 0, with mn = (m1
n,m

2
n). As a consequence of the above result, statistics

associated to the filters are give by the following expressions,

E
[
ϕ(Xtn+1)

∣∣∣Y (n+1)
]

=
∑

u∈Z2
+

ω(m(n+1),u)

(∫ 1

0
ϕ(xn+1)Beta(xn+1; a + u + mn+1)

)
du,

E
[
ϕ(Xtn+1)

∣∣∣Y (n)
]

=
∑

u∈Z2
+

ω̃(m(n),u)

(∫ 1

0
ϕ(xn+1)Beta(xn+1; a + u)

)
du.

Since there is not a simple expression for the moment generating function of a beta
distribution, the above result can be used to calculate, for instance, the moments
associated to the filters.

2.4 Stationary first-order autoregressive models with
exponential dispersion margin

The purpose of this section is to provide a mechanism for choosing the measures
π and f used to construct the transition probabilities k in Section 1.1. Having
this in mind, we will provide a brief review to a widely known model that falls
within our construction. Such model, proposed by Jorgensen and Song [17], consists
on stationary first-order autoregressive AR(1) processes with invariant distribution
belonging to the class exponential dispersion distributions. These processes are
built based on a thinning operation, which, given π, gives us an expression for the
distribution associated to f. Then, our proposal allows to find the dual associated
to the mentioned processes. Moreover, assuming that the signal of a hidden Markov
model is given by a stationary AR(1) model, we will give expressions for the optimal
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and the prediction filters.

2.4.1 Exponential dispersion distributions

The class of exponential dispersion distributions consists of the set of probability
measures Rd-valued, for some d ≥ 1, whose density probability function has the
following form,

π(x) = c(x; τ) exp
{
xϑ− τ ∗ κ(ϑ)

}
, (2.17)

where

κ(ϑ) =
1

τ
log
{∫

c(x; τ)eϑxdx
}
,

for ϑ ∈ Ξ, with Ξ = int{ϑ ∈ Rd;κ(ϑ) < ∞} and Ξ is assumed to be non-empty.
The class of random variables with density probability function of the form (2.17)
are denoted by ED(ϑ; τ), where ED stands for exponential dispersion. Additionally,
assuming that τ ∈ R+, any random variable X with exponential dispersion distri-
bution is infinitely divisible. Clearly an exponential dispersion model is specified via
the function c(·, τ) or equivalently by specifying the function κ(ϑ). Moreover, the
moment generating function of exponential dispersion distributions are given by,

E
[
eλX

]
= exp

{
τ [κ(ϑ+ λ)− κ(ϑ)]

}
, for λ ∈ R.

where X denotes a random variable with ED(ϑ; τ) distribution. This implies,
through simple differentiation that, the moments associated to any exponential dis-
persion distribution take the form,

E[X] = τκ′(ϑ)

E[X2] = τκ′′(ϑ) + τ2[κ′(ϑ)]2

E[X3] = τκ(3)(ϑ) + 3τ2κ′′(ϑ)κ′(ϑ) + τ3[κ′(ϑ)]3

E[X4] = τκ(4)(ϑ) + 4τ2κ(3)(ϑ)κ′(ϑ) + 3τ2[κ′′(ϑ)]2 + 6τ3κ′′(ϑ)[κ′(ϑ)]2

+τ4[κ′(ϑ)]4,
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and so on, provided the required moments of X exist. Also, denoting by µ = E[X]

and µr := E[(X − µ)r] the following equations hold,

µ1 = 0

µ2 = τκ′′(ϑ)

µ3 = τκ(3)(ϑ)

µ4 = τκ(4)(ϑ) + 3τ2[κ′′(ϑ)]2,

and so on. Then, the class of convolution-closed infinitely divisible families de-
veloped in Joe [16] that are not exponential dispersion models are those without
moment generating functions. Nonetheless, a distribution without moment generat-
ing function may be considered by letting π in (2.17) with Ξ = {ϑ0}, i.e. consisting
of a single point; without loss of generality ϑ0 = 0. Thus, the ED(0; τ) model
corresponds to the class of distributions with characteristic functions ψτ , where ψ
is a given characteristic function, and any ED(0; τ) distribution still satisfies some
convolution formula. Moreover, in such case, the model is infinitely divisible if and
only if τ ∈ R+. With this convention, all distributions in Joe [16] belong to the class
of convolution-closed infinitely divisible families (cf. Jorgensen and Song [17]).

2.4.2 Thinning operation

Letting Y and Z two independent random variables with ED(ϑ; τ1) and ED(ϑ; τ2)

distribution, respectively. Then, the density probability function of X := Y + Z,
denoted by π, is obtained in the following way

π(dx) = exp
{
xϑ− τκ(ϑ)

}∫
R
c(x− z; τ2)c(z; τ1)dz

= c(x; τ) exp
{
xϑ− τκ(ϑ)

}
,

where τ = τ1 + τ2. Thus, the class of exponential dispersion distributions are closed
under convolutions. Such property is used to define a thinning operation. Indeed,
the conditional probability of Z, given X = x, denoted by G(τ1, τ2, x), takes the
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form

f(z;x) =
P[Z = dz, Y = x− z]

π(x)

=
c(x− z; τ2)c(z; τ1)

c(x; τ)
, (2.18)

with τ = τ1 +τ2. The distribution G(τ1, τ2, x) is called the contraction corresponding
to ED(ϑ; τ). This terminology comes from the fact that if ED(ϑ; τ) is non-negative
then G(τ1, τ2, x) is concentrated in the interval (0, x). It is worth to mention that,
the density probability function f(·;x) does not depend on ϑ. Furthermore, if the
first moment of X exists and τ1 = Θτ with Θ ∈ (0, 1), then

E
[
E[Z|X]−ΘX] = E[Z]−Θτκ′(ϑ) ≡ 0,

where the last equality holds because E[Z] = τΘκ′(ϑ), and, from completeness
arguments, it follows that E[Z|X] = ΘX. This result reinforces the notion of
thinning. At this point, it is not straightforward to obtain an expression for the rest
of the moments of exponential dispersion random variables.

For the model describe above, Bayes’ theorem allows us to calculate the pos-
terior distribution of π, denoted by ν0, which is given by

ν0(x; z) = c(x− z; τ2) exp {(x− z)ϑ− τ2κ(ϑ)}.

where τ2 = (1−Θ)τ . Clearly, ν0 is a ED(ϑ; τ2) probability measure, or equivalently,
the conditional distribution {X − Z|Z} d

= {X − Z} has ED(ϑ; τ2) distribution.
The later result holds because {X − Z} and Z are independent. As a result, the
conditional distribution of {X|Z} is a translation of ED(ϑ; τ2) distribution.

Then, one can define a time-homogeneous stationary Markov process (X,X )-
valued, denoted by X = {Xn}n≥0, with invariant distribution π, driven by the
transition probability function,

k(xn, xn+1) =

∫
Y
ν0(xn+1; z)f(z;xn)dz, for xn, xn+1 ∈ X.

For this model, X ⊂ Rd, X = B(Rd), for d ≥ 1, and Y ⊂ X. Moreover, the dynam-
ics of the process associated to the above transition can be also written through the
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following stochastic equation,

Xn = An(Xn−1,Θ) + εn, n = 1, 2, ... (2.19)

where the sequence {εn}n≥1 of random variables are i.i.d. with common ED(ϑ; τ2)

distribution and, the conditional distribution of {An(Xn−1,Θ)|Xn−1 = x} is given
by G(τ1, τ2, x). The random operator An defines a thinning operation and, we say
that An(Xn−1; Θ) is the thinning of X by the proportion Θ.

Furthermore, the first moments associated to the transition kernel k are com-
puted by using the conditional probability structure and the moments of exponential
dispersion distributions, i.e.

E[Xn+1|Xn] = E[E[Xn+1|Z] |Xn]

= E[Xn+1 − Z] + E[Z |Xn]

= (1−Θ)µ+ ΘXn,

where the second and third equality holds because {Xn − Y |Y } d
= {Xn − Y } ∼

ED(ϑ; τ2), with µ := E[Xn] = τk′(ϑ) for all n ≥ 1. Thus, the process X has a
linear relation in its mean. Moreover, in order to compute the autocorrelation of
the process, let us notice that

E[Xn+2|Xn] = E[E[Xn+2|Xn+1] |Xn]

= E[ (1−Θ)µ+ ΘXn+1 |Xn]

= (1−Θ2)µ+ Θ2Xn.

Following this recursion we can obtain, for h ≥ 1, that

E[Xn+h|Xn] = (1−Θh)µ+ ΘhXn,

Similarly,

E[Xn+hXn] = E[XnE[Xn+h|Xn]] = ΘhE[X2
n] + (1−Θh)µ2.

Hence, using the stationarity of the process X and the above equalities, the auto-
correlation takes the form

Corr(Xn+h, Xn) =
E[Xn+hXn]− µ2

E[X2
n]− µ2

= Θh,
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for h ≥ 1. This provides with an extra parameter that could be used to fit a required
autocorrelation. Note that, moments of order greater than one do not have a general
expression given that the moments of G(τ1, τ2, x) are unknown.

From the construction in Section 1.1, we known that the mechanism used in
this model guarantees the existence of a dual process. The following section provides
the form of the duality function and, also, the transition probabilities that drive the
corresponding dual.

2.4.3 Duality of stationary AR(1) models

Let us define a time-homogeneous stationary Markov process {Zn}n≥0 driven by the
transition probability kernel,

p(zn, zn+1) =

∫
X
f(zn+1;x)ν0(x; zn)dx, for zn, zn+1 ∈ Y,

and invariant measure mπ, where mπ is a ED(ϑ; τ1) distribution. Moreover, the first
moment associated to the transition p also have a linear relation, i.e.

E[Zn+1|Zn] = E[E[Zn+1|X] |Zn]

= E[ ΘX |Zn]

= Θ(1−Θ)µ+ ΘZn,

where the third equality holds because {X − Zn} ∼ ED(ϑ; τ2), with µ = τκ′(ϑ).
Then, the autocorrelation of the process Z can be obtained as following

E[Zn+2|Zn] = E[ Θ(1−Θ)µ+ ΘZn+1 |Zn]

= Θ(1−Θ2)µ+ Θ2Zn
...

...
...

E[Zn+h|Zn] = Θ(1−Θh)µ+ ΘhZn,

and

E[Zn+hZn] = ΘhE[Z2
n] + Θ2(1−Θh)µ2,
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for h ≥ 1. Thus, the stationarity of the process {Zn}n≥0 and the above equalities
leads to an autocorrelation given by

Corr(Zn+h, Zn) =
E[Zn+hZn]−Θ2µ2

E[Z2
n]−Θ2µ2

= Θh.

Notice that, the autocorrelation of the processes {Xn}n≥0 and {Zn}n≥0 are the same
and only depend on Θ. Furthermore, the processes X and Z are dual to each other
with respect to the duality function,

h(x; z) =
c(x− z; τ2)

c(x; τ)
exp {τ1κ(ϑ)− zϑ}.

for x ∈ X and z ∈ Y. Thus, using a thinning operation, one can define two time-
homogeneous reversible Markov processes with exponential dispersion distributions
as invariant measures. These processes turn out to be dual to each other and, also,
they share a linear mean property and the same autocorrelation function.

2.4.4 Filtering

Let {(Xn, Yn)}n≥0 be a hidden Markov model, where the signal X = {Xn}n≥0 is a
stationary AR(1) model, as described above; {Yn}n≥0 be a sequence of observations
that are conditionally independent, given the signal; and with emission density
(2.18). For this model, we have that

ν0(x0) = c(x− y0; τ2) exp
{

(x0 − y0)ϑ− τ2κ(ϑ)
}
.

Let us notice that, the probability measure ν0(x; z) as a function of x − z is an
ED(ϑ; τ2), with τ2 = τ(1−Θ). This implies that, in general, π is not conjugate with
respect to f. Later, we will see that, as an exception, the normal model turns out
to be conjugate model. From Theorem 1, we know that

mψ(νn)(dyn+1) =

∫
Y
ω̃(y(n), u)p(u, yn+1)du,
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where

ω
(
y(n+1), u

)
=

ω̃
(
y(n), u

)
p(u, yn+1)

mψ(νn)(dyn+1)
,

ω̃(y(n), u) =

∫
X
νn(dxn)f(u;xn)dxn,

for n ≥ 0. Thus, the optimal filters and their corresponding statistics can be com-
puted from the following equalities

νn+1(dxn+1) =

∫
Y
ω(y(n+1), u)φyn+1(ν0(u))(dxn+1)du,

E
[
ϕ(Xtn+1)

∣∣∣Y (n+1)
]

=

∫
Y
ω(y(n+1), u)

(∫
X
ϕ(xn+1)φyn+1(ν0(u))(dxn+1)

)
du.

respectively, for n ≥ 0. On the other hand, it is known from (2.12) that, the
predictor filters are given by the following expression

ψ(νn)(dxn+1) =

∫
Y
ω̃(y(n), u)ν0(dxn+1;u)du,

for n ≥ 0. Here, we use the notation assigned to the posterior distribution of π, i.e.

ν0(dxn+1;u) = c(xn+1 − u; τ2) exp {(xn+1 − u)ϑ− τ2κ(ϑ)}.

Hence, from the properties associated to exponential dispersion distributions, the
moment generating function associated to the predictor filters takes the form,

E
[
eλXtn+1

∣∣∣Y (n)
]

=

∫
Y
eλuω̃(y(n), u)

(∫
X
eλ(xn+1−u)ν0(xn+1;u)dxn+1

)
du

= exp
{
τ2

[
κ(ϑ+ λ)− κ(ϑ)

]} ∫
Y
eλuω̃(y(n), u)du

Similarly, one can obtain expressions for the moments of the predictor filters. Let us
emphazise that, the purpose of this section is to provide a mechanism for choosing
the measures π and f, which characterize our proposal. Moreover, given the nature
of the construction, we were allowed to give an expression for the previous filters
and its corresponding statistics.
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2.4.5 Examples

The normal, Poisson, gamma, binomial and negative-binomial distributions were
called as the univariate natural exponential families with quadratic variance func-
tion, Morris [31]. These families, together with the generalized hyperbolic secant,
belong to the class of exponential dispersion distributions. Thus, we apply a thin-
ning operation to these families in order to built reversible Markov processes. For
each of these models, we find its dual and, its corresponding filters.

Poisson model

Let X be a random variable with Poisson(λeϑ) distribution, where λeϑ > 0, denoted
by π. It is known that π belongs to the class of exponential dispersion distributions
with c(x; τ) = τx/x! and k(ϑ) = eϑ, where τ = λ. Hence, letting τ1 = Θτ and
τ2 = (1−Θ)τ , the contraction density function takes the form

f(z;x) =

(
x

z

)
Θz(1−Θ)x−z,

for z ∈ {0, 1, ..., x}. Thus, if Z and Y are Poisson(τ1e
ϑ) and Poisson(τ2e

ϑ) dis-
tribution, respectively. Then, X = Y + Z and the conditional {Z|X = x} has
binomial(x,Θ) distribution, for each x ∈ Z+ ∪ {0}, denoted by f. Hence, the distri-
bution of {X|Z} has density probability function

ν0(x; z) = e−τ2e
ϑ

(
τ2e

ϑ
)x−z

(x− z)!
,

for x ∈ {z, ...,∞}. Note that, ν0 is not a Poisson distribution as a function of x,
which means that π is not conjugate with respect to f(·;x). Nonetheless, clearly as
a function of x− z the measure ν0 has Poisson distribution.

Now, define a time-homogeneous stationary Markov process {Xn}n≥0 driven
by the transition probability kernel,

k(xn, xn+1) = e−τ2e
ϑ
(1−Θ)xn

xn∧xn+1∑
z=0

(
τ2e

ϑ
)xn+1−z

(xn+1 − z)!

(
xn
z

)(
Θ

1−Θ

)z
,

for xn, xn+1 ∈ Z+∪{0}, and the invariant measure π. For this model, the dynamics
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of {Xn}n≥0 can be also written through the stochastic equation

Xn = An(X,Θ) + εn, for n ≥ 1,

where {εn}n≥1 is a sequence of i.i.d. random variables with common Poisson(τ2e
ϑ)

distribution and An(X,Θ) has binomial(X,Θ) distribution. In fact, the process
{Xn}n≥0 turns out to be a birth and death with immigration process.

On other hand, letting {Zn}n≥0 be a time-homogeneous stationary Markov
process driven by the transition probability function,

p(zn, zn+1) =
e−τ2e

ϑ

(τ2eϑ)zn

(
Θ

1−Θ

)zn+1 ∞∑
v=zn∨zn+1

(
τ2e

ϑ
)v

(v − zn)!

(
v

zn+1

)
(1−Θ)v,

for yn, yn+1 ∈ Z+∪{0} such that yn ≤ yn+1; and invariant Poisson(τ1e
ϑ) distribution.

For this model, the duality function h, defined as the Radon-Nikodyn derivative
between the posterior and prior distribution of π, i.e.

h(x; z) =
x!eτ1e

ϑ

(x− z)!
(1−Θ)x

(τ2eϑ)z
,

guarantees the duality between the processes {Xn}n≥0 and {Zn}n≥0.

For the sake of notation, we compute the filters of the signal assuming that
ϑ = 0. Starting with ν0 and ω̃(y0, u) which are given by a Po(x0−y0; τ2) distribution
and the kernel p(y0, u), respectively. The optimal and prediction filters are given by

νn+1

(
dxn+1

)
=

xn+1∑
u=0

ω
(
y(n+1), u

)Bin(yn+1;xn+1,Θ)Po
(
xn+1 − u; τ2

)
p(u, yn+1)

,

ψ
(
νn
)
(dxn+1) =

xn+1∑
u=0

ω̃(y(n), u)Po
(
xn+1 − u; τ2

)
,

where

mψ(νn)(dyn+1) =

∞∑
u=0

ω̃(y(n), u)mν0(u)(yn+1),

ω
(
y(n+1), u

)
=

mν0(u)(yn+1)ω̃
(
y(n), u

)
mψ(νn)(dyn+1)

,

ω̃(y(n), u) =
∞∑

xn=u∨u
νn(dxn)Bin(u;xn,Θ).
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and ν0(u)(x) = Po(x− u; τ2), with n ≥ 0. Thus, the recursion requires to compute
some infinite sums. However, since we are adding only positive terms, one can
truncate such sums without losing accuracy in the result. Furthermore, the moment
generating function associated to the prediction filters take the form

E
[
eγXtn+1

∣∣∣Y (n)
]

= exp
{
τ2(eγ − 1)

} ∞∑
u=0

eγuω̃(y(n), u),

where ω and ω̃ are given before. For the optimal filters, the corresponding statistics
are not that simple but it can be computed by replacing,

φyn+1(ν0(u))(xn+1) =
Bin(yn+1;xn+1,Θ)Po

(
xn+1 − u; τ2

)
p(u, yn+1)

,

We would like to finish by noticing that, this model is not conjugate and, also, to our
knowledge, the continuous version of this model represents the only Markov process
whose invariant measure is not conjugate.

Normal model

The normal(µ, σ2) distribution, denoted by π, with µ ∈ R and σ2 > 0, belongs to the
class of exponential dispersion distributions with c(x; τ) = (2πτ)−1/2 exp {−x2/2τ}
and κ(ϑ) = ϑ2/2, where τ = σ2 and ϑ = µ/τ . Letting τ1 = Θτ and τ2 = (1 − Θ)τ

with Θ ∈ (0, 1), the contraction density function takes the form

f(z;x) =
1√

2πτ1τ2/τ
exp

{
− (z − xτ1/τ)2

2τ1τ2/τ

}
,

for z ∈ R. Note that f(·;x) has normal(xΘ,Θ(1−Θ)τ) distribution, for each x ∈ R.
Hence, the posterior distribution of π takes the form

ν0(x; z) =
1√

2πτ2
exp

{
− (x− z − ϑτ2)2

2τ2

}
,

for x ∈ R. This implies that, π is conjugate with respect to f(·;x).

Now, let {Xn}n≥0 be a time-homogeneous stationary Markov process driven
by the transition probability function,

k(xn, xn+1) =
1√

2πτ(1−Θ2)
exp

{
− (xn+1 − xnΘ− ϑτ2)2

2τ(1−Θ2)

}
,
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for xn, xn+1 ∈ R; and invariant measure π. Moreover, the dynamics for this model
can be also described by the following stochastic equation,

Xn = An(X,Θ) + εn, for n ≥ 1,

where {εn}n≥1 is a sequence of i.i.d. random variables with common normal(ϑτ2, τ2)

distribution and An(X,Θ) has normal(xΘ,Θ(1−Θ)τ) distribution.

On other hand, let {Zn}n≥0 be a time-homogeneous stationary Markov process
driven by the transition probability kernel,

p(zn, zn+1) =
1√

2πτΘ(1−Θ2)
exp

{
− [zn+1 −Θ(zn − ϑτ2)]2

2τΘ(1−Θ2)

}
,

for zn, zn+1 ∈ R; and invariant distribution mπ, which has normal(ϑτ1, τ1) distribu-
tion. Clearly, conjugacy of π saves us the computation of the integral p. Further-
more, the duality function h is given by

h(x; z) =
1

2πτ

1√
1−Θ

exp
{
− Θx2

2τ2
+
xz

τ2
− z2

2τ2
− zϑ+

τ1ϑ
2

2

}
This function guarantees the duality between the transition probability functions k
and p.

For this model, the probability measure π is conjugate with respect to f(·;x).
So, starting with ν0 and ω̃(y0, u) which are N(x0; y0 + ϑτ2, τ2) and N(y0; Θx0 +

Θϑτ2, τΘ(1 − Θ2)) distributions, respectively. The optimal and prediction filters
take the form

νn+1(dxn+1) =

∫
Y
ω(y(n+1), u)N

(
xn+1;

u+ yn+1 + ϑτ2

1 + Θ
,

τ2

1 + Θ

)
du,

ψ(νn)(dxn+1) =

∫
Y
ω̃(y(n), u)N(dxn+1;u+ ϑτ2, τ2)du,

where

mψ(νn)(dyn+1) =

∫
Y
ω̃(y(n), u)N

(
yn+1; Θ[u− ϑτ2], τΘ(1−Θ2)

)
du,

ω
(
y(n+1), u

)
=

ω̃
(
y(n), u

)
N
(
yn+1; Θu−Θϑτ2, τΘ(1−Θ2)

)
mψ(νn)(dyn+1)

,

ω̃(y(n), u) =

∫
Y
ω(y(n), k)N

(
u;

Θ(k + y + ϑτ2)

1 + Θ
,
τ(Θ−Θ2 + 2Θ3)

1 + Θ

)
dk.
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This model is characterized since all the filters are given by normal measures. How-
ever, we decide to present such filters as mixtures of normal measures, because
there is not a recursive way to express them in the formal case. Let us emphasize
that, conjugacy of π saves us the computation of the integrals corresponding to mπ,
which are normal distributions. Additionally, the moment generating function of
the optimal and prediction filters are given by

E
[
eλXtn+1

∣∣∣Y (n+1)
]

= exp
{λ(yn+1 + ϑτ2)

1 + Θ
+

1

2

λ2τ2

1 + Θ

}∫
Y
e

λ
1+Θ

uω(y(n+1), u)du,

E
[
eλXtn+1

∣∣∣Y (n)
]

= exp
{
λϑτ2 +

1

2
λ2τ2

}∫
Y
eλuω̃(y(n), u)du,

where ω and ω̃ are given before.

Gamma model

The gamma distribution belongs to the class of exponential dispersion distributions.
In fact, letting π be a gamma(a, b) distribution, with a, b > 0, we have that c(x; τ) =

xτ−1/Γ(τ) and κ(ϑ) = − log (−ϑ), for τ = a and ϑ = −b. Thus, letting τ1 = Θτ and
τ2 = (1−Θ)τ with Θ ∈ (0, 1), the contraction density function takes the form

f(z;x) =
Γ(τ)

Γ(τ1)Γ(τ2)

(
1− z

x

)τ2−1 ( z
x

)τ1−1 1

x
,

for z ∈ (0, x). Clearly, the measure f as a function of z/x has beta (τ1, τ2) distribu-
tion. Hence, the posterior distribution of π is given by

ν0(x; z) =
(−ϑ)τ2

Γ(τ2)
(x− z)τ2−1 exp {ϑ(x− z)}

for x ∈ (z,∞). As for the Poisson model, the measure ν0, as a function of x, has
not gamma distribution. This implies that π is not conjugate with respect to f.
Nonetheless, as a function of x− z, ν0 has gamma distribution.

Now, let {Xn}n≥0 be a time-homogeneous stationary Markov process driven
by the transition probability function,

k(xn, xn+1) =
Γ(τ)(−ϑ)τ2eϑxn+1

Γ(τ1)Γ(τ2)Γ(τ2)xτ−1
n

∫ xn∧xn+1

0

[
(xn+1 − z)(xn − z)

]τ2−1
zτ1−1e−ϑydz,

for xn, xn+1 ∈ R+; and invariant measure π. For this model, the dynamics of
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{Xn}n≥0 can be also written through the stochastic equation (2.19) with An(X,Θ) =

AnX. That is to say,

Xn = AnXn−1 + εn, for n ≥ 1,

where {εn}n≥1 is a sequence of i.i.d. random variables with common gamma(τ2,−ϑ)

distribution and where An has beta(τ1, τ2) distribution.

On other hand, let {Zn}n≥0 be a time-homogeneous stationary Markov process
driven by the transition probability function,

p(zn, zn+1) =
Γ(τ)zτ1−1

n+1

Γ(τ1)Γ(τ2)

(−ϑ)τ2e−ϑzn

Γ(τ2)

∫ ∞
zn∨zn+1

(
1− zn+1

x

)τ2−1 (
1− zn

x

)τ1−1 eϑx

x
dx.

for zn, zn+1 ∈ R+; and with invariant gamma(τ1,−ϑ) distribution. Furthermore, the
duality function h for this model takes the form

h(x; z) =
Γ(τ)(−ϑ)−τ1

Γ(τ1)

(
1− z

x

)τ1−1 e−zϑ

xτ2
.

This function guarantees the duality between the processes {Xn}n≥0 and {Zn}n≥0.

Then, starting at ν0 which have gamma(x0 − y0;−ϑ, τ2) distribution. The
optimal and the prediction filters are given by

νn+1

(
dxn+1

)
=

∫ xn+1

0
ω
(
y(n+1), u

)Beta
(
yn+1

xn+1
; τΘ, τ(1−Θ)

)
Ga
(
xn+1 − u; τ2,−ϑ

)
p(u, yn+1)

du,

ψ
(
νn
)
(dxn+1) =

∫ xn+1

0
ω̃(y(n), u)Ga

(
xn+1 − u; τ2,−ϑ

)
du,

where

mψ(νn)(dyn+1) =

∫ ∞
0

ω̃(y(n), u)p(u, yn+1)du,

ω
(
y(n+1), u

)
=

ω̃
(
y(n), u

)
p(u, yn+1)

mψ(νn)(dyn+1)
,

ω̃(y(n), u) =

∫ ∞
u

νn(dxn)Beta
(u
x

; τΘ, τ(1−Θ)
)
dx.

with ν0(u)(x) = Ga(x− u; τ2,−ϑ) and n ≥ 0. Furthermore, the moment generating
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function of the prediction filters take the form

E
[
eλXtn+1

∣∣∣Y (n)
]

=
(

1− λ

−ϑ

)τ2 ∫ ∞
0

eγuω̃(y(n), u)du,

where ω and ω̃ are given as before. For the optimal filters, the statistics are more
elaborated but they can be computed by substituting

φyn+1(ν0(u))(xn+1) =
Beta

(
yn+1

x ; τΘ, τ(1−Θ)
)
Ga
(
x− u; τ2,−ϑ

)
p(u, yn+1)

,

in the expression E[ϕ(Xtn)|Yn], with ϕ(x) = eux for u ∈ R. Let us emphasize that
this model is not the same as the gamma-Poisson model in Section 2.3.1. This
exemplifies that there are many ways to define the distribution f, which together
with the measure π, characterizes the model.

Binomial model

Let π be a binomial(r, p) distribution, with r ≥ 1 and p ∈ (0, 1). In this case, we have
that c(x; τ) =

(
τ
x

)
and k(ϑ) = log (1 + eϑ), where τ = r and ϑ = log (p)− log (1− p).

Thus, the contraction density function takes the form

f(z;x) =

(
τ2
x−z
)(
τ1
z

)(
τ
x

) ,

for z ∈ {max (0, x+ τ1 − τ), ...,min (x, τ1)}. Note that, the measure f has hyperge-
ometric distribution with parameters (τ, τ1, x), where x ∈ {0, 1, ..., τ}. Hence, the
posterior distribution of π has density probability function

ν0(x; z) =

(
τ2

x− z

)
px−z(1− p)τ2−(x−z),

for x ∈ {z, z + 1, ..., τ2}. Again for this model, ν0 is not a binomial distribution
as a function of x. However, as a function of x − z, the measure ν0 has binomial
distribution.

Now, let {Xn}n≥0 be a time-homogeneous stationary Markov process driven
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by the transition probability function,

k(xn, xn+1) =
(1− p)τ2(

τ
xn

) min (xn,τ1,τ2)∑
z=max (0,xn−τ2)

(
τ2

xn+1 − z

)(
τ2

xn − z

)(
τ1

z

)
eϑ(xn+1−z),

for xn ∈ {0, 1, ..., τ} and xn+1 ∈ {min (τ1, τ2), ...,max (τ1, τ2)}; and with invariant
measure π. For this model, the dynamics of {Xn}n≥0 can be also written through
the stochastic equation

Xn = An(X,Θ) + εn, for n ≥ 1,

where {εn}n≥1 is a sequence of i.i.d. random variables with common binomial(τ2, p)

distribution and An(X,Θ) has hypergeometric(τ, τ1, x) distribution.

On other hand, let {Zn}n≥0 be a time-homogeneous stationary Markov process
driven by the transition probability kernel,

p(zn, zn+1) =

(
τ1

zn+1

)(
1− p
p

)zn
(1− p)τ2

τ1∧τ2∑
x=zn∨zn+1

(
τ2

x−zn+1

)(
τ1

x−zn
)(

τ
x

) (
p

1− p

)x
,

for zn ∈ {0, 1, ..., τ2} and zn+1 ∈ {max (0, zn − τ2), ...,min (zn, τ1, τ2)}; and with
invariant binomial(τ1, p) distribution. Furthermore, the duality function h

h(x; z) =

(
τ2
x−z
)(

τ
x

) (
1− p
p

)z
(1− p)−τ1 .

As before, this function guarantees the duality between the processes {Xn}n≥0 and
{Zn}n≥0.

Now, starting at ν0 which has binomial(x0−y0; τ2, p) distribution. The optimal
and the prediction filters are given by the following recursions

νn+1

(
dxn+1

)
=

xn+1∑
u=0

ω
(
y(n+1), u

)Hypgeo
(
yn+1; τ, τ1, xn+1

)
Bin
(
xn+1 − u; τ2, p

)
p(u, yn+1)

,

ψ
(
νn
)
(dxn+1) =

xn+1∑
u=0

ω̃(y(n), u)Bin
(
xn+1 − u; τ2, p

)
,
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where

mψ(νn)(dyn+1) =

τ2∑
u=0

ω̃(y(n), u)p(u, yn+1),

ω
(
y(n+1), u

)
=

ω̃
(
y(n), u

)
p(u, yn+1)

mψ(νn)(dyn+1)
,

ω̃(y(n), u) =
∞∑
x=u

νn(dxn)Hypgeo
(
u; τ, τ1, x

)
.

with ν0(u)(x) = Bin(x−u; τ2, p) and n ≥ 0. For this model, the moment generating
function associated to the prediction filters takes the form

E
[
eλXtn+1

∣∣∣Y (n)
]

=
(

1− p+ peλ
)τ2 ∞∑

u=0

eγuω̃(y(n), u),

where ω and ω̃ are given before. On other hand, expressions for the optimal filters
and their statistics can be computed form the equations (2.11) and (2.13).

Negative binomial model

The negative-binomial(r, p) distribution, denoted by π, with n ≥ 1 and p ∈ (0, 1),
belong to the class exponential dispersion distributions. In this case, we have that
c(x; τ) = Γ(x + τ)/[Γ(τ)x!] and k(ϑ) = − log (1− eϑ), for τ = r and θ = log (p).
Thus, letting τ1 = Θτ and τ2 = (1 − Θ)τ with Θ ∈ (0, 1), the contraction density
function takes the form

f(z;x) =

(
x

z

)
B(τ1 + z, τ2 + x− z)

B(τ1, τ2)
, for z ∈ {0, 1, ..., x},

where B denotes the beta function. This implies that f has beta-binomial(x, τ1, τ2)

distribution, with x ∈ N ∪ {0}. Hence the posterior distribution of π has density
probability function,

ν0(x; z) =
Γ(x− z + τ2)

Γ(τ2)(x− z)!
px−z(1− p)τ2 ,

for x ∈ {z, z + 1, ...}. Again for this model, the measure ν0 as a function of x − z
has negative-binomial distribution.

Now, let {Xn}n≥0 a time-homogeneous stationary Markov process driven by
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the transition probability function,

k(xn, xn+1) =
xn!pxn+1(1− p)τ2

Γ(τ2)B(τ1, τ2)

xn∧xn+1∑
z=0

Γ(xn+1 − z + τ2)B(τ1 + z, τ2 + xn − z)
(xn+1 − z)!(xn − z)!z!

p−z,

for xn ∈ N ∪ {0}, xn+1 ≥ xn; and with invariant measure π. For this model, the
dynamics of {Xn}n≥0 can also be written through the stochastic equation

Xn = An(X,Θ) + εn, for n ≥ 1,

where {εn}n≥1 is a sequence of i.i.d. random variables with common negative-
binomial(τ2, p) distribution and An(X,Θ) has beta-binomial(x, τ1, τ2) distribution.

On other hand, let {Zn}n≥0 be a time-homogeneous stationary Markov process
driven by the transition probability function,

p(zn, zn+1) =
(1− p)τ2
Γ(τ2)pzn

∞∑
x=zn∧zn+1

B(τ1 + zn+1, τ2 + x− zn+1)Γ(x− zn + τ2)x!

B(τ1, τ2)(x− zn+1)!(x− zn)!zn+1!
px,

for zn ∈ N∪{0}, zn+1 ≤ zn; and with invariant negative-binomial(τ1, p) distribution.
In this case, the duality function h takes the form

h(x; z) =
Γ(x− z + τ2)

Γ(τ2)(x− z)!
Γ(τ)x!

Γ(x+ τ)
p−z(1− p)−τ1 ,

As before the construction guarantees the duality between the processes {Xn}n≥0

and {Zn}n≥0 with respect to the duality function h.

Then, starting at ν0 which has negative-binomial(x0 − y0; τ2, p) distribution.
The optimal and the prediction filters for this model are given by

νn+1

(
dxn+1

)
=

xn+1∑
u=0

ω
(
y(n+1), u

)Be-Bin
(
yn+1;xn+1, τ1, τ2

)
NB
(
xn+1 − u; τ2, p

)
p(u, yn+1)

,

ψ
(
νn
)
(dxn+1) =

xn+1∑
u=0

ω̃(y(n), u)NB
(
xn+1 − u; τ2, p

)
,
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where

mψ(νn)(dyn+1) =
∞∑

u=yn+1

ω̃(y(n), u)p(u, yn+1),

ω
(
y(n+1), u

)
=

ω̃
(
y(n), u

)
p(u, yn+1)

mψ(νn)(dyn+1)
,

ω̃(y(n), u) =
∞∑
x=u

νn(dxn)Be-Bin
(
u;x, τ1, τ2

)
.

with ν0(u)(x) = NB(x − u; τ2, p) and n ≥ 0. Furthermore, the moment generating
function associated to the prediction filters takes the form

E
[
eλXtn+1

∣∣∣Y (n)
]

=
( 1− p

1− peλ
)τ2 ∞∑

u=0

eγuω̃(y(n), u),

where ω and ω̃ are given before. Then, as we mentioned, the optimal filters and
their corresponding statistics can be computed from (2.11) and (2.13).

2.5 Lancaster probabilities

The construction of reversible Markov processes used along this chapter requires the
specification of the probability measures π and f. These measures allow two built
transition probabilities via the joint distribution π(dx)f(dz;x). Hence, such joint
distribution characterizes the construction that we proposed. Having this in mind,
this section deals with the problem of defining a joint distribution, via Lancaster
probabilities, that possesses some appealing properties. Hence, we begin defining
and developing some properties of Lancaster properties. This will be done based on
the work of Lancaster [22] and Koudou [19].

The Lancaster probabilities on R2 are a class of distributions satisfying a bi-
orthonormal condition. In fact, Lancaster [21] states that, a bivariate distribution
is completely characterized almost surely by its marginal distributions and its cor-
relation matrix. In this case, such matrix is completely generated by the sets of
orthogonal polynomials associated to their margins. It is worth to mention that,
polynomial bi-orthogonality is a very strong condition, for instance it implies that
moments of all degree exist. Such is the case of the class of Meixner distribution,
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which later we will see that they play an important role to define the Lancaster
probabilities

2.5.1 Meixner distributions

Let us first recall some basis facts of orthogonal polynomials. Consider a general
polynomial of degree n, denoted by Pn, given by

Pn(x) = anx
n + an−1x

n−1 + · · ·+ a0, an 6= 0,

where an is known as the leading coefficient of the polynomial Pn. The monic version
of the polynomial Pn is obtained through a simple transformation of the form

Pn(x)

an
= xn +

an−1

an
xn−1 + · · ·+ a0

an
,

i.e. it is a version of Pn with leading coefficient equal to one. Hence, in what
follows, we consider polynomials with leading coefficient equal to one. A system of
polynomials {Pn(x)}n≥0 is called an orthogonal system of polynomials with respect
to some real positive measure π, if the following orthogonality relations hold∫

X
Pn(x)Pm(x)π(x)dx = b2nδn,m, n,m ≥ 0,

where X is the support of π and {bn}n≥0 are nonzero constants. If such constants
are equal to one we say that the system is orthonormal.

Let X be a centered random variable possessing distribution G and moment
generating functions φ, and let Pn(x) = xn+an,1x

n−1+...+an,n be a set of orthogonal
polynomials. If the function exp {u(t)x}/φ(u(t)) generates a system of orthogonal
polynomials, i.e.

g(t, x) =
exu(t)

φ(u(t))
=

∞∑
n=0

Pn(x)tn

n!
. (2.20)

Then, we say that X belongs to the Meixner class and it is characterized by u(t),
where u(t) is a power series in t having real coefficients, with u(0) = 0 and u′(0) = 1.
Denoting by v(u) the functional inverse of u(t), i.e. v(u(t)) ≡ t, it follows that,

dt
du

= 1− λt− κt2 + · · · .
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Now, in order to compute the generating function of bm ≡ E[P 2
m(X)], one can obtain

the following equality

B(st) :=
φ(u(s) + u(t))

φ(u(s))φ(u(t))
=

∫
g(x; s)g(x; t)dG(x) ≡ 1 +

∞∑
m=1

bms
mtm

(m!)2
.

The last equality holds because for m 6= n the coefficient of smtn are zero by orthog-
onality.

On other hand, it is known that, any set of orthogonal polynomials in a cen-
tered variable where the polynomials have been normalized to have unit leading
coefficients, there is a recurrence relation of the form,

Pn+1(x) = (x+An)Pn(x) + CnPn−1(x), n = 1, 2, ...;

P0(x) = 1, P1(x) = x,

where An and Cn are constants, independent of x. Hence, multiplying both sides of
the above equation by Pn−1 and integrating with respect to x we obtain that

Cnbn−1 = −E[xPn−1(x)Pn(x)] = −E[P 2
n(x) + Pn(x)Qn−1(x)] = −bn,

where Qn−1(x) is a polynomial in x of degree at most (n− 1). This implies that the
constant Cn is equal to −bn/bn−1.

Denoting by b1 = Var[X], deriving the equality (2.20) with respect to the
real-valued function u(t) one obtains

dt
du

d
dt
g(x; t) =

(
x− φ′(u)

φ(u)

)
exu

φ(u)
= (x− b1t) g(x; t).

Hereafter, let ψ′(u) = φ′(u)/φ(u). Then, replacing the expression of (dt/du) and
the function g in terms of their polynomials, the above equality takes the form

(1− λt− κt2 + · · · )
(

1 +
∑ ntn−1Pn(x)

n!

)
= (x− b1t)

(
1 +

∑ tnPn(x)

n!

)
. (2.21)

A comparison of the coefficients of tn/n! in (2.21) and the recurrence relation of
{Pn}n≥0 implies that

dt

du
= 1− λt− κt2, (2.22)
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where κ and λ constant. The equality (2.22) characterizes the class of Meixner
distributions into six different families. Furthermore, such equality implies that the
orthogonal polynomials satisfy the following relation,

Pn+1 = (x+ nλ)Pn + n((n− 1)κ− b1)Pn−1,

for n = 0, 1, 2, . . . , with P−1(x) = 0 and κ ≤ 0 because Cn < 0. Furthermore,

d
dt

log {φ(u)} =
b1t

1− λt− κt2
⇒ ψ(u) = log {φ(u)} = b1ω(t) + a,

where a is a constant and ω(t) =
∫ t

0
s/(1− λs− κs2)ds. Using the last equality one

can derive some special cases within the Meixner class, namely

• Positive binomial distribution

If (1 − λt − κt2) = (1 − pt)(1 + qt), with p, q > 0 such that p + q = 1,
then

du
dt

=
q

1 + qt
+

p

1− pt
⇒ U ≡ exp {u} =

1 + qt

1− pt

or equivalently, t = (U − 1)/(q + pU). Thus, letting b1 = npq we obtain that

dψ(u)

dU
=

du
dU

dψ(u)

du
=

1

U
b1t =

npq

U

U − 1

q + pU
.

whose solution is given by ψ(u) = −np log (U) + n log (q + pU). Hence, the
following function characterizes a binomial(n, p) distribution,

φ(u) =

(
1− pt
1 + qt

)np( 1

1− pt

)n
.

Moreover, the orthogonal polynomials in this case are the Kravkut polynomials
and its moment generating function is,

g(x; t) =

(
1 + qt

1− pt

)x+Np

(1− pt)N .

• Normal distribution

If (1 − λt − κt2) = 1 and letting b1 = 1, then u(t) = t. Thus, ψ′(u) = u
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whose solution is given by ψ(u) = u2/2 with ψ(0) = 0. Hence, the following
function characterizes a normal(0, 1) distribution,

φ(u) = exp
{1

2
u2
}
.

Moreover, the orthogonal polynomials for the normal distribution are the Her-
mite polynomials and its moment generating function is,

g(x; t) = exp
{
xt− 1

2
t2
}
.

• Poisson distribution

If (1 − λt − κt2) = 1 + t, then (du/dt) = (1 + t)−1 whose solution is u =

log (1 + t), or equivalently t = eu − 1. Thus,

d
du
ψ(u) = b1(eu − 1) ⇒ ψ(u) = b1(eu − u)− σ2,

with ψ(0) = 0. Hence, the following function characterizes a centered Poisson
distribution with parameter b1,

φ(u) = e−µu exp {µ(eu − 1)}.

Moreover, the orthogonal polynomials for the Poisson distribution are the
Poisson-Charlier polynomials and its moment generating function is,

g(x; t) = (1 + t)x+µe−tµ

• Gamma distribution

If (1 − λt − κt2) = (1 + t)2, then the solution of (du/dt) is u = t/(1 + t),
or equivalently, t = u/(1− u). Thus,

d
du
ψ(u) = b1

u

1− u
⇒ ψ(u) = −b1(log (1− u) + u),

with ψ(0) = 0. Hence, the following function characterizes a centered gamma
distribution,

φ(u) = e−b1u(1− u)−b1 .
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Moreover, the orthogonal polynomials for the gamma distribution are the La-
guerre polynomials and its moment generating function is,

g(x; t) = (1 + t)−b1 exp
{

(x+ b1)
t

1 + t

}

• Negative binomial distribution

If (1− λt− κt2) = (1 + pt)(1 + qt) with p+ q = 1, then

du
dt

=
q

1 + qt
− p

1 + pt
⇒ U ≡ eu =

1 + qt

1 + pt

or equivalently, t = (U − 1)/(q − pU). Thus, letting b1 = npq we obtain that

dψ(U)

dU
=
npq

U

U − 1

q − pU
= np

(
1

q − pU
− 1

U

)
This implies that, ψ(u) = −n log (q − pU) − np logU . Hence, the following
function characterizes a binomial negative(n, p) distribution,

φ(u) =

(
1 + qt

1 + pt

)−np(
q − p1 + qt

1 + pt

)−n
Moreover, the orthogonal polynomials for the negative-binomial distribution
are the Meixner polynomials and its moment generating function is,

g(x; t) =

(
1 + qt

1 + pt

)x+np( q − p
1 + pt

)n

• Hypergeometric distribution

If (1 − λt − κt2) has two complex arguments, then its density function is
proportional to the product of two gamma functions with complex argument.

Finally, a result derived in Eagleson [7] tell us that joint distributions, formed
by taking convolutions of variables in a Meixner class with some held in common,
posses the polynomial bi-orthogonal property.
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2.5.2 Lancaster probabilities

Let µ and ν be probability measures on R. Denote by (Pn) and (Qn), respectively, the
sequence of orthonormal polynomials with respect to µ and ν. These sequences are
unique if we assume that the coefficients of xn and zn in (Pn) and (Qn) are positive.
Suppose there exists α > 0 such that

∫
eα|x|dµ(x) < ∞ and

∫
eα|z|dν(z) < ∞

(this condition guarantees the existence of the moments of all orders of µ and ν).
Then (Pn) and (Qn) are complete in L2(µ) and L2(ν), respectively. The bivariate
probability distributions σ, with margins µ and ν such that if (X,Z) is a random
variable with law σ then E[Pi(X)Qj(Z)] = 0 for i 6= j, are called the Lancaster
probabilities with respect to µ and ν.

Denoting by L(µ, ν) the set of Lancaster probabilities with margins µ and ν.
The sequence (ρn)n≥0 defined by ρn = E[Pn(X)Qn(Z)] is then called a Lancaster
sequence with respect to µ and ν, denoted by S(µ, ν). This sequence characterizes
σ in L(µ, ν). The most interesting elements of L(µ, ν) are those having a density of
the form

σ(dx, dz) =

[∑
n

ρnPn(x)Qn(z)

]
µ(dx)ν(dz), (2.23)

for x, z ∈ E ⊂ R. Note that, L(µ, ν) is clearly a convex set. Thus, L(µ, ν) is
characterized by its extreme points. An extreme point α of a convex set C is an
element of C for which there is no α1, α2 in C and no λ in (0, 1) such that α1 6= α2

and α = λα1 + (1 − λ)α2. The general problem is, given µ and ν, to find those
extreme points, or equivalently, its extreme Lancaster sequences. Tyan, Derin and
Thomas [42] showed that, if both µ and ν have unbounded supports, then the
Lancaster sequences are necessarily moments sequences.

Indeed, suppose that µ and ν have unbounded support and that the convex
support of µ is R. Letting,

γ−1 = lim sup
n→∞

∣∣∣∣ b2na2n

∣∣∣∣ (2.24)

where γ is set to be 0 if the lim sup is infinite. If ρ ∈ S(µ, ν), then there exists a
probability measure αρ on [−γ, γ] such that

ρn =
bn
an

∫ γ

−γ
tnαp(dt), ∀n ∈ N. (2.25)
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More precisely, denote by C(µ) and C(ν) the convex support of µ and ν, respectively.

• Let C(µ) = [A,∞) and C(ν) = [B,∞) where A,B ∈ R. If ρ ∈ S(µ, ν), then
(2.25) holds with αp on [0, γ].

• Let C(µ) = [A,∞) and C(ν) = [−∞, B) where A,B ∈ R. If ρ ∈ S(µ, ν), then
(2.25) holds with αp on [−γ, 0].

• If C(µ) = R+ and C(ν) = R or viceversa, then ρ ∈ S(µ, ν)⇔ ρn = 0, ∀n ≥ 1.

In the case where µ = ν one has γ = 1. If the support of µ is unbounded and if
ρ ∈ S(µ, µ), there exists a probability measure αp on [−1, 1] such that (2.25) holds.
In particular, if the convex support of µ is a half line, then αp is supported by [0, 1].

2.5.3 Duality and filtering

The construction of time-homogeneous Markov processes discrete in time are com-
pletely characterized by its invariant measure and its one-step transition probability
function. See Section 1.3. Our proposal requires specifying the probability measures
π and f to construct a bivariate distribution that characterizes the model. Thus,
Lancaster probabilities give us an alternative way to construct this kind of models
by defining a joint distribution of the form

σ(dx, dz) = π(dx)f(z;x) = mπ(dz)ν0(dx; z).

for x ∈ X and y ∈ Y, where σ is given by (2.23). It is clear that, the marginal
distributions of σ over (X,X ) and (Y,Y ) are π and mπ, respectively. Thus, the
construction implies that

f(z;x) =
∑
n

ρnPn(x)Qn(z)mπ(dz),

where {Pn}n≥0 and {Qn}n≥1 are the orthonormal polynomials associated to π and
mπ, respectively; and {ρn}n≥0 is the Lancaster sequence of σ.

Then, one can define a time-homogeneous stationary Markov process over
(X,X ), denoted by {Xn}n≥0, with invariant distribution π and one-step transition
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probability function given by,

k(xn, dxn+1) =

∫
Y
ν0(dxn+1; z)f(z;xn)dz

=

∫
Y

∑
j≥0

ρjPj(dxn+1)Qj(z)π(dxn+1)

[∑
k≥0

ρkPk(xn)Qk(z)mπ(z)

]
dz

=
∑
j≥0

ρ2
jPj(xn)Pj(xn+1)π(dxn+1)

where the last equality holds by the bi-orthogonality of {Pn}n≥0 and {Qn}n≥0. Notice
that, the expression of k proves that Pj is an eigenfunction for the eigenvalue ρ2

j of
the operator Tf(x) =

∫
X f(x)k(v, x)dx, for any measurable function f .

Again, using the above bi-orthogonal property, we derive an expression for
the transition probabilities that drive the dual {Zn}n≥1. Indeed, one can built an
homogeneous reversible Markov process (Y,Y )-valued, with invariant measure mπ

and one-step transition probability function,

p(zn, zn+1) =
∑
j≥0

ρ2
jQj(dzn)Qj(dzn+1)mπ(dzn+1),

for zn, zn+1 ∈ Y.

Thus, as before, the processes X and Y are dual to each other with respect to
the duality function defined as the Radon-Nikodyn derivative between the posterior
and prior distribution of π, i.e.

h(x; z) =
∑
j≥0

ρjPj(x)Qj(z),

for x ∈ X and z ∈ Y. Indeed, for this model, the duality equality is obtained via
the bi-orthogonal property of the polynomials associated to π and mπ. Leaving us,

Ex[h(Xn, z)] = Ex
[∑
j≥0

ρjPj(Xn+1)Qj(z)
]

=
∑
j≥0

ρjQj(z)Ex
[
Pj(Xn+1)

]
=

∑
j≥0

ρ3
jQj(z)Pj(x)

= Ey[h(x, Zn)].
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Then, one can compute the predictor operator of {Xn}n≥0 using the mentioned
duality. That is to say,∫

X
ν0(v; z)k(v, dx)dv =

∫
X

∑
n≥0

ρnPn(v)Qn(z)π(v)

[∑
k≥0

ρ2
kPk(v)Pk(dx)π(dx)

]
dv

=
∑
n≥0

ρ3
nPn(x)Qn(z)π(dx).

In fact, from the previous results, the above operator is the first step of the prediction
filters, i.e. the law of {X1|Y0 = z} denoted by ψ(ν0)(·).

Similarly, one can compute the predictor operator of {Zn}n≥0. In fact, the
expression we get is very similar to the previous one,∫

Y
f(u;x)p(u, dz)du =

∑
n≥0

ρ3
nPn(x)Qn(z)mπ(dz).

Clearly, the predictor operators of the Markov processes X and Z, which are defined
using some Lancaster probability, possesses an expression based on the orthonormal
polynomial rather than some transition function.

Furthermore, the computation of the filters can be obtained using the same
bi-orthogonality of the model. In fact, we have that

mν0(dy1) =

∫
X
ψ(ν0)(x1)f(y1;x1)dx1

=
∑
n≥0

ρ4
nQn(y0)Qn(y1)mπ(dy1).

Hence, the optimal filter {X1|Y0, Y1} takes the form

ν1(dx1) =

∑
n≥0 ρ

3
nPn(x1)Qn(y0)π(dx1)

[∑
j≥0 ρjPj(x1)Qj(y1)mπ(dy1)

]
∑

n≥0 ρ
4
nQn(y0)Qn(y1)mπ(dy1)

.

Then, the predictor filter {X2|Y0, Y1} is given by

ψ(ν1)(dx2) =

∑
n,j,i≥0 ρ

6
nPn(x2)Qj(y0)Qk(y1)mπ(dy1)π(dx2)

∫
X Pn(x1)Pj(x1)Pi(x1)π(x1)dx1∑

n≥0 ρ
4
nQn(y0)Qn(y1)mπ(dy1)

.

Let us emphasize that, as we did in the previous section, the purpose of presenting
this particular model is to provide a mechanism to specify the measures π and f.
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Nonetheless, expressions for the filters can be obtained following the above method-
ology. However, these are given in terms of orthogonal polynomials. Hence, this
leads us to deal with the problem of handling polynomials. It is worth to mention
that, there are examples where this is not complicated. For instance, below, we
provide an alternative way to define the gamma-Poisson process of Section 1.3 via
Lancaster probabilities. This will help to illustrate the above construction. Also, a
Lancaster probability with beta margins is used to build the two Markov processes
which are dual to each other.

The gamma-negative binomial case

Let π by a gamma(a, 1) distribution, with a > 0. It is known that, the orthonormal
polynomials with respect to π, denote by {Pn}n≥0, are given by Pn =

√
n!/(a)nL

a
n,

with (a)n = a(a + 1) · · · (a + n − 1), where {Lan}n≥0 are the Laguerre polynomials
defined by

Lan(x) =
n∑
k=0

(−1)k(1 + a)nx
k

k!(n− k)!(1 + a)k

for x ∈ (0,∞). See Rainville (1971).

Also, let mπ be a negative-binomial(r, p) distribution, with n > 0 and p ∈
(0, 1). The orthonormal polynomials with respect to mπ are the normalized Meixner
polynomials, denoted by {Qn}n≥0, that take the form

Qn(z) =

√
pn(r)n
n!

n∑
j=0

(−n)j(−z)j
(r)jj!

(
1− 1

p

)j
.

See Erdelyi (1953).

Now, Koudou [19] proved that the Lancaster probability with marginals π and
mπ has Lancaster sequences of the form (tn)n≥0, for t ∈ R, if

gt(x, z) =
∞∑
n=0

Pn(x)Mn(z)tn ≥ 0, for (x, z) ∈ (0,∞)× N,

which is satisfied if and only if 0 ≤ t ≤ √p. Moreover, Koudou [19] also obtains the
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following expression,

g√p(x, z) =
xz

(a)z

1

(1− p)z+a
exp

{
− xp

1− p

}
.

Letting φ = p/(1 − p) and r = a then the Lancaster probability with gamma and
negative-binomial margins takes the form,

σ(dx, dz) = g√p(x, z)mπ(dz)π(dx)

=
xz

(a)z
(1 + φ)z+ae{−xφ}

(
z + a− 1

z

)( 1

1 + φ

)a( φ

1 + φ

)z
π(dx)

= exφ
(xφ)z

z!
π(dx)

for (x, y) ∈ (0,∞)× N. Thus, the Lancaster probability σ with margins π and mπ,
and Lancaster sequences of the form (tn), for t ∈ [0,

√
p], generates the gamma-

Poisson model described previously. Moreover, the duality function turns out to
be given by the function g√p, with p = φ/(1 + φ). The filters for this model were
presented in Section 1.3.

The beta-beta case

Buja (1990) developed an example of polynomial bi-orthogonality through a joint
distribution called triangular bivariate beta distribution. This model considers ran-
dom variables X ∼beta(a1, a2 + 1) and Z ∼beta(a2, a1 + 1). In this case, the
Lancaster probability σ takes the form

σ(dx, dz) =
a1 + a2

B(a1, a2)
xa1−1za2−1,

for x, z > 0, and x+z < 1, and 0 otherwise. Recall that, the orthogonal polynomials
associated to π and mπ are the Jacobi polynomials. Also, the Lancaster sequences
associated to σ are given by

ρn =
(−1)n

√
a1a2√

(a1 + n)(a2 + n)
,

for n ≥ 0. Thus, the bivariate distribution σ implies that

f(dz;x) =
za2−1(1− x)−a2

B(a2, 1)
, for z ∈ (0, 1− x),
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and

ν0(dx; z) =
xa1−1(1− z)−a1

B(a1, 1)
, for x ∈ (0, 1− z).

Then, the construction used throughout this chapter allows us to built a reversible
Markov process X driven by the transition probability function,

k(xn, xn+1) =
xa1−1
n+1 (1− xn)−a2

B(a1, 1)B(a2, 1)

∫ 1−xn

0
za2−1(1− z)−a1dz,

for xn+1 ∈ (0, xn). The expression for the transition of the dual turns out to be
similar to k. In addition, the duality function takes the form

h(x; z) =
Γ(a1 + 1)Γ(a2 + 1)

Γ(a1 + a2 + 1)

1

(1− x)a2(1− z)a1
.

As the gamma-negative-binomial case, we present it in order to illustrate a mecha-
nism to choose the measure π and f. Nonetheless, expression for the filters can be
obtained from Theorem 1.
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Chapter 3
A continuous-time dual Markov
construction for filtering problems

The theory of continuous-time Markov processes is without doubt one of the most
important mechanisms when modeling random phenomena. Indeed, its application
to different fields of science is overwhelming, ranging from stock price modeling to
the evolution of genes (cf. Shiryaev [40]; Ewens [10]). The literature on the topic
is vast covering, different characterizations, simulation algorithms and estimation
methods. The study and application of such a theory, heavily lies on a tractable
way to represent the dynamics modulating the evolution of the process, typically
done via transition probabilities, infinitesimal generators, stochastic equations, etc.
From an statistical viewpoint, an appealing feature is the availability of a transition
probability function, that can be easily incorporated into estimation, simulation and
prediction problems. However, the most popular characterization of continuous-time
Markov processes is via stochastic equations or infinitesimal generators. Although,
such approaches have yield a rich and elegant class of models, these posses several
operational complications, e.g. a transition density is not always available for the
solutions of stochastic differential equations (SDE).

Given all this, our proposal in this chapter, is to extend the results of Chapter 2
to the continuous-time case. In other words, we look for a construction of strictly
stationary continuous-time Markov processes via their transition probabilities. In
particular, we are concerned with the conditional structure, previously explained,
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decomposing the transition function. Furthermore, we extend the results concerned
the h-dual to the continuous-time case. This latter task is not immediate, as a mod-
ification to achieve Markovianity is necessary. In particular, we derive an expression
for the infinitesimal generator of the dual, that in turn help us to identify it within
a know class of Markov processes. As a consequence of this, we devise an alterna-
tive solution to the filtering problem using such a dual. This extends a well known
duality relation of the Wright-Fisher diffusion model, with mutation and without
selection, and the Kingman coalescent (cf. Griffiths and Spanò [12]), to models that
fall in our proposal.

Also, in this chapter, we explore extensions of the construction of autoregres-
sive and Lancaster probabilities models, seen in Chapter 2, to the continuous time
case. Various examples, aimed at illustrating our findings, are presented.

3.1 Construction and filtering

Let X and Y be two subsets of Rd, for d ≥ 1, X = σ(X) and Y = σ(Y). Also, let π
be a probability measure over the Polish space (X,X ); f (·; Θt, x) be a probability
measures over the Polish space (Y,Y ), for every x ∈ X; and Θ : R+ → R+ be a non-
decreasing measurable function. Here, we assume that the support of π coincides
with the set {x ∈ X : f ( · ; Θt, x) > 0}. Let us notice that, the time dependence
has been added to f, this allows to preserve the reversibility and stationarity in the
model. For the sake of notation, as we did for the discrete case, we will no make
distinction between the probability measures and their corresponding densities, as-
suming that they exist. Also, we are assuming that density functions are continuous
with respect to the Lebesgue measure, letting clear that they can be continuous with
respect to the count measure.

Thus, one can define a joint distribution over the product space (X×Y,X ×Y )

as follows ∫
B

∫
A
f (u; Θt, v)π(v)dvdu, (3.1)

for A ∈ X , B ∈ Y and t > 0. Thus, the marginal distributions of (3.1) over the
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spaces (X,X ) and (Y,Y ) are given by the probability measures π and

mπ( · ; Θt) =

∫
X
f ( · ; Θt, v)π(v)dv,

respectively. Hence, the posterior distribution for π, denoted by ν0, obtained via
Bayes’ theorem, has density function,

ν0(dx; y,Θt) =
f (dy; Θt, x)π(dx)

mπ(dy; Θt)
, (3.2)

for x ∈ X, y ∈ Y. The probability measure (3.2) is well-defined since mπ(A; Θt) > 0

for all A ∈ Y . Recall that, if ν0 and π belong to the same family of distributions,
then we say that π is conjugate with respect to f.

Then, we define a time-homogeneous process continuous in time over (X,X ),
denoted by X = (Xt)t≥0, driven by the transition probability function

kt(x0, dx) =

∫
Y
ν0(dx;u,Θt)f (u; Θt, x0)du, (3.3)

for x0, x ∈ X. Assuming that there is a function Θ such that kt satisfies Chapman-
Kolmogorov’s equations, a standard process X is completely characterized by the
transition kernel (3.3) and its marginal probability measure π. Moreover, the tran-
sition (3.3) satisfies the following equalities

π(dx0) =

∫
X
kt(x, dx0)π(x)dx,

π(dx0)kt(x0, dx) = π(dx)kt(x, dx0).

for x0 ∈ X. Therefore, the transition probability kernel kt has invariant measure π
and, if such kernel satisfies Chapman-Kolmogorov’s equations then it characterizes
the law of continuous-time reversible and stationary Markov process X. In partic-
ular, the existence of such process is guaranteed whenever X is a Polish space (see
Section 1.3).

Now, let {(Xtn , Yn)}n≥0 be a hidden Markov model, where the signal {Xtn}n≥0

is a discrete-time sampling of X and; given the signal, {Yn}n≥0 is a sequence of
conditional independent observations. Here, without loss of generality, we will as-
sume that observations are equally spaced in time, i.e. ti+1 − ti = ∆ for all i ≥ 0

and some ∆ > 0. Thus, the emission density, i.e. the law of {Yn|Xtn} for n ≥ 0,
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is chosen in such a way that it matches with the probability measure f ( · ; Θ∆, x).
Hence, hereafter, we denote the emission distribution by f ( · ;x), without the time
dependence, but letting clear that such dependency does exist.

Thus, denoting by Y0:n := (Y0, ..., Yn) and letting νn := L (Xtn|Y0:n). The
exact and the prediction filters, starting at ν−1 = π and ψ(ν−1) = π, respectively,
are given by the recursions

νn = φYn(ψ(νn−1)) and ψ(νn),

respectively, for n ≥ 0. The above update and predictor operators are defined in
Section 1.5. The later operator is with respect to the transition k∆. For the sake of
notation, we have dropped the dependence of y(n) in νn, only making it explicit for
ν0 when such dependence is different of y0, i.e. ν0(·;u).

The next theorem provides an expression for the mentioned filters.

Theorem 2. Let {(Xtn , Yn)}n≥0 be a hidden Markov model, where {Xtn}n≥0 is a
a discrete-time sample of X, which is driven by the transition probability function
kt; and {Yn}n≥0 is a sequence of observations, equally spaced in time, which, given
the signal, are conditionally independent and; with emission density f (·;x). If kt is
given by (3.3) then the optimal and prediction filters, starting at

ω̃(y0, u) = mν0(u) ν0 = φy0(π),

are given by the following expressions,

νn+1(dxn+1) =

∫
Y
ω(y(n+1), u)φyn+1(ν0(u))(dxn+1)du,

ψ(νn)(dxn+1) =

∫
Y
ω̃(y(n), u)ν0(dxn+1;u)du,

where

mψ(νn)(dyn+1) =

∫
Y
ω̃(y(n), u)mν0(u)(yn+1)du,

ω
(
y(n+1), u

)
=

ω̃
(
y(n), u

)
mν0(u)(yn+1)

mψ(νn)(yn+1)
,

ω̃(y(n), u) =

∫
X
νn(dxn)f(u;xn)dxn,
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for n ≥ 0. Moreover, if π is conjugate with respect to f(·;x), then ν0 and φy(ν0)

also belong to the same class of distributions as π. As a consequence, the probability
measures mν0 and q(yn, u, z) belong to the same class of distributions as mν−1, where

ω̃(y(n), u) =

∫
Y
ω(y(n), k)q(yn, u, z)dz

q(yn, u, z) =

∫
X
φyn(ν0(z))(dxn)f (u;xn)dxn.

Note that, the optimal and the prediction filters given above depend of xn+1

only through the measures φy(ν0) and ν0, respectively. This allows us to derive
tractable expression for statistics associated to such filters. To be precise, for any
real-valued function ϕ, we have that

E
[
ϕ(Xtn+1)

∣∣∣Y (n+1)
]

=

∫
Y
ω(y(n+1), u)

(∫
X
ϕ(xn+1)φyn+1(ν0(u))(dxn+1)

)
du,

E
[
ϕ(Xtn+1)

∣∣∣Y (n)
]

=

∫
Y
ω̃(y(n), u)

(∫
X
ϕ(xn+1)ν0(dxn+1;u)

)
du,

where ω and ω̃ are given by the previous theorem. For instance, the above equations
can be used to calculate the moment generating function or the moments associated
to the optimal and the prediction filters.

Let us emphasize that, the crucial point of our proposal is finding the appro-
priate choice of the probability model, that is to say π and f(·; Θt, x), such that
the transition probabilities kt satisfy Chapman-Kolmogorov’s equations. A way to
deal with the above problem is to aggregate some time dependence in discrete-
time models. In this sense, we will present later in this chapter the corresponding
continuous-time version of some models presented in Chapter 2.

3.2 Duality

As in the discrete case, the conditional probability structure used in our construction
guarantees the existence of a dual process. This will allow to provide an alternative
way to compute the filters. For such purpose, let Z = {Zt}t≥0 be a continuous-time
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process driven by the transition probability function,

pt(z0, dz) =

∫
X
f (dz; Θt, v)ν0(dv; z0,Θt)dv, (3.4)

for z0, z ∈ Y. It is straightforward to prove that the operator (3.4) satisfies the
following equalities

mπ(dz0; Θt)pt(z0, dz) = mπ(dz; Θt)pt(z, dz0),

mπ(dz0; Θt) =

∫
Y

mπ(z; Θt)pt(z, dz0)dz.

Note that, the probability measure mπ(·; Θt) defines an invariant measure associated
to the transition kernel pt, which clearly depends of t. Hence, the above results sug-
gest that the process Z is non-homogeneous in time. Nevertheless, the conditional
probability structure used to define X and Z allows us to derive a relationship be-
tween their transition probabilities. Let us first, for the sake of notation, notice that
p∆(u, ·) = mν0(u)(·).

Now, consider the function h defined as the Radon-Nikodyn derivative between
the posterior and prior probability of the probability measure π, i.e.

h(x; z,Θt) =
ν0(x; z,Θt)

π(x)
=

f(z; Θt, x)

mπ(z; Θt)
. (3.5)

Hence, using the fact that X is reversible and the definition of h it follows that,∫
X
h(v; z,Θt)kt(x, v)dv =

∫
X

ν0(v; z,Θt)

π(v)

[
π(v)

π(dx)
kt(v, dx)

]
dv

=

∫
X

ν0(v; z,Θt)

π(dx)

(∫
Y
ν0(dx;u,Θt)f(u; Θt, v)du

)
dv

=

∫
Y
h(x;u,Θt)

[∫
X
f(u; Θt, v)ν0(v; z,Θt)dv

]
du

=

∫
Y
h(x;u,Θt)pt(z, du).

Equivalently,

Ex[h(Xt; z,Θt)] = Ez[h(x;Zt,Θt)], (3.6)

x ∈ X, y ∈ Y and t ∈ R+. When two Markov processes satisfy the above equality,
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Figure 3.1: Duality between the prediction operators k and p.

it is said that they are dual to each other with respect to the duality function h.
However, under the assumption that kt satisfies Chapman-Kolmogorov property, the
operator pt does not necessarily satisfy such property. This implies that the equality
(3.6) is just a property between two transitions kernels rather than two concrete
processes. However, it will help us to guarantee the existence of a Markovian dual.

Before to prove the last statement, let us present a couple of equalities related
to the predictor operators of the processes X and Z,∫

X
ν0(v; z0,Θt)kt(v, dx)dv =

∫
Y
ν0(dx;u,Θt)pt(z0, u)du,∫

Y
f(u; Θt, x0)pt(u, dz)du =

∫
X
f(dz; Θt, v)kt(x0, v)dv,

for x0, x ∈ X and z0, z ∈ Y. Thus, the construction allows us to compute the above
operators in terms of its corresponding transition dual. Figure 3.1 describes the
relationship obtained in the above equalities.

Assuming that we know the infinitesimal generator of the process X, denoted
by A , the equality (3.6) implies that,

A h( · ; z,Θt)(x) = lim
t↓0

1

t

[∫
X
h(v; z,Θt)kt(x, v)dv − h(x; z,Θt)

]
= lim

t↓0

1

t

[∫
Y
h(x;u,Θt)pt(z, u)du− h(x; z,Θt)

]
.

Hence, one can guarantee that the infinitesimal generator A applied to h can be
expressed as a function of (z,Θt), i.e. taking x as a constant. Thus, we can define
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an operator G that satisfies the following equality

A h(·; z,Θt)(x) = G h(x; ·,Θt)(z). (3.7)

As a result, there is a Markov process characterized by the infinitesimal generator G .
So, let us define an homogeneous Markov process Z̃ driven by a transition operator
p̃t associated to G . Then, since (3.7) holds,

Ex[h(Xt; z,Θt)] = Ez[h(x; Z̃t,Θt)], (3.8)

also holds, where the expectation of the right-hand side is with respect to p̃t. See
Jansen and Kurt [15].

On the other hand, equality (3.7) allows to obtain an expression for the in-
finitesimal generator G applied to the duality function h. This will helps us to
identify it within a class of Markov processes. A simple way to do this is applying
A to h and write it as a function of z. A similar approach was used in Chaleyat and
Catalot [4], for the Wright-Fisher diffusion, and later replicated by Papaspiliopoulos
and Ruggiero [33] for the Cox-Ingersoll-Ross and the Ornstein-Uhlenbeck diffusions.
Let us emphasize that, our construction allows us to derive an expression for G

applied to h. This is done via the backward equation for Markov processes, i.e.

A kt(x0, dx) =
∂

∂t
kt(x0, dx). (3.9)

Then, the reversibility of X let us write the left-hand side of the equation (3.9) in
the following form,

A kt( · , dx)(x0) = A

[
π(dx)

π( · )
kt(x, · )

]
(x0)

= π(dx)

∫
Y

[
A h( · ; z,Θt)(x0)

]
f (z; Θt, x)dz

= π(dx)

∫
Y

[
G h(x0; · ,Θt)(z)

]
f (z; Θt, x)dz,

where the second equality holds by the definition of kt and the last equality holds
by the duality equation (3.7). Similarly, the right-hand side of the equation (3.9)
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takes the form

∂

∂t
kt(x0, dx) = π(dx)

(∫
Y

[ ∂
∂t

h(x0; z,Θt)
]
f (z; Θt, x)dz

+

∫
Y

[
h(x0; z,Θt)

{ ∂
∂t

log f (z; Θt, x)
}]

f (z; Θt, x)dz
)
.

Hence, the backward equation (3.9) becomes∫
Y

[
G h(x0; ·,Θt)(z)

]
f (z; Θt, x)dz =

∫
Y

[ ∂
∂t

h(x0; z,Θt)
]
f (z; Θt, x)dz

+

∫
Y
h(x0; z,Θt)

[ ∂
∂t

log f (z; Θt, x)
]
f (z; Θt, x)dz.

If we separate by terms and we factor f (z; Θt, x), then we can obtain an expression
for G applied to h as a function of z. However, the second term in the right-hand
side of the above equation is also a function of x, and it is necessary to express it
only as a function of z.

To deal with this issue notice that, the equality (3.2) allows us to write
{log f (z,Θt, x)} as the sum of two functions, one depends on (x, z,Θt) and the
other one depends on (z,Θt), i.e.

∂

∂Θt
log f (z; Θt, x) = g1(z,Θt) + g2(x; z,Θt), (3.10)

for some functions g1 and g2. Hence, the goal is to find functions g, g̃2, such that∫
Y

[
h(x0; z,Θt)g2(x; z,Θt)− h(x0; g(z),Θt)g̃2(z,Θt)

]
f (z; Θt, x)dz = 0.

(3.11)

These functions exist because the equality (3.7) holds. This result is summarized in
the next theorem.

Theorem 3. Let π be a probability measure over (X,X ); f (·; Θt, x) be a probabil-
ity measure over (Y,Y ), for every x ∈ X; and Θ : R+ → R+ be a non-decreasing
measurable function. Consider the Markov process X, which is driven by the tran-
sition probability functions (3.3) and with invariant measure π. Assuming that the
infinitesimal generator of X is known, denoted by A , then there exists a Markov
process Z̃ = {Z̃t}t≥0 which is dual to X with respect to the dual function (3.5).
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Moreover, the infinitesimal generator of Z̃, denoted by G , satisfies,

G h(x; ·,Θt)(y) =
∂Θt

∂t

{[
g1(z,Θt)

]
h(x; z,Θt) +

[
g̃2(z,Θt)

]
h(x; g(z),Θt)

}
∂Θt

∂t

[ ∂

∂Θt
h(x; z,Θt)

]
,

(3.12)

where g1 and g2 are obtain by (3.10); g and g̃2 are obtain by (3.11).

It is worth noticing that, the infinitesimal generator G is completely charac-
terized by f (·;x). Moreover, expression (3.12) suggests that the dual Z̃ must be
subordinated by Θ in order to be Markovian. If the duality function does not de-
pend on t, as in the Wright-Fisher diffusion, then the dual is not subordinated by
Θ. In such cases, the computation of the transition probabilities, associated to a
given infinitesimal generator, is simpler.

Additionally, equality (3.8) leads to the following result that will help to give
an alternative way to compute the filters.

Proposition 2. Let π be a probability measure over (X,X ); f (·; Θt, x) be a prob-
ability measure over (Y,Y ), for every x ∈ X; and Θ : R+ → R+ be a non-
decreasing measurable function. Assuming that, the operator kt defined by (3.3)
satisfies Chapman-Kolmogorov’s property. Then, the reversible Markov process X
driving by (3.3) and with invariant measure π has a Markovian h-dual, denoted by
Z̃ driven by p̃t. Moreover,∫

X
ν0(v; z0,Θt)kt(v, dx)dv =

∫
Y
ν0(dx;u,Θt)p̃t(z0, u)du, (3.13)

for all t ∈ R+, x ∈ X, z0 ∈ Y, and where ν0(·; z,Θt) is given by (3.2).

Proof. The first assertion was already proved. Now, for x ∈ X, z0 ∈ Y and t ≥ 0 it
follows that ∫

X
ν0(v; z0,Θt)kt(v, dx)dv =

∫
X
h(v; z0,Θt)π(v)kt(v, dx)dv

= π(dx)

∫
X
h(v; z0,Θt)kt(x, v)dv

=

∫
Y
ν0(dx;u,Θt)p̃t(z0, u)du,
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where the second equality holds by reversibility and the last by duality.

This proposition allows us to compute the predictor operator of X via the
transition probability function of its corresponding dual. Papaspiliopoulos and Rug-
giero [33] obtained an expression similar to (3.13) for some particular models. In
fact, their result is based on the assumption that the signal is reversible and has a
Markovian dual, which is a particular death process. In addition, they use a family
of distributions defined by {h(x; y,Θt)π(dx); y ∈ Y} as the posterior distribution of
the signal, which makes the distribution π conjugate with respect to the emission
density.

Furthermore, equality (3.13) helps to derive an alternative computation of the
filters. Since the left-hand side of (3.13) turns out to be the first step in the recursion
that compute the optimal filters.

3.3 Examples

This section presents some appealing models that fall into our proposal and, for each
of these we derive the recursion for their filters. Then, we obtain an expression for
the infinitesimal generator’s dual. First, we present a continuous-time version of the
gamma-Poisson model, which is conjugate and turns out to be a re-parametrization
of the Cox-Ingersoll-Ross (CIR) diffusion. Then, we will see that the Wright-Fisher
diffusion belongs to the class of Markov processes that we propose. For this model,
the dual of such diffusion is a version of Kingman’s Coalescent (see for instance
Griffiths and Spanò [12]).

3.3.1 Gamma-Poisson process

Let π be a Ga(a, b) distribution and f (y; Θt, x) be a Po(xΘt) distribution, for each
x ∈ R+. Hence the posterior distribution of X is Ga(a+y, b+Θt) and, its transition
probability function takes the form

kt(x0, x) =
exp {−[ Θt(x0 + x) + bx ] }

(Θt + b)−
a+1

2 Θ
a−1

2
t

×
(
x

x0

)a−1
2

× Ia−1

(
2
√
x0xΘt(b+ Θt)

)
,
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for x0, x ∈ R+, where Iν(·) denotes the modified Bessel function of the first kind with
argument ν. In this case, if Θt = b/(ect− 1), with c > 0, then kt satisfies Chapman-
Kolmogorov’s equations (cf. Mena and Walker [30]). Moreover, the process X is
the only strong solution to the following stochastic differential equation

dXt = c
(a
b
−Xt

)
dt+

√
2c

b
XtdWt,

where W = (Wt)t≥0 is a standard Brownian motion. This process is known as
Gamma-Poisson model and constitutes a re-parameterization of the stationary ver-
sion of the Cox-Ingersoll-Ross (CIR) model (cf. Cox, Ingersoll and Ross [5]).

For this model, it is straightforward to obtain the transition probability func-
tion of the process Z, that takes the form

pt(z0, z) =
Γ(a+ z0 + z)

z!Γ(a+ z0)

(
b+ Θt

b+ 2Θt

)a+z0 ( Θt

b+ 2Θt

)z
.

for z0, z ∈ Z+ ∪ {0}. The above operator is a binomial-negative kernel, denoted by
NB(z; a+ z0, (b+ θt)/(b+ 2θt)).

In order to compute the filters, we consider observations equally spaced. Thus,
starting with the measures ν0 and ω̃(y0, u) which has Ga(x0; a + y0, b + Θ∆) and
NB(u; a + y0 + 1, b/(b + 2Θ∆)) distributions, respectively. The optimal and the
prediction filters are given by

νn+1(dxn+1) =

∞∑
u=0

ω
(
y(n+1), u

)
Ga
(
dxn+1; a+ u+ yn+1, b+ 2Θ∆

)
,

ψ(νn)(dxn+1) =
∞∑
u=0

ω̃(y(n), u) Ga
(
dxn+1; a+ u, b+ Θ∆

)
,

where

mψ(νn)(dyn+1) =
∞∑
u=0

ω̃(y(n), u) NB
(
dyn+1; a+ u+ 1,

b

b+ 2Θ∆

)
,

ω
(
y(n+1), u

)
=

ω̃
(
y(n), u

)
NB
(
yn+1; a+ u+ 1, b

b+2Θ∆

)
mψ(νn)(dyn+1)

,

ω̃(y(n), u) =
∞∑
k=0

ω(y(n), k)NB
(
k; a+ u+ y1 + 1,

Θ∆

b+ 3Θ∆

)
.
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for n ≥ 0. Note that, since π is conjugate with respect to f, the above filters are
mixtures of gamma distributions. Moreover, the weights are given by mixtures of
negative-binomial distributions. Hence, conjugacy reduces the computational effort
required in order to compute the filters. In particular, this model requires the
computation of infinite sums, however each term in every sum is positive. This
allows us to truncate such sums obtaining an exact result.

Additionally, one can compute statistics associated to the above filters. Indeed,
the moment generating function of the optimal and the prediction filters take the
form

E
[
eλXtn+1

∣∣∣Y (n+1)
]

=

∫
Y
ω(y(n+1), u)

(
1− λ

b+ 2Θ∆

)−(a+u+yn+1)

du,

E
[
eλXtn+1

∣∣∣Y (n)
]

=

∫
Y
ω̃(y(n), u)

(
1− λ

b+ Θ∆

)−(a+u)

du,

where ω and ω̃ are given before. That is to say, these statistics are mixture of
moment generating functions associated to gamma distributions.

On other hand, define h as the Radon-Nikodyn derivative between the posterior
and prior distribution of π. Then, an expression for the infinitesimal generator’s dual
is obtained by noticing that

∂

∂t
log f (z; Θt, x) = −x∂Θt

∂t
+

z

Θt

∂Θt

∂t
.

Hence, from the above equality, the functions g1 and g2 in Theorem 3.1 are given
by g1(z,Θt) = (z/Θt)(∂Θt/∂t) and g2(x, z,Θt) = −x(∂Θt/∂t). Also, we have that
∂Θt/∂t = c

b
(b+ Θt)Θt, which implies

∞∑
u=0

h(x0;u,Θt)xf (u; Θt, x) =

∞∑
u=0

h(x0;u,Θt)(u+ 1)
[
e−Θtx (xΘt)

u+1

(u+ 1)!

]
=

∞∑
u=0

h(x0;u− 1,Θt)u
[
e−Θtx (xΘt)

u

u!

]
,

which means that g̃2(z,Θt) = −(c/b)(b + Θt)z and g(z) = z − 1. Therefore, the
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infinitesimal generator of the h-dual to X applied to h is given by,

G h(x; ·, θt)(z) =
c

b
(b+ Θt)zh(x; z,Θt)−

c

b
(b+ Θt)zh(x; z − 1,Θt)

+
c

b
Θt(b+ Θt)

∂

∂Θt
h(x; z,Θt).

The above operator suggest that the dual is a death process subordinated by a
deterministic one, the later driven by the ordinary differential equation dΘt =

(c/b)(b+ Θt)Θtdt.

Let us notice that, a similar duality was used in Papaspiliopoulos and Rug-
giero [33], however their duality function, unlike ours, does not depend on t. Nonethe-
less, they found an expression for the transition probability function associated to
the operator G . Here we notice that, this transition probability does not seem to
satisfy the duality equation, which they assumed in their work.

3.3.2 Wright-Fisher diffusion

The Wright-Fisher diffusion with no selection and parent mutation has a widely
known eigenvalue expansion for the transition probability function (cf. Griffiths
and Spanò [12]). Such expansion allows us to build the Wright-Fisher diffusion via
the construction described in this chapter. Thus, let π be a beta(a) distribution,
with a = (a1, a2), a1, a2 > 0 and |a| = a1 +a2. Also, for each x ∈ [0, 1], let f (·; Θt, x)

be a bivariate probability measure given by

f (m; Θt, x) = Bin
(
m1; |m|, x

)
q|a||m|(t) for m = (m1,m2) ∈ Z2

+,

where Bin(m1; |m|, x) stands for a Binomial(|m|, x) distribution and, q|a||m|(t) is the
transition probability function of a death process with entrance boundary of infinity,
with death rates |m|(|a| + |m| − 1)/2, |m| ≥ 1. In fact, such transition takes the
form

q|a||m|(t) =

∞∑
j=|m|

ρ
|a|
j (t)(−1)j−|m|

(
2j + |a| − 1

)(
|m|+ |a|

)
(j−1)

|m|!
(
j − |m|

)
!

,

with ρ|a|j (t) = exp
{
− 1

2
j(|a|+ j − 1)t

}
. In fact, q|a||m|(t) turns out to be the transition

probability function of a death process with entrance boundary of infinity and, with
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death rates |m|(|a|+ |m| − 1)/2, |m| ≥ 1. Hence, the posterior distribution of π in
this model is given by a beta(a+m) distribution, noticing that such posterior does
not depend of the time t. Then, let X = (Xt)t≥0 be a Markov process driven by the
transition probability function,

kt(x0, dx) =

∞∑
|m|=0

q|a||m|(t)
|m|∑
m1=0

Beta(dx; a + m)Bin
(
m1; |m|, x0

)
,

for x0, x ∈ [0, 1]. Moreover, it is known that the infinitesimal generator of X takes
the form

A =
1

2

(
a1 − |a|x

) ∂
∂x

+
1

2
x(1− x)

∂2

∂x2
.

See for instance, Griffiths and Spanó [12].

Thus, starting at ν0 which has Beta(a+m0) distribution, the optimal and the
prediction filters are given by

νn+1(dxn+1) =
∑

u∈Z2
+

ω
(
m(n+1),u

)
Beta(xn+1; a + u + mn+1),

ψ(νn)(dxn+1) =
∑

u∈Z2
+

ω̃(m(n),u) Beta(xn+1; a + u),

where mn = (m1
n,m

2
n) and

mψ(νn)(dmn+1) =
∞∑
u=0

ω̃(m(n),u) q
|a|
|mn+1|(t)

(
|mn+1|
m1
n+1

)
B(a + u + mn+1)

B(a + u)
,

ω
(
m(n+1),u

)
=

ω̃
(
m(n),u

)
q
|a|
|mn+1|(t)

(|mn+1|
m1
n+1

)B(a+u+mn+1)
B(a+u)

mψ(νn)(dmn+1)

ω̃(m(n),u) =
∞∑
k=0

ω(m(n), k)q|a||k|(t)
(
|k|
k1

)
B(a + u + mn + k)

B(a + u + mn)
.

for n ≥ 0. Let us notice that, since π is conjugate with respect to f, the about
filters are mixtures of beta distributions. Also, conjugacy implies that, instead of
compute the integrals corresponding to mν0 and q, in Theorem 2.1, we compute the
expression of proportional beta-binomial distributions.

Additionally, as before, one can compute statistics associated to the optimal



78 CHAPTER 3. A CONTINUOUS-TIME MARKOV CONSTRUCTION

and the prediction filters as follows

E
[
ϕ(Xtn+1)

∣∣∣Y (n+1)
]

=
∑

u∈Z2
+

ω(m(n+1),u)

(∫ 1

0
ϕ(xn+1)Beta(xn+1; a + u + mn+1)

)
du,

E
[
ϕ(Xtn+1)

∣∣∣Y (n)
]

=
∑

u∈Z2
+

ω̃(m(n),u)

(∫ 1

0
ϕ(xn+1)Beta(xn+1; a + u)

)
du,

where ω and ω̃ are given before. Hence, these statistics are given by mixtures of the
corresponding statistics of beta distributions.

On the other hand, let h be the Radon-Nikodyn derivative between the poste-
rior and prior distribution of π. This implies that,

h(x; m) =
B(a)

B(a + m)
xm1(1− x)m2 .

It is worth noticing that, since the posterior distribution of π does not depend of
t, the dual function h does not depend of t either. Then, applying the infinitesimal
generator A to h and rearranging the terms we obtain

G h(x; ·, ·)(m) =
|a|+ |m| − 1

2

[
m1 h(x; m− e1) +m2h(x; m− e2)

]
−|m|(|m|+ |a| − 1)

2
h(x; m). (3.14)

where e1 = (1, 0) and e2 = (0, 1). Thus, if we associate G to a time-homogeneous
Markov process, as it was done by Chaleyat and Catalot [4]). Then, the equality
(3.14) suggests that the h-dual is a death process that jumps down from state m to
(m− ej) with instantaneous rate

|a|+ |m| − 1

2
mj

for j = 1, 2. As a matter of fact, the transition probability function of such death
processes is given by

p̃t(m,n) = qa
|m|,|n|(t)

(
m1

n1

)(
m2

n2

)(|m|
|n|
)
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where

qam,n(t) =
m∑
j=n

ρaj (t)(−1)j−n
(2j + a− 1)(n+ a)(j−1)(n)xjy

n!(j − n)!(m+ a)(j)

with (n)(j) = n(n + 1) · (n + j − 1) and (n)xjy = n(n − 1) · · · (n − j + 1). Clearly,
the above transition requires the computation of finite sums, which implies that this
model has finite dimensional filters. Furthermore, the multivariate version of the
Wright-Fisher diffusion resemblances the above model and, its dual can be found in
Papaspiliopoulos and Ruggiero [33].

Let us emphasize that, the existence of the above dual is guaranteed by the
conditional probability structure used in our proposal. This extends the work of
Chaleyat and Catalot [4] which, using a different approach, found such duality for
the Wright-Fisher diffusion.

3.4 Continuous-time stationary models with expo-
nential dispersion margin

This section deals with the problem of specifying the probability measures π and f,
by applying a thinning operation over a exponential dispersion distribution. Unlike
the discrete case, here we need to aggregate a real-valued function to the model, this
will be done through the contraction distribution (see Section 2.4). Then, we will
check if the transition probabilities that we propose satisfy Chapman-Kolmogorov’s
property. For those models that satisfy such property, we derive their corresponding
dual and filters.

3.4.1 Thinning operation

Let X = (Xt)t≥0 be a continuous-time reversible process over (X,X ), where X ⊂ Rd

for d ≥ 1 and X = B(X), with invariant measure π, which belong to the class
of exponential dispersion distributions. This implies that the density probability
function associated to π has the form

π(x) = c(x; τ) exp
{
xϑ− τ ∗ κ(ϑ)

}
,
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where κ(ϑ) = log
{ ∫

c(x; τ)eϑxdx
}
/τ , for ϑ ∈ Ξ = int{ϑ ∈ Rd;κ(ϑ) < ∞} and Ξ is

assumed to be non-empty. Using a thinning operation to define a contraction of π,
denoted by G(τ1(t), τ2(t), x), one can define a probability model {f(·; Θt, x);x ∈ R},
such that

f(z; Θt, x) =
c
(
x− z; τ2(t)

)
c
(
z; τ1(t)

)
c(x; τ)

,

where τ1(t) = τΘt and τ2(t) = τ(1− Θt) for all t ≥ 0, with Θ : R+ → (0, 1). Thus,
Bayes’ theorem allows us to compute the posterior distribution of π as following

ν0(x; z,Θt) = c
(
x− z; τ2(t)

)
exp

{
(x− z)ϑ− τ2(t)κ(ϑ)

}
Clearly, the probability measure ν0 as a function of x− z has ED(ϑ; τ2(t)) distribu-
tion. Then, following the procedure of the previous sections, the process X is driven
by the transition probability function

kt(x0, dx) =

∫
Y
ν0(x; z,Θt)f(z; Θt, x0)dz,

for x0, x ∈ X. As we mentioned before, we need to check if the above transition
operator satisfies Chapman-Kolmogorov’s property. In particular, we look for an
expression for the moment generating function associated to the above operator,
which in this case is given by

LXt|X0=x0
(λ) = exp

{
τ2(t)

[
κ(ϑ+ λ)− κ(ϑ)

]} ∫
Y
eλzf(z; Θt, x0)dz,

for any λ ∈ R. However, according to our knowledge, there is not a general expres-
sion for the moment generating function associated to the measure f. In fact, there
is not a general expression for the moments associated to f, i.e.

∫
Y z

rf(z; Θt, x)dz
for any x ∈ X and r ≥ 2. Nonetheless, it is known, from the discrete case, that
there is a linear relation in the mean associated to k, i.e.

E[Xt|X0 = x] = τ2(t)κ′(ϑ) + xΘt.

Hence, for the first moment we have to check if

E
[
Xt+s

∣∣X0 = x
]

= E
[
E[Xt+s|Xs]

∣∣X0 = x
]
. (3.15)
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holds, for s, t ≥ 0. Having this in mind, let us derive the right-hand side of the
above equation as follows

E
[
E[Xt+s|Xs]

∣∣X0 = x
]

= E
[
τ2(t)κ′(ϑ) + ΘtXs

∣∣X0 = x
]

= τ [1−Θt]κ
′(ϑ) + Θt

{
τ [1−Θs]κ

′(ϑ) + xΘs

}
= τ [1−ΘtΘs]κ

′(ϑ) + xΘtΘs.

Thus, the equation (3.15) holds if and only if Θt+s = ΘtΘs, whose solution is given
by Θt = e−ct for c > 0. It is worth to mention that, even if the equation (3.15)
holds, it does not imply that kt is a Markovian kernel. Nevertheless, it gives us
an expression for the real-valued function Θ. Later, we will present a couple of
Markovian models and, also, some non-Markovian.

Before that, we will derive an expression for the autocorrelation function of
the process X, which follows by noticing that

E[Xt+sXt] = Θs
tE
[
X2
t

]
+ [1−Θs

t ]µ
2,

where E[Xt] = µ, for t ≥ 0, and h > 0. Hence, using the stationarity of the process
{Xt}t≥0 we have that,

Corr(Xt+s, Xt) =
E[Xt+sXt]− µ2

E[X2
t ]− µ2

= Θs
t .

Clearly, this property holds whether the process is or is not Markovian.

On other hand, the calculation of the optimal and the prediction filters are
given by the Theorem 2 by replacing the following measures,

ν0(dxn+1;u) = c(xn+1 − u) exp {(xn+1 − u)ϑ− τ2(t)κ(ϑ)},

φyn+1(ν0(u))(dxn+1) =
f(yn+1;xn+1)ν0(xn+1;u)

mν0(u)(yn+1)
.

As we can see, the filters can not be reduced to simpler expressions. The same
happens for statistics associated to the optimal filters, because it implies the com-
putation of statistics associated to φyn+1(ν0(u)). However, for the prediction filter,
one can obtain a general result for its moment generation function, which is given



82 CHAPTER 3. A CONTINUOUS-TIME MARKOV CONSTRUCTION

by

E
[
eγXtn+1

∣∣∣Y (n)
]

= exp
{
τ2(t)

[
κ(ϑ+ λ)− κ(ϑ)

] } ∫
Y
eγuω̃(y(n), u)du.

Thus, using a thinning operation on a exponential dispersion distribution helps us to
solve the problem of finding the appropriate choice of π and f. Although, it remains
to prove the Markovianity of the model.

3.4.2 Duality

As a result of the model, it is known that there exists a transition probability kernel,
which is dual to kt, given by

pt(z0, dz) =

∫
X
f(z; Θt, x)ν0(x; z0,Θt)dx,

for z0, z ∈ Y. Clearly, as the measure f was defined as a contraction of π, the space
Y turns out to be a subset of X ⊂ Rd, for d ≥ 1. Also, as we did for kt, we can
obtain a linear relation in the mean associated to the transition probabilities pt, i.e.

E[Zt|Z0 = z] = Θt[1−Θt]µ+ Θtz,

for t ≥ 0. This allows us to check if the first moment associated to pt satisfies
Chapman-Kolmogorov’s property. To this end, notice that

E
[
E[Zt+s|Zs]

∣∣Z0 = x
]

= E[Θtτ2(t)κ′(ϑ) + ΘtZs|Z0 = z]

= τΘt[1−Θt]κ
′(ϑ) + Θt{τΘs[1−Θs]κ

′(ϑ) + Θsz}

= τΘt[1−Θt + Θs −Θ2
s]κ
′(ϑ) + ΘtΘsz.

Replacing the function Θ obtained from the first moment associated to kt, i.e.
Θt = ect for c > 0, one can prove that the first moment associated to pt does not
satisfy Chapman-Kolmogorov’s property.

On other hand, the autocorrelation function associated to the transition pt has
the same form as the discrete-time process, i.e.

Corr(Zt+h, Zt) = Θh
t ,
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for h > 0. This tells us that the dual inherits almost all properties that in the discrete
case except the Markovianity. Nevertheless, the duality between the transitions k
and p is still fulfilled, where the duality function takes the form

h(x; z,Θt) =
c(x− z; τ1(t))

c(x; τ)
exp {τ1(t)κ(ϑ)− zϑ},

for x ∈ X and z ∈ Y. Since there is not a general expression for the infinitesimal
generator associated to k, we are not able to derive an expression for the infinitesimal
generator’s dual. However, we present a couple of Markovian models, namely the
Poisson-binomial model and the normal model. For these models, we present the
corresponding filters and, also, the expression for their infinitesimal generator’s dual.

3.4.3 Poisson-Binomial model

Let X be a re-parametrization of the Poisson-Binomial process, developed in Mena
andWalker [30], which is a reversible death and birth process with invariant Poisson(λ)

distribution, denoted by Po(λ). For this model, f (·; Θt, x) has Bin(x,Θt) distribu-
tion, for each x ∈ Z+∪{0}, where Bin(n, p) stands for a binomial(n, p) distribution.
Hence, the marginal distribution over (Y,Y ) is Poisson(λΘt) and the posterior dis-
tribution of π is

ν0(x; z,Θt) = e−λ(1−Θt)

[
λ(1−Θt)

]x−z
(x− z)!

,

for x ∈ {z, ...,∞}. Clearly, the probability measure ν0 as a function of x does not
belong to the same class of distribution than π, i.e. π is not conjugate with respect
to f. Although, as a function of x−z the measure ν0 has Po(λ(1−Θt)) distribution.
Thus, the transition kernel associated to X takes the form

kt(x0, x) = e−λ(1−Θt)
x0∧x∑
u=0

[
λ(1−Θt)

]x−u
(x− u)!

(
x0

u

)
Θu
t (1−Θt)

x0−u,

for x0, x ∈ Z+ ∪ {0}. Moreover, if Θt = e−ct, with c > 0, then the transition
operator kt satisfies Chapman-Kolmogorov’s equations (cf. Mena and Walker [30]).
Additionally, one can prove that the X is birth and death process with infinitesimal
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generator Q = {qi,j}, where

qij =


−c(i+ λ) , i = j,

cλ , i = j + 1,

cx , i = j − 1.

Note that, the process X is a M/M/∞ queue with birth and death parameters
λn = cλ and µn = cn (cf. Schoutens [39]). On the other hand, the transition
associated to the process Z is given by

pt(z0, z) = e−λ(1−Θt)
∞∑

v=z0∧z

[
λ(1−Θt)

]v−z0
(v − z0)!

(
v

z

)
Θz
t (1−Θt)

v−z

for z0, z ∈ Z+ ∪{0}. As we can see, given that π is not conjugate, the expression of
pt is not tractable in comparison with conjugate cases.

Now, starting at ν0 which has Po(x0−y0; (1−Θ∆)λ) distribution. The optimal
and prediction filters take the form

νn+1

(
dxn+1

)
=

xn+1∑
u=0

ω
(
y(n+1), u

)Bin(yn+1;xn+1,Θ∆)Po
(
xn+1 − u;λ∆

)
mν0(u)(yn+1)

,

ψ
(
νn
)
(dxn+1) =

xn+1∑
u=0

ω̃(y(n), u)Po
(
xn+1 − u;λ∆

)
,

where λ∆ := λ(1−Θ∆) and

mψ(νn)(dyn+1) =

∞∑
u=0

ω̃(y(n), u)mν0(u)(yn+1),

ω
(
y(n+1), u

)
=

mν0(u)(yn+1)ω̃
(
y(n), u

)
mψ(νn)(dyn+1)

,

ω̃(y(n), u) =
∞∑

xn=u∨u
νn(dxn)Bin(u;xn, θ∆).

for n ≥ 0 and ∆ > 0. Note that, ν0(u)(x) = Po(x− u;λ∆). Also, since π is not con-
jugate, the optimal filters νn+1 require the computation of the integral mν0(u)(yn+1).
This implies more computational resources in every recursion. Nonetheless, as be-
fore, this model only requires to compute sums of positive terms which allows us to
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truncate such sums, without losing accuracy in the computation.

In this model, statistics associated to the optimal filters turn out to be mixture
of statistics associated to,

Bin(yn+1;xn+1,Θ∆)Po
(
xn+1 − u;λ∆

)
mν0(u)(yn+1)

.

In addition, statistics associated to the predictor filters have simpler expressions,
e.g. the moment generating function takes the form

E
[
eγXtn+1

∣∣∣Y (n)
]

= exp
{
λ∆(eγ − 1)

} ∞∑
u=0

eγuω̃(y(n), u)du,

where ω and ω̃ are given as before. That is to say, the above operators turn out to
be the Laplace transform associated to the weights ω̃.

On the other hand, Theorem 3 tells us that there exists a dual to X and also
allows us to derive an expression for its infinitesimal generator. This can be done
by noticing that

∂

∂t
log f (z; Θt, x) =

z

Θt

∂Θt

∂t
−
( x− z

1−Θt

)∂Θt

∂t
.

Thus, the functions of the Theorem 3 are given by g1(z, θt) = z/Θt and g2(x, z,Θt) =

(x− z)/(1−Θt) so

x∑
u=0

h(x0;u,Θt)
x− u
1−Θt

f (u; Θt, x) =

x−1∑
u=0

h(x0;u,Θt)
u+ 1

Θt
f (u+ 1,Θt, x)

=

x∑
u=0

h(x0;u+ 1,Θt)
u

Θt
f (u,Θt, x),

which means that g̃2(u,Θt) = u/Θt and g(u) = u + 1. Therefore, the infinitesimal
generator of the h-dual takes the form

G h(x; ·,Θt)(z) =
∂Θt

∂t

∂

∂Θt
h(x; z,Θt) +

z

Θt

∂Θt

∂t
h(x; z,Θt)−

z

Θt

∂Θt

∂t
h(x; z + 1,Θt).

The above operator suggests that the dual Z̃ is a pure birth process subordinated
by a deterministic one, driven by the following ordinary differential equation dΘt =
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−cΘtdt.

Let us emphasize that, the above model was defined without any conjugacy
assumption. Moreover, the dual of the above Poisson-binomial model, to the best
of our knowledge, is new in the literature.

3.4.4 Ornstein-Uhlenbeck model

Let X = {Xt}t≥0 be a continuous-time process with invariant N(γ, α) distribu-
tion. For this model, the probability model f(·; Θt, x) defines a set of N(xΘt, αΘt)

distributions, where Θ : R+ → (0, 1). Thus, the probability measure ν0 has
normal(z + γ(1 − Θt), (1 − Θt)α) distribution, which implies that π is conjugate
with respect to f. In fact, this model turns out to be a conjugate model within the
class of processes defined via the above thinning operation. Hence, the transition
probabilities associated to X are given by

k(x0, x) =
1√

2πα(1−Θ2
t )

exp
{
−
[
x− x0Θt − γ(1−Θt)

]2
2α(1−Θ2

t )

}
,

for x0, x ∈ R, i.e. the process X has normal transition kernel. Moreover, the
transition kt satisfies Chapman-Kolmogorov’s equations if and only if Θt = e−ct

for c > 0. Additionally, one can prove that X is characterized as the only strong
solution of the following stochastic differential equation,

dXt = −c(Xt − γ)dt+
√

2cαdWt

where W = (Wt)t≥0 is a standard Brownian motion. See Mena and Walker [30].
This process constitutes a re-parameterization of the Ornstein-Uhlenbeck model.

For this model, it is straightforward to obtain the transition probability kernel
of the process Z, that takes the form

pt(z0, z) =
1√

2παΘt(1−Θ2
t )

exp

{
−
[
z −Θt(z0 − γ(1−Θt))

]2
2αΘt(1−Θ2

t )

}
,

for z0, z ∈ Z+ ∪ {0}. Clearly, the above operator defines a normal kernel which
does not satisfy Chapman-Kolmogorov’s equations. However, it is used to prove the
existence of a Markov dual.
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As in the discrete case the filters are given by mixtures of normal distribution,
in fact they turn out to be the same except for the additional time dependence.
Indeed, starting at ν0 and ω̃(y0, u), which has N(x0; y0 + γ(1−Θ∆), α(1−Θ∆)) and
N(y0; Θ∆x0 + Θ∆γ(1−Θ∆), αΘ∆(1−Θ2

∆)) distributions, respectively. The optimal
and the prediction filters are given by the following recursions

νn+1(dxn+1) =

∫
Y
ω(y(n+1), u)N

(
xn+1;

u+ yn+1 + γ(1−Θ∆)

1 + Θ∆
,
α(1−Θ∆)

1 + Θ∆

)
du,

ψ(νn)(dxn+1) =

∫
Y
ω̃(y(n), u)N(dxn+1;u+ γ(1−Θ∆), α(1−Θ∆))du,

where

mψ(νn)(dyn+1) =

∫
Y
ω̃(y(n), u)N

(
yn+1; Θ∆

[
u− γ(1−Θ∆)

]
, αΘ∆

[
1−Θ2

∆

])
du,

ω
(
y(n+1), u

)
=

ω̃
(
y(n), u

)
N
(
yn+1; Θ∆u−Θ∆γ(1−Θ∆), αΘ∆(1−Θ2

∆)
)

mψ(νn)(dyn+1)
,

and

ω̃(y(n), u) =

∫
Y
ω(y(n), k)p̃(yn, u, k)dk,

p̃(yn, u, k) = N
(
u;

Θ∆(k + y + γ(1−Θ∆))

1 + Θ∆
,
α(Θ∆ −Θ2

∆ + 2Θ3
∆)

1 + Θ∆

)
.

Additionally, the moment generating function of the optimal and the prediction
filters are given by

E
[
eλXtn

∣∣∣Y (n)
]

= exp
{λ(yn + γ(1−Θ∆))

1 + Θ∆
+

1

2

λ2τ2

1 + Θ∆

}∫
Y
e

(
λ

1+Θ∆

)
u
ω(y(n), u)du,

E
[
eλXtn+1

∣∣∣Y (n)
]

= exp
{
λγ(1−Θ∆) +

1

2
λ2α(1−Θ∆)

}∫
Y
eλuω̃(y(n), u)du.

for n ≥ 0. Clearly, the conjugacy of π allows us to derive the above expressions.

On other hand, to derive an expression for the infinitesimal generator of the
dual, consider the duality function

h(x; z,Θt) =
1√

(1−Θt)
exp

{
− (z − xΘt)

2

2αΘt(1−Θt)
+

(z − γΘt)
2

2αΘt

}
.

In order to derive an expression for the infinitesimal generator’s dual, we apply A
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to h and re-write as a function of (z,Θt), i.e.

A h(x; z,Θt) = −c(x− γ)
∂

∂x
h(x; z,Θt) + cα

∂2

∂x2
h(x; z,Θt).

Clearly, it is necessary to calculate the following derivatives

∂

∂x
h(x; z,Θt) =

( z − xΘt

α(1−Θt)

)
h(x; z,Θt),

∂2

∂x2
h(x; z,Θt) =

[( z − xΘt

α(1−Θt)

)2
− Θt

α(1−Θt)

]
h(x; z,Θt).

Then, after some algebra, one can obtain the following expression for the generator
infinitesimal of the dual, denoted by G , applied to h,

G h(x; z,Θt) =
( z

Θt
− γ
)∂Θt

∂t

∂

∂z
h(x; z,Θt)− α

∂Θt

∂t

∂

∂Θt
h(x; z,Θt),

where

∂

∂z
h(x; z,Θt) =

(x− z − γ(1−Θt)

α(1−Θt)

)
h(x; z,Θt),

∂2

∂z2
h(x; z,Θt) =

[(x− z − γ(1−Θt)

α(1−Θt)

)2
− 1

α(1−Θt)

]
h(x; z,Θt),

and (∂Θt/∂t) = −ce−ct for any c > 0. Therefore, the expression of G h suggest that
the dual can be associated to a diffusion with drift and diffusion coefficients given by
−c(z − γΘt) and 2cαΘt, respectively. Hence, as the drift and diffusion coefficients
are Θt dependent, it is not straightforward to obtain an expression for the transition
kernel associated to G . Even more, this implies that the dual is subordinate by Θt

as the Theorem 2 indicates it.

3.4.5 Some non-Markovian examples

The class of exponential dispersion models has six natural exponential families,
namely the normal, the Poisson, the gamma, the binomial, the negative-binomial
and the hyperbolic secant distributions. See Morris [31]. For these families, we
already known that for the normal and the Poisson cases, there exist a real-valued
function Θ such that the transition probability kernel kt, defined via the thinning
operation developed in this section, satisfies Chapman-Kolmogorov’s property. On
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other hand, the gamma, the binomial and the negative-binomial cases, we found
that Chapman-Kolmogorov’s property is not fulfilled. In order to illustrate such
statement, below, we present these examples.

Gamma case

Consider a probability measure π with gamma(τ, b) distribution. Letting τ1(t) = Θtτ

and τ2(t) = (1 − Θt)τ with Θ : R+ → (0, 1), the contraction associated to π takes
the form

f(z; Θt, x) =
Γ(τ)

Γ(τ1(t))Γ(τ2(t))

(
1− z

x

)τ2(t)−1 ( z
x

)τ1(t)−1 1

x
, for z ∈ (0, x).

Hence, the probability measure f as a function of z/x has beta(τ1(t), τ2(t)) distri-
bution and, the probability measure ν0 is given by

ν0(x; Θt, z) =
bτ2(t)

Γ(τ2(t))
(x− z)τ2(t)−1 exp {−b(x− z)}

for x ∈ (z,∞). Thus, the measure ν0 as a function of x − z has gamma(τ2(t), b).
For this model, the continuous-time reversible process X = {Xt}t≥0 is driven by the
transition probability function,

kt(x0, x) =
Γ(τ)bτ2(t)e−bx

Γ(τ1(t))Γ(τ2(t))Γ(τ2(t))x
τ(t)−1
0

∫ x0∧x

0

[
(x− z)(x0 − z)

]τ2(t)−1
zτ1(t)−1ebzdz,

for x0, x ∈ R+; and has invariant measure π. Moreover, the first moment associated
to kt satisfies Chapman-Kolmogorov’s property if and only if Θt = e−ct, with c > 0.
However, this does not imply that X is a Markov process.

In fact, using the second moment of the process, one can prove that the oper-
ator kt is not a Markovian kernel. Indeed, denoting by Ex the conditional expected
valued of {Xt|X0 = x}, we have that

Ex[X2
t+s] =

τ

b2
(1−Θt+s)

[
τ(1−Θt+s) + 1

]
+

2τ

b
(1−Θt+s)Θt+sx+

Θt+s(1 + τΘt+s)

τ + 1
x2,

for t, s > 0. In this case, Chapman-Kolmogorov’s equations are equivalent to prove
that Ex[X2

t+s] = Ex[E[X2
t+s|Xs]]. Hence, the right-hand side of the last equality is
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equal to

Ex[E[X2
t+s|Xs]] =

τ(1−Θt)[τ(1−Θt) + 1]

b2
+ 2

(τ
b

)2
Θt(1−Θt)(1−Θs)

+
Θt + τΘ2

t

τ + 1

τ

b2
(1−Θs)[τ(1−Θs) + 1]

+ 2
τ

b
ΘtΘs

[
(1−Θt) +

(1 + τΘt)

τ + 1
(1−Θs)

]
x

+
Θt(1 + τΘt)

τ + 1

Θs(1 + τΘs)

τ + 1
x2.

If we focus on the coefficient of x2 in both sides of Chapman-Kolmogorov’s equations
one can see that

Θt+s

(
1 + τΘt+s

τ + 1

)
= ΘtΘs

(
1 + τΘt

τ + 1

)(
1 + τΘs

τ + 1

)
.

Then, replacing the equality obtained for the first moment associated to kt, i.e.
Θt+s = ΘtΘs, in the above equality we obtain that

(Θt − 1)(Θs − 1) = 0 ⇒ Θt = 1, ∀t ≥ 0.

Therefore, it does not exists a function Θ : R+ → (0, 1) such that the process X is a
Markov process. A similar result is obtained for the binomial and binomial-negative
case.

Binomial case

Consider a probability measure π with Bin(τ, p) distribution, τ1(t) = Θtτ and τ2(t) =

(1−Θt)τ ; where Θ : R+ → (0, 1). Hence, the contraction associated to π takes the
form

f(z; Θt, x) =

(
τ2
x−z
)(
τ1
z

)(
τ
x

) , for z ∈ {max (0, x+ τ1 − τ), ...,min (x, τ1)}.

The probability measure f has hypergeometric(n, nρt, x) distribution and, the prob-
ability measure ν0 is given by

ν0(x; Θt, z) =

(
τ2(t)

x− z

)
px−z(1− p)τ2(t)−(x−z),
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for x ∈ {z, z + 1, ..., τ2(t)}. Thus, the measure ν0 as a function of x − z has
Bin(τ2(t), p). For this model, the continuous-time reversible process X = {Xt}t≥0 is
driven by the transition probability kernel,

kt(x0, x) =
(1− p)τ2(t)(

τ
x0

) min {x0,τ1(t),τ2(t)}∑
z=max {0,x0−τ2(t)}

(
τ2(t)

x− z

)(
τ2(t)

x0 − z

)(
τ1(t)

z

)( p

1− p

)x0−z
,

for x0 ∈ {0, 1, ..., τ} and x ∈ {min {τ1(t), τ2(t)}, ...,max {τ1(t), τ2(t)}}; and has in-
variant measure π. Moreover, the first moment associated to kt satisfies Chapman-
Kolmogorov’s equations if and only if Θt = e−ct, with c > 0.

Then, as we did for the gamma case, we will use the second moment of the
process to prove that X is not a Markov process. In fact, one can obtain that

Ex[X2
t+s] = τp(1− p)(1−Θt+s) + τ2p2(1−Θt+s)

2 + τΘt+s(1−Θt+s)

(
2p+

1

n− 1

)
x

+Θt+s

(
τΘt+s − 1

τ − 1

)
x2

for t, s > 0. Hence,

Ex
[
E
[
X2
t+s

∣∣Xs

]]
= τp(1− p)(1−Θt) + τ2p2(1−Θt)

2 + τ2pθt(1−Θt)(1−Θs)

(
2p+

1

τ − 1

)
+Θt

(
τΘt − 1

τ − 1

)[
τp(1− p)(1−Θs) + τ2p2(1−Θs)

2
]

+τΘtΘs

(
2p+

1

τ − 1

)[
(1−Θt) + (1−Θs)

(
τΘt − 1

τ − 1

)]
x

+ΘtΘs

(
τΘt − 1

τ − 1

)(
τΘs − 1

τ − 1

)
x2.

If we focus on the coefficient of x2 for both sides of Chapman-Kolmogorov’s equations
one can see that

Θt+s

(
τΘt+s − 1

τ − 1

)
= ΘtΘs

(
τΘt − 1

τ − 1

)(
τΘs − 1

τ − 1

)
.

Then, replacing Θt+s = ΘtΘs, in the above equality we obtain that

(Θt − 1)(Θs − 1) = 0 if and only if Θt = 1 ∀t ≥ 0.

Clearly, this result is very similar to the gamma and the binomial-negative cases.
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Negative binomial case

Let π be a probability measure with negative-binomial(τ, p) distribution, τ1(t) = Θtτ

and τ2(t) = (1 − Θt)τ ; where Θ : R+ → (0, 1). In this case, we have that the
contraction of π is given by

f(z; Θt, x) =

(
x

z

)
B(τ1(t) + z, τ2(t) + x− z)

B(τ1(t), τ2(t))
, for z ∈ {0, 1, ..., x}.

Hence, as before, the measure ν0 as a function of x−z has negative-binomial(τ2(t), p).
For this model, the continuous-time reversible process X = {Xt}t≥0 is driven by the
transition probability kernel,

kt(x0, x) =
x0!px(1− p)τ2(t)

Γ(τ2(t))B(τ1(t), τ2(t))

x0∧x∑
z=0

Γ(x− z + τ2(t))B(τ1(t) + z, τ2(t) + x0 − z)
(x− z)!(x0 − z)!z!

p−z,

for x0 ∈ N ∪ {0} and x ≥ x0; and has invariant measure π. Moreover, the first
moment associated to kt satisfies Chapman-Kolmogorov’s equations if and only if
Θt = e−ct, with c > 0.

Then, as the gamma case, we will use the second moment of the process to
prove that X is not a Markov process. In fact, one can obtain that

Ex
[
X2
t+s

]
=

τp(1−Θt+s)

(1− p)2
+

(
τp(1−Θt+s)

1− p

)2

+ τΘt+s(1−Θt+s)

(
2p

1− p
+

1

τ + 1

)
x

+
Θt+s + τΘ2

t+s

τ + 1
x2,

for t, s > 0. Thus,

Ex
[
E
[
X2
t+s

∣∣Xs

]]
=

τp(1−Θt)

(1− p)2
+

τ2p

1− p
Θt(1−Θt)(1−Θs)

(
2p

1− p
+

1

τ + 1

)
+

(
τp(1−Θt)

1− p

)2

+
Θt + τΘ2

t

τ + 1

[
τp(1−Θs)

(1− p)2
+

(
τp(1−Θs)

1− p

)2
]

+
Θt + τΘ2

t

τ + 1

[
τΘs(1−Θs)

(
2p

1− p
+

1

τ + 1

)]
x

+τΘtΘs(1−Θt)

(
2p

1− p
1

τ + 1

)
x+

Θt + τΘ2
t

τ + 1

(
Θs + τΘ2

s

τ + 1

)
x2.

If we focus on the coefficient of x2 in both sides of Chapman-Kolmogorov’s equations
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one can see that

Θt+s + τΘ2
t+s

τ + 1
=

Θt + τΘ2
t

τ + 1

Θs + τΘ2
s

τ + 1
.

Then, replacing Θt+s = ΘtΘs, in the above equality we obtain that

(Θt − 1)(Θs − 1) = 0 if and only if Θt = 1 ∀t ≥ 0.

Therefore, it does not exists a function Θ : R+ → (0, 1) such that the process X is
a Markov process.

3.5 Continuous-time Lancaster probabilities

Similar to the previous section, we use Lancaster probabilities to deal with the
problem of specifying the measures that characterizes our construction. For this
purpose, let us remember the definition of Lancaster probabilities. Let σ(dx, dz) be
a bivariate distribution with margins π and mπ defined over the measurable spaces
(X,X ) and (Y,Y ), respectively. Also, let {Pn}n≥0 and {Qn}n≥0 be orthonormal
polynomials associated to π and mπ, respectively. Hence, if E[Pi(X)Qj(Z)] = 0 for
i 6= j, then σ is known as Lancaster probability. Moreover, we are interested on
bivariate probabilities of the form,

σ(dx, dz) =
∑
j≥0

ρjPn(x)Qn(z)π(dx)mπ(dz).

where ρn = E[Pn(x)Qn(z)] characterizes the above bivariate distribution, known as
the Lancaster sequence of σ. Thus, Lancaster probabilities allows us to consider the
measure f(z;x) = σ(dx, dz)/π(dx). Then, as we did for the discrete case, we define
a reversible Markov process driven by the transition probability function

k(xn, dxn+1) =
∑
j≥0

ρ2
nPn(xn)Pn(xn+1)π(dxn+1), (3.16)

for xn, xn+1 ∈ X. Hence, in order to preserve the stationarity of X in the continuous
case, the time dependence should be aggregated to the Lancaster sequence. In fact,
we notice that there is a connection with the spectral expansion of the transition
probability functions associated to Markov processes.
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3.5.1 Spectral expansion of the transition density

The introduction of this chapter argued that if we model any random phenomenon
via some stochastic equation, then we do not always have an expression for the
transition density that describes the dynamics of it. The spectral expansion of the
transition probabilities has been a useful tool for such operational complications. In
this section, we focus on two classes of Markov processes, namely birth and death
processes and diffusion processes.

Birth and death processes

In the analysis of birth and death processes, a prominent role is played by a sequence
of polynomials {Pn}n≥0, called birth and death polynomials. They are determined
uniquely by the recurrence relation

−xPn(x) = µnPn−1(x)− (λn + µn)Pn(x) + λnPn+1(x), n ≥ 0, (3.17)

together with P−1 = 0 and P0(x) = 1. The space state for birth and death processes
is given by S = {−1, 0, 1, 2, ...}. In fact, these processes are characterized by their
birth and death rates λi, µi, for i ∈ S, where −1 is an absorbing state. Ignoring this
state if µ0 = 0 and 0 becomes in this case a reflecting state. Karlin and McGregor [18]
proved the the transition function can be represented as

pi,j(t) = P[Xt = j|X0 = i] = πj

∫ ∞
0

e−xtPi(x)Pj(x)dφ(x), (3.18)

for i, j = 0, 1, 2, ..., and t > 0, where φ is a positive Borel measure with total mass 1

and with support on the nonnegative real axis; φ is called the spectral measure of p.
Taking t = 0 in (3.18) one easily sees that the polynomials {Pn}n≥0 are orthogonal
with respect to φ. Note that, the dependence on t in the right-hand side of (3.18)
is restricted entirely to the monotone decreasing exponential term e−tx. Also, the
dependence on i and j in (3.18) is factored as the product Pi(x)Pj(x).

Moreover, if µ0 = 0, we have Pi(0) = 1 for i ≥ 0, and thus the limiting
stationary distribution, when it exists, is equal to

pj =
πj∑∞
k=0 πk

= lim
t→∞

pi,j(t) = πjPi(0)Pj(0)φ({0}) = πjφ({0}).
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The symmetry relation πipi,j(t) = πjpj,i(t) also follows directly from (3.18).

Diffusion processes

Consider an arbitrary diffusion {Xt}t≥0 with drift coefficient µ(x) and diffusion
coefficient σ2(x). Hence, its infinitesimal generator, denoted by A , takes the form

A g(x) = µ(x) d
dxg(x) + 1

2σ
2(x) d2

dx2 g(x),

for x ∈ X and g in the domain of A . Moreover, if the diffusion {Xt}t≥0 is stationary,
then the invariant measure π of the process, also known as speed measure, is obtained
by solving the differential equation,

d
dx

[1

2
σ2(x)π(x)

]
= µ(x)π(x),

whose solution is given by,

π(x) =
2c

σ2(x)
exp

{∫ x

x0

2µ(v)

σ2(v)
dv
}
,

where c is a positive constant chosen so that π is a probability measure, and x0 is
an arbitrarily chosen state.

Denote by L 2(X, π) the space of real-valued functions on X that are square
integrable with respect to the density π. Let f and g be functions in the domain of
A . Then, upon integration by parts, one obtains the following property

〈A f, g〉π = 〈f,A g〉π,

where the inner product 〈·, ·〉π is defined by

〈f, g〉π =

∫
X
f(x)g(x)π(x)dx.

Consider the case in which X is a closed and bounded interval. Thus, if ω is an
eigenfunction of A corresponding to an eigenvalue γ, i.e. A ω = γω, then u(t, x) =

eγtω(x) solves the backward equation

∂

∂t
u(t, x) = eγtγω(x) = eγtA ω = A u(t, x).
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Assuming that the set of eigenvalues, counting multiplicities, is countable, say
γ0, γ1, γ2, ... with corresponding eigenfunctions ω0, ω1, ω2, ... of unit length, that is
〈ωn, ωn〉1/2π = 1. It is known that, eigenfunctions corresponding to distinct eigenval-
ues are orthogonal with respect to the inner product 〈·, ·〉π. Also if there is more
than one linearly independent eigenfunction for a single eigenvalue, then these eigen-
functions can be orthogonalized by the Gram-Schmidt procedure. So ω0, ω1, ω2, ...

can be taken orthonormal.

Equivalently, the same collection of polynomials, which generates an orthogo-
nal basis of L2(X, π), can be obtained via the following sequence,

ωn(x) = 1
π(x)

dn
dxn
{
π(x)

[
1
2σ

2(x)
]n}

.

In particular, if µ(x) and σ2(x) (but not necessarily σ(x)) are polynomials, then
ωn(x) is a polynomial of degree n. In which case, it follows

‖ωn‖2π = (−1)n
(

dn

dxn
ωn(x)

)∫
X

[
1

2
σ2(x)

]n
π(dx).

Note that, the n-th derivative of ωn(x) is a constant, being an n-degree polyno-
mial, and equals the leading coefficient of ωn times n!. Moreover, since ‖ωn‖2

π and∫
X

[
1
2
σ2(x)

]n
π(dx) are positive, the sign of the leading coefficient of ωn is (−1)n.

Hereafter, we consider each ωn normalized, i.e. write ωn instead of ωn/‖ωn‖π. Thus,
the collection of orthonormal polynomials {ωn}n≥0 turns out to be eigenfunctions of
the infinitesimal generator A , i.e.

A ωn = −γnωn

for some non-negative constant γn.

Furthermore, if the set of finite linear combinations of eigenfunctions is com-
plete in L 2(X, π), then each f ∈ L 2(X, π) has a Fourier expansion of the form

f =
∞∑
n=0

〈f, ωn〉πωn.

Hence, considering the linear combination defined by

uf (t, x) =

∞∑
n=0

eγnt〈f, ωn〉πωn(x),
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one obtains that uf (t, x) satisfies the backward equation with initial condition uf (0, x) =

f(x). However, the semigroup associated to {Xt}t≥0, denoted by kt, also satisfies
the backward equation and the same initial condition. So, if there is uniqueness for
a sufficiently large class of initial functions f , then we get∫

X
f(x)kt(x0, x)dx =

∫
X
f(x)

∞∑
n=0

eγntωn(x0)ωn(x)π(x)dx.

Therefore, under the above assumptions, the transition probability function admits
a density given by

pt(x0, dx) =
∞∑
n=0

e−γntωn(x0)ωn(x)π(dx). (3.19)

It is worth noticing that, the above expression of the transition density is the same
that we obtain for the process built based on Lancaster probabilities with ρn = eγnt.

3.5.2 Duality

The transition expansions (3.18) and (3.19) suggest that birth an death processes and
diffusions can be constructed via Lancaster probabilities, by considering Lancaster
sequences given by ρn(t) = e−γnt, for n ≥ 0. That is to say,

σt(dx, dz) =
∑
n≥0

e−γntPn(dx)Qn(dy)π(dx)mπ(dz),

for x ∈ X and z ∈ Y. Clearly, the measure σ has margins π and mπ, and they are
characterized by the orthonormal polynomials {Pn}n≥0 and {Qn}n≥0, respectively.

Thus, we can define a time-homogeneous reversible Markov process {Xt}t≥0

with state space (X,X ), invariant distribution π and driven by the transition prob-
ability function

kt(x0, dx) =
∑
j≥0

ρ2
j (t)Pj(x0)Pj(x)π(dx)

As for the discrete case, the expression of kt implies that Pj is an eigenfunction for
the eigenvalue ρ2

j of the operator Tf(x0) =
∫
X f(x)kt(x0, x)dx, for any measurable

function f . On other hand, let Z = {Zt}t≥1 be stochastic process over the space
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(Y,Y ) driven by the transition probability kernel,

kt(z0, dz) =
∑
j≥0

ρ2
j (t)Qj(z0)Qj(z)mπ(dz; Θt),

for z0, z ∈ Y. Then, letting us define the duality function h as the Radon-Nikodyn
derivative between the posterior and prior distribution of π, i.e.

h(x; z,Θt) =
∑
j≥0

ρj(t)Pj(x)Qj(z),

for x ∈ X and z ∈ Y. The processes {Xt}t≥0 and {Zt}t≥0 are dual with respect to
the duality function h. This implies that,

Ex[h(Xt; z,Θt)] =
∑
j≥0

ρ2
j (t)Qj(y)Pj(x) = Ez[h(x;Zt,Θt)],

and the predictor operator of {Xt}t≥0 takes the form,∫
X
ν0(x; z,Θt)kt(x0, x)dx =

∑
n≥0

ρ3
n(t)Pn(x0)Qn(z)π(dx0).

Let us emphasize that, the use of orthonormal polynomials do not simplify the
computation of the filters or some other properties associated to the transition kernel
kt. Nonetheless, we use Lancaster probabilities as a mechanism to specify the model
that characterizes our construction. For illustrative purposes, we will present the
case where the Lancaster probability has gamma and negative-binomial margins.

3.5.3 Gamma-binomial-negative model

Let π by the probability measure with gamma(a, 1) distribution, for a > 0. The
orthonormal polynomials with respect to π, denote by {Pn}n≥0, are given by Pn =√
n!/(a)nL

a
n, with (a)n = a(a + 1) · · · (a + n − 1), where {Lan}n≥0 are the Laguerre

polynomials. Also, let mπ be a negative-binomial(r, p) distribution, with n > 0

and p ∈ (0, 1). It is known that, the orthonormal polynomials with respect to mπ

are the normalized Meixner polynomials, denoted by {Qn}n≥0. Then, consider the
Lancaster probability σ with marginals π and mπ, and Lancaster sequences {ρn}n≥0,
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given by

σ(dx, dz) =
∞∑
n=0

ρnPn(x)Qn(y)π(dx)mπ(dz).

An extreme Lancaster sequence for the above bivariate distribution is determined
by ρn = (

√
p)n. Hence, considering the function p : R+ → (0, 1) such that

ρn(t) = e−γnt =
[√

p(t)
]n

⇒ p(t) = e−ct, for c > 0.

This implies that, γn = cn/2. Moreover, letting φt = p(t)/(1 − p(t)) = (ect − 1)−1,
with c > 0, and r = a, then the Lancaster probability takes the form,

σ(dx, dz) = exφt
(xφt)

z

z!
π(dx),

for (x, z) ∈ (0,∞) × N. It is straightforward to see that the transition probability
kernel defined from σ coincides with the kernel of the gamma-Poisson process, with
b = 1. Furthermore, it is known that the orthogonal polynomials {Pn}n≥0 satisfy
the following identity,

kt(x0, dx) =
∞∑
n=0

e−γntPn(x0)Pn(x)π(x)dx

=
exp {−[φt(x0 + x) + x ] }
(φt + 1)−(a+1)/2φ

(a−1)/2
t

(
x

x0

)a−1
2

Ia−1

(
2
√
x0xφt(1 + φt)

)
,

for x0, x ∈ R+, and where Iν(·) denotes the modified Bessel function of the first kind
with argument ν. Therefore, this model exemplifies the use of Lancaster probabilities
in order to specify the measures that characterize our construction.

3.5.4 Wright-Fisher diffusion

The Wright-Fisher diffusion with parent mutation has been widely used to model
genetic evolution, such diffusion is characterized as the only solution to the following
stochastic differential equation,

dXt =
1

2

[
a1(1−Xt) + a2Xt

]
dt+

√
Xt(1−Xt)dWt
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where W is a standard Brownian motion and a1, a2 > 0. Moreover, the above
equation determines a stationary process with invariant measures

π(dx) =
xa1−1(1− x)a2−1

B(a1, a2)
.

In this case, the orthonormal polynomials associated to the beta distribution are
known as the Jacobi polynomials, which are obtained via the recursion (3.19). In
fact, such polynomials satisfy

Pm(x) = cm(a1)m

m∑
`=0

(
m

`

)
(m+ a− 1)`

(a1)`
(−x)`,

where

cm =
1

‖Pm‖π
=

√
a+ 2m− 1

a+m− 1

(a)m
(a1)m(a2)m

1

m!
,

with a = a1 +a2. Thus, the transition probability function associated to the process
{Xt}t≥0 has an expression in terms of the Jacobi polynomials of the form,

kt(x0, dx) =

[∑
j

e−γntPn(x0)Pn(x)

]
π(dx),

for x0, x ∈ (0, 1) and t ≥ 0, with γm = 1
2
m(m + a − 1). Furthermore, Ethier and

Griffiths [9] derived an equivalent expression for the transition of the process,

kt(x0, dx) =

∞∑
m=0

qam(t)

m∑
k=0

Beta(x; a1 + k, a2 +m− k)Bin(k;m,x). (3.20)

where

qam(t) =
∞∑
j=m

e−γmt(−1)j−m
(2j + a− 1)(m+ a)(j−1)

m!(j −m)!
.

In fact, the {qam(t)} are the transition probability kernel of a death process with an
entrance boundary of infinity, and death rates γm. The death process represents
the number of non-mutant ancestral linages back in times in the coalescent process
with mutation. The number of linages decreases from m to m − 1 from coalescent
rate

(
k
2

)
or mutation at rate ma/2. If there is no mutation, {qam(t)} are transition



3.5. CONTINUOUS-TIME LANCASTER PROBABILITIES 101

functions of number of edges in a Kingman coalescent tree. The expansion (3.20) is
derived from a two-dimensional dual death process which looks back in time in the
Wright-Fisher diffusion.

On other hand, one can obtain that the measure mπ takes the form

mπ(m) = q|a||m|(t)
(
|m|
m1

)
B(a + m)

B(a)

Furthermore, the transition operator of the h-dual, which is a non-homogeneous
process, is given by

pt(m,n) = q|a||n|(t)
(
|n|
n1

)
B(a + m + n)

B(a + m)

for m = (m1,m2) and n = (n1, n2), where the binomial coefficient and the fraction
represent a beta-binomial(|n|, a + m) distribution. It is worth to mention that,
the orthogonal polynomials associated to the beta-binomial distribution are given
by the Hahn polynomials. In this case, the construction suggest that the Hahn
and Jacobi polynomials satisfy a bi-orthonormal property. The proof of the last
statement remains to be made. It represents one of the authors’ current work.
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Chapter 4
A dual construction of measure-valued
reversible Markov processes

This chapter uses the conditional probability inherent on exchangeable observations
to build the transition probabilities that drive a class of measure-valued Markov
processes. Indeed, we use a similar structure, as the one used in the previous chap-
ters, but without the parametric simplification. That is to say, in the full extend
of exchangeable random variables that leads us to infinite dimensional spaces. For
this purpose, we will borrow the construction of random probability measures from
the Bayesian nonparametric literature. These measures, commonly referred as non-
parametric priors distributions, will be invariant measures of the signal processes.
In order to carry out our proposal, we require mathematical tractability of the pos-
terior distributions associated to such prior distributions. Unfortunately, in general,
such expressions are typically more involved. Here is where the duality of previous
chapters will help us to derive new properties associated to such measure-valued
processes, via the predictor operator of exchangeable sequences. Indeed, this later
operator will play an important rol in the nonparametric version of our proposal.

Then, using the projective properties mentioned in Section 1.6, we will provide
a mechanism to define a duality function that leads to the duality of Chapter 1 for
the nonparametric case. In the same way, we will be able to calculate the optimal
and the prediction filters associated to a hidden Markov model in which the signal
is a nonparametric prior.

103
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As before, the class of processes that we propose is divided into discrete-time
and continuous-time cases. Hence, as in Chapter 3, the continuous model requires
that the afore transition probabilities satisfy Chapman-Kolmogorov’s property. Hav-
ing this in mind, the Fleming-Viot measure-valued diffusion turns out to be a re-
markable example that falls within our proposal. So, we will used the mechanism
developed by Walker, Hatjispyros and Nicoleris [43] to build a class of continuous-
time measure-valued Markov processes. Keeping the structure used throughout this
thesis, we will provide an alternative approach to built continuous-time nonpara-
metric models, via dependent random measures. In fact, these later models turn
out to be continuous-time versions of stationary Feller-Harris processes.

4.1 Nonparametric priors

For the sake of completeness, this section presents a brief review about nonparamet-
ric priors, dragged from Lijoi and Prünster [26]. In particular, we focus on suitable
transformations of completely random measures. Hence, let us begin by defining
such measures. Denote byMX the space of boundedly finite measures on (X,X ),
this implies that for any µ inMX and any bounded set A ∈X one has µ(A) <∞.
Moreover, MX stands for the corresponding Borel σ-algebra onMX.

Definition 6. Let µ be a measurable mapping from (Ω,F ,P) into (MXMX) and
such that for any A1, ..., An ∈ X , with Ai ∩ Aj = ∅ for any i 6= j, the random
variables µ(A1), ..., µ(An) are mutually independent. Then µ is termed completely
random measure (CRM).

An important property of CRMs is their almost sure discreteness, which means
that their realization are discrete measures with probability one. Hence, they can
always be represented as the sum of two components: a completely random measure∑∞

i=1 JiδXi , where both the positive jumps Ji’s and the X-valued locations Xi’s are
random, and a measure with random masses at fixed locations. Here, without loss
of generality, we will consider CRMs with no fixed points of discontinuity. Thus µ
is characterized by the Lévy-Khintchine representation which states that

E
[
e−

∫
X f(x)µ(dx)

]
= exp

{
−
∫
R+×X

[
1− e−sf(x)

]
ν(ds, dx)

}
,
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where f : X → R is a measurable function such that
∫
|f |dµ < ∞ almost surely.

Assuming that ν is a measure on R+ × X such that∫
B

∫
R+

min {s, 1}ν(ds, dx) <∞,

for any b ∈X . The measure ν is referred as the Lévy intensity of µ. It will be often
useful to separate the jump and the location part of ν by writing it as

ν(ds, dx) = ρx(ds)α(dx), (4.1)

where α is a measure on (X,X ) and, ρ is a transition kernel on X × B(R+). If
ρx = ρ for any x, then the distribution of the jumps of µ is independent of their
locations and both ν and µ are termed homogeneous.

4.1.1 Normalizing completely random measure

The idea of normalization was inspired by Ferguson’s construction of the Dirichlet
process and, it has been widely used to define a class of nonparametric priors. An
important generalization of this approach is found in Lijoi and Prünster [26], which
consists in normalizing completely random measures. Mathematically, such priors
are defined as following.

Definition 7. Let µ be a CRM on X such that 0 < µ(X) <∞ almost surely. Then,
the random probability measure p = µ/µ(X) is termed normalized random measure
with independent increments (NRMI).

Both, finiteness and positiveness of µ(X), are required for the normalization
to be well-defined. Such conditions, in terms of the Lévy intensity of the CRM,
are ρx(R+) = ∞ for every x ∈ X and 0 < α(X) < ∞. Note that, one can build
a NRMI by just providing a Lévy intensity. Thus NRMIs generate a very large
class of nonparametric priors. Hereafter, we will say that the NMRI is homogeneous
(non-homogeneous) if the underlying CRM (or Lévy intensity) is homogeneous (non-
homogeneous).

Let us recall that, an homogeneous CRM whose Lévy intensity is given by
ν(ds, dx) = [e−s/s]dsα(dx) is a gamma measure with parameter measure α on X.
Hence, if X is a Polish space then p = µ/µ(X) has the same distribution than the
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Dirichlet process on X with parameter α. Furthermore, the Dirichlet process is
characterized within the above class of priors by its conjugacy property (cf. James,
Lijoi and Prünster [14]). This property makes the Dirichlet process the most used
within the class of nonparametric priors. As a matter of fact, such property will
also facilitate the construction of transition probabilities that drive a measure-valued
Markov process with the Dirichlet process as invariant measure.

Now, we will summarize the concept of exchangeable partition probability
function that will help us present an expression for the predictor operator associated
to discrete nonparametric priors.

4.1.2 Exchangeable partition probability function

The nature of realizations of discrete random probability measures leads to analyze
the partition structure among the observations that they generate. Hence, consider a
sequence of observations {Yi}ni=1 sampled from a discrete random measure p. Also,
define Ψn to be a random partition of the integers {1, ..., n} such that any two
integers i and j belong to the same set in Ψn if and only if Yi = Yj. Then, let
k ∈ {1, ..., n} and suppose {C1, ..., Ck} is a partition of {1, ..., n} into k sets Ci. Thus,
to an exchangeable sequence with a.s. discrete de Finetti’s measure, correspond a
distribution of Ψn. That is,

P
[

Ψn = {C1, ..., Ck}
]

= Π
(n)
k (n1, ..., nk). (4.2)

This characterizes the probability of observing k distinct species with frequencies
(n1, ..., nk) in n draws from a population. The set {Π(n)

k : 1 ≤ k ≤ n, n ≥ 1}
is termed as exchangeable partition probability function (EPPF). Thus Π

(n)
k is a

symmetric function of its arguments and, hence, the following addition rule holds,

Π
(n)
k (n1, ..., nk) = Π

(n+1)
k+1 (n1, ..., nk, 1) +

k∑
j=1

Π
(n+1)
k (n1, ..., nj + 1, ..., nk).

Pitman [35] proved that every non-negative symmetric function satisfying this ad-
dition rule is the EPPF of some exchangeable sequence.

Furthermore, if Y (n) := (Y1, ..., Yn) contains k distinct values Y ∗1 , ..., Y ∗k and nj
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of them are equal to Y ∗j one has,

P[Yn+1 = ”new”|Y (n)] =
Π

(n+1)
k+1 (n1, ..., nk, 1)

Π
(n)
k (n1, ..., nk)

, (4.3)

P[Yn+1 = Y ∗j |Y (n)] =
Π

(n+1)
k (n1, ..., nj + 1, ..., nk)

Π
(n)
k (n1, ..., nk)

. (4.4)

In particular, if p is a NRMI with non-atomic parameter measure α, the associated
EPPF is given by

Π
(n)
k (n1, ..., nk) =

1

Γ(n)

∫ ∞
0

un−1e−ψ(u)

{ k∏
j=1

∫
Y
τnj (u|y)α(dy)

}
du,

where ψ is the Laplace exponent of a completely random measure µ, with p =

µ/µ(Y), and; τm(u|y) :=
∫
R+ s

me−usρy(ds), for any m ≥ 1. Hence, one can deduce
the system of predictive distributions of Yn+1, given Y (n), i.e.

P
[
Yn+1 ∈ dyn+1|Y (n)

]
= w

(n)
k Q(dyn+1) +

1

n

k∑
j=1

w
(n)
j,k δY ∗j (dyn+1),

where Q = α/α(X) and, {w(and)
k } and {w(n)

j,k } are random weights depending on
the corresponding Lévy measure, obtained from(4.3) and (4.4). A more extensive
class of nonparametric priors, known as Poisson-Kingman models, posses a similar
structure for their predictor operators than those corresponding to NRMIs.

4.1.3 Poisson-Kingman model and Gibbs-type priors

Denote by J(1) ≥ J(2) ≥ · · · the ranked jumps of the CRM, set T =
∑

i≥1 J(i) and
assume that the probability distribution of the total mass T is absolutely continuous
with respect to the Lebesgue measure on R. Then, define the weights w(i) = J(i)/T

and denote by S∗ =
{

(p1, p2, ...) : p1 ≥ p2 ≥ · · · ≥ 0,
∑

i≥1 pi = 1
}

the set of all
sequences of ordered non-negative real numbers that sum up to 1.

Definition 8. Let Pρ,t be the conditional distribution of the sequence {w(i)}i≥1, given
T = t, and; let η be a probability distribution on R+. The distribution∫

R+

Pρ,t η(dt) (4.5)
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on S∗, denoted by PK(ρ, η), is termed Poisson-Kingman distribution with Lévy in-
tensity ρ and mixing distribution η.

The discrete random probability measure P =
∑

i≥1w(i)δXi , where the w(i)’s
follow a PK(ρ, η) distribution, is termed PK(ρ, η) random probability measure. If η
coincides with the probability distribution of T , denoted by PK(ρ), then the random
probability measures are equivalent to homogeneous NRMIs.

An expression for the EPPF of a general PK(ρ, η) was obtained in Pitman [36]
but it is difficult to evaluate. Having this in mind, Gnedin and Pitman [11] proposed
a class of random probability measures within the PK(ρ, η) models, known as Gibb-
type priors. Denote by ∆n,k :=

{
(n1, ..., nk) : ni ≥ 1,

∑k
i=1 ni = n

}
.

Definition 9. Let P =
∑

i≥1 wiδXi be a discrete random probability measure, where

the locations and the weights are independent and, Xi
i.i.d.∼ Q with Q a non-atomic

probability measure on X. Then P is termed Gibbs-type random probability measure
if, for all 1 ≤ k ≤ n and for any (n1, ..., nk) ∈ ∆n,k its EPPF can be represented as

Π
(n)
k (n1, ..., nk) = Vn,k

k∏
j=1

(1− σ)nj−1 (4.6)

for some σ ∈ [0, 1). The random partition of N determined by (4.6) is termed
Gibbs-type random partition.

As a consequence, the predictor operator associated to exchangeable sequences
with de Finetti’s measure within the class of Gybb-type priors takes the form

P[Xn+1 ∈ dx|X(n)] =
Vn+1,k+1

Vn,k
Q(dx) +

Vn+1,k

Vn,k

k∑
j=1

(nj − σ)δX∗j (dx)

The prediction rule can be seen as resulting from a two step procedure: Xn+1 is either
"new" or "old" with probability depending on n and k but not on the frequencies
ni’s. Given Xn+1 is "new", it is sampled from Q. Given Xn+1 is "old" it will coincide
with a particular X∗j with probability (nj − σ)/(n− kσ).
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4.2 Discrete-time model

The aim of this section is to build a set of transition probabilities that drive measure-
valued stationary Markov processes, where the invariant distributions are given by
the priors of the previous section. It is worth to mention that, Walker, Hatjispyros
and Nicoleris [43] developed a similar construction, within the nonparametric ap-
proach, for the case in which the invariant measure is given by the Dirichlet process.
Hence, our proposal generalizes their methodology to more general nonparametric
priors and also provides new properties associated to the model.

Denoting by PY the set of all probability measures on the measurable space
(Y,Y ), where Y is a Polish space. Also, consider a random probability measure
µ whose distribution, denoted by Π, belongs to the class of discrete nonparametric
priors presented in the previous section. Thus, our construction will be based on
the following joint distribution

P
[
dµ, dY

]
= µ(dY )Π(dµ).

Hence, denoting by Q(·) :=
∫

PY
µ(·)Π(dµ), the conditional distribution of {µ|Y },

denoted by Π( · |Y ), is given by

Π(dµ|Y ) =
P
[
dµ, dY

]
Q(Y )

.

Then, we define a reversible Markov process PY-valued driven by the transition
probability function

k(µ, dν) =

∫
Y

Π(dν|y)µ(dy), (4.7)

and invariant measure Π. As in the parametric case, the reversibility follows from
structure of the operator k. Furthermore, we build a discrete-time reversible Markov
process Y-valued driven by the transition probability function

p(yn, dyn+1) =

∫
PY

µ(dyn+1)Π(dµ|yn).

and invariant measure Q. Since the objective of this chapter generalizes the results
from the parametric case, one can guess that the operators k and p are dual to
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each other with respect to a function. However, due to the complexity of deal with
infinite dimensional spaces, this issue will be discussed later.

Similar to the above mechanism, we can define a set of transition probabilities
by considering the joint distribution

P
[
dµ, dY1, ..., dYn

]
=

n∏
j=1

µ(dYj)Π(dµ).

Thus, denoting by Π( · |Y (n)) the conditional distribution of µ, given Y (n) = (Y1, ..., Yn),
we define a transition probability function on PY as following

k(µ, dν) =

∫
Y(n)

Π(dν|y1, ..., yn)

n∏
j=1

µ(dyj). (4.8)

The above operator k describes the dynamics of a reversible Markov process µ and,
in the same from as the operator (4.7), has Π as invariant measure. On the other
hand, assuming that {Yn}n≥1 is an exchangeable sequence with de Finetti’s measure
Π, then the joint distribution of (Y1, ..., Yn) has the following integral representation

P [Y1 ∈ B1, ..., Yn ∈ Bn ] =

∫
PY

n∏
i=1

µ(Bi)Π(dµ),

where µ ∼ Π and (B1, ..., Bn) ∈X (n), for n ≥ 1. Thus the marginal distribution of
every random variable Y is given by Q. Moreover, the predictor operator associated
to such a sequence takes the form

p(dy(n), yn+1) :=

∫
PY

µ(dyn+1)Π(dµ|y1, ..., yn). (4.9)

where µ, ν ∈PY. If µ is defined via the normalization of a subordinator, then such
a operator takes the form

p(y(n), dyn+1) = w
(n)
k Q(dyn+1) +

1

n

k∑
j=1

w
(n)
j,k δy∗j (dyn+1),

where (y∗1, ..., y
∗
k) are the distinct values within the sequence (y1, ..., yn) and, w(n)

k

and w(n)
j,k are random weights.

To illustrate the above construction, let us present the case where Π is given by
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the widely known distribution of a Dirichlet process. Thus, if Π is a Dirichlet process
with parameter α, then Π( · |y) is also a Dirichlet process with updated parameter
α + δy. Moreover, letting θ = α(Y) the operator (4.7) in this case takes the form

p(yn, dyn+1) =
θ

θ + 1
Q(·) +

1

θ + 1
δyn .

Similarly, the predictor operator (4.9) is given by

p(yn+1|dy(n)) =
θ

θ + n
Q(·) +

n

θ + n

n∑
j=1

δyj .

It is worth noticing that, one of the main differences between these two operators
is that the former can be trivially associated to a Markov process and the later has
not share such historical dependency.

4.3 Duality and filtering

Using the projective properties of Section 1.6 one can prove that our proposal leads
to the duality of Section 1.4 between the models defined in the previous section. To
be precise, the projective properties of Π and duality properties of these projections.
That is to say, consider a measurable partition A = (A1, ..., Ak) of Y we have that
(µt(A1), ..., µt(Ak)) is distributed according to Πα(A), where α is the parameter of
Π and α(A) = (α(A1), ..., α(Ak)). This allows us to define the duality function
h : PY × Y(n) → R given by

h(µ;Y (n)) =
Πα(A)(µ|Y (n))

Πα(A)(µ)
=

∏n
j=1 µ(Yj)

P[Y (n) ∈ dy(n)]
.

Then, the projective properties of Π guarantees the existence of a duality between
the transition probabilities of a measure-valued process and the predictor operator
of an exchangeable sequence of random variables, i.e.

Eµ0 [h(µ; y(n))] = Ey
(n)

[h(µ0;Yn+1)],

where µ0 ∈ PY and y(n) ∈ Y ∈ Y(n). Clearly, the expected value of the left-hand
side of the above equation is with respect to k and the one in the right-hand side
is with respect to the predictor operator p. The proof of the mentioned equality
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follows from the parametric results. An immediate result derived from the above
duality is the calculation of the predictor operator associated to k. In particular, if
the random probability measure with distribution Π is a NMRI, then∫

PY

Π(µ|y(n))k(µ, dν)dµ =

∫
Y

Π(ν|yn+1)p(y(n), yn+1)dyn+1

=

∫
Y

Π(ν|yn+1)
[
w

(n)
k Q(yn+1) +

1

n

k∑
j=1

w
(n)
j,k δy∗j (yn+1)

]
dyn+1

= w
(n)
k Π(dν) +

1

n

k∑
j=1

w
(n)
j,k Π(ν|y∗j ).

The first equality is true because of the duality between k and p. Clearly, the above
result can be generalize to those measures belonging to the class of Gibb-type priors,
this is true due to the structure of their predictor operator.

Let us emphasize that, one of issues in the nonparametric context is the avail-
ability of a simple expression for the posterior distribution of Π. As a consequence,
the Dirichlet process, which is conjugate, becomes the first option within the class
of discrete nonparametric priors. Hence, if Π turns out to be the distribution of the
Dirichlet process we have that∫

PY

Π(µ|y(n))k(µ, dν)dµ =
θ

θ + n
Π(dν) +

n

θ + n

n∑
j=1

Π(ν|yj).

This result allows us to exemplify the advantages that the conditional probability
structure used throughout this thesis gives, and, in particular, the duality obtained
from it.

Furthermore, consider a hidden Markov model where the signal µ has dis-
tribution Π within the class of discrete nonparametric priors. In this case, the
observation process Y consists of an exchangeable sequence and, the emission den-
sity f(·;µ) = µ(·) turns out to be random. Then, using the projective properties
of Π used in this section allows us to obtain an expression for the optimal and the
prediction filters associated to the afore signal via Theorem 1 in Chapter 2. So that
we will have an expression for every measurable partition of Y.



4.4. CONTINUOUS-TIME MODEL 113

4.4 Continuous-time model

The final section of this thesis is focused on build a class of continuous-time measure-
valued reversible Markov process. This will be done by adding a time dependence
to the operators (4.7) and (4.8). In fact, we will focus on two different approaches.
The first one is motivated by the construction of the Fleming-Viot diffusion, which
takes the number of observations from an exchangeable sequence random. The other
approach will be done via dependent random measures. As a result, we will obtain a
continuous-time version of the stationary Feller-Harris model, presented in Anzarut
and Mena [2].

4.4.1 Fleming-Viot measure-valued diffusion

Ethier and Griffiths [9] provided an expression for the transition function for a par-
ticular Fleming-Viot measure-valued diffusion process. Later Walker, Hatjispyros
and Nicoleris [43] established a comprehensive construction of such process by ex-
tending ideas of the Gibbs sampler construction. Hence, let us present the idea of
such construction. First, we recall that the invariant measure of the Fleming-Viot
diffusion is given by the Dirichlet process. Earlier in this chapter we built a discrete-
time transition probability function with the Dirichlet process, denoted by Π, as its
invariant measure. Such operator was defined as following

k(µ, dν) =

∫
Y(n)

Π(dν|y(n))
n∏
j=1

µ(dyi),

for µ, ν ∈PY. In order to preserve the stationarity and reversibility of the process
that drives the above operator, we need to aggregate a time dependence the expres-
sion

∏n
j=1 µ(dyi). This leaves us two options: let µ be a dependent random measure

or, letting the sample size n be a function of the time. Here we deal with the later
case. In fact, it is known that, the sample size for the Fleming-Viot diffusion is
driven by a death process. To be precise, let dn(t) = P[Dt = n], where Dt is a
death process, D0 = ∞ a.s., and with rate λn = (1/2)n(n − 1 + θ) for some θ > 0.
Denote by dn(t) the probability that the number of samples being used is n for the
transition with time t. Thus, the transition function of the Fleming-Viot process is
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given by

kt(µ, dν) =
∞∑
n=0

dn(t)

∫
Y(n)

Π(dν|y(n))
n∏
j=1

µ(dyi) (4.10)

For this model, Chapman-Kolmogorov’s property was proved by Walker, Hatjispy-
ros and Nicoleris [43] via the trajectorial properties associated to the above death
process. On other hand, the h- dual associated to such diffusion was found in
Papaspiliopoulos, Ruggiero and Spanó [34], this was accomplished based on the
mentioned projective properties of the signal and duality properties of these projec-
tions. Moreover, conditional to the event {Dt = n} the predictor operator of the
exchangeable sequence coincides with the discrete-time version, i.e.

P
[
Yn+1 ∈ Bn+1|Y (n) ∈ dy(n), Dt = n

]
=

∫
PY

µ(dyn+1)Π
(
dµ|y(n)

)
This implies that, denoting by pt the unconditioned predictor operator and replacing
the discrete-time expression one obtains

pt(y
(n), dyn+1) =

∞∑
n=0

dn(t)
[ θ

θ + n
Q(dyn+1) +

n

θ + n

n∑
j=1

δyj (dyn+1)
]

At this point, it must be clear that, the duality between the operators kt and pt is
preserved for every partition of the space Y. This happens because the construction
entirely depends on the structure of the model and not on the state space, which in
the nonparametric case is the space of all probability measures. Hence, the duality
function in this case is also given by

h(µ;Y (n)) =
Πα(A)(µ|Y (n))

Πα(A)(µ)
=

∏n
j=1 µ(Yj)

P[Y (n) ∈ dy(n)]
.

where the measure α is the parameter associated to the distribution Π. Also, for this
particular case if we associate the Fleming-Viot diffusion to the stochastic filtering,
then it is possible, by considering the above projections, to calculate the filters
associated to the model. Indeed, the conjugacy allows us to solve the mentioned
issue.

Furthermore, if we replace the Dirichlet process by another random probabil-
ity measure on the operator kt, then the construction allows us to build a measure-
valued Markov process for any other random measure. Moreover, each of these
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processes have a dual that provides more information about the model. Nonethe-
less, besides the Fleming-Viot case, the tractability of the filters depends on the
tractability of the corresponding posterior distribution or the availability of the pre-
dictor operator of a random probability measure.

4.4.2 Continuous-time stationary Feller-Harris process

An alternative to the above model, that serves to build the transition of a class of
continuous-time measure valued Markov process, is found by considering dependent
random measures on operators of the form (4.8). Such measures consist in random
probability measures with an additional dependence structure. Roughly speaking,
assuming that the covariate is given by R+, µ is a dependent random measure if
µt is a random probability measure for every t ≥ 0. Thus, letting µt a stationarity
dependent random measure with distribution Π, one can consider the following
transition probability function

k(µ0, µt) =

∫
Y(n)

Π(µt|y(n))
n∏
j=1

µ0(dyj),

where µ0, µt ∈ PY and n ≥ 1. Notice that, the stationarity of µt is in the sense
that its marginal law does not depend on the time. On other hand, if Y is an
exchangeable sequence with de Finetti’s measure Π, then

Yn ∼ Q := EΠ[µt ] =

∫
PY

µt Π(dµt), ∀n ≥ 1.

Additionally, if µt is almost-surely discrete then the predictor operator of the ex-
changeable sequence for two consecutive times has the following form

P[Yn+1 ∈ A|Yn] = (1− ε)Q(A) + εδYn(A),

for all n ≥ 1 and ε ∈ (0, 1). Note that, the stationarity of µt implies that Q does
not depend on t, so the time dependence on the above operator is given through ε.
In particular, considering ε = e−ct, for c > 0, one can define the following transition
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kernel

pt(y,B) = (1− e−ct)Q(B) + e−ctδy(B), ∀t ≥ 0 and B ∈ Y , (4.11)

An immediate property associated to the above kernel is that it satisfies Chapman-
Kolmogorov’s property. The class of continuous-time processes with transition of the
form (4.11) was introduced in Anzarut and Mena [2], where more properties related
with them were presented. Then, again using some projective properties, we con-
sider a measurable partition A = (A1, ..., Ak) of Y such that (µt(A1), ..., µt(Ak))

is distributed according to Πα(A), where α is the parameter of Π and α(A) =

(α(A1), ..., α(Ak)), so

h(µt;Y ) =
Π
α(A)
Y (µt)

Πα(A)(µt)
.

Thus, the transition kernels k and pt are dual to each other with respect to the
duality function h.

Furthermore, using the fact that the infinitesimal generator associated to pt,
denoted by G , takes the form

G f(y) = c

[ ∫
Y
f(u)Q(du)− f(y)

]
,

one can obtain an expression for the infinitesimal generator of the dual applied to h
and, then proceed as we did for the parametric case. Hence,

G h(µt; )(y) = c

[ ∫
Y
h(µt;u)Q(du)− h(µt; y)

]
= c

[ ∫
Y
µt(u)du− µt(y)

Q(y)

]
= c

[
1− µt(y)

Q(y)

]
= A h(µt; y),

where A is the infinitesimal generator of the h-dual to Y . In this context, there
are still many issues to solve, however we decide to present this model in order to
illustrate future work.
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