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Cuanto en formación:
Una aproximación factual a la Mecánica Cuántica

Resumen

En este trabajo se trata el debate sobre localidad, contextualidad y realismo en la Mecánica
Cuántica y para ello se exponen y analizan los principales teoremas de imposibilidad de vari-
ables ocultas. Se muestra el realismo contextual de la teoría, mientras que se da una inter-
pretación que permite recuperar localidad en la misma, factualidad. Se examina el teorema
de PBR para demostrar que el realismo de un estado y la medición del mismo están insepara-
blemente ligados, es decir, que sin medición no se puede concluir realismo de un cierto estado
cuántico. Se utiliza este hecho para construir el formalismo de factualidad.

El formalismo de factualidad clasifica a los estados entre estados cuánticos (que son mera
información) y estados ontológicos (que tienen una contraparte en la realidad) y postula la
existencia de una función de evolución determinista que dictará el estado ontológico de un
sistema a todo tiempo t como función de ciertas variables ocultas λ y de t.

En la tesis se muestra que esta función determinista puede existir sin violación alguna
de la desigualdad de Bell, siempre y cuando se mantenga la premisa de factualidad sobre la
realidad. De este modo, se reconcilian la Mecánica Cuántica y la Relatividad Especial.

Quantum in formation:
A factual approach to Quantum Mechanics

Abstract

In this work the debate about locality, contextuality and realism in Quantum Mechanics is
treated and, to this end, the major no-hidden-variables theorems are exposed and analyzed.
The contextual realism of the theory is shown, while an interpretation that allows for the
recovery of locality is given, factuality. The PBR theorem is examined to demonstrate that
the realism of a state and its measurement are inseparably linked, that is, that without a
measurement, realism of a certain quantum state cannot be concluded. This fact is used to
construct the factuality formalism.

The factuality formalism classifies states between quantum states (which are mere informa-
tion) and ontological states (which have a counterpart in reality) and postulates the existence
of a deterministic evolution function that would dictate the ontological state of a system at
any given time t, as a function of certain hidden variables λ and of t.

It is demonstrated that, as long as the premise of factuality over reality is maintained, this
deterministic function can exist with no violation whatsoever of Bell’s inequality. In this way,
Quantum Mechanics and Special Relativity are reconciled.
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Introduction

Here is yet another work on the paradoxical aspects of Quantum Mechanics. Work keeps
coming out because no winning interpretation has been found; and we are not giving a final
interpretation here, we are just giving out some tools that might help us arrive to one.

We can derive all the paradoxical aspects of Quantum Mechanics from the double-slit ex-
periment. After all, the outcomes of this experiment are extremely non-local, they display two
incompatible aspects of matter (particle and wave), and the result is linked to our knowledge
of any one of the incompatible aspects: knowledge of position erases all momentum properties.

In order to get a clear view of what is behind these paradoxical aspects, we are going
to make a revision of what has been said since the beginning of Quantum Theory regarding
incompatible quantities and non-locality. We dive in this way into the EPR paradox, and the
currents that responded to it. These currents take us to the no-go theorems that have been
built in order to grasp what can be and cannot be said about this quantum ocean. Are there
hidden entities in the unexplored deep waters that determine what we see from above? We
will address these questions with a special tool: the factuality anchor. This anchor is going to
let things that seem non-local from the surface have a local explanation from the bottom, in
spite of the theorems that impose non-locality to the root.

For the factuality tool we will propose a deterministic formalism that takes into account
only that which actually has a counterpart in reality, as can be shown by means of the PBR
theorem. With this formalism we strive to single out what we see in the world because it is real,
from what we might see because it is possible. This distinction being important considering
how the view of the world as possibilities has puzzled our understanding of Nature.

vii





Chapter 1

Theoretical framework

The entrance of Quantum Mechanics to the human understanding of Nature was not a glorious
one, not even an easily accepted one. Much debate started when the uncommon predictions
and aspects of the theory began to be realized. One of these aspects was put forward by
Einstein, Podolsky and Rosen [1] , who showed that Quantum Mechanics was not a complete
theory in the sense that there were elements of reality that were not comprised by the theory.

After the mentioned paper was published, a wave of interpretations entered the picture.
Questions about the reality of the quantum state (or wave function), the ontology of the wave-
particle duality, what lies behind the uncertainty principle, the non-local correlations that arise
from entanglement and the measuring process, have found divergent answers. Nowadays, it
seems that it is an individual task to pick the most convincing one when, as physicists, we
would like to have an experimentally testable hypothesis that would do both things: overcome
the present paradoxes and provide us with a stable and objective answer.

This first chapter is a revision of the main ideas that have been floating around since the
beginning of the last century concerning these questions.

1.1 The Einstein, Podolsky and Rosen paper

In a paper entitled Can Quantum-Mechanical Description of Physical Reality Be Considered
Complete? [1], Einstein, Podolsky and Rosen (EPR) gave proof that Quantum Mechanics, as
it was, was an incomplete theory, the condition of completeness being that:

every element of the physical reality must have a counterpart in the physical theory.

Of course, to pose this condition one has to define an element of physical reality, and they did
so through the following statement:

If, without in any way disturbing a system, we can predict with certainty (i.e.,
with probability equal to unity) the value of a physical quantity, then there exists
an element of physical reality corresponding to this physical quantity.

1



2 1. Theoretical framework

And, since the wave function description of reality given by Quantum Mechanics does not
provide the information necessary to predict with certainty two different quantities that are
represented by operators that do not commute, they ascertained that: either the quantum-
mechanical description is not complete, or these two quantities do not have simultaneous
reality.

To demonstrate incompleteness, they proposed an experiment of two particles that are
prepared together in the state

Ψ(x1, x2) =

∫ ∞
−∞

eik(x1−x2+x0)dp, (1.1)

where x0 is some constant and k = p/~. They put forward the eigenfunctions of momentum
of the two particles up(x1) = eikx1 and ψp(x2) = e−ik(x2−x0) (with eigenvalues p and −p
respectively) so that state (1.1) can be expanded as:

Ψ(x1, x2) =

∫ ∞
−∞

up(x1)ψp(x2)dp. (1.2)

They then showed that state (1.1) can also be expanded in eigenfunctions of position. This is
done by using the fact that

δ(s) =
1

2π

∫ ∞
−∞

eipsdp,

setting s = 2π(x− x2 + x0)/h so that

δ

(
2π

h
(x− x2 + x0)

)
=

1

2π

∫ ∞
−∞

eip(2π/h)(x−x2+x0)dp.

But

δ(ax) =
1

|a|
δ(x),

so

hδ(x− x2 + x0) =

∫ ∞
−∞

eik(x−x2+x0)dp,

and ϕx(x2) = hδ(x − x2 + x0) is an eigenfunction of position of the second particle with
eigenvalue x+ x0. Since vx(x1) = δ(x− x1) is an eigenfunction of position of the first particle
with eigenvalue x, the expansion of the state is straightforward:

Ψ(x1, x2) =

∫ ∞
−∞

vx(x1)ϕx(x2)dx. (1.3)

Now that these two expansions have been given, we can continue with EPR’s argument.
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If one were to measure the position of particle 1 and got a result of, say, q then through
reduction of the wave packet (1.3) one would know that particle 2 is in the state ϕq(x2),
with position q + x0. Analogously, if one were to measure the momentum of particle 1 and
got maybe r, through reduction of (1.2) one would be positive that particle 2 is in the state
ψr(x2), with momentum −r.

Since just by measuring over system 1 without in any way disturbing system 2 (locality
assumption) we can predict with certainty the value of position or momentum of system 2, they
concluded that the quantities of position and momentum must have a simultaneous reality,
and therefore that Quantum Mechanics is not a complete theory, as it does not give an account
of these two properties of the system.

1.2 Bohr and the complementarity principle

The first to respond to the logic of EPR in disagreement was Bohr [2]. He showed, by means of a
thought experiment, that the measurement requirement of EPR was unrealizable. He argued
that through measuring the position of one of the particles, the correlation of momentum
between them is completely destroyed and, thus, that the requirement of a physical situation
in which the momentum and position of particle 2 could be both predicted with certainty (from
measurements performed over particle 1) is not a realistic one. He was therefore convinced
of the fact that these two quantities need not have a simultaneous counterpart in the theory,
from where they could be simultaneously predicted.

Bohr had to attend to the condition of physical reality imposed by EPR, “without in any
way disturbing a system”, and he did so by clarifying:

Of course there is in a case like that just considered no question of a mechanical
disturbance of the system under investigation during the last critical stage of the
measuring procedure. But even at this stage there is essentially the question of
an influence on the very conditions which define the possible types of predictions
regarding the future behavior of the system. Since these conditions constitute an
inherent element of the description of any phenomenon to which the term “physical
reality” can be properly attached, we see that the argumentation of the mentioned
authors does not justify their conclusion that quantum-mechanical description is
essentially incomplete. ... In fact, it is only the mutual exclusion of any two
experimental procedures, permitting the unambiguous definition of complementary
physical quantities, which provides room for new physical laws, the coexistence
of which might at first sight appear irreconcilable with the basic principles of
science. It is just this entirely new situation as regards the description of physical
phenomena, that the notion of complementarity aims at characterizing.

The key aspect of this affirmation is the link Bohr put forward between conditions and phys-
ical reality : he used the word inherent to show the inseparable nature of these two sides
of any phenomenon. He went on talking about mutual exclusion and complementary physical



4 1. Theoretical framework

quantities to specify how important it is to grasp these new features of the physical description
of reality, so important that we should coin a new term: complementarity.

Complementarity meant for Bohr an understanding of physical reality in regards to refer-
ence frames, the defining objects of reference frames being the measuring apparatuses and the
quantities coming into being within these reference frames as complementary, meaning that
two or more complementary quantities cannot manifest in one and the same reference frame,
and that each quantity must manifest in its corresponding reference frame.

Complementarity and reference frames was a main part of Bohr’s interpretation of Quan-
tum Mechanics but, as Faye [3] affirms, he

flatly denied the ontological thesis that the subject has any direct impact on the
outcome of a measurement. Hence, when he occasionally mentioned the subjective
character of quantum phenomena and the difficulties of distinguishing the object
from the subject in quantum mechanics, he did not think of it as a problem confined
to the observation of atoms alone. For instance, he stated that already “the theory
of relativity reminds us of the subjective character of all physical phenomena” [4].
Rather, by referring to the subjective character of quantum phenomena he was
expressing the epistemological thesis that all observations in physics are in fact
context-dependent. There exists, according to Bohr, no view from nowhere in
virtue of which quantum objects can be described.

And as Dickson [5] puts it:

Bohr believes that the ‘uncontrollable exchange’ of momentum and energy between
a measured system and a measuring apparatus entails that experimental situations
that allow the determination of a particle’s position relative to a given reference
frame forbid the determination of its (simultaneous) momentum relative to that
frame[.]

So Bohr regarded Quantum Mechanics as a complete theory, in which properties of Nature
are defined in terms of reference frames of the observer, viewing the reference frames as the
specific context in which one can talk about the reality of anything.

1.3 Bohm’s version

In his book Quantum Theory [6] Bohm talked about the EPR paradox giving a rather different
example. He used the fact that the spin projection of a particle exhibits a complementary
behavior in its non-commuting operators1, instead of the complementary quantities of position
and momentum, and gave as an example a pair of particles of spin ~/2 glued in a state of
total spin equal to zero (a molecule containing two atoms). The proposed system is then in a
singlet state, i.e.,

1 σ̂x, σ̂y and σ̂z, where Sα = ~
2
σ̂α.
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|ψ〉 =
1√
2

[
|↑↓〉 − |↓↑〉

]
.

Taking this initial state of the system, Bohm went through the same arguments of EPR, with
any two non-commuting operators of spin projection instead of the position and momentum
operators. As Dickson notes, the response Bohr gave to the EPR example is not automatically
extended to the example of Bohm. Bohm provided his own response to the EPR paradox he
built: he had a concept of reality that differed from that given by EPR, in that he did not
regard properties such as momentum and position (and spin) as belonging to the electron
alone, but as properties that arise when a particular interaction with a measurement device
takes place. Furthermore, he discarded the one-to-one correspondence between mathematical
aspects of the theory and physical aspects of the systems as a necessary requirement for a
complete theory. By doing this, Bohm could conclude that

the wave function (in principle) can provide the most complete possible description
of the system that is consistent with the actual structure of matter[,]

and thus, that Quantum Mechanics is a complete theory.
Later on, in a paper published with Aharonov [7], Bohm took the essence of the paradox of

EPR to be that, while it is understandable that a measurement over particle 1 would imply
the realization of a certain potentiality2, it is not clear how this potentiality could be realized
by a system (particle 2) on which no measurement or interaction has taken place.

This moved the focus of the paradox from the question of completeness to the question of
locality, for if Quantum Mechanics is complete, and no new physical interpretation enters the
picture, then Quantum Mechanics must be a non-local theory. Bohm and Aharonov explicitly
gave two ways out: either there is a hidden non-local interaction (quantum potential) between
the spatially separated particles, or one can develop a further new explanation of the quantum
theory in terms of a deeper subquantum-mechanical level. This new explanation would be what
later became known as Bohm’s pilot wave interpretation and Bohmian Mechanics.

1.4 No-go theorems

Soon enough, a handful of interpretations started to wander throughout the realm of Quantum
Physics and, as a way to confirm or discard such different interpretations, no-go theorems
appeared. In this section we will see the most relevant no-go theorems for the present work.

1.4.1 Contextuality

It is convenient to begin with the no-go theorems that address contextuality due to their strong
link with the principle of complementarity (Bohr) and with the view of Quantum Mechanics

2In Bohm [6]:properties of matter do not, in general, exist separately in a given object in a precisely defined
form. They are, instead, incompletely defined potentialities realized in more definite form only in interaction
with other systems, such as a measuring apparatus[.]
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as a description of potentialities (Bohm).
For Bohr complementarity meant the existence of mutually exclusive quantities which arise

in mutually exclusive reference frames (each reference frame defined by a measurement appa-
ratus). For Bohr a measurement of position defined one reference frame and a measurement
of momentum defined another (both mutually exclusive), but he was never explicit about spin
measurements for non-compatible observables (non-commuting operators). What he did ex-
pose was the nature of context-dependent quantities and the explicit link between a context
and a reference frame. Hence, if we regard spin as a context-dependent quantity, we can make
a leap and regard non-compatible projections of spin as complementary quantities which arise
in specific contexts, each context defined by a different measuring condition.

On a parallel side, Bohm interpreted the wave function description of a system as a set
of potentialities the system has and realizes with a certain probability when analyzed under
certain conditions, i.e., measurement settings.

For both, the physical properties of a system are not pre-existing properties, independent
of the context, instead they only come into being when the particular system interacts with
a certain context, that is, with any kind of environment that would force a given property to
arise.

Along the same lines, contextuality no-go theorems prove that non-contextual hidden vari-
ables cannot be assigned to a quantum system, i.e., that it is impossible to specify the value
of every possible property of the system without specifying the context in which each of those
properties might attain such a value. The work on this theme was developed by several theo-
rists3, and the most successful proof at the time was given by Kochen and Specker [12]: they
showed that it was impossible to assign to a spin-1 system simultaneous values of S2

α for 117
different directions (denoted by α); their demonstration required a very elaborate construction.

Since then, simpler versions of the Kochen-Specker theorem have been constructed, one of
the simplest one was proposed by Peres in 1990 [13] and complemented by Mermin [14] that
same year. Peres took as an example two particles in a singlet state, and demonstrated that
if one were to assign values αi to observables σ̂iα (i = 1, 2; α = x, y, z), then a simultaneous
assignment of values to the six observables

σ̂1
x, σ̂

2
x, σ̂

1
y , σ̂

2
y , σ̂

1
xσ̂

2
y , and σ̂1

y σ̂
2
x,

was unrealizable, since it led to a contradiction, as we will see. Peres knows that the product
of the values α1 and α2 assigned to σ̂1

α and σ̂2
α (α = x, y, z) must satisfy

x1x2 = y1y2 = z1z2 = −1, (1.4)

considering that the system is in a singlet state. Furthermore, values x1y2 and y1x2 can be
simultaneously assigned to the observables σ̂1

xσ̂
2
y and σ̂1

y σ̂
2
x, given that these two observables

commute (the commutation relations are shown in Appendix A.1). Now, as is also shown in
Appendix A.1:

σ̂1
xσ̂

2
y σ̂

1
y σ̂

2
x = σ̂1

z σ̂
2
z ;

3Von Neumann, Gleason, Jauch, Piron, Bell, to mention a few [8–11].
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consequently, the values assigned to the observables must satisfy the relation

(x1y2)(y1x2) = z1z2, (1.5)

and the contradiction arrises:

1 = (−1)(−1)
(1.4)
= (x1x2)(y1y2) = (x1y2)(y1x2)

(1.5)
= z1z2

(1.4)
= −1.

The equality in the middle is true since values are real numbers, so they trivially commute.
Mermin showed that by adding three observables to the set given by Peres one could

arrive to a contradiction when arranging them in sets of three mutually commuting operators,
regardless of the state of the system; the arrangement is given in Table 1.1. The proof is
done by demonstrating that the product of the three operators in each row gives I2 just as
the product of the three operators in each of the first two columns, while the product of the
operators in the last column gives −I2 (cf. Appendix A.2). This means that if one were
to multiply all the values assigned to a state related to all the observables in the table by
multiplying the rows the result would be 1, while if one were to do it by multiplying the
columns the result would be −1, which is contradictory.

Table 1.1: Set of observables proposed by Mermin to derive a contradiction if one were to
assign a pre-existing value to each observable.

σ̂1
x σ̂2

x σ̂1
xσ̂

2
x

σ̂2
y σ̂1

y σ̂1
y σ̂

2
y

σ̂1
xσ̂

2
y σ̂1

y σ̂
2
x σ̂1

z σ̂
2
z

This is a special case in which hidden variables that determine the values of all the possible
properties of one system cannot exist independent of the context. Many other no-go theorems
of contextual hidden variables have been built, leading us to the certainty that a Quantum
Theory with non-contextual hidden variables cannot be built, but, can hidden variables exist
in a local way? I.e., can the value of a property of one system be independent of that of a
spatially separated system? We turn to the next section to examine this question.

1.4.2 Locality

The widely renowned proof of the non-local nature of Quantum Mechanics is given by the
violation of Bell’s inequality. Hereby we present his demonstration.
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Bell works with the thought experiment of Bohm and Aharonov: suppose a pair of entan-
gled electrons in a singlet state is split into two electrons at time t = t0. If the spin projection
of electron A is measured at a later time along direction ~z and we get, for example, |↑ 〉zA then
we can be sure that the spin projection of electron B is |↓ 〉zB.

Through locality, he associates with the value of spin projection of each electron a hidden
variable quality, that is, the existence of a function A of the direction of the detector ~a and
of a hidden variable λ such that A(~a, λ) = ±1 results in the value of the spin projection of
particle A along direction ~a, and same for B along any direction ~b. The expectation value of
the correlation between A (measured in the direction ~a) and B (measured in the direction ~b)
naturally arises,

E(~a,~b) =

∫
Λ
A(~a, λ)B(~b, λ)ρ(λ)dλ,

and, as Bell shows [15], this expectation value must satisfy:∣∣∣E(~a,~b)− E(~a,~c)
∣∣∣ ≤ 1 + E(~b,~c), (1.6)

where ~a, ~b, and ~c are three alternative directions of the detectors used to measure the spin
projection of the electrons—inequality (1.6) is Bell’s inequality and its derivation is given
in Appendix A.3. Therefore, if the non-local correlation between distant systems could be
explained by means of local hidden variables, inequality (1.6) should be satisfied.

The expectation value of the correlation between measurements of spin projection, over
two particles in a singlet state, is predicted by Quantum Mechanics to be:

E(~a,~b) = 〈σ̂aσ̂b〉 = − cos θab = −~a ·~b, (1.7)

as shown in Appendix A.4. So, if one were to choose three directions such that θab = π/2,
θac = π/4, and θbc = π/4, and to substitute in equation (1.6) with the quantum mechanical
predictions, one would arrive to the contradiction:∣∣∣− cos

π

2
+ cos

π

4

∣∣∣ ≤ 1− cos
π

4

−→ 1√
2
≤ 1− 1√

2

−→
√

2 ≤ 1,

which has been experimentally tested4 [17] [18]. This fact allowed Bell to conclude that
Quantum Mechanics cannot be completed by a local hidden variables account.

4The inequality that is tested for in experiments is the CHSH inequality [16], which uses the same hypotheses
as Bell’s inequality and is built on the same grounds. For the purpose of our theoretical work, it is enough to
deal with the original version of the inequality.
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In 1989, 25 years after Bell derived his inequality, Greenberger, Horne and Zeilinger (GHZ)
[19] came up with another way to arrive at the same conclusion. Following the logic of GHZ,
in 1990 Mermin [20] wrote the version of the GHZ theorem that is used nowadays. For his
version, he put forward the three commuting operators5

σ̂1
xσ̂

2
y σ̂

3
y , σ̂

1
y σ̂

2
xσ̂

3
y , and σ̂1

y σ̂
2
y σ̂

3
x, (1.8)

and the GHZ state of three spin-1/2 particles

|GHZ〉 =
1√
2

[
|↑↑↑〉 − |↓↓↓〉

]
, (1.9)

which is an eigenstate of all three observables in (1.8) with eigenvalue 1—as shown in Appendix
A.5.

Since (1.9) is an eigenstate of all three observables in (1.8) with eigenvalue 1, the result of
measuring any of the observables in (1.8) over the three-particle system must yield unity. As
a consequence, if σ̂y is measured over two of the particles, one can immediately conclude the
value xi related to a measurement of σ̂ix over the third; analogously, if σ̂x is measured over one
particle, and σ̂y is measured over another, one can derive the value yi that a measurement of
σ̂iy over the last would yield6.

Mermin went on assuming that the three particles of the system could be separated and
subsequently measured, and he noted that measuring over two particles would determine either
the value xi, or the value yi, of the third. In order for such values to be local, one has to impose
that xi and yi are pre-existing values in every one of the particles, and so, an assignment of
values to the observables σ̂ix and σ̂iy must be made. Given the eigenvalue equation, the values
assigned must be such that:

x1y2y3 = 1, y1x2y3 = 1, and y1y2x3 = 1.

Now, the multiplication of all three equalities gives unity, yj appears twice for each particle,
and yj = ±1; so the multiplication of all yj ’s is 1 and can be factorized so as to leave:

x1x2x3 = 1. (1.10)

Mermin finished by showing that σ̂1
xσ̂

2
xσ̂

3
x|GHZ〉 = −1, which is contradictory with the result in

(1.10), and thus, demonstrated that a local assignment of values is at odds with the predictions
of Quantum Mechanics.

The experimental realization of a GHZ state was achieved in 2000 [21]. There, the pre-
dicted correlations between the three particles were ascertained, and the eigenvalue equations
confirmed, ruling out local interpretations of Quantum Mechanics.

5That they pairwise commute arises from the fact that any two of these three operators share one observable
on the same Hilbert space and what is left out is always the commutator

[
σ̂ixσ̂

j
y, σ̂

i
yσ̂

j
x

]
which equals zero, as it

is shown in Appendix A.1.
6Here we use the notation of Section 1.4.1 in which x1 is the value assigned to the observable σ̂1

x and so
forth.
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In this way, the theorems of Bell and GHZ left us with no possibility to assign the nec-
essary values to properties of the particles that would allow for Quantum Mechanics to be
reconstructed locally. We will revisit these theorems in Chapter 3, where we will deal with
them from our factuality point of view in order to show that these results can be reinterpreted,
and that locality can be recovered.

1.4.3 Reality

In the previous sections we talked about aspects of the theory. We reviewed the strange behav-
ior of the realm described by Quantum Mechanics implicit in the existence of complementary
quantities, in the essence of contextual dependent values, and in the non-local behavior of the
entities this theory characterizes. It is this framework that raises the interest in addressing a
particular question: to what extent do those and other aspects mimic the nature of reality?

Embedded in our scientific labour is the premise that there exists an objective universe
suitable for description. Our job is to construct theories which faithfully describe this universe.
From labels, definitions, experimental observations, postulates, laws, and an interplay between
them, we strive to make predictions and to answer fundamental questions about the physical
surroundings. Our present interest is directed towards answering the question of how is it that
quantum mechanical concepts and phenomena have a counterpart in reality. Is it as physical
entities or is it as mere information?

We have a definition of an electron, and properties such as its mass and charge have been
studied and measured; we view the electron, its mass and its charge as real. We have a classical
understanding of these properties. We also have a definition of a wave and a definition of a
particle. And, although they are opposite in nature, both describe an ensemble of electrons
in its behavior, so the question arises: is the wave function a real property of the electron or
just a statistical description (information) of the ensemble of electrons?

On a recently published paper [22] Pusey, Barrett and Rudolph (PBR) addressed this
matter. They demonstrated that

[if] a system has a ‘real physical state’—not necessarily completely described by
quantum theory, but objective and independent of the observer... [and if] systems
that are prepared independently have independent physical states[,]

then a pure state cannot be regarded as mere information, or else one would arrive to a
contradiction with the quantum theoretical framework.

They carry out their demonstration by adopting the notion given by Harrigan and Spekkens
[23] of what ‘mere information’ looks like. This notion goes as follows: if λ is a label for the
physical state of the system, and two different, but non-orthogonal preparations, |ψ0〉 and |ψ1〉,
are mere information about some physical state, then the distribution µ0(λ), which assigns the
probability of |ψ0〉 resulting in a physical state λ, and the distribution µ1(λ) of |ψ1〉, overlap;
so that |ψ0〉 and |ψ1〉 can both result in a physical state λp from the overlap region with
non-zero probability. The scheme of this notion is given in Figure 1.1.
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Figure 1.1: The notion of |ψ0〉 and |ψ1〉 representing mere information is illustrated. |ψ0〉 and
|ψ1〉 are two non-orthogonal states. µ0(λ) is the probability distribution of |ψ0〉 over the space
of physical states, and µ1(λ) is that of |ψ1〉. The defining quality is that these two distributions
overlap, and there is a non-zero probability that the physical state of both preparations,—|ψ0〉
and |ψ1〉,—might be in the overlap region ∆.

PBR go on by considering two identical and independent preparation devices, each device
prepares a system in either the quantum state |ψ0〉 = |0〉 or the quantum state |ψ1〉 = |+〉 =
(|0〉 + |1〉)/

√
2. They assume that if these two states represent mere information, there is a

probability q2 > 0 that both systems result in physical states, λ1 and λ2, from the overlap
region, ∆. So if this happens, when the two states are brought together the complete system
is compatible with any of the four quantum states:

|0〉 ⊗ |0〉, |0〉 ⊗ |+〉, |+〉 ⊗ |0〉, and |+〉 ⊗ |+〉.

The complete system can be subsequently measured, and for this they propose an entangled
measurement with the four possible outcomes:

|ξ1〉 =
1√
2

[
|0〉 ⊗ |1〉 + |1〉 ⊗ |0〉

]
,

|ξ2〉 =
1√
2

[
|0〉 ⊗ |−〉 + |1〉 ⊗ |+〉

]
,

|ξ3〉 =
1√
2

[
|+〉 ⊗ |1〉 + |−〉 ⊗ |0〉

]
,

|ξ4〉 =
1√
2

[
|+〉 ⊗ |−〉 + |−〉 ⊗ |+〉

]
;

but the probability that the quantum state |0〉 ⊗ |0〉 results in |ξ1〉 is zero, same for |0〉 ⊗ |+〉
resulting in |ξ2〉, for |+〉 ⊗ |0〉 resulting in |ξ3〉, and for |+〉 ⊗ |+〉 resulting in |ξ4〉. This takes
them to the conclusion that if the state λ1λ2 that arrives to the detector is compatible with
the four quantum states, then the measuring device could give a result that should occur with
zero probability. This contradiction arises simply by assuming that the distributions of |0〉 and
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|+〉 overlap, so their distributions cannot overlap, and therefore |0〉 and |+〉 cannot represent
mere information of an underlying physical system.

They extend their demonstration to any pair of quantum states,

|ψ0〉 = cos
θ

2
|0〉+ sin

θ

2
|1〉,

|ψ1〉 = cos
θ

2
|0〉 − sin

θ

2
|1〉,

and thereby show that pure states must have a direct counterpart in reality: that |ψ〉 must
represent a physical property of the physical system.



Chapter 2

Factuality

In this chapter we will explore the results given before, and elaborate on a possible way to
solve the problems that come by when one is confronted with the strange aspects of Quantum
Mechanics and the no-go theorems that act as a barrier we cannot cross.

As a starting point we shall define one concept and its negation, factuality and counter-
factuality.

We begin with the factuality concept by enunciating that the physical world we live in is
factual iff solely what actually happens has a counterpart in reality.

On the other side, counterfactuality implies that something that could have happened
is as real as that which actually happened.

2.1 EPR, Bohr, Bohm and contextuality

If we go back to the work of EPR we see that the hypotheses their logic is built on are that:

• Reality is local.

• Quantum Mechanics is complete.

• Quantum Mechanics is counterfactual.

And with these hypotheses they conclude that:

• Non-commuting quantities have a simultaneous reality.

But this conclusion is equivalent to the premise that Quantum Mechanics is non-contextual,
and we know this cannot be true from the wide variety of no-go theorems that dismiss non-
contextuality, so one of the three hypotheses must be incorrect.

It is clear that Bohr denied counterfactual reasoning, by showing that a counterfactual
circumstance was physically impossible within the example EPR put forward. Bohm went
further with his personal example, disregarding the conclusion EPR arrived at from his po-
tentialities point of view, noticing the non-local correlations that arise instead, and dismissing

13
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non-local interactions as a possible explanation for these correlations. Therefore, both would
regard the third hypothesis as the incorrect one. In our analysis we do so too.

We move on by postulating that Quantum Mechanics is factual. However, before going
further, we shall note that EPR responded to our previous reasoning from the very beginning,
given that in their 1935 paper they wrote:

Indeed, one would not arrive at our conclusion if one insisted that two or more
physical quantities can be regarded as simultaneous elements of reality only when
they can be simultaneously measured or predicted. [...] This makes the reality of
P and Q [momentum and position of the second system] depend upon the process
of measurement carried out on the first system, which does not disturb the second
system in any way. No reasonable definition of reality could be expected to permit
this.

Yet, by now, we know that whatever definition of reality we arrive at must permit this “de-
pendence”. Such definition of reality does not necessarily have to imply a straightforward
dependence of distant systems between them, but must at least encompass the nature and
mechanism of entanglement, that is, we must have a definition of reality in which non-local
correlations arise in a natural way.

We will show that by restricting Quantum Mechanics to be factual, we have a definition
of reality that permits quantum correlations to arise, while remaining local and contextual.

2.2 The Pusey, Barrett and Rudolph paper

Before getting into the factuality formalism, we will revisit the PBR paper, to show that their
proof of the reality of the quantum state necessarily implies a measurement over the quantum
system.

It is important to notice that the experimental setup PBR propose entails a preparation
method that makes the state |0〉 distinguishable from the state |+〉 (cf. Subsection 1.4.3) and
thus gives the observer knowledge of the state of each system that is being prepared. This is
due to the fact that, if there were no distinguishability between the two preparation methods,
then, as shown in Appendix B.1, the quantum state that would arrive at the measuring device
is predicted by Quantum Theory to be:

|Ψ〉 = N
[
|0〉+ |+〉

]
⊗N

[
|0〉+ |+〉

]
= N2

[
|0〉 ⊗ |0〉 + |0〉 ⊗ |+〉 + |+〉 ⊗ |0〉 + |+〉 ⊗ |+〉

]
with normalization constant

N2 =

√
2

2
√

2 + 2
.
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The state that would arrive at the detector would then be compatible with the four possible
measurement outcomes they propose, namely,

|ξ1〉 =
1√
2

[
|0〉 ⊗ |1〉 + |1〉 ⊗ |0〉

]
,

|ξ2〉 =
1√
2

[
|0〉 ⊗ |−〉 + |1〉 ⊗ |+〉

]
,

|ξ3〉 =
1√
2

[
|+〉 ⊗ |1〉 + |−〉 ⊗ |0〉

]
,

|ξ4〉 =
1√
2

[
|+〉 ⊗ |−〉 + |−〉 ⊗ |+〉

]
,

meaning it could result in any of them with non-zero probability, and no contradiction arises.
This leads us to conclude that, if there is no distinguishability in the preparation method they
propose, the states |0〉 and |+〉 can be regarded as mere information, i.e., they can both result
in physical states in the overlapping region ∆ of phase space and the information that would
arrive to the detector, |Ψ〉, would be compatible with any of the four quantum states |0〉⊗ |0〉,
|0〉 ⊗ |+〉, |+〉 ⊗ |0〉, and |+〉 ⊗ |+〉 and with any of the four measurement results, |ξ1〉, |ξ2〉,
|ξ3〉, and |ξ4〉.

On the other hand, if we have a preparation procedure which distinguishes between the two
methods, then the state that arrives at the detector is indeed any of the four states |0〉 ⊗ |0〉,
|0〉⊗|+〉, |+〉⊗|0〉, and |+〉⊗|+〉, and in this case the states |0〉 and |+〉 cannot be regarded as
mere information, they must arise from disjoint regions of phase space (as PBR demonstrate),
and thus represent a physical property of the system.

We give Figure 2.1 to show that the only difference between the first experimental setup
and the second one is that in the second experimental setup there is a certain knowledge of
the state of the system that is being prepared, and this knowledge entails a measurement of
some kind, while in the first experimental setup there is no measurement whatsoever between
the preparation procedure and the detector. In the first experimental setup (2.1a) we can
regard states |0〉 and |+〉 as mere information and no contradiction arises, while in the second
experimental setup (2.1b) if we regard |0〉 and |+〉 as mere information, the contradiction
derived by PBR arises.

We can conclude form this that the degree of “physicality” of a property depends directly
on the measurement such property has undergone. A property that has not been measured can
be regarded as pure information, while a property that has been measured has to be regarded
as a physical property, having a counterpart in reality.
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(a) No contradiction arises. (b) The contradiction derived by PBR arises.

Figure 2.1: Each experimental setup is a combination of two identical preparation devices. In
(a) the preparation devices consist of a source of photons which undergoes a splitting of half
and half in optical path, each optical path is polarized in a certain direction and the two paths
are recombined, the photon coming out of the two paths is therefore in the state N [|0〉+ |+〉].
At the end, the photons of the two preparation devices are brought together and measured. In
(b) the preparation devices are as that of (a), except now two which-way detectors are added,
one for each preparation device: if a detector clicks, the photon that has been prepared is in
the state |0〉, while if a detector does not click, the photon comes out in the state |+〉.
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2.3 Factuality and reality

The conclusion we arrived at in the previous section strongly favours our view of reality as
factual: a property that has been measured (that what actually happens) has to be regarded
as a physical property which has a counterpart in reality, while a property that has not been
measured (does not actually happen) can be regarded as pure information and therefore such
a property does not have a direct counterpart in reality.

If we were to put it in Bohr’s terms, we would say that measurements define the reference
frame in which a certain reality is actual (and all the other possibilities remain as fantasies).
Now, to the factuality formalism.

In Quantum Mechanics we represent measurements by hermitian operators (observables)
and states by vectors (wave functions). An operator acts on the Hilbert space of states, action
which results in an element of the Hilbert space. Furthermore, any operator has an orthogonal
set of eigenstates, which can be used as the basis of the Hilbert space the operator acts on.
This set of eigenstates can always be normalized, so they satisfy the condition1:

〈ψi|ψj〉 = δij ,

There exists a complete set of compatible measurements for a state to be completely specified;
it exists for every quantum system and it is known as the complete set of commuting operators,
all the operators in the set share a common basis of eigenstates.

A linear combination of eigenstates of an operator, Ô, is an eigenstate of the operator iff
all the eigenstates in the combination have the same eigenvalue, i.e., the eigenstate equation:

Ô|φ〉 = o|φ〉 with |φ〉 =
∑
i

ai|ψi〉

is satisfied iff

Ô|ψi〉 = o|ψi〉 ∀i.

Having gone through the previous reminder, we define two types of states:

Quantum states as the states generated from linear combinations of different
eigenstates of an observable (with different eigenvalues), and denote them by |ψ〉.
Ontological states as the eigenstates of a complete set of mutually commuting
observables, and denote them by |Ω〉.

It is important to notice that, if we have a quantum state description of a system, we can
always perform a basis transformation so that this description becomes an ontological state
description. For example: 1√

2
[ | ↑〉z + | ↓〉z] is a quantum state description of the observable

1 ∫
ψ∗(x)ψ(x′)dx = δ(x− x′) in the position representation.
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σ̂z, but acquires an ontological meaning when we switch to the σ̂x-diagonal basis2, resulting
in | ↑〉x.

We can also use the density matrix formalism to turn quantum states into ontological states
(mathematically speaking). For example, a quantum state |ψ〉α that belongs to a Hilbert space
of 5 dimensions (let us say, spin S = 2) might look like:

ρα =


1/3 1/3 0 0 1/3
1/3 1/3 0 0 1/3
0 0 0 0 0
0 0 0 0 0

1/3 1/3 0 0 1/3


=

1√
3

[
| 2〉α + |1〉α + | − 2〉α

][
α〈2|+ α〈1|+ α〈−2|

] 1√
3

= |ψ〉αα〈ψ|

when represented in a certain basis (denoted by α) in which a certain set of operators {Ôα} are
diagonal. But this density matrix is diagonal in another basis (that will be denoted by β) in
which some other operators {Ôβ} are diagonal and, since ρα is a pure state, when diagonalized
will take the form:

|ψ〉αα〈ψ| = |Ω〉ββ〈Ω| =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 = ρβ.

So |Ω〉β is an eigenstate of the complete set of commuting operators {Ôβ} and hence, we can
assert that |Ω〉β is an ontological state, that can be described as the quantum state |ψ〉α. By
this account we arrive at two important conclusions:

1. Every quantum state can be changed into an ontological state by performing a basis
transformation.

2. Pure states are ontological states in their diagonal representation.

One would ask, then, what is the use of separating states into quantum or ontological
if in the end they can all take on an ontological state form? Well, what is important is to
distinguish what is ontological and what is quantum in each basis. States cannot be all onto-
logical in one and the same basis. The election of basis is directly done by the measurement
or preparation procedure a particular state goes through. To every measurement there is an
associated operator, the choice of basis is that in which this operator (in fact, the complete
set of commuting operators, associated to a complete set of measurements) is diagonal. This

2That is, 1√
2
[ | ↑〉z + | ↓〉z] is ontological when the chosen set of commuting observables is {S2, Sx}, rather

than {S2, Sz}.
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automatically tells us which states are ontological and which are quantum, in other words,
what has a counterpart in reality and what does not.

Furthermore, ensembles of individual particles might be described either as pure states or
as mixed states. Of course, each description characterizes different ensembles. In a pure state
description we regard the ensemble as if every one of its components were in precisely that
pure state, while in a mixed state description we regard the ensemble as one where different
components of the ensemble are in different pure states, with a certain probability distribution.
We will denote these two descriptions as ρ and ρ̃ respectively, i.e.,

ρ = |Ω〉〈Ω|,

ρ̃ =
∑
i

ci|Ωi〉〈Ωi|.

Along the same line in which quantum states emerge only as a mathematical description of a
system, mixed states only represent a statistical description of an ensemble that is comprised
of many entities, each one in a pure state.

2.4 Evolution and determinism

In physics we talk about evolution, cause and effect, condition and response, all in a time
related narrative. When we talk about evolution we mean evolution of a physical quantity,
any real given property of a certain system. In Quantum Mechanics we have the usual hamil-
tonian (unitary) evolution, put forward in Schrödinger’s equation. But this evolution has two
downsides, the first one is widely known and the second one is related to the perspective of
the present work:

1. The unitary evolution of the state is broken when a measurement takes place and there
is no account in the theory regarding how the state evolves when measured.

2. Schrödinger’s equation is solely about the evolution of information (quantum states),
not about the evolution of real states onto real states.

Then, the real and complete evolution of the system has not been described by Quantum
Mechanics thus far. Given this situation, we will propose a schematic description of what
happens when a system is measured and of what happens in between measurements.

We have until now seen that:

• Measurement instruments set the reference frame for reality to appear, compatible ob-
servables can be simultaneously real, non-compatible observables are not all real in one
and the same reference frame. (Bohr-like view and contextuality demonstration).

• Measured states have a counterpart in reality, a state that has not been measured can
be regarded as mere information. (PBR demonstration).
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• In a given reference frame solely ontological states have a counterpart in reality. (Fac-
tuality formalism and natural consequence of the two previous statements).

What we propose is that, since every ontological state has a counterpart in reality and is
thus a physical state, then every ontological state must arise as an effect of physical causes.
Even more, we postulate that different physical causes give rise to different ontological states,
while identical physical causes give rise to one and the same ontological state, always. The
physical causes that result in a certain ontological state are not accessible to the observer, so
they appear as hidden variables that determine the state at a given time. The state of the
system is then a function F of a hidden variable λ ∈ Λ and time t ∈ R, onto the Hilbert space
of states H.

F : Λ×R −→ H

(λ, t)
F−→ |Ω〉.

We call this function the deterministic evolution function of a system.
So, what happens when a system is measured? An ontological state is realized. What

was prone to happen given the initial conditions of a certain system, happens3. And what
happens in between measurements? Well, the system evolves with probabilities governed by
Schrödinger’s equation with initial conditions defined by the last ontological state realized by
the system, that is:

i~
∂

∂t
|Ω〉 = Ĥ|Ω〉.

3The reader might object free will, the free will to choose the measurement setting in which instead of,
say, the ontological state | ↑〉x that actually happened, the ontological state | ↑〉z could have happened if
one had chosen to measure Sz instead of Sx. But the factuality assumption impedes one to go through this
reasoning. The factuality assumption is a way to look at the system, from effect to cause, from future results
to past conditions, in which reality is described only by what actually took place and not by a superposition
of possibilities. It is the only accessible description by Quantum Mechanics of a physical system.



Chapter 3

Locality

We will now turn our eyes to locality. Can locality be salvaged in the quantum domain? Can
phenomena remain only dependent on the causes Special Relativity taught us were accessible
to them, or has Special Relativity no saying and no truth in the quantum world? In this
chapter we will address the two no-go theorems of locality from a factuality point of view,
that is:

• Solely what actually happens has a counterpart in reality.

• Ontological states are determined by a function F(λ, t).

3.1 Examination of Bell’s inequality

Let us remember that we have a system whose initial state is:

|ψ〉 =
1√
2

[
|↑↓〉 − |↓↑〉

]
and the functions associated by Bell to recover locality, A(~j, λ) and B(~k, λ). First we need
to find the relation between the functions A(~j, λ) and B(~k, λ) and our deterministic evolution
function F(λ, t).

Functions A and B are both results of a measurement, so they must be related to the
function F when the latter is evaluated at the time of measurement, say t = t1. Now if
F(λ, t1) results in the ontological state of the system of the two particles, then it must yield
a pair of orientations, (~oA, ~oB). These two orientations are those of the spin projection for
particles A and B respectively at the time of measurement; it is important to recall that the
orientation of the two detectors is also encoded in the value of the hidden variable λ.

Now, function A(~j, λ) raises the question, “given a detector device with orientation ~j and a
hidden variable λ, is the electron’s spin orientation ~j or −~j?”. So for this question to be posed,
the electron’s spin orientation must be ~j or −~j. Analogously for function B(~k, λ). Then, these
two questions can be posed iff F(λ, t1) = (±~j,±~k).

21
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Fact 1 functions A(~j, λ) and B(~k, λ) are simultaneously well defined iff F(λ, t1) =
(±~j,±~k).

Let us take Fact 1 to examine the three experimental scenarios in Figure 3.1. In the
left hand side scenario of Figure 3.1, the measurement outcome can be any of four different
possibilities, (~a,~b), (~a,−~b), (−~a,~b) and (−~a,−~b), that is F(λ, t1) = (±~a,±~b). In the second
scenario, F(λ, t1) = (±~a,±~c) and in the right hand scenario F(λ, t1) = (±~b,±~c).

Figure 3.1: Three ontological states whose spin projection degree of freedom is described by
the function F(λ, t), each state related to a different set of measurements at time t = t1.

Under the factuality condition, each of these sets of outcomes must come from a different
set of hidden variables, that is:

F(λ, t1) = (±~a,±~b) ↔ λ ∈ Λ1, (3.1)

F(λ, t1) = (±~a,±~c) ↔ λ ∈ Λ2, (3.2)

F(λ, t1) = (±~b,±~c) ↔ λ ∈ Λ3. (3.3)

Furthermore, Λ1 ∩ Λ2 = Λ1 ∩ Λ3 = Λ2 ∩ Λ3 = ∅, which can be seen by the simple reasoning:

If λ ∈ Λ1, then F(λ, t1) = (±~a,±~b) 6= (±~a,±~c), then λ /∈ Λ2; etc.

So, given Fact 1 and equations (3.1), (3.2) and (3.3):

Fact 2.1 functions A(~a, λ) and B(~b, λ) are simultaneously well defined iff λ ∈ Λ1.

Fact 2.2 functions A(~a, λ) and B(~c, λ) are simultaneously well defined iff λ ∈ Λ2.

Fact 2.3 functions A(~b, λ) and B(~c, λ) are simultaneously well defined iff λ ∈ Λ3.
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To follow Bell’s steps to derive his inequality, we start by comparing the expectation values,

E(~a,~b)− E(~a,~c) =

∫
Λ1

A(~a, λ)B(~b, λ)ρ(λ)dλ−
∫

Λ2

A(~a, λ)B(~c, λ)ρ(λ)dλ, (3.4)

where we have explicitly written the integration domains imposed by Fact 2.1 and Fact 2.2.
Since Λ1 ∩ Λ2 = ∅ we cannot carry out Bell’s first step in order to derive his inequality (cf.
Appendix A.3), so:

Fact 3 In a local deterministic scenario, governed by factuality, Bell’s inequality
cannot be derived, therefore the violation of his inequality by experiments does
not show that the assumption of locality in this scenario is incorrect.

The statement above begs the questions: under which conditions can Bell’s inequality be
derived? And, do experiments which follow such conditions violate this inequality? We will
address these two questions in the next subsection.

3.1.1 Building Bell’s inequality

In order to build Bell’s inequality it is required that the set of hidden variables that lie behind
the three different scenarios in Figure 3.1 be one and the same (λ ∈ Λ). If we want this
requirement to be satisfied, we can take on two possible paths:

• Each different scenario can be governed by a different function, Fi(λ, t), i = 1, 2, 3, for
λ ∈ Λ.

• On each different scenario the measurement can take place at a different time, so the
final state would be described by F(λ, ti), i = 1, 2, 3.

When taking any of these two paths, Bell’s steps can be followed all the way, so we will take
on the first path here and show the second path procedure in Appendix C.1. As before, we
will start by identifying the functions A and B used by Bell with our function F .

We can directly see that functions A(~a, λ) and B(~b, λ) can only be simultaneously identified
with F1(λ, t1) and we know that

F1(λ, t1) = (~oA1(λ, t1), ~oB1(λ, t1)) = (±~a,±~b);

then we can define

A1(~a, λ) ≡ sign(~oA1(λ, t1))

and

B1(~b, λ) ≡ sign(~oB1(λ, t1)).

The subscript 1 distinguishes these functions from the ones defined by F2(λ, t1). In this second
case we have:
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F2(λ, t1) = (~oA2(λ, t1), ~oB2(λ, t1)) = (±~a,±~c),

and we can simultaneously define

A2(~a, λ) ≡ sign(~oA2(λ, t1))

and

B2(~c, λ) ≡ sign(~oB2(λ, t1)).

And in the third case:

F3(λ, t1) = (~oA3(λ, t1), ~oB3(λ, t1)) = (±~b,±~c),

so

A3(~b, λ) ≡ sign(~oA3(λ, t1))

and

B3(~c, λ) ≡ sign(~oB3(λ, t1)).

Now that each scenario is governed by a different function Fi we can go back to Bell’s first
step,

E(~a,~b)− E(~a,~c) =

∫
Λ
A1(~a, λ)B1(~b, λ)ρ(λ)dλ−

∫
Λ
A2(~a, λ)B2(~c, λ)ρ(λ)dλ,

where we have implicitly written the subscripts that define each function Ai, Bi in terms of
the deterministic evolution function of each different experiment.

And to his second step,∣∣∣E(~a,~b)− E(~a,~c)
∣∣∣ =

∣∣∣∣∫
Λ

[A1(~a,λ)B1(~b, λ)−A2(~a,λ)B2(~c, λ)]ρ(λ)dλ

∣∣∣∣ , (3.5)

where we have highlighted A1(~a, λ) and A2(~a, λ) to stress the fact that for his third step, Bell
takes these two functions to be identical. This is his first assumption (out of three). We will
analyze what can be said about the quantity

∣∣∣E(~a,~b)− E(~a,~c)
∣∣∣ in two cases: while taking

Bell’s three assumptions, and while taking none of them.

Within Bell’s assumptions

Bell’s three assumptions are (shown in Appendix C.2):

A1(~a, λ) = A2(~a, λ),

B1(~b, λ) = −A3(~b, λ),
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B2(~c, λ) = B3(~c, λ).

These are constraints on the functions Fi(λ, t) that have to be met in order for Bell’s inequality
to be derived. So, the applicable domain of his inequality is the one that behaves according to
these constraints, that is, the deterministic functions Fi(λ, t) that govern the three experiments
built to test Bell’s inequality have to be so that these constraints are satisfied.

This has an implication on the expectation values of the correlation between measurements.
If these three constraints are satisfied, the predicted expectation values result in:

E(~a,~b) = − cos θab,

E(~a,~c) = − cos θac,

E(~b,~c) = − cos θab cos θac,

which is caused by the fact that the given constraints tamper with the probabilities of getting
(±~a), (±~b) or (±~c) in the measurements performed. The derivation of these results is given
in Appendix C.3.

Now, this result drives us into two conclusions:

• If the experiments were to satisfy the constraints necessary to build Bell’s inequality,
then the expectation values would be such that when plugged into the inequality one
would get:

|− cos θab + cos θac| ≤ 1− cos θab cos θac (3.6)

and, as shown in Appendix C.4, this inequality is always satisfied.

• The experiments used to test Bell’s inequality do not result in an expectation value
given by a product of cosines (− cos θab cos θac), so they do not behave according to
the constraints necessary to build Bell’s inequality, so they do not have to satisfy
such an inequality and the violation of the inequality by the experiments does not show
that reality cannot behave in a local deterministic way.

Without Bell’s assumptions

We will now go back to his second step and build a Bell-like inequality without his as-
sumptions. ∣∣∣E(~a,~b)− E(~a,~c)

∣∣∣ =

∣∣∣∣∫
Λ

[A1(~a, λ)B1(~b, λ)−A2(~a, λ)B2(~c, λ)]ρ(λ)dλ

∣∣∣∣
=

∣∣∣∣∣
8∑
i=1

∫
Λ̃i

[A1(~a, λ)B1(~b, λ)−A2(~a, λ)B2(~c, λ)]ρ(λ)dλ

∣∣∣∣∣ ,
where we build the sets Λ̃i, i = 1, . . . , 8, in terms of the different relations that the functions
A1, A2, A3, B1, B2 and B3 may hold between them. These 8 sets Λ̃i are defined as:
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Λ̃1 = {λ |A1 = A2 , B1 = −A3 , B2 = B3},

Λ̃2 = {λ |A1 = A2 , B1 = −A3 , B2 = −B3},

Λ̃3 = {λ |A1 = A2 , B1 = A3 , B2 = B3},

Λ̃4 = {λ |A1 = A2 , B1 = A3 , B2 = −B3},

Λ̃5 = {λ |A1 = −A2 , B1 = −A3 , B2 = B3},

Λ̃6 = {λ |A1 = −A2 , B1 = −A3 , B2 = −B3},

Λ̃7 = {λ |A1 = −A2 , B1 = A3 , B2 = B3},

Λ̃8 = {λ |A1 = −A2 , B1 = A3 , B2 = −B3}.

So ∣∣∣∣∫
Λ̃1

[A1(~a, λ)B1(~b, λ)−A2(~a, λ)B2(~c, λ)]ρ(λ)dλ

∣∣∣∣ ≤ ∫
Λ̃1

[1 +A3(~b, λ)B3(~c, λ)]ρ(λ)dλ

= Z(Λ̃1)− Z(Λ̃1) cos θab cos θac ,

where Z(Λ̃1) is the measure of the set Λ̃1. The integral of the product A3B3ρ(λ) is calculated
by a sum of values (A3B3 = 1 and A3B3 = −1) each with a certain probability distribution
and results in −Z(Λ̃1) cos θab cos θac given that, when λ belongs to Λ̃1, the functions A3 and
B3 are correlated precisely by the constraints used to build Tables C.1 - C.4.

Since we are not as familiar with the constraints in Λ̃2 as those in Λ̃1 we will perform the
next integral in more detail.∣∣∣∣∫

Λ̃2

[A1(~a, λ)B1(~b, λ)−A2(~a, λ)B2(~c, λ)]ρ(λ)dλ

∣∣∣∣
=

∣∣∣∣∫
Λ̃2

A1(~a, λ)B1(~b, λ)[1 +A3(~b, λ)B2(~c, λ)]ρ(λ)dλ

∣∣∣∣ ,
given the first two constraints, which is then

≤
∫

Λ̃2

[1−A3(~b, λ)B3(~c, λ)]ρ(λ)dλ
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by use of the last constraint. We can determine this integral by means of the probability
distributions of the product A3B3 = 1 and the product A3B3 = −1 that span from Table 3.1.

Table 3.1: Joint probabilities of A3(~b, λ) and B3(~c, λ), when λ belongs to Λ̃2. The LHS table
results from substituting with A1 = A2 and B1 = −A3 in Table C.1 and the RHS table results
from substituting with B2 = −B3 in the LHS of Table C.3.

A2(~a, λ)

−A3(~b, λ)
1 -1

1 1
2 sin2 θab

2
1
2 cos2 θab

2

-1 1
2 cos2 θab

2
1
2 sin2 θab

2

A2(~a, λ)

−B3(~c, λ)
1 -1

1 1
2 sin2 θac

2
1
2 cos2 θac

2

-1 1
2 cos2 θac

2
1
2 sin2 θac

2

Such probability distributions are derived under the following logic:

• λ can belong to two different sets, if A2 = 1 then λ ∈ Λ̃2+, and if A2 = −1 then λ ∈ Λ̃2−.

• If λ ∈ Λ̃2+, then A3 = 1 with probability cos2(θab/2) and A3 = −1 with probability
sin2(θab/2); while B3 = 1 with probability cos2(θab/2) and B3 = −1 with probability
sin2(θab/2).

• If λ ∈ Λ̃2− then A3 = 1 with probability sin2(θab/2) and A3 = −1 with probability
cos2(θab/2); while B3 = 1 with probability sin2(θab/2) and B3 = −1 with probability
cos2(θab/2).

• With this information one can calculate the probability of A3B3 = 1 and A3B3 = −1,
taking into account that λ ∈ Λ̃2+ with probability 1/2 and that λ ∈ Λ̃2− with probability
1/2.

So we get

P(A3 ·B3 = 1) = sin2 θab
2

sin2 θac
2

+ cos2 θab
2

cos2 θac
2

(3.7)

and

P(A3 ·B3 = −1) = cos2 θab
2

sin2 θac
2

+ sin2 θab
2

cos2 θac
2
. (3.8)

The result of the integral is obtained by subtracting (3.8) from (3.7) which gives:∫
Λ̃2

A3(~b, λ)B3(~c, λ)]ρ(λ)dλ = Z(Λ̃2) cos θab cos θac ,
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so that ∫
Λ̃2

[1−A3(~b, λ)B3(~c, λ)]ρ(λ)dλ = Z(Λ̃2)− Z(Λ̃2) cos θab cos θac .

Following the same procedure, one can verify that∣∣∣∣∫
Λ̃i

[A1(~a, λ)B1(~b, λ)−A2(~a, λ)B2(~c, λ)]ρ(λ)dλ

∣∣∣∣ ≤ Z(Λ̃i)− Z(Λ̃i) cos θab cos θac

∀i. Adding all these integrals over i, and normalising to the volume of Λ, i.e.

8∑
i=1

Z(Λ̃i) = 1,

yields the value 1− cos θab cos θac.
This shows that the inequality the two expectation values must satisfy, when assuming no

specific relation between functions A and B, is:∣∣∣E(~a,~b)− E(~a,~c)
∣∣∣ ≤ 1− cos θab cos θac , (3.9)

where cos θab cos θac is just a quantity, not an expectation value of a specific scenario. We have
already shown that Quantum Mechanics’ predictions and experimental results always satisfy
inequality (3.9).

This last examination has given us ground to show that Quantum Mechanics’ predictions
and facts do not necessarily imply the extinction of locality. One just needs to add factuality
as a condition of physical realism. In order to see how the factuality formalism is applied to
another case, we will revisit the second proof of non-locality given in the first chapter, the
GHZ theorem.

3.2 On the Greenberger, Horne and Zeilinger theorem

The GHZ theorem is based on a system in the state

|GHZ〉 =
1√
2

[
|↑↑↑〉 − |↓↓↓〉

]
and the observables

σ̂1
xσ̂

2
y σ̂

3
y , σ̂

1
y σ̂

2
xσ̂

3
y , and σ̂1

y σ̂
2
y σ̂

3
x. (3.10)

We all know that these observables commute only when each one is completely measured.
By completely we mean the three measurements done simultaneously over all of the three
components of the system, so measuring only over two of the components will inevitably induce
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a change in frame of reference, that is, a new ontological state that was not ontological under
the complete set in (3.10).

Now, when the system is separated into its three components, and no measurement has
been done, there is no change in frame of reference and the system remains in the ontological
state |GHZ〉, so if no measurement is done everything goes smoothly for GHZ. But, as soon
as there is a measurement, the ontological state changes to an eigenstate of say σ̂1

x, σ̂2
y and

σ̂3
y separately. And yes, given the ontological state the system was in prior to measurement,
y3 could be predicted by just measuring over particle 1 and 2, but this prediction cannot be
taken further, one can no longer predict as to what xi of a third would be, just by measuring
σ̂jy over the other two. So there is no need for a simultaneous assignment of values xi, yi to
the system, given that such a simultaneous reality never existed and never will exist.

Again, the argument is that one could have chosen to measure over any two of the par-
ticles and predicted any two of the values xi, yi of the third. However, this reasoning is
counterfactual, and we have discarded counterfactual premises when looking into Nature from
a realistic point of view. So there is no proof of non-locality in the theorem of GHZ if one
keeps the hypothesis of factuality true.

3.3 Final interpretation

The framework we have constructed is based on the following tools:

• Complete sets of mutually commuting operators, which are used to specify the frame of
reference in which a certain state appears.

• Eigenstates of those sets, which are the ontological states |Ω〉 in the frame of reference
the complete sets define.

• A deterministic evolution function F(λ, t) which is defined by the particular Hilbert space
of a system and that univocally determines the ontological state of the given system.

These tools taken over to the no-go theorems of locality allowed us to conclude that quantum
phenomena could be interpreted in a local deterministic way.

The quantum correlations that arise in experiments are a consequence of the ability one
has in Quantum Mechanics to change the frame of reference of the system. In this way,
ontological states display quantum features when the frame of reference is changed.
For example, in the thought experiment of Bohm and Aharonov, the state

|ψ〉 =
1√
2

[
|↑↓〉 − |↓↑〉

]
is ontological in the initial frame of reference {(SA + SB)2, SAzSBz, SAxSBx} but displays a
quantum behaviour1 in the subsequent frame of reference, {SA2, SAa, SB

2, SBb}. The state, in
the end, is ontological in the last frame of reference and evolved from the former to the latter
governed by F(λ, t).

1Comprised in the correlation between the spin projection of the two particles.
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It is useful to underline what a change of frame of reference entails, and for this we will
propose an experiment.

Imagine an electron is prepared in the state | ↑〉z by means of a Stern-Gerlach magnet.
Now, along the path of this electron place a second Stern-Gerlach, this time oriented towards
~x. The electron might project to | ↑〉x or | ↓〉x. Recombine these two paths and place a third
Stern-Gerlach along the recombined path oriented towards ~z, (cf. Figure 3.2)

You can either add or not a detector to the experimental setting before the electrons are
recombined. Build a setting without a detector and a setting with a detector. In the first case
(Figure 3.2a) no change in frame of reference occurs, just a perturbation, while in the second
case (Figure 3.2b) the frame of reference changes twice.

The state of the electron on the recombined path is predicted by Quantum Mechanics
through the action of σ̂x over the state | ↑〉z as precisely | ↓〉z so, when the interaction is
that of setting 3.2a, the state just evolves in one and the same frame of reference from the
ontological state |↑〉z to the ontological state |↓〉z,

|↑〉z F−→ |↓〉z.

But if there is a detector before the two paths are recombined, one either gets | ↑〉x or | ↓〉x
on the recombined path and not a superposition, so, if the interaction is that of setting 3.2b,
there are two changes in frame of reference and the state of the electron evolves in four possible
ways:

|↑〉z F−→ |↑〉x F−→ |↑〉z,

|↑〉z F−→ |↑〉x F−→ |↓〉z,

|↑〉z F−→ |↓〉x F−→ |↑〉z,

|↑〉z F−→ |↓〉x F−→ |↓〉z.

This example is extended to show that a change in the frame of reference necessarily entails
knowledge about some quantity, incompatible with the known quantities of the previous frame
of reference. If there is no subsequent knowledge of incompatible quantities, there is no change
in frame of reference.

Every time there first is knowledge of the result of a measurement of one observable and
then knowledge of the result of a measurement of another, incompatible observable, there is a
transition of reference frame. When there is a transition of reference frame, the (previously)
ontological state will change into an ontological state in the new reference frame. And certainly,
if there is no transition of reference frame ontological states will only evolve into ontological
states within the same reference frame. In any case, for an ontological state to change there
has to be some kind of interaction of the quantum system with the environment.

When a state is measured we set the reference frame in which the ontological state emerges.
Of course, any change in frame of reference has to be encoded in F(λ, t), hence, decisions of
what to measure and when to measure it are governed by F(λ, t). F(λ, t) is just the accessible
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(a) No change in frame of reference, just an interaction which changes the ontological state from |↑〉z
to |↓〉z.

(b) Two subsequent changes in frame of reference.

Figure 3.2: Two experimental devices that consist in a couple of Stern-Gerlach magnets which
one after another measure the spin projection of an incoming electron. In (a) there is no
knowledge of the state after its spin projection along ~x is measured, while in (b) one knows
which one of the two possible states comes out of the Stern-Gerlach magnet. From this slight
difference between experimental settings (a) and (b) a whole different state emerges when σ̂z
is measured.
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way we have to describe reality, however reality might behave.
Moreover, we have also to encode what lies behind function F(λ, t), what defines it and

which are the necessary hidden variables for its domain. These questions parallel the questions
one has to answer when looking into entanglement. The hidden mechanism a system undergoes
when it is entangled is precisely that which defines the shape of F(λ, t) in that system.

While we have given the general structure that leads to the recovery of locality, we are not
faced with a final interpretation. Rather, we are faced with more questions, questions that
can take us to look deeper into the structure of reality and that can open the door for local
explanations of quantum phenomena.



Chapter 4

Conclusions

The use of the factuality assumption to recover locality is not a novel idea. Superdeterminism
has long been known to respond to theorems that prove non-locality, given that the existence
of free will is a main hypothesis used to construct the non-locality demonstrations. The main
focus of this work has been to give the fundamental tools, scope, and predictions of a factual
interpretation of reality, in regards to the questions of contextuality, non-locality and the
paradoxical nature of measurement.

Probably the most controversial or uncomfortable aspect of this work is the
proposal of a deterministic function F(λ, t) that seems to govern all happenings,
including the decisions of the observer. It is left to the will of the reader and to future
observations to analyze how such a function might work in Nature: be it that observers just
follow the same physical laws all other objects are subjected to, be it retrocausality1, be it
an impossibility in our human understanding of Nature to see it another way, be it a direct
consequence of the building blocks of our natural philosophy, physics. Whatever the nature
of this function F might be, real, physical, in the external world, or epistemic, informational,
in our line of thought, we find the quest for the essence of this function not only a compelling
matter, but also a promising path.

If we were to find in our experiments the physical counterpart of F , we would be confronted
with the local mechanism behind Quantum Mechanics. But even if function F were just an
epistemic tool that we needed to be able to describe reality, it might nevertheless open the
path for more epistemic tools, until we find the counterparts in physical entities that derivate
from these tools.

1Retrocausality, also known as backwards causation, is a notion proposed by Huw Price in 1994 [24] based
on the statement that future events might give rise to present effects. Work on this notion has been developed
further in [25–28]. That F(λ, t) can mimic retrocausality is given, since the determinacy of a future event from
past causes is symmetric to the notion of a past effect coming from a future cause.

33
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4.1 Main results

In the present work we saw that Quantum Mechanics has to be understood as a contextual
theory, which talks about physical quantities always in regards to measurements being per-
formed. To apprehend this matter we inherited Bohr’s concept of frame of reference and
carried it all the way into our interpretation. We also took the contextual view a little further
by showing that, in order to guarantee the physical reality of any state by means of the PBR
theorem, the particular state must result from an actual measurement.

With this view in mind we defined two types of states, quantum states and ontological
states, the former being mere information and the latter having a counterpart in reality. We
saw that the information carried by quantum states may exhibit a quantum behavior in any
frame of reference in which they are not ontological. The evolution that a state undergoes
when there is a change in the frame of reference is not yet understood, but, as we postulated, it
is comprised in a deterministic evolution function F(λ, t) and it is determined by hidden
variables.

We termed this formalism of frame of references, ontological states, hidden variables, and
a deterministic evolution function as the factuality formalism and saw that when factuality
is taken into account, Bell’s inequality cannot be derived, so that there are no existing grounds
to conclude non-locality by the violation of this inequality.

Furthermore, we put forward the necessary conditions for deriving Bell’s inequality and
showed that if the experiments were to satisfy such conditions, they would also satisfy his
inequality. Moreover, we demonstrated that the experiments built to test his inequality do
not behave in accordance with the necessary conditions for its construction, and therefore,
that the violation of Bell’s inequality is again no solid ground for concluding non-locality. We
did all this from a factual approach.

We revisited Bell’s theorem as well as the GHZ example to show that their proofs of non-
locality do not “pass the factuality test” and thereby concluded that in a factual scenario,
determinism and locality can be recovered for Quantum Mechanics.

4.2 A word on the double-slit experiment

Maybe we haven’t stressed enough the importance of the ‘frame of reference’ concept in Quan-
tum Mechanics. This section is devoted to show how this concept is embedded in every quan-
tum situation and that embracing the ‘frame of reference’ concept might help to simplify the
way we interpret any quantum phenomena.

When a myriad of particles encounters a double-slit, they form an interference pattern on a
screen on the other side of the double-slit. This interference pattern is an indirect measurement
of momentum, given that by the interference pattern we can figure out the wavelength of the
incoming particles, and by their wavelength we can conclude their momentum:

p =
h

λ
.

The frame of reference in which this phenomenon occurs is incompatible with the frame of
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reference in which a measurement of position (which slit did the particle go through?) is
carried out.

Of course, Bohr noticed this from the very beginning and always referred to the double-
slit experiment in this way. What we are doing here is bringing back his interpretation of
complementary quantities and his notion of reference frame as a main element of Quantum
Theory.

We can only talk about two different aspects of reality if they are simultaneously ontological
in one and the same reference frame. All other aspects have no counterpart in reality. Position
has no counterpart in reality if we are standing in the momentum reference frame.

Furthermore, how does the interference pattern appear? Well, when each one of the parti-
cles hits the screen we have a measurement of position and know nothing about its momentum,
but when all the particles have hit the screen, we know the momentum the particles had be-
fore they hit the screen. So, particle i starts in an ontological state of momentum2 |Ω〉p, goes
through the double-slit, and is then in an ontological state of position |Ωi〉x when it hits the
screen, displaying the quantum behavior of the state |Ω〉p, which is a quantum state in the
new frame of reference.

Our proposed description is that the particles in the ensemble share hidden variables, and
that the evolution of the state of each particle is simply:

|Ω〉p F−→ |Ωi〉x;

but when the states of position |Ωi〉x of all the particles are seen together we look straight into
the interference pattern. So, we entertain the view that the interference pattern arises from
hidden variables that the particles share, and a function F(λ, t) that indicates in which place
of the screen every one of the particles of the ensemble is going to hit.

Now, why does the interference pattern disappear when we measure position? Well, the
hidden variables in this case have to be in a different set, these hidden variables are such that
when F(λ′, t) is taken over them, the story of the particles goes a different way, namely:

|Ω〉p F−→ |A〉x F−→ |Ωi〉x,

where |A〉x is the state of a particle that has gone through slit A and |Ωi〉x indicates the final
position of the particle in the screen. Since the change in frame of reference was already done
in the slits, the screen “sees” an ontological state arrive and the particles do not display a
quantum behavior. In this case, from the hidden variables λ′ shared between the particles of
the ensemble and the function F(λ′, t) that governs the ontological state of everyone of the
particles, no interference pattern arises.

4.3 A Universe of information

Ours is a Universe of information, which we have managed to arrange by physical laws and
labels. This information is the most fundamental aspect of any real object. Deep in the

2All particles in the ensemble have the same momentum.
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structure of matter is the information on how to appear, how to behave, how to interact.
Nature simply acts as a decoding mechanism of this information. Such is the Quantum in
Formation, Nature assuming its shape, governed by physical laws, all of them comprised in
F . Yet, how is this information stored and how is it interchanged between any two objects
standing in the Universe? This is our main question, left open for future scrutiny.

4.4 Symmetry breaking

There is an idea, that may have been floating around for some time now, that the measurement
process is a physical process analogous to the symmetry breaking process of a statistical system
when several ground states become available to its initial conditions.

In both cases this symmetry breaking has to do with one particular action: choosing. The
statistical system “chooses” one of several possible ground states, just as an observer chooses
one detector orientation over an infinite set of possibilities.

The physical mechanism by which one system chooses one particular ground state over the
others has not been understood and Statistical Mechanics does not seem to be able to go as
far as to understand this process. So we might have to construct a theory which is able to
answer this question. And when we do so, when we solve the symmetry breaking process that
Nature does to our theory, when Nature no more breaks any symmetry because there are no
more symmetric conditions embedded in our theory, maybe then we can begin to understand
the measurement problem, because then we could find an answer to the question: what lies
behind the choice of an observer? Why is this choice the one selected amongst the other
possibilities? And, therefore, how is it that this choosing process determines the reality of a
quantum system?



Appendix A

Theoretical Framework

A.1 Commutation and group relations of spin operators

First we will show that the observables σ̂1
xσ̂

2
y and σ̂1

y σ̂
2
x commute. We know by properties of

the commutator that [
σ̂1
xσ̂

2
y , σ̂

1
y σ̂

2
x

]
= σ̂1

x

[
σ̂2
y , σ̂

1
y σ̂

2
x

]
+
[
σ̂1
x, σ̂

1
y σ̂

2
x

]
σ̂2
y

= σ̂1
xσ̂

1
y

[
σ̂2
y , σ̂

2
x

]
+
[
σ̂1
x, σ̂

1
y

]
σ̂2
xσ̂

2
y ,

and from the group structure of momentum operators σ̂iσ̂j = iεijkσ̂k, so[
σ̂1
xσ̂

2
y , σ̂

1
y σ̂

2
x

]
= iσ̂1

z

[
σ̂2
y , σ̂

2
x

]
+
[
σ̂1
x, σ̂

1
y

]
iσ̂2
z ;

but [σ̂x, σ̂y] = 2iσ̂z, then[
σ̂1
xσ̂

2
y , σ̂

1
y σ̂

2
x

]
= iσ̂1

z

(
−2iσ̂2

z

)
+
(
2iσ̂1

z

)
iσ̂2
z = 0,

which gives proof of our claim.
Now, we will see that σ̂1

xσ̂
2
y σ̂

1
y σ̂

2
x = σ̂1

z σ̂
2
z . Each operator acts on a Hilbert space denoted

by the superindex i = 1, 2, given this we can rearrange the observables in the following way:

σ̂1
xσ̂

2
y σ̂

1
y σ̂

2
x = σ̂1

xσ̂
1
y σ̂

2
y σ̂

2
x,

preserving the order inside each Hilbert space. But σ̂1
xσ̂

1
y = iσ̂1

z and σ̂2
y σ̂

2
x = −iσ̂2

z , so

σ̂1
xσ̂

2
y σ̂

1
y σ̂

2
x = (iσ̂1

z)(−iσ̂2
z) = σ̂1

z σ̂
2
z .
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A.2 Identities in Mermin’s table

In the upper two rows and in the first two columns of Table 1.1 each observable σ̂iα appears
twice. We know that σ̂iασ̂iα = I2, where

I2 =

(
1 0
0 1

)
,

so the product of the observables of these sets is trivially I2.
In the bottom row we have the observables σ̂1

xσ̂
2
y , σ̂1

y σ̂
2
x and σ̂1

z σ̂
2
z . We saw in the previous

appendix that the product of the first two observables is

σ̂1
xσ̂

2
y σ̂

1
y σ̂

2
x = σ̂1

z σ̂
2
z ,

so if we take the product of these two and multiply it with the last observable σ̂1
z σ̂

2
z , we again

arrive to I2.
Finally, in the last column we find the observables σ̂1

xσ̂
2
x, σ̂1

y σ̂
2
y and σ̂1

z σ̂
2
z . Following the

same steps of the last appendix we see that:

σ̂1
xσ̂

2
xσ̂

1
y σ̂

2
y = σ̂1

xσ̂
1
y σ̂

2
xσ̂

2
y

= (iσ̂1
z)(iσ̂

2
z) = −σ̂1

z σ̂
2
z ;

hence, the product of these two observables with σ̂1
z σ̂

2
z gives −I2.

A.3 Bell’s inequality

Bell starts by comparing the expectation values of measurements along directions ~a and ~b and
measurements along directions ~a and ~c,∣∣∣E(~a,~b)− E(~a,~c)

∣∣∣ =

∣∣∣∣∫
Λ

[
A(~a, λ)B(~b, λ)−A(~a, λ)B(~c, λ)

]
ρ(λ)dλ

∣∣∣∣ ;
then he factorizes the function A(~a, λ) and uses the fact that B(~b, λ)B(~b, λ) = 1 to get:∣∣∣E(~a,~b)− E(~a,~c)

∣∣∣ =

∣∣∣∣∫
Λ
A(~a, λ)B(~b, λ)

[
1−B(~b, λ)B(~c, λ)

]
ρ(λ)dλ

∣∣∣∣ .
Afterwards he takes the absolute value function under the integral and, since

∣∣∣A(~a, λ)B(~b, λ)
∣∣∣ =

1, he arrives to: ∣∣∣E(~a,~b)− E(~a,~c)
∣∣∣ ≤ ∫

Λ

∣∣∣[1−B(~b, λ)B(~c, λ)
]
ρ(λ)

∣∣∣ dλ,
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but what is inside the absolute value function is always positive, so he just discards the bars.
Now he changes B(~b, λ) for −A(~b, λ) so that∣∣∣E(~a,~b)− E(~a,~c)

∣∣∣ ≤ ∫
Λ

[
1 +A(~b, λ)B(~c, λ)

]
ρ(λ)dλ,

which takes him to his final step,∫
Λ

[
1 +A(~b, λ)B(~c, λ)

]
ρ(λ)dλ = 1 + E(~b,~c),

concluding, ∣∣∣E(~a,~b)− E(~a,~c)
∣∣∣ ≤ 1 + E(~b,~c).

A.4 Expectation value of two spin measurements

We have two particles in a singlet state, expressed in the σ̂z-diagonal basis,

|ψ〉 =
1√
2

[
|↑↓〉 − |↓↑〉

]
.

The first step is to express σ̂a and σ̂b in that basis:

σ̂a = sin θaz

[
|↑〉〈↓|+ |↓〉〈↑|

]
+ cos θaz

[
|↑〉〈↑| − |↓〉〈↓|

]
,

where θaz is the angle between the detector orientation ~a and the chosen direction ~z, and

σ̂b = sin θbz

[
|↑〉〈↓|+ |↓〉〈↑|

]
+ cos θbz

[
|↑〉〈↑| − |↓〉〈↓|

]
,

where θbz is the angle between the detector orientation ~b and the chosen direction ~z.
For the calculation of 〈ψ|σ̂aσ̂b|ψ〉 it is understood that σ̂a acts on the first of the two

Hilbert spaces in |ψ〉, and that σ̂b acts on the second Hilbert space. This calculation goes as
follows:

〈ψ|σ̂aσ̂b|ψ〉 =
1

2
sin θaz sin θbz

[
− 〈↑↓|↑↓〉〈↓↑|↓↑〉 − 〈↓↑|↓↑〉〈↑↓|↑↓〉

]
+

1

2
cos θaz cos θbz

[
− 〈↑↓|↑↓〉〈↑↓|↑↓〉 − 〈↓↑|↓↑〉〈↓↑|↓↑〉

]
,

where we have only kept the terms that are non-zero, given that 〈↑ | ↓〉 = 0. Furthermore,
〈↑|↑〉 = 〈↓|↓〉 = 1, so
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〈ψ|σ̂aσ̂b|ψ〉 =
1

2
sin θaz sin θbz[−2] +

1

2
cos θaz cos θbz[−2]

= − sin θaz sin θbz − cos θaz cos θbz

= − cos(θaz − θbz);

but the difference between the two angles (θaz − θbz) is simply (±) the angle between ~a and ~b,
±θab, and cos(±θab) = cos(θab), thereby

〈σ̂aσ̂b〉 = − cos θab ,

which takes us to equation (1.7).

A.5 GHZ state

The |GHZ〉 state is given in the σ̂z-diagonal basis, so it is useful to remember that:

σ̂x|↑〉z = |↓〉z,

σ̂x|↓〉z = |↑〉z,

σ̂y|↑〉z = i|↓〉z,

σ̂y|↓〉z = −i|↑〉z;

therefore,

σ̂1
xσ̂

2
y σ̂

3
y |↑↑↑〉 = (1)(i)(i)|↓↓↓〉 = −|↓↓↓〉

and

σ̂1
xσ̂

2
y σ̂

3
y |↓↓↓〉 = (1)(−i)(−i)|↑↑↑〉 = −|↑↑↑〉.

Hence, by linear combination of these two results,

σ̂1
xσ̂

2
y σ̂

3
y

1√
2

[
|↑↑↑〉 − |↓↓↓〉

]
=

1√
2

[
|↑↑↑〉 − |↓↓↓〉

]
,

which is the main part of what we wanted to prove.
Since the state |GHZ〉 is indistinguishable under the exchange of particles 1,2,3 and, as

we have shown, is an eigenstate of the observable σ̂1
xσ̂

2
y σ̂

3
y with eigenvalue 1, we can conclude

that it is an eigenstate of the other two observables in (1.8) with eigenvalue 1.
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Factuality

B.1 PBR state under non-distinguishability

To demonstrate that if the preparation method does not “announce” a distinction between the
states |0〉 and |+〉, then the state that arrives to the detector is

|Ψ〉 = N
[
|0〉+ |+〉

]
⊗N

[
|0〉+ |+〉

]
,

we must first construct a preparation device that behaves according to the PBR conditions,
but with no distinguishability between the prepared systems.

Figure B.1: Figure given by PBR in [22]

Consider two methods of preparing a quantum system, corresponding to quantum
states |ψ0〉 and |ψ1〉, with |〈ψ0|ψ1〉| = 1/

√
2 . Choose a basis of the Hilbert space

so that |ψ0〉 = |0〉 and |ψ1〉 = |+〉 = (|0〉 + |1〉)/
√

2. ... Now consider two sys-
tems whose physical states are uncorrelated. This can be achieved, for example,
by constructing and operating two copies of a preparation device independently.

41



42 B. Factuality

Each system can be prepared such that its quantum state is either |ψ0〉 or |ψ1〉, as
illustrated in [Figure B.1].

So, we have two identical preparation devices each of which prepares either the state |0〉
or the state |+〉 without making an announcement of which of the two states was prepared.

Each device can be built by putting together a photon source and a Mach-Zehnder inter-
ferometer, with a polarizer set in the vertical direction (≡ |0〉) on one path of the laser, and
a polarizer set to 45◦ (≡ |+〉) on the other path of the laser. At the end, the two paths are
recombined.

Under these conditions, the state that comes out of the preparation device is

|ψ〉 = N
[
|0〉+ |+〉

]
,

where one can easily calculate the normalization constant N to obtain:

N2 =

√
2

2
√

2 + 2
.

Finally, when the two preparation devices are put together, one gets the state

|Ψ〉 = N2
[
|0〉+ |+〉

]
⊗
[
|0〉+ |+〉

]
,

which is what we wanted to show.



Appendix C

Locality

C.1 Second path for identical Λ’s

We start from:

F(λ, t1) = (~oA(λ, t1), ~oB(λ, t1)) = (±~a,±~b),

and we define:

A1(~a, λ) ≡ sign(~oA(λ, t1))

and

B1(~b, λ) ≡ sign(~oB(λ, t1)),

where we carried the subscript 1 to distinguish these functions from the ones defined by
F(λ, t2). Now:

F(λ, t2) = (~oA(λ, t2), ~oB(λ, t2)) = (±~a,±~c),

so we can simultaneously define:

A2(~a, λ) ≡ sign(~oA(λ, t2))

and

B2(~c, λ) ≡ sign(~oB(λ, t2)).

And finally:

A3(~b, λ) ≡ sign(~oA(λ, t3))

and

B3(~c, λ) ≡ sign(~oB(λ, t3)).

Now, of course functions Ai and Bi defined this way are not necessarily identical to those
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defined by the the first path, just because ~oA(λ, t3) is not necessarily the same as ~oA3(λ, t1),
etc. The thing is that, once one defines a set of functions {A1, B1, A2, B2, A3, B3}, function
A1(~a, λ) can be different from A2(~a, λ) (and so forth) and this is the argument we use in the
rest of our development.

C.2 Bell’s assumptions

Bell starts from equation (3.5):∣∣∣E(~a,~b)− E(~a,~c)
∣∣∣ =

∣∣∣∣∫
Λ

[
A1(~a, λ)B1(~b, λ)−A2(~a, λ)B2(~c, λ)

]
ρ(λ)dλ

∣∣∣∣
and makes his first assumption:

A1(~a, λ) = A2(~a, λ);

then equation (3.5) turns to:∣∣∣E(~a,~b)− E(~a,~c)
∣∣∣ =

∣∣∣∣∫
Λ
A1(~a, λ)B1(~b, λ)

[
1−B1(~b, λ)B2(~c, λ)

]
ρ(λ)dλ

∣∣∣∣ ,
where he uses the fact that B1B1 = 1. Now, taking the absolute value function under the
integral and using the fact that |A1B1| = 1 his last equation turns to:∣∣∣E(~a,~b)− E(~a,~c)

∣∣∣ ≤ ∫
Λ

∣∣∣[1−B1(~b, λ)B2(~c, λ)
]
ρ(λ)

∣∣∣ dλ, (C.1)

but what is inside the absolute value function is always positive, so he just discards the bars.
Next comes his second assumption:

B1(~b, λ) = −A3(~b, λ),

so equation (C.1) becomes:∣∣∣E(~a,~b)− E(~a,~c)
∣∣∣ ≤ ∫

Λ

[
1 +A3(~b, λ)B2(~c, λ)

]
ρ(λ)dλ. (C.2)

And finally, he takes a third assumption:

B2(~c, λ) = B3(~c, λ);

then equation (C.2) turns to:∣∣∣E(~a,~b)− E(~a,~c)
∣∣∣≤∫

Λ

[
1 +A3(~b, λ)B3(~c, λ)

]
ρ(λ)dλ,

which allows him to conclude, ∣∣∣E(~a,~b)− E(~a,~c)
∣∣∣ ≤ 1 + E(~b,~c).
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C.3 Expectation values within Bell’s assumptions

We begin by building a table of probabilities for the first scenario (detector settings ~a and ~b),
under the following knowledge: the probability of getting either +1 or −1 when measuring
the spin projection of particle A is 1/2, but once one of those is guaranteed, say +1, the
probability of getting +1 when measuring the spin projection of particle B is sin2(θab/2) and
the probability of getting −1 is cos2(θab/2). So we have the joint probabilities shown in Table
C.1.

Table C.1: Joint probabilities for experiment 1. The probability for two of the outcomes in
the edges is the product of the two numbers in the cell where the edges coincide.

A1(~a, λ)

B1(~b, λ)
1 -1

1 1
2 sin2 θab

2
1
2 cos2 θab

2

-1 1
2 cos2 θab

2
1
2 sin2 θab

2

Now, the assumption A1(~a, λ) = A2(~a, λ) invites us to substitute A1 for A2 and the assumption
B1(~b, λ) = −A3(~b, λ), to substitute B1 for −A3, turning Table C.1 into Table C.2.

Table C.2: Joint probabilities under the assumptions A1(~a, λ) = A2(~a, λ) and B1(~b, λ) =
−A3(~b, λ).

A2(~a, λ)

−A3(~b, λ)
1 -1

1 1
2 sin2 θab

2
1
2 cos2 θab

2

-1 1
2 cos2 θab

2
1
2 sin2 θab

2

The joint probabilities for experiment 2 are built accordingly and result in the left hand
side of Table C.3. Taking into account the assumption B2(~c, λ) = B3(~c, λ) one gets the right
hand side of Table C.3.
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Table C.3: LHS joint probabilities for experiment 2. RHS same, under the assumption
B2(~c, λ) = B3(~c, λ).

A2(~a, λ)

B2(~c, λ)
1 -1

1 1
2 sin2 θac

2
1
2 cos2 θac

2

-1 1
2 cos2 θac

2
1
2 sin2 θac

2

A2(~a, λ)

B3(~c, λ)
1 -1

1 1
2 sin2 θac

2
1
2 cos2 θac

2

-1 1
2 cos2 θac

2
1
2 sin2 θac

2

Table C.4 just brings together Table C.2 and the right hand side of Table C.3. We will use
it to compute the joint probabilities of A3(~b, λ) and B3(~c, λ).

Table C.4: Joint probabilities of A3(~b, λ) and B3(~c, λ).

A2(~a, λ)

−A3(~b, λ)
1 -1

1 1
2 sin2 θab

2
1
2 cos2 θab

2

-1 1
2 cos2 θab

2
1
2 sin2 θab

2

A2(~a, λ)

B3(~c, λ)
1 -1

1 1
2 sin2 θac

2
1
2 cos2 θac

2

-1 1
2 cos2 θac

2
1
2 sin2 θac

2

The procedure is as follows:

A2(~a, λ) = +1 for λ in a certain set, say Λ+, and from Table C.4 if λ ∈ Λ+, then the probability
that A3(~b, λ) = 1 is cos2(θab/2) and the probability that A3(~b, λ) = −1 is sin2(θab/2), while
the probability that B3(~b, λ) = 1 is sin2(θac/2) and the probability that B3(~b, λ) = −1 is
cos2(θac/2). So, for λ ∈ Λ+ the probability of getting the same sign in both functions A3 and
B3 is:

P(A3 ·B3 = 1) = cos2 θab
2

sin2 θac
2

+ sin2 θab
2

cos2 θac
2
,

and the probability of getting opposite signs is:

P(A3 ·B3 = −1) = cos2 θab
2

cos2 θac
2

+ sin2 θab
2

sin2 θac
2
.
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Similarly, if λ ∈ Λ−,

P(A3 ·B3 = 1) = sin2 θab
2

cos2 θac
2

+ cos2 θab
2

sin2 θac
2

and

P(A3 ·B3 = −1) = sin2 θab
2

sin2 θac
2

+ cos2 θab
2

cos2 θac
2
.

But at the same time, the probability that λ ∈ Λ+ is 1/2 as is the probability that λ ∈ Λ−,
so we must multiply all the four last equations by 1/2 and then add them to obtain:

P(A3 ·B3 = 1) = cos2 θab
2

sin2 θac
2

+ sin2 θab
2

cos2 θac
2

(C.3)

and

P(A3 ·B3 = −1) = sin2 θab
2

sin2 θac
2

+ cos2 θab
2

cos2 θac
2
. (C.4)

Functions with the probability distributions given by equations (C.3) and (C.4) describe
an experiment in which the expectation value of the correlation between these two functions
would be:

E(~b,~c) = P(A3 ·B3 = 1)− P(A3 ·B3 = −1)

= cos2 θab
2

sin2 θac
2

+ sin2 θab
2

cos2 θac
2

− sin2 θab
2

sin2 θac
2
− cos2 θab

2
cos2 θac

2

= (cos2 θab
2
− sin2 θab

2
)(sin2 θac

2
− cos2 θac

2
)

= − cos θab cos θac .

C.4 Demonstration of the derived inequality

The inequality to be analyzed is:

| − cos θab + cos θac| ≤ 1− cos θab cos θac ,

which turns to

cos θab cos θac − 1 ≤ − cos θab + cos θac ≤ 1− cos θab cos θac .

The first inequality is satisfied iff

cos θab cos θac + cos θab ≤ cos θac + 1,
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or, equivalently,

cos θab(cos θac + 1) ≤ cos θac + 1, (C.5)

and the second inequality is satisfied iff

cos θac + cos θab cos θac ≤ 1 + cos θab ,

or, equivalently,

cos θac(1 + cos θab) ≤ 1 + cos θab . (C.6)

Finally, equations (C.5) and (C.6) are both true iff

cos θab ≤ 1 and cos θac ≤ 1,

which always holds. So inequality (3.6) is always satisfied.
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