# UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

## FACULTAD DE ARQUITECTURA

**Taller Federico Mariscal y Piña** 



Tesis que para obtener el título de Arquitecto

# Parque Urbano Agua Vida. Álvaro Obregón, Ciudad de México.

Presenta

Emiliano Alberto Medina Carmona

No. de cuenta 302017461

Director: M. en Arq. Luis Fernando Guillen Oliveros Asesor 1: Dra. En Arq. Mercedes Oliveros Suarez

Asesor 2: Arq. Angelina Barboza Rodríguez





UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

## DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

A mis padres

## Tabla de contenido

| 1 Introducción                                                             | 4        |
|----------------------------------------------------------------------------|----------|
| 2 Marco contextual                                                         | 7        |
| 2.1-Hipótesis                                                              | 7        |
| 2.2-Contextualización                                                      | 7        |
| 2.3-Definición del problema                                                | 8        |
| 2.4-Definición del usuario                                                 | 9        |
| 2.5-Cuantificación de la demanda                                           | 11       |
| 2.6-Conclusiones                                                           | 11       |
| 3 Marco teórico                                                            | 12       |
| 3.1-Importancia del tema                                                   | 12       |
| 3.1.1-Problemática actual                                                  | 12       |
| 3.1.2-La problemática del Agua en la Cuidad de México                      | 18       |
| 3.1.3-Problemática de la vivienda y demanda de servicios en la Cuidad de M |          |
| 3.1.4-Conclusión                                                           |          |
| 3.2-Análisis de edificios análogos                                         |          |
| 3.2.1-Parque Fundidora:                                                    |          |
| 3.2.2-Parque Bicentenario:                                                 |          |
| 3.3-Normatividad                                                           |          |
| 3.4-Aportaciones e innovaciones                                            |          |
| 3.5-Conclusiones.                                                          |          |
| 4. Matadalagía                                                             | 46       |
| 4.1-Proceso de diseño bioclimático                                         |          |
| 4.1.1-Ubicación y descripción geográfica                                   |          |
| 4.1.2-PRODUCCIÓN METABÓLICA                                                |          |
| 4.1.3-Análisis del Clima                                                   |          |
| 4.1.4-Rango de comodidad o CONFORT                                         |          |
| 4.2-Conceptualización                                                      |          |
| 4.3-Concepto arquitectónico                                                |          |
| 4.4-conclusiones                                                           | 57<br>57 |

| 5 Desarrollo ejecutivo del proyecto       | 58  |
|-------------------------------------------|-----|
| 5.1-Desarrollo arquitectónico             | 58  |
| 5.2-Estructura                            | 71  |
| 5.3-Instalaciones                         | 76  |
| 5.3.1-Hidráulicas                         | 76  |
| 5.3.2-Sanitarias                          | 81  |
| 5.3.3-Eléctricas                          | 83  |
| 5.4-Memorias de cálculo                   | 85  |
| 5.4.1-Estructural                         | 85  |
| 5.4.2-Hidrosanitario                      | 90  |
| 5.4.3-Electrico                           | 93  |
| 5.4.4-Cálculo Lumínico                    | 110 |
| 5.4.5-Cálculo Pararrayos                  | 116 |
| 5.4.6-Calculo de paneles solares          | 118 |
| 5.4.7-Bioclimático                        | 119 |
| 5.5-Presupuesto y factibilidad financiera | 154 |
| 7 Conclusiones generales                  | 156 |
| 8 Bibliografía                            | 158 |

## 1.- Introducción

El parque Agua vida es una respuesta a la crisis ambiental del planeta, particularmente de México, donde es deficiente el aprovechamiento y casi nulo el reciclaje y reutilización del agua. Prueba de ello es la falta de abasto ante la demanda de la zona metropolitana del valle de México debido a distintos factores sociales y económicos. Como pudiera ser el crecimiento acelerado de las ciudades o redensificación debido a la especulación de inmobiliarias y constructores, el cual implica un aumento en la demanda de recursos para el abastecimiento y realización de las actividades diarias de la población. La magnitud de la demanda ha llevado a la necesidad de priorizar la producción y/o explotación de estos recursos, olvidando en algunos momentos en la celeridad que la demanda crece, que el ser humano como ser vivo requiere de elementos no solo de funcionalidad, sino también de esparcimiento y crecimiento. Es decir, que no basta con cubrir la necesidad de agua potable, drenaje, energía o habitación del individuo si se espera un desarrollo integral del ser humano. Un ejemplo de ello es la necesidad espiritual, de ejercicio o recreación que le son inherentes al individuo en su calidad de ser vivo.

Si bien no se busca en ningún momento el menospreciar la importancia de elementos funcionales, se espera también resaltar la necesidad de espacios que impulsen una mejoría de vida acercando al individuo a un espacio "natural" que cubra su parte humana. Entendiendo a la persona no como un mecanismo que cumple funciones específicas dentro de una sociedad, Sino como un ser cuya complejidad requiere de un desarrollo y evolución vinculados directamente a la naturaleza.

Es entonces que entendemos que aquello que queramos producir debe estar hermanado tanto en lo natural, lo funcional y lo cultural para que la respuesta sea positiva para los diferentes niveles que componen al individuo en su todo.

Se busca entonces tomar una problemática existente de un contexto determinado para darle respuesta. De tal modo que a través de un planteamiento arquitectónico se resuelva de manera satisfactoria una necesidad social, espacial y de funcionamiento; consiguiendo con ello una mejora en la calidad de vida de los individuos y un conveniente

aprovechamiento del contexto generando en él un vínculo entre lo natural y lo trascendental, lo físico y lo sutil. Es decir, lo humano en sus diferentes niveles.

El tema se puede resumir en el siguiente listado de objetivos:

- ¿Qué es?:- Proyecto arquitectónico para el desarrollo de bienestar social, regeneración, naturación y propuesta cultural en espacio subutilizado. De modo que éste sea rescatado para su aprovechamiento al tiempo que genera un impacto positivo y ecológico en la zona.
- 2. ¿Para qué es?: para otorgar un espacio útil, sano y recreativo a las personas del contexto. A la vez que se sanea un espacio olvidado y subutilizado.
- 3. ¿Quiénes?: seres humanos en posible hacinamiento, calidad de vida y cultural deteriorada y recreación limitada.
- 4. ¿Cuándo es? Proyecto a varias etapas con espacio físico para recibir futuras adiciones con respuestas a problemáticas existentes en su temporalidad.
- 5. ¿Dónde es? : ubicado en la ciudad de México, en la delegación Álvaro Obregón. Colindante con avenidas de alta circulación en zona de densificación constante con futuros proyectos de crecimiento en infraestructura de transporte y habitacional.
- 6. ¿Cómo es?: museo que imparta conocimientos referentes al manejo y aprovechamiento del agua en su importancia para la vida misma, correlacionado con parque urbano que funcione tanto lúdica y recreativamente así como punto de recarga de mantos acuíferos producción de oxígeno.
- 7. ¿Por qué es? ; ¿cuál es el problema?: zona de alta densidad poblacional que necesita espacios de esparcimiento, divulgación de la importancia del agua y sus formas de manejo sustentable, mitigación de cambio climático, filtración de agua de lluvia, oxigenación, reducción del bióxido de carbono en el aire, propuesta cultural, apreciación y relación con ecotécnias aplicables a escala del hogar para mejorar la calidad de vida de los usuarios.
- 8. ¿Hacia dónde va?: saneamiento de un espacio para la edificación de un museo con importante área verde y gran valor recreativo y paisajístico que pude desarrollarse a futuro según los cambios poblacionales que su contexto conlleve.

- 9. Concepto generador: a partir de flujos (día-noche, ciclo del agua, caminos interconectados, etc.) y naturación del espacio. Con importancia en vistas, recorridos y paisajismo tanto interior como exteriormente. Se busca generar un espacio arquitectónico que pueda acercar a la población la cultura necesaria para poder preservar y aprovechar el agua, así como brindar un espacio de recreación y esparcimiento a las personas de la comunidad.
- 10. Aportaciones: Se han respetado todos y cada uno de los árboles existentes en el predio que gracias al estudio de la zona se pudieron observar. Así como el aprovechamiento de una nave industrial abandonada que puede servir para que futuras propuestas de biblioteca y de servicios. Mientras que en la actualidad pueden contener áreas para el funcionamiento del parque y museo como serían talleres, curaduría, archivo, biblioteca, aulas y otros.

El presenta trabajo se empleará entonces para que por medio de la observación a un contexto determinado se pueda establecer una o unas problemáticas sobre las que se planteen soluciones por medio de una intervención espacial arquitectónica.

#### 2.- Marco contextual

## 2.1-Hipótesis

Se diseñará un museo para concientizar a la población en general sobre la importancia del agua por medio de espacios lúdicos y didácticos, que al funcionar en conjunto con un espacio de área verde y natural puede generar un cambio en el microclima de la zona, así como un impacto positivo en la ecología de la ciudad y calidad de vida de los habitantes de la delegación A. Obregón.

Se comprende que las necesidades de equipamiento en la ciudad difícilmente se ven satisfactoriamente cubiertas debido a la magnitud y complejidad de esta. Por tal motivo se plantea el tomar un espacio subutilizado para darle empleo nuevamente. Esto busca dar respuesta a las necesidades tanto de equipamiento como de desarrollo y esparcimiento a las comunidades cercanas y aquellas, que por medio de las vialidades circundantes, puedan acercarse al proyecto para hacer uso de él.

Se toma como partida la necesidad cultural, social y sustentable de concientizar a la población sobre la importancia del agua, tanto como recurso natural como fuente primordial de la vida.

#### 2.2-Contextualización

El predio a tratar se encuentra ubicado en la colonia Álvaro Obregón, en contacto con vialidades primarias y con viviendas y unidades habitacionales muy cercanas a él, permitiendo en ello que se vincule primero con las necesidades de los habitantes del contexto proporcionándoles aquellos contenidos de programa que pueden estar significando una carencia en la actualidad. Así como la vinculación por medio de las vialidades a espacios más alejados dentro de la misma ciudad que puedan requerir tener la opción de visitar el sitio.

El predio fue desocupado y se encuentra sin uso en la actualidad, requiriendo con ello una recuperación del espacio para implementar equipamiento que sea conveniente a la comunidad que lo rodea. Aprovechando su capacidad al convertirlo de un sitio remanente

del crecimiento de la ciudad en un generador de cambio para una comunidad en constante crecimiento y densificación.

Con 52,261m2 el sitio tiene colindancia con dos vialidades, una al norte y la otra al sur este. Siendo su tercera colindancia un estacionamiento de camiones tipo RTP al sur oeste. Esto permite un acceso desde diferentes puntos del predio, otorgándole una flexibilidad de acomodar varios contenidos dentro de sí mismo. Otra gran ventaja es que dada la extensión del predio se pueden emplear para recarga de mantos acuíferos por medio de amplias zonas permeables y pozos de tormenta. Así como un énfasis del empleo de vegetación como medio de mitigación de impacto ambiental y generación de oxígeno, principal recurso de vida del individuo.

Su ubicación permite fácilmente convertirlo en un punto de gran atractivo visual y natural, gracias a que las visuales de diferentes puntos circundantes tienen manera de voltear y apreciar al terreno.

## 2.3-Definición del problema

La delegación en su plan de desarrollo contempla el aumento de parques y unidades recreativas como mediada contra densificación que se presenta en su territorio. Cuestión que se acompaña con la necesidad recreativa y de esparcimiento de los colonos, así como de espacios culturales y ambientales. Siendo el conjunto de estos una posibilidad de realización como proyecto para aportar una mejora en la calidad de vida de aquellos que estén en posibilidad del empleo del proyecto. Así como ser un pulmón y recarga de mantos acuíferos de la ciudad. Esto por medio de vegetación y áreas verdes que suponen una pausa al crecimiento acelerado de la ciudad, así como al consumo de recursos y áreas naturales.

Se propone entonces un proyecto que, respondiendo a las demandas del lugar, incluya en sus partes la cultural, recreativa, ecológica y sustentable.

Siendo posible con ello la propuesta de un Museo contenido dentro de un parque urbano. Generando entre ambos un intercambio de contenidos, obteniendo un resultado que sería más que la suma de sus partes, mientras se garantiza un proceso que incorpore la

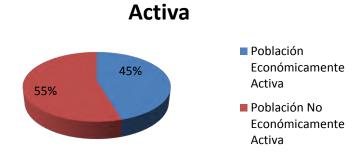
importancia del agua como elemento de vida, y se compromete a ser partícipe de su cuidado y facilitador del proceso natural de recarga de agua en el subsuelo.

#### 2.4-Definición del usuario

Se plantea la factibilidad de uso de las instalaciones para personas en diferentes rangos de edad, buscando ser incluyente y plural.

Se tendrá especial cuidado en que las instalaciones sean transitables para personas con diferentes discapacidades, posibilitándoles con ello la cómoda visita al lugar. Así como también se plantea contar con diversos espacios para la apreciación cultural y recreativa para diferentes edades de los usuarios

Según datos de INEGI (Instituto Nacional de Estadística y Geografía) podemos suponer que:


Población por Edad 40,000 20,000 0 0 a 2 12 a 14 15 a 29 30 a 49 50 a 59 60 a 64 65 años 3 a 5 6 a 11 años años años años años años años años v más

Gráfica 1 Edad poblacional

Fuente: Elaboración propia a partir de datos del Instituto Nacional de Estadística y Geografía (INEGI) 2010.

El rango de edad predominante para el uso del proyecto sería de entre 15 y 49 años, con

un grupo menor que abarcaría de 6 a 11 y 50 a 59 años.



Gráfica 2 PEA

Población Económicamente

Fuente: Elaboración propia a partir de datos del Instituto Nacional de Estadística y Geografía (INEGI) 2010.

De los cuales la gran mayoría podría aprovechar la implementación de cursos o

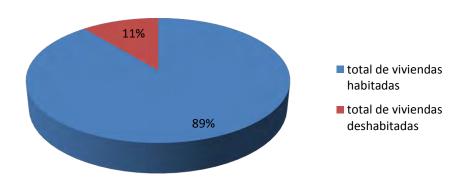
certificados que puedan generar ingresos a partir de su aplicación, como sería el caso de oficios o técnicos.

Población por Grado de Escolaridad Población con educación básica completa 1446 Población con al menos un 15% 50% grado aprobado en educación media superior Población con al menos un grado aprobado en educación superior

Población sin grado de

e sco laridad

Gráfica 3 Grado de escolaridad


Fuente: Elaboración propia a partir de datos del Instituto Nacional de Estadística y Geografía (INEGI) 2010.

0%

El contenido de la exposición debería ser capaz de ofrecer diferentes niveles de profundidad dada la diversidad de escolaridad de los usuarios.

Gráfica 4 Vivienda

Vivienda habitada y deshabitada



Fuente: Elaboración propia a partir de datos del Instituto Nacional de Estadística y Geografía (INEGI) 2010.

Así como se observa la necesidad de espacios recreativos y culturales dada la alta densificación habitacional de la zona.

#### 2.5-Cuantificación de la demanda

En base a la población observada según datos del INEGI, tenemos una alta población juvenil a la que prestarle servicio principalmente, sin olvidar otras edades que podrán hacer uso del proyecto. Prestando atención a esto se define una población de uso aproximada para el inmueble de 800 personas diarias, más otro tanto similar que pueda hacer uso de las áreas verdes y o lúdicas. De acuerdo con la normativa de SEDESOL (Secretaría de desarrollo social) el museo debe poder dar respuesta a más de 800 personas por día. Logrando con ello una población atendida anual mayor a 238,000 personas, que se dividirá en las diversas actividades y espacios arquitectónicos dispuestos en todo el desarrollo, según sus propios intereses y programas tanto del parque urbano y museo.

Según datos del INEGI se estima que la pirámide poblacional se invertirá en unos años. Pero gracias a las características del proyecto, este se va a poder prestar para dar servicio a los cambios poblacionales que pudieran existir en un futuro, ya sea que la pirámide poblacional se mantenga o se invierta, esto último observando en la gráfica 1 de edad poblacional, donde nos muestra que hay menos niños que jóvenes y adultos jóvenes los cuales van a cubrir un nicho a futuro que ocuparan mayormente adultos y adultos mayores.

#### 2.6-Conclusiones

El proyecto entonces se contempla como una respuesta ecológica arquitectónica al gran déficit que existe respecto a espacios recreativos de éstas características en la delegación así como una respuesta inmediata y determinante a la problemática del agua en la zona metropolitana del valle de México. Esto último por medio de dos vertientes, la primera es la educación respecto al agua misma y la segunda como punto importante de infiltración y recarga de mantos acuíferos.

## 3.- Marco teórico

## 3.1-Importancia del tema

El creciente avance de la urbanización de la Zona Metropolitana de la Ciudad de México ha deteriorado el medio ambiente en la cuidad, ya que en éste último año 2015 se ha reportado una mala calidad del aire y contingencia ambiental con más frecuencia por lo que es de suma importancia que la sociedad y autoridades busquen conservar proteger e incrementar espacios que conformen áreas verdes, si bien con ello no se soluciona el problema tan complejo que tiene la cuidad con el medio ambiente si contribuye en gran medida a mejorar y con ello afectar lo menos posible a la salud de los habitantes y mantener la calidad de vida. <sup>1</sup>

La presente problemática se abordará entonces a partir de dos temas mayores, Los espacios naturales o áreas verdes, y el abasto y disponibilidad del agua en la Zona Metropolitana del Valle de México.

#### 3.1.1-Problemática actual

Las áreas verdes en la cuidad han sufrido una degradación en los últimos 15 años por la construcción de infraestructura pública como los segundos pisos en Periférico, la Supervía oriente, las líneas del Metrobús y recientemente la Fase 2 el deprimido vehicular Insurgentes Mixcoac, puentes peatonales, instalaciones subterráneas de agua, luz, drenaje, así como la construcción de edificios públicos nos dan un resultado de 56,533 árboles talados en ese periodo.<sup>2</sup> Además de la presencia de otros problemas que afectan gravemente son los "ríos entubados, lagos rellenados, pavimentado de grandes superficies, islas de calor, vegetación exótica, paisajes uniformes, proliferación de grandes cantidades de materiales industriales, mengua de superficie verde, entre otros fenómenos (Gómez Mendoza, 2004)". Por lo que podemos afirmar que las áreas verdes

<sup>&</sup>lt;sup>1</sup> Phenélope Aldaz, (2015) El Universal, México CDMX, DF más de 24 horas con mala calidad del aire, Recuperado de, http://archivo.eluniversal.com.mx

<sup>&</sup>lt;sup>2</sup> Mayela Sánchez, Sin embargo, México CDMX, El DF pierde en 15 años 56 mil árboles por obras, Recuperado de, http://www.sinembargo.mx

se han degradado rápidamente destinando a la vegetación a existir en la periferia de la cuidad, por darle prioridad a la movilidad.

En menor medida pero que también han generado un impacto nocivo para los árboles es que los desarrolladores inmobiliarios, negocios particulares, y las empresas de publicidad en particular de anuncios "espectaculares" realizan la tala de los árboles cuando estos les estorban y esto está permitido por las autoridades conforme a lo dispuesto en la Norma Ambiental para el Distrito Federal NADF-001-RNAT-2012, además de que pueden afectar áreas verdes incluso eliminarlas. Y en caso de que los árboles talados en los últimos años fueran sustituidos por nuevos árboles tardarían de 30 a 50 años en proveer los beneficios de los árboles talados de más edad.<sup>3</sup>



Ilustración 1 Tala de árboles en Mixcoac por la construcción de nueva vialidad

Fuente: Ariana Pérez, (Mixcoac 2015) Sin Embargo, Recuperado de, http://www.sinembargo.mx

<sup>&</sup>lt;sup>3</sup> María del Carmen Meza Aguilar, José Omar Moncada Maya, (1 de agosto de 2010), Las áreas verdes de la ciudad de México. Un reto actual, Revista electrónica de geografía y ciencias sociales, Vol. XIV, núm. 331 pág. 56, Recuperado de http://www.ub.edu/geocrit



Ilustración 2 Más de 18,000 Árboles talados en la administración de Mancera en la CDMX

Fuente: Mariana Angulo Tapia (CMX 2017) Andador Urbano, Recuperado de, http://andadorurbano.com

El crecimiento y concentración de la población ha sido otro factor relevante en la problemática ambiental de la Zona Metropolitana de la Cuidad de México que cuenta ya con 20,116,842 habitantes de acuerdo al INEGI, siendo la tercer ciudad más poblada del mundo según la ONU<sup>4</sup>, la mancha urbana a través del tiempo va siendo mayor y demandante de infraestructura pública, vivienda y servicios, en donde volviendo a la premisa anterior, se destruyen áreas verdes para la ejecución de los proyectos, desplazando a las áreas naturales a quedar en las orillas, olvidando que es indispensable para el ser humano la existencia de áreas verdes en la cuidad, por lo que es necesario implementar la reforestación, restablecimiento protección y conservación de áreas verdes.

<sup>&</sup>lt;sup>4</sup> Notimex, (2012) El Universal, Nueva York, Cuidad de México, la tercera más poblada del mundo: ONU, Recuperado de, http://archivo.eluniversal.com.mx

Tabla 1 Población por sexo

| Indicador                | Zona metropolitana |            |  |  |
|--------------------------|--------------------|------------|--|--|
|                          | 2005               | 2010       |  |  |
| Población total por sexo | 19,239,910         | 20,116,842 |  |  |
| Hombres                  | 9,311,192          | 9,729,967  |  |  |
| Mujeres                  | 9,928,718          | 10,386,875 |  |  |

Fuente: Conciliación Demográfica CONAPO, INEGI, COLMEX (2011) México, Instituto Nacional de Estadística y Geografía, dirección General de Estadísticas Sociodemográficas, Censo de Población y Vivienda 2010, Recuperado de http://www.inegi.org.mx

#### 3.1.1.1-Beneficios que aportan las áreas verdes

Las áreas verdes ayuda a regular el clima de la cuidad, amortiguan el ruido, permiten la captación de agua pluvial para la recarga de mantos acuíferos, absorben contaminantes, y lo más importante es que generan un equilibro ambiental.

El beneficio social que aportan es que son áreas propicias para la recreación y el esparcimiento, fomentan la difusión cultural, y refuerzan la identidad de barrios y colonias. Hemos observado que en las zonas donde hay más áreas verdes se convierten en lugares más deseados para vivir o trabajar ya que se tiene una mayor calidad de vida, "la presencia de vegetación, particularmente arbórea, es factor de alta calidad de vida en las ciudades, ya que los espacios se convierten en lugares placenteros para vivir, trabajar o pasar el tiempo libre; sin dejar de mencionar el aspecto estético, el cual permite que el sistema sensorial se relaje y se infundan nuevas energías frente al estrés que implica la ciudad. Son los sitios por excelencia para la convivencia y el esparcimiento (Rapoport et al. 1983)". <sup>5</sup>

#### 3.1.1.2-Recomendaciones

La Organización Mundial de la Salud (OMS) recomienda que debe existir en la cuidad una superficie de nueve metros cuadrados de áreas verdes por habitante que correspondería al mínimo que se puede tener. "Existe una relación directa entre el tamaño

<sup>&</sup>lt;sup>5</sup> María del Carmen Meza Aguilar, José Omar Moncada Maya, (1 de agosto de 2010), Las áreas verdes de la ciudad de México. Un reto actual, Revista electrónica de geografía y ciencias sociales, Vol. XIV, núm. 331 pp. 56, Recuperado de http://www.ub.edu/geocrit

y área de servicio de las áreas verdes. Las áreas verdes de mayor tamaño pueden encontrarse en menor número y más alejadas, en cambio las plazas o pequeñas áreas que se encuentran al interior de los barrios debieran encontrarse a una distancia tal que se pueda acceder en un tiempo no superior a 10 o 15 minutos de caminata (Colesy Bussey, 2000; Handley et al., 2003). 6 A consecuencia de la concientización que se ha tenido en diferentes ciudades del mundo sobre la importancia de existencia de áreas verdes en el Plan Regional de Nueva York estableció que deberían ser once metros cuadrados de área verde por habitante; en el London County Plan son dieciséis metros cuadrados, y el Plan de Extensión de París se implantó que fuera de 17 metros cuadrados.

## 3.1.1.3-Áreas verdes en la Zona Metropolitana de la Cuidad de México

La Secretaría del Medio Ambiente (SMA) perteneciente al Gobierno del Distrito Federal (GDF), ha buscado normar y desarrollar las áreas verdes urbanas. Realizando en el 2003 el primer inventario de áreas verdes que serviría como instrumento de control para el manejo y desarrollo de las áreas verdes.

A partir del estudio, en el 2003, la cobertura de áreas verdes en el DF era de 20.4% del suelo urbano. Incluyendo en el análisis áreas verdes públicas y privadas. A los cuales por sus propias características no tiene acceso el general de la población. Además de ese porcentaje solo el 55.9% corresponde a zonas arboladas que brindan mayores beneficios al medio ambiente. Cuestión que lleva a observar que solo 8.4m2 de área verde corresponden a cada habitante, nivel inferior al mínimo estipulado y muy por debajo de un nivel adecuado de desarrollo social.

A lo anterior se agrega el hecho de que sólo un pequeño porcentaje de esta área se considera con mantenimiento y de libre acceso, reduciendo con ello a 5.3m2 por habitante. Esto ya descontando área verde privada, áreas sin mantenimiento o posibilidades de acceso, barrancas en suelo urbano entre otros.

16

<sup>&</sup>lt;sup>6</sup> EURE, (DICIEMBRE 2010), Distribución, superficie y accesibilidad de las áreas verdes en Santiago de Chile, Vol. 36, núm. 109, DICIEMBRE 2010, pp. 89 110, Recuperado de , http://www.scielo.cl

En la tabla 2 se puede observar que Álvaro Obregón es una de las delegaciones que más aporta al entorno social en materia de áreas verdes permeables y que mitigan tanto el cambio climático como la generación de CO2 en suelo urbano.

Ilustración 3 Áreas verdes en conjunto habitacional en Lomas de Tarango, Álvaro Obregón.



Fuente: Álvaro Obregón, (2017) Lomas de Trarango, Recuperado de, http://propiedades.com

## Áreas verdes por delegación, Distrito Federal

Tabla 2 Áreas verdes por delegación

| DELEGACIÓN             | Área<br>Km²(*) | Total<br>áreas<br>verdes<br>km² | % sup. de<br>áreas verdes<br>por<br>delegación | % zonas<br>arboladas | % zonas<br>de pasto<br>y<br>arbustos | Áreas<br>verdes/<br>habitante<br>en m² | Zonas<br>arboladas<br>por<br>habitante<br>m² | % de Población<br>(2000) |
|------------------------|----------------|---------------------------------|------------------------------------------------|----------------------|--------------------------------------|----------------------------------------|----------------------------------------------|--------------------------|
| Álvaro Obregón         | 61.12          | 24.59                           | 40.2                                           | 64.5                 | 35.5                                 | 35.8                                   | 23.1                                         | 8.1                      |
| Azcapotzalco           | 33.51          | 4.28                            | 12.8                                           | 54.7                 | 45.3                                 | 9.7                                    | 5.3                                          | 5.2                      |
| Benito Juárez          | 26.5           | 1.19                            | 4.5                                            | 99.0                 | 1.0                                  | 3.3                                    | 3.3                                          | 4.2                      |
| Coyocán                | 54.01          | 20.13                           | 37.3                                           | 76.7                 | 23.3                                 | 31.4                                   | 2.1                                          | 7.5                      |
| Cuajimalpa             | 15.08          | 5.55                            | 36.8                                           | 46.4                 | 53.6                                 | 36.7                                   | 17.0                                         | 1.8                      |
| Cuauhtémoc             | 32.67          | 1.81                            | 5.5                                            | 74.0                 | 26.0                                 | 3.5                                    | 2.6                                          | 6.1                      |
| G. A. Madero           | 87.29          | 14.26                           | 16.3                                           | 47.3                 | 52.7                                 | 11.5                                   | 5.4                                          | 14.5                     |
| Iztacalco              | 23.12          | 2.25                            | 9.7                                            | 54.7                 | 45.3                                 | 5.5                                    | 3.0                                          | 4.8                      |
| Iztapalapa             | 113.37         | 18.32                           | 16.2                                           | 27.1                 | 72.9                                 | 10.3                                   | 2.8                                          | 20.8                     |
| Magdalena<br>Contreras | 14.08          | 1.82                            | <mark>16.2</mark>                              | 27.1                 | <mark>72.9</mark>                    | 10.3                                   | 2.8                                          | <mark>20.8</mark>        |
| Miguel Hidalgo         | 47.69          | 8.89                            | 18.6                                           | 57.3                 | 42.7                                 | 25.2                                   | 5.7                                          | 2.6                      |
| Tláhuac                | 19.17          | 2.27                            | 11.8                                           | 4.4                  | 95.6                                 | 7.5                                    | 0.3                                          | 3.6                      |
| Tlalpan                | 48.29          | 11.80                           | 24.4                                           | 88.9                 | 11.1                                 | 20.3                                   | 18.0                                         | 6.8                      |
| Venustiano<br>Carranza | 33.87          | 5.23                            | 15.4                                           | 23.5                 | 76.5                                 | 11.3                                   | 2.7                                          | 5.4                      |
| Xochimilco             | 22.90          | 5.89                            | 25.7                                           | 60.8                 | 39.2                                 | 15.9                                   | 9.7                                          | 4.3                      |
| Distrito Federal       | 632.66         | 128.28                          | 20.4                                           | 55.9                 | 44.1                                 | 15.1                                   | 8.4                                          | 100                      |

<sup>\*</sup>Estas cifras de área no incluyen las delegaciones con suelo de conservación, salvo los casos de G.A. Madero e Iztapalapa, cuyo porcentaje de SC es poco significativo

Fuente: María del Carmen Meza Aguilar, José Omar Moncada Maya, (1 de agosto de 2010), Las áreas verdes de la ciudad de México. Un reto actual, Revista electrónica de geografía y ciencias sociales, Vol. XIV, núm. 331 pp. 56, Recuperado de http://www.ub.edu/qeocrit

#### 3.1.2-La problemática del Agua en la Cuidad de México

#### Introducción

El término de "disponibilidad del agua" se refiere al volumen total de líquido que hay en una región, y para conocer la cantidad de agua que existe para cada habitante, se divide el volumen del agua entre la cantidad de personas que habitan dicha región. De ahí obtendríamos entonces la disponibilidad de metros cúbicos por habitante.

En México existe una desigualdad muy grande en cuanto a la disponibilidad y acceso al agua. Las zonas centro y norte de México son, en su mayor parte, áridas o semiáridas y los estados norteños reciben solo el 25% de agua de lluvia. Para las regiones del sureste se cuenta con casi el doble del agua de lluvia, es decir, un 49.6%. Aunque en el sur,

también llueve mucho, sus habitantes tienen menor acceso a agua potable, y las viviendas no cuentan con los servicios básicos, como es el agua entubada.

En lo que respecta al valle de México, en este caso en donde estará situado el proyecto, tenemos la disponibilidad anual más baja de agua que es de 186 m³ por habitante mientras que en el sureste, principalmente en la región fronteriza donde hay más lluvia se estiman más de 24,000 m³ por habitante.



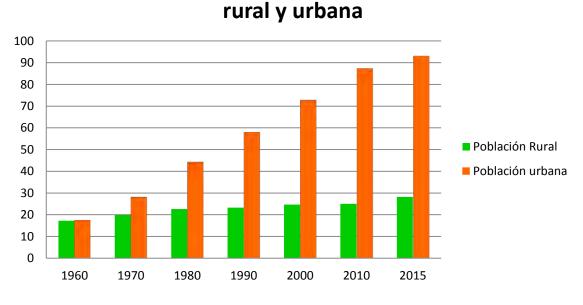
Ilustración 4 Disponibilidad de agua por habitante

Fuente: Secretaría de Medio Ambiente y recursos Naturales (SEMARNAT), (2007), México CDMX, ¿Y el medio ambiente?

Problemas en México y el mundo. México, Recuperado de http://biblioteca.semarnat.gob.mx

#### 3.1.2.1-Población

De acuerdo con la Encuesta Nacional de Hogares, del INEGI, en 2015 en México se estimaron 121.1 millones de personas, de las cuales el 23.3% que representa a 28.2 millones de habitantes, viven en localidades rurales o de menos de 2,500 habitantes y el 76.7% de la población de nuestro país que está conformada por 93 millones, está situada en las localidades urbanas o de más de 2,500 habitantes.<sup>7</sup>

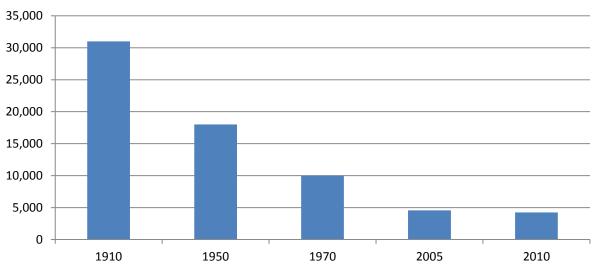

<sup>&</sup>lt;sup>7</sup> Instituto Nacional de Estadística y Geografía INEGI, (30 de junio del 2016), México, Aguascalientes, Encuesta nacional de los hogares 2015, Recuperado de http://www.inegi.org.mx

Los hogares habitaron en un 93.3% en casas independientes en 2015. Aunque este porcentaje en localidades urbanas fue elevado 91.6%, lo fue también el porcentaje de hogares que habitaron en departamento en edificio 6.7% comparado con los hogares de las localidades rurales, que tan solo representaron el 0.1% en estas viviendas. El porcentaje de hogares que habitaron en otro tipo de viviendas como: cuartos en azotea, locales no construidos para vivienda, o no especificados, representaron solo el 1.4% a nivel nacional, 0.3% en localidades rurales y 1.8% en urbanas. Para la ciudad de México se tiene un promedio de habitantes por hogar de 3.4

La proyección de INEGI para la población es de 137.5 millones de personas para el 2030, actualmente en el país existen 59 zonas metropolitanas en las que se concentra el 56.9% de la población total de nuestro país lo cual nos habla de un hacinamiento y mayor demanda de servicios que en localidades urbanas.

Crecimiento de la población por localidad

Gráfica 5 Crecimiento poblacional rural y urbana



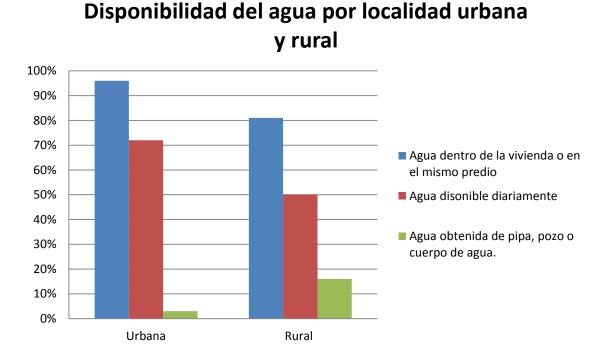

Fuente: Elaboración propia a partir de datos del Instituto Nacional de Estadística y Geografía (INEGI) 2010 y Comisión Nacional del Agua (Conagua) Estadísticas del agua en México 2015.

Como lo podemos apreciar en la gráfica número 6 a consecuencia del crecimiento de la población, la disponibilidad metros cúbicos por habitante ha disminuido de manera considerable, podemos observar que en 1910 era de 31,000 m3 por habitante al año. en 1950 disminuyo hasta un aproximado de 18,000 m3, en 1970 se tuvieron cerca de 10,000 m3, para el 2005 fue de 4,573 m3 y para 2010 cayó la disponibilidad a 4,230 m3 al año en promedio nacional.

Gráfica 6 Disminución en la disponibilidad de agua en metros cúbicos por habitante

# Metros cúbicos por habitante promedio nacional (anual)




Fuente: Elaboración propia a partir de datos del Instituto Nacional de Estadística y Geografía (INEGI) 2010.

En el censo poblacional del 2010 indica que en nuestro país el porcentaje de viviendas con disponibilidad de agua fue de aproximadamente 89% lo que representan 74 millones de personas, el restante 11% de la población cuenta con agua entubada fuera de la vivienda pero dentro del terreno donde se encuentra su predio, así como de pozos, ríos, de la llave pública, pipas de agua u obteniendo el agua de otra vivienda. De acuerdo a la encuesta nacional de los hogares en 2015 el 93% de los hogares recibió agua dentro de la vivienda, o fuera de la vivienda pero dentro del terreno, 6% obtuvieron el agua de pipa, pozo, o algún cuerpo de agua existente en la localidad, mientras que el 1% de hogares, la obtuvieron de la llave pública, o siendo proporcionada por otra vivienda.

En la gráfica número 7 podemos observar que en las localidades rurales de México solo el 81% de los hogares cuentan con agua dentro de la vivienda, o fuera de la vivienda pero dentro del terreno, porcentaje menor comparado con el 96% hogares en localidades urbanas, mientras que el 72% de localidades urbanas tienen agua diariamente

disponible, solo el 50% de localidades rurales cuenta con ese servicio. En cuanto al abastecimiento del vital líquido a través de otros medios como los cuerpos de agua, pozo o pipa, en localidades urbanas solo es de un 3%, en contraste con las localidades rurales el cual representa un 16% de las viviendas que obtienen el agua de esta manera.

Gráfica 7 Disponibilidad del agua por localidad



Fuente: Elaboración propia a partir de datos del Instituto Nacional de Estadística y Geografía INEGI, Encuesta Nacional de los Hogares 2015.

Ilustración 5 Niños de localidad rural en Oaxaca transportando agua

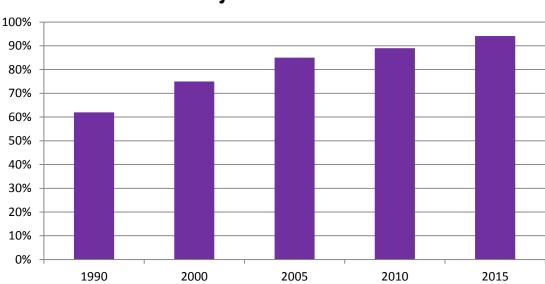


Fuente: José Luis de la Cruz (27 de Abril del 2017), Proceso, México, Oaxaca, Recuperado de http://www.proceso.com.mx

Tabla 3 Disponibilidad de agua en los hogares por tamaño de la localidad

# Porcentaje de hogares que obtienen agua por medios y frecuencia según tamaño de la localidad, 2015

|                                                                       | Total      |       | De menos de<br>2 500 habitantes |       | De 2 500<br>y más habitantes |       |
|-----------------------------------------------------------------------|------------|-------|---------------------------------|-------|------------------------------|-------|
| -                                                                     | Hogares    | %     | Hogares                         | %     | Hogares                      | %     |
| Total                                                                 | 31,849,822 | 100%  | 6,963,327                       | 100%  | 24,886,495                   | 100%  |
| Dentro de la vivienda, o fuera de la vivienda pero dentro del terreno | 29,573,010 | 92.9% | 5,646,802                       | 81.1% | 23,926,208                   | 96.1% |
| Diario                                                                | 21,574,559 | 67.7% | 3,570,630                       | 51.3% | 18,003,929                   | 72.3% |
| Cada tercer dia                                                       | 4,124,413  | 12.9% | 1,107,980                       | 15.9% | 3,016,433                    | 12.1% |
| Dos veces por semana                                                  | 1,730,955  | 5.4%  | 433,711                         | 6.2%  | 1,297,244                    | 5.2%  |
| Una vez por semana                                                    | 1,295,711  | 4.1%  | 341,506                         | 4.9%  | 954,205                      | 3.8%  |
| De vez en cuando                                                      | 847,372    | 2.7%  | 192,975                         | 2.8%  | 654,397                      | 2.6%  |
| Entubada de la llave pública, o<br>que acarrean de otra vivienda      | 440,242    | 1.4%  | 204,367                         | 2.9%  | 235,875                      | 0.9%  |
| De pipa, pozo, rio, lago, arroyo u otra                               | 1,836,570  | 5.8%  | 1,112,158                       | 16.0% | 724,412                      | 2.9%  |


Nota: Los totales pueden no sumar cien por ciento debido al redondeo.

Fuente: Comisión Nacional del Agua (Conagua), (Edición 2014), México CDMX, Estadísticas del agua en México. Recuperado de http://www.conagua.gob.mx

#### 3.1.2.2-Drenaje

En la gráfica número 8 se muestra el crecimiento de la existencia del drenaje a nivel nacional a partir de 1990, año en el que el 62% de las viviendas contaban con drenaje, el porcentaje en el año 2000 creció a un 75%, para 2005 fue de 85%, en 2010 llegó al 89% y para el 2015 se estimó que el 94.1% cuenta con drenaje conectado a la red pública.

Gráfica 8 Drenaje existente en México



## Drenaje a nivel nacional

Fuente: Elaboración propia a partir de datos del Instituto Nacional de Estadística y Geografía (INEGI) 2010.

Como hemos observado anteriormente el incremento de la población es mayor en las localidades urbanas, mientras que la población rural crece a menor velocidad. Así como sucede con el agua potable, la evolución de la población con cobertura de alcantarillado está en aumento, lo que también significa una mayor carga a la red existente en la localidad.

#### 3.1.2.3-Precipitación pluvial

En México tenemos un total de 1, 489,000 millones de m3 de agua en forma de precipitación al año, de esta agua, se estima que el 71.6% se evapora, el 22.2% se recupera en ríos, arroyos o lagos, y el 6.2% restante se infiltra al subsuelo y recarga los acuíferos.<sup>8</sup>

Para la ciudad de México se registra una precipitación media anual de 682,800 m3, de los cuales el 72% se evapora, el 4% se recupera en aguas superficiales, 14% se escurre y 11% se filtra para la recarga de los acuíferos. El agua de escurrimiento y recarga representa el agua disponible realmente para los habitantes de la cuidad se traduce en 1,688 hm3 por año.

La extracción de agua para la Zona Metropolitana de la Cuidad de México es de 2,922 hm3 al año. Lo que significa que está rebasando la disponibilidad natural de la cuenca en un 173%. Como parámetro de la ONU (Organización de las Naciones Unidas) una explotación mayor al 40% de las capacidades naturales del sitio signifa una presión fuerte sobre los mantos acuíferos. Distribución de la Precipitacion en la Cuidad de México

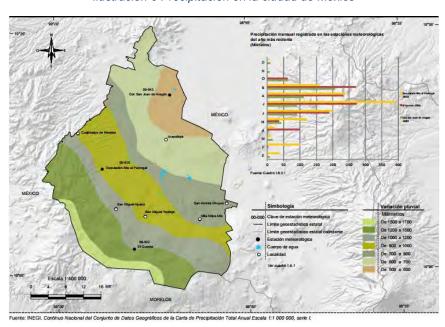
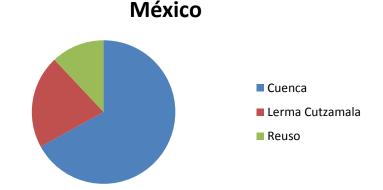



Ilustración 6 Precipitación en la ciudad de México

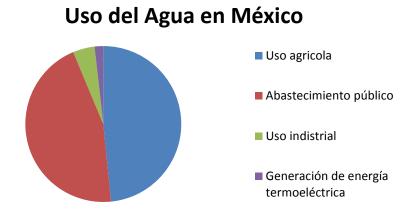
Fuente: Instituto Nacional de Estadística y Geografía (INEGI) (2010), México CDMX, Anuario estadístico y geográfico del Distrito Federal 2014, Recuperado de http://www.datatur.sectur.gob.mx


<sup>&</sup>lt;sup>8</sup> Comisión Nacional del Agua (Conagua), (Edición 2014), México CDMX, Estadísticas del agua en México, Recuperado de http://www.conagua.gob.mx

## 3.1.2.4-Extracción del agua para la cuidad de México

Como podemos apreciar en la gráfica número 9 del agua extraida para la cuidad de México 67% proviene de la cuenca, el 21% se obtiene del sistema Lerma Cutzamala mientras que solo el 12% viene de aguas de reuso.

Gráfica 9 Extracción de agua en la CDMX


Agua extraida para la Ciudad de



Fuente: Elaboración propia a partir de datos del texto, Nuria Merce Ortega Font (2011) México CDMX, El agua en números, Recuperado de, http://www.uam.mx/difusion/casadeltiempo

3.1.2.5-Uso del agua en la Zona Metropolitana de la Ciudad de México En la gráfica 10 podemos observar que en México el 48.8% del agua se emplea para uso agrícola, el 45.3% es para el abastecimiento público, el 4.5% es para uso industrial y el 1.8% para la generación de energía termoeléctrica.

Gráfica 10 Uso del agua



Fuente: Elaboración propia a partir de datos del texto, Nuria Merce Ortega Font (2011) México CDMX, El agua en números, Recuperado de, http://www.uam.mx/difusion/casadeltiempo

En cuanto a la Cuidad de México la medida de consumo diario por habitante es de 314 litros, aunque el 77% de la población consume menos de 150 litros por día. Es importante observar que un habitante de la delegación Iztapalapa, quienes sufren constantemente por el desabastecimiento del agua, representan solo una cuarta parte del agua consumida por una persona de la delegación Cuajimalpa. También es importante hacer notar que un dato alarmante es que entre el 30% y el 40% de agua suministrada a la ciudad de México se pierde por fugas de la red.

#### Sistema Cutzamala

Si bien este sistema es el más importante para la ciudad de México ya que abastece a 11 delegaciones de la cuidad y once municipios del Estado de México, el sistema Cutzamala es también uno de los sistemas de suministro de agua potable más grandes del mundo, y estar catalogado dentro de los más grandes no solo implica el que suministra aproximadamente 485 millones de metros cúbicos al año, sino por el desnivel de 1,100 m que tiene que afrontar.

El sistema Cutzamala aporta el 17% del abastecimiento para la Cuenca del Valle de México, calculado en 88 m³ por segundo, que se complementa con el Sistema Lerma en un 5%, y con la extracción de agua subterránea en un 68%, con ríos y manantiales 3% y el resto es agua de reúso.

Este sistema se conforma por siete presas derivadoras y de almacenamiento, seis estaciones de bombeo y una planta potabilizadora.

Para realizar el bombeo necesario para vencer el desnivel, se requiere de un significativo consumo de electricidad. La electricidad necesaria para el año 2013 fue de 1, 200, 088,371 kWh, lo que representó el 0.5% de la generación total de energía eléctrica del país, y su costo fue de \$1,996.7 millones de pesos, y este presupuesto represento el 4.8% del presupuesto implementado por la Conagua.

En la tabla 4 a continuación podemos observar los volúmenes proporcionados anuales de agua y el consumo eléctrico demandado por el Sistema Cutzamala en el periodo2005- 2013.

Tabla 4 Volúmenes anuales de agua y consumo eléctrico del Sistema Cutzamala

|      |                                | Consumo                        |        |               |  |
|------|--------------------------------|--------------------------------|--------|---------------|--|
| Año  | Entrega al Distrito<br>Federal | Entrega al Estado de<br>México | Total  | (kWh)         |  |
| 2005 | 310.39                         | 182.80                         | 493.19 | 1 414 293 873 |  |
| 2006 | 303.53                         | 177.26                         | 480.79 | 1 353 071 190 |  |
| 2007 | 303.90                         | 174.56                         | 478.46 | 1 388 314 682 |  |
| 2008 | 306.25                         | 179.47                         | 485.72 | 1 287 053 439 |  |
| 2009 | 244.60                         | 155.38                         | 399.97 | 1 135 976 290 |  |
| 2010 | 266.85                         | 165.84                         | 432.69 | 1 262 974 766 |  |
| 2011 | 296.46                         | 182.17                         | 478.63 | 1 417 659 193 |  |
| 2012 | 272.54                         | 190.96                         | 463.50 | 1 366 497 158 |  |
| 2013 | 255.05                         | 165.19                         | 420.24 | 1 200 088 371 |  |
|      |                                |                                |        |               |  |

Fuente: Instituto Nacional de Estadística y Geografía (INEGI) (2010), México CDMX, Anuario estadístico y geográfico del Distrito Federal 2014, Recuperado de http://www.datatur.sectur.gob.mx

Michoacan de Ocampo

Taspan

S inn

Chilesdo
1.5 frm

P.B. 3

P.B. 4

P.B. 4

P.B. 4

P.B. 3

Value de Brano
354.4 hmr

Estado de México

Colorines
1.5 fmr

Figura de Gro

Colorines
1.5 fmr

Estado de México

Estado de México

Colorines
1.5 fmr

Estado de México

Colori

Torre

Fuente: Instituto Nacional de Estadística y Geografía (INEGI) (2010), México CDMX, Anuario estadístico y geográfico del Distrito Federal 2014, Recuperado de http://www.datatur.sectur.gob.mx

## 3.1.2.6-Plantas potabilizadoras en México

En 2014 se potabilizaron 96.3 m³/s en las 779 plantas en operación del país. La distribución de las plantas potabilizadoras se muestra en la tabla 5 por región hidrológico-administrativa, y por entidad federativa. Cabe destacar que se incluye la planta de los Berros en la región hidrológico-administrativa IV Balsas.

Tabla 5 Plantas potabilizadoras en operación

| Número de RHA | Número de plantas en operación | Capacidad instalada (m³/s) | Caudal potabilizado (m³/s) |
|---------------|--------------------------------|----------------------------|----------------------------|
| I             | 44                             | 12.37                      | 7.17                       |
| П             | 24                             | 5.58                       | 2.29                       |
| Ш             | 156                            | 9.47                       | 8.44                       |
| IV            | 23                             | 22.89                      | 17.25                      |
| V             | 9                              | 3.23                       | 2.61                       |
| VI            | 63                             | 27.17                      | 14.28                      |
| VII           | 123                            | 0.71                       | 0.53                       |
| VIII          | 164                            | 20.24                      | 15.40                      |
| IX            | 47                             | 8.19                       | 7.40                       |
| X             | 13                             | 7.09                       | 4.59                       |
| XI            | 46                             | 14.62                      | 11.05                      |
| XII           | 1                              | 0.03                       | 0.02                       |
| XIII          | 66                             | 6.47                       | 5.25                       |
| Total         | 779                            | 138.05                     | 96.27                      |

Fuente: Instituto Nacional de Estadística y Geografía (INEGI) (2010), México CDMX, Anuario estadístico y geográfico del Distrito Federal 2015, Recuperado de http://www.datatur.sectur.gob.mx

## 3.1.2.7-El costo del agua en la Ciudad de México

En la ciudad de México se producen 1, 072, 783,000 m3 de agua cada año; el costo unitario por lito es de \$2.02 pesos.

El porcentaje de agua suministrada con respecto a la producida es de 66% y el costo unitario del m3 de agua suministrado es de \$3.08 pesos. El precio promedio del m3 de agua es de \$5.45 pesos, que incluye abasto, suministro, desalojo y saneamiento.

## La inversión en el subsector de agua potable, drenaje y saneamiento

Para el 2013, el 61.9% de la inversión fue de origen federal, en tanto que las entidades federativas aportaban el 15.8%. Los municipios y otras fuentes como lo son las comisiones estatales, desarrolladores de vivienda, créditos y aportaciones de la iniciativa

privada suman el 8.9%. Y en cuanto a lo referente a estudios, proyectos y supervisión ocupa el 13.3% restante.

#### 3.1.2.8-Inundaciones

La Conagua (Comisión Nacional del Agua) ha alertado del riesgo existente de una inundación de grandes proporciones que podría afectar a casi 9 millones de habitantes de la cuidad y el estado de México, en un área de 650km2, las delegaciones Benito Juárez, Coyoacán, Cuauhtémoc, Gustavo A. Madero, Iztacalco, Iztapalapa, Tláhuac, Tlalpan y Venustiano Carranza, así como los municipios de Nezahualcóyotl, Ecatepec, Chalco, y Valle de Chalco Solidaridad, además de dejar sin operación al aeropuerto internacional Benito Juárez, esta conclusión surgió a partir de las inundaciones que afectaron a la ciudad de México en el 2005.

Además en promedio la cuidad se hunde 10 cm al año, y existen algunas zonas que pueden hundirse más, como el centro de la cuidad y el aeropuerto que sufre de un hundimiento de hasta 40 cm anuales.

Ilustración 8 Inundaciones en las delegaciones Álvaro Obregón y Benito Juárez



Fuente. Hidro pluviales soluciones, (4 de Septiembre del 2015) México CDMX, Intensa Iluvia supera capacidad del drenaje del DF, Recuperado de, http://hidropluviales.com

Cadena política (28 de Junio del 2017) México, CDMX, Circuito interior se inunda y diversas zonas de CDMX, Recuperado de http://cadenapolitica.com

#### 3.1.3-Problemática de la vivienda y demanda de servicios en la Cuidad de México.

En la cuidad se han hecho políticas generadas a impulsar la construcción de viviendas en su mayoría de departamentos. Tan solo el año pasado se construyeron 138 proyectos habitacionales incluidos en las 564 obras que se construyen actualmente, y de las cuales el 92% son edificios de departamentos.

Esto genero un crecimiento de 32% en los últimos 8 años. El total de casas construidas en 2006 representaban el 3% y para el 2014 represento el 36% del total de viviendas.<sup>9</sup>

A consecuencia del crecimiento poblacional y la concentración de la población en la ciudad de México los terrenos existentes para la construcción de vivienda se utilizan para el establecimiento de departamentos incrementando con ello la densificación y por tal el requerimiento de servicios en la zona.

La oferta de vivienda en la ciudad de México aumento en un 18.4%, al pasar de 11,391 viviendas a 13,489 tan solo de abril a junio de 2015. Las delegaciones Benito Juárez, Álvaro Obregón y Cuauhtémoc son las que concentran el 57% de la oferta y demanda de viviendas. En cuanto a la construcción de casas se tienen 47 proyectos mayores que actualmente se están llevando a cabo de los cuales están situados principalmente en las delegaciones Álvaro Obregón y Magdalena Contreras.

La delegación donde se compra y vende más vivienda es Benito Juárez, mientras que la que tiene una menor velocidad de venta es Gustavo A. Madero.

Podemos observar que en estos últimos años la vivienda en forma de departamentos es cada vez más costosa, ocasionada por la concentración de la población y la alta demanda de vivienda que se tiene en dicha área, además que es más complejo construir un edificio con varios pisos y departamentos que una casa, debido a la implementación de un proyecto más desarrollado que requiere de arquitectura e ingeniería así como de materiales más especializados.<sup>10</sup> Aunado esto existe también el problema de la

<sup>10</sup> Eduardo Venegas, (28 de Marzo del 2017) La Razón, México CDMX, Nueve de cada 10 viviendas en DF son departamentos, Recuperado de http://www.razon.com.mx

<sup>&</sup>lt;sup>9</sup> Claudia Alcántara, (19 Diciembre del 2014), El Financiero, México CDMX, Construcción de departamentos sube un 32% en 8 años, Recuperado de http://www.elfinanciero.com.mx

especulación por parte de las empresas inmobiliarias con el fin de incrementar los costos de los desarrollos así como la re densificación acelerada de la ciudad por parte de las empresas constructoras con sus propios intereses.

En distintos puntos de la Cuidad ya se han manifestado diversas inconformidades por parte de la población debido a que la construcción de grandes edificios demandan una mayor cantidad de agua que termina siendo insuficiente, dejando a los vecinos de las colonias aledañas con una menor disponibilidad de agua, como ejemplo en la delegación Coyoacán se han mostrado diversas manifestaciones por los recortes de agua generados por la construcción de complejos de departamentos residenciales, delegación en la que no se tenían tantos reportes por falta de suministro de agua hace solo algunos años. <sup>11</sup>

No se ha establecido un límite para el desarrollo urbano, sobre todo en Zonas donde no se cuenta con una garantía del abasto de agua, según lo menciona el Presidente de la Comisión de Desarrollo Urbano de la Confederación Patronal de la República Mexicana, Ignacio Cabrera, el cual también señalo que en las zonas donde hay más proyectos de construcción inmobiliaria, es donde existe un riesgo importante de que no funcione en óptimas condiciones el sistema hidráulico, como son las delegaciones ya mencionadas anteriormente con problemas de sobrepoblación y vivienda en forma de departamento, Benito Juárez, Álvaro Obregón, Coyoacán y Cuauhtémoc, dos de las delegaciones que colindan con el terreno de proyecto propuesto. Además de señalar que hace tiempo que se debió de hacer un plan de desarrollo urbano, con base en un plan hidráulico, para saber aquellas zonas donde no se podría abastecer el aqua de manera adecuada<sup>12</sup>

El gobierno capitalino actual encabezado por Miguel Ángel Mancera no han tenido grandes avances en cuanto a la inversión se refiere. Se invierten menos de 2,000 millones de pesos al año, lo que ha mantenido un atraso considerable en cuanto al abastecimiento necesario que se requiere, ya que en la Ley General de Aguas y en la constitución no

<sup>&</sup>lt;sup>11</sup> Ilich Valdez, (11 de Octubre del 2016), Milenio, México CDMX, Vecinos Clausuran obra en Coyoacán por falta de agua. Recuperado de http://www.milenio.com

<sup>&</sup>lt;sup>12</sup> María Fernanda Navarro, (23 de Marzo del 2017), EXCELSIOR, México CDMX, Límite a viviendas llega tarde; abasto de agua, Recuperado de http://www.excelsior.com.mx

habla del derecho que tiene cada habitante de disponer con el agua suficiente diariamente para cubrir sus necesidades con media de 150 litros por habitante al día. <sup>13</sup>

Todo esto sumado a un cambio climático que pone en gran riesgo el abasto de agua potable por los medios tradicionalmente empleados y generando una crisis de impacto global si no se emplean métodos más eficientes de captación, manejo, saneamiento y reutilización del agua.

-

<sup>&</sup>lt;sup>13</sup> Ilich Valdez, (19 de abril del 2016), Milenio, México CDMX, CdMx se rezaga en obras para distribuir agua, Recuperado de http://www.milenio.com

#### 3.1.4-Conclusión

La importancia de que el proyecto genere una zona que ofrezca áreas verdes a un contexto en densificación constante se ve avalado por las necesidades de este tipo de espacios ya que aún con ello se está muy por debajo de lo ideal en cuanto a salud en el desarrollo de una población se refiere.

Uno de los puntos importantes en el diseño mismo es que en el predio se propone no talar ningún árbol en la zona, ya que estos tienen una edad considerable y se perdería una gran capacidad de captación de CO2 así como de producción de oxígeno al querer reducir un amplio follaje a nuevos árboles de poca edad y follaje aún reducido.

Se considera también el remover amplias planchas de concreto y asfalto del uso anterior en el predio para cambiarlas por elementos vegetales como pasto que permite un desarrollo natural de la flora y fauna del sitio así como una importante reducción a las islas de calor.

Así mismo es de suma importancia generar un espacio físico donde se pueda concientizar a la gente sobre el uso y manejo del agua, sobre todo al observar que nuestro país atraviesa por una crisis en lo referente a la disponibilidad del agua, es decir; que la concentración de la creciente población en las zonas metropolitanas, ha provocado afectaciones significativas para el medio ambiente, y genera una fuerte demanda de servicios viales, sanitarios y de agua potable, mientras que la infraestructura y el abastecimiento de agua para la Ciudad de México no está siendo suficiente para cubrir plenamente la demanda actual, menos aún la demanda futura con la explosión demográfica citada.

# 3.2-Análisis de edificios análogos

El museo del siglo XXI está en un proceso de redefinirse a sí mismo, pues los paradigmas del siglo XX no están siendo suficientes para la velocidad y cantidad de información que el usuario puede llegar a manejar en la actualidad gracias a la tecnología.

La presentación de las exposiciones debe ser más dinámica e invitar a usuario a interactuar con ella, mientras que echa mano a las diferentes tecnologías para poder brindar información más precisa y detallada de aquello que le interese más al visitante. Evitando con ello una búsqueda de este entre toda la información para llegar a aquella que busca o le atrae.

Tal es la lectura de hoy día para responder a las notas rápidas de información a las que constantemente se está expuesto debido a la apertura de internet. Distando con ello de los conceptos y procesos que los siglos anteriores traían consigo en la exposición de temas en un museo.

Un ejemplo de este proceso es la creciente implementación de contenido virtual vinculado a la exposición física como complemento y ampliación del tema. Muestra de ello sería los puntos turísticos que anexan códigos de barras bidimensionales, que sirven para que el usuario pueda desde su dispositivo móvil descargar información relacionada. O el seguimiento que se hace del recorrido de la persona en algunos museos para al final hacerle llegar aquella información que más le ha interesado. Ejemplo de ello sería el MIDE (Museo Interactivo de Economía) ubicado en el centro histórico por mencionar alguno.

## 3.2.1-Parque Fundidora:

Ubicado en el corazón de la ciudad de Monterrey, Nuevo León, Parque Fundidora es el primer concepto de Parque Público Urbano en el norte de la República Mexicana. Siendo testimonio vivo de la historia de Monterrey, un acervo patrimonial del Estado en el cual conviven naturaleza, tradición y cultura para el goce de la comunidad.

Su superficie de 142 hectáreas brinda a los visitantes diversas áreas destinadas para el descanso, la recreación y la convivencia, brindando un espacio para realizar actividades multifacéticas como el deporte y el entretenimiento, así como actividades económicas, culturales y eventos de todo tipo, que son el eje para el desarrollo y esparcimiento de las personas.

La Misión de Parque Fundidora es brindar un espacio para el conocimiento y la diversión en un ambiente de armonía que enriquezca y retroalimente la vida de la comunidad.



Ilustración 9 Parque Fundidora

Fuente: Nuevo León Gobierno Ciudadano, Monterrey, Recuperado de http://www.parquefundidora.org

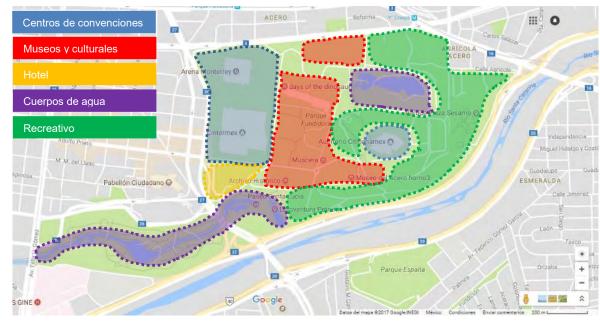



Ilustración 10 Contenido del programa fundidora

Fuente: Google. (s.f.). [Mapa de México, Álvaro Obregón, en Google maps]. Recuperado en 2015 de https://www.google.com.mx/maps

La rehabilitación de espacios industriales para la construcción de áreas de recreación, entretenimiento y áreas verdes son recientes, y viene de la segunda mitad del siglo XX cuando se empezaron a crear proyectos con este fin, uno de estos es el Parque Fundidora de Monterrey, que paso de ser una fundidora de hierro y acero, a uno de los sitios más emblemáticos y turísticos de la región, además de que es considerado un pulmón para la ciudad de Monterrey.

Antiguamente en lo que ahora es el Parque Fundidora se encontraba una empresa dedicada a producir acero, era una empresa de gran importancia no solo para la ciudad de Monterrey sino para todo el país. Dentro de la fábrica se encontró el primer alto horno instalado en América Latina, por lo que el lugar es considerado un Sitio Histórico relevante por la *American Society for Metals*. Este acervo cultural donde la naturaleza, la historia, y la tradición pueden observarse bien representadas en un en un mismo lugar, se ha convertido en una atracción turística significativa para la cuidad, ya que cuenta con espacios que han sido rehabilitados para actividades recreativas, deporte y entretenimiento.

Como podemos observar en la Ilustración 10 además de la historia que cuenta este parque, también posee instalaciones para practicar deporte, la Arena Monterrey donde se llevan a cabo conciertos, espectáculos y deportes, hay un hotel, un centro de negocios, la Plaza de los Visionarios, donde se rinde homenaje a los directivos que crearon la empresa acerera, el lago Aceración situado al Norte del parque, una gran plaza para

actividades recreativas, además de contar con el río artificial más largo de América latina que tiene una extensión de 2.5 kilómetros, llamado El Paseo de Santa Lucia que fue inspirado en el Riverwalk de San Antonio Texas. También podemos encontrar el museo de Historia Mexicana, cuenta con obras escultóricas y 24 fuentes, siendo la más icónica "La Lagartera" que parece una isla de peces y lagartos, así como la escultura Inukshuk que fue donada por el gobierno canadiense.

Hay 27 macro piezas distribuidas en jardines y andadores como parte del testimonio de la historia de Monterrey y de la zona industrial que alguna vez fue, y tiene 127 piezas de menor tamaño al interior del área industrial.<sup>14</sup>

## 3.2.2-Parque Bicentenario:

El Parque Bicentenario cubrió una necesidad sentida en el norte de la Ciudad de México por contar con espacios naturales y abiertos.

#### Cuenta con:

- Jardín Botánico, con una de las mayores colecciones de especies vegetales representativas de nuestro país
- Auditorios, para realizar diversas ceremonias y actos cívicos
- Áreas deportivas, con 4 canchas de basquetbol, 3 de volibol de piso firme, 2 de volibol playero y una cancha de futbol
- Zona de skate park (pista para patinetas y bicicletas)
- Más de 3.6 kilómetros de ciclo pista
- Área de picnic

·

Áreas verdes, para diferentes actividades deportivas y recreativas

• Museo de la Energía, donde exponen el proceso de saneamiento de los terrenos donde estuvo la Refinería 18 de marzo y los retos para la construcción del parque.

<sup>&</sup>lt;sup>14</sup> J.Monrroy, (11/OCT/2015), Parque Fundidora, Ingenio Industrial, Guadalajara Jalisco, INFORMADOR.MX, Recuperado de: http://www.informador.com.mx

Se propone un espacio seguro, divertido, a favor del medio ambiente, y que conjunte belleza, diseño y arquitectura modernista y sustentable en sus cuatro jardines



Ilustración 11 Parque Bicentenario

Fuente: Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), (18 de marzo de 2016), México CDMX, Recuperado de http:// www.parquebicentenario.gob.mx



Ilustración 12 Contenido de programa bicentenario

Fuente: Google. (s.f.). [Mapa de México, Álvaro Obregón, en Google maps]. Recuperado en 2015 de https://www.google.com.mx/maps

En 1933 se inauguró la primer Refinería en la Ciudad de México en la delegación Azcapotzalco, esta fábrica que ocupaba al inicio 60 hectáreas y paulatinamente se extendió hasta ocupar 174 hectáreas se llamó "Refinería 18 de Marzo" fecha en que fue inaugurada y también fecha en la que fue cerrada en 1991, esto como consecuencia de la contaminación del aire, suelo y subsuelo donde se encontró durante los 60 años que se mantuvo activa, las funciones de distribución y almacenamiento se trasladaron a una nueva refinería para evitar el desabasto de petrolíferos en la ZMVM y con ello mejoraban el ambiente de la cuidad, a pesar de que el cierre definitivo se decretó en 1991, fue hasta mayo del 2007 que se anunció la construcción de una parque en los terrenos que antes fueron la refinería, se construyó en 55 hectáreas que PEMEX donó a SEMARNAT, este nuevo parque se creó en Memoria de los Héroes de la independencia de México y adquirió su nombre al conmemorar los 200 años del acontecimiento histórico.

Para la construcción del parque se tuvo que dar un tratamiento especial a los terrenos, ya que por el largo tiempo de operación de la refinería, el suelo y subsuelo tuvieron que soportar una intensa actividad industrial, por lo que el proyecto de remediación también represento una acción de saneamiento de gran magnitud.<sub>15</sub>

Como demos observar en la ilustración 12, el parque bicentenario cuenta con extensas áreas recreativas, educacionales, un lago, jardín botánico y espacios propicios para el deporte.

40

<sup>&</sup>lt;sup>15</sup> Gamaliel Valderrama (17/03/2017) La refinería de la cuidad que se convirtió en parque, México CDMX, El Universal, Recuperado de http://www.eluniversal.com.mx

## 3.3-Normatividad

Según el plan de desarrollo para la delegación de Álvaro Obregón se observa que el uso destinado al predio es el de equipamiento. Con características constructivas de máximo 3 niveles y 30% de área libre. Además se ha considerado el Reglamento de construcciones para el distrito federal, así como sus normas técnicas complementarias (NTC). Por lo cual el proyecto deberá desarrollarse de tal modo que cumpla con dichas especificaciones y normas, pero considerando que el área libre debe ser significativamente mayor dado la inclusión de un parque urbano en el proyecto, que requiere de un área verde y permeable que lo conforme.

El predio cuenta con 52,261 m2, lo que como parámetro de diseño arrojaría un Coeficiente de Ocupación del Suelo o C.O.S. de 0.7 y un Coeficiente de Utilización del Suelo C.U.S. de 2. Siendo el área máxima construida de 109,748 m2. Dado que el proyecto se puede resolver en un área mucho menor este parámetro rebasa por mucho las necesidades del área de desplante, permitiendo con ello un cómodo alojamiento mientras se le da importancia a la parte ecológica en vegetación y absorción de agua pluvial.

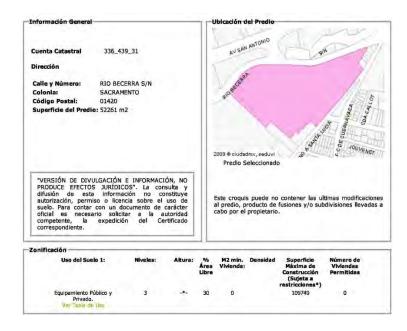



Ilustración 13 Información y Ubicación del Predio

Fuente: Gobierno del distrito Federal, Secretaría de Desarrollo Urbano y Vivienda (SEDUVI), Información geográfica, (2015), México CDMX, Recuperado de http://www.seduvi.cdmx.gob.mx

Ilustración 14 Río Becerra



Fuente: Jordy Baez, (2017), Pinterest, México, CDMX, Arquitectura y espacio público de la Ciudad de México, Recuperado de https://es.pinterest.com

HM 5/30/M PRESA BECERRA "S AV EA BLUERRA "S AV EA BLUERRA

Ilustración 15 Extracto del plan de desarrollo de la delegación Álvaro Obregón

Fuente: Secretaría de Desarrollo Urbano y Vivienda (SEDUVI), (2015), México CDMX, Programas Delegacionales de Desarrollo Urbano, Recuperado de http://www.data.seduvi.cdmx.gob.mx

Según lineamientos de SEDUVI (Secretaría de Desarrollo Urbano y Vivienda) obtenemos parámetros para el desarrollo de áreas y cantidad de usuarios que recibirán el servicio. Esto principalmente impactando en los cálculos relacionados con la afluencia y los espacios arquitectónicos así como de instalaciones.

# Demandas de equipamiento

El crecimiento poblacional genera una mayor demanda de servicios, tanto en suelo urbano como en suelo de conservación y poblados rurales.

La estimación del equipamiento que se mostrara a continuación en la tabla 6, se realizó determinando el número de unidades básicas, metros cuadrados y Módulos requeridos en la delegación a nivel local y regional, por lo que las demandas generadas por el incremento poblacional para el año 2015 son las siguientes:

Tabla 6 Estimaciones de requerimiento de equipamiento

| Elemento                   | -                     | mas de Dotaci   | Requerimientos |         |       |        |  |  |
|----------------------------|-----------------------|-----------------|----------------|---------|-------|--------|--|--|
| Combinio                   | Ubs                   | Hab/Ubs         | M2/Ubs         | Uhs     | M2    | Módulo |  |  |
| and the second             | Equi                  | pamiento Veci   |                |         |       |        |  |  |
| Jardin de Niños            | aula                  | 780             | 210            | 12,1    | 2.545 | 2,0    |  |  |
| Primaria                   | aula                  | 475             | 345            | 19,9    | 6.867 | 1,3    |  |  |
| Centro Social              | m²                    | 20              | 2              | 472,7   | 945   | 1.0    |  |  |
| Plaza Civica               | m <sup>2</sup> P      | 6               | 1.             | 1.575.7 | 1.576 | S/I    |  |  |
| Jardin Vecinal             | m <sup>2</sup> T      | 1               | 1              | 9.454,0 | 9.454 | S/I    |  |  |
| Canchas Deportivas         | m <sup>2</sup> T      | 1               | 1              | 9.454.0 | 9.454 | S/I    |  |  |
|                            | Equip                 | amiento de Ba   | rrio           |         |       |        |  |  |
| Secundaria General         | aula                  | 2,860           | 375            | 3,3     | 1.240 | 1,3    |  |  |
| Secundaria Tecnológica     | aula                  | 2,320           | 450            | 4.1     | 1,834 | 0.4    |  |  |
| Centro de Capacitación     | aula                  | 12,860          | 600            | 0.7     | 441   | S/D    |  |  |
| Clínica                    | Consult.              | 4,260           | 190            | 2,2     | 422   | 0,4    |  |  |
| Guarderia                  | aula                  | 3,900           | 135            | 2.4     | 327   | 0.5    |  |  |
| Mercado                    | puesto                | 160             | 24             | 59.1    | 1,418 | 0.:    |  |  |
| Estación de Autobús Urbano | andén                 | 16,000          | 300            | 0.6     | 177   | S/I    |  |  |
| Parque de Barrio           | m <sup>2</sup> T      | 1               | 1              | 9,454.0 | 9,454 | S/I    |  |  |
| Centro Deportivo           | m <sup>2</sup> T      | 2               | 1              | 4,727.0 | 4,727 | S/I    |  |  |
| Biblioteca                 | m <sup>2</sup> T      | 70              | 2.5            | 135,1   | 338   | 1.5    |  |  |
|                            | Equipamient           | o de Distrito o | Subcentro      |         |       |        |  |  |
| Bachillerato General       | aula                  | 9,100           | 525            | 1.0     | 545   | 0.1    |  |  |
| Bachillerato Técnico       | aula                  | 6,660           | 600            | 1.4     | 852   | 0.3    |  |  |
| Teatro: Auditorio          | butaca                | 120             | 6              | 78.8    | 473   | 0.7    |  |  |
| Hospital General           | cama                  | 1,110           | 170            | 8,5     | 1,448 | S/I    |  |  |
| Parque Urbano              | m T                   | - 1             | 1              | 9,454.0 | 9,454 | S/I    |  |  |
| Administración municipal   | m <sup>2</sup> const. | 50              | 2              | 189.1   | 378   | S/I    |  |  |
| Bomberos                   | bomba                 | 30,000          | 450            | 0.3     | 142   | 0.     |  |  |
|                            | Equipamiento a l      | Nivel de Centr  | o de Població  | 1       | -     |        |  |  |
| Licenciatura General       | aula                  | 8,750           | 880            | 1.1     | 951   | S/I    |  |  |
| Licenciatura Técnica       | aula                  | 6,000           | 880            | 1.6     | 1.387 | S/I    |  |  |
| Casa de la Cultura         | m² const.             | 70              | 2              | 135.1   | 270   | ST     |  |  |
| Museo                      | m² const.             | 160             | 2              | 59.1    | 118   | S/I    |  |  |
| Administración Estatal     | m² const.             | 200             | 2              | 47.3    | 95    | S/I    |  |  |
| Administración Federal     | m² const.             | 200             | 2              | 47.3    | 95    | S/I    |  |  |
| Unidad Emergencia          | cama                  | 10,000          | 50             | 0.9     | 47    | S/I    |  |  |
| Rastro Mecanizado          | m² const.             | 1,000           | 10             | 9.5     | 95    | S/E    |  |  |
| Reclusorio                 | m² const.             | 160             | 2              | 59.1    | 118   | S/D    |  |  |
| Encierro Autobuses         | cajón                 | 2,250           | 90             | 4.2     | 378   | S/E    |  |  |
| Central de Abasto          | m² const.             | 80              | 15             | 118.2   | 1,773 | S/D    |  |  |
| Central de Carga           | Módulo                | 10,000          | 1,000          | 0.9     | 945   | S/I    |  |  |
| Terminal Autobuses         | andén                 | 3,125           | 735            | 3.0     | 2,224 | S/D    |  |  |
| Cementerio                 | fosa                  | 35              | 5              | 270.1   | 1.351 | S/D    |  |  |

Fuente: Secretaria de Desarrollo Social (SEDESOL), (1999), México, Sistema normativo de equipamiento urbano, Tomo V, Recreación y deporte, Recuperado de https://www.gob.mx/sedesol

## 3.4-Aportaciones e innovaciones

El proyecto se compromete también a reducir su consumo energético por medio de un diseño bioclimático, eliminando con ello la necesidad de mantener climas artificiales al interior en su uso diario. Echando mano de ellos solo en situaciones o eventos anormales que puedan requerir un trabajo mecánico extra, como lo sería eventos mayores a los contemplados en su uso cotidiano.

La orientación, volumetría, materiales y sistemas pasivos se encargaran de mantener un clima de confort al interior del inmueble, asegurando en ello la satisfacción del usuario en su estancia. Mientras que se mantienen en la mejor forma las piezas, elementos, procesos o aquello que se requiera para la transmisión de información y exposición de temas que el museo pueda emplear para su funcionamiento adecuado y conveniente que de ser un clima más drástico o inestable al interior.

## 3.5-Conclusiones

El proyecto debe poder responder a las diversas necesidades que se han planteado sin que por ello su forma deje de ser sólida, estética o funcional, pues la primera responsabilidad es para con la reglamentación que asegure la seguridad al interior de los usuarios.

Del mismo modo se buscará el reutilizar el agua y reducir o eliminar el aporte de aguas negras al sistema de alcantarillado, mientras que se da énfasis al aprovechamiento de aguas pluviales. Dando con ello un ejemplo a los visitantes de que un edificio puede reducir significativamente su impacto ecológico no importando las características de este.

También se contará con espacios abiertos multipropósito que puedan servir como lugares de esparcimiento o foros de diversos tipos de eventos. Convirtiéndolo en un espacio multicultural que se aprecia en un contexto cada vez más densificado.

Se propondrá además un lago que sirva como vaso regulador del proyecto a la vez que como elemento estético y paisajístico en conjunto con sus áreas verdes y andadores.

# 4.- Metodología

## 4.1-Proceso de diseño bioclimático

## 4.1.1-Ubicación y descripción geográfica

Vista aérea de sitio en el que se observan sus dos vialidades circundantes así como su colindancia al estacionamiento antes mencionado.



Ilustración 16 Vista satelital del terreno

Fuente: Google. (s.f.). [Mapa de México, Álvaro Obregón, en Google earth]. Recuperado en 2015 de https://www.earth.google.com

## **Observaciones**

- a) Zona mayormente urbana con rio de aguas negras a 100m aprox. con 2 zonas con vegetación (coníferas, pastos, Pirul, otros) a 500m aprox. Así como al interior, y con pendiente predominante de oeste a este.
- b) Para el cálculo se emplearán los datos de las normales climatológicas 1951-2010 de la estación 9039 Presa de Tacubaya ubicada a 2.4km por ser la más cercana.
   Siendo sus coordenadas para efecto de diseño:

19°23'50"N / 099°12'45"W / 2340 MSNM

# 4.1.2-PRODUCCIÓN METABÓLICA

La carga de uso del inmueble se tiene pensado de acuerdo a los parámetros.

Número de usuarios al día: 800 en museo

Funcionamiento: 10:00 am a 5:00 pm Martes a domingo

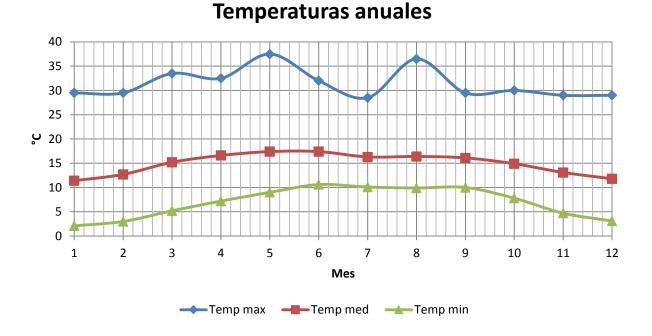
Horas de funcionamiento: 7h

Días de funcionamiento a la semana: 6

Se propone el empleo de la siguiente tabla 7 para los cálculos bioclimáticos pertinentes:

Tabla 7 Cálculo bioclimático

| ACTIVIDAD                        | W/m2      | MET     |
|----------------------------------|-----------|---------|
| DURMIENDO                        | 40        |         |
| RECLINADO                        | 45        |         |
| SENTADO, QUIETO                  | 60        | 0.8     |
| PARADO, RELAJADO                 | 70        | 1.2     |
| LEYENDO, SENTADO                 | 55        | 1       |
| ESCRIBIENDO                      | 60        | 1       |
| ESCRIBIENDO A MÁQUINA            | 65        | 1.1     |
| SENTADO, CÓMODO                  | 70        | 1.2     |
| PARADO, POCO TIEMPO              | 80        | 1.4     |
| CAMINANDO EN EL MISMO<br>ESPACIO | 100       | 1.7     |
| ACOMODAR PAQUETES                | 120       | 2.1     |
| COCINAR                          | 95 - 115  | 1.6 - 2 |
|                                  |           |         |
| LIMPIEZA                         | 115 - 200 | 2 - 3.4 |
| TRABAJO LIGERO                   | 115 - 140 | 2 - 2.4 |


Fuente: ASHRAE HANDBOOK, (1985) FUNDAMENTALS, AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR -CONDITIONING ENGINEERS, INC, EUA, Atlanta, Editorial Reviews.

#### 4.1.3-Análisis del Clima

## 4.1.3.1-Gráficas mensuales:

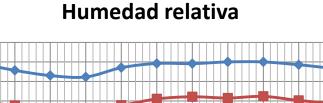
## a) Temperatura

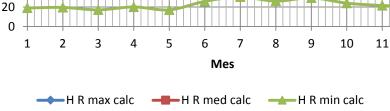
Gráfica 11 Temperatura



Fuente: Elaboración propia a partir de datos del Sistema Meteorológico Nacional, (2012) Estación climatológica 9039, México CDMX, Información Climatológica, Recuperado de http://smn.cna.gob.mx

Se puede apreciar una temperatura media fresca y constante, con incrementos de calor principalmente en mayo y agosto y descensos de la temperatura en diciembre y enero. Parámetros a considerar de acuerdo a la fórmula de confort térmico que determinará la temperatura deseable interior para el desarrollo confortable de la visita al inmueble por parte del usuario.


Para el ejemplo de cálculo de confort térmico por método de Termo referéndum que se empleará para ejemplificar el comportamiento de cargas térmicas al interior del proyecto, se empleará el mes más cálido y el más frio de acuerdo a las normales climatológicas del lugar.


# b) Humedad relativa

120 100 80

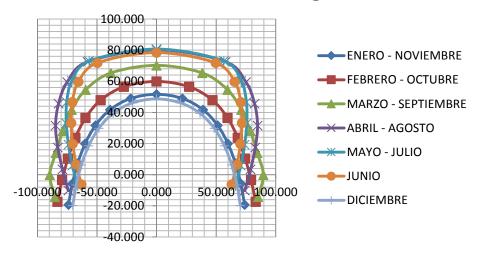
**%** 60

Gráfica 12 Humedad





Fuente: Elaboración propia a partir de datos del Sistema Meteorológico Nacional, (2012) Estación climatológica 9039, México CDMX, Información Climatológica, Recuperado de http://smn.cna.gob.mx

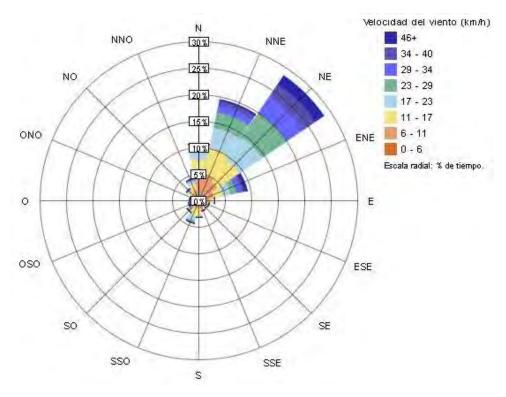

La humedad relativa que se observa es esencialmente constante sin grandes cambios anuales. Se deberá considerar las necesidades de humedad tanto para usuarios como para exposiciones.

12

# c) Radiación solar

Gráfica 13 Radiación solar

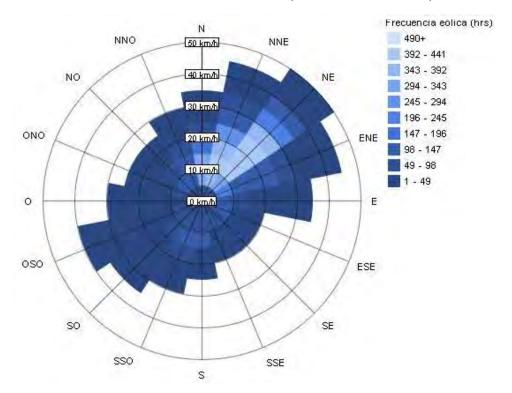
# **Grafica solar rectangular**




Fuente: Elaboración propia con base en cálculo de inclinación solar.

Grafica solar rectangular que servirá como referente de las inclinaciones y azimut solares anuales y específicamente a las fechas de cálculo.

## d) Viento


Gráfica 14 Rosa de los vientos anuales (distribución de velocidad)



Fuente: Autodesk (2016) Revit, Versión 2016.99.43.56 (DOE-2.2-48r), Software

Se observa una mayor procedencia de viento desde la zona Nor-Este del predio. Condición que podría ser aprovechada para ventilar eficientemente el proyecto de manera pasiva, ya sea por medio de infiltración o chimenea de calor, de acuerdo a las necesidades del edificio.

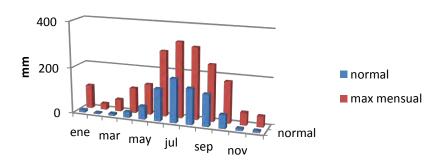
Nos indica también la ubicación posible de cuerpos de agua ya que a su paso sobre estos el viento se humidifica y disminuye su temperatura. Condición que podría ser apropiada para enfriamiento o requerir elementos que protejan el interior térmicamente, de acuerdo a los cálculos climáticos que se obtengan de esta posible estrategia pasiva bioclimática.



Gráfica 15 Rosa de los vientos anuales (distribución de frecuencia)

Fuente: Autodesk (2016) Revit, Versión 2016.99.43.56 (DOE-2.2-48r), Software

Apreciación del comportamiento anual de vientos reinantes y secundarios para poder aprovecharlos si es el caso o aislarse de ellos.


Se observa que la tendencia de mayor potencia es en verdad la de Nor-Este, pero que virtualmente tenemos una ventilación constante desde todas las orientaciones.

# e) Precipitación pluvial

La cantidad de agua de la que disponemos en el predio puede ser un factor decisivo en las estrategias de mitigación de impacto ambiental del proyecto, así como una tema imperante en cuanto a necesidad de instalaciones que puedan manejar adecuadamente dicho volumen de agua de tal modo que no sea nociva tanto al proyecto como usuarios. Mientras que es a su vez una manera de reducir el consumo de agua potable para el funcionamiento del edificio, siendo una medida directamente económica en cuanto gasto.

Gráfica 16 Precipitación pluvial

# **Precipitación Anual**



Fuente: Elaboración propia a partir de datos del Sistema Meteorológico Nacional, (2012) Estación climatológica 9039, México CDMX, Información Climatológica, Recuperado de http://smn.cna.gob.mx

Observamos que existe mayor precipitación en los meses que comprenden de junio a septiembre, siendo julio el que tiene el nivel más alto de precipitación. Este se empleará entonces para determinar cuál es el diámetro y características de la instalación de aguas pluviales así como el potencial de colección de agua pluvial que tendremos en el predio.



Ilustración 17 Iluvia CDMX

Fuente: Notimex, (29 de Mayo del 2016) México, CDMX, Lluvias en 11 delegaciones de la CDMX, Recuperado de http://www.noticiasmvs.com

Tabla 8 Potencial de captación pluvial

| Captación pluvial del proye              | cto                     |
|------------------------------------------|-------------------------|
| Precipitación anual SMN (1971-2000)      | 797.8                   |
| Área total del terreno                   | 52,261m²                |
| Potencial de captación por el área total | 41,693.82m <sup>3</sup> |
|                                          |                         |
| Área de captación                        | 4500m²                  |
| Captación pontencial anual               | 3,590.1m <sup>3</sup>   |
| Evaporación                              | 60%                     |
| Evaporación de la captación anual        | 2,154.06m <sup>3</sup>  |
|                                          |                         |
| Captación pluvial final                  | 1,436.04m³              |

Fuente: Servicio Meteorológico Nacional (1971-2000) Normales climatológicas, Distrito Federal, Presa Tacubaya, Recuperado de http://smn.cna.gob.mx

Podemos observar en la tabla 8 que el área total del terreno es de 52,261m², sin embargo por la existencia de extensas áreas verdes y un lago artificial en el parque, la captación del agua pluvial para recirculación será de un total de 1,436.04 m³ descartando la evaporación y tomando en cuenta el área de 4,500m² que corresponden al área destinada para la recolección, que abarca principalmente el museo y la plaza.

## 4.1.3.2-Tablas horarias de:

# a) Temperatura

| Localidad   resa tacubay  Lat. (xx.x)   19.397222   Long.(xxx.x)   -99.2125   Altitud (m)   2340 |              |              |              |              |                 |              |              |              |              |              |              |              |
|--------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                                                                                                  | ene          | feb          | mar          | abr          | -99.2125<br>mav | jun          | iul          | ago          | sep          | oct          | nov          | dic          |
| Temp max                                                                                         | 29.5         | 29.5         | 33.5         | 32.5         | 37.5            | 32           | 28.5         | 36.5         | 29.5         | 30           | 29           | 29           |
| Temp min                                                                                         | 2.1          | 3            | 5.2          | 7.2          | 9               | 10.6         | 10.1         | 9.9          | 10           | 7.8          | 4.7          | 3.1          |
| Temp med                                                                                         | 11.4         | 12.7         | 15.2         | 16.6         | 17.4            | 17.4         | 16.3         | 16.4         | 16.1         | 14.9         | 13.1         | 11.8         |
| Hora min                                                                                         | 6.526        | 6.319        | 6.067        | 5.778        | 5.542           | 5.418        | 5.467        | 5.668        | 5.946        | 6.226        | 6.467        | 6.582        |
| Hora max                                                                                         | 13.936       | 13.819       | 12.897       | 13.448       | 13.132          | 13.328       | 12.717       | 13.168       | 13.536       | 13.396       | 13.967       | 13.832       |
| Hora (TSV)                                                                                       | 0.0          | 0.7          | 40.0         | 40.0         | 45.4            | 45.4         | 440          | 45.0         | 44.5         | 40.0         | 44.0         | 40.0         |
| 00:00                                                                                            | 9.3          | 9.7          | 12.0         | 12.9         | 15.1            | 15.1         | 14.0         | 15.8         | 14.5         | 13.3         | 11.0         | 10.0         |
| 01:00                                                                                            | 8.0          | 8.4          | 10.7         | 11.8         | 13.9            | 14.2         | 13.2         | 14.6         | 13.7         | 12.3         | 9.8          | 8.7          |
| 02:00                                                                                            | 6.8          | 7.4          | 9.6          | 10.9         | 13.0            | 13.5         | 12.6         | 13.7         | 13.0         | 11.4         | 8.9          | 7.6          |
| 03:00                                                                                            | 5.9          | 6.5          | 8.8          | 10.2         | 12.2            | 12.9         | 12.1         | 13.0         | 12.4         | 10.7         | 8.0          | 6.8          |
| 04:00                                                                                            | 5.2          | 5.8          | 8.0          | 9.6          | 11.5            | 12.4         | 11.7         | 12.3         | 11.9         | 10.1         | 7.4          | 6.0          |
| 05:00                                                                                            | 4.5          | 5.2          | 7.5          | 9.1          | 11.0            | 12.1         | 11.4         | 11.8         | 11.5         | 9.6          | 6.8          | 5.4          |
| 06:00                                                                                            | 4.0          | 4.8          | 7.0          | 7.3          | 9.4             | 11.1         | 10.4         | 10.1         | 10.0         | 9.3          | 6.4          | 4.9          |
| 07:00                                                                                            | 2.5          | 3.8          | 6.9          | 9.8          | 13.2            | 14.2         | 13.1         | 13.2         | 11.5         | 8.7          | 5.1          | 3.4          |
| 08:00                                                                                            | 6.2          | 8.1          | 12.2         | 15.1         | 19.5            | 19.1         | 17.2         | 18.9         | 15.3         | 12.5         | 8.6          | 6.7          |
| 09:00                                                                                            | 12.3         | 14.2         | 18.8         | 21.1         | 26.1            | 24.0         | 21.4         | 25.1         | 19.9         | 17.6         | 14.1         | 12.4         |
| 10:00                                                                                            | 18.6         | 20.2         | 24.9         | 26.2         | 31.5            | 27.9         | 24.9         | 30.4         | 24.1         | 22.6         | 19.7         | 18.4         |
| 11:00                                                                                            | 23.8         | 24.9         | 29.5         | 29.9         | 35.2            | 30.5         | 27.2         | 34.0         | 27.1         | 26.4         | 24.2         | 23.4         |
| 12:00                                                                                            | 27.4         | 27.9         | 32.3         | 31.9         | 37.1            | 31.8         | 28.3         | 36.0         | 28.8         | 28.8         | 27.2         | 26.8         |
| 13:00                                                                                            | 29.1         | 29.3         | 33.4         | 32.4         | 37.4            | 31.8         | 28.4         | 36.4         | 29.4         | 29.9         | 28.7         | 28.6         |
| 14:00                                                                                            | 29.4         | 29.3         | 33.0         | 31.8         | 36.4            | 31.0         | 27.7         | 35.6         | 29.1         | 29.7         | 28.8         | 28.9         |
| 15:00                                                                                            | 28.4         | 28.2         | 31.6         | 30.3         | 34.6            | 29.6         | 26.5         | 34.0         | 28.1         | 28.8         | 28.0         | 28.1         |
| 16:00                                                                                            | 26.7         | 26.3         | 29.6         | 28.4         | 32.3            | 27.8         | 25.0         | 31.9         | 26.6         | 27.2         | 26.4         | 26.4         |
| 17:00                                                                                            | 24.4         | 24.1         | 27.1         | 26.1         | 29.7            | 25.9         | 23.3         | 29.5         | 24.9         | 25.3         | 24.4         | 24.3         |
| 18:00                                                                                            | 21.9         | 21.7         | 24.5         | 23.8         | 27.0            | 23.9         | 21.6         | 27.0         | 23.1         | 23.3         | 22.2         | 22.0         |
| 19:00                                                                                            | 19.4         | 19.2         | 21.9         | 21.5         | 24.5            | 22.0         | 20.0         | 24.7         | 21.3         | 21.2         | 19.9         | 19.6         |
| 20:00                                                                                            | 17.0         | 16.9         | 19.4         | 19.3         | 22.1            | 20.3         | 18.5         | 22.4         | 19.6         | 19.3         | 17.8         | 17.3         |
|                                                                                                  |              |              |              |              |                 |              |              |              |              |              |              |              |
| 21:00                                                                                            | 14.7         | 14.7         | 17.2         | 17.4         | 20.0            | 18.7         | 17.1         | 20.4         | 18.1         | 17.5         | 15.8         | 15.1         |
| 22:00                                                                                            | 12.6<br>10.8 | 12.8<br>11.1 | 15.2<br>13.5 | 15.7<br>14.2 | 18.1<br>16.5    | 17.3<br>16.1 | 15.9<br>14.9 | 18.6<br>17.1 | 16.7<br>15.6 | 15.9<br>14.5 | 14.0<br>12.4 | 13.2<br>11.5 |

Fuente: Autor desconocido, (s, f), Tempa1, Estimación de temperatura por hora.

En la tabla 9 se observa que mayo agosto presentan mayor temperatura mientras que diciembre y enero contienen las temperaturas más bajas. Por ello se emplearán los meses de mayo y enero para cálculo de confort térmico por ser los más extremos.

# b) humedad relativa

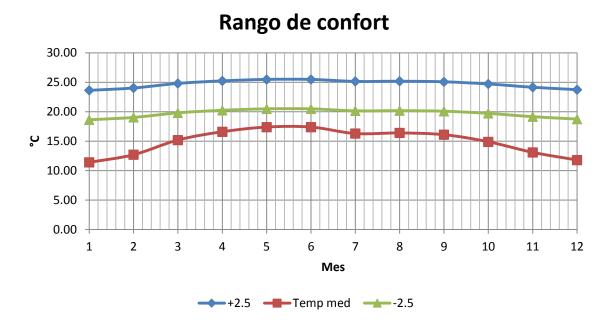
La humedad relativa nos confirma los planteamientos que se observan en la tabla 10 horaria de humedad relativa, ratificando que el cálculo térmico se puede enfocar en los meses de mayo y agosto.

Tabla 10 Estimación de humedad relativa

|               | ene      | feb      | mar    | abr      | mav      | iun      | iul      | ago    | sep       | oct      | nov      | dic      |
|---------------|----------|----------|--------|----------|----------|----------|----------|--------|-----------|----------|----------|----------|
| Temp max      | 29.5     | 29.5     | 33.5   | 32.5     | 37.5     | 32       | 28.5     | 36.5   | 29.5      | 30       | 29       | 29       |
| Temp med      | 11.4     | 12.7     | 15.2   | 16.6     | 17.4     | 17.4     | 16.3     | 16.4   | 16.1      | 14.9     | 13.1     | 11.8     |
| Temp min      | 2.1      | 3        | 5.2    | 7.2      | 9        | 10.6     | 10.1     | 9.9    | 10        | 7.8      | 4.7      | 3.1      |
| HR med observ |          |          |        |          |          |          |          |        |           |          |          |          |
| HR max observ |          |          |        |          |          |          |          |        |           |          |          |          |
| HR min observ | 50       |          | 52     | 50       | 50       | 00       | 0.4      | 63     | 0.5       | 0.4      | 50       | 50       |
| HR med calc   | 59<br>99 | 55<br>91 | 86     | 52<br>85 | 56<br>94 | 62<br>98 | 64<br>98 | 100    | 65<br>100 | 61<br>97 | 58<br>94 | 59<br>98 |
| H R min calc  | 19       | 20       | 17     | 20       | 17       | 26       | 30       | 26     | 29        | 24       | 21       | 20       |
| Hora max      | 6.526    | 6.319    | 6.067  | 5.778    | 5.542    | 5.418    | 5.467    | 5.668  | 5.946     | 6.226    | 6.467    | 6.582    |
| Hora min      | 13.936   | 13.819   | 12.897 | 13.448   | 13.132   | 13.328   | 12.717   | 13.168 | 13.536    | 13.396   | 13.967   | 13.832   |
| Hora (TSV)    |          |          |        |          |          |          |          |        |           |          |          |          |
| 00:00         | 78       | 73       | 70     | 70       | 78       | 83       | 84       | 84     | 84        | 79       | 75       | 77       |
| 01:00         | 82       | 77       | 73     | 73       | 81       | 86       | 87       | 87     | 87        | 82       | 79       | 81       |
| 02:00         | 85       | 79       | 75     | 75       | 83       | 89       | 89       | 89     | 89        | 85       | 82       | 84       |
| 03:00         | 87       | 82       | 77     | 77       | 85       | 91       | 91       | 91     | 91        | 88       | 84       | 87       |
| 04:00         | 90       | 84       | 79     | 79       | 87       | 92       | 92       | 93     | 93        | 89       | 86       | 89       |
| 05:00         | 91       | 85       | 81     | 80       | 89       | 93       | 94       | 95     | 95        | 91       | 88       | 91       |
| 06:00         | 93       | 87       | 82     | 84       | 93       | 97       | 97       | 100    | 100       | 92       | 89       | 92       |
| 07:00         | 97       | 89       | 82     | 78       | 83       | 86       | 87       | 91     | 95        | 94       | 93       | 97       |
| 08:00         | 87       | 78       | 69     | 64       | 66       | 70       | 72       | 75     | 81        | 82       | 82       | 87       |
| 09:00         | 69       | 61       | 53     | 49       | 48       | 53       | 56       | 58     | 64        | 65       | 66       | 70       |
| 10:00         | 50       | 45       | 38     | 36       | 33       | 40       | 44       | 43     | 49        | 48       | 49       | 52       |
| 11:00         | 35       | 32       | 27     | 27       | 23       | 31       | 35       | 33     | 38        | 36       | 36       | 37       |
| 12:00         | 25       | 24       | 20     | 22       | 18       | 27       | 31       | 27     | 32        | 28       | 27       | 27       |
| 13:00         | 20       | 20       | 17     | 20       | 17       | 26       | 31       | 26     | 30        | 24       | 22       | 21       |
| 14:00         | 19       | 20       | 18     | 22       | 20       | 29       | 33       | 28     | 31        | 25       | 22       | 21       |
| 15:00         | 22       | 23       | 22     | 26       | 25       | 34       | 38       | 33     | 35        | 28       | 25       | 23       |
| 16:00         | 27       | 28       | 27     | 31       | 31       | 40       | 43       | 39     | 40        | 33       | 29       | 28       |
| 17:00         | 34       | 34       | 33     | 36       | 38       | 47       | 49       | 45     | 46        | 39       | 35       | 34       |
| 18:00         | 41       | 41       | 39     | 42       | 45       | 53       | 56       | 52     | 53        | 46       | 42       | 41       |
| 19:00         | 48       | 47       | 45     | 48       | 52       | 60       | 62       | 59     | 59        | 53       | 49       | 48       |
| 20:00         | 55       | 54       | 51     | 54       | 59       | 66       | 67       | 65     | 65        | 59       | 55       | 55       |
| 21:00         | 62       | 60       | 57     | 59       | 64       | 71       | 72       | 71     | 71        | 65       | 61       | 62       |
| 22:00         | 68       | 65       | 62     | 63       | 69       | 76       | 77       | 76     | 76        | 70       | 66       | 68       |
| 23:00         | 73       | 69       | 66     | 67       | 74       | 80       | 81       | 80     | 80        | 75       | 71       | 73       |

Fuente: Autor desconocido, (s, f), Tempa1, Estimación de humedad relativa.

# c) radiación solar


Tabla 11 Radiación solar por hora

| RADIACIÓN | SOLAR 21 DE ENERO | RADIACIÓN | SOLAR 21 DE MAYO |
|-----------|-------------------|-----------|------------------|
| Ssol      | Enero             | Ssol      | Мауо             |
| 07:00     | 68.37062          | 06:00     | 54.88596         |
| 08:00     | 248.1618          | 07:00     | 213.3878         |
| 09:00     | 428.8028          | 08:00     | 380.3332         |
| 10:00     | 579.3268          | 09:00     | 532.3613         |
| 11:00     | 678.4562          | 10:00     | 653.0341         |
| 12:00     | 713               | 11:00     | 730.3806         |
| 13:00     | 678.4562          | 12:00     | 757              |
| 14:00     | 579.3268          | 13:00     | 730.3806         |
| 15:00     | 428.8026          | 14:00     | 653.0341         |
| 16:00     | 248.1616          | 15:00     | 532.3613         |
| 17:00     | 68.37047          | 16:00     | 380.3332         |
| Psol      |                   | 17:00     | 213.3879         |
|           |                   | 18:00     | 54.88597         |
|           |                   | Psol      |                  |

Fuente: Elaboración propia con base en Programa (UPSOL), Software.

## 4.1.4-Rango de comodidad o CONFORT

Empleando la ecuación de Aluciems de termopreferendum (tn) obtenemos la siguiente gráfica que demuestra los rangos permisibles en cuanto a temperatura y confort térmico al interior del inmueble.



Gráfica 17 Rango de Comodidad

Fuente: Elaboración propia a partir de datos del Sistema Meteorológico Nacional, (2012) Estación climatológica 9039, México CDMX, Información Climatológica, Recuperado de http://smn.cna.gob.mx

Observamos que la temperatura media se encuentra por debajo de la óptima para las personas de la zona aún en los meses más cálidos. Lo cual será un punto de interés para el diseño, debido a que debe aumentar la ganancia térmica y reducir la perdida de calor para alcanzar una temperatura cómoda para el usuario. Esto podría empezar a determinar ciertos materiales a utilizar así como técnicas bioclimáticas pasivas.

## 4.2-Conceptualización

El proyecto representa dentro de si el proceso del agua en su ciclo natural, mientras demuestra en ello su importancia para la vida. Demostrando el manejo, obtención, distribución, almacenamiento, purificación y procesos inmersos en nuestro empleo del agua de manera cotidiana, alentando que los procesos se hagan de manera responsable y consiente, tanto de su importancia como de su trascendencia en la naturaleza.

## 4.3-Concepto arquitectónico

La representación simbólica de los siclos se ve plasmada en los elementos geométricos generadores que emplean los vértices y los ejes radiales para dar forma a espacios que puedan cumplir con las necesidades propuestas. Con el pretexto de un lago que se convierte en el foco conceptual y de diseño se traza las vistas para el conjunto del parque urbano que busca integrarse con las formas geométricas por medio de andadores de formas orgánicas que dialogan con el contexto en el desarrollo interior de la circulación. El cual asegura el transito ameno y recreativo de los usuarios y sirve de vínculo entre las partes del parque urbano, como lo sería el ciclo del agua en sus diferentes etapas de recorrido. Así como el museo que en su forma que conjuga curvas y rectas para dialogar con el usuario generando un espacio interior que invita a visitarlo fluyendo a través de él.

## 4.4-conclusiones

Un paisaje interior que se convierte en el foco compositivo traza las líneas de diseño para el conjunto tanto del parque urbano como del museo del agua. Generando con ello un espacio congruente con el tema que ayuda en presentar: el uso, aprovechamiento, rehúso, cuidado, reciclaje y concientización del agua y su impacto en la vida diaria del hombre y la naturaleza.

Permitiendo una cantidad considerable de contenido programático tanto en el museo como en el parque este puede servir de plataforma de concientización y acercamiento a información desarrollada para diferentes niveles culturales y socioeconómicos, siendo incluyente y plural

# 5.- Desarrollo ejecutivo del proyecto

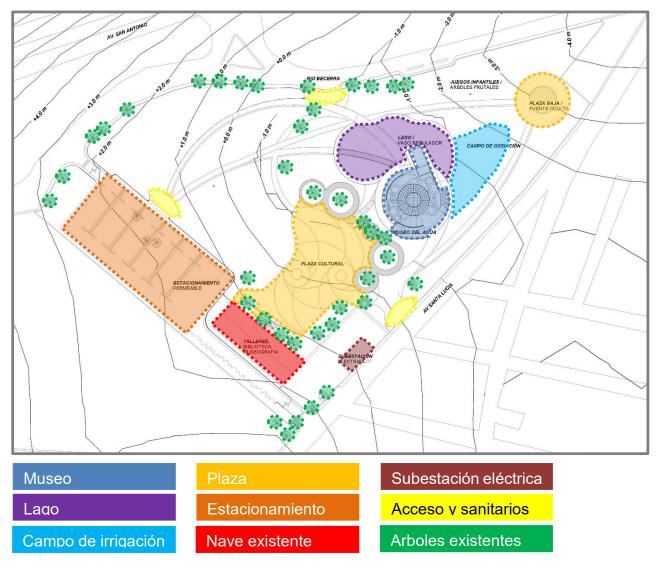
# 5.1-Desarrollo arquitectónico



Ilustración 18 Estudio urbano de la zona










- Áreas verdes
- Asta bandera

Fuente: Elaboración propia con base en Google. (s.f.). [Mapa de México, Álvaro Obregón, en Google earth]. Recuperado en 2015 de https://www.earth.google.com

Ilustración 19 Contenido de Programa



El conjunto del parque cuenta con diversos contenidos como se puede observar el la ilustración 19. El museo es el corazón del conjunto y del cual emana el lago, el cual es rellenado a través del aprovechamiento del agua pluvial por parte del museo, la plaza cultural sur y las drenes de piedra tritura que acompañan a los principales caminos y que gracias a la diferencia de niveles desembocan al lago mismo. Sirviendo entonces tanto como elemento paisajístico así como vaso regulador. Pues de éste elemento se va a aprovechar el agua para su uso tanto en museo como en parque.

La plaza cultural sur, de concreto mayormente permeable y reutilizado de demoliciones de elementos existentes previos, sirve como foro al aire libre para conciertos, teatro, exposiciones y todo aquella expresión cultural que requiera un espacio amplio y libre para efectuarse. Mientras que pude hacerse uso de la nave existente para en vez de demolerla

darle un rehúso de tal modo que pueda contener talleres, biblioteca, archivo, museografía y otros.

Circundada por un patio de maniobras la subestación eléctrica se encuentra al sur junto a un transformador en la calle que puede alimentar las necesidades del proyecto.

El estacionamiento se plantea de material permeable que conduzca el agua pluvial a través de drenes a un pozo de tormenta para que pueda contribuir a la infiltración y la recarga de mantos acuíferos.

Los tres accesos, dos peatonales y uno vehicular, cuentan con vigilancia así como información y sanitarios, cubriendo con ello la demanda de los visitantes de espacios sanos y confortables para su disfrute del proyecto. Por otro lado la plaza norte, la más baja del proyecto contará con un juego de fuentes ocultas que permitirán a los usuarios interactuar y jugar con el agua en días cálidos. Acercando con ello a la población a un recuerdo grado de interacción con el agua. Por otro lado en ésta plaza también se puede aprovechar para exponer diversos temas culturales y recreativos.

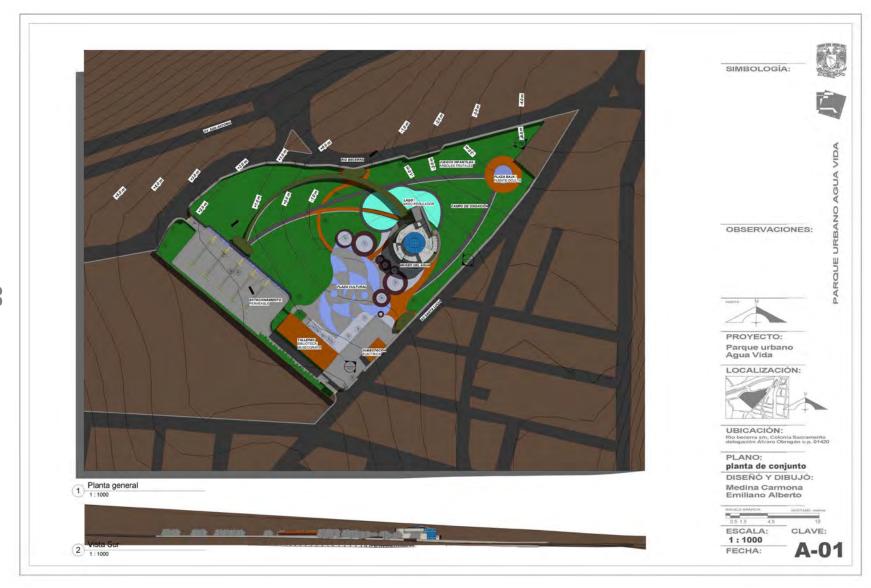
Ilustración 20 Programa de Museo

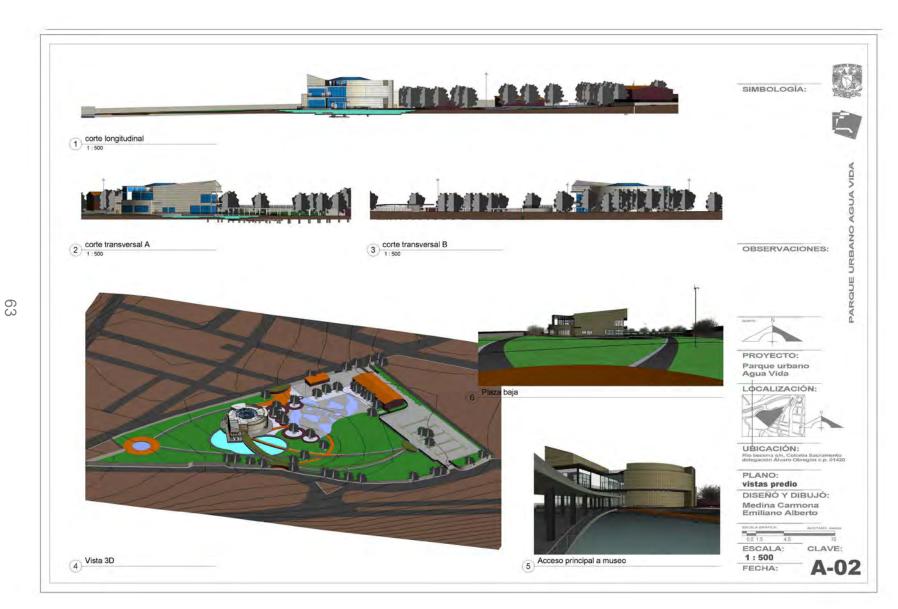
Planta baja
Planta alta
Planta azotea

Exposiciones
Restaurante
Servicios
Oficinas
Tienda
Patio central

Patio central

60


La planta baja consta de un acceso principal que vinculado a sanitarios y paquetería. Después de éste filtro se puede acceder al patio principal que funge como vestíbulo general del museo. La tienda por otra parte puede ser visitada desde el vestíbulo de acceso del museo o desde la explanada frontal son tener que acceder al interior. Ya en el interior el proyecto cuenta con un foro multipropósito así como dos salas de exposición y sanitarios. La primera sala de exposición se denomina "Exposición Viva" y consta de terrarios y peceras que puedan acercar a los visitantes la perspectiva del vínculo entre los seres vivos y el agua. La otra sala consta de un espacio para "exposiciones temporales" con las que el museo puede recibir diversas propuestas culturales y artísticas de acuerdo a diversos intereses.


A la planta alta y azotea se puede acceder a través de escaleras y elevadores. Y ambas desembocan en circulaciones cómodas que permiten un paso cómodo que circunda el patio central y desde donde se puede apreciar el diseño de éste. En la planta alta se encuentran 3 salas de exposición, de las cuales una consta con un patio al aire libre pero cerrado a ruidos o distractores que pudieran alterar la apreciación de lo expuesto. También incluye la zona de restaurante y mirador en los cuales se puede consumir comida y refrigerios mientras se observa el parque en sus vistas de áreas verdes.

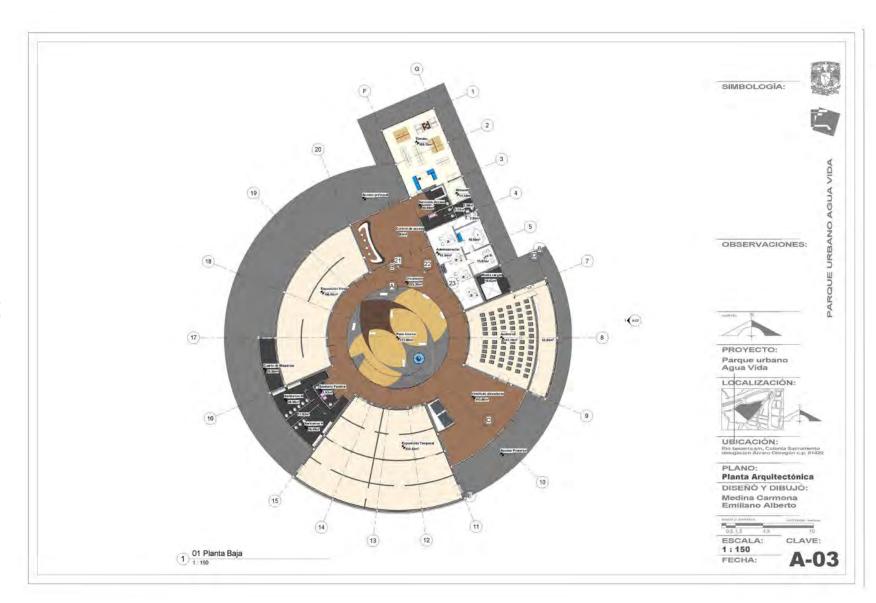

En la azotea por otro lado se llevan a cabo actividades de concientización, conocimiento, manejo e instalación de huertos urbanos como respuesta ecológica-económica para el aprovechamiento de espacios urbanos y producción casera de alimentos. También incluye el área de tinacos, espacios de guarda para equipo y herramientas y tanque de gas del restaurante. Los cuales no están al acceso de los visitantes. Cabe señalar que el patio central cuenta con una cúpula a esta altura como elemento que evite el ingreso de lluvia pero que permite una libre ventilación y circulación perimetral a cubierto.

Ilustración 21 Programa Arquitectónico

|             |                          |        |        | P           | rograma Arquitecto     | óη  | ico    |        |          |                    |        |        |        |
|-------------|--------------------------|--------|--------|-------------|------------------------|-----|--------|--------|----------|--------------------|--------|--------|--------|
|             | LOCALES                  | m2     | m3     | ]           | LOCALES                | ][  | m2     | m3     |          | LOCALES            | $\Box$ | m2     | m3     |
| Planta BAJA | Acceso                   | 8.04   | 32.16  | Planta ALTA | Andador                | ٦ [ | 301.37 | 1205.5 | Planta C | Andador            |        | 100    |        |
|             | Vestíbulo                | 88.315 | 353.26 |             | Exposición A           | 11  | 214.48 | 857.92 |          | Área libre         |        | 599.76 |        |
|             | Andador                  | 225.3  | 901.2  |             | Exposición B           | 1 [ | 168.55 | 674.2  |          | Acceso             |        | 61.93  | 185.79 |
|             | Patio central            | 221.66 | 886.64 |             | Exposición C           | 16  | 131.8  | 527.2  |          | Área mantenimiento |        | 353.6  |        |
|             | Administración           | 61.94  | 247.76 |             | Exposición Terraza     | 16  | 200.39 | 801.56 |          |                    |        |        |        |
|             | Sala de juntas           | 18.56  | 74.24  |             | Restaurante            | 16  | 217.45 | 869.8  |          |                    |        |        |        |
|             | Oficina Director         | 15.97  | 63.88  |             | Restaurante Terraza    | 16  | 105.3  | 421.2  |          |                    |        |        |        |
|             | Tienda                   | 186.2  | 744.8  |             | Restaurante Sanitarios | 11  | 13.04  | 52.16  |          |                    |        |        |        |
|             | cuarto de maquinas       | 20.66  | 82.64  |             | Cocina                 | 11  | 129    | 516    |          |                    |        |        |        |
|             | Sanitarios privados      | 10.64  | 42.56  |             | Almacen                | 16  | 11.78  | 47.12  |          |                    |        |        |        |
|             | sanitarios públicos      | 88.64  | 354.56 |             | Pasillo elevador       | 16  | 60     | 240    |          |                    |        |        |        |
|             | Sala exposición Viva     | 198.65 | 794.6  |             | Mirador                | 11  | 60.72  | 242.88 |          |                    |        |        |        |
|             | Sala Exposición temporal | 335.43 | 1341.7 |             |                        |     |        |        |          |                    |        |        |        |
|             | Foro                     | 194.02 | 776.08 |             |                        | 11  |        |        | 1        |                    |        |        |        |
|             | Vestibulo Salida         | 145.89 | 583.56 |             |                        | 11  |        |        | 1        |                    |        |        |        |

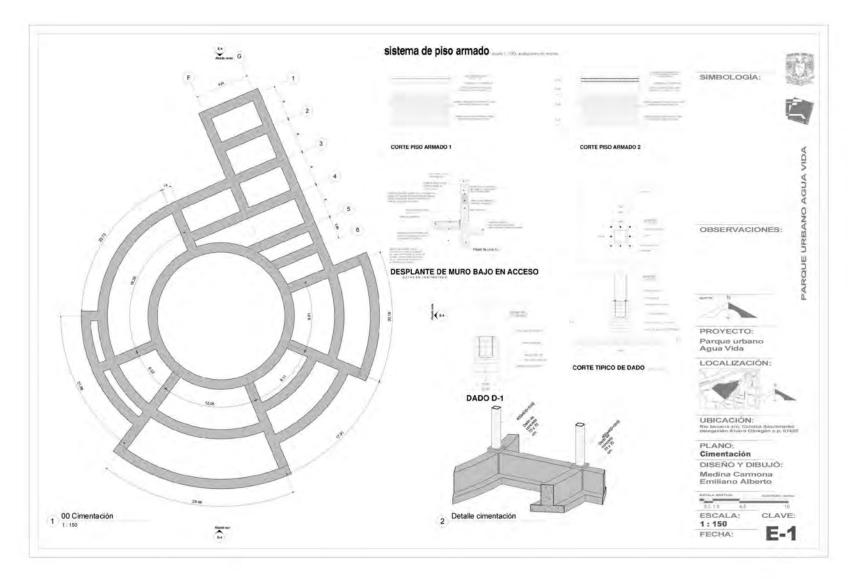


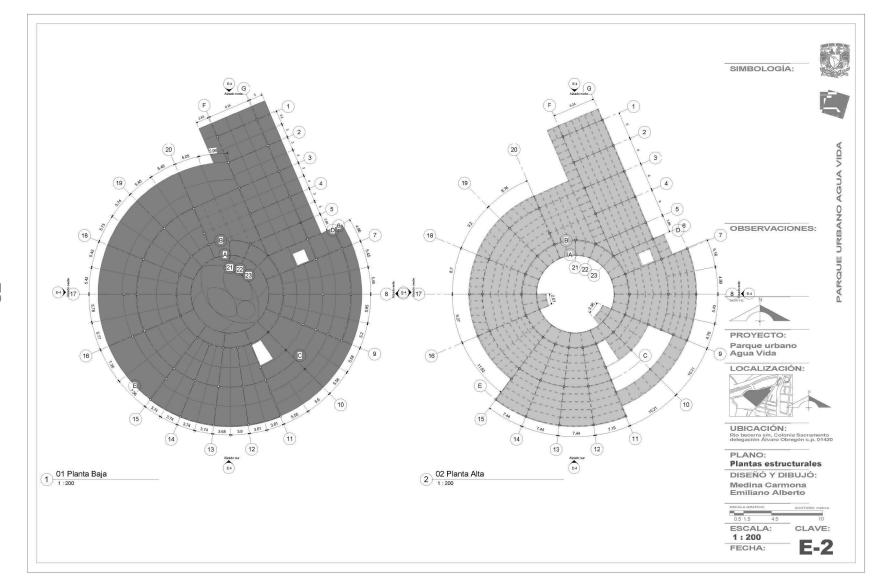




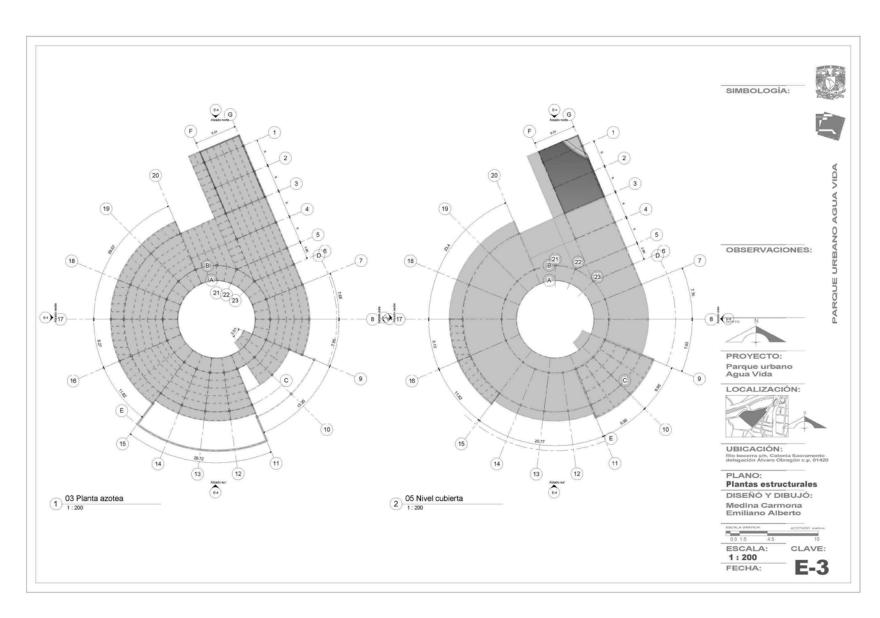


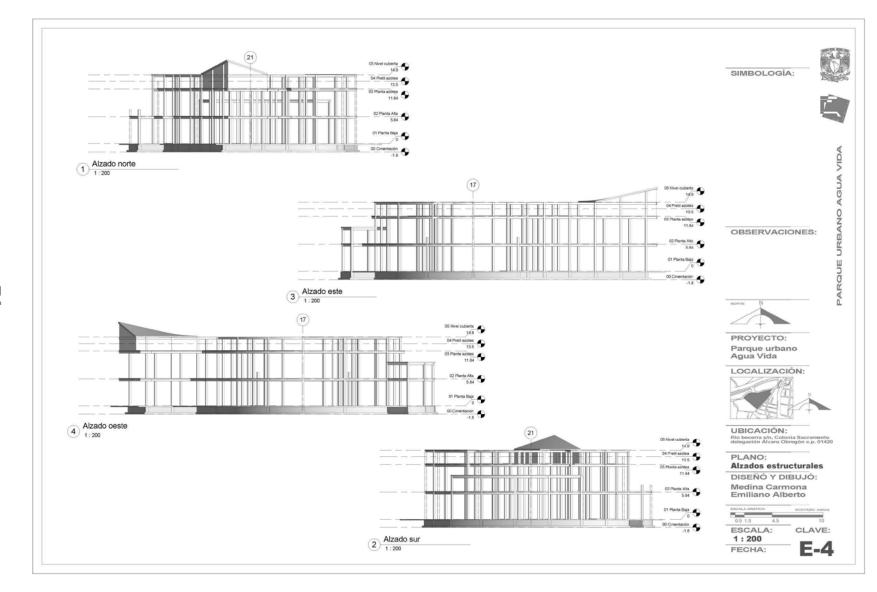


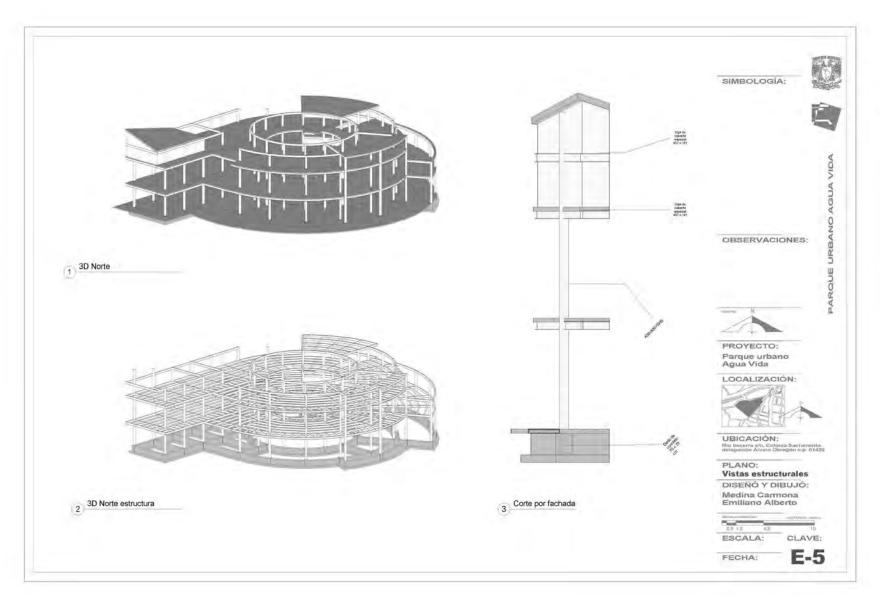







Plano 9 Vistas museo y parque



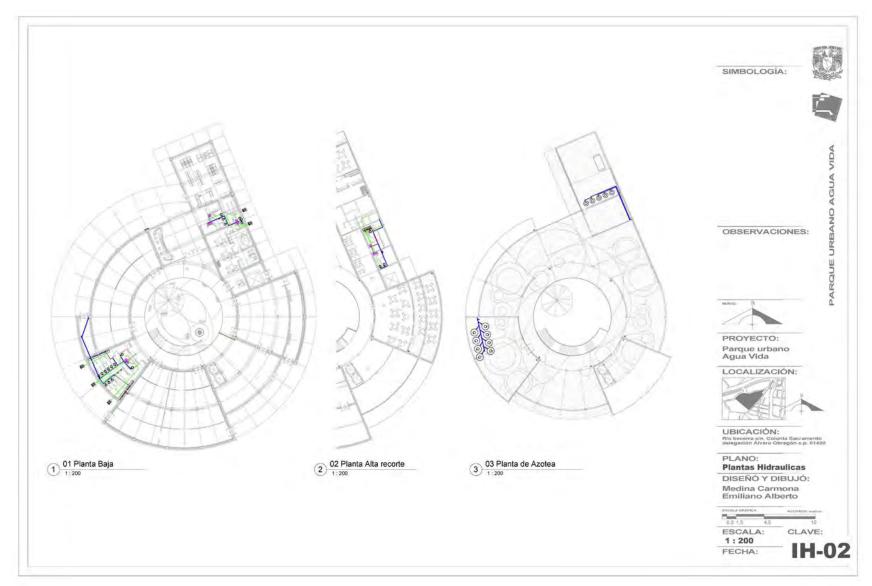






**72** 








## 5.3-Instalaciones

### 5.3.1-Hidráulicas

Plano 15 Hidráulico general

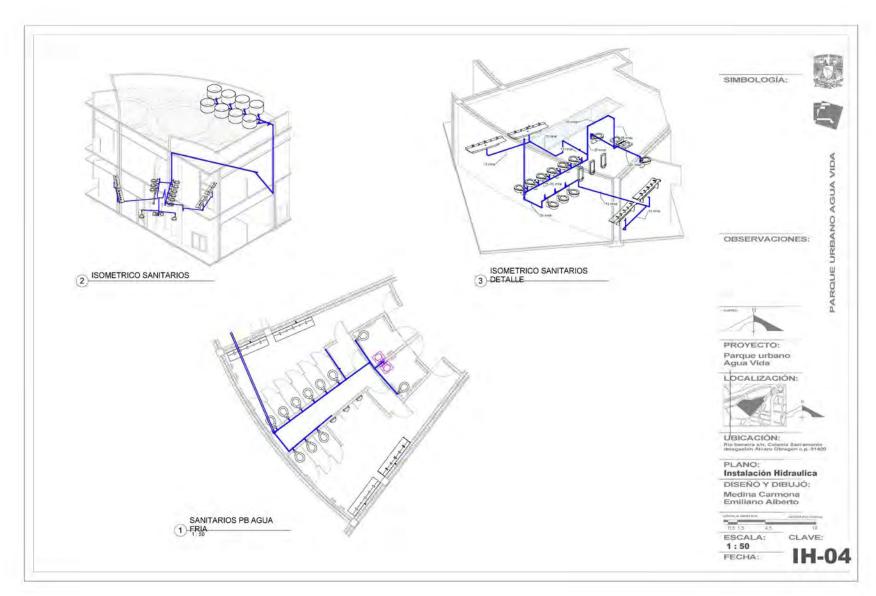


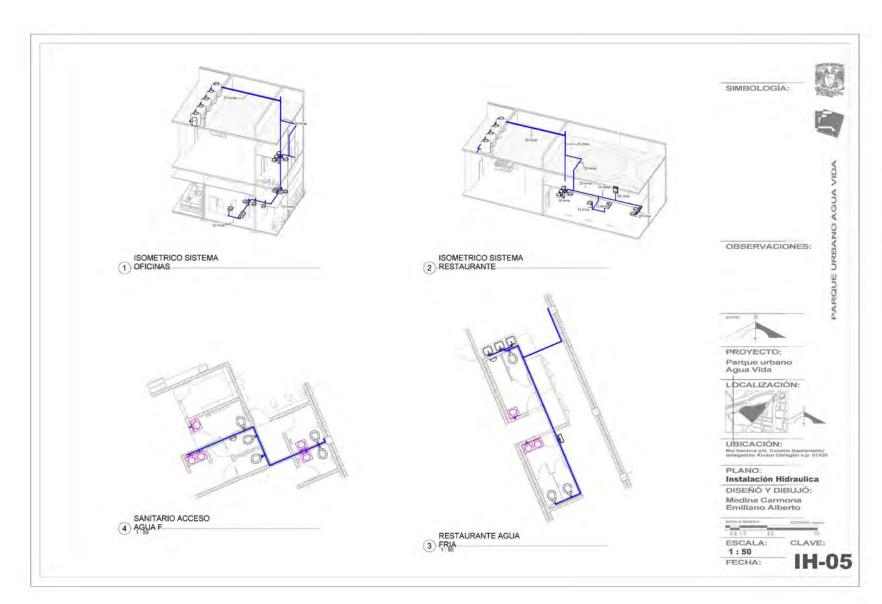


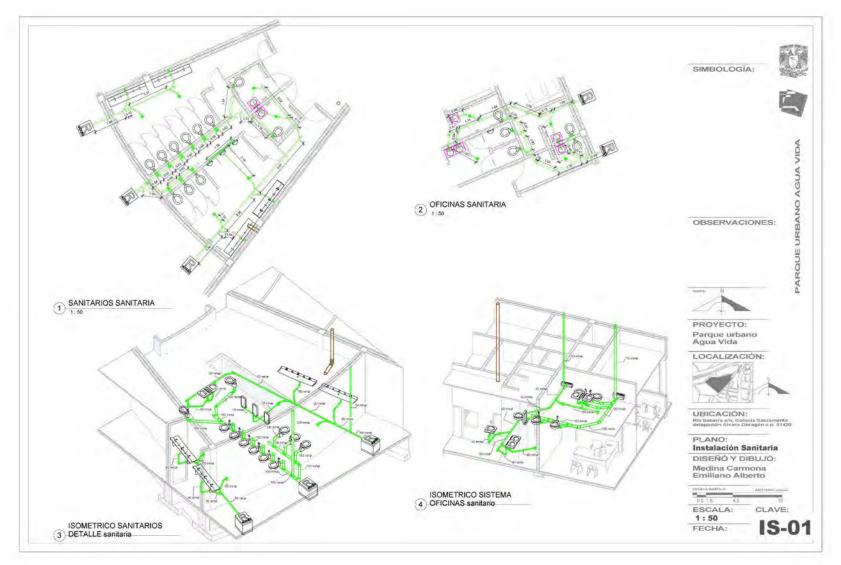
SIMBOLOGIA:

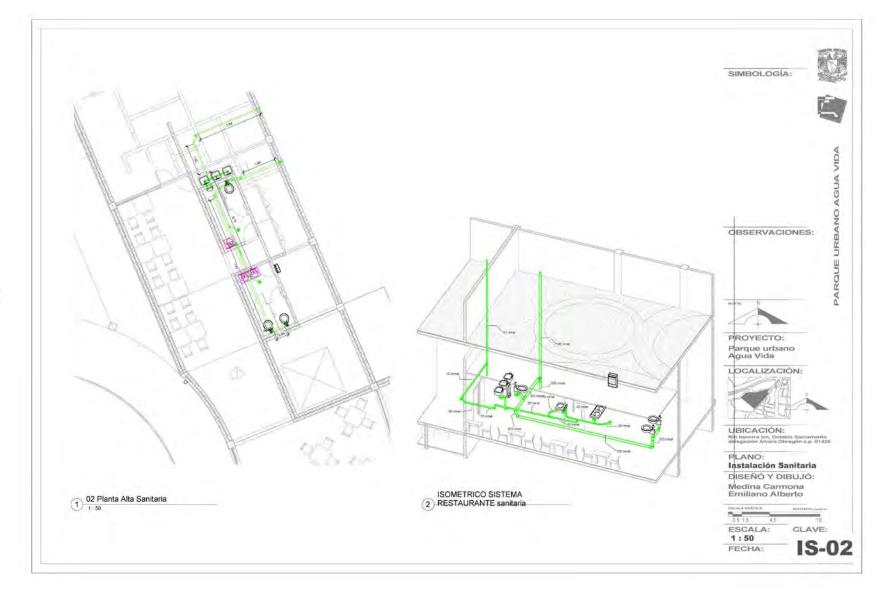
ESCALA:

1:50

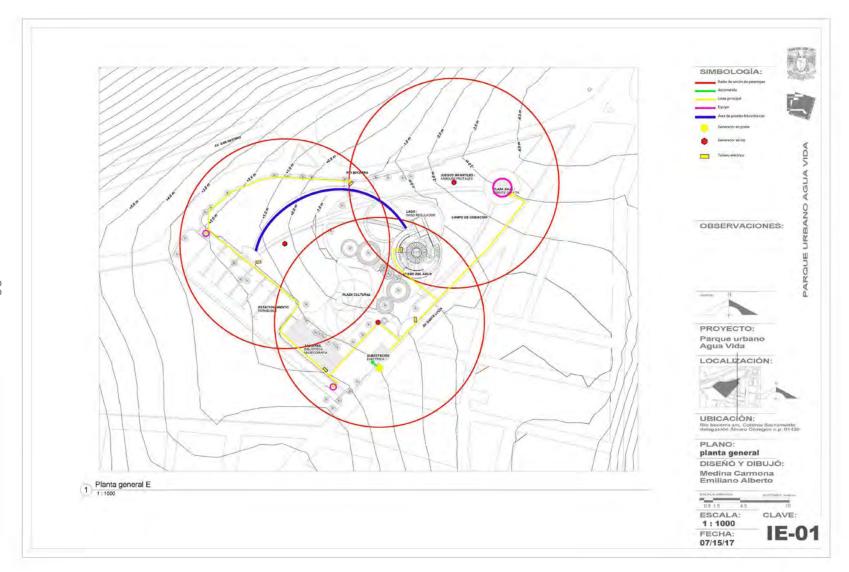

FECHA:


CLAVE:

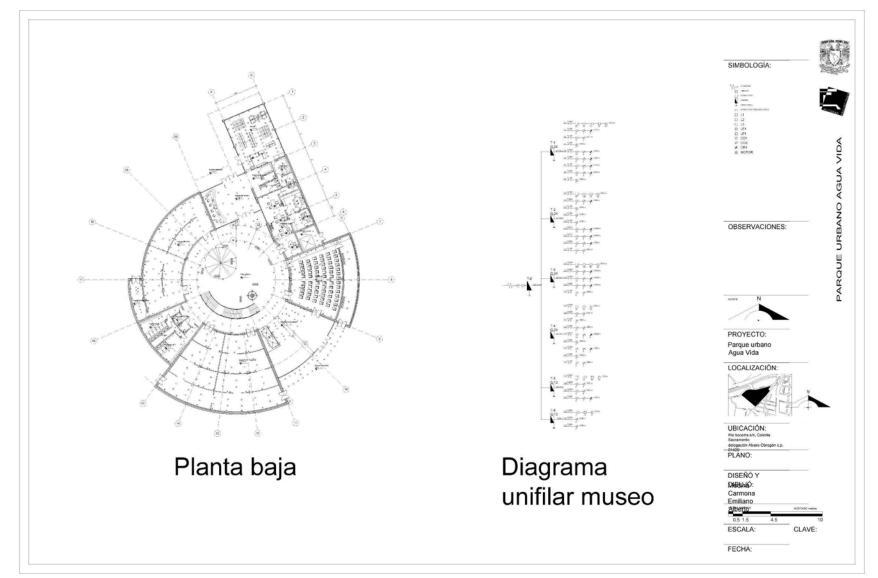

IH-03


ISOMETRICO
1 RESTAURANTE AGUA C

RESTAURANTE AGUA
3 ÇALIENTE








### Plano 22 Eléctrico general



Plano 23 Eléctrico museo



### 5.4-Memorias de cálculo

### 5.4.1-Estructural

Calculo estructural prototipo para estructura de museo urbano empleando criterio de viga isostática equivalente.

Tabla 12 Cálculo estructural

| DA         | DATOS PARA CALCULO ESTRUCTURAL MUSEO |        |   |           |                      |
|------------|--------------------------------------|--------|---|-----------|----------------------|
|            |                                      |        |   |           |                      |
| Rt=        | 9                                    | T/m2   |   | Pmin=     | 0.0034               |
| Yv=        | 1.9                                  | T/m3   |   | Pmáx=     | 0.029                |
| w/m2=      | 1.88                                 | T      |   |           |                      |
| f'c=       | 300                                  | kg/cm2 |   |           |                      |
| f*c=       | 240                                  | kg/cm2 |   |           |                      |
| f"c=       | 204                                  | kg/cm2 |   |           |                      |
| Fy=<br>Fs= | 3515                                 | kg/cm2 |   | tipo A-50 |                      |
| Fs=        | 2812                                 | kg/cm2 |   |           |                      |
| Área=      | 2085                                 | m2     |   |           |                      |
| plantas=   | 3                                    |        | 1 | 4         | incluyendo seguridad |

Fuente: Elaboración propia con base según criterios de diseño.

### 5.4.1.1-Cimentación

Tabla 13 Cimentación

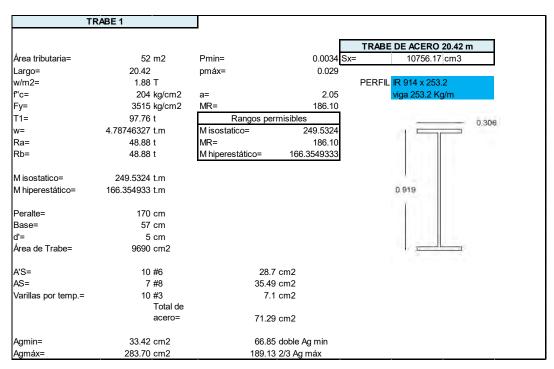
| CIMENTACIÓN                                                                                                                          |                                                                                                                                                                                                   |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ÁRI                                                                                                                                  | EA                                                                                                                                                                                                |  |  |
| W=                                                                                                                                   | 15679.2 toneladas                                                                                                                                                                                 |  |  |
| Rt=                                                                                                                                  | 18765 toneladas                                                                                                                                                                                   |  |  |
| DIFERENCIA=                                                                                                                          | -3085.8 toneladas                                                                                                                                                                                 |  |  |
| Dif/Área= -1.48                                                                                                                      |                                                                                                                                                                                                   |  |  |
| Profundidad de                                                                                                                       |                                                                                                                                                                                                   |  |  |
| excavación=                                                                                                                          | -0.78 metros                                                                                                                                                                                      |  |  |
| compuesto de losa t<br>cm de profundidad<br>aisladas en columnas<br>se añadira 1 metro o<br>para mantener el niv<br>comparación de s | cajón de cimentación capa y contratrabes de 80 d, vinculadas a zapatas s. Como medida de diseño de profundidad al cálculo vel del proyecto elevado a su contexto inmediato. a profundidad de 1.8m |  |  |

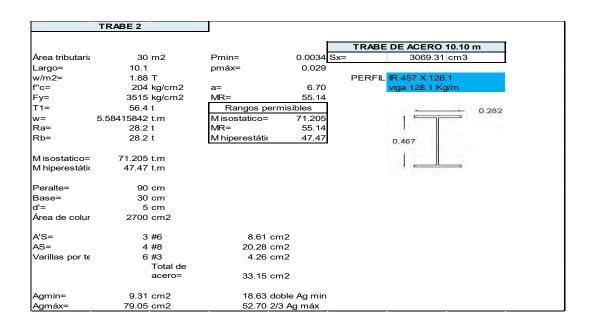
### **5.4.1.2-Columnas**

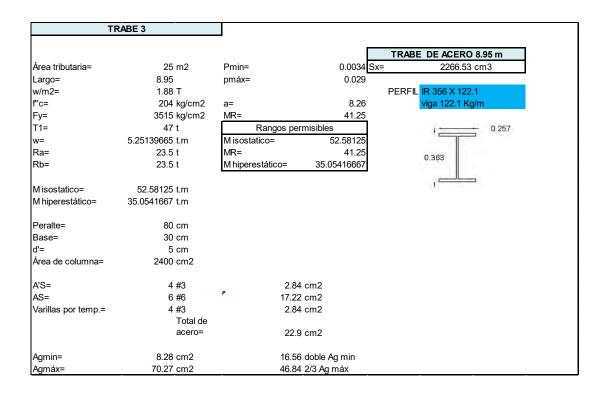
Tabla 14 Columnas

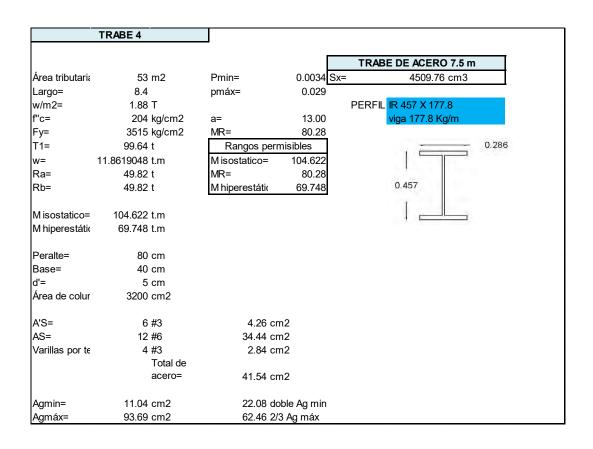
| COLUMNAS C1               |             |                |              |              |
|---------------------------|-------------|----------------|--------------|--------------|
|                           |             |                |              |              |
| Área tributaria=          | 62 m2       | Pmin=          | 0.0034       | 1            |
| Niveles=                  | 4           | pmáx=          | 0.029        | )            |
| w/m2=                     | 1.88 T      |                |              |              |
| f''c=                     | 204 kg/cm2  | Md=            | 291.40       | T.m          |
| fy=                       | 3515 kg/cm2 | Sx=            | 13,816.97    | cm3          |
| Altura entrepiso=         | 5 m         | Kg / Fs =      | 165.80       | Cm2          |
| L=                        | 5 m         | entre 4 placas | = /4         | 41.4509246   |
| C1=                       | 466.24 t    | Cm2/placa      | =            | 42           |
| =                         | 466240 kg   | HSS 40 x 40    | cm 1/2" de g | rosor cumple |
| Fs=                       | 2812        |                | _            |              |
| Área de columna=          | 2285.49 cm2 |                |              |              |
| Raiz=                     | 47.00 cm    |                |              |              |
| Varillas principales=     | 8 #5        | 15.84          |              |              |
| Varillas por temperatura= | 4 #5        | 7.92           |              |              |
|                           | Total de    |                |              |              |
|                           | acero=      | 23.76          |              |              |
| Agmin=                    | 7.88 cm2    | 15.77          | doble Ag mir | า            |
| Agmáx=                    | 66.91 cm2   | 44.61          | 2/3 Ag máx   |              |

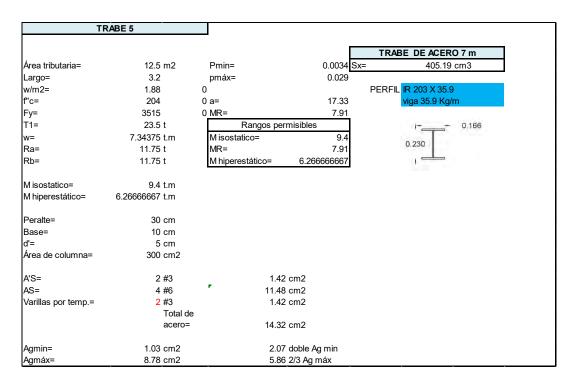
| COLUMNAS C2               |             |                |               |              |
|---------------------------|-------------|----------------|---------------|--------------|
|                           |             |                |               |              |
| Área tributaria=          | 56 m2       | Pmin=          | 0.0034        |              |
| Niveles=                  | 4           | pmáx=          | 0.029         |              |
| w/m2=                     | 1.88 T      |                |               |              |
| f"c=                      | 204 kg/cm2  | Md=            | 263.20        | T.m          |
| fy=                       | 3515 kg/cm2 | Sx=            | 12,479.85     | cm3          |
| Altura entrepiso=         | 5 m         | Kg / Fs =      | 149.76        | Cm2          |
| L=                        | 5 m         | entre 4 placas | = /4          | 37.4395448   |
| C1=                       | 421.12 t    | Cm2/placa      | =             | 38           |
| =                         | 421120 kg   | HSS 40 x 40    | cm 1/2" de gr | rosor cumple |
| Fs=                       | 2812        |                | _             |              |
| Área de columna=          | 2064.31 cm2 |                |               |              |
| Raiz=                     | 45.00 cm    |                |               |              |
| Varillas principales=     | 4 #6        | 11.48          | 3             |              |
| Varillas por temperatura= | 4 #3        | 2.84           |               |              |
|                           | Total de    |                |               |              |
|                           | acero=      | 14.32          | 2             |              |
|                           |             |                | -             |              |
| Agmin=                    | 7.12 cm2    | 14.24          | doble Ag mir  | 1            |
| Agmáx=                    | 60.44 cm2   | 40.29          | 2/3 Ag máx    |              |


| COLUMNAS C3               |             |                |               |             |
|---------------------------|-------------|----------------|---------------|-------------|
| Á 4                       | 44 0        | Dun in —       | 0.0004        |             |
| Area tributaria=          | 44 m2       | Pmin=          | 0.0034        |             |
| Niveles=                  | 4           | pmáx=          | 0.029         |             |
| w/m2=                     | 1.88 T      |                |               |             |
| f"c=                      | 204 kg/cm2  | Md=            | 206.80        | T.m         |
| fy=                       | 3515 kg/cm2 | Sx=            | 9,805.60      | cm3         |
| Altura entrepiso=         | 5 m         | Kg / Fs =      | 117.67        | Cm2         |
| L=                        | 5 m         | entre 4 placas | = /4          | 29.4167852  |
| C1=                       | 330.88 t    | Cm2/placa      | =             | 30          |
| =                         | 330880 kg   | HSS 40 x 40    | cm 1/2" de gr | osor cumple |
| Fs=                       | 2812        |                | _             |             |
| Área de columna=          | 1621.96 cm2 |                |               |             |
| Raiz=                     | 40.00 cm    |                |               |             |
| Varillas principales=     | 4 #6        | 11.48          |               |             |
| Varillas por temperatura= | 4 #3        | 2.84           |               |             |
| , ,                       | Total de    |                |               |             |
|                           | acero=      | 14.32          |               |             |
|                           |             |                | •             |             |
| Agmin=                    | 5.59 cm2    | 11.19          | doble Ag min  | ı           |
| Agmáx=                    | 47.49 cm2   | 31.66          | 2/3 Ag máx    |             |


Fuente:


Elaboración propia con base según reglamento de construcción.


### 5.4.1.3-Trabes


Tabla 15 Trabes











Fuente: Elaboración propia con base según reglamento de construcción.

### 5.4.2-Hidrosanitario

### 5.4.2.1-Hidráulica

Tabla 16 Cálculo de instalación hidráulica

| Criterios para cálculo de instalación hidráulica                 |            |             |
|------------------------------------------------------------------|------------|-------------|
|                                                                  | Usuarios d | el Proyecto |
| 1 levantamiento general de sitio. Acometidas generales           |            |             |
| 2 Numero de usuarios                                             | Museo      | 800         |
| 3 Gasto diario según norma                                       | Parque     | 400         |
| 4 Predimensionamiento y ubicación de cisterna y cuarto de bombeo |            |             |
| 5 Propuesta de ramificación de instalación de acuero a proyecto  | total      | 1200        |

| Gasto calculado al 200% de la demanda |                                                    |     |   |           |  |
|---------------------------------------|----------------------------------------------------|-----|---|-----------|--|
| provisíon mínir                       | provisíon mínima agua potable personas días litros |     |   |           |  |
| museos y centros de                   | información 10l/asistente/di                       | ía  |   |           |  |
|                                       | 10                                                 | 800 | 2 | 16,000.00 |  |
| auditorio                             | 10l/asistente/di                                   | ía  |   |           |  |
|                                       | 10                                                 | 100 | 2 | 2,000.00  |  |
| librería                              | 6l/m2/día                                          |     |   |           |  |
|                                       | 6                                                  | 32  | 2 | 384.00    |  |
| oficinas                              | 50l/persona/día                                    | a   |   |           |  |
|                                       | 50                                                 | 6   | 2 | 600.00    |  |
| estacionamiento                       | 8l/cajón/día                                       |     |   |           |  |
|                                       | 8                                                  | 138 | 2 | 2,208.00  |  |
| alimentos y bebidas                   | 12l/comensal/c                                     | lía |   |           |  |
|                                       | 12                                                 | 120 | 2 | 2,880.00  |  |
|                                       |                                                    |     |   |           |  |
|                                       |                                                    |     |   | 24,072.00 |  |

| Cisterna Agua potable |                             |
|-----------------------|-----------------------------|
| 24.072 m3             |                             |
| 16 m2                 | Propuesta 4 x 4m            |
| 1.5045 m              | profundidad volumen de agua |
| 1.8045 m              | más colchón de aire de 30cm |
| 1.8 m                 |                             |

| espacios abiertos | 100l/trabajao | dor/día |   |            |
|-------------------|---------------|---------|---|------------|
|                   | 100           | 2       | 2 | 400.00     |
|                   | 5l/m2/día     |         |   |            |
|                   | 5             | 52529   | 2 | 525,290.00 |
|                   |               |         |   | 525,690.00 |

| Cisterna Mante | Cisterna Mantenimiento Parque |  |  |
|----------------|-------------------------------|--|--|
| 525.69 m3      |                               |  |  |
| 100 m2         | Propuesta 10 x 10m            |  |  |
| 5.2569 m       | profundidad volumen de agua   |  |  |
| 5.5569 m       | más colchón de aire de 30cm   |  |  |
| 5.55 m         |                               |  |  |

| casetas | 6l/m2/día |     |   |                          |
|---------|-----------|-----|---|--------------------------|
|         | 6         | 100 | 2 | 1,200.00<br>1,052,580.00 |
|         |           |     |   |                          |

| Cisterna caseta |                             |
|-----------------|-----------------------------|
| 1.20 m3         |                             |
| 1 m2            | Propuesta 1 x 1m            |
| 1.2 m           | profundidad volumen de agua |
| 1.5 m           | más colchón de aire de 30cm |
| 1.5 m           |                             |

Fuente: Elaboración propia con base según reglamento de construcción.

|                                     | Área (m2)Profundidad (m) |                        |            |  |  |  |  |  |  |  |  |
|-------------------------------------|--------------------------|------------------------|------------|--|--|--|--|--|--|--|--|
| Mitigación de cisterna por estanque | 3000                     | 1.5                    | 4500       |  |  |  |  |  |  |  |  |
|                                     |                          | 4,5                    | 500,000.00 |  |  |  |  |  |  |  |  |
| Vece                                | es cubierta la n         | ecesid <mark>ad</mark> | 4.28       |  |  |  |  |  |  |  |  |
|                                     |                          |                        |            |  |  |  |  |  |  |  |  |

Por cálculo podemos observas que la implementación de un estanque (vaso regulador) favorece la disposición de agua para uso dentro del parque y museo, ya que la necesidad total de su funcionamiento se ve cubierta varias veces por la cantidad de agua que el cuerpo de agua representaría. Del mismo modo que se convierte en punto focal para las descargas de agua pluvial tanto de cubiertas, andadores y edificios para reabastecer su nivel en periodos de precipitaciones.

### 5.4.2.2-Sanitaria

Tabla 17 Cálculo de instalación sanitaria

se calcula una aportación de aguas negras sobre el 80% de agua potable

| Aportación de a       | guas negras          |    | personas       | días       | litros        |
|-----------------------|----------------------|----|----------------|------------|---------------|
| museos y centros de i | nf 10l/asistente/día | 40 | 000            |            | 0.000.00      |
| auditorio             | 10l/asistente/día    | 10 | 800            | 1          | 8,000.00      |
| auditorio             | 101/4313161116/414   | 10 | 100            | 1          | 1,000.00      |
| librería              | 6l/m2/día            |    |                |            |               |
|                       | <b>-</b> 21/         | 6  | 32             | 1          | 192.00        |
| oficinas              | 50l/persona/día      | 50 | 6              | 1          | 300.00        |
| alimentos y bebidas   | 12l/comensal/día     | 50 | O              | •          | 300.00        |
| ·                     |                      | 12 | 120            | 1          | 1,440.00      |
| casetas               | 6l/m2/día            |    | 400            |            | 000.00        |
|                       |                      | 6  | 100            | 1          | 600.00        |
|                       |                      |    | agua potable   | e para uso | 11,532.00 Its |
|                       |                      | ag | uas negras seg | ún cálculo | 9225.6 Its    |

| Calculo de sanit      | tarios según NTC s   | anitarios lavabos |    |
|-----------------------|----------------------|-------------------|----|
| Interiores            |                      |                   |    |
| museos y centros de i | 4                    | 4                 |    |
|                       | cada 200 adicionales | 2                 | 2  |
| auditorio             | de 101 a 200         | 4                 | 4  |
| oficinas              | hasta 100            | 2                 | 2  |
| alimentos y bebidas   | de 101 a 200         | 4                 | 4  |
|                       | totales              | 16                | 16 |
|                       | por genero           | 8                 | 8  |
| Exteriores            |                      |                   |    |
| espacios abiertos     | de 101 a 400         | 4                 | 4  |
|                       | cada 200 adicionales | 2                 | 2  |
| estacionamiento       | empleados            | 1                 | 1  |
|                       | caseta extra         | 1                 | 1  |
|                       | totales              | 8                 | 8  |
|                       | por genero           | 4                 | 4  |

### Calculo de unidades de descarga

| Tipo de mueble   | Unidades de<br>descarga | # d<br>muel | -  | Total de<br>U.D. |
|------------------|-------------------------|-------------|----|------------------|
| W.C. Fluxómetro  |                         | 6           | 12 | 72               |
| Migitorio        | (                       | 0           | 4  | 0                |
| Lavabo           | :                       | 2           | 16 | 32               |
| Coladera         |                         | 1           | 4  | 4                |
| Tarja Industrial | ;                       | 3           | 2  | 6                |
|                  |                         | Total       |    | 114              |

Fuente: Elaboración propia con base según normas técnicas complementarias.

### 5.4.3-Electrico

Cálculo de demanda eléctrica, circuitos y balanceo para Museo del agua

### Simbología:

Tabla 18 Cálculo de demanda eléctrica (Simbología)

| F | N  | ΡI | LA | F  | Ó١ | N |
|---|----|----|----|----|----|---|
|   | IV | ГΙ | _~ | ٠. |    | N |

| CLAVE | SIMBOLO      | NOMBRE                                          | POTENCIA (W) | VOLTS | No. LAMPARAS | LUMENS |
|-------|--------------|-------------------------------------------------|--------------|-------|--------------|--------|
| L1    |              | LED de sobreponer "Philips Fortimo LED Line 3R" | 50           | 220   | 1            | 3500   |
| L2    |              | Philips Down Light LED                          | 12           | 110   | 1            | 1000   |
| L3    | +            | Phillips Smart Led Projector Tango              | 40           | 220   | 1            | 4000   |
| LE1   | $\bigotimes$ | Emergencias URA21LED Legrand                    | 5            | 110   | 1            | 350    |

EN PISO

| CLAVE | SIMBOLO | NOMBRE                       | POTENCIA (W) | VOLTS | No. LAMPARAS | LUMENS |
|-------|---------|------------------------------|--------------|-------|--------------|--------|
| LP1   |         | H365 ACI Exterior Tecno Lite | 9            | 110   | 1            | 250    |

### CONTACTOS

| CLAVE | SIMBOLO | NOMBRE              | POTENCIA (W) |
|-------|---------|---------------------|--------------|
| CO1   |         | CONTACTO ÁREA COMUN | 180          |
| CO2   |         | CONTACTO EQUIPO     | 1500         |
| CR1   | 0       | CONTACTO REGULADO   | 180          |
| М     | M       | MOTORES             | 1800         |

Fuente: Elaboración propia con base según criterios de diseño

Tabla 19 Cálculo de luminarias

|              |                                 |                |          |            | ILUMINACIÓ   | N ARQUITECTÓNICA                |              |        |
|--------------|---------------------------------|----------------|----------|------------|--------------|---------------------------------|--------------|--------|
|              | LOCALES                         | Lux requeridos | m2       | m3         | m requeridos | luminaria phillips              | lm/luminaria | oiezas |
| Planta BA    | Acceso                          | 300            | 152      | 608        | 45600        | Fortimo LED line 3r             | 3500         | 13     |
| •            | Vestíbulo                       | 300            | 61       | 244        | 18300        | Down Light LED                  | 1000         | 18     |
|              | Andador                         | 200            | 201      | 804        | 40200        | Down Light LED                  | 1000         | 40     |
|              | Patio central                   | 200            | 222      | 888        | 44400        | Phillips Smart Led Projector Ta | 4000         | 11     |
|              | Administración                  | 400            | 45       | 180        | 18000        | Down Light LED                  | 1000         | 18     |
|              | Sala de juntas                  | 400            | 22       | 88         |              | Fortimo LED line 3r             | 3500         | 3      |
|              | Oficina Director                | 400            | 15       | 60         | 6000         | Down Light LED                  | 1000         | 6      |
|              | Tienda                          | 1000           | 184      | 736        | 184000       | Fortimo LED line 3r             | 3500         | 53     |
|              | cuarto de maquinas              | 200            | 27       | 108        | 5400         | Down Light LED                  | 1000         | 5      |
|              | Sanitarios privados             | 200            | 7        | 28         | 1400         | Down Light LED                  | 1000         | 1      |
|              | sanitarios públicos             | 200            | 42       | 168        | 8400         | Down Light LED                  | 1000         | 8      |
|              | Sala exposición Viva            | 300            | 209      | 836        | 62700        | Down Light LED                  | 1000         | 63     |
|              | Sala Exposición tempor          | 500            | 350      | 1400       | 175000       | Fortimo LED line 3r             | 3500         | 50     |
|              | Foro                            | 300            | 194      | 776.1      | 58206        | Fortimo LED line 3r             | 3500         | 17     |
|              | Vestibulo Salida                | 300            | 203      | 812        | 60900        | Down Light LED                  | 1000         | 61     |
| Planta ALT   | Andador                         | 250            | 201      | 804        | 50250        | Down Light LED                  | 1000         | 50     |
| Flailta AL I |                                 | 500            | 225      | 900        |              | Fortimo LED line 3r             | 3500         | 32     |
|              | Exposición A                    | 500            | 180      |            |              | Fortimo LED line 3r             | 3500         | 26     |
|              | Exposición B Exposición C       | 500            | 138      | 720<br>552 |              | Fortimo LED line 3r             | 3500         | 20     |
|              |                                 |                | 211      | 844        |              | Down Light LED                  | 1000         | 63     |
|              | Exposición Terraza  Restaurante | 300<br>300     | 103      | 412        | _            |                                 | 1000         | 31     |
|              | Restaurante Terraza             | 250            | 103      | 412        |              | Down Light LED                  | 1000         | 27     |
|              | Restaurante Sanitarios          | 200            | 28       | 420<br>112 | 1            | Down Light LED                  | 1000         |        |
|              | Cocina                          | 200            | 28<br>29 | 112        |              | Down Light LED                  | 1000         | 6<br>6 |
|              | Almacen                         | 200            | 16       | 64         |              | Down Light LED Down Light LED   | 1000         | 3      |
|              | Pasillo                         | 200            | 24       | 96         |              | Down Light LED                  | 1000         | 5<br>5 |
|              | Mirador                         | 150            | 60       | 240        |              | Down Light LED                  | 1000         | 9      |
|              | IVIII audi                      | 130            | 00       | 240        | 9000         | DOWN LIGHT LED                  | 1000         | '      |
| Planta C     | Andador                         | 250            | 239      |            |              | Phillips Smart Led Projector Ta |              | 15     |
|              | Área libre                      | 200            | 747      |            | 149400       | Phillips Smart Led Projector Ta | 4000         | 37     |
|              | Acceso                          | 300            | 167      | 501        |              | Fortimo LED line 3r             | 3500         | 14     |
|              | Área mantenimiento              | 150            | 345      |            | 51750        | Phillips Smart Led Projector Ta | 4000         | 13     |
| Perimetro    | Andador                         | 200            | 384      |            | 76800        | Phillips Smart Led Projector Ta | 4000         | 19     |
|              | Área libre                      | 200            | 194      |            | 38800        | Phillips Smart Led Projector Ta | 4000         | 10     |

luminarias **753** 

Fuente: Elaboración propia con base a método de Lumen

Tabla 20 lluminación de emergencia

| I             | LUMINACIÓ     | N DE EMER                  | GENCIA         |         |
|---------------|---------------|----------------------------|----------------|---------|
| Lux seguridad | lm requeridos |                            | lm/luminaria   | piezas  |
| 45            | 0000          | - ·                        | 050            | 7       |
| 15            |               | Emergencias                |                | 7       |
| 15            |               | Emergencias                | 350            | 3       |
| 15            |               | Emergencias                |                | 9       |
| 15            |               | Emergencias                | 350            | 10      |
| 15            |               | Emergencias                |                | 2       |
| 15            |               | Emergencias                | 350            | 1       |
| 15            |               | Emergencias                | 350            | 1       |
| 15            |               | Emergencias                | 350            | 8       |
| 15            |               | Emergencias                | 350            | 1       |
| 15            |               | Emergencias                | 350            | 1       |
| 15            |               | Emergencias                |                | 2       |
| 15            | 3135          | Emergencias                |                | 9       |
| 15            |               | Emergencias                | 350            | 15      |
| 15            | 2910.3        | Emergencias                | 350            | 8       |
| 15            | 3045          | Emergencias                | 350            | 9       |
| 15            | 3015          | Emergencias                | 350            | 9       |
| 15            |               | Emergencias                |                | 10      |
| 15            |               | Emergencias                | 350            | 8       |
| 15            |               | Emergencias                | 350            | 6       |
| 15            |               | Emergencias                | 350            | 9       |
| 15            |               | Emergencias                | 350            | 4       |
| 15            |               | Emergencias                |                | 5       |
| 15            |               | Emergencias                | 350            | 1       |
| 15            |               | Emergencias                | 350            | 1       |
| 15            |               | Emergencias                | 350            | 1       |
| 15            |               | Emergencias                | 350            | 1       |
| 15            |               | Emergencias                |                | 3       |
| 15            | 3585          | Emergencias                | 350            | 10      |
| 15            |               | Emergencias                |                |         |
| 15            |               | Emergencias<br>Emergencias |                | 32<br>7 |
| 15            |               | Emergencias                |                | 15      |
|               |               |                            |                |         |
| 15            |               | Emergencias                |                | 16      |
| 15            | 2910          | Emergencias                | 350            | 8       |
|               |               |                            | Total segurida | 232     |
| ı             | т             | otal luminari              | ae             | 985     |
|               | <u> </u>      | otai iuiiiiiiali           | uJ             | 303     |

Fuente: Elaboración propia con base a método de Lumen

Tabla 21 Cálculo de demanda eléctrica del museo

|             |                         |    |    |        |    |    |        | LU | MIN | ARIAS  |     |   |        |     |    |        |              |
|-------------|-------------------------|----|----|--------|----|----|--------|----|-----|--------|-----|---|--------|-----|----|--------|--------------|
|             | LOCALES                 | L1 | W  | W/ÁREA | L2 | W  | W/ÁREA | L3 | W   | W/ÁREA | LP1 | W | W/ÁREA | LE1 | W  | W/ÁREA | W/TOTAL/ÁREA |
| Planta BAJA | Acceso                  | 13 | 50 | 650    |    |    |        |    |     |        | 6   | 9 | 54     | 7   | 5  | 35     | 739          |
|             | Vestíbulo               |    |    |        | 18 | 12 | 216    |    |     |        |     |   |        | 3   | 5  | 15     | 231          |
|             | Andador                 |    |    |        | 40 | 12 | 480    |    |     |        |     |   |        | 9   | 5  | 45     | 525          |
|             | Patio central           |    |    |        |    |    |        | 11 | 40  | 440    | 15  | 9 | 135    | 10  | 5  | 50     | 185          |
|             | Administración          |    |    |        | 18 | 12 | 216    |    |     |        |     |   |        | 2   | 5  | 10     | 226          |
|             | Sala de juntas          | 3  | 50 | 150    |    |    |        |    |     |        |     |   |        | 1   | 5  |        | 155          |
|             | Oficina Director        |    |    |        | 6  | 12 | 72     |    |     |        |     |   |        | 1   | 5  |        | 77           |
|             | Tienda                  | 53 | 50 | 2650   |    |    |        |    |     |        | 12  | 9 | 108    | 8   | 5  | 40     | 2798         |
|             | Cuarto de maquinas      |    |    |        | 5  | 12 | 60     |    |     |        |     |   |        | 1   | 5  | 5      | 65           |
|             | Sanitarios privados     |    |    |        | 1  | 12 | 12     |    |     |        |     |   |        | 1   | 5  | 5      | 17           |
|             | Sanitarios públicos     |    |    |        | 8  | 12 | 96     |    |     |        |     |   |        | 2   | 5  | 10     | 106          |
|             | Sala exposición Viva    |    |    |        | 63 | 12 | 756    |    |     |        |     |   |        | 9   | 5  | 45     | 801          |
|             | Sala Exposición tempora |    |    | 2500   |    |    |        |    |     |        |     |   |        | 15  | 5  | 75     | 2575         |
|             | Foro                    | 17 | 50 | 850    |    |    |        |    |     |        | 12  | 9 | 108    | 8   |    |        | 998          |
|             | Vestibulo Salida        |    |    |        | 61 | 12 | 732    |    |     |        |     |   |        | 9   | 5  | 45     | 777          |
| Planta ALTA | Andador                 |    |    |        | 50 | 12 | 600    |    |     |        |     |   |        | 9   | 5  | 45     | 645          |
|             | Exposición A            | 32 | 50 | 1600   |    |    |        |    |     |        |     |   |        | 10  | 5  | 50     | 1650         |
|             | Exposición B            | 26 | 50 | 1300   |    |    |        |    |     |        |     |   |        | 8   | 5  | 40     | 1340         |
|             | Exposición C            | 20 | 50 | 1000   |    |    |        |    |     |        |     |   |        | 6   | 5  | 30     | 1030         |
|             | Exposición Terraza      |    |    |        | 63 | 12 | 756    |    |     |        | 12  | 9 | 108    | 9   | 5  | 45     | 909          |
|             | Restaurante             |    |    |        | 31 | 12 | 372    |    |     |        |     |   |        | 4   | 5  | 20     | 392          |
|             | Restaurante Terraza     |    |    |        | 27 | 12 | 324    |    |     |        | 6   | 9 | 54     | 5   | 5  | 25     | 403          |
|             | Restaurante Sanitarios  |    |    |        | 6  | 12 | 72     |    |     |        |     |   |        | 1   | 5  | 5      | 77           |
|             | Cocina                  |    |    |        | 6  | 12 | 72     |    |     |        |     |   |        | 1   | 5  | 5      | 77           |
|             | Almacen                 |    |    |        | 3  | 12 | 36     |    |     |        |     |   |        | 1   | 5  | 5      | 41           |
|             | Pasillo                 |    |    |        | 5  | 12 | 60     |    |     |        |     |   |        | 1   | 5  |        | 65           |
|             | Mirador                 |    |    |        | 9  | 12 | 108    |    |     |        | 6   | 9 | 54     | 3   | 5  | 15     | 177          |
| Planta C    | Andador                 |    |    |        |    |    |        | 15 | 40  | 600    | 15  | 9 | 135    | 10  | 5  | 50     | 185          |
|             | Área libre              |    |    |        |    |    |        | 37 | 40  | 1480   | 15  | 9 | 135    | 32  | 5  | 160    | 295          |
|             | Acceso                  | 14 | 50 | 700    |    |    |        |    |     |        |     |   |        | 7   | 5  | 35     | 735          |
|             | Área mantenimiento      |    |    |        |    |    |        | 13 | 40  | 520    |     |   |        | 15  | 5  | 75     | 75           |
| Perímetro   | Andador                 |    |    |        |    |    |        | 19 | 40  | 760    | 30  | 9 | 270    | 16  | 5  | 80     | 350          |
|             | Área libre              |    |    |        |    |    |        | 10 | 40  | 400    | 16  | 9 | 144    | 8   | 5  | 40     | 184          |
|             |                         |    |    |        |    |    |        |    |     |        |     |   | WL     | UMI | NA | RIAS   | 18,905       |

Fuente: Elaboración propia con base a método de Lumen

Tabla 22 Apagadores

|             |                          | Al          | PAGADOR | ES         |
|-------------|--------------------------|-------------|---------|------------|
|             | LOCALES                  | W LUMINARIA | 600W    | APAGADORES |
| Planta BAJA | Acceso                   | 739         | 1.232   | 2          |
| •           | Vestíbulo                | 231         | 0.385   | 1          |
|             | Andador                  | 525         | 0.875   | 1          |
|             | Patio central            | 185         | 0.308   | 1          |
|             | Administración           | 226         | 0.377   | 1          |
|             | Sala de juntas           | 155         | 0.258   | 1          |
|             | Oficina Director         | 77          | 0.128   | 1          |
|             | Tienda                   | 2798        | 4.663   | 5          |
|             | Cuarto de maquinas       | 65          | 0.108   | 1          |
|             | Sanitarios privados      | 17          | 0.028   | 1          |
|             | Sanitarios públicos      | 106         | 0.177   | 1          |
|             | Sala exposición Viva     | 801         | 1.335   | 2          |
|             | Sala Exposición temporal | 2575        | 4.292   | 5          |
|             | Foro                     | 998         | 1.663   | 2          |
|             | Vestibulo Salida         | 777         | 1.295   | 2          |
| Planta ALTA | Andador                  | 645         | 1.075   | 2          |
|             | Exposición A             | 1650        | 2.750   | 3          |
|             | Exposición B             | 1340        | 2.233   |            |
|             | Exposición C             | 1030        | 1.717   | 2          |
|             | Exposición Terraza       | 909         | 1.515   | 2          |
|             | Restaurante              | 392         | 0.653   | 1          |
|             | Restaurante Terraza      | 403         | 0.672   | 1          |
|             | Restaurante Sanitarios   | 77          | 0.128   | 1          |
|             | Cocina                   | 77          | 0.128   | 1          |
|             | Almacen                  | 41          | 0.068   | 1          |
|             | Pasillo                  | 65          | 0.108   | 1          |
|             | Mirador                  | 177         | 0.295   | 1          |
| Planta C    | Andador                  | 185         | 0.308   | 1          |
|             | Área libre               | 295         | 0.492   | 1          |
|             | Acceso                   | 735         | 1.225   |            |
|             | Área mantenimiento       | 75          | 0.125   |            |
| Perímetro   | Andador                  | 350         | 0.583   | 1          |
|             | Área libre               | 184         | 0.307   | 1          |
|             |                          | APAGAD      | ORES    | 53         |
|             |                          | AFAGAD      | UKES    | ეა         |

Tabla 23 Contactos

|             |                          | CONTACTOS / MOTORES |     |        |     |      |        |     |     |        |   |      |        |              |
|-------------|--------------------------|---------------------|-----|--------|-----|------|--------|-----|-----|--------|---|------|--------|--------------|
|             | LOCALES                  | CO1                 | W   | W/ÁREA | CO2 | W    | W/ÁREA | CR1 | W   | W/ÁREA | М | W    | W/ÁREA | W/TOTAL/ÁREA |
| Planta BAJA | Acceso                   |                     |     |        |     |      |        |     |     |        |   |      |        | 0            |
|             | Vestíbulo                | 6                   | 180 | 1080   | 2   | 1500 | 3000   | 3   | 180 | 540    |   |      |        | 4620         |
|             | Andador                  | 3                   | 180 | 540    | 3   | 1500 | 4500   |     |     |        |   |      |        | 5040         |
|             | Patio central            |                     |     |        |     |      |        |     |     |        | 1 | 1800 | 1800   | 1800         |
|             | Administración           | 12                  | 180 | 2160   | 4   | 1500 | 6000   | 4   | 180 | 720    |   |      |        | 8880         |
|             | Sala de juntas           | 6                   | 180 | 1080   | 4   | 1500 | 6000   | 2   | 180 | 360    |   |      |        | 7440         |
|             | Oficina Director         | 4                   | 180 | 720    | 2   | 1500 | 3000   | 2   | 180 | 360    |   |      |        | 4080         |
|             | Tienda                   | 12                  | 180 | 2160   | 4   | 1500 | 6000   | 2   | 180 | 360    | 1 | 1800 | 1800   | 10320        |
|             | Cuarto de maquinas       | 6                   | 180 | 1080   | 4   | 1500 | 6000   | 2   | 180 | 360    | 2 | 1800 | 3600   | 11040        |
|             | Sanitarios privados      |                     |     |        | 2   | 1500 | 3000   |     |     |        |   |      |        | 3000         |
|             | Sanitarios públicos      |                     |     |        | 2   | 1500 | 3000   |     |     |        |   |      |        | 3000         |
|             | Sala exposición Viva     | 24                  | 180 | 4320   | 4   | 1500 | 6000   | 12  | 180 | 2160   |   |      |        | 12480        |
|             | Sala Exposición temporal | 12                  | 180 | 2160   | 6   | 1500 | 9000   | 6   | 180 | 1080   |   |      |        | 12240        |
|             | Foro                     | 6                   | 180 | 1080   | 4   | 1500 | 6000   | 1   | 180 | 180    |   |      |        | 7260         |
|             | Vestibulo Salida         | 2                   | 180 | 360    | 2   | 1500 | 3000   |     |     |        |   |      |        | 3360         |
| Planta ALTA | Andador                  |                     |     |        |     |      |        |     |     |        |   |      |        | 0            |
| •           | Exposición A             | 12                  | 180 | 2160   | 6   | 1500 | 9000   | 2   | 180 | 360    |   |      |        | 11520        |
|             | Exposición B             | 12                  | 180 | 2160   | 6   | 1500 | 9000   | 2   | 180 | 360    |   |      |        | 11520        |
|             | Exposición C             | 12                  | 180 | 2160   | 6   | 1500 | 9000   | 2   | 180 | 360    |   |      |        | 11520        |
|             | Exposición Terraza       | 6                   | 180 | 1080   | 2   | 1500 | 3000   |     |     |        |   |      |        | 4080         |
|             | Restaurante              | 12                  | 180 | 2160   | 2   | 1500 | 3000   |     |     |        | 1 | 1800 | 1800   | 6960         |
|             | Restaurante Terraza      | 6                   | 180 | 1080   | 2   | 1500 | 3000   |     |     |        |   |      |        | 4080         |
|             | Restaurante Sanitarios   |                     |     |        |     |      |        |     |     |        |   |      |        | 0            |
|             | Cocina                   | 14                  | 180 | 2520   | 8   | 1500 | 12000  | 6   | 180 | 1080   | 1 | 1800 | 1800   | 17400        |
|             | Almacen                  | 4                   | 180 |        | 4   | 1500 | 6000   |     | 180 | 360    | 2 | 1800 | 3600   | 10680        |
|             | Pasillo                  |                     |     |        |     |      |        |     |     |        |   |      |        | 0            |
|             | Mirador                  | 6                   | 180 | 1080   | 2   | 1500 | 3000   |     |     |        |   |      |        | 4080         |
| Planta C    | Andador                  | 6                   | 180 | 1080   | 4   | 1500 | 6000   |     |     |        |   |      |        | 7080         |
|             | Área libre               | 6                   | 180 | 1080   | 4   | 1500 | 6000   |     |     |        |   |      |        | 7080         |
|             | Acceso                   | 4                   | 180 | 720    |     |      | - 5500 |     |     |        | H |      |        | 720          |
|             | Área mantenimiento       | 4                   | 180 |        | 2   | 1500 | 3000   | 2   | 180 | 360    |   |      |        | 4080         |
| Perímetro   | Andador                  |                     |     |        | 6   | 1500 | 9000   |     |     |        |   |      |        | 9000         |
|             | Área libre               |                     |     |        | 6   | 1500 | 9000   |     |     |        |   |      |        | 9000         |

| WCONTACTOS | 213,360 |
|------------|---------|
| W          | 232,265 |
| KW         | 232.265 |

Tabla 24 Balanceo luminarias

|             |                          | BALANCEO LUMINARIAS |         |       |            |  |
|-------------|--------------------------|---------------------|---------|-------|------------|--|
|             | LOCALES                  | CARGA               | I=W/127 | Α     | +25% CARGA |  |
| Planta BAJA | Acceso                   | 739                 | 127     | 5.82  | 7.27       |  |
|             | Vestíbulo                | 231                 | 127     | 1.82  | 2.27       |  |
|             | Andador                  | 525                 | 127     | 4.13  | 5.17       |  |
|             | Patio central            | 185                 | 127     | 1.46  | 1.82       |  |
|             | Administración           | 226                 | 127     | 1.78  | 2.22       |  |
|             | Sala de juntas           | 155                 | 127     | 1.22  | 1.53       |  |
|             | Oficina Director         | 77                  | 127     | 0.61  | 0.76       |  |
|             | Tienda                   | 2798                | 127     | 22.03 | 27.54      |  |
|             | Cuarto de maquinas       | 65                  | 127     | 0.51  | 0.64       |  |
|             | Sanitarios privados      | 17                  | 127     | 0.13  | 0.17       |  |
|             | Sanitarios públicos      | 106                 | 127     | 0.83  | 1.04       |  |
|             | Sala exposición Viva     | 801                 | 127     | 6.31  | 7.88       |  |
|             | Sala Exposición temporal | 2575                | 127     | 20.28 | 25.34      |  |
|             | Foro                     | 998                 | 127     | 7.86  | 9.82       |  |
|             | Vestibulo Salida         | 777                 | 127     | 6.12  | 7.65       |  |
| Planta ALTA | Andador                  | 645                 | 127     | 5.08  | 6.35       |  |
|             | Exposición A             | 1650                | 127     | 12.99 | 16.24      |  |
|             | Exposición B             | 1340                | 127     | 10.55 | 13.19      |  |
|             | Exposición C             | 1030                | 127     | 8.11  | 10.14      |  |
|             | Exposición Terraza       | 909                 | 127     | 7.16  | 8.95       |  |
|             | Restaurante              | 392                 | 127     | 3.09  | 3.86       |  |
|             | Restaurante Terraza      | 403                 | 127     | 3.17  | 3.97       |  |
|             | Restaurante Sanitarios   | 77                  | 127     | 0.61  | 0.76       |  |
|             | Cocina                   | 77                  | 127     | 0.61  | 0.76       |  |
|             | Almacen                  | 41                  | 127     | 0.32  | 0.40       |  |
|             | Pasillo                  | 65                  | 127     | 0.51  | 0.64       |  |
|             | Mirador                  | 177                 | 127     | 1.39  | 1.74       |  |
| Planta C    | Andador                  | 185                 | 127     | 1.46  | 1.82       |  |
|             | Área libre               | 295                 | 127     | 2.32  | 2.90       |  |
|             | Acceso                   | 735                 | 127     | 5.79  | 7.23       |  |
|             | Área mantenimiento       | 75                  | 127     | 0.59  | 0.74       |  |
| Perímetro   | Andador                  | 350                 | 127     | 2.76  | 3.44       |  |
|             | Área libre               | 184                 | 127     | 1.45  | 1.81       |  |

Tabla 25 Balanceo contactos

|             |                          | BALANCEO CONTACTOS |         |        |            |  |
|-------------|--------------------------|--------------------|---------|--------|------------|--|
|             | LOCALES                  | CARGA              | I=W/127 | Α      | +25% CARGA |  |
| Planta BAJA | Acceso                   | 0                  | 127     | 0.00   | 0.00       |  |
|             | Vestíbulo                | 4620               | 127     | 36.38  | 45.47      |  |
|             | Andador                  | 5040               | 127     | 39.69  | 49.61      |  |
|             | Patio central            | 1800               | 127     | 14.17  | 17.72      |  |
|             | Administración           | 8880               | 127     | 69.92  | 87.40      |  |
|             | Sala de juntas           | 7440               | 127     | 58.58  | 73.23      |  |
|             | Oficina Director         | 4080               | 127     | 32.13  | 40.16      |  |
|             | Tienda                   | 10320              | 127     | 81.26  | 101.57     |  |
|             | Cuarto de maquinas       | 11040              | 127     | 86.93  | 108.66     |  |
|             | Sanitarios privados      | 3000               | 127     | 23.62  | 29.53      |  |
|             | Sanitarios públicos      | 3000               | 127     | 23.62  | 29.53      |  |
|             | Sala exposición Viva     | 12480              | 127     | 98.27  | 122.83     |  |
|             | Sala Exposición temporal | 12240              | 127     | 96.38  | 120.47     |  |
|             | Foro                     | 7260               | 127     | 57.17  | 71.46      |  |
|             | Vestibulo Salida         | 3360               | 127     | 26.46  | 33.07      |  |
| Planta ALTA | Andador                  | 0                  | 127     | 0.00   | 0.00       |  |
|             | Exposición A             | 11520              | 127     | 90.71  | 113.39     |  |
|             | Exposición B             | 11520              | 127     | 90.71  | 113.39     |  |
|             | Exposición C             | 11520              | 127     | 90.71  | 113.39     |  |
|             | Exposición Terraza       | 4080               | 127     | 32.13  | 40.16      |  |
|             | Restaurante              | 6960               | 127     | 54.80  | 68.50      |  |
|             | Restaurante Terraza      | 4080               | 127     | 32.13  | 40.16      |  |
|             | Restaurante Sanitarios   | 0                  | 127     | 0.00   | 0.00       |  |
|             | Cocina                   | 17400              | 127     | 137.01 | 171.26     |  |
|             | Almacen                  | 10680              | 127     | 84.09  | 105.12     |  |
|             | Pasillo                  | 0                  | 127     | 0.00   | 0.00       |  |
|             | Mirador                  | 4080               | 127     | 32.13  | 40.16      |  |
| Planta C    | Andador                  | 7080               | 127     | 55.75  | 69.69      |  |
|             | Área libre               | 7080               | 127     | 55.75  | 69.69      |  |
|             | Acceso                   | 720                | 127     | 5.67   | 7.09       |  |
|             | Área mantenimiento       | 4080               | 127     | 32.13  | 40.16      |  |
| Perímetro   | Andador                  | 9000               | 127     | 70.87  | 88.58      |  |
|             | Área libre               | 9000               | 127     | 70.87  | 88.58      |  |

Tabla 26 Número de circuitos de 60 Amperes

|             |                          | No CIRCUI   |           |                         |
|-------------|--------------------------|-------------|-----------|-------------------------|
|             | LOCALES                  | ILUMINACIÓN | CONTACTOS | No TABLEROS             |
| Planta BAJA | Acceso                   |             |           |                         |
|             | Vestíbulo                |             | 1         |                         |
|             | Andador                  |             | 1         |                         |
|             | Patio central            | 2           | 1         | T-1 (Q-24)              |
|             | Administración           |             | 2         | 1-1 (Q-2 <del>4</del> ) |
|             | Sala de juntas           |             | 2         |                         |
|             | Oficina Director         |             | 1         |                         |
|             | Tienda                   |             | 3         |                         |
|             | Cuarto de maquinas       |             | 3         |                         |
|             | Sanitarios privados      |             | 1         |                         |
|             | Sanitarios públicos      |             | 1         |                         |
|             | Sala exposición Viva     | 2           | 3         | T-2 (Q-24)              |
|             | Sala Exposición temporal |             | 3         |                         |
|             | Foro                     |             | 2         |                         |
|             | Vestibulo Salida         |             | 1         |                         |
| Planta ALTA | Andador                  |             |           |                         |
|             | Exposición A             |             | 2         |                         |
|             | Exposición B             | 2           | 2         | T-3 (Q-24)              |
|             | Exposición C             |             | 2         |                         |
|             | Exposición Terraza       |             | 1         |                         |
|             | Restaurante              |             | 3         |                         |
|             | Restaurante Terraza      |             | 1         |                         |
|             | Restaurante Sanitarios   |             |           |                         |
|             | Cocina                   | 2           | 4         | T-4 (Q-24)              |
|             | Almacen                  |             | 3         |                         |
|             | Pasillo                  |             |           |                         |
|             | Mirador                  |             | 1         |                         |
| Planta C    | Andador                  |             | 2         |                         |
|             | Área libre               | 2           | 2         | T 5 (O 12)              |
|             | Acceso                   | 2           | 4         | T-5 (Q-12)              |
|             | Área mantenimiento       |             | 1         |                         |
| Perímetro   | Andador                  | 2           | 2         | T-6 (Q-12)              |
|             | Área libre               |             | 2         | 1-0 (Q-12)              |
|             | CIDCUITOS                | 40          | EO        | 1                       |
|             | CIRCUITOS                | 12          | 53        |                         |

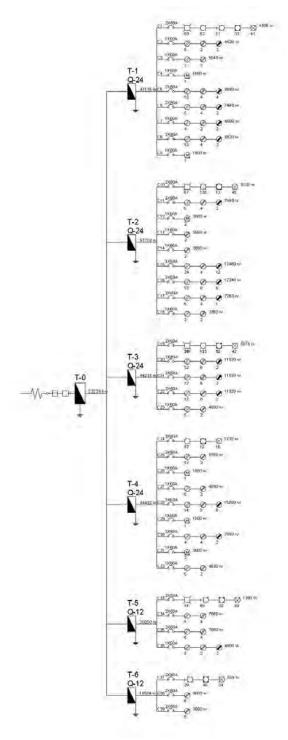
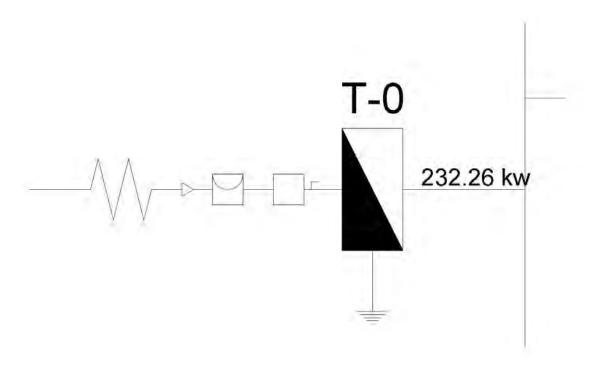
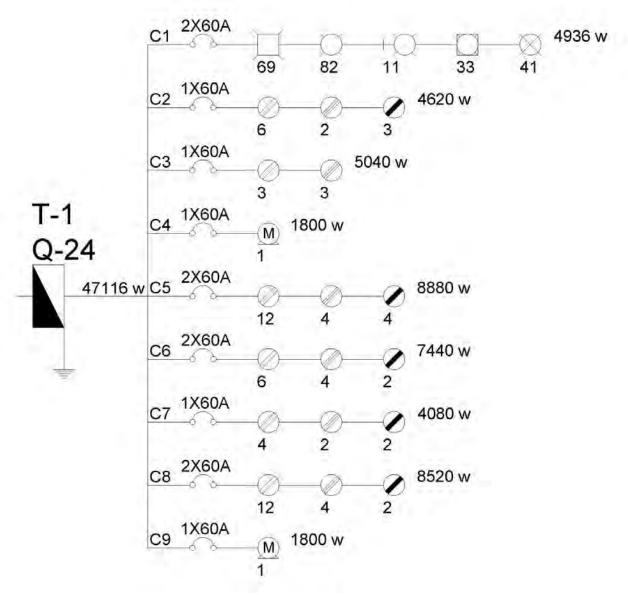
Tabla 27 Diagrama unifilar (Simbología)

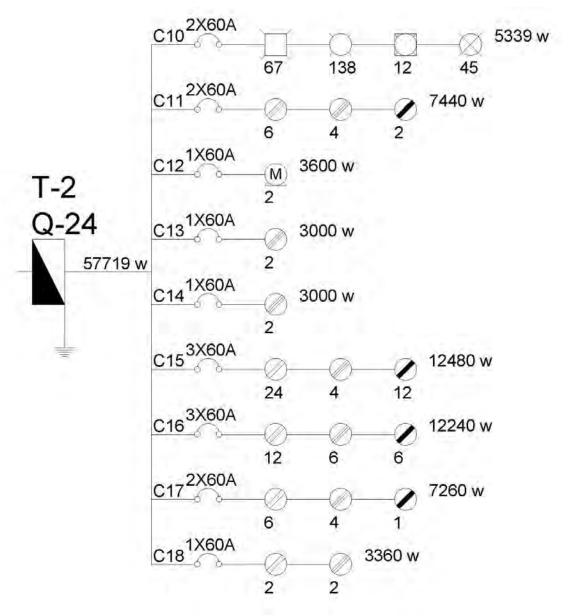
| EN PLA  | <u>EN PLAFÓN</u> |                                                 |              |       |              |        |  |  |  |
|---------|------------------|-------------------------------------------------|--------------|-------|--------------|--------|--|--|--|
| CLAVE   | SIMBOLO          | NOMBRE                                          | POTENCIA (W) | VOLTS | No. LAMPARAS | LUMENS |  |  |  |
| L1      |                  | LED de sobreponer "Philips Fortimo LED Line 3R" | 50           | 220   | 1            | 3500   |  |  |  |
| L2      | $\bigcirc$       | Philips Down Light LED                          | 12           | 110   | 1            | 1000   |  |  |  |
| L3      | H                | Phillips Smart Led Projector Tango              | 40           | 220   | 1            | 4000   |  |  |  |
| LE1     | $\boxtimes$      | Emergencias URA21LED Legrand                    | 5            | 110   | 1            | 350    |  |  |  |
| EN PISC | EN PISO          |                                                 |              |       |              |        |  |  |  |
| CLAVE   | SIMBOLO          | NOMBRE                                          | POTENCIA (W) | VOLTS | No. LAMPARAS | LUMENS |  |  |  |
| LP1     |                  | H365 ACI Exterior Tecno Lite                    | 9            | 110   | 1            | 250    |  |  |  |

### CONTACTOS

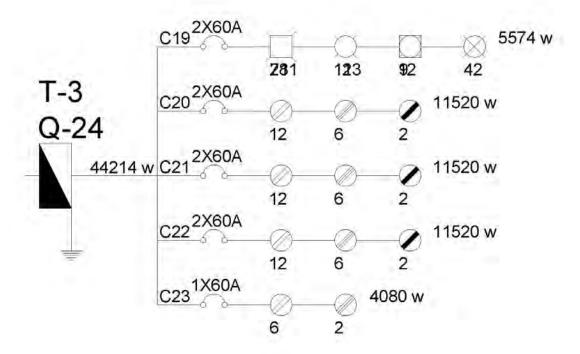
| CLAVE | SIMBOLO | NOMBRE              | POTENCIA (W) |
|-------|---------|---------------------|--------------|
| CO1   |         | CONTACTO ÁREA COMUN | 180          |
| CO2   |         | CONTACTO EQUIPO     | 1500         |
| CR1   | 0       | CONTACTO REGULADO   | 180          |
| М     | M       | MOTORES             | 1800         |

Diagrama 1 Circuitos Eléctricos

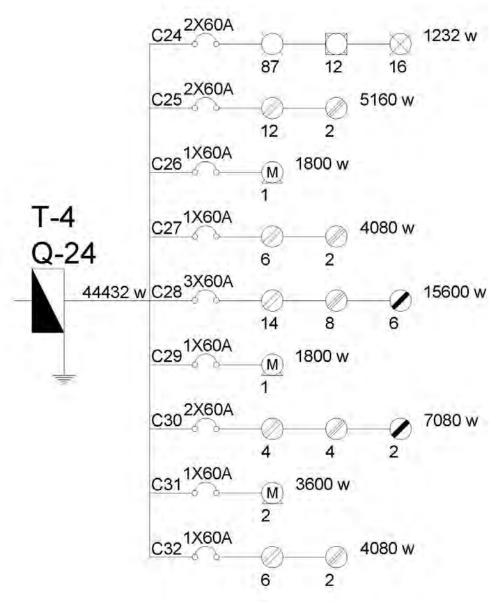


Diagrama 2 Tablero principal



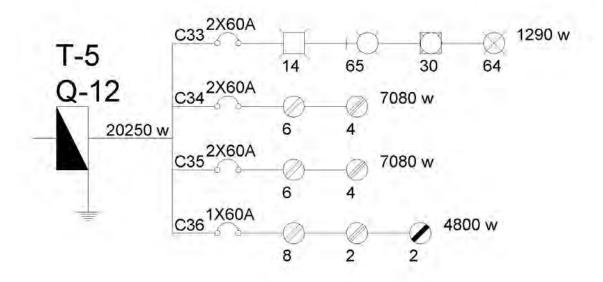



Fuente: Elaboración propia con base en criterios de diseño

Diagrama 4 Tablero 2




#### Diagrama 5 Tablero 3



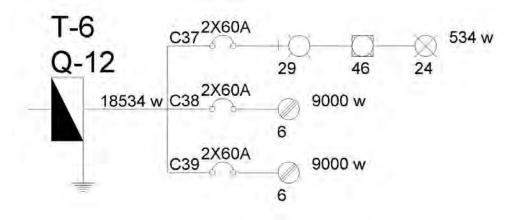


Fuente: Elaboración propia con base en criterios de diseño

Diagrama 6 Tablero 4



Fuente: Elaboración propia con base en criterios de diseño





Fuente: Elaboración propia con base en criterios de diseño

#### 5.4.4-Cálculo Lumínico

Ejemplo de Cálculo por método de Lumen para determinar luminarias para la Sala de exposición temporal

# No. De luminarias = (Ec X Superficie) / (Cu X FPR X FPNR X (lumens / Luminaria) X (No de lamparas / unidad)

en donde: EC = Nivel de iluminación constante como objeto de diseño

Cu = Coeficiente de utilización (considerar proporción del local y

color de superficie)

FPR = Factor de perdidas recuperables FPNR = Factor de perdidas no recuperables

#### Indice o relación del local para iluminaciones Directas o Semidirectas

K = (AXL)/H(A+L) = Superficie / H (0.5 X Perimetro)

#### Indice o relación del local para iluminaciones Indirectas

K = (3 X AX L) / (D X (A + L)) = 3 X Superficie / D (0.5 X Perimetro)

en donde: K = Indice o Relación del local

H = Altura de la fuente luminosa sobre el plano de trabajo

A = Ancho del local L = Largo del local

D = Distancia de la lampara al Plafón

#### Separación máxima entre luminarias = Smáx = 1.25 X H

en donde: H = Altura de la fuente luminosa sobre el plano de trabajo o el piso en su caso

Nota: se recomienda que en los extremos del acomodo se considere una distancia = a X/2 o X/3 donde X es la separación entre luminarias.

**FPR =** 0.95 Depreciación del rendimiento

0.97 Por acumulación de polvo en luminaria0.97 Por acumulación de polvo en local

**FPNR =** 0.93 Factor de balastro

0.85 factor de divisiones al interior (si es el caso)

Cu= 0.97 Coeficiente de utilización

#### Determinación de cavidad Zonal para el cálculo

#### Datos:

Area= 350 m
Lado 1= 16.8 m
Lado teóric 2 20.8333333 m
Altura= 5
altura Plafón= 1
H= 3
altura trabajo 1

#### Determinar el Rango o Indice de las cavidades

| IC - (2.3 A IIC A Ferrifiell O ) / area | Ic = ( | 2.5 X hc X Perimetro | ) / área | lc= indice Cavidad | hc= altura Cavida |
|-----------------------------------------|--------|----------------------|----------|--------------------|-------------------|
|-----------------------------------------|--------|----------------------|----------|--------------------|-------------------|

| lcc= | Indice cavidad Cielo | lcc = ( 2.5 X hcc X Perimetro ) / área | hcc= | altura cavidad cielo |
|------|----------------------|----------------------------------------|------|----------------------|
| lcs= | Indice cavidad Sala  | lcs = ( 2.5 X hcs X Perimetro ) / área | hcs= | altura cavidad sala  |
| lcp= | Indice cavidad Piso  | lcp = ( 2.5 X hcp X Perimetro ) / área | hcp= | altura cavidad piso  |

#### 1.- Rango o índice de las cavidades

| A= | <b>16.8</b> m  | Perimetro= | <b>75.26</b> m    | hcc= | <b>1</b> m |
|----|----------------|------------|-------------------|------|------------|
| L= | <b>20.83</b> m | Área=      | <b>349.944</b> m2 | hcs= | <b>3</b> m |
| h= | <b>3</b> m     |            |                   | hcp= | <b>1</b> m |

lcc= 0.53765745

lcs= 1.61297236 Area= **275.5** lcp= 0.53765745 Lado 1= **15** Lado teóric 2 18.3666667

2.- Reflectancias Actuales

Altura=
4.5
altura trabajo
1.5
Plafón Muros Piso

H=
3

10% 50% 30%

#### 3.- Reflectancias Efectivas tabla "A"

Muro

Plafón= 10% 50% 0.53765745 = **11%** Piso= 30% 50% 0.53765745 = **28%** 

#### 4.- Coeficiente de utilización

Reflectancia del Plafón efectiva= 11%
Reflectancia real de la sala= 50%
Rango de cavidad de la Sala= 1.61297236
Reflectancia del Piso efectiva= 28%

#### Para iluminación del tipo directo fluorecente

Cu= 0.55

#### 5.- Ajuste para reflectancias efectivas de la cavidade de piso diferente a 18-22%

Factor= 1.05 Cu= 0.55

Cu Final= 0.5775

#### Iluminación arquitectónica

#### Sala de exposición temporal

1.- Nivel de iluminación constante objetivo

Ec=

**150** luxes

Nota: la iluminación objetivo debe se + - 10% la de diseño

2.- Tipo y sistema de alumbrado

LED de sobreponer "Philips Fortimo LED Line 3R"

iluminación semidirecta

0.071 X 1.22 m

No de laparas

Watt por Lampara

Lumen por lampara

1 pzas

**50** W

3500 lumenes

3.- Colores de acabado

Plafón

Muros

Piso

10%

80%

30%

negro mate yeso blanco cemento pulido

4.- Indice o relación del local

A=

**16** m

K=

2.963

L=

**20** m

Superficie=

320

H=

**3** m

5.- Coeficiente de Utilización

Cu= **0.5775** 

6.- Factores de Perdida Recuperables

FPR= luminaria

0.9

FPR=

0.84681

polvo superficie 0.97 0.97

# 7.- Factor de Perdida No Recuperable

FPNR= balastra 0.99 FPNR= 0.99 1

factor de divis

8.- Numero de luminarias por método de lumen

No de luminarias = 28.3269641 Redondeo= 29

Smáx= Lm Totales= 101500 3.75 m

9.- lluminación constante de la propuesta

EC= 153.56 / Ec de diseño= 1.024

**Cumple con requisitos** 

#### 10.- Apagadores o controles

luminarias= 29 pza 50 W lamparas= W / lampara= 1 pza

W totales= 1450 W Apagador 600 W

No apagadores= 2.41666667 Redondeo= 3

> Por diseño= 10

#### Iluminación de seguridad

#### Sala de exposición temporal

1.- Nivel de iluminación constante objetivo

Ec= 15 luxes

Nota: la iluminación objetivo debe se + - 10% la de diseño

2.- Tipo y sistema de alumbrado

LED de sobreponer "Emergencias URA21LED Legrand" iluminación semidirecta

0.29 X 0.15 m

No de laparas Watt por Lampara Lumen por lampara 1 pzas 5 W 350 lumenes

•

3.- Colores de acabado

Plafón Muros Piso

10% 80% 30%

negro mate yeso blanco cemento pulido

4.- Indice o relación del local

A= **16.8** m K= 3.100 L= **20.83** m Superficie= 349.944

H= **3** m

5.- Coeficiente de Utilización

Cu= **0.5775** 

6.- Factores de Perdida Recuperables

FPR= luminaria **0.9** FPR= 0.84681

polvo **0.97** superficie **0.97** 

| 7 Factor de Perdida No Recuperable |
|------------------------------------|
|------------------------------------|

FPNR= balastra 0.99 FPNR= 0.99 1

factor de divis

8.- Numero de luminarias por método de lumen

No de luminarias = 30.9776597 Redondeo= 31

Smáx= 3.75 m Lm Totales= 10850

9.- lluminación constante de la propuesta

EC= 15.01 / Ec de diseño= 1.001

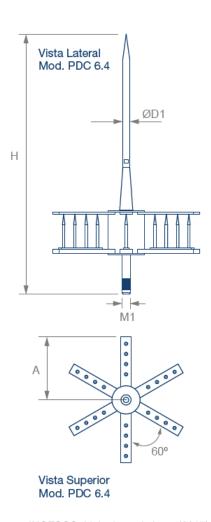
**Cumple con requisitos** 

10.- Apagadores o controles

luminarias= 31 pza 5 W lamparas=

W / lampara= 1 pza

W totales= 155 W Apagador 600 W


No apagadores= 0.25833333 Redondeo= 1

> Por diseño= 10

#### 5.4.5-Cálculo Pararrayos

Criterio de diseño para pararrayos

Ilustración 22 Pararrayos





# PDC PDC

Pararrayos con dispositivo de cebado no electrónico, normalizado según normas UNE 21.186:2011 NFC17-102:2011 y NP4426:2013

Fuente: INGESCO, Lightning solutions, (2017), Barcelona, España, Pararrayos INGESCO PDC, Recuperado de http://www.ingesco.com/es

El sistema de protección del pararrayos propuesto para el Parque Urbano Agua Vida, es denominado de protección activa, ya que realiza una acción previa al impacto del rayo, el sistema de cebado emite una ionización creando una descarga de retorno dirigida a la nube canalizando y dirigiendo el rayo a un punto seguro y preparado para su descarga.

El pararrayos protege a la estructura y los alrededores o zonas abiertas, se instala fácilmente, reduciendo el costo de mano de obra y es una instalación con poco volumen por lo que visualmente no alterará la estética del edificio.

Dadas las características de este modelo se puede instalar como parte de un generador eólico, siempre que éste cubra con la altura necesaria para asegurar la protección de construcciones más bajas.

Tabla 28 Niveles de Protección del Pararrayos

| Niveles de Protección |         |         |         |         |         |         |  |  |  |
|-----------------------|---------|---------|---------|---------|---------|---------|--|--|--|
| Model                 | PDC 3.1 | PDC 3.3 | PDC 4.3 | PDC 5.3 | PDC 6.3 | PDC 6.4 |  |  |  |
| Ref.                  | 101000  | 101001  | 101003  | 101005  | 101008  | 101009  |  |  |  |
| ٦̈́t                  | 15 µs   | 25 µs   | 34 µs   | 43 µs   | 54 µs   | 60 µs   |  |  |  |
| NIVEL I               | 35 m    | 45 m    | 54 m    | 63 m    | 74 m    | 80 m    |  |  |  |
| NIVEL II              | 43 m    | 54 m    | 63 m    | 72 m    | 83 m    | 89 m    |  |  |  |
| NIVEL III             | 54 m    | 65 m    | 74 m    | 84 m    | 95 m    | 102 m   |  |  |  |
| NIVEL IV              | 63 m    | 75 m    | 85 m    | 95 m    | 106 m   | 113 m   |  |  |  |

Fuente: INGESCO, Lightning solutions, (2017), Barcelona, España, Pararrayos INGESCO PDC, Recuperado de http://www.ingesco.com/es

De acuerdo con las especificaciones del pararrayos los Radios de protección se encuentran calculados de acuerdo a las Normas UNE 21.186:2011 & NFC17.102:2011, Estos radios de protección han sido calculados según una diferencia de altura entre la punta del pararrayos y el plano horizontal considerado de 20m. Y son suministrados por parte de la empresa para su correcta instalación.

En este caso específico se optó por un modelo PDC 6.3 Nivel IV con un radio de acción de 106m. Notando que se requieren 3 equipos montados en sus propios generadores eólicos para proteger la totalidad del parque, así como sus edificaciones.

#### 5.4.6-Calculo de paneles solares

Para el proyecto se instalaran paneles solares para satisfacer parte de la demanda de energía eléctrica, ya que son una fuente eficiente de energía limpia renovable e inagotable, capaz de trasformar los rayos solares en energía y no emiten ningún tipo de sustancias contaminantes al ambiente durante su funcionamiento.

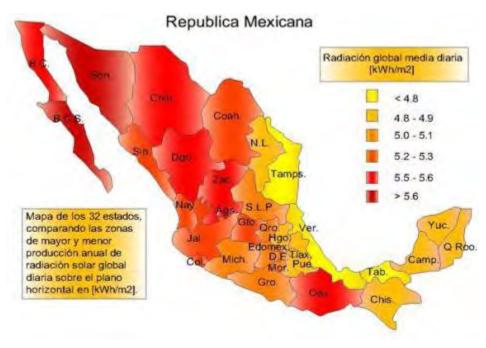



Ilustración 23 Mapa de horas de radiación pico

Fuente: Ing. Manuel Muñoz Herrera, (2013), Centro de Estudios en Medio Ambiente y Energías Renovables (CEMAER), México CDMX, Panel Solar, ¿Cómo Calcular Cuánta Energía Produce?, Recuperado de http://www.gstriatum.com

En el mapa anterior se observa la cantidad de watt hora promedio por metro cuadrado según la fuente, se sustituye el dato de kWh/m² por Wh/m²

Este mapa que nos muestra que el promedio de horas de sol pico en la CDMX de watts por metro cuadrado es de 5 a 5.1 y donde WMP es la máxima potencia del panel solar por lo que, son los 150w/m2 que corresponden al quipo teórico a instalar, de tal modo que con los datos que tenemos quedaría la fórmula del siguiente modo: 150w\* 5.1h= 765 Wh/m2

Podemos entonces multiplicar el resultado por 30 para obtener el promedio de W/h al mes, después se divide el resultado entre 1000 para obtener la cantidad real de W/h, lo que me da un resultado de 22.95 KWh/m2 de panel, si nuestro panel mide 1m por 1.6m tenemos entonces que la producción por panel es de 1.23kwh/día.<sup>16</sup>

<sup>&</sup>lt;sup>16</sup> Fuente: Centro de Estudios en Medio Ambiente y Energías Renovables (CEMAER), (2013), México CDMX, Panel Solar, ¿Cómo Calcular Cuánta Energía Produce?, Recuperado de http://www.gstriatum.com

Para cubrir la electricidad total del museo se requieren 948 paneles solares de éstas características, y se empleará un área de 195 m de largo que corresponden a la cubierta del andador principal y que permiten una cómoda instalación de los paneles en dos filas. Dando como resultado la instalación de al menos 390 paneles, que en conjuntos de funcionamiento de 6 elementos darían 65 núcleos. Produciendo 93,600 W/h, al necesitar 232,260 W/h, cubriremos el 40.29% de la energía eléctrica requerida para el funcionamiento del museo en al menos las 5.1 horas pico promedio.

#### 5.4.7-Bioclimático

Calculo bio-climático por método de termoreferéndum para el mes más cálido y más frio según información de la estación ambiental #9039 – presa Tacubaya.

Formulas:

$$T_{sa} = T_{amb} + \frac{\alpha * H_t}{h_o} - \frac{\varepsilon * DR}{h_o} (°K)$$

Donde:

Tsa = Temperatura sol-aire.

Tamb = Temperatura ambiente.

Hi = Radiación solar incidente sobre la superficie horizontal.

H0 = Coeficiente de transferencia de calor por convección y radiación.

ε = Emitancia de la superficie.

 $\alpha$  = Absortancia de la superficie.

DR es "la diferencia entre la radiación de onda larga incidente sobre la superficie que proviene del cielo y medio ambiente, y la radiación emitida por un cuerpo negro a la temperatura del aire exterior". ASHRAE [15] sugiere usar DR 0 para superficies verticales. Para techo plano, o con una inclinación dada en SLP. DR se calcula por:

$$T_{sa} = T_{amb} + \frac{\alpha * Ht}{h_o} (°K)$$

$$DR = \sigma^* \left[ \frac{(1 + \cos SLP)}{2} * (T_{sky}^4 - T_{amb}^4) + \underbrace{(1 - \cos SLP)}_{2} * (T_{surr}^4 - T_{amb}^4) \right]$$

Donde:

Constante de Stefan – Boltzman ( $\sigma$ ) = 5.669 x 10<sup>-8</sup> w/hr m<sup>2</sup>  $^{\circ}$ K<sup>4</sup>

SLP = ángulo de techumbre respecto a la horizontal. Para un techo inclinado se obtendrá el ángulo de la inclinación. En este ejemplo SLP es igual a  $0^{\circ}$ , por ser techo horizontal plano.

 $tsky = temperatura del cielo = 0.0552 * t amb^{1.5}$ , se calcula si hay nubes de lo contrario vale cero

tsurr = temperatura de los alrededores = tamb + 10  $^{\circ}K$ , se calcula si se tienen pavimentos, en caso de jardines o espejos de agua el valor es igual a cero

ho = Coeficiente de convección mas radiación Donde:

ho = hw + hir

hw = coeficiente de convección = 32.7 + 13.7 \* w (KJ/m<sup>2</sup> °K)

Donde:

w = velocidad del viento (m/seg) en este caso 1.5m/s

 $hir = 4\sigma\epsilon T^3$ 

Donde:

T= Temperatura ambiente + Temperatura de la pared.

$$DR = \sigma^* \left[ \frac{(1 + \cos(SLP))}{2} * (T_{sky}^4 - T_{amb}^4) + \frac{(1 - \cos(SLP))}{2} * (T_{sun}^4 - T_{amb}^4) \right]$$

$$t_{sky} = 0.0552 * 297.3^{1.5} = 282.96$$

$$hir = 4(5.669*10^{-8})*0.99*(321.8)^{3} = 7.48$$

$$hw = 32.7 + [13.7(1.5)] = \frac{53.25Kj/m^2 \circ K}{3.6} = 14.8w/m^2 \circ K$$

Tabla 29 Cálculo bioclimático museo

| σ=        | 5.669E-08 | w/hr m <sup>2</sup> °K <sup>4</sup> | 4 Constante de Stefan-Boltzman |      |        |              |
|-----------|-----------|-------------------------------------|--------------------------------|------|--------|--------------|
|           |           |                                     |                                |      | VENTAN |              |
| α =       | 0.8       | Absortance                          | α =                            | 0.15 | Α      |              |
|           |           |                                     |                                |      | VENTAN |              |
| ε =       | 0.9       | Emitancia                           | ε =                            | 0.94 | Α      |              |
|           |           |                                     |                                |      |        |              |
| Ho=       |           | Hw= 14.8 /3.6 =Factor de conve      |                                |      |        | rsión Kj a W |
|           |           | W=                                  | W= 1.5 velocidad del viento    |      |        |              |
| TSKY=     | no        | LUGAR M                             | LUGAR MAYORMENTE NO NUBLADO    |      |        |              |
| SLP=      | 0         | angulo de                           | angulo de techumbre            |      |        |              |
|           | 1         | COS DEL ANGULO                      |                                |      |        |              |
|           |           |                                     |                                |      |        |              |
| °C a °K = | 273.15    | Factor de conversión °C a °K        |                                |      |        |              |

Tabla 30 Cálculo bioclimático por hora

| HORA  | Tamb | K      | HUMEDAD<br>RELATIVA | HUMEDAD<br>ESPECIFIC | TEMP MEDIA<br>MENSUAL | TRMAX | TRMIN | TCUARTO | K      |
|-------|------|--------|---------------------|----------------------|-----------------------|-------|-------|---------|--------|
|       |      |        | RELATIVA            | _                    | WENSUAL               |       |       |         |        |
|       |      |        |                     | Α                    |                       |       |       |         |        |
|       |      |        |                     |                      |                       |       |       |         |        |
| 7.00  | 2.5  | 275.62 | 97.45               | 0.00440              | 11.40000              | 23.63 | 18.63 | 18.63   | 291.78 |
| 8.00  | 6.2  | 279.34 | 86.65               | 0.00512              |                       | 23.63 | 18.63 | 17.83   | 290.98 |
| 9.00  | 12.3 | 285.45 | 68.89               | 0.00613              |                       | 23.63 | 18.63 | 17.27   | 290.42 |
| 10.00 | 18.6 | 291.79 | 50.50               | 0.00665              |                       | 23.63 | 18.63 | 17.34   | 290.49 |
| 11.00 | 23.8 | 296.99 | 35.38               | 0.00638              | ]                     | 23.63 | 18.63 | 17.74   | 290.89 |
| 12.00 | 27.4 | 300.50 | 25.20               | 0.00562              |                       | 23.63 | 18.63 | 18.39   | 291.54 |
| 13.00 | 29.1 | 302.26 | 20.09               | 0.00495              |                       | 23.63 | 18.63 | 19.18   | 292.33 |
| 14.00 | 29.4 | 302.50 | 19.39               | 0.00478              |                       | 23.63 | 18.63 | 20.00   | 293.15 |
| 15.00 | 28.4 | 301.57 | 22.10               | 0.00524              |                       | 23.63 | 18.63 | 20.80   | 293.95 |
| 16.00 | 26.7 | 299.82 | 27.19               | 0.00583              | 1                     | 23.63 | 18.63 | 21.49   | 294.64 |
| 17.00 | 24.4 | 297.57 | 33.71               | 0.00643              | 1                     | 23.63 | 18.63 | 22.06   | 295.21 |
| 18.00 | 21.9 | 295.08 | 40.94               | 0.00668              | 1                     | 23.63 | 18.63 | 22.46   | 295.61 |
| 19.00 | 19.4 | 292.55 | 48.29               | 0.00671              |                       | 23.63 | 18.63 | 22.71   | 295.86 |
| 20.00 | 17.0 | 290.11 | 55.38               | 0.00662              |                       | 23.63 | 18.63 | 22.54   | 295.69 |
| 21.00 | 14.7 | 287.84 | 61.96               | 0.00644              |                       | 23.63 | 18.63 | 22.27   | 295.42 |
| 22.00 | 12.6 | 285.79 | 67.90               | 0.00617              |                       | 23.63 | 18.63 | 21.89   | 295.04 |
| 23.00 | 10.8 | 283.99 | 73.13               | 0.00588              |                       | 23.63 | 18.63 | 21.43   | 294.58 |
| 24.00 | 9.3  | 282.44 | 77.65               | 0.00568              |                       | 23.63 | 18.63 | 20.91   | 294.06 |
| 1.00  | 8.0  | 281.11 | 81.51               | 0.00547              |                       | 23.63 | 18.63 | 20.33   | 293.48 |
| 2.00  | 6.8  | 279.99 | 84.75               | 0.00522              |                       | 23.63 | 18.63 | 19.71   | 292.86 |
| 3.00  | 5.9  | 279.06 | 87.44               | 0.00502              |                       | 23.63 | 18.63 | 19.07   | 292.22 |
| 4.00  | 5.2  | 278.30 | 89.66               | 0.00494              |                       | 23.63 | 18.63 | 18.42   | 291.57 |
| 5.00  | 4.5  | 277.68 | 91.47               | 0.00476              |                       | 23.63 | 18.63 | 17.76   | 290.91 |
| 6.00  | 4.0  | 277.17 | 92.94               | 0.00470              | ]                     | 23.63 | 18.63 | 17.10   | 290.25 |

| HORA  | HUMEDAD<br>ESPECIFICA |        | T sol aire<br>techo | T sol aire<br>muro | T sol<br>aireventana | Но    | Hir  | Т      | T pared |
|-------|-----------------------|--------|---------------------|--------------------|----------------------|-------|------|--------|---------|
|       |                       | 3      |                     |                    |                      |       |      |        |         |
|       |                       |        |                     |                    |                      |       |      |        |         |
| 7.00  | 0.00440               | 68.37  | 291.25              | 276.60             | 275.80               | 22.33 | 7.54 | 333.00 | 57.39   |
| 8.00  | 0.00512               | 248.16 | 302.99              | 283.68             | 280.15               | 21.52 | 6.73 | 320.68 | 41.35   |
| 9.00  | 0.00613               | 428.80 | 318.75              | 294.38             | 287.13               | 20.47 | 5.68 | 303.07 | 17.62   |
| 10.00 | 0.00665               | 579.33 | 334.25              | 305.49             | 294.36               | 19.63 | 4.83 | 287.18 | -4.61   |
| 11.00 | 0.00638               | 678.46 | 346.32              | 314.38             | 300.25               | 19.05 | 4.26 | 275.33 | -21.67  |
| 12.00 | 0.00562               | 713.00 | 353.11              | 319.37             | 304.04               | 18.75 | 3.96 | 268.70 | -31.80  |
| 13.00 | 0.00495               | 678.46 | 354.13              | 319.99             | 305.59               | 18.68 | 3.88 | 266.99 | -35.27  |
| 14.00 | 0.00478               | 579.33 | 349.93              | 316.82             | 305.19               | 18.78 | 3.99 | 269.32 | -33.18  |
| 15.00 | 0.00524               | 428.80 | 341.80              | 311.18             | 303.37               | 19.01 | 4.22 | 274.51 | -27.06  |
| 16.00 | 0.00583               | 248.16 | 331.40              | 304.66             | 300.72               | 19.34 | 4.55 | 281.45 | -18.37  |
| 17.00 | 0.00643               | 68.37  | 320.62              | 298.68             | 297.78               | 19.73 | 4.94 | 289.18 | -8.39   |
| 18.00 | 0.00668               | 0.00   | 314.29              | 295.08             | 295.08               | 20.14 | 5.34 | 296.94 | 1.86    |
| 19.00 | 0.00671               | 0.00   | 310.74              | 292.55             | 292.55               | 20.54 | 5.75 | 304.30 | 11.75   |
| 20.00 | 0.00662               | 0.00   | 307.42              | 290.11             | 290.11               | 20.87 | 6.08 | 309.94 | 19.84   |
| 21.00 | 0.00644               | 0.00   | 304.39              | 287.84             | 287.84               | 21.15 | 6.36 | 314.74 | 26.90   |
| 22.00 | 0.00617               | 0.00   | 301.71              | 285.79             | 285.79               | 21.39 | 6.60 | 318.62 | 32.82   |
| 23.00 | 0.00588               | 0.00   | 299.37              | 283.99             | 283.99               | 21.58 | 6.79 | 321.58 | 37.59   |
| 24.00 | 0.00568               | 0.00   | 297.39              | 282.44             | 282.44               | 21.71 | 6.92 | 323.69 | 41.25   |
| 1.00  | 0.00547               | 0.00   | 295.72              | 281.11             | 281.11               | 21.80 | 7.01 | 325.02 | 43.91   |
| 2.00  | 0.00522               | 0.00   | 294.35              | 279.99             | 279.99               | 21.84 | 7.05 | 325.69 | 45.69   |
| 3.00  | 0.00502               | 0.00   | 293.23              | 279.06             | 279.06               | 21.85 | 7.06 | 325.78 | 46.72   |
| 4.00  | 0.00494               | 0.00   | 292.32              | 278.30             | 278.30               | 21.82 | 7.03 | 325.41 | 47.11   |
| 5.00  | 0.00476               | 0.00   | 291.61              | 277.68             | 277.68               | 21.78 | 6.98 | 324.66 | 46.98   |
| 6.00  | 0.00470               | 0.00   | 292.91              | 277.17             | 277.17               | 19.14 | 4.35 | 277.17 | 0.00    |

| HORA  | Ht TECHO | Ht MURO Y<br>VENTANA | ALTURA | AZIMUT | Dr   | Tsky     | Tsur   |
|-------|----------|----------------------|--------|--------|------|----------|--------|
| 7.00  | 68.37    | 27.45                | 7.35   | 66.12  | -327 | .14 0.00 | 285.62 |
| 8.00  | 248.16   |                      | 19.97  |        |      |          | 1      |
|       |          |                      |        | 59.89  | -345 |          |        |
| 9.00  | 428.80   | 228.40               | 31.66  | 51.26  | -376 | .39 0.00 | 295.45 |
| 10.00 | 579.33   | 336.06               | 41.73  | 38.98  | -410 | .94 0.00 | 301.79 |
| 11.00 | 678.46   | 413.93               | 48.95  | 21.72  | -441 | .06 0.00 | 306.99 |
| 12.00 | 713.00   | 442.31               | 51.66  | 0.00   | -462 | .27 0.00 | 310.50 |
| 13.00 | 678.46   | 413.93               | 48.95  | -21.72 | -473 | .19 0.00 | 312.26 |
| 14.00 | 579.33   | 336.06               | 41.73  | -38.98 | -474 | .70 0.00 | 312.50 |
| 15.00 | 428.80   | 228.40               | 31.66  | -51.26 | -468 | .86 0.00 | 311.57 |
| 16.00 | 248.16   | 116.99               | 19.97  | -59.89 | -458 | .07 0.00 | 309.82 |
| 17.00 | 68.37    | 27.45                | 7.35   | -66.12 | -444 | .48 0.00 | 307.57 |
| 18.00 | 0.00     | 0.00                 | 0.00   | 0.00   | -429 | .81 0.00 | 305.08 |
| 19.00 | 0.00     | 0.00                 | 0.00   | 0.00   | -415 | .24 0.00 | 302.55 |
| 20.00 | 0.00     | 0.00                 | 0.00   | 0.00   | -401 | .55 0.00 | 300.11 |
| 21.00 | 0.00     | 0.00                 | 0.00   | 0.00   | -389 | .14 0.00 | 297.84 |
| 22.00 | 0.00     | 0.00                 | 0.00   | 0.00   | -378 | .20 0.00 | 295.79 |
| 23.00 | 0.00     | 0.00                 | 0.00   | 0.00   | -368 | .76 0.00 | 293.99 |
| 24.00 | 0.00     | 0.00                 | 0.00   | 0.00   | -360 | .73 0.00 | 292.44 |
| 1.00  | 0.00     |                      | 0.00   | 0.00   | -354 |          |        |
| 2.00  | 0.00     |                      | 0.00   | 0.00   | -348 |          |        |
| 3.00  | 0.00     |                      | 0.00   | 0.00   | -343 |          |        |
| 4.00  | 0.00     |                      | 0.00   | 0.00   | -340 |          |        |
| 5.00  | 0.00     | 0.00                 | 0.00   | 0.00   | -337 | .03 0.00 | 287.68 |
| 6.00  | 0.00     | 0.00                 | 0.00   | 0.00   | -334 | .58 0.00 | 287.17 |

#### Temperatura de muro

Ecuación (1) ......Qhi = 
$$hi * A (Ti - Tsi)$$

Ecuación (3).....Qhe = 
$$he * A (Tse - Te)$$

Ahora: Qhi = QK = Qhe = Q ( se designa a cada flujo de calor con la letra Q)

#### Donde:

hi = coeficiente de convección del aire en el interior

A= área del muro

e= espesor del muro

K = coeficiente de conducción de calor del muro

he= coeficiente de convección del aire en el exterior

Despejando en cada una de las ecuaciones la diferencia de temperaturas se tiene:

Q
Tomando como factor común a ------ la temperatura de la superficie
A

interior y de la superficie exterior se eliminan y queda una sola ecuación de la siguiente manera:

Despejando Q de la ecuación anterior se tiene:

Tomando en cuenta que el coeficiente de conducción del concreto es de 0.5767 w/m °C, el flujo de calor en el muro es igual a 192.3 watts

Con este resultado se puede calcular la temperatura en la superficie interior del muro y en la superficie exterior con las ecuaciones (6) y (5):

QK es el calor se transmite por conducción en el muro
Qhi es el calor por convección del aire interior
Ti es la temperatura interior
Tsi es la temperatura de la superficie interior del muro
Tse es la temperatura de la superficie exterior del muro
Te es la temperatura del exterior
Qhe es el calor por convección del aire exterior

Tabla 31 Temperatura de muro

| U=  | 1.68  |       |                           |
|-----|-------|-------|---------------------------|
| A=  | 90.64 | 159.5 | Área de muro              |
| He= | 34.06 |       | coeficiente de convección |
|     |       |       | del aire en el interior   |
| e=  | 0.325 |       | Espesor de muro           |
| K=  | 2.82  |       | coeficiente de conducción |
|     |       |       | de calor del muro         |
|     |       |       |                           |

Tabla 32 Cálculo de temperatura de muro por hora

|       | Q=U*A*(Tint-Tamb) | Tse=(Q/A)*(1/he)+Tamb | Tsi=(Q/A)*(e/K)+Tse | QK= (e/K)*(A*(Tsi-Tse)) |
|-------|-------------------|-----------------------|---------------------|-------------------------|
|       |                   |                       |                     |                         |
| 7.00  | 4320.561          | 3.263194636           | 6.385056384         | 57.38635049             |
| 8.00  | 3112.893          | 6.759163013           | 9.008413228         | 41.34592482             |
| 9.00  | 1326.640          | 12.54652043           | 13.50509684         | 17.62063991             |
| 10.00 | -347.309          | 18.57490374           | 18.32395261         | -4.613006781            |
| 11.00 | -1631.402         | 23.54426038           | 22.36547517         | -21.66853833            |
| 12.00 | -2394.424         | 26.91137199           | 25.18125808         | -31.8031134             |
| 13.00 | -2655.508         | 28.62261375           | 26.7038515          | -35.27086461            |
| 14.00 | -2498.339         | 28.89217044           | 27.08697223         | -33.18331993            |
| 15.00 | -2037.104         | 28.04297125           | 26.57104238         | -27.05713221            |
| 16.00 | -1382.732         | 26.41264432           | 25.41353842         | -18.36565685            |
| 17.00 | -631.571          | 24.30272163           | 23.84637422         | -8.388620232            |
| 18.00 | 139.934           | 21.9575543            | 22.05866494         | 1.858625123             |
| 19.00 | 884.637           | 19.56220292           | 20.20140543         | 11.74987944             |
| 20.00 | 1493.577          | 17.2314392            | 18.31063723         | 19.83791778             |
| 21.00 | 2025.389          | 15.06190049           | 16.52536445         | 26.90152934             |
| 22.00 | 2471.147          | 13.0996762            | 14.88522673         | 32.82215452             |
| 23.00 | 2829.851          | 11.36431542           | 13.4090508          | 37.58651423             |
| 24.00 | 3105.739          | 9.856918166           | 12.10099907         | 41.25090201             |
| 1.00  | 3306.198          | 8.566596828           | 10.9555211          | 43.91342616             |
| 2.00  | 3440.218          | 7.475382439           | 9.961144535         | 45.69350804             |
| 3.00  | 3517.312          | 6.561782886           | 9.103250079         | 46.71748426             |
| 4.00  | 3546.794          | 5.803243808           | 8.366012903         | 47.10905779             |
| 5.00  | 3537.335          | 5.177757861           | 7.733692566         | 46.9834274              |

#### Ganancia de calor a través del techo

QCONDT = 
$$U_t A_t (T_{amb} - T_{cuarto})$$

A = Área de muros, techo o ventanas(m<sup>2</sup>

T<sub>amb</sub> = Temperatura del aire exterior (°C)

T<sub>cuarto</sub>= Temperatura del aire interior (°C)

U = Coeficiente de transferencia de calor (Watts/m<sup>2</sup>°C)

$$U = \frac{1}{1/h_e + e_n/k_n + 1/h_c + e_n/k_n + 1/h_i}$$

h<sub>e</sub> = Coeficiente de convección de aire exterior, muros y

Ventanas = 34.06 (Watts/m2°C)

Techo = 17.03 (Watts/m2°C)

ambos para una velocidad del aire de 6.7 m/s []

hi = Coeficiente de convección de aire interior, muros y

Techo = 9.36 (Watts/m2°C)

Ventanas = 9.08 (Watts/m2°C)

ambos en presencia de aire quieto []

en = Espesor de la capa n de material : techo

kn = Conductividad térmica de la capa n de material : techo

hc = Coeficiente de calor del aire interior por convección para espacios de aire, verticales y horizontales.

QCONDT = 
$$U_t A_t (T_{amb} - T_{cuarto})$$

A = Área de muros, techo o ventanas(m<sup>2</sup>

T<sub>amb</sub> = Temperatura del aire exterior (°C)

T<sub>Cuarto</sub>= Temperatura del aire interior (°C)

U = Coeficiente de transferencia de calor (Watts/m<sup>2</sup>°C)

Tabla 33 Ganancia térmica

| ÁREAS            | 1     | 2     | 3     |
|------------------|-------|-------|-------|
| VENTANA          | 47.56 | 0     |       |
| TECHO            | 337   |       |       |
| <b>ENTREPISO</b> | 337   |       |       |
| MURO             | 90.64 | 159.5 | 30.69 |

| U TECHO=          | 0.247793176 |
|-------------------|-------------|
| U TECHO=          | 0.247793176 |
|                   |             |
| U MURO=           | 1.675613391 |
| U MURO=           | 1.675613391 |
|                   |             |
| U VENTANA         | 6.932215997 |
| U VENTANA         | 6.93        |
|                   |             |
| <b>U ENTREPIS</b> | 2.884677573 |
| <b>U ENTREPIS</b> | 2.884677573 |

Tabla 34 Cálculo de ganancia térmica por hora

| MURO 1                                     | SI                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     | MURO 2 SI                                                                                                                                                  |                                                                                                                                                                                                                                                                                 | MURO 3 SI    |                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HORA                                       | RADIACIÓN                                                                                                                                                                                                                                                                                               | N SOLAR                                                                                                                                                                                                                                                             | HORA RA                                                                                                                                                    | DIACIÓN SOLAR                                                                                                                                                                                                                                                                   | HORA RAD     | DIACIÓN SOLAR                                                                                                                                                                                                                                                                                                                                                                          |
|                                            | 7 SI QCON                                                                                                                                                                                                                                                                                               | DM= -2305.8872                                                                                                                                                                                                                                                      | 7 SI                                                                                                                                                       | QCONDM= -4057.68985                                                                                                                                                                                                                                                             | 7 NO         | QCONDM= -831.335454                                                                                                                                                                                                                                                                                                                                                                    |
|                                            | 8 SI                                                                                                                                                                                                                                                                                                    | -1108.49495                                                                                                                                                                                                                                                         | 8 SI                                                                                                                                                       | -1950.62825                                                                                                                                                                                                                                                                     | 8 NO         | -598.963567                                                                                                                                                                                                                                                                                                                                                                            |
|                                            | 9 SI                                                                                                                                                                                                                                                                                                    | 601.596217                                                                                                                                                                                                                                                          | 9 SI                                                                                                                                                       | 1058.63412                                                                                                                                                                                                                                                                      | 9 NO         | -255.263883                                                                                                                                                                                                                                                                                                                                                                            |
| 1                                          | 0 SI                                                                                                                                                                                                                                                                                                    | 2278.00182                                                                                                                                                                                                                                                          | 10 SI                                                                                                                                                      | 4008.61971                                                                                                                                                                                                                                                                      | 10 NO        | 66.8269729                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                          | 1 SI                                                                                                                                                                                                                                                                                                    | 3567.00567                                                                                                                                                                                                                                                          | 11 SI                                                                                                                                                      | 6276.89104                                                                                                                                                                                                                                                                      | 11 NO        | 313.904334                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                          | 2 NO                                                                                                                                                                                                                                                                                                    | 1360.6936                                                                                                                                                                                                                                                           | 12 SI                                                                                                                                                      | 7437.92901                                                                                                                                                                                                                                                                      | 12 NO        | 460.720284                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                          | 3 NO                                                                                                                                                                                                                                                                                                    | 1509.06105                                                                                                                                                                                                                                                          | 13 SI                                                                                                                                                      | 7394.34159                                                                                                                                                                                                                                                                      | 13 NO        | 510.956351                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                          | 4 NO                                                                                                                                                                                                                                                                                                    | 1419.74562                                                                                                                                                                                                                                                          | 14 SI                                                                                                                                                      | 6324.74404                                                                                                                                                                                                                                                                      | 14 NO        | 480.714841                                                                                                                                                                                                                                                                                                                                                                             |
|                                            | 5 NO                                                                                                                                                                                                                                                                                                    | 1157.63718                                                                                                                                                                                                                                                          | 15 SI                                                                                                                                                      | 4605.49253                                                                                                                                                                                                                                                                      | 15 SI        | 886.160287                                                                                                                                                                                                                                                                                                                                                                             |
|                                            | 6 NO                                                                                                                                                                                                                                                                                                    | 785.773123                                                                                                                                                                                                                                                          | 16 SI                                                                                                                                                      | 2676.00545                                                                                                                                                                                                                                                                      | 16 SI        | 514.90036                                                                                                                                                                                                                                                                                                                                                                              |
|                                            | 7 NO                                                                                                                                                                                                                                                                                                    | 358.906429                                                                                                                                                                                                                                                          | 17 SI                                                                                                                                                      | 929.100088                                                                                                                                                                                                                                                                      | 17 SI        | 178.771672                                                                                                                                                                                                                                                                                                                                                                             |
|                                            | 8 NO                                                                                                                                                                                                                                                                                                    | -79.5211235                                                                                                                                                                                                                                                         | 18 NC                                                                                                                                                      |                                                                                                                                                                                                                                                                                 | 18 NO        | -26.9252348                                                                                                                                                                                                                                                                                                                                                                            |
|                                            | 9 NO                                                                                                                                                                                                                                                                                                    | -502.717628                                                                                                                                                                                                                                                         | 19 NC                                                                                                                                                      |                                                                                                                                                                                                                                                                                 | 19 NO        | -170.216284                                                                                                                                                                                                                                                                                                                                                                            |
|                                            | 0 NO                                                                                                                                                                                                                                                                                                    | -848.763686                                                                                                                                                                                                                                                         | 20 NC                                                                                                                                                      |                                                                                                                                                                                                                                                                                 | 20 NO        | -287.384792                                                                                                                                                                                                                                                                                                                                                                            |
|                                            | 1 NO                                                                                                                                                                                                                                                                                                    | -1150.97973                                                                                                                                                                                                                                                         | 21 NC                                                                                                                                                      |                                                                                                                                                                                                                                                                                 | 21 NO        | -389.712796                                                                                                                                                                                                                                                                                                                                                                            |
|                                            | 2 NO                                                                                                                                                                                                                                                                                                    | -1404.29319                                                                                                                                                                                                                                                         | 22 NC                                                                                                                                                      |                                                                                                                                                                                                                                                                                 | 22 NO        | -475.482767                                                                                                                                                                                                                                                                                                                                                                            |
|                                            | 3 NO                                                                                                                                                                                                                                                                                                    | -1608.13593                                                                                                                                                                                                                                                         | 23 NC                                                                                                                                                      |                                                                                                                                                                                                                                                                                 | 23 NO        | -544.502335                                                                                                                                                                                                                                                                                                                                                                            |
|                                            | 4 NO                                                                                                                                                                                                                                                                                                    | -1764.91646                                                                                                                                                                                                                                                         | 24 NC                                                                                                                                                      |                                                                                                                                                                                                                                                                                 | 24 NO        | -597.587005                                                                                                                                                                                                                                                                                                                                                                            |
|                                            | 1 NO                                                                                                                                                                                                                                                                                                    | -1878.83234                                                                                                                                                                                                                                                         | 1 NC                                                                                                                                                       |                                                                                                                                                                                                                                                                                 | 1 NO         | -636.158037                                                                                                                                                                                                                                                                                                                                                                            |
|                                            | 2 NO<br>3 NO                                                                                                                                                                                                                                                                                            | -1954.993                                                                                                                                                                                                                                                           | 2 NC<br>3 NC                                                                                                                                               |                                                                                                                                                                                                                                                                                 | 2 NO<br>3 NO | -661.945444<br>676.77042                                                                                                                                                                                                                                                                                                                                                               |
|                                            | 4 NO                                                                                                                                                                                                                                                                                                    | -1998.80373<br>-2015.55718                                                                                                                                                                                                                                          | 4 NC                                                                                                                                                       |                                                                                                                                                                                                                                                                                 | 4 NO         | -676.77942<br>-682.452005                                                                                                                                                                                                                                                                                                                                                              |
|                                            | 4 NO<br>5 NO                                                                                                                                                                                                                                                                                            | -2010.18209                                                                                                                                                                                                                                                         | 5 NC                                                                                                                                                       |                                                                                                                                                                                                                                                                                 | 5 NO         | -680.632042                                                                                                                                                                                                                                                                                                                                                                            |
|                                            | 6 NO                                                                                                                                                                                                                                                                                                    | -1987.10671                                                                                                                                                                                                                                                         | 6 NC                                                                                                                                                       |                                                                                                                                                                                                                                                                                 | 6 NO         | -672.818899                                                                                                                                                                                                                                                                                                                                                                            |
|                                            | 0110                                                                                                                                                                                                                                                                                                    | -1307.10071                                                                                                                                                                                                                                                         | 0 140                                                                                                                                                      | -5490.72905                                                                                                                                                                                                                                                                     | 0110         | -072.010033                                                                                                                                                                                                                                                                                                                                                                            |
|                                            |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                     |                                                                                                                                                            |                                                                                                                                                                                                                                                                                 |              |                                                                                                                                                                                                                                                                                                                                                                                        |
|                                            |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                     |                                                                                                                                                            |                                                                                                                                                                                                                                                                                 |              | TOTAL 50 000ND                                                                                                                                                                                                                                                                                                                                                                         |
| VENTANA 1                                  | SI                                                                                                                                                                                                                                                                                                      | 100145                                                                                                                                                                                                                                                              | TECHO                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |              | TOTALES QCOND                                                                                                                                                                                                                                                                                                                                                                          |
| HORA                                       | RADIACIÓN                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                     | HORA RA                                                                                                                                                    | DIACIÓN SOLAR                                                                                                                                                                                                                                                                   |              |                                                                                                                                                                                                                                                                                                                                                                                        |
| HORA                                       | RADIACIÓN<br>7 NO QCON                                                                                                                                                                                                                                                                                  | DM= -5328.20189                                                                                                                                                                                                                                                     | HORA RA                                                                                                                                                    | QCONDT= -1349.97223                                                                                                                                                                                                                                                             |              | 7 -13873.0866                                                                                                                                                                                                                                                                                                                                                                          |
| HORA                                       | RADIACIÓN<br>7 NO QCON<br>8 NO                                                                                                                                                                                                                                                                          | DM= -5328.20189<br>-3838.88212                                                                                                                                                                                                                                      | HORA RA<br>7 NO<br>8 NO                                                                                                                                    | QCONDT= -1349.97223<br>-972.632859                                                                                                                                                                                                                                              |              | 7 -13873.0866<br>8 -8469.60174                                                                                                                                                                                                                                                                                                                                                         |
| HORA                                       | RADIACIÓN<br>7 NO QCON<br>8 NO<br>9 NO                                                                                                                                                                                                                                                                  | DM= -5328.20189<br>-3838.88212<br>-1636.03934                                                                                                                                                                                                                       | HORA RA<br>7 NO<br>8 NO<br>9 SI                                                                                                                            | QCONDT= -1349.97223<br>-972.632859<br>2366.42782                                                                                                                                                                                                                                |              | 7 -13873.0866<br>8 -8469.60174<br>9 2135.35494                                                                                                                                                                                                                                                                                                                                         |
| HORA<br>1                                  | RADIACIÓN<br>7 NO QCON<br>8 NO<br>9 NO<br>0 NO                                                                                                                                                                                                                                                          | DM= -5328.20189<br>-3838.88212<br>-1636.03934<br>428.307973                                                                                                                                                                                                         | HORA RA<br>7 NC<br>8 NC<br>9 SI<br>10 SI                                                                                                                   | QCONDT= -1349.97223<br>-972.632859<br>2366.42782<br>3654.32061                                                                                                                                                                                                                  |              | 7 -13873.0866<br>8 -8469.60174<br>9 2135.35494<br>10 10436.0771                                                                                                                                                                                                                                                                                                                        |
| HORA<br>1<br>1                             | RADIACIÓN<br>7 NO QCON<br>8 NO<br>9 NO<br>0 NO<br>1 NO                                                                                                                                                                                                                                                  | DM= -5328.20189<br>-3838.88212<br>-1636.03934<br>428.307973<br>2011.87819                                                                                                                                                                                           | HORA RA 7 NC 8 NC 9 SI 10 SI 11 SI                                                                                                                         | QCONDT= -1349.97223<br>-972.632859<br>2366.42782<br>3654.32061<br>4628.80107                                                                                                                                                                                                    |              | 7 -13873.0866<br>8 -8469.60174<br>9 2135.35494<br>10 10436.0771<br>11 16798.4803                                                                                                                                                                                                                                                                                                       |
| HORA 1 1 1 1 1                             | RADIACIÓN<br>7 NO QCON<br>8 NO<br>9 NO<br>0 NO<br>1 NO<br>2 NO                                                                                                                                                                                                                                          | DM= -5328.20189<br>-3838.88212<br>-1636.03934<br>428.307973<br>2011.87819<br>2952.85216                                                                                                                                                                             | HORA RA 7 NC 8 NC 9 SI 10 SI 11 SI 12 SI                                                                                                                   | QCONDT= -1349.97223<br>-972.632859<br>2366.42782<br>3654.32061<br>4628.80107<br>5141.23763                                                                                                                                                                                      |              | 7 -13873.0866<br>8 -8469.60174<br>9 2135.35494<br>10 10436.0771<br>11 16798.4803<br>12 17353.4327                                                                                                                                                                                                                                                                                      |
| HORA 1 1 1 1 1 1 1 1                       | RADIACIÓN<br>7 NO QCON<br>8 NO<br>9 NO<br>0 NO<br>1 NO<br>2 NO<br>3 NO                                                                                                                                                                                                                                  | DM= -5328.20189<br>-3838.88212<br>-1636.03934<br>428.307973<br>2011.87819<br>2952.85216<br>3274.82556                                                                                                                                                               | HORA RA 7 NC 8 NC 9 SI 10 SI 11 SI 12 SI 13 SI                                                                                                             | QCONDT= -1349.97223<br>-972.632859<br>2366.42782<br>3654.32061<br>4628.80107<br>5141.23763<br>5160.84809                                                                                                                                                                        |              | 7 -13873.0866<br>8 -8469.60174<br>9 2135.35494<br>10 10436.0771<br>11 16798.4803<br>12 17353.4327<br>13 17850.0326                                                                                                                                                                                                                                                                     |
| HORA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | RADIACIÓN<br>7 NO QCON<br>8 NO<br>9 NO<br>0 NO<br>1 NO<br>2 NO<br>3 NO<br>4 NO                                                                                                                                                                                                                          | DM= -5328.20189<br>-3838.88212<br>-1636.03934<br>428.307973<br>2011.87819<br>2952.85216<br>3274.82556<br>3081.00143                                                                                                                                                 | HORA RA 7 NC 8 NC 9 SI 10 SI 11 SI 12 SI 13 SI 14 SI                                                                                                       | QCONDT= -1349.97223<br>-972.632859<br>2366.42782<br>3654.32061<br>4628.80107<br>5141.23763<br>5160.84809<br>4741.47815                                                                                                                                                          |              | 7 -13873.0866<br>8 -8469.60174<br>9 2135.35494<br>10 10436.0771<br>11 16798.4803<br>12 17353.4327<br>13 17850.0326<br>14 16047.6841                                                                                                                                                                                                                                                    |
| HORA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | RADIACIÓN 7 NO QCON 8 NO 9 NO 0 NO 1 NO 2 NO 3 NO 4 NO 5 NO                                                                                                                                                                                                                                             | DM= -5328.20189<br>-3838.88212<br>-1636.03934<br>428.307973<br>2011.87819<br>2952.85216<br>3274.82556<br>3081.00143<br>2512.19779                                                                                                                                   | HORA RA 7 NC 8 NC 9 SI 10 SI 11 SI 12 SI 13 SI 14 SI 15 SI                                                                                                 | QCONDT= -1349.97223<br>-972.632859<br>2366.42782<br>3654.32061<br>4628.80107<br>5141.23763<br>5160.84809<br>4741.47815<br>3996.45083                                                                                                                                            |              | 7 -13873.0866<br>8 -8469.60174<br>9 2135.35494<br>10 10436.0771<br>11 16798.4803<br>12 17353.4327<br>13 17850.0326                                                                                                                                                                                                                                                                     |
| HORA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | RADIACIÓN<br>7 NO QCON<br>8 NO<br>9 NO<br>0 NO<br>1 NO<br>2 NO<br>3 NO<br>4 NO                                                                                                                                                                                                                          | DM= -5328.20189<br>-3838.88212<br>-1636.03934<br>428.307973<br>2011.87819<br>2952.85216<br>3274.82556<br>3081.00143                                                                                                                                                 | HORA RA 7 NC 8 NC 9 SI 10 SI 11 SI 12 SI 13 SI 14 SI                                                                                                       | QCONDT= -1349.97223<br>-972.632859<br>2366.42782<br>3654.32061<br>4628.80107<br>5141.23763<br>5160.84809<br>4741.47815<br>3996.45083<br>3069.08253                                                                                                                              |              | 7 -13873.0866<br>8 -8469.60174<br>9 2135.35494<br>10 10436.0771<br>11 16798.4803<br>12 17353.4327<br>13 17850.0326<br>14 16047.6841<br>15 13157.9386                                                                                                                                                                                                                                   |
| HORA  1 1 1 1 1 1 1 1 1 1 1                | RADIACIÓN 7 NO QCON 8 NO 9 NO 0 NO 1 NO 2 NO 3 NO 4 NO 5 NO 6 NO                                                                                                                                                                                                                                        | DM= -5328.20189<br>-3838.88212<br>-1636.03934<br>428.307973<br>2011.87819<br>2952.85216<br>3274.82556<br>3081.00143<br>2512.19779<br>1705.21259                                                                                                                     | HORA RA 7 NC 8 NC 9 SI 10 SI 11 SI 12 SI 13 SI 14 SI 15 SI 16 SI                                                                                           | QCONDT= -1349.97223<br>-972.632859<br>2366.42782<br>3654.32061<br>4628.80107<br>5141.23763<br>5160.84809<br>4741.47815<br>3996.45083<br>3069.08253<br>197.3362                                                                                                                  |              | 7 -13873.0866<br>8 -8469.60174<br>9 2135.35494<br>10 10436.0771<br>11 16798.4803<br>12 17353.4327<br>13 17850.0326<br>14 16047.6841<br>15 13157.9386<br>16 8750.97406                                                                                                                                                                                                                  |
| HORA  1 1 1 1 1 1 1 1 1 1 1 1 1 1          | RADIACIÓN 7 NO QCON 8 NO 9 NO 1 NO 2 NO 3 NO 4 NO 5 NO 6 NO 7 NO                                                                                                                                                                                                                                        | DM= -5328.20189<br>-3838.88212<br>-1636.03934<br>428.307973<br>2011.87819<br>2952.85216<br>3274.82556<br>3081.00143<br>2512.19779<br>1705.21259<br>778.865737                                                                                                       | HORA RA 7 NC 8 NC 9 SI 10 SI 11 SI 12 SI 13 SI 14 SI 15 SI 16 SI 17 NC                                                                                     | QCONDT= -1349.97223 -972.632859 2366.42782 3654.32061 4628.80107 5141.23763 5160.84809 4741.47815 3996.45083 3069.08253 197.3362 -43.7228064                                                                                                                                    |              | 7 -13873.0866<br>8 -8469.60174<br>9 2135.35494<br>10 10436.0771<br>11 16798.4803<br>12 17353.4327<br>13 17850.0326<br>14 16047.6841<br>15 13157.9386<br>16 8750.97406<br>17 2442.98013                                                                                                                                                                                                 |
| HORA  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  | RADIACIÓN 7 NO QCON 8 NO 9 NO 1 NO 2 NO 3 NO 4 NO 5 NO 6 NO 7 NO 8 NO                                                                                                                                                                                                                                   | DM= -5328.20189<br>-3838.88212<br>-1636.03934<br>428.307973<br>2011.87819<br>2952.85216<br>3274.82556<br>3081.00143<br>2512.19779<br>1705.21259<br>778.865737<br>-172.569432                                                                                        | HORA RA 7 NC 8 NC 9 SI 10 SI 11 SI 12 SI 13 SI 14 SI 15 SI 16 SI 17 NC 18 NC                                                                               | QCONDT= -1349.97223 -972.632859 2366.42782 3654.32061 4628.80107 5141.23763 5160.84809 4741.47815 3996.45083 3069.08253 197.3362 -43.7228064 -276.407382                                                                                                                        |              | 7 -13873.0866<br>8 -8469.60174<br>9 2135.35494<br>10 10436.0771<br>11 16798.4803<br>12 17353.4327<br>13 17850.0326<br>14 16047.6841<br>15 13157.9386<br>16 8750.97406<br>17 2442.98013<br>18 -462.672612                                                                                                                                                                               |
| HORA  1 1 1 1 1 1 1 1 1 2                  | RADIACIÓN 7 NO QCON 8 NO 9 NO 1 NO 2 NO 3 NO 4 NO 5 NO 6 NO 7 NO 8 NO 9 NO                                                                                                                                                                                                                              | DM= -5328.20189<br>-3838.88212<br>-1636.03934<br>428.307973<br>2011.87819<br>2952.85216<br>3274.82556<br>3081.00143<br>2512.19779<br>1705.21259<br>778.865737<br>-172.569432<br>-1090.95158                                                                         | HORA RA 7 NC 8 NC 9 SI 10 SI 11 SI 12 SI 13 SI 14 SI 15 SI 16 SI 17 NC 18 NC 19 NC                                                                         | QCONDT= -1349.97223 -972.632859 2366.42782 3654.32061 4628.80107 5141.23763 5160.84809 4741.47815 3996.45083 3069.08253 197.3362 -43.7228064 -276.407382 -466.672611                                                                                                            |              | 7 -13873.0866<br>8 -8469.60174<br>9 2135.35494<br>10 10436.0771<br>11 16798.4803<br>12 17353.4327<br>13 17850.0326<br>14 16047.6841<br>15 13157.9386<br>16 8750.97406<br>17 2442.98013<br>18 -462.672612<br>19 -2924.92948                                                                                                                                                             |
| HORA  1 1 1 1 1 1 1 1 1 2 2                | RADIACIÓN 7 NO QCON 8 NO 9 NO 1 NO 2 NO 3 NO 4 NO 5 NO 6 NO 7 NO 8 NO 9 NO                                                                                                                                                                                                                              | DM= -5328.20189<br>-3838.88212<br>-1636.03934<br>428.307973<br>2011.87819<br>2952.85216<br>3274.82556<br>3081.00143<br>2512.19779<br>1705.21259<br>778.865737<br>-172.569432<br>-1090.95158<br>-1841.90892                                                          | HORA RA 7 NC 8 NC 9 SI 10 SI 11 SI 12 SI 13 SI 14 SI 15 SI 16 SI 17 NC 18 NC 19 NC 20 NC                                                                   | QCONDT= -1349.97223 -972.632859 2366.42782 3654.32061 4628.80107 5141.23763 5160.84809 4741.47815 3996.45083 3069.08253 197.3362 -43.7228064 -276.407382 -466.672611 -632.838944                                                                                                |              | 7 -13873.0866<br>8 -8469.60174<br>9 2135.35494<br>10 10436.0771<br>11 16798.4803<br>12 17353.4327<br>13 17850.0326<br>14 16047.6841<br>15 13157.9386<br>16 8750.97406<br>17 2442.98013<br>18 -462.672612<br>19 -2924.92948<br>20 -4938.30688                                                                                                                                           |
| HORA  1 1 1 1 1 1 1 1 2 2 2 2              | RADIACIÓN 7 NO QCON 8 NO 9 NO 1 NO 2 NO 3 NO 4 NO 5 NO 6 NO 7 NO 8 NO 9 NO 0 NO 1 NO                                                                                                                                                                                                                    | DM= -5328.20189<br>-3838.88212<br>-1636.03934<br>428.307973<br>2011.87819<br>2952.85216<br>3274.82556<br>3081.00143<br>2512.19779<br>1705.21259<br>778.865737<br>-172.569432<br>-1090.95158<br>-1841.90892<br>-2497.75039                                           | HORA RA 7 NC 8 NC 9 SI 10 SI 11 SI 12 SI 13 SI 14 SI 15 SI 16 SI 17 NC 18 NC 20 NC 21 NC                                                                   | QCONDT= -1349.97223 -972.632859 2366.42782 3654.32061 4628.80107 5141.23763 5160.84809 4741.47815 3996.45083 3069.08253 197.3362 -43.7228064 -276.407382 -466.672611 -632.838944 -772.117352                                                                                    |              | 7 -13873.0866<br>8 -8469.60174<br>9 2135.35494<br>10 10436.0771<br>11 16798.4803<br>12 17353.4327<br>13 17850.0326<br>14 16047.6841<br>15 13157.9386<br>16 8750.97406<br>17 2442.98013<br>18 -462.672612<br>19 -2924.92948<br>20 -4938.30688<br>21 -6696.67094                                                                                                                         |
| HORA  1 1 1 1 1 1 1 1 2 2 2 2 2            | RADIACIÓN 7 NO QCON 8 NO 9 NO 1 NO 2 NO 3 NO 4 NO 5 NO 6 NO 7 NO 8 NO 9 NO 0 NO 11 NO 2 NO                                                                                                                                                                                                              | DM= -5328.20189 -3838.88212 -1636.03934 428.307973 2011.87819 2952.85216 3274.82556 3081.00143 2512.19779 1705.21259 778.865737 -172.569432 -1090.95158 -1841.90892 -2497.75039 -3047.46798                                                                         | HORA RA 7 NC 8 NC 9 SI 10 SI 11 SI 12 SI 13 SI 14 SI 15 SI 16 SI 17 NC 18 NC 20 NC 21 NC 22 NC                                                             | QCONDT= -1349.97223 -972.632859 2366.42782 3654.32061 4628.80107 5141.23763 5160.84809 4741.47815 3996.45083 3069.08253 197.3362 -43.7228064 -276.407382 -466.672611 -632.838944 -772.117352 -884.195455                                                                        |              | 7 -13873.0866<br>8 -8469.60174<br>9 2135.35494<br>10 10436.0771<br>11 16798.4803<br>12 17353.4327<br>13 17850.0326<br>14 16047.6841<br>15 13157.9386<br>16 8750.97406<br>17 2442.98013<br>18 -462.672612<br>19 -2924.92948<br>20 -4938.30688<br>21 -6696.67094<br>22 -8170.50829<br>23 -9356.51332<br>24 -10268.6993                                                                   |
| HORA  1 1 1 1 1 1 1 1 2 2 2 2 2            | RADIACIÓN 7 NO QCON 8 NO 9 NO 1 NO 2 NO 3 NO 4 NO 5 NO 6 NO 7 NO 8 NO 9 NO 0 NO 11 NO 22 NO 33 NO 44 NO 14 NO 15 NO 16 NO 17 NO 18 NO | DM= -5328.20189 -3838.88212 -1636.03934 428.307973 2011.87819 2952.85216 3274.82556 3081.00143 2512.19779 1705.21259 778.865737 -172.569432 -1090.95158 -1841.90892 -2497.75039 -3047.46798 -3489.82875 -3830.05945 -4077.26921                                     | HORA RA 7 NC 8 NC 9 SI 10 SI 11 SI 12 SI 13 SI 14 SI 15 SI 16 SI 17 NC 18 NC 20 NC 21 NC 22 NC 23 NC 24 NC 1 NC                                            | QCONDT= -1349.97223 -972.632859 2366.42782 3654.32061 4628.80107 5141.23763 5160.84809 4741.47815 3996.45083 3069.08253 197.3362 -43.7228064 -276.407382 -466.672611 -632.838944 -772.117352 -884.195455 -970.397517 -1033.03146                                                |              | 7 -13873.0866<br>8 -8469.60174<br>9 2135.35494<br>10 10436.0771<br>11 16798.4803<br>12 17353.4327<br>13 17850.0326<br>14 16047.6841<br>15 13157.9386<br>16 8750.97406<br>17 2442.98013<br>18 -462.672612<br>19 -2924.92948<br>20 -4938.30688<br>21 -6696.67094<br>22 -8170.50829<br>23 -9356.51332<br>24 -10268.6993<br>1 -10931.4887                                                  |
| HORA  1 1 1 1 1 1 1 1 1 2 2 2 2 2          | RADIACIÓN 7 NO QCON 8 NO 9 NO 1 NO 2 NO 3 NO 4 NO 5 NO 6 NO 7 NO 8 NO 9 NO 1 NO 1 NO 2 NO                                                                                                                                                             | DM= -5328.20189 -3838.88212 -1636.03934 428.307973 2011.87819 2952.85216 3274.82556 3081.00143 2512.19779 1705.21259 778.865737 -172.569432 -1090.95158 -1841.90892 -2497.75039 -3047.46798 -3489.82875 -3830.05945 -4077.26921 -4242.54607                         | HORA RA 7 NC 8 NC 9 SI 10 SI 11 SI 12 SI 13 SI 14 SI 15 SI 16 SI 17 NC 18 NC 20 NC 21 NC 22 NC 23 NC 24 NC 2 NC 2 NC                                       | QCONDT= -1349.97223 -972.632859 2366.42782 3654.32061 4628.80107 5141.23763 5160.84809 4741.47815 3996.45083 3069.08253 197.3362 -43.7228064 -276.407382 -466.672611 -632.838944 -772.117352 -884.195455 -970.397517 -1033.03146 -1074.9066                                     |              | 7 -13873.0866<br>8 -8469.60174<br>9 2135.35494<br>10 10436.0771<br>11 16798.4803<br>12 17353.4327<br>13 17850.0326<br>14 16047.6841<br>15 13157.9386<br>16 8750.97406<br>17 2442.98013<br>18 -462.672612<br>19 -2924.92948<br>20 -4938.30688<br>21 -6696.67094<br>22 -8170.50829<br>23 -9356.51332<br>24 -10268.6993<br>1 -10931.4887<br>2 -11374.6094                                 |
| HORA  1 1 1 1 1 1 1 1 1 2 2 2 2 2          | RADIACIÓN 7 NO QCON 8 NO 9 NO 0 NO 1 NO 2 NO 3 NO 4 NO 5 NO 6 NO 7 NO 8 NO 9 NO 1 NO 1 NO 2 NO 1 NO 2 NO 1 NO 2 NO 3 NO 4 NO 1 NO 2 NO 3 NO 4 NO 3 NO 3 NO                                                                                                                                              | DM= -5328.20189 -3838.88212 -1636.03934 428.307973 2011.87819 2952.85216 3274.82556 3081.00143 2512.19779 1705.21259 778.865737 -172.569432 -1090.95158 -1841.90892 -2497.75039 -3047.46798 -3489.82875 -3830.05945 -4077.26921 -4242.54607 -4337.62011             | HORA RA 7 NC 8 NC 9 SI 10 SI 11 SI 12 SI 13 SI 14 SI 15 SI 16 SI 17 NC 18 NC 19 NC 20 NC 21 NC 22 NC 23 NC 24 NC 1 NC 2 NC 3 NC 3 NC                       | QCONDT= -1349.97223 -972.632859 2366.42782 3654.32061 4628.80107 5141.23763 5160.84809 4741.47815 3996.45083 3069.08253 197.3362 -43.7228064 -276.407382 -466.672611 -632.838944 -772.117352 -884.195455 -970.397517 -1033.03146 -1074.9066 -1098.99489                         |              | 7 -13873.0866<br>8 -8469.60174<br>9 2135.35494<br>10 10436.0771<br>11 16798.4803<br>12 17353.4327<br>13 17850.0326<br>14 16047.6841<br>15 13157.9386<br>16 8750.97406<br>17 2442.98013<br>18 -462.672612<br>19 -2924.92948<br>20 -4938.30688<br>21 -6696.67094<br>22 -8170.50829<br>23 -9356.51332<br>24 -10268.6993<br>1 -10931.4887<br>2 -11374.6094<br>3 -11629.5106                |
| HORA  1 1 1 1 1 1 1 1 2 2 2 2 2            | RADIACIÓN 7 NO QCON 8 NO 9 NO 0 NO 1 NO 2 NO 3 NO 4 NO 6 NO 7 NO 8 NO 9 NO 0 NO 1 NO 2 NO 1 NO 2 NO 3 NO 4 NO 1 NO 2 NO 3 NO 4 NO 4 NO 4 NO 4 NO 4 NO                                                                                                                                                   | DM= -5328.20189 -3838.88212 -1636.03934 428.307973 2011.87819 2952.85216 3274.82556 3081.00143 2512.19779 1705.21259 778.865737 -172.569432 -1090.95158 -1841.90892 -2497.75039 -3047.46798 -3489.82875 -3830.05945 -4077.26921 -4242.54607 -4337.62011 -4373.97689 | HORA RA 7 NC 8 NC 9 SI 10 SI 11 SI 12 SI 13 SI 14 SI 15 SI 16 SI 17 NC 18 NC 19 NC 20 NC 21 NC 22 NC 23 NC 24 NC 1 NC 2 | QCONDT= -1349.97223 -972.632859 2366.42782 3654.32061 4628.80107 5141.23763 5160.84809 4741.47815 3996.45083 3069.08253 197.3362 -43.7228064 -276.407382 -466.672611 -632.838944 -772.117352 -884.195455 -970.397517 -1033.03146 -1074.9066 -1098.99489 -1108.20638             |              | 7 -13873.0866<br>8 -8469.60174<br>9 2135.35494<br>10 10436.0771<br>11 16798.4803<br>12 17353.4327<br>13 17850.0326<br>14 16047.6841<br>15 13157.9386<br>16 8750.97406<br>17 2442.98013<br>18 -462.672612<br>19 -2924.92948<br>20 4938.30688<br>21 -6696.67094<br>22 -8170.50829<br>23 -9356.51332<br>24 -10268.6993<br>1 -10931.4887<br>2 -11374.6094<br>3 -11629.5106<br>4 -11726.986 |
| HORA  1 1 1 1 1 1 1 1 2 2 2 2 2            | RADIACIÓN 7 NO QCON 8 NO 9 NO 0 NO 1 NO 2 NO 3 NO 4 NO 5 NO 6 NO 7 NO 8 NO 9 NO 1 NO 1 NO 2 NO 1 NO 2 NO 1 NO 2 NO 3 NO 4 NO 1 NO 2 NO 3 NO 4 NO 3 NO 3 NO                                                                                                                                              | DM= -5328.20189 -3838.88212 -1636.03934 428.307973 2011.87819 2952.85216 3274.82556 3081.00143 2512.19779 1705.21259 778.865737 -172.569432 -1090.95158 -1841.90892 -2497.75039 -3047.46798 -3489.82875 -3830.05945 -4077.26921 -4242.54607 -4337.62011             | HORA RA 7 NC 8 NC 9 SI 10 SI 11 SI 12 SI 13 SI 14 SI 15 SI 16 SI 17 NC 18 NC 19 NC 20 NC 21 NC 22 NC 23 NC 24 NC 1 NC 2 NC 3 NC 3 NC                       | QCONDT= -1349.97223 -972.632859 2366.42782 3654.32061 4628.80107 5141.23763 5160.84809 4741.47815 3996.45083 3069.08253 197.3362 -43.7228064 -276.407382 -466.672611 -632.838944 -772.117352 -884.195455 -970.397517 -1033.03146 -1074.9066 -1098.99489 -1108.20638 -1105.25101 |              | 7 -13873.0866<br>8 -8469.60174<br>9 2135.35494<br>10 10436.0771<br>11 16798.4803<br>12 17353.4327<br>13 17850.0326<br>14 16047.6841<br>15 13157.9386<br>16 8750.97406<br>17 2442.98013<br>18 -462.672612<br>19 -2924.92948<br>20 -4938.30688<br>21 -6696.67094<br>22 -8170.50829<br>23 -9356.51332<br>24 -10268.6993<br>1 -10931.4887<br>2 -11374.6094<br>3 -11629.5106                |

QSHG /Cálculo del flujo de calor por ganancia solar directa.

QSHG /Cálculo del flujo de calor por ganancia solar directa.

$$QSHG = Av * Fc * Ht$$

Donde:

Av = Área de ventana

Fc = Fracción de radiación solar que pasa por la ventana (0.25 para ventana sombreada) \* Transmitancia del vidrio  $\tau$  (0.80 para vidrio claro).

Ht = radiación solar (componente perpendicular a la ventana)

Tabla 35 Cálculo del flujo de calor por ganancia solar directa por hora

| SOMBREADA |      | SOMBREADA |      | TOTAL |
|-----------|------|-----------|------|-------|
| 7.00 SI   | 0.00 | NO        | 0.00 | 0.00  |
| 8.00 SI   | 0.00 | NO        | 0.00 | 0.00  |
| 9.00 SI   | 0.00 | NO        | 0.00 | 0.00  |
| 10.00 SI  | 0.00 | NO        | 0.00 | 0.00  |
| 11.00 SI  | 0.00 | NO        | 0.00 | 0.00  |
| 12.00 SI  | 0.00 | NO        | 0.00 | 0.00  |
| 13.00 SI  | 0.00 | NO        | 0.00 | 0.00  |
| 14.00 SI  | 0.00 | NO        | 0.00 | 0.00  |
| 15.00 SI  | 0.00 | NO        | 0.00 | 0.00  |
| 16.00 SI  | 0.00 | NO        | 0.00 | 0.00  |
| 17.00 SI  | 0.00 | NO        | 0.00 | 0.00  |
| 18.00 SI  | 0.00 | NO        | 0.00 | 0.00  |
| 19.00 SI  | 0.00 | NO        | 0.00 | 0.00  |
| 20.00 SI  | 0.00 | NO        | 0.00 | 0.00  |
| 21.00 SI  | 0.00 | NO        | 0.00 | 0.00  |
| 22.00 SI  | 0.00 | NO        | 0.00 | 0.00  |
| 23.00 SI  | 0.00 | NO        | 0.00 | 0.00  |
| 24.00 SI  | 0.00 | NO        | 0.00 | 0.00  |
| 1.00 SI   | 0.00 | NO        | 0.00 | 0.00  |
| 2.00 SI   | 0.00 | NO        | 0.00 | 0.00  |
| 3.00 SI   | 0.00 | NO        | 0.00 | 0.00  |
| 4.00 SI   | 0.00 | NO        | 0.00 | 0.00  |
| 5.00 SI   | 0.00 | NO        | 0.00 | 0.00  |
| 6.00 SI   | 0.00 | NO        | 0.00 | 0.00  |

Fuente: Elaboración propia con base en metodología de termoreferéndum

Nota: no existe radiación solar directa para el espacio objeto del cálculo.

QVENT / Cálculo del flujo de calor por ventilación

QVENTS = 
$$0.278 * \rho * Cpa * G (Tamb - Tint)$$
  
QVENTL =  $0.278 * \rho * Hvap * (Wamb - Wcuarto)$   
G= Cv A V

0.278 = Factor de conversión KJ  $\rightarrow$  W es el inverso de 1/3.6  $\rho$  = Densidad del aire = 1.18(kg/m<sup>3</sup>)

Cpa = Calor específico del aire = 1.0065 (KJ/Kg °K)

Hvap = Calor latente de vaporización = 2468 (KJ/Kg °K)

Wamb = Humedad específica ambiente = (kg agua/kg aire)

Wcuarto = Humedad específica cuarto = (kg agua/kg aire)

G= Flujo del aire en m3/min

Cv = Efectividad de abertura de ventila;

0.55 a 0.65 para vientos perpendiculares a la abertura y

0.25 a 0.35 para vientos oblicuos a la abertura.

A =Área libre de ventila ( $m^2$ )

V = Velocidad del viento en m/seg.

1 hora = 60 minutos, 3600 segundos

Tabla 36 Cálculo del flujo de calor por ventilación

| CV=   | OBLICUO |                | <b>OBLICUO</b> |                 |
|-------|---------|----------------|----------------|-----------------|
|       | 0.25    |                | 0.25           |                 |
| Av=   | VENTANA | <b>ABERTUR</b> | VENTANA        | <b>ABERTURA</b> |
|       | 14.268  | 0.30000        | 0              | 0.3             |
| V=    | 1.5     | SEGUNDO        | 3600           |                 |
| ρ=    | 1.18    | Cpa=           | 1.0065         |                 |
|       |         |                |                |                 |
| Hvap= | 2468    |                |                |                 |

Tabla 37 Cálculo de flujo de calor por ventilación por hora

| PERPEN   | NDICULAR   | PERPENDICU | JLAR | TOTAL QVENTS |
|----------|------------|------------|------|--------------|
| 7.00 SI  | -102811.82 | NO         | 0.00 | -102811.82 W |
| 8.00 SI  | -74074.23  |            | 0.00 | -74074.23    |
| 9.00 SI  | -31568.66  |            | 0.00 | -31568.66    |
| 10.00 SI | 8264.54    |            | 0.00 | 8264.54      |
| 11.00 SI | 38820.76   |            | 0.00 | 38820.76     |
| 12.00 SI | 56977.59   |            | 0.00 | 56977.59     |
| 13.00 SI | 63190.32   |            | 0.00 | 63190.32     |
| 14.00 SI | 59450.33   |            | 0.00 | 59450.33     |
| 15.00 SI | 48474.82   |            | 0.00 | 48474.82     |
| 16.00 SI | 32903.41   |            | 0.00 | 32903.41     |
| 17.00 SI | 15028.82   |            | 0.00 | 15028.82     |
| 18.00 SI | -3329.86   |            | 0.00 | -3329.86     |
| 19.00 SI | -21050.76  |            | 0.00 | -21050.76    |
| 20.00 SI | -35541.07  |            | 0.00 | -35541.07    |
| 21.00 SI | -48196.05  |            | 0.00 | -48196.05    |
| 22.00 SI | -58803.28  |            | 0.00 | -58803.28    |
| 23.00 SI | -67338.97  |            | 0.00 | -67338.97    |
| 24.00 SI | -73903.99  |            | 0.00 | -73903.99    |
| 1.00 SI  | -78674.10  |            | 0.00 | -78674.10    |
| 2.00 SI  | -81863.24  |            | 0.00 | -81863.24    |
| 3.00 SI  | -83697.77  |            | 0.00 | -83697.77    |
| 4.00 SI  | -84399.30  |            | 0.00 | -84399.30    |
| 5.00 SI  | -84174.23  |            | 0.00 | -84174.23    |
| 6.00 SI  | -83207.97  |            | 0.00 | -83207.97    |

Fuente: Elaboración propia con base en metodología de termoreferéndum

QINF / Cálculo del flujo de calor por infiltración:

```
QINFLS = 0.278 * CAMB * VOL * \rho * Cpa * (Tamb - Tcuarto)
QINFL = 0.278 * CAMB * VOL * \rho * Hvap * (Wamb - Wcuarto)
```

 $0.278 = \text{Factor de conversión KJ} \rightarrow \text{W es el inverso de } 1/3.6$ 

CAMB= Número de cambios por aire por hora

VOL = Volumen del cuarto (m<sup>3</sup>)

 $\rho = Densidad del aire = 1.18(kg/m^3)$ 

Cpa = Calor específico del aire = 1.0065 (KJ/Kg °K)

Hvap = Calor latente de vaporización = 2468 (KJ/Kg °K)

Wamb = Humedad específica ambiente = (kg agua/kg aire)

Wcuarto = Humedad específica cuarto = (kg agua/kg aire)

Tabla 38 Cálculo del flujo de calor por infiltración

| Сра=    | 1.0065 |          |
|---------|--------|----------|
| ρ=      | 1.18   | Kg/m3    |
| Hvap=   | 2468   | KJ/Kg °K |
| VOL=    | 1853.5 | m3       |
| CONVERS | 0.278  |          |
| CAMB=   | 1.5    |          |

Fuente: Elaboración propia con base en metodología de termoreferéndum

Tabla 39 Cálculo de calor por infiltración por hora

QINFS =  $0.278 * CAMB * VOL * \rho * Cpa * (Tamb - Tcuarto)$ 

| OTAL QINFS |           |       |
|------------|-----------|-------|
| 39.87 W    | -14839.87 | 7.00  |
| 91.88      | -10691.88 | 8.00  |
| 56.62      | -4556.62  | 9.00  |
| 92.90      | 1192.90   | 10.00 |
| 03.39      | 5603.39   | 11.00 |
| 24.15      | 8224.15   | 12.00 |
| 20.90      | 9120.90   | 13.00 |
| 81.07      | 8581.07   | 14.00 |
| 96.86      | 6996.86   | 15.00 |
| 49.28      | 4749.28   | 16.00 |
| 69.26      | 2169.26   | 17.00 |
| 80.63      | -480.63   | 18.00 |
| 38.47      | -3038.47  | 19.00 |
| 30.00      | -5130.00  | 20.00 |
| 56.62      | -6956.62  | 21.00 |
| 87.67      | -8487.67  | 22.00 |
| 19.71      | -9719.71  | 23.00 |
| 67.31      | -10667.31 | 24.00 |
| 55.83      | -11355.83 | 1.00  |
| 16.15      | -11816.15 | 2.00  |
| 80.94      | -12080.94 | 3.00  |
| 82.20      | -12182.20 | 4.00  |
| 49.72      | -12149.72 | 5.00  |
| 10.25      | -12010.25 | 6.00  |
|            |           |       |

QINF / Cálculo de ganancia de calor por ocupantes

QMETS = qsens/persona \* # de personas

QMETL = qlat/persona \* # de personas

Tabla 40 Ganancia de calor por ocupantes

| PERSONA | 350 |   |
|---------|-----|---|
| QSENS=  | 65  | W |
| QLAT=   | 55  | W |

Fuente: Elaboración propia con base en metodología de termoreferéndum

Tabla 41 Cálculo de ganancia de calor por ocupantes por hora

|       | QMETS = qse | ens/persona | * # de pers | sonas             |    | QMETL = | qlat/persona * a | # de personas |
|-------|-------------|-------------|-------------|-------------------|----|---------|------------------|---------------|
|       | ACTIVIDAD   |             | TOTAL       | QMETS             |    |         | -                | TOTAL QMETL   |
| 7.00  | NO          | 0.00        | 0.00        | W                 | 7  | NO      | 0                | <b>0</b> W    |
| 8.00  | NO          | 0.00        | 0.00        |                   | 8  | NO      | 0                | 0             |
| 9.00  | SI          | 22750.00    | 22750.00    |                   | 9  | SI      | 19250            | 19250         |
| 10.00 | SI          | 22750.00    | 22750.00    |                   | 10 | SI      | 19250            | 19250         |
| 11.00 | SI          | 22750.00    | 22750.00    |                   | 11 | SI      | 19250            | 19250         |
| 12.00 | SI          | 22750.00    | 22750.00    |                   | 12 | SI      | 19250            | 19250         |
| 13.00 | SI          | 22750.00    | 22750.00    |                   | 13 | SI      | 19250            | 19250         |
| 14.00 | SI          | 22750.00    | 22750.00    |                   | 14 | SI      | 19250            | 19250         |
| 15.00 | SI          | 22750.00    | 22750.00    |                   | 15 | SI      | 19250            | 19250         |
| 16.00 | SI          | 22750.00    | 22750.00    |                   | 16 | SI      | 19250            | 19250         |
| 17.00 | SI          | 22750.00    | 22750.00    |                   | 17 | SI      | 19250            | 19250         |
| 18.00 | SI          | 22750.00    | 22750.00    |                   | 18 | SI      | 19250            | 19250         |
| 19.00 | NO          | 0.00        | 0.00        |                   | 19 | NO      | 0                | 0             |
| 20.00 | NO          | 0.00        | 0.00        |                   | 20 | NO      | 0                | 0             |
| 21.00 | NO          | 0.00        | 0.00        |                   | 21 | NO      | 0                | 0             |
| 22.00 | NO          | 0.00        | 0.00        |                   | 22 | NO      | 0                | 0             |
| 23.00 | NO          | 0.00        | 0.00        |                   | 23 | NO      | 0                | 0             |
| 24.00 | NO          | 0.00        | 0.00        |                   | 24 | NO      | 0                | 0             |
| 1.00  | NO          | 0.00        | 0.00        |                   | 1  | NO      | 0                | 0             |
| 2.00  | NO          | 0.00        | 0.00        |                   | 2  | NO      | 0                | 0             |
| 3.00  | NO          | 0.00        | 0.00        |                   | 3  | NO      | 0                | 0             |
| 4.00  | NO          | 0.00        | 0.00        |                   | 4  | NO      | 0                | 0             |
| 5.00  | NO          | 0.00        | 0.00        |                   | 5  | NO      | 0                | 0             |
| 6.00  |             | 0.00        | 0.00        | lanta da tamasana |    | NO      | 0                | 0             |

QINF / Cálculo del flujo de calor por infiltración:

Tabla 42 Flujo de calor por infiltración

|                        | No. | WATTS |      |       |
|------------------------|-----|-------|------|-------|
| CAFETERA               | 0   | 500   | 0    |       |
| IMPRESORA              | 0   | 100   | 0    |       |
| COMPUTADORA            | 1   | 300   | 300  |       |
| PANTALLA PLASMA 42"    | 2   | 234   | 468  |       |
| PROYECTOR OPTOMA TX551 | 2   | 255   | 510  |       |
| LUMINARIAS             | 35  | 76    | 2660 |       |
| BOCINAS PARA PLAFÓN    | 12  | 6     | 72   |       |
|                        |     |       | 0    |       |
|                        |     |       | 4010 | TOTAL |

Fuente: Elaboración propia con base en metodología de termoreferéndum

Tabla 43 Cálculo de flujo de calor por infiltración por hora

QLIGHT = QILUM + QEQU

|         | TOTAL QMETS                                                                       |
|---------|-----------------------------------------------------------------------------------|
| 0.00    | 0.00 W                                                                            |
| 0.00    | 0.00                                                                              |
| 4010.00 | 4010.00                                                                           |
| 4010.00 | 4010.00                                                                           |
| 4010.00 | 4010.00                                                                           |
| 4010.00 | 4010.00                                                                           |
| 4010.00 | 4010.00                                                                           |
| 4010.00 | 4010.00                                                                           |
| 4010.00 | 4010.00                                                                           |
| 4010.00 | 4010.00                                                                           |
| 4010.00 | 4010.00                                                                           |
| 4010.00 | 4010.00                                                                           |
| 0.00    | 0.00                                                                              |
| 0.00    | 0.00                                                                              |
| 0.00    | 0.00                                                                              |
| 0.00    | 0.00                                                                              |
| 0.00    | 0.00                                                                              |
| 0.00    | 0.00                                                                              |
| 0.00    | 0.00                                                                              |
| 0.00    | 0.00                                                                              |
| 0.00    | 0.00                                                                              |
| 0.00    | 0.00                                                                              |
| 0.00    | 0.00                                                                              |
| 0.00    | 0.00                                                                              |
|         | 0.00 4010.00 4010.00 4010.00 4010.00 4010.00 4010.00 4010.00 4010.00 4010.00 0.00 |

Tabla 44 Capacitancia

|        | TAE                                       | BLA DE CAPA       |                                                    |                                       |                 |                      |
|--------|-------------------------------------------|-------------------|----------------------------------------------------|---------------------------------------|-----------------|----------------------|
| No     | MATERIAL                                  | VOLUME<br>N<br>M3 | kg/m3                                              | MASA<br>KG                            | KJ/Kg°C<br>(Cp) | CAPACITANCIA<br>KJ°C |
| AZOTEA | IVATERIAL                                 | IND               | ļ                                                  | ING                                   | (Cp)            | INO C                |
|        |                                           |                   |                                                    |                                       |                 | }                    |
|        | PISO DE PEDAZERÍA DE 1 CERAMICA           | 6.74              | 2000                                               | 13480                                 | 0.706           | 9516.88              |
|        | ENTORTADO CON                             |                   |                                                    |                                       |                 |                      |
|        | MORTERO CEMENTO                           |                   |                                                    |                                       |                 |                      |
|        | 2 CALHIDRA-ARENA 1:1:5                    | 33.7              | 2100                                               | 70770                                 | 1               | 70770                |
|        | 3 RELLENO DE TEZONTLE                     | 134.8             | 1400                                               | 188720                                | 0.795           | 150032.4             |
|        | KG/CM2 CON MALLA                          |                   |                                                    |                                       |                 |                      |
|        | ELECTRO SOLDADA 6-6                       | 50.00             | 0.400                                              | 100100                                | 4.004           | 400005 000           |
|        | 4 / 10-10                                 | 53.92             | 2400                                               | 129408                                | 1.004           | 129925.632           |
|        | LAMINA ROMSA CAL 22, 6<br>5 CM DE PERALTE | 6.74              | 7830                                               | 52774.2                               | 0.45            | 23748.39             |
|        | VIGA ACERO PERFIL IPR                     |                   |                                                    | , , , , , , , , , , , , , , , , , , , |                 |                      |
|        | 6 12*38                                   | 7.5183            | 7830                                               | 58868.289                             | 0.45            | 26490.73005          |
|        |                                           |                   |                                                    |                                       |                 |                      |
|        | 7 COLCHÓN DE AIRE                         | 337               | 1.2                                                | 404.4                                 | 1.013           | 409.6572             |
|        | "LIGERPLAC" MOD.                          |                   |                                                    |                                       |                 |                      |
|        | PAPEL MOJADO DE<br>8 61*61 CM             | 16.65             | 70                                                 | 1165.5                                | 1.05            | 1223.775             |
|        | o o i o i o i o i                         | 10.00             | , , ,                                              | 1100.0                                | 1.00            | 1220.110             |
| PISO   |                                           |                   | <del>,                                      </del> | T                                     | T               | ו                    |
|        | FIRME DE CONCRETO                         |                   |                                                    |                                       |                 |                      |
|        | 10 F'C=150KG/CM2                          | 6.74              | 2200                                               | 14828                                 | 0.92            | 13641.76             |
|        | KG/CM2 CON MALLA<br>ELECTRO SOLDADA 6-6   |                   |                                                    |                                       |                 |                      |
|        | 12 / 10-10                                | 53.92             | 2400                                               | 129408                                | 1.004           | 129925.632           |
| MUROS  |                                           |                   |                                                    |                                       |                 |                      |
| WOKOS  | M IDO DE DI COV                           |                   |                                                    |                                       |                 | 1                    |
|        | MURO DE BLOCK<br>HUECO DE 15 X 20 X 40    |                   |                                                    |                                       |                 |                      |
|        | CM,                                       |                   |                                                    |                                       |                 |                      |
|        | ASENTADO CON                              |                   |                                                    |                                       |                 |                      |
|        | MORTERO CEMENTO-<br>18 ARENA 1:5          | 18.588            | 1925                                               | 35781.9                               | 0.835           | 29877.8865           |
|        | APLANADO DE YESO A                        | 10.300            | 1925                                               | 33761.9                               | 0.633           | 29011.0003           |
|        | 19 PLOMO Y REGLA                          | 1.2392            |                                                    |                                       |                 |                      |
|        | 20 PINTURA VINILICA                       | 0.3098            | 1009                                               | 312.5882                              | 0.294           | 91.9009308           |
|        | APLANADO FINO CON<br>MORTERO CEM-ARENA    |                   |                                                    |                                       |                 |                      |
|        | 21 1:6                                    | 1.2392            | 2100                                               | 2602.32                               | 1.4             | 3643.248             |
|        | 22 PINTURA VINILICA                       | 0.3098            | 1009                                               | 312.5882                              | 0.294           | 91.9009308           |
|        | 23 VIDRIO CLARO<br>7 COLCHÓN DE AIRE      | 0.07134<br>2.1686 |                                                    |                                       |                 |                      |
|        | 7 OCEOTION DE AIRE                        | 2.1000            | 1.2                                                | 2.00202                               | 1.010           | 2.00010010           |
|        |                                           |                   |                                                    |                                       | TOTAL           | 591548.2             |
|        |                                           |                   |                                                    |                                       | CONVERSIÓN      | 3.6                  |
|        |                                           |                   | ΤΩΤΔΙ                                              | L CAPACI                              |                 | 164318.94            |
|        |                                           |                   | . 5 . 7                                            | _ 5,7. 701                            |                 | 107010.34            |

QSENST = QCOND + QCONDT + QCONDV+ QSHG + QVENTS + QINFL + QGENTS + QLIGHT (watts)

QLATT = QVENTL + QINFLL + QGENTL (watts)

QTOT = QSENST + QLATT (watts)

Respecto al signo que puede resultar en la carga total, se tiene :

QTOT (-) valor negativo será carga de calentamiento

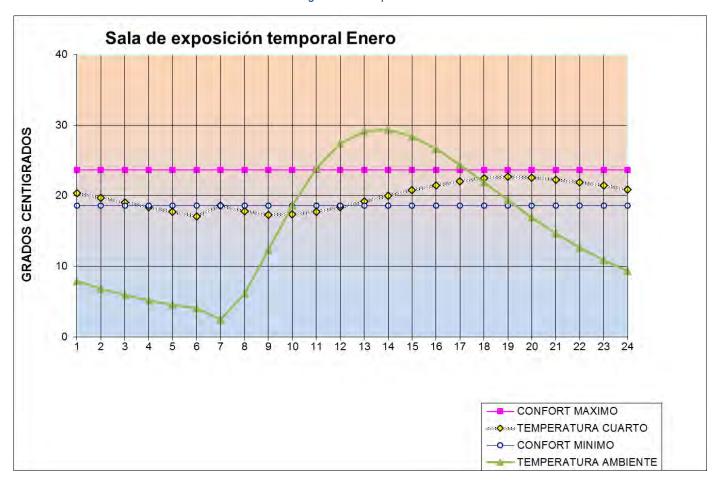
QTOT (+) valor positivo será carga de enfriamiento

CAPAC = Capacitancia = Capacidad de almacenamiento térmico de los materiales de construcción. En función de su masa y de su calor específico.

QSENST = Calor sensible total
QLATT = Calor latente total
QTOT = Carga total
CAPAC = 164318.94

Tabla 45 Cálculo de carga total (Calor sensible total y calor latente total) por hora

|    |              | TOTAL QSENST  |    |       | TOTAL QLATT |
|----|--------------|---------------|----|-------|-------------|
| 7  | -131524.7731 | -131524.773 W | 7  | 0     | 0 W         |
| 8  | -93235.71325 | -93235.7133   | 8  | 0     | 0           |
| 9  | -7229.925473 | -7229.92547   | 9  | 19250 | 19250       |
| 10 | 46653.51816  | 46653.5182    | 10 | 19250 | 19250       |
| 11 | 87982.63442  | 87982.6344    | 11 | 19250 | 19250       |
| 12 | 109315.1731  | 109315.173    | 12 | 19250 | 19250       |
| 13 | 116921.2472  | 116921.247    | 13 | 19250 | 19250       |
| 14 | 110839.0804  | 110839.08     | 14 | 19250 | 19250       |
| 15 | 95389.61802  | 95389.618     | 15 | 19250 | 19250       |
| 16 | 73163.6647   | 73163.6647    | 16 | 19250 | 19250       |
| 17 | 46401.06485  | 46401.0648    | 17 | 19250 | 19250       |
| 18 | 22486.83276  | 22486.8328    | 18 | 19250 | 19250       |
| 19 | -27014.16185 | -27014.1619   | 19 | 0     | 0           |
| 20 | -45609.38046 | -45609.3805   | 20 | 0     | 0           |
| 21 | -61849.33825 | -61849.3382   | 21 | 0     | 0           |
| 22 | -75461.45467 | -75461.4547   | 22 | 0     | 0           |
| 23 | -86415.19977 | -86415.1998   | 23 | 0     | 0           |
| 24 | -94839.99809 | -94839.9981   | 24 | 0     | 0           |
| 1  | -100961.4106 | -100961.411   | 1  | 0     | 0           |
| 2  | -105053.9989 | -105053.999   | 2  | 0     | 0           |
| 3  | -107408.2239 | -107408.224   | 3  | 0     | 0           |
| 4  | -108308.491  | -108308.491   | 4  | 0     | 0           |
| 5  | -108019.6541 | -108019.654   | 5  | 0     | 0           |
| 6  | -106779.6698 | -106779.67    | 6  | 0     | 0           |


Tabla 46 Cálculo de carga total por hora

|       | <b>TOTAL QSENST</b> | TIPO DE CARGA | TCUARTO | 1     |
|-------|---------------------|---------------|---------|-------|
| 7.00  | -131524.77 W        | CALENTAMIENTO | 290.98  | 17.83 |
| 8.00  | -93235.71           | CALENTAMIENTO | 290.42  | 17.27 |
| 9.00  | 12020.07            | ENFRIAMIENTO  | 290.49  | 17.34 |
| 10.00 | 65903.52            | ENFRIAMIENTO  | 290.89  | 17.74 |
| 11.00 | 107232.63           | ENFRIAMIENTO  | 291.54  | 18.39 |
| 12.00 | 128565.17           | ENFRIAMIENTO  | 292.33  | 19.18 |
| 13.00 | 136171.25           | ENFRIAMIENTO  | 293.15  | 20.00 |
| 14.00 | 130089.08           | ENFRIAMIENTO  | 293.95  | 20.80 |
| 15.00 | 114639.62           | ENFRIAMIENTO  | 294.64  | 21.49 |
| 16.00 | 92413.66            | ENFRIAMIENTO  | 295.21  | 22.06 |
| 17.00 | 65651.06            | ENFRIAMIENTO  | 295.61  | 22.46 |
| 18.00 | 41736.83            | ENFRIAMIENTO  | 295.86  | 22.71 |
| 19.00 | -27014.16           | CALENTAMIENTO | 295.69  | 22.54 |
| 20.00 | -45609.38           | CALENTAMIENTO | 295.42  | 22.27 |
| 21.00 | -61849.34           | CALENTAMIENTO | 295.04  | 21.89 |
| 22.00 | -75461.45           | CALENTAMIENTO | 294.58  | 21.43 |
| 23.00 | -86415.20           | CALENTAMIENTO | 294.06  | 20.91 |
| 24.00 | -94840.00           | CALENTAMIENTO | 293.48  | 20.33 |
| 1.00  | -100961.41          | CALENTAMIENTO | 292.86  | 19.71 |
| 2.00  | -105054.00          | CALENTAMIENTO | 292.22  | 19.07 |
| 3.00  | -107408.22          | CALENTAMIENTO | 291.57  | 18.42 |
| 4.00  | -108308.49          | CALENTAMIENTO | 290.91  | 17.76 |
| 5.00  | -108019.65          | CALENTAMIENTO | 290.25  | 17.10 |
| 6.00  | -106779.67          | CALENTAMIENTO | 289.60  | 16.45 |

Tabla 47 Resultados de temperatura en cuarto en el mes más frio por hora

| HORA | CONFORT<br>MINIMO | CONFORT<br>MÁXIMO | TEMPERATURA<br>CUARTO | TEMPERATURA<br>AMBIENTE |
|------|-------------------|-------------------|-----------------------|-------------------------|
|      | l                 |                   |                       |                         |
| 1    | 18.63             | 23.63             | 20.33                 | 7.96                    |
| 2    | 18.63             | 23.63             | 19.71                 | 6.84                    |
| 3    | 18.63             | 23.63             | 19.07                 | 5.91                    |
| 4    | 18.63             | 23.63             | 18.42                 | 5.15                    |
| 5    | 18.63             | 23.63             | 17.76                 | 4.53                    |
| 6    | 18.63             | 23.63             | 17.10                 | 4.02                    |
| 7    | 18.63             | 23.63             | 18.63                 | 2.47                    |
| 8    | 18.63             | 23.63             | 17.83                 | 6.19                    |
| 9    | 18.63             | 23.63             | 17.27                 | 12.30                   |
| 10   | 18.63             | 23.63             | 17.34                 | 18.64                   |
| 11   | 18.63             | 23.63             | 17.74                 | 23.84                   |
| 12   | 18.63             | 23.63             | 18.39                 | 27.35                   |
| 13   | 18.63             | 23.63             | 19.18                 | 29.11                   |
| 14   | 18.63             | 23.63             | 20.00                 | 29.35                   |
| 15   | 18.63             | 23.63             | 20.80                 | 28.42                   |
| 16   | 18.63             | 23.63             | 21.49                 | 26.67                   |
| 17   | 18.63             | 23.63             | 22.06                 | 24.42                   |
| 18   | 18.63             | 23.63             | 22.46                 | 21.93                   |
| 19   | 18.63             | 23.63             | 22.71                 | 19.40                   |
| 20   | 18.63             | 23.63             | 22.54                 | 16.96                   |
| 21   | 18.63             | 23.63             | 22.27                 | 14.69                   |
| 22   | 18.63             | 23.63             | 21.89                 | 12.64                   |
| 23   | 18.63             | 23.63             | 21.43                 | 10.84                   |
| 24   | 18.63             | 23.63             | 20.91                 | 9.29                    |

Gráfica 18 Rango de confort por hora



Fuente: Elaboración propia con base en metodología de termoreferéndum

En la gráfica anterior se observa que se cumple con los rangos de confort, ya que será un espacio cómodo de habitar y no va a requerir de un consumo energético para asegurar una temperatura adecuada al interior.

Cálculo para el mes más cálido, Mayo:

Tabla 48 Cálculo de temperatura en cuarto

| σ=        | 5.669E-08 | w/hr m <sup>2</sup> °K <sup>4</sup> |                          |           |             |       |  |
|-----------|-----------|-------------------------------------|--------------------------|-----------|-------------|-------|--|
| α =       | 0.8       | Absortano                           | α =                      | 0.15      | VENTAN<br>A |       |  |
| ε =       | 0.9       | Emitancia                           | ε =                      | 0.94      | VENTAN<br>A |       |  |
| Ho=       |           | Hw=                                 | 14.8                     |           | watts       |       |  |
|           |           | W=                                  | 1.5                      | velocidad | del viento  | (m/s) |  |
| TSKY=     | NO        | LUGAR MA                            | LUGAR MAYORMENTE NUBLADO |           |             |       |  |
| SLP=      | 0         | angulo de                           | angulo de techumbre      |           |             |       |  |
|           | 1         | COS DEL ANGULO                      |                          |           |             |       |  |
|           |           |                                     |                          |           |             |       |  |
| °C a °K = | 273.15    | Factor de                           |                          |           |             |       |  |

Fuente: Elaboración propia con base en metodología de termoreferéndum

Tabla 49 Resultado de Temperatura en cuarto por hora

#### **MAYO**

| WATO  |      |        |          | HUMEDAD          | TEMP     |       |       |         |        |
|-------|------|--------|----------|------------------|----------|-------|-------|---------|--------|
|       |      |        | HUMEDAD  | <b>ESPECIFIC</b> | MEDIA    |       |       |         |        |
| HORA  | Tamb | K      | RELATIVA | Α                | MENSUAL  | TRMAX | TRMIN | TCUARTO | K      |
|       |      |        |          |                  |          |       |       |         |        |
| 6.00  | 9.4  | 282.50 | 93       | 0.00911          | 17.40000 | 25.49 | 20.49 | 20.49   | 293.64 |
| 7.00  | 13.2 | 286.31 | 83       | 0.01048          |          | 25.49 | 20.49 | 19.93   | 293.08 |
| 8.00  | 19.5 | 292.65 | 66       | 0.01250          |          | 25.49 | 20.49 | 19.59   | 292.74 |
| 9.00  | 26.1 | 299.25 | 48       | 0.01358          |          | 25.49 | 20.49 | 19.90   | 293.05 |
| 10.00 | 31.5 | 304.69 | 33       | 0.01275          |          | 25.49 | 20.49 | 20.51   | 293.66 |
| 11.00 | 35.2 | 308.37 | 23       | 0.01090          |          | 25.49 | 20.49 | 21.38   | 294.53 |
| 12.00 | 37.1 | 310.23 | 18       | 0.00945          |          | 25.49 | 20.49 | 22.38   | 295.53 |
| 13.00 | 37.4 | 310.50 | 17       | 0.00906          |          | 25.49 | 20.49 | 23.43   | 296.58 |
| 14.00 | 36.4 | 309.55 | 20       | 0.01011          |          | 25.49 | 20.49 | 24.43   | 297.58 |
| 15.00 | 34.6 | 307.74 | 25       | 0.01147          |          | 25.49 | 20.49 | 25.34   | 298.49 |
| 16.00 | 32.3 | 305.41 | 31       | 0.01253          |          | 25.49 | 20.49 | 26.11   | 299.26 |
| 17.00 | 29.7 | 302.82 | 38       | 0.01326          |          | 25.49 | 20.49 | 26.71   | 299.86 |
| 18.00 | 27.0 | 300.19 | 45       | 0.01342          |          | 25.49 | 20.49 | 27.16   | 300.31 |
| 19.00 | 24.5 | 297.64 | 52       | 0.01337          |          | 25.49 | 20.49 | 27.43   | 300.58 |
| 20.00 | 22.1 | 295.28 | 59       | 0.01312          |          | 25.49 | 20.49 | 27.29   | 300.44 |
| 21.00 | 20.0 | 293.15 | 64       | 0.01250          |          | 25.49 | 20.49 | 27.03   | 300.18 |
| 22.00 | 18.1 | 291.27 | 69       | 0.01196          |          | 25.49 | 20.49 | 26.69   | 299.84 |
| 23.00 | 16.5 | 289.65 | 74       | 0.01158          |          | 25.49 | 20.49 | 26.26   | 299.41 |
| 24.00 | 15.1 | 288.26 | 78       | 0.01116          |          | 25.49 | 20.49 | 25.78   | 298.93 |
| 1.00  | 13.9 | 287.10 | 81       | 0.01071          |          | 25.49 | 20.49 | 25.26   | 298.41 |
| 2.00  | 13.0 | 286.13 | 83       | 0.01035          |          | 25.49 | 20.49 | 24.70   | 297.85 |
| 3.00  | 12.2 | 285.33 | 85       | 0.01005          |          | 25.49 | 20.49 | 24.12   | 297.27 |
| 4.00  | 11.5 | 284.68 | 87       | 0.00982          |          | 25.49 | 20.49 | 23.53   | 296.68 |
| 5.00  | 11.0 | 284.16 | 89       | 0.00971          |          | 25.49 | 20.49 | 22.94   | 296.09 |

|       | HUMEDAD    |       | radiación | T sol aire |        | T sol       |       |      |        |         |
|-------|------------|-------|-----------|------------|--------|-------------|-------|------|--------|---------|
| HORA  | ESPECIFICA | HORA  | global    | techo      | muro   | aireventana | Но    | Hir  | Т      | T pared |
|       |            |       |           |            |        |             |       |      |        |         |
| 6.00  | 0.00911    | 6.00  | 54.89     | 299.57     | 283.17 | 282.63      | 21.61 | 6.82 | 322.05 | 39.55   |
| 7.00  | 0.01048    | 7.00  | 213.39    | 310.89     | 288.45 | 286.71      | 20.89 | 6.10 | 310.33 | 24.02   |
| 8.00  | 0.01250    | 8.00  | 380.33    | 326.70     | 295.81 | 293.24      | 19.92 | 5.13 | 292.98 | 0.33    |
| 9.00  | 0.01358    | 9.00  | 532.36    | 342.88     | 303.11 | 299.98      | 19.14 | 4.35 | 277.22 | -22.03  |
| 10.00 | 0.01275    | 10.00 | 653.03    | 356.39     | 309.21 | 305.54      | 18.61 | 3.82 | 265.54 | -39.15  |
| 11.00 | 0.01090    | 11.00 | 730.38    | 365.37     | 313.48 | 309.33      | 18.35 | 3.55 | 259.22 | -49.15  |
| 12.00 | 0.00945    | 12.00 | 757.00    | 369.15     | 315.58 | 311.23      | 18.30 | 3.51 | 258.05 | -52.18  |
| 13.00 | 0.00906    | 13.00 | 730.38    | 367.96     | 315.59 | 311.46      | 18.42 | 3.63 | 261.08 | -49.42  |
| 14.00 | 0.01011    | 14.00 | 653.03    | 362.59     | 314.05 | 310.39      | 18.68 | 3.89 | 267.08 | -42.47  |
| 15.00 | 0.01147    | 15.00 | 532.36    | 354.16     | 311.62 | 308.47      | 19.03 | 4.24 | 274.91 | -32.83  |
| 16.00 | 0.01253    | 16.00 | 380.33    | 343.88     | 308.65 | 306.01      | 19.45 | 4.65 | 283.57 | -21.83  |
| 17.00 | 0.01326    | 17.00 | 213.39    | 332.97     | 305.07 | 303.24      | 19.89 | 5.10 | 292.32 | -10.50  |
| 18.00 | 0.01342    | 18.00 | 54.89     | 322.72     | 300.90 | 300.32      | 20.34 | 5.54 | 300.62 | 0.44    |
| 19.00 | 0.01337    | 19.00 | 0.00      | 316.93     | 297.64 | 297.64      | 20.76 | 5.97 | 308.08 | 10.44   |
| 20.00 | 0.01312    | 20.00 | 0.00      | 313.68     | 295.28 | 295.28      | 21.09 | 6.29 | 313.59 | 18.31   |
| 21.00 | 0.01250    | 21.00 | 0.00      | 310.79     | 293.15 | 293.15      | 21.36 | 6.57 | 318.12 | 24.97   |
| 22.00 | 0.01196    | 22.00 | 0.00      | 308.29     | 291.27 | 291.27      | 21.58 | 6.79 | 321.67 | 30.40   |
| 23.00 | 0.01158    | 23.00 | 0.00      | 306.16     | 289.65 | 289.65      | 21.75 | 6.96 | 324.32 | 34.67   |
| 24.00 | 0.01116    | 24.00 | 0.00      | 304.37     | 288.26 | 288.26      | 21.87 | 7.08 | 326.14 | 37.87   |
| 1.00  | 0.01071    | 1.00  | 0.00      | 302.90     | 287.10 | 287.10      | 21.94 | 7.15 | 327.23 | 40.14   |
| 2.00  | 0.01035    | 2.00  | 0.00      | 301.69     | 286.13 | 286.13      | 21.98 | 7.18 | 327.72 | 41.59   |
| 3.00  | 0.01005    | 3.00  | 0.00      | 300.73     | 285.33 | 285.33      | 21.97 | 7.18 | 327.70 | 42.37   |
| 4.00  | 0.00982    | 4.00  | 0.00      | 299.95     | 284.68 | 284.68      | 21.95 | 7.15 | 327.27 | 42.59   |
| 5.00  | 0.00971    | 5.00  | 0.00      | 301.24     | 284.16 | 284.16      | 19.47 | 4.68 | 284.16 | 0.00    |

| HORA  | Ht TECHO | Ht MURO Y<br>VENTANA | ALTURA | AZIMUT | Dr      | Tsky | Tsur   |
|-------|----------|----------------------|--------|--------|---------|------|--------|
|       |          |                      |        |        |         |      |        |
| 6.00  | 54.89    | 18.06                | 5.81   | 70.69  | -361.08 | 0.00 | 292.50 |
| 7.00  | 213.39   | 55.80                | 19.30  | 73.92  | -380.93 | 0.00 | 296.31 |
| 8.00  | 380.33   | 78.79                | 32.96  | 75.71  | -415.82 | 0.00 | 302.65 |
| 9.00  | 532.36   | 92.32                | 46.67  | 75.36  | -454.62 | 0.00 | 309.25 |
| 10.00 | 653.03   | 105.06               | 60.25  | 71.08  | -488.60 | 0.00 | 314.69 |
| 11.00 | 730.38   |                      | 73.07  | 56.56  | -512.63 | 0.00 | 318.37 |
| 12.00 | 757.00   | 122.44               | 80.69  | 0.00   | -525.10 | 0.00 | 320.23 |
| 13.00 | 730.38   | 117.22               | 73.07  | -56.56 | -526.95 | 0.00 | 320.50 |
| 14.00 | 653.03   | 105.06               | 60.25  | -71.08 | -520.50 | 0.00 | 319.55 |
| 15.00 | 532.36   | 92.32                | 46.67  | -75.36 | -508.43 | 0.00 | 317.74 |
| 16.00 | 380.33   | 78.79                | 32.96  | -75.71 | -493.19 | 0.00 | 315.41 |
| 17.00 | 213.39   | 55.80                | 19.30  | -73.92 | -476.71 | 0.00 | 312.82 |
| 18.00 | 54.89    | 18.06                | 5.81   | -70.69 | -460.33 | 0.00 | 310.19 |
| 19.00 | 0.00     | 0.00                 | 0.00   | 0.00   | -444.93 | 0.00 | 307.64 |
| 20.00 | 0.00     | 0.00                 | 0.00   | 0.00   | -430.97 | 0.00 | 305.28 |
| 21.00 | 0.00     | 0.00                 | 0.00   | 0.00   | -418.67 | 0.00 | 303.15 |
| 22.00 | 0.00     | 0.00                 | 0.00   | 0.00   | -408.04 | 0.00 | 301.27 |
| 23.00 | 0.00     | 0.00                 | 0.00   | 0.00   | -399.02 | 0.00 | 299.65 |
| 24.00 | 0.00     | 0.00                 | 0.00   | 0.00   | -391.44 | 0.00 | 298.26 |
| 1.00  | 0.00     | 0.00                 | 0.00   | 0.00   | -385.16 | 0.00 | 297.10 |
| 2.00  | 0.00     | 0.00                 | 0.00   | 0.00   | -379.99 | 0.00 | 296.13 |
| 3.00  | 0.00     | 0.00                 | 0.00   | 0.00   | -375.77 | 0.00 | 295.33 |
| 4.00  | 0.00     | 0.00                 | 0.00   | 0.00   | -372.35 | 0.00 | 294.68 |
| 5.00  | 0.00     | 0.00                 | 0.00   | 0.00   | -369.60 | 0.00 | 294.16 |

# Temperatura del muro

Tabla 50 Cálculo de temperatura del muro

| U=  | 1.68  |       |
|-----|-------|-------|
| A=  | 90.64 | 159.5 |
| He= | 34.06 |       |
| e=  | 0.325 |       |
| K=  | 2.82  |       |

Tabla 51 Cálculo de temperatura del muro por hora

|       | Q=U*A*(Tint-Tamb) | Tse=(Q/A)*(1/he)+Tamb | Tsi=(Q/A)*(e/K)+Tse | QK= (e/K)*(A*(Tsi-Tse))<br><b>Tmuro</b> |
|-------|-------------------|-----------------------|---------------------|-----------------------------------------|
| 6.00  | 2977.447          | 9.90144734            | 12.0528301          | 39.5469154                              |
| 7.00  | 1808.536          | 13.4926183            | 14.7993928          | 24.0212494                              |
| 8.00  | 25.128            | 19.505256             | 19.5234123          | 0.33375181                              |
| 9.00  | -1658.690         | 25.7963381            | 24.5978358          | -22.030979                              |
| 10.00 | -2947.496         | 30.9997155            | 28.8699746          | -39.1490953                             |
| 11.00 | -3700.300         | 34.5399901            | 31.8663037          | -49.1479515                             |
| 12.00 | -3928.271         | 36.3563568            | 33.5179476          | -52.1758988                             |
| 13.00 | -3720.987         | 36.6679575            | 33.979323           | -49.4227279                             |
| 14.00 | -3197.354         | 35.8097134            | 33.4994355          | -42.4677414                             |
| 15.00 | -2471.820         | 34.1332904            | 32.3472536          | -32.8310931                             |
| 16.00 | -1643.661         | 31.9534129            | 30.76577            | -21.8313618                             |
| 17.00 | -790.266          | 29.52574              | 28.9547258          | -10.4964365                             |
| 18.00 | 32.770            | 27.0426272            | 27.0663054          | 0.43525393                              |
| 19.00 | 786.017           | 24.6379854            | 25.2059297          | 10.4400049                              |
| 20.00 | 1378.478          | 22.3850979            | 23.3811301          | 18.3091557                              |
| 21.00 | 1879.810          | 20.3469976            | 21.7052724          | 24.9679321                              |
| 22.00 | 2288.920          | 18.5444086            | 20.1982894          | 30.4017892                              |
| 23.00 | 2610.198          | 16.9787404            | 18.8647634          | 34.6690479                              |
| 24.00 | 2851.338          | 15.6388371            | 17.6990985          | 37.8719158                              |
| 1.00  | 3021.728          | 14.5061049            | 16.6894832          | 40.1350617                              |
| 2.00  | 3131.311          | 13.5582352            | 15.8207935          | 41.590554                               |
| 3.00  | 3189.833          | 12.7717803            | 15.0766245          | 42.3678579                              |
| 4.00  | 3206.383          | 12.1238399            | 14.4406423          | 42.587674                               |

Fuente: Elaboración propia con base en metodología de termoreferéndum

Tabla 52 Ganancia térmica a través de techo, muros y ventanas

| ÁREAS          | 1     | 2     | 3     |
|----------------|-------|-------|-------|
| <b>VENTANA</b> | 47.56 | 0     |       |
| TECHO          | 337   |       |       |
| ENTREPIS       | 337   |       |       |
| MURO           | 90.64 | 159.5 | 30.69 |

Tabla 53 Cálculo de ganancia térmica a través de muros y ventanas por hora

| MURO 1 | SI    |                     | MURO 2 | SI        |                 | MURO 3 | SI    |                    |
|--------|-------|---------------------|--------|-----------|-----------------|--------|-------|--------------------|
| HORA   | RAI   | DIACIÓN SOLAR       | HORA F | RADIACIÓN | N SOLAR         | HORA   | RADIA | CIÓN SOLAR         |
|        | 6 SI  | QCONDM= -1590.45734 | 1 6    | NO QCON   | DM= -2977.44748 | 6      | NO Q  | CONDM: -2977.44748 |
|        | 7 SI  | -703.232543         | 7 1    | OV        | -1808.53571     | 7      | NO    | -1808.53571        |
|        | 8 SI  | 466.166245          | 8 8    | SI        | 820.316815      | 8      | NO    | -25.1278382        |
|        | 9 SI  | 1528.68484          | 9 9    | SI        | 2690.04006      | 9      | NO    | 1658.69025         |
|        | 10 SI | 2360.79204          | 10 \$  | SI        | 4154.30638      | 10     | NO    | 2947.49601         |
|        | 11 SI | 2879.12043          | 11 9   | SI        | 5066.41337      | 11     | NO    | 3700.29983         |
|        | 12 SI | 3045.3244           | 12 9   | SI        | 5358.88395      | 12     | NO    | 3928.27094         |
|        | 13 NO | 2114.54736          | 13 9   | SI        | 5081.39529      | 13     | SI    | 5081.39529         |
|        | 14 NO | 1816.97883          | 14 \$  | SI        | 4399.85118      | 14     | SI    | 4399.85118         |
|        | 15 NO | 1404.67563          | 15 \$  | SI        | 3509.01968      | 15     | SI    | 3509.01968         |
|        | 16 NO | 934.053023          | 16 9   | SI        | 2509.92404      | 16     | SI    | 2509.92404         |
|        | 17 NO | 449.089175          | 17 9   | SI        | 1390.06557      | 17     | SI    | 1390.06557         |
|        | 18 NO | -18.6223036         | 18 9   | SI        | 157.1154        | 18     | SI    | 157.1154           |
|        | 19 NO | -446.674754         | 19 1   | OV        | -786.017467     | 19     | NO    | -786.017467        |
|        | 20 NO | -783.355728         | 20 1   | OV        | -1378.47792     | 20     | NO    | -1378.47792        |
|        | 21 NO | -1068.25093         | 21 1   | OV        | -1879.81049     | 21     | NO    | -1879.81049        |
|        | 22 NO | -1300.73806         | 22 1   | OV        | -2288.92013     | 22     | NO    | -2288.92013        |
|        | 23 NO | -1483.31237         | 23 1   | OV        | -2610.19775     | 23     | NO    | -2610.19775        |
|        | 24 NO | -1620.34681         | 24 1   | OV        | -2851.33844     | 24     | NO    | -2851.33844        |
|        | 1 NO  | -1717.17532         | 1 1    | OV        | -3021.72842     | 1      | NO    | -3021.72842        |
|        | 2 NO  | -1779.44844         | 2 1    | OV        | -3131.31097     | 2      | NO    | -3131.31097        |
|        | 3 NO  | -1812.70533         | 1 8    | OV        | -3189.8334      | 3      | NO    | -3189.8334         |
|        | 4 NO  | -1822.11014         | 4 1    | OV        | -3206.38314     | 4      | NO    | -3206.38314        |
|        | 5 NO  | -1812.30813         | 5 1    | NO        | -3189.13446     | 5      | NO    | -3189.13446        |

| VENTANA 1 SI |                   | TECHO        |                   | TOTALES QCOND  |
|--------------|-------------------|--------------|-------------------|----------------|
| HORA RADIAC  | IÓN SOLAR         | HORA RADIACI | ÓN SOLAR          |                |
| 6 NO QC      | ONDM= -3671.84788 | 6 NO QCC     | ONDT= -930.312469 | 6 -12147.5127  |
| 7 NO         | -2230.32246       | 7 NO         | -565.08245        | 7 -5307.17316  |
| 8 NO         | -30.9881535       | 8 SI         | 2835.87511        | 8 4091.37002   |
| 9 NO         | 2045.53004        | 9 SI         | 4161.59446        | 9 10425.8494   |
| 10 NO        | 3634.91112        | 10 SI        | 5237.66522        | 10 15387.6748  |
| 11 NO        | 4563.28387        | 11 SI        | 5915.63227        | 11 18424.4499  |
| 12 NO        | 4844.42241        | 12 SI        | 6147.71686        | 12 19396.3476  |
| 13 NO        | 4588.79629        | 13 SI        | 5960.64543        | 13 17745.3844  |
| 14 NO        | 3943.04043        | 14 SI        | 5428.65506        | 14 15588.5255  |
| 15 NO        | 3048.29791        | 15 SI        | 4648.80828        | 15 12610.8015  |
| 16 NO        | 2026.996          | 16 SI        | 3726.36111        | 16 9197.33418  |
| 17 NO        | 974.572042        | 17 SI        | 2764.93464        | 17 5578.66142  |
| 18 NO        | -40.4124113       | 18 NO        | -10.2390326       | 18 87.8416522  |
| 19 NO        | -969.332486       | 19 NO        | -245.593535       | 19 -2447.61824 |
| 20 NO        | -1699.96658       | 20 NO        | -430.709594       | 20 -4292.50982 |
| 21 NO        | -2318.21995       | 21 NO        | -587.352473       | 21 -5853.63385 |
| 22 NO        | -2822.74215       | 22 NO        | -715.180015       | 22 -7127.58035 |
| 23 NO        | -3218.94815       | 23 NO        | -815.564179       | 23 -8128.02245 |
| 24 NO        | -3516.32769       | 24 NO        | -890.90932        | 24 -8878.92226 |
| 1 NO         | -3726.45602       | 1 NO         | -944.148183       | 1 -9409.50795  |
| 2 NO         | -3861.59542       | 2 NO         | -978.387584       | 2 -9750.74242  |
| 3 NO         | -3933.76645       | 3 NO         | -996.673093       | 3 -9932.97827  |
| 4 NO         | -3954.17592       | 4 NO         | -1001.84411       | 4 -9984.51331  |
| 5 NO         | -3932.9045        | 5 NO         | -996.454707       | 5 -9930.8018   |

QSHG /Cálculo del flujo de calor por ganancia solar directa.

Tabla 54 Cálculo de flujo de calor por ganancia solar directa por hora

| SOMBREADA |      | SOMBREADA |      | TOTAL |
|-----------|------|-----------|------|-------|
| 6.00 NO   | 0.00 | NO        | 0.00 | 0.00  |
| 7.00 NO   | 0.00 | NO        | 0.00 | 0.00  |
| 8.00 NO   | 0.00 | NO        | 0.00 | 0.00  |
| 9.00 NO   | 0.00 | NO        | 0.00 | 0.00  |
| 10.00 NO  | 0.00 | NO        | 0.00 | 0.00  |
| 11.00 NO  | 0.00 | NO        | 0.00 | 0.00  |
| 12.00 NO  | 0.00 | NO        | 0.00 | 0.00  |
| 13.00 NO  | 0.00 | NO        | 0.00 | 0.00  |
| 14.00 NO  | 0.00 | NO        | 0.00 | 0.00  |
| 15.00 NO  | 0.00 | NO        | 0.00 | 0.00  |
| 16.00 NO  | 0.00 | NO        | 0.00 | 0.00  |
| 17.00 NO  | 0.00 | NO        | 0.00 | 0.00  |
| 18.00 NO  | 0.00 | NO        | 0.00 | 0.00  |
| 19.00 NO  | 0.00 | NO        | 0.00 | 0.00  |
| 20.00 NO  | 0.00 | NO        | 0.00 | 0.00  |
| 21.00 NO  | 0.00 | NO        | 0.00 | 0.00  |
| 22.00 NO  | 0.00 | NO        | 0.00 | 0.00  |
| 23.00 NO  | 0.00 | NO        | 0.00 | 0.00  |
| 24.00 NO  | 0.00 | NO        | 0.00 | 0.00  |
| 1.00 NO   | 0.00 | NO        | 0.00 | 0.00  |
| 2.00 NO   | 0.00 | NO        | 0.00 | 0.00  |
| 3.00 NO   | 0.00 | NO        | 0.00 | 0.00  |
| 4.00 NO   | 0.00 | NO        | 0.00 | 0.00  |
| 5.00 NO   | 0.00 | NO        | 0.00 | 0.00  |

Fuente: Elaboración propia con base en metodología de termoreferéndum

Nota: no existe la radiación solar directa para el espacio objeto de cálculo

QVENT / Cálculo del flujo de calor por ventilación

Tabla 55 Cálculo de flujo de calor por ventilación

| CV=   | OBLICUO |                | <b>OBLICUO</b> |                 |
|-------|---------|----------------|----------------|-----------------|
|       | 0.25    |                | 0.25           |                 |
| Av=   | VENTANA | <b>ABERTUR</b> | VENTANA        | <b>ABERTURA</b> |
|       | 14.268  | 0.30000        | 0              | 0.3             |
| V=    | 1.5     | SEGUNDO        | 3600           |                 |
| ρ=    | 1.18    | Cpa=           | 1.0065         |                 |
|       |         |                |                |                 |
| Hvap= | 2468    |                |                |                 |

Tabla 56 Cálculo de flujo de calor por ventilación por hora

| PERPE    | NDICULAR  | PERPENDICU | JLAR | TOTAL QVENTS |
|----------|-----------|------------|------|--------------|
| 6.00 SI  | -70851.17 | NO         | 0.00 | -70851.17 W  |
| 7.00 SI  | -43035.81 |            | 0.00 | -43035.81    |
| 8.00 SI  | -597.94   |            | 0.00 | -597.94      |
| 9.00 SI  | 39470.10  |            | 0.00 | 39470.10     |
| 10.00 SI | 70138.45  |            | 0.00 | 70138.45     |
| 11.00 SI | 88052.13  |            | 0.00 | 88052.13     |
| 12.00 SI | 93476.92  |            | 0.00 | 93476.92     |
| 13.00 SI | 88544.41  |            | 0.00 | 88544.41     |
| 14.00 SI | 76084.05  |            | 0.00 | 76084.05     |
| 15.00 SI | 58819.29  |            | 0.00 | 58819.29     |
| 16.00 SI | 39112.47  |            | 0.00 | 39112.47     |
| 17.00 SI | 18805.13  |            | 0.00 | 18805.13     |
| 18.00 SI | -779.79   |            | 0.00 | -779.79      |
| 19.00 SI | -18704.03 |            | 0.00 | -18704.03    |
| 20.00 SI | -32802.18 |            | 0.00 | -32802.18    |
| 21.00 SI | -44731.87 |            | 0.00 | -44731.87    |
| 22.00 SI | -54467.02 |            | 0.00 | -54467.02    |
| 23.00 SI | -62112.12 |            | 0.00 | -62112.12    |
| 24.00 SI | -67850.29 |            | 0.00 | -67850.29    |
| 1.00 SI  | -71904.88 |            | 0.00 | -71904.88    |
| 2.00 SI  | -74512.50 |            | 0.00 | -74512.50    |
| 3.00 SI  | -75905.10 |            | 0.00 | -75905.10    |
| 4.00 SI  | -76298.91 |            | 0.00 | -76298.91    |
| 5.00 SI  | -75888.47 |            | 0.00 | -75888.47    |

# QINF / Cálculo del flujo de calor por infiltración:

Tabla 57 Cálculo de flujo de calor por infiltración

| Сра=    | 1.0065 |          |
|---------|--------|----------|
| ρ=      | 1.18   | Kg/m3    |
| Hvap=   | 2468   | KJ/Kg °K |
| VOL=    | 1853.5 | m3       |
| CONVERS | 0.278  |          |
| CAMB=   | 1.5    |          |

Tabla 58 Resultado de temperatura en cuarto por hora

QINFS =  $0.278 * CAMB * VOL * \rho * Cpa * (Tamb - Tcuarto)$ 

|       |           | TOTAL QINFS |
|-------|-----------|-------------|
| 6.00  | -10226.67 | -10226.67 W |
| 7.00  | -6211.79  | -6211.79    |
| 8.00  | -86.31    | -86.31      |
| 9.00  | 5697.12   | 5697.12     |
| 10.00 | 10123.79  | 10123.79    |
| 11.00 | 12709.45  | 12709.45    |
| 12.00 | 13492.47  | 13492.47    |
| 13.00 | 12780.51  | 12780.51    |
| 14.00 | 10981.98  | 10981.98    |
| 15.00 | 8489.98   | 8489.98     |
| 16.00 | 5645.50   | 5645.50     |
| 17.00 | 2714.33   | 2714.33     |
| 18.00 | -112.55   | -112.55     |
| 19.00 | -2699.74  | -2699.74    |
| 20.00 | -4734.67  | -4734.67    |
| 21.00 | -6456.60  | -6456.60    |
| 22.00 | -7861.77  | -7861.77    |
| 23.00 | -8965.27  | -8965.27    |
| 24.00 | -9793.52  | -9793.52    |
| 1.00  | -10378.76 | -10378.76   |
| 2.00  | -10755.14 | -10755.14   |
| 3.00  | -10956.15 | -10956.15   |
| 4.00  | -11012.99 | -11012.99   |
| 5.00  | -10953.75 | -10953.75   |

Fuente: Elaboración propia con base en metodología de termoreferéndum

QINF / Cálculo de ganancia de calor por ocupantes

Tabla 59 Cálculo de ganancia térmica por ocupantes

| PERSONA | 350 |   |
|---------|-----|---|
| QSENS=  | 65  | W |
| QLAT=   | 55  | W |

Tabla 60 Cálculo de ganancia térmica por ocupantes por hora

QMETS = qsens/persona \* # de personas

QMETL = qlat/persona \* # de personas

| ACTIVIDAD |          | TOTAL QMETS |       | -     | TOTAL QMETL |
|-----------|----------|-------------|-------|-------|-------------|
| 6.00 NO   | 0.00     | 0.00 W      | 6 NO  | 0     | 0 W         |
| 7.00 NO   | 0.00     | 0.00        | 7 NO  | 0     | 0           |
| 8.00 SI   | 22750.00 | 22750.00    | 8 SI  | 19250 | 19250       |
| 9.00 SI   | 22750.00 | 22750.00    | 9 SI  | 19250 | 19250       |
| 10.00 SI  | 22750.00 | 22750.00    | 10 SI | 19250 | 19250       |
| 11.00 SI  | 22750.00 | 22750.00    | 11 SI | 19250 | 19250       |
| 12.00 SI  | 22750.00 | 22750.00    | 12 SI | 19250 | 19250       |
| 13.00 SI  | 22750.00 | 22750.00    | 13 SI | 19250 | 19250       |
| 14.00 SI  | 22750.00 | 22750.00    | 14 SI | 19250 | 19250       |
| 15.00 SI  | 22750.00 | 22750.00    | 15 SI | 19250 | 19250       |
| 16.00 SI  | 22750.00 | 22750.00    | 16 SI | 19250 | 19250       |
| 17.00 SI  | 22750.00 | 22750.00    | 17 SI | 19250 | 19250       |
| 18.00 SI  | 22750.00 | 22750.00    | 18 SI | 19250 | 19250       |
| 19.00 NO  | 0.00     | 0.00        | 19 NO | 0     | 0           |
| 20.00 NO  | 0.00     | 0.00        | 20 NO | 0     | 0           |
| 21.00 NO  | 0.00     | 0.00        | 21 NO | 0     | 0           |
| 22.00 NO  | 0.00     | 0.00        | 22 NO | 0     | 0           |
| 23.00 NO  | 0.00     | 0.00        | 23 NO | 0     | 0           |
| 24.00 NO  | 0.00     | 0.00        | 24 NO | 0     | 0           |
| 1.00 NO   | 0.00     | 0.00        | 1 NO  | 0     | 0           |
| 2.00 NO   | 0.00     | 0.00        | 2 NO  | 0     | 0           |
| 3.00 NO   | 0.00     | 0.00        | 3 NO  | 0     | 0           |
| 4.00 NO   | 0.00     | 0.00        | 4 NO  | 0     | 0           |
| 5.00 NO   | 0.00     | 0.00        | 5 NO  | 0     | 0           |

Fuente: Elaboración propia con base en metodología de termoreferéndum

### QINF / Cálculo del flujo de calor por infiltración:

Tabla 61 Cálculo de flujo de calor por infiltración

|                        | No. | WATTS |      |       |
|------------------------|-----|-------|------|-------|
| CAFETERA               | 0   | 500   | 0    |       |
| IMPRESORA              | 0   | 100   | 0    |       |
| COMPUTADORA            | 1   | 300   | 300  |       |
| PANTALLA PLASMA 42"    | 2   | 234   | 468  |       |
| PROYECTOR OPTOMA TX551 | 2   | 255   | 510  |       |
| LUMINARIAS             | 35  | 76    | 2660 |       |
| BOCINAS PARA PLAFÓN    | 12  | 6     | 72   |       |
|                        |     |       | 0    |       |
|                        |     |       | 4010 | TOTAL |

Tabla 62 Cálculo de flujo de calor por infiltración por hora

# QLIGHT = QILUM + QEQU

| ACTIVIDAD |         | TOTAL QMETS |
|-----------|---------|-------------|
| 6.00 NO   | 0.00    | 0.00 W      |
| 7.00 NO   | 0.00    | 0.00        |
| 8.00 SI   | 4010.00 | 4010.00     |
| 9.00 SI   | 4010.00 | 4010.00     |
| 10.00 SI  | 4010.00 | 4010.00     |
| 11.00 SI  | 4010.00 | 4010.00     |
| 12.00 SI  | 4010.00 | 4010.00     |
| 13.00 SI  | 4010.00 | 4010.00     |
| 14.00 SI  | 4010.00 | 4010.00     |
| 15.00 SI  | 4010.00 | 4010.00     |
| 16.00 SI  | 4010.00 | 4010.00     |
| 17.00 SI  | 4010.00 | 4010.00     |
| 18.00 SI  | 4010.00 | 4010.00     |
| 19.00 NO  | 0.00    | 0.00        |
| 20.00 NO  | 0.00    | 0.00        |
| 21.00 NO  | 0.00    | 0.00        |
| 22.00 NO  | 0.00    | 0.00        |
| 23.00 NO  | 0.00    | 0.00        |
| 24.00 NO  | 0.00    | 0.00        |
| 1.00 NO   | 0.00    | 0.00        |
| 2.00 NO   | 0.00    | 0.00        |
| 3.00 NO   | 0.00    | 0.00        |
| 4.00 NO   | 0.00    | 0.00        |
| 5.00 NO   | 0.00    | 0.00        |

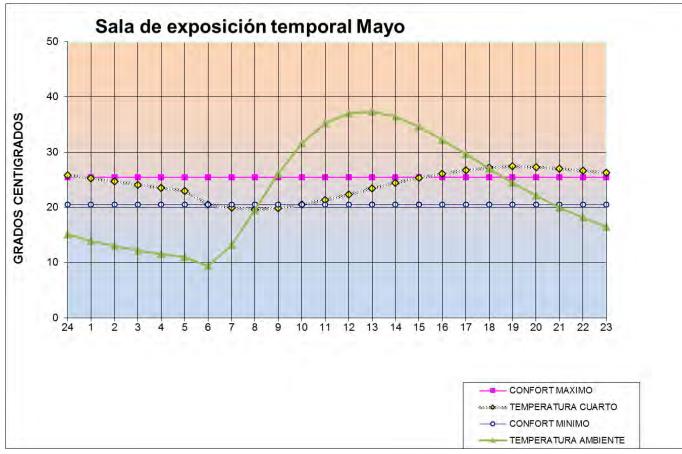
Tabla 63 Capacitancia

|        | IAD                                       | LA DE CAPA<br>VOLUME | CHANCIA  |           | Ī          | ı            |
|--------|-------------------------------------------|----------------------|----------|-----------|------------|--------------|
|        |                                           | N                    | kg/m3    | MASA      | KJ/Kg°C    | CAPACITANCIA |
| No     | MATERIAL                                  | M3                   | <u> </u> | KG        | (Cp)       | KJ°C         |
| AZOTEA |                                           |                      |          |           |            |              |
|        | DISO DE DEDAZERÍA DE                      |                      |          |           |            |              |
|        | PISO DE PEDAZERÍA DE 1 CERAMICA           | 6.74                 | 2000     | 13480     | 0.706      | 9516.8       |
|        | ENTORTADO CON                             | 0.11                 | 2000     | 10100     | 0.700      | 0010.0       |
|        | MORTERO CEMENTO                           |                      |          |           |            |              |
|        | 2 CALHIDRA-ARENA 1:1:5                    | 33.7                 | 2100     | 70770     | 1          | 7077         |
|        | 3 DELLENO DE TEZONTI E                    | 124.0                | 1400     | 100700    | 0.705      | 150022       |
|        | 3 RELLENO DE TEZONTLE<br>KG/CM2 CON MALLA | 134.8                | 1400     | 188720    | 0.795      | 150032.      |
|        | ELECTRO SOLDADA 6-6                       |                      |          |           |            |              |
|        | 4 / 10-10                                 | 53.92                | 2400     | 129408    | 1.004      | 129925.63    |
|        | LAMINA ROMSA CAL 22, 6                    |                      |          |           |            |              |
|        | 5 CM DE PERALTE                           | 6.74                 | 7830     | 52774.2   | 0.45       | 23748.3      |
|        | VIGA ACERO PERFIL IPR                     |                      |          |           |            |              |
|        | 6 12*38                                   | 7.5183               | 7830     | 58868.289 | 0.45       | 26490.7300   |
|        |                                           |                      |          |           |            |              |
|        | 7 COLCHÓN DE AIRE                         | 337                  | 1.2      | 404.4     | 1.013      | 409.657      |
|        | "LIGERPLAC" MOD.                          |                      |          |           |            |              |
|        | PAPEL MOJADO DE                           | 40.05                | 70       | 4405.5    | 4.05       | 4000 77      |
|        | 8 61*61 CM                                | 16.65                | 70       | 1165.5    | 1.05       | 1223.77      |
| PISO   |                                           |                      |          |           |            |              |
| -130   |                                           |                      |          |           |            | 1            |
|        | FIRME DE CONCRETO                         | 0.74                 | 2000     | 44000     | 0.00       | 40044.7      |
|        | 10 F'C=150KG/CM2                          | 6.74                 | 2200     | 14828     | 0.92       | 13641.7      |
|        | KG/CM2 CON MALLA<br>ELECTRO SOLDADA 6-6   |                      |          |           |            |              |
|        | 12 / 10-10                                | 53.92                | 2400     | 129408    | 1.004      | 129925.63    |
|        |                                           |                      |          |           |            |              |
| MUROS  |                                           |                      |          |           |            | -            |
|        | MURO DE BLOCK                             |                      |          |           |            |              |
|        | HUECO DE 15 X 20 X 40                     |                      |          |           |            |              |
|        | CM,                                       |                      |          |           |            |              |
|        | ASENTADO CON<br>MORTERO CEMENTO-          |                      |          |           |            |              |
|        | 18 ARENA 1:5                              | 18.588               | 1925     | 35781.9   | 0.835      | 29877.886    |
|        | APLANADO DE YESO A                        |                      |          |           | 2,222      |              |
|        | 19 PLOMO Y REGLA                          | 1.2392               |          |           |            |              |
|        | 20 PINTURA VINILICA                       | 0.3098               | 1009     | 312.5882  | 0.294      | 91.900930    |
|        | APLANADO FINO CON<br>MORTERO CEM-ARENA    |                      |          |           |            |              |
|        | 21 1:6                                    | 1.2392               | 2100     | 2602.32   | 1.4        | 3643.24      |
|        | 22 PINTURA VINILICA                       | 0.3098               |          |           |            | 91.900930    |
|        | 23 VIDRIO ÇLARO                           | 0.07134              |          |           |            |              |
|        | 7 COLCHÓN DE AIRE                         | 2.1686               | 1.2      | 2.60232   | 1.013      | 2.6361501    |
|        |                                           |                      |          |           |            |              |
|        |                                           |                      |          |           | TOTAL      | 591548.2     |
|        |                                           |                      |          |           | CONVERSIÓN | 3.6          |
|        |                                           |                      |          |           |            |              |

# QTOT / Carga total

Tabla 64 Cálculo de carga total (Calor sensible total y calor latente total) por hora

|    |              | TOTAL QSENST  |    |       | TOTAL QLATT |
|----|--------------|---------------|----|-------|-------------|
| 6  | -93225.3518  | -93225.3518 W | 6  | 0     | 0 W         |
| 7  | -54554.78137 | -54554.7814   | 7  | 0     | 0           |
| 8  | 30167.12258  | 30167.1226    | 8  | 19250 | 19250       |
| 9  | 82353.06796  | 82353.068     | 9  | 19250 | 19250       |
| 10 | 122409.9157  | 122409.916    | 10 | 19250 | 19250       |
| 11 | 145946.0305  | 145946.031    | 11 | 19250 | 19250       |
| 12 | 153125.7303  | 153125.73     | 12 | 19250 | 19250       |
| 13 | 145830.303   | 145830.303    | 13 | 19250 | 19250       |
| 14 | 129414.55    | 129414.55     | 14 | 19250 | 19250       |
| 15 | 106680.0734  | 106680.073    | 15 | 19250 | 19250       |
| 16 | 80715.30376  | 80715.3038    | 16 | 19250 | 19250       |
| 17 | 53858.1246   | 53858.1246    | 17 | 19250 | 19250       |
| 18 | 25955.49777  | 25955.4978    | 18 | 19250 | 19250       |
| 19 | -23851.38713 | -23851.3871   | 19 | 0     | 0           |
| 20 | -41829.36368 | -41829.3637   | 20 | 0     | 0           |
| 21 | -57042.10102 | -57042.101    | 21 | 0     | 0           |
| 22 | -69456.37003 | -69456.37     | 22 | 0     | 0           |
| 23 | -79205.41151 | -79205.4115   | 23 | 0     | 0           |
| 24 | -86522.72999 | -86522.73     | 24 | 0     | 0           |
| 1  | -91693.14603 | -91693.146    | 1  | 0     | 0           |
| 2  | -95018.38499 | -95018.385    | 2  | 0     | 0           |
| 3  | -96794.22477 | -96794.2248   | 3  | 0     | 0           |
| 4  | -97296.4199  | -97296.4199   | 4  | 0     | 0           |
| 5  | -96773.01565 | -96773.0156   | 5  | 0_    | 0           |


Tabla 65 Cálculo de carga total por hora

|       | TOTAL QSENST | TIPO DE CARGA | TCUARTO |       |
|-------|--------------|---------------|---------|-------|
| 6.00  | -93225.35 W  | CALENTAMIENTO | 293.08  | 19.93 |
| 7.00  | -54554.78    | CALENTAMIENTO | 292.74  | 19.59 |
| 8.00  | 49417.12     | ENFRIAMIENTO  | 293.05  | 19.90 |
| 9.00  | 101603.07    | ENFRIAMIENTO  | 293.66  | 20.51 |
| 10.00 | 141659.92    | ENFRIAMIENTO  | 294.53  | 21.38 |
| 11.00 | 165196.03    | ENFRIAMIENTO  | 295.53  | 22.38 |
| 12.00 | 172375.73    | ENFRIAMIENTO  | 296.58  | 23.43 |
| 13.00 | 165080.30    | ENFRIAMIENTO  | 297.58  | 24.43 |
| 14.00 | 148664.55    | ENFRIAMIENTO  | 298.49  | 25.34 |
| 15.00 | 125930.07    | ENFRIAMIENTO  | 299.26  | 26.11 |
| 16.00 | 99965.30     | ENFRIAMIENTO  | 299.86  | 26.71 |
| 17.00 | 73108.12     | ENFRIAMIENTO  | 300.31  | 27.16 |
| 18.00 | 45205.50     | ENFRIAMIENTO  | 300.58  | 27.43 |
| 19.00 | -23851.39    | CALENTAMIENTO | 300.44  | 27.29 |
| 20.00 | -41829.36    | CALENTAMIENTO | 300.18  | 27.03 |
| 21.00 | -57042.10    | CALENTAMIENTO | 299.84  | 26.69 |
| 22.00 | -69456.37    | CALENTAMIENTO | 299.41  | 26.26 |
| 23.00 | -79205.41    | CALENTAMIENTO | 298.93  | 25.78 |
| 24.00 | -86522.73    | CALENTAMIENTO | 298.41  | 25.26 |
| 1.00  | -91693.15    | CALENTAMIENTO | 297.85  | 24.70 |
| 2.00  | -95018.38    | CALENTAMIENTO | 297.27  | 24.12 |
| 3.00  | -96794.22    | CALENTAMIENTO | 296.68  | 23.53 |
| 4.00  | -97296.42    | CALENTAMIENTO | 296.09  | 22.94 |
| 5.00  | -96773.02    | CALENTAMIENTO | 295.50  | 22.35 |

Tabla 66 Resultado para el cálculo bioclimático de mayo como el mes más cálido

| HORA | CONFORT<br>MINIMO | CONFORT<br>MÁXIMO | TEMPERATURA<br>CUARTO | TEMPERATURA<br>AMBIENTE |
|------|-------------------|-------------------|-----------------------|-------------------------|
|      |                   |                   |                       |                         |
| 24   | 20.49             | 25.49             | 25.78                 | 15.11                   |
| 1    | 20.49             | 25.49             | 25.26                 | 13.95                   |
| 2    | 20.49             | 25.49             | 24.70                 | 12.98                   |
| 3    | 20.49             | 25.49             | 24.12                 | 12.18                   |
| 4    | 20.49             | 25.49             | 23.53                 | 11.53                   |
| 5    | 20.49             | 25.49             | 22.94                 | 11.01                   |
| 6    | 20.49             | 25.49             | 20.49                 | 9.35                    |
| 7    | 20.49             | 25.49             | 19.93                 | 13.16                   |
| 8    | 20.49             | 25.49             | 19.59                 | 19.50                   |
| 9    | 20.49             | 25.49             | 19.90                 | 26.10                   |
| 10   | 20.49             | 25.49             | 20.51                 | 31.54                   |
| 11   | 20.49             | 25.49             | 21.38                 | 35.22                   |
| 12   | 20.49             | 25.49             | 22.38                 | 37.08                   |
| 13   | 20.49             | 25.49             | 23.43                 | 37.35                   |
| 14   | 20.49             | 25.49             | 24.43                 | 36.40                   |
| 15   | 20.49             | 25.49             | 25.34                 | 34.59                   |
| 16   | 20.49             | 25.49             | 26.11                 | 32.26                   |
| 17   | 20.49             | 25.49             | 26.71                 | 29.67                   |
| 18   | 20.49             | 25.49             | 27.16                 | 27.04                   |
| 19   | 20.49             | 25.49             | 27.43                 | 24.49                   |
| 20   | 20.49             | 25.49             | 27.29                 | 22.13                   |
| 21   | 20.49             | 25.49             | 27.03                 | 20.00                   |
| 22   | 20.49             | 25.49             | 26.69                 | 18.12                   |
| 23   | 20.49             | 25.49             | 26.26                 | 16.50                   |

Gráfica 19 Rango de confort



En la gráfica anterior se observa que de las 7 a las 9 se encuentra ligeramente por debajo del rango de confort, pero es una variación que se puede despreciar ya que en ese horario la sala no se encontrara en funcionamiento, después de las 16 horas se tiene una ligera ganancia térmica, donde se acercará al cierre del inmueble, dejando las horas de mayor afluencia con un confort térmico adecuado.

# 5.5-Presupuesto y factibilidad financiera

Tabla 67 Costos paramétricos del museo

|                             | Costo paramétrico del Muse                     | 0        |    |               |
|-----------------------------|------------------------------------------------|----------|----|---------------|
| Costo por M2                | \$ 12,500.00                                   |          |    |               |
| M2 de proyecto              | 6255.00                                        |          |    |               |
| Costo total de la obra      | \$ 78,187,500.00                               |          |    |               |
| Concepto                    | Descripción                                    | %        |    | Importe       |
| Excavación y preliminares   | limpieza, Trazo y nivelación                   | 1.13%    | \$ | 883,518.75    |
| Cimentación y contención    | Cimentación, contratrabes, dados, losa y       |          |    |               |
| •                           | muros de contención                            | 9.11%    | \$ | 7,122,881.25  |
|                             | Columnas y Vigas de acero, losaacero y         |          |    |               |
| Estructura metálica         | resfuerzos estructurales                       | 26.79%   | \$ | 20,946,431.25 |
|                             | estructura portante y paneles de               |          |    |               |
| Fachada                     | Fibracemento Equitone                          | 7.07%    | \$ | 5,527,856.25  |
|                             | Muros de block hueco, dalas, castillos,        |          |    |               |
| Albañilería                 | cadenas, aplanados y cerramientos              | 7.77%    | \$ | 6,075,168.75  |
|                             | Muros de Tablaroca, aplanados, cielo raso y    |          |    | .,,           |
| Plafones y muros            | cajetillos                                     | 11.49%   | \$ | 8,983,743.75  |
| Carpinterías                | Puertas y lambrines                            | 2.10%    | \$ | 1,641,937.50  |
|                             | Pintura epóxica, vinílica, lambrin de resina y |          | T  | .,,           |
| Recubrimientos              | polvo de marmol                                | 2.51%    | \$ | 1,962,506.25  |
| reseasimmentes              | Cancelerías de fachada, espejos, cubierta y    | 2.0170   | Ψ_ | 1,002,000.20  |
| Cancelería y cristal        | puertas                                        | 3.92%    | \$ | 3,064,950.00  |
| Muebles de baño             | Muebles de baño, mamparas y llaves             | 1.07%    | \$ | 836,606.25    |
| instalación hidrosanitaria  | bajadas, salidas hidrosanitarias y drenaje     | 0.31%    | \$ | 242,381.25    |
| inotalacion marccamiana     | hidrantes, tomas siamesas y detectores de      | 0.0170   | Ψ  | 212,001.20    |
| Instalación contraincendio  | humo                                           | 2.35%    | \$ | 1,837,406.25  |
| Luminarias                  | iluminación arquitectónica y de seguridad      | 2.81%    | \$ | 2,197,068.75  |
| Lummanas                    | Alimentadores, tableros, salidas eléctricas,   | 2.0170   | Ψ  | 2,137,000.73  |
| instalación eléctrica       | motoresy planta de emergencía                  | 4.89%    | \$ | 3,823,368.75  |
| Il istalación electrica     | cableado, ponchado, habilitación,              | 4.0970   | Ψ  | 3,023,300.73  |
| instalación de voz y datos  | terminales y pruebas                           | 0.28%    | \$ | 218,925.00    |
| ilistalacion de voz y datos | Sistemas de iluminación regulabeles para       | 0.2070   | φ  | 210,923.00    |
| iluminación escenica        | necesidades de museografía                     | 2.86%    | \$ | 2,236,162.50  |
| ildiffiliación escerlica    | instalaciones y acabados especificios de       | 2.0070   | Ψ  | 2,230,102.30  |
| habilitación de restaurante | acuerdo al proyecto                            | 5.54%    | \$ | 4,331,587.50  |
| nabilitacion de restaurante | bocinas, amplificadores, grabadoras,           | 3.34 /0  | φ  | 4,331,307.30  |
| sistema de audio            | consolas y micrófonos.                         | 4.78%    | \$ | 3,737,362.50  |
| CCTV                        | Cicuito cerrado de televisión                  | 0.91%    | \$ | 711,506.25    |
| 0017                        | sistema de señalización de seguridad e         | 0.3170   | φ  | 111,000.20    |
| señalética                  | informativa                                    | 0.21%    | \$ | 164,193.75    |
| sei iaielica                | mobiliario para funcionamiento optimo del      | U.Z I 70 | φ  | 104,183.75    |
| Mobiliaria                  |                                                | 2 100/   | ¢. | 1,641,937.50  |
| Mobiliario                  | proyecto                                       | 2.10%    | \$ | 1,041,937.30  |
|                             |                                                | 400.000/ | ø  | 70 107 500 00 |
|                             |                                                | 100.00%  | Þ  | 78,187,500.00 |

Fuente: Elaboración propia con base en parámetros de Construbase

Tabla 68 Costos paramétricos del parque Urbano Agua Vida

| Costos Paramétricos  Tipo de construcción  Costo por m² Área m² Costo x m² Tipo de Construcción |    |           |        |               |  |  |  |
|-------------------------------------------------------------------------------------------------|----|-----------|--------|---------------|--|--|--|
| Estacionamiento                                                                                 | \$ | 4,651.97  | 6,300  | \$29,307,411  |  |  |  |
| Museo                                                                                           | \$ | 12,500.00 | 6,255  | \$78,187,500  |  |  |  |
| Lago                                                                                            | \$ | 3,000.00  | 3,000  | \$9,000,000   |  |  |  |
| Bío Parque                                                                                      | \$ | 6,500.00  | 52,529 | \$341,438,500 |  |  |  |
| Total                                                                                           |    |           | 68,084 | \$457,933,411 |  |  |  |

#### Financiamiento del proyecto

| Costo del proyecto   |         |       | \$457,933,411.00   |
|----------------------|---------|-------|--------------------|
| Presupuesto Gubernam | ental   | 30% - | + \$137,380,023.30 |
| (Constructora)       |         | 70%   | \$320,553,387.70   |
| Financiamiento       | Privado |       |                    |

Al ser un proyecto de carácter social y dado el manejo de las licitaciones en los Estados Unidos Mexicanos la asignación del presupuesto será principalmente por una constructora privada en un 70%. El gobierno solo otorga al iniciar el proyecto un 30%.

Tabla 69 Amortización de la deuda sin periodo de gracia

| Amortización de la Deuda |                             |                  |                 |                |                   |                  |  |  |
|--------------------------|-----------------------------|------------------|-----------------|----------------|-------------------|------------------|--|--|
| Año.                     | <b>Año.</b> Saldo Insoluto. |                  | 16.60%          | P              | ago al Principal. | Total.           |  |  |
| 1                        |                             | \$320,553,388    | \$53,211,862.36 | \$             | 53,425,564.62     | \$106,637,426.97 |  |  |
| 2                        | \$                          | 267,127,823      | \$44,343,218.63 | \$             | 53,425,564.62     | \$97,768,783.25  |  |  |
| 3                        | \$                          | 213,702,258      | \$35,474,574.91 | \$             | 53,425,564.62     | \$88,900,139.52  |  |  |
| 4                        | \$                          | 160,276,694      | \$26,605,931.18 | \$             | 53,425,564.62     | \$80,031,495.80  |  |  |
| 5                        | \$                          | 106,851,129      | \$17,737,287.45 | \$             | 53,425,564.62     | \$71,162,852.07  |  |  |
| 6                        | \$                          | 53,425,565       | \$8,868,643.73  | \$             | 53,425,564.62     | \$62,294,208.34  |  |  |
|                          |                             | \$186,241,518.25 | \$3             | 320,553,387.70 | \$506,794,905.95  |                  |  |  |

En un supuesto de obtener el préstamo bajo una tasa de 16.6 % obtenida del Crédito Negocios Banamex (Amortizable), crédito a tasa fija, calculado el 15 de febrero de 2017.17 Sin periodo de gracia y amortizándola a 6 años, el monto final a pagar por el museo es de \$487, 386,253.2 pesos mexicanos.

\_

<sup>&</sup>lt;sup>17</sup> https://www.banamex.com/es/pymes/creditos/credito\_negocios\_banamex.htm

### 7.- Conclusiones generales

El trabajo que se ha realizado ha representado la intensión de aportar un espacio arquitectónicamente a la ciudad y su población para poder aprender de un tema que cobra mayor importancia a medida que el número de personas y la densificación urbana siguen en incremento acelerado. Al mismo tiempo que se logra rescatar un espacio subutilizado para convertirlo en tanto un pulmón se genera un punto importante para la recarga de los mantos acuíferos de la ciudad, los cuales cabe hacer notar se ven cada vez más consumidos por su extracción desmedida.

El proyecto en sus características se prestó adecuadamente para representar un reto a nivel de diseño a través de nuevas tecnologías como lo es la metodología BIM (Building Information Modeling – Modelado de información para la construcción) que es una herramienta obligatoria ya en diversos campos del diseño y la construcción a nivel mundial, y la cual ha servido para poder implementar sistemas más eficientes de seguimiento del proyecto, así como una carta de presentación de las habilidades que a partir de constantes estudios y mucho ensayo y error se han logrado adquirir, siendo que estas aún requieren nuevos retos para seguir refinándose.

Aunado a esto observamos la necesidad de parte del arquitecto por efectuar a modo de disciplina una actualización constante que permita primero trabajar más eficientemente al tener mayores y mejores recursos a mano y segundo el ser más conscientes y consecuentes con el medio ambiente. Esto como parte de una ética profesional de crecimiento y responsabilidad. Entendiendo que las decisiones de arquitecto impactan en muchos más ámbitos que los que a primera vista podrían resultar obvios.

En cuanto al diseño del proyecto punto importante fue el poder aprovechar la cercanía de diversas áreas verdes para poder aseverar que el impacto a mayor escala en cuanto a beneficio social, ecológico, natural y sustentable es real, ya que podemos tomar el ejemplo de seres como las abejas que podrán libremente polinizar la vegetación tanto del proyecto como de los lugares circundantes de una manera más natural que les aportaría

permanencia en la ciudad. Cosa mucho menos segura de lograr si dicho proyecto se encontrara aislado de elementos naturales y artificiales similares que aportaran ésta ventaja. De éste modo se entiende a la parte ecológica del proyecto como un todo que no puede verse separado de su contexto inmediato y global. Sino como un proyecto que desde su propia capacidad incide a una escala mayor para un beneficio verdaderamente notable.

No queda más que agradecer a todos aquellos que han brindado su apoyo en el desarrollo de éste proyecto en sus diferentes etapas y niveles. Sin alguno de ustedes éste documento con todo su contenido no hubiera sido posible. Así que ante todo "Gracias totales".

### 8.- Bibliografía

- María del Carmen Meza Aguilar, José Omar Moncada Maya, (1 de agosto de 2010), Las áreas verdes de la ciudad de México. Un reto actual, Revista electrónica de geografía y ciencias sociales, Vol. XIV, núm. 331 pp. 56, Recuperado de http://www.ub.edu/geocrit
- Consejo Nacional de Organismos Estatales de Vivienda, A.C.(CONOREVI), (Diciembre 2011) México, La situación de la vivienda en México, síntesis de problemática y propuestas, estadísticas, Recuperado de http://www.conorevi.org.mx
- Instituto Nacional de Estadística y Geografía INEGI, (18 de Marzo de 2016)
   Aguascalientes, Ags, Estadísticas a propósito del día mundial del agua, 22 de marzo, datos nacionales, Recuperado de http://www.inegi.org.mx
- Comisión Nacional del Agua (Conagua) Secretaría de Medio Ambiente y recursos Naturales (SEMARNAT), (Edición 2015) Estadísticas del agua en México, Recuperado de http://www.conagua.gob.mx
- 5. Mayela Sánchez, Sin embargo, México CDMX, El DF pierde en 15 años 56 mil árboles por obras, Recuperado de, http://www.sinembargo.mx
- 6. Notimex, (2012) El Universal, Nueva York, Cuidad de México, la tercera más poblada del mundo: ONU, Recuperado de, http://archivo.eluniversal.com.mx
- 7. EURE, (DICIEMBRE 2010), Distribución, superficie y accesibilidad de las áreas verdes en Santiago de Chile, Vol. 36, núm. 109, DICIEMBRE 2010, pp. 89 110, Recuperado de, http://www.scielo.cl
- Secretaría de Medio Ambiente y recursos Naturales (SEMARNAT), (2007),
   México CDMX, ¿Y el medio ambiente? Problemas en México y el mundo.
   México, Recuperado de http://biblioteca.semarnat.gob.mx
- Instituto Nacional de Estadística y Geografía INEGI, (30 de junio del 2016),
   México, Aguascalientes, Encuesta nacional de los hogares 2015, Recuperado de http://www.inegi.org.mx
- 10. Comisión Nacional del Agua (Conagua), (Edición 2014), México CDMX, Estadísticas del agua en México.

- 11. Instituto Nacional de Estadística y Geografía (INEGI) (2010), México CDMX, Anuario estadístico y geográfico del Distrito Federal 2014, Recuperado de http://www.datatur.sectur.gob.mx
- 12. Nuria Merce Ortega Font (2011) México CDMX, El agua en números, Recuperado de, http://www.uam.mx/difusion/casadeltiempo
- 13. Claudia Alcántara, (19 Diciembre del 2014), El Financiero, México CDMX, Construcción de departamentos sube un 32% en 8 años, Recuperado de http://www.elfinanciero.com.mx
- 14. Eduardo Venegas, (28 de Marzo del 2017) La Razón, México CDMX, Nueve de cada 10 viviendas en DF son departamentos, Recuperado de http://www.razon.com.mx
- 15. Ilich Valdez, (11 de Octubre del 2016), Milenio, México CDMX, Vecinos Clausuran obra en Coyoacán por falta de agua. Recuperado de http://www.milenio.com
- 16. María Fernanda Navarro, (23 de Marzo del 2017), EXCELSIOR, México CDMX, Límite a viviendas llega tarde; abasto de agua, Recuperado de http://www.excelsior.com.mx
- 17. Ilich Valdez, (19 de abril del 2016), Milenio, México CDMX, CdMx se rezaga en obras para distribuir agua, Recuperado de http://www.milenio.com
- 18. Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), (18 de marzo de 2016), México CDMX, Recuperado de http://www.parquebicentenario.gob.mx
- 19. Gobierno del distrito Federal, Secretaría de Desarrollo Urbano y Vivienda (SEDUVI), Información geográfica, (2015), México CDMX, Recuperado de http://www.seduvi.cdmx.gob.mx
- 20. Secretaria de Desarrollo Social (SEDESOL), (1999), México, Sistema normativo de equipamiento urbano, Tomo V, Recreación y deporte, Recuperado de https://www.gob.mx/sedesol
- 21.ASHRAE HANDBOOK, (1985) FUNDAMENTALS, AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR -CONDITIONING ENGINEERS, INC, EUA, Atlanta, Editorial Reviews.
- 22. Sistema Meteorológico Nacional, (2012) Estación climatológica 9039, México CDMX, Información Climatológica, Recuperado de http://smn.cna.gob.mx
- 23. Autodesk (2016) Revit, Versión 2016.99.43.56 (DOE-2.2-48r), Software

24. Google. (s.f.). [Mapa de México, Álvaro Obregón, en Google earth]. Recuperado en 2015 de https://www.earth.google.com