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Abstract

In this thesis, we studied the electronic structure of silicene clusters with hydrogen
passivated edges (H-SiNR) arranged in rectangular arrays parameterized by nz and
na, each denoting the length of the particular edges ubiquitous in every system.
Where nz and na are the number of non-nodal zig-zag sites and armchair bonds,
respectively. We found that singlet spin multiplicity prevails in the H-SiNRs when
na<nz but, surprisingly, transitions to a triplet multiplicity for certain structures
with na>nz. In both instances we end up with spin polarized zig-zag edge state
materials with an antiferromagnetic arranging, with the exception between the two
multiplicities being the type of coupling between these edges. A ferromagnetic and an
antiferromagnetic type coupling between the zig-zag edge spin states corresponds to
the triplet and singlet spin multiplicities, respectively. Interestingly, a ferromagnetic
coupling would lead to spin specific transport along the zig-zag edges that may become
useful for magnetic memory storage and quantum computers. Finally, as a means to
give experimental researchers evidence for the detection of the relevant H-SiNRs, we
calculated the Raman spectra for the ground states and found that the ratio of the
G and D peak intensities may give indication whether the synthesized material is of
singlet or triplet spin multiplicity.
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Foreward

Here the intention is to notify the reader that this thesis is an extension of the article

that was published by Serguei Fomine, Mildred S. Dresselhaus, Ricardo Pablo Pedro

and I, that is referred here as [53]. The work reported in the latter article and of

this thesis began with the desire to gain insight of silicene nanoribbons’ electronic

structure using a well defined methodology that has been at the foundation of the

research done in our group but that has been enriched during my academic stay as well

as through constructive discussions with Ricardo at his home institution. Therefore,

all that is discussed and the way it is done is also present here in this thesis, in which

some arguments have been expanded upon and some loose ends have been looked

into. Ultimately, the reader may wish to read the article if in lack of time to read

this thesis in it’s entirety.
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3-2 Deviation of hŜ2iNI values from S(S+1) as a function of the length of

the ribbon in the (a) zigzag nz and (b) armchair na direction, respec-

tively. The plotted results are taken from Table 3.1. . . . . . . . . . . 47

3-3 Spin densities of the (column I) singlet and (column II) triplet of a)

H-SiNR(4,7), b) H-SiNR(4,8) and c) H-SiNR(4,9); the colored boxes

indicate the (up and down) spin directions of the respective spin densities. 48

3-4 Raman spectra (Color line) of different H-SiNRs obtained by the calcu-

lated vibrational spectrum convoluted with a uniform Gaussian broad-

ening having a 10 cm�1 width. (a) Raman spectra for the triplet and

singlet states of H-SiNR(5,4). (b) Raman spectrum of H-SiNR(7,na)

as a function of na. (c) Raman spectra of H-SiNR(nz,4) as a func-

tion of nz. The inset graph shows an expansion of Fig. 3-4(c) for the

frequencies at around 200-400 cm�1. . . . . . . . . . . . . . . . . . . 54

3-5 Raman spectra (Color line) of two H-SiNRs obtained by the calculated

vibrational spectrum convoluted with a uniform Gaussian broadening

having a 10 cm�1 width. (a) Raman spectra for the singlet states of

H-SiNR(7,4) and H-SiNR(4,7). (b) Raman spectrum of of the previous

systems but in their triplet states. . . . . . . . . . . . . . . . . . . . . 56

3-6 H-L gap (Color line) in eV for H-SiNRs as a function of N. . . . . . . 57

10



List of Tables

1.1 Electronic properties for bulk materials [46] and graphene [5] at 300 K. 15

2.1 Number of Slater determinants NDet per the ways 2k electrons may be

distributed in 2k orbitals. . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Relative energies in kcal/mol of the open shell triplet (S1-UB3LYP) and

the open shell singlet (S0-UB3LYP) states with respect to the restricted

shell singlet S0-RB3LYP. The corresponding hŜ2iNI expectation values
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Chapter 1

Introduction

1.1 Moore’s Conundrum & Molecular Electronics

Since the conception of modern computers, scientists and engineers have been en-

thralled in ways of making them faster by adding evermore electronic components

onto (micro)processors and so forth, accelerating the number of calculations and/or

jobs the computer may execute with every new generation. There is even a name for

it, it is called Moore’s Law, which is named after the prediction made by Intel’s co-

founder Gordon E. Moore who stated that the number of components per integrated

circuit would double annually [44], which later he revised it to happen every two years

[45]. Until now this progression has been more or less upheld. However, the reason

why this should interest us, producing ultrafast computers in general, is that it could

help us make strides in scientific fields, such as artificial intelligence research projects,

quantum chemistry, empowering research groups by enabling them to chose ab initio

calculations that are normally constrained to systems composed of 1 to 20 atoms, and

other physical sciences.

As a consequence of physical limitations, Moore’s law can not go on Ad Infinitum.

We are currently in an age whereupon dissipative phenomena will become an impor-

tant factor in modelling silicon based circuit boards because of their saturation with

transistors. Consequently, the spacing between them becomes so small that quantum

phenomena such as tunnelling will need to be taken into account, thus making the
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flow of electric current less efficient throughout the circuit board. Seemingly, one way

of overcoming this is by theorizing nano-scaled systems that have electronic properties

which resemble macroscopic electronic components, such as wires, transistors, diodes,

semiconductors, etc. This branch of research is called Molecular Electronics, and up

until now has been focused on one-dimensional (1D) systems, in part, due to their

relative ease to synthesize and to perform calculations with higher-end quantum chem-

ical methods that include more than one configuration. But with the advent of the

modern computer and density functional theory (DFT), as well as the progress made

in surface chemistry, two-dimensional (2D) systems have recently gained momentum

in the scientific community across the world [6, 66, 9]. Their accessibility prodded on

by the technological advancements mentioned in the last sentence. Moreover, modern

approximations to studying their electronic structure like DFT have helped by pre-

dicting and understanding newfound materials, alerting the experimental community

of scientists to hone in on relevant systems and vice versa.

1.2 Graphene & 2D Crystals

In 2004, a highly interesting 2D crystal that was once thought as an ’academic’ mate-

rial was obtained through mechanical exfoliation of graphite. It is known as graphene

and is basically a monolayer composed of conjugated sp2 carbon atoms which form

a honeycomb lattice [51]. Graphene is the building block of many forms of carbon

systems such as carbon nanotubes, and fullerenes as shown in Fig. 1-1. In general,

2D crystals were thought to be non-existent because of thermodynamic instabilities

associated to thermal fluctuations that would provoke atomic displacements compa-

rable to their interatomic distances at any finite temperature [55, 31]. Nevertheless,

the existence of graphene may be explained due to its extraction from a 3D material,

quenching it in a metastable state. Also, its small scale and strong bonds prevent

thermal fluctuations from generating crystal defects even at high temperatures [42].

Furthermore, graphene’s electronic properties have been studied and found to have

ballistic charge transport with a pronounced ambipolar electric field effect (Fig. 1-2).
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Figure 1-1: Allotropes of carbon built from (a) graphene are (b) graphite, (c) carbon
nanotubes, and (d) fullerene [55].

This means, it has been observed that because it’s an zero-gap semiconductor (semi-

metal), the amount of its charge carriers, be it electrons or holes, may be tuned by

exposure of a gate voltage in concentrations as high as 1013 cm�2 and their mobili-

ties can exceed 15,000 cm2V�1s�1 even under ambient conditions [51, 52, 50]. These

values are much higher than any typical semiconductor in use today, see Table 1.1.

Graphene’s unusual properties are explained using the tight binding approach, after

which it was discovered that their electrons act like massless Dirac fermions around

the Dirac points, with a Fermi velocity (vF ) of about 3
1000

c. A visual aid of the latest

statement can be seen in Figure 1-3, in which the linear electron dispersion that con-

forms the Dirac point is described by the Dirac equation for particles with zero mass

and with the Fermi velocity of the particle substituting the speed of light. The linear

energy dispersion is given by ±vF h̄k, where k is the Bloch wave vector.

Table 1.1: Electronic properties for bulk materials [46] and graphene [5] at 300 K.

Property Si Ge GaAs Graphene on SiO2

substrate
Electron Mobility
[cm2V�1s�1] 1,417 3,900 8,800 40,000

Hole Mobility
[cm2V�1s�1] 471 1,900 400 40,000

Carrier Concentration 1.45x1010 cm�3 2.4x1013 cm�3 1.79x106 cm�3 1012 cm�2
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Figure 1-2: Ambipolar electric field effect in a graphene monolayer. The accompa-
nying images indicate the changes made in graphene’s band structure by varying the
gate voltage (Vg) and relating it to its resistivity ⇢ indicating an increase of charge
carriers with its exposure to an electrical potential.

Figure 1-3: Graphene’s electronic structure as obtained using tight binding. a)
Graphene is composed of two sublattices, A and B. b) Its band structure is comprised
of two inequivalent Dirac points, K and K 0, where the conduction and valence bands
meet. K and K 0 are different due to the sublattices, A and B. c) The inequivalent
Dirac points meet at the edges of the first Brillouin zone.
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Figure 1-4: Example of a stacked van der Waals heterostructure comprised of
graphene and hexagonal boron nitride monolayers, imperfectly layered so that they
form Moiré patterns.

As attractive as graphene’s properties may be for the electronic industry, its most

apparent drawback is its lack of an intrinsic energy gap between the occupied ⇡ states

and ⇡⇤ states, making it impossible for its inclusion in the construction of electronic

logic components. Thus, interest has poured over to other 2D monolayer crystals,

some known as van der Waals materials, which may also be mechanically exfoliated

from their bulk counterparts and whose electronic properties are also modelled by

massless Dirac fermions. Examples of layered van der Waals materials are graphene,

hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMD). Ad-

ditionally, the previously mentioned materials may also be stacked accordingly to

produce heterogeneous van der Waals structures, customizing its electronic proper-

ties as a function of the type and number of layers, as well as, their relative phase

to each other (Fig. 1-4). Other low dimensional materials may be obtained through

chemical vapour deposition (CVD) and/or epitaxy growth upon specific substrates,

usually metals. For example, the remaining of group IV elemental materials, silicene,

germanene and stanene. From these, silicene is considered of greatest interest due

to silicon’s role in the fabrication of current electronic components, hence a break-

through in computation capabilities may be just around the corner if the current Si

based microporcessors’ production lines can be adapted to incorporate silicene into

their workings. Thus, knowledge of silicon’s 2D analogue electronic properties is of

both fundamental and applied interest.
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1.3 Silicene

Although silicene was first theoretically predicted to be stable in nature by using first-

principles calculations such as density functional theory (DFT) and the tight-binding

model [72, 2], it was not until the actual synthesis of silicene [65, 54, 14] that the

intense research of this material started due to its similarities with graphene. Silicene

is composed of Si atoms with a honeycomb structure like graphene, but with a buckled

hexagonal layered structure composed of two sublattices which are on different planes

(Fig. 1-5). As in graphene, the valence and conduction bands of silicene meet at two

inequivalent Dirac points (K and K’ points) at the Fermi level [2]. This peculiar band

structure gives rise to exceptionally high electrical and thermal conductivities [80]

similar to those of graphene, and also to many other interesting properties, such as

a quantum spin Hall effect due to its additional spin-orbit coupling [37] compared to

graphene. However, in spite of there existing already conclusive experimental evidence

for silicene formation upon different types of substrates [11, 14, 62], the inherent

difficulty of its synthesis has imposed constraints in obtaining free-standing silicene.

Consequently, hindering the understanding of the influences of doping, external fields,

defects, and magnetic moments on the properties of this material, limiting silicene’s

exploitation in nanoelectronics and high-efficiency thermoelectric materials [25, 73,

80]. Another roadblock from preventing further study of silicene is the fact that it

is highly reactive under normal atmospheric conditions. Where the sp2 � sp3 bonds

in silicene break to form bonds with O2 in the environment, thereby, providing it

necessary to find non-reactive encapsulation materials and methods for silicene to

be probed experimentally. Although, possible solutions have been reported in the

following references [74, 43], encapsulation of the silicene was done with aluminum

(III) oxide, and a field effect transistor was later produced with such technics [74],

detecting a carrier mobility ⇠10 cm2V�1s�1 in their devices. The latter low carrier

mobility probably resulting from the coupling of strong out-of-plane acoustic (ZA)

phonons, due to silicene’s intrinsic buckled structure, with its substrate.

Currently, most of the research on silicene has been done using theoretical and
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computational approaches, such as tight-binding models [20], density functional the-

ory (DFT) [19], and diffusion quantum Monte Carlo (DQMC) calculations [17, 77].

Such approaches have indeed resulted in a better understanding of the effects of rel-

atively high spin-orbit coupling [38], increased interlayer binding energy in layered

materials, the presence of the quantum spin Hall effect [37], and the possibility of

exploring topological phases of silicene under an external field perpendicular to the

silicene layers [49]. However, most of the theoretical findings reported for silicene have

been done using an inadequate DFT level of theory with the generalized gradient ap-

proximation (GGA) functionals, local density approximation (LDA) functionals, and

plane waves bases, none of which fully account for electron correlations. Therefore,

only calculational approaches that are based on multireference wave functions are

capable of predicting the peculiarities of the silicene electronic behavior, such as

in large conjugated systems which potentially possess multi-configurational ground

states [30, 61, 76]. Thus, the most used method to at least treat static correlation is

known as a complete active space self-consistent field (CASSCF) approach[64]. But

the CASSCF method is limited by the size of the system due to the huge number of

available configurations that can be generated in the active space of the system. The

latter issue is why using single-determinant approaches with an unrestricted formal-

ism for the wave function construction turn out to be an alternative approach that is

useful for large systems.

Figure 1-5: A view of silicene (blue atoms) with hydrogen passivated edges (white
atoms).

19



The application of single-determinant methods along with an unrestricted formal-

ism for the wave function allows us to study systems with hS2i � 0, but the results

are often qualitatively poor, and the wave function is no longer an eigenfunction of

the spin operator Ŝ2. Therefore the solutions thus obtained are spin-mixed, which is

also known as spin-contamination. In many cases the spin contamination from higher

spin states is quite negligible [67] but for systems with unpaired electrons, such as

graphene and silicene, the spin contamination could be quite significant [23]. Hence,

we wished to study silicene’s electronic properties in a systematic manner to probe

its multiconfigurational character and to determine its multiplicity in the ground

state, because systems with S = 1 can be potentially applied to spintronics [36].

Consequently, the problem of determining whether or not silicene possesses a multi-

configurational character and how to address electron correlation within this material

should be considered. Thus, the goal of this thesis is to explore the previously stated

observations of the ground state’s multiplicity and give additional insight to silicon’s

2D structures, i.e. analysis of the Raman spectra for relevant sizes with the objective

in mind of aiding experimenters that wish to explore our results by synthezising these

systems.

The following chapter considers the theoretical background underlying this thesis.
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Chapter 2

Electronic Structure

Since the conception of quantum mechanics by Erwin Schrödinger and Werner Heisen-

berg in the 1920’s, leading theorists have pushed the limits of its groundwork to an

unimaginable series of systems. In the context of this work, we will focus only on

solutions and simplifications of Schrödinger’s time independent equation 2.1 (SE),

applied to non-relativistic many body systems.

Ĥ  (r1, r2, . . . rN ,R1,R2, . . .RM) = E  (r1, r2, . . . rN ,R1,R2, . . .RM) , (2.1)

where ri and Rk are the spatial coordinates for the i-th electron and k-th nucleus,

respectively, and E is the energy of the system with N electrons and M nuclei that

is described by the Hamiltonian, Ĥ. For most molecules, the following hamiltonian is

sufficient for their study, in which we have used atomic units to simplify notation.

Ĥ = �1

2

NX

i

r2
i �

1

2

MX

a

1

Ma
r2

i +
NX

j<i

1

|ri � rj|
�

MX

a,i

Za

|ri �Ra|
+

MX

b<a

ZaZb

|Ra �Rb|

= T̂e + T̂nuc + V̂e,e + V̂ext + V̂nuc,nuc

(2.2)

Here, Ma is the mass of nucleus a and Za is the atomic number of the same nucleus.

Also, T̂e and T̂nuc are respectively the electron and nuclei kinetic operators, whereas,

V̂e,e, V̂e,nuc, and V̂nuc,nuc stand for the electron-electron repulsion, the electron-nucleus
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attraction, and the repulsion between nuclei, respectively.

Using 2.1 and solving for  by plugging in the above hamiltonian 2.2, would let

us obtain all the system’s information in the form of the wave function. The only

thing left to do, would be to squeeze out its contents through operations concerning

the appropriate hermitian operators. However, the non relativistic time independent

Schrödinger equation almost never be solved analytically, especially for molecules that

are made up of more than two atoms. This limitation is due to the coupling of various

coordinates of the different bodies that conform the molecule, making it impossible

to separate them during integration. Thus, we try to find acceptable approximations

that would make the equations easier to solve.

One approximation consists of splitting the wave function into two parts, one of

which contains all there is to know about the electrons and the other about the nuclei,

2.3. The separation of these coordinate spaces is a product of the Born-Oppenheimer

approximation, principally justified by how greater the mass of the proton is that of

the electron’s. This is the subject of the next section.

 (r1, r2, . . . rN ,R1,R2, . . .RM) = �elec (r1, r2, . . . rN ;R1,R2, . . .RM) �nuc (R1,R2, . . .RM)

(2.3)

Additionally, for more reference and follow through on most of this chapter’s content,

please revise the following references of great books, [24, 71, 28], which served as great

influence for most of this chapter’s content.

2.1 The Born–Oppenheimer Approximation

As already mentioned, the Born–Oppenheimer approximation consists of applying

the separation of variables method to the original wave function  . Dividing it into

parts that individually describe phenomena attributed to the electrons and nulcei.

This is generally a good approximation because the smallest nucleus, a proton, is

about 2,000 times heavier than the electron. So it can be considered, as a first

approximation, that the electrons move in a field of fixed protons. Therefore, parts
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of the hamiltonian containing information of the nuclei become parameters fixed by

the unchanging nuclei coordinates. So forth, V̂nuc,nuc becomes a fixed value and any

constant summed to an eigenvalue problem makes no difference. Hence, we are only

left with following hamiltonian,

Ĥelec = �1

2

NX

i

r2
i +

NX

j<i

1

|ri � rj|
�

MX

a,i

Za

|ri �Ra|
, (2.4)

in which, the remaining terms describe only the motion of N electrons in a field of M

nuclei. That is why it is called the electronic hamiltonian, Ĥelec. Necessarily, equation

2.1 must also change, albeit subtly, to reflect the fact that we are only dealing with

the electrons,

Ĥelec �elec = Eelec �elec (2.5)

Wherein �elec = �(r1, r2, . . . , rN ;R1,R2, . . .RM), i.e. the electronic wave function

is implicitly dependent on the nuclear coordinates as a parameter. This is what is

meant with the (r1, r2, . . . , rN ;R1,R2, . . . ,RM) notation. As a result, the electronic

energy, Eelec is also parametrically dependent on the nuclear coordinates, and the

total energy is given by

Etot = Eelec (R1,R2, . . . ,RM) +
MX

b<a

ZaZb

|Ra �Rb|
. (2.6)

The electronic structure of a system of many bodies, in the case of this study, sil-

icene nanoribbons, could be described by solving equations 2.5 and 2.6. Their solu-

tions would give us an approximation to the ground state energy and its respective

electronic wave function by variation of two parameters, albeit separately, nuclear

coordinates and the atomic functions’ coefficients. The latter is a consequence of

the variational principle. It should be emphasized that the total energy, Etot, lacks

any contribution of the nuclear kinetic energy, which can only be added by using the

nuclear wave function.

Upon completing this task, the nuclear wave function can now be obtained by
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considering that a sufficient approximation to its Hamiltonian is taking the expected

value of the electronic Hamiltonian and summing the remaining nuclear contributions.

The fact that the electrons are moving at much higher speeds than the nuclei, makes

it reasonable to take their average and sum their value to the remaining terms, to

obtain.

Ĥnuc = �1

2

MX

a

1

Ma
r2

i + Eelec (R1,R2, . . . ,RM) +
MX

b<a

ZaZb

|Ra �Rb|

= �1

2

MX

a

1

Ma
r2

i + Etot

(2.7)

Additionally,

Ĥnuc �nuc = EBO �nuc,

�nuc = � (R1,R2, . . .RM) .
(2.8)

In which EBO is the Born–Oppenheimer approximate of the energy in equation 2.1.

Using equations 2.7 and 2.8, one can obtain the vibrational, rotational and transla-

tional energies of a molecule. Hence, giving us the possibility to calculate the infrared

(IR) and Raman spectra of any molecule that can be approximated with these con-

siderations. Thus cation must be exercised when these approximations are expected

or known to fail; when two electronic states are almost degenerate, and in processes

where the molecule is greatly photoexcited1.

2.2 The Hartree-Fock Method

The Born–Oppenheimer approximation is fundamental to all of quantum chemistry,

for it is the bedrock of all first principles calculations. Now what is left is to find

acceptable wave functions for both electrons and nuclei, to which we can start look-

ing for by using the fact that we are dealing with fermions. This implies, their wave
1Because we will only deal with the electronic aspect of equation 2.1, we will drop the elec labels

of equation 2.5 and only specify when we are dealing with Hamiltonians different than the electronic
one.
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functions must be antisymmetric with respect to interchanging spatial and spin co-

ordinates of a pair of them. These coordinates are the spatial and spin labels that

describe an electron in a specific system. The spin label acts as a means of marking

an electron with either up, ↵(s), or down, �(s) spin. The variable s representing the

spin of an electron.

The first approximation was done by using determinants of matrices whose com-

ponents were single electron spin orbitals, � (x), i.e. a function that describes an

electrons’ spatial and spin orientation 2.9.

� (x) = � (r) � (s) , � (s) = {↵(s), �(s)} (2.9)

These antisymmetric entities are called Slater determinants, �SD,

� ⇡ �SD =
1p
N!

Det (�1(x1) �2(x2) · · ·�N(xN)) . (2.10)

Orthonormality of the spin orbitals is also maintained, thus, becoming a constraint

for the selection of the set of admissible functions. Moreover, the Slater determinant

is an approximation to the electronic wave function, �elec, now that it considers a set

of non-interacting but spin correlated electrons as the many body wave function, with

the necessary antisymmetric property. Upon following this consideration, we explore

the expectation value of the electronic hamiltonian with N electrons and M nuclei.

EHF =

Z
�†

SD Ĥ �SD dx1 dx2 . . . dxN

=
NX

i

Z
�⇤
i (x1)

 
�1

2
r2

i �
MX

a

Za

|r1 �Ra|

!
�i(x1) dx1

+
1

2

NX

i,j

ZZ ✓
|�⇤

i (x1)|2
1

|r1 � r2|
|�j(x2)|2 � �⇤

i (x1)�
⇤
j(x2)

1

|r1 � r2|
�j(x1)�i(x2)

◆
dx1 dx2

=
NX

i

Z
hi dx1 +

1

2

NX

i,j

ZZ
(Jij �Kij) dx1 dx2

(2.11)
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The expectation value of the Hamiltonian is made up of one- and two- particle inte-

grals which are given by hi, Jij, and Kij. The one-particle integral, hi(x1), contains

the electronic kinetic energy, as well as its interaction with all nuclei. On the other

hand, Jij is the Coulombic repulsion expression between two electrons described by

�i and �j, while Kij is the exchange operator, which does not have a classical ana-

logue. The latter energy contribution arises from the fact that electrons are identical

particles, consequently, limiting our knowledge on which electron is exactly where

and is in which spin orbital. But there is a constraint for participating exchange elec-

trons, the electrons of the same spin are the only ones that contribute to Kij(x1,x2)

because of the orthogonality of the spin functions and the fact that the exchange

operator does not depend on the spin coordinates. Moreover, this term stabilizes the

electron repulsion, in part contributing to lowering the energy upon the bonding of

different species, making it essential for the understanding of chemical bonding. The

exchange contribution is thus a consequence of the asymmetry of the wave functions

for fermions and a lasting reminder of Pauli’s wonderful but mysterious principle. It

should also be emphasized, the possibility of artificial contributions of the two-particle

integrals known as self-interaction upon practice of the method. This is brought on by

the fact that we are summing with respect to the spin orbitals and not electrons, the

term i = j is possible and non-zero, which can be troublesome with other calculation

methods. But in the case of the Hartree-Fock (HF) approximation, Jij(x1,x2) and

Kij(x1,x2) cancel themselves out when i = j.

Additionally, the Jij(x1,x2) and Kij(x1,x2) integrals are reduced to mean field

functions by approximating that each electron interacts with a field created by all

other electrons which are also assumed to be static, thus, simplifying the the N-1

interactions an electron experiences to just a pairwise one. The equations are of the

following form:

Ĵj �i(x1) =

Z
|�j(x2)|2

1

|r1 � r2|
dx2�i(x1),

K̂j �i(x1) =

Z
�j(x2)

⇤ 1

|r1 � r2|
�i(x2)dx2�j(x1).

(2.12)
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It can be observed that the weighted value of the approximated Coulomb repulsion is

of local character, for its value is entirely dependent on the value of �i(x1), as opposed

to K̂j �i(x1) which depends on the value of �i in all x2 space.

Furthermore, the minimization of the HF energy, EHF , from equation 2.11 is

done by varying the spin orbitals, along with considering the constraint that the

spin orbitals remain orthonormal. This originates the HF equations, including the

introduction of the orbital energies, ✏i, as lagrangian multipliers.

f̂i �i = ✏i �i, i = 1, 2, . . . , N.

f̂i = �1

2
r2

i �
MX

a

Za

|ri �Ra|
+Va

(2.13)

The Fock operator, f̂ , contains all relevant information for the calculation of the

approximated orbital energies, while being an effective one-electron operator. Mean-

while, the HF potential, VHF , contains the simplified versions of the two-electron

repulsion operators, Ĵj, and K̂j(x1),

VHF (x1) =
NX

j

⇣
Ĵj(x1)� K̂j(x1)

⌘
. (2.14)

Thus, the above equations average the repulsive potential experienced by the i-th

electron due to the remaining N � 1 electrons. Consequently overestimating one of

the aspects of the hamiltonian, the Coulombic electron repulsion. A way to improve

our results would be by inserting what is called electron correlation in which the

shortcomings of the HF method are taken into account, such as the instantaneous

repulsion of the electrons, dynamical correlation, and the fact that the ground state

of the molecule is not always well described by one Slater determinant but by other

configurations, which include excited ones, static correlation.

EHF
C = E0 � EHF (2.15)

Although, the HF method gives us the energetically best single Slater determinant
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with the provided spin orbitals, it is still not enough to give the real ground state

energy, E0. The error of the calculated energy given by the difference of the true

interacting system with the HF energy is called the correlation energy and given by

equation 2.15. A solution for static correlation would be the implementation of more

Slater determinants that represent the excited states of the system by replacing a

column of the HF function by a virtual orbital. This method of calculation is called

configuration interaction (CI) and will be addressed in the following sections.

2.3 Density Functional Theory

Density functional theory (DFT) has been highly exploited in the past twenty years

due to its versatility to tackle all sort of physical systems, including solids, biological

processes, and more. Its flexibility is achieved from using the electron density, ⇢(r),

which is a function of only 3 variables, unlike the 4N variables that represent the

spatial and spin coordinates of N electrons for the wave function (without considering

the electrons’ spin).

⇢(r) =

Z
· · ·
Z
 (x,x2, . . . ,xN)

⇤ (x,x2, . . . ,xN) ds dx2 . . . dxN

N =

Z
⇢(r) dr

(2.16)

This highly reduces the amount of computation for the calculation of the ground state

function, although V̂e,e is still to be considered. Eventually, the latter is approximated

by a combination of physical considerations that provide quantitively good results, but

improvements are still much needed to find a universal exchange-correlation functional

capable of correctly treating any type of molecular system. Still, DFT comes from

an exact formulation and must not be confused as being a semi-empirical method for

its foundations are rigorously proven; although in practice, it may very well be!

Ultimately, DFT may be seen as a reformulation of quantum mechanics, with the

electron density, ⇢(r), replacing the coveted wave function,  (r), obtained from equa-

tion 2.1. But as can be seen in the following diagrams, both equation are connected
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in an intimate manner, as one can be obtained from the other.

Vext(r)
SE
=)  (x,x2, . . . ,xN)

hAi 
==) observables. (2.17)

Whereas, the DFT formulation is somewhat reversed.

⇢(r) =) Vext(r) =) Ĥ =)  (x,x2, . . . ,xN) (2.18)

The above procedure was first rigorously established by Hohenberg and Kohn (HK)

in 1964 [22], both of which are DFT’s founding fathers, and whose theorems will be

further discussed in subsequent sections.

Before moving on, we wish to give a rather non rigorous definition of what a

functional is, especially now that we’re dealing with a theory that extensively uses

them. A functional is nothing more than a transformation that goes from a function

to a scalar. For example, a defined integral is a functional for any well defined function

in the (a, b) interval, like F [f(x)] =
R b

a f(x) dx, since it connects the function f(x) in

the interval (a,b) to a scalar. Where the usual notation of a functional is determined

much like a function but with the dependent function variable in square brackets,

as written in the past example. Thus it can be observed, having knowledge of the

variational principle in quantum mechanics, that the energy of a molecular system is

a functional of the wave function, E[ ].

2.3.1 Hohenberg–Kohn Theorem

In 1964, an article written by HK [22] laid the foundations of DFT, by proving in

a rigorous manner the possibility of replacing the wave function with the electron

density. Therein, it is proven that the ground state electron density contains all

of the system’s information and it is constructed by anti-symmetric wave functions.

Moreover, the article proves the following two theorems about ⇢(r) and its relation

to the energy functional, expectation value of the Hamiltonian, and to Schrödinger’s

ground state wave function for non degenerate systems. Although, M. Levy [34] and
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E. Lieb [35] afterwards, independently, generalized the HK theorems to degenerate

systems.

1st HK theorem: For any system of interacting particles in an external potential

Vext(r), the ground state density, ⇢0, can also determine the potential up to an additive

constant. As a consequence, ⇢0 not only determines  0 but also the Hamiltonian and

thus, all excited states,  k(x1,x2, . . . ,xN) =  k[⇢0] The ground state many body wave

function  0(x1,x2, . . . ,xN) is a functional of the ground state electron density ⇢0(r).

 0(x1,x2, . . . ,xN) =  0[⇢0(r)] (2.19)

But any observable, O =
D
Ô
E
, is a functional of  0(x1,x2, . . . ,xN) , thus O[ 0(x1,x2, . . . ,xN)] =

O[⇢0(r)].

2nd HK theorem: Now that any observable can be obtained using the electron

density, including the molecular energy, the variational principle still holds, but now

is done by minimizing the energy functional by varying ⇢0(r),

E0 = E[⇢0(r)]  E[⇢(r)]

E[⇢(r)] = min
 !⇢

(T + Ve,e +Vext)
(2.20)

So, if the energy is evaluated with a electron density different from the ground state

one, the energy would be greater than E0. Therefore, these two theorems give us the

necessary rigour to change from the wave function to the electron density, for the

electron density is unique for each V̂ext, and minimizes the energy. Additionally, the

energy functional is also given as

E[⇢(r)] = min
 !⇢

(T + Vext + Ve,e)

= T[⇢] + Ve,e[⇢] + Vext[⇢] = F[⇢] + Vext[⇢]

(2.21)

In which T [⇢] and Ve,e[⇢] are the universal operators for they are always the same for

any molecular Hamiltonian, whereas Vext[⇢] defines the system that is being studied,

so it is known once V̂ext(r) is defined.
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2.3.2 Kohn-Sham Method

Although the HK theorems give rise to using the electron density as a means to study

many body systems, reducing the complexity of the problem of 4N variables to only

3, it did not provide a means on how to implement this in a practical manner. Not

until the workings of Kohn and Sham [29]. Taking a route similar to what was done

in the HF approximations, they introduced the Kohn-Sham (KS) orbitals, �KS, which

are functions that are equivalent to spin orbitals, �i, that are used to build Slater

determinants but whose absolute square sum gives ⇢, as well as to provide a way to

approximate the universal functionals in the following manner.

⇢(r) =
NX

i

|�i,KS|2

T ⇡ TS[⇢] =
D
T̂
E

�KS

Ve,e ⇡ J[⇢] =
1

2

Z
⇢(r1)⇢(r2)

|r1 � r2|
dr1 dr2

(2.22)

Where TS is the kinetic energy of non interacting electrons and J is the HF formulation

of the classical electron-electron repulsion. Thereby, the energy functional now has

the following structure.

E[⇢] = min
 !⇢

(T + Vext + Ve,e) = TS[⇢] + J[⇢] + Vext[⇢] + Exc[⇢]

Exc[⇢] = (T[⇢]� TS[⇢]) + (Ve,e[⇢]� J[⇢])

(2.23)

In which the exchange-correlation energy functional, Exc, has been introduced and

contains the missing exact contributions of the kinetic energy of interacting electrons,

as well as the exchange and correlation contributions of the interaction between elec-

trons. So if we were to know the explicit form of Exc or at least have a very good

approximation of it, we would be able to calculate near to exact results of any many

body system within the confines of the BO approximation. Unfortunately, we simply

have not been able to achieve something similar to a universal Exc, instead there exist

many functionals that are proven, in comparison with experimental data or exact so-
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lutions, to obtain good results for specific subsets of molecular systems. Other ways

have been to theoretically obtain them by physical approximations.

Finally, writing the energy functional 2.23 with the non-interacting orbitals and

using the variational principle, constrained with the conservation of the total number

of electrons, one obtains the KS equations that resemble the HF ones but with a local

exchange-correlation potential, V̂xc(r), replacing the non-local exchange potential.

� 1

2
r2�j(r) + V̂ext�j(r) +

Z
⇢(r0)�j(r)

|r� r

0| dr0 + V̂xc(r)�(r)j = ✏j�j(r)

V̂xc(r) =
�Exc[⇢]

�⇢

(2.24)

As a reminder, the local exchange-correlation potential contains contributions from

both the real kinetic energy of interacting electrons and that of exchange and cor-

relation between electrons. It is exact if and only if Exc[⇢] is exact, but as stated

beforehand, it is currently unknown. Additionally, although the orbitals are made

from a Slater determinant, having exact knowledge of the exchange-correlation en-

ergy functional would compensate and make irrelevant the shortcomings of the mono-

configurational approach2 made during the construction of the KS orbitals. Thus,

good approximations of Exc[⇢] are crucial for successful results.

2.3.3 Exchange–Correlation Functionals

Since the publication of the KS theorems, there have been many suggestions and

approximations made for the exchange-correlation energy functional, all of which can

more or less be classified into four groups or approaches; local density approximation

(LDA), generalized gradient approximation (GGA), meta-GGA, and hyper-GGA or

hybrid functionals. LDA was the first approximation to Exc, and still used to this day.

It is based on the exact kinetic and exchange energy of a non-interacting homogeneous

electron gas, which was first studied by Thomas and Fermi [75, 12] and later expanded

upon by Dirac [8] to include a local exchange energy contribution. Unexpectedly,

2This is true if and only if, the first excited states are sufficiently high in energy as to be unac-
cessible and therefore have a small contribution to the overall electronic structure
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this approach reliably calculates molecular geometries, and vibrational frequencies

for many systems, mostly in part to (i) a fortunate canceling of errors between the

exchange and correlation energies and (ii) a reasonable description of the spherically

averaged exchange correlation hole. The exchange correlation hole may be thought

as the space, r1, in which an electron burrows itself reducing the probability of any

other electron occupying any space around r1.

An improvement upon LDA functionals, GGA functionals are approximations

based on expanding Exc[⇢] in a Taylor series, taking LDA as the zeroth term and

usually truncating the series on its first term. The exchange correlation energy now

becomes a functional dependent on the electron density and its gradient, Exc[⇢,r⇢].

This increment of complexity gives way of introducing a degree of experimental pa-

rameters to some of its functionals (HTCH[21], BLYP[32]) although it is not totally

necessary (PBE[56]). The latter sort of functionals are commonly known as pure

functionals. Still the shortcomings of these last two approaches greatly affect their

utility, both LDA and GGA functionals overestimate the magnitude of the exchange

energy due to their locality, thus providing a path for improvement for future approx-

imations.

Along the same lines of the GGA, meta-GGA functionals include dependency

on both, electron density and its gradient, but betters the former approximation by

including contributions from variations of the non-interacting electron kinetic energy

⌧ (r),

⌧ (r) =
1

2

occX

i

|r�i,KS (r)|2 . (2.25)

Thereby ⌧ is assessed by summing individually the non-interacting kinetic energy of

the occupied Kohn-Sham orbitals. Whereby |Ex[⇢,r⇢, ⌧ ]| is lowered in comparison

with the previously stated methods, LDA and GGA.

On the other hand, hybrid functionals are characterized to mix the exact exchange

contribution from the HF approximation with other types of functionals, regardless

if they are GGA functionals or LDA functionals, thereby decreasing the |Exc|. These

functionals are also known to include some experimental parameters obtained by fit-
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ting observed physical chemical values, e.g. electron affinities, ionization potentials,

atomization energies, and total atomic energies for small molecules. Hybrid function-

als usually give excellent results for many types of systems, one of the most important

of such functionals is B3LYP [26, 70] for it has turned out to be the work horse for

these type of functionals, useful for a myriad of systems. Although hybrid function-

als are usually the better choice for many types of molecular systems, they demand

much more computational processing compared wth the other functionals due to the

introduction of the exact exchange contribution.

2.4 Configuration Interaction

The HF method determines the lowest energy configuration of an atomic system,

with the given spin orbitals, such that it usually gives about 99% of the ground state

energy; still this accuracy is not enough to be able to discern important physical-

chemical properties such as bond and dissociations energies which usually have mag-

nitudes that are well less than 1% of the total energy of a molecule or chemical

system. As previously mentioned, one must thus adhere to finer methods that fix the

correlation inadequacies that are at the foundation of the HF method. A solution

would be to provide a better approximated wave function, one that includes differ-

ent configurations apart from the mono-configuration used in HF calculations. The

only reasonable additional configurations to add to a molecule’s wave function are

its excited states, examples of them from a singlet system can be observed in Figure

2-1. Normally, these excited states are of any sort, singly, doubly, triply, quadruply,

etc., and their determinants are referred to as Singles (S), Doubles (D), Triples (T),

Quadruples (Q), and so forth. Much like the influence a basis set has upon the qual-

ity of the molecular orbitals, the amount of excited states affects the quality of the

approximated many body wave function. Theoretically, if the trial wave function, �,

is given by the following linear combination of SD determinants,

� =
X

i=0

ai�i = a0�HF +
X

S

aS�S +
X

D

aD�D + . . . , (2.26)
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Figure 2-1: The excited configurations for a singlet molecule generated from the HF
ground state configuration.

then, it is said to be the real ground state wave function when the orbital base is

also complete, from which we would be able to obtain the exact energy given the BO

approximations. It should also be noted that what is being summed are all the pos-

sible S-type, D-type, T-type, etc., excited configurations weighted by their respective

coefficient ai. Equation 2.26 is the explicit wave function of the Configuration Inter-

action (CI) method. Where it is usually admitted that if |a0|2 � 0.70, it is sufficient

to use first principles calculations using mono-configurational methods, like DFT or

HF. The absolute square of the CI coefficients represent how much of the respective

configuration contributes to a molecule’s ground state character.

As it can be inferred, this method is intractable for systems of more than a few

atoms, thus, new approximations are needed for its usage in larger molecules now

that the variational principle is needed to determine thousands of weighting coeffi-

cients. As an example of the method’s intractability, if we were to set up a scenario

in which we distribute k alpha (k↵) and k beta (k�) electrons in 2k orbitals to see

how the number of Slater determinants (NDet) escalate by increasing the number of

orbitals by two in two we obtain those values in table 2.1, where we have assumed

k↵ = k� = k. Thus, NDet =
�
2k
k

��
2k
k

�
. So just by considering a case for when we place

the number of electrons of a small molecule like molecular oxygen (O2), 16 electrons,

that permeates our entire atmosphere, within the same number of orbitals. We ob-

serve that the number of possible determinants is in the 2 thousand millions mark,
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incredibly large for such a small but essential molecule on our planet. Consequently,

it is out of the question to study conjugated systems without further simplifying this

method. Typical ways of reducing the method’s complexity rely on truncating the

linear combinations to a certain batch of excited states, or by selecting configurations

that may be thought to sufficiently describe the molecular system or a property of

interest.

Table 2.1: Number of Slater determinants NDet per the ways 2k electrons may be
distributed in 2k orbitals.

2k NDet

2 4
4 36
6 400
8 4,900
10 63,504
12 853,776
14 11,778,624
16 165,636,900
18 2,363,904,400
20 34,134,779,536

2.5 Multi-Configurational Self Consistent Field

Unlike the way in which the spin orbitals are treated in CI calculations, they are

also optimized by the variation principle in multi-configurational self consistent field

(MCSCF) methods, 2.27. This makes this approximation much more restrictive with

respect to the size of the chemical compounds it can handle, also, unlike the CI

approach, complicating the minimization of its energy functional. The concerning

equations now being highly non-linear, thus necessitating the inclusion of an spin

orbital rotation operator, e�⌦̂ that conserves the symmetry constraints during the

non linear minimization procedure, such as well defined wave functions with honest
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spin quantum numbers.

� = e�⌦̂
X

i=0

ai�i

E[�] = min
⌦,a

 R
�†Ĥ� d⌧R
�†� d⌧

! (2.27)

Although limited, this method is also useful when mono-configurational methods

come up short, as well as treating open shell problems that do not include spin

contamination corrections. Therefore, this method improves upon the HF and DFT

methods by introducing a greater contribution of static correlation, whereupon hand

picked configurations that are believed to be the important ones are included, with

which the determinants are constructed. Overall, these methods are used for obtaining

qualitatively correct wave functions, with most of the static correlation included,

subsequently providing the correct spin-orbitals for further analysis of dynamical

correlation by additional methods.

2.5.1 Complete Active Space Self Consistent Field

As an MCSCF method and an approximation to the full CI method, complete active

space self consistent field (CASSCF) relies on a selection of available electrons (n)

and orbitals (m) with which all CI configurations are created, thus deemed as the

active space, whereas the inactive molecular orbitals are doubly or non occupied

(virtual orbitals) and left alone during the optimization of the CI coefficients and

spin orbitals. This method still needs HF as an initial guess to start the calculation

or it can also use outputs from other CASSCF calculations. That being said, the

final results given are the optimized CI coefficients and the ground state energy of

the molecule under study. A common notation is CASSCF(n,m), which indicates that

n electrons are distributed in all possible ways in m orbitals. A schematic example

of a CASSCF(8,8) active space can be found in Figure 2-2. In the case of taking all

electrons and orbitals of a molecule to be the active space, would only translate the

CASSCF method to the full CI method.
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Figure 2-2: Diagram representing a CASSCF-(8,8) calculation with its respective
active electrons and orbitals.

2.6 Restricted & Unrestricted Models

Up until now we have not talked about the type of molecular systems we have ad-

dressed in this but rather have kept it quite general with respect to the number of

electrons and nuclei in preceding sections. Now the task in hand is to explore how the

spin orbitals may be distributed in molecules and how they are dealt with, especially

with what happens when we do not deal with an even number of electrons. Which

cannot be represented by an square (NxN) matrix.

It is common to think that the way electrons are distributed in their molecular

orbitals is done so by filling them up such that two electrons occupy the same spatial

function, their spin configuration being what sets them apart. In other words, many

times it is supposed that if we have N molecular orbitals for a system of N electrons,

only the bottom half of the orbitals would become occupied, being representable by

an NxN matrix. This is what is known as a closed shell singlet or restricted model,

and is common for most molecular systems. There are others in which one or more

electrons can be unpaired in a molecule’s ground state, thus providing the need to

implement another approach now that there is a disparity between ↵(s) and �(s)

electrons. The unrestricted and open shell models provide a means of correcting

this issue by separating the electronic problem in two and treating individually the

electrons of different spin. Hence, they do not share the same external potential,

rather V↵
ext, and V�

ext, neither do they share the same spatial characteristics.
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Although it may seem as though we are now dealing with a multi determinant

method, the one determinant has only been divided into two contributions, much

like the way most matrices can be made symmetrical or anti-symmetrical. The unre-

stricted models also help with the inclusion of certain correlation by becoming contam-

inated with other configurations, but simultaneously deviate of the
D
Ŝ2
E
= S(S + 1)

values as it also encompasses configurations of higher spin multiplicity. The spin

contamination can be addressed using the following equation which considers non-

interacting electrons, much like in the case of DFT or HF spin orbitals, but in this

case is intended for the DFT KS orbitals [7],

D
Ŝ2
E

NI
= S(S + 1) +N� �

N↵X

i

N�X

j

|
Z
�↵,⇤i (r)��j (r) dr |2. (2.28)

Where NI stands for a non interacting system, and S = (N↵�N�)/2 is the net spin of

a molecular structure with Ni either being the number of spin up (↵) and spin down

(�) electrons. Here �↵i and ��j are the orbitals coming from the spin-unrestricted case

with spin up and down, respectively. Then, if the �↵i and ��j orbitals are identical

in the singlet (S = 0) ground state, there will be no spin contamination, and the

unrestricted wave function is identical to the restricted one. This equation also offers

a way to quantify the contribution of higher spin states to the
D
Ŝ2
E
, specifically for

DFT calculations, which will become of use during our discussion of the obtained

results of silicene nanoribbons.
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Chapter 3

Silicene Nanoribbons

In this thesis we report our findings of the electronic properties of silicene nanorib-

bons with hydrogen passivated edges denoted by H-SiNRs(nz, na), with nz and na

representing the zigzag and armchair directions (Fig. 3-1), respectively. For example,

H-SiNR(1,1) and H-SiNR(2,1) stand in for silicon structures analogous to benzene

and naphthalene, respectively. In order to verify the influence of the two parameters,

nz and na, in the the electronic properties of these systems, we increased their lengths

by one additional ring at a time. Furthermore, the need to terminate the dangling

edge bonds with hydrogen was brought on by the lack of convergence of these systems

and thus an indication of their chemical irrelevance; certainly due to the destabiliza-

tion provided by the excess of unpaired electrons in the system and by the increase

of the amount of permitted multiplicities in the system.

3.1 Computational Details

As mentioned in chapter 1, the need to consider the effect of electronic correlation of

the H-SiNRs was apparent, therefore, by using multi-configurational first principles

calculations, where CASSCF was employed, we were able to take static correlation

into account. Additionally, we chose the Beck 3-Parameter (exchange), Lee, Yang and
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Figure 3-1: Top (a) and side (b) views of the silicene structure H-SiNR(9,4), and (c)
the optimized geometry of an H-SiNR(8,8) structure, where the edges are passivated
with hydrogen in the DFT(B3LYP) level of calculation.
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Parr (B3LYP) functional1 with the correlation consistent polarized valence double

zeta (cc-pVDZ) basis pairing (B3LYP/cc-pvDZ) along with D3 dispersion correction

[18] which was applied to study H-SiNRs using TURBOMOLE V7.0 [1]. The basis

selection was due to its ability to account for some correlation energy of the valence

electrons in molecules, as well as not being too computationally demanding. Thus,

we performed geometrical optimizations of H-SiNRs and afterwards we analyzed the

triplet instability of the Kohn-Sham (KS) wave function. In this case, an instability

is the lowering of the molecule’s total energy by variation of the occupied molecular

orbitals that have subsequently been optimized to satisfy certain constraints, e.g.

spatially doubly degenerate spin orbitals as in closed shell calculations. The variation

of the occupied spin orbitals is done by replacing an occupied one with a virtual

one. This analysis was also done with TURBOMOLE V7.0 whose method divides

the energy variation with respect to the occupied orbitals into the following three

terms:

�E = �EN + �E1 + �E2 .

Where �EN denotes the variation of the electron kinetic and nuclear attraction ener-

gies, �E1 and �E2 collect the linear and quadratic terms of the variation of the electron

density, respectively, which emerge from the Coulomb and exchange-correlation con-

tributions to E. Upon a unitary transformation of the previous equation, �E is then

split into two matrices, A and B, that may have positive or negative eigenvalues for

the optimized spin orbitals under analysis. Consequently, if the matrices are only

comprised of positive eigenvalues, these orbitals provide the lowest expectation value

of the ground state Hamiltonian within the constraints considered. On the contrary,

a negative eigenvalue in either matrix, A or B, would indicate an instability related

to the symmetry constraints imposed from the onset of the calculation; a negative

eigenvalue in matrix A is known as the singlet instability and states that a decrease

in energy is possible by using complex spin orbitals but still maintaining doubly oc-

cupied orbitals, �↵ = ��. Whereas, a negative eigenvalue in matrix B is known as

1we chose to use this functional due to it outperforming the PBE and M026x functionals which
can be consulted in appendix A.
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the triplet instability and indicates that there exists a lower energy configuration of

the molecule by breaking the orbital degeneracy, �↵ 6= ��, and/or deeming its ground

state a triplet spin state. Thus, upon encountering the latter type of instability, we

removed the closed shell approach and employed the open-shell unrestricted broken

symmetry (UB) method to re-optimize the geometry of the singlet state in order to

find the correct total spin for the ground state. In addition, we used the CASSCF

method (as implemented in Gaussian09 [15]) with an active space of ten orbitals

and ten electrons to determine the multi-configurational character, and to determine

whether or not mono-referential wave functions are efficient to describe the H-SiNRs

thus obtained. MCSCF methods are computationally very demanding as stated in

chapter 2, so we maintained the same active space for all molecules, invariant of their

size. Lastly, from the optimized geometries, the non-resonance Raman spectra were

calculated for the singlet and triplet states of H-SiNRs, that can be used as a means

to detect these structures experimentally.

3.2 Results & Analysis2

We again mention some important features regarding spin contamination and electron

correlation while using the unrestricted formalism, to better understand the multi-

configurational character of the H-SiNRs(nz, na) structure. A spin-unrestricted wave

function for a given spin state can be written as a linear combination of the pure-spin

wave functions plus contributions from higher spin states, resulting in an expectation

value for the Ŝ2 operator that exceeds the exact S(S + 1) value, because the con-

taminants tend to have large values of S. In particular, spin contamination for any

single-determinant spin-unrestricted wave function can be evaluated using equation

2.28.

In Table 3.1, the computed relative energies for singlet and triplet state, and

their respective spin squared expectation values, hŜiNI , are shown. All values are

reported in kcal per mol for the calculated states, and the relative energies from Table

2This has already been reported in [53]
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Table 3.1: Relative energies in kcal/mol of the open shell triplet (S1-UB3LYP) and
the open shell singlet (S0-UB3LYP) states with respect to the restricted shell singlet
S0-RB3LYP. The corresponding hŜ2iNI expectation values are also shown for various
(nz, na) silicene ribbons. The subscript NI here denotes a non-interacting system.

H-SiNR(nz, na) N S1-UB3LYP
D
Ŝ2
E

NI
S0-UB3LYP

D
Ŝ2
E

NI
(1,1) 1 0 0 0 0
(2,1) 2 0 0 0 0
(3,1) 3 0 0 0 0
(4,1) 4 8.696 2.06 -0.182 0.47
(5,1) 5 4.579 2.07 -1.418 0.92
(6,1) 6 1.717 2.08 -3.103 1.23
(7,1) 7 -0.306 2.09 -4.910 1.50
(2,2) 4 0 0 0 0
(3,2) 6 0 0 0 0
(4,2) 8 4.899 2.12 -0.974 0.81
(5,2) 10 0.806 2.13 -3.067 1.20
(6,2) 12 -2.086 2.16 -5.451 1.54
(7,2) 14 -4.181 2.22 -7.854 1.85
(3,3) 9 8.517 2.10 0.000 0.30
(4,3) 12 1.598 2.12 -2.076 1.08
(5,3) 15 -3.015 2.15 -5.334 1.40
(6,3) 18 -5.914 2.17 -8.381 1.69
(7,3) 21 -7.636 2.19 -11.196 2.11
(4,4) 16 -0.368 2.16 -2.993 1.22
(4,5) 20 -2.164 2.19 -3.976 1.32
(4,6) 24 -13.423 2.22 -14.723 1.38
(4,7) 28 -4.799 2.25 -5.718 1.41
(4,8) 32 -5.793 2.28 -6.462 1.41
(4,9) 36 -11.663 2.31 -12.154 1.43
(5,4) 20 -5.253 2.19 -6.877 1.48
(6,4) 24 -8.093 2.22 -10.197 1.85
(7,4) 28 -9.564 2.27 -13.185 2.31
(7,6) 42 -12.480 3.31 -16.003 2.61
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3.1 are given with respect to their corresponding closed shell singlet state energy

(S0-RB3LYP). The systems in this table that only register zeros did not show a

triplet (S = 1) state instability in their closed shell state wave function and therefore

calculations using the UB3LYP method were not pursued. As seen from Table 3.1,

the energies for the open-shell species, (S0-UB3LYP) and (S1-UB3LYP), always are

lower than their corresponding RB3LYP energies for N � 15. Where N is the total

number of rings that comprise a system, (N = nz · na). This energy decrease arises

from from different causes, for instance, the use of different orbitals for each electron

allows the ↵ and � electrons to be more spatially separated on average than in a

RB3LYP wave function and introduces some correlation between orbitals of different

spin whence using unrestricted methods[27]. But in some cases, the mixing of higher

spin states usually causes the energy to increase and may destablize the molecule. So,

when electron correlation is included, the deviation of hŜ2i from S(S + 1) is simply

due to the mixing of higher spin states. Therefore, since UB3LYP introduces electron

correlation to a certain extent, the values of hŜ2i presented in Table 3.1 suggest the

presence of higher spin states. The stability of the H-SiNRs is examined by comparing

the energies of the singlet and triplet states. From the results thus obtained, we can

observe that the ground state is given by the singlet state for nz > na because of how

the energy difference between the two multiplets. Along the na direction, the energy

difference between the singlet and triplet states becomes closer to zero for na > nz.

The closeness in energy between S1-UB3LYP and S0-UB3LYP states could indicate a

transition for the ground state from a S0 to a S1 multiplet as na increases. However,

the energy differences for na > 6 between the single and triple states at the DFT level

of calculation are not decisive because the results are within the accuracy limits of

DFT.

Now we discuss the magnitude of the spin contamination hŜ2i for the singlet and

triplet states. Figures 3-2(a) and 3-2(b) illustrate the deviation of the average hŜ2i

values from their eigenvalues S(S+1) for S = 0 and S = 1 in the zigzag and armchair

directions, respectively. Figures 3-2(a) and 3-2(b) show that the hŜ2i values for the

singlet state is the most seriously contaminated in comparison with the triplet state,
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Figure 3-2: Deviation of hŜ2iNI values from S(S+1) as a function of the length of the
ribbon in the (a) zigzag nz and (b) armchair na direction, respectively. The plotted
results are taken from Table 3.1.

indicating that the wave functions for the singlet state were severely contaminated

with higher spin states. Furthermore, we observe that the spin contamination is

greater in the zigzag direction than in the armchair direction for the singlet state,

with a ratio of 9.3 ⇥ nz/na found from the two linear regressions. For the triplet

state, the spin contamination increases almost at the same rate for both the zigzag and

armchair directions with a ratio of 1.2⇥nz/na, indicating that the spin contamination

is smaller in the triplet state than in the singlet state.

It has been previously reported that similar sets of nanoribbons but of graphene

have shown antiferromagnetic ordering of the electrons spin on the zig-zag edges and

with an anti-ferromagnetic ordering between the two zig-zag edges[16, 48]. Conse-

quently, we calculated the spin density distribution of the singlet and triplet multiplets

of H-SiNR(4,7), H-SiNR(4,8) and H-SiNR(4,8), having in mind to observe whether
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Figure 3-3: Spin densities of the (column I) singlet and (column II) triplet of a) H-
SiNR(4,7), b) H-SiNR(4,8) and c) H-SiNR(4,9); the colored boxes indicate the (up
and down) spin directions of the respective spin densities.
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these ordered states are also present. According to figure 3-3, the previously stated

orderings do occur and interestingly, the triplet states present ferromagnetic ordering

between the edges, whereas, the singlet multiplets have the anti-ferromagnetic cou-

pling between both edges. The fact that ferromagnetic coupling is accesible without

an external perturbation is surprising, taking into account that a parallel electric field

with respect to na is necessary for the appearance of this ordering in graphene [68],

while we get it for free with these silicene structures. Upon further analysis of the three

singlet spin densities, it can be seen that there are more localized spin states toward

the middle of the molecules in comparison with the the other multiplicity. This inter-

esting feature must confer the singlet systems with greater exchange energy than the

triplet systems, thus stabilizing them. But it can readily be seen that as we increase

the distance between the edges, the intermediate localized spin states start to disap-

pear, therefore, indicating an interaction between the localized spin edge states. In

fact, this phenomena has already been reported and explained for graphene nanorib-

bons [16], where these localized spin states decay into the inner atoms by traveling

exclusively through the same type of sublattice atom it originated from. Moreover,

due to the way these states decay, if the system is composed by an anti-ferromagnetic

coupling between both zig-zag edges, constructive interference occurs on the atomic

sites with respect to the type of spin density and it is for this reason, in the case for

the singlet systems, there are more localized spin states in the middle region of our

silicene systems. On the other hand, the opposite (destructive interference) occurs

when a ferromagnetic ordering is present between the localized edges. But because

these states have finite decay lengths, we can prevent interference from happening

with a large enough separation between the edges, which can be inferred from the

spin densities in figure 3-3 and which would further influence the ground state of

these systems. A study concerning graphene nanoribbons, using the tight binding

approximation (a method that neglects electron-electron interactions), indicates that

by eliminating the aforementioned interactions by larger separations, the ferromag-

netic and anti-ferromagnetic molecules would become degenerate with respect to their

ground state energies [33], much like the transition we report here. Experimentally,
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it has been reported [40] that graphene nanoribbons under ambient conditions tran-

sition from anti-ferromagnetic to a ferromagnetic zig-zag edge coupling, along with

the closure of the nanoribbon’s band gap, for zig-zag edge separations of more than

7 nm. The latter may be due to the ambient temperature under which the measure-

ments were made and as we will see, are not reflected in our HOMO-LUMO (H-L)

gap values but this too may be a product of our 0 K calculations. Additionally, these

observed localized states are formed by the overlapping of the valence and conduction

band on the zig-zag edge states, as explained for graphene nanoribbons’, they are also

known as metallic edge states[16], and which gives rise to the anti-ferromagnetic or-

dering but of unequal magnitude, originating ferrimagnetic properties. Ferrimagnetic

states must not be confused with ferromagnetic states, both present an inherent non

zero magnetic field but much like the case in antiferromagnetic states, neighbouring

sites present antiparallel magnetic moments with one moment greater in magnitud

than the other (Fig.3-3). The relevancy of these type of materials is that they could

be used in magnetic memory devices because of the presence of states with vanish-

ing angular and magnetic moments below its Curie temperature [69]. Furthermore,

the excess of zig-zag edge states in these systems affects their overall stability, as

|E(H-SiNR(n,m))|>|E(H-SiNR(m,n))| for m > n. The latter is understood to be

a consequence of prohibiting aromatic states around the zig-zag edges, whereas, the

armchair edges do not originate such limitations.

Due to the detection of higher spin states with the single determinant spin un-

restricted wave functions (see Table 3.1), we use multi-referential first principles cal-

culations, in this case, using the CASSCF(10,10) method with a 6-31G(d) basis set.

We were thus able to obtain energies for the different optimized multiplets, along

with their respective configuration-interaction (CI) coefficients for different configu-

rations and consequently, we can obtain the most representative configurations, see

Table 3.2. When the number of total rings is greater than 16 (N>16), it appears that

subsequent H-SiNRs are equally likely to have both triplet and singlet ground states,

and this is represented physically by a very small energy difference between them.

However, when na > nz, we observe that the triplet state is more stable than the
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Table 3.2: Relative energies [kcal/mol] and greatest squared CI expansion coefficients
of dominant configurations obtained by the CASSCF(10,10) method for both the
S = 0 and S = 1 states. The relative energies were calculated with respect to the
singlet state reference.

H-SiNR(nz, na) N CI Relative
S = 0 S = 1 Energy(S=1)

(1,1) 1 0.78 0.56 33.019
(2,1) 2 0.65 0.49 24.304
(3,1) 3 0.67 0.65 16.151
(4,1) 4 0.60 0.63 9.474
(5,1) 5 0.47 0.61 4.430
(6,1) 6 0.48 0.65 3.438
(7,1) 7 0.54 0.65 5.447
(2,2) 4 0.74 0.58 24.742
(3,2) 6 0.71 0.68 20.088
(4,2) 8 0.64 0.69 5.362
(5,2) 10 0.66 0.72 9.956
(6,2) 12 0.40 0.70 0.547
(7,2) 14 0.42 0.73 0.455
(3,3) 9 0.71 0.68 20.066
(4,3) 12 0.67 0.70 2.261
(5,3) 15 0.36 0.67 0.277
(6,3) 18 0.38 0.72 0.235
(7,3) 21 0.33 0.65 0.138
(4,4) 16 0.71 0.70 6.567
(4,5) 20 0.39 0.74 0.099
(4,6) 24 0.36 0.69 0.134
(4,7) 28 0.35 0.69 -0.004
(4,8) 32 0.35 0.69 -0.008
(4,9) 36 0.38 0.75 -0.050
(5,4) 20 0.40 0.77 0.102
(6,4) 24 0.36 0.71 0.014
(7,4) 28 0.34 0.67 0.047
(7,6) 42 0.37 0.75 0.022
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singlet state as na increases, indicating that a transition from a singlet to a triplet

ground state is likely. For nz > na, the most stable state is the singlet state which

can also be observed by reviewing the relative energies contained in 3.1. It is well

known that as any chemical system’s multiplicity increases, its multi-configurational

character becomes less relevant up to the point of being successfully described by its

dominant configuration. Thus, for N > 12 the square of the CI expansion coefficient

for the S = 1 state exceeds 0.65, indicating the dominance of almost a single refer-

ence character for that multiplicity. In contrast, for the S = 0 state, the CI expansion

coefficient squared does not even exceed 0.5, suggesting a multi-referential character.

The dominant configurations then are 2222200000 and 2222↵↵0000 for the singlet

and triplet states, respectively. The dominant configurations represent the electron

distribution in the active orbitals and ↵ represents positive 1/2 spin state.

Using Raman spectroscopy, we try to understand the multi-configurational char-

acter of H-SiNRs(nz, na) along the zigzag and armchair directions and to provide a

means for their experimental detection. Consequently, we proceded to calculate their

non-resonant Raman spectrum, we carried out density functional calculations using

UB3LYP with Dunning’s correlation[18] consistent cc-pVDZ basis set. The interpre-

tation of the silicene Raman spectrum is based on previously reported experimental

data [81], along with the established analysis done for graphene, and using the calcu-

lated the phonon dispersion curve of silicene as presented in the Yan et al reference

[79]. Before continuing it is important to state what is it that Raman spectra probes

and its usefulness for the identification of materials.

Raman spectroscopy relies on the inelastic scattering of coherent light, such as

from a laser of defined wavelength, irradiated upon a material that is polarizable –

induction of an electric dipole or separation of electric density through interaction

of light – and which couples with its vibrational degrees of freedom. If the material

under study is not polarizable or if under the experimental ambient conditions the

the material’s dipole moment is already at an maximum before irradiance then no

spectra would be obtained. Thus Raman spectroscopy informs us of how deformable

the electron density of the atomic surface layers of a solid or of a thin film are with
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respect to irradiance and is usually very effective for covalent bonding structures.

Using the previous statements we produce a mathematical expression that quantifies

the Raman effect of any material by expanding the polariizability by a Taylor’s series.

↵ = ↵0 +
X

k

✓
@↵

@Qk

◆

0

Qk + · · ·

Where ↵ is the polarizability and Qi is the i-th vibrational mode of a compound.

Therefore, the Raman effect, in a very simplified explanation, is the projection of

how an atomic system’s polarizability varies with respect to its unperturbed geomet-

rical configuration upon its available vibrational modes. What is more, there is an

intimate relationship between the deformity of the electron clouds with the motion

of the nuclei, wherein quantum mechanics, the nuclei vibrational modes are reduced

to vibrational quanta known as phonons; there are principally two types of phonons,

acoustic and optical. Acoustic phonons are those in which the nuclei move in the

same direction of the propagation like sound waves, in other words, they move coher-

ently or in phase. Whereas, optical phonons are only present when there are two or

more atoms in a crystal array where adjacent nuclei move against each other (out of

phase) just like oppositely charged ions in a homogenous electric field. Between the

two types of phonons, optical phonons are of higher energy and can only be accessible

beyond a certain energetic threshold. Both modes are given by dispersion relations

which relates the phonon’s energy with its wavevector (k). Additionally, there are

also two subclassifications of phonons known as longitudinal and transversal modes,

respectively, and describe the relationship of the atom’s displacement with respect to

propagation of the perturbation.

The dispersion relation obtained for free-standing silicene indicates phononic be-

havior similar to that of graphene, where the present modes reflect the stretching

and bending of sp2 bonds and other vibrational phenomena associated to modes that

involve impurities and/or boundary bonds. Consequently, the following analysis con-

cerning our systems are done in comparison to graphene, as well as using typical

notation for graphene.
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Figure 3-4: Raman spectra (Color line) of different H-SiNRs obtained by the calcu-
lated vibrational spectrum convoluted with a uniform Gaussian broadening having a
10 cm�1 width. (a) Raman spectra for the triplet and singlet states of H-SiNR(5,4).
(b) Raman spectrum of H-SiNR(7,na) as a function of na. (c) Raman spectra of
H-SiNR(nz,4) as a function of nz. The inset graph shows an expansion of Fig. 3-4(c)
for the frequencies at around 200-400 cm�1.
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In Fig. 3-4(a), we show the Raman spectrum for the H-SiNR(5,4)-S0 and H-

SiNR(5,4)-S1 states, respectively. The Raman spectrum for the S0 state presents two

high intensity peaks around 563 cm�1 and 512 cm�1. The 563 cm�1 frequency is a

doubly degenerate Eg (G peak) mode, which corresponds to the in-plane transverse

optical (iTO) and the in-plane longitudinal optical (iLO) phonon branches at the

� point (center of the Brillouin zone, k = 0), which have also been reported to be

theoretically Raman active in silicene[79]. The G peak may also be seen as stretching

relative to the motion of the horizontal sp2 bonds, this peak is also present in bulk

silicon but is nearly lower by 50 cm�1. The other frequency 512 cm�1 represents the

A1 (D peak) mode which originates from the ribbons’ edges and can be visualized as

the breathing mode in which all atoms of a ring stretches radially outward with respect

to the center of the ring. However, in graphene nanoribbons, only armchair edges are

capable of elastically scattering charge carriers that give rise to the D peak [3]. The

presence of this peak in graphene can also correspond to the presence of defects in its

structure [59, 13]. Furthermore, we can notice a peak at around 665 cm�1 which is

due to a vibration of the Si-H (1.5 Å) bonds at the edge of the ribbons. The intensity

of this peak decreases with the width of the ribbon in the zigzag direction, which

can then be used to determine the H-SiNRs width experimentally. Additionally, we

observe other frequencies at around 200-400 cm�1 indicated in the inset graph of

Fig. 3-4(c) which will be explained later on. The Raman spectrum for the triplet

state (S1) simply shows an intensive peak at around 516 cm�1 which corresponds

to the symmetry-breaking D mode. In figure 3-4(b), we now explore the effect of

increasing the number of fused rings in the na direction. As na increases the ratio of

the relative intensity of the D and G peaks, I(D)/I(G), increases, indicating that for

na > nz the D peak will have a high intensity. In Fig. 3-4(c), we keep constant na

and change nz which shows that the intensity of the D peak decreases as nz increases.

However, the intensity of the G peak remains almost constant. The inset graph

in Fig. 3-4(c) shows the D1 � D5 peaks which are attributed to electron inter- or

intra-valley scattering at zigzag and armchair edges [59, 4] that involve two or more

scattering stages. Comparing Fig. 3-4(b) and 3-4(c), it is likely that the intensities of
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Figure 3-5: Raman spectra (Color line) of two H-SiNRs obtained by the calculated vi-
brational spectrum convoluted with a uniform Gaussian broadening having a 10 cm�1

width. (a) Raman spectra for the singlet states of H-SiNR(7,4) and H-SiNR(4,7). (b)
Raman spectrum of of the previous systems but in their triplet states.

these peaks are associated with the armchair edges. Consequently, it is expected that

more vibrational modes are induced for na > nz. In the low frequency regions of all

Raman spectra at around 20-100 cm�1, we find other active peaks which correspond

to the out-plane acoustic (ZA) phonons. This is because of the buckled structure

of silicene which breaks the reflection symmetry with respect to the atomic plane,

thus generating strong ZA phonons. The intensity of these peaks decrease with the

width of the ribbon in the zigzag direction while they remain somewhat constant for

a fixed nz as shown in Figs.3-4(b) and 3-4(c). Thus according to the previous results

shown in Tables 3.1 and 3.2, the triplet state can be observed for na > nz as shown

in the Raman spectra for H-SiNR(4,7) in Fig. 3-5. Which ultimately agrees with our

CASSCF calculations concerning these states previously mentioned. We also observe

that the extra peak in the triplet state of the H-SiNR(7,4) can be conferred to excited

states such as scattering between electrons and phonons, whereas these extra peaks
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Figure 3-6: H-L gap (Color line) in eV for H-SiNRs as a function of N.

are not seen in the H-SiNR(4,7)’s triplet state, confirming our reason to believe that

indeed its ground state is given by such multiplicity.

As previously mentioned, it is considerably difficult to synthesize silicene but

Zhuang et al [81] have reported the detection of the G peak of silicene on a Ag

substrate. They reported the G peak to be at 530 cm�1 and for their sample to

have bond lengths of 2.32��2.38, whereas, ours are within the interval 2.22��2.29

which are in the range of other publications concerning free standing silicene [54, 80].

Therefore, Zhuang et al have then concluded that there must be some electronic

coupling between silicene and its substrate to be able to explain the discrepancy

between their reported values and those in previous theoretical studies.

Another relevant property for the usage of this material in novel electronic devises

is its band gap, but due to the small sizes of our systems we can only talk about

its H-L gap. The corresponding calculated H-L energy gap has been plotted as a

function of the total number of fused rings (N) presented in Table 3.1 plus three
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new ones H-SiNR(7,7), H-SiNR(8,8), and H-SiNR(9,9), and the results are shown

in Fig. 3-6 . From Fig. 3-6, we note that the H-L energy gap decreases as N

increases more for the singlet state than for the triplet state. A similar trend has

been reported for carbon clusters with different diameters [39]. We can expect that

for N < 10, quantum confinement effects become important, so a large energy gap

may be expected. Additionally for N < 10, we observe that the ground state is simply

given by the singlet state. The H-L energy gaps for the triplet state are lower in energy

than for the singlet state, indicating that the H-SiNRs in the armchair direction shows

lower band gaps since the triplet state is more stable for na > nz. We can notice that

for N = 64, the H-L gaps for the singlet and triplet state become almost degenerate.

In the limit N ! 1 or for finite temperature calculations (as previously indicated for

room temperature graphene nanoribbons [40]), we would expect a dramatic reduction

of the HL band gap of silicene to 0 eV, and its electronic properties could become

similar to those of pure graphene such as a high mobile carrier density [73].

3.3 Conclusions

Using first-principles calculations, we showed that the singlet ground state of H-

SiNRbs becomes multi-configurational upon increasing the size of the system, meaning

that one determinant first principles methods may become inefficient for its descrip-

tion. Insight from the spin contamination provides good reason to believe that states

with higher multiplicity may become relevant as the width of the ribbon increases.

Depending on whether the ribbon edges are along armchair or zigzag directions, the

ground state can be a singlet state (antiferromagnetic) for nz > na, or a triplet state

(ferromagnetic) for na > nz. The calculated Raman spectra for the different multi-

plicities allows us to calculate a D peak which is given by the armchair edges with a

triplet ground state. Additionally, we show that the H-L gap decreases for both the

singlet and triplet states; however, in comparing the singlet and triplet cases contain-

ing the same number of Si and H atoms, the H-L gap decays faster for the singlet

state. The decay of the H-L gap in the singlet case shows that the H-L gap dismin-
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ishes for a very large N as expected. Therefore, we found that silicene itself could be

a material with a zero band gap for a very large system as previously reported, while

a finite system of silicene is expected to exhibit a non-zero H-L gap which depends

on the number of fused rings N and the topology of their edges, i.e. armchair versus

zigzag. Knowledge of the H-L gap and its tunability as a function of the nanoribbon

length would make silicene a good candidate for nanotechnology applications.

Furthermore, the calculation of the Raman spectra was done to bridge theory with

experiment, as well as a tool to identify the singlet and triplet states. What needs

to be done now in order to provide more theoretical evidence for the preference of

the triplet state when na > nz, is to calculate either H-SiNR(4,7) or H-SiNR(4,8)

energy using finite temperature dynamics at T > 300K and observe if the triplet

is still the ground state along with the closing of its H-L gap. Additionally, it is

important to see how these systems couple with a metallic substrate now that current

synthesis technics for low dimensional materials are usually done in this way. If latter

observations are researched, possibly more experimentalists would be interested on

taking up the endeavour of producing such nano-scaled systems.
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Appendix A

Why B3LYP?

A commonly overlooked and unfortunate problem of dealing with DFT calculations

is that not any functional yields reliable results for all types of systems, for example

it has been demonstrated that GGA (PBE, PW91, etc.) and local density approxi-

mation (LDA) functionals frequently underestimate band gap energies of many semi-

conductors, the extent of the error could be as severe as obtaining a metallic state

for well known insulators and semiconductors [78]. The latter is due to derivative

discontinuities of the approximated exchange-correlation energy[57], by contrast, the

Hartree-Fock (HF) approach overestimates band gap energies because of the increased

localization of the electronic states brought on by including the exact exchange in its

method. Hence, it has been reported that hybrid functionals in general provide more

dependable and notably better band gap energies for most insulators and semicon-

ductors [47], demonstrating a mean average deviation (MAD) of 0.19 eV for select

semiconductors [78]. Additionally, in [58] various functionals were analyzed with

respect to a material’s H-L gap and its fundamental gap (the fundamental gap of

a material is the energy difference between its conduction band and valence band)

where once again hybrid functionals outperform the other by obtaining more accurate

band gaps. Another reason of selecting B3LYP was obtained through comparison with

M062x and PBE by calculating the geometrical optimization of disilane (H3Si�SiH3)

and comparing their results, which are reported in table A.1. At first glance, they all

more or less seem like great candidates, but because of the size of disilane, we have
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Table A.1: Experimental and computed results for disilane (the cc-pVDZ base was
used for all calculations).

Type Experiment B3LYP M062x PBE
dSi�Si[Å] 2.331[10] 2.358 2.348 2.357
dSi�H[Å] 1.492[10] 1.497 1.491 1.51
6 Si-Si-H 110.3�,[60] 110.3� 110.2� 110.3�

6 H-Si-H 108.6�,[60] 108.7� 108.8� 108.6�

not evaluated the dispersion effects around the Si-Si bond. Thus we substituted the

hydrogens in the disilane molecule with mesityl (Mes) to obtain Mes2Si = SiMes2.

According to the results reported in table A.2, the B3LYP functional provides us with

the exact bonding distance as the experimental result. Consequently, B3LYP became

our choice for all of the DFT calculations realized in this study of silicene nanorib-

bons, amid with previous arguments that hybrid functionals obtain more accurate

gap energies. Finally, a recent article [41] has exposed a common flaw concerning

most of the newer functionals since the year 2000, a trait essential for the obtention

of the exact exchange-correlation functional, in which most have strayed from their

ability of calculating accurate electron densities. This is because most newer func-

tionals have focused on better energies and geometries through the parametrization

of greater physical-chemical data sets which is what ultimately hurts their theoretical

foundations necessary to predict correct electron densities. It is thus quite fortunate

to see that overall, from an analysis spanning a total of 128 functionals, B3LYP was

listed among the best functionals with overall performance; accurate for energetic,

geometric and electron density calculations, all of which were used in the analysis of

our systems.

Table A.2: Experimental and computed results for Mes2Si = SiMes2 (the cc-pVDZ
base was used for all calculations).

Type Experiment B3LYP M062x PBE
dSi�Si[Å] 2.16[63] 2.16 2.148 2.19

62



Bibliography

[1] TURBOMOLE V7.1 2016, a development of University of Karlsruhe and
Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since
2007; available from
http://www.turbomole.com.

[2] S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci. Two- and one-
dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett.,
102:236804, 2009.

[3] L. G. Cançado, M. A. Pimenta, B. R. A. Neves, M. S. S. Dantas, and A. Jorio.
Influence of the atomic structure on the raman spectra of graphite edges. Phys.
Rev. Lett., 93:247401, Dec 2004.

[4] C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S.
Novoselov, D. M. Basko, and A. C Ferrari. Raman spectroscopy of graphene
edges. Nano Lett., 9:1433, 2009.

[5] Jian-Hao Chen, Chaun Jang, Shudong Xiao, Masa Ishigami, and Michael S.
Fuhrer. Intrinsic and extrinsic performance limits of graphene devices on sio2.
Nat Nano, 3(4):206–209, 04 2008.

[6] Manish Chhowalla, Debdeep Jena, and Hua Zhang. Two-dimensional semicon-
ductors for transistors. Nature Reviews Materials, 1:16052, 08 2016.

[7] A. J. Cohen, D. J. Tozer, and N. C. J Handy. Evaluation of s2 in density
functional theory. J. Chem. Phys., 126:214104, 2007.

[8] P. A. M. Dirac. Note on exchange phenomena in the thomas atom. Mathematical
Proceedings of the Cambridge Philosophical Society, 26(3):376–385, 007 1930.

[9] Editorial. Expanding our 2d vision. Nature Reviews Materials, 1:16089, 11 2016.

[10] Ernest L. Eliel and Samuel H. Wilen. Stereochemistry of Organic Compounds.
Wiley, 1st edition, 1994.

[11] B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, and K. Wu.
Evidence of silicene in honeycomb structures of silicon on ag(111). Nano Lett.,
12:3507, 2012.

63



[12] E. Fermi. Un metodo statistico per la determinazione di alcune priorieta
dell’atomo. Atti Acad.Naz.Lincei, Rend., 6:602–607, 1927.

[13] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri,
S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K Geim. Raman spectrum
of graphene and graphene layers. Phys. Rev. Lett., 97:187401, 2006.

[14] A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Yamada-
Takamura. Experimental evidence for epitaxial silicene on diboride thin films.
Phys. Rev. Lett., 108:245501, 2012.

[15] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji,
X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts,
B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnen-
berg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng,
A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega,
G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell,
J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N.
Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Nor-
mand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L.
Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox. Gaussian~09
Revision D.01, 2013. Gaussian Inc. Wallingford CT.

[16] Mitsutaka Fujita, Katsunori Wakabayashi, Kyoko Nakada, and Koichi Kusakabe.
Peculiar localized state at zigzag graphite edge. Journal of the Physical Society
of Japan, 65(7):1920–1923, 1996.

[17] P. Ganesh, J. Kim, C. Park, M. Yoon, F. A. Reboredo, and P. R. C. Kent.
Binding and diffusion of lithium in graphite: Quantum monte carlo benchmarks
and validation of van der waals density functional methods. J. Chem. Theory
Comput., 10:5318, 2014.

[18] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg. A consistent and accurate ab
initio parametrization of density functional dispersion correction (dft-d) for the
94 elements h-pu. J. Chem. Phys., 132:154104, 2010.

[19] Z. X. Guo, S. Furuya, J. I. Iwata, and A. Oshiyama. Absence and presence of
dirac electrons in silicene on substrates. Phys. Rev. B: Condens. Matter Mater.
Phys., 87:235435, 2013.

[20] G. G. Guzmán-Verri and L. C. Lew Yan Voon. Electronic structure of silicon-
based nanostructures. Phys. Rev. B: Condens. Matter Mater. Phys., 76:075131,
2007.

64



[21] Fred A. Hamprecht, Aron J. Cohen, David J. Tozer, and Nicholas C. Handy. De-
velopment and assessment of new exchange-correlation functionals. The Journal
of Chemical Physics, 109(15):6264–6271, 1998.

[22] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136:B864–
B871, Nov 1964.

[23] M. Huzak, M. S. Deleuze, and B. Hajgató. Half-metallicity and spin-
contamination of the electronic ground state of graphene nanoribbons and related
systems: An impossible compromise? J. Chem. Phys., 135:104704, 2011.

[24] Frank Jensen. Introduction to Computational Chemistry. John Wiley Sons,
Ltd., 2nd edition, 2007.

[25] A. Kara, H. Enriquez, A. P. Seitsonen, L. C. Lew Yan Voon, S. Vizzini, B. Aufray,
and H. Oughaddou. A review on silicene - new candidate for electronics. Surf.
Sci. Rep., 67:1, 2012.

[26] K. Kim and K. D. Jordan. Comparison of density functional and mp2 calcu-
lations on the water monomer and dimer. The Journal of Physical Chemistry,
98(40):10089–10094, 1994.

[27] P. J. Knowles and N. C Handy. Projected unrestricted mo/ller-plesset second-
order energies. J. Chem. Phys., 88:6991, 1988.

[28] Wolfram Koch and Max C. Holthausen. A Chemist’s Guide to Density Functional
Theory. Wiley-VCH Verlag GmbH, 2nd edition, 2001.

[29] W. Kohn and L. J. Sham. Self-consistent equations including exchange and
correlation effects. Phys. Rev., 140:A1133–A1138, Nov 1965.

[30] A. Köhler and D. Beljonne. The singlet–triplet exchange energy in conjugated
polymers. Adv. Funct. Mater., 14:11, 2004.

[31] L. D. Landau. Zur Theorie der phasenumwandlungen II. Phys. Z. Sowjetunion,
11:26–35, 1937.

[32] Chengteh Lee, Weitao Yang, and Robert G. Parr. Development of the colle-
salvetti correlation-energy formula into a functional of the electron density. Phys.
Rev. B, 37:785–789, Jan 1988.

[33] Hosik Lee, Young-Woo Son, Noejung Park, Seungwu Han, and Jaejun Yu. Mag-
netic ordering at the edges of graphitic fragments: Magnetic tail interactions
between the edge-localized states. Phys. Rev. B, 72:174431, Nov 2005.

[34] Mel Levy. Universal variational functionals of electron densities, first-order den-
sity matrices, and natural spin-orbitals and solution of the v-representability
problem. Proceedings of the National Academy of Sciences, 76(12):6062–6065,
1979.

65



[35] Elliott H. Lieb. Thomas-fermi and related theories of atoms and molecules. Rev.
Mod. Phys., 53:603–641, Oct 1981.

[36] J. Linder and J. W. A. Robinson. Superconducting spintronics. Nat. Phys.,
11:307, 2015.

[37] C. C. Liu, W. Feng, and Y. Yao. Quantum spin hall effect in silicene and two-
dimensional germanium. Phys. Rev. Lett., 107:076802, 2011.

[38] C. C. Liu, H. Jiang, and Y. Yao. Low-energy effective hamiltonian involving
spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys.
Rev. B: Condens. Matter Mater. Phys., 84:195430, 2011.

[39] M. Lonfat, B. Marsen, and K Sattler. The energy gap of carbon cluster studied
by scanning tunneling spectroscopy. Chem. Phys. Lett., 313:539, 1999.

[40] Gabor Zsolt Magda, Xiaozhan Jin, Imre Hagymasi, Peter Vancso, Zoltan Osvath,
Peter Nemes-Incze, Chanyong Hwang, Laszlo P. Biro, and Levente Tapaszto.
Room-temperature magnetic order on zigzag edges of narrow graphene nanorib-
bons. Nature, 514(7524):608–611, 10 2014.

[41] Michael G. Medvedev, Ivan S. Bushmarinov, Jianwei Sun, John P. Perdew, and
Konstantin A. Lyssenko. Density functional theory is straying from the path
toward the exact functional. Science, 355(6320):49–52, 2017.

[42] N. D. Mermin. Crystalline order in two dimensions. Phys. Rev., 176:250–254,
Dec 1968.

[43] Alessandro Molle, Carlo Grazianetti, Daniele Chiappe, Eugenio Cinquanta,
Elena Cianci, Grazia Tallarida, and Marco Fanciulli. Hindering the oxida-
tion of silicene with non-reactive encapsulation. Advanced Functional Materials,
23(35):4340–4344, 2013.

[44] G. E. Moore. Cramming more components onto integrated circuits, reprinted
from electronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEE Solid-
State Circuits Society Newsletter, 11(5):33–35, Sept 2006.

[45] G. E. Moore. Progress in digital integrated electronics [technical literaiture,
copyright 1975 ieee. reprinted, with permission. technical digest. international
electron devices meeting, ieee, 1975, pp. 11-13.]. IEEE Solid-State Circuits So-
ciety Newsletter, 20(3):36–37, Sept 2006.

[46] R. S. Muller and T. I. Kamins. Device Electronics for Integrated Circuits. John
Wiley Sons, Ltd., 3rd edition, 2003.

[47] J. Muscat, A. Wander, and N. M Harrison. On the prediction of band gaps from
hybrid functional theory. Chem. Phys. Lett., 342:397, 2001.

66



[48] Kyoko Nakada, Mitsutaka Fujita, Gene Dresselhaus, and Mildred S. Dressel-
haus. Edge state in graphene ribbons: Nanometer size effect and edge shape
dependence. Phys. Rev. B, 54:17954–17961, Dec 1996.

[49] Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, and J. Lu.
Tunable bandgap in silicene and germanene. Nano Lett., 12:113, 2012.

[50] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.
Grigorieva, S. V. Dubonos, and A. A. Firsov. Two-dimensional gas of massless
dirac fermions in graphene. Nature, 438(7065):197–200, 11 2005.

[51] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon
films. Science, 306(5696):666–669, 2004.

[52] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V.
Morozov, and A. K. Geim. Two-dimensional atomic crystals. Proceedings of the
National Academy of Sciences of the United States of America, 102(30):10451–
10453, 2005.

[53] Ricardo Pablo-Pedro, Hector Lopez-Rios, Serguei Fomine, and Mildred S. Dres-
selhaus. Detection of multiconfigurational states of hydrogen-passivated silicene
nanoclusters. The Journal of Physical Chemistry Letters, 8(3):615–620, 2017.
PMID: 28088863.

[54] Paola De Padova, Claudio Quaresima, Bruno Olivieri, Paolo Perfetti, and Guy Le
Lay. sp2-like hybridization of silicon valence orbitals in silicene nanoribbons.
Applied Physics Letters, 98(8):081909, 2011.

[55] R. Peierls. Quelques propriétés typiques des corps solides. Annales de l’institut
Henri Poincaré, 5(3):177–222, 1935.

[56] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient
approximation made simple. Phys. Rev. Lett., 77:3865–3868, Oct 1996.

[57] John P. Perdew and Mel Levy. Physical content of the exact kohn-sham orbital
energies: Band gaps and derivative discontinuities. Phys. Rev. Lett., 51:1884–
1887, Nov 1983.

[58] John P. Perdew, Weitao Yang, Kieron Burke, Zenghui Yang, Eberhard K. U.
Gross, Matthias Scheffler, Gustavo E. Scuseria, Thomas M. Henderson, Igor Ying
Zhang, Adrienn Ruzsinszky, Haowei Peng, Jianwei Sun, Egor Trushin, and An-
dreas Görling. Understanding band gaps of solids in generalized kohn–sham
theory. Proceedings of the National Academy of Sciences, 114(11):2801–2806,
2017.

[59] M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, and
R. Saito. Studying disorder in graphite-based systems by raman spectroscopy.
Phys. Chem. Chem. Phys., 9:1276, 2007.

67



[60] Russell M. Pitzer. The barrier to internal rotation in ethane. Accounts of Chem-
ical Research, 16(6):207–210, 1983.

[61] F. Plasser, H. Pašalić, M. H. Gerzabek, F. Libisch, R. Reiter, J. Burgdörfer,
T. Müller, R. Shepard, and H. Lischka. The multiradical character of one- and
two-dimensional graphene nanoribbons. Angew. Chem., Int. Ed., 52:2581, 2013.

[62] R. Quhe, Y. Yuan, J. Zheng, Y. Wang, Z. Ni, J. Shi, D. Yu, J. Yang, and J. Lu.
Does the dirac cone exist in silicene on metal substrates? Sci. Rep., 4:1, 2014.

[63] Gerhard Raabe and Josef Michl. Multiple bonding to silicon. Chemical Reviews,
85(5):419–509, 1985.

[64] B. O. Roos, P. R. Taylor, and P. E. M. Siegbahn. A complete active space scf
method (casscf) using a density matrix formulated super-ci approach. Chem.
Phys., 48:157, 1980.

[65] H. Sahaf, L. Masson, C. Léandri, B. Aufray, G. Le Lay, and F. Ronci. Formation
of a one-dimensional grating at the molecular scale by self-assembly of straight
silicon nanowires. Applied Physics Letters, 90(26):263110, 2007.

[66] John R. Schaibley, Hongyi Yu, Genevieve Clark, Pasqual Rivera, Jason S. Ross,
Kyle L. Seyler, Wang Yao, and Xiaodong Xu. Valleytronics in 2d materials.
Nature Reviews Materials, 1:16055, 08 2016.

[67] H. B. Schlegel. Potential energy curves using unrestricted mo/ller–plesset per-
turbation theory with spin annihilation. J. Chem. Phys., 84:4530, 1986.

[68] Young-Woo Son, Marvin L. Cohen, and Steven G. Louie. Half-metallic graphene
nanoribbons. Nature, 444(7117):347–349, 11 2006.

[69] C. D. Stanciu, A. V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and
Th. Rasing. Ultrafast spin dynamics across compensation points in ferrimagnetic
GdFeCo: The role of angular momentum compensation. Phys. Rev. B, 73:220402,
Jun 2006.

[70] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch. Ab initio
calculation of vibrational absorption and circular dichroism spectra using density
functional force fields. The Journal of Physical Chemistry, 98(45):11623–11627,
1994.

[71] Attila Szabo and Neil S. Ostlund. Modern Quantum Chemistry: Introduction
to Advanced Electronic Structure Theory. Dover Publications, INC., 1st revised
edition, 1996.

[72] K. Takeda and K. Shiraishi. Theoretical possibility of stage corrugation in si and
ge analogs of graphite. Phys. Rev. B: Condens. Matter Mater. Phys., 50:14916,
1994.

68



[73] L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey,
A. Molle, and D. Akinwande. Silicene field-effect transistors operating at room
temperature. Nat. Nanotechnol., 10:227, 2015.

[74] Li Tao, Eugenio Cinquanta, Daniele Chiappe, Carlo Grazianetti, Marco Fanci-
ulli, Madan Dubey, Alessandro Molle, and Deji Akinwande. Silicene field-effect
transistors operating at room temperature. Nat Nano, 10(3):227–231, 03 2015.

[75] L. H. Thomas. The calculation of atomic fields. Mathematical Proceedings of the
Cambridge Philosophical Society, 23(5):542–548, 001 1927.

[76] Ana E. Torres, Patricia Guadarrama, and Serguei Fomine. Multiconfigurational
character of the ground states of polycyclic aromatic hydrocarbons. a systematic
study. Journal of Molecular Modeling, 20(5):2208, 2014.

[77] A. J. Williamson, R. Q. Hood, R. J. Needs, and G. Rajagopal. Diffusion quantum
monte carlo calculations of the excited states of silicon. Phys. Rev. B: Condens.
Matter Mater. Phys., 57:12140, 1998.

[78] Hai Xiao, Jamil Tahir-Kheli, and William A. Goddard. Accurate band gaps for
semiconductors from density functional theory. The Journal of Physical Chem-
istry Letters, 2(3):212–217, 2011.

[79] J. A. Yan, T. Stein, D. M. Schaefer, X. Q. Wang, and M. Y Chou. Electron-
phonon coupling in two-dimensional silicene and germanene. Phys. Rev. B: Con-
dens. Matter Mater. Phys., 88:121403, 2013.

[80] X. Zhang, H. Xie, M. Hu, H. Bao, S. Yue, G. Qin, and G. Su. Thermal conduc-
tivity of silicene calculated using an optimized stillinger-weber potential. Phys.
Rev. B: Condens. Matter Mater. Phys., 89:054310, 2014.

[81] J. Zhuang, X. Xu, Y. Du, K. Wu, L. Chen, W. Hao, J. Wang, W. K. Yeoh,
X. Wang, and S. X Dou. Investigation of electron-phonon coupling in epitaxial
silicene by in situ raman spectroscopy. Phys. Rev. B: Condens. Matter Mater.
Phys., 91:161409, 2015.

69


	Portada
	Foreward
	Contents
	Chapter 1. Introduction
	Chapter 2. Electronic Structure
	Chapter 3. Silicene Nanoribbons
	Appendix
	Bibliography

