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CAPITULO 1. INTRODUCCION

En células bacterianas, el control de la actividad de los genes depende en gran parte de
proteinas llamadas Factores de la Transcripcién (FTs) que pueden activar o reprimir la
expresion de sus genes blancos (Lewin 2008). Se dice que genes blancos de un cierto
FT son corregulados por ese FT, por ejemplo, araA, araB, adaD, aral, etc son
corregulados por AraC. Genes corregulados tienden a tener perfiles de expresion
similares a través de multiples condiciones experimentales, i.e. se tienden a coexpresar
(Lemmens et al. 2009).

El contexto gendmico de genes, siendo donde los genes estdn localizados el uno
relativo al otro en el cromosoma, es importante tanto para la corregulacion que para la
coexpresion. Varias observaciones demuestran que existe una correlacién entre 1)
corregulacion y cercania gendmica, y 2) coexpresion y cercania gendmica de genes.
Primero, se ha observado que varios genes que son corregulados estdn localizados en
cercania, tanto en procariontes (Janga et al. 2009) como en eucariontes (Schneider &
Grossched| 2007). Segundo, se ha encontrado que genes ubicados en cercania son mas
altamente coexpresados que genes lejanos en E. coli (Zampieri et al. 2008; Korbel et al.
2004).

También, varias observaciones demuestran que genes corregulados y situados en
vecindad muchas veces son muy altamente coexpresados, como cuando hay
cotranscripcon bidireccional en promotores divergentes (Beck & Warren 1988; Korbel
et al. 2004; Rhee et al. 1999) o cuando los genes blancos de FTs con pocos genes
blancos estdn agrupados en el genoma (Janga et al. 2009; Michoel et al. 2009; Zhang et
al. 2012).

Estas observaciones sugieren que la cercania gendmica podria tener un efecto
adicional, o “sinérgico” sobre el efecto de la corregulacion en la coexpresién, es decir,
qgue el efecto combinado sobre la coexpresion es mas grande que la suma de los
efectos independientes de la corregulacién y la cercania gendmica.

Sin embargo, el efecto adicional de la distancia gendmica entre genes corregulados en
la coexpresidn aun no se ha estudiado sistematicamente.

En este trabajo, por lo tanto, evaluamos cdmo la distancia gendmica de los genes
corregulados en E. coli influye en su coexpresion. Elegimos E. coli como organismo
modelo dada la disponibilidad de datos abundantes de expresién y regulacién
transcripcional. Consideramos pares de genes como corregulados cuando son
controlados por minimo un FT comun y con el mismo efecto (activador, represor o
dual) tal como reportado en la base de datos RegulonDB (Gama-Castro et al. 2015). Se
excluyen del estudio los genes dentro de un mismo operén para no confundir los
analisis. Se estimd el nivel de coexpresion entre pares de genes corregulados por la
similitud de los perfiles de expresion diferencial a través de todas los contrastes, tal
como se encuentran en la base de datos de microarreglos COLOMBOS (Moretto et al.
2016).



Para medir la coexpresion propusimos una nueva métrica llamada la Spearman
Correlation Rank (SCR), descrita en el primer articulo (seccion 2.1). Usamos la SCR para
dos fines; 1) en el presente andlisis, i.e. para evaluar el impacto de la distancia
gendmica en la coexpresion de los genes corregulados, descrito en el primer articulo
(seccion 2.1), y 2) en una herramienta de analisis de coexpresién, implementada en la
version 9.0 de RegulonDB y descrita en el segundo articulo (seccién 2.2).

En general, hemos observado que los genes corregulados muestran gradualmente
mayores grados de coexpresion si estan mas cercanos en el genoma. El efecto de la
cercania es obvio sobre todo en genes corregulados que también tienen FTs no
comunes. Pudimos excluir la posibilidad de que este efecto se debiera a la
cotranscripcion divergente, transcripcion readthrough o que fuera causado por la
cercania del gen codificante del FT. Tambien vimos que la tendencia de genes
corregulados altamente coexpresados de estar localizados cerca es conservada a
través de otras especies gammaproteobacterianas.

Nuestra hipdtesis para explicar nuestras observaciones dice que la cercania de genes
corregulados aumenta la coexpresion de genes corregulados porque a cortas
distancias hay una accessibilidad similar de proteinas FT en sus respectivos
promotores.

En este trabajo demostramos que la distancia entre los genes y la corregulacién no
trabajan en forma aislada, sino que conjuntamente y en forma sinérgica influyen para
controlar la coexpresién de genes.



CAPITULO 2. RESULTADOS

2.1  Primer articulo: Effect of genomic distance on coexpression of corregulated
genes in E.coli

En este articulo se presentan los resultados del analisis gendmico sobre la influencia de
la distancia gendmica entre los genes corregulados en su coexpresion.
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Abstract

In prokaryotes, genomic distance is a feature that in addition to coregulation affects coex-
pression. Several observations, such as genomic clustering of highly coexpressed small
regulons, support the idea that coexpression behavior of coregulated genes is affected by
the distance between the coregulated genes. However, the specific contribution of distance
in addition to coregulation in determining the degree of coexpression has not yet been stud-
ied systematically. In this work, we exploit the rich information in RegulonDB to study how
the genomic distance between coregulated genes affects their degree of coexpression,
measured by pairwise similarity of expression profiles obtained under a large number of con-
ditions. We observed that, in general, coregulated genes display higher degrees of coex-
pression as they are more closely located on the genome. This contribution of genomic
distance in determining the degree of coexpression was relatively small compared to the
degree of coexpression that was determined by the tightness of the coregulation (degree of
overlap of regulatory programs) but was shown to be evolutionary constrained. In addition,
the distance effect was sufficient to guarantee coexpression of coregulated genes that are
located at very short distances, irrespective of their tightness of coregulation. This is partly
but definitely not always because the close distance is also the cause of the coregulation. In
cases where it is not, we hypothesize that the effect of the distance on coexpression could
be caused by the fact that coregulated genes closely located to each other are also relatively
more equidistantly located from their common TF and therefore subject to more similar lev-
els of TF molecules. The absolute genomic distance of the coregulated genes to their com-
mon TF-coding gene tends to be less important in determining the degree of coexpression.
Our results pinpoint the importance of taking into account the combined effect of distance
and coregulation when studying prokaryotic coexpression and transcriptional regulation.
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Introduction

Transcriptional coregulation in general implies coexpression: genes that are regulated by the
same Transcription Factors (TFs) are more likely to be coexpressed. RegulonDB defines the
transcriptional programs of genes in E. coli K-12 based on curated information. A distinction
is often made between simple and complex transcriptional regulatory programs depending on
whether a gene’s regulatory program consists of at most one or more TFs. Genes are defined to
be coregulated if their respective regulatory program overlaps, i.e. if they are coregulated by at
least one TF with the same role (activator, repressor or dual). The complexity of their individ-
ual regulatory programs in combination with the extent to which their program overlaps
defines the tightness of the coregulation. Genes with a completely identical regulatory pro-
gram are expected to be more tightly coregulated under all conditions than in case of an
incomplete overlap. In the latter case different gene-specific TFs can be involved in tuning the
expression at the individual gene level (less tight coregulation). Also if more TFs are shared by
the coregulated genes, their coregulation can be expected to be tighter.

Evidence exists that besides coregulation also the genomic distance between two genes con-
tributes to their coexpression. Closely located genes are more coexpressed than faraway located
genes in E. coli [1,2], yeast [3,4], Arabidopsis [5], zebrafish [6] and humans [5]. Several mecha-
nisms supporting coexpression behavior of closeby located genes have been reported in
prokaryotes, including operonic organization, bidirectional cotranscription at divergent pro-
moters [2,7,8] and genomic clustering of highly coexpressed small regulons, i.e. of TFs such as
GntR and GadW that only regulate a few operons [9-11]. These observations suggest that cor-
egulation and genomic vicinity both can contribute to the degree to which two genes tend to
be coexpressed. However, assessing the contribution of the genomic distance added to coregu-
lation in determining coexpression is complicated as in many cases the close distance between
genes is also at the basis of their mechanism of coregulation (genes located in the same operon,
read-through transcription of contiguous operons [12], and bidirectional cotranscription at
divergent promoters [2,7]). In this study we exploited the large body of information in Regu-
lonDB together with publicly available expression data to systematically assess whether the
genomic distance affects the degree of coexpression, independently of the coregulation
mechanism.

We tested to what extent the distance between coregulated genes is associated with their
degree of coexpression. Our results confirm that genomic vicinity of coregulated genes is an
important factor that contributes to higher levels of coexpression, also for genes that are not
tightly coregulated. This observation was further supported by the finding that there was an
evolutionary constraint in maintaining the distance between coregulated genes that are highly
coexpressed.

Results
Assessing the degree of coexpression between coregulated genes

In bacteria, genomic distance between genes is a feature that, in addition to coregulation,
affects coexpression. In this study, we aimed at assessing whether and how genomic distance
between coregulated genes associates with their degree of coexpression. The degree of coex-
pression between genes was assessed by calculating the pairwise similarity between their gene
expression profiles obtained from a large scale expression compendium assessing expression
under 4077 condition contrasts (Materials and methods) [13].

To identify the measure that best reflects the degree of pairwise coexpression between any
pair of coregulated genes we tested six similarity measures based on respectively correlation
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and mutual information (see Materials and methods and Supplementary file S1 File part 1).
The measure referred to as Spearman Correlation Rank (SCR) performed best in separating
the coexpression behavior of genes that were expected (genes within the same operon) to be
highly coexpressed from those that were not (genes not known to be coregulated). In addition,
we could show that this rank-based measure better normalized for the unequal number of
samples present in the compendium that represent the conditions under which the different
TFs are active, as explained in detail in the Supplementary File S1 File part 2.

In the remainder of the analysis the degree of coexpression between two genes is thus
defined as the pairwise similarity between the expression profiles of these genes as measured
by SCR. High SCR values between two genes correspond to a low degree of coexpression
whereas low SCR values correspond to a high degree of coexpression.

To gain a first insight into the overall degree to which coregulated genes are coexpressed,
we calculated their average degree of coexpression using SCR (Supplementary File S1 File part
3). In the context of this study, coregulated genes were defined as any set of two genes that
have at least one common TF in their respective regulatory programs with the same regulatory
effect on each of the considered genes (activation, repression or both). Whether two genes
were coregulated was derived from curated information on TF-gene regulatory interactions in
RegulonDB [14] (Materials and methods). We deliberately excluded pairs of coregulated genes
originating from the same operon as for operonic transcription, coregulation and distance are
confounded (i.e. the closeby location is the cause of the coregulation) and including these
operonic coregulated genes would blur assessing the effect of the genomic distance between
coregulated genes on their degree of coexpression.

We observed that on average, the degree of coexpression between genes known to be core-
gulated was rather low, as was also previously reported [15]. In particular, genes coregulated
by a common global TF (here defined as a TF with more than 130 target genes), but not by any
other additional common more specific TF, showed a relatively low degree of coexpression.
Those coregulated genes that only have a global TF in the common part of their regulatory
program were excluded from further analysis as they are known to be only loosely coregulated
(Materials and methods) and including them results in underestimating the average degree of
coexpression between coregulated genes. In Supplementary Table S1 Table we provided a full
list of 91 TFs that together control 11339 pairs of coregulated genes considered in this study, as
well as per TF the mean pairwise genomic distances and the mean degree of pairwise coexpres-
sion between the target genes coregulated by that TF.

Distance between coregulated genes inversely correlates with the mean
degree of coexpression

We hypothesized that the distance between coregulated genes has an influence on their coex-
pression degree. To test this hypothesis, we examined the relationship between the pairwise
genomic distance between coregulated genes and their degree of coexpression. The pairwise
linear distance between genes along the circular chromosome, hereafter referred to as distance,
was determined by the number of base pairs separating the start positions of two genes.

In Fig 1 the mean degree of coexpression is shown as a function of the distance between
genes, i.e., the median SCR (y-axis) of a pair of genes for which the distance between the two
genes is smaller than a given value (x-axis). The mean coexpression degrees between genes
that were not known as coregulated was shown as a negative control (Fig 1, red curve).

Overall, we observed a clear influence of the distance on the degree of coexpression: coregu-
lated genes tend to be pairwisely more coexpressed when they are closely located than when
they are more distantly located (see Fig 1, slope of dark-blue curve). Also in the negative
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Fig 1. The di ] genes neg y their {s] degree. The plot shows the mean
coexpression degree as a function of the maximum distance between two genes. The distance (x-axis) is measured by the number of kb
(kilo base pairs, equal to 1000 base pairs) between the structural gene start positions of two genes. Coexpression degree (y-axis) is
measured by the median SCR (a low median SCR implies high degree of coexpression) of genes with a distance lower or equal to the
distance indicated on the x-axis. The effect of distance on coexpression is shown for all coregulated genes (dark-blue curve).
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differences. The numbers above each data point of the dark-blue curve represent the number of pairs of coregulated genes for which the
median SCR was calculated.

https://doi.org/10.1371/journal.pone.0174887.9001

control (genes not known to be coregulated) at small distances (see slope of red curve, dis-
tances <20 kb) a relative high degree of coexpression was observed. Because genomic cluster-
ing and coexpression tend to be associated [16], genomically colocalized genes might tend to
be more coexpressed, irrespective of whether they are coregulated by the same TF. According
to Sobetzko et al. [16], colocalization of genes tends to trigger some degree of coexpression
because at close distances, levels of DNA supercoiling tend to be similar, hereby leading to

PLOS ONE | https://doi.org/10.1371/journal.pone.0174887  April 18,2017 4/20
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similar gene expression patterns. So genes that are clustered on the genome might therefore be
coexpressed as a mere result of their closeby positioning rather than because of coregulation.
To test whether this was indeed the case, we have identified genes that belong to distinct regu-
lons (i.e. genes regulated by distinct TFs) that are genomically colocalized with each other
(Materials and methods). We have compared the degree of coexpression of pairs of colocalized
genes that were also coregulated versus the degree of coexpression of gene pairs that were colo-
calized but not coregulated. We still observed a significant difference in degree of coexpression
between both gene classes (Kruskal-Wallis p-value << 0.001), indicating that genomic coloca-
lization alone most likely cannot be responsible for the high degrees of coexpression observed
for some gene pairs in the (negative) reference set.

It thus is more likely that the relatively high degree of coexpression in the negative control
at small genomic distances is the result of the incompleteness of the information in RegulonDB
rather than being the consequence of the small distance: because of missing information in
RegulonDB, we cannot exclude that a minor fraction of these so-called non-coregulated gene
pairs are in fact coregulated. Further analysis (data not shown) indeed showed that the
observed relatively high average coexpression degree of non-coregulated genes at small dis-
tances visible in Fig | could be attributed to a small fraction of the non-coregulated genes
showing high degrees of coexpression but that the majority of the non-coregulated genes were
not highly coexpressed. An additional overlay of the set of genes reported to be non-coregu-
lated and having high degrees of coexpression with sets of genes that were predicted to be in
vitro coregulated based on SELEX results [17] confirmed that indeed several of the so-called
non-coregulated genes with high degree of coexpression might actually be coregulated (listed
in Supplementary Table S2 Table).

The effect of the distance on coexpression decreases as the tightness of
the coregulation increases

To assess whether the effect of the distance in determining the degree of coexpression was
dependent on the coregulation tightness, we first subdivided coregulated genes in two groups
depending on whether their regulatory programs overlapped completely versus partially: if
two coregulated genes have a completely overlapping regulatory program they are assumed to
be more tightly coregulated than when their regulatory programs are only partially overlap-
ping. A partial overlap means that at least one of the coregulated genes has TFs in its regulatory
program that are not shared by the other gene or when the same TF has different effects on
each gene. Indeed, as shown in Fig 2 the degree of coexpression between coregulated genes
with complete overlap of regulatory programs is higher than that of coregulated genes with
only a partial overlap of regulatory programs and that this is true over all distances considered
(blue versus orange curve). Regarding the effect of distance on the degree of coexpression, this
effect exists for both genes that have completely overlapping versus those that have only a par-
tially overlapping regulatory program. However the distance effect is most pronounced for
genes that have a partially overlapping program but lasts at larger distances for genes with a
completely overlapping regulatory program (respectively around <20 kb versus around <100
kb).

In addition, we made a distinction between genes that are coregulated by one versus those
that are coregulated by more than one TF, as we assume that coregulation by multiple com-
mon TFs can also contribute to a larger coregulation tightness with a possible effect on the
degree of coexpression [18]. The effect of the coregulation tightness determined by the number
of common TFs in the overlapping part of the regulatory programs is confounded with the
degree to which the regulatory program overlaps (e.g. it is hard to compare the degree of
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degree if genes are less tightly

tightness of coexpression between a partial overlapping program with three shared TFs and a
completely overlapping program with one TF). Therefore we conditioned the effects of the
number of TFs in the shared part of their regulatory programs on whether the regulatory pro-
grams of these coregulated genes were completely versus partially overlapping. Both in case of
a complete or a partial overlap of regulatory programs, we observed a higher degree of coex-
pression for those genes that have more than one common TF than for those that have only
one common TF in the overlapping part of their regulatory programs. Also both in case of
complete and partial overlap of regulatory programs, the degree of coexpression remains
higher at larger distances for genes with more than one common TF versus for those with just
one common TF (Fig 2, full orange curve versus dotted orange curve for partial overlap of
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regulatory programs and full blue curve versus dotted blue curve for complete overlap of regu-
latory programs).

In general, distance thus affects the degree of coexpression, irrespective of the tightness of
coregulation. For the most tightly coregulated genes the effect of distance is less visible as the
genes tend to be highly coexpressed anyway and thus the contribution of small distances in
increasing the degree of coexpression is the least pronounced for the most tightly coregulated
genes. This indicates that the effect of distance is relatively small compared to effect of the
tightness of the coregulation in determining the degree to which coregulated genes are
coexpressed.

Non-operonic adjacent genes that are coregulated show a high degree
of coexpression independently of their coregulation tightness or their
genomic orientation

Focusing on coregulated genes that are located in each other’s close neighborhood (<1 kb to
<20 kb), it seems that their degree of coexpression is almost independent of the tightness of
their coregulation: at such small distances, the mean degree of coexpression is not significantly
different for coregulated genes with a completely overlapping or a partially overlapping regula-
tory program, and not significantly different for coregulated genes that share one or that share
more TFs in the overlapping part of their regulatory program (Kruskal-Wallis p << 0.001, see
also Fig 2, for respectively orange versus blue, and full versus dotted lines).

We argued that for genes that are involved in the same biological processes but are the least
tightly coregulated i.e. by 1 TF and not the same regulatory program, their nearby location
might be a way to guarantee the high degree of coexpression that would be needed to make
them available together. To assess whether this was true in our data, we assessed whether
indeed the least tightly coregulated genes that are located nearby were associated more fre-
quently to the same biological processes than the least tightly coregulated genes located at
larger genomic distances (>10 kb); to associate genes to biological processes Gene Ontology
(GO) annotations were used (Materials and methods). This seemed indeed to be the case
(Kruskal-Wallis p = 0.007).

From Fig 2 also appears that at an extremely small distance between coregulated genes (<2
kb), a high degree of coexpression of the coregulated genes is almost guaranteed irrespective of
the tightness of coregulation (except for the very least tightly coregulated genes, see orange
dotted curve). However, at such small distances we cannot exclude that the observed high
degree of coexpression is caused by the occurrence of shared promoter elements (in diver-
gently oriented adjacent promoters), or, read-through transcription [12] or not yet annotated
operons (in codirectionally oriented promoters).

As these alternative causes of the observed high degree of coexpression can only exist for
cases of divergently and codirectionally oriented gene pairs, we tested to which extent the high
degree of coexpression observed between coregulated genes located at small distances from
each other also held for convergently oriented genes.

Hereto we analyzed how the coexpression of genes that are members of coregulated adja-
cent operons, referred to as coregulated proximally located genes, depends on their relative ori-
entation. Proximally located genes with divergent orientation are overrepresented in our
dataset compared to those with other orientations (368 out of 490 proximally located pairs of
genes or 75%) supporting the idea that divergent orientation indeed has evolved as a prevalent
mechanism of assuring coexpression between adjacent coregulated genes as was also described
by Korbel et al. [2]. Our results reveal that indeed proximally located coregulated genes are
highly coexpressed when divergently oriented (median SCR 47). Also codirectionally oriented
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proximally located coregulated genes are highly coexpressed as expected (median SCR 44).
Having a divergent or codirectional promoter orientation can thus definitely account for part
of the observed high degree of coexpression between proximally located coregulated genes.
However, interestingly, also proximally located coregulated genes with convergent orientation
showed equally high coexpression as those with the divergent and codirectional orientation
(median SCR 34): coexpression was not significantly different between the divergent, codirec-
tional or convergent orientation as indicated by the Kruskal-Wallis test (p = 0.84).

This observation indicates that at proximal distances, not only with distance confounded
mechanisms of coregulation such as bidirectional cotranscription, readthrough transcription
or unannotated operons, but also mere close distance can account for the observed high
degrees of coexpression, independently from coregulation tightness. Note that the latter con-
clusion relies heavily on the evidence of 30 pairs only of proximally located genes in conver-
gent orientation. One might argue therefore that we cannot rule out that the high degree of
coexpression observed for coregulated genes at small distances is not the mere consequence of
confounded mechanisms such as readthrough transcription.

To specifically assess the effect of readthrough transcription we evaluated whether the
degree of coexpression of coregulated genes that are not proximally located but still located at
small distances, was significantly lower than that of proximally located genes (with ’small dis-
tance’ being defined as an intergenic distance of maximally 12 kb, equal to the maximum dis-
tance that is observed between proximally located genes). The mean degree of coexpression of
coregulated genes that are not proximally located (145 pairs of genes) is not significantly differ-
ent from that of proximally located genes (490 pairs of genes) (Kruskall-Wallis p = 0.41), indi-
cating that besides known mechanisms, such as read-through transcription, also the mere
effect of the small distance plays a role in determining levels of coexpression.

So, given that the relative orientation does not bias the coexpression degree of proximally
located genes we conclude that the relative orientation causes no bias for the observed effect of
the distance on the degree of coexpression of coregulated genes.

Coregulated genes are more coexpressed when they are located
equidistantly relative to their common TF coding gene

To find a potential mechanism by which close distance of coregulated genes that is not medi-
ated by read-through transcription or bidirectional cotranscription can explain higher degrees
of coexpression, the following reasoning was made: assuming that the availability of TF mole-
cules is limited by diffusion and assuming that coregulated genes that are exposed to similar
quantities of TF proteins will be more coexpressed than coregulated genes that are not, we rea-
soned that coregulated genes that are more equidistantly located from their common TF cod-
ing gene are exposed to a more similar quantity of the TF encoded gene product and as a
consequence will tend to be more coexpressed than coregulated genes that are not located
equidistantly from their common TF gene.

To test this assumption, we compared the degree of coexpression hereby distinguishing
between 1) coregulated genes located equidistantly with respect to their common TF gene and
2) coregulated genes not located equidistantly to their common TF gene. Equidistant means
that the two distances, i.e. between the common TF gene and the two target genes, are within
90% of one another (Materials and methods). We restricted the analysis to genes that are core-
gulated by at most one TF in order to unequivocally define equidistancy to one and the same
common TF and to exclude possible interferences of distances to other common TFs.
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Fig 3. Effect of relative distance between TF and target genes on the degree of coexpression of the target genes. The
coexpression behavior of genes that are coregulated by one TF is disentangled, depending on whether genes are equidistantly located
(grey) or not equidistantly located (purple) relative to their common TF-coding gene. Y-axis displays the degree of coexpression (SCR), X-

axis displays the maximum genomic distance between the coregulated genes.

https://doi.org/10.1371/journal.pone.0174887.9003

Fig 3 shows that coregulated genes that are equidistantly located from their common TF(s)
(grey curve) generally are more coexpressed than genes that are not equidistantly located (pur-

ple curve).

The degree of coexpression between coregulated genes does not
depend on the nearby location of their common TF coding gene

The previous paragraph supported the hypothesis that coregulated genes located equidistantly
from their common TF are subject to similar local quantities of TF proteins and therefore
show a higher degree of coexpression. One could also hypothesize that the closeness of the TF
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coding gene itself could result in higher absolute local TF quantities in the target neighbor-
hood, and as such increases the degree of coexpression of coregulated genes.

Fig 3 however shows that coexpression remains remarkably high for coregulated genes that
are located equidistantly from their common TF, even when the genes themselves are located
relatively distant from each other and thus by definition also relatively further from their com-
mon TF. This implies that for tightly coregulated genes sharing one common TF, coexpression
is not only independent of the distance between those genes but, as a consequence, also inde-
pendent of the distance of those genes relative to their common TF coding gene.

We further statistically tested this independence of the degree of coexpression on the dis-
tance between the common TF coding gene and the coregulated target genes. Hereto coregu-
lated genes were classified in two groups referred to as near to TF or far from TF, depending
on whether the distance between the common TF and the coregulated targets was smaller than
or larger than 30 kb, respectively (Materials and methods). We included in these groups only
those coregulated genes that were (1) located equidistantly from their common TF in order to
study the mere effect of the distance between the TF and the coregulated genes on the degree
of coexpression and to exclude the effect of unequal distances between the common TF and
coregulated targets (see previous paragraph) and (2) coregulated by at most one TF to exclude
effects caused by multiple common TFs between the coregulated genes or the effect of addi-
tional TFs that were not shared by the analyzed coregulated genes. Interestingly no statistically
significant difference in degree of coexpression was observed between the two groups of core-
gulated genes referred to as respectively near to TF or far from TF, i.e. the null hypothesis of
the Kruskal-Wallis test was rejected and the SCR of near to TF and far from TF are samples
that come from the same population (p = 0.50).

In conclusion, our results demonstrate that in contrast to equidistancy from a common TF,
a closer distance of a common TF to coregulated genes does not result in a higher degree of
coexpression.

Close distance between highly coexpressed coregulated genes is
evolutionarily constrained

Here we assumed that if the distance between coregulated genes plays a key role in affecting
the degree of coexpression between those coregulated genes, this distance should be evolution-
arily constrained. To test this assumption, we performed a comparative study in the subclass
of gamma-proteobacteria [19-21] to assess whether the distance between coregulated genes is
evolutionarily more conserved when the coregulated genes display a high degree of coexpres-
sion than when they do not. We started the analysis using all pairs of coregulated genes in E.
coli and determined the orthologous of those genes in other gamma-proteobacteria. We
defined as metric of distance conservation the proportion of the number of ortholog gene pairs
in the different species for which genes have a distance equal to or smaller than the distance
between the two corresponding coregulated genes in E. coli on the total number of considered
orthologous pairs (Materials and methods).

In Fig 4 we plotted the average distance conservation of highly coexpressed (SCR < 100)
and not (highly) coexpressed (SCR > 1000) coregulated genes in E. coli as a function of the dis-
tance between the genes. It can be observed that coregulated genes located at small distances
(< 10 intervening genes) have a stronger distance conservation when they are highly coex-
pressed (30-40%, black curve) than when they are not coexpressed (25-30%, blue curve). This
observation indicates that for highly coexpressed genes located in each other’s neighborhood
on the genome there is an evolutionary constraint on conserving their small distance. Because
evolutionary conservation of close distance of genes has been associated with horizontal gene
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Fig 4. Evolutionary conservation of distance between coregulated genes. The x-axis represents the pairwise genomic distance
between coregulated genes in E. coli, measured in intervening genes. The y-axis represents the degree to which for coregulated genes in
E. coli the genomic distance is evolutionarily conserved in other gamma-proteobacteria which is expressed as the fraction of orthologous
gene pairs for which the distance is equal or smaller (y-axis) than the distance between the corresponding genes in E. coli (x-axis) over the
total number of analyzed orthologous genes. Orthologous genes are pairs of genes in other species that are orthologous to a pair
considered in E. coli, i.e. a pair of coregulated genes in E. coli is expected to have an orthologous counterpart in other gamma-
proteobacterial species if both genes in the E. coli pair have an orthologous counterpart in the considered gamma-proteobacterial species.
Results are shown for respectively pairs of genes that are highly coexpressed (SCR < 100) (black curve) versus pairs of genes that are not
coexpressed (SCR > 1000) (blue curve).

https://doi.org/10.1371/journal.pone.0174887.9004

co-transfer [22], we further hypothesized that highly coexpressed genes that are nearby located
and that show strong distance conservation are likely to show evidence of horizontal co-trans-
fer. We indeed found evidence of horizontal gene co-transfer for several of these cases (see
Supplementary File S1 File part 5) which is thus an additional indication that for highly coex-
pressed nearby located genes there exists an evolutionary constraint for maintaining their
small distance.

PLOS ONE | https://doi.org/10.1371/journal.pone.0174887  April 18,2017 11/20

-18 -



@PLOS ‘ ONE

Effect of genomic distance on coexpression of coregulated genes in E. coli

These results provide further evidence that for nearby coregulated genes for which coex-
pression is crucial, the vicinity or small distance is a driving force for guaranteeing high
coexpression.

Discussion

In prokaryotes, genomic distance is a feature that in addition to coregulation affects coexpres-
sion. In this work, we evaluated how the genomic distance of genes known to be coregulated
in E. coli contributes to their coexpression behavior. Hereto, we combined information on reg-
ulation in E. coli K-12 reported in RegulonDB, one of the largest curated and continually
updated transcriptional databases, with publicly available expression data. Based on the infor-
mation available for E. coli K-12 we observed that in general coregulated genes display higher
degrees of coexpression as they are more closely located on the genome.

For genes that display very tight coregulation (e.g. genes with the exact same regulatory pro-
grams), this additional effect of genomic vicinity on coexpression is less pronounced com-
pared to the distance effect observed for genes that are less tightly coregulated. This indicates
that the contribution of genomic distance in determining the degree of coexpression is rela-
tively small compared to the degree of coexpression that was determined by the tightness of
the coregulation. As a consequence especially for non-tightly coregulated genes, distance
seems to have a critical role in guaranteeing coexpression: only when located at small dis-
tances, the effect of the common TFs in increasing coexpression is large enough to compensate
for the effect of the non-common TFs in potentially lowering coexpression. We found indica-
tions that non-tightly coregulated genes are located nearby to guarantee high coexpression in
order to coordinate their common involvement in a particular biological process.

We showed that at very small distances, coexpression is high irrespective of the tightness of
coregulation. This is because the small distance is at least partially the cause of coregulation, as
is the case for read-through transcription or potentially unannotated operons (in codirection-
ally oriented operons) or for bidirectional cotranscription through common regulatory ele-
ments (in divergently oriented operons). However genes located in convergently oriented
operons are also found to be highly coexpressed. In the latter case, the small distance cannot be
causal to the coregulation and thus supports the idea of a distance effect as an additional factor
independent of coregulation triggering high coexpression of closeby located coregulated
genes.

We hypothesized that part of the distance effect can be explained by the fact that coregu-
lated genes that are more closely located to each other are subject to more similar levels of TF
molecules and are therefore more highly coexpressed. We could support this hypothesis by
showing that coregulated genes that were located at similar distances relative to their common
TF tend to be more coexpressed than genes that were not located equidistantly relative to their
common TF. At very small distances, coregulated genes were found to be highly coexpressed,
irrespective of whether or not they are located equidistantly relative to their TF. This may be
explained by the fact that both coregulated genes are so close to each other that their distance
to the common TF can only slightly differ.

Unlike the distance between target genes, the distance of the targets to the common TF cod-
ing gene does not seem to play a major role in determining coexpression of coregulated genes.
This shows that, even when limited TF diffusion [23] may reduce TF availability at distances
far away from the TF coding gene, coexpression can still be guaranteed because both targets
are subject to a minimal, but comparable quantity of TF proteins. This hypothesis assumes
that both target genes have the same response to their common TF, i.e. an equal concentration
of TF proteins is needed to trigger gene expression (in the case of an activator TF) or to inhibit
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gene expression (in the case of a repressor TF). Even though the assumption of equal responses
to a TF in different target genes seems a major simplification of reality, for example because of
different affinities or different numbers of binding sites for the common TF, in general, the
effect of distance on coexpression is still visible.

Alternatively, one could imagine that when promoter regions reside at small distances, they
are likely to be subject to the same degree of DNA supercoiling, bending or looping and thus
more equally accessible to common TFs than more distantly located promoter regions [16,24~
29]. In addition, colocalized promoter regions are more likely to be subject to the same degree
of RNA polymerase molecules and the same degree of DNA phosphorylation which may add
to the tightness of coregulation of nearby genes and thus to their coexpression. The observa-
tion that nearby coregulated genes tend to conserve their close distance more if they are highly
coexpressed further adds to the importance of the vicinity in driving coexpression.

It is important to remark that our definition of distance being the linear distance along the
chromosome is a strong simplification of the dynamic three-dimensional (3D) genome struc-
ture. As we currently do not have sufficient data available on dynamic 3D distances between
genes, it is difficult to know the effect of the 3D distances. However, given that TF diffusion
not only happens through 3D space but also by one-dimensional movement of TFs along the
DNA segment such as “sliding” and “hopping” [30], it is not surprising that we find that also
simply the linear genomic distance is a critical factor for coexpression of coregulated genes.

In conclusion, we systematically demonstrated that as much as genes are controlled by
common TFs, their genomic distance functions is an additional and independent factor deter-
mining their coexpression. Our assumption that TF accessibility seems to be an important
cause for enhancing coexpression at small distances, opens the door to more studies on local
levels of TF molecules and their role in driving coexpression. In future studies on transcrip-
tional regulation, distance is a critical factor to be taken into account in driving coexpression.

Materials and methods
Expression data

To retrieve E. coli expression data, we used the publicly available large-scale expression compen-
dium COLOMBOS v3.0 compiling 4077 condition contrasts for 4321 genes [13]. ‘Condition
contrasts’ do not represent single experimental conditions, but represent the difference between
a test and reference condition (the differential expression values between the respective test and
reference conditions in a particular contrast is expressed as a logratio). This concept ‘condition
contrast’ is used in COLOMBOS to render expression values comparable across platforms and
experiments. A full list of growth conditions from which the contrasts were derived as well as a
more detailed explanation for condition contrasts is available at www.colombos.net.

Operon definitions

Operons were taken from direct literature curation at RegulonDB and bioinformatics predic-
tions from ProOpDB [31]. Operon architectures were taken from ProOpDB because the accu-
racy of predictions of this database is one of the highest reported thus far (94.6%). In addition,
the operon prediction of this database did not include coexpression as information source,
whereby we avoided any circularity problem.

Coexpression measure

To quantify the degree of coexpression between any two genes, all pairwise similarities between
gene expression profiles across all experimental conditions of the expression compendium
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were calculated. We tested six different similarity measures: Pearson Correlation Coefficient
(PCC), Spearman Correlation Coefficient (SCC), Mutual Information (MI), Pearson Correla-
tion Rank (PCR), Spearman Correlation Rank (SCR) and Mutual Information Rank (MIR)
and selected SCR as the similarity measure for our study as explained in Supplementary File S1
File part 1.

Note that our assessment of coexpression only took into account positive correlation and
no anticorrelation. Although theoretically an inverse correlation could be expected, for exam-
ple, between a repressor TF and its target genes, based on this work and our previous experi-
ence [10] it appears that negative correlation coefficients are not at all common. We therefore
deliberately omitted assessing negative correlations as they would contribute relatively more
spurious associations than true correlations.

The PCR, SCR and MIR, mentioned above are rank-based derivatives of respectively the
PCC, SCC and MI and quantify how similar the expression profiles of two genes are relative to
how similar these genes’ expression profiles are to the expression profiles of all other genes (i.e.
the similarity of expression profiles measured by PCC, SCC and MI respectively). The calcula-
tion of these rank-based derivatives of the PCC, SCC and MI is based on the work of Obayashi
and coworkers [32,33]. In their work they propose the ‘mutual rank’ which is the ranked deriv-
ative of the PCC (here referred to as PCR). Below we provide details on the derivation of the
SCR from the SCC according to the procedure described by Obayashi et al. [33]. The deriva-
tion of the PCR from the PCC and the MIR from the MI is calculated analogously. The deriva-
tion of the SCR from the SCC is as follows: calculating the SCC results in a symmetrical matrix
in which each value contains the Spearman correlation between the gene expression profiles of
any two genes A and B. (Supplementary File S1 File, part 2). This SCC matrix is converted into
an asymmetric ranked matrix. To this end we assign a rank to each value in the row direction
of the correlation matrix i.e. we rank all correlation values of gene A where the lowest rank i.e.
1 is assigned to the highest SCC value of gene A in the row and further ranks are assigned in
descending order of the row SCC values of gene A. Each ranked value thus expresses how cor-
related gene A is with gene B relative to its correlation with all other genes (see Supplementary
file S1 File part 2). This results in an asymmetric matrix in which the rank assigned to the cor-
relation of gene A to B is not necessarily the same as the rank assigned to the correlation of
gene Bto A.

For each gene pair A-B an SCR value is subsequently derived by calculating the geometric
mean of the two ranked values of A-B and B-A. We used the geometric mean rather than the
arithmetic mean as this performed better as a measure of coexpression; this has been proved
by Obayashi et al [33] and also showed the best results on our benchmark (data not shown).
The added value of these rank-based derivatives of correlation in assessing the degree of coex-
pression between genes was described in the work of Obayashi and colleagues [33] and the
advantage of using these measures particularly in our setup is explained in the Supplementary
File S1 File part 2.

Modes of coregulation

Sets of coregulated genes were derived from regulatory interactions derived in RegulonDB
v9.0 [14], a database containing information on the transcriptional regulation of E. coli strain
K-12. Depending on the information that is available to support TF-gene regulatory interac-
tions, RegulonDB distinguishes between interactions with “strong” or “weak” evidence. To
ensure that the results derived in the main text were not influenced by whether or not we
included interactions with weak evidence, we tested the impact of using different sets of inter-
actions on our results, more specifically we tested a set including all interactions (i.e. those
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supported by weak plus those by strong evidence i.e. a total of 3430 interactions), a set exclud-
ing interactions supported by one type of weak evidence only (2961 interactions), and a set
containing interactions based on strong evidence only (in comparison to the previous setting
here also interactions that are supported by two types of weak evidence are excluded, i.e. 2213
interactions). Results of these tests are presented in (Supplementary Material part 4) and show
that in general the results and general conclusions hold irrespective of the type of dataset that
was used as input. In the main text the results are shown for a dataset that containing all inter-
actions except those supported by at most one source of weak evidence as this dataset offers a
trade-off between containing the most reliable interactions, but still being sufficiently large to
make statistical inferences.

Starting from the defined 2961 interactions, we derived 76891 coregulated genes used for
our analysis; these were selected by taking all combinations of two genes that are not in the
same operon (known and predicted operons as described above) and share at least one com-
mon TF with the same regulatory effect (activation, repression or dual). In total, 56235 out of
76891 coregulated gene pairs were coregulated only by a global TF and were left out: TFs with
at least 130 target genes were considered global TFs, i.e. CRP (380 target genes), FNR (150),
IHF (131), ArcA (133), Fis (268), and H-NS (140). The filtered dataset contained 11399 pairs
of genes that are coregulated by at least one of 91 non-global TFs. A full list of the 91 TFs along
with the number of pairs of genes they coregulate and per TF the mean of all pairwise distances
and mean degrees of coexpression between the genes coregulated by that TF is given in the
Supplementary Table S1 Table. Genes with a complete overlap of regulatory programs are
defined as pairs of coregulated genes for which all TFs known to be involved in the regulation
of either gene and with the same role (activator, repressor, or dual) are shared between both
genes. Genes with a partially overlapping regulatory program are pairs of coregulated genes
that do not share all of the TFs known to be involved in their regulation.

Distance measures

The distance between two genes is equal to the shortest distance (in base pairs) between the
two structural gene start positions, i.e. by taking the shortest distance along the circular chro-
mosome. Hereby, the shortest distance between two genes by definition is always smaller than
half the chromosome length (4600 base pairs or 4,6 kilo base pairs). Note that for the assess-
ment of distance conservation a different measure of distance was used (see below).

Measure of average degree of coexpression

In the plots of Figs 1-3 we took the median SCR as a measure of average coexpression degree
because the median is less susceptible to outliers (here pairs of genes with extreme low degrees
of coexpression (which means a high value of SCR) than the mean.

Identification of equidistancy to TF coding gene

To analyze the effect of equidistancy and the effect of distance to the common TF on coexpres-
sion of coregulated genes, we only considered genes that are coregulated by one common TF
(1238 pairs of genes) to exclude additional and/or confounded effects due to coregulation by
multiple TFs. Coregulated genes were considered to be located equidistantly from their com-
mon TF (i.e.,, TF coding gene), if the proportion of the smallest and the largest of the two corre-
sponding distances for each of the two genes to the TF exceeded 0.9. Pairs of genes for which
this was not the case were considered to be not equidistantly located relative to their common
TF. In total 122 pairs of genes were located equidistantly and 1116 pairs of genes were located
not equidistantly to their common TF coding gene.
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When both genes in a pair have a distance to the common TF coding gene that was < = 30
kb the gene pair was considered to be located near to their common TF coding gene or near to
TF. Alternatively if both genes in the pair had a distance to the common TF coding gene that
was >30 kb the pair was considered to be located far from the TF coding gene or far from TF.
A cut-off of 30 kb was taken by plotting the median SCR as a function of the distance of both
target genes to the TF coding gene; at a distance of 30 kb, the slope of the median SCR changes,
i.e., the rate at which the degree of coexpression decreases with the distance becomes lower
(data not shown), 30 kb thus determines the range below which the effect of the distance on
coregulation is most visible.

Measure to assess functional similarity

To assess whether pairs of genes belonged to the same functionality class according to Gene
Ontology (GO) we used the BioConductor package GOSemSim [34] that allowed calculating
the degree to which similar GO terms were associated to the considered pairs of genes. Gene
Ontology annotations were downloaded from the gene ontology website (http://geneontology.
org/page/go-annotation-file-format-20) and GO similarity between genes was calculated by
taking semantic similarity between GO terms within the “Biological Process” ontology that
were associated to the genes.

Identification of colocalized regulons

To identify different sets of coregulated genes that were genomicallycolocalized, we selected a
set of coregulated genes between which the distance genes was <10 kb. Coregulated gene pairs
within this set were used to calculate the degree of coexpression of colocalized coregulated
genes. To assess the degree of coexpression of colocalized non-coregulated genes we used the
combinations of genes from the set that were colocalized but did not share the same TF. The
Kruskal-Wallis test was used to assess differences in mean degree of coexpression between the
two sets.

Evolutionary conservation of distance

All genes and distances (as measured by the number of intervening genes) of 267 species of
gamma-proteobacteria were collected with their respective orthologs for each gene in E. coli
from GeConT [35]. In GeConT, two genes were considered to be orthologs by using Bidirec-
tional Best Hit [36]. For each pair of coregulated genes with distance D in E. coli, we extracted
N orthologous pairs of genes (with distance d) in N of 286 gamma-proteobacterial species, i.e.,
species in which orthologs existed for both genes of the E. coli pair. Conservation of the dis-
tance or distance conservation was defined as the proportion of orthologous pairs with distance
d< =D relative to the total number of orthologous pairs, with orthologous pairs being the
pairs of genes in a given species which are orthologous to two coregulated genes in E. coli. To
select orthologous pairs we only considered species for which both genes in a coregulated pair
of genes in E. coli contained an orthologous counterpart. For the evaluation of this metric, we
considered the distance between any two genes as the number of intervening genes to normalize
for the fact that the length of intergenic regions between orthologous genes can differ in differ-
ent organisms. For the selection of highly and not highly coexpressed coregulated genes we
took pairs of coregulated genes with SCR < 100 (5347 pairs of genes) and with SCR > 1000
(54936 pairs of genes), respectively.
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2.2 Segundo articulo: RegulonDB version 9.0: High-level integration of gene
regulation, coexpression, motif clustering and beyond.

Mi contribucion en este articulo fue (1) implementar una herramienta en la nueva
versiéon de la base de datos RegulonDB Ilamada Coexpression Page y (2) una pagina
que resume la coexpresidon en operones y regulones llamada Coexpression Overview.
La implementacion de la Coexpression Page permite evaluar la coexpresién para uno o
mas genes de interés; A) la coexpresion entre ellos y B) los genes mejor coexpresados
con cada uno de ellos. En la Coexpression Overview integramos una pagina que
contiene el resumen de la coexpresidn para dos grupos de interés bioldgico siendo
operones y regulones.

El uso y la aplicacién de la herramienta Coexpression Page se explica en el articulo
(Gama-Castro et al. 2015) y la Coexpression Overview se puede consultar en
http://regulondb.ccg.unam.mx/ Home page > Integrated views and tools >
Coexpression Browser.
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ABSTRACT

RegulonDB (http://regulondb.ccg.unam.mx) is one of
the most useful and important resources on bacte-
rial gene regulation,as it integrates the scattered sci-
entific knowledge of the best-characterized organ-
ism, Escherichia coli K-12, in a database that orga-
nizes large amounts of data. Its electronic format en-
ables researchers to compare their results with the
legacy of previous knowledge and supports bioin-
formatics tools and model building. Here, we sum-
marize our progress with RegulonDB since our last
Nucleic Acids Research publication describing Reg-
ulonDB, in 2013. In addition to maintaining cura-
tion up-to-date, we report a collection of 232 inter-
actions with small RNAs affecting 192 genes, and
the complete repertoire of 189 Elementary Genetic
Sensory-Response units (GENSOR units), integrat-
ing the signal, regulatory interactions, and metabolic
pathways they govern. These additions represent
major progress to a higher level of understanding
of regulated processes. We have updated the com-
putationally predicted transcription factors, which
total 304 (184 with experimental evidence and 120
from computational predictions); we updated our
position-weight matrices and have included tools

for clustering them in evolutionary families. We de-
scribe our semiautomatic strategy to accelerate cu-
ration, including datasets from high-throughput ex-
periments, a novel coexpression distance to search
for ‘neighborhood’ genes to known operons and reg-
ulons, and computational developments.

INTRODUCTION

RegulonDB is a relational database that offers, in an orga-
nized and computable form, updated knowledge on tran-
scriptional regulation in Escherichia coli K-12 (1). Regu-
lonDB, first published in 1998, captures the results of a
continuous effort to this day (2). Our curation work also
feeds the EcoCyc database (3), which together with Reg-
ulonDB are the major sources of organized information
for the best-known bacterial genome model organism. For
years we have expanded the number of objects and their
properties in our database, always enriching the modeling
of the molecular components governing transcription ini-
tiation, as we strive to keep up-to-date with new method-
ologies. We have also enriched the modeling of gene regula-
tion, proposing new concepts, such as regulatory phrases
(4) and, more recently, GENSOR units (genetic sensory-
response units) that link signals, the associated regulatory
interactions and the regulated response as metabolic and
cellular capabilities (5). Briefly, RegulonDB facilitates ac-
cess to organized information on the mechanisms of tran-
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scription initiation; more precisely, RegulonDB organizes
the available information on the shadows and fingerprints
of these mechanisms in the genome.

Here we present progress since the last Nucleic Acids Re-
search (NAR) paper, published in 2013 (1). We have kept our
curation up-to-date, including regulation by small RNAs
(sRNAs); we report a rather complete repertoire of elemen-
tary GENSOR units, each one integrating the network of
regulatory interactions and metabolic pathways affected by
one transcription factor (TF). This additional information
represents major progress for our focus on integrative ap-
proaches to facilitate not only information but also summa-
rized knowledge given the high granularity of most biolog-
ical processes. We have updated the set of computationally
predicted TFs, as well as the high-quality position-weight
matrices (PWMs) for each TF with sufficient binding sites,
and we have included a novel browser based on a clustering
of such matrices that reflects their grouping into TF evolu-
tionary families.

We are well aware that a critical barrier in genomics is
how to accelerate access to and processing of the large
amounts of information and knowledge that are continu-
ously generated. Curation is a bottleneck for facilitating the
capability to digest the tsunami of genomic knowledge. This
motivated us to initiate the implementation of assisted cura-
tion by means of natural language processing (NLP) strate-
gies, thanks to a collaboration with Dr Fabio Rinaldi, an ex-
pert in the field. Our initial results capturing growth condi-
tions are promising, although there is a long way to go. Cu-
ration of high-throughput (HT) datasets (i.e., chromatin im-
munoprecipitation [ChIP] variants, microarrays, gSELEX
and transcriptional start site [TSS] mapping) is a delicate is-
sue, since we do not want to dilute the high-quality classical
experiments with the massive but more fragmented knowl-
edge that these methodologies produce. Our current solu-
tion, as discussed in detail below, is at the crossroads of
two paradigms: the classic one of a relatively well-organized
genome with promoters and binding sites involved in regu-
lation of transcription initiation, and one inundated by scat-
tered promoters and binding sites, many of which we do not
yet know if they are involved in transcriptional regulation.

Another avenue linking RegulonDB data at this time with
HT-generated profiles of expression is the capability we have
implemented for evaluating the similarity of coexpression
of any two genes, based on the COLOMBOS microarray
library of experiments. We offer those similarity values for
all operons and regulons. Finally, additional computational
developments are summarized.

RESULTS

The RegulonDB version 9.0 release contains all the data
described below, the sSRNAs, elementary GENSOR units
and HT datasets. Literature curation is typically up-to-date
within 2 months on average for each release.

AN UPDATED COLLECTION OF INFORMATION ON
REGULATORY sRNAs

Classic regulation of transcription initiation governed by
TFs affecting promoter activity has been the major focus

of RegulonDB. However, as years have passed we have ex-
panded our curation to include regulation by small metabo-
lites and proteins targeting RNA polymerase directly, as
well as regulation by sSRNAs. The regulatory potential of
sRNAs is magnified when we take into account the fact that
some sSRNAs regulate the expression of genes themselves in-
volved in regulation of many genes, such as sigma factors
(like sigma32), global TFs (like H-NS) and other local TFs
(like OmpR) which indirectly affect the expression of nu-
merous genes.

We present an updated, integrative view of the known E.
coli SRNAs. In our manual curation, we considered only
data supported by experimental evidence, with the large
majority supported by strong evidence (i.c., based on RT-
PCR), except for 10 sSRNAs supported by microarray ex-
perimental data. A total of 120 sSRNAs with 231 total in-
teractions are included in this collection, which all together
regulate 192 genes. This collection includes detailed and
high-quality information about the known regulatory inter-
actions of SRNAs, such as the binding motifs in the targets.

COMPREHENSIVE SEMIAUTOMATIC CURATED ELE-
MENTARY GENSOR UNITS

A GENSOR unit, a short term for ‘genetic sensory-
response unit, initially defined by Gama Castro et al. in
2011 (5), is a novel concept that from our perspective places
regulatory mechanisms in their natural biological context,
as part of a flux of information that starts with a change
(appearance of a signal) that elicits a regulated response.

Since the 2013 article, we have updated 45 already-
curated GENSOR units and added 144 new GENSOR
units, to a total of 189. We defined the boundaries of the
GENSOR unit concept and its constituents: currently all
GENSOR units are elementary, since they are limited to a
single TF, starting with the signal, all reactions from the
signal to the effector binding the TF, the effect of the TF
active conformation on the regulated genes, the regulated
transcription units (TUs), their mRNAs, products and the
reactions of these products. If any enzyme is part of a multi-
meric complex, all the monomers of the complex are added
(even if they are not directly regulated by the TF). These
144 new GENSOR units have been curated by a semiauto-
matic method that starts with a pipeline of programs that
extract all information pertinent to a GENSOR unit from
the RegulonDB and EcoCyc databases; such data are subse-
quently manually revised and curated and used to generate
the visual map available in RegulonDB. The full methodol-
ogy, motivation and relevance of this integrative new con-
cept will be published elsewhere (Ledezma et al., manuscript
in preparation).

GENSOR unit components and their interactions place
a TF and its regulatory mechanisms in a larger context, pro-
viding evidence in many cases for the TF’s role in decision-
making processes and information flux from the signal to
the elicited genetically encoded response.

For the process of GENSOR unit construction, we con-
sidered the need to reflect relationships between metabolites
where two or more are in the same metabolic pathway only
a few reactions apart, specifically in coregulated pathways,
since some reactions are not necessarily regulated by the TF
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that defines a particular GENSOR unit. In RegulonDB ver-
sion 7.0, we included ‘super-reactions’ to include these re-
action gaps. In this most recent version of RegulonDB, we
have limited the number of reaction gaps to a maximum of
three. Reactions have to be successive and present among
EcoCyc’s metabolic pathways. Three is the average number
of total reactions in EcoCyc pathways; since the median
number of reactions is 2, this limit allows more than 50%
of the pathways to be completed by reaction gaps in their
respective GENSOR unit.

RegulonDB 9.0 hosts a GENSOR unit for each local TF
(6) for which there is experimental evidence in the database.
A total of 103 TFs have a known effector in RegulonDB,
including 25 two-component systems. When available, the
four components of the GENSOR unit are highlighted: the
signal, the signal processing, the genetic switch and the re-
sponse. By default, effectors are considered signals, unless
a reaction that produces the effector is present in the GEN-
SOR unit, in which case the substrate of that reaction is
deemed the signal and the reaction itself becomes part of
the signal processing. Directionality of reactions is consid-
ered in the identification of the four components, as well as
for the addition of reaction gaps.

A total of 78 GENSOR units have their four components
highlighted; 119 include the genetic switch and the response,
and 2 contain only the genetic switch. We believe this gradi-
ent of knowledge is a reflection of both the information that
we have yet to discover and the cooperation among TFs to
orchestrate complete biological processes. GENSOR units,
apart from revealing the precise role of the activity of a
TF in cellular metabolism, are the building blocks of larger
GENSOR units that will describe decisions encoded in the
genome in response to changes in the environment.

GENSOR units for which there is sufficient information
about their four components have a short written summary
describing the higher-level flow of information portrayed.
For example, the Betl GENSOR unit (Figure 1) shows
that external choline is transported inside the cell, where it
binds to BetI and allows the activation of genes involved in
the conversion of imported choline to glycine betaine. This
information comes from the interactions between the ele-
ments in the GENSOR unit, rather than from the elements
alone, thus describing the unit with the higher granularity
of description, which is more appropriate to understanding
physiological and biochemical processes.

The RegulonDB portal has a Web page with the complete
list of GENSOR units grouped either by the transduction
mechanism or by the signal that initiates a flux of regulated
processes (available in the menu under ‘Integrated Views
& Tools/RegulonDB Overviews/GENSOR Unit Groups’).
Images comply with the Cell Designer (7) graphical nota-
tion (8). Cell Designer 4.4 XML format files are available
for download for all GENSOR units and their components.
Users interested in importing GENSOR units into SBGN-
compatible tools can download pure SBML level 2 version
4 XML format files.

We redesigned the Web page for GENSOR units, and this
page now contains three sections: the graphical map of the
elementary GENSOR unit, its general properties, including
the written summary and a section for the properties of each
reaction.
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UPDATED TF FAMILIES, POSITION-WEIGHT MATRI-
CES AND THEIR GROUPING IN CLUSTERS

A core component of the transcription machinery is the TF-
binding site (TFBS) interaction. In this section, we describe,
first our incorporation of an updated set of computationally
predicted TFs. Second, we have updated the construction
of PWMs for TFs with sufficient known TFBSs. Third, we
offer the clustering of TFs based on the similarities of their
matrices.

Updated set of predicted TFs

We updated the set of computationally predicted TFs, based
on recent work by Perez-Rueda et al. (9). A total of 184
TFs experimentally characterized and for which informa-
tion was deposited in RegulonDB (1) were used as seeds
in BLASTP searches against the complete proteome of E.
coli. E-values of <le-6 and a coverage of 70% were required
for a TF to be considered a putative TF. In addition, TFs
specifically associated with E. coli K-12 and deposited in the
DBD, HAMAP (10), Superfamily DB (11) and PFAM (12)
databases were retrieved. Superfamily and family assigna-
tions were based on Superfamily annotations (11), PFAM
(12) and the Conserved Domain Database (CDD) (11-
14). Forty-two groups of paralogs defined by BLASTP (14)
comparisons for which the E-values were <le-6 and for
which coverage was at least 50% of any of the proteins in
the alignment were identified in the total set of TFs.

In total, the repertoire of TFs comprises 304 proteins.
Of these, 184 are experimentally described in RegulonDB
and 120 are predictions. These proteins can be classified in
78 different evolutionary families based on PFAM, CDD
and Superfamily annotations. The most abundant family
(LysR) entails 46 proteins (15% of the total number of
TFs), although for almost 50% of these there is not any
experimental evidence. Two additional large families were
also identified, AraC/XylS (26 proteins) and GntR (20 pro-
teins). An important improvement of the previous predic-
tions is the elimination of false positives, such as for trans-
posases and integrases.

Of the 184 experimentally described TFs, those for which
we have identified binding sites are the subject for PWM
construction and clustering, as described in the following
section.

Updated set of PWMs

A minimum of four annotated TFBSs is required for build-
ing a motif in the form of a PWM. There were enough sites
to build a motif for 93 TFs, 7 more than in the previous
version; the full set of sites include 3195 TF — gene regu-
latory interactions. Using different sequence lengths (vari-
ation of 4 bp around the annotated binding site length),
programs (MEME and consensus) and background models
(orders 0 and 1), we evaluated the different motifs available
for each TF and selected the one with the best quality (15).
At the time of the RegulonDB version 8.0 release, we had
evaluated the quality of PWMs by taking into account (i)
the information content conservation across the PWM; (ii)
the false-positive rate for recovering 70% of the annotated
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Figure 1. The Bet] GENSOR unit. The signal and signal processing, in this case transport of choline through the membrane, are shown in blue. The genetic
switch, i.e., repression of berT and berIBA transcription units, is shown in yellow. The response is shown in green: production of BetT, a choline transporter,

and BetA and BetB, enzymes responsible for the utilization of choline.

sites; (iii) the difference between the observed distribution
of scores in the upstream regions on E. coli K-12 versus the
theoretical distribution; and (iv) the level of overfitting of
the PWM to the original sequences used to build it (1).

We were able to obtain a high-quality matrix for 60% of
the TFs, 10% more than in the previous version. This ver-
sion includes motifs for seven TFs that fulfilled only the re-
quirement for four binding sites, plus nine TFs for which
the quality increased from low to good. A flat file with the
PWDMs in consensus format was added in the downloads
page of the website. Additionally, in the ‘Integrated Views &
Tools’ section, a browser allows navigation through each TF
and the distributions that support the quality of the PWMs.

Using the evaluated set of motifs, we found 16 207 pre-
dicted binding sites in the upstream region of the E. coli
K-12 MG1655 uid57779 genes, where upstream regions are
defined as —400 bp upstream to 50 bp downstream from
the start codon (16,17). This set of predicted binding sites
corresponds to 12 574 TF — gene regulatory interactions;
this represents a recovery of 52% of the 1592 annotated
regulatory interactions in the database for the 93 TFs for
which we have a PWM, which represents a 9% improvement
from the previous RegulonDB version. If only TFs with a
good-quality PWM are taken into account, the total num-
ber of predicted TF — gene interactions is 8714, recovering
672 (57%) of annotated interactions for this TF subset. The

TFBS predictions can be obtained from the ‘Dataset’ menu
in the ‘Computational Prediction’ section.

Clustering of PWMs

TFs belong to evolutionarily related families, where mem-
bers of the same family tend to share a significant similarity
of protein domains that bind to DNA, which in bacteria are
most frequently helix-turn-helix motifs.

The 93 PWMs available in RegulonDB, built as men-
tioned before, were analyzed with the program matrix-
clustering (16), a tool that groups similar PWMs. Given
the high similarity of motifs of proteins of the same fam-
ily, this program can be used to identify TF-binding mo-
tifs (TFBMs) that belong to phylogenetically related TFs
or DNA-binding proteins that recognize similar DNA se-
quences. The clustering can be displayed as a collection of
hierarchical trees (forest), where each tree represents a clus-
ter with its global alignment of PWMs. Additionally, a heat
map representation with an all-versus-all PWMs compari-
son is also now possible.

We found 47 clusters formed by PW Ms corresponding ex-
clusively to TF's of the same family (e.g. AraC, Lacl, NarL,
GntR and NagC). The alignments of these PWMs show
the conserved and non-conserved positions between them.
These groups of PWMs are summarized as Familial Bind-
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ing Profiles (FBP) (14), a general PWM that represents a
collection of similar motifs highlighting the similar posi-
tions of the clustered PWMs, which allow us to potentially
have one FBP for each TF family.

The PWMs were grouped as follows: (i) all the motifs
were compared to each other using two metrics to mea-
sure their similarity (the Pearson correlation coefficient and
a normalized version of the Pearson correlation relative to
the width of the match between two aligned PWMs) (18,19).
(ii) The motifs were grouped with hierarchical clustering,
using the standard UPGMA method (http://arxiv.org/abs/
1105.0121). (iii) The hierarchical tree was cut using as the
threshold a combination of different metrics values; the tree
is cut in a collection of trees (a forest). (iv) Each tree is used
as a guide to create a progressive alignment of the PWMs.
(v) The clusters are represented both as trees and as heat
maps (see http://www.rsat.eu/).

The browser that enables the user to see the collection
of PWMs in a hierarchical tree is available via the ‘Inte-
grated Views & Tools’ menu, in the ‘Browse RegulonDB’
section in the ‘Clustering of RegulonDB PWMs’ option.
Also in the same section, there is a link to display a circular
browser (Figure 2), developed with the D3.js JavaScript li-
brary (http://d3js.org/), that integrates the information from
families, the TFs and their PWMs.

IMPLEMENTING A SEMIASSISTED CURATION
STRATEGY

Given the large amount of biological data generated day
by day as a result of research in various laboratories, man-
ual curation represents a bottleneck to facilitate access to
knowledge in an organized way. We therefore have initiated
the implementation of NLP methods in collaboration with
the OntoGene group, to enhance the efficiency of curation
to keep up with the flood of knowledge and publications, as
reported recently (20).

We developed an ad hoc interface called ODIN (The On-
toGene Document INspector) to curate the literature sup-
porting the knowledge in RegulonDB. The input for ODIN
entails full papers, and the output is an interface with sev-
eral tools to facilitate their curation. We have initiated the
process of assisted, or semiautomatic, curation in a very
cautious manner, focusing on missing pieces of knowledge,
such as growth conditions (GCs) under which specific reg-
ulatory interactions (RIs) have been identified.

To do so, filters were created that display in ODIN only
those sentences in a paper that contain the data we need to
curate; therefore, we do not have to read the full article, but
only the phrases that should contain the RIs and GCs. The
data we have curated in the traditional way, as is the case
with RlIs, serve as a control to benchmark this new method.
In the case of OxyR, we identified all 20 RIs (100%) that
had been previously curated, and we identified the GCs for
16 of them (20).

After reporting the work of OxyR, we used the same
strategy to identify the GCs of SoxR and SoxS Rls; we
identified 27 of the 28 (96%) RIs of SoxS and obtained the
GCs for 13 of them. This lower number may be due to non-
specified growth conditions reported in the papers, such as
when performing in vitro experiments for overexpression of
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TFs. We also identified 3 out of 3 RIs of SoxR and the
GC for 2 of them (see Table S1 in supplementary material).
Therefore, now we have in RegulonDB the GCs for 31 RIs,
including the OxyR GC-RI pairs, and we will continue to
work with other TFs to identify their GC-RI pairs. We will
use these results for a cyclic improvement of our assisted
curation strategies.

This semiautomatic process enables us to increase the ef-
ficiency of curation; however, currently there is a total of
3195 RIs for 199 TFs. This shows the long way we have to
go in order to curate all GCs for the RIs. These numbers
make clear the necessity for implementation of an assisted
curation strategy. We are also motivated to implement NLP
filters, not only for new properties but also for a more pre-
cise and comprehensive curation, as in the case for methods
associated with evidence codes.

Identification and annotation of methods

All data added to the database contain the evidence that
demonstrates the existence of each object or interaction
of regulation. We use a set of evidence codes (see http:/
regulondb.ccg.unam.mx/evidenceclasification) for this pur-
pose. These evidence codes are derived from more than one
method that is reported in the literature, as in the case of
the evidence to identify TSSs of promoters, “Transcription
initiation mapping,’ that could be related to the methods of
primer extension, SI mapping or 5’-RACE, among others.
This level of description is common to major resources, such
as the GO (Gene Ontology) and EcoCyc databases.

A virtue within RegulonDB that we implemented since
2008 is, on the one hand, a simplified classification of ‘weak’
and ‘strong’ levels of confidence for all evidence sources.
Strong confidence essentially requires physical evidence for
the existence of the object or interaction (21). What is most
interesting is the specific algebra of the combinations of ev-
idence that can be considered independent from each other
and therefore can be added to increase the overall degree
of confidence for an object or interaction, including cross-
validation of strong confidence supporting the ‘confirmed’
level of confidence (22).

Motivated by this previous work, we started a project
with the group OntoGene to extract the methods for all
objects and interactions contained in RegulonDB. We initi-
ated the project by identifying the experimental methods of
primer extension and northern blotting. These methods are
the most easy to identify by text-mining methods, because
very specific words are used to describe them, as opposed
to other methods. Northern blotting is commonly used to
identify TUs, whereas primer extension is used to identify
TSSs of promoters. The objects that were identified with
these methods are listed in RegulonDB with strong evidence
codes. We took all the papers that are linked to only one
promoter or one TU in RegulonDB, where the promoter
or TU had the evidence code for “Transcription initiation
mapping’ and ‘Length of transcript experimentally deter-
mined,’ respectively. Subsequently, using ODIN filters, we
did a search for the words ‘primer extension’ and ‘north-
ern blot’ in each set of papers. To increase the confidence
in these text-mining strategies, we included the requirement
that in the phrase(s) that identifies the method, the name
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Figure 2. Circular Browser. Transcription factors (TF) classified in their evolutionary families, based on PFAM, CDD and Superfamily annotations.
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of the TU/promoter has to be present too. Of course, we
read all these phrases and checked if they were correct. We
identified the method of primer extension for 227 promot-
ers and that of northern blotting for 110 TUs. We plan to
expand these strategies to extract additional methods and
other objects and knowledge from the literature.

CURATION OF HIGH-THROUGHPUT DATASETS

HT experiments generate a large number of scattered frag-
ments of knowledge. By default, we add such information,
with peaks already processed by the authors of the curated
papers, as datasets separated from the database, but avail-
able, for instance, for display as tracks as part of the differ-
ent resources in RegulonDB. Our manual curation efforts
are focused on extracting the subset of objects (binding sites
and promoters) that have additional evidence supporting
them, as well as to combine different experiments that con-
gruently support an object. For instance, ChIP-based exper-
iments identify sites that occur within coding regions (23),
which may have nothing to do with transcriptional regula-
tion or at least there is not yet evidence of such involvement.
Similar concerns may be raised with TSSs identification.

In some cases, a subset of the results is subject to further
analysis, such as EMSA, footprinting, northern blotting
and/or matrix analyses for site identification. Currently, we
add a regulatory interaction in the database only for sites
with strong evidence for TFBSs-validated sites (22) and
where additional knowledge assigns the function of the TF
on the regulated gene, such as ChIP-exo complemented with
RNA-seq analysis (24,25). This illustrates the rationale of
our approach to combine the data of different HT experi-
ments to integrate these new data with existing knowledge
in the database.

There are more than 38 transcriptional regulators (TFs)
whose sites have been identified by ChIP methodologies,
and this number may increase to 200 TFs for which genomic
SELEX screening has been done (26), with data available
and published for 17 TFs. A summary of the currently cu-
rated datasets is shown in Supplementary Tables S2 and S3.
Extraction and curation of this type of data is particularly
difficult, because the generated information shows a great
variety in terms of formats of the results, and only the cen-
tral peaks around the binding site for a TF are shown (e.g.
200-300 nt).

There are several HT-dedicated repositories and re-
sources of microbial experimental results, such as TBDB
(27), CollectTF (28) and RegTransBase (29), which hold
curated motif data from HTs sources with links to GEO
from NCBI (30) and to ArrayExpress from EMBL-EBI
(31); databases with expression profiles, such as COLOM-
BOS (32), which offers a variety of tools for analysis,
M3D (33) and GenExpDB (http://genexpdb.ou.edu/main/).
For a broader context of these resources and many more
related to gene regulation, users can visit our link to
additional resources (http://regulondb.ccg.unam.mx/menu/
about_regulondb/additional_resources/index.jsp).

Our work does not duplicate those efforts, since our main
goal is to detect evidence that can be added to either exist-
ing objects in RegulonDB and/or that can be combined to
support knowledge of higher granularity.
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HT data generated by gSELEX and ChIP-exo

We curated in RegulonDB ChIP-chip data for the PurR reg-
ulon by using validation data (22). For gSELEX, we gen-
erated two tables, one with raw data (data gSELEX peaks)
and the other for cross-data comparisons, i.e., gSSELEX and
microarrays data for H-NS and LeuO (34); ¢SELEX and
consensus sequences for the transcription factor CRP (35).
Only a few cases were uploaded to the database from ChIP-
exo plus RNA-seq analysis (24,25). The results generated
for both methodologies are summarized in Supplementary
Tables S2 and S3.

HT dataset for TSSs under three conditions

The dataset for 14 868 TSSs from the Storz lab has
been curated. It includes 5495 TSSs corresponding to po-
tential antisense RNAs (asRNAs). These data were gen-
erated from RNA-seq and prediction algorithms under
three different biological conditions: the MG1655 wild-
type strain grown to exponential phase or stationary phase
in LB medium as well as the wild-type strain grown to
exponential phase in M63 minimal glucose medium (36)
(see also http://regulondb.ccg.unam.mx/menu/download/
high_throughput_datasets/index.jsp).

COEXPRESSION DISTANCE AROUND THE REGULA-
TORY NETWORK

One of the extensive uses of HT technologies is for the de-
velopment of global expression profiles. As mentioned be-
fore, dedicated databases with information on E. coli in-
clude COLOMBOS (32), M3D (33) and GenExpDB (http:
//genexpdb.ou.edu/main/).

For years, RegulonDB has offered links that allow users
to upload gene sets to search for their expression profiles
in COLOMBOS (www.colombos.net). In addition to these
links, we have implemented tools for a full comparison of
expression of groups of genes across all conditions.

The ‘Coexpression’ page can be reached directly from
the search option. A single query gene or a group of genes
are added either manually, based on the set of interest to
the user, or are automatically uploaded as a collection of
genes defining operons or regulons (from their correspond-
ing pages). The result will be a list of the top 20 genes
(the default quantity) that have the highest similarity in
coexpression, from the set of all experiments present in
COLOMBOS across all conditions. There is a single best
list for each one of the genes in the input list, which can be
browsed on the ‘Coexpression’ page. These lists include rel-
evant information for the input genes, i.e. the gene product
name, the operon to which the gene belongs, the regulators
for which the gene has binding sites, and ontological classes
of processes in which the gene participates. In the next re-
lease of RegulonDB, in an additional section, we will show
coexpression by providing color charts to facilitate visual-
ization.

In addition, in the most recent RegulonDB release, we of-
fer a coexpression overview for two groups of input genes:
operons and regulons. For dual regulators, regulons are also
separated into what we call ‘strict regulons,” that is to say,
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groups of target genes subject to the same effect (activa-
tor, repressor or dual effect) by a TF. For each group, i.e.
each operon, regulon or strict regulon, we display a browser
containing the following sections: the name of the group,
the genes contained in the group, a ‘coexpression matrix,’
the ‘coexpression distribution’ of the group, and the ‘top
best coexpressed’ genes. The ‘coexpression matrix’ section
enables the user to see the coexpression values of genes
with other genes within the group, and the ‘coexpression
distribution’ section shows a plot of the probability den-
sity distribution of the coexpression values of the genes
within the group, contrasted with a background. For ex-
ample, the coexpression distribution of the strict regulon
‘CRP,+’ shows the coexpression probability density distri-
bution ofall genes activated by CRP with each other, in con-
trast with the coexpression probability density distribution
of all remaining genes in the genome. The ‘top best coex-
pressed’ section offers a list of additional genes that show
the highest coexpression with the genes in the group.

Additional genes that are most highly coexpressed with
a group of genes are identified by calculating the top best-
scoring medians of the set of coexpression values of any
additional gene with each gene of the group. This is cer-
tainly an interesting question for any set of query genes, but
it is computationally intensive, since for every pair of in-
put genes, we need to identify the intersection of output co-
expressed genes. We have therefore precalculated the group
values for operons and regulons.

To quantify coexpression for all combinations of gene
pairs, we implemented a rank-based approach, using data
available in COLOMBOS version 2.0, which contains ex-
pression profiles of 2470 different, contrasting conditions.
The method and results will be described in detail in a pa-
per to be submitted by Pannier ez al. Gene coexpression is
typically quantified by pairwise correlation analysis across
large expression compendia. However, these analyses are
difficult to interpret because of the highly variable distribu-
tions of such correlation coefficients. We use a rank-based
approach that normalizes the differences between the range
of correlation coefficients between genes, which allows com-
parisons of coexpression strengths among genes despite the
large variability of expression values.

COMPUTATIONAL ADDITIONS

In order to facilitate searching for information, we imple-
mented a free word-searching tool based in Elastic Search
(https://www.elastic.co). This tool enables identification of
synonyms for any object, in order by relevance and high-
lights the searched elements.

New features of our website

Search results. A new view was added to the display of
search results by regulon, at the request of our users. When
the user selects ‘regulon search’ without giving a term, all
the regulons are displayed in a table with the regulon name,
the total regulated genes, the total regulated operons, the to-
tal binding sites and the total regulatory interactions. The
user can sort using any column of this table.

Gene page. We created a new section named ‘Elements in
the selected gene context region unrelated to any TU in Reg-
ulonDB.” In this section, users can find biological objects in
the vicinity of a gene that are not part of its TU, such as the
many TSSs near the micF gene, to mention one example. In
addition, the same gene page in the section called ‘Operon
arrangement’ has links to the operon page. Each promoter
is linked with the corresponding TU that it transcribes.

Sigmulon page. We have included the sigma signal trans-
duction map with a link showing the details of the reactions
contained in the map.

Datasets. In the submenu related to the datasets, included
in downloads, we have integrated new information related
to the TSSs experimentally determined in the laboratory of
Dr Morett. The TSSs are included in the file named ‘High-
throughput transcription initiation mapping. Illumina di-
rectional RNA-seq experiments where total RNA received
different treatments to enrich for 5-monophosphate or 5'-
triphosphate ends.” These objects are included in the new
section ‘Elements in the selected gene context region unre-
lated to any TU in RegulonDB,’ previously described.

Impact of RegulonDB.  Figure 3 shows the accumulated ci-
tations for each RegulonDB paper by year and the concomi-
tant expansion of new objects and properties related to the
regulation of gene expression that we curate. RegulonDB
plays a central role in the development and testing of novel
approaches of gene regulation in bioinformatics, compara-
tive genomics, and systems biology, and it is the model to
inspire similar approaches and studies for any other organ-
ism, including pathogenic bacteria (37-39). Evidence of its
usefulness is apparent from the more than 1200 citations in
published articles, in addition to the many citations for the
EcoCyc database, which incorporates our curation work.
Within the ‘Features’ menu, we have added this type of in-
formation, showing the impact of RegulonDB, such as the
number and type of journals for publications that have cited
our RegulonDB-related publications.

Releases. The release that corresponds to this paper is ver-
sion 9.0. Major changes to the overall navigation and struc-
ture of the main pages have been made, offering more struc-
tured access to the data, based on the two dominant types
of users: biologists, usually conducting individual search
queries, and those interested in data collections.

CONCLUSIONS

RegulonDB is a complex evolving system. As mentioned in
the ‘Introduction’ section, through the years we have gradu-
ally expanded both the content and level of detail of the bio-
logical data as well as the diverse types of experimental and
bioinformatics sources of knowledge that nurture our un-
derstanding of gene regulation in E. coli K-12. A simplified
diagram of our work is shown in Figure 4, with a triangle
representing integration of data, information and knowl-
edge; we do not mean absolute definitions of what is data
or information, but simply provide relative concepts of the
hierarchical nature of a highly granular knowledge. In the
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we curate.

following discussion, we try to locate the major advances
reported in this paper in this context.

For instance, the tsunami of HT-generated data is an ef-
fort that appears at the bottom, where decisions of what
to represent where (datasets versus integrated sites in the
database) reflect the tension of a classic paradigm of a rea-
sonably well-organized genome, as opposed to one inun-
dated by promoters and binding sites of unknown function.

Since the challenge of encoding this flux of knowledge is
occurring faster than our human abilities and resources to
keep our work up to date, we need to develop novel strate-
gies. The assisted curation by means of NLP methodologies
illustrates our efforts to implement strategies and test and
improve them to accelerate our curation work. A direct ben-
efit in years to come will be to have curated all specific con-
trasting conditions for each regulatory switch. Expansions
to our work include the coexpression comparative metrics,
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Figure 4. Schema of types of methods and content in RegulonDB.

enhanced collection of sSRNAs regulation and clustering of
PWMs and their grouping into TF evolutionary families.
A landmark for this publication is the clear progress of the
comprehensive collection of GENSOR units in an effort to
enrich the top of the pyramid via overviews agglutinating
large amounts of information that should make sense as a
unit.

Briefly, we are guided by electronically editing in a struc-
tured way from the low granularity of details of mechanisms
to the higher granularity regarding description and abstrac-
tion that offer broader perspectives to our understanding of
the machinery and processes of E. coli’s way of life.
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CAPITULO 3: PERSPECTIVAS

3.1 Perspectivas del analisis genémico

Perspectiva general:

En estudios futuros de la corregulacion transciptional serd importante considerar
gue la cercania gendmica y la corregulacion tienen un efecto sinérgico sobre los
niveles de coexpresion.

Perspectivas especificas:

v

La combinacién de cercania gendmica, corregulaciéon (predicha) y coexpresién
alta ofrece una opcién de validar predicciones para ligas en las redes de
regulacion transcripcional.

En cuanto se vaya completando la informacién sobre la red de regulacién
transcripcional en E. coli K-12, al rehacer este estudio se tendrd un
conocimiento robusto sobre el efecto de cercania gendmica en el control
coordinado de expresién génica.

Es factible que en el futuro se obtenga informacion de distancias 3D dinamicas
entre los genes, por lo cual este andlisis se podrd realizar de forma mas
completa ya que serd conforme al contexto gendmico real de los genes.

Al estudiar el efecto de la distancia en la coexpresién de genes corregulados,
habrd que tener en cuenta que la distancia tiene un papel particularmente
importante en genes con una corregulacién no estricta (i.e. cuando el
sobrelape de sus programas de regulacion es pequefio relativo a la parte de sus
programas de regulacién que no tienen en comun).

En este trabajo encontramos indicaciones que la cercania de genes
corregulados implica coexpresién alta por que a distancias pequefias, los genes
blancos de un FT comun estarian expuestos a cantidades de proteinas de ese FT
similares. Para poder validar estos resultados, sera necesario realizar un
estudio experimental para determinar la localizacion dindamica (en el tiempo y
en el espacio) del FT, por ejemplo, visualizando la difusién de las proteinas FT
en el tiempo agregandoles una etiqueta fluorescente.

El mismo analisis se podra realizar en otros genomas microbianos con redes de
regulacién conocida.

Hay varias indicaciones de que la corregulacién, la coexpresidn y la vecindad de
genes, aumentan la probabilidad de que esos genes compartan una o multiples
funciones metabdlicas (Michalak 2008). Entonces, la integracion combinada de
vecindad y coexpresién podria aumentar el poder predictivo de herramientas
que permitan construir redes regulatorias, metabdlicas u otras redes
funcionales.

Este estudio constituye un paso en el camino de entender los patrones de
como la distancia gendmica entre los genes participa en controlar Ia
coexpresion génica a través de la corregulacion transcripcional. Con este tipo
de analisis, poco a poco podremos anticipar como los sistemas bioldgicos y su
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actividad genética se comportardn, tanto en gammaproteobacterias, en otras
familias de procariontes, o incluso en eucariontes.

3.2 Perspectivas de la metodologia

Hemos propuesto una nueva métrica de coexpresion llamada Spearman Correlation
Rank (SCR) que fue inspirada en la métrica propuesta por Obayashi y collegas
(Obayashi et al. 2011) (ver el primer articulo, seccion 3.1, para una descripcion). SCR
tiene dos ventajas sobre las medidas de coexpresidn que hoy en dia se utilizan
comunmente (la mas comun siendo Pearson Correlation Coefficient): que es intuitiva, y
gue es comparable entre genes a nivel gendmico. Es decir, la SCR de un par de genes
de interés es intuitiva y facil de interpretar: un SCR de 1 para un par de genes significa
gue su nivel de coexpresidon es mas alto que el nivel de coexpresién de ellos con todos
los demds genes, un SCR de 2 el segundo mas alto, etc. Ademas, la SCR es facil de
comparar entre genes por que es una medida directa de la significancia de su
coexpresion de este par de genes relativamente a los SCR de este par con los demas
pares de genes.

Por estas razones, consideramos la SCR como métrica comprensiva de coexpresion
apta para analisis de coexpresion, sobre todo los de escala gendmica.
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APENDICE

Material supplementario del primer articulo

S1 File. This file contains the following sections:

A WLNR

Selection of a similarity measure to quantify coexpression

Rank-based similarity measures compensate for conditional dependency

The degree of coexpression of genes that are coregulated in E. coli is generally low
Evidence classification of interactions in RegulonDB

Evidence of horizontal gene co-transfer in genes with strong distance conservation
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1. Selection of a similarity measure to quantify coexpression

To select the similarity measure that best
captured the degree of coexpression between
two coregulated genes in our setting, we
compared six similarity measures, i.e. three
similarity measures commonly used to quantify
coexpression, the Pearson Correlation
Coefficient (PCC), Spearman Correlation
Coefficient (SCC) and Mutual Information (Ml),
and their rank-based derivatives, which we
defined as respectively the Pearson Correlation
Rank (PCR), Spearman Correlation Rank (SCR)
and Mutual Information Rank (MIR) (the
calculation of these measures was explained in
Materials and Methods).

As a benchmark, we used genes located within
the same operon (using all combinations of
genes within the same operon according to the
operon set of RegulonDB [1]), as these are
expected to be highly coexpressed. To exclude
the effect of regulatory elements within
operons, we only considered in the benchmark
pairs of operonic genes that are contiguous and
that are not separated from each other by an
internal promoter or terminator.

This resulted in a positive set of 602 gene pairs
(N = 602) which were expected to be highly
coexpressed. These were referred to as
constituting the True Positive (TP) set. As a
negative control, 10000 random gene pairs
were sampled and referred to as True Negative
(TN) set. For both the positive and negative set,
we calculated the PCC, SCC, MlI, PCR, SCR and
MIR across all conditions in COLOMBOS.

As an illustration, Fig A shows the frequency
distributions, i.e. the number of gene pairs, of
respectively the TP and TN sets that were
coexpressed within a given range of the SCC
and within a given range of SCR (its rank-based
derivative). SCR values of contiguous operonic
genes are localized at the utter left of the SCR
distribution which is the most significant
region, while the SCR distribution of the TN set
(genes in random pairs) is uniform.

In contrast, for the SCC the majority of TP pairs
have a degree of coexpression that ranges from
approximately 0.1 to approximately 0.7. In
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contrast to what is observed for the SCR, for
the SCC the majority of TP seem to cover a
large range of values: 86% of TP gene pairs
have an SCC within the interval [0.25, 0.75],
which covers 50% of the full positive range of
SCC (positive range is the range that looks at
correlation and not at anticorrelation i.e. [0-1]),
whereas 86% of TP gene pairs have an SCR
within the interval [1, 30], which covers only 7%
of the full range of SCR.

This means that according to the SCR the
majority of TP gene pairs are highly
coexpressed, whereas when assessing the
coexpression with the SCC it is intuitively more
difficult to interpret whether the true positives
have a relatively high or low coexpression
degree.

This was formally confirmed by assessing the
performance of each measure for its ability to
classify TP (within operonic genes) and TN
(random gene pairs) based on their degree of
coexpression. This ability was quantified by
calculating the Area Under the Curve (AUC)
from the ROC curve (Table A). The AUC equals
the probability that a classifier will rank a
randomly chosen positive instance higher than
a randomly chosen negative one. In other
words, the higher the AUC is, the better the
measure is able to separate TP pairs from TN
pairs based on their differences in coexpression
behaviour.

In Table A the Area Under the Curve (AUC) is
given for each of the six tested similarity
measures as a quantification of how well each
measure distinguishes between the TP and TN
gene pairs. The highest AUC (0.998)
corresponded to SCR using the corresponding
distributions of the TP and TN pairs. This
implies that TP and TN can be best separated
using their coexpression behaviour measured
by SCR.

Overall, because SCR a) performs best in
distinguishing TP from TN (Table A), b) provides
a measure of coexpression behaviour that is
more comparable and interpretable between
gene pairs (Fig A) SCR was used as coexpression
measure in all our analyses.



PCC SCC M PCR SCR MIR

AUC |0.9738 |0.9888 |0.9609 |0.9816 [0.9933 |0.9726

Table A. Area Under the Curve (AUC) as a performance measure for the similarity measures PCC, SCC, M,
PCR, SCR, and MIR. The AUC calculated from the ROC curve quantifies the ability of a measure to
separate TP from TN, in this case a measure of coexpression to separate contiguous pairs of operonic
genes from random gene pairs. The first three columns of Table A represent PCC, SCC and M|, and the
next three columns represent their corresponding PCR, SCR and MIR values.
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2. Rank-based
dependency

The rank derivatives of the standard used PCC,
SCC and MI inherently normalize for the
variability in ranges of PCC, SCC and MI values
that can be observed between genes in a given
dataset and hereby facilitate comparing
degrees of coexpression between gene pairs.

Consequently part of the reason why the SCR,
as a rank-based derivative of the more
classically  used Spearman Correlation
Coefficient performed so well in our study is it’s
improved ability to compensate for the
conditional dependency of transcriptional
regulation than the standard used coexpression
measures, such as PCC, SCC or ML. In our study,
coexpression between genes was measured
across all experiments of the expression
compendium, irrespective of the conditions
under which the genes were effectively
coexpressed and thus assumed to be
coregulated. When using standard correlation
measures such as PCC, SCC or MI, genes that
are coregulated under a low number of
conditions only because of sample biases in the
compendium, will by definition exhibit a low
degree of measured coexpression [38]. As a
result with standard coexpression measures,
such as PCC, SCC or MI it is difficult to
distinguish between a low degree of
coexpression and/or coregulation or a high
degree of coexpression and/or coregulation
that was observed in a small subset of the

similarity measures
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compensate for conditional

conditions only. Both situations give rise to low
measured degrees of coexpression. For the
rank-based derivatives of the PCC, SCC or Ml on
the contrary this is less of an issue, as they
express the expression similarity of one gene
versus the other gene in a gene pair (i.e., A
versus B) relative to the expression similarity of
both A versus all other genes and B versus all
other genes as mentioned. Thus, even when
two genes are highly coexpressed in a small
subset of the conditions only, their SCR value
might still be equally high as that of genes that
are coexpressed under a large set of conditions.
Therefore, rank-based derivatives of PCC, SCC
or Ml are expected to be more robust against
biases in the number of samples of specific
conditions in the compendium.

Our results show that this is indeed the case
(Fig B): in our positive control, pairs of genes
that are supposed to be coexpressed
consistently receive consistently high
coexpression values (low SCR) when using a
coexpression measure based on the SCR
whereas the range of their Spearman
correlation values (SCC) is much wider. For
instance for the two operonic genes essD and
rrrD, the SCC is 0.28 (low correlation which
means a low degree of coexpression degree)
whereas the SCR of 3.87 (i.e. a low SCR which
means high coexpression degree).
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Figure B This figure displays for the positive control i.e. operonic genes that are expected to be well
coexpressed, their pairwise Spearman Correlation Coefficient or SCC (Y-axis) as a function of their
pairwise Spearman Correlation Rank or SCR (rank-based derivative of SCC) (X-axis). It shows that for
most pairs of within operonic genes, their coexpression degree as measured by the SCR is generally
higher (low SCR meaning high coexpression degree) than their coexpression degree assessed by the SCC.

3. The degree of coexpression of genes that are coregulated in E. coli is

generally low

In general it is assumed that genes that are
coregulated by the same Transcription Factors
(TFs) tend to be highly coexpressed [2]. To
have an intuition of the absolute degree of
coexpression of coregulated genes in E. coli we
compared their coexpression with that of genes
that are located in the same transcription unit
(operonic genes) and that thus should display
the maximal levels of coexpression.

To this end we evaluated the degree of
coexpression genes located (1) in the same
operon, versus the degree of coexpression of
genes that are (2) coregulated but not within

the same operon (definitions of operons and
coregulated genes are described in Materials
and Methods).

The degree of coexpression of operonic genes
and coregulated genes as measured by SCR was
shown in Fig C by boxplotting the SCR values for
respectively operonic (left panel) and
coregulated genes (right panel).

Operonic genes were mostly highly
coexpressed (low SCR), while the majority of
coregulated non-operonic genes displayed
much lower degrees of coexpression (high SCR).
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Fig C. Coexpression of genes within operons and of coregulated genes in E. coli. Coexpression degrees of
operonic genes and coregulated genes are shown by boxplots of SCR values of gene pairs extracted from
respectively operons (left panel) and of gene pairs coregulated by at least one TF (right panel).

4. Evidence classification of interactions in RegulonDB

RegulonDB distinguishes between TF-gene
interactions supported by strong versus weak
evidence. Interactions are classified as ‘based
on strong evidence’ if they are supported by at
least one source of strong evidence and ‘based
on weak evidence’ if they are supported by
weak evidence only. According to RegulonDB,
“Weak evidence is a single evidence with more
ambiguous conclusions, where alternative
explanations, indirect effects, or potential false
positives are prevalent, as well as
computational predictions; for instance gel
mobility shift assays with cell extracts or gene
expression analysis and Strong evidence is a
single evidence with direct physical interaction
or solid genetic evidence with a low probability
for alternative explanations; for instance,
footprinting with purified protein or site
mutation.”

To ensure that the main conclusions of our
analyses were not influenced by whether or not
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we included interactions with weak evidence,
we tested the impact of using different sets of
interactions on our result, more specifically we
tested:

- a set including all interactions supported by
both weak or strong evidence (i.e. 3430
interactions corresponding to 98795
coregulated gene pairs)

- a partially reduced set of interactions
excluding interactions supported by at most
one type of weak evidence only (i.e. 2961
interactions corresponding to 78772
coregulated gene pairs or 86% of the number
of coregulated gene pairs of the full set of
coregulated gene pairs)

- a set of strongly evidenced interactions only
containing interactions based on strong
evidence only - in comparison to the previous
setting here also interactions that are



supported by two types of weak evidence are
excluded (i.e. 2213 interactions corresponding
to 30894 coregulated gene pairs or 31% of the
full set of coregulated gene pairs).

We redid the analysis represented in the main
text with each of the datasets mentioned
above (all interactions, partially reduced
dataset and the dataset containing strongly
evidenced interactions only). Fig D represents
the effect of the distance on the degree of
coexpression as obtained for each of the
datasets. Overall tendencies were similar,
irrespective of the dataset that was used.
Except for the case where genes are
‘coregulated by 1 TF with complete overlap of
regulatory programs’ the tendency observed
for the effect of the distance on the degree of

coexpression was different between the results

obtained for the different datasets and
especially non-monotonic for the most

Allinteractions

stringent dataset (only interactions supported
by strong evidence, blue dotted curve, right
lower panel). Because of the non-monotonic
behavior in case of the most stringent
condition, we believe that in this setting the
dataset becomes too small to observe a
consistent behavior (this dataset contained
1046 pairs of genes instead of 1461 pairs of
genes in case of the partially reduced dataset).

Results thus show that in general conclusions
are not affected by including weak interactions.
As the partially reduced dataset offers the best
trade-off between using high confidence
interactions and still offering sufficient data to
observe tendencies, all the results in the main
text were obtained with this dataset.
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Fig D. Effect of coregulation tightness and of the distance between coregulated genes on the
coexpression degree for different types of datasets. Left upper panel: all interactions, right upper and
left lower panel: partially reduced dataset, right lower panel: strongly supported interactions only. The
coexpression behavior of coregulated genes was disentangled, depending on whether the regulatory
programs displayed complete overlap (c.0.) versus partial overlap (p.o.) (blue versus orange) and
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depending on the number of common TFs present in the overlapping part of their regulatory program

(dotted line for 1 TF versus full line for >1 TF).

5. Evidence of horizontal gene co-transfer in genes with strong distance

conservation

As explained in the results we found indications
that for highly coexpressed genes located in
each other’s neighborhood on the genome
there is an evolutionary constraint on
conserving their small distance. Because
evolutionary conservation of close distance of
genes has been associated with horizontal gene
co-transfer we evaluated whether highly
coexpressed genes that are nearby located and
that have strong distance conservation show
evidence of horizontal gene co-transfer.

Hereto we selected cases of coregulated genes
that were located at small distances (< 5
intervening genes), that were highly
coexpressed (SCR < 100), which had an
orthologous counterpart in most other species
(> 90% of gamma-proteobacteria) and for
which the intergenic distance was highly
conserved (distance conservation > 0.4). This
resulted in 75 pairs of nearby located
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