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ABSTRACT 

Two phase flows are important in many industrial application covering food and 

cosmetic emulsions, transport of particulate fluids, exploitation of crude oil, among many 

others.  On the long term, the relevance of multiphase flows may be even more significant, 

in at least two branches of knowledge.  Material science advances will require a detailed 

analysis of processes with systems composed of more than one phase, especially their 

surface energies or interfacial tensions, which play an important role when particles 

smaller that a micron are involved. Also, which may become most relevant, is the capture 

and sequestration of CO2 —by adsorption methods— demanding a better understanding of 

multiphase equilibria and transport processes in multiphase flows, regardless of the use of 

liquids or zeolites as substrates.   

However, in order to propose a model for the macroscopic description of any of 

these possible applications —via simple rheological constitutive equations— having a 

detailed balance of microscopic stress fields is essential.   In general, the quest for detailed 

dynamics of two-phase flows is still a rather out-of-reach endeavor.   Thus, a rather 

complex, associated problem but much simpler than the complete flow is a detailed study of 

the micro-hydrodynamics of a single drop embedded in a shearing flow. Although this 

problem may seem at quick sight of a rather simplified nature, it already addresses many of 

the relevant phenomena and basic principles valid for the large set of problems mentioned 

above.  Thus, it is within this field that the objective of my work is set; and I attempt to 

provide a detailed view of some prevailing questions using numerical simulations. 

A complete understanding of the particle or drop dynamics in the suspending fluid is 

still lacking mainly because of the non-linear nature of the occurring phenomena, especially 

due to an interface that is deformable by the stress field.  In particular, complex phenomena 

are observed whenever large deformation of the drops occurs, which are most frequently 

encountered with strong flows —with rates of elongation greater that the rate of vorticity. 

Thus, the issue of this thesis was to observe the drop deformation of drops 

immersed in elongational flows with vorticity, in contrast to the previous work published to 

date that addresses problems in flows such as simple shear flows, or 2-, 3-dimensional 

purely elongational flows.  These flows hardly cover the flow regimes regularly found in 
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nature or encountered in applications and provide a limited insight into the ample 

spectrum of possible deformation dynamics of drops.  Here I present the predicted 

dynamics of drops for a large family of flows that encompasses all the previously mentioned 

flows under a variety of parameters of relevance for applications, such as interfacial 

tension, ratio of viscosities of the fluids, strength of the flow and type of applied flow. 

Using comparisons between my numerical results with earlier experimental, 

numerical and theoretical studies  (Acrivos & Lo, 1978), (Bentley & Leal, 1986b), (Kwak & 

Pozrikidis, 1998), (Reyes, 2005), (Ha & Leal, 2001), (Rosas I. Y., 2013), and (Zhao & 

Shaqfeh, 2011), I attempt to offer a systematic and complete overview of all results 

consistent with the basic hydrodynamic equations.  In particular, I address the question of 

whether deformed drops present middle cross-section of a circular form, or whether the 

prevalent form is an ellipsoidal shape.   Once this point is settled on the most general 

shape, the next point addressed is whether these asymmetries imply different relaxation 

mechanisms for the different measures of deformation for the main axes.  Furthermore, 

with this information, an attempt to evaluate the interfacial tension of the drop for a 

retracting drop is carried out. 

Subsequently, I attempt to describe the dependence of the dynamics of these 

different shape forms on parameters such as the viscosity ratio, the shear rate of the flow, 

the capillary number, and the parameters that describe the flow types (here evaluated).   

With these sets of data, for the time-evolution of drop deformations, is possible to 

elucidate the existence of a large class of drop forms, as well as the associated set of 

solutions for these two-phase flows. The surprising aspect of these results is that drop 

shapes are not only non-circular, but stable form of drop exists that resemble more a 

guarache shape (a highly flattened out drop), which in turn implies the possibility of a 

large class of internal and external flows, and thus imply a rather complex impact on the 

stress fields of the fluid not previously evaluated.  Here, the implication for appropriate 

macroscopic models for the internal structure of these rather simple flows could be a 

serious setback when assuming the possibility of simple models.  Nonetheless, I attempt 

to provide some discernment of about the topics mentioned above.  
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CHAPTER 1.
 Study of the deformation of a drop 

 

 

 

 

 

In the science of materials, multiphase fluids, i.e., fluids composed by two or 

more different substances, are frequently found in industrial applications, e.g. crude 

oil or pharmaceutical industry, et cetera.  Some examples of application of two-phase 

fluids are: (a) industrial separators, whose function is to separate various substances; 

(b) sprays or reactors, to manipulate several substances in order to make another 

fluid that combines properties of the separate phases, or to produce another (new) 

material, (c) polymeric manipulation or (d) analysis of multiphase microfluids as DNA 

analysis.  These applications motivate the study of multiphase fluids. 

In particular, these complex systems are classified as emulsions —whenever the 

two phases are liquids—, dispersions (for a liquid phase that supports solid particles), 

or colloids —when particles are smaller than a few microns.  Understanding of the 

behavior of these systems requires assuming a different subset of basic physical 

phenomena and is of importance for many relevant applications.  The variety of 

phenomena observed implies a rather complex nature being the result of changes in 

the structure of the flow at multiple scales of length and time, simultaneously.  

However, these observed phenomena imply an extreme complexity, their full 

physical understanding has not been up to date amenable.  Rather, a more limited set 

of parameters or experimental phenomena has been the acceptable approach, albeit 

with a more limited accessible scope.  A possible starting point of relevance for the 
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above observations —(Taylor, 1932), (Lamb, 1945), (Batchelor, 1967)— is the study 

of deformation of a single drop induced by an equally simple flow.  This has been the 

starting pattern for theoretical studies since the seminal Ph. D. thesis of A. Einstein, 

the experimental work by G. I. Taylor, and many important numerical simulations 

carried out in the previous decades.  Thus, this work focuses on the fluid mechanics of 

a two-phase fluid: a pair of immiscible fluids that may have different values for the 

relevant properties as will be discussed in the next Section.  

The earliest studies of multiphase fluid showed the extreme difficulty of this 

topic of research.  Lord Rayleigh in 1879 studied the capillary effects in jets, (Rayleigh, 

1879) observing the detailed instabilities of two phase flows.   Albert Einstein made a 

treatise to analyze a simple prototype of multiphase fluid (Einstein, 1906).  In 

Einstein’s work, the viscosity of a suspension of little spherical particles immersed in a 

continuum fluid is reported —these rigid solid spheres could model the presence of 

little drops with an enormous viscosity compared to that of the continuum fluid.  The 

next seminal work comes until 1932 when Taylor used a more detailed description of 

the second phase (Taylor, 1932).  Taylor assumed that particles were not rigid, as 

Einstein did, presenting a theoretical analysis of a 2D-flow applied on the continuum 

phase, with a single particle immersed.  This approximation is the simplest 

configuration of a two-phase fluid which encompasses the basic fundamental 

phenomena, and which in turn incorporates the mathematical methods required for 

such line of work. 

With these previous reports, the detailed study of the drop dynamics —a single 

drop of a fluid called the disperse phase— embedded in a second fluid —called the 

continuum phase— established one of the basic tools for further advances.  Sir 

Geoffrey Ingram Taylor said in the first treatise of experimental device of drop 

deformation that “When one liquid is at rest in another liquid of the same density it 

assumes the form of the spherical drop.  Any movement of the outer fluid (apart from 

pure rotation or translation) will distort the drop owing to the dynamical and viscous 

forces which then act on its surface”, (Taylor, 1934).  It is assumed that the two fluids 

are immiscible, and their interaction is described by the forces that generate the 
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deformation of the interface separating both fluids.  Since this work, the study of drop 

deformation has been fundamental to understanding the fluid mechanics of 

multiphase fluids phenomenon, and here I expand our understanding of the applied 

forces to those induced by strong flows that are well describe for the continuum 

phase. 

Many important subsequent theoretical studies to Taylor (Taylor, 1932), have 

been published by R. Cox, Barthès-Biesel, A. Acrivos, E. J. Hinch, and J. M. Rallison 

among the most relevant during the last century: (Taylor, 1964), (Cox, 1969), (Frankel 

& Acrivos, 1970), (Barthès-Biesel, 1973), (Acrivos & Lo, 1978), (Rallison, 1978), 

(Astarita, 1979), (Hinch & Acrivos, 1979), (Rallison, 1980), (Hinch & Acrivos, 1980), 

(Brady & Acrivos, 1982), and (Rallison, 1984).  At the same time, experimental devices 

were used to observe drop deformations immersed in a fluid within a well-controlled 

flow.  Especially, for simple shear flow machines:  (Rumscheid & Mason, 1961), (Torza, 

Cox, & Mason, 1972), (Grace, 1982), (Guido & Villone, 1997), (Guido, Greco, & Villone, 

1999), (Guido & Villone, 1999), (Mo, 2000), (Guido & Greco, 2001), (Wannaborworn, 

Mackley, & Renardy, 2002), (Yu, Bousmina, & Zhou, 2004). As well as flows of an 

elongational type: (Taylor, 1934), (Bentley & Leal, 1986a), (Bentley & Leal, 1986b), 

(Stone, Bentley, & Leal, 1986), (Stone & Leal, 1989a), (Stone & Leal, 1989b), (Ha & 

Leal, 2001) (Rosas, Reyes, Minzoni, & Geffroy, 2014), (Escalante, Reyes, Rosas, & 

Geffroy, 2015), and (Rojas, 2016).  These two type of flows complement each other, 

however showing rather distinctive and unique phenomena which depends on the 

parameter space; many of these features are discussed in this thesis.  

The previous studies showed that the flow type may lead to a systematic 

classification of the shapes of the drops, with more cylindrical shapes for elongational 

types of flows —an elongated prolate with a quasi-circular waist—, while the simple 

shear flows cause deformations that flatten the waist of the ellipsoid along the direction 

of vorticity of the flow.   These complex shapes appear to require multiple solutions to 

the governing equations, which are difficult to probe experimentally and very difficult 

to solve with the theoretical tools currently available. 
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Finally, numerical models have been used to study those cases when the experi-

mental device or the theoretical predictions cannot fill gaps in our understanding of the 

drop dynamics:  (Youngren & Acrivos, 1975), (Rallison & Acrivos, 1978), (Rallison, 

1981), (Unverdi & Tryggvason, 1991), (Kennedy, Pozrikidis, & Skalak, 1994), 

(Loewenberg & Hinch, 1996), (Zinchenko, 1997), (Pozrikidis, 1997), (Kwak & 

Pozrikidis, 1998), (Coulliette & Pozrikidis, 1998), (Primo, Wrobel, & H., 2000), 

(Khayat, 2000), (Pozrikidis, 2000), (Yuriko, Renardy, & Renardy, 2000), (Cristini, 

Blawzdziewicz, & Loewenberg, 2000), (Huo, Lowengrub, & Shelley, 2001), 

(Blawzdziewicz, Cristini, & Loewenberg, 2003), (Kim & Lowengrub, 2004), 

(Bazhlekov, 2004), (Reyes, 2005), (Khismatullin, Renardy, & Renardy, 2006), 

(Subramanian & Koch, 2006), (Young, Blawzdziewicz, Cristini, & Goodman, 2008), 

(Mählmann & Papageorgiou, 2009) (Sohn, Yu-Hau, Li, Voigt, & Lowengrub, 2010), 

(Zhao & Shaqfeh, 2011), (Reyes, Minzoni, & Geffroy, 2011), (Ramalingam, Ramkrishna, 

& Basaran, 2012), (Lalanne, Tanguy, & Risso, 2013), (Spann, Zhao, & Shaqfeh, 2014), 

(Escalante, Reyes, Rosas, & Geffroy, 2015). 

This work addresses the dynamics of drop deformations immersed in an 

immiscible fluid that occurs under a large class of linear 2D-flows, a class that has been 

poorly studied until the experimental work of Rosas, (Rosas, Reyes, Minzoni, & Geffroy, 

2014).  It is based on a numerical technique that describes the 3-dimensional evolution 

of shape of the drop using a Boundary element method algorithm.  In Chapter 1, I present 

the fundamentals of the theoretical and numerical implementation of the algorithms.  

Then in Chapter 2, my numerical results are matched against theoretical, experimental 

and other numerical results of drop deformation, including conventional flows such as 

simple shear flow or extensional 2D-flows.  Chapter 2 addresses mainly the correct 

calibration of the numerical method implemented for this work. 

Chapter 3 and 4 address flow effects on drops with small or large viscosities. 

Chapter 3 presents results in strong flows of drop deformations with very low ratios 

of viscosity.  The numerical data were compared with the theoretical results of Taylor 

and Cox. Experimental data of Rosas (Rosas I. Y., 2013) were used to calibrate the 

numerical results.  Then, I present an analysis of the 3D-effects of the shape of the drop 
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as a consequence of the imposed flow.  Chapter 4 presents results when the drop has a 

larger viscosity than the fluid that contains the drop.  Again, the experimental data of 

Rosas were used and the 3D effects of the drop were analyzed. 

The deformation attained by the drop along different directions is also 

presented in detail in Chap. 3 and Chap. 4.  The classification of different shapes and 

its correlation with different type of flows motivated an analysis of the characteristic 

time-scales for the elongation of the principal axes of the drop.  Chapter 5 presents an 

overview of the time-scales of drop deformation.  The first part of Chap. 5 focuses on 

the time required to attain the steady state deformation.  After the deformation 

process is arrested, retraction of the drop to its spherical shape is predicted.  

However, different axes have different deformation, and also clearly different time-

scales.  The second part of Chap. 5 focuses in the retraction times associated for all 

three axes.  Thus, under this new environment, evaluation of the interfacial tension 

during the process of retraction is rather complex.  And in the last part of Chap. 5, I 

investigate possible corrections to the standard techniques for determination of 

interfacial tension by matching experimental against numerical retraction processes.  

The necessity to carry out this comparison is due to the fact that those techniques 

assume shapes of the drop that differ from the shapes and time-scales predicted in 

latter Chapters. 

The effects of the intensity of the flow, G, on the drop form have not being 

observed in detail in previous works.  In Chapter 6, the importance of the intensity of 

the flow in the stationary state of deformation is evaluated.  As the strength of the flow 

increases, the role of interfacial tension becomes non-homogenous, becoming weaker 

normal to the direction of the flow; that is, reduced by the presence of vorticity.  

Consequently, the observed solution at weak shear rates shows a bifurcation with 

well-defined critical values; future possible studies are described as a result of this 

work. 

In Chapter 7, I investigate the slender body theory for drops in extensional flows.  

The earlier study of extensional flows by Acrivos, Lo and Hinch is based on asymptotic 

domain expansions assuming an axisymmetric behavior: as a result of a slender 
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ellipsoid of revolution.  Hence, its principal limitation appears when solutions of the 

non-axisymmetric shapes are looked for.  With the BEM-3D numerical method new 

questions are also addressed, based upon the transition of drop shape classes 

observed in extensional 3D- versus 2D-flows.  The former flow always induces 

axisymmetric shapes, while the latter flow is neutral in the third dimension, and the 

observed shapes resemble more to “squashed ellipsoids” perpendicular to the plane of 

the flow.  Those questions are studied as well for the transition observed in the linear 

planar flows. Chapter 8 is the extension of Chapter 7 because another bifurcation of 

the shape deformation can be observed.  This latter bifurcation of the solution takes 

place for drop deformations observed during the transition from simple shear flow to 

extensional 2D-flow. 

Chapter 9 contains my brief overview of the detailed dynamics of the 

deformation of a drop when embedded in a large class of flows, and a discussion of the 

results of this numerical study.  The problems solved and unsolved by the method and 

new branches of study in the drop deformations in strong flows.  

1.1 Background 

Properties of multiphase fluids are well characterized under statics conditions. 

However, when these systems are under flow, the presence of surfactants or multiple 

length-scales, the approximations in the calculus of the global properties or the 

complex nature of the observed phenomena, the dynamic of inter-phases —essential   

to the global properties of this kind of fluid— dictate that the description of the fluid 

dynamics turns to be hard.  In this Section, I describe all of the assumptions made for 

the study of the deformation of a drop immersed in another fluid (this being the 

simplest case of a multiphase fluid).  To incorporate all effects mentioned above, it is 

necessary to characterize simultaneously the fluid dynamics of each fluid as well as 

the stress balance at all points of the interface.  However, this case presents a large 

variety of technical difficulties, with some depending mostly on the numerical 

approximation and others due to the complex nature of the fluid dynamics of two 

fluids with an evolving interface.  In the worst cases, there is a combination of those 

possible situations. 
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Therefore, my analysis of drop deformation assumes two Newtonian fluids, Fig. 

1.1.  The first (inner) phase is the drop with viscosity , while the continuum phase 

viscosity is .  The viscosity ratio is = ⁄ , and the interfacial tension on the 

interface is . The two fluids have the same density and both are immiscible.  There is 

not surfactant and there are no Marangoni stresses present (these due to a 

heterogeneous distribution of surfactant). 

 
Figure 1.1. Scheme of a two-phase fluid. Drop in stationary shape. = 0.012, = 0.13 and 

 =  0.40. (a) 3D-view of the drop within an applied 2D-flow shown on the -
plane. (b) Conventional characterization of deformation on the -plane: L and B. 
(c) Cross section of the drop: W being the third deformation length scale. 

Creeping-flow conditions are assumed. In the creeping-flow regime the motion 

of the fluids is governed by the Stokes equations Eq. (1.1), and continuity equation Eq. 

(1.2), (Leal, 2007), for each fluid. 

 =   ,                                                                (1.1) 

∙ = 0 .                                                                   (1.2) 

The velocity field  is continuous over the drop interface S.  Tractions exerted on the 

two sides of the interface between the two fluids have two different values, with a 

corresponding discontinuity: 

  ∆ = − = ( − ) ∙  ,                                               (1.3) 
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where  is the normal vector pointing out of S and the stress tensor is represented by 

.  In this work, a constant value of interfacial tension  (Pozrikidis, 1997) is assumed; 

i.e., ∙  is equal to twice the mean curvature    at that point on the interface, and 

∆ =   ∙ = 2   .                                                      (1.4) 

The drop is subjected to (immersed in) a two-dimensional linear flow: 

( , , ) =
1 +

( , − , 0)  ℎ   ( , , ) → ∞,                            (1.5) 

where  is the intensity of the rate of deformation tensor of ( , , ). The expression 

for , Eq. (1.6) shows the definition made by Makosco, (Makosco, 1994).  The linear 

flows given by Eq. (1.5) were used in all simulations except for the analysis of 

extensional flows in Chap. 7 and Chap. 8. There, the analysis of the flow is like those of 

Eq. (1.5), but  

= (| |)½,                                                                (1.6) 

is estimated as Eq. (1.6) in all cases for 2D-effects. The flow-type parameter is  

(Bentley & Leal, 1986b), (Reyes, Minzoni, & Geffroy, 2011), (Rosas, Reyes, Minzoni, & 

Geffroy, 2014), (Escalante, Reyes, Rosas, & Geffroy, 2015), Eq. (1.7). 

The parameter  measures the relative contribution of vorticity versus the 

contribution of the rate deformation of the flow, (Reyes, Minzoni, & Geffroy, 2011). 

=
‖ ‖ ‖ ‖

‖ ‖ ‖ ‖
  .     (1.7) 

The term  corresponds to the rate deformation tensor =  ( + ), 

(Makosco, 1994).  is the objective vorticity tensor defined by Astarita = −   , 

(Astarita, 1979). The class of 2D-flows, i.e., the configuration of linear planar flows can 

be understood using Fig. 1.2.  Figure 1.2 shows the most relevant flows in 2D. 

Makosco establishes the measure of the intensity of the flow as a measure of the 

second invariant of twice the rate of deformation tensor, i.e.: 

= ( ( ) − ( ).     (1.8) 
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In order to apply the correct intensity of the flow in these numerical 

simulations, Makosco’ s expression was used together with the contribution of the 

-parameter: 

 | | = (1 + ).     (1.9) 

 
Figure 1.2 The better known planar linear flows in 2D. Definition of weak flows and strong flows 

using the parameter α. 

Here, the parameter  values range from zero to one, thus Eq. (1.5) corresponds 

to a class of 2D-strong flows.  When the value of = 0, the strong flow with the highest 

content of vorticity is produced (Fig. 1.2, center), which corresponds to simple shear 

flow and with the velocity gradient in the  direction.  The value of  is equal to the flow 

shear rate = .  For a value of = 1 we have a pure two-dimensional extensional 

flow—no vorticity (Fig. 1.2 right)—; the principal axes of deformation are at = , the 

compressional axes being at = − ; the intensity of the flow is the strain rate = . 

Thus, the dynamic of drop deformation appears to be characterize by three 

dimensionless numbers. The viscosity ratio , the capillary number Ca, Eq. (1.10) and 

the flow-type parameter , Eq. (1.11).  Later, other parameters appear to be equally 

important. 

The capillary number characterizes the ratio between viscous stresses —

imposed by the flow— and capillary forces that resist the deformation and drive the 

drop towards the equilibrium shape; were  is the non-deformed radius of the drop. 

= .                                                                  (1.10) 
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The results presented in Chapter 3 and Chapter 4 were calculated for a range of 

values of the flow-type parameter  close to simple shear flow, i.e., = 0.03, = 0.05 

and = 0.13. Even though these values appear small, these flows are capable of 

significant deformations of a drop, while maintaining a good degree of control on the 

magnitude of deformation when compared with pure elongational flows. These types 

of flows have until recently been studied experimentally are no numerical data has 

been published to date, (Rosas I. Y., 2013). 

The applied flows cover a range of capillary numbers from 0.0 < ≤ . 

For the smallest values of  used here, the drop shape does not present significant or 

relevant differences of its principal shape parameters; for values of ≃ , the 

deformation is not yet sufficient to cause drop break up.  In Chapter 3, the continuum 

phase is more viscous than the drop: = 0.012.  In contrast, the drop has a larger 

viscosity than the continuum phase, = 15.68, for results presented in Chap. 4.  The 

values of flow-type parameter, capillary numbers and the viscosity rate were chosen 

so that numerical predictions match the values of the experimental results of Rosas, 

(Rosas, Reyes, Minzoni, & Geffroy, 2014). 

The principal measure of drop deformation used during most of the last 

century corresponds to Taylor’s deformation (Taylor, 1934): 

=
( − )
( + )

,                                                       (1.11) 

were L and B being the axes of the drop shown in Fig. 1.1b. Additionally, to Taylor’s 

deformation a secondary scale is used that corresponds to the ratio between the 

lengths of the axes of the deformed drop normalized by the initial radius. Later, other 

measures are introduced. 

1.2 Numerical method 

The Boundary Integral formulation was proposed by Ladyzhenskaya, 

(Ladyzhenskaya, 1963) within the framework of hydrodynamic potentials. Then, 

Brebbia formalized the Boundary-Integral Equation Method (BIEM), (Brebbia, 1978) 

and introduced the terminology Boundary element method (BEM). In this Section, the 
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basic equations necessary for the numerical implementation of this computational 

method are presented. The numerical method used is the 3D-collocation boundary 

element method (Pozrikidis, 1992) 

In the Stokes regime, Eq. (1.1), the Stokes Equation can be rewritten as 

∙ = −  +   ,                                                    (1.12) 

were = − + (  +  ) is the stress tensor. 

Let us consider two unrelated Stokes flows with velocities  and ∗ and 

associated stress tensors  and ∗.  The Lorentz reciprocal theorem or Lorentz 

Theorem establishes the possibility of evaluating a solution if another known solution 

exists.  For the Stokes regime (Happel & Brenner, 1963), (Leal, 2007), and (Pozrikidis, 

1997). It implies that 

∙ ( ∗ ∙ − ∙ ∗) = 0.                                                      (1.13) 

This is the counterpart of Green’s second identity for harmonic functions 

(Lorentz, 1907). In other words, any solution can be expressed in terms of known 

solutions without having to solve the Stokes Equation explicitly.  

Integrating Eq. (1.13) over a volume control, and using the divergence theorem 

to obtain 

( ∗ − ∗ ∗) = 0,                                              (1.14) 

were = ∙ , and  is the unit normal vector point out the volume of control. 

The complete velocity field of a drop immerse in another fluid can be calculated 

using Eq. (1.14).  The use of analytical free-space solutions is an important feature of 

Boundary element method.  These fundamental hydrodynamic solutions are applied in 

the governing equation Eq. (1.12), to solve the velocity field of the interface.  

The hydrodynamic solution corresponds to Green’s function of Stokes flow.  

This function provides the velocity and pressure fields that satisfies the continuity 

equation Eq. (1.2). 
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− ∗ + ∗ + ( − )  ≡ 0                                           (1.15) 

were the vector  is a constant vector, and ( − ) is the tridimensional delta 

function centered at ∈ .  Equation (1.15) is a representation of a modified stress 

tensor of the Green’s function.  Physically, Green’s function expresses the flow due to a 

point force located at  (named pole or source point), along the direction and strength 

of ; valid in the absence or presence of boundaries.  Green’s functions are named 

fundamental solutions or propagators. 

Solving the velocity field for this point source in Eq. (1.15) implies that 

∗( ) =
1

8
( , ) ∙ ,                                                   (1.16) 

∗( ) =
1

8
( , ) ∙ ,     and                                        (1.17) 

∗( ) = − ( , ) + ( , ) + ( , ) =
1

8
( , ) ∙   ;              (1.18) 

were ( , ),  ( , ) and ( , ) are the Kernels or the Green’s functions. 

For an infinitely unbounded flow, as in this work, the free-space Green’s 

functions are used.  These functions are: 

( , ) = − +  ,                                                    (1.19) 

( , ) = 2  and                                                      (1.20) 

( , ) = −6  ;                                                     (1.21) 

were ( , ) is named Stokeslet or Ossen-Burgers tensor, ( , )is the stress field 

called Stresslet (which is a symmetric tensor), = − , and = ‖ ‖.  

The velocity field at the interface is obtained using point sources (Stokeslets 

and Stresslets) on the interface of the drop, in conjunction with Lorentz theorem.  

Considering, on the surface of the drop, Stokeslets and Stresslets for every collocation 
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point respectively (Leal, 2007), (Prosperetti & Tryggvason, 2007), and (Pozrikidis, 

1992), then, the numerical scheme is given by: 

( ) −
1

8
∆ ( ) ∙ ( , ) ( )                                                                          

+   
1 −

8
( ) ∙ ( , ) ∙ ( ) ( ) =

 ( )                  1. 22 ),
1 +

8
( )     1.22 ),

   ( )            1. 22 ).

 

In this equation, there are three cases. Case (b) solves the velocity field when  

is on the surface of the drop.  With this information, case (a) calculates the velocity 

field when  is outside of the drop —exterior flow.  Finally, Case (c) calculates the 

velocity field for  being inside the drop. 

The flow imposed on the continuum phase is determine by ( ): the velocity 

field faraway.  The second term on the left side of Eq. (1.22b) is known as the Single-

Layer Potential and evaluates the projection of the velocity field of a distribution of 

point forces with the stresses across the interface. The third term of Eq. (1.22b) is 

known as the Double-Layer Potential and is used to evaluate the velocity field at the 

interface. The boundary element method has the advantage of reducing a 3D 

computation problem into a 2D-evaluation; i.e., the method requires to solve the 

velocity field on the surface of the drop, using Eq. (1.22b) and with this information is 

possible to know the velocity field inside and outside of the drop. 

1.2.1 Numerical implementation of the computation of drop deformation in strong 

flows 

The numerical scheme solves the Stokes flow equation for an instant of time, 

Eq. (1.22b).  The evolution of the drop shape is carried out using the velocities 

obtained at the collocation points on the interface to advance each point for a small-

time interval.  By means of an interpolation subroutine the velocity at all the nodes is 

calculated and then the new position of the drop (at ( + ∆ ) ∈ ) is evaluated.  For 

the evaluation of the Single Layer Potential, an approximation of the local curvature of 

the drop is used on curved triangles using Eq. (1.4).  A quadratic interpolation 
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throughout these triangles is carried out to obtain the mean curvature of the elements 

of the drop.  In this manner, the mesh of the interface and the algebraic system of 

equations of the boundary elements is smaller than those of other more conventional 

numerical schemes, such as e.g., finite differences.  The next Subsections explain, in a 

detailed form, every component of the numerical algorithms written for this 

numerical study. The accompanying CD-ROM contains copies of the Fortran 2010 

codes written for these simulations. 

1.2.2 Performance of the mesh used in the method in the time 

Boundary element method in 3D is a powerful algorithm to calculate the 

evolution of a drop immersed in another fluid when a 2D-flow is applied by the 

continuum phase.  The advantage with respect to other numerical method is the 

simplification of the 3D-problem to a surface problem.  However, the real cost is due to 

numerical computations not being that easy to carry out.  First, the numerical method 

needs to evaluate all of the geometry parameters of the drop, such as position, 

curvature, (this will be explained in the next Subsection), among others, because 

information about each element is required to solve the singular integrations on the 

mesh.  In Eq. (1.22), the Stresslet Eq. (1.19) and the Stokeslet, Eq. (1.21) are present.  

When the algebraic system is evaluated, the velocity field on the surface is known for an 

instant of time.  Thus, the process is repeated in time to have the dynamic evolution of 

the drop deformation.   In general, those steps are simple.  However, every step needs 

an efficient algorithm to calculate in a fast manner, all parameters of each element; i.e., 

to have information of all elements conforming the surface of the drop. 

A useful numerical scheme must be efficient in the execution of the algorithms —

in this case of the geometry, and the behavior of the deformed drop— given the 

necessity to provide an accurate benchmark of the drop model versus the experiments.  

Numerical methods use large arrays, which implies a considerable time to carry out the 

numerical computation. The time used mainly depends of the number of elements of 

the drop, (Grinfeld, 2010).  The mesh used in this numerical method is based on the 

partition of an elementary octahedron.  The minimal number of elements  of the mesh 

is 8, then 32, then 128, etc., Eq. (1.23). 
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= 8 ∗ 4 .                                                               (1.23) 

  
 

Figure 1.3 Drop of 0.25 mm of radius. In the left part, the mesh has no subdivision, 8 elements 
(curved triangles). In the right, the same drop with a mesh of 2048 elements, 
subdivision equal = 4. 

The  is the number of partition that is applied on the initial octahedron. When 

the partition = 4, the number of elements is 2048.  In Figure 1.3, a simple mesh with 

8 elements (left) is shown, and a final mesh after the partitioning process (right) with 

2048 elements.  

 
Figure 1.4 Time to calculate the algebraic system vs. number of element of the mesh. Blue line 

indicates the time using a one tread algorithm. Green line is the time using 4 
computational threads. 
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Figure 1.4 shows the time required to calculate the complete mesh with 

different number of elements using a computer with a two-cores, dual processor HP 

w4300.  Figure 1.4 shows the growth of the computation time as the number of 

elements increases.  The blue line plot is a nonlinear function.  However, the blue 

model in Fig. 1.4 is based on sequential programming.  The green plot is the execution 

time for the same algorithm but using a parallelized scheme.  The difference is that 

one tread is used for this algorithm (blue line), on the other hand, 4 computational 

threads (green line) are used to generate the same mesh. For a mesh of 8,192 

elements, as shown in Fig. 1.4, the multithreading model is eight times faster than the 

sequential algorithm. 

Parallel programming techniques reduces —in linear form— the required time 

for the generation of the mesh.  However, this example proves unambiguously the 

necessity to extensively apply optimized parallel codes for these studies.  

 
Figure 1.5 Time to build one step of the dynamic of drop deformation vs. number of elements of 

the mesh, green. Time to calculate the solution of the algebraic system vs. number of 
elements, orange. Time is in percentage of CPU Time. 

Figure 1.5 shows how the numerical method employs the total time, in the 

same machine: (1) to generate the geometry mesh, to estimate the curvature and 

characteristics of the mesh and (2) to build the algebraic system to solve the problem 
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of BEM-3D (orange plot); the green lines correspond to the time used to solved the 

algebraic system. 

These results were obtained only for one step of time evolution of the drop 

deformation.  The total time for a numerical experiment corresponds to the times for 

one step multiplied by the total number of steps, divided by the number of treads used 

in the algorithm.  Most of the results presented here were carried out with 8 treads 

using HP Z800, Z440 and Z640 workstations. So, the time lapse shown in Fig 1.5 is at 

least twice faster nowadays. 

The latest numerical experiments do not report the time required for every 

step, because that information implies dedicating machine-time to calculate this 

datum of little use.  In terms of efficiency of the code I preferred to disregard the one 

step time information, and focus in the total simulation time.  In general, most 

numerical runs take approximately 3 days using the fastest workstation. 

1.2.3 Oriented parallel programing in the numerical scheme 

Another important objective of my numerical program of BEM-3D was to build 

a practical code which allows expeditious modifications or changes or some 

characteristics of the numerical scheme without changing major portions of the code.  

The numerical codes were optimized up to 80%, i.e., the parallelization techniques are 

applied to most algorithms, except those needed to calculate the curvature of each 

element because these are not readily parallelizable algorithms. 

The parallel methods applied use the newest procedures of Fortran 2010 

together with the OMP-Libraries of Intel.  The final code can simulate different kinds 

of flows, covering the possibility to study all 2D-flows from shear to extensional flow 

(strong flows), as well as elongational flows without vorticity.  The code can be used 

to study other 3D-flows such as ABC flow, extensional 3D-flows or the Poiseuille flow. 

The numerical model of a drop designed for this work can produce information 

about cross-sections of the drop as no other model published earlier shows.  As well, 

the method employs the newest algorithm for evaluation of the curvature of each 

element of the interface, which may probe indispensable for studying highly deformed 
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drops.  To test the validity of the new algorithms, every subroutine or algorithm can 

be replaced, in the fast manner, by an older, validated one, or a new procedure.  This 

feature of the model's code was used extensively —in particular, are essential in the 

calibration of the method— to determine the best choices and the optimum space of 

parameters, to evaluate predictive differences between diverse algorithms, and to 

choose the best option for performing the numerical simulations. 

1.2.4 Curvature in BEM 3D 

For BEM-3D calculations, the correct determination of the local curvature 

values is most relevant, because at least two curvature measures are required to 

correctly describe a 3D-surface.  As well, these values of curvature directly affect the 

stability of the numerical equations used to calculate the velocity and stress fields.  It 

is due to the jump of stresses present across the drop boundary —evaluated with 

Eq. (1.4)—, which is strongly dependent on local values of curvature. For this reason, 

in the development of numerical scheme the curvature needs to be well defined.  The 

simplest scheme most frequently used corresponds to a mapping of curved triangles 

in the -plane (Cools & Rabinowitz, 1993), (Pozrikidis, 1998).  

 
Figure 1.6 Mapping of curved triangles from 3D-space to 2D-space. 

Every element used in this numerical method is built with 6 nodes to represent 

a curved triangle Fig. 1.3 and Fig. 1.6.  Many numerical methods used plane triangles 

(Kennedy, Pozrikidis, & Skalak, 1994), (Zinchenko, 1997), (Khayat, 2000), (Bazhlekov, 

2004), (Prosperetti & Tryggvason, 2007), (Spann, Zhao, & Shaqfeh, 2014), etc. In 

general, the plane triangle is made by 3 nodes.  In Chapter 2, the numerical method 
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was calibrated using the same parameters of the predecessor methods to compare the 

previous results with the new method.  

Then, using the appropriate Gaussian weights, the pointwise curvature is 

calculated, by evaluating a contour integral over the element (Pozrikidis, 1997).  

However, Bazhlekov showed (Bazhlekov, 2004) that the calculated curvature has an 

error of 14% regardless of the number of the nodes defining the element.  Many 

numerical BEM methods (Kennedy, Pozrikidis, & Skalak, 1994), (Zinchenko, 1997), 

(Khayat, 2000), (Bazhlekov, 2004), (Prosperetti & Tryggvason, 2007), (Spann, Zhao, & 

Shaqfeh, 2014), etc., use plane triangles —made with 3 nodes only— to describe the 

surface.  Thus, this type of computation predicts only the correct behavior for slightly 

deformed drops. 

More elongated drops demand improving the calculation of its local curvatures.  

The first step was to employ curved triangles because the drop’s curvature is better 

represented in this manner.  For curved triangles, every element of the interface is 

built with 6 nodes; Figs. 1.3 and 1.6. In Chapter 2, the numerical method was 

calibrated using the same parameters of those earlier methods to compare previous 

prediction against the new method. 

For highly elongated drops, curvature properties have important and different 

behaviors: (a) near the tips, both radii have approximately same values and signs; for 

(b) the central region of the drop, curvature signs are the same, but one of the radius 

in quite large relatively to the smallest radius;  and (c) for drops with the classical 

dumbbell shape, in the waist region, one of the curvatures has a negative sign —it is 

here only—, and under this conditions, that the mechanism of drop break-up takes 

place.  Therefore, a consistent and accurate analysis of the curvature needs to be able 

to predict smooth changes-of-sign behavior for the lengthwise radius, a condition of 

concavity that is always present when the drop is strongly deformed.  It is only then 

that the transition to break up of the drop will be reproduced in the numerical 

simulations.   

However, the boundary element method in 3D cannot represent the final stages 

of the break-up of the drop.  But the correct evaluation of the curvatures make 
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possible studying the behavior of a drop closest to the break-up phase. With this 

motivation, a review of the differential geometry was made. 

To develop a new method for acquiring the median curvature of each element, 

it was necessary to review the First and the Second Fundamental Forms of a surface 

(Levi, 1980), (Stoker, 1989).  Then a new curvature was obtained using the initially 

proposed weights.  A comparison was made between a spherical surface and the 

geometry mesh employed.  The calculated values were better than using the method 

of contour integral on the element, (Pozrikidis, 1997).  However, the error was around 

0.5% of the spherical value. 

In order to have an accurate estimation of the curvature, classical methods 

increase the number of elements of the interface as the deformation of the drop 

becomes more elongated.  As a consequence, classical BEM methods usually employ 

techniques that subdivide most elements of the mesh, increasing the local precision 

with smaller elements.  However, the simulation time grows as a linear function of the 

number of elements, in the best of cases. On the other hand, the numerical method 

used in this work does not need to refine the mesh to have an accurate approximation 

of the curvature, while using the computation time to evaluate the time evolution 

rather than for mesh refinement.  In other words, the method is sufficiently accurate 

to estimate the curvature, in a stable manner, as well as faster. 

For drop deformations less than < 0.5, approximation of the local curvature 

with the median curvature value is enough. However, when the deformation 

increases, there is a significant reduction of the curvature radius transversal to the 

flow.  Hence, if the median curvature is used to represent the local curvature, the 

effects of this transversal curvature is inhibited by the much larger radius of the plane 

tangential to the flow due to the elongated elements in the cross section. So, for 

elongated drops, all curvatures of cross sections of the drop will be significantly larger 

than its tangential curvatures. But, elements will not preserve this information: 

locally, the curvature in the element becomes asymptotically small along the normal 

direction to the cross section; i.e., the curvature parallel to the flow in the element will 

dominate the median curvature values, regardless of degree of elongation. The 
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consequence of this underestimation of the local curvature implies that simulations 

reach a maximum drop elongation, regardless of the strength of the flow. Evaluation 

of the correct elongation requires a larger —positive— value in the transversal 

curvature —than the value of tangential curvature, positive or negative, to the flow.  

Only then highly deformed drops are possible to model, and to reach a negative 

median curvature, i.e., and in this way to have a more elongated state of deformation. 

However, highly deformed drops are no longer stationary because a transient 

behavior towards rupture becomes dominant. Being aware of these limitations, all my 

numerical experiments were performed to have a maximum stationary 

deformation < 0.5. 

Except for the numerical simulation of Spann, et al., (Spann, Zhao, & Shaqfeh, 

2014), most previous numerical methods have drops surfaces with less than 1000 

elements.  So, in my numerical method I have employed 256 elements for the same 

circumstances (numerical experiments) of other published works, in order to be 

consistent with the evaluation and calibration of this method.  Spann´s simulations 

used two sizes of meshes; the first mesh has about 2880 faces, the second 5120 faces. 

Our method uses 2048 curved-triangle elements, meaning that each curved triangle is 

equivalent to 4 plane triangles. In fact, 2048 curved element in my code have a similar 

precision than a mesh of plane triangles of 8196 elements.  At the end, the new 

numerical method of BEM-3D is optimal for precision, efficiency in time and structure 

of the mesh. 

1.2.5 Numerical Accuracy 

In Chapter 2, I present the necessary simulations required for the proper 

calibration of the method versus previous numerical methods results. For this reason, 

a similar number of elements (512) is used.  The numerical simulation results 

presented in this work use a surface of 2048 curved elements. To obtain the dynamics 

of the drop deformation, the time advance was performed using different methods. In 

Chapter 2, the calibration of the method, uses Euler´s method to estimate the 

deformation of the drop in simple shear flow with rate of viscosity of = 1. However, 
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for the comparison with experimental data, the numerical mesh had 2048 elements or 

higher  

A fourth-order Adams-Bashforth-Moulton method (Lambert, 1973) was 

employed in Chapter 2 to calibrate the method with the experimental data (Guido & 

Villone, 1997).  Chapter 3 and Chapter 4 used this method too.  The rest of simulation 

presented in this work used a third-order Runge-Kutta method. 

The total time required to attain the stationary shape of the drop deformation 

is = . In all numerical experiments the deformation of the drop reaches a final 

stationary deformation.  The time employed in each numerical simulation was 

compared with the experimental data of Guido et al., (Guido & Villone, 1997) and 

Rosas  (Rosas, Reyes, Minzoni, & Geffroy, 2014). 

 



 

 

CHAPTER 2.
 Calibration of numerical method 

 

 

 

 

 

Since Taylor’s experimental work (Taylor, 1934), the study of drop 

deformation has been focused mainly under two kinds of flows: known as simple shear 

flow and extensional 2D-flow (in some cases named hyperbolic flow).  These flows are 

two-dimensional flows i.e.; the flow field is planar. 

For years, theories and analyses have assumed that the cross section of the 

drop is a slightly deformed axisymmetric ellipsoid —a prolate, with equal lengths for 

both short axes—, which simplifies the analysis of drop dynamics while facilitating the 

study of drops dimensions mainly on the plane parallel to the flow (that is, the plane 

of observation of the experiments); see Fig. 1.1b.  In recent years, e.g., Kennedy et al., 

(Kennedy, Pozrikidis, & Skalak, 1994) showed that during stationary states, the cross 

section of the drop (on the plane perpendicular to that of the flow) was not nearly 

circular.  Subsequently, Guido et al., (Guido & Villone, 1997) showed experimentally 

the same fact. Both observations were carried out applying shear flows on the 

continuum phase.  In the cases of 2D extensional flows, the work of Acrivos and Lo 

(Acrivos & Lo, 1978), Hinch and Acrivos (Hinch & Acrivos, 1979) established that a 

drop comes to a steady state of deformation with the cross section being also non-

circular.  However, there are no experiments in this kind of flows were the evolution 

of cross section was measured in a clear manner. 
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Taking advantage of this archive, one way to calibrate my new numerical 

method was to predict the evolution of drop deformations and to compare these 

results with previous observation and predictions reported in the literature. This 

Chapter is a summary of the different calibrations methods with respect to 

predecessor numerical methods and experimental data. 

2.1 The numerical method vs previous numerical methods 

Taylor was the first person to present a theory predicting the dynamics of drop 

deformation in simple shear flows (Taylor, 1932). Add to this, Taylor made the first 

experimental device to check those predictions (Taylor, 1934). Then Mason et al, 

carried out the first experiments of drop deformations in simple shear flows 

(Rumscheid & Mason, 1961), (Torza, Cox, & Mason, 1972).  About the same time, 

Grace made a series of experiments in the same regime but for different viscosities of 

the fluids (Grace, 1982). These experiments were employed to calibrate the 

theoretical predictions by (Rallison, 1981), (Kennedy, Pozrikidis, & Skalak, 1994), 

(Khayat, 2000), and (Yuriko, Renardy, & Renardy, 2000). Using theoretical models for 

drops, Cox (Cox, 1969), and Acrivos and Hinch (Hinch & Acrivos, 1979) suggest that 

all cross sections of the drop are circular for this flow. Today the study of drop 

deformation in simple shear flow is vast; the works of Guido et al., (Guido & Villone, 

1997), showed that cross sections are rarely circular.  Kennedy et al., showed, using 

the numerical analysis, the same ellipsoidal shapes for the cross section, (Kennedy, 

Pozrikidis, & Skalak, 1994).  Even so, since that work no other numerical analysis 

made detailed measurements of the drop shape in the perpendicular direction of the 

flow. Based in the previous work of Acrivos (Hinch & Acrivos, 1979), Hinch proved 

that cross section is non-circular in general. Hinch assumed the axisymmetric case 

because his equations become too complicated to work with them, and to extract 

useful results. The 3D numerical method here presented makes a number of 

improvement to the earlier models, hence the need to be properly calibrated against 

experiments and other predictions under “known conditions”. My first calibration 

addresses the values of deformation obtained under steady flow conditions. The 

Calibration Section focuses on numerical data obtained by simulations by Rallison —
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BEM 2D— (Rallison, 1981), Kennedy et al BEM 3D (Kennedy, Pozrikidis, & Skalak, 

1994), Renardy et al VOF (Yuriko, Renardy, & Renardy, 2000). The simulations of 

Kennedy used a larger number of elements of the mesh —512 plane-triangles— when 

using a boundary element method technique. Renardy’s model uses a volume of fluid 

algorithm.  In this case, the method employed a mesh of 512 elements. Figure 2.1, shows 

a comparison of the drop deformation reached when a stationary state is attained, for 

different capillary numbers.   The drop and the continuum phase have a ratio of 

viscosities of = 1. All numerical methods show a consistent behavior for capillary 

number less than < 0.35. Theoretical results, on one hand, show that the theory of 

Taylor and Cox is also consistent with these data. On the other hand, the theory of 

Barthès-Biesel goes to a state of breakup before the experimental data of Mason et al.  

For larger capillary numbers, i.e., 0.35 < < , numerical predictions diverge 

from the experiments.  The VOF method provides similar results to the experimental 

data; the reason of the small differences is because BEM methods solved the case of an 

unbounded drop, while VOF models take into account the presence of a wall where the 

shear flow conditions are applied.  That is, VOF has information of bounded problems in 

drop deformation in shear rate. However, for other plane flows VOF does not have the 

versatility of the BEM-3D here proposed, because it is necessary to model the 

boundaries that generate the 2D-flow, as Reyes mentioned, (Reyes, 2005). 

A second calibration of my numerical method was carried out addressing the 

non-symmetric nature of the dimensions of the cross-section of drops data of Kennedy 

et al. (Kennedy, Pozrikidis, & Skalak, 1994). The length of the principal axis of 

deformation is L, while the shorter axes are now B —normal to L and the flow 

direction— and W perpendicular to the flow plane. 

The shape asymmetry observed with both methods occurs readily for low 

values of the Capillary number and the coincidence is best for lower values of the 

viscosity ratio. Both meshes used are similar and the results are shown in Fig. 2.2.1.  

                                                           
1 The numerical simulation of our BEM3D implementation takes approximately 24 hrs. to do 

all cases shown in Fig. 2.2. Kennedy, et al., simulations took weeks running on a 
supercomputer of those days. These improvements are the result of the use of new 
processors and the optimization of the code described in Chap. 1. 
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Figure 2.1 Stationary Taylor's Drop Deformation vs. Capillary Number. Simple shear flow,   

= 0.0 and = 1.0. 

 
Figure 2.2 B/W ratio vs. Capillary Number for different  values. 
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2.2 Experiments in simple shear flow compared with experimental 

data 

Now, my model predictions are compared to the experimental data of Guido et 

al., (Guido, Greco, & Villone, 1999).  Here I have two objectives: (1) to compare 

numerical vs. experimental values of the cross section that Guido and his group 

observed in simple shear flows; and (2) to study the proper physical assumptions of 

the model when ratios of viscosity are different of 1. When modeling viscosity ratios 

different than 1, the contribution of the Double Layer Potential —second integral of 

Eq. (1.22)— is non-zero.  When = 1, it is a common practice that boundary element 

methods employ only the Single Layer Potential, and the numerical methods are faster.  

When ≠ 1, to estimate the stresslets contribution on the surface of the drop, hence 

to calculate the stress and interfacial tension appropriately requires the second 

integral.  This integral depends on the viscosity ratio  
2; 

Figure 2.3 shows the values of the numerical simulation for a drop —of radius 

25  and = 1.4— versus the experimental data of Guido; for values of = 1.3 

and = 1.4. These normalized values of the 3 principal axes were obtained for steady 

states of deformation.  Lines in Fig. 2.3 are Taylor’s model predicted values of the 

semi-axes of a drop when it is modeled as a perfect ellipsoid (Taylor, 1932). These 

results indicate that it is a very good estimation of the drop deformation for regimes 

of small capillary numbers: < 0.15. However, as the capillary number increases 

beyond ≃ 0.25, Taylor’s model clearly underestimates the growth of the L-axis, 

with associated larger values for the length of the B-axis; that is, Taylor’s theory 

predicts a weaker deformation of the drop.  Add to this, the model predicts axis-

symmetry in the W- and B-axis, when the experiments made by Guido and the 

numerical simulations show a clear departure from the axis-symmetric form.  In 

Fig. 2-3, the comparison is limited to  ≲ 0.5 mainly because evaluation of the axes 

lengths in the work of Guido (Guido & Villone, 1997), presents larger errors due to 

                                                           
2 Computation of this Double Layer Potential for ≪ 1 turns out to be quite difficult. For 

this reason, there are not that many simulations with small values of . 
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higher order on the shape form observed in the images.   So, the information used to 

calibrate the code could not be the best option.  

 
Figure 2.3 Principal axes of the drop vs. Capillary Number. = 1.4, = 0.0. 

Figure 2.4 shows the comparisons of the “shapes” of a drop from two 

complementary visualization planes reported by Guido (right) and subjected to simple 

shear flow with = 0.46, and radius of 25 m.  The top shapes correspond to the 

typical -plane projection in experimentation, Fig. 1.1b): the observed inclination 

corresponds to the orientation angle of the drop in the flow. The bottom shapes 

correspond to the -plane projection. 

For the -plane projection, the drop is tilted with an angle of orientation (as 

shown in the -plane) and its photo (with optical axis along y-axis) models poorly the 

real deformation (magnification of the lens is a complex function of the master 

transfer function and coordinates x, y, z), for this reason, the numerical and 

experimental images may have different shapes near the ends of the drop —the left 

part appears to be larger than the right because the left part is above the focal plane.  
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Figure 2.4 Comparison between Numerical Simulation of BEM3D and Guido's Experimental 

Data for a drop deformation. Simple shear flow, = 0.0, = 1.4, = 0.46. The 
experimental data were = 0.70, and = 32.05°. The numerical values were =
0.67, and = 34.8°. 

For the shapes on the left, these are the numerical result for a drop at =

0.46.  The radius of the drop is 25 m.  However, this image is modeled with all lengths 

of the drop as a ratio wrt. the initial radius.  Thus, the simulated shapes have different 

length scales.  Besides, observing the image of the experimental drop, the main length 

scale is approximately 4 times the initial radius. Unfortunately, the experimental 

projection of the drop does not correspond to the same drop as the -plane 

projection. Comparing the scale of 25 m, the -plane projection is shorter than the 

-plane projection implying a strong discrepancy about the correctness of the 

deformation. For the experimental conditions of Fig. 2.4, the drop attain a critical 

deformation. This situation implies that there is not a stationary shape, so if the 

photographs were not taken at the same time, the dimension would not have been the 

same. These circumstances could have happened in the experimental images. 

However, the numerical simulation predicts the shapes. 
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2.3 Comparisons of numerical vs. experimental data for extensional 

flow 

For any 2D-flow, it is hard to expect that the cross-section behavior would not 

be asymmetric —especially for large Capillary numbers— in contrast with earlier 

predicted theoretical or experimental results. Whenever a third axis does not 

contribute to the deformation of the flow, that is, is essentially passive, it should be 

expected to contribute to the shape of the drop in a different manner than the 

principal axes on the plane of the flow.  Likewise, this condition ought to be observed 

( . . ,  ≠ ≠ ) whenever the rate of deformation of the three axes are different, 

even when the flow is 3D.  Hence, only with pure elongational flow we may expect that 

the deformation on two perpendicular directions might have the same values, with 

the third axis being the principal deformation scale.  

The deformation of drops immersed in strong flows has not being studied 

intensively.  Most of the earlier works are those of Taylor and of Leal and 

collaborators (Bentley & Leal, 1986a) Stone, Milliken, etc., only the work of Rosas et 

al., addressed these flows more recently.   The assumption of   ≠ , =  

dominated in previous studies, (Rallison, 1980). Now, this assumption is now known 

to be of too limited validity and, for this reason, it becomes desirable to calibrate my 

numerical method with experimental data about cross-sectional dimensions, (Guido & 

Villone, 1997).  If a drop in simple shear flows shows non-circular cross sections, in 2D 

strong flows the cross section will most probably not, as will be show.  Figure 2.5 

present the shapes of the drop (perpendicular) projections on two planes: - and -

plane, i.e., elongation along y-axis, compression along x-axis and neutral wrt. the z-axis.  

It is worth remarking that the drop becomes clearly a rather flat ellipsoid, resembling 

a typical Mexican guarache3. Guarache in this study is refer to a drop deformed with 

the cross section flattened, the principal axes W-axis is bigger than B-axis, and the size 

                                                           
3 Guarache (wa’ratʃe) is a Mexican food consisting of an oblong, fried masa base; the name 

guarache is derived from the shape of the masa, similar to the popular sandals of the same 
name. 
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of W-axis is equal or major than the initial radius of the drop. Figure 2.5 (d) indicates 

the profile of a drop with  = 0.15 and = 0.37. 

The advantages of my 3D-boundary element method, described here, for studying 

asymmetric forms of drops are: (1) the code was optimized to improve the description of 

the drop surface with more elements (2048) —results show a different behavior in the 

dynamic of drop deformation analyzed in the next Chapter—; (b) The code is capable of 

simulating different kinds of flows, from shear flow to extensional flow, and hence 

studying  the effects of deformation along the third neutral axis; and finally, (3) 

conservation of volume of fluid can be carefully monitored to achieve good prediction on 

the relative deformation along all axes. However, with this code is not possible to study 

the complex geometry of some experimental devices such as Four-Roll-Mills or Two-

Roll-Mills, mainly because a detailed mesh of the description of the rollers surfaces is 

required, and such efforts will be addressed in the future. 

 
Figure 2.5 Deformation of the drop induced by a 2D-elongational flow.  Elongation along -axis, 

compression along -axis and a neutral deformation for -axis. -plane, above; -
plane below. 

The experimental studies of the length scales of drop deformations, induced by 

extensional flows, is scarcer compared with the data on deformations in simple shear 



32 | P a g e  C H A P T E R  2 :  C a l i b r a t i o n  o f  t h e  n u m e r i c a l  m e t h o d  

flows. A comparative analysis like that possible for simple shear flows (see previous 

Chapter) also presents other difficulties —i.e., data of stationary states of 

deformations are more difficult to measure because critical capillary number are 

smaller, with most experiment inducing the rupture of the drops. Add to this, that 

there is not an analysis of cross-sections of drops on any kind of fluid in extensional 

flows.  

Taylor, Acrivos and Hinch elucidate theoretically the deformation dynamics of 

drops in 2D-elongational flow using an asymptotic approximation to describe the form 

of the drop (Acrivos & Lo, 1978), (Hinch & Acrivos, 1979) and (Hinch & Acrivos, 

1980). Furthermore, it is possible to compare as well my method versus the 

experimental data of (Stone, Bentley, & Leal, 1986), (Stone & Leal, 1989a) and (Stone 

& Leal, 1989b) albeit only for the L and B dimensions. 

Capillary 
Number 

DT obtained by 
Stone and Leal 

DT obtained 
by BEM-3D 

B-axis/r0, 
BEM-3D 

W-axis/r0, 
BEM-3D 

0.05 0.08 0.08 0.93 1.00 
0.10 0.18 0.16 0.85 0.98 
0.13 0.32 0.33 0.78 0.98 
0.15 0.37 0.38 0.72 0.95 

0.175 0.47 0.45 0.65 0.87 
Table 2.1 Comparison of deformation of drops deformed in extensional 2D-flow. Experimental 

data of Stone and Leal, and the numerical experiment using BEM-3D. The last two 
columns remark the difference between the B and W-axis. 

Figure 2.6 shows the steady state deformation for different capillary numbers 

and with a viscosity ratio of 1. The right most figures are sketches of the drop forms 

reported by Stone and Leal, (Stone & Leal, 1989a) for the flow plane of a 2D purely 

elongational flow; for these experiments, no data exists about the -plane shapes. 

The second and third column show drop forms for the -plane and -plane as 

predicted by this code simulations.  The comparison is for the same capillary number 

and viscosity ratio. Figures indicate planes of observation similar to those shown in 

Figure 2.5: the -plane is the plane of the flow and the -plane depicts the cross-

section of the drop. Figure 2.6(a) corresponds to a drop deformed with = 0.05 and 

a stationary deformation of = 0.08; the value of W- and B-axis are presented in 

Table 2.1; (b) shows a drop with = 0.1 and = 0.18; (c) shows a drop with =

0.13, = 0.32. 
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The numerical comparison is in the left part of Figure 2.6. In this part of the 

image is evident the change of the profile of the drop when the observation is like 

experimental devices, (left up). However, in the other direction, (left down), the drop 

has different dimensions in extensional 2D-flow. 

 

Figure 2.6 Comparison of steady shape of deformation between experimental data vs 
numerical simulation of a drop in extensional 2D-flow with = 1.0.  a) = 0.05 and     =
  0.08;  b) = 0.10 and = 0.18; and   c) = 0.13 , and = 0.31. 
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I address a discussion of drop deformations induced by pure extensional flows 

in Chapter 7. Given that the nature of this phenomenon is quite complex, it is 

necessary to have a detailed explanation of the observed phenomena in this regime. 

Chapter 7 begins with an analysis based in a theory developed in the 70’s, which 

predicts the stationary state of deformation considering the axis-symmetric behavior 

in the cross section. The comparison will be made of the extensional flow in 3D, as 

Acrivos and Hinch made, (Acrivos & Lo, 1978) and (Hinch & Acrivos, 1979). Finally, 

the comparison with the extensional flow in 2D will be made. 

 



 

 

CHAPTER 3.
 Shape of a drop immersed in a fluid 

under an elongational flow with vorticity; 

small ratios of viscosity 

 

 

 

 

In Chapter 1 the viscosity ratio,  , was introduced. Here, the following results 

correspond to a drop immersed in another much viscous fluid  ≪ 1.  For these 

cases, a large deformation of the drop is possible, but the orientation of the drop does 

not coincide neither with the direction of the flow nor the orientation of the principal 

axes.  For these cases, the time evolution of the deformation of the drop provides 

information about the maximum possible deformations but no less relevant are 

steady state orientations of the drop in the flow.   Thus, given that the shape of the 

drop is best described by three length scales, here I present the time-evolution of all 

axes of the drop, as well as particular features shown during the process before 

reaching the stationary state4.  Plots of the evolution of deformations for multiple 

capillary numbers are plotted in each Graph; all traces correspond to the application 

of a steady elongational flow —with =  0.13.   The data for other types of flows —

=  0.03 and =  0.05— present a similar behavior. The values of stationary shape, 

deformation and orientation were used in figures to shows the comparison with the 

flow = 0 .13. 

                                                           
4 This chapter was submitted in June of 2016 to Journal of Physics; it is currently published. The final 
version of this work is on the Appendix A. 
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3.1 Time evolution of drop deformation 

For a drop immersed in a steady flow, and when the viscosity ratio is small, if 

the capillary number is less than the critical capillary number, it deforms until it 

reaches a stationary shape (Taylor, 1934), (Bentley & Leal, 1986a), (Rosas, Reyes, 

Minzoni, & Geffroy, 2014).  Figure 3.1 shows the time-evolution of the shape of the 

drop from a spherical (initial) to the final elongated, stationary shape. For these 

traces, the various capillary numbers were obtained by increasing the value of G, 

Eq. (1.6). One can observe that the stationary state is reached for different times and 

those values vary as the capillary number changes.  The analysis of drop deformation 

presented in this Chapter focuses on the stationary shape detected in the numerical 

simulations. 

 
Figure 3.1 Taylor’s Deformation of the drop vs. Time. = 0.012, = 0.13. 

3.2 Attained stationary states 

The numerical experiments explore effects of the applied flow on the drop 

shape.  Figure 3.2 shows the time evolution of the 3 principal axes of the drop shape 

under the application of steady flow condition.  The simulation is stopped when the 
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drop deformation no longer changes; see Figs. 3.1 and 3.2.  The deformation values 

numerically attained match those obtained experimentally by Rosas (Rosas, Reyes, 

Minzoni, & Geffroy, 2014) within ±5% for 0.05 ≤ ≤ 0.25 and ±1% for    0.3 ≤

   ≤   0.4. 

Figure 3.2 shows that the stationary state is reached as early as 10% of the 

total simulation time; corresponding to approximately 1 unit of dimensionless time; 

the drop remains in the stationary shape for the rest of the simulation.  Although small 

oscillations in the stationary values persist, the amplitude of these oscillations is less 

than ±1.5% of the average long-time value.  The same behavior was observed for 

different capillary values.  Chapter 6 presents an analysis of these oscillations in the 

stationary shape of the drop, with possible phenomena explaining these scenarios. 

 
Figure 3.2 Evolution of the three principal axes of the drop in a flow with  =  0.13, = 0.4 

and total time  = 15. 

As well, evolution of lengths for the B- and W-axes indicates that the cross 

section of the drop is not circular, for B values are significantly smaller. To observe the 

non-symmetric form of the drop, the ratio of B- vs. W-axes is presented in Fig. 3.3.  On 

one hand, it can be observed that in the initial 10% of the evolution and with  = 0.4, 
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B/W decreases and undershoots its stationary value.  On the other hand, the rates of 

change for B and L are very similar, and are mainly determined by the magnitude of the 

vorticity. However, the changes of length of W wrt B clearly occurs at a faster pace; 

actually, based upon Fig. 3.2, the rate appears to be about four times faster for = 0.4. 

The B-axis length changes at a rate similar to the L-axis, while the elongation of the W-

axis lags in time.  Up to time = 1, the W-axis does not change significantly; it changes 

about the time when the other two axes have reached their stationary values. 

 
Figure 3.3 Ratio of the B wrt. W axes in numerical simulations for a flow with = 0.13 and 

total time Gt =15 for different values of Ca. 

For simple shear flows, my simulations produce values for the ratios of the 

cross section that are similar to the numerical results previously reported (Guido & 

Villone, 1997) and (Kennedy, Pozrikidis, & Skalak, 1994), having as well the same 

general behavior, even though the viscosity ratio reported is larger.   

Figure 3.4 presents the effects of the type of flow on the ratio of length for B 

and W.  Even though higher values of α imply less vorticity, the 2D-character of these 

elongational flows is still present.  The drops retain a more guarache shape than for 

flows with more vorticity.  It will seem to imply that the neutral deformation axis is a 
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dominant effect that may persist even for pure 2D-elongational flow.  That is, 

when = 0.4, and for flows with = 0.03, the deformation achieved is less than 

85% of the values reached for flows of = 0.13.   

 
Figure 3.4 Ratio of the B- wrt. the W-axes under stationary state conditions. Simulations traces 

correspond to different elongational flows with  =  0.03 ,  =  0.05 and  =
 0.13 and for different values of Ca 

Figure 3.5 presents a comparison of (a) experimental results (Rosas, Reyes, 

Minzoni, & Geffroy, 2014), (b) the simulated values for = 0.13, and (c) the analytical 

results of Taylor-Cox (Taylor, 1932) (Taylor, 1934) and (Cox, 1969) for = 0.0 .  The 

compared property is the stationary Taylor deformation values on the -plane. 

Cox (Cox, 1969) and Taylor (Taylor, 1934) theories for simple shear flows 

establish a linear relationship between deformation vs. the capillary number. 

However, it is clear that the dependence observed in simulations of stronger flows is 

slightly non-linear; albeit theory, simulations and experiments agreeing fairly well.  

Chapter 7 presents a more detailed comparison between numerical simulations and 

the experimental data of Rosas (Rosas, Reyes, Minzoni, & Geffroy, 2014). 
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Figure 3.5 Deformation of the drop for numerical simulations and experimental data for α= 0.13 

and analytical prediction of Taylor Cox in simple shear flow α= 0.0 for different 
values of Ca 

 
Figure 3.6 Orientation of the drop for numerical simulations and experimental data for =

 0.13 and analytical prediction of Taylor Cox in simple shear flow =  0.0 for 
different values of Ca 
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The second parameter that characterizes the shape of the deformed drop in the 

flow is the orientation angle; see Fig. 1.1(b). Figure 3.6 shows the orientation of the 

principal axes of the drop as it elongates.  This parameter does play an important role 

because the principal axis of deformation —L-axis— is located at 45° degrees with 

respect to flow direction, and the drop tends to align itself closer to the flow direction for 

higher Ca number flows; that is, the drops elongate and rotate away from the 45° 

orientation.  Figure 3.6, shows that the orientation angle values for drops predicted by 

Taylor and Cox theory remain fixed at 45°, contrary to all experimental evidence. 

 
Figure 3.7 Deformation of the drop for numerical simulations for flow with  =  0.03 ,  =  0.05 

and  =  0.13 13 and analytical prediction of Taylor Cox in simple shear flow =
 0.0 for different values of Ca. 

In Figure 3.7, the stationary principal deformations vs. the Ca number were 

plotted for the different types of flows.  As in Fig. 3.4, the behavior of the relationship 

between Taylor deformation and capillary number appears to be non-linear, however 

under predicting the deformation with respect to the theoretical predictions of Cox and 

Taylor.  That is, Taylor-Cox theory does not rotate the drop, hence tends to cause a 

larger deformation.   The experiments and these simulations do rotate the drop towards 

the flow direction, away from the principal axis of deformation —L-axis—, causing a 
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smaller deformation.  Thus, the equivalence in deformation of theory, =  0.0 , and a 

flow with =  0.13 may be understood in this manner. 

Finally, the measurements of the principal axes of the drop are shown in Fig 3.8. 

These values were obtained in the stationary shape of the drop.  This figure is similar as 

the Fig. 2.3 from Chapter 2.  The analysis of the L, B and W-axis of the ellipsoidal drop, 

in steady state, clearly show deviations from the axisymmetric shape as the flow type 

parameter  increases. The behavior of the W-axis is similar —remains unchanged for 

the values = 0.03,  0.05 and 0.13— indicating an effect due mainly to the 2D 

character of the flow, and regardless of the vorticity of the applied flow. 

The major changes observed occur for the L- and B-axis, with a reduction of 

vorticity of the flow inducing a greater elongation of the drop along the principal 

deformation axis —L-axis—. 

 
Figure 3.8 Lengths (normalized) of the principal axes of drops under stationary flow with =

0.03,   0.05  0.13, for different values of Ca. 

Figure 3.8 shows that in general, stationary drop shapes do not have an 

axisymmetric cross section.  The simulations here presented for drop forms induced 

in 2D-flows do not appear to match the axisymmetric case established by G. I. Taylor 

and Cox, in agreement with previous results of Kennedy et al., and Guido et al., for the 
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simple shear flows. This is likely the case for Ca < 0.4, and may be correct even if the 

capillary number is as small as =  0.05. For Ca > 0.4, the deformation in the -

plane continues to increase, but stronger than the numerical simulation shows, 

Taylor-Cox model overestimate the possible deformations. On the other hand, the 

simulated behavior appears consistent with the experimental data of Rosas (Rosas, 

Reyes, Minzoni, & Geffroy, 2014). 

The difference between the simple shear flow, = 0, and flows with stronger 

degree of elongation induced larger drop deformations while the angle of orientation 

—principal L-axis— rotates away from 45 degrees.  Another important observation is 

the increase in the principal L-axis value for stationary states when the flow 

parameter  becomes larger than simple shear rate flow, = 0.13; the relationship 

between the axis rate of growth and the capillary values goes away from the linear 

behavior as Fig. 3.8. shows. In Chapter 7, the non-linear behavior is more obvious 

because = 1. 
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Other differences can be observed, between the shapes of projections and the 

ellipses. For example, the drop with = 0.2328 and the  = 1.34° does not 

have an ellipse for projection on the -plane.  Its shape resembles a higher order 

deformation, more like a sigmoid, as has been reported for drops in simple shear flow, 

Fig 2.4.  The next two comparisons are similar, i.e.; they are not perfect elliptic shapes. 

So, as we can see in the next chapter, a drop deformed in a strong flow does not have a 

circular cross-section, nor the elongated shapes are ellipses, when the ratio of 

viscosity is large. These figures (shown in Fig. 4.7) could give us information of the 

stationary states attained.  

 
Figure 4.9 Stationary values of the principal axes of the drop for a flow with =

0.03, 0.05  0.13, for different values of Ca. 

Figure 4.8 present the oscillatory behavior of the drop time evolution in a polar 

plot, for different capillary numbers and when the ratio of viscosity is large, = 16. 

The starting point is a spherical drop without orientation; once a flow is applied, the 

drops deforms and rotates. As the capillary number increases, its deformation grows, 

oscillations increase (present more cycles) and the trajectory is a full spiral which 

goes to a final steady state at long times.  Figure 4.9 shows the principal axes of the 

drop in this regime of flow. The evolution of drops as Ca increases goes to a stationary 
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state of deformation.  For = 0.13, the first idea based in Fig. 4.4 and Fig. 4.5, is that a 

stationary shape in this flow is not attained. However, Fig. 4.9, shows that the 

behavior of the drop deformation in this regime may reach a final steady shape. 

The unusual behavior of the drop length scales in a flow with = 0.13, implies 

the need to analyze carefully the deformation for elongated drops in this regimen. The 

shapes obtained in this flow are like ones in Fig. 4.7 i.e.; the shapes are not ellipses. 

The distortion of the shape is due to the change of the instantaneous directions of the 

flow. That is, the principal axes of deformation L-axis, is near the direction of the axis 

of elongation. However, when the drop turns around, going beyond the outflow axes, 

the L-axis of the drop now subjected to a compressional kinematics. The images show 

in Fig. 4.7 indicate the distortion of the drop due to the flow around the drop.  To have 

the best information of the sigmoid shapes it is necessary to have a code capable given 

us information of the flow inside and outside the drop to understand the formation of 

the sigmoid shapes and the transition of the regime near = 0.13. 
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CHAPTER 4.
 Shape of a drop immersed in a fluid 

under an elongational flow with vorticity; 

large ratios of viscosity 

 

 

 

 

 

If the viscosity of the drop is very high, one can expect that the deformation of 

an embedded drop in a flow might resemble more closely to that of a rigid particle. 

However, the drop still deforms, although slightly.  The orientation of the drop will 

also differ too.   Deformation of drops induced by flows where the ratio of viscosity, 

>> 1, thus present a different behavior compared with the cases studied in 

Chapter 3, and my observations are here presented. 

Cox (Cox, 1969) developed a theory to predict the deformation of drops in 

simple shear flows when drops have a higher viscosity than the continuum phase. 

Using Taylor’s theory, Cox presented an alternative (using an approximation with 

spherical harmonics, (Lamb, 1945)) but appropriate when the ratio of viscosity is 

larger than the values used by Taylor.  Cox uses the inverse of capillary number and 

finds correlations between Taylor’s deformation, the capillary number and the 

orientation of the drop, then, he compares his results with the experimental data of 

Taylor and Mason, (Taylor, 1934), (Rumscheid & Mason, 1961). 
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Years later, Leal et al., produced a large collection of experimental and 

theoretical results on the behavior of drop deformation in strong flows (using a Four-

Roll Mill) with viscosity ratios larger than 1, e.g., (Bentley & Leal, 1986b).  However, 

the observation of rotation of drops in those strong flows was not studied in detail 

until the work of Rosas et al., (Rosas, Reyes, Minzoni, & Geffroy, 2014) and (Rosas I. Y., 

2013); mainly because the induced rotation by strong flows with significant vorticity 

is larger —thus, easier to observe— than those observed with the Four-Roll Mill 

device used by Leal and coworkers.  In contrast, as the Two Roll Mill device produces 

strong flows, the deformations obtained are bigger than those predicted for simple 

shear flow with the same capillary numbers.   

In order to understand the role played by the orientation angle and 

deformation on an equal footing, Cox presented polar plots of deformation  and 

orientation . The time-parameterized numerical trajectories  .  of the drop 

here presented are similar as those predicted by Cox for simple shear flow —earlier 

experimental trajectories by Mason et al., are unfortunately too noisy to be of 

relevance for a comparative study.  Rosas presents the first detailed parameterized 

plots for deformation showing that Cox model is qualitatively good, although some 

differences persist.  

In this Chapter, the numerical study focuses on phenomena observed with in 

viscous drops.  The ratio of viscosity is an important parameter in drop deformation 

since Taylor’s work (Taylor, 1934) thus the importance of an analysis of deformation 

and rotation in the regime ≫ 1 is important. Here an important tool is the use 

of  .  trajectories. 

4.1 Time evolution of drop deformation 

Numerically, the BEM-3D method calculates the Double Layer Potential in 

order to have the time evolution of the drop deformation, with a significant increment 

of the time computation.  Also, as Rosas found (Rosas, Reyes, Minzoni, & Geffroy, 

2014), the runtime to observe the full evolution of drop deformation is much longer, 

compared to the computation time for all cases presented in Chapter 3.  As an 
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example, for a capillary number = 0.30, in the case of = 0.012, the time to 

simulate the drop deformation to achieve the stationary states together with the 

retraction time towards the spherical drop is, in slowest case no more than = 25. 

For the cases of this Chapter with the same capillary number but with a = 16, the 

minimum simulation time to observe the same behavior is near = 60. For =

0.87, to attain the steady state and to observe the retraction of the drop ≈ 100.  

 
Figure 4.1 Taylor's Deformation of drops in the time. = 16, = 0.03. 

Figure 4.1 shows typical curves of deformation histories for = 0.03, =

0.14, and = 0.87 with viscosity ratio = 16, and = 83.  The flow parameter 

values are the same as Rosas used with the Two-Roll Mill (TRM) device (Rosas, Reyes, 

Minzoni, & Geffroy, 2014).  For drops with = 16, the dynamics of drop deformation 

for = 0.03,  0.05 and 0.13 are similar, so the Figures presented are only for the 

strong flow with a value of = 0.03. However, in subsequent discussions the behavior 

observed for all flows used will be described. 

4.2 Stationary states attained 

As was explained in Chapter 3, the drop deformation reaches a stationary 

deformation for flows with a capillary number less than the critical value < .  
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In other words, initial drop shapes correspond to a no-flow state (spherical shape); 

then, as the flow is applied on the continuum phase, the drop begins to deform.  The 

high viscosity of the drop causes a weaker deformation of the drop than those cases 

observed in Chapter 3.  The stresses on the drop, as a function of its viscosity must be 

balanced instantly with the stresses applied by the external flow.  The drop 

deformation dynamic takes place as a competition between deformation-orientation 

vs. maintaining the equilibrium shape.  At the end, the drop deformation attains a 

stationary shape, if < . 

 
Figure 4.2 Ratio of the B wrt. W axes in numerical simulations for a flow with α=0.03 and total 

time Gt =75 for different values of Ca. 

As shown in Figure 4.1, when = 0.03, the drop deformations have a similar 

behavior in time as was observed in Chapter 3, but with a smaller length.  The drop 

reaches a stationary shape, and if the flow is turned off, the drop returns to the 

spherical shape.  When the capillary number increases a little more, the competition 

(as function of the rate of viscosity) is more evident.  There is an overshot for the case 

of = 0.14.  Afterwards, the drop goes to the stationary shape.  For the last two 

cases, i.e., = 0.3 and = 0.87, the main overshoots are followed with multiple 

oscillations, with their maxima and minima attenuating in time until the drop shape 
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attains an stationary deformation. Those oscillations are a consequence of the 

competition mentioned and due to phenomena with multiple retraction times.  

In a similar way as in Chapter 3, data for the B/W-axis, shown in Fig. 4.2, 

indicates that the cross section of the drop is not circular and is time dependent, and 

may pulsate slightly.  In Fig. 4.2, during the initial 10% of the evolution of B/W, the 

main oscillation occurs, with the amplitude decreasing subsequently until the 

stationary value is attained.  

Figure 4.3 shows that stationary states are reached after 40% of the total 

simulation time; with the drop remaining in the stationary shape for the rest of the 

simulation.  Although small oscillations in the stationary values persist, the amplitude 

of these oscillations is less than ±2% of the average long-time value.   The same 

behavior was observed for a wide range of capillary values; see Fig. 4.1.   When   

   = 16 the rates of change for the B- and W-axes are very similar, constant, and 

appear to be mainly determined by the magnitude of the flow vorticity, in contrast to 

the behavior observed for drops of small viscosity. 

 
Figure 4.3 Evolution of the three principal axes of the drop in a flow with  =  0.03, Ca=0.87 

and total time Gt =75. 
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Figure 4.4 presents the ratio between the B- and W-axes after the steady state 

deformation is attained. After the steady state is reached, and for = 0.03, the cross-

section shape remains close to elliptical, with the ratio being around 0.88.  For =

0.05, the behavior is very similar.  However, when = 0.13, this ratio decreases 

(more elliptic shape) as the capillary number augments.  That is, vorticity decreases 

with smaller α values, but the 2D-character of the flow remain dominant. 

 
Figure 4.4 Stationary ratio of the B wrt. the W axis in numerical simulations for flow with α = 

0.03, α = 0.05 and α = 0.13 for different values of Ca. 

Figure 4.5 presents a comparison of multiple theoretical, numerical and 

experimental observations —most data correspond to  ≃ 16.  The theoretical model 

is that of Cox (corresponding to the red trace) for simple shear flow, while the 

experiments cover a very large range of values for the flow type, α.  The experimental 

values are those obtained by Bentley and Leal, (Bentley & Leal, 1986b)  for the larger 

values of the flow type, while those of Rosas address flows with more vorticity.  For 

these high viscosity drops, there is a limit for the stationary deformation values in 

simple shear flow.  Curves are similar as those of Cox theory predictions for simple shear 

flow; even for ≲ 0.13, a maximum deformation in steady state has been observed by 
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Rosas.  For small capillary numbers, the stationary deformation of drops depends on 

the capillary number, increasing as well under the more elongational flows.   

In Figure 4.5 it is possible to infer the maximum values of steady state 

deformations, for different values of the parameter α.  In particular, the experimental 

traces may show an unbounded deformation, indicating that the flow is close to its 

critical value of Ca, beyond which rupture of the drop may occur.  Comparing to 

experimental data from Bentley and Rosas, (Bentley & Leal, 1986a) (Rosas I. Y., 2013), 

it is clear that a flow with = 0.13 appears not to induce the rupture of drops, in 

contrast to a flow with = 0.2, which indicates a flow type readily capable of 

rupturing a drop even with such high viscosity.  Thus, between 0.13 < < 0.2 a 

regime transition must occur. 

That is, the existence of a critical capillary number, may indicate a flow type 

transition between a deformed drop or an unstable flow solution.  For these reasons 

those results motivate a careful study of strong flows near the instability. 

 
Figure 4.5 Deformation of the drop for numerical simulations, experimental data of Rosas for 

=  0.03, =  0.05 and  =  0.13; Experimental data of Bentley for =  0.4 and 
=  0.2 and analytical prediction of Taylor Cox in simple shear flow α= 0.0 for 

different values of Ca. 
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These limiting Ca values depend not only on the flow type  but also on the 

ratio of viscosity .  There is consistency in the values of the stationary deformation 

values at this limit; i.e., the strong flows applied generate less vorticity than simple 

shear flow, so the stationary deformation values must be larger than the shear flow 

case; weaker rotation does not inhibit elongation as it is shown in Fig. 4.5.  Thus, 

for = 0.13 the attained deformation in stationary states is larger than the weaker 

flows.  For a given flow, higher viscosity implies that the deformation may be small 

while the vorticity tends to rotate away from the principal axis of deformation. Thus, 

higher viscosity drop may deform to a stable elongation at higher values of the ratio of 

viscosities .   

Furthermore, at the critical limit conditions, the length scales of the 

deformation are more difficult to define because no steady elongation in observed; i.e., 

employing the information of Fig. 4.4, the steady shape of cross section in this flow 

shows a deviation which is far from the horizontal limit, and which implies an ever-

increasing L-axis length. In fact, the fluctuation in the deformation of the drop implies 

an oscillation in the angle of orientation of the drop too, see Fig. 4.2. 

There are noticeable differences for the stationary deformations, between 

deformations simulated numerically and the experimental data of Rosas.  And there 

may be various possible explanations for these differences.  One basic possible effect 

may be the fact that the Two Roll Mill device required a control scheme to maintain 

the drop near the stagnation point permanently. Together with the non-idealities of 

the mill, fluctuations in the external flow are only natural, as Rosas explains in his 

work (Rosas I. Y., 2013), Chapter 3.5  At the end, rotation dominates the deformation 

before the stationary value. On the other hand, numerical methods do not have the 

possibility to simulate all possible non-ideal “laboratory” conditions.  Please note that 

in Chapter 6, a possible new explanation about the differences between the numerical 

simulations and the experiments is discussed. This last mechanism may indicate why 

                                                           
5 These fluctuations occur with a frequency comparable with the diffusivity of vorticity, reducing 

mainly the rate of deformation, without altering the rotation of the drop in the experiments, hence 
causing a smaller deformation of the drop by the experimental device vs. numerical simulations. 
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the numerical simulation do not show as many oscillations as the experimental data 

reported (Rosas I. Y., 2013). 

Figure 4.6 shows the orientation of the drops under different flows. Bentley 

experiments mainly show the limit of resolution of the experimental device. The Four 

Roll Mill has the best control of the drop as the parameter  goes near values of one. 

In the other extreme, as the parameter α decreases, the control of the drop degrades 

because there are two rolls that participate marginally in the control of the drop 

position, (Bentley & Leal, 1986a). This problem is shown on the orientation angle 

data, because the values appear to have perceptible fluctuations.  

 
Figure 4.6 Orientation of the drop for numerical simulations, experimental data of Rosas for 

=  0.03, =  0.05 and  =  0.13; Experimental data of Bentley for =  0.4 and 
=  0.2 and analytical prediction of Taylor Cox in simple shear flow α= 0.0 for 

different values of Ca. 

The orientation angles present a smooth behavior on the experimental data of 

Rosas.  In Fig. 4.6, only the experimental data of = 0.13 is presented, and not data 

for = 0.03 and = 0.05, because the latter show the same behavior as Cox theory. 

Numerical data have a similar behavior as the experimental data for = 0.13.  

However, the angle of orientation is systematically larger than the experimental data, 
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indicating that simulations must present a stronger deformation for the same flow 

conditions:  and Ca.  For example, the trace of numerical results of the orientation 

angles, for = 0.03, is similar to the experimental data of = 0.13. As noted before, 

fluctuations may explain discrepancies between the numerical and the experimental 

data, for a reduction of rate of deformation does not reduce simultaneously vorticity. 

The numerical data shown in Fig. 4.6 indicate that for a flow with = 0.03 the 

orientation of the drop attains a value like that of simple shear flow, red curve. 

However, when the flow parameter increases, to = 0.13, the orientation goes to 

larger values (closer to the out-flow axes). Also, when the flow applied in the 

continuum phase generates a deformation greater than the stationary deformation, no 

stationary state is attained and the drop will be oriented parallel to the angle of the 

out-flow axes (Reyes, 2005), (Rosas, Reyes, Minzoni, & Geffroy, 2014) and (Escalante, 

Reyes, Rosas, & Geffroy, 2015). 

In summary, the deformation seen with the numerical method is larger than that 

observed with experimental data, while the orientation angles of the simulations are 

lower than the results of Rosas.  In Chapter 6 these discrepancies are studied under the 

light of a new phenomenon of drop deformation not observed until this work. 

Figure 4.7 shows the numerical images (colored images) of deformed and 

rotated drops in a flow with = 16 and = 0.03 in the -plane (Fig 1.1b).  These 

images correspond to data of a drop with = 0.87, both the deformation as well as 

the orientation angle are in the -plane.  The black shapes are the projections on the 

-plane for the numerical images.  The length of the deformation and the orientation 

angle are calculated evaluating the maximum distance from the center of the drop wrt 

the nodes of the mesh. The typical procedure to determine deformation and 

orientation is to use an adjusted ellipse to the projected image.  The last set of images 

observed in Fig. 4.7 corresponds to different ellipses, adjusted with the ImageJ® 

program based on the projection of the drop simulated.  As the information of the Fig. 

4.7 indicates, there are very small differences of parameters between the numerical 

data and the ImageJ® analysis. 
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Figure 4.7 Drop evolution in the time. = 0.87 wich = 16 and = 0.03. The color images 

are the numerical shape obtained with BEM3D, the black pictures are the projection 
on the xy-plane; within these projections, ellipses were fitted. 

 
Figure 4.8 Polar plot of Taylor deformation vs. orientation angle for different capillary numbers 

with = 0.03, = 16. 



 

 

CHAPTER 5. 
Characteristic times of drop deformation 

under an elongational flow with vorticity 

 

 

 

 

 

The drop deformation in strong flows shown in Chapter 3 and 4 indicate a not 

so obvious different behavior of the principal axes of the drop from the initial 

spherical shape up to the attained stationary values.  Fig. 3.2 and Fig. 4.3 present the 

time evolution of the principal axes of the drop, showing that (a) the behavior of the 

principal axes parallel to the flow (L-axis and B-axis), reaches its steady state values 

with a similar characteristic time-scale, while (b) the W-axis has an appreciable delay 

to attain the steady state. This chapter focuses in the study of these characteristic 

times of the principal axes of the drop.  The first part of Chapter 5 present the time-

scales associated to the stationary shape of the drop.  In this part, there is a similar 

analysis of the time evolution of the axes as Fig. 3.2 or Fig. 4.3, although with different 

the capillary numbers. However, in all cases the capillary number is lower than the 

critical capillary number .  

For this reason, as a qualitatively comparison other major differences will be 

studied as well. The second significant effect corresponds to the observed oscillations 

(a consequence of the race to attain stationary shape). The time to attain stationary 

shape (in Fig. 4.3 stationary shape needs at least 40 [Gt] of time, in Fig. 3.2 only 

15 [Gt]) occurs in different scales.  Finally, differences of the characteristic times for 
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all axes are very similar in Figure 4.2.  In Chapter 5 the analysis of the constants of 

time of the axes in the case of Chapter 3 will show the different scales of times in the 

axes of the plane of the flow and the cross section. In the regime of = 16, the scales 

are very similar.  For this reason, only the analysis of constants of time in the 

impulsive flows were explore in the regime of = 0.012. 

The second part of this Chapter analyze the characteristic times of retraction. If 

a drop is deformed without reaching its critical deformation, the drop will always 

attain a steady shape.  If the flow is stopped subsequently, the drop returns to the 

equilibrium shape (spherical shape) due to the interfacial tension stresses. In this 

manner, the interfacial tension value could be measured, by simply analyzing the 

dynamics of retraction of the drop (Guido & Villone, 1999). This last part of this 

Chapter estimates the accuracy of the interfacial tension techniques base on the 

retraction analysis. 

5.1 Characteristic times obtained in drop deformation in an 
impulsive flow applied with small viscosity ratio 

Figures 5.1, 5.2 and 5.3 show the evolution of the principal axes of the drops 

with different capillary numbers for a flow with =  0.13.  The evolution of the 

principal axes of the drop changes depending of the capillary number.  The same 

behavior happens for the other cases =  0.03 and =  0.05.  

The characteristic time-scale of evolution of the principal axes of the drop have 

a similar behavior at the onset of a weak steady flow. Then, as the capillary number 

increases, the axes attain the stationary states in different time-scales, i.e., in Fig. 5.1 

the L-axis, under a capillary number Ca = 0.05, attains the stationary states at 0.2 [Gt], 

while time goes to 1.5 [Gt] for capillary numbers about Ca = 0.40.  The analysis on B-

axis and W-axis show a similar behavior; as the capillary number increases, the time to 

attain the stationary state increases too; Figs. 5.2 and 5.3. 
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Figure 5.1 Time evolution of principal L axis which = 0.13 for different values of Ca. 

 
Figure 5.2 Time evolution of principal B axis which = 0.13 for different values of Ca. 
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Figure 5.3 Time evolution of principal W axis which = 0.13 for different values of Ca. 

 
Figure 5.4 Time evolution of principal L axis normalized wrt. stationary value, which = 0.13 

for different values of Ca. 
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Figure 5.5 Time evolution of principal B axis normalized wrt. stationary value, which = 0.13 

for different values of Ca. 

 
Figure 5.6 Time evolution of principal W axis normalized wrt. stationary value, which = 0.13 

for different values of Ca. 
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In order to focus on the transient behavior and its time-scales, the first step 

was to normalize the change of the longitude of the principal axes with respect to the 

stationary state, as Figs. 5.4, 5.5 and 5.6 show.  Figure 5.6 shows the evolution of the 

W-axis with a small change in the initial values of the evolution time due to the 

overshoots showed in Fig. 5.2. The normalized axis evolution were fitted with a family 

of exponential functions, attempting to establish the characteristic time to attain the 

final stationary state, in a similar way to methods for the charge and discharge of a 

capacitor (Greenberg, 1998) and (Resnick, 1980). 

 
Figure 5.7 Time evolution of principal axes normalized wrt. stationary value, which α=0.03 for 

different values of Ca. Characteristic times in symbols. 

The time of evolution of the principal axes were taken using the value of =

1; = = 36.79%. The dynamics of drop deformation changes as the capillary 

number increases in the same type of flow.  The analysis of the characteristic times 

exposed the different axes dynamics under the same flow, i.e. for the same drop 

experiment, the steady deformation is attained at different times for each principal 

axes. This situation appears to be a consequence of the planar flow effects: the drop 

(3D-surface) rotates faster in the -plane (Fig 1.1 b), compared to the other direction. 
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Figure 5.8 Time evolution of principal axes normalized wrt. stationary value, which α=0.05 for 

different values of Ca. Characteristic times in symbols. 

Figures 5.7, 5.8 and 5.9 show, for different types of flow, the evolution of the 

principal axes of the drop, and the value of their characteristic time. As the capillary 

number increases in all numerical experiments, the time-scale of the axes becomes 

quite different. The B-axis appears to be the fastest. In contrast, the W-axis present the 

longest lag. In Figure 5.9, for Ca = 0.40, the W-axis evolution starts to change when the 

evolution of B-axis is near its stationary value. Add to this, the characteristic time of 

W-axis is 1.54 [Gt] when the B-axis attains its stationary value and the L-axis is near 

the 80% of its steady value. 

The characteristic times, evaluated with the numerical experiments, are plotted 

in Fig. 5.10. Here there appear to exist a similar behavior for the growth rate of the 

characteristic time values. All time-scales have equal values when ≲ 0.05.  When  

= 0.40, the B-axis time is one third of the value of the L-axis time value, and one 

fifth of W-axis time value. Figure 5.10 shows the delay of the dynamics of drop 

deformation in the normal plane of the applied flow. 
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Figure 5.9 Time evolution of principal axes normalized wrt. stationary value, which α=0.13 for 

different values of Ca. Characteristic times in symbols. 

The W-axis presents the smaller changes of deformation —less than 10% of the 

initial value and there is a delay to start to change.  Please note that the time used for 

the complete numerical simulations is enough to attain the steady state in the -

plane. This time was calibrated wrt the experiments of Rosas (Rosas, Reyes, Minzoni, 

& Geffroy, 2014). However, Figure 5.3 shows that the W-axis is still evolving toward 

the steady state; i.e. to evaluate the time lapse to attain the stationary shape in a drop 

—for a capillary number less than the critical capillary number < — the -

plane data appear not to be enough.  Figure 5.9 and Fig. 5.10 show clearly delays in the 

W-axis; in other words, the W-axis is still changing when the -plane form looks to 

have attained a stationary state. 

Figure 5.10 reveals the fact that drops deformed by a 2D-flow is still a 3D-

object, because the dynamic of its three-principal directions evolve in different time-

scales. The dynamics imposed by the flow starts to deform the drop on the plane 

parallel to the flow. However, the delay on the third axis, W-axis, seems to be decouple 

and is a consequence of a 2D-flow. Based on this information, the study of steady states 
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should consider as well as the characteristic time of the W-axis, because the steady 

state ought to be determined by the slowest axis. It is only then that we can be sure 

that the stationary state was obtained. 

 
Figure 5.10 Characteristic Times vs Capillary Number. 

Finally, Figure 5.11 shows the evolution of the principal axes of drops to reach 

the stationary state of deformation with a flow = 0.13.  In this plot, when the drop is 

at rest, the values of the principal axes are zero; when the drops go to the stationary 

shape, the values of the axes goes to one. Here, all traces of the time of evolution 

shown in Fig. 5.10 are normalized by the value of its capillary number.  In this Figure 

5.10 a range of characteristic times of the principal axes due to the kind of flow 

imposed are also shown as a single dot. The time-scales of the L- and B-axis are 

similar, while the W-axis systematically lags the others, except for = 0.05. 

With this information, it is possible to define a characteristic time associated to 

the flow imposed to the drop.  For the 2D-flow with = 0.13, and using W-axis values 

of time observed in Fig. 5.11, an estimate of the minimum time to attain the stationary 

deformation of a drop is ⁄ = 10 which is the time obtained by the W-axis. 
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Figure 5.11 Analysis of the Principal Axes of the drop wrt. the characteristic time due capillary 

value, with = 0.13 and = 0.012. Symbols are the characteristic times of the 
Principal Axes of the drop. 

For cases when the ratio of viscosity is large, = 16, characteristic times are 

not easily observed, because the drop evolution on the xy-plane presents multiple 

rotations, and each axis evolution is not like an simple exponential. As annotation, the 

evolution of W-axis is neither a true exponential decay. Because it clearly presents an 

overshoot, observed in Fig. 5.3; this spurious effect is shown in Fig. 5.11, and the dash 

curves associated to the W-axis do not have the same behavior as the other principal 

axes.  For its time scale analysis, is not severe enough as to modify the exponential 

behavior as Fig. 5.6 shows. In Chapter 6, I present an analysis of this overshoot when 

the capillary number increases; Fig. 5.3 already shows that the overshoot increases as 

the capillary number rises. 

5.2 Characteristic time in the retraction of a drop 

The experimental and theoretical studies of dynamics of drops show that a 

deformed drop always comes back to its spherical form once the external flow stresses 

cease to act. If the drop deformation is lower than a critical elongation in steady flow, 
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the retraction only generates a single drop, and may produce multiple (albeit smaller) 

drops for elongation greater that this critical value.  The next analysis shows the 

retraction of the drop to a single equilibrium shape (near spherical). The data obtained 

was used to validate the Deformed Drop Retraction (DDR) method, used for obtaining 

experimental values of the interfacial tension, . This method has the advantage of 

measuring  even when the buoyancy forces are very weak —a condition required for 

most other techniques— and has been used extensively with shear-flow-devices 

deformation. However, in strong flows the method was not been used a lot. 

The DDR model assumes a simple exponential decay behavior dependent on 

the interfacial tension.  The interfacial tension value for a drop interface, determines 

the rate of evolution of the deformation of the drop from the initial process of 

retraction (when the flow in the continuum phase was turned off and the drop 

reached the steady shape for a constant flow)  to the final equilibrium shape 

(spherical drop), see Fig 5.12 and Fig 5.13.  For this analysis, the values of deformation 

are normalized wrt the initial value of deformation: ( )/ . The logarithm of the 

ratios of deformation are plotted versus time of retraction: Fig. 5.13. Finally, the 

interfacial tension is obtained assuming a linear dependency of the slope by the 

expression: 

= −
2 + 3 19 + 16

40 + 1
.                          (5.1) 

The constants  and  are the viscosity of the continuum phase and the radius 

of the spherical shape drop. The expression inside the bracket corresponds to 

Hadamard and Rybszynski resistance due to a drop with different viscosity  , but 

here due to the analytical (asymptotic expansion) correction between the capillary 

number and the Taylor Deformation of the drop using an ellipsoidal model -near 

spherical shape- of the drop (Rallison, 1984), (Taylor, 1932), 

( ∙ ) = 1 +  ⋅ ( ) ⋅ + ( ) with ≪ 1, 

and  being the small parameter (quasi-spherical drop), and ( ) measures the drop 

deformation.  The time evolution of its distortion is calculated by 
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( )
 ≡    

( )
+ ∙ ( )   =   

( )
 −   ∙ ( ) +   ( ) ∙

=
5  

2 + 3
−  

40 + 1   ( )

2 + 3 19 + 16
+ (  , ).                                 (5.2) 

Though complicated in appearance, the simple physical interpretation of 

Equation (5.2) is that the rate of change of the distortion ( ) rotates with the local 

fluid angular velocity —measured on a rotating frame of reference for the drop, and 

couple-free—, is due mainly to the effect of the ambient strain-rate field , and 

secondly to the retraction effect of the surface tension (proportional to ( )). 

Neglected terms are, of order  , arising from the straining flow acting on the 

perturbed shape, and ( ) terms from harmonics higher than the second. 

If ≪ 1, Eq. (5.2) can be solved analytically for A(t) at steady state, obtaining 

 ( ) =
19 + 16

8 + 1
  . 

The well-known Taylor equation (From Equation (10) to Equation (13), (Taylor, 

1934)) follows: 

=
19 + 16
16 + 16

,                                                      (5.3) 

for the deformation parameter in simple shear flow. 

Since during retraction there is no applied flow field, the evolution of A(t) —in  

Eq. (5.2)— is defined only for the rhs expression of Eq. (5.2).  So, the rate of change of 

the distortion A could be model by a single exponential decay, Fig. 5.11, from which 

the following equation for D(t) is obtained 

=   exp − 
40 + 1

2 + 3 19 + 16
.                    (5.4) 

Finally, using Eq. (5.4), Eq. (5.1) is derived. 

The DDR method employs the Taylor deformation Eq. (1.11).  However, there 

are other parameters to define the deformation of the drop. In this section, another 
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parameter for deformation is used, the Mo shape parameter. The model of Mo, (Mo, 

2000), assumes that the drop deformed is a regular ellipsoid. Then, the eigen-values of 

the matrix that represents the shape of the drop correspond to the principal axes of 

the ellipsoid. Mo shape parameter is represented by the following equation, 

= −                                                          (5.5) 

Taylor deformation and the Mo shape parameter assume a drop shape nearly 

spherical and a regular ellipsoid, respectively. However, as we saw in Chapter 2, 

Chapter 3 and Chapter 4, deformed drops by an extensional flow with vorticity have 

not a circular cross-section, and the relationship between capillary number and 

Taylor Deformation is not linear. Also, the 3D-effects of a drop due to a 2D-flow were 

shown, in the previous section, to have different characteristic times for principal 

axes. It is then safe to assume that for the phenomena of retraction, the evolution of 

the drop principal axes is not guaranteed to have an symmetric cross-section. 

 
Figure 5.12 Taylor Deformation of the drop vs time. = 0.13, = 0.40. 

This observation motivates this Section about the DDR model to evaluate 

retraction, because it is essential to observed if the -plane is enough to obtain the 
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value of interfacial tension with the precision required for strong flows. Equation (5.4) 

involves the Taylor deformation evaluated in the plane of flow. However, the 

retraction of the drop occurs under flow conditions similar to a uniaxial extensional 

flow so, the analysis of retraction could be observed from different planes of the drop. 

In this study, the plane generated by the principal axes were taken to observed how 

Eq. (5.1) estimates the value of interfacial tension with respect to the nominal value 

employed in the numerical code. 

 
Figure 5.13 Mo Shape Parameter vs Time. = 0.13, = 0.40. 

Figure 5.12 shows the Taylor deformation of the drop using the principal axes 

of the drop with = 0.40 and = 0.13. The decay of the Taylor deformation in all 

the cases could be modelled as an exponential decay. As well, a similar behavior is 

shown in Fig. 5.13 for the analysis of the drop retraction using the Mo shape 

parameter.  As Figure 5.12, Fig. 5.13 show, the drop goes to a spherical shape in less 

than the middle of the time observed. 

Figure 5.14 and 5.15 shows the comparison of the curves of decay of 

deformation with respect to an exponential decay, adjusted with the numerical data. 
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The exponential decay uses the characteristic time  in a model of Taylor Deformation 

and of the Mo shape parameter.  Fig. 5.14 shows that the retraction evolution model as 

an exponential decay, is a good approximation for cases when the Taylor deformation 

involves the L- and B-axes ( -plane) or the deformation in the cross-section W- and 

B-axis.  A measure of Taylor deformation between L-axis and W-axis shows a behavior 

a little bit different. Another observation is the difference of the characteristic time  

in the different planes of Taylor Deformation parameter. As the former Section shows, 

the characteristic times during retraction should be similar to the time required for 

reaching the stationary state (although different for each axis).  The time  for the 

deformation between the L- and B-axes is comparable to the time between L- and W-

axes mainly because the L-axis deformation is larger than the B-axis or W-axis values. 

The characteristic time for the cross-section is different, because of the enormous 

difference in the values of B- wrt W-axis. Also, the change of cross-section manifest 

another dynamical behavior that the model of retraction cannot estimate in the early 

stages.  So, obtaining the interfacial tension with the cross-section parameters may 

not be guaranteed. 

 
Figure 5.14 Taylor Deformation vs Time (lines). Exponential Decay vs Time (dash-dot-dot). 

Characteristic time  (diamonds). = 0.13, = 0.40. 
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The analysis for the Mo shape parameter was made as the case before, using 

the principal axes of the drop to estimate the deformations. The result of the 

characteristic time for a drop with = 0.40 and a parameter of flow = 0.13, is 

shown in Fig 5.15.  The match of the evolution of the retraction and the model of 

exponential decay is better than the analysis using the Taylor Deformation. Again, the 

characteristic times of cross section is evidently different than the other planes of 

observation. 

 
Figure 5.15 Taylor Deformation vs Time (lines). Exponential Decay vs Time (dash-dot-dot). 

Characteristic time τ (diamonds). α=0.13, Ca=0.40. 

The characteristic time of deformation on the principal plane is plotted in 

Fig. 5.16.  All values of the characteristic time using the Mo-shape parameter and Taylor 

Deformation appear to be different in each plane of observation.   The characteristic 

time increases too when the capillary number grows.  However, comparing cases of 

planes L- and B-axes versus L- and W-axes all appear to have similar values.  Time-

scales for the cross-section are shorter than for the other planes of the drop because the 

W-axis deformation is the smallest and the time to return to spherical shape, initial 

radius, is the shortest time. 
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These results are similar, as Fig. 5.10 shows, despite the former using the 

information of the principal axes of the drop, while Fig. 5.16 employing the information 

of the deformation on the plane of observation.  In both figures, the 3D-effects of the 

drop in a 2D-flow are evident in Fig. 5.10, because the principal axes have different 

characteristic times and the perpendicular axis to the flow, the W-axis, shows a 

different time-scale to attain the steady shape.  In the other case, Fig. 5.16 shows the 

behavior on different planes defined by the principal axes, so, time-scales associated 

to the deformation of the drop represent competition of times-scales on the principal 

axes of the drop.  Figure 5.16, implies that the characteristic time of retraction of the 

parallel plane of the flow retracts faster than the normal planes. In Fig. 5.15 the Taylor 

deformation or the Mo-shape parameter of the WB−plane have different scales of time 

with respect the other two planes. The characteristic times of the Mo-shape parameter 

have values among themselves, closer than when using Taylor deformation.  At this 

point, the Mo-shape parameter appears to be the best (tighter) simple prediction of 

the retraction of the drop. 

 
Figure 5.16 Characteristic times t vs Capillary Number which parameter =  0.13. 



76 | P a g e  C H A P T E R  5 :  C h a r a c t e r i s t i c  t i m e s  

The next analysis addresses data differences between the conventional 

methods and information on the other planes, which are not observed by 2D-

numerical methods or experimental devices as Two Roll Mill, (Reyes, 2005), (Rosas I. 

Y., 2013), and (Rojas, 2016). The information on the different planes will be discussed 

after the explanation of the technique for obtaining the interfacial tension. 

 
Figure 5.17 ( / ) vs. time. Drop retraction was analyzed with Taylor deformation which 

= 40 and = 0.13. 

At the end of drop retraction, there is a residual deformation with values of 

0.001 < < 0.005 for the capillary numbers used. This residual deformation is 

clearly observable in the ( / ) vs. time plots, as shown Fig. 5.17 for a drop 

subjected to = 0.40 and = 0.13.  Residual deformations are essentially a 

measure of the uncertainties of the numerical code.  The values of Taylor deformation 

mentioned before imply a difference of about 0.2% to 0.3% of the length of the 

principal axes.  In this work, the evaluation the length of the axes always take the 

largest distance from the drop surface to the center of the drop as the L-axis, 

afterwards the B- and W-axis are estimated. When the resolution is less than 0.3%, 

obtaining the Taylor deformation close to zero becomes very difficult. A similar case 
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of residual deformations is obtained in the Mo-shape parameter. The values are 

0.0015 < < 0.006, and the behavior is similar as the Fig. 5.17. 

Therefore, the DDR model must assume a clean linear slope due to the loga-

rithmic dependency, with no consideration to residual deformations (either experi-

mental or theoretical). With this fact, the optimum evaluation of the interfacial tension 

should be based on deformations before the drop attains its smallest residual values. 

 
Figure 5.18 Angle of Orientation vs. time in drop retraction which parameter = 0.13. 

Experiments of retraction of a drop, deformed by a 2D-flow, must maintain the 

angle of orientation of the drop fixed, for the flow is due only to the elasticity of the 

interface, which is based on a symmetric shape for the drop.  Figure 5.18 shows the 

orientation of the drops during the retraction process, which changes when the drop 

is nearly spherical.  In other words, the angle of orientation can be used to define the 

longest useful time of retraction, just before observing the residual deformations. 
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Figure 5.19 Linear fit of − ( / ) for 5  of time. Drop retraction was analyzed with Taylor 

deformation which = 40 and = 0.13. 

 
Figure 5.20 Linear fit of − ( / ) for  5  of time. Drop retraction was analyzed with Mo 

shape parameter which = 40 and = 0.13. 
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In order to simulate numerically a wide range of interfacial tension values, the 

capillary numbers were fixed but the interfacial tension varied, while the other 

variables of  were adjusted accordingly. So, the capillary number used in this 

analysis varies as the reciprocal of the interfacial tension. 

Figures 5.21 and 5.22 indicate with lines the value of the interfacial tension 

introduced in the numerical scheme. The values obtained with DDR method 

correspond to the symbols.  Using multiples of the characteristic time, which was 

obtained in the same form than in Section 5.1 for the retraction phenomenon on drops, 

the interfacial tension was evaluated by the slope of the traces as shown in Fig. 5.19 and 

5.20, and using Eq. 5.1.  These results of interfacial tension were plotted in Fig. 5.21 and 

5.22. 

Figure 5.21 shows the values of the interfacial tension, obtained for different 

capillary numbers, using Taylor deformation. For small capillary values, between 

0.05 < < 0.15, the interfacial tension is large, or 20 > > 6.66 [mN/m], and the 

interfacial tension values predicted by the DDR method appear to be poor. The best 

prediction using Taylor deformation occurs in the range of 0.20 < < 0.35 or 5 >

> 2.86 [mN/m]. When the capillary number is = 40, the prediction start to fail 

again. Figure 5.21 shown how the prediction is affected using different values of time 

. Analyzing the best prediction, the interfacial tension prediction approximates better 

the interfacial value when the characteristic times is between 2 < < 2.5. 

Figure 5.22 present the same results but now using the Mo-shape parameter.  

These latter predictions appear to be worse than those using the Taylor deformation.  

Figure 5.22 shows the best range when 0.20 < < 0.35 or 5 > > 2.86 [mN/m], 

close to the simulated value.  However, Figures 5.21 and 5.22 may indicate the failure 

of the two methods when attempting to calculate the interfacial tension using the DDR 

method. The best match for the two methods corresponds to a zone between 2  and 

3 .  Figures 5.23 and 5.24 present the systematic error on the interfacial tension 

values when using different intervals of the characteristic time . These errors are 

presented with respect to the Taylor Deformation and the Mo-shape parameter in the 

DDR method. 
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Figure 5.21 Comparison between the interfacial tension used in numerical simulations (lines) 

and the interfacial tension obtained with DDR method (symbols). The analysis was 
made with Taylor deformation, the slopes used were based on multiples of . 

 
Figure 5.22 Comparison between the interfacial tension used in numerical simulations (lines) 

and the interfacial tension obtained with DDR method (symbols). The analysis was 
made with Mo shape parameter, the slopes used were based on multiples of τ. 
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Based on the numerical simulation, the optimal time to obtain the best slope for 

estimation of the interfacial tension is  ≃ 2 . Plots shown in Figs. 5.23 and 5.25 

are now linear and the error is shown to be less than +10%.  When values of interfacial 

tension are large -black color- errors are less than 5% for 1.5 .  The interfacial tension 

best value could be obtained at 2 , but the orientation angle has changed.  If values of γ 

are taken avoiding the information about the orientation angle, errors could be reduced 

to less than 3%.  The next range -blue marks- have a difference of 10%.  For capillary 

numbers 0.25 < < 0.35, the error decreases to less than 7% in the best case: =

 0.10.  Finally, for the large capillary numbers used in this work, an error less than 2% 

would be possible for γ.  A similar accurate prediction is feasible at 2 .  However, the 

estimation of the interfacial tension for low capillary numbers —bigger values of γ— 

have an accuracy of less than 10%; the difference in this case is the over-estimation of γ.  

For the other values, errors vary from 5% to 0.1%.  If for the analyses more data for 

− ( / ) is taken, i.e.,  > 2.5 , the curves deviate more strongly from the linear 

dependency and the uncertainty increases, Fig. 5.17. 

 
Figure 5.23 Error between the interfacial tension used in numerical simulations and the 

interfacial tension obtained with DDR method (symbols). The analysis was made 
with Taylor deformation, the slopes used were based on multiples of τ. 
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Using the Mo-shape parameter presents other important features. Comparing 

Figs. 5.14 and 5.15, The Mo-shape model has a very good exponential decay behavior, 

actually better than when using the Taylor deformation. In Figure 5.15 the analyses on 

the planes (L-B) and (L-W) are similar, with a good exponential decay, and the 

calculated slopes present also the same behavior. For the same drop shown in Fig. 5.20, 

the behavior of − ( / ) appears better than that of  − ( / ). However, values 

of γ appear to be less accurate than the case of Taylor Deformation. 

In Figure 5.22, is evident the difference between the interfacial tension used 

and the interfacial tension estimated. Figure 5.24 indicates that the error is always 

bigger than 7.5%. In the cases of 0.15 ≤ ≤ 0.40, the optimal time to obtain 

interfacial tension is in 0.5 ≤ ≤ 2 .  However, the accuracy is less than 10%. 

When the interfacial tension was 20[mN/m], the optimal slope was in the same 

interval 1.5 ≤ ≤ 2 . The approximation in this case was less than 10%. Then 

as the study of DDR with Taylor deformation, the value has less accuracy if the time is 

2 ≤ . 

 
Figure 5.24 Error between the interfacial tension used in numerical simulations and the 

interfacial tension obtained with DDR method (symbols). The analysis was made 
with Mo shape parameter, the slopes used were based on multiples of τ. 
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Figures 5.23 and 5.24 indicate that the use of Taylor deformation appear to 

predict better values of interfacial tension when γ is less than 5 [mN/m].  The method 

does not seem to be sufficiently accurate for values from 5 to 15 [mN/m].   

There are other DDR methods, based on the deformation of the W-axis and the 

projection of the L-axis on the xz-plane; that is, the experimentally determine length is 
ˊ = · , on the xz-plane; P is simply a projection operator. Remembering Fig. 1.1, the 

drop suffers an orientation due to the kind of flow applied.  Experiment as Guido, 

(Guido & Greco, 2001), have access to all views of the drop deformed during the 

retraction phenomenon.  However, experiments by (Yu, Bousmina, & Zhou, 2004) or 

(Mo, 2000), only have access to the top-view projection of the drop (on the -plane).  

In these cases, the actual value of the W-length is observed, but the L-measured is a 

projection of the real L-length: ˊ.  With this information, comparisons between theory 

or numerical results with experimental information that use the -plane projection 

can only approach the accuracies here calculated. 

 
Figure 5.25 Error between the interfacial tension used in numerical simulations and the 

interfacial tension obtained with DDR method (symbols). The analysis was made 
with Taylor deformation in (L, W), the slopes used were based on multiples of τ. 
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Figure 5.25 shows errors when using the LW-plane in the DDR method. Here, 

Taylor-deformation measure shows a better approximation in 2 ≤ ≤ 3  that 

the analysis with L- and B-axis: the error is ≤ 6%; see Fig. 5.23.  In Figure 5.25, the 

error is 5% ≤ ≤ 10% when 2 ≤ ≤ 3  and 0.10 < < 0.15. When the 

interfacial tension is approximately 2.5 [mN/m], the error is always above 10% at 

< 2 , and the error decays to less than 3% when = 3 . Finally, 

when 0.15 < < 0.35, and using the change of the orientation angle, the DDR 

method can be applied for ≤ 2 .  Prediction for these cases imply errors less 

than 10%.  Comparing the errors of Figs. 5.23 and 5.25, the use of the LW-plane 

predicts better values of the interfacial tension than when using the plane parallel to 

the flow, LB-plane. 

 
Figure 5.26 Error between the interfacial tension used in numerical simulations and the 

interfacial tension obtained with DDR method (symbols). The analysis was made 
with Mo shape deformation in (L, W), the slopes used were based on multiples of τ. 

Figure 5.26 shows the error using the LW-plane in the DDR method using the 

Mo-shape parameter.  Figure 5.26 indicates a better approximation than the analysis 

with the L- and B-axis.  The error is 5% ≤ ≤ 10% in the case of 0.5  for 0.25 <

< 0.35. When the interfacial tension is 20 ≥ ≥ 6.66 [mN/m], the error is always 
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above 5% and less than 11%, when 0.5 < < .  The error increases for times 

above = .  When the interfacial tension is 2.5 [mN/m], the error is always 

below 10%, when < 3 ; then, the error increases. The error is > 3% in the best 

of predictions for this interfacial tension value. 

Analyses using the Taylor deformation or the Mo-shape parameter applied on 

the cross section of the drop, W- and B-axis, provide the worst predictions, except for 

= 0.05 and 1.5 . For these cases the approximation is between 10% <   <

15%; for the other cases, the error was more than 15%.  When = 0.05, the model 

with the Mo-shape parameter provides the weakest estimation with the error being 

larger than 15%. 

The best match to estimate interfacial tension for a drop that was deformed in 

a flow with = 0.13 and then was relaxed to a near spherical shape is the DDR 

method using the Taylor deformation.  However, this match was obtained analyzing 

-plane. Reviewing Fig. 5.14, this plane has a decay which differs more than the 

-plane compared as decay exponential behavior.  In fact, the best adjusts to a decay 

exponential (Mo shape parameter) have the worst approximation. Another remark is 

that Mo shape parameter adjust an ellipsoidal drop, the interfacial tension that was 

well estimated with this parameter was = 0.45, i.e.; the deformation of the drop 

was the largest, in theory, the best adjust must be the case when the drop has =

0.05, when the drop is like a spheroidal shape object. 

Based on results presented in Chapter 3 and 4 it is now clear that deformations 

along the three axes of the drop are different.  At the end, models of prediction as 

ellipsoidal forms are not appropriate, because the retraction process of a drop appears 

to be the worse approximation when attempting to simulate an elliptical shape with 

an exponential decay.  As well, taking the numerical data of Chapter 3 and 4, the 

projection of the drops on the -plane is clearly not an ellipse.  Thus, all processes of 

retraction of ellipsoid drops will incur the errors observed. Using LW-plane data will 

present essentially the same problem, albeit with errors a whit smaller. We may say 

that the drop in the LW-plane is closer to an elliptical form than the conventional 

-plane projection: -plane. 
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Another possible interpretation of these observations is that theories that 

assume an exponential decay may be the correct ones, as shown in Fig. 5.14 and 5.15, 

but those theories clearly require improvements for an accurate estimation of the 

deformation shape as function of ,  and the flow parameter .  The existing linear 

models used to date are not good enough to describe accurately the retraction in time, 

with a poor prediction of the interfacial tension value. For this reason, a new theory is 

needed, even for the simplest liquids, such as a Newtonian fluid. 

The interfacial tension values determined by a dynamical experiment indicate 

that a better prediction of  comes from the third direction that is not analyzed in 

conventional experimental devices. This observation comes about the numerical 

calibrations presented here.  But having a view of the third dimension is a difficult 

experimental task (Guido, Greco, & Villone, 1999). For cases (Yu, Bousmina, & Zhou, 

2004) and (Mo, 2000), when the W-axis is well determined but the L-axis is only its 

projection, the obtained deformations are not the correct ones. Another complication 

is to get the data of precise drop dimensions: there are always uncertainties of the 

experimental device due to illumination, or the image algorithms to analyzed the 

shapes of the drops (Rojas 2014), (Rosas 2012), et cetera.  For these reasons, I hope 

that numerical experiments will help to develop better estimations of the drops 

parameters and consequently better determination of the interfacial tension. As an 

example, is the fact of optimization of characteristic time it is possible using numerical 

data. With this information, the estimation of the interfacial tension will be improve 

with the less possible error intrinsic by the method 

To estimate interfacial tension, it will be necessary to employ numerical 

simulations with experiments in the laboratory to have the information in the 

-plane to predict the interfacial tension using DDR techniques. 

 

 



 

 

CHAPTER 6.
 Shear rate vs. Capillary number.

 Effect on the steady flow form of drops 

 

 

 

 

 

 

In Chapter 3 and 4, the analysis of evolution of the drop-form is given in terms 

of the behavior for the orientation and the deformation of the drop once the 

stationary state is reached.  In this Chapter, I present and interesting variant based on 

the analysis for the drop deformation histories when the capillary number is fixed, but 

the shear rate is varied. That is, here all numerical experiments presented were 

carried out at constant Ca, but effects induced by the intensity of the flow  are 

systematically studied.   corresponds to the intensity of the rate of deformation 

tensor (Makosco, 1994), Eq. 1.6. If the case is simple shear flow G is known as shear 

rate, ; and in the case of extensional 2D-flow,  is the strain rate, .  The non-

dimensional time  is the same for all experiments.  As in Chapter 3 and 4, the 

observed behaviors are the same for different values of flow parameter α, thus here 

the Figures employed to illustrate the relevant results correspond to only the regime 

for = 0.13. 
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6.1 Consequences of shear rate  in the stationary state of the drop 

for small value of rate of viscosity 

In Chapter 3, the evolution of the shape of the drop is shown in Fig 3.1. In all 

figures plotted, the trace presents tiny oscillations at long times, with similar 

fluctuations on the trace for the orientation angle. At the beginning of this study, those 

oscillations were assumed to be due to a poor resolution of the mesh applied in these 

numerical simulations. However, when the mesh was plotted to make movies of the 

history of deformation of the drop, the resolution of the mesh performed very well, in 

all images; i.e., the elements’ shapes and the median curvatures were consistent with 

the data obtained. The resolution for all times was good enough to discard the 

presence of an abnormal deformation of the mesh. 

 
Figure 6.1 Polar representation of Angle of Orientation vs. Taylor Deformation with = 0.13 

and = 0.012. 

The movies of the dynamics of drop deformation show a sliding motion of the 

mesh on the interface: The final shape of the stationary state and the tiny oscillations 

were quite obvious. These oscillations of the drop actually change the deformation 

and the orientation of the drop. However, the observed behavior of these tiny 
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oscillations was not a function of mesh size resolution. The orientation of the drop 

plotted versus deformation of the drop is presented in Figure 6.1, for the long-time 

form under a flow with = 0.13 and = 0.012, as the data given in Chapter 3. 

At the onset, there is no flow applied in the continuum phase, and the drop is 

spherical —the deformation is zero and there is no angle of orientation. Then, when 

the strong flow is applied, the drop starts to deform and suffers a re-orientation 

proportional with —along the direction of— the eigen-direction of the stress 

deformation tensor. At the end, when the long-time shape is attained, the deformation 

and the angle of orientation come to their final values.  However, the “steady state of 

deformation” is characterized by an interesting behavior: there are oscillations. That 

is, curves in polar plots should finish in a single point when a stationary shape is 

attained.  However, if these plots are observed with care, the stationary shape is not a 

point; in fact, there is a little curved closed trajectory at long times.  This aspect 

motivated to analyze again this figure. 

 
Figure 6.2 Angle of Orientation vs. Taylor Deformation with = 0.13 and = 0.012. 

Figure 6.2 shows the same information of Fig. 6.1. However, the representation 

is not a polar plot, it is in a Cartesian form.  Here, the final trajectory around the end 
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point is more evident than the previous plots.  The information about these drops 

with low capillary number is clearer than the polar plot figure. The end “point” of the 

steady shape of deformation in polar plot are actually tight trajectories around a 

point. This final close trajectory corresponds to the oscillations mentioned above. In 

other words, the stationary shape in the numerical oscillations goes around searching 

for a stationary point. 

Comparing the polar plots data of Reyes (Reyes, 2005) and Rosas (Rosas, 

Reyes, Minzoni, & Geffroy, 2014) the 2D-numerical and the experimental data referred 

have a similar behavior (trajectories around a point).  However, the analysis of these 

curved trajectories around a point was omitted because the relevant behavior was 

due to supposed effects of the resolution of the numerical method (Reyes, 2005). In 

the experimental case, these oscillations were considered as normal variation of 

uncertainties of the control mechanism. 

 
Figure 6.3 Evolution of Taylor Deformation for the same capillary number with different values 

of G. 

To better understand the observed behavior, a large set of numerical 

simulations were needed. It was necessary to design new algorithms to achieve long 
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times of simulation, without a heavy computational cost.  Initially, to optimize 

CPU-Time and to carry out the required number of numerical simulations, the G value 

(shear rate) was increased maintaining the capillary number fixed.  For example, to 

perform a simulation for a capillary number = 0.35, the time-length of every step 

was set at ℎ =  0.001 .  Then, the stationary shape and the retraction time were 

observed only after 20,000 time steps.  The idea was to set a larger value for G, in 

order to produce a simulation faster. For the case of = 0.35, = 2.0,  the final 

number of steps were 10,000; in this manner, in less than 16hr the simulations were 

completed. The results for capillary number of = 0.35  are shown in Fig. 6.3; the 

deformation histories of the drop, observed in 4 different experiments, were different. 

 
Figure 6.4 Angle of Orientation vs Taylor Deformation for drops with the same Capillary 

Number with different values of  

In Figure 6.3, the long-time oscillations increased proportionally in size to the 

value of .  Also, the deformation in the steady state has a different final value (larger 

but less than 7% in most cases). Figure 6.3 shows an experiment where the parameter 

 and the initial radius of the drop were change while maintaining constant the value 

of the capillary number: = 0.35.  The final oscillations were similar as those 
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numerical results when the parameter  was the only change; i.e., it appears that it 

does not matter if the radius of the drop or the interfacial tension is modified. In 

essence, the phenomenon of rotation of the steady shape may be dominated by changes 

of the intensity of the applied flow. 

 
Figure 6.5 Angle of Orientation vs. Capillary Number for = 0.35 and different values of . 

Figure 6.4 shows the trajectories of the orientation angle versus deformation of 

the drop, for capillary numbers below the critical capillary number  <  , but 

with values large enough to observe appreciable states of deformation.  These values 

are: 0.35 ≤ ≤ 0.45.  It can be observed in Fig. 6.4 that close trajectories increase in 

size for the larger values of G. 

Oscillations around a stationary state suggest the possibility of a Hopf 

bifurcation.  During the last 7 years, several research groups (Zhao & Shaqfeh, 2011), 

(Lalanne, Tanguy, & Risso, 2013), and (Spann, Zhao, & Shaqfeh, 2014) have found 

similar phenomena for vesicles in shear flow. They found that the oscillation increase 

in amplitude as a result of larger shear rates in the shear flow.  That effect is very likely 
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equivalent to the one presented above. However, there is no detailed analysis of drop 

deformations in neither strong flows nor the least for simple shear flow. 

 
Figure 6.6 Trembling effect in drop deformation for different capillary number with >> 1, 

= 0.13, = 0.01. 

The numerical studies referred above indicate the sliding motion of the vesicle 

interface without altering details of its shape. These vesicles reach a steady 

orientation and deformation but also slide in the plane of the flow, in a motion similar 

to a sliding skin on a rigid body, and this effect is called tank-treading.  In this case, the 

vesicle describes a similar trajectory as drops in Fig. 6.4 with = 1. For plots of 

orientation angle vs. deformation, the tank-treading rotation is observed as a close 

tight trajectory at long times.  The phenomenon of tank-treading is observed in this 

simulations as the slipping motion of mesh elements on the interface, while maintaining 

the orientation and deformation of the drop with very tight quasi-constant values. 

The other solution of the Hopf bifurcation observed in vesicles corresponds to 

the “trembling effect”. For this second solution, vesicles suffer a continuous and 

simultaneous oscillatory reorientation as well as an oscillatory degree of deformation. 

That is, a small contraction-expansion of the vesicle, as well as a continuous jiggling of 
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reorientation are observed; i.e., the deformed vesicle trembles. The plot in time of angle 

vs. deformation of this effect in vesicles is like the trajectories observed in Figs. 6.4, 

when > 1.  Figure 6.5 shows an analysis in the steady regime when = 0.35, but 

different values of G.  Again, there is a similar effect to tank-treading for the case 

when = 1.  However, by zooming in the last part of the evolution, the figure shows 

that there is a case like trembling.  The other trajectories present clearer evidence of 

the trembling behavior.  Finally, the last two trajectories are similar. Changing the 

radius and the interfacial tension and maintaining the same capillary number does not 

affect the trajectory as Fig. 6.3 shows. 

Until the data shown in Fig. 6.5, all cases observed correspond mainly to 

trembling effects. The second solution referred to as “tank-treading” appears when 

values of the intensity of the applied flow G are small and 0.03 < < .  These 

dynamics are characterized by an interesting behavior. Looking again the close 

trajectories of Fig. 6.5, the trembling condition corresponds to an ellipsoidal trajectory 

in the orientation angle vs. deformation diagram; in contrast to tank-treading can still 

be best characterized by a tight close trajectory. 

A third possible solution, which corresponds to the last case observed in vesicles 

in simple shear flow, is the tumbling solution. The “tumbling effect” (or solution) 

corresponds to a closed trajectory with a bell shape, carefully described in the work of 

Shaqfeh and coworkers (Spann, Zhao, & Shaqfeh, 2014) and observed while studying 

vesicles.  The changes of the orientation angle and deformation are the largest for these 

trajectories, with a rather unusual form: a bell shaped. To observe this phenomenon in 

vesicles, the shear rate values must be very large; the tumbling effect was not observed. 

Figure 6.7 shows different drop simulations for cases when values of G are larger 

than 1, and the trembling solution is observed, in all cases.  As the capillary number is 

reduced, the observed closed trajectories become more elongated.  In other words, for a 

small capillary number and for very large G values, we observe, in Figure 6.6, the 

transition between trembling and tumbling.  Figure 6.8 shows the comparison of the 

trajectories for similar capillary values with a notable difference in the value of G.  The 

Trajectories are similar, only the parameters characterizing steady states change. 
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Furthermore, evidence of the Hopf bifurcation is observed in vesicles. This evidence 

implies the necessity to review the drop deformation in strong flows by mapping these 

transitions of the configurations with the purpose of understanding these bifurcations. 

 
Figure 6.7 Comparison of the trajectories of steady states for Angle of Orientation vs. Taylor 

Deformation of different Capillary Number, but different values of  

The tiny oscillations described in Chapter 2, and observed in all subsequent 

Figures, are due to increments of the value of the shear rate G.  When the intensity  

increases, drops simultaneously elongate and rotate towards the outflow axis until a 

final orientation and deformation is reached; this is essentially the tank-treading 

phenomenon (Please recall that the final steady state orientation of the drop under small 

Ca is not necessarily closely aligned with the outflow axis).  In contrast, a final state with 

finite oscillatory changes in the deformation and orientation corresponds to the 

trembling effect, and was reported too; so, trembling refers to jiggling about the 

equilibrium orientation. 
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Figure 6.8 Comparison of the trajectories of steady states for Angle of Orientation vs. Taylor 

Deformation of different Capillary Number, but different values of ,with = 0.13 
and = 0.012. The blue symbols are the steady states of drop deformation for 
capillary numbers ( = 0.05, 0.10, 0.15, 0.20, 0.25,0.30, 0.35, 0.40,  0.45) with 

= 1. The green symbols are the steady states of deformation obtained by = 3. 

The concepts of tank-treading and trembling have been observed for capsules. 

However, there are no reports of these effects in the literature of drop deformation. 

One possible explanation for this lapse of understanding may be due primarily to the 

use of the normal component of the velocity (Pozrikidis, 1992) for previous numerical 

studies.  When the drop deforms, many of the numerical codes use the Eulerian 

representation of the mesh and reconfigure it, so, they could not observe the steady 

displacement of the mesh in the plane of flow by the effect of the flow vorticity, in the 

Lagrangian representation. 

The numerical code employed here does not refine the initial mesh, so, a 

Lagrangian representation is used to avoid distortions of the elements due the 

deformation of the mesh. For this reason, to observe specific features of the dynamics 

of deformation, the tangential component of the velocity of the mesh is determined 

and is employed to advance the time evolution while being useful as well to evaluate 
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possible surface slipping. This additional information better exposes, in an 

unambiguous manner, the tank threading phenomenon described.  Figure 6.9 shows 

the effect on plotting the drop deformation vs. time, when using different frames of 

reference, the Eulerian frame of reference of the drop versus the Lagrangian frame —

specifically, the normal and the tangential components of the velocity field.  

 
Figure 6.9 Comparison of evolution of drop deformation in the trembling effect when the 

velocity is calculated using only the normal component of the velocity (dash line). 
The velocity calculated using the normal and tangential component employed is 
observed in the blue line. = 0.04, = 0.13 and = 0.012.  

The values of the drop deformation versus time, shown in Fig. 6.9, correspond 

to the trajectories of Fig. 6.8, indicating the translation of the mesh along the 

tangential direction of the applied local flow.   A similar behavior is reported by Spann 

(Spann, Zhao, & Shaqfeh, 2014), the tangential motion of the mesh, like that of a 

conveyor belt, is associated to the phenomenon called tank-treading. 
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6.2 Consequences of shear rate  on the stationary state of the drop 

for large capillary number values. 

All numerical experiments presented here attempt to simulate an equivalent 

flow condition, based upon the dimensionless numbers, to previous experimental 

studies of drops in flows used several times the same drop (that is, size, viscosity and 

surface tension being fixed) while the parameter that changes in experiments is 

correspondingly the shear rate, in simple shear flow; the strain rate, in extensional 

flows; or in strong flows, the parameter  (Bentley & Leal, 1986b), (Kennedy, 

Pozrikidis, & Skalak, 1994), (Rosas I. Y., 2013). 

For the experiments presented in Chapter 3, the numerical method predicts 

similar deformations as those observed in the experimental data.  Thus, the initial idea 

was to validate the previous experimental data.  Motivated by these results, many 

numerical experiments were carried out under the regime of = 0.03, = 0.05 and 

= 0.13.   For these runs, the capillary number used constant values for the surface 

tension, the viscosity of the continuum phase and the radius of the drop. Only the 

parameter  was varied in order to vary the capillary number.  The experimental data, 

took values of the parameter  within the range of: 0.5 ≤ ≤ 1.  Therefore, my 

numerical experiments were performed with these data inputs. 

In the previous Section, I emphasize the importance of the intensity of the flow 

for the selection of the solution describing the drop deformation elucidating the tank-

treading, trembling and other possible solutions.  That is, the numerical experiments 

maintained the values of the capillary number fixed, but the parameter  varied. 

In contrast, as Figures 6.10, 6.11 and 6.12 show, the numerical and 

experimentally evaluated steady shapes of drop deformation diverge; most importantly, 

for different capillary numbers and for a large set of different flows: = 0.03, 0.05,  

and 0.13, respectively.  In all cases, the numerical predictions matched well the 

experimental values, but only for small capillary numbers.   However, as the value of the 

capillary number increases, differences between numerical and experimental data 
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grow; up to the critical value of the capillary number (that is, when the drop can no 

longer attain a stationary shape). 

Figure 6.10 shows the numerical vs. experimental difference for the 

deformation parameter caused by a flow similar to simple shear:  = 0.03. 

Differences are small when Ca < 0.2: less than 20%; then, they increase up to 60% 

near the critical capillary number, when numerical data predicts a value below =

0.5, while the experimental data is close to = 0.8.  Figure 6.11 and 6.12 show 

similar discrepancies under more elongational type of flows; i.e., for low values of the 

capillary number, the numerical method correctly predicts steady Taylor 

deformations, in contrast with larger capillary numbers. However, as the parameter α 

increases, differences decrease from 60% (for = 0.03) to 25% (for = 0.13 ). 

 
Figure 6.10 Comparison between experimental and numerical data of steady deformation on  

plane vs capillary numbers with = 0.03, = 0.012. The insert Figure is the 
numerical error w.r.t. the experimental data. 

The input data for numerical experiments, employed in previous Chapters, 

were selected based on the best match between numerical vs. experimental data.  The 
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next question to address was to study and understand possible reasons for the failure 

of the numerical predictions of the drop deformation during the steady state phase 

and for the larger capillary numbers.  The main motivation was the possibility of 

having an accurate numerical method to simulate large steady deformation, near to 

the break up point (rupture) of the drop 

Because rupture-of-drop conditions is a very relevant topic of study in multiple 

applications, understanding the physical processes around the events before rupture 

are essential to a detailed modeling of the whole process.   Modeling those pre-rupture 

processes with the BEM3D algorithm could give a complete panorama about large and 

critical deformations. However, as Figures 6.10, 6.11 and 6.12 indicate, reaching the 

capillary critical values may not guarantee attaining the associated critical state of 

deformation as was expected. 

 
Figure 6.11 Comparison between experimental and numerical data of steady deformation on  

plane vs capillary numbers with = 0.05, = 0.012. The inset Figure is the 
numerical error w.r.t. the experimental data. 
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At the beginning of this Chapter, the study of a drop in a flow emphasized the 

states of deformation when the parameter  strengthened.  Also, these results indicated 

that the shape attained for long times (commonly referred as) the stationary state can, 

in fact, be a region about a given value.  Trajectories about a point are shown in Fig. 6.5.  

If increments of  for the flow around a drop could cause a new state of deformation as 

in Fig. 6.10, 6.11, and 6.12, then there are at least two types of flow kinematics 

providing two solutions: one with a very tight trajectory about a point and the other a 

trajectory about an ampler region about a point.  The first one corresponds to the tank 

threading conditions while the latter to the trembling solution.   

 
Figure 6.12 Comparison between experimental and numerical data of steady deformation on  

plane vs capillary numbers with = 0.13, = 0.012. The inset Figure is the 
numerical error w.r.t. the experimental data. 

The question now is to determine which of these two possible solutions was 

observed experimentally by Rosas et al.  Carrying out BEM3D simulations about the 

critical capillary number, while varying (increasing) the parameter G of the flow, in a 

similar manner to the experiments of Rosas, then the “correct” solution, observed 

experimentally, could be determined.  So, if multiple solutions exist, then these simula-
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tions may imply that there are at least two Hopf bifurcation solutions.  Simultaneously, 

the parameter space for the other branch (solution) and its critical values could be 

investigated numerically for future comparison with experimental studies of these 

phenomena.  Furthermore, one, or both solutions may lead to rupture; but which ones 

and under what conditions is still a question not addressed experimentally.  

The next analysis considers effects due to large values of the  parameter.  

Here, I mean  values thrice and four times larger than the values used in Fig. 6.10 to 

6.12.  As in Chapter 3, the viscosity ratio was = 0.012, and = 0.13.   The analysis 

presented in this section will be focus near the capillary critical number for = 0.13.  

Figure 6.13 shows the deformation of the principal L-axis of the drops for 

different capillary numbers.  Amplitudes of oscillation increase as  increases.  The 

largest value of  implies less observation time, because the time resolution (time 

step for evolution) and the distortion of the mesh (characteristic length-scale for the 

numerical code become critical. This distortion causes that, numerical simulations 

finish with obvious numerical errors. 

 
Figure 6.13 Comparison of the L-axis when capillary number is increased as function of 

Parameter G, with = 0.012, = 0.13. 
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In order to avoid a poor resolution (a distorted mesh) due to a large time step, 

for these simulations the number of time-steps was set larger, maintaining constant the 

total time of simulation.  These new simulations are carried out with a higher cost of the 

CPU-time.  The new predictions of the steady states of deformations do not show 

significant differences: A slightly larger deformation, but essentially the same 

frequency and amplitude for the long-time oscillations.  The Hopf bifurcation is 

observed as was predicted in the latter Section, but a critical deformation is not 

attained, as was suggested.  The steady state is the same in general terms. 

A critical deformation is attained when the drop form is no longer able to 

sustain a steady deformation of the drop, and it keeps on deforming.  Unless an 

unexpected shape becomes dominant, which this is the case, and may provide insight 

about a Hopf solution not considered earlier.  Thus, Figure 6.14 shows the evolution of 

the W-axis (along the neutral direction of the flow field) for the same experiments.  

Here, there is a small change in the early overshoot of the W-axis evolution.  At long 

times, it is quite obvious that the length of W-axis remains significant without an 

obvious change in the steady deformation attained. The drop mass distributes along 

the z-axis more heavily, with a higher average curvature on the drop, while 

restraining the elongation of the drop.  In contrast, there is only a change of the 

frequency of the oscillations, as was shown in the latter Section. 

The data of Figure 6.14 indicate that the numerical critical capillary number may 

not the same as the experimental value indicates.  In this case, I can assume that the 

numerical method does not represent the same dynamical behavior of previous 

laboratory experiments.   However, if the numerical simulations do not reach the critical 

deformation, then what will happen if the capillary number is increased by numerical 

simulation that advance very slowly the simulation time to avoid the distortion of the 

mesh?  These simulations will attain the critical deformation?  What is the drop shape at 

this critical state?  To elucidate these questions, a new set of experiments was developed. 
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Figure 6.14 Comparison of the W-axes when capillary number is increased as function of 

Parameter G, which = 0.012, = 0.13. 

 

 
Figure 6.15 Comparison of the W-axes when ≪ , which = 0.012, = 0.13. 
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The numerical experiments were carried out by mainly visualizing the 

evolution of the W-axis as a new, relevant behavior. Remembering Fig. 5.3, the 

evolution of the W-axis in a strong flow, = 0.13, and different values of the capillary 

numbers show small early overshoots in every experiment.  These overshoots 

increase as the capillary number grows. Figure 6.15 shows plots of the W-axis, when 

the capillary number value increases as function of the  parameter; with = 0.13 

and = 0.012.  In these experiments, capillary numbers attain values above the 

critical value. The time-step is smaller than all cases before, to avoid the abrupt 

distortion of the mesh. 

The results indicate an evolution in the overshoot of the W-axis. The overshoot 

always starts at one (spherical equilibrium), then there is an increment in the value of 

W-axis which is above one.  At the end of the numerical simulations, the value of the W-

axis decreased to the final state.  However, when the capillary number increases 

markedly,  ≳ , then the overshoot disappears and the normalized values of W-

axis are always larger than one.  In other words, the cross section of the drop goes to a 

new state which is flatter than in previous simulations.  Figure 6.16 shows the three 

principal axes evolution of a drop when  ≲  , = 0.13 and = 0.012.  

Compared with plots in Figure 3.2, the main difference is the behavior of the W-axis.  

The characteristic times are similar to all cases observed in Chapter 5; L- and B-axis 

have a similar time-scale, however the W-axis presents always a delay. The little 

oscillations are a consequence of the Hopf-bifurcation mentioned earlier. 

Figure 6.17 shows the Taylor deformation values for all planes of the drop; for a 

drop with = 0.40, = 0.13 and = 0.012.  The deformation in the ( , ) plane 

presents an overshoot caused by the evolution of the W-axis.  Figure 6.18 shows the 

evolution of Taylor deformations when ≲ , = 0.13 and = 0.012.  The 

deformation on the principal plane, -plane or ( , ) plane, presents the largest value 

of deformation. The cross section shows a rather flat deformation, along the neutral 

direction of the flow; i.e., the ( , ) plane shape presents a very flattened form. 
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Figure 6.16 Principal Axes evolution in the time for a drop whit ≪ , = 0.012, =

0.13. 
 

 
Figure 6.17 Taylor Deformation in different planes: = 0.40, = 0.012, = 0.13. 
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In Chapter 4 and 5, the cross section of deformed drops, by strong flows show a 

non-circular shape.  The shapes were clearly more elliptical than circular, with a cross 

sectional area less than .  Thus, drops in steady state for ≤  are ellipsoids. 

However, as the value of the capillary number increases, the shape of drops distorts 

more, away from the ellipsoidal shapes observed for small Ca values. 

 
Figure 6.18 Taylor Deformation whit ≪ , = 0.012, = 0.13. 

Finally, when the capillary number is large as a consequence of the parameter 

G, as shown in Fig. 6.18, this kind of deformed drops become to “super guarache” —

Guaraches represent deformed drops with the cross section flattened, the principal axes  

W- is larger than B-, and the size of W-axis may be larger than the initial radius of the 

drop.   Figure 6.19 shows the super guarache obtained with ≤ , = 0.13 and 

= 0.012. The different views are orthogonal to the principal axes of the drop; the 

dimensions observed are dimensionless using the initial radius as characteristic length. 

For a drop in the regime of = 0.13 and = 0.012, deformation of super 

guaraches attain approximately the same values as the experimental data reported 

about the critical deformation (the maximum deformation for a steady state shape for 

the L- and B-axis).  However, the capillary numbers are not the same in experimental 
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and numerical experiments.  Therefore, there is a need to understand in detail the 

behavior of critical deformation of drops. However, even though, there is a good 

approximation by using the BEM3D code for capillary numbers below critical values, 

there is no good answer to address discrepancies, mainly because experimental data 

about the W-axis is not yet available.  This is the crucial piece of information missing 

as predicted by these numerical results, information that becomes indispensable for a 

detailed comparison of the numerical and experimental data when the capillary 

number of a drop is near the critical value. 

 
Figure 6.19 Guarache shape obtained in a drop with ≪ , = 0.012, = 0.13.  There is 

the different perspectives orthogonal to the principal axes.  Orientation Angle =
23.85°. 

However, there is a possibly useful perspective on the problem outline above.  

Considering = 0.03 and = 16, the drop deformation near critical capillary 

number exhibits different shapes.  In general, for drops with = 16, all shaper are 

closer to ellipsoidal shapes and rupture is not observed for most cases, up to the  .  

Thus, a set of numerical experiments were made for viscous drops, shown in Fig. 6.20, 

as possible solutions of a Hopf bifurcation 
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The difference with the experiments of Chapter 4 was in the values of G.  In 

Chapter 4,  had a value near unity, ~1. Now, the experiments were performed 

with ~3. Figure 6.20 shows the polar diagram of orientation angle vs. Taylor 

deformation.  The evolution of the drop has a behavior seen in the experimental 

results of Rosas et al., (Rosas I. Y., 2013). This comparison is for a drop with =

0.87. The trembling effect provokes a history of deformation of the drop with more 

oscillations as reported by Rosas. This effect was discovered recently. However, the 

numerical simulations of these experiments need a lot of CPU-Time, and a detailed 

analysis of Hopf bifurcation will be part of another study. 

 
Figure 6.20 Tank-treading and Trembling effect of a drop with = 87, = 16 and = 0.03. 

In this Chapter I present the dependency of the drop deformation as a function 

of the parameter  (intensity of the rate of deformation tensor (Makosco, 1994) 

Eq. (1.6)). The numerical vs. the experimental data differences near the critical 

capillary number was not possible to resolve.  However, the evidence for the existence 

of a Hopf bifurcation in drops should motivate a new type of experimental and 

numerical studies.  In fact, the analysis around the trembling effect explains part of the 
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dynamical of the oscillations when the rate of viscosity is high, Fig. 6.20.  In general, 

the oscillatory behavior was previously explained only by the difference of the 

viscosity ratios of the fluids.  It was a surprise to find out that this dependency (of the 

oscillatory behavior) may depend on  as well. 

 

 



 

 

CHAPTER 7.
The form of a drop immersed 

in an extensional flow 

 

 

 

 

 

Extensional fluids are an important branch in fluid mechanics because its 

kinematics does not include any vorticity.  Historically since Taylor’s work, (Taylor, 

1932) and (Taylor, 1934), studies of drop deformation immersed in another fluid has 

used mostly simple shear flows with a more limited archive of results on elongational 

flows.  In this Chapter, I present results for the simplest case, the 3D elongational flow, 

i.e.; the drop will be compressed in two directions while being elongated in the third 

axis. To study these flows, there is an important advantage for the corresponding 

theoretical analysis published by Acrivos and Lo, (Acrivos & Lo, 1978).  

Thus, in this Chapter, a family of steady states of deformation for this flow is shown, 

with comparisons to Acrivos & Lo model. 

In this way, pursuing the above objective, the analysis of extensional 2D-flows 

can now be carried out addressing a different perspective, similar to what Acrivos and 

Hinch did, (Hinch & Acrivos, 1979). For reasons that will become obvious in the next 

Chapter, the elongational 2D- and 3D-flows together add to a more detailed and 

consistent understanding of solution for the deformation behavior of drops.   

However, it is essential to understand first the simpler 3D-flow for subsequently 

proceeding to the 2D-flow presented in Chapter 8. 
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7.1 Drop deformation in uniaxial flow 

Drop deformation in uniaxial (3D-) flow is the simplest case of drop 

deformation to imagine because the drop only elongates. Idealized, as all theoretical 

and numerical approximations do (Taylor, 1932), (Acrivos & Lo, 1978) and (Spann, 

Zhao, & Shaqfeh, 2014), the drop remains always fixed in the flow field.  Thus, the 

drop does not rotate, is always in the center of the flow, and the drop simply elongates 

in one direction as is pushed in from the other two directions.  Figure 7.1 shows the 

evolution of the axes of deformation for a drop in uniaxial flow.  The B- and W-axes are 

fully equivalent and show the same behavior (axisymmetric deformation). Figure 7.1, 

shows that the drop attains a stationary shape, and when the flow is stopped, the drop 

returns to a spherical shape; i.e., this phenomenon is always observed when Ca is less 

than the critical capillary number = 0.31, for = 0.01.  

 
Figure 7.1 Evolution of principal axes of a drop in uniaxial flow. = 0.01, = 0.31 

To imagine the deformation of the drop is easy, however trying to solve the 

problem in theoretical form is not.  The next part is a summary of (Acrivos & Lo, 1978) 

model and its analytical results.  To simplify the fluid dynamics of drop deformation in 

uniaxial flow, their working assumptions are based on an axisymmetric shape for the 
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drop, as well as assuming a known solution for the flow inside, outside and on the 

surface of the drop.  As most numerical methods do, Acrivos and Lo solved first the 

form of the surface of the drop.  The flow outside the drop at infinity is the uniaxial 

flow.  Inside the drop, Acrivos and Lo set the viscosity of the fluid being lower than the 

continuum phase, so << 1; assuming the opposite does not seem reasonable for 

the possible deformation will be weak. 

Acrivos and Lo insight is based upon the value of these approximations to 

determine a family of solutions of the steady state of deformation of drops when a 

uniaxial flow was applied. This assumption solves the problem inside the drop because 

the flow inside the drop is essentially due to the hyperbolas generated by the imposed 

flow. With this simplification, Acrivos and Lo obtained the configuration of the shape of 

the surface of the drop. 

 
Figure 7.2 Shapes of steady drop deformation, football balloon predicted by Acrivos and Lo. 

This analytical drop-form solution is plotted in Figure 7.2. The analytical solution 

is a function of the length of the axis of elongation (z in this case) and the  parameter 

(parameter which is a function of pressure of the drop, capillary number and intensity 

of the flow).  The interface shape is given by 

( ) = (2 ) (1 − | | ).    (7.1) 

If the value of  is small, 0 < < 1, the configuration of the drop is similar to 

the hyperbolic configuration of the flow.  If = 2, the shape form becomes a 

paraboloid by the term | | .  For these forms, steady states of deformation of drops 

are like a common football.  There are many solutions if 2 < , but the parabolic shape 

obtained changes very little. Then with the shape of the stationary state the flow 
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inside and outside the drop are obtained by an analogous algorithm to that of 

numerical methods. 

Finally, the assumption of = 0 is taken, and a diagram of the deformation of 

the drop and the capillary number is obtained.  The difference between the diagrams 

shown in Fig. 3.5, 3.7 and 4.5 is the employed value of  in those diagrams. My 

numerical method uses values of the ratio of viscosity = 0.01. Here,  is low, but 

finite; i.e., the assumption of Acrivos and Lo = 0 will provoke a different behavior 

in the same diagram. With this idea, the curve predicted by Acrivos and Lo of 

deformation was compared with the numerical data. Both diagrams are shown in 

Figure 7.3. 

 
Figure 7.3 Diagram of Steady State of deformation in extensional 3D-flow made by Acrivos and 

Lo (lines, = 0) and the numerical experiments (marks = 0.01). 

The theoretical solution of Acrivos & Lo was obtained applying an asymptotic 

analysis around the elongated axis of the drop in the slender body theory.  Their results 

are plotted in Fig. 7.3 and presents two branches of solutions The first, the continuous 

line corresponds to the steady state of deformation for a drop in a steady uniaxial 



7 . 1  U n i a x i a l  f l o w  P a g e  | 115 

flow, with a drop shape predicted to be stable.  The second, dashed line, is an unstable 

solution.  Physically, for an inviscid drop immersed in a uniaxial flow, the shapes that 

drops will attain resemble a continuous line: an infinitely slender body.  If there is no 

flow, the ratio − axis/  is 1.  If the conditions of equilibrium of stresses are attained, 

the ratio − axis/  must have values greater than 1, because it is an indication of the 

deformation of the drop.  Employing the relation between ( − axis/ ) ∗ ⁄  and 

Ca∗ ⁄  it is possible to obtain the equilibrium conditions for a drop with − axis/  

of value near 1 and a small but finite strength of the flow applied.  When the viscosity 

is small, i. e., of = 0.01, the equilibrium deformation is the first mark in Fig. 7.3; 

corresponding to Ca∗ ⁄ = 0.1. That is, when = 0.01, stable steady solution of 

drop deformation will be observable from this value to the limit at 0.148, i. e., 0.1 ≤

∗ ⁄ < 0.148. 

With this information, a series of numerical simulations were carried out. In 

Figure 7.3, green markers correspond to the initial elongation (arbitrary) conditions 

of the simulations. Black markers are the long term steady state of deformation that 

the numerical simulation attained. In the numerical experiments here reported, the 

initial conditions considered two cases. The first, the more natural experiment, in the 

sense that the initial conditions were those of the drop at rest (spherical shape with 

( − axis) ⁄  = 1 ) evolving until reaching a steady state of deformation.  The 

second type of experiments were analogous to those used by Stone when studying 

extensional 2D-flows, (Stone & Leal, 1989b), beginning with an elongated drop. 

Stone drop shapes are those reached after a steady flow with a capillary 

number near the critical value.  Afterwards, a second phase is applied (with a flow 

with half of the previous Ca value), and monitors how the drop goes to a second 

steady state or one of critical behavior or breakup (even though the capillary number 

is lower, the initial elongation for this second phase of the flow history is larger, with 

respect to the new capillary number).  The idea here is using initial values of the drop 

elongation that correspond to positions on the plot of Fig. 7.3 away and above the 

stable line, and observe if drops elongation evolves to a steady state of deformation 
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described by Acrivos and Lo, or if there are drops that evolve toward an unstable state 

—the second branch solution, with an eventual rupture.  Figure 7.3 shows all initial 

deformations as green markers predicting that it does not matters the initial value, 

drops will always go to the steady state condition (black markers, directly below). 

Figure 7.4 is a comparison of the steady shape of a drop in uniaxial flow. The 

left image is the theoretical results of Acrivos & Lo, employing Eq. 7.1 to obtain the 

shape of the drop with = 2, = 0.26, and − xis = 1.375. The predicted shape 

by numerical computations is presented in the right-hand part, with the same 

capillary number and = 0.01. 

 
Figure 7.4 Comparison of a drop in uniaxial flow in steady shape. Theoretical shape by Acrivos & 

Lo, left; and BEM3D, rigth. = 0.26 and = 0.01. 

Figure 7.4 shows that drop shape differences are obvious, in particular Taylor’s 

deformation measures.  Both predictions are similar in the length of L-axis, however, 

the local curvature of the drop is not.  The deformation attained with BEM3D models is 

always higher than predictions by Acrivos & Lo.   Also, the theoretical shape has always 

an end pinch.  This pinch configuration is unstable because its local curvature tends to 

zero.  Acrivos and Lo made that reference.  In the case of a finite , the end pinch 

must disappear and we recover the solution as numerical data indicates.  These 

pointed ends in the theoretical shape are never present in the numerical shape.  As the 

ratio of viscosity increases, differences also increase.  For example, by changing the 

parameter  to = 2.5, the new shape obtained is similar in global form to that of the 

BEM3D model.  HoweverThe drop forms shown in Fig. 7.4 correspond to the shapes of 
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the second black mark from left to right in Fig. 7.3.  The pointed drop shape has been 

observed in many experiments where the local interfacial tension is dependent on the 

surface position.  So, when a flow is applied, the high mobility of the tensoactive agents 

cause a concentration of surfactants mostly at the ends of the drop, reducing drastically 

the local surface tension, thus, inducing high curvature tips.  Here, the surface tension 

value is fixed in these numerical simulations, and there is no gradient of concentration 

of surfactant (no variation of the value of surface tension) on the surface of the drop.  

Hence, a smother variation of curvatures is the only possible shape solution. 

 
Figure 7.5 Taylor Deformation vs Capillary number for a drop in extensional flow 3D. 

Figure 7.5 shows the conventional diagram of Taylor Deformation-vs-Capillary 

number.  However, simulations show that Taylor deformation is very small for a weak 

value of the capillary number; that is, simulations indicate that a remnant flow —with a 

nonzero value of G, which appears in the capillary value— predict a quasi-spherical 

drop.  As the Ca increases beyond the value of 0.32, the steady state shape deformation 

is higher.  The relationship of deformation vs. flow is not linear and similar to the 

curved shape when the critical deformation is attained, as shown in Fig. 7.3. 



118 | P a g e  C H A P T E R  7 :  E l o n g a t i o n a l  f l o w s  

An important observation of Figure 7.3 and 7.5 corresponds to the last two 

capillary number shown. In Fig. 7.5, the last value has the biggest deformation 

attained, with a steady shape. In Fig. 7.3, the steady state solution for this capillary 

number, corresponds to the first marker from right to left.  The steady state attained is 

on the unstable theoretical solution. This result is consistent with the fact that 

theoretical solution is for inviscid drops, = 0, and the solution may be valid as well 

for small values of . However, if  increases, the approximation will tends to fail. 

The analysis in Fig. 7.3 indicates that for weak deformations the theoretical prediction 

is only approximated.   However, for higher ratios of viscosity, the drop shapes at the 

extremes ought to differ.  Regarding again Fig. 7.3, the same analysis for uniaxial flow 

implies that, up to  = 0.7 steady shapes do not exist —for  ∗ ⁄ > 0.148, and 

having assumed (( − axis) ⁄ ) = 1).  With these data, an equivalent Acrivos and Lo 

diagram for large viscosities ratios would indicate that there is no equilibrium shape for 

a drop; it does not matter if the drop is a sphere, an analytical solution does not exist.  

That idea appears to contradict the fact that there exists a steady state of deformation in 

2D-extensional flows as was shown in Chapter 2.  2D-extensional flow is a special kind of 

strong flow, but for low capillary numbers and leaving out effects due to noncircular 

cross-section of the drop, the existence of (numerical) steady shapes may imply, in 

general, the existence of steady states for uniaxial flows.  Figure 7.6 shows the predicted 

(numerical) Taylor deformation in 3D-extensional flows, for = 1.0 and = 0.1. The 

plot shows how the steady state is attained in its principal axes. 

Chapter 4 shows as well there exists the possibility of steady shapes for high 

ratios of viscosity.  So, here I study the evolution of diagram Acrivos & Lo for systems 

with a large ratio of viscosities. Theoretically, the study for viscous drops immersed in a 

uniaxial extensional flow can be treated analogously to that of Acrivos and Lo. However, 

in this new approximation the inside flow must resemble that observed when using the 

numerical method. Thus, the inner flow can no longer be mainly shaped by hyperbola 

streamlines, as predicated by Acrivos analysis, where the important underlying 

assumption to obtain their diagram is an inviscid drop: ≪ 1. So, for steady state 

flows, there cannot exist inner-flow hyperbolas. Even more, there is a strong likelihood 



7 . 1  U n i a x i a l  f l o w  P a g e  | 119 

that the inner flow may be characterized by two toroidal vortices, aligned both with the 

axis of deformation, and with a skin flow from the waist toward the ends of the drop. 

These streamlines are a consequence of balancing stresses generated by the outer-flow 

and the interfacial stresses of the drop that maintain an equilibrium shape. 

 
Figure 7.6 Steady state attain by a drop in extensional 3D-flow with = 1.0 and = 0.1. 

Today, streamlines of the flow inside the drop are a mystery; there are no 

published theoretical nor experimental data to visualize the velocity field inside the 

drop. Nor there are numerical data, because it is necessary to develop specific 

extension of the numerical codes to evaluate the pressure fields and subsequently the 

velocity field of the inner fluid: Eq. 1.22 c).  In the future, I will implement this 

extension of the method to show the inner flow of the drop.  With this information, the 

Acrivos and Lo analysis may present a new, or multiple branches, in their diagram, 

and uniaxial extensional flows will be understood in greater detail. 
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7.2 Drop deformation in extensional 2-D flow 

The archive of experiments of drop deformations under regimes of extensional 

flows is at an early stage, mostly limited to 2D-extensional flows.  Since Taylor work 

(Taylor, 1934), the cross-section of the drop characteristics has been poorly studied. 

The optical line of sight for most of the available experimental devices did not permit 

a thorough study neither of the evolution of the cross-section of the drop, nor the flow 

characteristics inside the drop.  And there is not a clear idea of the consequences of 

this lack of information in the phenomenon of drop deformation. 

 
Figure 7.7 Stationary deformation vs capillary numbers with different values of  for 

extensional 2D-flow. Comparison with exp. data of  

Here I attempt expanding our knowledge of the now ever-more-clear 

3D-character of drop deformations, even for the simplest of flows.  Since the 

calibration of the method is done using data obtained with simple shear flows, the 

numerical method unambiguously predicts a non-circular shape in the cross section in 

the steady state attained by the drop for non-zero Ca.  In Chapter 3, I show how the 

ellipsoidal shape of the cross-section of the drop drifts away from the circular shape 

as the parameter α increases, even for the same (small) capillary number; see Fig. 3.4.  

For these cases, the ratio between the B- and W-axis decreases more for the cases of 
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= 0.13. In this Chapter, = 1.0 in order to study the cross-section in extensional 2D-

flow. 

Figure 7.7 shows the comparison of numerical data vs. experimental data for 

the ratio of B- vs. W-axis, and for different values of , in extensional 2D-flows. The 

experiments of drop deformation correspond to data reported by Stone and Leal, 

(Stone & Leal, 1989b) and Ha and Leal, (Ha & Leal, 2001). As was commented in 

Chapter 2,  values are small in every case.  

 
Figure 7.8 Ratio of B- wrt. W-axis for different values of  in pure extensional 2D-flow axis. 

Figure 7.8 shows the cross-section dimensions vs. Ca number when the drop 

deformation is attained near the critical capillary number.  Albeit the limited 

experimental data for these conditions —it is not vast, as compared to that of simple 

shear flows, as was commented in Chapter 2— the dependence of the cross-section 

dimensions vs. Ca number— firstly indicate that values of the ratio of these axes 

lengths are similar, regardless of the ratio of viscosity of the drop.  As shown in the 

previous Section, the analytical approximation assumes an axisymmetric shape, 

equivalent to those induced by uniaxial flows.  However, as the value of the flow 

parameter α increases (the flow character becomes more elongational, while 

simultaneously losing vorticity) the ratio between the B- and W-axis becomes smaller, 
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away from one; i.e., the cross-section is less circular as the flow becomes more 

extensional, as long as it maintains the 2D-flow character. 

Figure 7.9 shows the behavior of the principal axes of the drop for different 

viscosities ratios in extensional 2D-flow. In Chapter 2 and 3, the plots of the principal 

axes in a 2D-flow were linear for small capillary numbers: see Figs. 2.2 and 3.8.  In this 

case, Fig. 7.9, trajectories are clearly non-linear. 

 
Figure 7.9 Lengths (normalized) of the principal axes of drops under stationary extensional 2D-

flow with = 1.0, and = 0.1, 1.3  24.1, for different values of Ca. 

Using Figure 7.8 and Fig. 7.9, a comparison can be made between deformations 

attained for a drop with essentially the same flow conditions, -uniaxial extensional 

flow, Fig. 7.6 and the extensional 2D-flows.  Even for the case with most similar 

deformation lengths: =  0.1, = 1.0, 1.3; differences appear to be meaningful.  

Here the stationary state deformations attained are completely different for the same 

capillary number. Clearly, the rate of deformation is the same, but the deformation 

attained is not.  That result may indicate as well the differences due to an applied 2D-

flow versus the dynamics under a 3D-flow. In Chapter 8, I present a series of numerical 

experiments attempting to elucidate the drop deformation differences observed when 

the flow kinematics goes from a 2D-extensional flow to uniaxial flow. 



 

 

CHAPTER 8.
 Hysteresis behavior in drop deformation 

 

 

 

 

 

In Chapter 7, I present a study of drop deformation in purely (3-dimensional) 

extensional flows, given emphasis to a comparison of theoretical ideas (those of Acrivos 

and Lo) vs. the numerical experiments here presented.  Even though the model is quite 

simple, it is powerful enough to predict multiple solutions for the deformation of drops 

subjected to this flow history.  But this is not the only elongational flow without 

vorticity.   When studying planar elongational flows, the vorticity is contained along the 

third direction, varying from the maximum observed with the simple shear flow case to 

a fully hyperbolic flow without vorticity.  It is using these planar flows that the non-

symmetric drop shapes are observed in a systematic manner.  Thus, the question 

addressed in this Chapter is how possible transitions of the solution occur from a purely 

axis-symmetric highly elongated shape that occurs in a 3D-elongational flow to a non-

symmetric drop form prevalent in all 2D-extensional flow.  

After the study of Acrivos and Lo, Hinch and Acrivos (Hinch & Acrivos, 1980) 

published a theoretical study of the drop deformation induced by 2D-elongational 

flows using techniques similar to that previously used for purely extensional flow.  

They find that there are multiple solutions for the degree of deformation (induced by 

a steady flow) with a drop shape vs. deformation behavior similar to that displayed by 

Fig. 7.3, which predicts a S-shape solution (a stable and an unstable branches). The 

method used by Hinch and Acrivos to prove this space is based on changing in time 
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the flow structure (the values that define the flow character) from a uniaxial 

extensional flow to a 2D-elongational flow, and monitoring the evolution of the steady 

shapes of drop deformations. 

For the extensional 3D-flows case, the basic assumption made by Acrivos and Lo 

was that of an inviscid drop.  For the case of simple shear flows, the analysis is for 

inviscid drops and the assumption of axis-symmetric behavior of the drop are made.  As 

shown in Chapter 2, drops in simple shear flow are not axis-symmetric.  In Chapter 3, 5 

and 6, the cross-section of the drop was not circular, for cases with = 0.01 and for 

flows near simple shear flow.  With these facts, the numerical model will hardly be 

symmetric, thus should be different from the theoretical model proposed by Hinch and 

Acrivos.  Now, a larger set of possible conditions (assumptions) for the numerical 

experiments can be used, which may show a complementary set of steady state shapes 

for the drop not predicted by the theoretical model.  In particular, a large range of 

viscosity values implies a larger set of possible behaviors for the curves predicted 

theoretically.   

Making a comparison as done in Chapter 7 for extensional 3D-flows is not yet 

possible.  However, the transition among the curves which describe the deformation of 

drop in different flows must exist.  In this Chapter, a simplified model of this transition 

is presented.  The main difficulty with addressing the full range of ideas associated to 

this problem is due to the multi-parameters involved: the type of flow parameter α, the 

ratio of viscosities, or the intensity of the flow G, all causes different effects on the 

dynamics of the drop deformation —as shown in Chapter 6.  So, the family of curves 

describing all possible steady state drop shapes in a flow should be studied carefully. 

The first step to analyze the transition of these curves is to consider the 

simplest case, as Hinch and Acrivos did, using a 2D-extensional flow, (Hinch & Acrivos, 

1979). So, they studied the transition from uniaxial flow (3D-flow) until reaching the 

kinematics of a planar flow (extensional 2D-flow).  Their main idea is supplemented 

here by considering now numerically a larger class of flows: swepping —varying the 

planar flow parameter α— from simple shear flow (maximum vorticity) to a pure 2D-

elongational flow (without vorticity along the neutral direction) and subsequently 
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evolving toward a pure elongational 3D-flow (later, a new elongational flow parameter 

is used: β, which augments the compressive character of the flow along the neutral 

direction).  In this way, I expect to study possible drop deformations solutions that 

may occur when varying the kinematics from shearing flows to a purely hyperbolic 

3D-flow.  

The family of flows prescribed by Eq. (1.9), covers the full range of plane flows 

and the full class of drop deformation induced by strong 2D-flows.  However, there 

exists a much larger class of elongational flows, in particular, here I emphasize flows 

without vorticity that go from an extensional 2D- to uniaxial 3D-flow.  This is a 

completely new class of deformation and kinematics of deformation and therefore is 

wise to consider these results as preliminary, mainly because a lot of information is 

lacking and many more studies may be needed to better understand this topic in drop 

deformations. However, observations in drop deformation show effects, which were 

not taken into count in neither the earlier portion of this work nor any other 

published results.  With this caveat, I present my results that I consider the most solid 

qualitatively. 

8.1 Hysteresis in strong flows 

When multiple solutions are present, such as those presented in Fig. 7.3, a 

special type of hysteretic effect can be observed as a result of a S-shape solution space.   

That is, whenever a deformation is induced beyond the critical value, a branch jump is 

possible.  Subsequently, attempting the reduce the drop deformation by reducing the 

flow field strength, what most frequently occurs is a return trajectory (along the 

second branch) different from the initial one, in a similar way to the hysteresis loops 

observed in ferro-magnetism.   

As mentioned before, the study of the hysteresis in strong flows requires the use 

of a family of flows, such as those applied before, with different values of α.   Thus, in 

order to prove different solution branches, the class of flow must be modified by 

changing the intensity of the rate of deformation tensor as a function of the type 

parameter : using Eq. 1.9.  So, the parameter G can only be a function of ; i.e., 
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normalizing the intensity of the rate of deformation tensor is done by varying the 

magnitude of its second invariant: the expression of Eq. 1.5. With this idea, a drop shape 

reached with a given capillary number may be subsequently deformed by varying the 

flow parameter from zero to one (from simple shear flow to fully extensional 2D-flow) 

within a class of flows. 

The next numerical experiments were performed using three stages. By a first 

phase, applying a simple shear flow to the continuum phase, and waiting for the drop 

to attain the steady state of deformation. The next phase, characterized by a 

continuous sequence of flows, requires changing the parameter  from zero to one 

while holding Ca constant. Subsequently, the third phase, requires  to be varied from 

one to zero. The evolution of  in time is shown in Fig. 8.1. The simulation time is 

plotted in the abscissa axis. In order to guarantee attaining the steady shape in shear 

flow, 20% of total time was used to attain the steady state. 

 
Figure 8.1 Evolution of the flow parameter  in time for a numerical simulation of a flow 

induced hysteretic loop.  The first portion of the flow corresponds to a simple shear 
flow.  At Gt = 100, the parameter  evolves as a ramp up and down; pure 
elongational flow occurs at = 1.. 
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After the initial phase, the evolution of the drop deformation is monitored. 

Figure 8.2 presents the evolution in time for all three axes of the drop, with a capillary 

number = 0.20 and = 16.  Figure 8.2 shows the values of lengths scales for the 

principal axes attained at the steady states similar to the results presented in Chap. 4. 

 
Figure 8.2 Evolution of principal axes length scales vs time; i.e., vs the parameter α.   =

 500 [Gt], = 16, from simple shear flow = 0 to extensional 2D-flow = 1. 
Time: 100 < < 500. 

Remembering the fact that the drop has a larger viscosity than the continuum 

fluid, an oscillatory behavior is observed before attaining the steady state. At time 

= 100, the rumping of the parameter α begins, with the drop deformation and 

orientations reached while = 0.  Fig. 8.2 shows that after = 100 the time 

evolution of the principal axes is characterized by a parabolic trajectory, until the end 

of the simulation. The initial value of the principal axes is the same at the beginning 

and the end of the ramp. 

The effect of the parameter α on drop deformations is analyzed in Fig. 8.3 by 

plotting the lengths of the principal axes versus the parameter α. Assuming the  

parabolic behavior shown the Fig. 8.2, the expected behavior would be a symmetric 
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curve, describing the deformation along the axes when the  flow parameter changed. 

However, the data in Fig. 8.3 indicates a curved more complicated because for each 

value of , there are two possible steady shapes of the drop, one is due to the first part 

of the ramp and the second when the flows go from extensional 2D-flow to simple shear 

flow. In all the cases, the axes developed two different states for the same value of . 

 
Figure 8.3 Principal axes vs flow parameter alpha . With = 16, from simple shear flow =

0 to extensional 2D-flow = 1. Time: 100 < < 500. 

Figure 8.3 shows the behavior of all axes with respect to the flow parameter. 

Arrows of this Figure indicate the applied ramp direction used and the deformation 

attain with; see Fig. 8.1.  In the third phase flows, decreasing the ramp until the flow 

reaches simple shear flow kinematics, the value of the L-axis is larger than the value 

attain in first portion of the ramp.  For the other axes, the situation is the opposite; i.e., 

the value with the bigger value is observed in the early part of the second phase 

(increasing ramp). 

Regarding the first portion of the simulation shown in Fig. 8.2, the drop comes 

to a steady shape at < 100, and the shape describes a behavior observed in 

Chapter 6.  It is clear that the principal L- and B-Axis present small oscillations like the 
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trembling effect, which is a consequence of the huge value of the parameter G.  Then, as 

the flow changes to a more elongational character (  increases) the oscillations tend 

to disappear.  When  is one, —fully extensional 2D-flow— there are no oscillations. 

Finally, when the flow becomes again  equal to zero, the oscillations reappear. 

In Figures 8.2 and 8.3, oscillations of the lengths as the value of the α parameter 

increases appear to decrease in frequency until = 1.  When the evolution of the flow is 

reversed, the sequence of oscillations is inverted until the simple shear flow regime is 

attained. That is, these oscillations come in packs; e.g., in the L-axis, when, 

− axis =⁄ 1.25 and = 0.3, a small undershoot is present that repeats when =

0.39 and = 0.46. The undershoot persists until = 0.93, then oscillations end. When 

1 = → 0 flow, undershoots are observed at similar values of  (those values are not 

the same that the first cases). When the flow is less strong, undershoots cannot be as 

clearly appreciated as the mentioned undershoots, but for the L-axis evolution —shown 

in Fig. 8.3— it is possible to see the oscillation packs. The undershoot behavior in the 

oscillations in the B-axis also occurs. There, the effects of undershoots are larger than 

the L-axis case.  For the W-axis, the oscillations are the tiniest and hardest to appreciate. 

With this information, the shape of the drop can be inferred.  When the value of 

α increases, the L-axis length is smaller than during the third phase flows.  However, 

the other axes present the opposite situation. So, the drop is more elongated during 

the second part of the ramping cycle. This evidence is confirmed in Fig. 8.4. In this 

Figure, it is the Taylor deformation of the drop plotted vs. the α value. Again, the 

arrows indicate the direction of the ramp in Fig. 8.1. The plane of the applied flow 

presents the larger deformation shapes. Considering this LB-plane, with = 16 and 

the = 0.20, and the values of α used in Chapter 4, Taylor deformations between 

those of Chapter 4 and the data obtained in this Hysteretic simulation agree. 

The features of the drop dynamics mentioned above present a stationary state 

in the 2D-extensional regime. However, there are no experiments published in this 

regime with similar values of the ratio of viscosity.  In order to have an idea of the 

feasibility of the data results, the benchmarks used are those of Bentley and Leal 

(Bentley & Leal, 1986b) and (Taylor, 1934).  For the former case, the ratio of viscosity, 
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critical capillary number and Taylor deformation obtained were: for = 13.8, =

0.103 and = 0.362. The second case is = 24.5, = 0.106 and = 0.347. 

Finally, Taylor considers = 20, = 0.28 and = 0.45.   

 
Figure 8.4 Taylor Deformations vs. flow parameter .  With = 16, from simple shear flow 

= 0 to extensional 2D-flow = 1. Time period: 100 < < 500. 

With these values for the experimental parameters, the conception of 

stationary shapes by numerical simulation could be wrong.  However, by looking the 

experimental data carefully, the data provides the next solid evidence. First, the 

deformation obtained by the numerical simulations is always less than the critical 

deformation reported in all experimental cases. So, if the circumstances of the flow 

provoke Taylor deformations smaller than the critical Taylor deformation, the drops 

will remain in a stationary deformation. With this information, the possibility to 

obtaining a stationary shape for the simulated conditions is feasible.  Second, the 

parameter G values used are smaller, (the trembling effect is observed in the first part 

of the hysteretic numerical simulation; however, the oscillation values are less than 

5% of the stationary value, and so, the curve around the point in tank-treading will be 

small). Thus, the effect observed in the second part of Chapter 6 could occur in this 
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regimen too.  If the applied strain rates in those experiments provoke an effect like 

trembling effect, the state of deformation could go to another state of drop 

deformation (critical deformation). This observation may explain the apparently 

contradictory differences between the data of Bentley and that of G. I. Taylor. 

There is another numerical experiment of hysteretic phenomenon reported by 

Young et al., (Young, Blawzdziewicz, Cristini, & Goodman, 2008). In this work, the 

range of drop ratio of viscosities is = 50, 100 and 200. The capillary numbers are 

less or equal to 0.2: ≤ 0.20.  The simulated flow behavior is similar except that the 

flow history goes from 2D-extensional flow to simpler shear, and comeback. The 

analysis focuses only in the L-axis length, and there is no comparison with 

experimental data. Also, there is no information about the Taylor deformation or the 

changes of the B-axis.  The hysteretic phenomenon observed by Young et al., appear to 

be different than the results presented in this Chapter, mainly because the region 

where the drop has two shapes is clearly smaller, for the same conditions of the flow 

type parameter.  

Using the information of Figure 3.2, the stationary state of the L-axis, for a 

capillary number of = 0.40, is the same as the maximum measure observed by 

Young et al. Reviewing the diagram of Taylor deformation vs. Ca in Fig. 3.5, the steady 

state deformation attained for this capillary number is = 0.4,  a similar value than 

that by Young et al. —their deformation is close to = 0.4.  If this situation is correct, 

the Taylor deformation attained by this numerical simulation is near the critical case. 

The work of Young et al. uses the same idea of the flow type evolution. 

However, their experiment starts in the regime of 2D-extensional flow.  In this work, 

steady states employ 5% of the total simulation time, while the total time of the ramp 

is = 2000 ≈ 80  of our time of simulation.  In other words, the simulation 

of the ramp of Young et al. is about three times faster than that shown in Fig. 8.1. 

The results in Figure 8.5 are for the same capillary number than the previous 

Figure. However, the total time of the simulation is less than that of Figs. 8.3 and 8.4. 

The total time used is shown in the inset Graph. For the same conditions of the drop, 
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= 0.20 and = 16, the dynamics of the principal axes of the drop are quite 

different. That is, the main features of the hysteresis depend as well on the ramping 

speed, which implies the necessity to analyze this kind of experiments to represent 

the quasi-static deformation dynamics.  Here, the lengths of the principal axes vary a 

little in the extremes of the regimen of flow parameter, (in simple shear flow and 

extensional 2D-flow).  The hysteresis in Fig. 8.5 is bigger than the case in Fig. 8.3. 

 
Figure 8.5 Principal axes vs. flow parameter . With = 16, from simple shear flow = 0 to 

extensional 2D-flow = 1. Time: 20 < < 100. 

8.2 Hysteresis in extensional flows 

The previous Section addresses the hysteretic behavior of drop deformation as 

a consequence of the type of two-dimensional flow applied in the continuum phase. 

Also, in Chapter 7 the asymmetric drop deformation is studied when caused by (1)  

two-dimensional extensional and (2) uniaxial flow. In this Section, a new set of 

questions to resolve are addressed, among them: (a) what happens if the parameter 

elongational type of flow is varied from uniaxial flow to extensional 2D-flow? And (b) is 

there a hysteretic behavior in extensional flows? 
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In order to be able to simulate such a 2D- to 3D-variation of the flow type, a 

new parameter is introduced: the elongational type of flow parameter β.  Thus, by 

varying β, drops can be subjected to a full range of flows without vorticity: from the 

2D-linear incident flow to a pure elongational flow, where the compression axis (of the 

former flow) becomes a compression plane perpendicular to the elongation axis.  

These simple kinematic conditions can be modeled by a velocity field given by 

( , , ) =
2 (4 − 2 + )

( − 2) , 2 , − ,                        (8.1) 

where  is the intensity of the rate of deformation tensor (Makosco, 1994).  Now,  is 

the parameter characterizing the strength flow along the symmetric (third) axis.  

Values of  goes from zero (extensional 2D-flow), to one (uniaxial flow). 

 
Figure 8.6 Evolution of  in the time of numerical simulation. The first part was the value in 

extensional 2D-flow. Then the parameter betta was modified as a ramp. 

The parameter β offers the possibility to study another class of elongational 

flow, which occur when the value of = 1 goes to 2.  In this latter case, the extensional 
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flow elongates in two directions and pushes in along the third axis.  For this study, the 

family of extensional flows employed were in the regime of 0 ≤ ≤ 1. 

 
Figure 8.7 Evolution of principal axes vs time. = 200 , = 16, from extensional 2D-

flow = 0 to uniaxial flow = 1. Time: 40 < < 200 

The experiment begins applying a 2D-extensional flow in the continuum phase. 

Then when the drops attains the steady shape for this flow, the value of the  

parameter changes from zero to one, as Fig. 8.6 shows.  As was commented in the 

previous Section, the critical capillary value in extensional flows are small.  For this 

reason, the hysteretic numerical experiment was performed with a drop with =

0.10 and = 16 to avoid the critical deformation and to guarantee attaining the 

steady shape of deformation. 

Figure 8.7 shows the evolution of the principal axes during this experiment. 

After the application of uniaxial extensional flow under conditions of = 1 and =

120 , the drop achieves a circular cross-section. As a result of a smaller value of , 

the drop evolves toward a modified cross-section: an elliptical shape. The evolution of 

L-axis is shown in Fig. 8.8 (equivalent to Fig. 8.3 for the variation of the   parameter α), 
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with the behavior of the others principal axes, all showing the existence of hysteresis 

in purely extensional flows. Here however, the difference between the two states of 

deformation is weaker than for the cases in strong α flows. 

 
Figure 8.8 Principal axes vs flow parameter betta . With = 16, from extensional 2D-flow 

= 0 to uniaxial flow = 1. Time: 40 < < 200. 

The B- and W-axes start in the steady shape for extensional 2D-flow with 

different values.   As the value of  changes to the value of one, the symmetric 

behavior of the uniaxial flow begins to dominate the size of those axes. This result is 

consistent with the data in uniaxial flow.  Furthermore, the hysteretic behavior may 

depend of the ramp speed used in those experiments. However, if the total time used 

during the extensional regimen increases, the hysteresis of the principal axes of the 

drop will probably be imperceptible. 
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CHAPTER 9.
 General conclusions: 

drop deformation in strong flows 

 

 

 

 

 

Until about 2005, the study of deformations of drops induced by strong type of 

flows has a significant contribution of both experimental and theoretical studies.  These 

results indicate a large set of unsettle questions regarding the fluid hydrodynamics of 

these rather simple bi-phase flows.  For example, there is no clear idea as to whether 

the main features of shape of drops change when the flow character varies from simple 

shear to a 2D-elongational flow.  Or whether for 2D- and 3D-elongational flows, shapes 

ought to be essentially the same.    

On the drop dynamics front, if drops have different deformation along the 

preferential axes of the applied flow, the open question is what are the characteristic 

time-scales involve for the time evolution of the drop? or how different axes evolve in 

time, or evolve as the flow type changes?.  There are as well various indicators that the 

different observed drop forms may indicate multiple Hopf bifurcation solutions for the 

governing equations.  Here I attempted to elucidate on one hand some of the imply-

cation on the shapes of drops and on the other hand the implications for the flow fields 

of the different solutions.      

Thus, the initial objective of this study was to study not only these questions 

but as well possible implications for a more detailed understanding of the 
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implications opened by answers to these questions. In particular, very little is known 

about the flow fields inside and outside of the drops when different shapes of the drop 

occur.  As well, which are the flow patterns inside the drop as a result of these possible 

solutions. These and possibly many other question-answers may influence signify-

cantly the scope of amenable applications due to a better understanding of the 

dynamics of drop deformation. 

As a first task, data is presented of observable stationary deformations for 

different ratios of viscosities and for different types of 2D-strong flows.  As many 

experimental studies have reported, the critical capillary numbers for drop rupture 

for each case of  have not been uniquely resolved for most cases, nor for different 

flow types.  Hence, one of the first points addressed here is to properly calibrate the 

numerical code by finding the steady shape of drops near  conditions.  

Subsequently, it was necessary to repeat the same calibration for every 2D-flow.  

Finally, a diagram describing the critical capillary value for different flows, from 

simple shear flow to extensional 2D-flow is obtained.  

As a second task, the three-dimensional behavior of the drop in these flows was 

carefully evaluated, because early theoretical works assumed asymmetric drops. 

However, the deviation from the axisymmetric case always occurs.  In Fact, in simple 

shear flow, when the differences are less, the ratio of B- vs. W-axis is always less than 

0.85.  As the flow goes to the extensional 2D-flow —when the α parameter increases— 

the ratio goes up.  The only flow which induces the asymmetric behavior of the cross 

section of the drop corresponds to the 3D-extensional flow, an even then the drop ends 

may have a smoother variation of curvature than those predicted by theoretical models. 

The prevalence of the non-circular cross-section that was observed while using 

the BEM3D code casts initial doubts about the codes used, due in part because 

theoretical works or many other numerical studies do not observe deviations from the 

circular cross-section case, as I noted.  The code used here was rebuilt at least 4 times, 

but the results were the same, the cross-section is not circular, is more like an ellipse, 

but not quite.  However, Guido et al., work, published about the same time as the 

annotations of Acrivos and Lo, changed this work expectations, because their 
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predictions made it possible to calibrate the code. Experimental data does provide 

sufficient information to disregard circular cross-section as the only possible form, 

but does not provide enough information to resolve uncertainties as to the correct 

shape for the ellipsoid.  These results are presented in Chapter 2.  The cross-sections 

are most likely non-circular, with the code predicting very well the small archive of 

experimental data. 

In Chapter 3 and 4, the predicted deformed drop in stationary flows is shown 

to be like an asymmetric ellipsoid even for small capillary numbers—implying shapes 

close to spherical, but deformed.  However, as the capillary number increases, the 

shape differs from a perfect ellipse, as well.  In the past, these shapes were the initial 

form of drops used to evaluate the interfacial surface tension.  Thus, in Chapter 5 

possible methods for measuring the interfacial tension of the interface during the 

retraction phase of an elongated drop are reviewed, and with them I attempted a high-

resolution calibration of the method, by comparisons of experimental, theoretical and 

numerical results.  The theoretical analysis using ellipsoidal shapes appears to 

provide an initial good prediction of interfacial tension values in drops in strong flows.  

However, possible differences determined while obtaining the interfacial tension 

implies the necessity to adjust an optimized shape model to better approximate the 

interfacial tension measurements in the laboratory: that is, the technique works best 

when drops have an elongated, with symmetric cross-section shape.  However, if these 

numerical results (capable of predicting the three-dimensional length scales of a 

drop) are compared the experimental data, predictions of interfacial tension can be 

more accurate than using only the analytical methods evaluated.  

A second factor, affecting the surface tension measuring technique are the 

characteristic time-scales associated with the evolution of each principal axis of the 

drop, which were studied as well.  When a 2D-flow is applied in the continuum phase, 

the response of the drop in the same plane of the flow is faster than the third principal 

axis, orthogonal to the flow.   However, the principal axes in the plane of flow have 

similar characteristic time-scales, but are not quite the same.  Finally, a significant 

departure from previous works is that the numerical predictions —for the time 
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needed to attain the stationary shape— seem to imply that the characteristic time 

perpendicular to the flow is the most appropriate relaxation time-scale, for it is the 

slowest time of the drop retraction.  With this result, the analysis of stationary shapes 

of deformation should change the observation time, because in most experiments the 

stationary shape employed corresponds to that of the plane of the flow, even though, 

the third direction of the drop needs more time to attain the stationary state. 

It is quite obvious that a diagram of critical capillary values is desirable to 

generate a detailed understanding of maximum drop deformations, especially for very 

elongated drops. However, as Chapter 6 indicates, the code appears not to be capable 

of predicting the large deformations previously reported by experimental data.  As 

Chapter 3 and 4 showed, the prediction of the numerical code may be accurate only 

for small capillary numbers. Even more, for the case of highly viscous drops = 16, 

the code seems to fail about predictions of the stationary deformation and the number 

of oscillations while the drop tumbles.  Add to this, the numerical data presents tiny 

regular oscillations which change in amplitude and frequency.  At that moment, the 

possible cause of discrepancies was a mesh of poor resolution that was discarded 

after some extra simulations.  Finally, as was demonstrated in Chapter 6, the dynamics 

of drop deformations in strong flows may have a cause associated with the intensity of 

the flow, and not the mesh size.  The dynamics of drop deformation presents a 

bifurcation which depends on , the shear rate.   So, to find a simple stationary state of 

deformation is not possible, at least not when the shear rate is very small, ≪ 1. 

There are a few published papers that establish the existence of Hopf 

bifurcation solutions for drops deformed by flows.  However, there still exists a need 

in fluid mechanics to understand possible branches of these solutions, mainly because 

different type of shapes may imply different inner and outer flow fields.   This is the 

first work that attempts to address possible consequences of Hopf bifurcations and 

hysteresis effects in drops and their dependence on , , , , and Ca as 

complementary independent parameters; mainly because, most experiments carried 

out in the laboratory employ variation of G, but linearly modify as the value of the 

capillary number. 
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Since Cox’s work, oscillations observed in deformation and orientation of drops 

traces of experimental data or numerical simulations were explained as due to the 

competition of stresses imposed by the flow against interfacial stresses of the drop.  

Add to this idea that weak deformation of a drop observed when ≫ 1, which 

predicts a tumbling behavior where the drops achieves negative orientation angles.  

However, as was commented in the last part of Chapter 6, the bifurcation of Hopf may 

contribute as well with the oscillatory behavior.  Unfortunately, I arrive to this 

observation toward the end of this project. Therefore, to analyze carefully this 

behavior there is a need for more time because those numerical simulations take a lot 

of CPU-Time.  The bifurcation diagram is necessary to understand the contributions of 

the shear rate on the dynamics of drop deformation. This line of work remains to be 

addressed. 

In Chapter 7 there is a new contribution in fluid mechanics in the sense that the 

theoretical Diagram for deformation of drops in extensional flows was reviewed.  The 

asymptotic approximation solution of Acrivos & Lo permits predicting the 

deformation of drops in 2D-flows when the ratio of viscosity is small.  However, as  

attains values different from zero, this theoretical approximation starts to deviate 

from predictions, because  plays an essential role in drop deformation.  In these 

cases, the proposed inner flow plays an essential participation, too. However, given 

the difficulty in the equations of fluids mechanics, the approximation made by Acrivos 

& Lo using slender body theory is a good step in the knowledge of drop deformation. 

Today with the numerical code here presented, it is possible to rebuild this diagram 

for different values of .  The long-term advantage would be that it may be possible 

to upgrade the code to have the inner and outer flow of the drop. 

The analysis of drop deformation in extensional 2D-flow conveys the proper 

behavior of cross-sections, which is important to predict correctly the state of 

deformation.  In Chapter 7, the evolution of behavior of cross-sections is extended, 

now between the uniaxial flow and the extensional 2D-flow. Understanding possible 

deformations under these regimes help us in making an analogous diagram to the one 

previously published by Acrivos & Lo. 
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In the last part of this study, the main focus is on the hysteretic nature 

observed when the flow applied in the continuum phase changes its main features; i.e., 

from simple shear flow to extensional 2D-flow, and subsequently from extensional 2D-

flow to uniaxial flow.  These experiments are presented in Chapter 8, and may 

represent the beginning of another branch of study in drop deformations.  These 

numerical experiments need more time than those cases presented in Chapter 4: ≪

1.  These latter numerical simulations take months to produce the data presented.  

Even more, there is a behavior that was not taken in account due to time constraints: 

the required time-lapse to attain the steady state shape when the parameter  is 

changing in the external flow. This observation is essential in this experiment.  Thus, it 

is extremely important to guarantee that a steady shape is attained in every flow 

experiment. However, to reach this stage was out of the question for this project.   

 
Figure 9.1 Drop deformed in an ABC flow. = 1. View of the drop inside the flow, left. Initial 

shape of the drop and view of the state of deformation right-hand. 

In summary, in this study I was able to construct a new diagram. However, this 

diagram is still limited mainly because I discovered that drop deformation has not 

finished yet (reached its steady state form), which is due to a bifurcation generated by 

the value of the applied shear rate .  This result implies that drops are not perfect 
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ellipses under flows with a large capillary number, regardless of the axis of 

observation of the drop shape.  Also for these cases, shape models to predict the 

interfacial tension by retraction observations need to be polished. The theoretical 

diagram in uniaxial flow needs a new contribution for  different to zero. 

The numerical code is not confined to 2D-flows. The possibility to study 

complex deformations in three dimensions is possible. When performing flows that 

evolve in flow type character —such as with the hysteretic simulations—, there is a 

stable two-state of deformation for the same value of the flow parameter, β.  As was 

observed, those states of deformations depend of  and the flow parameter. 

As an example, the deformation of a drop in a theoretical flow: the Arnold-

Beltrami-Childress flow (ABC flow) was made. Figure 9.1 shows the steady of 

deformation of a (initially spherical) drop.  Please note the highly deformed cross-

section. There, the guarache shape is now non-symmetric along the fore-aft axis, plus 

a curved shape similar to that of a potato chip.  These forms are highly planar, with a 

non-symmetric fore-aft form, and with two main global curvatures. Under this 

scenario, these drops may present rather different relaxation mechanisms that have 

not been studied yet.  Finally this code provides further avenues of research: for 

example, other natural phenomena may be amenable to study which will be extremely 

relevant in coming years due to climate change such as could be the locomotion of 

small animals in the sea, with movements being modeled as creeping flows.  These 

flora and fauna contributions to the transport in the upper layer of the oceanic waters 

may influence the rates of absorption of CO2 by the oceans but has been barely studied 

to date.  Thus, this work is simply the beginning of a lot of new projects; the 

conclusions of this project are only in the sense of this book. However, the fluid 

mechanics in strong flows will continue. 
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APPENDIX B 

 

 

In this appendix B, I will present the complete code made to study the drop 

deformation in strong flows. Unfortunately, for the extension of the code (around of 

15000 lines, 240 pages) the appendix B is digital. 

The code is attached in CD-ROM. If there are doubts, or comments about the 

code, do not hesitate to contact me: alfrsj07@gmail.com.  

The code is divided in the principal program and 17 modules. Every module 

has its subroutines. Next, I present a list of the modules of the code. 

 

 

� Prtcl_3D is the main program. 

� Mod_SharedVars: Module with shared variables. 

� Mod_Trgl_Octa: Module which made the mesh of the drop. 

� Mod_Prtcl_Geo: Modules with subroutines to computes the drop’s geometry. 

� Mod_Nodal_Interpolation: Module with subroutines to interpolate the mesh in the 

time. 

� Mod_Gauss_Coefs: Module with the numerical weights employed to integrate. 

� Mod_Builder_Matrix_Arrays: Module which made the algebraic system to solve the 

Eq. (1.22b). 

� Mod_Prtcl_slp.: Module which computes the Single Layer Potential. 

� Mod_sgf_3d_fs: Module which computes the Stokeslet. 

� Mod_Prtcl_DLP: Module which computes the Double Layer Potential. 

� Mod_sgf_3d_sfs: Module which computes the Stresslet. 

� Mod_Velocity_Menu: Module with the different option of flows. 
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� Mod_VelFieldTRM_13: Module which computes the analytical velocity field 

estimated for the Two-Roll-Mill device. 

� Mod_SNEDOS: Module with subroutines to solve the ordinary differential 

equations. 

� Mod_Correction: Module which preserves the condition of conservation of volume. 

� Mod_Data_Files: Module which indicates how to save the data. 

� Mod_axb: Module which solves the algebraic system equations. 
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