

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIA E INGENIERÍA DE MATERIALES PCeIM

HIDRODINÁMICA DE OBJETOS EMBEBIDOS EN FLUJOS FUERTES.

TESIS QUE PARA OPTAR POR EL GRADO DE DOCTOR EN CIENCIAS E INGENIERÍA DE MATERIALES

PRESENTA: M. EN C. ALFREDO SANJUAN SANJUAN

TUTOR PRINCIPAL DR. ENRIQUE GEFFROY AGUILAR INSTITUTO DE INVESTIGACIONES EN MATERIALES

COMITÉ TUTOR: DR. ANTONMARÍA MINZONI ALESSIO, IIMAS DR. MARCO ANTONIO REYES HUESCA, F. I.

Ciudad Universitaria, Cd. Mx., mayo de 2017

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

Presidente:	Dr. Fermín Alberto Viniegra Heberlein
Primer vocal:	Dr. Enrique Geffroy Aguilar
Segundo vocal:	Dr. Francisco Javier Solorio Ordaz
Tercer Vocal:	Dra. Catalina Stern Forgach
Secretario:	Dr. Panayiotis Georgios Panayotaros

Lugar donde se realizó la tesis:

INSTITUTO DE INVESTIGACIONES EN MATERIALES, UNAM

AGRADECIMIENTOS

Este trabajo lo dedico a todas las personas que me han apoyado a lo largo de este proyecto, sin su ayuda habría sido imposible culminarlo.

Quiero agradecer a mi tutor, Enrique Geffroy Aguilar, quién me brindó su apoyo incondicional desde que pisé por primera vez su oficina. Estos agradecimientos también son dedicados a Tim Minzoni Alessio y a Marco Antonio Reyes Huesca, mi comité tutor, por esas charlas en torno al proyecto realizado. Además, los tres no solo fueron un apoyo académico, sino que a nivel personal me dejaron ser parte de su vida como amigos y se los agradezco.

Quiero agradecer a los sinodales por la retroalimentación recibida para finalizar esta tesis, gracias a Catalina Stern, Francisco Solorio, Panayiotis Panayotaros y a Fermín Viniegra.

Quiero agradecer a mi familia, a mis padres Ambrosio y Paula por la paciencia que han tenido a lo largo de estos años. A mis hermanos Rosario y Gerardo; y a mi esposa Luz Marcela.

En estos años que estuve desarrollando la investigación de este trabajo he conocido a muchas personas en el grupo del Laboratorio de Reología Óptica, a todos ustedes les dedico esta tesis y les agradezco su ayuda. A Israel, por tener la paciencia de explicarme cada detalle de los experimentos que realizó en el TRM, a Minerva, a Carlos, Joana, Eduardo, Liz, Laylet y a las personas que, aunque no son parte formal del grupo han estado con nosotros, gracias Sofía, Itzel, Mildred, y Violeta.

Por último, quiero agradecer el apoyo ante el comité académico que tuvo Raúl Herrera Becerra.

Gracias a todos por el apoyo incondicional.

ABSTRACT

Two phase flows are important in many industrial application covering food and cosmetic emulsions, transport of particulate fluids, exploitation of crude oil, among many others. On the long term, the relevance of multiphase flows may be even more significant, in at least two branches of knowledge. Material science advances will require a detailed analysis of processes with systems composed of more than one phase, especially their surface energies or interfacial tensions, which play an important role when particles smaller that a micron are involved. Also, which may become most relevant, is the capture and sequestration of CO_2 —by adsorption methods— demanding a better understanding of multiphase equilibria and transport processes in multiphase flows, regardless of the use of liquids or zeolites as substrates.

However, in order to propose a model for the macroscopic description of any of these possible applications —via simple rheological constitutive equations— having a detailed balance of microscopic stress fields is essential. In general, the quest for detailed dynamics of two-phase flows is still a rather out-of-reach endeavor. Thus, a rather complex, associated problem but much simpler than the complete flow is a detailed study of *the micro-hydrodynamics of a single drop* embedded in a shearing flow. Although this problem may seem at quick sight of a rather simplified nature, it already addresses many of the relevant phenomena and basic principles valid for the large set of problems mentioned above. Thus, it is within this field that the objective of my work is set; and I attempt to provide a detailed view of some prevailing questions using numerical simulations.

A complete understanding of the particle or drop dynamics in the suspending fluid is still lacking mainly because of the non-linear nature of the occurring phenomena, especially due to an interface that is deformable by the stress field. In particular, complex phenomena are observed whenever large deformation of the drops occurs, which are most frequently encountered with strong flows —with rates of elongation greater that the rate of vorticity.

Thus, the issue of this thesis was to observe the drop deformation of drops immersed in *elongational flows with vorticity*, in contrast to the previous work published to date that addresses problems in flows such as *simple shear flows*, or 2-, 3-dimensional purely elongational flows. These flows hardly cover the flow regimes regularly found in

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. nature or encountered in applications and provide a limited insight into the ample spectrum of possible deformation dynamics of drops. Here I present the predicted dynamics of drops for a large family of flows that encompasses all the previously mentioned flows under a variety of parameters of relevance for applications, such as interfacial tension, ratio of viscosities of the fluids, strength of the flow and type of applied flow.

Using comparisons between my numerical results with earlier experimental, numerical and theoretical studies (Acrivos & Lo, 1978), (Bentley & Leal, 1986b), (Kwak & Pozrikidis, 1998), (Reyes, 2005), (Ha & Leal, 2001), (Rosas I. Y., 2013), and (Zhao & Shaqfeh, 2011), I attempt to offer a systematic and complete overview of all results consistent with the basic hydrodynamic equations. In particular, I address the question of whether deformed drops present middle cross-section of a circular form, or whether the prevalent form is an ellipsoidal shape. Once this point is settled on the most general shape, the next point addressed is whether these asymmetries imply different relaxation mechanisms for the different measures of deformation for the main axes. Furthermore, with this information, an attempt to evaluate the interfacial tension of the drop for a retracting drop is carried out.

Subsequently, I attempt to describe the dependence of the dynamics of these different shape forms on parameters such as the viscosity ratio, the shear rate of the flow, the capillary number, and the parameters that describe the flow types (here evaluated). With these sets of data, for the time-evolution of drop deformations, is possible to elucidate the existence of a large class of drop forms, as well as the associated set of solutions for these two-phase flows. The surprising aspect of these results is that drop shapes are not only non-circular, but stable form of drop exists that resemble more a *guarache* shape (a highly flattened out drop), which in turn implies the possibility of a large class of the fluid not previously evaluated. Here, the implication for appropriate macroscopic models for the internal structure of these rather simple flows could be a serious setback when assuming the possibility of simple models. Nonetheless, I attempt to provide some discernment of about the topics mentioned above.

TABLE OF CONTENTS

ACKNOWLEDGMENTS
ABSTRACT III
TABLE OF CONTENTSV
LIST OF ILLUSTRATIONS
CHAPTER 1. STUDY OF THE DEFORMATION OF A DROP1
1.1 Background
1.2 Numerical method
1.2.1 Numerical implementation of the computation of drop deformation in strong flows
1.2.2 Performance of the mesh used in the method in the time
1.2.3 Oriented parallel programing in the numerical scheme
1.2.4 Curvature in BEM 3D
1.2.5 Numerical Accuracy
CHAPTER 2. CALIBRATION OF NUMERICAL METHOD
2.1 The numerical method vs previous numerical methods
2.2 Experiments in simple shear flow compared with experimental data27
2.3 Comparisons of numerical vs. experimental data for extensional flow
CHAPTER 3. SHAPE OF A DROP IMMERSED IN A FLUID UNDER AN
ELONGATIONAL FLOW WITH VORTICITY; SMALL RATIOS OF VISCOSITY
3.1 Time evolution of drop deformation
3.2 Attained stationary states
CHAPTER 4. SHAPE OF A DROP IMMERSED IN A FLUID UNDER AN
ELONGATIONAL FLOW WITH VORTICITY; LARGE RATIOS OF VISCOSITY
4.1 Time evolution of drop deformation

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

4.2 Stationary	states attained	
	CHARACTERISTIC TIMES OF DROP DEFORMATION UND IAL FLOW WITH VORTICITY	
	stic times obtained in drop deformation in an impulsive flow cosity ratio	
5.2 Characteri	stic time in the retraction of a drop	
	SHEAR RATE VS. CAPILLARY NUMBER. EFFECT ON THI OF DROPS	
-	nces of shear rate <i>G</i> in the stationary state of the drop for sm ty	
-	nces of shear rate <i>G</i> on the stationary state of the drop for lan s	
CHAPTER 7.	THE FORM OF A DROP IMMERSED IN AN EXTENSIONA	L FLOW 111
7.1 Drop defor	rmation in uniaxial flow	
7.2 Drop defoi	rmation in extensional 2-D flow	120
CHAPTER 8.	HYSTERESIS BEHAVIOR IN DROP DEFORMATION	123
8.1 Hysteresis	in strong flows	
8.2 Hysteresis	in extensional flows	132
CHAPTER 9.	GENERAL CONCLUSIONS: DROP DEFORMATION IN STR 137	RONG FLOWS
BIBLIOGRAP	НҮ	145
APPENDIX A		151
APPENDIX B		157

LIST OF ILLUSTRATIONS

Figure 1.1. Scheme of a two-phase fluid. Drop in stationary shape. $\lambda \mu = 0.012$, $\alpha = 0.13$ and $Ca = 0.40$. (a) 3D-view of the drop within an applied 2D-flow shown on the xy-plane. (b) Conventional characterization of deformation on the xy-plane: L and B. (c) Cross section of the drop: W being the third deformation length scale
Figure 1.2 The better known planar linear flows in 2D. Definition of weak flows and strong flows using the parameter α9
Figure 1.3 Drop of 0.25 mm of radius. In the left part, the mesh has no subdivision, 8 elements (curved triangles). In the right, the same drop with a mesh of 2048 elements, subdivision equal $k = 4$
Figure 1.4 Time to calculate the algebraic system vs. number of element of the mesh. Blue line indicates the time using a one tread algorithm. Green line is the time using 4 computational threads
Figure 1.5 Time to build one step of the dynamic of drop deformation vs. number of elements of the mesh, green. Time to calculate the solution of the algebraic system vs. number of elements, orange. Time is in percentage of CPU Time
Figure 1.6 Mapping of curved triangles from 3D-space to 2D-space
Figure 2.1 Stationary Taylor's Drop Deformation vs. Capillary Number. Simple shear flow, $\alpha = 0.0$ and $\lambda \mu = 1.0$.
Figure 2.2 B/W ratio vs. Capillary Number for different $\lambda\mu$ values
Figure 2.3 Principal axes of the drop vs. Capillary Number. $\lambda \mu = 1.4$, $\alpha = 0.0$
Figure 2.4 Comparison between Numerical Simulation of BEM3D and Guido's Experimental Data
for a drop deformation. Simple shear flow, $\alpha = 0.0$, $\lambda \mu = 1.4$, $Ca = 0.46$. The experimental data were $D = 0.70$, and $\theta = 32.05^{\circ}$. The numerical values were $D = 0.67$, and $\theta = 34.8^{\circ}$
for a drop deformation. Simple shear flow, $\alpha = 0.0$, $\lambda \mu = 1.4$, $Ca = 0.46$. The experimental data were $D = 0.70$, and $\theta = 32.05^{\circ}$. The numerical values were $D = 0.70$.
for a drop deformation. Simple shear flow, $\alpha = 0.0$, $\lambda \mu = 1.4$, $Ca = 0.46$. The experimental data were $D = 0.70$, and $\theta = 32.05^{\circ}$. The numerical values were $D = 0.67$, and $\theta = 34.8^{\circ}$
for a drop deformation. Simple shear flow, $\alpha = 0.0$, $\lambda \mu = 1.4$, $Ca = 0.46$. The experimental data were $D = 0.70$, and $\theta = 32.05^{\circ}$. The numerical values were $D = 0.67$, and $\theta = 34.8^{\circ}$
for a drop deformation. Simple shear flow, $\alpha = 0.0$, $\lambda \mu = 1.4$, $Ca = 0.46$. The experimental data were $D = 0.70$, and $\theta = 32.05^{\circ}$. The numerical values were $D = 0.67$, and $\theta = 34.8^{\circ}$

Figure 3.4 Ratio of the B- wrt. the W-axes under stationary state conditions. Simulations traces correspond to different elongational flows with $\alpha = 0.03$, $\alpha = 0.05$ and $\alpha = 0.13$ and for different values of Ca
Figure 3.5 Deformation of the drop for numerical simulations and experimental data for α = 0.13 and analytical prediction of Taylor Cox in simple shear flow α = 0.0 for different values of Ca
Figure 3.6 Orientation of the drop for numerical simulations and experimental data for $\alpha = 0.13$ and analytical prediction of Taylor Cox in simple shear flow $\alpha = 0.0$ for different values of Ca
Figure 3.7 Deformation of the drop for numerical simulations for flow with $= 0.03$, $\alpha = 0.05$ and $\alpha = 0.13$ 13 and analytical prediction of Taylor Cox in simple shear flow $\alpha = 0.0$ for different values of Ca
Figure 3.8 Lengths (normalized) of the principal axes of drops under stationary flow with $\alpha = 0.03$, 0.05 and 0.13, for different values of Ca
Figure 4.1 Taylor's Deformation of drops in the time. $\lambda \mu = 16$, $\alpha = 0.03$
Figure 4.2 Ratio of the B wrt. W axes in numerical simulations for a flow with α =0.03 and total time Gt =75 for different values of Ca
Figure 4.3 Evolution of the three principal axes of the drop in a flow with $\alpha = 0.03$, Ca=0.87 and total time Gt = 75
Figure 4.4 Stationary ratio of the B wrt. the W axis in numerical simulations for flow with $\alpha = 0.03$, $\alpha = 0.05$ and $\alpha = 0.13$ for different values of Ca
Figure 4.5 Deformation of the drop for numerical simulations, experimental data of Rosas for $\alpha = 0.03$, $\alpha = 0.05$ and $\alpha = 0.13$; Experimental data of Bentley for $\alpha = 0.4$ and $\alpha = 0.2$ and analytical prediction of Taylor Cox in simple shear flow $\alpha = 0.0$ for different values of Ca
Figure 4.6 Orientation of the drop for numerical simulations, experimental data of Rosas for $\alpha = 0.03$, $\alpha = 0.05$ and $\alpha = 0.13$; Experimental data of Bentley for $\alpha = 0.4$ and $\alpha = 0.2$ and analytical prediction of Taylor Cox in simple shear flow $\alpha = 0.0$ for different values of Ca
Figure 4.7 Drop evolution in the time. $Ca = 0.87$ wich $\lambda \mu = 16$ and $\alpha = 0.03$. The color images are the numerical shape obtained with BEM3D, the black pictures are the projection on the xy-plane; within these projections, ellipses were fitted
Figure 4.8 Polar plot of Taylor deformation vs. orientation angle for different capillary numbers with $\alpha = 0.03$, $\lambda \mu = 16$
Figure 4.9 Stationary values of the principal axes of the drop for a flow with $\alpha = 0.03, 0.05$ and 0.13, for different values of Ca
Figure 5.1 Time evolution of principal L axis which $\alpha = 0.13$ for different values of Ca
Figure 5.2 Time evolution of principal B axis which $\alpha = 0.13$ for different values of Ca
Figure 5.3 Time evolution of principal W axis which $\alpha = 0.13$ for different values of Ca
Figure 5.4 Time evolution of principal L axis normalized wrt. stationary value, which $\alpha = 0.13$ for different values of Ca

Figure 5.5 Time evolution of principal B axis normalized wrt. stationary value, which $\alpha = 0.13$ for different values of Ca
Figure 5.6 Time evolution of principal W axis normalized wrt. stationary value, which $\alpha = 0.13$ for different values of Ca
Figure 5.7 Time evolution of principal axes normalized wrt. stationary value, which α =0.03 for different values of Ca. Characteristic times in symbols
Figure 5.8 Time evolution of principal axes normalized wrt. stationary value, which α =0.05 for different values of Ca. Characteristic times in symbols
Figure 5.9 Time evolution of principal axes normalized wrt. stationary value, which α =0.13 for different values of Ca. Characteristic times in symbols
Figure 5.10 Characteristic Times vs Capillary Number67
Figure 5.11 Analysis of the Principal Axes of the drop wrt. the characteristic time due capillary value, with $\alpha = 0.13$ and $\lambda \mu = 0.012$. Symbols are the characteristic times of the Principal Axes of the drop
Figure 5.12 Taylor Deformation of the drop vs time. $\alpha = 0.13$, $Ca = 0.40$
Figure 5.13 Mo Shape Parameter vs Time. $\alpha = 0.13$, Ca = 0.40
Figure 5.14 Taylor Deformation vs Time (lines). Exponential Decay vs Time (dash-dot-dot). Characteristic time τ (diamonds). $\alpha = 0.13$, $Ca = 0.40$
Figure 5.15 Taylor Deformation vs Time (lines). Exponential Decay vs Time (dash-dot-dot). Characteristic time τ (diamonds). α =0.13, Ca=0.40
Figure 5.16 Characteristic times t vs Capillary Number which parameter $\alpha = 0.13$
Figure 5.17 $Ln(DT/D0)$ vs. time. Drop retraction was analyzed with Taylor deformation which $Ca = 40$ and $\alpha = 0.13$
Figure 5.18 Angle of Orientation vs. time in drop retraction which parameter $\alpha = 0.13$
Figure 5.19 Linear fit of $-Ln(DT/D0)$ for 5τ of time. Drop retraction was analyzed with Taylor deformation which $Ca = 40$ and $\alpha = 0.13$
Figure 5.20 Linear fit of $-Ln(DMo/D0)$ for 5τ of time. Drop retraction was analyzed with Mo shape parameter which $Ca = 40$ and $\alpha = 0.13$
Figure 5.21 Comparison between the interfacial tension used in numerical simulations (lines) and the interfacial tension obtained with DDR method (symbols). The analysis was made with Taylor deformation, the slopes used were based on multiples of τ
Figure 5.22 Comparison between the interfacial tension used in numerical simulations (lines) and the interfacial tension obtained with DDR method (symbols). The analysis was made with Mo shape parameter, the slopes used were based on multiples of τ 80
Figure 5.23 Error between the interfacial tension used in numerical simulations and the interfacial tension obtained with DDR method (symbols). The analysis was made with Taylor deformation, the slopes used were based on multiples of τ
Figure 5.24 Error between the interfacial tension used in numerical simulations and the interfacial tension obtained with DDR method (symbols). The analysis was made with Mo shape parameter, the slopes used were based on multiples of τ

Figure 5.25 Error between the interfacial tension used in numerical simulations and the interfacial tension obtained with DDR method (symbols). The analysis was made with Taylor deformation in (L, W), the slopes used were based on multiples of τ 83
Figure 5.26 Error between the interfacial tension used in numerical simulations and the interfacial tension obtained with DDR method (symbols). The analysis was made with Mo shape deformation in (L, W), the slopes used were based on multiples of τ .
Figure 6.1 Polar representation of Angle of Orientation vs. Taylor Deformation with $\alpha = 0.13$ and $\lambda \mu = 0.012$
Figure 6.2 Angle of Orientation vs. Taylor Deformation with $\alpha = 0.13$ and $\lambda \mu = 0.012$
Figure 6.3 Evolution of Taylor Deformation for the same capillary number with different values of G
Figure 6.4 Angle of Orientation vs Taylor Deformation for drops with the same Capillary Number with different values of G91
Figure 6.5 Angle of Orientation vs. Capillary Number for $Ca = 0.35$ and different values of G 92
Figure 6.6 Trembling effect in drop deformation for different capillary number with $G >> 1$, $\alpha = 0.13$, $\lambda \mu = 0.01$
Figure 6.7 Comparison of the trajectories of steady states for Angle of Orientation vs. Taylor Deformation of different Capillary Number, but different values of G
Figure 6.8 Comparison of the trajectories of steady states for Angle of Orientation vs. Taylor Deformation of different Capillary Number, but different values of G,with $\alpha = 0.13$ and $\lambda \mu = 0.012$. The blue symbols are the steady states of drop deformation for capillary numbers (Ca = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, and 0.45) with G = 1. The green symbols are the steady states of deformation obtained by G = 3.96
Figure 6.9 Comparison of evolution of drop deformation in the trembling effect when the velocity is calculated using only the normal component of the velocity (orange line). The velocity calculated using the normal and tangential component employed is observed in the blue line. $Ca = 0.04$, $\alpha = 0.13$ and $\lambda \mu = 0.012$
Figure 6.10 Comparison between experimental and numerical data of steady deformation on xy plane vs capillary numbers with $\alpha = 0.03$, $\lambda \mu = 0.012$. The insert Figure is the numerical error w.r.t. the experimental data
Figure 6.11 Comparison between experimental and numerical data of steady deformation on xy plane vs capillary numbers with $\alpha = 0.05$, $\lambda \mu = 0.012$. The inset Figure is the numerical error w.r.t. the experimental data
Figure 6.12 Comparison between experimental and numerical data of steady deformation on xy plane vs capillary numbers with $\alpha = 0.13$, $\lambda \mu = 0.012$. The inset Figure is the numerical error w.r.t. the experimental data
Figure 6.13 Comparison of the L-axis when capillary number is increased as function of Parameter G, with $\lambda \mu = 0.012$, $\alpha = 0.13$
Figure 6.14 Comparison of the W-axes when capillary number is increased as function of Parameter G, which $\lambda \mu = 0.012$, $\alpha = 0.13$
Figure 6.15 Comparison of the W-axes when Cacr \ll Ca, which $\lambda \mu = 0.012$, $\alpha = 0.13$

Figure 6.16 Principal Axes evolution in the time for a drop whit Cacr \ll Ca, $\lambda \mu = 0.012$, $\alpha = 0.13$
Figure 6.17 Taylor Deformation in different planes: Ca = 0.40, $\lambda \mu$ = 0.012, α = 0.13
Figure 6.18 Taylor Deformation whit Cacr \ll Ca, $\lambda\mu$ = 0.012, α = 0.13
Figure 6.19 Guarache shape obtained in a drop with Cacr \ll Ca, $\lambda \mu = 0.012$, $\alpha = 0.13$. There is the different perspectives orthogonal to the principal axes. Orientation Angle $\theta = 23.85^{\circ}$
Figure 6.20 Tank-treading and Trembling effect of a drop with $Ca = 87$, $\lambda \mu = 16$ and $\alpha = 0.03$.
Figure 7.1 Evolution of principal axes of a drop in uniaxial flow. $\lambda \mu = 0.01$, $Ca = 0.31$
Figure 7.2 Shapes of steady drop deformation, football balloon predicted by Acrivos and Lo 113
Figure 7.3 Diagram of Steady State of deformation in extensional 3D-flow made by Acrivos and Lo (lines, $\lambda \mu = 0$) and the numerical experiments (marks $\lambda \mu = 0.01$)
Figure 7.4 Comparison of a drop in uniaxial flow in steady shape. Theoretical shape by Acrivos & Lo, left; and BEM3D, rigth. $Ca = 0.26$ and $\lambda \mu = 0.01$
Figure 7.5 Taylor Deformation vs Capillary number for a drop in extensional flow 3D 117
Figure 7.6 Steady state attain by a drop in extensional 3D-flow with $\lambda\mu=1.0$ and Ca = 0.1 119
Figure 7.7 Stationary deformation vs capillary numbers with different values of $\lambda\mu$ for extensional 2D-flow. Comparison with exp. data of Cacr
Figure 7.8 Ratio of B- wrt. W-axis for different values of $\lambda\mu$ in pure extensional 2D-flow axis 121
Figure 7.9 Lengths (normalized) of the principal axes of drops under stationary extensional 2D- flow with $\alpha = 1.0$, and $\lambda \mu = 0.1$, 1.3 an 24.1, for different values of Ca
Figure 8.1 Evolution of the flow parameter α in time for a numerical simulation of a flow induced hysteretic loop. The first portion of the flow corresponds to a simple shear flow. At Gt = 100, the parameter α evolves as a ramp up and down; pure elongational flow occurs at $\alpha = 1$
Figure 8.2 Evolution of principal axes length scales vs time; i.e., vs the parameter α . Time = 500 [Gt], $\lambda \mu = 16$, from simple shear flow $\alpha = 0$ to extensional 2D-flow $\alpha = 1$. Time: 100 < Gt < 500
Figure 8.3 Principal axes vs flow parameter alpha α . With $\lambda \mu = 16$, from simple shear flow $\alpha = 0$ to extensional 2D-flow $\alpha = 1$. Time: $100 < Gt < 500$
Figure 8.4 Taylor Deformations vs. flow parameter α . With $\lambda \mu = 16$, from simple shear flow $\alpha = 0$ to extensional 2D-flow $\alpha = 1$. Time period: $100 < Gt < 500$
Figure 8.5 Principal axes vs. flow parameter α . With $\lambda \mu = 16$, from simple shear flow $\alpha = 0$ to extensional 2D-flow $\alpha = 1$. Time: $20 < Gt < 100$
Figure 8.6 Evolution of β in the time of numerical simulation. The first part was the value in extensional 2D-flow. Then the parameter betta was modified as a ramp
Figure 8.7 Evolution of principal axes vs time. Time = 200Gt, $\lambda \mu = 16$, from extensional 2D-flow $\beta = 0$ to uniaxial flow $\beta = 1$. Time: $40 < Gt < 200$

CHAPTER 1.

Study of the deformation of a drop

In the science of materials, multiphase fluids, *i.e.*, fluids composed by two or more different substances, are frequently found in industrial applications, *e.g.* crude oil or pharmaceutical industry, et cetera. Some examples of application of two-phase fluids are: (a) industrial separators, whose function is to separate various substances; (b) sprays or reactors, to manipulate several substances in order to make another fluid that combines properties of the separate phases, or to produce another (new) material, (c) polymeric manipulation or (d) analysis of multiphase microfluids as DNA analysis. These applications motivate the study of multiphase fluids.

In particular, these complex systems are classified as emulsions —whenever the two phases are liquids—, dispersions (for a liquid phase that supports solid particles), or colloids —when particles are smaller than a few microns. Understanding of the behavior of these systems requires assuming a different subset of basic physical phenomena and is of importance for many relevant applications. The variety of phenomena observed implies a rather complex nature being the result of changes in the structure of the flow at multiple scales of length and time, simultaneously.

However, these observed phenomena imply an extreme complexity, their full physical understanding has not been up to date amenable. Rather, a more limited set of parameters or experimental phenomena has been the acceptable approach, albeit with a more limited accessible scope. A possible starting point of relevance for the

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. above observations —(Taylor, 1932), (Lamb, 1945), (Batchelor, 1967)— is the *study of deformation of a single drop induced by an equally simple flow.* This has been the starting pattern for theoretical studies since the seminal Ph. D. thesis of A. Einstein, the experimental work by G. I. Taylor, and many important numerical simulations carried out in the previous decades. Thus, this work focuses on *the fluid mechanics of a two-phase fluid*: a pair of immiscible fluids that may have different values for the relevant properties as will be discussed in the next Section.

The earliest studies of multiphase fluid showed the extreme difficulty of this topic of research. Lord Rayleigh in 1879 studied the capillary effects in jets, (Rayleigh, 1879) observing the detailed instabilities of two phase flows. Albert Einstein made a treatise to analyze a simple prototype of multiphase fluid (Einstein, 1906). In Einstein's work, the viscosity of a suspension of little spherical particles immersed in a continuum fluid is reported —these rigid solid spheres could model the presence of little drops with an enormous viscosity compared to that of the continuum fluid. The next seminal work comes until 1932 when Taylor used a more detailed description of the second phase (Taylor, 1932). Taylor assumed that particles were not rigid, as Einstein did, presenting a theoretical analysis of a *2D-flow* applied on the continuum phase, with a single particle immersed. This approximation is the simplest configuration of a two-phase fluid which encompasses the basic fundamental phenomena, and which in turn incorporates the mathematical methods required for such line of work.

With these previous reports, the detailed study of the drop dynamics —a single drop of a fluid called the disperse phase— embedded in a second fluid —called the continuum phase— established one of the basic tools for further advances. Sir Geoffrey Ingram Taylor said in the first treatise of experimental device of drop deformation that "When one liquid is at rest in another liquid of the same density it assumes the form of the spherical drop. Any movement of the outer fluid (apart from pure rotation or translation) will distort the drop owing to the dynamical and viscous forces which then act on its surface", (Taylor, 1934). It is assumed that the two fluids are immiscible, and their interaction is described by the forces that generate the

deformation of the interface separating both fluids. Since this work, the study of drop deformation has been fundamental to understanding the fluid mechanics of multiphase fluids phenomenon, and here I expand our understanding of the applied forces to those induced by strong flows that are well describe for the continuum phase.

Many important subsequent theoretical studies to Taylor (Taylor, 1932), have been published by R. Cox, Barthès-Biesel, A. Acrivos, E. J. Hinch, and J. M. Rallison among the most relevant during the last century: (Taylor, 1964), (Cox, 1969), (Frankel & Acrivos, 1970), (Barthès-Biesel, 1973), (Acrivos & Lo, 1978), (Rallison, 1978), (Astarita, 1979), (Hinch & Acrivos, 1979), (Rallison, 1980), (Hinch & Acrivos, 1980), (Brady & Acrivos, 1982), and (Rallison, 1984). At the same time, experimental devices were used to observe drop deformations immersed in a fluid within a well-controlled flow. Especially, for simple shear flow machines: (Rumscheid & Mason, 1961), (Torza, Cox, & Mason, 1972), (Grace, 1982), (Guido & Villone, 1997), (Guido, Greco, & Villone, 1999), (Guido & Villone, 1999), (Mo, 2000), (Guido & Greco, 2001), (Wannaborworn, Mackley, & Renardy, 2002), (Yu, Bousmina, & Zhou, 2004). As well as flows of an elongational type: (Taylor, 1934), (Bentley & Leal, 1986a), (Bentley & Leal, 1986b), (Stone, Bentley, & Leal, 1986), (Stone & Leal, 1989a), (Stone & Leal, 1989b), (Ha & Leal, 2001) (Rosas, Reyes, Minzoni, & Geffroy, 2014), (Escalante, Reyes, Rosas, & Geffroy, 2015), and (Rojas, 2016). These two type of flows complement each other, however showing rather distinctive and unique phenomena which depends on the parameter space; many of these features are discussed in this thesis.

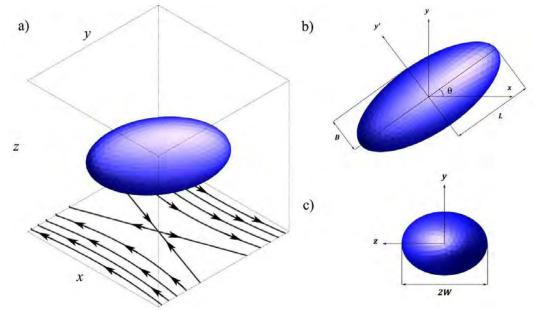
The previous studies showed that the flow type may lead to a systematic classification of the shapes of the drops, with more cylindrical shapes for elongational types of flows —an elongated prolate with a quasi-circular waist—, while the *simple shear flows* cause deformations that flatten the waist of the ellipsoid along the direction of vorticity of the flow. These complex shapes appear to require multiple solutions to the governing equations, which are difficult to probe experimentally and very difficult to solve with the theoretical tools currently available.

Finally, numerical models have been used to study those cases when the experimental device or the theoretical predictions cannot fill gaps in our understanding of the drop dynamics: (Youngren & Acrivos, 1975), (Rallison & Acrivos, 1978), (Rallison, 1981), (Unverdi & Tryggvason, 1991), (Kennedy, Pozrikidis, & Skalak, 1994), (Loewenberg & Hinch, 1996), (Zinchenko, 1997), (Pozrikidis, 1997), (Kwak & Pozrikidis, 1998), (Coulliette & Pozrikidis, 1998), (Primo, Wrobel, & H., 2000), (Khayat, 2000), (Pozrikidis, 2000), (Yuriko, Renardy, & Renardy, 2000), (Cristini, Blawzdziewicz, & Loewenberg, 2000), (Huo, Lowengrub, & Shelley, 2001), (Blawzdziewicz, Cristini, & Loewenberg, 2003), (Kim & Lowengrub, 2004), (Bazhlekov, 2004), (Reyes, 2005), (Khismatullin, Renardy, & Renardy, 2006), (Subramanian & Koch, 2006), (Young, Blawzdziewicz, Cristini, & Goodman, 2008), (Mählmann & Papageorgiou, 2009) (Sohn, Yu-Hau, Li, Voigt, & Lowengrub, 2010), (Zhao & Shaqfeh, 2011), (Reyes, Minzoni, & Geffroy, 2011), (Ramalingam, Ramkrishna, & Basaran, 2012), (Lalanne, Tanguy, & Risso, 2013), (Spann, Zhao, & Shaqfeh, 2014), (Escalante, Reyes, Rosas, & Geffroy, 2015).

This work addresses the dynamics of drop deformations immersed in an immiscible fluid that occurs under a large class of linear *2D-flows*, a class that has been poorly studied until the experimental work of Rosas, (Rosas, Reyes, Minzoni, & Geffroy, 2014). It is based on a numerical technique that describes the 3-dimensional evolution of shape of the drop using a *Boundary element method* algorithm. In Chapter 1, I present the fundamentals of the theoretical and numerical implementation of the algorithms. Then in Chapter 2, my numerical results are matched against theoretical, experimental and other numerical results of drop deformation, including conventional flows such as *simple shear flow* or *extensional 2D-flows*. Chapter 2 addresses mainly the correct calibration of the numerical method implemented for this work.

Chapter 3 and 4 address flow effects on drops with small or large viscosities. Chapter 3 presents results in strong flows of drop deformations with very low ratios of viscosity. The numerical data were compared with the theoretical results of Taylor and Cox. Experimental data of Rosas (Rosas I. Y., 2013) were used to calibrate the numerical results. Then, I present an analysis of the *3D-effects* of the shape of the drop as a consequence of the imposed flow. Chapter 4 presents results when the drop has a larger viscosity than the fluid that contains the drop. Again, the experimental data of Rosas were used and the *3D effects* of the drop were analyzed.

The deformation attained by the drop along different directions is also presented in detail in Chap. 3 and Chap. 4. The classification of different shapes and its correlation with different type of flows motivated an analysis of the characteristic time-scales for the elongation of the principal axes of the drop. Chapter 5 presents an overview of the time-scales of drop deformation. The first part of Chap. 5 focuses on the time required to attain the steady state deformation. After the deformation process is arrested, retraction of the drop to its spherical shape is predicted. However, different axes have different deformation, and also clearly different timescales. The second part of Chap. 5 focuses in the retraction times associated for all three axes. Thus, under this new environment, evaluation of the interfacial tension during the process of retraction is rather complex. And in the last part of Chap. 5, I investigate possible corrections to the standard techniques for determination of interfacial tension by matching experimental against numerical retraction processes. The necessity to carry out this comparison is due to the fact that those techniques assume shapes of the drop that differ from the shapes and time-scales predicted in latter Chapters.


The effects of *the intensity of the flow*, *G*, on the drop form have not being observed in detail in previous works. In Chapter 6, the importance of *the intensity of the flow* in the stationary state of deformation is evaluated. As the strength of the flow increases, the role of interfacial tension becomes non-homogenous, becoming weaker normal to the direction of the flow; that is, reduced by the presence of vorticity. Consequently, the observed solution at weak shear rates shows a bifurcation with well-defined critical values; future possible studies are described as a result of this work.

In Chapter 7, I investigate *the slender body theory for drops in extensional flows*. The earlier study of *extensional flows* by Acrivos, Lo and Hinch is based on asymptotic domain expansions assuming an axisymmetric behavior: as a result of a slender ellipsoid of revolution. Hence, its principal limitation appears when solutions of the non-axisymmetric shapes are looked for. With the BEM-3D numerical method new questions are also addressed, based upon the transition of drop shape classes observed in extensional *3D*- versus *2D-flows*. The former flow always induces axisymmetric shapes, while the latter flow is neutral in the third dimension, and the observed shapes resemble more to "squashed ellipsoids" perpendicular to the plane of the flow. Those questions are studied as well for the transition observed in the linear planar flows. Chapter 8 is the extension of Chapter 7 because another bifurcation of the shape deformation can be observed during the transition from *simple shear flow* to *extensional 2D-flow*.

Chapter 9 contains my brief overview of the detailed dynamics of the deformation of a drop when embedded in a large class of flows, and a discussion of the results of this numerical study. The problems solved and unsolved by the method and new branches of study in the drop deformations in strong flows.

1.1 Background

Properties of multiphase fluids are well characterized under statics conditions. However, when these systems are under flow, the presence of surfactants or multiple length-scales, the approximations in the calculus of the global properties or the complex nature of the observed phenomena, the dynamic of inter-phases —essential to the global properties of this kind of fluid— dictate that the description of the fluid dynamics turns to be hard. In this Section, I describe all of the assumptions made for the study of the deformation of a drop immersed in another fluid (this being the simplest case of a multiphase fluid). To incorporate all effects mentioned above, it is necessary to characterize simultaneously the fluid dynamics of each fluid as well as the stress balance at all points of the interface. However, this case presents a large variety of technical difficulties, with some depending mostly on the numerical approximation and others due to the complex nature of the fluid dynamics of two fluids with an evolving interface. In the worst cases, there is a combination of those possible situations. Therefore, my analysis of drop deformation assumes two Newtonian fluids, Fig. 1.1. The first (inner) phase is the drop with viscosity μ_2 , while the continuum phase viscosity is μ_1 . The viscosity ratio is $\lambda_{\mu} = \mu_2/\mu_1$, and the interfacial tension on the interface is γ . The two fluids have the same density and both are immiscible. There is not surfactant and there are no Marangoni stresses present (these due to a heterogeneous distribution of surfactant).

Figure 1.1. Scheme of a two-phase fluid. Drop in stationary shape. $\lambda_{\mu} = 0.012$, $\alpha = 0.13$ and Ca = 0.40. (a) 3D-view of the drop within an applied 2D-flow shown on the xy-plane. (b) Conventional characterization of deformation on the xy-plane: L and B. (c) Cross section of the drop: W being the third deformation length scale.

Creeping-flow conditions are assumed. In the creeping-flow regime the motion of the fluids is governed by the Stokes equations Eq. (1.1), and continuity equation Eq. (1.2), (Leal, 2007), for each fluid.

$$\mu \, \boldsymbol{\nabla}^2 \boldsymbol{u} = \, \boldsymbol{\nabla} p \,, \tag{1.1}$$

$$\nabla \cdot \boldsymbol{u} = 0. \tag{1.2}$$

The velocity field u is continuous over the drop interface *S*. Tractions exerted on the two sides of the interface between the two fluids have two different values, with a corresponding discontinuity:

$$\Delta f = f_1 - f_2 = (\sigma_1 - \sigma_2) \cdot \hat{\boldsymbol{n}} , \qquad (1.3)$$

where $\hat{\boldsymbol{n}}$ is the normal vector pointing out of \boldsymbol{S} and the stress tensor is represented by $\boldsymbol{\sigma}$. In this work, a constant value of interfacial tension γ (Pozrikidis, 1997) is assumed; *i.e.*, $\nabla \cdot \hat{\boldsymbol{n}}$ is equal to twice the mean curvature $\kappa_{\rm m}$ at that point on the interface, and

$$\Delta \boldsymbol{f} = \gamma \, \boldsymbol{\hat{n}} \, \boldsymbol{\nabla} \cdot \boldsymbol{\hat{n}} = 2\gamma \, \kappa_{\rm m} \boldsymbol{\hat{n}} \,. \tag{1.4}$$

The drop is subjected to (immersed in) a two-dimensional linear flow:

$$\boldsymbol{u}(x,y,z) = \frac{G}{1+\alpha}(y,-\alpha x,0) \text{ when } \boldsymbol{x}(x,y,z) \to \infty, \tag{1.5}$$

where *G* is the intensity of the rate of deformation tensor of u(x, y, z). The expression for *G*, Eq. (1.6) shows the definition made by Makosco, (Makosco, 1994). The linear flows given by Eq. (1.5) were used in all simulations except for the analysis of *extensional flows* in Chap. 7 and Chap. 8. There, the analysis of the flow is like those of Eq. (1.5), but

$$G = (|II_{2D}|)^{\frac{1}{2}}, \tag{1.6}$$

is estimated as Eq. (1.6) in all cases for *2D-effects*. The *flow-type* parameter is *α* (Bentley & Leal, 1986b), (Reyes, Minzoni, & Geffroy, 2011), (Rosas, Reyes, Minzoni, & Geffroy, 2014), (Escalante, Reyes, Rosas, & Geffroy, 2015), Eq. (1.7).

The parameter α measures the relative contribution of vorticity versus the contribution of the rate deformation of the flow, (Reyes, Minzoni, & Geffroy, 2011).

$$\alpha = \frac{\|\boldsymbol{D}\| - \|\overline{\boldsymbol{W}}\|}{\|\boldsymbol{D}\| + \|\overline{\boldsymbol{W}}\|} \ . \tag{1.7}$$

The term **D** corresponds to the *rate deformation tensor* $\mathbf{D} = \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T)$, (Makosco, 1994). $\overline{\mathbf{W}}$ is the *objective vorticity tensor* defined by Astarita $\overline{\mathbf{W}} = \mathbf{W} - \mathbf{\Omega}$, (Astarita, 1979). The class of *2D-flows, i.e.*, the configuration of linear planar flows can be understood using Fig. 1.2. Figure 1.2 shows the most relevant flows in 2D.

Makosco establishes the measure of *the intensity of the flow* as a measure of the second invariant of twice the rate of deformation tensor, *i.e.*:

$$II_{2D} = \frac{1}{2}(tr(D)^2 - tr(D^2)).$$
(1.8)

In order to apply the correct intensity of the flow in these numerical simulations, Makosco's expression was used together with the contribution of the α -parameter:

 $\sqrt{|II_{2D}|} = (1 + \alpha).$

Figure 1.2 The better known planar linear flows in 2D. Definition of weak flows and strong flows using the parameter α .

Here, the parameter α values range from zero to one, thus Eq. (1.5) corresponds to a class of *2D*-strong flows. When the value of $\alpha = 0$, the strong flow with the highest content of vorticity is produced (Fig. 1.2, center), which corresponds to *simple shear* flow and with the velocity gradient in the *y* direction. The value of *G* is equal to the flow shear rate $G = \dot{\gamma}$. For a value of $\alpha = 1$ we have a pure *two-dimensional extensional* flow—no vorticity (Fig. 1.2 right)—; the principal axes of deformation are at x = y, the compressional axes being at x = -y; the intensity of the flow is the strain rate $G = \dot{\varepsilon}$.

Thus, the dynamic of drop deformation appears to be characterize by three dimensionless numbers. The viscosity ratio λ_{μ} , the capillary number *Ca*, Eq. (1.10) and the *flow-type* parameter α , Eq. (1.11). Later, other parameters appear to be equally important.

The capillary number characterizes the ratio between viscous stresses — imposed by the flow— and capillary forces that resist the deformation and drive the drop towards the equilibrium shape; were r_0 is the non-deformed radius of the drop.

$$Ca = \frac{r_0 \mu G}{\gamma}.$$
 (1.10)

(1.9)

The results presented in Chapter 3 and Chapter 4 were calculated for a range of values of the *flow-type* parameter α close to *simple shear flow, i.e.*, $\alpha = 0.03$, $\alpha = 0.05$ and $\alpha = 0.13$. Even though these values appear small, these flows are capable of significant deformations of a drop, while maintaining a good degree of control on the magnitude of deformation when compared with pure elongational flows. These types of flows have until recently been studied experimentally are no numerical data has been published to date, (Rosas I. Y., 2013).

The applied flows cover a range of capillary numbers from $0.0 < Ca \leq Ca_{cr}$. For the smallest values of *Ca* used here, the drop shape does not present significant or relevant differences of its principal shape parameters; for values of $Ca \simeq Ca_{cr}$, the deformation is not yet sufficient to cause drop break up. In Chapter 3, the continuum phase is more viscous than the drop: $\lambda_{\mu} = 0.012$. In contrast, the drop has a larger viscosity than the continuum phase, $\lambda_{\mu} = 15.68$, for results presented in Chap. 4. The values of *flow-type* parameter, capillary numbers and the viscosity rate were chosen so that numerical predictions match the values of the experimental results of Rosas, (Rosas, Reyes, Minzoni, & Geffroy, 2014).

The principal measure of drop deformation used during most of the last century corresponds to Taylor's deformation (Taylor, 1934):

$$D_T = \frac{(L-B)}{(L+B)},$$
 (1.11)

were *L* and *B* being the axes of the drop shown in Fig. 1.1b. Additionally, to Taylor's deformation a secondary scale is used that corresponds to the ratio between the lengths of the axes of the deformed drop normalized by the initial radius. Later, other measures are introduced.

1.2 Numerical method

The Boundary Integral formulation was proposed by Ladyzhenskaya, (Ladyzhenskaya, 1963) within the framework of hydrodynamic potentials. Then, Brebbia formalized the Boundary-Integral Equation Method (BIEM), (Brebbia, 1978) and introduced the terminology *Boundary element method* (BEM). In this Section, the basic equations necessary for the numerical implementation of this computational method are presented. The numerical method used is the *3D-collocation boundary element method* (Pozrikidis, 1992)

In the Stokes regime, Eq. (1.1), the Stokes Equation can be rewritten as

$$\nabla \cdot \boldsymbol{\sigma} = -\nabla p + \mu \, \nabla^2 \boldsymbol{u} \,, \tag{1.12}$$

were $\boldsymbol{\sigma} = -p\boldsymbol{I} + \mu(\boldsymbol{\nabla}\boldsymbol{u} + \boldsymbol{\nabla}\boldsymbol{u}^T)$ is the stress tensor.

Let us consider two unrelated Stokes flows with velocities u and u^* and associated stress tensors σ and σ^* . The Lorentz reciprocal theorem or Lorentz Theorem establishes the possibility of evaluating a solution if another known solution exists. For the Stokes regime (Happel & Brenner, 1963), (Leal, 2007), and (Pozrikidis, 1997). It implies that

$$\nabla \cdot (\boldsymbol{u}^* \cdot \boldsymbol{\sigma} - \boldsymbol{u} \cdot \boldsymbol{\sigma}^*) = 0. \tag{1.13}$$

This is the counterpart of Green's second identity for harmonic functions (Lorentz, 1907). In other words, any solution can be expressed in terms of known solutions without having to solve the Stokes Equation explicitly.

Integrating Eq. (1.13) over a volume control, and using the divergence theorem to obtain

$$\iint_{S} (\mu \boldsymbol{u}^{*}\boldsymbol{f} - \mu^{*}\boldsymbol{u}\boldsymbol{f}^{*})dS = 0, \qquad (1.14)$$

were $f = \boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}}$, and $\hat{\boldsymbol{n}}$ is the unit normal vector point out the volume of control.

The complete velocity field of a drop immerse in another fluid can be calculated using Eq. (1.14). The use of analytical free-space solutions is an important feature of *Boundary element method*. These fundamental hydrodynamic solutions are applied in the governing equation Eq. (1.12), to solve the velocity field of the interface.

The hydrodynamic solution corresponds to Green's function of Stokes flow. This function provides the velocity and pressure fields that satisfies the continuity equation Eq. (1.2).

$$-\nabla p^* + \mu \nabla^2 u^* + b\delta(x - x_0) \equiv 0$$
(1.15)

were the vector **b** is a constant vector, and $\delta(\mathbf{x} - \mathbf{x}_0)$ is the tridimensional delta function centered at $\mathbf{x}_0 \in S$. Equation (1.15) is a representation of a modified stress tensor of the Green's function. Physically, Green's function expresses the flow due to a point force located at \mathbf{x}_0 (named *pole* or *source point*), along the direction and strength of **b**; valid in the absence or presence of boundaries. Green's functions are named *fundamental solutions* or *propagators*.

Solving the velocity field for this *point source* in Eq. (1.15) implies that

$$\boldsymbol{u}^*(\boldsymbol{x}) = \frac{1}{8\pi\mu} \boldsymbol{G}(\boldsymbol{x}, \boldsymbol{x}_0) \cdot \boldsymbol{b}, \qquad (1.16)$$

$$p^*(x) = \frac{1}{8\pi} p(x, x_0) \cdot b$$
, and (1.17)

$$\sigma^*(x) = -p(x, x_0)I + \nabla G(x, x_0) + \nabla G(x, x_0)^T = \frac{1}{8\pi}T(x, x_0) \cdot b \quad ; \quad (1.18)$$

were $G(x, x_0)$, $p(x, x_0)$ and $T(x, x_0)$ are the Kernels or the Green's functions.

For an infinitely unbounded flow, as in this work, the free-space Green's functions are used. These functions are:

$$\boldsymbol{G}(\boldsymbol{x},\boldsymbol{x}_0) = -\frac{\delta}{r} + \frac{\widehat{\boldsymbol{x}}\widehat{\boldsymbol{x}}}{r^3}, \qquad (1.19)$$

$$\boldsymbol{p}(\boldsymbol{x}, \boldsymbol{x}_0) = 2\frac{\widehat{\boldsymbol{x}}}{r^3} \text{ and }$$
(1.20)

$$T(x, x_0) = -6 \frac{\widehat{x}\widehat{x}\widehat{x}}{r^5}; \qquad (1.21)$$

were $G(x, x_0)$ is named *Stokeslet* or *Ossen-Burgers tensor*, $T(x, x_0)$ is the stress field called *Stresslet* (which is a symmetric tensor), $\hat{x} = x - x_0$, and $r = ||\hat{x}||$.

The velocity field at the interface is obtained using *point sources* (Stokeslets and Stresslets) on the interface of the drop, in conjunction with *Lorentz theorem*. Considering, on the surface of the drop, Stokeslets and Stresslets for every collocation

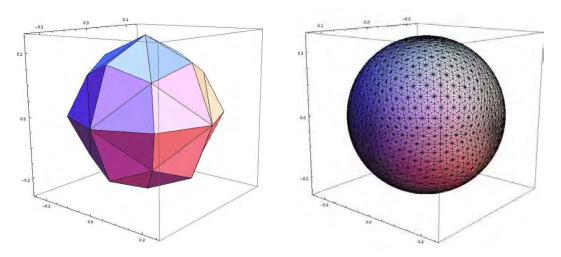
point respectively (Leal, 2007), (Prosperetti & Tryggvason, 2007), and (Pozrikidis, 1992), then, the numerical scheme is given by:

$$u^{\infty}(x) - \frac{1}{8\pi\mu_{1}} \int_{S} \Delta f(x) \cdot G(x, x_{0}) dS(x) + \frac{1 - \lambda_{\mu}}{8\pi} \int_{S} u_{0}(x) \cdot T(x, x_{0}) \cdot \hat{n}(x) dS(x) = \begin{cases} u_{1}(x) & 1.22 \ a), \\ \frac{1 + \lambda_{\mu}}{8\pi} u_{0}(x) & 1.22 \ b), \\ \lambda_{\mu}u_{2}(x) & or \ 1.22 \ c). \end{cases}$$

In this equation, there are three cases. Case (b) solves the velocity field when x is on the surface of the drop. With this information, case (a) calculates the velocity field when x is outside of the drop —exterior flow. Finally, Case (c) calculates the velocity field for x being inside the drop.

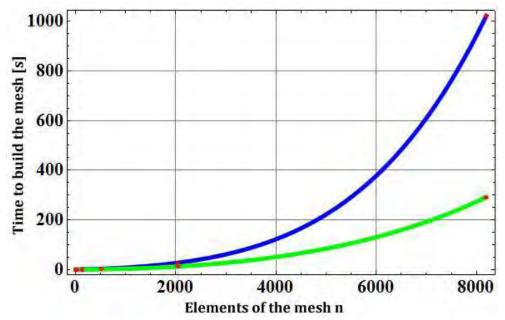
The flow imposed on the continuum phase is determine by $\boldsymbol{u}^{\infty}(\boldsymbol{x})$: the velocity field faraway. The second term on the left side of Eq. (1.22b) is known as the Single-Layer Potential and evaluates the projection of the velocity field of a distribution of point forces with the stresses across the interface. The third term of Eq. (1.22b) is known as the Double-Layer Potential and is used to evaluate the velocity field at the interface. The *boundary element method* has the advantage of reducing a 3D computation problem into a *2D-evaluation; i.e.,* the method requires to solve the velocity field on the surface of the drop, using Eq. (1.22b) and with this information is possible to know the velocity field inside and outside of the drop.

1.2.1 Numerical implementation of the computation of drop deformation in strong flows


The numerical scheme solves the Stokes flow equation for an instant of time, Eq. (1.22b). The evolution of the drop shape is carried out using the velocities obtained at the collocation points on the interface to advance each point for a smalltime interval. By means of an interpolation subroutine the velocity at all the nodes is calculated and then the new position of the drop (at $x_0(t + \Delta t) \in S$) is evaluated. For the evaluation of the Single Layer Potential, an approximation of the local curvature of the drop is used on curved triangles using Eq. (1.4). A quadratic interpolation throughout these triangles is carried out to obtain the mean curvature of the elements of the drop. In this manner, the mesh of the interface and the algebraic system of equations of the boundary elements is smaller than those of other more conventional numerical schemes, such as *e.g.*, finite differences. The next Subsections explain, in a detailed form, every component of the numerical algorithms written for this numerical study. The accompanying CD-ROM contains copies of the Fortran 2010 codes written for these simulations.

1.2.2 Performance of the mesh used in the method in the time

Boundary element method in 3D is a powerful algorithm to calculate the evolution of a drop immersed in another fluid when a *2D-flow* is applied by the continuum phase. The advantage with respect to other numerical method is the simplification of the *3D-problem* to a surface problem. However, the real cost is due to numerical computations not being that easy to carry out. First, the numerical method needs to evaluate all of the geometry parameters of the drop, such as position, curvature, (this will be explained in the next Subsection), among others, because information about each element is required to solve the singular integrations on the mesh. In Eq. (1.22), the Stresslet Eq. (1.19) and the Stokeslet, Eq. (1.21) are present. When the algebraic system is evaluated, the velocity field on the surface is known for an instant of time. Thus, the process is repeated in time to have the dynamic evolution of the drop deformation. In general, those steps are simple. However, every step needs an efficient algorithm to calculate in a fast manner, all parameters of each element; *i.e.*, to have information of all elements conforming the surface of the drop.


A useful numerical scheme must be efficient in the execution of the algorithms — in this case of the geometry, and the behavior of the deformed drop— given the necessity to provide an accurate benchmark of the drop model versus the experiments. Numerical methods use large arrays, which implies a considerable time to carry out the numerical computation. The time used mainly depends of the number of elements of the drop, (Grinfeld, 2010). The mesh used in this numerical method is based on the partition of an elementary octahedron. The minimal number of elements n of the mesh is 8, then 32, then 128, etc., Eq. (1.23).

$n = 8 * 4^k$.

Figure 1.3 Drop of 0.25 mm of radius. In the left part, the mesh has no subdivision, 8 elements (curved triangles). In the right, the same drop with a mesh of 2048 elements, subdivision equal k = 4.

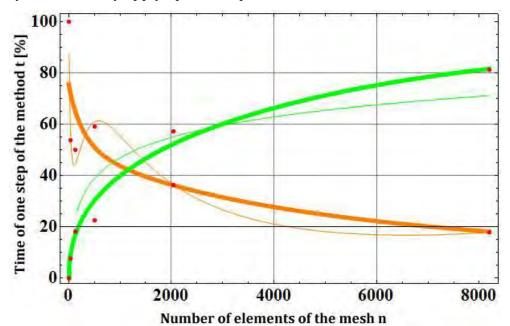

The *k* is the number of partition that is applied on the initial octahedron. When the partition k = 4, the number of elements is 2048. In Figure 1.3, a simple mesh with 8 elements (left) is shown, and a final mesh after the partitioning process (right) with 2048 elements.

Figure 1.4 Time to calculate the algebraic system vs. number of element of the mesh. Blue line indicates the time using a one tread algorithm. Green line is the time using 4 computational threads.

Figure 1.4 shows the time required to calculate the complete mesh with different number of elements using a computer with a two-cores, dual processor HP w4300. Figure 1.4 shows the growth of the computation time as the number of elements increases. The blue line plot is a nonlinear function. However, the blue model in Fig. 1.4 is based on sequential programming. The green plot is the execution time for the same algorithm but using a parallelized scheme. The difference is that one tread is used for this algorithm (blue line), on the other hand, 4 computational threads (green line) are used to generate the same mesh. For a mesh of 8,192 elements, as shown in Fig. 1.4, the multithreading model is eight times faster than the sequential algorithm.

Parallel programming techniques reduces —in linear form— the required time for the generation of the mesh. However, this example proves unambiguously the necessity to extensively apply optimized parallel codes for these studies.

Figure 1.5 Time to build one step of the dynamic of drop deformation vs. number of elements of the mesh, green. Time to calculate the solution of the algebraic system vs. number of elements, orange. Time is in percentage of CPU Time.

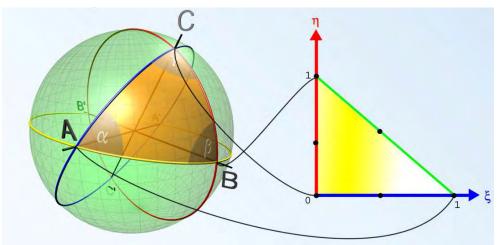
Figure 1.5 shows how the numerical method employs the total time, in the same machine: (1) to generate the geometry mesh, to estimate the curvature and characteristics of the mesh and (2) to build the algebraic system to solve the problem

of BEM-3D (orange plot); the green lines correspond to the time used to solved the algebraic system.

These results were obtained only for one step of time evolution of the drop deformation. The total time for a numerical experiment corresponds to the times for one step multiplied by the total number of steps, divided by the number of treads used in the algorithm. Most of the results presented here were carried out with 8 treads using HP Z800, Z440 and Z640 workstations. So, the time lapse shown in Fig 1.5 is at least twice faster nowadays.

The latest numerical experiments do not report the time required for every step, because that information implies dedicating machine-time to calculate this datum of little use. In terms of efficiency of the code I preferred to disregard the one step time information, and focus in the total simulation time. In general, most numerical runs take approximately 3 days using the fastest workstation.

1.2.3 Oriented parallel programing in the numerical scheme


Another important objective of my numerical program of BEM-3D was to build a practical code which allows expeditious modifications or changes or some characteristics of the numerical scheme without changing major portions of the code. The numerical codes were optimized up to 80%, *i.e.*, the parallelization techniques are applied to most algorithms, except those needed to calculate the curvature of each element because these are not readily parallelizable algorithms.

The parallel methods applied use the newest procedures of Fortran 2010 together with the OMP-Libraries of Intel. The final code can simulate different kinds of flows, covering the possibility to study all *2D-flows* from shear to *extensional flow* (strong flows), as well as elongational flows without vorticity. The code can be used to study other *3D-flows* such as ABC flow, extensional *3D-flows* or the Poiseuille flow.

The numerical model of a drop designed for this work can produce information about cross-sections of the drop as no other model published earlier shows. As well, the method employs the newest algorithm for evaluation of the curvature of each element of the interface, which may probe indispensable for studying highly deformed drops. To test the validity of the new algorithms, every subroutine or algorithm can be replaced, in the fast manner, by an older, validated one, or a new procedure. This feature of the model's code was used extensively —in particular, are essential in the calibration of the method— to determine the best choices and the optimum space of parameters, to evaluate predictive differences between diverse algorithms, and to choose the best option for performing the numerical simulations.

1.2.4 Curvature in BEM 3D

For BEM-3D calculations, the correct determination of the local curvature values is most relevant, because at least two curvature measures are required to correctly describe a *3D-surface*. As well, these values of curvature directly affect the stability of the numerical equations used to calculate the velocity and stress fields. It is due to the jump of stresses present across the drop boundary —evaluated with Eq. (1.4)—, which is strongly dependent on local values of curvature. For this reason, in the development of numerical scheme the curvature needs to be well defined. The simplest scheme most frequently used corresponds to a mapping of curved triangles in the $\xi\eta$ -plane (Cools & Rabinowitz, 1993), (Pozrikidis, 1998).

Every element used in this numerical method is built with 6 nodes to represent a curved triangle Fig. 1.3 and Fig. 1.6. Many numerical methods used plane triangles (Kennedy, Pozrikidis, & Skalak, 1994), (Zinchenko, 1997), (Khayat, 2000), (Bazhlekov, 2004), (Prosperetti & Tryggvason, 2007), (Spann, Zhao, & Shaqfeh, 2014), etc. In general, the plane triangle is made by 3 nodes. In Chapter 2, the numerical method was calibrated using the same parameters of the predecessor methods to compare the previous results with the new method.

Then, using the appropriate Gaussian weights, the pointwise curvature is calculated, by evaluating a contour integral over the element (Pozrikidis, 1997). However, Bazhlekov showed (Bazhlekov, 2004) that the calculated curvature has an error of 14% regardless of the number of the nodes defining the element. Many numerical BEM methods (Kennedy, Pozrikidis, & Skalak, 1994), (Zinchenko, 1997), (Khayat, 2000), (Bazhlekov, 2004), (Prosperetti & Tryggvason, 2007), (Spann, Zhao, & Shaqfeh, 2014), etc., use plane triangles —made with 3 nodes only— to describe the surface. Thus, this type of computation predicts only the correct behavior for slightly deformed drops.

More elongated drops demand improving the calculation of its local curvatures. The first step was to employ *curved triangles* because the drop's curvature is better represented in this manner. For curved triangles, every element of the interface is built with 6 nodes; Figs. 1.3 and 1.6. In Chapter 2, the numerical method was calibrated using the same parameters of those earlier methods to compare previous prediction against the new method.

For highly elongated drops, curvature properties have important and different behaviors: (a) near the tips, both radii have approximately same values and signs; for (b) the central region of the drop, curvature signs are the same, but one of the radius in quite large relatively to the smallest radius; and (c) for drops with the classical dumbbell shape, in the waist region, one of the curvatures has a negative sign —it is here only—, and under this conditions, that the mechanism of drop break-up takes place. Therefore, a consistent and accurate analysis of the curvature needs to be able to predict smooth changes-of-sign behavior for the lengthwise radius, a condition of concavity that is always present when the drop is strongly deformed. It is only then that the transition to break up of the drop will be reproduced in the numerical simulations.

However, the *boundary element method* in 3D cannot represent the *final stages of the break-up* of the drop. But the correct evaluation of the curvatures make

possible studying the behavior of a drop closest to the break-up phase. With this motivation, a review of the differential geometry was made.

To develop a new method for acquiring the median curvature of each element, it was necessary to review the First and the Second Fundamental Forms of a surface (Levi, 1980), (Stoker, 1989). Then a new curvature was obtained using the initially proposed weights. A comparison was made between a spherical surface and the geometry mesh employed. The calculated values were better than using the method of contour integral on the element, (Pozrikidis, 1997). However, the error was around 0.5% of the spherical value.

In order to have an accurate estimation of the curvature, classical methods increase the number of elements of the interface as the deformation of the drop becomes more elongated. As a consequence, classical BEM methods usually employ techniques that subdivide most elements of the mesh, increasing the local precision with smaller elements. However, the simulation time grows as a linear function of the number of elements, in the best of cases. On the other hand, the numerical method used in this work does not need to refine the mesh to have an accurate approximation of the curvature, while using the computation time to evaluate the time evolution rather than for mesh refinement. In other words, the method is sufficiently accurate to estimate the curvature, in a stable manner, as well as faster.

For drop deformations less than $D_T < 0.5$, approximation of the local curvature with the median curvature value is enough. However, when the deformation increases, there is a significant reduction of the curvature radius transversal to the flow. Hence, if the median curvature is used to represent the local curvature, the effects of this transversal curvature is inhibited by the much larger radius of the plane tangential to the flow due to the elongated elements in the cross section. So, for elongated drops, all curvatures of cross sections of the drop will be significantly larger than its tangential curvatures. But, elements will not preserve this information: locally, the curvature in the element becomes asymptotically small along the normal direction to the cross section; *i.e.*, the curvature parallel to the flow in the element will dominate the median curvature values, regardless of degree of elongation. The consequence of this underestimation of the local curvature implies that simulations reach a maximum drop elongation, regardless of the strength of the flow. Evaluation of the correct elongation requires a larger *—positive—* value in the transversal curvature —than the value of tangential curvature, *positive or negative*, to the flow. Only then highly deformed drops are possible to model, and to reach *a negative median curvature*, *i.e.*, and in this way to have a more elongated state of deformation. However, highly deformed drops are no longer stationary because a transient behavior towards rupture becomes dominant. Being aware of these limitations, all my numerical experiments were performed to have a maximum stationary deformation $D_T < 0.5$.

Except for the numerical simulation of Spann, *et al.*, (Spann, Zhao, & Shaqfeh, 2014), most previous numerical methods have drops surfaces with less than 1000 elements. So, in my numerical method I have employed 256 elements for the same circumstances (numerical experiments) of other published works, in order to be consistent with the evaluation and calibration of this method. Spann's simulations used two sizes of meshes; the first mesh has about 2880 faces, the second 5120 faces. Our method uses 2048 curved-triangle elements, meaning that each curved triangle is equivalent to 4 plane triangles. In fact, 2048 curved element in my code have a similar precision than a mesh of plane triangles of 8196 elements. At the end, the new numerical method of BEM-3D is optimal for precision, efficiency in time and structure of the mesh.

1.2.5 Numerical Accuracy

In Chapter 2, I present the necessary simulations required for the proper calibration of the method versus previous numerical methods results. For this reason, a similar number of elements (512) is used. The numerical simulation results presented in this work use a surface of 2048 curved elements. To obtain the dynamics of the drop deformation, the time advance was performed using different methods. In Chapter 2, the calibration of the method, uses Euler's method to estimate the deformation of the drop in *simple shear flow* with rate of viscosity of $\lambda_{\mu} = 1$. However,

for the comparison with experimental data, the numerical mesh had 2048 elements or higher

A fourth-order Adams-Bashforth-Moulton method (Lambert, 1973) was employed in Chapter 2 to calibrate the method with the experimental data (Guido & Villone, 1997). Chapter 3 and Chapter 4 used this method too. The rest of simulation presented in this work used a third-order Runge-Kutta method.

The total time required to attain the stationary shape of the drop deformation is Time = Gt. In all numerical experiments the deformation of the drop reaches a final stationary deformation. The time employed in each numerical simulation was compared with the experimental data of Guido *et al.*, (Guido & Villone, 1997) and Rosas (Rosas, Reyes, Minzoni, & Geffroy, 2014).

CHAPTER 2.

Calibration of numerical method

Since Taylor's experimental work (Taylor, 1934), the study of drop deformation has been focused mainly under two kinds of flows: known as *simple shear flow* and *extensional 2D-flow* (in some cases named hyperbolic flow). These flows are two-dimensional flows *i.e.*; the flow field is planar.

For years, theories and analyses have assumed that the cross section of the drop is a slightly deformed *axisymmetric* ellipsoid —a prolate, with equal lengths for both short axes—, which simplifies the analysis of drop dynamics while facilitating the study of drops dimensions mainly on the plane parallel to the flow (that is, the plane of observation of the experiments); see Fig. 1.1b. In recent years, *e.g.*, Kennedy *et al.*, (Kennedy, Pozrikidis, & Skalak, 1994) showed that during stationary states, the cross section of the drop (on the plane perpendicular to that of the flow) was not nearly circular. Subsequently, Guido *et al.*, (Guido & Villone, 1997) showed experimentally the same fact. Both observations were carried out applying *shear flows* on the continuum phase. In the cases of 2D *extensional flows*, the work of Acrivos and Lo (Acrivos & Lo, 1978), Hinch and Acrivos (Hinch & Acrivos, 1979) established that a drop comes to a steady state of deformation with the cross section being also non-circular. However, there are no experiments in this kind of flows were the evolution of cross section was measured in a clear manner.

Universidad Nacional Autónoma de México

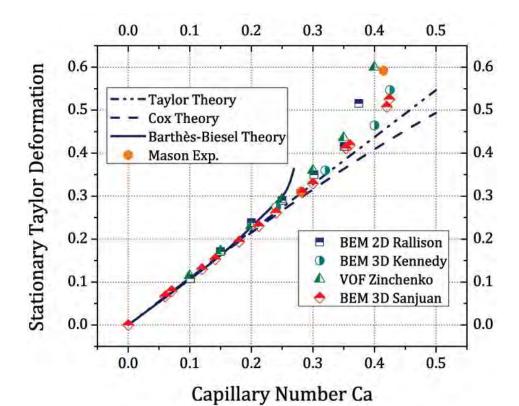
UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

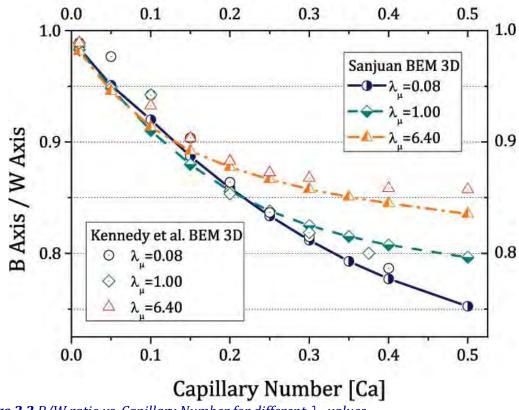
Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. Taking advantage of this archive, one way to calibrate my new numerical method was to predict the evolution of drop deformations and to compare these results with previous observation and predictions reported in the literature. This Chapter is a summary of the different calibrations methods with respect to predecessor numerical methods and experimental data.

2.1 The numerical method vs previous numerical methods


Taylor was the first person to present a theory predicting the dynamics of drop deformation in simple shear flows (Taylor, 1932). Add to this, Taylor made the first experimental device to check those predictions (Taylor, 1934). Then Mason et al, carried out the first experiments of drop deformations in simple shear flows (Rumscheid & Mason, 1961), (Torza, Cox, & Mason, 1972). About the same time, Grace made a series of experiments in the same regime but for different viscosities of the fluids (Grace, 1982). These experiments were employed to calibrate the theoretical predictions by (Rallison, 1981), (Kennedy, Pozrikidis, & Skalak, 1994), (Khayat, 2000), and (Yuriko, Renardy, & Renardy, 2000). Using theoretical models for drops, Cox (Cox, 1969), and Acrivos and Hinch (Hinch & Acrivos, 1979) suggest that all cross sections of the drop are circular for this flow. Today the study of drop deformation in simple shear flow is vast; the works of Guido et al., (Guido & Villone, 1997), showed that cross sections are rarely circular. Kennedy *et al.*, showed, using the numerical analysis, the same ellipsoidal shapes for the cross section, (Kennedy, Pozrikidis, & Skalak, 1994). Even so, since that work no other numerical analysis made detailed measurements of the drop shape in the perpendicular direction of the flow. Based in the previous work of Acrivos (Hinch & Acrivos, 1979), Hinch proved that cross section is non-circular in general. Hinch assumed the axisymmetric case because his equations become too complicated to work with them, and to extract useful results. The 3D numerical method here presented makes a number of improvement to the earlier models, hence the need to be properly calibrated against experiments and other predictions under "known conditions". My first calibration addresses the values of deformation obtained under steady flow conditions. The Calibration Section focuses on numerical data obtained by simulations by Rallison —

BEM 2D— (Rallison, 1981), Kennedy et al BEM 3D (Kennedy, Pozrikidis, & Skalak, 1994), Renardy et al VOF (Yuriko, Renardy, & Renardy, 2000). The simulations of Kennedy used a larger number of elements of the mesh —512 plane-triangles— when using a *boundary element method* technique. Renardy's model uses a *volume of fluid algorithm*. In this case, the method employed a mesh of 512 elements. Figure 2.1, shows a comparison of the drop deformation reached when a stationary state is attained, for different capillary numbers. The drop and the continuum phase have a ratio of viscosities of $\lambda_{\mu} = 1$. All numerical methods show a consistent behavior for capillary number less than Ca < 0.35. Theoretical results, on one hand, show that the theory of Taylor and Cox is also consistent with these data. On the other hand, the theory of Barthès-Biesel goes to a state of breakup before the experimental data of Mason et al. For larger capillary numbers, *i.e.*, $0.35 < Ca < Ca_{Cr}$, numerical predictions diverge from the experiments. The VOF method provides similar results to the experimental data; the reason of the small differences is because BEM methods solved the case of an unbounded drop, while VOF models take into account the presence of a wall where the *shear flow* conditions are applied. That is, VOF has information of bounded problems in drop deformation in shear rate. However, for other plane flows VOF does not have the versatility of the BEM-3D here proposed, because it is necessary to model the boundaries that generate the *2D-flow*, as Reyes mentioned, (Reyes, 2005).


A second calibration of my numerical method was carried out addressing the non-symmetric nature of the dimensions of the cross-section of drops data of Kennedy *et al.* (Kennedy, Pozrikidis, & Skalak, 1994). The length of the principal axis of deformation is L, while the shorter axes are now B —normal to L and the flow direction— and *W perpendicular* to the flow plane.

The shape asymmetry observed with both methods occurs readily for low values of the Capillary number and the coincidence is best for lower values of the viscosity ratio. Both meshes used are similar and the results are shown in Fig. 2.2.¹.

¹ The numerical simulation of our BEM3D implementation takes approximately 24 hrs. to do all cases shown in Fig. 2.2. Kennedy, *et al.*, simulations took weeks running on a supercomputer of those days. These improvements are the result of the use of new processors and the optimization of the code described in Chap. 1.

Figure 2.1 Stationary Taylor's Drop Deformation vs. Capillary Number. Simple shear flow, $\alpha = 0.0$ and $\lambda_{\mu} = 1.0$.

Figure 2.2 B/W ratio vs. Capillary Number for different λ_{μ} values.

2.2 Experiments in *simple shear flow* compared with experimental data

Now, my model predictions are compared to the experimental data of Guido *et al.*, (Guido, Greco, & Villone, 1999). Here I have two objectives: (1) to compare numerical vs. *experimental values* of the cross section that Guido and his group observed in *simple shear flows*; and (2) to study the proper physical assumptions of the model when ratios of viscosity are different of 1. When modeling viscosity ratios different than 1, the contribution of the Double Layer Potential —second integral of Eq. (1.22)— is non-zero. When $\lambda_{\mu} = 1$, it is a common practice that *boundary element methods* employ only the Single Layer Potential, and the numerical methods are faster. When $\lambda_{\mu} \neq 1$, to estimate the stresslets contribution on the surface of the drop, hence to calculate the stress and interfacial tension appropriately requires the second integral. This integral depends on the viscosity ratio λ_{μ}^{2} ;

Figure 2.3 shows the values of the numerical simulation for a drop —of radius 25 μ m and $\lambda_{\mu} = 1.4$ — versus the experimental data of Guido; for values of $\lambda_{\mu} = 1.3$ and $\lambda_{\mu} = 1.4$. These *normalized values* of the 3 principal axes were obtained for steady states of deformation. Lines in Fig. 2.3 are Taylor's model predicted values of the semi-axes of a drop when it is modeled as a perfect ellipsoid (Taylor, 1932). These results indicate that it is a very good estimation of the drop deformation for regimes of small capillary numbers: *Ca* < 0.15. However, as the capillary number increases beyond *Ca* \approx 0.25, Taylor's model clearly underestimates the growth of the *L-axis*, with associated larger values for the length of the *B-axis*; that is, Taylor's theory predicts a weaker deformation of the drop. Add to this, the model predicts axis-symmetry in the *W*- and *B-axis*, when the experiments made by Guido and the numerical simulations show a clear departure from the axis-symmetric form. In Fig. 2-3, the comparison is limited to *Ca* \leq 0.5 mainly because evaluation of the axes lengths in the work of Guido (Guido & Villone, 1997), presents larger errors due to

² Computation of this Double Layer Potential for $\lambda_{\mu} \ll 1$ turns out to be quite difficult. For this reason, there are not that many simulations with small values of λ_{μ} .

higher order on the shape form observed in the images. So, the information used to calibrate the code could not be the best option.

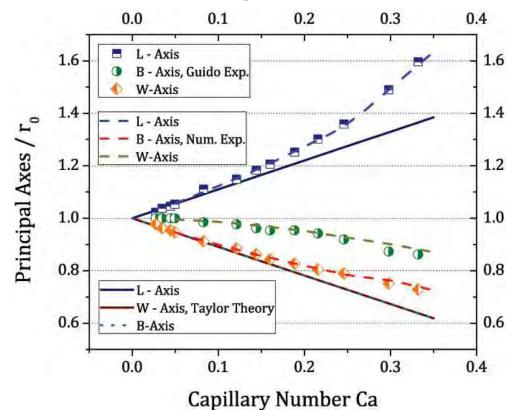
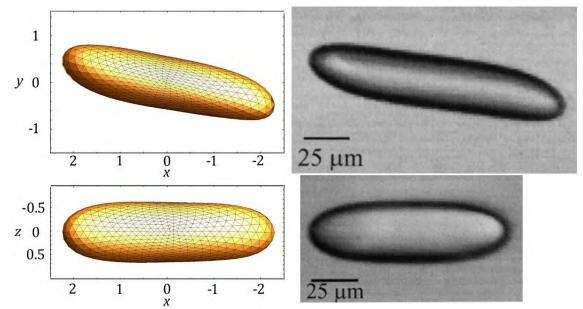



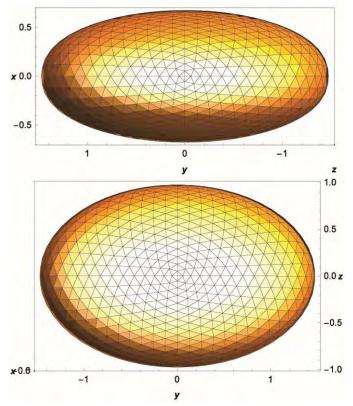
Figure 2.4 shows the comparisons of the "shapes" of a drop from two complementary visualization planes reported by Guido (right) and subjected to *simple shear flow* with Ca = 0.46, and radius of 25 μ m. The top shapes correspond to the typical *xy-plane* projection in experimentation, Fig. 1.1b): the observed inclination corresponds to the orientation angle of the drop in the flow. The bottom shapes correspond to the *xz-plane* projection.

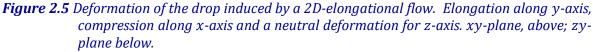
For the *xz-plane* projection, the drop is tilted with an angle of orientation (as shown in the *xy-plane*) and its photo (with optical axis along *y-axis*) models poorly the real deformation (magnification of the lens is a complex function of the master transfer function and coordinates x, y, z), for this reason, the numerical and experimental images may have different shapes near the ends of the drop —the left part appears to be larger than the right because the left part is above the focal plane.

Figure 2.4 Comparison between Numerical Simulation of BEM3D and Guido's Experimental Data for a drop deformation. Simple shear flow, $\alpha = 0.0$, $\lambda_{\mu} = 1.4$, Ca = 0.46. The experimental data were D = 0.70, and $\theta = 32.05^{\circ}$. The numerical values were D = 0.67, and $\theta = 34.8^{\circ}$.

For the shapes on the left, these are the numerical result for a drop at Ca = 0.46. The radius of the drop is 25μ m. However, this image is modeled with all lengths of the drop as a ratio *wrt*. the initial radius. Thus, the simulated shapes have different length scales. Besides, observing the image of the experimental drop, the main length scale is approximately 4 times the initial radius. Unfortunately, the experimental projection of the drop does not correspond to the same drop as the *xy-plane* projection. Comparing the scale of 25μ m, the *xz-plane* projection is shorter than the *xy-plane* projection implying a strong discrepancy about the correctness of the deformation. For the experimental conditions of Fig. 2.4, the drop attain a critical deformation. This situation implies that there is not a stationary shape, so if the photographs were not taken at the same time, the dimension would not have been the same. These circumstances could have happened in the experimental images. However, the numerical simulation predicts the shapes.

2.3 Comparisons of numerical vs. experimental data for *extensional flow*


For any 2D-flow, it is hard to expect that the cross-section behavior would not be *asymmetric* —especially for large Capillary numbers— in contrast with earlier predicted theoretical or experimental results. Whenever a third axis does not contribute to the deformation of the flow, that is, is essentially passive, it should be expected to contribute to the shape of the drop in a different manner than the principal axes on the plane of the flow. Likewise, this condition ought to be observed (*i.e.*, $L \neq B \neq W$) whenever the rate of deformation of the three axes are different, even when the flow is 3D. Hence, only with pure elongational flow we may expect that the deformation on two perpendicular directions might have the same values, with the third axis being the principal deformation scale.

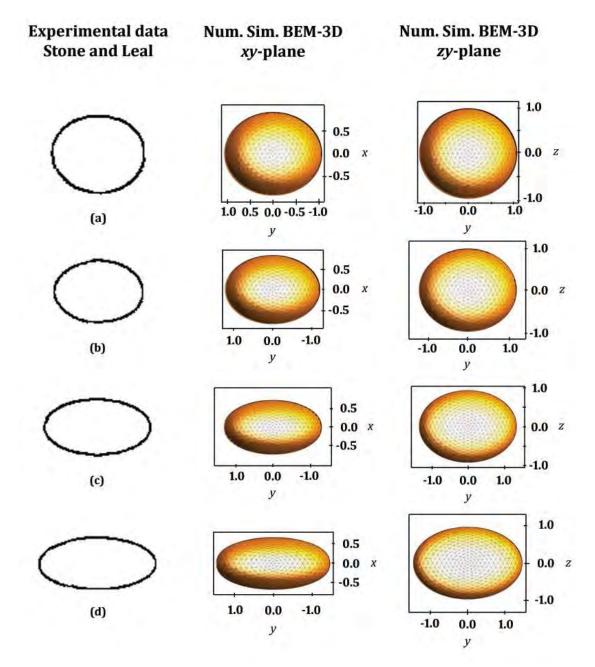

The deformation of drops immersed in strong flows has not being studied intensively. Most of the earlier works are those of Taylor and of Leal and collaborators (Bentley & Leal, 1986a) Stone, Milliken, etc., only the work of Rosas et al., addressed these flows more recently. The assumption of $L \neq B, B = W$ dominated in previous studies, (Rallison, 1980). Now, this assumption is now known to be of too limited validity and, for this reason, it becomes desirable to calibrate my numerical method with experimental data about cross-sectional dimensions, (Guido & Villone, 1997). If a drop in *simple shear flows* shows non-circular cross sections, *in 2D* strong flows the cross section will most probably not, as will be show. Figure 2.5 present the shapes of the drop (perpendicular) projections on two planes: xy- and zyplane, *i.e.*, elongation along *y*-axis, compression along *x*-axis and neutral *wrt*. the *z*-axis. It is worth remarking that the drop becomes clearly a rather flat ellipsoid, resembling a typical Mexican *guarache*³. *Guarache* in this study is refer to a drop deformed with the cross section flattened, the principal axes *W*-axis is bigger than *B*-axis, and the size

³ *Guarache* (wa'ratʃe) is a Mexican food consisting of an oblong, fried masa base; the name *guarache* is derived from the shape of the masa, similar to the popular sandals of the same name.

of *W*-axis is equal or major than the initial radius of the drop. Figure 2.5 (d) indicates the profile of a drop with Ca = 0.15 and $D_T = 0.37$.

The advantages of my *3D-boundary element method*, described here, for studying *asymmetric forms of drops* are: (1) the code was optimized to improve the description of the drop surface with more elements (2048) —results show a different behavior in the dynamic of drop deformation analyzed in the next Chapter—; (b) The code is capable of simulating different kinds of flows, from *shear flow* to *extensional flow*, and hence studying the effects of deformation along the third neutral axis; and finally, (3) conservation of volume of fluid can be carefully monitored to achieve good prediction on the relative deformation along all axes. However, with this code is not possible to study the complex geometry of some experimental devices such as Four-Roll-Mills or Two-Roll-Mills, mainly because a detailed mesh of the description of the rollers surfaces is required, and such efforts will be addressed in the future.

The experimental studies of the length scales of drop deformations, induced by *extensional flows*, is scarcer compared with the data on deformations in *simple shear*


flows. A comparative analysis like that possible for *simple shear flows* (see previous Chapter) also presents other difficulties —*i.e.*, data of stationary states of deformations are more difficult to measure because critical capillary number are smaller, with most experiment inducing the rupture of the drops. Add to this, that there is not an analysis of cross-sections of drops on any kind of fluid in *extensional flows*.

Taylor, Acrivos and Hinch elucidate theoretically the deformation dynamics of drops in *2D-elongational flow* using an asymptotic approximation to describe the form of the drop (Acrivos & Lo, 1978), (Hinch & Acrivos, 1979) and (Hinch & Acrivos, 1980). Furthermore, it is possible to compare as well my method versus the experimental data of (Stone, Bentley, & Leal, 1986), (Stone & Leal, 1989a) and (Stone & Leal, 1989b) albeit only for the *L* and *B* dimensions.

Capillary Number	D _T obtained by Stone and Leal	DT obtained by BEM-3D	<i>B-axis/</i> r0, BEM-3D	<i>W-axis/</i> r0, BEM-3D
0.05	0.08	0.08	0.93	1.00
0.10	0.18	0.16	0.85	0.98
0.13	0.32	0.33	0.78	0.98
0.15	0.37	0.38	0.72	0.95
0.175	0.47	0.45	0.65	0.87

Table 2.1 Comparison of deformation of drops deformed in extensional 2D-flow. Experimental data of Stone and Leal, and the numerical experiment using BEM-3D. The last two columns remark the difference between the B and W-axis.

Figure 2.6 shows the steady state deformation for different capillary numbers and with a viscosity ratio of 1. The right most figures are sketches of the drop forms reported by Stone and Leal, (Stone & Leal, 1989a) for the flow plane of a 2D purely elongational flow; for these experiments, no data exists about the *xz-plane* shapes. The second and third column show drop forms for the *xy-plane* and *xz-plane* as predicted by this code simulations. The comparison is for the same capillary number and viscosity ratio. Figures indicate planes of observation similar to those shown in Figure 2.5: the *xy-plane* is the plane of the flow and the *xz-plane* depicts the crosssection of the drop. Figure 2.6(a) corresponds to a drop deformed with *Ca* = 0.05 and a stationary deformation of $D_T = 0.08$; the value of *W*- and *B-axis* are presented in Table 2.1; (b) shows a drop with *Ca* = 0.1 and $D_T = 0.18$; (c) shows a drop with *Ca* = 0.13, $D_T = 0.32$. The numerical comparison is in the left part of Figure 2.6. In this part of the image is evident the change of the profile of the drop when the observation is like experimental devices, (left up). However, in the other direction, (left down), the drop has different dimensions in *extensional 2D-flow*.

Figure 2.6 Comparison of steady shape of deformation between experimental data vs numerical simulation of a drop in extensional 2D-flow with $\lambda_{\mu} = 1.0$. a) Ca = 0.05 and $D_T = 0.08$; b) Ca = 0.10 and $D_T = 0.18$; and c) Ca = 0.13, and $D_T = 0.31$.

I address a discussion of drop deformations induced by pure *extensional flows* in Chapter 7. Given that the nature of this phenomenon is quite complex, it is necessary to have a detailed explanation of the observed phenomena in this regime. Chapter 7 begins with an analysis based in a theory developed in the 70's, which predicts the stationary state of deformation considering the axis-symmetric behavior in the cross section. The comparison will be made of the *extensional flow* in 3D, as Acrivos and Hinch made, (Acrivos & Lo, 1978) and (Hinch & Acrivos, 1979). Finally, the comparison with the *extensional flow* in 2D will be made.

CHAPTER 3.

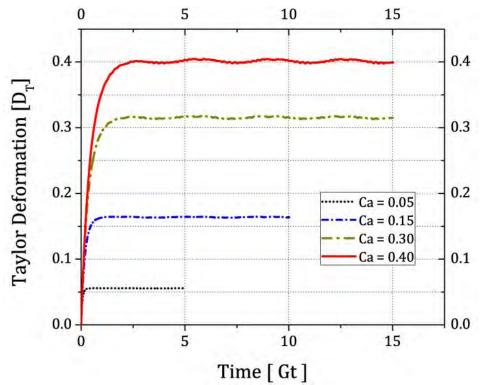
Shape of a drop immersed in a fluid under an elongational flow with vorticity; small ratios of viscosity

In Chapter 1 the viscosity ratio, λ_{μ} , was introduced. Here, the following results correspond to a drop immersed in another much viscous fluid $\lambda_{\mu} \ll 1$. For these cases, a large deformation of the drop is possible, but the orientation of the drop does not coincide neither with the direction of the flow nor the orientation of the principal axes. For these cases, the time evolution of the deformation of the drop provides information about the maximum possible deformations but no less relevant are steady state orientations of the drop in the flow. Thus, given that the shape of the drop is best described by three length scales, here I present the time-evolution of all axes of the drop, as well as particular features shown during the process before reaching the stationary state⁴. Plots of the evolution of deformations for multiple capillary numbers are plotted in each Graph; all traces correspond to the application of *a steady elongational flow* —with $\alpha = 0.13$. The data for other types of flows — $\alpha = 0.03$ and $\alpha = 0.05$ — present a similar behavior. The values of stationary shape, deformation and orientation were used in figures to shows the comparison with the flow $\alpha = 0.13$.

⁴ This chapter was submitted in June of 2016 to Journal of Physics; it is currently published. The final version of this work is on the Appendix A.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso


DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

3.1 Time evolution of drop deformation

For a drop immersed in a steady flow, and when the viscosity ratio is small, if the capillary number is less than the critical capillary number, it deforms until it reaches a stationary shape (Taylor, 1934), (Bentley & Leal, 1986a), (Rosas, Reyes, Minzoni, & Geffroy, 2014). Figure 3.1 shows the time-evolution of the shape of the drop from a spherical (initial) to the final elongated, stationary shape. For these traces, the various capillary numbers were obtained by increasing the value of *G*, Eq. (1.6). One can observe that the stationary state is reached for different times and those values vary as the capillary number changes. The analysis of drop deformation presented in this Chapter focuses on the stationary shape detected in the numerical simulations.

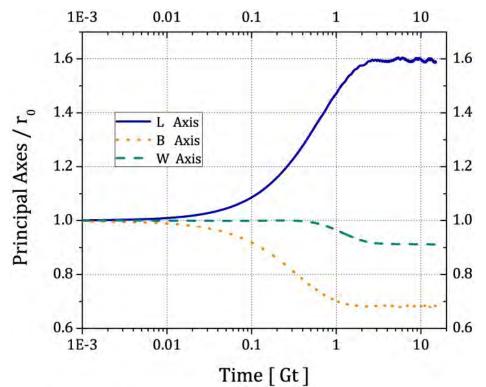


Figure 3.1 Taylor's Deformation of the drop vs. Time. $\lambda_{\mu} = 0.012$, $\alpha = 0.13$.

3.2 Attained stationary states

The numerical experiments explore effects of the applied flow on the drop shape. Figure 3.2 shows the time evolution of the 3 principal axes of the drop shape under the application of steady flow condition. The simulation is stopped when the drop deformation no longer changes; see Figs. 3.1 and 3.2. The deformation values numerically attained match those obtained experimentally by Rosas (Rosas, Reyes, Minzoni, & Geffroy, 2014) within $\pm 5\%$ for $0.05 \le Ca \le 0.25$ and $\pm 1\%$ for $0.3 \le Ca \le 0.4$.

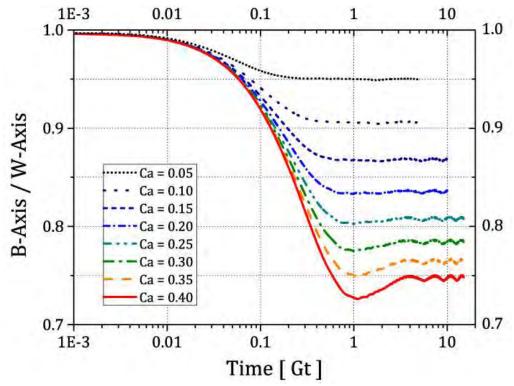

Figure 3.2 shows that the stationary state is reached as early as 10% of the total simulation time; corresponding to approximately 1 unit of dimensionless time; the drop remains in the stationary shape for the rest of the simulation. Although small oscillations in the stationary values persist, the amplitude of these oscillations is less than $\pm 1.5\%$ of the average long-time value. The same behavior was observed for different capillary values. Chapter 6 presents an analysis of these oscillations in the stationary shape of the drop, with possible phenomena explaining these scenarios.

Figure 3.2 Evolution of the three principal axes of the drop in a flow with $\alpha = 0.13$, Ca = 0.4 and total time Gt = 15.

As well, evolution of lengths for the *B- and W-axes* indicates that the cross section of the drop is not circular, for *B* values are significantly smaller. To observe the non-symmetric form of the drop, the ratio of *B-* vs. *W-axes* is presented in Fig. 3.3. On one hand, it can be observed that in the initial 10% of the evolution and with Ca = 0.4,

B/W decreases and undershoots its stationary value. On the other hand, the rates of change for *B* and *L* are very similar, and are mainly determined by the magnitude of the vorticity. However, the changes of length of *W* wrt *B* clearly occurs at a faster pace; actually, based upon Fig. 3.2, the rate appears to be about four times faster for Ca = 0.4. The *B*-axis length changes at a rate similar to the *L*-axis, while the elongation of the *W*-axis lags in time. Up to time Gt = 1, the *W*-axis does not change significantly; it changes about the time when the other two axes have reached their stationary values.

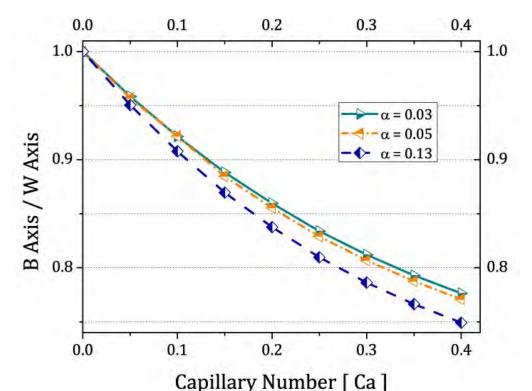
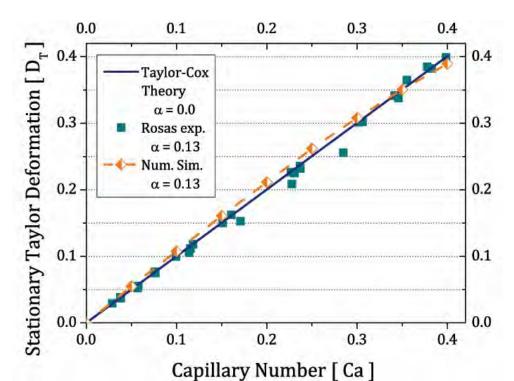


Figure 3.3 Ratio of the B wrt. W axes in numerical simulations for a flow with $\alpha = 0.13$ and total time Gt =15 for different values of Ca.

For *simple shear flows*, my simulations produce values for the ratios of the cross section that are similar to the numerical results previously reported (Guido & Villone, 1997) and (Kennedy, Pozrikidis, & Skalak, 1994), having as well the same general behavior, even though the viscosity ratio reported is larger.

Figure 3.4 presents the effects of the type of flow on the ratio of length for *B* and *W*. Even though higher values of α imply less vorticity, the *2D*-character of these *elongational flows* is still present. The drops retain a more *guarache* shape than for flows with more vorticity. It will seem to imply that the neutral deformation axis is a


dominant effect that may persist even for pure *2D*-elongational flow. That is, when Ca = 0.4, and for flows with $\alpha = 0.03$, the deformation achieved is less than 85% of the values reached for flows of $\alpha = 0.13$.

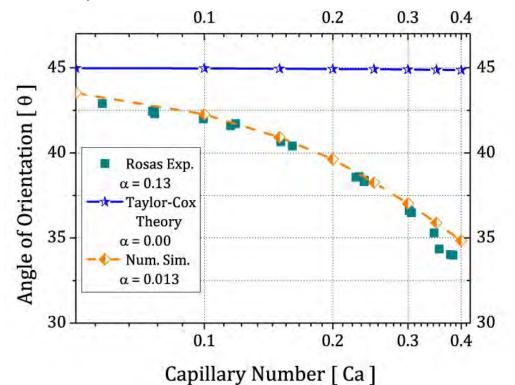

Figure 3.4 Ratio of the B- wrt. the W-axes under stationary state conditions. Simulations traces correspond to different elongational flows with $\alpha = 0.03$, $\alpha = 0.05$ and $\alpha = 0.13$ and for different values of Ca

Figure 3.5 presents a comparison of (a) experimental results (Rosas, Reyes, Minzoni, & Geffroy, 2014), (b) the simulated values for $\alpha = 0.13$, and (c) the analytical results of Taylor-Cox (Taylor, 1932) (Taylor, 1934) and (Cox, 1969) for $\alpha = 0.0$. The compared property is the stationary Taylor deformation values on the *xy*-plane.

Cox (Cox, 1969) and Taylor (Taylor, 1934) theories for *simple shear flows* establish a linear relationship between deformation *vs.* the capillary number. However, it is clear that the dependence observed in simulations of stronger flows is slightly non-linear; albeit theory, simulations and experiments agreeing fairly well. Chapter 7 presents a more detailed comparison between numerical simulations and the experimental data of Rosas (Rosas, Reyes, Minzoni, & Geffroy, 2014).

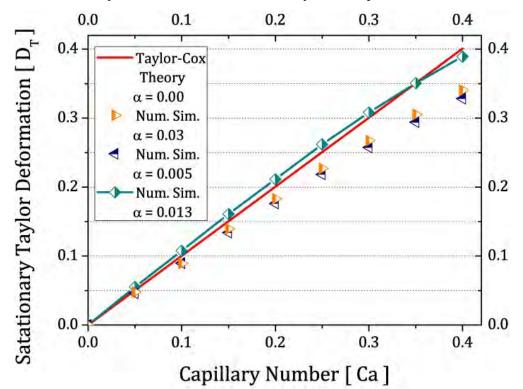
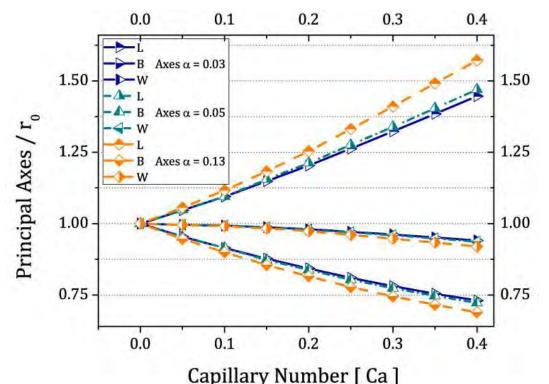


Figure 3.5 Deformation of the drop for numerical simulations and experimental data for α = 0.13 and analytical prediction of Taylor Cox in simple shear flow α = 0.0 for different values of Ca

Figure 3.6 Orientation of the drop for numerical simulations and experimental data for $\alpha = 0.13$ and analytical prediction of Taylor Cox in simple shear flow $\alpha = 0.0$ for different values of Ca

The second parameter that characterizes the shape of the deformed drop in the flow is the orientation angle; see Fig. 1.1(b). Figure 3.6 shows the orientation of the principal axes of the drop as it elongates. This parameter does play an important role because the principal axis of deformation -L-axis— is located at 45° degrees with respect to flow direction, and the drop tends to align itself closer to the flow direction for higher *Ca* number flows; that is, the drops elongate and rotate away from the 45° orientation. Figure 3.6, shows that the orientation angle values for drops predicted by Taylor and Cox theory remain fixed at 45°, contrary to all experimental evidence.


Figure 3.7 Deformation of the drop for numerical simulations for flow with = 0.03, $\alpha = 0.05$ and $\alpha = 0.13$ 13 and analytical prediction of Taylor Cox in simple shear flow $\alpha = 0.0$ for different values of Ca.

In Figure 3.7, the stationary principal deformations vs. the *Ca* number were plotted for the different types of flows. As in Fig. 3.4, the behavior of the relationship between Taylor deformation and capillary number appears to be non-linear, however under predicting the deformation with respect to the theoretical predictions of Cox and Taylor. That is, Taylor-Cox theory does not rotate the drop, hence tends to cause a larger deformation. The experiments and these simulations do rotate the drop towards the flow direction, away from the principal axis of deformation *—L-axis—*, causing a

smaller deformation. Thus, the equivalence in deformation of theory, $\alpha = 0.0$, and a flow with $\alpha = 0.13$ may be understood in this manner.

Finally, the measurements of the principal axes of the drop are shown in Fig 3.8. These values were obtained in the stationary shape of the drop. This figure is similar as the Fig. 2.3 from Chapter 2. The analysis of the *L*, *B* and *W*-axis of the ellipsoidal drop, in steady state, clearly show deviations from the axisymmetric shape as the flow type parameter α increases. The behavior of the *W*-axis is similar —remains unchanged for the values $\alpha = 0.03$, 0.05 and 0.13— indicating an effect due mainly to the 2D character of the flow, and regardless of the vorticity of the applied flow.

The major changes observed occur for the *L*- and *B*-axis, with a reduction of vorticity of the flow inducing a greater elongation of the drop along the principal deformation axis -L-axis-.

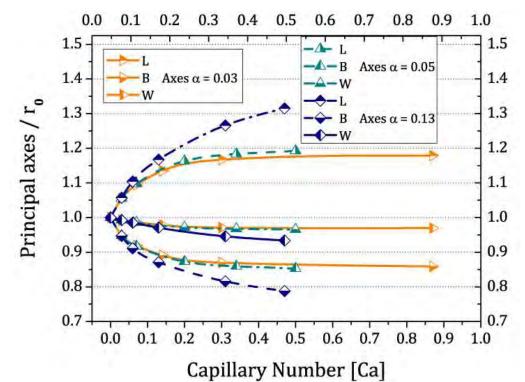

Figure 3.8 Lengths (normalized) of the principal axes of drops under stationary flow with $\alpha = 0.03$, 0.05 and 0.13, for different values of Ca.

Figure 3.8 shows that in general, stationary drop shapes do not have an axisymmetric cross section. The simulations here presented for drop forms induced in *2D-flows* do not appear to match the axisymmetric case established by G. I. Taylor and Cox, in agreement with previous results of Kennedy *et al.*, and Guido *et al.*, for the

simple shear flows. This is likely the case for Ca < 0.4, and may be correct even if the capillary number is as small as Ca = 0.05. For Ca > 0.4, the deformation in the *xy*-*plane* continues to increase, but stronger than the numerical simulation shows, Taylor-Cox model overestimate the possible deformations. On the other hand, the simulated behavior appears consistent with the experimental data of Rosas (Rosas, Reyes, Minzoni, & Geffroy, 2014).

The difference between the *simple shear flow*, $\alpha = 0$, and flows with stronger degree of elongation induced larger drop deformations while the angle of orientation —principal *L-axis*— rotates away from 45 degrees. Another important observation is the increase in the principal *L-axis* value for stationary states when the flow parameter α becomes larger than simple shear rate flow, $\alpha = 0.13$; the relationship between the axis rate of growth and the capillary values goes away from the linear behavior as Fig. 3.8. shows. In Chapter 7, the non-linear behavior is more obvious because $\alpha = 1$.

Other differences can be observed, between the shapes of projections and the ellipses. For example, the drop with $D_T = 0.2328$ and the *angle* = 1.34° does not have an ellipse for projection on the *xy-plane*. Its shape resembles a higher order deformation, more like a sigmoid, as has been reported for drops in *simple shear flow*, Fig 2.4. The next two comparisons are similar, *i.e.*; they are not perfect elliptic shapes. So, as we can see in the next chapter, a drop deformed in a strong flow does not have a circular cross-section, nor the elongated shapes are ellipses, when the ratio of viscosity is large. These figures (shown in Fig. 4.7) could give us information of the stationary states attained.

Figure 4.9 Stationary values of the principal axes of the drop for a flow with $\alpha = 0.03, 0.05$ and 0.13, for different values of Ca.

Figure 4.8 present the oscillatory behavior of the drop time evolution in a polar plot, for different capillary numbers and when the ratio of viscosity is large, $\lambda_{\mu} = 16$. The starting point is a spherical drop without orientation; once a flow is applied, the drops deforms and rotates. As the capillary number increases, its deformation grows, oscillations increase (present more cycles) and the trajectory is a full spiral which goes to a final steady state at long times. Figure 4.9 shows the principal axes of the drop in this regime of flow. The evolution of drops as *Ca* increases goes to a stationary

state of deformation. For $\alpha = 0.13$, the first idea based in Fig. 4.4 and Fig. 4.5, is that a stationary shape in this flow is not attained. However, Fig. 4.9, shows that the behavior of the drop deformation in this regime may reach a final steady shape.

The unusual behavior of the drop length scales in a flow with $\alpha = 0.13$, implies the need to analyze carefully the deformation for elongated drops in this regimen. The shapes obtained in this flow are like ones in Fig. 4.7 *i.e.*; the shapes are not ellipses. The distortion of the shape is due to the change of the instantaneous directions of the flow. That is, the principal axes of deformation *L*-axis, is near the direction of the axis of elongation. However, when the drop turns around, going beyond the outflow axes, the *L*-axis of the drop now subjected to a compressional kinematics. The images show in Fig. 4.7 indicate the distortion of the drop due to the flow around the drop. To have the best information of the sigmoid shapes it is necessary to have a code capable given us information of the flow inside and outside the drop to understand the formation of the sigmoid shapes and the transition of the regime near $\alpha = 0.13$.

CHAPTER 4.

Shape of a drop immersed in a fluid under an elongational flow with vorticity; large ratios of viscosity

If the viscosity of the drop is very high, one can expect that the deformation of an embedded drop in a flow might resemble more closely to that of a rigid particle. However, the drop still deforms, although slightly. The orientation of the drop will also differ too. Deformation of drops induced by flows where the ratio of viscosity, $\lambda_{\mu} >> 1$, thus present a different behavior compared with the cases studied in Chapter 3, and my observations are here presented.

Cox (Cox, 1969) developed a theory to predict the deformation of drops in *simple shear flows* when drops have a higher viscosity than the continuum phase. Using Taylor's theory, Cox presented an alternative (using an approximation with spherical harmonics, (Lamb, 1945)) but appropriate when the ratio of viscosity is larger than the values used by Taylor. Cox uses the inverse of capillary number and finds correlations between Taylor's deformation, the capillary number and the orientation of the drop, then, he compares his results with the experimental data of Taylor and Mason, (Taylor, 1934), (Rumscheid & Mason, 1961).

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. Years later, Leal *et al.*, produced a large collection of experimental and theoretical results on the behavior of drop deformation in strong flows (using a Four-Roll Mill) with viscosity ratios larger than 1, *e.g.*, (Bentley & Leal, 1986b). However, the observation of rotation of drops in those strong flows was not studied in detail until the work of Rosas *et al.*, (Rosas, Reyes, Minzoni, & Geffroy, 2014) and (Rosas I. Y., 2013); mainly because the induced rotation by strong flows with significant vorticity is larger —thus, easier to observe— than those observed with the Four-Roll Mill device used by Leal and coworkers. In contrast, as the Two Roll Mill device produces strong flows, the deformations obtained are bigger than those predicted for *simple shear flow* with the same capillary numbers.

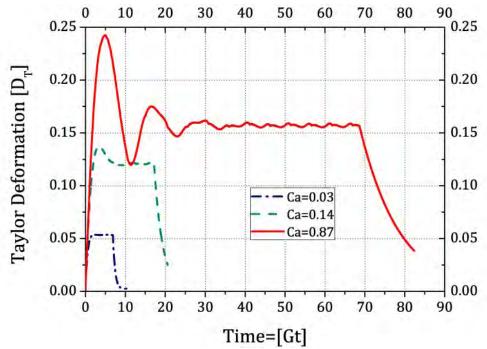
In order to understand the role played by the orientation angle and deformation on an equal footing, Cox presented polar plots of deformation D_T and orientation θ . The time-parameterized numerical trajectories $D_T vs.\theta$ of the drop here presented are similar as those predicted by Cox for *simple shear flow* —earlier experimental trajectories by Mason *et al.*, are unfortunately too noisy to be of relevance for a comparative study. Rosas presents the first detailed parameterized plots for deformation showing that Cox model is qualitatively good, although some differences persist.

In this Chapter, the numerical study focuses on phenomena observed with in viscous drops. The ratio of viscosity is an important parameter in drop deformation since Taylor's work (Taylor, 1934) thus the importance of an analysis of deformation and rotation in the regime $\lambda_{\mu} \gg 1$ is important. Here an important tool is the use of $D_T vs. \theta$ trajectories.

4.1 Time evolution of drop deformation

Numerically, the BEM-3D method calculates the Double Layer Potential in order to have the time evolution of the drop deformation, with a significant increment of the time computation. Also, as Rosas found (Rosas, Reyes, Minzoni, & Geffroy, 2014), the runtime to observe the full evolution of drop deformation is much longer, compared to the computation time for all cases presented in Chapter 3. As an

example, for a capillary number Ca = 0.30, in the case of $\lambda_{\mu} = 0.012$, the time to simulate the drop deformation to achieve the stationary states together with the retraction time towards the spherical drop is, in slowest case no more than Gt = 25. For the cases of this Chapter with the same capillary number but with a $\lambda_{\mu} = 16$, the minimum simulation time to observe the same behavior is near Gt = 60. For Ca = 0.87, to attain the steady state and to observe the retraction of the drop $Gt \approx 100$.



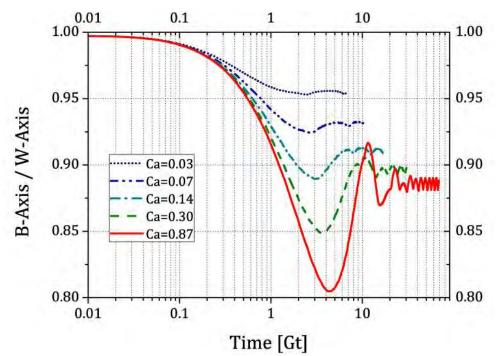


Figure 4.1 shows typical curves of deformation histories for Ca = 0.03, Ca = 0.14, and Ca = 0.87 with viscosity ratio $\lambda_{\mu} = 16$, and Gt = 83. The flow parameter values are the same as Rosas used with the Two-Roll Mill (TRM) device (Rosas, Reyes, Minzoni, & Geffroy, 2014). For drops with $\lambda_{\mu} = 16$, the dynamics of drop deformation for $\alpha = 0.03$, 0.05 and 0.13 are similar, so the Figures presented are only for the *strong flow* with a value of $\alpha = 0.03$. However, in subsequent discussions the behavior observed for all flows used will be described.

4.2 Stationary states attained

As was explained in Chapter 3, the drop deformation reaches a stationary deformation for flows with a capillary number less than the critical value $Ca < Ca_{cr}$.

In other words, initial drop shapes correspond to a no-flow state (spherical shape); then, as the flow is applied on the continuum phase, the drop begins to deform. The high viscosity of the drop causes a weaker deformation of the drop than those cases observed in Chapter 3. The stresses on the drop, as a function of its viscosity must be balanced instantly with the stresses applied by the external flow. The drop deformation dynamic takes place as a competition between deformation-orientation *vs.* maintaining the equilibrium shape. At the end, the drop deformation attains a stationary shape, if $Ca < Ca_{cr}$.

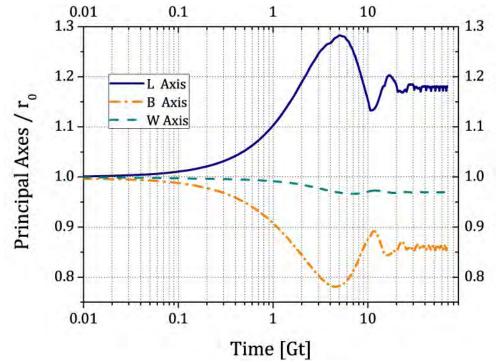


Figure 4.2 Ratio of the B wrt. W axes in numerical simulations for a flow with α =0.03 and total time Gt =75 for different values of Ca.

As shown in Figure 4.1, when Ca = 0.03, the drop deformations have a similar behavior in time as was observed in Chapter 3, but with a smaller length. The drop reaches a stationary shape, and if the flow is turned off, the drop returns to the spherical shape. When the capillary number increases a little more, the competition (as function of the rate of viscosity) is more evident. There is an overshot for the case of Ca = 0.14. Afterwards, the drop goes to the stationary shape. For the last two cases, *i.e.*, Ca = 0.3 and Ca = 0.87, the main overshoots are followed with multiple oscillations, with their maxima and minima attenuating in time until the drop shape attains an stationary deformation. Those oscillations are a consequence of the competition mentioned and due to phenomena with multiple retraction times.

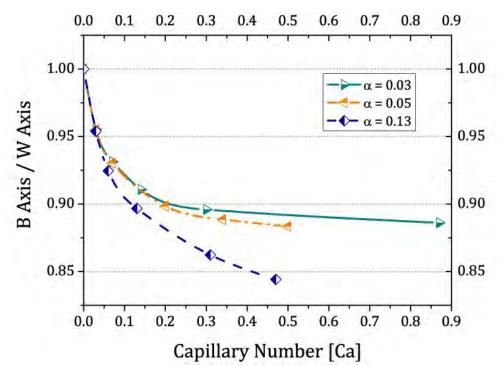

In a similar way as in Chapter 3, data for the B/W-axis, shown in Fig. 4.2, indicates that the cross section of the drop is not circular and is time dependent, and may pulsate slightly. In Fig. 4.2, during the initial 10% of the evolution of B/W, the main oscillation occurs, with the amplitude decreasing subsequently until the stationary value is attained.

Figure 4.3 shows that stationary states are reached after 40% of the total simulation time; with the drop remaining in the stationary shape for the rest of the simulation. Although small oscillations in the stationary values persist, the amplitude of these oscillations is less than $\pm 2\%$ of the average long-time value. The same behavior was observed for a wide range of capillary values; see Fig. 4.1. When $\lambda_{\mu} = 16$ the rates of change for the *B*- and *W*-axes are very similar, constant, and appear to be mainly determined by the magnitude of the flow vorticity, in contrast to the behavior observed for drops of small viscosity.

Figure 4.3 Evolution of the three principal axes of the drop in a flow with $\alpha = 0.03$, Ca=0.87 and total time Gt =75.

Figure 4.4 presents the ratio between the *B*- and *W*-axes after the steady state deformation is attained. After the steady state is reached, and for $\alpha = 0.03$, the cross-section shape remains close to elliptical, with the ratio being around 0.88. For $\alpha = 0.05$, the behavior is very similar. However, when $\alpha = 0.13$, this ratio decreases (more elliptic shape) as the capillary number augments. That is, vorticity decreases with smaller α values, but the *2D*-character of the flow remain dominant.

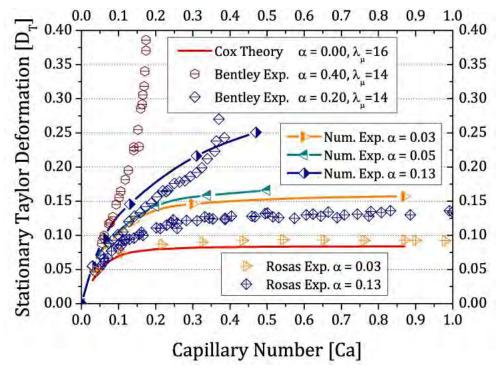

Figure 4.4 Stationary ratio of the B wrt. the W axis in numerical simulations for flow with $\alpha = 0.03$, $\alpha = 0.05$ and $\alpha = 0.13$ for different values of Ca.

Figure 4.5 presents a comparison of multiple theoretical, numerical and experimental observations —most data correspond to $\lambda_{\mu} \simeq 16$. The theoretical model is that of Cox (corresponding to the red trace) for *simple shear flow*, while the experiments cover a very large range of values for the flow type, α . The experimental values are those obtained by Bentley and Leal, (Bentley & Leal, 1986b) for the larger values of the flow type, while those of Rosas address flows with more vorticity. For these high viscosity drops, there is a limit for the stationary deformation values in *simple shear flow*. Curves are similar as those of Cox theory predictions for *simple shear flow*; even for $\alpha \leq 0.13$, a maximum deformation in steady state has been observed by

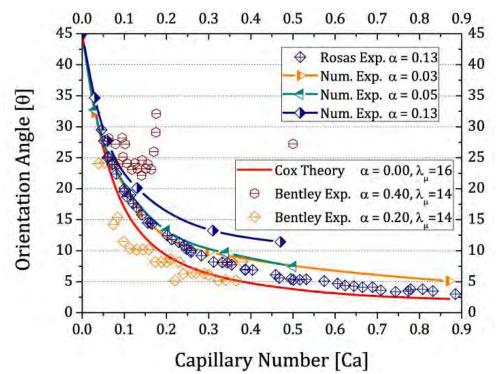
Rosas. For small capillary numbers, the stationary deformation of drops depends on the capillary number, increasing as well under the more *elongational flows*.

In Figure 4.5 it is possible to infer the maximum values of steady state deformations, for different values of the *parameter* α . In particular, the experimental traces may show an unbounded deformation, indicating that the flow is close to its critical value of *Ca*, beyond which rupture of the drop may occur. Comparing to experimental data from Bentley and Rosas, (Bentley & Leal, 1986a) (Rosas I. Y., 2013), it is clear that a flow with $\alpha = 0.13$ appears not to induce the rupture of drops, in contrast to a flow with $\alpha = 0.2$, which indicates a flow type readily capable of rupturing a drop even with such high viscosity. Thus, between $0.13 < \alpha < 0.2$ a regime transition must occur.

That is, the existence of a critical capillary number, may indicate a flow type transition between a deformed drop or an unstable flow solution. For these reasons those results motivate a careful study of *strong flows* near the instability.

Figure 4.5 Deformation of the drop for numerical simulations, experimental data of Rosas for $\alpha = 0.03$, $\alpha = 0.05$ and $\alpha = 0.13$; Experimental data of Bentley for $\alpha = 0.4$ and $\alpha = 0.2$ and analytical prediction of Taylor Cox in simple shear flow $\alpha = 0.0$ for different values of Ca.

These limiting *Ca* values depend not only on the flow type α but also on the ratio of viscosity λ_{μ} . There is consistency in the values of the stationary deformation values at this limit; *i.e.*, the strong flows applied generate less vorticity than *simple shear flow*, so the stationary deformation values must be larger than the *shear flow* case; weaker rotation does not inhibit elongation as it is shown in Fig. 4.5. Thus, for $\alpha = 0.13$ the attained deformation in stationary states is larger than the weaker flows. For a given flow, higher viscosity implies that the deformation may be small while the vorticity tends to rotate away from the principal axis of deformation. Thus, higher viscosity drop may deform to a stable elongation at higher values of the ratio of viscosities λ_{μ} .


Furthermore, at the critical limit conditions, the length scales of the deformation are more difficult to define because no steady elongation in observed; *i.e.*, employing the information of Fig. 4.4, the steady shape of cross section in this flow shows a deviation which is far from the horizontal limit, and which implies an ever-increasing *L*-axis length. In fact, the fluctuation in the deformation of the drop implies an oscillation in the angle of orientation of the drop too, see Fig. 4.2.

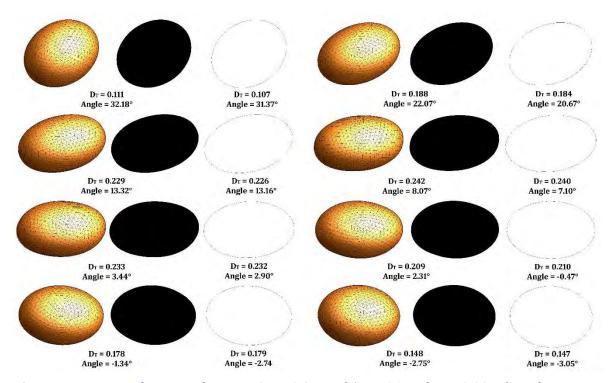
There are noticeable differences for the stationary deformations, between deformations simulated numerically and the experimental data of Rosas. And there may be various possible explanations for these differences. One basic possible effect may be the fact that the Two Roll Mill device required a control scheme to maintain the drop near the stagnation point permanently. Together with the non-idealities of the mill, fluctuations in the external flow are only natural, as Rosas explains in his work (Rosas I. Y., 2013), Chapter 3.⁵ At the end, rotation dominates the deformation before the stationary value. On the other hand, numerical methods do not have the possibility to simulate all possible non-ideal "laboratory" conditions. Please note that in Chapter 6, a possible new explanation about the differences between the numerical simulations and the experiments is discussed. This last mechanism may indicate why

⁵ These fluctuations occur with a frequency comparable with the diffusivity of vorticity, reducing mainly the rate of deformation, without altering the rotation of the drop in the experiments, hence causing a smaller deformation of the drop by the experimental device vs. numerical simulations.

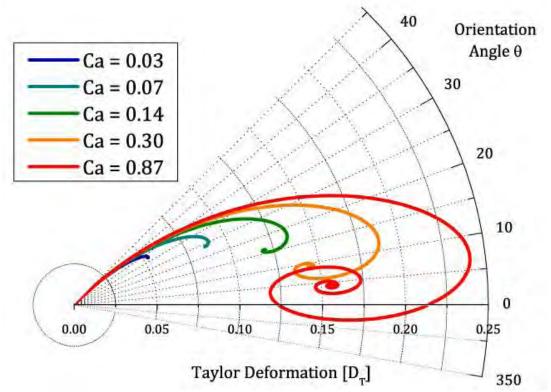
the numerical simulation do not show as many oscillations as the experimental data reported (Rosas I. Y., 2013).

Figure 4.6 shows the orientation of the drops under different flows. Bentley experiments mainly show the limit of resolution of the experimental device. The Four Roll Mill has the best control of the drop as the parameter α goes near values of one. In the other extreme, as the *parameter* α decreases, the control of the drop degrades because there are two rolls that participate marginally in the control of the drop position, (Bentley & Leal, 1986a). This problem is shown on the orientation angle data, because the values appear to have perceptible fluctuations.

Figure 4.6 Orientation of the drop for numerical simulations, experimental data of Rosas for $\alpha = 0.03$, $\alpha = 0.05$ and $\alpha = 0.13$; Experimental data of Bentley for $\alpha = 0.4$ and $\alpha = 0.2$ and analytical prediction of Taylor Cox in simple shear flow $\alpha = 0.0$ for different values of Ca.


The orientation angles present a smooth behavior on the experimental data of Rosas. In Fig. 4.6, only the experimental data of $\alpha = 0.13$ is presented, and not data for $\alpha = 0.03$ and $\alpha = 0.05$, because the latter show the same behavior as Cox theory. Numerical data have a similar behavior as the experimental data for $\alpha = 0.13$. However, the angle of orientation is systematically larger than the experimental data,

indicating that simulations must present a stronger deformation for the same flow conditions: α and *Ca*. For example, the trace of numerical results of the orientation angles, for $\alpha = 0.03$, is similar to the experimental data of $\alpha = 0.13$. As noted before, fluctuations may explain discrepancies between the numerical and the experimental data, for a reduction of rate of deformation does not reduce simultaneously vorticity.


The numerical data shown in Fig. 4.6 indicate that for a flow with $\alpha = 0.03$ the orientation of the drop attains a value like that of *simple shear flow*, red curve. However, when the flow parameter increases, to $\alpha = 0.13$, the orientation goes to larger values (closer to the out-flow axes). Also, when the flow applied in the continuum phase generates a deformation greater than the stationary deformation, no stationary state is attained and the drop will be oriented parallel to the angle of the out-flow axes (Reyes, 2005), (Rosas, Reyes, Minzoni, & Geffroy, 2014) and (Escalante, Reyes, Rosas, & Geffroy, 2015).

In summary, the deformation seen with the numerical method is larger than that observed with experimental data, while the orientation angles of the simulations are lower than the results of Rosas. In Chapter 6 these discrepancies are studied under the light of a new phenomenon of drop deformation not observed until this work.

Figure 4.7 shows the numerical images (colored images) of deformed and rotated drops in a flow with $\lambda_{\mu} = 16$ and $\alpha = 0.03$ in the *xy-plane* (Fig 1.1b). These images correspond to data of a drop with *Ca* = 0.87, both the deformation as well as the orientation angle are in the *xy-plane*. The black shapes are the projections on the *xy-plane* for the numerical images. The length of the deformation and the orientation angle are calculated evaluating the maximum distance from the center of the drop *wrt* the nodes of the mesh. The typical procedure to determine deformation and orientation is to use an adjusted ellipse to the projected image. The last set of images observed in Fig. 4.7 corresponds to different ellipses, adjusted with the *ImageJ*® program based on the projection of the drop simulated. As the information of the Fig. 4.7 indicates, there are very small differences of parameters between the numerical data and the *ImageJ*® analysis.

Figure 4.7 Drop evolution in the time. Ca = 0.87 wich $\lambda_{\mu} = 16$ and $\alpha = 0.03$. The color images are the numerical shape obtained with BEM3D, the black pictures are the projection on the xy-plane; within these projections, ellipses were fitted.

Figure 4.8 Polar plot of Taylor deformation vs. orientation angle for different capillary numbers with $\alpha = 0.03$, $\lambda_{\mu} = 16$.

CHAPTER 5.

Characteristic times of drop deformation under an elongational flow with vorticity

The drop deformation in strong flows shown in Chapter 3 and 4 indicate a not so obvious different behavior of the principal axes of the drop from the initial spherical shape up to the attained stationary values. Fig. 3.2 and Fig. 4.3 present *the time evolution of the principal axes* of the drop, showing that (a) the behavior of the principal axes parallel to the flow (*L-axis* and *B-axis*), reaches its steady state values with a similar characteristic time-scale, while (b) the *W-axis* has an appreciable delay to attain the steady state. This chapter focuses in the study of these characteristic times of the principal axes of the drop. The first part of Chapter 5 present the time-scales associated to the stationary shape of the drop. In this part, there is a similar analysis of the time evolution of the axes as Fig. 3.2 or Fig. 4.3, although with different the capillary numbers. However, in all cases the capillary number is lower than the critical capillary number Ca_{cr} .

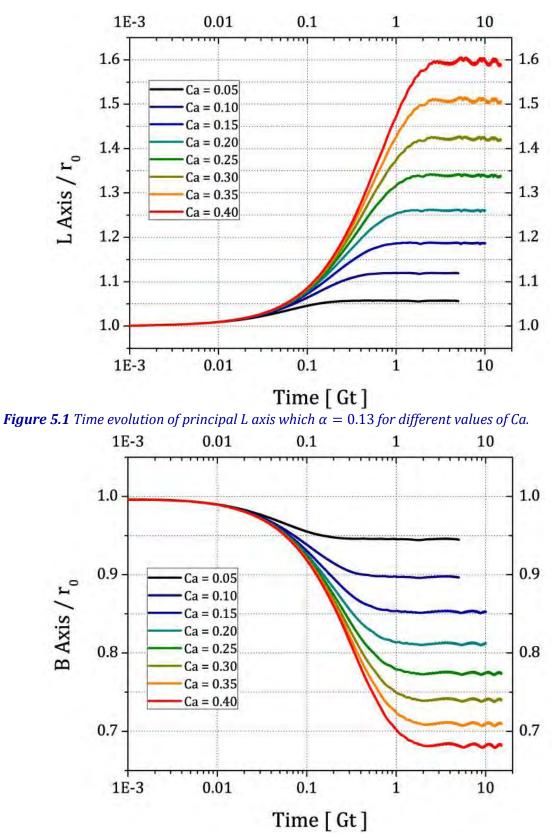
For this reason, as a qualitatively comparison other major differences will be studied as well. The second significant effect corresponds to the observed oscillations (a consequence of the race to attain stationary shape). The time to attain stationary shape (in Fig. 4.3 stationary shape needs at least 40 [Gt] of time, in Fig. 3.2 only 15 [Gt]) occurs in different scales. Finally, differences of the characteristic times for

Universidad Nacional Autónoma de México

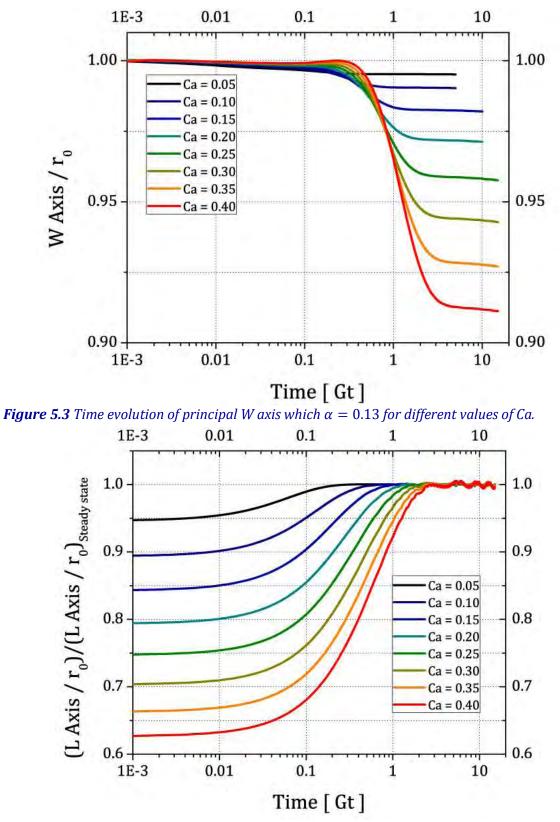
UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

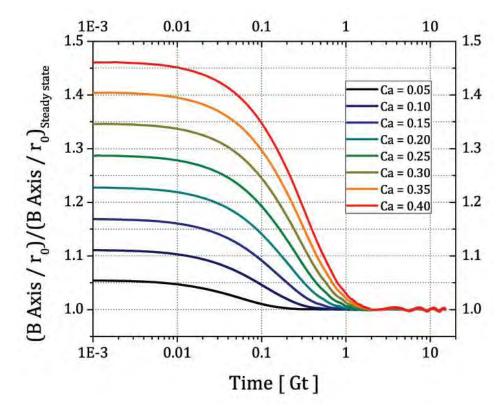
Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).


El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. all axes are very similar in Figure 4.2. In Chapter 5 the analysis of the constants of time of the axes in the case of Chapter 3 will show the different scales of times in the axes of the plane of the flow and the cross section. In the regime of $\lambda_{\mu} = 16$, the scales are very similar. For this reason, only the analysis of constants of time in the impulsive flows were explore in the regime of $\lambda_{\mu} = 0.012$.

The second part of this Chapter analyze the characteristic times of retraction. If a drop is deformed without reaching its critical deformation, the drop will always attain a steady shape. If the flow is stopped subsequently, the drop returns to the equilibrium shape (spherical shape) due to the interfacial tension stresses. In this manner, the interfacial tension value could be measured, by simply analyzing the dynamics of retraction of the drop (Guido & Villone, 1999). This last part of this Chapter estimates the accuracy of the interfacial tension techniques base on the retraction analysis.


5.1 Characteristic times obtained in drop deformation in an impulsive flow applied with small viscosity ratio

Figures 5.1, 5.2 and 5.3 show the evolution of the principal axes of the drops with different capillary numbers for a flow with $\alpha = 0.13$. The evolution of the principal axes of the drop changes depending of the capillary number. The same behavior happens for the other cases $\alpha = 0.03$ and $\alpha = 0.05$.


The characteristic time-scale of evolution of the principal axes of the drop have a similar behavior at the onset of a weak steady flow. Then, as the capillary number increases, the axes attain the stationary states in different time-scales, *i.e.*, in Fig. 5.1 the *L*-axis, under a capillary number Ca = 0.05, attains the stationary states at 0.2 [*G*t], while time goes to 1.5 [*G*t] for capillary numbers about *Ca* = 0.40. The analysis on *B*axis and *W*-axis show a similar behavior; as the capillary number increases, the time to attain the stationary state increases too; Figs. 5.2 and 5.3.

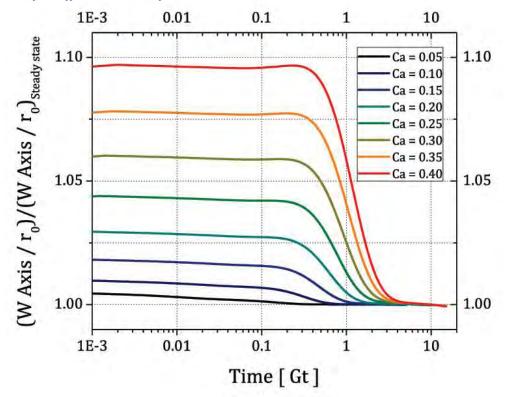

Figure 5.2 Time evolution of principal B axis which $\alpha = 0.13$ for different values of Ca.

Figure 5.4 Time evolution of principal L axis normalized wrt. stationary value, which $\alpha = 0.13$ for different values of Ca.

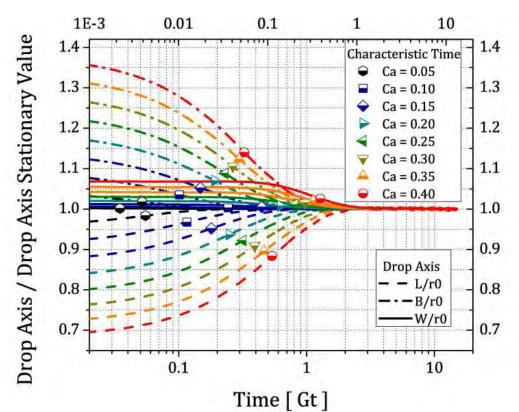
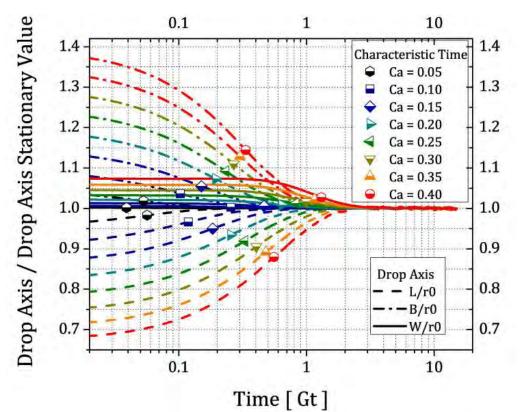


Figure 5.5 Time evolution of principal B axis normalized wrt. stationary value, which $\alpha = 0.13$ for different values of Ca.


Figure 5.6 Time evolution of principal W axis normalized wrt. stationary value, which $\alpha = 0.13$ for different values of Ca.

In order to focus on the transient behavior and its time-scales, the first step was to normalize the change of the longitude of the principal axes with respect to the stationary state, as Figs. 5.4, 5.5 and 5.6 show. Figure 5.6 shows the evolution of the *W-axis* with a small change in the initial values of the evolution time due to the overshoots showed in Fig. 5.2. The normalized axis evolution were fitted with a family of exponential functions, attempting to establish the characteristic time to attain the final stationary state, in a similar way to methods for the charge and discharge of a capacitor (Greenberg, 1998) and (Resnick, 1980).

Figure 5.7 Time evolution of principal axes normalized wrt. stationary value, which α =0.03 for different values of Ca. Characteristic times in symbols.

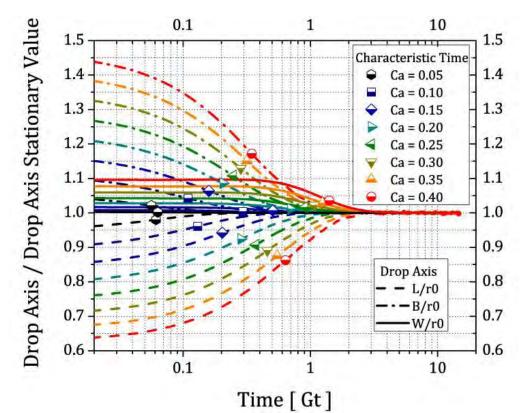

The time of evolution of the principal axes were taken using the value of $\tau = 1$; $e^{-\tau} = e^{-1} = 36.79\%$. The dynamics of drop deformation changes as the capillary number increases in the same type of flow. The analysis of the characteristic times exposed the different axes dynamics under the same flow, *i.e.* for the same drop experiment, the steady deformation is attained at different times for each principal axes. This situation appears to be a consequence of the planar flow effects: the drop (*3D-surface*) rotates faster in the *xy-plane* (Fig 1.1 b), compared to the other direction.

Figure 5.8 Time evolution of principal axes normalized wrt. stationary value, which α =0.05 for different values of Ca. Characteristic times in symbols.

Figures 5.7, 5.8 and 5.9 show, for different types of flow, the evolution of the principal axes of the drop, and the value of their characteristic time. As the capillary number increases in all numerical experiments, the time-scale of the axes becomes quite different. The *B-axis* appears to be the fastest. In contrast, the *W-axis* present the longest lag. In Figure 5.9, for Ca = 0.40, the *W-axis* evolution starts to change when the evolution of *B-axis* is near its stationary value. Add to this, the characteristic time of *W-axis* is 1.54 [*G*t] when the *B-axis* attains its stationary value and the *L-axis* is near the 80% of its steady value.

The characteristic times, evaluated with the numerical experiments, are plotted in Fig. 5.10. Here there appear to exist a similar behavior for the growth rate of the characteristic time values. All time-scales have equal values when $Ca \leq 0.05$. When Ca = 0.40, the *B*-axis time is one third of the value of the *L*-axis time value, and one fifth of *W*-axis time value. Figure 5.10 shows the delay of the dynamics of drop deformation in the normal plane of the applied flow.

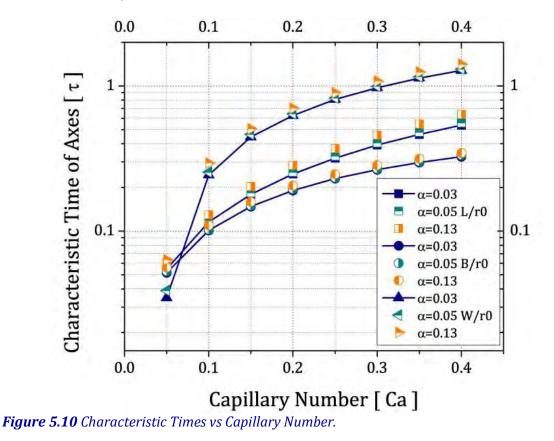
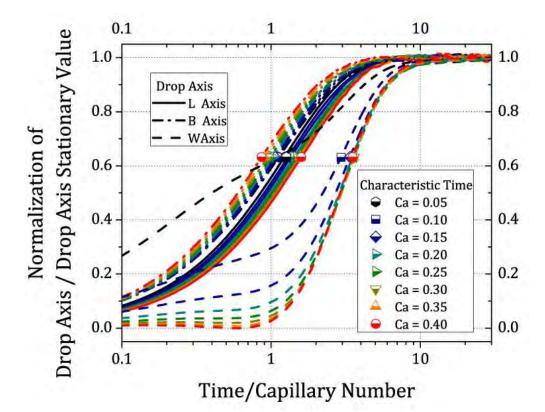


Figure 5.9 Time evolution of principal axes normalized wrt. stationary value, which α =0.13 for different values of Ca. Characteristic times in symbols.

The *W*-axis presents the smaller changes of deformation —less than 10% of the initial value and there is a delay to start to change. Please note that the time used for the complete numerical simulations is enough to attain the steady state in the *xy*-*plane*. This time was calibrated *wrt* the experiments of Rosas (Rosas, Reyes, Minzoni, & Geffroy, 2014). However, Figure 5.3 shows that the *W*-axis is still evolving toward the steady state; *i.e.* to evaluate the time lapse to attain the stationary shape in a drop —for a capillary number less than the critical capillary number *Ca* < *Ca*_{Cr} — the *xy*-*plane* data appear not to be enough. Figure 5.9 and Fig. 5.10 show clearly delays in the *W*-axis; in other words, the *W*-axis is still changing when the *xy*-*plane* form looks to have attained a stationary state.


Figure 5.10 reveals the fact that drops deformed by a *2D-flow* is still a *3D-object*, because the dynamic of its three-principal directions evolve in different time-scales. The dynamics imposed by the flow starts to deform the drop on the plane parallel to the flow. However, the delay on the third axis, *W-axis*, seems to be decouple and is a consequence of a *2D-flow*. Based on this information, the study *of steady states*

should consider as well as the characteristic time of the *W*-axis, because the steady state ought to be determined by the slowest axis. It is only then that we can be sure that the stationary state was obtained.

Finally, Figure 5.11 shows the evolution of the principal axes of drops to reach the stationary state of deformation with a flow $\alpha = 0.13$. In this plot, when the drop is at rest, the values of the principal axes are zero; when the drops go to the stationary shape, the values of the axes goes to one. Here, all traces of the time of evolution shown in Fig. 5.10 are normalized by the value of its capillary number. In this Figure 5.10 a range of characteristic times of the principal axes due to the kind of flow imposed are also shown as a single dot. The time-scales of the *L*- and *B*-axis are similar, while the *W*-axis systematically lags the others, except for *Ca* = 0.05.

With this information, it is possible to define a characteristic time associated to the flow imposed to the drop. For the *2D-flow* with $\alpha = 0.13$, and using *W-axis* values of time observed in Fig. 5.11, an estimate of the minimum time to attain the stationary deformation of a drop is Gt/Ca = 10 which is the time obtained by the *W-axis*.

Figure 5.11 Analysis of the Principal Axes of the drop wrt. the characteristic time due capillary value, with $\alpha = 0.13$ and $\lambda_{\mu} = 0.012$. Symbols are the characteristic times of the Principal Axes of the drop.

For cases when the ratio of viscosity is large, $\lambda_{\mu} = 16$, characteristic times are not easily observed, because the drop evolution on the *xy-plane* presents multiple rotations, and each axis evolution is not like an simple exponential. As annotation, the evolution of *W-axis* is neither a true exponential decay. Because it clearly presents an overshoot, observed in Fig. 5.3; this spurious effect is shown in Fig. 5.11, and the dash curves associated to the *W-axis* do not have the same behavior as the other principal axes. For its time scale analysis, is not severe enough as to modify the exponential behavior as Fig. 5.6 shows. In Chapter 6, I present an analysis of this overshoot when the capillary number increases; Fig. 5.3 already shows that the overshoot increases as the capillary number rises.

5.2 Characteristic time in the retraction of a drop

The experimental and theoretical studies of dynamics of drops show that a deformed drop always comes back to its spherical form once the external flow stresses cease to act. If the drop deformation is lower than a critical elongation in steady flow, the retraction only generates a single drop, and may produce multiple (albeit smaller) drops for elongation greater that this critical value. The next analysis shows the retraction of the drop to a single equilibrium shape (near spherical). The data obtained was used to validate the *Deformed Drop Retraction (DDR)* method, used for obtaining experimental values of the interfacial tension, γ . This method has the advantage of measuring γ even when the buoyancy forces are very weak —a condition required for most other techniques— and has been used extensively with shear-flow-devices deformation. However, in strong flows the method was not been used a lot.

The *DDR* model assumes a simple exponential decay behavior dependent on the interfacial tension. The interfacial tension value for a drop interface, determines the rate of evolution of the deformation of the drop from the initial process of retraction (when the flow in the continuum phase was turned off and the drop reached the steady shape for a constant flow) D_0 to the final equilibrium shape (spherical drop), see Fig 5.12 and Fig 5.13. For this analysis, the values of deformation are normalized *wrt* the initial value of deformation: $D(t)/D_0$. The logarithm of the ratios of deformation are plotted versus time of retraction: Fig. 5.13. Finally, the interfacial tension is obtained assuming a linear dependency of the slope by the expression:

$$\gamma = -\mu_1 r_0 \left[\frac{(2\lambda_\mu + 3)(19\lambda_\mu + 16)}{40(\lambda_\mu + 1)} \right] K_{Slope}.$$
 (5.1)

The constants μ_1 and r_0 are the viscosity of the continuum phase and the radius of the spherical shape drop. The expression inside the bracket corresponds to Hadamard and Rybszynski resistance due to a drop with different viscosity μ_2 , but here due to the analytical (asymptotic expansion) correction between the capillary number and the Taylor Deformation of the drop using an ellipsoidal model -near spherical shape- of the drop (Rallison, 1984), (Taylor, 1932),

$$(\mathbf{r} \cdot \mathbf{r})^{1/2} = 1 + \varepsilon \, \mathbf{r} \cdot \mathbf{A}(t) \cdot \mathbf{r} + \mathcal{O}(\varepsilon^2)$$
 with $\varepsilon \ll 1$,

and ε being the small parameter (quasi-spherical drop), and A(t) measures the drop deformation. The time evolution of its distortion is calculated by

$$\varepsilon \frac{DA(t)}{Dt} \equiv \varepsilon \frac{\partial A(t)}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} A(t) = \varepsilon \frac{\partial A(t)}{\partial t} - \varepsilon \, Ca \, \boldsymbol{\omega} \cdot A(t) + \varepsilon \, Ca \, A(t) \cdot \boldsymbol{\omega}$$
$$= \frac{5Ca \, \boldsymbol{e}}{2\lambda_{\mu} + 3} - \frac{40(\lambda_{\mu} + 1) \, \varepsilon \, A(t)}{(2\lambda_{\mu} + 3)(19\lambda_{\mu} + 16)} + \mathcal{O}(\varepsilon \, Ca, \varepsilon^{2}). \tag{5.2}$$

Though complicated in appearance, the simple physical interpretation of Equation (5.2) is that the rate of change of the distortion A(t) rotates with the local fluid angular velocity —measured on a rotating frame of reference for the drop, and couple-free—, is due mainly to the effect of the ambient strain-rate field e, and secondly to the retraction effect of the surface tension (proportional to A(t)). Neglected terms are, of order ε *Ca*, arising from the straining flow acting on the perturbed shape, and $O(\varepsilon^2)$ terms from harmonics higher than the second.

If $Ca \ll 1$, Eq. (5.2) can be solved analytically for A(t) at steady state, obtaining

$$\varepsilon \mathbf{A}(t_{ss}) = \frac{19\lambda_{\mu} + 16}{8\lambda_{\mu} + 1} Ca \mathbf{e}.$$

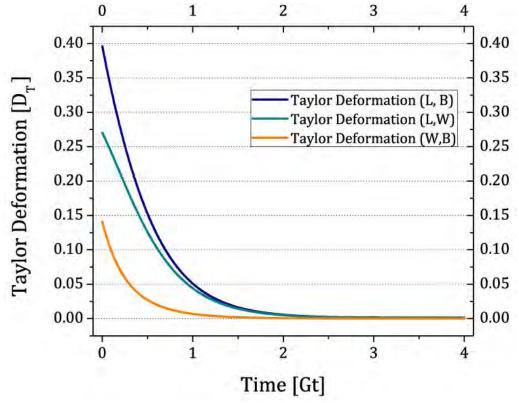
The well-known Taylor equation (From Equation (10) to Equation (13), (Taylor, 1934)) follows:

$$D_T = \frac{19\lambda_{\mu} + 16}{16\lambda_{\mu} + 16} Ca,$$
 (5.3)

for the deformation parameter in *simple shear flow*.

Since during retraction there is no applied flow field, the evolution of A(t) —in Eq. (5.2)— is defined only for the *rhs* expression of Eq. (5.2). So, the rate of change of the distortion A could be model by a single exponential decay, Fig. 5.11, from which the following equation for D(t) is obtained

$$D_T = D_{T-SS} \exp\left(-\frac{40(\lambda_{\mu}+1)\gamma}{(2\lambda_{\mu}+3)(19\lambda_{\mu}+16)\mu_1 r_0}t\right).$$
 (5.4)


Finally, using Eq. (5.4), Eq. (5.1) is derived.

The *DDR method* employs the Taylor deformation Eq. (1.11). However, there are other parameters to define the deformation of the drop. In this section, another

parameter for deformation is used, the *Mo shape parameter*. The model of *Mo*, (Mo, 2000), assumes that the drop deformed is a regular ellipsoid. Then, the *eigen*-values of the matrix that represents the shape of the drop correspond to the principal axes of the ellipsoid. *Mo* shape parameter is represented by the following equation,

$$D_{Mo} = L^2 - B^2 \tag{5.5}$$

Taylor deformation and the Mo shape parameter assume a drop shape nearly spherical and a regular ellipsoid, respectively. However, as we saw in Chapter 2, Chapter 3 and Chapter 4, deformed drops by an *extensional flow* with vorticity have not a circular cross-section, and the relationship between capillary number and Taylor Deformation is not linear. Also, the *3D-effects* of a drop due to a *2D-flow* were shown, in the previous section, to have different characteristic times for principal axes. It is then safe to assume that for the phenomena of retraction, the evolution of the drop principal axes is not guaranteed to have an symmetric cross-section.

Figure 5.12 Taylor Deformation of the drop vs time. $\alpha = 0.13$, Ca = 0.40.

This observation motivates this Section about the DDR model to evaluate retraction, because it is essential to observed if the *xy-plane* is enough to obtain the

value of interfacial tension with the precision required for strong flows. Equation (5.4) involves the Taylor deformation evaluated in the plane of flow. However, the retraction of the drop occurs under flow conditions similar to a *uniaxial extensional flow* so, the analysis of retraction could be observed from different planes of the drop. In this study, the plane generated by the principal axes were taken to observed how Eq. (5.1) estimates the value of interfacial tension with respect to the nominal value employed in the numerical code.

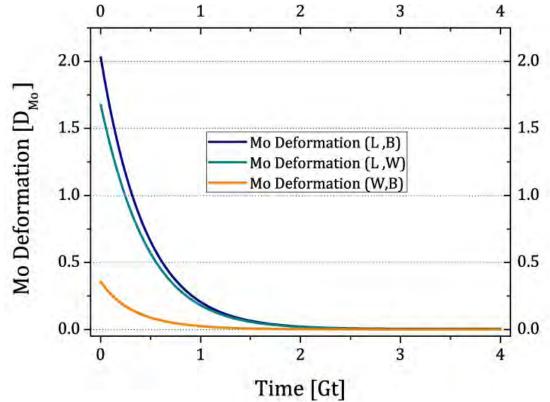


Figure 5.12 shows the Taylor deformation of the drop using the principal axes of the drop with Ca = 0.40 and $\alpha = 0.13$. The decay of the Taylor deformation in all the cases could be modelled as an exponential decay. As well, a similar behavior is shown in Fig. 5.13 for the analysis of the drop retraction using the Mo shape parameter. As Figure 5.12, Fig. 5.13 show, the drop goes to a spherical shape in less than the middle of the time observed.

Figure 5.14 and 5.15 shows the comparison of the curves of decay of deformation with respect to an exponential decay, adjusted with the numerical data.

The exponential decay uses the characteristic time τ in a model of Taylor Deformation and of the *Mo* shape parameter. Fig. 5.14 shows that the retraction evolution model as an exponential decay, is a good approximation for cases when the Taylor deformation involves the *L*- and *B*-axes (xy-plane) or the deformation in the cross-section *W*- and *B-axis.* A measure of Taylor deformation between *L-axis* and *W-axis* shows a behavior a little bit different. Another observation is the difference of the characteristic time τ in the different planes of Taylor Deformation parameter. As the former Section shows, the characteristic times during retraction should be similar to the time required for reaching the stationary state (although different for each axis). The time τ for the deformation between the L- and B-axes is comparable to the time between L- and Waxes mainly because the *L*-axis deformation is larger than the *B*-axis or *W*-axis values. The characteristic time for the cross-section is different, because of the enormous difference in the values of *B*- wrt *W*-axis. Also, the change of cross-section manifest another dynamical behavior that the model of retraction cannot estimate in the early stages. So, obtaining the interfacial tension with the cross-section parameters may not be guaranteed.

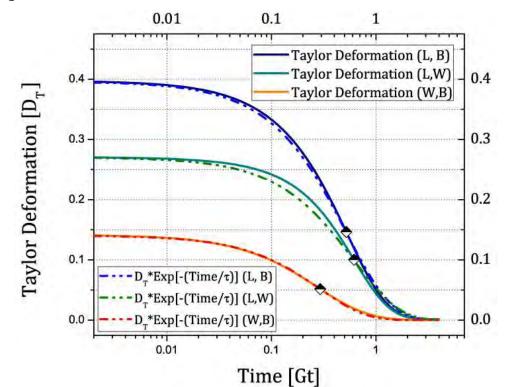
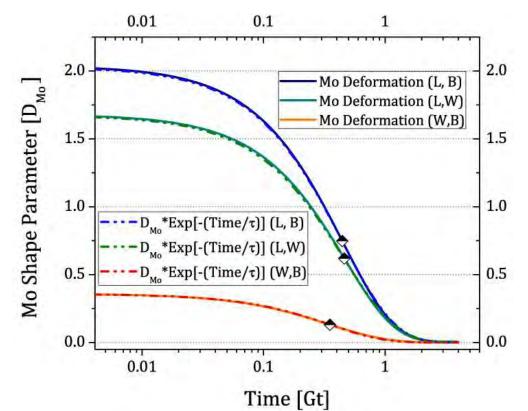



Figure 5.14 Taylor Deformation vs Time (lines). Exponential Decay vs Time (dash-dot-dot). Characteristic time τ (diamonds). $\alpha = 0.13$, Ca = 0.40.

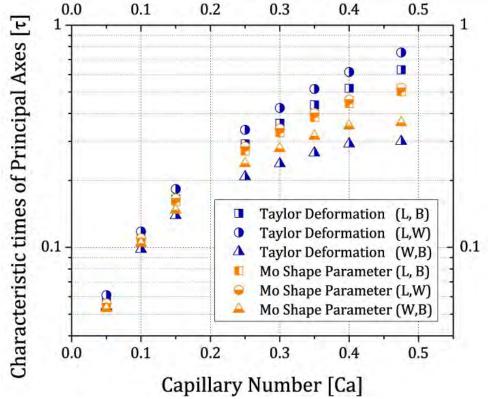
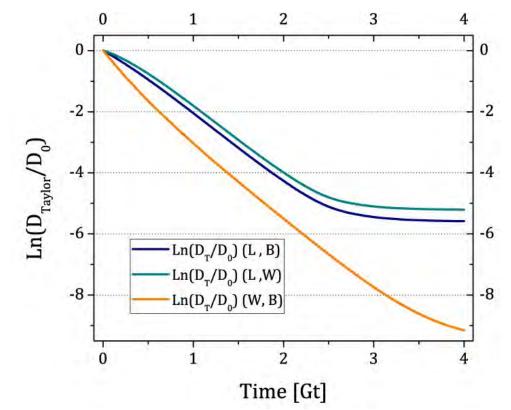

The analysis for the *Mo* shape parameter was made as the case before, using the principal axes of the drop to estimate the deformations. The result of the characteristic time for a drop with Ca = 0.40 and a parameter of flow $\alpha = 0.13$, is shown in Fig 5.15. The match of the evolution of the retraction and the model of exponential decay is better than the analysis using the Taylor Deformation. Again, the characteristic times of cross section is evidently different than the other planes of observation.

Figure 5.15 Taylor Deformation vs Time (lines). Exponential Decay vs Time (dash-dot-dot). Characteristic time τ (diamonds). α =0.13, Ca=0.40.


The characteristic time of deformation on the principal plane is plotted in Fig. 5.16. All values of the characteristic time using the *Mo*-shape parameter and Taylor Deformation appear to be different in each plane of observation. The characteristic time increases too when the capillary number grows. However, comparing cases of planes *L*- and *B*-axes versus *L*- and *W*-axes all appear to have similar values. Time-scales for the cross-section are shorter than for the other planes of the drop because the *W*-axis deformation is the smallest and the time to return to spherical shape, initial radius, is the shortest time.

These results are similar, as Fig. 5.10 shows, despite the former using the *information of the principal axes of the drop*, while Fig. 5.16 employing the *information of the deformation on the plane of observation*. In both figures, the *3D-effects* of the drop in a *2D-flow* are evident in Fig. 5.10, because the principal axes have different characteristic times and the perpendicular axis to the flow, the *W-axis*, shows a different time-scale to attain the steady shape. In the other case, Fig. 5.16 shows the behavior on different planes defined by the principal axes, so, time-scales associated to the deformation of the drop represent *competition of times-scales on the principal axes* of the drop. Figure 5.16, implies that the characteristic time of retraction of the parallel plane of the flow retracts faster than the normal planes. In Fig. 5.15 the Taylor deformation or the *Mo*-shape parameter of the *WB*–plane have different scales of time with respect the other two planes. The characteristic times of the *Mo*-shape parameter have values among themselves, closer than when using Taylor deformation. At this point, the *Mo*-shape parameter appears to be the best (tighter) simple prediction of the retraction of the drop.

Figure 5.16 Characteristic times t vs Capillary Number which parameter $\alpha = 0.13$ *.*

The next analysis addresses data differences between the conventional methods and information on the other planes, which are not observed by *2D*-numerical methods or experimental devices as Two Roll Mill, (Reyes, 2005), (Rosas I. Y., 2013), and (Rojas, 2016). The information on the different planes will be discussed after the explanation of the technique for obtaining the interfacial tension.

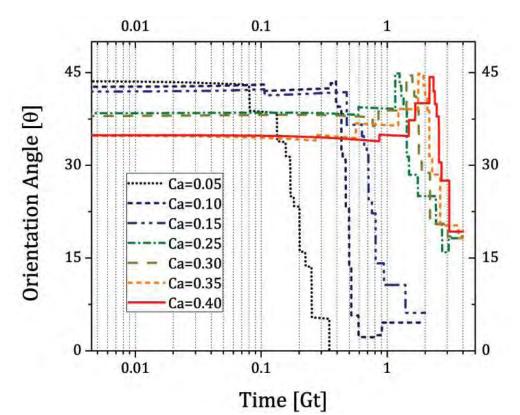
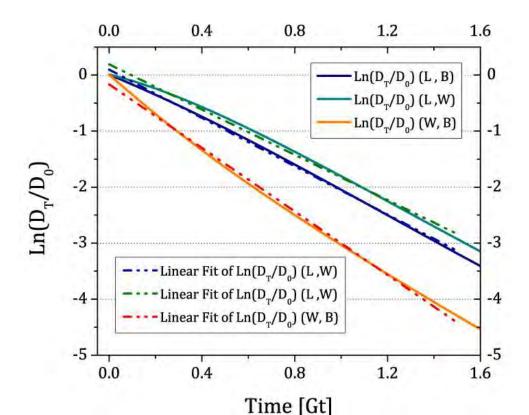
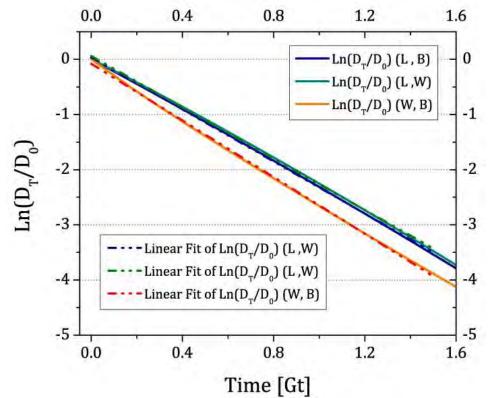


Figure 5.17 $Ln(D_T/D_0)$ vs. time. Drop retraction was analyzed with Taylor deformation which Ca = 40 and $\alpha = 0.13$.

At the end of drop retraction, there is a residual deformation with values of $0.001 < D_T < 0.005$ for the capillary numbers used. This residual deformation is clearly observable in the $ln(D_T/D_0)$ vs. time plots, as shown Fig. 5.17 for a drop subjected to Ca = 0.40 and $\alpha = 0.13$. Residual deformations are essentially a measure of the uncertainties of the numerical code. The values of Taylor deformation mentioned before imply a difference of about 0.2% to 0.3% of the length of the principal axes. In this work, the evaluation the length of the axes always take the largest distance from the drop surface to the center of the drop as the *L*-axis, afterwards the *B*- and *W*-axis are estimated. When the resolution is less than 0.3%, obtaining the Taylor deformation close to zero becomes very difficult. A similar case

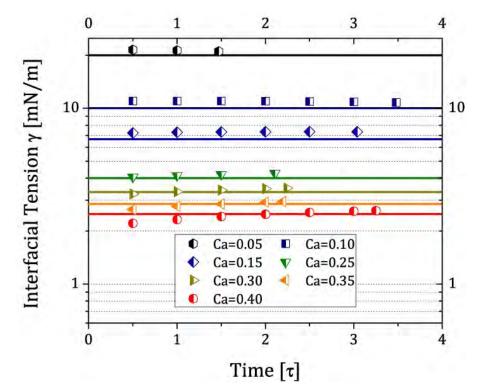

of residual deformations is obtained in the *Mo*-shape parameter. The values are $0.0015 < D_{Mo} < 0.006$, and the behavior is similar as the Fig. 5.17.

Therefore, the DDR model must assume a clean linear slope due to the logarithmic dependency, with no consideration to residual deformations (either experimental or theoretical). With this fact, the optimum evaluation of the interfacial tension should be based on deformations before the drop attains its smallest residual values.



Experiments of retraction of a drop, deformed by a *2D-flow*, must maintain the angle of orientation of the drop fixed, for the flow is due only to the elasticity of the interface, which is based on a symmetric shape for the drop. Figure 5.18 shows the orientation of the drops during the retraction process, which changes when the drop is nearly spherical. In other words, the angle of orientation can be used to define the longest useful time of retraction, just before observing the residual deformations.

Figure 5.19 Linear fit of $-Ln(D_T/D_0)$ for 5τ of time. Drop retraction was analyzed with Taylor deformation which Ca = 40 and $\alpha = 0.13$.


Figure 5.20 Linear fit of $-Ln(D_{Mo}/D_0)$ for 5τ of time. Drop retraction was analyzed with Mo shape parameter which Ca = 40 and $\alpha = 0.13$.

In order to simulate numerically a wide range of interfacial tension values, the capillary numbers were fixed but the interfacial tension varied, while the other variables of *Ca* were adjusted accordingly. So, the capillary number used in this analysis varies as the reciprocal of the interfacial tension.

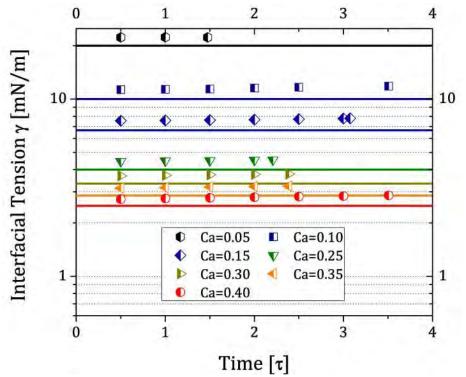

Figures 5.21 and 5.22 indicate with lines the value of the interfacial tension introduced in the numerical scheme. The values obtained with *DDR method* correspond to the symbols. Using multiples of the characteristic time, which was obtained in the same form than in Section 5.1 for the retraction phenomenon on drops, the interfacial tension was evaluated by the slope of the traces as shown in Fig. 5.19 and 5.20, and using Eq. 5.1. These results of interfacial tension were plotted in Fig. 5.21 and 5.22.

Figure 5.21 shows the values of the interfacial tension, obtained for different capillary numbers, using Taylor deformation. For small capillary values, between 0.05 < Ca < 0.15, the interfacial tension is large, or $20 > \gamma > 6.66$ [mN/m], and the interfacial tension values predicted by the *DDR method* appear to be poor. The best prediction using Taylor deformation occurs in the range of 0.20 < Ca < 0.35 or $5 > \gamma > 2.86$ [mN/m]. When the capillary number is Ca = 40, the prediction start to fail again. Figure 5.21 shown how the prediction is affected using different values of time τ . Analyzing the best prediction, the interfacial tension prediction approximates better the interfacial value when the characteristic times is between $2 < \tau < 2.5$.

Figure 5.22 present the same results but now using the *Mo*-shape parameter. These latter predictions appear to be worse than those using the Taylor deformation. Figure 5.22 shows the best range when 0.20 < Ca < 0.35 or $5 > \gamma > 2.86$ [mN/m], close to the simulated value. However, Figures 5.21 and 5.22 may indicate the failure of the two methods when attempting to calculate the interfacial tension using the *DDR method*. The best match for the two methods corresponds to a zone between 2τ and 3τ . Figures 5.23 and 5.24 present the systematic error on the interfacial tension values when using different intervals of the characteristic time τ . These errors are presented with respect to the Taylor Deformation and the *Mo*-shape parameter in the *DDR method*.

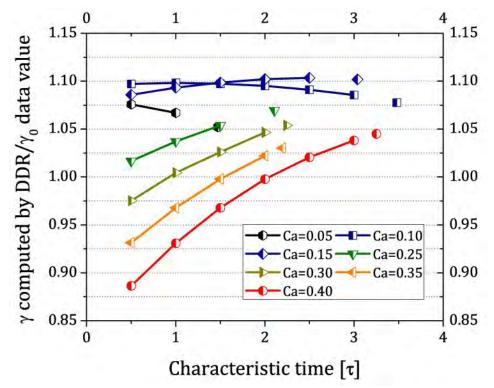


Figure 5.21 Comparison between the interfacial tension used in numerical simulations (lines) and the interfacial tension obtained with DDR method (symbols). The analysis was made with Taylor deformation, the slopes used were based on multiples of τ .

Figure 5.22 Comparison between the interfacial tension used in numerical simulations (lines) and the interfacial tension obtained with DDR method (symbols). The analysis was made with Mo shape parameter, the slopes used were based on multiples of τ .

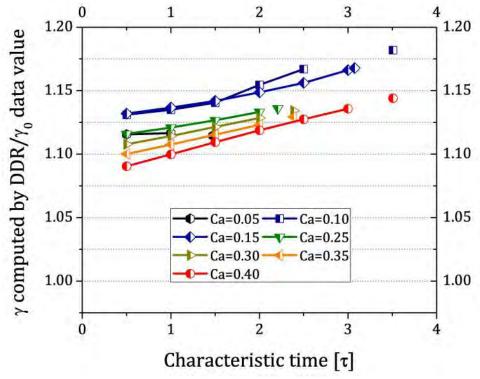

Based on the numerical simulation, the optimal time to obtain the best slope for estimation of the interfacial tension is *Time* $\simeq 2\tau$. Plots shown in Figs. 5.23 and 5.25 are now linear and the error is shown to be less than +10%. When values of interfacial tension are large -black color- errors are less than 5% for 1.5τ . The interfacial tension best value could be obtained at 2τ , but the orientation angle has changed. If values of γ are taken avoiding the information about the orientation angle, errors could be reduced to less than 3%. The next range -blue marks- have a difference of 10%. For capillary numbers 0.25 < Ca < 0.35, the error decreases to less than 7% in the best case: Ca =0.10. Finally, for the large capillary numbers used in this work, an error less than 2% would be possible for γ . A similar accurate prediction is feasible at 2τ . However, the estimation of the interfacial tension for low capillary numbers —bigger values of γ have an accuracy of less than 10%; the difference in this case is the over-estimation of γ . For the other values, errors vary from 5% to 0.1%. If for the analyses more data for $-ln(D_T/D_0)$ is taken, *i.e.*, *Time* > 2.5 τ , the curves deviate more strongly from the linear dependency and the uncertainty increases, Fig. 5.17.

Figure 5.23 Error between the interfacial tension used in numerical simulations and the interfacial tension obtained with DDR method (symbols). The analysis was made with Taylor deformation, the slopes used were based on multiples of τ .

Using the *Mo*-shape parameter presents other important features. Comparing Figs. 5.14 and 5.15, The *Mo*-shape model has a very good exponential decay behavior, actually better than when using the Taylor deformation. In Figure 5.15 the analyses on the planes (*L*-*B*) and (*L*-*W*) are similar, with a good exponential decay, and the calculated slopes present also the same behavior. For the same drop shown in Fig. 5.20, the behavior of $-ln(D_{Mo}/D_0)$ appears better than that of $-ln(D_T/D_0)$. However, values of γ appear to be less accurate than the case of Taylor Deformation.

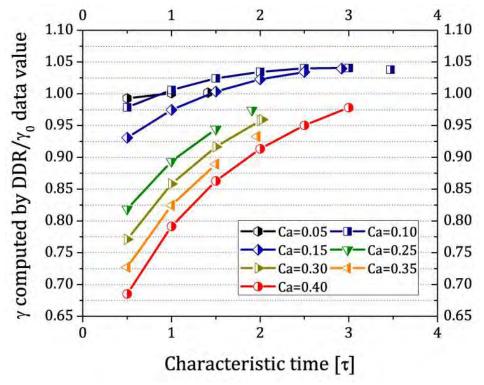
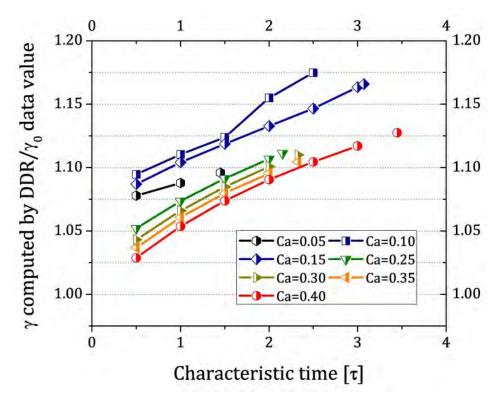

In Figure 5.22, is evident the difference between the interfacial tension used and the interfacial tension estimated. Figure 5.24 indicates that the error is always bigger than 7.5%. In the cases of $0.15 \le Ca \le 0.40$, the optimal time to obtain interfacial tension is in $0.5\tau \le Time \le 2\tau$. However, the accuracy is less than 10%. When the interfacial tension was 20[mN/m], the optimal slope was in the same interval $1.5\tau \le Time \le 2\tau$. The approximation in this case was less than 10%. Then as the study of DDR with Taylor deformation, the value has less accuracy if the time is $2\tau \le Time$.

Figure 5.24 Error between the interfacial tension used in numerical simulations and the interfacial tension obtained with DDR method (symbols). The analysis was made with Mo shape parameter, the slopes used were based on multiples of τ .


Figures 5.23 and 5.24 indicate that the use of Taylor deformation appear to predict better values of interfacial tension when γ is less than 5 [mN/m]. The method does not seem to be sufficiently accurate for values from 5 to 15 [mN/m].

There are other *DDR methods*, based on *the deformation of the W-axis and the* projection of the L-axis on the xz-plane; that is, the experimentally determine length is $L' = \mathbf{P} \cdot L$, on the xz-plane; \mathbf{P} is simply a projection operator. Remembering Fig. 1.1, the drop suffers an orientation due to the kind of flow applied. Experiment as Guido, (Guido & Greco, 2001), have access to all views of the drop deformed during the retraction phenomenon. However, experiments by (Yu, Bousmina, & Zhou, 2004) or (Mo, 2000), only have access to the top-view projection of the drop (on the *xz-plane*). In these cases, the actual value of the *W*-length is observed, but the *L*-measured is a projection of the real *L*-length: L'. With this information, comparisons between theory or numerical results with experimental information that use the *xz-plane* projection can only approach the accuracies here calculated.

Figure 5.25 Error between the interfacial tension used in numerical simulations and the interfacial tension obtained with DDR method (symbols). The analysis was made with Taylor deformation in (L, W), the slopes used were based on multiples of τ .

Figure 5.25 shows errors when using the *LW-plane* in the *DDR method*. Here, Taylor-deformation measure shows a better approximation in $2\tau \leq Time \leq 3\tau$ that the analysis with *L*- and *B-axis*: the error is $\leq 6\%$; see Fig. 5.23. In Figure 5.25, the error is $5\% \leq error \leq 10\%$ when $2\tau \leq Time \leq 3\tau$ and 0.10 < Ca < 0.15. When the interfacial tension is approximately 2.5 [mN/m], the error is always above 10% at $Time < 2\tau$, and the error decays to less than 3% when $Time = 3\tau$. Finally, when 0.15 < Ca < 0.35, and using the change of the orientation angle, the *DDR method* can be applied for $Time \leq 2\tau$. Prediction for these cases imply errors less than 10%. Comparing the errors of Figs. 5.23 and 5.25, the use of the *LW-plane* predicts better values of the interfacial tension than when using the plane parallel to the flow, *LB-plane*.

Figure 5.26 Error between the interfacial tension used in numerical simulations and the interfacial tension obtained with DDR method (symbols). The analysis was made with Mo shape deformation in (L, W), the slopes used were based on multiples of τ .

Figure 5.26 shows the error using the *LW-plane* in the *DDR method* using the *Mo*-shape parameter. Figure 5.26 indicates a better approximation than the analysis with the *L*- and *B-axis*. The error is $5\% \le error \le 10\%$ in the case of 0.5τ for 0.25 < Ca < 0.35. When the interfacial tension is $20 \ge \gamma \ge 6.66$ [mN/m], the error is always

above 5% and less than 11%, when $0.5\tau < Time < \tau$. The error increases for times above $Time = \tau$. When the interfacial tension is 2.5 [mN/m], the error is always below 10%, when $Time < 3\tau$; then, the error increases. The error is > 3% in the best of predictions for this interfacial tension value.

Analyses using the Taylor deformation or the *Mo*-shape parameter applied on the cross section of the drop, *W*- and *B*-axis, provide the worst predictions, except for Ca = 0.05 and 1.5τ . For these cases the approximation is between 10% < error < 15%; for the other cases, the error was more than 15%. When Ca = 0.05, the model with the *Mo*-shape parameter provides the weakest estimation with the error being larger than 15%.

The best match to estimate interfacial tension for a drop that was deformed in a flow with $\alpha = 0.13$ and then was relaxed to a near spherical shape is the *DDR method* using the Taylor deformation. However, this match was obtained analyzing *LW-plane*. Reviewing Fig. 5.14, this plane has a decay which differs more than the *LB-plane* compared as decay exponential behavior. In fact, the best adjusts to a decay exponential (Mo shape parameter) have the worst approximation. Another remark is that Mo shape parameter adjust an ellipsoidal drop, the interfacial tension that was well estimated with this parameter was Ca = 0.45, *i.e.*; the deformation of the drop was the largest, in theory, the best adjust must be the case when the drop has Ca = 0.05, when the drop is like a spheroidal shape object.

Based on results presented in Chapter 3 and 4 it is now clear that deformations along the three axes of the drop are different. At the end, *models of prediction as ellipsoidal forms are not appropriate*, because the retraction process of a drop appears to be the worse approximation when attempting to simulate an elliptical shape with an exponential decay. As well, taking the numerical data of Chapter 3 and 4, the projection of the drops on the *xy-plane* is clearly not an ellipse. Thus, all processes of retraction of ellipsoid drops will incur the errors observed. Using *LW-plane* data will present essentially the same problem, albeit with errors a whit smaller. We may say that the drop in the *LW-plane* is closer to an elliptical form than the conventional *xy-plane* projection: *LB-plane*.

Another possible interpretation of these observations is that theories that assume an exponential decay may be the correct ones, as shown in Fig. 5.14 and 5.15, but those theories clearly require improvements for an accurate estimation of the deformation shape as function of *Ca*, λ_{μ} and the flow parameter α . The existing linear models used to date are not good enough to describe accurately the retraction in time, with a poor prediction of the interfacial tension value. For this reason, a new theory is needed, even for the simplest liquids, such as a Newtonian fluid.

The interfacial tension values determined by a dynamical experiment indicate that a better prediction of γ comes from the third direction that is not analyzed in conventional experimental devices. This observation comes about the numerical calibrations presented here. But having a view of the third dimension is a difficult experimental task (Guido, Greco, & Villone, 1999). For cases (Yu, Bousmina, & Zhou, 2004) and (Mo, 2000), when the *W*-axis is well determined but the *L*-axis is only its projection, the obtained deformations are not the correct ones. Another complication is to get the data of precise drop dimensions: there are always uncertainties of the experimental device due to illumination, or the image algorithms to analyzed the shapes of the drops (Rojas 2014), (Rosas 2012), et cetera. For these reasons, I hope that numerical experiments will help to develop better estimations of the drops parameters and consequently better determination of the interfacial tension. As an example, is the fact of optimization of characteristic time it is possible using numerical data. With this information, the estimation of the interfacial tension will be improve with the less possible error intrinsic by the method

To estimate interfacial tension, it will be necessary to employ numerical simulations with experiments in the laboratory to have the information in the *LW-plane* to predict the interfacial tension using *DDR* techniques.

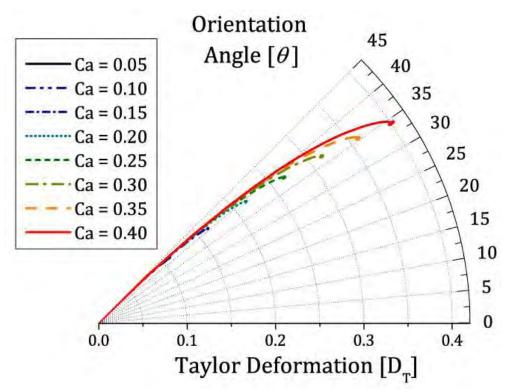
CHAPTER 6.

Shear rate vs. Capillary number. Effect on the steady flow form of drops

In Chapter 3 and 4, the analysis of evolution of the drop-form is given in terms of the behavior for the orientation and the deformation of the drop once the stationary state is reached. In this Chapter, I present and interesting variant based on the analysis for the drop deformation histories when the capillary number is fixed, but the shear rate is varied. That is, here all numerical experiments presented were carried out at constant *Ca*, but effects induced by *the intensity of the flow G* are systematically studied. *G* corresponds to the intensity of the rate of deformation tensor (Makosco, 1994), Eq. 1.6. If the case is *simple shear flow G* is known as shear rate, $\dot{\gamma}$; and in the case of *extensional 2D-flow*, *G* is the *strain rate*, $\dot{\epsilon}$. The nondimensional time *Gt* is the same for all experiments. As in Chapter 3 and 4, the observed behaviors are the same for different values of flow parameter α , thus here the Figures employed to illustrate the relevant results correspond to only the regime for $\alpha = 0.13$.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso


DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

6.1 Consequences of shear rate *G* in the stationary state of the drop for small value of rate of viscosity

In Chapter 3, the evolution of the shape of the drop is shown in Fig 3.1. In all figures plotted, the trace presents tiny oscillations at long times, with similar fluctuations on the trace for the orientation angle. At the beginning of this study, those oscillations were assumed to be due to a poor resolution of the mesh applied in these numerical simulations. However, when the mesh was plotted to make movies of the history of deformation of the drop, the resolution of the mesh performed very well, in all images; *i.e.*, the elements' shapes and the median curvatures were consistent with the data obtained. The resolution for all times was good enough to discard the presence of an abnormal deformation of the mesh.

Figure 6.1 Polar representation of Angle of Orientation vs. Taylor Deformation with $\alpha = 0.13$ and $\lambda_{\mu} = 0.012$.

The movies of the dynamics of drop deformation show a sliding motion of the mesh on the interface: The final shape of the stationary state and the tiny oscillations were quite obvious. These oscillations of the drop actually change the deformation and the orientation of the drop. However, the observed behavior of these tiny oscillations was not a function of mesh size resolution. The orientation of the drop plotted versus deformation of the drop is presented in Figure 6.1, for the long-time form under a flow with $\alpha = 0.13$ and $\lambda_{\mu} = 0.012$, as the data given in Chapter 3.

At the onset, there is no flow applied in the continuum phase, and the drop is spherical —the deformation is zero and there is no angle of orientation. Then, when the strong flow is applied, the drop starts to deform and suffers a re-orientation proportional with —along the direction of— the *eigen*-direction of the stress deformation tensor. At the end, when the long-time shape is attained, the deformation and the angle of orientation come to their final values. However, the "steady state of deformation" is characterized by an interesting behavior: there are oscillations. That is, curves in polar plots should finish in a single point when a stationary shape is attained. However, if these plots are observed with care, the stationary shape is not a point; in fact, there is a little curved closed trajectory at long times. This aspect motivated to analyze again this figure.

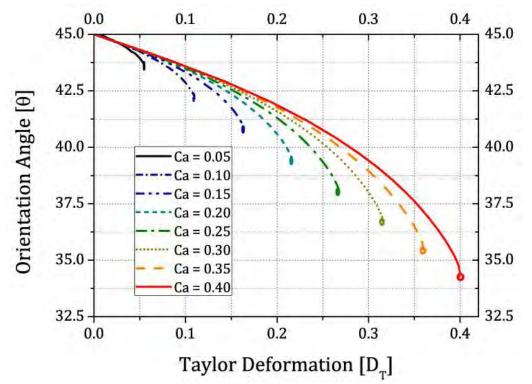
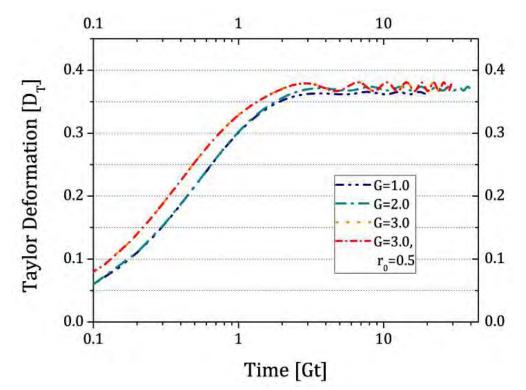



Figure 6.2 shows the same information of Fig. 6.1. However, the representation is not a polar plot, it is in a Cartesian form. Here, the final trajectory around the end

point is more evident than the previous plots. The information about these drops with low capillary number is clearer than the polar plot figure. The end "point" of the steady shape of deformation in polar plot are actually tight trajectories around a point. This final close trajectory corresponds to the oscillations mentioned above. In other words, the stationary shape in the numerical oscillations goes around searching for a stationary point.

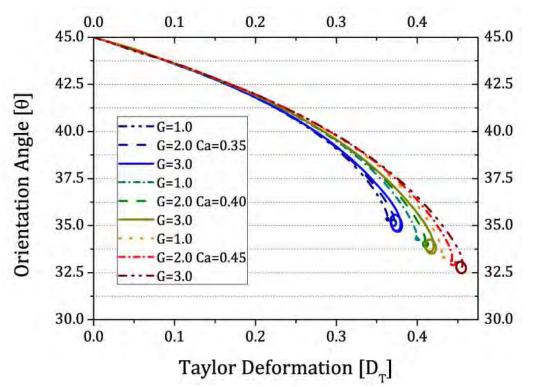

Comparing the polar plots data of Reyes (Reyes, 2005) and Rosas (Rosas, Reyes, Minzoni, & Geffroy, 2014) the *2D-numerical* and the experimental data referred have a similar behavior (trajectories around a point). However, the analysis of these curved trajectories around a point was omitted because the relevant behavior was due to supposed effects of the resolution of the numerical method (Reyes, 2005). In the experimental case, these oscillations were considered as normal variation of uncertainties of the control mechanism.

Figure 6.3 Evolution of Taylor Deformation for the same capillary number with different values of G.

To better understand the observed behavior, a large set of numerical simulations were needed. It was necessary to design new algorithms to achieve long

times of simulation, without a heavy computational cost. Initially, to optimize CPU-Time and to carry out the required number of numerical simulations, the *G* value (shear rate) was increased maintaining the capillary number fixed. For example, to perform a simulation for a capillary number Ca = 0.35, the time-length of every step was set at $h = 0.001 \, Gt$. Then, the stationary shape and the retraction time were observed only after 20,000 time steps. The idea was to set a larger value for *G*, in order to produce a simulation faster. For the case of Ca = 0.35, G = 2.0, the final number of steps were 10,000; in this manner, in less than 16hr the simulations were completed. The results for capillary number of Ca = 0.35 are shown in Fig. 6.3; the deformation histories of the drop, observed in 4 different experiments, were different.

Figure 6.4 Angle of Orientation vs Taylor Deformation for drops with the same Capillary Number with different values of G

In Figure 6.3, the long-time oscillations increased proportionally in size to the value of *G*. Also, the deformation in the steady state has a different final value (larger but less than 7% in most cases). Figure 6.3 shows an experiment where the parameter *G* and the initial radius of the drop were change while maintaining constant the value of the capillary number: Ca = 0.35. The final oscillations were similar as those

numerical results when the parameter *G* was the only change; *i.e.*, it appears that it does not matter if the radius of the drop or the interfacial tension is modified. In essence, the phenomenon of rotation of *the steady shape may be dominated by changes of the intensity of the applied flow*.

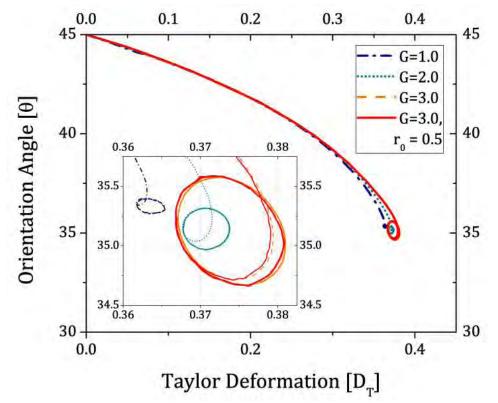
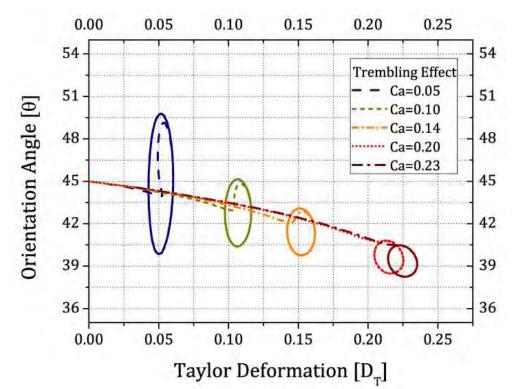



Figure 6.5 Angle of Orientation vs. Capillary Number for Ca = 0.35 and different values of G.

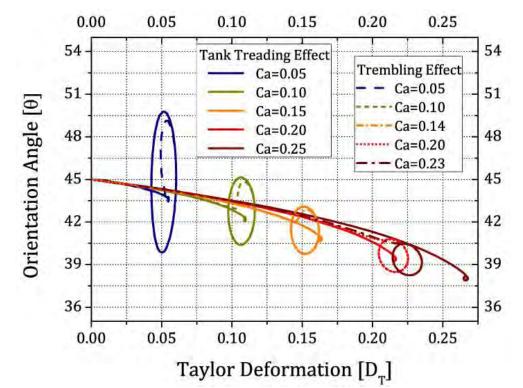
Figure 6.4 shows the trajectories of the orientation angle versus deformation of the drop, for capillary numbers below the critical capillary number $Ca < Ca_{cr}$, but with values large enough to observe appreciable states of deformation. These values are: $0.35 \le Ca \le 0.45$. It can be observed in Fig. 6.4 that close trajectories increase in size for the larger values of *G*.

Oscillations around a stationary state suggest the possibility of a Hopf bifurcation. During the last 7 years, several research groups (Zhao & Shaqfeh, 2011), (Lalanne, Tanguy, & Risso, 2013), and (Spann, Zhao, & Shaqfeh, 2014) have found similar phenomena for *vesicles in shear flow*. They found that the oscillation increase in amplitude as a result of larger shear rates in the *shear flow*. That effect is very likely

equivalent to the one presented above. However, there is no detailed analysis of drop deformations in neither strong flows nor the least for *simple shear flow*.

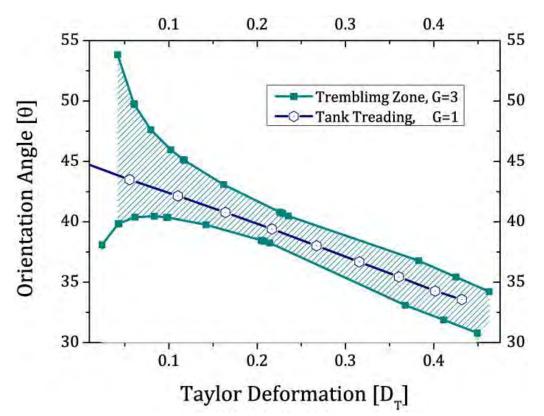
Figure 6.6 Trembling effect in drop deformation for different capillary number with G >> 1, $\alpha = 0.13$, $\lambda_{\mu} = 0.01$.

The numerical studies referred above indicate the sliding motion of the vesicle interface without altering details of its shape. These vesicles reach a steady orientation and deformation but also *slide* in the plane of the flow, in a motion similar to a sliding skin on a rigid body, and this effect is called *tank-treading*. In this case, the vesicle describes a similar trajectory as drops in Fig. 6.4 with G = 1. For plots of orientation angle vs. deformation, the *tank-treading* rotation is observed as a close tight trajectory at long times. The phenomenon of *tank-treading is observed in this simulations as the slipping motion of mesh elements on the interface*, while maintaining the orientation and deformation of the drop with very tight quasi-constant values.


The other solution of the Hopf bifurcation observed in vesicles corresponds to the *"trembling effect"*. For this second solution, vesicles suffer a continuous and simultaneous oscillatory reorientation as well as an oscillatory degree of deformation. That is, a small contraction-expansion of the vesicle, as well as a continuous jiggling of reorientation are observed; *i.e., the deformed vesicle trembles.* The plot in time of angle vs. deformation of this effect in vesicles is like the trajectories observed in Figs. 6.4, when G > 1. Figure 6.5 shows an analysis in the steady regime when Ca = 0.35, but different values of G. Again, there is a similar effect to *tank-treading* for the case when G = 1. However, by zooming in the last part of the evolution, the figure shows that there is a case like *trembling*. The other trajectories present clearer evidence of the *trembling* behavior. Finally, the last two trajectories are similar. Changing the radius and the interfacial tension and maintaining the same capillary number does not affect the trajectory as Fig. 6.3 shows.

Until the data shown in Fig. 6.5, all cases observed correspond mainly to *trembling effects*. The second solution referred to as "*tank-treading*" appears when values of the intensity of the applied flow *G* are small and $0.03 < Ca < Ca_{cr}$. These dynamics are characterized by an interesting behavior. Looking again the close trajectories of Fig. 6.5, the *trembling* condition corresponds to an ellipsoidal trajectory in the orientation angle vs. deformation diagram; in contrast to *tank-treading* can still be best characterized by a tight close trajectory.

A third possible solution, which corresponds to the last case observed in vesicles in *simple shear flow*, is the *tumbling* solution. The *"tumbling effect"* (or solution) corresponds to a closed trajectory with a *bell shape*, carefully described in the work of Shaqfeh and coworkers (Spann, Zhao, & Shaqfeh, 2014) and observed while studying vesicles. The changes of the orientation angle and deformation are the largest for these trajectories, with a rather unusual form: a bell shaped. To observe this phenomenon in vesicles, the shear rate values must be very large; the *tumbling effect* was not observed.


Figure 6.7 shows different drop simulations for cases when values of *G* are larger than 1, and the *trembling* solution is observed, in all cases. As the capillary number is reduced, the observed closed trajectories become more elongated. In other words, for a small capillary number and for very large *G* values, we observe, in Figure 6.6, the transition between *trembling* and *tumbling*. Figure 6.8 shows the comparison of the trajectories for similar capillary values with a notable difference in the value of *G*. The Trajectories are similar, only the parameters characterizing steady states change.

Furthermore, evidence of the Hopf bifurcation is observed in vesicles. This evidence implies the necessity to review the drop deformation in strong flows by mapping these transitions of the configurations with the purpose of understanding these bifurcations.

Figure 6.7 Comparison of the trajectories of steady states for Angle of Orientation vs. Taylor Deformation of different Capillary Number, but different values of G

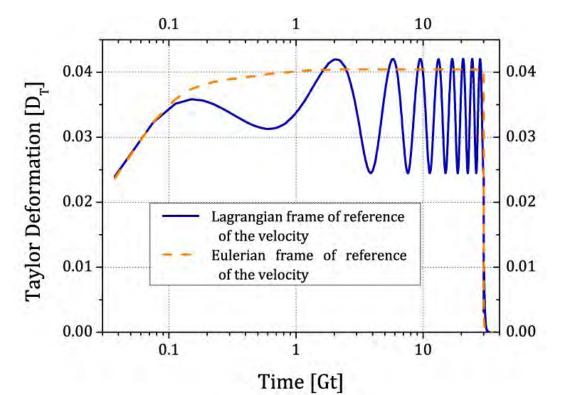

The tiny oscillations described in Chapter 2, and observed in all subsequent Figures, are due to increments of the value of the shear rate *G*. When the intensity *G* increases, drops simultaneously elongate and rotate towards the outflow axis until a final orientation and deformation is reached; this is essentially the *tank-treading phenomenon* (Please recall that the final steady state orientation of the drop under small *Ca* is not necessarily closely aligned with the outflow axis). In contrast, a final state with finite oscillatory changes in the deformation and orientation corresponds to the *trembling effect*, and was reported too; so, *trembling* refers to jiggling about the equilibrium orientation.

Figure 6.8 Comparison of the trajectories of steady states for Angle of Orientation vs. Taylor Deformation of different Capillary Number, but different values of G,with $\alpha = 0.13$ and $\lambda_{\mu} = 0.012$. The blue symbols are the steady states of drop deformation for capillary numbers (Ca = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, and 0.45) with G = 1. The green symbols are the steady states of deformation obtained by G = 3.

The concepts of *tank-treading* and *trembling* have been observed for capsules. However, there are no reports of these effects in the literature of drop deformation. One possible explanation for this lapse of understanding may be due primarily to the use of the normal component of the velocity (Pozrikidis, 1992) for previous numerical studies. When the drop deforms, many of the numerical codes use the Eulerian representation of the mesh and reconfigure it, so, they could not observe the steady displacement of the mesh in the plane of flow by the effect of the flow vorticity, in the Lagrangian representation.

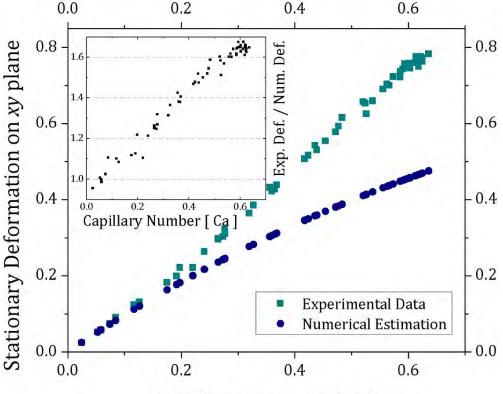
The numerical code employed here does not refine the initial mesh, so, a Lagrangian representation is used to avoid distortions of the elements due the deformation of the mesh. For this reason, to observe specific features of the dynamics of deformation, the tangential component of the velocity of the mesh is determined and is employed to advance the time evolution while being useful as well to evaluate possible surface slipping. This additional information better exposes, in an unambiguous manner, the *tank threading* phenomenon described. Figure 6.9 shows the effect on plotting the drop deformation vs. time, when using different frames of reference, the Eulerian frame of reference of the drop versus the Lagrangian frame — specifically, the normal and the tangential components of the velocity field.

Figure 6.9 Comparison of evolution of drop deformation in the trembling effect when the velocity is calculated using only the normal component of the velocity (dash line). The velocity calculated using the normal and tangential component employed is observed in the blue line. Ca = 0.04, $\alpha = 0.13$ and $\lambda_{\mu} = 0.012$.

The values of the drop deformation versus time, shown in Fig. 6.9, correspond to the trajectories of Fig. 6.8, indicating the translation of the mesh along the tangential direction of the applied local flow. A similar behavior is reported by Spann (Spann, Zhao, & Shaqfeh, 2014), the tangential motion of the mesh, like that of a conveyor belt, is associated to *the phenomenon called tank-treading*.

6.2 Consequences of shear rate *G* on the stationary state of the drop for large capillary number values.

All numerical experiments presented here attempt to simulate an equivalent flow condition, based upon the dimensionless numbers, to previous *experimental studies* of drops in flows used several times the same drop (that is, size, viscosity and surface tension being fixed) while the parameter that changes in experiments is correspondingly the shear rate, in *simple shear flow*; the *strain rate*, in *extensional flows*; or in strong flows, the parameter *G* (Bentley & Leal, 1986b), (Kennedy, Pozrikidis, & Skalak, 1994), (Rosas I. Y., 2013).


For the experiments presented in Chapter 3, the numerical method predicts similar deformations as those observed in the experimental data. Thus, the initial idea was to validate the previous experimental data. Motivated by these results, many numerical experiments were carried out under the regime of $\alpha = 0.03$, $\alpha = 0.05$ and $\alpha = 0.13$. For these runs, the capillary number used constant values for the surface tension, the viscosity of the continuum phase and the radius of the drop. Only the parameter *G* was varied in order to vary the capillary number. The experimental data, took values of the parameter *G* within the range of: $0.5 \le G \le 1$. Therefore, my numerical experiments were performed with these data inputs.

In the previous Section, I emphasize the importance of *the intensity of the flow* for the selection of the solution describing the drop deformation elucidating the *tank-treading, trembling* and other possible solutions. That is, the numerical experiments maintained the values of the capillary number fixed, but the parameter *G* varied.

In contrast, as Figures 6.10, 6.11 and 6.12 show, the numerical and experimentally evaluated steady shapes of drop deformation diverge; most importantly, for different capillary numbers and for a large set of different flows: $\alpha = 0.03, 0.05$, and 0.13, respectively. In all cases, the numerical predictions matched well the experimental values, but only for small capillary numbers. However, as the value of the capillary number increases, differences between numerical and experimental data

grow; up to the critical value of the capillary number (that is, when the drop can no longer attain a stationary shape).

Figure 6.10 shows the numerical vs. experimental difference for the deformation parameter caused by a flow similar to simple shear: $\alpha = 0.03$. Differences are small when Ca < 0.2: less than 20%; then, they increase up to 60% near the critical capillary number, when numerical data predicts a value below $D_T = 0.5$, while the experimental data is close to $D_T = 0.8$. Figure 6.11 and 6.12 show similar discrepancies under more elongational type of flows; *i.e.*, for low values of the capillary number, the numerical method correctly predicts steady Taylor deformations, in contrast with larger capillary numbers. However, as the parameter α increases, differences decrease from 60% (for $\alpha = 0.03$) to 25% (for $\alpha = 0.13$).

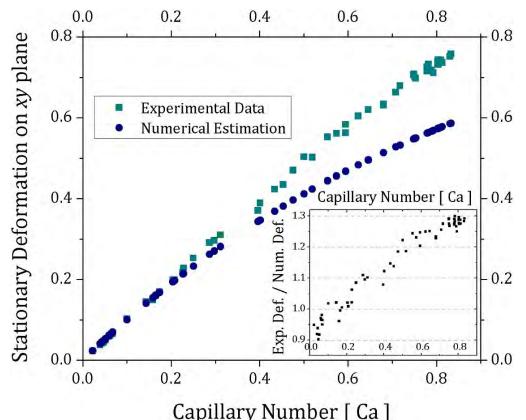
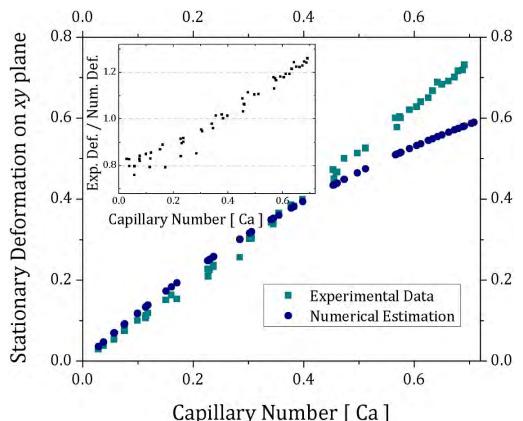

Capillary Number [Ca]

Figure 6.10 Comparison between experimental and numerical data of steady deformation on xy plane vs capillary numbers with $\alpha = 0.03$, $\lambda_{\mu} = 0.012$. The insert Figure is the numerical error w.r.t. the experimental data.

The input data for numerical experiments, employed in previous Chapters, were selected based on the best match between numerical vs. experimental data. The


next *question to address* was to study and understand possible reasons for the failure of the numerical predictions of the drop deformation during the steady state phase and for the larger capillary numbers. The main motivation was the possibility of having an accurate numerical method to simulate large steady deformation, near to the break up point (rupture) of the drop

Because rupture-of-drop conditions is a very relevant topic of study in multiple applications, understanding the physical processes around the events before rupture are essential to a detailed modeling of the whole process. Modeling those pre-rupture processes with the BEM3D algorithm could give a complete panorama about large and critical deformations. However, as Figures 6.10, 6.11 and 6.12 indicate, reaching the capillary critical values may not guarantee attaining the associated critical state of deformation as was expected.

Figure 6.11 Comparison between experimental and numerical data of steady deformation on xy plane vs capillary numbers with $\alpha = 0.05$, $\lambda_{\mu} = 0.012$. The inset Figure is the numerical error w.r.t. the experimental data.

At the beginning of this Chapter, the study of a drop in a flow emphasized the states of deformation when the parameter G strengthened. Also, these results indicated that the shape attained for long times (commonly referred as) the stationary state can, in fact, be *a region about* a given value. Trajectories about a point are shown in Fig. 6.5. If increments of G for the flow around a drop could cause a new state of deformation as in Fig. 6.10, 6.11, and 6.12, then there are at least two types of flow kinematics providing two solutions: one with a very tight trajectory about a point and the other a trajectory about an ampler region about a point. The first one corresponds to the *tank threading* conditions while the latter to the *trembling* solution.

Figure 6.12 Comparison between experimental and numerical data of steady deformation on xy plane vs capillary numbers with $\alpha = 0.13$, $\lambda_{\mu} = 0.012$. The inset Figure is the numerical error w.r.t. the experimental data.

The question now is to determine which of these two possible solutions was observed experimentally by Rosas *et al.* Carrying out BEM3D simulations about the critical capillary number, while varying (increasing) the *parameter G* of the flow, in a similar manner to the experiments of Rosas, then the "correct" solution, observed experimentally, could be determined. So, if multiple solutions exist, then these simula-

tions may imply that there are at least two Hopf bifurcation solutions. Simultaneously, the parameter space for the other branch (solution) and its critical values could be investigated numerically for future comparison with experimental studies of these phenomena. Furthermore, one, or both solutions may lead to rupture; but which ones and under what conditions is still a question not addressed experimentally.

The next analysis considers effects due to large values of the *G* parameter. Here, I mean *G* values thrice and four times larger than the values used in Fig. 6.10 to 6.12. As in Chapter 3, the viscosity ratio was $\lambda_{\mu} = 0.012$, and $\alpha = 0.13$. The analysis presented in this section will be focus near the capillary critical number for $\alpha = 0.13$.

Figure 6.13 shows the deformation of the principal *L-axis* of the drops for different capillary numbers. Amplitudes of oscillation increase as *G* increases. The largest value of *G* implies less observation time, because the time resolution (time step for evolution) and the distortion of the mesh (characteristic length-scale for the numerical code become critical. This distortion causes that, numerical simulations finish with obvious numerical errors.

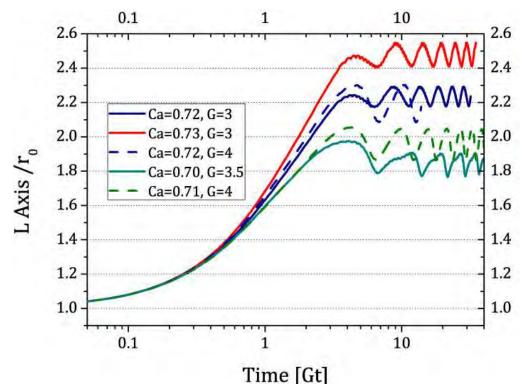
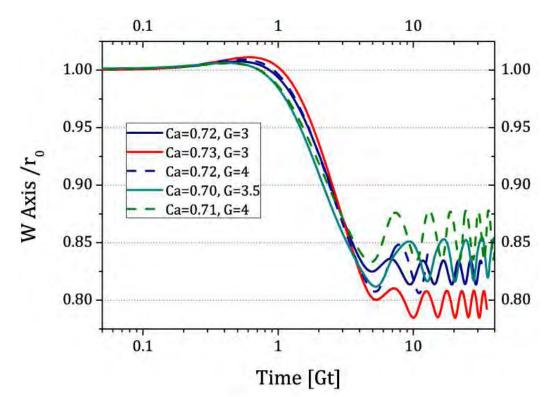
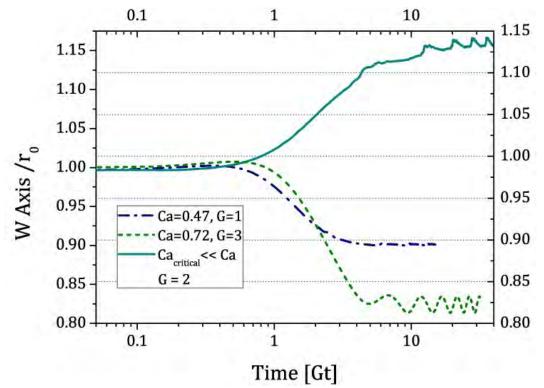



Figure 6.13 Comparison of the L-axis when capillary number is increased as function of Parameter G, with $\lambda_{\mu} = 0.012$, $\alpha = 0.13$.


In order to avoid a poor resolution (a distorted mesh) due to a large time step, for these simulations the number of time-steps was set larger, maintaining constant the total time of simulation. These new simulations are carried out with a higher cost of the CPU-time. The new predictions of the steady states of deformations do not show significant differences: A slightly larger deformation, but essentially the same frequency and amplitude for the long-time oscillations. The Hopf bifurcation is observed as was predicted in the latter Section, but a critical deformation is not attained, as was suggested. The steady state is the same in general terms.

A critical deformation is attained when the drop form is no longer able to sustain a steady deformation of the drop, and it keeps on deforming. Unless an unexpected shape becomes dominant, which this is the case, and may provide insight about a Hopf solution not considered earlier. Thus, Figure 6.14 shows the evolution of the *W*-axis (along the neutral direction of the flow field) for the same experiments. Here, there is a small change in the early overshoot of the *W*-axis evolution. At long times, it is quite obvious that the length of *W*-axis remains significant without an obvious change in the steady deformation attained. The drop mass distributes along the *z*-axis more heavily, with a higher average curvature on the drop, while restraining the elongation of the drop. In contrast, there is only a change of the frequency of the oscillations, as was shown in the latter Section.

The data of Figure 6.14 indicate that the numerical *critical* capillary number may not the same as the experimental value indicates. In this case, I can assume that the numerical method does not represent the same dynamical behavior of previous laboratory experiments. However, if the numerical simulations do not reach the critical deformation, then what will happen if the capillary number is increased by numerical simulation that advance very slowly the simulation time to avoid the distortion of the mesh? These simulations will attain the critical deformation? What is the drop shape at this critical state? To elucidate these questions, a new set of experiments was developed.

Figure 6.14 Comparison of the W-axes when capillary number is increased as function of Parameter G, which $\lambda_{\mu} = 0.012$, $\alpha = 0.13$.

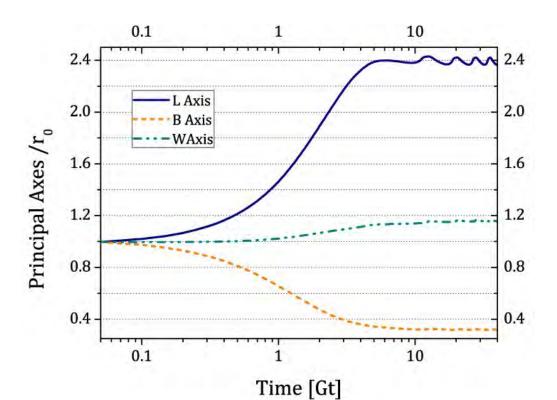
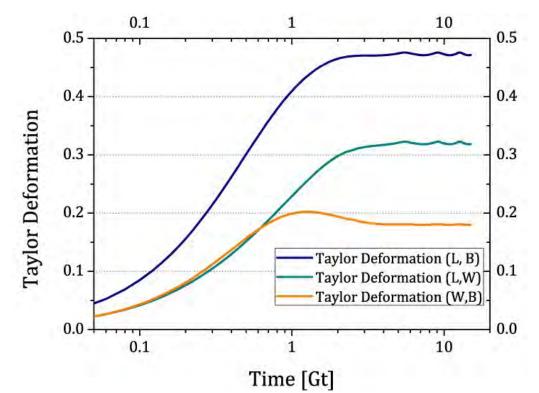


Figure 6.15 Comparison of the W-axes when $Ca_{cr} \ll Ca$, which $\lambda_{\mu} = 0.012$, $\alpha = 0.13$.


The numerical experiments were carried out by mainly visualizing the evolution of the *W*-axis as a new, relevant behavior. Remembering Fig. 5.3, the evolution of the *W*-axis in a strong flow, $\alpha = 0.13$, and different values of the capillary numbers show small early overshoots in every experiment. These overshoots increase as the capillary number grows. Figure 6.15 shows plots of the *W*-axis, when the capillary number value increases as function of the *G* parameter; with $\alpha = 0.13$ and $\lambda_{\mu} = 0.012$. In these experiments, capillary numbers attain values above the critical value. The time-step is smaller than all cases before, to avoid the abrupt distortion of the mesh.

The results indicate an evolution in the overshoot of the *W*-axis. The overshoot always starts at one (spherical equilibrium), then there is an increment in the value of *W*-axis which is above one. At the end of the numerical simulations, the value of the *W*-axis decreased to the final state. However, when the capillary number increases markedly, $Ca \gtrsim Ca_{cr}$, then the overshoot disappears and the normalized values of *W*-axis are always larger than one. In other words, the *cross section of the drop* goes to a new state which is flatter than in previous simulations. Figure 6.16 shows the three principal axes evolution of a drop when $Ca_{cr} \lesssim Ca$, $\alpha = 0.13$ and $\lambda_{\mu} = 0.012$. Compared with plots in Figure 3.2, the main difference is the behavior of the *W*-axis have a similar time-scale, however the *W*-axis presents always a delay. The little oscillations are a consequence of the Hopf-bifurcation mentioned earlier.

Figure 6.17 shows the *Taylor deformation values for all planes of the drop*; for a drop with Ca = 0.40, $\alpha = 0.13$ and $\lambda_{\mu} = 0.012$. The deformation in the (B, W) plane presents an overshoot caused by the evolution of the *W*-axis. Figure 6.18 shows the evolution of Taylor deformations when $Ca_{cr} \leq Ca$, $\alpha = 0.13$ and $\lambda_{\mu} = 0.012$. The deformation on the principal plane, *xy*-plane or (L, B) plane, presents the largest value of deformation. The cross section shows a rather flat deformation, along the neutral direction of the flow; *i.e.*, the (B, W) plane shape presents a very flattened form.

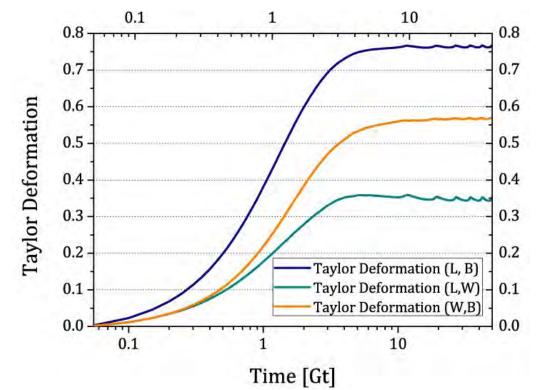
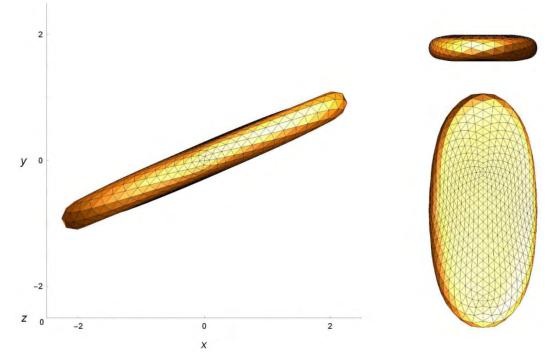


Figure 6.16 Principal Axes evolution in the time for a drop whit $Ca_{cr} \ll Ca$, $\lambda_{\mu} = 0.012$, $\alpha = 0.13$.

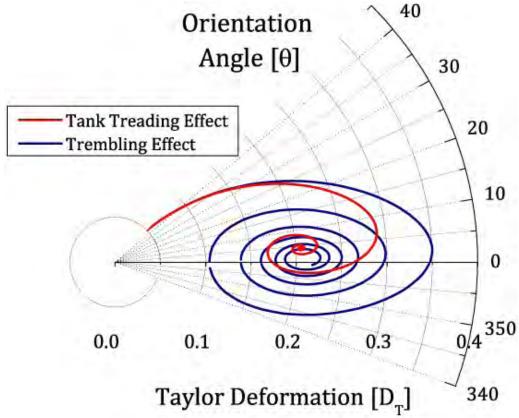
Figure 6.17 Taylor Deformation in different planes: Ca = 0.40, $\lambda_{\mu} = 0.012$, $\alpha = 0.13$.

In Chapter 4 and 5, the cross section of deformed drops, by strong flows show a non-circular shape. The shapes were clearly more elliptical than circular, with a cross sectional area less than r_0^2 . Thus, drops in steady state for $Ca \leq Ca_{cr}$ are ellipsoids. However, as the value of the capillary number increases, the shape of drops distorts more, away from the ellipsoidal shapes observed for small *Ca* values.



Finally, when the capillary number is large as a consequence of the parameter *G*, as shown in Fig. 6.18, this kind of deformed drops become to "super *guarache*" — *Guaraches* represent deformed drops with the cross section flattened, the principal axes *W*- is larger than *B*-, and the size of *W*-axis may be larger than the initial radius of the drop. Figure 6.19 shows the *super guarache* obtained with $Ca_{cr} \leq Ca$, $\alpha = 0.13$ and $\lambda_{\mu} = 0.012$. The different views are orthogonal to the principal axes of the drop; the dimensions observed are dimensionless using the initial radius as characteristic length.

For a drop in the regime of $\alpha = 0.13$ and $\lambda_{\mu} = 0.012$, deformation of *super guaraches* attain approximately the same values as the experimental data reported about the critical deformation (the maximum deformation for a steady state shape for the *L*- and *B*-*axis*). However, the capillary numbers are not the same in experimental


108 | Page CHAPTER 6: Shear rate vs. Capillary number

and numerical experiments. Therefore, there is a need to understand in detail the behavior of critical deformation of drops. However, even though, there is a good approximation by using the BEM3D code for capillary numbers below critical values, there is no good answer to address discrepancies, mainly because experimental data about the *W*-axis is not yet available. This is the crucial piece of information missing as predicted by these numerical results, information that becomes indispensable for a detailed comparison of the numerical and experimental data when the capillary number of a drop is near the critical value.

Figure 6.19 Guarache shape obtained in a drop with $Ca_{cr} \ll Ca$, $\lambda_{\mu} = 0.012$, $\alpha = 0.13$. There is the different perspectives orthogonal to the principal axes. Orientation Angle $\theta = 23.85^{\circ}$.

However, there is a possibly useful perspective on the problem outline above. Considering $\alpha = 0.03$ and $\lambda_{\mu} = 16$, the drop deformation near critical capillary number exhibits different shapes. In general, for drops with $\lambda_{\mu} = 16$, all shaper are closer to ellipsoidal shapes and rupture is not observed for most cases, up to the Ca_{cr} . Thus, a set of numerical experiments were made for viscous drops, shown in Fig. 6.20, as possible solutions of a Hopf bifurcation The difference with the experiments of Chapter 4 was in the values of *G*. In Chapter 4, *G* had a value near unity, $G \sim 1$. Now, the experiments were performed with $G \sim 3$. Figure 6.20 shows the polar diagram of orientation angle vs. Taylor deformation. The evolution of the drop has a behavior seen in the experimental results of Rosas *et al.*, (Rosas I. Y., 2013). This comparison is for a drop with Ca = 0.87. The *trembling effect* provokes a history of deformation of the drop with more oscillations as reported by Rosas. This effect was discovered recently. However, the numerical simulations of these experiments need a lot of CPU-Time, and a detailed analysis of Hopf bifurcation will be part of another study.

Figure 6.20 Tank-treading and Trembling effect of a drop with Ca = 87, $\lambda_{\mu} = 16$ and $\alpha = 0.03$.

In this Chapter I present the dependency of the drop deformation as a function of the parameter G (intensity of the rate of deformation tensor (Makosco, 1994) Eq. (1.6)). The numerical vs. the experimental data differences near the critical capillary number was not possible to resolve. However, the evidence for the existence of a Hopf bifurcation in drops should motivate a new type of experimental and numerical studies. In fact, the analysis around the *trembling effect* explains part of the

dynamical of the oscillations when the rate of viscosity is high, Fig. 6.20. In general, the oscillatory behavior was previously explained only by the difference of the viscosity ratios of the fluids. It was a surprise to find out that this dependency (of the oscillatory behavior) may depend on G as well.

CHAPTER 7.

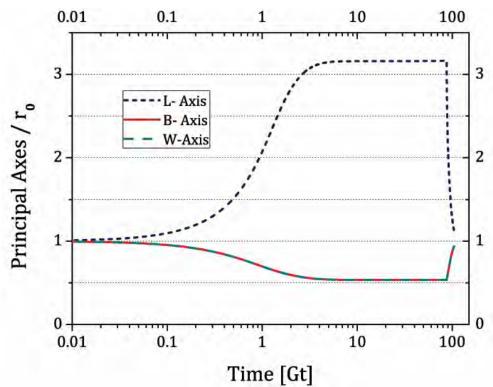
The form of a drop immersed in an extensional flow

Extensional fluids are an important branch in fluid mechanics because its kinematics does not include any vorticity. Historically since Taylor's work, (Taylor, 1932) and (Taylor, 1934), studies of drop deformation immersed in another fluid has used mostly *simple shear flows* with a more limited archive of results on elongational flows. In this Chapter, I present results for the simplest case, *the 3D elongational flow*, *i.e.*; the drop will be compressed in two directions while being elongated in the third axis. To study these flows, there is an important advantage for the corresponding theoretical analysis published by Acrivos and Lo, (Acrivos & Lo, 1978). Thus, in this Chapter, a family of steady states of deformation for this flow is shown, with comparisons to Acrivos & Lo model.

In this way, pursuing the above objective, the analysis of *extensional 2D-flows* can now be carried out addressing a different perspective, similar to what Acrivos and Hinch did, (Hinch & Acrivos, 1979). For reasons that will become obvious in the next Chapter, the elongational *2D-* and *3D-flows* together add to a more detailed and consistent understanding of solution for the deformation behavior of drops. However, it is essential to understand first the simpler *3D-flow* for subsequently proceeding to the *2D-flow* presented in Chapter 8.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

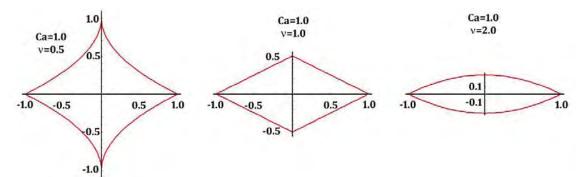

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

7.1 Drop deformation in uniaxial flow

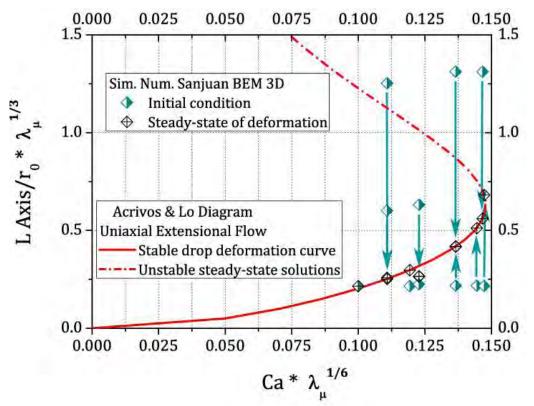
Drop deformation in uniaxial (*3D*-) flow is the simplest case of drop deformation to imagine because the drop only elongates. Idealized, as all theoretical and numerical approximations do (Taylor, 1932), (Acrivos & Lo, 1978) and (Spann, Zhao, & Shaqfeh, 2014), the drop remains always fixed in the flow field. Thus, the drop does not rotate, is always in the center of the flow, and the drop simply elongates in one direction as is pushed in from the other two directions. Figure 7.1 shows the evolution of the axes of deformation for a drop in uniaxial flow. The *B- and W-axes* are fully equivalent and show the same behavior (axisymmetric deformation). Figure 7.1, shows that the drop attains a stationary shape, and when the flow is stopped, the drop returns to a spherical shape; *i.e.*, this phenomenon is always observed when *Ca* is less than the critical capillary number *Ca* = 0.31, for $\lambda_{\mu} = 0.01$.



To imagine the deformation of the drop is easy, however trying to solve the problem in theoretical form is not. The next part is a summary of (Acrivos & Lo, 1978) model and its analytical results. To simplify the fluid dynamics of drop deformation in uniaxial flow, their working assumptions are based on an axisymmetric shape for the

drop, as well as assuming a known solution for the flow inside, outside and on the surface of the drop. As most numerical methods do, Acrivos and Lo solved first the form of the surface of the drop. The flow outside the drop at infinity is the uniaxial flow. Inside the drop, Acrivos and Lo set the viscosity of the fluid being lower than the continuum phase, so $\lambda_{\mu} \ll 1$; assuming the opposite does not seem reasonable for the possible deformation will be weak.

Acrivos and Lo insight is based upon the value of these approximations to determine a family of solutions of the steady state of deformation of drops when a uniaxial flow was applied. This assumption solves the problem inside the drop because the flow inside the drop is essentially due to the hyperbolas generated by the imposed flow. With this simplification, Acrivos and Lo obtained the configuration of the shape of the surface of the drop.



This analytical drop-form solution is plotted in Figure 7.2. The analytical solution is a function of the length of the axis of elongation (z in this case) and the v parameter (parameter which is a function of pressure of the drop, capillary number and intensity of the flow). The interface shape is given by

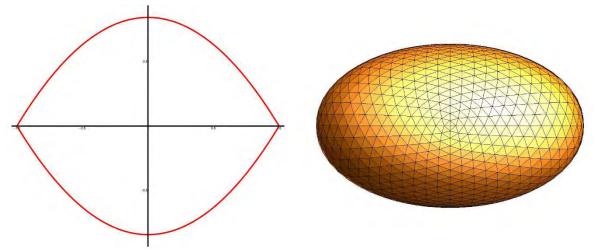
$$R(z) = (2\nu)^{-1}(1 - |z|^{\nu}).$$
(7.1)

If the value of ν is small, $0 < \nu < 1$, the configuration of the drop is similar to the hyperbolic configuration of the flow. If $\nu = 2$, the shape form becomes a paraboloid by the term $|z|^{\nu}$. For these forms, steady states of deformation of drops are like a common football. There are many solutions if $2 < \nu$, but the parabolic shape obtained changes very little. Then with the shape of the stationary state the flow inside and outside the drop are obtained by an analogous algorithm to that of numerical methods.

Finally, the assumption of $\lambda_{\mu} = 0$ is taken, and a diagram of the deformation of the drop and the capillary number is obtained. The difference between the diagrams shown in Fig. 3.5, 3.7 and 4.5 is the employed value of λ_{μ} in those diagrams. My numerical method uses values of the ratio of viscosity $\lambda_{\mu} = 0.01$. Here, λ_{μ} is low, but finite; *i.e.*, the assumption of Acrivos and Lo $\lambda_{\mu} = 0$ will provoke a different behavior in the same diagram. With this idea, the curve predicted by Acrivos and Lo of deformation was compared with the numerical data. Both diagrams are shown in Figure 7.3.

Figure 7.3 Diagram of Steady State of deformation in extensional 3D-flow made by Acrivos and Lo (lines, $\lambda_{\mu} = 0$) and the numerical experiments (marks $\lambda_{\mu} = 0.01$).

The theoretical solution of Acrivos & Lo was obtained applying an *asymptotic analysis* around the elongated axis of the drop in the *slender body theory*. Their results are plotted in Fig. 7.3 and presents two branches of solutions The first, *the continuous line* corresponds to the steady state of deformation for a drop in a steady uniaxial


flow, with a drop shape predicted to be stable. The second, *dashed line*, is an unstable solution. Physically, for an inviscid drop immersed in a uniaxial flow, the shapes that drops will attain resemble a continuous line: an infinitely slender body. If there is no flow, the ratio $L - axis/r_0$ is 1. If the conditions of equilibrium of stresses are attained, the ratio $L - axis/r_0$ must have values greater than 1, because it is an indication of the deformation of the drop. Employing the relation between $(L - axis/r_0) * \lambda_{\mu}^{1/3}$ and $Ca* \lambda_{\mu}^{1/6}$ it is possible to obtain the equilibrium conditions for a drop with $L - axis/r_0$ of value near 1 and a small but finite strength of the flow applied. When the viscosity is small, i. e., of $\lambda_{\mu} = 0.01$, the equilibrium deformation is the first mark in Fig. 7.3; corresponding to $Ca* \lambda_{\mu}^{1/6} = 0.1$. That is, when $\lambda_{\mu} = 0.01$, stable steady solution of drop deformation will be observable from this value to the limit at 0.148, i. e., $0.1 \leq Ca* \lambda_{\mu}^{1/6} < 0.148$.

With this information, a series of numerical simulations were carried out. In Figure 7.3, green markers correspond to the initial elongation (arbitrary) conditions of the simulations. Black markers are the long term steady state of deformation that the numerical simulation attained. In the numerical experiments here reported, the initial conditions considered two cases. The first, the more natural experiment, in the sense that the initial conditions were those of the drop at rest (spherical shape with $(L - axis) / r_0 = 1$) evolving until reaching a steady state of deformation. The second type of experiments were analogous to those used by Stone when studying *extensional 2D-flows*, (Stone & Leal, 1989b), beginning with an elongated drop.

Stone drop shapes are those reached after a steady flow with a capillary number near the critical value. Afterwards, a second phase is applied (with a flow with half of the previous *Ca* value), and monitors how the drop goes to a second steady state or one of critical behavior or breakup (even though the capillary number is lower, the initial elongation for this second phase of the flow history is larger, with respect to the new capillary number). The idea here is using initial values of the drop elongation that correspond to positions on the plot of Fig. 7.3 away and above the stable line, and observe if drops elongation evolves to a steady state of deformation

described by Acrivos and Lo, or if there are drops that evolve toward an unstable state —the second branch solution, with an eventual rupture. Figure 7.3 shows all initial deformations as green markers predicting that it does not matters the initial value, drops will always go to the steady state condition (black markers, directly below).

Figure 7.4 is a comparison of the steady shape of a drop in uniaxial flow. The left image is the theoretical results of Acrivos & Lo, employing Eq. 7.1 to obtain the shape of the drop with v = 2, Ca = 0.26, and L - axis = 1.375. The predicted shape by numerical computations is presented in the right-hand part, with the same capillary number and $\lambda_{\mu} = 0.01$.

Figure 7.4 Comparison of a drop in uniaxial flow in steady shape. Theoretical shape by Acrivos & Lo, left; and BEM3D, rigth. Ca = 0.26 and $\lambda_{\mu} = 0.01$.

Figure 7.4 shows that drop shape differences are obvious, in particular Taylor's deformation measures. Both predictions are similar in the length of *L*-axis, however, the local curvature of the drop is not. The deformation attained with BEM3D models is always higher than predictions by Acrivos & Lo. Also, the theoretical shape has always an end pinch. This pinch configuration is unstable because its local curvature tends to zero. Acrivos and Lo made that reference. In the case of a finite λ_{μ} , the end pinch must disappear and we recover the solution as numerical data indicates. These pointed ends in the theoretical shape are never present in the numerical shape. As the ratio of viscosity increases, differences also increase. For example, by changing the parameter ν to $\nu = 2.5$, the new shape obtained is similar in global form to that of the BEM3D model. HoweverThe drop forms shown in Fig. 7.4 correspond to the shapes of

the second black mark from left to right in Fig. 7.3. The pointed drop shape has been observed in many experiments where the local interfacial tension is dependent on the surface position. So, when a flow is applied, the high mobility of the tensoactive agents cause a concentration of surfactants mostly at the ends of the drop, reducing drastically the local surface tension, thus, inducing high curvature tips. Here, the surface tension value is fixed in these numerical simulations, and there is no gradient of concentration of surfactant (no variation of the value of surface tension) on the surface of the drop. Hence, a smother variation of curvatures is the only possible shape solution.

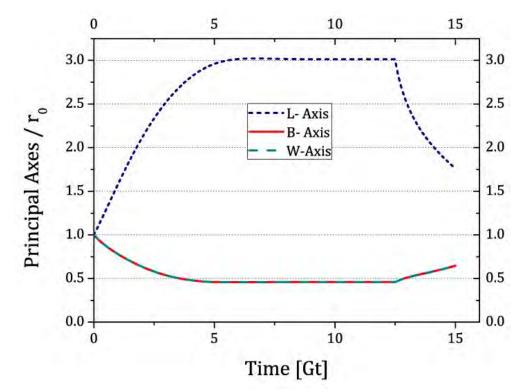


Figure 7.5 shows the conventional diagram of Taylor Deformation-*vs*-Capillary number. However, simulations show that Taylor deformation is very small for a weak value of the capillary number; that is, simulations indicate that a remnant flow —with a nonzero value of *G*, which appears in the capillary value— predict a quasi-spherical drop. As the *Ca* increases beyond the value of 0.32, the steady state shape deformation is higher. The relationship of deformation vs. flow is not linear and similar to the curved shape when the critical deformation is attained, as shown in Fig. 7.3.

An important observation of Figure 7.3 and 7.5 corresponds to the last two capillary number shown. In Fig. 7.5, the last value has the biggest deformation attained, with a steady shape. In Fig. 7.3, the steady state solution for this capillary number, corresponds to the first marker from right to left. The steady state attained is on the unstable theoretical solution. This result is consistent with the fact that theoretical solution is for inviscid drops, $\lambda_{\mu} = 0$, and the solution may be valid as well for small values of λ_{μ} . However, if λ_{μ} increases, the approximation will tends to fail. The analysis in Fig. 7.3 indicates that for weak deformations the theoretical prediction is only approximated. However, for higher ratios of viscosity, the drop shapes at the extremes ought to differ. Regarding again Fig. 7.3, the same analysis for uniaxial flow implies that, up to $\lambda_{\mu} = 0.7$ steady shapes do not exist —for $Ca * \lambda_{\mu}^{-1/3} > 0.148$, and having assumed $((L - axis) / r_0) = 1$). With these data, an equivalent Acrivos and Lo diagram for large viscosities ratios would indicate that there is no equilibrium shape for a drop; it does not matter if the drop is a sphere, an analytical solution does not exist. That idea appears to contradict the fact that there exists a steady state of deformation in 2D-extensional flows as was shown in Chapter 2. 2D-extensional flow is a special kind of strong flow, but for low capillary numbers and leaving out effects due to noncircular cross-section of the drop, the existence of (numerical) steady shapes may imply, in general, the existence of steady states for *uniaxial flows*. Figure 7.6 shows the predicted (numerical) Taylor deformation in *3D-extensional flows*, for $\lambda_{\mu} = 1.0$ and Ca = 0.1. The plot shows how the steady state is attained in its principal axes.

Chapter 4 shows as well there exists the possibility of steady shapes for high ratios of viscosity. So, here I study the evolution of diagram Acrivos & Lo for systems with a large ratio of viscosities. Theoretically, the study for viscous drops immersed in a *uniaxial extensional flow* can be treated analogously to that of Acrivos and Lo. However, in this new approximation the inside flow must resemble that observed when using the numerical method. Thus, the inner flow can no longer be mainly shaped by hyperbola streamlines, as predicated by Acrivos analysis, where the important underlying assumption to obtain their diagram is an inviscid drop: $\lambda_{\mu} \ll 1$. So, for steady state flows, there cannot exist inner-flow hyperbolas. Even more, there is a strong likelihood

that the inner flow may be characterized by two toroidal vortices, aligned both with the axis of deformation, and with a skin flow from the waist toward the ends of the drop. These streamlines are a consequence of balancing stresses generated by the outer-flow and the interfacial stresses of the drop that maintain an equilibrium shape.

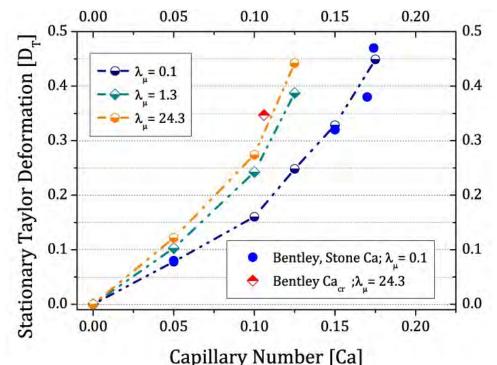


Figure 7.6 Steady state attain by a drop in extensional 3D-flow with $\lambda_{\mu} = 1.0$ *and* Ca = 0.1*.*

Today, streamlines of the flow inside the drop are a mystery; there are no published theoretical nor experimental data to visualize the velocity field inside the drop. Nor there are numerical data, because it is necessary to develop specific extension of the numerical codes to evaluate the pressure fields and subsequently the velocity field of the inner fluid: Eq. 1.22 c). In the future, I will implement this extension of the method to show the inner flow of the drop. With this information, the Acrivos and Lo analysis may present a new, or multiple branches, in their diagram, and *uniaxial extensional flows* will be understood in greater detail.

7.2 Drop deformation in extensional 2-D flow

The archive of experiments of drop deformations under regimes of *extensional flows* is at an early stage, mostly limited to *2D-extensional flows*. Since Taylor work (Taylor, 1934), the cross-section of the drop characteristics has been poorly studied. The optical line of sight for most of the available experimental devices did not permit a thorough study neither of the evolution of the cross-section of the drop, nor the flow characteristics inside the drop. And there is not a clear idea of the consequences of this lack of information in the phenomenon of drop deformation.

Figure 7.7 Stationary deformation vs capillary numbers with different values of λ_{μ} for extensional 2D-flow. Comparison with exp. data of Ca_{cr}

Here I attempt expanding our knowledge of the now ever-more-clear *3D*-character of drop deformations, even for the simplest of flows. Since the calibration of the method is done using data obtained with *simple shear flows*, the numerical method unambiguously predicts a non-circular shape in the cross section in the steady state attained by the drop for non-zero *Ca*. In Chapter 3, I show how the ellipsoidal shape of the cross-section of the drop drifts away from the circular shape as the parameter α increases, even for the same (small) capillary number; see Fig. 3.4. For these cases, the ratio between the *B- and W-axis* decreases more for the cases of

 $\alpha = 0.13$. In this Chapter, $\alpha = 1.0$ in order to study the cross-section in *extensional 2D-flow*.

Figure 7.7 shows the comparison of numerical data vs. experimental data for the ratio of *B*- vs. *W*-axis, and for different values of λ_{μ} , in *extensional 2D-flows*. The experiments of drop deformation correspond to data reported by Stone and Leal, (Stone & Leal, 1989b) and Ha and Leal, (Ha & Leal, 2001). As was commented in Chapter 2, *Ca_{cr}* values are small in every case.

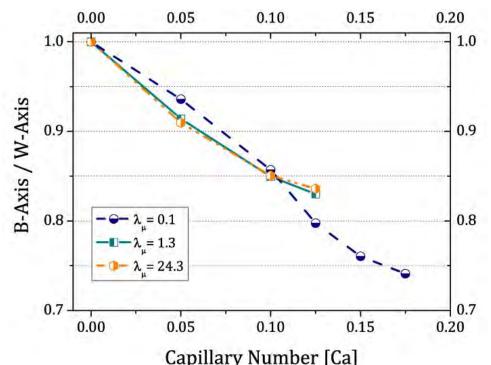
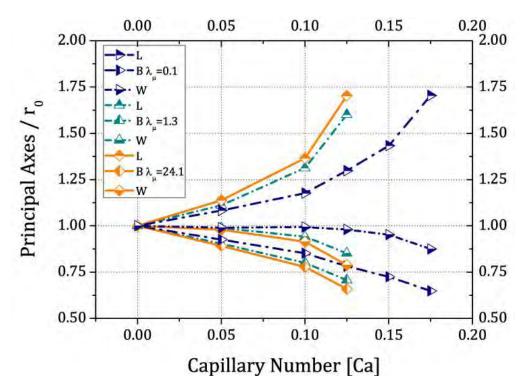



Figure 7.8 shows the cross-section dimensions vs. *Ca* number when the drop deformation *is attained near the critical capillary number*. Albeit the limited experimental data for these conditions —it is not vast, as compared to that of *simple shear flows*, as was commented in Chapter 2— the dependence of the cross-section dimensions vs. *Ca* number— firstly indicate that values of the ratio of these axes lengths are similar, regardless of the ratio of viscosity of the drop. As shown in the previous Section, the analytical approximation assumes an axisymmetric shape, equivalent to those induced by *uniaxial flows*. However, as the value of the flow parameter α increases (the flow character becomes more elongational, while simultaneously losing vorticity) the ratio between the *B- and W-axis* becomes smaller,

away from one; *i.e.*, the cross-section is less circular as the flow becomes more extensional, as long as it maintains the *2D-flow* character.

Figure 7.9 shows the behavior of the principal axes of the drop for different viscosities ratios in *extensional 2D-flow*. In Chapter 2 and 3, the plots of the principal axes in a *2D-flow* were linear for small capillary numbers: see Figs. 2.2 and 3.8. In this case, Fig. 7.9, trajectories are clearly non-linear.

Figure 7.9 Lengths (normalized) of the principal axes of drops under stationary extensional 2Dflow with $\alpha = 1.0$, and $\lambda_{\mu} = 0.1$, 1.3 and 24.1, for different values of Ca.

Using Figure 7.8 and Fig. 7.9, a comparison can be made between deformations attained for a drop with essentially the same flow conditions, *-uniaxial extensional flow*, Fig. 7.6 and the *extensional 2D-flows*. Even for the case with most similar deformation lengths: Ca = 0.1, $\lambda_{\mu} = 1.0, 1.3$; differences appear to be meaningful. Here the stationary state deformations attained are completely different for the same capillary number. Clearly, the rate of deformation is the same, but the deformation attained is not. That result may indicate as well the differences due to an applied *2D-flow* versus the dynamics under a *3D-flow*. In Chapter 8, I present a series of numerical experiments attempting to elucidate the drop deformation differences observed when the flow kinematics goes from a *2D-extensional flow* to *uniaxial flow*.

CHAPTER 8.

Hysteresis behavior in drop deformation

In Chapter 7, I present a study of drop deformation in *purely (3-dimensional) extensional flows*, given emphasis to a comparison of theoretical ideas (those of Acrivos and Lo) vs. the numerical experiments here presented. Even though the model is quite simple, it is powerful enough to predict multiple solutions for the deformation of drops subjected to this flow history. But this is not the only elongational flow without vorticity. When studying planar elongational flows, the vorticity is contained along the third direction, varying from the maximum observed with the *simple shear flow* case to a fully *hyperbolic flow without vorticity*. It is using these planar flows that the non-symmetric drop shapes are observed in a systematic manner. Thus, the question addressed in this Chapter is how possible transitions of the solution occur from a purely axis-symmetric highly elongated shape that occurs in a *3D*-elongational flow to a non-symmetric drop form prevalent in all *2D-extensional flow*.

After the study of Acrivos and Lo, Hinch and Acrivos (Hinch & Acrivos, 1980) published a theoretical study of the drop deformation induced by *2D*-elongational flows using techniques similar to that previously used for purely *extensional flow*. They find that there are multiple solutions for the degree of deformation (induced by a steady flow) with a drop shape vs. deformation behavior similar to that displayed by Fig. 7.3, which predicts a *S*-shape solution (a stable and an unstable branches). The method used by Hinch and Acrivos to prove this space is based on changing in time

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

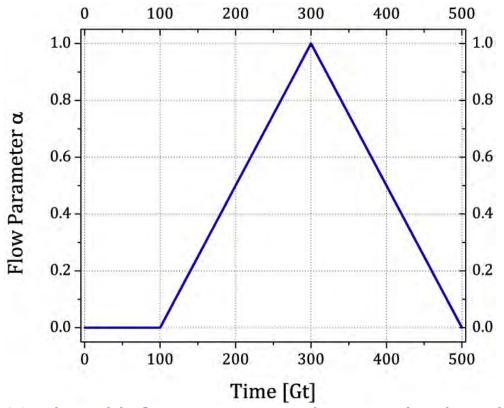
El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. the flow structure (the values that define the flow character) from a *uniaxial extensional* flow to a *2D-elongational flow,* and monitoring the evolution of the steady shapes of drop deformations.

For the *extensional 3D-flows* case, the basic assumption made by Acrivos and Lo was that of an inviscid drop. For the case of *simple shear flows*, the analysis is for inviscid drops and the assumption of axis-symmetric behavior of the drop are made. As shown in Chapter 2, drops in *simple shear flow* are not axis-symmetric. In Chapter 3, 5 and 6, the cross-section of the drop was not circular, for cases with $\lambda_{\mu} = 0.01$ and for flows near simple shear flow. With these facts, the numerical model will hardly be symmetric, thus should be different from the theoretical model proposed by Hinch and Acrivos. Now, a larger set of possible conditions (assumptions) for the numerical experiments can be used, which may show a complementary set of steady state shapes for the drop not predicted by the theoretical model. In particular, a large range of viscosity values implies a larger set of possible behaviors for the curves predicted theoretically.

Making a comparison as done in Chapter 7 for extensional *3D-flows* is not yet possible. However, the transition among the curves which describe the deformation of drop in different flows must exist. In this Chapter, a simplified model of this transition is presented. The main difficulty with addressing the full range of ideas associated to this problem is due to the multi-parameters involved: the type of flow parameter α , the ratio of viscosities, or *the intensity of the flow G*, all causes different effects on the dynamics of the drop deformation —as shown in Chapter 6. So, the family of curves describing all possible steady state drop shapes in a flow should be studied carefully.

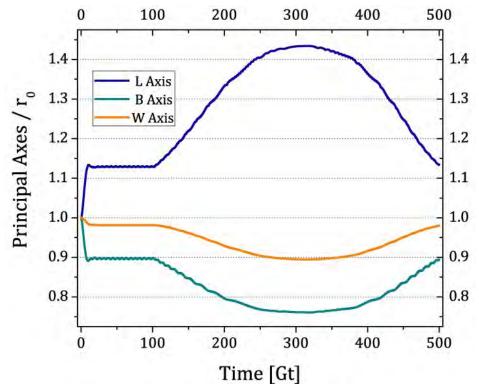
The first step to analyze the transition of these curves is to consider the simplest case, as Hinch and Acrivos did, using a *2D-extensional flow*, (Hinch & Acrivos, 1979). So, they studied the transition from uniaxial flow (*3D-flow*) until reaching the kinematics of a planar flow (*extensional 2D-flow*). Their main idea is supplemented here by considering now numerically a larger class of flows: swepping —varying the planar flow *parameter* α — from *simple shear flow* (maximum vorticity) to a pure *2D*-elongational flow (without vorticity along the neutral direction) and subsequently

evolving toward a pure elongational *3D-flow* (later, a new *elongational flow parameter* is used: β , which augments the compressive character of the flow along the neutral direction). In this way, I expect to study possible drop deformations solutions that may occur when varying the kinematics from shearing flows to a purely hyperbolic *3D-flow*.


The family of flows prescribed by Eq. (1.9), covers the full range of *plane flows* and the full class of drop deformation induced by strong *2D-flows*. However, there exists a much larger class of *elongational flows*, in particular, here I emphasize flows without vorticity that go from an *extensional 2D-* to *uniaxial 3D-flow*. This is a completely new class of deformation and kinematics of deformation and therefore is wise to consider these results as preliminary, mainly because a lot of information is lacking and many more studies may be needed to better understand this topic in drop deformations. However, observations in drop deformation show effects, which were not taken into count in neither the earlier portion of this work nor any other published results. With this caveat, I present my results that I consider the most solid qualitatively.

8.1 Hysteresis in strong flows

When multiple solutions are present, such as those presented in Fig. 7.3, a special type of hysteretic effect can be observed as a result of a *S*-shape solution space. That is, whenever a deformation is induced beyond the critical value, a branch jump is possible. Subsequently, attempting the reduce the drop deformation by reducing the flow field strength, what most frequently occurs is a return trajectory (along the second branch) different from the initial one, in a similar way to the hysteresis loops observed in ferro-magnetism.


As mentioned before, the study of the hysteresis in strong flows requires the use of a family of flows, such as those applied before, with different values of α . Thus, in order to prove different solution branches, the class of flow must be modified by changing the intensity of the rate of deformation tensor as a function of the type parameter α : using Eq. 1.9. So, the parameter *G* can only be a function of α ; *i.e.*, normalizing the intensity of the rate of deformation tensor is done by varying the magnitude of its second invariant: the expression of Eq. 1.5. With this idea, a drop shape reached with a given capillary number may be subsequently deformed by varying the flow parameter from zero to one (from *simple shear flow* to fully *extensional 2D-flow*) within a class of flows.

The next numerical experiments were performed using three stages. By a first phase, applying a *simple shear flow* to the continuum phase, and waiting for the drop to attain the steady state of deformation. The next phase, characterized by a continuous sequence of flows, requires changing the parameter α from zero to one while holding *Ca* constant. Subsequently, the third phase, requires α to be varied from one to zero. The evolution of α in time is shown in Fig. 8.1. The simulation time is plotted in the abscissa axis. In order to guarantee attaining the steady shape in *shear flow*, 20% of total time was used to attain the steady state.

Figure 8.1 Evolution of the flow parameter α in time for a numerical simulation of a flow induced hysteretic loop. The first portion of the flow corresponds to a simple shear flow. At Gt = 100, the parameter α evolves as a ramp up and down; pure elongational flow occurs at $\alpha = 1$..

After the initial phase, the evolution of the drop deformation is monitored. Figure 8.2 presents the evolution in time for all three axes of the drop, with a capillary number Ca = 0.20 and $\lambda_{\mu} = 16$. Figure 8.2 shows the values of lengths scales for the principal axes attained at the steady states similar to the results presented in Chap. 4.

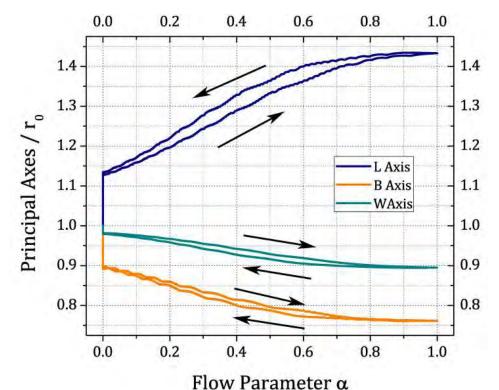


Figure 8.2 Evolution of principal axes length scales vs time; i.e., vs the parameter α . Time = 500 [Gt], $\lambda_{\mu} = 16$, from simple shear flow $\alpha = 0$ to extensional 2D-flow $\alpha = 1$. Time: 100 < Gt < 500.

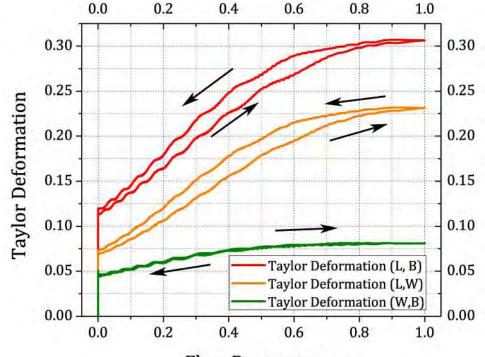
Remembering the fact that the drop has a larger viscosity than the continuum fluid, an oscillatory behavior is observed before attaining the steady state. At time Gt = 100, the rumping of the *parameter* α begins, with the drop deformation and orientations reached while $\alpha = 0$. Fig. 8.2 shows that after Gt = 100 the time evolution of the principal axes is characterized by a parabolic trajectory, until the end of the simulation. The initial value of the principal axes is the same at the beginning and the end of the ramp.

The effect of the parameter α on drop deformations is analyzed in Fig. 8.3 by plotting the lengths of the principal axes versus the parameter α . Assuming the parabolic behavior shown the Fig. 8.2, the expected behavior would be a symmetric

curve, describing the deformation along the axes when the α flow parameter changed. However, the data in Fig. 8.3 indicates a curved more complicated because for each value of α , there are two possible steady shapes of the drop, one is due to the first part of the ramp and the second when the flows go from *extensional 2D-flow* to *simple shear flow*. In all the cases, the axes developed two different states for the same value of α .

Figure 8.3 Principal axes vs flow parameter alpha α . With $\lambda_{\mu} = 16$, from simple shear flow $\alpha = 0$ to extensional 2D-flow $\alpha = 1$. Time: 100 < Gt < 500.

Figure 8.3 shows the behavior of all axes with respect to the flow parameter. Arrows of this Figure indicate the applied ramp direction used and the deformation attain with; see Fig. 8.1. In the third phase flows, decreasing the ramp until the flow reaches *simple shear flow* kinematics, the value of the *L-axis* is larger than the value attain in first portion of the ramp. For the other axes, the situation is the opposite; *i.e.*, the value with the bigger value is observed in the early part of the second phase (increasing ramp).


Regarding the first portion of the simulation shown in Fig. 8.2, the drop comes to a steady shape at Gt < 100, and the shape describes a behavior observed in Chapter 6. It is clear that the principal *L*- and *B*-Axis present small oscillations like the

trembling effect, which is a consequence of the huge value of the *parameter G*. Then, as the flow changes to a more elongational character (α increases) the oscillations tend to disappear. When α is one, —fully *extensional 2D-flow*— there are no oscillations. Finally, when the flow becomes again α equal to zero, the oscillations reappear.

In Figures 8.2 and 8.3, oscillations of the lengths as the value of the α parameter increases appear to *decrease in frequency until* $\alpha = 1$. When the evolution of the flow is reversed, the sequence of oscillations is inverted until the *simple shear flow* regime is attained. That is, these oscillations come in packs; e.g., in the *L*-axis, when, $L - \frac{125}{2}$ and $\alpha = 0.3$, a small undershoot is present that repeats when $\alpha = 0.39$ and $\alpha = 0.46$. The undershoot persists until $\alpha = 0.93$, then oscillations end. When $1 = \alpha \rightarrow 0$ flow, undershoots are observed at similar values of α (those values are not the same that the first cases). When the flow is *less strong*, undershoots cannot be as clearly appreciated as the mentioned undershoots, but for the *L*-axis evolution —shown in Fig. 8.3— it is possible to see the oscillation packs. The undershoots are larger than the *L*-axis case. For the *W*-axis, the oscillations are the tiniest and hardest to appreciate.

With this information, the shape of the drop can be inferred. When the value of α increases, the *L*-axis length is smaller than during the third phase flows. However, the other axes present the opposite situation. So, the drop is more elongated during the second part of the ramping cycle. This evidence is confirmed in Fig. 8.4. In this Figure, it is the Taylor deformation of the drop plotted vs. the α value. Again, the arrows indicate the direction of the ramp in Fig. 8.1. The plane of the applied flow presents the larger deformation shapes. Considering this *LB-plane*, with $\lambda_{\mu} = 16$ and the *Ca* = 0.20, and the values of α used in Chapter 4, Taylor deformations between those of Chapter 4 and the data obtained in this Hysteretic simulation agree.

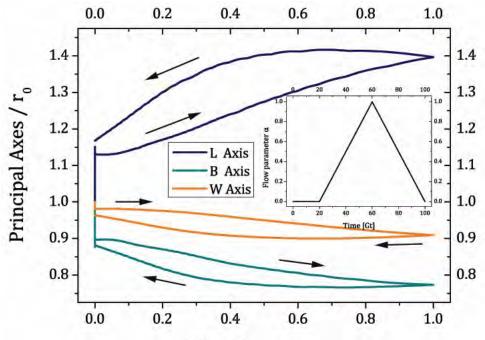
The features of the drop dynamics mentioned above present a stationary state in the *2D-extensional regime*. However, there are no experiments published in this regime with similar values of the ratio of viscosity. In order to have an idea of the feasibility of the data results, the benchmarks used are those of Bentley and Leal (Bentley & Leal, 1986b) and (Taylor, 1934). For the former case, the ratio of viscosity, critical capillary number and Taylor deformation obtained were: for $\lambda_{\mu} = 13.8$, $Ca_{cr} = 0.103$ and $D_{cr} = 0.362$. The second case is $\lambda_{\mu} = 24.5$, $Ca_{cr} = 0.106$ and $D_{cr} = 0.347$. Finally, Taylor considers $\lambda_{\mu} = 20$, $Ca_{cr} = 0.28$ and $D_{cr} = 0.45$.

Flow Parameter α

Figure 8.4 Taylor Deformations vs. flow parameter α . With $\lambda_{\mu} = 16$, from simple shear flow $\alpha = 0$ to extensional 2D-flow $\alpha = 1$. Time period: 100 < Gt < 500.

With these values for the experimental parameters, the conception of stationary shapes by numerical simulation could be wrong. However, by looking the experimental data carefully, the data provides the next solid evidence. First, the deformation obtained by the numerical simulations is always less than the critical deformation reported in all experimental cases. So, if the circumstances of the flow provoke Taylor deformations smaller than the critical Taylor deformation, the drops will remain in a stationary deformation. With this information, the possibility to obtaining a stationary shape for the simulated conditions is feasible. Second, the *parameter G* values used are smaller, (the *trembling effect* is observed in the first part of the hysteretic numerical simulation; however, the oscillation values are less than 5% of the stationary value, and so, the curve around the point in *tank-treading* will be small). Thus, the effect observed in the second part of Chapter 6 could occur in this

regimen too. If the applied *strain rates* in those experiments provoke an effect like *trembling effect*, the state of deformation could go to another state of drop deformation (critical deformation). This observation may explain the apparently contradictory differences between the data of Bentley and that of G. I. Taylor.


There is another numerical experiment of hysteretic phenomenon reported by Young *et al.*, (Young, Blawzdziewicz, Cristini, & Goodman, 2008). In this work, the range of drop ratio of viscosities is $\lambda_{\mu} = 50, 100$ and 200. The capillary numbers are less or equal to 0.2: $Ca \leq 0.20$. The simulated flow behavior is similar except that the flow history goes from *2D-extensional flow* to simpler shear, and comeback. The analysis focuses only in the *L-axis* length, and there is no comparison with experimental data. Also, there is no information about the Taylor deformation or the changes of the *B-axis*. The hysteretic phenomenon observed by Young *et al.*, appear to be different than the results presented in this Chapter, mainly because the region where the drop has two shapes is clearly smaller, for the same conditions of the flow type parameter.

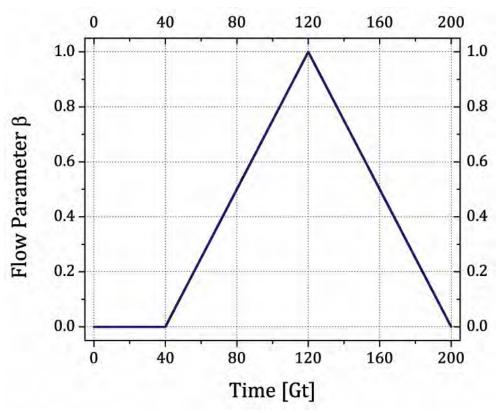
Using the information of Figure 3.2, the stationary state of the *L*-axis, for a capillary number of Ca = 0.40, is the same as the maximum measure observed by Young *et al*. Reviewing the diagram of Taylor deformation *vs. Ca* in Fig. 3.5, the steady state deformation attained for this capillary number is $D_T = 0.4$, a similar value than that by Young *et al*. —their deformation is close to $D_T = 0.4$. If this situation is correct, the Taylor deformation attained by this numerical simulation is near the critical case.

The work of Young *et al.* uses the same idea of the flow type evolution. However, their experiment starts in the regime of *2D*-extensional flow. In this work, steady states employ 5% of the total simulation time, while the total time of the ramp is $T = 2000\lambda_{\mu}r_{0}\mu\gamma^{-1} \approx 80Gt$ of our time of simulation. In other words, the simulation of the ramp of Young *et al.* is about three times faster than that shown in Fig. 8.1.

The results in Figure 8.5 are for the same capillary number than the previous Figure. However, the total time of the simulation is less than that of Figs. 8.3 and 8.4. The total time used is shown in the inset Graph. For the same conditions of the drop,

Ca = 0.20 and $\lambda_{\mu} = 16$, the dynamics of the principal axes of the drop are quite different. That is, the main features of the hysteresis depend as well on the ramping speed, which implies the necessity to analyze this kind of experiments to represent the quasi-static deformation dynamics. Here, the lengths of the principal axes vary a little in the extremes of the regimen of flow parameter, (in *simple shear flow* and *extensional 2D-flow*). The hysteresis in Fig. 8.5 is bigger than the case in Fig. 8.3.

Flow Parameter α


Figure 8.5 Principal axes vs. flow parameter α . With $\lambda_{\mu} = 16$, from simple shear flow $\alpha = 0$ to extensional 2D-flow $\alpha = 1$. Time: 20 < Gt < 100.

8.2 Hysteresis in *extensional flows*

The previous Section addresses the hysteretic behavior of drop deformation as a consequence of the type of *two-dimensional flow* applied in the continuum phase. Also, in Chapter 7 the asymmetric drop deformation is studied when caused by (1) *two-dimensional extensional* and (2) *uniaxial flow*. In this Section, a new set of questions to resolve are addressed, among them: (a) what happens if the parameter *elongational type of flow* is varied from *uniaxial flow* to *extensional 2D-flow*? And (b) is there a hysteretic behavior in *extensional flows*? In order to be able to simulate such a 2D- to 3D-variation of the flow type, a new parameter is introduced: the *elongational type of flow parameter* β . Thus, by varying β , drops can be subjected to a full range of flows without vorticity: from the 2D-linear incident flow to a pure elongational flow, where the compression axis (of the former flow) becomes a compression plane perpendicular to the elongation axis. These simple kinematic conditions can be modeled by a velocity field given by

$$\boldsymbol{u}(x, y, z) = \frac{G}{2\sqrt{(4 - 2\beta + \beta^2)}} \big((\beta - 2)x, 2y, -\beta z \big), \tag{8.1}$$

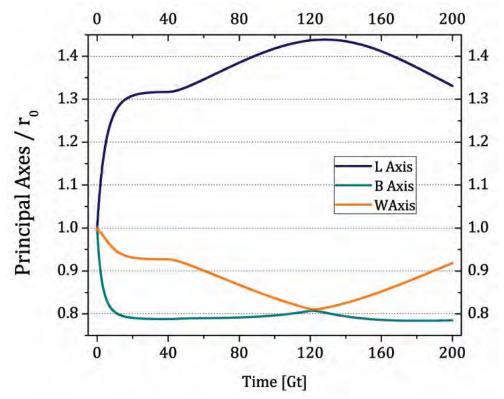

where *G* is the intensity of the rate of deformation tensor (Makosco, 1994). Now, β is the parameter characterizing the strength flow along the symmetric (third) axis. Values of β goes from zero (*extensional 2D-flow*), to one (uniaxial flow).

Figure 8.6 Evolution of β in the time of numerical simulation. The first part was the value in extensional 2D-flow. Then the parameter betta was modified as a ramp.

The *parameter* β offers the possibility to study another class of *elongational flow*, which occur when the value of $\beta = 1$ goes to 2. In this latter case, the *extensional*

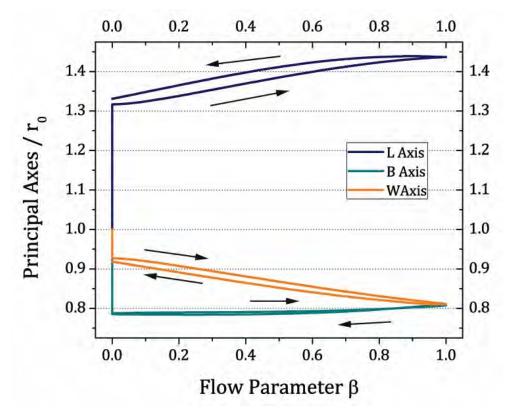

flow elongates in two directions and pushes in along the third axis. For this study, the family of *extensional flows* employed were in the regime of $0 \le \beta \le 1$.

Figure 8.7 Evolution of principal axes vs time. Time = 200Gt, $\lambda_{\mu} = 16$, from extensional 2D-flow $\beta = 0$ to uniaxial flow $\beta = 1$. Time: 40 < Gt < 200

The experiment begins applying a *2D-extensional flow* in the continuum phase. Then when the drops attains the steady shape for this flow, the value of the β parameter changes from zero to one, as Fig. 8.6 shows. As was commented in the previous Section, the critical capillary value in *extensional flows* are small. For this reason, the hysteretic numerical experiment was performed with a drop with *Ca* = 0.10 and $\lambda_{\mu} = 16$ to avoid the critical deformation and to guarantee attaining the steady shape of deformation.

Figure 8.7 shows the evolution of the principal axes during this experiment. After the application of *uniaxial extensional flow* under conditions of $\beta = 1$ and T = 120 Gt, the drop achieves a circular cross-section. As a result of a smaller value of β , the drop evolves toward a modified cross-section: an elliptical shape. The evolution of *L-axis* is shown in Fig. 8.8 (equivalent to Fig. 8.3 for the variation of the *parameter* α), with the behavior of the others principal axes, all showing the existence of hysteresis in purely *extensional flows*. Here however, the difference between the two states of deformation is weaker than for the cases in strong α flows.

Figure 8.8 Principal axes vs flow parameter betta β . With $\lambda_{\mu} = 16$, from extensional 2D-flow $\beta = 0$ to uniaxial flow $\beta = 1$. Time: 40 < Gt < 200.

The *B-* and *W-axes* start in the steady shape for *extensional 2D-flow* with different values. As the value of β changes to the value of one, the symmetric behavior of the uniaxial flow begins to dominate the size of those axes. This result is consistent with the data in uniaxial flow. Furthermore, the hysteretic behavior may depend of the ramp speed used in those experiments. However, if the total time used during the extensional regimen increases, the hysteresis of the principal axes of the drop will probably be imperceptible.

CHAPTER 9.

General conclusions: drop deformation in strong flows

Until about 2005, the study of deformations of drops induced by strong type of flows has a significant contribution of both experimental and theoretical studies. These results indicate a large set of unsettle questions regarding the fluid hydrodynamics of these rather simple bi-phase flows. For example, there is no clear idea as to whether the main features of shape of drops change when the flow character varies from simple shear to a *2D*-elongational flow. Or whether for *2D*- and *3D*-elongational flows, shapes ought to be essentially the same.

On the drop dynamics front, if drops have different deformation along the preferential axes of the applied flow, the open question is what are the characteristic time-scales involve for the time evolution of the drop? or how different axes evolve in time, or evolve as the flow type changes?. There are as well various indicators that the different observed drop forms may indicate multiple Hopf bifurcation solutions for the governing equations. Here I attempted to elucidate on one hand some of the imply-cation on the shapes of drops and on the other hand the implications for the flow fields of the different solutions.

Thus, the initial objective of this study was to study not only these questions but as well possible implications for a more detailed understanding of the

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. implications opened by answers to these questions. In particular, very little is known about the flow fields inside and outside of the drops when different shapes of the drop occur. As well, which are the flow patterns inside the drop as a result of these possible solutions. These and possibly many other question-answers may influence signifycantly the scope of amenable applications due to a better understanding of the dynamics of drop deformation.

As a first task, data is presented of observable stationary deformations for different ratios of viscosities and for different types of 2D-strong flows. As many experimental studies have reported, the critical capillary numbers for drop rupture for each case of λ_{μ} have not been uniquely resolved for most cases, nor for different flow types. Hence, one of the first points addressed here is to properly calibrate the numerical code by finding the steady shape of drops near Ca_{cr} conditions. Subsequently, it was necessary to repeat the same calibration for every 2D-flow. Finally, a diagram describing the critical capillary value for different flows, from *simple shear flow* to *extensional 2D-flow* is obtained.

As a second task, the three-dimensional behavior of the drop in these flows was carefully evaluated, because early theoretical works assumed asymmetric drops. However, the deviation from the axisymmetric case always occurs. In Fact, in *simple shear flow*, when the differences are less, the ratio of *B*- vs. *W*-axis is always less than 0.85. As the flow goes to the *extensional 2D-flow* —when the α *parameter* increases—the ratio goes up. The only flow which induces the asymmetric behavior of the cross section of the drop corresponds to the *3D-extensional flow*, an even then the drop ends may have a smoother variation of curvature than those predicted by theoretical models.

The prevalence of the non-circular cross-section that was observed while using the BEM3D code casts initial doubts about the codes used, due in part because theoretical works or many other numerical studies do not observe deviations from the circular cross-section case, as I noted. The code used here was rebuilt at least 4 times, but the results were the same, the cross-section is not circular, is more like an ellipse, but not quite. However, Guido *et al.*, work, published about the same time as the annotations of Acrivos and Lo, changed this work expectations, because their predictions made it possible to calibrate the code. Experimental data does provide sufficient information to disregard circular cross-section as the only possible form, but does not provide enough information to resolve uncertainties as to the correct shape for the ellipsoid. These results are presented in Chapter 2. The cross-sections are most likely non-circular, with the code predicting very well the small archive of experimental data.

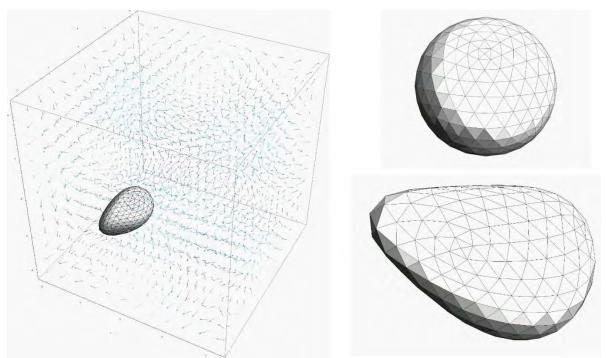
In Chapter 3 and 4, the predicted deformed drop in stationary flows is shown to be like an asymmetric ellipsoid even for small capillary numbers—implying shapes close to spherical, but deformed. However, as the capillary number increases, the shape differs from a perfect ellipse, as well. In the past, these shapes were the *initial* form of drops used to evaluate the interfacial surface tension. Thus, in Chapter 5 possible methods for measuring the interfacial tension of the interface during the retraction phase of an elongated drop are reviewed, and with them I attempted a highresolution calibration of the method, by comparisons of experimental, theoretical and The theoretical analysis using ellipsoidal shapes appears to numerical results. provide an initial good prediction of interfacial tension values in drops in strong flows. However, possible differences determined while obtaining the interfacial tension implies the necessity to adjust an optimized shape model to better approximate the interfacial tension measurements in the laboratory: that is, the technique works best when drops have an elongated, with symmetric cross-section shape. However, if these numerical results (capable of predicting the three-dimensional length scales of a drop) are compared the experimental data, predictions of interfacial tension can be more accurate than using only the analytical methods evaluated.

A second factor, affecting the surface tension measuring technique are the characteristic time-scales associated with the evolution of each principal axis of the drop, which were studied as well. When a *2D*-flow is applied in the continuum phase, the response of the drop in the same plane of the flow is faster than the third principal axis, orthogonal to the flow. However, the principal axes in the plane of flow have similar characteristic time-scales, but are not quite the same. Finally, a significant departure from previous works is that the numerical predictions —for the time

needed to attain the stationary shape— seem to imply that *the characteristic time perpendicular to the flow* is the most appropriate relaxation time-scale, for it is *the slowest time of the drop retraction*. With this result, the analysis of stationary shapes of deformation should change the observation time, because in most experiments the stationary shape employed corresponds to that of the plane of the flow, even though, the third direction of the drop needs more time to attain the stationary state.

It is quite obvious that a diagram of critical capillary values is desirable to generate a detailed understanding of maximum drop deformations, especially for very elongated drops. However, as Chapter 6 indicates, the code appears not to be capable of predicting the large deformations previously reported by experimental data. As Chapter 3 and 4 showed, the prediction of the numerical code may be accurate only for small capillary numbers. Even more, for the case of highly viscous drops $\lambda_{\mu} = 16$, the code seems to fail about predictions of the stationary deformation and the number of oscillations while the drop tumbles. Add to this, the numerical data presents tiny regular oscillations which change in amplitude and frequency. At that moment, the possible cause of discrepancies was a mesh of poor resolution that was discarded after some extra simulations. Finally, as was demonstrated in Chapter 6, the dynamics of drop deformations in strong flows may have a cause associated with *the intensity of the flow, and not the mesh size*. The dynamics of drop deformation presents a bifurcation which depends on *G*, the shear rate. So, to find a simple stationary state of deformation is not possible, at least not when the shear rate is very small, *G* \ll 1.

There are a few published papers that establish the existence of Hopf bifurcation solutions for drops deformed by flows. However, there still exists a need in fluid mechanics to understand possible branches of these solutions, mainly because different type of shapes may imply different inner and outer flow fields. This is the first work that attempts to address possible consequences of Hopf bifurcations and hysteresis effects in drops and their dependence on λ_{μ} , α , β , G, and Ca as *complementary independent parameters*; mainly because, most experiments carried out in the laboratory employ variation of G, but linearly modify as the value of the capillary number.


Since Cox's work, oscillations observed in deformation and orientation of drops traces of experimental data or numerical simulations were explained as due to the competition of stresses imposed by the flow against interfacial stresses of the drop. Add to this idea that weak deformation of a drop observed when $\lambda_{\mu} \gg 1$, which predicts a *tumbling* behavior where the drops achieves negative orientation angles. However, as was commented in the last part of Chapter 6, the bifurcation of Hopf may contribute as well with the oscillatory behavior. Unfortunately, I arrive to this observation toward the end of this project. Therefore, to analyze carefully this behavior there is a need for more time because those numerical simulations take a lot of CPU-Time. The bifurcation diagram is necessary to understand the contributions of the shear rate on the dynamics of drop deformation. This line of work remains to be addressed.

In Chapter 7 there is a new contribution in fluid mechanics in the sense that the theoretical Diagram for deformation of drops in *extensional flows* was reviewed. The asymptotic approximation solution of Acrivos & Lo permits predicting the deformation of drops in *2D-flows* when the ratio of viscosity is small. However, as λ_{μ} attains values different from zero, this theoretical approximation starts to deviate from predictions, because λ_{μ} plays an essential role in drop deformation. In these cases, the proposed inner flow plays an essential participation, too. However, given the difficulty in the equations of fluids mechanics, the approximation made by Acrivos & Lo using slender body theory is a good step in the knowledge of drop deformation. Today with the numerical code here presented, it is possible to rebuild this diagram for different values of λ_{μ} . The long-term advantage would be that it may be possible to upgrade the code to have the inner and outer flow of the drop.

The analysis of drop deformation in *extensional 2D-flow* conveys the proper behavior of cross-sections, which is important to predict correctly the state of deformation. In Chapter 7, the evolution of behavior of cross-sections is extended, now between the *uniaxial flow* and the *extensional 2D-flow*. Understanding possible deformations under these regimes help us in making an analogous diagram to the one previously published by Acrivos & Lo.

142 | Page CHAPTER 9: General conclusions

In the last part of this study, the main focus is on the hysteretic nature observed when the flow applied in the continuum phase changes its main features; i.e., from *simple shear flow* to *extensional 2D*-flow, and subsequently from *extensional 2D*-flow to *uniaxial flow*. These experiments are presented in Chapter 8, and may represent the beginning of another branch of study in drop deformations. These numerical experiments need more time than those cases presented in Chapter 4: $\lambda_{\mu} \ll$ 1. These latter numerical simulations take months to produce the data presented. Even more, there is a behavior that was not taken in account due to time constraints: the required time-lapse to attain the steady state shape when the parameter α is changing in the external flow. This observation is essential in this experiment. Thus, it is extremely important to guarantee that a steady shape is attained in every flow experiment. However, to reach this stage was out of the question for this project.

Figure 9.1 Drop deformed in an ABC flow. $\lambda_{\mu} = 1$. View of the drop inside the flow, left. Initial shape of the drop and view of the state of deformation right-hand.

In summary, in this study I was able to construct a new diagram. However, this diagram is still limited mainly because I discovered that drop deformation has not finished yet (reached its steady state form), which is due to a bifurcation generated by the value of the applied shear rate *G*. This result implies that drops are not perfect

ellipses under flows with a large capillary number, regardless of the axis of observation of the drop shape. Also for these cases, shape models to predict the interfacial tension by retraction observations need to be polished. The theoretical diagram in uniaxial flow needs a new contribution for λ_{μ} different to zero.

The numerical code is not confined to *2D-flows*. The possibility to study complex deformations in three dimensions is possible. When performing flows that evolve in flow type character —such as with the hysteretic simulations—, there is a stable two-state of deformation for the same value of the flow parameter, β . As was observed, those states of deformations depend of λ_{μ} and the flow parameter.

As an example, the deformation of a drop in a theoretical flow: the Arnold-Beltrami-Childress flow (ABC flow) was made. Figure 9.1 shows the steady of deformation of a (initially spherical) drop. Please note the highly deformed crosssection. There, the *guarache* shape is now non-symmetric along the fore-aft axis, plus a curved shape similar to that of a potato chip. These forms are highly planar, with a non-symmetric fore-aft form, and with two main global curvatures. Under this scenario, these drops may present rather different relaxation mechanisms that have not been studied yet. Finally this code provides further avenues of research: for example, other natural phenomena may be amenable to study which will be extremely relevant in coming years due to climate change such as could be the locomotion of small animals in the sea, with movements being modeled as creeping flows. These flora and fauna contributions to the transport in the upper layer of the oceanic waters may influence the rates of absorption of CO₂ by the oceans but has been barely studied to date. Thus, this work is simply the beginning of a lot of new projects; the conclusions of this project are only in the sense of this book. However, the fluid mechanics in strong flows will continue.

BIBLIOGRAPHY

- Acrivos, A., & Lo, L. S. (1978). Deformation and breakup of a single slender drop in an *extensional flow. J. Fluid Mech., 86*(4), 641-672.
- Akin, E. (2003). Object-Oriented Programming Via Fortran 90/95. Cambridge: Cambridge.
- Astarita, G. (1979). Objective and generally applicable criteria for flow classification. *Journal of Non-Newtonian Fluid Mechanics*, *6*(1), 69-76.
- Barthès-Biesel, D. a. (1973). Deformation and burst of a liquid droplet freely suspended in a linear shear field. *J. Fluid Mech., 61*, 1.
- Batchelor, G. K. (1967). *An Introduction to Fluid Dynamics.* New York: Cambridge Mathematical Library.
- Bazhlekov, B. P. (2004). Nonsingular boundary integral method for deformable drops. *Physics* of *Fluids*, *16*(4), 1064-1081.
- Bentley, B. J., & Leal, L. G. (1986a). A Computer-Controlled Four-Roll Mill for Investigations of Particle and Drop Dynamics in Two-Dimensional Linear Shear flows. J. Fluid Mech., 167, 219-240.
- Bentley, B. J., & Leal, L. G. (1986b). An Experimental Investigation of Drop Deformation and Breakup in Steady, Two-Dimensional Linear Flows. *J. Fluid Mech.*, *167*, 241-283.
- Blawzdziewicz, J., Cristini, V., & Loewenberg, M. (2003). Multiple stationary states for deformable drops in linear Stokes fows. *Physics of Fluids*, *15*(5), L37-L40.
- Brady, J. F., & Acrivos, A. (1982). The deformation and breakup of a slender drop in an *extensional flow*: inertial effects. *J. fluid Mech.*, *115*, 443-451.
- Brebbia, C. A. (1978). The Boundary element method for Engineers. London: Pentech.
- Chapman, S. J. (1998). Fortran 90/95. Boston: McGraw-Hill.
- Cools, R., & Rabinowitz, P. (1993). Monominal cubature rules since "Stroud": a compilation. *Journal of Computational and Applied Mathematics*, *48*, 309-326.
- Coulliette, C., & Pozrikidis, C. (1998). Motion of an array of drops through a cylindrical tube. *J. Fluid Mech., 358*, 1-28.
- Cox, R. G. (1969). The Deformation of a Drop in a General Time-Dependent Fluid Flow. *J. Fluid Mech., 37, part 3,* 601-623.
- Cristini, V., Blawzdziewicz, J., & Loewenberg, M. (2000). An Adaptative Mesh Algorithm for Evolving Surfaces: Simulations of Drop Breakup and Coalescence. *Journal of Computational Physcis, 168,* 445-463.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. Einstein, A. (1906). Eine neue Bestimmung der Moleküldimensionen. Ann. Physik, 324(2), 289.

- Escalante, C. A., Reyes, M. A., Rosas, I. Y., & Geffroy, E. (2015). Drop deformation in two-roll mills considering wall effects. *Journal of Physics: Conferences Series, 582*(1).
- Frankel, N. A., & Acrivos, A. (1970). The constitutive equation for a dilute emulsion. *J. fluid Mech.*, 44, 65-78.
- Grace, H. P. (1982). Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. *Chem. Engng. Commun.*, *14*, 225.
- Greenberg, M. D. (1998). *Advanced Engineering Mathematics* (Second ed.). London, Syney, Toronto: Prenticed Hall.
- Grinfeld, P. (2010). *Introduction to Tensor Analysis and the calculus of Moving Surfaces.* New york, Heidelberg, Dordrecht, London.: Springer.
- Guido, S., & Greco, F. (2001). Drop Shape Under Slow Steady *Shear flow* and During Relaxation. Experimental Results and Comparison with Theory. *Rheol Acta*, *40*, 176-184.
- Guido, S., & Villone, M. (1997). Three-dimensional shape of a drop under *simple shear flow*. *Journal of Rheology*, *42*, 395-415.
- Guido, S., & Villone, M. (1999). Measurement of Interfacial Tension by Drop Retraction Analysis. *Journal of Colloid and Interface Science, 209*, 247-250.
- Guido, S., Greco, F., & Villone, M. (1999). Experimental Determination of Drop Shape in Slow Steady Shear flow. Journal of Colloid and Interface science, 219, 298-309.
- Ha, J.-W., & Leal, L. G. (2001). An Experimental Study of Drop Deformation and Breakup in *Extensional flow* at High Capillary Number. *Phys. Fluids*, *13*(6), 1568-1576.
- Happel, J., & Brenner, H. (1963). Low Reynolds Number Hydrodynaics. The Hague: Kluwer.
- Hinch, E. J., & Acrivos, A. (1979). Steady long slender droplets in two-dimensional straining motion. *Journal of Fluid Mechanics*, *91*(3), 401-414.
- Hinch, E. J., & Acrivos, A. (1980). Long slender drops in a *simple shear flow*. *J. Fluid Mech.*, *98*(part 2), 305-328.
- Huo, T. Y., Lowengrub, J. S., & Shelley, M. J. (2001). Boundary Integral Mhetods dor Multicomponent Fluids and Multiphase Materials. *J. Comput. Phys.*, *169*, 302-362.
- Kennedy, M. R., Pozrikidis, C., & Skalak, R. (1994). Motion and deformation of liquid drops, and the rheology of dilute emulsions in *simple shear flow*. *Computers & Fluids*, 23(2), 251-278.
- Khayat, R. E. (2000). Three-dimensional boundary element analysis of drop deformation in confined flow for Newtonian and viscoelastic systems. *International Journal for numerical methods in fluids.*, *34*, 241-275.

- Khismatullin, D., Renardy, Y., & Renardy, M. (2006). Development and implementation of VOF-PROST for 3D viscoelasticic liquid-liquid simulation. J. Non-Newtonian Fluid Mech., 140(1), 120-131.
- Kim, J., & Lowengrub, J. (2004). *Interfaces and multicomponent fluids*. Irvine, USA: University of California.
- Kwak, S., & Pozrikidis, C. (1998). Adaptative Triangulation of Evolving, Closed, or Open Surfaces by the Advancing-Front Method. *Journal of Computational Physics*, 145, 61-88.
- Ladyzhenskaya, O. A. (1963). *The Mathematical Theory of Viscous Incompressible Flow.* New York: Gordon and Breach.
- Lalanne, B., Tanguy, S., & Risso, F. (2013). Effects of rising motion on the damped shape oscillations of drops and bubbles. *Physics of Fluids, 25*, 1120107 1-22.
- Lamb, H. (1945). *Hydrodinamics*. New York: Dover.
- Lambert, J. D. (1973). *Computational Methods in Ordinary Differential Equations*. Chichester, New York.: John Wiley & Sons.
- Leal, L. G. (2007). Advanced Transport Phenomena. Cambridge: Cambridge University Press.
- Levi, E. (1980). *Teorías y Métodos de las Matemáticas Aplicadas*. Ciudad de México: Facultad de Ingeniería, UNAM.
- Loewenberg, M., & Hinch, E. J. (1996). Numerical simulation of a concentrated emulsion in *shear flow. J. Fluid Mech.*, *321*, 395-419.
- Lorentz, H. A. (1907). Ein allgemeiner Satz, die Bewegung einer reibenden Flüssigkeit betreffend, nebst einigen Anwendungen desselben. *Abhand. theor. Phys.*, 13-42.
- Mählmann, S., & Papageorgiou, D. T. (2009). Numerical study of electric field effects on the deformation of two-dimensional liquid drops in *simple shear flow* at arbitrary Reynolds number. *J. Fluid Mech., 626*, 367-393.
- Makosco, C. (1994). *Rheology Principles, Measurements, and Applications.* New York, Chichester: Wiley-VCH.
- Metcalf, M., Reid, J., & Cohen, M. (2004). Fortran 95/2003 Explained. New York: Oxford.
- Miller, R. L. (2000). *Algorithms Secuential & Parallel. An Unified Appriach.* London, Sydney, Toronto, Mexico, New Delhi.: Prentice Hall.
- Mo, H. Z. (2000). A new method to determine interfacial tension from the retraction of ellipsoidals drops. *J. Non-Newtonian Fluid Mech.*, *91*, 221-232.
- Power, H., & Wrobel, L. C. (1995). *Boundary Integral Methods in Fluid Mechanics*. Southampton Boston: Computational Mechanics Publications.
- Pozrikidis, C. (1992). *Boundary Integral and Singularity methods for Linearized Viscous Flow.* New York: Cambridge University Press.

- Pozrikidis, C. (1997). *Introduction to Theorethical and Computational Fluid Dynamics*. Ney York: Oxford.
- Pozrikidis, C. (1997). Numerical studies of singularity formation at free surfaces and fluid interfaces in two-dimensional Stokes flow. *J. Fluid Mech.*, *331*, 145-167.
- Pozrikidis, C. (1998). *Numerical Computation in Science and Engineering.* New York, New York, United States: Oxford.
- Pozrikidis, C. (2000). Interfacial Dynamics for Stokes Flow. *Journal of Computational Physics*, *169*, 350-301.
- Pozrikidis, C. (2002). A Practical Guide to Boundary element methods with the Software Library BMLIB. Boca Raton: Chapman & Hall.
- Primo, A. R., Wrobel, L. C., & H., P. (2000). Boundary integral formulation for slow viscous flow in a deforming region containing a solid inclusion. *Engineering Analysis with Boundary Elments*, 24, 53-63.
- Prosperetti, A., & Tryggvason, G. (2007). *Computational Methods for Multiphase Flow.* Cambridge: Cambridge.
- Rallison, J. M. (1978). Note on the Faxén Relations for a Particle in Stokes Flow. *j. Fluid Mech.,* 88, 529-533.
- Rallison, J. M. (1980). Note on the time-dependent deformation of a viscous drop which is almost spherical. *J. Fluid Mech., 98*, 625-633.
- Rallison, J. M. (1981). A Numerical Study of the Deformation and Burst of a Viscous Drop in General *Shear flows. J. Fluid Mech., 109*, 465-482.
- Rallison, J. M. (1984). The deformation of small viscous drops and bubbles in *shear flow. Ann. Rev.Fluid Mech.*, *16*, 45-66.
- Rallison, J. M., & Acrivos, A. (1978). A Numerical Study of the Deformation and Burst of a Viscous Drop in an *Extensional flow*. *J. Fluid Mech.*, *89*, *Part 1*, 191-200.
- Ramalingam, S., Ramkrishna, D., & Basaran, O. A. (2012). Free vibrations of a spherical drop constrined at an azimuth. *Physics of Fluids, 24*, 082102 1-20.
- Rayleigh, F. R. (1879). On the Capillary Phenomena of Jets. Proc. Roy. Soc., 29, 71-97.
- Resnick, R. a. (1980). *Física* (Vol. 2). España, Argentina, México: Compañia Editorial Continental.
- Reyes, M. A. (2005). Hydrodynamics of Deformable Objects in Creeping Flows. *Tesis de Doctorado en Ciencia e Ingeniería de Materiales*.
- Reyes, M. A., Minzoni, A. A., & Geffroy, E. (2011). Numerical study of the effectof nonlinear control on the behavior of a liquid drop in elengational flow with vorticity. *Journal Engineering Mathematic*, 71(2), 185-203.

- Rojas, J. G. (2016). Medición de la tensión superficial de una gota con deformaciones generadas en un molino de dos rodillos. Su relevancia para el estudio de la reología de emulsiones en flujos fuertes. *Thesis de Maestría en Ciencia e Ingeniería de Materiales*.
- Rosas, I. Y. (2013). *Experimental study of the deformation of a drop immersed in a elongational flow with vorticity.* Mexico.: UNAM, Thesis.
- Rosas, I. Y., Reyes, M. A., Minzoni, A. A., & Geffroy, E. (2014). Computer-controlled Two-Roll Mill flow cell for the experimental study of particle and drop dynamics. *Experimental Thermal and Fluid Science, 60*, 54-65.
- Rumscheid, F. D., & Mason, S. G. (1961). Particle motions in sheared suspencions xii. deformation and burst of fluid drops in shear and h. *J. Colloid Sci., 16,* 238.
- Sohn, J. S., Yu-Hau, T., Li, S., Voigt, A., & Lowengrub, J. S. (2010). Dynamics of multicomponent vesicles in a viscous fluid. *J. Comput Phys.*, 229(1), 119-144.
- Spann, A. P., Zhao, H., & Shaqfeh, E. S. (2014). Loop subdivision surface boundary integral method simulations of vesicles at low reduced volume ratio in shear and *extensional flow*. *Physics of Fluids*, *26*, 031902-1-26.
- Stoker, J. J. (1989). *Differential Geometry*. New York,London, Sydney, Toronto: Wiley Classics Library, Wiley Interscience.
- Stone, H. A., & Leal, L. G. (1989a). Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. *J. Fluid. Mech.*, *198*, 399-427.
- Stone, H. A., & Leal, L. G. (1989b). The influence of initial deformation on drop breakup in subcritical time-dependent flows at low Reynolds numbers. J. Fluid Mech, 206, 223-263.
- Stone, H. A., Bentley, B. J., & Leal, L. G. (1986). An experimental study of transient effects in the breakup of viscous drops. *J. Fluid Mech.*, *173*, 131-158.
- Subramanian, G., & Koch, D. L. (2006). Centrifugal Forces Alter Streamline Topology and Greatly Enhance the Rate of Heat and Mass Transfer drom Neutrally Bouyan Particles to a *Shear flow. Physical Review Letters*, *96*, 134803 1-4.
- Taylor, G. I. (1932). The Viscosity of a Fluid Containing Small Drops of Another Fluid. *Proceedings of the Royal Society A, 138*(834), 41-48.
- Taylor, G. I. (1934). The Formation of Emulsions in Definable Fields of Flow. *Proc. R. Soc. Lond. A*, 146, 501-523.
- Taylor, G. I. (1964). Conical free surfaces and fluid interfaces. *Proc. 11th Int. Cong. Appl. Mech.* Munich.
- Torza, S., Cox, R. G., & Mason, S. G. (1972). Particle motions in sheared suspensions. xxvii. transient and esteady deformation and burstof liquid drops. *J- Colloid Interface Sci., 38*, 395.
- Unverdi, S. O., & Tryggvason, G. (1991). A Front-Tracking Method for Viscous, Incompressible, Multiphase-fluid Flows. *Jorunal of Computational Physics*, *100*, 25-37.

- Wannaborworn, S., Mackley, M. R., & Renardy, Y. (2002). Experimental observation and matching numerical simulation for the deformation amd breakup of immiscible drops in oscillatory shear. *J. Rheol.*, *4*6(5), 1279-1293.
- Young, Y. N., Blawzdziewicz, J., Cristini, V., & Goodman, R. H. (2008). Hysteretic and chaotic dynamics of viscous drops in creeping flows with rotation. *J. Fluid Mech., 607*, 209-234.
- Youngren, G. K., & Acrivos, A. (1975). Stokes flow past a particle of arbitrary shape: a numerical method of solution. *J. Fluid Mech.*, *69*, 377-403.
- Yu, W., Bousmina, M., & Zhou, C. (2004). Determination of interfacial tension by the retracction method of highly deformed drop. *Rheol Acta*, *43*, 342-349.
- Yuriko, J. L., Renardy, Y., & Renardy, M. (2000). Numerical Simulation of Breakup of a Viscous Drop in *Simple shear flow* Through a Volume-of-Fluid Method. *Phys. of Fluids*, *12*(2), 269-282.
- Zhao, H., & Shaqfeh, E. S. (2011). The dynamics of a vesicle in *simple shear flow*. *J. Fluid Mech.*, 674, 578-604.
- Zinchenko, A. Z. (1997). A Novel Boundary-Integral Algorithm for Viscous Interaction of Deformable Drops. *Phys, Fluids, 9*(6), 1493-1511.

APPENDIX A

VIII International Congress of Engineering Physics IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 792 (2017) 012005 doi:10.1088/1742-6596/792/1/012005

Numerical study of the *3D*-shape of a drop immersed in a fluid under an elongational flow with vorticity

A S Sanjuan¹, M A H Reyes ², A A Minzoni³ and E Geffroy¹

¹Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City.

²Departamento de Termofluidos, Facultad de Ingeniería. Universidad Nacional Autónoma de México, Mexico City.

³Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas., Universidad Nacional Autónoma de México, Mexico City.

E-mail: alfrsj07@gmail.com

Abstract. This work focuses on a three-dimensional analysis of the deformation of a drop immersed in a Newtonian fluid— generated by a 2D elongational flow with vorticity. The study of steady-state deformations of the cross-section of the drop shows a prevalent noncircular shape. The axisymmetric idealization of the ellipsoid is not observed nor the linear dependency between capillary number and deformation of the drop, as Taylor and Cox theory predicted. Our numerical results are consistent with experiments and other numerical simulations. However, in the latter cases, measurements of the cross section of the drop are few while a limited class of flows is applied. In this work, deformations induced by general two-dimensional flows upon the 3D drop shape are presented with special emphasis about the length scale along the third axis —perpendicular to the plane of the applied flow field.

1. Introduction

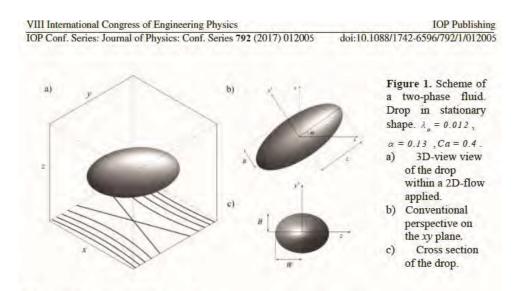
Flow-induced drop deformation is an important topic in Fluid Mechanics [1,2] due to applications in industry as emulsion processing, micro-fluidics technologies [3-5], and others. Since the work of Taylor [1,2] the study of drop deformation has focused in the effects induced by the flow applied on the continuum phase. As Rallison explains [3], studies of drop deformations have focused principally when it is subjected to shear flows or extensional flows. The analysis of these two-dimensional flows permitted the theoretical analysis of small-drop deformation [1,3,5,6], assuming an spheroidal shape with the cross-section remaining axisymmetric. However, Guido et all [7] found that cross-sections in simple shear flow are non circular. Numerical studies of drop deformation showed this conditions [5,8], but these studies did not analyze the drop cross-section.

The study of drop deformation in two-dimensional flows is still an open question because an ample family of 2D-flows is not easily carried out in the laboratory [9-11]. As we will see in the next Section, a family of 2D-flows ranging from simple shear to pure extensional flow can be obtained as a mixture of rotation and elongation parts [1,12]. With this family of flows, it is possible to study the drop deformations induced from simple shear to extensional flow, while observing the contribution of added vorticity in the flow. The numerical experiments here presented can supplement the experimental data to understand better the dynamics of drop deformations.

This work focuses in flows with kinematics close to those of simple shear flow but, with less vorticity —more elongational effects. To calibrate the numerical experiments, the experimental data of Rosas et al., [10] are used.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

Universidad Nacional Autónoma de México



UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

2. Drop deformation in 2-D linear flow

The analysis of drop deformation assumes two Newtonian fluids, figure 1. The first (inner) phase is the drop with viscosity μ_0 and surface tension σ . The continuum phase has a viscosity μ_1 . The viscosity ratio is $\lambda_{\mu} = \mu_0/\mu_1$. The two fluids have the same density and both are immiscible. There is not surfactant and there are not Marangoni stresses present. The creeping-flow conditions are assumed. In the creeping-flow regime the fluid motion is governed by the Stokes equations [12]

$$\mu \nabla u = \nabla p, \tag{1}$$

The velocity u is continuous at the drop interface S. The tractions exerted on the two sides of the interface between the two fluids have two different values, with a corresponding discontinuity:

$$\Delta f = f_1 - f_0 = (\Pi_1 - \Pi_0) \cdot \hat{n}, \qquad (2)$$

where \hat{n} is the normal vector pointing out of *S*. In this work, a constant value surface tension [13] is assumed; i.e., $\nabla \cdot \hat{n}$ is equal to twice the mean curvature κ_{m} at that point on the interface,

$$\Delta f = \sigma \hat{n} \nabla \cdot \hat{n} = 2\sigma \kappa_m \hat{n} \qquad (3)$$

The drop is subject to a two dimensional linear incident flow

$$u(x, y) = \frac{G}{(1 + \alpha)}(\alpha y, x),$$
 (4)

where *G* is the intensity of the rate of deformation tensor [15] and the flow parameter is α [9-11, 14].

$$G = \left(\left| II_{2D} \right| \right)^{n^{2}} . \tag{5}$$

Equation (4) assumes that the α parameter goes from zero to one. The case $\alpha = 0$ corresponds to simple shear flow with the velocity gradient in the *y* direction, the value of *G* is equal to shear rate \dot{y} . For $\alpha = 1$ we have an extensional flow in two-dimension with the principal axes of deformation at x = y —the compressional axes being x = -y; the intensity of the flow is the strain rate \dot{e} .

The dynamic of drop deformation is characterized by three dimensionless numbers. The viscosity ratio λ_{μ} , the capillary number *Ca* equation (6) and The flow parameter α equation (7). The capillary number characterizes the ratio between viscous stresses — imposed by the flow— and capillary forces that resist the deformation and drive the drop towards the equilibrium shape, were r_0 is the non-deformed radius of the drop.

$$Ca = \frac{r_0 \mu_1 G}{r_0} , \qquad (6)$$

Finally, the flow parameter α characterizes the magnitude of the rotational component relative to the extensional component of the external flow. Here, results are presented for a range of values of the flow-parameter close to simple shear flow, i.e., $\alpha = 0.03$, $\alpha = 0.05$ and $\alpha = 0.13$. The applied flow

VIII International Congress of Engineering Physics	IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 792 (2017) 012005	doi:10.1088/1742-6596/792/1/012005

covers a range of the Capillary number from 0.05 to 0.40. For values less than the minimum, the drop shape does not present different values of its principal conditions; for values of 0.4 or less, the deformation is not significant to cause drop breakup. The continuum phase is more viscous than the drop viscosity: $\lambda_{\mu} = 0.012$; the value is chosen so that numerical predictions match the values of the experiment results of Rosas [10].

The measure of drop deformation used corresponds to Taylor Deformation:

$$D_r = \frac{L-B}{L+B},$$
 (7)

were L and B are the axes of the drop shown in figure 1. Additionally, we present the time evolution of the lengths of all principal axes of the drop vs. the initial radius; see figure 2.

3. Numerical Method

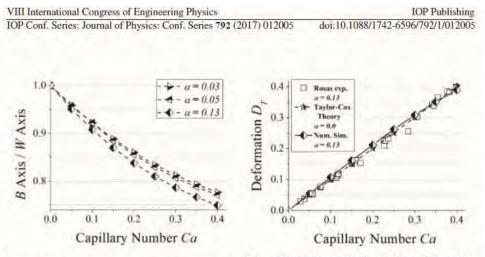
The numerical method used is the 3D collocation boundary element method [13]. Using the Lorentz reciprocal theorem for Stokes regime [12,13], particular solutions can be expressed in terms of known solutions as point sources on the interface where u_0 is the flow on the surface of the drop and f_0 is the force on the surface of the drop.

$$\int (\mu_1 u_1 f_0 - \mu_0 u_0 f_1) dS = 0, \qquad (8)$$

were $f = \sigma \cdot \hat{n}$, considering on the surface of the drop point sources whose velocity and stresses are the stokeslet and the stresslet respectively [5,12,13]. Then, the numerical scheme is represented as

$$u^{\infty}(x_{0}) - \frac{1}{8\pi\mu_{1}} \int_{S} \Delta f(x) \cdot G(x, x_{0}) dS(x) + \frac{1 - \lambda_{\mu}}{8\pi} \int_{S} u_{1}(x_{0}) \cdot T(x, x_{0}) \cdot \hat{n}(x) dS(x) = \begin{cases} u_{1}(x_{0}) & a \end{pmatrix}, \\ \frac{1 + \lambda_{\mu}}{8\pi} u_{1}(x_{0}) & b \end{pmatrix}, \text{ or (9)}$$

In this equation there are three cases. The case, (b) Solves the velocity field when x_0 is on the surface of the drop. Then with this information the case (a) calculates the velocity field when x_0 is outside of the drop —exterior flow. Finally, (c) calculates the velocity field when x_0 is inside the drop.


The flow imposed on the continuum phase is determined by $u^{\infty}(x_0)$. The second term on the left side of equation (9) is known as the Single Layer Potential and evaluates stresses across the interface. The third term is known as the Double Layer Potential and is used to evaluate the velocity field at the interface. The boundary element method has the advantage that it reduces the 3D computation problem into a 2D-evaluation, i.e., the method requires to solve the velocity field on the surface of the drop, and (b) with this information is possible to have the velocity field outside or inside the drop.

3.1 Numerical implementation of the computation of stresses and velocity fields

The numerical scheme solves the Stokes flow equation at an instant of time, equation (9 b). The evolution of the drop shape is carried out using the velocities obtained at the collocation points. By means of an interpolation subroutine the velocity at all nodes is calculated and then the new position of the drop is evaluated. For the evaluation of the Single Layer Potential, an approximation of the local curvature of the drop is used, using equation 3 with curved triangles. A quadratic interpolation throughout these triangles is performed to obtain the mean curvature of the elements of the drop. In this manner, the mesh of the interface and the algebraic system of equations of the boundary elements is smaller than those of other more conventional numerical schemes, such as e.g., finite differences.

3.2 Numerical Accuracy

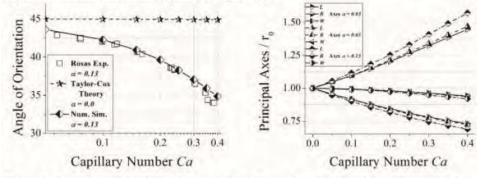

The numerical simulation presented in this paper uses a surface of 2048 elements. To obtain the *time evolution* of the drop deformation, time is advanced using a fourth-order Adams-Bashforth-Moulton method [16]. The total time required to reach the stationary shape of the drop is T = Gt, reaching the final stationary deformation in all numerical experiments. These numerical results were compared with the data reported by Rosas [10] under the same flow regime.

Figure 4. Stationary ratio of *B* wrt *W* axes in numerical simulations for a flow with $\alpha = 0.03$, $\alpha = 0.05$ and $\alpha = 0.13$ for different values of *Ca*.

Figure 5. Stationary Taylor Deformation values for numerical simulations and experimental data for $\alpha = 0.13$ and analytical results of Taylor-Cox at $\alpha = 0.0$ for different values of *Ca*.

In figure 4 the ratio between axes of the cross section of the drop are given for three different flow strengths. As the capillary number increases, the eccentricity of the ellipsoid of the cross section increases as well. This ratio also depends on the flow-type parameter α becoming more eccentric for flows close to simple shear flow. For simple shear flows, these simulations produce values for the ratios of the cross section that are similar to the numerical results reported in References [7,8], having as well the same general behavior, even though the viscosity ratio reported is larger. Qualitatively it is possible to see the similarity [8]. Figure 5 presents a comparison of experimental results [10] and the simulated values for $\alpha = 0.13$, and the analytical results of Taylor-Cox for $\alpha = 0.0$ for the stationary Taylor Deformation value in the *xy*-plane; see figure 1(b).

Figure 6. Orientation of the drop for numerical simulations and experimental data for $\alpha = 0.13$ and analytical results of Taylor-Cox $\alpha = 0.0$ for different values of *Ca*.

Figure 7. Stationary values of the principal axes of the drop for a flow with $\alpha = 0.03$, $\alpha = 0.05$ and $\alpha = 0.13$ for different values of *Ca*.

The stationary deformation of the drop depends upon the capillary number as well as the flow type. When Ca = 0.4, and for flows with $\alpha = 0.03$, the deformation achieved is less than 85% of the values reached for flows of $\alpha = 0.13$. Cox [5] and Taylor [1] theory for simple shear flows establishes a linear relationship between deformation vs. the capillary number. However, the dependence observed with simulations of stronger flows is no longer linear, the later being in agreement with the experiments of Rosas [10, 11].

Figure 6 shows the rotation of the principal axis of the drop; see figure 1 (b). In figure 6, the orientation is comparable with the experimental data for similar capillary numbers. The theory based in

VIII International Congress of Engineering Physics	IOP Publishing	
IOP Conf. Series: Journal of Physics: Conf. Series 792 (2017) 012005	doi:10.1088/1742-6596/792/1/012005	

simple shear flow does not match with the experimental data. Finally, the measurements of the principal axes of the drop are shown in figure 7. These values were obtained in the stationary shape of the drop.

5. Conclusions

The simulations here presented for drop forms induced in 2D-flows do not appear to match the axisymmetric case established by G. I. Taylor and Cox, as neither did Kennedy et al., and Guido et al., for the simple shear flows. This is likely the case for capillary number less than 0.4.

For Ca > 0.4, the deformation in the *xy*-plane increases, but, neither as numerical simulation show, there is a correlation with the Taylor-Cox model. On the other hand, the simulated behavior appears consistent with the experimental data of Rosas.

The difference between the simple shear flow, $\alpha = 0.0$, and flows with stronger degree of elongation induced larger drop deformations while the angle of orientation (principal axis) rotates away from 45 degrees.

The analysis of the *L*, *B* and *W*-axes of the ellipsoidal drop, in steady state, clearly show deviations from the axisymmetric shape as the flow type parameter α increases. However, the change of *W* remains unchanged for the values $\alpha = 0.03 - 0.13$, as a result of the vorticity of the applied 2D-flow.

6. Acknowledgments

The authors acknowledge funding provided by Project No. IG100714 of PAPIIT-UNAM Program. ASS gratefully acknowledges the financial support provided by CONACyT and PCeIM-UNAM during his PhD studies.

7. References

- [1] Taylor G I 1932 Proc. Roy. Soc. A 138 41
- [2] Taylor G I 193. Proc. Roy. Soc, A 146 501
- [3] Rallison J M 1984 Ann. Rev. Fluid Mech. 16 45
- [4] Prosperetti A and Tryggvasson G 2009 Computational Methods for Multiphase Flow (Cambridge, New York, Melbourne: Cambridge University Press)
- [5] Cox R G 1969 J. Fluid Mech. 37 601
- [6] Hinch E J and Acrivos A 1980 J. Fluid Mech. 98 305
- [7] Guido S and Villone M 1999 J. Rheol. 42(2) 395
- [8] Kennedy M R, Pozrikidis C and Skalak R 1994 Computers Fluids. 23(2) 251
- [9] Bentley B J and Leal L G 1986 J. Fluid Mech. 167 241
- [10] Rosas I Y, Reyes M A H, Minzoni A A and Geffroy E 2015 Exp. Therm. Fluid Sci. 60 54
- [11] Escalante C A, Reyes M A H, Rosas I Y and Geffroy E 2015 J. Phys.: Conf. Ser. 582 012014
- [12] Leal L G 2007 Advanced Transport Phenomena (Cambridge, New York: Cambridge University Press)
- Pozrikidis C 1997 Introduction to Theoretical and Computational Fluid dynamics (New York, Oxford: Oxford University Press)
- [14] Reyes M A H, Minzoni A A and Geffroy E 2011 J. Eng. Math. 71(2) 185
- [15] Macosko C W 1994 Rheology Principles, Measurements, and Applications ed Wiley-VCH (Chichester New York) p21-23 68-74
- [16] Lambert J D 1973 Computational Methods in Ordinary Differential Equations ed Wiley & Sons (Chichester New York)

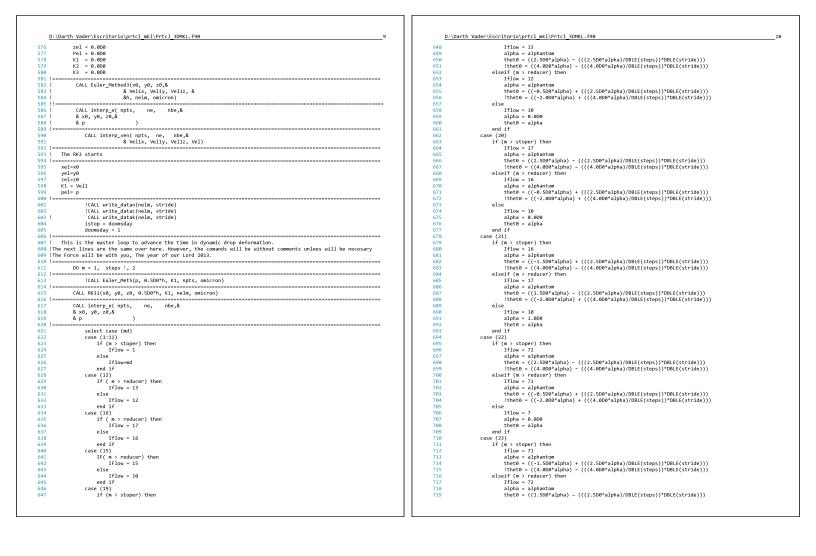
APPENDIX B

In this appendix B, I will present the complete code made to study the drop deformation in strong flows. Unfortunately, for the extension of the code (around of 15000 lines, 240 pages) the appendix B is digital.

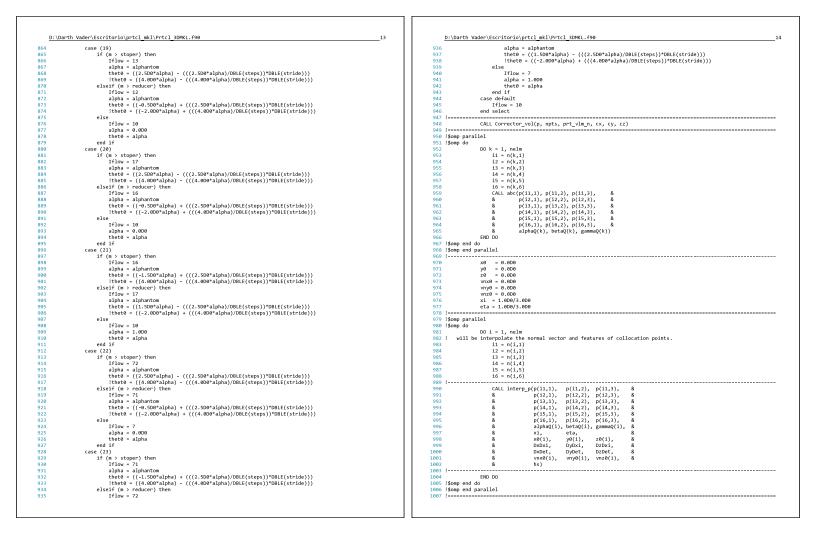
The code is attached in CD-ROM. If there are doubts, or comments about the code, do not hesitate to contact me: alfrsj07@gmail.com.

The code is divided in the principal program and 17 modules. Every module has its subroutines. Next, I present a list of the modules of the code.

- Prtcl_3D is the main program.
- Mod_SharedVars: Module with shared variables.
- Mod_Trgl_Octa: Module which made the mesh of the drop.
- Mod_Prtcl_Geo: Modules with subroutines to computes the drop's geometry.
- Mod_Nodal_Interpolation: Module with subroutines to interpolate the mesh in the time.
- Mod_Gauss_Coefs: Module with the numerical weights employed to integrate.
- Mod_Builder_Matrix_Arrays: Module which made the algebraic system to solve the Eq. (1.22b).
- Mod_Prtcl_slp.: Module which computes the Single Layer Potential.
- Mod_sgf_3d_fs: Module which computes the Stokeslet.
- Mod_Prtcl_DLP: Module which computes the Double Layer Potential.
- Mod_sgf_3d_sfs: Module which computes the Stresslet.
- Mod_Velocity_Menu: Module with the different option of flows.


- Mod_VelFieldTRM_13: Module which computes the analytical velocity field estimated for the Two-Roll-Mill device.
- Mod_SNEDOS: Module with subroutines to solve the ordinary differential equations.
- Mod_Correction: Module which preserves the condition of conservation of volume.
- Mod_Data_Files: Module which indicates how to save the data.
- Mod_axb: Module which solves the algebraic system equations.

\Darth Vader\Escritorio\prtcl_mkl\Prtcl_3DMKL.f90 1	D:\Darth Vader\Escritorio\prtcl_mkl\Prtcl_3DMKL.f90
NGRAM Prtcl 3D	73 !
	74 IMPLICIT NONE
	75 !
Version 0.5 C. POZRIKIDIS	76 ! 77 ! Initialization of Varieables
Version 0.7 MARCO ANTONIO REYES HUESCA	
	79 !In this part of the code the variables has been clasified becouse there are a lot of them. Other reason is
Versión 1.0 ALFREDO SANJUAN SANJUAN	80 !there's a necesity of modify in future, so is necesary to know the new variables and what are the obsolet or 81 !old variables to delete them.
Mexico D.F., in the Year of Our Lord of 2012	82 linside these clasification there are subcategories, fist the character variables, then integer variables and
	83 !finally the real variables. This manner of variable initialization comes from CHAPMAN FORTRAN BOOK'S
	84 ! 85 ! Input Data Variables
This code is a numerical provect about a drop deformation in Stokes' Flows. You would see this versio was	85 : Input Data Variables 86 These variables are the variables obtained from IMPUTDATA file.
btained of the wor of Pozrikidis as a begining. However, this code has oher aplication becouse it shows what's	87 INTEGER :: IFlow !Type of flow
appen in a drop inmerse in anoher fluid when someone applies on continue phase a strong flwo.	88 INTEGER :: ndiv !Level of triangulation
This program computes the following Stokes flows:	89 INTEGER :: mint, NGL !Number mint is Gauss_triangle base point number, it's used t 90 INTEGER :: steps !make the regular integral. NGL is used to make singular
This program compares the following stokes thows:	90 INTEGER :: stops ::make the regular integral. NoL is used to make singular 91 INTEGER :: stoper :: stoper !:step when stop the flow
1) Flow due to the motion of a 3-dimensional drop immerse in another immiscible fluid. In this case, the	92 INTEGER :: reducer !step when reduces the flow to half value
particle is an ellipsoid with:	93 INTEGER :: Iprec 94 INTEGER :: Ireg
x semi-axis equal to a	94 INTEGER :: Ireg 95 REAL (KIND = DBL) :: boa,coa !these variables are used in subroutine scale drop adjust.
y semi-axis equal to b	96 REAL (KIND = DBL) :: reg !
z semi-axis equal to c	97 REAL (KIND = DBL) :: cxp, czp !
SYMBOLS:	98 REAL (KIND = DBL) :: phi1, phi2, phi3 ! 99 REAL (KIND = DBL) :: visc, visc2 !Viscosity of contiunuos phase and drop
SYPBULS:	100 REAL (KINO = DBL) :: VISC, VISC2 : VISCSILY OF CONLUMIOS phase and drop 100 REAL (KINO = DBL) :: gamma I Surface tension
p(i,j) coordinates of the ith node (j=1,2,3)	101 REAL (KIND = DBL) :: h !stride
ne (k,j) ne(k,1) is the number of elements adjacent to point k	102 REAL (KIND = DBL) :: alpha, gi, alphantom ! parameter of flow and intensity of field flow. Code appendi
ne(k,2), are the elements numbers, $j = 2,, 7$ for this triangulation up to six	103 REAL (KIND = DBL) :: omicron !parameter of transition between eulerian and lagrangian adva
n(k,i)6	104 : 105 LOGICAL :: adjc !! Adjust of center
nbe(k,j) the three neighboring elements of element k (j=1,2,3)	106
arel(i) surface area of ith element	107
npts total number of points nelm total number of elements	108 ! Variables of Mod_Trgl_Octa 109 INTEGER :: npts. nelm !number of elements and points
x0, y0, z0	110 Interest of the second sec
vnx0, vny0, vnz0 unit normal vector at collocation points	111 ! In this part apears the variables which fix the frame coordenates. This part could be changed to other mod
alphaQ, betaQ, gammaQ parameters for quadratic xi-eta isoparametric mapping	112 !It was in 21 / Augost / 2012
	112 :11 was 10 21 / August / 2012 113
he inicial thing is to USE all MODULES	114 ! Variables of Mod_Geo
USE Mod_SharedVars	115 ! In this par, there are theold variables, until this module will change 116 REAL (KIND = DBL) :: srf area, srf area n
USE Mod_TRMCoefs ! USE Mod Trgl Octa	116 REAL (KIND = DBL) :: srf_area_n 117 REAL (KIND = DBL) :: prt_vlm, prt_vlm_n
USE Mod Gauss Coefs	118 REAL (KIND = DBL) :: cx, cy, cz
USE Solucion_Ax_b	119 REAL (KIND = DBL) :: DT, DTm, Dtmm, Imajor, bminor, wminor, Tiempo, angulo
USE Mod_SMEDOS ! USE Mod Data Files	120 REAL (KIND = DBL) :: xi, eta 121 REAL (KIND = DBL) :: Dxdxi, Dydxi, Dzdxi
USE Mod Builder Matrix Arrays	122 REAL (KIND = DBL) .: Dxdet, Dydet, Dzdet
USE Mod_Prtcl_3D_Geo !, ONLY: Printel, abc, elm_geom, elm_geom2 !	123 REAL (KIND = DBL) :: hs
USE Mod_Correction USE Mod Nodal Interp	124 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: xmom, ymom, zmom 125 !
USE Mod_Nodal_Interp USE Mod Velocity Menu	125 ! 126 ! Variables of Green's Functions **** review the Module: Mod Builder Matrix Arrays
USE Mod VelFieldRM !	127 REAL (KIND = DBL) :: cdg, cdt, fc !cdg, cdt are coefficients for the dimensionallity of the fl
	128 ! Variables of matrix array
In this par we call the libraries used in this code	129 INTEGER, ALLOCATABLE, DIMENSION(:) :: ipiv 130 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: GM, RM, Uoo, Vel0, Vel1
In this par we call the libraries used in this code	130 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: GM, RM, UGO, VelB, Vel1 131 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: K1, K2, K3 !, K4
MKL libraries	132 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:) :: TM
USE mk195_lapack	133 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:) :: rhs
USE mkl95_precision USE omp lib	134 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:) :: sln 135 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:) :: Resist
Use omp_110	135 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:;;) :: RESIST 136 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:;;) :: BJ, Sol
IMSL libreries.	137 !
USE IMSL_LIBRARIES	138 ! Indices and constants in the code.
USE CSIGD_INT USE lin_sol_gen_int	139 CHARACTER (8) :: DATE 140 CHARACTER (12) :: TIME
Use in sol_gen_int	140 CHARACTER (12) :: IIME 141 CHARACTER (190):: msg
INCLUDE 'link_f90_static.h'	142 INTEGER :: null, Nfour, Nseven
	143 INTEGER :: i, j, k, i1, i2, i3, i4, i5, i6, m


<pre>Light Market Low Law Law Law Law Law Law Law Law Law La</pre>		
<pre>10 bit bit bit bit bit bit bit bit bit bit</pre>	D:\Darth Vader\Escritorio\prtcl_mkl\Prtcl_3DMKL.f903	D:\Darth Vader\Escritorio\prtcl_mkl\Prtcl_3DMKL.f904
122 NAMELIST / TRPORTS / Fig. Cost, Cop. Cop. 6 6 138 & noity, bas, cop. cop. cop. cop. 6 6 139 & noity, bas, cop. cop. cop. cop. 6 6 130 & noity, bas, cop. cop. cop. cop. 6 6 130 & noity, bas, cop. cop. cop. 6 6 130 & noity, bas, cop. cop. cop. 6 6 130 & noity, bas, cop. cop. cop. 6 6 130 & noity, bas, cop. cop. cop. 6 6 130 & noity, bas, cop. cop. cop. 6 6 130 & adjt, conitron, doomsday, 8 6 130 I and cop. sp. cop. cop. cop. cop. cop. cop. cop. co	144 INTEGER :: ichoose 144 INTEGER :: ind, inela, jnelm, jnelm2 145 INTEGER :: ishima 146 INTEGER :: ishima 147 INTEGER :: ishima 148 INTEGER :: ishima 149 INTEGER :: ishima 141 INTEGER :: ishima 141 INTEGER :: ishima 141 INTEGER :: ishima 141 INTEGER :: ishima 142 INTEGER :: ishima 143 INTEGER :: ishima 144 INTEGER :: ishima 145 INTEGER :: ishima 145 INTEGER :: ishima 145 INTEGER :: ishima 146 INTEGER :: ishima 147 INTEGER :: ishima 148 INTEGER :: ishima 149 INTEGER :: ishima 141 INTEGER :: ishima 145 INTEGER :: ishima 146 INTEGER :: ishima 158 IOTher variables, in the future, there wont be nothing here. :) 159 REAL (KIND - DBL), ALLOCATABLE, DIMENSION(:) ::: wells, velly, vell2 160 REAL (KIND - DBL), ALLOCATABLE, D	<pre>null = 0 NHOW = 4 NHOW = 6 NHOW =</pre>
210 pl4 = 0.580*pl 222 [The firs statement is obtain the data and time. 211 pl2 = 2.000*pl 283 CALL DATE_AMD_THE(CATE, TIME) 212 pl4 = 4.000*pl 284 Image: Call Data (And The Amburg) 213 pl6 = 6.000*pl 285 ! Image: This part, the file PretCl_30.mal is opened and red. The code has two warning statements, the first is	182 NAMELIST / InputData / Iflow, & 183 & ndiv, boa, coa, req, cxp, czp, & 184 & phil, phi2, phi3, & 185 & int, NGL, Ns, Np, & 186 & visc, visc2, gamma, & 187 & alpha, gi, & 188 & h, steps, stoper, reducer, & 189 & adjc, omicron, doomsday, & 190 & edgr, oprece, reg 191 I Adme list are here. It will work :) 193 I Name list are here. It will work :) 194 I Ade, Bo, Co, Oo, Nc, StPrt, & 195 I NAMELIST / TRMCoefs / K, w, vR, ORy, StPrt, & 196 Ade, B, Oo, Oo, Co, Sa & 197 Is Ade, B, Oo, Oo, Co, Sa & 198 I MAKELIST / TRMCoefs / StPrt, shrate, lambda, & & & 198 I MAKELIST / TRMCoefs / StPt, shrate, Jambda, & & & 199 I addes, Street I addes, G, a, vR, K, & & 208 MAKELIST / TRMCoefs / StPt, shrate, Jambda, & & & 208	<pre>254 CLOSE(UNIT - i0) 255 Iberror = 1 256 END IF 1</pre>
214 p18 = 8.000*pi 215 !	220 pth = 0.500*pi 211 pt2 = 2.000*pi 212 pt4 = 4.000*pi 213 pt6 = 6.000*pi 213 pt6 = 8.000*pi	282 [The firs statement is obtain the data and time. 283 CALL DATE_AND_TIME(OATE, TIME) 284 [

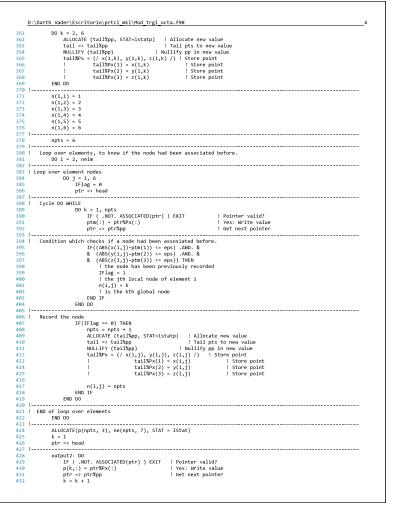
<pre>IF (fstatus == 0) then READ(UNIT = 10, NML=TRMCoefs, IOSTAT = sstatus, IOMSG = msg)</pre>	360 ! & ACTION = 'READ', DELIM = 'QUOTE', IOSTAT = astatus) 361 ! IF (astatus == 0) THEN
!	362 ! ! 'Procede to read data from file' 363 ! READ (UNIT = 10, NML=TRMCoefs, IOSTAT = fstatus)
IF (status == 0) then	364 ! CLOSE (UNIT = 10)
CLOSE(UNIT = 10)	365 ! END IF
ELSE	366 ! END IF
OPEN(UNIT = ULogi, FILE = 'Prtcl3D_Logi.log',STATUS = 'REPLACE', ACTION = 'WRITE')	367 !
WRITE (ULogi,*) ' DATE: ', DATE(1:4), '/', DATE(5:6), '/', DATE(7:8) WRITE (ULogi,*)'Error, little Padawan, TRMCoefs has a mistake!'	368 !====================================
WRITE (ULOgi, *) First Error index = ', fstatus	370 ! In this par there is a method todiscretize shape and generate the connectivity table
WRITE (ULOgi, *) 'number of error'	370 1
WRITE (ULogi, *) 'Second Error index = ', sstatus	<pre>372 CALL trgl_octa(ndiv, npts, nelm)</pre>
WRITE (ULogi,*) ' message of error:'	373 ! Allocation of p, n, ne and nbe occurs in this subroutine.
WRITE (ULogi,FMT=*) TRIM(msg)	374 !
WRITE (ULogi,*) ' message of error ended' WRITE (ULogi,*)'Now, go to find the mistake, Do not see this more time!'	375 ! 376 ! Triangulate the unit sohere
<pre>www.ite (ulogi,') wow, go to tand the mistake, bo not see this more time: WRITE (ulogi,'PMT=*) ' TIME = ', TIME(1:2), ':', TIME(3:4), ':', TIME(5:6), TIME(7:12)</pre>	376 : Intangulate the unit sphere 377 ! In this par there is a file with the geometry, the values of
WRITE(Ubggi,*)''he Force will be with you'	377 i - In this par there is a threwith the geometry, the values of
CLOSE(UNIT = 10)	379 ! Call the subroutine trgl octa
lberror = 1	380 ! CALL trgl_octa_read(ndiv, npts, nelm)
END IF	381 ! Allocation of p, n, ne and nbe occurs in this subroutine.
[382 !
ELSE OPEN(UNIT = ULogi, FILE = 'Prtcl3D Logi.log',STATUS = 'REPLACE', ACTION = 'WRITE')	383 !
<pre>WPITe (ULog1, *) * DATE * PTC13U_LOg1.Log ,SIAIUS = KEPLALE', ACLIUM = WRITE) WRITE (ULog1,*) * DATE ', DATE(56), '/', DATE(578)</pre>	384 : The next part computes the expansion to specified shape and equivalent radius. The idea is introduce this 385 !statements in a new subroutine.
WRITE (ULogi,*)'Error, little Padawan, TRMCoefs has a mistake!'	386 CALL drop scale adjust(p, npts, nelm, &
WRITE (ULogi,*)'number of error'	387 &boa, coa, req, &
WRITE (ULogi, *) 'First Error index = ', fstatus	388 &eps, &
WRITE (ULogi,*) ' message of error: '	389 &cxp, czp, &
WRITE (ULogi,FMT=*) TRIM(msg) WRITE (ULogi,*) ' message of error ended'	390 &phi1, phi2, phi3) 391 !
wkile (Ulogi,*) message of error ended WkIle (Ulogi,*) Now, go to find the mistake, Do not see this more time!'	391
WRITE (ULOGI, FMT=*) ' TIME = ', TIME(1:2), '', TIME(3:4), '', TIME(5:6), TIME(7:12)	393 ! The follow acction is to updated the quadratures
WRITE(ULog1,*)'The Force will be with you'	
CLOSE(UNIT = 10)	395 ! Read the quadratures. First there are an allocate statement for arrays, then the values of coefficients are
WRITE (ULogi,*) ' DATE: ', DATE(1:4), '/', DATE(5:6), '/', DATE(7:8)	396 !red and finally there is the compute of quadratures over each element.
lberror = 1 FND TF	397 ALLOCATE (alphaQ(nelm), betaQ(nelm), gammaQ(nelm)) 398 alphaQ = 0.0D0
	398 alphay = 0.000 399 beta0 = 0.000
The next step is to have an IF structure to decide and to continue the code. The name was init, it was	400 gammaQ = 0.000
hanged by bolt, because is a part of a door and is a statement for coming inside the code.	401 CALL Gauss Legendre(NGL) ! Allocation of WW and ZZ
Bolt: IF (sstatus == 0) THEN	402 CALL Gauss_Trgl(mint) ! Allocation of xiq, etq, wq
The initial and had also condition on failure because that and don't have TANG and a This and and had	
The initial code had the condition on fstatus, because that code don't have IOMSG option. This new code has the condition arround second error index called sstatus. This statement stablish a second look if ther is a	404 ! Here we develop the advance in one step of time 405 !
nistake in the data input file.	406 ! Compute the coefficients alphaQ, betaQ, gammaQ, for the quadratic xi-eta mapping of each element
	407 !\$omp parallel
The nex step is to open the file Prtcl_Dat which has the values of drop's geometry.	408 !\$omp do
OPEN(UNIT = UDat, FILE = 'Prtcl3D_Dat.dat', & & STATUS = 'REPLACE', ACTION = 'WRITE')	$\begin{array}{llllllllllllllllllllllllllllllllllll$
& STATUS = REPLACE, ACTION = WRITE) WRITE (UDat,*) ' Proteido Dat.dat '	$\begin{array}{ccc} 4.10 & 1.1 = n(K, 1) \\ 411 & 12 = n(K, 2) \end{array}$
WRITE (UDat.*) 'DATE: ', DATE(1:4), '/', DATE(5:6), '/', DATE(7:8)	$\begin{array}{ccc} 411 & 12 - n(x_1 2) \\ 412 & 13 - n(x_1 3) \end{array}$
WRITE (UDat,*) ' TIME = ', TIME(1:2), ':', TIME(3:4), ':', TIME(5:6), TIME(7:12)	413 $i4 = n(k, 4)$
WRITE (UDat,*) ' '	414 $15 = n(k,5)$
	415 $i6 = n(k, 6)$
prepare the file Prtcl3D_log. OPEN(UNIT = ULog. FILE = 'Prtcl3D Log.log'. &	416 CALL abc(p(i1,1), p(i1,2), p(i1,3), & 417 & p(i2,1), p(i2,2), p(i2,3), &
OPEN(UNIT = ULOg, FILE = 'Prtcl3D_log.log', & & STATUS = 'REPLACE', ACTION = 'WRITE')	417 & p(i2,1), p(i2,2), p(i2,3), & 418 & p(i3,1), p(i3,2), p(i3,3), &
a Sintos - ALICALE ; ALICAT = WAILE ;	410 α $p(15,1), p(15,2), p(15,5), \alpha$ 419 δ $p(14,1), p(14,2), p(14,3), \delta$
WRITE (ULog,*) ' DATE: ', DATE(1:4), '/', DATE(5:6), '/', DATE(7:8)	420 & p(15,1), p(15,2), p(15,3), &
WRITE (ULog,*) ' TIME = ', TIME(1:2), ':', TIME(3:4), ':', TIME(5:6), TIME(7:12)	421 & p(i6,1), p(i6,2), p(i6,3), &
WRITE (ULog,*) ' '	422 & alphaQ(k), betaQ(k), gammaQ(k))
WRITE (ULog,*) ndiv	423 END DO
prepare the file Prtcl3D_Geo for visualization in Mathemathica.	424 !\$omp end do 425 !\$omp end parallel
OPEN (UNIT = UGeo, FILE = "Prtclab Geo.dat", &	425 isomp end parallel 426 i=
& STATUS - 'REPLACE', ACTION = 'WRITE')	420
	428 ! Collocation points will be placed at the element centroids
Read TRM Coefficients. Tooday (16 / 08 /2012) there is not used.	429 ! Compute:
IF (Iflow == 3) THEN	430 ! 1) coordinates of collocation points
OPEN(UNIT = 10, FILE = 'TRMCoefs.nml', STATUS = 'OLD', &	431 ! 2) normal vector at collocation points

D:\Darth Vader\Escritorio\prtcl_mkl\Prtcl_3DMKL.f907	D:\Darth Vader\Escritorio\prtcl_mkl\Prtcl_3DMKL.f90
<pre>// Universe (stilled outplets attrivet, universe, item of the initialization of values in the arrays used to have the // Second of the initialization of values in the arrays used to have the // Second of the initialization of values in the arrays used to have the // Second of the initialization of values in the arrays used to have the // Second of the initialization of values in the arrays used to have the // Second of the initialization of values in the arrays used to have the // Second of the initialization of values in the arrays used to have the // Second of the initialization of values in the arrays used to have the // Second of the initialization of values in the arrays used to have the // Second of the initialization of values in the arrays used to have the // Second of the initialization of values in the arrays used to have the // Second of the initialization of values in the arrays used to have the // Second of the initialization of values in the arrays used to have the // Second of the initialization of values in the arrays used to have the // Second of the initialization of values in the arrays used to have the // Second of the initialization of values in the arrays used to have the // Second of the initialization of values in the arrays used to have the // Second of the initialization of the initialization of values in the arrays used to have the initialization of the initialization of the array used to have the initialization of the arrays used to have the initialization of the arrays used to have the initialization of the arrays used to have the arrays used tohe array</pre>	<pre>504 1 The obtained values are writing on UData file. 505 WRTTE (UDat,*) 506 WRTTE (UDat,*) 507 WRTTE (UDat,110) srf_area_n 508 WRTTE (UDat,111) prt_vl_n_n 509 WRTTE (UDat,112) cx,cy,cz 510 WRTTE (UDat,112) cx,cy,cz 511 thet0 = alpha 512 thet0 = alpha 513 [Somp parallel 514 CALL of taylor(p, npts, DT, DTm, lmajor, bminor, wminor, angulo, cx, cy, cz, req) 515 Tiempo - DBLE(stride)*h*gi 516 [Somp end parallel 517 WRTTE (UGeo,132) Tiempo, lmajor, bminor, wminor, DT, DTm, DTmm, angulo, bminor/wminor, 0.000 518 [Somp end parallel 519 CALL write_data(nelm, stride) 520 CALL write_data(nelm, stride) 521 CALL write_data(nelm, stride) 522 CALL write_data(nelm, stride) 523 CALL write_data(nelm, stride) 524 CALL write_data(nelm, stride)</pre>
<pre>1 ! will be interpolate the normal vector and features of collocation points. 2</pre>	523 md = IFlow 524 alphantom = alpha 525 !====================================
CALL interp./p(1i,1), p(1i,2), p(1i,3), & & p(12,1), p(12,2), p(12,3), & & p(12,1), p(13,3), & & p(14,1), p(14,3), p(14,3), & & p(14,1), p(14,2), p(14,3), & & p(15,1), p(15,2), p(15,3), & & p(15,1), p(15,2), p(15,3), & & a b a b a b a b a b a b a b a b a b b c a b b c a b b c a b b c a c b c b c b c b c b c b c b c b c b c b c b	530 ! three rows at a time, 531 ! corresponding to the x, y, z 532 ! components of the Integral equation 533 !
1 & hs) 2	543 Uoo = 0.000 544 Vel0e 0.000 545 CALL dissociate(nelm, Vel0, & 546 & Vel0x, Vel0y, Vel0z) 547 Vel1e 0.000 548 TM = 0.000 549 CALL write_datavl(nelm, stride, Vel0x, Vel0y, Vel0z)
8 I The surface area of the individual elements x, y, and z moments over each element 9 I The particle surface area and volume 0 I The mean curvature of each element: crvmel 1 I The averaged element normal vector 2	550 !====================================
<pre>ALLOCATE (arel(nelm), crwel(nelm), farel(nelm), &</pre>	555 I
<pre>3 & & crwel) 4</pre>	565 CALL answer_axb1(Mdim, TM, Vel0, Vel1) 566 CALL dissocitate(nelm, Vel1, & 567 CALL dissocitate(nelm, Vel1, Vel12) 568 & Vel1x, Vel1x, Vel1x, Vel1x) 569 ALLOCATE (xelnelm), yel(nelm), zel(nelm), & 570 ALLOCATE (xelnelm), yel(nelm), zel(nelm), & 571 ALLOCATE (xelnelm), xel(nelm), Xel(nelm


D:\Darth Vader\Escritorio\prtcl_mkl\Prtcl_3DMKL.f90 !thet0 = ((-2.0D0*alpha) + (((4.0D0*alpha)/DBLE(steps))*DBLE(stride)))	11 D:\Darth Vader\Escritorio\prtcl_mkl\Prtcl_3DMKL.f90 792 & srf area, prt vlm, &
else	793 & cx, cy, cz, stride)
Iflow = 7	794 !Call interp_curv(nelm, ne, nbe,&
alpha = 1.0D0	795 ! & crvmel)
thet0 = alpha	796
end if case default	797 ! normalize surface area and volume 798 srf area n = srf area /(pi4*req*req)
If low = 10	730 sil_atea_ii - sil_atea /(ji+teq_teq) 739 prt_vlm_n = prt_vlm /(pi4*req*req*req/3.000)
end select	800 !===================================
CALL Corrector_vol(p, npts, prt_vlm_n, cx, cy, cz)	802 & vnx0, vny0, vnz0,& 803 & vna)
Somo parallel	003 & VIII) 804
1\$omp do	805 GM = 0.0D0
DO k = 1, nelm	806 Uoo = 0.0D0
i1 = n(k, 1) i2 = n(k, 2)	807 Vel0= 0.0D0 808 Vel1= 0.0D0
12 = n(k, 2) 13 = n(k, 3)	809 TM = 0.000
i4 = n(k,4)	810 !
i5 = n(k,5)	811 CALL Builder_GM(GM, cdg, nelm, gamma, mint, NGL)
i6 = n(k,6) CALL abc(p(i1.1), p(i1.2), p(i1.3), &	812 CALL Builder_TM(TM, cdt, lmu, nelm, mint, NGL) 813 !
CALL abc(p(i1,1), p(i1,2), p(i1,3), & & p(i2,1), p(i2,2), p(i2,3), &	813 :
& p(i3,1), p(i3,2), p(i3,3), &	815 Vel0 = GM - Uoo
& p(i4,1), p(i4,2), p(i4,3), &	816 !
& p(i5,1), p(i5,2), p(i5,3), & & p(i6,1), p(i6,2), p(i6,3), &	817 CALL answer_axb1(Mdim,TM,Vel0,Vel1) 818
& p(16,1), p(16,2), p(16,3), & & alphaQ(k), betaQ(k), gammaQ(k))	818 !
END DO	820 & Vellx, Velly, Vellz)
!\$omp end do	821 !
!\$omp end parallel !	822 !CALL interp_ven(npts, ne, nbe,& 823 ! & Velix, Veliz, Vel)
xθ = θ.θDθ	823 ! & Vel1x, Vel1y, Vel1z, Vel)
γθ = θ.θDθ	825 K2 = Vel1
z0 = 0.0D0	826 p = pel
vn×0 = 0.0D0	827 x0 = xel
$vny\theta = 0.000$ $vnz\theta = 0.0000$	828 y0 = ye1 829 z0 = ze1
xi = 1.0D0/3.0D0	
eta = 1.0D0/3.0D0	831 ! CALL Euler_Met6(p, h, K1, K2, npts, omicron)
! !\$omp parallel	832 ! 833 CALL RK32(x0, y0, z0, h, K1, K2, nelm, omicron)
Some do	834 !
DO i = 1, nelm	835 CALL interp_e(npts, ne, nbe,&
! will be interpolate the normal vector and features of collocation points.	836 & x0, y0, z0, & 837 & p
i1 = n(i,1) i2 = n(i,2)	83/ α p) 838 [===================================
12 = n(1,2) 13 = $n(1,3)$	839 select case (md)
i4 = n(i,4)	840 case (1:11)
is = n(i, s)	841 if (m > stoper) then
i6 = n(1,6)	842 Iflow = 1 843 else
CALL interp p(p(i1,1), p(i1,2), p(i1,3), &	s44 Iflow=md
& p(i2,1), p(i2,2), p(i2,3), &	845 end if
& p(i3,1), p(i3,2), p(i3,3), &	846 case (12)
p(i4,1), p(i4,2), p(i4,3), &	847 if (m> reducer) then 848 Iflow = 13
& p(15,1), p(15,2), p(15,3), & & p(16,1), p(16,2), p(16,3), &	848 ITION = 13 849 else
& alphaQ(i), betaQ(i), gammaQ(i), &	850 Iflow = 12
& xi, eta, &	851 end if
& xθ(i), yθ(i), zθ(i), & & DxDxi, DyDxi, DzDxi, &	852 case (16) 853 if (m > reducer) then
& DxDxi, DyDxi, DzDxi, & & DxDet, DyDet, DzDet, &	853 if (m > reducer) then 854 Iflow = 17
& vnx0(i), vny0(i), vnz0(i), &	855 else
& hs)	856 Iflow = 16
	857 end if
END DO	858 case (15)
!\$omp end do !\$omp end parallel	859 IF(m > reducer) then 860 IFlow = 15
:>omb eug baraitet	860 1110W = 15
CALL elm geom(nelm, npts, mint, &	862 Iflow = 10
& xmom, ymom, zmom, &	863 end if

308	CALL elm_geom(nelm, npts, mint, &
309	& xmom, ymom, zmom, &
910	& srf_area, prt_vlm, &
911	& cx, cy, cz, stride) Call interp_curv(nelm, ne, nbe,&
312	Call interp_curv(nelm, ne, nbe,&
913	& crvmel)
	alize surface area and volume
316	srf area n = srf area /(pi4*req*req)
917	prt_vlm_n = prt_vlm /(pi4*req*req73.0D0)
919	CALL interp_evn(npts, ne, nbe,&
920 921	& vnx0, vny0, vnz0,& & vna)
	α vna)
323	GM = 0.0D0
324	Uoo = 0.0D0
925	Vel0= 0.0D0
926	Vel1= 0.0D0
327	TM = 0.0D0
028 !===== 029	CALL Builder_GM(GM, cdg, nelm, gamma, mint, NGL)
330	CALL Builder_TM(TM, cdt, lmu, nelm, mint, NGL)
332	CALL Infinity_Flow(Iflow, thet0, gi, Uoo, m, steps, nelm, h)
933	Vel0 = GM - Uoo
935	CALL answer_axb1(Mdim,TM,Vel0,Vel1)
936 :===== 937	CALL dissociate(nelm, Vel1, &
938	& Velix, Veliz)
340	!CALL interp_ven(npts, ne, nbe,&
941	! & Velix, Veliz, Vel)
943 944	K3 = Vel1 p = pel
345	$p = per x \theta = xel$
946	yo = yel
347	$z\theta = zel$
349 ! 350	CALL KMK3(p, K1, K2, K3, npts, h)
950 951	CALL RMK3(x0, y0, z0, & & K1, K2, K3, nelm, h)
953	CALL interp_e(npts, ne, nbe,&
954	& x0, y0, z0,&
955	&p)
956	pel = p
057 !===== 058	
158 159	select case (md) case (1:11)
360	if (m > stoper) then
961	Iflow = 1
962	else
363	Iflow=md
964	end if
965 966	<pre>case (12) if (■ > reducer) then</pre>
960 967	If () reducer) then If low = 13
368	else
969	Iflow = 12
970	end if
971	case (16)
972	if (m > reducer) then
973 974	Iflow = 17 else
974 975	Iflow = 16
976	end if
977	case (15)
378	IF(m > reducer) then
379	IFlow = 15

D:\Darth Vader\Escritorio\prtcl_mkl\Prtcl_3DMKL.f9017	D:\Darth Vader\Escritorio\prtcl_mkl\Prtcl_3DMKL.f90 18
1152 end if 1153 case (23) 1154 if (m > stoper) then 1155 iflow = 71 1156 albhar = albhartom	1224 & DxDxi, DzDxi, & 1225 & DxDet, DzDet, & 1226 & vxxv(j), vxv2(j), vx20(j), % 1227 & hs)
1157 thet0 = (((-1.508*alpha) + (((2.508*alpha)/08LE(steps))*08LE(stride))) 1158 ithet0 = ((4.080*alpha) - (((4.080*alpha)/08LE(steps))*08LE(stride))) 1159 elseif (m > reducer) then 1160 iflow = 72 1161 alphan tom	1229 FND DO 1230 !Somp end do 1231 !Somp end parallel 1232
1162 thet0 = ((1.500*alpha) - (((2.500*alpha)/OBLE(steps))*OBLE(stride))) 1163 !thet0 = ((-2.000*alpha) + (((4.000*alpha)/OBLE(steps))*OBLE(stride))) 1164 else 1165 Iflow = 7 1166 alpha = 1.000	1234 & xrom, ymon, zmon, & 1235 & srf_area, prt_vlm, & 1236 & cx, cy, cz, stride) 1237 ! Call interp_curv(nelm, ne, nbe,& 1238 & crowel)
1167 thete = alpha 1168 end if 1169 case default 1170 Ifflow = 10 1171 end select 1172 intermediate	1239 Innormalize surface area and volume 1240 Innormalize surface area and volume 1241 setf_area_n = setf_area /(pi4*req*req) 1242 prt_uim = prt_uim (pi4*req*req*req). 1243
11/2 CALL Corrector_vol(p, npts, prt_vlm_n, cx, cy, c2) 11/5 Comp parallel 11/7 Isomp parallel 11/7 D k = 1, nelm 11/8 12 = n(k, 2) 11/9 12 = n(k, 2) 11/8 13 = n(k, 3)	1244 i ine docalindo values are writing on ouxia file. 1245 i WRTTE (Udot,') 1246 writte (Udot,') ine and ine
1181 14 = n(k, 4) 1182 15 = n(k, 5) 1183 16 = n(k, 6) 1184 CALL abc(p(11,1), p(11,2), p(11,3), &	1253 CALL D_taylor(p, npts, DT, DTm, DTmm, Imajor, bminor, wminor, angulo, cx, cy, cz, req) 1254 Tiempo = DBLE(m)*Hg1 1255 WRITE (UGeo,183) Tiempo, Imajor, bminor, wminor, DT, DTm, JTmm, angulo, bminor/mminor, thet0 1256
1185 & $p(12,1), p(12,2), p(13,2), k$ 1186 & $p(i3,1), p(i3,2), p(i3,3), k$ 1187 & $p(i4,1), p(i4,2), p(i4,3), k$ 1188 & $p(i5,1), p(i5,2), p(i5,3), k$ 1189 & $p(i6,1), p(i5,2), k$	1257 CALL interp_evn(npts, ne, nbe,& 1258 & wnx0, vny0, vnz0,& 1259 & vna) 1260
1189 & p(i6,1), p(i6,2), p(i6,3), & 1190 & alphaQ(k), betaQ(k), 1191 END D0 1192 ISomp end do 1193 Jsomp end parallel	1261 GA = 0.000 1262 UGO = 0.000 1263 Velle = 0.000 1264 Velle = 0.000 1265 TM = 0.000 1265 TM = 0.000
1195 X0 = 0.000 1196 y0 = 0.000 1197 z0 = 0.000	1267 CALL Builder_GM(GM, cdg, nelm, gamma, mint, NGL) 1268 CALL Builder_TM(TM, cdt, law, nelm, mint, NGL) 1269 !
1198 vnx8 = 0.000 1199 vny9 = 0.000 1200 vnz8 = 0.000	1270 CALL Infinity.Flow(iflow, thet8, gi, Uoo, m, steps, nelm, h) 1271 Vel0 = GM - Uoo 1272
1201 x1 = 1.000/3.000 1202 eta = 1.000/3.000 1203 !	1273 CALL answer_axb(Mdis, TM, Vel0, Vel1) 1274
1205 (Somp do 1206 (Somp do 1206) vill be interpolate the normal vector and features of collocation points.	1277 ICALL interp_ven(npts, ne, nbe,& 1278 I CALL interp_ven(npts, vel), vellz, vell) 1279 I 8 Vellz, Vellz, Vellz, Vell
1288 i1 = n(i,1) 1289 i2 = n(i,2) 1210 i3 = n(i,3) 1211 i4 = n(i,4) 1212 i5 = n(i,5) 1213 i6 = n(i,6)	1280 K1 = Vel1 1281 K1 = Vel1 1282 xel = x0 1283 yel = y0 1284 zel = 20 1285
1214	126 stride = m 1287 if (domsday == istop) then 1288 CALL write_datan(nelm, stride) 1289 CALL write_datac(nelm, stride) 1290 CALL write_datac(nelm, stride) 1291 CALL write_datac(nelm, stride) 1292 domsdayrl 1293 else 1293 else 1294 domsdayr = domsdayr = 1 1295 end if


DDULE Mod_SharedVars	73 ! Text types
: Version: 0.7 created on / III /2010	74 INTEGER :: UDat = 80 75 INTEGER :: UGeo = 85
Marco Antonio Reyes Huesca	76 INTEGER :: UDef = 86 77 INTEGER :: ULog = 89
Version: 1.0 created on 09 / 08 / 2012 Alfredo Sanjuan Sanjuan	78 INTEGER :: ULOgI 90 79 INTEGER :: ULOgI 91 80 INTEGER :: ULCT = 95
This module was made to keep the variables which are common in this code. In this module, you wold see the eatures of DBL which is a value of real kind. The variables were established in order similar in main code.	60 INTEGER: 10 PLF 93 81 INTEGER: 10 PLF 92 82 INTEGER: 10 PLF 93 83 INTEGER: 10 PLF 93
IMPLICIT NONE	84 1
As was mencioned above, in this place was kept the variable DBL. DBL is a variable which permit the code to nave the same value in all real variables. This decision is very important because it gives versatility at the code, in other words, it's possible to use this code in differents PC's and it doesn't matters the kind of that °C, the value will be the same in the space asigned to real variables.	
The kind number is explained in Chapman books, the value 8 refers to a system of 64x INTEGER, PARAMETER :: DBL = 8 ISELECTED_REAL_KIND(p=15, r = 300), alternative value	
This places will be the value of pi number. REAL (KIND = DBL), PARAMETER :: Pi = 3.1415926535897932384626433832795D0	
This place ther is the value of epsilon number. This number helps to discriminate small values and assigned tero to them REAL (KIND = DEL) :: epsilon, eps	
Common blocks have differents values or as this case similar variables. Below this explanation you would ind differents common variables used in more than one modules. The variables appear in order of comes in the code.	
Input Data INTEGER :: Ns, Np, doomsday	
Variables of Two-Roll Mill INTEGER, PARAMETER :: NCS = 100 REAL (KIND = DBL,) DIMENSION(2) :: R, N, VR REAL (KIND = DBL,) DIMENSION(2) :: ORy INTEGER, PARAMETER :: NCS = 100 REAL (KIND = DBL,) DIMENSION(2) :: ORy REAL (KIND = DBL,) DIMENSION(2) :: ORY REAL (KIND = DBL) :: Ad, BB, CD, DD, KC REAL (KIND = DBL) :: Ad, BB, CD, DD, KC REAL (KIND = DBL) :: Adb, Shrate REAL (KIND = DBL) :: DIMENSION(): :: An, Bn, Cn, Dn REAL (KIND = DBL) :: DIMENSION(): :: An, Sn, Cn, Dn REAL (KIND = DBL) :: Adb, Shrate	
Module trgl_octa REAL (XIND = DBL), ALLOCATABLE, DIMENSION(:,:) :: p, pel INTEGER, ALLOCATABLE, DIMENSION(:,:) :: ne INTEGER, ALLOCATABLE, DIMENSION(:,:) :: n, nbe, nbel	
Nodule Gauss_Coefs REAL (XIMD = DBL), ALLOCATABLE, DIMENSION(:) :: zz, ww iquadrature weigths of Gauss-Legendre quadrature REAL (XIMD = DBL) :: wall	
Nodule Prtcl_3D_Geo Quadratic xi=eta isoparametric mapping REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: alphaQ, betaQ, gammaQ lquadrature weigths of quadrature REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: xiq, etq, wq lparameters xi=eta mapping REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: corel, farel REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: crvmel Icurvature media	
Module Prtcl_10_sf, sfs, slp and dlp Icollocation point coordinates REAL (KIMD - DBL), ALLOCATABLE, DIFENSION(:) :: xel, yel, zel Icollocation point coordinates REAL (KIMD - DBL), ALLOCATABLE, DIFENSION(:) :: xel, yel, zel Icollocation point coordinates REAL (KIMD - DBL), ALLOCATABLE, DIFENSION(:) :: xel, yel, zel Icollocation point coordinates REAL (KIMD - DBL), ALLOCATABLE, DIFENSION(:) :: xel, yel, zel Icollocation point coordinates REAL (KIMD - DBL), ALLOCATABLE, DIFENSION(:) :: xel, yel, yel Inormal vector point coordinates REAL (KIMD - DBL), ALLOCATABLE, DIFENSION(:) :: xel, yel, yel Inormal vector point coordinates REAL (KIMD - DBL), ALLOCATABLE, DIFENSION(:) :: xel, yel Inormal vector point coordinates REAL (KIMD - DBL), ALLOCATABLE, DIFENSION(:) :: xel Inormal vector point coordinates	

10DULE Mod Trgl Octa	
Version: 0.5 created on 26 / IX / 2007	
	C. Pozrikidis
Version: 0.7 created on / III /2010	
	Marco Antonio Reyes Huesca
Version: 1.0 created on 20 / 08 / 2012	Alfredo Saniuan Saniuan
This module makes the geometry of the drop. At the beginning	
eight curved faces, then it is divided in many elements as you	
CONTAINS	
SUBROUTINE trgl_octa(ndiv, npts, nelm)	
Triangulation of the unit sphere by subdividing a regular oct	
In langulación of the unit sphere by suburviuing a regular oct	called on Theo SIX-hode quadractic critaligres.
Variables	
nelmof surface elements nptsnumber of nodal points	
x(i,j), y(i,j), z(i,j) Cartesian coords of point j on	element i
p(i,j)of surface node	e labeled i (j=1,2,3)
x = p(i, 1)	
y = p(i,2) z = p(i,3)	
n,j(i) node number of point j on eleme	ent i, where j=1,,6
ne(i,j)of elements ne(i,1) is the number of elements	nts touching node i.
ne(i,2:ne(i,1)) are the corres nbe(i,i)	
nbe(i,j) label of element sharing side ndiv level of discretization of starting octahedron (0-	
nutre	
USE Mod_SharedVars, ONLY: DBL, ULog, p, ne, n, nbe, nbe1	
USE Mod_SharedVars, ONLY: DBL, ULog, p, ne, n, nbe, nbe1	
USE Mod_SharedVars, ONLY: DBL, ULog, p, ne, n, nbe, nbe1 IMPLICIT NONE	
USE Mod_SharedVars, ONLY: DBL, ULog, p, ne, n, nbe, nbe1 IMPLICIT NOWE Variables IN/OUT	
USE Mod_SharedWars, ONLY: DBL, ULOg, p, ne, n, nbe, nbe1 IMPLICIT NONE Variables IN/OUT	
USE Mod_SharedVars, ONLY: DBL, ULog, p, ne, n, nbe, nbe1 IMPLICIT NOWE Variables IN/OUT	
USE Mod_SharedVars, ONLY: DBL, ULog, p, ne, n, nbe, nbe1 IMPLICIT NONE Variables IN/OUT INTEGER, INTENT(IN) :: ndiv INTEGER, INTENT(OUT) :: npts, nelm	
USE Mod_SharedWars, ONLY: DBL, ULog, p, ne, n, nbe, nbe1 IMPLICIT NONE Variables IN/OUT INTEGER, INTENT(IN) :: ndiv INTEGER, INTENT(UT) :: ncts, nelm Variables used inside the subroutine	
USE Mod_SharedVars, ONLY: DBL, ULog, p, ne, n, nbe, nbe1 IMPLICIT NONE Variables IN/OUT INTEGER, INTENT(IN) :: ndiv INTEGER, INTENT(OUT) :: npts, nelm Variables used inside the subroutine INTEGER :: Istat = 0, IFlag	
USE Mod_SharedWars, ONLY: DBL, ULog, p, ne, n, nbe, nbe1 IMPLICIT NONE Variables IN/OUT INTEGER, INTENT(IN) :: ndiv INTEGER, INTENT(UT) :: ncts, nelm Variables used inside the subroutine	
USE Mod_SharedWars, ONLY: DBL, ULog, p, ne, n, nbe, nbel IMPLICIT NONE Variables IN/OUT INTEGER, INTENT(IN) :: ndiv INTEGER, INTENT(IN) :: ncbs, nelm Variables used inside the subroutine INTEGER :: IStat = 0, IFlag INTEGER :: nsa INTEGER :: nsa INTEGER :: nsa	
USE Mod_SharedVars, ONLY: DBL, ULOg, p, ne, n, nbe, nbel IMPLICIT NONE Variables IN/OUT INTEGER, INTENT(UN) :: ndiv INTEGER, INTENT(UN) :: ngts, nelm Variables used inside the subroutine INTEGER :: Istat = 0, IFlag INTEGER :: nsa INTEGER :: nsa INTEGER :: istat	! Status: 0 for success
USE Mod_SharedWars, ONLY: DBL, ULog, p, ne, n, nbe, nbel IMPLICIT NONE Variables IN/OUT Variables IN/OUT INTEGER, INTENT(IN) :: ndiv INTEGER, INTENT(IN) :: ndiv INTEGER, : IStat = 0, IFlag INTEGER :: fstatus INTEGER :: nsa INTEGER :: nsa INTEGE	! Status: 0 for success
USE Mod_ShanedVares, ONLY: DBL, ULOg, p, ne, n, nbe, nbel IMPLICIT NONE Variables IN/OUT INFGER, INTERT(IN) :: ndiv INFGER, INTERT(IN) :: ndiv Variables used inside the subroutine INFGER :: IStat • 0, IFlag INFGER :: i, j, k, l, icount, jcount, kcount, num INFGER :: istatp REAL (KIND = DBL), ALLOCATABLE, DIMENSION(;;) :: x, y, z REAL (KIND = DBL), ALLOCATABLE, DIMENSION(;;) :: x, yn, yn, zn	! Status: 0 for success
USE Mod_SharedVars, ONLY: DBL, ULOg, p, ne, n, nbe, nbel IMPLICIT NONE Variables IN/OUT INTEGER, INTENT(OIL): npts, nelm Variables used inside the subroutine INTEGER :: IStat e, IFlag INTEGER :: i, j, k, l, icount, jcount, kcount, num INTEGER :: istatp REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:) :: x, y, z REAL (KIND = DBL), ALANTABLE, DIMENSION(:,:) :: xn, yn, zn REAL (KIND = DBL), ALANTABLE, DIMENSION(:,:) :: xn MINGENSION :: xn, yn xn MINGENSION :: xn, yn xn MINGENSION :: xn, yn xn MINGENSION :: xn, yn xn MINGENSION :: xn xn MINGENSI	! Status: 0 for success
USE Mod_SharedWars, ONLY: DBL, ULog, p, ne, n, nbe, nbel IMPLICIT NONE Variables IN/OUT INTEGER, INTENT(IN) :: ndiv INTEGER, INTENT(IN) :: ndiv INTEGER, INTENT(IN) :: npts, nelm Variables used inside the subroutine INTEGER :: fstatus INTEGER :: fstatus INTEGER :: nsa INTEGER :: i, j, k, l.icount, fcount, num INTEGER :: i, j, k, l.icount, kcount, num INTEGER :: i, j, k, l.icount, kcount, num INTEGER :: i, j, k, l.icount, kcount, num INTEGER :: i, j, k, l.icount, subreak REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:;): : x, y, z REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:;): : x, yn, zn REAL (KIND = DBL), SUBMETET :: eps-0000001 REAL (KIND = DBL), SUBMETET :: eps-0000001 REAL (KIND = DBL), SUBMENSION(3) :: ptm	! Status: 0 for success
USE Mod_SharedVars, ONLY: DBL, ULOg, p, ne, n, nbe, nbel IMPLICIT NONE Variables IN/OUT INTEGER, INTENT(IN) :: ndiv INTEGER, INTENT(IN) :: ndiv INTEGER, INTENT(IN) :: ndiv INTEGER :: IStat e g, IFlag INTEGER :: istatus INTEGER :: istatus INTEGER :: istatus INTEGER :: istatus REAL (KIND = DBL), ALLOCATABLE, DIMENSION(::) :: x, y, z REAL (KIND = DBL), ALLOCATABLE, DIMENSION(::) :: xn, yn, zn REAL (KIND = DBL), ALLOCATABLE, DIMENSION(::) :: xn, yn, zn REAL (KIND = DBL), JIACHATABLE, DIMENSION(::) :: xn, yn, zn REAL (KIND = DBL), JIACHATABLE, DIMENSION(::) :: xn, yn, zn REAL (KIND = DBL), JIACHATABLE, DIMENSION(::) :: xn, yn, zn REAL (KIND = DBL), JIACHATABLE, DIMENSION(::) :: xn, yn, zn REAL (KIND = DBL), JIACHATABLE, DIMENSION(::) :: xn, yn, zn REAL (KIND = DBL), JIACHATABLE, DIMENSION(::) :: xn, yn, zn REAL (KIND = DBL), JIACHATABLE, DIMENSION(::) :: xn, yn, zn REAL (KIND = DBL), JIACHATABLE, DIMENSION(::) :: xn, yn, zn REAL (KIND = DBL), JIACHATABLE, DIMENSION(::) :: xn, yn, zn REAL (KIND = DBL), JIACHATABLE, DIMENSION(::) :: xn, yn, zn REAL (KIND = DBL), JIACHATABLE, DIMENSION(::) :: xn, yn, zn REAL (KIND = DBL), JIACHATABLE, DIMENSION(::) :: xn, yn, zn REAL (KIND = DBL), JIACHATABLE, DIMENSION(::) :: xn, yn, zn REAL (KIND = DBL), JIACHATABLE, DIMENSION(::) :: xn, yn, zn REAL (KIND = DBL), JIACHATABLE, DIMENSION(::) :: xn, yn, zn REAL (KIND = DBL), JIACHATABLE, DIMENSION(::) :: xn, yn, zn REAL (KIND = DBL), ZN ZN ZN Z	! Status: 0 for success
USE Mod_SharedWars, ONLY: DBL, ULog, p, ne, n, nbe, nbel IMPLICIT NONE Variables IN/OUT INTEGER, INTENT(IN) :: ndiv INTEGER, INTENT(IN) :: ndiv INTEGER, INTENT(IN) :: ndts, nelm Variables used inside the subroutine INTEGER :: fstatus INTEGER :: rsa INTEGER :: nsa INTEGER :: nsa INTEGER :: istatp REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:;): :: x, y, z REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:;): :: xn, yn, zn REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:;): :: xn, yn, zn REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:;): :: xn, yn, zn REAL (KIND = DBL), SIMENSION(3) :: ptm TYPE :: Ps REAL (KIND = DBL), DIMENSION(3) :: ptm	! Status: 0 for success
USE Mod SharedVars. ONLY: DBL, ULOg, p, ne, n, nbe, nbel IMPLICIT NONE Variables IN/OUT INTEGER, INTENT(NI) :: ndiv INTEGER, INTENT(NI) :: ndiv INTEGER :: Istat = 0, IFlag INTEGER :: Istat = 0, IFlag INTEGER :: nsa INTEGER :: nsa REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:;) :: x, y, z REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:;) :: x, y, z REAL (KIND = DBL), DIMENSION(3) :: ptm TYPE (PS, POINTER :: pp REAL (KIND = SBL), DIMENSION(3) :: px TYPE (PS, POINTER :: pp	! Status: 0 for success
USE Mod_SharedVars. ONLY: DBL, ULOg, p, ne, n, nbe, nbel IMPLICIT NONE Variables IN/OUT INTEGER, INTENT(IN) :: ndiv INTEGER, INTENT(IN) :: ndiv INTEGER :: INTENT(OUT): npts, nelm Variables used inside the subroutine INTEGER :: IStat = 0, IFlag INTEGER :: Istatus INTEGER :: 1, j, k, l, icount, jcount, kcount, num INTEGER :: 1status INTEGER :: 1status IN	! Status: 0 for success
USE Mod_SharedVars. ONLY: DBL, ULOg, p, ne, n, nbe, nbel IMPLICIT NONE Variables IN/OUT INTEGER, INTENT(UN) :: ndiv INTEGER, INTENT(UN) :: ndiv INTEGER, INTENT(UN) :: ndiv INTEGER :: IStat = 0, IFlag INTEGER :: nsa INTEGER :: pp REAL (KIND = OBL), JOINENSION(3) :: px NTPE (PS), POINTER :: pt INTEGER :: ptr	! Status: 0 for success ! Pointer to head of list ! Temporary pointer
USE Mod_SharedVars. ONLY: DBL, ULOg, p, ne, n, nbe, nbel IMPLICIT NONE Variables IN/OUT INTEGER, INTENT(IN) :: ndiv INTEGER, INTENT(IN) :: ndiv INTEGER :: INTENT(OUT): mpts, nelm Variables used inside the subroutine INTEGER :: IStat = 0, IFlag INTEGER :: status INTEGER :: 1, j, k, l, icount, jcount, kcount, num INTEGER :: 1, j, k, l, icount, jcount, kcount, num INTEGER :: 1statp INTEGER :: 1statp	! Status: 0 for success ! Pointer to head of list ! Temporary pointer ! Pointer to tail of list
USE Mod_SharedVars, ONLY: DBL, ULOg, p, ne, n, nbe, nbel IMPLICIT NONE Variables IN/OUT INTEGER, INTENT(UN) :: ndiv INTEGER, INTENT(UN) :: ndiv INTEGER, INTENT(UN) :: ndiv INTEGER :: nsa INTEGER :: n	! Status: 0 for success ! Pointer to head of list ! Temporary pointer ! Pointer to tail of list
USE Mod_SharedVars, ONLY: DBL, ULOg, p, ne, n, nbe, nbel IMPLICIT NONE Variables IN/OUT INTEGER, INTENT(IN) :: ndiv INTEGER, INTENT(IN) :: ndiv INTEGER :: IStat = 0, IFlag INTEGER :: Istatus INTEGER :: Istatus INTEGER :: Istatus INTEGER :: Istatus INTEGER :: Istatup REAL (IND = DBL), ALIOCATABLE, DIMENSION(;;) :: x, y, z REAL (IND = DBL), ALIOCATABLE, DIMENSION(;;) :: xn, yn, zn REAL (IND = DBL), ALIOCATABLE, DIMENSION(;;) :: xn, yn, zn REAL (IND = DBL), ALIOCATABLE, DIMENSION(;;) :: xn, yn, zn REAL (IND = DBL), ALIOCATABLE, DIMENSION(;;) :: xn, yn, zn REAL (IND = DBL), DIMENSION(3) :: ptm TYPE (FS), POINTER :: pp END TYPE (FS), POINTER :: pth TYPE (FS), POINTER :: head TYPE (FS), POINTER :: tall	! Status: 0 for success ! Pointer to head of list ! Temporary pointer ! Pointer to tail of list
USE Mod_SharedVars, ONLY: DBL, ULOg, p, ne, n, nbe, nbel IMPLICIT NONE Variables IN/OUT Variables IN/OUT INTEGGR, INTENT(IN) :: ndiv INTEGGR, INTENT(IN) :: ncts, nelm Variables used inside the subroutine INTEGGR :: IStat = 0, IFlag INTEGGR :: status INTEGGR :: nsa INTEGGR :: istatp REAL (KIND = DBL), ALLOCATABLE, DIMENSION(;;) :: x, y, z REAL (KIND = DBL), ALLOCATABLE, DIMENSION(;;) :: xn, yn, zn REAL (KIND = DBL), ALLOCATABLE, DIMENSION(;;) :: xn, yn, zn REAL (KIND = DBL), ALLOCATABLE, DIMENSION(;;) :: xn, yn, zn REAL (KIND = DBL), ALLOCATABLE, DIMENSION(;;) :: xn, yn, zn REAL (KIND = DBL), ALLOCATABLE, DIMENSION(;) :: xn, yn, zn REAL (KIND = DBL), ALLOCATABLE, DIMENSION(;) :: xn, yn, zn REAL (KIND = DBL), DIMENSION(3) :: ptm TYPE (PS), POINTER :: ptm TYPE (PS), POINTER :: ptm TYPE (PS), POINTER :: tall Initial octahedron (0'th level discretization (8 elements)). nelm = 8	! Status: 0 for success ! Pointer to head of list ! Temporary pointer ! Pointer to tail of list
USE Mod_SharedVars, ONLY: DBL, ULOg, p, ne, n, nbe, nbel IMPLICIT NONE Variables IN/OUT INTEGER, INTENT(UN) :: ndiv INTEGER, INTENT(UN) :: ndiv INTEGER, INTENT(UN) :: ndiv INTEGER :: nsa INTEGER :: n	! Status: 0 for success ! Pointer to head of list ! Temporary pointer ! Pointer to tail of list

3 1	nsa = nelm END IF
7	ALLOCATE(x(nsa, 6), y(nsa, 6), z(nsa, 6), &
3	& xn(nsa, 6), yn(nsa, 6), zn(nsa, 6), STAT = IStat)
9 1 - 9 1	Conditional to have the errors, if there is any problem in allocation statement
i '	IF (IStat == 0) THEN
2	x = 0.0D0
3	y = 0.0D0
1	z = 0.0D0
5	xn = 0.0D0
5	yn = 0.000
7 3	zn = 0.000 p = 0.000
	n = 0
	ne = 0
L I	nbe = 0
2	fstatus = 0
	Corner points
	Upper half of xz plane
7	x(1,1)= 0.0
3	y(1,1)= 0.0
	z(1,1)= 1.0
9 !- 1	
ž	x(1,2)= 1.0 y(1,2)= 0.0
3	z(1,2) = 0.0
1 !-	
5	x(1,3)= 0.0
5	y(1,3) = 1.0
7 3 1 -	z(1,3)= 0.0
, ,	x(5,1)= 1.0
	y(5,1)= 0.0
L .	z(5,1)= 0.0
3 1	x(5,2) = 0.0
5	y(5,2)= 0.0 z(5,2)=-1.0
7	x(5,3)= 0.0
3	y(5,3)= 1.0
2.	z(5,3)= 0.0
)!- L	x(6,1)= 0.0
2	x(0,1)= 0.0
3	z(6,1)=-1.0
2	x(6,2)=-1.0
5	y(6,2)= 0.0
, 3 !-	z(6,2)= 0.0
	x(6,3)= 0.0
Э	y(6,3)= 1.0
	z(6,3)= 0.0
2!-	x(2,1)=-1.0
1	x(2,1) = -1.0 y(2,1) = 0.0
5	Z(2,1)= 0.0
5 !-	
7	x(2,2)= 0.0
3	y(2,2)= 0.0
9	z(2,2)= 1.0
9 !- I	x(2,3)= 0.0
2	y(2,3)= 0.0 y(2,3)= 1.0
3	$z(2,3) = \theta.\theta$
11-	

arth Vader\Escritorio\prtcl_mkl\Mod_trg1_octa.f90	3 D:\Darth Vader\Escritorio\prtcl_mkl\Mod_trgl_octa.f90	-
Corner points lower half xz plane x(4,1)= 0.0	217 ! 218 ! Loop over old elements to divide every elemento in four new elements	
y(4,1)= 0.0	219 DO j = 1, nelm	
z(4,1)= 1.0	220 ! 221 ! Assign corner points to sub-elements	
x(4,2)= 0.0	222 !	
y(4,2)=-1.0 z(4,2)= 0.0	223 ! First sub-element 224	
	225 yn(num,1)= y(j,1)	
x(4,3)= 1.0 y(4,3)= 0.0	226 zn(num,1)= z(j,1) 227 !	
z(4,3)= 0.0	228 $xn(num,2) = x(j,4)$	
x(8,1)= 1.0	229 yn(num,2)= y(j,4) 230 zn(num,2)= z(j,4)	
y(8,1)= 0.0	231 !	
z(8,1)= 0.0	232 xn(num,3)= x(j,6) 233 yn(num,3)= y(j,6)	
x(8,2)= 0.0	234 zn(num,3)= z(j,6)	
y(8,2)=-1.0 z(8,2)= 0.0	235 ! 236 xn(num,4)= 0.5*(xn(num,1)+xn(num,2))	
	237 yn(num,4)= 0.5*(yn(num,1)+yn(num,2))	
×(8,3)= 0.0 y(8,3)= 0.0	238 zn(num,4)= 0.5*(zn(num,1)+zn(num,2)) 239 !	
z(8,3)=-1.0	240 xn(num,5)= 0.5*(xn(num,2)+xn(num,3))	
x(7,1)= 0.0	241 yn(num,5)= 0.5*(yn(num,2)+yn(num,3)) 242 zn(num,5)= 0.5*(zn(num,2)+zn(num,3))	
y(7,1)= 0.0	243 !	
z(7,1)=-1.0	244 xn(num,6)= 0.5*(xn(num,3)+xn(num,1)) 245 yn(num,6)= 0.5*(yn(num,3)+yn(num,1))	
x(7,2)= 0.0	246 zn(num,6)= 0.5*(zn(num,3)+zn(num,1))	
y(7,2)=-1.0 z(7,2)= 0.0	247 ! 248 ! Second sub-element	
	249 xn(num+1,1)= x(j,4)	
x(7,3)=-1.0 y(7,3)= 0.0	250 yn(num+1,1)= y(j,4) 251 zn(num+1,1)= z(j,4)	
z(7,3)= 0.0	252 !	
x(3,1)=-1.0	253 xn(num+1,2)= x(j,2) 254 yn(num+1,2)= y(j,2)	
y(3,1)= 0.0	255 $zn(num+1,2)=z(j,2)$	
z(3,1)= 0.0	256 ! 257 xn(num+1,3)= x(j,5)	
x(3,2)= 0.0	258 yn(num+1,3)= y(j,5)	
y(3,2)=-1.0 z(3,2)= 0.0	259 zn(num+1,3)= z(j,5) 260 !	
	261 xn(num+1,4)= 0.5*(xn(num+1,1)+xn(num+1,2)) 262 vn(num+1,4)= 0.5*(vn(num+1,1)+vn(num+1,2))	
x(3,3)= 0.0 y(3,3)= 0.0	262 yn(num+1,4)= 0.5*(yn(num+1,1)+yn(num+1,2)) 263 zn(num+1,4)= 0.5*(zn(num+1,1)+zn(num+1,2))	
z(3,3)= 1.0	264 ! 265 xn(num+1.5)= 0.5*(xn(num+1.2)+xn(num+1.3))	
compute the mid-points of the sides numbered 4, 5, 6	265 xn(num+1,5)= 0.5*(xn(num+1,2)+xn(num+1,3)) 266 yn(num+1,5)= 0.5*(yn(num+1,2)+yn(num+1,3))	
FORALL (i = 1:nelm)	267 zn(num+1,5)= 0.5*(zn(num+1,2)+zn(num+1,3)) 268 !	
$x(i,4) = 0.5^{*}(x(i,1)+x(i,2))$	269 xn(num+1,6)= 0.5*(xn(num+1,3)+xn(num+1,1))	
$y(i,4) = 0.5^{*}(y(i,1)+y(i,2))$ $z(i,4) = 0.5^{*}(z(i,1)+z(i,2))$	270 yn(num+1,6)= 0.5*(yn(num+1,3)+yn(num+1,1)) 271 zn(num+1,6)= 0.5*(zn(num+1,3)+zn(num+1,1))	
	272 !	
$x(i,5) = 0.5^*(x(i,2)+x(i,3))$ $y(i,5) = 0.5^*(y(i,2)+y(i,3))$	273 ! Third sub-element 274	
y(i,5)= 0.5*(y(i,2)+y(i,3)) z(i,5)= 0.5*(z(i,2)+z(i,3))	275 yn(num+2,1)= y(j,6)	
	276 zn(num+2,1)= z(j,6)	
x(i,6)= 0.5*(x(i,3)+x(i,1)) y(i,6)= 0.5*(y(i,3)+y(i,1))	278 xn(num+2,2)= x(j,5)	
z(1,6)= 0.5*(z(1,3)+z(1,1))	279 yn(num+2,2)= y(j,5)	
END FORALL	281 !	
Compute node coordinates on each element for discretization levels 1 through ndiv	282 xn(num+2,3)= x(j,3) 283 yn(num+2,3)= y(j,3)	
Condition to divide the initial octahedron from 8 elements to (8*4**ndiv) elements	284 zn(num+2,3)= z(j,3) 285 1	
IF (ndiv > 0) THEN	286 xn(num+2,4)= 0.5*(xn(num+2,1)+xn(num+2,2))	
DO i = 1, ndiv num = 1	287 yn(num+2,4)= 0.5*(yn(num+2,1)+yn(num+2,2)) 288 zn(num+2,4)= 0.5*(zn(num+2,1)+zn(num+2,2))	

<u>4</u> ! 9	:\Darth Vader\Escritorio\prtcl_mkl\Mod_trgl_octa.f90 5
0	xn(num+2,5)= 0.5*(xn(num+2,2)+xn(num+2,3))
1	yn(num+2,5)= 0.5*(yn(num+2,2)+yn(num+2,3))
2 13 [zn(num+2,5)= 0.5*(zn(num+2,2)+zn(num+2,3))
3 I 4	xn(num+2,6)= 0.5*(xn(num+2,3)+xn(num+2,1))
5	yn(num+2,6)= 0.5*(yn(num+2,3)+yn(num+2,1))
6	zn(num+2,6)= 0.5*(zn(num+2,3)+zn(num+2,1))
8 1	Fourth sub-element
9	xn(num+3,1)= x(1,4)
0	yn(num+3,1)= y(j,4)
1 2 1	zn(num+3,1)= z(j,4)
3	xn(num+3,2)= x(j,5)
4	yn(num+3,2)= y(j,5)
5 6 [zn(num+3,2)= z(j,5)
7	xn(num+3,3)= X(j,6)
8	yn(num+3,3)= y(j,6)
9 0 !	zn(num+3,3)= z(j,6)
0 ! 1	xn(num+3,4)= 0.5*(xn(num+3,1)+xn(num+3,2))
2	yn(num+3,4)= 0.5*(yn(num+3,1)+yn(num+3,2))
3	zn(num+3,4)= 0.5*(zn(num+3,1)+zn(num+3,2))
4 5	xn(num+3,5)= 0.5*(xn(num+3,2)+xn(num+3,3))
6	yn(num+3,5)= 0.5*(yn(num+3,2)+yn(num+3,3))
7	zn(num+3,5)= 0.5*(zn(num+3,2)+zn(num+3,3))
8 ! 9	xn(num+3,6)= 0.5*(xn(num+3,3)+xn(num+3,1))
0	yn(num-3,6)= 0.5*(yn(num-3,3)+yn(num-3,1))
1	zn(num+3,6)= 0.5*(zn(num+3,3)+zn(num+3,1))
3 1	Four new elements were generated
4	num = num+4
6! 7	END of old element loop END DO
8	nelm=nelm*4
9 !	Descent Alexandre and alexa Alexandre Marcala Marca
1	Rename the new points and place them in the master list DO k=1,nelm
2	DO 1=1,6
3 4	x(k, 1) = xn(k, 1)
4 5	y(k,1) = yn(k,1) z(k,1) = zn(k,1)
6!	
7 ! 8	
8 9	xn(k,1) = 0.0 yn(k,1) = 0.0
0	zn(k,1) = 0.0
1	END DO
231	END DO
4 1	END of level loop of i
5	END DO
6 7 [END IF
8 !	Create a list of surface nodes by looping over all elements and adding nodes not alREADy found in the list.
	Fill the connectivity table n(i,j) node numbers of element points 1-6
0 1!	ALLOCATE(n(nelm, 6), nbe(nelm, 3), nbe1(nelm, 3), STAT = IStat)
2 !	
	Initialization of the linked list
4 5	ALLOCATE (head, STAT=istatp) ! Allocate new value tail => head ! Tail pts to new value
6	NULLIFY (tail%pp) ! Nullify pp in new value
7	k = 1
8 9 !	tail%Px = (/ x(1,k), y(1,k), z(1,k) /) ! Store point
9 ! 0 !	

ND D0 output2	505 nbe = 0
	506 D0 k=1,nelm
WLLIFY (head, ptr, tail)	507 kcount = 1 508 DO j=1,nelm
ate connectivity table ne(i,j) for elements touching node i	509 IF $(k/=1)$ THEN
ie = 0	510 DO 1=4,6
over global nodes	511 IF((ABS(n(k,4)-n(j,i)) < 1)) THEN
0 i=1,npts	512 nbe(k, kcount) = j
! ne(i,1) = 0 icount = 1	513 kcount = kcount+1 514 ELSE IF((ABS(n(k,5)-n(j,1)) ≤ 1)) THEN
Icourt = 1	514 ELSE IF((ABS(n(k,5)-n(j,i)) < 1)) THEN 515 nbe(k, kcount) = j
over local nodes	516 kcount = kcount+1
DO j = 1, nelm	517 ELSE
	518 IF((ABS(n(k,6)-n(j,i)) < 1)) THEN
over nodes	519 nbe(k, kcount) = j
DO k = 1, 6	520 kcount = kcount+1 521 END IF
tion to see the conectivity	522 END IF
IF((ABS(p(1,1)-x(j,k))) <= eps) .AND. &	523 END DO
& (ABS(p(i,2)-y(j,k)) <= eps) .AND. &	524 END IF
& (ABS(p(i,3)-z(j,k)) <= eps)) THEN	525 END DO
icount=1	526 END DO 527
ne(i,1)=ne(i,1)+1 ne(i,icount)=j	527 528
END IF	<pre>520 : 529 ! Poject points p(i,j) onto the unit sphere</pre>
END DO	530
	531 D0 i=1,npts
END DO	532 r=DSQRT(p(j,1)**2+p(i,2)**2+p(i,3)**2)
f loop over surface points	533 $p(i,1) = p(i,1)/r$ 534 $p(i,2) = p(i,2)/r$
ND DO	$\begin{array}{cccc} 535 & p(i,3) & -p(i,3)/r \\ 535 & p(i,3) & p(i,3)/r \end{array}$
	536 END DO
e connectivity table nbe(i,j) for neighboring elements j of element i. Testing is DOne with respect to	537 !
points (for boundary elements with only 2 neighbors, the array entry will be zero)	538 OPEN(UNIT = 500, FILE = 'n.dat', STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus)
	539 IF (fstatus == 0) THEN 540 WRITE(500.*) npts
bel = 0	540 WRITE(500,*) npts 541 WRITE(500,*) nelm
over elements	541 WAIE(500,) HELM 542
O i=1,nelm	543 DO i = 1, nelm
jcount=1	544 WRITE (500,107) n(i,1),n(i,2),n(i,3),n(i,4),n(i,5),n(i,6)
ver mid-points	545 END DO 546 END IF
DD j=4,6	547 L
	548 CLOSE(UNIT = 500)
lement	549 !
DO k=1,nelm	550 OPEN(UNIT = 500, FILE = 'nbe.dat', STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) 551 IF (fstatus == 0) THEN
vver mid-points	551 1 (15tatos - 0) inter
IF(k == i) THEN	553 DO i = 1, nelm
	554 WRITE (500,108) nbe(i,1),nbe(i,2),nbe(i,3)
DO 1=4,6	555 END DO
IF((ABS(×(1,j)-×(k,1)) <= eps) .AND. & & (ABS(y(1,j)-y(k,1)) <= eps) .AND. &	556 END IF 557 !
α (ABS(y(i,j)-y(k,i)) <= eps) .And. α & (ABS(z(i,j)-z(k,1)) <= eps)) &	557 :
nbe((1, jc(u))) = k	559 !
END DO	560 OPEN(UNIT = 500, FILE = 'ne.dat' ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus)
END TE	561 IF (fstatus == 0) THEN 562 !
END IF ! END of test element	562 ! 563 D0 i = 1, npts
	565 b01 = 1, npts 564 WRITE (500,107) ne(1,1),ne(1,2),ne(1,3),ne(1,4),ne(1,5),ne(1,6),ne(1,7)
END DO	565 END DO
	566 END IF
IF(nbel(i,jcount) /= 0) jcount=jcount+1	567
	568 CLOSE(UNIT = 500)
END DO	569 ! 570 107 FORMAT(8(1x,I10))
f loop over elements	570 100 FORMAT(4(1x,110)) 571 108 FORMAT(4(1x,110))
ND DO	572 !
	573 ! DOne.
a connectivity table nbe(i,j) for neighboring elements j of element i. Testing is DOne with respect to printe (for burgden place) with every a set of the set of t	574 ! La comedia e finita :)
points (for boundary elements with only 2 neighbors, the array entry will be zero)	575 !===================================

	<pre>WRITE(ULog,*) ' Error in allocation' WRITE(ULog,*) ' Little Padawan, you must review the code again' WRITE(ULog,*) ' Subroutine trgl_octa' END IF</pre>
	END SUBROUTINE trgl_octa
!==:	
! ==-	
	SUBROUTINE drop_scale_adjust(p, npts, nelm,& &boa, coa, req, &
	&boa, coa, req, & &eps, &
	&cxp, czp, &
	&phi1, phi2, phi3)
i -	This is a new subroutine to adjust the right size of the drop.
i i	Variables
1	nelmnumber of surface elements
!	scale scale of the drop
1	x_axis, y_axis, z_axis rate of drop'size in every coordinate axis
i	cs, sntmpy, tmpz
i -	p(i,j) (x,y,z) coords. of surface node labeled i (j=1,2,3)
1	x = p(i,1)
1	y = p(i,2)
:	<pre>z = p(i,3) req equivalent radius</pre>
i -	phi1, phi2, phi3 angles of rotation arround the axes
!	Modules used in this subroutine.
•	USE Mod_SharedVars, ONLY: DBL, ULog, p, Pi, UDat
!==:	
	IMPLICIT NONE
1	Variables IN/OUT
•	INTEGER, INTENT(IN) :: npts, nelm
	REAL (KIND = DBL), INTENT(IN) :: boa, coa, req !These variables are used in subroutine
	REAL (KIND = DBL), INTENT(IN) :: eps !scale_drop_adjust. REAL (KIND = DBL), INTENT(IN) :: cxn, cxn, czn !
	REAL (KIND = DBL), INTENT(IN) :: cxp, cyp, czp ! REAL (KIND = DBL), INTENT(INOUT) :: phi1, phi2, phi3 !
	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(INOUT) :: p
!	INTEGER :: i, j
	REAL (KIND = DBL) :: oot
	REAL (KIND = DBL) :: scale
	REAL (KIND = DBL) :: x_axis, y_axis, z_axis
	REAL (KIND = DBL) :: cs, sn REAL (KIND = DBL) :: tmpx, tmpy, tmpz
	The next part coputes the expantion to specified shape and equivalent radius. The idea is introduce this
:50	atements in a new subroutine. oot = 1.0D0/3.0D0
	scale = req/(boa*coa)**oot
	x_axis = scale
	y_axis = scale*boa
!	z_axis = scale*coa
i.	Scale is made her
	FORALL (i=1:npts)
	$p(i,1) = x_{axis*p(i,1)}$ $p(i,2) = y_{axis*p(i,2)}$
	$p(1,2) = y_{ax15} p(1,2)$ $p(1,3) = z_{ax15} p(1,3)$
	END FORALL
	<pre>WRITE (UDat,*) " ellipsoid x semi-axis = ",x_axis</pre>
	WRITE (UDat,*) " ellipsoid y semi-axis = ",y_axis WRITE (UDat,*) " ellipsoid z semi-axis = ",z_axis
	WKITE (UDAT,*) ~ eIIIpsolo Z semi-axis = ',Z_axis
1	

Э	& ABS(phi2) > eps .OR. &
Э	& ABS(phi3) > eps) THEN
1 2	phi1 = phi1*pi ! scale in x axis phi2 = phi2*pi ! scale in y axis
2	phi2 = phi2*pi ! scale in y axis phi3 = phi3*pi ! scale ib z axis
4	
5	cs = DCOS(phi3)
5 7	sn = DSIN(phi3)
в !	Rotate about the z axis
э	DO 1=1,npts
9	$tmpx = cs^*p(i,1) + sn^*p(i,2)$
1 2	tmpy =-sn*p(i,1)+cs*p(i,2) tmpz = p(i,3)
3	p(1,1) = tmpx
4	p(1,2) = tmpy
5	p(i,3) = tmpz
6 7	tmpx = 0.0D0 tmpy = 0.0D0
, В	tmpz = 0.000
9	END DO
9	cs = Dcos(phil)
1 2 !	sn = DSIN(phi1)
3 !	Rotate about the x axis
4	DO i = 1, npts
5	tmpx = p(i, 1)
6 7	<pre>tmpy = cs*p(i,2)+sn*p(i,3) tmpz =-sn*p(i,2)+cs*p(i,3)</pre>
, В	p(i,1) = tmpx
9	p(i,2) = tmpy
9	p(1,3) = tmpz
1 2	tmpx = 0.0D0 tmpy = 0.0D0
3	tmpz = 0.000
4	END DO
5	cs = DCOS(phi2)
6 7	sn = DSIN(phi2)
в !	Rotate about the y axis
9 9	DO i = 1, npts
0 1	<pre>tmpx = cs*p(i,1)-sn*p(i,3) tmpy = p(i,2)</pre>
2	<pre>tmpz = sn*p(i,1)+cs*p(i,3)</pre>
3	p(1,1) = tmpx
4 5	p(i, z) = tmpy
5	p(1,3) = tmpz tmpx = 0.0D0
7	tmpy = 0.0D0
В	tmpz = 0.0D0
9 a I	END DO
1 !	Unscale of drop and final statement
2	phi1 = phi1/pi
3	phi2 = phi2/pi
4 5	phi3 = phi3/pi FND TE
7 !	Translate center to specified position
B	p(:,1) = p(:,1) + cxp
9	p(:,2) = p(:,2) + cyp p(:,3) = p(:,3) + czp
1	WRITE (UDat,*) 'Translation was sucessful'
2	WRITE (UDat.*) " prtcl 3d: number of nodes : ".npts
3 4	WRITE (UDat,*) " prtcl_3d: number of elements: ",nelm END SUBROUTINE drop_scale_adjust
	FUD PORKONINE alobizateiaalast
6	SUBROUTINE trgl_octa_read(ndiv, npts, nelm)
7 !=-	
в I э I.	Triangulation of the unit sphere by subdividing a regular octahedron into six-node quadratic triangles.
	Variables

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_trgl_octa.f9011	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_trgl_octa.f90
<pre>i nelm</pre>	793 ELSE 794 OPER(UNIT = ULogi, FILE = 'Prtcl30_togi.staTuS = 'REPLACE', ACTION = 'WRITE') 795 WRITE (ULogi,*)'Error, little Padawan, InputData has a mistake!' 796 WRITE (ULogi,*)'First Error index = ', fstatus 797 WRITE (ULogi,*)'There was error in the ne file' 798 WRITE (ULogi,*)'There force will be with you' 799 CLOSE(UNIT = 10) 800 END IF
<pre>! n(j,j)</pre>	801 802 803 0PEN(UNIT = 500, FILE = 'ne.dat', STATUS = 'OLD', ACTION = 'READ', IOSTAT = fstatus) 804 IF (fstatus == 0) THEN 805
l	806 DO i = 1, npts 807 READ (500,107) ne(i,1),ne(i,2),ne(i,3),ne(i,4),ne(i,5),ne(i,6),ne(i,7) 808 END DO 809 CLOSE(UNIT = 500) 810
IMPLICIT MONE Variables IN/OUT INTEGER, INTENT(IN) :: ndiv	811 ELSE 812 OPEM(UNIT = ULogi, FILE = 'Prtcl30_Logi.log',STATUS = 'REPLACE', ACTION = 'WRITE') 813 WRITE (ULogi,')'Error, little Padawan, InputData has a mistake!' 814 WRITE (ULogi,') 'First Error index = ', fstatus 815 WRITE (ULogi, 'There was error in the nbe file'
INTEGER, INTENT(OUT) :: npts, nelm 	B16 WRITE(UL0g1,*)'The Force will be with you' 817 CL05E(UNIT = 10) 818 END IF 820
<pre>!</pre>	822 IF (fstatus == 0) THEN 823 100 i = 1, npts 824 100 i = 1, npts 825 : READ (500;103) p(i,1),p(i,2),p(i,3) 826 IEND D0 827 !CLOSE(UNIT = 500) 828 :
ALLOCATE(n(nelm, 6), nbe(nelm, 3)) n = 0 ne = 0 nbe = 0 p = 0.0D0 fstatus = 0	827 DO i = 1, nelm 830 ! will be interpolate the normal vector and features of collocation points. 831 11 = n(1,1) 832 12 = n(1,2) 833 i3 = n(1,3) 834 14 = n(1,4) 835 i5 = n(1,5)
<pre>Image: Image: Imag</pre>	836 16 = n(1,6) 837 READ (500,103) p(11,1), p(11,2), p(11,3) 838 READ (500,103) p(12,1), p(12,2), p(12,3) 840 READ (500,103) p(13,1), p(13,2), p(13,3) 841 READ (500,103) p(13,1), p(13,2), p(13,3) 842 READ (500,103) p(15,1), p(15,2), p(15,3) 843 READ (500,103) p(15,1), p(15,2), p(15,3)
END DD CLOSE(UNIT = 580) !	844 845 END DO 846 847
OPEN(UNIT = ULOGI, FILE = 'PTCl3D_LOGI.LOG',STATUS = 'REPLACE', ACTION = 'WRITE') WRITE (ULOGI, ')'First Error index = ', fstatus WRITE (ULOGI, ')'There was error in the n file' WRITE(ULOGI, ')'There was error in the n file' WRITE(ULOGI, ')'The force will be with you' CLOSE(UNIT = 10) END IF	048 ELSE 049 0FER(UNIT = ULogi, FILE = 'Prtcl30_Logi.log',STATUS = 'REPLACE', ACTION = 'WRITE') 050 WRITE (ULogi,')'First Fror index = ', fstatus 051 WRITE (ULogi,')'First Fror index = ', fstatus 052 WRITE (ULogi,')'There was error in the geometry file' 053 WRITE (ULogi,')'There force will be with you' 054 CLOSE(UNIT = 10) 055 END IF
I	856 857 DOne. 858 La comedia e finita :) 859
	863 183 FORMAT(18(1x,E524.16)) 861 197 FORMAT(8(1x,18)) 862 188 FORMAT(4(x,110)) 863 864 END SUBROUTINE trgl octa read

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_trgl_octa.f90 :: 865 :: 866 END MODULE Mod_Trgl_Octa 867

_13

D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl 3D Geo.f90 1	D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl 3D Geo.f90 2
1 MODULE Mod Prtcl 3D Geo	73 ! second
2	74 $i = n(k, 4)$
3 ! Version: 0.5 created on 26 / IX / 2007 4 ! C. Pozrikidis	<pre>75 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 76 i = n(k,2)</pre>
5	77 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
6 ! Version: 0.7 created on / III /2010 7 ! Marco Antonio Reves Huesca	78 i = n(k,5) 79 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
8 1	80 i = n(k,4)
9 ! Version: 0.9 created on 23 / 08 / 2012 10 ! Version: 1.0 created on 14 / 11 / 2012	81 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 82 l third
11 ! Alfredo Sanjuan Sanjuan	83 i = n(k,4)
12 !	84 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 85 i = n(k,5)
14 1	86 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
5 SUBROUTINE printel(k, Index, c)	87 i = n(k,6) 88 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
17 ! This subroutine prints drop's geometry. It has two options.	89 $i = n(k, 4)$
18 !Print successive nodes of element k in file unit 1 19 ! Index = 1: print the whole element	90 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 91 ! fourth
20 ! Index = 2: print the 4 subelements	92 $i = n(k, 6)$
21	93 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 94 i = n(k,5)
	95 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
24 ! k number of element 25 ! index type of print	96 i = n(k,3) 97 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
6 ! nfour index to print only the element	98 i = n(k,6)
27 ! nseven	<pre>99 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 100 CASE DEFAULT</pre>
9 !====================================	101 WRITE (UGeo,100) nfour
0 USE Mod_SharedVars, ONLY: DBL, ULog, UGeo, p, ne, n, nbe	102 i = n(k,1) 103 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
32 IMPLICIT NONE	104 $i = n(k, 4)$
<pre>3 !</pre>	<pre>105 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 106 i = n(k,6)</pre>
5 !	107 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
6 INTEGER :: nfour, nseven, i 7 REAL (KIND = DBL), DIMENSION(:), INTENT(IN) :: c	108 i = n(k,1) 109 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
8 !	110 $i = n(k,4)$
9 ! constants 00 nfour = 4	111 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 112 i = n(k,2)
1 nseven = 1	113 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
12 ! 13 ! There is a CASE instrction to print the element.	114 i = n(k,5) 115 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
4 !	116 $i = n(k,4)$
5 SELECT CASE (index) 6 CASE (1)	117 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 118 i = n(k,4)
7 WRITE (UGeo,100) nseven	119 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
8 i = n(k,1) 9 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)	120 i = n(k,5) 121 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
Θ i = n(k,4)	122 $i = n(k, 6)$
51 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 52 i = n(k,2)	123 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 124 i = n(k,4)
3 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)	125 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
54 i = n(k,5)	126 $i = n(k, 6)$
6 i = n(k,3)	128 $i = n(k, 5)$
7 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)	129 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
58 i = n(k,6) 59 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)	130 i = n(k,3) 131 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
i = n(k, 1)	132 $i = n(k,6)$
51 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 52 CASE(2)	<pre>133 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 134 WRITE (ULog,*)</pre>
63 ! first	135 WRITE (ULog,*) ' Geo_Printel'
4 WRITE (UGeo,100) nfour 5 i = n(k,1)	<pre>136 WRITE (ULog,*) 137 WRITE (ULog,*) ' Chosen index is not available'</pre>
6 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)	138 WRITE (ULog,*) ' It was taken index= 2'
7 i = n(k,4) 8 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)	139 END SELECT 140 100 FORMAT(1x,14,10(1x,ES24.16))
69 i = n(k, 6)	141 101 FORMAT(10(1x,ES24.16))
<pre>70 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 71</pre>	142 END SUBROUTINE printel 143 !
72 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)	144

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_Geo.f90 3	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_Geo.f90
SUBROUTINE abc(x1, y1, z1, & 8 x2, y2, z2, &	217 !
& x2, y2, z2, & & x3, y3, z3, &	218 : Validotes 219
& x4, y4, z4, &	220 INTEGER, INTENT(IN) :: nelm !number of elements
& x5, y5, z5, & & x6, y6, z6, &	221 INTEGER, INTENT(IN) :: npts !number of poins on the surface 222 INTEGER. INTENT(IN) :: mint !order of triangle guadrature
& x6, y6, z6, & & al, be, ga)	222 INTEGER, INTENT(IN) :: mint !order of triangle quadrature 223 INTEGER, INTENT(IN) :: stride !order of triangle and Gauss-Legendre quadratures
	224 REAL (KIND = DBL), DIMENSION(:), INTENT(OUT) :: xmom, ymom, zmom !coordinates of the moments of the drop
! This subroutine compute the parametric representation constants alpha, beta, gamma	225 REAL (KIND = DBL), INTENT(OUT) :: area, vlm !area and volume of each element 226 REAL (KIND = DBL), INTENT(OUT) :: cx, cy, cz !drop's centroid coordinates
USE Mod_SharedVars, ONLY: DBL	227 !===================================
IMPLICIT NONE	229
Variables	231 INTEGER :: i1, i2, i3, i4, i5, i6 !indices to obtain node numbers from each element 232 !
REAL (KIND = DBL), INTENT(IN) :: x1, y1, z1, & !coordinates of each point in the element	233 REAL (KIND = DBL) :: xi, eta !variables of weight to integrate over a triangle 234 REAL (KIND = DBL) :: x, v, z !coordinates of the f(x,v,z) = F(xi,eta)
& x2, ý2, z2, & x3, y3, z3, &	234 REAL (KIND = DBL) :: x, y, z !coordinates of the f(x,y,z)= F(xi,eta) 235 REAL (KIND = DBL) :: DxDxi, DyDxi, DzDxi !coordinates of the tangential vector over the xi axis
& x4, y4, z4, &	236 REAL (KIND = DBL) :: DxDet, DyDet, DzDet !coordinates of the tangential vector over the eta axis
& x5, y5, z5, &	237 REAL (KIND = DBL) :: vnx, vny, vnz Inormal vector coordinates of the element
& x6, y6, z6 REAL (KIND = DBL), INTENT(OUT) :: al, be, ga !constants alpha, beta and gamma (weights)	238 REAL (KIND = DBL) :: hs !surface metric on a triangle 239 REAL (KIND = DBL) :: al, be, ga, alc, bec, gac !integration weight coefficients
REAL (KIND = DDL), INTENI(ODI) :: 41, DE, ga :constants alpha, beta and gamma (weights)	240 REAL (KIND = DBL) :: cf, fil !integration weight coefficients
Variables inside the subroutine	241 REAL (KIND = DBL), DIMENSION(6) ::xxi, eet !variables of weigth over in triangle (xi,eta)
REAL (KIND = DBL) :: d42, d41 !distances of the element on the segment 1 4 2	242 REAL (KIND = DBL), DIMENSION(6) ::DxDx, DyDx, DzDx !tangential vector over xi axis in triangle (xi,eta) 243 REAL (KIND = DBL), DIMENSION(6) ::DxDe, DyDe, DzDe !tangential vector over eta axis in triangle (xi,eta)
REAL (KIND = DBL) :: d42, d41 : d1stances of the element on the segment 3 6 1	243 REAL (KIND = DBL), DIMENSION(6) ::DXDE, DyVE, DDE :Langential vector over eta axis in triangle (Xigeta) 244 REAL (KIND = DBL), DIMENSION(6) :: vx, vy, vz Inormal vector in triangle (xigeta)
REAL (KIND = DBL) :: d52, d53 !distances of the element on the segment 2 5 3	245 REAL (KIND = DBL) :: bvx1, bvy1, bvz1, & !binormal vectors around in triangle (xi,eta)
	246 & bvx2, bvy2, bvz2, & 247 & bvx3, bvy3
$d_{2} = (x_{4} - x_{2})^{**2} + (y_{4} - y_{2})^{**2} + (z_{4} - z_{2})^{**2}$	247 & bvx3, bvy3, bvz3 248 REAL (KIND = DBL) :: crvx, crvy, crvz, curv !curvature
$d41 = (x4 - x1)^{**2} + (y4 - y1)^{**2} + (z4 - z1)^{**2}$	249
d63 = (x6 - x3)**2 + (y6 - y3)**2 + (z6 - z3)**2	250 ! initialize
$d61 = (x6 - x1)^{**2} + (y6 - y1)^{**2} + (z6 - z1)^{**2}$ $d52 = (x5 - x2)^{**2} + (y5 - y2)^{**2} + (z5 - z2)^{**2}$	251 252 area = 0.000
$d53 = (x5 - x3)^{**2} + (y5 - y3)^{**2} + (z5 - z3)^{**2}$	253 vlm = 0.0D0
	254 cx = 0.0D0
d42 = DSQRT(d42) d41 = DSQRT(d41)	255 cy = 0.000 256 cz = 0.000
d63 = DSQRT(d63)	257 arel = 0.0D0
d61 = DSQRT(d61)	258 xmom = 0.0D0
d52 = DSQRT(d52) d53 = DSQRT(d53)	259 ymom = 0.0D0 260 zmom = 0.0D0
u	266 crvmel = 0.000
al = 1.0D0/(1.0D0 + d42/d41)	262 fil = 0.0D0
be = 1.0D0/(1.0D0 + d63/d61) ga = 1.0D0/(1.0D0 + d52/d53)	263 ! 264 Outer: DO k = 1, nelm
ga = 1.000/(1.000 + 05/(05))	264 OULET: DO K = 1, NEXM 265
END SUBROUTINE abc	266 i1 = n(k, 1)
	$\begin{array}{ccc} 267 & i2 = n(k,2) \\ 268 & i3 = n(k,3) \end{array}$
SUBROUTINE elm geom(nelm, npts, mint, &	268 13 = n(k, 3) 269 14 = n(k, 4)
& xmom, ymom, zmom, &	270 is = n(k,5)
& area, vlm, &	$\begin{array}{rrrr} 271 & 16 = n(k,6) \\ 272 & al = alpha0(k) \end{array}$
& cx, cy, cz, stride)	$272 \qquad a1 = appaq(x)$ $273 \qquad be = beta0(k)$
! This subroutine is a new version of Elm_Geo Subroutine.	274 ga = gammaQ(k)
!Compute: ! *The surface area of the individual elements x, y, and z moments over each element	275 alc = 1.0D0-al 276 bec = 1.0D0-be
interstrates area of the individual elements X, y, and Z moments over each element is "the total particle surface area and volume	2/6 bec = 1.40/ a -be 2/7 gac = 1.00 a -ga
Now, (25 / Augost / 2012) this subroutine was cut.	278
USE Mod Nodal Interp	279 ! Compute surface area and volume of the individual elements x, y, and z moments over each element total 280 !particle surface area and volume
USE MOG_WOGAL_INTERP USE Mod SharedVars, ONLY: DBL, p, ne, n, nbe, ULog,&	280 Iparticle surrace area and volume 281
& alphaQ, betaQ, gammaQ, &	282 DO i = 1, mint
& arel, crvmel, &	$\begin{array}{ccc} 283 & xi &= xiq(i) \\ 700 & xi &= xiq(i) \end{array}$
& vnx0, vny0, vnz0, & & ZZ, WW, &	284 eta = etq(1) 285 CALL interp_p(p(i1,1), p(i1,2), p(i1,3), &
& xiq, etq, wq	286 & p(12,1), p(12,2), p(12,3), &
	287 & p(i3,1), p(i3,2), p(i3,3), & 288 & p(14,1), p(14,2), p(14,3), &

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_Geo.f90 5	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_Geo.f90
89 & p(15,1), p(15,2), p(15,3), & 90 & p(16,1), p(16,2), p(16,3), &	360 & xmom, ymom, zmom, & 361 & area, vlm, &
91 & al, be, ga, &	362 & cx, cy, cz)
92 & xi, eta, & 93 & x, y, z, &	363 !
93 & x, y, z, & 94 & DxDx1, DyDx1, DzDx1, &	365 [Compute:
95 & DxDet, DyDet, DzDet, &	366 ! *The surface area of the individual elements x, y, and z moments over each element
96 & vnx, vny, vnz, & 97 & hs)	367 ! *the total particle surface area and volume 368 !Now, (25 / Augost / 2012) this subroutine was cut.
$\frac{97}{28} cf = hs^*wq(i)$	369 I
<pre>arel(k) = arel(k) + cf</pre>	370 USE Mod_Nodal_Interp
80 xmom(k) = xmom(k) + cf*x 81 ymom(k) = ymom(k) + cf*y	 371 USE Mod_SharedVars, ONLY: DBL, p, ne, n, nbe, ULog,& 372 & alphaQ, betaQ, gammaQ, &
$2z \text{zmom}(k) = z \text{mom}(k) + cf^{2}z$	373 & arel, crymel, &
<pre>23 vlm = vlm + (x*vnx+y*vny+z*vnz)*cf</pre>	374 & vnx0, vny0, vnz0, &
04 END DO 05 arel(k) = 0.5D0*arel(k)	375 & ZZ, WW, & 376 & xiq,etq,wq
<pre>266 xmom(k) = 0.5D0*xmom(k)</pre>	377 !
07 ymom(k) = 0.5D0*ymom(k) 08 zmom(k) = 0.5D0*zmom(k)	378 IMPLICIT NONE
20 zmom(k) = 0.500 ^{-z} mom(k) 29 area = area + area(k)	379 := 380 ! Variables
$10 \qquad cx = cx + xmom(k)$	381 !
$\begin{array}{llllllllllllllllllllllllllllllllllll$	382 INTEGER, INTENT(IN) :: nelm Inumber of elements 383 INTEGER, INTENT(IN) :: npts Inumber of poins on the surface
12 C2 - C2 + Zmom(k)	384 INTEGER, INTENT(IN) :: mit lorder of triangle quadrature
14 ! compute the average value of the normal vector the mean curvature as a contour integral using the nftty	385 REAL (KIND = DBL), DIMENSION(:), INTENT(OUT) :: xmom, ymom, zmom !coordinates of the moments of the drop
15 !formula (4.2.10) of Pozrikidis (1997) 16 !	386 REAL (KIND = DBL), INTENT(OUT) :: area, vlm !area and volume of each element 387 REAL (KIND = DBL), INTENT(OUT) :: cx, cy, cz !drop's centroid coordinates
17 xxi(1) = 0.0D0	388 !
18 eet(1) = 0.0D0 19 xxi(2) = 1.0D0	389 ! Variables inside the subroutine
12^{-3} $\lambda \lambda \lambda (z) = 1.000$ 20 $eet(z) = 0.000$	390 I INTEGER :: i, k ICounters
21 xxi(3) = 0.0D0	392 INTEGER :: i1, i2, i3, i4, i5, i6 !indices to obtain node numbers from each element
22 eet(3) = 1.000 23 xxi(4) = al	393 !
$z_{2} = z_{1} + z_{2} + z_{2$	395 REAL (KIND = DBL) :: x, y, z !coordinates of the f(x,y,z)= F(xi,eta)
25 xx1(5) = ga 26 eet(5) = gac	396 REAL (KIND = DBL) :: DxDxi, DyDxi, DzDxi !coordinates of the tangential vector over the xi axis 397 REAL (KIND = DRL) :: DxDet, DyDet, DzDet !coordinates of the tangential vector over the eta axis
26 eet(5) = gac 27 xx1(6) = 0.0D0	397 REAL (KIND = DBL) :: DxDet, DyDet, DzDet !coordinates of the tangential vector over the eta axis 398 REAL (KIND = DBL) :: vnx, vny, vnz !normal vector coordinates of the element
28 eet(6) = be	399 REAL (KIND = DBL) :: hs !surface metric on a triangle
29 xi = 1.0D0/3.0D0 30 eta = 1.0D0/3.0D0	400 REAL (KIND = DBL) :: al, be, ga, alc, bec, gac !integration weight coefficients 401 REAL (KIND = DBL) :: cf, fil !integration weight coefficients
CALL interp.p4(p(i1,1), p(i1,2), p(i1,3), &	402 REAL (KIND = DBL), DIFENSION(6) ::xxi, eet variables of weight over in triangle (xi,eta)
32 & p(i2,1), p(i2,2), p(i2,3), &	403 REAL (KIND = DBL), DIMENSION(6) ::DXDX, DyDx, DzDx !tangential vector over xi axis in triangle (xi,eta) 404 REAL (KIND = DRL), DIMENSION(6) ::DXDe, DyDe, DzDe !tangential vector over eta axis in triangle (xi,eta)
33 & p(i3,1), p(i3,2), p(i3,3), & 34 & p(i4,1), p(i4,2), p(i4,3), &	404 REAL (KIND = DBL), DIMENSION(6) ::DxDe, DyDe, DzDe !tangential vector over eta axis in triangle (xi,eta) 405 REAL (KIND = DBL), DIMENSION(6) :: vx, vy, vz !normal vector in triangle (xi,eta)
35 & p(15,1), p(15,2), p(15,3), &	406 REAL (KIND = DBL) :: bvx1, bvy1, bvz1, & !binormal vectors around in triangle (xi,eta)
36 & p(i6,1), p(i6,2), p(i6,3), & 37 & al. be. ga. &	407 & bvx2, bvy2, bvz2, & 408 & bvx3, bvy3, bvz3
37 & al, be, ga, & 38 & xi, eta, &	400 a KEAL (KIND = DBL) :: crvx, crvz !curvature
39 & curv, stride)	410 !
40 41	411 ! initialize 412 !
42 ! will project curvature vector onto the normal vector at the centroid only needs the colocation verctors	413 area = 0.0D0
43 !In this value of curvature I made a division per 8 (1/8.0) when i expected do for 4 (1/4.0)	$\begin{array}{rcl} 414 & vlm &= 0.000 \\ 415 & cx &= 0.000 \end{array}$
<pre>crvmel(k) = curv !(0.25D0*(crvx*vnx0(k)+crvy*vny0(k)+crvz*vnz0(k))*fil)/arel(k)</pre>	416 cy = 0.0D0
46 END DO Outer 47	417 cZ = 0.0D0 418 arel = 0.0D0
4/ !	418 are1 = 0.000 419 xmom = 0.000
	420 ymom = 0.0D0
49 50 cx = cx/area	421 zmom = 0.0D0 422 crymel = 0.0D0
51 cy = cy/area	423 fil = 0.0D0
52 c2 = c2/area	
53 vlm = vlm/6.0D0 54 103 FORMAT(10(1x,ES24.16))	425 ! OPEN (9,file="curvmel.out") 426
55	427 Outer: DO k = 1, nelm
56 END SUBROUTINE elm_geom 57 !	
57	$\begin{array}{ccc} 429 & 11 = n(k,1) \\ 430 & 12 = n(k,2) \end{array}$
59 SUBROUTINE elm_geom4(nelm, npts, mint, &	$\begin{array}{ccc} 431 & 13 & -\pi(k_{2}x) \\ \end{array}$

i4 = n(k,4)	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_Geo.f90 504 & p(16.1), p(16.2), p(16.3), &
$14 = n(\kappa, 5)$ 15 = n(k, 5)	504 & p(i6,1), p(i6,2), p(i6,3), & 505 & al, be, ga, &
13 - n(x, 5) 16 - n(k, 6)	505 a al, Je, ga, a 506 & xi, eta, &
al = alphaQ(k)	507 & X, Y, Z, &
ba = bap(aq(k))	508 & DxDx(i), DyDx(i), &
ga = gamao(k)	509 & DxDe(1), DyDe(1), 0
$a_0 = a_{mmax}(x)$ $a_1c = 1.00-a_1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
bec = 1.000-be	S11 & hs)
gac = 1,000-ga	S12 END DO
! Compute surface area and volume of the individual elements x, y, and z moments over each element total	514 bvx1 = 0.000
Iparticle surface area and volume	515 bvy1 = 0.000
1	516 bvz1 = 0.0D0
	517 bv2 = 0.000
DO i = 1, mint	518 bvy2 = 0.000 519 bvz2 = 0.000
DO $i = 1$, mint x $i = xiq(i)$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
AA = AAq(A) eta = eta(1)	520 0V3 = 0.000 521 bvy3 = 0.000
$c_{AL} = c_{AL}(1)$ CALL interp_p(p(i1,1), p(i1,2), p(i1,3), &	522 by3 = 0.000
$\hat{\mathbf{x}}$ p(12,1), p(12,2), p(12,3), \mathbf{x}	523 CrVx 0.000
α $p(12,2), p(12,2), p(12,3), \alpha$ & $p(13,1), p(13,2), p(13,3), &$	523 Crvy = 0.000 524 Crvy = 0.000
$\hat{\mathbf{x}} = p(1,1), p(1,2), p(1,3), \hat{\mathbf{x}}$ $\hat{\mathbf{x}} = p(1,1), p(1,2), p(1,3), \hat{\mathbf{x}}$	525 crvz = 0.000
\hat{k} p(is,1), p(is,2), p(is,3), \hat{k}	
$ \begin{array}{c} $	527 ! computation of curvature line integral along segment 1-4-2 528 !
& xi, eta, &	529 bvx1 = vy(1)*DzDx(1)-vz(1)*DyDx(1)
& ×, y, z, &	530 bvy1 = vz(1)*DxDx(1)-vx(1)*DzDx(1)
& DxDxi, DyDxi, &	531 bvz1 = vx(1)*DyDx(1)-vy(1)*DxDx(1)
& DxDet, DyDet, &	532 !
& vnx, vny, vnz, &	533 bvx2 = vy(4)*DzDx(4)-vz(4)*DyDx(4)
& hs)	534 bvy2 = vz(4)*DxDx(4)-vx(4)*DzDx(4)
$cf = hs^*wq(1)$ arel(k) = arel(k) + cf	535 bvz2 = vx(4)*DyDx(4)-vy(4)*DxDx(4)
arel(k) = arel(k) + cf xmom(k) = xmom(k) + cf*x	536 537 bvx3 = vy(2)*DzDx(2)-vz(2)*DyDx(2)
$xmom(k) = xmom(k) + ct^{*}x$ $ymom(k) = ymom(k) + cf^{*}y$	$537 bvx3 = vy(2)^{v}bbx(2) - vz(2)^{v}bybx(2) 538 bvy3 = vx(2)^{v}bxbx(2) - vx(2)^{v}bxbx(2) 537 bvy3 = vx(2)^{v}bxbx(2) - vx(2)^{v}bxbx(2) 537 bvy3 = vy(2)^{v}bxbx(2) - vx(2)^{v}bxbx(2) 538 bvy3 = vx(2)^{v}bxbx(2) - vx(2)^{v}bxbx(2) $
y = y = y = y = y = y = y z = z = y = z = z = z	$\begin{array}{cccc} 538 & by3 = v_2(2)^{-} DXDx(2)^{-} v_2(2)^{+} DZDx(2) \\ 539 & bv3 = v_2(2)^{+} DyDx(2)^{-} v_2(2)^{+} bvDx(2) \\ \end{array}$
$zmom(\kappa) = zmom(\kappa) + c^{-2}$ $vIm = vIm + (x^*nx)+y^*ny+z^*vnz)^*cf$	559 UV3 = VX(2)'UVX(2)-VY(2)'UVX(2) 540
END DO	541 Crvx = al*bvx1 + bvx2 + alc*bvx3
	541 $Crvy = a1^8 by 1 + by 2 + a1c^8 by 3$
	543 $crvz = a1*bvz1 + bvz2 + a1c*bvz3$
arel(k) = 0.5D0*arel(k)	544
xmom(k) = 0.5D0*xmom(k)	545 ! computation of curvature line integral along segment 2-5-3
ymom(k) = 0.5D0*ymom(k)	546 !
zmom(k) = 0.5D0*zmom(k)	547 bvx1 = 0.0D0
area = area +arel(k)	548 bvy1 = 0.0D0
cx = cx + xmom(k)	549 bvz1 = 0.0D0
cy = cy + ymom(k)	550 bvx2 = 0.0D0
cz = cz + zmom(k)	551 bvy2 = 0.000
	552 bvz2 = 0.0D0
! compute the average value of the normal vector the mean curvature as a contour integral using the nftty	553 bvx3 = 0.0D0
formula (4.2.10) of Pozrikidis (1997)	554 bvy3 = 0.000
	555 bvz3 = 0.000
xxi(1) = 0.000	556 !
eet(1) = 0.000 xxi(2) = 1.000	557 bvx1 = vy(2)*DzDx(2)-vz(2)*DyDx(2) 558 bvy1 = vz(2)*DxDx(2)-vx(2)*DzDx(2)
xx1(2) = 1.600 eet(2) = 0.600	558 bvg1 = vz(2)*0x0x(2)-vx(2)*0x0x(2) 559 bvg1 = vx(2)*0x0x(2)-vy(2)*0x0x(2)
$xx_1(3) = 0.000$	559 DV21 = VX(2)'DVUX(2)-VV(2)'DXUX(2) 560 [
xx1(3) = 0.000 eet(3) = 1.000	560
eet(3) = 1.000 xxi(4) = al	561 bvX2 = vy(5)*0zUX(5)-v2(5)*0yUX(5) 562 bvy2 = vz(5)*0x0x(5)-vx(5)*0zDx(5)
$xx_1(4) = a_1$ eet(4) = 6.000	562 byz = vz(5) bbx(5)-vz(5) bbx(5) 563 byz = vz(5) bbx(5)-vz(5) bbx(5)
xxi(5) = ga	505 0022 - VA(5)-UVA(5)-UVA(5) 564
eet(5) = gac	565 bvx3 = vy(3)*DzDx(3)-vz(3)*DyDx(3)
$xx_1(6) = 0.000$	$\frac{565}{566} = \frac{5}{5} \frac{5}{5} \frac{1}{5} \frac{1}{5$
eet(6) = be	500 by3 - v2(5) bbb(5)-v(5) bbb(3) 567 bv3 - vx(3) bbb(3)-v(3) bbb(3)
DO i = 1, 6	568 1
$x_1 = x_1(1)$	569 crvx = crvx - gac*bvx1 - bvx2 - ga*bvx3
A = A = A = A = A = A	570 $crvy = crvy - gac*by(1 - bv(2 - ga*bvy) = 570$
$cAL = hterp_p(p(i1,1), p(i1,2), p(i1,3), &$	570 crvy = crvy - gac*byz1 - byz2 - ga*byz3
$\hat{\mathbf{x}}$ (21,21), p(12,21), p(12,2), p(12,2), p(12,2), p(22,2),	572 1
& p(13,1), p(13,2), p(13,2), (13,3), &	573 bvx1 = vy(2)*DzDe(2)-vz(2)*DyDe(2)
& p(14,1), p(14,2), p(14,3), &	574 by 1 = v(2)*bxbe(2)-v(2)*bzbe(2)
& p(15,1), p(15,2), p(15,3), &	575 bv21 = vx(2)*DyDe(2)-vy(2)*DxDe(2)

$\frac{1}{111} = \frac{1}{111} = \frac{1}{111} + \frac{1}$	D:\Darth Vader\Escritorio\prtcl mkl\Mod_Prtcl_3D_Geo.f90	9 D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_Geo.f90
bit = (1) Table(1) = (1) Table(1) bit = (1) Table(1) = (1) Table(1) bit = (1) Table(1) = (1) Table(1) constrained and set in the co		
$\frac{1}{122} - \frac{1}{12} - \frac{1}{12}$		
<pre>image: control = cont</pre>	bvy2 = vz(5)*DxDe(5)-vx(5)*DzDe(5)	
$ \frac{1}{1000} = 0(1)^{1000} (1)^{$	bvz2 = vx(5)*DyDe(5)-vy(5)*DxDe(5)	
<pre>by - c(C) Pack(-).c() Yank(-) set: = (1 / Apk(-) (2 / Apk(-)</pre>		
b $2^2 + 6(1)^{2}(6(1)^{-}(2)^{2}(2)$		
$\frac{1}{11} = \frac{1}{11} $	$bv3 = vx(3)^{b}bv(0(3)-vx(3)^{b}bv(0(3))$	
$ \begin{bmatrix} c & c & c & c & c & c & c & c & c & c$		
$ \begin{array}{c} cry = (rry = (r$	crvx = crvx + gac*bvx1 + bvx2 + ga*bvx3	656 USE Mod_SharedVars, ONLY: DBL, p, ne, n, nbe, ULog, vna1, &
important	crvy = crvy + gac*bvy1 + bvy2 + ga*bvy3	657 & alphaQ, betaQ, gammaQ, &
$ \begin{array}{c} c c c c c c c c c c c c c c c c c c $		
$ \frac{1}{111 spectra of the spectr$		
$\frac{1}{11} = \frac{1}{100} = \frac{1}{$		
$\frac{1}{1} = \frac{1}{100} + \frac{1}{100} = \frac{1}{1$		
$ \begin{array}{c} b \\ b \\ b \\ b \\ b \\ c \\ b \\ b \\ b \\ c \\ c$		
$\frac{1}{4} = \frac{1}{2} + \frac{1}$		
$b_{12}^{2} = 0.000$ 101787(1)110787(1)110787(1)110887		
$ \frac{1}{1 + m_{1}^{2} + m_{1}^{2} + m_{2}^{2} + m_{2}^$		
$ \frac{1}{100} 1$		
$0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $		
<pre>bit = c(1)*Dot(1-vc(1)*Dot(1)-vc(1)*Dot(1) bit = vc(1)*Dot(1)-vc(1)*Dot(2) bit = vc(1)*Dot(2)-vc(1)*Dot(2) bit = vc(1)*Dot(2)-vc(1)*D</pre>		
$\frac{1}{11 \text{ boll } = y(1)^{12}(1)^{12$		
$ \frac{1}{1111} \frac{1}{11111} \frac{1}{111111} \frac{1}{111111} \frac{1}{1111111111$		
bit1 = v(1)*p(0):-y(1)*p(0): bit2 = v(1)*p(0):-y(1)*p(0): c:rev: - rev:-1*bit1 = h(1)*p(0): c:rev: - rev:-1*bit1 =	byzi = vy(1)/bzbe(1)-v2(1) ² bybe(1) byd = v2(1) ² bybe(1)-v2(1) ² bybe(1)	
$f = \frac{1}{10000} + \frac{1}{10000} + \frac{1}{100000} + \frac{1}{10000000000000000000000000000000000$		
$ \begin{array}{c} by2 + v(c) by2(c) + v(c) by2(c) + v(c) by2(c) + (b)2be(c) \\ by3 + v(d) by2(c) $		
$ \begin{array}{c} by2 + v(c) by2(c) + v(c) by2(c) + v(c) by2(c) + (b)2be(c) \\ by3 + v(d) by2(c) $	bvx2 = vv(6)*DzDe(6) - vz(6)*DvDe(6)	
$ \frac{1}{1} 1$		677 INTEGER :: i1, i2, i3, i4, i5, i6 !indices to obtain node numbers from each element
by $y_{(3} = y_{(3}) = y_{(3} = y_{(3}) = y_{(3}) = y_{(3}) = y_{(3} = y_{(3}) = y_{(3}) = y_{(3}) = y_{(3} = y_{(3}) = y_{$	bvz2 = vx(6)*DyDe(6)-vy(6)*DxDe(6)	678 !
by $y = v(3)^{10} D(6(3)^{-v(3)^{10} D(6(3))}$ Icordinates of the tagential vector over the it axisby $y = v(3)^{10} D(6(3)^{-v(3)^{10} D(6(3))}$ Icordinates of the tagential vector over the it axiscrew = vrw - b bebyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - b bebyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - b bebyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - b bebyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - b bebyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - b bebyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - b bebyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - b bebyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vz		679 REAL (KIND = DBL) :: xi, eta !variables of weight to integrate over a triangle
1 $bv23 + w(3)^{3}y0pc(3) - yv(3)^{3}y0pc(3) $		680 REAL (KIND = DBL) :: x, y, z !coordinates of the f(x,y,z)= F(xi,eta)
$ \frac{1}{1 + 1 + 1} = 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$		
$ \begin{array}{c} crvx = crvx - be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvy = crvy - be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvz = crvz - be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvz = crvz - be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvz = crvz - be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvz = crvz + be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvz = crvz + be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvz = crvz + be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvz = crvz + be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvz = crvz + be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvz = crvz + be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvz = crvz + be^{tbvx3} = be^{tbvx3} \\ crvz = be$	bvz3 = vx(3)*DyDe(3)-vy(3)*DxDe(3)	682 REAL (KIND = DBL) :: DxDet, DyDet, DzDet !coordinates of the tangential vector over the eta axis
$ \frac{1}{1 + crvy = crwy - be^{b}vy1 - by2 - bec^{b}vy3}{crvx = crwx - be^{b}vy1 - by2 - bec^{b}vy3} = \frac{1}{1 + crvx = crwx - be^{b}vy1 - by2 - bec^{b}vy3} = \frac{1}{1 + crvx = crwx - be^{b}vy1 - by2 - bec^{b}vy3} = \frac{1}{1 + crvx + crvx - br} = \frac{1}{1 + crvx + crvx + crvx - br} = \frac{1}{1 + crvx + crvx + crvx - br} = \frac{1}{1 + crvx $		083 KEAL (KIND = DBL) :: VNX, VNY, VN2 :normal vector coordinates of the element
$ \frac{5}{1 - crvz = crvz - be^{1b}vz1 - bvz2 - $		
$ \frac{1}{1} = 0.508T(crvx^{++2}crvy^{+2}crvy^{+2}cr$		686 REAL (KIND = DBL) :: cf
7 fil = 0.000 6 fil = 0.000 7 fil = 1.000 7 fil = 1.0000 7 fil = 1.0000 7 fil = 1.0000 7 fil = 1.0000 7		687 REAL (KIND = DBL), DIMENSION(6) ::xxi, eet !variables of weigth over in triangle (xi,eta)
9 crvx = crvx/fil 1 crvy = crvx/fil 1 crvx = crvx/rea 1 <td></td> <td>688 REAL (KIND = DBL), DIMENSION(6) ::DxDx, DyDx, DzDx !tangential vector over xi axis in triangle (xi,eta)</td>		688 REAL (KIND = DBL), DIMENSION(6) ::DxDx, DyDx, DzDx !tangential vector over xi axis in triangle (xi,eta)
0 crvy = crvy/fil 1 crvz = crv2/fil 2 i= 3 i= 4 i= 5 i= 6 crvwel(k) = (0.12500*(crvx*vnØ(k)+crvy*vnØ(k)+crvy*vnØ(k))*fil)/arel(k) 7 i= 7 i= 8 i= 9 END D Outer 1 crvmel(k) = (0.12500*(crvx*vnØ(k)+crvy*vnØ(k)+crvy*vnØ(k))*fil)/arel(k) 7 i= 6 crvmel(k) = (0.12500*(crvx*vnØ(k)+crvy*vnØ(
1 crvz = crvz/fil 2		690 REAL (KIND = DBL), DIMENSION(6) :: vx, vy, vz !normal vector in triangle (xi,eta)
2	crvy = crvy/fil	691 REAL (KIND = DBL) :: bvx1, bvy1, bvz1, & !binormal vectors around in triangle (x1,eta)
3 vill project curvature vector onto the normal vector at the centroid only needs the colocation vectors 4 In this value of curvature i made a division per S (1/8.6) when i expected do for 4 (1/4.6) 5	Crvz = Crvz/T11	
4 In this value of curvature I made a division per 8 (1/8.0) when i expected do for 4 (1/4.0) 5 :		
5		695
7 I WRITE (9,*) crwmel(k) 8 60 9 EUD DO Outer 0 700 cc x = 0.000 1 700 cc x = 0.000 2 1 final computation of the surface-centroid and volume 700 cc x = 0.000 3	(696 ! initialize
7 1 WRITE (9,*) crwmel(k) 8 60 9 END DO Outer 0 70 crwmel and source 1 1 1		
END D0 Outer 700 cx = 0.000 1	! WRITE (9,*) crvmel(k)	
9 701 Cy = 0.000 2 1 final computation of the surface-centrold and volume 703 arel = 0.000 3		
1 702 $f z^2$ = 0.000 2 1 final computation of the surface-centroid and volume 703 2 1 final computation of the surface-centroid and volume 703 3	END DO Outer	
2 final computation of the surface-centroid and volume 763 arel = 0.000 3		
3 I		
3 1 705 ymom = 0.000 4 cx = cx/area 705 ymom = 0.000 5 cx = cx/area 706 zmom = 0.000 6 cz = cz/area 707 crwmel = 0.000 7 vlm = vlm6.000 708 rowmel.out") 8 1 close (0) 700 9 102 FDWAT(10(1x, f254.16)) 710 711 9 103 FDWAT(10(1x, f254.16)) 711 0 tuter: D0 k = 1, nelm 1 100 SUBROUTIKE ela_geom4 713 11 2 11 11 11 3 12 n(k, 1) 12 4 SUBROUTIKE ela_geom2(nelm, npts, mint, & 716 14 = n(k, 4) 5 8 xmom, ymom, zmom,	. The competence of the surface centrol and volume	
4 CX = Cx/area 706 2 mom = 0.000 5 Cy = cy/area 700 7 crwmel = 0.000 6 Cz = cz/area 700 7 crwmel = 0.000 7 vim = vln/6.000 708 700 8 1 closE (9) 90F0RM/tid(x,E524.16)) 710 9 109F0RM/tid(x,E524.16)) 711 0uter: D0 k = 1, nelm 2 1============ 713 11 = m(k,1) 2 1========= 714 12 = m(k,2) 3 1====== 715 13 = m(k,3) 4 SUBROUTINE elm_geoma(nelm, nptcs, mint, & man, #0 716 14 = m(k,4) 716 14 = m(k,4) 716 14 = m(k,5)	I	
6 C2 = c2/area 7 vJm = vJm/6.060 81 CLOSE (9) 9 103 FORM*(10(x)_{x5254.16})) 710 01 =		706 zmom = 0.0D0
7 Vim = Vink/6.000 709 OPEN (9, file="curvmel.out") 8 1 CLOSE (9) 710 9 103 FORMAT(10(1x,ES24.16)) 711 Outer: D0 k = 1, nelm 0		
81 CLOSE (9) 91 FORM (16/(x, £5, 54, 16)) 91 103 91 FORM (16/(x, £5, 54, 16)) 91 FORM (16/(x, ±5, 54, 16))		
9 195 FORWAT(10(1/x) E242.16)) 711 Outer: D0 k = 1, nelm 712 712 1 END SUBROUTINE elm_geom4 713 i1 = n(k, 1) 2 714 12 = n(k, 2) 3 715 i3 = n(k, 3) 4 SUBROUTINE elm_geom2(nelm, npts, mint, & 716 i4 = n(k, 4) 5 8 xnom, ymom, znom, a 716 i4 = n(k, 5)		
0 1 1 EHD SUBROUTINE elm_geom4 2 1 3		
1 END SUBROUTINE elm_geom4 713 11 = n(k,1) 2 1 714 12 = n(k,2) 3 1 1 1 4 SUBROUTINE elm_geom2(nelm, npts, mint, & 716 14 = n(k,3) 5 8 xnom, ymom, znom, & 716 5 8 716 14 = n(k,4)		
2 1		
3 !====================================	CUR 200R001106 610-86004	
4 SUBROUTINE ellingeonz(nellin, npts, mint, & 716 14 = n(t, 4) 5 & xmon, ymon, zmon, & 717 15 = n(t, 5)		
5 & xmon, ymon, zmon, & 717 15 = n(k,5)		
α area, vin, α /18 1b = $\Pi(K,b)$		718 $16 = n(k, 6)$

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_Geo.f90 11	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_Geo.f90
al = alphaq(k) be = betaq(k) ga = gamaq(k) alc = 1.000-al bec = 1.000-be ga = 1.000-ga	791 & x, y, z, & 792 & DxDx(i), DyDx(i), DxDx(i), DxDx(i), <td< th=""></td<>
<pre>Compute surface area and volume of the individual elements x, y, and z moments over each element total particle surface area and volume DO 1 = 1, mint x1 = x1(1) eta = sto(1) cALL interp_p(p(11,1), p(11,2), p(11,3), & & p(12,2), p(12,3), & & p(13,1), p(13,2), p(13,3), & & p(13,1), p(13,2), p(13,2), p(13,1), & & p(13,1), p(13,2), p(13,1), & & p(13,1), p(13,2), p(13,1), & & p(13,1), p(13,1), & & p(13,1), p(13,1), & & p(13,1), p(13,1), p(13,1), & & p(13,1), p(13,1), p(13,1), & & p(13,1), p(13,1), & & p(13,1), p(13,1), p(13,1), & & p(13,1), p(13,1)</pre>	<pre>799 [</pre>
<pre>cy = cy + ymom(k) cz = cz + zmom(k) !</pre>	834 crvz = al*bvz1 + bvz2 + alc*bvz3 835 !
<pre>!formula (4.2.10) of Porrkidis (1997) !</pre>	<pre>838 bxx = 0.000 840 byz = 0.000 840 bxz = 0.000 841 bxx = 0.000 841 bxx = 0.000 842 byy = 0.000 843 byz = 0.000 844 bxx = 0.000 844 bxx = 0.000 845 byy = 0.000 846 byz = 0.000 847</pre>
& (p(14,1), p(14,2), p(14,3), & & p(15,1), p(15,2), p(15,3), & & p(16,1), p(16,2), p(16,3), & & a1, be, ga, & & a1, be, ga, &	858 bv23 = vnal(3+(6*(1-1)),1)*DyDx(3)-vnal(3+(6*(1-1)),2)*DxDx(3) 859 !

	Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_Geo.f90 13
	<pre>bvx1 = vna1(2+(6*(i-1)),2)*DzDe(2)-vna1(2+(6*(i-1)),3)*DyDe(2)</pre>
	bvy1 = vna1(2+(6*(i-1)),3)*DxDe(2)-vna1(2+(6*(i-1)),1)*DzDe(2)
	bvz1 = vna1(2+(6*(i-1)),1)*DyDe(2)-vna1(2+(6*(i-1)),2)*DxDe(2)
	<pre>bvx2 = vna1(5+(6*(i-1)),2)*DzDe(5)-vna1(5+(6*(i-1)),3)*DyDe(5)</pre>
	bvy2 = vnal(5+(6*(1-1)),2)*DzDe(5)-vnal(5+(6*(1-1)),3)*DyDe(5) bvy2 = vnal(5+(6*(1-1)),3)*DxDe(5)-vnal(5+(6*(1-1)),1)*DzDe(5)
	bvz2 = vna1(5+(6*(i-1)),1)*DyDe(5)-vna1(5+(6*(i-1)),2)*DxDe(5)
	bvx3 = vna1(3+(6*(i-1)),2)*DzDe(3)-vna1(3+(6*(i-1)),3)*DyDe(3) bvy3 = vna1(3+(6*(i-1)),3)*DxDe(3)-vna1(3+(6*(i-1)),1)*DzDe(3)
	bvz3 = vna1(3+(6*(i-1)),1)*DyDe(3)-vna1(3+(6*(i-1)),2)*DxDe(3)
	crvx = crvx + gac*bvx1 + bvx2 + ga*bvx3 crvy = crvy + gac*bvy1 + bvy2 + ga*bvy3
	crvz = crvz + gac*bvz1 + bvz2 + ga*bvz3
	any define of any stars lies (stars) along against 2.6.1
	computation of curvature line integral along segment 3-6-1
	bvx1 = 0.0D0
	bvy1 = 0.0D0 bvz1 = 0.0D0
	bvz1 = 0.000 bvx2 = 0.000
	bvy2 = 0.0D0
	bvz2 = 0.0D0
	bvx3 = 0.0D0 bvv3 = 0.0D0
	bvz3 = 0.0D0
	h
	bvx1 = vna1(1+(6*(i-1)),2)*DzDe(1)-vna1(1+(6*(i-1)),3)*DyDe(1) bvy1 = vna1(1+(6*(i-1)),3)*DxDe(1)-vna1(1+(6*(i-1)),1)*DzDe(1)
	bvy1 = vna1(1+(6*(i-1)), j) bde(1) - vna1(1+(6*(i-1)), j) bde(1) bvz1 = vna1(1+(6*(i-1)), 1)*DyDe(1) - vna1(1+(6*(i-1)), 2)*DxDe(1)
	<pre>bvx2 = vna1(6+(6*(i-1)),2)*DzDe(6)-vna1(6+(6*(i-1)),3)*DyDe(6) bvy2 = vna1(6+(6*(i-1)),3)*DxDe(6)-vna1(6+(6*(i-1)),1)*DzDe(6)</pre>
	bv22 = vnal(6+(6*(1-1)),1)*DyDe(6)-vnal(6+(6*(1-1)),2)*DxDe(6)
	<pre>bvx3 = vna1(3+(6*(i-1)),2)*DzDe(3)-vna1(3+(6*(i-1)),3)*DyDe(3) bvy3 = vna1(3+(6*(i-1)),3)*DxDe(3)-vna1(3+(6*(i-1)),1)*DzDe(3)</pre>
	bvz3 = vnal(3+(6*(i-1)),1)*DyDe(3)-vnal(3+(6*(i-1)),2)*DxDe(3)
	www.kethod.hud.kethud
	crvx = crvx - be*bvx1 - bvx2 - bec*bvx3 crvy = crvy - be*bvy1 - bvy2 - bec*bvy3
	crvz = crvz - be*bvz1 - bvz2 - bec*bvz3
w	dill project curvature vector onto the normal vector at the centroid only needs the colocation verctors this value of curvature I made a division per 8 (1/8.0) when I expected do for 4 (1/4.0)
	crvmel(k) = 0.250D0*(crvx*vnx0(k)+crvy*vny0(k)+crvz*vnz0(k)) !/arel(k)
	WRITE (9,*) crvmel(k)
	END DO Outer
f	inal computation of the surface-centroid and volume
	cx = cx/area
	cy = cy/area
	cz = cz/area vlm = vlm/6.0D0
	CLOSE (9)
	FORMAT(10(1x,ES24.16))
	END SUBROUTINE elm_geom2
	JBROUTINE elm_geom3(nelm, npts, mint, &
	& xmom, ymom, zmom, &
	& area, vlm, & & cx, cy, cz)
	& cx, cy, cz)
	This subroutine is a new version of Elm_Geo Subroutine.

! !Now	pute: *The surface area of the individual elements x, y, *The total particle surface area and volume , (25 / Augost / 2012) this subroutine was cut.		
	USE Mod_Nodal_Interp		
	USE Mod_SharedVars, ONLY: DBL, p, ne, n, nbe, ULog & alpha0. beta0. gamma0.		
	& alphaQ, betaQ, gammaQ, & arel, crvmel,	. α &	
	& vnx0, vny0, vnz0,	&	
	& ZZ, WW,	&	
	& xiq, etq, wq		
	IMPLICIT NONE		
	Variables		
	INTEGER, INTENT(IN) :: nelm		Inumber of elements
	INTEGER, INTENT(IN) :: npts INTEGER, INTENT(IN) :: mint		Inumber of poins on the surface
	INTEGER, INTENT(IN) :: mint REAL (KIND = DBL), DIMENSION(:), INTENT(OUT) :: xm	iom, vmom, zmom	lorder of triangle quadrature lcoordinates of the moments of the drop
	REAL (KIND = DBL), INTENT(OUT) :: area, vlm	, ymomy 2mom	!area and volume of each element
	REAL (KIND = DBL), INTENT(OUT) :: cx, cy, cz		<pre>!drop's centroid coordinates</pre>
	Variables inside the subroutine		
		ounters	node numbers from each element
1	INTEGER :: i1, i2, i3, i4, i5, i6 !i		
	REAL (KIND = DBL) :: xi, eta	<pre>!variables of w</pre>	weigth to integrate over a triangle
	REAL (KIND = DBL) :: x, y, z		f the f(x,y,z)= F(xi,eta)
	REAL (KIND = DBL) :: DxDxi, DyDxi, DzDxi REAL (KIND = DBL) :: DxDet, DyDet, DzDet		F the tangential vector over the xi axis F the tangential vector over the eta axis
	REAL (KIND = DBL) :: vnx, vny, vnz		coordinates of the element
	REAL (KIND = DBL) :: hs, xs, es	<pre>!surface metric</pre>	
	REAL (KIND = DBL) :: al, be, ga, alc, bec, gac REAL (KIND = DBL) :: cf , fil		eigth coefficients weigth coefficients
	REAL (KIND = DBL), DIMENSION(6) ::xxi, eet		weigth over in triangle (xi,eta)
	REAL (KIND = DBL), DIMENSION(6) ::DxDx, DyDx, DzDx		tor over xi axis in triangle (xi,eta)
	REAL (KIND = DBL), DIMENSION(6) ::DxDe, DyDe, DzDe		tor over eta axis in triangle (xi,eta)
	REAL (KIND = DBL), DIMENSION(6) :: vx, vy, vz REAL (KIND = DBL) :: bvx1, bvy1, bvz1, &		in triangle (xi,eta) ors around in triangle (xi,eta)
	& bvx2, bvy2, bvz2, &	.ornormar vecto	s a build in criangle (xijeta)
	& bvx3, bvy3, bvz3		
	REAL (KIND = DBL) :: crvx, crvy, crvz	!curvature	
	initialize		
	area = 0.0D0 vlm = 0.0D0		
	cx = 0.0D0		
	cy = 0.0D0		
	cz = 0.0D0		
	arel = 0.0D0 xmom = 0.0D0		
	ymom = 0.0D0		
	zmom = 0.0D0		
	crvmel = 0.0D0 fil = 0.0D0		
!	OPEN (9,file="curvmel.out")		
	Outer: DO k = 1, nelm		
	i1 = n(k, 1) i2 = n(k, 2)		
	12 = n(k, 2) 13 = n(k, 3)		
	i4 = n(k, 4)		
	i5 = n(k, 5)		
	i6 = n(k,6) al = alphaQ(k)		
	be = betaQ(k)		

D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl 3D Geo.f90 15	D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl 3D Geo.f90 16
1006 ga = gammaQ(k)	1078 & DxDx(i), DyDx(i), &
1007 alc = 1.0D0-al	1079 & DxDe(i), DzDe(i), &
1008 bec = 1.0D0-be 1009 gac = 1.0D0-ga	1080 & vx(i), vy(i), vz(i), & 1081 & hs)
1009 gat = 1.000-ga	1081 & ns) 1082 END DO
1011 ! Compute surface area and volume of the individual elements x, y, and z moments over each element total	
1012 !particle surface area and volume 1013	1084 bvx1 = 0.0D0 1085 bvy1 = 0.0D0
1014	1086 bv21 = 0.0D0
1015 1016 DO i = 1, mint	1087 bvx2 = 0.000 1088 bvy2 = 0.000
$\frac{1010}{1017} \times \frac{1000}{1000} = 1.00000000000000000000000000000000000$	1080 $0.092 - 0.0001089$ $0.022 = 0.000$
1018 eta = etq(i)	1090 bvx3 = 0.0D0
1019 CALL interp_p(p(i1,1), p(i1,2), p(i1,3), & 1020 & p(i2,1), p(i2,2), p(i2,3), &	1091 bvy3 = 0.000 1092 bvz3 = 0.000
1021 & p(i3,1), p(i3,2), p(i3,3), &	1093 crvx = 0.0D0
1022 & p(i4,1), p(i4,2), p(i4,3), & 1023 & p(i5,1), p(i5,2), p(i5,3), &	1094 crvy = 0.000 1095 crvz = 0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1025 & al, be, ga, &	1007 ! computation of curvature line integral along segment 1-4-2
1026 & x1, eta, & 1027 & x, y, z, &	1098 ! 1099 bvx1 = vy(1)*DzDx(1)-vz(1)*DyDx(1)
1028 & DxDxi, DyDxi, DzDxi, &	1100 $bvy1 = vz(1)*DxDx(1)-vx(1)*DzDx(1)$
1029 & DxDet, DyDet, DzDet, & 1030 & vnx, vny, vnz, &	$\begin{array}{ccc} 1101 & bvz1 = vx(1)^* by bx(1) - vy(1)^* bx bx(1) \\ 1102 & 1 \\ \end{array}$
1031 & hs)	1103 bvx2 = vy(4)*DzDx(4)-vz(4)*DyDx(4)
1032 cf = hs*wq(i) 1033 arel(k) = arel(k) + cf	$1104 by y 2 = vz(4)^* bx bx(4) - vx(4)^* bz bx(4) 1105 by z = vx(4)^* bx bx(4) - vx(4)^* bx bx(4) 1105 by z = vx(4)^* bx bx bx(4) - vx(4)^* bx bx(4) 1105 by z = vx(4)^* bx $
1033 arel(k) = arel(k) + cf 1034 xmom(k) = xmom(k) + cf*x	1105 bvz2 = vx(4)*DyDx(4)-vy(4)*DxDx(4) 1106 !
1035 ymom(k) = ymom(k) + cf*y	1107 bvx3 = vy(2)*DzDx(2)-vz(2)*DyDx(2)
1036 zmom(k) = zmom(k) + cf*z 1037 vlm = vlm + (x*vnx+y*vnz)*cf	1108 bvy3 = vz(2)*DxDx(2)-vx(2)*DzDx(2) 1109 bvz3 = vx(2)*DyDx(2)-vy(2)*DxDx(2)
1038 cf=0.0D0	1110 !
1039 END DO 1040	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
1041	1113 crvz = al*bvz1 + bvz2 + alc*bvz3
1042 arel(k) = 0.5D0*arel(k) 1043 xmom(k) = 0.5D0*xmom(k)	1114 ! 1115 ! computation of curvature line integral along segment 2-5-3
1045 xmcm(k) = 0.50° xmcm(k) 1044 ymcm(k) = 0.50° ymcm(k)	1115 1 computation of curvature line integral along segment 2-5-5
1045 zmom(k) = 0.5D0*zmom(k) 1046 area = area +arel(k)	1117 bvx1 = 0.000 1118 bvy1 = 0.000
1045 area = area +are1(x) 1047 cx = cx + xmon(k)	$\begin{array}{cccc} 1118 & \text{by}_1 = 0.000 \\ 1119 & \text{by}_1 = 0.000 \end{array}$
1048 cy = cy + ymom(k)	1120 bvx2 = 0.000
1049 cz = cz + zmom(k) 1050	1121 bvy2 = 0.000 1122 bvz2 = 0.000
1051 ! compute the average value of the normal vector the mean curvature as a contour integral using the nftty	1123 byx3 = 0.0D0
1052 formula (4.2.10) of Pozrikidis (1997) 1053	1124 bvy3 = 0.000 1125 bvz3 = 0.000
1054 xxi(1) = 0.0D0	1126 !
1055 eet(1) = 0.0D0 1056 xxi(2) = 1.0D0	1127 bvx1 = vy(2)*DzDx(2)-vz(2)*DyDx(2) 1128 bvy1 = vz(2)*DxDx(2)-vx(2)*DzDx(2)
1057 eet(2) = 0.0D0	1129 $bvz1 = vx(2)*DyDx(2)-vy(2)*DxDx(2)$
1058 xxi(3) = 0.0D0 1059 eet(3) = 1.0D0	1130 !
1060 xxi(4) = al	1132 bvy2 = vz(5)*DxDx(5)-vx(5)*DzDx(5)
1061 eet(4) = 0.0D0 1062 xx1(5) = ga	1133 bvz2 = vx(5)*DyDx(5)-vy(5)*DxDx(5) 1134 !
1063 eet(5) = gac	1134
1064 xxi(6) = 0.0D0	1136 bvy3 = vz(3)*DxDx(3)-vx(3)*DzDx(3)
1065 eet(6) = be 1066 DO i = 1, 6	1137 bvz3 = vx(3)*DyDx(3)-vy(3)*DxDx(3) 1138 !
1067 xi = xxi(i)	1139 crvx = crvx - gac*bvx1 - bvx2 - ga*bvx3
1068 eta = eet(i) 1069 CALL interp_D3(p(i1,1), p(i1,2), p(i1,3), &	1140 crvy = crvy - gac*bvy1 - bvy2 - ga*bvy3 1141 crvz = crvz - gac*bvz1 - bvz2 - ga*bvz3
1070 & p(i2,1), p(i2,2), p(i2,3), &	1142
1071 & p(i3,1), p(i3,2), p(i3,3), & 1072 & p(i4,1), p(i4,2), p(i4,3), &	1143 bvx1 = vy(2)*DzDe(2)-vz(2)*DyDe(2) 1144 bvy1 = vz(2)*DxDe(2)-vx(2)*DzDe(2)
1072 & p(i4,1), p(i4,2), p(i4,3), & 1073 & p(i5,1), p(i5,2), p(i5,3), &	$\begin{array}{ccc} 1144 & \text{DVy1} = v2(2)^{-}\text{Vx1}(2)^{-}\text{Vx1}(2)^{-}\text{Vx1}(2)^{-}\\ 1145 & \text{bv21} = vx(2)^{+}\text{by0}(2)^{-}\text{vy(2)}^{+}\text{bv30}(2) \end{array}$
1074 & p(i6,1), p(i6,2), p(i6,3), &	1146 !
1075 & al, be, ga, & 1076 & xi, eta, &	1147 bvx2 = vy(5)*DzDe(5)-vz(5)*DyDe(5) 1148 bvv2 = vz(5)*DxDe(5)-vx(5)*DzDe(5)
1077 & x, y, z, &	1149 bv22 = vx(5)*DyDe(5)-vy(5)*DxDe(5)

50 ! 51	bvx3 = vy(3)*DzDe(3)-vz(3)*DyDe(3)
52	bvx3 = vz(3)*bzbe(3)-vz(3)*bzbe(3) bvy3 = vz(3)*bzbe(3)-vz(3)*bzbe(3)
53	by3 = vx(3)*DyDe(3)-vy(3)*DxDe(3)
55	crvx = crvx + gac*bvx1 + bvx2 + ga*bvx3
56	crvy = crvy + gac*bvy1 + bvy2 + ga*bvy3
57	crvz = crvz + gac*bvz1 + bvz2 + ga*bvz3
59 ! (computation of curvature line integral along segment 3-6-1
61 62	bvx1 = 0.0D0 bvy1 = 0.0D0
52 53	bvz1 = 0.000
54	bvx2 = 0.000
65	bvy2 = 0.0D0
66	bv2 = 0.0D0
67	bvx3 = 0.0D0
68	bvy3 = 0.0D0
59	bvz3 = 0.0D0
70 !	
71	bvx1 = vy(1)*DzDe(1)-vz(1)*DyDe(1)
72	bvy1 = vz(1)*DxDe(1)-vx(1)*DzDe(1)
73	bvz1 = vx(1)*DyDe(1)-vy(1)*DxDe(1)
75 76	bvx2 = vy(6)*DzDe(6)-vz(6)*DyDe(6) bvv2 = vz(6)*DxDe(6)-vx(6)*DzDe(6)
77	$bvyz = vz(6)^{-}bxDe(6) - vx(6)^{-}bzDe(6)$ $bvz2 = vx(6)^{+}DyDe(6) - vy(6)^{+}DxDe(6)$
	DV22 = VX(0)-DVDE(0)-VX(0)-DVDE(0)
79	bvx3 = vy(3)*DzDe(3)-vz(3)*DyDe(3)
30	byy3 = vz(3)*DxDe(3)-vx(3)*DzDe(3)
31	bvz3 = vx(3)*DyDe(3)-vy(3)*DxDe(3)
32 !	
83	crvx = crvx - be*bvx1 - bvx2 - bec*bvx3
34	crvy = crvy - be*bvy1 - bvy2 - bec*bvy3
85	crvz = crvz - be*bvz1 - bvz2 - bec*bvz3
	<pre>fil = DSQRT(crvx**2+crvy**2+crvz**2)</pre>
00 11	
89 1	crvx = crvx/fil
90 !	crvy = crvy/fil
91 !	crvz = crvz/fil
92 !	
93 ! N	vill project curvature vector onto the normal vector at the centroid only needs the colocation verctors
	n this value of curvature I made a division per 8 (1/8.0) when i expected do for 4 (1/4.0)
96	<pre>crymel(k) = 0.250D0*(cryx*vnx0(k)+cryy*vny0(k)+cryz*vnz0(k))/arel(k)</pre>
97	WRITE (9,*) crvmel(k)
98 99	END DO Outer
30 30	END DO OUTER.
	final computation of the surface-centroid and volume
33 !	
94	cx = cx/area
35	cy = cy/area
86	cz = cz/area
07	vlm = vlm/6.0D0
8	CLOSE (9)
	3 FORMAT(10(1x,ES24.16))
10 ! 11	
	END SUBROUTINE elm_geom3
12 :	END MODULE Mod_Prtcl_3D_Geo
14	

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_Geo.f90 1	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_Geo.f90 2
1 MODULE Mod Prtcl 3D Geo	73 ! second
2 !	74 i = n(k,4) 75 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
4 ! C. Pozrikidis	76 i = n(k,2)
5	77 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
6 ! Version: 0.7 created on / III /2010 7 ! Marco Antonio Reves Huesca	78 i = n(k,5) 79 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
8	1 = n(k, 4)
9 ! Version: 0.9 created on 23 / 08 / 2012 10 ! Version: 1.0 created on 14 / 11 / 2012	81 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 82 I third
11 Alfredo Sanjuan Sanjuan	83 i = n(k,4)
12 !====================================	<pre>84 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 85 i = n(k,5)</pre>
14 !	86 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
15 SUBROUTINE printel(k, Index, c) 16	87 i = n(k,6) 88 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
17 ! This subroutine prints drop's geometry. It has two options.	89 $i = n(k, 4)$
18 !Print successive nodes of element k in file unit 1 19 ! Index = 1: print the whole element	90 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 91 ! fourth
20 ! Index = 2: print the 4 subelements	92 $i = n(k, 6)$
21	93 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 94 i = n(k,5)
	95 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
24 ! knumber of element 25 ! indextype of print	96 i = n(k,3) 97 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
26 ! nfour index to print only the element	98 i = n(k,6)
27 ! nseven	99 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 100 CASE DEFAULT
29 :	100 GASE DEFAULT 101 WRITE (Ugeo, 100) nfour
USE Mod_SharedVars, ONLY: DBL, ULog, UGeo, p, ne, n, nbe	182 $i = n(k, 1)$
31	<pre>103 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 104 i = n(k,4)</pre>
33	105 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
34 INTEGER, INTENT(IN) :: k, index 35 !	106 i = n(k,6) 107 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
36 INTEGER :: nfour, nseven, i	108 i = n(k,1)
77 REAL (KIND = DBL), DIMENSION(:), INTENT(IN) :: c	<pre>109 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 110 i = n(k,4)</pre>
9 ! constants	111 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
0 nfour = 4	112 i = n(k,2) 113 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
2 !	114 $i = n(k,5)$
13 ! There is a CASE instrction to print the element.	<pre>115 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 116 i = n(k,4)</pre>
45 SELECT CASE (index)	117 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
16 CASE (1) 17 WRITE (UGeo,100) nseven	118 i = n(k,4) 119 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
i = n(k, 1)	120 $i = n(k,5)$
9 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 0 i = n(k,4)	121 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 122 i = n(k,6)
1 WRITE (UGeo, 101) p(i,1),p(i,2),p(i,3),c(i)	123 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
52 i = n(k,2) 53 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)	124 i = n(k,4) 125 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
54 i = n(k,5)	126 $i = n(k, 6)$
55 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 56 i = n(k,3)	127 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 128 i = n(k,5)
57 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)	129 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
58 i = n(k,6) 59 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)	130 i = n(k,3) 131 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)
i = n(k, 1)	132 $i = n(k, 6)$
61 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 62 CASE(2)	<pre>133 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 134 WRITE (ULog,*)</pre>
63 I first	135 WRITE (ULog,*) ' Geo_Printel'
54 WRITE (UGeo,100) nfour 55 i = n(k,1)	136 WRITE (ULog,*) 137 WRITE (ULog,*) 'Chosen index is not available'
66 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)	138 WRITE (ULog,*) ' It was taken index= 2'
67 i = n(k,4)	139 END SELECT 140 100 FORMAT(1x,14,10(1x,ES24.16))
i = n(k, 6)	141 101 FORMAT(10(1x,ES24.16))
70 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i) 71 i = n(k,1)	142 END SUBROUTINE printel
71 i = n(k,1) 72 WRITE (UGeo,101) p(i,1),p(i,2),p(i,3),c(i)	143

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_Geo.f90 3	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_Geo.f90
SUBROUTINE abc(x1, y1, z1, & 8 x2, y2, z2, &	217 !
& x2, y2, z2, & & x3, y3, z3, &	218 : Validotes 219
& x4, y4, z4, &	220 INTEGER, INTENT(IN) :: nelm !number of elements
& x5, y5, z5, & & x6, y6, z6, &	221 INTEGER, INTENT(IN) :: npts !number of poins on the surface 222 INTEGER. INTENT(IN) :: mint !order of triangle guadrature
& x6, y6, z6, & & al, be, ga)	222 INTEGER, INTENT(IN) :: mint !order of triangle quadrature 223 INTEGER, INTENT(IN) :: stride !order of triangle and Gauss-Legendre quadratures
	224 REAL (KIND = DBL), DIMENSION(:), INTENT(OUT) :: xmom, ymom, zmom !coordinates of the moments of the drop
! This subroutine compute the parametric representation constants alpha, beta, gamma	225 REAL (KIND = DBL), INTENT(OUT) :: area, vlm !area and volume of each element 226 REAL (KIND = DBL), INTENT(OUT) :: cx, cy, cz !drop's centroid coordinates
USE Mod_SharedVars, ONLY: DBL	227 !===================================
IMPLICIT NONE	229
Variables	231 INTEGER :: i1, i2, i3, i4, i5, i6 !indices to obtain node numbers from each element 232 !
REAL (KIND = DBL), INTENT(IN) :: x1, y1, z1, & !coordinates of each point in the element	233 REAL (KIND = DBL) :: xi, eta !variables of weight to integrate over a triangle 234 REAL (KIND = DBL) :: x, v, z !coordinates of the f(x,v,z) = F(xi,eta)
& x2, ý2, z2, & x3, y3, z3, &	234 REAL (KIND = DBL) :: x, y, z !coordinates of the f(x,y,z)= F(xi,eta) 235 REAL (KIND = DBL) :: DxDxi, DyDxi, DzDxi !coordinates of the tangential vector over the xi axis
& x4, y4, z4, &	236 REAL (KIND = DBL) :: DxDet, DyDet, DzDet !coordinates of the tangential vector over the eta axis
& x5, y5, z5, &	237 REAL (KIND = DBL) :: vnx, vny, vnz Inormal vector coordinates of the element
& x6, y6, z6 REAL (KIND = DBL), INTENT(OUT) :: al, be, ga !constants alpha, beta and gamma (weights)	238 REAL (KIND = DBL) :: hs !surface metric on a triangle 239 REAL (KIND = DBL) :: al, be, ga, alc, bec, gac !integration weight coefficients
REAL (KIND = DDL), INTENI(ODI) :: 41, DE, ga :constants alpha, beta and gamma (weights)	240 REAL (KIND = DBL) :: cf, fil !integration weight coefficients
Variables inside the subroutine	241 REAL (KIND = DBL), DIMENSION(6) ::xxi, eet !variables of weigth over in triangle (xi,eta)
REAL (KIND = DBL) :: d42, d41 !distances of the element on the segment 1 4 2	242 REAL (KIND = DBL), DIMENSION(6) ::DxDx, DyDx, DzDx !tangential vector over xi axis in triangle (xi,eta) 243 REAL (KIND = DBL), DIMENSION(6) ::DxDe, DyDe, DzDe !tangential vector over eta axis in triangle (xi,eta)
REAL (KIND = DBL) :: d42, d41 : d1stances of the element on the segment 3 6 1	243 REAL (KIND = DBL), DIMENSION(6) ::DXDB, DVPC, DDB : Langential vector over eta axis in triangle (Xi,eta) 244 REAL (KIND = DBL), DIMENSION(6) :: vx, vy, vz Inormal vector in triangle (xi,eta)
REAL (KIND = DBL) :: d52, d53 !distances of the element on the segment 2 5 3	245 REAL (KIND = DBL) :: bvx1, bvy1, bvz1, & !binormal vectors around in triangle (xi,eta)
	246 & bvx2, bvy2, bvz2, & 247 & bvx3, bvy3
$d_{2} = (x_{4} - x_{2})^{**2} + (y_{4} - y_{2})^{**2} + (z_{4} - z_{2})^{**2}$	247 & bvx3, bvy3, bvz3 248 REAL (KIND = DBL) :: crvx, crvy, crvz, curv !curvature
$d41 = (x4 - x1)^{**2} + (y4 - y1)^{**2} + (z4 - z1)^{**2}$	249
d63 = (x6 - x3)**2 + (y6 - y3)**2 + (z6 - z3)**2	250 ! initialize
$d61 = (x6 - x1)^{**2} + (y6 - y1)^{**2} + (z6 - z1)^{**2}$ $d52 = (x5 - x2)^{**2} + (y5 - y2)^{**2} + (z5 - z2)^{**2}$	251 252 area = 0.000
$d53 = (x5 - x3)^{**2} + (y5 - y3)^{**2} + (z5 - z3)^{**2}$	253 vlm = 0.0D0
	254 cx = 0.0D0
d42 = DSQRT(d42) d41 = DSQRT(d41)	255 cy = 0.000 256 cz = 0.000
d63 = DSQRT(d63)	257 arel = 0.0D0
d61 = DSQRT(d61)	258 xmom = 0.0D0
d52 = DSQRT(d52) d53 = DSQRT(d53)	259 ymom = 0.0D0 260 zmom = 0.0D0
u	266 crvmel = 0.000
al = 1.0D0/(1.0D0 + d42/d41)	262 fil = 0.0D0
be = 1.0D0/(1.0D0 + d63/d61) ga = 1.0D0/(1.0D0 + d52/d53)	263 ! 264 Outer: DO k = 1, nelm
ga = 1.000/(1.000 + 05/(05))	264 OULET: DO K = 1, NEXM 265
END SUBROUTINE abc	266 i1 = n(k, 1)
	$\begin{array}{ccc} 267 & i2 = n(k,2) \\ 268 & i3 = n(k,3) \end{array}$
SUBROUTINE elm geom(nelm, npts, mint, &	268 13 = n(k, 3) 269 14 = n(k, 4)
& xmom, ymom, zmom, &	270 is = n(k,5)
& area, vlm, &	$\begin{array}{rrrr} 271 & 16 = n(k,6) \\ 272 & al = alpha0(k) \end{array}$
& cx, cy, cz, stride)	$272 \qquad a1 = a_1p_1a_0(x)$ $273 \qquad be = beta_0(x)$
! This subroutine is a new version of Elm_Geo Subroutine.	274 ga = gammaQ(k)
!Compute: ! *The surface area of the individual elements x, y, and z moments over each element	275 alc = 1.0D0-al 276 bec = 1.0D0-be
interstrates area of the individual elements X, y, and Z moments over each element is "the total particle surface area and volume	2/6 bec = 1.40/ a -be 2/7 gac = 1.00 a -ga
Now, (25 / Augost / 2012) this subroutine was cut.	278
USE Mod Nodal Interp	279 ! Compute surface area and volume of the individual elements x, y, and z moments over each element total 280 !particle surface area and volume
USE MOG_WOGAL_INTERP USE Mod SharedVars, ONLY: DBL, p, ne, n, nbe, ULog,&	280 Iparticle surrace area and volume 281
& alphaQ, betaQ, gammaQ, &	282 DO i = 1, mint
& arel, crvmel, &	$\begin{array}{ccc} 283 & xi &= xiq(i) \\ 700 & xi &= xiq(i) \end{array}$
& vnx0, vny0, vnz0, & & ZZ, WW, &	284 eta = etq(1) 285 CALL interp_p(p(i1,1), p(i1,2), p(i1,3), &
& xiq, etq, wq	286 & p(12,1), p(12,2), p(12,3), &
	287 & p(i3,1), p(i3,2), p(i3,3), & 288 & p(14,1), p(14,2), p(14,3), &

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_Geo.f90 5	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_Geo.f90
89 & p(15,1), p(15,2), p(15,3), & 90 & p(16,1), p(16,2), p(16,3), &	360 & xmom, ymom, zmom, & 361 & area, vlm, &
91 & al, be, ga, &	362 & cx, cy, cz)
92 & xi, eta, & 93 & x, y, z, &	363 !
93 & x, y, z, & 94 & DxDx1, DyDx1, DzDx1, &	365 [Compute:
95 & DxDet, DyDet, DzDet, &	366 ! *The surface area of the individual elements x, y, and z moments over each element
96 & vnx, vny, vnz, & 97 & hs)	367 ! *the total particle surface area and volume 368 !Now, (25 / Augost / 2012) this subroutine was cut.
$\frac{97}{28} cf = hs^*wq(i)$	369 I
<pre>arel(k) = arel(k) + cf</pre>	370 USE Mod_Nodal_Interp
80 xmom(k) = xmom(k) + cf*x 81 ymom(k) = ymom(k) + cf*y	 371 USE Mod_SharedVars, ONLY: DBL, p, ne, n, nbe, ULog,& 372 & alphaQ, betaQ, gammaQ, &
$2z \text{zmom}(k) = z \text{mom}(k) + cf^{2}z$	373 & arel, crymel, &
<pre>23 vlm = vlm + (x*vnx+y*vny+z*vnz)*cf</pre>	374 & vnx0, vny0, vnz0, &
04 END DO 05 arel(k) = 0.5D0*arel(k)	375 & ZZ, WW, & 376 & xiq,etq,wq
<pre>266 xmom(k) = 0.5D0*xmom(k)</pre>	377 !
07 ymom(k) = 0.5D0*ymom(k) 08 zmom(k) = 0.5D0*zmom(k)	378 IMPLICIT NONE
20 zmom(k) = 0.500 ^{-z} mom(k) 29 area = area + area(k)	379 := 380 ! Variables
$10 \qquad cx = cx + xmom(k)$	381 !
$\begin{array}{rcl} 11 & cy &= cy &+ ymom(k) \\ 12 & cz &= cz &+ zmom(k) \end{array}$	382 INTEGER, INTENT(IN) :: nelm Inumber of elements 383 INTEGER, INTENT(IN) :: npts Inumber of poins on the surface
12 C2 - C2 + Zmom(k)	384 INTEGER, INTENT(IN) :: mit lorder of triangle quadrature
14 ! compute the average value of the normal vector the mean curvature as a contour integral using the nftty	385 REAL (KIND = DBL), DIMENSION(:), INTENT(OUT) :: xmom, ymom, zmom !coordinates of the moments of the drop
15 !formula (4.2.10) of Pozrikidis (1997) 16 !	386 REAL (KIND = DBL), INTENT(OUT) :: area, vlm !area and volume of each element 387 REAL (KIND = DBL), INTENT(OUT) :: cx, cy, cz !drop's centroid coordinates
17 xxi(1) = 0.0D0	388 !
18 eet(1) = 0.0D0 19 xxi(2) = 1.0D0	389 ! Variables inside the subroutine
12^{-3} $\lambda \lambda \lambda (z) = 1.000$ 20 $eet(z) = 0.000$	390 I INTEGER :: i, k ICounters
21 xxi(3) = 0.0D0	392 INTEGER :: i1, i2, i3, i4, i5, i6 !indices to obtain node numbers from each element
22 eet(3) = 1.000 23 xxi(4) = al	393 !
$z_{2} = z_{1} + z_{2} + z_{2$	395 REAL (KIND = DBL) :: x, y, z !coordinates of the f(x,y,z)= F(xi,eta)
25 xx1(5) = ga 26 eet(5) = gac	396 REAL (KIND = DBL) :: DxDxi, DyDxi, DzDxi !coordinates of the tangential vector over the xi axis 397 REAL (KIND = DRL) :: DxDet, DyDet, DzDet !coordinates of the tangential vector over the eta axis
26 eet(5) = gac 27 xx1(6) = 0.0D0	397 REAL (KIND = DBL) :: DxDet, DyDet, DzDet !coordinates of the tangential vector over the eta axis 398 REAL (KIND = DBL) :: vnx, vny, vnz !normal vector coordinates of the element
28 eet(6) = be	399 REAL (KIND = DBL) :: hs !surface metric on a triangle
29 xi = 1.0D0/3.0D0 30 eta = 1.0D0/3.0D0	400 REAL (KIND = DBL) :: al, be, ga, alc, bec, gac !integration weight coefficients 401 REAL (KIND = DBL) :: cf, fil !integration weight coefficients
CALL interp.p4(p(i1,1), p(i1,2), p(i1,3), &	402 REAL (KIND = DBL), DIFENSION(6) ::xxi, eet variables of weight over in triangle (xi,eta)
32 & p(i2,1), p(i2,2), p(i2,3), &	403 REAL (KIND = DBL), DIMENSION(6) ::DXDX, DyDx, DzDx !tangential vector over xi axis in triangle (xi,eta) 404 REAL (KIND = DRL), DIMENSION(6) ::DXDe, DyDe, DzDe !tangential vector over eta axis in triangle (xi,eta)
33 & p(i3,1), p(i3,2), p(i3,3), & 34 & p(i4,1), p(i4,2), p(i4,3), &	404 REAL (KIND = DBL), DIMENSION(6) ::DxDe, DyDe, DzDe !tangential vector over eta axis in triangle (xi,eta) 405 REAL (KIND = DBL), DIMENSION(6) :: vx, vy, vz !normal vector in triangle (xi,eta)
35 & p(15,1), p(15,2), p(15,3), &	406 REAL (KIND = DBL) :: bvx1, bvy1, bvz1, & !binormal vectors around in triangle (xi,eta)
36 & p(i6,1), p(i6,2), p(i6,3), & 37 & al. be. ga. &	407 & bvx2, bvy2, bvz2, & 408 & bvx3, bvy3, bvz3
37 & al, be, ga, & 38 & xi, eta, &	400 a KEAL (KIND = DBL) :: crvx, crvz !curvature
39 & curv, stride)	410 !
40 41	411 ! initialize 412 !
42 ! will project curvature vector onto the normal vector at the centroid only needs the colocation verctors	413 area = 0.0D0
43 !In this value of curvature I made a division per 8 (1/8.0) when i expected do for 4 (1/4.0)	$\begin{array}{rcl} 414 & vlm &= 0.000 \\ 415 & cx &= 0.000 \end{array}$
<pre>crvmel(k) = curv !(0.25D0*(crvx*vnx0(k)+crvy*vny0(k)+crvz*vnz0(k))*fil)/arel(k)</pre>	416 cy = 0.0D0
46 END DO Outer 47	417 cZ = 0.0D0 418 arel = 0.0D0
4/ !	418 are1 = 0.000 419 xmom = 0.000
	420 ymom = 0.0D0
49 50 cx = cx/area	421 zmom = 0.0D0 422 crymel = 0.0D0
51 cy = cy/area	423 fil = 0.0D0
52 c2 = c2/area	
53 vlm = vlm/6.0D0 54 103 FORMAT(10(1x,ES24.16))	425 ! OPEN (9,file="curvmel.out") 426
55	427 Outer: DO k = 1, nelm
56 END SUBROUTINE elm_geom 57 !	
57	$\begin{array}{ccc} 429 & 11 = n(k,1) \\ 430 & 12 = n(k,2) \end{array}$
59 SUBROUTINE elm_geom4(nelm, npts, mint, &	$\begin{array}{ccc} 431 & 13 & -\pi(k_{2}x) \\ \end{array}$

i4 = n(k,4)	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_Geo.f90 504 & p(16.1), p(16.2), p(16.3), &
$14 = n(\kappa, 5)$ 15 = n(k, 5)	504 & p(i6,1), p(i6,2), p(i6,3), & 505 & al, be, ga, &
13 - n(x, 5) 16 - n(k, 6)	505 a al, Je, ga, a 506 & xi, eta, &
al = alphaQ(k)	507 & X, Y, Z, &
ba = bap(aq(k))	508 & DxDx(i), DyDx(i), &
ga = gamao(k)	509 & DxDe(1), DyDe(1), 0
$a_0 = a_{mmax}(x)$ $a_1c = 1.00-a_1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
bec = 1.000-be	S11 & hs)
gac = 1,000-ga	S12 END DO
! Compute surface area and volume of the individual elements x, y, and z moments over each element total	514 bvx1 = 0.000
Iparticle surface area and volume	515 bvy1 = 0.000
1	516 bvz1 = 0.0D0
	517 bv2 = 0.000
DO i = 1, mint	518 bvy2 = 0.000 519 bvz2 = 0.000
DO $i = 1$, mint x $i = xiq(i)$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
AA = AAq(A) eta = eta(1)	520 0V3 = 0.000 521 bvy3 = 0.000
$c_{AL} = c_{AL}(1)$ CALL interp_p(p(i1,1), p(i1,2), p(i1,3), &	522 by3 = 0.000
$\hat{\mathbf{x}}$ p(12,1), p(12,2), p(12,3), \mathbf{x}	523 CrVx 0.000
α $p(12,2), p(12,2), p(12,3), \alpha$ & $p(13,1), p(13,2), p(13,3), &$	523 Crvy = 0.000 524 Crvy = 0.000
$\hat{\mathbf{x}} = p(1,1), p(1,2), p(1,3), \hat{\mathbf{x}}$ $\hat{\mathbf{x}} = p(1,1), p(1,2), p(1,3), \hat{\mathbf{x}}$	525 crvz = 0.000
\hat{k} p(is,1), p(is,2), p(is,3), \hat{k}	
$ \begin{array}{c} $	527 ! computation of curvature line integral along segment 1-4-2 528 !
& xi, eta, &	529 bvx1 = vy(1)*DzDx(1)-vz(1)*DyDx(1)
& ×, y, z, &	530 bvy1 = vz(1)*DxDx(1)-vx(1)*DzDx(1)
& DxDxi, DyDxi, &	531 bvz1 = vx(1)*DyDx(1)-vy(1)*DxDx(1)
& DxDet, DyDet, &	532 !
& vnx, vny, vnz, &	533 bvx2 = vy(4)*DzDx(4)-vz(4)*DyDx(4)
& hs)	534 bvy2 = vz(4)*DxDx(4)-vx(4)*DzDx(4)
$cf = hs^*wq(1)$ arel(k) = arel(k) + cf	535 bvz2 = vx(4)*DyDx(4)-vy(4)*DxDx(4)
arel(k) = arel(k) + cf xmom(k) = xmom(k) + cf*x	536 537 bvx3 = vy(2)*DzDx(2)-vz(2)*DyDx(2)
$xmom(k) = xmom(k) + ct^{*}x$ $ymom(k) = ymom(k) + cf^{*}y$	$537 bvx3 = vy(2)^{v}bzbx(2) - vz(2)^{v}bybx(2) 538 bvy3 = vx(2)^{v}bxbx(2) - vx(2)^{v}bzbx(2) 537 bvy3 = vx(2)^{v}bxbx(2) - vx(2)^{v}bzbx(2) 537 bvy3 = vy(2)^{v}bzbx(2) - vx(2)^{v}bzbx(2) 538 bvy3 = vx(2)^{v}bzbx(2) - vx(2)^{v}bzbx(2) $
y = y = y = y = y = y = y z = z = y = z = z = z	538 by3 = v2(2) DXDx(2)-v2(2) DXDx(2) 539 bv3 = vx(2) DXDx(2)-v(2) PxDx(2)
$zmom(\kappa) = zmom(\kappa) + c^{-2}$ $vIm = vIm + (x^*nx)+y^*ny+z^*vnz)^*cf$	559 UV3 = VX(2)'UVX(2)-VY(2)'UVX(2) 540
END DO	541 CFVX = al*bvX1 + bVX2 + alc*bvX3
	541 $Crvy = a1^8 by 1 + by 2 + a1c^8 by 3$
	543 $crvz = a1*bvz1 + bvz2 + a1c*bvz3$
arel(k) = 0.5D0*arel(k)	544
xmom(k) = 0.5D0*xmom(k)	545 ! computation of curvature line integral along segment 2-5-3
ymom(k) = 0.5D0*ymom(k)	546 !
zmom(k) = 0.5D0*zmom(k)	547 bvx1 = 0.0D0
area = area +arel(k)	548 bvy1 = 0.0D0
cx = cx + xmom(k)	549 bvz1 = 0.0D0
cy = cy + ymom(k)	550 bvx2 = 0.0D0
cz = cz + zmom(k)	551 bvy2 = 0.000
	552 bvz2 = 0.0D0
! compute the average value of the normal vector the mean curvature as a contour integral using the nftty	553 bvx3 = 0.0D0
formula (4.2.10) of Pozrikidis (1997)	554 bvy3 = 0.000
	555 bvz3 = 0.000
xxi(1) = 0.000	556 !
eet(1) = 0.000 xxi(2) = 1.000	557 bvx1 = vy(2)*DzDx(2)-vz(2)*DyDx(2) 558 bvy1 = vz(2)*DxDx(2)-vx(2)*DzDx(2)
xx1(2) = 1.600 eet(2) = 0.600	558 bvg1 = vz(2)*0x0x(2)-vx(2)*0x0x(2) 559 bvg1 = vx(2)*0x0x(2)-vy(2)*0x0x(2)
$xx_1(3) = 0.000$	559 DV21 = VX(2)'DVUX(2)-VV(2)'DXUX(2) 560 [
xx1(3) = 0.000 eet(3) = 1.000	560
eet(3) = 1.000 xxi(4) = al	561 bvX2 = vy(5)*0zUX(5)-v2(5)*0yUX(5) 562 bvy2 = vz(5)*0xDx(5)-vx(5)*0zDx(5)
$xx_1(4) = a_1$ eet(4) = 6.000	562 byz = vz(5) bbx(5)-vz(5) bbx(5) 563 byz = vz(5) bbx(5)-vz(5) bbx(5)
xxi(5) = ga	505 0022 - VA(5)-UVA(5)-UVA(5) 564
eet(5) = gac	565 bvx3 = vy(3)*DzDx(3)-vz(3)*DyDx(3)
$xx_1(6) = 0.000$	$\frac{565}{566} = \frac{5}{5} \frac{5}{5} \frac{1}{5} \frac{1}{5$
eet(6) = be	500 by3 - v2(5) bbb(5)-v(5) bbb(3) 567 bv3 - vx(3) bbb(3)-v(3) bbb(3)
DO i = 1, 6	568 1
$x_1 = x_1(1)$	569 crvx = crvx - gac*bvx1 - bvx2 - ga*bvx3
A = A = A = A = A = A	570 $crvy = crvy - gac*by(1 - bv(2 - ga*by)3$
$cAL = hterp_p(p(i1,1), p(i1,2), p(i1,3), &$	570 crvy = crvy - gac*byz1 - byz2 - ga*byz3
$\hat{\mathbf{x}}$ (21,21), p(12,21), p(12,2), p(12,2), p(12,2), p(22,2),	572 1
& p(13,1), p(13,2), p(13,2), (13,3), &	573 bvx1 = vy(2)*DzDe(2)-vz(2)*DyDe(2)
& p(14,1), p(14,2), p(14,3), &	574 by 1 = v(2)*bxbe(2)-v(2)*bzbe(2)
& p(15,1), p(15,2), p(15,3), &	575 bv21 = vx(2)*DyDe(2)-vy(2)*DxDe(2)

$\frac{1}{111} = \frac{1}{111} = \frac{1}{111} + \frac{1}$	D:\Darth Vader\Escritorio\prtcl mkl\Mod_Prtcl_3D_Geo.f90	9 D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_Geo.f90
bit = (1) Table(1) = (1) Table(1) bit = (1) Table(1) = (1) Table(1) bit = (1) Table(1) = (1) Table(1) constrained and set in the co		
bit =		
<pre>image: control = cont</pre>	bvy2 = vz(5)*DxDe(5)-vx(5)*DzDe(5)	
$ \frac{1}{1000} = 0(1)^{1000} (1)^{$	bvz2 = vx(5)*DyDe(5)-vy(5)*DxDe(5)	
<pre>by - c(C) Pack(-).c() Yank(-) set: = (1 / Apk(-) (2 / Apk(-)</pre>		
b $2^2 + 6(1)^{2}(6(1)^{-}(2)^{2}(2)$		
$\frac{1}{11} = \frac{1}{11} $	$bv3 = vx(3)^{b}bv(0(3)^{-vx(3)}) bbe(3)$	
$ \begin{bmatrix} c & c & c & c & c & c & c & c & c & c$		
$ \begin{array}{c} cry = (rry = (r$	crvx = crvx + gac*bvx1 + bvx2 + ga*bvx3	656 USE Mod_SharedVars, ONLY: DBL, p, ne, n, nbe, ULog, vna1, &
important	crvy = crvy + gac*bvy1 + bvy2 + ga*bvy3	657 & alphaQ, betaQ, gammaQ, &
$ \begin{array}{c} c c c c c c c c c c c c c c c c c c $		
$ \frac{1}{111 spectra of the spectr$		
$\frac{1}{11} = \frac{1}{100} = \frac{1}{$		
$\frac{1}{1} = \frac{1}{100} + \frac{1}{100} = \frac{1}{1$		
$ \begin{array}{c} b \\ b \\ b \\ b \\ b \\ c \\ b \\ b \\ b \\ c \\ c$		
$\frac{1}{4} = \frac{1}{2} + \frac{1}$		
$b_{12}^{2} = 0.000$ 101787(1)110787(1)110787(1)110887		
$ \frac{1}{1 + m_{1}^{2} + m_{1}^{2} + m_{2}^{2} + m_{2}^$		
$ \frac{1}{100} 1$		
$0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $		
<pre>bit = c(1)*Dot(1-vc(1)*Dot(1)-vc(1)*Dot(1) bit = vc(1)*Dot(1)-vc(1)*Dot(2) bit = vc(1)*Dot(2)-vc(1)*Dot(2) bit = vc(1)*Dot(2)-vc(1)*D</pre>		
$\frac{1}{11 \text{ boll } = y(1)^{12}(1)^{12$		
$ \frac{1}{1111} \frac{1}{11111} \frac{1}{111111} \frac{1}{11111} \frac{1}{11111} \frac{1}{111111} \frac{1}{111111} \frac{1}{1111111} $		
bit1 = v(1)*p(0):-y(1)*p(0): bit2 = v(1)*p(0):-y(1)*p(0): c:rev: - rev:-1*bit1 = h(1)*p(0): c:rev: - rev:-1*bit1 = h(1)*p(0): c:rev: - rev:-1*bit1 = h(1)*p(0): c:rev: - rev:+1*bit1 = h(1)*p(0): c:rev: - rev:+1*bit1 = h(1)*p(0): c:rev: - rev:+1*bit1 = h(1)*p(0): bit1:p(1)*p(1)*p(0): c:rev: - rev:+1*bit1 = h(1)*p(0): bit1:p(1)*p(0):	byzi = vy(1)/bzbe(1)-v2(1) ² bybe(1) byd = v2(1) ² bybe(1)-v2(1) ² bybe(1)	
$f = \frac{1}{10000} + \frac{1}{10000} + \frac{1}{100000} + \frac{1}{10000000000000000000000000000000000$		
$ \begin{array}{c} by2 + v(c) by2(c) + v(c) by2(c) + v(c) by2(c) + (b)2be(c) \\ by3 + v(d) by2(c) $		
$ \begin{array}{c} by2 + v(c) by2(c) + v(c) by2(c) + v(c) by2(c) + (b)2be(c) \\ by3 + v(d) by2(c) $	bvx2 = vv(6)*DzDe(6) - vz(6)*DvDe(6)	
$ \frac{1}{1} 1$		677 INTEGER :: i1, i2, i3, i4, i5, i6 !indices to obtain node numbers from each element
by $y_{(3} = y_{(3}) = y_{(3} = y_{(3}) = y_{(3}) = y_{(3}) = y_{(3} = y_{(3}) = y_{(3}) = y_{(3}) = y_{(3} = y_{(3}) = y_{$	bvz2 = vx(6)*DyDe(6)-vy(6)*DxDe(6)	678 !
by $y = v(3)^{10} D(6(3)^{-v(3)^{10} D(6(3))}$ Icordinates of the tagential vector over the it axisby $y = v(3)^{10} D(6(3)^{-v(3)^{10} D(6(3))}$ Icordinates of the tagential vector over the it axiscrew = vrw - b bebyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - b bebyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - b bebyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - b bebyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - b bebyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - b bebyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - b bebyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - b bebyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vzcrew = vrw - bbbyt1 = lvz - bec^{10} Vzbec^{10} Vz		679 REAL (KIND = DBL) :: xi, eta !variables of weight to integrate over a triangle
1 $bv23 + w(3)^{3}y0pc(3) - yv(3)^{3}y0pc(3) $		680 REAL (KIND = DBL) :: x, y, z !coordinates of the f(x,y,z)= F(xi,eta)
$ \frac{1}{1 + 1 + 1} = 0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$		
$ \begin{array}{c} crvx = crvx - be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvy = crvy - be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvz = crvz - be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvz = crvz - be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvz = crvz - be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvz = crvz + be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvz = crvz + be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvz = crvz + be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvz = crvz + be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvz = crvz + be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvz = crvz + be^{tbvx1} = bvx2 - be^{tbvx3} \\ crvz = crvz + be^{tbvx3} = be^{tbvx3} \\ crvz = be$	bvz3 = vx(3)*DyDe(3)-vy(3)*DxDe(3)	682 REAL (KIND = DBL) :: DxDet, DyDet, DzDet !coordinates of the tangential vector over the eta axis
$ \frac{1}{1 + crvy = crwy - be^{b}vy1 - by2 - bec^{b}vy3}{crvx = crwx - be^{b}vy1 - by2 - bec^{b}vy3} = \frac{1}{1 + crvx = crwx - be^{b}vy1 - by2 - bec^{b}vy3} = \frac{1}{1 + crvx = crwx - be^{b}vy1 - by2 - bec^{b}vy3} = \frac{1}{1 + crvx + crvx - br} = \frac{1}{1 + crvx + crvx + crvx - br} = \frac{1}{1 + crvx + crvx + crvx - br} = \frac{1}{1 + crvx $		083 KEAL (KIND = DBL) :: VNX, VNY, VN2 :normal vector coordinates of the element
$ \frac{5}{1 - crvz = crvz - be^{1b}vz1 - bvz2 - $		
$ \frac{1}{1} = 0.508T(crvx^{++2}crvy^{+2}crvy^{+2}cr$		686 REAL (KIND = DBL) :: cf
7 fil = 0.000 6 fil = 0.000 7 fil = 1.000 7 fil = 1.0000 7 fil = 1.0000 7 fil = 1.0000 7 fil = 1.0000 7		687 REAL (KIND = DBL), DIMENSION(6) ::xxi, eet !variables of weigth over in triangle (xi,eta)
9 crvx = crvx/fil 1 crvy = crvx/fil 1 crvx = crvx/rea 1 <td></td> <td>688 REAL (KIND = DBL), DIMENSION(6) ::DxDx, DyDx, DzDx !tangential vector over xi axis in triangle (xi,eta)</td>		688 REAL (KIND = DBL), DIMENSION(6) ::DxDx, DyDx, DzDx !tangential vector over xi axis in triangle (xi,eta)
0 crvy = crvy/fil 1 crvz = crv2/fil 2 i= 3 i= 4 i= 5 i= 6 crvwel(k) = (0.12500*(crvx*vnØ(k)+crvy*vnØ(k)+crvy*vnØ(k))*fil)/arel(k) 7 i= 7 i= 8 i= 1 i= <		
1 crvz = crvz/fil 2		690 REAL (KIND = DBL), DIMENSION(6) :: vx, vy, vz !normal vector in triangle (xi,eta)
2	crvy = crvy/fil	691 REAL (KIND = DBL) :: bvx1, bvy1, bvz1, & !binormal vectors around in triangle (x1,eta)
3 vill project curvature vector onto the normal vector at the centroid only needs the colocation vectors 4 In this value of curvature i made a division per S (1/8.6) when i expected do for 4 (1/4.6) 5	Crvz = Crvz/T11	
4 In this value of curvature I made a division per 8 (1/8.0) when i expected do for 4 (1/4.0) 5 :		
5		695
7 I WRITE (9,*) crwmel(k) 8 60 9 EUD DO Outer 0 700 cc x = 0.000 1 700 cc x = 0.000 2 1 final computation of the surface-centroid and volume 700 cc x = 0.000 3	(696 ! initialize
7 1 WRITE (9,*) crwmel(k) 8 60 9 END DO Outer 0 70 crwmel and source 1 1 1		
END D0 Outer 700 cx = 0.000 1	! WRITE (9,*) crvmel(k)	
9 701 Cy = 0.000 2 1 final computation of the surface-centrold and volume 703 arel = 0.000 3		
1 702 $f z^2$ = 0.000 2 1 final computation of the surface-centroid and volume 703 2 1 final computation of the surface-centroid and volume 703 3	END DO Outer	
2 final computation of the surface-centroid and volume 763 arel = 0.000 3		
3 I		
3 1 705 ymom = 0.000 4 cx = cx/area 705 ymom = 0.000 5 cx = cx/area 706 zmom = 0.000 6 cz = cz/area 707 crwmel = 0.000 7 vlm = vlm6.000 708 rowmel.out") 8 1 close (0) 700 9 102 FDWAT(10(1x, f254.16)) 710 711 9 103 FDWAT(10(1x, f254.16)) 711 0 tuter: D0 k = 1, nelm 1 100 SUBROUTIKE ela_geom4 713 11 2 11 11 11 3 12 n(k, 1) 12 4 SUBROUTIKE ela_geom2(nelm, npts, mint, & 716 14 = n(k, 4) 5 8 xmom, ymom, zmom,	. The competence of the surface centrol and volume	
4 CX = Cx/area 706 2 mom = 0.000 5 Cy = cy/area 700 7 crwmel = 0.000 6 Cz = cz/area 700 7 crwmel = 0.000 7 vim = vln/6.000 708 700 8 1 closE (9) 90F0RM/tid(x_K524.16)) 710 9 109F0RM/tid(x_K524.16)) 711 0uter: D0 k = 1, nelm 1 EHD SUBROUTIKE elm_geom/n 712 713 11 = n(k,1) 2 1 714 12 = n(k,2) 714 12 = n(k,3) 3 Starsmann, #8 716 14 = n(k,4) 716 14 = n(k,4)	I	
6 C2 = c2/area 7 vJm = vJm/6.060 81 CLOSE (9) 9 103 FORM*(10(x)_{x5254.16})) 710 01 =		706 zmom = 0.0D0
7 Vim = Vink/6.000 709 OPEN (9, file="curvmel.out") 8 1 CLOSE (9) 710 9 103 FORMAT(10(1x,ES24.16)) 711 Outer: D0 k = 1, nelm 0		
81 CLOSE (9) 91 FORM (16/(x, £5, 54, 16)) 91 103 91 FORM (16/(x, £5, 54, 16)) 91 FORM (16/(x, ±5, 54, 16))		
9 195 FORWAT(10(1/x) E242.16)) 711 Outer: D0 k = 1, nelm 712 712 1 END SUBROUTINE elm_geom4 713 i1 = n(k, 1) 2 714 12 = n(k, 2) 3 715 i3 = n(k, 3) 4 SUBROUTINE elm_geom2(nelm, npts, mint, & 716 i4 = n(k, 4) 5 8 xnom, ymom, znom, a 716 i4 = n(k, 5)		
0 1 1 EHD SUBROUTINE elm_geom4 2 1 3		
1 END SUBROUTINE elm_geom4 713 11 = n(k,1) 2 1 714 12 = n(k,2) 3 1 1 1 4 SUBROUTINE elm_geom2(nelm, npts, mint, & 716 14 = n(k,3) 5 8 xnom, ymom, znom, & 716 5 8 716 14 = n(k,4)		
2 1		
3 !====================================	CUR 200R001106 610-86004	
4 SUBROUTINE ellingeonz(nellin, npts, mint, & 716 14 = n(t, 4) 5 & xmon, ymon, zmon, & 717 15 = n(t, 5)		
5 & xmon, ymon, zmon, & 717 15 = n(k,5)		
α area, vin, α /18 1b = $\Pi(K,b)$		718 $16 = n(k, 6)$

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_Geo.f90 11	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_Geo.f90
al = alphaq(k) be = betaq(k) ga = gamaq(k) alc = 1.000-al bec = 1.000-be ga = 1.000-ga	791 & x, y, z, & 792 & DxDx(i), DyDx(i), DxDx(i), DxDx(i), <td< th=""></td<>
<pre>Compute surface area and volume of the individual elements x, y, and z moments over each element total particle surface area and volume DO 1 = 1, mint x1 = x1(1) eta = sto(1) cALL interp_p(p(11,1), p(11,2), p(11,3), & & p(12,2), p(12,3), & & p(13,1), p(13,2), p(13,3), & & p(13,1), p(13,2), p(13,2), p(13,1), & & p(13,1), p(13,2), p(13,1), & & p(13,1), p(13,2), p(13,1), & & p(13,1), p(13,1), & & p(13,1), p(13,1), & & p(13,1), p(13,1), p(13,1), & & p(13,1), p(13,1), p(13,1), & & p(13,1), p(13,1), & & p(13,1), p(13,1), p(13,1), & & p(13,1), p(13,1)</pre>	<pre>799 [</pre>
<pre>cy = cy + ymom(k) cz = cz + zmom(k) !</pre>	834 crvz = al*bvz1 + bvz2 + alc*bvz3 835 !
<pre>!formula (4.2.10) of Porrkidis (1997) !</pre>	<pre>838 bxx = 0.000 849 byy = 0.000 840 bxz = 0.000 841 bxx = 0.000 841 bxx = 0.000 842 byy = 0.000 843 bxz = 0.000 844 bxx = 0.000 844 bxx = 0.000 845 byy = 0.000 846 bxz = 0.000 847</pre>
& (p(14,1), p(14,2), p(14,3), & & p(15,1), p(15,2), p(15,3), & & p(16,1), p(16,2), p(16,3), & & a1, be, ga, & & a1, be, ga, &	858 bv23 = vnal(3+(6*(1-1)),1)*DyDx(3)-vnal(3+(6*(1-1)),2)*DxDx(3) 859 !

	\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_Geo.f90 13
-	<pre>bvx1 = vna1(2+(6*(i-1)),2)*DzDe(2)-vna1(2+(6*(i-1)),3)*DyDe(2)</pre>
	bvy1 = vna1(2+(6*(1-1)),3)*DxDe(2)-vna1(2+(6*(1-1)),1)*DzDe(2)
	bvz1 = vna1(2+(6*(i-1)),1)*DyDe(2)-vna1(2+(6*(i-1)),2)*DxDe(2)
-	<pre>bvx2 = vna1(5+(6*(i-1)),2)*DzDe(5)-vna1(5+(6*(i-1)),3)*DyDe(5)</pre>
	$bvx2 = vnal(5+(6^{(1-1)}), 2)^{-b}DvB(5) - vnal(5+(6^{(1-1)}), 3)^{-b}DvB(5)$ $bvy2 = vnal(5+(6^{((1-1))}), 3)^{*}DxDe(5) - vnal(5+(6^{((1-1))}), 1)^{*}DzDe(5)$
	bvz2 = vna1(5+(6*(i-1)),1)*DyDe(5)-vna1(5+(6*(i-1)),2)*DxDe(5)
-	
	<pre>bvx3 = vna1(3+(6*(i-1)),2)*DzDe(3)-vna1(3+(6*(i-1)),3)*DyDe(3) bvy3 = vna1(3+(6*(i-1)),3)*DxDe(3)-vna1(3+(6*(i-1)),1)*DzDe(3)</pre>
	bvz3 = vna1(3+(6*(i-1)),1)*DyDe(3)-vna1(3+(6*(i-1)),2)*DxDe(3)
-	and any section is here a section of the section of
	crvx = crvx + gac*bvx1 + bvx2 + ga*bvx3 crvy = crvy + gac*bvy1 + bvy2 + ga*bvy3
	crvz = crvz + gac*bvz1 + bvz2 + ga*bvz3
	completion of supportune line internel along compart 2.5.1
	computation of curvature line integral along segment 3-6-1
	bvx1 = 0.0D0
	bvy1 = 0.0D0 bvz1 = 0.0D0
	bvz1 = 0.000 bvx2 = 0.000
	bvy2 = 0.0D0
	bvz2 = 0.0D0 bvx3 = 0.0D0
	bvy3 = 0.000
	bvz3 = 0.0D0
-	<pre>bvx1 = vna1(1+(6*(i-1)),2)*DzDe(1)-vna1(1+(6*(i-1)),3)*DyDe(1)</pre>
	$byxi = vna(1+(6^{-1})),3)*Dxb(1)-vna(1+(6^{-1})),1)*Dxb(1)$ $byyi = vna(1+(6^{-1})),3)*Dxb(1)-vna(1+(6^{-1}(-1)),1)*Dxb(1)$
	bvz1 = vna1(1+(6*(1-1)),1)*DyDe(1)-vna1(1+(6*(1-1)),2)*DxDe(1)
-	<pre>bvx2 = vna1(6+(6*(1-1)),2)*DzDe(6)-vna1(6+(6*(1-1)),3)*DyDe(6)</pre>
	$bvx2 = vnal(6+(6^{+}(1^{-1})),3)*bx0(6) - vnal(6+(6^{+}(1^{-1})),1)*bx0(6)$
	bvz2 = vna1(6+(6*(i-1)),1)*DyDe(6)-vna1(6+(6*(i-1)),2)*DxDe(6)
-	<pre>bvx3 = vna1(3+(6*(i-1)),2)*DzDe(3)-vna1(3+(6*(i-1)),3)*DyDe(3)</pre>
	$by3 = vna(3+(6^{+}(1-1)),3)*bxbe(3)-vna(3+(6^{+}(1-1)),1)*bzbe(3)$
	bvz3 = vna1(3+(6*(i-1)),1)*DyDe(3)-vna1(3+(6*(i-1)),2)*DxDe(3)
-	crvx = crvx - be*bvx1 - bvx2 - bec*bvx3
	crvy = crvy - be*bvy1 - bvy2 - bec*bvy3
	crvz = crvz - be*bvz1 - bvz2 - bec*bvz3
I	will project curvature vector onto the normal vector at the centroid only needs the colocation verctors n this value of curvature I made a division per 8 (1/8.0) when i expected do for 4 (1/4.0)
	crvmel(k) = 0.250D0*(crvx*vnx0(k)+crvy*vny0(k)+crvz*vnz0(k)) !/arel(k)
	WRITE (9,*) crvmel(k)
	END DO Outer
	final computation of the surface-centroid and volume
-	
	cx = cx/area
	cy = cy/area cz = cz/area
	cz = cz/area vlm = vlm/6.000
	CLOSE (9)
	3 FORMAT(10(1×,ES24.16))
	END SUBROUTINE elm_geom2
	UBROUTINE elm_geom3(nelm, npts, mint, &
	& xmom, ymom, zmom, &
	& area, vlm, &
_	& cx, cy, cz)
	This subroutine is a new version of Elm_Geo Subroutine.

! ! !Now	pute: *The surface area of the individual elements x, y, *The total particle surface area and volume , (25 / Augost / 2012) this subroutine was cut.		
	USE Mod_Nodal_Interp		
	USE Mod_SharedVars, ONLY: DBL, p, ne, n, nbe, ULog & alphaO. betaO. gammaO.		
	& alphaQ, betaQ, gammaQ, & arel, crvmel,	. α &	
	& vnx0, vny0, vnz0,	&	
	& ZZ, WW,	&	
	& xiq, etq, wq		
	IMPLICIT NONE		
	1		
	Variables		
	INTEGER, INTENT(IN) :: nelm		Inumber of elements
	INTEGER, INTENT(IN) :: npts INTEGER. INTENT(IN) :: mint		Inumber of poins on the surface
	INTEGER, INTENT(IN) :: mint REAL (KIND = DBL), DIMENSION(:), INTENT(OUT) :: xm	iom, vmom, zmom	lorder of triangle quadrature lcoordinates of the moments of the drop
	REAL (KIND = DBL), INTENT(OUT) :: area, vlm	, ymomy 2m0m	!area and volume of each element
	REAL (KIND = DBL), INTENT(OUT) :: cx, cy, cz		<pre>!drop's centroid coordinates</pre>
	Variables inside the subroutine		
1			
		ounters	node numbers from each element
	INTEGER :: i1, i2, i3, i4, i5, i6 !i		
	REAL (KIND = DBL) :: xi, eta	<pre>!variables of </pre>	weigth to integrate over a triangle
	REAL (KIND = DBL) :: x, y, z		f the f(x,y,z)= F(xi,eta)
	REAL (KIND = DBL) :: DxDxi, DyDxi, DzDxi REAL (KIND = DBL) :: DxDet, DyDet, DzDet		f the tangential vector over the xi axis f the tangential vector over the eta axis
	REAL (KIND = DBL) :: vnx, vny, vnz		coordinates of the element
	REAL (KIND = DBL) :: hs, xs, es		c on a triangle
	REAL (KIND = DBL) :: al, be, ga, alc, bec, gac REAL (KIND = DBL) :: cf , fil		eigth coefficients weigth coefficients
	REAL (KIND = DBL), DIMENSION(6) ::xxi, eet		weigth over in triangle (xi,eta)
	REAL (KIND = DBL), DIMENSION(6) ::DxDx, DyDx, DzDx		ctor over xi axis in triangle (xi,eta)
	REAL (KIND = DBL), DIMENSION(6) ::DxDe, DyDe, DzDe		ctor over eta axis in triangle (xi,eta)
	REAL (KIND = DBL), DIMENSION(6) :: vx, vy, vz REAL (KIND = DBL) :: bvx1, bvy1, bvz1, &		in triangle (xi,eta) ors around in triangle (xi,eta)
	& bvx2, bvy2, bvz2, &	.binormai vecto	ors around in criangle (xijeta)
	& bvx3, bvy3, bvz3		
	REAL (KIND = DBL) :: crvx, crvy, crvz	!curvature	
	initialize		
	area = 0.0D0 vlm = 0.0D0		
	cx = 0.0D0		
	cy = 0.0D0		
	cz = 0.0D0		
	arel = 0.0D0 xmom = 0.0D0		
	ymom = 0.0D0		
	zmom = 0.0D0		
	crvmel = 0.0D0 fil = 0.0D0		
!	OPEN (9,file="curvmel.out")		
	Outer: DO k = 1, nelm		
	i1 = n(k, 1) i2 = n(k, 2)		
	12 = n(k, 2) 13 = n(k, 3)		
	i4 = n(k, 4)		
	i5 = n(k,5)		
	i6 = n(k,6) al = alphaQ(k)		
	be = betaQ(k)		

D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl 3D Geo.f90 15	D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl 3D Geo.f90 16
1006 ga = gamaQ(k)	1078 & DxDx(i), DyDx(i), &
1007 alc = 1.0D0-al	1079 & DxDe(i), DzDe(i), &
1008 bec = 1.0D0-be 1009 gac = 1.0D0-ga	1080 & vx(i), vy(i), vz(i), & 1081 & hs)
1009 gat = 1.000-ga 1010	1081 a nsj 1082 END DO
1011 ! Compute surface area and volume of the individual elements x, y, and z moments over each element total	
1012 !particle surface area and volume 1013	1084 bvx1 = 0.000 1085 bvy1 = 0.000
1014	1086 bv21 = 0.000
1015 1016 D0 i = 1, mint	1087 bvx2 = 0.000 1088 bvy2 = 0.000
$\frac{1}{1010} \text{to } 1 - 1, \text{ min} \\ 1017 \text{xi} = \text{xiq}(1)$	1889 bv2 = 0.000
1018 eta = etq(i)	1090 bvx3 = 0.0D0
1019 CALL interp_p(p(i1,1), p(i1,2), p(i1,3), & 1020 & p(i2,1), p(i2,2), p(i2,3), &	1091 bvy3 = 0.000 1092 bvz3 = 0.000
1021 & p(13,1), p(13,2), p(13,3), &	1093 crvx = 0.0D0
1022 & p(i4,1), p(i4,2), p(i4,3), & 1023 & p(i5,1), p(i5,2), p(i5,3), &	1094 crvy = 0.000 1095 crvz = 0.000
1023 a $p(15,1), p(15,2), p(15,3), a$	
1025 & al, be, ga, & 1026 & xi, eta, &	1097 computation of curvature line integral along segment 1-4-2
1026 & Xi, eta, & 1027 & X, y, Z, &	$\frac{1098}{1000} = \frac{1000}{1000} = \frac{1000}{1000$
1028 & DxDxi, DyDxi, &	1100 $bvy1 = vz(1)*DzDx(1)-vx(1)*DzDx(1)$
1029 & DxDet, DyDet, DzDet, & 1030 & vnx, vny, vnz, &	1101 bvz1 = vx(1)*DyDx(1)-vy(1)*DxDx(1) 1102 !
1031 & hs)	1103 bvx2 = vy(4)*DzDx(4)-vz(4)*DyDx(4)
1032 cf = hs*wq(i) 1033 arel(k) = arel(k) + cf	1104 bvy2 = vz(4)*DxDx(4)-vx(4)*DzDx(4) 1105 bvz2 = vx(4)*DyDx(4)-vy(4)*DxDx(4)
1034 xmom(k) = xmom(k) + cf*x	1106 !
1035 ymom(k) = ymom(k) + cf*y 1036 zmom(k) = zmom(k) + cf*z	1107 bvx3 = vy(2)*DzDx(2)-vz(2)*DyDx(2) 1108 bvy3 = vz(2)*DxDx(2)-vx(2)*DzDx(2)
1036 zmom(k) = zmom(k) + cf*z 1037 vlm = vlm + (x*vnx+y*vny+z*vnz)*cf	1108 bvy3 = vz(2)*DxDx(2)-vx(2)*DzDx(2) 1109 bvz3 = vx(2)*DyDx(2)-vy(2)*DxDx(2)
1038 cf=0.0D0	1110
1039 END DO 1040	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
1041	1113 crvz = al*bvz1 + bvz2 + alc*bvz3
1042 arel(k) = 0.5D0*arel(k) 1043 xmom(k) = 0.5D0*xmom(k)	1114 ! 1115 ! computation of curvature line integral along segment 2-5-3
1044 ymom(k) = 0.5D0*ymom(k)	1116
1045 zmom(k) = 0.5D0*zmom(k) 1046 area = area +arel(k)	1117 bvx1 = 0.000 1118 bvy1 = 0.000
1047 cx = cx + xmom(k)	1119 bv21 = 0.000
1048 cy = cy + ymom(k) 1049 cz = cz + zmom(k)	1120 bvx2 = 0.0D0 1121 bvy2 = 0.0D0
	1122 $6y_2 = 0.000$
1051 ! compute the average value of the normal vector the mean curvature as a contour integral using the nftty 1052 !formula (4.2.10) of Pozrikidis (1997)	1123 bvx3 = 0.0D0 1124 bvy3 = 0.0D0
1053 (10)m014 (4.2.10) 01 PO27KIDIS (1597)	1124 $0.075 = 0.0001125$ $0.23 = 0.000$
$\frac{1054}{1055} \qquad xxi(1) = 0.000$	1126
1055 eet(1) = 0.000 1056 xxi(2) = 1.000	1127 bvx1 = vy(2)*DzDx(2)-vz(2)*DyDx(2) 1128 bvy1 = vz(2)*DzDx(2)-vx(2)*DzDx(2)
1057 eet(2) = 0.0D0	1129 $bv21 = vx(2)*DyDx(2)-vy(2)*DxDx(2)$
1058 xxi(3) = 0.000 1059 eet(3) = 1.000	1130 ! 1131 bvx2 = vy(5)*DzDx(5)-vz(5)*DyDx(5)
1060 xx1(4) = al	1132 bvy2 = vz(5)*DxDx(5)-vx(5)*DzDx(5)
1061 eet(4) = 0.000 1062 xxi(5) = ga	1133 bvz2 = vx(5)*DyDx(5)-vy(5)*DxDx(5) 1134 !
1063 eet(5) = gac	1135 bvx3 = vy(3)*DzDx(3)-vz(3)*DyDx(3)
1064 xxi(6) = 0.000 1065 eet(6) = be	1136 bvy3 = vz(3)*DzDx(3)-vx(3)*DzDx(3) 1137 bvz3 = vx(3)*DyDx(3)-vy(3)*DxDx(3)
1066 DO i = 1, 6	1138 !
1067 xi = xxi(i) 1068 eta = eet(i)	1139 crvx = crvx - gac*bvx1 - bvx2 - ga*bvx3 1140 crvy = crvy - gac*bvy1 - bvy2 - ga*bvy3
1069 CALL interp_p3(p(i1,1), p(i1,2), p(i1,3), &	1141 crvz = crvz - gac*bvz1 - bvz2 - ga*bvz3
1070 & $p(12,1), p(12,2), p(12,3), & n(13,1), p(13,2), p(13,3), & n(13,1), p(13,2), p(13,3), & n(13,3), & n(1$	1142
1072 & p(ia,1), p(ia,2), p(ia,3), &	1144 bvy1 = vz(2)*DxDe(2)-vx(2)*DzDe(2)
1073 & p(i5,1), p(i5,2), p(i5,3), &	1145 bv21 = vx(2)*DyDe(2)-vy(2)*DxDe(2) 1146
1074 & p(i6,1), p(i6,2), p(i6,3), & 1075 & al, be, ga, &	1146 :
1076 & xi, eta, &	1148 bvy2 = vz(5)*DzDe(5)-vx(5)*DzDe(5)
1077 & x, y, z, &	1149 bvz2 = vx(5)*DyDe(5)-vy(5)*DxDe(5)
]

50 !- 51	bvx3 = vy(3)*DzDe(3)-vz(3)*DyDe(3)
52	bv3 = v(3)*DxDe(3)-v(3)*DzDe(3) bvy3 = vz(3)*DxDe(3)-vx(3)*DzDe(3)
53	bvz3 = vx(3)*0yDe(3)-vy(3)*0xDe(3)
55	crvx = crvx + gac*bvx1 + bvx2 + ga*bvx3
56	crvy = crvy + gac*bvy1 + bvy2 + ga*bvy3
57	crvz = crvz + gac*bvz1 + bvz2 + ga*bvz3
59 !	computation of curvature line integral along segment 3-6-1
60 !- 61	bvx1 = 0.0D0
62	bvx1 = 0.000 bvy1 = 0.000
53	by1 = 0.0D0
54	bvx2 = 0.0D0
65	bvy2 = 0.0D0
66	bvz2 = 0.0D0
67	bvx3 = 0.0D0
68	bvy3 = 0.0D0
69	bvz3 = 0.0D0
71	bvx1 = vy(1)*DzDe(1)-vz(1)*DyDe(1)
72	bvy1 = vz(1)*DxDe(1)-vx(1)*DzDe(1)
73	bvz1 = vx(1)*DyDe(1)-vy(1)*DxDe(1)
74 :- 75	bvx2 = vy(6)*DzDe(6)-vz(6)*DyDe(6)
76	bvz = vy(6) bzbe(6) -vz(6) bybe(6) bvy = vz(6) bzbe(6) -vz(6) bzbe(6)
77	by2 = vx(6) *Dy0e(6) -vy(6) *Dx0e(6)
79	bvx3 = vy(3)*DzDe(3)-vz(3)*DyDe(3)
30	bvy3 = vz(3)*DxDe(3)-vx(3)*DzDe(3)
31	bvz3 = vx(3)*DyDe(3)-vy(3)*DxDe(3)
83	crvx = crvx - be*bvx1 - bvx2 - bec*bvx3
84	crvy = crvy - be*bvy1 - bvy2 - bec*bvy3
85	crvz = crvz - be*bvz1 - bvz2 - bec*bvz3
	fil = DSQRT(crvx**2+crvy**2+crvz**2)
	-
39	crvx = crvx/fil
90	crvy = crvy/fil
91	crvz = crvz/fil
	will project curvature vector onto the normal vector at the centroid only needs the colocation verctors in this value of curvature I made a division per 8 (1/8.0) when i expected do for 4 (1/4.0)
	n this value of curvature i made a division per 8 (1/8.0) when i expected do for 4 (1/4.0)
96	crvmel(k) = 0.250D0*(crvx*vnx0(k)+crvy*vny0(k)+crvz*vnz0(k))/arel(k)
97	WRITE (9,*) crvmel(k)
98	
99	END DO Outer
90	
32	final computation of the surface-centroid and volume
93 !- 94	cx = cx/area
04 05	cy = cy/area
36	cz = cz/area
87	vlm vlm/6.0D0
86	
99 10	3 FORMAT(10(1x,ES24.16))
11	END SUBROUTINE elm_geom3
13 14	END MODULE Mod_Prtcl_3D_Geo

	ersion 0.9					
1 !Ve		10 / Au				
5.1	ersion 1.0	14 / 11	/ 2013	2		Alfredo Sanjuan Sanjuan, in others words, me :
						All coo sunjuur sunjuur, in ocners words, me i
	NTAINS					
3 !== 9	SUBROUTINE inte		y1,	z1,		
9	&	x2,	y2,	z2,	&	
1	& &	×3,	уЗ,	z3, z4,		
2	α &	×4, ×5,	y4, y5,	z4, z5,		
4	&	хб,	уб,	z6,	&	
5	& &	al,	be,	ga,	& &	
5 7	α &	×i, ×,	eta, y,	z,	8	
8	&	DxDxi, I	DyDxi,	DzDxi,	&	
9	& &	DxDet, I			& &	
0 1	&	vnx, hs	vny,	vnz,	a)	
2 !==						
3 1	This subroutine	interpolate	over a	an eleme	ent to compute	geometrical variables including the following:
4 !	1) Position vec	tor				
51	 Tangential v 	ectors in the	e xi ar	nd eta d	lirections	
5 !	 Unit normal Area and vol 		.]			
9	USE Mod_SharedV					
9 !=-						
	IMPLICIT NONE					
31	Variables					
1	REAL (KIND = DB	L), INTENT(I	N) ::			<pre>!coordinates of first node of the element !coordinates of second node of the element</pre>
5	& &			x2, y2, x3, y3,		coordinates of second node of the element
7	8			x4, y4,	z4, &	!coordinates of fourth node of the element
8	&			x5, y5,		coordinates of fifth node of the element
9 A	& REAL (KIND = DB). INTENT(I	·· ··	x6, y6, al. be.		<pre>!coordinates of sixth node of the element !constants alpha, beta and gamma</pre>
1	REAL (KIND = DB	L), INTENT(I	··· (V	xi, eta	1 ⁻	<pre>!variables to integrate over a triangle</pre>
2 3	REAL (KIND = DB	L), INTENT(O	JT) ::	x, y, z		<pre>!coordinates of the f(x,y,z)= F(xi,eta)</pre>
3 4	REAL (KIND = DB	L), INTENT(O))::	DxDx1, DxDet.	DyDet, DzDx1,	& !Derivates of the tangential vectors over the !element
5	REAL (KIND = DB			vnx, vr		Inormal vector of the element
6	REAL (KIND = DB					!surface metric
8 I						
9 1	REAL (KIND = DB REAL (KIND = DB	L) :: alc,	bec, heher	gac, >	s, es, hhs	!complements of alpha, beta and gamma !other constants of alpha, beta and gamma
2	REAL (KIND = DB				ph4, ph5, ph	
3	REAL (KIND = DB	L) :: dph1,	dph2,	dph3,	dph4, dph5, dp	h6 !derivate of phi(xi,eta) wrt xi
4 5 I						wh6 !derivate of phi(xi,eta) wrt eta
6 1	Prepare the con	stants of th				
8 9	alc = 1.0D0-al bec = 1.0D0-be					
à	gac = 1.0D0-ga					
L	alalc = al*alc					
2 3	bebec = be*bec gagac = ga*gac					
4 !						
5 !TH	his is based on N	umerical Comp	outatio	on in Sc	ience and Engi	 it obtains the tangential and normal vectors. neering, C.Pozrikidis, 1998, pp.305-312
3	ph2 = xi *(xi -					
Э	ph3 = eta*(eta	- be + xi*(b	e + ga	- 1.0De)/ga)/bec	
) 1	ph4 = xi *(1.0D ph5 = xi*eta/ga)/alalo	-		

	ph1 = 1.0D0-ph2-ph3-ph4-ph5-ph6
	Interpolate the position vector (x, y, z)
	x = x1*ph1 + x2*ph2 + x3*ph3 + x4*ph4 + x5*ph5 + x6*ph6 y = y1*ph1 + y2*ph2 + y3*ph3 + y4*ph4 + y5*ph5 + y6*ph6 z = z1*ph1 + z2*ph2 + z3*ph3 + z4*ph4 + z5*ph5 + z6*ph6
	In this part suroutine evaluates xi derivatives of basis functions
	dph2 = (2.000*xi - al + eta*(al - ga)/gac)/alc dph3 = eta*(be + ga - 1.000)/(ga*bec) dph4 = (1.000 - 2.000*xi - eta)/alc dph5 = eta/gagac dph6 = -eta/bebec dph1 = -dph2 - dph3 - dph4 - dph5 - dph6
	Compute dx/dxi from xi derivatives of phi
	DXDxi = x1*dph1 + x2*dph2 + x3*dph3 + x4*dph4 + x5*dph5 + x6*dph6 DyDxi = y1*dph1 + y2*dph2 + y3*dph3 + y4*dph4 + y5*dph5 + y6*dph6 D2xi = z1*dph1 + 22*dph1 + z3*dph3 + z4*dph4 + z5*dph5 + z6*dph6 xs = D5QRT(DxDxi*DxDxi + DyDxi*DyDxi + D2Dxi*DzDxi)
	Normalization of normal vector
	Dxdxi = DxDxi/xs Dydx = Dydxi/xs DzDxi = DzDxi/xs
	 In this part suroutine evaluates eta derivatives of basis functions
	pph2 = xi*(al - ga)/(alc*gac) pph3 = (2.600*eta - be + xi*(be + ga - 1.600)/ga)/bec pph4 = -xi/(alalc pph5 = xi/gagac pph6 = (1.600 - xi - 2.600*eta)/bebec pph1 = - pph2 - pph3 - pph4 - pph5 - pph6
	Compute dx/deta from eta derivatives of phi
!	DxDet = x1*pph1 + x2*pph2 + x3*pph3 + x4*pph4 + x5*pph5 + x6*pph6 DyDet = y1*pph1 + y2*pph2 + y3*pph3 + y4*pph4 + y5*pph5 + y6*pph6 DzDet = z1*pph1 + z2*pph3 + z4*pph4 + z5*pph5 + z6*pph6 es = DSQRT(DxDet*DxDet + DyDet*DyDet + DzDet*DzDet)
	DxDet = DxDet/es DyDet = DyDet/es DzDet = DzDet/es
	Normal vector vn = (DxDxi)^(DxDeta) Surface metric hs = norm(vn)
	vm = Dybxi * Dzbet = Dybet * Dzbxi vm = Dzbxi * Dzbet = Dzbzi * Dzbxi vm = Dzbxi * Dybet = Dzbet * Dybxi hhs = DsBr(T unx*um + vm/vm + vm z*umz)
	Normalization of normal vector
	vnx = vnx/hhs vny = vny/hhs vnz = vnz/hhs hs es*sx*hhs

\Darth Vader\Escritorio\prtcl mkl\Mod_Nodal_Interp.f90 3	D:\Darth Vader\Escritorio\prtcl_mkl\ModNodal_Interp.f90
Subroutine INTERP E is a new method to obtain the normal vectors on every node on dorp's surface. The mam has the end E which is an abreviation of element. Firstly, this decision aids to differenciate this ethod of subroutine INTERP P. Second idea was to continue with this notation or manner to name suboutines to ave similar enviroment names. Finaly INTERP E is very importan becouse this subroutine is fundamental to dvanced the dinamic of dorp deformation in the time. Therefore, this subroutine is in this new MODULE	<pre>214 215 !vna(:,1)=(vmx0(ne(:,2)) + vmx0(ne(:,3))+ vmx0(nbe(ne(:,2),1)) + vmx0(nbe(ne(:,2),2)) + vmx0(nbe(ne(:,2),2)) 3)) & 216 !& + vmx0(nbe(ne(:,3),1)) + vmx0(nbe(ne(:,3),2)) + vmx0(nbe(ne(:,3),3)))/8.00 217 !vna(:,2)=(vmy0(ne(:,2)) + vmy0(ne(:,3)) + vmy0(nbe(ne(:,2),1)) + vmy0(nbe(ne(:,2),2)) + vmy0(nbe(ne(:,2),2)) + vmy0(nbe(ne(:,2),2)) + vmy0(nbe(ne(:,2),2)) + vmy0(nbe(ne(:,3),3)))/8.00 218 !& + vmy0(nbe(ne(:,3),1)) + vmy0(nbe(ne(:,3),2)) + vmy0(nbe(ne(:,3),3)))/8.000 </pre>
SUBROUTINE interp_e(npts, ne, nbe,& & vnx0, vny0, vnz0,& & vna)	<pre>219</pre>
This subroutine computes the normal vector of every node on the surface	<pre>221 </pre>
USE Mod_SharedVars, ONLY: DBL !, p , x0, y0, z0	(nbe(ne(:,2),3)) & 223 !& + vnx0(nbe(ne(:,3),1)) + vnx0(nbe(ne(:,3),2)) + vnx0(nbe(ne(:,3),3)))/10.0D0
IMPLICIT NONE	<pre>224 !vna(:,2)=(2.0D0*vny0(ne(:,2)) + 2.0D0*vny0(ne(:,3))+ vny0(nbe(ne(:,2),1)) + vny0(nbe(ne(:,2),2)) + vr (nbe(ne(:,2),3)) &</pre>
Variables INTEGER, INTENT(IN) :: npts Inumber of nodes	<pre>225 [& + my@(hnbe(ne(:,3),1)) + my@(hnbe(ne(:,3),2)) + my@(hnbe(ne(:,3),3)))/10.000 226 [una(:,3)=(2.000⁴un2(ne(:,2)) + 2.000⁴wn2(ne(:,3)) + wn20(hnbe(ne(:,2),1)) + wn20(hnbe(ne(:,2),2)) + wn (hnbe(ne(:,2),3)) & 227 [& 4 + mz@(hnbe(ne(:,3),1)) + wn20(hnbe(ne(:,3),2)) + wn20(hnbe(ne(:,3),3)))/10.000</pre>
INTEGER, ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: ne Itable of conectivities per node INTEGER, ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: nbe Itable of conectivities per element REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: vnx0, vny0, vr20 iarrays of the components of Inormal vectors over collocation points REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(OUT) :: vnx0 iarray whit the values of unit normal Ivector of every node over the surface Variables inside the subroutine	228 [
INTEGER :: 1, j ICounters REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: norma REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: disti,dist2, absdist	<pre>wz8(nbe(ne(:,3),1)) & 234 [& 4 3.00* vz8(nbe(ne(:,3),2)) + 3.00* vz8(nbe(ne(:,3),3)) + vx28(ne(:,2)) + vx28(ne(:,3)))/28.0D8 235 [</pre>
Initialize ALUGATE(vma(npts,3), norma(npts), dist1(npts),dist2(npts),absdist(npts)) norma = 0.000 dist1 = 0.000 dist2 = 0.000 absdist=0.000	<pre>237 vma(:,2)= (vmyd(ne(:,2)) + vmyd(ne(:,3))/2.000 238 vma(:,3)= (vmd(ne(:,2)) + vm2d(ne(:,3))/2.000 239 240</pre>
WHERE(ne(:,1) == 4) vna(:,1)=(vnx8(ne(:,2)) + vnx8(ne(:,3)) + vnx8(ne(:,4)) + vnx8(ne(:,5)))/4.808	246 dist2(:)=DSQRT((p(:,1)-x@(ne(:,3)))**2+(p(:,2)-y@(ne(:,3)))**2+(p(:,3)-z@(ne(:,3)))**2) 247
<pre>vma(:,2)=(vmy@(ne(:,2)) + vmy@(ne(:,3)) + vmy@(ne(:,4)) + vmy@(ne(:,5)))/4.000 vma(:,3)=(vm2@(ne(:,2)) + vm2@(ne(:,3)) + vm2@(ne(:,5)))/4.000 END WHERE</pre>	<pre>250 ! vna(:,1)= ((vnx0(ne(:,2))*dist1(:))+(vnx0(ne(:,3))*dist2(:)))/dist1(:) 251 ! vna(:,2)= ((vny0(ne(:,2))*dist1(:))+(vny0(ne(:,3))*dist2(:)))/disdist(:) 252 ! vna(:,3)= ((vnx0(ne(:,2))*dist1(:))+(vnx0(ne(:,3))*dist2(:))/disdist1(:))</pre>
!WHERE(ne(:,1)== 4)	253
! vna(;,1)=4.000 ! vna(;,2)=4.000 ! vna(;,3)=4.000	255
: mix(;;;)===60	271
<pre>vna(:,1)=(vnx0(ne(:,2)) + vnx0(ne(:,3)) + vnx0(ne(:,4)) + vnx0(ne(:,5)) &</pre>	261 !====================================
<pre>vna(:,2)=(vny0(ne(:,2)) + vny0(ne(:,3)) + vny0(ne(:,4)) + vny0(ne(:,5)) & & + vny0(ne(:,6)) + vny0(ne(:,7)))/6.0D0</pre>	263 1 264 USE Mod_SharedVars, ONLY: DBL, p, x0, y0, z0
<pre>vna(:,3)=(vn20(ne(:,2)) + vn20(ne(:,3)) + vn20(ne(:,4)) + vn20(ne(:,5)) & & + vn20(ne(:,6)) + vn20(ne(:,7)))/6.0D0</pre>	265 !====================================
END WHERE	267 !====================================
IWHERE(ne(:,1) == 6) ! vna(:,1)=6.000 ! vna(:,2)=6.000 ! vna(:,3)=6.000 ! l vna(:,3)=6.000 !END WHERE WHERE(re(:,1) == 2)	269 Intreder, Intert(IN) :: npts Inumber of nodes 270 INTEGER, ALLOCATABLE, DIMENSION(:;,), INTENT(IN) :: ne Itable of comectivities per node 271 INTEGER, ALLOCATABLE, DIMENSION(:;,), INTENT(IN) :: ne Itable of comectivities per node 272 INTEGER, ALLOCATABLE, DIMENSION(:;), INTENT(IN) :: no Itable of comectivities per node 273 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: normal vectors over collocation point 274 Inormal vectors over collocation point 275 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(OUT) :: vna 276 Wector of every node over the surface

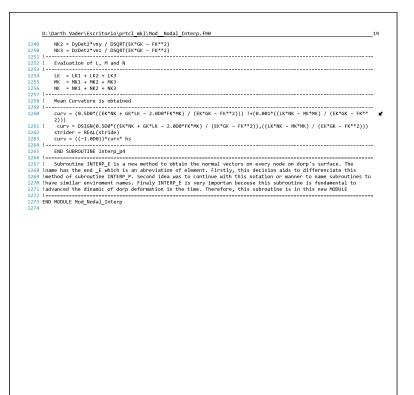
8 ! 9 ! 0 1 2 3 !==: 4 ! 5 6 7 8 9 0	Variables inside the subroutine INTEGER :: i, j REAL (CIND O-BL), ALLOCATABLE, DIMENSION(:) :: norma REAL (CIND - OBL), ALLOCATABLE, DIMENSION(:) :: disti,dist2, absdist Initialize ALLOCATRE(wma(npts,3), norma(npts), dist1(npts),dist2(npts),absdist(npts)) vma = 0.000
1 2 3 !==: 4 ! 5 6 7 8 9	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: norma REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: dist1,dist2, absdist Initialize ALLOCATE(vna(npts,3), norma(npts), dist1(npts),dist2(npts),absdist(npts))
2 3 !==: 4 ! 5 6 7 8 9	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: disti,dist2, absdist Initialize ALLOCATE(wma(npts,3), norma(npts), dist1(npts),dist2(npts),absdist(npts))
2 !==: 4 ! 5 6 7 8 9	Initialize ALLOCATE(vma(npts,3), norma(npts), dist1(npts),dist2(npts),absdist(npts))
5 6 7 8 9	ALLOCATE(vna(npts,3), norma(npts), dist1(npts),dist2(npts),absdist(npts))
6 7 8 9	
7 8 9	
8 9	
9	norma = 0.0D0 dist1 = 0.0D0
a	
	absdist=0.0D0
1 !	
2 3	<pre>WHERE(ne(:,1)==4) vna(:,1)=(vnx0(ne(:,2)) + vnx0(ne(:,3)) + vnx0(ne(:,4)) + vnx0(ne(:,5)))/4.0D0</pre>
4	$v_{na}(:,2)=(v_{nx})(ne(:,2)) + v_{nx}(ne(:,3)) + v_{nx}(ne(:,4)) + v_{nx}(ne(:,5)))/4.000$ $v_{na}(:,2)=(v_{nx})(ne(:,2)) + v_{nx}(ne(:,3)) + v_{nx}(ne(:,4)) + v_{nx}(ne(:,5)))/4.000$
5	$v_{na}(:;j) = (v_{na}(:,j)) + v_{na}(v_{na}(:,j)) + v_{na}(v_{na}(:,j)) + v_{na}(v_{na}(:,j)) / 4.000$
7	<pre>!vna(:,1)=(vnx0(ne(:,2)) + vnx0(ne(:,3)) + vnx0(ne(:,4)) + vnx0(ne(:,5))&</pre>
8 9	$\{\& + vnx\theta(nbe(ne(:,2),1)) + vnx\theta(nbe(ne(:,2),2)) + vnx\theta(nbe(ne(:,2),3)) \&$
9	!& + vnx0(nbe(ne(:,3),1)) + vnx0(nbe(ne(:,3),2)) + vnx0(nbe(ne(:,3),3)) & !& + vnx0(nbe(ne(:,4),1)) + vnx0(nbe(ne(:,4),2)) + vnx0(nbe(ne(:,4),3)) &
1	(1, 4, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
2	!vna(:,2)=(vny0(ne(:,2)) + vny0(ne(:,3)) + vny0(ne(:,4)) +vny0(ne(:,5))&
3	!& + vny0(nbe(ne(:,2),1)) + vny0(nbe(ne(:,2),2)) + vny0(nbe(ne(:,2),3)) &
4 5	$ \& + vny\theta(nbe(ne(:,3),1)) + vny\theta(nbe(ne(:,3),2)) + vny\theta(nbe(ne(:,3),3)) \&$
5 6	!& + vny0(nbe(ne(:,4),1)) + vny0(nbe(ne(:,4),2)) + vny0(nbe(ne(:,4),3)) & !& + vny0(nbe(ne(:,5),1)) + vny0(nbe(ne(:,5),2)) + vny0(nbe(ne(:,5),3)))/16.0D0
7	!vna(:,3)=(vnz0(ne(:,2)) + vnz0(ne(:,3)) + vnz0(ne(:,4)) + vnz0(ne(:,5))&
8	!& + vnz0(nbe(ne(:,2),1)) + vnz0(nbe(ne(:,2),2)) + vnz0(nbe(ne(:,2),3)) &
9	!& + vnz0(nbe(ne(:,3),1)) + vnz0(nbe(ne(:,3),2)) + vnz0(nbe(ne(:,3),3)) &
0 1	$\{\& + vnz\theta(nbe(ne(:,4),1)) + vnz\theta(nbe(ne(:,4),2)) + vnz\theta(nbe(ne(:,4),3)) \&$
1 2 !	!& + vnz0(nbe(ne(:,5),1)) + vnz0(nbe(ne(:,5),2)) + vnz0(nbe(ne(:,5),3)))/16.0D0
3	!vna(:,1)=(vnx0(ne(:,2)) + vnx0(ne(:,3)) + vnx0(ne(:,4)) + vnx0(ne(:,5))&
4	!& + 3.0D0*(vnx0(nbe(ne(:,2),1)) + vnx0(nbe(ne(:,2),2)) + vnx0(nbe(ne(:,2),3))) &
5 6	<pre>!& + 3.0D0*(vnx0(nbe(ne(:,3),1)) + vnx0(nbe(ne(:,3),2)) + vnx0(nbe(ne(:,3),3))) & !8 + 3.0D0*(vnx0(nbe(ne(:,3),1)) + vnx0(nbe(ne(:,3),2)) + vnx0(nbe(ne(:,3),3))) &</pre>
6 7	!& + 3.0D0*(vnx0(nbe(ne(:,4),1)) + vnx0(nbe(ne(:,4),2)) + vnx0(nbe(ne(:,4),3))) & !& + 3.0D0*(vnx0(nbe(ne(:,5),1)) + vnx0(nbe(ne(:,5),2)) + vnx0(nbe(ne(:,5),3))))/40.0D0
8	!vna(:,2)=(vny0(ne(:,2)) + vny0(ne(:,3)) + vny0(ne(:,4)) + vny0(ne(:,5))&
9	!& + 3.0D0*(vny0(nbe(ne(:,2),1)) + vny0(nbe(ne(:,2),2)) + vny0(nbe(ne(:,2),3))) &
0	<pre>!& + 3.0D0*(vny0(nbe(ne(:,3),1)) + vny0(nbe(ne(:,3),2)) + vny0(nbe(ne(:,3),3))) &</pre>
1	<pre>!& + 3.0D0*(vny0(nbe(ne(:,4),1)) + vny0(nbe(ne(:,4),2)) + vny0(nbe(ne(:,4),3))) &</pre>
2 3	!& + 3.0D0*(vny0(nbe(ne(:,5),1)) + vny0(nbe(ne(:,5),2)) + vny0(nbe(ne(:,5),3))))/40.0D0 !vna(:,3)=(vnz0(ne(:,2)) + vnz0(ne(:,3)) + vnz0(ne(:,4)) + vnz0(ne(:,5))&
4	$!\& + 3.000^*(vnz0(ne(:,2),1)) + vnz0(ne(:,2),2)) + vnz0(ne(:,2),3))$
5	!& + 3.0D0*(vnz0(nbe(ne(:,3),1)) + vnz0(nbe(ne(:,3),2)) + vnz0(nbe(ne(:,3),3))) &
6	<pre>!& + 3.0D0*(vnz0(nbe(ne(:,4),1)) + vnz0(nbe(ne(:,4),2)) + vnz0(nbe(ne(:,4),3))) &</pre>
7 8	<pre>!& + 3.0D0*(vnz0(nbe(ne(:,5),1)) + vnz0(nbe(ne(:,5),2)) + vnz0(nbe(ne(:,5),3))))/40.0D0 FND WHERE</pre>
8 9 !	LWV WILDL
0	WHERE(ne(:,1) == 6)
1	vna(:,1)=(vnx0(ne(:,2)) + vnx0(ne(:,3)) + vnx0(ne(:,4)) + vnx0(ne(:,5)) &
2	$\& + vnx\theta(ne(:,6)) + vnx\theta(ne(:,7)))/6.000$
3 4	<pre>vna(:,2)=(vny0(ne(:,2)) + vny0(ne(:,3)) + vny0(ne(:,4)) + vny0(ne(:,5)) & & + vny0(ne(:,6)) + vny0(ne(:,7)))/6.0D0</pre>
4 5	$\alpha + vny \theta(ne(:, 0)) + vny \theta(ne(:, 7)))/0.000$ $vna(:, 3)=(vnz \theta(ne(:, 2)) + vnz \theta(ne(:, 3)) + vnz \theta(ne(:, 4)) + vnz \theta(ne(:, 5)) &$
6	& + vnz0(ne(:,5)) + vnz0(ne(:,7)))/6.0D0
7 !	
8	!vna(:,1)=(vnx0(ne(:,2)) + vnx0(ne(:,3)) + vnx0(ne(:,4)) + vnx0(ne(:,5)) &
9 0	!& + vnx0(ne(:,6)) + vnx0(ne(:,7)) & !& + vnx0(nbe(ne(:,2),1)) + vnx0(nbe(ne(:,2),2)) + vnx0(nbe(ne(:,2),3)) &
1	(a + vnx0(nbe(ne(:,2),1)) + vnx0(nbe(ne(:,2),2)) + vnx0(nbe(ne(:,2),3)) a (a + vnx0(nbe(ne(:,3),1)) + vnx0(nbe(ne(:,3),2)) + vnx0(nbe(ne(:,3),3)) a
2	!& + vnx0(nbe(ne(:,4),1)) + vnx0(nbe(ne(:,4),2)) + vnx0(nbe(ne(:,4),3)) &
3	!& + vnx0(nbe(ne(:,5),1)) + vnx0(nbe(ne(:,5),2)) + vnx0(nbe(ne(:,5),3)) &
4	<pre>!& + vnx0(nbe(ne(:,6),1)) + vnx0(nbe(ne(:,6),2)) + vnx0(nbe(ne(:,6),3)) &</pre>
5	<pre>!& + vnx0(nbe(ne(:,7),1)) + vnx0(nbe(ne(:,7),2)) + vnx0(nbe(ne(:,7),3)))/24.0D0</pre>
6 7	: !vna(:,2)=(vny0(ne(:,2)) + vny0(ne(:,3)) + vny0(ne(:,4)) + vny0(ne(:,5)) &
8	!& + vny0(ne(:,5)) + vny0(ne(:,7))

	Darth Vader\Escritorio\prtcl_mkl\ModNodal_Interp.f906
9	!& + vny0(nbe(ne(:,2),1)) + vny0(nbe(ne(:,2),2)) + vny0(nbe(ne(:,2),3)) &
	!& + vny0(nbe(ne(:,3),1)) + vny0(nbe(ne(:,3),2)) + vny0(nbe(ne(:,3),3)) &
	!& + vny@(nbe(ne(:;,4),1)) + vny@(nbe(ne(:;,4),2)) + vny@(nbe(ne(:;,4),3)) &
	!& + vny@(nbe(ne(:,5),1)) + vny@(nbe(ne(:,5),2)) + vny@(nbe(ne(:,5),3)) &
	!& + vny0(nbe(ne(:;6),1)) + vny0(nbe(ne(:;6),2)) + vny0(nbe(ne(:;6),3)) &
	!& + vny0(nbe(ne(:,7),1)) + vny0(nbe(ne(:,7),2)) + vny0(nbe(ne(:,7),3)))/24.0D0
	!vna(:,3)=(vnz0(ne(:,2)) + vnz0(ne(:,3)) + vnz0(ne(:,4)) + vnz0(ne(:,5)) &
	!& + vnz0(ne(:,6)) + vnz0(ne(:,7)) &
	!& + vnz0(nbe(ne(:,2),1)) + vnz0(nbe(ne(:,2),2)) + vnz0(nbe(ne(:,2),3)) &
	!& + vnz0(nbe(ne(:,3),1)) + vnz0(nbe(ne(:,3),2)) + vnz0(nbe(ne(:,3),3)) &
	!& + vnz0(nbe(ne(:,4),1)) + vnz0(nbe(ne(:,4),2)) + vnz0(nbe(ne(:,4),3)) &
	!& + vnz0(nbe(ne(:,5),1)) + vnz0(nbe(ne(:,5),2)) + vnz0(nbe(ne(:,5),3)) &
	!& + vnz0(nbe(ne(:,6),1)) + vnz0(nbe(ne(:,6),2)) + vnz0(nbe(ne(:,6),3)) &
	!& + vnz0(nbe(ne(:,7),1)) + vnz0(nbe(ne(:,7),2)) + vnz0(nbe(ne(:,7),3)))/24.0D0
	END WHERE
!	
	WHERE (ne(:,1)==2)
	<pre>!vna(:,1)=(vnx0(ne(:,2)) + vnx0(ne(:,3))+ vnx0(nbe(ne(:,2),1)) + vnx0(nbe(ne(:,2),2)) + vnx0(nbe(ne(:,2),4))</pre>
	3)) &
	<pre>!& + vnx@(nbe(ne(:,3),1)) + vnx@(nbe(ne(:,3),2)) + vnx@(nbe(ne(:,3),3)))/8.000</pre>
	<pre>!vna(:,2)=(vny0(ne(:,2)) + vny0(ne(:,3))+ vny0(nbe(ne(:,2),1)) + vny0(nbe(ne(:,2),2)) + vny0(nbe(ne(:,2), # 3)) &</pre>
	3)) α !& + vnyθ(nbe(ne(:,3),1)) + vnyθ(nbe(ne(:,3),2)) + vnyθ(nbe(ne(:,3),3)))/8.0D0
	(a + vije(ine(i,z),z),z)) + vije(ine(i,z),z)) + vije(ine(i,z),z))) + vize(inbe(ine(i,z),z))) + vize(inbe(ine(i,z),z)) + vize(inbe(inbe(ine(i,z),z)) + vize(inbe(inbe(inbe(inbe(inbe(inbe(inbe(inb
	$((a_1, a_2), (a_1, a_2)) + (a_2, a_2) + (a$
1	
· ·	!vna(:,1)=(2.0D0*vnx0(ne(:,2)) + 2.0D0*vnx0(ne(:,3))+ vnx0(nbe(ne(:,2),1)) + vnx0(nbe(ne(:,2),2)) + vnx0 🕊
	(nbe(ne(;2),3)) &
	<pre>!& + vnx0(nbe(ne(:,3),1)) + vnx0(nbe(ne(:,3),2)) + vnx0(nbe(ne(:,3),3)))/10.0D0</pre>
	!vna(:,2)=(2.0D0*vny0(ne(:,2)) + 2.0D0*vny0(ne(:,3))+ vny0(nbe(ne(:,2),1)) + vny0(nbe(ne(:,2),2)) + vny0 🖬
	(ne(1;2),3) &
	<pre>!% + vny0(nbe(ne(:,3),1)) + vny0(nbe(ne(:,3),2)) + vny0(nbe(ne(:,3),3)))/10.0D0</pre>
	!vna(:,3)=(2.0D0*vnz0(ne(:,2)) + 2.0D0*vnz0(ne(:,3))+ vnz0(nbe(ne(:,2),1)) + vnz0(nbe(ne(:,2),2)) + vnz0 🖌
	(nbe(ne(:,2),3)) &
	<pre>!% + vn20(nbe(ne(:,3),1)) + vn20(nbe(ne(:,3),2)) + vn20(nbe(ne(:,3),3)))/10.0D0</pre>
!	
	!vna(:,1)=(3.0D0*vnx0(nbe(ne(:,2),1)) + 3.0D0*vnx0(nbe(ne(:,2),2)) + 3.0D0*vnx0(nbe(ne(:,2),3)) + 3.0D0* 🕊
	vnx0(nbe(ne(:,3),1)) &
	<pre>!& + 3.0D0*vnx0(nbe(ne(:,3),2)) + 3.0D0*vnx0(nbe(ne(:,3),3))+ vnx0(ne(:,2)) + vnx0(ne(:,3)))/20.0D0</pre>
	!vna(:,2)=(3.0D0*vny0(nbe(ne(:,2),1)) + 3.0D0*vny0(nbe(ne(:,2),2)) + 3.0D0*vny0(nbe(ne(:,2),3)) + 3.0D0* 🕊
	vny0(nbe(ne(:,3),1)) &
	!& + 3.0D0*vny0(nbe(ne(:,3),2)) + 3.0D0*vny0(nbe(ne(:,3),3)) + vny0(ne(:,2)) + vny0(ne(:,3)))/20.0D0
	!vna(:,3)=(3.0D0*vnz0(nbe(ne(:,2),1)) + 3.0D0*vnz0(nbe(ne(:,2),2)) + 3.0D0*vnz0(nbe(ne(:,2),3)) + 3.0D0* 🕊
	vnz0(nbe(ne(:,3),1)) &
	!& + 3.0D0*vnz0(nbe(ne(:,3),2)) + 3.0D0*vnz0(nbe(ne(:,3),3)) + vnz0(ne(:,2)) + vnz0(ne(:,3)))/20.0D0
!	
	vna(:,1)= (vnx0(ne(:,2)) + vnx0(ne(:,3)))/2.0D0
	vna(:,2)= (vny0(ne(:,2)) + vny0(ne(:,3)))/2.0D0
	vna(:,3)= (vnz0(ne(:,2)) + vnz0(ne(:,3)))/2.0D0
!	dist1(:)=DSQRT((p(:,1)-x0(ne(:,2)))**2+(p(:,2)-y0(ne(:,2)))**2+(p(:,3)-z0(ne(:,2)))**2)
	dist2(:)=DSQRT((p(:,1)-x0(ne(:,3)))**2+(p(:,2)-y0(ne(:,3)))**2+(p(:,3)-z0(ne(:,3)))**2)
11-	
i.	absdist(:)= DABS((1.0D0/dist1(:)) + (1.0D0/dist2(:)))
1	vna(:,1)= ((vnx0(ne(:,2))*dist1(:))+(vnx0(ne(:,3))*dist2(:)))/absdist(:)
i	vna(.,,)- ((vnx0(ne(.,2))*dist(.))+(vnx0(ne(.,3))*dist2(:)))/disdist(:)
i.	vna(:,;)= ((vny2(ne(:,;))*dist(:))+(vny2(ne(:,;))*dist2(:)))/disdist(:)
i	ma(.,,)- ((mz)(me(.,z)) uz(z(.))(mz)(mz)(mz)(mz)(mz)(mz)(mz)(mz)(mz)(m
•	
	END WHERE
1	
	!FORALL (i=1:npts)
	<pre>! vna(i,:)= vna(i,:)*DBLE(REAL(npts))</pre>
	IEND FORALL
	IEND FORALL
!	!END FORALL
	IEND FORALL

Darth Vader\Escritorio\prtcl_mkl\ModNodal_Interp.f907	D:\Darth Vader\Escritorio\prtcl_mkl\ModNodal_Interp.f90
FORALL (i=1:npts) vma(j,:) = vma(j,:)/norma(i)	481 Vel(:,3)= (Vellz(me(:,2)) + Vellz(me(:,3)))/2.000 482 ENDWERE 483 !!
END FORALL [NHERE(norma(:))1.000) [NHERE(norma(:))1.000) [vna(:,1)/norma(:)] [NHERE(norma(:))1.000] [NHERE(norma(:	484 [FFORALL (i=1:npts) 485 [] vna(i,:)*vna(i,:)*DBLE(REAL(npts)) 486 [] EHD FORALL 487]]
! vna(;,2)= 35.000 lvna(;,2)/norma(;) ! vna(;,3)= 45.000 lvna(;,3)/norma(;) EMD WHERE	488 ! FORALL (i=1:npts) 489 ! norma(i)= 05QRT(SUM(vna(i,:)**2)) 490 ! END FORALL
END SUBROUTINE interp_evn	491 !! 492 ! FORALL (i=1:npts) 493 ! vna(i,:)= vna(i,:)/norma(i) 494 ! END FORALL
SUBROUTINE interp_ven(npts, ne, nbe,& & velix, veliy, veliz, Vel)	495 !!
This subroutine computes the normal vector of every node on the surface	498 l l vna(;,2)+ 35,000 lvna(;,2)/norma(;) 499 l vna(;,3)= 45,000 lvna(;,3)/norma(;) 500 l LEND WHERE 501 l
IMPLICIT NONE	502 !
Variables	504 !=
INTEGER, INTENT(IN) :: npts !number of nodes INTEGER, ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: ne !table of conectivities per node	507 !====================================
INTEGER, ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: nbe !table of conectivities per element	509
REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: Vellx, Velly, Velly, Larrays of the components of Inormal vectors over collocation points REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(OUT) :: Vel Vector of every node over the surface	511 IMPLICIT NONE 513 Variables
Variables inside the subroutine INTEGER :: 1, j [Counters]	S15 INTEGER, INTENT(IN):: nel Inumber of elements S17 INTEGER, ALLOCATABLE, DIMENSION(:;.), INTENT(IN):: ne Itable of conectivilies per node S18 INTEGER, ALLOCATABLE, DIMENSION(:;.), INTENT(IN):: ne Itable of conectivilies per element S19 BELA (XIAD = DBL), ALLOCATABLE, DIMENSION(:), INTENT(INDT):: cryme l'array whit the values of kappa
ALLOCATE(Vel(npts,3)) Vel = 0.000	520 !====================================
WHERE(ne(:,1)==4) Vel(:,1)=(Vel1x(ne(:,2)) + Vel1x(ne(:,3)) + Vel1x(ne(:,4)) + Vel1x(ne(:,5)))/4.000 Vel(:,2)=(Vel1y(ne):,2)) + Vel1y(ne(:,3)) + Vel1y(ne(:,4)) + Vel1y(ne(:,5)))/4.000 Vel(:,2)=(Vel1y(ne):,2)) + Vel1y(ne(:,3)) + Vel1y(ne(:,4)) + Vel1y(ne(:,5)))/4.000 EDD MHERE EDD MHERE	522 INTEGER :: i, j ICounters 523 INTEGER :: i, j ICounters 524 REAL (KIND = DEL), ALLOCATABLE, DIMENSION(:) :: cuvi 525 ALLOCATE(cuvi(nelm)) 526 cuvi = 0.800 527 Immediation
<pre>WHERE(ne(:,1) == 6) Ve(1,1)=(Vel1x(ne(:,2)) + Vel1x(ne(:,3)) + Vel1x(ne(:,4)) + Vel1x(ne(:,5)) &</pre>	<pre>528 WHEEE(ne(:,1)==4) 529 cuvi(:)=(crwmel(ne(:,2)) + crvmel(ne(:,3)) + crvmel(ne(:,4)) + crvmel(ne(:,5)))/4.000 530 END WHEEE 531</pre>
<pre>Vel(:,z)=(vellx(ne(:,2)) + velly(ne(:,3)) + Velly(ne(:,4)) + Velly(ne(:,5)) &</pre>	532 WHEEE(ne(:,1) == 6) 533 cuv(:)=crvmel(ne(:,2)) + crvmel(ne(:,3)) + crvmel(ne(:,4)) + crvmel(ne(:,5)) & 534 & cuv(:)=crvmel(ne(:,6)) + crvmel(ne(:,7)))/6.809 535 !=
END WHERE	536 END WHERE 537 !
WHERE (ne(:,1)==2)	538 WHERE (ne(:,1)==2) 539 !
!Vel(:,1)=(Vel1x(ne(:,2)) + Vel1x(ne(:,3))+ Vel1x(nbe(ne(:,2),1)) + Vel1x(nbe(ne(:,2),2)) + Vel1x(nbe(ne(20,2))) + Vel1x(nbe(na(20,2))) + Vel1x(nbe(20,2))) + Vel1x(nbe(na(540 cuv1(:)= (crvmel(ne(:,2)) + crvmel(ne(:,3)))/2.000 541 !
<pre>;;2);3) & 18 +Vel1x(nbe(ne(:;3),1)) + Vel1x(nbe(ne(:,3),2)) + Vel1x(nbe(ne(:,3),3)))/8.000 [Vel(:;2)=(Vel1y(ne(:,2)) + Vel1y(ne(:,3)) + Vel1y(nbe(ne(:,2),1)) + Vel1y(nbe(ne(:,2),2)) + Vel1y(nbe(ne(d)))</pre>	542 END WHERE 543
<pre>:,2),3)) & !& +VelIy(nbe(ne(:,3),1)) + Veliy(nbe(ne(:,3),2)) + Veliy(nbe(ne(:,3),3)))/8.000 !Vel(:,3)=(Veliz(ne(:,2)) + Veliz(ne(:,3)) + Veliz(nbe(ne(:,2),1)) + Veliz(nbe(ne(:,2),2)) + Veliz(nbe(ne(< :,2),3)) &</pre>	545 - 546 END SUBROUTINE interp_curv 547 - 548 -
<pre>!& + Vel1z(nbe(ne(:,3),1)) + Vel1z(nbe(ne(:,3),2)) + Vel1z(nbe(ne(:,3),3)))/8.000</pre>	540 . 549 SUBROUTINE do <u>t</u> produc(Mdim, nelm, gamma,& 550 & & GM, RM, crymel, &

1 1 -	This subroutine generate th array fo G(x,X0) dot delta f
i.	Variables
5 !- 7 !	vnx0, vny0, vnz0 arrays of the components of normal vectors over collocation points
i	vna
i i	ne table of conectivities per node
÷İ.	nbe table of conectivities per element
11	nptsnumber of nodes
1-	USE Mod_SharedVars, ONLY: DBL
:-	IMPLICIT NONE
1	
	INTEGER, INTENT(IN) :: Mdim, nelm ! REAL (KIND = DBL), INTENT(IN) :: gamma !seurface tension constant
	REAL (KIND = DBL), INTENT(IN) :: gamma !seurface tension constant REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: vnx0, vny0, vnz0 !arrays of the components of
	Inormal vectors over collocation points
	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: crvmel !
	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: GM !The matrix with the information of
	Stokeslets on the surface
1-	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(OUT) :: RM !The matrix with the information of
!=	Variables inside the subroutine
	Variables inside the subroutine
	INTEGER :: i,j
	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: MM
1	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:) :: MM
1	Initialize
	ALLOCATE(MM(Mdim), RM(Mdim))
1	ALLOCATE(MM(Mdim,3), RM(Mdim))
	MM = 0.0D0
	RM = 0.0D0
	FORALL (i=1:nelm)
÷.	MM(i,1)= SUM(GM(i,1:nelm)*vnx0(i))
1	<pre>MM(i,2)= SUM(GM(i,1+nelm:nelm+nelm)*vny0(i))</pre>
1	MM(i,3)= SUM(GM(i,1+nelm+nelm:Mdim)*vnz0(i))
1	END FORALL
	FORALL (i=1:nelm) MM(i+nelm,1)=SUM(GM(i+nelm,1:nelm)*vnx0(i))
i	MM(i+nelm,1)=SUM(GM(i+nelm,1+nelm)*VNX0(1)) MM(i+nelm,2)=SUM(GM(i+nelm,1+nelm:nelm+nelm)*Vny0(i))
i.	<pre>MM(1:nelm,3)=SUM(GM(1+nelm,1+nelm:nelm:Mdlm)*vn20(1))</pre>
1.1	END FORALL
1	FORALL (i=1:nelm)
1	<pre>MM(innelm+nelm,1)=SUM(GM(innelm+nelm,1:nelm)*vnx0(i)) MM(innelm+nelm,2)=CM(GM(innelm+nelm,1:nelm)*vnx0(i)) MM(innelm+nelm,2)=CM(GM(innelm+nelm+nelm+nelm)*vnx0(i))</pre>
i	MM(i+nelm+nelm,2)=SUM(GM(i+nelm+nelm,1+nelm:nelm+nelm)*vny0(i)) MM(i+nelm+nelm,3)=SUM(GM(i+nelm+nelm,1+nelm+nelm:Mdim)*vn20(i))
÷.	END FORALL
i ii	
1	FORALL (i=1:nelm)
!!	RM(i)= SUM(MM(i,:))
	RM(i+nelm)=SUM(MM(i+nelm,:)) RM(i+nelm+nelm)=SUM(MM(i+nelm+nelm,:))
i	KN(1+rheim+heim)=SUN(NN(1+heim+heim;)) END FORALL
1	FORALL (i=1:nelm)
1	RM(i)= RM(i)*crvmel(i)*gamma
1	RM(i+nelm)=RM(i+nelm) * crvmel(i)*gamma
1	RM(i+nelm+nelm)=RM(i+nelm+nelm)*crvmel(i)*gamma END FORALL
i.	
ΕĒ.	FORALL (i=1:nelm)
1	MM(i)= vnx0(i) *crvmel(i)*gamma
1	MM(innelm)=vny0(i) *crvmel(i)*gamma
1	MM(i+nelm+nelm)=vnz0(i) *crvmel(i)*gamma END FORALL
1.1	END FORMEL

	//
	! RM=MATMUL(GM,MM)
3	FORALL (i=1:nelm) RM(i)= GM(i) !*crvmel(i) !*gamma
2	RM(1) = GM(1) = GM(2) = [d = m) !*crvme1(1) !*gamma
1	RM(i+nelm+nelm)= GM(i+nelm+nelm) !*crvmel(i) !*gamma
2	END FORALL
3	
	END SUBROUTINE do <u>t</u> produc
5	SUBROUTINE dissociate(nelm, Vel1, &
7	& Velix, Veliz)
9	USE Mod_SharedVars, ONLY: DBL
1	IMPLICIT NONE
3	
5	INTEGER, INTENT(IN) ::nelm !number of elements REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: Vell !array whit the values of unit normal
7	keat (kind - bel), Allocarate, Dimension(.), intent(in) vent sandy whit the values of anter house inter house in a livector of every node over the surface
в	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(INOUT) :: Vel1x, Vel1y, Vel1z !arrays of the components
9	! of normal vectors over collocation points
	· Variables inside the subroutine
3	INTEGER :: 1 !Counter
	!
6 7	Vel1x = 0.0D0 Vel1y = 0.0D0
8	Vel12 = 0.000
9	!
0	
1 2	Vel1x= Vel1(1:nelm) Vel1y= Vel1(nelm+1:nelm+nelm)
ŝ	Veliy = Veli(nelm+nelm+1)
4	
5	
5	END SUBROUTINE dissociate
5	END SUBROUTINE dissociate
5 6 7 8 9	END SUBROUTINE dissociate SUBROUTINE interp_e2(npts,wnal,wna)
5 6 7 8 9	END SUBROUTINE dissociate SUBROUTINE interp_e2(npts,vmal,vma)
5 5 7 8 9 0	END SUBROUTINE dissociate SUBROUTINE interg_22(npts,wnal,vna)
5 6 7 8 9 0 1 2	END SUBROUTINE dissociate SUBROUTINE interp_e2(npts,vnal,vna) This subroutine computes the normal vector of every node on the surface USE Mod_SharedVars, ONLV: DBL 1, p , X0, Y0, Z0
5 5 7 8 9 2 1 2 3	END SUBROUTINE dissociate SUBROUTINE interg_22(npts,wnal,vna)
5 5 7 8 9 0 1 2 3 4 5	END SUBROUTINE (interp_e2(npts,wnal,wna) SUBROUTINE (interp_e2(npts,wnal,wna) 1 This subroutine computes the normal vector of every node on the surface USE Mod_SharedVars, ONLY: DBL I, p , x0, y0, z0 IMPLICIT NONE
5 6 7 8 9 9 1 2 3 4 5 6	END SUBROUTINE dissociate SUBROUTINE interg_e2(npts,vnal,vna) This subroutine computes the normal vector of every node on the surface USE Mod_SharedVars, ONLY: DBL 1, p , x0, y0, z0 IMPLICIT NONE IVariables Variables
5 6 7 8 9 9 1 2 3 4 5 6 7	END SUBROUTINE (interp_e2(npts,wnal,vna) SUBROUTINE (interp_e2(npts,wnal,vna) 1 This subroutine computes the normal vector of every node on the surface USE Mod_SharedVars, ONLY: DBL 1, p , x0, y0, z0 IMPLICIT NONE 1 Variables
55789012345578	END SUBROUTINE (itsociate SUBROUTINE interp_22(npts,vnal,vna) This subroutine computes the normal vector of every node on the surface USE Mod_SharedVars, ONLY: OBL 1, p , x0, y0, z0 THELIT NOME Variables INTEGER, INTENT(IN) :: npts Inumber of nodes
5678901234567890	END SUBROUTINE interp_22(npts,vnal,vna) SUBROUTINE interp_22(npts,vnal,vna) This subroutine computes the normal vector of every node on the surface USE Mod_SharedVars, ONLY: DBL 1, p , x0, y0, z0 IMPLICIT NONE IVPLICIT NONE IVPLICIT NONE IVPLICIT NONE INTEGER, NITENT(IN) :: npts INTEGER, ALLOCATABLE, DIMENSION(:;), INTENT(IN) :: ne Itable of conectivities per node I INTEGER, ALLOCATABLE, DIMENSION(:;), INTENT(IN) :: nbe Itable of conectivities per element
56789212345678921	END SUBROUTINE interg_22(npts,wnal,vna) SUBROUTINE interg_22(npts,wnal,vna) Miss subroutine computes the normal vector of every node on the surface USE Mod_SharedVars, ONLY: DBL !, p , x0, y0, z0 IMPLICIT NOME INFIGER, INTENT(IN) :: npts INTEGER, ALLOCATABLE, DIENESION(:,:), INTENT(IN) :: ne Itable of conectivities per node I TNTEGER, ALLOCATABLE, DIENESION(:,:), INTENT(IN) :: ne Itable of conectivities per element EREL (KINO - OBL), ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: ne Itable of conectivities per element REAL (SUM - OBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: ne Itable of conectivities per element I REAL (SUM - OBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: ne Itable of conectivities per element I REAL (SUM - OBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: no, yny0, yny0 = larrays of the components of
567890123455789012	END SUBROUTINE interp_22(npts,wnal,vna) SUBROUTINE interp_22(npts,wnal,vna) I This subroutine computes the normal vector of every node on the surface USE Mod_SharedVars, ONLY: DBL 1, p , x0, y0, z0 IMPLICIT NOME Variables Variables INTEGER, NITENT(IN) :: npts INTEGER, ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: ne I table of conectivities per node I INTEGER, ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: ne REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: vnx0, vny0, vnz0 larrays of the components of Inormal vectors over collocation points of
5678901234567890123	END SUBROUTINE interg_22(npts,wnal,vna) SUBROUTINE interg_22(npts,wnal,vna) Miss subroutine computes the normal vector of every node on the surface USE Mod_SharedVars, ONLY: DBL !, p , x0, y0, z0 IMPLICIT NOME INFIGER, INTENT(IN) :: npts INTEGER, ALLOCATABLE, DIENESION(:,:), INTENT(IN) :: ne Itable of conectivities per node I TNTEGER, ALLOCATABLE, DIENESION(:,:), INTENT(IN) :: ne Itable of conectivities per element EREL (KINO - OBL), ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: ne Itable of conectivities per element REAL (SUM - OBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: ne Itable of conectivities per element I REAL (SUM - OBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: ne Itable of conectivities per element I REAL (SUM - OBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: no, yny0, yny0 = larrays of the components of
5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4	END SUBROUTINE interg_e2(npts,wnal,vna) SUBROUTINE interg_e2(npts,wnal,vna) Miss subroutine computes the normal vector of every node on the surface WE Mod_SharedVars, ONLY: DBL !, p , x0, y0, z0 IMPLCIT NOME INTEGER, INTENT(IN) :: npts Inumber of nodes INTEGER, ALLOCATABLE, DIMENSION(;;), INTENT(IN) :: ne Itable of conectivities per node INTEGER, ALLOCATABLE, DIMENSION(;;), INTENT(IN) :: ne Itable of conectivities per element REAL (KIND = DBL), DIMENSION(;;), INTENT(IN) :: vnal !array with the values of unt normal
5678901234567890123456	END SUBROUTINE interp_22(npts,wnal, vna) Therefore and the surface USE Mod_SharedVars, ONLY: DBL 1, p , x0, y0, z0 IMPLICIT NOME UNTREER, NITERT(IN) :: npts INTEGER, ALLOCATABLE, DIMENSION(:,:), INTERT(IN) :: ne Itable of conactivities per node INTEGER, ALLOCATABLE, DIMENSION(:,:), INTERT(IN) :: ne REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTERT(IN) :: vnal larray whit the values of unit normal Ivector of every node or int normal Ivector of every node over he surface Ivector of every node over he local) Ivector of every node over he local) Ivector of every node over he lover he local Ivector of ev
56789012345578901234557	END SUBROUTINE interg_22(npts,wnal,vna) SUBROUTINE interg_22(npts,wnal,vna) Miss subroutine computes the normal vector of every node on the surface WE Mod_SharedVars, ONLY: DBL !, p , x0, y0, z0 IMPLCIT NOME INTEGER, INTENT(IN) :: npts Inumber of nodes INTEGER, ALLOCATABLE, DIRENSION(;;), INTENT(IN) :: ne Itable of conectivities per element INTEGER, ALLOCATABLE, DIRENSION(;;), INTENT(IN) :: ne Itable of conectivities per element REAL (KIND - DBL), DIMENSION(;;), INTENT(IN) :: vnal !array with the values of unit normal REAL (KIND - DBL), ALLOCATABLE, DIMENSION(;;), INTENT(IN) :: vnal !array with the values of unit normal lvector of every node over the surface
567890123455789012345578	END SUBROUTINE interg_22(npts,wnal,vna) SUBROUTINE interg_22(npts,wnal,vna) Miss subroutine computes the normal vector of every node on the surface WE Mod_SharedVars, ONLY: DBL !, p , x0, y0, z0 IMPLCIT NOME INTEGER, INTENT(IN) :: npts Inumber of nodes INTEGER, ALLOCATABLE, DIRENSION(;;), INTENT(IN) :: ne Itable of conectivities per element INTEGER, ALLOCATABLE, DIRENSION(;;), INTENT(IN) :: ne Itable of conectivities per element REAL (KIND - DBL), DIMENSION(;;), INTENT(IN) :: vnal !array with the values of unit normal REAL (KIND - DBL), ALLOCATABLE, DIMENSION(;;), INTENT(IN) :: vnal !array with the values of unit normal lvector of every node over the surface
5678901234567890123456789	END SUBBOUTINE interp_e2(npts,vnal,vna) SUBBOUTINE interp_e2(npts,vnal,vna) This subroutine computes the normal vector of every node on the surface USE Mod_SharedVars, ONLY: DBL 1, p , x0, y0, z0 IVELITI MONE Variables IVELITI MONE Variables REAL (VIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: ne Itable of conectivities per element REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: vnx0, vny0, vnz0 larrays of the components of Inormal vectors over collocation points REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: vna1 larray whit the values of unit normal REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(OUT) :: vna1 larray whit the values of unit normal NEAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(OUT) :: vna1 larray whit the values of unit normal NEAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(OUT) :: vna1 larray whit the values of unit normal NEAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(OUT) :: vna1 larray whit the values of unit normal NEAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(OUT) :: vna1 larray whit the values of unit normal NEAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(OUT) :: vna1 larray whit the values of unit normal NEAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(OUT) :: vna1 larray whit the values of unit normal NEAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(OUT) :: vna1 larray whit the values of unit normal NEAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(OUT) :: vna1 larray whit the values of unit normal NEAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(OUT) :: vna1 larray whit the values of unit normal NEAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(OUT) :: vna1 larray whit the values of unit normal NEAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(OUT) :: vna1 larray whit the values of unit normal NEAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(OUT) :: vna1 larray whit the values of unit normal NEAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(OUT) ::
567890123456789012345678901	END SUBBOUTINE interp_e2(npts,vnal,vna) SUBBOUTINE interp_e2(npts,vnal,vna) This subroutine computes the normal vector of every node on the surface USE Mod_SharedVars, ONLY: DBL 1, p , x0, y0, z0 NPLICIT NONE Variables INTEGER, INTENT(IN) :: npts Intumber of nodes I INTEGER, ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: ne Itable of conectivities per element I INTEGER, ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: ne Itable of conectivities per element I INTEGER, ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: vnx0, vny0, vnz0 larrays of the components of Inormal vector of every node (local) REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: vnx1 larray whit the values of unit normal Variables inside the subroutine IVariables inside the subroutine IVariables inside the subroutine INTEGER :: 1, j ICounters REAL (LOCADBLE, DIMENSION(:): :: norma
5678901234567890123456789012	END SUBROUTINE interp_22(npts,wnal,vna) There interp_22(npts,wnal,vna) Media Subroutine computes the normal vector of every node on the surface Wed_sharedvars, ONLY: DBL 1, p , X0, Y0, Z0 IMPLICIT NONE INTEGER, INTENT(IN) :: npts Interp_22(npts,vnal,vna) REAL(KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: vnal larray whit the values of unit normal REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(OUT) :: vnal larray whit the values of unit normal Variables INTEGER :: i, j ICounters REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:): :: norma REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:): ::
56789012345678901234567890123	END SUBBOUTINE interp_e2(npts,vnal,vna) SUBBOUTINE interp_e2(npts,vnal,vna) This subroutine computes the normal vector of every node on the surface USE Mod_SharedVars, ONLY: DBL 1, p , x0, y0, z0 IMPLICIT NONE Variables INTEGER, INTENT(IN) :: npts INTEGER, ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: ne Itable of conectivities per node I INTEGER, ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: ne Itable of conectivities per element REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: vnx0, vny0, vnz0 !arrays of the components of Inormal vectors over collocation points REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: vnx1 !array whit the values of unit normal I variables inside the subroutine INTEGER :: i, j ICounters REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:): :: distl,dist2,dist3, absdist
5678901234557890123455789012	END SUBBOUTINE interp_e2(npts,vnal,vna) SUBBOUTINE interp_e2(npts,vnal,vna) This subroutine computes the normal vector of every node on the surface USE Mod_SharedVars, ONLY: DBL 1, p , x0, y0, z0 IMPLICIT NONE Variables INTEGER, NITENT(IN) :: npts INTEGER, ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: ne Itable of conectivities per node INTEGER, ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: ne Itable of conectivities per element REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: vnal !array whit the values of unit normal Vector of every node over the surface INTEGER, INTEN = DIMENSION(:,:), INTENT(IN) :: vnal !array whit the values of unit normal Nector of every node over the surface INTEGER :: 1, j ICounters REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:): :: distl,dist2,dist3, absdist


	arth Vader\Escritorio\prtcl_mkl\ModNodal_Interp.f90	11	764	&	<pre>io\prtcl_mkl\ModNodal_Interp.f90 nx5, ny5, nz5, &</pre>	inormal vector coordinates of fifth node of th
c	dist1 = 0.0D0			element		
	iist2 = 0.0D0 iist3 = 0.0D0		765	& element	nx6, ny6, nz6	Inormal vector coordinates of sixth node of the
! !	absdist=0.0D0		766 767	REAL (KIND = DBL), REAL (KIND = DBL),		<pre>!normal vector of the element !surface metric</pre>
F	<pre>ORALL (i=1:npts) dist1(i)= SUM(vna1(:,1), INT(vna1(:,4))==i)</pre>		768 !=	Variables inside th		
	dist2(i)= SUM(vna1(:,2), INT(vna1(:,4))==i)					
	<pre>dist3(i)= SUM(vna1(:,3), INT(vna1(:,4))==i)</pre>		771		: w12, w13, w21, w31, w23, w32	!components weiths
!	ND FORALL		772 773 774		: 5210x, 5210y, 5210z, 5120x, 5120y, & 5021x, 5021y, 5021z, 5012x, 5012y, & 5102x, 5102y, 5102z, 5201x, 5201y,	
	ORALL (i=1:npts)		775	REAL (KIND = DBL) :	: ex, ey, ez	<pre>!components of bezier surface</pre>
	<pre>norma(i)= DSQRT(dist1(i)**2+dist2(i)**2+dist3(i)**2) vna(i,1)= dist1(i)/norma(i)</pre>		776	REAL (KIND = DBL) : REAL (KIND = DBL) :	: n1, n2, n3, n4, n5, n6	<pre>!modules of normal vectors !components of bezier surface</pre>
	vna(1,1)= dist1(1)/norma(1) vna(1,2)= dist2(1)/norma(1)		778	REAL (KIND = DBL) : REAL (KIND = DBL) :		components of bezier surface
	vna(i,3)= dist3(i)/norma(i)		779	REAL (KIND = DBL) :	: h110x, h110y, h110z, h011x, h011y,	h011z, & !components of bezier surface
E	<pre>! vna(i,:)= (/dist1,dist2,dist3/)/norma(i) END FORALL</pre>		780		& h101x, h101y, h101z	
!	<pre>!vna(:,1)= dist1</pre>		782	Prepare the normal	vector of vertices.	
1	vna(:,2)= dist2		784		+ y1*z4 - y6*z4 - y1*z6 + y4*z6	
	!vna(:,3)= dist2 vna(i,:)= (/dist1,dist2,dist3/)/norma(i)		785 786		- x1*z4 + x6*z4 + x1*z6 - x4*z6 + x1*y4 - x6*y4 - x1*y6 + x4*y6	
	<pre>vna(1,:)= (/dist1,dist2,dist3/)/norma(1)</pre>		785		+ x1*y4 - x6*y4 - x1*y6 + x4*y6 + y2*z5 - y4*z5 - y2*z4 + y5*z4	
E	ND SUBROUTINE interp_e2		788	ny2= x5*z2 - x4*z2	- x2*z5 + x4*z5 + x2*z4 - x5*z4	
			789		+ x2*y5 - x4*y5 - x2*y4 + x5*y4	
	SUBROUTINE interp_p2(x1, y1, z1, &		790 791		+ y3*z6 - y5*z6 - y3*z5 + y6*z5 - x3*z6 + x5*z6 + x3*z5 - x6*z5	
8	x2, y2, z2, &		792	nz3= -x6*y3 + x5*y3	+ x3*y6 - x5*y6 - x3*y5 + x6*y5	
8			793 !- 794	n1= DSQRT(nx1**2+ny		
8	x5, y5, z5, &		795	n2= DSQRT(nx2**2+ny		
8	x6, y6, z6, &		796	n3= DSQRT(nx3**2+ny	3**2+nz3**2)	
8	k x, y, z, & k nx1, ny1, nz1, &		797 !-	nx1= nx1/n1		
8			799	ny1= ny1/n1		
8	nx3, ny3, nz3, &		800	nz1= nz1/n1		
8	k nx4, ny4, nz4, & nx5, ny5, nz5, &		801 802	nx2= nx2/n2 ny2= ny2/n2		
8	nx6, ny6, nz6, &		803	nz2= nz2/n2		
8			804 805	nx3= nx3/n3 ny3= ny3/n3		
	x 115)		805	nz3= nz3/n3		
! 1	This subroutine interpolate over an element to compute geo	metrical variables including the following:	807 !- 808		2-y1)*ny1+(z2-z1)*nz1)	
	L) Position vector 2) Tangential vectors in the xi and eta directions		809 810		3-y1)*ny1+(z3-z1)*nz1)	
	 Iangential vectors in the XI and eta directions Unit normal vector 		810	w21=((x1-x2)*nx2+(y w31=((x1-x3)*nx3+(v	1-y2)*ny2+(z1-z2)*nz2) 1-y3)*ny3+(z1-z3)*nz3)	
	 Area and volume of each element 		812	w23=((x3-x2)*nx2+(y	3-y2)*ny2+(z3-z2)*nz2)	
	JSE Mod SharedVars, ONLY: DBL, vna1		813 814 !-		2-y3)*ny3+(z2-z3)*nz3)	
!			815	b210x=(2*x1+x2-w12*		
	IMPLICIT NONE		816 817	b210y=(2*y1+y2-w12* b210z=(2*z1+z2-w12*		
1 1	/ariables		818 !-			
F	REAL (KIND = DBL), INTENT(IN) :: x1, y1, z1, &	coordinates of first node of the element	819	b120x=(2*x2+x1-w21*		
8		!coordinates of second node of the element !coordinates of third node of the element	820 821	b120y=(2*y2+y1-w21* b120z=(2*z2+z1-w21*		
8	x4, y4, z4, &	!coordinates of fourth node of the element	822 !-			
8		!coordinates of fifth node of the element !coordinates of sixth node of the element	823 824	b021x=(2*x2+x3-w23* b021y=(2*y2+y3-w23*		
	x6, y6, Z6 REAL (KIND = DBL), INTENT(OUT) :: x, y, z	coordinates of sixth node of the element	824 825	b021y=(2*y2+y3-w23* b021z=(2*z2+z3-w23*		
F	REAL (KIND = DBL), INTENT(OUT) :: nx1, ny1, nz1, &	Inormal vector coordinates of first node of the 🖉	826 !-	·····		
	element	Income I weaton coordinates of eccand ands of the it	827 828	b012x=(2*x3+x2-w32*		
8	k nx2, ny2, nz2, &	<pre>!normal vector coordinates of second node of the #</pre>	828	b012y=(2*y3+y2-w32* b012z=(2*z3+z2-w32*		
8	k nx3, ny3, nz3, &	!normal vector coordinates of third node of the 🖌	830 !-			
6	element	Incompal vector coordinates of fourth rade of the it	831 832	b102x=(2*x3+x1-w31*		
8	k nx4, ny4, nz4, &	!normal vector coordinates of fourth node of the 🖌	832	b102y=(2*y3+y1-w31* b102z=(2*z3+z1-w31*		

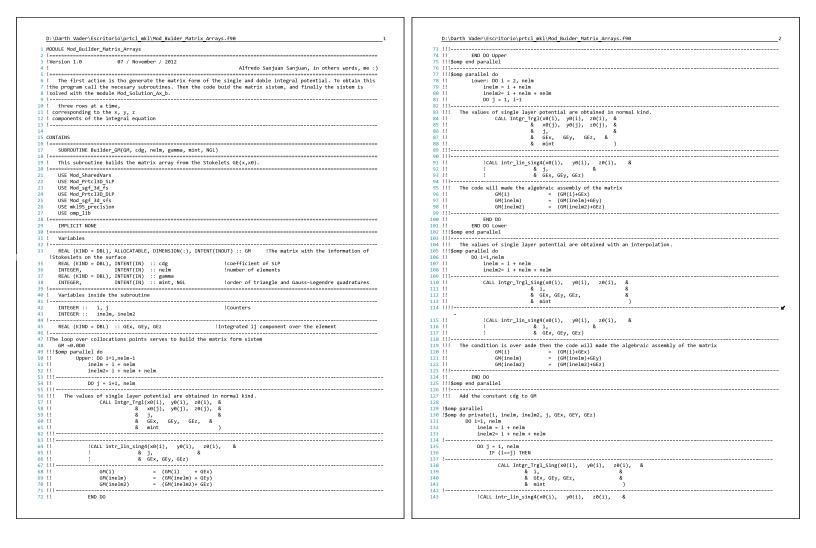
1	903 & hs)
b201x=(2*x1+x3-w13*nx1)/3.0D0 b201y=(2*y1+y3-w13*ny1)/3.0D0	900 9 a 113/ 904 9 905 ! This subroutine interpolate over an element to compute geometrical variables including the following:
ex=(b210x+b120x+b021x+b12x+b12x+b12x+b201x)/6.000 ey=(b210y+b120y+b021y+b012y+b12y+b12y+b201y)/6.000 ez=(b210x+b120x+b021x+b12x+b12y-b121x)/6.000	907 ! 2) Tangential vectors in the xi and eta directions 908 ! 3) Unit normal vector 909 ! 4) Area and volume of each element
	910 ====================================
v1z=(z1+z2+z3)/3.000	913 IMPLICIT NONE 914 !
7 x= ex + (ex-v1x)/2.000 y = ey + (ey-v1y)/2.000 z= ez + (ez-v1z)/2.000	915 I Variables 916 REAL (KIND = DBL), INTENT(IN) :: x1, y1, z1, & Iccordinates of first node of the element 917 & x2, y2, z2, & Iccordinates of second node of the element 918 & x3, y3, x3, & Iccordinates of third node of the element
$ \begin{array}{l} & \mbox{vl2+2.000}^*(((x2-x1)^*(nx1+nx2)+(y2-y1)^*(ny1+ny2)+(z2-z1)^*(nz1+nz2))/((x2-x1)^*(x2-x1)+(y2-y1)+(y2-y1)+(y2-y1)+(y2-y1)+(y2-y1)+(y2-y1)+(y2-y2)+(y2-$	11* # 919 8 x4, y4, 24, 8 1 coordinates of fourth node of the element 920 8 x5, y5, 55, 8 1 coordinates of fifth node of the element 12)* # 921 8 x6, y6, 26 1 coordinates of fifth node of the element 921 8 x6, y6, 26 1 coordinates of sixth node of the element 923 REAL (KIND = DBL), INTENT(IN) :: al, be, ga 1 constants alpha, beta and gama 923 REAL (KIND = DBL), INTENT(IN) :: x1, eta 1 variables to integrate over a triangle 924 REAL (KIND = DBL), INTENT(IN) :: x1, y, z 1 coordinates of the f(x, y2, y2) = f(x1, eta)
	926 8 Dubet, Dybet, Dzbet Ielement 927 REAL (KIND = DEL), INTENT(OUT) :: nx, vny, vnz Inormal vector of the element 928 REAL (KIND = DEL), INTENT(OUT) :: hs 1, es, xs Isurface metric 929 REAL (KIND = DEL), INTENT(OUT) :: hs 1, es, xs Isurface metric
helij = ny2 + ny3 - v23*(y3 - y2) heliz = nz2 + nz3 - v23*(z3 - z2) hiliz = nx3 + nx1 - v31*(x1 - x3) hiliz = nz3 + nz1 - v31*(y1 - y3) hiliz = nz3 + nz1 - v31*(z1 - z3)	930 ! Variables inside the subroutine 931 Instruction
nd = DSQNT(h110#*2 + h110y*2 + h10F*2) nd = DSQNT(h011#*2 + h01y*2 + h10F*2) nd = DSQNT(h011#*2 + h01y*2 + h012*2) nd = DSQNT(h1011#*2 + h101y*2 + h012*2)	915 REAL (KIND = DBL) :: dph1, dph2, dph3, dph4, dph5, dph6 !derivate of phi(xi,eta) wrt xi 936 REAL(KIND = DBL) :: pph1, pph2, pph3, pph5, pph6 !derivate of phi(xi,eta) wrt eta 937 !
nx4 h113x/n4 ny4 h113x/n4 nx4 h112z/n4 nx5 h011x/n5 ny5 h011z/n5 nx6 h101z/n6 ny6 h01z/n6	930 1- 940 alc = 1.000-al 941 bec = 1.000-be 942 gac = 1.000-ga 943 alalc = al*alc 944 bebc = be*bec 945 gagac = ga*gac 946 lance
	947 1 In this part, the subroutine evaluates basis functions, it obtains the tangential and normal vectors. 948 This is based on Numerical Computation in Science and Engineering, C.Pozrikidis, 1998, pp.305-312 949 1- 950 ph2 = xi *(xi = al+eta*(al-ga)/gac)/alc 951 ph3 = cta*(eta-bexix *(berga=1.000)/ga)/bec
hs = DSQRT(vnx**2 + vny**2 + vnz**2) 	952 ph4 = xi *(1.000-xi=cta)/alaic 953 ph5 = xi*eta /gagac 954 ph6 = eta*(1.000-xi=cta)/bebec 955 ph1 = 1.000-ph2-ph3-ph4-ph5-ph6 956 ph1 = 1.000-ph2-ph3-ph4-ph5-ph6
PEND SUBROUTINE interp_p2	958 !
I SUBROUTINE interp_p3(x1, y1, z1, & & x2, y2, z2, & & x3 x3 x3 x3	=== 960 y = y1*ph1 + y2*ph2 + y3*ph3 + y4*ph4 + y5*ph5 + y6*ph6 961 z = z1*ph1 + z2*ph2 + z3*ph3 + z4*ph4 + z5*ph5 + z6*ph6 962
& x3, y3, z3, & & x4, y4, z4, & & x5, y5, z5, & & x6, y6, z6, & & a1, be, ga, & & x1, eta, & & x1, eta, & & x2, y2, & & b2vlet, b2vli, & & bxvlet, byvy, b2vli, b & bxvlet, byvy, bzvli, b	963 1 In this part suroutine evaluates xi derivatives of basis functions 964

		1943	& al, be, ga, &
4	DxDxi = x1*dph1 + x2*dph2 + x3*dph3 + x4*dph4 + x5*dph5 + x6*dph6	1044	& x1, eta, &
	JyDxi = y1*dph1 + y2*dph2 + y3*dph3 + y4*dph4 + y5*dph5 + y6*dph6 JzDxi = z1*dph1 + z2*dph2 + z3*dph3 + z4*dph4 + z5*dph5 + z6*dph6	1045	& curv, stride)
	<pre>xs = DSQRT(DxDxi*DxDxi + DyDxi*DyDxi + DzDxi*DzDxi)</pre>		This subroutine interpolate over an element to compute geometrical variables including the following:
9 !	Normalization of normal vector		1) Position vector
	DxDxi = DxDxi		 Tangential vectors in the xi and eta directions Unit normal vector
	DyDxi = DyDxi		4) Area and volume of each element
	DZDXI = DZDXI	1052 1053	USE Mod SharedVars, ONLY: DBL
	ż	1054	
	 In this part suroutine evaluates eta derivatives of basis functions		IMPLICIT NONE
	oph2 = xi*(al-ga)/(alc*gac)	1057 - 1058	Variables INTEGER, INTENT(IN) :: stride !stride
	pph3 = (2.0D0*eta-be+xi*(be+ga-1.0D0)/ga)/bec	1059	REAL (KIND = DBL), INTENT(IN) :: x1, y1, z1, & !coordinates of first node of the element
	oph4 = -xi/alalc	1060	& x2, y2, z2, & !coordinates of second node of the element
	oph5 = xi/gagac	1061	& x3, y3, z3, & !coordinates of third node of the element
	pph6 = (1.000-xi-2.000*eta)/bebec	1062	& X4, Y4, Z4, & !coordinates of fourth node of the element & X5, Y5, Z5, & !coordinates of fifth node of the element
	pph1 = -pph2-pph3-pph4-pph5-pph6	1063	a nog yog zog a needen andere en ene ezemente
i i	Compute dx/deta from eta derivatives of phi	1065	REAL (KIND = DBL), INTENT(IN) :: al, be, ga !constants alpha, beta and gamma
	DxDet = x1*pph1 + x2*pph2 + x3*pph3 + x4*pph4 + x5*pph5 + x6*pph6	1066 1067	REAL (KIND = DBL), INTENT(IN) :: xi, eta !variables to integrate over a triangle REAL (KIND = DBL), INTENT(OUT) :: curv !mean curvature
	JyDet = y1*pph1 + y2*pph2 + y3*pph3 + y4*pph4 + y5*pph5 + y6*pph6	1068	
	DzDet = z1*pph1 + z2*pph2 + z3*pph3 + z4*pph4 + z5*pph5 + z6*pph6	1069	
	es = DSQRT(DxDet*DxDet + DyDet*DyDet + DzDet*DzDet)		
1	Normalization of normal vector	1071 1072	REAL (KIND = DBL) :: x, y, z !coordinates of the f(x,y,z)= F(xi,eta) REAL (KIND = DBL) :: vnx, vny, vnz !normal vector of the element
	אטאל = UxDet	1073	REAL (KIND = DBL) :: hs !surface metric REAL (KIND = DBL) :: alc, bec, gac !complements of alpha, beta and gamma
	DADEL = DADEL DADEL = DADEL	1074	REAL (KIND = DEL) :: all, Del, gat : complements or alpha, beta and gamma REAL (KIND = DEL) :: xs, es, hhs ! abs value of derivates wrt etha and xi
	Jobet Doet	1076	REAL (KIND = DBL) :: allc, bebec, gagac !other constants of alpha, beta and gamma
		1077	REAL (KIND = DBL) :: ph1, ph2, ph3, ph4, ph5, ph6 !components phi(xi,eta)
!		1078	REAL (KIND = DBL) :: dph1, dph2, dph3, dph4, dph5, dph6 !derivate of phi(xi,eta) wrt xi
	Normal vector vn = (DxDxi)^(DxDeta)	1079	REAL (KIND = DBL) :: pph1, pph2, pph3, pph4, pph5, pph6 !derivate of phi(xi,eta) wrt eta
	Surface metric hs = norm(vn)	1080	REAL (KIND = DBL) :: DxDxi, DyDxi, DzDxi !Derivates wrt xi
		1081	REAL (KIND = DBL) :: DxDet, DyDet, DzDet !Derivates wrt eta
	vnx = DyDxi * DzDet - DyDet * DzDxi vnv = DzDxi * DxDet - DzDet * DxDxi	1082	REAL (KIND = DBL) :: DxDxi2, DyDxi2, DzDxi2 !Derivates wrt xi and xi REAL (KIND = DBL) :: DxDet2, DvDet2, DzDet2 !Derivates wrt eta and eta
	vny = DZDXI * DXDet - DZDet * DXDXI vnz = DZDXI * DXDet - DXDet * DXDXI	1083	REAL (KIND = DBL) :: DxDet2, DyDet2, DzDet2 !Derivates wrt eta and eta REAL (KIND = DBL) :: DxDxiet, DyDxiet, DzDxiet !Derivates wrt xi and eta
	mz = bxbx1 - bybet - bxbet - bybx1 ns = bxbx1 - bybet - bxbet - bybx1 ns = bxbx1 - bybet - bxbet - bybx1 ns = bxbx1 - bybet - bxbet - bybx1	1084	REAL (KIND = DBL) :: DXDXIEC, DDDXIEC, DZDXIEC :: Sperivates wit XI and eta REAL (KIND = DBL) :: pph21, pph22, pph23, pph24, pph25, pph26 second derivate of phi(xi,eta) wit eta
		1085	REAL (KIND = DEL) :: dpl21, dpl22, dpl23, dpl24, dpl25, dpl26 isecond derivate of phi(xi,eta) wrt xi
	Normalization of normal vector	1087	REAL (KIND = DBL) :: pdph1, pdph2, pdph3, pdph4, pdph5, pdph6 second derivate of phi(xi,eta) wrt etaxi
1		1088	REAL (KIND = DBL) :: EK1, FK1, GK1 !constants of first Fundamental form
	vnx = vnx/hs	1089	REAL (KIND = DBL) :: EK2, FK2, GK2 !constants of first Fundamental form
	vny = vny/hs	1090	REAL (KIND = DBL) :: EK3, FK3, GK3 !constants of first Fundamental form
	vnz = vnz/hs	1091	REAL (KIND = DBL) :: LK1, MK1, NK1 !constants of second Fundamental form
	lhs= es*xs	1092 1093	REAL (KIND = DBL) :: LK2, MK2, NK2 !constants of second Fundamental form REAL (KIND = DBL) :: LK3, MK3, NK3 !constants of second Fundamental form
	vnx = (DyDxi/xs) * (DzDet/es) - (DyDet/es) * (DzDxi/xs)	1095	REAL (KIND = DEL) :: EKS, FKS KS : Constants of first Fundamental form
i	$v_{11} = (D_2 v_{11} v_{21}) + (D_2 v_{21} v_{21}) + (D_2 v_{21} v_{21}) + (D_2 v_{21} v_{21}) + (D_2 v_{21} v_{21} v_{21}) + (D_2 v_{21} v_{21} v_{21}) + (D_2 v_{21} v_{21} v_{21} v_{21}) + (D_2 v_{21} v_{21} v_{21} v_{21} v_{21}) + (D_2 v_{21} v_{21} v_{21} v_{21} v_{21} v_{21} v_{21}) + (D_2 v_{21} v_{21} v_{21} v_{21} v_{21} v_{21} v_{21} v_{21} v_{21}) + (D_2 v_{21} v_{21} v_{21} v_{21} v_{21} v_{21} v_{21} v_{21} v_{21}) + (D_2 v_{21} + (D_2 v_{21} v_$	1095	REAL (KIND = DEL) :: LK, MK, MK !: Constants of second Fundamental form
i i	vnz = (DxDx1/xs) * (DyDet/es) - (DxDet/es) * (DyDx1/xs)	1096	REAL (KIND = DBL) :: Strider !: constants of real of stride
!	hhs = DSQRT(vnx*vnx + vny*vny + vnz*vnz)		
ii –	Normalization of normal vector		
	vnx = vnx/hhs	1100	alc = 1.0D0-al bec = 1.0D0-be
	vir = vny/lhs	1101	gac = 1.000-ga
	vnz = vnz/hhs	1103	alalc = al*alc
	lhs= es*xs	1104	bebec = be*bec
	END SUBROUTINE interp p3	1105 1106	gagac = ga*gac
!===		1107	In this part, the subroutine evaluates basis functions, it obtains the tangential and normal vectors.
	SUBROUTINE interp_p4(x1, y1, z1, & % x2, y2, z2, &		This is based on Numerical Computation in Science and Engineering, C.Pozrikidis, 1998, pp.305-312
	x x2, y2, 22, α δ x3, y3, z3, δ	1109	ph2 = xi *(xi - al + eta*(al - ga)/gac)/alc
	$x = x^{3}, y^{3}, z^{3}, a^{3}$ $x^{4}, y^{4}, z^{4}, a^{4}$	1110	$p_{12} = A_1 (A_1 - a_1 + c_1 (a_1 - a_1)/a_1)/a_1/a_1$ $p_{13} = c_1 * (c_1 - b_1 + A_1 * (b_1 + g_0 - 1.000)/g_0)/bec$
	\$ x5, y5, z5, &	1112	ph4 = xi *(1.000 - xi - eta)/alat
		1113	ph5 = xi*eta/gagac

1-	ph6 = eta*(1.000 - xi - eta)/bebec ph1 = 1.000-ph2-ph3-ph4-ph5-ph6
1	Interpolate the position vector (x, y, z)
	X = x1 ² ph1 + x2 ² ph2 + x3 ² ph3 + x4 ² ph4 + x5 ² ph5 + x6 ² ph6 y = y1 ⁴ ph1 + y2 ² ph2 + y3 ² ph3 + y4 ⁴ ph4 + y5 ⁴ ph5 + y6 ⁴ ph6 z = z1 ⁴ ph1 + z2 [*] ph2 + z3 ⁴ ph3 + z4 ⁴ ph4 + z5 ⁴ ph5 + z6 ⁴ ph6
i.	In this part suroutine evaluates xi derivatives of basis functions
	dph2 = (2.0D0*xi - al + eta*(al - ga)/gac)/alc dph3 = eta*(be + ga - 1.000)/(ga*bec) dph4 = (1.00 - 2.000*xi - eta)/alc dph5 = eta/gagac dph6 = -eta/pabebc dph1 = -dph2 - dph4 - dph5 - dph6
1	Compute dx/dxi from xi derivatives of phi
	Dxxxi = x1*dph1 = x2*dph2 + x3*dph3 + x4*dph4 + x5*dph5 + x6*dph6 Dyxi = y1*dph1 + y2*dph3 + y3*dph3 + y4*dph4 + y5*dph5 + y6*dph6 Dz0xi = z1*dph1 + z2*dph2 + z3*dph3 + z4*dph4 + z5*dph5 + z6*dph6 x5 = 50xff(Dx0x1*Dxxi + Dyxi+Dyxi+Dzxi+Dzxi+Dzxi)]
i.	In this part suroutine evaluates eta derivatives of basis functions
1-	pph2 = xi*(al - ga)/(alc*gac) pph3 = (2.00**ta - be + xi*(be + ga - 1.000)/ga)/bec pph4 = -xi/alac pph5 = xi/gagac pph6 = (1.000 - xi - 2.000*ta)/bebec pph1 = -pph2 - pph3 - pph4 - pph5 - pph6
! - !	Compute dx/deta from eta derivatives of phi
	DxDet = x1*pph1 + x2*pph2 + x3*pph3 + x4*pph4 + x5*pph5 + x6*pph6 DyDet = y1*pph1 + y2*pph2 + y3*pph3 + y4*pph4 + y5*pph5 + y6*pph6 DzDet = z1*pph1 + z2*pph2 + z3*pph3 + z4*pph4 + z5*pph5 + z6*pph6 es = DSqR(Ucket*DxDet + DyDet*DyDet + DzDet*DzDet)
i I	Normal vector vn = (DxDxi)^(DxDeta) Surface metric hs = norm(vn)
!-	<pre>vmx = DyDx1 * DzDet - DyDet * DzDxi vmy = DzDx1 * DxDet - DzDet * DxDxi vmz = DxDx1 * DyDet - DxDet * DyDx1 hhs = D5QR('nvx*nx + vmy*vmy + vmz'vmz)</pre>
!- !	Normalization of normal vector
!-	vnx = vnx/hhs vny = vny/hhs vnz = vnz/hhs bs= hhs
! ! F	In this part, the subroutine computes the mean curvature using the analisys of Stoker Chapter IV. irst the vectors E, F and G are computed to estimate the First Fundamental Form
	EK1 = DADK1*3 KK = DADK1*2 EK3 = DADK1*2 EK3 = DADK1*2
	FK1 = DxDx1*DxDet FK2 = DyDx1*DyDet FK3 = DzDx1*DzDet
	GK1 = DxDet**2 GK2 = DyDet**2 GK3 = DzDet**2

!		
	EK = EK1 + EK2 + EK3	
	FK = FK1 + FK2 + FK3	
	GK = GK1 + GK2 + GK3	
	Second derivatives of the element.	-
	this part surputine evaluates the second derivatives wrt xi	
!		
	dph22 = (2.000)/alc	
	dph23 = 0.0D0 dph24 = -2.0D0/alalc	
	dp125 = 0.000	
	dph26 = 0.0D0	
	dph21 = -dph22 - dph23 - dph24 - dph25 - dph26	
	Compute dx/dxi**2 of phi	-
!		
	DxDx12 = x1*dph21 + x2*dph22 + x3*dph23 + x4*dph24 + x5*dph25 + x6*dph26	
	DyDxi2 = y1*dph21 + y2*dph22 + y3*dph23 + y4*dph24 + y5*dph25 + y6*dph26	
	DzDxi2 = z1*dph21 + z2*dph22 + z3*dph23 + z4*dph24 + z5*dph25 + z6*dph26	
		• ••
	this part suroutine evaluates the second derivatives wrt xi then wrt eta	
	pdph2 = ((al - ga)/gac*alc)	
	pdph3 = (be + ga - 1.000)/(ga*bec)	
	pdph4 = (-1.000)/alalc	
	pdph5 = 1.0D0/gagac pdph6 = -1.0D0/bebec	
	pdph1 = -pdph2 - pdph3 - pdph4 - pdph5 - pdph6	
!		
	Compute dx/dxidet of phi	_
•	DxDxiet = x1*pdph1 + x2*pdph2 + x3*pdph3 + x4*pdph4 + x5*pdph5 + x6*pdph6	Ċ.
	DyDxiet = y1*pdph1 + y2*pdph2 + y3*pdph3 + y4*pdph4 + y5*pdph5 + y6*pdph6	
	DzDxiet = z1*pdph1 + z2*pdph2 + z3*pdph3 + z4*pdph4 + z5*pdph5 + z6*pdph6	
!	In this part suroutine evaluates eta second derivatives of phi	
	pph22 = 0.0D0	
	pp122 - 0.000 pp123 = (2.000)/bec	
	pph24 = 0.0D0	
	pph25 = 0.000	
	pph26 = (-2.000)/bebec pph21 = - pph22 - pph23 - pph24 - pph25 - pph26	
	pprizi pprizi - pprizi - pprizi - pprizi - pprizi	
	Compute dx/det**2 from eta derivatives of phi	_
	DxDet2 = x1*pph21 + x2*pph22 + x3*pph23 + x4*pph24 + x5*pph25 + x6*pph26	-
	DyDet2 = y1*pph21 + y2*pph22 + y3*pph23 + y4*pph24 + y5*pph25 + y6*pph26	
	DzDet2 = z1*pph21 + z2*pph22 + z3*pph23 + z4*pph24 + z5*pph25 + z6*pph26	
!		
	In this part, the subroutine computes the mean curvature using the analisys of Stoker Chapter IV.	
	st the vectors L, M and N are computed to estimate the Second Fundamental Form	
	LK1 = DxDxi2*vnx / DSQRT(EK*GK - FK**2)	
	LK2 = DyDx12*vny / DSQRT(EK*GK - FK**2)	
	LK3 = DzDxi2*vnz / DSQRT(EK*GK - FK**2)	
!		
	<pre>MK1 = DxDxiet*vnx / DSQRT(EK*GK - FK**2) MK2 = DyDxiet*vny / DSQRT(EK*GK - FK**2)</pre>	
	MK3 = DZDx1et*vnz / DSORT(EK*GK - EK**2)	
	MK3 = DzDxiet*vnz / DSQRT(EK*GK - FK**2)	

м	ULE Mod Gauss Coefs
	sion: 0.5 created on 26 / IX / 2007
!	C. Pozrikidis
	sion: 0.7 created on / III /2010
i	Marco Antonio Reyes Huesca
	sion: 0.9 created on 21 / 08 / 2012
	sion: 1.0 created on 14 / 11 / 2012
!	Alfredo Sanjuan Sanjuan
	TAINS
	ROUTINE Gauss_Legendre(NGL)
!====	
	s Subroutine obtains abscissas and weights for the Gauss-LegENDre quadrature with NGL points.
	lue NGL or NGL as this code is the number of Gauss-Legendre base points for singular integrals.
! SYM ! N	LS: = 1,2,3,4,5,6,8,12 and 20
	t value is 20
	Mod_SharedVars, ONLY: DBL, UDat, ULog, ZZ, WW
	LICIT NONE
	iables
	EGER, INTENT(INOUT) :: NGL !order of Gauss-Legendre quadrature
	E (1) ALLOCATE(ZZ(WGL), WH(WGL)) ZZ = 0.000 W = 0.000 ZZ(1) = 0.000
	W(1) = 2.000
	mm(x) = 21000
с	E (2)
	ALLOCATE(ZZ(NGL), WW(NGL))
	ZZ = 0.0D0 WW = 0.0D0
1	שטט.ט = אא
•	ZZ(1) = -0.57735026918962576450D0
	ZZ(2) = -ZZ(1)
	WW(1) = 1.0D0 WW(2) = 1.0D0
1	WW(2) = 1.000
	E (3)
	ALLOCATE(ZZ(NGL), WW(NGL))
	ZZ = 0.0D0
	WW = 0.0D0
	77/1) _ 0 77/50666014149337703D0
	ZZ(1) = -0.77459666924148337703D0 ZZ(2) = 0.0D0
	ZZ(3) = -ZZ(1)
!	
	WW(1) = 0.55555555555555555555555555
	WW(2) = 0.88888888888888888888888888
	WW(3) = 0.55555555555555555555555555555555555
	E (4)
L	e (4) ALLOCATE(ZZ(NGL), WW(NGL))
	ZZ = 0.0D0


	ZZ(1) = -0.86113631159405257522D0
	ZZ(2) = -0.33998104358485626480D0
	ZZ(2) = -ZZ(2)
	ZZ(4) = -ZZ(1)
	W(1) = 0.34785484513745385737D0
	WW(2) = 0.65214515486254614262D0 WW(3) = WW(2)
	WW(5) = WW(2) WW(4) = WW(1)
	CASE (5)
	ALLOCATE(ZZ(NGL), WW(NGL))
	ZZ = 0.0D0 WW = 0.0D0
	ZZ(1) = -0.90617984593866399279D0
	ZZ(2) = -0.53846931010568309103D0
	ZZ(3) = 0.000 ZZ(4) = -ZZ(2)
	ZZ(4) = -ZZ(2) ZZ(5) = -ZZ(1)
	W(1) = 0.23692688505618908751D0
	WW(2) = 0.47862867049936646804D0
	WW(3) = 0.56888888888888888889D0 WW(4) = WW(2)
	WW(4) = WW(2) WW(5) = WW(1)
	CASE (6)
	ALLOCATE(ZZ(NGL), WW(NGL)) ZZ = 0.0D0
	WW = 0.000
	ZZ(1) = -0.932469514203152D0
	ZZ(2) = -0.66120938646626500 ZZ(2) = -0.23061008608300700
	ZZ(3) = -0.238619186083197D0 ZZ(4) = -ZZ(3)
	ZZ(5) = -ZZ(2)
	ZZ(6) = -ZZ(1)
	WW(1) = 0.171324492379170D0
	WW(1) = 0.360761573048139D0 WW(2) = 0.360761573048139D0
	WW(3) = 0.467913934572691D0
	WW(4) = WW(3)
	WW(5) = WW(2)
	WW(6) = WW(1)
	CASE (8)
	ALLOCATE(ZZ(NGL), WW(NGL))
	ZZ = 0.0D0
	WW = 0.0D0
	ZZ(1) = -0.96028985649753623168D0
	ZZ(2) = -0.79666647741362673959D0
	ZZ(3) = -0.52553240991632898581D0
	ZZ(4) = -0.18343464249564980493D0 ZZ(5) = -72(4)
	ZZ(5) = -ZZ(4) ZZ(6) = -ZZ(3)
	ZZ(7) = -ZZ(2)
	ZZ(8) = -ZZ(1)
	WW(1) = 0.10122853629037625915D0 WW(2) = 0.22238103445337447054D0
	WW(2) = 0.2223810344533744703400 WW(3) = 0.31370664587788728733D0
	Wv(4) = 0.3626837833733619829600
	W(5) = W(4)
	WW(6) = WW(3)
	WV(7) = VIII(2)
_	WW(8) = WW(1)
	CASE (12)
	ALLOCATE(ZZ(NGL), WW(NGL))

D:\Darth Vader\Escritorio\prtcl mkl\Mod Gauss Coefs.f90 3	D:\Darth Vader\Escritorio\prtcl mkl\Mod Gauss Coefs.f90 4
145 ZZ = 0.000	217 WW(18) = WW(3)
145 2.2 = 0.000 146 WN = 0.000	217 ww(18) = ww(3) 218 ww(19) = ww(2)
147	219 WW(20) = WW(1)
148 ZZ(1) = -0.981560634246719D0	220
149 ZZ(2) = -0.904117256370475D0 150 ZZ(3) = -0.769902674194305D0	221 CASE DEFAULT 222 NGL = 20
150 22(3) = -0.70990207419430500 151 22(4) = -0.58731795428661700	222 NGL = 29 223 ALLOCATE(ZZ(NGL), WW(NGL))
152 ZZ(5) = -0.367831498998180D0	$ZZ4 \qquad ZZ = 0.000$
153 ZZ(6) = -0.125233408511469D0	225 WW = 0.0D0
154 $ZZ(7) = -ZZ(6)$	226
$\begin{array}{llllllllllllllllllllllllllllllllllll$	227 ZZ(1) = -0.993128599185094924786D0 228 ZZ(2) = -0.963971927277913791268D0
157 ZZ(10)ZZ(3)	229 ZZ(3) = -0.912234428251325995868D0
158 ZZ(11) = -ZZ(2)	230 ZZ(4) = -0.839116971822218823395D0
159 ZZ(12)= -ZZ(1)	231 ZZ(5) = -0.746331906460150792614D0
160 ! 161 WW(1) = 0.047175336386512D0	$\begin{array}{rcl} 232 & ZZ(6) = -0.636053680726515025453D0 \\ 233 & ZZ(7) = -0.510867001950827098004D0 \end{array}$
162 WW(2) = 0.166939325995318D0	234 ZZ(8) = -0.373706088715419560673D0
163 WW(3) = 0.160078328543346D0	235 ZZ(9) = -0.227785851141645078080D0
164 WN(4) = 0.203167426723066D0	236 ZZ(10) = -0.07652652113349733375500
165 WW(5) = 0.233492536538355D0 166 WW(6) = 0.249147045813403D0	$\begin{array}{ccc} 237 & ZZ(11) = -ZZ(10) \\ 238 & ZZ(12) = -ZZ(9) \end{array}$
167 WW(7) = WW(6)	$\begin{array}{cccc} 238 & 22(12) = -22(9) \\ 239 & 27(13) = -27(8) \end{array}$
168 WW(8) = WW(5)	240 $ZZ(14) = -ZZ(7)$
169 WN(9) = WI(4)	241 $ZZ(15) = -ZZ(6)$
170 WW(10)= WW(3) 171 WW(11)= WW(2)	$\begin{array}{ccc} 242 & ZZ(16) = -ZZ(5) \\ 243 & ZZ(17) = -ZZ(4) \end{array}$
1/2 ww(12) = w(2) 1/2 ww(12) = w(1)	$243 \qquad 22(18) = -22(3) \\ 22(18) = -22(3) $
173 !	245 $ZZ(19) = -ZZ(2)$
174 CASE (20)	246 ZZ(20) = -ZZ(1) 247 Ww(1) = 0.017614007139152118312D0
175 ALLOCATE(ZZ(NGL), WW(NGL)) 176 ZZ = 0.0D0	247 Ww(1) = 0.017614007139152118312D0 248 Ww(2) = 0.040601429800386941331D0
177 WW = 0.0D0	249 WW(3) = 0.652672048334109663570D0
178 !	250 WW(4) = 0.083276741576704748725D0
179 ZZ(1) = -0.993128599185094924786D0 180 ZZ(2) = -0.963971927277913791268D0	251 Ww(5) = 0.10193011981724043503700 252 Ww(6) = 0.11819453196151841731200
180 ZZ(2) = -0.9039/19/27/9139/120800 181 ZZ(3) = -0.912344282513259058600	252 WW(5) = 0.11819453196151841/31200 253 WW(7) = 0.13168863844917662689800
182 ZZ(4) = -0.839116971822218823395D0	254 WW(8) = 0.142096109318382051329D0
183 ZZ(5) = -0.746331906460150792614D0	255 WW(9) = 0.149172986472603746788D0
184 ZZ(6) = -0.636053680726515025453D0 185 ZZ(7) = -0.510867001950827098004D0	256 WW(10)= 0.152753387130725850698D0 257 WW(11) = WW(10)
185 ZZ(7) = -0.373766087154195667300	258 WV(12) = WV(9) 258 WV(12) = WV(9)
187 ZZ(9) = -0.227785851141645078080D0	259 WW(13) = WW(8)
188 ZZ(10)= -0.076526521133497333755D0	260 WW(14) = WW(7)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	261 WW(15) = WW(6) 262 WW(16) = WW(5)
$191 \qquad ZZ(13) = -ZZ(8)$	263 WV(17) = WV(4)
192 $ZZ(14) = -ZZ(7)$	264 WW(18) = WW(3)
193 ZZ(15) = -ZZ(6)	265 W(199) = W(2)
194 ZZ(16) = -ZZ(5) 195 ZZ(17) = -ZZ(4)	266 WW(20) = WW(1) 267 !
$\frac{135}{196} = \frac{22(17)}{22(18)} = -\frac{22(3)}{22(3)}$	260 ::
197 ZZ(19) = -ZZ(2)	269 WRITE (ULog,*) ' Gauss_LegENDre:'
198 ZZ(20) = -ZZ(1)	270 WRITE (ULog,*) 271 WRITE (ULog,*) ' Chosen number of Gaussian points'
199 ! 200 Ww(1) = 0.017614007139152118312D0	2/1 WKIE (Ulog,*) ' Chosen number of Gaussian points' 272 WRIE (Ulog,*) ' is not available; It was taken NGL=20'
$\frac{260}{201} \text{Wr}(1) = 0.04660142980386941331D0$	272 WHILE (ULOG,) IS NOT AVAILABLE, IT WAS LAKEN HUL-20
202 WW(3) = 0.062672048334109063570D0	274 END SUBROUTINE Gauss_Legendre
203 WW(4) = 0.083276741576704748725D0 204 WW(5) = 0.101930119817240435037D0	275
204 WW(5) = 0.10133011981/24043503700 205 WW(5) = 0.1181345336151841/31200	276 1 277 SUBROUTINE Gauss Trgl(mint)
206 WW(7) = 0.131688638449176626898D0	278 !
207 Ww(8) = 0.142096109318382051329D0	279 ! This Subroutine obtains abscissas and weights for Gaussian integration over a triangle.
208 WW(9) = 0.149172986472603746788D0 209 WW(10) = 0.152753387130725850698D0	280 ! Integration is performed with respect to the triangle barycentric coordinates 281 ! SYMBOLS:
209 WW(10) = 0.152/5358/130/2585805800 210 WW(10) = WW(10)	281 : SYMBULS: 282 : mint: order of the quadrature choose from 1,3,4,5,7,9,12,13
W(12) = WW(9)	283 !Default value is 13
W(13) = W(8)	284 !====================================
213 WW(14) = WW(7) 214 WW(15) = WW(6)	285 USE Mod_SharedVars, ONLY: DBL, ULog, xiq, etq, wq 286 !
214 ww(15) = ww(5) 215 ww(5) = ww(5)	280 J
216 WW(17) = WW(4)	288
1	
1	
1	I – L

l Vari	iables	361 xiq(3) = de
!		362 xiq(4) = be
1NIE !======	EGER, INTENT(INOUT) :: mint ! order of the triangle quadrature	363 x1q(5) = ga 364 x1q(6) = be
	iables inside the subroutine	365 eta(1) = de 366 eta(2) = de
REAL	L (KIND = DBL) :: al, be, ga, de !constants with the weith values	367 etq(3) = al
	L (KIND = DBL) :: rh, qa, ru L (KIND = DBL) :: 01, 02, 03, 04	368 etq(4) = be 369 etq(5) = be
		370 etq(6) = ga
	next step is use a Case statement to obtain the coeficientes. ECT CASE (mint)	$\begin{array}{cccc} 371 & wq(1) = o1 \\ 372 & wq(2) = o1 \end{array}$
	E(1) E(1)	373 wq(3) = o1
	ALLOCATE(xiq(mint), etq(mint), wq(mint)) xiq = 0.0D0	374 wq(4) = o2 375 wq(5) = o2
	etq = 0.000	$375 ext{ wq}(5) = 02$ $376 ext{ wq}(5) = 02$
	wq = 0.0D0	377 !
	xiq(1) = 1.0D0/3.0D0	<pre>379 ALLOCATE(xiq(mint), etq(mint), wq(mint))</pre>
	etq(1) = 1.0D0/3.0D0 wq(1) = 1.0D0	380 xiq = 0.0D0 381 etg = 0.0D0
		382 wq = 0.0D0
CASE	E(3) ALLOCATE(xiq(mint), etq(mint), wq(mint))	383
	xiq = 0.000	385 be = 0.470142064105115D0
	etq = 0.000 wq = 0.000	386 ga = 0.059715871789770D0 387 de = 0.101286507323456D0
	wq = 0.000	388 o1 = 0.125939180544827D0
	xiq(1) = 1.0D0/6.0D0 xiq(2) = 2.0D0/3.0D0	389 o2 = 0.132394152788506D0 390
	$x_1q(2) = 2.006/5.000$ $x_1q(3) = 1.000/6.000$	390 391 xiq(1) = de
	etq(1) = 1.000/6.000	392 xiq(2) = a1
	etq(2) = 1.0D0/6.0D0 etq(3) = 2.0D0/3.0D0	393 xiq(3) = de 394 xiq(4) = be
	wq(1) = 1.0D0/3.0D0	395 xiq(5) = ga
	wq(2) = wq(1) wq(3) = wq(1)	396 xiq(6) = be 397 xiq(7) = 1.000/3.0D0
5 !		398 etq(1) = de
	E(4) ALLOCATE(xiq(mint), etq(mint), wq(mint))	399 etq(2) = de 400 etq(3) = al
9	xiq = 0.000 etq = 0.000	$\begin{array}{ccc} 401 & etq(4) & be \\ 402 & etq(5) & = be \end{array}$
	erd = 0.000	403 etq(6) = ga
	xiq(1) = 1.0D0/3.0D0	404 etq(7) = 1.0D0/3.0D0 405 wq(1) = 01
	$x_{1q}(2) = 1.000/5.000$ $x_{1q}(2) = 1.000/5.000$	405 wq(1) = 01 406 wq(2) = 01
	xiq(3) = 3.0D0/5.0D0 xiq(4) = 1.0D0/5.0D0	$ \begin{array}{cccc} 407 & wq(3) = o1 \\ 408 & wq(4) = o2 \end{array} $
	etq(1) = 1.0D0/3.0D0	$\begin{array}{cccc} 400 & m(4) &= 02 \\ 409 & m(5) &= 02 \end{array}$
	etq(2) = 1.0D0/5.0D0 etq(3) = 1.0D0/5.0D0	410 wq(6) = 02 411 wq(7) = 0.225D0
	etq(4) = 3.000/5.000	412 !
	wq(1) = -27.000/48.000 wq(2) = 25.000/48.000	<pre>413 CASE(9) 414 ALLOCATE(xiq(mint), etq(mint), wq(mint))</pre>
	wq(2) = 25.000/48.000 wq(3) = 25.000/48.000	414 ALLOCATE(xiq(mint), etq(mint), wq(mint)) 415 xiq = 0.0D0
L.	wq(4) = 25.0D0/48.0D0	416 etg = 0.0D0
CASE		417 wq = 0.0D0 418 !
	ALLOCATE(xiq(mint), etq(mint), wq(mint))	419 al = 0.124949503233232D0 420 qa = 0.165409927389841D0
	xiq = 0.0D0 etq = 0.0D0	421 rh = 0.797112651860071D0
	wq = 0.0D0	422 de = 0.437525248383384D0 423 ru = 0.037477420750088D0
	al = 0.816847572980459D0	424 o1 = 0.205950504760887D0
	be = 0.445948490915965D0 ga = 0.108103018168070D0	425 o2 = 0.063691414286223D0 426 !
	ga = 0.108103018168070D0 de = 0.091576213509771D0	427 xiq(1) = de
	o1 = 0.109951743655322D0	428 xiq(2) = a1
	o2 = 0.223381589678011D0	$\begin{array}{ccc} 429 & xiq(3) = de \\ 430 & xiq(4) = qa \end{array}$
	xiq(1) = de	431 xiq(5) = ru
	xiq(2) = al	432 xiq(6) = rh

$x_{14}(7) = q_{0}$ $x_{14}(8) = ru$ $x_{14}(9) = rh$ $et_{14}(1) = de$ $et_{14}(2) = de$ $et_{14}(3) = al$ $et_{14}(4) = ru$ $et_{14}(4) = ru$ $et_{14}(5) = q_{0}$ $et_{14}(6) = rh$ $et_{14}(6) = rh$ $et_{14}(7) = rh$ $et_{14}($	505 wq(8) = 03 506 wq(9) = 03 507 wq(10) = 03 508 wq(11) = 03 509 wq(12) = 03 510
$\begin{array}{llllllllllllllllllllllllllllllllllll$	507 wq(10) = 03 508 wq(11) = 03 509 wq(12) = 03 510
etq(1) = de etq(2) = de etq(3) = al etq(4) = ru etq(4) = ru etq(5) = qa etq(7) = rh etq(9) = rh etq(9) = ru wq(1) = ol wq(2) = ol	508 wq(11) = 03 509 wq(12) = 03 510
etq(1) = de etq(2) = de etq(3) = al etq(4) = ru etq(4) = ru etq(5) = qa etq(7) = rh etq(9) = rh etq(9) = ru wq(1) = ol wq(2) = ol	508 wq(11) = 03 509 wq(12) = 03 510 !
$\begin{array}{llllllllllllllllllllllllllllllllllll$	509 wq(12) = 03 510 I 511 CASE(13) 512 ALLOCATE(xiq(mint), etq(mint), wq(mint)) 513 xiq = 0.000 514 etq = 0.000 515 wq = 0.000 516 I
$\begin{array}{llllllllllllllllllllllllllllllllllll$	510
etq(4) = ru etq(5) = qa etq(7) = rh etq(7) = rh etq(8) = rh wq(1) = ol wq(2) = ol	511 CASE(13) 512 ALLOCATE(xiq(mint), etq(mint), wq(mint)) 513 xiq = 0.000 514 etq = 0.000 515 wq = 0.000 516
eta(5) = qa eta(6) = qa eta(7) = rh eta(8) = rh eta(3) = ru wa(1) = o1 wa(2) = o1	512 ÅLÜCATE(xiq(mint), etq(mint), wq(mint)) 513 xiq = 0.000 514 etq = 0.000 515 wq = 0.000 516
etq(6) = qa etq(7) = rh etq(8) = rh etq(9) = ru wq(1) = ol wq(2) = ol	513 x1q e0.000 514 etq e0.000 515 wq e0.000 516 !
etq(7) = rh etq(8) = rh etq(9) = ru wq(1) = o1 wq(2) = o1	514 etq = 0.000 515 wq = 0.000 516
etq(8) = rh etq(9) = ru wq(1) = o1 wq(2) = o1	515 wq = 0.000 516 !
etq(9) = ru wq(1) = o1 wq(2) = o1	516 !
wq(1) = 01 wq(2) = 01	
wq(2) = 01	517 al = 0.479308067841923D0
wq(3) = o1	518 be = 0.065130102902216D0
	519 ga = 0.869739794195568D0
wq(4) = o2	520 de = 0.260345966079038D0
wq(5) = o2	521 rh = 0.638444188569809D0
w(6) = o2	522 qa = 0.312865496004875D0
wq(7) = o2	523 ru = 0.048690315425316D0
wq(8) = o2	524 o1 = 0.175615257433204D0
wq(9) = o2	525 o2 = 0.053347235608839D0
	526 03 = 0.077113760890257D0
CASE (12)	527 04 =-0.14957004446767000
ALLOCATE(xiq(mint), etq(mint), wq(mint))	522
xig = 0.000	520 xiq(1) = de
x14 = 0.000	529 $xiq(1) = al530$ $xiq(2) = al$
wq = 0.0D0	531 xiq(3) = de $532 xiq(4) = be$
al = 0.873821971016996D0	533 xiq(5) = ga
be = 0.249286745170910D0	534 xiq(6) = be
ga = 0.501426509658179D0	535 xiq(7) = qa
de = 0.063089014491502D0	536 xiq(8) = ru
rh = 0.636502499121399D0	537 xiq(9) = rh
qa = 0.310352451033785D0	538 xiq(10) = qa
ru = 0.053145049844816D0	539 xiq(11) = ru
o1 = 0.050844906370207D0	540 xiq(12) = rh
o2 = 0.116786275726379D0	541 xiq(13) = 1.0D0/3.0D0
o3 = 0.082851075618374D0	542 !
	543 etq(1) = de
xiq(1) = de	544 etq(2) = de
xiq(2) = al	545 etq(3) = al
xiq(3) = de	546 et q(4) = be
xiq(4) = be	547 $etq(5) = be$
xiq(5) = ga	548 = eta(5) = bc
$x_1(c) = be$	549 = etq(7) = ru
xiq(5) = 00 xiq(7) = qa	550 = etq(8) = qa
x14(7) = 4a x14(8) = ru	$\begin{array}{cccc} 550 & etq(6) & qa \\ 551 & etq(9) & qa \end{array}$
xiq(s) = rh	$\begin{array}{cccc} 551 & etq(3) & -qa \\ 552 & etq(10) & eth \end{array}$
xiq(10) = qa	
$x_{1q}(11) = ru$	
xiq(12) = rh	555 etq(13) = 1.0D0/3.0D0
	556
etq(1) = de	557 wq(1) = o1
etq(2) = de	558 wq(2) = 01
etq(3) = al	559 wq(3) = 01
etq(4) = be	560 wq(4) = o2
etq(5) = be	561 wq(5) = o2
etq(6) = ga	$562 ext{ wq}(6) = 02$
etq(7) = ru	563 wq(7) = o3
etq(8) = qa	564 wq(8) = o3
etq(9) = qa	565 wq(9) = o3
etq(10) = rh	566 wq(10) = 03
etq(11) = rh	567 w(11) = 03
etq(12) = ru	568 wq(12) = 03
	$\begin{array}{cccc} 300 & wq(12) = 03 \\ 569 & wq(13) = 04 \end{array}$
wq(1) = o1	505 Wq(13) - 04 570 -
wq(1) = 01 wq(2) = 01	570 : 571 CASE DEFAULT
wq(z) = o1 wq(3) = o1	5/1 CASE DEFAULT 572 mint = 13
wq(3) = o1 wq(4) = o2	5/2 mint = 13 573 ALLOCATE(xiq(mint), etq(mint), wq(mint))
wq(5) = o2	$574 \qquad xiq = 0.000$
wq(6) = o2	575 etq = 0.0D0
wq(7) = o3	576 wq = 0.0D0

78 79	al = 0.479308067841923D0
80	be = 0.065130102902216D0 ga = 0.869739794195568D0
80 81	ga = 0.2603/35/3413555800 de = 0.2603/3596607903800
82	rh = 0.63844188569809D0
83	qa = 0.312865496004875D0
84	ru = 0.048690315425316D0
85	o1 = 0.175615257433204D0
86	o2 = 0.053347235608839D0
87	o3 = 0.077113760890257D0
88	o4 =-0.149570044467670D0
89	xiq(1) = de
90 91	xiq(2) = a1
91 92	xiq(3) = de xiq(4) = be
92 93	$x_{1q}(x) = be$
94	$x_{iq}(5) = be$
95	xiq(y) = ga
96	xiq(i) = ru
97	xiq(9) = rh
98	xiq(10) = qa
99	xiq(11) = ru
00	xiq(12) = rh
01 02	xiq(13) = 1.0D0/3.0D0
02 I 03	
03 04	etq(1) = de etq(2) = de
05	etq(3) = al
06	etq(4) = be
07	etq(5) = be
08	etq(6) = ga
69	etq(7) = ru
10	etq(8) = qa
11	etq(9) = qa
12	etq(10) = rh
13 14	etq(11) = rh
14	etq(12) = ru etq(13) = 1.0D0/3.0D0
	erd(13) - 1.000/3.000
17	wq(1) = o1
18	wq(2) = o1
19	wq(3) = o1
20	wq(4) = o2
21	wq(5) = 02
22	wq(6) = o2
23 24	wq(7) = 03
24 25	wq(8) = o3
25 26	wq(9) = o3 wq(10) = o3
27	$w_1(10) = 03$ $w_2(11) = 03$
28	Wq(12) = 03
29	$w_{q}(13) = o4$
30 !	
31	WRITE (ULog,*)
32	WRITE (ULog,*) ' Gauss_Trgl:'
33	WRITE (ULog,*)
34	WRITE (ULog,*) ' Number of Gauss triangle quadrature'
35	WRITE (ULog,*) ' is not available; It was taken mint =13'
36 37	END SELECT
37 38	END SUBROUTINE Gauss_Trgl
	MODULE Mod_Gauss_Coefs
40	
1	

.44 .45	! & i, &
	& GEx, GEy, GEz)
46	
47	ELSE
48	
49	CALL Intgr_Trgl(x0(i), y0(i), z0(i), &
50	& x0(j), y0(j), z0(j), &
51	& j, &
52	& GEx, GEy, GEz, &
.53 .54 .1	& mint)
.54	!CALL intr_lin_sing4(x0(i), y0(i), z0(i), &
.56	: & j, &
.57	
58	
.59	END IF
	!
.61	GM(i) = (GM(i) + GEx)
.62	GM(inelm) = (GM(inelm) + GEy)
.63	GM(inelm2) = (GM(inelm2)+ GEz)
.64 .65	END DO
66	
.67	END DO
68	!somp end do
	!\$omp end parallel
70	GM = cdg*gamma*GM
72	END SUBROUTINE Builder_GM
75	
	! This subroutine builds the matrix array from the Stresslets TE(x,x0).
78	l
79	
.81	
81 82	! cdt coefficient
.81 .82 .83	! cdt coefficient ! lmu coefficient lamdamu
.81 .82 .83 .84	! cdtcoefficient ! lmucoefficient lamdamu ! nelmnumber of elements
.81 .82 .83 .84 .85	! cdt coefficient ! hmu coefficient landamu ! nelm number of elements ! mint order of Gauss' quadrature ! MGL order of triangle quadrature
.81 .82 .83 .84 .85 .86	l cdtcoefficient l muncoefficient lamdamu l nelmnumber of elements mintorder of Gauss' quadrature l MGLorder of triangle quadrature l XB, yB, 20coordinates of collocation point of the element
.81 .82 .83 .84 .85 .85 .85 .85 .85 .85 .87	<pre>l cdtcoefficient l mucoefficient landamu l nelmcoefficient landamu l nelm</pre>
.81 .82 .83 .84 .85 .86 .87 .88 .88	1 coefficient 1 num
.81 .82 .83 .84 .85 .86 .87 .88 .88 .89 .90	1 coefficient 1 num
.81 .82 .83 .84 .85 .85 .86 .87 .88 .87 .88 .89 .90 .90	<pre>l cdtcoefficient l mucoefficient landamu l nelmcoefficient landamu l nelm</pre>
.81 .82 .83 .84 .85 .86 .87 .88 .87 .88 .90 .90 .91 .92	I coefficient Imm coefficient I number of elements number of Gauss' quadrature MGL order of Gauss' quadrature MGL order of triangle quadrature XG, y0, 20 coordinates of collocation point of the element TEXX, TEXY, TEXX Integrated ij component over the element TEXX, TEYY, TEX Ust Mod_SharedVars USE Mod_SharedVars USE Mod_SharedVars
81 82 83 84 85 86 87 88 89 90 90 91 92 93	I cdtcoefficient Imucoefficient Iandamu I nelm
.81 .82 .83 .84 .85 .86 .87 .88 .89 .90 .91 .92 .93 .94	l cdt
81 82 83 84 85 86 87 88 90 90 91 92 93 94 95	<pre>l cdtcoefficient l mucoefficient lamdamu l nelm</pre>
81 82 83 85 86 88 90 91 92 93 94 95 96 97	<pre>l cdtcoefficient l mucoefficient l mucoefficient l nelm</pre>
81 82 83 84 85 88 90 91 92 93 94 95 96 97 98	<pre>l cdtcoefficient l nmucoefficient l nmumber of elements i nelm</pre>
81 82 83 84 85 86 87 88 90 91 92 93 94 95 96 97 98 99 98 99	1 coefficient 1mm. coefficient 1madamu 1 num. coefficient 1madamu 1 nelm coefficient 1madamu 1 nelm coefficient 1madamu 1 nelm coefficient 1madamu 1 MGL coefficient 1madamu 1 MGL coefinates of collocation point of the element 1 TEXx, TEyy, TEyz Integrated ij component over the element 1 TEXx, TEyy, TEyz USE Mod_StaredVars USE Mod_StaredVars
81 82 83 84 85 86 87 90 91 92 93 94 95 96 97 98 99 90	<pre>l cdtcoefficient 1 lmmcoefficient iandamu l nelm</pre>
81 82 83 84 85 86 87 88 90 91 92 93 94 95 96 97 98 99 90 91	1 coefficient 1mm. .coefficient 1madamu 1 number of elements 1 nelm 1 mint .coefficient 1madamu 1 nelm .coefficient 1madamu 1 mint .coefficient 1madamu 1 mint .coefficient 1madamu 1 MGL .coefinates of collocation point of the element 1 TEXx, TEXy, TEX2 USE Mod_SharedVars USE Mod_Sprecision USE Mod_Sprecision USE mod_Sprecision USE mint Sprecision USE mint Sprecision Immediates Immediates
81 82 83 84 85 86 87 88 90 91 92 93 94 95 96 97 98 99 90 91	<pre>l cdtcoefficient 1 lmmcoefficient 1 lmm</pre>
81 82 83 84 85 86 87 99 99 99 99 99 99 99 90 90 90 90 90 90	<pre>l cdtcoefficient 1 lnwcoefficient 1 lnw</pre>
81 82 83 84 85 86 87 88 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 90 91 92 93	<pre>l cdtcoefficient l nmucoefficient landamu l nelm</pre>
81 82 82 83 84 85 88 86 87 88 90 91 92 93 94 95 96 91 90 91 92 93 94 95 96 91 90 91 91 92 93 94 95 96 97 98 99 91 90 91 92 93 94 95 960 96 97 98 990 91 901 92 904 95 904 95 905 96 904 90 904 90 905 90 904 90	<pre>l cdtcoefficient 1 lnmu</pre>
81 82 83 84 85 86 87 88 88 87 88 88 99 99 99 99 99 99 99 99 99 99 99	<pre>l cdtcoefficient 1 lnm</pre>
81 82 83 84 85 86 88 88 88 88 88 99 99	<pre>1 cdt</pre>
81 82 83 84 85 86 86 86 87 88 88 88 99 90 91 92 93 93 93 93 93 93 93	<pre>l cdtcoefficient lnm</pre>
81 82 83 84 85 88 85 88 89 90 91 992 993 994 995 996 997 998 999 800 1902 800 100 100 100 100 100 100 100 100 100	<pre>1 cdt</pre>
81 82 83 84 86 87 88 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 90 <pre>1 cdt</pre>	
81 82 83 84 85 88 85 88 89 90 91 992 993 994 995 996 997 998 999 800 1902 800 100 100 100 100 100 100 100 100 100	<pre>1 cdt</pre>
81 82 83 84 85 88 87 88 89 991 92 394 995 996 999 900 902 004 5066 007 809 101 112	<pre>1 cdt</pre>

&	TEzx, TEzy, TEzz
TM=	0.000
I The loo	p over collocations points serves to build the matrix form sistem.
!	
	mu==1.0D0)THEN
!\$omp pa	
	private(i, inelm, inelm2) DO i= 1, nelm
	inelm = i + nelm inelm2= i + nelm + nelm
! The	<pre>values of doble layer potential are obtained in normal kind. TM(i,i) = - ((1.0D0+lmu)/2.0D0)</pre>
	TM(inelm,inelm) = - ((1.0D0+lmu)/2.0D0)
	TM(inelm2,inelm2) = - ((1.0D0+lmu)/2.0D0) END DO
!\$omp en	d do d parallel
!======	u parallel
ELSE	
!\$omp pa	
	private(1, ineim, ineimz, j, jneim, jneimz, Texx,Texy,Texz, Teyx,Teyy,Teyz, Tezx,Tezy,Tezz) DO i= 1, nelm
	inelm = i + nelm inelm2= i + nelm + nelm
	DO j = 1, nelm
	jnelm = j + nelm jnelm2 = j + nelm + nelm
!	
	values of doble layer potential are obtained in normal kind. IF(i==j)THEN
!	CALL Intgr_Trgl_Sing_s(x0(j),y0(j),z0(j), &
	& j, &
	& TEyx,TEyy,TEyz, &
	& TEzx,TEzz, & & mint)
!	· · · · · · · · · · · · · · · · · · ·
	ICALL intr_lin_sing_s4s(x0(i),y0(i),z0(i), & ! & x0(i),y0(i),z0(i), &
	! & i, & ! & TExx, TExy, TExz, &
	! & TEyx, TEyz, &
	! & TEzx, TEzy, TEzz)
	TM(j,j) = (cdt*TExx) - ((1.0D0 + 1mu)/2.0D0)
	TM(j,jnelm) = cdt*TExy TM(j,jnelm2) = cdt*TExz
	TM(jnelm,j) = cdt*TEyx TM(jnelm,jnelm) = (cdt*TEyy) - ((1.0D0 + lmu)/2.0D0)
	TM(jnelm,jnelm2) = cdt*TEyz
	TM(jnelm2,j) = cdt*TEzx TM(jnelm2,jnelm) = cdt*TEzy
1	TM(jnelm2,jnelm2) = (cdt*TEzz) - ((1.0D0 + lmu)/2.0D0)
	!TM(j,j) = ((0.05D0*cdt*TExx) - ((1.0D0+lmu)/2.0D0))
	!TM(j,jnelm) = 0.05D0*cdt*TExy !TM(j,jnelm2) = 0.05D0*cdt*TExz
	!TM(jnelm,j) = 0.05D0*cdt*TEyx
	!TM(jnelm,jnelm) = ((0.05D0*cdt*TEyy) - ((1.0D0+lmu)/2.0D0)) !TM(jnelm,jnelm2) = 0.05D0*cdt*TEyz
	!TM(jnelm2,j) = 0.05D0*cdt*TEzx
	!TM(jnelm2,jnelm) = 0.05D0*cdt*TEzy !TM(jnelm2,jnelm2) = ((0.05D0*cdt*TEzz) - ((1.0D0+lmu)/2.0D0))
!	ELSE

99 & x0(j), y0(j), z0(j), & 90 & j, & 91 & TExx, TExy, TExz, & 92 & TExx, TEyy, TEyz, & 93 & TExx, TEyy, TEyz, & 94	8	CALL Intgr_Trgl_s(x0(i), y0(i), z0(i), &
91 & TExx, TExy, TExz, & 92 & TExx, TEzy, TEzz, & 93 & TExx, TEzy, TEzz, & 94 & mint) 95		
22 8 TExx, TEyy, TEyz, 8 23 8 TExx, TEzy, TEzz, 8 24 8 mint) 25 1 26 1 27 1 8 $(A(1), a)(1), a(1), a(1$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
8 mit) 6 ICALL intr_lin_sing_s(x(x(j),y(0)), x(j)), & 7 ICALL intr_lin_sing_s(x(x(j),y(0)), x(j)), & 8 i k : x(s(i),y(0)), x(s(j)), & 8 i k : x(s(i),y(s(j), x(s(j)), & 8 i k : x(s(i),y(s(j), x(s(j)), & 8 i k : x(s(i), y(s(j), x(s(j)), & 8 i k : x(s(i), y(s(j), x(s(j)), & 8 i k : TEXx, TEXy, TEXz, & 8 i k : TEXx, TEXy, TEXz, & 9 i cdt*TEXx 9 i i i 9 i i i 9 i cdt*TEXx i 9 i i i 9 i cdt*TEXx i 9 i cdt*TEXx		
51 54 55 56 57 1 & x0(1),y0(1),z0(1), & 57 1 & 1, & 58 1 & 1, & 59 1 & TEXx, TEXy, TEXz, & 59 1 & TEXx, TEXy, TEXz, & 51 * & TEXx, TEXy, TEXz, & 52 * & TTEXx, TEXy, TEXz, & 53 * & & CdtTEXx 54 * & CdtTEXx 55 TM(1,ipelm,) = cdtTEXy 56 TM(1,inelm,jnelm) = cdtTEXy 57 TM(1,ipelm,) = cdtTEXy 58 TM(1,ipelm,) = cdtTEXy 59 TM(1,ipelm,) = cdtTEXy* 50 TM(1,ipelm,) = cdtTEXy* 50 TM(1,ipelm,) = cdtTEXy* 51 TM(1,ipelm,) = cdtTEXy* 52 TM(1,ipelm,) = cdtTEXy* 53 TM(1,ipelm,) = cdtTEXy* 5		
96 ICALL intr_lin_sing_sig(xe(j),ye(j),ye(j), 8(j), 8 97 I & x0(j),ye(j),ze(j), 8 98 I & 10, ye(j),ze(j), 8 99 I & TEXx, TEXy, TEXz, 8 90 I & TEXx, TEXy, TEXz, 8 91 & TEXx, TEXy, TEXz, 8 92 I & TEXx, TEXy, TEXZ, 9 93 TM(i,j) = cdt*TExx 94 TM(i,j) = cdt*TExx 95 TM(i,j) = cdt*TExx 96 TM(inelm,j) = cdt*TExx 97 TM(inelm,j) = cdt*TExx 98 TM(inelm,j) = cdt*TExx 90 TM(inelm,j) = cdt*TExx 91 TM(inelm,j) = cdt*TExx 92 TM(inelm,j) = cdt*TExx 93 TM(inelm,j) = cdt*TExx 94 TM(inelm,j) = cdt*TExy1.5D0 95 TM(inelm,j) = cdt*TExy1.5D0 96 TM(inelm,j) = cdt*TExy1.5D0 97 TM(inelm,j) = cdt*TExy1.5D0 98 TM(inelm,j) = cdt*TExy1.5D0 99 TM		& mint)
97 ! & x0(1),y0(1),z0(1), & 98 ! & 1, 99 ! & TEXx, TEXy, TEXz, & 99 ! & TEXx, TEXy, TEXZ, & 91 ! & TEXx, TEXy, TEXZ, & 92 ! & TEXx, TEXy, TEXZ, & 93 ! & TEXx, TEXy, TEXZ, & 94 ! & TEXx, TEXy, TEXZ, & 95 TM(1,j) - cdt*TEXx 96 TM(1,inelm,j) = - cdt*TEXX 97 TM(1,inelm,j) = - cdt*TEXX 98 TM(1,inelm,j) = - cdt*TEXX 99 TM(1,inelm,j) = - cdt*TEXX 90 TM(1,inelm,j) = - cdt*TEXX 91 TM(1,inelm,j) = - cdt*TEXX 92 TM(1,inelm,j) = - cdt*TEXX 93 TM(1,inelm,j) = - cdt*TEXX 94 TM(1,inelm,j) = - cdt*TEXX 95 TM(1,inelm,j) = - cdt*TEXX 96 TM(1,inelm,j) = - cdt*TEXX 97 TM(1,inelm,j) = - cdt*TEXX 98 TM(1,inelm,j) = - cdt*TEXX 99 TM(1,inelm,j) = - cdt*TEXX 90 TM(1,inelm,j) = - cdt*TEXX 91 TM(1,inelm,j) = - cdt*TEXX		
98 1 8.1 1.1 8.1 99 1 8.1 TEXX, TEXY, TEXZ, 8 90 1 8.1 TEXX, TEXY, TEXZ, 8 91 1 8.1 TEXX, TEXY, TEXZ, 8 92 1 6.1 TEXX, TEXY, TEXZ, 8 93 1.1 6.1 TEXX, TEXY, TEXZ, 8 94 1.1 1.1 Cdt*TEXX 95 1.1 TEX, TEXY, TEXZ, 8 96 1.1 Cdt*TEXX 97 1.1 Cdt*TEXX 98 1.1 Cdt*TEXX 99 1.1 Cdt*TEXX 90 TEX, TEXY, TEXZ, 8 91 TEX, TEXY, TEXZ, 8 92 TEX, 1.1 93 TEX, 1.1 94 TEX, 1.1 95 TEX, 1.1 95 TEX, 1.1 96 TEX, 1.1 97 TEX, 1.1 98 TEX, 1.1 98 TEX, 1.1 99 TEX, 1.1 90 TEX, 1.1 91 <th></th> <td></td>		
99 ! 8. TExx, TExy, TExz, 8. 90 ! 8. TExx, TExy, TEzz, 8. 91 8. TExx, TEzy, TEzz) 92 . . 93 TM(1,j) = cdt*TExx, TEzz)) 94 TM(1,j) = cdt*TExx . 95 TM(1,jnelmz) = cdt*TExx . 96 TM(1,inelm,jnelm) = cdt*TEyx . 97 TM(inelm,jnelm) = cdt*TEyx . 98 TM(inelm,jnelm) = cdt*TEyx . 99 TM(inelm,jnelm) = cdt*TEyx . 90 TM(inelm,jnelm) = cdt*TEyx . 91 TM(inelm,jnelm) = cdt*TEyx . 92 TM(inelm,jnelm) = cdt*TEyx*1.500 . 91 TM(inelm,jnelm) = cdt*TEy*1.500 . 92 TM(inelm,jnelm2) = cdt*TEy*1.500 . 93 TM(inelm,jnelm2) = cdt*TEy*1.500 . 94 TM(inelm2,jnelm2) = cdt*TEy*1.500 . 95 TM(inelm2,jnelm2) = cdt*TEy*1.500 . 94 TM(inelm2,jnelm2) = cdt*TEy*1.500 . 95		
09 1 8. TExx, TExy, TExz, TExz 01 1 8. TExx, TExy, TExz 02 1 6. TExx, TExy, TExz 03 TM(1, jnelm) - cdt*TExx 04 TM(1, jnelm) - cdt*TExx 05 TM(1, jnelm) - cdt*TExx 06 TM(1, jnelm) - cdt*TExx 07 TM(inelm, jnelm) - cdt*TExy 08 TM(1, jnelm) - cdt*TExy 08 TM(inelm, jnelm) - cdt*TExy 08 TM(inelm, jnelm) - cdt*TExy 09 TM(inelm, jnelm) - cdt*TExy 10 TM(inelm, jnelm) - cdt*TExy 11 TM(inelm, jnelm) - cdt*TExy*1.500 12		
1 8 TEXX, TEXY, TEXY 2 33 TM(1,j) = cdt*TEXX 40 TM(1,j) = cdt*TEXX 55 TM(1,jnelmZ) = cdt*TEXX 66 TM(1,inelm,jnelmZ) = cdt*TEXX 77 TM(inelm,jnelmZ) = cdt*TEXX 88 TM(1,inelmZ,j) = cdt*TEXX 99 TM(inelmZ,j) = cdt*TEXX 10 TM(inelmZ,j) = cdt*TEXX 11 TM(inelmZ,j) = cdt*TEXX 12		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
83 $TP(1,j)$ = cdt^+TExx 84 $TP(1,j)elmz$) = cdt^+TExy 85 $TP(1,j)elmz$) = cdt^+TExz 86 $TP(1,inelm,jnelm)$ = cdt^+TEyx 87 $TP(inelm,jnelm)$ = cdt^+TEyx 88 $TP(inelm,jnelm)$ = cdt^+TEyz 89 $TP(inelm,jnelm)$ = cdt^+TEyz 80 $TP(inelm,jnelm)$ = cdt^+TEyz 81 $TP(inelm,jnelm)$ = cdt^+TEyz 81 $TP(inelm,jnelm2)$ = cdt^+TEyz 82 $TP(inelm,jnelm2)$ = cdt^+TEyz 81 $TP(inelm,jnelm2)$ = cdt^+TEyt 82 $TP(inelma,j)$ = cdt^+TEyt 84 $TP(inelma,j)$ = cdt^+TEyt 85 $TP(inelma,j)$ = cdt^+TEyt 86 $TP(inelma,j)$ = cdt^+TEyt 81 $TP(inelma,j)$ = cdt^+TEyt 82 $TP(inelma,jnelm2)$ = cdt^+TEyt 82 $TP(inelma,jnelm2)$ = cdt^+TEyt 82 $TP(inelma,jnelm2)$ = cdt^+TEyt 82 END DO		: a lezx, lezy, lezz)
94 TM(1,jnelm) = cdt*TExy 95 TM(1,jnelm,j) = cdt*TExz 96 TM(1nelm,jnelm) = cdt*TEyx 97 TM(1nelm,jnelm2) = cdt*TEyx 98 TM(1nelm2,jnelm2) = cdt*TEyz 98 TM(1nelm2,jnelm2) = cdt*TEyz 90 TM(1nelm2,jnelm2) = cdt*TExx 101 TM(1nelm2,jnelm2) = cdt*TExx 112 TTM(1,jnelm2) = cdt*TExx+1.500 113 TTM(1,jnelm2) = cdt*TExx+1.500 114 TTM(1,jnelm2) = cdt*TExx+1.500 115 TTM(1,jnelm2) = cdt*TExx+1.500 116 TTM(1nelm2,jnelm2) = cdt*TExx+1.500 117 TTM(1nelm2,jnelm2) = cdt*TExx+1.500 118 TTM(1nelm2,jnelm2) = cdt*TExx+1.500 119 TTM(1nelm2, jnelm2) = cdt*TExx+1.500 111 TTM(1nelm2, jnelm2) = cdt*TExx+1.500 111 TTM(1nelm2, jnelm2) = cdt*TExx+1.500 111 TTM(1nelm2, jnelm2) = cdt*TExx+1.500 112 TTM(TM(1, 1) = cdt*TEvx
55 TM(1, joular) = cdt*TEx2 66 TM(1, ioular, joular) = cdt*TEyx 87 TM(1, ioular, joular) = cdt*TEyz 89 TM(1, ioular, joular) = cdt*TEyz 99 TM(1, ioular, joular) = cdt*TEyz 100 TM(1, ioular, joular) = cdt*TEyz 11 TM(1, ioular, joular) = cdt*TEyz 12		
96 TM(inelm,jn) = cdt*TEyx 97 TM(inelm,jn) = cdt*TEyy 98 TM(inelm,jn) = cdt*TEyz 98 TM(inelm,jn) = cdt*TExx 10 TM(inelm,jn) = cdt*TExx 11 TM(inelm,jn) = cdt*TExy 13 TM(inelm,jn) = cdt*TExy 14 TM(inelm,jn) = cdt*TExy*1.5D0 15 TM(inelm,jn) = cdt*TExy*1.5D0 16 TM(inelm,jn) = cdt*TExy*1.5D0 17 TM(inelm,jn) = cdt*TExy*1.5D0 18 TM(inelm,jn) = cdt*TExy*1.5D0 19 TM(inelm,jn) = cdt*TExy*1.5D0 10 TM(inelm,jn) = cdt*TExy*1.5D0 11 TM(inelm,jn) = cdt*TExy*1.5D0 12 TM(inelm,jn) = cdt*TExy*1.5D0 13 TM(inelm,jn) = cdt*TExy*1.5D0 14 TM(inelm,jn) = cdt*TExy*1.5D0 15 TM(inelm,jn) = cdt*TExy*1.5D0 16 TM(inelm,jn) = cdt*TExy*1.5D0 17 TM(inelm,jn) = cdt*TExy*1.5D0 18 TM(inelm,jn) = cdt*TExy*1.5D0 11 TM(inelm,jnelm) = cdt*TExy*1.5D0 12 TM(inelm,jnelm) = cdt*TExy*1.5D0 13 TM(inelm,jnelm) = cdt*TExy*1.5D0 14 TM(inelm,jnelm) = cdt*TExy*1.5D0 15 TM(inelm,jnelm) = cdt*TExy*1.5D0 16 TM(inelm,jnelm) = cdt*TExy*1.5D0 </td <th></th> <td></td>		
97 TM(inelm,jnelm) = cdt*TEyy 98 TM(inelm,jnelm2) = cdt*TEyz 99 TM(inelm,jnelm2) = cdt*TEyz 100 TM(inelm,jnelm2) = cdt*TEzy 111 TM(inelm,jnelm2) = cdt*TEzy 121		
88 TM(inelma,jnelm2) = cdt*TEy2 99 TM(inelma,jnelm) = cdt*TEzx 10 TM(inelma,jnelm) = cdt*TEzx 11 TM(inelma,jnelm) = cdt*TEzx 12 Immain = cdt*TExx*1.500 13 TTM(i,jnelm) = cdt*TExx*1.500 14 TTM(i,jnelm) = cdt*TExx*1.500 15 TTM(inelma,jnelm) = cdt*TExx*1.500 16 TTM(inelma,jnelm) = cdt*TExx*1.500 17 TTM(inelma,jnelm) = cdt*TExx*1.500 18 TTM(inelma,jnelm) = cdt*TExx*1.500 19 TTM(inelma,jnelm) = cdt*TExx*1.500 20 TTM(inelma,jnelm2) = cdt*TExx*1.500 21 TTM(inelma,jnelm2) = cdt*TExx*1.500 22 TTM(inelma,jnelm2) = cdt*TExx*1.500 23 END DF END DO 24 END DO 25 END DO 26 Semp end do 27 Semp end harallel		
99 TW(inelm2,j) = cdt*TE2x 10 TW(inelm2,jnelm2) = cdt*TE2y 11 TW(inelm2,jnelm2) = cdt*TE2y 12	8	
11 TM(inelm2,jnelm2) = cdt*TEz2 12	9	
12 I	0	TM(inelm2, jnelm) = cdt*TEzy
1 ITM(1,j) = cdt*TExx*1.5D0 14 ITM(1,jnelm2) = cdt*TExx*1.5D0 15 ITM(1,jnelm2) = cdt*TExx*1.5D0 16 ITM(1,nelm2,jnelm2) = cdt*TExx*1.5D0 17 ITM(1,nelm2,jnelm2) = cdt*TExx*1.5D0 18 ITM(1,nelm2,jnelm2) = cdt*TExx*1.5D0 19 ITM(1,nelm2,jnelm2) = cdt*TExx*1.5D0 10 ITM(1,nelm2,jnelm2) = cdt*TExx*1.5D0 11 ITM(1,nelm2,jnelm2) = cdt*TExx*1.5D0 12 ITM(1,nelm2,jnelm2) = cdt*TExx*1.5D0 13 ITM(1,nelm2,jnelm2) = cdt*TExx*1.5D0 14 ITM(1,nelm2,jnelm2) = cdt*TExx*1.5D0 15 ITM(1,nelm2,jnelm2) = cdt*TExx*1.5D0 14 ITM(1,nelm2,jnelm2) = cdt*TExx*1.5D0 15 ITM(1,nelm2,jnelm2) = cdt*TExx*1.5D0 14 ITM(1,nelm2,jnelm2) = cdt*TExx*1.5D0 15 ITM(1,nelm2,jnelm2) = cdt*TExx*1.5D0 16 ITM(1,nelm2,jnelm2) = cdt*TExx*1.5D0 17 ITM(1,nelm2,jnelm2) = cdt*TExx*1.5D0 18 ITM(1,nelm2,jnelm2) = cdt*TExx*1.5D0 19 ITM(1,nelm2,jnelm2) = cdt*TExx*1.5D0 20 END DO EDD 25	1	TM(inelm2, jnelm2) = cdt*TEzz
14 ITM(1,jnelm) = cdt*TExyt1.500 15 ITM(1,jnelm,jnelm) = cdt*TExyt1.500 16 ITM(1nelm,jnelm) = cdt*TExyt1.500 17 ITM(1nelm,jnelm) = cdt*TExyt1.500 18 ITM(1nelm,jnelm) = cdt*TExyt1.500 19 ITM(1nelm,jnelm) = cdt*TExyt1.500 20 ITM(1nelm,jnelm) = cdt*TExyt1.500 21 ITM(1nelm2,jnelm) = cdt*TExyt1.500 21 ITM(1nelm2,jnelm2) = cdt*TExyt1.500 22 END 00 END 00 24 END 00 E0 500 25 END 00 E0 500 26 Semp end do 7 7 Semp end lange End		
15 ITM(i,j,nelm2) = cdt*TExt*1.500 16 ITM(inelm,j) = cdt*TExt*1.500 17 ITM(inelm,j,nelm2) = cdt*TEyt*1.500 18 ITM(inelm,j,nelm2) = cdt*TEyt*1.500 19 ITM(inelm,j,nelm2) = cdt*TEyt*1.500 10 ITM(inelm2,j) = cdt*TEyt*1.500 11 ITM(inelm2,jnelm2) = cdt*TEyt*1.500 12 ITM(inelm2,jnelm2) = cdt*TExt*1.500 13 ITM(inelm2,jnelm2) = cdt*TExt*1.500 14 END DO END DO 26 Semp end do Z6 27 ISM0 pend parallel END END		
16 1'M('inela, jn, inela, jn, inela, jn, inela, jn, inela, jn, inela, jn, inela, jn, inela, in		
17 11M(inelm_inelm_i) = cdt*TEyy*1.5D0 18 11M(inelm_inelm_i) = cdt*TEyz*1.5D0 19 11M(inelm_inelm_i) = cdt*TEzy*1.5D0 20 11M(inelm_inelm_i) = cdt*TEzy*1.5D0 21 11M(inelm_inelm_i) = cdt*TEzy*1.5D0 22 11M(inelm_inelm_i) = cdt*TEzy*1.5D0 23 END IF 24 END D0 25 END D0 26 Sempo end do 27 150m end parallel		
18 TrM(inellar_1), inellar) = cdt*TEy2*1.500 19 TrM(inellar_2), inellar) = cdt*TEx2*1.500 20 TrM(inellar_2, inellar) = cdt*TEzy*1.500 21 TrM(inellar_2, inellar) = cdt*TEzz*1.500 22		
19 1'M(inela2, j) = cdt*TE2x*1.5D0 20 1'M(inela2, jneln2) = cdt*TE2x*1.5D0 21 1'M(inela2, jneln2) = cdt*TE2x*1.5D0 22		
20 ITM(inelaz, jnelm) = cdt*TEzy*1.5D0 21 ITM(inelaz, jnelm2) = cdt*TEzz*1.5D0 22 Image: cdt*TEzz*1.5D0 23 END IF 24 END D0 25 END D0 26 Semporend do 70 fsomp end parallel Semporal		
1 Imt(ineula_jnelnz) = cdt*TEzz*1.5D0 21		
22 [
23 END IF END DO 25 END DO 26 ISomp end do 27 ISomp end parallel		
25 END DO 26 ISomp end do 27 ISomp end parallel		
26 !\$omp end do 27 !\$omp end parallel	4	END DO
27 !\$omp end parallel	5	END DO
	6 !\$or	mp end do
28 !	7 !\$or	mp end parallel
	8 !==•	
29 END IF		
30 !		
B1 END SUBROUTINE Builder_TM		
32		
33 END MODULE Mod_Builder_Matrix_Arrays	3 END	NODULE Mod_Builder_Matrix_Arrays

	DULE Mod_Prtcl3D_SLP Version: 0.5 created on 26 / IX / 2007	
i.	Version. 0.5 created on 20 / 1X / 2007	C. Pozrikidis
i	Version: 0.7 created on / III /2010	Marco Antonio Reyes Huesca
i.	Version: 0.8 created on 22 / 03 / 2012	
1	Version: 0.9 created on 03 / 09 / 2012 Version: 1.0 created on 12 / 11 / 2012	
i.		Alfredo Sanjuan Sanjuan
!	CONTAINS	
	SUBROUTINE Intgr_Trgl(x0, y0, z0, & & x, y, z, &	
1	& x1, y1, z1, &	
	& k, & & & & & & & & & & & & & & & & & &	
	& mint)	
	This subroutine integrates the Green's function	over a non-singular triangle numbered k
	USE Mod_SharedVars, ONLY: DBL, ULog, eps, Pi, & p, ne, n, nbe,arel,	& &
	& alphaQ, betaQ, gammaQ,	&
	& xiq, etq, wq, & NS,Np	&
	USE Mod_sgf_3d_fs	
1	USE Mod_Nodal_Interp	
	IMPLICIT NONE	
!==	Variables	
1	REAL (KIND = DBL), INTENT(IN) :: x1, y1, z1 REAL (KIND = DBL), INTENT(IN) :: x, y, z INTEGER, INTENT(IN) :: k REAL (KIND = DBL), INTENT(DUT) :: GEx, GEy, GEZ INTEGER, INTENT(IN) :: mint	<pre>!coordinates of collocation point of the element !element index !Integrated ij component over the element !order of triangle quadrature</pre>
Ì.	Variables inside the subroutine	
!	INTEGER :: i, j	!Counters
1		indices to obtain node numbers from each element
	REAL (KIND = DBL) :: xi, eta	variables to integrate over a triangle
1	REAL (KIND = DBL) :: x, y, z REAL (KIND = DBL) :: DxDxi, DyDxi, DzDxi, &	<pre>!coordinates of the f(x,y,z)= F(xi,eta) !Derivates of the tangential vectors over the element</pre>
	& DxDet, DyDet, DzDet	iberivates of the tangential vectors over the element
		<pre>!normal vector coordinates of the element !surface metric on a triangle</pre>
		integration weigth coefficient
		!Free-space Green's function of Stokeslet. integrated ij
	& Gyx, Gyy, Gyz, & & Gzx, Gzy, Gzz	component over the element
1	Initialize Gxx = 0.0D0	
	Gxy = 0.0D0	
	Gxz = 0.0D0 Gyx = 0.0D0	
	Gyy = 0.0D0	
	Gyz = 0.0D0 Gzx = 0.0D0	
	Gzy = 0.000 Gzz = 0.000	

	GEX = 0.0D0
	GEy = 0.0D0 GEz = 0.0D0
	vertices of the kth triangle
	i1 = n(k, 1)
	12 = n(k,2) 13 = n(k,3)
	$14 = n(k_s 4)$
	15 = n(k,5)
	i6 = n(k,6)
1-	DO i = 1, mint
i	
i.	eta = etq(i)
1	CALL interp_p(p(i1,1), p(i1,2), p(i1,3), &
1	& p(i2,1), p(i2,2), p(i2,3), & & p(i3,1), p(i3,2), p(i3,3), &
i	
1	& p(15,1), p(15,2), p(15,3), &
1	
1	
i	
1	& DxDxi, DyDxi, DzDxi, &
!	& DxDet, DyDet, DzDet, & & vnx. vnv. vnz. &
i.	
!!	l
	! Call subroutine sgf_fs
÷	CALL sgf_3d_fs(x, y, z, &
i.	x_{20} , y_{0} , z_{0} , x_{0} ,
!	& Gxx, Gxy, Gxz, &
!	
!	& GZX, GZY, GZZ)
	: Computes the integral
11	!
! ! !	
i.	
1	
!	GEz = GEz + (Gxz*vnx+Gyz*vny+Gzz*vnz)*fc
	END DO
! =	CALL intr lin sing2(x0, v0, z0, &
	CALL intr_lin_sing2(x0, y0, z0, & & x, y, z, &
	& p(i1,1),p(i1,2),p(i1,3), &
	& p(i4,1),p(i4,2),p(i4,3), &
	& k, mint, & & GEx, GEy, GEz)
!-	
	CALL intr_lin_sing2(x0, y0, z0, &
	& x, y, z, & & p(i4,1),p(i4,2),p(i4,3),&
	& p(i4,1),p(i4,2),p(i4,3),& & p(i2,1),p(i2,2),p(i2,3),&
	& k, mint, &
	& GEx, GEz)
!-	CALL intr lin sing2(x0, v0, z0, &
	CALL intr_lin_sing2(x0,
	<pre>% p(1,1),p(12,2),p(12,3),&</pre>
	& p(i5,1),p(i5,2),p(i5,3),&
	& k, mint, & &
	& GEx, GEy, GEz)
1-	
!-	CALL intr_lin_sing2(x0, y0, z0, &
!-	CALL intr_lin_sing2(x0, y0, z0, & & x, y, z, & & p(15,1),p(15,2),p(15,3),&

Jerrorite integrate second	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_slp.f903	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_slp.f90
$ \frac{1}{1000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000} \frac{1}{100000} \frac{1}{100000} \frac{1}{100000} \frac{1}{1000000} \frac{1}{1000000} \frac{1}{10000000} \frac{1}{10000000000000000000000000000000000$		
Image: set of the structure of the struc		
$ \frac{1}{1000} + $		220 ! CALL intr lin sing(x0, y0, z0, &
$ \begin{array}{c} a & p(1,1,p(1,1),p(1,1),b \\ a & p(1,1,p(1,1),p(1,1),b \\ a & dx, dx, dy, dz, a \\ a & dx, dy, dz, a \\ a & dx, dy, dz, a \\ a & p(1,1,p(1,1),p(1,1),b \\ a & dx, dy, dz, a \\ b & p(1,1,p(1,1),p(1,1),b \\ a & dx, dy, dz, a \\ b & p(1,1,p(1,1),p(1,1),b \\ a & dx, dy, dz, a \\ b & p(1,1,p(1,1),p(1,1),b \\ a & dx, dy, dz, a \\ b & dx, dy, dz, a \\ c & dx, dy, dz, dz, \\ c & dx, dy, dz$		221 ! & p(i2,1),p(i2,2),p(i2,3),&
$\frac{1}{1} \frac{1}{1} \frac{1}$	& x, y, z, &	
a b c motaCAL intr_lin_max $(a_1, b_1, b_2, a_1, b_1, b_2, a_1, $		
GAL intr_lin_integling (i.e., g_1 , g_2 , g_1 , , g_2 , g_1 , g_2 , g_2 , g_1 , g_2 , g_1 , g_2 , g_2 , g_1 , g_2 , g_1 , g_2 , g_2 , g_1 , g_2 , g_1 , g_2 , g_3 , g_4	& k, mint, &	225 ! !& GEzx, GEzy, GEzz, &
Coll. intr_lin_ing(1, 0), 19, 19, 16, 14, 14, 15, 16Coll. intr_lin_ing(2, 0), 19, 18, 19, 16, 14, 14, 15, 16Coll. intr_lin_ing(1, 0), 19, 19, 16, 14, 14, 15, 16Coll. intr_lin_ing(2, 0), 19, 18, 19, 16, 14, 14, 15, 16Coll. intr_lin_ing(1, 0), 19, 19, 19, 14, 14, 15, 16Coll. intr_lin_ing(1, 0), 19, 19, 14, 14, 15, 16Coll. intr_lin_ing(1, 0), 19, 19, 19, 14, 14, 14, 15, 16Coll. intr_lin_ing(1, 0), 19, 19, 14, 14, 14, 15, 16Coll. intr_lin_ing(1, 0), 19, 19, 19, 14, 14, 14, 15, 16Coll. intr_lin_ing(1, 0), 19, 19, 14, 14, 14, 15, 16Coll. intr_lin_ing(1, 0), 19, 19, 19, 14, 14, 14, 14, 15, 16Coll. intr_lin_ing(1, 0), 19, 19, 14, 14, 14, 15, 16Coll. intr_lin_ing(1, 0), 19, 19, 19, 14, 14, 14, 14, 15, 16Coll. intr_lin_ing(1, 0), 19, 19, 14, 14, 14, 14, 15, 16Coll. intr_lin_ing(1, 0), 19, 19, 19, 14, 14, 14, 14, 15, 16Coll. intr_lin_ing(1, 0), 19, 19, 14, 14, 14, 14, 15, 16Coll. intr_lin_ing(1, 0), 19, 19, 19, 14, 14, 14, 15, 16Coll. intr_lin_ing(1, 0), 19, 19, 14, 14, 14, 15, 16Coll. intr_lin_ing(1, 0), 19, 19, 19, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14		
$ \frac{k}{k} + r_{1}, y_{1}, y_{1}, y_{1}, y_{2}, y_{1}, y_{$	CALL intr lin sing2(x0, v0, z0, &	
$\frac{1}{1 + \alpha_{1}} = \frac{1}{\alpha_{1}} + \frac{1}{\alpha_{2}} + \frac{1}{\alpha_{2}$	& x, y, z, &	229 ! & p(i3,1),p(i3,2),p(i3,3),&
k k	& p(16,1),p(16,2),p(16,3),&	
A GE, GEY, GEY, GEY, GEY, GEY, GEY, GEY,		
1 Doe 0 - Substruct may Try1 1 - Try1 0 - Substruct may Try1 1 - Try1	& GEx, GEy, GEz)	233 ! !& GEzx, GEzz, &
111 <th< td=""><td></td><td></td></th<>		
300001110: Integr-Tegl.Sig(0, yp., np., np., np., np., np., np., np., n	!	236 ! Integrate over six flat triangles
Summulti integrate ling of the set of		237
SubscripterSubscript		239 & p(i1,1),p(i1,2),p(i1,3),&
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SUBROUTINE Intgr_Trgl_Sing(x0, y0, z0, &	240 & $p(i4,1), p(i4,2), p(i4,3), \&$
4 1 4 1 1		
<pre>integrate the Green's function over the this ingular quadratic triangle. Integrate the Green's function over the this ingular quadratic triangle. Integrate the Green's function over the this ingular quadratic triangle. Integrate the Green's function over the this ingular guadratic triangle. Integrate the Green's function over the this ingular guadratic triangle. Integrate quadratic triangle</pre>		243 18 GEVX, GEVX, GEVX, S
1 This is done by breaking up the Singular triangle into isk flat triangles, and HEM integrating individually (new the flat triangles in color coefficients. The singularity (x), y(x), 20, 20, 4 7 USE Mod_SharedWrss, OHY: DBL, Ucg, pps, 6 6 8 arel, crwel, 8 arel, crwel, 8 8 arel, crwel, 8 6 9 Mod_SharedWrss, OHY: DBL, Ucg, pps, 6 6 8 arel, crwel, 8 6 9 Mod_SharedWrss, OEY, OEY, 6EY, 8 6 10 Mod_SharedWrss, OEY, OEY, 8 6 10 Mod_SharedWrss, OEY, OEY, 8 6 11 Mod_SharedWrss, OEY, OEY, 8 6 11 Mod_SharedWrss, OEY, OEY, 8 6 11 Mod_SharedWrss, OEY, 0EY, 8 6 11 Mod_SharedWrss, OEY, 0EY, 8 6 11 Mod_SharedWrss, OEY, 0EY, 8 6 11		244 !& GEzx, GEzy, GEzz, &
5 lower the flat triangles in local polar coordinates. The singularity CALL intr_lin_sing(x0, y0, z0, 8 005 Mod_ShareAVers, 014:: 084, UGS, eps, 8 8 005 Mod_ShareAVers, 014:: 084, UGS, eps, 6 8 005 Mod_ShareAVers, 014:: 084, WG, 8 8 005 Mod_ShareAVers, 014:: 084, WG, 8 8 005 Mod_ShareAVers, 014:: 084, WG, 9 20 005 Mod_ShareAVers, 014:: 084, WG, 9 20 005 Mod_ShareAVers, 014:: 084, WG, 90, 20 1000000000000000000000000000000000000	Integrate the Green's function over the kth singular quadratic triangle.	
$ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$		
8 $p_{1, p, n, n}$ mbe, 8 9 $p_{1, p, n,		248 & p(i4,1),p(i4,2),p(i4,3),&
8 arel, crywel, 8 8 arel, crywel, 8 8 b, kp 1 b, kp, kp, kp, kp, kp, kp, kp, kp, kp, kp	USE Mod_SharedVars, ONLY: DBL, ULog, eps, &	
8 xia, etc, waj, 8 8 his, hp 199LCT1 NME 199LCT1 NME 199LCT1 NME 199LCT1 NME 199LCT1 NME 109LCT1 NME 109LCT1 NME 109LCT1 NME 109LCT1 NME 101ECER 11 = n(k, 2) 11 = n(k, 3) 12 = n(k, 2) 13 = n(k, 3) 14 = n(k, 4) 15 = n(k, 5) 15 = n(k, 6) 16 = n(k, 6) 6E = 0.000 6E = 0.000 6E = 0.000 6E = 0.000 101ECER 101ECER 11 = n(k, 1) 12 = n(k, 1) 13 = n(k, 2) 14 = n(k, 2) 15 = n(k, 2) <td></td> <td>250 & K, &</td>		250 & K, &
IPPLICIT MOREIPPLICIT MOREIP		252 !& GEyx, GEyy, GEyz, &
JUPLICIT NOME INTERCIPATION Constitute of collocationpoint of the element INTERCIPATION Collocationpoint of the element Collocationpoint of collocationpoint c		253 !& GEzx, GEzy, GEzz, &
5 REAL (KIND = 06L), INTENT(IN) :: is, y0, z0 i concordinates of collocationpoint of the element 1 INTEGER, INTENT(IN) :: is, is i component over the element 1 Integrate over these subroutine i concordinates of collocationpoint of the element 1 Integrate over these subroutine i concordinates of collocationpoint over the element 1 Integrate over these subroutine i concordinates of collocationpoint over the element 1 Integrate over these subroutine i concordinates of collocationpoint over the element 1 Integrate over these subroutine i definition of the nodes in each element. 1 Integrate over these flat triangles i definition of the nodes in each element. 1 i endes i for n(k, d) 1 i endes i for n(k, d) 1 i for n(k, d) i for n(k, d) 1 i for n(k, d) i for n(k, d) 1 i for n(k, d) i for n(k, d) 1 i for n(k, d) i for n(k, d) 1 i for n(k, d) i for n(k, d) 1 i for n(k, d) i for n(k, d) 1 i for n(k, d) i for n(k, d) 2		
6 INTEGER, INTENT(IN):::: dix, dEy, dEz, integrated i j component over the element 7 Integrate, Integrate and i component over the element 8 Integrate, Integrate and i component over the element 1 Integrate, Integrate, Integrate and i component over the element 1 Integrate, Intethand, Integrate, Integrate,		256 CALL intr_lin_sing(x0, y0, z0, &
7 REAL (KIND = OBL), INTENT(OUT) :: GEx, GEx, GEx, GEx, GEx, GEx, GEx, GEx,	REAL (KIND = DBL), INTENT(IN) :: x0, y0, z0 coordinates of collocationpoint of the element	
8 INTEGER, INTERVI(IN) :: mint Iorder of triangle quadrature 9	REAL (KIND = DBL), INTENT(OUT) :: GEX, GEY, GEZ [Integrated i] component over the element	
0 1 Variables inside the subroutine 1 1 <td>INTEGER, INTENT(IN) :: mint !order of triangle quadrature</td> <td>260 & GEx, GEy, GEz, &</td>	INTEGER, INTENT(IN) :: mint !order of triangle quadrature	260 & GEx, GEy, GEz, &
1 INTEGER :: i, j i, j Counters 3 INTEGER :: i, j, 12, i3, i4, i5, i6 indices to obtain node numbers from each element forder of triangle quadrature 3 INTEGER :: i, n, i forder of triangle quadrature 4 INTEGER :: i, n, i forder of triangle quadrature 5		261 !& GEyx, GEyz, &
3 INTEGER :: i1, i2, i3, i4, i5, i6 Indices to obtain node numbers from each element 4 INTEGER :: mint Iorder of triangle quadrature 5	1	
4 I Diffects :: mint i order of triangle quadrature 5 I obtain the information of the nodes in each element. 266 & $p(15,1), p(15,2), p(15,3), \&$ 6 I obtain the information of the nodes in each element. 267 & $p(15,1), p(15,2), p(15,3), \&$ 8 I = n(k,1) 12 = n(k,2) 268 & k 9 13 = n(k,3) 6 GEX, GEY, GEY, & 270 14 = n(k,4) 13 = n(k,5) 271 8 GEX, GEY, GEY, & 2 15 = n(k,5) 16 = n(k,6) 8 p(15,1), p(15,2), p(15,3), & 1 is - n(k,6) 1 is - n(k,c) 8 mint) 2 15 = n(k,6) 8 p(16,1), p(16,2), p(16,3), & 8 2 1 1 intialize the enray 8 p(16,1), p(16,2), p(16,3), & 8 3 6 GE 2 = 0.000 8 GE 2 + 0.000 8 GE 2 + 0.000 8 GE 2 + 0.000 9 Image to over three flat triangles 270 8 de GEX, GEY, GEY, & 8 10 Image to over three flat triangles 270 8 de GEX, GEY, GEY, & 8 21 1. A triangles, p(11,1), p(11,2), p(11,3), g, 8 8 1 21 1. Integrate over three flat triangles 28 GEI + 0.000 8	INTEGER :: i, j ! i, j Counters	264 !
$ \begin{bmatrix} 267 & & p(13,1),p(13,2),p(13,3), & \\ 0 & b & b & b & \\ 11 & n(k,1) & \\ 21 & n(k,2) & \\ 11 & a & n(k,2) & \\ 11 & a & n(k,3) & \\ 21 & b & n(k,3) & \\ 11 & a & n(k,4) & \\ 21 & b & n(k,5) & \\ 21 & b & n(k,6) & \\ 11 & b & n(k,6$	INITOLEX :: 11, 12, 13, 14, 15, 16 Indices to obtain node numbers from each element	265 CALL INTE_LIN_SING(X0, Y0, Z0, X 266 & n(15,1) n(15,2) n(15,3) &
6 1 Obtain the information of the nodes in each element. 268 & k & a 9 11 = n(k,1) 268 & k & a 9 11 = n(k,2) 8 GEX, GEY, GEY, & GE		267 & p(i3,1),p(i3,2),p(i3,3),&
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		268 & k, &
9 12 = n(k,2) 13 = n(k,3) 14 + n(k,4) 14 = n(k,5) 15 = n(k,5) 21 is = n(k,5) 271 18 mint 21 is = n(k,5) 273 21 is = n(k,5) 274 CALL intr_lin_sing(x0, y0, z0, & 21 is = n(k,5) 8 p(13,1),p(13,2),p(13,3),8 21 is = n(k,5) 8 p(13,1),p(13,2),p(13,3),8 21 is = n(k,6) 8 p(13,1),p(13,2),p(13,3),8 21 is = n(k,5) 8 g(2, GEY, GEY, GEY, GEY, GEY, GEY, GEY, GEY		
0 13 = n(k,3) 272 & mint) 14 = n(k,4)	i2 = n(k,2)	271 !& GEzx, GEzy, GEzz, &
2 15 = n(k,5) 3 15 = n(k,6) 4		272 & mint)
3 is = n(k, 6) 275 & p(13, 1), p(13, 2), p(13, 3), & 4		
1 276 & p(16,1),p(16,2),p(16,3),& 6 GEx = 0.000 277 & k, 6 GEx = 0.000 278 & GEx, 6 Ex, 6 Ex, 6 7 0 K, & GEx = 0.000 8 GEx = 0.000 278 & GEx, 6 Ex, 6 Ex, 6 9 16 GEx = 0.000 18 GEx, 6 Ex, 6 Ex, 6 1 Integrate over three flat triangles 18 GEx, 6 Ex, 6 Ex, 6 21 CALL intr_lin_sing(x0, y0, z0, 8 20 16 21 & p(11,1),p(11,2),p(11,3),0 280 280 13 23 CALL intr_lin_sing(x0, y0, z0, 8 286 8 (f(1,1),p(11,2),p(11,3),0 24 1 8 p(11,1),p(11,2),p(11,3),0 285 8 (f(1,1),p(11,2),p(11,3),0	i6 = n(k,6)	275 & p(i3,1),p(i3,2),p(i3,3),&
6 GEx = 0.000 278 & GEx, GEy, GEy, & GEy, GEy, & GEy, GEy, & GEy, GEy, GEy, GEy, GEy, GEy, GEy, GEy,		276 & p(16,1),p(16,2),p(16,3),&
7 GFy = 0.000 8 GEz = 0.000 9		
8 6Ez = 0.000 280 18 6Ez, g. 6Ez, g	GEy = 0.0D0	279 !& GEvx, GEvz, &
0 ! Integrate over three flat triangles 222 !	GEz = 0.000	280 !& GEzx, GEzy, GEzz, &
1 283 CALL intr_lin_sing(x0, y0, z0, & 2 CALL intr_lin_sing(x0, y0, z0, & 283 3 4 8 p(i1,1),p(i1,2),p(i1,3),0 4 1 8 p(i1,1),p(i1,2),p(i1,3),0 286 8 k, k, k		281 & mint) 282 !
3 & p(i1,1),p(i1,2),p(i1,3),b 4 & p(i2,1),p(i2,2),p(i2,3),b 4 & p(i2,1),p(i2,2),p(i2,3),b 2 = & & k, & & & & & & & & & & & & & & & &	1	283 CALL intr_lin_sing(x0, y0, z0, &
4 ! & p(12,1),p(12,2),p(12,3),& 286 & k, &	! CALL intr_lin_sing(x0, y0, 20, &	
		$\frac{265}{286} \qquad
	! & GEx, GEy, GEz, &	287 & GEx, GEy, GEz, &
6 ! !& GEyx, GEyy, GEyz, & 288 !& GEyx, GEyz, &	! !& GEyx, GEyz, &	288 1& GEyx, GEyy, GEyz, &

D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl 3D s1p.f90 5	D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl 3D slp.f90
!& GEzx, GEzy, GEzz, & & mint)	$\begin{array}{ccc} 361 & \text{eet}(1) = 0.500 \\ 362 & \text{zzt}(1) = 0.000 \end{array}$
	362 22(1) = 0.600 363 xx(2) = 0.500
!GEx = GEx*crvmel(k)	364 = eet(2) = 0.000
<pre>IGEy = GEy*crvme1(k)</pre>	365 zzt(2) = 0.500
!GEz = GEz*crymel(k)	366 xxi(3) = 0.0D0
	367 = et(3) = 0.5D0
END SUBROUTINE Intgr Trgl Sing	368 zzt(3) = 0.5D0
!	369 !
	370 !xxi(1) = 1.0D0 / 6.0D0
SUBROUTINE intr_lin_sing(x1, y1, z1, &	371 !eet(1) = 1.0D0 / 6.0D0
& x2, y2, z2, &	372 !zzt(1) = 2.000 / 3.000
& x3, y3, z3, &	373 !xxi(2) = 2.000 / 3.000
& k, &	374 !eet(2) = 1.000 / 6.000
& GEx, GEy, GEz, &	$\begin{array}{cccc} 375 & zzt(2) = 1.000 / 6.000 \\ 376 & xxi(3) = 1.000 / 6.000 \end{array}$
& mint)	
	$\begin{array}{cccc} 377 & eet(3) = 2.000 / 3.000 \\ 378 & zzt(3) = 1.000 / 6.000 \end{array}$
i integrates the orean's function over a flat triangle in local polar containeds with origin at Singular Ipoint: (Xi,yi,zi). The subrotine is based from Pozriquidis 2002 pp. 119-120 in the technique 5.2.8 - 5.2.11	379 122((3) = 1.000 / 0.000
:point: (xi,yi,zi). The subrotine is based from Pozidulais 2002 pp. 119-120 in the technique 5.2.8 - 5.2.11	3/9 :
:	381 GX = 0.000
8 8 ZZ, WW, 8	382 GXZ = 0.0D0
& Ns, Np, crvmel, xiq, etq, wq	383 Gyx = 0.0D0
	384 Gyy = 0.0D0
USE Mod_sgf_3d_fs	385 Gyz = 0.0D0
1	386 Gzx = 0.0D0
IMPLICIT NONE	387 Gzy = 0.0D0
	388 Gzz = 0.0D0
! Variables	389 !
	390 R×x = 0.0D0
REAL (KIND = DBL), INTENT(IN) :: x1, y1, z1 !coordinates of flat triangle vertice	391 Rxy = 0.0D0
REAL (KIND = DBL), INTENT(IN) :: x2, y2, z2	392 Rxz = 0.0D0
REAL (KIND = DBL), INTENT(IN) :: x3, y3, z3	393 Ryx = 0.0D0
INTEGER, INTENT(IN) :: k !element index	334 Ryy = 0.000
REAL (KIND = DBL), INTENT(INOUT) :: GEx, GEy, GEz !Integrated ij component over the element	395 Ryz = 0.000
INTEGER, INTENT(IN) :: mint !order of Gauss-Legendre quadrature	396 Rzx = 0.0D0 397 Rzy = 0.0D0
:	398 Rz = 0.000
	399
INTEGER :: i, j !Counters	400 Mxx = 0.0D0
INTEGER :: i1, i2, i3, i4, i5, i6 !indices to obtain the node number in the vertices of each element	401 Mxy = 0.0D0
/	402 MXZ = 0.0D0
REAL (KIND = DBL) :: pi4, piq !constants to integrate over a circle element in Phi and r	403 Myx = 0.0D0
REAL (KIND = DBL) :: xi, et, zt !constants of weigth to integrate over a flat triangle	404 Myy = 0.0D0
REAL (KIND = DBL) :: dx, dy !surface metrics	405 Myz = 0.0D0
REAL (KIND = DBL) :: vnx, vny, vnz !triangle normal vector	406 Mzx = 0.0D0
REAL (KIND = DBL) :: area, hs Itriangle area and surface metric on a flat triangle	407 Mzy = 0.000
REAL (KIND = DBL) :: ph, cph, sph !variable Phi, Cos(phi) and Sin(Phi)	498 Mzz = 0.0D0
REAL (KIND = DBL) :: r, rmax, rmaxh variable r and values of variable r to integrate	409
REAL (KIND = DBL) :: x, y, z !coordinates of f(xi, et, zt) REAL (KIND = DBL) :: cf, cf1, cf2 !integrate weigths	410 ! compute surface metric: hs
REAL (KIND = DBL) :: c+, c+1, c+2 !integrate weigths REAL (KIND = DBL) :: asm, bsm !triangle area computed by numerical integration and its derivate	411 !
REAL (KIND = DBL) :: a sim, osm :: triangle area computed by numerical integration and its derivate REAL (KIND = DBL) :: B, C, ABC : lintegrate are coefficients	$ \begin{array}{ccc} 412 & 0x = DSQRT(((x-x_1)^{-x_2}) + ((y_2-y_1)^{-x_2}) + ((z^2-z_1)^{-x_2}) \\ 413 & dy = DSQRT(((x-x_1)^{+x_2}) + ((x^2-x_1)^{+x_2}) + ((x^2-z_1)^{+x_2}) \end{array} \right) $
REAL (KIND = DEL):: 5, C, ABC Integrate arc coerrightens REAL (KIND = DEL):: 51, 52, c1 Idumny integrate arc constants	$\begin{array}{ccc} 4_{13} & dy = 0 \text{SQR}(((\chi_{3} - \chi_{1})^{-1} Z) + ((\chi_{3} - \chi_{1})$
REAL (KIND = DEL) I. DI, DZ, LI IUUMMY INTEGRALE AT CONSTANTS REAL (KIND = DEL), DIMENSION(3) ::xx1, eet, zzt !variables of weigth over in triangle (xi,eta)	$\begin{array}{c} 414 \\ 415 \\ 415 \\ \text{vnx} = ((y_2 - y_1)^*(z_3 - z_1)) - ((z_2 - z_1)^*(y_3 - y_1)) \\ \end{array}$
REAL (KIND = DEL): CARS, GXY, GXZ, & [Free-space Green's function of Stokeslet. integrated ij component	$416 \text{wny} = ((22-21)^*(33-21)) \cdot ((22-21)^*(33-21))$
& Gyx, Gyz, & Jover the element	$ \begin{array}{c} 1 \\ 417 \\ vnz = ((x2-x1)*(y3-y1)) - ((y2-y1)*(x3-x1)) \\ \end{array} $
& Gzx, Gzy, Gzz	
REAL (KIND = DBL) :: Rxx, Rxy, Rxz, & !Stokeslets Dummy coefficients	419 hs = DSQRT(vnx*vnx + vny*vny + vnz*vnz)
& Ryx, Ryy, Ryz, &	420 vnx = vnx/hs
& Rzx, Rzy, Rzz	421 vny = vny/hs
REAL (KIND = DBL) :: Mxx, Mxy, Mxz, & !Stokeslets Dummy coefficients	422 vnz = vnz/hs
& Myx, Myy, Myz, &	423 !
& Mzx, Mzy, Mzz	424 ! Surface metric on a flat triangle
!	425 area = hs/2.0D0
l constants	426
	427 ! Initialize
piq = 0.25D8*pi	428 !
pi4 = 4.0D0*pi	429 ! Triangle area
	430 asm = 0.0D0 431 !************************************
! Initialize xxi(1) = 0.5D0	432 11

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_s1p.f90	7 D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_s1p.f90
!! Apply the forulas from Pozrikidis (2002, p. 119)	505
b1=0.0D0	$506 ! \qquad Gxx = Gxx + (cf2*Rxx/DSORT(ABC))$
b2=0.0D0	$507 \cdot (Gxy - Gxy + (cf2 + Rxy/DSQR(ABC)))$
c1=0.0D0	508 ! Gxz = Gxz + (cf2*Rxz/DSQRT(ABC))
ABC=0.0D0	509 ! Gyx = Gyx + (cf2*Ryx/DSQRT(ABC))
B=0.0D0	510 ! Gyy = Gyy + $(cf2*Ryy/DSQRT(ABC))$
C=0.0D0	511 : $Gyz = Gyz + (cfz^2Hyz/DSQRT(ABC))$
<pre>b1=((x3-x1)*(x2-x1))+((y3-y1)*(y2-y1))+((z3-z1)*(z2-z1))</pre>	512 ! Gzx = Gzx + (cf2*Rzx/DSQRT(ABC))
<pre>b2=DSQRT((x2-x1)**2+(y2-y1)**2+(z2-z1)**2)</pre>	513 ! $Gzy = Gzy + (cf2*Rzy/DSQRT(ABC))$
! c1=DSQRT((x3-x1)**2+(y3-y1)**2+(z3-z1)**2)	514 ! $Gzz = Gzz + (cf2*Rzz/DSORT(ABC))$
B= b1/b2**2	515 11
C= c1**2/b2**2	516 !! initialize again to the next triangle
c= c1 ⁻⁺⁻ 2/02 ⁺⁺⁻ 2	
	517 ! Rxx = 0.000
!! Apply the Double quadrature	518 ! Rxy = 0.0D0
	519 ! Rxz = 0.0D0
!! Integration wrt phi	520 Rvx = 0.000
II	520 i Ny = 0.000
Cycle1: DO i = 1, NGL	522 ! Ryz = 0.0D0
<pre>ph = piq*(1.0D0 + zz(i))</pre>	523 ! Rzx = 0.0D0
cph = DCOS(ph)	524 ! Rzy = 0.0D0
sph = DSIN(ph)	525 ! Rzz = 0.0D0
rmaxh = 0.5D0*rmax	527 ! END DO Cycle1
ABC= (cph**2 + (B*DSIN(2*ph)) + (C*(sph**2)))	528 !!
	529 !! complete the quadrature
 U Derivative of asm	
bsm = 0.0D0	530 1 cf = hs/pig
	532 !!
!! Integration wrt r	533 ! asm = asm*cf
Cycle2: D0 j=1,NGL	534 ! GEx = GEx + (cf*(Gxx*vnx+Gyx*vny+Gzx*vnz))/b2
r = rmaxh*(1.0D0+zz(j))	535 ! GEy = GEy + (cf*(Gxy*vnx+Gyy*vn2)/b2
xi = r*cph	536 ! GEz = GEz + (cf*(Gxz*vnx+Gyz*vny+Gzz*vnz))/b2
et = r*sph	
zt = 1.0D0-xi-et	538 ***********************************
	539 ! xi = 1.0D0/3.0D0 !r*cph
$x = x1^{*}zt + x2^{*}xi + x3^{*}et$	540 ! et = 1.0D0/3.0D0 !r*sph
y = y1*zt + y2*xi + y3*et	541 ! zt = 1.0D0/3.0D0 !1.0D0-xi-et
z = z1*zt + z2*xi + z3*et	542 !!
	543 ! x = x1*zt + x2*x1 + x3*et
CALL sgf_3d_fsing(x, y, z, &	544 ! $y = y1^*zt + y2^*xi + y3^*et$
. x1, y1, z1, &	545 ! $z = z1^{*}zt + z2^{*}xi + z3^{*}et$
& Mxx, Mxy, Mxz, &	
& Myx, Myy, Myz, &	
& Mzx, Mzy, Mzz, &	548 ! & x1, y1, z1, &
& ABC)	549 ! & Mxx, Mxy, Mxz, &
! !WRITE(*,*)'Mxx'	550 ! & Myx, Myy, Myz, &
! !WRITE(*,*) MXX	551 8 M2z 2
((WRITE(',') MAX	552 []
cf1 = ww(j)*r	553 ! cf1 = 1.0D0 ! ww(j)*r
! !WRITE(*,*)'cf1'	554 !!
! !WRITE(*,*) cf1	555 ! bsm = bsm + cf1
bsm = bsm + cfl	557 ! Rxx = Rxx + cf1*Mxx
	558 ! Rxy = Rxy + cf1*Mxy
Rxx = Rxx + cf1*Mxx	559 ! $Rxz = Rxz + cf1*Mxz$
Rxy = Rxy + cf1*Mxy	560 ! Ryx = Ryx + cf1*Myx
Rxz = Rxz + cf1*Mxz	
. Ryx = Ryx + cf1*Myx	562 ! Ryz = Ryz + cf1*Myz
Ryy = Ryy + cf1*Myy	563 ! Rzx = Rzx + cf1*Mzx
Ryz = Ryz + cf1*Myz	564 ! Rzy = Rzy + cf1*Mzy
Rzx = Rzx + cf1*Mzx	565 Rzz = Rzz + cf1*Wz
	566
Rzy = Rzy + cf1*Mzy	
Rzz = Rzz + cf1*Mzz	567 ! cf2 = 1.000 !ww(i)*rmaxh
	568 11
END DO Cycle2	569 ! asm = asm + bsm*cf2
<u> </u>	570 !!
cf2 = ww(i)*rmaxh	571 ! Gxx = Gxx + (cf2*Rxx) !(cf2*Rxx/DSQRT(cph**2+(B*DSIN(2*ph))+(C*sph**2)))
	572 ! Gxy = Gxy + (cf2*Rxy) !(cf2*Rxy/DSQRT(cph*2+(B*DSIN(2*ph))+(C*sph*2)))
!WRITE(*,*)'cf2'	$573 = (5Xy - 6Xy) + (cf2^{+}Rxy) + (cf2^{+}Rxy) - S(cf2^{+}Rxz) - S(cf2^{+}Rxz) + (cf2^{+}Rxz) - S(cf2^{+}Rxz) - S(cf2^{+}Rx$
!WRITE(*,*) cf2	574 ! Gyx = Gyx + (cf2*Ryx) !(cf2*Ryx/DSQRT(cph**2+(B*DSIN(2*ph))+(C*sph**2)))
!	
asm = asm + bsm*cf2	576 ! $Gyz = Gyz + (cf2^*Ryz) ! (cf2^*Ryz/DSQRT(cph**2+(B^*DSIN(2^*ph))+(C^*sph**2)))$

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_slp.f90 9	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_s1p.f90 10
577 ! Gzx = Gzx + (cf2*Rzx) [(cf2*Rzx/DSQRT(cph*2+2(8*DSIM(2*ph))+(c*sph*2))) 578 ! Gzy = Gzy + (cf2*Rzy) [(cf2*Rzy/DSQRT(cph*2+(8*DSIM(2*ph))+(c*sph*2))) 579 ! Gzz = Gzz + (cf2*Rzz) [(cf2*Rzz) (Gzx+2(8*DSIM(2*ph))+(c*sph*2))) 580 !!	649 Image: Second
582 ! Rxx = 0.0D0 583 ! Rxy = 0.0D0	654 !
584 ! Rxz = 0.000 585 ! Ryx = 0.000	656 WRITE (Ulog,100) i,area,asm 657 !
586 ! Ryy = 0.000 587 ! Ryz = 0.000 588 ! Rz = 0.000	658 ! 100 FORMAT (1x,i3,2(f10.5)) 659
588 ! Rzx = 0.000 589 ! Rzy = 0.000 599 ! Rzz = 0.000	660 END SUBROUTINE intr_lin_sing 661 = 662 SUBROUTINE intr_lin_sing2(x0, y0, 20, &
501	Gold Gold x_{1} x_{1} y_{1} z_{1} a_{1} 663 a_{1} x_{1} y_{1} z_{1} a_{1} 664 a_{2} y_{2} z_{2} a_{1} 665 a_{3} y_{3} z_{3} a_{1}
594 xi = xiq(i) 595 et = etq(i) 596 zt = 1.000 et-xi	666 & k, mint, & 667 & & GEX, GEZ, 668
597 cfl = wq(i) 598 !	669 ! Integrates the Green's function over a flat triangle in local polar coordinates with origin at singular 670 !point: (x1,y1,z1). The subrotine is based from Porriguidis 2002 pp. 119-120 in the technique 5.2.8 - 5.2.11 671 !====================================
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0/1 672 USE Mod_SharedVars, ONLY: DBL, ULog, eps, P1, & 673 & Ns, Np,crvmel, xiq, etq, wq 674 !
002 : 2T = 2ZT(1) 603 : cfl = 1.000/3.000 ! wq(1) 604	6/4 : 675 USE Mod_sgf_3d_fs 676 :
$\begin{array}{llllllllllllllllllllllllllllllllllll$	677 IMPLICIT NONE 678 !
608 !	660 I 661 REAL (KIND = DBL), INTENT(IN) :: x0, y0, z0 662 REAL (KIND = DBL), INTENT(IN) :: x1, y1, z1 663 REAL (KIND = DBL), INTENT(IN) :: x2, y2, z2 664 REAL (KIND = DBL), INTENT(IN) :: x3, y3, z3 665 INTEGER, INTEGER, INTENT(IN) :: x4, y3, z4
614 !	686 INTEGER, INTENT(IN) :: mint !element index 687 REAL (KIND = DBL), INTENT(INOUT) :: GEx, GEy, GEz IIntegrated ij component over the element 688 !&
617 bsm+0.000 618 bsm =cf1 619	689 18 GEzx, GEzy, GEzz 690 !REAL (KIND = DBL), INTENT(IN) :: a, b, c !coordinates of collocationpoint of the element 691 !
620 Rxx = Rxx*cf1 621 Rxy = Rxy*cf1	692 ! Variables inside the subroutine 693 !
622 Rxz = Rxz*cf1 623 Ryx = Ryx*cf1 624 Ryy = Ryx*cf1 625 Ryz = Ryz*cf1 626 Rxz = Rxx*cf1 627 Rzy = Rzy*cf1 628 Rzz = Rz*cf1	694 INTEGER :: i, j ICounters 695 REAL (KIND = DBL) :: xi, et, zt Iconstants of weight to integrate over a flat triangle 696 REAL (KIND = DBL) :: xi, y Isurface metrics 697 REAL (KIND = DBL) :: xmx, vny, vnz Itriangle normal vector 698 REAL (KIND = DBL) :: xy, y, z Itriangle normal vector 698 REAL (KIND = DBL) :: xy, y, z Icoordinates of f(xi, et, zt) 700 REAL (KIND = DBL) :: x, y, z Icoordinates of f(xi, et, zt)
629 !	701 REAL (KIND = DBL) :: asm, bsm Itriangle area computed by numerical integration and its derivate 702 REAL (KIND = DBL), DIMENSION(3) ::xxi, eet, zzt Ivariables of weight over in triangle (xi,eta) 703 REAL (KIND = DBL) :: Gxx, Gxx, & IFree-space Green's function of Stokeslet. integrated ij component
031	 REAL (KIND = DBL):: iXX, GXY, GXZ, & I*ree-Space Green S "Unition of Stokeslet. Integrated 1 component. GYX, GYY, GYZ, & Iover the element REAL (KIND = DBL):: iXX, KYY, RXZ, & Istokeslets Dummy coefficients
635 Gyx = Gyx + Ryx 636 Gyy = Gyy + Ryy	707 & Ryx, Ryy, Ryz, & 708 & Rzx, Rzy, Rzz
637 6yz 6yz + 8yz 638 6zx = 6zx + Rzx 639 6zy = 6zy + Rzy	709 ! 710 ! Initialize 711 xxi(1) = 0.500
640 Gzz = Gzz + Rzz 641	712 eet(1) = 0.5D0 713 zzt(1) = 0.0D0
642 END DO 643 644 ! complete the quadrature 645	714 xxi(2) = 0.500 715 cet(2) = 0.600 716 zzt(2) = 0.500 717 xxi(3) = 0.600
645 1 646 cf = area 647 1	717 xx1(3) = 0.000 718 eet(3) = 0.500 719 zzt(3) = 0.500
0+/. 648 asm = asm*cf	720 [

	Gxx = 0.0D0	793 Rzz = Rzz*cf1
	Gxy = 0.0D0	793 KZZ = KZZ*CT1 794 ! 795
	GXZ = 0.0D0 GYX = 0.0D0	795 a 5m = a 5m + 05m 796 l
	Gyy = 0.000	790
	Gyz = 0.0D0	798 GXY = GXY + RXY 799 GXZ = GXZ + RXZ
	GZX = 0.0D0	
	Gzy = 0.0D0	800 Gyx = Gyx + Ryx
	GZZ = 0.0D0	801 Gyy = Gyy + Ryy
!		802 Gyz = Gyz + Ryz
	Rxx = 0.0D0	803 Gzx = Gzx + Rzx
	R×y = 0.0D0	804 Gzy = Gzy + Rzy
	R×z = 0.0D0	805 Gzz = Gzz + Rzz
	Ryx = 0.0D0	806 !
	Ryy = 0.0D0	807 END DO
	Ryz = 0.0D0	808
	Rzx = 0.0D0	809 ! complete the quadrature
	Rzy = 0.000	
	Rzz = 0.0D0	811 cf = area
		812
		813 asm = asm*cf
	compute surface metric: hs	814 !!
	dx = DSQRT((x2-x1)**2+(y2-y1)**2+(z2-z1)**2)	816 GEy = GEy + cf*(Gxy*vnx+Gyy*vny+Gzy*vnz) *crvmel(k)
	dy = DSQRT((x3-x1)**2+(y3-y1)**2+(z3-z1)**2)	817 GEz = GEz + cf*(Gxz*vnx+Gyz*vny+Gzz*vnz) *crvmel(k)
		818
	vnx = (y2-y1)*(z3-z1)-(z2-z1)*(y3-y1)	819 ! IF all went well, asm should be equal to "area"
	$vny = (z2-z1)^*(x3-x1)-(x2-x1)^*(z3-z1)$	820 ! WRITE (Ulog,100) i,area,asm
	$vnz = (x2-x1)^*(y3-y1) - (y2-y1)^*(x3-x1)$	
	hs = DSQRT(vnx*vnx + vny*vny + vnz*vnz)	
	vnx = vnx/hs	824 END SUBROUTINE intr_lin_sing2
	vny = vny/hs	
	vnz = vnz/hs	826 SUBROUTINE intr_lin_sing3(x0, y0, z0, &
!	Surface metric on a flat triangle	828 & GEx, GEy, GEz)
	area = hs/2.0D0	829 !
!		830 ! This subroutine is a new version stokeslet Subroutine.
	Initialize	831 !Compute:
!		832 ! *The value of the Stokeslet over each singular element
1	Triangle area	833 !Now, (March/ 09 / 2015) this subroutine was made.
	asm = 0.000	834 !
I		835 USE Mod Nodal Interp
•	DO i = 1, mint	836 USE Mod SharedVars, ONLY: DBL, p, ne, n, nbe, ULog,&
	xi = xiq(i)	837 & alpha back alpha back gamma Q, &
	et = etq(i)	838 & vn x8, vn y9, vn 20, &
	zt = 1.000 - xi-et	
	cfl = wq(i)	840 & xiq, etq, wq, crvmel
		841
	$x = x1^{*}zt + x2^{*}x1 + x3^{*}et$	842 IMPLICIT NONE
	y = y1*zt + y2*xi + y3*et	843 !
	z = z1*zt + z2*xi + z3*et	844 ! Variables
	CALL sgf_3d_fs(x, y, z, &	846 REAL (KIND = DBL), INTENT(IN) :: x0, y0, z0 !singulatity coordinates
	& x0, y0, z0, &	847 INTEGER, INTENT(IN) :: k !number of element
	& Rxx, Rxy, Rxz, &	848 REAL (KIND = DBL), INTENT(OUT) :: GEx, GEy, GEz !value of stokeslet in the singular element
	& Ryx, Ryy, Ryz, &	849
	& Rzx, Rzy, Rzz)	850 ! Variables inside the subroutine
	u nex, ney, nez /	
	cf1 = 1.0D0/3.0D0	852 INTEGER :: 1, 1 !Counters
	(11 - 1.000/5.000	
	bsm=0.0D0	and the second s
	bsm=cf1	854 1- 855 REAL (KIND = DBL) :: xi, eta !variables of weight to integrate over a triangle
		855 KEAL (KINU = DEL) :: X1, eta : variables of weight to integrate over a triangle
	Rxx = Rxx*cf1	857 REAL (KIND = DBL) :: DxDxi, DyDxi, DzDxi !coordinates of the tangential vector over the xi axis
	Rxy = Rxy*cf1	858 REAL (KIND = DBL) :: DxDet, DyDet, DzDet !coordinates of the tangential vector over the eta axi
	Rxz = Rxz*cf1	859 REAL (KIND = DBL) :: vnx, vny, vnz !normal vector coordinates of the element
	Rvx = Rvx*cf1	860 REAL (KIND = DBL) :: hs !surface metric on a triangle
	Ryy = Ryy*cf1	861 REAL (KIND = DBL) :: al, be, ga, alc, bec, gac integration weight coefficients
	Ryz = Ryz*cf1	862 REAL (KIND = DBL) : cf, fill lintegration weight coefficients
	Ryz = Ryz*cf1 Rzx = Rzx*cf1	
		 863 REAL (KIND = DBL), DIMENSION(6)::xxxi, eet !variables of weigth over in triangle (xi,eta) 864 REAL (KIND = DBL), DIMENSION(6)::xxxi, vDxx, Dzxx : triangential vector over xi axis in triangle (xi,eta)
	Rzy = Rzy*cf1	

D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl 3D slp.f90 13	D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl 3D slp.f90 14
865 REAL (KIND = DBL), DIMENSION(6) :::bx0c, Dy0e, Dz0e !tangential vector over eta axis in triangle (xi,eta) 866 REAL (KIND = DBL), DIMENSION(6) ::xx, vy, vz !normal vector in triangle (xi,eta) 867 REAL (KIND = DBL), DIMENSION(6) :: xx, vy, vz !normal vector in triangle (xi,eta) 868 REAL (KIND = DBL), DYIMENSION(6) :: hxz, vy, vz, & !binormal vectors around in triangle (xi,eta) 869 8 bvx2, bvy2, bvz2, & !binormal vectors around in triangle (xi,eta)	937 bvz = 0.000 938 bvy2 = 0.000 939 bvz = 0.000 940 bvz = 0.000 940 bvz = 0.000
870 & bvx3, bvy3, bvz3	942 bv23 = 0.000
871 REAL (KIND = DBL) :: yvx, yvy, yvz !vector (y-x0) 872 !====================================	943 yvx = 0.600 944 yvy = 0.600
873 ! Initialize 874	945 yvz = 0.000 946 !
875 GEX = 0.000 876 GEY = 0.000	947 : computation of curvature line integral along segment 1-4-2
877 GEz = 0.0D0	949 $yvx = p(i1,1) - x0$
878 879 yvx = 0.0D0	950 $yvy = p(11,2) - y0$ 951 $yvz = p(11,3) - z0$
880 yvy = 0.0D0 881 yvz = 0.0D0	952 fill = (DSQRT(yvx**2 + yvy**2 +yvz**2))/hss(1) 953 !
882 vertices of the kth triangle	954 bvxl = (DyDx(1)*yvz - DzDx(1)*yvy)/fill 955 bvyl = (DzDx(1)*yvx - DxDx(1)*yvz)/fill 966 bvzl = (DzDx(1)*yvx - DxDx(1)*yvz)/fill
885 i1 = n(k,1)	957 !
886 $12 = n(k, 2)$ 887 $13 = n(k, 3)$ 888 $14 = n(k, 5)$	958 yvx = p(14,1) - x0 959 yvy = p(14,2) - y0 960 yvz = p(14,3) - 20 961 fill = (05QRf(yvx*2 + yvy**2 +yvz**2))/hss(4)
890 16 = n(k,6) 891 1 892 893 al = alphaQ(k)	962
894 be = betaQ(k) 895 ga = gamaQ(k) 896 alc = 1.000-al 897 bec = 1.000-be 898 ga c = 1.000-be 899 c = 1.000-be 899 gc c = 1.000-be 899 gc c = 1.000-be	966 !
100 - 0:000 100 - 0:000 801 compute the average value of the normal vector the mean curvature as a contour integral using the nftty 802 formula (4.2.10) of Pozrikidis (1997) 903	972 bx3 = (0pX(2)*yx = 0pX(2)*yy)/f11 973 by3 = (0pX(2)*yx = 0pX(2)*yy)/f11 974 bx3 = (0pX(2)*yy = 0pX(2)*yx)/f11 975 bx3 = (0pX(2)*yy = 0pX(2)*yx)/f11
984 xxi(1) = 0.000 985 cet(1) = 0.000 986 xxi(2) = 1.000 987 cet(2) = 0.000	976 GEX = al*by(1 + by(2 + alc*by(3 977 GEY = al*by(1 + by(2 + alc*by(3 978 GEZ = al*by(1 + by(2 + alc*by(3 979 -
908 xxi(3) = 0.0D0	980 ! computation of curvature line integral along segment 2-5-3
969 eet(3) = 1.000 910 xxi(4) = al 911 eet(4) = 0.000 912 xxi(5) = ga 913 eet(5) = ga 914 ext(6) = 0.000 915 output 916 001 = 1.6 917 xi = xxi(1) 918 eta = eet(1) 919 CALL interp.p(p(11,1), p(11,2), p(11,3), &	921
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	992 yvx = p(12,1) - x0 993 yvy = p(12,2) - y0 994 yvz = p(12,3) - z0 995 fill = (DSQRT(yvx**2 + yvy**2 + yvz**2))/hss(2)
924 & p(16,1), p(16,2), p(16,3), & 925 & al, be, ga, & 926 & xl, eta, & 927 & x, y, z, & 928 & D20x(1), D20x(1), &	996 !
325 a DDA(1), D(1), D(1), D(1), B 329 & DXx(1), D(1), D(1), D(1), B 930 & vx(1), vy(1), vz(1), B 931 & hss(1)) 932 END DO	1000 : 1001 yvx = p(15,1) - x0 1002 yvy = p(15,2) - y0 1003 yvz = p(15,3) - z0 1004 fill = (DSQRT(yvx**2 + yvy**2 + yvz**2))/hss(5) 1005 :
934 bvx1 = 0.000 935 bvy1 = 0.000 936 bvz1 = 0.000	1006 bvx2 = (DyDx(5)*yvz - DzDx(5)*yvy)/fill 1067 bvy2 = (DzDx(5)*yvx - DxDx(5)*yvy2)/fill 1008 bvz2 = (DxDx(5)*yvy - DyDx(5)*yvx)/fill

	:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_slp.f9015
1	yvx = p(i3,1) - x0
	$y_{yy} = p(13,2) - y_0$
	$yvz = p(13,3) - z\theta$
	fill = (DSQRT(yvx**2 + yvy**2 +yvz**2))/hss(3)
!	
	bvx3 = (DyDx(3)*yvz - DzDx(3)*yvy)/fill bvz5 = (DzDx(2)*yvz - DzDx(3)*yvy)/fill
	bvy3 = (DzDx(3)*yvx - DxDx(3)*yvz)/fill bvz3 = (DxDx(3)*yvy - DyDx(3)*yvx)/fill
!	
	GEx = GEx - (gac*bvx1 + bvx2 + ga*bvx3)
	GEy = GEy - (gac*bvy1 + bvy2 + ga*bvy3)
i.	GEz = GEz - (gac*bvz1 + bvz2 + ga*bvz3)
÷	yvx = p(i2,1) - x0
	yyy = p(12,2) - y0
	yvz = p(12,3) - z0
	fill = (DSQRT(yvx**2 + yvy**2 +yvz**2))/hss(2)
1	bvx1 = (DyDe(2)*yvz - DzDe(2)*yvy)/fill
	byx1 = (bybe(2)*yx2 - bxbe(2)*yx2)+fill byy1 = (bzbe(2)*yx2 - bxbe(2)*yx2)+fill
	bvji = (bxDe(2)*yvy - DyDe(2)*yvx)/fill
!	
	yvx = p(15, 1) - x0
	yvy = p(15,2) - y0 yvz = p(15,3) - z0
	yvz = p(15,3) - 20 fill = (DSQRT(yvx**2 + yvy**2 +yvz**2))/hss(5)
l	
	bvx2 = (DyDe(5)*yvz - DzDe(5)*yvy)/fill
	bvy2 = (DzDe(5)*yvx - DxDe(5)*yvz)/fill
ı	bvz2 = (DxDe(5)*yvy - DyDe(5)*yvx)/fill
·	yvx = p(i3,1) - x0
	yvy = p(13,2) - y0
	$yvz = p(13,3) - z\theta$
	fill = (DSQRT(yvx**2 + yvy**2 +yvz**2))/hss(3)
÷	bvx3 = (DyDe(3)*yvz - DzDe(3)*yvy)/fill
	bvy3 = (DZDe(3)*yvx - DXDe(3)*yv2)/fill
	bvz3 = (DxDe(3)*yvy - DyDe(3)*yvx)/fill
!	
	GEx = GEx + (gac*bvx1 + bvx2 + ga*bvx3) GEy = GEy + (gac*bvy1 + bvy2 + ga*bvy3)
	$GE_{2} = GE_{2} + (ga^{+}bv^{-}21 + bv^{-}2 + ga^{+}bv^{-}23)$
	computation of curvature line integral along segment 3-6-1
1	bvx1 = 0.0D0
	bvy1 = 0.000
	bvz1 = 0.0D0
	bvx2 = 0.0D0
	byy2 = 0.000
	bvz2 = 0.0D0 bvx3 = 0.0D0
	bv3 = 0.000
	bvz3 = 0.0D0
l	
	$y_{VX} = p(13,1) - x0$
	$yvy = p(13,2) - y\theta$ $yvz = p(13,2) - z\theta$
	yvz = p(i3,3) - z0 fill = (DSQRT(yvx**2 + yvy**2 +yvz**2))/hss(3)
l	
	bvx1 = (DyDe(3)*yvz - DzDe(3)*yvy)/fill
	bvy1 = (DzDe(3)*yvx - DxDe(3)*yvz)/fill
ı.	bvz1 = (DxDe(3)*yvy - DyDe(3)*yvx)/fill
·	yyx = p(16,1) - x0
	yvy = p(16,2) - y0
	yvz = p(16,3) - z0
	fill = (DSQRT(yvx**2 + yvy**2 +yvz**2))/hss(6)
!	bvx2 = (DyDe(6)*yvz - DzDe(6)*yvy)/fill

1	bvy2 = (DzDe(6)*yvx - DxDe(6)*yvz)/fill
2	bvz2 = (DxDe(6)*yvy - DyDe(6)*yvx)/fill
	$y_{VX} = p(i1,1) - x0$
	yvy = p(i1,2) - y0
5	yvz = p(i1,3) - z0 fill = (DSQRT(yvx**2 + yvy**2 +yvz**2))/hss(1)
	bvx3 = (DyDe(1)*yvz - DzDe(1)*yvy)/fill
)	bvy3 = (DzDe(1)*yvx - DxDe(1)*yvz)/fill
	bvz3 = (DxDe(1)*yvy - DyDe(1)*yvx)/fill
	GEx = GEx - be*bvx1 - bvx2 - bec*bvx3
	GEy = GEy - be*bvy1 - bvy2 - bec*bvy3
	GEz = GEz - be*bvz1 - bvz2 - bec*bvz3
	<pre>GEx = GEx*crvmel(k)</pre>
	GEY = GEY*crwel(k)
	GEz = GEz*crvmel(k)
2	END SUBROUTINE intr_lin_sing3
2	:SUBROUTINE intr_lin_sing4(x0, y0, z0, &
3	& k, &
4	& GEx, GEy, GEz)
	! This subroutine is a new version stokeslet Subroutine.
	Compute:
	! *The value of the Stokeslet over each singular element
	Now, (March/ 09 / 2015) this subroutine was made.
¢ L	USE Mod Nodal Interp
2	USE Mod SharedVars, ONLY: DBL, p, ne, n, nbe, ULog,&
3	& crvmel
4	IMPLICIT NONE
۰.	IPPTICI I NORE
	Variables
8 9	<pre>!REAL (KIND = DBL), INTENT(IN) :: x0, y0, z0 singulatity coordinates</pre>
9	REAL (KIND = DBL), INTENT(IN) :: x0, y0, z0 !singulatity coordinates INTEGER. INTENT(IN) :: k !number of element
1	REAL (KIND = DBL), INTENT(OUT) :: GEx, GEy, GEz !value of stokeslet in the singular element
	lectronic le contraction de la
	! Variables inside the subroutine
5	INTEGER :: i, j !Counters
6	INTEGER :: i1, i2, i3, i4, i5, i6 !indices to obtain node numbers from each element
/ B	REAL (KIND = DBL) :: cf, fill !integration weigth coefficients
	REAL (KIND = DEL) :: DXDX, DyDx, DzDx !tangential vector over xi axis in triangle (xi,eta)
Э	REAL (KIND = DBL) :: hss !weigth
L	REAL (KIND = DBL) :: bvx1, bvy1, bvz1, & !binormal vectors around in triangle (xi,eta) & bvx2, bvy2, bvz2, &
\$	a bvz, bvyz, bvzz, a bvz
1	REAL (KIND = DBL) :: yvx, yvy, yvz !vector (y-x0)
	! Initialize
8	GEx = 0.0D0
)	GEy = 0.000
	GEZ = 0.0D0
	yvx = 0.0D0
	yvy = 0.0D0
	yvz = 0.0D0
	vertices of the kth triangle
3	i1 = n(k, 1) i2 = n(k, 2)
	i2 = n(k,2) i3 = n(k,3)
Э	
ð 1	i4 = n(k,4) i5 = n(k,5)

Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_slp.f90	17 D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_slp.f90
16 = n(k,6)	1225 bvz2 = (DxDx*yvy - DyDx*yvx)/fill 1226 !
cf = 0.0D0	1227 GEx = GEx + 0.5D0*hss*(bvx1 + bvx2)
ompute the average value of the normal vector the mean curvature as a contour integral using the trap	
ule formula	1230 !
bvx1 = 0.0D0	1231 ! computation of curvature line integral along segment 2-5
bvx1 = 0.000	$\begin{array}{c} 1232 & \\ 1233 & hss = DSQRT((p(15,1) - p(12,1))^{*2} + (p(15,2) - p(12,2))^{*2} + (p(15,3) - p(12,3))^{*2}) \end{array}$
bvz1 = 0.0D0	1234 $DxDx = (p(i5,1) - p(i2,1))/hss$
bvx2 = 0.0D0	1235 DyDx = $(p(15,2) - p(12,2))/hss$
bvy2 = 0.000 bvz2 = 0.000	1236 DzDx = (p(15,3) - p(12,3))/hss
bvz2 = 0.000	$\frac{1}{123} \int \frac{1}{123} \int \frac{1}$
bvy3 = 0.0D0	1239 $yyx = p(12,1) - x0$
bvz3 = 0.0D0	1240 $yvy = p(12,2) - y0$
yvx = 0.0D0 yvy = 0.0D0	1241 yvz = p(12,3) - z0
yvz = 0.000	1242 :
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
omputation of curvature line integral along segment 1-4	1245 bvz1 = (DxDx*yvy - DyDx*yvx)/fill
hss = DSQRT((p(i4,1) - p(i1,1))**2 +(p(i4,2) - p(i1,2))**2 + (p(i4,3) - p(i1,3))**2)	1246 ! 1247 fill = DSQRT((p(i5,1) - x0)**2 + (p(i5,2) - y0)**2 +(p(i5,3) - z0)**2)
DxDx = (p(i4,1) - p(i1,1))/hss	1248 $yvx = p(15,1) - x0$
DyDx = (p(i4,2) - p(i1,2))/hss	1249 yvy = p(15,2) - y θ
DzDx = (p(i4,3) - p(i1,3))/hss	1250 yvz = p(15,3) - 20
fill = DSQRT((p(i1,1) - x0)**2 + (p(i1,2) - y0)**2 +(p(i1,3) - z0)**2)	1251 byx2 = (Dy0x*yyz - DzDx*yyy)/fill
$y_{yx} = p(i_{1,1}) - x0$	1253 bvy2 = (DzDx*yvx - DxDx*yv2)/fill
$yvy = p(i1,2) - y\theta$	1254 bvz2 = (DxDx*yvy - DyDx*yvx)/fill
yvz = p(i1,3) - z0	1255 ! 1256 GEx + 0.5D0*hss*(bvx1 + bvx2)
<pre>bvx1 = (DyDx*yvz - DzDx*yvy)/fill</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
bvy1 = (DzDx*yvx - DxDx*yvz)/fill	1258 GEz = GEz + 0.5D0*hss*(bvz1 + bvz2)
bvz1 = (DxDx*yvy - DyDx*yvx)/fill	1259
fill = DSQRT((p(i4,1) - x0)**2 + (p(i4,2) - y0)**2 +(p(i4,3) - z0)**2)	1260 ! computation of curvature line integral along segment 5-3 1261 !
$y_{VX} = p(i4,1) - x0$	1262 hss = DSQRT((p(i3,1) - p(i5,1))*2 +(p(i3,2) - p(i5,2))**2 + (p(i3,3) - p(i5,3))**2)
yvy = p(14,2) - y0	1263 DxDx = (p(i3,1) - p(i5,1))/hss
yvz = p(i4,3) - z0	$\begin{array}{cccc} 1264 & DyDx = (p(i3,2) - p(i5,2))/hss \\ 1265 & DzDx = (p(i3,3) - p(i5,3))/hss \end{array}$
bvx2 = (DyDx*yvz - DzDx*yvy)/fill	1265 DZX = (p(13,3) - p(15,3))/hss
bvy2 = (DzDx*yvx - DxDx*yvz)/fill	1267 fill = DSQRT($(p(i5,1) - x\theta)^{*2} + (p(i5,2) - y\theta)^{*2} + (p(i5,3) - z\theta)^{*2}$)
bvz2 = (DxDx*yvy - DyDx*yvx)/fill	1268 $yvx = p(15,1) - x0$
GEx = 0.5D0*hss*(bvx1 + bvx2)	1269 yvy = p(i5,2) - y0 1270 yvz = p(i5,3) - z0
GEy = 0.5D0*hss*(bvy1 + bvy2)	1270 yvz = p(15)5) = 20
GEz = 0.5D0*hss*(bvz1 + bvz2)	1272 bvx1 = (DyDx*yvz - DzDx*yvy)/fill
omputation of curvature line integral along segment 4-2	1273 bvy1 = (DzDx*yvx - DxDx*yvz)/fill 1274 bvz1 = (DxDx*yvy - DyDx*yvx)/fill
omputation of curvature line integral along segment 4-2	
hss = DSQRT((p(i2,1) - p(i4,1))**2 +(p(i2,2) - p(i4,2))**2 + (p(i2,3) - p(i4,3))**2)	1276 fill = DSQRT((p(i3,1) - x0)**2 + (p(i3,2) - y0)**2 +(p(i3,3) - z0)**2)
DxDx = (p(12,1) - p(14,1))/hss DyDx = (p(12,2) - p(14,2))/hss	1277
Dybx = (p(12,2) - p(14,2))/hss DzDx = (p(12,3) - p(14,3))/hss	12/8 yy = p(13,2) - y0 1279 yyz = p(13,3) - 20
	1280 !
fill = DSQRT((p(i4,1) - x0)**2 + (p(i4,2) - y0)**2 +(p(i4,3) - z0)**2)	1281 bvx2 = (DyDx*yvz - DzDx*yvy)/fill
$yvx = p(i4,1) - x\theta$ $yvy = p(i4,2) - y\theta$	1282 bvy2 = (DzDx*yvx - DxDx*yvz)/fill 1283 bvz2 = (DxDx*yvy - DyDx*yvx)/fill
yvz = p(14,3) - z0	1284 !
<pre>bvx1 = (DyDx*yvz - DzDx*yvy)/fill bust (DyDx*yvz)(fill</pre>	$\begin{array}{cccc} 1286 & \text{GEy} & = \text{GEy} + 0.500^{\circ}\text{hss}^{\circ}(\text{bvyl} + \text{bvy2}) \\ 1287 & \text{GEz} & = \text{GEz} + 0.50^{\circ}\text{hss}^{\circ}(\text{bvzl} + \text{bvz2}) \end{array}$
bvy1 = (DzDx*yvx - DxDx*yvz)/fill bvz1 = (DxDx*yvy - DyDx*yvx)/fill	1287 GEz = GEz + 0.5D0*hss*(bvz1 + bvz2) 1288
	1289 ! computation of curvature line integral along segment 3-6
$fill = DSQRT((p(i2,1) - x0)^{**}2 + (p(i2,2) - y0)^{**}2 + (p(i2,3) - z0)^{**}2)$	$\frac{1220}{1200} = \frac{1220}{1200} = \frac{1220}{1200$
yvx = p(12,1) - x0 yvy = p(12,2) - y0	1291 hss = DSQRT((p(i6,1) - p(i3,1))**2 +(p(i6,2) - p(i3,2))**2 + (p(i6,3) - p(i3,3))**2) 1292 DxDx = (p(i6,1) - p(i3,1))/hss
yy = p(12,2) = y0 yyz = p(12,3) = z0	$\frac{1222}{1293} DVDA = (p(16,1) - p(15,1))/15S$
	1294 $DzDx = (p(16,3) - p(13,3))/hss$
bvx2 = (DyDx*yvz - DzDx*yvy)/fill	1295

rth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_slp.f90	19 D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_slp.f90
yyx = p(13,1) - x0 yyx = p(13,2) - y0 yyz = p(13,3) - 20	1369 bvx2 = (0)px*yvz - 02Dx*yvy)/fill 1370 bvy2 = (02Dx*yvz - D2Dx*yvy)/fill 1371 bvz2 = (0xDx*yvy - DyDx*yvx)/fill 1371
bvx1 = (DyDx*yvz - DzDx*yvy)/fill bvy1 = (DzDx*yvx - DxDx*yvz)/fill bvx1 = (DxDx*yvx - DxDx*yvz)/fill	1373 GEx = GEx + 0.500*hss*(bux1 + bux2) 1374 GEy = GEy + 0.500*hss*(buy1 + buy2) 1375 GEz = GEz + 0.500*hss*(buz1 + bux2)
fill = DSQRT((p(i6,1) - x0)**2 + (p(i6,2) - y0)**2 +(p(i6,3) - z0)**2) yvx = p(i6,1) - x0	1377 ! computation of curvature line integral along segment 6-3 1378 !
yvy = p(16,2) - y0 yvz = p(16,3) - z0	1379 hss = DSQRT((p(13,1) - p(16,1))**2 +(p(13,2) - p(16,2))**2 + (p(13,3) - p(16,3))**2) 1380 DxDx = (p(13,1) - p(16,1))/hss 1381 DyDx = (p(13,2) - p(16,2))/hss
bvx2 = (DyDx*yvz - DzDx*yvy)/fill bvy2 = (DzDx*yvx - DxDx*yvz)/fill bvz2 = (DxDx*yvy - DyDx*yvx)/fill	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
GEX = GEX + 0.5D0*hss*(bvx1 + bvx2) GEY = GEY + 0.5D0*hss*(bvy1 + bvy2) GE = GEY + 0.5D0*hss*(bvy1 + bvy2)	 1385 yvx = p(16,1) - x0 1386 yvy = p(16,2) - y0 1387 yvz = p(16,3) - 20 1388 !
omputation of curvature line integral along segment 6-1	1390 bvy1 = (DzDx*yvx - DxDx*yvz)/fill
hss = DSQRT((p(11,1) - p(16,1))**2 +(p(11,2) - p(16,2))**2 + (p(11,3) - p(16,3))**2) DxDx = (p(11,1) - p(16,1))/hss DyDx = (p(11,2) - p(16,2)/hss DzDx = (p(11,3) - p(16,3))/hss	1392
fill = DSQRT((p(i6,1) - x0)**2 + (p(i6,2) - y0)**2 + (p(i6,3) - z0)**2) yvx = p(i6,1) - x0 yvy = p(i6,2) - y0 yvz = p(i6,3) - z0	1397 1398 bvx2 = (DyDA*yvz - DzDA*yvy)/fill 1399 bvy2 = (DzDA*yvz - DzDA*yvz)/fill 1400 bvz2 = (DzDA*yv - DyDA*yvz)/fill
bvx1 = (DyDx*yvz - DzDx*yvy)/f111 bvy1 = (DzDx*yvx - DzDx*yvz)/f111 bvz1 = (DzDx*yvx - DzDx*yvz)/f111 bvz1 = (DzDx*yvy - DyDx*yvx)/f111	1401
fill = DSQRT((p(i1,1) - x0)**2 + (p(i1,2) - y0)**2 +(p(i1,3) - z0)**2) yvx = p(i1,1) - x0	1466 ! computation of curvature line integral along segment 3-5 1407 !
yvy = p(i1,2) - y0 yvz = p(i1,3) - 20	1488 hss = p5QRT((p(i5,1) - p(i3,1))**2 +(p(i5,2) - p(i3,2))**2 + (p(i5,3) - p(i3,3))**2) 1489 DxDx = (p(i5,1) - p(i3,1))/hss 1410 DyDx = (p(i5,2) - p(i3,2))/hss
bvx2 = (DyDx*yvz - DzDx*yvy)/fill bvy2 = (DzDx*yvx - DxDx*yvz)/fill bvz2 = (DzDx*yvx - DxDx*yvz)/fill	1411 DzDx = (p(i5,3) - p(i3,3))/hss 1412
GEX = GEX + 0.500 ⁺ hss ⁺ (bwX + bwX2) GEY = GEY + 0.500 ⁺ hss ⁺ (bwY + bwY2) GEZ = GEZ + 0.500 ⁺ hss ⁺ (bwZ + bwZ2)	1414 yvx = p(13,1) - x0 1415 yvy = p(13,2) - y0 1416 yvz = p(13,3) - z0 1417
omputation of curvature line integral along segment 1-6	 1418 bvx1 = (Dy0x*yvz - Dz0x*yvy)/fill 1419 bvy1 = (Dz0x*yvz - Dz0x*yvz)/fill 1420 bvz1 = (Dz0x*yv - Dy0x*yvX)/fill
hss = DSQRT((p(i6,1) - p(i1,1))**2 +(p(i6,2) - p(i1,2))**2 + (p(i6,3) - p(i1,3))**2) DxDx = (p(i6,1) - p(i1,1))/hss DyDx = (p(i6,2) - p(i1,2)/hss DzDx = (p(i6,3) - p(i1,3))/hss	1421
fill = DSQRT((p(i,1) - x0)**2 + (p(i1,2) - y0)**2 +(p(i1,3) - z0)**2) yvx = p(i1,1) - x0 yvy = p(i1,2) - y0 yvz = p(i1,3) - z0	1427 bvc2 = (0p0x*yvz - DzD**yvy)/fill 1428 bvy2 = (DzD*v - DxD**yvz)/fill 1429 bvz2 = (DzD*vyv - DyD**yvz)/fill 1430 bvz2 = (DxD*yvy - DyD**yvz)/fill
bvx1 = (DyDx*yvz - DzDx*yvy)/fill bvy1 = (DzDx*yvz - DxDx*yvz)/fill bvz1 = (DzDx*yvz - DxDx*yvz)/fill bvz1 = (DxDx*yvz - DyDx*yvz)/fill	1431 GEX = GEX + 0.5D0 ⁺ hs ⁻ (bvX] + bvX2 1432 GEY = GEY + 0.5D0 ⁺ hs ⁻ (bvY) + bvY2 1433 GEZ = GEZ + 0.5D0 ⁺ hs ⁻ (bvZ] + bvZ2 1434
fill = DSQRT((p(i6,1) - x0)**2 + (p(i6,2) - y0)**2 +(p(i6,3) - z0)**2) yxx = p(i6,1) - x0 yyy = p(i6,2) - y0 yyz = p(i6,3) - z0	1435 computation of curvature line integral along segment 5-2 1436

):\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_slp.f90	21 D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl 3D slp.f90
fill = DSQRT((p(15,1) - x0)**2 + (p(15,2) - y0)**2 +(p(15,3) - z0)**2) yvx = p(15,1) - x0 yvy = p(15,2) - y0 yvz = p(15,3) - z0	15:14 bvx2 = (0y0x*yvz - 0z0x*yvz)/fill 15:15 bvy2 = (0z0*yvz - Dx0x*yvz)/fill 15:16 bvz2 = (0x0x*yvz - Dx0x*yvz)/fill 15:17 !
bvxl = (DyDx*yvz - DzDx*yvy)/fill bvy1 = (DzDx*yvz - DxDx*yvz)/fill bvz1 = (DzDx*yvy - DyDx*yvz)/fill bvz1 = (DxDx*yvy - DyDx*yvz)/fill	1519 GEy = GEy + 0.500*hss*(bvy1 + bvy2) 1520 GEz = GEz + 0.500*hss*(bvz1 + bvz2) 1521 !
fill = D5QRT((p(12,1) - x0)**2 + (p(12,2) - y0)**2 +(p(12,3) - 20)**2) yvx = p(12,1) - x0 yvy = p(12,2) - y0 yvz = p(12,3) - 20	1523 GEV # 0.500°GEV 1523 GEV = 0.500°GEV 1524 GEZ = 0.500°GEZ 1525 ===================================
bvx2 = (DyDx*yvz - DzDx*yvy)/fill bvy2 = (DzDx*yvx - DxDx*yvy)/fill bvz2 = (DzD*yvy - DyDx*yvz)/fill bvz2 = (DxD*yvy - DyDx*yvz)/fill	1528 GEz = GEz*crwmel(k) 1529 !====================================
GEx = GEx + 0.5D0*hss*(bvx1 + bvx2) GEy = GEy + 0.5D0*hss*(bvy1 + bvy2) GEz = GEz + 0.5D0*hss*(bvz1 + bvz2)	1531
computation of curvature line integral along segment 2-4	1536 !
hss = DSQRT((p(14,1) - p(12,1))**2 +(p(14,2) - p(12,2))**2 + (p(14,3) - p(12,3))**2) DxDx = (p(14,1) - p(12,1))/hss DyDx = (p(14,2) - p(12,2))/hss DzDx = (p(14,3) - p(12,3))/hss	1537 ! This subroutine is a new version stokeslet Subroutine. 1538 ! Compute: 1539 ! *The value of the Stokeslet over each singular element 1540 ! Now, (March/ 09 / 2015) this subroutine was made. 1541 !
fill = DSQRT((p(i2,1) - x0)**2 + (p(i2,2) - y0)**2 + (p(i2,3) - z0)**2) yvx = p(i2,1) - x0 yvy = p(i2,2) - y0 yvz = p(i2,3) - z0	1542 USE Mod Modal Interp 1543 USE Mod_SharedVars, ONLY: DBL, p, ne, n, nbe, ULog,& 1544 & crwmel 1545
bv1 = (DyDx*yvz - DzDx*yvy)/fill bvy1 = (DzDx*yvx - DxDx*yvz)/fill bvy1 = (DzDx*yvx - DxDx*yvz)/fill bvz1 = (DxDx*yvy - DyDx*yvz)/fill	1547
$\begin{array}{l} f111 = DSQRT((p(14,1) - x0)^{**}2 + (p(14,2) - y0)^{**}2 + (p(14,3) - z0)^{**}2)\\ yxx = p(14,1) - x0\\ yyy = p(14,2) - y0\\ yyz = p(14,2) - y0\\ yyz = p(14,3) - z0 \end{array}$	1552 REAL (KIND = DBL), INTENT(OUT) :: GEX, GEy, GEz Value of stokeslet in the singular element 1553 Variables inside the subroutine 1555
bvx2 = (DyDx*yvz - DzDx*yvy)/fill bvy2 = (DzDx*yvz - DzDx*yvy)/fill bv2 = (DzD*yv - DyDx*yvz)/fill bv2 = (DxD*yv - DyDx*yvz)/fill	1557 INTEGER :: 1, 12, 13, 14, 15, 16 Hindices to obtain node numbers from each element 1558 I
GEx = GEx + 0.5D0*hss*(bvx1 + bvx2) GEy = GEy + 0.5D0*hss*(bvy1 + bvy2) GEz = GEz + 0.5D0*hss*(bvz1 + bvz2)	1561 REAL (KIND = DBL) :: hss weigth 1562 REAL (KIND = DBL) :: bvx1, bvy1, bvy1, bvy2, k 1563 REAL (KIND = DBL) :: bvx1, bvy1, bvy2, bvy2, k 1563 & bvx2, bvy2, bvy2, bvy2, bvy2, bvy2, k
computation of curvature line integral along segment 4-1	1565 & bvx4, bvy4, bvz4, &
hss = DSQRT((p(i1,1) - p(i4,1))**2 +(p(i1,2) - p(i4,2))**2 + (p(i1,3) - p(i4,3))**2) DDX = (p(i1,1) - p(i4,1))/hss DDX = (p(i1,2) - p(i4,2))/hss DDX = (p(i1,3) - p(i4,3))/hss	1567 8 bvx5, bvy6, bvz6 1568 REAL (KIND = DBL) :: yvx1, yvy1, yvx1 !vector y1 1569 REAL (KIND = DBL) :: yvx2, yvy2, yvx2 !vector y2 1570 REAL (KIND = DBL) :: yvx3, yvy3, yvx2 !vector y3
fill = DSQBT((p(i4,1) - x0)**2 + (p(i4,2) - y0)**2 + (p(i4,3) - z0)**2) yvx = p(i4,1) - x0 yvy = p(i4,2) - y0 yvz = p(i4,2) - z0	
bvx1 = (DyDx*yvz - DzDx*yvy)/fill bvy1 = (DzDx*yvx - DxDx*yvz)/fill bvz1 = (DzDx*yvy - DyDx*yvz)/fill bvz1 = (DxDx*yvy - DyDx*yvz)/fill	1576 REAL (KIND = DBL) :: zvx3, zvy3, zvy3 lvector (z3-x0) 1577 REAL (KIND = DBL) :: zvx4, zvy4, zvz4 lvector (z4-x0) 1578 REAL (KIND = DBL) :: zvx5, zvy5, zvz5 lvector (z5-x0) 1579 REAL (KIND = DBL) :: zvx5, zvy6, zvz5 lvector (z5-x0)
fill = DSQNT((p(i1,1) - x0)**2 + (p(i1,2) - y0)**2 +(p(i1,3) - z0)**2) yvx = p(i1,1) - x0 yvy = p(i1,2) - y0 yvz = p(i1,3) - z0	1580 REAL (XIND = DBL) :: px2, py2, pz2 p:preasure vector 1581 REAL (XIND = DBL) :: a1, a2, a3 !vector a 1582 REAL (XIND = DBL) :: b1, b2, b2, b2, b4, b5, b66 !betha angle between z1-x0 and tangent vector 1583 REAL (XIND = DBL) :: b1, b2, b2, b3, g34, g5, g36 !sgama angle between z1-x0 and tangent vector 1584 REAL (XIND = DBL) :: c1, e2, e3, e4, e5, e6 !constant

Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_s1p.f90 23	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_s1p.f90
REAL (KIND = DBL) :: g1, g2, g3, g4, g5, g6 !constant	1657 zvz6 = yvz6 / DSQRT(yvx6**2 + yvy6**2 + yvz6**2) 1658 !
Initialize	1659 ! Angles
GEx = 0.0D0	1660 !
	1662 & /DSQRT((yvx4-yvx1)**2 + (yvy4-yvy1)**2 + (yvz4-yvz1)**2))
GEz = 0.0D0	1663 ga1 = DACOS(((yvx4-yvx1)*zvx4 + (yvy4-yvy1)*zvy4 + (yvz4-yvz1)*zvz4) &
	1664 & /DSQRT((yvx4-yvx1)**2 + (yvy4-yvy1)**2 + (yvz4-yvz1)**2))
	1665 be2 = DACOS(((yvx2-yvx4)*zvx4 + (yvy2-yvy4)*zvy4 + (yvz2-yvz4)*zvz4) &
vertices of the kth triangle	1666 & /DSQRT((yvx2-yvx4)**2 + (yvy2-yvy4)**2 + (yvz2-yvz4)**2))
	1667 ga2 = DACOS(((yvx2-yvx4)*zvx2 + (yvy2-yvy4)*zvy2 + (yvz2-yvz4)*zvz2) & 1668 & //DSORT((yvx2-yvx4)**2 + (yvy2-yvy4)**2 + (yvz2-yvz4)**2))
i1 = n(k,1) i2 = n(k,2)	1668 & /DSQRT((yvx2-yvx4)**2 + (yvy2-yvy4)**2 + (yvz2-yvz4)**2)) 1669 be3 = DACOS(((yvx5-yvx2)*zvx2 + (yvy5-yvy2)*zvy2 + (yvz5-yvz2)*zvz2) &
1 = n(k,3)	1670 & /DSQRT((yvx5-yvz2)**2 + (yvx5-yv2)**2))
i4 = n(k,4)	1671 ga3 = DACOS(((yvx5-yvx2)*zvx5 + (yvy5-yvy2)*zvy5 + (yvz5-yvz2)*zvz5) &
15 = n(k,5)	1672 & /DSQRT((yvx5-yvx2)**2 + (yvy5-yvy2)**2 + (yvz5-yvz2)**2))
i6 = n(k,6)	1673 be4 = DACOS(((yvx3-yvx5)*zvx5 + (yvy3-yvy5)*zvy5 + (yvz3-yvz5)*zvz5) &
cf = 0.0D0	1674 & /OSQRT((yvx3-yvx5)**2 + (yvy3-yvy5)**2 + (yvz3-yvz5)**2))
ct = 0.000	1675 ga4 = DACOS(((yvx3-yvx5)*zvx3 + (yvy3-yvy5)*zvy3 + (yvz3-yvz5)*zvz3) & 1676 & /DSQRT((yvx3-yvx5)**2 + (yvy3-yvy5)**2 + (yvz3-yvz5)**2))
ompute the average value of the normal vector the mean curvature as a contour integral using the trapezoidal	16/6 & / D3QR1((yvx3-yvx3) / -2 + (yvy3-yvy5) / -2 + (yv23-yvz5) / -2)) 16/7 be5 = DACO5(((yvx6-yvx3) + (yvy6-yvy3) * 2 vy3 + (yvz6-yvz3) * 2 vz3) &
ule formula	1678 & /DSQRT((yvx5-yvx3)**2 + (yvy5-yvy3)**2 + (yvz5-yvz3)**2))
	1679 ga5 = DACOS(((yvx6-yvx3)*zvx6 + (yvy6-yvy3)*zvy6 + (yvz6-yvz3)*zvz6) &
$D \times D \times = p(i4,1) - p(i1,1)$	1680 & /DSQRT((yvx6-yvx3)**2 + (yvy6-yvy3)**2 + (yvz6-yvz3)**2))
DyDx = p(i4,2) - p(i1,2)	1681 be6 = DACOS((yvx1-yvx6)*zvx6 + (yvy1-yvy6)*zvy6 + (yvz1-yvz6)*zvz6) &
DZDX = p(i4,3) - p(i1,3) hss = DSQRT(DxDx**2 +DyDx**2 +DzDx**2)	1682 & /DSQRT((yvx1-yvx6)**2 + (yvy1-yvy6)**2 + (yvz1-yvz6)**2)) 1683 ga6 = DACOS((yvx1-yvx6)*zvx1 + (yvy1-yvy6)*zvy1 + (yvz1-yvz6)*zvz1) &
nss = bsgkr((bxbx**2+bybx**2+bzbx**2) Dxbx = Dxbx/hss	$ \begin{array}{c} 1053 \\ 1684 \\ 1684 \\ \end{array} \begin{array}{c} gab = DACUS(((yvx1-yvx0)^{-2}vx1 + (yvy1-yvy0)^{-2}vx1 + (yvx1-yvz0)^{-2}vx1) \\ \alpha \\ 1584 \\ \end{array} $
DVDx = DVDx/hss	
DzDx = DzDx/hss	1686 ! computation of curvature line integral along segment 1
	1687 1688 byx1 = (yyy1*yyz4 - yyz1*yyy4)
ompute the average value of the normal vector the mean curvature as a contour integral using the trapezoidal ule formula	1688 bvx1 = (yvy1*yvz4 - yvz1*yvy4) 1689 bvy1 = (yvz1*yvx4 - yvx1*yvz4)
	$1690 byz1 = (yyx1^{4}yyy4 - yyy)^{4}yyx4)$
Firstly, to compute all vectors and angles involved.	1691 !
	1692 bvx1 = bvx1/DSQRT((yvy1*yvz4 - yvz1*yvy4)**2 + (yvz1*yvx4 - yvx1*yvz4)**2 + (yvx1*yvy4 - yvy1*yvx4)**2
yvx1 = p(11,1) x0	1693 bvy1 = bvy1/DSQRT((yvy1*yvz4 - yvz1*yvy4)**2 + (yvz1*yvx4 - yvx1*yvz4)**2 + (yvx1*yvy4 - yvy1*yvx4)**
yvy1 = p(i1,2)-y0 yvz1 = p(i1,3)-z0	1694 bvz1 = bvz1/DSQRT((yvy1*yvz4 - yvz1*yvy4)**2 + (yvz1*yvx4 - yvx1*yvz4)**2 + (yvx1*yvy4 - yvy1*yvx4)**; 1695 !
yvz1 = p(11,5)-20 yvz2 = p(12,1)-x0	1695 i 1696 ! computation of curvature line integral along segment 4
yvy2 = p(12,2)-y0	
yvz2 = p(i2,3)-z0	1698 bvx2 = (yvy4*yvz2 - yvz4*yvy2)
yvx3 = p(i3,1)-x0	1699 bvy2 = (yvz4*yvx2 - yvx4*yvz2)
yvy3 = p(13,2)-y0	1700 bvz2 = (yvx4*yvy2 - yvy4*yvx2)
yvz3 = p(i3,3)-z0 yvx4 = p(i4,1)-x0	1701 !
yvx4 = p(14,2)-y0	$\frac{1}{1763} \qquad bvy2 = bvy2/b3g(r((yvy4yzz - yvz4yvy2) + z + (yvz4yzz - yvz4yzz) + z + (yvx4yzz) + z + (yvx4yzz) + z + (yvz4yzz) + z + (yvz4yzz) + z + (yvz4yzz) + z + (yvz4yzz) + z + (yz4yzz) + (yz4yzz) + (yz4yzz) + z + (yz4yzz) + (yz4zz) + $
yvz4 = p(i4,3)-z0	1704 bvz2 = bvz2/DSQRT((yvy4*yvz2 - yvz4*yvy2)**2 +(yvz4*yvx2 - yvx4*yvz2)**2 +(yvx4*yvy2)**2 +(yvx4*yvy2)**2
yvx5 = p(15,1)-x0	1705 !
yvy5 = p(15,2)-y0	1706 ! computation of curvature line integral along segment 2
$y_{VZS} = p(15,3) - 20$	1707
yvx6 = p(16,1)-x0 yvy6 = p(16,2)-y0	1708 bvx3 = (yvy2*yvz5 - yvz2*yvy5) 1709 bvy3 = (yvz2*yvz5 - yvx2*yvz5)
yvyo = p(16, 2)-yw yvz6 = p(16, 3)-z0	$\begin{array}{cccc} 1769 & bvy3 = (yv22^{-}yvx5 - yv22^{-}yv25) \\ 1710 & bvz3 = (yvx2^{+}yvy5 - yvy2^{+}yvx5) \end{array}$
zvx1 = yvx1 / DSQRT(yvx1**2 + yvy1**2 + yvz1**2)	1712 bvx3 = bvx3/DSQRT((yvy2*yvz5 - yvz2*yvy5)**2 +(yvz2*yvx5 - yvx2*yvz5)**2 +(yvx2*yvy5 - yvy2*yvx5)**2
zvy1 = yvy1 / DSQRT(yvx1**2 + yvy1**2 + yvz1**2)	1713 bvy3 = bvy3/DSQRT((ývý2*ývz5 - ývz2*ývy5)**2 +(ývz2*ývx5 - ývx2*ývz5)**2 +(ývz2*ývx5)**2
zvz1 = yvz1 / DSQRT(yvx1**2 + yvy1**2 + yvz1**2) zvx2 = yvx2 / DSQRT(yvx2**2 + yvy2**2 + yvz2**2)	1714 bvz3 = bvz3/DSQRT((yvy2*yvz5 - yvz2*yvy5)**2 +(yvz2*yvx5 - yvx2*yvz5)**2 +(yvz2*yvy5)**2 +(yvz2*yvz5)**2 +(yvz2*yvy5)**2 +(yvz2*yvy5)**2 +(yvz2*yvy5)**2 +(yvz2*yvy5)**2 +(yvz2*yvy5)**2 +(yvz2*yvy5)**2 +(yvz2*yvz5)**2 +(yvz2*yvy5)**2 +(yvz2*yvz5)**2 +(yvz2*yvz5)***2 +(yvz2*yvz5)***2 +(yvz2*yvz5)***2 +(yvz2*yvz5)***2 +(yvz2*yvz5)************************************
zvx2 = yvx2 / DSQRI(yvx2**2 + yvy2**2 + yvz2**2) zvy2 = yvy2 / DSQRT(yvx2**2 + yvy2**2 + yvz2**2)	1715 !
zvz2 = yvz2 / DSQRT(yvx2**2 + yvy2**2 + yvz2**2)	1717 !
zvx3 = yvx3 / DSQRT(yvx3**2 + yvy3**2 + yvz3**2)	1718 bvx4 = (yvy5*yvz3 - yvz5*yvy3)
zvy3 = yvy3 / DSQRT(yvy3**2 + yvy3**2 + yvz3**2)	1719 bvy4 = (yvz5*yvx3 - yvx5*yvz3) 1720 bvz4 = (yvz5*yvv3 - yvv5*yvz3)
zvz3 = yvz3 / DSQRT(yvx3**2 + yvy3**2 + yvz3**2) zvx4 = yvx4 / DSQRT(yvx4**2 + yvy4**2 + yvz4**2)	1720 bvz4 = (yvx5*yvy3 - yvy5*yvx3) 1721 !
zvxa = yvxa / DSQR((yvx4**2 + yvy4**2 + yvz4**2) zvya = yvya / DSQR((yvx4**2 + yvy4**2 + yvz4**2)	1/21 :
2vy4 - yvy4 / DSQN(yvx4*2 + yvy4*2 + yvz4*2) zvz4 - yvz4 / DSQN(yvx4*2 + yvy4*2 + yvz4*2)	$\frac{1722}{1723} bvy4 = bvy4/b3qr(((yv)5yz3 - yvz5yvy3)^{+2} + (yvz5^*yv3 - yvz5yz3)^{+2} + ((yvz5^*yv3 - yv35yz3)^{+2} + (yvz5^*yv3)^{+2})^{+2}$
zvx5 = yvx5 / DSQHT(yvx5*2 + yvy5*2 + yvz5*2)	1724 bvz4 = bvz4/DSQRT((yvy5*yvz3 - yvz5*yvy3)**2 +(yvz5*yvx3 - yvz5*yvx3)**2 +(yvz5*yvx3)**2 +(yvx5*yvx3)**2
zvy5 = yvy5 / DSQRT(yvx5**2 + yvy5**2 + yvz5**2)	1725 !
zvz5 = yvz5 / DSQRT(yvx5**2 + yvy5**2 + yvz5**2)	1726 computation of curvature line integral along segment 3
zvx6 = yvx6 / DSQRT(yvx6**2 + yvy6**2 + yvz6**2) zvy6 = yvy6 / DSQRT(yvx6**2 + yvy6**2 + yvz6**2)	1727 ! 1728 bvx5 = (yvy3*yvz6 - yvz3*yvy6)

Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_slp.f90	25	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl_3D_slp.f90	
bvy5 = (yvz3*yvx6 - yvx3*yvz6) bvz5 = (yvx3*yvy6 - yvy3*yvx6)		1801 GEy = GEy*crvmel(k) 1802 GEz = GEz*crvmel(k) 1883	
bvx5 = bvx5/DSQRT((yvy3*yvz6 - yvz3*yvy6)**2 +(yvz3*yvx6 - yvx3*yvz6) bvy5 = bvy5/DSQRT((yvy3*yvz6 - yvz3*yvy6)**2 +(yvz3*yvx6 - yvx3*yvz6) bvz5 = bvz5/DSQRT((yvy3*yvz6 - yvz3*yvy6)**2 +(yvz3*yvx6 - yvx3*yvz6)	**2 +(yvx3*yvy6 - yvy3*yvx6)**2) **2 +(yvx3*yvy6 - yvy3*yvx6)**2) **2 +(yvx3*yvy6 - yvy3*yvx6)**2)	1803 END SUBROUTINE intr_lin_sing5 1805 End SUBROUTINE intr_lin_sing5 1806 End	
mputation of curvature line integral along segment 6		1807 END MODULE MOG_PFTC150_SLP 1808	
bvx6 = (yvy6*yvz1 - yvz6*yvy1) bvy6 = (yvz6*yvx1 - yvx6*yvz1) bvz6 = (yvx6*yvy1 - yvy6*yvx1)			
bvx6 = bvx6/DSQRT((yvy6*yvz1 - yvz6*yvy1)**2 +(yvz6*yvx1 - yvx6*yvz1) bvy6 = bvy6/DSQRT((yvy6*yvz1 - yvz6*yvy1)**2 +(yvz6*yvx1 - yvx6*yvz1) bvz6 = bvz6/DSQRT((yvy6*yvz1 - yvz6*yvy1)**2 +(yvz6*yvx1 - yvx6*yvz1)	**2 +(yvx6*yvy1 - yvy6*yvx1)**2) **2 +(yvx6*yvy1 - yvy6*yvx1)**2) **2 +(yvx6*yvy1 - yvy6*yvx1)**2)		
stimation along point 1			
GEx = DSQRT(yvx1*2 + yvy1*2 + yvz1*2)*DS1N(be1) *& & DLGG(DSQRT(((1.000 + DCGS(be1))*(1.000 + DCGS(ga1)))/(DS GEy = DSQRT(yvx1*2 + yvy1*2 + yvz1*2)*DS1N(be1) *& & DLGG(DSQRT((((1.000 + DCGS(be1))*(1.000 + DCGS(ga1)))/(DS GEz = DSQRT(yvx1*2 + yvy1*2 + yvz1*2)*DS1N(be1) *& & DLGG(DSQRT((((1.000 + DCGS(be1))*(1.000 + DCGS(ga1)))/(DS))/(DS))	IN(be1)*DSIN(ga1)))**2))*bvx1 IN(be1)*DSIN(ga1)))**2))*bvy1 IN(be1)*DSIN(ga1)))**2))*bvy1		
Estimation along point 4			
GEx = GEx + DSQRT(yvx4**2 + yvy4**2 + yvz4**2)*DSIN(be2) *& & DLGG(DSQRT(((1(1.000 + DCGS(be2))*(1.000 + DCGS(ge2)))/(D) GEy = GEy + DSQRT(yvx4**2 + yvy4*2 + yvx4*2)*DSIN(be2) *& & DLGG(DSQRT((((1.000 + DCGS(be2))*(1.000 + DCGS(ge2)))/(D) GEz = GEz + DSQRT(yvx4**2 + yvy4*2 + yvx4*2)*DSIN(be2) *& & DLGG(DSQRT((((1.000 + DCGS(be2))*(1.000 + DCGS(ge2)))/(D)	IN(be2)*DSIN(ga2)))**2))*bvy2 IN(be2)*DSIN(ga2)))**2))*bvz2		
stimation along point 2			
GEx = GEx + DSQRT(yvx2**3 + yvy2**2 + yvx2**2)*DSIN(he3) *& & DLOG (DSQRT(((1.000 + DCS(bc3))*(1.000 + DCS(c3)))/(D) GEy = GEy + DSQRT(yvx2**3 + yvy2**2 + yvx2**2)*DSIN(he3) *& & DLOG (DSQRT(((1.000 + DCS(bc3))*(1.000 + DCS(c3)))/(D) GEz = GEz + DSQRT(yvx2**3 + yvy2**2 + yvx2**2)*DSIN(he3) *& & DLOG (DSQRT(((1.000 + DCS(bc3))*(1.000 + DCS(c3)))/(D)	IN(be3)*DSIN(ga3)))**2))*bvx3 IN(be3)*DSIN(ga3)))**2))*bvy3 IN(be3)*DSIN(ga3)))**2))*bvz3		
stimation along point 5			
GEx = GEx + DSQRT(yvx5**2 + yvy5**2 + yvz5**2)*DSIN(be4) *& & DLGG(DSQRT(((1.000 + DCGS(be4))*(1.000 + DCGS(ga4)))/(D: GEy = GEy + DSQRT(yvx5**2 + yvy5**2 + yvz5**2)*DSIN(be4) *& & DLGG(DSQRT(((1.000 + DCGS(be4))*(1.000 + DCGS(ga4)))/(D: GEz = GEz + DSQRT(yvx5**2 + yvy5**2 + yvz5**2)*DSIN(be4) *& & DLGG(DSQRT(((1.000 + DCGS(be4))*(1.000 + DCGS(ga4)))/(D: GEZ = GEZ + DSQRT(((1.000 + DCGS(be4))*(1.000 + DCGS(ga4)))/(D: & DLGG(DSQRT(((1.000 + DCGS(be4))*(1.000 + DCGS(be4)))/(D: & DLGG(DSQRT(((1.000 + DCGS(be4))))/(D: & DLGG(DSQRT(((1.000 + DCGS(be4)))))/(D: & DLGG(DSQRT(((1.000 + DCGS(be4)))))/(D: & DLGG(DSQRT(((1.000 + DCGS(be4))))))))))))	IN(be4)*DSIN(ga4)))**2))*bvx4 IN(be4)*DSIN(ga4)))**2))*bvy4 IN(be4)*DSIN(ga4)))**2))*bvz4		
stimation along point 3			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	IN(be5)*DSIN(ga5)))**2))*bvx5 IN(be5)*DSIN(ga5)))**2))*bvy5		
stimation along point 6			
GEx = GEx + DSQRT(yvx6**2 + yvy6**2 + yvz6**2)*DSIN(be6) *& & DLOG(DSQRT(((1.000 + DCOS(be6))*(1.000 + DCOS(ga6)))/(D: GEy = GEy + DSQRT(yvx6**2 + yvy6**2 + yvx6**2)*DSIN(be6) *& & DLOG(DSQRT(((1.000 + DCOS(be6))*(1.000 + DCOS(ga6)))/(D: GEz = GEz + DSQRT(yvx6**2 + yvy6**2 + yvx6**2)*DSIN(be6) *& & DLOG(DSQRT(((1.000 + DCOS(be6))*(1.000 + DCOS(ga6)))/(D: GEz = GEz + DSQRT(((1.000 + DCOS(be6))*(1.000 + DCOS(ga6)))/(D: & DLOG(DSQRT(((1.000 + DCOS(be6))*(1.000 + DCOS(be6)))/(D: & DLOG(DSQRT((1.000 + DCOS(be6))))/(D: & DLOG(DSQRT((1.000 + DCOS(be6)))))/(D: & DLOG(DSQRT((1.000 + DCOS(be6))))))))))	IN(be6)*DSIN(ga6)))**2))*bvx6 IN(be6)*DSIN(ga6)))**2))*bvy6 IN(be6)*DSIN(ga6)))**2))*bvz6		
<pre>GEx = GEx*crvmel(k)</pre>			

мо	DULE Mod_sgf_3d_fs
!=:	
I.	Version: 0.5 created on 26 / IX / 2007
! -	C. Pozrikidis
ï	Version: 0.7 created on / III /2010
!	Marco Antonio Reyes Huesca
!- !	Version: 0.8 created on 22 / 03 / 2012
i	Version: 0.3 created on 22 / 03 / 2012 Version: 0.9 created on 03 / 09 / 2012
i.	Version: 1.0 created on 13 / 11 / 2012
!	Alfredo Sanjuan Sanjuan
	CONTAINS
! =	
	SUBROUTINE sgf_3d_fs(x, y, z, &
	& x0, y0, z0, & & Gxx, Gxy, Gxz, &
	& Gyy, Gyz, &
	& Gzx, Gzy, Gzz)
1	
i	Free-space Green's function: Stokeslet Pozrikidis (1992, p. 23)
1	This new version of sfg_3d_fs only calculates the Green's function: Stokeslet. The stress asociated is
	alculated in other module.
	USE Mod_SharedVars, ONLY: DBL, ULog
! =	
1	IMPLICIT NONE
	Variables
! -	
	REAL (KIND = DBL), INTENT(IN) :: x, y, z !coordinates of collocation point of the element REAL (KIND = DBL), INTENT(IN) :: x0, y0, z0 !coordinates of the singularity
	REAL (KIND = DBL), INTENT(INOUT) :: Gxx, Gxy, Gxz, & !Free-space Green's function of Stokeslet. integrated
	& Gyx, Gyy, Gyz, & !ij component over the element
	& Gzx, Gzy, Gzz
	Variables inside the subroutine
	REAL (KIND = DBL) :: dx, dy, dz !differences between the (x,y,z) and (x0,y0,z0) coordinates
	REAL (KIND = DBL) :: dxx, dxy, dxz, & !square distance di*dj=dij & dyy, dyz, dzz
	REAL (KIND = DBL) :: r, r3 Idistance r between the (x,y,z) point and (x0,y0,z0) and r**3
	REAL (KIND = DBL) :: ri, ri3 !inverse of distance r and inverse of r**3
1	Initialize
•	Gxx = 0.000
	Gxy = 0.0D0
	GX2 = 0.000
	Gyx = 0.0D0 Gyy = 0.0D0
	Gyz = 0.0D0
	Gzx = 0.0D0
	GZY = 0.0D0 GZZ = 0.0D0
	dx = 0.000
	dy = 0.000
	dz = 0.0D0
	dxx = 0.0D0
	dxy = 0.0D0
	d×z = 0.0D0
	dyy = 0.0D0 dyz = 0.0D0
	dzz = 0.000
! -	r = 0.000
!-	
! -	r3 = 0.0D0
! -	

!Star	the magic the magic the magic
d	$dx = (x - x\theta)$
	$iy = (y - y\theta)$
	iz = (z-z0)
	$Jxx = dx^*dx$
	ixy = dx*dy
	ixz = dx*dz
	lyy = dy*dy
	iyz = dy*dz izz = dz*dz
	SQRT(dxx + dyy + dzz)
	∴i = 1.0D0/r ∴i3 = 1.0D0/r3
	15 - 1000/15
G	ixx = ri + dxx*ri3
	$dxy = dxy^* r_{13}$
	Sxz = dxz*ri3 Syy = ri + dyy*ri3
	yy = -11 + 0yy - 113 yz = -0yz + ni3
G	zz = ri + dzz*ri3
	iyx = 6xy izx = 6xz
	szx = GXZ Szy = Gyz
Don	
	SUBROUTINE sgf_3d_fs
s	SUBROUTINE sgf_3d_fsing(x, y, z, &
	& x0, y0, z0, &
	& Gxx, Gxy, Gxz, & & Gyx, Gyy, Gyz, &
	& GZX, GZZ, &
	& ABS)
	ree-space Green's function: Stokeslet Pozrikidis (1992, p. 23)
	his new version of sfg 3d fs only calculates the Green's function: Stokeslet. The stress asociated is
calc	ulated in other module.
	JSE Mod_SharedVars, ONLY: DBL, ULog
	IMPLICIT NONE
	/ariables
	REAL (KIND = DBL), INTENT(IN) :: x, y, z !coordinates of collocation point of the element
R	<pre>REAL (KIND = DBL), INTENT(IN) :: x, y, z !coordinates of collocation point of the element REAL (KIND = DBL), INTENT(IN) :: x0, y0, z0 !coordinates of the singularity</pre>
R	EAL (KIND = DBL), INTENT(INDUT) :: Gxx, Gxy, Gzz, & Free-space Green's function of Stokeslet. integrated
8	Gyx, Gyy, Gyz, & !ij component over the element
8	
к	REAL (KIND = DBL), INTENT(IN) :: ABS !var on posrikidis
	/ariables inside the subroutine
	DEAL (VEND = DDL) and you do do dd ddiffeennana between the (you a) and (your -2)
	<pre>REAL (KIND = DBL) :: dx, dy, dz !differences between the (x,y,z) and (x0,y0,z0) coordinates REAL (KIND = DBL) :: dxx, dxy, dxz, & !square distance di*dj=dij</pre>
8	
	REAL (KIND = DBL) :: r, r3 !distance r between the (x,y,z) point and (x0,y0,z0) and r**3
R	REAL (KIND = DBL) :: ri, ri3 !inverse of distance r and inverse of r**3
R	
R	initializa
R R 	(nitialize Sxx = 0.0D0
R R ! ! I G	Initialize 5xx = 0.000 5xy = 0.000
R R ! ! G G G	5xx = 0.0D0

5	y = 0.0D0
6	2 = 0.000
7	× = 0.0D0
3	y = 0.0D0
9	z = 0.0D0
3	= 0.000
1	= 0.000
2	= 0.0D0
1	× = 0.0D0
5	y = 0.0D0 z = 0.0D0
2 7	y = 0.000
8	z = 0.000
9	2 = 0.000
1	= 0.000
2	= 0.000
3	= 0.0D0
1	3 = 0.000
	the magic
7 3	= (x-x0)
3	= (y-y0) = (z-z0)
	= (2-20)
í .	x = dx*dx
2	$y = dx^* dy$
3	z = dx*dz
1	y = dy*dy
5	z = dy*dz
6	z = dz*dz
	= DSQRT(dxx + dyy + dzz)
8 9	$= DSQRT(axx + ayy + azz)$ $= r^{**3}$
9	1.000/r
1	= 1.000/r3
3	x = 1.0D0 + dxx/ABS**2
1	y = dxy/ABS**2
5	z = dxz/ABS**2
5	y = 1.0D0 + dyy/ABS**2
7	z = dyz/ABS**2
3	z = 1.0D0 + dzz/ABS**2
9 ! 9	x = Gxy
1	x = Gxz
2	v = 6yz
11	
	3ROUTINE sgf_3d_fsing
	DULE Mod_sgf_3d_fs
9	

! =		
1	Version: 0.5 created on 26 / IX / 2007	C. Pozrikidi
i i	Version: 0.7 created on / III /2010	Marco Antonio Reyes Huesc
1-	Version: 0.9 created on 22 / 03 / 2012	
1	Version: 1.0 created on 13 / 10 / 2012	
!		Alfredo Sanjuan Sanjua
	CONTAINS	
! =	SUBROUTINE Intgr_Trgl_s(x0, y0, z0, &	
	& x1, y1, z1, 8	k
	& k, &	
	& TExx, TExy, TExz, & & TEyx, TEyy, TEyz, &	
	& TEZX, TEZY, TEZZ, &	
	& mint)	
!=	This subroutine integrates the Green's function	on over a non-singular triangle numbered k
! =		
	USE Mod_SharedVars, ONLY: DBL, ULog, eps, Pi, & p, ne, n, nbe,	& 8
	& alphaQ, betaQ, gamma	aQ, &
	& xiq, etq, wq,	8
1-	& Ns,Np	
	USE Mod_sgf_3d_sfs	
	USE Mod_Nodal_Interp	
! =	TMPLICTT NONE	
! =		
1	Variables	
	REAL (KIND = DBL), INTENT(IN) :: x0, y0, z0 REAL (KIND = DBL), INTENT(IN) :: x1, y1, z1	<pre>!coordinates of collocation point analysis</pre>
	INTEGER. INTENT(IN) :: k	<pre>!coordinates of element collocation point !element index</pre>
	INTEGER, INTENT(IN) :: k	lelement index
	INTEGER, INTENT(IN) :: k REAL (KIND = DBL), INTENT(OUT) :: TExx, TExy, & TEyx, TEyy,	<pre>!element index TExz, & !Integrated ij component over the element TEyz, &</pre>
	INTEGER, INTENT(IN) :: k REAL (KIND = DBL), INTENT(OUT) :: TExx, TExy, & TEyx, TEyy, & TEzx, TEzy,	lelement index TExz, & IIntegrated ij component over the element TEyz, & TEzz
! =	INTEGER, INTENT(IN) :: k REAL (KIND = DBL), INTENT(OUT) :: TExx, TExy, & TEyx, TEyy, & TExx, TEzy, INTEGER, INTENT(IN) :: mint	<pre>!element index TExz, & !Integrated ij component over the element TEyz, &</pre>
1	INTEGER, INTENT(IN) :: k REAL (KIND = DBL), INTENT(OUT) :: TExx, TExy, & TEyx, TEyy, & TEyx, TEzy, INTEGER, INTENT(IN) :: mint Variables inside the subroutine	lelement index TEX2, & Integrated ij component over the element TEY2, & TEZ2 Iorder of triangle quadrature
1	INTEGER, INTENT(IN) :: k REAL (KIND = DDL), INTENT(OUT) :: TExx, TExy, & TExx, TEyy, & TExx, TEyy, INTEGER, INTENT(IN) :: mint Variables inside the subroutine	lelement index TEX2, & Integrated ij component over the element TEY2, & TEZ2 Iorder of triangle quadrature
! ! -	INTEGER, INTENT(IN) :: k REAL (KIND = DBL), INTENT(OUT) :: TExx, TExy, & TEyx, TEyy, INTEGER, INTENT(IN) :: mint Variables inside the subroutine INTEGER :: 1, 1 INTEGER :: 1, 12, 13, 14, 15, 16	lelement Index TExz, & IIntegrated ij component over the element TEzz Iorder of triangle quadrature Icounters Indices to obtain node numbers from each element
! ! -	INTEGER, INTENT(IN) :: k REAL (KIND = OBL), INTENT(OUT) :: TEXX, TEXY, & TEYX, TEYY, INTEGER, INTENT(IN) :: mint Variables inside the subroutine INTEGER :: 1, j INTEGER :: 1, 12, 13, 14, 15, 16	lelement Index TEX2, & Integrated ij component over the element TEY2, & Iorder of triangle quadrature Icounters lindices to obtain node numbers from each element
! ! -	INTEGER, INTENT(IN) :: k REAL (KIND = D0L), INTENT(OUT) :: TExx, TExy, K & TExx, TExy, TExx, TExy, INTEGER, INTENT(IN) :: mint	lelement Index TExz, & lintegrated ij component over the element TEyz, & Iorder of triangle quadrature Counters Lindices to obtain node numbers from each element Iconstants of weigth to integrate over a triangle
! ! -	INTEGER, INTENT(IN) :: k REAL (KIND = D0L), INTENT(OUT) :: TExx, TExy, K % TExx, TExy, NTEGER, INTENT(IN) :: mint Variables inside the subroutine INTEGER :: i, j INTEGER :: i, j 1, i3, i4, i5, i6 REAL (KIND = D0L) :: xi, eta REAL (KIND = D0L) :: xy, z REAL (KIND = D0L) :: D0L, j0Xi, DZDXI, & REX	lelement Index TEX2, & Integrated ij component over the element TEY2, & Iorder of triangle quadrature Icounters lindices to obtain node numbers from each element
! ! -	INTEGER, INTENT(IN) : k REAL (KIND = DBL), INTENT(OUT) :: TExx, TExy, k TEyx, TEyy, NTEGER, INTENT(IN) : mint Variables inside the subroutime INTEGER : 1, j INTEGER : 1, j INTEGER : 5, j6 REAL (KIND = DBL) :: x, y, c REAL (KIND = DBL) : x, y, z REAL (KIND = DBL) :: DxDxi, pOzti, DzDzi, & & DzDzt	Ielement Index TExz, & Inderated ij component over the element Tezz Iorder of triangle quadrature Icounters Indices to obtain node numbers from each element Iconstants of weigth to integrate over a triangle Iconstants of the fix, y_2) = f(x_i, eta) Icordinates of the fix, y_2) = f(x_i, eta) Icordinates of the tangential vectors over the element
! ! -	INTEGER, INTENT(IN) :: k REAL (KIND = DBL), INTENT(OUT) :: TExx, TExy, & TExx, TExy, NTEGER, INTENT(IN) :: mint INTEGER: INTEGER:: I, 1, 12, 13, 14, 15, 16 REAL (KIND = DBL): : X, y, z REAL (KIND = DBL): : X, y, z REAL (KIND = DBL): X, y, z REAL (KIND = DBL): DAVE, JOZCH, JOZCH, & & DXDEt, DYDET, ZDZET REAL (KIND = DBL): X, y, vry, vrz	lelement Index TExz, & IIntegrated ij component over the element TEyz, & Iorder of triangle quadrature Icounters lindices to obtain node numbers from each element Iconstants of weigth to integrate over a triangle loordinates of the tangential vectors over the element Inormal vector coordinates of the element
! ! -	INTEGER, INTENT(IN) :: k REAL (KIND = DBL), INTENT(OUT) :: TExx, TExy, & TExx, TExy, INTEGER, INTENT(IN) :: mint Variables inside the subroutine INTEGER :: i, j INTEGER :: j INTEGER :: i, j INTEGER :: j IN	lelement Index TExz, & IIntegrated ij component over the element TEyz, & Inder of triangle quadrature Icounters lindices to obtain node numbers from each element Iconstants of weigth to integrate over a triangle loodinates of the tangential vectors over the element Inormal vector coordinates of the element Isurgate metric on a triangle lintegration weigth ceefficient
! !-	INTEGER, INTENT(IN) :: k REAL (KIND = DBL), INTENT(OUT) :: TExx, TExy, & TExx, TExy, & TExx, TExy, INTENTCOLT) :: TExx, TExy, INTEGER, INTENT(IN) :: mint INTEGER :: 1, j INTEGER :: 1, i, i3, i4, 15, 16 INTEGER :: 1, i2, i3, i4, 15, 16 REAL (KIND = DBL) :: x, y, z REAL (KIND = DBL) :: x, y, z REAL (KIND = DBL) :: vnx, vny, vnz REAL (KIND = DBL) :: vnx, vny, vnz REAL (KIND = DBL) :: fc REAL (KIND = DBL) :: fcxx, Txxy, Txxz, &	lelement index TExz, & Integrated ij component over the element TExz Iorder of triangle quadrature Icounters lindices to obtain node numbers from each element Icounters lindices to obtain node numbers from each element Icounters locordinates of the (ay, y, y)= f(d, ed) locrivates of the (ay, y, y)= f(d, ed) locrivates of the tangential vectors over the element Isurface metric on a triangle lindregration weight coefficient lifteree-space Green's function of Stresslet. integrated ijk
! !-	INTEGER, INTENT(IN) :: k REAL (KIND = DBL), INTENT(OUT) :: TExx, TExy, % TExx, TExy, INTEGER, INTENT(IN) :: mint INTEGER: INTEGER: INTEGER: INTEGER: INTEGER: INTEGER: INTEGER: INTEGER: INTEGER: REAL (KIND = DBL): I: X, y, z REAL (KIND = DBL): REAL (KIND = DBL): REAL (KIND = DBL): I: A DXCL, DYDXL, DZDXL, & & REAL (KIND = DBL): I: STAX, TXY, TXZ, & & & Kanton (KIND = DBL): I: TXXX, TXY, TXZ, & IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	lelement Index TExz, & IIntegrated ij component over the element TEyz, & Inder of triangle quadrature Icounters lindices to obtain node numbers from each element Iconstants of weigth to integrate over a triangle loodinates of the tangential vectors over the element Inormal vector coordinates of the element Isurgate metric on a triangle lintegration weigth ceefficient
! !-	INTEGER, INTENT(IN) :: k REAL (KIND = DBL), INTENT(OUT) :: TExx, TExy, & TEyx, TEyy, NTEGER, INTENT(IN) :: mint Variables inside the subroutine INTEGER :: 1, j INTEGER :: 1, j INTEGER :: 1, iz, iz, iz, id, is, id REAL (KIND = DBL) :: x, y, z REAL (KIND = DBL) :: y, Y, Z, & & TXXX, TXXY, TXXZ, XZ, %	lelement index TExz, & Integrated ij component over the element TExz Iorder of triangle quadrature Icounters lindices to obtain node numbers from each element Icounters lindices to obtain node numbers from each element Icounters locordinates of the (ay, y, y)= f(d, ed) locrivates of the (ay, y, y)= f(d, ed) locrivates of the tangential vectors over the element Isurface metric on a triangle lindregration weight coefficient lifteree-space Green's function of Stresslet. integrated ijk
! !-	INTEGER, INTENT(IN) :: k REAL (KIND = DBL), INTENT(OUT) :: TExx, TExy, & TEyx, TEyy, NTEGER, INTENT(IN) :: mint Variables inside the subroutine INTEGER :: 1, j INTEGER :: 1, j INTEGER :: 1, iz, i3, i4, i5, i6 REAL (KIND = DBL) :: xi, eta REAL (KIND = DBL) :: xobi, pOpxi, DZDXi, & KeAL (KIND = DBL) :: xobi, pOpxi, DZDXi, & REAL (KIND = DBL) :: yrx, vny, vnz REAL (KIND = DBL) :: rxx, yry, vnz REAL (KIND = DBL) :: rxx, yry, vnz REAL (KIND = DBL) :: rxx, rxy, Txy, Z, & & Txxx, Txy, Txyz, Xzz, & & Tyxx, Txyy, Tyyz, Yyz, & & Tyxx, Tyyy, Tyyz, &	lelement index TExz, & Integrated ij component over the element TExz Iorder of triangle quadrature Icounters lindices to obtain node numbers from each element Icounters lindices to obtain node numbers from each element Icounters locordinates of the (ay, y, y)= f(d, ed) locrivates of the (ay, y, y)= f(d, ed) locrivates of the tangential vectors over the element Isurface metric on a triangle lindregration weight coefficient lifteree-space Green's function of Stresslet. integrated ijk
! !-	INTEGER, INTENT(IN) :: k REAL (KIND = OBL), INTENT(OI) :: TExx, TExy, & TEyx, TEyy, INTEGER, INTENT(IN) :: mint Variables inside the subroutime INTEGER :: 1, j INTEGER :: 1, j, i3, i4, i5, i6 REAL (KIND = OBL) :: xi, eta REAL (KIND = OBL) :: xy, z REAL (KIND = OBL) :: xy, y, TAYZ, TAYZ, KYZ, KYZ, YYZ, & & Tyxx, TAYZ, TYZZ, WZZ, & & TyXx, TYYZ, YYZ, YZZ, & & TyYZ, TYZZ, WZZ, YZZ, YZZ, YZZ, XYZ, YZZ, XYZ, YZZ, XYZ, YZZ, XYZ, YZZ, XYZ, YZZ, YZ	lelement index TExz, & Integrated ij component over the element TExz Iorder of triangle quadrature Icounters lindices to obtain node numbers from each element Icounters lindices to obtain node numbers from each element Icounters locordinates of the (ay, y, y)= f(d, ed) locrivates of the (ay, y, y)= f(d, ed) locrivates of the tangential vectors over the element Isurface metric on a triangle lindregration weight coefficient lifteree-space Green's function of Stresslet. integrated ijk
! !-	INTEGER, INTENT(IN) : k REAL (KIND = DBL), INTENT(OUT) :: TExx, TExy, & TEyx, TEyy, NTEGER, INTENT(IN) :: mint Variables inside the subroutine INTEGER :: 1, j INTENT(IN) :: mint INTEGER :: 1, iz, iz, iz, iz, interest REAL (KIND = DBL) :: xi, eta REAL (KIND = DBL) :: Dyx, pDyxi, DDxi, & REAL (KIND = DBL) :: Dyx, pDyxi, DDxi, & REAL (KIND = DBL) :: Dyx, vny, vnz REAL (KIND = DBL) :: Crax, Txy, Txyz, Xzz, & & Txxx, Txyy, Txyz, & & Tyxx, Txyy, Tyyz, & & Tyxx, Tyyy, Tyyz, & & Tyzx, Tyyy, Tyyz, & & Tyzx, Tzy, Tzyz, &	lelement index TExz, & Integrated ij component over the element TExz Iorder of triangle quadrature Icounters lindices to obtain node numbers from each element Icounters lindices to obtain node numbers from each element Icounters locordinates of the (ay, y, y)= f(d, ed) locrivates of the (ay, y, y)= f(d, ed) locrivates of the tangential vectors over the element Isurface metric on a triangle lindregration weight coefficient lifteree-space Green's function of Stresslet. integrated ijk
! !-	INTEGER, INTENT(IN) :: k REAL (KIND = OBL), INTENT(OI) :: TExx, TExy, & TEyx, TEyy, INTEGER, INTENT(IN) :: mint Variables inside the subroutime INTEGER :: 1, j INTEGER :: 1, j, i3, i4, i5, i6 REAL (KIND = OBL) :: xi, eta REAL (KIND = OBL) :: xy, z REAL (KIND = OBL) :: xy, y, TAYZ, TAYZ, KYZ, KYZ, YYZ, & & Tyxx, TAYZ, TYZZ, WZZ, & & TyXx, TYYZ, YYZ, YZZ, & & TyYZ, TYZZ, WZZ, YZZ, YZZ, YZZ, XYZ, YZZ, XYZ, YZZ, XYZ, YZZ, XYZ, YZZ, XYZ, YZZ, YZ	lelement index TExz, & Integrated ij component over the element TExz Iorder of triangle quadrature Icounters lindices to obtain node numbers from each element Icounters lindices to obtain node numbers from each element Icounters locordinates of the (ay, y, y)= f(d, ed) locrivates of the (ay, y, y)= f(d, ed) locrivates of the tangential vectors over the element Isurface metric on a triangle lindregration weight coefficient lifteree-space Green's function of Stresslet. integrated ijk
! - !-	INTEGER, INTENT(IN) : k REAL (KIND = OBL), INTENT(OIT) :: TExx, TExy, TEyx, TEyy, TEyx, TEyy, INTERGER, INTENT(IN) :: mint Variables inside the subroutime INTEGER :: 1, j INTEGER :: 1, j INTEGER :: 1, j INTEGER :: 1, j : 1, state REAL (KIND = OBL) :: x, y, z REAL (KIND = OBL) :: x, y, z REAL (KIND = OBL) :: DXDX1, DYDX1, DZDX1, & REAL (KIND = OBL) :: INS DEDEt DEDET REAL (KIND = OBL) :: INS REAL (KIND = OBL) :: S REAL (KIND = OBL) :: INS REAL (KIND = OBL) :: S REAL (KIND = OBL) :: INS REAL (KIND = OBL) :: S REAL (KIND = OBL) :: INS REAL (XIND = OBL) :: S REAL (KIND = OBL) :: INS REAL (XIND = OBL) :: S REAL (XIND = OBL) :: INS REAL (XIND = OBL) :: S REAL (XIND = OBL) :: T S REAL (XIND = OBL) ::	lelement index TExz, & Integrated ij component over the element TExz Iorder of triangle quadrature Icounters lindices to obtain node numbers from each element Icounters lindices to obtain node numbers from each element Icounters locordinates of the (ay, y, y)= f(d, ed) locrivates of the (ay, y, y)= f(d, ed) locrivates of the tangential vectors over the element Isurface metric on a triangle lindregration weight coefficient lifteree-space Green's function of Stresslet. integrated ijk
! -	INTEGER, INTENT(IN) : k REAL (KIND = DBL), INTENT(OUT) :: TExx, TExy, & TEyx, TEyy, NTEGER, INTENT(IN) :: mint Variables inside the subroutine INTEGER :: 1, j INTENT(IN) :: mint INTEGER :: 1, iz, iz, iz, iz, iz, eta REAL (KIND = DBL) :: xi, eta REAL (KIND = DBL) :: DDxl, DyOxi, DZDxi, & & CHAL (KIND = DBL) :: Dx, vny, vnz REAL (KIND = DBL) :: co, vny, vnz REAL (KIND = DBL) :: fc REAL (KIND = DBL) :: fcxx, Txxy, Txxz, & & Tyxx, Tyyy, Tyyz, & & Tyxx, Txyy, Tyyz, Yyz, & & Tyxx, Txyy, Tyyz, Yyz, & & Tyxx, Txyy, Tyyz, Yyz, & & Tyxx, Txyy, Tyzz, & & Tyxx, Txy, Tzyz, W & Tyxx, Tzyy, Tzyz, & & Tyxx, Tzy, Tzyz, W & Tyxx, Tzy, Tzyz, W	lelement index TExz, & Integrated ij component over the element TExz Iorder of triangle quadrature Icounters lindices to obtain node numbers from each element Icounters lindices to obtain node numbers from each element Icounters locordinates of the (ay, y, y)= f(d, ed) locrivates of the (ay, y, y)= f(d, ed) locrivates of the tangential vectors over the element Isurface metric on a triangle lindregration weight coefficient lifteree-space Green's function of Stresslet. integrated ijk
! - !-	INTEGER, INTENT(IN) : k REAL (KIND = OBL), INTENT(OIT) :: TExx, TExy, TEyx, TEyy, TEyx, TEyy, INTERGER, INTENT(IN) :: mint Variables inside the subroutime INTEGER :: 1, j INTEGER :: 1, j INTEGER :: 1, j INTEGER :: 1, j : 1, state REAL (KIND = OBL) :: x, y, z REAL (KIND = OBL) :: x, y, z REAL (KIND = OBL) :: DXDX1, DYDX1, DZDX1, & REAL (KIND = OBL) :: INS DEDEt DEDET REAL (KIND = OBL) :: INS REAL (KIND = OBL) :: S REAL (KIND = OBL) :: INS REAL (KIND = OBL) :: S REAL (KIND = OBL) :: INS REAL (KIND = OBL) :: S REAL (KIND = OBL) :: INS REAL (XIND = OBL) :: S REAL (KIND = OBL) :: INS REAL (XIND = OBL) :: S REAL (XIND = OBL) :: INS REAL (XIND = OBL) :: S REAL (XIND = OBL) :: T S REAL (XIND = OBL) ::	lelement index TExz, & Integrated ij component over the element TExz Iorder of triangle quadrature Icounters lindices to obtain node numbers from each element Icounters lindices to obtain node numbers from each element Icounters locordinates of the (ay, y, y)= f(d, ed) locrivates of the (ay, y, y)= f(d, ed) locrivates of the tangential vectors over the element Isurface metric on a triangle lindregration weight coefficient lifteree-space Green's function of Stresslet. integrated ijk

	TEyy = 0.0D0 TEyz = 0.0D0
1	1Ey2 = 0.000
	TEzx = 0.0D0
	TEzy = 0.000
1	TEZZ = 0.0D0
	vertices of the kth triangle
	i1 = n(k, 1)
	$i_2 = n(k, 2)$
	i3 = n(k,3) i4 = n(k,4)
	15 = n(k,5)
	16 = n(k,6)
1	D0 i = 1, mint
i.	$x_i = x_i q(i)$
i.	eta = etq(i)
1	CALL interp_p(p(i1,1), p(i1,2), p(i1,3), & & p(i2,1), p(i2,2), p(i2,3), &
i	& p(12,1), p(12,2), p(12,3), & & p(13,1), p(13,2), p(13,3), &
i	& p(i4,1), p(i4,2), p(i4,3), &
1	& p(i5,1), p(i5,2), p(i5,3), &
1	& p(i6,1), p(i6,2), p(i6,3), $&$
i	& alphaQ(k), betaQ(k), gammaQ(k), & & xi, eta, &
i.	& x, y, z, &
1	& DxDxi, DyDxi, DzDxi, &
!	& DxDet, DyDet, & & vnx, vny, vnz, &
i	α viix, viiy, vii2, α & hs)
11-	
1	CALL sgf_3d_sfs(x, y, z, &
1	& x0, y0, z0, & & Txxx,Txxy,Txxz, &
i.	& Txyx, Txyy, Txyz, &
1	& Txzx,Txzy,Txzz, &
1	& Tyxx, Tyxy, Tyxz, &
1	& Tyyx,Tyyy,Tyyz, & & Tyzx,Tyzy,Tyzz, &
i.	& TZXX,TZXY,TZXZ, &
1	& Tzyx,Tzyy,Tzyz, &
1	& Tzzx,Tzzy,Tzzz)
- 	
11-	fc = 0.5D0*hs*wq(i)
11. 1 11.	fc = 0.500 ⁺ hs ⁺ wq(1) TExx = TExx + (Txxx ⁺ vnx ⁺ fc + Txxy ⁺ vny ⁺ fc + Txxz ⁺ vnz ⁺ fc)
11-	fc = 0.500*hs*wq(1) TExx = TExx + (Txxx*vnx*fc + Txxy*vny*fc + Txxz*vnz*fc) TExy = TExy + (Txyx*vnx*fc + Txyy*vny*fc + Txyz*vnz*fc)
- - 	$\begin{split} fc &= 0.500^{+0} hs^{+}wq(1) \\ \\ TExx &= TExx + (Txxx^{+}vnx^{+}fc + Txxy^{+}vny^{+}fc + Txxz^{+}vnz^{+}fc) \\ TExy &= TExy + (Txyx^{+}vnx^{+}fc + Txyy^{+}vny^{+}fc + Txyz^{+}vnz^{+}fc) \\ TExz &= TExz + (Txxz^{+}vnx^{+}fc + Txyy^{+}vny^{+}fc + Txzz^{+}vnz^{+}fc) \\ TEyx &= TEyx + (Tyxz^{+}vnx^{+}fc + Txyy^{+}vny^{+}fc + Txzz^{+}vnz^{+}fc) \\ \end{split}$
- - 	fc = 0.500 ⁺ hs ⁺ wq(1) TExx = TExx + (Txxx ⁺ vnx ⁺ fc + Txxy ⁺ vny ⁺ fc + Txxz ⁺ vnz ⁺ fc) TExy = TExy + (Txxy ⁺ vnx ⁺ fc + Txyy ⁺ vny ⁺ fc + Txyz ⁺ vnz ⁺ fc) TExz = TExx + (Txxx ⁺ wnx ⁺ fc + Txyy ⁺ vny ⁺ fc + Tyxz ⁺ vnz ⁺ fc) TEyx = TEyx + (Tyxx ⁺ wnx ⁺ fc + Tyyy ⁺ vny ⁺ fc + Tyxz ⁺ vnz ⁺ fc) TEyy = TEyy + (Tyyx ⁺ wnx ⁺ fc + Tyyy ⁺ vny ⁺ fc + Tyxz ⁺ vnz ⁺ fc)
	$fc = 0.500^{+0.5} wq(1)$ $Fexx = 16xx + (1xxx^{+}vnx^{+}fc + 1xxy^{+}vny^{+}fc + 1xxx^{+}vnz^{+}fc)$ $Fexy = 1Fexy + (1xxx^{+}vnx^{+}fc + 1xxy^{+}vny^{+}fc + 1xxz^{+}vnz^{+}fc)$ $Fexz = 1Fexx + (1xxx^{+}vnx^{+}fc + 1xxy^{+}vny^{+}fc + 1xzz^{+}vnz^{+}fc)$ $Feyy = 1Feyx + (1yxx^{+}vnx^{+}fc + 1yyy^{+}vny^{+}fc + 1yzz^{+}vnz^{+}fc)$ $Feyy = 1Feyx + (1yxx^{+}vnx^{+}fc + 1yyy^{+}vny^{+}fc + 1yzz^{+}vnz^{+}fc)$ $Feyz = 1Fezx + (1yxx^{+}vnx^{+}fc + 1yyy^{+}vny^{+}fc + 1yzz^{+}vnz^{+}fc)$
- - 	$fc = 0.500^{++}s^{+}wq(1)$ $TExx = TExx + (Txxx^{+}vnx^{+}fc + Txxy^{+}vny^{+}fc + Txxz^{+}vnz^{+}fc)$ $TExy = TExy + (Txxy^{+}vnx^{+}fc + Txyy^{+}vny^{+}fc + Txyz^{+}vnz^{+}fc)$ $TExz = TExz + (Txxx^{+}wnx^{+}fc + Txyy^{+}vny^{+}fc + Tyzz^{+}vnz^{+}fc)$ $TEyx = TEyx + (Tyxx^{+}wnx^{+}fc + Tyyy^{+}vny^{+}fc + Tyzz^{+}vnz^{+}fc)$ $TEyy = TEyy + (Tyyx^{+}wnx^{+}fc + Tyyy^{+}vny^{+}fc + Tyzz^{+}vnz^{+}fc)$ $TEzx = TEzx + (Txxx^{+}wnx^{+}fc + Tyzy^{+}vny^{+}fc + Tyzz^{+}vnz^{+}fc)$ $TEzx = TEzx + (Txxx^{+}wnx^{+}fc + Tyzy^{+}vny^{+}fc + Tyzz^{+}vnz^{+}fc)$
	$fc = 0.500^{++}s^{+}wq(1)$ $Texx = Texx + (Txxx^{+}vnx^{+}fc + Txxy^{+}vny^{+}fc + Txxz^{+}vnz^{+}fc)$ $Texy = Texy + (Txyx^{+}vnx^{+}fc + Txyy^{+}vny^{+}fc + Txyz^{+}vnz^{+}fc)$ $Texy = Tex + (Txxx^{+}vnx^{+}fc + Tyyy^{+}vny^{+}fc + Tyzz^{+}vnz^{+}fc)$ $Teyy = Teyx + (Tyxx^{+}vnx^{+}fc + Tyyy^{+}vny^{+}fc + Tyzz^{+}vnz^{+}fc)$ $Tezy = Tezy + (Tyxx^{+}vnx^{+}fc + Tyzy^{+}vny^{+}fc + Tyzz^{+}vnz^{+}fc)$ $Tezx = Tez + (Tzxx^{+}vnx^{+}fc + Tyzy^{+}vny^{+}fc + Tyzz^{+}vnz^{+}fc)$ $Tezy = Tez + (Tzxx^{+}vnx^{+}fc + Tzyy^{+}vny^{+}fc + Tzyz^{+}vnz^{+}fc)$ $Tezz = Tez + (Tzxx^{+}vnx^{+}fc + Tzyy^{+}vny^{+}fc + Tzyz^{+}vnz^{+}fc)$ $Tezz = Tez + (Tzxx^{+}vnx^{+}fc + Tzyy^{+}vny^{+}fc + Tzyz^{+}vnz^{+}fc)$
	$ \begin{split} fc &= 0.500^{+0} hs^{+}wq(1) \\ \hline \\ FExx &= TExx + (Txxx^{+}vnx^{+}fc + Txxy^{+}vny^{+}fc + Txxz^{+}vnz^{+}fc) \\ TExy &= TExy + (Txyx^{+}vnx^{+}fc + Txyy^{+}vny^{+}fc + Txyz^{+}vnz^{+}fc) \\ TExz &= TExz + (Txxx^{+}vnx^{+}fc + Txyy^{+}vny^{+}fc + Tyzz^{+}vnz^{+}fc) \\ TEyx &= TExy + (Tyxx^{+}vnx^{+}fc + Tyyy^{+}vny^{+}fc + Tyzz^{+}vnz^{+}fc) \\ TEyz &= TEyz + (Tyxx^{+}vnx^{+}fc + Tyzy^{+}vny^{+}fc + Tyzz^{+}vnz^{+}fc) \\ TEyz &= TEyz + (Tyxx^{+}vnx^{+}fc + Tyz)^{+}vny^{+}fc + Tyzz^{+}vnz^{+}fc) \\ TEzz &= TEzz + (Tzx^{+}vnx^{+}fc + Tzz)^{+}vny^{+}fc + Tzzz^{+}vnz^{+}fc) \\ TEzz &= TEzz + (Tzx^{+}vnx^{+}fc + Tzz)^{+}vny^{+}fc + Tzzz^{+}vnz^{+}fc) \\ TEzz &= TEzz + (Tzx^{+}vnx^{+}fc + Tzz)^{+}vny^{+}fc + Tzzz^{+}vnz^{+}fc) \\ \hline \end{array} $
	fc = 0.500 ⁺ hs ⁺ wq(1) TExx = TExx + (Txxx ⁺ vnx ⁺ fc + Txxy ⁺ vny ⁺ fc + Txxz ⁺ vnz ⁺ fc) TExy = TExy + (Txyx ⁺ vnx ⁺ fc + Txyy ⁺ vny ⁺ fc + Txyz ⁺ vnz ⁺ fc) TExy = TEx + (Txxx ⁺ wnx ⁺ fc + Tyyy ⁺ vny ⁺ fc + Tyyz ⁺ vnz ⁺ fc) TEyy = TEyy + (Tyyx ⁺ wnx ⁺ fc + Tyyy ⁺ vny ⁺ fc + Tyyz ⁺ vnz ⁺ fc) TEyz = TExy + (Txx ⁺ wnx ⁺ fc + Tyzy ⁺ vny ⁺ fc + Tyzz ⁺ vnz ⁺ fc) TEzy = TEx + (Txx ⁺ wnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tyzz ⁺ vnz ⁺ fc) TEzy = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEzy + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEzy + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEzy + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzyz ⁺ wnz ⁺ fc) TEzy = TEzy + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzyz ⁺ wnz ⁺ fc) TEzy = TEzy + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzyz ⁺ wnz ⁺ fc) TEzy = TEzy + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzyz ⁺ wnz ⁺ fc) TEzy = TEzy + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzyz ⁺ wnz ⁺ fc) TEzy = TEzy + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzyz ⁺ wnz ⁺ fc) TEzy = TEzy + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzyz ⁺ wnz ⁺ fc) TEzy = TEzy + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzyz ⁺ wnz ⁺ fc) EWD
!! ! ! ! ! ! ! ! ! ! ! !	fc = 0.500 ⁺ hs ⁺ wq(1) TExx = TExx + (Txxx ⁺ vnx ⁺ fc + Txxy ⁺ vny ⁺ fc + Txxz ⁺ vnz ⁺ fc) TExy = TExy + (Txyx ⁺ vnx ⁺ fc + Txyy ⁺ vny ⁺ fc + Txyz ⁺ vnz ⁺ fc) TExy = TEx + (Txxx ⁺ vnx ⁺ fc + Tyyy ⁺ vny ⁺ fc + Tyyz ⁺ vnz ⁺ fc) TEyy = TEyy + (Tyyx ⁺ vnx ⁺ fc + Tyyy ⁺ vny ⁺ fc + Tyyz ⁺ vnz ⁺ fc) TEyz = TEx + (Txxx ⁺ vnx ⁺ fc + Tyyy ⁺ vny ⁺ fc + Tyzz ⁺ vnz ⁺ fc) TEzy = TEz + (Tzxx ⁺ vnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEz + (Tzxx ⁺ vnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEz + (Tzxx ⁺ vnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEz + (Tzxx ⁺ vnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEz + (Tzxx ⁺ vnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEz + (Tzxx ⁺ vnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEz + (Tzxx ⁺ vnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEz + (Tzxx ⁺ vnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEz + (Tzxx ⁺ vnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEz + (Tzxx ⁺ vnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEzy + (Tzxx ⁺ vnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEzy + (Tzxx ⁺ vnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEzy + (Tzxx ⁺ vnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEzy + (Tzxx ⁺ vnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEzy + (Tzxx ⁺ vnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEzy + (Tzxx ⁺ vnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEzy + (Tzxx ⁺ vnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEzy + (Tzxx ⁺ vnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEzy + (Tzxx ⁺ vnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc)
!! ! ! ! ! ! ! ! ! ! ! !	fc = 0.500*hs*wq(1) TExx = TExx + (Txxx*vnx*fc + Txxy*vny*fc + Txxz*vnz*fc) TExy = TExy + (Txyx*vnx*fc + Txyy*vny*fc + Txyz*vnz*fc) TExz = TExz + (Txxx*vnx*fc + Txyy*vny*fc + Txyz*vnz*fc) TEyx = TExy + (Txyx*vnx*fc + Tyyy*vny*fc + Tyyz*vnz*fc) TEyx = TEyx + (Tyxx*vnx*fc + Tyyy*vny*fc + Tyyz*vnz*fc) TEyy = TEyx + (Tyxx*vnx*fc + Tyyy*vny*fc + Tyyz*vnz*fc) TEyz = TEyx + (Tyx*vnx*fc + Txy)*vny*fc + Tyyz*vnz*fc) TEzz = TEzz + (Tzx*vnx*fc + Tzy*vny*fc + Tzzz*vnz*fc) TEzz = TEzz + (Tzx*vnx*fc + Tzy*vny*fc + Tzzz*vnz*fc) TEzz = TEzz + (Tzx*vnx*fc + Tzy*vny*fc + Tzzz*vnz*fc) TEzz = TEzz + (Tzx*vnx*fc + Tzzy*vny*fc + Tzzz*vnz*fc) TEtz = TEzz + (Tzx*vnx*fc + Tzzy*vny*fc + Tzzz*vnz*fc) TEtz = TEzz + (Tzx*vnx*fc + Tzzy*vny*fc + Tzzz*vnz*fc) TEtz = TEzz + (Tzx*vnx*fc + Tzzy*vny*fc + Tzzz*vnz*fc) CMD DO CALL intr_lin_sing_s2(x0, y0, z0, 0
!! ! ! ! ! ! ! ! ! ! ! !	fc = 0.500 ⁺ hs ⁺ wq(1) TExx = TExx + (Txxx ⁺ vnx ⁺ fc + Txxy ⁺ vny ⁺ fc + Txxz ⁺ vnz ⁺ fc) TExy = TExy + (Txyx ⁺ vnx ⁺ fc + Txyy ⁺ vny ⁺ fc + Txyz ⁺ vnz ⁺ fc) TExy = TEx + (Txxx ⁺ wnx ⁺ fc + Tyyy ⁺ vny ⁺ fc + Tyyz ⁺ vnz ⁺ fc) TEyx = TEyx + (Tyxx ⁺ wnx ⁺ fc + Tyyy ⁺ vny ⁺ fc + Tyyz ⁺ vnz ⁺ fc) TEyz = TEx + (Txx ⁺ wnx ⁺ fc + Tyyy ⁺ vny ⁺ fc + Tyzz ⁺ vnz ⁺ fc) TEzy = TEz + (Tzxx ⁺ wnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ vny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzyz ⁺ vnz ⁺ fc) TEzy = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzyz ⁺ wnz ⁺ fc) TEzy = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzyz ⁺ wnz ⁺ fc) TEzy = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzyz ⁺ wnz ⁺ fc) TEzy = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzyz ⁺ wnz ⁺ fc) TEzy = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzyz ⁺ wnz ⁺ fc) TEZ = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzzz ⁺ wnz ⁺ fc) TEZ = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzzz ⁺ wnz ⁺ fc) TEZ = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzzz ⁺ wnz ⁺ fc) TEZ = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzzz ⁺ wnz ⁺ fc) TeX = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzzz ⁺ wnz ⁺ fc) TEZ = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzzz ⁺ wnz ⁺ fc) TEZ = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzzz ⁺ wnz ⁺ fc) TEZ = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzzz ⁺ wnz ⁺ fc) TEZ = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzzz ⁺ wnz ⁺ fc) TEZ = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzzz ⁺ wnz ⁺ fc) TEZ = TEz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzzz ⁺ wnz ⁺ fc) TEZ = Tzz + (Tzx ⁺ wnx ⁺ fc + Tzyy ⁺ wny ⁺ fc + Tzzz ⁺ wnz ⁺ fc)
!! ! ! ! ! ! ! ! ! ! ! !	fc = 0.500*hs*wq(1) TExx = TExx + (Txxx*vnx*fc + Txxy*vny*fc + Txxz*vnz*fc) TExy = TExy + (Txyx*vnx*fc + Txyy*vny*fc + Txyz*vnz*fc) TExz = TExz + (Txxx*vnx*fc + Txyy*vny*fc + Txyz*vnz*fc) TEyx = TExy + (Tyyx*vnx*fc + Tyyy*vny*fc + Tyyz*vnz*fc) TEyz = TEyz + (Tyyx*vnx*fc + Tyyy*vny*fc + Tyyz*vnz*fc) TEzz = TEyz + (Tyx*vnx*fc + Tyyy*vny*fc + Tyyz*vnz*fc) TEzz = TEyz + (Tyx*vnx*fc + Tyy)*vny*fc + Tyzz*vnz*fc) TEzz = TEzz + (Tzx*vnx*fc + Tzy*vny*fc + Tyzz*vnz*fc) TEzz = TEzz + (Tzx*vnx*fc + Tzy*vny*fc + Tzzz*vnz*fc) Tezz = TEzz + (Tzx*vnx*fc + Tzy*vny*fc + Tzzz*vnz*fc) Tezz = TEzz + (Tzx*vnx*fc + Tzy*vny*fc + Tzzz*vnz*fc) Tez = TEzz + (Tzx*vnx*fc + Tzy)*vny*fc + Tzzz*vnz*fc) END DD CALL intr_lin_sing_s2(x0, y0, z0, & & x1, y1, z1, & & x1, y1, z1, 0(x1, y0, (x1, y0
!! ! ! ! ! ! ! ! ! ! ! !	$ fc = 0.500^{+h}s^{+}wq(1) $ $ fExx = TExx + (Txxx^{+}vnx^{+}fc + Txxy^{+}vny^{+}fc + Txxz^{+}vnz^{+}fc) $ $ fExy = TExy + (Txyx^{+}vnx^{+}fc + Txyy^{+}vny^{+}fc + Txyz^{+}vnz^{+}fc) $ $ fExy = TExz + (Txxx^{+}vnx^{+}fc + Tyyy^{+}vny^{+}fc + Tyzz^{+}vnz^{+}fc) $ $ fEyx = TExy + (Tyyx^{+}vnx^{+}fc + Tyyz^{+}vny^{+}fc + Tyzz^{+}vnz^{+}fc) $ $ fEyz = TExy + (Tyxx^{+}vnx^{+}fc + Tyzy^{+}vny^{+}fc + Tyzz^{+}vnz^{+}fc) $ $ fEzy = TExy + (Tyxx^{+}vnx^{+}fc + Tyzy^{+}vny^{+}fc + Tyzz^{+}vnz^{+}fc) $ $ fEzy = TExy + (Tzxx^{+}vnx^{+}fc + Tzyy^{+}vny^{+}fc + Tzyz^{+}vnz^{+}fc) $ $ fEzy = TEz + (Tzxx^{+}vnx^{+}fc + Tzyy^{+}vny^{+}fc + Tzzz^{+}vnz^{+}fc) $ $ fEto $ $ fEto $ $ feta + Tzx + Txxx^{+}vnx^{+}fc + Tzyy^{+}vny^{+}fc + Tzzz^{+}vnz^{+}fc) $ $ feta + Tzx + Tzxx^{+}vnz^{+}fc + Tzyy^{+}vny^{+}fc + Tzzz^{+}vnz^{+}fc) $ $ feta + Tzx + Tzxx^{+}vnz^{+}fc + Tzyy^{+}vny^{+}fc + Tzzz^{+}vnz^{+}fc) $ $ feta + Tzx + Tzxx^{+}vnz^{+}fc + Tzyy^{+}vny^{+}fc + Tzzz^{+}vnz^{+}fc) $ $ feta + Tzx + Tzxx^{+}vnz^{+}fc + Tzyy^{+}vnz^{+}fc + Tzzz^{+}vnz^{+}fc) $ $ feta + Tzx + Tzxx^{+}vnz^{+}fc + Tzyy^{+}vnz^{+}fc + Tzzz^{+}vnz^{+}fc) $ $ feta + Tzx^{+}vnz^{+}fc + Tzyy^{+}vnz^{+}fc + Tzz^{+}vnz^{+}fc + Tzz^{+}vz^{+}vnz^{+}fc + Tzz^{+}vnz^{+}fc + Tzz^{+}vz^{+}vz^{+}z + Tzz^{+}vz^{+}vz^{+}z + Tzz^{+}vz^{+}z + Tzz^$
!! ! ! ! ! ! ! ! ! ! ! !	fc = 0.500*hs*wq(1) TExx = TExx + (Txxx*vnx*fc + Txxy*vny*fc + Txxz*vnz*fc) TExy = TExy + (Txxx*vnx*fc + Txyy*vny*fc + Txyz*vnz*fc) TExz = TEx + (Txxx*vnx*fc + Txyy*vny*fc + Txyz*vnz*fc) TEyy = TEy + (Tyx*vn*fc + Tyyy*vny*fc + Tyyz*vnz*fc) TEyy = TEy + (Tyx*vnx*fc + Tyyy*vny*fc + Tyyz*vnz*fc) TEzx = TEzx + (Tzx*vnx*fc + Tzyy*vny*fc + Tyzz*vnz*fc) TEzz = TEzx + (Tzx*vnx*fc + Tzyy*vny*fc + Tzzz*vnz*fc) TEzz = TEzz + (Tzx*vnx*fc + Tzyy*vny*fc + Tzzz*vnz*fc) TEzz = TEzz + (Tzx*vnx*fc + Tzyy*vny*fc + Tzzz*vnz*fc) TEzz = TEzz + (Tzx*vnx*fc + Tzyy*vny*fc + Tzzz*vnz*fc) TTegrate over six flat triangles CALL intr_lin_sing_52(.x0, y0, z0, & & p(11,1),p(11,2),p(31,3), & & p(14,1),p(14,2),p(44,3), & & mint, & & Ttegrate Stark +
!! ! ! ! ! ! ! ! ! ! ! !	fc = 0.500*hs*wq(1) TExx = TExx + (Txxx*vnx*fc + Txxy*vny*fc + Txxz*vnz*fc) TExy = TExy + (Txyx*vnx*fc + Txyy*vny*fc + Txyz*vnz*fc) TExy = TEx + (Txx*vnx*fc + Tyxy*vny*fc + Tyzz*vnz*fc) TEyx = TEyx + (Tyx*vnx*fc + Tyxy*vny*fc + Tyzz*vnz*fc) TEyz = TEyz + (Tyx*vnx*fc + Tyzy*vny*fc + Tyzz*vnz*fc) TEzy = TEz + (Tzx*vnx*fc + Tyzy*vny*fc + Tyzz*vnz*fc) TEzy = TEz + (Tzx*vnx*fc + Tzyy*vny*fc + Tyzz*vnz*fc) TEzy = TEz + (Tzx*vnx*fc + Tzyy*vny*fc + Tzyz*vnz*fc) TEzy = TEz + (Tzx*vnx*fc + Tzyy*vny*fc + Tzyz*vnz*fc) TEzy = TEz + (Tzx*vnx*fc + Tzyy*vny*fc + Tzyz*vnz*fc) TEzy = TEz + (Tzx*vnx*fc + Tzyy*vny*fc + Tzyz*vnz*fc) END Co END Co END Co END Co END Co END Co END Co END Co EXT = Tzy + Tzx*vnz*fc + Tzyy*vnz*fc + Tzyz*vnz*fc) EXT = Tzy + Tzx*vnz*fc + Tzyy*vnz*fc + Tzyz*vnz*fc + + Tzyz*vnz*fc + Tzyz*vnz*fc + + Tzyz*vnz*fc + + Tzyz*vnz*fc + + Tzyz*vnz*fc + + Tz
!! ! ! ! ! ! ! ! ! ! ! !	fc = 0.500*hs*wq(1) TExx = TExx + (Txxx*vnx*fc + Txxy*vny*fc + Txxz*vnz*fc) TExy = TExy + (Txxx*vnx*fc + Txyy*vny*fc + Txyz*vnz*fc) TExz = TEx + (Txxx*vnx*fc + Txyy*vny*fc + Txyz*vnz*fc) TEyy = TEy + (Tyx*vn*fc + Tyyy*vny*fc + Tyyz*vnz*fc) TEyy = TEy + (Tyx*vnx*fc + Tyyy*vny*fc + Tyyz*vnz*fc) TEzx = TEzx + (Tzx*vnx*fc + Tzyy*vny*fc + Tyzz*vnz*fc) TEzz = TEzx + (Tzx*vnx*fc + Tzyy*vny*fc + Tzzz*vnz*fc) TEzz = TEzz + (Tzx*vnx*fc + Tzyy*vny*fc + Tzzz*vnz*fc) TEzz = TEzz + (Tzx*vnx*fc + Tzyy*vny*fc + Tzzz*vnz*fc) TEzz = TEzz + (Tzx*vnx*fc + Tzyy*vny*fc + Tzzz*vnz*fc) TTegrate over six flat triangles CALL intr_lin_sing_52(.x0, y0, z0, & & p(11,1),p(11,2),p(31,3), & & p(14,1),p(14,2),p(44,3), & & mint, & & Ttegrate Stark +
!!! !!! !!! !!!!!!!!!!!!!!!!!!!!!!!!!!	fc = 0.500*hs*wq(1) TExx = TExx + (Txxx*vnx*fc + Txxy*vny*fc + Txxz*vnz*fc) TExy = TExy + (Txyx*vnx*fc + Txyy*vny*fc + Txyz*vnz*fc) TExy = TEx + (Txx*vnx*fc + Tyxy*vny*fc + Tyzz*vnz*fc) TEyx = TEyx + (Tyx*vnx*fc + Tyxy*vny*fc + Tyzz*vnz*fc) TEyz = TEyz + (Tyx*vnx*fc + Tyzy*vny*fc + Tyzz*vnz*fc) TEzy = TEz + (Tzx*vnx*fc + Tyzy*vny*fc + Tyzz*vnz*fc) TEzy = TEz + (Tzx*vnx*fc + Tzyy*vny*fc + Tyzz*vnz*fc) TEzy = TEz + (Tzx*vnx*fc + Tzyy*vny*fc + Tzyz*vnz*fc) TEzy = TEz + (Tzx*vnx*fc + Tzyy*vny*fc + Tzyz*vnz*fc) TEzy = TEz + (Tzx*vnx*fc + Tzyy*vny*fc + Tzyz*vnz*fc) TEzy = TEz + (Tzx*vnx*fc + Tzyy*vny*fc + Tzyz*vnz*fc) END Co END Co END Co END Co END Co END Co END Co END Co EXT = Tzy + Tzx*vnz*fc + Tzyy*vnz*fc + Tzyz*vnz*fc) EXT = Tzy + Tzx*vnz*fc + Tzyy*vnz*fc + Tzyz*vnz*fc + + Tzyz*vnz*fc + Tzyz*vnz*fc + + Tzyz*vnz*fc + + Tzyz*vnz*fc + + Tzyz*vnz*fc + + Tz

	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl3D_DLP.f903	
.45	& p(i2,1),p(i2,2),p(i2,3),&	
146 147	& mint, & & TExx, TExy, TExz, &	
148	& TEyx, TEyy, TEyz, &	
149 150	& TEzx, TEzy, TEzz)	
151	CALL intr_lin_sing_s2(x0, y0, z0, &	
152	& x1, y1, z1, & & p(i2,1),p(i2,2),p(i2,3),&	
154	& p(i5,1),p(i5,2),p(i5,3),&	
155 156	& mint, & & TExx, TExy, TExz, &	
157 158	& TEyx, TEyy, TEyz, & & TEzx, TEzy, TEzz)	
159	l	
160 161	CALL intr_lin_sing_s2(x0, y0, z0, & & x1, y1, z1, &	
162	& p(i5,1),p(i5,2),p(i5,3),&	
163 164	& p(13,1),p(13,2),p(13,3),& & mint, &	
165	& TEXX, TEXY, TEXZ, &	
165	& TEyx, TEyz, & & TEzx, TEzy, TEzz)	
168	CALL intr_lin_sing_s2(x0,	
170	& x1, y1, z1, &	
171 172	& p(i3,1),p(i3,2),p(i3,3),& & p(i6,1),p(i6,2),p(i6,3),&	
173	& mint, &	
174 175	& TExx, TExy, TExz, & & TEyx, TEyy, TEyz, &	
176 177	& TEzx, TEzy, TEzz)	
178	CALL intr_lin_sing_s2(x0, y0, z0, &	
179 180	& x1, y1, z1, & & p(i6,1),p(i6,2),p(i6,3),&	
181	p(i1,1),p(i1,2),p(i1,3),k	
182 183	& mint, & & TExx, TExy, TExz, &	
184	& TEyx, TEyy, TEyz, &	
185 186	& TEzx, TEzy, TEzz)	
187 188	! DOne	
189	END SUBROUTINE Intgr_Trgl_s	
192 193	SUBROUTINE Intgr_Trgl_Sing_s(x0, y0, z0, &	
193	& k, & & TExx, TExy, TExz, &	
195 196	& TEyx, TEyy, TEyz, & & TEzx, TEzz, &	
197	& mint)	
	Integrate the Green's function over the kth singular quadratic triangle. This is done by breaking up the	
200	singular triangle into six flat triangles, and then integrating individually over the flat triangles in local	
	polar coordinates. !	
203	USE Mod_SharedVars, ONLY: DBL, ULog, eps, Pi, &	
205	& xiq, etq, wq, &	
206 207	& Ns,Np	
208	IMPLICIT NONE	
209 210	REAL (KIND = DBL), INTENT(IN) :: x0, y0, z0 !coordinates of collocationpoint of the element	
211	INTEGER, INTENT(IN) :: k !element index	
213	REAL (KIND = DBL), INTENT(OUT) :: TExx, TExy, TExz, & !Integrated ij component over the element & TEyx, TEyy, TEyz, &	
214	& TEZX, TEZY, TEZZ INTEGER, INTENT(IN) :: mint !order of Gauss-Legendre quadrature	
	INIEGER, INIENI(IN) :: MIAT : SORGER OF GUASS-Legendre quadrature	

 Variables inside the subroutine
INTEGER :: i, j INTEGER :: i1, i2, i3, i4, i5, i6
launching i1 = n(k,1)
i2 = n(k,2) i3 = n(k,3)
14 = n(k,4)
i5 = n(k,5) i6 = n(k,6)
 TExx = 0.0D0
TExy = 0.0D0
 TExz = 0.0D0
TEyx = 0.0D0 TEyy = 0.0D0
TEyz = 0.0D0
 TEzx = 0.0D0
TEzy = 0.0D0
TEzz = 0.000
 Integrate over three flat triangles
CALL intr_lin_sing_s(x0,
& p(i2,1),p(i2,2),p(i2,3),&
& TExx, TExy, TExz, & & TEyx, TEyy, TEyz, &
& TEZX, TEZZ, &
 & cdt, NGL)
CALL intr_lin_sing_s(x0, y0, z0, & & p(i2,1),p(i2,2),p(i2,3),&
& p(i3,1),p(i3,2),p(i3,3),&
& TEXX, TEXZ, & & TEyX, TEYY, TEYZ, &
& TEZX, TEZY, TEZZ, & & cdt, NGL)
& p(i3,1),p(i3,2),p(i3,3),&
& p(i1,1),p(i1,2),p(i1,3),& & TExx, TExy, TExz, &
& TEyx, TEyy, TEyz, &
& cdt, NGL)
Integrate over six flat triangles
CALL intr_lin_sing_s(x0, y0, z0, &
<pre>% p(i1,1),p(i1,2),p(i1,3),&</pre>
& p(i4,1),p(i4,2),p(i4,3),& & TExx, TExy, TExz, &
& TEyx, TEyy, TEyz, &
& mint)
 CALL intr_lin_sing_s(x0, y0, z0, &
& p(i4,1),p(i4,2),p(i4,3),&
& TExx, TExy, TExz, &
& TEyx, TEyÿ, TEyz, & & TEzx, TEzy, TEzz, &
& mint)
 CALL intr_lin_sing_s(x0, y0, z0, &
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl3D_DLP.f90 6
361 REAL (KIND = DBL)::: r, rmax, rmax, Ivariable r and values of variable r to integrate 362 REAL (KIND = DBL)::: r, y, z Icoordinates of f(xi, et, zt) 363 REAL (KIND = DBL):: c, cf1, cf2 Iintegrate weigths 364 REAL (KIND = DBL):: s, som Itriangle area and its derivative 365 REAL (KIND = DBL):: B, L2, c1 Idmtegrate arc coefficients 366 REAL (KIND = DBL):: D, L2, c1 Idmtegrate arc constants 367 REAL (KIND = DBL):: D, DZ, c1 Idmy, Tyx, Txx, Txx, Txx, Txx, Txx, Txx, Tx
375 & Tzyx, Tzy, Tzy, Ł 376 & Tzzz, Tzz, Tzz 377 REAL (KIND = DBL): 1 Xx, Txy, Txz, & Istresslets Dummy coefficients 378 & Tyz, Tyy, Tyz, & 379 & Tzx, Tzy, Tzz 380 REAL (KIND = DBL): 1 Xx, Txy, Tzz 380 REAL (KIND = DBL): 1 Xx, Rxy, Rz, & 381 & 382 & 382 & 382 & 382 & 382 & 382 & 382 & 382 & 382 &
383 384
$\begin{array}{rcl} 390 & xxi(1) = 0.5D0 \\ 391 & eet(1) = 0.5D0 \end{array}$
392 zzt(1) = 0.000 393 xxi(2) = 0.500
394 eet(2) = 0.600 395 zzt(2) = 0.500 396 xxi(3) = 0.600 397 eet(3) = 0.500 398 zzt(3) = 0.500 399 Image: 100 minimum state 400 Txx = 0.000
401 Txy = 0.000 402 Txz = 0.000 403 Tyx = 0.000 404 Tyy = 0.000
405 Tyz = 0.000 406 Tzx = 0.000 407 Tzy = 0.000 408 Tzz = 0.000
409 ! 410 Rxx = 0.0D0
411 Rxy = 0.000 412 Rxz = 0.000 413 Ryy = 0.000 414 Ryy = 0.000 415 Ryy = 0.000 416 Ryy = 0.000 417 Ryy = 0.000 418 Ryz = 0.000 419 Ryz = 0.000 410 Ryz = 0.000 411 Ryz = 0.000
420 ! compute surface metric: hs 421
421 :
424 ! 425 vnx = ((y2-y1)*(z3-z1))-((z2-z1)*(y3-y1))
$\begin{array}{rcl} 426 & \text{vmy} = ((z2-z1)^*(x3-x1)) - ((x2-x1)^*(z3-z1)) \\ 427 & \text{vmz} = ((x2-x1)^*(y3-y1)) - ((y2-y1)^*(x3-x1)) \\ 428 & [$

Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl3D_DLP.f90	7 D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl3D_DLP.f90
Surface metric on a flat triangle area = hs/2.000 Initialize Triangle area asm = 0.000	$ \begin{array}{c}$
Apply the forulas from Pozrikidis (2002, p. 119) bls((x3-x1)*(x2-x1))*((y3-y1)*(y2-y1))+((z3-z1)*(z2-z1)) b2=bSQRT((x2-x1)**2+(y2-y1)**2+(z2-z1)**2) c1=bSQRT((x2-x1)**2+(y3-y1)**2+(z3-z1)**2) B= b1/b2**2 c c1**2/b2**2	513 11 514 11 initialize again to the next triangle 515 1 RXX = 0.000 516 1 RXy = 0.000 517 1 RXz = 0.000 518 1 Ryx = 0.000 519 1 Ryz = 0.000 519 1 Ryz = 0.000
Apply the Double quadrature	520 ! RyZ = 0.000 521 ! RZX = 0.000
Integration wrt phi Cycle: Do i = 1, NGL ph = piq^(1.000+zz(j))	
cph = DCOS(ph) sph = DSIM(ph) rmax = 1.000/(cph+sph) rmaxh = 0.5D0*rmax	$\begin{array}{ccccccc} 526 & 1 \\ 527 & D0 & i = 1, mint \\ 528 & xi & = xiq(i) \\ 529 & et & = etq(i) \\ 530 & 2t & = 1.000 - xi - et \end{array}$
Derivative of asm bsm = 0.0D0	$531 532 \qquad x = x1^*zt + x2^*xi + x3^*et$
Integration wrt r Cycle2: D0 j=1,NGL r = rmaxh*(L000+22(j)) xi = r*cph et = r*cph zt = 1.000+xi-et x = x1*zt + x2*xi + x3*et y = y1*zt + y2*xi + y3*et	
z = z1*zt + z2*xi + z3*et CALL sgf_3d_ff(x, y, z, & & x1, y1, z1, & & Txxx, Txxy, Txxz, &	
& Txyx, Txyy, Txyz, & & Txyx, Txzy, Txzz, & & Tyxx, Tyyy, Tyyz, & & Tyyx, Tyyy, Tyyz, & & Tyyx, Tyyy, Tyyz, &	548 cf1 = wq(1) 549
8 Tzay, Tzay, Tzay, 8 8 Tzay, Tzay, 20, 8 8 Tzay, Tzay, 12, 12, 12, 12	553 Rxx = (Txxx*vnx + Txxy*vny + Txxz*vnz)*f1 554 Rxy = (Txyx*vnx + Txyy*vny + Txyz*vnz)*cf1 555 Rxz = (Txxx*vnx + Txxy*vny + Txyz*vnz)*cf1
cf1 = ww(j)*r bsm = bsm + cf1	557 Ryy = (Tyyx*vnx + Tyyy*vny + Tyyz*vnz)*cf1 558 Ryz = (Tyzx*vnx + Tyzy*vny + Tyzz*vnz)*cf1 559 Rzx = (Tzxx*vnx + Tzxy*vny + Tzx*vnz)*cf1
Rxx = Rxx + (Txxx*'unx + Txxy''uny + Txxz*'unz)*cf1 Rxy = Rxy + (Txyx*'unx + Txyy*'uny + Txyz*'unz)*cf1 Rxz = Rxz + (Txxz*'unx + Txyy''uny + Txxz*'unz)*cf1 Ryx = Ryx + (Tyxx*'unx + Tyyx''uny + Tyxz*'unz)*cf1	
Ryy = Ryy + (Tyyx*nx + Tyyy*ny + Tyyx*vnz)*cf1 Ryz = Ryz + (Tyzx*nx + Tyzy*ny + Tyzz*vnz)*cf1 Rzx = Rzx + (Tzxx*nx + Tzzy*ny + Tzzz*vnz)*cf1 Rzy = Rzy + (Tzyx*nx + Tzy*ny + Tzyz*vnz)*cf1 Rzz = Rz + (Tzzx*nx + Tzzy*ny + Tzzz*vnz)*cf1 END D0 Cycle2	$\begin{array}{ccccc} 565 & Txx + Txx + Rxx \\ 566 & Txy + Txy + Rxy \\ 567 & Txz = Txz + Rxz \\ 568 & Tyx + Txz + Ryx \\ 569 & Tyy = Tyy + Ryy \\ 570 & Tyz - Tyz + Ryz \end{array}$
cf2 = ww(1)*rmaxh	
asm = asm + bsm*cf2	
Txx = Txx + (cf2*Rxx/DSQRT(cph**2+(B*DSIN(2*ph))+(C*sph**2)))	

\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl3D_DLP.f90 9	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl3D_DLP.f90
complete the quadrature	649 & Tyzx, Tyzy, Tyzz, & 650 & Tzxx, Tzxy, Tzxz, &
cf = area	651 & Tzyx, Tzyy, Tzyz, &
asm = asm*cf	652 & Tzzx, Tzzy, Tzzz 653 REAL (KIND = DBL) :: Txx, Txy, Txz, & !Stresslets Dummy coefficients
TExx = TExx + cf*Txx	654 & Tyx, Tyy, Tyz, & 655 & Tzx, Tzy, Tzz
TEXy = TEXy + cf^*Txy	656 REAL (KIND = DBL) :: Rxx, Rxy, Rxz, & !Stresslets Dummy coefficients
TExz = TExz + cf*Txz	657 & Ryx, Ryy, Ryz, &
TEyx = TEyx + cf*Tyx TEyy = TEyy + cf*Tyy	658 & Rzx, Rzy, Rzz 659
TEYY = TEYY + CF*TYZ	037 660
$TE_{2X} = TE_{2X} + cf^*T_{2X}$	661 ! Initialize
TEzy = TEzy + cf*Tzy	662 xxi(1) = 0.5D0
TEzz = TEzz + cf*Tzz	663 eet(1) = 0.5D0 664 zzt(1) = 0.0D0
IF all went well, asm should be equal to "area"	$665 \times xi(2) = 0.500$
WRITE (Ulog,100) i,area,asm	666 eet(2) = 0.0D0
	667
100 FORMAT (1x,i3,2(f10.5))	668 xxi(3) = 0.0D0 669 eet(3) = 0.5D0
D SUBROUTINE intr lin_sing_s	659 = ec(5) = 0.509 670 = 2zt(3) = 0.509
	671 !
SUBROUTINE intr_lin_sing_s2(x0, y0, z0, &	672 !xxi(1) = 1.000 / 6.000
& x1, y1, z1, & & x2, y2, z2, &	673 !eet(1) = 1.000 / 6.000 674 !zzt(1) = 2.000 / 3.000
& x3, y3, z3, &	675 + 122(1) = 2.000 / 3.000
& mint, &	676 !eet(2) = 1.0D0 / 6.0D0
& TEXX, TEXY, TEXZ, &	677 $ zzt(2) = 1.000 / 6.000$
& TEyx, TEyy, TEyz, & & TEzx, TEzy, TEzz)	678 !xxi(3) = 1.0D0 / 6.0D0 679 !eet(3) = 2.0D0 / 3.0D0
	680 !zzt(3) = 1.000 / 6.000
Integrates the Green's function over a flat triangle in local polar coordinates with origin at the singular	681
oint: (x1,y1,z1). The subrotine is based from Pozriquidis 2002 pp. 119-120 in the technique 5.2.8 - 5.2.11	682 Txx = 0.000 683 Txy = 0.000
USE Mod_SharedVars, ONLY: DBL, ULog, eps, Pi, &	684 Txz = 0.000
& ZZ, WW, &	685 Tyx = 0.0D0
& Ns, Np, xiq, etq, wq	686 Tyy = 0.000 687 Tyy = 0.000
USE Mod_sgf_3d_sfs	687 Tyz = 0.000 688 Tzx = 0.000
IMPLICIT NONE	689 Tzy = 0.0D0
Variahles	690 TZZ = 0.0D0
Variables	091 :
REAL (KIND = DBL), INTENT(IN) :: x0, y0, z0 !coordinates of collocation point	693 R×y = 0.0D0
REAL (KIND = DBL), INTENT(IN) :: x1, y1, z1 !coordinates of flat triangle vertice	694 Rzz = 0.000 695 Ryy = 0.000
REAL (KIND = DBL), INTENT(IN) :: x2, y2, z2 REAL (KIND = DBL), INTENT(IN) :: x3, y3, z3	695 Ryx = 0.000 696 Ryy = 0.000
INTEGER, INTENT(IN) :: Mint element index	657 $Ryz = 0.000$
REAL (KIND = DBL), INTENT(INOUT) :: TExx, TExy, TExz, & !Integrated ij component over the element	698 Rzx = 0.0D0
& TEyx, TEyy, TEyz, & & TEzx, TEzy, TEzz	699 Rzy = 0.0D0 700 Rzz = 0.0D0
Variables inside the subroutine	702 ! compute surface metric: hs 703 !
INTEGER :: i, j !Counters	704 dx = DSQRT((x2-x1)**2+(y2-y1)**2+(z2-z1)**2)
INTEGER :: i1, i2, i3, i4, i5, i6 !indices to obtain the node number in the vertices of each element	705 dy = DSQRT((x3-x1)**2+(y3-y1)**2+(z3-z1)**2) 706 (
REAL (KIND = DBL) :: pi4, piq !constants to integrate over a circle element in Phi and r	/db :
REAL (KIND = DBL) :: xi, et, zt !constants of weigth to integrate over a flat triangle	708 vny = ((z2-z1)*(x3-x1))-((x2-x1)*(z3-z1))
REAL (KIND = DBL) :: dx, dy !surface metrics	$\frac{799}{700} \text{vnz} = ((x2-x1)^*(y3-y1)) - ((y2-y1)^*(x3-x1))$
REAL (KIND = DBL) :: vnx, vny, vnz !triangle normal vector REAL (KIND = DBL) :: area, hs !triangle area and surface metric on a flat triangle	710 ! 711 hs = DSQRT(vnx*vnx + vny*vny + vnz*vnz)
REAL (KIND = DBL) :: x, y, z [coordinates of f(xi, et, zt)	$\frac{1}{12} = \frac{1}{12} = \frac{1}{12} \frac{1}{1$
REAL (KIND = DBL) :: cf, cf1, cf2 !integrate weigths	713 vny = vny/hs
REAL (KIND = DBL) :: asm, bsm !triangle area and its derivative REAL (KIND = DBL), DIMENSION(3) ::xxi, eet, zzt !variables of weigth over in triangle (xi,eta)	714 vnz = vnz/hs 715
REAL (KIND = DBL), DIMENSION(3) ::xx1, eet, zzt : !variables of weigth over in triangle (x1,eta) REAL (KIND = DBL) :: Txxx, Txxy, Txxz, & !Free-space Green's function of Stresslet. integrated ijk	/15
& Txyx, Txyy, Txyz, & !component over the element	717 area = hs/2.000
& Txzx, Txzy, Txzz, &	
& Tyxx, Tyxy, Tyxz, & & Tyyx, Tyyy, Tyyz, &	719 Initialize
α iyy∧, iyyy, iyy∠, α	/20 1

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl3D_DLP.f90 1 ! Triangle area	11 D:\Darth Vader\Escritorio\prtcl_mkl\Nod Prtcl3D_DLP.f90 793 TEzz = TEzz + cf*Tzz
2 asm = 0.0D0	794 !
3 4 DD i = 1, mint	795 ! IF all went well, asm should be equal to "area" 796 ! WRITE (Ulog. 1000), area, asm
5 xi = xig(i)	797 !
6 et = etq(1) 7 zt = 1.0D0- et-xi	798 ! 100 FORMAT (1x,13,2(f10.5))
8 cf1 = wq(i)	800 END SUBROUTINE intr_lin_sing_s2
9 !	801 ! 802 SUBROUTINE intr_lin_sing_s4(x0e, y0e, 20e, &
1 ! xi = xxi(i)	803 & x00, y00, z00, &
2 ! et = eet(i) 3 ! zt = zzt(i)	804 & k, & & 885 885 & TExx, TExy, TExz, &
4 ! cf1 = 1.0D0/3.0D0	806 & TEyx, TEyy, TEyz, &
5 ! 6 x = x1*zt + x2*xi + x3*et	807 & TExx, TExy, TEzz)
7 y = y1*zt + y2*xi + y3*et	809 ! This subroutine is a new version stokeslet Subroutine.
8 z = z1*zt + z2*xi + z3*et 9 !	810 !Compute: 811 ! * The value of the Stokeslet over each singular element
0 CALL sgf_3d_sfs(x, y, z, &	812 !Now, (March/ 09 / 2015) this subroutine was made.
1 & x0, y0, z0, & 2 & Txxx,Txxy,Txxz, &	813 1
3 & Txyx,Txyy,Txyz, &	815 USE Mod_SharedVars, ONLY: DBL, p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0
4 & Txzx,Txzy,Txzz, & 5 & Tyxx,Tyxy,Tyzz, &	816 1
б & туух, Туух, Х	818 !
7 & Tyzx,Tyzy,Tyzz, & 8 & Tzxx,Tzxy,Tzxz, &	819 ! Variables
9 & Tzyx, Tzyy, Tzyz, &	821 REAL (KIND = DBL), INTENT(IN) :: x00, y00, z00 !singulatity coordinates
0 & Tzzx, Tzzy, Tzzz)	822 REAL (KIND = DBL), INTENT(IN) :: x0e, y0e, z0e isingulatity coordinates element 823 INTEGER, INTENT(IN) :: k
2 bsm=0.0D0	824 REAL (KIND = DBL), INTENT(OUT) :: TExx, TExy, TExz !value of stresslet in the singular element
3 bsm =cf1	825 REAL (KIND = DBL), INTEWT(OUT):: TEX, TEX, TEX, TEX, TeX, Ivalue of stresslet in the singular element 826 REAL (KIND = DBL), INTEWT(OUT):: TEX, TEX, TEX, TEX, TEX, TEX, TEX, TEX,
5 Rxx = (Txxx*vnx + Txxy*vny + Txxz*vnz)*cf1	827 !
6 Rxy = (Txyx*vnx + Txyy*vny + Txyz*vnz)*cf1 7 Rxz = (Txzx*vnx + Txzy*vny + Txzz*vnz)*cf1	828 1 Variables inside the subroutine
8 Ryx = (Tyxx*vnx + Tyxy*vny + Tyxz*vnz)*cf1	830 INTEGER :: i, j !Counters
9 Ryy = (Tyyx*vnx + Tyyy*vny + Tyyz*vnz)*cf1 0 Ryz = (Tyzx*vnx + Tyzy*vny + Tyzz*vnz)*cf1	831 INTEGER :: 11, 12, 13, 14, 15, 16 lindices to obtain node numbers from each element
1 Rzx = $(Tzxx^*vnx + Tzxy^*vny + Tzxz^*vnz)^*cf1$ 2 Rzy = $(Tzyx^*vnx + Tzyv^*vny + Tzyz^*vnz)^*cf1$	833 REAL (KIND = DBL) :: cf, fil1, fil2, fil3 !integration weigth coefficients
2 Rzy = (Tzyx*vnx + Tzyy*vny + Tzyz*vnz)*cf1 3 Rzz = (Tzzx*vnx + Tzzy*vny + Tzzz*vnz)*cf1	834 REAL (KIND = DRL) :: bxbx, bybx, bybx, bzbx !tangential vector around the triangle (xi,eta) 835 REAL (KIND = DRL) :: hss
4 [
5 asm =asm + bsm 6 !	837 REAL (KIND = DEL) :: modx0 : !weigth 838 REAL (KIND DEL) :: bvx1, bvy1, bvz1, & !vectoreial product
7 Txx = Txx + Rxx	839 & bvx2, bvy2, bvz2, &
8 Txy = Txy + Rxy 9 Txz = Txz + Rxz	840 & bvx3, bvy3, bvz3, 841 REAL (KIMD = DBL) :: QExx, QExy, QExz, & !Iq tensor
0 Tyx = Tyx + Ryx	842 & QEyx, QEyy, QEyz, &
1 Tyy = Tyy + Ryy 2 Tyz = Tyz + Ryz	843 & QEX,QEX,QEX,QEX 844 REAL(KIND = DBL):: PEX,PEY,PEZ,PE Iptensor
3 Tzx = Tzx + Rzx	845 REAL (KIND = DBL) :: yvx1, yvy1, yvz1 !vector (y1-x0)
4 Tzy = Tzy + Rzy 5 Tzz = Tzz + Rzz	846 REAL (KIND = DBL) :: yvx2, yvy2, yvz2 lvector (y2-x0) 847 REAL (KIND = DBL) :: yvx3, yvy3, yvy3 lvector (y2-x0)
6	848 REAL (KIND = DBL) :: px2, py2, pz2 !vector (y2-x0)
7 END DO 8 !	849 REAL (KIND = DBL) :: a1, a2, a3 !vector a 850 REAL (KIND = DBL) :: ay1, ay2, ay3 !vector dot product a*y1, a*y2
9 ! complete the quadrature	851 REAL (KIND = DBL) :: by1, by2, by3 !product yi*(yi+a.yi)
1 cf = area	853 ! Initialize
2 3 asm = asm*cf	855 TExx = 0.0D0
4 !	856 TExy = 0.000 857 TEx = 0.000
6 TExy = TExy + cf*Txy	858 TEyx = 0.0D0
7 TExz = TExz + cf*Txz 8 TEyx = TEyx + cf*Tyx	859 TEyy = 0.000 860 TEyz = 0.000
9 TEýy = TEýy + cf*Týy	861 TEzx = 0.0D0
0 TEyz = TEyz + cf*Tyz 1 TEzx = TEzx + cf*Tzx	862 TEzy = 0.000 863 TEzz = 0.000
$1 = 1EZX = 1EZX + Cf^{T}ZX$ $2 = TEZy = TEZy + Cf^{T}Zy$	864

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl3D_DLP.f90 13	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl3D_DLP.f90 14
865 QExx = 0.000 866 QExy = 0.000 867 QExz = 0.000	937 DxDx = $p(14,1) - p(11,1)$ 938 DyDx = $p(14,2) - p(11,2)$ 939 DzDx = $p(14,3) - p(11,3)$
868 QEyx = 0.000 869 QEyy = 0.000 870 QEyz = 0.000	940
871 QExx = 0.000 872 QEyy = 0.000 873 QEzz = 0.000 874 QEzz = 0.000	943 Dy0x = Dy0x/hss 944 D2Dx = D2Dx/hss 945
0/4 PEx = 0.000 875 PEy = 0.000 876 PEy = 0.000	946 yvd = p(11,1) - x00 947 yvd = p(11,2) - y00 948 yvz1 = p(11,2) - x00 949 fill = 05QRT(yvz1*2 + yvy1*2 +yvz1*2)
878 PE = 0.000 879 888 al = x0e-x00	950
881 a2 = y0e-y00 882 a3 = 20e-x00 883 modx0= 50RT(a1**2+a2**2+a3**2)	953 bvzl = (bx0x*yvyl - Dy0x*yvxl) 954
884 885 IF (modx0 >= 1.000 + eps) THEN 886 Cpi = 0.000 887 ELS IF (modx0 <= 1.000 - eps) THEN	956 yvy3 = p(14, 2) - y00 957 yvz3 = p(14, 2) - z00 958 fil3 = DSQRT(yvx3**2 + yvy3**2 +yvz3**2) 959
888 cp1 = -8.000*p1 889 ELSE 890 cp1 = -4.000*p1	960 bvx3 = (0y0x*yvz3 - DzDx*yvy3) 961 bvy3 = (DzDx*yvx3 - DxDx*yvz3) 962 bvz3 = (DxDx*yv3 - DyDx*yvz3)
891 end 1f 892 al. 893 al. al. = x0e 894 al. al. = z0e	963
895 modx6= DSQRT(a1**2+a2**2+a3**2) 896 al = a1,modx6 897 a2 = a2/modx8 898 a3 = a3/modx8	967 0Eyx = 0Eyx + hss*(- (bxx1*(yvy1/f11**3)) - (bvx3*(yvy3/f11**3)))/2.000 968 0Eyy = 0Eyx + hss*(- (bvx1*(yvy1/f11**3)) - (bvy3*(yvy3/f11**3)))/2.000 969 0Eyx = 0Eyx + hss*(- (bvx1*(yvy1/f11**3)) - (bvx3*(yvy3/f113**3)))/2.000 970 QExx = 0Exx + hss*(- (bvx1*(yvy1/f11**3)) - (bvx3*(yv3/f113**3)))/2.000
899 900 IOPEN (9,file="TE.out") 901 !	971 QEzy = QEzy + hss*(- (bvy1*(yvz1/fil1**3)) - (bvy3*(yvz3/fil3**3)) //2.000 972 QEzz = QEzz + hss*(- (bvz1*(yvz1/fil1**3)) - (bvz3*(yvz3/fil3**3)))/2.000 973
902 ! vertices of the kth triangle 903 !	974 ayl = (a1*yvx1 + a2*yvy1 + a3*yvz1) 975 ay3 = (a1*yvx3 + a2*yvy3 + a3*yvz3) 976 !
985 $12 = n(k, 2)$ 966 $13 = n(k, 3)$ 97 $14 = n(k, 4)$ 988 $15 = n(k, 5)$	977 by1 = fil1*(fil1+ay1) 978 by3 = fil3*(fil3+ay3) 979
969 15 - n(k, 6) 969 16 = n(k, 6) 910 !	980 FCA - ((a1 by Ly Ly) + (a3 by Ly Ly Ly)) a1 981 PEy - ((a1 by Ly)Ly) + (a3 by Ly Ly Ly) (b3) b1 a2 982 PEy - ((a1 by Ly)Ly)L + (a3 by Ly)Ly) b1 a3 983
912 ! 913 ! compute the average value of the normal vector the mean curvature as a contour integral using the trapezoidal	984 PE = PE + hss*(PEx + PEy + PEz)/2.0D0 985 !
914 ! rule formula 915 !	986 ! computation of curvature line integral along segment 4-2 987 !
910 DVX1 = 0.000 917 DVy1 = 0.000 918 bvz1 = 0.000 919 bvx2 = 0.000	985 bVXI = 0.400 989 bVXI = 0.400 990 bVXI = 0.400 991 bVX2 = 0.400
928 by2 = 0.009 921 by22 = 0.000 922 by3 = 0.000	992 bvy2 = 0.000 993 bvz2 = 0.000 994 bvx3 = 0.000
923 bvy3 * 0.000 924 bvz3 = 0.000 925 yvx1 = 0.000	995 bvy3 = 0.000 996 bvz3 = 0.000 997 yvx1 = 0.000
926 yvy1 = 0.000 927 yvz1 = 0.000 928 yvz2 = 0.000 929 yvy2 = 0.000	998 yvy1 = 0.000 999 yvz1 = 0.000 1000 yvx2 = 0.000 1001 yvy2 = 0.000
930 yv2 = 0.000 931 yv2 = 0.000 932 yv3 = 0.000 932 yv3 = 0.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
933 yvz3 = 0.0D0 934	1005 yvz3 = 0.0D0 1006
935 ! computation of curvature line integral along segment 1-4 936 !	1007 DxDx = $p(12, 1) - p(14, 1)$ 1008 DyDx = $p(12, 2) - p(14, 2)$

D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl3D_DLP.f90 15 DzDx = p(i2,3) - p(i4,3)	D:\Darth Vader\Escritorio\prtcl mkl\Mod_Prtcl3D_DLP.f90
020x = p(12,3) - p(14,3)	1081 nss = $050(1000x^{-1}2 + 000x^{-2} + 000x^{-2}2)$ 1082 Dx0x = $0x0x^{1}/hs$
hss = DSQRT(DxDx**2 +DyDx**2 +DzDx**2)	1083 DyDx = DyDx/hss
DxDx = DxDx/hss	1084 DzDx = DzDx/hss
DyDx = DyDx/hss	1085 !
DzDx = DzDx/hss	1086
vvx1 = p(i4.1) - x00	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
yyy1 = p(14,1) - x00 yyy1 = p(14,2) - y00	$\begin{array}{c} 1088 \\ 1089 \\ fill = DSQRT(yxx1**2 + yyy1**2 + yyz1**2) \end{array}$
$yy_1 = p(1+2) = y_0 0$ $yy_1 = p(1+2) = 200$	1005 1111 - DSQN((VV1''2 + VV2''2) 1000
fil1 = DSRT(yxx1*2 + yvy1*2 + yvz1*2)	$1091 bvx1 = (DyDx^*yvz1 - DzDx^*yvy1)$
I	1092 bvy1 = (DzDx*yvx1 - DxDx*yvz1)
bvx1 = (DyDx*yvz1 - DzDx*yvy1)	1093 bvz1 = (DxDx*yvy1 - DyDx*yvx1)
bvy1 = (DzDx*yvx1 - DxDx*yvz1)	1094
bvz1 = (DxDx*yvy1 - DyDx*yvx1)	1095 $yvx3 = p(15,1) - x00$
yvx3 = p(i2,1) - x00	$\begin{array}{cccc} 1096 & yvy3 = p(15,2) - y00 \\ 1097 & vv23 = p(15,3) - 200 \end{array}$
yvy3 = p(12,1) - x00 yvy3 = p(12,2) - y00	$\frac{1097}{1098} fila = DSQRT(yx3^{+2} + yy3^{+2} + yy3^{+2})$
$y_{1}y_{2} = p(12,2) = 200$	
fil3 = DSQRT(yvx3**2 + yvy3**2 + yvz3**2)	1100 bvx3 = (DyDx*yvz3 - DzDx*yvy3)
	1101 byy3 = (DZDx*yvx3 - DXDx*yvZ3)
bvx3 = (DyDx*yvz3 - DzDx*yvy3)	1102 bvz3 = (DxDx*yvy3 - DyDx*yvx3)
bvy3 = (DzDx*yvx3 - DxDx*yvz3)	1103
bvz3 = (DxDx*yvy3 - DyDx*yvx3)	1104 QExx = QExx + hss*(- (bvx1*(yvx1/fil1**3)) - (bvx3*(yvx3/fil3**3)))/2.0D0
<pre>! OExx = QExx + hss*(- (bvx1*(yvx1/fil1**3)) - (bvx3*(yvx3/fil3**3)))/2.000</pre>	1105 QExy = QExy + hss*(- (bvy1*(yvx1/fil1**3)) - (bvy3*(yvx3/fil3**3)))/2.0D0 1106 QExz = QExz + hss*(- (bvz1*(yvx1/fil1**3)) - (bvz3*(yvx3/fil3**3)))/2.0D0
QExx = QExx + hss*(- (bvx1*(yvx1/til1**3)) - (bvx3*(yvx3/til3**3)))/2.000 QExy = QExy + hss*(- (bvy1*(yvx1/fil1**3)) - (bvy3*(yvx3/fil3**3)))/2.000	$\begin{array}{cccc} 1106 & (Exz = QExz + hss^{+}(-(bv21^{+}(yvx1/t11^{+3})) - (bv23^{+}(yvx3/t13^{+3})))/2.000 \\ 1107 & (Eyx = QEyx + hss^{+}(-(bvx1^{+}(yvx1/t11^{+3})) - (bvx3^{+}(yvx3/t13^{+3})))/2.000 \end{array}$
QExz = QExz + hss*(- (bvg1*(yvx1/fil1**3)) - (bvg3*(yvx3/fil3**3)))/2.000	$\begin{array}{cccc} 1107 & QEyX = QEyX + hss^{-1}(- 0vX^{+}(yvy)/fill^{+3})) - (0vX^{+}(yvy)/fill^{-3})) / (2.000) \\ 1108 & QEyY = QEyY + hss^{+}(- 0vy ^{+}(yvy)/fill^{+3})) - (bvX^{+}(yvy)/fill^{-3})) / (2.000) \end{array}$
$QE_{XZ} = QE_{XZ} + hss(-(bvr1(yvr1/H1^{-3})) - (bvr3(yvr3/H1^{-3})))/2.000$	$\begin{array}{c} 1100 \\ 1109 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
QEyy = QEyy + hss*(- (bvy1*(yvy1/f11**3)) - (bvy3*(yvy3/f113**3)))/2.000	1110 $QEzx = QEz + hss^{+}(-(bvz1^{+}(yvz1/fill**3)) - (bvz3^{+}(yvz3/fill**3)))/2.000$
OEvz = OEvz + hss*(- (bvz1*(vvv1/fil1**3)) - (bvz3*(vvv3/fil3**3)))/2,0D0	1111 0Ezy = 0Ezy + hss*(- (bvy1*(yvz1/fil1**3)) - (bvy3*(yvz3/fil3**3)))/2.0D0
QEzx = QEzx + hss*(- (bvx1*(yvz1/fil1**3)) - (bvx3*(yvz3/fil3**3)))/2.0D0	1112 QEzz = QEzz + hss*(- (bvz1*(yvz1/fil1**3)) - (bvz3*(yvz3/fil3**3)))/2.0D0
QEzy = QEzy + hss*(- (bvy1*(yvz1/fil1**3)) - (bvy3*(yvz3/fil3**3)))/2.0D0	1113 !
QEzz = QEzz + hss*(- (bvz1*(yvz1/fil1**3)) - (bvz3*(yvz3/fil3**3)))/2.0D0	1114 ay1 = (a1*yvx1 + a2*yvy1 + a3*yvz1)
	1115 ay3 = (a1*yvx3 + a2*yvy3 + a3*yvz3)
ay1 = (a1*yvx1 + a2*yvy1 + a3*yvz1) ay3 = (a1*yvx3 + a2*yvy3 + a3*yvz3)	1116 ! 1117 bv1 = fil1*(fil1+av1)
ays - (ar yvxs + az yvys + as yvzs)	$\begin{array}{cccc} 1117 & 0y1 & -1117 (11174)1 \\ 1118 & by3 & - f113 * (f113+ay3) \\ \end{array}$
by1 = fil1*(fil1+ay1)	1119
by3 = fil3*(fil3+ay3)	1120 PEx = ((a1*bvx1/by1) + (a3*bvx3/by3))*a1
!	1121 PEy = ((a1*bvy1/by1) + (a3*bvy3/by3))*a2
PEx = ((a1*bvx1/by1) + (a3*bvx3/by3))*a1	1122 PEz = ((a1*bvz1/by1) + (a3*bvz3/by3))*a3
PEy = ((a1*bvy1/by1) + (a3*bvy3/by3))*a2 PEz = ((a1*bvz1/by1) + (a3*bvz3/by3))*a3	1123 ! 1124 PE = PE + hss*(PEx + PEy + PEz)/2.0D0
PE2 = ((d1.0021/091) + (d3.0025/093)) d3	
PE = PE + hss*(PEx + PEy + PEz)/2.000	1126 computation of curvature line integral along segment 5-3
!	1127
	1129 byy1 = 0.0D0
bvx1 = 0.0D0	1130 bv21 = 0.0D0
bvy1 = 0.0D0	1131 bvx2 = 0.0D0
bvz1 = 0.0D0	1132 byy2 = 0.000
bvx2 = 0.000	1133 bvz2 = 0.000 1134 bv3 = 0.000
bvy2 = 0.000 bv22 = 0.000	1134 bvx3 = 0.000 1135 bvy3 = 0.000
bvz2 = 0.000 bvx3 = 0.000	$\begin{array}{cccc} 1135 & bvy3 = 0.000 \\ 1136 & bvz3 = 0.000 \end{array}$
bvy = 0.000	1137 $VXI = 0.000$
bv3 = 0.000	1138 yvy1 = 0.600
yvx1 = 0.0D0	1139 yv21 = 0.0D0
yvy1 = 0.0D0	1140 yvx2 = 0.0D0
yvz1 = 0.0D0	1141 yvy2 = 0.0D0
yvx2 = 0.000	1142 yv2 = 0.000
yyy2 = 0.000	1143 yvx3 = 0.000
yvz2 = 0.0D0 yvx3 = 0.0D0	1144 yvy3 = 0.000 1145 yv23 = 0.000
yvx3 = 0.000 yvy3 = 0.000	1145 yv25 - 0.000
yvy3 = 0.0D0 yv23 = 0.0D0	$\begin{array}{c} 1140 \\ 1147 \\ 1147 \\ \end{array} \\ DXDx = p(13,1) - p(15,1) \\ \end{array}$
	1148 $DyDx = p(13,2) - p(15,2)$
DxDx = p(15,1) - p(12,1)	1149 $DzDx = p(13,3) - p(15,3)$
DyDx = p(15,2) - p(12,2)	1150
DzDx = p(i5,3) - p(i2,3)	1151 hss = DSQRT(DxDx**2 +DyDx**2 +DzDx**2)
l	1152 DxDx = DxDx/hss

3	DyDx = DyDx/hss	1225
4	DzDx = DyDx/hss	1226 yvx1 = p(13,1) - x00
		1227 yvy1 = p(13,2) - y00
6	yvx1 = p(15,1) - x00	1228 yvz1 = p(i3,3) - z00 1229 fil1 = DSORT(vvz1**2 + vvv1**2 +vvz1**2)
8	yvy1 = p(i5,2) - y00 yvz1 = p(i5,3) - z00	1229 fil1 = DSQRT(yvx1**2 + yvy1**2 +yvz1**2) 1230
9	fill = DSQRT(yvx1*2 + yvy1*2 +yvz1**2)	1231 bvx1 = (DyDx*yvz1 - DzDx*yvy1)
		1232 bvy1 = (DzDx*yvx1 - DxDx*yvz1)
1	bvx1 = (DyDx*yvz1 - DzDx*yvy1)	1233 bvz1 = (DxDx*yvy1 - DyDx*yvx1)
2	bvy1 = (DzDx*yvx1 - DxDx*yvz1)	1234
3	bvz1 = (DxDx*yvy1 - DyDx*yvx1)	$\begin{array}{cccc} 1235 & yvx3 = p(16,1) - x00 \\ 1236 & vvx3 = p(16,2) - v00 \end{array}$
i4 :	yvx3 = p(i3,1) - x00	$\begin{array}{cccc} 1236 & yvy3 = p(16,2) - y00 \\ 1237 & yv23 = p(16,3) - z00 \end{array}$
6	yvy3 = p(13,2) - y00	1238 fil3 = DSQRT(yvx3**2 + yvy3**2 +yvz3**2)
7	yvz3 = p(i3,3) - z00	1239 !
8	fil3 = DSQRT(yvx3**2 + yvy3**2 +yvz3**2)	1240 bvx3 = (DyDx*yvz3 - DzDx*yvy3)
9 ! 0	hund = (Didustance) Didustance)	1241 bvy3 = (DzDx*yvx3 - DxDx*yvz3) 1242 bvz3 = (DxDx*yvy3 - DyDx*yvx3)
0 1	bvx3 = (DyDx*yvz3 - DzDx*yvy3) bvy3 = (DzDx*yvx3 - DxDx*yvz3)	1242 bvz3 = (DxDx*yvy3 - DyDx*yvx3) 1243
2	by3 = (b2bx*yvy3 = Dybx*yvz3) byz3 = (b2bx*yvy3 = Dybx*yvx3)	1243 QExx = QExx + hss*(- (bvx1*(yvx1/fil1**3)) - (bvx3*(yvx3/fil3**3)))/2.000
3		1245 QExy = QExy + hss*(- (bvy1*(yvx1/fil1**3)) - (bvy3*(yvx3/fil3**3)))/2.0D0
4	QExx = QExx + hss*(- (bvx1*(yvx1/fil1**3)) - (bvx3*(yvx3/fil3**3)))/2.0D0	1246 QExz = QExz + hss*(- (bvz1*(yvx1/fil1**3)) - (bvz3*(yvx3/fil3**3)))/2.0D0
5	QExy = QExy + hss*(- (bvy1*(yvx1/fil1**3)) - (bvy3*(yvx3/fil3**3)))/2.0D0	1247 QEyx = QEyx + hss*(- (bvx1*(yvy1/fil1**3)) - (bvx3*(yvy3/fil3**3)))/2.0D0
6	QExz = QExz + hss*(- (bvz1*(yvx1/fil1**3)) - (bvz3*(yvx3/fil3**3)))/2.0D0	1248 QEyy = QEyy + hss*(- (bvy1*(yvy1/fil1**3)) - (bvy3*(yvy3/fil3**3)))/2.000
7	QEyx = QEyx + hss*(- (bvx1*(yvy1/fil1**3)) - (bvx3*(yvy3/fil3**3)))/2.000	1249 QEyz = QEyz + hss*(- (bvz1*(yvy1/fil1**3)) - (bvz3*(yvy3/fil3**3)))/2.0D0 1250 0Fzx = 0Fzx + hss*(- (hyx1*(yvz1/fil1**3)) - (bvx3*(yvz3/fil3**3)))/2.0D0
8 '9	QEyy = QEyy + hss*(- (bvy1*(yvy1/fil1**3)) - (bvy3*(yvy3/fil3**3)))/2.0D0 QEyz = QEyz + hss*(- (bvz1*(yvy1/fil1**3)) - (bvz3*(yvy3/fil3**3)))/2.0D0	1250 QEzx = QEzx + hss*(- (bvx1*(yvz1/fil1**3)) - (bvx3*(yvz3/fil3**3)))/2.0D0 1251 QEzy = QEzy + hss*(- (bvy1*(yvz1/fil1**3)) - (bvy3*(yvz3/fil3**3)))/2.0D0
0	QEZX = QEZX + hss(- (bvx1*(yv2/fil1*3)) - (bvx3*(yv2/fil1*3)))/2.000	1252 QEZZ = QEZZ + hss*(- (byz*(yrz*/fil**3)) - (byz*(yrz*/fil**3)))/2.000
1	QEzy = QEzy + hss*(- (bvy1*(yvz1/fil1**3)) - (bvy3*(yvz3/fil1**3)) /2.000	
12	QEzz = QEzz + hss*(- (bvz1*(yvz1/fil1**3)) - (bvz3*(yvz3/fil3**3)))/2.0D0	$1254 ay1 = (a1^*yvx1 + a2^*yvy1 + a3^*yvz1)$
		1255 ay3 = (a1*yvx3 + a2*yvy3 + a3*yvz3)
4	$ay1 = (a1^*yvx1 + a2^*yvy1 + a3^*yvz1)$	1256
15	ay3 = (a1*yvx3 + a2*yvy3 + a3*yvz3)	1257 by1 = fil1*(fil1+ay1) 1258 by3 = fil3*(fil3+ay3)
17	by1 = fil1*(fil1+ay1)	1256 055 - 115 (113 ays) 1259
8	by3 = fil3*(fil3+ay3)	1260 PEx = ((a1*bvx1/by1) + (a3*bvx3/by3))*a1
9 !		1261 PEy = ((a1*bvy1/by1) + (a3*bvy3/by3))*a2
0	PEx = ((a1*bvx1/by1) + (a3*bvx3/by3))*a1	1262 PEz = ((a1*bvz1/by1) + (a3*bvz3/by3))*a3
1	PEy = ((a1*bvy1/by1) + (a3*bvy3/by3))*a2	1263
	PEz = ((a1*bvz1/by1) + (a3*bvz3/by3))*a3	1264 PE = PE + hss*(PEx + PEy + PEz)/2.000 1265 !
4	PE = PE + hss*(PEx + PEy + PEz)/2.000	1266 ! computation of curvature line integral along segment 6-1 1267 !
6 ! comp	utation of curvature line integral along segment 3-6	1268 bvx1 = 0.0D0
		1269 bvy1 = 0.000
18	bvx1 = 0.0D0 bvy1 = 0.0D0	1270 bvz1 = 0.0D0 1271 bvx2 = 0.0D0
19	by21 = 0.000	12/1 $0 vz = 0.0001272$ $0 vz = 0.000$
1	$b_{XZ} = 0.000$ $b_{XZ} = 0.000$	1273 $bvz = 0.0001273$ $bvz = 0.000$
2	bvy2 = 0.0D0	1274 bvx3 = 0.0D0
3	bvz2 = 0.0D0	1275 bvy3 = 0.0D0
14	bvx3 = 0.000	1276 bv23 = 0.000
15	bvy3 = 0.000	1277 yvx1 = 0.000
16 17	bvz3 = 0.0D0 vvx1 = 0.0D0	1278 yvy1 = 0.0D0 1279 vv21 = 0.0D0
17	yvx1 = 0.0D0 yvy1 = 0.0D0	1279 yvz1 = 0.000 1280 yvx2 = 0.000
18	yvy1 = 0.000 yvz1 = 0.000	1280 $yv\chi z = 0.000$ 1281 $yv\chi z = 0.000$
.0	yvz1 = 0.000 yvz2 = 0.000	1281 yvy2 - 0.000 1282 yv22 - 0.000
1	yvy2 = 0.0D0	1283 yvx3 = 0.0D0
2	yvz2 = 0.0D0	1284 yvy3 = 0.0D0
.3	yvx3 = 0.0D0	1285 yvz3 = 0.000
.4	yvy3 = 0.000	
5	yvz3 = 0.0D0	1287 DxDx = p(i1,1) - p(i6,1) 1288 DyDx = p(i1,2) - p(i6,2)
.6 !	DxDx = p(16,1) - p(13,1)	$1288 U_{DV} = p(11,2) - p(16,2) 1289 DzDx = p(11,3) - p(16,3)$
.8	Dydx = p(is,2) - p(is,2) Dydx = p(is,2) - p(is,2)	1200
.9	DzDx = p(16,3) - p(13,3)	1291 hss = DSQRT(DxDx**2 +DyDx**2)
0 !		1292 DxDx = DxDx/hss
1	hss = DSQRT(DxDx**2 +DyDx**2 +DzDx**2)	1293 DyDx = DyDx/hss
2	DxDx = DxDx/hss	1294 DzDx = DzDx/hss
3	DyDx = DyDx/hss	1295 !
4	DzDx = DzDx/hss	1296 yvx1 = p(i6,1) - x00

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl3D_DLP.f90 19	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl3D_DLP.f90
yvy1 = p(16,2) - y00	1367
$y_{y1} = p(15,2) = y_{00}$ $y_{y2} = p(15,3) = 200$	1368 REAL (KIND = DBL), INTENT(IN) :: x00, y00, z00 !singulatity coordinates
fill = DSQRT(yvx1**2 + yvy1**2 +yvz1**2)	1369 REAL (KIND = DBL), INTENT(IN) :: x0e, y0e, z0e !singulatity coordinates element
!	1370 INTEGER, INTENT(IN) :: k !number of element
bvx1 = (DyDx*yvz1 - DzDx*yvy1)	1371 REAL (KIND = DBL), INTENT(OUT) :: TExx, TExy, TExz !value of stresslet in the singular element
bvy1 = (DzDx*yvx1 - DxDx*yvz1)	1372 REAL (KIND = DBL), INTENT(OUT) :: TEyx, TEyy, TEyz !value of stresslet in the singular element
bvz1 = (DxDx*yvy1 - DyDx*yvx1)	1373 REAL (KIND = DBL), INTENT(OUT) :: TEzx, TEzy, TEzz !value of stresslet in the singular element
$v_{xx3} = p(11,1) - x00$	13/4 i
$y_{VX3} = p(11,2) - y_{00}$	
$yvz_3 = p(11,3) - 200$	1377 INTEGER :: 1, j !Counters
fil3 = DSQRT(yvx3**2 + yvy3**2 +yvz3**2)	1378 INTEGER :: i1, i2, i3, i4, i5, i6 !indices to obtain node numbers from each element
	1379
bvx3 = (DyDx*yvz3 - DzDx*yvy3)	1380 REAL (KIND = DBL) :: cf, fil1, fil2, fil3 !integration weigth coefficients
bvy3 = (DzDx*yvx3 - DxDx*yvz3)	1381 REAL (KIND = DBL) :: DxDx, DyDx, DzDx !tangential vector around the triangle (xi,eta) 1382 REAL (KIND = DBL) :: hss !weigth
bvz3 = (DxDx*yvy3 - DyDx*yvx3)	1382 REAL (KIND = DBL) :: hss !weigth 1383 REAL (KIND = DBL) :: cpi !Selection to add the solid angle
	1386 REAL (KIND = DBL) :: cpl : Selection to add the solid angle 1384 REAL (KIND = DBL) :: modx0 ! weigth
$QEXA = QEXA + Inss(- (bvx)^2(yvx)/111 *3)) - (bvx)^2(yvx)/113 3/) //2.000$	1385 REAL (KIND = DBL) .: box1, bvy1, bvz1, & !vectoreial product
QExz = QExz + hss*(- (bvz1*(yvx1/fil1**3)) - (bvz3*(yvx3/fil3**3)))/2.000	1386 & byx2, byy2, byy2, &
QEyx = QEyx + hss*(- (bvx1*(yvy1/fil1**3)) - (bvx3*(yvy3/fil3**3)))/2.0D0	1387 & bvx3, bvy3, bvz3
QEyy = QEyy + hss*(- (bvy1*(yvy1/fil1**3)) - (bvy3*(yvy3/fil3**3)))/2.0D0	1388 REAL (KIND = DBL) :: QExx, QExy, QExz, & !Iq tensor
QEyz = QEyz + hss*(- (bvz1*(yvy1/fil1**3)) - (bvz3*(yvy3/fil3**3)))/2.0D0	1389 & QEyx, QEyy, QEyz, &
QEzx = QEzx + hss*(- (bvx1*(yvz1/fil1**3)) - (bvx3*(yvz3/fil3*3)))/2.0D0	1390 & QEzx, QEzy, QEzz
QEzy = QEzy + hss*(- (bvyl*(yvz1/fil1**3)) - (bvyl*(yvz3/fil3**3)))/2.000	1391 REAL (XIND = DBL) :: PEx, PEy, PEz, PE !!p tensor
QEzz = QEzz + hss*(- (bvz1*(yvz1/fil1**3)) - (bvz3*(yvz3/fil3**3)))/2.0D0	1392 REAL (KIND = DBL) :: yvx1, yvy1, yvz1 !vector (y1-x0) 1393 REAL (KIND = DBL) :: yvx2, yvy2, yvz2 !vector (y2-x0)
	1393 REAL (KIND = DBL) :: 9VX2, 9V22 :vector (92-x0) 1394 REAL (KIND = DBL) :: 9VX3, 9V33, 9V23 !vector (92-x0)
$ay3 = (a1^{2}yx3 + a2^{2}yy3 + a3^{2}yz3)$ $ay3 = (a1^{8}yx3 + a2^{8}yy3 + a3^{8}yz3)$	1394 REAL (KIND = DBL) :: yVX3, yV23 :vector (y2-x0) 1395 REAL (KIND = DBL) :: px2, py2, 2 !vector (y2-x0)
	1396 REAL (KIND = DBL) :: a1, a2, a3 !vector a
bv1 = fil1*(fil1+av1)	1397 REAL (KIND = DBL) :: ay1, ay2, ay3 !vector dot product a^*y1 , a^*y2
by3 = fil3*(fil3+ay3)	1398 REAL (KIND = DBL) :: by1, by2, by3 !product y1*(y1+a.y1)
l	1399 !
PEx = ((a1*bvx1/by1) + (a3*bvx3/by3))*a1	1400 ! Initialize
PEy = ((a1*bvy1/by1) + (a3*bvy3/by3))*a2	1401 !
PEz = ((a1*bvz1/by1) + (a3*bvz3/by3))*a3 !	1402 TExx = 0.000 1403 TExx = 0.000
PE = PE + hss*(PEx + PEy + PEz)/2.000	1403 TEXy = 0.000 1404 TEXz = 0.000
Close(9)	1405 15x = 0.000 1485 15x = 0.000
	1406 TEyy = 0.0D0
TExx = 2.0D0*(QExx + cpi -PE)	1407 TEyz = 0.0D0
TExy = 2.0D0*(QExy)	1408 TEzx = 0.0D0
TExz = 2.0D0*(QExz)	1409 TEzy = 0.0D0
TEyx = 2.0D0*(QEyx)	1410 TE2Z = 0.0D0
TEyy = 2.0D0*(QEyy + cpi -PE) TEyz = 2.0D0*(QEyz)	1411 1412 OExx = 0.0D0
TEX = 2.000'(VEX)	1412 QEXX = 0.000 1413 OEXY = 0.000
TEZY = 2.000 (QEZY)	1414 0Exz = 0.000
TEZ = 2.000° ($0Ezz + cpi - PE$)	1415 $OEyx = 0.000$
I	1416 QEyy = 0.0D0
END SUBROUTINE intr_lin_sing_s4	1417 QEyz = 0.0D0
!! #	1418 QEzx = 0.0D0
2	1419 QEzy = 0.0D0
	1420 QEZZ = 0.0D0
SUBROUTINE intr_lin_sing_s4s(x0e, y0e, z0e, &	1421 1422 PEx = 0.0D0
& x00, y00, z00, & & k, &	1422 PEx = 0.000 1423 PEx = 0.000
a K, a & TExx, TExy, TExz, &	1423 $rEy = 0.0001424$ $PEz = 0.000$
& TEyx, TEyy, TEyz, &	1425 PE = 0.000
& TEZX, TEZY, TEZZ)	1426
1	1427 a1 = -x0(k)
! This subroutine is a new version stokeslet Subroutine.	$1428 ext{ a2 } = -y\theta(k)$
ICompute:	1429 a3 = -z0(k)
! *The value of the Stokeslet over each singular element	1430 modxθ= DSQRT(a1**2+a2**2+a3**2)
!Now, (March/ 09 / 2015) this subroutine was made.	1431 1432 cni = 4.909*ni
USE Mod Nodal Interp	1432 cpi = 4.0D0*pi 1433
USE Mod_Nodal_Interp USE Mod_SharedVars, ONLY: DBL, p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0	1433 1434 !IF((ABS(al) <= eps) .AND. &
USE MOd_sharedvars, UMLY: DBL, p, ne, n, nDe, ULOg, p1, eps, VnX0, VNY0, V120, X0, y0, Z0	1434 : $1r((AbS)(a1) \le eps)$. ANU. a 1435 : !& (AbS(a2) <= eps) . ANU. b
IMPLICIT NONE	1436 $ \& (ABS(a3) <= eps))$ THEN
1	$1437 ! a1 = x\theta(k)$
! Variables	1438 ! a2 = y0(k)

D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl3D DLP.f90 21	D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl3D DLP.f90 22
1439 ! a3 = z0(k) 1440 !ELSE	1511 bvy3 = (DzDx*yvx3 - DxDx*yvz3) 1512 bvz3 = (DxDx*yvy3 - DyDx*yvx3)
1441 !a1 = x0e-x00 1442 !a2 = y0e-y00	1513
1443 !a3 = z0e-z00	1515 QExy = QExy + hss*(- (bvy1*(yvx1/fil1**3)) - (bvy3*(yvx3/fil3**3)))/2.0D0
1444 !END IF	1516 QExz = QExz + hss*(- (bvz1*(yvx1/fil1**3)) - (bvz3*(yvx3/fil1**3)))/2.0D0
1445 ! 1446 al = al/modx0	1517 QEyx = QEyx + hss*(- (bvx1*(yvy1/fil1**3)) - (bvx3*(yvy3/fil3**3)))/2.0D0 1518 QEyy = QEyy + hss*(- (bvy1*(yvy1/fil1**3)) - (bvy3*(yvy3/fil3**3)))/2.0D0
1447 a2 = a2/mod×0	1519 QEyz = QEyz + hss*(- (bvz1*(yvy1/fil1**3)) - (bvz3*(yvy3/fil3**3)))/2.0D0
1448 a3 = a3/modx0 1449	1520 QEzx = QEzx + hss*(- (bvx1*(yvz1/fil1**3)) - (bvx3*(yvz3/fil3**3)))/2.0D0 1521 QEzy = QEzy + hss*(- (bvy1*(yvz1/fil1**3)) - (bvy3*(yvz3/fil3**3)))/2.0D0
1495 1450 !OPEN (9,file="TE.out") 1451 !	1521 QEZZ = QEZZ + hss'(- (byz1*(yvz1/111*5)) - (byz3*(yvz3/113*5)))/2.000 1522 QEZZ = QEZZ + hss'(- (byz1*(yvz1/fil1*3)) - (byz3*(yvz3/fil3*3)))/2.000 1523 !
1452 ! vertices of the kth triangle 1453 !	$\begin{array}{rcl} 1524 & ay1 & = (a1^*yvx1 + a2^*yvy1 + a3^*yvz1) \\ 1525 & ay3 & = (a1^*yvx3 + a2^*yvy3 + a3^*yvz3) \end{array}$
1454 11 = n(k,1) 1455 12 = n(k,2)	1526 1527 by1 = fil1*(fil1+ay1)
$\begin{array}{ccc} 1455 & i2 = n(k,2) \\ 1456 & i3 = n(k,3) \end{array}$	1527 by $1 = 7111^{-}(7111+491)$ 1528 by $3 = 6113^{+}(613+493)$
1457 $i4 = n(k, 4)$	1529 !
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1530 PEx = ((a1*bvx1/by1) + (a3*bvx3/by3))*a1 1531 PEy = ((a1*bvy1/by1) + (a3*bvy3/by3))*a2
1450 !	1532 PEz = ((a1*bvz1/by1) + (a3*bvz3/by3))*a3
$\frac{1461}{1462} = \frac{1}{1462} = $	1533
1463 ! compute the average value of the normal vector the mean curvature as a contour integral using the trapezoidal 1464 ! rule formula	1535 : 1536 : computation of curvature line integral along segment 4-2 1537 :
1466 bvx1 = 0.0D0	1538 bvx1 = 0.000
1467 bvy1 = 0.800 1468 bvz1 = 0.800	1539 bvy1 = 0.0D0 1540 bvz1 = 0.0D0
1469 by $2 = 0.000$	1540 bV1 = 0.000 1541 bV2 = 0.000
1470 bvy2 = 0.0D0	1542 bvy2 = 0.0D0
1471 bvz2 = 0.000	1543 bvz2 = 0.000 1544 bvx3 = 0.000
1473 by $3 = 0.000$	1544 DVA3 = 0.000 1545 DVV3 = 0.000
1474 bvz3 = 0.0D0	1546 bv23 = 0.0D0
1475 yvx1 = 0.0D0 1476 yvy1 = 0.0D0	1547 yvx1 = 0.0D0 1548 yvy1 = 0.0D0
14/5 yvy1 = 0.606 14/7 yvz1 = 0.606	1546 yvj1 = 0.000 1549 yv21 = 0.000
1478 yvx2 = 0.0D0	1550 yvx2 = 0.0D0
1479 yvy2 = 0.0D0 1480 yvz2 = 0.0D0	1551 yvy2 = 0.0D0 1552 yvz2 = 0.0D0
1481 yvx3 = 0.0D0	1553 yvx3 = 0.0D0
1482 yvy3 = 0.000	1554 yvy3 = 0.000 1555 yvz3 = 0.000
1483 yvz3 = 0.0D0	1555 yvz3 = 0.000 1556
1485 ! computation of curvature line integral along segment 1-4 1486 !	1557 DxDx = p(12,1) - p(14,1) 1558 DyDx = p(12,2) - p(14,2)
1487 DxDx = p(i4,1) - p(i1,1) 1488 DyDx = p(i4,2) - p(i1,2)	1559 DzDx = p(i2,3) - p(i4,3) 1560
1489 $DzDx = p(i4,3) - p(i1,3)$	1561 hss = DSQRT(DxDx**2 +DyDx**2 +DzDx**2)
1490 !	1562 DxDx = DxDx/hss 1563 DyDx = DyDx/hss
1491 hss = DSQRT(DxDx**2 +DyDx**2 +DzDx**2) 1492 DxDx = DxDx/hss	1563 DyDx = DyDx/hss 1564 DzDx = DzDx/hss
1493 DyDx = DyDx/hss	1565
1494 DzDx = DzDx/hss	1566 yvx1 = p(i4, 1) - x00 1567 yvy1 = p(i4, 2) - y00 1567
1495	1567 yvy1 = p(14,2) - y00 1568 yvz1 = p(14,3) - z00
1497 $yvy1 = p(11,2) - y00$	1569 fill = DSQRT(yvx1**2 + yvy1**2 + yvz1**2)
1498	1570 1571 bvx1 = (DyDx*yvz1 - DzDx*yvy1)
1499 fill = DSQRT(yvx1**2 + yvy1**2 +yvz1**2) 1500	$\begin{array}{llllllllllllllllllllllllllllllllllll$
1501 bvx1 = (DyDx*yvz1 - DzDx*yvy1)	1573 bvz1 = (DxDx*yvy1 - DyDx*yvx1)
1592 bvy1 = (DzDx ⁺ yvx1 - DxDx ⁺ yvx1) 1593 bvz1 = (DxDx ⁺ yvx1 - DyDx ⁺ yvx1)	1574 !
1503 bvz1 = (DxDx*yvy1 - DyDx*yvx1) 1504 !	1575 yvx3 = p(i2,1) - x00 1576 yvy3 = p(i2,2) - y00
1505 yvx3 = p(14,1) - x00	1577 yvz3 = p(12,3) - z00
1506 yvy3 = p(i4,2) - y00 1507 yvz3 = p(i4,3) - z00	1578 fil3 = DSQRT(yvx3**2 + yvy3**2 +yvz3**2) 1579 !
1507 yv23 = p(14,3) - 200 1508 f113 = DSQRT(yv3**2 + yv23**2)	1580 bvx3 = (DyDx*yvz3 - DzDx*yvy3)
1509 !	1581 bvy3 = (DzDx*yvx3 - DxDx*yvz3)
1510 bvx3 = (DyDx*yvz3 - DzDx*yvy3)	1582 bvz3 = (DxDx*yvy3 - DyDx*yvx3)

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl3D_DLP.f90	23 D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl3D DLP.f90 24
1583	1655 QExy 0 Bxy - (bxy)1*(yxx1/fil1**3)) - (bxy)2*(yxx3/fil3**3)) //2.000 1656 QExz 0 Exx - (bxy)1*(yxx1/fil1**3)) - (bxy2*(yxx3/fil3**3)) //2.000 1656 QExz 0 Exx - (bxy1*(yxx1/fil1**3)) - (bxy2*(yxx3/fil3**3)) //2.000 1657 QEyx 0 Exx - (bxy1*(yxx1/fil1**3)) - (bxy2*(yxx3/fil3**3)) //2.000 1659 QEyz 0 Exx - (bxy1*(yyx1/fil1**3)) - (bxy2*(yyx3/fil3**3)) //2.000 1660 QEyz 0 Exx + hss*(- (bxy1*(yyx1/fil1**3))) - (bxy2*(yyx3/fil3**3)) //2.000 1661 QEyz 0 Exx + hss*(- (bxy1*(yyx1/fil1**3))) - (bxy2*(yyx3/fil3**3)) //2.000 1663
1593	1665 ay3 = (a1*yv3 + a2*yvy3 + a3*yv23) 1666
1597 by1 = fil1*(fil1+ay1) 1598 by3 = fil3*(fil3+ay3) 1599 !	1669 1670 PEx = ((a1*by(x)/by(1) + (a3*by(x)/by(3))*a1 1671 PEy = ((a1*by(x)/by(1) + (a3*by(x)/by(3))*a2
1600 PEx = ((a1*bvx1/by1) + (a3*bvx3/by3))*a1 1601 PEy = ((a1*bvx1/by1) + (a3*bvx3/by3))*a2 1602 PEz = ((a1*bvx1/by1) + (a3*bvx3/by3))*a3	1672 PEZ = ((a1*bvz1/by1) + (a3*bvz3/by3))*a3 1673
1603 1604 PE = PE + hss*(PEx + PEy + PEz)/2.000	1675 1676 ! computation of curvature line integral along segment 5-3
1605 I 1606 I computation of curvature line integral along segment 2-5 1607 I 1608 hyst = 0.000	1677 I 1678 boxtl = 0.000 1679 boytl = 0.000 1660 boytl = 0.000
1609 by/1 = 0.000 1610 by/2 = 0.000 1611 by/2 = 0.000 1612 by/2 = 0.000 1613 by/2 = 0.000 1614 by/2 = 0.000 1615 by/2 = 0.000	1681 by/2 = 0.006 1682 by/2 = 0.006 1683 by/2 = 0.006 1684 by/3 = 0.006 1685 by/3 = 0.006 1686 by/3 = 0.006 1686 by/3 = 0.006 1686 by/3 = 0.006 1687 by/3 = 0.006
1616 $bv23$ = 0.000 1617 $yvx1$ = 0.000 1618 $yyy1$ = 0.000 1620 $yvx2$ = 0.000 1621 $yyy2$ = 0.000 1622 $yvx2$ = 0.000 1623 $yvx2$ = 0.000 1624 $yvy3$ = 0.000 1625 $yvx3$ = 0.000 1626 $yvy3$ = 0.000	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$1626 \\ 1627 Dx0x = p(15, 1) - p(12, 1) \\ 1627 Dx0x = p(15, 2) - p(12, 2) \\ 1628 Dy0x = p(15, 2) - p(12, 2) \\ 1629 Dz0x = p(15, 3) - p(12, 3) \\ 1629 Dz0x = p(15, 3) - p(15, 3) \\ 1629 Dz0x = p(15, 3) - p(15, 3) \\ 1629 Dz0x = p(15, 3) - p(15, 3) \\ 1629 Dz0x = p(15, 3) - p(15, 3) \\ 1629 Dz0x = p(15, 3) - p(15, 3) \\ 1629 Dz0x = p(15, 3) - p(15, 3) \\ 1629 Dz0x = p(15, 3) - p(15, 3) \\ 1629 Dz0x = p(15, 3) - p(15, 3) \\ 1629 Dz0x = p(15, 3) - p(15, 3) \\ 1629 Dz0x = p(15, 3) - p(15, 3) \\ 1629 Dz0x = p(15, 3) - p(15, 3) \\ 1629 Dz0x = p(15, 3) - p(15, 3) \\ 1629 Dz0x = p(15, 3) - p(15, 3) \\ 1629 Dz0x = p(15, 3) - p(15, 3) \\ 1629 Dz0x = p(15, 3) - p(15, 3) \\ 1629 Dz0x = p(15, 3) - p(15, 3) \\ 1629 Dz0x = p(15, 3) - p(15, 3) \\ 1629 Dz0x = p(15, 3) - p(15, 3) \\ 1629 Dz0x = p$	1698 $DyDx = p(13, 2) - p(15, 2)$ 1699 $DzDx = p(13, 3) - p(15, 3)$ 1700 1
102 020A - (0.13/3) - (0.12/3) 1631 hss = 05QR1(0x0x*2 +0y0x*2 +0z0x*2) 1632 DXX = DXX/hss 1633 DyXx = DXX/hss 1634 DZX = DXX/hss 1635 DyXx = DXX/hss 1636 DZX = DXX/hss 1637 DZX = DXX/hss 1638 DZX = DXX/hss	 1761 iiis - 50x(1)(0x0x ² 2 '020x ²
1635	 1707 yvyl = p(15, 2) - y00 1708 yvzl = p(15, 3) - 200 1709 f fill = DSQRT(yvxl**2 + yvyl**2 + yvzl**2) 1710
1639 fill = DSQRT(yuxi*2 + yvy1*2 + yvz1*2) 1640	1711 bwxl = (0)0x ⁴ yvzl - D2Dx ⁴ yvyl) 1712 bwyl = (02x ⁴ yvzl - Dx0x ⁴ yvzl) 1713 bwzl = (0x0x ⁴ yvyl - Dy0x ⁴ yvxl) 1714
1643 bv21 = (bxbk*ývy1 - bybx*ývx1) 1644	1715 yv3 = p(13,1) - x00 1716 yv3 = p(13,2) - y00 1717 yv3 = p(13,2) - y00 1717 yv3 = p(13,3) - 200 1718 (f13 = 05QRT(yv3**2 + yvy3**2 + yvz3**2) 1719
1647 yvz3 = p(15,3) - 200 1648 fil3 = DSQRT(yvx3**2 + yvy3**2 + yvz3**2) 1649 !	1/19 bod3 = (0pdc*yvy3 - Dzdc*yvy3) 1/20 bod3 = (0pdc*yvy3 - Dzdc*yvy3) 1/21 bod3 = (0pdc*yvy3 - Dzdc*yvy3) 1/22 bvd3 = (0pdc*yvy3 - Dydc*yvy3) 1/22 bvd3 = (0pdc*yvy3 - Dydc*yvy3)
1651 bvy3 = (DEDX*yV3 - DAX*yV23) 1652 bv23 = (DAX*yV3 - DAX*yV3) 1653	 1723 QExx = QExx + hss*(- (bvx1*(yvx1/f11**3)) - (bvx3*(yvx3/f113**3)))/2.000 1725 QExy = QExy + hss*(- (bvy1*(yvx1/f11**3)) - (bvy3*(yvx3/f113**3)))/2.000 1726 QExz = QExz + hss*(- (bvz1*(yvx1/f11**3)) - (bvz3*(yvx3/f113**3)))/2.000

D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl3D DLP.f90 25	D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl3D DLP.f90 26
1727 QEyx = QEyx + hss*(- (bvx1*(yvy1/fil1**3)) - (bvx3*(yvy3/fil3**3)))/2.000 1728 QEyy = QEyy + hss*(- (bvy1*(yvy1/fil1**3)) - (bvy3*(yvy3/fil3**3)))/2.000 1729 QEyz = QEyz + hss*(- (bvx1*(yvy1/fil1**3)) - (bvx3*(yvy3/fil3**3)))/2.000 1730 QExx = QExx + hss*(- (bvx1*(yvx1/fil1**3)) - (bvx3*(yvx3/fil3**3)))/2.000 1731 QEyz = QEzy + hss*(- (bvy1*(yvx1/fil1**3)) - (bvx3*(yvx3/fil3**3)))/2.000 1732 QEzz = QEzz + hss*(- (bvx1*(yvx1/fil1**3)) - (bvx3*(yvx3/fil3**3)))/2.000 1733 QEzz = QEzz + hss*(- (bvx1*(yvx1/fil1**3)) - (bvx3*(yvx3/fil3**3)))/2.000	1799 QEyz QEyz + hss*(- (bvz1*(yvy1/fil1**3)) - (bvz3*(yvy3/fil3**3)))/2.000 1800 QExx QExx + hss*(- (bvz1*(yvz1/fil1**3)) - (bvz3*(yvz3/fil3**3)))/2.000 1801 QEzy QEzy + hss*(- (bvz1*(yvz1/fil1**3)) - (bvz3*(yvz3/fil3**3)))/2.000 1802 QEzz QEzy + hss*(- (bvz1*(yvz1/fil1**3)) - (bvz3*(yvz3/fil3**3)))/2.000 1803 QEzz QEzz + hss*(- (bvz1*(yvz1/fil1**3)) - (bvz3*(yvz3/fil3**3)))/2.000 1804 ayl = (al*yvx1 + a2*yvy1 + a3*yvz1) 1805 ayl = (al*yvx1 + a2*yvy1 + a3*yvz1)
1734 ayl = (a1*yvx1 + a2*yvy1 + a3*yvz1) 1735 ay3 = (a1*yvx3 + a2*yvy3 + a3*yvz3) 1736	1806
1737 by1 = f1l1*(f1l1*ay1) 1738 by3 = f1l3*(f1l3*ay3) 1739	1809
1740 PEx = ((a1*byx1/by1) + (a3*byx3/by3))*a1 1741 PEy = ((a1*byx1/by1) + (a3*byx3/by3))*a2 1742 PEz = ((a1*byz1/by1) + (a3*byz3/by3))*a3	1812 PEz = ((a1*bvz1/by1) + (a3*bvz3/by3))*a3 1813
1743	1815
1746 ! computation of curvature line integral along segment 3-6	1818 bvx1 = 0.0D0
144 Computation of curvature line integral along segment 3-0 147 bw1 = 0.000 147 bw1 = 0.000 147 bw1 = 0.000 157 bw2 = 0.000 157 bw2 = 0.000 157 bw3 = 0.000 157 bw3 = 0.000 157 yv1 = 0.000 158 bw3 = 0.000 159 yv2 = 0.000 156 bw3 = 0.000 157 yv1 = 0.000 158 yv3 = 0.000 159 yv2 = 0.000 160 yw2 = 0.000 1761 yw3 = 0.000 1762 yw3 = 0.000 1763 yw3 = 0.000 1764 yw3 = 0.000 1766 Dz0x = p(16,1) - p(13,1) 1768 Dy0x = p(16,3) - p(13,2) 1770 bxx = bx0x/hs 1771 bxx = bx0x/hs 1772 bxx = bx0x/hs 1773 yw4 = p(13,2) - y00 1774 yw1 = p(13,2) - y00 1774 yw1 = p(13,2) - y00 1775 yw1 = p(13,2) - y00 1774 <td>1313 $bxx = 0.800$ 1311 $bxx = 0.800$ 1321 $bxx = 0.800$ 1321 $bxx = 0.800$ 1321 $bxx = 0.800$ 1323 $bxx = 0.800$ 1324 $bxx = 0.800$ 1325 $byy = 0.800$ 1326 $bxz = 0.800$ 1327 $yxx = 0.800$ 1328 $yyy = 0.800$ 1329 $yyz = 0.800$ 1321 $yyx = 0.800$ 1322 $yyz = 0.800$ 1331 $yyyz = 0.800$ 1332 $yyx = 0.800$ 1333 $yyx = 0.800$ 1334 $yyx = 0.800$ 1335 $yyx = 0.800$ 1336 $yyx = 0.800$ 1331 $yyy = 0.800$ 1332 $yyz = 0.800$ 1334 $yyx = 0.800$ 1335 $pyx = 0.11, 2) - p(16, 2)$ 1340 $bbbx = b50kT(bbx** + 4pbx** + 4pbx** + 2bb***2)$ 1341 $bbx = b50kT(bbx** + 4pbx** + 4pbx**2)$ 1342 $bbx = bbx/hss$ 1343 $bby = p(1, 1, 2) - 200$ 1344</td>	1313 $bxx = 0.800$ 1311 $bxx = 0.800$ 1321 $bxx = 0.800$ 1321 $bxx = 0.800$ 1321 $bxx = 0.800$ 1323 $bxx = 0.800$ 1324 $bxx = 0.800$ 1325 $byy = 0.800$ 1326 $bxz = 0.800$ 1327 $yxx = 0.800$ 1328 $yyy = 0.800$ 1329 $yyz = 0.800$ 1321 $yyx = 0.800$ 1322 $yyz = 0.800$ 1331 $yyyz = 0.800$ 1332 $yyx = 0.800$ 1333 $yyx = 0.800$ 1334 $yyx = 0.800$ 1335 $yyx = 0.800$ 1336 $yyx = 0.800$ 1331 $yyy = 0.800$ 1332 $yyz = 0.800$ 1334 $yyx = 0.800$ 1335 $pyx = 0.11, 2) - p(16, 2)$ 1340 $bbbx = b50kT(bbx** + 4pbx** + 4pbx** + 2bb***2)$ 1341 $bbx = b50kT(bbx** + 4pbx** + 4pbx**2)$ 1342 $bbx = bbx/hss$ 1343 $bby = p(1, 1, 2) - 200$ 1344
1781 bvx1 = (Dy0x*yvz1 - Dz0x*yvy1) 1782 bvy1 = (Dz0x*yvx1 - Dz0x*yvz1) 1783 bvz1 = (Dz0x*yvy1 - Dy0x*yvx1) 1784 bvz1 = (Dz0x*yvy1 - Dy0x*yvx1)	1853 bvzl = (0x0x*yvxl) 1854
1285 yvx3 = p(16,1) - x00 1286 yvx3 = p(16,2) - y00 1287 yvx3 = p(16,3) - z00 1288 fil3 = 05QF(yvx3*2 + yvy3*2 + yvy3*2 + yvy3*2) 1280 bvx3 = (Dybx*yvx3 - Dxbx*yvy3) 1290 bvx3 = (Dybx*yvx3 - Dxbx*yvy3) 1291 bvx3 = (Dxbx*yvx3 - Dxbx*yvx3) 1292 bvx3 = (Dxbx*yvx3 - Dxbx*yvx3) 1293 (Dxbx*yvx3 - Dxbx*yvx3) 1294 QExx = QExx + hss*(- (bvx1*(yvx1/fil1**3)) - (bvx3*(yvx3/fil3**3)))/2.000 1295 QExy = QExy + hss*(- (bvx1*(yvx1/fil1**3)) - (bvx3*(yvx3/fil3**3)))/2.000 1296 QExy = QEyx + hss*(- (bvx1*(yvy1/fil1**3)) - (bvx3*(yvy3/fil3**3)))/2.000 1297 QExy = QEyy + hss*(- (bvx1*(yvy1/fil1**3)) - (bvx3*(yvy3/fil3**3)))/2.000 1298 QEyy = QEyy + hss*(- (bvx1*(yvy1/fil1**3)) - (bvx3*(yvy3/fil3**3)))/2.000	1857 yyz3 = p(11,3) - 200 1858 f113 = D5QRT(yyx3*2 - b2Dx*yyy3) 1859 1

D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl3D DLP.f90 27	D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl3D DLP.f90 28
1871 QEzy = QEzy + hs*(- (bvy1*(yvz1/fil1**3)) - (bvy3*(yvz3/fil3**3)))/2.000 1872 QEzz + Dexz*(yvz1/fil1**3)) - (bvz3*(yvz3/fil3**3)))/2.000	1943 REAL (KIND = DBL) :: yvx4, yvy4, yvz4 !vector y4 1944 REAL (KIND = DBL) :: yvx5, yvy5, yvz5 !vector y5
1873	1945 REAL (KIND = DBL) :: yvx6, yvy6, yvz6 Ivector y6 1946 REAL (KIND = DBL) :: zvx1, zvy1, zvz1 Ivector (z1-x0) 1947 REAL (KIND = OBL) :: zvx2, zvy2, zvz2 Ivector (z2-x0)
1876 1877 by1 = fill*(fill+ay1) 1878 by3 = fill*(fill+ay3)	1948 REAL (KIND = DBL) :: zvx3, zvy3, zvz3 1 vector (z3-x8) 1949 REAL (KIND = DBL) :: zvx3, zvy4, zvz4 1 vector (z4-x8) 1950 REAL (KIND = DBL) :: zvx5, zvy5, zvz5 1 vector (z5-x8)
1879 I	1951 REAL (KIND = DBL) :: zvx6, zvy6, zvz6 Ivector (z6-x8) 1952 REAL (KIND = DBL) :: zvx1, zvy1, zcr1 Ivector z1 ^ z1+1 1953 REAL (KIND = DBL) :: zvx3, zvy2, zcr1 Ivector z1 ^ z1+1 1954 REAL (KIND = DBL) :: zvx3, zvy3, zcr3 Ivector z1 ^ z1+1
1883	1955 REAL (KIMD = OBL) :: zcx4, zcy4, zcz4 Ivector zi ^ zi+1 1956 REAL (KIMD = OBL) :: zcx5, zcy5, zcz5 Ivector zi ^ zi+1 1957 REAL (KIMD = OBL) :: zcx6, zcy6, zcz6 Ivector zi ^ zi+1
1886 I TExx = 2.000'(QExx + cpi -PE) 1887 TExx = 2.000'(QExy + cpi -PE) 1889 TExy = 2.000'(QEyx + cpi -PE) 1890 TEyy = 2.000'(QEyy + cpi -PE) 1891 TEyy = 2.000'(QEyx + cpi -PE) 1893 TExy = 2.000'(QExy + cpi -PE) 1893 TExy = 2.000'(QExy + cpi -PE) 1894 TExy = 2.000'(QExy + cpi -PE) 1895 TExy = 2.000'(QExx + cpi -PE)	1958 REAL (KIND = DBL) :: z d1, zd2, zd3, zd4, zd5, zd6 !vector z1. zl+1 1959 REAL (KIND = DBL) :: z zd1, zd2, zd3, zd4, zd5, zd6 !vector z1. zl+1 1960 REAL (KIND = DBL) :: z zd1, zd2, a3 !vector a 1961 REAL (KIND = DBL) :: z zl1, al2, al3, al4, al5, al6 !alpha angle between z1 and zl+1 from x0 1962 REAL (KIND = DBL) :: z zl1, al2, al3, al4, al5, al6 !alpha angle between vector a and mi vector 1963 REAL (KIND = DBL) :: z zl1, el2, el3, el4, el5, al6 !alpha angle between vector a and mi vector 1964 REAL (KIND = DBL) :: z zl1, el2, el3, el4, el5, al6 !constant 1965 REAL (KIND = DBL) :: z zl1, gl2, gl3, gl4, el5, gl6 !constant 1966 REAL (KIND = DBL) :: zl1, gl2, gl3, gl4, gl5, gl6 !constant 1966 REAL (KIND = DBL) :: zl1, gl2, gl3, gl4, gl5, gl6 !vector dot product a*y1, a*y2 1966 REAL (KIND = DBL) :: zl1, zl2, zl3, gl4, gl5, gl6 !vector dot product a*y1, a*y2 1966 REAL (KIND = DBL) :: zl1, zl2, zl3, zl4, zl5, zl3 !vector dot product a*y1, a*y2 1966 REAL (KIND = DBL) :: zl1, zl2, zl3, zl4, zl5, zl3 !vector dot product a*y1, a*y2
1896	1968
1899 SUBROUTINE intr_lin_sing_s5(x10, y10, z10, & 1990 & k, & 1991 & TExx, TExy, TExz, & 1992 & TExy, TExy, TExz, & 1993 & TExx, TExy, TExz, & 1994	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1916 Intervention Isingulatity coordinates 1917 REAL (KIND = DBL), INTENT(IN) :: X10, y10, z10 Isingulatity coordinates 1918 INTEGER, INTENT(IN) :: Kx, TExy, TExz Inumber of element 1920 REAL (KIND = DBL), INTENT(OUT) :: TExx, TExy, TExz Ivalue of stresslet in the singular element 1921 REAL (KIND = DBL), INTENT(OUT) :: TExx, TExy, TEzz Ivalue of stresslet in the singular element 1921 REAL (KIND = DBL), INTENT(OUT) :: TExx, TExy, TEzz Ivalue of stresslet in the singular element 1921 Ivalue of stresslet in the singular element Ivalue of stresslet in the singular element 1923 Ivalue of stresslet in the singular element Ivalue of stresslet in the singular element	1988 QEZy = 0.000 1990 QEZz = 0.000 1991 PEx = 0.000 1992 PEy = 0.000 1993 PEz = 0.000 1994 PE = 0.000
1924 I	1996 modx0= DSQRT((x0(k)-x10)**2+(y0(k)-y10)**2+(z0(k)-z10)**2) 1997 1998 IF (modx0 >= 1.0D0 + eps) THEN
1927 Integration weigth coefficients 1928 REAL (KIND = DBL) :: cf, fill, fil2, fil3 Iintegration weigth coefficients 1929 REAL (KIND = DBL) :: cf, fill, fil2, fil3 Iintegration weigth coefficients 1920 REAL (KIND = DBL) :: cf, fill, fil2, fil3 Iintegration weigth coefficients 1930 REAL (KIND = DBL) :: cf, fill, fil2, fil3 Iwaigth 1931 REAL (KIND = DBL) :: cpi Iselection to add the solid angle 1932 REAL (KIND = DBL) :: bxx3, bvy1, bvz1, & lweigth Iweigth 1933 REAL (KIND = DBL) :: bxx3, bvy2, bvz2, & Ivectoreial product 1934 & bvx3, bvy3, bvz3 Ivectoreial product 1935 & bvx2, bvy2, fbx2, & Iq tensor 1937 & QExy, QExy, QExz, Iptensor 1938 & QExy, QExy, QExz, Iptensor 1939 REAL (KIND = DBL) :: yvX1, yvY1, yvZ1 Ivector y1 1940 REAL (KIND = DBL) :: yvX3, yv73, yvZ3 Ivector y2 1941 REAL (KIND = DBL) :: yvX3, yv73, yvZ3 Ivector y3	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl3D_DLP.f90	1 D:\Darth Vader\Escritorio\prtcl_mk	l\Mod_Prtc13D_DLP.f90
QEzy = ((zvz1 + zvz4)*zcy1) / (1.0D0 + zd1)	2231 !	
QEzz = ((zvz1 + zvz4)*zcz1) / (1.0D0 + zd1)	2232 QExx = QExx + ((zvx6 + z	vx1)*zcx6) / (1.0D0 + zd6)
1	2233 QExy = QExy + ((zvx6 + z	vx1)*zcy6) / (1.0D0 + zd6)
PEx = (2.0D0*a1*zcx1/g1)*((DATAN(((1.0D0 - f1)*DTAN(a11/2) + e1)/ g1)) - DATAN(e1/g1))		vx1)*zcz6) / (1.0D0 + zd6)
PEy = (2.0D0*a2*zcy1/g1)*((DATAN(((1.0D0 - f1)*DTAN(al1/2) + e1)/ g1)) - DATAN(e1/g1))		vy1)*zcx6) / (1.0D0 + zd6)
PEz = (2.0D0*a3*zcz1/g1)*((DATAN(((1.0D0 - f1)*DTAN(a11/2) + e1)/ g1)) - DATAN(e1/g1))		vy1)*zcy6) / (1.0D0 + zd6)
·		vy1)*zcz6) / (1.0D0 + zd6)
! computation of curvature line integral along segment 4		vz1)*zcx6) / (1.0D0 + zd6)
		vz1)*zcy6) / (1.0D0 + zd6)
OExx = QExx + ((zvx4 + zvx2)*zcx2) / (1.0D0 + zd2)		vz1)*zcz6) / (1.0D0 + zd6)
QEXY = QEXY + ((zYX4 + zYX2)*zCY2) / (1.000 + zd2)	2241	
$QE_{XZ} = QE_{XZ} + ((z_{XXA} + z_{XXZ}) + z_{ZZ}) / (1.000 + zd_2)$		x6/g6)*((DATAN(((1.0D0 - f6)*DTAN(a16/2) + e6)/ g6)) - DATAN(e6/g6)
$QE_{yx} = QE_{yx} + ((z_{yy4} + z_{yy2})^* z_{cx2}) / (1.0D0 + zd2)$	2243 PEV = PEV + (2.000*a2*7c	y6/g6)*((DATAN(((1.0D0 - f6)*DTAN(al6/2) + e6)/ g6)) - DATAN(e6/g6)
QEyy = QEyy + ((zy4 + zy2)*zzy2)/(1.000 + zd2)		z6/g6)*((DATAN(((1.000 - f6)*DTAN(a16/2) + e6)/ g6)) - DATAN(e6/g6)
QEyy = QEyy + ((zvy4 + zvy2)*zcy2) / (1.0D0 + zd2) QEyz = QEyz + ((zvy4 + zvy2)*zcz2) / (1.0D0 + zd2)		rol Bo) ((piniel(((robo - io) pine(dro)r) ; co), Bo)) - pine(co)Bo)
$QE_{ZX} = QE_{ZX} + ((z_{VZ} + z_{VZ})^* z_{CX}) / (1.000 + z_{dZ})$	2246 TExx = 2.0D0*(QExx + cpi + PE	
QEZY = QEZY + ((ZYZ + ZYZZ)*ZZYZ) / (1.000 + ZdZ)	2247 TExy = 2.000*(QExy))
QE2y = QE2y + ((2y24 + 2y22)*z22) / (1.000 + zd2) QEzz = QEzz + ((2y24 + 2y22)*z22) / (1.000 + zd2)	2247 TEXY = 2.000°(QEXY)	
Q222 = Q222 + ((2224 + 2222) 2222) / (1.000 + 202)		
		,
PEx = PEx + (2.0D0*a1*zcx2/g2)*((DATAN(((1.0D0 - f2)*DTAN(a12/2) + e2)/ g2)) - DATAN(e2/g2))	2250 TEyy = 2.0D0*(QEyy + cpi + PE)
PEy = PEy + (2.0D0*a2*zcy2/g2)*((DATAN(((1.0D0 - f2)*DTAN(a12/2) + e2)/ g2)) - DATAN(e2/g2))	2251 TEyz = 2.0D0*(QEyz)	
PEz = PEz + (2.0D0*a3*zcz2/g2)*((DATAN(((1.0D0 - f2)*DTAN(a12/2) + e2)/ g2)) - DATAN(e2/g2))	2252 TEZX = 2.0D0*(QEZX)	
	2253 TEzy = 2.0D0*(QEzy)	
! computation of curvature line integral along segment 2	2254 TEZZ = 2.0D0*(QEZZ + CP1 + PE)
QExx = QExx + ((zvx2 + zvx5)*zcx3) / (1.0D0 + zd3)	2256 END SUBROUTINE intr_lin_sing_s	5
QExy = QExy + ((zvx2 + zvx5)*zcy3) / (1.0D0 + zd3)		
QExz = QExz + ((zvx2 + zvx5)*zcz3) / (1.0D0 + zd3)	2258 SUBROUTINE intr_lin_sing_s6(x0	0, y00, z00, &
QEyx = QEyx + ((zvy2 + zvy5)*zcx3) / (1.0D0 + zd3)	2259 & k,	&
QEyy = QEyy + ((zvy2 + zvy5)*zcy3) / (1.0D0 + zd3)	2260 & TEX	x, TExy, TExz, &
QEyz = QEyz + ((zvy2 + zvy5)*zcz3) / (1.0D0 + zd3)		x, TEyy, TEyz, &
QEzx = QEzx + ((zvz2 + zvz5)*zcx3) / (1.0D0 + zd3)	2262 & TEZ	x, TEzy, TEzz)
QEzy = QEzy + ((zvz2 + zvz5)*zcy3) / (1.0D0 + zd3)	2263	
QEzz = QEzz + ((zvz2 + zvz5)*zcz3) / (1.0D0 + zd3)	2264 ! This subroutine is a new version	on stokeslet Subroutine.
	2265 !Compute:	
PEx = PEx + (2.0D0*a1*zcx3/g3)*((DATAN(((1.0D0 - f3)*DTAN(a13/3) + e3)/ g3)) - DATAN(e3/g3))		
PEx = PEx + (2.0D0*a1*zcx3/g3)*((DATAN(((1.0D0 - f3)*DTAN(a13/3) + e3)/ g3)) - DATAN(e3/g3)) PEy = PEy + (2.0D0*a2*zcy3/g3)*((DATAN(((1.0D0 - f3)*DTAN(a13/3) + e3)/ g3)) - DATAN(e3/g3))	2265 !Compute:	er each singular element
PEx = PEx + (2.000*a1zcx3/g3)*((DATAW((1.000 - f3)*DTAW(a13/3) + e3)/ g3)) - DATAW(e3/g3)) PEy = PEy + (2.000*a2zcx3/g3)*((DATAW((1.000 - f3)*DTAW(a13/3) + e3)/ g3)) - DATAW(e3/g3)) PEz = PEz + (2.000*a3zcz3/g3)*((DATAW(((1.000 - f3)*DTAW(a13/3) + e3)/ g3)) - DATAW(e3/g3))	2265 !Compute: 2266 ! *The value of the Stokeslet ov 2267 !Now, (March/ 09 / 2015) this subr	er each singular element
PEx = PEx + (2.000*a1*zcx3/g3)*((DATAW(((1.000 - f3)*DTAW(a13/3) + e3)/ g3)) - DATAW(e3/g3)) PEy = PEy + (2.000*a2*zcy3/g3)*((DATAW((1.000 - f3)*DTAW(a13/3) + e3)/ g3)) - DATAW(e3/g3)) PEz = PEz + (2.000*a3*zcz3/g3)*((DATAW((1.000 - f3)*DTAW(a13/3) + e3)/ g3)) - DATAW(e3/g3))	2265 [Compute: 2266] * "The value of the Stokeslet ow 2267 [Now, (March/ 09 / 2015) this subr 2268 [er each singular element outime was made.
PEx = PEx + (2.000 ⁺ a1 ⁺ cx23/g 3) ⁺ ((DATAW(((1.00 ⁻ - f3) ⁺ DTAW(a13/3) + e 3)/g 3)) - DATAW(e2/g 3)) PEy = PEy + (2.000 ⁺ a2 ⁺ cx23/g 3) ⁺ ((DATAW(((1.00 ⁻ - f3) ⁺ DTAW(a13/3) + e 3)/g 3)) - DATAW(e3/g 3)) PEz = PEz + (2.000 ⁺ a3 ⁺ cz23/g 3) ⁺ ((DATAW(((1.00 ⁰ - f3) ⁺ DTAW(a13/3) + e 3)/g 3)) - DATAW(e3/g 3))	2265 [Compute: 2266] * "The value of the Stokeslet ow 2267 [Now, (March/ 09 / 2015) this subr 2268 [er each singular element outime was made.
PEx = PEx + (2.000*a1*zcx3/g3)*(DATAW(((1.000 - f3)*DTAM(a13/3) + e3)/g3) - DATAM(e2/g3)) PEy = PEy + (2.000*a1*zcx3/g3)*((DATAW(((1.000 - f3)*DTAM(a13/3) + e3)/g3) - DATAM(e2/g3)) PEz = PEz + (2.000*a3*zcz3/g3)*((DATAW(((1.000 - f3)*DTAM(a13/3) + e3)/g3) - DATAM(e3/g3)) Icomputation of curvature line integral along segment 5 =	2265 [10mpute: 2265 [1 The value of the Stokeslet ov 2267 [Now, (March/ 09 / 2015) this subr 2268 USE Mod_Nodal_Interp 2269 USE Mod_Nodal_Interp 2270 USE Mod_SharedVars, ONLY: DBL, 2271 [er each singular element outine was made.
PEx = PEx + (2.000+a1*cxx3/g3)*((DATAM(((1.000 - f3)*DTAM(a13/3) + e3)/g3)) - DATAM(e3/g3)) PEy = PEx + (2.000+a3*cx3/g3)*((DATAM(((1.000 - f3)*DTAM(a13/3) + e3)/g3)) - DATAM(e3/g3)) PEz = PEz + (2.000+a3*cx3/g3)*((DATAM(((1.000 - f3)*DTAM(a13/3) + e3)/g3)) - DATAM(e3/g3)) PEz = PEz + (2.000+a3*cx3/g3)*((DATAM(((1.000 - f3)*DTAM(a13/3) + e3)/g3)) - DATAM(e3/g3))	2265 ICompute: 2266 I The value of the Stokeslet ov 2267 INow, (March/08 / 2015) this subn 2268 Image: Stokeslet ov 2269 USE Mod_Nodal_Interp 2270 USE Mod_ShardStors, SONX: DBL, 2271 IMPLICIT MONE	er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0
PEx = PEx + (2.000*1**cx3/g3)*((DATAW((1.000 - f3)*DTAW(al3/3) + e3)/g3) - DATAW(e3/g3)) PEy = PEx + (2.000*3**cx3/g3)*((DATAW((1.000 - f3)*DTAW(al3/3) + e3)/g3) - DATAW(e3/g3)) PEz = PEz + (2.000*3**cx3/g3)*((DATAW((1.000 - f3)*DTAW(al3/3) + e3)/g3) - DATAW(e3/g3)) Icomputation of curvature line integral along segment 5 QExx = QEx+ ((2vx5 + zvx3)*cx4) / (1.000 + zd4) QExy = QEx+ ((2vx5 + zvx3)*cx4) / (1.000 + zd4)	2265 [10mpute: 2266 [1 The value of the Stokeslet ov 2267 [1Now, (March/ 09 / 2015) this subr 2269 USE Mod_Nodal_Interp 2270 USE Mod_SharedVars, ONLY: DBL, 2271 [100] 2272 IMPLICIT NOME 2273 [100]	er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0
PEx = PEx + (2.000#1a1*ccs3/g3)*((DATAW((1.000 - f3)*DTAM(a13/3) + e3) / g3) - DATAM(e3/g3)) PEy = PEy (- 2.000#a3*ccs3/g3)*((DATAW((1.000 - f3)*DTAM(a13/3) + e3) / g3)) - DATAM(e3/g3)) PEz = PEz + (2.000#a3*ccs3/g3)*((DATAW((1.000 - f3)*DTAM(a13/3) + e3) / g3)) - DATAM(e3/g3)) !	2265 ICompute: 2266 I The value of the Stokeslet ov 2267 INow, (March/ 08 / 2015) this subn 2268 Image: Stokeslet ov 2269 USE Mod_Nodal_Interp 2270 USE Mod_ShardStokes, SONX: DBL 2271 IMPLICIT MOME 2272 IMPLICIT MOME 2274 I variables	er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0
PEx PEx (2.000*1**cx3/g3)*((DATAW((10.00 - f3)*DTAW(al3/3) + e3)/g3) - DATAW(e3/g3)) PEy PEy (2.000*1**cx3/g3)*((DATAW((10.00 - f3)*DTAW(al3/3) + e3)/g3) - DATAW(e3/g3)) PEz PEz (2.000*1**cx3/g3)*((DATAW((10.00 - f3)*DTAW(al3/3) + e3)/g3) - DATAW(e3/g3)) Icomputation of curvature line integral along segment 5 (DATAW(e3/g3) - DATAW(e3/g3) QExx QExx + ((Zvx5 + zvx3)*cx4) / (1.000 + zd4) (QExz = QExz + ((Zvx5 + zvx3)*cx4) / (1.000 + zd4) QExz QExx + ((Zvx5 + zvx3)*cx4) / (1.000 + zd4) (QExz = QExz + ((Zvx5 + zvx3)*cx4) / (1.000 + zd4)	2265 I The value of the Stokeslet ov 2266 I The value of the Stokeslet ov 2267 INow, (March/ 09 / 2015) this subn 2268 Incention of the Stokeslet ov 2269 USE Mod_Nodal_Interp 2270 USE Mod_ShardWars, ONLY: DBL, 2271 INPLICT NOME 2273 INPLICT NOME 2274 I variables	er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0
PEx = PEx + (2.000*a1*cx3/g3)*((DATAW(((1.000 - f3)*DTAW(a13/3) + e3)/g3)) - DATAW(e3/g3)) PEy = PEy (2.000*a3*cx3/g3)*((DATAW(((1.000 - f3)*DTAW(a13/3) + e3)/g3)) - DATAW(e3/g3)) PEz = PEz + (2.000*a3*cx3/g3)*((DATAW(((1.000 - f3)*DTAW(a13/3) + e3)/g3)) - DATAW(e3/g3)) Icomputation of curvature line integral along segment 5 QExx = QExx + ((2xx5 + zxx3)*cx4) / (1.000 + zd4) QExy = QExx + ((2xx5 + zxx3)*cx4) / (1.000 + zd4) QExx = QExx + ((2xx5 + zxx3)*cx4) / (1.000 + zd4) QExx = QExx + ((2xx5 + zxx3)*cx4) / (1.000 + zd4) QExx = QExx + ((2xx5 + zxx3)*cx4) / (1.000 + zd4) QExx = QExx + ((2xx5 + zxx3)*cx4) / (1.000 + zd4) QExx = QExx + ((2xx5 + zxx3)*cx4) / (1.000 + zd4) QExx = QExx + ((2xx5 + zxx3)*cx4) / (1.000 + zd4) QExx = QExx + ((2xy5 + zxy3)*cx4) / (1.000 + zd4) QEyx = QEyx + ((2xy5 + zxy3)*cx4) / (1.000 + zd4) QEyx = QEyx + ((2xy5 + zxy3)*cx4) / (1.000 + zd4)	2265 ICompute: 2266 I The value of the Stokeslet ov 2267 INow, (March/09 / 2015) this subn 2268 Image: Interp 2269 USE Mod_Nodal_Interp 2270 USE Mod_Shardbars, SUNX: DEL, 2271 IMPLICIT MORE 2272 Implicit Variables 2274 I Variables 2275 REAL (KIND - DEL), INTENT(IN)	er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0
PEx = PEx { 2.000 [±] a1 [±] cx3/g3} [±] (DATAW((1.000 - f3) [±]) [±] DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) PEy = PEx { 2.000 [±] a1 [±] cx3/g3} [±] (DATAW((1.000 - f3) [±]) [±] DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) PEz = PEz { 2.000 [±] a1 [±] cx3/g3} [±] (DATAW((1.000 - f3) [±]) [±] DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) !computation of curvature line integral along segment 5	2265 I Compute: 2266 I The value of the Stokeslet ov 2267 INow, (March/ 09 / 2015) this subp 2268 Incention 2269 USE Mod_Modal_Interp 2270 USE Mod_ShardShardShars, ONN: DBL, 2271 IMPLICIT NOME 2273 I MPLICIT NOME 2274 I Variables 2275 Interr(IN) 2277 INTEGER, INTERT(IN) 2277 INTEGER, INTERT(IN)	er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0 :: x00, y00, z00 :: x00, y00, z00 ! lsingulatity coordinates :: k
PEx PEx 2.000*a1*cx3/g3)*((DATAW(((1.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) PEy PEy (2.000*a3*cx3/g3)*((DATAW(((1.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) PEz PEz (2.000*a3*cx3/g3)*((DATAW(((1.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) !computation of curvature line integral along segment 5 @Exx (@Exx (@Exx (2xx)*cx3/cx4) / (1.000 + c44) @Exx @Exx (@Exx (2xx)*cx3/cx4) / (1.000 + c44) @Exx @Exx (2xx)*cx3/cx4) / (1.000 + c44) @Exx @Exx (2xx)*cx3/cx4) / (1.000 + c44) @Exx @Exx (2xx)*cx4) / (1.000 + c44)	2265 ICOmpute: 2266 I The value of the Stokeslet ov 2266 I The value of the Stokeslet ov 2267 INF Mod. Nodal_Interp 2268 USE Mod_Nodal_Interp 2270 USE Mod_ShardShars, SONX: DBL 2271 INFLICIT NONE 2272 INFLICIT NONE 2273 INTENT(IN) 2274 I variables 2275 REAL (KIND DBL), INTENT(IN) 2276 REAL (KIND, DBL), INTENT(IN) 2277 INTEGER, INTEGER, INTERT(IN)	er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0
$\begin{array}{l} PK &= PK \times \{ \ 2.000^{\pm}a1^{\pm}cx3/g3 \}^{\pm}(\ DATAM((\ (1.000^{\pm} - f3)^{\pm}DTAM(a13/3) + e3)/g3) \\ PK &= PF \times \{ \ 2.000^{\pm}a1^{\pm}cx3/g3 \}^{\pm}(\ DATAM((\ (1.000^{\pm} - f3)^{\pm}DTAM(a13/3) + e3)/g3) \\ PL &= PE \times \{ \ 2.000^{\pm}a1^{\pm}cx3/g3 \}^{\pm}(\ DATAM((\ (1.000^{\pm} - f3)^{\pm}DTAM(a13/3) + e3)/g3) \\ DATAM(e3/g3) \\ L &= DE \times \{ \ 2.000^{\pm}a1^{\pm}cx3/g3 \}^{\pm}(\ DATAM((\ (1.000^{\pm} - f3)^{\pm}DTAM(a13/3) + e3)/g3)) \\ DATAM(e3/g3) \\ D &= DE \times \{ \ (2xx5 \pm xx3)^{\pm}cx4 \}/(1.000^{\pm} + z4^{\pm}) \\ QE \times &= QE \times \{ \ (2xx5 \pm xx3)^{\pm}cx4 \}/(1.000^{\pm} + z4^{\pm}) \\ QE \times &= QE \times \{ \ (2xx5 \pm xx3)^{\pm}cx4 \}/(1.000^{\pm} + z4^{\pm}) \\ QE \times &= QE \times \{ \ (2xx5 \pm xx3)^{\pm}cx4 \}/(1.000^{\pm} + z4^{\pm}) \\ QE \times &= QE \times \{ \ (2xx5 \pm xx3)^{\pm}cx4 \}/(1.000^{\pm} + z4^{\pm}) \\ QE \times &= QE \times \{ \ (2xx5 \pm xx3)^{\pm}cx4 \}/(1.000^{\pm} + z4^{\pm}) \\ QE \times &= QE \times \{ \ (2xx5 \pm xx3)^{\pm}cx4 \}/(1.000^{\pm} + z4^{\pm}) \\ QE \times &= QE \times \{ \ (2xx5 \pm xx3)^{\pm}cx4 \}/(1.000^{\pm} + z4^{\pm}) \\ QE \times &= QE \times \{ \ (2xx5 \pm xx3)^{\pm}cx4 \}/(1.000^{\pm} + z4^{\pm}) \\ QE \times &= QE \times \{ \ (2xx5 \pm xx3)^{\pm}cx4 \}/(1.000^{\pm} + z4^{\pm}) \\ QE \times &= QE \times \{ \ (2xx5 \pm xx3)^{\pm}cx4 \}/(1.000^{\pm} + z4^{\pm}) \\ QE \times &= QE \times \{ \ (2xx5 \pm xx3)^{\pm}cx4 \}/(1.000^{\pm} + z4^{\pm}) \\ QE \times &= QE \times \{ \ (2xx5 \pm xx3)^{\pm}cx4 \}/(1.00^{\pm} + z4^{\pm}) \\ QE \times &= QE \times \{ \ (2xx5 \pm xx3)^{\pm}cx4 \}/(1.00^{\pm} + z4^{\pm}) \\ QE \times &= QE \times \{ \ (2xx5 \pm xx3)^{\pm}cx4 \}/(1.00^{\pm} + z4^{\pm}) \\ QE \times &= QE \times \{ \ (2xx5 \pm xx3)^{\pm}cx4 \}/(1.00^{\pm} + z4^{\pm}) \\ QE \times &= QE \times \{ \ (2xx5 \pm xx3)^{\pm}cx4 \}/(1.00^{\pm} + z4^{\pm}) \\ QE \times &= QE \times \\ Q \times E	2265 I Compute: 2266 I The value of the Stokeslet ov 2267 INow, (March/ 09 / 2015) this subp 2268 USE Mod_Modal_Interp 2270 USE Mod_Modal_Interp 2271 USE Mod_ShardOvers, ONN: DBL, 2271 IMPLICIT NOME 2273 I MPLICIT NOME 2274 I Variables 2275 I	er each singular element outine was made. p, ne, n, nbe, Ulog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0
$\begin{array}{l} PEx &= PEx + (2.000^+a1^*zcx/g1)^*((\ DATAW((\ (1.000^- f3)^*)DTAM(a13/3) + e3)/g3) - \ DATAM(e3/g3))\\ PEy &= PEy + (2.000^+a2^*zcx/g1)^*((\ DATAW((\ (1.000^- f3)^*)DTAM(a13/3) + e3)/g3)) - \ DATAM(e3/g3))\\ PEz &= PEz + (2.000^+a2^*zcx/g1)^*((\ DATAW((\ (1.000^- f3)^*)DTAM(a13/3) + e3)/g3)) - \ DATAM(e3/g3))\\ Computation \ of \ curvature \ lne \ integral \ along \ segment \ 5\\ \hline QEx &= QEx + ((zvx5 + zvx3)^*zcx/d) / (1.000 + zd4))\\ QEx &= QEx + ((zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEx &= QEx + ((zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEy &= QEy + ((zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEy &= QEy + ((zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEy &= QEy + ((zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEy &= QEy + ((zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEy &= QEy + ((zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEy &= QEy + ((zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEy &= QEy + ((zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEy &= QEz + ((zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEz &= QEz + ((zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEz &= QEz + ((zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEz &= QEz + ((zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEz &= QEz + ((zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEz &= QEz + ((zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEz &= QEz + ((zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEz &= QEz + ((zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEz &= QEz + (zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEz &= QEz + (zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEz &= QEz + (zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEz &= QEz + (zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEz &= QEz + (zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEz &= QEz + (zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEz &= QEz + (zvx5 + zvx3)^*zcx/d) / (1.000 + zd4) \\ QEz &= QEz + (zvx5 + zvx3)^*zcx/d) / (zvx5 + zvx3)^*zcx/d) \\ QEz &= QEz + (zvx5 + zvx3)^*zcx/d) / (zvx5 $	2265 ICOMPUTE: 2266 I The value of the Stokeslet ov 2266 I The value of the Stokeslet ov 2267 INow, (March/08 / 2015) this subr 2268 I	er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0
$\begin{array}{rcl} PEx &= PEx + (2.000^{\pm}a^{\pm}x_{CX}/g^{3})^{\pm}((DATAM(((1.000 - f3)^{DTAM}(al_{3}/g), + a)/g^{3}) - DATAM(es/g^{3}))\\ PEy &= PEy + (2.000^{\pm}a^{\pm}x_{CX}/g^{3})^{\pm}((DATAM(((1.000 - f3)^{DTAM}(al_{3}/g), + a)/g^{3})) - DATAM(es/g^{3}))\\ PEz &= PEz + (2.000^{\pm}a^{\pm}x_{CX}/g^{3})^{\pm}((DATAM(((1.000 - f3)^{DTAM}(al_{3}/g), + a)/g^{3})) - DATAM(es/g^{3}))\\ I=I=I=I=I=I=I=I=$	2265 ICOMPUTE: 2266 I The value of the Stokeslet ov 2267 INow, (March/ 09 / 2015) this subp 2268 Interp 2270 USE Mod_Nodal_Interp 2271 INFE Mod_SharedYans, ONLY: DBL, 2271 INFLICIT NOME 2273 INFLICIT NOME 2274 INFLICIT NOME 2275 INFLICIT NOME 2276 FEAL (KINO - DBL), INTERVICIN) 2277 INTEGES, INTERVICIN) 2278 REAL (KINO - DBL), INTERVICINT) 2280 REAL (KINO - DBL), INTERVICINT) 2281 Intervicina	er each singular element outine was made. p, ne, n, nbe, Ulog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0 :: x00, y00, z00 Isingulatity coordinates :: k :: TEyx, TExy, TExz Ivalue of stresslet in the singular eleme :: TEyx, TEzy, TEzz Ivalue of stresslet in the singular eleme
PEx PEx (2.000*a1*zcx/g3)*((DATAW(((1.000 - f3)*DTAM(a13/3) + e3)/g3) - DATAM(e2/g3)) PEy PEy (2.000*a1*zcx/g3)*((DATAW(((1.000 - f3)*DTAM(a13/3) + e3)/g3) - DATAM(e2/g3)) PEz PEz (2.000*a1*zcx/g3)*((DATAW(((1.000 - f3)*DTAM(a13/3) + e3)/g3) - DATAM(e2/g3)) Icomputation of curvature line integral along segment 5 QExx QExx + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QExz QExx + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QExz + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QExz + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QExz + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QEyz + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QEyz + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QEyz + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QEyz + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QEyz + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QEyz + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QEyz + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QEyz + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QEyz + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QEyz + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4)	2265 ICOMPUTE: 2266 I The value of the Stokeslet ov 2266 I The value of the Stokeslet ov 2267 INow, (March/08 / 2015) this subr 2268 I	er each singular element outine was made. p, ne, n, nbe, Ulog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0 :: x00, y00, z00 Isingulatity coordinates :: k :: TEyx, TExy, TExz Ivalue of stresslet in the singular eleme :: TEyx, TEzy, TEzz Ivalue of stresslet in the singular eleme
PEx = PEx (2.000*11*zcx/g13)*((DATAW(((1000 - f3)*DTAM(al3/3) + e3)/g3)) - DATAM(e3/g3)) PEy = PEy (2.000*a3*zcz3/g3)*((DATAW(((1000 - f3)*DTAM(al3/3) + e3)/g3)) - DATAM(e3/g3)) PEz = PEz (2.000*a3*zcz3/g3)*((DATAW(((1000 - f3)*DTAM(al3/3) + e3)/g3)) - DATAM(e3/g3)) computation of curvature line integral along segment 5 (DATAW(e3/g3)) (Exx = QExx + (2vx5 + zvx3)*zcx4) / (1.000 + zd4) QExz = QExx + (2vx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz = QEyz + (2vx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz = QEyz + (2vx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz = QEyz + (2vx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz = QEyz + (2vx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz = QEyz + (2vx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz = QEyz + (2vx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz = QEyz + (2vx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz = QEyz + (2vx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz = QEyz + (2vx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz = QEyz + (2vx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz = QEyz + (2vx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz = QEyz + (2vx5 + zvx3)*zcx4) / (1.000 + cd4) QEyz = QEyz + (2vx5 + zvx3)*zcx4)	2265 I The value of the Stokeslet ov 2266 I The value of the Stokeslet ov 2267 INFe, (March/ 09 / 2015) this subp 2268 USE Mod_Nodal_Interp 2270 USE Mod_Nodal_Interp 2271 INFE Mod_SharedYans, oUNLY: DBL, 2271 INFELCII NOME 2273 INFELCII NOME 2274 INFELCII NOME 2275 INFELCII NOME 2276 INFELCII NOME 2277 INFEGER, 1010 2278 2278 REAL (KINO - DBL), INTENT(OUT) 2280 REAL (KINO - DBL), INTENT(OUT) 2281 Ivariables inside the subroutin 2281 Ivariables inside the subroutin	er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0 :: x00, y00, z00 :: k :: Kex, TExy, TExz :: TExx, TExy, TEzz :: Value of stresslet in the singular eleme :: TExx, TEzy, TEzz ! value of stresslet in the singular eleme :: TExx, TEzy, TEzz ! value of stresslet in the singular eleme e
PEx = PEx 4.2.000*11*ccx7g3)*((DATAW(((1.000 - f3)*DTAM(al3/3) + e3)/g3) - DATAM(e2/g3)) PEy = PEy 4.2.000*12*ccx7g3)*((DATAW(((1.000 - f3)*DTAM(al3/3) + e3)/g3) - DATAM(e2/g3)) PEz = PEz 4.2.000*13*ccz3/g3)*((DATAM(((1.000 - f3)*DTAM(al3/3) + e3)/g3)) - DATAM(e2/g3)) computation of curvature line integral along segment 5	2265 !Compute: 2266 !The value of the Stokeslet ov 2266 !The value of the Stokeslet ov 2267 INow, (March/09 / 2015) this subr 2268 !	er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0 x000, y000, z00 Isingulatity coordinates Inumber of element TExx, TExy, TExz Ivalue of stresslet in the singular eleme T. TEXX, TEyz, TEzz Ivalue of stresslet in the singular eleme Lounters
PEx PEx { 2.000*a1*cx3/g3 }*((DATAW((1.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) PEy PEy { 2.000*a3*cx3/g3 }*((DATAW((1.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) PEz PEz { 2.000*a3*cx3/g3 }*((DATAW((1.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) !computation of curvature line integral along segment 5 QExx QExy + ((zvx5 + zvx3)*cx4) / (1.000 + zd4) QExy QExy + ((zvx5 + zvx3)*cx4) / (1.000 + zd4) QEy QEy QEy QEy QEy Y QEy QEy QEy QEy QEy QEy QEy QEy QEy QEy QEy (1.000	2265 ICOMPUTE: 2266 I The value of the Stokeslet ov 2266 I The value of the Stokeslet ov 2268 III Now, (March/ 09 / 2015) this subr 2268 III Now, (March/ 09 / 2015) this subr 2270 USE Mod_NardWars, ONLY: DBL, 2271 IIII Now, IIII Now 2273 IIIII Now 2274 IIIII Now 2275 IIIIIIII Now 2276 REAL (KINO DBL), INTEWT(IN) 2277 INTEGER, INTEWT(IN) 2278 REAL (KINO DBL), INTEWT(OT) 2280 IIIII Now Inclements 2281 IIIII Now Inclements 2282 IIIIII NOW 2283 IIIIII NOW 2284 IIIIII NOW 2284 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vn20, x0, y0, z0 :: x00, y00, z00 Isingulatity coordinates :: k Inumber of element :: TEXx, TEXY, TEXZ Ivalue of stresslet in the singular eleme :: TEXx, TEXY, TEZZ Ivalue of stresslet in the singular eleme e Icounters , 16 Indices to obtain node numbers from each element
$\begin{array}{c} PK &= PK \times \{ 2.000^{+}a1^{+}cx3/g3 \}^{+}((DATM(((1.000^{-}f3)^{+}DTM(a13/3)^{+}e3)/g3) - DATM(e3/g3)) \\ PE &= PE \times \{ 2.000^{+}a3^{+}cx3/g3 \}^{+}((DATM(((1.000^{-}f3)^{+}DTM(a13/3)^{+}e3)/g3) - DATM(e3/g3)) \\ PE &= PE \times \{ 2.000^{+}a3^{+}cx3/g3 \}^{+}((DATM(((1.000^{-}f3)^{+}DTM(a13/3)^{+}e3)/g3)) - DATM(e3/g3)) \\ Icomputation of curvature line integral along segment 5 \\ \mathsf{DE &= OEx \times \{ (xx5^{+} + xx3)^{+}cx4 \}/((1.000^{+}+d4)) \\ QE &= OEx \times \{ (xx5^{+} + xx3)^{+}cx4 \}/((1.000^{+}+d4)) \\ QE &= OEx \times \{ (xx5^{+} + xx3)^{+}cx4 \}/((1.000^{+}+d4)) \\ QE &= OEx \times \{ (xx5^{+} + xx3)^{+}cx4 \}/((1.000^{+}+d4)) \\ QE &= OEx \times \{ (xx5^{+} + xx3)^{+}cx4 \}/((1.000^{+}+d4)) \\ QE &= OEx \times \{ (xx5^{+} + xx3)^{+}cx4 \}/((1.000^{+}+d4)) \\ QE &= OEx \times \{ (xx5^{+} + xx3)^{+}cx4 \}/((1.000^{+}+c4)) \\ QE &= OEx \times \{ (xx5^{+} + xx3)^{+}cx4 \}/((1.000^{+}+c4)) \\ QE &= OEx \times \{ (xx5^{+} + xx3)^{+}cx4 \}/((1.000^{+}+c4)) \\ QE &= OEx \times \{ (xx5^{+} + xx3)^{+}cx4 \}/((1.000^{+}+c4)) \\ QE &= OEx \times \{ (xx5^{+} + xx3)^{+}cx4 \}/((1.000^{+}+c4)) \\ QE &= OEx \times \{ (xx5^{+} + xx3)^{+}cx4 \}/((1.000^{-}+c4)) \\ QE &= OEx \times \{ (xx5^{+} + xx3)^{+}cx4 \}/((1.000^{-}+c4)) \\ QE &= OEx \times \{ (xx5^{+} + xx3)^{+}cx4 \}/((1.000^{-}+c4)) \\ QE &= OEx + ((xx5^{+} + xx3)^{+}cx4)/((1.000^{-}+c4)) \\ QE &= OEx + ((xx5^{+} + xx3)^{+}cx4)/((1.000^{-}+c4)) \\ DEx &= PE + (2.000^{+}a3^{+}cc4/g4)/((0.000^{+}(1.000^{-}+c4)) \\ PE &= PE + OEx + OEx + OEx + OEx \\ OEx &= OEx + OEx + OEx + OEx + OEx \\ OEx &= OEx + OEx + OEx \\ OEx &= OEx + OEx + OEx + OEx + OEx \\ OEx + OEx + OEx + OEx \\ OEx &= OEx + OEx + OEx \\ OEx + OEx + OEx + OEx + OEx \\ OEx + OEx + OEx + OEx + OEx \\ OEx + OEx + OEx + OEx \\ OEx + OEx + OEx$	2265 ICOMPUTE: 2266 I The value of the Stokeslet ov 2266 INTE value of the Stokeslet ov 2268 INTERVIEW 2268 INTERVIEW 2269 USE Mod_Nodal_Interp 2270 USE Mod_ShardOwns, JONLY: DBL, 2271 INFLICTI MONE 2272 INFLICTI MONE 2273 INFLICTI MONE 2274 I Variables 2275 INFLICTI MONE 2276 REAL (KID - DBL), INFENTONI 2277 NEEL (KID - DBL), INFENTONI 2288 EAL (KID - DBL), INFENTONI 2281 Variables inside the subroutin 2281 INTEGER :: 1, 1, 12, 13, 14, 15 2281 INTEGER :: 1, 1, 12, 13, 14, 15 2281 INTEGER :: 1, 1, 12, 13, 14, 15 2284 INTEGER :: 1, 1, 12, 13, 14, 15 2285 INTEGER :: 1, 1, 12, 13, 14, 15 2286 INTEGER :: 1, 1, 12, 13, 14, 15 2287 REAL (KIND = DBL) :: cf, fill, 14	er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0 :: x00, y00, z00 Isingulatity coordinates :: itexx, TEXY, TEXZ Ivalue of stresslet in the singular eleme :: TEXX, TEXY, TEXZ Ivalue of stresslet in the singular eleme :: TEXX, TEXY, TEXZ Ivalue of stresslet in the singular eleme :: TEXX, TEXY, TEXZ Ivalue of stresslet in the singular eleme :: TEXX, TEXY, TEXZ Ivalue of stresslet in the singular element : Icounters , 16 Ilondies to obtain node numbers from each element fil2, fil3 Iintegration weigth coefficients
PEx PEx (2.000*a1*cxx)g3)*((DATAW(((1.000 - f3)*DTAM(a13/3) + e3)/g3) - DATAM(e3/g3)) PEy PEy (2.000*a1*cxx)g3)*((DATAW(((1.000 - f3)*DTAM(a13/3) + e3)/g3) - DATAM(e3/g3)) PEz PEz (2.000*a1*cxx)g3)*((DATAW(((1.000 - f3)*DTAM(a13/3) + e3)/g3) - DATAM(e3/g3)) computation of curvature line integral along segment 5 QExx QExy + ((zvx5 + zvx3)*cx4) / (1.000 + zd4) QExz QExy + ((zvx5 + zvx3)*cx4) / (1.000 + zd4) QEyy QEy + ((zvx5 + zvx3)*cx4) / (1.000 + zd4) QEyz QEyz + ((zvx5 + zvx3)*cx4) / (1.000 + zd4) QEyz QEyz + ((zvx5 + zvx3)*cx4) / (1.000 + zd4) QEyz QEyz + ((zvx5 + zvx3)*cx4) / (1.000 + zd4) QEyz QEyz + ((zvx5 + zvx3)*cx4) / (1.000 + zd4) QEyz QEyz + ((zvx5 + zvx3)*cx4) / (1.000 + zd4) QEyz QEyz + ((zvx5 + zvx3)*cx4) / (1.000 + zd4) QEzz QEzz + ((zvx5 + zvx3)*cx4) / (1.000 + zd4) QEzz QEzz + ((zvx5 + zvx3)*cx4) / (1.000 + zd4) QEzz QEzz + ((zvx5 + zvx3)*cx4) / (0.1000 + zd4) PEx PEx + (2.000*a1*cx4/g4)*((DATAW(((1.000 - f4)*DTAM(a14/2) + e4)/g4)) - DATAM(e4/g4)) PEx PEx + (2.000*a1*cx4/g4)*((DATAW(((1.000 - f4)*DTAM(a14/2) + e4)/g4)) - DATAM(e4/g4)) PEx = PEx + (2.000*a1*cx4/g4)*	2265 I Compute: 2266 I The value of the Stokeslet ov 2266 I The value of the Stokeslet ov 2268 IIII The value of the Stokeslet ov 2268 IIIII The value of the Stokeslet ov 2269 USE Mod_Modal_Interp 2270 USE Mod_Modal_Interp 2271 INFLICT NOME 2273 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	er each singular element outine was made. p, ne, n, nbe, Ulog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0 :: x00, y00, z00 Isingulatity coordinates :: k Inumber of element :: TEyx, TEy, TEzz Ivalue of stresslet in the singular eleme :: TEyx, TEy, TEzz Ivalue of stresslet in the singular eleme :: TEyx, TEy, TEzz Ivalue of stresslet in the singular eleme :: TExx, TEy, TEzz Ivalue of stresslet in the singular eleme :: Counters , 16 Indices to obtain node numbers from each element fll2, fll3 Integration weigth coefficients x, DzDx Itangential vector around the triangle (xi,eta)
PEx PEx (2.000*a1*zcx/g3)*((DATAW(((1.000 - f3)*DTAM(a13/3) + e3)/g3) - DATAM(e2/g3)) PEy PEy (2.000*a1*zcx/g3)*((DATAW(((1.000 - f3)*DTAM(a13/3) + e3)/g3) - DATAM(e2/g3)) PEz PEz (2.000*a1*zcx/g3)*((DATAW(((1.000 - f3)*DTAM(a13/3) + e3)/g3) - DATAM(e2/g3)) Computation of curvature line integral along segment 5 QEx QEx (2xx + 2xx3)*zcx/g)*((DATAW((1.000 + f3)*DTAM(a13/3) + e3)/g3) - DATAM(e2/g3)) QEx QEx (2xx + (2xx5 + zxx3)*zcx/g)/(1.000 + rd4)) QEV QEX (2xx + (2xx5 + zxx3)*zcx/g)/(1.000 + rd4)) QEV QEX (2xy5 + zxy3)*zcx/g)/(1.000 + rd4) QEY QEX (2xy5 + zxy3)*zcx/g)/(1.000 + rd4) QEY QEX (2xy5 + zxy3)*zcx/g)/(1.000 + rd4) QEX QEX (2xy5 + zxy3)*zcx/g)/(1.000 + rd4) QEX QEX (2xy5 + zxy3)*zcx/g)/(1.000 + rd4) QEX QEX (2xy5 + zxy3)*zcx/g)/(1.000 + rd4) QEX QEX (2xy5 + zxy3)*zcx/g)/(1.000 + rd4) QEX QEX (2xy5 + zxy3)*zcx/g)/(1.000 + rd4) QEX QEX (2xy5 + zxy3)*zcx/g)/(1.000 + rd4) PFX PEX + (2.000*a1*zcx/g4) P((DATAM((1.000 - f4)*DTAM(a14/2) + e4)/g4)) - DATAM(e	2265 ICOMPUTE: 2266 I The value of the Stokeslet ov 2266 IThe value of the Stokeslet ov 2268 IThe value of the Stokeslet ov 2268 ITHE value of the Stokeslet ov 2269 USE Mod_Nodal_Interp 2270 USE Mod_ShardOvars, SUNX: DEL 2271 ITHELICIT MONE 2272 ITHELICIT MONE 2273 INTEGER, DEL, INTENT(IN) 2274 I Variables 2275 IREAL (KIND - DEL), INTENT(IN) 2276 REAL (KIND - DEL), INTENT(OUT) 2281 INTEGER: : 1, 1 2282 INTEGER: : 1, 1, 12, 13, 14, 15 2283 INTEGER: : 1, 1, 12, 13, 14, 15 2284 INTEGER: : 1, 1, 12, 13, 14, 15 2285 INTEGER: : 1, 1, 12, 13, 14, 15 2286 INTEGER: : 1, 1, 12, 13, 14, 15 2287 REAL (KIND = DEL) :: cf, fill 2288 REAL (KIND = DEL) :: bs	er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0 :: x00, y00, z00 Isingulatity coordinates :: k Inuber of element :: TExx, TExy, TExz Ivalue of stresslet in the singular eleme :: TExx, TExy, TEzz Ivalue of stresslet in the singular eleme :: Texx, TExy, TEzz Ivalue of stresslet in the singular eleme :: Texx, TExy, TEzz Ivalue of stresslet in the singular eleme :: Texx, TExy, TEzz Ivalue of stresslet in the singular eleme :: Texx, TEx; Tezz Ivalue of stresslet in the singular eleme :: Texx, TEzz Ivalue of stresslet in the singular eleme :: Texx, TExz Ivalue of stresslet in the singular element :: Texx, TExz Ivalue of stresslet in the singular element :: Texx, TExz Ivalue of stresslet in the singular element :: Texx, TExz Ivalue of stresslet in the singular element :: Texx, TExx Ivalue of stresslet in the singular element :: Texx, TExx Ivalue of stresslet in the singular element :: Texx, TExx Ivalue of stresslet in the singular element :: Texx Texx Ivalue of stresslet in the singular element :: Texx Texx Texx Ivalue of stresslet in the singular element :: Texx Texx Texx Ivalue of stresslet in the singular element :: Texx Texx Texx Ivalue of stresslet in the singular element :: Texx Texx Texx Ivalue of stresslet in the singular element :: Texx Texx Texx Ivalue of stresslet in the singular element :: Texx Texx Texx Texx Ivalue of stresslet in the singular element :: Texx Texx Texx Ivalue of stresslet in the singular element :: Texx Texx Texx Ivalue of stresslet in the singular element :: Texx Texx Texx Texx Ivalue of stresslet in the singular element :: Texx Texx Texx Ivalue of stresslet in the singular element :: Texx Texx Texx Texx Ivalue of stresslet in the singular element :: Texx Texx Texx Ivalue of stresslet in the singular element :: Texx Texx Texx Ivalue of stresslet in the singular element :: Texx Texx Texx Texx Ivalue of stresslet in the singular element :: Texx Texx Texx Texx Texx Texx Ivalue of stresslet in the singular
$\begin{array}{l} PEx &= PEx + (2.000^{\pm}a1^{\pm}cx3/g^{3})^{\pm} ((DATM(((1.000^{-}f^{3})DTM(a13/3)^{+}e^{3})/g^{3}) - DATM(e3/g^{3}))\\ PEz &= PEz + (2.000^{\pm}a3^{\pm}cx3/g^{3})^{\pm} ((DATM(((1.000^{-}f^{3})DTM(a13/3)^{+}e^{3})/g^{3}) - DATM(e3/g^{3}))\\ = \\ \hline Computation of curvature line integral along segment 5\\ \hline \mathsf{QEx &= QEx + ((2xx5 + 2xx3)^{\pm}cx4) / (1.000^{+}z44)\\ QEx &= QEx + ((2xx5 + 2xx3)^{\pm}cx4) / (1.000^{+}z44)\\ QEx &= QEx + ((2xx5 + 2xx3)^{\pm}cx4) / (1.000^{+}z44)\\ QEx &= QEx + ((2xx5 + 2xx3)^{\pm}cx4) / (1.000^{+}z44)\\ QEy &= QEx + ((2xx5 + 2xx3)^{\pm}cx4) / (1.000^{+}z44)\\ QEy &= QEx + ((2xx5 + 2xx3)^{\pm}cx4) / (1.000^{+}z44)\\ QEy &= QEz + ((2xx5 + 2xx3)^{\pm}cx4) / (1.000^{+}z44)\\ QEz &= QEz + ((2xx5 + 2xx3)^{\pm}cx4) / (1.000^{+}z44)\\ QEz &= QEz + ((2xx5 + 2xx3)^{\pm}cx4) / (1.000^{+}z44)\\ QEz &= QEz + ((2xx5 + 2xx3)^{\pm}cx4) / (1.000^{+}z44)\\ QEz &= QEz + ((2xx5 + 2xx3)^{\pm}cx4) / (1.000^{+}z44)\\ QEz &= QEz + ((2xx5 + 2xx3)^{\pm}cx4) / (1.000^{+}z44)\\ QEz &= QEz + ((2xx5 + 2xx3)^{\pm}cx4) / (0.000^{+}z44)\\ QEz &= QEz + ((2xx5 + 2xx3)^{\pm}cx4) / (0.000^{+}z44)\\ QEz &= QEz + ((2xx5 + 2xx3)^{\pm}cx4) / (0.000^{+}z44)\\ QEz &= QEz + ((2xx5 + 2xx3)^{\pm}cx4) / (0.000^{+}z44)\\ QEz &= QEz + ((2xx5 + 2xx3)^{\pm}cx4) / (0.000^{+}z44)\\ QEz &= QEz + ((2xx5 + 2xx3)^{\pm}cx4) / (0.000^{+}z44)\\ QEz &= QEz + ((2xx5 + 2xx3)^{\pm}cx4) / (0.000^{+}z44)\\ QEz &= QEz + ((2xx5 + 2xx3)^{\pm}cx4) / (0.000^{+}z44)\\ QEz &= QEz + ((2xx4 + 2xx6)^{\pm}cx5) / (0.000^{+}z44)\\ QEz &= QEz + ((2xx4 + 2xx6)^{\pm}cx5) / (0.000^{+}z44)\\ QEz &= QEz + (2x04 + 2xx6)^{\pm}cx5) / (0.000^{+}z46)\\ QEz &= QEz + (2x04 + 2xx6)^{\pm}cx5) / (0.000^{+}z46)\\ QEz &= QEz + (2x04 + 2xx6)^{\pm}cx5) / (0.000^{+}z66)\\ QEx &= QEx + ((2xx3 + 2xx6)^{\pm}cx5) / (0.0$	2265 ICOMPUTE: 2266 I The value of the Stokeslet ov 2266 I The value of the Stokeslet ov 2268 IIII The value of the Stokeslet ov 2268 IIIII The Value of the Stokeslet ov 2269 USE Mod_Modal_Interp 2270 USE Mod_Modal_Interp 2271 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	er each singular element outine was made. p, ne, n, nbe, Ulog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0
PEx PEx {2.000*a1*cxx3/g})*((DATAW((10.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) PEy PEy {2.000*a1*cx3/g})*((DATAW((10.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) PEz PEz {2.000*a1*cx3/g})*((DATAW((10.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) Immunol (Comparis) Comparis)*(Camparis)*((DATAW((10.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) Immunol (Comparis)*(Camparis)*((DATAW((10.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) Immunol (Camparis)*((DATAW(C 10.000 + f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) Immunol (Camparis)*((DATAW(C 10.000 + f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) Immunol (Camparis)*((DATAW(C 10.000 + f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) Immunol (Camparis)*((DATAW(C 10.000 + f3)*DTAW(a13/2) + e4)/g4) - DATAW(e3/g3)) Immunol (Camparis)*((DATAW(C 10.000 + f3)*DTAW(a14/2) + e4)/g4) - DATAW(e3/g3)) Immunol (Camparis)*((DATAW(C 10.000 + f3)*DTAW(a14/2) + e4)/g4) - DATAW(e3/g3)) Immunol (Camparis)*((DATAW(C 10.000 + f3)*DTAW(a14/2) + e4)/g4) - DATAW(e3/g3)) Immunol (Camparis)*((DATAW(C 10.000 + f3)*DTAW(a14/2) + e4)/g4) - DATAW(e3/g3)) Immunol (Camparis)*((DATAW(C 10.000 - f3)*DTAW(a14/2) + e4)/g4) - DATAW(e3/g3)) Immunol (Camparis)*((DATAW(C 10.000 - f3)*DTAW(a14/2) + e4)/g4) - DATAW(e3/g3)) Immunol (Camparis)*((DATAW(C 10.000 - f3)*DTAW(a14/2) + e4)/g4) - DATAW(e3/g3)) <td< td=""><td>2265 ICOMPUTE: 2266 I The value of the Stokeslet ov 2266 I The value of the Stokeslet ov 2268 Interp 2269 USE Mod_Nodal_Interp 2270 USE Mod_ShardOvars, ONLY: DBL, 2271 INFLICTI MONE 2272 INFLICTI MONE 2273 INFLICTI MONE 2274 I Variables 2275 REAL (KIND - DBL), INTENT(IN) 2276 REAL (KIND - DBL), INTENT(IN) 2277 REAL (KIND - DBL), INTENT(IN) 2278 REAL (KIND - DBL), INTENT(IN) 2281 InterGER :: 1, 1, 12, 13, 14, 15 2282 INTEGER :: 1, 1, 12, 13, 14, 15 2283 INTEGER :: 1, 1, 12, 13, 14, 15 2284 INTEGER :: 1, 1, 12, 13, 14, 15 2285 INTEGER :: 1, 1, 12, 13, 14, 15 2286 REAL (KIND - DBL) :: cf, fill 2288 REAL (KIND - DBL) :: cf, 14, 12 2288 REAL (KIND - DBL) :: cf, 12 2291 REAL (KIND - DBL) :: cpi 2291 REAL (KIND - DBL) :: cpi</td><td>er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0 </td></td<>	2265 ICOMPUTE: 2266 I The value of the Stokeslet ov 2266 I The value of the Stokeslet ov 2268 Interp 2269 USE Mod_Nodal_Interp 2270 USE Mod_ShardOvars, ONLY: DBL, 2271 INFLICTI MONE 2272 INFLICTI MONE 2273 INFLICTI MONE 2274 I Variables 2275 REAL (KIND - DBL), INTENT(IN) 2276 REAL (KIND - DBL), INTENT(IN) 2277 REAL (KIND - DBL), INTENT(IN) 2278 REAL (KIND - DBL), INTENT(IN) 2281 InterGER :: 1, 1, 12, 13, 14, 15 2282 INTEGER :: 1, 1, 12, 13, 14, 15 2283 INTEGER :: 1, 1, 12, 13, 14, 15 2284 INTEGER :: 1, 1, 12, 13, 14, 15 2285 INTEGER :: 1, 1, 12, 13, 14, 15 2286 REAL (KIND - DBL) :: cf, fill 2288 REAL (KIND - DBL) :: cf, 14, 12 2288 REAL (KIND - DBL) :: cf, 12 2291 REAL (KIND - DBL) :: cpi 2291 REAL (KIND - DBL) :: cpi	er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0
$\begin{array}{l} PEx &= PEx + (2.000^{\pm}a1^{\pm}cx2A/g^{3})^{\pm}((DATM(((1.000^{-}f^{3})DTM(a1A/3)^{+}e^{3})/g^{3}) = DATM(e3/g^{3}) \\ PEz &= PEz + (2.000^{\pm}a3^{\pm}cx2A/g^{3})^{\pm}((DATM(((1.000^{-}f^{3})DTM(a1A/3)^{3}) + e^{3})/g^{3}) = DATM(e3/g^{3}) \\ \hline \\ I = DATM(e3/g^{3}) = DATM(e3/g^{3}) \\ I = DATM(e3/g^{3}) = DATM(e3/g^{3}) = DATM(e3/g^{3}) = DATM(e3/g^{3}) \\ I = DATM(e3/g^{3}) = DATM(e3/g^{3}) = DATM(e3/g^{3}) = DATM(e3/g^{3}) = DATM(e3/g^{3}) \\ I = DATM(e3/g^{3}) = DATM(e3/$	2265 ICOMPUTE: 2266 I The value of the Stokeslet ov 2266 I The value of the Stokeslet ov 2268 IVER 2268 IVER 2270 USE Mod_Nodal_Interp 2271 IVER Mod_ShardWorks, ONLY: DBL, 2271 IVER Mod_ShardWorks, ONLY: DBL, 2271 IVARIABLE, INTERT(IN) 2275 IVERCHARD, INTERT(IN) 2275 REAL (KINO - DBL), INTERT(OT) 2288 REAL (KINO - DBL), INTERT(OT) 2289 REAL (KINO - DBL), INTERT(OT) 2281 IVERCER: : 1, j 2281 INTEGER: : 1, j 2284 INTEGER: : 1, j 2285 INTEGER: : 1, j 2286	er each singular element outine was made. p, ne, n, nbe, Ulog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0
PEx PEx (2.000*a1*cxx3/g)*(CDATAW((10.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) PEy PEy (2.000*a3*cx3/g)*(CDATAW((10.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) PEz PEz (2.000*a3*cx3/g)*(CDATAW((10.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) !computation of curvature line integral along segment 5 @Exx @Exy + ((2xx5 + zxx3)*cx4) / (1.000 + zd4) @Exx @Exy + ((2xx5 + zxx3)*cx4) / (1.000 + zd4) @Exy @Exy + ((2xx5 + zxx3)*cx4) / (1.000 + zd4) @Exy @Exy + ((2xx5 + zxx3)*cx4) / (1.000 + zd4) @Exy @Exy + ((2xx5 + zxx3)*cx4) / (1.000 + zd4) @Eyz @Eyz + ((2xx5 + zxx3)*cx4) / (1.000 + zd4) @Eyz @Eyz + ((2xx5 + zxx3)*cx4) / (1.000 + zd4) @Exy @Exy + ((2xx5 + zxx3)*cx4) / (1.000 + zd4) @Exy @Exy + ((2xx5 + zxx3)*cx4) / (1.000 + zd4) @Exy @Exy + ((2xx5 + zxx3)*cx4) / (1.000 + zd4) PEx PEx + (2.000*a1*cx4/g4)*((DATAW(((1.000 - f4)*DTAW(a14/2) + e4)/g4)) - DATAW(e4/g4)) PEx PEx + (2.000*a1*cx4/g4)*((DATAW(((1.000 - f4)*DTAW(a14/2) + e4)/g4)) - DATAW(e4/g4)) PEx PEx + (2.000*a1*cx4/g4)*((DATAW((1.000 - f4)*DTAW(a14/2) + e4)/g4)) - DATAW(e4/g4)) PEx PEx + (2.000*a1*cx4/g5) / (0.000 + d5) P	2265 I The value of the Stokeslet ov 2266 I The value of the Stokeslet ov 2267 INow, (March/ 08 / 2015) this subp 2268 Interp 2270 USE Mod_Nodal_Interp 2271 INPLICIT MOUE 2272 INPLICIT MOUE 2273 INPLICIT MOUE 2274 I Variables 2275 REAL (KINO - DBL), INTERT(IN) 2276 REAL (KINO - DBL), INTERT(IN) 2278 REAL (KINO - DBL), INTERT(IN) 2281 INTEGER, INI, INTERT(OT) 2281 INTEGER :: 1, 1 2282 INTEGER :: 1, 1, 12, 13, 14, 14, 15 2283 INTEGER :: 1, 1, 12, 13, 14, 14, 15 2284 INTEGER :: 1, 1, 12, 13, 14, 14, 15 2285 INTEGER :: 1, 1, 12, 13, 14, 14, 15 2286 INTEGER :: 1, 1, 12, 13, 14, 14, 15 2287 REAL (KINO - DBL) :: cf, fill, 228 2288 REAL (KINO - DBL) :: cf, 14 2288 REAL (KINO - DBL) :: cf, 15 2299 REAL (KINO - DBL) :: cf, 15 2291 REAL (KINO - DBL) :: cf, 14	er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0 :: x00, y00, z00 Isingulatity coordinates :: k Inuber of element :: TExx, TExy, TExz Ivalue of stresslet in the singular eleme :: TExx, TExy, TEzz Ivalue of stresslet in the singular eleme :: TExx, TExy, TEzz Ivalue of stresslet in the singular eleme to counters . Io Indices to obtain node numbers from each element fil2, fil3 Iintegration weigth coefficients x, DZDx Itagential vector around the triangle (xi,eta) . Weigth . Selection to add the solid angle . Weigth y1, bvz1, & Ivectoreial product y2, bvz2, &
$\begin{array}{c} PEx &= PEx + (2,000^{\pm}a1^{\pm}cxc3/g3)^{\pm}((DATM(((1,000^{-}f3)^{\pm}DTM(a13/3)^{+}e3)/g3) = DATM(e3/g3))\\ PEz &= PEz + (2,000^{\pm}a3^{\pm}cz3/g3)^{\pm}((DATM(((1,000^{-}f3)^{\pm}DTM(a13/3)^{+}e3)/g3)) = DATM(e3/g3))\\ \hline\\ Pez &= PEz + (2,000^{\pm}a3^{\pm}cz3/g3)^{\pm}((DATM(((1,000^{-}f3)^{\pm}DTM(a13/3)^{+}e3)/g3)) = DATM(e3/g3))\\ \hline\\ Pez &= DEz + (2,000^{\pm}a3^{\pm}cz3/g3)^{\pm}((DATM(((1,000^{-}f3)^{\pm}DTM(a13/3)^{+}e3)/g3)) = DATM(e3/g3))\\ \hline\\ Pez &= QEx + ((zxx5 + zxx3)^{\pm}zcx4) / ((1,000^{+} zd4))\\ QEx &= QEx + ((zxx5 + zxx3)^{\pm}zcx4) / ((1,000^{+} zd4))\\ QEx &= QEx + ((zxx5 + zxx3)^{\pm}zcx4) / ((1,000^{+} zd4))\\ QEy &= QEy + ((zxy5 + zxy3)^{\pm}zcx4) / ((1,000^{+} zd4))\\ QEy &= QEy + ((zxy5 + zxy3)^{\pm}zcx4) / ((1,000^{+} zd4))\\ QEz &= QEz + ((zxz5 + zxx3)^{\pm}zcx4) / ((1,000^{+} zd4))\\ QEz &= QEz + ((zxz5 + zxx3)^{\pm}zcx4) / ((1,000^{+} zd4))\\ QEz &= QEz + ((zxz5 + zxx3)^{\pm}zcx4) / ((1,000^{+} zd4))\\ QEz &= QEz + ((zxz5 + zxx3)^{\pm}zcx4) / ((1,000^{+} zd4))\\ PEx &= PEx + (2,200^{\pm}a3^{\pm}zcx4/g4) / ((DATM(((1,000^{-} f3)^{\pm}DTM(a14/2)^{+} e4) / g4)) = DATM(e4/g4))\\ PEx &= PEx + (2,200^{\pm}a3^{\pm}zcx4/g4) / ((DATM(((1,000^{-} f3)^{\pm}DTM(a14/2)^{+} e4) / g4)) = DATM(e4/g4))\\ PEx &= QEx + ((zxx3 + zxx6)^{\pm}zcx5) / ((1,000^{+} zd5))\\ QEx &= QEx + ((zxx3 + zxx6)^{\pm}zcx5) / ((1,000^{+} zd5))\\ QEx &= QEx + ((zxx3 + zxx6)^{\pm}zcx5) / ((1,000^{+} zd5))\\ QEx &= QEx + ((zxx3 + zxx6)^{\pm}zcx5) / ((1,000^{+} zd5))\\ QEx &= QEx + ((zxx3 + zxx6)^{\pm}zcx5) / ((1,000^{+} zd5))\\ QEx &= QEx + ((zxx3 + zxx6)^{\pm}zcx5) / ((1,000^{+} zd5))\\ QEx &= QEx + ((zxx3 + zxx6)^{\pm}zcx5) / ((1,000^{+} zd5))\\ QEx &= QEx + ((zxx3 + zxx6)^{\pm}zcx5) / ((1,000^{+} zd5))\\ QEx &= QEx + ((zxx3 + zxx6)^{\pm}zcx5) / ((1,000^{+} zd5))\\ QEx &= QEx + ((zxx3 + zxx6)^{\pm}zcx5) / ((1,000^{+} zd5))\\ QEx &= QEx + ((zxx3 + zxx6)^{\pm}zcx5) / ((1,000^{+} zd5))\\ QEx &= QEx + ((zxx3 + $	2265 ICOMPUTE: 2266 I The value of the Stokeslet ov 2266 I The value of the Stokeslet ov 2268 IVER Wow, (March/ 09 / 2015) this subp 2268 IVER Mod_Modal_Interp 2270 USE Mod_Modal_Interp 2271 IVER Mod_ShardWows, ONLY: OBL, 2271 IVER Mod_ShardWows, ONLY: OBL, 2273 IVERICIT NOME 2274 IVERCIT NOME 2275 IVERICIT NOME 2277 IVTEGER, INTERT(IN) 2278 REAL (KIND - DBL), INTERT(OT) 2280 REAL (KIND - DBL), INTERT(OT) 2281 INTEGER: : 1, j 2281 INTEGER: : 1, j 2283 INTEGER: : 1, j 2284 INTEGER: : 1, j 2285 INTEGER: : 1, j 2286 REAL (KIND - DBL): : CDA, DO 2286 EAL (KIND - DBL): : CDA, DO 2287 REAL (KIND - DBL): : CDA 2288 EAL (KIND - DBL): : cDA 2289 REAL (KIND - DBL): : cDA 2291 REAL (KIND - DBL): : cDA, DO	er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0 :: x00, y00, z00 Isingulatity coordinates :: k Inumber of element :: TExx, TExy, TExz Ivalue of stresslet in the singular eleme :: TExx, TEyy, TEzz Ivalue of stresslet in the singular eleme :: TExx, TExy, TEzz Ivalue of stresslet in the singular element iiduces to obtain node numbers from each element fil2, fil3 Integration weigth coefficients x, DDX Integration weigth coefficients fil2 counters iiselfti Ivetor around the triangle (xi,eta) iveigth iselection to add the solid angle iveigth y1, bvz1, & Ivectoreial product y2, bvz2, &
PEx PEx (2.000*12*cc3/g 3)*((DATAM((10.00 - f3)*DTAM(al3/3) + e3)/g 3) - DATAM(e3/g 3) PEz PEz (2.000*12*cc3/g 3)*((DATAM((10.00 - f3)*DTAM(al3/3) + e3)/g 3) - DATAM(e3/g 3) PEz PEz (2.000*12*cc3/g 3)*((DATAM((10.00 - f3)*DTAM(al3/3) + e3)/g 3) - DATAM(e3/g 3) Image: Description of curvature line integral along segment 5 QExx QExx + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QExy QExy + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QExy QExy + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QExy QExy + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QExy QExy + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QExy QExy + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QExy QEyz + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QExy QEyz + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QExy QEyz + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEzz QEZz + ((zvx5 + zvx3)*zcx4) / (1.000 + zd4) PEx PEx + (2.000*a1*zcx4/g4)*((DATAM(((1.000 - f4)*DTAM(al4/2) + e4)/g4)) - DATAM(e4/g4)) PEx PEx + (2.000*a1*zcx4/g4)*((DATAM(((1.000 - f4)*DTAM(al4/2) + e4)/g4)) - DATAM(e4/g4)) PEx PEx + (2.000*a1*zcx4/g4)*((DATAM(((1.000 - f4)*DTAM(al4/2) + e4)/g4)) - DATAM(e4/g4)) PEx QExx + ((zvx3 + zvx6)*zc	2265 ICOMPUTE: 2266 I The value of the Stokeslet ov 2266 I The value of the Stokeslet ov 2268 IVER 2268 IVER 2270 USE Mod_Nodal_Interp 2271 IMPLICIT MOME 2272 IMPLICIT MOME 2273 INTEGER, INTERT(IN) 2274 I Variables 2275 REAL (KINO - DBL), INTERT(IN) 2276 REAL (KINO - DBL), INTERT(IN) 2277 INTEGER, INTEGER, INTERT(IN) 2288 REAL (KINO - DBL), INTERT(IN) 2280 REAL (KINO - DBL), INTERT(IN) 2281 INTEGER :: 1, 1 2283 INTEGER :: 1, 142, 13, 144, 15 2284 INTEGER :: 1, 12, 13, 144, 15 2285 INTEGER :: 1, 12, 13, 144, 15 2286 INTEGER :: 1, 14, 15 2288 REAL (KINO - DBL) :: cf, fill, 22 2289 REAL (KINO - DBL) :: cf, 144, 15 2289 REAL (KINO - DBL) :: cf, 144, 15 2280 REAL (KINO - DBL) :: cf, 144, 15 2280 REAL (KINO - DBL) :: cf, 144, 15 </td <td>er each singular element outine was made. p, ne, n, nbe, ULOg, pi, eps, vnx0, vny0, vnz0, x0, y0, z0 :: x00, y00, z00 Isingulatity coordinates :: TExx, TExy, TExz Ivalue of stresslet in the singular element :: TExx, TExy, TEzz Ivalue of stresslet in the singular element :: TExx, TExy, TEzz Ivalue of stresslet in the singular element :: TExx, TExy, TEzz Ivalue of stresslet in the singular element :: TExx, TExy, TEzz Ivalue of stresslet in the singular element :: TExx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TExz Ivalue of stresslet in the singular element :: Texx, TExy, TExz Ivalue of stresslet in the singular element :: Texx, TExy, TExz Ivalue of stresslet in the singular element :: Texx, TExx, TExy, TExz Ivalue of stresslet in the singular element :: Texx, TExy, TExz, TExz, TExx, TExy, TExz, TExy, TExy, TExz, TExy, TExy, TExz, TEx, TExy, TEx, TExy, TEx, TExy, TExy, TEx, TExy,</td>	er each singular element outine was made. p, ne, n, nbe, ULOg, pi, eps, vnx0, vny0, vnz0, x0, y0, z0 :: x00, y00, z00 Isingulatity coordinates :: TExx, TExy, TExz Ivalue of stresslet in the singular element :: TExx, TExy, TEzz Ivalue of stresslet in the singular element :: TExx, TExy, TEzz Ivalue of stresslet in the singular element :: TExx, TExy, TEzz Ivalue of stresslet in the singular element :: TExx, TExy, TEzz Ivalue of stresslet in the singular element :: TExx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TEzz Ivalue of stresslet in the singular element :: Texx, TExy, TExz Ivalue of stresslet in the singular element :: Texx, TExy, TExz Ivalue of stresslet in the singular element :: Texx, TExy, TExz Ivalue of stresslet in the singular element :: Texx, TExx, TExy, TExz Ivalue of stresslet in the singular element :: Texx, TExy, TExz, TExz, TExx, TExy, TExz, TExy, TExy, TExz, TExy, TExy, TExz, TEx, TExy, TEx, TExy, TEx, TExy, TExy, TEx, TExy,
PEx PEx { 2.000*a1*cx3/g3 }*((DATAW((1.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) PEz PEz PEz (2.000*a3*cx3/g3)*((DATAW((1.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) !computation of curvature line integral along segment 5 @Exx QExx + ((Zxx5 + zxx3)*cx4) / (1.000 + zd4) QExx QExx + ((Zxx5 + zxx3)*cx4) / (1.000 + zd4) QExx QExx + ((Zxx5 + zxx3)*cx4) / (1.000 + zd4) QExy QExx + ((Zxx5 + zxx3)*cx4) / (1.000 + zd4) QEyx QExx + ((Zxx5 + zxx3)*cx4) / (1.000 + zd4) QEyx QEyx + ((Zxx5 + zxx3)*cx4) / (1.000 + zd4) QEyy QEyy + ((zxy5 + zxy3)*cx4) / (1.000 + zd4) QEyz QEyz + ((Zxx5 + zxx3)*cx4) / (1.000 + zd4) QEzz QEzz + ((Zxx5 + zxx3)*cx4) / (1.000 + zd4) QEzz QEzz + ((Zxx5 + zxx3)*cx4) / (1.000 + zd4) QEzz QEzz + ((Zxx5 + zxx3)*cx4) / (1.000 + zd4) QEzz QEzz + ((Zxx5 + zxx3)*cx4) / (1.000 + zd4) PEx PEx + ((Zx05 + zxx3)*cx2) / (1.000 + zd4) QEzz QEzz + ((Zx25 + zx23)*cz2) / (1.000 + zd5) PEx PEx + ((Zx06 + zx4g)*cz5) / (1.000 + zd5) QEx QExx + ((Zx3 + zx6*cx5) / (1.000 + zd5)	2265 ICOMPUTE: 2266 I The value of the Stokeslet ov 2266 I The value of the Stokeslet ov 2268 IVER Wow, (March/ 09 / 2015) this subp 2268 IVER Mod_Modal_Interp 2270 USE Mod_Modal_Interp 2271 IVER Mod_ShardWows, ONLY: OBL, 2271 IVER Mod_ShardWows, ONLY: OBL, 2273 IVERICIT NOME 2274 IVERCIT NOME 2275 IVERICIT NOME 2277 IVTEGER, INTENT(IN) 2288 REAL (KIND - DBL), INTENT(OUT) 2288 REAL (KIND - DBL), INTENT(OUT) 2281 INTEGER: : i, j 2282 INTEGER: : i, j, 12, 13, 14, 15 2283 INTEGER: : i, j 2284 INTEGER: : i, j, 12, 13, 14, 15 2285 INTEGER: : i, j, 12, 13, 14, 15 2286 INTEGER: : i, j, 12, 13, 14, 15 2286 INTEGER: : i, j, 12, 13, 14, 15 2286 INTEGER: : i, j, 12, 13, 14, 15 2286 INTEGER: : i, j, 22, 13, 14, 15 2287 REAL (KIND - DBL):: ch, r, 11 2288	er each singular element outine was made. p, ne, n, nbe, Ulog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0
$ \begin{array}{l} PEx &= PEx + (2.000^+a1^+cxX_2/g)^*((DATAW((1.000 - f3)^DTAM(a1X_3) + e^3)/g3) - DATAM(e2/g3)) \\ PEz &= PEz + (2.000^+a3^+czX_2/g)^*((DATAW((1.000 - f3)^DTAM(a1X_3) + e^3)/g3) - DATAM(e3/g3)) \\ \hline \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	2265 ICOMPUTE: 2266 I The value of the Stokeslet ov 2266 I The value of the Stokeslet ov 2268 III Mow, (March/ 09 / 2015) this subp 2269 USE Mod_Nodal_Interp 2270 USE Mod_Nodal_Interp 2271 IIII Mod_StardWorks, ONLY: DBL, 2272 IIII Mod_StardWorks, ONLY: DBL, 2273 IIIIIII MODE 2274 I Variables 2275 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0
PEx = PEx + (2.000*a1*ccx3/g 3)*((DATAW(((1.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) PEz = PEz + (2.000*a3*cc3/g 3)*((DATAW(((1.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) PEz = PEz + (2.000*a3*cc3/g 3)*((DATAW(((1.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) computation of curvature line integral along segment 5 Computation of curvature (100 for 200 for 20	2265 ICOMPUTE: 2266 I The value of the Stokeslet ov 2266 I The value of the Stokeslet ov 2268 IVER Wol, (March/ 09 / 2015) this subp 2268 IVER Mod_Modal_Interp 2270 USE Mod_Modal_Interp 2271 IVER Mod_ShardWorks, OULY: DBL, 2271 IVER Mod_ShardWorks, OULY: DBL, 2271 IVER Mod_ShardWorks, OULY: DBL, 2272 IVER LCII NOME 2273 IVER Mod_ShardWorks, OULY: DBL, 2271 IVERCEN, INTENT(IN) 2277 INTEGER, INTERT(IN) 2288 REAL (KINO - DBL), INTENT(OUT) 2289 REAL (KINO - DBL), INTENT(OUT) 2281 INTEGER 2281 INTEGER 2281 INTEGER 2281 INTEGER 2283 REAL (KINO - DBL): IC of, HIL, 2284 INTEGER 2285 REAL (KINO - DBL): IC of, HIL, 2286 REAL (KINO - DBL): IC of, HIL, 2287 REAL (KINO - DBL): IC of, HIL, 2288 REAL (KINO - DBL): IC of, HIL, <td>er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0 :: x00, y00, z00 Isingulatity coordinates :: k Inumber of element :: TExx, TExy, TExz Ivalue of stresslet in the singular eleme :: TExx, TExy, TEzz Ivalue of stresslet in the singular eleme :: TExx, TExy, TEzz Ivalue of stresslet in the singular eleme :: TExx, TExy, TEzz Ivalue of stresslet in the singular eleme : Icounters , 16 Indices to obtain node numbers from each element fil2, fil3 Integration weigth coefficients x, DzDx Itangential vector around the triangle (x1,eta) Iselection to add the solid angle iweigth y1, bvz1, & Ivectoreial product y2, bvz2, & y3, bvz3 xy, 0Exz, & Ilq tensor y0, 6Ex, FE Ilp tensor</td>	er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0 :: x00, y00, z00 Isingulatity coordinates :: k Inumber of element :: TExx, TExy, TExz Ivalue of stresslet in the singular eleme :: TExx, TExy, TEzz Ivalue of stresslet in the singular eleme :: TExx, TExy, TEzz Ivalue of stresslet in the singular eleme :: TExx, TExy, TEzz Ivalue of stresslet in the singular eleme : Icounters , 16 Indices to obtain node numbers from each element fil2, fil3 Integration weigth coefficients x, DzDx Itangential vector around the triangle (x1,eta) Iselection to add the solid angle iweigth y1, bvz1, & Ivectoreial product y2, bvz2, & y3, bvz3 xy, 0Exz, & Ilq tensor y0, 6Ex, FE Ilp tensor
PEx = PEx + (2.000*a1*rcx3/g 3)*((DATAM(((1.000 - f3)*DTAM(a13/3) + e3)/g3) - DATAM(e3/g3)) PEz = PEx + (2.000*a3*rcx3/g 3)*((DATAM(((1.000 - f3)*DTAM(a13/3) + e3)/g3) - DATAM(e3/g3)) PEz = PEz + (2.000*a3*rcx3/g 3)*((DATAM(((1.000 - f3)*DTAM(a13/3) + e3)/g3) - DATAM(e3/g3)) computation of curvature line integral along segment 5 QExx = QExx + ((zvx5 + zvx3)*rcx4) / (1.000 + zd4) QExy = QEx + ((zvx5 + zvx3)*rcx4) / (1.000 + zd4) QExy = QEx + ((zvx5 + zvx3)*rcx4) / (1.000 + zd4) QExy = QEx + ((zvx5 + zvx3)*rcx4) / (1.000 + zd4) QExy = QEx + ((zvx5 + zvx3)*rcx4) / (1.000 + zd4) QExy = QEx + ((zvx5 + zvx3)*rcx4) / (1.000 + zd4) QEzy = QEy + ((zvr5 + zvx3)*rcx4) / (1.000 + zd4) QEzy = QEy + ((zvr5 + zvx3)*rcx4) / (1.000 + zd4) QEzy = QEz + ((zvr5 + zvx3)*rcx4) / (1.000 + zd4) QEzy = QEz + ((zvr5 + zvx3)*rcx4) / (1.000 + zd4) QEzy = QEz + ((zvr5 + zvx3)*rcx4) / (1.000 + zd4) QEzy = QEz + ((zvr5 + zvx3)*rcx4) / (1.000 + zd4) PEx = PEx + (2.000*a1*rcx4/g 4)*((DATAM(((1.000 - f4)*DTAM(a14/2) + e4)/ g4)) - DATAM(e4/g4)) PEz = PEx + (2.000*a1*rcx4/g 4)*((DATAM(((1.000 - f4)*DTAM(a14/2) + e4)/ g4)) - DATAM(e4/g4)) PEz = PEx + (2.000*a1*rcx4/g 4)*((DATAM(((1.000 - f4)*DTAM(a14/2) + e4)/ g4)) - DATAM(e4/g4)) PEz = QEx + ((zvx3 + zvx6)*rcx5) / (1.000 + zd5) QExx = QExx + ((zvx3 + zvx6)*rcx5) / (1.000 + zd5) QExx = QExx + ((zvx3 + zvx6)*rcx5) / (1.000 + zd5) QExy = QExy + ((zvx3 + zvx6)*rcx5) / (1.000 + zd5) QExy = QEx + ((zvx3 + zvx6)*rcx5) / (1.000 + zd5) QExy = QEx + ((zvx3 + zvx6)*rcx5) / (1.000 + zd5) QExy = QEx + ((zvx3 + zvx6)*rcx5) / (1.000 + zd5) QExy = QEx + ((zvx3 + zvx6)*rcx5) / (1.000 + zd5) QExy = QEx + ((zvx3 + zvx6)*rcx5) / (1.000 + zd5) QExy = QEx + ((zvx3 + zvx6)*rcx5) / (1.000 + zd5) QExy = QEx + ((zvx3 + zvx6)*rcx5) / (1.000 + zd5) QExy = QEx + ((zvx3 + zvx6)*rcx5) / (1.000 + zd5) QExy = QEx + ((zvx3 + zvx6)*rcx5) / (1.000 + zd5) QEx = QEx + ((zvx3	2265 I Compute: 2266 I The value of the Stokeslet ov 2266 I The value of the Stokeslet ov 2268 IIINA, (March/ 09 / 2015) this subp 2269 USE Mod_Modal_Interp 2270 USE Mod_Modal_Interp 2271 IINE Mod_ShardWorks, ONN: DBL, 2273 IIINE MCIN Modal_Interp 2274 I Variables 2275 IIINE MCIN MOBE 2275 REAL (KIND = DBL), INTEWT(IN) 2276 REAL (KIND = DBL), INTEWT(IN) 2288 REAL (KIND = DBL), INTEWT(IN) 2281 INTEGER, INSIDE The SUPPORT 2282 REAL (KIND = DBL): : : : : : : : : : : : : : : : : : :	er each singular element outine was made. p, ne, n, nbe, Ulog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0 :: x00, y00, z00 Isingulatity coordinates :: k Inumber of element :: TEyx, TEyy, TEyz Ivalue of stresslet in the singular eleme :: TEyx, TEyy, TEyz Ivalue of stresslet in the singular eleme :: TEyx, TEyy, TEyz Ivalue of stresslet in the singular eleme :: TEyx, TEyy, TEyz Ivalue of stresslet in the singular element :: TEyx, TEy, TEyz Ivalue of stresslet in the singular element :: Teyx, TEy, TEyz Ivalue of stresslet in the singular element :: Counters , 16 Iindices to obtain node numbers from each element fil2, fil3 Iintegration weigth coefficients x, DZDx Itangential vector around the triangle (xi,eta) Iweigth Iselection to add the solid angle iweigth y, byz1, & Ivectoreial product y, 057x, 8 y, 057x, 8 y, 057x, 8 y, 057x, 8 y, 057x, 9 y, 057x, 9
PEx = PEx + (2.000*a1*cxx3/g)*((DATAW((1.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) PEz = PEz + (2.000*a1*cx3/g)*((DATAW((1.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) PEz = PEz + (2.000*a1*cx3/g)*((DATAW((1.000 - f3)*DTAW(a13/3) + e3)/g3) - DATAW(e3/g3)) Computation of curvature line integral along segment 5 QEx = QEx + ((2x45 + 2x43)*cx4) / (1.000 + z44) QEx = QEx + ((2x45 + 2x43)*cx4) / (1.000 + z44) QEy = QEy + ((2x45 + 2x43)*cx4) / (1.000 + z44) QEy = QEy + ((2x45 + 2x43)*cx4) / (1.000 + z44) QEy = QEy + ((2x45 + 2x43)*cx4) / (1.000 + z44) QEy = QEy + ((2x45 + 2x43)*cx4) / (1.000 + z44) QEy = QEy + ((2x45 + 2x43)*cx4) / (1.000 + z44) QEz = QEz + ((2x45 + 2x43)*cx4) / (1.000 + z44) QEz = QEz + ((2x45 + 2x43)*cx4) / (1.000 + z44) QEz = QEz + ((2x45 + 2x43)*cx4) / (1.000 + z44) QEz = QEz + ((2x45 + 2x43)*cx4) / (1.000 + z44) PEx = PEx + (2.000*a1*cx4/g4) ((DATAW(((1.000 - f4)*DTAW(a14/2) + e4)/ g4)) - DATAW(e4/g6)) PEZ = PEz + (2.000*a1*cx4/g4) ((DATAW(((1.000 - f4)*DTAW(a14/2) + e4)/ g4)) - DATAW(e4/g6)) PEZ = PEx + ((2x43 + 2xx4)*cx5) / (1.000 + z45) QEx = QEx + ((2x43 + 2xx4)*cx5) / (1.000 + z45) QEx = QEx + ((2x43 + 2xx4)*cx5) / (1.000 + z45) QEx = QEx + ((2x43 + 2xx4)*cx5) / (1.000 + z45) QEy = QEy + ((2x43 + 2xx4)*cx5) / (1.000 + z45) QEy = QEy + ((2x43 + 2xx4)*cx5) / (1.000 + z45) QEy = QEy + ((2x43 + 2xx4)*cx5) / (1.000 + z45) QEy = QEy + ((2x43 + 2xx4)*cx5) / (1.000 + z45) QEy = QEy + ((2x43 + 2xx4)*cx5) / (1.000 + z45) QEy = QEy + ((2x43 + 2xx4)*cx5) / (1.000 + z45) QEy = QEy + ((2x43 + 2xx4)*cx5) / (1.000 + z45) QEy = QEy + ((2x43 + 2xx4)*cx5) / (1.000 + z45) QEy = QEy + ((2x43 + 2xx4)*cx5) / (1.000 + z45) QEy = QEy + ((2x43 + 2xx4)*cx5) / (1.000 + z45) QEy = QEy + ((2x43 + 2xx4)*cx5) / (1.000 + z45) QEy = QEy + ((2x43 + 2xx4)*cx5) / (1.000 + z45) QEy = QEy + ((2x43 + 2xx4)*cx5) / (1.000 + z45) QEy = QEy + ((2x43 + 2xx4)*cx5) / (1.000 + z45) QEy = QEy + ((2x43	2265 I The value of the Stokeslet ov 2266 I The value of the Stokeslet ov 2267 INE work (March/ 09 / 2015) this subp 2268 USE Mod_Modal_Interp 2270 USE Mod_Modal_Interp 2271 INFLCIT NOME 2271 INFLCIT NOME 2272 INFLCIT NOME 2273 INFLCIT NOME 2274 INFLCIT NOME 2275 INFLCIT NOME 2277 INFERCIN 2277 INFERCIN 2277 INFERCIN 2288 INTEGER, 2281 INTEGER, INFLOR DEL), INTENTONT 2283 INTEGER, I,	er each singular element outine was made. p, ne, n, nbe, ULog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0 :: x00, y00, z00 Isingulatiy coordinates :: k Inumber of element :: TExx, TExy, TExz Ivalue of stresslet in the singular eleme :: TExx, TEyy, TEyz Ivalue of stresslet in the singular eleme :: TExx, TEyy, TEyz Ivalue of stresslet in the singular eleme :: TExx, TEyy, TEyz Ivalue of stresslet in the singular eleme :: TExx, TEyy, TEyz Ivalue of stresslet in the singular eleme : Counters , 16 Indices to obtain node numbers from each element filz, fil3 Iintegration weigth coefficients x, DzDx Itangential vector around the triangle (x1,eta) Iselection to add the solid angle iweigth y1, bvz1, & Ivectoreial product y2, bvz2, y Itage IIntensor y3, OEzz, B IIq tensor y4, yvz1 Ivector (y1-x0) y2, yvz2 Vector (y1-x0)
PEx PEx (2.000*a1*zcx/g3)*((DATAW(((10.00 - f3)*DTAM(a1/3) + e3)/g3) - DATAM(e3/g3)) PEy PEy (2.000*a1*zc3/g3)*((DATAW(((10.00 - f3)*DTAM(a1/3)) + e3)/g3) - DATAM(e3/g3)) PEz PEz (2.000*a1*zc3/g3)*((DATAW((10.00 - f3)*DTAM(a1/3)) + e3)/g3) - DATAM(e3/g3)) Icomputation of curvature line integral along segment 5 QExx QExy + (zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QEyz + (zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QEyz + (zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QEyz + (zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QEyz + (zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QEyz + (zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QEyz + (zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QEyz + (zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QEyz + (zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEyz QEzz + (zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEzz = QEzz + (zvx5 + zvx3)*zcx4) / (1.000 + zd4) QEzz = QEzz + (zvx5 + zvx3)*zcx4) / (1.000 + zd5) PEy = PEy + (2.000*a1*zcx4/g4)*(DATAW((1.000 - f3)*DTAM(a14/2) + e4)/g4) - DATAM(e4/g4)) PEz = PEx + (2.000*a1*zcx4/g5) / (1.000 + zd5) QExx = QExx + (zvx3 + zvx6)*zcx5) / (1.000 + zd5) QExx = QExx + (zvx3 + zvx6)*zcx5) / (1.000 + zd5	2265 I Compute: 2266 I The value of the Stokeslet ov 2266 I The value of the Stokeslet ov 2268 IIINA, (March/ 09 / 2015) this subp 2269 USE Mod_Modal_Interp 2270 USE Mod_Modal_Interp 2271 IINE Mod_ShardWorks, ONN: DBL, 2273 IIINE MCIN Modal_Interp 2274 I Variables 2275 IIINE MCIN MOBE 2275 REAL (KIND = DBL), INTEWT(IN) 2276 REAL (KIND = DBL), INTEWT(IN) 2288 REAL (KIND = DBL), INTEWT(IN) 2281 INTEGER, INSIDE The SUPPORT 2282 REAL (KIND = DBL): : : : : : : : : : : : : : : : : : :	er each singular element outine was made. p, ne, n, nbe, Ulog, pi, eps, vnx0, vny0, vnz0, x0, y0, z0

REAL (KIND = DBL) ::	a1, a2, a3	lvector a	2375 !
REAL (KIND = DBL) ::		<pre>!vector dot product a*y1, a*y2</pre>	2376 bvx1 = 0.0D0
REAL (KIND = DBL) ::		<pre>!product yi*(yi+a.yi)</pre>	2377 bvy1 = 0.0D0
Initialize			2379 bv2 = 0.000
TExx = 0.0D0			2380 bvy2 = 0.000 2381 bvz2 = 0.000
TEXX = 0.0D0 TEXY = 0.0D0			2361 $0.022 = 0.0002382$ $0.003 = 0.000$
TEXZ = 0.0D0			
TEyx = 0.0D0			2384 byz3 = 0.0D0
TEyy = 0.0D0			2385 yvx1 = 0.0D0
TEyz = 0.0D0			2386 yvy1 = 0.0D0
TEzx = 0.0D0			2387 yvz1 = 0.0D0
TEzy = 0.0D0			2388 yvx2 = 0.000
TEzz = 0.0D0			2389 $yy2 = 0.009$
QExx = 0.0D0			2390 yv22 = 0.000 2391 yvx3 = 0.000
QEXY = 0.0D0			2392 yv3 = 0.000 2392 yv3 = 0.000
QEXZ = 0.0D0			2393 yv3 = 0.000
QEyx = 0.0D0			2394 !
QEyy = 0.0D0			2395 ! computation of curvature line integral along segment 1-6
QEyz = 0.0D0			2396
QEzx = 0.0D0			2397 DxDx = p(i6,1) - p(i1,1)
QEzy = 0.0D0			2398 $P_{23} = P_{13}(6,2) - P_{13}(1,2)$ 2399 $P_{23} = P_{13}(6,2) - P_{13}(1,2)$
QEzz = 0.0D0			2399 D2Dx = p(i6,3) - p(i1,3) 2400
PEx = 0.0D0			2400 2401 $px2 = p(i1,1) + 0.5D0*DxDx$
PEy = 0.0D0			2402 py2 = p(11,2) + 0.500*DyDx
PEz = 0.0D0			p_{2403} $p_{22} = p(i_{1,3}) + 0.500*DzDx$
PE = 0.0D0			2404 !
			2405 hss = DSQRT(DxDx**2 +DyDx**2 +DzDx**2)
modx0= DSQRT((x0(k)-x	0)**2+(y0(k)-y00)**2+(z	z0(k)-z00)**2)	2406 DxDx = DxDx/hss
			2407 DyDx = DyDx/hss
IF (modx0 >= 1.0D0 +) cpi = 0.0D0	ps) THEN		2408 DzDx = DzDx/hss 2409 !
ELSE IF (modx0 <= 1.0	0 + ens) THEN		2440 : 2410 yvx1 = p(i1,1) - x00
cpi = -8.0D0*pi	o r cps) men		2411 $yy1 = p(11,2) - y00$
ELSE			2412 $yvz1 = p(i1,3) - z00$
cpi = -4.0D0*pi			2413 fil1 = DSQRT(yvx1**2 + yvy1**2 +yvz1**2)
end if			2414 !
			2415 $bvx1 = (DyDx^*yvz1 - DzDx^*yvy1)$
<pre>IF((ABS(x00-x0(k)) <= (ABS(x00-x0(k))) <=</pre>			2416 bvy1 = (DzDx*yvx1 - DxDx*yvz1) 2417 bvz1 = (DxDx*yvy1 - DvDx*yvx1)
& (ABS(y00-y0(k)) <= & (ABS(z00-z0(k)) <=			2417 bvz1 = (DxDx*yvy1 - DyDx*yvx1) 2418
a1 = x00	eps)) men		2419 yvx2 = px2 - x00
a2 = y00			2420 yvy2 = py2 - y00
a3 = 200			2421 yvz2 = pz2 - z00
ELSE			2422 fil2 = DSQRT(yvx2**2 + yvy2**2 + yvz2**2)
a1 = x00-x0(k)			2423 !
a2 = y00-y0(k)			2424 bvx2 = (Dy0x*yvz2 - DzDx*yvy2)
a3 = z00-z0(k) END TE			2425 bvy2 = (DzDx*yvx2 - DxDx*yvz2) 2426 bvz2 = (DxDx*yvy2 - DyDx*yvx2)
modx0= DSQRT(a1**2+a2	*2+a3**2)		2426 bv22 = (DxDx*yvy2 - DyDx*yvx2) 2427 !
a1 = a1/modx0			2422 ; 2428 yvx3 = p(16,1) - x00
a2 = a2/modx0			2429 yv3 = p(16,2) - v00
a3 = a3/modx0			2430 yvz3 = p(i6,3) - z00
			2431 fil3 = DSQRT(yvx3**2 + yvy3**2 +yvz3**2)
!OPEN (9,file="TE.out			2432 !
			2433 bvx3 = (DyDx*yvz3 - DzDx*yvy3)
vertices of the kth t			2435 by3 = (0zDx*yvx3 - DxDx*yvx3) 2435 by23 = (0zDx*yvx3 - DxDx*yvx3)
i1 = n(k,1)			2435 bvz3 = (DxDx*yvy3 - DyDx*yvx3) 2436
i2 = n(k, 2)			2430 1 2437 QExx = QExx + hss*(- (bvx1*(yvx1/fil1**3)) - 4.000*(bvx2*(yvx2/fil2**3)) - (bvx3*(yvx3/fil3**3)
i3 = n(k,3)			2437 QEAX = QEAX + IISS (= (DVAT (YVAT/TITT 'S)) = 4.000 (DVAZ (YVAZ/TITZ 'S)) = (DVAS (YVAS/TITS 'S) 0D0
i4 = n(k,4)			2438 QExy = QExy + hss*(- (bvy1*(yvx1/fil1**3)) - 4.0D0*(bvy2*(yvx2/fil2**3)) - (bvy3*(yvx3/fil3**3)
i5 = n(k,5)			909
16 = n(k,6)			2439 QExz = QExz + hss*(- (bvz1*(yvx1/fil1**3)) - 4.0D0*(bvz2*(yvx2/fil2**3)) - (bvz3*(yvx3/fil3**3)
cf = 0.0D0			2440 QEyx = QEyx + hss*(- (bvx1*(yvy1/fil1**3)) - 4.0D0*(bvx2*(yvy2/fil2**3)) - (bvx3*(yvy3/fil3**3) 0D0
		the mean curvature as a contour integral using t	

2442	QEyz = QEyz + hss*(- (bvz1*(yvy1/fil1**3)) - 4.0D0*(bvz2*(yvy2/fil2**3)) - (bvz3*(yvy3/fil3**3)))/3. ₽	2510	pz2 = p(16,3) + 0.5D0*DzDx
2443		2511 2512	
2443	QEzx = QEzx + hss*(- (bvx1*(yvz1/fil1**3)) - 4.0D0*(bvx2*(yvz2/fil2**3)) - (bvx3*(yvz3/fil3**3)))/3. ∉	2512	hss = DSQRT(DxDx**2 +DyDx**2 DxDx = DxDx/hss
2444	QEzy = QEzy + hss*(- (bvy1*(yvz1/fil1**3)) - 4.0D0*(bvy2*(yvz2/fil2**3)) - (bvy3*(yvz3/fil3**3)))/3.	2514	DyDx = DyDx/hss
	0D0	2515	DzDx = DzDx/hss
2445	QEzz = QEzz + hss*(- (bvz1*(yvz1/fil1**3)) - 4.0D0*(bvz2*(yvz2/fil2**3)) - (bvz3*(yvz3/fil3**3)))/3. ∉	2516	
	0D0	2517	yvx1 = p(i6,1) - x00
2446 !	[a1 = (bvx1 + bvx2 + bvx3)/3.000	2518	yyy1 = p(16, 2) - y00
2447	da = (bvx1 + bvx2 + bvx3)/3.000	2519	<pre>yvz1 = p(i6,3) - z00 fil1 = DSQRT(yvx1**2 + yvy1**;</pre>
2449	a = (bvz1 + bvz2 + bvz3)/3.000	2521	
2450	!modx0= DSQRT(a1**2+a2**2+a3**2)	2522	bvx1 = (DyDx*yvz1 - DzDx*yvy1
2451	!a1 = a1/modx0	2523	bvy1 = (DzDx*yvx1 - DxDx*yvz1
2452	!a2 = a2/modx0	2524	bvz1 = (DxDx*yvy1 - DyDx*yvx1
2453 2454	!a3 = a3/modx0 ay1 = (a1*yvx1 + a2*yvy1 + a3*yvz1)	2525	yvx2 = px2 - x00
2455	$ay_{\lambda} = (a_{\lambda} y_{\lambda} + a_{\lambda} y_{\lambda} + a_{\lambda$	2527	yvy2 = py2 = y00
2456	$ay3 = (a1^*yvx3 + a2^*yvy3 + a3^*yvz3)$	2528	yvz2 = pz2 - z00
2457	<pre>!by1 = DSQRT((fil1*(fil1+ay1) + 0.3)**2)</pre>	2529	fil2 = DSQRT(yvx2**2 + yvy2**
2458	<pre>!by2 = DSQRT((fil2*(fil2+ay2) + 0.3)**2)</pre>	2530	
2459	!by3 = DSQRT((fil3*(fil3+ay3) + 0.3)**2)	2531	bvx2 = (DyDx*yvz2 - DzDx*yvy2
2460	by1 = DSQRT((fil1*(fil1*ay1))**2)	2532	bvy2 = (DzDx*yvx2 - DxDx*yvz2
2462	by2 = DSQRT((fil2*(fil2+ay2))**2) by3 = DSQRT((fil3*(fil3+ay3))**2)	2533	bvz2 = (DxDx*yvy2 - DyDx*yvx2
2463	IWRITE (9,*) by1	2535	yvx3 = p(i3,1) - x00
2464	!WRITE (9,*) by2	2536	yyy3 = p(13, 2) - y00
2465	!WRITE (9,*) by3	2537	yvz3 = p(i3,3) - z00
2466	PEx = ((a1*bvx1/by1) + 4.000*(a2*bvx2/by2) + (a3*bvx3/by3))*a1	2538	fil3 = DSQRT(yvx3**2 + yvy3**
2467 2468	PEy = ((a1*bvy1/by1) + 4.000*(a2*bvy2/by2) + (a3*bvy3/by3))*a2 PEz = ((a1*bvz1/by1) + 4.000*(a2*bvz2/by2) + (a3*bvz3/by3))*a3	2539 2540	
2468	$r_{E2} = (a_{1} \cdots a_{2} \cdots a_{3} \cdots a_$	2540	<pre>bvx3 = (DyDx*yvz3 - DzDx*yvy3 bvy3 = (DzDx*yvx3 - DxDx*yvz3</pre>
2470	$ ay2 = (a1^*yvx2 + a2^*yvy2 + a3^*yvz2)$	2542	bvz3 = (DxDx*yvy3 - DyDx*yvx3
2471	!ay3 = (a1*yvx3 + a2*yvy3 + a3*yvz3)	2543	
2472	!by1 = fil1*(fil1+ay1)	2544	QExx = QExx + hss*(- (bvx1*
2473	!by2 = fil2*(fil2+ay2)		0D0
2474 2475	!by3 = fil3*(fil3+ay3) !PEx = ((bvx1/by1) + 4.0D0*(bvx2/by2) + (bvx3/by3))*a1	2545	QExy = QExy + hss*(- (bvy1* 0D0
2476	PEy = ((byy1/by1) + 4.0D*(byy2/by2) + (byy3/by3))*a2	2546	QExz = QExz + hss*(- (bvz1*
2477	$ PE_{z} = ((bv_{z}/by_{z}) + 4.000^{\circ}(bv_{z}/by_{z}) + (bv_{z}/by_{z}) + (bv_{z}/by_{z}) + (av_{z}/by_{z}) + (bv_{z}/by_{z}) + (bv_{z}$	2010	0D0
2478 !	PEx = ((bvx1**2/(fil1**2)) + 4.0D0*(bvx2**2/(fil2**2)) + (bvx3**2/(fil3**2)))	2547	QEyx = QEyx + hss*(- (bvx1*
2479 !	PEy = ((bvy1**2/(fil1**2)) + 4.0D0*(bvy2**2/(fil2**2)) + (bvy3**2/(fil3**2)))		0D0
2480 !	PEz = ((bvz1**2/(fil1**2)) + 4.0D8*(bvz2**2/(fil2**2)) + (bvz3**2/(fil3**2)))	2548	QEyy = QEyy + hss*(- (bvy1*
2481 2482 !	$PE = hss^{*}(PEx + PEy + PEz)/3.0D0$	2549	0D0 QEyz = QEyz + hss*(- (bvz1*
	computation of curvature line integral along segment 6-3	2045	000 - 0002 - 0002 + 1155 (- (0021)
		2550	QEzx = QEzx + hss*(- (bvx1*
2485	bvx1 = 0.0D0		0D0
2486	bvy1 = 0.0D0	2551	QEzy = QEzy + hss*(- (bvy1*
2487 2488	bvz1 = 0.000	2552	0D0
2488	bvx2 = 0.0D0 bvy2 = 0.0D0	2552	QEzz = QEzz + hss*(- (bvz1* 0D0
2490	bvz2 = 0.0D0	2553	
2491	bv3 = 0.000	2554	!a1 = (bvx1 + bvx2 + bvx3)/
2492	b vy3 = 0.0D0	2555	!a2 = (bvy1 + bvy2 + bvy3)/
2493	bvz3 = 0.0D0	2556	!a3 = (bvz1 + bvz2 + bvz3)/
2494 2495	yvx1 = 0.0D0 yvy1 = 0.0D0	2557	!modx0= DSQRT(a1**2+a2**2+a3* !a1 = a1/modx0
2495	yvy1 = 0.000 yv21 = 0.000	2559	!a2 = a2/modx0
2497	yvx2 = 0.0D0	2560	1a3 = a3/modx0
2498	yvy2 = 0.0D0	2561	ay1 = (a1*yvx1 + a2*yvy1 + a
2499	yvz2 = 0.0D0	2562	ay2 = (a1*yvx2 + a2*yvy2 + a
2500	yvx3 = 0.0D0	2563	ay3 = (a1*yvx3 + a2*yvy3 + a
2501 2502	yvy3 = 0.0D0 vvz3 = 0.0D0	2564 2565	<pre>!by1 = DSQRT((fil1*(fil1+ay lby2 = DSQRT((fil2*(fil2+ay</pre>
2502	yv2 = 0.000	2505	<pre>!by2 = DSQRT((fil2*(fil2+ay !by3 = DSQRT((fil3*(fil3+ay</pre>
2505 :	DxDx = p(i3,1) - p(i6,1)	2567	by1 = DSQRT((fil1*(fil1+ay1
2505	DyDx = p(13,2) - p(16,2)	2568	by2 = DSQRT((fil2*(fil2+ay2
2506	DzDx = p(i3,3) - p(i6,3)	2569	by3 = DSQRT((fil3*(fil3+ay3
2507		2570	!WRITE (9,*) by1
2508	$px2 = p(16, 1) + 0.508^{+}DxDx$	2571	WRITE (9,*) by2
2509	py2 = p(16,2) + 0.5D0*DyDx	25/2	!WRITE (9,*) by3

л г

	\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl3D DLP.f90	36
510	pz2 = p(16,3) + 0.5D0*DzDx	
511		
12	hss = DSQRT(DxDx**2 +DyDx**2 +DzDx**2) DxDx = DxDx/hss	
14	DyDx = DyDx/hss	
15	DZDx = DZDx/hss	
16		
17	yvx1 = p(16, 1) - x00	
18 19	yvy1 = p(16,2) - y00 yvz1 = p(16,3) - z00	
20	fill = D5QRT(yvx1*2 + yvy1*2 +yvz1*2)	
22	bvx1 = (DyDx*yvz1 - DzDx*yvy1)	
23 24	bvy1 = (DzDx*yvx1 - DxDx*yvz1) bvz1 = (DxDx*yvy1 - DyDx*yvx1)	
26	yvx2 = px2 - x00	
27	yvy2 = py2 - y00	
28 29	yvz2 = pz2 - z00 fil2 = DSQRT(yvx2**2 + yvy2**2 +yvz2**2)	
30		
31	bvx2 = (DyDx*yvz2 - DzDx*yvy2)	
32	bvy2 = (DzDx*yvx2 - DxDx*yvz2)	
33 34	bvz2 = (DxDx*yvy2 - DyDx*yvx2)	
35	yx3 = p(13,1) - x00	
36	yyy3 = p(i3,2) - y00	
37	yvz3 = p(13,3) - z00	
38	fil3 = DSQRT(yvx3**2 + yvy3**2 +yvz3**2)	
40	bvx3 = (DvDx*vvz3 - DzDx*vvy3)	
41	bvy3 = (DzDx*ývx3 - DxDx*ývz3)	
42	bvz3 = (DxDx*yvy3 - DyDx*yvx3)	
43 44	QExx = QExx + hss*(- (bvx1*(yvx1/fil1**3)) - 4.0D0*(bvx2*(yvx2/fil2**3)) - (bvx3*(yvx3/fil3**3)))/	a. 🖌
		-
45	QExy = QExy + hss*(- (bvy1*(yvx1/fil1**3)) - 4.000*(bvy2*(yvx2/fil2**3)) - (bvy3*(yvx3/fil3**3)))/ 0D0	з. 🖌
46	QExz = QExz + hss*(- (bvz1*(yvx1/fil1**3)) - 4.0D0*(bvz2*(yvx2/fil2**3)) - (bvz3*(yvx3/fil3**3)))/ 0D0	з. 🖌
47	<pre>QEyx = QEyx + hss*(- (bvx1*(yvy1/fil1**3)) - 4.0D0*(bvx2*(yvy2/fil2**3)) - (bvx3*(yvy3/fil3**3)))/</pre>	з. 🖌
48	<pre>0D0 QEyy = QEyy + hss*(- (bvy1*(yvy1/fil1**3)) - 4.0D0*(bvy2*(yvy2/fil2**3)) - (bvy3*(yvy3/fil3**3)))/</pre>	
	0D0	
49	<pre>QEyz = QEyz + hss*(- (bvz1*(yvy1/fil1**3)) - 4.000*(bvz2*(yvy2/fil2**3)) - (bvz3*(yvy3/fil3**3)))/ 0D0</pre>	3. Ľ
50	QEzx = QEzx + hss*(- (bvx1*(yvz1/fil1**3)) - 4.0D0*(bvx2*(yvz2/fil2**3)) - (bvx3*(yvz3/fil3**3)))/ 0D0	з. 🖌
51	QEzy = QEzy + hss*(- (bvy1*(yvz1/fil1**3)) - 4.0D0*(bvy2*(yvz2/fil2**3)) - (bvy3*(yvz3/fil3**3)))/	з. 🖌
52	<pre>0D0 QEzz = QEzz + hss*(- (bvz1*(yvz1/fil1**3)) - 4.0D0*(bvz2*(yvz2/fil2**3)) - (bvz3*(yvz3/fil3**3)))/</pre>	з. 🖌
	6D6	
53 54	$ _{21} = (h_{1}x_{1} + h_{1}x_{2} + h_{1}x_{2})/2$ (60)	
54 55	!a1 = (bvx1 + bvx2 + bvx3)/3.0D0 !a2 = (bvy1 + bvy2 + bvy3)/3.0D0	
56	!a3 = (bvz1 + bvz2 + bvz3)/3.0D0	
57	!modx0= DSQRT(a1**2+a2**2+a3**2)	
58 59	!a1 = a1/modx0 !a2 = a2/modx0	
50	!a2 = a2/modx8 !a3 = a3/modx8	
51	$ay1 = (a1^*yvx1 + a2^*yvy1 + a3^*yvz1)$	
62	ay2 = (a1*yvx2 + a2*yvy2 + a3*yvz2)	
63	ay3 = (a1*yvx3 + a2*yvy3 + a3*yvz3)	
64 65	!by1 = DSQRT((fil1*(fil1*ay1) + 0.3)**2) !by2 = DSQRT((fil2*(fil2*ay2) + 0.3)**2)	
66	10y2 = DSQRT((1112*(1112*ay2) + 0.3)**2) 10y3 = DSQRT((1113*(1113*ay3) + 0.3)**2)	
67	by1 = DSQRT((fil1*(fil1+ay1))**2)	
68	by2 = DSQRT((fil2*(fil2+ay2))**2)	
69 70	by3 = DSQRT((fil3*(fil3+ay3))**2) !WRITE (9,*) by1	
110	innaic (5) / 0ya	

D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl3D DLP.f90	37 D:\Darth Vader\Escritorio\prtcl mkl\Nod Prtcl3D DLP.f90 36
2573 PEx = $((a1*bvx1/by1) + 4.000*(a2*bvx2/by2) + (a3*bvx3/by3))*a1$ 2574 PEy = $((a1*bvy1/by1) + 4.000*(a2*bvy2/by2) + (a3*bvy3/by3))*a2$	2645 fila = DSQRT(yxx3**2 + yxy3**2 +yxz3**2) 2646 !
2575 PEz = ((a1*bvz1/by1) + 4.0D0*(a2*bvz2/by2) + (a3*bvz3/by3))*a3	2647 bvx3 = (DyDx*yvz3 - DzDx*yvy3)
2576 !ay1 = (a1*yvx1 + a2*yvy1 + a3*yvz1)	2648 bvy3 = (DzDx*yvx3 - DxDx*yvz3)
2577 !ay2 = (a1*yvx2 + a2*yvy2 + a3*yvz2) 2578 !ay3 = (a1*yvx3 + a2*yvy3 + a3*yvz3)	2649 bvz3 = (0x0x*yvy3 - 0y0x*yvx3) 2659
2579 !by1 = fil1*(fil1+ay1)	2050] 2651 QExx = QExx + hss*(- (bvx1*(yvx1/fil1**3)) - 4.0D0*(bvx2*(yvx2/fil2**3)) - (bvx3*(yvx3/fil3**3)))/3.
2580 !by2 = fil2*(fil2+ay2)	
2581 !by3 = fil3*(fil3+ay3)	2652 QExy = QExy + hss*(- (bvy1*(yvx1/fil1**3)) - 4.0D0*(bvy2*(yvx2/fil2**3)) - (bvy3*(yvx3/fil3**3)))/3.
2582 !PEx = ((bvx1/by1) + 4.000*(bvx2/by2) + (bvx3/by3))*a1 2583 !PEy = ((bvy1/by1) + 4.000*(bvy2/by2) + (bvy3/by3))*a2	000 2653
2584 !PEz = ((bvz1/by1) + 4.000*(bvz2/by2) + (bvz3/by3) *a3 2585 ! PEx = ((bvz1**2)(fil1**2)) + 4.000*(bvz2**2)(fil2**2)) + (bvx3**2/(fil3**2)) 2586 ! PEy = ((bvy1**2/(fil1**2)) + 4.000*(bvz2**2)(fil2**2)) + (bvy3**2/(fil3**2))	
2580 : PEY = ((bvy1**2/(fil1**2)) + 4.000*(bvy2**2/(fil2**2)) + (bvy3**2/(fil3**2)) 2587 ! PEz = ((bvz1**2/(fil1**2)) + 4.000*(bvz2**2/(fil2**2)) + (bvz3**2/(fil3**2)) 2588 PE = PE + hss*(PEx + PEz //3.000	
2500 FE - FE + IIS (FEX FE2 /F2 /F2 //3.000 2589 !	
2591	
2593 bvy1 = 0.000 2594 bvz1 = 0.000	2658 QEzy = QEzy + hss*(- (bvy1*(yvz1/fil1**3)) - 4.000*(bvy2*(yvz2/fil2**3)) - (bvy3*(yvz3/fil3**3)))/3.
2595 bvx2 = 0.0D0	2659 QEzz = QEzz + hss*(- (bvz1*(yvz1/fil1**3)) - 4.0D0*(bvz2*(yvz2/fil2**3)) - (bvz3*(yvz3/fil3**3)))/3.
2596 bvy2 = 0.0D0	0D0
2597 bvz2 = 0.000 2598 bvx3 = 0.000	2660 !
2598 bvx3 = 0.000 2599 bvy3 = 0.000	2b61 ia1 = (bvx1 + bvx2 + bvx3)/3.000 2662 ia2 = (bvy1 + bvy2 + bvy3)/3.000
2600 bvz3 = 0.000	2663 $133 = (by2 + by2 + by2)/3.000$
2601 yvx1 = 0.0D0	2664 !modx8= DSQRT(a1**2+a2**2+a2**2)
2602 yvy1 = 0.0D0	2665 !a1 = a1/modxθ
2603 yvz1 = 0.0D0	2666 !a2 = a2/modx0
2604 yvx2 = 0.0D0	2667 !a3 = a3/modx0
2605 yvy2 = 0.0D0 2606 yvz2 = 0.0D0	$\begin{array}{cccc} 2668 & ay1 &= (a1^{*}yyx1 + a2^{*}yyy1 + a3^{*}yyz1) \\ 2669 & ay2 &= (a1^{*}yyx2 + a2^{*}yyy2 + a3^{*}yyz2) \end{array}$
2607 yvx3 = 0.000	$\frac{2609}{2670} = \frac{3}{49} = (a1 \cdot yvx + a2^* yvx + a3^* yvx + a3^$
2608 yvy3 = 0.0D0	2671 !by1 = DSQRT((fil1*(fil1+ay1) + 0.3)**2)
2609 yvz3 = 0.0D0	2672 !by2 = DSQRT((fil2*(fil2+ay2) + 0.3)**2)
2610 !	
2611 DxDx = p(15,1) - p(13,1)	2674 by1 = DSQRT((f111*f11*ay1))**2)
2612 DyDx = p(15,2) - p(13,2) 2613 DzDx = p(15,3) - p(13,3)	2675 by2 = DSQRT((f112*(f112*q2))**2) 2676 by3 = DSQRT((f112*(f112*q3))**2)
2614	2015 by = by(((1154ay3)) 2) 2677 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2615 $px2 = p(i3,1) + 0.5D0*DxDx$	2678 !WRITE (9,*) by2
2616 py2 = p(i3,2) + 0.5D0*DyDx	2679 !WRITE (9,*) by3
2617 pz2 = p(13,3) + 0.5D0*DzDx	2680 PEx = ((a1*bvx1/by1) + 4.0D0*(a2*bvx2/by2) + (a3*bvx3/by3))*a1
2619 hss = DSORT(DxDx**2 +DvDx**2 +DzDx**2)	
2619 hss = DSQRT(DxDx**2 +DyDx**2 +DzDx**2) 2620 DxDx = DxDx/hss	2662 PEz = ((a1*bvz1/by1) + 4.00b*(az*bvz2/by2) + (a3*bvz3/by3))*a3 2663 !ay1 = (a1*vy1 + a3*yvz1 + a3*yvz1)
2621 DyDx = DyDx/hss	$\frac{2063}{2684} = \frac{1}{402} = \frac{1}{40} \frac{1}{8} \frac{1}{\sqrt{12}} + \frac{1}{40} \frac{1}{\sqrt{12}} \frac{1}{\sqrt{12}} + \frac{1}{40} \frac{1}{\sqrt{12}} \frac{1}{12$
2622 DzDx = DzDx/hss	2685 $!ay3 = (a1*yx3 + a2*yy3 + a3*yyz3)$
2623 !	2686 !by1 = fil1*(fil1+ay1)
2624 yvx1 = p(13,1) - x00	2687 !by2 = f112*(f112+ay2)
2625 $yyy1 = p(13,2) - y00$ 2626 $yyz1 = p(13,3) - z00$	2668 [by3 = fil3*(fil3+ay3) 2669 [PEX = ([byx1/by1 + 4,000*(byx2/by2) + ([byx3/by3])*a1
2626 yvz1 = p(i3,3) - z00 2627 fil1 = DSQRT(yvx1**2 + yvy1**2 +yvz1**2)	2669 PFx = ((bvx1/by1) + 4.000*(bvx2/by2) + (bvx3/by3) *a1 2690 PFy = ((bvy1/by1) + 4.000*(bvy2/by2) + (bvy3/by3) *a2
2627 1111 - DSQN((VXI**2 + VVVI**2 + VV2I**2) 2628 !	$\frac{2090}{2691} \frac{17Ey}{1} = \frac{1}{1000} $
2629 bvx1 = (DyDx*yvz1 - DzDx*yvy1)	2692 ! $PEx = (bvx1^{**2}/(fil1^{**2})) + 4.000^{*}(bvx2^{**2}/(fil2^{**2})) + (bvx3^{**2}/(fil3^{**2})))$
2630 bvy1 = (DzDx*yvx1 - DxDx*yvz1)	2693 ! PEy = ((bvy1**2/(fil1**2)) + 4.000*(bvy2**2/(fil2**2)) + (bvy3**2/(fil3**2)))
2631 bvz1 = (DxDx*yvy1 - DyDx*yvx1)	2694 ! PEz = ((bvz1**2/(fil1**2)) + 4.000*(bvz2**2/(fil2**2)) + (bvz3**2/(fil3**2)))
2632	2695 PE = PE + hss*(PEx + PEy + PEz)/3.000 2696
2633 yvx2 = px2 - x00 2634 yvy2 = py2 - y00	2699 ! 2697 ! computation of curvature line integral along segment 5-2
2635 yvz = pyz - ywo 2635 vvz = pz2 - z00	2097 : Computation of Curvature line integral along segment 5-2 2008 !
2636 fil2 = DSQRT(yvx2**2 + yvy2**2 +yvz2**2)	2699 bvx1 = 0.0D0
2637	
2638 bvx2 = (DyDx*yvz2 - DzDx*yvy2)	2701 bvz1 = 0.000
2639 bvy2 = (DzDx*yvx2 - DxDx*yvz2)	2702 bvx2 = 0.000
2640 bvz2 = (DxDx*yvy2 - DyDx*yvx2)	2793 bvy2 = 0.000
2641 !	2704 bv22 = 0.000 2705 bvX3 = 0.000
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2705 bv3 = 0.000 2706 bv3 = 0.000
2644 yvz3 = p(15,3) - 200	2707 byz3 = 0.0D0

D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl3D DLP.f90 39	D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl3D DLP.f90 40
	2771 !modx0= DSQRT(a1**2+a2**2+a3**2)
2708 yvx1 = 0.0D0 2709 yvy1 = 0.0D0	2772 !a1 = a1/modx0
2710 yvz1 = 0.0D0 2711 yvx2 = 0.0D0	2773 a2 = a2/modx0 2774 a3 = a3/modx0
2/11 yvx = 0.000 2712 yvy2 = 0.000	$\frac{2774}{2775}$ ay1 = (a1*yvx1 + a2*yvy1 + a3*yvz1)
2713 yvz2 = 0.0D0	2776 av2 = (a1*vvx2 + a2*vvv2 + a3*vvz2)
2714 yvx3 = 0.0D0 2715 yvy3 = 0.0D0	2777 ay3 = (a1*yvx3 + a2*yvy3 + a3*yvz3) 2778 by1 = DSQRT((fil1*(fil1*ay1) + 0.3)**2)
2716 yvz3 = 0.0D0	2779 !by2 = DSQRT((fil2*(fil2+ay2) + 0.3)**2)
2717 ! 2718 DxDx = p(12,1) - p(15,1)	2780
2719 $DyDx = p(12,2) - p(15,2)$	2782 by2 = DSQRT((fil2*(fil2+ay2))**2)
2720 DzDx = p(i2,3) - p(i5,3) 2721	2783 by3 = DSQRT((fil3*(fil3*ay3))**2) 2784 !WRITE (9,*) by1
2722 px2 = p(i5,1) + 0.5D0*DxDx	2785 !WRITE (9,*) by2
2723 py2 = p(15,2) + 0.500*DyDx 2724 pz2 = p(15,3) + 0.500*DzDx	2786 !WRITE (9,*) by3 2787 PEx = ((a1*bvx1/by1) + 4.000*(a2*bvx2/by2) + (a3*bvx3/by3))*a1
2725	2788 PEy = ((a1*bvy1/by1) + 4.0D0*(a2*bvy2/by2) + (a3*bvy3/by3))*a2
2726 hss = DSQRT(DXDx**2 +DyDx**2 +DzDx**2) 2727 DxDx = DxDx/hss	2789 PEz = ((a1*bvz1/by1) + 4.0D0*(a2*bvz2/by2) + (a3*bvz3/by3))*a3 2790 !ay1 = (a1*yvx1 + a2*yvy1 + a3*yvz1)
2728 DyDx = DyDx/hss	$2791 \qquad ay2 = (a1^{*}yx2 + a2^{*}yy2 + a3^{*}yy2)$
2729 DzDx = DzDx/hss 2730 !	2792 !ay3 = (a1*yvx3 + a2*yvy3 + a3*yvz3) 2793 !by1 = fill*(fill+ay1)
2730 j 2731 yvx1 = p(15,1) - x00	2794 !by2 = fil2*(fil2+ay2)
2732 yvy1 = p(i5,2) - y00 2733 yvz1 = p(i5,3) - z00	2795 !by3 = fil3*(fil3+ay3) 2796 !PEx = ((bvx1/by1) + 4.0D0*(bvx2/by2) + (bvx3/by3))*a1
2734 fill = DSQRT(yx1**2 + yvy1**2 +yvz1**2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2735 ! 2736 bvx1 = (DyDx*yvz1 - DzDx*yvy1)	2798 !PEz = ((bvz1/by1) + 4.000*(bvz2/by2) + (bvz3/by3))*a3 2799 ! PEx = ((bvx1**2/(fil1**2)) + 4.000*(bvx2**2/(fil2**2)) + (bvx3**2/(fil3**2)))
2750 UVAI - (UyUA YVAI - DZUA YVAI) 2737 UVJI = (DZDA YVAI - DXDA YVAI)	2800 ! PEy = ((bvy1**2/(fil1**2)) + 4.0D0*(bvy2**2/(fil2**2)) + (bvy3**2/(fil3**2)))
2738 bvz1 = (DxDx*yvy1 - DyDx*yvx1) 2739 !	2801 ! PEz = ((bvz1**2/(fil1**2)) + 4.000*(bvz2**2/(fil2**2)) + (bvz3**2/(fil3**2))) 2802 PE = PE + hss*(PEx + PEy + PEz)/3.000
2740 yvx2 = px2 - x00	2803 !
2741 yvy2 = py2 - y00 2742 vvz2 = pz2 - z00	2804 I computation of curvature line integral along segment 2-4 2805 I
2743 fil2 = DSQRT(yvx2**2 + yvy2**2 + yvz2**2)	2806 bvx1 = 0.0D0
2744 !	2807 bvy1 = 0.000 2808 bvz1 = 0.000
2746 bvy2 = (DzDx*yvx2 - DxDx*yvz2)	2809 bvx2 = 0.0D0
2747 bvz2 = (bxbx*yvy2 - bybx*yvx2) 2748	2810 bvy2 = 0.000 2811 bvz2 = 0.000
2749 $yvx3 = p(12,1) - x00$	2812 bvx3 = 0.0D0
2750 yvy3 = p(i2,2) - y00 2751 yvz3 = p(i2,3) - z00	2813 bvy3 = 0.0D0 2814 bvz3 = 0.0D0
2752 fil3 = DSQRT(yvx3**2 + yvy3**2 +yvz3**2)	2815 yvx1 = 0.0D0
2753 ! 2754 bvx3 = (DyDx*yvz3 - DzDx*yvy3)	2816 yvy1 = 0.0D0 2817 yvz1 = 0.0D0
2755 bvy3 = (DzDx*yvx3 - DxDx*yvz3)	2818 yvx2 = 0.0D0
2756 bvz3 = (DxDx*yvy3 - DyDx*yvx3) 2757 !	2819 yvy2 = 0.000 2820 yvz2 = 0.000
2757 : 2758 QExx = QExx + hss*(- (bvx1*(yvx1/fil1**3)) - 4.0D0*(bvx2*(yvx2/fil2**3)) - (bvx3*(yvx3/fil3**3)))/3.	2620 $yx2 = 0.0002821 yx3 = 0.000$
0D0 2759 QExy = QExy + hss*(- (bvy1*(yvx1/fil1**3)) - 4.000*(bvy2*(yvx2/fil2**3)) - (bvy3*(yvx3/fil3**3)))/3. ✔	2822 yvy3 = 0.0D0 2823 yvz3 = 0.0D0
0D0	2824 !
2760 QExz = QExz + hss*(- (bvz1*(yvx1/fil1**3)) - 4.0D0*(bvz2*(yvx2/fil2**3)) - (bvz3*(yvx3/fil3**3)))/3. ✔ 0D0	2825 DxDx = p(14,1) - p(12,1) 2826 DyDx = p(14,2) - p(12,2)
2761 QEyx = QEyx + hss*(- (bvx1*(yvy1/fil1**3)) - 4.0D0*(bvx2*(yvy2/fil2**3)) - (bvx3*(yvy3/fil3**3)))/3. ✔ 0D0	2827 DzDx = p(14,3) - p(12,3) 2828 !
2762 QEyy = QEyy + hss*(- (bvy1*(yvy1/fil1**3)) - 4.000*(bvy2*(yvy2/fil2**3)) - (bvy3*(yvy3/fil3**3)))/3. ✔ 0D0	2829 px2 = p(i2,1) + 0.5D0*DxDx 2830 py2 = p(i2,2) + 0.5D0*DyDx
2763 QEyz = QEyz + hss*(- (bvz1*(yvy1/fil1**3)) - 4.0D0*(bvz2*(yvy2/fil2**3)) - (bvz3*(yvy3/fil3**3)))/3. ✔ 0D0	2831 pz2 = p(i2,3) + 0.5D0*DzDx 2832
2764 QEzx = QEzx + hss*(- (bvx1*(yvz1/fil1**3)) - 4.0D0*(bvx2*(yvz2/fil2**3)) - (bvx3*(yvz3/fil3**3)))/3. ✔ 0D0	2833 hss = DSQRT(DxDx**2 +DyDx**2 +DzDx**2) 2834 DxDx = DxDx/hss
2765 QEzy = QEzy + hss*(- (bvy1*(yvz1/fil1**3)) - 4.000*(bvy2*(yvz2/fil2**3)) - (bvy3*(yvz3/fil3**3)))/3. #	2835 Dy0x = Dy0x/hss 2836 Dz0x = Dz0x/hss
2766 QEzz = QEzz + hss*(- (bvz1*(yvz1/fil1**3)) - 4.0D0*(bvz2*(yvz2/fil2**3)) - (bvz3*(yvz3/fil3**3)))/3.	2837 ! 2838 yvx1 = p(12,1) - x00
2767 ! 2768 a1 = (bvx1 + bvx2 + bvx3)/3.000	2839 yvy1 = p(i2,2) - y00
2768 !a1 = (bvx1 + bvx2 + bvx3)/3.0D0 2769 !a2 = (bvy1 + bvy2 + bvy3)/3.0D0	2840 yvz1 = p(12,3) - 200 2841 fill = DSQRT(yvx1**2 + yvy1**2 + yvz1**2)
2770 !a3 = (bv21 + bv22 + bv23)/3.0D0	2842 !

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl3D_DLP.f90 41	D:\Darth Vader\Escritorio\prtcl mkl\Mod_Prtcl3D_DLP.f90 42
2843 bvx1 = (DyDx*yvz1 - DzDx*yvy1)	2906 ! PEx = ((bvx1**2/(fil1**2)) + 4.0D0*(bvx2**2/(fil2**2)) + (bvx3**2/(fil3**2)))
2844 bvy1 = (DzDx*yvx1 - DxDx*yvx1)	2907 ! PEy = ((bvy1*2/(fil1*2)) + 4.000*(bvy2*2/(fil2*2)) + (bvy3*2/(fil3*2)))
2845 bvz1 = (DxDx*vvy1 - DyDx*vvx1)	2908 ! PEz = ((bvz1**2/(fil1**2)) + 4.0D0*(bvz2**2/(fil2**2)) + (bvz3**2/(fil3**2)))
2846 !	2909 PE = PE + hss*(PEx + PEy + PEz)/3.000
2847 yvx2 = px2 - x00	2910 !
2848 yvy2 = py2 - y00	2911 ! computation of curvature line integral along segment 4-1
2849 yvz2 = pz2 - z00	2912 !
2850 fil2 = DSQRT(yvx2**2 + yvy2**2 +yvz2**2)	2913 bvx1 = 0.0D0
2851	2914 bvy1 = 0.000
2852 bvx2 = (DyDx*yvz2 - DzDx*yvy2)	2915 bvz1 = 0.0D0
2853 bvy2 = (DzDx*yvx2 - DxDx*yvz2) 2854 bvz2 = (DxDx*vvx2 - DvDx*vvx2)	2916 bvx2 = 0.000 2917 bvy2 = 0.000
2854 bvz2 = (0x0x*yvy2 - 0y0x*yvx2) 2855	2317 $0.92 = 0.0002918 bv22 = 0.000$
$2856 \qquad yvx3 = p(14,1) - x00$	2319 by $23 = 0.000$
2857 yvy3 = $p(14,2)$ y00	2220 by $y_3 = 0.000$
2858 yvz3 = p(14,3) - 200	2921 by $z_3 = 0.000$
2859 fil3 = DSQRT(yvx3**2 + yvy3**2 + yvz3**2)	2922 vvx1 = 0.0D0
2860 !	2923 yvy1 = 0.0D0
2861 bvx3 = (DyDx*yvz3 - DzDx*yvy3)	2924 yvz1 = 0.0D0
2862 bvy3 = (DzDx*yvx3 - DxDx*yvz3)	2925 yvx2 = 0.0D0
2863 bvz3 = (DxDx*yvy3 - DyDx*yvx3)	2926 yvy2 = 0.0D0
2864	2927 yvz2 = 0.000
2865 QExx = QExx + hss*(- (bvx1*(yvx1/fil1**3)) - 4.0D0*(bvx2*(yvx2/fil2**3)) - (bvx3*(yvx3/fil3**3)))/3.	2928 yvx3 = 0.0D0
000	2929 yvy3 = 0.000
2866 QExy = QExy + hss*(- (bvy1*(yvx1/fil1**3)) - 4.000*(bvy2*(yvx2/fil2**3)) - (bvy3*(yvx3/fil3**3)))/3. ∉	2930 yvz3 = 0.000
0D0 2867 QExz = QExz + hss*(- (bvz1*(yvx1/fil1**3)) - 4.0D0*(bvz2*(yvx2/fil2**3)) - (bvz3*(yvx3/fil3**3)))/3. ✔	2931 2932 DxDx = p(i1,1) - p(i4,1)
280/ QEX2 = QEX2 + HSS*(- (DV21*(YVX1/T111**5)) - 4.000*(DV22*(YVX2/T112**5)) - (DV23*(YVX3/T113**5)))/3. X 000	$\begin{array}{cccc} 2552 & DX0A = p(14, 1) - p(14, 1) \\ 2933 & Dy0A = p(14, 2) - p(14, 2) \\ \end{array}$
2868 QEyx = QEyx + hss*(- (bvx1*(yvy1/fil1**3)) - 4.000*(bvx2*(yvy2/fil2**3)) - (bvx3*(yvy3/fil3**3)))/3. 🕊	$\frac{2333}{2334} DzDx = p(11,2) - p(14,2)$
	2035
2869 QEyy = QEyy + hss*(- (bvy1*(yvy1/fil1**3)) - 4.0D0*(bvy2*(yvy2/fil2**3)) - (bvy3*(yvy3/fil3**3)))/3. 🕊	2936 $px2 = p(14,1) + 0.5D0*DxDx$ 2937 $py2 = p(14,2) + 0.5D0*DyDx$
2870 QEyz = QEyz + hss*(- (bvz1*(yvy1/fil1**3)) - 4.000*(bvz2*(yvy2/fil2**3)) - (bvz3*(yvy3/fil3**3)))/3.	2938 pz2 = p(i4,3) + 0.5D0*DzDx 2939
2871 QEzx = QEzx + hss*(- (bvx1*(yvz1/fil1**3)) - 4.000*(bvx2*(yvz2/fil2**3)) - (bvx3*(yvz3/fil3**3)))/3.	2940 hss = DSQRT(DxDx**2 +DyDx**2 +DzDx**2) 2941 DxDx = DxDx/hss
2872 QEzy = QEzy + hss*(- (bvy1*(yvz1/fil1**3)) - 4.0D0*(bvy2*(yvz2/fil2**3)) - (bvy3*(yvz3/fil3**3)))/3. ★ 0D0	2942 DyDx = DyDx/hss 2943 DzDx = DzDx/hss
2873 QEzz = QEzz + hss*(- (bvz1*(yvz1/fil1**3)) - 4.000*(bvz2*(yvz2/fil2**3)) - (bvz3*(yvz3/fil3**3)))/3.	2944 !
0D0	2945 yvx1 = p(i4,1) - x00
2874 !	2946 yvy1 = p(i4,2) - y00
$2875 \qquad a1 = (bvx1 + bvx2 + bvx3)/3.000$	2947
$\frac{2876}{100} = \frac{1}{100} + \frac$	2948 fil1 = DSQRT(yvx1**2 + yvy1**2 + yvz1**2)
2877 !a3 = (bv21 + bv22 + bv23)/3.000 2878 !modx0= DSQRT(a1**2+a2**2+a3**2)	2949 2950 bvx1 = (DyDx*yvz1 - DzDx*yvy1)
2879 $ a = a/(modx^2)$	2550 0V1 - (000×9V1 - 0x0×9V1) 2551 bvy1 = (020×9V1 - 0x0×9V1)
2880 ! a2 = a2/modx0	2952 byz1 = (bxDx*yvy1 - DyDx*yvx1)
2881 !a3 = a3/modx0	
2882 ay1 = (a1*yvx1 + a2*yvy1 + a3*yvz1)	2954 yvx2 = px2 - x00
$2883 ay2 = (a1^*yvx2 + a2^*yvy2 + a3^*yvz2)$	2955 yvy2 = py2 - y00
2884 ay3 = (a1*yvx3 + a2*yvy3 + a3*yvz3)	2956 yvz2 = pz2 - z00
2885 !by1 = DSQRT((fill*(fill+ay1) + 0.3)**2)	2957 fil2 = DSQRT(yvx2**2 + yvy2**2 +yvz2**2)
2886 !by2 = DSQRT((fil2*(fil2*ay2) + 0.3)**2)	2958
2887 !by3 = DSQRT((fil3*(fil3+ay3) + 0.3)**2) 2888 by1 = DSQRT((fil1*(fil1+ay1))**2)	2959 $bvx2 = (DyDx^*yvz2 - DzDx^*yvy2)$ 2960 $bvy2 = (DzDx^*yvx2 - DxDx^*vyz2)$
2888 by1 = DSQRT((fil1*(fil1+ay1))**2) 2889 by2 = DSQRT((fil2*(fil2+ay2))**2)	2960 bvy2 = (DzDx*yvx2 - DxDx*yvz2) 2961 bvz2 = (DxDx*yvy2 - DyDx*yvx2)
$2890 byz = byx(((f112+(g112+g2))^{*2}))$ $2890 byz = byx(((f112+(g112+g2))^{*2}))$	2961 bV22 = (bXbX yVy2 - bybX yVX2) 2962
2890 I WRTE (9,* byl	2902 : 2963 yvx3 = p(11,1) - x00
2892 INNETE (9,9) by2	2964 yvy3 = p(11,2) - y00
2893 !WRITE (9,*) by3	2965 $yvz_3 = p(11,3) - z00$
2894 PEx = ((a1*bvx1/by1) + 4.0D0*(a2*bvx2/by2) + (a3*bvx3/by3))*a1	2966 fil3 = DSQRT(yvx3**2 + yvy3**2 + yvz3**2)
2895 PEy = ((a1*bvy1/by1) + 4.000*(a2*bvy2/by2) + (a3*bvy3/by3))*a2	2967
2896 PEz = ((a1*bvz1/by1) + 4.000*(a2*bvz2/by2) + (a3*bvz3/by3))*a3	2968 bvx3 = (DyDx*yvz3 - DzDx*yvy3)
2897 !ay1 = (a1*yvx1 + a2*yvy1 + a3*yvz1)	2969 bvy3 = (DzDx*yvx3 - DxDx*yvz3)
2898 $ ay2 = (a1^{2}yxx2 + a2^{2}yxy2 + a3^{2}yxy2)$	2970 bv23 = (DxDx*ývy3 - DyDx*ývx3)
2899 !ay3 = (a1*yvx3 + a2*yvy3 + a3*yvz3) 2900 !by1 = fill*(fill+ay1)	2971 !
2900 iby1 = fili*(fili+3y1) 2901 iby2 = fili*(fili+3y2)	2972 QExx = QExx + hss*(- (bvx1*(yvx1/fil1**3)) - 4.000*(bvx2*(yvx2/fil2**3)) - (bvx3*(yvx3/fil3**3)))/3. ✔
2902 !by3 = fil3*(fil3+ay3)	2973 QExy = QExy + hss*(- (bvy1*(yvx1/fil1**3)) - 4.0D0*(bvy2*(yvx2/fil2**3)) - (bvy3*(yvx3/fil3**3)))/3.
2903 PEx = ((bvx1/by1) + 4.000*(bvx2/by2) + (bvx3/by3))*a1	
2904 !PEy = ((bvy1/by1) + 4.000*(bvy2/by2) + (bvy3/by3))*a2	2974 QExz = QExz + hss*(- (bvz1*(yvx1/fil1**3)) - 4.0D0*(bvz2*(yvx2/fil2**3)) - (bvz3*(yvx3/fil3**3)))/3. ∉
2905 !PEz = ((bvz1/by1) + 4.000*(bvz2/by2) + (bvz3/by3))*a3	eDe

	\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl3D DLP.f90 43	D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl3D DLP.f90 44
2975	QEyx = QEyx + hss*(- (bvx1*(yvy1/fil1**3)) - 4.000*(bvx2*(yvy2/fil2**3)) - (bvx3*(yvy3/fil3**3)))/3. #	0:\0arch Vader\Escritorio\prcci_mki\0du Prccisu_0LP.T90
	000	3042 USE Mod_Nodal_Interp
2976	QEyy = QEyy + hss*(- (bvy1*(yvy1/fil1**3)) - 4.0D0*(bvy2*(yvy2/fil2**3)) - (bvy3*(yvy3/fil3**3)))/3. ✔ 0D0	3044 !
2977	QEyz = QEyz + hss*(- (bvz1*(yvy1/fil1**3)) - 4.0D0*(bvz2*(yvy2/fil2**3)) - (bvz3*(yvy3/fil3**3)))/3. 🕊	3045 IMPLICIT NONE 3046
2978	QEzx = QEzx + hss*(- (bvx1*(yvz1/fil1**3)) - 4.000*(bvx2*(yvz2/fil2**3)) - (bvx3*(yvz3/fil3**3)))/3.	3047 ! Variables
2979	QEzy = QEzy + hss*(- (bvy1*(yvz1/fil1**3)) - 4.0D0*(bvy2*(yvz2/fil2**3)) - (bvy3*(yvz3/fil3**3)))/3. ∉	3049 REAL (KIND = DBL), INTENT(IN) :: x10, y10, z10 !singulatity coordinates
	000 QEzz = QEzz + hss*(- (bvz1*(yvz1/fil1**3)) - 4.000*(bvz2*(yvz2/fil2**3)) - (bvz3*(yvz3/fil3**3)))/3.	3050 INTENT(IN):: k Inumber of element 3051 REAL (KIND = DBL), INTENT(OUT):: TEXX, TEXY, TEX Ivalue of stresslet in the singular element 3052 REAL (KIND = DBL), INTENT(OUT):: TEXX, TEXY, TEY Ivalue of stresslet in the singular element 3053 REAL (KIND = DBL), INTENT(OUT):: TEXX, TEXY, TEY Ivalue of stresslet in the singular element
2982 2983	!a1 = (bvx1 + bvx2 + bvx3)/3.0D0 !a2 = (bvy1 + bvy2 + bvy3)/3.0D0	3054 !
2984	!a3 = (bv21 + bv22 + bv23)/3.0D0 !modx0= DSORT(a1**2+a2**2+a3**2)	3056 ! 3057 INTEGER :: i, j !Counters
2986 2987	$\begin{vmatrix} a 1 \\ a 2 \end{vmatrix} = \frac{a 1}{modx\theta}$ $\begin{vmatrix} a 2 \\ a 2 \end{vmatrix} = \frac{a 2}{modx\theta}$	3058 INTEGER :: 11, 12, 13, 14, 15, 16 indices to obtain node numbers from each element 3059
2987 2988 2989 2990	:a2 = a2/modx0 a3 = a3/modx0 ay1 = (a1*vy2+ a3*vy21) ay2 = (a1*vy2+ a2*vyy2 + a3*vy21) ay2 = (a1*vy2+ a2*vyy2 + a3*vy2)	3059
2991 2992	ay3 = (a1*yvx3 + a2*yvy3 + a3*yvz3) !by1 = DSQRT((fil1*(fil1+ay1) + 0.3)**2)	3063 REAL (KIND = DBL) :: cpi !Selection to add the solid angle
2993	<pre>!by2 = DSQRT((fil2*(fil2*ay2) + 0.3)**2)</pre>	3065 REAL (KIND = DBL) :: bvx1, bvy1, bvz1, & !vectoreial product
2994 2995	!by3 = DSQRT((fil3*(fil3+ay3) + 0.3)**2) by1 = DSQRT((fil1*(fil1+ay1))**2)	3066 & bvx2, bvy2, bvz2, & 3067 & bvx3, bvy3, bvz3
2996 2997	by2 = DSQRT((fil2*(fil2+ay2))**2) by3 = DSQRT((fil3*(fil3+ay3))**2)	3068 REAL (KIND = DBL) :: QExx, QExy, QExz, & !Iq tensor 3069 & QEyx, QEyy, QEyz, &
2998 2999	!MRITE (9,*) by1 !MRITE (9,*) by2	3070 & QEzx, QEzy, QEzz 3071 REAL (KIND = DBL) :: PEx, PEy, PEz, PE !Ip tensor
3000	!WRITE (9,*) by3	3072 REAL (KIND = DBL) :: yvx1, yvy1, yvz1 !vector y1
3001 3002	PEx = ((a1*bvx1/by1) + 4.000*(a2*bvx2/by2) + (a3*bvx3/by3))*a1 PEy = ((a1*bvy1/by1) + 4.000*(a2*bvy2/by2) + (a3*bvy3/by3))*a2	3073 REAL (KIND = DBL) :: yvx2, yvy2, yvz2 !vector y2 3074 REAL (KIND = DBL) :: yvx3, yvy3, yvz3 !vector y3
3003 3004	PEz = ((a1*bvz1/by1) + 4.000*(a2*bvz2/by2) + (a3*bvz3/by3))*a3 !ay1 = (a1*yvx1 + a2*yvy1 + a3*yvz1)	3075 REAL (KIND = DBL) :: yvx4, yvy4, yvz4 !vector y4 3076 REAL (KIND = DBL) :: yvx5, yvy5, yvz5 !vector y5
3005	$ ay2 = (a1^*yvx2 + a2^*yvy2 + a3^*yvz2)$	3077 REAL (KIND = DBL) :: yvx6, yvy6, yvz6 !vector y6
3006 3007	!ay3 = (a1*yvx3 + a2*yvy3 + a3*yvz3) !by1 = fil1*(fil1+ay1)	3078 REAL (KIND = DBL) :: zvx1, zvy1, zvz1 !vector (z1-x0) 3079 REAL (KIND = DBL) :: zvx2, zvy2, zvz2 !vector (z2-x0)
3008 3009	!by2 = fil2*(fil2+ay2) !by3 = fil3*(fil3+ay3)	3080 REAL (KIND = DBL) :: zvx3, zvy3, zvy3 !vector (z3-x0) 3081 REAL (KIND = DBL) :: zvx4, zvy4, zvy4 !vector (z4-x0)
3010	<pre>!PEx = ((bvx1/by1) + 4.000*(bvx2/by2) + (bvx3/by3))*a1</pre>	3082 REAL (KIND = DBL) :: zvx5, zvy5, zvz5 !vector (z5-x0)
3011 3012	<pre>!PEy = ((bvy1/by1) + 4.000*(bvy2/by2) + (bvy3/by3))*a2 !PEz = ((bvz1/by1) + 4.000*(bvz2/by2) + (bvz3/by3))*a3</pre>	3083 REAL (KIND = DBL) :: zvx6, zvy6, zvz6 !vector (z6-x0) 3084 REAL (KIND = DBL) :: zcx1, zcy1, zcz1 !vector zi ^ zi+1
3013 !	PEx = ((bvx1**2/(fil1**2)) + 4.0D0*(bvx2**2/(fil2**2)) + (bvx3**2/(fil3**2)))	3085 REAL (KIND = DBL) :: zcx2, zcy2, zcz2 !vector zi ^ zi+1
3014 ! 3015 !	<pre>PEy = ((bvy1**2/(fil1**2)) + 4.0D0*(bvy2**2/(fil2**2)) + (bvy3**2/(fil3**2))) PEz = ((bvz1**2/(fil1**2)) + 4.0D0*(bvz2**2/(fil2**2)) + (bvz3**2/(fil3**2)))</pre>	3086 REAL (KIND = DBL) :: zcx3, zcy3, zcz3 !vector zi ^ zi+1 3087 REAL (KIND = DBL) :: zcx4, zcy4, zcz4 !vector zi ^ zi+1
3016 3017	PE = PE + hss*(PEx + PEy + PEz)/3.000 Close(9)	3088 REAL (KIND = DBL) :: zcx5, zcy5, zcz5 !vector zi ^ zi+1 3089 REAL (KIND = DBL) :: zcx6, zcy6, zcz6 !vector zi ^ zi+1
3018 !		3090 REAL (KIND = DBL) :: zd1, zd2, zd3, zd4, zd5, zd6 !vector zi . zi+1
3019 3020	TExx = 2.000*(-QExx + cpi -PE) TExy = 2.000*(-QExy)	3091 REAL (KIND = DBL) :: px2, py2, pz2 !preasure vector 3092 REAL (KIND = DBL) :: a1, a2, a3 !vector a
3021	TExz = 2.0D0*(-QExz)	3093 REAL (KIND = DBL) :: alí, al2, al3, al4, al5, al6 !alpha angle between zi and zi+1 from x0
3022 3023	TEyx = 2.0D0*(-QEyx) TEyy = 2.0D0*(-QEyy + cpi -PE)	3095 REAL (KIND = DBL) :: e1, e2, e3, e4, e5, e6 !constant
3024 3025	TEyz = 2.0D0*(-QEyz) TEzx = 2.0D0*(-QEzx)	3096 REAL (KIND = DBL) :: f1, f2, f3, f4, f5, f6 !constant 3097 REAL (KIND = DBL) :: g1, g2, g3, g4, g5, g6 !constant
3026	TEzy = 2.000*(-QEzy)	3098 REAL (KIND = DBL) :: av1, av2, av3 !vector dot product a*v1, a*v2
3027 3028	TEzz = 2.0D0*(-QEzz + cpi -PE)	3099 REAL (KIND = DBL) :: by1, by2, by3 !product yi*(yi+a.yi) 3100 !=
3029 3030 L	END SUBROUTINE intr_lin_sing_s6	3101 ! Initialize 3102 !
3031	SUBROUTINE intr_lin_sing_s7(x10, y10, z10, &	3103 TExx = 0.0D0
3032 3033	& k, & & TEXX, TEXY, TEXZ, &	3104 TExy = 0.0D0 3105 TExz = 0.0D0
3034	& TEyx, TEyy, TEyz, & & TEzx, TEzy, TEzz)	3106 TEyx = 0.0D0 3107 TEyy = 0.0D0
3036		3108 TEyz = 0.0D0
	This subroutine is a new version stokeslet Subroutine. Compute:	3109 TEzx = 0.0D0 3110 TEzy = 0.0D0
3039	*The value of the Stokeslet over each singular element	3111 TEzz = 0.0D0
3040 []	low, (March/ 09 / 2015) this subroutine was made.	3112

arth Vader\Escritorio\prtcl_mkl\Mod_Prtcl3D_DLP.f90	45 D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl3D_DLP.f90
2Exx = 0.0D0	3185 yvx4 = p(i4,1)-x10
2Exy = 0.0D0	3186 yvy4 = p(i4,2)-y10
2Exz = 0.0D0	3187 yvz4 = p(i4,3)-z10
Eyx = 0.0D0	3188 yvx5 = p(15,1)-x10
Eyy = 0.0D0	3189 $yy5 = p(15,2) - y10$
Eyz = 0.0D0	3190 yvz5 = p(15,3)-z10
Ezx = 0.000	3191 yvx6 = p(16,1)-x10
Ezy = 0.000	3192 yvv6 = $p(16, 2) - x103192$ yvv6 = $p(16, 2) - x10$
Ezz = 0.0D0	3193 yvz6 = p(16,3)-210 3194
Ex = 0.0D0	3195 zvx1 = yvx1 / DSQRT(yvx1**2 + yvy1**2 + yvz1**2)
Ey = 0.0D0	3196 zvy1 = yvy1 / DSQRT(yvx1**2 + yvy1**2 + yvz1**2)
Ez = 0.0D0	3197 zvz1 = yvz1 / DSQRT(yvx1**2 + yvy1**2 + yvz1**2)
PE = 0.0D0	3198 zvx2 = yvx2 / DSQRT(yvx2**2 + yvy2**2 + yvz2**2)
	3199 zvy2 = yvy2 / DSQRT(yvx2**2 + yvy2**2 + yvz2**2)
uodx0= DSQRT((x0(k)-x10)**2+(y0(k)-y10)**2+(z0(k)-z10)**2)	3200 zvz2 = yvz2 / DSQRT(yvx2**2 + yvy2**2 + yvz2**2)
	3201 zvx3 = yvx3 / DSQRT(yvx3**2 + yvy3**2 + yvz3**2)
IF (modx0 >= 1.0D0 + eps) THEN	3202 zvy3 = yvy3 / DSQRT(yvx3**2 + yvy3**2 + yvz3**2)
cpi = 0.000	3203 zvz3 = yvz3 / DSQRT(yvx3**2 + yvy3**2 + yvz3**2)
LSE IF (modx0 <= 1.0D0 + eps) THEN	3204 zvx4 = yvx4 / DSQRT(yvx4**2 + yvy4**2 + yvz4**2)
cpi = -8.000*pi	3205 zvy4 = yvy4 DSQRT(yvx4**2 + yvy4**2 + yzx4**2)
LSE	$\frac{1}{3266} = \frac{1}{2} \frac{1}{32} \frac{1}{32$
cpi = -4.0D0*pi	$\frac{5200}{3207} = \frac{2724}{2} - \frac{5924}{3} \int \frac{500}{100} (yvx^{2} + 2 + yvy^{2} + 2 + yvy^{2} + 2 + yvz^{2} + yvz^{2})$
cpi = -4.000°pi nd if	3207 ZVX5 = VVX5 / U5QR1(VVX5 ⁻² + VVy5 ⁺² + VV25 ⁺²) 3208 ZVV5 = VVY5 / U5QR1(VVX5 ⁺² + VVy5 ⁺² + VV25 ⁺²)
nu II	
	3209 zvz5 = yvz5 / DSQRT(yvx5**2 + yvy5**2 + yvz5**2)
<pre>EF((ABS(x10-x0(k)) <= eps) .AND. &</pre>	3210
k (ABS(y10-y0(k)) <= eps) .AND. &	3211 zvy6 = yvy6 / DSQRT(yvx6**2 + yvy6**2 + yvz6**2)
& (ABS(z10-z0(k)) <= eps)) THEN	3212 zvz6 = yvz6 / DSQRT(yvx6**2 + yvy6**2 + yvz6**2)
a1 = x10	3213 !
a2 = y10	3214 ! Cross products.
a3 = z10	3215 !
LSE	3216 zcx1 = zvy1*zvz6 - zvz1*zvy6
a1 = x10-x0(k)	3217 zcy1 = zvz1*zvx6 - zvx1*zvz6
$a_2 = y_10-y_0(k)$	3218 zc21 = zvx1*zvy6 - zvy1*zvx6
$a_3 = z_1 e_2 e_3 (k)$	3219 zcx2 = zvy6*zvz3 - zvz6*zvy3
IND IF	3220 ZCY2 = ZYZ6*ZYX3 - ZYX6*ZYZ3
	3221 2C22 = 2VX6*2VY3 - 2VY6*2VX3
a1 = x00-x0(k)	3222 zcx3 = zvy3*zvz5 - zvz3*zvy5
la2 = y00-y0(k)	3223 2Cy3 = 2V23*2V25 - 2V3*2V25
az = yoo yo(k)	3224 $2C3 = 2Vx3^{3}Zyy5 = 2Vy3^{3}Zyx5$
nodx0= DSQRT(a1**2+a2**2+a3**2)	$3224 \qquad 2L23 = 2Vy3^{-2}Vy3 - 2Vy3^{-2}Vx3 \\ 3225 \qquad zcx4 = zy5^{+2}vy2 - 2zz5^{+2}vy2$
$10000 = 0500(101^{-2}+32^{-2}+33^{-2})$ 1 = a1/modx0	3225 ZCX4 # ZV95-ZVZ2 - ZVZ5-ZV92 3226 ZCY4 = ZV25-ZV22 - ZVZ5-ZV92
a2 = a2/modx0	3227 zcz4 = zvx5*zvy2 - zvy5*zvy2
a3 = a3/modx0	3228 zcx5 = zvy2*zvz4 - zvz2*zvy4
	3229 zcy5 = zvz2*zvx4 - zvx2*zvz4
(OPEN (9,file="TE.out")	3230 zcz5 = zvx2*zvy4 - zvy2*zvx4
vertices of the kth triangle	3232 zcy6 = zvz4*zvx1 - zvx4*zvz1
	3233 zcz6 = zvx4*zvy1 - zvy4*zvx1
i1 = n(k, 1)	3234 !
i2 = n(k,2)	3235 ! Dot products.
3 = n(k,3)	3236
4 = n(k, 4)	3237 zd1 = zvx1*zvx6 +zvy1*zvy6 +zvx1*zvy6
.5 = n(k,5)	3238 zd2 = zvx6*zvx3 +zvy6*zvy3 +zvx6*zvy3
16 = n(k, 6)	3239 2/d3 = zvx3*zvx5 + zvy3*zvy5 + zvx3*zvy5
cf = 0.0D0	$\begin{array}{c} 3249 \\ 3241 \\ zd5 \\ zvx2^{+}zvy3 \\ zvy4 \\ zvy2^{+}zvy4 \\ zvy4 \\ z$
CT = 0.000	
pute the average value of the normal vector the mean curvature as a contour integral using the	
e formula	3244 Angles
irstly, to compute all vectors and angles involved.	3246 all = DACOS(zvx1*zvx6 + zvy1*zvy6 + zvz1*zvz6)
/vx1 = p(i1,1)-x10	3248 al3 = DACOS(zvx3*zvx5 + zvy3*zvy5 + zvz3*zvz5)
vy1 = p(i1,2)-y10	3249 a14 = DACOS($zvx5^{*}zvx2 + zvy5^{*}zvy2 + zvz5^{*}zvz2$)
vv1 = p(i1,3)-z10	3250 a15 = DACOS(zvx2*zvx4 + zvy2*zvy4 + zvz2*zvz4)
/vx2 = p(i2,1)-x10	3251 al6 = DACOS(zvx4*zvx1 + zvy4*zvy1 + zvz4*zvz1)
/vy2 = p(12,2)-y10	
vyz = p(1z, z) - y10 vzz = p(1z, 3) - z10	2222 :
vx2 = p(12, 5) - 210 vx3 = p(13, 1) - x10	$\begin{array}{c} 3253 \\ 3254 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2$
vy3 = p(13,2)-y10	3255 th 3 = DACOS($a1^{2}xy3 + a2^{2}xy3 + a3^{2}xy3$)
<pre>/vz3 = p(i3,3)-z10</pre>	3256 th4 = DACOS(a1*zvx5 + a2*zvy5 + a3*zvz5)

\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl3D_DLP.f90 47	
th5 = DACOS(a1*zvx2 + a2*zvy2 + a3*zvz2) th6 = DACOS(a1*zvx4 + a2*zvv4 + a3*zvz4)	3329 ! computation of curvature line integral along segment 5 3330 !
	3331 QExx = QExx + ((zvx5 + zvx2)*zcx4) / (1.0D0 + zd4)
e and g constants	3332 QExy = QExy + ((zvx5 + zvx2)*zcy4) / (1.0D0 + zd4) 3333 QExz = QExz + ((zvx5 + zvx2)*zcz4) / (1.0D0 + zd4)
e1 = (DCOS(th2) - DCOS(th1)*DCOS(al1))/DSIN(al1)	$3334 \qquad QEyx = QEyx + ((zvy5 + zvy2)*zcx4) / (1.0D0 + zd4)$
e2 = (DCOS(th3) - DCOS(th2)*DCOS(al2))/DSIN(al2)	3335 QEyy = QEyy + ((zvy5 + zvy2)*zcy4) / (1.0D0 + zd4)
e3 = (DCOS(th4) - DCOS(th3)*DCOS(al3))/DSIN(al3) e4 = (DCOS(th5) - DCOS(th4)*DCOS(al4))/DSIN(al4)	3336 QEyz = QEyz + ((zvy5 + zvy2)*zcz4) / (1.0D0 + zd4) 3337 OEzx = 0Ezx + ((zvz5 + zvz2)*zcx4) / (1.0D0 + zd4)
$e^{-1} = (DCOS(th6) - DCOS(th5))*DCOS(a14))/DSIN(a15)$	$\begin{array}{c} 3338 \\ 0 \\ 0 \\ Ezy \\ 0 \\ Ezy \\ 1 \\ (zyz5 + zyz) \\ +zcy4 \\) / (1.000 + zd4) \end{array}$
e6 = (DCOS(th1) - DCOS(th6)*DCOS(a16))/DSIN(a16)	3339 QE22 = QE22 + ((2V25 + 2V22)*2C24) / (1.0D0 + 2d4)
f1 = DCOS(th1) f2 = DCOS(th2)	3340 !
12 = DCOS(112) f3 = DCOS(113)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
f4 = DCOS(th4)	3343 PEz = PEz + (2.0D0*a3*zcz4/g4)*((DATAN(((1.0D0 - f4)*DTAN(a14/2) + e4)/ g4)) - DATAN(e4/g4))
fs = DCOS(ths)	3344 1
f6 = DCOS(th6) g1 = DSQRT(1.0D0 - e1**2 - f1**2)	3345 ! computation of curvature line integral along segment 2 3346 !
$g2 = DSQRT(1.0D0 - e2^{**}2 - f2^{**}2)$	3347 QExx = QExx + ((zvx2 + zvx4)*zcx5) / (1.0D0 + zd5)
g3 = DSQRT(1.0D0 - e3**2 - f3**2)	$3348 \qquad QExy = QExy + ((zvx2 + zvx4)*zcy5) / (1.000 + zd5)$
g4 = DSQRT(1.0D0 - e4**2 - f4**2) g5 = DSQRT(1.0D0 - e5**2 - f5**2)	3349 QEXz = QEXz + ((zvx2 + zvx4)*zcz5) / (1.0D0 + zd5) 3350 QEyx = QEyx + ((zvy2 + zvy4)*zcx5) / (1.0D0 + zd5)
gs = DSQR((1.000 - e5**2 - f5**2) ge = DSQR((1.000 - e6**2 - f6**2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
B	3352 QEyz = QEyz + ((zvy2 + zvy4)*zcz5) / (1.0D0 + zd5)
computation of curvature line integral along segment 1	3353 QEzx = QEzx + ((zvz2 + zvz4)*zcx5) / (1.0D0 + zd5)
QExx = ((zvx1 + zvx6)*zcx1) / (1.0D0 + zd1)	3354 QEzy = QEzy + ((zv22 + zv24)*zcy5) / (1.0D0 + zd5) 3355 QEzz = QEzz + ((zv22 + zv24)*zcz5) / (1.0D0 + zd5)
QExy = ((zvx1 + zvx6)*zcy1) / (1.0D0 + zd1)	3356 !
QExz = ((zvx1 + zvx6)*zcz1) / (1.0D0 + zd1)	3357 PEx = PEx + (2.0D0*a1*zcx5/g5)*((DATAN(((1.0D0 - f5)*DTAN(a15/2) + e5)/ g5)) - DATAN(e5/g5))
QEyx = ((zvy1 + zvy6)*zcx1) / (1.0D0 + zd1) OEyy = ((zvy1 + zvy6)*zcy1) / (1.0D0 + zd1)	3358 PEy = PEy + (2.000*a2*zcy5/g5)*((DATAN(((1.000 - f5)*DTAN(a15/2) + e5)/ g5)) - DATAN(e5/g5)) 3359 PEz = PEz + (2.000*a3*zcz5/g5)*((DATAN(((1.000 - f5)*DTAN(a15/2) + e5)/ g5)) - DATAN(e5/g5))
$QEyy = ((2vy1 + 2vy6)^*Zcy1) / (1.000 + 2d1)$ $QEyz = ((2vy1 + 2vy6)^*Zcz1) / (1.000 + 2d1)$	3359 PEZ = PEZ + (2.000°33°2CZ5/g5)*((DATAN(((1.000 - T5)*DIAN(315/2) + 65)/ g5)) - DATAN(65/g5)) 3360
$QEz = ((zv_1 + zv_2)^*zc_1) / (1.000 + zd_1)$	3361 ! computation of curvature line integral along segment 4
QEzy = ((zvz1 + zvz6)*zcy1) / (1.0D0 + zd1)	3362
QEzz = ((zvz1 + zvz6)*zcz1) / (1.0D0 + zd1)	3363 QExx = QExx + ((zvx4 + zvx1)*zcx6) / (1.0D0 + zd6) 3364 QExy = QExy + ((zvx4 + zvx1)*zcy6) / (1.0D0 + zd6)
PEx = (2.0D0*a1*zcx1/g1)*((DATAN(((1.0D0 - f1)*DTAN(a11/2) + e1)/ g1)) - DATAN(e1/g1))	$3365 QExy = QExy + (2xx4 + 2xx1)^{2}x(26) / (1.600 + 2d6)$
PEy = (2.0D0*a2*zcy1/g1)*((DATAN(((1.0D0 - f1)*DTAN(al1/2) + e1)/ g1)) - DATAN(e1/g1))	3366 QEyx = QEyx + ((zvy4 + zvy1)*zcx6) / (1.0D0 + zd6)
PEz = (2.0D0*a3*zcz1/g1)*((DATAN(((1.0D0 - f1)*DTAN(al1/2) + e1)/ g1)) - DATAN(e1/g1))	3367 QEyy = QEyy + ((zvy4 + zvy1)*zcy6) / (1.0D0 + zd6) 3368 QEyz = QEyz + ((zvy4 + zvy1)*zcz6) / (1.0D0 + zd6)
computation of curvature line integral along segment 6	$3369 \qquad Qeyz = Qeyz + ((2yy + 2yy))(2z + 2y)(1)(2z + 2yz)(2z + 2y$
· · · · · · · · · · · · · · · · · · ·	3370 QEzy = QEzy + ((zvz4 + zvz1)*zcy6) / (1.0D0 + zd6)
QExx = QExx + ((zvx6 + zvx3)*zcx2) / (1.0D0 + zd2) QExy = QExy + ((zvx6 + zvx3)*zcy2) / (1.0D0 + zd2)	3371 QEZZ = QEZZ + ((zvz4 + zvz1)*zcz6) / (1.0D0 + zd6) 3372 -
$QEXy = QEXy + (2xx6 + 2xx3)^{*}zc22) / (1.000 + zd2)$ $QEXz = QEXz + (2xx6 + 2xx3)^{*}zc22) / (1.000 + zd2)$	3372 1 3373 PEx = PEx + (2.0D0*a1*zcx6/g6)*((DATAN(((1.0D0 - f6)*DTAN(a16/2) + e6)/ g6)) - DATAN(e6/g6))
QEyx = QEyx + ((zvy6 + zvy3)*zcx2) / (1.0D0 + zd2)	3374 PEy = PEy + (2.0D0*a2*zcy6/g6)*((DATAN(((1.0D0 - f6)*DTAN(a16/2) + e6)/ g6)) - DATAN(e6/g6))
QEyy = QEyy + ((zvy6 + zvy3)*zcy2) / (1.000 + zd2)	3375 PEz = PEz + (2.0D0*a3*zcz6/g6)*((DATAN(((1.0D0 - f6)*DTAN(a16/2) + e6)/ g6)) - DATAN(e6/g6)) 3376
QEyz = QEyz + ((zvy6 + zvy3)*zcz2) / (1.0D0 + zd2) QEzx = QEzx + ((zvz6 + zvz3)*zcx2) / (1.0D0 + zd2)	3370 :
QEzy = QEzy + ((zvz6 + zvz3)*zcy2) / (1.0D0 + zd2)	3378 TExy = 2.000*(QExy)
QEzz = QEzz + ((zvz6 + zvz3)*zcz2) / (1.0D0 + zd2)	3379 TEXz = 2.000° (QEXz)
PEx = PEx + (2.0D0*a1*zcx2/g2)*((DATAN(((1.0D0 - f2)*DTAN(a12/2) + e2)/ g2)) - DATAN(e2/g2))	3380 TEyx = 2.0D0*(QEyx) 3381 TEyy = 2.0D0*(QEyy + cpi + PE)
PEy = PEy + (2.0D0*a2*zcy2/g2)*((DATAN(((1.0D0 - f2)*DTAN(al2/2) + e2)/ g2)) - DATAN(e2/g2))	3382 TEyz = 2.0D0*(QEyz)
PEz = PEz + (2.0D0*a3*zcz2/g2)*((DATAN(((1.0D0 - f2)*DTAN(al2/2) + e2)/ g2)) - DATAN(e2/g2))	3383 TEZX = 2.0D0*(QEZX)
computation of curvature line integral along segment 3	3384 TEzy = 2.000*(QEzy) 3385 TEzz = 2.000*(QEzz + cpi + PE)
OExx = OExx + ((zvx3 + zvx5)*zcx3) / (1.0D0 + zd3)	3386 ! 3387 END SUBROUTINE intr lin sing s7
QExy = QExy + ((zvx3 + zvx5)*zcy3) / (1.0D0 + zd3)	3388 !
QExz = QExz + ((zvx3 + zvx5)*zcz3) / (1.0D0 + zd3)	3389 SUBROUTINE intr_lin_sing_s8(x0e, y0e, z0e, &
QEyx = QEyx + ((zvy3 + zvy5)*zcx3) / (1.0D0 + zd3) QEyy = QEyy + ((zvy3 + zvy5)*zcy3) / (1.0D0 + zd3)	3390 & x00, y00, z00, & 3391 & k. &
QEyy = QEyy + ((2vy3 + 2vy5)*2cy3) / (1.000 + 2d3) QEyz = QEyz + ((zvy3 + zvy5)*2cz3) / (1.000 + zd3)	3391 0 K, 0 3392 & TExx, TExy, TExz, &
QEzx = QEzx + ((zvz3 + zvz5)*zcx3) / (1.0D0 + zd3)	3393 & TEyx, TEyy, TEyz, &
QEzy = QEzy + (zvz3 + zvz5)*zcy3) / (1.0D0 + zd3)	3394 & TEzx, TEzy, TEzz)
QEzz = QEzz + ((zvz3 + zvz5)*zcz3) / (1.0D0 + zd3)	3395 !
PEx = PEx + (2.0D0*a1*zcx3/g3)*((DATAN(((1.0D0 - f3)*DTAN(a13/3) + e3)/ g3)) - DATAN(e3/g3))	3307 !Compute:
PEy = PEy + (2.0D0*a2*zcy3/g3)*((DATAN(((1.0D0 - f3)*DTAN(al3/3) + e3)/ g3)) - DATAN(e3/g3))	3398 ! *The value of the Stokeslet over each singular element
PEz = PEz + (2.0D0*a3*zcz3/g3)*((DATAN(((1.0D0 - f3)*DTAN(a13/3) + e3)/ g3)) - DATAN(e3/g3))	3399 !Now, (March/ 09 / 2015) this subroutine was made. 3400 !

D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl3D DLP.f90 4	19 D:\Darth Vader\Escritorio\prtcl mkl\Mod Prtcl3D DLP.f90 50
3401 USE Mod_Nodal_Interp 3402 USE Mod_ShortCl_3D_Geo, ONLY: abc 3403 USE Mod_SharedVars, ONLY: bBL, p, ne, n, nbe, ULog,& 3404 & 3404 & 3404 & 3404 & 3405 & 3406 & 3406 & 3406 vnx0, vny0, vnz0, & 3406 & 3407 ZZ, MM, & 3408 xiq, etq, wq, pl, eps, x0, y0, z0	3473 QEyx = 0.000 3474 QEyx = 0.000 3475 QEyz = 0.000 3476 QEyz = 0.000 3477 QEyz = 0.000 3478 QEyz = 0.000 3479 QEyz = 0.000 3479 QEyz = 0.000 3480 PEx = 0.000 3481 PEy = 0.000
3410 INPLICIT NONE 3411 !===================================	3482 PEz = 0.000 3483 PE = 0.000
3412 ! Variables 3413	3444 3445 a1 = x0e-x00 3445 a2 = y0e-y00 3447 a3 = z0e-z00 3448 modx0= DSQR(a1**2+a2**2) 3448 349 349 349 349 349 50 = 0.000 + eps) THEN 3491 cpi = 0.000 + ops) THEN 3492 ELSE IF (modx0 ← 1.000 - eps) THEN 3493 cpi = 3.000*pi
3422 INTEGER :: i, j !Counters	3494 ELSE 3495 cpi = -4.000*pi
3424 INTEGER :: i1, i2, i3, i4, i5, i6 !indices to obtain node numbers from each element	3496 end if 3497 !
3260REAL (KIND = DB1) :: cf, f 111, f112, f113integration weigth coefficients3271REAL (KIND = DB1) :: cpiIselection to add the solid angle3282REAL (KIND = DB1) :: cpiIselection to add the solid angle3293REAL (KIND = DBL) :: box1, byy1, byz1, &Ivectoreial product3413&box2, byy2, byz2, &3424&box3, byy3, byz33433REAL (KIND = DBL) :: box1, byy1, byz1, &Ivectoreial product3434&Offxy, Offxy, Offxy, &3434&Offxy, Offxy, Offxy, &3444&Offxy, Offxy, Offx, O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3455 REAL (KIND = DBL), DIMENSION(6) ::DxDe, DyDe, DzDe !tangential vector over eta axis in triangle (xi,eta) 3456 REAL (KIND = DBL), DIMENSION(6) :: vx, vy, vz !normal vector in triangle (xi,eta)	3527 3528 cf = 0.000
3457 Initialize 3458 I initialize 3460 TExx = 0.000 3461 TExy = 0.000 3463 TExz = 0.000 3464 TEyy = 0.000 3465 TEyz = 0.000 3466 TEyy = 0.000 3467 TEzx = 0.000 3468 TEzx = 0.000 3469 TExx = 0.000 3470 QExx = 0.000 3471 QExx = 0.000 3472 QExx = 0.000	3529 I compute the average value of the normal vector the mean curvature as a contour integral using the trapezoidal 3531 1 rule formula 3532 I 3533 D0 i = 1, 13 3534 xi = xlq(1) 3535 eta = etq(1) 3536 CALL interp.p(p(11,1)-x00, p(11,2)-y00, p(11,3)-z00, & 3537 & p(12,1)-x00, p(12,2)-y00, p(12,3)-z00, & 3538 & p(13,1)-x00, p(14,2)-y00, p(14,3)-z00, & 3539 & p(14,1)-x00, p(14,2)-y00, p(14,3)-z00, & 3540 & p(15,1)-x00, p(15,2)-y00, p(15,3)-z00, & 3541 & p(16,1)-x00, p(15,2)-y00, p(15,3)-z00, & 3541 & p(16,1)-x00, p(15,2)-y00, p(15,3)-z00, & 3542 & al, be, ga, & 3543 & x, y, z, & 3544 & x, y, z, &

& DxDxi, DyDxi, DzDxi, &	3617 !
& DxDet, DyDet, &	3618 yvx2 = p(i4,1) - x00
& vnx, vny, vnz, &	3619 $yvy2 = p(14,2) - y00$
& hs) cf = hs*wq(i)	3620 yvz2 = p(i4,3) - z00 3621 fil2 = DSQRT(yvx2**2 + yvy2**2 + yvz2**2)
END DO	3621 T112 USUN(YV2'2 + YV2'2 + YV2'2) 3622 !
l cf=0.5D0*cf	3623 yvx3 = p(i2,1) - x00
	3624 $yyg = p(12,2) - y00$
! computation of curvature line integral along segment 1-4	3625 yvz3 = p(12,3) - z00
formula (4.2.10) of Pozrikidis (1997)	3626 fil3 = DSQRT(yvx3**2 + yvy3**2 + yvz3**2)
	3627 !
xxi(1) = 0.000	$3628 ay1 = (a1^*yvx1 + a2^*yvy1 + a3^*yvz1)$
eet(1) = 0.0D0 xxi(2) = 1.0D0	$\begin{array}{rcl} 3629 & ay2 &= (a1*yvx2 + a2*yvy2 + a3*yvz2) \\ 3630 & ay3 &= (a1*yvx3 + a2*yvy3 + a3*yvz3) \end{array}$
eet(2) = 0.000	3630 ay3 = (a1*yux3 + a2*yuy3 + a3*yuz3) 3631 !
xx(3) = 0.000	3632 by1 = (fil1*(fil1+ay1))
eet(3) = 1.000	3633 by2 = (fil2*(fil2+ay2))
xxi(4) = al	3634 by3 = (fil3*(fil3+ay3))
eet(4) = 0.0D0	3635 !
<pre>xxi(5) = ga eet(5) = gac</pre>	3636 bvx1 = yvy1 ⁴ DzDx(1)-yvz1 ⁴ DyDx(1)
eet(5) = gac xxi(6) = 0.0D0	3637 bvy1 = yvz1*DxDx(1)-yvx1*DzDx(1) 3638 bvz1 = yvx1*DyDx(1)-yvy1*DxDx(1)
eet(6) = be	3638 bvz1 = yvx1*0y0x(1)-yvy1*0x0x(1) 3639 !
i = 0 $i = 1, 6$	3648 bvx2 = yvy2*DzDx(4)-yvz2*DyDx(4)
xi = xxi(i)	3641 byy2 = yvz2*DxDx(4)-yvx2*DzDx(4)
eta = eet(i)	3642 bvz2 = yvx2*DyDx(4)-yvy2*DxDx(4)
CALL interp_p(p(i1,1)-x00, p(i1,2)-y00, p(i1,3)-z00, &	3643 !
& p(i2,1)-x00, p(i2,2)-y00, p(i2,3)-z00, &	3644 bvx3 = yvy3*DzDx(2)-yvz3*byDx(2)
& p(i3,1)-x00, p(i3,2)-y00, p(i3,3)-z00, & & p(i4,1)-x00, p(i4,2)-y00, p(i4,3)-z00, &	3645 bvy3 = yvz3*DxDx(2)-yvx3*DzDx(2) 3646 bvz3 = yvx3*DyDx(2)-yvy3*DxDx(2)
\hat{a} $p(14,1)-x00$, $p(14,2)-y00$, $p(15,3)-z00$, \hat{a}	3647 1
& p(16,1)-x80, p(16,2)-y80, p(16,3)-z80, &	3648 QExx = ((al*yvx1*bvx1)/(fil1**3)) + ((yvx2*bvx2)/(fil2**3)) + ((alc*yvx3*bvx3)/(fil3**3))
& al, be, ga, &	3649 QExy = ((al*yvx1*bvy1)/(fil1**3)) + ((yvx2*bvy2)/(fil2**3)) + ((alc*yvx3*bvy3)/(fil3**3))
& xi, eta, &	3650 QExz = ((al*yvx1*bvz1)/(fil1**3)) + ((yvx2*bvz2)/(fil2**3)) + ((alc*yvx3*bvz3)/(fil3**3))
& x, y, z, &	3651 QEyx = ((al*yvy1*bvx1)/(fil1**3)) + ((yvy2*bvx2)/(fil2**3)) + ((alc*yvy3*bvx3)/(fil3**3))
& DxDx(i), DyDx(i), &	3652 QEyy = ((al*yvy1*bvy1)/(fil1**3)) + ((yvy2*bvy2)/(fil2**3)) + ((alc*yvy3*bvy3)/(fil3**3))
& DxDe(i), DyDe(i), DzDe(i), & & vx(i), vy(i), vz(i), &	3653 QEyz = ((al*yvy1*bvz1)/(fil1**3)) + ((yvy2*bvz2)/(fil2**3)) + ((alc*yvy3*bvz3)/(fil3**3)) 3654 QEzx = ((al*yvz1*bvx1)/(fil1**3)) + ((yvz2*bvx2)/(fil2**3)) + ((alc*yvz3*bvx3)/(fil3**3))
	$\frac{3034}{3655} (\underline{cla^{3}} \sqrt{2} \frac{1000}{1000} \sqrt{1111} \frac{1000}{3000} + ((\underline{cla^{3}} \sqrt{2} \frac{1000}{1000} \sqrt{111000} \frac{1000}{10000} \sqrt{111000} \sqrt{1110000} \sqrt{1110000} \sqrt{11100000} \sqrt{11100000} \sqrt{111000000} \sqrt{111000000000} 1110000000000000000000000000000000000$
END DO	3656 QEzz = ((al*yvz1*bvz1)/(fil1**3)) + ((yvz2*bvz2)/(fil2**3)) + ((alc*yvz3*bvz3)/(fil3**3))
-!	3657 !
bvx1 = 0.0D0	3658 PEx = ((al*a1*bvx1)/(by1)) + ((al*bvx2)/(by2)) + ((alc*a1*bvx3)/(by3))
bvy1 = 0.0D0 bvz1 = 0.0D0	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$bvz_1 = 0.000$ $bvz_2 = 0.000$	3660 PEz = ((al*a3*bvz1)/(by1)) + ((a3*bvz2)/(by2)) + ((alc*a3*bvz3)/(by3)) 3661 !
bvy2 = 0.000	3662 ! computation of curvature line integral along segment 2-5-3
bv22 = 0.0D0	3663 !
bvx3 = 0.0D0	3664 yvx1 = p(12,1) - x00
bvy3 = 0.0D0	3665 yvy1 = p(12,2) - y00
bvz3 = 0.000 vvx1 = 0.000	$\begin{array}{ccc} 3666 & yvz1 = p(12,3) - 200 \\ 3667 & fill = DSQRT(vvz1^{**}2 + vvv1^{**}2 + vvz1^{**}2) \end{array}$
yvx1 = 0.0D0 yvy1 = 0.0D0	3667 fill = DSQRT(yxx1**2 + yvy1**2 + yvz1**2) 3668 !
yvz1 = 0.000 yvz1 = 0.000	3669 yvx2 = p(15,1) - x00
yvx2 = 0.000	3670 $yyg = p(15,2) - y00$
yvy2 = 0.0D0	3671 yvz2 = p(15,3) - z00
yvz2 = 0.000	3672 fil2 = DSQRT(yvx2**2 + yvy2**2 +yvz2**2)
yvx3 = 0.000	3673
yvy3 = 0.0D0 yvz3 = 0.0D0	$\begin{array}{cccc} 3674 & yvx3 = p(13,1) - x00 \\ 3675 & vvx3 = p(13,2) - x00 \end{array}$
fil = 0.000	3675 yvy3 = p(13,2) - y00 3676 yvz3 = p(13,3) - z00
fil2 = 0.000	3677 fila = DSQRT(yx3*2 + yyy3*2 + yyz3*2)
fil3 = 0.0D0	3678 1
ay1 = 0.000	3679 ay1 = (a1*yvx1 + a2*yvy1 + a3*yvz1)
ay2 = 0.0D0	3680 ay2 = (a1*yvx2 + a2*yvy2 + a3*yvz2)
ay3 = 0.0D0	3681 ay3 = (a1*yvx3 + a2*yvy3 + a3*yvz3)
!	3662 !
computation of curvature line integral along segment 1-4-2	3683 0y1 = (
yvx1 = p(i1,1) - x00	3685 by $3 = (f12*(f113*q)3)$
yvy1 = p(11,2) - y00	3686 !
yvz1 = p(i1,3) - z00	3687 bvx1 = yvy1*DzDx(2)-yvz1*DyDx(2)
fil1 = DSQRT(yvx1**2 + yvy1**2 + yvz1**2)	3688 bvy1 = yvz1*DxDx(2)-yvx1*DzDx(2)

bvz1 = yvx1*DyDx(2)-yvy1*DxDx(2)	3761 PEz = PEz + ((gac*a3*bvz1)/(by1)) + ((a3*bvz2)/(by2)) + ((ga*a3*bvz3)/(by3))
bvx2 = yvy2*DzDx(5)-yvz2*DyDx(5)	3762 !
bvy2 = yvz2*DxDx(5) yvz2*DzDx(5)	$\frac{3764}{(PEV = PEV - ((Ea^{-4}a^{-1}b^{-1}y))/(by1)) - ((Ea^{-4}b^{-1}y)/(by2)) - ((Ea^{-4}a^{-1}b^{-1}y)/(by2))}{(Ea^{-4}a^{-1}b^{-1}y)/(by1)) - (Ea^{-4}a^{-1}b^{-1}y)/(by2)) - (Ea^{-4}a^{-1}b^{-1}y)/(by2))$
bvz2 = yvx2*DyDx(5)-yvy2*DxDx(5)	3765 !PEz = PEz - ((gac*a3*bvz1)/(by1)) - ((a3*bvz2)/(by2)) - ((ga*a3*bvz3)/(by3))
bvx3 = yvy3*DzDx(3)-yvz3*DyDx(3)	3766 ! 3767 ! computation of curvature line integral along segment 3-6-1
bvy3 = yvz3*DxDx(3)-yvx3*DzDx(3)	3768 !
bvz3 = yvx3*DyDx(3)-yvy3*DxDx(3)	3769
QExx = QExx - ((gac*yvx1*bvx1)/(fil1**3)) - ((yvx2*bvx2)/(fil2**3)) - ((ga*yvx3*bvx3)/(fil3**	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
<pre>QExy = QExy = ((gac*yvx1*bvy1)/(fil1**3)) = ((yvx2*bvy2)/(fil2**3)) = ((ga*yvx3*bvy3)/(fil3**</pre>	3772 fil1 = DSQRT(yvx1**2 + yvy1**2 + yvz1**2)
<pre>QExz = QExz - ((ga*yvx1*bvz1)/(fil1**3)) - ((yvx2*bvz2)/(fil2**3)) - ((ga*yvx3*bvz3)/(fil3** QEyx = QEyx - ((ga*yvy1*bvx1)/(fil1**3)) - ((yvy2*bvx2)/(fil2**3)) - ((ga*yvy3*bvx3)/(fil3**</pre>	3773 ! 3774 yvx2 = p(i6,1) - x00
<pre>QEyy = QEyy - ((gac*yvy1*bvy1)/(fil1**3)) - ((yvy2*bvy2)/(fil2**3)) - ((ga*yvy3*bvy3)/(fil3**</pre>	3775 $yvy2 = p(16,2) - y00$
<pre>QEyz = QEyz = ((gac*yvy1*bvz1)/(fil1**3)) = ((yvy2*bvz2)/(fil2**3)) = ((ga*yvy3*bvz3)/(fil3** OF OF ((gac*yvy1*bvz1)/(fil1**3)) = ((gac*yvy3*bvz3)/(fil2**3)) = ((gac*yvy3*bvz3)/(fil2**3))</pre>	$\begin{array}{cccc} 3776 & yyy2 = p(16,3) - 200 \\ 3777 & f112 = 0 \text{SORT}(yy2^{**}2 + yyy2^{**}2 + yyy2^{**}2) \end{array}$
<pre>QEzx = QEzx - ((gac*yvz1*bvx1)/(fil1**3)) - ((yvz2*bvx2)/(fil2**3)) - ((ga*yvz3*bvx3)/(fil3** QEzy = QEzy - ((gac*yvz1*bvy1)/(fil1**3)) - ((yvz2*bvy2)/(fil2**3)) - ((ga*yvz3*bvy3)/(fil3**</pre>	3777 fil2 = DSQRT(yvx2**2 + yvy2**2 + yvy2**2)
QEzz = QEzz - ((gac*yvz1*bvz1)/(fil1**3)) - ((yvz2*bvz2)/(fil2**3)) - ((ga*yvz3*bvz3)/(fil3**	3779 yvx3 = p(i1,1) - x00
!QExx = QExx + ((gac*yvx1*bvx1)/(fil1**3)) + ((yvx2*bvx2)/(fil2**3)) + ((ga*yvx3*bvx3)/(fil3*	3780 yvy3 = p(11,2) - y00 3781 yvz3 = p(11,3) - z00
<pre>!QExy = QExy + ((gac*yvx1*bvy1)/(fil1**3)) + ((yvx2*bvy2)/(fil2**3)) + ((ga*yvx3*bvy3)/(fil3*</pre>	3782 fil3 = DSQRT(yvx3**2 + yvy3**2 + yvz3**2)
<pre>!QExz = QExz + ((gac*yvx1*bvz1)/(fil1**3)) + ((yvx2*bvz2)/(fil2**3)) + ((ga*yvx3*bvz3)/(fil3*</pre>	3783 !
<pre>!QEyx = QEyx + ((gac*yvy1*bvx1)/(fil1**3)) + ((yvy2*bvx2)/(fil2**3)) + ((ga*yvy3*bvx3)/(fil3* !QEyy = QEyy + ((gac*yvy1*bvy1)/(fil1**3)) + ((yvy2*bvy2)/(fil2**3)) + ((ga*yvy3*bvy3)/(fil3*</pre>	3784 ay1 = (a1*yvx1 + a2*yvy1 + a3*yvz1) 3785 ay2 = (a1*yvx2 + a2*yvy2 + a3*yvz2)
<pre>!QEyz = QEyz + ((gac*yvy1*bvz1)/(fil1**3)) + ((yvy2*bvz2)/(fil2**3)) + ((ga*yvy3*bvz3)/(fil3*</pre>	3786 ay3 = (a1*yvx3 + a2*yvy3 + a3*yvz3)
<pre>!QEzx = QEzx + ((gac*yvz1*bvx1)/(fil1**3)) + ((yvz2*bvx2)/(fil2**3)) + ((ga*yvz3*bvx3)/(fil3* !QEzy = QEzy + ((gac*yvz1*bvy1)/(fil1**3)) + ((yvz2*bvy2)/(fil2**3)) + ((ga*yvz3*bvy3)/(fil3*</pre>	3787 ! 3788 by1 = DSQRT((fil1*(fil1+ay1))**2)
<pre>!QEzz = QEzz + ((gac*yvz1*bvz1)/(fil1**3)) + ((yvz2*bvz2)/(fil2**3)) + ((ga*yvz3*bvz3)/(fil3*</pre>	3789 by $2 = DSQRT((fil2*(fil2*ay2))**2)$
PEx = PEx - ((gac*a1*bvx1)/(by1)) - ((a1*bvx2)/(by2)) - ((ga*a1*bvx3)/(by3)) PEy = PEy - ((gac*a2*bvy1)/(by1)) - ((a2*bvy2)/(by2)) - ((ga*a2*bvy3)/(by3))	3791
PEz = PEz - ((gac*a3*bvz1)/(by1)) - ((a3*bvz2)/(by2)) - ((ga*a3*bvz3)/(by3))	3793 bvy1 = yvz1*DxDe(3)-yvx1*DzDe(3)
<pre>!PEx = PEx + ((gac*a1*bvx1)/(by1)) + ((a1*bvx2)/(by2)) + ((ga*a1*bvx3)/(by3))</pre>	3794 bv21 = yvx1*0y0e(3)-yvy1*0x0e(3) 3795 !
PEy = PEy + ((gac*a2*bvy1)/(by1)) + ((a2*bvy2)/(by2)) + ((ga*a2*bvy3)/(by3))	3796 bvx2 = yvy2*DZDe(6) - yvz2*DyDe(6)
<pre>!PEz = PEz + ((gac*a3*bvz1)/(by1)) + ((a3*bvz2)/(by2)) + ((ga*a3*bvz3)/(by3))</pre>	3797 bvy2 = yvz2*DxDe(6)-yvx2*DzDe(6)
bvx1 = yvy1*DzDe(2)-yvz1*DyDe(2)	3798 bvz2 = yvx2*DyDe(6)-yvy2*DxDe(6) 3799 !
bvy1 = yvz1*DxDe(2)-yvx1*DzDe(2)	3800 bvx3 = yvy3*DzDe(1)-yvz3*DyDe(1)
bvz1 = yvx1*DyDe(2)-yvy1*DxDe(2)	3801 bvy3 = yvz3*DxDe(1)-yvx3*DzDe(1) 3802 bvz3 = yvx3*DyDe(1)-yvy3*DxDe(1)
bvx2 = yvy2*DzDe(5)-yvz2*DyDe(5)	3803 !
bvy2 = yvz2*DxDe(5)-yvx2*DzDe(5)	3804 QExx = QExx - ((be*yxx1*bvx1)/(f11**3)) - ((yvx2*bvx2)/(f112**3)) - ((bec*yxx3*bvx3)/(f113**3)) 3805 QExy = OExy - ((be*yvx1*bvx1)/(f11**3)) - ((yvx2*bvx2)/(f112**3)) - ((bec*yvx3*bvx3)/(f113**3))
bvz2 = yvx2*DyDe(5)-yvy2*DxDe(5)	<pre>3805 QExy = QExy - ((be*yvx1*bvy1)/(fil1**3)) - ((yvx2*bvy2)/(fil2**3)) - ((bec*yvx3*bvy3)/(fil3**3)) 3806 QExz = QExz - ((be*yvx1*bvz1)/(fil1**3)) - ((yvx2*bvz2)/(fil2**3)) - ((bec*yvx3*bvz3)/(fil3**3))</pre>
bvx3 = yvy3*DzDe(3)-yvz3*DyDe(3)	3807 QEyx = QEyx - ((be*yvy1*bvx1)/(fil1**3)) - ((yvy2*bvx2)/(fil2**3)) - ((bec*yvy3*bvx3)/(fil3**3))
bvy3 = yvz3*DxDe(3)-yvx3*DzDe(3) bvz3 = yvx3*DyDe(3)-yvy3*DxDe(3)	3808 QEyy = QEyy - ((be*yvy1*bvy1)/(fil1**3)) - ((yvy2*bvy2)/(fil2**3)) - ((bec*yvy3*bvy3)/(fil3**3)) 3809 QEyz = QEyz - ((be*yvy1*bvz1)/(fil1**3)) - ((yvy2*bvz2)/(fil2**3)) - ((bec*yvy3*bvz3)/(fil3**3))
QExx = QExx + ((gac*yvx1*bvx1)/(fil1**3)) + ((yvx2*bvx2)/(fil2**3)) + ((ga*yvx3*bvx3)/(fil3**	3811 QEzy = QEzy - ((be*yvz1*bvy1)/(fil1**3)) - ((yvz2*bvy2)/(fil2**3)) - ((bec*yvz3*bvy3)/(fil3**3))
<pre>QExy = QExy + ((ga*yvx1*bvy1)/(fil1**3)) + ((yvx2*bvy2)/(fil2**3)) + ((ga*yvx3*bvy3)/(fil3** QExz = QExz + ((ga*yvx1*bvz1)/(fil1**3)) + ((yvx2*bvz2)/(fil2**3)) + ((ga*yvx3*bvz3)/(fil3**</pre>	3812 QEZZ = QEZZ - ((be*yvz1*bvz1)/(fil1**3)) - ((yvz2*bvz2)/(fil2**3)) - ((bec*yvz3*bvz3)/(fil3**3)) 3813 !
<pre>QEyx = QEyx + ((gac*yvy1*bvx1)/(fil1**3)) + ((yvy2*bvx2)/(fil2**3)) + ((ga*yvy3*bvx3)/(fil3**</pre>	3814 !QExx = QExx + ((be*yvx1*bvx1)/(fil1**3)) + ((yvx2*bvx2)/(fil2**3)) + ((bec*yvx3*bvx3)/(fil3**3))
<pre>QEyy = QEyy + ((ga*yvy1*bvy1)/(fil1**3)) + ((yvy2*bvy2)/(fil2**3)) + ((ga*yvy3*bvy3)/(fil3** QEyz = QEyz + ((ga*yvy1*bvz1)/(fil1**3)) + ((yvy2*bvz2)/(fil2**3)) + ((ga*yvy3*bvz3)/(fil3**</pre>	3815 !QExy = QExy + ((be*yvx1*bvy1)/(fil1**3)) + ((yvx2*bvy2)/(fil2**3)) + ((bec*yvx3*bvy3)/(fil2**3)) 3816 !QExz = QExz + ((be*yvx1*bvz1)/(fil1**3)) + ((yvx2*bvz2)/(fil2**3)) + ((bec*yvx3*bvz3)/(fil3**3))
QEzz = QEzz + ((gac*yvz1*bvz1)/(fil1**3)) + ((yvz2*bvz2)/(fil2**3)) + ((ga*yvz3*bvz3)/(fil3** QEzz = QEzz + ((gac*yvz1*bvz1)/(fil1**3)) + ((yvz2*bvz2)/(fil2**3)) + ((ga*yvz3*bvz3)/(fil3**	30.0 :(gcx2 = gcx2 + ((bc ⁺ yvx ¹ bvx2))/(f11 ²⁺³)) + ((yvx ² bvx2)/(f11 ²⁺³)) + ((bc ⁺ yvx ³ bvx3)/(f113 ²⁺³)) 3817 : [qEyx = QEyx + ((bc ⁺ yvx ¹ bvx1)/(f11 ²⁺³)) + ((yvx ² bvx2)/(f11 ²⁺³)) + ((bc ⁺ yvx ³ bvx3)/(f113 ²⁺³))
<pre>QEzy = QEzy + ((gac*yvz1*bvy1)/(fil1**3)) + ((yvz2*bvy2)/(fil2**3)) + ((ga*yvz3*bvy3)/(fil3**</pre>	3818 !QEyy = QEyy + ((be*yvy1*bvy1)/(fil1**3)) + ((yvy2*bvy2)/(fil2**3)) + ((bec*yvy3*bvy3)/(fil3**3))
QEzz = QEzz + ((gac*yvz1*bvz1)/(fil1**3)) + ((yvz2*bvz2)/(fil2**3)) + ((ga*yvz3*bvz3)/(fil3**	3819 !QEyz = QEyz + ((be*yvy1*bvz1)/(fil1**3)) + ((yvy2*bvz2)/(fil2**3)) + ((bec*yvy3*bvz3)/(fil3**3)) 3820 !QEzx = QEzx + ((be*yvz1*bvx1)/(fil1**3)) + ((yvz2*bvx2)/(fil2**3)) + ((bec*yvz3*bvx3)/(fil3**3))
!QExx = QExx - ((gac*yvx1*bvx1)/(fil1**3)) - ((yvx2*bvx2)/(fil2**3)) - ((ga*yvx3*bvx3)/(fil3* !QExy = QExy - ((gac*yvx1*bvy1)/(fil1**3)) - ((yvx2*bvy2)/(fil2**3)) - ((ga*yvx3*bvy3)/(fil3*	3620 :(gczA - gczA + ((be*yvz1bw3))/(fil1*3)) + ((yvz2bw2)/(fil2*3)) + ((be*yvz3bw3)/(fil3*3)) 3821 :(gczy - gczA + ((be*yvz1bw3))/(fil1*3)) + ((yvz2bw2)/(fil2*3)) + ((be*yvz3bw3)/(fil3*3))
<pre>IQExy = QExy - ((gac*yvx1*bvy1)/(fil1**3)) - ((yvx2*bvy2)/(fil2**3)) - ((ga*yvx3*bvy3)/(fil3* IQExy = QExy - ((gac*yvx1*bvy1)/(fil1**3)) - ((yvx2*bvy2)/(fil1**3)) - ((ga*yvx3*bvy3)/(fil1**3))</pre>	3822 !QEzz = QEzz + ((be*yvz1*bvz1)/(fil1**3)) + ((yvz2*bvz2)/(fil2**3)) + ((bec*yvz3*bvz3)/(fil3**3))
<pre>!QExz = QExz - ((gac*yvx1*bvz1)/(fil1**3)) - ((yvx2*bvz2)/(fil2**3)) - ((ga*yvx3*bvz3)/(fil3* !QEyx = QEyx - ((gac*yvy1*bvx1)/(fil1**3)) - ((yvy2*bvx2)/(fil2**3)) - ((ga*yvy3*bvx3)/(fil3*</pre>	3823 !
<pre>!QEyy = QEyy - ((gac*yvy1*bvy1)/(fil1**3)) - ((yvy2*bvy2)/(fil2**3)) - ((ga*yvy3*bvy3)/(fil3*</pre>	3825 PEy = PEy - ((be*a2*bvy1)/(by1)) - ((a2*bvy2)/(by2)) - ((bec*a2*bvy3)/(by3))
<pre>!QEyz = QEyz - ((gac*yvy1*bvz1)/(fil1**3)) - ((yvy2*bvz2)/(fil2**3)) - ((ga*yvy3*bvz3)/(fil3* !QEzx = QEzx - ((gac*yvz1*bvx1)/(fil1**3)) - ((yvz2*bvx2)/(fil2**3)) - ((ga*yvz3*bvx3)/(fil3*</pre>	3826 PEz = PEz - ((be*a3*bvz1)/(by1)) - ((a3*bvz2)/(by2)) - ((bec*a3*bvz3)/(by3)) 3827 !
<pre>!QEzy = QEzy - ((gac*yvz1*bvy1)/(fil1**3)) - ((yvz2*bvy2)/(fil2**3)) - ((ga*yvz3*bvy3)/(fil3*</pre>	3828 ! PEx = PEx + ((be*a1*bvx1)/(by1)) + ((a1*bvx2)/(by2)) + ((bec*a1*bvx3)/(by3))
!QEzz = QEzz - ((gac*yvz1*bvz1)/(fil1**3)) - ((yvz2*bvz2)/(fil2**3)) - ((ga*yvz3*bvz3)/(fil3*	3829 ! PEy = PEy + ((be*a2*bvy1)/(by1)) + ((a2*bvy2)/(by2)) + ((bec*a2*bvy3)/(by3))
PEx = PEx + ((gac*a1*bvx1)/(by1)) + ((a1*bvx2)/(by2)) + ((ga*a1*bvx3)/(by3))	3830 ! PEz = PEz + ((be*a3*bvz1)/(by1)) + ((a3*bvz2)/(by2)) + ((bec*a3*bvz3)/(by3)) 8831 !
PEx = PEx + ((ga(a + bvx))/(byx)) + ((a + bvx)/(byx)) + ((ga + a + bvx)/(byx)) $PEy = PEy + ((ga(a + a + bvx))/(byx)) + ((a + bvx)/(byx)) + ((ga + a + bvx)/(byx))$	3832 TExx = 2.000*(QExx + cpi -PE)/(cf)

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl3D_DLP.f90 55	D:\Darth Vader\Escritorio\prtc1_mkl\Mod_Prtc13D_DLP.f90 56
3833 TExy = 2.000*(0Exy)/(2.000*cf) 3834 TExx = 2.000*(0Ex) /(2.000*cf) 3835 TEyx = 2.000*(0Eyx)/(2.000*cf) 3836 TEyz = 2.000*(0Eyx)/(2.000*cf) 3837 TExx = 2.000*(0Eyx)/(2.000*cf) 3838 TExx = 2.000*(0Eyx)/(2.000*cf) 3839 TExy = 2.000*(0Eyx)/(2.000*cf) 3840 TExy = 2.000*(0Ex) /(2.000*cf) 3841 WHTE(*,*) TExx, FEyx, FEX 3842 WHTE(*,*) TExx, TExy, TExz	3995 REAL (KIND - DBL) :: DxDxi, DyDxi, DzDxi Iccordinates of the f(x,y,z)= f(xi,eta) 3996 REAL (KIND - DBL) :: DxDxi, DyDxi, DzDxi Iccordinates of the tangential vector over the xi axis 3997 REAL (KIND - DBL) :: DxDxi, DyDxi, DzDxi Iccordinates of the tangential vector over the xi axis 3998 REAL (KIND - DBL) :: DxDxi, DyDxi, DzDxi Iccordinates of the tangential vector over the eta axis 3998 REAL (KIND - DBL) :: Sx, se s Inormal vector icordinates of the flagential 3910 REAL (KIND - DBL) :: sl, be, ga, alc, bec, gat Iintegration weight coefficients 3911 REAL (KIND - DBL) :: sl, be, ga, alc, bec, gat Iintegration weight coefficients 3912 REAL (KIND - DBL), DIMENSION(6) :::xxi, eet Ivariabels of weight over in triangle (xi,eta) 3914 REAL (KIND - DBL), DIMENSION(6) :::xxi, vy, vz Inagential vector over ax axis in triangle (xi,eta) 3914 REAL (KIND - DBL), DIMENSION(6) ::xxi, vy, vz Inagential vector over ta axis in triangle (xi,eta) 3915 REAL (KIND - DBL), DIMENSION(6) ::xxi, vy, vz Inormal vector in triangle (xi,eta) 3914 REAL (KIND - DBL), DIMENSION(6) ::xxi, vy, vz Inormal vector in triangle (xi,eta) 3915 REAL (KIND - DBL), DIMENSION(6) ::xxi, vy, vz Inormal vector in triangle (xi,eta)
3844 !	3916 !
3846 !====================================	3918 !
3441 SUBROUTINE intr_lin_sing_s9(x0e, y0e, 20e, & 3445 SUBROUTINE intr_lin_sing_s9(x0e, y0e, 20e, & 3450 & x0e, y0e, 20e, & 3451 & x0e, y0e, z0e, & 3451 & TExx, TExy, TExz, & 3452 & TExx, TExy, TExz, & 3453 = TExx, TExy, TExz, & 3451 & TExx, TExy, TExz, & 3453 = TExx, TExy, TExz, & 3451 . TExx, TExy, TExz, & 3453 = Texx, TExy, TExz, & 3455 ! This subroutine is a new version stokeslet Subroutine. 3455 ! The value of the stokeslet owe each singular element 3456 ! The value of the stokeslet owe each singular element 3456 ! Ste Mod_Pret_la G_oeee, ONLY: abc 3461 use arel, crwmel, & 3462 USE Mod_Interp 3463 arel, crwmel, & 3464 arel, crwmel, & 3465 wake, wnpt, wnp	30:19 TExx = 0.000 30:21 TExy = 0.000 30:22 TExy = 0.000 30:23 TEyy = 0.000 30:24 TExy = 0.000 30:25 TExy = 0.000 30:26 TExy = 0.000 30:27 TExy = 0.000 30:28 Texy = 0.000 30:20 Tex =
3873 REAL (KIND = DBL), INTENT(IN) :: x00, y00, z00 !singulatity coordinates 3874 REAL (KIND = DBL), INTENT(IN) :: x00, y00, z00 !singulatity coordinates	3945 a2 = -y00 3946 a3 = -200
3875 INTEGER, INTENT(IN) :: k !number of element 3876 REAL (KIND = DBL), INTENT(OUT) :: TEXX, TEXY, TEXZ !value of stresslet in the singular element	3947 modx0= DSQRT(a1**2+a2**2+a3**2) 3948
3877 REAL (KIND = DBL), INTENT(OUT) :: TEyx, TEyy, TEyz !value of stresslet in the singular element 3878 REAL (KIND = DBL), INTENT(OUT) :: TEzx, TEzy, TEzz !value of stresslet in the singular element	3949 cpi = 4.000*pi 3950 !
3879 !====================================	3951 a1 = a1/modx0 3952 a2 = a2/modx0
3881 !	3953 a3 = a3/modx0 3954 !
3883 INTEGER :: i1, i2, i3, i4, i5, i6 !indices to obtain node numbers from each element 3884 !	3955 !OPEN (9,file="TE.out") 3956 !
3885 REAL (KIND = DBL) :: cf, fill, fil2, fil3 !integration weigth coefficients 3886 REAL (KIND = DBL) :: hss !weigth	3957 ! vertices of the kth triangle 3958 !
3887 REAL (KIND - DEL) :: cpi !selection to add the solid angle 3888 REAL (KIND - DEL) :: bwd.h byd.h byd.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3893 & O[Fyr, 0Fyr, 0Fyr, 6 3894 & QEX, 0Fyr, 6 3895 REAL (KIND = DBL) :: PX, PEy, PEr, PE I/p tensor 3895 REAL (KIND = DBL) :: yx1, yy1, yy1, yy1 I/vector (y1-x0) 3897 REAL (KIND = DBL) :: yx1, yy2, yy2, yy2 I/vector (y2-x0) 3898 REAL (KIND = DBL) :: yx2, yy2, yy2, yy2 I/vector (y2-x0) 3899 REAL (KIND = DBL) :: yx3, yy3, yy2, yy2 I/vector (y2-x0) 3899 REAL (KIND = DBL) :: yx3, yy3, yy3, yy2, I/vector (y2-x0) 3899 REAL (KIND = DBL) :: x x1, xy3, xy3 I/vector x2 3890 REAL (KIND = DBL) :: x x1, xy3, xy3 I/vector x3 3891 REAL (KIND = DBL) :: x x1, xy3, xy3 I/vector x3 3892 REAL (KIND = DBL) :: x x1, xy3, xy3 I/vector x4 3893 REAL (KIND = DBL) :: x x1, xy3, xy3 I/vector x4 3894 REAL (KIND = DBL) :: x x1, xy3, xy3 I/vector x4 3895 REAL (KIND = DBL) :: x x1, xy3, xy3 I/vector x4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3903 : 3904 REAL (KIND = DBL) :: xi, eta !variables of weigth to integrate over a triangle	3975 :

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl3D_DLP.f90 59	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Prtcl3D_DLP.f90
4121 4122 yvx3 = p(13,1) - x00 4123 yvy3 = p(13,2) - y00 4124 yvz3 = p(13,3) - 200 4124 yvz3 = p(13,3) - 200	4193 QEzx = QEzx + ((gac*yvz1*bvz1)/(fil1*3)) + ((yvz2*bvz2)/(fil2*3)) + ((ga*yvz3*bv3)/(fil3**3)) 4194 QEzx = QEzx + ((gac*yvz1*bv/(fil1*3)) + ((yvz2*bvz2)/(fil2*3)) + ((ga*yvz3*bv3)/(fil3**3)) 4195 QEzz = QEzz + ((gac*yvz1*bvz1)/(fil1*3)) + ((yvz2*bvz2)/(fil2*3)) + ((ga*yvz3*bvz3)/(fil3**3)) 4196 !
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4137 l QExx = QExx - ((gac*yw1*bvx1)/(fil1**3)) = ((yw2*bv2)/(fil2**3)) = ((ga*yw2*bv23)/(fil3**3)) 4138 l QExy = QExy - ((gac*yw1*bv2)/(fil1**3)) = ((yw2*bv2)/(fil1**3)) = ((ga*yw2*bv23)/(fil3**3)) 4139 l QExy = QExy - ((gac*yw1*bv2)/(fil1**3)) = ((yw2*bv2)/(fil1**3)) = ((ga*yw2*bv23)/(fil3**3)) 4201 l QExy = QExy - ((gac*yw1*bv2)/(fil1**3)) = ((yw2*bv2)/(fil1**3)) = ((ga*yw2*bv23)/(fil3**3)) 4201 l QEyy = QEyy - ((gac*yw1*bv2)/(fil1**3)) = ((yw2*bv2)/(fil1**3)) = ((ga*yw2*bv23)/(fil3**3)) 4202 l QEyz = QEyz - ((gac*yw1*bv2)/(fil1**3)) = ((yw2*bv2)/(fil1**3)) = ((ga*yw2*bv23)/(fil3**3)) 4203 l QExz = QEzz - ((gac*yw1*bv2)/(fil1**3)) = ((yw2*bv2)/(fil1**3)) = ((ga*yw2*bv23)/(fil3**3)) 4204 l QExy = QEyz - ((gac*yw1*bv2)/(fil1**3)) = ((yw2*bv2)/(fil2**3)) = ((ga*yw2*bv23)/(fil3**3)) 4205 l QEzz = QEzz - ((gac*yw1*bv2)/(fil1**3)) = ((yw2*bv2)/(fil2**3)) = ((ga*yw2*bv23)/(fil3**3))
413 brd = yy1102br(2)-yx21%)br(2) 413 brd = yy1102br(2)-yx21%)br(2) 413 brd = yy1102br(2)-yx21%)br(2) 413 br21 = yw1102br(2)-yy1102br(2) 413 br21 = yw1102br(2)-yy1102br(2) 414 br21 = yw1102br(2)-yy1102br(2) 415 br21 = yw1102br(2)-yw1102br(2) 415 br21 = yw1102br(2)-yw102br(2)-yw102br(2) 415 br21 = yw1102br(2)-yw102br(2)-yw102br(2)-yw102br(2)-yw102br(2)-yw102br(2)-yw102br(2)-yw102br(2)-yw102br(2)-yw102br(2)-yw102br(2)-yw102br(2)-yw102br(2)-yw102br(2)-yw102br(2)-yw102br(2)-yw102br(2)-yw10	4.307 PEx = PEx + ((gac*al*bvz1)/(by1)) + ((a*bvz2)/(by2)) + ((gp*al*bv3)/(by2)) 4.307 PEx = PEx + ((gac*al*bvz1)/(by1)) + ((a*bvz2)/(by2)) + ((gp*al*bv3)/(by2)) 4.308 PEx = PEx + ((gac*al*bvz1)/(by1)) + ((a*bvz2)/(by2)) + ((gp*al*bv2)/(by2)) 4.309 PEx = PEx + ((gac*al*bvz1)/(by1)) + ((a*bvz2)/(by2)) + ((gp*al*bv2)/(by2)) 4.309 PEx = PEx + ((gac*al*bvz1)/(by1)) + ((a*bvz2)/(by2)) + ((ga*al*bvz2)/(by2)) 4.309 PEx = PEx + ((gac*al*bvz1)/(by1)) + ((a*bvz2)/(by2)) + ((ga*al*bvz2)/(by2))
4135 bix2 = yyy2102bx(5) - yyy220yx(5) 4140 biy2 = yyz2102bx(5) - yyy220x(5) 4141 biz2 = ywz20y0x(5) - yyy220x(5) 4142	4211 IFEx = FEx - ((gat*a1*Wx1)/(by1)) - ((c1*bxc2)/(by2)) - ((g*a1*0x3/(by2)) 4212 IFEy = FEy - ((gat*a1*Wx1)/(by1)) - ((c1*bxc2)/(by2)) - ((g*a1*bx2)/(by2)) 4213 IFEz = FEz - ((gat*a1*bx2)/(by1)) - ((c1*bx2)/(by2)) - ((g*a1*bx2)/(by2)) 4214 IFEz = FEZ - ((gat*a1*bx2)/(by1)) - ((c1*bx2)/(by2)) - ((g*a1*bx2)/(by3))
4143 bvx3 = yvy3*020x(3) - yvx3*020x(3) 4144 bvy3 = yvx3*0x0x(3) - yvx3*020x(3) 4145 bvx3 = yvx3*020x(3) - yvx3*020x0x(3)	4215 computation of curvature line integral along segment 3-6-1 4216 4217 yxxl = p(13,1) - x00
4461 4467 QExx = QExx - ((gac*yvx1*bvd)/(fil1**3)) - ((yvx2*bvz)/(fil2**3)) - (((ga*yvx3*bvz)/(fil3**3)) 4488 QExy = QExy - ((gac*yvx1*bvd)/(fil1**3)) - ((yvx2*bv2)/(fil2**3)) - (((ga*yvx3*bvz)/(fil3**3)) 4499 QExz = QExz - ((gac*yvx1*bvd)/(fil1**3)) - ((yvx2*bv2)/(fil2**3)) - ((ga*yvx3*bvz)/(fil3**3)) 4500 QEyx = QEyx - ((gac*yvx1*bvd)/(fil1**3)) - ((yvy2*bv2)/(fil2**3)) - ((ga*yvx3*bvz)/(fil3**3)) 4510 QEyx = QEyz - ((gac*yvx1*bvd)/(fil1**3)) - ((yvy2*bv2)/(fil2*3)) - ((ga*yvx3*bv2)/(fil3**3)) 4520 QEyz = QEyz - ((gac*yvx1*bv2)/(fil1**3)) - ((yvy2*bv2)/(fil2*3)) - ((ga*yv3*bv2)/(fil3**3)) 4551 QEyz = QEyz - ((gac*yv1*bv2)/(fil1**3)) - ((yv2*bv2)/(fil2*3)) - ((ga*yv3*bv2)/(fil3**3)) 4552 QEyz = QEzz - ((gac*yv1*bv2)/(fil1**3)) - ((yv2*bv2)/(fil2*3)) - ((ga*yv3*bv2)/(fil3**3)) 4559 QEzz = QEzz - ((gac*yv1*bv2)/(fil1**3)) - ((yv2*bv2)/(fil2*3)) - ((ga*yv3*bv2)/(fil3**3))	4218 yvy1 = p(13,2) = y00 4219 yvz1 = p(13,2) = 200 4220 fill = 05QRT(yvz1*2 + yvy1*2 + yvz1*2) 4221
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4166 4167 PEx = PEx - ((gac*a1*bvx1)/(by1)) - (((a1*bvx2)/(by2)) - ((ga*a1*bvx3)/(by3)) 4168 PEy = PEy - ((gac*a2*bvy1)/(by1)) - (((a2*bvy2)/(by2)) - ((ga*a2*bvy3)/(by3)) 4169 PEz = PEz - ((gac*a3*bvz1)/(by1)) - (((a3*bvz2)/(by2)) - ((ga*a3*bvz3)/(by3)) 4170	4238 by3 = D5QRT((fil3*(fil3*ay3))**2) 4239 [
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	4213 [
4175 bvxl = yvyl*b2be(2)-yvxl*bybe(2) 4176 bvyl = yv21*bybe(2)-yvxl*bybe(2) 4177 bvzl = yvxl*bybe(2)-yvyl*bzbe(2) 4178 L	4247
4170 bird2 = yyy2102be(5) - yyy2702be(5) 4180 biyg2 = yyd2702be(5) - yyy2702be(5) 4181 bird2 = ywd270pbe(5) - yyy2702be(5)	4251
4183 bv3 = yyy3*02be(3) - yvy3*0ybe(3) 4184 bvy3 = yyz3*0ybe(3) - yvy3*0ybe(3) 4185 bv23 = yvx3*0ybe(3) - yvy3*0xbe(3) 4186 image: state	4255 QEyx = QEyx - ((be*'yyytbw1)/(fil1**3)) - (('ywytbw2)/(fil1**3)) - ('be*'yy3tbw3)/(fil1**3)) 4255 QEyy = QEyy - ((be*'yytbw1)/(fil1**3)) - ('ywytbw2)/(fil1**3)) - ('be*'yy3tbw3)/(fil1**3)) 4257 QEyz = QEyz - ((be*'yytbw1)/(fil1**3)) - ('ywytbw2)/(fil1**3)) 4258 QEz = QEz - ((be*'yxtbw1)/(fil1**3)) - ('(be*'yy3tbw3)/(fil1**3)) 4258 QEz = QEz - ((be*'yxtbw1)/(fil1**3)) - ('ywztbw3)/(fil1**3))
4187 QExx = QExx + ((gac*ywat*bwz1)/(fil1**3)) + ((ywz2*bwz2)/(fil2**3)) + ((ga*yw3*bwz3)/(fil3**3)) 4188 QExy = QExy + ((gac*ywat*bwz1)/(fil1**3)) + ((ywz2*bwz2)/(fil2**3)) + ((ga*yw3*bwz3)/(fil3**3)) 4189 QExz = QExz + ((gac*ywat*bwz1)/(fil1**3)) + ((ywz2*bwz2)/(fil2**3)) + ((ga*yw3*bwz3)/(fil3**3)) 4190 QEyx = QEyx + ((gac*yyat*bwz1)/(fil1**3)) + ((ywz2*bwz2)/(fil2**3)) + ((ga*yw3*bwz3)/(fil3**3)) 4191 QEyy = QEyy + ((gac*yyat*bwz1)/(fil1**3)) + ((ywy2*bwz2)/(fil2**3)) + ((ga*yw3*bwz3)/(fil3**3)) 4192 QEyz = QEyz + ((gac*yyat*bwz1)/(fil1**3)) + ((ywy2*bwz2)/(fil2**3)) + ((ga*yyat*bwz3)/(fil3**3))	4259 QEzy - QEzy - ((be*yvz1*bvz1)/(f11*3)) - ((vvz2*bvy2)/(f112**3)) - ((bec*yvz1*bvz3)/(f113**3)) 4260 QEzz = QEzz - ((be*yvz1*bvz1)/(f11**3)) - ((vvz2*bvz2)/(f112**3)) - ((bec*yvz1*bvz3)/(f113**3)) 4261

5	!QEyx = QEyx + ((be*yvy1*bvx1)/(fil1**3)) + ((yvy2*bvx2)/(fil2**3)) + ((bec*yvy3*bvx3)/(fil3**3))
5	<pre>!OEvy = OEvy + ((be*vyy1*bvy1)/(fil1**3)) + ((vyy2*bvy2)/(fil2**3)) + ((be*vyy3*bvy3)/(fil3**3))</pre>
7	<pre>!QEyz = QEyz + ((be*yyy1*byz1)/(fil1**3)) + ((yyy2*byz2)/(fil2**3)) + ((bec*yyy3*byz3)/(fil3**3))</pre>
3	!OEzx = OEzx + ((be*yvz1*bvx1)/(fil1**3)) + ((yvz2*bvx2)/(fil2**3)) + ((bec*yvz3*bvx3)/(fil3**3))
9	<pre>!QEzy = QEzy + ((be*yvz1*bvy1)/(fil1**3)) + ((yvz2*bvy2)/(fil2**3)) + ((bec*yvz3*bvy3)/(fil3**3))</pre>
9 1 !	!QEzz = QEzz + ((be*yvz1*bvz1)/(fil1**3)) + ((yvz2*bvz2)/(fil2**3)) + ((bec*yvz3*bvz3)/(fil3**3))
2	PEx = PEx - ((be*a1*bvx1)/(by1)) - ((a1*bvx2)/(by2)) - ((bec*a1*bvx3)/(by3))
3	PEy = PEy = ((be*a2*bvy1)/(by1)) = ((a2*bvy2)/(by2)) = ((bec*a2*bvy3)/(by3))
1 5	PEz = PEz - ((be*a3*bvz1)/(by1)) - ((a3*bvz2)/(by2)) - ((bec*a3*bvz3)/(by3))
	<pre>!PEx = PEx + ((be*a1*bvx1)/(by1)) + ((a1*bvx2)/(by2)) + ((bec*a1*bvx3)/(by3))</pre>
	<pre>!PEy = PEy + ((be*a2*bvy1)/(by1)) + ((a2*bvy2)/(by2)) + ((bec*a2*bvy3)/(by3))</pre>
) 	<pre>!PEz = PEz + ((be*a3*bvz1)/(by1)) + ((a3*bvz2)/(by2)) + ((bec*a3*bvz3)/(by3))</pre>
3	TExx = 2.0D0*(QExx + cpi -PE)/(cf)
	TExy = 2.0D0*(QExy)/(2.0D0*cf)
	TExz = 2.0D0*(QExz)/(2.0D0*cf)
	TEyx = 2.0D0*(QEyx)/(2.0D0*cf)
	TEyy = 2.0D0*(QEyy + cpi -PE)/(cf)
	TEyz = 2.000*(QEyz)/(2.000*cf)
	TEzx = 2.0D0*(QEzx)/(2.0D0*cf) TEzy = 2.0D0*(QEzy)/(2.0D0*cf)
	$TEZZ = 2.000^{\circ}(QEZZ)/(2.000^{\circ}CT)$ TEZZ = 2.000 ^o (QEZZ + cpi -PE)/(cf)
1	WRITE(*,*) PEx, PEy, PEz
	INRITE(*,*) TEXX, TEXX, TEXZ
	INRITE(*) TEXX, TEXX TEXX
1	END SUBROUTINE intr_lin_sing_s9
	END MODULE Mod Prtcl3D DLP

D:\Darth Vader\Escritorio\prtcl mkl\Mod sgf 3d sfs.f90 1	D:\Darth Vader\Escritorio\prtcl mkl\Mod sgf 3d sfs.f90 2
MODULE Mod_sgf_3d_sfs	73 Tyxy = 0.0D0
!	74 Tyxz = 0.000 75 Tyyx = 0.000
! Version: 0.9 created on 03 / 09 / 2012	76 Tyyy = 0.000
Version: 1.0 created on 13 / 11 / 2012	77 Tyyz = 0.000
! Alfredo Sanjuan Sanjuan	78 Tyzx = 0.000 79 Tyzy = 0.000
CONTAINS	80 T YZZ = 0.000
!======================================	81 !
SUBROUTINE sgf_3d_sfs(x, y, z, & & x0, y0, z0, &	82 Tzxx = 0.0D0 83 Tzxy = 0.0D0
& X0, Y0, Z0, & & TXXX,TXXY,TXXZ, &	$\begin{array}{c} 83 & 12Xy = 0.000 \\ 84 & T_2Xz = 0.000 \end{array}$
& Txyx, Txyy, Txyz, &	85 Tzyx = 0.0D0
& Txzx,Txzy,Txzz, &	86 Tzyy = 0.0D0
& Tyxx,Tyxy,Tyxz, & & Tyyx,Tyyy,Tyyz, &	87 Tzyz = 0.0D0 88 Tzzx = 0.0D0
& Tyzx,Tyzy,Tyzz, &	89 Tzzy = 0.000
& Tzxx,Tzxy,Tzxz, &	90 Tzzz = 0.0D0
& Tzyx,Tzyy,Tzyz, & & Tzzx,Tzzy,Tzzz)	91 92 dx = x-x0
α 1228,1229,1222)	$\begin{array}{c} 92 \\ 93 \\ dy = y - y\theta \end{array}$
! Free-space Green's function: Stresslet Pozrikidis (1992, p. 23)	94 dz = z - z θ
! This new version of sfg_3d_sfs only calculates the Green's function: Stresslet.	95 ! 96 dxx = dx*dx
USE Mod SharedVars, ONLY: DBL, ULog	$96 axx = ax^*ax$ $97 dxy = dx^*dy$
IMPLICIT NONE	98 dxz = dx*dz
! Variables	99 dyy = dy*dy 100 dyz = dy*dz
Variables 	100 dyz = dy*dz 101 dzz = dz*dz
REAL (KIND = DBL), INTENT(IN) :: x, y, z !coordinates of collocation point of the element	102 !
REAL (KIND = DBL), INTENT(IN) :: x0, y0, z0 coordinates of the singularity REAL (KIND = DBL), INTENT(OUT) :: Txxx,Txxy,Txxz, & !Free-space Green's function of Stokeslet.	103 r = DSQRT(dxx + dyy + dzz) 104 !
REAL (KIND = DBL), INTENT(DDT) :: TXXX,TXXY,TXXX, & :rree-space oreen's function of stokester. & !Integrate over it k component over the element	104 :
& Txzx,Txzy,Txzz, &	106 !
& Tyxx, Tyxy, Tyxz, & & Tyyx, Tyyy, Tyyz, &	107 r15 = -6.0D0/r**5
& Tyyx,Tyyy,Tyyz, & & Tyzx,Tyzy,Tyzz, &	108 109 Txxx = dxx*dx * r15
& Tzxx, Tzxy, Tzxz, &	110 Txxy = dxx*dy * ri5
& Tzyx,Tzyy,Tzyz, &	111 Txxz = dxx*dz * ri5
& Tzzx, Tzzy, Tzzz	112 TXyx = TXxy 113 TXyy = dxy*dy * ri5
Variables inside the subroutine	114 Txyz = dxy*dz * ri5
	115 Txzx = Txxz
REAL (KIND = DBL) :: dx, dy, dz !differences between the (x,y,z) and (x0,y0,z0) coordinates REAL (KIND = DBL) :: dxx, dxy, dxz, & !square distance di*dj=dij	116 Txzy = Txyz 117 Txzz = dxz*dz * ri5
& dyy, dyz, dzz	
REAL (KIND = DBL) :: r !distance r between the (x,y,z) point and (x0,y0,z0)	119 Tyxx = Txxy
REAL (KIND = DBL) :: ri5 !stresslet coefficient	120 Tyxy = Txyy 121 Tyxz = Txyz
. Initialize	121 1yx = 1xyz $122 Tyy = Txyy$
dx = 0.000	123 Tyyy = dyy*dy * ri5
dy = 0.000 dz = 0.000	124 Tyyz = dyy*dz * r15 125 Tyzx = Txyz
uz = 0.000	125 192X = 1892 126 Tyzy = Tyyz
dxx = 0.0D0	127 Tyzz = dyz*dz * ri5
dxy = 0.000 dxz = 0.000	128 ! 129 T7xx = Txx7
dxz = 0.0D0 dyy = 0.0D0	129 Tzxx = Txxz 130 Tzxy = Txyz
dyz = 0.000 dyz = 0.000	130 T2XY - TXY2 131 T2XZ TXZZ
dzz = 0.0D0	132 Tzyx = Txyz
! Txxx = 0.0D0	133 Tzyy = Tyyz 134 Tzyz = Tyzz
1xxx = 0.000 1xxy = 0.000	134 12yz = 1yzz 135 Tzzx = Txzz
Txxz = 0.0D0	136 Tzzy = Tyzz
Txyx = 0.0D0 Txyy = 0.0D0	137 Tzzz = dzz*dz * r15
Txyy = 0.0D0 Txyz = 0.0D0	138 ! 139 END SUBROUTINE sgf 3d_sfs
Txzx = 0.0D0	140 !
Txzy = 0.0D0	141 END MODULE Mod_sgf_3d_sfs
Txzz = 0.0D0	
Tyxx = 0.0D0	

Darth Vader\Escritorio\prtcl_mkl\Mod_Velocity_Menu.f90	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_Velocity_Menu.f90
DULE Mod_Velocity_Menu	73 CASE (6) 74 FORALL (i=1:nelm)
Version: 0.9 created on 01 / 03 / 2013	75 Ubo(1) - tobi\$\%(1)
Alfredo Sanjuan San	an 76 Uoo(i+nelm)= tobi*x0(i)
CONTAINS	78 END FORALL
SUBROUTINE Infinity_Flow(NVF, alpha, gi, Uoo, stride, steps, nelm, h)	80 CASE (7)
This Subroutine obtains the value of velocity field in the interface. SYMBOLS:	<pre>82 !Uoo(i)= ((1.0D0- DEXP((-100.0D0*DBLE(stride))/DBLE(steps)))*gi*x0(i)*(alpha - 2.0D0))/(2.0D0*DSQRT(4.0D0 - 2.0D0*alpha + alpha**2))</pre>
	alpha**2))
USE Mod_SharedVars, ONLY: DBL, x0, y0, z0, Ulog	84 !!uoc(i+nelm+nelm) = ((1.000- DEXP((-100.0D0*DBLE(stride))/DBLE(steps)))*-alpha*gi*z0(i))/(2.0D0*DSQRT(4.0D0
USE Mod_VelFieldTRM	- 2.0D0*alpha + alpha**2)) === 85 !END FORALL
IMPLICIT NONE	87 Uoo(i)= (tobi*x0(i)*(alpha - 2.0D0))/(2.0D0*DSQRT(4.0D0 - 2.0D0*alpha + alpha**2))
Variables	<pre>89 Uoo(i+nelm+nelm)= (-alpha*tobi*z0(i))/(2.0D0*DSQRT(4.0D0 - 2.0D0*alpha + alpha**2)) 90 END FORALL</pre>
INTEGER, INTENT(INOUT) :: NVF !selection of velocity field	90 ERD FURALL 91 !
INTEGER, INTENT(IN) :: nelm !number of elements	92 CASE (8)
INTEGER, INTENT(IN) :: stride, steps !number of elements	93 FORALL (1=1:nelm)
REAL(KIND = DBL), INTENT(IN) :: alpha, h !flow parameter REAL(KIND = DBL), INTENT(IN) :: gi !intensity of flow	94 Uoo(i)= 0.0D0 95 Uoo(i+nelm)= tobi*(1.0D0 +(z0(i)**2))
REAL (KIND = DBL) ::tobi Intensity of riow Intensity of riow	96 Uoo(i+nelim+nelim)= 0.000
REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(INOUT) :: Uoo !arrays of infinity velocity field	97 END FORALL
Variables inside the subroutine	98 ! 99 CASE (9)
	100 FORALL (i=1:nelm)
INTEGER :: i !Counters	101 Uoo(i)= (tobi/(DSQRT(2.0D0)*(1.0D0+alpha)))*((1.0D0+alpha)*x0(i) + (1.0D0-alpha)*y0(i))
tobi = gi*DSQRT(1.0D0)	<pre>102 Uoo(i+nelm)= (tobi/(DSQRT(2.0D0)*(1.0D0+alpha)))*((-1.0D0+alpha)*x0(i) + (-1.0D0-alpha)*y0(i)) 103 Uoo(i+nelm+nelm)= 0.0D0</pre>
The next step is use a Case statement to obtain the coeficientes.	<pre>103 Uoo(i+nelm+nelm)= 0.0D0 104 END FORALL</pre>
SELECT CASE(NVF)	105 !
	106 CASE (10)
CASE (1) FORALL (i=1:nelm)	<pre>107 !FORALL (i=1:nelm) 108 !Uoo(i)= gi*(1.0D0- DEXP((-100.0D0*DBLE(stride))/DBLE(steps)))*y0(i)/(1.0D0+alpha)</pre>
U00(1)= 0.0D0	100 1000(1)- g1 (1.000-0547((100.000-056(1.004))/054((505))/)y0(1)(1.000+a1pha) 109 1000(1)-a1m)= g1*(1.000-0547((-100.000*050E)((51104))/054((5155)))*a1pha*x0(1)/(1.000+a1pha)
Uoo(i+nelm)= 0.0D0	110 !Uoo(i+nelm+nelm)= 0.0D0
Uoo(i+nelm+nelm)= 0.0D0 END EORALI	111 IEND FORALL
ENU FUKALL	112 FORALL (i=1:nelm) 113 Uoo(i)= tobi*y0(i)/(1.0D0+alpha)
CASE (2)	$\frac{113}{114} Uoo(1+nellm) = tobi'salpha'sa(1)/(1.600+alpha)$
FORÁLL (i=1:nelm)	115 Uoo(i+nelm+nelm)= 0.000
Uoo(1) = 0.000	116 END FORALL
Uoo(i+nelm)= 1.0D0 Uoo(i+nelm+nelm)= 0.0D0	117 !
END FORALL	119 FORALL (i=1:nelm)
	120 Uoo(i)= DSIN(z0(i)) + DCOS(y0(i))
CASE (3) FORALL (i=1:nelm)	<pre>121 Uoo(i+nelm)= DSIN(x0(i))+DCOS(z0(i)) 122 Uoo(i+nelm+nelm)= DSIN(y0(i))+DCOS(x0(i))</pre>
FORALL (1=1:ne1m) Uoo(i)= tobi/DSQRT(2.0D0)	122 U00(1+he1m+he1m)= U51N(y0(1))+UCU5(x0(1)) 123 END FORALL
Uoo(i+nelm)= tobi/DSQRT(2.0D0)	124 !
Uoo(i+nelm+nelm)= 0.0D0	125 CASE (12)
END FORALL	126 FORALL (i=1:nelm) 127 Uoo(i)= tobi*y0(i)*(1.0D0 - ((-0.5D0*alpha) + (((2.5D0*alpha)/DBLE(steps))*DBLE(stride))))
CASE (4)	12/ 000(1)= [001-90(1)*(1.500 - ((-5.50*alpha) + (((2.50*alpha)/bEtc(Steps))*DEtc(Stride))) 128 Uoo(intelm) = tobi*x0(1)*(1.600 + ((-6.500*alpha) + (((2.50*alpha)/bBtc(Steps))*DEtc(Stride))))
FORALL (1=1:nelm)	<pre>129 !Uoo(i)= gi*y0(i)*(1.0D0 - ((-2.0D0*alpha) + ((((4.0D0*alpha)/DBLE(steps))*DBLE(stride))))</pre>
Uoo(i)= 2.000*tobi/DSQRT(5.000)	130 !!uo(i+nelm)= gi*x0(i)*(1.0D0 + ((-2.0D0*alpha) + (((4.0D0*alpha)/DBLE(steps))*DBLE(stride))))
Uoo(i+nelm)= tobi/DSQRT(5.0D0) Uoo(i+nelm+nelm)= 0.0D0	131 Uoo(inelm+nelm)= 0.0D0 132 FND FORAL
END FORALL	132 END FORALL 133 !
	134 CASE (13)
CASE (5) !It is not normalized FORALL (i=1:nelm)	<pre>135 FORALL (i=1:nelm) 136 Uoo(i)= tobi*(y0(i))*(1.0D0 - ((2.5D0*alpha) - (((2.5D0*alpha)/DBLE(steps))*DBLE(stride))))</pre>
Uoo(i)= tobi*z0(i)	136 U00(1)= t001*(90(1))*(1.000 - ((2.500*alpha) - ((2.500*alpha)/UBLE(steps))*0BLE(stride)))) 137 U00(1+elm)= t001*x0(1)*(1.000 + ((2.500*alpha) - (((2.500*alpha)/DBLE(steps))*0BLE(stride))))
Uoo(i+nelm)= -tobi*z0(i)	138 !UGo(i)= gi*(y0(i))*(1.0D0 - ((4.0D0*alpha) - (((4.0D0*alpha)/DBLE(steps))*DBLE(stride))))
Uco(i+nelm+nelm)= 0.0D0 END FORALL	139 !Uoo(i+nelm)= gi*x0(i)*(1.0D0 + ((4.0D0*alpha) - (((4.0D0*alpha)/DBLE(steps))*DBLE(stride))))
	140 Uoo(i+nelm+nelm)= 0.0D0

!		
10.	CASE (14)	
	mp parallel mp do	
	DO i = 1, nelm	
	CALL VelPsi(x0(i), y0(i), Uoo(i), Uoo(i+nelm))	
	Uoo(i+nelm+nelm)= 0.0D0	
	END DO	
	np end do	
1.20	mp end parallel	
	CASE (15)	
	FORALL (i=1:nelm)	
	Uoo(i)= 0.5D0*tobi*y0(i)/(1.0D0+alpha)	
	Uoo(i+nelm)= 0.5D0*tobi*alpha*x0(i)/(1.0D0+alpha)	
	Uoo(i+nelm+nelm)= 0.0D0	
1	END FORALL	
	CASE (16)	
	FORALL (i=1:nelm)	
	Uoo(i)= tobi*y0(i)/(1.0D0+alpha)	
	!Uoo(i+nelm)= gi*x0(i)*((-0.5D0*alpha) + (((2.5D0*alpha)/DBLE(steps))*DBLE(stride)))/(1.0D0+alpha)	
	Uoo(i+nelm)= tobi*x0(i)*alpha/(1.0D0+alpha)	
	Uoo(i+nelm+nelm)= 0.0D0 END FORALL	
1		
1	CASE (17)	
	FORALL (i=1:nelm)	
	Uoo(i)= tobi*y0(i)/(1.0D0+alpha)	
	<pre>!Uoo(i+nelm)= gi*x0(i)*((2.5D0*alpha) - (((2.5D0*alpha)/DBLE(steps))*DBLE(stride)))/(1.0D0+alpha) </pre>	
	Uoo(i+nelm)= tobi*x0(i)*alpha/(1.0D0+alpha) Uoo(i+nelm+nelm)= 0.0D0	
	END FORALL	
!		
	CASE (18)	
	FORALL (i=1:nelm)	
	Uco(i)= tobi*(1.0D0- DEXP((-100.0D0*DBLE(stride))/DBLE(steps)))*y0(i)*(1.0D0 - alpha)	
	Uoo(i+nelm)= tobi*(1.0D0- DEXP((-100.0D0*DBLE(stride))/DBLE(steps)))*x0(i)*(1.0D0 + alpha) Uoo(i+nelm+nelm)= 0.0D0	
	END FORALL	
!		
	CASE (71)	
	FORALL (i=1:nelm)	
	Uoo(i)= (tobi*x0(i)*(alpha - 2.0D0))/(2.0D0*DSQRT(4.0D0 - 2.0D0*alpha + alpha**2)) Uoo(i+nelm)= (tobi*y0(i))/(DSQRT(4.0D0 - 2.0D0*alpha + alpha**2))	
	Uoo(i+nelm+nelm)= (-alpha*gi*z0(i))/(2.0D0*DSQRT(4.0D0 - 2.0D0*alpha + alpha**2))	
	END FORALL	
!		
	CASE (72)	
	FORALL (i=1:nelm) Uoo(i)= (tobi*x0(i)*(alpha - 2.0D0))/(2.0D0*DSQRT(4.0D0 - 2.0D0*alpha + alpha**2))	
	Uoo(1)= (tob1*X0(1)*(aipha - 2.000))/(2.000*DSQR(4.000 - 2.000*aipha + aipha**2)) Uoo(1+nelm)= (tob1*Y0(1))/(DSQRT(4.000 - 2.000*aipha + aipha**2))	
	Uoo(i+nelm+nelm)= (-alpha*gi*z0(i))/(2.0D0*DSQRT(4.0D0 - 2.0D0*alpha + alpha*z))	
	END FORALL	
!		
	CASE DEFAULT	
	NVF = 0 FORALL (i=1:nelm)	
	Uoo(1)= 0.0D0	
	Uoo(i+nelm)= 0.0D0	
	Uco(i+nelm+nelm)= 0.0D0	
	END FORALL	
{		
	WRITE (ULog,*)	
	WRITE (ULog,*) ' Velocity menu:' WRITE (ULog,*) ' Chosen velocity field is not available; It was taken the zero velocity field.'	
	END SELECT	
	END SUBROUTINE Infinity_Flow	
END	MODULE Mod_Velocity_Menu	

NODULE Mod_VelFieldTRM	
: Version: 0.7 created on / III /2010	
. Version. 0.7 created on 7 111 /2010	Marco Antonio Reyes Huesca
Version: 1.0 created on 12 / 11 / 2012	Alfredo Sanjuan Sanjuan
This module was made to evaluate the solution of T	wo Roll Mill on surface.
ONTAINS	
UBROUTINE VelPsi(x00, y00, Velx, Vely)	
This subroutine computes the velocity field of ana	litical solution of TRM.
	y, StPnt, a, de, g, M1, M2, A0, B0, C0, D0, Kc, An, &
& Bn, Cn, Dn, lambda, shr	
USE Mod_TRMCoefs	
IMPLICIT NONE	
Variables REAL (KIND = DBL), INTENT(IN) :: x00, y00	Point's coordinates
REAL (KIND = DBL), INTENT(OUT) :: Velx, Vely	!Velocities
Variables inside the subroutine	
INTEGER :: i	Inumber of points
REAL (KIND = DBL) :: u, v	Components of velocity vector
REAL (KIND = DBL) :: co1, co2 REAL (KIND = DBL) :: SumA, SumB	!Complex componentes, co1, real, co2 imaginary !Sumatories to compute the velocity
REAL (KIND = DBL) :: x, y	!Coordinates of p
<pre>! REAL (KIND = DBL) :: VelX, VelY COMPLEX (KIND = DBL) :: Cmp</pre>	!Components of velocity at the end of computation !Complex number
y = y00 SumA = $x^{**2} + (y - a)^{**2}$ co1 = $(x^{**2} + y^{**2} - a^{**2})$ co2 = 2^*a^*x	
Cmp = DCMPLX(co1,co2)/SumA	
<pre>v = DLOG((co1**2 + co2**2)/SumA**2)/2 u = DIMAG(CDLOG(Cmp))</pre>	
u = DLOG(DATAN(co2/co1))	
SumA = 0.0D0	
SumA = 0.000 SumB = 0.000	
VelX = 0.0D0	
VelY = 0.0D0	
IF (v < vR(1) .AND. v > vR(2)) THEN	
! !DEC\$ PARALLEL DO i = NCs, 2, -1	
SumA = SumA +	&
& (COS(i*u)*SIN(u) + i*(COSH(v) - COS(u))*SI	
& (An(i)*COSH((1 + i)*v) + Bn(i)*COSH((-1 & Cn(i)*SINH((1 + i)*v) + Dn(i)*SINH((-1	
<pre>SumB = SumB + COS(i*u)*((COSH(v) - COS(u))* & ((i + 1)*An(i)*SINH((i + 1)*v) +</pre>	8. 8.
& ((1 + 1)*An(1)*SINH((1 + 1)*V) + & (i - 1)*Bn(i)*SINH((i - 1)*V) +	8
& (i + 1)*Cn(i)*COSH((i + 1)*v) +	8
& (i - 1)*Dn(i)*COSH((i - 1)*v)) -	8
& SINH(v)*(An(i)*COSH((i + 1)*v) + & Bn(i)*COSH((i - 1)*v) +	8. 8.
& Cn(i)*SINH((i + 1)*v) +	8
<pre>& Dn(i)*SINH((i - 1)*v)))</pre>	
END DO	

):\Darth	Vader\Escritorio\prtcl_mkl\	Mod_VelField.F90		
	Vel	X = -((SIN(u)*SINH(v)* &			
Ŀ.	&	(-(SIN(u)*(Kc*COS(u) + (A0	- Kc + Bn(1))*COSH(v)	+ &	
5	&	(C0 + D0*v)*SINH(v) + (An(1	1)*(COSH(v) + COSH(3*v	()) + &	
5	&	Cn(1)*(SINH(v) + SINH(3*v)		&	
	&	SumA))/(COSH(v) = 0	OS(u))**2) +	&	
3	8	((-1 + COS(u)*COSH(v))*		&	
	&	(B0*(COS(u) - COSH(v)) -	2*Cn(1)*COS(u)*	&	
	8	COSH(2*v) - (A0 + D0)*5		. &	
	8	COSH(v)*(C0 + D0*v + 4*		&	
5	8	SINH(v)) + (SINH(v)*(A0		8	
3	8	C0*SINH(v) + D0*v*SINH(8	
4	8	COS(u)*(Bn(1) + An(1)*C		8	
5	ē	Cn(1)*SINH(2*v)))/(-CC		ē	
5	ě.		v))))/(COSH(v) - COS(u	w. Č	
8.		Y = ((1 - COS(u)*COSH(v))*		&	
9		(-(SIN(u)*(Kc*COS(u) + (A0		+ &	
á	ä	(C0 + D0*v)*SINH(v) +	ke i bil(1)) cosil(v)		
1	8	(An(1)*(COSH(v) + COSH(3*)	- (() -	8	
2	8	Cn(1)*(SINH(v) + SINH(3*v		8	
2	ã.	SumA)/(COSH(v) - CC		å	
4	a &	(SIN(u)*SINH(v)*(B0*(COS(u		۵ ۵	
4 5	& &				
	8	2*Cn(1)*COS(u)*COSH(2*v)	- (MO + DO). 21ML(V) -		
6	& &	<pre>Kc*SINH(v) - COSH(v)*(</pre>		& &	
7	& &	4*An(1)*COS(u)*SINH(v))		& &	
		(SINH(v)*(A0*COSH(v) + C			
9 10	& &	D0*v*SINH(v) + COS(u)*(& &	
		An(1)*COSH(2*v) + Cn(1))*SINH(2*V))))/	<u>8</u>	
1	8	(-COS(u) + COSH(v)) +		&	
2	&		v))))/(COSH(v) - COS(u		
14		<pre>IF (v >= vR(1)) THEN</pre>			
15		LX = -(y - ORy(1))*w(1)			
6		$V = x^* w(1)$			
17		<pre>IF (v <= vR(2)) THEN</pre>			
8	Vel	X = -(y - ORy(2))*w(2)			
9	Vel	$Y = x^* w(2)$			
0	END IF				
12	! VelP	= (/ VelX, VelY /)			
3					
		OUTINE VelPsi			
.5	!				
6	FUNCTION	I TRMill_velx (x)			
	!! This	function computes the velo	ocity component x base	d on ana	alitical solution of TRM velocity field.
7					
17 1					
17 1	!!				
7 8 9	!! ! USE	Mod_SharedVars, ONLY: DBL			
7 8 9	! USE ! USE	Mod_SharedVars, ONLY: DBL Mod TRMCoefs			
7 8 9 0	! USE ! USE ! USE !	Mod_SharedVars, ONLY: DBL Mod TRMCoefs			
7 8 9 1	! USE ! USE ! USE ! IMPL	Mod_SharedVars, ONLY: DBL Mod_TRMCoefs .ICIT NONE			
7 9 0 1 2	!! USE ! USE !! IMPL	Mod_SharedVars, ONLY: DBL Mod_TRMCoefs ICIT NONE			
7 9 0 1 3 4	!! USE ! USE !! IMPL !! TMPL !! Vari	Mod_SharedVars, ONLY: DBL Mod_TRMCoefs .ICIT NONE .ables			
7 9 0 1 3 5	!! USE ! USE !! IMPL !! Vari !! REAL	Mod_sharedVars, ONLY: DBL Mod_TRMCoefs .ICIT NONE .ables . (KIND = DBL), DIMENSION(2)), INTENT(IN) :: P		!Point's coordinates
7 9 0 1 2 3 4 5 6	!!USE !USE !! !!TMPL !! !! !! !! !! REAL ! REAL	Mod_SharedVars, ONLY: DBL Mod_TRNCcefs .ICIT NONE tables . (KIND = DBL), DIMENSION(2) . (KIND = DBL), DIMENSION(2)), INTENT(IN) :: P), INTENT(OUT) :: VelP		!Point`s coordinates !Velocities
7 9 0 1 2 3 4 5 6 7	!! USE ! USE !! IMPL !! TMPL !! REAL ! REAL ! REAL	Mod_SharedVars, ONLY: DBL Mod_TRMCoefs .ICIT NONE .ables . (KIND = DBL), DIMENSION(2) . (KIND = DBL), DIMENSION(2)), INTENT(IN) :: P), INTENT(OUT) :: VelP		!Point's coordinates
7 9 10 12 13 14 15 16 17 18 19 11 11 12 13 14 15 16 17 16 17 16 17 16 17 16 17 16 17 16 16 17 16 16 16 16 16 16 16 16	!! USE ! USE !! IMPL !! Vari !! REAL ! REAL ! REAL !! Vari	Mod_SharedVars, ONLY: DBL Mod_TRNCoefs ICIT NONE ables (KIND = DBL), DIMENSION(2) (KIND = DBL), DIMENSION(2) ables inside the subroutine), INTENT(IN) :: P), INTENT(OUT) :: VelP 2		!Point's coordinates !Velocities
7 8 9 1 2 3 4 5 6 7 8 9	!! USE ! USE !! IMPL !! Vari !! REAL ! REAL !! REAL !! Vari !! Vari	Mod_SharedVars, ONLY: DBL Mod_TRNCoefs), INTENT(IN) :: P), INTENT(OUT) :: VelP 9	!number	IPoint's coordinates Ivelocities of points
7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	!! USE ! USE !! IMPL !! TMPL !! Vari ! REAL !! Vari !! Vari !! NTE ! REAL	Mod_SharedWars, OMLY: DBL Mod_TRNCcefs .ICIT NOHE .ables .(KIND = DBL), DIHENSION(2) .(KIND = DBL), DIHENSION(2) .ables inside the subroutine GER :: n .(KIND = DBL) :: u, v), INTENT(IN) :: P), INTENT(OUT) :: VelP ?	Inumber Compone	<pre>!Point's coordinates !Velocities of points nts of velocity vector</pre>
7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	! USE ! USE ! IMPL ! IMPL ! REAL ! REAL ! REAL ! Vari ! INTE ! REAL ! REAL	Mod_SharedWars, ONLY: DBL Mod_TRNCcefs ables (KIND = DBL), DIMENSION(2) (KIND = DBL), DIMENSION(2) ables inside the subroutine GGR :: n (KIND = DBL) :: cul, cu), INTENT(IN) :: P), INTENT(OUT) :: VelP 2	Inumber Compone Complex	<pre>!Point's coordinates !Velocities of points of velocity vector < componences, col, real, co2 imaginary</pre>
7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	!! USE ! USE ! USE !! TMPL !! TATI !! REAL !! REAL !! VATI !! VATI !! TREAL ! REAL ! REAL ! REAL	Mod_SharedVars, ONLY: DBL Mod_TRNCcefs LICIT NONE LADIES (KIND OBL), DIMENSION(2) (KIND OBL), DIMENSION(2) LADIES inidie the subroutine GGR :: n (KIND OBL) :: u, v (KIND OBL) :: SumA, Sus), INTENT(IN) :: P), INTENT(OUT) :: VelP e mB	!number !Compone !Complex !Sumator	<pre>IPoint's coordinates Ivelocities of points nts of velocity vector < componentes, col, real, co2 imaginary ies to compute the velocity</pre>
7 ! 8 ! 9 ! 9 ! 1 ! 2 ! 1 ! 5 ! 8 ! 9 ! 1 ! 2 ! 1 ! 5 ! 9 ! 1 ! 1 ! 2 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1	!!USE !USE !!	Mod_sharedWars, ONLY: DBL Mod_TRNCcefs ables (KIND OBL), DIMENSION(2) (KIND OBL), DIMENSION(2) (KIND OBL), DIMENSION(2) (KIND OBL) :: u, v (KIND OBL) :: col, co2 (KIND OBL) :: sol, sol, sol, sol, sol, sol, sol, sol,), INTENT(IN) :: P), INTENT(OUT) :: VelP e nB	!number !Compone !Complex !Sumator !Coordin	<pre>!Point's coordinates !Velocities of points ents of velocity vector c componence, col, real, co2 imaginary ies to compute the velocity ates of p</pre>
7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	!!	Mod_SharedVars, ONLY: DBL Mod_TRNCcefs LICIT NONE dables (KIND = DBL), DIMENSION(2) (KIND = DBL), DIMENSION(2) dables inside the subroutine GER :: n (KIND = DBL) :: u, y (KIND = DBL) :: SumA, Su (KIND = DBL) :: SumA, Su), INTENT(IN) :: P), INTENT(OUT) :: VelP : mB	!number !Compone !Complex !Sumator !Coordin !Compone	<pre>!Point's coordinates !Velocities of points mts of velocity vector < componentes, col, real, co2 imaginary ies to compute the velocity ates of p nts of velocity at the end of computation</pre>
789999123455789912345	!!	Mod_sharedWars, ONLY: DBL Mod_TRNCcefs ables (KIND oBL), DIMENSION(2) (KIND oBL), DIMENSION(2) (KIND oBL), DIMENSION(2) (KIND oBL) :: u, v (KIND oBL) :: col, co2 (KIND oBL) :: col, co2), INTENT(IN) :: P), INTENT(OUT) :: VelP e mB	Inumber ICompone Complex Sumator ICoordin ICompone IComplex	<pre>!Point's coordinates !Velocities of points ents of velocity vector c componetes, col, real, co2 imaginary ies to compute the velocity ates of p ents of velocity at the end of computation c number</pre>
7	!!USE ! USE !! USE !!	Mod_SharedVars, ONLY: DBL Mod_TRNCoefs LICIT NONE ables (KIND = DBL), DIHENSION(2) (KIND = DBL), DIHENSION(2) ables inside the subroutine GER :: not subroutine GER :: not subroutine GER :: not subroutine (KIND = DBL) :: u, y (KIND = DBL) :: subm4, Sub (KIND = DBL) :: v=V3, w LEX (KIND = DBL) :: v=V3, w), INTENT(IN) :: P), INTENT(OUT) :: VelP e mB	Inumber ICompone Complex Sumator ICoordin ICompone IComplex	<pre>!Point's coordinates !Velocities of points mts of velocity vector < componentes, col, real, co2 imaginary ies to compute the velocity ates of p nts of velocity at the end of computation</pre>
78901123456789011234567	!! USE ! USE ! USE !! USE !! REAL !! REAL !! REAL ! REAL ! REAL ! REAL ! REAL ! REAL ! REAL ! REAL	Mod_sharedWars, ONLY: DBL Mod_TRNCcefs ables (KIND oBL), DIMENSION(2) (KIND oBL), DIMENSION(2) (KIND oBL), DIMENSION(2) (KIND oBL) :: u, v (KIND oBL) :: col, co2 (KIND oBL) :: col, co2 (KIND oBL) :: col, co2 (KIND oBL) :: v, y (KIND oBL) :: v, y (KIND oBL) :: v, y (KIND oBL) :: v, y), INTENT(IN) :: P), INTENT(OUT) :: VelP e mB	Inumber ICompone Complex Sumator ICoordin ICompone IComplex	<pre>!Point's coordinates !Velocities of points ents of velocity vector c componetes, col, real, co2 imaginary ies to compute the velocity ates of p ents of velocity at the end of computation c number</pre>
7	!! USE ! USE ! USE !! USE !! REAL !! REAL !! REAL ! REAL ! REAL ! REAL ! REAL ! REAL ! REAL ! REAL	Mod_SharedVars, ONLY: DBL Mod_TRNCoefs LICIT NONE ables (KIND = DBL), DIHENSION(2) (KIND = DBL), DIHENSION(2) ables inside the subroutine GER :: not subroutine GER :: not subroutine GER :: not subroutine (KIND = DBL) :: u, y (KIND = DBL) :: subm4, Sub (KIND = DBL) :: v=V3, w LEX (KIND = DBL) :: v=V3, w), INTENT(IN) :: P), INTENT(OUT) :: VelP e mB	Inumber ICompone Complex Sumator ICoordin ICompone IComplex	<pre>!Point's coordinates !Velocities of points ents of velocity vector c componetes, col, real, co2 imaginary ies to compute the velocity ates of p ents of velocity at the end of computation c number</pre>
78901123456789011234567	!! USE ! USE !! USE !! USE !! EAL !! REAL !! REAL ! REAL	Mod_SharedVars, ONLY: DBL Mod_TRNCerfs LICIT NONE ables (KIND = DBL), DIHENSION(2) (KIND = DBL), DIHENSION(2) ables inside the subroutine GEKIND n DBL) :: u, u, (KIND = DBL) :: u, u, v (KIND = DBL) :: sum4, suc (KIND = DBL) :: velx, v (KIND = DBL) :: velx, v LEX (KIND = DBL) :: cap), INTENT(IN) :: P), INTENT(OUT) :: VelP e mB	Inumber ICompone Complex Sumator ICoordin ICompone IComplex	<pre>!Point's coordinates !Velocities of points ents of velocity vector c componetes, col, real, co2 imaginary ies to compute the velocity ates of p ents of velocity at the end of computation c number</pre>
78901234567890123456789	!!	Mod_SharedVars, ONLY: DBL Mod_TRNCerfs ICLT NONE ables (KIND = DBL), DIMENSION(7) (KIND = DBL), DIMENSION(7) (KIND = DBL), DIMENSION(7) (KIND = DBL) :: u, v (KIND = DBL) :: u, v (KIND = DBL) :: JOWA, Sun (KIND = DBL) :: VelX, Vel LEX (KIND = DBL) :: VelX, Vel LEX (KIND = DBL) :: Cap I = P(2)), INTENT(IN) :: P), INTENT(OUT) :: VelP e mB	Inumber ICompone Complex Sumator ICoordin ICompone IComplex	<pre>!Point's coordinates !Velocities of points ents of velocity vector c componetes, col, real, co2 imaginary ies to compute the velocity ates of p ents of velocity at the end of computation c number</pre>
7890123456789012345678	!! USE ! USE !! USE !! USE !! TMPL !! REAL !! REAL !! REAL ! REAL ! REAL ! REAL ! REAL	Mod_SharedVars, ONLY: DBL Mod_TRNCoefs), INTENT(IN) :: P), INTENT(OUT) :: VelP e mB	Inumber ICompone Complex Sumator ICoordin ICompone IComplex	<pre>!Point's coordinates !Velocities of points ents of velocity vector c componetes, col, real, co2 imaginary ies to compute the velocity ates of p ents of velocity at the end of computation c number</pre>
7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	!! USE ! USE !! USE !! USE !! IMPL !! REAL ! REAL	Mod_SharedVars, ONLY: DBL Mod_TRNCefs ICIT NONE ables (KIND = DBL), DIMENSION(7) (KIND = DBL), DIMENSION(7) (KIND = DBL), DIMENSION(7) (KIND = DBL) :: u, v (KIND = DBL) :: u, v (KIND = DBL) :: sua, su (KIND = DBL) :: VelX, vy (KIND = DBL) :: VelX), INTENT(IN) :: P), INTENT(OUT) :: VelP e mB	Inumber ICompone Complex Sumator ICoordin ICompone IComplex	<pre>!Point's coordinates !Velocities of points ents of velocity vector c componetes, col, real, co2 imaginary ies to compute the velocity ates of p ents of velocity at the end of computation c number</pre>
789012345678901234567890	!! USE ! USE !! USE !! IMPL !! REAL ! REAL	Mod_SharedVars, ONLY: DBL Mod_TRNCoefs), INTENT(IN) :: P), INTENT(OUT) :: VelP e mB	Inumber ICompone Complex Sumator ICoordin ICompone IComplex	<pre>!Point's coordinates !Velocities of points ents of velocity vector c componetes, col, real, co2 imaginary ies to compute the velocity ates of p ents of velocity at the end of computation c number</pre>
7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	! USE ! USE ! USE !! Vari ! REAL ! COMM ! SumA	Mod_SharedVars, ONLY: DBL Mod_TRNCefs ICIT NONE ables (KIND = DBL), DIMENSION(7) (KIND = DBL), DIMENSION(7) (KIND = DBL), DIMENSION(7) (KIND = DBL) :: u, v (KIND = DBL) :: u, v (KIND = DBL) :: sua, su (KIND = DBL) :: VelX, vy (KIND = DBL) :: VelX), INTENT(IN) :: P), INTENT(OUT) :: VelP e mB	Inumber ICompone Complex Sumator ICoordin ICompone IComplex	<pre>!Point's coordinates !Velocities of points ents of velocity vector c componetes, col, real, co2 imaginary ies to compute the velocity ates of p ents of velocity at the end of computation c number</pre>

D:\Darth Vader\Escritorio\prtcl_mkl\Mod_VelField.F90 3	
	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_VelField.F90
145 1 v = DLMG((ccl**2 + cc2**2)/SumA**2)/2 147 i v = DLMG(CGLMCG(cuc0)(cmp)) 147 i u = DLMG(CGLMCG(cuc0)(cmp)) 149 i u = DLMG(CGLMCG(cuc0)(cmp)) 149 i u = DLMG(CGLMCG(cuc0)(cmp)) 149 i u = DLMG(CGLMCG(cuc0)(cmp)) 150 i SumA = 0.000 = 151 i SumB = 0.000 = 152 VeLY = 0.000 = = 154 i T f(Cuc0)(rm) STM(rm) = 155 i Due (sc, 2, -1) = = 156 i Due (sc, 2, -1) = = 157 i Due = (sc, 2, -1) = = 158 i & (cuc0)(rm)*STM(rm) + n*(cuSH(rm)+rm)* = = 169 i & (cuc0)(rm)*STM(rm) + n*(rm)*rm)* = = 161 i Cun(n)*STM(rm)*rm)*rm)*rm)*rm)*rm)*rm)*rm)*rm) = = 162 SumB = SumB + CuS(rm)*rm)*(cuc0SH(rm) - Cuc0s(m))* % & =	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_VelField.F90 217 END MODULE Mod_VelFieldTRM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
188 I	
204	

1		o Sanjuan Sanjuan, in others words, me :)
	is module have the subroutines to obtain the position of the dorp	
!	· · · · · · · · · · · · · · · · · · ·	
su	/BROUTINE Euler_Method(p, Vel, h, npts, vna)	
	is subroutine computes the normal vector of every node on the sur	
	E Mod_Nodal_Interp	
US	E Mod_SharedVars , ONLY:DBL	
IM	IPLICIT NONE	
! Va	iriables	
	ITEGER, INTENT(IN) :: npts	!number of nodes
RE	AL (KIND = DBL), INTENT(IN) :: h AL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(INOUT) :: p	<pre>!step of time !table of position vector of all points</pre>
	AL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: Vel	larrays of the components of lvelocity over all points larrays of the components of normal
	AL (MID - DD), ALCONINCL, DIEDION(.,.,) INCLUMINT HU	lvector over all points
! Va	riables inside the subroutine	
	ITEGER :: i, j !Counte	rs
	AL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:) :: p1 !Dummy AL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:) :: f !Dummy arra	
	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: f0 !Dummy a	
	LOCATE(f0(npts),f(npts,3), p1(npts,3))	
f p1 !	<pre>- 0.000 = 0.000 = 0.000 RALL (i=1:npts) [f6(i,1)= (0.000*vna(i,1))+(0.000*vna(i,2))+(0.000*vna(i,3))</pre>	
f p1 !	 ■ 0.000 = 0.000 = 0.000 RALL (i=1:npts) 	3)))
f p1 ! FO ! FO	<pre>> 0.000 = 0.000 = 0.000 RALL (i1:npts)</pre>	3)))
f p1 ! F0 ! EN ! ! !f	<pre>> 0.000 = 0.000 = 0.000 RALL (1=1npts) ife(1,1)= (0.000*vna(1,1))+(0.000*vna(1,2))+(0.000*vna(1,3)) ife(1)=(v0(1,1)*vna(1,1))+(v0(1,2)*vna(1,2))+(v0(1,3)*vna(1, ife(1,1)=tvna(1,2)*te(1) if(1,2)= tvma(1,2)*te(1) if(1,2)= tvma(1,2)*te(1)</pre>	3)))
f p1 ! F0 ! ! ! ! ! ! p1	<pre>> 0.000 = 0.000 = 0.000 RALL (i=1;npts) ifd(i,1)= (0.000*vma(i,1))+(0.000*vma(i,2))+(0.000*vma(i,3)) fd(1)=(vul(1,1)*vma(1,1))+(vul(1,2)*vma(1,2))+(vul(1,3)*vma(1, 0.000) fd(1,1)=(vul(1,1)*vma(1,2))+(0.000) if(1,2)=(vma(1,2)*fd(1) if(1,2)=(vma(1,2)*fd(1) if(1,3)=(vma(1,3)*fd(1)) if(1,3)=(vma(1,3)*fd(1)) D FORALL</pre>	3)))
f p1 F0 EN !	<pre>- 0.000 = 0.000 = 0.000 RALL (1=1;npts) f6(1,1)= (0.000*vna(1,1))+(0.000*vna(1,2))+(0.000*vna(1,3)) f6(1)=((val(1,1)*vna(1,1))+(val(1,2)*vna(1,2))+(val(1,3)*vna(1, F0(1,1))=(val(1,1)*f0(1)) f(1,1)= h*vna(1,2)*f0(1) f(1,2)= h*vna(1,2)*f0(1) f(1,2)= h*vna(1,2)*f0(1) f(1,2)= h*vna(1,2)*f0(1) = b*f4LL == p + f = p1</pre>	3)))
f p1 p1 F0 F0 I F0 I P1 P1 P1 P1 P1 P1 P1 P1 P1 P1	<pre>> 0.000 = 0.000 = 0.000 RALL (i=1:npts)</pre>	3)))
f p1 P1 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0	<pre>- 0.000 = 0.000 = 0.000 RALL (1-1:npt5) f6(1,1) = (0.000*vna(i,1))+(0.000*vna(i,2))+(0.000*vna(i,3)) f6(1)=((val(1,1)*vna(1,1))+(Val(1,2)*vna(1,2))+(Val(1,3)*vna(1, D FORALL RALL (1-1:npt5) f(1,2) = h*vna(1,2)*f0(1) [f(1,2) = h*vna(1,2)*f0(1) [f(1,2) = h*vna(1,2)*f0(1) = 0.00ALL = 0.00ALL = p + f = p1 D SUBROUTINE Euler_Method BNOUTINE Euler_BNOUTINE Euler_BNOUTINE Euler BNOUTINE Euler_BNOUTINE Euler BNOUTINE</pre>	
f p1 F0 F0 P1 F0 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1	<pre>- 0.000 = 0.000 = 0.000 RALL (1=1:nptS) [f6(1,1)= (0:00*vna(1,1))+(0.000*vna(1,2))+(0.000*vna(1,3)) f6(1)=((val(1,1)*vna(1,1))+(Val(1,2)*vna(1,2))+(Val(1,3)*vna(1, F(1,2)=h*vna(1,2)*f6(1) [f(1,2)=h*vna(1,2)*f(1) [f(1,2)=h*vna(1,2)*f(1) [f(1,2)=h*vna(1,2)*f(1) [f(1,2)=h*vna(1,2)*f(1) [f(1,2)=h*vna(1,2)*f(1) [f(1,2)=h*vna(1,2)*f(1)\\[f(1,2</pre>	
f p1 	<pre>> 0.000 = 0.000 = 0.000 RALL (1=1;npts) ff0(1,1)= (0.000*vna(i,1))+(0.000*vna(1,2))+(0.000*vna(1,3))) ff0(1)-(vel(1,1)*vna(1,1))+(vel(1,2)*vna(1,2))+(vel(1,3)*vna(1, 0.000)) RALL (1=1:npts) f(1,0)=h*vna(1,2)*f0(1) if(1,2)=h*vna(1,2)*f(1) if(1,2)=h*vna(1,2)*f(1) if(1,2)=h*vna(1,2)*f(1) if(1,2)=h*vna(1,2)*f(1) if(1,2)=h*vna(1,2)*f(1) if(1,2)=h*vna(1,2)*f(1) if(1,2)=h*vna(1,2)*f(1) if(1,2)=h*vna(1,2)*f(1) if(1,2)=h*vna(1,2)*f(1) if(1,2)=h*vna(1,2)*f(1) if(1,2)=h*vna(1,2)*f(1) if(1,2)=h*vna(1,2)*f(1) if(1,2)=h*vna(1,2)*f(1) if(1,2)=h*vna(1,2)*f(1) if(1,2)=h*vna(1,2)*f(1) if(1,2)=h*vna(1,2)*f(1) if(1,2)=h*vna(1,2)</pre>	
	<pre>- 0.000 = 0.000 = 0.000 RALL (1=1:nptS) [f6(1,1)= (0:00*vna(1,1))+(0.000*vna(1,2))+(0.000*vna(1,3)) f6(1)=((val(1,1)*vna(1,1))+(Val(1,2)*vna(1,2))+(Val(1,3)*vna(1, protect)) RALL (1=1:nptS) f(1,2)=h*vna(1,2)*f6(1) [f(1,2)=h*vna(1,2)*f(1) [f(1,2)=h*vna(1,2)*f(1) [f(1,2)=h*vna(1,2)*f(1) [f(1,2)=h*vna(1,2)*f(1) [f(1,2)=h*vna(1,2)*f(1) [f(1,2)=h*vna(1,2)*f(1) [f(1,2)=h*vna(1,2)*f(1) [f(1,2)=h*vna(1,2)*f(1) [f(1,2)=h*vna(1,2)*f(1) [f(1,2)=h*vna(1,2)*f(1) [f(1,2)=h*vna(1,2)*f(1) [f(1,2)=h*vna(1,2)*f(1) [f(1,2)=h*vna(1,2)*f(1) [f(1,2)=h*vna(1,2)*f(1)\\[f(1,2)=h*vna(1,2)*f(1)\\[f(1,2)=h*vna(1,2)*f(1)\\[f(1,2)=h*vna(1,2)*f(1)\\[f(1,2)=h*vna(1,2)*f(1)\\[f(1,2)=h*vna(1,2)*f(1)\\[f(1,2)=h*vna(1,2)*f(1)\\[f(1,2)=h*vna(1,2)*f(1)\\[f(1,2)=h*vna(1,2)*f(1)\\[f(1,2)=h*vna(1,2)*f(1)\\[f(1,2)=h*vna(1,2)*f(1)\\[f(1,2)=h*vna(1,2)*f(1)\\[f(1,2)=h*vna(1,2)*f(1)\\[f(1,2)=h*vna(1,2)*f(1)\\[f(1,2)=h*vna(1,2)*f(1)\\[f(1,</pre>	face

	INTEGER, INTENT(IN) :: nelm !number of elements
	REAL (KIND = DBL), INTENT(IN) :: h Istep of time
	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(INOUT) :: x0, y0, z0 !arrays of the components of
	!position vectors
	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) ::Velix, Veliy, Veliz !arrays of the components of
	velocity over collocation points!
ľ	Variables inside the subroutine
	INTEGER :: i, j !Counters
	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: x01, y01, z01 !Dummy array
	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: fx, fy, fz !Dummy array
	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: f0 !Dummy array
	Initialize
	ALLOCATE(f0(nelm),fx(nelm),fy(nelm),fz(nelm), x01(nelm), y01(nelm), z01(nelm))
	fo = 0.000
	$f_X = 0.0D0$
	$f_{y} = 0.0D0$
	fz = 0.0D0
	x01 = 0.0D0
	y01 = 0.0D0
	201 = 0.0D0
1	
	EULER METHOD
1	FORALL (i=1:nelm)
	f0(1)= (Vellx(i)*vnx0(i) + Velly(i)*vny0(i) + Vellz(i)*vnz0(i))
	END FORALL
-	
	FORALL (i=1:nelm)
	$f_{x}(i) = h^* vnx\theta(i)^* f\theta(i)$
	fy(i) = h*vny@(i)*f@(i) fz(i) = h*vnz@(i)*f@(i)
	T2(1) = ITV128(1) TB(1)
١.	
•	
	!FORALL (i=1:nelm)
	$f_{x}(i) = h^{*} Vell_{x}(i)$
	! fy(i) = h*Velly(i) ! fz(i) = h*Vellz(i)
	END FORALL
	x01= x0 + fx
	y01= y0 + fy
	z01= z0 + fz
•	
	x0= x01
	y0= y01 z0= z01
	20= 201
	END SUBROUTINE Euler Method2
-	
1	
	SUBROUTINE Euler_Method3(x0, y0, z0,&
	& Velix, Veliy, Veliz, &
	&h, nelm,tr)
Ì	
	Inis subroutine computes the normal vector of every node on the surface
	USE Mod Nodal Interp
	USE Mod_SharedVars , ONLY:DBL, vnx0, vny0, vnz0, farel
2	
	IMPLICIT NONE
ľ	
	Variables
ľ	INTEGER, INTENT(IN) :: nelm !number of elements
	REAL (KIND = DBL), INTENT(IN) :: h !step of time

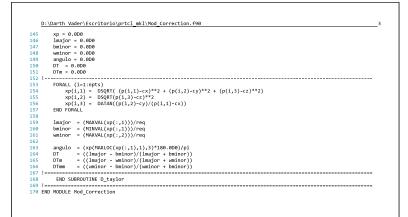
		215	INTEGER, INTENT(IN) :: npts	Inumber of nodes
	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(INOUT) :: x0, y0, z0 larrays of the components of lposition vectors	216	REAL (KIND = DBL), INTENT(IN) :: h REAL (KIND = DBL), INTENT(IN) :: tr	Istep of time Ifactor to mix eulerian and lagrangiar
	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) ::Velix, Veliy, Veliz !arrays of the components of Velocity over collocation points	217	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(INOUT)	
=:	Variables inside the subroutine		Variables inside the subroutine	
-	INTEGER :: i, j !Counters	221 - 222	INTEGER :: i, j !C	ounters
	INTEGER :: 1, J REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: x01, y01, z01 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: fx0, fy0, fz2 DUMMY array REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: fx1, fy1, fz1 DUMMY array REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: f0	222 223 224 225 226 227	INTEGER :: J, J REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: px1, py1, pz1 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: fxe, fye, fze REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: f0 IDUMMBY .	!Dummy array !Dummy array !Dummy array
	<pre>Initialize ALGCATE(f0(nelm),fxe(nelm),fye(nelm),fxl(nelm),fyl(nelm),fzl(nelm), x01(nelm), y01(nelm), z01</pre>	229 230 231 232 233 234	<pre>IInitialize ALLOATE(f6(npts),fxe(npts),fye(npts),fze(npts),fxl(npts),fyl(f0 = 0.000 fye = 0.000 fye = 0.000 fye = 0.000</pre>	npts),fzl(npts),pxl(npts),pyl(npts),pzl(npts
	fze = 0.0D0	235	fx1 = 0.0D0	
	fx1 = 0.0D0 fv1 = 0.0D0	236 237	fyl = 0.0D0 fzl = 0.0D0	
	fz1 = 0.0D0	238	px1 = 0.0D0	
	x01 = 0.0D0 y01 = 0.0D0	239	py1 = 0.0D0	
	y01 = 0.000 z01 = 0.000		pz1 = 0.0D0	
	fare1 = 0.0D0	242	EULER METHOD	
	EULER METHOD	243 != 244 245	FORALL (i=1:npts) f0(i)= (Vel(i,1)*vna(i,1) + Vel(i,2)*vna(i,2) + Vel(i,3)*v	
	FORALL (i=1:nelm)	246	END FORALL	(1,5))
	f0(i)= (Vel1x(i)*vnx0(i) + Vel1y(i)*vny0(i) + Vel1z(i)*vnz0(i)) END FORALL	247 - 248	<pre>fxe(:) = h*vna(:,1)*f0(:)</pre>	
	farel = f0	249	fye(:) = h*vna(:,2)*f0(:)	
! -	FORALL (i=1:nelm)	250 251 I	fze(:) = h*vna(:,3)*f0(:)	
	$fxe(i) = h^*vnx\theta(i)^*f\theta(i)$		LAGRANGE METHOD	
	<pre>fye(i) = h*vny0(i)*f0(i) fze(i) = h*vnz0(i)*f0(i)</pre>	253 =	fxl(:) = h*Vel(:,1)	
	END FORALL	255	fyl(:) = h*Vel(:,2)	
! =: !	I AGRANGE METHOD	256	fzl(:) = h*Vel(:,3)	
		257 1-	px1= p(:,1) + (tr*fxl) + (1.0D0-tr)*fxe	
	<pre>FORALL (i=1:nelm) fxl(i) = h*Vel1x(i)</pre>	259 260	py1= p(:,2) + (tr*fy1) + (1.0D0-tr)*fye pz1= p(:,3) + (tr*fz1) + (1.0D0-tr)*fze	
	$f(x)(y) = h^{-1}(y)(y)(y)(y)(y)(y)(y)(y)(y)(y)(y)(y)(y)($		pzi- p(:,5) + (timizi) + (1.000-ti)/120	
	$f_2(i) = h^* Veliz(i)$	262	p(:,1)= px1	
! =:	END FORALL	263 264	p(:,2)= py1 p(:,3)= pz1	
	x01= x0 + (tr*fxl) + (1.0D0-tr)*fxe y01= y0 + (tr*fyl) + (1.0D0-tr)*fye	266	END SUBROUTINE Euler_Method4	
	z01= z0 + (tr*fzl) + (1.0D0-tr)*fze	267 !-	SUBROUTINE Euler MethodM(x0, v0, z0.&	
	x0= x01	269	& Vel1x, Vel1y, Vel1z, &	
	y0= y01 z0= z01	270	& Vel2x, Vel2y, Vel2z, & &h, nelm.tr)	
! -	205 201 END SUBROUTINE Euler Method3	272 !	wh, heimitr) This subroutine computes the normal vector of every node on the	
! =:		274 !=		
	SUBROUTINE Euler_Method4(p, h, npts,tr)	275 276	USE Mod_Nodal_Interp USE Mod_SharedVars , ONLY:DBL, vnx0, vny0, vnz0, vnx02, vny02,	
=	This subroutine computes the normal vector of every node on the surface	277 != 278	IMPLICIT NONE	
	USE Mod_Nodal_Interp USE Mod_SharedVars , ONLY:DBL, Vel, vna	280 !	Variables	
=	TAPI TCTT WONF	281 !-	INTEGER, INTENT(IN) :: nelm	!number of elements
=	IMPLICIT NONE	282	REAL (KIND = DBL), INTENT(IN) :: h	step of time
!	Variables	284	REAL (KIND = DBL), INTENT(IN) :: tr	!factor to mix eulerian and lagrangian

REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(INOUT) :: x0, y0, z0 !arrays of the components losition vectors REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) ::Velix, Veliz, Veliz !arrays of the compone REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) ::Velix, Veliz, Veliz !arrays of the compone	F 356 x0= x01
REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) ::Velix, Veliy, Veliz !arrays of the compone REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) ::Velix, Veliy, Veliz !arrays of the compone	
REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) ::Vel2x, Vel2y, Vel2z !arrays of the component	357 y9= y01 ts of 358 z9= z01
	S 01 350 20 20 20 30 1 350 1 3
<pre>!velocity over collocation points</pre>	360 END SUBROUTINE Euler_MethodM
Variables inside the subroutine	363 SUBROUTINE RK3(xθ, yθ, zθ,&
INTEGER :: i, j !Counters	364 & Velix, Veliz, Veliz, &
REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: x01, y01, z01 !Dummy array	365 & h, nelm)
REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: fxe1, fye1, fze1 !Dummy array	366 !
REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: fxl1, fyl1, fzl1 !Dummy array REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: f01 !Dummy array	367 ! This subroutine computes the normal vector of every node on the surface using a Runge-Kutta of order 3
REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: fxe2, fye2, fze2 !Dummy array	368 !
REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: fxl2, fyl2, fzl2 !Dummy array	369 USE Mod_Nodal_Interp
REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: f02 !Dummy array	370 USE Mod_SharedVars , ONLY:DBL, vnx0, vny0, vnz0
!Initialize	373 !
<pre>ALLOCATE(f01(nelm),f02(nelm),fxe1(nelm),fye1(nelm),fze1(nelm),fxl1(nelm),fyl1(nelm),fzl1(nelm),fxe2(nelm),fye2(nelm),fxl2(nelm),fyl2(nelm),fzl2(nelm),x01(nelm), y01(nelm), z01(nelm))</pre>	m), d 374 ! Variables
f01 = 0.0D0	376 INTEGER, INTENT(IN) :: nelm !number of elements
fxe1 = 0.0D0	377 REAL (KIND = DBL), INTENT(IN) :: h !step of time
fye1 = 0.0D0 fze1 = 0.0D0	378 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(INOUT) :: x0, y0, z0 !arrays of the components of ?position vectors
fxl1 = 0.000	 3/9 B80 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) ::Velix, Velix, Veliz Jarrays of the components of
fyl1 = 0.0D0	381 !velocity over collocation points
fzl1 = 0.0D0	382
f02 = 0.0D0 fxe2 = 0.0D0	383 ! Variables inside the subroutine
1/22 = 0.000	385 INTEGER :: 1, 1 !Counters
fze2 = 0.0D0	386 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: x01, y01, z01 !Dummy array
fx12 = 0.0D0	387 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: fx, fy, fz !Dummy array
fyl2 = 0.0D0 fzl2 = 0.0D0	388 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: k1x, k2x, k3x !Dummy array 389 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: k1y, k2y, k3y !Dummy array
x01 = 0,000	390 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: k1, k2, k3, k3, loumy array
y01 = 0.0D0	391
z01 = 0.0D0 farel = 0.0D0	392 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: f0 !Dummy array 393
EULER METHOD	395 !Initialize
<pre>FORALL (i=1:nelm) f01(i)= (Vel1x(i)*vnx0(i) + Vel1y(i)*vny0(i) + Vel1z(i)*vnz0(i))</pre>	397 f0 = 0.0D0 398 fx = 0.0D0
fo(1) = (velx(1) + vxd2(1) + vel2y(1) + vyd2(1) + vel2z(1) + vxd2(1))	399 + 1 + 0.000
END FORALL	400 fz = 0.0D0
farel = 0.5D0*(f01+f02)	401 x01 = 0.000 $402 y01 = 0.000$
FORALL (i=1:nelm)	$\begin{array}{c} 492 \\ 493 \\ 201 = 0.000 \end{array}$
fxe1(i) = 0.5D0*h*vnx0(i)*f01(i)	ALLOCATE(kix(nelm), k2x(nelm), k3x(nelm),k1y(nelm), k2y(nelm), k3y(nelm),k1z(nelm), k2z(nelm), k3z(nelm))
fye1(i) = 0.5D0*h*vny0(i)*f01(i)	405 k1x = 0.0D0
fze1(i) = 0.5D0*h*vnz0(i)*f01(i) fxe2(i) = 0.5D0*h*vnx02(i)*f02(i)	406 k2x = 0.000 407 k3x = 0.000
<pre>txe2(1) = 0.5D0*h*vnx02(1)*+02(1) fye2(1) = 0.5D0*h*vny02(1)*+02(1)</pre>	407 k3x = 0.0D0 408 k1y = 0.0D0
fze2(1) = 0.5D0*h*vnz02(1)*f02(1)	409 k2y = 0.0D0
END FORALL	410 k3y = 0.0D0
	$\begin{array}{c} 411 & k12 = 0.000 \\ 412 & k22 = 0.000 \end{array}$
FORALL (i=1:nelm)	414 !
fxl1(i) = 0.500*h*Vel1x(i)	415 ! RUNGE-KUTTA OF THIRD ORDER RK3
<pre>fyl1(i) = 0.5D0*h*Vel1y(i) fzl1(i) = 0.5D0*h*Vel1z(i)</pre>	416 1 EULERIAN METHOD 417
$f_{211(1)} = 0.500^{\circ}h^{\circ}Vel12(1)$ $f_{x12(1)} = 0.500^{\circ}h^{\circ}Vel2x(1)$	41/ :====================================
fyl2(i) = 0.5D0*h*Vel2y(i)	<pre>419 ! f0(i)= (Vel1x(i)*vnx0(i) + Vel1y(i)*vny0(i) + Vel1z(i)*vnz0(i))</pre>
fzl2(i) = 0.5D0*h*Vel2z(i)	420 ! END FORALL
END FORALL	421 !!
x01= x0 + (tr*(fxl1+fxl2)) + (1.0D0-tr)*(fxe1+fxe2)	422 : FORALL (1=1:netam) 423 : fx(1) = h*ux8(1)*f0(1)
y01= y0 + (tr*(fyl1+fyl2)) + (1.0D0-tr)*(fye1+fye2)	424 ! $fy(1) = h^* vny \theta(1)^* f \theta(1)$
z01= z0 + (tr*(fzl1+fzl2)) + (1.0D0-tr)*(fze1+fze2)	425 ! f2(i) = h*vn20(i)*f0(i) 426 ! END FORALL

D:\Darth Vader\Esc	ritorio\prtcl_mkl\Mod_SNEDOS.f90	7		<u>D</u> :
			498	
! LAGRANGIAN MET			499	
!First we calculat			501	
!				2 !=
FORALL (i=1:ne				3 1
k1x(i) = \ k1y(i) = \			504	1 !=
$k_{1z(i)} = v$			506	
END FORALL			507	
!=====================================			508	
!			510	
FORALL (i=1:ne			511	
	<pre>(0(i)) + ((h/3.0D0)*k1x(i))</pre>			2 !=
	/0(i)) + ((h/3.0D0)*k1y(i)) 20(i)) + ((h/3.0D0)*k1z(i))			3 1 =
END FORALL			515	
			516	
!Finaly we calcula			517	7 3 !=
FORALL (i=1:ne			519	
	(0(i)) + ((h*2.0D0/3.0D0)*k2x(i))		526	9
k3y(i) = (<pre>/0(i)) + ((h*2.0D0/3.0D0)*k2y(i))</pre>		521	L > I_
END FORALL	0(i)) + ((h*2.0D0/3.0D0)*k2z(i))		522	
!			524	
	1.0D0)*(k1x+k3x))		525	
	1.0D0)*(k1y+k3y)) 1.0D0)*(k1z+k3z))		526	
				3]=
×0= ×01			529	
у0= у01 z0= z01			536	e) !=
20= 201			531	
END SUBROUTINE	RK3			3 I-
			534	
	er_Met5(p, h, K1, npts,tr)			5 =
	e computes the normal vector of every		537	7
				3 !=
USE Mod_Nodal_ USE Mod_Shared	/ars , ONLY:DBL, vna) -
			541	i i
IMPLICIT NONE			542	
Variables			543	3
!			544	1
INTEGER, INTEN		Inumber of nodes	545	
	BL), INTENT(IN) :: h BL), INTENT(IN) :: tr	!step of time !factor to mix eulerian and lagrangian		5 != 7 !
				3 i-
		ENT(IN) :: K1 !arrays of the components of	549	
		ENT(INOUT) :: p !arrays of the components of	550	
	le the subroutine		552	
			553	
INTEGER :: i,		Counters	554	
	BL), ALLOCATABLE, DIMENSION(:) :: px1 BL), ALLOCATABLE, DIMENSION(:) :: fxe			5 !=
REAL (KIND = D	BL), ALLOCATABLE, DIMENSION(:) :: fx1	l, fyl, fzl 🛛 !Dummy array	557	7
REAL (KIND = D	<pre>BL), ALLOCATABLE, DIMENSION(:) :: f0</pre>	!Dummy array	558	3
			559	
! !Initialize			560	
ALLOCATE(f0(np	s),fxe(npts),fye(npts),fze(npts),fxl	<pre>(npts),fyl(npts),fzl(npts),px1(npts),py1(npts),pz1(npts))</pre>	561	L .
f0 = 0.0D0			562	
fxe = 0.0D0 fye = 0.0D0			563	
fze = 0.0D0			565	
fx1 = 0.0D0			566	5
fyl = 0.0D0			567	7

	D:\Darth Vader\Escritorio\prtcl_mkl\Mod_SNEDOS.f90	в
498	fzl = 0.0D0	
499	px1 = 0.0D0	
500 501	py1 = 0.0D0	
	pz1 = 0.0D0	
	I EULER METHOD	
504		
505	FORALL (i=1:npts)	
506	f0(i)= (K1(i,1)*vna(i,1) + K1(i,2)*vna(i,2) + K1(i,3)*vna(i,3))	
507	END FORALL	
500	<pre>fxe(:) = h*vna(:,1)*f0(:)</pre>	
510	$fye(:) = h^* vna(:,2)^* f \theta(:)$	
511	fze(:) = h*vna(:,3)*f0(:)	
	! LAGRANGE METHOD	
515	fxl(:) = h*K1(:,1)	
516	$f_{Y1}(:) = h * K_1(:, 2)$	
517	$f_{21}(:) = h^*K_1(:,3)$	
	!	
519	$px1=p(:,1) + (tr^{+}x1) + (1.000-tr)^{+}fxe$	
520 521	py1= p(:,2) + (tr*fyl) + (1.0D0-tr)*fye pz1= p(:,3) + (tr*fzl) + (1.0D0-tr)*fze	
	p21= p(;;3) + (t ^m +t2) + (1.000-t ^m)+t2	
523	p(:,1)= px1	
524	p(:,2)= py1	
525	p(:,3)= pz1	
527 528	END SUBROUTINE Euler_Met5	
530	SUBROUTINE Euler_Met6(p, h, K1, K2, npts,tr)	
532	! This subroutine computes the normal vector of every node on the surface	
534	USE Mod_Nodal_Interp	
535	USE Mod_SharedVars , ONLY:DBL, vna	
	!	
537	IMPLICIT NONE	
538	! Variables	
	· • • • • • • • • • • • • • • • • • • •	
541	INTEGER, INTENT(IN) :: npts !number of nodes	
542	REAL (KIND = DBL), INTENT(IN) :: h !step of time	
543	REAL (KIND = DBL), INTENT(IN) :: tr !factor to mix eulerian and lagrangian	ĸ.
544	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: K1, K2 !arrays of the components of	
545	REAL (KIND = DEL), ALLOCATABLE, DIMENSION(;;), INTENT(INOUT) :: p larrays of the components of	
	!	
547		
548 549		
549 550	INTEGER :: i, j : REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: px1, py1, pz1 !Dummy array	
551	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: 5x1, 5y1, 5y1 :: 50mmy array	
552	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: fx1, fy1, fz1 !Dummy array	
553	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: f0 !Dummy array	
554	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:) :: Ve1 !Dummy array	
555		
550	Initialize	
558	ALLOCATE(f0(npts),fxe(npts),fye(npts),fze(npts),fxl(npts),fyl(npts),fzl(npts),px1(npts),py1(npts),	¥.
	Vel(npts,3))	
	f0 = 0.0D0	
559		
560	fxe = 0.0D0	
560 561	fxe = 0.0D0 fye = 0.0D0	
560	fxe = 0.000 fye = 0.000 fze = 0.000	
560 561 562	fxe = 0.0D0 fye = 0.0D0	
560 561 562 563 564 565	fxe 0.000 fye 0.000 fze 0.000 fxl 0.000 fyl 0.000 fyl 0.000 fyl 0.000	
560 561 562 563 564	$ \begin{aligned} &f x e &= 0.000 \\ &f y e &= 0.000 \\ &f z e &= 0.000 \\ &f x l &= 0.000 \\ &f x l &= 0.000 \\ &f y l &= 0.000 \end{aligned} $	

pz1 = 0.000	639 & K1, K2, K3, npts, h)
Vel= 2*K2-K1	640 ! 641 ! This subroutine computes the normal vector of every node on the surface
EULER METHOD	642 !
FORALL (i=1:npts)	644 !
f0(i)= (Vel(i,1)*vna(i,1) + Vel(i,2)*vna(i,2) + Vel(i,3)*vna(i,3)) END FORALL	645 IMPLICIT NONE 646 !
<pre>fxe(:) = h*vna(:,1)*f0(:)</pre>	647 ! Variables 648 !
fye(:) = h*vna(:,2)*f0(:)	649 INTEGER, INTENT(IN) :: npts !number of elements
fze(:) = h*vna(:,3)*f0(:)	650 REAL (KIND = DBL), INTENT(IN) :: h !step of time 651 ! REAL (KIND = DBL), INTENT(IN) :: tr !factor to mix eulerian and lagrang.
LAGRANGE METHOD	652 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(INOUT) :: pel !arrays of the components of
fxl(:) = h*Vel(:,1) fyl(:) = h*Vel(:,2)	653 654 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: K1, K2, K3 !arrays of the components of
fzl(:) = h*Vel(:,3)	655 Iposition vectors
px1= p(:,1) + (tr*fx1) + (1.0D0-tr)*fxe	656 !===================================
py1= p(:,2) + (tr*fyl) + (1.0D0-tr)*fye pz1= p(:,3) + (tr*fzl) + (1.0D0-tr)*fze	658 ! 659 INTEGER :: i, j !Counters
	660 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:) :: p01 !Dummy array
p(:,1)= px1 p(:,2)= py1	661 != 662 !
p(:,3)= pz1	663 ALLOCATE(p01(npts,3)) 664 p01 = 0.0D0
END SUBROUTINE Euler_Met6	665 I 666 FORALL (i=1:npts)
SUBROUTINE KMaker(xel, yel, zel, &	$ \begin{array}{c} 667 \\ 667 \end{array} p01(1;) = pe1(1;) + (h/6.0D0)*(K1(1;)+4.0D0*K2(1;)+K3(1;)) \end{array} $
& K1, K2, K3, K4, nelm, h)	668 END FORALL 669 !
This subroutine computes the normal vector of every node on the surface	670 pel = p01 671 END SUBROUTINE KMK3
USE Mod_SharedVars , ONLY:DBL !, vnx0, vny0, vnz0, farel	672 !
IMPLICIT NONE	673 SUBROUTINE RK31(x0, y0, z0, h, K1, nelm,tr) 674 !
Variables	675 ! This subroutine computes the normal vector of every node on the surface
INTEGER. INTENT(IN) :: nelm !number of elements	677 USE Mod_Nodal_Interp
REAL (KIND = DBL), INTENT(IN) :: h !step of time	679 !
REAL (KIND = DBL), INTENT(IN) :: tr !factor to mix eulerian and lagrangian 🖌	680 IMPLICIT NONE 681 !
REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(INOUT) :: xel, yel, zel !arrays of the components of !position vectors	682 ! Variables 683 !
REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: K1, K2, K3, K4 !arrays of the components of	684 INTEGER, INTENT(IN) :: nelm !number of nodes
!position vectors	685 REAL (KIND = DBL), INTENT(IN) :: h !step of time 686 REAL (KIND = DBL), INTENT(IN) :: tr !factor to mix eulerian and lagrangian in the state of the s
Variables inside the subroutine	687 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: K1 !arrays of the components of
INTEGER :: i, j !Counters	688 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(INOUT) :: x0, y0, z0 !arrays of the components of
REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: x01, y01, z01 !Dummy array	689 ! 690 ! Variables inside the subroutine
ALLOCATE(x01(nelm),y01(nelm),z01(nelm))	691 ! 692 INTEGER :: i, j !Counters
x01 = 0.0D0	693 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: px1, py1, pz1 !Dummy array
y01 = 0.0D0 z01 = 0.0D0	694 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: fxe, fye, fze !Dummy array 695 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: fxl, fyl, fzl !Dummy array
	696 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: f0 !Dummy array
FORALL (i=1:nelm) x01(i) = xel(i)+ (h/6.0D0)*(K1(i) +2.0D0*K2(i) +2.0D0*K3(i) +K4(i))	697 698
y01(i) = yel(i)+ (h/6.0D0)*(K1(i+nelm) +2.0D0*K2(i+nelm) +2.0D0*K3(i+nelm) +K4(i+nelm))	699 !Initialize
z01(i) = zel(i)+ (h/6.0D0)*(K1(i+nelm+nelm)+2.0D0*K2(i+nelm+nelm)+2.0D0*K3(i+nelm+nelm)+K4(i+nelm+nelm)) END FORALL	<pre>700 ALLOCATE(f0(nelm),fxe(nelm),fye(nelm),fze(nelm),fxl(nelm),fyl(nelm),fzl(nelm),px1(nelm),py1(nelm),pz1(nel 701 f0 = 0.0D0</pre>
	702 fxe = 0.0D0
xel = x01 yel = y01	703 fye = 0.0D0 704 fze = 0.0D0
zel = z01	705 fxl = 0.0D0
END SUBROUTINE KMaker	706 fyl = 0.0D0 707 fzl = 0.0D0
SUBROUTINE KMK3(pel, &	707 + 721 = 0.000 708 p x1 = 0.000


9	
9	py1 = 0.0D0
	pz1 = 0.0D0
2 !	EULER METHOD
4	FORALL (i=1:nelm)
5	f0(i)= (K1(i)*vnx0(i) + K1(i+nelm)*vny0(i) + K1(i+nelm+nelm)*vnz0(i))
6	END FORALL
8	$f_{xe}(:) = h^* vnx \theta(:)^* f \theta(:)$
9 0	fye(:) = h*vny0(:)*f0(:) fze(:) = h*vnz0(:)*f0(:)
	120(.) - 11 1120(.) 10(.)
	LAGRANGE METHOD
3 !==	
4	FORALL (i=1:nelm)
5	$fxl(i) = h^*Kl(i)$
6 7	fyl(i) = h*K1(i+nelm) fyl(i) = h*K1(i+nelm)
8	fzl(i) = h*K1(i+nelm+nelm) END FORALL
0	px1= x0 + (tr*fx1) + (1.0D0-tr)*fxe
1	py1= y0 + (tr*fy1) + (1.0D0-tr)*fye
2	pz1= z0 + (tr*fzl) + (1.0D0-tr)*fze
4 5	xθ= px1 yθ= py1
5 6	z0= py1
7 !	
8	END SUBROUTINE RK31
1	SUBROUTINE RK32(x0, y0, z0, h, K1, K2, nelm,tr)
	This subroutine computes the normal vector of every node on the surface
	This subjudge compares the normal vector of every note on the surface
5	USE Mod_Nodal_Interp
6	USE Mod_SharedVars , ONLY:DBL, vnx0, vny0, vnz0
8	IMPLICIT NONE
	Variables
1 !	
2	INTEGER, INTENT(IN) :: nelm !number of nodes
3	REAL (KIND = DBL), INTENT(IN) :: h !step of time
4	REAL (KIND = DBL), INTENT(IN) :: tr !factor to mix eulerian and lagrangian
5	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: K1, K2 !arrays of the components of
6	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(INOUT) :: x0,y0,z0 !arrays of the components of
7 !==	
8 !	Variables inside the subroutine
	TUTTOR
0 1	INTEGER :: i, j !Counters REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: px1, py1, pz1 !Dummy array
2	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: px1, py1, pz1 !Dummy array REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: fxe, fye, fze !Dummy array
3	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: fxl, fyl, fzl !Dummy array
4	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: f0 !Dummy array
5	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: Vel !Dummy array
6	
7 !== 8	linitialize
8.9	<pre>!initialize ALLOCATE(f0(nelm),fxe(nelm),fye(nelm),fze(nelm),fxl(nelm),fyl(nelm),fzl(nelm),px1(nelm),py1(nelm),pz1(nelm)</pre>
× .	<pre>vel(3*nelm))</pre>
0	fe = 0.000
1	fxe = 0.0D0
2	fye = 0.0D0
3	fze = 0.0D0
4 5	fxl = 0.000 fyl = 0.000
5 6	tyl = 0.000 fzl = 0.000
	px1 = 0.000
7 8	py1 = 0.0D0

	pz1 = 0.0D0	
	Vel= 2*K2-K1	
!	EULER METHOD	
•	FORALL (i=1:nelm)	
	<pre>f0(i)= (Vel(i)*vnx0(i) + Vel(i+nelm)*vny0(i) + Vel(i+nelm+nelm</pre>)*vnz0(i))
	END FORALL	,,
!		
	fxe(:) = h*vnx0(:)*f0(:)	
	fye(:) = h*vny0(:)*f0(:) fze(:) = h*vnz0(:)*f0(:)	
	+ze(:) = n°vnz0(:)*+0(:)	
	LAGRANGE METHOD	
	FORALL (i=1:nelm)	
	fxl(i) = h*Vel(i)	
	fyl(i) = h*Vel(i+nelm)	
	<pre>fzl(i) = h*Vel(i+nelm+nelm) END FORALL</pre>	
ī		
	px1= x0 + (tr*fxl) + (1.0D0-tr)*fxe	
	py1= y0 + (tr*fyl) + (1.0D0-tr)*fye	
	pz1= z0 + (tr*fzl) + (1.0D0-tr)*fze	
!	v0- mu4	
	x0= px1 y0= py1	
	z0= pz1	
ł		
	END SUBROUTINE RK32	
1		
•	SUBROUTINE RMK3(x0, y0, z0, &	
	& K1, K2, K3, nelm, h)	
1	,,,,,,	
!	This subroutine computes the normal vector of every node on the su	face
1		
	USE Mod_SharedVars , ONLY:DBL !, vnx0, vny0, vnz0, fare1	
	IMPLICIT NONE	
!		
1		
!		
	INTEGER, INTENT(IN) :: nelm	Inumber of elements
1	REAL (KIND = DBL), INTENT(IN) :: h REAL (KIND = DBL), INTENT(IN) :: tr	<pre>!step of time !factor to mix eulerian and lagrangian</pre>
•	NEAL (KIND = DDL), INTENT(IN) C	Hactor to mix edierian and tagrangian
	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(INOUT) :: x0,	y0,z0 !arrays of the components of
		<pre>!position vectors</pre>
	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: K1, K2	
÷,		<pre>!position vectors</pre>
i		
	Windoles Inside the subjorcent	
	INTEGER :: i, j !Count	
	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: x01, y01, z01	!Dummy array
1		
:	ALLOCATE(x01(nelm), y01(nelm), z01(nelm))	
	x01 = 0.0D0	
	y01 = 0.0D0	
	z01 = 0.0D0	
!		
	FORALL (i=1:nelm)	
	<pre>x01(i) = x0(i) + (h/6.0D0)*(K1(i)+4.0D0*K2(i)+K3(i)) y01(i) = y0(i) + (h/6.0D0)*(K1(i+nelm)+4.0D0*K2(i+nelm)+K3(i+ne</pre>	a]m))
	$z01(i) = z0(i) + (h/6.0D0)^{(K1(i+helm)+4.0D0^{K}2(i+helm)+K3(i+$	
	END FORALL	, ,
•	x0 = x01 y0 = y01	

E	ND SURROUTTINE RMK3	
=:	ND SUBBOUTINE RMK3	919 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(INOUT) :: x0, y0, z0 !arrays of the components or
;	· · · · · · · · · · · · · · · · · · ·	920 921 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: Velix1, Veliy1, Veliz1, & 922 & & Velix2, Veliy2, Veliz2, &
1		923 & Velix3, Veliy3, Veliz3, &
	SUBROUTINE ABM4te≡(x0, y0, z0, & & Vel1x1, Vel1y1, Vel1z1, &	924 & Velix4, Veliy4, Veliz4 925 larrays of the components of
	& Vel1x2, Vel1y2, Vel1z2, &	926 Iposition vectors
	& Vel1x3, Vel1y3, Vel1z3, & & Vel1x4, Vel1y4, Vel1z4, nelm, h)	927 !====================================
		929 !
	This subroutine computes the normal vector of every node on the surface	930 INTEGER :: i, j !Counters 931 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: x01, y01, z01 !Dummy array
	JSE Mod_SharedVars , ONLY:DBL !, vnx0, vny0, vnz0, farel	932 !
	IMPLICIT NONE	933 ! 934 ALLOCATE(x01(nelm),y01(nelm),z01(nelm))
	/ariah]es	935 x01 = 0.000 936 y01 = 0.000
		937 201 = 0.0D0
	INTEGER, INTENT(IN) :: nelm !number of elements REAL (KIND = DBL), INTENT(IN) :: h !step of time	938 ! 939 FORALL (i=1:nelm)
	REAL (KIND = DBL), INTENT(IN) :: n istep of time REAL (KIND = DBL), INTENT(IN) :: tr !factor to mix eulerian and lagrangian 🖌	<pre>940 x01(i) = x0(i)+ (h/24.0D0)*(Vel1x1(i) -5.0D0*Vel1x2(i) +19.0D0*Vel1x3(i) +9.0D0*Vel1x4(i))</pre>
		941 y01(i) = y0(i)+ (h/24.0D0)*(Vel1y1(i) -5.0D0*Vel1y2(i) +19.0D0*Vel1y3(i) +9.0D0*Vel1y4(i)) 942 z01(i) = z0(i)+ (h/24.0D0)*(Vel1z1(i) -5.0D0*Vel1z2(i) +19.0D0*Vel1z3(i) +9.0D0*Vel1z4(i))
ľ	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(INOUT) :: x0, y0, z0 !arrays of the components of !position vectors	942 z01(i) = z0(i)+ (h/24.0D0)*(Vel1z1(i) -5.0D0*Vel1z2(i) +19.0D0*Vel1z3(i) +9.0D0*Vel1z4(i)) 943 END FORALL
1	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: Velix1, Veliy1, Veliz1, &	944 945 x0 = x01
	& Vel1x2, Vel1y2, Vel1z2, & & Vel1x3, Vel1y3, Vel1z3, &	945 x0 = x01 946 y0 = y01
	& Vel1x4, Vel1y4, Vel1z4	947 z0 = z01
r.	ays of the components of !position vectors	948 END SUBROUTINE ABM4 949 !
		950 SUBROUTINE ABM4vel(Vel1x, Vel1y, Vel1z, &
	variables inside the subroutine	951 & nelm, h, tr) 952 !
	INTEGER :: i, j !Counters	953 ! This subroutine computes the normal vector of every node on the surface
=:	REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: x01, y01, z01 !Dummy array	954
		956 USE Mod_SharedVars , ONLY:DBL , vnx0, vny0, vnz0 !, farel
1	ALLOCATE(x01(nelm),y01(nelm),z01(nelm)) x01 = 0.0D0	957 !
	y01 = 0.0D0	959
	201 = 0.000	960 ! Variables 961 !
	FORALL (i=1:nelm)	962 INTEGER, INTENT(IN) :: nelm !number of elements
1	<pre>x01(i) = x0(i)+ (h/24.0D0)*(-9.0D0*Vel1x1(i) +37.0D0*Vel1x2(i) -59.0D0*Vel1x3(i) +55.0D0*Vel1x4(i)) y01(i) = y0(i)+ (h/24.0D0)*(-9.0D0*Vel1y1(i) +37.0D0*Vel1y2(i) -59.0D0*Vel1y3(i) +55.0D0*Vel1y4(i))</pre>	963 REAL (KIND = DBL), INTENT(IN) :: h !step of time 964 REAL (KIND = DBL), INTENT(IN) :: tr !factor to mix eulerian and lagram
	201(1) = 20(1)+ (h/24.0D0)*(-9.0D0*Vel1z1(1) +37.0D0*Vel1z2(1) -59.0D0*Vel1z3(1) +55.0D0*Vel1z4(1))	
	END FORALL	965 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(INOUT) :: Vel1x, Vel1y, Vel1z 966 !
	x0 = x01	967 ! Variables inside the subroutine
	yθ = yθ1 20 = 201	969 INTEGER :: 1, 1 Counters
	END SUBROUTINE ABM4tem	970 REAL (KIND = DEL), ALLOCATABLE, DIMENSION(:) :: x01, y01, z01, f0 !Dummy array 971 REAL (KIND = DRL), ALLOCATABLE, DIMENSION(:) :: fxe, fye, fze !Dummy array
	SUBROUTINE ABM4(x0, y0, z0, &	971 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: fxe, fye, fze !Dummy array 972 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: fxl, fyl, fzl !Dummy array
	& Velixi, Veliyi, Velizi, &	973
	& Velix2, Veliy2, Veliz2, & & Velix3, Veliy3, Veliz3, &	974 ALLOCATE(x01(nelm),y01(nelm),z01(nelm)) 975 x01 = 0.0D0
	& Velix4, Veliy4, Veliz4, nelm, h)	976 y01 = 0.0D0
	This subroutine computes the normal vector of every node on the surface	977 z01 = 0.0D0 978 !
-		979 Initialize
	JSE Mod_SharedVars , ONLY:DBL !, vnx0, vny0, vnz0, fare1	<pre>980 ALLOCATE(f0(nelm),fxe(nelm),fye(nelm),fze(nelm),fxl(nelm),fyl(nelm),fzl(nelm)) 981 f0 = 0.0D0</pre>
	IMPLICIT NONE	982 fxe = 0.0D0
	/ariables	983 fye = 0.0D0 984 fze = 0.0D0
-		985 fxl = 0.0D0
	INTEGER, INTENT(IN) :: nelm !number of elements REAL (KIND = DBL), INTENT(IN) :: h !step of time	986 $fyl = 0.000$ 987 $fzl = 0.000$
	REAL (KIND = DBL), INTENT(IN) :: tr : !factor to mix eulerian and lagrangian	968

0 : 1	FORALL (i = 1:nelm)
2	<pre>FOULL (1 - Intel#)</pre>
2	END FORALL
5	FORALL (i = 1:nelm)
6	$f_{xe(i)} = v_{nx}\theta(i)^*f\theta(i)$
7	$fve(i) = vnv\theta(i)^*f\theta(i)$
8	$f_{ze(i)} = vnz\theta(i)*f\theta(i)$
9	END FORALL
0 !	
1 !	LAGRANGE METHOD
2 !	
3	FORALL (i = 1:nelm)
4	fxl(i) = Vellx(i)
5	fyl(i) = Velly(i)
6	fzl(i) = Vellz(i)
7	END FORALL
9	x01= (tr*fxl) + (1.0D0-tr)*fxe
9	$yal=(trifyl) + (1.0D0-tr)^{+}fye$
1	z01= (tr*fzl) + (1.0D0-tr)*fze
21	Vel1x = x01
3 4	Velix = x01 Veliy = y01
+	
, .	END SURROUTINE ARM4vel
ß	

Darth Vader\Escritorio\prtcl mkl\Mod_Correction.f90 1	D:\Darth Vader\Escritorio\prtcl mkl\Mod_Correction.f90
NULE Mod_Correction	73 USE Mod_SharedVars , ONLY:DBL, vnx0, vny0, vnz0, arel 74 !
rsion 1.0 27 / November / 2013	75 IMPLICIT NONE
Alfredo Sanjuan Sanjuan, in others words, me :)	76 ! 77 ! Variables
The first action is to generate a correction of drop'e volume.	78 !
ITAINS	79 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(INOUT) :: vel1 !The matrix with the information of 80 INTEGER, INTENT(IN) :: nelm !number of nodes
SUBROUTINE Corrector_vol(p, npts, prt_vlm_n, cx, cy, cz)	81 !REAL (KIND = DBL), INTENT(IN) :: prt_vlm_n 82 !REAL (KIND = DBL), INTENT(IN) :: cx, cy, cz !drop's centroid coordinates
This subroutine	83
	85 1
USE Mod_SharedVars , ONLY:DBL	86 INTEGER :: i !Counters
IMPLICIT NONE	88 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: vel, val !Dummies array to adjust the position vectors. 89 REAL (KIND = DBL) :: areas, surface !Dummies array to adjust the position vectors.
Variables	90
REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(INOUT) :: p !The matrix with the information of	91 ! 92 ! The adjust beggins here
INTEGER, INTENT(IN) :: npts Inumber of nodes REAL (KIND = DBL), INTENT(IN) :: prt vlm n	<pre>93 ALLOCATE(val(nelm), vel(3*nelm)) 94 vel = 0.0D0</pre>
REAL (KIND = DBL), INTENT(IN) :: cx, cy, cz !drop's centroid coordinates	94 vel = 0.000 95 val = 0.000
Variables inside the subroutine	96 surface = 0.000 97 areas = 0.000
INTEGER :: i !Counters	98 1
	<pre>99 FORALL (i=1:nelm) 100 val(i)= Vel1(i)*vnx0(i) + Vel1(i+nelm)*vny0(i) + Vel1(i+nelm+nelm)*vnz0(i)</pre>
REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:) :: p0, p1 !Dummies array to adjust the position vectors. REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:) :: r0, r1 !Dummies array to adjust the position vectors.	101 END FORALL 102 FORALL (i=1:nelm)
REAL (KIND - DEL), ALLOCATAGLE, DATERSION(.) TO, TI SUMMILES AT AY to adjust the position vectors.	$102 \text{vol}(1) = \text{val}(1)^* \text{vn}(0)$
The adjust beggins here	104 vel(i+nelm) = val(i)*vny0(i)
ALLOCATE(p0(npts,3), p1(npts,3),r0(npts), r1(npts)) p0 = 0.0D0	105 vel(i+nelm+nelm)= val(i)*vnz0(i) 106 END FORALL
po = 0.000	106 ENU FORALL 107
r0 = 0.0D0	108 areas = SUM(arel)
r1 = 0.0D0	109 surface = SUM(val) 110
FORALL (i=1:npts)	111 WRITE(*,*) areas
$p\theta(i,1) = (p(i,1) - cx)$	112 WRITE(*,*) surface
$p\theta(i,2) = (p(i,2) - cy)$ $p\theta(i,3) = (p(i,3) - cz)$	113 WRITE(*,*) surface/areas 114 WRITE(*,*)
END FORALL	115
FORALL (i=1:npts)	116 !FORALL (i=1:nelm)
r0(i)= DSQRT(p0(i,1)**2 + p0(i,2)**2 + p0(i,3)**2) END FORALL	117 ! Vel1(i)= Vel(i) 118 !END FORALL
FORALL (i=1:npts)	110 : ERIO FORAL 119 :
!r1(i)= r0(i) / ((prt_vlm_n)**(1.0D0/3.0D0)) p1(i,:)= p0(i,:) / ((prt_vlm_n)**(1.0D0/3.0D0))	120 END SUBROUTINE Corrector_vol2
END FORALL	122 SUBROUTINE D_taylor(p, npts, DT, DTm, DTmm, lmajor, bminor, wminor, angulo, cx, cy, cz, req)
<pre>!FORALL (i=1:npts) ! p1(i,:)= p0(i,:)*r1(i)</pre>	123 ! 124 ! This subroutine
!END FORALL	125 !
<pre>!FORALL (i=1:npts) ! p(i,1)= (p1(i,1))/((prt_vlm_n)**(1.0D0/3.0D0)) !+cx</pre>	126 USE Mod_SharedVars , ONLY:DBL, pi 127 !
<pre>! p(i,2)= (p1(i,2))/((prt_vlm_n)**(1.0D0/3.0D0)) !+cy</pre>	128 IMPLICIT NONE
! p(i,3)= (p1(i,3))/((prt_vlm_n)**(1.0D0/3.0D0)) !+cz !END FORALL	129 ! 130 ! Variables
! p0=0.0D0	131 !
FORALL (1=1:npts)	132 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:), INTENT(IN) :: p !The matrix with the information of TAUTOR DUPER DUPER DATA DATA DATA DATA DATA DATA DATA DAT
! p0(i,1)= p(i,1) +cx ! p0(i,2)= p(i,2) +cy	133 INTEGER, INTENT(IN) :: npts !number of nodes 134 REAL (KIND = DBL), INTENT(IN) :: cx, cy, cz, req !drop's centroid coordinates and re
$p_{0(1,3)} = p_{(1,3)} + c_{z}$	135 REAL (KIND = DBL), INTENT(OUT) :: DT, DTm, DTmm, Imajor, bminor, wminor, angulo
IEND FORALL	136 1
, , , , , , , , , , , , , , , , , , ,	138 !
END SUBROUTINE Corrector_vol	139 INTEGER :: i, j !Counters 140 !
SUBROUTINE Corrector_vol2(vel1, nelm)	141 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:,:) :: xp !Dummies array to adjust the position vectors. 142 !
This subroutine	142 : 143 ! The adjust beggins here

Version: 0.9 created on	21 / 10 / 2013	
! ! Version: 1.0 created on	14 / 01 / 2015	Alfredo Sanjuan Sanju
l version. 1.0 created on	14 / 01 / 2015	Alfredo Sanjuan Sanju
CONTAINS		
SUBROUTINE write_datan(
This subroutine write t		much in a filo
This subroutine applies		mean an a rate
USE Mod_SharedVars, ONL		
IMPLICIT NONE		
Variables		
Variables inside the su	proutine	
	WT(IN) :: nelm	Inumber of points
	VT(IN) :: stride	!counter
Variables inside the su		
CHARACTER (len=35) :: f		
CHARACTER (len=19) :: d		
CHARACTER (len= 4) :: e CHARACTER (len= 7) :: n		
CHARACTER (IEH= 7) :: h	100	
INTEGER :: i, j		!Counters
INTEGER :: i1, i2, i3,	i4, i5, i6	!
INTEGER :: select		!Selection
INTEGER :: fstatus		!FSTATUS
		transformed into character variables.
j = 1000000 + stride	in near and service are t	eransion med ante enandeter varabbaesi
WRITE(num,'(I7)') j		
ename = '.dat'		
!	called	
Then DOOM SUPPORTING 4		
	, content	
<pre>! CALL doom(ddname)</pre>		
! CALL doom(ddname) dname = TRIM('Data\Posi !	tion\nodes')	
<pre>! CALL doom(ddname) dname = TRIM('Data\Posi ! ! The name of file is mad</pre>	tion\nodes')	
<pre>! CALL doom(ddname) dname = TRIM('Data\Posi !</pre>	tion\nodes') 2.	
CALL doom(ddname) dname = TRIM('Data\Posi The name of file is mad	tion\nodes') 2.	
CALL doom(ddname) dname = TRIM('Data\Posi The name of file is mad fname = TRIM(TRIM(dname	tion\nodes') 2.)//TRIM(num)//ename)	CE', ACTION = 'WRITE', IOSTAT = fstatus)
CALL doom(ddname) dname = TRIM('Data\Posi The name of file is mad fname = TRIM(TRIM(dname OPEN(UNIT = 500, FILE =	tion\nodes') 2.)//TRIM(num)//ename)	
 CALL doom(ddname) dname = TRIM('Data\Posi The name of file is mad fname = TRIM(TRIM(dname OPEN(UNIT = 500, FILE = IF (fstatus == 0) THEN 	tion\nodes') 2.)//TRIM(num)//ename)	
<pre>! CALL doom(ddname) dname = TRIM('Data\Posi ! The name of file is mad fname = TRIM(TRIM(dname OPEN(UNIT = 500, FILE = IF (fstatus == 0) THEN WRITE(500,*) nelm</pre>	tion\nodes') 2.)//TRIM(num)//ename)	
 CALL doom(ddname) dname = TRIM('Data\Posi The name of file is mad fname = TRIM(TRIM(dname OPEN(UNIT = 500, FILE = IF (fstatus == 0) THEN 	tion\nodes') 2.)//TRIM(num)//ename)	
<pre>cALL doom(ddname) dname = TRIM('Data\Posi The name of file is mad fname = TRIM(TRIM(dname OPEN(UNIT = 500, FILE = IF (fstatus == 0) THEN WRITE(500,*) nelm</pre>	tion\nodes') 2.)//TRIM(num)//ename)	
I CALL doom(ddname) dname = TRIN(TbatApbe) fname of file is mad fname = TRIN(TRIN(dname OPEN(UNIT = 500, FILE = IF (fstatus == 0) THEN WRITE(500,*) nolm WRITE(500,*) olm WRITE(500,*) j D 0 i = 1, nelm i 1 = n(1,1)	tion\nodes') 2.)//TRIM(num)//ename)	
<pre>LaLL doom(ddname) dname = TEIM('DataPosi</pre>	tion\nodes') 2.)//TRIM(num)//ename)	
<pre>LalL doom(ddname) dname = TRIN(TbatApoe) fname = TRIN(TRIN(dname OPEN(UNIT = 500, FILE = IF (fstatus == 0) THEN WRITE(500,*) nolm WRITE(500,*) j D0 i = 1, nelm i = n(i,1) i 2 = n(i,2) i 3 = n(i,3)</pre>	tion\nodes') 2.)//TRIM(num)//ename)	
I CALL doom(ddname) dname = TEIM('Data/Posi fname = TEIM('TEIM(dname OPEN(UNIT = 590, FILE = IF (fstatus == 0) THEN WRITE(590,*) j DD i = 1, nelm i1 = n(i,1) i2 = n(i,2) i3 = n(i,3) i4 = n(1,4)	tion\nodes') 2.)//TRIM(num)//ename)	
<pre>LLL doom(ddname) dname = TRIN(Tw12at2Nes) fname = TRIN(TRIN(dname OPEN(UNIT = 500, FILE = IF (Fistatus == 0) THEN WRITE(500, *) nelm WRITE(500, *) j D0 i = 1, nelm i = n(1,1) i = n(1,2) i = n(1,3) i 4 = n(1,4) i 5 = n(1,5)</pre>	tion\nodes') 2.)//TRIM(num)//ename)	
<pre>LLL doom(ddname) dname = TRIM(TNIM('DataPosi fname of file is mad fname = TRIM(TRIM(dname OPEN(UNIT = 590, FILE IF (fstatus == 0) THE WRITE(590,*) i Do i = 1, nelm</pre>	tion\nodes') 2. ///TRIM(num)//ename) fname ,STATUS = 'REPLAC	CE', ACTION = 'MRITE', IOSTAT = fstatus)
<pre>LLL doom(ddname) dname = TRIM(TW'Data)Poi fname = TRIM(TRIM(dname) fname = TRIM(TRIM(dname OPEN(UNIT = 500, FILE = IF (fstatus0) THEN WRITE(500, *) nelm WRITE(500, *) nelm WRITE(500, *) nelm 12 = n(1, 1) 12 = n(1, 2) 13 = n(1, 3) 14 = n(1, 4) 15 = n(1, 6) WRITE (500, E) </pre>	tion\nodes') 2.)//TRIM(num)//ename)	LE', ACTION = 'WRITE', IOSTAT = fstatus)
<pre>LL doom(ddname) dname = TRIM(TW'Data)poi fname = TRIM(TRIM(dname) fname = TRIM(TRIM(dname) OPEN(UNIT = 500, FILE = IF (fstatus0) THEN WRITE(500, *) nelm WRITE(500, *) nelm WRITE(500, *) DO i = 1, nelm i = n(1, 1) i = n(1, 2) /pre>	<pre>tion\nodes') //TRIM(num)//ename) fname ,STATUS = 'REPLAG p(11,1),p(11,2),p(11,3) p(12,1),p(12,2),p(12,3) p(13,1),p(13,2),p(13,3)</pre>	CE', ACTION = 'WRITE', IOSTAT = fstatus)
I CALL doom(ddname) dname = TRIM(TRIM(bata)point fname = TRIM(TRIM(name) oPEN(UMIT = 500, FILE = IF (fstatus == 0) THEN WRITE(500,*) nelm WRITE(500,*) nelm WRITE(500,*) nelm 1 = n(1,1) 1 2 = n(1,2) 1 4 = n(1,4) 1 4 = n(1,4) 1 5 = n(1,2) 1 5 = n(1,2)	<pre>tion\nodes') //TRIM(num)//ename) fname ,STATUS = 'REPLAG p(11,1),p(11,2),p(11,3) p(12,1),p(12,2) p(12,1),p(12,2),p(12,3) p(13,1),p(14,2),p(14,3)</pre>	CE', ACTION = 'WRITE', IOSTAT = fstatus)
<pre>LLL doom(ddname) dname = TRIN(TW'Data)pos fname = TRIN(TRIN)(dname) fname = TRIN(TRIN)(dname) OPEN(UNIT = 500, FILE = IF (fstatus == 0) THEN WRITE(500,*) j D0 i = 1, nelm i = n(1,1) i2 = n(1,2) i3 = n(1,3) i4 = n(1,4) i5 = n(1,6) WRITE (500,103) WRI</pre>	<pre>tion\nodes') p(11,1),p(11,2),p(11,3) p(12,1),p(12,2),p(12,3) p(14,1),p(14,2),p(14,3) p(14,1),p(14,1),p(14,2) p(14,1),p(14,1) p(14,1),p(14,1) p(14,1),p(14,1) p(14,1),p(14,1),p(14,1) p(14,1),</pre>	CE', ACTION = 'WRITE', IOSTAT = fstatus)
<pre>LLL doom(ddname) dname = TRIM(TRIM()otat)poi fname of file is ma OPEN(UNIT = 500, FILE = OPEN(UNIT = 500, FILE = IF (fstatus == 0) THEN WRITE(500,*) nolm WRITE(500,*) nolm WRITE(500,*) nolm VRITE(500,*) is i = n(1,1) i = n(1,1) i = n(1,2) i = n(1,2</pre>	<pre>tion\nodes') //TRIM(num)//ename) fname ,STATUS = 'REPLAG p(11,1),p(11,2),p(11,3) p(12,1),p(12,2) p(12,1),p(12,2),p(12,3) p(13,1),p(14,2),p(14,3)</pre>	CE', ACTION = 'WRITE', IOSTAT = fstatus)
<pre>1 CALL doom(ddname) dname = TRIN(TVData)point The name of file is man fname = TRIN(TRIN(dname) fname = TRIN(TRIN(dname) OPEN(UNIT = 500, FILE = IF (fstatus == 0) THEN WRITE(500,*) j DO i = 1, nelm ii = n(1,1) i2 = n(1,2) i2 = n(1,2) i3 = n(1,3) i4 = n(1,4) i5 = n(1,6) WRITE (500,10) WRITE (500,10) </pre>	<pre>tion\nodes') p(11,1),p(11,2),p(11,3) p(12,1),p(12,2),p(12,3) p(14,1),p(14,2),p(14,3) p(14,1),p(14,1),p(14,2) p(14,1),p(14,1) p(14,1),p(14,1) p(14,1),p(14,1) p(14,1),p(14,1),p(14,1) p(14,1),</pre>	CE', ACTION = 'WRITE', IOSTAT = fstatus)

	CLOSE(UNIT = 500)
-	103 FORMAT(10(1x,E524.16))
=	
=	END SUBROUTINE write_datan
=	
=	SUBROUTINE write_datac(nelm, stride)
_	This subroutine write the data of collocation points if the mesh in a file This subroutine applies to every step of time.
	USE Mod_SharedVars, ONLY: DBL, x0, y0, z0
	IMPLICIT NONE
=	Variables
	Variables inside the subroutine
	INTEGER, INTENT(IN) :: nelm !number of points
	INTEGER, INTENT(IN) :: stride !counter
=	
-	CHARACTER (len=35) :: fname
	CHARACTER (len=19) :: dname
	CHARACTER (len= 4) :: ename CHARACTER (len= 7) :: num
-	
	INTEGER :: i, j Counters INTEGER :: i1, i2, i3, i4, i5, i6 !
	INTEGER :: select !Selection INTEGER :: fstatus !FSTATUS
!	First, the information of nelm and stride are transformed into character variables. j = 1000000 + stride
	WRITE(num, (I7)) j
- 1	ename = '.dat'
	<pre>dname = TRIM('Data\Positioc\collc')</pre>
	The name of file is made.
-	fname = TRIM(TRIM(dname)//TRIM(num)//ename)
	OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus)
	IF (fstatus == 0) THEN WRITE(500,*) nelm
	WRITE(500,*) j
! -	DO i = 1. nelm
	WRITE (500,103) x0(i), y0(i), z0(i)
	END DO END IF
! -	CLOSE(UNIT = 500)
! -	
! =	103 FORMAT(10(1x,ES24.16))
	END SUBROUTINE write_datac
	SUBROUTINE write_datak(nelm, stride)
i	This subroutine write the data of curvature in a file
! = !	This subroutine applies to every step of time.
! !	
! ! !=	USE Mod_SharedVars, ONLY: DBL, crvmel
! ! !=	USE Mod_SharedVars, ONLY: DBL, crvmel

Variables	
Variables inside the subroutine	218 ! First, the information of nelm and stride are transformed into character variables. 219 j = 1000000 + stride 220 WRTE(cmw,'(T2)') j
INTEGER, INTENT(IN) :: stride !counter	221 ename = '.dat' 222
Variables inside the subroutine	223 ! Then, DOOM SUBROUTINE is called. 224 dname = TRIM('Data\Area\nelm') 225 !
:HARACTER (len=35) :: fname :HARACTER (len=15) :: dname	226 The name of file is made.
CHARACTER (len= 4) :: ename CHARACTER (len= 7) :: num	227 !
INTEGER :: i, j !Counters INTEGER :: select !Selection	230 OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) 231
INTEGER :: fstatus IFSTATUS	232 IF (fstatus == 0) THEN 233 WRITE(500,*) nelm 234 WRITE(500,*) j
j = 1000000 + stride WRITE(num,'(II)') j ename = '.dat'	235 !
Then, DOOM SUBROUTINE is called.	238 END DO 239 END IF
dname = TRIM('Data\Curv\nelm')	240 !
he name of file is made.	241 CLOSE(UNIT = 500) 242 !
name = TRIM(TRIM(dname)//TRIM(num)//ename)	243 103 FORMAT(10(1x,E524.16)) 244
	245 END SUBROUTINE write_datar
<pre>PPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus)</pre>	246 !
<pre>F (fstatus == 0) THEN WRITE(500.*) nelm</pre>	248 SUBROUTINE write_datavl(nelm, stride, Velix, Veliy, Veliz) 249 !
write(500,*) j	250 ! This subroutine write the data of velocity on collocation points in a file 251 ! This subroutine applies to every step of time. 252 !
DO i = 1, nelm WRITE (500,*) crvmel(i)	252 USE Mod_SharedVars, ONLY: DBL
END DO IND IF	254
CLOSE(UNIT = 500)	250 I
103 FORMAT(10(1x,ES24.16))	259 !
RID SUBROUTINE write_datak	260 INTEGER, INTENTIAL :: nelm Inumber of elements 261 INTEGER, INTENTIAL : stride Icounter 262 REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(IN) :: Velix, Veliy, Veliz larrays of the components ! of normal vectors over collocation points
SUBROUTINE write_datar(nelm, stride)	264 !====================================
This subroutine write the data of element area in a file This subroutine applies to every step of time.	266 ! 267 CHARACTER (len=35) :: fname
	268 CHARACTER (len=15) :: dname
JSE Mod_SharedVars, ONLY: DBL, arel	270 CHARACTER (len= 7) :: num
IMPLICIT NOME	271 ! 272 INTEGER :: i, j !Counters
variables	273 ! INTEGER :: select !Selection
/ariables inside the subroutine	275
NNTEGER, INTENT(IN) :: nelm !number of elements NNTEGER, INTENT(IN) :: stride !counter	276 ! First, the information of nelm and stride are transformed into character variables. 277 j = 1000000 + stride 278 WRITE(num, '(17)') j
/ariables inside the subroutine	279 ename = '.dat' 280
:HARACTER (len=35) :: fname :HARACTER (len=15) :: dname	280 1 281 1 Then, DOOM SUBROUTINE is called. 282 dname = TRIM('Data\Velo\city') 283 1
:HARACTER (len= 4) :: ename :HARACTER (len= 7) :: num	284 ! The name of file is made.
INTEGER :: i, j !Counters	285 ! 286 fname = TRIM(TRIM(dname)//TRIM(num)//ename)
INTEGER :: select !Selection INTEGER :: fstatus !FSTATUS	287 287 288 OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus)

	361
IF (fstatus == 0) THEN WRITE(590,*) nelm WRITE(590,*) j	301 362 363 ! SUBROUTINE doom(ddname) 364 !!
D0 i = 1, nelm WRITE (500,103) Vel1x(i), Vel1y(i), Vel1z(i)	365 !! This subroutine write the data in a file 366 !! This subroutine applies to velocity and position of collocation points. 367 !!===================================
END DO END IF	368 ! USE Mod_SharedVars, ONLY: DBL, doomsday 369 !!
CLOSE(UNIT = 500)	370 IMPLICIT NONE 371 !!
103 FORMAT(10(1x,ES24.16))	373 !! Variables inside the subroutine 374 !!
END SUBROUTINE write_datavl	375 ! CHARACTER (len=52),INTENT(INOUT) :: ddname !semiroot 376 !!
SUBROUTINE write_datakFG(nelm, stride, GM)	377 !! Select subroutine and there are three options 378 !! 1 Alfredo PC 379 !! 2 Cahn +illilard and Ladyzhenskaya Test_experiments
This subroutine write the data of curvature in a file This subroutine applies to every step of time.	380 [! 3 Cahn-Hilliard and Ladyzhenskaya second and third programs. 381 !! Default Alfredo PC 382 !!===================================
USE Mod_SharedVars, ONLY: DBL, crvmel	383 !! The choice is made here padawan.
IMPLICIT NONE Variables	384 - 385 ! SELECT CASE(doomsday) 386 -
Variables Variables inside the subroutine	380 11 387 1 CASE (1) 388 11-
INTEGER, INTENT(IN) :: nelm !number of elements INTEGER, INTENT(IN) :: stride counter REAL (KIND = DBL), ALLOCATABLE, DIMENSION(:), INTENT(INDUT) :: GM	<pre>389 !! This option is for your PC 390 ! ddname = 'C:\Users\Alfredo\Desktop\prtcl_mkl\Test_experiments\' 391 !!</pre>
Variables inside the subroutine	392 ! CASE (2) 393 !!
CHARACTER (len=35) :: fname CHARACTER (len=15) :: dname	394 !! This option is for Ladyzhenskaya 395 ! ddname = 'C:\Users\asanjuans\Desktop\Test_experiments\' 396 !!-
CHARACTER (len= 4) :: ename CHARACTER (len= 7) :: num	397 ! CASE (3) 398 !!
INTEGER :: i, j Icounters INTEGER :: select Iselection INTEGER :: fratus IFSTATUS	399 !! This option is for Ladyzhenskaya II 400 ! ddname ': ('Livers\asanjuans\Desktop\Test_experimen_2\' 401 !! 402 ! CASE (4)
First, the information of nelm and stride are transformed into character variables. j = 1000000 + stride	403 404 !! This option is for Ladyzhenskaya III 405 ! ddname = 'C:\Users\asanjuans\besktop\Test experimen 3\'
WRITE(num,'(I7)') j ename = '.dat'	406
Then, DOOM SUBROUTINE is called. dname = TRIM('Data)Curv\nelm')	400 !! This expretion is for your PC 410 ! ddname = 'c:\Users\asanjuans\Desktop\prtcl_mkl\Test_experiments\' 411 ! END SELECT
The name of file is made.	412 !!
<pre>fname = TRIM(TRIM(dname)//TRIM(num)//ename)</pre>	414 !!- 415 ! END SUBROUTINE doom
OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus == 0) THEN	416 ! 417 !! 418 ! SUBROUTINE geometryprint(npts, stride)
lr (*status == 6) Hen WRTE(500,*) nelm WRITE(500,*) j	418 1 SUBBOULINE geometryprint(npts, stride) 419 !!
DO 1 = 1, nelm WRTTE (500,103) GM(1), GM(1+nelm), GM(1+nelm+nelm), crvmel(1) END DO	421 II mis subroutine applies to every step of time. 422 II =================================
END DO END IF	424 !! 425 !! IMPLICIT NONE 426 !!
CLOSE(UNIT = 500)	420 11 427 !! Variables 428 !! Variables inside the subroutine
103 FORMAT(10(1x,E524.16))	430 ! INTEGER, INTENT(IN) :: npts !number of points

Wardials indide the submotine Construct (stered): if the submoti	 																																				 			
	 10n=25\	[len=15] ::	::	:: :	(len= 4) ::	(len= 5)	:: 1, 1	:: select :: fstatus	ید او ایرومسیفادی در سراس عمار فیداره عدم استدرومسوط اصف دامیددوامد درمانهارد. دف افر ایرومسیفادی در سراس عمار فیداره عدم استدرومسوط اصف اصف استانهارد.	cTE(numch,*) npts	m = TRIM('(' // TRIM(numch) // 'ES25.17)') - Japaga + etrido	(TE(num, '(I5)') j	מות – יחמר 	en, DOOM SUBROUTINE IS CALLEd. I doom(ddhame)	ame = TRIM(TRIM(ddname)//'geometry\p')	ame = TRIM(dname)	e name of file is made.	ame = TRTM/TRTM(dname)//TRTM(num)//ename)	cN(UNIT = 500, FILE = +name ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = +status)	(fstatus == 0) THEN	WRITE(500,*) npts WRITE(500,*) j	D0 i = 1. nots	WRITE (500,103) p(i,1),p(i,2),p(i,3)	5 IF	DSE(UNIT = 500)	<pre>> FORWAT(10(1X,ES24.16))</pre>) SUBROUTINE geometryprint	11 7	жилтик ичартиктиктиктиктиктиктиктиктиктиктиктиктикт	is subroutine write the data of curvature in a file is subroutine annies to every sten of time.	: Mod_SharedVars, ONLY: DBL, farel	JLICIT NONE	iables	riables inside the subroutine	INTENT(IN) :: nelm	INTENT(IN) :: stride counter	(len=25) ::	(len=15)	(len=67)	(len= 4)

MITEGER ::::::::::::::::::::::::::::::::::::	<pre>INTEGER :: select INTEGER :: select INTEGER :: select INTEGER :: fstatus INTEGER :: fstatus Inter information of nelm and stride are transformed into character variables. WITE(numt), if inter('/' RIN((numch) // 'ES25.17)') j = 10000 + stride WITE(num, '(IS)') j ename = '.dat' Then, Doon SuBROUTIME is called. CALL doom(doname) doname = TRIN(TRIN(doname)// 'nelm\uva') doname = TRIN(TRIN(doname)/ 'nelm\uva') DOPN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'MRITE', IOSTAT = fstatus) Tr (fstatus = 0) TEL MITE(500,*) nelm WITE(500,*) nelm WITE(500,*) farel(1) INMTE(500,*) farel(1) INMTE(500,*</pre>	<pre>INTEGER :: 1, 1 INTEGER :: select isslection INTEGER :: statc IFISTAUS First, the information of nelm and stride are transformed into character variables. WAITE(unuch,*) nelm MAITE(unuch,*) nelm MAITE(unuch,*) nelm MAITE(unuch,*) (151) 1 j = 10000 + stride j = 10000 + stride iname = TRIN(TRIN(numL) // 'E235.17)') j = 10000 + stride iname = TRIN(TRIN(numL) // 'E235.17)') neme: ('unic, '(151) j ensure ('unic, '(151) j ensure ('unic, '(152) j finame = TRIN(TRIN(dname) // TRIN(num) // ename) finame = TRIN(TRIN(TRIN(dname) // TRIN(TRIN(dname) // TRIN(TRIN(dname) // TRIN(TRIN(dname) // TRIN(TRIN(dname) // TRIN(TRIN(dname) // TRIN(TRIN(dname) // TRIN(TRIN(TRIN(dname) // TRIN(TRIN(TRIN(dname) //</pre>	IMTEGER :: 1, 1 ICounters INTEGER :: select !selection INTERC :: select !selection INTERC :: select !selection INTERC :: select !selection INTERC :: select !selection Mart :: select !selection Mart :: select .selection i = 10000 subsource is called. .selection Call doordname .dame = REN(RINR(dname)// nelm(uva')) dname = REN(RINR(dname)// REN(num)// ename) .Mart : selection OPEN(UNIT = 500, FILE = fname , STATUS = 'REPLACE', ACTION = 'MEITE', IOSTAT = fstatus) IF (fstatus = 0) THEN .made = REN(Gname)// REN(num)// ename) OPEN(UNIT = 500, FILE = fname , STATUS = 'REPLACE', ACTION = 'MEITE', IOSTAT = fstatus) IF (fstatus = 0) THEN .made = REN(Gname)// REN(END(Gname)// RENCE) .unde = REN(Gname)// RENCE .made = REN(Gname)// RENCE .unde = REN(Gname)// RENCE .made = REN(Gname)// RENCE .dname = REN(Gname)// RENCE .made = REN(Gname)// RENCE .dname =	INTEGER :: 1, j Icounters INTEGER :: state: !slatcion INTEGER :: state: !slatcion INTEGER :: state: !slatcion Intrest. !state: Internet introduction of nelm 'state: Internet introduction !state: Internet intrestate:	INTEGER: :: 1, j Icounters INTEGER: :: state: !state: MUTE(numch, %): nelm 'translow: Intermore: 'translow: Intermore: 'translow: Intermore: 'translow: Intermore: 'translow: Intermo 'translow: Interm	INTEGN: :: :	<pre>DNTEER :: 1, 1 INTEER :: select INTEER :: select First the internet of neam and stride are transformed into character variable. First the internet of neam and stride are transformed into character variable. First the internet of neam and stride are transformed into character variable. First the internet of neam and stride are transformed into character variable. First the internet of neam and stride are transformed into character variable. First the internet of neam and stride are transformed into character variable. First the internet of neam and stride are transformed into character variable. first the internet of the internet of neam and stride are transformed into character variable. first first the internet of the internet of neam and strict of a set of the internet of the inte</pre>	INTEGER :: : : : : : : : : : : : : : : : : :	504	CHARACTER (len= 5) :: num
	<pre>INTEGER :: se_ict listatus INTEGER :: fstatus IFSTATUS Inter, the information of nelm and stride are transformed into character variables. WAITF(num(h, ') nelm WAITF(num(h, ') nelm WAITF(num(h, '(')') nelm WAITE(num,'(!S)') j 1 = 100004 stride WAITE(num,'(!S)') j 1 = 100004 stride WAITE(num,'(!S)') j 1 = 100004 stride WAITE(num,'(!S)') j 1 = 100004 stride WAITE(sob.*) nelm WAITE(sob.*) nelm WAITE(sob</pre>	<pre>INTEGER :: soict !status isFignus INTEGER :: soict !status !sFignus RistIs(numch,*) neim finm = TRIN(''./'TRIN(numch) // 'ESS:17)') finm = TRIN(''./'TRIN(numch) // 'ESS:17)') finm = TRIN(''./'TRIN(numch) // 'ESS:17)') j = 10000 + stride MATTE(num,'(TS)') j finte = 'dat' hen, opons useRouTINE is called. CALL doom(ddname)// nelm/uva') dname = TRIN(TRIN(dname)// nelm/uva') dname = TRIN(TRIN(dname)// nelm/uva') dname = TRIN(TRIN(dname)// nelm/uva') dname = TRIN(TRIN(num)// ename) finte = TRIN(TRIN(num)/ ename) finte = TRIN(TRIN(num)/ ename) finte = TRIN(TRIN(NUT)/ ename) finte = TRIN(TRIN(TRIN(NUT)/ ename) finte = TRIN(TRIN(TRIN(TRIN(TRIN)))</pre>	<pre>INTEGER :: soiet lestens lesten INTEGER :: staus lestens lesten MATE(cumeL, *) wei warte(cumeL, *) wei mann = TarkY.('// TRIM(numch) // 'ES25.17)') # mann = TRIM(rumch, *) wei # mann = TRIM(numch) // 'ES25.17)') # warte(cum., 'CIS)') j # warte(cum., 'CIS)') j # warte(cum., 'CIS)') j # warte(cum., 'CIS)') j # mann = TRIM(name) // 'Melame) # mann = TRIM(name) // 'Melame) // 'Melame) # mann = TRIM(name) // 'Melame) // 'Melame) # mann = TRIM(name) // 'Melame) /</pre>	<pre>INTEGER :: 5:aist [status] INTEGER :: fstatus INTEGER :: fstatus Intervation of nelm and stride are transformed into character variables. WaTH (numt, ') TRIM(numch) // 'ES3:.17)') j = 10000 + stride inum = TRIM('(''/ TRIM(numch) // 'ES3:.17)') j = 10000 + stride inum = TRIM('(''/ TRIM(numch) // 'ES3:.17)') j = 10000 + stride inum = TRIM('(''/ TRIM(numch) // 'ES3:.17)') j = 10000 + stride inum = TRIM('(''/ TRIM(numch) // 'ES3:.17)') j = 10000 + stride inum = TRIM('(''/ TRIM(numch) // 'ES3:.17)') i = 10000 + stride i = '.da' i</pre>	<pre>INTEGER :: saiet lestention INTEGER :: fstaus AITEGER :: fstaus MAITE(uneth, *) Neury ('', /' TRIM((uneth) // 'ESJS.17)') mean = TRIM('', /' TRIM((uneth) // 'ESJS.17)') j = 10000 + stride j = 10000 + stride j = 10000 + stride i = 10000 + stride mean = 'TRIM('TRIM((uneth) // 'ESJS.17)') hen, ('TSI)' (SJS)') j ename = 'Lat' Then, Dons SubsourtHE is called. CALL doom(Ghrame)// 'nelmu/u'') dname = TRIM(TRIM(dname)// 'nelmu/u'') dname = TRIM(TRIM(dname)// 'nelmu/u'') frame = TRIM(TRIM(dname)// TRIM(num)//ename) frame = TRIM(TRIM(dname)//TRIM(num)//ename) frame = TRIM(TRIM(dname)//TRIM(num)//ename) frame = TRIM(TRIM(dname)//TRIM(num)//ename) frame = TRIM(TRIM(dname)//TRIM(num)//ename) frame = TRIM(TRIM(dname)//TRIM(num)//ename) frame = TRIM(TRIM(dname)//TRIM(num)//ename) frame = TRIM(TRIM(dname)//TRIM(num)/ename) frame = TRIM(TRIM(dname)//TRIM(num)/ename) frame = TRIM(TRIM(dname)//TRIM(dname)//TRIM(TRIM(dname)//TRIM(TRIM(dname)//TRIM(TRIM(dname)//TRIM(TRIM(dname)//TRIM(TRIM(dname)//TRIM(TRIM(dname)//TRIM(TRIM(dname)//TRIM(TRIM(dname)//TRIM(TRIM(dname)//TRIM(TRIM(dname)//TRIM(TRIM(dname)//TRIM(TRIM(dname)//TRIM(TRIM(dname)//TRIM(TRIM(dname)//TRIM(TRIM(dname)//TRIM(TRIM(dname)//TRIM(TRIM(dname)//TRIM(TRIM(dname)//TRIM(T</pre>	INTEGER :: space: iscat: iscat: Interest: iscat: iscat: Interst: the information for final and stride are transformed into character variables. Main F(Ruch.) main fund.) Main F(Ruch.) fund. fund. Main F (Ruch.) fund. fund. Main F (Ruch.) fund. fund.	<pre>Intrice :: space in issue cloan Intrice :: space is issue cloan Intrice :: state :: space is issue cloan intrice :: space ::</pre>	INTEGR :: sajet: jstation jstation jstation jstation istromation of nelma and stride are transformed into character variables. Tirry: the information of nelma and stride are transformed into character variables. The istromation of nelma and stride are transformed into character variables. The istromation of nelma and stride are transformed into character variables. The istromation of nelma and stride are transformed into character variables. The istromation of nelma and stride are transformed into character variables. The istromation of nelma and stride are transformed into character variables. The istromation of nelma and stride are transformed into character variables. The istromation of the interval of the istromation of the istriction of the istromation of the istromation of the istromation of the istriction of the istromation of the	505 - 506	INTEGER :: i. i
<pre>INTIGER :: fstatus</pre>	<pre>INTIGER :: fstaus</pre>	<pre>INTEGER :: fstatus</pre>	<pre>INTEGER :: fstatus IFSTAUS First, the information of nelm and stride are transformed into character variables. First, the information of nelm and stride are transformed into character variables. finam = TRIN((' (' / TRIN(lunch) // 'E35.17)') finam = TRIN(' (' // TRIN(lunch) // 'E35.17)') finame = '.dat' Then, DOOM SUBROUTINE is called. C.dat doom(domme) Then, DOOM SUBROUTINE is called. C.dat doom(domme)// 'nelm(uva') finame = TRIN(RIN(dname)// 'nelm(uva') dname = TRIN(RIN(dname)// 'nelm(uva') finame = TRIN(RIN(dname)/ 'nelm(uva') finame =</pre>	<pre>INTEGER :: fstatus</pre>	<pre>INTEGEM :: fstatus</pre>	<pre>Intecfs :: fstaus isfANUS First := fstaus isfANUS First := fstaus isfANUS First := fstaus finat := fstaus finat := fstaus finat := fstaus finat := dst finat := fstaus finat := fstaus finat := rEN(r(rAnew)/'reIn(vus') finat := rEN(rEN(clame)/'reIn(vus') finat := rEN(rEN(clame)/'reIn(reIn(clame)/'rEIn(reIn(clame))/'reIn(reIn(clame)/'rEIn(reIn(clame))/'reIn(reIn(clame))/'rEIN</pre>	DIFEGEN :: fittus IFINUS First, the information of relam and stride are transformed into character variables. Minit (cume,). 1=0000 + Stride are transformed into character variables. final = 10000 + Stride are transformed into character variables. minit (cume,). 1=0000 + Stride are transformed into character variables. minit (cume,). 1=0000 + Stride are transformed into character variables. minit (cume,). 1=0000 + Stride are transformed into character variables. minit (cume,). 1=0000 + Stride are transformed into character variables. minit (cume,). 1=000 + Stride are transformed into character variables. minit (cume,). 1=000 + Stride are transformed into character variables. minit (cume,). 1=000 + Stride are transformed into character variables. minit (cume,). 1=000 + Stride are transformed into character variables. minit (cume,). 1=00 + Stride are transformed into character variables. minit (cume, cume). 1=00 + Stride are transformed into character variables. minit (cume, cume). 1=00 + Stride are transformed into character variables. minit (cume, cume). 1=00 + Stride are transformed into character variables. minit (cume, cume). 1=00 + Stride are transformed into character variables. <td< td=""><td>Diffects :: fitatus IFSANUS First, the information of neal and stride are transformed into character variables. First, the information of neal and stride are transformed into character variables. First, the information of neal and stride are transformed into the acter variables. Martif(num, (is)) i man = 1.dat(') i man =dat' Then, DOON SUBOUTHE is called. Then, DOON SUBOUTHE is called. Call decodedname)// nelMuuu') dame = TEXN(RIAdame)// nelMuuu') frame of file is ande. The name of file is ande. MartE(Sou,) into MartE(Sou,) into MartE(Sou,) frank(I) Diffecture = 0) THE MartE(Sou,) frank(I) Diffecture = 0) THE Ma</td><td></td><td>:: select</td></td<>	Diffects :: fitatus IFSANUS First, the information of neal and stride are transformed into character variables. First, the information of neal and stride are transformed into character variables. First, the information of neal and stride are transformed into the acter variables. Martif(num, (is)) i man = 1.dat(') i man =dat' Then, DOON SUBOUTHE is called. Then, DOON SUBOUTHE is called. Call decodedname)// nelMuuu') dame = TEXN(RIAdame)// nelMuuu') frame of file is ande. The name of file is ande. MartE(Sou,) into MartE(Sou,) into MartE(Sou,) frank(I) Diffecture = 0) THE MartE(Sou,) frank(I) Diffecture = 0) THE Ma		:: select
<pre>First, the information of nelm and stride are transformed into character variables. WaTE(numb, nelm foum = TENM((' // TENM(numch) // 'ESS.17)') j = 100000 + stride Manne = TENM((' // TENM(numch) // 'ESS.17)') j = 100000 + stride Manne = TENM(TENM(numch) // 'ESS.17)') denme = TENM(TENM(numch) // nelm/uva') denme = TENM(TENM(numch) // nelm/uva') denme = TENM(TENM(numch) // nelm/uva') denme = TENM(TENM(numch) // nelm(uva') denme = TENM(TENM(</pre>	<pre>First, the information of nelm and stride are transformed into character variables. WITF((unst),) nelm finm = TRIM(('') TRIM(numch) // '525.17)') j = 10000 + stride with('') TRIM(numch) // '525.17)') j = 10000 + stride with('') j = 10000 + stride for a clarit frame = '.dit' Then, DOM SUBROUTINE is called. CLU DOM SUBROUTINE is called. CLU and cons(ddname)// nelm/uva') dname = TRIM(TRIM(dname)// nelm/uva') dname = TRIM(TRIM(dname)// nelm/uva') dname = TRIM(TRIM(dname)// nelm/uva') frame = TRIM(TRIM(dname)// nelm/uva') dname = TRIM(TRIM(dname)// nelm/uva') frame = TRIM(TRIM(dname)// nelm/uva'</pre>	<pre>First, the information of nelm and stride are transformed into character variables. WAITE(num, vir), nelm fnum = TRIM(': '/ TRIM(numch) // 'ESS.17)') j = 10000 + stride MAITE(num, (is)') j ename = 'i.' Then, DOON SUBNOUTHE is called. CALL doord(dhame) dname = TRIM(TRIM(dhame)// 'nelm\uva') dname = TRIM(TRIM(dhame)// 'nelm\uva') dname = TRIM(TRIM(dhame)// 'nelm() fname = TRIM(TRIM(dhame)// 'nelme) DoeM(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) TF (fstatus == 0) THEN WRITE(500,*) j OD i = 1, nelm WRITE(500,*) fine MAITE (9,103) arel(i) END DO END FUNCTE = 00) END FUNCTE (00, *) farel(i) END SUBSOUTINE uvaprint END SUBSOUTINE uvaprint END SUBSOUTINE uvaprint</pre>	<pre>First, the information of nelm and stride are transformed into character variables. WAITE(num(): // TRIM(numch) // 'ESS.17)') j = 10000 + stride fnum = TRIM(': '/, TRIM(numch) // 'ESS.17)') j = 10000 + stride mame = '.dat' Then, DOOM SUBROUTINE is called. Then, DOOM SUBROUTINE is called. CALL doom(dname)/'nelm/uva') dname = TRIM(TRIM(dname)/'nelm/uva') dname = TRIM(TRIM(dname)/'nelm/uva') dname = TRIM(TRIM(dname)/'nelm/uva') fname = TRIM(TRIM(dname)/'nelm/uva') dname = TRIM(TRIM(dname)/'nelm/uva') fname = TRIM(TRIM(dname)/'nelm/uva') dname = TRIM(TRIM(dname)/'nelm/uva') dname = TRIM(TRIM(dname)/'nelm/uva') fname = TRIM(TRIM(dname)/'nelm/uva') dname = TRIM(TRIM(dname)/'nelm/nva') dname = TRIM(TRIM(dna</pre>	<pre>First, the information of nelm and stride are transformed into character variables. Mum = TRIN((' '/' RIN(numch) // 'ESS.17)') j = 10000 + Stride Mum = TRIN('' '/' RIN(numch) // 'ESS.17)') j = 10000 SUBROUTHE is called. Then, DOON SUBROUTHE is called. then, DOON SUBROUTHE is called. chane = TRIN(TRIN(dhame)//'nelm/uva') dname = TRIN(TRIN(dhame)//'nelm/uva') dname = TRIN(TRIN(dhame)/'nelm/uva') frame = TRIN(TRIN(dhame)/'nelm/uva') dname = TRIN(TRIN(dhame)/'nelm/uva') frame = TRIN(TRIN(dhame)/'nelm(uva') frame = TRIN(TRIN(dhame)/'nelm(uva') frame = TRIN(TRIN(dhame)/'nelm(uva') frame = TRIN(TRIN(dhame)/'nelm(uva') frame = TRIN(TRIN(dhame)/'nelm(uva') frame = TRIN(TRIN(dhame)/'nelm(uva') frame = TRIN(TRIN(dhame)/'nelm(uva') dname = TRIN(TRIN(dhame)/'nelm(uva') frame = TRIN(TRIN(dhame)/'nelm(uva') dname = TRIN(TRIN(dhame)/'nelm(uva') dname = TRIN(TRIN(dhame)/'nelm(uva')) frame = TRIN(TRIN(trino)/'nelm(uva')) frame = TRIN(TRINO)/'nelm(uva')) frame = TRIN(TRINO)/'nelm(uva')) frame = TRIN(TRINO)/'nelm(uva')) frame = TRIN(TRINO)/'nel</pre>	<pre>First, the information of nelm and stride are transformed into character variables. fum = TENW('' // TEIM(nunch) // 'ESS.17)') j = 10000 + stride fum = TENW('' // TEIM(nunch) // 'ESS.17)') j = 10000 + stride nel = 'dat' Then, DOON SUBROUTHE is called. Then, DOON SUBROUTHE is called. CALL doom(dname) frame = TEIM(TEIM(dname)/' nelm\uva') dname = TEIM(TEIM(dname)/' nelm\uva') dname = TEIM(TEIM(dname)/' nelm\uva') frame = TEIM(TEIM(dname)/' nelm\uva') dname = TEIM(TEIM(dname)/'</pre>	<pre>First, the information of nein and stride are transformed into character variables. MultE(num, t) nein fun = TRIM(': ') TRIM(num() // 'E33.17)') multE(num, t) nein Mile (num, t) nein Mile (num, t) nein Mile (num, t) nein Arme = '.dat') mee = '.dat') mee = TRIN(TRIM(drame)/'nein/ura') drame = TRIN(TRIM(drame)/'nein/in/erame) The name of file is rade. Trame of file</pre>	<pre>First, the information of realm and stride are transformed into character variables. WurtE(numble,) helm if in an italy((')' ('E33-17)')) = income = rity((')' ('E33-17)')) = income = rity(') income = rit</pre>	<pre>First, the information of nelm and stride are transformed into character variables. functionum.b,) nelm =TRA(F(*) [1, 'E35.17)')</pre>		:: fstatus
<pre>wiTF(numch,*) nelm wiTF(numch,*) nelm hwiTF(numch,''/ TRIM(numch) // 'E32.17)') j = 10000 + Stride neame = '.dt') hern = network(15) j ensme = '.dt') hern = network(16) hern = TRIM(dname) hern = TRIM(dname)/'nelmuva') home = TRIM(dname)/'nelmuva') home = TRIM(dname)//nelmuva') home = TRIM(fill(dname)//nelmuva') home = TRIM(fill(dname)//nelmuva') home = TRIM(fill(dname)//nelmuva') home = TRIM(fill(dname)//nelmuva') home = TRIM(fill(dname)//nelmume)/ home = TRIM(fill(dname)//nelmume)/ home = TRIM(fill(dname)//nelmuva') home = TRIM(fill(dname)//nelmuva') home = TRIM(fill(dname)/nelmuva') home = TRIM(fill(dname)/nelmumo)/nelmumo) home = TRIM(fill(dname)/nelmumo)/nelmumo) home = TRIM(fill(dname)/nelmumo)/nelmumo) home = TRIM(fill(dname)/nelmumo)/nelmumo) home = TRIM(fill(dname)/nelmumo)/nelmumo)/nelmumo) home = TRIM(fill(dname)/nelmumo)/nelmumo)/nelmumo) home = TRIM(fill(dname)/nelmumo</pre>	<pre>wiTE(numet,*, nelm wiTE(nume,*, nelm fwiTE(num,'(15)') j = 10000 + stride wiRTE(num,'(15)') j = 10000 + stride meame = '.dat' nenme = '.</pre>	<pre>WiTF(nume),*) nelm WiTF(nume),*) nelm WiTF(num,'(15)') j = 10000 + stride wishIE(num,'(15)') j = 10000 + stride meame = '.dat' Then DooN SUBOUTHWE is called. CALL doord(dhame)//nelm(vua') dname = TRIN(TRIN(dhame)//nelm(vua') dname = TRIN(TRIN(dhame)//nelm(num)/ename) fname = TRIN(TRIN(num)/ename) fname = TRIN(TRIN(num)/ename)/ fname = TRIN(TRIN(NUT = 500) fname = TRIN(TRIN(tal))/ fname = TRIN(tal))/ fname = TRIN(TRIN(tal))/ fname = TRIN(TRIN(tal))/ f</pre>	<pre>WiTE(numch,*) nelm WiTE(numch,*) nelm #WiTE(num, (*)/ TRIM(numch) // 'E32.17)') j = 10006 + stride enamr = 10.000 + stride enamr = 10.000 + stride neamr = 10.000 + stride Then, DOON SUBROUTHE is called. Then, DOON SUBROUTHE is called. Then, DOON SUBROUTHE is called. CALL doon(driame)//nelmow/)/nelmow/) dome = TRIM(fram(driame)//nelmow)/ dome = TRIM(fram(driame)//nelmow)/ frame = TRIM(fram(driame)//nelmow)/ dome = TRIM(fram(driame)//nelmow)/ frame = TRIM(frame)/ frame = TRIM(frame)/nelmow)/ frame = TRIM(frame)/nelmow)/ frame = TRIM(frame)/ frame = TRIM(frame)/nelmow)/ frame = TRIM(frame)/ frame = TRIM(frame)/ fra</pre>	<pre>WiTE(rumet),', nelm hwiTE(rumet),', nelm i = TRIN(', // TRIN(rumeth) // 'E25.17)') j = 10000 + stride wiTE(rum, 'C15)') j ename = '.dat' Then, DooN SUBCUTICE is called. CALL doow(dnames)/'nelm/uva') dname = TRIN(dname)/'nelm/uva') dname = TRIN(dname)/'nelm/uva') fname = TRIN(dname)/'nelm/uva') fname = TRIN(dname)/'nelm/uva') dname = TRIN(dname)/'nelm/uva') fname = TRIN(dname)/'nelm/uva') fname = TRIN(dname)/'nelm/uva') fname = TRIN(TRIN(dname)/'nelm/uva') fname = TRIN(TRIN(dname)/'TRIN(trin(trin(trin(trin(trin(trin(trin(trin</pre>	<pre>wirE(numch,*) nelm wirE(numch,*) nelm wirE(numc),(1 // TRIM(numch) // 'E35.17)') j = 10000 + stride ename = 'tdt'. Then, DOM SUBROUTINE is called. Then, DOM SUBROUTINE is called. Then, DOM SUBROUTINE is called. CALL down(dname) Then, DOM SUBROUTINE is called. CALL down(dname)//rEIM(num)//ename) The name of file is made. The name of the name is the n</pre>	<pre>MirE(nume,), num fum free(n, num) fum free(n, num) fum free(n, (13)) j meme = '.ist' num free(n, (13)) i meme of file is mile(num end file is mile(num end file is mile(num end) file is mile(file i</pre>	<pre>mirrE(num; (rs), neam func if FRM(", 'TRM(numch) // 'ESS.17)') j = 1000 + Fride func (rs), (rs)) j exame = 'TRM(nrm("(rs))') subsecting to the exame = 'CRM(nrm(s)) subsecting to the character in the name of file is made. The name of file is made.</pre>	<pre>MeTTE(numb, *) meTam MeTTE(num, (*5)) 1 j = Index = *id*(*) mem = *id*(*)) 1 Then, poor Subscription Then, poor Subscription Then, poor Subscription Then are of file is called. Then are of file is nude. The name of file is</pre>	: =	rissississississississississississississ
<pre>fina TRIN('(',/)TRIN(numch) // 'E35.17)') j = 10000 + Stride WRITE(num, (15)') j enome = '.dat' Then, DOON SUBROUTINE is called. Then, DOON SUBROUTINE is called. Then, DOON SUBROUTINE is called. Then are of file is made. The name of name of the name of name of the name of the name name of the name of the name name of name of the name name of name of the name name of name name of name of the name name of name of the name name name name name name of the name name name name name name name nam</pre>	<pre>fnue TRIM('('// TRIM(numch) // 'E325.17)') fnue TRIM('('// TRIM(numch) // 'E325.17)') will = 10000 + Stride will = (num, (IS)') fnue = 'dat' Then boom SUBBOUTIME is called. fnue (nom e - 'dat') fnue = TRIM(nname)//TRIM(num)/rename) fnue = TRIM(nname)//TRIM(num)/rename) fname = TRIM(nname)/TRIM(num)/rename) fname = TRIM(name)/TRIM(num)/rename) TRIM(num)/rename) fname = TRIM(name)/TRIM(num)/renam</pre>	<pre>fhom= TRIN('(', // TRIM(numch) // 'ESS.17)') j = 10000 + stride MATTE(num, (TS)') j ename = '.dat' Then, DOON SUBROUTINE is called. Then, DOON SUBROUTINE is called. CALL doom(dname)// nelm/uva') dname = TRIN(TRIM(dname)// nelm/uva') dname = TRIN(TRIM(dname)// nelm/uva') dname = TRIN(TRIM(num)// nelme) The name of file is made. The name of file is the name is th</pre>	<pre>finm = TRIM('(')/ TRIM(numch) // 'ESS.17)') finm = TRIM('(')/ TRIM(numch) // 'ESS.17)') j = 10000 + stride WRITE(oun, ('E)') j ename = '.dat' Then, DOON SUBROUTINE is called. CALL doom(Ldname)// nelm/uva') dname = TRIM(TRIM(dname)// nelm/uva') dname = TRIM(TRIM(dname)// TRIM(num)// Finame) The name of file is made. The name of tile is made. The name of the name of the name is startus the name is startus the name of the name of the name is startus the namo of the name of the name of the</pre>	<pre>fum = TRIN(': // TRIN(numch) // 'E2S.17)') f = 10000 + 5 tride WTIF(num,'(I:)) j ename = '.dat' ename = '.dat' f = name / main(dname)// nelm/uva') f = name = TRIN(TRIN(dname)// nelm/um)// ename f = TRIN(TRIE (500.4) nelm/um)// ename f = nonu f = no</pre>	<pre>fun = TRIN(''.'/ TRIN(numch) // 'E25.17)') j = 10000 + Stride WRITE(num.'(!5)') j ename = '.dat' Then, DOON SUBROUTIME is called. Then, DOON SUBROUTIME is called. Then, DOON SUBROUTIME is called. The name of file is made. The name of the name of the name of the name of name of name of the name of n</pre>	<pre>f frum = TRIF((ru, [: // TRIM(funch) // 'E35.17)') multif(rum, (:(2)) i multif(rum, (:(2</pre>	<pre>Hum = TRI(((', // TRIA((nuch) // 'E35.17)')</pre>	<pre>fmum = TRIX('', '/, TRIX(runch) // 'ES3.17)') j = 10000 + Strids ename : 'dat''('') (TRIX(runch) // 'ES3.17)') ename : 'dat''(TRIX(diame)/'/ 'nclmvus') ename : 'dat''(TRIX(diame)/'/ 'nclmvus') datame = TRIX(rIAME)</pre>	:	rando for the annual of them and defined and of the and of the annual first state of the
<pre>j = 10000 + stride</pre>	<pre>j = Joodo + stride MarrE(num, (rs)) j ename = '.idt Then, DooM SUBROUTHE is called Then, DooM SUBROUTHE is called CALL doom(ddname)// nelm/uva') dname = TRIM(dname)/ TRIM(num)//ename) The name of file is made. The name of file is name. The name of the name of t</pre>	<pre>j = 10000 + stride MRTE(num, (IC)) j ename = 'da' Then, DOOM SUBROUTINE is called. Then, DOOM SUBROUTINE is called. CLL doom(domme)//relm(uva') donme = TRIN(TRIN(dname)//rELM(num)//ename) donme = TRIN(TRIN(dname)//TRIN(num)//ename) fname = TRIN(TRIN(dname)//TRIN(num)//ename) oPEN(UNIT = 500, FILE = fname \$STATUS = 'REPLACE', ACTION = 'MRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN MRTE(500,*) ndl MRTE(500,*) ndl MRTE(500,*) ndl MRTE(500,*) farel(1) in [NITE (8,103) arel(1) in [NITE (8,</pre>	<pre>j = 10000 + Stride MRTE(cum, (i;)); j ename = 'dr' CALL doom(dname)/ nelm(uva') dname = TRUN(TRIN(dname)/ 'nelm(uva') dname = TRUN(TRIN(dname)/ 'nelm(uva') dname = TRUN(TRIN(dname)// nelm(uva') fname = TRUN(TRIN(dname)// TRIN = 'MRITE', IOSTAT = fstatus) The name of file is made. fname = TRIN(TRIN(dname)// TRIN = 'MRITE', IOSTAT = fstatus) fname = TRIN(TRIN(dname)// TRIN = 'MRITE', IOSTAT = fstatus) fnot = 1, nelm mRITE(500,*) j mUTIE (500,*) fi mUTIE (50</pre>	j = 10000 + stride METE(uur, (15)) j ename = .dat' Cull doom(dhame) Cull doom(dhame)/'nelm\uva') dname = TRIM(TRIM(dname)/'nelm\uva') dname = TRIM(TRIM(dname)/TRIM(num)//ename) frame = TRIM(TRIM(dname)/TRIM(num)//ename) oPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus = 0) THEI MAITE(500,*) nelm MRITE(500,*) nelm MRITE(500,*) nelm MRITE(500,*) 1 I 00 i = 1, nelm MRITE(500,*) 1 MRITE(500,*) 1 I 00 i = 1, nelm MRITE(500,*) 1 I 00 i = 1, nelm MR	<pre>j = 10000 + stride MRTE(num, (12)) j ename = .dat Then, DOON SUBROUTINE is called. Then, DOON SUBROUTINE is called. Then, doom(dhame)/'nelm(uva') dname = TRIN(TRIM(dhame)/'nelm(unm)//ename) trink(TRIM(dhame)/TRIM(num)//ename) TRIN(TRIM(dhame)/TRIM(num)//ename) TRIN(TRIM(dhame)/TRIM(num)//ename) DPEN(UNIT = 500, FILE = fname , STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (status = 0 THEN MRTE(500,*) nelm MRTE(500,*) nelm MRTE(</pre>	j=10000 + stride hTTE(run, Latter) j exame = '.drt') i exame = '.drt' CutL doon(drume) drame = TERU(TEM(drume)// nelm/uva') drame = TERU(TEM(drume)// nelm/uva') drame = TERU(TEM(drume)// nelm/uva') frame = TERU(TEM(drume)// nelm/uva') frame = TERU(TEM(drume)// nelm/uva') The name of file is made. The nam	<pre> j = 10000 stride MTTE(renw.stride MTTE(renw.stride MTTE(renw.stride MTTE(renw.stride MTTE(renw.stride MTTE(renw.stride MTTE(renw.stride MTTE(renw.stride mame = '.dat' CALL doom(ddname)// 'nelm(va') dname = 'TENP((ERM(ddname)// 'nelm(va') dname = TENP((ERM(ddname)// 'nelm(va') fname = TENP((ERM(ddname)// TENP(oun)/ ename) TENP(REM(ddname)// TENP(oun)/ ename) TENP(REM(ddname)/ TENP(REM(Ddname</pre>	l j = 10000 stride MATTE (tum, 'II)' j exame = '.dat' Cull Goom(ddamam)/'nelmus') dame = TENP(TENR(ddame)/'nelmus') dame = TENP(TENR(ddame)/'nelmus') dame = TENP(TENR(dtame)/'nelmus') frame = TENP(TENR(tame)/'nelmus) frame = TENP(T		fnum = TRIM('(' // TRIM(numch) // 'ES25.17)')
<pre>NMITE(num, (15)) j ename = '.dat' Then, DOON SUBROUTHE is called. CALL doon SUBROUTHE is called. CALL doon SUBROUTHE is called. CALL doon (ddname)/ doame = TRIN(dname)// nelme/) frame = TRIN(dname)// nelme/) frame = TRIN(funm)// ename) frame = TRIN(funm)// ename)// ename)// ename)// ename)// ename)// ename)// ename// ename/</pre>	<pre>WITTE(num, (15)) j neame = '.dat' The, DOON SUBJOUTINE is called. The, DOON SUBJOUTINE is called. CALL doom(dname) doame = TRIM(TRIM(dname)// nelm/uva') doame = TRIM(TRIM(dname)// TRIM(num)//ename) fname = 00 DPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'MRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN write(500,*) nelm write(500,*) farel(1) inwrITE (30,03) arel(1) enD OD END i = 1, neurorite cLOSE(UNIT = 500) END i = 1, neurorite END SUBSOUTIME uvaprint</pre>	<pre>WRITE(num,'(15)') j ename = '.dat' Then, DOOM SERBOUTUR is called. CALL doom(dhame)// nelm/uva') dname = TRIM(TRIM(dhame)// nelm/uva') dname = TRIM(TRIM(dhame)// nelme) fname = TRIM(TRIM(dhame)//TRIM(num)//ename) fname = TRIM(TRIM(dhame)//TRIM(num)//ename)// fname = TRIM(TRIM(dhame)//TRIM(num)/ename)// fname = TRIM(TRIM(dhame)//TRIM(num)/ename)// fname = TRIM(TRIM(dhame)//TRIM(dhame)// fname = TRIM(TRIM(dhame)//TRIM(num)/ename)// fname = TRIM(TRIM(dhame)//TRIM(dhame)// fname = TRIM(TRIM(dhame)// fname = TRIM(TRIM(dhame)//TRIM(dhame)// fname = TRIM(TRIM(dhame)//TRIM(dhame)// fname = TRIM(TRIM(dhame)//TRIM(dhame)// fname = TRIM(TRIM(dhame)//TRIM(dhame)// fname = TRIM(TRIM(dhame)// fname = TRIM(TRIM(dham</pre>	<pre>WRITE(num.'(IS')') j ename = '.drt' Then DoON SUBROUTHE is called. CALL doon(dname)//rellm\uva') dname = TRIN(frame)//rellm\uva') dname = TRIN(frame)//rellm(uva') dname = TRIN(frame)//rellm(um)//ename) frame = TRIN(frame)/rellm(um)//ename) frame = TRIN(frame)/rellm(um)//ename)//rellm(um)//ename)/rellm(um)/rellm(um)/rellm(um)/rellm(um)/rellm(um)/rellm(um)/rellm(um)/rellm(um)/rellm(um)/rellm(um)/rel</pre>	<pre>WITE(num, '(15)') j ename = '.dat' Then, DooN SUBCUTIRE is called. CALL doon(dnames) dname = TRIM(Aname)/'nelm\uva') dname = TRIM(dname)/'nelm\uva') fname = TRIM(dname)/TRIM(num)//ename) fname = TRIM(dname)/TRIM(num)//ename) fname = TRIM(TRIM(nume)/ename) fname = TRIM(TRIM(nume)/ename) fname = TRIM(TRIM(nume)/ename) fname = TRIM(TRIM(dname)/TRIM(num)//ename) fname = TRIM(TRIM(dname)/TRIM(num)//ename)/ fname = TRIM(TRIM(dname)/TRIM(num)//ename)/ fname = TRIM(TRIM(dname)/TRIM(num)//ename)/ fname = TRIM(TRIM(dname)/TRIM(num)//ename)//TRIM(dname)//Ename)//Ename//ename)//Ename//ename/</pre>	<pre>WITE(runu, '[JJ:)) j ename = '.dat' Then, DomONISMOUTINE is called. CALL domONISMOUTINE is called. The name of file is made. The name of the /pre>	<pre>MantEr (unw, (TE)) j emantEr (unw, (TE)) j emantEr (unw, (TE)) j emantEr ExtR(REW(dames)// nelm(uva') dame = TERU(REW(dames)// nelm(uva') dame = TERU(REW(dames)// TERU(unm)// ExtRemes) The name of file is made. frame = TERU(REM(dames)// TERU(unm)// ExtRemes) oPEN(MIT = 548, FILE = frame, STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus == 0) THEN warTE(560, j) malm warTE(560, j) mal</pre>	<pre>MuTIE (runw, (15)') 1 warms = '.dfl' Then, DONS UBBROITHE is called. C.LL doon(ddname)//relm/uurd)) dname = TRRU(TEN(ddname)//relm/uurd)) dname = TRRU(frim(dname)//relm/uurd)) fname = TRRU(frim(dname)//relm(num)/rename) frame = TRRU(frim(dname)//relme) frame = TRRU(frim(dname)//relme) frame = TRRU(frim(dname)//relme) frame = TRRU(frim(dname)//relme) frame = TRRU(frim(dname)/relme) frimter(sole, s) nelm write(sole, s) nelm write(sole, s) nelm write(sole, s) frame(1) write(sole, /pre>	<pre>MITE(course) 1 / means (rel) 1 / means (rel) / means</pre>		j = 10000 + stride
<pre>ename = '.dt' Then, DOON SUBROUTINE is called. Then, DOON SUBROUTINE is called. dname = TRIN(TRIA(dname)//'nelm/uva') dname = TRIN(TRIA(dname)//'nelm/uva') dname = TRIN(TRIA(dname)//TRIN(num)//ename) The name of file is made. fname = TRIN(TRIA(dname)//TRIN(num)//ename) OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'MRITE', IOSTAT = fstatus) TF (fstatus = =0) THEN WRITE(500,*) nelm WRITE(500,*) nelm WRITE(500,*) f DO 1 = 1, nelm WRITE</pre>	<pre>ename = '.dat' 1 Then, Doom SUBROUTINE is called. 2 CALL doom GUBROUTINE is called. CALL doom GUBROUTINE is called. CALL doom GUBROUTINE is called. dname = TRIN((TRIN(dname)// TRIN(num)// Fename) 1 The name of file is made. 1 The file is made. 1 The file is made. 1 The name of file is made. 1 The /pre>	<pre>ename = '.dat' Then, DooM SUBROUTINE is called. CALL dom(dname)//relm/uva') dname = TRIM(dname)//relm/uva') dname = TRIM(dname)//relm/uva') dname = TRIM(dname)//relm/uva') fname = TRIM(dname)//TRIM(uum)/rename) The name of file is made. fname = TRIM(TRIM(dname)//TRIM(uum)/rename) opEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'MRITE', IOSTAT = fstatus) IF (fstatus = = 0) THE MRITE(500,*) j 0 PEN(UNIT = 500, THE DO i = 1, nelm MRITE(500,*) arei(i) 1 MRITE(500,*) arei(i) 1 MRITE(500,*</pre>	ename = '.dat' Then, DooN SUBROUTINE is called. CALL doom(ddname)//relm/uva') dname = TRIN(TRIM(dname)//relm/uva') dname = TRIN(TRIM(dname)//TRIM(num)//ename) The name of file is made. friame = TRIN(TRIM(name)//TRIM(num)//ename) friame = TRIN(TRIM(name)//TRIM(num)//ename) (dname = TRIN(TRIM(dname)//TRIM(num)//ename) Frince = TRIN(TRIM(dname)//TRIM(num)//ename) (dname = TRIN(TRIM(dname)//TRIM(num)//ename) (dname = TRIN(TRIM(dname)//TRIM(num)//ename) (dname = TRIN(TRIM(dname)//TRIM(num)//ename) (dname = TRIN(TRIM(dname)//TRIM(num)//ename) (friame = TRIN(TRIM(dname)//TRIM(num)//ename) (friame = TRIN(TRIM(dname)//TRIM(num)//ename) TRITE(500,*) num NRITE(500,*) num NRITE(500	<pre>ename = '.dat' Then, DooN SUBBOUTIME is called. Call doom(dname)/ tall doom(dna</pre>	<pre>ename = '.dat' Then, DOON SUBROUTIME is called. Then, DOON SUBROUTIME is called. Then, DOON SUBROUTIME is called. dname = TRIN(TRIN(dname)//relm\uva') dname = TRIN(TRIN(dname)//TRIN(num)//ename) The name of file is made. fname = TRIN(TRIN(dname)//TRIN(num)//ename) The name of file is made. fname = TRIN(TRIN(dname)//TRIN(num)//ename) The name of file is made. fname = TRIN(TRIN(dname)//TRIN(num)//ename) The name of file is made. fname = TRIN(TRIN(dname)//TRIN(num)//ename) The name of file is made. fname = TRIN(TRIN(dname)//TRIN(num)//ename) The name of file is made. fname = TRIN(TRIN(dname)//TRIN(num)//ename) The name of file is made. fname = TRIN(TRIN(dname)//TRIN(num)//ename) The name of file is made. fname = TRIN(TRIN(trin)/ename)/TRIN(num)//ename) The name of file is made. fname = TRIN(TRIN(trin)/ename)/TRIN(num)//ename) DO i = 1, nelm NRITE(500,*) j DO i = 1, nelm NRITE(500,*) f NOULE (0,1x, ES24.16)) END SUBROUTINE uvaprint END SUBRUE UVAPRINT E</pre>	ename = '.dat' The name = '.tat' dname = TEXP(TEXP(defname)// nella/uva') dname = TEXP(TEXP(defname)// nella/uva') dname = TEXP(TEXP(defname)// nella/uva') The name of file is made. The name of file is ma	<pre>ename = '.dat' Then, DOON SUBJOUTINE is called. Then, DOON SUBJOUTINE is called. Then = TRIN(TRIN(cdame)// nclm/uva') dname = TRIN(TRIN(cdame)// nclm/uva') dname = TRIN(TRIN(cdame)// nclm/uva') The name of file is made. The name of the n</pre>	ename = '.dat' The DooM SUBBOTTHE is called. Child Goom GOBBOTTHE is called. The DooM SUBBOTTHE is called. dname = TRIN(TRIN(Gname)/'relm(uva') dname = TRIN(TRIN(Gname)/'relm(uva') dname = TRIN(TRIN(Gname)/'relm() frame = TRIN(TRIN(Gname)/'relm()/relm() frame = TRIN(TRIN(Gname)/'relm()/relm()		WRITE(num,'(I5)') j
<pre>Then, DooM SUBROUTINE is called. CALL doom(doname) doname = TRIN(FRIM(ddname)/'nelm/uva') doname = TRIN(frim(ddname)/'nelm/uva') doname = TRIN(frim(dname)/'nelm/uva') fname = TRIN(frim(dname)//TRIN(num)//ename) fname = TRIN(frim(dname)//TRIN(num)//ename) pFW(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'MRITE', IOSTAT = fstatus) TF (fstatus = 0) THEN write(500,*) n=lm write(500,*) n=lm write(500,*) n=lm write(500,*) n=l(1) fno 1 = 1, nelm write(500,*) nelm writ</pre>	<pre>1 Then, DOOM SUBROUTINE is called. CALL doom (ddname)//relm/uva') dname = TRIM(TRIM(ddname)//relm/uva') dname = TRIM(TRIM(dname))/ The name of file is made. The name of file is made. Provember /pre>	<pre>Then, DOOM SUBROUTINE is called. CALL doom(dohame) // nelm\uva') doame = TRIM(TRIM(doame) // nelm\uva') doame = TRIM(TRIM(doame) // The name of file is made. The name of file is made. frame = TRIM(TRIM(dname)//TRIM(num)//ename) frame = TRIM(TRIM(dname)//TRIM(num)//ename)//ename)//ename frame = TRIM(TRIM(dname)//TRIM(num)//ename)//ename frame = TRIM(TRIM(dname)//TRIM(num)//ename)//ename frame = TRIM(TRIM(dname)//TRIM(num)//ename)//ename frame = TRIM(TRIM(dname)//TRIM(num)/ename)//ename frame = TRIM(TRIM(dname)//TRIM(num)/ename)//ename frame = TRIM(TRIM(dname)//TRIM(num)/ename)//ename/ena</pre>	<pre>Then, DOOM SUBROUTINE is called. CALL doom(dname)/'nelm\uva') dname = TRIN(TRIM(dname)/'nelm\uva') dname = TRIN(TRIM(dname)/'nelm\uva') fname = TRIM(TRIM(dname)//TRIM(num)//ename) Fname = TRIM(TRIM(dname)//TRIM(num)//ename) fname = TRIM(TRIM(dname)//TRIM(num)//ename) fname = TRIM(TRIM(dname)//TRIM(num)//ename) fname = TRIM(TRIM(dname)//TRIM(num)//ename) fname = TRIM(TRIM(dname)/TRIM(num)//ename) fname = TRIM(TRIM(dname)/TRIM(num)//ename) fname = TRIM(TRIM(dname)/TRIM(num)//ename) fname = TRIM(TRIM(dname)//TRIM(num)//ename) fname = TRIM(TRIM(dname)/TRIM(num)//ename) fname = TRIM(TRIM(dname)/TRIM(num)//ename) fname = TRIM(TRIM(dname)/TRIM(num)//ename) fname = TRIM(TRIM(dname)/TRIM(num)//ename) fname = TRIM(TRIM(dname)/TRIM(num)//ename) fname = TRIM(TRIM(dname)/TRIM(num)//ename)/ fname = TRIM(TRIM(dname)/TRIM(num)//ename) fname = TRIM(TRIM(dname)/TRIM(num)//ename) fname = TRIM(TRIM(dname)/TRIM(num)//ename) fname = TRIM(TRIM(dname)/TRIM(num)//ename)//ename) fname = TRIM(TRIM(dname)/TRIM(num)//ename)/ename)//ename)//ename)//ename)/ename)//ename)/ename)//ename)//ename)//ename)//ename)//ename)//ename)/ename)/ename)//ename)//ename)//ename)//ename)//ename)//ename)/ename)/ename)//ename)//ename)//ename)//ename)/ename)//ename)//ename)//ename)//ename)/ename)//ename)//ename)//ename)/ename)//ename)//ename)/ename)//ename)/ename)//ename)/ename)//ename)/ename)//ename)//ename)//ename)//ename)//ename)//ename)//ename)/ename)//ename)//ename)/ename)/ename)/ename)/ename)/ename)//ename)/e</pre>	<pre>1 Then, DOON SUBROUTINE is called. CALL doon(dhame) CALL doon(dhame) CALL doon(dhame) CALL doon(dhame) CALL doon(dhame) CALL doon(dhame) CALL doon(dhame) The name of file is made. The name of file is made. frame = TRIN(TRIN(num)/rename) OPR(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) TF (fstatus = 0) THEI MAITE(500,*) of mage. MAITE(500,*) of mage. DO i = 1, nelm MAITE(500,*) of mage. DO i = 1, nelm MAITE(500,*) of mage. CLOSE(UNIT = 500) END OF END OF END OF END OF END OF END OF END OF END SUBROUTINE uvaprint END ODUE MOQLE MOQLEND END ODUE MOQLEND END ODUE MOQLEND END END END END END END END END END END END END END</pre>	<pre>Then, DOON SUBROUTINE is called. CALL doom(dname) dname = TRIN(TRIM(dname)/'nelm\uva') dname = TRIN(TRIM(dname)/'nelm\uva') dname = TRIN(TRIM(dname)/TRIM(num)//ename) The name of file is made. fname = TRIN(TRIM(name)/TRIM(num)//ename) fname = TRIN(TRIM(name)/TRIM(num)//ename) DPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus = 0 THEN MRITE(500,*) nelm wRITE(500,*) nelm wRITE(500,*) nelm wRITE(500,*) nelm wRITE(500,*) nelm wRITE(500,*) nelm wRITE(500,*) nel(i) DO i = 1, nelm wRITE(500,*) nel(i) mWRITE(500,*) nel(i) intETE (s00,*) nel(i) intETE (s00,*) nel(i) EMD DO EMD IN CLOSE(UNIT = 500) 103 FORWAT(10(1x, 524.16)) EDD SUBROUTINE uvaprint EDD SUBROUTINE uvaprint WNOULE Mod_Data_FileS</pre>	<pre>Then, DOON SUBROUTINE is called. CALL doom(domame)/'relm\uvus') doame = TRIN((dranee))/ iname = TRIN(frIN(dranee)//relm\uvus') doame = TRIN(TRIN(dranee)//relm\uvus') fame = TRIN(TRIN(dranee)//relm(un)/ename) fame = TRIN(TRIN(dranee)//relm(un)/ename) DOEN(UNIT = 500, FILE = frame ,STAUS = 'RELACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN WRITE(500,*) fame) DOI = 1, melm WRITE(500,*) fame) DOI = 1, melm WRITE(500,*) fame) DOI = 1, melm WRITE(500,*) fame) DOI = 1, melm WRITE(500,*) fame)(1) END DOI = 1, melm WRITE(500,*) fame)(1) END FORMT(10(1), ES24.16)) END FORMT(10(1), ES24.16</pre>	<pre>Then, DOON SUBBOUTINE is called. Call doon (domaine)/ relan.uura') dname = TRUR(TRIX(domaine)/) The name of file is made. The name of file is made. Thame = TRUR(trans)/TRIX(tunm)//ename) PER(UNIT = 500, FILE = finame ,STATUS = 'REDACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN WRITE(500,*) nelm WRITE(500,*) nelm WRITE(500</pre>	<pre>here, DOOM SUBFOUTUR is called. Call coom (datame) dname = TRIX(TRI(ddname)/'relm/uva') dname = TRIX(TRI(ddname)/'relm/uva') dname = TRIX(falame)/ fname = TRIX(falame)/ fna</pre>		ename = '.dat'
<pre>1 mrn, Juon SubGultme Is called. 2 dame = TRIN(drame) 1 mane of file is made. 1 The name of file is made. 1 The name of file is made. 1 The name of file is made. 1 The rame of fil</pre>	<pre>rms. Nouch Subscripter is called. child dom(dname) dname = TRIM(TRIM(dname)//TRIM(dname)//TRIM(dname)/ fname = TRIM(TRIM(dname)/TRIM(num)//ename) fname = TRIM(TRIM(dname)/TRIM(num)//ename) fname = TRIM(TRIM(dname)/TRIM(num)//ename) fname = FRIM(TRIM(dname)/TRIM(num)//ename) fname = fritter = 500 fname = fill fill = fname ;STATUS = 'REPLACE', ACTION = 'MRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN mritte(590,*) fill = fname ;STATUS = 'REPLACE', ACTION = 'MRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN mritte(590,*) fill = fname ;STATUS = 'REPLACE', ACTION = 'MRITE', IOSTAT = fstatus) fr (fstatus = 0) THEN mritte(590,*) fill = fname ;STATUS = 'REPLACE', ACTION = 'MRITE', IOSTAT = fstatus) in MRITE(590,*) fill = fname ;STATUS = 'REPLACE', ACTION = 'MRITE', IOSTAT = fstatus) fr (fstatus = 0) THEN mritte(590,*) fill = fname ;STATUS = 'REPLACE', ACTION = 'MRITE', IOSTAT = fstatus) in MRITE(590,*) fill = f</pre>	<pre>ren, puon second inte is called. CALL doord(dhame)//rnelm/uva') dname = TRIM(TRIM(dhame)//rnelm/uva') dname = TRIM(TRIM(dhame)//TRIM(num)//ename) fname = TRIM(TRIM(name)/TRIM(num)//ename) fname = TRIM(TRIM(name)/TRIM(num)//ename)//ename) fname = TRIM(TRIM(name)/TRIM(num)//ename)//ename) fname = TRIM(TRIM(num)//ename)//ename)//ename)/ fname = TRIM(TRIM(num)//ename)//ename)//ename)//ename)//ename)//ename)//ename fname = TRIM(TRIM(num)//ename)/ename</pre>	<pre>In the pound subsouring is called. CALL doord(dhame) dname = TRIM(fRIM(dhame)//relinkuva') dname = TRIM(TRIM(dname)//TRIM(num)/rename) fname = TRIM(TRIM(num)/rename) fname = TRIM(TRIM(TRIM(num)/rename)/TRIM(num)/rename)/TRIM(TRIM(num)/rename)/TRIM(TRIM(num)/rename)/TRIM(num)/rename)/TRIM(TRIM(num)/rename)/TRIM(num)/rename)/TRIM(TRIM(num)/rename)/TRIM(num)/rename)/TRIM(TRIM(num)/rename)/TRIM(num)/rename)/TRIM(TRIM(num)/rename)/TRIM(TRIM(num)/rename)/TRIM(num)/rename)/TRIM(TRIM(num)/rename)/TRIM(TRIM(num)/rename)/TRIM(num)/rename)/TRIM(TRIM(num)/rename)/TRIM(num)/rename)/TRIM(TRIM(num)/rename)/TRIM(TRIM(num)/rename)/TRIM(num)/rename)/TRIM(TRIM(nu</pre>	<pre>rer uner uner uner uner uner uner uner u</pre>	<pre>ren: JOUN SENGULIAR IS CALIGA dname = TRIN(TRIN(ddname)/'nelm(vuva') dname = TRIN(TRIN(ddname)/'nelm(vuva') fname = TRIN(TRIN(ddname)/TRIN(num)//ename) The name of file is made. fname = TRIN(TRIN(dname)/TRIN(num)//ename) fname = TRIN(TRIN(dname)/TRIN(num)//ename) oPEN(UNIT = 500, FILE = fname , STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN wRITE(500,*) and wRITE(500,*) and mRITE(500,*) farel(1) inwITE (500,*) farel(1) inwITE (500,*) farel(1) END D0 i = 1, nelm wRITE (500,*) farel(1) inwITE (500,*) farel(1) inwITE (500,*) farel(1) END D0 i = 1, nelm wRITE (500,*) farel(1) inwITE (500,*) farel(1) END D0 i = 1, nelm inwITE (500,*) farel(1) END D0 i = 1, nelm inwITE (500,*) farel(1) END D0 i = 1, nelm inwITE (500,*) farel(1) inwITE /pre>	<pre>rmer.nom superior is called. chane = TEN(TEN(domame))/ nelle\uva') dname = TEN(TEN(domame))/ nelle\uva') dname = TEN(TEN(domame))/ nelle\uva') fname = TEN(TEN(domame))/ nelle\uva') fname = TEN(TEN(domame))/ nelle\uva') frifestus = 0 is inten merric(sob.) i merric(sob.) i</pre>	<pre>cmt.uounsupedurate.is cartae. CALL doord(dname) dname = TRUR(TRUR(dname)// nelmiuva') dname = TRUR(TRUR(dname)// nelmiuva') dname = TRUR(TRUR(dname)// TRUR(num)// ename) frame = TRUR(TRUR(dname)// TRUR(num)// ename) oPEN(UNT = 500, FILE = fname, STATUS = 'REPLACE', ACTION = 'MRITE', IOSTAT = fstatus) IF (fstatus = 0) TRU WRITE(500,*) taim WRITE(500,*) taim MRITE(500,*) taim MRITE(50</pre>	<pre>Inter Journey Standburg is Called. CALL doorddrame() dname = TRIN(TRIN(dame)// relm/uva') dname = TRIN(TRIN(dame)// relm/uva') dname = TRIN(TRIN(dame)// relm/uva') dname = TRIN(TRIN(dame)// relm/uva') frame = TRIN(TRIN(dame)// relm/uva') pOFU(UNIT = 500, FILE = frame, JSINUS = 'REPLACE', ACTION = 'WRITE', JOSIAT = fstatus) IF (fstatus = D) THEI WRITE(500,*) = D) wRITE(500,*) = D) DO i = 1, Dame UNITE (500,*) = D) DO i = 1, Dame UNITE (500,*) = D) EDD I EDD IF CLOSE(UNIT = 500) EDD IF CLOSE(UNIT = 500) EDD IF EDD SUBROUTHE uvaprint EDD ONULE Not_Data_Files</pre>	<u> </u>	
<pre>cut: coom.com.com.com.com.com.com.com.com.com</pre>	<pre>cut: coom(contenter) domame = TRIN(TEIN(dname)//'nelm/uva') domame = TRIN(TEIN(dname)//TRIN(num)//ename) The name of file is made. frame = TRIN(TEIN(dname)//TRIN(num)//ename) oPEN(UNIT = 500, FILE frame , STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus == 0) THEN wRITE(500,*) j mWITE(500,*) j mWITE(500,*) farel(1) mWITE(500,*) farel(1) mWITE(500,*</pre>	<pre>cvict acomerication(drame)//inelm/uva') drame = TRIN(TRIN(drame)//inelm/uva') drame = TRIN(TRIN(drame)//TRIN(num)//ename) The name of file is made. frame = TRIN(TRIN(name)//TRIN(num)//ename) OPEN(UNIT = 500, FILE = fname ,STATUS = `REPLACE', ACTION = `WRITE', IOSTAT = fstatus) TF (fstatus == 0) THEN WRITE(500,*) j NRITE(500,*) j NRITE(500,*) farel(1) NRITE(500,*) far</pre>	<pre>cvar oom(undame)//relm/uva') dname = TRIN(dname)//relm/uva') dname = TRIN(dname)//TRIM(num)//ename) The name of file is made. fname = TRIN(TRIM(dname)//TRIM(num)//ename) Fname = TRIN(TRIM(dname)//TRIM(num)//ename) OPEN(UNT = 500, FILE = fname , STATUS = `REPLACE', ACTION = `WRITE(500,*) nim WRITE(500,*) nim WRITE(500,*) nim WRITE(500,*) farel(1) /pre>	<pre>cut coom dame = TRIN(TRIN(diame)//TRIN(unm)/ dame = TRIN(TRIN(diame)//TRIN(unm)/Finame) The name of file is made. fname = TRIN(TRIN(name)//TRIN(unm)/Finame) oFBN(UNIT = 500, FILE = fname ,SIATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) If fstatus == 0) TRIE = fname ,SIATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) If fstatus == 0) TRIE = fname ,SIATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) If fstatus == 0) TRIM MRITE(500,*) nalm WRITE(500,*) nalm WRITE(500,*) nalm WRITE(500,*) nalm DO i = 1,00 END IF CLOSE(UNIT = 500) I = 00 I /pre>	<pre>cval coome control (file is made dname = TRIN(TRIN(cdname)//relm\uva') dname = TRIN(TRIN(cdname)//TRIN(num)//ename) The name of file is made. fname = TRIN(TRIN(dname)//TRIN(num)//ename) OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'MRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN MRITE(500,*) min MRITE(500,*) /pre>	<pre>dom. dom.one (TRIM(dname)//relm(uva') dname = TRIM(TRIM(dname)//relm(uva') dname = TRIM(TRIM(dname)//REM(unm)/ename) fname = TRIM(TRIM(dname)//REM(unm)/ename) fname = TRIM(TRIM(dname)//REM(unm)/ename) fname = TRIM(TRIM(dname)/REM(unm)/ename) fname = TRIM(TRIM(tak/ES4.16)) fname = TRIM(TRIM(tak/ES4.16)) fname = TRIM(TRIM(tak/ES4.16)) fname = TRIM(TRIM(tak/ES4.16)) fname = TRIM(tak/ES4.16) fname = TRIM(tak/ES4</pre>	drame a TRIM(drame)//'nelm/uva') drame a TRIM(drame)//'nelm/uva') drame a TRIM(drame)//TRIM(drame) The name of file is made. fname = TRIM(drame)//TRIM(num)//ename) OPEN(UNIT = 500, FILE = fname ,SIATUS = 'REPLACE', ACTION = 'MRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN MRITE(500,*) nelm MRITE(500,*) nelm MRITE(500,*) nelm MRITE(500,*) 1 DOI 1 = 1, nelm MRITE(500,*) 1 MRITE(500,*) 1 DOI 1 = 1, nelm MRITE(500,*) 1 MRITE(500,*) 1 DOI 1 = 1, nelm MRITE(500,*) 1 MRITE(500,*)	<pre>construction dname = TRIN(TICIN(dname)// 'nelm/uva') dname = TRIN(TICIN(dname)// TRIN(num)// Fename) fname = TRIN(TICIN(dname)// TRIN(num)// Fename) fname = TRIN(TICIN(dname)// TRIN(num)// Fename) fname = TRIN(TICIN(dname)// TRIN(num)// Fename) for the name of file is made. fname = TRIN(TICIN(dname)// TRIN(num)// Fename) frame = TRIN(TICIN(dname)// TRIN(num)// Fename) frame = TRIN(TICIN(dname)// TRIN(num)// Fename) frame = TRIN(TICIN(dname)// TRIN(num)// Fename) frame = TRIN(TICIN(dname)// TRIN(num)// TRIN(num)/</pre>		Then, DUCM SUBKOULINE IS CALLED.
<pre>drame = FIX.N(TLN(drame))/ HEANIVA3) drame = FIX.N(TLN(drame)) T The name of file is made. T The name of file is made. Fname = TRLN(TRLN(drame)//TRLN(num)//ename) Fname = TRLN(TRLN(drame)//TRLN(drame)//TRLN(drame)//TRLN(drame)//Ename) Fname = TRLN(TRLN(drame)//TRLN(drame)//Ename) Fname = TRLN(TRLN(drame)//TRLN(dr</pre>	<pre>under = TRIN(drame)// HEANUVA / drame = TRIN(drame)//TRIN(uum)//Ename) fname = TRIN(drame)//TRIN(uum)//Ename) fname = TRIN(TRIN(drame)//TRIN(uum)//Ename) DeEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus == 0) THEN wRITE(500,*) n=Lm wRITE(500,*) n=Lm mRITE(500,*) /pre>	<pre>dname = TRIN(TRIN(dname))/ nem/uva) dname = TRIN(TRIN(dname))/ nem/uva) The name of file is name)//TRIN(num)//ename) fname = TRIN(TRIN(dname)//TRIN(num)//ename) fname = TRIN(TRIN(dname)//TRIN(num)/ename)//TRIN(num)/ename)//TRIN(num)/ename DoPN(num)/ename //TRIN(num)/ename) DoI = 1, num NuTIE (500,*) f</pre>	<pre>dname = TRIM(TAIN(durame))/ NELMINUM) dname = TRIM(TAIN(durame)/ fname = TRIM(TRIM(dname)//TRIM(num)//ename) fname = TRIM(TRIM(dname)//TRIM(num)//ename) DPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTIOM = 'MRITE', JOSTAT = fstatus) IF (fstatus = 0) THEN DPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTIOM = 'MRITE', JOSTAT = fstatus) IF (fstatus = 0) THEN MRITE(500,*) nalm MRITE(500,*) /pre>	<pre>under FIXIN(Unitudiate))/ NELAINUVA) dname = TRIN(URIN(uname)//TRIM(num)//ename) fname = TRIM(TRIN(name)/TRIM(num)//ename) oPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus == 0) THEI WRITE(500,*) of WRITE(500,*) of</pre>	<pre>uname = TRIN(drame)// NELM/UVM J) dname = TRIN(drame)// NELM/UVM J) fname = TRIN(TRIN(drame)//TRIN(num)//ename) fname = TRIN(TRIN(drame)//TRIN(num)//ename) OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN WRITE(590,*) nelm WRITE(590,*)</pre>	<pre>drame = TRIN(TRIN(conduct))/ TRIN(conduct))/ TRIN(conduct)// TRIN(conduct</pre>	under FIXI(Kichamoulder)// Firam.uou) The name of file is made. Fname = FIXI(Kichamo) Fname = FIXI(Kichamo)/FIXIN(num)//ename) OFEN(MIT = 500, FILE = fname ;STATUS = 'KEPLACE', ACTION = 'WRITE', IOSTAT = fstatus) FF (fstatus = 0) REL MRITE(500,*) mein MRITE(500,*) mein MRITE(500,*) farel(1) End 1:	under Filik(Anchau) The name of file is made. The name of file is made. fname = TRIM(TRIM(dname))/TRIM(num)//ename) OPEN(MMIT = 500, FILE = fname _STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) Trif(status = 0) HEU WRITE(so0.*) fame[1] MRITE(so0.*) fame[1] EUD DO END DI EDD DI EDD SUBROUTINE uvaprint EDD SUBROUTINE uvaprint EDD SUBROUTINE uvaprint EDD SUBROUTINE uvaprint		CALL doom(udname)
<pre>uname = Introlocame;) I The name of file is made. finame = TRIM(TRIM(num)//ename) finame = TRIM(TRIM(num)//ename) OPEN(UNIT = 500, FILE = finame ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus == 0) THEN WRITE(500,*) film WRITE(500,*) fil</pre>	uname = Introlocomme) I The name of file is made. fname = TRIM(TRIM(num)//ename) fname = TRIM(TRIM(num)//ename) OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'MRITE', JOSTAT = fstatus) IF (fstatus = 0) THU MRITE(500,*) j MRITE(500,*) nelm MRITE(500,*) nelm	<pre>uname = ntriv(uname) The name of file is made. fname = TRIM(TRIM(num)//ename) OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'MRITE', JOSTAT = fstatus) IF (fstatus == 0) THU MRITE(500,*) nelm WRITE(500,*) nelm</pre>	<pre>drame = ritin(drame)/TRIM(num)//ename) fname = TRIM(TRIM(num)//ename) fname = TRIM(TRIM(num)//ename) fname = TRIM(TRIM(num)//ename) frame = TRIM(TRIM(num)/ename) frame = TRIM(TRIM(TRIM(num)/ename) frame = TRIM(TRIM(TRIM(TRIM(num)/ename)) frame = TRIM(TRIM(TRIM(num)/ename)) frame = TRIM(TRIM(TRIM(TRIM(num)/ename)) frame = TRIM(TRIM(TRIM(TRIM(TRIM(num)/ename)) frame = TRIM(TRIM(TRIM(TRIM(TRIM(TRIM(num)/ename)) frame = TRIM(TRIM(TRIM(TRIM(TRIM(TRIM(TRIM(TRIM(</pre>	<pre>cname = Intin(uname) The name of file is made. fname = TRIM(TRIM(dname)/TRIM(num)//ename) OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN WRITE(500,*) nelm WRITE(500,*) nelm WRITE(500,*) nelm WRITE(500,*) nelm WRITE(500,*) nelm DO i = 1, nelm NRITE(500,*) arel(i) END 00 END IF CLOSE(UNIT = 500) 103 FORM/(10(1x,5224.16)) 103 FORM/(10(1x,5224</pre>	<pre>ontame = Intin(uname) The name of file is made. fname = TRIM(TRIM(uname)/TRIM(unm)//ename) oPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'MRITE', IOSTAT = fstatus) IF (fstatus = 0) TRIM WRITE(500,*) n TRIM WRITE(500,*) n TRIM WRITE(500,*) n TRIM WRITE(500,*) n TRIM MRITE(500,*) n TRIM MRITE(500,*) n TRIM MRITE(500,*) n TRIM NRITE(500,*) n TRIM N</pre>	<pre>oneme = nutry(oneme) fname = TELA(TRIM((name)/TRIM((name)) fname = TELA(TRIM((name)/TRIM((name)) oPEN(UNIT = 500, FLLE = fname _STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus == 0) THEI wRITE(560,*) fnam wRITE(560,*) fna</pre>	<pre>untance = htth(undue) fname = htth(Undue)//TRIN(num)//ename) fname = TRIM(TRIN(num)//ename) OFEN(UNT = 500, FLE = fname ,STATUS = 'REPLACE', ACTION = 'MRITE', IOSTAT = fstatus) TF (fstatus = =0) THEN MRITE(500,*) fnam MRITE(500,*) fnam MRITE(500,*) fnam(1) MRITE(500,*) fna</pre>	<pre>untame = Intrivioname() The name of file is made. fname = TRIM(TRIM(dname)/TRIM(dname</pre>		
<pre>1 The name of file is made. fname = TRIM(TRIM(num)//ename) fname = TRIM(TRIM(num)//ename) OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus == 0) THEN MRITE(500,*) n=lm MRITE(500,*) n=lm MRITE(500,*) n=lm MRITE(500,*) f DO i = 1, nelm WRITE(500,*) f WRITE(500,*) f WRITE(500,*) f WRITE(500,*) f WRITE(500,*) f WRITE(500,*) f WRITE(500,*) f WRITE(500,*) f WRITE(500,*) f WRITE(500,*) f WRITE(50</pre>	<pre>1 The name of file is made. fname = TRIM(TRIM(dname)/TRIM(num)/fename) fname = TRIM(TRIM(dname)/TRIM(num)/fename) OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) TF (fstatus == 0) THEN WRITE(500,*) nol WRITE(500,*) nol WRITE(500,*) nol WRITE(500,*) farel(1) WRITE(500,*) farel(1) WRITE(</pre>	<pre>The name of file is made. fname = TRIN(TRIN(num)/TRIN(num)//ename) OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN WRITE(500,*) ndl WRITE(500,*) ndl WRITE(500,*) fare1(1) in INALT with the status) in INALT (8,103) are1(1) write (80,4) fare1(1) in INALT (8,103) are1(1) in INAT (8,103) are1(1)</pre>	<pre>I The name of file is made. fname = TRIN(TRIN(nnmm)//ename) OPEN(MIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN WRITE(500,*) nolm WRITE(500,*) nolm WRITE(500,*) nolm WRITE(500,*) f DO i = 1, nelm WRITE (500,*) f MRITE (500,*) f DO i = 1, nelm WRITE (500,*) f MRITE (500,*) f INMITE (500,*) f MRITE (500,*)</pre>	<pre>I The name of file is made. fname = TRIM(TRIM(num)//ename) OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) DPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN WRITE(500,*) nel WRITE(500,*) nel WRITE(500,*) nel DO i = 1, nel WRITE(500,*) farel(1) MRITE(500,*) farel(1) MRITE(500,*) farel(1) MRITE(500,*) farel(1) MRITE(500,*) nel(1) DO i = 1, nel WRITE(500,*) nel(1) MRITE(500,*) nel(1)</pre>	<pre>The name of file is made. fname = TRIA(TRIA(dname)/TRIA(num)//ename) OPEH(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WAITE', IOSTAT = fstatus) IF (fstatus = 0) THEN WRITE(500,*) n=n WRITE(500,*) n=n WRITE(500,</pre>	<pre>I The name of file is made. fname = TEIN(TRIM(iname)/TRIM(iname)/ fname = TEIN(TRIM(iname)/TRIM(iname)/ fname = TEIN(TRIM(iname)/TRIM(iname)/ permunant)/ in Martic(Seo.*) i martic(Seo.*) i martic(Seo.*</pre>	<pre>1 The name of file is made. fname = TRIN(TRIM(name)/TRIM(num)//ename) ffname = TRIN(TRIM(name)/TRIM(num)//ename) OPEN(UNIT = 500, FILE = fname, STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN wrITE(500,*) nelm wrITE(500,*) nelm w</pre>	<pre>1 The name of file is made. fname = TEN(TENA(Iname)/TENA(Iname)/ fname = TEN(TENA(Iname)/TENA(Iname)/ PENE(UNIT = 500, FILE = fname, STATUS = 'REPLACE', ACTION = 'WEITE', IOSTAT = fstatus) TF (fstatus == 0) THEN mETE(500,*) j mETE(500,*) j mETE(500,</pre>	. =	-
<pre>fname = TKIP(TKLP(dname)//TKLP(num)//ename) OPEN(UNLT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) TF (fstatus == 0) THEN WRITE(500,*) num WRITE(500,*) num WRITE(500,*) num WRITE(500,*) num URITE(500,*) num</pre>	<pre>fname = TRIN(TRIN(dname)//TRIN(num)//ename) OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus == 0) THEN WRITE(500,*) n=Um WRITE(500,*) n=Um WRITE(500,*) n=Um WRITE(500,*) f OO i=1, n=Um WRITE(500,*) f OO I=00 IF CLOSE(0NTI = 500) F OO I=00 IF F OO I</pre>	<pre>fname = TRIN(TRIN(dname)//TRIN(num)//ename) OPEN(UNIT = 500, FILE = fname ,STATUS = `REPLACE', ACTION = `WRITE', IOSTAT = fstatus) IF (fstatus == 0) THEN WRITE(5000**) 1 WRITE(500**) 1 OO i = 1, nelm WRITE(500**</pre>	<pre>fname = TklM(TklM(num)//ename) fname = TklM(TklM(num)//ename) OPEN(UNIT = 500, FILE = fname ,STATUS = 'KPLACE', ACTION = 'MklTE', IOSTAT = fstatus) IF (fstatus == 0) THEN WRITE(500,*) nelm WRITE(500,*) nelm WRITE(500,*) farel(1) WRITE(500,*) farel(1) WRITE(500,*) farel(1) WRITE(500,*) farel(1) WRITE(500,*) farel(1) WRITE(500,*) farel(1) UNATE (3,103) arel(1) END D0 i = 1, nelm WRITE(500,*) farel(1) UNATE (3,103) arel(1) END D0 i = 1, nelm WRITE(500,*) farel(1) UNATE (3,103) arel(1) END D0 i = 1, nelm WRITE(500,*) farel(1) END D0 END /pre>	<pre>fname = TRIM(TRIM(num)/Fename) OPEN(UNIT = 500, FILE = fname _STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) TF (fstatus == 0) THEI WRITE(500,*) nelm WRITE(500,*) nelm WRITE(500,*) farel(1) I</pre>	<pre>fname = TRIM(TRIM(chame)/TRIM(num)//ename) OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus == 0) THEN WAITE(500,*) and WAITE(500,*) and WAITE(500,*) and WAITE(500,*) and UNITE (500,*) facel(1) UNI</pre>	<pre>fname = TKIM(TKIM(num)//ename) fname = TKIM(TKIM(num)//ename) OPEN(UNIT = 500, FILE = fname ,STATUS = 'KEPLACE', ACTION = 'MRIFE', IOSTAT = fstatus) TF (fstatus = 0) THEN METE(500,*) i DO 1 = 1, nelm METE(500,*) i</pre>	<pre>fname = TKIN(TKIN(dname)//TKIN(num)//ename) OFEN(UNIT = 500, FILE = fname ,SIATUS = 'REPLACE', ACTION = 'WKITE', IOSTAT = fstatus) IF (fstatus == 0) THEN WAITE(500,*) n=In WAITE</pre>	<pre>frame = TKIN(TRIM(fname)/TRIM(num)/ferame) frame = TKIN(TRIM(fname)/TRIM(num)/ferame) OFEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRIFE', IOSTAT = fstatus) IF (sfstatus == 0) THEN WRIFE(500,*) n=n WRIFE(50</pre>	: =	
<pre>fname = TRIM(TRIM(num)//ename) OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus == 0) THEN WRITE(500,*) j MRITE(500,*) j 0 i = 1, nelm NRITE(500,*) farel(1) 1 MRITE(500,*) farel(1) 1 MRITE(50</pre>	<pre>fname = TRIM(TRIM(dname)//TRIM(num)//ename) OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) TF (fstatus == 0) THEN WRITE(500,*) nelm WRITE(500,*) nelm WRITE(500,*) j farel(1) DO i = 1, nolm WRITE(500,*) farel(1) DO i = 1, nolm</pre>	<pre>fname = TRIM(TRIM(dname)//TRIM(dname)//TRIM(num)//ename) OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'MRITE', JOSTAT = fstatus) IF (fstatus == 0) THEN MRITE(500,*) j MRITE(500,*) j 0 i = 1, nelm MRITE(500,*) fanel(i) 1 MRITE(500,*) fanel(i) 0 i = 1, nelm NRITE(500,*) fanel(i) 1 MRITE(500,*) fanel</pre>	<pre>fname = TRLM(TRIM(Lname)/TRLM(Lname) OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) TF (fstatus == 0) THEN WRITE(500,*) j MRITE(500,*) j MRITE(500,*) farel(1) MRITE(500,*) far</pre>	<pre>fname = TRIM(TRIM(dname)//TRIM(num)//ename) OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus == 0) THEN WRITE(500,*) nelm WRITE(500,*) nelm WRITE(500,*) nelm WRITE(500,*) nelm UD i = 1, nelm</pre>	<pre>fname = TRIM(TRIM(dname)//TRIM(num)//ename) OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN WRITE(500,*) nalm WRITE(500,*) nalm WRITE(500,*) j D0 i = 1, nalm WRITE(500,*) farel(1) WRITE(500,*) j UD i = 1, nalm WRITE(500,*) farel(1) UN ITE (3,103) arel(1) UN ITE (3,103) U</pre>	<pre>fname = TRIM(TRIM(num)//ename) DefEu(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', JOSTAT = fstatus) TF (fstatus == 0) THEN WRITE(500,*) nelm WRITE(500,*) nelm WRITE(500,*) nelm WRITE(500,*) nelm WRITE(500,*) nelm WRITE(500,*) nelm UD 1 = 1, nelm WRITE(500,*) nelm WRITE(500,*) nelm UD 1 = 1, nelm</pre>	<pre>fname = TRIM(TRIM(dname)/TRIM(num)/ename) DFEM(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN WRITE(500,*) nelm WRITE(500,*) nelm WRITE(500,*) in UD 1</pre>	<pre>fname = TRIM(TRIM(Aname)) DeFN(NIIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) TF (fstatus == 0) THEN WRITE(500,*) nclm WRITE(500,*) nc</pre>	: =	ł
<pre>OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus == 0) THEN WRITE(500,*) n=lm WRITE(500,*) f DO 1 = 1, nelm WRITE(500,*) f URITE(500,*) f DO 1 = 1, nelm WRITE(500,*) f URITE(500,*) f DO 1 = 1, nelm WRITE(500,*) f DO 1 = 1, nelm WRITE(500,*) f URITE(500,*) f URITE(50</pre>	OPEW(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'MRITE', IOSTAT = fstatus) IF (fstatus = 0) THEM MMITE(500,*) nelm MMITE(500,*) j O i = 1, nelm MRITE(500,*) farel(1) INRUTE (300,*) farel(1) INRUTE (301) arel(1) INRUTE (301) INE uvapit INRUTE (10(1x, IS24.16)) IND	OPEN(UNIT = 500, FILE = fname _STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN WRITE(500,*) n=lm DO i = 1, nelm MRITE (stol,*) farel(1) IMALITE (stol,*) arel(1) END DO END IF CLOSE(UNIT = 500) IB ORNAT(16(1x,E524.16)) ID SUBBOUTINE UVAPATIAT	<pre>OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN WRITE(500,*) nolm WRITE(500,*) nolm WRITE(500,*) f D0 i = 1, nelm WRITE (500,*) f UNATIE (500,*) farel(1) UN</pre>	OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus == 0) THEN WRITE(500,*) nelm WRITE(500,*) j MRITE(500,*) j NUTE(500,*) j MRITE(500,*) j NUTE(500,*) j NUTE(500,*) j NUTE(500,*) f NUTE NUTE NOULE WOLL NODULE WOLL	<pre>OPEN(UNIT = 500, FILE = fname _STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus == 0) THEN WRITE(500,*) n=lm WRITE(500,*) n=lm WRITE(500,*) n=lm WRITE(500,*) farel(1) URITE (500,*) farel(500,*) farel(500,*) farel(500,*) farel(50</pre>	OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus = =0) THEN WRITE(580e,*) n=lm WRITE(580e,*) n=lm WRITE(580e,*) n=lm WRITE(580e,*) n=lm WRITE(580e,*) n=lm WRITE(580e,*) f D0 i = 1, nelm WRITE (580,*) f WRITE (580,*) f IMARTE (8,103) arel(1) MMITE (8,103) arel(1) END IF	OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus == 0) THEN waiTE(500,*) nalm waiTE(500,*) nalm waiTE(500,*) i Image: Status = 0 THEN waiTE(500,*) farel(1) Image: Status = 0 THEN waite = 0 THEN	<pre>OPEN(UNTT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) TF (fstatus == 0) THEN WRITE(500,*) nalm WRITE(500,*) nalm WRITE(500,*) farel(1) IIMRITE (500,*) farel(1) IIIMRITE (500,*) farel(1) IIIMRITE (500,*) farel(1) IIIMRITE (500,*) farel(1) IIIMRITE (500,*) farel(1) IIII III IIIMRITE (500,*) farel(1) IIIIII IIIIII IIIII IIIIIIIIII IIIIIIII</pre>	:	
S26 OPEN(UNIT = 500, FILE = fname ,STATUS = "REPLACE', ACTION = "WRITE', IOSTAT = fstatus) S28 IF (fstatus == 0) THEN S29 WAITE(500, *) n=Im S31 IF (fstatus == 0) THEN S32 WAITE(500, *) n=Im S33 WAITE(500, *) 1 S33 MAITE(500, *) 1 S34 IF (ATALUS == 0) THEN S35 MAITE(500, *) 1 S34 INALTE (500, *) 1 S35 MAITE (500, *) 1 S35 MAITE (500, *) 1 S36 INALTE (500, *) 1 S37 MAITE (500, *) 1 S38 CLOSE (MIT = 500) S39 LOSE (WIT = 500) S39 LOSE (WIT = 500) S39 LOSE (WIT = 500) S40 LOSE (WIT = 500) S41 LEND SUBROUTINE UNAPTINE	<pre>OPEW(UNIT = 500, FILE = fname ,SIATUS = 'REPLACE', ACTION = 'MRITE', IOSTAT = fstatus) IF (fstatus == 0) THEN WRITE(500,*) nelm WRITE(500,*) nelm WRITE(500,*) j D0 1 = 1, nelm WRITE(500,*) farel(1) URITE(500,*) j URITE(500,*) i D0 1 = 1, nelm WRITE(500,*) i URITE(500,*) /pre>	<pre>OPEN(UNTT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) TF (fstatus == 0) THEN WRITE(500,*) j WRITE(500,*) j OO i = 1, nelm WRITE(500,*) f OO i = 1, nelm WRITE(500,*) f OO i = 1, nelm UNTE (50,*) f OO I = 1, nelm</pre>	OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus == 0) THEN WRITE(500,*) nelm WRITE(500,*) j WRITE(500,*) j NARTE(500,*) j III NARTE(500,*) j D0 i = 1, nelm WRITE(500,*) j IIIMRITE (9, 103) arel(1) IIIMRITE (9, 103) arel(1) END DO END IF LOSE(UNIT = 500) IIIMRITE (9, 103) arel(1) END DO END SUBROUTTINE uvaprint END SUBROUTINE uvaprint	<pre>OPEN(UNIT = 500, FILE = fname _STATUS = 'REPLACE', ACTION = 'WAITE', IOSTAT = fstatus) IF (fstatus == 0) THEN WAITE(500,*) gi WAITE(500,*) gi DO i = 1, nelm WAITE (500,*) farel(1) I</pre>	OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus == 0) THEN WRITE(500,*) nelm WRITE(500,*) nelm WRITE(500,*) nelm MRITE(500,*) nelm D0 i = 1, nelm WRITE (500,*) farel(1) NRITE (500,*) farel(1) NRITE (500,*) farel(1) NRITE (500,*) farel(1) UNATIE (9,103) arel(1) END D CLOSE (UNIT = 500) ID3 FORMAT(10(1x, E224.16)) ID3 FORMAT(10(1x, uvoprint END SUBROUTINE uvoprint END DOULE Mod_Data_Files	OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN WRITE(500,*) neum WRITE(500,*) neum MRITE(500,*) neum MRITE(500,*) neum MRITE(500,*) neum D0 i = 1, neum MRITE(500,*) arei(1) MRITE(500,*) arei(1) MRITE(500,*) arei(1) END D IDMETT END D IDMETT END D END D IDMETT END D END SUBROUTINE uverint END SUBROUTINE uverint END SUBROUTINE uverint END SUBROUTINE uverint	S26 OPEN(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) S28 IF (fstatus == 0) THEN S39 IF (fstatus == 0) THEN S31 Imatrif(500,*) nelm S32 D0 i = 1, nelm S33 D0 i = 1, nelm S34 INETTE (500,*) farel(1) S35 D0 i = 1, nelm S36 END D0 S37 INETTE (500,*) farel(1) S38 D0 i = 1, nelm S39 D0 i = 1, nelm S31 D1 i = 1, nelm S32 END D0 S33 END D0 S41 INETTE (50,1) S31 IIO SEGULT = 500 S32 END D0 S41 ISONUTE uvaprint	OPEW(UNIT = 500, FILE = fname ,STATUS = 'REPLACE', ACTION = 'WRITE', IOSTAT = fstatus) IF (fstatus = 0) THEN WHITE(500,*) = nein MHITE(500,*) = nein NATHE (500,*) = nein NATHE (500,*) = nein DOI = 1, nein NATHE (500,*) = nein NATHE (500,*) = nein DOI = 1, nein III = nein IIII = nein		
<pre>IF (fstatus == 0) THEN MAITE(500,*) nelm WAITE(500,*) j MAITE(500,*) farel(1) DO i = 1, nelm WAITE (500,*) farel(1) WAITE (500,*) farel(1) WAITE (500,*) farel(1) WAITE (500,*) farel(1) UD MAITE (</pre>	<pre>IF (fetatus = 0) THEM WRITE(500,*) nelm WRITE(500,*) j WRITE(500,*) j U = 1, nelm WRITE(500,*) farel(1) D = 1, nelm WRITE (9,103) arel(1) WRITE (9,103) arel(1) U = 0 U =</pre>	<pre>IF (fstatus == 0) THEN wRITE(500,*) nelm wRITE(500,*) i wRITE(500,*) i wRITE(500,*) faren[i] 0 i = 1, nelm 0 i = 1, nelm 0 i = 1, nelm 0 intrr [69, 103) arel(i) END IF CLOSE(UNT = 500) 103 FORMAT(10(1x,ES24.16)) 103 FORMAT(1x,ES24.16) 103 FORMAT(1x,ES24.16)) 103 FORMAT(1x,ES24.16) 103 FORMAT(1x,ES24.</pre>	<pre>IF (fstatus == 0) THEN MRITE(500,*) nelm MRITE(500,*) j MRITE(500,*) j D0 i = 1, nelm D0 i = 1, nelm MRITE (5.00,*) farel(i) MRITE (5.00,*) farel(i) MRITE (5.00,*) farel(i) END D1 D0 D0 END F CLOSE(UNIT = 500) CLOSE(UNIT = 500) END F END SUBROUTINE uvaprint END SUBROUTINE uvaprint END SUBROUTINE uvaprint END MODULE Mod_Data_Files END MODULE MOD_END END END END MODULE MOD_END END END END END END END END END END</pre>	IF (fstatus = 0) THEN WRITE(500,*) nelm WRITE(500,*) j WRITE(500,*) j 0 i 1, nelm 0 i 1, nelm 0 i 1, nelm 11MRITE (3,103) arel(i) END DO END IF CLOSE(UNIT = 500) 103 FOWAT(10(1),E24.16)) 103 FOWAT(10(1),E24.16)) 103 FOWAT(10(1),E24.16)) 103 FOWAT(10(1),E24.16)) 103 FOWAT(10(1),E24.16)) 103 FOWAT(10(1),E24.16)) 104 FOWAT(10(1),E24.16)) 105 FOWAT(10(1),E24.16)) 105 FOWAT(10(1),E24.16)) 106 FOWAT(10(1),E24.16)) 107 FOWAT(10(1),E24.16)) 108 FOWAT(10(1),E24.16)) 1	<pre>If (fstatus = 0) THEN WRITE(560,*) j WRITE(560,*) j UD i = 1, nolm UD i = 1, nolm UD i = 1, nolm UNITE (50,*) farel(1) UD I F /pre>	IF (fstatus == 0) THEN METE(500.*) nelm METE(500.*) nelm METE(500.*) nel 0 1 1.1 nelm 1.1 nell 1.1 n	<pre>IF (fetatus = 0) HEN WITE(500,*) nelm WITE(500,*) nelm WITE(500,*) incl Nutre(500,*) farel(1) Nutre(500,*) farel(1) Nutre(500,*) farel(1) Nutre(500,*) arel(1) Nutre(500,*) Nutre(500,*) arel(1) Nutre(500,*) Nutre(500,*) arel(1) Nutre(500,*) Nutre(500,*</pre>	<pre>IF (fstatus = e) THEM WITE(500,*) nelm WITE(500,*) fareI(n) DO if 1, nelm WITE (500,*) fareI(i) iMITE (500,*)</pre>		
<pre>IF (Fstatus = 0) THEN WHITE(500,*) n=Lm WHITE(500,*) f DO 1 = 1, neLm WHITE (500,*) fare(1) UMATTE (500,*) fare(1) UMATTE (500,*) fare(1) END D END END D END END END END END END END END END END</pre>	<pre>IF (fettus = 0 THEM WAITE(500,*) nelm WAITE(500,*) j WAITE(500,*) farel(1) WAITE(500,*) farel(1) WAITE (590,*) farel(1) WAITE (590,*) farel(1) WAITE (590,*) farel(1) WAITE (590)*) farel(1) WAITE (590)*</pre>	<pre>IF (fstatus = 0) THEN WRTE(500.*) nelm WRTE(500.*) nelm WRTE(500.*) j WRTE (500.*) j OO i = 1, nelm NRTE (500.*) farel(i) INRTE (80.9) arel(i) INRTE (80.9) arel(i) END IF CLOSE(UNIT = 500) CLOSE(UNIT = 500) I03 CORMI(10(1.5.224.16)) I03 CORMI(10(1.5.254.16)) I03 CORMI(10(1.5.524.16)) I03 CORMI(10(1.5.54.15)) I03 CORMI(10(1.5.54.15))</pre>	IF (fstatus == 0) THEN MRITE(500,*) molm MRITE(500,*) molm MRITE(500,*) farel(1) DO i = 1, nelm MRITE (500,*) farel(1) IMMITE (90,*) farel(1) END DO END DO END DO END DO END TF END SOURT(10(1x,E22.15)) END SOUNT(10(1x,E22.15)) END SOUNT(10(1x,E22.15)) END SOUNT(10(1x,E22.15)) END SOUNT(10(1x,E22.15)) END SOUNT(10(1x,E22.15))	IF (Fictures ====================================	IF (Fistatus == 0) THEN WRITE(500.*) melm WRITE(500.*) melm WRITE(500.*) farel(1) DO 1 = 1, melm WRITE (500.*) farel(1) UNITE (500.*) farel(1) INMETE	IF (fstatus = 0) THEN WRITE(500.*) j WRITE(500.*) j WRITE(500.*) farel(1) WRITE (500.*) far	<pre>I If (fstatus = 0) THEN warrE(500,*) naim warrE(500,*) farel() i MarrE (500,*) farel() i MarrE (500,*) farel() i MarrE (500,*) farel() i MarrE (8,103) arel() i MarrE (1000 i MarrE (1000) i Marr</pre>	<pre>I I (fstatus = 0) HEN wmrrE(500,*) nam wmrrE(500,*) farel()</pre>		
WHIE(560,) neum WHIE(560,) 1 DO 1 = 1, neim WHIE (560, *) farel(1) NHIE (560, *) farel(1) NHIE (5,00, *) farel(1) END D END D CLOSE(UNIT = 560) 1 = 105 FORMAT(10(1X, 5524.16)) 1 = 105 FORMAT(10(1X, 5524.16)) 1 = 105 FORMAT(10(1X, 5524.16))	<pre>MMITE(500,*) neum WMITE(500,*) j D0 1 = 1, neum WMITE(500,*) farel(1) D0 1 = 1, neum WMITE(500,*) farel(1) END D0 END 1 END D0 END 1 END D0 END 1 END 1</pre>	<pre>WRITE(500,*) nelm WRITE(500,*) 1 D0 i= 1, nelm D0 i= 1, nelm WRITE (500,*) farel(i) WRITE (500,*) farel(i) WRITE (500,*) farel(i) END D0 END D1 END D1 END D1 END D1 END D1 END /pre>	MurtE(500,*) num MurtE(500,*) j D0 i 1, num D0 i 1, num END F END F CLOSE(MUT = 500) END F CLOSE(MUT = 500) END F CLOSE(MUT = 500) END F END F E	<pre>WITE(560.*) nelm WITE(560.*) i WITE(560.*) i Nutric (560.*) farel(1) Nutric (560.*) farel(1) Nutric (560.*) farel(1) Nutric (50.*) f</pre>	WRITE(500,*) nelm WRITE(500,*) j D0 i = 1, nelm MRITE (500,*) farel(1) MRITE (500,*) farel(1) END D0 END D1 END D1 CLOSE(UNIT = 500) CLOSE(UNIT = 500) 103 FORMAT(10(1x, E224.16)) 103 FORMAT(10(1x, E224.16)) END SUBROUTINE uvaprint END SUBROUTINE uvaprint END SUBROUTINE uvaprint	H MUTE(500*) nelm WMITE(500*) 1 D0 i = 1, nelm WATE (500*) * farel(i) WATE (500,*) farel(i) END D0 END D1 END END END END END END END END END END	WittE(500,) neum WittE(500,*) j DOI = 1, neum WittE(500,*) farel(1) MuttE(500,*) farel(1) END DO END T I	WHIE(500,) neim WHIE(500,) 1 D0 i = 1, neim NHIE (500, *) farel(i) NHIE (500, *) farel(i) NHIE (5,103) arel(i) END T END T END T END T END T END F END F E		
<pre>WHIE(500,*)] 0 i = 1, nelm 0 i = 1, nelm WHIE (500,*) farel(i) INATE (8,103) arel(i) INATE (8,103) arel(i) END F END D0 END F CLOSE(MUTT = 500) 103 FORWAT(10(1x,ES24.16)) 103 FORWAT(10(1x,ES24.16)) END FEND END FACTOR FA</pre>	<pre>will(600,*)] D0 i = 1, nelm NiTTE (900,*) farel(1) NiTTE (90,*) farel(1) NiTTE (90,*) farel(1) NiTTE (9,103) arel(1) END D0 END D1 END END END END END END END END END END</pre>	<pre>wtlE(500,*)] 0 i 1, nelm 0 iff(500,*) face(i) 1 MtTE (0,03) arei(i) 1 MtTE (0,13) arei(i) END IF CLOSE(UTT = 500) 1 103 FORMAT(10(1x,ES24.16)) 1 103 FORMAT(10(1x,ES24.16)) END IF END SUBPOUTINE uvaprint END SUBPOUTINE uvaprint</pre>	WHIE(500,*) J D0 i = 1, nelm NMIE (500,*) farel(1) INMIE (500,*) farel(1) END D0 END F CLOSE(UNT = 500) CLOSE(UNT = 500) END F END SOMMY(10(1X,E24.16)) END SUBROUTINE uvaprint END SUBROUTINE uvaprint	WALTE(569.*) J Do i = 1, melm Do i = 1, melm NALTE (59.03) arel(i) END DO END IF CLOSE(NIT = 500) 1.005E(NIT = 500) 1.00	WRITE(500,*)] D0 i = 1, nelm NRITE (500,*) fare1(1) INRITE (50,0) are1(1) INRITE (50,0) are1(1) END D0 END D0 END D0 END END D1 END SUBSOUTINE (vaprint END SUBSOUTINE (vaprint END SUBSOUTINE (vaprint END SUBSOUTINE (vaprint END SUBSOUTINE (vaprint	Mult(500,*)] 0 i = 1, melm MurtE (500,*) fareI(i) I.MurtE (9,103) areI(i) END IF CLOSE(MUT = 560) I	Wilf(200,*)] Do i = 1, melm MiTrE (500,*) farel(i) iNRTF (3,103) arel(i) iNRTF (3,103)	HurlE(500,*) J 0 i = 1, nelm MartE (500,*) farel(j) MartE (500,*) farel(j) MartE (500,*) farel(j) END IF CLOSE(MIT = 500) CLOSE(MIT = 500) CLOSE(MIT = 500) END IF CLOSE(MIT = 500) END IF END I		
D0 i = 1, nelm WITE (500,*) fare1(1) I IMRTE (8,103) are1(1) END D END D END T CLOSE(WITT = 500) 103 FORMAT(10(1x,5224.16)) 103 FORMAT(10(1x,5224.16)) END SUBSOUTIME uvaprint	DO 1 = 1, melm MRTF (50, *) fare1(1) MRTF (50, *) fare1(1) END D END D END IF CLOSE(MNT = 500) 103 FORMAT(10(1x, ES24.16)) 103 FORMAT(10(1x, ES24.16)) EDD SUBROUTINE uvaprint	D0 1 = 1, nelm WRITE (500,*) fare1(1) WRITE (500,*) fare1(1) END D0 END TF CLOSE(UNIT = 500) 103 FORMAT(10(1x,E224.16)) 103 FORMAT(10(1x,E224.16))	D0 1 = 1, nelm WITE (500,*) fare1(1) WITE (500,*) fare1(1) END D0 END D0 END TF CLOSE(WIT = 500) 1 03 FORMAT(10(13,E52.16)) END SUBROUTIME uvaprint END SUBROUTIME uvaprint	D0 i = 1, melm WRITE (500,*) farel(i) WRITE (500,*) farel(i) END D0 END IF CLOSE(UNIT = 500) 103 FORMAT(10(1x,1534.16)) 103 FORMAT(10(1x,1534.16)) END SUBROUTINE uvaprint END SUBROUTINE uvaprint END SUBROUTINE uvaprint	D0 i = 1, nelm WRITE (500,*) farel(i) WRITE (9,103) arel(i) END D0 END D1 CLOSE(UNIT = 500) 103 FORMAT(10(1x, E524.16)) 103 FORMAT(10(1x, E524.16)) END SUBBOUTINE UVAPTINT END SUBBOUTINE UVAPTINT END SUBBOUTINE UVAPTINT	D0 1 = 1, nelm WITE (500,*) fare1(1) INMITE (5,103) are1(1) END D0 END IF CLOSE(MITT = 500) 103 FORMAT(10(1x,E524.16)) 103 FORMAT(10(1x,E524.16)) END SUBBOUTINE uvaprint END SUBBOUTINE uvaprint END SUBBOUTINE uvaprint END SUBBOUTINE uvaprint END SUBBOUTINE uvaprint	DO i = 1, nelm WRITE (500,*) farel(i) INMITE (300,*) farel(i) END D END I END I END I I D END I END I EN	D0 i = 1, nelm IMRTE (500,*) ferel(i) IMRTE (8,103) arel(i) END D END IF CLOSE(MUTT = 500) 103 FORWAT(10(1x,ES24.16)) ED SUBROUTINE uvaprint ED SUBROUTINE uvaprint ED DATa_Files	:	
WITT (500,*) farel(1) WITTE (500,*) farel(1) END 0 END 0 CLOSE(UNIT = 500) 103 FORMAT(10(1x,ES24.10)) 103 FORMAT(10(1x,ES24.10)) END SUBSOUTIME uvarint	WITE (90,*) fare1(1) WITE (90,*) fare1(1) END DO END DO END IF 1.0.05E(WIT = 500) 1.0.05E(WIT = 500)	WATTE (500,*) fare1(1) WATTE (500,*) fare1(1) END D0 END IF CLOSE(UNIT = 500) 1.03 FORMAT(10(1x,ES24.16)) 1.03 FORMAT(10(1x,ES24.16)) END SUBPOUTIME uvaprint	WITE (500,*) fare1(1) WITE (500,*) fare1(1) END D0 END IF CLOSE(WIT = 500) 103 FORMT(10(1x,E524.16)) 103 FORMT(10(1x,E524.16)) END SUBPOUTINE uvaprint END SUBPOUTINE uvaprint END MODULE Mod_Data_Files	MITE (500,*) fare1(1) MITE (500,*) fare1(1) END DF END IF CLOSE(UNIT = 500) 103 FORMT(10(1x,554.16)) 103 FORMT(10(1x,554.16)) 103 FORMT(10(1x,554.16)) 103 FORMT(10(1x,554.16)) 103 FORMT(10(1x,554.16)) 103 FORMT(10(1x,554.16)) 104 FORMT(10(1x,554.16)) 105 FORMT(10(1x,554.16)) 107 FORMT(10(1x,554.16)) 108 FORMT(10(1x,554.16)) 108 FORMT(10(1x,554.16)) 108 FORMT(10(1x,554.16)) 108 FORMT(10(1x,554.16)) 108 FORMT(10(1x,554.16)) 109 FORMT(10(1x,554.16)) 109 FORMT(10(1x,554.16)) 109 FORMT(10(1x,554.16)) 109 FORMT(10(1x,554.16)) 100 FORMT(10(1x	MaITE (500,*) fare1(1) MaITE (500,*) fare1(1) EMD D0 EUD D CLOSE(UNIT = 500) 103 FORMAT(10(1x, 524.16)) 103 FORMAT(10(1x, 1x, 1x)) EUD SUBROUTINE uveprint END SUBROUTINE uveprint	WRIFE (500,*) farel(1) WRIFE (500,*) farel(1) EUD D0 EDD D1 CLOSE(UNIT = 500) CLOSE(UNIT = 500) EDD F1 EDD SUBROUTINE uverint END SUBROUTINE uverint END SUBROUTINE uverint END SUBROUTINE uverint EDD P1a_Files	MITE (300,*) farel(1) iNATTE (300,*) farel(1) END D0 END D1 CLOSE(UNIT = 500) 1.035 FONMAT(14(1x,ES4.16)) 1.031 FONMAT(14(1x,ES4.16)) END SUBROUTINE uvaprint END SUBROUTINE uvaprint END SUBROUTINE uvaprint END SUBROUTINE uvaprint END SUBROUTINE uvaprint	WITT (Ge0, *) farel(1) IMITE (S, Jab) arel(1) EHD D EHD D CLOSE(UNTT = 500) 1 - CLOSE(UNTT = 500) 1 - CLOSE(<u>-</u>	
				I IWTIF (8,103) arel(1) END DO END IF CLOSE(NIT = 500) 1	<pre>ilwitite (8,103) arel(1) END DO END DO END IF CLOSE(UNIT = 500) 103 FORWAT(10(1x,E524.16)) 103 FORWAT(10(1x,E524.16)) END SUBROUTINE uvaprint END MODULE Mod Data_Files</pre>					
				END DO END IF CLOSE(UNIT = 500) 103 FORMAT(10(1x,ES4.16)) 103 FORMAT(10(1x,ES4.16)) 103 FORMAT(10(1x,ES4.16)) 104 END SUBROUTINE uvaprint END SUBROUTINE uvaprint	END DO END IF CLOSE(UNIT = 500) 103 FORMAT(10(1x, E524.16)) END SUBROUTINE uvaprint END SUBROUTINE uvaprint END SUBROUTINE uvaprint				_	INTER (8.103) area[()
				END IF CLOSE(UNIT = 500) 1	E END IF CLOSE(UNTI = 500) 1. 103 FORMAT(10(1x, 524.16)) E END SUBROUTIME uvaprint END NODULE Mod_Data_Files					END DO
				I	CLOSE(UNIT = 500) 103 FORMAT(10(1x,ES4.16)) END SUBROUTINE uvaprint END MODULE Mod_Data_Files					END IF
				CLOSE(UNIT = 500) 103 FORMAT(18(1x,E524.16)) 103 SUBROUTINE uvaprint 105 SUBROUTINE uvaprint 10 MODULE Mod_Data_Files	<pre>1 CLOSE(UNIT = 500) 1 103 FORMAT(10(1x, ES24.16)) END SUBBOUTINE uvaprint END SUBBOUTINE uvaprint END MODULE Mod_Data_Files</pre>				-	
				103 FORMAT(10(1x,1524.16)) END SUBROUTINE uvaprint END NODULE Mod_Data_Files	103 FORMAT(10(1x,E24.16)) END SUBBOUTINE uvaprint END SUBBOUTINE uvaprint END MODULE Mod_Data_Files				=	CLOSE(UNIT = 500)
				Le round (rutio) este ruio) El Suscourine uvaprint Le Moule Mod_Data_Files	i END SUBROUTINE uvaprint I END SUBROUTINE uvaprint END MODULE Mod_Data_Files				÷ _	
				END SUBROUTINE uvaprint 	I END SUBROUTINE uvaprint I END SUBROUTINE uvaprint END MODULE Mod_Data_Files					
				I MODULE Mod_Data_Files	le moult Mod_Data_Files					
				siD MODULE Mod_Data_Files	: NO WOULE Mod_Data_Files					
			EWD MODULE Mod_Data_Files	ND MODULE Mod_Data_Files	END MODULE Mod_Data_Files	END MODLE Mod_Data_Files	END MODULE Mod_Data_Files	END MOULE Mod Data_Files		
1										
1										
1										
1										
1										