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Resumen

Durante su nacimiento, tiempo de vida y muerte las estrellas masivas (de masa > 20

M⊙) liberan momento y enerǵıa que interactúa con el medio interestelar (ISM) que

las forma. Este tipo de estrellas producen regiones HII expansivas cuando nacen,

pierden masa mediante vientos estelares a lo largo de su vida, y explotan como

supernovas (SNe) cuando mueren. Esta tesis se enfoca en el efecto de la presión de

radiación en regiones HII, aśı como también en remanentes de SN que se expanden

dentro de un viento de cúmulo estelar preexistente.

Primero estudiamos de manera anaĺıtica el efecto de la presión de radiación en re-

giones HII esféricas, que es el mismo problema estudiado numéricamente por Draine

(2011). Obtenemos una solución anaĺıtica aproximada para la estructura nebular.

Esta solución está determinada por la luminosidad de la estrella central L∗, la sección

eficaz de absorción del polvo σd y el radio exterior de la nebulosa Rs. Comparamos

nuestra solución anaĺıtica con integraciones numéricas de las ecuaciones de Draine,

encontrando muy buen acuerdo entre ambos modelos. De nuestra solución anaĺıtica

derivamos que la presión de radiación crea cavidades centrales considerables en re-

giones HII cuando se cumple que Rs . σdL∗/(8πckT ), donde k es la constante de

Boltzmann, c es la velocidad de la luz y T ∼ 104 K es la temperatura t́ıpica de

las regiones HII. Además, en una región fotoionizada con tal configuración, ya no

hay un efecto de reducción de volumen (el cual tiene lugar en modelos anteriores de

regiones HII con polvo, que no consideran la presión de radiación).

Extendemos el análisis del caso esférico al caso de una distribución de fuentes de

radiación en un plano. Esta configuración es relevante para modelar episodios de

formación estelar en discos galácticos o en formación estelar producida por colisiones

frontales de nubes moleculares. Obtenemos la estructura vertical del ISM alrededor

de una distribución plana de estrellas, mediante soluciones semi-anaĺıticas de las
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ecuaciones del modelo, en el que también se toma en cuenta la masa de las estrellas

y la auto-gravedad del gas. Estas soluciones son perfiles hidrostáticos de regiones fo-

toionizadas planas, que están en balance de presión con una capa neutra envolvente.

Esta estructura tiene distintas extensiones (tanto de la zona fotoionizada como de

la neutra) de acuerdo a la configuración de los parámetros del sistema. Evaluamos

la estabilidad gravitacional de la zona neutra de las soluciones, encontrando que la

mayoŕıa de ellas son estables. Sin embargo, encontramos algunas soluciones inesta-

bles donde hay formación estelar subsecuente, producida por los efectos combinados

de la auto-gravedad del gas y la presión de radiación.

En el útimo caṕıtulo de esta tesis desarrollamos un modelo semianaĺıtico de un

remanente de SN que se expande en el centro de un viento de cúmulo estelar. Del

modelo semianaĺıtico se obtiene el radio de la burbuja del material expulsado, y el

radio del choque externo del remanente como función del tiempo.

Encontramos que en el caso de supernovas tipo II, el remanente generalmente

alcanza la fase T-S afuera del cúmulo. En este caso el choque reverso del remanente

de SN nunca regresa al centro de la explosión, expandiénsode siempre detrás de la

discontinuidad de contacto. Calculamos la luminosidad de rayos X del flujo resul-

tante y encontramos por ejemplo que para un cúmulo de 1000 estrellas O dentro

de un radio de 2.5 pc, el remanente de SN aumenta la luminosidad de rayos X del

del cúmulo en ∼ 3 ordenes de magnitud. Este incremento de luminosidad decae

en un peŕıodo de ∼ 1000 años a su valor original (antes de la explosión de SN).

Los modelos de este caṕıtulo podŕıan ser aplicados para interpretar observaciones

en rayos X de cúmulos de estrellas masivas.

Las aportaciones principales de esta tesis también pueden encontrarse en los

art́ıculos de Rodŕıguez-Ramı́rez et al. (2014), Rodŕıguez-Ramı́rez & Raga (2016) y

Rodŕıguez-Ramı́rez et al. (2016).
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Abstract

During their formation, life-time, and death, massive stars (with mass > 20 M⊙)

release energy and momentum that interact with their forming interstellar medium

(ISM). These type of stars produce expanding HII regions when they are formed,

lose mass through stellar winds during their life, and to explode as supernovae

(SNe) when they die. This thesis focuses on the effect of radiation pressure in HII

regions as well as SN blast waves that expand in a pre-existing star cluster wind.

The motivation for these studies are the difficulties that the standard models of

wind-bubbles face to explain the properties of particular interstellar bubbles.

We first study analytically the effect of radiation pressure on spherical HII re-

gions, which is the same problem studied numerically by Draine (2011). We obtain

an analytic approximate solution for the nebular structure. This solution is deter-

mined by the luminosity of the central star L∗, the dust absorption cross section σd,

and the external boundary of the nebula RS. We compare our analytic solution with

numerical integrations of Draine’s model equations, and find a very close agreement

between both models. From our analytic solution, we infer that radiation pressure

creates significant central cavities in the nebula when the parameters of the system

are such that Rs . σdL∗/(8πckT ), being c the speed of light, k the Boltzmann

constant, and T ∼ 104 K the typical temperature of HII regions. Also, if the nebula

is close to this configuration, the size reduction effect of dusty HII regions (found

in previous models with dust absorption but not including radiation pressure) now

disappears.

We extend the analysis of the spherical case to a planar distribution of radiation

sources. This configuration is relevant to model star forming episodes in galactic

disks, or in star formation triggered by cloud-cloud collisions. We obtain the vertical

structure of the ISM around a plane distribution of stars through semi-analytic solu-
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tions of model equations that also consider the stellar mass and the self-gravity of the

gas. These solutions are hydrostatic profiles of a planar photoionised region in pres-

sure balance with a covering neutral layer. This structure has different extensions

(of the photoionised and neutral zones) according to the parameter configurations

of the system. We evaluate the gravitational stability of the neutral layers of the

solutions and find most of them in the stable regime. However, we find unstable

cases where further star formation is triggered by the combined effects of self-gravity

and radiation pressure.

In the last chapter of this thesis we developed a semi-analytic model for a SN

blast wave that expands in the centre of a pre-existing cluster wind produced by

the individual winds of the massive stars in the cluster. Our semi-analytic model

gives the radius of the bubble of ejected material as well as the outer shock of the

blast wave as a function of time. We find that blast waves produced by type II SNe

are likely to begin the T-S phase outside the cluster radius. In this case the reverse

shock of the SN remnant never goes back to the centre of the explosion and always

expands behind the contact discontinuity.

We calculate the total X-ray luminosity of the resulting flow, and obtain for

instance that in a cluster of 1000 O stars inside a radius of 2.5 pc, the blast wave

increases the X-ray luminosity of the cluster wind by ∼ 3 orders of magnitude. This

increased luminosity decays over a period of ∼1000 yr to its undisturbed cluster wind

value. The models of this chapter could be applied to interpret X-ray observations

of massive star clusters.

The main contributions of this thesis can also be found in the papers by Rodŕıguez-

Ramı́rez et al. (2014), Rodŕıguez-Ramı́rez & Raga (2016) and Rodŕıguez-Ramı́rez

et al. (2016).
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Chapter 1

Introduction

Stars influence the formation and evolution of astrophysical structures at several

scales: planets, interstellar gas, star clusters, galaxies, etc. Stars also reveal the

properties of “invisible” objects such as black holes and dark matter.

Nowadays it is understood that stars form in cosmic condensations of gas and

dust, which eventually collapse due to gravity. This process is likely to occur collec-

tively, resulting in bound or unbound stellar populations. However, some points in

the scenario of star formation are not well understood. In particular, forming the

massive stars (with masses > 20 M⊙) is relatively difficult, since they are very few

in comparison with low mass stars (e.g. solar type or smaller), which dominate by

far the population of stellar systems.

The mass distribution in stellar populations follows what astronomers call the

initial mass function (IMF). This is an empirical formula that gives the number of

stars as a function their mass ξ(M) and appears to hold at several cosmic scales. By

considering the stellar field population in the Milky Way, Salpeter (1955) obtained

the distribution:

ξ(M) = ξ0M
−α, (1.1)

with α = 2.35. The factor ξ0 is obtained by normalising the distribution with the

total mass of a particular stellar population, with an upper and lower limit for the

stellar masses. According to (1.1), the low mass stars are dominant in number and

posses most of the total mass of their stellar population. For instance, for each O5 V

star (with ∼ 40 M⊙) in a stellar population, the IMF predicts that there are ∼ 6000

stars of solar type.
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Although massive stars are a minority, they are the dominant source of energy

and momentum deposition into the interstellar medium (ISM) in form of expanding

ionised gas, radiation pressure, stellar winds, and supernova blast waves among

others. This is what astrophysicists call feedback and believe that regulates the

global star formation process. On one hand feedback stabilises the gas against its

own gravitational collapse, disrupting molecular gas clouds and driving turbulence.

On the other hand feedback also compresses interstellar matter driving further star

formation.

In comparison with low mass stars, massive stars emit very large amount of

ionising radiation. Then, after a massive star is formed, it quickly photoionises the

cold surrounding medium, creating what is known as an HII region. HII regions

are in many cases the first manifestation of the birth of massive stars. Therefore,

their properties are useful to interpret the parameters of the newborn star, and the

parental cloud and disk from which they are formed.

Massive stars also lose material from their atmospheres through supersonic stellar

winds, which are likely to develop inside the photoionised region previously formed.

These stellar winds are expected to affect the structure and evolution of HII regions

if the wind gas remain confined inside the nebula (see Cappriotti & Kosminski 2001,

Raga et al. 2012b). The lifetime of a massive star (much shorter than the lifetime

of low mass stars) is likely to end as a SN explosion, and the resulting blast wave

will evolve in an environment previously modified by the ionising radiation and the

stellar wind of the massive star.

HII regions, stellar winds and SNe often show their presence in the form of

interstellar bubbles, which are spherical structures of hot gas surrounded by a cold

thin layer of swept up interstellar material. These stellar bubbles are produced by

a single massive star or as a result of the feedback of many massive stars in OB

associations or compact star clusters. The standard models of interstellar bubbles

are (i) the wind-bubble model of Castor et al. (1975) (see also Weaver et al. 1977)

appropriate for punctual stellar sources and (ii) the model of Chevalier & Clegg

(1985) and Cantó et al. (2000) (see also Silich et al. 2004), appropriate for extended

configurations of massive stars, as star clusters where the individual stars contribute

to drive a collective “cluster wind”.

However, the application of these models in recent years have presented sig-
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nificant discrepancies with particular observations. For instance, the wind-bubble

model of Castor et al. (1975) over-predicts the internal pressure, the expansion

velocity and the X-ray emission in compact HII regions. To alleviate this over-

estimations it has been suggested that the gas of the wind should escape through

gaps and leaky structure in the bubbles (see e.g. Carral et al. 2002 and Harper-

Clark & Murray 2009). On the other hand, the cluster wind model of Chevalier

& Clegg (1985) under-predicts in some cases the X-ray luminosity in observed star

clusters (see Stevens & Hartwell 2003 and Harper-Clark & Murray 2009), and SN

blast waves that expand in the cluster wind have been suggested to enhance the

theoretical X-ray luminosity (Chu & McLow 1990, Rodŕıguez-González et al. 2011).

1.1 This thesis

This thesis focuses on (i) the effect of radiation pressure in HII regions, and (ii) SN

remnants that evolve in a well developed cluster wind. With this investigation we

aim to provide alternative models that could alleviate some problems of the standard

wind bubble models mentioned above.

We explore the effect of radiation pressure on HII regions with spherical as well as

plane-parallel symmetry. The spherical models are relevant for HII regions powered

by a single star (hypercompact, ultracompact, compact and classical HII regions)

and the slab models are relevant in the context of extended star bursts in spiral

galaxies, or in star formation triggered by cloud-cloud collisions. In these HII region

models we neglect the effect of stellar winds. The stellar winds can be neglected

if (i) the HII region is very young (< 105 yr) and therefore the stellar winds have

not yet filled a substantial volume of the nebula, (ii) the ISM presents leaky or/and

clumpy structure, (iii) the stellar winds are weak (found in HII regions with B-type

stars). In the “leaky structure” case, the gas of the stellar wind escapes from the

HII region (Harper-Clark & Murray 2009, Yeh & Matzner 2012 and Rosen et al.

2014), and therefore is not able to heat the inner part of the HII region. In this case

the structure and expansion of the nebula is mainly determined by the radiation

pressure of the starlight photons.

The models of supernova blast waves described in the last part of this thesis are

in the context of young massive star clusters. Our contribution is then to study
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the evolution of supernova blast waves in the wind environment and obtain the

dependence of the resulting X-ray emission on the parameters of the cluster.

Along this thesis our approach is mainly analytic and semi-analytic. In this

manner the resulting models for the discussed problems can easily be evaluated

according to the configuration of the involved astrophysical parameters.

The content of this work is presented as follows. In Chapter 2 we introduce

basic physical concepts in the context of the theory of star formation. We present

the physics of gravitational instabilities for astrophysical fluids, and the physics of

feedback mechanisms from massive stars. Chapter 3 presents an analytic treatment

of radiation pressure in static, spherical HII regions, which is the same problem stud-

ied numerically by Draine (2011). The result of our analysis is a surprisingly simple

approximate analytic solution for the relevant range of the involved astrophysical

parameters. We then apply our solution to discuss some general properties of dusty

nebulae. In Chapter 4 we extend the treatment of radiation pressure to planar ge-

ometry, where we also include the gravity of the stars and the self-gravity of the

gas, and extend the analysis to the covering neutral layer. In this latter region we

evaluate the gravitational stability, finding stable and unstable regimes. In Chapter

5 we present a semi-analytic model as well as spherical symmetric, gas dynamic

simulations of supernova blast waves in star cluster outflows. The conclusions of

this work are presented in Chapter 6.

At the end of the thesis we include three appendices. In Appendix A we describe

the numerical algorithm used to solve the gas dynamic equations to obtain the SN

blast waves models of Chapter 5. In Appendix B we present a simple analytic fit to

the implicit exact solution of Cantó et al. (2000) for the star cluster wind (which

is used in Chapter 5). In Appendix C we include a glossary of abbreviations and

constants used in this thesis.

The content of Chapters 3, 4 and 5 can also be found in the papers by Rodŕıguez-

Ramı́rez et al. (2016), Rodŕıguez-Ramı́rez & Raga (2016) and Rodŕıguez-Ramı́rez

et al. (2014), respectively.
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Chapter 2

Basic Concepts

2.1 Gas dynamics

A useful assumption for studying star formation processes is to consider that the

interstellar matter behaves as a fluid. This is a suitable approximation when the

mean free path of the particles of the interstellar material is very small in comparison

with any length scale of interest. If the atoms or molecules exchange momentum and

energy in many elastic collisions, their microscopic motions can be described by a

Maxwell-Boltzmann distribution, and the kinetic degrees of freedom of the material

are in local thermodynamic equilibrium.

Under this condition, the macroscopic description of the gas is given by the well

known Navier-Stokes equations, which can be derived by calculating the “moments”

of the Boltzmann transport equation (details can be seen in the books of F. Shu and

A. R. Choudhuri).

In the astrophysical context, the fluid dynamics equations are usually applied

with some modifications:

• Terms corresponding to viscosity and thermal conduction are neglected, since

for astrophysical fluids the Reynold’s number is huge. In this form, they are

called the Euler equations.

• External forces due to gravity, radiation and magnetic fields are included.

• Heating and cooling functions due to atomic/ionic/molecular processes are

included.

13



Also, the relativistic version of the fluid equations is widely applied. For the prob-

lems treated in this thesis, the relevant version of the hydrodynamic equations are

∂tρ+∇ · (ρv̄) = 0, (2.1)

∂t(ρvi) +∇ · (ρviv̄) + ∂iP = ρgi + fi, (2.2)

∂tE +∇ · [(E + P ) v̄] = H − C +
(
ρḡ + f̄

)
· v̄, (2.3)

which represent the mass, momentum and energy conservation in the non-relativistic

regime. In equation (2.3) E = 1
2
ρv2+P/(γ−1) is the kinetic+thermal energy per unit

volume, and γ = CP/CV the specific heat ratio (usually γ = 5/3 for a monoatomic

gas and γ = 7/5 for diatomic molecules with thermalised rotation states). Equation

(2.2) represents three equations, each one labelled with the sub-index i which is

associated with each spatial direction. ḡ is the gravity field and is related to the gas

density through Poisson’s equation

∇ · ḡ = −4πGρ. (2.4)

f̄ can represent other external forces such as radiation pressure, which should be

complemented with equations describing the radiative transport. The heating and

cooling functions H and C take into account absorption and emission of radiation

and depend on the gas temperature T , density ρ and the ionisation and/or chemical

state of the gas. The temperature can be obtained from the ideal gas equation of

state:

P =
kρT

µmH

, (2.5)

where k is the Boltzmann constant, mH is the mass of hydrogen and µ is the mean

molecular weight (µ = 1.3 for neutral gas with 90% H and 10% He).

Given the initial and boundary conditions of the system, equations (2.1)-(2.5)

determine the time evolution of the density ρ, velocity field v̄ and pressure P of

the flow, which is obtained very often with numerical methods (see Appendix A),

but also analytic solutions can be obtained for particular cases (e. g. for spherical

symmetry or for the case of linear solutions). Modifications of equations (2.1)-(2.3)
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Figure 2.1: Schematic illustration of the levels of condensations in the theory of star
formation, taken from (Kim & Koo 2001).

will be done throughout this text, according to the problem that we treat, e. g.

including energy and mass loading terms, isothermal approximations or hydrostatic

regimes.

2.2 Gravitational instability

Observations suggest that the precursors of massive stars are hot cores (Kurtz et

al. 2000). These are condensations of gas with characteristic diameters of ∼ 0.1 pc,

and densities of ∼ 106 cm−3 or greater. At the same time hot cores are substruc-

tures formed hierarchically as condensations of larger and less dense objects such as

cold molecular clouds or giant molecular clouds. This is illustrated in Figure 2.1,

taken from Kim & Koo (2001). Following this scenario, it is understood that giant

molecular clouds provide the matter from which stellar systems are formed.

Nowadays the topics in the study of star formation can be identified as large scales

(how clumps and cores are formed from molecular clouds, what is the efficiency of
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star formation?) and small scales (accretion disks, jets, do massive stars form from

collapsing cores or by merging binaries?, see the review of Mckee & Ostriker 2007).

For studying micro or macro processes of star formation, one of the basic mecha-

nisms is gravitational instability. This is the idea that small perturbations in gaseous

media, when self-gravity is taken into account, can evolve to create structures of very

dense material. Depending on the scale, these structures can eventually collapse to

form dense molecular clouds, stars or planets.

This can be shown by considering a medium in which pressure disturbances

propagate isothermally. In this case, the density at a given position is related to the

gas pressure as

P = c2sρ, (2.6)

where cs =
√
kT/mH is the isothermal sound speed in a medium composed of

hydrogen, mH is the mass of the hydrogen atom, and T is the gas temperature.

Jeans (1902), who first discussed this idea formally, considered the hydrodynamic

quantities of the gas as small oscillations, which we denote here with the prime

symbol (′), around the values of the static state of the gas, which we will denote

with the subindex 0. Thus, the density of the perturbed gas can be written as

ρ = ρ0 + ρ′, (2.7)

with |ρ′| ≪ ρ0. The velocity field of the perturbed medium is v̄ = v̄′ being the

unperturbed medium static (v̄0 = 0). Analogously, the gravity field in the medium

is ḡ = ḡ0 + ḡ′, with |ḡ′| ≪ |ḡ0|, being ḡ0 the gravitational field of the unperturbed

medium. Jeans considered an infinite medium with uniform density, for which ḡ0 =

0. However the analysis can also be done with non-homogeneous unperturbed media,

as we will see later on.

To describe the small perturbations, the linearised version of equations (2.1),

(2.2) and (2.6) apply, and one straightforwardly obtains a second order equation for

the density fluctuations:

∂2
t ρ

′ − c2s∇2ρ′ = ρ04πGρ′, (2.8)

which is a wave-like equation, with a non-homogeneous term due to gravity. Let us
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now consider a generic wave mode of the form

ρ′ = ρ̃ exp
{
−i(k̄ · r̄ + ωt)

}
, (2.9)

where i is the imaginary unity, k̄ is the wave vector with real components, ρ̃ and

ω are the amplitude and oscillation frequency which are in general complex, and it

is understood that physical oscillations are represented by the real part of equation

(2.9).

Combining equations (2.8)-(2.9), one directly finds the dispersion relation

ω2 = 4πGρ0 − c2s|k̄|2, (2.10)

with |k̄| = 2π/λ, being λ the oscillation wavelength. If c2s|k̄|2 < 4πGρ0, ω is real

and ρ′ represents a standard harmonic motion. However, if c2s|k̄|2 > 4πGρ0, ω must

take the form ω = iωR, where ωR is a real number with both, positive and negative

values satisfying the dispersion relation (2.10).

If we now look at equation (2.9), the sign of ωR determines whether the oscillation

mode decays or is amplified in time. This implies that any oscillation mode with

wavelength

λ > cs

√
π

ρ0G
≡ λJ , (2.11)

is able to create over-dense, unstable regions in the gaseous medium. This is the

so-called Jeans wavelength for gravitational instability. The usual interpretation of

inequality (2.11) is that the mass of any amount of matter with density ρ0, speed of

sound cs, and dimensions larger than λJ generates self-gravity that its gas pressure

cannot balance, and therefore the gaseous object collapses.

The Jeans length depends on the mass density of the medium ρ0 but also on

its temperature through the speed of sound cs. For this reason HII regions produce

feedback that stops the collapsing process of a core of gas, since the radiation of the

newborn star ionises and enhances the temperature of the surrounding material and

then its Jeans length λJ increases, leading the material to a stable regime.

For deriving equations (2.8)-(2.11) we considered an infinite medium with con-

stant density ρ0. For such a configuration the unperturbed gravitational acceleration

ḡ0 is null. However, this is not consistent with Poisson’s equation (2.4), which is the
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widely discussed “Jeans swindle”. Later works have been done performing stability

analyses (most of them numerically) over non-homogeneous configurations of the

unperturbed state, e. g. on plane-parallel gaseous disks, stationary rotating disks,

full numerical simulations of the gas dynamic equations of initially turbulent molec-

ular clouds, etc. Surprisingly, they do not differ dramatically from Jeans’s (1902)

result.

The simplest stability analysis, consistent with Poisson’s equation was done by

Ledoux (1951), where the unperturbed static solution is an isothermal slab of gas

(which models e. g. the vertical structure of a gaseous disk). In this case plane

symmetry applies. Then, to obtain the static unperturbed state one just considers

the z-component of the momentum and Poisson’s equations (2.2) and (2.4), giving

ρ0
ρc

= sech2

(
1

2

z

zsl

)
, (2.12)

being ρc the value of the gas density at z = 0 and zsl ≡ cs/
√
8πGρc the character-

istic length of the slab. We now consider plane waves with small amplitude, that

propagate in the x−direction, i. e. perpendicular to the stratification of the static

state. These oscillation modes can be written as




v̄

ρ

Φ


 =




0

ρ0(z)

Φ0(z)


+




[vx(z), 0, vz(z)]

ρ1(z)

Φ1(z)


× exp {−i(ωt+ kxx)} (2.13)

where ḡ = −∇Φ. To find the critical wavelength of these oscillation modes, one

introduces equation (2.13) into equations (2.1), (2.2) and (2.6), keeps only first

order terms for the amplitudes vx1, vz1, ρ1 and Φ1 and assumes that the exchange

of stability occurs at ω = 0 (as occurs in the analysis for the constant ρ0 case, see

equation 2.10). Following this procedure, one directly obtains an equation for the

critical wave number, which is related to the amplitude of the density fluctuations

as the eigenvalue problem:

d2

dz2

(
ρ1
ρ0

)
+

(
4πG

c2s
ρ0(z)− k2

cr

)
ρ1
ρ0

= 0, (2.14)

where ρ0(z) is the unperturbed state given by the stratification (2.12). Consider
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now the eigenfunctions of equation (2.14), symmetric with respect to z = 0:

ρ1
ρ0

= (ν − χ)

(
1 + χ

1− χ

)ν/2

+ (ν + χ)

(
1− χ

1 + χ

)ν/2

, (2.15)

with

χ ≡ tanh

(
z

2zsl

)
, ν ≡ kcrcs√

2πGρc
. (2.16)

The amplitude ρ1 should not diverge as z → ∞, which implies that ν = 1, giving

the critical wavelength

λcr = cs

√
2π

Gρc
=

√
2λJ , (2.17)

which is very close to the Jeans wavelength (2.11). The interpretation of the fact

that λcr is larger that λJ is that a larger volume of the slab is needed to compensate

for the density decay of the slab profile (2.12).

In Chapter 5 we study the effect of self-gravity and radiation pressure on the

ISM surrounding a planar star burst. For some configurations we obtain density

profiles of models with a photoionized slab covered by a dense and narrow neutral

layer. On this latter layer, we apply equation (2.17) to evaluate the gravitational

stability.

2.3 Feedback

During their formation, life-time and death, massive stars release energy and mo-

mentum which interacts with the surrounding ISM. This is what astrophysicist call

feedback, which takes the form of jets, stellar winds, expanding HII regions, radiation

pressure and supernova blast waves. Feedback is an important element in the star

formation theory since

• the energy and momentum expulsion stabilise the gas in molecular clouds

against its own gravitational collapse, thereby reducing the global star forma-

tion efficiency (McKee & Ostriker 1977; Adams & Fatuzzo 1996).

• Feedback from massive stars are indicators to localise star forming regions.

Due to the fact that massive stars are few and have short life-times, their
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presence implies regions of ongoing star formation, where smaller stars with

larger life-times are also being created.

The interaction of SF feedback with the ISM is observed in X-rays (gas heated

by SN remnants and stellar winds), optical (recombination lines of H, e. g. in

HII regions), the infrared (reprocessed radiation by dust absorption) and radio

(bremsstrahlung and synchrotron radiation). On the theoretical side, feedback is

modelled with non-relativistic and relativistic hydrodynamics, magneto-hydrodynamics

and radiative transfer, with numerical and analytic calculations.

In the next subsections we briefly introduce some of the basic physics of HII

regions (which are the first manifestation of the birth of a massive star), SN blast

waves (which indicate the end of the lifetime of massive stars) and radiation pressure

(which is an important mechanism of momentum deposition in the ISM).

2.3.1 HII regions

Photoionised regions are always associated with the presence of massive stars, since

these stars emit radiation capable of ionising hydrogen. These regions around mas-

sive stars are commonly known as HII regions. In a photoionised medium, electrons

and positively charged particles coexist. Therefore, the electrons’ trajectories are

deflected by protons and positive ions, and thus HII regions emit bremsstrahlung

radiation.

Since massive stars release ionising radiation, matter in HII regions is continu-

ously photoionised and recombined. The recombinations depend on the cross sec-

tions of the capturing particles, being protons the dominant ions. Once an electron

is captured by a positive particle, it undergoes bound transitions before arriving

at the ground state. Thus, HII regions are also associated with emission of atomic

transitions, being the hydrogen 6563 Å and 4861 Å lines some of the most promi-

nent, which correspond to 3 → 2 (Hα), and 4 → 2 (Hβ) transitions of hydrogen

levels.

Much less abundant than hydrogen, other elements as nitrogen (N), oxygen (O),

sulphur (S) and their ions are also detected through their characteristic line emissions

due to collisional excitations by free photo-electrons. The photons emitted by these

species have very low probability of being absorbed by gas and dust. Therefore, the
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Figure 2.2: Line emissions due to electronic transitions of OIII (doubly ionised oxygen).

emission of O, N and S is very useful to measure the temperature Te and density ne

of electrons within HII regions.

For instance, consider electronic transitions of the OIII ion (doubly ionised oxy-

gen, or O++) shown in Figure 2.2. In spectroscopic notation, 3P0,
3 P1,

3 P2 comprise

the ground state triplet and 1D2 and
1S0 the exited states. In particular, the inten-

sity of the 4363 Å line, produced in 1S0 → 1D2 transitions, depends on the number

density n3P of OIII ions in the ground state, the number density of electrons ne and

the electronic temperature Te as

I(4363) ∝
[

ne

T
1/2
e

exp

{
−hν(4363)

kTe

}
n3PΩ(

3P, 1S)

] [
hν(4363)

A1S,1D

A1S,1D + A1S,3P

]
.

(2.18)

The factors in the first brackets take into account the rate of collisional exitations

of the 1S0 state, where Ω(3P, 1S0) is its quantum mechanical collision strength.

The factors in the second brackets take into account the emission in the 1S0 →
1D2 transition, where the Ai,j numbers are the Einstein coefficients of spontaneous

decay.

Analogously, the intensity of the 5007 and 4959 Å lines corresponding to the
1D2 → 3P2 and 1D2 → 3P1 transitions respectively (see Figure 2.2), depend on the
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n3P , ne and Te parameters of the nebula. However, the ratio of line intensities

I(5007) + I(4959)

I(4363)
=

Ω(3P,1 D)

Ω(3P ,1 S)

A1S,1D + A1S,3P

A1S,1D

ν̄(3P,1 D)

ν(1S,1 D)
exp

{
∆E

kTe

}
, (2.19)

where

ν̄(1D,3 P2) =
ν(1D,3 P2)A1D,3P2

+ ν(1D,3 P1)A1D,3P1

A1D,3P2
+ A1D,3P1

, (2.20)

only depends on the electron temperature Te of the plasma. Therefore, if the inten-

sity of the 4363, 4959 and 5007 Å lines are known (by spectroscopic observations),

the electronic temperature Te of an HII region can be measured. The intensity line

ratio given by equation (2.19) is valid for electron number densities ne < 105. For

nebulae with higher densities (as ultra and hyper compact HII regions), the electrons

also contribute to “de-excite” the 1D2 state, and the line ratio (2.19) will also de-

pend on the electron number density ne (see e.g. the book of Osterbrock & Ferland

2006).

It turns out that HII regions from ultracompact to giant have temperatures of

∼ 104 K. For these temperatures, the ionised gas can be considered as isothermal

and we will assume this condition in the models of HII regions discussed along this

thesis.

Now, consider the simplified case of a point-like, isotropic source of ionising

radiation, surrounded by a uniform environment composed of hydrogen and dust.

Setting a spherical coordinate system with the origin at the ionising source, the

beams of radiation undergo absorption by hydrogen atoms and dust particles, along

their paths on the radial coordinate R.

Then, the specific intensity Iν of the beams at the radius R, defined as dE =

IνdtdνdΩdA (energy per unit time, frequency, solid angle, and area), being E the

energy of the central source of ionising photons, is described by the radiative transfer

equation
dIν
dR

= −κνIν + jν , (2.21)

where jν is the emission coefficient, and

κν = σνnHI + σdn, (2.22)

is the absorption coefficient. The absorption coefficient gives the attenuation of the
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beam due to photoionisation of H and dust absorption. In equation (2.22), σν is the

photoionisation cross section of the H atoms, nHI is the number density of neutral

H atoms, σd is the cross section of dust grains per H nucleon, and n is the total

number density of H (ions+neutral hydrogen). Assuming that neutral H atoms are

photoionised from their ground states, the photoionisation cross section is given by

σν ≃ 7.9× 10−18
(νH

ν

)3
g(ν) ≃ 6.3× 10−18cm2, (2.23)

where g(ν) ∼ 0.9 is the quantum Gaunt factor for ν close to the Lymann frequency

νH . σd ∼ 10−21 cm2 H−1 is the typical cross section of dust grains per H nucleon

in neutral ISM. According to Draine (2011), the value of σd is likely to be reduced

inside HII regions.

The emission coefficient jν should include the contribution of of photons emitted

in recombinations of H with enough energy to ionise other H atoms as well as non-

ionising cooling radiation. In the following we will neglect the “diffuse” jν coefficient

in equation (2.21), by assuming that recombination and cooling radiation escape

freely.

Putting jν = 0 in equation (2.21), the specific intensity is

Iν(R) = Iν(0)exp

{
−
∫ R

0

κνdR
′
}
, (2.24)

and the flux Fi of ionised photons (ionising photons per unit time per unit area) at

a radius R inside the nebula can be approximately obtained as

Fi =

∫ ∞

νH

1

hν

∮
IνdΩdν =

∫ ∞

νH

Lν

hν4πR2
exp

{
−
∫ R

0

κνdR
′
}
dν

=
S∗

4πR2
exp

{
−
∫ R

0

κνdR
′
}
, (2.25)

where Lν is the luminosity per unit frequency of the central star, hνH = 13.6 eV is

the ground state binding energy of the H atom and S∗ =
∫∞
νH

Lν/(hν)dν is the rate

of ionising photons of the star. In the last equality of (2.25), we have applied the

grey approximation of the ISM, in which one takes a constant average value of the

photoionisation and dust absorption cross sections. In this way the factor involv-

ing the absorption coefficient κν (see equation 2.22), is taken out of the frequency
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integral. This approximation is accurate where the density of neutral H atoms is

very short in comparison to the density of ionised H, and therefore the the nebula

is optically thin to the flux of ionising photons. Close to the ionisation front, the

nebula is optically thick and the number of the available ionising photons rises with

ν. However, this optically thick zone occupies a small, outer volume of the nebula

(see e.g. Raga & Lora 2015), and the grey approximation is appropriate at most

radii.

The basic assumption of the photoionisation-equilibrium model for HII regions

is to consider the balance between the rate of photoionisations and recombinations

in every volume element of the nebula. For the problem of the central source of

ionising photons, this condition depends only on the radial coordinate R and can

be written as

αB(T )nenHII = FiσHnHI , (2.26)

where in the RHS of equation (2.26) Fi the impinging flux of ionising photons given

by equation (2.25), and σH the constant average of the photoionisation cross section

(considering the grey approximation as we mention above). The LHS of equation

(2.26) is the rate of recombinations being ne the number density of electrons, nHII

the number density of protons, and αB(T ) is the “case B” recombination coefficient

which basically depends on the temperature T of the nebula (which typically is

uniform along the nebula extent). The αB(T ) coefficient is calculated as

αB =
∞∑

n=2

αn, (2.27)

where each αn is the recombination coefficient to the n energy level of H given by

αn =

∫ ∞

0

σn(v)vf(v, T )dv, (2.28)

with f(v, T ) the Maxwell-Boltzmann distribution, and σn(v) is the effective cross

section of the radiative recombination process, which is related to the photoionisa-

tion cross section through Milne’s relation.

Note that the case B recombination coefficient does not consider the n = 1

transition. In this way, the fact of neglecting the jν coefficient in equations equation

(2.21), is partially justified.
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Equation (2.26) can be applied to find the size of the HII region as follows.

Consider the available ionising photons per unit second S inside the nebula, which

is S∗ at the source and zero at the boundary radius RS. Then, the gradient of S is

given by
dS

dR
= −4πR2Fiκ, (2.29)

where the RHS is the absorption of ionising photons in a shell of radius R. Then,

using equations (2.25) and (2.26) we obtain

dS

dR
= −4παBR

2nenHII − nσdS. (2.30)

Consider now that the transition from the ionised region to the fully neutral zone

takes place in a very thin region. In this idealised situation the internal gas is fully

ionised and then ne = nHII = n. Furthermore, assuming a uniform density n in the

nebula, the solution of equation (2.30) is

S = exp {−nσdR}
(
S∗ − 4παBn

2

∫ R

0

R′2exp {nσdR
′} dR′

)
, (2.31)

and the condition that S(Rs) = 0 implies that

S∗ = 4παBn
2

∫ Rs

0

R2exp {nσdR} dR. (2.32)

From this equation, one can obtain the external radius Rs of a dusty nebula with

uniform density, by giving fixed values of S∗, n and σd. For the dustless case, i.e.

for σd = 0, the the solution of equation (2.32) for the external radius is

Rs,0 =

(
3S∗

4παBn2

)1/3

, (2.33)

which is the so-called Strömgren radius of a dustless photoionised sphere.

We can see from the integral in equation (2.32), that the size of dusty nebula, is

smaller than the size of a dustless one. This result has been discussed by Petrosian

(1972), Franco et al. (1990) and Raga & Lora (2015). However, if we take into

account radiation pressure due to the absorption of dust grains and photoionisation

of H, the reduction effect in dusty nebulae disappear, for certain configurations of
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the parameters of the system. We will discuss this effect in Chapter 3.

2.3.2 Supernova remnants

A Supernova Remnant (SNR) is an extended structure of gas, which results from

the explosion of a star, when it reaches the end of its life. This occurs, as far as we

know, when a star with mass M ≥ 7M⊙ cannot release enough mass during its life-

time, such that it ends above the Chandrasekhar mass limit (1.4 M⊙). Therefore,

the star collapses due to gravity when its nuclear fuel is exhausted. As a result of

the collapse, a huge amount of energy (typically ∼ 1051 erg) is released into the

surrounding medium.

This explosion produces a blast wave, sweeping up the ISM through a hydrody-

namic shock. The simplest model of the blast wave, is a sphere of hot gas expanding

into an ambient medium with a uniform density ρe. Behind the shocked material a

contact discontinuity is formed, which is the interface between the shocked material

and the ejected material. The evolution of the remnant undergoes generally (i) an

initial free expansion phase, followed by (ii) the so-called Taylor-Sedov phase (T-S

phase), followed eventually by (iii) the radiative phase.

In the free phase the mass and pressure of the expelled material are much larger

than the mass and pressure of the swept-up environment, which therefore has no

influence on the expansion of the ejected material. Thus, the radius of the contact

discontinuity Rc expands linearly with time as Rc = vsnt, where vsn is the initial

ejecta velocity which can be estimated as vsn =
√

10αE/(3Msn) (see Section 5.1),

where α is the fraction in the form of kinetic energy of the total explosion energy

(the complement is thermal energy).

The T-S phase begins when eventually the swept-up material is massive enough

to slow down the expansion of the ejecta. Conventionally, this phase begins when

Msn = 4πρeR
3
ST/3, i.e., when the swept-up environment material equals the ejected

material at the radius RST .

In a medium with uniform density, after the T-S phase, the ejected material

piles up behind the contact discontinuity (since the expansion of this interface is

being slowed down by the ambient material) and at the same time the pressure of

the expanding ejecta drops. This pressure gradient drives a reverse shock back to

centre of the explosion (a study of the forward and reverse shocks can be found
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in Truelove & MacKee 1999). This rise significantly the temperature of the ejecta,

which becomes a hot bubble with approximately uniform pressure and from this

moment onwards, the expansion of the SNR is determined by the thermal pressure

of the bubble.

Due to the typical temperatures of the T-S phase, the energy dissipation due

to radiation is negligible in comparison with the explosion energy. Under these

conditions the hot bubble expands adiabatically.

The standard and widely used model of the T-S expansion is the thin layer

approximation of the expansive blast wave (see Taylor 1950, Sedov 1959, Chernyi

1957, Zel’dovich & Raizer 1967 and the review by Bisnovatyi-Kogan & Silich 1995).

However this approximation eventually breaks down when the external shock is no

longer in the strong regime (see e. g. Tang & Wang 2005).

An improved model is given by Raga et al. (2012c) who introduce a thick shell

formalism and derive an analytic solution for the blast wave evolution. This solution

is appropriate for the T-S phase and allows a strong/weak transition for the outer

shock. The analytic solution gives evolved time t and the radius of the outer shock

RS parametrised by the radius of the hot bubble R as

RS

Rf

= −
(
γ − 1

2

)(
R

Rf

)
+

γ√
3
atan

( √
3R/Rf

2 +R/Rf

)

+
γ

6
log

[
1 +R/Rf + (R/Rf )

2

(1−R/Rf )2

]
, (2.34)

t =
Rf

c0γ1/3

(
γ + 1

2

)4/3
2

5
r5/2

× F1

(
5

6
,−1

2
, 1,

11

6
,−
(
γ − 1

2γ

)
r3,

(
1− γ − 1

2γ

)
r3
)

(2.35)

where F1 is the Appell hyper-geometric function of two variables,

r ≡
(

2γ

γ + 1

)
R

Rf

, Rf ≡
(

γE

Γρec20

)
, Γ ≡ 8π

3

γ

γ2 − 1
, (2.36)

being Rf the final radius to which the hot bubble converges and c0 is the adiabatic

sound speed of the environment. This model recovers as a particular case, the classic

self-similar T-S solution, in the R << Rf limit of equations (2.34)-(2.35) (see Raga

et al 2012 c).
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The analytic solution given by equations (2.34)-(2.35) is plotted with black lines

in Figure 2.2, taken from Raga et al. (2012 c). This is compared with the clas-

sical Taylor-Sedov solution (the strong shock, thin shell model), in white lines. A

spherically symmetric gas dynamic simulation of the same problem is also included.

The top graph shows the pressure stratification obtained from the simulation to-

gether with the analytic solutions for the outer shock of the blast wave. The bottom

graph shows the temperature stratification of the simulation together with the an-

alytic solutions for the hot bubble radius. In the top graph it can be seen that the

strong/weak transition for the outer shock takes place when the white curve deviates

from the black one, which follows very well the numerical simulation.

In the context of star forming regions, Type II supernovae are likely to occur

(with ejected mass of ∼ 5M⊙ see Pérez-Rendón et al. 2009) in preexisting pho-

toionised environments (HII regions) or collective winds produced by neighbouring

massive stars. In this context the thick shell formalism of Raga (2012c) can be

modified to include a non-uniform environment in which the blast wave evolves.

Observations of X-ray emission from this dense stellar clusters have been compared

with theoretical models of cluster winds. In some cases the models produce lower

temperatures or underestimate the observed X-ray emission (Chu & Mac Low 1990,

Stevens & Hartwell 2003) and supernovae events have been proposed to explain

these discrepancies.

To model a SN blast wave in this context, the collective the wind model of

Cantó et al. (2000) is appropriate to describe the pre-existent environment. This is

a spherical, stationary model which considers a continuous and uniform distribution

of mass loading sources, representing the stellar winds of the stars in a cluster. This

model gives an analytic solution for the velocity field and the density of the outflow,

given by

ue

[
1 +

5γ + 1

γ − 1
u2
e

]−(3γ+1)/(5γ+1)

= Aγr, (2.37)

for the wind velocity inside the cluster, and

ue(1− u2
e)

1/(γ−1) =
Bγ

r2
, (2.38)

for the wind velocity outside the cluster, Aγ and Bγ are two constants which depend
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Figure 2.3: Pressure (upper panel) and temperature (bottom panel) stratifications of a
spherical simulation of a blast wave evolved in a initially uniform environment, taken from
Raga et al. (2012, c). In the upper panel the black curve is the analytic solution for the
outer shock of the blast wave with strong-weak transition (see equations 2.34-2.35) and
the the white curve is the corresponding strong shock approximation. Analogously, in the
bottom panel it is shown the analytic models for the hot bubble radius.
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on the specific heat ratio γ = cp/cv:

Aγ =

(
γ − 1

γ + 1

)1/2(
γ + 1

6γ + 2

)(3γ+1)/(5γ+1)

, (2.39)

Bγ =

(
γ − 1

γ + 1

)1/2(
2

γ + 1

)1/(γ−1)

, (2.40)

where r is the radius in units of the cluster radius Rc, and ue the flow velocity in

units of the terminal wind velocity vw of a single star. According to this model, the

density profile ρe of the outflow is given in terms of the velocity field as

ρe
ρc

=

{
Aγr/ue for r < 1,

Aγ/ (r
2ue) for r > 1 .

(2.41)

where ρc is the central density of the outflow given by

ρc =
NṀw

4πAγR2
cvw

. (2.42)

Figure 2.3 shows these solutions with thin grey curves, which are compared with

a 3-D gas dynamic simulation with 30 “discrete” massive stars (see details in Cantó

et al. 2000), shown with the thick black curves. Naturally, the analytic solution is

more accurate if the number of massive stars in the cluster is larger.

In Chapter 5 we study a Type II supernova blast wave that goes off in the centre

of a star cluster of massive stars. To do this we modify the “thick shell” formalism of

Raga et al (2012c), to obtain the evolution of the expanding blast wave that sweeps

up the material of a pre-existent cluster wind described by equations (2.37)-(2.42)

(the model of Cantó et al. 2000). We obtain a semi-analytic model for the blast wave

evolution which we compare with numerical simulations of the spherically symmetric

version of the gas dynamic equations (2.1)-(2.3). Also in Chapter 5 we apply our

models to calculate the predicted X-ray luminosity of the flow as a function of time,

and obtain its dependence on the outer radius and the number of stars of the cluster.
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Figure 2.4: Plots of the analytical solution (thin-grey lines) and numerical simulation
(thick-black lines) taken from Cantó et al. (2000), which gives the velocity (top), density
(centre) and temperature (bottom) as function of the spherical radius of a stationary
cluster outflow.
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2.3.3 Radiation pressure

The transfer of momentum from the photon field to matter is known as radiation

pressure and is one of the basic processes in astrophysics. This concept has been

applied to explain the acceleration of gas in stellar winds from massive stars and

more recently, to explain large-scale winds driven by galaxies.

In the “small scale” case, the mass outflow occurs when the radiation field coming

from the nucleus, impacts the stellar atmosphere, accelerating the hot material due

to Thompson scattering (or to more complex line absorption processes). An outwards

acceleration of gas takes place when the radiation pressure force overcomes the

inwards gravitational force. The standard criterion to evaluate this process is the

Eddington Luminosity:

LEdd =
4πGMmpc

σT

, (2.43)

with mp the proton mass and σT the cross section of electrons for Thompson scat-

tering.

In larger scales, galaxy winds are explained by the expansion of the ISM heated

by the collective contribution of multiple supernovae together with stellar winds of

massive stars in clusters or star forming regions (Larson 1974, Chevalier & Clegg

1985, Dekel & Silk 1986). These models apply for hot X-ray emitting galactic

winds. However, observations also reveal cold molecular gas in these outflows (see

e.g. Walter et al. 2002 and Veilleux et al. 2009).

Cold outflows are better explained by considering a wind-driving mechanism

based on the absorption of photons from the galaxy by dust grains. The grains are

found to be dynamically coupled to the gas and then the momentum absorbed by

grains results in the production of a global outflow (Murray et al. 2005). Also,

absorption by dust is capable of expelling gas of early times before multiple SNe

occur in a star forming region. Thus, radiation pressure on dust is a significant

component of feedback (in addition to SNe and stellar winds) for driving galactic

winds, as suggested by Thompson et al. (2005) and Murray et al. (2010).

In the context of HII regions, the presence of dust inside the nebula has been

observed through the reprocessed radiation by dust, as IR emission (see Natta &

Panagia 1976, Kraemer et al. 2001, Dopita et al. 2003). Absorption of ionising

radiation by dust has been considered in models of HII regions by Petrosian (1972),
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Franco et al. (1990) and Raga & Lora (2015). These models do not consider the

momentum of photons transferred to the grains of dust, and describe nebulae with

uniform densities (see section 2.1), with a reduced size due to dust absorption.

However, taking into account the momentum transferred to dust and assuming a

strong dust-gas coupling, the density structure of the nebula is substantially modi-

fied. Draine (2011) study the effects of radiation pressure on static HII regions, and

calculates numerical models in which the force on dust grains creates central cavi-

ties in the nebulae. Also, Matzner & Krumholz (2009) develop an analytic model of

expanding HII regions, driven by the photons trapped by dust in the external shell,

together with the gas pressure of the inner HII region. They find a regime in which

the expansion is determined by the radiation pressure component.

The injected momentum associated to dust absorption, in a volume element of

gas at a radius R inside a spherical HII region can be computed as

fd(R) =

∫ ∞

0

Lν

hν4πR2
exp

{
−
∫ R

0

κ′dR′
}
σdn

hν

c
dν, (2.44)

where the factor multiplying the hν/c term in the integral is the rate of photon

absorption by dust grains per unit frequency. Stellar photons with frequencies ν >

νH are also absorbed by H atoms, which is included the absorption coefficient κ =

σdn + σνnHI (see section 2.1). Thus the frequency integral in equation (2.44) can

be split in two components:

fd(R) =
n

4πcR2

[∫ νH

0

Lνexp

{
−
∫ R

0

σdn
′dR′

}
σddν (2.45)

+

∫ ∞

νH

Lνexp

{
−
∫ R

0

κ′dR′
}
σddν

]
. (2.46)

Since the photoionization and dust cross sections do not depend strongly on the

photons frequency in comparison with the luminosity spectrum Lν , we take the

factors involving σd and σν out of the frequency integrals, giving

fd(R) =
σdn

4πcR2
[Lnexp {−τd}+ Liexp {−τd − τH}] (2.47)
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where

τd =

∫ R

0

σdn
′dR′, τH =

∫ R

0

σνn
′
HIdR

′ (2.48)

are the dust absorption and photoionisation optical depths, and Ln =
∫ νH
0

Lνdν

and Li =
∫∞
νH

Lνdν are the non-ionising and ionising components of the total stellar

luminosity L∗, i. e., Ln + Li = L∗.

The photoionisation absorption coefficient depends on the number density of

neutral H nHI in the nebula, as we can see in equation (2.48). However, from section

2.1 we can straightforwardly note that the attenuation factor e−τd−τH = S/S∗ of the

ionising luminosity follows the differential equation

d(S/S∗)

dR
= −4παB

S∗
R2n2 − σdn(S/S∗), (2.49)

which is given in terms of the total number density n and the radial coordinate R.

To derive the radiation pressure force in equation (2.47), we assumed that the

momentum absorbed by dust grains, is directly transmitted to the gas through the

absorption cross section σd. However, this coupling depends on the conditions of

the gas, the grains, and the radiation field.

Consider the idealised case in which a dust grain is a sphere of radius a. Then,

at a distance R from the star, the grain receives a radiation force πa2L(r)/(4πcR2)

where L(R) < L∗ is the stellar luminosity at a radius R. On the other hand, the

gas atoms and ions of the ISM apply a drag force Fd on the grain, opposed to the

motion. This drag force occurs due to direct collisions and Coulomb interactions

between the moving dust grain and the gas particles. Ignoring other interactions

(such as gravitational and magnetic forces), the equation of motion for the dust

grain can be written as

d

dt
(mdvd) = πa2

L(R)

4πcR2
− Fd, (2.50)

where md and vd are the mass and velocity of the grain. According to Draine

& Salpeter (1979), and Draine (2011), the drag force in the ionised gas can be

approximated as:

Fd = πa22nkT [G1(s) +G2(s)] , (2.51)
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where

s =
vd√

2kT/mH

, (2.52)

and vd is the relative velocity between the dust and the gas, called the “drift veloc-

ity”. The function

G1(s) = 1.5s

(
1 +

9π

64
s2
)1/2

, (2.53)

takes into account the collisional drag, and the function

G2(s) =
69.5s

1 + 4
3
√
π
s3
, (2.54)

is the contribution of the Coulomb drag, due to the interaction of a charged dust

grain and the ions in the HII region.

When a dust grain reaches the terminal velocity (in a time of ∼ 102 yr, see

Draine 2011), the absorbed radiation is completely transmitted to the gas through

the drag force. For the dusty HII regions discussed in this subsection, dust grains

can be considered strongly coupled to the gas if the time in which they arrive at the

external boundary Rs, is larger than the life-time of the HII region. This crossing

time can be estimated as

td =
Rs −R

vd
, (2.55)

where R is the radius at which the dust grain absorbs the radiation.

The drift velocity vd at a radius R can be obtained by balancing the RHS of

equation (2.50) (when the grain has terminal velocity). In this case one has to solve

the equation
L(R)

8πckTn(R)R2
= G1(s) +G2(s), (2.56)

for s.

On the other hand, since HII regions are being continuously photoionised, the

absorption of photons due to photoionisation of H also gives an outwards effective

force to the gas. Haehnelt (1995), Draine( 2011) and Raga et al. (2015) incorporate

radiation pressure due to photoionization of H, on the internal gas of spherical HII

regions. They use similar expressions for this force in their HII region models, which

can be obtained as follows.

Consider an ionising photon with frequency ν, captured by an H atom at a radius
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R in the nebula. This photon then transmits a momentum hν/c to the gas. Thus,

the total momentum due to photoionisation in a volume element at a radius R is

the photoionization rate ×hν/c integrated over all the ionising frequencies (> νH ,

the photoionization frequency of H):

fH =

∫ ∞

νH

Lν

hν4πR2
exp

{
−
∫ R

0

κ′dR′
}
nHIσν

hν

c
dν, (2.57)

where the photon flux per unit frequency also takes into account the absorption of

ionising photons by dust grains, through the absorption coefficient κ (see section

2.1). We note that the product σνν depends on the frequency as ∝ ν−2 and then

the grey ISM approximation can be applied, giving

fH = nHIσH
〈hν〉i
c

S∗

4πR2
exp

{
−
∫ R

0

κ′dR′
}

= αB
〈hν〉i
c

n2, (2.58)

where in the second equality of equation (3.4) we consider the condition of photoionisation-

recombination equilibrium discussed in Section 2.1. The radiation pressure per unit

volume due to photoionization of H obtained with this approach, depends basically

on the square of the density of the nebula.

Haehnelt (1995) consider the radiation pressure due to photoionisation to discuss

the concentration of gas during galaxy formation. This author considers a sphere

with a central ionising source and estimates that inside a radius

Rph =
3αtothν0
4πcGmp

≃ 100− 150pc (2.59)

the force due to photoionisation of H dominates the inwards self-gravity force. In

equation (2.59), αtot is the total recombination coefficient, and ν0 is the ionising

frequency of H. This Rph radius is obtained by Haehnelt (1995) by considering a

self-gravitating HII region with an “averaged uniform density”.

Raga et al. (2015) calculate with more detail the photoionization radiation

pressure on self-gravitating HII regions, by solving a modified Lane-Emden equation

with an additional term corresponding to the photoionisation radiation pressure

(radiation pressure on dust is not considered). These authors find that radiation

pressure has a noticeable effect on the density structure of the nebula if it has a

central density greater than 10 cm−3. Also, if the central source has a photon rate

36



of ionising photons equivalent to∼ 100 O stars, the resulting HII region extends from

a radiation pressure-dominated regime to a gravity-dominated regime (see Figure 1

of Raga et al. 2015).

Therefore, in HII regions powered by a single or a few massive stars (e. g.

from ultracompact to classical HII regions) self-gravity is completely negligible and

the model equations of Draine (2011) (which include, radiation pressure due to

photoionisation and dust absorption with no self-gravity) could be applied.

In the next chapter we develop an analytic model of HII regions with radiation

pressure which we compare with the numerical solutions of Draine’s equations. In

Chapter 4 we extend our study to a planar configuration, where we include self-

gravity, since the application of this configuration is for starbursts in galactic disks.
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Chapter 3

Radiation Pressure in Spherical

HII Regions

In this chapter we revisit Draine’s (2011) problem: a spherical, dusty, hydrostatic

H II region in which the radiation pressure (associated with photoionisation and

dust absorption) is important. This model do not consider the gas self-gravity and

is appropriate for HII regions powered by a single star as, ultracompact, compact

and classical. In this regime where self-gravity is negligible, we surprisingly find a

simple, approximate analytic solution for the nebular density structure, which agrees

very well with Draine’s numerical model. Being analytic, this solution provides

a relatively simple way for evaluating the conditions under which the radiation

pressure has an important effect on the nebular structure. Most of the content of

this chapter can be found in the paper by Rodŕıguez-Ramı́rez et al. (2016).

3.1 The model equations

The equation of hydrostatic balance for the gas within an isothermal H II region

can be written as:

2kT
dn

dR
= fd + fH ; (3.1)

where k is Boltzmann’s constant, T = 104 K the typical temperature of photoionized

regions, n the atom/ion number density (assumed to be dominated by Hydrogen),

R the spherical radius, and fd and fH representing the effect of radiation pressure

due to dust absorption and photoionization (respectively).
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Assuming a position- and frequency-independent dust absorption cross section

σd (per H atom/ion), the radiation pressure on dust grains can be written as:

fd =
nσdL∗

4πcR2
e−τd , (3.2)

where L∗ is the stellar luminosity, c is the speed of light and τd is the dust optical

depth given by

τd = σd

∫ R

0

n(R′)dR′ . (3.3)

Draine (2011) divides the dust absorption radiation pressure term into two terms,

treating separately the photons with energies above and below the Lyman limit.

However, in equation (3.2), we have neglected the contribution of the optical depth

due to photoionization processes τH , present at frequencies such that hν > 13.6 eV

(see equation 2.47-2.48). Raga & Lora (2015) have shown that neglecting the con-

tribution of photoionization to the optical depth has a surprisingly small effect on

the resulting structures.

For a gas in photoionization equilibrium, the photoionization radiation pressure

term is given by equation (2.58) (derived in Section 2.3 of last Chapter):

fH = n2αB
〈hν〉i
c

, (3.4)

where c is the speed of light, αB (= 2.60 × 10−13cm3s−1 for a T = 104 K gas) is

the H case B recombination coefficient, and 〈hν〉i = 18 eV is the mean energy of

the ionising photons. We have assumed that the H gas is almost fully ionised, and

that the ionising photons have frequencies close to the Lyman limit. This radiation

pressure term is discussed in more detail by Draine (2011) and by Raga et al. (2015).

A fundamental point is that the density stratifications described by equations

(3.1)-(3.3) end at the “Strömgren radius” RS, determined by the balance between

the recombination rate of the material within RS, the dust absorption, and the

ionising photon rate S∗ produced by the central star.

This “Strömgren’s relation” can be obtained by integrating both sides of equation

(2.49) from the R = 0 to R = RS giving

S∗ = 4παB

∫ RS

0

n2(R)R2dR + S∗σd

∫ RS

0

n(R)e−τd(R)dR , (3.5)
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where τd is given by equation (3.3), and we have again neglected the photoionisation

optical depth τH and used the boundary conditions S(0) = S∗, S(RS) = 0.

Equation (3.5) was also derived by Raga & Lora (2015) under the assumption

that in the bulk of the interior of the photoionized region the optical depth is dom-

inated by the dust absorption (i.e., with only a small contribution due to photoion-

ization processes). These authors show that the Strömgren radius obtained under

this approximation is in very close agreement with the one obtained considering the

contribution of photoionization to the optical depth.

If we now consider the differential dτd = σdndR (see equation 3.3) in the second

integral of the RHS of equation (3.5), we obtain

S∗σd

∫ Rs

0

ne−τd dR = S∗

∫ τs

0

e−τd dτd = S∗
(
1− e−τs

)
, (3.6)

where

τs = σd

∫ Rs

0

n(R)dR, (3.7)

is the optical depth evaluated at the Strömgren radius Rs. Furthermore, combining

equations (3.5), (3.6) and (3.7), the Strömgren relation can be written in the simpler

form

exp

{
−σd

∫ Rs

0

n dR

}
S∗ = 4παB

∫ Rs

0

R2n2 dR. (3.8)

Equation (3.5) (or alternatively equation 3.8) requires a specified ionising photon

rate of the central star S∗, which can take a wide range of possible values. However,

for massive main-sequence stars the ionising photon rate S∗ can be calculated as a

function of its luminosity L∗ as

S∗

SO9.5
= k1

(
L∗

L⊙

)
exp

{
−k2

(
L⊙

L∗

)}
, (3.9)

where SO9.5 = 1047.88 s−1 is the ionising photon rate of a O9.5V star and k1 =

8.9 × 10−5 and k2 = 7 × 104 are numerical constants that gives the best fit of the

analytical form of equation (3.9) to the data points in Figure 3.1. These data points

are the stellar luminosity and ionising photon rate associated to each spectral type

from O9.5V to O3V stars, obtained from Table 4 of Martins et al. (2005).
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Figure 3.1: The ionising photon rate as a function of the stellar luminosity for main
sequence stars. The data points correspond to the spectral types from O9.5 to O3 stars,
taken from Martins et al. (2005). The curve is our best analytical fit.

3.2 The approximate analytic solution

Equation (3.1) has probably no exact analytic solution for the number density n

as a function of the spherical radius R. However, we can obtain an approximate

analytic solution as follows.

We first write equation (3.1) as

dn

dR
=

σdL∗

8πckT

n

R2
+ δ, (3.10)

where

δ =
σdL∗

8πckT

n

R2

(
exp

{
−σd

∫ R

0

n dR′
}
− 1

)
+

αB〈hν〉i
2kTc

n2. (3.11)

We now assume that, for R < Rs (being Rs the outer boundary of the nebula,

see subsection 2.2) the value of |δ| is negligible in comparison with the first term

in RHS of equation (3.10). This assumption can be understood as follows. The

first term in the RHS of equation (3.11), which is the contribution of the optical

depth to the density gradient, always takes negative values. On the other hand, the

radiation pressure due to photoionization of H, which is the second term in the RHS

of equation (3.11), takes small positive values. Thus, there is a partial “cancelling

effect” which results in small values of |δ|.
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Ignoring the last term in equation (3.10) and considering the nebula to have a

density ns at the external radius Rs, we trivially integrate equation (3.10), obtaining

n = ns exp

{
−Rch

(
1

R
− 1

Rs

)}
, (3.12)

with

Rch ≡ σdL∗

8πckT
, (3.13)

the characteristic radius. The solution (3.12) gives a vanishing small density for

R → 0. This central “hole” (which is clearly seen in the numerical solutions of

Draine 2011), is well defined for R < Rch. On the other hand, if the dust abundance

in the HII region is not important, Rch → 0 giving n → ns, and we recover an HII

region with uniform density.

If we now combine the solution (3.12) with the Strömgren relation (3.8), we

obtain

S∗ exp

[
−σd exp

{
Rch(σd, L∗)

Rs

}
I2 ns

]
= 4παB exp

{
2Rch(σd, L∗)

Rs

}
I1 n

2
s, (3.14)

where

I1(Rs, σd, L∗) ≡
∫ Rs

0

R2e−Rch/RdR

=
Rs

3
e−2Rch/Rs

(
2R2

ch − RchRs +R2
s

)
− 4R3

ch

3
E1 (2Rch/Rs) , (3.15)

I2(Rs, σd, L∗) ≡
∫ Rs

0

e−Rch/RdR = Rse
−Rch/Rs −RchE1 (Rch/Rs) , (3.16)

where E1 is the exponential integral function and Rch(σd, L∗) the characteristic ra-

dius given by equation (3.13). In the limit where

Rch

Rs

<< 1,

we obtain that

I1 → e−2Rch/RsR
3
s

3
, I2 → e−Rch/RsRs,
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Figure 3.2: External density ns of an HII region as a function of the external radius Rs.
The solid curves are obtained by solving numerically equations (3.20-3.22), the long dashed
curves are obtained with the implicit analytic solution (3.14) and the short dashed curves
with the explicit analytic solution (3.19). In each graph all the curves corresponds to the
same value of σd (which we specify with a label in each graph) and the different curves
correspond to L∗ = 5× 104, 2.5× 105 and 106 L⊙, from the lower to the upper curves.
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Figure 3.3: External density ns of an HII region as a function of the external radius Rs.
The solid curves are the same numerical solutions plotted in Figure 3.2. The dashed curves
are obtained with the analytic solution (3.25), and correspond to the same values of σd
and L∗ used in Figure 3.2.

44



and therefore equation (3.14) takes the form

Rs = e−σdnsRs/3Rs,0 , (3.17)

being

Rs,0 =

(
3S∗

4παBn2
s

)1/3

, (3.18)

the Strömgren radius of a dustless HII region with uniform density ns. Equation

(3.17) is the result discussed by Franco et al. (1990) and Raga & Lora (2015), which

relates the radius Rs of a dusty, fully ionised, non stratified, HII region with the

radius Rs,0 of the corresponding dustless model (the standard Strömgren radius).

Returning to the stratified case, if one specifies the values of Rs, σd and L∗,

equation (3.14) gives the outermost density ns in implicit form. However, we can also

obtain ns in an approximate explicit form by considering a second order expansion

of the LHS of equation (3.14), which gives

ns(Rs, σd, L∗) =
exp {−Rch(σd, L∗)/Rs}
8παBI1/S∗(L∗)− (σdI2)

2

[√
16παBI1
S∗(L∗)

− (σdI2)
2 − σdI2

]
. (3.19)

In summary, given specific values of the σd and L∗ parameters, one obtains with

equation (3.14) (or alternatively with equation 3.19), the outermost density ns as

a function of the external radius RS. Once ns and Rs are defined, one obtains the

internal density structure of the HII region analytically using equation (3.12). In the

next section we compare this analytic approximated solutions with the corresponding

numerical integrations of equations (1)-(3) of Draine (2011), which we consider to

be the complete equations of the problem discussed in this chapter.

3.3 Comparison of the analytic solution with Draine’s

model

In order to evaluate the accuracy of the approximate analytic solutions derived in the

previous section (equations 3.12-3.14 and 3.19), we compare them with numerical
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Figure 3.4: Models of the internal density structure n of HII regions as a function of its
spherical radius R. The different solutions in each graph correspond to external boundaries
Rs = 10, 1, 0.1 and 0.01 pc and all of them are calculated with the same values of the σd and
L∗ parameters. The different graphs take the configuration of the σd and L∗ parameters
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curves are the numerical solutions of equations (3.20)-(3.22), and the dashed curves are
the analytical solutions obtained with equations (3.25)-(3.27).
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integrations of the model equations of the problem without the simplifications done

in sections 2 and 3. These equations are those of Draine (2011):

2kT
dn

dR
= σdn

Lne
−τ + Liφ

4πcR2
+

αB〈hν〉i
c

n2, (3.20)

dφ

dR
= −αB4πR

2n2

S∗
− σdφn, (3.21)

dτ

dR
= σdn, (3.22)

where Ln and Li are the luminosities of non-ionising and ionising photons respec-

tively. We write these luminosity components as functions of the total luminosity

L∗ as

Li = S∗(L∗)〈hν〉i, (3.23)

Ln = L∗ − Li, (3.24)

where S∗ is given by equation (3.9) and we take the mean energy of the ionising

photons as 〈hν〉i = 18 eV. The functions τ and φ must satisfy the boundary condi-

tions and τ(0) = 0, φ(0) = 1 and the integrations stop at the boundary radius Rs

satisfying the condition φ(Rs) = 0.

However, we should choose boundary conditions displaced from the origin in

order to avoid the singularity of equation (3.20) (the pressure balance) at R = 0.

Choosing fixed values of σd and L∗, we generate numerical solutions with different

external radius Rs (and associated densities ns), by initialising the integrations at

the fixed low density nini = 10−3 cm−3 and varying the initial radius Rini > 0. In

this way the conditions τ(Rini) = 0 and φ(Rini) = 1 are approximately satisfied.

In Figure 3.2 we show (with solid lines) the outermost density ns as a function

of the external radius Rs, obtained from the numerical solutions of equations (3.20)-

(3.22), corresponding to fixed values of the σd and L∗ parameters. The curves in each

graph share the same value of the dust absorption cross section σd. In the bottom,

middle and top graphs, the solutions correspond to σd = 0.1, 0.5 and 1 × 10−21

cm2 H−1, respectively. The different curves in the same graph correspond to stellar

luminosities of L∗ = 5 × 104, 2.5 × 105 and 106 L⊙, from the lower to the upper

curves.

We also include in Figure 3.2 the analytical solutions for ns vs Rs obtained in
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Section 3. We plot (with long dashed lines) the implicit analytic solution given by

equation (3.14) and (with short dashed lines) the explicit analytic solution given by

equation (3.19). We can see that for the relatively low dust abundance σd = 10−22

cm2 H−1 the implicit and explicit analytic solutions are practically indistinguishable

and are in very good agreement with the numerical solutions, for all the luminosity

values considered in Figure 3.2.

However, for larger values of σd the difference between the implicit and the ex-

plicit analytical solutions is noticeable, and both analytic approaches loose accuracy

(in following the numerical solutions) as Rs decreases. Also, the explicit analytic so-

lution is not defined in all the Rs domain, since equation (3.19) has critical values of

Rs below which the involved root square is not defined, and also has problems when

its denominator is zero. We can see these critical points where the short dashed

curves end as Rs decreases, in the central and top panels of Figure 3.2.

If we look at the numerical solutions only (the solid curves), we note that the

effect of increasing the value of σd (for any value of L∗) is a “small rotation” of the

ns vs Rs curves in the clockwise direction. On the other hand, the explicit analytic

solutions (short dashed curves) undergo the same effect but in a more pronounced

manner. This makes the explicit analytic solutions with σd = 2× 10−22 cm2 H−1 fit

very well the numerical solutions with σd = 10−21 cm2 H−1. Also, equation (3.19)

(which gives the explicit analytical solutions) is well defined for σd < 3× 10−22 cm2

H−1 (i. e., does not still acquire negative values inside its involved root square) in

all the Rs domain.

Therefore, we propose an improved approximate analytic solution for the outer-

most density of the nebula as a function of Rs, σd and L∗, of the form

ñs = ns(Rs, σ̃(σd), L∗), (3.25)

where ns is given by equation (3.19) and σ̃ is a function that maps the value of σd

as

σ̃ = σ1 exp {−σ2/σd} , (3.26)

with the constants σ1,2 = 2.1, 0.4× 10−22 cm2 H−1.

In Figure 3.3 we plot the curves given by equations (3.25) and (3.26) (with long

dashed lines) together with the numerical ns vs Rs (with solid lines) corresponding
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to the same values of σd and L∗ used in Figure 3.2. The comparison between both

approaches show that the explicit analytic solution (3.25) is more accurate than the

previous (3.14) and (3.19) solutions, in following the curves given by the numerical

integrations.

Therefore, we substitute the outermost density function ñs instead of ns in equa-

tion (3.12) to obtain analytically the internal density stratification of the nebula as

n = ñs exp

{
− σdL∗

8πckT

(
1

R
− 1

Rs

)}
. (3.27)

We plot this analytic solution in Figure 3.4, where we also plot the numerical

solutions of equations (3.20)-(3.22) for the internal density n of the HII region as

a function of the spherical radius R < Rs. We present an array of graphs with

several models. In each graph we show four solutions, all of them sharing the

same fixed value of the σd and L∗ parameters, but with different outer boundaries

Rs = 10, 1, 0.1 and 0.01 pc. These values of Rs cover the characteristic radii from

classical to hyper-compact HII regions (see Kurtz & Franco 2002).

The graphs in the same column (of Figure 3.4) show solutions with the same value

of the luminosity of the central star, and we consider L∗ = 5×104 and 1×106 L⊙ in

the left and right column, respectively (as indicated on the top of each column). The

graphs in the same row share the same value of the cross section of dust absorption,

and we consider the values of σd = 10−21, 5× 10−22 and 10−22 cm2H−1 from top to

bottom.

Figure 3.4 shows that the analytic density stratifications closely follow the nu-

merical solutions in the cases with relatively low dust absorption cross sections

σd = 10−22 cm2 H−1, for both considered values of L∗. As σd takes larger values, the

analytic solutions loose accuracy in following the numerical curves, with the largest

deviations being obtained for the configurations with σd = 10−21 cm2 H−1, L∗ = 106

L⊙. We therefore conclude that the analytic solution (3.27), works very well for

HII regions with dust abundances in the interval 10−22-10−21 cm2 H−1, and with

luminosities of the central star L∗ < 1× 106 L⊙.
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3.4 Discussion

3.4.1 The astrophysical parameters

According to Draine (2011), the hydrostatic state of an HII region under the effect

of the radiation pressure due to photoionization of H and dust absorption, is deter-

mined by seven physical parameters. Three parameters correspond to the central

star: Ln, S∗ and 〈hν〉i, and four parameters correspond to the ionised gas: T , αB,

σd and pedge (the confining pressure of the nebula).

In this chapter we limit our study to HII regions with a single central star (as HII

regions powered by a stellar cluster are likely to be affected by gravity, as discussed

in Subsection 5.3). Thus, the rate of ionising photons S∗ is considered as a derived

parameter which depends on the total stellar luminosity L∗ (see equation 3.9).

On the other hand, due to the simplifications considered in Sections 2 and 3,

the 〈hν〉i parameter is not present explicitly in our analytic solution (3.27). When

evaluating this parameter for the numerical solutions of the complete equations

(3.20)-(3.22), we considered that Ln = L∗−S∗(L∗)〈hν〉i, depending only on the total

luminosity of the central star (since we considered the fixed value of 〈hν〉i=18 eV).

This quantity is actually a function of the effective temperature of the central star,

but only varies within a range from 〈hν〉i ∼ 13.6 (for the less massive photoionizing

stars) to ∼ 20 eV. This change does not introduce strong differences between our

analytic models and the numerical solutions of the complete equations, as shown in

Figures 3.3 and 3.4.

The ionised gas of HII regions always has a temperature T ∼ 104K. Therefore,

the recombination coefficient αB has very similar values for all nebulae. Therefore,

in this chapter we consider the T and αB as fixed quantities.

The dust absorption cross section σd can take different values. In this chapter

we considered that in HII regions σd is likely to be lower than the σd = 10−21 cm2

H−1 value corresponding to the average abundance of dust in the neutral ISM.

Finally, instead of pedge, we alternatively consider the outer boundary Rs as a

free parameter. Rs is related with pedge through equation (3.25).

In summary, for the analytic model derived in this chapter, we only consider

three free parameters (for determining the hydrostatic solution of an H II region):

Rs, σd and L∗.
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3.4.2 Characterisation of the analytic solutions

As we can see from Figure 3.4, the analytic solution given by equations (3.25)-(3.27)

result in three main types of density distribution:

• solutions with Rch/Rs << 1. In these solutions the extension of the central

“density hole” is negligible in comparison with the outer boundary Rs of the

nebula. These solutions correspond to HII regions with a practically homoge-

neous density;

• solutions with Rch/Rs >> 1. The central hole of these solutions covers prac-

tically all of the volume of the HII region. There is a density jump in the

external part of the nebula with a small radial extension (in comparison with

the radius Rs of the HII region). This kind of nebula has the shape of a thin

ring;

• solutions with Rch/Rs ∼ 1. These solutions are strongly stratified along all of

their radial extension.

We show in Figures 3.6 and 3.7, the three regimes described above. We plot the

ratio Rch/Rs = (σdL∗)/(8πckT ) as a function of L∗, for Rs = 0.1 in Figure 3.6, and

for Rs = 0.01 in Figure 3.7. In each plot the configurations with σd = 10−21 cm2

H−1 are in the thick solid line, and the configurations with σd = 10−22 cm2 H−1 in
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Figure 3.6: Values of the Rch/Rs = (σdL∗)/(8πckT ) ratio, for Rs = 0.1 pc. The configu-
rations with σd = 10−21 cm2 H−1 are in the thick solid line, and the configurations with
σd = 10−22 cm2 H−1 in the thin solid line. The dashed lines define the zones of the three
types of solutions (see the text).

thin solid line. Therefore, all the solutions considered in Figure 3.4 are between the

thick an the thin solid lines. The dashed lines define the zones for the different type

of solutions mentioned above (Rch/Rs << 1, Rch/Rs >> 1 and Rch/Rs ∼ 1).

We note that for nebulae with Rs ∼ 0.1 pc (Figure 3.6), the three type of

density distributions are equally likely to occur. On the other hand, for nebulae

with Rs ∼ 0.01 pc (Figure 3.7), the Rch/Rs >> 1 solution appears to be the most

frequent.

An interesting point is how the radiation pressure affects the size of the nebula, in

comparison with previous models where radiation pressure is not taken into account.

Let us note that the stratified Strömgren relation given by equation (3.14) can also

be written as

Rs = q
−1/3
1 (x) exp {−σdnsRsq2(x)/3}Rs,0, (3.28)

where

q1(x) ≡ 1− x+ 2x2 − 4x3E1(2x)e
2x, (3.29)

q2(x) ≡ 1− xE1(x)e
x, (3.30)

x ≡ Rch

Rs

, (3.31)
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Figure 3.7: Values of the Rch/Rs = (σdL∗)/(8πckT ) ratio, for Rs = 0.01 pc. The config-
urations with σd = 10−21 cm2 H−1 are in the thick solid line, and the configurations with
σd = 10−22 cm2 H−1 in the thin solid line. The dashed lines define the zones of the three
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Rch is given by equation (3.13) and Rs,0 is the standard (dustless) Strömgren radius

given by equation (3.18).

In the uniform density case (which corresponds to q1, q2 → 1 when x → 0), the

size of the nebula is reduced (in comparison with the standard Rs,0 radius) due to

absorption of UV photons by dust (see Franco et al. 1990 and Raga & Lora 2015).

However, as x = Rch/Rs increases to non-negligible values in comparison with

unity q
−1/3
1 (x) > 1 and q2(x) → 0, (see Figure 3.5). Therefore Rs grows to a value

of Rs,0 or larger (see equation 3.28). This means that the radiation pressure cancels

out the size reduction effect due to dust absorption, found in the uniform density

case (with no radiation pressure). Thus, a radiation pressure producing important

stratifications (Rch/Rs ≥1), inflates the HII region back to a size comparable to the

one of a dust-free nebula.

3.4.3 Models with important photoionization radiation pres-

sure

In Section 3, we consider that the contribution of the photoionisation radiation

pressure to the density gradient of the nebula, is partly cancelled by the effect of
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the optical depth of dust absorption (see equations 3.10 and 3.11). This assumption

is indeed correct for configurations of the σd and L∗ parameters used to obtain the

radial density stratifications plotted in Figure 3.4.

However, we can easily check from equations (3.10) and (3.11) that, as σd → 0

the photoionization radiation pressure is the dominant effect on the stratification of

the nebula. This corresponds to the dustless case studied by Raga et al. (2015),

who also included the gas self-gravity to obtain the stratification of the nebula.

These authors pointed out that it is necessary to have a central photon rate of ∼
100 O stars, to power a spherical HII region to a radius where the effects of the

photoionization radiation pressure and the self-gravity are noticeable.

We can see from Figure 1 in Raga et al. (2015) that stratifications in which

photoionization radiation pressure is relevant, and at the same time self-gravity is

still negligible, are nebulae with an external boundary Rs ≥ 50 pc, reaching densities

of ns > 50 cm−3. However, it is not likely to find neutral ISM regions with these

dimensions, with a high enough pressure which could confine these giant HII regions.

The role of self-gravity in the models of Raga et al. (2015), is to produce an out-

wards decrease in the density of the nebula, (increased previously by the photoion-

ization radiation pressure), resulting in low boundary densities which a standard

neutral ISM is capable to confine.

We therefore conclude that models where photoionization radiation pressure is

important without taking into account self-gravity, do not have clear astrophysical

applications.

3.5 Cavities in compact HII regions

A common feature of the HII regions models shown in Figure 3.4 is a central cavity

of gas density created by radiation on dust grains. Since we assumed a constant gas

to dust ratio in the photoionised region (through the radially independent σd), gas

cavities indicate dust cavities.

Dust cavities in compact nebulae have been measured by Inoue (2002) with a

transfer model of Lyman continuum photons, together with the ratio of infrared

fluxes of 13 Galactic HII regions (including compact and ultracompact types). This

author reports the mean values of rd/ri ∼ 0.4 and rd/ri ∼ 0.6 for compact and
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Figure 3.8: Radio image of the HII region NGC 6334A, taken from Carral et al. (2002).

Figure 3.9: Grey-scale map of the HII region NGC 6334E, taken from Carral et al. (2002).
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Figure 3.10: Density distributions as a function of the radius obtained from the analytic
solution derived in this chapter given by equations (3.19) (3.25) and (3.27). The curves
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ultracompact HII regions respectively, where rd is radius of the cavity, and ri the

radius of the photoionised region (see his Table 3). These results agree with the

trend of the models shown in Figure 3.4, where the ratio of the central cavity to the

nebula boundary is larger as the HII region is more compact. Inoue (2002) points

out that radiation pressure and/or stellar winds are the possible mechanisms that

create dust cavities, ruling out dust sublimation which takes place in much smaller

radii.

Carral et al. (2002) give observations of shell-like UC HII regions in the NGC

6334 star forming region. In particular, they analyse the NGC 6334A and NCG

6334E radio sources (see Figures 3.8 and 3.9), assuming that the central cavities are

created by stellar winds. Applying the model of Castor et al. (1975) they find that

the central star in each nebula should have a luminosity of ∼ 106 L⊙. However,

from the observed ionisation, they obtain ∼ 8× 104 L⊙ for the central star in each

case. Furthermore, the wind-bubble model suggests that the compact HII regions

mentioned above should be expanding at velocities of hundreds of kilometres per

second, very high in comparison with ∼ 10 km s−1 inferred from the recombination

line ratios. To explain these over-estimations, Carral et al. (2002) suggest that the

observed gaps in the ionised shells (see Figures 3.8 and 3.9) allow the wind gas to

escape the HII regions, diminishing the the internal pressure of the nebulae and

slowing down their expanding rates.

If the stellar winds escape, then radiation pressure on dust grains could be the

dominant mechanism that creates the cavities in NGC 6334A and NGC 6334E. In

Figure 3.10 we show density profiles of static HII regions with radiation pressure

(the analytic solution obtained in this chapter), with boundary radii of 0.06 and

0.125 pc corresponding to NGC 6334A and NGC 6334E respectively (see Carral et

al. 2002). We use the value of σd = 10−21 cm2 H−1 for all density profiles in Figure

3.10. The solid curves are obtained with L∗ = 8 × 104 L⊙, which is the inferred

luminosity from the ionisation of these regions (see Carral et al. 2002).

Additionally, we include density profiles with the same boundary radii, but with

the enhanced luminosity of 1.5× 105 L⊙ with dashed lines. These last profiles have

larger cavities and agree better with the thickness of the shells measured by Carral

et al. (2002) (indicated in Figure 3.9) than the profiles with solid lines. Therefore,

the static models of HII regions with radiation pressure derived in this chapter can
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Figure 3.11: Observation of the W49A/D shell-like HII region, taken from De Pree et al.
(2005).

reproduce the central cavities in shell-like UC HII regions with no need of stellar

winds.

We then suggest that radiation pressure rather than stellar winds is the dominant

mechanism that produce cavities in shell-like nebulae with gaps or leaky structure,

and the analytic model derived in this chapter could be applied to interpret shell-like

UC HII regions as e.g. NGC 6334A, NGC 6334E and W49A/D (see Figure 3.11 and

De Pree et al. 2005).

3.6 Summary

Draine (2011) studied numerically the problem of a spherical, hydrostatic H II re-

gion considering the radiation pressure associated with dust absorption and with

photoionization processes. In this chapter we consider the same problem and derive

a simple, approximated analytic solution determined by three physical parameters of

the system: the radius Rs of the nebula, the cross section of dust absorption σd, and

the luminosity of the central star L∗. By specifying these parameters, our solution

58



gives the density ns at the external boundary, and the internal density stratification

as a function of the spherical radius.

Following Draine (2011) we consider two basic equations: one for the balance

between gas pressure and radiation pressure due to dust absorption and photoion-

ization of H (equation 3.1, which describes the density gradient of the HII region),

and a second equation for the balance between the ionisation photon rate and the

recombination rate of H and the dust absorption (equation 3.5, which determines

the size of the nebula).

To proceed analytically we make two simplifications of the problem: (i) following

Raga & Lora (2015) we consider that the optical depth of the photoionized region

is dominated by the dust absorption, and (ii) we note that the effect of the optical

depth, together with the radiation pressure due to photoionization of H, result in a

negligible contribution to the balance equation that describes the density gradient

of the nebula (see equations 3.10-3.11 and the associated text).

We compare our analytic solution with numerical integrations of the complete

model equations of Draine (2011), and find that the analytic solution works very

well when L∗ < 106 L⊙ and σd takes values between 10−22 and 10−21 cm2 H−1.

Our analytic solution gives different kinds of stratifications, according to the

chosen values of the parameters of the system. For example, we find that HII re-

gions are strongly stratified along all of their radial extents when the condition

Rs ∼ σdL∗/(8πckT ) is satisfied. We also find that the reduction effect in the ex-

ternal radius of dusty nebulae, found in previous models with no stratification, now

disappears for Rs < σdL∗/(8πckT ).
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Chapter 4

Radiation Pressure in Planar HII

Regions

In this Chapter we extend the study of the radiation pressure due to dust absorp-

tion and photoionization of H, to the case of a gaseous layer surrounding a planar

distribution of stars. In the model, the gravity of the stars and the self-gravity of

the diffuse gas are included.

Such a planar distribution is applicable for a star formation burst occurring

in the disk of a spiral galaxy. Another possible application are dusty regions of

dwarf irregular galaxies (which are believed to evolve into late spiral galaxies) which

have masses dominated by the gaseous (rather than stellar) component (Banerjee

et al. 2011). Also, planar distributions might be appropriate for modelling the

extraplanar gas of spiral galaxies (Barnabè et al. 2006) and the levitating molecular

clouds observed in some galaxies (Franco et al. 1991; Ferrara 1993).

The radiation pressure force initially pushes out the nebular gas, forming an

expanding, dense shell (see, e.g., Krumholz & Matzner 2009). In the presence of a

large enough external pressure, the expanding flow will eventually reach a hydro-

static configuration. This final configuration is determined from the balance between

the radiation pressure (due to photoionization and dust absorption processes), the

gravitational force (from the stellar and gaseous mass) and the gas pressure.

Assuming that the gas has a two-temperature structure (of ≈ 104 K for an

inner, photoionized region and of ≈ 103 K for an outer, neutral region) we derive

two dimensionless equations for the vertical stratification of the gas in plane-parallel
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symmetry. The solutions to these equations give the vertical density and pressure

profiles of the gaseous structure.

Most of the content of this chapter can be found in the paper by Rodŕıguez-

Ramı́rez & Raga (2016).

4.1 The radiation pressure forces

4.1.1 Luminosity and ionising photon rate from a stellar

population

In this subsection we present some general considerations on the luminosity and the

ionising photon rate produced by a stellar population. These are then used in the

following subsections to derive the radiation pressure force on the gas due to dust

absorption and photoionization processes.

The total luminosity Ltot of a stellar population with lower and upper masses
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M1 and M2 (respectively) is

Ltot =

∫ M2

M1

L(M)ξ(M)dM, (4.1)

where
L

L⊙
=

(
M

M⊙

)p

, (4.2)

is the mass-luminosity relation for a single star, with p = 3.5 normally used for main

sequence stars, and ξ(M) is the Salpeter initial mass function

ξ(M) = ξ0M
−α, (4.3)

with α = 2.35 (Salpeter 1955), which gives the number of stars as a function of

mass, for a stellar population. Given the total mass Mtot of the stellar population,

the factor ξ0 in the mass function of equation (4.3) can be obtained through the

normalisation condition

Mtot =

∫ M2

M1

M ξ(M)dM. (4.4)

Then, from equations (4.1)-(4.4) we obtain the total luminosity as a function of

the total mass and the lower and upper masses of the stellar population:

Ltot = MtotL⊙Ω1(M1,M2), (4.5)

where

Ω1 (M1,M2) =
(

α− 2

p+ 1− α

)
(M1M2)

α−2

Mp
⊙

(
Mp+1−α

2 −Mp+1−α
1

Mα−2
2 −Mα−2

1

)
. (4.6)

If we consider an upper mass M2 = 56.6 M⊙ (corresponding to O5 stars), and a

lower mass M1 = 0.1 M⊙ (corresponding to M8 stars), we then obtain

Ω1(M1,M2) = 4.788× 102 M−1
⊙ . (4.7)

The total rate of ionising photons S∗,tot of the stellar population can be calculated
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as

S∗,tot =

∫ M2

M1

S∗(M)ξ(M)dM, (4.8)

where S∗(M) is the ionising photon rate (of a single star) as a function of stellar

mass. We obtain this function through a cubic fit to the data of Sternberg et al.

(2003) for the ionising photon rates of B0.5 to O3.5 stars:

S∗

S∗,B0.5

= k1

(
M

M⊙

)
+ k2

(
M

M⊙

)2

+ k3

(
M

M⊙

)3

, (4.9)

where

k1 = −0.7151, k2 = 0.0405, k3 = −0.00015. (4.10)

and S∗,B0.5 = 5.128× 1047 s−1 is the ionising photon rate of a B0.5 star. The values

obtained by Sternberg et al. (2003) and our polynomial fit are shown in Figure 4.1.

From this Figure we see that stars later than B0.5 have negligible ionising photon

rates. Therefore, in equation (4.8) we use the mass MB0.5 = 19.3 M⊙ as a lower

limit. Together with equations (4.3), (4.4) and (4.9), we then obtain

S∗,tot = MtotS∗,B0.5Ω2(M1,M2), (4.11)

where

Ω2(M1,M2) =

(α− 2)

[
(M1M2)

α−2

Mα−2
2 −Mα−2

1

] [
k1
M⊙

M2−α
2 −M2−α

B0.5

2− α
+

k2
M2

⊙

M3−α
2 −M3−α

B0.5

3− α
+

k3
M3

⊙

M4−α
2 −M4−α

B0.5

4− α

]
. (4.12)

Using the values of M1, M2 and α given above, we finally obtain:

Ω2(M1,M2) = 2.554× 10−2M−1
⊙ . (4.13)

We apply the results obtained in equations (4.5) and (4.11) to calculate the mo-

mentum fluxes associated with the total luminosity and with the ionising photon

flux for a stellar distribution. Let us consider an ensemble of stars uniformly dis-
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tributed in an infinite plane (the xy-plane), with a constant mass per unit area Σ∗.

In this idealised configuration, the momentum flux FL (momentum per unit time

per unit area) due to the light of the stars points in the z-direction. Therefore, we

assume that the momentum flux satisfies a Gauss law:

∮

δS

FLẑ · dâ =
Ltot

c
, (4.14)

which means that the total momentum flux integrated over a surface δS (enclosing

a volume V ) is equal to the total stellar light momentum rate produced inside the

volume V . If we now consider a control box enclosing an area A of the stellar plane,

with top and bottom faces parallel to the plane, we can trivially integrate equation

(4.14) to obtain (together with equation 4.5)

FL =
Σ∗

2c
L⊙Ω1(M1,M2), (4.15)

where we have substituted AΣ∗ in equation (4.5) as the total stellar mass inside the

box. In the same way we calculate the flux of ionising photons Fi over the stellar

plane by using the condition

∮

δS

Fiẑ · dâ = S∗,tot, (4.16)

where S∗,tot is the total rate of ionising photons produced inside the enclosing surface.

Applying again the control box, together with equation (4.11) we obtain

Fi =
Σ∗

2
S∗,B0.5Ω2 (M1,M2) . (4.17)

In the next subsection we apply the fluxes obtained in equations (4.15) and (4.17)

for deriving the radiation pressure forces on the gas layer surrounding the plane of

the stellar distribution.

4.1.2 Radiation pressure by dust absorption

Cosmic dust grains present in the ISM absorb the stellar radiation field, receiving

a deposition of outward directed momentum. If the dust is dynamically coupled

with the gas, this momentum is transferred to the gaseous component. Under this
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assumption of perfect coupling, the radiation pressure resulting from dust absorption

of the radiation emitted by a stellar (point) source can be written as:

f̄d,r = n(R)σd
L

4πcR2
r̂, (4.18)

where R is the distance from the star, n(R) is the (radially dependent) total H

density, σd is the cross section of the dust grains per H nucleon (which we consider

to be frequency-independent) L is the stellar luminosity, c is the speed of light and

r̂ is the radial unit vector. For deriving this equation, we have assumed that the

dust is optically thin (so that only the geometrical dilution of the stellar radiation

field has to be considered).

We can see in equation (4.18) that the radiation pressure is the product of the

momentum flux at a radius R, with the gas number density n and with the dust

cross section σd. For a planar distribution of stellar sources, the radiation pressure

at a height z (above the planar stellar distribution) is

f̄d,z = n(z)σdFL ẑ, (4.19)

i.e., the product of the momentum flux FL of the radiation from the stars on the

plane (see equation 4.15), with the dust cross section per unit H nucleon σd, and

with the gas density n(z).

Substituting equation (4.15) into (4.19) we then obtain the radiation pressure

due to dust absorption in planar geometry:

f̄d,z =
Σ∗

2c
L⊙Ω1(M1,M2)σdn(z) ẑ, (4.20)

where Ω1(M1,M2) is given by equation (4.6).

In Section 4.2 we will use this approximation for the radiation pressure due to

dust absorption as a component of the hydrostatic balance equation of the gas.

4.1.3 Radiation pressure due to photoionization processes

The ionisation state of the gas in HII regions is generally very close to photoioniza-

tion equilibrium. In photoionization processes, the atoms receive momentum from

the ionising photons, resulting in an outward directed radiation pressure on the
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gas. Raga et al. (2015a) have included this radiation pressure term in models of

self-gravitating, isothermal spheres. These authors use a “grey approximation” (i.e.,

setting the photoionization cross section of H equal to the Lyman limit cross section)

to obtain:

f̄H,r = nHIφH
hν0
c

r̂, (4.21)

where nHI is the neutral H number density, h is the Planck constant, ν0 is the Lyman

limit frequency and

φH = σν0F (4.22)

is the H photoionization rate, with F being the flux (number of photons per unit

time) of the impinging, ionising photons.

In a plane-parallel configuration, the radiation pressure associated with the pho-

toionization processes will then be

f̄H,z = nHI(z)φH
hν0
c

ẑ, (4.23)

which is independent of the x, y coordinates and points outwards from the z = 0

plane.

We now write the photoionization equilibrium for H:

nHIφH = nenHIIαB(Ti) ≃ n2(z)αB(Ti), (4.24)

where αB(Ti) is the case B recombination coefficient of H (evaluated at the temper-

ature Ti ≃ 104 K of the ionised gas), and nHII and ne are the ionised H and the elec-

tron number densities, respectively. For the second equality, we set nHII ≃ ne ≃ n,

as appropriate for the almost fully ionised H within the H II region. Finally, combin-

ing equations (4.22)-(4.24) we obtain the radiation pressure due to photoionization

of H,

f̄H,z =
hν0
c

αB(T )n
2(z) ẑ, (4.25)

which depends on the square of the total H number density. This expression is

basically the same as that obtained for the spherical case (see Raga et al. 2015a),

with the difference that in the plane-parallel case the number density depends on

the vertical coordinate z, and the force points in the z-direction.
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It should be pointed out that the radiation pressure force given in equation (4.25)

could be only applied inside the zone where the gas is fully ionised, i. e., within

the “Strömgren height” zS. This outer boundary of the photoionized region can

be calculated through the balance of ionising photons and recombinations (per unit

area and time) within the slab:

∫ zS

0

αB(T )n
2(z)dz = Fi, (4.26)

where Fi is the flux of ionising photons from the stellar plane (see equation 4.17).

Therefore, the Steömgren height satisfies the condition

∫ zS

0

n2(z)dz =
Σ∗

2αB(T )
S∗,B0.5Ω2(M1,M2) . (4.27)

In the following section we derive a hydrostatic balance equation, considering

the radiation pressure forces given by equations (4.20) and (4.25), the gravitational

forces and the pressure gradient force of the gas. This equation has to be integrated

to obtain the n(z) density stratification needed to calculate the Strömgren height

(see equation 4.27).

4.2 The model equations

To model the density and pressure structure of the gas surrounding the stellar plane,

we assume planar symmetry. Therefore, the solution only depends on the z coor-

dinate, and is symmetric with respect to the xy-plane (i.e., the plane of the stellar

distribution). We first consider the layer where the gas is fully photoionized by the

stars in the plane, within which dust can also be present.

In this region, the gas pressure gradient is balanced by the inward gravitational

force and the outwards radiation pressure gradient force:

dP

dz
=−

(
dΦ

dz
+ 2πGΣ∗

)
ρ

+
σd,iΣ∗L⊙Ω1(M1,M2)

2cµmH

ρ+
hν0αB(T )

c(µmH)2
ρ2, (4.28)

where P is the pressure, ρ the density, G the gravitational constant, mH the mass of
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H, µ = 1.3 (for a gas with a H abundance of 0.9 and a He abundance of 0.1) and σd,i is

the cross section of the dust grains in this photoionized zone (which we will consider

with lower values than the cross section of the dust grains in the covering neutral

layer). The terms in parentheses in the RHS of this equation are the gravitational

components, being Φ the gravitational potential of the self-gravitating gas, which

satisfies the Poisson equation
d2Φ

dz2
= 4πGρ . (4.29)

The 2πGΣ∗ term (see equation 4.28) is the constant gravitational field due to the

mass of the stars on the plane, being Σ∗ the stellar mass per unit area. The two

last terms in the RHS of equation (4.28) are the radiation pressure forces due to

dust absorption and photoionization of H given by equations (4.20) and (4.25),

respectively.

We assume that the photoionized region is approximately isothermal, so that

P = a2i ρ, (4.30)

being ai the isothermal speed of sound of the ionised gas given by

ai =

√
2kTi

µmH

, (4.31)

where k is the Boltzmann constant, and we take Ti ≈ 104 K for the temperature

of the ionised zone. We combine equations (4.28)-(4.30) to obtain a second order

equation for the gas density:

d

dz

(
1

ρ

dρ

dz

)
= −4πG

a2i
ρ+

hν0αB(T )

a2i c(µmH)2
dρ

dz
, (4.32)

with the boundary conditions at z = 0:

ρ(0) =ρc, (4.33)

dρ

dz
(0) =

(
σd,iL⊙Ω1(M1,M2)

2cµmH

− 2πG

)
Σ∗ρc
a2i

+
hν0αB(T )

a2i c(µmH)2
ρ2c , (4.34)
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where ρc is the gas density on the stellar plane. Also,

dΦ

dz
(0) = 0 .

The forces due to the gravity of the stellar mass and the radiation pressure on dust

disappear when deriving the second order equation (4.32), since both are propor-

tional to the gas density. Their effect appears only in the boundary condition of

equation (4.34).

The model equation (4.32) is valid when the radiation pressure due to photoion-

ization of H is present, i. e., inside the Strömgren height zS given by equation (4.27).

Beyond the Strömgren height zS, the gas is neutral, the flux of ionising photons is

close to zero, and there is no radiation pressure due to photoionization of H. How-

ever, photons with frequencies lower than the Lyman limit penetrate the neutral

region, so that we still have the radiation pressure associated with dust absorption.

Therefore, for z > zs the hydrostatic balance equation is:

dP

dz
= −

(
dΦ

dz
+ 2πGΣ∗

)
ρ+

Σ∗L⊙σdΩ1(M1,M2)

2cµmH

ρ (4.35)

where σd is the cross section (per atom) of the dust grains in the neutral environment.

In equation (4.35), the pressure and density follow the relation

P = a2nρ, (4.36)

where an is the isothermal sound speed

an =

√
kTn

µmH

, (4.37)

where Tn ≈ 103 K is the temperature of the neutral medium.

In equation (4.35) we are assuming that the stellar flux producing radiation

pressure on dust is still optically thin (see equation 4.18 and section 2.2). This is

clearly not the case for the photons with frequencies larger than the Lyman limit

(i.e., the ionising photons), which have all been absorbed by the z < zS region (see

above). However, the ratio of non-ionising to ionising luminosity in a cluster of O

and B stars is Ln/Li ∼ 5 (see Draine 2011), and the ratio of ionisig luminosity to
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the total luminosity is Li/L∗ ∼ 1/6. Thus, we can assume that the ionising photons

have a small contribution to the total stellar luminosity (which acts on the dust

grains).

Combining (4.35) with equation (4.29), we then write the model equation for the

z > zS zone:
d

dz

(
1

ρ

dρ

dz

)
= −4πG

a2n
ρ. (4.38)

The boundary conditions of equation (4.38), are determined by the pressure balance

between the ionised and neutral components at z = zS:

ρ(zS) = ρS,n =

(
ai
an

)2

ρS,i = 2
Ti

Tn

ρS,i, (4.39)

where ρi,S is the gas density of the photoionized zone given by the solutions of

equation (4.32) at zS, and ρnS
is the density of the neutral zone at zS. The boundary

condition on the derivative of equation (4.38) at zS is

dρ

dz
(zS) =

(
L⊙σdΩ1(M1,M2)

2cµmH

− 2πG

)
Σ∗ρn,S
a2n

− 4πGρn,S
a2n

∫ zS

0

ρ dz, (4.40)

which is obtained by taking the z → z+S limit of equation (4.35). The integral of

equation (4.40) corresponds to the integration from 0 to zs of the Poisson equation

(4.29) for the gravitational potential, where the density ρ inside the integral operator

is the solution of the model equation (4.32) for z ≤ zS.

If we consider the gas density on the stellar plane (z = 0)

ρc = ρ(0), (4.41)

as the characteristic density, and define the characteristic height

z0 =
ai√

8πGρc
, (4.42)

where ai is the isothermal sound speed of the ionised region given by equation

(4.31), we can write the model equations (4.32) and (4.38) with their corresponding
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boundary conditions in dimensionless form as

d

ds

(
1

̺

d̺

ds

)
= −1

2
̺+ λ

d̺

ds
, (4.43)

̺(0) = 1, (4.44)

d̺

ds
(0) = λ+ εi, (4.45)

∫ sS

0

̺2 ds = δ, (4.46)

for 0 ≤ s ≤ sS, and

d

ds

(
1

̺

d̺

ds

)
= − Ti

Tn

̺, (4.47)

̺(sS) = 2
Ti

Tn

̺S,i, (4.48)

d̺

ds
(sS) =

(
2
Ti

Tn

)2

̺S,i

(
ε− 1

2

∫ sS

0

̺ ds

)
, (4.49)

for s > sS, where s = z/z0, ̺ = ρ/ρc, sS = zS/z0, ̺i,S = ρi,S/ρc and λ, δ, ε, and εi

are dimensionless parameters defined by

λ =
αB(Ti)hν0
aic(µmH)2

√
ρc
8πG

, (4.50)

δ =
(µmH)

2S∗,B0.5Ω2(M1,M2)

2aiαB(T )
Σ∗

√
8πG

ρ3c
, (4.51)

ε =

(
σdL⊙Ω1(M1,M2)

2cµmH

− 2πG

)
Σ∗

ai
√
8πGρc

, (4.52)

εi = kε, with k =
σd,iL⊙Ω1/(4πµmHcG)− 1

σdL⊙Ω1/(4πµmHcG)− 1
. (4.53)

The dimensionless parameter λ characterises the effect on the density structure of

the radiation pressure due to photoionisation of H. On the other hand, the dimen-

sionless parameter ε characterises the effect of the radiation pressure due to dust

absorption and the gravity due to the stellar mass (both of these forces being propor-

tional to the gas density, see equation 4.28) in the neutral gas, and the εi parameter

characterises the same effects but in the photoionized zone. Finally, the dimension-

less parameter δ determines the dimensionless Strömgren height sS through equation
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(4.46), which gives the size of the photoionized region and the boundary conditions

of the dimensionless model equation (4.47) for the neutral region.

To obtain the values of the dimensionless parameters (4.50)-(4.53), and the

boundary conditions of equations (4.43) and (4.47), we consider as fixed the typical

values of Ti = 104 K and Tn = 103 K for the temperatures of the photoionized and

neutral regions, giving isothermal sound speeds ai = 11 km s−1 and an = 2.5 km s−1

from equations (4.31) and (4.37), respectively. We also take the typical value for the

dust absorption cross section of σd = 10−21 cm2 H−1 for the neutral gas (see Draine

2011). Finally, we consider the values given in section 2.1 for the lower and upper

masses M1 and M2 of the stellar population, which determine the values of Ω1 and

Ω2 (see equations 4.6 and 4.12).

Therefore, the λ parameter basically depends on the central density ρc (see equa-

tion 4.50) and the δ parameter depends on ρc and Σ∗ (see equation 5.37). The ε

parameter depends basically on the values of ρc and Σ∗ (see equation 4.52), and the

εi parameter depends on the ε parameter (see equation 4.53). In this way, only two

of the dimensionless parameters given in equations (4.50)-(4.53) are independent.

Combining equations (4.50)-(4.52), we can write the ε parameter as

ε =

(
σdL⊙Ω1

2cµmH

− 2πG

)(
2

S∗,B0.5Ω2αB

)(
aicµmH

hν0

)2

δλ2, (4.54)

where it can be seen that this parameter depends only on the possible values of λ

and δ, since we consider all the factors in parentheses of RHS of equation (4.54) as

fixed quantities, given by the typical values that we mention above.

Finally, to obtain the εi parameter as a function of the ε parameter, we set up

the values of the constant k in equation (4.53) as follows. We consider three possible

cross sections σd,i for the dust grains in the photoionized region, of the form

σd,i = ℓσd, ℓ =





1

1/2

0,

(4.55)

i. e., that σd,i is the same as the cross section of dust grains of the neutral layer, half

of this value, or zero. Therefore, combining equations (4.55) and (4.53) we obtain
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three values of the k constant:

k =





k1 = 1

k1/2 = 0.469

k0 = −0.061.

(4.56)

In this way we build a model for the structure of a photoionized slab covered by

a neutral layer where, by specifying the values of the free dimensionless parameters

λ and δ, we can obtain three associated solutions of the dimensionless equations

(4.43) and (4.47), labelled as

(λ, δ) →
(
̺k1λδ(s), ̺

k1/2
λδ (s), ̺k0λδ(s)

)
. (4.57)

In order to estimate the range of the possible values of the λ and δ parameters we

first consider a central number density of the photoionized zone of nc = ρc/(µmH) =

10 cm−3, corresponding to supergiant HII regions observed in external galaxies,

which are the mature state of expanding HII regions (see Kurtz & Franco 2002).

We also consider a stellar mass per unit area of the galactic plane of Σ∗ = 20 M⊙

pc−2, which is the typical stellar surface density beyond the middle radius of the

galaxies measured by Leroy et al. (2008). Then, we obtain the following values for

our λ and δ dimensionless parameters:

λ = 0.126
( nc

10 cm−3

)1/2
, (4.58)

δ = 2.851

(
Σ∗

20 M⊙pc−2

)(
10 cm−3

nc

)3/2

. (4.59)

Using these values in equation (4.54) we obtain ε = 4.183.

If we now consider an enhanced value for the central number density nc = 100

cm−3, (which corresponds to classical HII regions, see Kurtz & Franco 2002), we

obtain λ = 0.401 and δ = 0.09, which gives ε = 1.322 for the neutral covering layer.

Of course, we could also consider different values of Σ∗ from which one could

obtain more combinations of the λ and δ parameters. Therefore, in the following

section we will explore the solutions of equations (4.43) and (4.47) corresponding

to the possible combinations of the free dimensionless parameters in the parametric
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domain λ ∈ [0.1, 0.5] and δ ∈ [0.1, 10].

4.3 Solutions of the model equations

To obtain the density distribution of gas above the stellar plane we integrate equa-

tions (4.43) and (4.47) as follows. Given fixed values of the λ and δ parameters,

we first calculate the value of the ε parameter with equation (4.38), and then we

obtain the values of the three associated parameters εi through equations (4.53) and

(4.56). Therefore we set up three pairs of boundary conditions, given by equations

(4.44)-(4.45). We then integrate numerically equation (4.43) obtaining three curves

for the dimensionless density ̺ as a function of the dimensionless height s, for the

photoionized layer. Each numerical integration is performed until the corresponding

condition (4.46) is satisfied, when we attain the dimensionless Strömgren height sS

and the corresponding density ̺S.

We are then able to set up three pairs of boundary conditions, given by equations

(4.48)-(4.49), in order to integrate equation (4.47), corresponding to the neutral

region (s > sS), in which the radiation pressure due to dust absorption is still

present. We obtain the solutions for this neutral zone analytically as follows.

Integrating equation (4.47) from sS to s (> sS) together with conditions (4.48)

and (4.49) we obtain

1

̺

d̺

ds
=

(
2
Ti

Tn

)(
ε′ − 1

2

∫ s

sS

̺ ds

)
, (4.60)

where

ε′ ≡ ε− 1

2

∫ sS

0

̺ ds. (4.61)

If we now define the column density m as

m =

∫ s

sS

̺ ds, (4.62)

the differential operator becomes d/ds = ̺ d/dm, and we can write equation (4.60)

in the form
d̺

dm
=

(
2
Ti

Tn

)(
ε′ − 1

2
m

)
, (4.63)
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Figure 4.2: Stratifications of the dimensionless gas density as a function of the dimensionless height above the stellar plane. The
stratifications are solutions of equations (4.43) and (4.47), which model the structure a planar HII region covered by a neutral gas
layer. In each graph, the solutions are calculated by specifying the values of the free dimensionless parameters λ and δ of the model
developed in the text. The value of the λ parameter is given in the top of its corresponding column, and the value of the δ parameter
is given at the beginning of the corresponding rows. For each model, we obtain a triad of solutions, associated to the specific values
of λ and δ. Each curve of the triad corresponds to a different fraction (0, 1/2 and 1) of the dust cross section in the photoionized
layer, relative to the dust cross section of its corresponding neutral covering layer (see equations 4.53, 4.55 and 4.56). We label each
curve with its corresponding fraction with a line that indicates the limit of the photoionized region, where there is a “jump” in the
density. In some curves this limit is not finite, and these cases are indicated with a “ sS → ∞” label. We also label the solutions
with gravitationally unstable neutral layers with a “(-)” and the stable solutions with a “(+)” (see section 5).
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which can be integrated to obtain

̺ =

(
2
Ti

Tn

)(
̺S,i + ε′m− 1

4
m2

)
, (4.64)

where ̺S,i is the density of the ionised gas at the Strömgren height obtained by

solving equations (4.43)-(4.46). From equation (4.64) we obtain m as a function of

s by substituting the derivative with respect to s of equation (4.62) and integrating

from sS to s, obtaining

m =2
√

̺S,i + ε′2

× tanh

{(
2Ti

Tn

) √
̺S,i + ε′2

2
(s− sS)− β

}
+ 2ε′, (4.65)

where

β ≡ tanh−1

(
ε′√

̺S,i + ε′2

)
. (4.66)

Finally, to obtain ̺ as a function of s, we just take the derivative with respect to s

of equation (4.65), obtaining

̺ =

(
2Ti

Tn

)(
̺S,i + ε′2

)

× sech2

{(
2Ti

Tn

) √
̺S,i + ε′2

2
(s− sS)− β

}
. (4.67)

In Figure 4.2 we show an array of nine graphs where we plot the solutions of

equations (4.43) and (4.47) described above. The solutions in each graph are ob-

tained for particular values of the λ and δ parameters, according to their position

in the array. The graphs in each row share the same value of the δ parameter

(δ = 0.1, 1, and 10). The graphs in each column share the same value of the λ

parameter (λ = 0.1, 0.25 and 0.5).

In each graph we show the value of the corresponding ε parameter (which mea-

sures the importance of the radiation pressure on dust grains relative to the gravi-

tational forces in the neutral layer, see equation 4.52), calculated as a function of λ

and δ (see equation 4.54). The three curves in each graph correspond to the three

values of the εi parameter, as fractions of the ε parameter, given by equation (4.56)
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(which considers three different dust cross sections for the photoionized layer, see

equations 4.53 and 4.55).

The outer boundary of the photoionized region, given by condition (4.46), can

be seen as a discontinuity in the solutions, with a finite jump in the dimensionless

density ̺ at the Strömgren height sS. We indicate this limit with a line, connected

to the value of its corresponding εi parameter.

However, we also find some solutions which do not exhibit such a discontinuity

because sS → ∞. In these solutions, the stars in the plane are able to photoionise

all of the surrounding gas. This is the case of the δ = 10 row, and the graph

corresponding to λ = 0.5, δ = 1. In these solutions we observe a transition where

the Strömgren height of the curves is finite as εi → ε, i. e., as the cross section of

dust grains in the photoionized zone tends to the standard dust cross section (i.e.

σd, see equations 4.53, 4.55 and 4.56).

A different behaviour of the solutions is observed in the δ = 0.1 row of Figure

4.2. The density distributions of the photoionized zones of the solutions in this row

are practically flat, and the neutral zones of these solutions are spatially dominant.

Also, there is no significant difference between the curves with different fractions k0,

k1/2 and k1 of the corresponding ε parameter.

Finally, the families of solutions given by the combination of parameters (λ =

0.5, δ = 1), (λ = 0.25, δ = 10) and (λ = 0.5, δ = 10) (below the central diagonal

of the array), are beyond the validity of the planar approximation assumed in this

model. This is simply because these pairs of parameters imply a stellar surface

density Σ∗ > 400 M⊙ pc−2, which can be found only in the centre of typical spi-

ral galaxies (see Leroy et al. 2008), for which a spherical model would be more

appropriate.

4.3.1 The full neutral solution

If we consider a low Σ∗ for the stellar population (e.g., in a low-mass star formation

region), we can see from equation (4.17) that the flux of ionising photons produced by

the stars in the plane is not an important effect to be considered in the hydrostatic

model of the gas slab. Therefore, we can assume that the gas slab is completely

neutral, but is still under the effects of the radiation pressure due to dust absorption,

the gravity of the stars and the self-gravity of the gas. This regime is modelled by
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the analytical solutions of equation (4.67) in the sS → 0 limit, which can be written

as

ρ

ρc,n
=
(
1 + ε̃2

)
sech2

{√
1 + ε̃2

2

(
z

z0,n

)
− β̃

}
(4.68)

where ρc,n is the density of the neutral gas at z = 0 and

z0,n =
an√

8πGρc,n
(4.69)

ε̃ =

(
σdL⊙Ω1(M1,M2)

2cµmH

− 2πG

)
Σ∗

an
√

8πGρc,n
, (4.70)

β̃ = tanh−1

{
ε̃√

1 + ε̃2

}
. (4.71)

The density profiles given by equation (4.68) are determined by the ε̃ dimension-

less parameter, which characterises the effect of the radiation pressure due to dust

absorption and the gravity of the stellar population in the plane. If we consider a

Σ∗ = 1 M⊙ pc−2 stellar surface density and a central number density nc,n = 10 cm−3

of the HI gas, we obtain

ε̃ = 0.935

(
Σ∗

1 M⊙ pc−2

)( nc,n

10 cm3

)−1/2

, (4.72)

and if we do not consider the presence of dust grains (i. e., σd = 0), the ε̃ parameters

only characterises the gravitational field due to the stars, giving ε̃ = −0.057.

If we substitute ε̃ = 0 in equation (4.68), we obtain the standard solution for

the isothermal Lane-Emden equation in planar geometry (see Ledoux 1951), which

models the density of a slab under the effect of the self-gravity of the gas.

In Figure 4.3, we plot the resulting curves given by the solution of equation

(4.68), for different values of the ε̃ parameter enclosing the values estimated above.

For ε̃ > 0, the solutions are density profiles that reach a maximum above the stellar

plane, of the same order of magnitude as the central density. In the region where

the self-gravity of the gas dominates the solutions, the density decays exponentially.

For ε̃ < 0 the solutions have their highest value at z = 0 and rapidly acquire an

exponentially decaying behaviour.
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Figure 4.3: Dimensionless density as a function of the dimensionless height above the
stellar plane of the fully neutral regime described in subsection 4.1. Each curve is obtained
with the analytical solution (4.68), characterised by a particular value of the dimensionless
parameter ε̃, which measures the effect of the radiation pressure on dust grains, relative
to the gravity of the stars in the plane.

4.4 The gravitational stability of the neutral lay-

ers

For some configurations of the λ and δ parameters, the resulting density profiles

generate highly dense neutral covering layers. As we can see from Figure 4.2, these

solutions have density peaks several orders of magnitude larger than the central

density ρc of their corresponding ionised region. This behaviour is found in solutions

where the ionised region is more extended than the neutral layer. The question

therefore arises of whether or not such hydrostatic configurations are likely to occur,

since they could be unstable to gravitational collapse.

To assess the stability of the neutral regions, we consider them to be unstable to

gravitational collapse if

Q ≡ λc

∆z
=

an
∆z

√
2π

ρpeakG
< 1, (4.73)

where λc is the critical Jeans wavelength for a self-gravitating gas slab (see Ledoux

1951), an is the speed of sound of the neutral material, ρpeak its maximum density,

and ∆z is the width of the neutral layer.

79



From the solution given by equation (4.67), the density peak is

ρpeak
ρc

=

(
2Ti

Tn

)(
̺S,i + ε′2

)
, (4.74)

where ̺S,i is the density in units of ρc of the corresponding ionised region at the

Strömgren height, Ti and Tn are the temperatures of the ionised and neutral media

(respectively) and the ε′ parameter is given by equation (4.61).

To define the width of the neutral layer, we consider it to begin at the Strömgren

height and to end where the density of the neutral layer takes the value ̺S,i. With

these considerations, from equation (4.67) we obtain

∆z

z0
=

2√
̺S,i + ε′2

(
Tn

2Ti

)

×
(
β + tanh−1

{√
1−

(
Tn

2Ti

)
̺S,i

̺S,i + ε′2

})
, (4.75)

where z0 is the characteristic height given by equation (4.42) and β is given by

equation (4.66). Finally, combining equations (4.73), (4.74) and (4.75), we write the

condition (4.73) as

Q = 2π

[
β + tanh−1

{√
1−

(
Tn

2Ti

)
̺S,i

̺S,i + ǫ′2

}]−1

< 1. (4.76)

One could obtain a better stability criterion, e. g. by performing a linear analysis

on the density profile given by equation (4.67). However, for a first estimation of the

stability of our solutions, the criterion derived in (4.76) appears to be reasonable.

Solutions giving Q < 1 (which are the unstable ones), are labelled with a “(−)”

in Figure 4.2. Analogously, we indicate the stable solutions (with Q > 1) with a

“(+)”.

Almost all of the solutions corresponding to configurations where the planar

approximation is valid (as we pointed out in section 4, the solutions associated to

ε =22.7, 56.8 and 227.4 in Figure 4.2, are not valid in the planar approximation)

are gravitationally stable.

The “most stable” neutral layers, are those in the triad of curves associated to the
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λ = 0.1, δ = 0.1 configuration, having Q ≈ 2.8. The triad of solutions corresponding

to the λ = 0.25, δ = 1 configuration have Q ∼ 1, with the only one unstable solution

being the εi = k0ε curve with Q = 0.9. This unstable solution represents a plane

of stars of Σ∗ ∼ 60 M⊙pc
−2 surrounded by an ionised region with a central number

density of nc ∼ 40 cm−3, having very low dust abundance, covered by a neutral layer

with dust cross section σd ∼ 10−21 cm2 H−1. We conclude that any configuration

close to these parameters might lead to the formation of new stars as a result of the

gravitational collapse of the neutral layer.

Finally, the solutions corresponding to the configurations λ = 0.25, δ = 0.1 and

λ = 0.1, δ = 1 give Q ≈ 2.3, and are therefore gravitationally stable.

4.5 Summary and discussion

In this chapter we studied the effect of the radiation pressure on the hydrostatic

structure of gas surrounding a planar distribution of stars. We present solutions of

the plane-parallel hydrostatic balance between the gas pressure gradient, the radi-

ation pressure (associated with the photoionization and dust absorption processes)

and the gravitational force provided by the stellar slab and the gas.

We found that the solutions depend on a set of four dimensionless parameters

and we obtained three different gas distributions:

• solutions in which the photoionized region extends to infinite heights,

• solutions with a photoionized region which is bounded by a narrow, high den-

sity neutral cap,

• solutions with a stratified neutral structure (with a small or non-existent pho-

toionized region).

The first of these types of solutions occurs when massive stars are embedded into a

low-density gaseous medium. The second one is found the in cases when the stars

are surrounded by a denser ISM. The third solution (with no photoionization) could

be used in the case when only low mass stars are formed. Our models are useful for

evaluating which of these gas configurations one has to adopt in the case of disk-like

star-forming galaxies with different characteristics.
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We consider our models to be valid for stellar surface densities lower than Σ∗ ∼
100 M⊙ pc−2. Stellar distributions with higher surface densities are likely to be

found in the central zones of spiral galaxies, where the planar approximation is not

valid.

The combined effects of radiation pressure on dust grains together with self-

gravity, make the neutral covering layers of some configurations unstable to gravita-

tional collapse. However, most of the solutions for which the planar approximation

is valid are stable, and therefore the hydrostatic structures obtained from our models

are likely to persist in time.

Flattened starbursts and the feedback they inject on its surrounding medium

have applications, e.g., in the study of proto-galaxies and in the interpretation of

the star formation history of spiral galaxies.

The main assumption of the models obtained in this chapter was the consider-

ation of an infinitely extended distribution of massive stars, which is an idealised

configuration. Although it is true that starbursts at galactic scales are plane, they

are not likely to adopt a uniform and very extended configuration that resembles an

infinite starburst plane.

To move towards more realistic configurations, 2D axi-symmetric models with

finite extension could be appropriate. This improvement clearly introduce new fea-

tures in the models, for instance, the gravitational potential due the gas and the

mid-plane stars would be z and r-dependent (in cylindrical coordinates), as well as

the direction and strength of the radiation pressure.

Another strong limitation of the models presented in this chapter is that we

considered the flux of photons to be constant with z, i.e., we neglected the atten-

uation of the radiation due to absorption. This approximation is correct in the

photoionised region where the column density is small in comparison with the stel-

lar surface density Σ∗. Also, at the ionisation front, the flux of photons does not

have a considerable attenuation, since for stellar populations including O-B stars,

the ratio of non-ionising to ionising photons is ∼ 5 (Draine 2011).

However, the optical depth in the neutral zone is far from being negligible. For

this reason, we obtained very high peaks in the neutral gas density, for some pa-

rameter configurations. Incorporating the optical depth, the heights of the density

peaks within the neutral regions will be reduced. Clearly our model equations could
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be extended to include the dust optical depth, but this will not change the general

properties of our solutions.
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Chapter 5

Supernova Blast Wave in a Star

Cluster Outflow

In this chapter we present a model of a SN blast wave that goes off in the centre

of a “cluster wind” flow generated by the interacting winds from the cluster stars.

We consider the exact analytic solution of Cantó et al. (2000) for the wind flow

(which is obtained assuming a spherical cluster of uniformly distributed stellar wind

sources). We derive a semi-analytic model for the evolution of the SN blast wave

and compare it with spherical symmetric, gas dynamic simulations.

In the next section we give some general considerations of the conditions for

which we derive our model. The semi-analytical model is developed in Section 5.2,

and the numerical simulations are described in Section 5.3 The prediction of the

free-free emission luminosity is presented in Section 5.4, Finally, our results are

summarised in Section 5.5

Most of the content of this chapter can be found in the paper by Rodŕıguez-

Ramı́rez et al. (2014).

5.1 General considerations

We model the expansion of a blast wave in the Taylor-Sedov (T-S) phase. This phase

begins after a free expansion of the material ejected by the SN, when the mass of

the environmental material, which is swept up by the blast wave, is of the order of

the mass ejected by the supernova. Therefore, if the SN goes off in the centre of a

84



cluster wind flow, then the initial radius of the bubble R0 of the Taylor-Sedov phase

satisfies the condition

Msn ≃ 4π

∫ R0

0

R′2ρe(R
′)dR′, (5.1)

where Msn is the mass ejected by the supernova and ρe(R) is the density of a

spherically symmetric pre-existent environment. Cantó et al. (2000) showed that

for a cluster with a homogeneous distributions of stellar wind sources this density

is given by

ρe
ρc

=

{
Aγr/ue for r < 1,

Aγ/ (r
2ue) for r > 1 ,

(5.2)

where

ρc =
NṀw

4πvwR2
cAγ

(5.3)

is the central density of the cluster wind flow, r ≡ R/Rc is the radius in units of

the cluster radius Rc, ue ≡ ve/vw the cluster wind velocity in units of the terminal

velocity vw of each star of the cluster, Ṁw is the mass loss rate of each star of the

cluster, N is the number of the stars inside the cluster radius and Aγ is an integration

constant. which depends of the specific heat ratio γ = cP/cV . The dimensionless

velocity ue is found as an exact solution in implicit form in the model of Cantó et

al. (2000), however we give an analytic approximation of ue as a function of the

dimensionless radius r in the Appendix B.

From equations (5.1)-(5.3), we find that the T-S radius R0 must satisfy the

equation

I(R0/Rc) =
MsnvwAγ

NṀwRc

(5.4)

where

I(r) ≡
∫ r

0

r′2̺(r′) dr′, (5.5)

is an analytic function, built with analytic fits to the implicit exact solution for

the density of the cluster wind of Cantó et al. (2000) (see appendix B). If we

introduce an ejected mass of 5 M⊙ (which is a typical value for a type II SN,

expected in young stellar populations, see Pérez-Rendón et al. 2009) inside a cluster

of 5×103 O stars within a radius Rc = 0.5 pc, with mass loss rate and wind velocities
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Ṁw = 10−6M⊙yr
−1 and vw = 1000 kms−1, from equation (5.4) we obtain

r0 ≡
R0

Rc

= 1.56. (5.6)

Alternatively, if we choose a cluster radius Rc = 5 pc, we obtain

r0 = 0.49. (5.7)

From equations (5.6)-(5.7) we see that the T-S phase of the SN remnant could begin

inside or outside the cluster radius. We then apply a T-S phase model of the SN

blast wave after the radius R0 has been reached. Either in the R0 < Rc or in the

R0 > Rc case, the time t0 after the SN explosion at which the T-S radius R0 is

reached can be estimated as

t0 =
R0

vsn
, (5.8)

where vsn is the initial velocity of the ejected material. Therefore, for estimating t0 in

equation (5.8) we assume that the ejected material preserves its initial velocity until

the T-S radius is reached. We consider that this initial velocity (of an expanding,

uniform density sphere) depends on the energy E and the ejected mass Msn as:

vsn =

(
10αE

3Msn

)1/2

. (5.9)

In equation (5.9) the α parameter is the initial fraction of the SN energy in the form

of kinetic energy, and we consider a linear initial radial velocity profile for the ejected

material, as described in detail in Section 5.3. This energy fraction changes as the

interaction of the blast wave with the environment proceeds, but the parameter α

corresponds to its initial value (see equation 5.8).
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5.2 A semi-analytic model for the supernova blast

wave

5.2.1 The kinematics of the hot bubble and the shock

Let us consider the expansion of the hot bubble. The outer radius of the bubble is

a contact discontinuity that pushes a spherical shock into the surrounding environ-

ment. This environment is the cluster wind, and it therefore flows outwards (at a

velocity ve).

Let us call (ρ1, v1, p1) and (ρ2, v2, p2) the pre-shock and post-shock variables

(respectively) in the rest frame of the outer shock. In this frame, the pre-shock

velocity v1 is

v1 =
dS

dt
− ve , (5.10)

where dS/dt is the shock velocity and ve is the velocity of the external environment,

both measured in the cluster rest frame. In this cluster reference frame, the shock

velocity follows the relation of a shock driven by a piston (the piston being the

contact discontinuity at the outer radius R of the bubble):

dS

dt
=

dR

dt
+ v2, , (5.11)

where v2 is the post-shock velocity in the rest frame of the shock. Combining

equations (5.10) and (5.11) we obtain the velocity of the outer radius of the bubble

in terms of the pre-shock, post-shock and environment velocity:

dR

dt
= v1 − v2 + ve . (5.12)

We now consider the shock jump relations

v2 =
γ − 1

γ + 1
v1 +

2

γ + 1

c2

v1
, (5.13)

p2 =
2

γ + 1
ρ1v

2
1 −

γ − 1

γ + 1
p1 , (5.14)
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and combining them with equation (5.12), we obtain:

dR

dt
=

2

γ + 1

(
v1 −

c2

v1

)
+ ve , (5.15)

with

v1 =

(
γ + 1

2ρe
Pb +

γ − 1

2γ
c2
)1/2

, (5.16)

and

c2 =
γ − 1

2

(
v2w − v2e

)
, (5.17)

where we have introduced the adiabatic preshock sound speed c2 = γp1/ρe, we

have used the fact that the pre-shock density ρ1 is the environmental density ρe,

and that the post-shock pressure p2 equals the bubble pressure (across the contact

discontinuity), which we call Pb. Equation (5.17) is the environmental sound speed

in terms of the cluster wind velocity ve and the velocity of the stellar winds vw, as

obtained by Cantó et al (2000). In deriving equation (5.15) for the bubble radius,

we have considered the general jump relations 5.13-5.14), allowing the appropriate

strong/weak transition for the external shock driven by the SN bubble.

In the next subsection we find an expression for the pressure of the hot bubble

as a function of its external radius R, which is useful for integrating the equations

of motion for the external radius of the hot bubble and for the radius of the outer

shock.

5.2.2 The energy of the bubble

We now consider that the pressure Pb inside the supernova bubble is uniform. We

also assume that the evolution of the bubble is much faster than the timescales

of the energy and mass injection due to the winds of the stellar cluster, after the

supernova explosion (we justify this assumption in the next subsection). We can

therefore assume that the energy E of the supernova explosion is equal to the thermal

energy of the hot bubble plus the kinetic energy of an outer, thin shell containing

the swept-up environment:

E =
PbV

γ − 1
+

1

2
Msv

2
s , (5.18)
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with Pb the uniform pressure of the bubble, V = 4πR3/3 the bubble volume, vs the

velocity of the shell and

Ms = 4π

∫ R

0

R′2ρe(R
′)dR′ , (5.19)

the mass of the swept-up environment within the shell.

We now consider the thin shell of swept-up material, with a velocity vs ≃ dR/dt.

In addition, we consider the strong shock limit in equations (5.12) and (5.14), and

assume that the pressure of the shell is equal to the pressure Pb of the hot bubble.

We then obtain:

v2s =

(
dR

dt

)2

=
2

γ + 1

Pb

ρe
. (5.20)

Finally, from equations (5.18)-(5.20) we obtain that the pressure of the bubble

Pb as a function of its external radius R is:

Pb(R) =
E

4π

(
R3

3(γ − 1)
+

∫ R

0
R′2ρe(R

′)dR′

(γ + 1)ρe(R)

)−1

, (5.21)

where the integral that appears in the right hand side has an analytical solution if

we use the analytical fit (given in equations (B.5) and (B.6) of Appendix B) to the

implicit density stratification of the cluster wind solution of Cantó et al. (2000).

We note that in the case of a constant environmental density (which is a good

approximation for the density inside of the cluster) equation (5.21) reduces to the

pressure-energy relation given in Raga et al. (2012c) for a SN bubble that expands

into an uniform density medium. In deriving equation (5.21) we have considered

the strong shock limit for the jump relations (5.14-5.13). This assumption of a

strong shock (for calculating the fraction of the SN energy that goes into thermal

energy of the hot bubble) is inconsistent with the fact that we have allowed a general

(strong/weak) shock in the equation of motion for the outer, thin shell (see equation

5.12). This inconsistency is at the heart of the “thick shell ” formalism developed

in Raga et al. (2012 a,c,d, for the expansion of compact HII regions, wind-driven

HII regions, and supernova blast waves in uniform environments), which we have

followed here to derive our semi-analytical model. However, since the resulting

models only show a weak dependence on the fraction of energy division (between
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thermal energy of the hot bubble and kinetic energy of the shell) this inconsistency

is unlikely to introduce appreciable effects on the model results.

In the next subsection we use the relation between the pressure and the radius

(equation 5.21) to obtain an equation of motion for the expansion of the bubble.

5.2.3 Motion equations for the bubble radius and the shock

For obtaining an equation of motion for the outer radius of the hot bubble we

combine equations (5.15)-(5.17) with (5.21). We also combine equations (5.10),

(5.16) and (5.21) for obtaining an equation of motion for the shock pushed out by

the hot bubble. In dimensionless form, the motion equations for the shock and the

bubble radius are:

dr

dτ
=

2

γ + 1

(
u1 −

(γ − 1)

2

1− u2
e

u1

)
+ ue (5.22)

ds

dτ
= u1 + ue, (5.23)

with

u1 =

(
(γ + 1)

2
Aγσ

pb
̺e

+
(γ − 1)2

4γ
(1− u2

e)

)1/2

, (5.24)

where r ≡ R/Rc is the dimensionless radius of the hot bubble, s ≡ S/Rc is the

dimensionless radius of the outer shock, τ ≡ vwt/Rc, is the dimensionless time,

u1 ≡ v1/vw the dimensionless preshock velocity, ue ≡ ve/vw and ̺e ≡ ρe/ρc are the

dimensionless velocity and density of the preexistent environment. In Appendix B,

we have approximated ue and ̺e by analytic explicit functions of r as fits to the

exact implicit solutions of Cantó (2000).

The pressure of the bubble in units of E/(4πR3
c) is:

pb(r) =

[
r3

3(γ − 1)
+

1

(γ + 1)̺e(r)

∫ r

0

r′2̺e(r
′)dr′

]−1

, (5.25)

and finally, σ is the free dimensionless parameter

σ ≡ E

NRcṀwvw
. (5.26)
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As we have mentioned in the last subsection, our model equation is valid provided

the energy E of the supernova is much larger than the energy input Ew = 1
2
NṀwv

2
wt

due to the stellar winds. This implies the condition

τ << 2σ (5.27)

for the dimensionless time. If we introduce the values of the physical parameters

which give the initial radius of the T-S phase r0 = 1.56 (see equation 5.4) for

calculating the parameter σ we obtain

σ = 41.11

(
E

2× 1051ergs

)(
5× 103

N

)(
0.5pc

Rc

)

×
(
1× 10−6M⊙yr

−1

Ṁw

)(
1000kms−1

vw

)
, (5.28)

where we have chosen a SN energy E = 2× 1051erg, a typical value in core-collapse

supernova, see Woosley&Janka(2005). Alternatively, if we choose a radius of Rc = 5

pc which gives the initial T-S radius r0 = 0.49 (from equation 5.4) we obtain

σ = 4.11

(
E

2× 1051ergs

)(
5× 103

N

)(
5pc

Rc

)

×
(
1× 10−6M⊙yr

−1

Ṁw

)(
1000kms−1

vw

)
. (5.29)

Given a fixed value of σ we integrate numerically equations (5.22)-(5.23) together

with its corresponding initial radius r0, i.e. one integration for r0 = 0.49, σ = 4.11

and another for r0 = 1.56, σ = 41.11.

Given the initial S-T radius r0, we obtain the corresponding initial time in units

of Rc/vw from equation (5.9) as

τ0 =
r0
usn

, (5.30)

with

usn =
vsn
vw

=

(
10αAγσ

3I(r0)

)1/2

, (5.31)

where vsn is the velocity of the ejecta given in equation (5.9) and we have substituted

the ejected mass Msn from equation (5.4). In this way we write the ejected mass

in terms of the T-S radius r0 using equation (5.1). The numerical solutions for the
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outer radius of the SN bubble and for the external SN shock as functions of the time

τ are shown in Figure 5.1 together with the numerical simulations of the gasdynamic

equations (with the corresponding σ and r0 values), which are described in the next

section.

5.3 Numerical simulations

We can describe the evolution of the supernova explosion without the restriction

given by equation (5.27) by integrating numerically the 1D, spherically symmetric,

time-dependent Euler equations with a mass and energy source terms nṀw and
1
2
nṀwv

2
w (respectively). These source terms represent the mass and energy per unit

volume and time injected by the stellar winds (with a number density of n stars per

unit volume) within the cluster (i.e., for R ≤ Rc). In dimensionless form, the Euler

equations take the form:

∂τρ
′ + ∂r(ρ

′v′) = 3Aδ − 2ρ′v′

r
, (5.32)

∂τ (ρ
′v′) + ∂r

(
ρ′v′2 + p′

)
= −2ρ′v′2

r
, (5.33)

∂τE
′ + ∂r (v

′(E ′ + p′)) =
3A

2
δ − 2v′(E ′ + p′)

r
, (5.34)

where E ′ = ρ′v′2/2 + 3p′/2 and the dimensionless density, velocity and pressure are

defined in terms of the corresponding dimensional variables through:

ρ′ ≡ ρ/ρc, v′ ≡ v/vw, p′ ≡ p/(ρcv
2
w) . (5.35)

The dimensionless radius r and time τ are defined in terms of the dimensional

variables R and t as:

r ≡ R/Rc ; τ ≡ tvw/Rc . (5.36)

The δ coefficient is defined as

δ =

{
1 for r < 1

0 for r > 1 .
(5.37)
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We set the initial conditions of our simulations as follows. Inside a small inner

region R < Rsn (where Rsn ≪ Rc), we introduce a hot bubble of gas of constant

density

ρ =
3Msn

4πR3
sn

, (5.38)

where Msn is the mass ejected by the supernova explosion. In this small region

we also set a linear velocity profile (as has been done by Jun & Norman 1996 and

Velázquez et al. 2006):

v =
R

Rsn

vsn, (5.39)

where vsn is the velocity of the material at a radius Rsn (this is the maximum

velocity of the profile). We calculate the velocity vsn of the ejected material and its

pressure p (which we consider uniform) by assuming that the supernova energy E

is divided initially into a fraction of kinetic energy EK = αE and thermal energy

Eth = (1− α)E and using the energy conservation equation

E = 4π

∫ Rsn

0

R2

(
1

2
ρv2 +

p

γ − 1

)
dr = EK + Eth. (5.40)

Then, from equations (5.38)- (5.40) we obtain the initial density, velocity and pres-

sure, in dimensionless form (see equation 5.35) as

ρ′ =
3I(r0)

r3sn
, (5.41)

p′ =
3(1− α)(γ − 1)Aγσ

r3sn
, (5.42)

v′ =

(
10αAγσ

3I(r0)

)1/2
r

rsn
, (5.43)

and we have set the ejected mass Msn in terms of the mass of the pre-existent envi-

ronment of the stellar cluster inside a radius R0 (the T-S radius) by using equation

(5.4). It should be noted that the value of the fraction of kinetic energy of the blast

wave will change as the blast wave evolution proceeds, but in equations (5.41)-(5.43)

we consider the parameter α as the initial fraction. Finally, σ is the dimensionless

parameter of the analytical model described in the previous section.
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For doing numerical integrations of the dimensionless equations (5.32)-(5.34)

with the initial conditions given in (5.41)-(5.43), we considered the values of the

parameters σ and r0 corresponding to the integration of the semi-analytic model.

Therefore we performed a numerical simulation by setting σ = 41.11 and r0 = 1.56

(obtained with the physical parameters of equations 5.6 and 5.28) in the initial con-

ditions. In this numerical simulation we set the initial radius of the ejecta rsn = 0.2.

Alternatively, we performed numerical simulations corresponding to the parameters

σ = 4.11 and 0.49 of the semi-analytic model (obtained with the physical parameter

of equations 5.7 and 5.29). In this numerical simulation we set the initial radius

of the ejecta rsn = 0.1. In both simulations we consider a fraction α = 0.7 for the

kinetic energy of the explosion. We integrate numerically equations (5.32)-(5.34) by

using the “flux vector splitting” algorithm of Van Leer (1982) with second order in

space, in a 1-D mesh of 4000 cells. We describe in Appendix A the this numerical

algorithm.

In Figure 5.1 we show the density of the flow given by the numerical simulations

compared with the corresponding solutions of equations (5.22)-(5.23) of the semi-

analytic model for the temporal evolution of the bubble and the external shock.

5.4 Luminosity

In this section we calculate the X-ray luminosity of the SN remnant as a function

of time. To do this, we approximate the X-ray emission as the free-free emission

coefficient jν integrated over all frequencies and over a volume limited by an outer

radius Rmax, which could be the radius of the external shock S (if we use the semi-

analytic model) or the size of of the computational grid (if we use the gas dynamic

simulations). Then we have

L = 4π

∫ Rmax

0

∫ ∞

0

R′24πjν dνdR′, (5.44)

where

jν = K
ρ2

T 1/2
exp

(
− hν

kT

)
, (5.45)

with

K =
32Z2e4h

3m2
em

2
Hc

34π

(πχz−1

3k

)1/2
, (5.46)
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Figure 5.1: Evolution of the bubble and the driven shock by a SN which goes off in the
centre of a stellar cluster wind. We show the model corresponding to a T-S radius r0 = 0.49
and σ = 4.11 (bottom), obtained by inserting the typical physical parameters of equations
(5.29) and (5.7). Alternatively in the top graph we show the model corresponding to
r0 = 1.56 and σ = 41.11 for the physical parameters of equations (5.6) and (5.28). The
white curves are the radius (in units of Rc) of the bubble (dashed line), and the driven
shock (solid line) as a function of the time (in units of the characteristic time Rc/vw).
These curves are numerical solutions of equations (5.22) and (5.23) of the semi-analytic
model derived in Section 5.2. The colour stratification represents the density of the flow
as a function of radius and time, obtained from the numerical simulations of the spherical
gas dynamic equations (5.32)-(5.34). The simulations were performed with the values
of the characteristic parameters r0 and σ (see the initial conditions in equations 5.41-
5.43) corresponding to the curves of the semi-analytic model. Both simulations have been
performed with the value α = 0.7, which is the contribution of the kinetic energy to the
total energy of the explosion in the initial conditions, as we explain in Section 5.3.
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is the free-free emission coefficient taken from the book of Osterbrock & Ferland

Sausalito (2006). We consider an ideal equation of state in order to write the tem-

perature in terms of the density and pressure of the ionised gas:

T =
mH

2k

P

ρ
, (5.47)

and then, from equations (5.44-5.47) we obtain

L =
4πkK

h

(
mH

2kB

)1/2 ∫ Rmax

0

R′2ρ3/2P 1/2dR′. (5.48)

We can integrate equation (5.48) using the solutions of the semi-analytical model or

from the numerical simulations of the full gasdynamic equations (5.32)-(5.34).

When applying the semi-analytical model we divide the emission into a “hot

bubble” and a “shell” component:

∫ S

0

R′2ρ3/2P 1/2dR′ =

∫ R

0

R′2ρ
3/2
b P 1/2dR′ +

∫ S

R

R′2ρ
3/2
sh P 1/2dR′, (5.49)

where

ρb =
3Msn

4πR3
, (5.50)

is the density of the SN bubble (which we consider to be uniform). We calculate the

density of the shell of swept up material as

ρsh =
3

S3 −R3

∫ S

0

R′2ρe(R
′)dR′, (5.51)

and we also consider it as uniform. In both terms of the RHS of equation (5.49)

we use equation (5.21) for setting an uniform pressure as a function of the external

radius of the bubble, obtaining:

L = K1σ
1/2L0p

1/2
b (r)

[(
I(r0)

r

)3/2

+
I(s)3/2

(s3 − r3)1/2

]
, (5.52)
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with

K1 =

(
3mHk

2A3
γ

)1/2
K

4πh
, (5.53)

and

L0 ≡

(
NṀw

)2

vwRc

, (5.54)

for the luminosity of the SN remnant at a given time.

If we use the numerical simulations for calculating the luminosity (equation 5.48),

we take the solutions for the density and pressure, and we add the contributions of

all the computational cells:

L = K2L0 (∆r)3
∑

i

i2ρ′
3/2
i p′

1/2
i , (5.55)

with

K2 =

(
mHk

2A4
γ

)1/2
K

4πh
(5.56)

for each time-step of the simulation.

Let us note that if we vary the values of the number of stars N and the cluster

radius Rc in such a way that we keep the product NRc constant, we obtain the same

value for the parameters σ and r0 (as can be seen from equations 5.4 and 5.26), but

we obtain different luminosities as can be seen from equation (5.54).

In Figure 5.2, we plot the luminosities given by equations (5.52)-(5.55) and we

have chosen the model of σ = 41.11 and r0 = 1.56 given by the values of the physical

parameters E = 2× 1051 erg, Msn = 5 M⊙, vw = 1000 km s−1, Ṁw = 1× 10−6 M⊙

yr−1, N = 5 × 103 and Rc =0.5 pc. Alternatively, if we choose the values N = 103

and Rc = 2.5 pc, we obtain a model of a luminosity diminished by a factor of 125

(as can be seen from equation 5.54), but this change gives the same values σ = 41.11

and r0 = 1.56.

5.5 Summary and discussion

We have developed a semi-analytical model for a supernova blast wave which goes off

in the centre of a stellar cluster outflow. We have then compared this model with

numerical simulations with the full, spherically symmetric Euler equations (with
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Figure 5.2: Comparison between the semi-analytic approach (dashed lines, see equation
5.52) and the computation obtained from the gasdynamic simulation (solid lines, see equa-
tion 5.55), for the X-ray luminosity (in units of the solar luminosity), as a function of time
(in units of Rc/vw) of the resulting flow due to the SN explosion within a cluster wind.
The upper curves were calculated for a SN of E = 2× 1051 erg, Msn = 5 M⊙ in a cluster
wind of Ṁw = 10−6M⊙yr

−1, vw = 1000 kms−1 (of the individual stars), N = 5× 103 stars
inside a radius of Rc = 0.5 pc which gives σ = 41.11 and r0 = 1.56 (see equations 5.28
and 5.6). The lower curves are calculated with the same physical parameters but with
N = 1× 103 and Rc = 2.5 pc, which gives the same value of σ and r0.
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appropriate mass and energy source terms).

From the semi-analytical approach we have derived dimensionless equations of

motion for the external radius of the SN bubble (equation 5.22) and for the radius

of the outer shock (equation 5.23). For deriving these equations we assumed that

the blast wave is in the T-S phase, with an approximately uniform pressure inside

the SN bubble. This phase has an initial radius R0, which we have estimated as the

point at which the mass Msn of the SN ejecta is equal to the swept-up mass of the

pre-existent cluster wind (see equations 5.1-5.4) given by the model of Cantó et al.

(2000).

We found that for a massive cluster of ∼ 1000 O stars each one with the typical

values Ṁw = 1 × 10−6M⊙ yr−1 and vw = 1000 kms−1 inside a cluster of radius

Rc ∼ 0.5 pc, the T-S radius R0 of a SN remnant with a typical ejected mass Msn ∼ 5

M⊙ is in the R0 > Rc regime (see equation 5.6). Alternatively, we found that the

SN remnant is in the R0 < Rc regime for the same physical parameters but with a

cluster of radius Rc ∼ 5 pc. (see equation 5.7).

However it is often found that the mass of a core collapse SN ejecta can be several

times greater than 5 M⊙. At the same time, the terminal wind velocities of O stars

can be of vw = 4000 km s−1. Therefore from equation (5.4) we see that for massive

clusters of O stars, it would be more likely to find SN blast waves in the R0 > Rc

regime.

The model equations of our semi-analytic approach, which are characterised by

the dimensionless parameter σ, have been derived with the general form of the

Rankine-Hugoniot conditions and by following the formulation of Raga et al. (2012

a,c,d, see Section 5.2), which gives equations of motion which allow the appropriate

strong/weak transition of the driven external shock. However we can see from

equations (5.22) and (5.23) that in the R > Rc region, the SN bubble always drives

a strong shock, since in this region ue = ve/vw → 1 rapidly (see Figure 5.1) and

then equations (5.22)-(5.23) remain in the strong shock limit.

We have solved numerically these equations for two different values of the pa-

rameter σ, one corresponding to the R0 < Rc regime, and the other to the Rc > R0

case (see equations 5.28-5.29), and compared these solutions with the gas dynamic

simulations (equations 5.32-5.34), which are also characterised by the corresponding

value of the parameter σ in the initial conditions (see equations 5.41-5.43). These
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solutions are shown in Figure 5.1, where we can see that the semi-analytical and fully

numerical approaches give very similar positions for the outer shock as a function of

time. However, the semi-analytical solution of the R0 > Rc regime overestimates the

position of the SN bubble radius in comparison with the corresponding numerical

simulation. This is due to the fact that in this R0 > Rc regime, the T-S phase is

reached in a ∼ R−2 stratified environment and then the reverse shock of the ejected

material always expands behind the bubble radius (as can be seen in the top graph

of Figure 5.1). Therefore the SN bubble is far from having an uniform pressure even

at early times, which is not consistent with the assumptions of the semi-analytic

model (see section 5.2). This is not the case in the R0 < Rc regime (bottom graph

of Figure 5.1), where the T-S phase is reached in an approximately flat density envi-

ronment and then the reverse shock goes back to the origin of the explosion and the

SN bubble has an approximately uniform pressure at least at early times (when the

mass and energy injection from the stars of the cluster is negligible). The behaviour

of the reverse shock has been described in Truelove & McKee (1999), who model

the SN blast wave and reverse shock with different initial stratifications of the ejecta

and the environment. However the cluster wind model which we take as the initial

environment is a little more complex since it is accelerated until a terminal wind

velocity and has a transition from “flat” to ∝ R−2 stratification density.

Finally, we have also calculated an estimate of the X-ray luminosity by integrat-

ing the free-free emission coefficient using the semi-analytic model (considering the

emission of the bubble and the shell), and the numerical simulations. From Figure

5.2 we see that these two approaches give luminosities that decay as a function of

the time. The semi-analytic model (which starts at the time in which the T-S phase

begins) first overestimates and at later times underestimates the luminosity. The

early overestimation of the luminosity (in the analytic model) is a result of the fact

that the radius of the hot bubble is larger in the semi-analytic model (see Figure

5.2), leading to an enhanced density in the outer shell (which dominates the X-ray

luminosity). At later times, the numerical simulations produce larger X-ray lumi-

nosities because the cluster wind flow begins to be regenerated. This effect is not

present in the semi-analytic model, which does not include the energy and mass

source terms necessary for regenerating the cluster wind.

We also show that the luminosity changes appreciably if we vary the number of
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stars N , and the radius Rc of the cluster in such a way that the product NRc remains

constant (which fixes the values of the parameters σ and r0). In Figure 5.2 we show

this effect by showing two models with r0 = 1.56 and σ = 41.11 (see equations

5.6 and 5.29), but with (N = 5000, Rc = 0.5 pc) and (N = 1000, Rc = 2.5 pc),

respectively. We find that the luminosity differs by approximately two orders of

magnitude between these two models.

As can be seen from Figure 5.2, a SN going off in the centre of a cluster wind flow

increases its X-ray luminosity by ∼ 3 orders of magnitude. This increased luminosity

decays over a period of ∼ Rc/vw (∼ 500 yr for Rc ∼ 0.5pc and vw ∼ 1000 km s−1)

to its undisturbed cluster wind value. Such increased luminosities might be seen in

X-ray observations of massive stellar clusters. Therefore, the models developed in

this paper could be applied in the context of the observations of Jaskot et al. (2011)

of young super-shells (i.e. DEM L50, DEM L152 in the large Magallanic cloud)

driven by the stellar wind and SN explosions, with soft X-ray luminosities around

1036 erg s−1. These star clusters are immersed in their parental clouds. Our models

could also be applied in super-shells without parental cloud gas but with evidence of

supernova explosions, e.g. N70 (see Rodŕıguez-González et al. 2011), which presents

total X-ray luminosities around 1035 erg s−1 as a result of the interaction between

the supernova explosion and the super-shell formed by the stellar cluster.

In some objects, an appreciable amount of X-ray emission might be produced in

the region of interaction between the cluster wind and the outer, swept-up shell of

environmental material. The contribution from this region is likely to be important

in the early stages of a cluster wind flow (when it is expanding into the dense

environment out of which the cluster stars have formed), and would show a limb-

brightened structure. Models in which the emission from this shell is included will

be necessary for modelling objects with limb-brightened X-ray emission maps.
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Chapter 6

Conclusions

This thesis studies feedback produced by massive stars, focusing on HII regions and

SN remnants. In the case of HII regions we study the effect of radiation pressure

in the nebular structure. In the case of SN remnants we study blast waves that

expands in a pre-existing star cluster wind. The motivation for these studies are the

difficulties that the standard models of wind-bubbles face to explain the properties

of particular interstellar bubbles. For instance, to alleviate the over-estimations that

the model of Castor et al. (1975) predicts (e.g. X-ray emission, expansion velocity),

it has been suggested that the stellar winds escapes through gaps and leaky structure

in the bubbles. In other cases SN events has been suggested to enhance the diffuse

X-ray emission predicted by the cluster-wind models of Chevalier & Clegg (1985)

and Cantó et al. (2000), and obtain a better agreement with observations (see the

Introduction in Chapter 1 and reference therein).

In Chapter 3 we study spherical HII regions dominated by radiation pressure

(based in previous works claiming that radiation pressure is an important source

of feedback, see subsection 2.3.3 and references therein), where we include the out-

wardly directed forces on the gas due to the absorption of photons by (i) dust grains

and (ii) photoionised processes. In this model we neglect the contribution of the stel-

lar wind to the internal pressure of the nebula, assuming that the gas of this wind

escapes through leaky structures or/and the wind is weak (as is found in B-type

stars).

In our approach we discuss mathematical approximations that allow us to obtain

an analytic solution for the density distribution, in terms of the total luminosity of
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the central star L∗, the dust absorption cross section σd and the external boundary

of the nebula Rs.

The general morphology of this solution is a photoionised sphere with maxi-

mum density at the boundary Rs, and a density cavity at the centre. In particular,

radiation pressure creates significant central cavities and drive strong density strati-

fications when the parameters of the system are such that Rs . σdL∗/(8πkT ). Also,

if the system is close to this configuration, the size reduction effect of dusty HII

regions (found in previous models with dust absorption but not including radiation

pressure) now disappears. We compare our solution with numerical integrations of

the model equations of Draine (2011) (who studied the same problem numerically)

and find a very good agreement between both models (see Figure 3.4). With the

analytic solution we reproduce the central cavities of the shell-like compact HII re-

gions NGC 6334A and NGC 6334E, without taking into account the stellar winds

(see Figure 3.10).

Our analytic model does not include the effect of gravitational forces. Thus,

this model is suitable for HII regions powered by a single massive star, since the

mass of HII regions powered by an ionising source equivalent to several massive

stars, produce a non-negligible gravitational potential. On the other hand, the

static spherical model discussed in Chapter 3 does not apply for hyper-compact

HII regions. This type of nebula has a size of ∼ 0.001 pc and a photoionised gas

with a typical mass of ∼ 10−3 M⊙ see (Kurtz & Franco 2002). In this regime the

gravitational field of the central star should be included (see Keto 2003).

In Chapter 4 we extend the radiation pressure forces discussed in Chapter 3 to

a plane-parallel configuration, which corresponds to an ionised gas slab powered

by a planar distribution of stars. This configuration is found in the context of ex-

tended star forming episodes in galactic disks (see Haehnelt 1995), or star formation

triggered by cloud-cloud collisions (see the review of Elmegreen 1998 and reference

therein). The radiation pressure then provides vertical support for the ISM against

the gravitational potential, for which our model considers the stellar mass and the

self-gravity of the gas.

We obtain hydrostatic profiles of a planar photoionised region in pressure balance

with a covering neutral layer (see figure 4.2). This structure has different extensions

(of the photoionised and neutral zones) according to the chosen parameter config-
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uration of the system (see equations 4.58 and 4.59). Some solutions have narrow

and dense neutral layers. This motivated us to apply the Jeans stability criterion

for slabs (presented in section 2.2), to evaluate the gravitational stability of the so-

lutions, resulting most of them in stable configurations. However, we find unstable

cases which correspond to a configuration of dusty ISM with superficial stellar mass

Σ∗ ∼ 60 M⊙pc
−2 and gas density nc ∼ 40 cm−3 on the stellar plane. In this configu-

ration we would have star formation triggered by the combined effects of self-gravity

and radiation pressure.

The main limitation to the models presented in Chapters 3 and 4 is that they are

hydrostatic. Photoionised regions in galaxies are generally in an expansion phase,

and do not reach a hydrostatic configuration before some of the stars begin to have

supernova explosions. However, it is clear that models of expanding photoionised

regions rapidly reach a regime of subsonic expansion (relative to the sound speed of

the ionised gas, see, e.g., Raga et al. 2012). Our present, hydrostatic solutions are

appropriate for describing the internal structure of such slowly expanding regions.

Finally, in Chapter 5 we developed a semi-analytic model for a SN blast wave

that expands in the centre of a pre-existing cluster wind produced by the individual

winds of the massive stars in the cluster (we adopt the model of Cantó et al. 2000

for this cluster wind). Our semi-analytic model gives the radius of the bubble of

ejected material as well as the outer shock of the blast wave as a function of time in

dimensionless form. This solution is determined by two dimensionless parameters;

r0 characterising the radius where the T-S phase begins, and σ characterising the

energy of the SN with respect to the energy of the cluster wind (see equations 5.6

and 5.26 ). The model for the blast wave is based on the “thick shell” formalism

of Raga et al. (2012c), which allows a strong/weak transition for the outer shock.

However our solutions are always found in the strong shock regime.

We compare the semi-analytic model with spherical symmetric, gas dynamic

simulations and obtain a satisfactory agreement between both models (see Figure

5.1). We find that blast waves produced by type II SNe are likely to begin the T-S

phase outside the cluster radius. In this case the reverse shock of the SN remnant

never goes back to the centre of the explosion and always expands behind the contact

discontinuity of the ejected material (see the top panel of Figure 1). This is because

the T-S phase is attained where the medium has a density stratification ∝ R−2.
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We calculate the total X-ray luminosity of the resulting flow, and obtain for

instance that in a cluster of 2.5 pc with 1000 O stars, the blast wave increases the

X-ray luminosity of the cluster wind by ∼ 3 orders of magnitude (see Figure 5.2).

This increased luminosity decays over a period of ∼ 1000 yr to its undisturbed

cluster wind value, and remain enhanced by two order of magnitude during ∼ 100

yr. Such increased luminosities could be applied to interpret X-ray observations of

massive star clusters as e.g. NGC 3603 and the Quintuplet cluster, where SN events

are likely to occur.

A direct application of the work presented in this thesis is the implementation of

gravity and radiation pressure terms in the hydrodynamic code used in Chapter 5,

to obtain the time dependent description of expanding HII regions when gravity and

radiation pressure are important. In this manner, we could obtain results beyond

the limitations of the analytic models of HII regions presented in this thesis.
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Appendix A

Numerical Method for Gas

Dynamic Equations

In this appendix we describe the numerical method that we use to integrate equations

(5.32)-(5.34), which is a non-linear partial hyperbolic system. These equations are

proposed to study the temporal evolution of the flow resulting after a SN explosion

that goes off in the centre of a stellar cluster wind (see subsection 2.4).

We use the Van Leer Flux Vector Splitting (Van Leer 1982) which gives the

hydrodynamic variables ρ, v and p at each timestep, given the initial values of the

flow. As we discussed in section 2.3, the problem can be studied with spherical

symmetry, which results in a 1-D spatial problem.

The system of equations (5.32)-(5.34) can be written in vector form as

∂tU+ ∂RF = S, (A.1)

where

U =




ρ

ρv

E


 , F =




ρv

ρv2 + p

v(p+ E)


 , S =




−2ρv
R

+ nṀw

−2ρv2

R

−2v(E+p)
R

+ 1
2
nṀwv

2
w,


 , (A.2)

with E = ρv2/2 + p/(γ − 1).

If we discretise the spatial domain, in N computational cells, we can define at

a time t the matrix U(t) of conserved quantities, with matrix elements U t
ij; i =
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1, 2, ...N , j = 1, 2, 3 as

U t
i1 =ρi, (A.3)

U t
i2 =ρivi (A.4)

y U t
i3 =

1

2
ρiv

2
i +

pi
γ − 1

. (A.5)

Analogously, we define the elements of the matrices F (t) y S(t).

If the time t is the initial time t = 0, the matrices U(t), F (t) y S(t) are defined

with the values of the hydrodynamic variables ρi y vi y pi that we set up as initial

condition of our problem This is the stationary cluster wind flow, for which we use

the analytic fits given in Appendix B, (since the exact solution of the cluster wind

flow is given in implicit form) together with the hot ball of ejected material, due to

the SN explosion (see Section A.3 of appendix A).

Then, the elements of the evolved matrix U(t + ∆t) of conserved quantities is

obtained as

U t+∆t
ij = U t

ij −
∆t

∆R

[
(f+

ij + f−
i+1j)− (f+

i−1j + f−
ij )
]
+∆tSij, (A.6)

where the elements of the flux matrices f+
ij y f−

ij are calculated as

f+ =




ρc
4
(M + 1)2

ρc2

4γ
(M + 1)2 [(γ − 1)M + 2]

ρc3

4
(M + 1)2 [(γ − 1)M + 2]2 / [2 (γ2 − 1)]


 , (A.7)

and f− = F− f+ if |M | < 1.

F is the flux matrix given by (A.2) and equation (A.7) is written in terms of the

sound speed c =
√
γp/ρ and the Mach number M = v/c.

For the supersonic case, there is no partition in the flux, and then

f+ = F if M > 1, (A.8)

f− = F if M < −1. (A.9)

∆R is the spatial separation between successive computational cells, which we con-
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sider as fixed. The size of the timestep ∆t is calculated with the Courant criterion

∆t =
C0

maxi{(|v|+ c) /∆Ri}
, (A.10)

where C0 < 1 is the Courant number, and we use C0 = 0.6.

This algorithm for calculating the matrices f+ y f− is the so-called Van Leer Flux

Vector Splitting method, which is obtained from 7 suitable mathematical criteria, for

the propagation of shock in the gas dynamic equations (see Van Leer, 1982).
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Appendix B

Analytic Fit to the Implicit

Solution of the Cluster Wind

The analytic solution for the radial velocity of the cluster wind, given in the model

of Cantó et al. (2000) for a spherical stellar cluster with a uniform distribution of

stars is

ue

[
1 +

5γ + 1

γ − 1
u2
e

]−(3γ+1)/(5γ+1)

= Aγr, (B.1)

for the wind flow inside the cluster, and

ue(1− u2
e)

1/(γ−1) =
Bγ

r2
, (B.2)

for the wind flow outside the cluster, with Aγ and Bγ two constants which depend

on the specific heat ratio γ = cp/cv:

Aγ =

(
γ − 1

γ + 1

)1/2(
γ + 1

6γ + 2

)(3γ+1)/(5γ+1)

, (B.3)

Bγ =

(
γ − 1

γ + 1

)1/2(
2

γ + 1

)1/(γ−1)

, (B.4)

where r is the radius in units of the cluster radius Rc, and ue the flow velocity

in units of the terminal wind velocity of the single stars vw. We have fitted these
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implicit solutions for the velocity ue with simple explicit functions of the radius r

ue =





Aγ [r
−1 + (2Aγ − 1) r3]

−1
for r < 1,

1
2
+ 2

5
(r − 1)1/3 for 1 < r < 2,

(
1 + 1

3
r−3/2

)−1
for r > 2 .

(B.5)

This velocity as a function of radius is appropriate for building our semi-analytic

model of the SNR evolution of section 3, and for setting up the initial conditions of

the numerical simulations of the gasdynamic equations in section 4. In Figure C.1

we show a comparison of the exact implicit solutions given by equations (B.1), (B.2)

with our fits of the velocity as a function of radius.

With the help of equation (B.5) we also obtain the cluster wind density ρe, in

units of the central density ρc, as a function of radius r, according to the model of

Cantó et al (2000)

̺e ≡
ρ

ρc
=

{
Aγr/ue for r < 1,

Aγ/ (r
2ue) for r > 1 .

(B.6)

By using the analytic fits given in equation (B.5) together with equation (5.2),

the integral of equation (5.5), which also appears in the RHS of equation (5.25), has

an analytic expression:

I(r) ≡
∫ r

0

r′2̺(r′)dr′

=





I1(r)− I1(0) for r < 1,

I1(1)− I1(0) + I2(r)− I2(2) for 1 < r < 2,

I1(1)− I1(0) + I2(2)− I2(1) + I3(r)− I3(2) for r > 2 .

(B.7)

with

I1(r) =
r3

3
+ (2Aγ − 1)

r7

7
, (B.8)

I2(r) = Aγ
15

32

[
8(r − 1)2/3 − 20(r − 1)1/3 +

25ln{4(r − 1)1/3 + 5}
]
, (B.9)

I3(r) = Aγ

(
r − 2

3
r−1/2

)
. (B.10)
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Figure B.1: Analytic fit for the cluster wind velocity as a function of radius (dashed line)
given in equation (B.5), and the exact implicit analytic solution (solid line), given by
equations (B.1) and (B.2), for the stationary cluster wind velocity model of Cantó et al.
(2000). We plot the velocity in units of vw (the wind velocity of the individual stars) as a
function of radius in units of the cluster radius Rc.
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Appendix C

Glossary of Abbreviations,

Constants and Symbols

Ejecta: Ejected material.

Feedback: Radiative and mechanical en-

ergy injected by massive stars into the

interstellar medium.

H: Hydrogen atom.

He: Helium atom.

HII: Ionised hydrogen.

ISM: Interstellar medium.

IMF: Initial mass function.

LHS: Left hand side.

OIII: doubly ionised oxygen.

RHS: Right hand side.

SF: Star formation.

SN: Supernova.

SNR: Supernova remnant.

T-S: Taylor-Sedov, in the context of the

non-radiative phase of supernova rem-

nants.

UC HII region: ultracompact HII region.

X-ray: Electromagnetic radiation with

wavelengths in the range of 0.01 -10 nm.

L∗: Stellar luminosity, (erg s−1).

S∗: Ionising photon rate, (s−1).

γ = CP/CV , specific heat ratio.

M⊙ = 1.99× 1033 g, solar mass.

L⊙ = 3.9× 1033 erg s−1, solar luminosity.

yr= year.

mH = 1.673× 10−24 g, hydrogen mass

pc=3.086×1018 cm, parsec.

h = 6.626× 10−27 erg s, Plank constant.

k = 1.38 × 10−16 erg K−1, Boltzmann

constant.

G = 6.672 × 10−8 cm3 g−1 s−2, gravita-

tional constant.

c = 2.997× 1010cm s−1, speed of light in

vacuum.
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