

# UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIAS BIOLÓGICAS

FACULTAD DE MEDICINA BIOLOGÍA EXPERIMENTAL

# EVALUACIÓN DEL EFECTO DEL FILM EN LA RECUPERACIÓN MOTORA Y EXPRESIÓN DE GENES DE FASE AGUDA EN RATAS CON LESIÓN TRAUMÁTICA DE LA MÉDULA ESPINAL

## **TESIS**

QUE PARA OPTAR POR EL GRADO DE:

#### MAESTRO EN CIENCIAS BIOLÓGICAS

#### PRESENTA:

#### HERRERA GARCÍA JUAN SALVADOR

TUTOR PRINCIPAL DE TESIS: DR. RAÚL SILVA GARCÍA CENTRO MÉDICO NACIONAL SIGLO XXI, IMSS COMITÉ TUTOR: DRA. LETICIA MORENO FIERROS

FACULTAD DE ESTUDIOS SUPERIORES - IZTACALA, UNAM

COMITÉ TUTOR: DRA. HAYDEÉ ROSAS VARGAS

CENTRO MÉDICO NACIONAL SIGLO XXI, IMSS





UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

#### DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.



Lic. Ivonne Ramírez Wence
Directora General de Administración Escolar, UNAM
Presente

Me permito informar a usted que el Subcomité de Biología Experimental y Biomedicina del Posgrado en Ciencias Biológicas, en su sesión ordinaria del día 13 de febrero de 2017, aprobó el jurado para la presentación del examen para obtener el grado de MAESTRO EN CIENCIAS BIOLÓGICAS del alumno HERRERA GARCÍA JUAN SALVADOR con número de cuenta 408036801, con la tesis titulada "EVALUACIÓN DEL EFECTO DEL FILM EN LA RECUPERACIÓN MOTORA Y EXPRESIÓN DE GENES DE FASE AGUDA EN RATAS CON LESIÓN TRAUMÁTICA DE LA MÉDULA ESPINAL", realizada bajo la dirección del DR. RAÚL SILVA GARCÍA:

Presidente: DR. MAURICIO SALCEDO VARGAS

Vocal: DR. FAUSTO SÁNCHEZ MUÑOZ

Secretario: DRA LETICIA MORENO FIERROS

Suplente: DR. MIGUEL ÁNGEL VELÁZQUEZ FLORES

Suplente: DRA HAYDEÉ ROSAS VARGAS

Sin otro particular, me es grato enviarle un cordial saludo.

A T E N T A M E N T E

"POR MI RAZA HABLARÁ EL ESPÍRITU"

Cd. Universitaria, Cd. Mx., a 05 de abril de 2017

DRA. MARÍA DEL CORO ARIZMENDI ARRIAGA COORDINADORA DEL PROGRAMA

## **Agradecimientos**

Agradezco al programa de Maestría del Posgrado en Ciencias Biológicas de la Universidad Nacional Autónoma de México (UNAM) la oportunidad de continuar mi formación profesional en un área de conocimiento que por demás me apasiona y me da tantas satisfacciones.

Al Consejo Nacional de Ciencia y Tecnología (CONACyT), por el financiamiento al proyecto con número de registro 168202 y el apoyo brindado a mi persona y a todos los futuros profesionistas con su programa de becas como la que me fue otorgada (CONACyT CVU/BECARIO 632230/290915).

Al Instituto Mexicano del Seguro Social (IMSS) por su financiamiento al proyecto 2007-785-035 y su recibimiento y apoyo a tesistas del área de Ciencias de la Salud con su programa de apoyo a estudiantes en el cual estuve inscrito (MATRICULA IMSS/FOLIO 99096793/2015-038).

A mis tutores, Dra. Leticia Moreno, Dra. Haydée Rosas y Dr. Raúl Silva por su orientación, confianza y motivación por buscar más de mí en lo personal y profesional.







A Isalia Torres, por su apoyo incondicional.

A mis compañeros de laboratorio.

Al Dr Jorge Ramírez Salcedo de la Unidad de Microarreglos del Instituto de Fisiología Celular (Ciudad Universitaria, UNAM) por la asesoría en la elaboración y análisis de los microarreglos.

A la MVZ Rocio Chavez Trejo, quien con toda su paciencia nos auxília en las oficinas de posgrado en la parte más difícil de la maestría, la parte administrativa.

A todos gracias.

)

A mis padres

## Índice

| Índice de tablas                                      | i  |
|-------------------------------------------------------|----|
| Índice de figuras                                     |    |
| indice de figuras                                     |    |
| Resumen                                               | 1  |
| Abstract                                              | 2  |
| Introducción: conceptos clave                         | 3  |
| Anatomía de la médula espinal                         | 3  |
| Histología                                            | 4  |
| Fisiopatología de la LTME                             | 7  |
| Fase aguda                                            | 7  |
| Fase sub-aguda                                        | 8  |
| Estrategias de neuroprotección                        | 10 |
| Factor Inhibidor de la Locomoción de Monocitos (FILM) | 11 |
| Justificación                                         | 13 |
| Hipótesis                                             | 13 |
| Objetivo general                                      | 13 |
| Objetivos particulares                                | 13 |
| Metodología                                           | 14 |
| Consideraciones éticas                                | 14 |
| Animales de estudio                                   | 14 |
| Lesión traumática de la médula espinal (LTME)         | 14 |
| Preparación y administración del (FILM)               | 14 |
| Estrategia experimental                               | 14 |
| Evaluación de la recuneración motora                  | 16 |

| Obtención de RNA total (RNAt)                                                       | 16 |
|-------------------------------------------------------------------------------------|----|
| Microarreglos                                                                       | 16 |
| Bioinformática                                                                      | 17 |
| Validación de expresión en PCR Tiempo-Real                                          | 17 |
| Método estadístico a aplicar en todo el estudio                                     | 18 |
| Resultados                                                                          | 19 |
| La administración de FILM promueve la recuperación motora de ratas con LTME         | 19 |
| El FILM modifica la expresión de familias de genes implicados en la neuroprotección | 24 |
| Validación por qPCR                                                                 | 26 |
| La administración de FILM modifica la expresión de iNOS, Bcl2l10, Egr2 y Vim        | 28 |
| Discusión                                                                           | 30 |
| Conclusiones                                                                        | 33 |
| Literatura Citada                                                                   | 34 |
|                                                                                     |    |
| Anexos                                                                              | a  |
| Anexo 1 – Carta dermatomo                                                           | a  |
| Anexo 2 – Escala BBB                                                                | b  |
| Anexo 3 – Listas de genes modificados en microarreglos                              | c  |
| Tabla A1.1 – Genes del grupo Ina sobre-expresados en microarreglos                  | c  |
| Tabla A1.2 – Genes del grupo Ina sub-expresados en microarreglos                    | d  |
| Tabla A2.1 – Genes del grupo 3a sobre-expresados en microarreglos                   | e  |
| Tabla A2.2 – Genes del grupo 3a sub-expresados en microarreglos                     | f  |
| Tabla A3.1 – Genes del grupo 7a sobre-expresados en microarreglos                   | g  |
| Tabla A3.2 – Genes del grupo 7a sub-expresados en microarreglos                     | h  |

| Anexo 4 – Descripción de contenido de grupos y subgrupos de diagrama de Venn i |
|--------------------------------------------------------------------------------|
| Tabla Va – Subgrupo "a"; 331 elementos comunes en "Ina", "3a" and "7a" i       |
| Tabla Vb – Subgrupo "b"; 95 elementos comunes en "Ina" and "7a" j              |
| Tabla Vc – Subgrupo "c"; 95 elementos comunes en "Ina" and "3a" j              |
| Tabla Vd – Subgrupo "d"; 151 elementos comunes en "3a" and "7a" j              |
| Tabla Ve – Subgrupo "e"; 205 elementos exclusivos de "Ina" k                   |
| Tabla Vf – Subgrupo "f"; 153 elementos exclusivos de "3a" k                    |
| Tabla Vf – Subgrupo "f"; 153 elementos exclusivos de "3a"                      |

## Índice de tablas

| Tabla 1 – Descripción gráfica de los grupos de estudio                                 | 15          |
|----------------------------------------------------------------------------------------|-------------|
| Tabla 2 – Genes expresados diferencialmente entre los grupos FILM y PBS y funciones as | sociadas al |
| efecto protector                                                                       | 25          |
| Tabla 3 – Selección de genes para pruebas confirmatorias                               | 26          |
| Tabla 4 – Diseño de oligos para el análisis de confirmación                            | 27          |
| Índice de figuras                                                                      |             |
| Figura 1 – Médula espinal y sus nervios espinales                                      | 3           |
| Figura 2 – Organización de los nervios espinales                                       | 4           |
| Figura 3 – Esquema de una neurona                                                      | 4           |
| Figura 4 – Sección transversal de médula espinal humana                                | 5           |
| Figura 5 – Progresión de la respuesta inflamatoria en el parénquima medular            | 9           |
| Figura 6– Evaluación de habilidad motora con prueba BBB a campo abierto                | 20          |
| Figura 7 – Visualización de integridad de RNA en gel de agarosa                        | 21          |
| Figura 8 – Visualización de integridad pool en gel de agarosa                          | 21          |
| Figura 9 – Micoarreglos en placa                                                       | 22          |
| Figura 10 – Genes expresados diferencialmente por efecto del FILM en un modelo de LTI  | νΕ 23       |
| Figura 11 – Dendrograma y mapa de calor                                                | 24          |
| Figura 12 – Curva de amplificación representativa de qPCR                              | 27          |
| Eigura 12 – Validación de expreción en gDCP                                            | 20          |

#### Resumen

Después de la lesión traumática de la médula espinal (LTME), se desencadenan mecanismos autodestructivos que causan procesos neurodegenerativos inmediatos y crónicos que pueden dañar funciones motora, autonómica y de sensibilidad. Varios estudios muestran los efectos de esta respuesta inflamatoria y afirman que el equilibrio entre beneficioso y dañino depende de su intensidad y que los mayores daños secundarios ocurren durante la fase aguda. No existe una terapia totalmente restauradora para la LTME, pero las estrategias para la modulación de la inflamación proporcionan evidencias que la rehabilitación después de la LTME puede ser posible. El factor inhibidor de la locomoción de monocitos (FILM) es un pentapéptido que in vitro regula la expresión de moléculas inflamatorias e incrementa la expresión de genes de proliferación, angiogénesis, vasculogénesis y orientación axonal. En este contexto, es necesario conocer el efecto del FILM sobre la expresión de genes relacionados con la neuroprotección, degeneración e inflamación, en un modelo in vivo. El objetivo de este estudio fue evaluar si el FILM ejerce un efecto neuroprotector que promueve la recuperación motora modulando la expresión de genes de fase aguda en ratas sometidas a un modelo de LTME. Dos diseños experimentales utilizando 75 ratas Sprague Dawley divididas en 5 grupos: Sham, PBS, y FILM en 1, 3 y 7 aplicaciones. Todos los grupos se sometieron a una laminectomía a nivel T9 y a una lesión moderada, seguida por la aplicación de FILM o PBS se acuerdo al grupo. La primera aplicación de FILM o PBS se administró en el sitio de la lesión y las subsecuentes se realizaron intraperitonealmente cada 24 horas. En el primer diseño experimental, la capacidad motora de las ratas tratadas se evaluó durante 8 semanas utilizando la escala "BBB". FILM mostró diferencias significativas en comparación con el grupo control ( $\alpha = 0.01$ ); así mismo, los grupos con dosis múltiples mostraron mejor recuperación motora que el grupo con una sola dosis. En el segundo diseño experimental, 3 horas después de la aplicación del último tratamiento en cada grupo se sacrificaron las ratas y se obtuvo 1 cm de médula espinal del sitio de la lesión; se purificó el RNA y se realizaron estudios de expresión por medio de microarreglos. Se observó la modificación de la expresión de diferentes familias de genes, particularmente de genes de regulación de muerte y sobrevida celular y se seleccionaron candidatos para su validación. Se encontró que el factor produce la sub expresión de iNOS, así como la sobre expresión de Egr2, Bcl2l10 y Vim, lo cual indica que el FILM ejerce un efecto neuroprotector al disminuir el estímulo oxidativo y beneficiar la preservación por factores de sobrevida, crecimiento y estabilidad celular. En conclusión, los protocolos de administración de FILM 3a y 7a mejoran la recuperación motora de ratas con una LTME en comparación a la aplicación de FILM en dosis única; el FILM ejerce sus efecto protector al promover la expresión de familias de genes relacionados con la formación de uniones celulares, preservación estructural, remielinización de axones y control de apoptosis, el factor confiere un efecto neuroprotector al promuever la sub expresión de iNOS y la sobre regulación de Bcl2l10, Egr2 y Vim.

#### **Abstract**

After spinal cord injury (SCI) self-destructive mechanisms are triggered, such may cause immediate and chronic neurodegenerative processes that can damage motor, autonomic and sensitivity functions. Several studies show the effects of this inflammatory response and affirm that the balance between beneficial and harmful depends on its intensity and that the major secondary damages occur during the acute phase. There is no fully restorative therapy for SCI, but strategies for modulating inflammation provide evidence that rehabilitation after SCI may be possible. Monocyte locomotion inhibitory factor (MLIF) is a pentapeptide that regulates the expression of inflammatory molecules and increases the expression of genes for proliferation, angiogenesis, vasculogenesis and axonal orientation in vitro. In this context, it's necessary to know the effect of MLIF on the expression of genes related to neuroprotection, degeneration and inflammation, in an in vivo model. The objective of this study was to evaluate if the MLIF exerts a neuroprotective effect that promotes motor recovery modulating the expression of acute phase genes in rats submitted to a SCI model. Two experimental designs using 75 Sprague Dawley rats separated in 5 groups: Sham, PBS and 1, 3 and 7 MLIF applications. All groups were subjected to lamination at a T9 level and a moderate controlled lession, followed by application of MLIF or PBS as corresponding. The first application of MLIF or PBS was administered at the lesion site and subsequent MLIF applications intraperitoneally every 24 hours. In the first experimental design, the motor capacity of the treated rats was evaluated for 8 weeks using the "BBB" scale. MLIF showed significant differences compared to the control group ( $\alpha = 0.01$ ). Multi-dose groups showed better motor recovery than the single dose group. In the second experimental design, 3 hours after application of the last treatment in each group the rats were sacrificed and 1 cm spinal cord was obtained from the lesion site; RNA was purified and expression studies were performed by microarrays. Modification of expression of different gene families, death regulation genes and cell survival was observed, and candidates were selected for validation. It was found that the factor produces iNOS underexpression, as well as the expression of Egr2, Bcl2l10 and Vim, which indicates that the MLIF exerts a neuroprotective effect by decreasing in the oxidative stimulus and benefit the preservation by the factors of survival, growth and cell stability. In conclusion, the protocols of administration of MLIF 3 and 7a doses improve the recovery of the motorcycle with a SCI in comparison with the application of MLIF in single dose; The MLIF exerts its protective effect as well as the expression of gene families related to the formation of cellular junctions, structural preservation, remission of axons and the control of apoptosis, the factor confers a neuroprotective effect by promoting the iNOS subexpression and the over-regulation of Egr2, Bcl210 and Vim.

## Introducción: conceptos clave

La función primordial del sistema nervioso (SN) es la de conducir información captada por órganos sensitorios hacia el cerebro, procesarla para producir memorias, decisiones y posteriormente emitir una respuesta hacia órganos efectores con la intención de ejercer una influencia en el entorno (Cui et al., 2010). Para su estudio, el sistema nervioso se puede dividir en sistema nervioso central (SNC), conformado por el cerebro y la médula espinal, y en sistema nervioso periférico (SNP), que lo integran todos los nervios craneales, espinales y periféricos.

#### Anatomía de la médula espinal

Mientras que el encéfalo (cerebro, diencéfalo y médula oblonga) se encuentra protegido por el cráneo, la médula espinal es la estructura cilíndrica ubicada dentro del canal vertebral de la espina dorsal y lo recorre desde la médula oblonga hasta el borde de la última vértebra lumbar y al igual que el cerebro se encuentra cubierta por tres membranas de tejido conectivo llamadas meninges: la duramadre es la capa más externa, la aracnoides es la capa intermedia y por último la piamadre que es una capa muy delgada en contacto directo con el tejido nervioso (Cui et al., 2010; Ross & Pawlina, 2011).

Un total de 31 pares de nervios espinales se extienden desde la médula espinal hacia el exterior de la columna a través de foraminas intervertebrales en cada nivel espinal; son nombrados de acuerdo a las regiones de la columna vertebral con las cuales se asocian, de manera que cada uno de estos segmentos incluyen 8 pares de nervios cervicales, 12 torácicos, 5 lumbares, 5 sacros y 1 coccigeo (Cui *et al.*, 2010) (Figura 1).

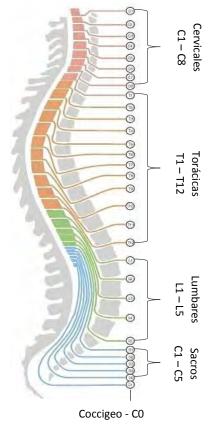



Figura 1 – Médula espinal y sus nervios espinales

Se muestra el esquema de una sección transversal típica de la médula espinal; el SNP incluye todos los nervios periféricos que se unen o salen de la médula como nervios espinales; cada par de nervios espinales reciben su nombre acorde a la vértebra a la cual se encuentre asociado y se extiende hasta una región del cuerpo muy específica de acuerdo a la carta dermatomo (ver Anexo 1).

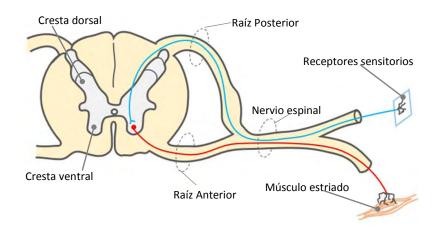



Figura 2 - Organización de los nervios espinales

Las raíces anteriores transportan señales motoras desde el SNC a los músculos y los órganos internos.Las raíces espinales posteriores llevan la información sensorial del cuerpo de regreso al sistema nervioso central. Modificado de Cui et al., 2010

Cada nervio espinal se conecta con la médula espinal por medio de dos raíces: la raíz anterior y la raíz posterior (Snell, 2014). La raíz anterior consiste en haces de fibras nerviosas que llevan impulsos desde el sistema nervioso central hacia los músculos esqueléticos y causan su contracción se les denominan fibras

eferentes e integran a la vía descendente motora. La raíz posterior consiste en haces de fibras nerviosas que llevan impulsos nerviosos hacia el sistema nervioso central; dado que estas fibras se vinculan con la transmisión de información acerca de las sensaciones de tacto, dolor, temperatura y vibración, se denominan fibras aferentes e integran a la vía ascendente sensitiva. (Figura 2).

#### Histología

Las células nerviosas o neuronas son consideradas la unidad básica y funcional del SN debido a que son células excitables capaces de recibir, integrar y transmitir señales eficientemente (Figura 3). Cada neurona está conformada por un cuerpo o pericarion que contiene un núcleo eucromático con un nucléolo prominente y un citoplasma perinuclear con todos los organelos celulares, posee numerosas elongaciones pequeñas denominadas dendritas que incrementan el área superficial para transmitir y recibir señales

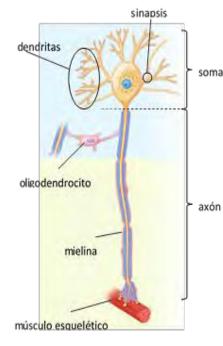



Figura 3 – Esquema de una neurona

El soma, dendritas y axón proximal se encuentran dentro del SNC. En el SNP forma parte de los nervios. encuentra revestido vainas de por mielina aue es producida axón oligodendrocitos en el SNC y por células de Schwann en el SNP. Modificado de Ross

& Pawlina, 2011

y cuenta con al menos un axón generalmente revestido con numerosas vainas de mielina, es la prolongación más grande de la célula y transmite impulsos desde el pericarion hasta terminaciones especializadas denominadas sinapsis, las cuales forman conexiones en forma de cadenas a modo de red de comunicación integrada en las vías ascendente sensorial y descendente motora respectivamente (Ross & Pawlina, 2011).

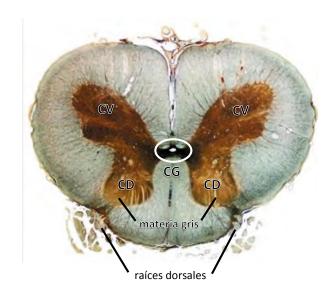



Figura 4 - Sección transversal de médula espinal humana

En la imagen se muestra un corte histológico a nivel de lumbar baja, teñido con la técnica de impregnación argéntica de Bielschowsky (aumento x5). La médula espinal se encuentra conformada, externamente por materia blanca e internamente por materia gris, que contiene cuerpos neuronales asociados a fibras nerviosas. Se puede observar la silueta de una mariposa en la que los lóbulos anteriores son llamados crestas dorsales (CD), y a los lóbulos posteriores, crestas ventrales (CV) y se encuentran conectadas por la llamada comisura gris (CG) y en el centro se encuentra el canal ependimario. Externamente la médula se encuentra cubierta por meninges y vasos sanguíneos. Imagen tomada de Ross & Pawlina, 2011

Tradicionalmente se identifican dos zonas muy definidas en la organización tisular del SN: La sustancia gris formada por el acúmulo de cuerpos neuronales y la sustancia blanca la cual es rica en fibras nerviosas (axones) y es de color blanco debido a la presencia de material lipídico en las vainas de mielina (Snell, 2014).

Al hacer un corte transversal de la médula espinal (Figura 4) se puede observar que la sustancia blanca rodea una silueta más obscura en forma de mariposa compuesta por sustancia gris, la cual posee un canal central (canal ependimario) por donde fluye el líquido cerebro-espinal (Ross & Pawlina, 2011).

Las neuronas del SNC están sostenidas por un grupo de células no excitables que en conjunto se denominan neuroglia o simplemente glía que en general son más pequeñas que las neuronas y las superan en proporción de 5 a 10 veces. Las principales células de la neuroglia son: astrocitos, oligodendrocitos, células ependimarias y microglia (Ross & Pawlina, 2011).

Los astrocitos son las células neurogliales más grandes de aspecto estrellado que forman redes que se comunican con las neuronas para mantener y modular muchas de sus actividades, juegan un papel muy importante en la motilidad de metabolitos y deshechos, ayudan a mantener las uniones

adherentes de los capilares sanguíneos que inervan el tejido nervioso y proveen cobertura en áreas desnudas de axones mielinizados, por ejemplo en los nódulos de Ranvier y en las sinapsis (Ross & Pawlina, 2011).

Los oligodendrocitos producen la mielina que recubre a los axones, un solo oligodendrocito es capaz de mielinizar simultáneamente varios axones cercanos mediante proyecciones citoplasmáticas que los rodean hasta que la vaina mielínica está formada. La mielina se dispone formando varias capas alrededor de los axones, de tal forma que los protege y aísla eléctricamente, lo cual contribuye a incrementar la velocidad de conducción de los impulsos nerviosos a través de los axones (Ross & Pawlina, 2011).

Las células ependimarias forman una monocapa de epitelio columnar cúbico que recubre cavidades que contienen líquido cerebro espinal, se encuentran fuertemente unidas por complejos ocluyentes en su parte apical, la cual posee cilios y microvellocidades que les permite absorber elementos del medio (Ross & Pawlina, 2011).

La microglia son células fagocíticas residentes del SNC consideradas parte del sistema mononuclear fagocítico que se originan de células progenitoras de granulocitos/monocitos (GMP); aunque representan el 5% de las células gliales en el SNC adulto, pueden activarse y proliferar (microglia reactiva) como respuesta a una inflamación o enfermedad con el fin de eliminar bacterias y restos célulares (Ross & Pawlina, 2011). La micróglia parenquimática es el único tipo de macrófago especializado que se encuentra dentro del parénquima del SNC en un individuo saludable, el cual cabe mencionar, se encuentra en un ambiente inmunosupresor; no se ha documentado la presencia de algún otro tipo celular del sistema inmunitario como neutrófilos u otros granulocitos, linfocitos o células dendríticas resitentes (Ransohoff & Engelhardt, 2012).

El SNC presenta además una extensa vasculatura, que a diferencia de la periferia, está separada del tejido nervioso por medio de una barrera formada por lámina basal y tejido conectivo que restringe el ingreso de muchas sustancias que normalmente abandonan los vasos sanguíneos y entran a otros tejidos, esta restricción selectiva de sustancias se le conoce como barrera hematoencefálica (BHE) (Ross & Pawlina, 2011), misma que regula en gran medida el ingreso de macrófagos perivasculares y otras células que transitan por la periferia (Ransohoff & Engelhardt, 2012; Obermeier *et al.*, 2013).

Ahora bien, la preservación de la integridad del tejido medular es de suma importancia pues la médula espinal es la única vía de comunicación entre el cuerpo y el cerebro. La lesión traumática de

la médula espinal (LTME) es un tipo de mielopatía debilitante que de acuerdo a la magnitud y sitio donde ocurre puede comprometer completa o parcialmente funciones autonómicas, motoras, de sensibilidad y reflejo en individuos de cualquier edad (Campagnolo *et al.*, 2000; Wu & Ren 2009; Dumont *et al.*, 2001; Oyinbo, 2011) y su recuperación neurológica es limitada (Selassie *et al.*, 2013; Park *et al.*, 2013).

A nivel mundial se le atribuye una alta tasa de morbilidad y mortalidad con una incidencia anual de 15-40 casos por millón de habitantes. De acuerdo con el Rick Hansen Institute, Canadá, 85 000 personas padecen de una LTME a las que se suman 4 000 nuevos casos por año. En el último reporte detallado en México se estima una incidencia de 18.1 personas con LTME por cada millón de habitantes, teniendo una mayor prevalencia en el sexo masculino (Pardini, 1998, revisado en Estrada-Mondaca *et al.*, 2007).

#### Fisiopatología de la LTME

Esta patología inicia con una lesión primaria mecánica sobre la médula espinal, la cual desencadena una serie de eventos físicos y bioquímicos definidos que siguen una secuencia temporal y pueden ser divididos en tres fases principales que incluso pueden traslaparse (Tanhoffer *et al.*, 2007; Oyinbo, 2011).

Aguda – segundos a minutos después de la lesión.

Sub-aguda – minutos a semanas después de la lesión.

Crónica – meses a años después de la lesión.

Diversos grupos de células y moléculas de los sistemas nervioso, inmunitario y vascular están involucradas en cada fase. La mayoría residen en la médula espinal, pero otras migran al sitio de lesión desde la periferia (Liverman *et al.* 2005; Oyinbo, 2011).

#### Fase aguda

En la fase aguda, el daño primario ocurre como resultado directo de un traumatismo en el que fuerzas de tracción y compresión directa sobre elementos neurales lesionan y destruyen células residentes produciendo compromiso de membranas plasmáticas celulares y disrupción axonal, transtorno en homeostasis iónica, acumulación de neurotransmisores, pérdida de integridad de la barrera hematoencefálica y alteración de la microcirculación (hipotensión, shock neurogénico, vasoespasmo, isquemia) (Dumont *et al.*, 2001; Whalley *et al.*, 2006; Zhang *et al.*, 2012).

La ruptura de vénulas y capilares produce microhemorragias dentro de la materia gris central que difunden axial y radialmente durante las siguientes horas, en poco tiempo se genera un edema que provoca que la médula espinal se hinche para ocupar todo el diámetro del canal espinal a nivel de la lesión provocando un evento isquémico secundario.

#### Fase sub-aguda

Ocurre la continuación de algunos eventos de la fase aguda; edema, muerte celular necrótica y cambio de concentración de electrolitos, así como de producto de los mecanismos de lesión secundaria derivados de las interacciones dentro del SNC como respuesta para reparar el daño, los cuales causan daños colaterales a células que sobrevivieron al traumatismo original (Thuret, et al., 2006; Zhang et al., 2012; Ray et al. 2002; Rossignol et al. 2007; Oyinbo, 2011).

Se produce la despolarización debida al evento físico que provoca la apertura de canales iónicos dependientes de voltaje y una liberación masiva de neurotransmisores como glutamato cuya concentración en el medio incrementa hasta 6 veces en comparación al estado fisiológico normal; canales iónitrópicos de glutamato como el N-metil-D-aspartato (NMDA) y ácido alfa-amino-3-hidroxi-5-metil-4-isoxazolpropiónico (AMPA) y los de Kainato son activados y promueven el ingreso de una gran cantidad de Ca<sup>2+</sup> y una sobreexcitación tóxica para las células neurales que las lleva a la muerte en un fenómeno denominado excitotoxicidad (Weber, 2004).

El exceso de Ca<sup>2+</sup> intracelular activa proteasas neutras y fosfolipasas que destruyen neurofilamentos, parte fundamental del citoesqueleto axonal, en las primeras horas o días postlesión, destruyen la mielina e inhiben la transmisión de señales a nivel del SNC con lo cual se desprotegen las células nerviosas y se generan diversas disfunciones (Nehrt *et al.*, 2007). La activación de la fosfolipasa A2 en oligodendrocitos, neutrófilos, macrófagos, microglía y neuronas libera ácido araquidónico, substrato necesario para la síntesis de prostaglandinas, tromboxanos y leucotrienos (LT), que pueden promover el aumento en la permeabilidad vascular y de la barrera hematohencefálica para facilitar la infiltración celular e iniciar una respuesta inflamatoria (Titsworth *et al.*, 2008; An *et al.*, 2014). A pesar que el proceso inflamatorio en el SNC es esencial para la plasticidad y la regeneración cuando los componentes pro y anti-inflamatorios se modulan apropiadamente, la respuesta inflamatoria es el mayor componente involucrado en el desarrollo de la patogénesis de la LTME y se le atribuye un papel importante en el daño indirecto al tejido neural y al fallo en la respuesta regenerativa (Genovese *et al.*, 2010; Zhang *et al.*, 2012). Las células gliales reactivas residentes y células del sistema inmune periférico que migran y proliferan dentro del sitio

de lesión contribuyen en parte mediante la liberación de citocinas, TNF, IL-1, IL-6, e IL-10, interferón, y la activación de receptores para citocinas (IL-4R e IL-2R) (Tian et~al., 2007; Zhou et~al., 2009; Zhang et~al., 2012). Estas citocinas promueven la expresión de citocinas adicionales, quimiocinas y radicales libres [anión superóxido ( $O_2^-$ ) y óxido nítrico (ON)] causantes de estrés oxidativo (Figura 5). En particular, el SNC es muy sensible a las especies oxidativas, debido a su contenido de sustratos altamente oxidables susceptibles a lipoperoxidación (ácidos poliinsaturados y catecolaminas), a los bajos niveles de enzimas y agentes antioxidantes (GSH peroxidasa, catalasa, superóxido dismutasa, glutatión y vitamina E) que producen un desbalance entre estos mediadores de la inflamación y la capacidad del tejido para contrarrestar sus niveles con antioxidantes (Fulda et~al., 2010; Chen et~al., 2012; Muralidharan & Mandrekar, 2013); adicional a esto, las células neuronales no son replicativas

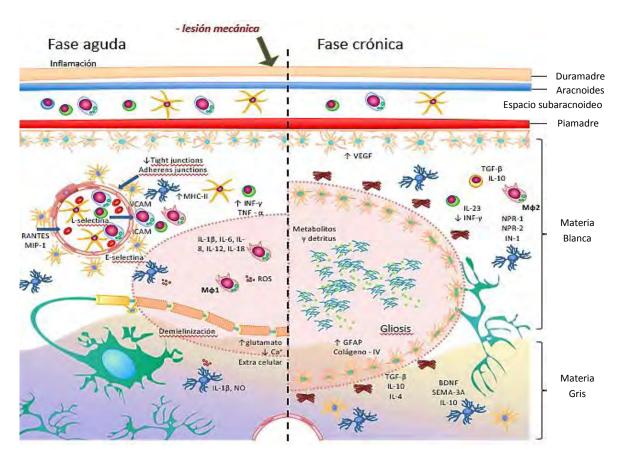



Figura 5 – Progresión de la respuesta inflamatoria en el parénquima medular

La afección producida por la lesión mecánica induce la activación de mecanismos de focalización del daño, inicialmente propiciada por la microglia residente, la cual secreta citocinas pro-inflamatorias, los astrocitos y células endoteliales permiten la permeabilización de la barrera hematoencefálica y expresan quimioatrayentes para facilitar el ingreso de células del sistema inmunitario periférico e incrementar la respuesta en el sitio, pueden producirse lesiones colaterales debida, en gran medida, a la baja capacidad antioxidante del tejido neural para contrarrestar especies reactivas de oxígeno producidas por las células inflamatorias propagando el daño a otras células no comprometidas. La extensión del daño inicial es proporcional a la capacidad final del organismo para recuperar sus funciones motoras y sensitivas.

y al ser dañadas pueden permanecer disfuncionales o destinadas a la apoptosis (Kovacic & Somanathan, 2012) a través de la oxidación irreversible de proteínas esenciales, ácidos nucleicos y lípidos (Liu *et al.*, 2000; Mestre 2015; Baruch 2015).

#### Estrategias de neuroprotección

La mayoría de los enfoques clínicos realizados en pacientes están dirigidos a reducir la muerte neuronal ocurrida en un lapso de entre 6 a 8 hrs (Loane & Faden, 2010). A nivel experimental se utilizan fármacos y otras sustancias químicas que buscan disminuir el grado de lesión del tejido neural después de una LTME teniendo como blanco terapéutico los puntos de regulación en los procesos involucrados en la etapa secundaria tales como la inflamación, desregulación iónica, producción de radicales libres, excitotoxicidad, lipoperoxidación y muerte celular. La Metilprednisolona (MPSS), es un fármaco de elección capaz de suprimir la neuroinflamación (Hurlbert & Hamilton, 2008; Lukas et al., 2011); el tratamiento con metoprolol disminuye la actividad de la mieloperoxidasa (MPO) en el tejido lesionado, lo que indica una reducción en la actividad de los neutrófilos en el sitio de lesión y favorece la neuroprotección a los efectos secundarios (Beril et al., 2007); los inhibidores de la óxido nítrico sintasa inducible (iNOS) como NGnitro-L-arginina metil ester (L-NAME) promueven una recuperación clínica en modelos experimentales en fase aguda, mientras que los antagonistas de los receptores NMDA y AMPA/Kainato como MK-801, 2,3-dihidroxy-6-nitro-7-sulfamoilbenzo-quinoxalina administrados en el sitio de la lesión atenúan el daño excitotóxico y se proponen como fármacos neuroprotectores, al igual que los fármacos anti-excitotóxicos como el sulfato de magnesio y el riluzol que atenúan el fenómeno necrótico al prevenir la paraplejía originada por el daño en las motoneuronas (Li & Tator, 2000; Gorgulu et al., 2000, Wilson et al., 2014).

Por otro lado, el uso de fármacos moduladores del metabolismo del ácido araquidónico, como el ibuprofeno (inhibe la ciclo-oxigenasa), el antioxidante EPC-K1 (que se une a la vitamina E y C) o el U63447A (que inhibe la actividad de la sintasa de tromboxanos) disminuyen la lipoperoxidación y atenúan el daño en modelos de la LTME (Fujimoto *et al.*, 2000; Lee *et al.*, 2011).

Además, existen estudios que demuestran que la disminución de neutrófilos, macrófagos y microglia activa en el sitio de lesión con anticuerpos bloqueadores de integrinas, antagonistas de quimiocinas y depleción de tipos celulares (Mabon *et al.*, 2000; Zhu *et al.*, 2015), bloqueo de la síntesis o acción de interleucinas inflamatorias (ej. TNF-α, IL-1β, IL-6) y administración de citocinas

anti-inflamatorias (ej. IL-10) (Sharma 2010; Okada *et al.*, 2004; Guerrero *et al.*, 2012; Bethea *et al.*, 1999) dan como resultado una recuperación neurológica significativa con mejoras en la parte sensorial motora así como en la función anatómica.

A pesar que todas estas opciones han sugerido efectos benéficos potenciales, a la fecha no existe uno que satisfaga en su totalidad los requerimientos necesarios para lograr la recuperación óptima de las funciones neurológicas. En la actualidad se están desarrollado diferentes estrategias terapéuticas, que se fundamentan en la modulación de la respuesta inflamatoria con el uso de péptidos inmunomoduladores y/o con actividad antioxidante con el fin de preservar y proteger el tejido neural (Ibarra & Martinon, 2009; Loane & Faden, 2010; Bermeo et al. 2013).

#### Factor Inhibidor de la Locomoción de Monocitos (FILM)

El FILM es un pentapéptido de 583 Da con una secuencia de Met-Gln-Cis-Asn-Ser (Kretschmer *et al.*, 2001) que *in vitro* inhibe la migración de monocitos humanos (MP) sin afectar la locomoción de otros tipos celulares como neutrófilos polimorfonucleares o eosinofilos (nPMN y ePMN), evita la producción de intermediarios reactivos del oxígeno [ROI (H<sub>2</sub>O<sub>2</sub>, O<sub>2</sub>-, OH)] y la síntesis inducida de óxido nítrico [RNI (ON)] (en MP y nPMN sin afectar a ePMN) e induce un aumento importante en la formación de microtúbulos asociados al centriolo y la concentración del cAMP mientras que disminuye el cGMP (Rico *et al.*, 1992; 2003).

Estudios de análisis de microarreglos, PCR tiempo real, citometría de flujo, y determinación de proteínas por el método inmuno-enzimático ELISA en las líneas celulares U-937 (premonocítica) y MRC-5 (fibroblastos) activadas con PMA, mostraron que el FILM inhibe la producción de interleucinas (IL-1 $\beta$ , IL-6, IL-12 e INF- $\gamma$ ) y quimiocinas pro-inflamatorias (MIP-1 $\alpha$ , MIP-1 $\beta$ , MIP-3 $\beta$ , MIP-3 $\alpha$ , MIG) y favorece la producción de citocinas anti-inflamatorias (IL-10 e IL-1r), con lo cual promueve el balance homeostático crítico para la modulación de la respuesta inflamatoria (Utrera et al., 2003; Silva et al., 2008); además favorece la sobre expresión de mensajeros de genes como el factor de crecimiento de endotelio vascular (VEGF), trombopoyetina (Tpo), neuropilina, follistatina, ephrinas, factor de crecimiento derivado de plaquetas (PDGF) y factor neurotrófico derivado de cerebro (BDNF), involucrados en la modulación de la inflamación, proliferación, angiogénesis, síntesis/degradación de matriz extracelular, vasculogénesis y guía axonal (Silva et al., 2008, 2012).

En estudios *in vivo*, el factor retarda el arribo de células mononucleares en ventanas de Rebuck en piel humana e inhibe la hipersensibilidad retardada cutánea al dinitroclorobenceno (DNCB) en cobayas (Giménez *et al.*, 1997), abate la expresión de moléculas de adhesión VLA-4 y VCAM-1 en endotelio vascular post-capilar de jerbos y disminuye la formación de adherencias pericárdicas en ratas al aplicarlo directamente en el sitio de lesión posterior a una intervención quirúrgica (Giménez *et al.*, 2000).

En un modelo de LTME moderada en ratas donde se les aplicó 200 $\mu$ g de FILM como dosis única sobre el sitio de la lesión posterior a un impacto controlado, se observó la desregulación en la expresión del gen para iNOS y la sobre-expresión de las citocinas antiinflamatorias IL-10 y TGF- $\beta$  desde las primeras horas y hasta los 7 días, lo cual se reflejó en la recuperación motríz de los animales debida a la preservación de los tractos neuronales de las crestas ventrales y rubroespinales; este fue el primer reporte que menciona al FILM como un tratamiento de la LTME como neuroprotector (Bermeo *et al.*, 2013), sin embargo el mecanismo por el cual ocurre este efecto no fue descrito, por lo que los esfuerzos se enfocaron en proveer información que ayuden a vislumbrar lo que ocurre en el tejido al aplicar el péptido.

Más aún, considerando que el factor es capaz de inhibir la producción de ROI e iNOS en neutrófilos y su efecto positivo es evidente tras la evaluación a los dos meses, se postula que es posible obtener mejores resultados al restringir el arribo de monocitos durante su primer y segunda migración al sitio de lesión durante la fase sub-aguda (similar a Mabon *et al.*, 2000; Zhu *et al.*, 2015), es decir, a los 3 y 7 días post-lesión (3 y 7 dpl) (Beck *et al.*, 2010), con la intención de prevenir efectos colaterales de una inflamación exacerbada y propiciar el comienzo del proceso de recuperación (Donnelly & Popovich, 2008).

#### Justificación

Debido a la falta de un tratamiento que amortigüe o incluso revierta los problemas ocasionados por la LTME, es necesario continuar con la búsqueda de nuevas estrategias neuroprotectoras. El FILM se propone como un buen candidato para cumplir con este papel, debido a su capacidad de modular la respuesta inflamatoria y favorecer la expresión de genes relacionados con la remodelación tisular; la caracterización de su mecanismo de acción y la propuesta de diferentes protocolos para su administración (en modelos *in vivo*) son necesarios para concretar al FILM como un inmunomodulador viable para el tratamiento de la LTME.

#### Hipótesis

La aplicación del Factor Inhibidor de Locomoción de Monocitos en dosis múliples beneficiará la neuroprotección y recuperación motora en animales sometidos a un modelo de lesión traumática de la médula espinal al modificar la expresión de genes de fase aguda.

#### Objetivo general

Evaluar si la administración del FILM en diferentes dosis ejerce un efecto neuroprotector que favorezca la recuperación motora mediante la modificación en la expresión de genes de fase aguda involucrados en la protección de la médula espinal de ratas sometidas a una LTME.

#### Objetivos particulares

Comparar y evaluar grupos de ratas con LTME tratadas post-lesión con FILM con respecto a los grupos control (sin tratamiento, PBS y FILM dosis única):

- Determinar la recuperación motora de ratas mediante la prueba de Basso, Beattie & Bresnahan
   (BBB) en ratas sometidas a una LTME con diferentes aplicaciones de FILM.
- 2. Determinar el perfil de expresión de genes durante una LTME en fase aguda y sub-aguda producido por la administración del pentapéptido utilizando microarreglos.
- 3. Validar los cambios de expresión de ciertos genes por PCR en Tiempo Real (qPCR).

### Metodología

#### Consideraciones éticas

Durante la realización de este proyecto se tomaron en cuenta los lineamientos establecidos por el reglamento de la Ley general de salud en materia de investigación para la salud (Título séptimo: De la investigación que incluya la utilización de animales de experimentación), la Norma Mexicana para la Producción, Cuidado y Uso de los Animales de Laboratorio (NOM-062-Z00-1999) apartado 5.1 para roedores y la Guía para el Cuidado y Uso de los Animales de Laboratorio (Ley General de Salud, México 1990).

#### Animales de estudio

Se utilizaron 75 ratas de la cepa Sprague Dawley hembras de 12 a 15 semanas de edad, con un peso de 200- 250 g, las cuales se alojaron en cajas de policarbonato de piso sólido con alimento y agua estéril *ad libitum*.

#### Lesión traumática de la médula espinal (LTME)

Las ratas fueron anestesiadas con clorhidrato de xilazina (10mg/kg) y ketamina (50mg/kg). Se realizó una laminectomia a nivel de la 9a vértebra torácica para exponer la médula espinal y se produjo una LTME moderada sobre el sitio expuesto utilizando un impactador de la Universidad de Nueva York, con un cilindro de 10 g a una altura de 25 mm (Basso *et al.*, 1995). La ejecución de este protocolo fue estrictamente supervisado por médicos veterinarios zootecnistas colaboradores.

#### Preparación y administración del (FILM)

El FILM fue adquirido de American Peptide Company Co., Sunnyvale, CA, USA. (>95% de pureza) y disuelto en PBS (4  $\mu$ g/ $\mu$ l). Se aplicaron 200  $\mu$ g (50  $\mu$ l) de la solución de FILM sobre el sitio de lesión después del impacto y posteriormente la mism a dosis por vía intraperitoneal de acuerdo al grupo experimental.

#### Estrategia experimental

Para realizar y lograr los objetivos particulares se emplearon los siguientes grupos (Tabla 1):

Tabla 1 – Descripción gráfica de los grupos de estudio

En la tabla se muestra a cada grupo en las filas de la izquierda y los procedimientos en las columnas, las estrellas representa el procedimiento aplicado a cada grupo. La primer aplicación de cada tratamiento se efectuó sobre el sitio de lesión expuesto al momento posterior a la contusión, las aplicaciones subsecuentes (de haberlas) se efectuaron por vía intra peritoneal.

|   | Protocolo<br>Grupo | Laminectomía | Contusión | FILM<br>inmediato | FILM<br>2 dosis<br>(1 c/24 hrs) | FILM<br>6 dosis<br>(1 c/24 hrs) |
|---|--------------------|--------------|-----------|-------------------|---------------------------------|---------------------------------|
|   | Sham               |              |           |                   |                                 |                                 |
| 1 | PBS                |              |           |                   |                                 |                                 |
| 2 | FILM inm           |              |           |                   |                                 |                                 |
| 3 | FILM 3D            |              |           |                   |                                 |                                 |
| 4 | FILM 7D            | *            |           |                   |                                 |                                 |

Se consideró a un grupo Sham (únicamente la laminectomía), en donde los individuos conservan una evaluación de 21 en la escala de BBB, además de control de calidad de la cirugía; se extrajo el RNA total (RNAt) de la médula y fue utilizado para normalizar los datos de expresión durante su validación en qPCR; el grupo PBS fue considerado como un grupo control de lesión al cual se efectuó una laminectomía y una contusión moderada; finalmente, los grupos FILM a los que se les aplicó el factor en 3 protocolos de administración, es decir:

- a) Aplicación inmediata (Ina) Aplicación de dosis única y directa sobre el sitio de lesión
- b) 3 aplicaciones o (3a) Una aplicación directa sobre el sitio de lesión y dos dosis posteriores vía intraperitoneal, una cada 24hrs.
- c) 7 aplicaciones (7a) Una aplicación directa sobre el sitio de lesión y seis dosis posteriores vía intraperitoneal, una cada 24hrs.

Los grupos descritos fueron empleados en dos diseños experimentales para evaluar dos periodos de tiempo diferentes, la fase aguda/sub-aguda y la fase crónica.

#### Diseño experimental 1

Se realizó un protocolo de lesión crónica para evaluar el efecto de la aplicación del FILM en 3 esquemas de aplicación después de una LTME en términos de recuperación motora comparados contra el grupo PBS.

#### Evaluación de la recuperación motora

Cada 7 días durante 8 semanas se evaluó la recuperación motora mediante la prueba de habilidad locomotora a campo abierto de Basso, Beattie & Bresnahan (Baso *et al.*, 1995) ó prueba "BBB" donde la recuperación se califica en una escala de 0 (parálisis completa) a 21 (movilidad completa) (Ver anexo 2). *N*= 40.

#### Diseño experimental 2

Se realizó un protocolo de lesión aguda (Ina) para evaluar mediante ensayos de microarreglos y PCR-Tiempo Real (qPCR) el cambio en la expresión de genes de fase aguda debida a la aplicación del FILM comparado contra el grupo PBS; y adicionalmente se conideraron a grupos de lesión sub-aguda (3a y 7a) para observar cambios en la expresión de genes dentro de los grupos FILM.

#### Obtención de RNA total (RNAt)

Tres horas posteriores a la última aplicación del tratamiento en cada grupo, se obtuvo 1 cm de la medula espinal concéntrico al sitio de lesión y se colocó en 1 ml de Trizol® (Invitrogen, life Technologies). El tejido fue disgregado utilizando un homogeneizador Bio-Gen PRO200 (Pro Scientific Inc., USA) y posteriormente el RNA total de (RNAt) se extrajo con cloroformo e isopropanol y su concentración se determinó utilizando un espectrofotómetro Epoch2® (BioTek Instruments, Inc., USA); su integridad se verificó en geles de agarosa al 1.5%.

#### Microarreglos

Con la intención de profundizar en los posibles mecanismos de neuroprotección del FILM, en un modelo *in vivo* de LTME, se optó por efectuar ensayos comparativos de microarreglos para resaltar la diferencia de expresión entre los grupos de aplicación del factor, principalmente el grupo Ina y el grupo control de lesión PBS.

Los microareglos empleados fueron arreglos de 5,000 genes de rata en placa de vidrio (Rattus novergicus; Rn5K) de un tamaño de 70-mer (library MWGBiotech Oligo) impresos por duplicado (Rat Array, Unidad de Microarreglos de DNA, Instituto de Fisiología Celular, UNAM). Se generó un pool de RNAt de 6 individuos por grupo para la hibridación; se tomaron 10 µl de la mezcla y el cDNA se sintetizó incorporando dUTP-Cy3 en el grupo control PBS y dUTP-Cy5 en los grupos FILM utilizando el kit CyScribe First-Strand cDNA labeling (Amersham Biosciences, Piscataway, NJ, USA). Mediante el uso de la solución de hibridación UniHyb (TeleChem International Inc., Sunnyvale, CA, USA), se hibridaron cantidades equivalentes de cDNA marcado en la placa Rn5K durante 14 hrs a 42°C. La

adquisición y análisis de las imágenes del arreglo se realizaron con el equipo y software ScanArray 4000.

#### Bioinformática

Los datos de microarreglos fueron analizados mediante el software libre genArise de la Unidad de Fisiología Celular, UNAM (<a href="http://www.ifc.unam.mx/genarise/">http://www.ifc.unam.mx/genarise/</a>). Se identificaron genes diferencialmente expresados calculando un valor de Z a partir de los datos de intensidad de fluorescencia (z-score) y normalizados con spots vacíos y genes constitutivos. Los elementos con un Z-score > 1.5 fueron considerados como genes diferencialmente expresados.

Se elaboró un análisis de integración e intersección de grupo utilizando diagramas de Venn y el software libre Cluster 3.0 en el cual se efectuó un agrupamiento jerárquico con un alineamiento de promedios con un rango de grupo significativo (k-mean) de 5 a 15. Se utilizó el software libre Java TreeView para visualizar dendrograma y mapa de calor (http://jtreeview.sourceforge.net/).

El análisis de los datos obtenidos de los microarreglos de expresión se realizó utilizando herramientas bioinformáticas para la anotación, interpretación y asociación funcional en sistemas biológicos de grupos de genes alterados (Huang *et al.*, 2009):

- DAVID (Database for Annotation, Visualization and Integrated Discovery) Bioinformatics
  Resources 6.7 (<a href="https://david.ncifcrf.gov/home.jsp">https://david.ncifcrf.gov/home.jsp</a>) de la National Institute of Allergy and
  Infectious Diseases (NIAID)
- WEBGestalt (WEB-based GEne SeT AnaLysis Toolkit)
   (<a href="http://bioinfo.vanderbilt.edu/webgestalt/">http://bioinfo.vanderbilt.edu/webgestalt/</a>)
- PANTHER (Protein ANalysis Through Evolutionary Relationships) Classification System Version
   10.0 (http://pantherdb.org/).

#### Validación de expresión en PCR Tiempo-Real

De los genes alterados obtenidos por microarreglos se seleccionaron genes de interés para diseño de oligos para qPCR (Integrated DNA Technologies, Inc. USA). EL diseño se realizó utilizando el software libre OligoPerfecto® (ThermoFisher Scientific Inc, USA) y software Oligo Primer Analysis SoftwareV4.0 (Molecular Biology Insights). Se generaró el cDNA utilizando el kit ThermoScrit® RT-PCR system (ThermoFisher Scientific Inc, USA) utilizando 1 μg de RNAt por reacción. Para la fase de PCR, se utilizaron oligos específicos para cada transcrito y al gen β-actina como referencia para su normalización; se utilizó un termociclador en tiempo real LightCycler 96 y el sistema de detección

SYBR Green Master Mix (ROCHE, Life Science) para la determinación de expresión diferencial de los genes, el protocolo de amplificación estandarizado consistió en una preincubación a 95°C 600s; 3 pasos de amplificación en 40 ciclos, (95°C 10s, 60°C 10s y 72°C 10s) con una adquisición simple en el último paso.

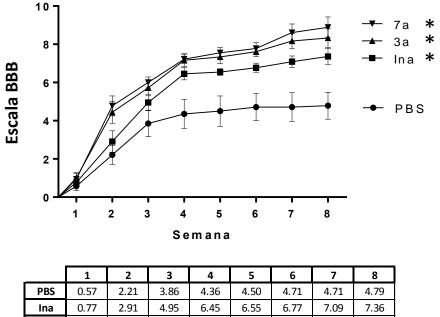
#### Método estadístico a aplicar en todo el estudio

Los datos de las determinaciones de escala BBB fueron analizados utilizando una Prueba de ANOVA de dos vías para datos repetidos (Scheff *et al.*, 2002) y un test de comparación múltiple Tukey con un valor crítico de a=0.05 para considerar estadísticamente significativo.

Los valores de CQ (o CP; crossing point) de la amplificación en qPCR fueron normalizados de acuerdo al método de la doble Delta Ct (Delta Fold Change=2<sup>(-Delta Delta Ct)</sup>; Livak & Schmittgen, 2001); se utilizó una Prueba de ANOVA de dos vías para datos no pareados y posterior a ello, un test de comparación múltiple Tukey con un valor crítico de a=0.05.

#### Resultados

Como primer objetivo, se planteó determinar la recuperación motora de ratas mediante la prueba Basso, Beattie & Bresnahan (BBB) en ratas sometidas a una LTME con diferentes aplicaciones de FILM, utilizando el **diseño experimental 1** que consistió en la evaluación semanal de la recuperación motora durante 2 meses, utilizando un modelo de lesión medular moderada a nivel T9 se provocó pérdida motora de miembros traseros de ratas Sprague Dawley hembras e inmediatamente se comenzó la administración de los tratamientos, una dosis de 200 µl de FILM sobre el sitio de lesión después del impacto en el grupo Inmediato agudo (Ina) y administración inmediata seguida de 2 o 6 aplicaciones adicionales por vía intraperitoneal cada 24 horas en los grupos de 3 aplicaciones (3a) y 7 aplicaciones (7a) respectivamente. El grupo PBS fue administrado en el mismo esquema y fue utilizado como control de lesión "sin tratamiento" y un grupo Sham al cual solo se le practicó la laminectomía sin contusión (datos no mostrados).


Una vez cada semana durante dos meses y mediante la observación de dos evaluadores en ciego se determinó la recuperación motora de las ratas mediante la prueba a campo abierto de "BBB" la cual evalúa la fuerza y movimiento de cadera, rodilla y tobillo de ambas extremidades y las califica dentro de una escala del 0 a 21 en la que 0 representa una falta total de movimiento y 21 la normalidad (Anexo 2). Los datos fueron registrados y analizados utilizando una Prueba de ANOVA de dos vías para datos repetidos y una prueba *post hoc* Tukey con una confiabilidad de  $\alpha$ =0.01.

#### La administración de FILM promueve la recuperación motora de ratas con LTME

El grupo FILM Ina mostró una similitud estadística con el grupo PBS en las primeras 3 evaluaciones pero una diferencia significativa a partir de la cuarta evaluación, obteniendo un valor final de 7.36 en la escala BBB. Con respecto a 3a y 7a los valores fueron similares estadísticamente a PBS únicamente durante la primera semana, a partir de la segunda semana mostraron diferencias estadísticas obteniendo valores finales de 8.33 y 8.89 en la escala BBB. Entre el grupo Ina y 3a no existe diferencia significativa, al igual que ocurre entre 3a y 7a, aunque si la hay entre Ina y 7a, por lo que indica que 3a es precisamente la transición entre los dos tiempos.

En el análisis global, los grupos FILM muestran diferencias significativas con respecto al grupo control PBS, demostrando que su aplicación contribuye a la recuperación motora de las ratas con LTME (Figura 6).

#### Evaluación de recuperación motora



1.00 4.44 7.17 3a 5.72 7.33 7.61 8.17 8.33 7a 0.94 4.78 6.00 7.22 7.56 7.78 8.61 8.89

Figura 6- Evaluación de habilidad motora con prueba BBB a campo abierto

Durante 8 semanas se realizaron pruebas de habilidad motora, las ratas fueron evaluadas con la asesoría de dos observadores quienes desconocían de qué grupo se trataba (ciegos). En la tabla de la figura se muestra la media de calificaciones obtenidas semanalmente en los grupos. Los datos fueron analizados con una prueba de análisis de varianza (ANOVA) utilizando una significancia de  $\alpha$ =0.01, los grupos FILM muestran diferencias significativas con respecto al grupo control PBS, demostrando que el FILM contribuye a la recuperación motora de las ratas con LTME.

Estos resultados demostraron un cambio en la progresión de la lesión de médula que permitió a los individuos recuperar en mayor medida su capacidad motora, ya fuera como dosis única o como multidosis, el pentapéptido modificó el perfil de expresión de elementos que confieren protección al tejido contra el daño posterior al evento traumático, fue así que como segundo objetivo se estableció determinar el perfil de expresión de genes durante una LTME en fase aguda y sub-aguda, producido por la administración del factor, y se eligió la técnica de expresión en microarreglos debido a su capacidad de analizar de un gran número de genes de manera simultanea (Yang et al., 2002).

Luego de realizar el protocolo del diseño experimental 2, se obtuvo 1 cm de la medula espinal concéntrico al sitio de lesión tres horas posteriores a la última aplicación del tratamiento en cada grupo y se colocó en 1 ml reactivo de Trizol<sup>®</sup> (Invitrogene, life Technologies). El tejido fue disgregado y posteriormente se extrajo el RNAt mediante la técnica de TRIZOL. Se determinó su concentración utilizando un espectrofotómetro Epoch2® (BioTek Instruments, Inc., USA) y su integridad en geles de agarosa al 1.5% (Figura 7).

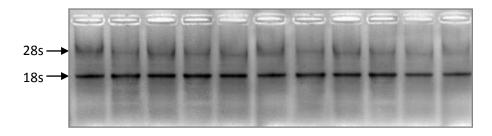



Figura 7 – Visualización de integridad de RNA en gel de agarosa

Para cada extracción de RNA total de médula espinal de ratas sometidas a un modelo de LTME se realizaron visualizaciones en cámara de electroforesis a 90 volts utilizando buffer de corrida TBE y geles de agarosa al 1.5%, en la imagen se muestra ejemplo de los geles elaborados

Para los ensayos de microarreglos se seleccionaron 6 muestras de RNAt de cada grupo y se elaboraron 2 mezclas de RNA en concentraciones iguales, mismas que fueron comparadas contra una mezcla única de RNA del grupo PBS posteriormente. Se evaluó la integridad de las mezclas "pool" elaboradas en un gel de agarosa al 1.5% (Figura 8).

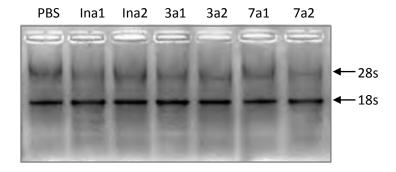



Figura 8 – Visualización de integridad pool en gel de agarosa

Se seleccionaron las muestras de RNA de cada grupo tomando en cuenta su integridad y concentración, se mezclaron 3 muestras de RNA en partes iguales por pool. Una vez generadas las mezclas se corroboró su preservación mediante electroforesis en gel de agarosa.

Una vez generadas las mezclas de cada grupo, se sintetizó cDNA con nucleótidos modificados a los cuales se marcó con Cy3 al grupo control (PBS) y con Cy5 a los grupos experimentales (FILM) y se hibridaron en un chip de 5000 genes de rata (*Rattus novergicus*; Rn5K) diseñado en el Instituto de Fisiología Celular, UNAM (Figura 9).

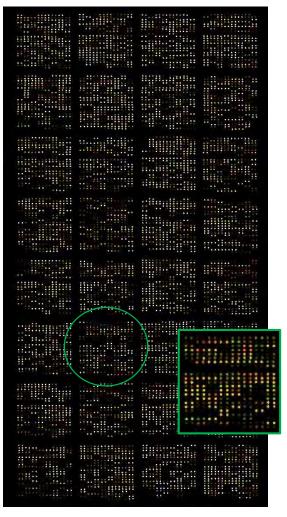
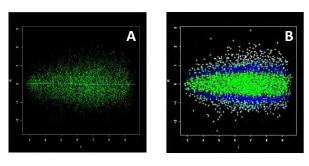
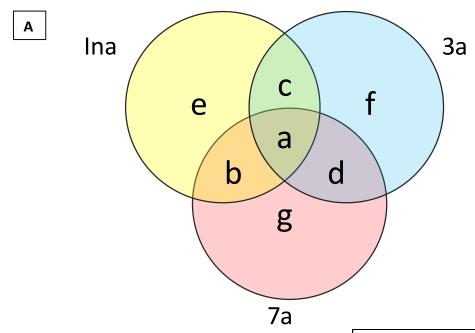




Figura 9 – Micoarreglos en placa

Se muestra el resultado de expresión del grupo PBS y del grupo de FILM Ina. Utilizando el software GenArise se compararon los datos de emisión de fluorescencia del grupo control (PBS) contra el grupo experimental (FILM) y se determinó la expresión diferencial entre cada gen en el arreglo.


En (A) se muestra un plot en el que se registra la intensidad de fluorescencia de las muestras.

En (B) se muestra un plot después de una normalización y comparación con el grupo control, en la zona verde se ubican los genes expresados de manera similar, en azul oscuro los genes con un z-score de 1.5, en azul claro aquellos con un z-score de 2 y en blanco genes que exceden el score.



Una vez obtenidos los valores de intensidad de fluorescencia fueron analizados con el software GenArise (Figura 9A & 9B) de la Unidad de Cómputo del Instituto de Fisiología Celular de acuerdo al protocolo desarrollado en el instituto (<a href="http://www.ifc.unam.mx/genarise/main.html">http://www.ifc.unam.mx/genarise/main.html</a>), se tomaron en consideración los genes con un Z-score > 1.5.

El análisis demostró que la administración de FILM en ratas sometidas a un modelo de LTME modifica la expresión de un total de 1227 genes, sobre/sub expresa 356/370 genes con el esquema de Ina, 369/361 en 3a y 405/370 en 7a (Figura 10).



|                                          |                                               | genes re | gulados |          |
|------------------------------------------|-----------------------------------------------|----------|---------|----------|
| subgrupo                                 | descripción                                   | ↑ arriba | ↓ abajo |          |
| а                                        | 331 elementos comunes en "Ina", "3a" and "7a" | 173      | 158     | Tabla Va |
| b 95 elementos comunes en "Ina" and "7a" |                                               | 44       | 51      | Tabla Vb |
| c 95 elementos comunes en "Ina" and "3a" |                                               | 46       | 49      | Tabla Vc |
| d 151 elementos comunes en "3a" and "7a" |                                               | 83       | 68      | Tabla Vd |
| e 205 elementos exclusivos de "Ina"      |                                               | 93       | 112     | Tabla Ve |
| f 153 elementos exclusivos de "3a"       |                                               | 67       | 86      | Tabla Vf |
| g 197 elementos exclusivos de "7a"       |                                               | 104      | 93      | Tabla Vg |

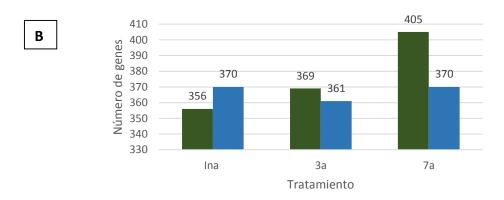



Figura 10 – Genes expresados diferencialmente por efecto del FILM en un modelo de LTME

Utilizando el software GenArise se compararon los valores de emisión de los grupos experimentales contra los controles.

(A) Diagrama de Venn y tabla representativa ilustrando el número de genes modificados y sus coincidencias entre grupos, ver Tablas Va – Vg en Anexo 4.

(B) Número de genes expresados diferencialmente en cada esquema de aplicación del FILM comparados con el grupo PBS tomando el valor crítico de Z mayor a 1.4 (modificados al menos 1.5 veces), en verde se muestran los genes sobre-expresados y en azul los genes sub-expresados.

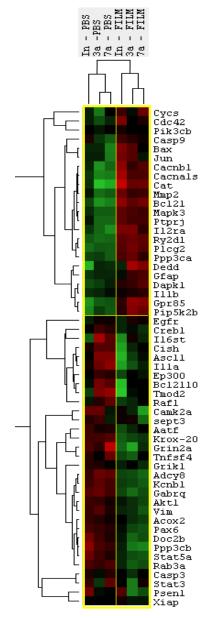



Figura 11 – Dendrograma y mapa de calor

Utilizando el software Cluster 3.0 se analizó a los 1227 genes expresados diferencialmente y se utilizando el software Java TreeView,; en la escala de color, el rojo representa sub-expresión, el verde sobreexpresión y en negro cuando no hay cambio. En la imagen se muestra un ejemplo de 55 genes de interés que se agrupan en sub-expresados (grupo superior) y sobre-expresados (grupo inferior) con respecto al grupo PBS. Los grupos FILM se ubican en el mismo grupo de similitud, siendo 3a y 7a los más parecidos.

Se elaboró un análisis de integración de grupo utilizando la plataforma Cluster 3.0 y para visualización el software Java TreeView donde se observó un cambio de expresión entre grupos consistente, el agrupamiento de similitud en el perfil de expresión muestra a los controles PBS en las reacciones de microarreglos como un grupo con una alta homología al igual que los grupos del factor; de igual manera el agrupamiento ubica a los genes en dos grandes conjuntos, genes sub-expresados y sobre-expresados. Al igual que en lo observado en las evaluaciones en la escala de recuperación motora, los grupos FILM 3a y 7a son similares (Figura 11).

Posterior a esto, los genes expresados diferencialmente fueron comparados en bases de datos de categorías funcionales, ontología y vías enzimáticas utilizando herramientas bioinformáticas (DAVID, WEB-Gestalt, PANTHER) para la anotación, interpretación y asociación funcional en sistemas biológicos.

# El FILM modifica la expresión de familias de genes implicados en la neuroprotección.

Se realizó el análisis de cada grupo por separado y se encontró (Tabla 2) la relación de los genes sobre expresados obtenidos con procesos de formación y preservación de la integridad de la barrera hematoencefálica (Akt1, Cldn1, Mpdz, Myh13, Myh4, Myh8, Prkch, Ppp2cb), como se presume ocurre en un modelo de parasitemia, observado de manera anatómica (Galán-Salinas; 2016); efectos antioxidantes (Prdx1, Prdx2, Prdx4, Prdx6), lo cual resulta interesante pues la disrupción de esta barrera es un fenómeno común en padecimientos neurológicos como en la esclerosis amiotrófica lateral, esclerosis múltiple y en accidentes cerebro vascular debido al estrés oxidativo (Olmez & Ozyurt 2012;

Obermeier *et al.*, 2013; Liu & Chan 2014); procesos homeostáticos (Camk2a, Camkk2, Cnn3, Myh4, Kcnn2, Kcnn3, Kcnn4) (Cerella *et al.*, 2010); y receptores antagonistas de NMDA (Gabra5, Gabrr1, Gabrq) con lo cual se infiere que se disminuya la excitotoxicidad directa o indirectamente en el sitio (Weber, 2004; Nehrt *et al.*, 2007). Se encontraron también agrupamientos para la sobre-expresión de genes relacionados a proteínas antiapoptóticas (BCL2, Bcl2l10, CEBPB, CD59, XIAP, AATF, GCLC, GNRH1, GNAQ, HTT, II7, PRDX2, Psen1, PRKCI, STAT5A, TGFA, TNF, tp63, akt1) y así mismo la sub-expresión de genes proapoptóticos (DDAH1, DFFA, DFFB, FAIM, GATA6, Jun, Nae1, BAX, SLK, APBB1, CASP12, Casp9, CYCS, dedD, dapk3, IL2RA, Ngfr, Nup62, Prf1) en los tres protocolos.

Tabla 2 - Genes expresados diferencialmente entre los grupos FILM y PBS y funciones asociadas al efecto protector

Las listas de genes expresados diferencialmente entre los grupos FILM y PBS obtenidos como resultado de los ensayos de microarreglos fueron analizados en las plataformas DAVID 6.7, WEB-Gestalt y PANTHER, se obtuvieron resultados similares en la agrupación de los genes en diferentes grupos y subgrupos, en la tabla se muestran las coincidencias relacionadas con el posible mecanismo por el cual FILM ejerce su efecto protector, siendo la modulación de la muerte celular un elemento interesante para analizar. Se respetó el idioma del software al nombrar al grupo.

|          |         | Término                  | Ina                                                                                      | 3a                                                                                                             | 7a                                                                                                               | Referencia                                                                                 |
|----------|---------|--------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|          | _       | Tight junction           | Cldn1, Mpdz, Myh13, Myh8,<br>Prkch, Ppp2cb                                               | Akt 1, Cldn 1, Myh 13, Myh 8,<br>Prkch, Ppp 2cb                                                                | Cldn1, Myh13, Myh4, Myh8,<br>Prkch, Ppp2cb                                                                       |                                                                                            |
|          | celular | Gap junction             | Gnaq, Adcy8, Tubb3                                                                       | Gnaq, Adcy8                                                                                                    | Gnaq, Raf1, Adcy8, Plcb4                                                                                         | Fan <i>et al.</i> , 2008;<br>Föster <i>et al.</i> , 2008;                                  |
| egulados | Unión   | Cell junction            | Cdc42bpb, Camk2a, Cldn1,<br>Dll1, Mpdz, Parva, Pclo,<br>Kcnb1, Pacsin1, Ptk2,<br>Rps6kb1 | Cdc42bpb, Camk2a, Cldn1,<br>Dll1, Parva, Pclo, Kcnk1,<br>Kcnb1, Pacsin1, Rps6kb1,<br>Snap23, Syt2, Syt6, Syt7, | Ank3, Camk2a, Cdc42bpb,<br>Cldn1, Dll1, Kcnb1, Pacsin1,<br>Parva, Pclo, Sept3, Snap23,<br>Snca, Svop, Syt2, Syt7 | Nagasawa et al., 2006;<br>Zhao et al., 2011                                                |
| ē        |         | <u>Antioxidant</u>       | Prdx2, Prdx4                                                                             | Prdx1, Prdx2, Prdx6                                                                                            | Prdx2, Prdx4                                                                                                     | Huang et al., 2015;                                                                        |
| Sob      | stasis  | GABA-A receptor activity | Gabra5, Gabrr1, Gabrq                                                                    | Gabrq                                                                                                          | Gabrq                                                                                                            | Zhao <i>et al.</i> , 2009;<br>Olsen <i>et al.</i> , 2011;                                  |
|          | Homeo   | Calmodulin-binding       | Camk2a, Cnn3, Kcnn3,<br>Kcnn4, Ppp3cb, Syt7                                              | Camk2a, Kcnn2, Kcnn3,<br>Kcnn4, Ppp3cb, Syt7                                                                   | Camk2a, Camkk2, Kcnn2,<br>Kcnn4, Myh4, Ppp3cb, Syt7                                                              | Woods <i>et al., 2</i> 005;<br>Janumyan <i>et al., 2</i> 003;<br>Liu <i>et al., 2</i> 012; |
|          |         | anti-apoptosis           | Bcl 2, Bcl 2 l 10, Stat 3, Stat 5a                                                       | Psen1                                                                                                          | XIAP, Bcl2, II7, Psen1, Stat5a                                                                                   | ·                                                                                          |

| S         |
|-----------|
| ŏ         |
| <u>_e</u> |
| 교         |
| ē         |
| ā         |
| Ž         |
| ٠,        |
|           |

| cell migration | Col 5a1, Icam1, Il12a, Itgb1,<br>Lamc1, Ltb4r2, Mmp14,<br>Myh9, Nr2f2, Cxcr4 | Col5a1, ltgb1, Lamc1                                             | Col5a1, Icam1, Il12a, Itgb1,<br>Nr2f2                         | Gong et al., 2006;<br>Peng et al., 2004;<br>Loufrani et al., 2008;                         |  |
|----------------|------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| cell death     | Apbb1, Bax, Cycs, Faim,<br>Gata6, Il 2ra, Jun, Nup62,<br>RATCYTA, Stk2       | Apbb1, Casp12, Casp9,<br>Dedd, Dffa, Dffb, Faim, Il2ra,<br>Nup62 | Appbp1, Bax, Casp12, Casp9,<br>Cycs, Il2ra, Ngfr, Nup62, Stk2 | Lu et al., 2009;<br>Cao et al., 2002;<br>Bleicken et al., 2010;<br>Schumacher et al., 2002 |  |

Como último objetivo, se propuso la validación de genes de interés cuya expresión se vió modificada por la aplicación del FILM en los ensayos de microarreglos; se estableción la selección de genes cuyas modificación se relacionaran con el efecto directo o colateral de la modulación de la inflamación para la preservación del teijido neural, el cual cual se refleja en recuperación motora de las ratas con LTME.

Resultó de interés los cambios que produjo el pentapéptido sobre la expresión de genes moduladores de la muerte celular en este modelo, puesto a que la apoptosis como efecto colateral de la respuesta inflamatoria es un proceso muy importante que inicia principalmente durante la fase aguda en la LTME, la mayor parte de la materia gris está comprometida posterior a la lesión mecánica se pierde en gran medida durante las primeras horas (Ek *et al.*, 2012) y se continúa indefinidamente como un proceso neurodegenerativo (Gensel & Zang, 2015), es por ello que su regulación es crítica para la recuperación motora (Dumont *et al.*, 2001; McDonald & Sadowsky 2002; Donnelly & Popovich, 2008; Oyinbo, 2011; Nieto-Díaz *et al.*, 2014).

#### Validación por qPCR

Se seleccionaron 10 genes expresados diferencialmente relacionados con regulación de la muerte celular para validar su cambio de expresión mediante PCR Tiempo Real, teniendo en cuenta su diferencia en la expresión a lo largo del tiempo aplicación del de FILM. Adicionalmente se eligieron 5 genes relacionados relacionados con los antecedentes directos del FILM (Bermeo et al., 2013) (Tabla 3).

|              | GEN     | Grupo        |
|--------------|---------|--------------|
| 1            | AATF    | Ina          |
| 1            | Ascl1   | Ina, 3a      |
| $\downarrow$ | Bcl2l   | Ina          |
| 1            | Bcl2l10 | Ina          |
| 1            | CREB1   | 3a           |
| $\downarrow$ | Dapk3   | 3a           |
| $\downarrow$ | Dedd    | 3a           |
| 1            | Egr2    | Ina, 3a, 7a  |
| 1            | Pax6    | Ina, 3a, 7a  |
| 1            | Psen1   | 3a, 7a       |
| 1            | XIAP    | 7a           |
| 1            | Vim     | 7a           |
| $\downarrow$ | Casp3   | esperado     |
| $\downarrow$ | Cox2    | esperado     |
| $\downarrow$ | iNOS    | esperado     |
| =            | B-act   | Constitutivo |

Tabla 3 – Selección de genes para pruebas confirmatorias

Se eligieron genes relacionados con la regulación de la muerte celular principalmente, algunos reportados previamente, algunos ellos fueron observados en un solo grupo mientras que otros fueron modificados en los tres tratamientos.

El diseño de los oligos para la qPCR se realizó mediante los programas libres OligoPerfect® (ThermoFisher) y Oligo Primer Analysis SoftwareV4.0 (Molecular Biology Insights), los primers obtenidos fueron validados en el Primer-BLAST del NCBI (https://www.ncbi.nlm.nih.gov/tools/primer-blast/) (Tabla 4).

Tabla 4 – Diseño de oligos para el análisis de confirmación

Las secuencias de cada gen fueron obtenidas del NCBI y de acuerdo a numero de identificación indicado en la base de datos del microarreglo, como gen constitutivo se utilizó a la  $\beta$ -actina. Se trabajaron las muestras utilizadas para los microarreglos.

| GEN     | GeneBank    | Forward              | Reverse              |
|---------|-------------|----------------------|----------------------|
| AATF    | NM_053720.1 | gcagctggaacagttgttga | accttttgtcggtgtccaag |
| Ascl1   | NM_022384.1 | catctccccaactactcca  | ctgcttccaaagtccattcc |
| Bcl2l10 | NM_053733.1 | cggatgagttgctctccaat | agcagtctcgctccagtagg |
| CREB1   | NM_031017.1 | tgttgttcaagctgcctctg | cctctcttttcgtgctgct  |
| Dapk3   | NM_022546.1 | ctggacggtgtccactacct | cgtgccaaagatgttcttga |
| Dedd    | NM_031800.1 | cacctacctcgacgcattct | ctgtcggcccagttcatagt |
| Egr2    | AB032419.1  | gcaaggacagcgaaaaagac | ttctagggccacagagtgct |
| Pax6    | NM_013001.2 | ctcctttacatcgggttcca | cataactccgcccattcact |
| Psen1   | NM_019163.3 | acccggaggaaagaggagta | aaaatggcgagcaggagtaa |
| XIAP    | NM_022231   | ggccagactatgcccattta | cgaagaagcagttgggaaag |

| GEN    | GeneBank       | Forward                  | Reverse                  |
|--------|----------------|--------------------------|--------------------------|
| Casp3  | XM_006253130.3 | agttggacccaccttgtgag     | agtctgcagctcctccacat     |
| Cox2   | NM_017232.3    | tggtgccgggtctgatgatgtatg | ggttcaaaagcaggtctgggtcga |
| iNOS   | XM_006246949.3 | aagctggtggccgccaagct     | atgtgaggggtttgggggga     |
| Vim    | NM_031140.1    | aatgcttctctggcacgtct     | gctcctggatctcttcatcg     |
| Bcl2l1 | NM_001033672.1 | agtgagcaggtgttttggac     | tgttctcttcgacatcgcta     |
| B-act  | NM_031144.3    | aaggccaaccgtgaaaag       | gtggtacgaccagaggcatac    |

Se realizaron amplificaciones de cada gen, por duplicado, para cada muestra utilizando un equipo termociclador LightCycler 96 y el sistema SYBR Green first-strand kit (ROCHE, Life Science), con el siguiente protocolo: preincubación 95°C 600s; 3 pasos de amplificación en 40 cilcos, 95°C 10s, 60°C 10s y 72°C 10s con una adquisición simple en el último paso (Figura 12).

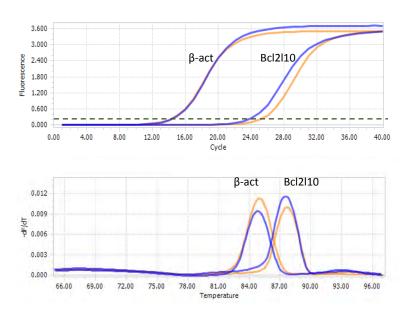



Figura 12 – Curva de amplificación representativa de qPCR

En la figura se muestra (superior) las curvas de amplificación del gen constitutivo  $\beta$ -act y Bcl2l10 del grupo PBS (naranja) y 3a (azul). Los valores de CQ (línea punteada) fueron utilizados para la normalización de los datos. Se puede ver también (inferior) las cuvas de metling, las cuales confirman la afinidad de los oligos por sus secuencias blanco, un solo pico indica que se obtuvo un amplicón de tamaño definido.

#### La administración de FILM modifica la expresión de iNOS, Bcl2l10, Egr2 y Vim.

La normalización de los datos se realizó con los datos del CQ de los genes de un grupo Sham y se hicieron dos comparaciones: PBS contra Ina, con el fin de evaluar la modificación que produce el factor en la fase más aguda de la progresión del daño de la lesión de médula; La comparación de los grupos FILM (Ina, 3a y 7a) para evaluar la progresión de la lesión al aplicar el tratamiento y determinar el protocolo de administración adecuada para emplear en trabajos posteriores.

La comparación de los grupos Ina y PBS muestran una diferencia estadística sobre la expresión del gen que codifica para la iNOS, siendo mayor en el grupo control de lesión; así mismo se observó su disminución de lo largo del periodo de aplicación del factor: a las 3 hrs, a los 3 días y a los 7 días, siendo los grupos 3a y 7a similares al grupo Sham. Por otra parte, la comparación de los protocolo de administración de FILM muestran la expresión significativa del Egr2 en el grupo Ina, y la sobre expresión de los genes Bcl2l10 y Vim en 3a (Figura 13), estos genes están relacionados con la preservación de la integridad y la sobrevida celular como se argumenta en el apartado de discusión (página 30).

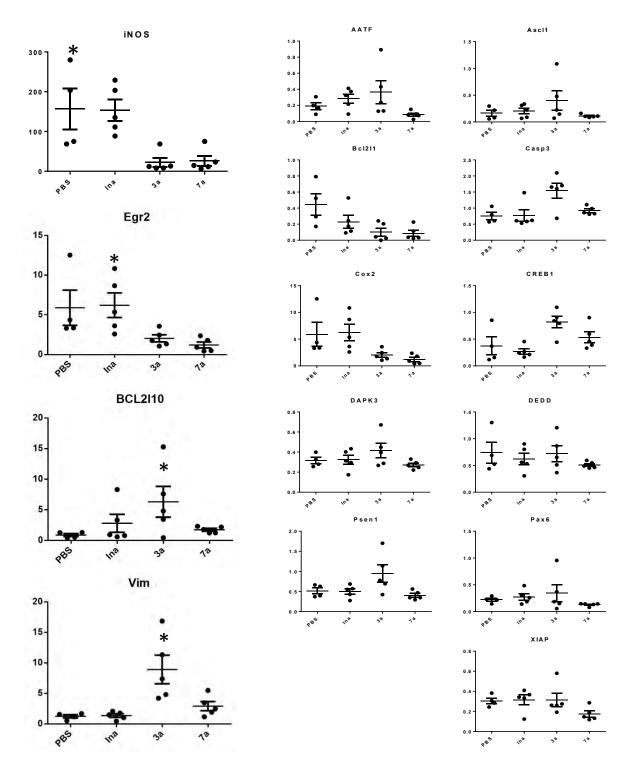



Figura 13 – Validación de expresión en qPCR

Se seleccionó un grupo de 15 genes de interés para ser evaluados mediante qPCR; La expresión de los genes en PCR en tiempo real coincide en gran medida con lo encontrado en los microarreglos, aunque no resulta significativo se observa la sobreexpresión de AATF, Ascl1, CREB1 y Psen1 en el protocolo 3a; así mismo coincide la subexpresión de Bcl2l y Cox2 como era esperado. iNOS, Bcl2l10, Egr2 y Vim presentaron diferencias estadísticas (\*) al comparar a los grupos con su control (a=0.05). Las muestras utilizadas para los microarreglos fueron utilizadas para este análisis.

#### Discusión

Se confirmó que el FILM ejerce un efecto protector sobre el tejido neural al aplicarlo como dosis única, lo que es observable mediante la recuperación motora de los animales de estudio, además el resultado es más evidente con múltiples administraciones como se anticipaba; la recuperación es progresiva desde el protocolo Ina hasta el 7a, es decir, de 3 hrs a 7 días, siendo el protocolo 3a similar para ambos, seguramente al ser la fase de transición entre las etapa aguda y sub-aguda (Rossignol *et al.*, 2007; Oyinbo 2011; Zhang *et al.*, 2012), estos resultados son comparables a los obtenidos con una estrategia combinatoria en un modelo de contusión similar, en donde se administró Rolipram®durante una semana utilizando una mini bomba osmótica subcutánea y posteriormente se implaron células Schwann recombiantes para la neutrofina D15A embebidas en un matrigel (Flora *et al.*, 2013); sin embargo, cabe destacar las ventajas en la aplicación del péptido con respecto a este acercamiento: la facilidad y el periodo de administración, sin mencionar el costo del protocolo.

Con el fin de describir el mecanismo por el cual está confiriendo esta protección, se eligió el análisis de expresión en microarreglos, donde se esperaban la modificación de expresión de genes relacionados con la regulación de la quimiotaxis e inflamación a partir de los estudios in vitro de la aplicación del FILM en las líneas celulares U-937 y MRC-5 activadas con PMA (Silva et al., 2008; 2011). Tras el análisis se observó la sub-expresión de genes relacionados con la migración celular, ICAM1 y CXCR-4 al igual que el antecedente, además de egfr, ESR2, Itgb1, IL12A, LAMC1 y MMP14, de acuerdo al Software de análisis DAVID 6.7 (https://david.ncifcrf.gov/home.jsp). Con respecto a familias de genes relacionadas directamente con la modulación inflamación no se observaron cambios, cabe mencionar que la comparación de los grupos FILM se realizaron contra un control PBS obtenido durante la fase más aguda de la lesión, en la que la respuesta inflamatoria inicial es conducida principalmente por la microglia residente, la cual es capaz de mantener una respuesta inflamatoria aún sin la presencia de macrófagos periféricos (Miron et. al., 2013), además que no se ha descrito el efecto del FILM sobre este tipo celular; se infiere que el nivel de respuesta persiste en el sitio durante el periodo de evaluación, en otras palabras, permanece constante durante toda la evaluación sin observarse un incremento, lo cual es benéfico pues debo reiterar que, un proceso inflamatorio controlado es necesario para remover restos celulares y así permitir la resolución y reparación tisular, por lo que restringir en gran medida la inflamación tiene efectos adversos en la recuperación de funciones en individuos con esta afección (Donnelly & Popovich, 2008; Beck *et al.*, 2010; David and Kroner, 2011).

De acuerdo al análisis bioinformático, es posible que el factor moldee el microambiente del sitio de lesión para favorecer la expresión de precursores que induzcan la restaurción de la homeostasis celular y efectos antioxidantes (Woods *et al.*, 2005; Kobayashi *et al.*, 2010; Cerella *et al.*, 2010), la reintegración de la barrera hematoenfefálica (Nagasawa *et al.*, 2006; Föster *et al.*, 2008; Zhao *et al.*, 2011), y su preservación estructural (Liu *et al.*, 2010) y contribuir, posiblemente a la remielinización de axones(Nakagawa *et al.*, 2002; Sakayori *et al.*, 2012; Kipanyula *et al.*, 2013).

Resalta el efecto regulatorio sobre el proceso de activación de muerte celular programada en el que predominan las señales de supervivencia que contribuyen a la conservación de componentes neurales (Czabotar *et al.*, 2014), como fue observado previamente tras determinar la preservación de motoneuronas rubroespinales con lna (Bermeo *et al.*, 2013), mismo que ocurre seguramente con los grupos 3a y 7a y explicaría lo observado en las pruebas de campo abierto en donde los grupos FILM obtuvieron una mejor recuperación motora, por lo que se determinó la validación en qPCR de genes relacionados con este mecanismo y se observó una tendencia similar a lo observado en microarreglos; a pesar de encontrar estadísticos no significativos creemos que el efecto biológico en la regulación de los genes seleccionados tiene un impacto suficiente para obtener la recuperación motora observada en los grupos de evaluación crónica, es probable que la modificación de la dosis administrada, así como del tamaño de muestra e incluso la vía o sistema de administración seguramente definirá con mayor exactitud el comportamiento de dichos genes.

Estadísticamente se encontró el cambio significativo en la expresión del gen que codifica para la enzima iNOS, la cual es una isoforma de eNOS que después de una lesión de médula espinal produce óxido nítrico en células inmunitarias activadas, en altas concentraciones se asocia a la formación de intermediarios neurotóxicos como peroxinitrito que puede producir daños por degradación de componentes celulares cuando supera la capacidad del tejido para contrarrestar la oxidación (Kwak et al., 2005); en el grupo PBS se expresa en una proporción mayor que en lna como se anticipaba, ya que, la determinación de nitritos en trabajos previos reflejó una disminución con la aplicación de FILM en una dosis (Bermeo et al., 2013), posteriormente se evaluó entre los grupos FILM y se encontró que la expresión de iNOS disminuye significativamente con los protocolos de administración 3a y 7a, recuperando un nivel de expresión similar al control Sham, con lo cual significa la normalización en la expresión de este gen a niveles fisiológicos. Aunado a esto se observó

el cambio en la expresión de factores de crecimiento y de estimulación a la sobrevida celular; uno de los genes evaluados fue el de respuesta temprana al crecimiento 2 (Egr2 o Krox-20), evidente en Ina durante la validación, tiene un efecto sobre la formación de mielina en células de Schwann en conjunto con CREB1 (sobreexpresado en microarreglos), los cuales son dependientes de cAMP y se expresan con Atf1 (su homólogo Atf2 fue encontrado en Ina y 3a), en conjunto Egr2 y CREB1 pueden influir en la remielinización de axones, lo cual influye en la función motora de las ratas (Ross & Pawlina, 2011). Cabe mencionar que en estudios en paralelo hemos detectado una mayor cantidad de axones mielinizados cuando los animales son tratados con FILM y otros péptidos (Parra Villamar, comunicación personal); el Bcl2l10 (DIVA), miembro antiapopótico de la familia Bcl2, se encontró sobre expresado en el grupo 3a tratado con FILM, la proteína que codifica este gen confiere resistencia al estrés y previene la permeabilización de la membrana mitocondrial en respuesta al estrés oxidativo y citotoxicidad aunque su papel es poco estudiado, se menciona que su expresión atiende a un tejido en específico, de manera que su expresión en este modelo puede ser de suma importancia y uno de los primero reportes de su papel funcional (Liu et al., 2012); de igual manera, en el grupo 3a se observó la sobreexpresión del gen codificante para Vimentina (Vim) que es un constituyente de filamentos intermedios que junto a los microfilamentos y microtúbulos de actina forman el citoesqueleto que mantiene la integradad celular, funciona como organizador de proteínas involucradas en el anclaje, migración y vías de señalización (Ross & Pawlina, 2011), se reporta que la hipoxia provoca cambios en la distribución de la red de filamentos intermediarios de vimentina pero es contrarrestado por la actividad de HSP27 encontrado en Ina y 3a; el hallazgo de Vim, HSP27 y Tubb4 (en los 3 tratamientos) sugiere la preservación estructural y funcional de las neuronas en el sitio de lesión (Liu et al., 2010).

Debido a los resultados positivos en la recuperación funcional de las ratas con los grupos 3a y 7a, se propone la comparación de los grupos multidosis FILM con sus controles de tiempo adecuados para resaltar la modificación de estos y otros genes implicados en la neuroprotección.

En resumen, el cambio en la expresión de iNOS, Bcl2l10/DIVA, Egr2 y Vim indica que el FILM ejerce un efecto neuroprotector al disminuir un el estímulo oxidativo y beneficiar la preservación mediante la expresión de factores de sobrevida, crecimiento y estabilidad celular predominante sobre todo con el protocolo 3a, por lo que en futuros trabajos se propone a este tratamiento como el indicado para el seguimiento del efecto del factor en este y otros modelos biologicos no solo con caracteristicas de lesión sino procesos neurodegenerativos.

# **Conclusiones**

Los protocolos de administración de FILM 3a y 7a mejoran la recuperación motora de ratas con una LTME en comparación a la aplicación de FILM en dosis única.

La diferencia no significativa entre los grupos 3a y 7a nos indica que bastan tres dosis para tener una respuesta neuroprotectora en la LTME, proponiendo esta dosis para estudios posteriores.

FILM ejerce sus efecto protector al promover la expresión de familias de genes relacionados con la modulación de la inflamación, formación de uniones celulares, preservación estructural, remielinización de axones y control de apoptosis.

El factor promueve la sub expresión de iNOS y la sobre regulación de Bcl2l10, Egr2 y Vim.

#### Literatura Citada

Alberts, B., Johnson, A., Lewis, J., Raff, M. Roberts, K., Waltery, P. (2014). "Molecular Biology of the Cell" (6ª ed.), Garland Publishing, New York

Alcivar, A., Hu, S., Tang, J., & Yang, X. (2003). DEDD and DEDD2 associate with caspase-8/10 and signal cell death. Oncogene, 22(2), 291-297.

An, Y., Belevych, N., Wang, Y., Zhang, H., Herschman, H., Chen, Q., Quan, N. (2014). Neuronal and nonneuronal COX-2 expression confers neurotoxic and neuroprotective phenotypes in response to excitotoxin challenge. J Neurosci Res. 92(4):486-95.

Bao, F., Chen, Y., Dekaban, G.A., Weaver, L.C., (2004). Early anti-inflammatory treatment reduces lipid peroxidation and protein nitration after spinal cord injury in rats," Journal of Neurochemistry. 88(6): 1335–1344.

Bao, Q., & Shi, Y. (2007). Apoptosome: a platform for the activation of initiator caspases. Cell Death Differ, 14(1), 56-65.

Baptiste, D. C., & Fehlings, M. G. (2007). Update on the treatment of spinal cord injury. 161, 217-233.

Baruch, K., Kertser, A., Porat, Z., & Schwartz, M. (2015). Cerebral nitric oxide represses choroid plexus NFκB-dependent gateway activity for leukocyte trafficking. The EMBO Journal, 34(13), 1816–1828.

Basso, D.M., Beattie, M.S. & Bresnahan, J.C. (1995). A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma; 12: 1-21

Beck, K. D., Nguyen, H. X., Galvan, M. D., Salazar, D. L., Woodruff, T. M., & Anderson, A. J. (2010). Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain, 133(Pt 2), 433-447.

Beril Gok, H., Solaroglu, I., Okutan, O., Cimen, B., Kaptanoglu, E., & Palaoglu, S. (2007). Metoprolol treatment decreases tissue myeloperoxidase activity after spinal cord injury in rats. Journal of Clinical Neuroscience, 14(2), 138-142.

Bermeo, G., Ibarra, A., Garcia, E., Flores-Romero, A., Rico-Rosillo, G., Marroquin, R., Mestre, H., Flores, C., Blanco-Favela, F. Silva-Garcia, R. (2013). Monocyte locomotion inhibitory factor produced by E. histolytica improves motor recovery and develops neuroprotection after traumatic injury to the spinal cord. Biomed Res Int, 2013, 340727.

Bethea, J.R., Nagashima, H., Acosta, M.C., Briceno, C., Gomez, F., Marcillo, A.E., Loor, K., Green, J., Dietrich, W.D. (1999). Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma; 16: 851–863.

Blancas, S., Fado, R., Rodriguez-Alvarez, J., & Moran, J. (2014). Endogenous XIAP, but not other members of the inhibitory apoptosis protein family modulates cerebellar granule neurons survival. Int J Dev Neurosci, 37, 26-35.

Bleicken, S., Classen, M., Padmavathi, P. V. L., Ishikawa, T., Zeth, K., Steinhoff, H.-J., & Bordignon, E. (2010). Molecular Details of Bax Activation, Oligomerization, and Membrane Insertion. The Journal of Biological Chemistry, 285(9), 6636–6647.

Campagnolo, D.I., Bartlett, J.A., Keller, S.E. (2000). Influence of neurological level on immune function following spinal cord injury: a review. J Spinal Cord Med 23:121–128.

Cao, G., Luo, Y., Nagayama, T., Pei, W., Stetler, R. A., Graham, S. H., & Chen, J. (2002). Cloning and Characterization of Rat Caspase-9: Implications for a Role in Mediating Caspase-3 Activation and Hippocampal Cell Death after Transient Cerebral Ischemia. Journal of Cerebral Blood Flow & Metabolism, 22(5), 534-546.

Cerella, C., Diederich, M., & Ghibelli, L. (2010). The dual role of calcium as messenger and stressor in cell damage, death, and survival. Int J Cell Biol, 2010, 546163.

Chen, B. P. C., Li, M., & Asaithamby. (2012). A. New insights into the roles of ATM and DNA-PKcs in the cellular response to oxidative stress. Cancer Letters, 327(1), 103-110.

Cui Dongmei, Daley William, Fratkin Jonathan D, Haines Duane E, Lynch James C. 2010. Atlas of Histology: With Function and Clinical Correlations. Lippincott Williams & Wilkins. Pp 115-133.

Czabotar, P. E., Lessene, G., Strasser, A., & Adams, J. M. (2014). Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol, 15(1), 49-63.

David, S., Kroner, A. (2011). Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12:388 –399.

Donnelly, D. J., & Popovich, P. G. (2008). Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol, 209(2), 378-388.

Dudoit, S., Yang, Y., Callow, M., & Speed, T. (2002). Stastistical methods for identifying genes with differential expression in replicated cDNA microarray experiments Statistica Sinica, 12(1), 111-139.

Dumont, R. J., Okonkwo, D. O., Verma, S., Hurlbert, R. J., Boulos, P. T., Ellegala, D. B., & Dumont, A. S. (2001). Acute Spinal Cord Injury, Part I: Pathophysiologic Mechanisms. Clinical Neuropharmacology, 24(5), 11.

Ek, J., Habgood, M. D., Dennis, R., Dziegielewska, K. M., Mallard, C., Wheaton, B., & Saunders, N. R. (2012). Pathological changes in the white matter after spinal contusion injury in the rat. PLoS One, 7(8), e43484.

Estrada-Mondaca Sandino, Carreón-Rodríguez, Alfonso, Parra-Cid María del Carmen, Ibarra-Ponce de León Clemente, Velasquillo-Martínez Cristina, Vacanti Charles A., & Belkind-Gerson Jaime. (2007). Lesión de médula espinal y medicina regenerativa. Salud Pública de México, 49(6), 437-444.

Fado, R., Moubarak, R. S., Minano-Molina, A. J., Barneda-Zahonero, B., Valero, J., Saura, C. A., . . . Rodriguez-Alvarez, J. (2013). X-linked inhibitor of apoptosis protein negatively regulates neuronal differentiation through interaction with cRAF and Trk. Sci Rep, 3, 2397.

Fan, Y.-M., Pang, C.-P., Harvey, A. R., & Cui, Q. (2008). Marked effect of RhoA-specific shRNA-producing plasmids on neurite growth in PC12 cells. Neurosci Lett, 440(2), 170-175.

Flora, G., Joseph, G., Patel, S., Singh, A., Bleicher, D., Barakat, D. J., Jack Louro, Stephanie Fenton, Maneesh Garg, Mary Bartlett Bunge, Pearse, D. D. (2013). Combining neurotrophin-transduced schwann cells and rolipram to promote functional recovery from subacute spinal cord injury. Cell Transplant, 22(12), 2203-2217.

Förster C. (2008). Tight junctions and the modulation of barrier function in disease *en* Histochemistry and Cell Biology, . 130(1): 55–70.

Fujimoto, T., Nakamura, T., Ikeda, T., Taoka, Y., & Takagi, K. (2000). Effects of EPC-K1 on Lipid Peroxidation in Experimental Spinal Cord Injury. Spine, 25(1), 24.

Fulda, S., Gorman, A. M., Hori, O., Samali, A. (2010) Cellular stress responses: cell survival and cell death. Int. J. Cell Biol. 2010, 214074.

Furmanski, O., Gajavelli, S., Lee, J. W., Collado, M. E., Jergova, S. and Sagen, J. (2009) Combined extrinsic and intrinsic manipulations exert complementary neuronal enrichment in embryonic rat neural precursor cultures: An in vitro and in vivo analysis. J. Comp. Neurol., 515: 56–71.

Galán-Salinas, A. (2016). Estudio del efecto del Factor Inhibidor de la Locomoción de Monocitos (FILM), en un modelo de malaria cerebral. Tesis de Maestría. Escuela Nacional de Ciencias Biológicas, IPN.

Gass, P., & Riva, M. A. (2007). CREB, neurogenesis and depression. Bioessays, 29(10), 957-961.

Genovese, T., Melani, A., Esposito, E., Paterniti, I., Mazzon, E., Di Paola, R., Bramanti, P., Linden, J., Pedata, F. Cuzzocrea, S. (2010). Selective adenosine A(2a) receptor agonists reduce the apoptosis in an experimental model of spinal cord trauma. J Biol Regul Homeost Agents, 24(1), 73-86.

Gensel, J. C., & Zhang, B. (2015). Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res, 1619, 1-11. doi: 10.1016/j.brainres.2014.12.045

Ghosh, S., & Hui, S. P. (2016). Regeneration of Zebrafish CNS: Adult Neurogenesis. Neural Plast, 2016, 5815439.

Gimenez Scherer, J. A., Rico, G., Fernandez-Diez, J., & Kretschmer, R. R. (1997). Inhibition of contact cutaneous delayed hypersensitivity reactions to DNBC in guinea pigs by the monocyte locomotion inhibitory factor (MLIF) produced by axenically grown Entamoeba histolytica. Arch Med Res, 28 Spec No, 237-238.

Giménez-Scherer, J. A., Arenas, E., Díaz, L., Rico, G., Fernández, J., & Kretschmer, R. Effect of the Monocyte Locomotion Inhibitory Factor (MLIF) Produced by *Entamoeba histolytica* on the Expression of Cell Adhesion Molecules (CAMs) in the Skin of Guinea Pigs. Arch Med Res, 31(4), S92-S93.

Gorgulu, A., Kiris, T., Unal, F., Turkoglu, U., Kucuk, M., & Cobanoglu, S. (2000). Superoxide dismutase activity and the effects of NBQX and CPP on lipid peroxidation in experimental spinal cord injury. Res Exp Med (Berl), 199(5), 285-293.

Graham, S. H., & Hickey, R. W. (2003). Cyclooxygenases in central nervous system diseases: a special role for cyclooxygenase 2 in neuronal cell death. Arch Neurol, 60(4), 628-630.

Guerrero, A. R., Uchida, K., Nakajima, H., Watanabe, S., Nakamura, M., Johnson, W. E., & Baba, H. (2012). Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J Neuroinflammation, 9, 40.

Guía para el cuidado y uso de los animales de laboratorio. Ed. Academia Nacional de Medicina, México, 1999.

Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 4(1), 44-57.

Huang, S., Liu, X., Zhang, J., Bao, G., Xu, G., Sun, Y., Shen, Q., Lian, M., Huang, Y., Cui, Z. (2015). Expression of Peroxiredoxin 1 After Traumatic Spinal Cord Injury in Rats. Cell Mol Neurobiol, 35(8), 1217-1226.

Hurlbert, R. J., & Hamilton, M. G. (2008). Methylprednisolone for acute spinal cord injury: 5-year practice reversal. Can J Neurol Sci, 35(1), 41-45.

Ibarra, A., & Martinon, S. (2009). Pharmacological approaches to induce neuroregeneration in spinal cord injury: an overview. Curr Drug Discov Technol, 6(2), 82-90.

Ishigaki, S., Fonseca, S. G., Oslowski, C. M., Jurczyk, A., Shearstone, J. R., Zhu, L. J., Permutt, M. A., Greiner, D. L., Bortell, R., Urano, F. (2010). AATF mediates an antiapoptotic effect of the unfolded protein response through transcriptional regulation of AKT1. Cell Death Differ, 17(5), 774-786.

Janumyan, Y. M., Sansam, C. G., Chattopadhyay, A., Cheng, N., Soucie, E. L., Penn, L. Z., Andrews, D., Knudson, C.M., Yang, E. (2003). Bcl-xL/Bcl-2 coordinately regulates apoptosis, cell cycle arrest and cell cycle entry. EMBO J, 22(20), 5459-5470.

Kipanyula, M. J., Woodhoo, A., Rahman, M., Payne, D., Jessen, K. R., & Mirsky, R. (2013). Calcineurin-nuclear factor of activated T cells regulation of Krox-20 expression in Schwann cells requires elevation of intracellular cyclic AMP. J Neurosci Res, 91(1), 105-115.

Kobayashi, S., Sasaki, T., Katayama, T., Hasegawa, T., Nagano, A., & Sato, K. (2010). Temporal-spatial expression of presenilin 1 and the production of amyloid-beta after acute spinal cord injury in adult rat. Neurochem Int, 56(3), 387-393.

Kovacic, P., & Somanathan, R. (2012). Redox processes in neurodegenerative disease involving reactive oxygen species. Curr Neuropharmacol, 10(4), 289-302.

Kretschmer, R. R., Rico, G., & Gimenez, J. A. (2001). A novel anti-inflammatory oligopeptide produced by Entamoeba histolytica. Mol Biochem Parasitol, 112(2), 201-209.

Kwak, E. K., Kim, J. W., Kang, Ku Seong, Lee, Yoon Hee, Hua, Quan Hong, Park, Tae In, Park, Ji Young, Sohn, Yoon Kyung. (2005). The Role of Inducible Nitric Oxide Synthase Following Spinal Cord Injury in Rat. Journal of Korean Medical Science, 20(4), 663-669.

Lee, B. Y., Al-Waili, N., & Butler, G. (2011). The effect of adrenergic  $\beta$ 2 receptor agonist on paraplegia following clamping of abdominal aorta. Archives of Medical Science : AMS, 7(4), 597–603.

Ley General de Salud. Título Séptimo: De la investigación que incluya la utilización de animales de experimentación. Editorial Porrua, 6ª de México, D.F. 1990.

Li, S., & Tator, C. H. (2000). Action of locally administered NMDA and AMPA/kainate receptor antagonists in spinal cord injury. Neurol Res, 22(2), 171-180.

Liu, D., Ling, X., Wen, J., & Liu, J. (2000). The role of reactive nitrogen species in secondary spinal cord injury: formation of nitric oxide, peroxynitrite, and nitrated protein. J Neurochem, 75(5), 2144-2154.

Liu, L., & Chan, C. (2014). The role of inflammasome in Alzheimer's disease. Ageing Res Rev, 15, 6-15.

Liu, N. S., Du, X., Lu, J., & He, B. P. (2012). Diva Reduces Cell Death in Response to Oxidative Stress and Cytotoxicity. PLoS One, 7((8):e43180.).

Liu, N. S., Du, X., Lu, J., & He, B. P. (2012). Diva Reduces Cell Death in Response to Oxidative Stress and Cytotoxicity. PLoS One, 7((8):e43180.)

Liu, T., Guevara, O. E., Warburton, R. R., Hill, N. S., Gaestel, M., & Kayyali, U. S. (2010). Regulation of vimentin intermediate filaments in endothelial cells by hypoxia. Am J Physiol Cell Physiol, 299(2), C363-373.

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402-408. doi: 10.1006/meth.2001.1262

Liverman, T.C., Altevogt, M.B., Joy, E.J., Johnson, T.R. (2005) Spinal cord injury: progress, promise, and priorities. National Academy of Sciences. N.W. Washington, DC.

Loane, D. J., & Faden, A. I. (2010). Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci, 31(12), 596-604.

Loufrani, L., Retailleau, K., Bocquet, A., Dumont, O., Danker, K., Louis, H., Lacolley, P., Henrion, D. (2008). Key role of alpha(1)beta(1)-integrin in the activation of PI3-kinase-Akt by flow (shear stress) in resistance arteries. Am J Physiol Heart Circ Physiol, 294(4), H1906-1913. doi: 10.1152/ajpheart.00966.2006

Lu, H., Shi, J. X., Zhang, D. M., Shen, J., Lin, Y. X., Hang, C. H., & Yin, H. X. (2009). Hemolysate-induced expression of intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 expression in cultured brain microvascular endothelial cells via through ROS-dependent NF-kappaB pathways. Cell Mol Neurobiol, 29(1), 87-95.

Lukáš, R., Zýková, I., Barsa, P., Srám, J. (2011). [Current role of methylprednisolone in the treatment of acute spinal cord injury]. Acta Chir Orthop Traumatol Cech, 78(4), 305-313.

Mabon, P. J., Weaver, L. C., & Dekaban, G. A. (2000). Inhibition of monocyte/macrophage migration to a spinal cord injury site by an antibody to the integrin alphaD: a potential new anti-inflammatory treatment. Exp Neurol, 166(1), 52-64.

McDonald, J. W., & Sadowsky, C. (2002). Spinal-cord injury. The Lancet, 359(9304), 417-425.

Mestre, H., Ramirez, M., Garcia, E., Martinon, S., Cruz, Y., Campos, M. G., & Ibarra, A. (2015). Lewis, Fischer 344, and sprague-dawley rats display differences in lipid peroxidation, motor recovery, and rubrospinal tract preservation after spinal cord injury. Front Neurol, 6, 108.

Minghetti, Lisa. 2004. Cyclooxygenase-2 (COX-2) in Inflammatory and Degenerative Brain Diseases. Journal of Neuropathology and Experimental Neurology. 63 (9): 901 - 910.

Miron, V. E., Boyd, A., Zhao, J. W., Yuen, T. J., Ruckh, J. M., Shadrach, J. L., van Wijngaarden, P., Wagers, A. J., Williams, A., Franklin, R. J., ffrench-Constant, C. (2013). M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci, 16(9), 1211-1218. doi: 10.1038/nn.3469

Muralidharan, S., & Mandrekar, P. (2013). Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J Leukoc Biol, 94(6), 1167-1184.

Nagasawa, K., Chiba, H., Fujita, H., Kojima, T., Saito, T., Endo, T., & Sawada, N. (2006). Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells. J Cell Physiol, 208(1), 123-132.

Nakagawa, S., Kim, J. E., Lee, R., Malberg, J. E., Chen, J., Steffen, C., . . . Duman, R. S. (2002). Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J Neurosci, 22(9), 3673-3682.

Nehrt, A., Rodgers, R., Shapiro, S., Borgens, R., & Shi, R. (2007). The critical role of voltage-dependent calcium channel in axonal repair following mechanical trauma. Neuroscience, 146(4), 1504-1512.

Nieto-Diaz, M., Esteban, F. J., Reigada, D., Munoz-Galdeano, T., Yunta, M., Caballero-Lopez, M., . . . Maza, R. M. (2014). MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics. Front Cell Neurosci, 8, 53.

Nikoletopoulou, V., Plachta, N., Allen, N. D., Pinto, L., Gotz, M., & Barde, Y. A. (2007). Neurotrophin receptor-mediated death of misspecified neurons generated from embryonic stem cells lacking Pax6. Cell Stem Cell, 1(5), 529-540.

Norma Oficial Mexicana para la Producción, Cuidado y Uso de los Animales de Laboratorio. NOM. 062-Z00-1999.

Novak, M. L., & Koh, T. J. (2013). Phenotypic transitions of macrophages orchestrate tissue repair. Am J Pathol, 183(5), 1352-1363.

Obermeier, B., Daneman, R., & Ransohoff, R. M. (2013). Development, maintenance and disruption of the blood-brain barrier. Nat Med, 19(12), 1584-1596.

Okada, S., Nakamura, M., Mikami, Y., Shimazaki, T., Mihara, M., Ohsugi, Y., . . . Okano, H. (2004). Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury. J Neurosci Res, 76(2), 265-276.

Oliveros, J.C. (2007-2015) Venny. An interactive tool for comparing lists with Venn's diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html.

Olmez, I., Ozyurt, H. (2012). Reactive oxygen species and ischemic cerebrovascular disease. Neurochemistry International, 60:208–212.

Olsen, R. W., & Li, G.-D. GABAA receptors as molecular targets of general anesthetics: identification of binding sites provides clues to allosteric modulation. Canadian Journal of Anaesthesia. 2011. 58(2), 206–215.

Osumi, N., Shinohara, H., Numayama-Tsuruta, K., Maekawa, M. (2008). Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells 26, 1663–1672.

Oyinbo, C. A. (2011). Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp, 71, 18.

Pacher, P., Beckman, J. S., & Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiol Rev, 87(1), 315-424.

Pardini C. Epidemiología de la lesión medular traumática en el Distrito Federal. In: Secretaria de Salubridad y Asistencia, México, 1998.

Park, S., Park, K., Lee, Y., Chang, K. T., & Hong, Y. (2013). New Prophylactic and Therapeutic Strategies for Spinal Cord Injury. J Lifestyle Med, 3(1), 34-40.

Peng, H., Huang, Y., Rose, J., Erichsen, D., Herek, S., Fujii, N., . . . Zheng, J. (2004). Stromal cell-derived factor 1-mediated CXCR4 signaling in rat and human cortical neural progenitor cells. J Neurosci Res, 76(1), 35-50.

Pérez, Galicia, Pardini, Ibarra, Renan. Epidemiología de la lesión medular traumática en el Distrito Federal de 1993 a 1997. Tesis de postgrado en Medicina de Rehabilitación. Secretaría de Salud. 1998.

Ransohoff, R. M., & Engelhardt, B. (2012). The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol, 12(9), 623-635.

Raposo, C., Graubardt, N., Cohen, M., Eitan, C., London, A., Berkutzki, T., & Schwartz, M. (2014). CNS repair requires both effector and regulatory T cells with distinct temporal and spatial profiles. J Neurosci, 34(31), 10141-10155.

Ray, S.K., Dixon, C.E., & Banik, N.L. (2002). Molecular mechanisms in the pathogenesis of traumatic brain inury. Histol Histopathol 17: 1137–1152.

Rico, G., Diaz-Guerra, O., Gimenez-Scherer, J. A., & Kretschmer, R. R. (1992). Effect of the monocyte locomotion inhibitory factor (MLIF) produced by Entamoeba histolytica upon the respiratory burst of human leukocytes. Arch Med Res, 23(2), 157-159.

Rico, G., Leandro, E., Rojas, S., Gimenez, J. A., & Kretschmer, R. R. (2003). The monocyte locomotion inhibitory factor produced by Entamoeba histolytica inhibits induced nitric oxide production in human leukocytes. Parasitol Res, 90(4), 264-267.

Ross Michael H, Pawlina Wojciech. (2011). Histology- A text and atlas with correlated cell and molecular biology. 6 ed. Lippincott. 101, 352.

Rossignol, S., Schwab, M., Schwartz, M., Fehlings, G. (2007). Spinal Cord Injury: Time to Move?. J Neurosci, 27: 11782–11792.

Sadowsky, C., Volshteyn, O., Schultz, L., & McDonald, J. W. (2002). Spinal cord injury. Disability and Rehabilitation, 24(13), 680-687.

Sakayori, N., Kikkawa, T., & Osumi, N. (2012). Reduced proliferation and excess astrogenesis of Pax6 heterozygous neural stem/progenitor cells. Neurosci Res, 74(2), 116-121.

Scheff S. W., Saucier D. A., Cain M. E, "A statistical method for analyzing rating scale data: the BBB locomotor score," Journal of Neurotrauma, vol. 19, no. 10, pp. 1251–1260, 2002.

Schumacher, A. M., Velentza, A. V., Watterson, D. M., & Dresios, J. (2006). Death-associated protein kinase phosphorylates mammalian ribosomal protein S6 and reduces protein synthesis. Biochemistry, 45(45), 13614-13621.

Schumacher, A. M., Velentza, A. V., Watterson, D. M., & Wainwright, M. S. (2002). DAPK catalytic activity in the hippocampus increases during the recovery phase in an animal model of brain hypoxic-ischemic injury. Biochim Biophys Acta, 1600(1-2), 128-137.

Selassie, A.W., Varma, A., Saunders, L.L., Welldaregay, W. (2013). Determinants of in-hospital death after acute spinal cord injury: a population-based study. Spinal Cord, 51(1), 48-54.

Sharma, H. S. (2010). A combination of tumor necrosis factor-alpha and neuronal nitric oxide synthase antibodies applied topically over the traumatized spinal cord enhances neuroprotection and functional recovery in the rat. Ann N Y Acad Sci, 1199, 175-185.

Silva-Garcia, R., & Rico-Rosillo, G. (2011). Anti-inflammatory defense mechanisms of Entamoeba histolytica. Inflamm Res, 60(2), 111-117.

Silva-Garcia, R., Estrada-Garcia, I., Ramos-Payan, R., Torres-Salazar, A., Morales-Martinez, M. E., Arenas-Aranda, D., Gimenez-Scherer, J. A., Blanco-Favela, F., Rico-Rosillo, M. G. (2008). The effect of an anti-inflammatory pentapeptide produced by Entamoeba histolytica on gene expression in the U-937 monocytic cell line. Inflamm Res, 57(4), 145-150.

Silva-García, R., Morales-Martínez, M. E., Blanco-Favela, F., Torres-Salazar, A., Ríos-Olvera, J., Garrido-Ortega, M. R., Tesoro-Cruz, E., Rico-Rosillo, G. (2012). The Monocyte Locomotion Inhibitory Factor (MLIF) Produced by Entamoeba histolytica Alters the Expression of Genes Related to the Wound-Healing Process. International Journal of Peptide Research and Therapeutics, 18(4), 391-401.

Simonishvili, S., Jain, M. R., Li, H., Levison, S. W., & Wood, T. L. (2013). Identification of Bax-interacting proteins in oligodendrocyte progenitors during glutamate excitotoxicity and perinatal hypoxia-ischemia. ASN Neuro, 5(5), e00131.

Snell Richard S. Neuroanatomía Clínica. 2014 pp540 Lippincott. 7a Ed.

Tanhoffer, R. A., Yamazaki, R. K., Nunes, E. A., Pchevozniki, A. I., Pchevozniki, A. M., Nogata, C., Aikawa J, Bonatto, J.S., Brito, G., Fernandes, L. C. (2007). Glutamine concentration and immune response of spinal cordinjured rats. J Spinal Cord Med, 30(2), 140-146. Fernandes CL (2007)

Thuret, S., Moon, L.D., Gage, F.H. (2006). Therapeutic interventions after spinal cord injury. Nat Rev Neurosci, 7: 628-43.

Tian, D. S., Xie, M. J., Yu, Z. Y., Zhang, Q., Wang, Y. H., Chen, B., Chen, C., Wang, W. (2007). Cell cycle inhibition attenuates microglia induced inflammatory response and alleviates neuronal cell death after spinal cord injury in rats. Brain Res, 1135(1), 177-185.

Titsworth, W. L., Liu, N. K., & Xu, X. M. (2008). Role of secretory phospholipase a(2) in CNS inflammation: implications in traumatic spinal cord injury. CNS Neurol Disord Drug Targets, 7(3), 254-269.

Utrera-Barillas, D., Velazquez, J. R., Enciso, A., Cruz, S. M., Rico, G., Curiel-Quesada, E., Teran, L. M., Kretschmer, R. R. (2003). An anti-inflammatory oligopeptide produced by Entamoeba histolytica down-regulates the expression of pro-inflammatory chemokines. Parasite Immunol, 25(10), 475-482.

Velazquez, J. R. (2011). The Monocyte Locomotion Inhibitory Factor an anti-inflammatory peptide; therapeutics originating from amebic abscess of the Liver. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 5, 6.

Weber, J. T. (2004). Ca21 homeostasis following traumatic neuronal injury. Curr. Neurovasc. Res. 1, 151–171.

Whalley, K., O'Neill, P., & Ferretti, P. (2006). Changes in response to spinal cord injury with development: vascularization, hemorrhage and apoptosis. Neuroscience, 137(3), 821-832.

Wilson, J. R., & Fehlings, M. G. (2014). Riluzole for acute traumatic spinal cord injury: a promising neuroprotective treatment strategy. World Neurosurg, 81(5-6), 825-829.

Woods, A., Dickerson, K., Heath, R., Hong, S. P., Momcilovic, M., Johnstone, S. R., Carlson, M., Carling, D. (2005). Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab, 2(1), 21-33.

Wu, B., Ren, X. (2009). Promoting axonal myelation for improving neurological recovery in spinal cord injury. J Neurotrauma 26: 1847–1856.

Xie, J., & Guo, Q. (2004). AATF protects neural cells against oxidative damage induced by amyloid beta-peptide. Neurobiol Dis, 16(1), 150-157.

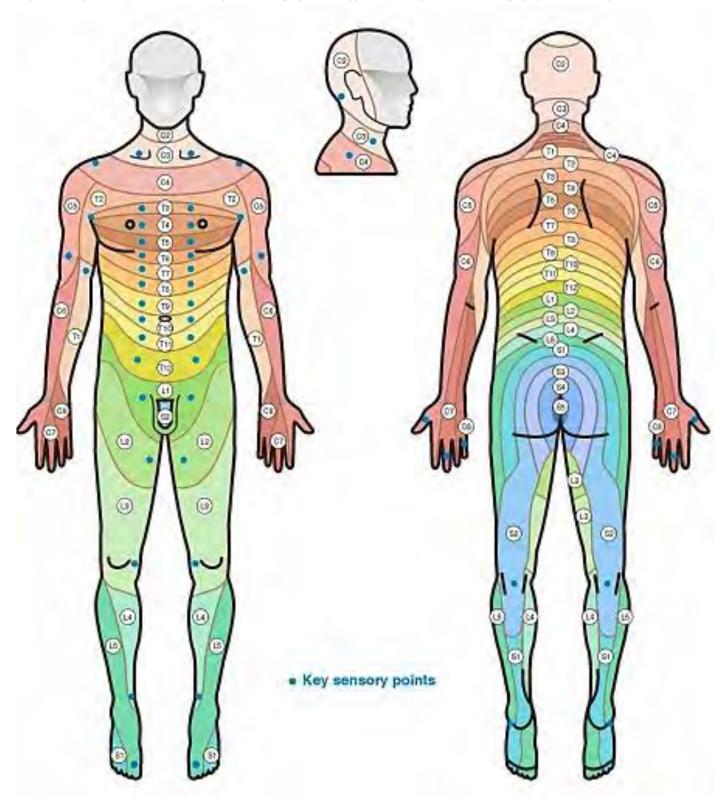
Xie, J., & Guo, Q. (2004). AATF protects neural cells against oxidative damage induced by amyloid beta-peptide. Neurobiol Dis, 16(1), 150-157.

Yang, Y. H., Dudoit, S., Luu, P., Lin, D. M., Peng, V., Ngai, J., & Speed, T. P. (2002). Normalization for cDNA microarray data: a robust compositemethod addressing single andmultiple slide systematic variation. Nucleic Acids Research, 30(4).

Zhang, N., Yin, Y., Xu, S.J., Wu, Y.P.W., Chen, W.S. (2012). Inflammation & apoptosis in spinal cord injury. Indian J Med Res, 135.

Zhao, H., Zhang, Q., Xue, Y., Chen, X., & Haun, R. S. (2011). Effects of hyperbaric oxygen on the expression of claudins after cerebral ischemia-reperfusion in rats. Exp Brain Res, 212(1), 109-117.

Zhao, W., Fan, G. C., Zhang, Z. G., Bandyopadhyay, A., Zhou, X., & Kranias, E. G. (2009). Protection of peroxiredoxin II on oxidative stress-induced cardiomyocyte death and apoptosis. Basic Res Cardiol, 104(4), 377-389.


Zhou, Z., Peng, X., Insolera, R., Fink, D. J., & Mata, M. (2009). IL-10 promotes neuronal survival following spinal cord injury. Exp Neurol, 220(1), 183-190.

Zhu, Y., Soderblom, C., Krishnan, V., Ashbaugh, J., Bethea, J. R., & Lee, J. K. (2015). Hematogenous macrophage depletion reduces the fibrotic scar and increases axonal growth after spinal cord injury. Neurobiol Dis, 74, 114-125.

## **Anexos**

Anexo 1 – Carta dermatomo

 $\underline{http://www.spinalhub.com.au/what-is-a-spinal-cord-injury/what-happens-to-the-spinal-cord-after-injury/spinal-nerves-up-close}$ 



#### Anexo 2 – Escala BBB

Se evalúa la amplitud de movimiento como amplio, limitado y ausente, en las articulaciones tobillo, rodilla y cadera de acuerdo a la escala descrita por Basso, Beat

- 0.- No se observa movimiento en patas traseras (PT).
- 1. Movimiento limitado (arco < 50%) de una o dos articulaciones, usualmente cadera y/o rodilla.
- 2. Movimiento amplio (arco > 50%) de una articulación con o sin movimiento limitado de la otra.
- 3. Movimiento amplio de dos articulaciones.
- 4. Movimiento limitado de las tres articulaciones de PT (cadera, rodilla y tobillo).
- 5. Movimiento limitado de dos articulaciones y amplio de la tercera.
- 6. Movimiento amplio de dos articulaciones y limitado de la tercera.
- 7. Movimiento amplio de las tres articulaciones de PT (cadera, rodilla y tobillo).
- 8. Movimiento rítmico (coordinado) de ambas PT sin soporte de peso o colocación de la planta pero sin soportar peso.
- 9. Colocación plantar con soporte de peso, no está caminando, pasos ocasionales (< ó = al 50%), frecuentes (51% a 94%), o constantes (95% a 100%), con soporte de peso dorsal, sin apoyo plantar.
- 10. Pasos ocasionales con soporte de peso plantar, sin coordinación entre patas delanteras (PD) y PT.
- 11. Pasos frecuentes o constantes con soporte de peso plantar, sin coordinación entre PD y PT.
- 12. Pasos frecuentes o constantes con soporte de peso plantar y coordinación ocasional entre PD y PT.
- 13. Pasos frecuentes o constantes con soporte de peso plantar y coordinación frecuente entre PD y PT.
- 14. Constantemente da pasos con soporte de peso plantar, coordinación constante entre PD y PT, y hay rotación interna o externa de la pata, principalmente al hacer contacto con el piso o al despegar. También pasos plantares frecuentes, coordinación constante entre PD y PT y pasos dorsales ocasionales.
- 15. Pasos plantares y coordinación entre PD y PT constantes. No separa los dedos o solo ocasionalmente cuando avanza la pata hacia delante. Al hacer contacto con el piso predominio la alineación paralela de la pata al cuerpo.
- 16. Pasos plantares y coordinación entre PD y PT constantes durante la marcha. La separación de los dedos ocurre frecuentemente cuando avanza la pata hacia delante. Al hacer contacto con el piso predomino la alineación paralela de la pata al cuerpo, pero la rota al levantarla.
- 17. Lo mismo (núm. 16) pero al levantar la pata la mantiene alineada (sin rotar).
- 18. La separación de los dedos es constante durante la marcha. Al hacer contacto con el piso predomino la alineación paralela de la pata al cuerpo, pero la rota al levantarla.
- 19. Pasos plantares y coordinación entre PD y PT constantes durante la marcha. La separación de los dedos ocurre constantemente durante la marcha. Al hacer contacto con el piso y levantar, predomino la alineación paralela de la pata al cuerpo. Arrastra la cola parte o todo el tiempo.
- 20. Pasos plantares, marcha coordinada y separación de dedos constantes. Al hacer contacto con el piso y levantar, predomino la alineación paralela de la pata al cuerpo, cola levantada constantemente e inestabilidad del tronco.
- 21. Igual pero tronco constantemente estable.

# Anexo 3 – Listas de genes modificados en microarreglos

Tabla A1.1 – Genes del grupo Ina sobre-expresados en microarreglos

| Tabla 111.1 |              | oo ma soore expr |           |                |          |         |
|-------------|--------------|------------------|-----------|----------------|----------|---------|
| Abcb6       | Cnn3         | Gck              | Kcnk6     | Myh13          | Preb     | Sncb    |
| Acaa        | Col3a1       | Gcnt1            | Kcnn3     | Myh8           | Prkch    | Snf1lk  |
| Acaa2       | Crfg         | Gdf8             | Kcnn4     | N5             | Prlph    | Snx1    |
| Acadm       | Crhr2        | Gdi3             | Kif1b     | Nbn            | Prlpk    | Spag5   |
| Acadvl      | Crn          | Glclc            | Kif2      | Ncoa3          | Prlpl    | Spin2b  |
| Acatn       | Csda         | Glra1            | Kl        | Nefh           | Pros1    | Spnb1   |
| Acrp30      | Cspg6        | Glul             | Klrc1     | Neo1           | Prss11   | Spnr    |
| Actr3       | Ctcf         | Gmeb2            | km23      | Npgpr          | Pscd3    | Srm     |
| Adcy8       | Ctsk         | Gmpr             | Kpna2     | Nppa           | Psg4     | Ssb     |
| Adk         | Cyp4b1       | Gnaq             | Kzf1      | Nppb           | Psma2    | Ssg1    |
| Adnp        | Dat1         | Gpm6b            | Laptm5    | Nr1h4          | PSMD1    | Ssr3    |
| Aes         | Dck          | Gria1            | LI5       | Nt5            | Ptger1   | Sstr2   |
| AF095927    | Ddb1         | Grid2            | LOC170927 | Nudt6          | Ptk2     | Stat3   |
| Ak2         | Ddr2         | Grin2a           | LOC171057 | NVP-2          | Ptprf    | Stat5a  |
| Alb         | Ded          | Gro1             | LOC171552 | NX-17          | Ptprz1   | Stx4a   |
| Aldh1a3     | DII1         | Grp-Ca           | Loc192269 | Oas1           | Rab3a    | Stx7    |
| Amy1        | Dnase1       | GstYb4           | LOC192649 | Obp-1f         | Rab4b    | Sult1a2 |
| Aox1        | Doc2b        | Gtf2ird1         | LOC207125 | Ol1            | rACH     | Sult2a1 |
| Ap1g1       | Dpep1        | Gtrap3-18        | LOC245923 | Pacsin1        | Rgs19    | SVCT2   |
| Aqp3        | Dpp6         | Hfb2             | LOC245926 | Pai1           | Rhoip3   | Sycp1   |
| Arntl       | Drd1a        | HIBADH           | LOC246120 | Papin          | Roaz     | Sycp3   |
| Ascl1       | Drg11        | Hist4            | LOC246172 | Parva          | Robo1    | Syt13   |
| Ascl3       | Drpla        | Hmgb1            | LOC246281 | Past-A         | Rok1     | Syt2    |
| Avil        | Dspp         | Hnmt             | Loc259269 | Pax4           | Rpl29    | Syt7    |
| b5&b5R      | Ecac1        | Hnrpm            | LOC60627  | Pax6           | Rpl37    | Sytv    |
| Bambi       | Ecm2         | Hpgd             | LOC60660  | Pclo           | Rpl4     | Tat     |
| Barhl2      | Edg7         | Hsd17b2          | LOC63849  | Pcsk4          | Rps24    | Tcam1   |
| Bcl2        | Eef1d        | Hspb2            | LOC63880  | Pctk1          | Rps27a   | Tcp1    |
| Bcl2l10     |              | Hspb2            | Loc65027  | Pdc            | Rps6kb1  | Tgfa    |
| Bin1        | Egr2<br>Ehd3 | lck              | LOC66030  | Pdc<br>Pdcd4   | Rtn1     | Tlbp    |
|             | Els1         |                  |           | Pde4b          | Ruvbl1   | Tmf1    |
| Bmp1        |              | Idh3g            | Lpl       | Pde4b<br>Pde4d | Sc65     |         |
| Cacna1g     | Entpd6       | leda             | Lrrc3     |                |          | Tmod2   |
| Camk2a      | Ep300        | Ighmbp2          | Lsamp     | Pde6g          | Scdgfb   | Tnfsf10 |
| Cav2        | F10          | lgsf6            | Lxn       | Pdhal          | Scg2     | Tnfsf4  |
| Cckar       | Fabp1        | II15             | Lypla1    | PDRP           | Scn11a   | Tpx1    |
| Ccnh        | Fbln5        | II18             | Lyst      | Pfkfb1         | Scn3a    | Trdn    |
| Cdc42bpb    | Fcna         | Il1a             | Lyz       | Pigm           | Scnn1b   | Trip15  |
| Cdc5l       | Fgfr2        | Il1r2            | Mafk      | pips           | Scyc1    | Trrp2   |
| Centa1      | Flg          | II5              | Map3k8    | Pkcl           | Sfrs10   | Trrp6   |
| Cgm1        | Fmo4         | II6st            | Matr1     | Pla2g2a        | Sgp158   | Tslpr   |
| Chm-1       | Fxyd1        | lrs1             | Mbl2      | Plp            | Sh3d2a   | Tubb3   |
| Chrna7      | Fxyd5        | Itga2            | Mefv      | Plscr1         | Si       | Tubb4   |
| Chrna9      | Fzd9         | Itgb7            | Mfn1      | Pmch           | Sirt2    | Txn     |
| Chrnd       | Gab2         | Jdp1             | Mllt3     | Pmf31          | Skd3     | Ua20    |
| Chx4        | GABABL       | Jwa              | Mmp11     | Ppal           | Slc27a2  | Uchl3   |
| Cish        | Gabra5       | KChIP4           | Mmp12     | Ppap2a         | Slc30a4  | Vegfc   |
| Cktsf1b1    | Gabrq        | Kcnb1            | Mpdz      | Ppp2cb         | Slc6a5   | Vsp45a  |
| Clcnk1      | Gabrr1       | Kcnc1            | Mre11a    | Ppp3cb         | Slc9a3r2 | Wisp2   |
| Cldn1       | Gabt4        | Kcne3            | Msra      | Рру            | Slc9a5   | Wt1     |
| CmI5        | Galgt1       | Kcnj15           | Muc5ac    | Prdx2          | Smgb     | Xdh     |
| Cncg4       | Gasz         | Kcnk3            | Mvp       | Prdx4          | Snap23   |         |
|             |              |                  |           |                |          |         |

Tabla A1.2 – Genes del grupo Ina sub-expresados en microarreglos

| 5Ht-2   | Cacng6  | Egfr    | Hsd17b1   | Mertk    | Prei3    | Slc34a1 |
|---------|---------|---------|-----------|----------|----------|---------|
| A5D3    | Calcyon | Eif2b2  | Hsf1      | Mfge8    | Prelp    | Slc3a2  |
| Abca2   | Cap2    | Emd     | Hsp27     | Mgat1    | Prkcl1   | Slc8a3  |
| Abcc6   | Capns1  | Epas1   | Hspbp1    | Mgat2    | Prot     | Slfn4   |
| Acads   | Cat     | Epim    | Hspt70    | Mgp      | Prpg2    | Snrpb   |
| Acp5    | Cblb    | Erbb2   | Htr1a     | Mln51    | Prx      | Snrpn   |
| Acta1   | Cck     | Evl     | Htr1b     | Mmp14    | Pscd2    | Spna2   |
| Actg2   | Ccnl    | Expi    | Htr6      | Mmp24    | Ptger4   | Spr     |
| Adra1d  | Cd3d    | F13a    | lcam1     | Mox2     | Ptgis    | Src     |
| Agt     | Cd8b    | Faim    | Igf2r     | Mpst     | Ptk2b    | Srrp86  |
| Ahcy    | Cdc37   | Fbxl2   | Igifbp    | Mras     | Ptpn9    | St14    |
| Ak1     | Cdc42   | Fhl2    | Il12a     | Mucdhl   | Ptprj    | Stk17b  |
| Akap    | Cdrap   | Fn1     | Il2ra     | Munc13-4 | Pts      | Stk2    |
| Alcam   | Celsr3  | Fth1    | Insl3     | Mybbp1a  | Pv1      | Stnl    |
| Aldh2   | Chp     | Fuca    | Itgb1     | Myh3     | Pvrl1    | Stx2    |
| Aldoc   | Clns1a  | Fut1    | Itpkb     | Myh9     | Pxmp2    | Syk     |
| Alox12  | Cltc    | Fxyd2   | Jun       | Myo1b    | Qscn6    | Syn3    |
| Ank     | Cnr2    | Fxyd4   | Kcna2     | NCAML1   | Rab38    | Syngr2  |
| Anx1    | Cntnap1 | Gabbr1  | Kcnh3     | Nedd8    | Rab3d    | Syt5    |
| Apbb1   | Coil    | Gabrp   | Kcnk12    | Ninj2    | Rabac1   | T2R3    |
| Apoa2   | Col1a2  | Gabrr2  | Kcnk2     | Notch3   | Rad50    | Tap1    |
| Araf1   | Col5a1  | Galr3   | KIAA1536  | Npff     | Ragb     | Tef     |
| Arf1    | Comp    | Gap43   | Klf15     | Nptxr    | RATCYTA  | Temo    |
| Arf5    | Cox8a   | Gata6   | Klk1      | Nr1h2    | Retnla   | Tf      |
| Arg1    | Cox8h   | Gc      | Lamc1     | Nr2f2    | Rnd2     | Tff3    |
| Arl4    | Cript   | Gcdp    | Lhx1      | Nrn      | Rnh1     | Tg      |
| Arnt2   | Crmp1   | Gcs1-   | Lin10     | Nucb     | Rph3al   | Thbd    |
| Arsb    | Csh1v   | pending | LOC170824 | Nup62    | Rpo1-2   | Thop1   |
| Asic4   | Csnk1d  | Gfi1    | Loc192280 | Okl38    | Rps14    | Tnni1   |
| Aspa    | Cst6    | Gfra1   | Loc192352 | Olfm1    | Rps27    | Tpi1    |
| Atf2    | Cst8    | Ggh     | LOC245919 | Omp      | RS21-C6  | Tpm4    |
| Atp1a3  | Ctrb    | Gja4    | LOC246325 | Opn1sw   | Ry2d1    | Tst     |
| Atp2b3  | Cxcr4   | Gjb1    | LOC252855 | Opn4     | Sacm2l   | Ttgn1   |
| Atp4b   | Cycs    | glb     | LOC252882 | Oxt      | Sarcosin | Txn2    |
| Atp5a1  | Cyp11a  | Glp1r   | LOC252960 | P2ry6    | SC2      | U83883  |
| Atp5o   | Cyp17   | Gp38    | LOC259228 | Pal      | Scamp2   | U91561  |
| Atp6s14 | Cyp2c22 | Gpc1    | LOC56826  | Par3     | Scd2     | Ube2i   |
| B2m     | Cyslt2  | Gpr30   | LOC60383  | Pcscl    | Scn5a    | Uchl1   |
| Bach    | Dagk    | Gpr54   | LOC64027  | Pcsk2    | Scp2     | Ugt1a6  |
| Bax     | Dbnl    | Gpr83   | Loc65042  | Pde1c    | Sdc2     | Ugt1a7  |
| Bcl2l   | Dcc     | Gpr85   | LOC78973  | Pfkfb4   | Sdf1     | Upa     |
| BEGAIN  | Dctn4   | Grin1   | Ltb4r2    | Phkg1    | Sepp1    | Vamp3   |
| Bfsp1   | Ddc     | Grm2    | Lu<br>    | Pht2     | Serpina1 | Vamp5   |
| Bmp3    | Ddxl    | Grpr    | Madh5     | Pip5k2b  | Shbg     | Wbp2    |
| Bok     | Den     | Gstt1   | Map2      | Pitx1    | Siat1    | Wbscr14 |
| Btg2    | Dgkg    | Hamp    | Mapk3     | Pitx2    | Six3     | Wisp1   |
| Bzrp    | Dig1    | Hdac3   | Mapk8ip   | Pitx3    | Slc18a3  | Wmp1    |
| C4      | Dio3    | Hhex    | Marta1    | Plcg2    | Slc19a1  | Xt1     |
| Ca5a    | Dlc2    | Hig1    | Mbp       | Plec1    | Slc20a2  | Ywhah   |
| Cacna1b | Dusp6   | Hmgcl   | Mcpt1     | Plod     | Slc21a5  | Zfp103  |
| Cacna1s | Dvl1    | Hnf3b   | Mdhl      | Pomc2    | Slc21a9  | Zfp36   |
| Cacnb1  | Echs1   | Hoxa2   | Mdk       | Pou2f1   | Slc25a1  | Zhx1    |
| Cacng1  | Edg5    | Hrg     | Meox2     | Pr       | Slc2a8   | Zyx     |

Tabla A2.1 – Genes del grupo 3a sobre-expresados en microarreglos

| Abcb6    | Coro1a | Fxyd5     | lrs1      | Mvp       | Preb     | Smpd3   |
|----------|--------|-----------|-----------|-----------|----------|---------|
| Acaa2    | Cox5a  | Fzd9      | Kcnb1     | Myh13     | Prim1    | Smstr2  |
| Acadm    | Cox5b  | G10       | Kcnc1     | Myh8      | Prkch    | Snap23  |
| Acatn    | Creb1  | G22p1     | Kcnj1     | ,<br>Myr4 | Prlpi    | Snca    |
| Adcy8    | Crhr2  | Gab2      | Kcnj3     | ,<br>Nbn  | Pros1    | Sncb    |
| Adk      | Crn    | GABABL    | Kcnj5     | Ncoa3     | Prss11   | Sncg    |
| Adora3   | Csda   | Gabrq     | Kcnk1     | Nefh      | Psen1    | Snx1    |
| Aes      | Csp    | Gabt4     | Kcnk3     | Nf1       | Psma2    | Sost    |
| Afar     | Cspg6  | Galnt7    | Kcnk6     | Nfya      | Psmb8    | Spnb1   |
| Agc1     | Csrp1  | Gck       | Kcnn2     | Nme1      | Psme1    | Srm     |
| Ak2      | Ctcf   | Gdf8      | Kcnn3     | Nmt1      | Ptger1   | Ssb     |
| Akt1     | Ctf1   | Gdi3      | Kcnn4     | Npgpr     | Pthlh    | Ssg1    |
| Aldh1a3  | Ctsj   | Ggta1     | Kif1b     | Npl4      | Ptprf    | Ssr3    |
| Amacr    | Ctxn   | Glul      | KI        | Nppa      | Ptprz1   | Sstr2   |
| Amy1     | Cyp4b1 | Gmeb2     | Kirc1     | Nppb      | Rab3a    | Stat5a  |
| Andpro   | Cyp7b1 | Gmpr      | ksGC      | Nr1h4     | Rab4b    | Statsa  |
|          | Dctn1  |           |           | Nr2f1     | Rab5a    | Stx7    |
| Anpep    |        | Gnaq      | Laptm5    |           |          |         |
| Ant2     | Ddah1  | Gnb2l1    | Lepr      | Nrd1      | rACH     | Sult2a1 |
| Aox1     | Ddb1   | Gnrh1     | Lgals2    | Nsf       | Rbp2     | SVCT2   |
| Ap1g1    | Ddr1   | Gp5       | Lisch7    | Nt5       | Rcvrn    | Svs4    |
| Arntl    | Dlad   | Gpc3      | LI5       | Nudt6     | Ret      | Syt2    |
| Ascl1    | DII1   | Gpm6b     | LOC170927 | NVP-2     | Rhoip3   | Syt6    |
| Ascl3    | Dlm1   | Grid2     | LOC192649 | Nxph3     | Rln1     | Syt7    |
| Atp5f1   | Dnase1 | Grin2a    | LOC207121 | Oas1      | Rnase4   | Sytv    |
| Avil     | Doc2b  | Grinl1a   | LOC245923 | Obp-1f    | Roaz     | Tcam1   |
| b5&b5R   | Dpep1  | Grs2      | LOC245926 | Ol1       | Robo1    | TCEB2   |
| Bace     | Dpp6   | Gtf2ird1  | LOC246120 | P2rx4     | Rpl28    | Tcp1    |
| Barhl2   | Dspp   | Gtrap3-18 | LOC246172 | Pacsin1   | Rpl29    | Tdag    |
| Bet1     | Ecac1  | Gusb      | LOC54410  | Pah       | Rpl37    | Tgfa    |
| Bin1     | Ecm2   | Gzmc      | LOC59313  | Pai1      | Rpl4     | Tlbp    |
| Bmp1     | Edg7   | Hdgfrp2   | LOC60428  | PAIHC3    | Rps24    | Tmod2   |
| Bmp4     | Ednra  | Hdh       | LOC60591  | Papin     | Rps27a   | Tnfsf10 |
| bsnd     | Eef1d  | Hk1       | LOC60660  | Parva     | Rps6kb1  | Tnfsf4  |
| Cacna1g  | Egr2   | Hmgb1     | LOC63880  | Past-A    | Rsn      | Tp63    |
| Cacna1i  | Ela2   | Hnmt      | Loc65027  | Pax6      | Rtn1     | Tpm3    |
| Cacng2   | Els1   | Hnrpm     | Lpl       | Pax8      | Ruvbl1   | Tpx1    |
| Calcb    | Ensa   | Hpgd      | Lta       | Pclo      | Sacm1l   | Trdn    |
| Calm2    | Ephb2  | Hspb2     | Ly49i2    | Pcsk4     | Scg2     | Trrp6   |
| Camk2a   | Eya2   | Hspb3     | Lyst      | Pctk1     | Scn3a    | Tslpr   |
| Ccnh     | F10    | Ick       | Maf       | Pdc       | Scnn1b   | Tubb4   |
| Cd36l1   | Fabp1  | Idh3g     | Map3k8    | Pdcd4     | Scyc1    | Ua20    |
| Cd59     | Fabp7  | ldi1      | Matr1     | Pde4d     | Sdfr1    | Ube2d3  |
| Cdc42bpb | Facl6  | Ieda      | Mbl2      | Pik3c3    | Secp43   | Ubqln1  |
| Cds2     | Fbln5  | lgbp1     | Mcpt9     | pips      | Serpini1 | Uchl3   |
| Cebpb    | Fcna   | lghmbp2   | Mmp11     | Plscr1    | Sfrs10   | Unc5h2  |
| Chm-1    | Fgf17  | lgsf6     | Mmp12     | Por       | Sh3d2a   | Vcsa1   |
| Chrna10  | Fgf3   | Il12b     | Mor1      | Pou3f1    | Skd3     | Vof16   |
| Chrna7   | Fgfr2  | II15      | Mpp3      | Ppap2a    | Slc11a1  | Vsp45a  |
| Chrnd    | Fgfr3  | II1a      | Mre11a    | Ppp2cb    | Slc13a3  | Wt1     |
| Cish     | Fhit   | ll1r2     | Ms4a1     | Ppp3cb    | Slc30a4  | Ykt6-   |
| Cktsf1b1 | Flg    | II5       | Msh2      | Prdx1     | Slc4a4   | pending |
| Cldn1    | Fut2   | Il6st     | Msra      | Prdx2     | Slc7a2   | Znf148  |
| Cncg4    | Fxyd1  | Inhbc     | Muc5ac    | Prdx6     | Slc9a5   | • •     |
| 0 -      | -,     | *****     |           | 1 =====   | - == ==  |         |

Tabla A2.2 – Genes del grupo 3a sub-expresados en microarreglos

| 5Ht-2   | Calcyon | E2f5    | Hsd3b1    | Mic2l1   | Pnma1    | Slc29a2 |
|---------|---------|---------|-----------|----------|----------|---------|
| Abca2   | Capn3   | Edg5    | Hsf1      | Mmp13    | Pomc2    | Slc2a8  |
| Abcb9   | Capn6   | Egfr    | Hsp27     | Mmp24    | Pou2f1   | Slc34a1 |
| Abcc6   | Capns1  | Eif2b2  | Hspbp1    | Mox2     | Ppp3ca   | Slc3a2  |
| Abp1    | Casp12  | Emd     | Htr1a     | Mpst     | Pr       | Slc4a2  |
| Acads   | Casp9   | Epim    | Htr4      | Mras     | Prelp    | Slc8a1  |
| Acp5    | Cat     | Erbb2   | Il11ra1   | Msn      | Prkcl1   | Slc8a3  |
| Actc1   | Cblb    | Esr2    | Il2ra     | Mte1     | Prmt3    | Slc9a2  |
| Actg2   | Cbs     | Evl     | Insl3     | Munc13-4 | Prot     | Slc9a3  |
| Ada     | Ccnl    | Expi    | Itgb1     | Myo1b    | Pscd2    | Smoh    |
| Adam1   | Cd3d    | Fads1   | Kcnab1    | Nbl1     | Psma1    | Snrpb   |
| Adra1d  | Cd8b    | Faim    | Kcnh3     | Nfix     | Psmc1    | SP22    |
| Akap    | Cdc42   | Fbxl2   | Kcnj6     | Ninj2    | Psme2    | Spin2c  |
| Alcam   | Cdh14   | Fgf11   | Kcnk4     | NOR-2    | Ptgdr2   | Spna2   |
| Aldh2   | Cdk7    | Fgr     | KIAA1536  | Npff     | Ptger4   | Spnb3   |
| Aldoa   | Cdrap   | FhI2    | Klf15     | Nptxr    | Ptgis    | Spr     |
| Alk7    | Ceacam1 | Fmo1    | Klk1      | Nr1d1    | Ptpn9    | Srrp86  |
| Ank     | Celsr3  | Fn1     | Lamc1     | Nr1h2    | Ptprj    | St14    |
| Anx5    | Chad    | Fnta    | Ldhb      | Nr1i2    | Pts      | Stx2    |
| Apbb1   | Chp     | Folh1   | Lin10     | Nr1i3    | Pv1      | Stxbp2  |
| Arf1    | Clns1a  | Fut1    | Lipe      | Nr4a1    | Qscn6    | Svs5    |
| Arf5    | Cltc    | Fxyd4   | Litaf     | Nr5a2    | Rab3d    | Syngr1  |
| Arf6    | CMR1    | Gabarap | LOC171412 | Nucb     | Rabac1   | Syngr2  |
| Arg1    | Cnr2    | Gapds   | Loc192280 | Nup62    | Rad50    | Syt10   |
| Asic4   | Col1a2  | Gatm    | Loc192352 | Nupr1    | Retnla   | Syt12   |
| Aspa    | Col5a1  | Gc      | LOC245919 | Ocln     | Rgs19ip1 | Syt4    |
| Atf2    | Cpn1    | Gcdp    | LOC246325 | Okl38    | Rnpep    | Syt5    |
| Atic    | Cript   | Gcs1-   | LOC252853 | Omp      | RNU28927 | T2R3    |
| Atp1a3  | Crmp1   | pending | LOC259228 | Opn1sw   | Rph3al   | Tacstd1 |
| Atp2b3  | Crygd   | Ggh     | LOC259245 | Opn4     | Rpo1-2   | Temo    |
| Atp6l   | Cs      | Gja4    | LOC60329  | Oprm1    | Rps27    | Tf      |
| Atp6s14 | Cspg2   | Gjb4    | LOC60383  | Oxt      | Rps9     | Tff3    |
| Atp9a   | Cst8    | Gjb6    | LOC60452  | P29      | RS21-C6  | Tgfb1   |
| Avpr2   | Ctrb    | glb     | LOC64027  | P2rx1    | Ry2d1    | Tgm2    |
| Baalc   | Cyp17   | Glp1r   | LOC64038  | P2ry6    | S100a10  | Thbd    |
| Bach    | Cyp2a3a | Gna15   | Lrp2      | Pcscl    | Sardh    | Thop1   |
| Bcl10   | Cyp2c39 | Gpr30   | Madh5     | Pcsk2    | Scd2     | Timm10  |
| Bcl2l   | Cyslt2  | Gpr54   | Mag       | Pcsk5    | Scn5a    | Timp2   |
| BEGAIN  | Dapkl   | Gpr66   | Map1a     | Pctp     | Sdf1     | Txn2    |
| Bin1b   | Dcc     | Gpr85   | Mapk3     | Penk-rs  | Sec22a   | U83883  |
| Bzrp    | Dctn4   | Gps1    | Mapk8ip   | Pex6     | Sepp1    | U91561  |
| C1qbp   | Ddc     | Grik4   | Mapre1    | Pfkfb4   | Serpina1 | Ube2i   |
| C2ta    | Ddx25   | Grin1   | Mbp       | Phkg1    | Siahbp1  | Ucp2    |
| C4      | Dedd    | Grm2    | Mbpa      | Pht2     | Sirt6    | Ugt1a6  |
| Ca5a    | Des     | Grpr    | Mcpt1     | Pim3     | Slc16a10 | Vamp3   |
| Cacna1c | Dffa    | Gucy2e  | Mdhl      | Pip5k2b  | Slc16a8  | Vdup1   |
| Cacna1s | Dffb    | Hcn3    | Mdk       | Pitx1    | Slc19a1  | Wisp1   |
| Cacnb1  | Dgkg    | Hdac3   | Mertk     | Pitx2    | Slc20a2  | Ywhah   |
| Cacnb2  | Dig1    | Hhex    | Mfge8     | Plcg2    | Slc21a12 | Zfp103  |
| Cacng1  | Drd5    | Hoxa1   | Mfn2      | Plin     | Slc21a5  | Zhx1    |
| Cacng6  | Dusp6   | Hsd11b1 | Mgat1     | Plod     | Slc25a1  |         |
| Calcr   | Dyrk    | Hsd17b1 | Mgat3     | Pnliprp1 | Slc29a1  |         |
|         |         |         |           |          |          |         |

Tabla A3.1 – Genes del grupo 7a sobre-expresados en microarreglos

| Abcb6             | Cirl2   | Fzd1      | II7       | Muc5ac  | Ppp2cb   | Spnb1   |
|-------------------|---------|-----------|-----------|---------|----------|---------|
| Acaa2             | Cirl3   | Fzd9      | Imp13     | Mvp     | Ppp3cb   | Srm     |
| Acadm             | Clcnk1  | G10       | Inhbc     | Myh13   | Prdx2    | Ssb     |
| Acatn             | Cldn1   | G22p1     | lrs1      | Myh4    | Prdx4    | Ssg1    |
| Acrp30            | Cml1    | Gab2      | Jag1      | Myh8    | Preb     | Ssr3    |
| Acvrl1            | Cox6a2  | GABABL    | Jam1      | Myr4    | Prkch    | Sstr2   |
| Adamts4           | Crn     | Gabrq     | Jdp1      | N5      | Prlpd    | Stat5a  |
| Adcy8             | Csda    | Gabt4     | Jwa       | Nat2    | Prlpl    | Stk3    |
| Adk               | Csp     | Galnt7    | KChIP4    | Nbn     | Prlpm    | Stx3a   |
| Aes               | Cspg6   | Gasz      | Kcnb1     | Ncoa3   | Pros1    | Stx4a   |
| Afar              | Csrp1   | Gck       | Kcnc1     | Nefh    | Prss11   | Stx7    |
| Agtr1             | Cst11   | Gcnt1     | Kcne3     | Nell1   | Psen1    | Sult1a2 |
| Aldh1a3           | Ctcf    | Gdf8      | Kcnj15    | Nf1     | Psmb8    | Sult2a1 |
| Ank3              | Ctsj    | Gdi3      | Kcnj3     | Nfya    | Psme1    | SVCT2   |
| Ant2              | Ctsk    | Ggta1     | Kcnj5     | Nifs    | Ptprz1   | Svop    |
| Aox1              | Ctxn    | Ggtp      | Kcnk3     | Nmt1    | Rab3a    | Svs4    |
| Ap1g1             | Cutl1   | Gja6      | Kcnk6     | Npgpr   | Rab4b    | Syt2    |
| Ap2m1             | Cyp2c23 | Glclc     | Kcnn2     | Npl4    | rACH     | Syt7    |
| Api3              | Dctn1   | Gmeb2     | Kcnn4     | Nr1h4   | Raf1     | Tat     |
| Aqp3              | Ddr1    | Gmpr      | Kidins220 | Nr2f1   | Ramp2    | Tcam1   |
| Arha2             | Ddr2    | Gnaq      | Kif1b     | Nrd1    | Rbbp9    | TCEB2   |
| Arhgef9           | Dlad    | Gnb2l1    | Kl        | Nsf     | Rbp2     | Tcf8    |
| Arntl             | DII1    | Gnrh1     | Kpna2     | Nt5     | Rdc1     | Tcp1    |
| Ascl3             | Dlm1    | Gp5       | Lgals2    | Nudt6   | Rgs3     | Tfpt    |
| Asgr2             | Dnase1  | Gpc3      | Lmnb1     | NVP-2   | Rnase4   | Thbs4   |
| Atp5f1            | Doc2b   | Gpm6b     | LOC170927 | NX-17   | Roaz     | Tlbp    |
| Avil              | Dpep1   | Grf2      | LOC171552 | Oas1    | Rp58     | Tmf1    |
| b5&b5R            | Dpp6    | Grid2     | LOC192254 | Oazi    | Rpl37    | Tmod2   |
| Bace              | Dpys    | Grik1     | LOC192649 | Ol1     | Rpl4     | Tnfsf10 |
| Barhl2            | Drd1a   | Grin2a    | LOC245923 | Oprs1   | Rps15a   | Tnfsf4  |
| Bbs2              | Drip78  | Grin2b    | LOC245926 | P2rx4   | Rps21    | Tnp2    |
| Bcl2              | Dspp    | Grs2      | LOC246172 | Pacsin1 | Rps24    | Tp63    |
| Bet1              | Dyt1    | GstYb4    | LOC56764  | PAIHC3  | Rsca3    | Tpm3    |
| Bin1              | Ecac1   | Gtrap3-18 | LOC59313  | Papin   | Rtn1     | Tpx1    |
| Bmp1              | Edg7    | Hdgfrp2   | LOC60591  | Parva   | Scdgfb   | Trdn    |
| Bmp4              | Ednra   | Hdh       | LOC63880  | Pax4    | Scn3a    | Trif-   |
| bsnd              | Eef1d   | Hfb2      | LOC81022  | Pax6    | Scnn1b   | pending |
| C1s               | Egr2    | Hip1r     | Lpl       | Pclo    | Scya22   | Trip15  |
| C3                | Ela2    | Hmgb1     | Lrrc3     | Pcsk4   | Scyc1    | Trrp2   |
| Cacna1g           | Enpep   | Hmgb2     | Lta       | Pctk1   | Sec14l2  | Trrp6   |
| Cacna1i           | Ensa    | Hmgcr     | Ly49i2    | Pdc     | Sept3    | Tslpr   |
| Calcb             | Ep300   | Hri       | Ly68      | Pdcd4   | Serpini1 | Tubb4   |
| Calm2             | Esdn    | Hsd17b2   | Lypla1    | Pde3b   | Sfrs10   | Ua20    |
| Camk2a            | Eya2    | Hspb2     | Lyz       | Pde4d   | Sh3d2a   | Ube2d3  |
| Camkk2            | Fabp1   | Hspb3     | Madcam1   | Pdhal   | Skd3     | Ubqln1  |
| Ccnh              | Fabp3   | IAG2      | Madh4     | Pdi2    | Slc13a3  | Uchl3   |
| Cd36l1            | Fbln5   | Idh3g     | Maf       | Pdi4    | Slc22a7  | Unc13h1 |
| Cd59              | Fbxo6b  | leda      | Matr1     | Pdyn    | Slc30a4  | Usf1    |
| Cdc42bpb          | Fcer1a  | Ifnb1     | Mbl2      | Pfkfb3  | Slc39a1  | Vim     |
| Cdh22             | Fcna    | lgbp1     | Mcpt9     | Pigm    | Slc7a2   | Vipr1   |
| Cdk5r             | Fdx1    | Ighmbp2   | Mefv      | Pik3cb  | Slc9a5   | Vof16   |
| Cds2              | Fgf17   | Igsf6     | Mmp10     | pips    | Smpd3    | Vsp45a  |
| Cetn3             | Fgf18   | II15      | Mmp11     | Pkm2    | Snap23   | Wisp2   |
| Cgi-94            | Fgfr2   | II18      | Mmp12     | Plcb4   | Snca     | Wt1     |
| Cgm1              | Flg     | II1a      | Мрр3      | Plscr1  | Sncb     | Xylt2   |
| Chm-1             | Fut2    | ll1r2     | Mre11a    | Pmch    | Sncg     | Znf148  |
| OL 40             | Fxyd1   | II5       | Ms4a1     | Podxl   | Snx1     | Zp1     |
| Chrna10<br>Chrna9 | Fxyd5   | ll6st     | Msra      | Ppap2a  | Sost     | ZPI     |

Tabla A3.2 – Genes del grupo 7a sub-expresados en microarreglos

| 5Ht-2    | Calb3         | Dusp6   | Hes2      | Meox2    | Ppp1r14a | Slc16a8 |
|----------|---------------|---------|-----------|----------|----------|---------|
| A5D3     | Calcrl        | Dvl1    | Hhex      | Mertk    | Ppp3ca   | Slc19a1 |
| Abca2    | Calcyon       | E2f5    | Hrg       | Mfn2     | Pr       | Slc20a1 |
| Abcb9    | Capns1        | Edg5    | Hrh3      | Mgat1    | Prelp    | Slc20a2 |
| Abcc6    | Casp12        | Ephx2   | Hrh4      | Mln51    | Prkcl1   | Slc21a5 |
| Acads    | Casp9         | Epim    | Hsd11b1   | Mmp24    | Prot     | Slc21a9 |
| Acat1    | Cat           | Erbb2   | Hsd17b1   | Mpst     | Prsc1    | Slc22a3 |
| Actg2    | Cbs           | Esr1    | Hsf1      | Mras     | Pscd2    | Slc25a1 |
| Adam15   | Ccnl          | Esr2    | Hspbp1    | Mte1     | Psme2    | Slc27a1 |
| Adra1d   | Cd3d          | Evl     | Htr1a     | Munc13-4 | Ptgdr2   | Slc28a2 |
| AF092207 | Cd8b          | Expi    | Htr3a     | Myl3     | Ptger4   | Slc29a2 |
| Akap     | Cdc20         | Fabp2   | lcam1     | Nckap1   | Ptgis    | Slc2a8  |
| Alcam    | Cdc37         | Fads1   | lgfbp1    | Nedd8    | Ptk2b    | Slc3a2  |
| Aldh2    | Cdc42         | Fbxl2   | Igfbp3    | Ngfr     | Ptprj    | Slc4a2  |
| Aldoa    | Cdc42<br>Cdh2 | Fgl2    | ll11      | Ninj2    | Pts      | Slc5a7  |
|          |               | Fhl1    | II12a     |          | Pvrl1    | Slc8a3  |
| Anp32    | Cdrap         |         |           | Nkg7     |          | SP22    |
| Anx5     | Chp           | Fn1     | Il2ra     | Nkrp2    | Qscn6    |         |
| Appbp1   | Chrnb2        | Fnta    | II9r      | NOR-2    | Rab26    | Spna2   |
| Araf1    | Cish1         | Fstl3   | ltgb1     | Notch3   | Rab29    | Sqle    |
| Arf5     | Cln2          | Fut1    | Kcnh3     | Nptxr    | Rab3b    | Srrp86  |
| Arnt2    | Clns1a        | Fxyd2   | Kcnj16    | Nr1h2    | Rab3d    | St14    |
| Arpc1a   | Cltc          | Fxyd4   | Kcnj6     | Nr1i3    | Rabac1   | Stk2    |
| Arsb     | Cmklr1        | G3bp    | Kcnn1     | Nr2f2    | Rad50    | Stx6    |
| Asic4    | Cnr2          | Gabarap | KIAA1536  | Nucb     | Rb2      | Stxbp2  |
| Aspa     | Cntnap1       | Gabrp   | Klf15     | Nup62    | Retnla   | Syngr2  |
| Atp1a3   | Col5a1        | Gabrr2  | Klk1      | Okl38    | Rgs19ip1 | Syt12   |
| Atp2b3   | Comp          | Gale    | Ldhb      | Omp      | Rh       | Syt5    |
| Atp4b    | Cox6c         | Galnt1  | Lin10     | Opn1sw   | Rnh1     | T2R3    |
| Atp6s14  | Cox8a         | Galnt5  | LOC170824 | Opn4     | Rnpep    | Tao2    |
| Bach     | CPG2          | Galr3   | LOC171412 | Optn     | Rph3al   | Tap2    |
| Bax      | Cpn1          | Gc      | Loc192280 | Oxt      | Rpl10    | Tcn2p   |
| Bche     | Cpz           | Gcdp    | Loc192352 | P2ry6    | Rpo1-2   | Temo    |
| Bcl10    | Cript         | Gcs1-   | LOC207126 | Pcscl    | Rps14    | Tf      |
| Bcl2l    | Crmp1         | pending | LOC245960 | Pcsk1n   | Rps17    | Tff2    |
| Bcl2l2   | Crygd         | Ggh     | LOC252853 | Pcsk5    | Rps27    | Tg      |
| BEGAIN   | Csnk1d        | gis5    | LOC252882 | Pde1c    | RS21-C6  | Tgm2    |
| Bfsp1    | Cspg2         | Gja4    | LOC252929 | Pde4a    | Ry2d1    | Thop1   |
| Bin1b    | Cst8          | glb     | LOC259228 | Pdk2     | S100a10  | Timm10  |
| Blr1     | Cstb          | Glp1r   | LOC259245 | Penk-rs  | Scamp3   | Titf1   |
| Bmp15    | Ctrb          | Glrx1   | LOC56826  | Pex6     | Scamp5   | Tnni1   |
| Bmp3     | Cybb          | Gpam    | LOC60329  | Pfkfb4   | Scn2a1   | Tpm4    |
| Bnip3    | Cycs          | Gpc1    | LOC60383  | Pht2     | Scn5a    | Trela   |
| Bzrp     | Cyp11a        | Gpr30   | LOC60452  | Pim3     | Scp2     | Tspan-2 |
| C1qbp    | Cyp2a3a       | Gpr54   | LOC64038  | Pip5k2b  | Sdf1     | U83883  |
| C2ta     | Cyp2c22       | Gpr83   | Lrp2      | Pitx1    | Sec22a   | U91561  |
| Cacna1b  | Cyp2c39       | Gpr85   | Luzp1     | Pitx2    | Serk2    | Ucp2    |
| Cacna1c  | Cyslt2        | Grik4   | Madh5     | Plcg2    | Serpina1 | Ugt1a6  |
| Cacna1s  | Dcc           | Grin1   | Mag       | Plin     | Siahbp1  | Ugt1a7  |
| Cacnb1   | Dctn4         | Grm2    | Map1a     | Plod     | Sip2-28  | Upa     |
| Cacnb2   | Ddc           | Gstm3   | Mbp       | Pmpcb    | Sirt6    | Wmp1    |
| Cacng1   | Des           | Gucy2e  | Mbpa      | Pnma1    | Six3     | Ywhah   |
| Cacng4   | Dgkg          | Hcrt    | Mcpt1     | Pomc2    | Slc11a2  | Zfp103  |
| Cacng6   | Drd5          | Hdac3   | Mdhl      | Pou2f1   | Slc1fa2  | Zfp36   |
| Cachigo  | 5.05          | Haucs   |           | . Juzii  | 5.010010 | _1p30   |

## Anexo 4 – Descripción de contenido de grupos y subgrupos de diagrama de Venn

Tabla Va – Subgrupo "a"; 331 elementos comunes en "Ina", "3a" and "7a"

| Sobre-    | Gabrq     | Nbn     | Snx1      | Bzrp    | Grm2      | Pr       |
|-----------|-----------|---------|-----------|---------|-----------|----------|
| regulados | Gabt4     | Ncoa3   | Spnb1     | Cacna1s | Hdac3     | Prelp    |
| Abcb6     | Gck       | Nefh    | Srm       | Cacnb1  | Hhex      | Prkcl1   |
| Acaa2     | Gdf8      | Npgpr   | Ssb       | Cacng1  | Hsd17b1   | Prot     |
| Acadm     | Gdi3      | Nr1h4   | Ssg1      | Cacng6  | Hsf1      | Pscd2    |
| Acatn     | Gmeb2     | Nt5     | Ssr3      | Calcyon | Hspbp1    | Ptger4   |
| Adcy8     | Gmpr      | Nudt6   | Sstr2     | Capns1  | Htr1a     | Ptgis    |
| Adk       | Gnaq      | NVP-2   | Stat5a    | Cat     | Il2ra     | Ptprj    |
| Aes       | Gpm6b     | Oas1    | Stx7      | Ccnl    | Itgb1     | Pts      |
| Aldh1a3   | Grid2     | Ol1     | Sult2a1   | Cd3d    | Kcnh3     | Qscn6    |
| Aox1      | Grin2a    | Pacsin1 | SVCT2     | Cd8b    | KIAA1536  | Rab3d    |
| Ap1g1     | Gtrap3-18 | Papin   | Syt2      | Cdc42   | Klf15     | Rabac1   |
| Arntl     | Hmgb1     | Parva   | Syt7      | Cdrap   | Klk1      | Rad50    |
| Ascl3     | Hspb2     | Pax6    | Tcam1     | Chp     | Lin10     | Retnla   |
| Avil      | Hspb3     | Pclo    | Tcp1      | Clns1a  | Loc192280 | Rph3al   |
| b5&b5R    | Idh3g     | Pcsk4   | Tlbp      | Cltc    | Loc192352 | Rpo1-2   |
| Barhl2    | Ieda      | Pctk1   | Tmod2     | Cnr2    | LOC259228 | Rps27    |
| Bin1      | Ighmbp2   | Pdc     | Tnfsf10   | Col5a1  | LOC60383  | RS21-C6  |
| Bmp1      | lgsf6     | Pdcd4   | Tnfsf4    | Cript   | Madh5     | Ry2d1    |
| Cacna1g   | II15      | Pde4d   | Tpx1      | Crmp1   | Mbp       | Scn5a    |
| Camk2a    | Il1a      | pips    | Trdn      | Cst8    | Mcpt1     | Sdf1     |
| Ccnh      | Il1r2     | Plscr1  | Trrp6     | Ctrb    | Mdhl      | Serpina1 |
| Cdc42bpb  | II5       | Ppap2a  | Tslpr     | Cyslt2  | Mertk     | Slc19a1  |
| Chm-1     | Il6st     | Ppp2cb  | Tubb4     | Dcc     | Mgat1     | Slc20a2  |
| Cldn1     | lrs1      | Ppp3cb  | Ua20      | Dctn4   | Mmp24     | Slc21a5  |
| Crn       | Kcnb1     | Prdx2   | Uchl3     | Ddc     | Mpst      | Slc25a1  |
| Csda      | Kcnc1     | Preb    | Vsp45a    | Dgkg    | Mras      | Slc2a8   |
| Cspg6     | Kcnk3     | Prkch   | Wt1       | Dusp6   | Munc13-4  | Slc3a2   |
| Ctcf      | Kcnk6     | Pros1   |           | Edg5    | Ninj2     | Slc8a3   |
| DII1      | Kcnn4     | Prss11  | Sub-      | Epim    | Nptxr     | Spna2    |
| Dnase1    | Kif1b     | Ptprz1  | regulados | Erbb2   | Nr1h2     | Srrp86   |
| Doc2b     | Kl        | Rab3a   | 5Ht-2     | Evl     | Nucb      | St14     |
| Dpep1     | LOC170927 | Rab4b   | Abca2     | Expi    | Nup62     | Syngr2   |
| Dpp6      | LOC192649 | rACH    | Abcc6     | Fbxl2   | Okl38     | Syt5     |
| Dspp      | LOC245923 | Roaz    | Acads     | Fn1     | Omp       | T2R3     |
| Ecac1     | LOC245926 | Rpl37   | Actg2     | Fut1    | Opn1sw    | Temo     |
| Edg7      | LOC246172 | Rpl4    | Adra1d    | Fxyd4   | Opn4      | Tf       |
| Eef1d     | LOC63880  | Rps24   | Akap      | Gc      | Oxt       | Thop1    |
| Egr2      | Lpl       | Rtn1    | Alcam     | Gcdp    | P2ry6     | U83883   |
| Fabp1     | Matr1     | Scn3a   | Aldh2     | Gcs1-   | Pcscl     | U91561   |
| Fbln5     | Mbl2      | Scnn1b  | Arf5      | pending | Pfkfb4    | Ugt1a6   |
| Fcna      | Mmp11     | Scyc1   | Asic4     | Ggh     | Pht2      | Ywhah    |
| Fgfr2     | Mmp12     | Sfrs10  | Aspa      | Gja4    | Pip5k2b   | Zfp103   |
| Flg       | Mre11a    | Sh3d2a  | Atp1a3    | glb     | Pitx1     |          |
| Fxyd1     | Msra      | Skd3    | Atp2b3    | Glp1r   | Pitx2     |          |
| Fxyd5     | Muc5ac    | Slc30a4 | Atp6s14   | Gpr30   | Plcg2     |          |
| Fzd9      | Mvp       | Slc9a5  | Bach      | Gpr54   | Plod      |          |
| Gab2      | Myh13     | Snap23  | Bcl2l     | Gpr85   | Pomc2     |          |
| GABABL    | Myh8      | Sncb    | BEGAIN    | Grin1   | Pou2f1    |          |

Tabla Vb – Subgrupo "b"; 95 elementos comunes en "Ina" and "7a"

| Sobre-    | GstYb4    | N5      | Wisp2     | Comp    | Il12a     | Six3    |
|-----------|-----------|---------|-----------|---------|-----------|---------|
| regulados | Hfb2      | NX-17   |           | Cox8a   | LOC170824 | Slc21a9 |
| Acrp30    | Hsd17b2   | Pax4    | Sub-      | Csnk1d  | LOC252882 | Stk2    |
| Aqp3      | II18      | Pdhal   | regulados | Cycs    | LOC56826  | Tg      |
| Bcl2      | Jdp1      | Pigm    | A5D3      | Cyp11a  | Meox2     | Tnni1   |
| Cgm1      | Jwa       | Pmch    | Araf1     | Cyp2c22 | Mln51     | Tpm4    |
| Chrna9    | KChIP4    | Prdx4   | Arnt2     | Dvl1    | Nedd8     | Ugt1a7  |
| Clcnk1    | Kcne3     | Prlpl   | Arsb      | Fxyd2   | Notch3    | Upa     |
| Ctsk      | Kcnj15    | Scdgfb  | Atp4b     | Gabrp   | Nr2f2     | Wmp1    |
| Ddr2      | Kpna2     | Stx4a   | Bax       | Gabrr2  | Pde1c     | Zfp36   |
| Drd1a     | LOC171552 | Sult1a2 | Bfsp1     | Galr3   | Ptk2b     |         |
| Ep300     | Lrrc3     | Tat     | Bmp3      | Gpc1    | Pvrl1     |         |
| Gasz      | Lypla1    | Tmf1    | Cacna1b   | Gpr83   | Rnh1      |         |
| Gcnt1     | Lyz       | Trip15  | Cdc37     | Hrg     | Rps14     |         |
| Glclc     | Mefv      | Trrp2   | Cntnap1   | lcam1   | Scp2      |         |

Tabla Vc – Subgrupo "c"; 95 elementos comunes en "Ina" and "3a"

| Sobre-    | F10       | Map3k8  | Scg2      | Celsr3    | LOC64027 | Snrpb |
|-----------|-----------|---------|-----------|-----------|----------|-------|
| regulados | Glul      | Nppa    | Sytv      | Col1a2    | Mapk3    | Spr   |
| Ak2       | Gtf2ird1  | Nppb    | Tgfa      | Cyp17     | Mapk8ip  | Stx2  |
| Amy1      | Hnmt      | Obp-1f  |           | Dig1      | Mdk      | Tff3  |
| Ascl1     | Hnrpm     | Pai1    | Sub-      | Egfr      | Mfge8    | Thbd  |
| Chrna7    | Hpgd      | Past-A  | regulados | Eif2b2    | Mox2     | Txn2  |
| Chrnd     | Ick       | Psma2   | Acp5      | Emd       | Myo1b    | Ube2i |
| Cish      | Kcnn3     | Ptger1  | Ank       | Faim      | Npff     | Vamp3 |
| Cktsf1b1  | Klrc1     | Ptprf   | Apbb1     | FhI2      | Pcsk2    | Wisp1 |
| Cncg4     | Laptm5    | Rhoip3  | Arf1      | Grpr      | Phkg1    | Zhx1  |
| Crhr2     | LI5       | Robo1   | Arg1      | Hsp27     | Ptpn9    |       |
| Cyp4b1    | LOC246120 | Rpl29   | Atf2      | Insl3     | Pv1      |       |
| Ddb1      | LOC60660  | Rps27a  | C4        | Lamc1     | Scd2     |       |
| Ecm2      | Loc65027  | Rps6kb1 | Ca5a      | LOC245919 | Sepp1    |       |
| Els1      | Lyst      | Ruvbl1  | Cblb      | LOC246325 | Slc34a1  |       |

Tabla Vd – Subgrupo "d"; 151 elementos comunes en "3a" and "7a"

| Sobre-    | Dlm1    | Lgals2   | Rnase4    | Bin1b   | Kcnj6     | Psme2    |
|-----------|---------|----------|-----------|---------|-----------|----------|
| regulados | Ednra   | LOC59313 | Serpini1  | C1qbp   | Ldhb      | Ptgdr2   |
| Afar      | Ela2    | LOC60591 | Slc13a3   | C2ta    | LOC171412 | Rgs19ip1 |
| Ant2      | Ensa    | Lta      | Slc7a2    | Cacna1c | LOC252853 | Rnpep    |
| Atp5f1    | Eya2    | Ly49i2   | Smpd3     | Cacnb2  | LOC259245 | S100a10  |
| Bace      | Fgf17   | Maf      | Snca      | Casp12  | LOC60329  | Sec22a   |
| Bet1      | Fut2    | Mcpt9    | Sncg      | Casp9   | LOC60452  | Siahbp1  |
| Bmp4      | G10     | Mpp3     | Sost      | Cbs     | LOC64038  | Sirt6    |
| bsnd      | G22p1   | Ms4a1    | Svs4      | Cpn1    | Lrp2      | Slc16a10 |
| Cacna1i   | Galnt7  | Myr4     | TCEB2     | Crygd   | Mag       | Slc16a8  |
| Calcb     | Ggta1   | Nf1      | Tp63      | Cspg2   | Map1a     | Slc29a2  |
| Calm2     | Gnb2l1  | Nfya     | Tpm3      | Cyp2a3a | Mbpa      | Slc4a2   |
| Cd36l1    | Gnrh1   | Nmt1     | Ube2d3    | Cyp2c39 | Mfn2      | SP22     |
| Cd59      | Gp5     | Npl4     | Ubqln1    | Des     | Mte1      | Stxbp2   |
| Cds2      | Gpc3    | Nr2f1    | Vof16     | Drd5    | NOR-2     | Syt12    |
| Chrna10   | Grs2    | Nrd1     | Znf148    | E2f5    | Nr1i3     | Tgm2     |
| Csp       | Hdgfrp2 | Nsf      |           | Esr2    | Pcsk5     | Timm10   |
| Csrp1     | Hdh     | P2rx4    | Sub-      | Fads1   | Penk-rs   | Ucp2     |
| Ctsj      | lgbp1   | PAIHC3   | regulados | Fnta    | Pex6      |          |
| Ctxn      | Inhbc   | Psen1    | Abcb9     | Gabarap | Pim3      |          |
| Dctn1     | Kcnj3   | Psmb8    | Aldoa     | Grik4   | Plin      |          |
| Ddr1      | Kcnj5   | Psme1    | Anx5      | Gucy2e  | Pnma1     |          |
| Dlad      | Kcnn2   | Rbp2     | Bcl10     | Hsd11b1 | Ppp3ca    |          |

Tabla Ve – Subgrupo "e"; 205 elementos exclusivos de "Ina"

| Sobre-    | Glra1     | Pkcl     | Syt13     | Dbnl   | Kcna2     | Rab38    |
|-----------|-----------|----------|-----------|--------|-----------|----------|
| regulados | Gria1     | Pla2g2a  | Tubb3     | Ddxl   | Kcnk12    | Ragb     |
| Acaa      | Gro1      | Plp      | Txn       | Den    | Kcnk2     | RATCYTA  |
| Acadvl    | Grp-Ca    | Pmf31    | Vegfc     | Dio3   | Lhx1      | Rnd2     |
| Actr3     | HIBADH    | Ppal     | Xdh       | Dlc2   | LOC252855 | Sacm2l   |
| Adnp      | Hist4     | Рру      |           | Echs1  | LOC252960 | Sarcosin |
| AF095927  | Itga2     | Prlph    | Sub-      | Epas1  | Loc65042  | SC2      |
| Alb       | Itgb7     | Prlpk    | regulados | F13a   | LOC78973  | Scamp2   |
| Bambi     | Kif2      | Pscd3    | Acta1     | Fth1   | Ltb4r2    | Sdc2     |
| Bcl2l10   | km23      | Psg4     | Agt       | Fuca   | Lu        | Shbg     |
| Cav2      | Kzf1      | PSMD1    | Ahcy      | Gabbr1 | Map2      | Siat1    |
| Cckar     | LOC171057 | Ptk2     | Ak1       | Gap43  | Marta1    | Slc18a3  |
| Cdc5l     | Loc192269 | Rgs19    | Aldoc     | Gata6  | Mgat2     | Slfn4    |
| Centa1    | LOC207125 | Rok1     | Alox12    | Gfi1   | Mgp       | Snrpn    |
| Chx4      | LOC246281 | Sc65     | Anx1      | Gfra1  | Mmp14     | Src      |
| CmI5      | Loc259269 | Scn11a   | Apoa2     | Gjb1   | Mucdhl    | Stk17b   |
| Cnn3      | LOC60627  | Sgp158   | Arl4      | Gp38   | Mybbp1a   | Stnl     |
| Col3a1    | LOC63849  | Si       | Atp5a1    | Gstt1  | Myh3      | Syk      |
| Crfg      | LOC66030  | Sirt2    | Atp5o     | Hamp   | Myh9      | Syn3     |
| Dat1      | Lsamp     | Slc27a2  | B2m       | Hig1   | NCAML1    | Tap1     |
| Dck       | Lxn       | Slc6a5   | Bok       | Hmgcl  | Nrn       | Tef      |
| Ded       | Mafk      | Slc9a3r2 | Btg2      | Hnf3b  | Olfm1     | Tpi1     |
| Drg11     | Mfn1      | Smgb     | Cap2      | Hoxa2  | Pal       | Tst      |
| Drpla     | Mllt3     | Snf1lk   | Cck       | Hspt70 | Par3      | Ttgn1    |
| Ehd3      | Mpdz      | Spag5    | Coil      | Htr1b  | Pitx3     | Uchl1    |
| Entpd6    | Neo1      | Spin2b   | Cox8h     | Htr6   | Plec1     | Vamp5    |
| Fmo4      | Pde4b     | Spnr     | Csh1v     | lgf2r  | Prei3     | Wbp2     |
| Gabra5    | Pde6g     | Stat3    | Cst6      | Igifbp | Prpg2     | Wbscr14  |
| Gabrr1    | PDRP      | Sycp1    | Cxcr4     | Itpkb  | Prx       | Xt1      |
| Galgt1    | Pfkfb1    | Sycp3    | Dagk      | Jun    | Pxmp2     | Zyx      |

Tabla Vf – Subgrupo "f"; 153 elementos exclusivos de "3a"

| Sobre-    | Grinl1a   | Prdx1   | Sub-      | Ddx25   | Lipe     | RNU28927 |
|-----------|-----------|---------|-----------|---------|----------|----------|
| regulados | Gusb      | Prdx6   | regulados | Dedd    | Litaf    | Rps9     |
| Adora3    | Gzmc      | Prim1   | Abp1      | Dffa    | Mapre1   | Sardh    |
| Agc1      | Hk1       | Prlpi   | Actc1     | Dffb    | Mgat3    | Slc21a12 |
| Akt1      | ldi1      | Pthlh   | Ada       | Dyrk    | Mic2l1   | Slc29a1  |
| Amacr     | Il12b     | Rab5a   | Adam1     | Fgf11   | Mmp13    | Slc8a1   |
| Andpro    | Kcnj1     | Rcvrn   | Alk7      | Fgr     | Msn      | Slc9a2   |
| Anpep     | Kcnk1     | Ret     | Arf6      | Fmo1    | Nbl1     | Slc9a3   |
| Cacng2    | ksGC      | Rln1    | Atic      | Folh1   | Nfix     | Smoh     |
| Cebpb     | Lepr      | Rpl28   | Atp6l     | Gapds   | Nr1d1    | Spin2c   |
| Coro1a    | Lisch7    | Rsn     | Atp9a     | Gatm    | Nr1i2    | Spnb3    |
| Cox5a     | LOC207121 | Sacm1l  | Avpr2     | Gjb4    | Nr4a1    | Svs5     |
| Cox5b     | LOC54410  | Sdfr1   | Baalc     | Gjb6    | Nr5a2    | Syngr1   |
| Creb1     | LOC60428  | Secp43  | Calcr     | Gna15   | Nupr1    | Syt10    |
| Ctf1      | Mor1      | Slc11a1 | Capn3     | Gpr66   | Ocln     | Syt4     |
| Cyp7b1    | Msh2      | Slc4a4  | Capn6     | Gps1    | Oprm1    | Tacstd1  |
| Ddah1     | Nme1      | Smstr2  | Cdh14     | Hcn3    | P29      | Tgfb1    |
| Ephb2     | Nxph3     | Sts     | Cdk7      | Hoxa1   | P2rx1    | Timp2    |
| Fabp7     | Pah       | Syt6    | Ceacam1   | Hsd3b1  | Pctp     | Vdup1    |
| Facl6     | Pax8      | Tdag    | Chad      | Htr4    | Pnliprp1 |          |
| Fgf3      | Pik3c3    | Unc5h2  | CMR1      | ll11ra1 | Prmt3    |          |
| Fgfr3     | Por       | Vcsa1   | Cs        | Kcnab1  | Psma1    |          |
| Fhit      | Pou3f1    | Ykt6    | Dapkl     | Kcnk4   | Psmc1    |          |

Tabla Vf – Subgrupo "f"; 153 elementos exclusivos de "3a"

| Sobre-    | Enpep     | Madcam1 | Scya22    | Bcl2l2 | Glrx1     | Prsc1   |
|-----------|-----------|---------|-----------|--------|-----------|---------|
| regulados | Esdn      | Madh4   | Sec14l2   | Blr1   | Gpam      | Rab26   |
| Acvrl1    | Fabp3     | Mmp10   | Sept3     | Bmp15  | Gstm3     | Rab29   |
| Adamts4   | Fbxo6b    | Myh4    | Slc22a7   | Bnip3  | Hcrt      | Rab3b   |
| Agtr1     | Fcer1a    | Nat2    | Slc39a1   | Cacng4 | Hes2      | Rb2     |
| Ank3      | Fdx1      | Nell1   | Stk3      | Calb3  | Hrh3      | Rh      |
| Ap2m1     | Fgf18     | Nifs    | Stx3a     | Calcrl | Hrh4      | Rpl10   |
| Api3      | Fzd1      | Oazi    | Svop      | Cdc20  | Htr3a     | Rps17   |
| Arha2     | Ggtp      | Oprs1   | Tcf8      | Cdh2   | Igfbp1    | Scamp3  |
| Arhgef9   | Gja6      | Pde3b   | Tfpt      | Chrnb2 | Igfbp3    | Scamp5  |
| Asgr2     | Grf2      | Pdi2    | Thbs4     | Cish1  | II11      | Scn2a1  |
| Bbs2      | Grik1     | Pdi4    | Tnp2      | Cln2   | II9r      | Serk2   |
| C1s       | Grin2b    | Pdyn    | Trif      | Cmklr1 | Kcnj16    | Sip2-28 |
| C3        | Hip1r     | Pfkfb3  | Unc13h1   | Cox6c  | Kcnn1     | Slc11a2 |
| Camkk2    | Hmgb2     | Pik3cb  | Usf1      | CPG2   | LOC207126 | Slc20a1 |
| Cdh22     | Hmgcr     | Pkm2    | Vim       | Cpz    | LOC245960 | Slc22a3 |
| Cdk5r     | Hri       | Plcb4   | Vipr1     | Cstb   | LOC252929 | Slc27a1 |
| Cetn3     | IAG2      | Podxl   | Xylt2     | Cybb   | Luzp1     | Slc28a2 |
| Cgi-94    | Ifnb1     | Prlpd   | Zp1       | Ephx2  | Myl3      | Slc5a7  |
| Cirl2     | II7       | Prlpm   |           | Esr1   | Nckap1    | Sqle    |
| Cirl3     | Imp13     | Raf1    | Sub-      | Fabp2  | Ngfr      | Stx6    |
| Cml1      | Jag1      | Ramp2   | regulados | Fgl2   | Nkg7      | Tao2    |
| Cox6a2    | Jam1      | Rbbp9   | Acat1     | Fhl1   | Nkrp2     | Tap2    |
| Cst11     | Kidins220 | Rdc1    | Adam15    | Fstl3  | Optn      | Tcn2p   |
| Cutl1     | Lmnb1     | Rgs3    | AF092207  | G3bp   | Pcsk1n    | Tff2    |
| Cyp2c23   | LOC192254 | Rp58    | Anp32     | Gale   | Pde4a     | Titf1   |
| Dpys      | LOC56764  | Rps15a  | Appbp1    | Galnt1 | Pdk2      | Trela   |
| Drip78    | LOC81022  | Rps21   | Arpc1a    | Galnt5 | Pmpcb     | Tspan-  |
| Dyt1      | Ly68      | Rsca3   | Bche      | gis5   | Ppp1r14a  |         |
|           |           |         |           |        |           |         |