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TUTOR PRINCIPAL

DR. LEONID FRIDMAN, FACULTAD DE INGENIERÍA, UNAM
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Abstract

This work attacks the problem of taking to zero the trajectories

of a linear system of any relative degree, of which only partial state

information is available (output feedback), with unstable zero dynam-

ics, in absence of perturbations. In presence of bounded matched and

unmatched perturbations of which a bound is not necessarily known,

the trajectories should converge to a neighborhood of the origin. The

control strategy includes the design of a surface such that when the so-

lutions of the system slide over it, the nominal zero dynamics becomes

globally asymptotically stable, and its input-to-state stability (ISS)

property is established. Also, a conventional sliding-mode controller

with an added linear term, and a Super-Twisting algorithm are imple-

mented as control laws. For both of these controllers, the ISS property

is investigated, which is a rather unexplored ground for sliding-mode

controllers. Conditions for the gains of the controllers, and the pa-

rameters of the sliding variable are established through ISS-Lyapunov

functions and a small gain theorem.

v
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Chapter 1

Introduction

This work has been developed following the interest of studying three different

subjects in control theory and some open problems within them.

In the first place, the output-feedback (OF) problem which is a topic that has

interested the control community because it is directly related to an implementation issue.

This issue raises from the fact that, frequently, the use of sensors can be either expensive

or troublesome due to the nature of the hardware. This leads to the recurrent problem

of systems that must be controlled with only partial state information. Many efforts have

been dedicated to try to solve the mentioned problem, and the results have derived in

two main branches: the design of state observers, and the development of output-feedback

control strategies. One disadvantage of the first approach is that in many cases the sepa-

ration principle does not hold and it is not possible to design separately a controller and

an observer that feeds it. Also, the robustness of a controller against perturbations is

usually lost when it is connected directly to an observer. The task becomes more compli-

cated when there are uncertainties in the model, or perturbations that affect the dynamics.

1



2 Chapter 1: Introduction

Secondly, the features and flaws of the sliding-mode controllers (SMC). Since their

appearance, in the second half of the past century, they have gained a great deal of atten-

tion from the control community due to their simple structure and some very interesting

properties. Among some of the most attiring ones are their robustness against disturbances

that can be assumed to be bounded and matched to the control input. Also, this kind of

controllers can be implemented when there are uncertainties in the model of the system,

or even when this model is not available. Another very interesting feature is that the

sliding-mode controllers can provide finite-time convergence to a designed surface. This

surface is called the sliding surface, and is normally specifically constructed by the designer

so that when the trajectories of the system slide on it, they follow a desired dynamic be-

havior. The downside in the use of the sliding-mode controllers is that their robustness is

severely compromised when a bound for the disturbance cannot be known, or when they

are unmatched to the control input. Another disadvantage of the systems governed by

sliding-mode controllers is that they may loose their robustness properties when directly

connected to other systems, for example, observers.

Thirdly, the interest to understand the behavior of dynamic systems with differ-

ent inputs, which has been a frequent subject of investigations throughout the history of

control. These inputs can be signals that come from interconnections with other dynamic

systems, perturbations, noise, or even control laws. Many efforts have been dedicated

to answer questions such as what kind of inputs will let a stable system maintain this

property, and how to characterize this stability. In particular, the study of these top-

ics for non-linear systems has aroused a lot of interest. At the end of the eighties the

first notions that answered these questions appeared, and were gathered under the name

of input-to-state stability (ISS), and many advances have been made in the field since then.
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This work investigates the cases and conditions under which the sliding-mode

controllers can solve the output-feedback problem, by means of the design of the sliding

surface, using a Lyapunov-ISS approach.

1.1 State of the Art

1.1.1 Output-Feedback Sliding-Modes

The problem of output-feedback sliding-modes has been addressed in a great

number of works with different approaches. The main results found in the literature can be

separated into four groups, depending on some system’s characteristics that they consider,

and the control objective that they pursue:

• Control objective: The control objective of the output-feedback results can be

divided in two: those that aim to bring the output signal to zero, and keep it there

for all future time, and those that seek to bring the complete state to a neighborhood

of the origin, despite of the perturbations.

• Relative degree of the output: The majority of the results can be applied to

systems with outputs of relative degree one, that is, that the control input can be

found in the first derivative of the measured state. Some work has also been done in

order to try to overcome this restriction.

• Perturbations: A classical restriction imposed over systems for which sliding-mode

controllers are implemented, is that the perturbations should be matched to the

control input, and bounded by a known constant. Some efforts have been dedicated

to consider unmatched perturbations as well.

• Observability: Even though the direct design of state observers is most of the times

considered to be in a different path than the output-feedback control strategies, the

observability property is still a fundamental requirement for the development of the
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latter. In some cases it is only required that the system is observable, but in some

others this is not enough, and the system must be strongly observable.

Many good results for the cases when the relative degree of the output is equal

to one with matched perturbations can be found, being [Bag97] one of the most represen-

tative. In this work, the construction of dynamic compensators is proposed in order to

add dynamics to systems for which a direct pole assignment cannot be done (the Kimura-

Davidson condition [Kimura75] is not satisfied). Since this case is not in the scope of the

present work, we will not focus any further into it.

For the case when unmatched perturbations are present in the system, [Choi08]

and [Castaños11] describe a method for combining SM and H∞, with the purpose of at-

tenuating them, i.e. keeping the complete state in a neighborhood of the origin. In the

first, the existence conditions for a sliding surface are found via linear matrix inequalities,

which unfortunately increments the computational effort needed. The second proposes the

design of an H∞ controller for a reduced order system. Nevertheless, these two approaches

only admit relative degree one outputs.

When the control objective is to keep the output at zero, in spite of unmatched

perturbations, in [Davila13] [Ferreira14] and [Ferreira15] can be found results that combine

backstepping with higher order sliding-modes. These approaches require that the system is

strongly observable whereas in all the mentioned above the requirement is of observability

only.

1.1.2 Input-to-State Stability

The input-to-state stability theory, that first appeared in the eighties, establishes

conditions under which a norm (usually Euclidean or supremum) of the states is eventually

bounded by the norm of its inputs, and goes to zero when the norm of the inputs does
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[Sontag95].

Many advances in the ISS theory were made in the following decades, for ex-

ample, establishing the sufficient and necessary conditions to characterize a system as ISS

[Sontag95, Dashkovskiy11a]. Also, the interconnection of systems has been a central subject

in many works, resulting in some useful and widely known theorems such as a Lyapunov-

based nonlinear small gain theorem [Jiang96], or a small gain theorem for systems with

mixed ISS characterizations [Dashkovskiy11b]. On the other hand, many Lyapunov ap-

proaches have been developed to facilitate the ISS analysis by means of Lyapunov functions

[Sontag99]. These advances have led to the discovery of many applications to the ISS theory.

Recently, the ISS theory has incorporated a new concept: the integral input-to-

state stability (iISS), allowing inputs to be bounded by an integral norm and states by

a supremum one [Angeli00]. This new concept enriches the ISS theory by allowing to

characterize the stability of a broader class of systems that could not be characterized as

ISS, such as the conventional (first-order) sliding-mode controller with constant gain. This

approach, however, is still largely unexplored and its implementation can be complicated.

A methodology that has proven to facilitate the ISS and iISS analysis is the weighted

homogeneity [Bernuau13], which is very convenient for some sliding-mode algorithms with

an homogeneous nature. The disadvantage of this approach is that, although ISS can be

established on homogeneous grounds, it is still impossible to calculate an iISS or an ISS

gain.

1.1.3 Regular and Normal Forms

In the early eighties regular forms were introduced in [Luk’yanov81, Utkin92],

and have been widely used as a way of simplifying the selection of sliding manifolds and

control laws. These forms offer a simple visualization of system properties, dividing the
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system in two: a subsystem that contains the control and another subsystem that does

not. It is worth mentioning that in order to implement a sliding-mode control on a system

in regular form, the complete state must be measured. In the nineties, the backstepping

theory was developed [Kanellakopoulos92], and a similar two stage technique that also re-

quires complete knowledge of the state appeared.

The normal form that appears in [Isidori95] follows the same idea as the regular

forms, in the sense that it separates the system into the part that contains the control input,

and the part that does not, but taking into account the case when the system has an output.

In [Khalil02] (pg. 596), a special case of the normal form where the system is in

strict feedback form, and the internal dynamics receive the output signal as an input, is

briefly mentioned. This form is used to illustrate the utility of the backstepping technique

for a particular case of the system’s characteristics.

One of the main contributions of [Castaños11] is the introduction of an output-

based regular form, for a system with an output of relative degree one. This form coincides

with the one mentioned in the above paragraph.

1.2 Motivation and Problem Statement

Consider a system

ẋ = Ax+Bv +Dw

y = Cx, (1.1)

where x ∈ Rn is the state, v ∈ R is the control input, y ∈ R is the measured output of

relative degree r with respect to v, and w ∈ Rq with 0 ≤ q ≤ n, is a bounded disturbance.

For simplicity, along this document the SISO case is considered, but all the calculations can
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also be done for the MIMO case. The output y is assumed to be a noiseless measurement1.

It is clear that if system (1.1) is of dimension n > 1, being y of dimension one, there is

part of the state that cannot be recovered by purely algebraic means and thus, a problem

of output-feedback is addressed.

As was mentioned in Section 1.1, the results on Output-Feedback Sliding-Modes

(OFSM) that consider both matched and unmatched perturbations can be divided in two

large groups, as shown in Figure 1.1.

OFSMC with matched and 
unmatched perturnations

ISS for sliding 
modes

Take the 
output to 

zero

Take the state 
to a 

neighborhood of 
the origin

[Dávila 13]
[Ferreira 14]
[Ferreira 15]

Relative 
degree 

=1

Relative 
degree  
�1

[Choi 08]
[Castaños 11]

iISS

ISS-
Lyapunov 
functions

Homogeneity

[Angeli 00]

[Bernau 08]

Figure 1.1: Output-feedback sliding-modes with matched and unmatched perturbations,
and ISS for sliding-modes

As was mentioned in Section 1.1, there are two open problems in the subjects

of OFSM with matched and unmatched disturbances, and ISS for sliding-modes. On one

hand, the case when the relative degree is equal or greater than one, when matched and

1For the general case it is assumed that the measurement is free of perturbations or noise, however, in
the perturbation analysis section it will be discussed in which cases and what kind of measurement noise
could be admitted.
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unmatched perturbations are present and, on the other, the problem of proving the ISS

property of SM algorithms via ISS-Lyapunov functions. The present work attacks the in-

tersection of this two open problems, as is illustrated in Figure 1.1.

The objective of this work is to propose a control strategy such that the trajec-

tories of system (1.1), with r ≥ 1, can be globally and asymptotically taken to the origin,

despite the magnitude of the initial conditions, in absence of disturbances. In presence

of disturbances (matched and unmatched) the trajectories should globally converge to a

vicinity of the origin. A parallel objective is to explore the ISS properties of the SMC, in

order to establish the stability conditions under this point of view.

The main contributions of this work is a linear transformation that takes a system

into an output based normal form, without loss of generality, for any relative degree, the

design of a surface that guarantees the stabilization of the zero dynamics, if there are any,

and the ISS Lyapunov-based analysis of a system with an arbitrary relative degree output

and unstable zero dynamics, governed by sliding-mode controllers. This analysis leads to

the introduction of control laws, and conditions for their gains that guarantee global con-

vergence to a neighborhood of the origin of the trajectories of (1.1).

In the next chapters the following unperturbed case will be considered:

ẋ = Ax+Bv

y = Cx, (1.2)

This particular case is used in order to explain the methodology for assessing the output-

feedback problem more clearly. Afterwards, the perturbations will be taken into account,

and the control law will be designed using the general perturbed case.
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1.3 Organization of the Document

The organization of the rest of this document is as follows:

Section 1.4 of this chapter contains the notation used in this document, as well

as definitions and known results that are useful for the development of the work.

Chapter 2 is devoted to the construction of a sliding surface for the system pre-

sented in the problem statement. The procedure to do this includes the proposal of a

transformation that takes the coordinates of a linear system into an output based normal

form -referred to as Output Normal Form (ONF)-, without loss of generality; the definition

of a reduced order system, which contains the zero dynamics of the transformed system;

and the proof of its observability and controllability properties. Also, an observer for this

reduced order system is defined, and a control law that depends on the observer. This

control law translates into a virtual control for the zero dynamics that depends on the

output of the original system. Finally, a sliding variable of relative degree r is defined,

such that when it is forced to zero, along with its first r time derivatives, it is assured that

the virtual control acts on the zero dynamics as designed. Afterwards, a relative degree

one sliding variable is presented, with the same properties.

As mentioned in Section 1.2, the analysis performed in Chapter 2 is done for the

unperturbed case of the system. In Chapter 3 the external inputs and perturbations admit-

ted by the methodology presented in this work are defined, and a method for choosing the

parameters of the observer and the virtual controller is presented. The way of choosing the

parameters will depend on the type of perturbations present, and also on the performance

objectives.
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In Chapter 4 the ISS properties of two Sliding-Mode controllers are analyzed,

and conditions to guarantee the stability of the complete solution are established through

them. These two controllers are a conventional sliding-mode controller with an added lin-

ear term, and a Super Twisting controller. For both of them an example is provided, that

also shows the methodology presented in the past sections. The theoretical results are

validated through some numerical simulations.

Chapter 5 presents the results obtained from a collaboration with the Non-A team

from INRIA, Lille in France, regarding the linear stabilization of switched systems. This

topic falls out of the Output-Feedback problem, but represents a contribution on the ISS

property of higher-order sliding-mode controllers.

Finally, Chapter 6 includes some concluding remarks of this work, and mentions

the publications made, as well as the ones that are under revision and those that are

currently in preparation.

1.4 Preliminaries

1.4.1 Notation

• The elementwise application of an operator • to a vector

• In denotes the Identity matrix of dimension n;

• diag(A) represents a matrix where the main diagonal is the same as that of matrix

A and every other element is equal to zero;

• ~a(n×s), for a constant a represents a matrix of dimension n× s, whose every element

is equal to a;

• A[i] denotes the ith column of a matrix A;
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• Aintn represents a square matrix of size n whose every element is equal to zero, except

for the diagonal above the main one, which is composed of ones;

• λ(A) represents the vector of eigenvalues of a matrix A, and λmin(A) and λmax(A)

represent the minimal and the maximal values of this vector, respectively;

• |a| represents the absolute value of a scalar a;

• ‖v‖ denotes the Euclidean norm of a vector v ∈ Rn, ‖v‖1 =
∑n

i=1 |vi| and ‖v‖∞ =

max1≤i≤n |vi|;

• ‖A‖ represents the Euclidean induced norm of a matrix A ∈ Rn×s, while ‖A‖1 =

max1≤i≤s ‖A[i]‖1 and ‖A‖∞ = ‖AT ‖1;

• For a matrix A ∈ Rn×s the following norm equivalences hold [Horn90]

1√
n
‖A‖1 ≤ ‖A‖ ≤

√
s‖A‖1. (1.3)

• The set of all functions w : R≥0 → Rq endowed with the (essential) supremum norm

‖w‖∞ = (ess) supt≥0 ‖w(t)‖ <∞, is denoted by Lq∞

1.4.2 Definitions and Mathematical Tools

Definition 1 Class K Function [Khalil02] A continuous function γ : [0, a) → [0,∞)

belongs to class K if it is strictly increasing and γ(0) = 0. It belongs to class K∞ if a =∞
and γ(τ)→∞ as r →∞.

Definition 2 Class KL Function [Khalil02] A continuous function β : [0, a)× [0,∞)→
[0,∞) belongs to class KL if, for each fixed s, the mapping β(τ, s) belongs to class K with

respect to r and, for each fixed r, β(τ, s) is decreasing with respect to s, and β(τ, s)→ 0 as

s→∞.
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Definition 3 Relative Degree [Isidori95] The single-input single-output nonlinear sys-

tem

ẋ = f(x) + g(x)u

y = h(x)

is said to have relative degree r at a point x0 if

• LgLkfh(x) = 0 for all x in a neighborhood of x0 and all k < r − 1

• LgLr−1
f h(x0) 6= 0

Definition 4 Zero Dynamics [Isidori95] The dynamics describing the internal behavior

of a system when input and initial conditions have been chosen in such a way as to constrain

the output to remain identically zero.

Definition 5 Input-to-State Stability [Sontag95] A system

ẋ = f(x, v), (1.4)

where f is continuously differentiable, it holds that f(0, 0) = 0, x represents the states,

and v represents all the external inputs of the system, including perturbations, command

signals, and noises, is said to be input-to-state stable if there exists a function β ∈ KL
and a function γ ∈ K such that for any initial state x(t0), and any bounded input v(t), the

solution x(t) satisfies

|x(t)| ≤ β(|x(t0)|, t− t0) + γ

(
sup

t0≤T≤t
|v(T )|

)
. (1.5)

Definition 6 ISS Lyapunov Function [Jiang96] For (1.4), a smooth function V is said

to be an ISS-Lyapunov function if V is proper, positive definite, i.e., there exists functions

ψ1, ψ2 ∈ K∞ such that

ψ1(|x|) ≤ V (x) ≤ ψ2(|x|),
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and there exist functions a ∈ K∞ and θ ∈ K such that

∇V (x)f(x, u) ≤ −a(V (x)) + θ(|v|).

Lemma 1 Young’s Inequality From Young’s inequality it can be proved that if b and c

are non negative real numbers, then

bc ≤ b2

2
α2 +

c2

2
α−2,

for any α > 0.

Theorem 1 ISS Properties [Sontag95] The following properties are equivalent for sys-

tem (1.4)

1. It is ISS.

2. It admits an ISS-Lyapunov function.

3. There exist a KL function β, and a K function γ such that (1.5) holds.

Theorem 2 Lyapunov Non-Lineal Small Gain Theorem [Jiang96] If, for intercon-

nected systems

ẋ1 = f1(x1, x2, v1) (1.6)

ẋ2 = f2(x1, x2, v2), (1.7)

there exist an ISS-Lyapunov function Vi, for the xi subsystem, i = {1, 2}, such that with

functions φi ∈ K∞, χi, γi ∈ K the following holds:

Vi(xi) ≥ max{χi(Vj(xj)), γi(‖vi‖)} ⇒

∇Vi(xi)fi(xi, xj , vi) ≤ −φi(Vi),

with j = {2, 1}, and

χ1(τ) ◦ χ2(τ) < τ ∀ τ > 0, (1.8)

then the interconnected system (1.6), (1.7) is ISS and the zero solution of (1.6), (1.7), with

u = 0, is globally asymptotically stable.
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Corollary 1 [Jiang96] If Vi are ISS-Lyapunov functions for (1.6), (1.7), and

∇Vi(xi)fi(xi, xj , vi) ≤ −ai(Vi(xi)) + θxi (Vj(xj)) + θvi (‖vi‖),

with

θxi (τ) = κiaj(τ),

for some κi > 0, then the condition (1.8) is satisfied if κ1κ2 < 1.



Chapter 2

Sliding Surface Design

After the appearance of the first descriptions of a sliding phenomenon occurring

in some systems, the interest of the control community arouse around the possibilities of

exploiting this property in a convenient way, or even forcing it in order to obtain a desired

behavior on system’s trajectories. With this, the opportunity to force the solutions of

a system to slide exactly on a desired trajectory or surface was introduced, and this is

the basis of what we know today as sliding-mode control. This surface must be designed

according to the needs of the specific application. The present section will be devoted to

the design of precisely this surface for the case of (1.2), such that the zero dynamics are

stabilized and the trajectories are drawn to the origin. To this end, firstly a special Normal

Form, referred to as output normal form will be introduced. This form is a generalization of

the one that appeared in [Castaños11], and separates the system’s zero dynamics, if there

are any, from the rest of the state. Afterwards, a methodology for stabilizing this part of

the dynamics, through a virtual controller will be developed, and finally the surface will

be designed, such that when it is forced to zero, the virtual controller will be guaranteed

to act as designed.

15
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2.1 Output Normal Form

The employment of state transformations, in order to represent system states in

a particular form has been exploited throughout the history of system’s theory. Two of

these forms are widely known, and classical to the control theory: the classical regular

form [Utkin92], which facilitates the design of the sliding surface, and the Normal Form

[Isidori95], which allows to clearly visualize the zero dynamics of a system. The following

proposition will introduce a transformation that brings the coordinates of an arbitrary

linear system to its Normal Form:

Proposition 1 Consider system (1.2), with relative degree r and dimension n. From the

definition of relative degree it is known that CAi−1B = 0, 1 ≤ i < r, and CAr−1B 6= 0.

Also, since B 6= 0, there exists a matrix B⊥ ∈ Rm×n with m linearly independent rows such

that B⊥B = 0. If y is a noiseless output, one can take it, along with its first successive

(r−1) derivatives as a set of coordinates z1, . . . , zr to construct a coordinate transformation

with invertible T that brings the system to the normal form introduced in [Isidori95]. This

transformation is ξ̄
z̄

 = T1x,

with

T1 =



B⊥1
...

B⊥m

C
...

CAr−1


,
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where m = n− r. The system, in the new coordinates, is

˙̄ξ = Āξ ξ̄ + Ēξ z̄

˙̄z1 = z̄2

... (2.1)

˙̄zr−1 = z̄r

˙̄zr = Ēz ξ̄ + Āz z̄ + ū

ȳ = z̄1,

with ξ̄ ∈ Rm, z̄1, . . . , z̄r ∈ R, and ū = b̄zv.

Remark 1 If the complete substate z̄ is taken exactly to zero, then the ξ̄-subsystem becomes

˙̄ξ = Āξ ξ̄ which, according to definition 4, represents the zero dynamics of the system.

In chapter 14 of [Khalil02], a special case of the normal form is briefly mentioned. In this

special case the ˙̄ξ-equation depends on variables ξ̄ and z̄1 only, instead of ξ̄, z̄1, z̄2, . . . , z̄r

as is in (2.1). This special form will be referred to, in the following, as the output normal

form (ONF). The ONF inherits some properties of the aforementioned cases in the sense

that it separates the system dynamics in two: the part that represents the zero dynamics

and the rest, and can be written as

ξ̇ = Aξξ + Eξ1z1 (2.2)

ż1 = z2 (2.3)

...

żr−1 = zr

żr = Azz + Ezξ + u

y = z1,

with ξ ∈ Rm, and z1, . . . , zr ∈ R, and u = bzv, and is illustrated in a block diagram in

Figure 2.1. It is easy to observe that the difference between (2.1) and (2.2)-(2.3) is that in
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the ONF the zero dynamics, represented by ξ, is driven by the output z1 only, instead of

the output itself and its derivatives. This slight variation makes a difference in the design of

the control for the zero dynamics: in the latter, depending on the matrix’s characteristics,

there exists the possibility of controlling ξ through the output only and, in the former, ξ

should controlled through the output and its first r − 1 derivatives.

Figure 2.1: Output Normal Form.

The following proposition introduces a transformation that takes a system of

arbitrary order, in the Normal Form, to its ONF:

Proposition 2 A coordinate transformation with invertible T that brings a linear system

(2.1), to the form (2.2)-(2.3) is ξ
z

 = T

ξ̄
z̄


with

T =

 Im −
[
Ēξ2 · · · Ēξr 0m×1

]
0r×m Ir


and Ēξ =

[
Ēξ1 · · · Ēξr

]
, where each Ēξi ∈ Rm×1, i = 1, . . . r.

Using the results of Propositions 1 and 2, a general transformation that, without loss of

generality, takes any linear system of arbitrary order to the ONF, can be established:
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Lemma 2 A linear system (1.2) can be represented in an ONF without loss of generality,

through a coordinate transformation ξ
z

 = Tx

if the invertible matrix T is defined as

T = T2T1

where T1 and T2 are as defined in Propositions 1 and 2 respectively.

2.2 Reduced Order System

Once that the system’s state coordinates have been separated into the zero dy-

namics and the rest of the variables, it is possible to analyze each of these parts individually.

A classical preoccupation when using block forms is how to deal with an unstable zero dy-

namics. The controllability proof for the pairs (Aξ, Eξ) of (2.1) that appears in [Utkin92]

is a well known result that brings some light on how to design a virtual controller for this

part. This section focuses precisely on this issue, for subsystem (2.2) with unmeasurable

state, providing a controllability proof for the pair (Aξ, Eξ1). Since this work deals with

systems of which only output information is available, observability is also an issue to be

taken into account. For this, it is shown how to construct not only a controllable, but

an observable reduced order system, composed of the unmeasurable state ξ, and a virtual

output which will also be defined, suing the following Lemma.

Lemma 3 If the pair (A, B) of (1.1) is controllable, and the pair (A, C) of (1.1) is

observable, then (Aξ, Eξ1) is controllable and (Aξ, Ez) is observable.

Proof Recall that system (1.1) is controllable iff

rank
[
λI −A B

]
= n,
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for all λ ∈ C, and observable iff

rank

λI −A
C

 = n,

for all λ ∈ C [Chen98]. In the coordinates of the ONF (2.2)-(2.3), this can be written as

rank

λIn −


Aξ Eξ1 0m×(r−1) 0m×1

0(r−1)×m 0(r−1)×1 I(r−1) 0(r−1)×1

Ez az1 Azr 1


 = n

where
[
az1 Azr

]
= Az with Azr ∈ R1×(r−1).

Note that the last column is composed of zeros except for the last element. This

makes the last row linearly independent of the rest, so it can be discarded from the analysis,

along with the remaining zero elements. This yields

rank

λI(n−1) −

 Aξ Eξ1 0m×(r−1)

0(r−1)×m 0(r−1)×1 I(r−1)

 = n− 1.

The same happens with the last r − 1 rows and columns of the above matrix, so

the rank condition becomes

rank
[
λIm −Aξ −Eξ1

]
= m.

A similar procedure can be carried out for the observability matrix:

rank

λIn −


Aξ Eξ1 0m×(r−1)

0(r−1)×m 0(r−1)×1 I(r−1)

Ez az1 Azr

01×m 1 01×(r−1)



 = n,

so, analogously, the rank condition becomes

rank

λIm −Aξ
−Ez

 = m,
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To relate the observability of the pair (Aξ, Ez), with subsystem (2.2), it is neces-

sary to recover the term Ezξ. If y is a noiseless output, one can take its derivatives until

the rth order 1, and define a virtual output as

yv := y(r) −Az
[
y · · · y(r−1)

]>
− u.

From the result of Lemma 3 one can define a virtual control signal for (2.2) as

uv = z1

so, along with yv, the following observable and controllable reduced order system can be

constructed2:

ξ̇ =Aξξ + Eξ1uv

yv =Ezξ. (2.4)

2.3 Virtual Control Design

In the previous section the controllability of the zero dynamics through the output

of the system (1.1) was proven, as well as the observability property of (2.2) with yv. It is

natural to use this result to design a virtual control for the dynamics of (2.2) through z1,

and to also construct an observer for the unmeasurable state ξ using yv. The dynamics of

this observer will be represented by the variable η ∈ Rn−r and have the form

1In the last few lines, as well as in the past section and other parts of this document it is assumed
that r derivatives of the output y, i.e. the variables z1, . . . , zr, can be obtained (in this case, in order
to construct the virtual output yv). It is not the goal of this work to explore differentiation techniques
but, in order to obtain the necessary estimates, various methods can be implemented. For example, the
robust exact differentiator of [Levant98] if a known bound of the (r + 1)th derivative of y is available, the
modification that provides uniformity with respect to the initial conditions of [Angulo13], or the recent
result of [Oliveira15] which presents a global exact differentiator based on higher-order sliding modes and
dynamic gains, among others.

2This reduced order system is realizable if the output y is differentiable r − 1 times. This is always
satisfied for the case of a linear system with a noiseless output, such as (1.1).
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η̇ := Aηη −Bηyv

= Aηη + Eηξ, (2.5)

where Eη = −BηEz. The parameters Aη ∈ R(n−r)×(n−r), and Bη ∈ R(n−r)×1 are free to be

chosen appropriately. A procedure to do so will be shown later.

The virtual control signal for system (2.4) will be driven by the dynamics of η,

and is defined as uv = Kvη, with Kv ∈ R1×(n−r) as design parameter, or gain. Naturally,

z1 (the measured output) is used as a virtual control for ξ, so a scalar signal φ1 = φ1(y, η)

is constructed as

φ1 = z1 −Kvη. (2.6)

Substituting (2.6) in (2.2) one obtains the closed loop

ξ̇ = Aξξ +Bξη + Eξ1φ1

η̇ = Aηη + Eηξ (2.7)

φ1 = y −Kvη,

where Bξ = Eξ1Kv.

Remark 2 The value of the constants Bξ, Eη and Aη of (2.7) are determined when the

dynamics of η, and the gain Kv of the virtual control are designed. These parameters should

be selected such that the system (2.7) is globally asymptotically stable when ‖φ1‖ = 0.

An alternative way of constructing η is through an auxiliary dynamic variable β

defined as

β̇ = Aη (β −Bη y(r−1)) +Bη

(
Az

[
y · · · y(r−1)

]>
+ u

)
,

and defining η as

η := β −Bηy(r−1).
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Then, the dynamics of η will recover the observer-like form (2.5). This alternative offers

the advantage that the output y must be differentiated r − 1 times which, instead of r

times which, for some applications, might be convenient.

2.4 Relative Degree r Sliding Surface

Recall system (2.7). In the previous section it was mentioned that the parame-

ters Bξ, Aη and Eη should be designed such that the closed loop is globally asymptotically

stable when φ1 is zero. This variable represents the difference between the measured signal

y, and the designed Kvη. When it is equal to zero it necessarily follows that the virtual

control is acting as designed on the zero dynamics. This variable can then be considered

an error measurement. The control objective, in order to control the zero dynamics ξ,

turns into forcing φ1 to zero, making it a suitable choice for sliding variable. Note that φ1

depends on y and η so, clearly, it has relative degree r.

Defining the first r successive derivatives of signal (2.6) as a set of coordinates as

σ1 := φ1

σ2 := σ̇1 = φ̇1

...

σr = σ̇r−1,
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it follows that σ̇r = φ
(r)
1 and the following dynamics are obtained:

σ̇1 = σ2

σ̇2 = σ3

...

σ̇r = Γσ1σ + Γσ2ξ + Γσ3η + u, (2.8)

where Γσ1 ∈ R1×r Γσ2,Γσ3 ∈ R1×m are known combinations of the parameters of (2.3) and

(2.7). The following Lemma can be established:

Lemma 4 Consider the variable

σ = y −Kvη

where η̇ = Aηη + Bη

(
y(r) −Az

[
y ẏ . . . y(r−1)

]>
− u
)

. If σ and its first r successive

time derivatives are forced to zero through a signal u, then the trajectories of (2.7) will

globally converge to the origin, provided that the parameters Kv, Aη, and Bη are chosen

adequately.

From Lemma 4, σ is a sliding variable for (2.7), and the closed loop of this system, with

the dynamics of (2.8), can be written as

ξ̇ = Aξξ +Bξη + Eξ1σ1

η̇ = Aηη + Eηξ (2.9)

σ̇ = Aσσ + Eσ1ξ + Eσ2η +Bσu,

Aσ =

0(r−1)×1 I(r−1)

Γσ1

 , Eσ =
[
Γσ2 Γσ3

]
, Bσ =

0(r−1)×1

1

 ,
with Bξ = EξKv.
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Note that the dynamics of σ are governed by a chain of integrators, and a linear

combination of ξ and η in the last equation. Each of the lines in (2.9) can be considered a

subsystem that is interconnected to the rest. Thus, a control law u that not only brings σ

to zero, but that also maintains the stability of the rest of the interconnection is needed.

2.5 Relative Degree One Sliding Surface

A relative degree r sliding variable was defined in the past section, however, it

is sometimes convenient to reduce the order of the controller, due to actuator limitations,

tuning difficulties, or to reduce the complexity of the algorithm. A relative degree one

sliding variable will be defined in the following Lemma, using the output y and its first

r− 1 successive derivatives, which coincide with those that should be obtained in order to

construct the auxiliary η as is shown below.

Lemma 5 Consider the variable

σ = y(r−1) − cr−1 y
(r−2) − · · · − c2 ẏ − c1(y −Kvη),

where c1, . . . , cr−1 are some constants, and recall that η̇ = Aηη+Bη

(
y(r) −Az

[
y ẏ . . . y(r−1)

]>
− u
)

.

If σ and its first time-derivative are forced to zero through a signal u, then the trajectories

of (2.7) will globally converge to the origin, provided that the parameters ci, Kv, Aη, and

Bη, for i = 1, 2, . . . r − 1 are chosen adequately.

Proof If σ = 0, it follows that

y(r−1) = cr−1 y
(r−2) + · · ·+ c2 ẏ + c1(y −Kvη).

Now, consider the new set of coordinates φ1, φ2, . . . φr−1, σ ∈ R
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φ1 := y −Kvη = z1 −Kvη

φ2 := ẏ = z2 (2.10)

φ3 := ÿ = z3

...

φr−1 := y(r−2) = zr−1,

where φ1 is exactly as defined in the previous section. Then, the dynamics of (2.10) have

the form

φ̇1 = φ2 − EηKvξ −AηKvη

φ̇2 = φ3

...

φ̇r−2 = φr−2

φ̇r−1 = c1φ1 + c2φ2 + · · ·+ cr−1φr−1.

Suppose now that ξ and η are equal to zero. Then, the above system is in the controller

canonical form, and an adequate choice of ci would lead to taking all of φi to zero. When

φ1 = 0, it necessarily follows that the virtual control defined in Section 2.3 is acting on

(2.7) as designed.

The dynamics of (2.10), along with those of (2.7) and σ, yield

ξ̇ = Aξξ +Bξη + Eξ1φ1

η̇ = Aηη + Eηξ (2.11)

φ̇ = Aφφ+ Eφ1ξ + Eφ2η + Fφσ

σ̇ = Aσσ + Eσ1ξ + Eσ2η + Fσφ+ u,
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where

Aφ =

0(r−2)×1 I(r−2)

−c1

[
−c2 . . . −cr−1

]
 , Eφ1 =

 −EηKv

0(r−2)×m

 ,
Eφ2 =

 −AηKv

0(r−2)×m

 , Fφ =

0(r−2)×1

1

 ,
with Aσ, Eσ1, Eσ2 and Fσ being known combinations of the parameters of (2.3) and (2.7),

and Bξ = EξKv.

Again, each of these variables can be seen as interconnected subsystems. Thus, as was

the case in the previous section, a control law u that not only brings σ to zero, but also

maintains the stability of the complete interconnection is needed.





Chapter 3

Perturbations and External Inputs

In the previous chapters the case of (1.2) was considered, i.e., when there are no

external inputs or perturbations. In this section we will revisit system (1.1), i.e.

ẋ = Ax+Bv +Dw

y = Cx,

where w is a vector of dimension q and contains all the unknown inputs of the system,

and describe the perturbations admitted by this methodology. These perturbations are

assumed to satisfy the following assumption:

Assumption 1 The perturbation term is uniformly bounded, i.e. ‖w‖ ≤ w̄, for a w̄ <∞.

This is a standard assumption in the sliding-mode theory, but the knowledge of the value

of the upper bound w̄ is not necessarily required for this work, as opposed to what is

classically the case.

Three cases of the type of perturbations admitted will be considered: The first

one is mentioned only for completeness because it represents the unperturbed case, that is,

when w = 0, which matches the description of the system made in the previous sections.

29
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Figure 3.1: Design choices of the unperturbed case.

The remaining two include perturbations that satisfy a either a relative degree condition,

or a Lispchitz condition. For each of these two cases, the way in which the perturbations

affect the system, and the form that the equations take for the choices of relative degree

for the sliding variable will be examined.

3.1 Unperturbed case

In this case it is considered that there are no perturbations or external inputs,

i.e. w = 0. This is the case that has been considered up until now in this document. Any

choice of the relative degree of the sliding variable can be chosen (1 or r), as is illustrated

in Figure 3.1.

3.2 Relative Degree Condition

Definition 3 states how to calculate the relative degree of a system, i.e. of its

output with respect to its input u. In this same way the relative degree of the output of

(1.1) with respect to any another input signal can be determined. In particular, it is of

interest for this section the relative degree of y with respect to the perturbation w. This

value will be denoted by rw, and will be instrumental to set the following condition:
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Assumption 2 The relative degree rw of the output with respect to the disturbance w, and

the relative degree r of the output with respect to the input u satisfy the inequality

r < rw ≤ n

The outermost part of the above inequality, i.e r < n, indicates that system (1.1) has a

zero dynamics, i.e. some internal dynamics that are present when the output y and its r

successive derivatives are equal to zero. For the left part, recall that from the definition

of relative degree we have that CAi−1D = 0, 1 ≤ i < rw and CArw−1D 6= 0. Then,

from the transformation introduced in Proposition 1, it is evident that, since rw > r, no

perturbations will appear in the states z1 through zr, and they will only be matched to the

control input and present in the zero dynamics. The consequence of the above conditions

is better appreciated when the system is expressed in its ONF, which is

ξ̇ = Aξξ + Eξ1z1 +Dξwξ

ż1 = z2 (3.1)

...

żr−1 = zr

żr = Azz + Ezξ + u+Dzwz

y = z1,

where ξ is the zero dynamics, wξ ∈ Rqξ is the unmatched perturbation term, wz ∈ Rqz is

the matched perturbation, and qξ + qz = q.

Recall from section 2.2 that the virtual output of the reduced order system is

yv := y(r)−Az
[
y · · · y(r−1)

]>
−u, and from section 2.3, that the observer uses yv as an

input. The virtual output yv contains the rth derivative of y, which by the Assumption 2,
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Figure 3.2: Design choices of the case when the perturbations satisfy the relative degree
condition 2.

yields

ξ̇ =Aξξ + Eξ1uv + wξ

yv =Ezξ +Dzwz. (3.2)

The closed loop (2.7), for the perturbed system can be written as

ξ̇ = Aξξ +Bξη + Eξ1φ1 +Dξwξ

η̇ = Aηη + Eηξ +Dzwz (3.3)

φ1 = y −Kvη.

In this perturbed case it is recommended to follow the methodology to obtain a

relative degree one sliding surface, and implement a first order sliding-mode controller that

forces it to zero, as is illustrated in Figure 3.2.

In this case, the augmented system (2.11) has the form

ξ̇ = Aξξ +Bξη + Eξ1φ1 +Dξwξ

η̇ = Aηη + Eηξ +Dzwz (3.4)

φ̇ = Aφφ+ Eφ1ξ + Eφ2η + Fφσ

σ̇ = Aσσ + Eσ1ξ + Eσ2η + Fσφ+Dσwσ + u.
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Note that the complete vector φ is free of unknown inputs.

The recommendation above comes from the fact that the variable φ1 depends on

the output y, and η, both of which dynamics are affected by the matched perturbation. If

a higher relative degree surface is desired, then it would be necessary to impose a differ-

entiability condition on the perturbations, in addition to Assumption 2, because it would

be necessary to differentiate y several times. This condition will be stated in the next

subsection.

3.3 Lipschitz condition

The Assumption 2 of the last subsection focuses on how the perturbations enter

the system (1.1). If this condition is not satisfied, then the perturbation can affect any

part of the state variables (or even come in the form of measurement noise)1. In this case,

the system in the ONF takes the form

ξ̇ = Aξξ + Eξ1z1 +Dξwξ (3.5)

ż1 = z2 + wz1

...

żr−1 = zr + wzr−1

żr = Azz + Ezξ +Dzwz + u

y = z1.

1In Section 1.2 it was mentioned that the case of noiseless outputs would be considered in this work,
however, under some conditions of this noise, the case where it exists could also be admitted. This case will
not be represented in the equations, but the conditions that should be satisfied by the noise will be stated.
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From the definition of the virtual output yv it can be seen that r derivatives of

the output are necessary for its construction. From (3.5) we have that

ẏ = ż1 = z2 +D1wz1

ÿ = ż2 + ẇz1 = z3 + wz2 + ẇz1

...

y(r−1) = zr + wzr−1 + ẇzr−2 + · · ·+ w
(r−2)
z1

y(r) = Azz + Ezξ + wz + ẇzr−1 + · · ·+ w
(r−1)
z1 + u,

where each wzi ≥ 0, i = 1, 2, ..., r. Then, the virtual output yv is given by

yv = Ezξ +Dvwv

where wv is a combination of the perturbations wzi and their (up to) r − 1 derivatives2.

Since the perturbation may be present in any channel of the state space, then it is required

for it to satisfy a differentiability condition, which is stated as follows:

Assumption 3 The unknown input w is at least Cr−1 and its r − 2nd derivative is Lips-

chitz.

Remark 3 In the case that the output y presents some measurement noise, this noise

should also satisfy the following differentiability condition: The measurement noise is at

least Cr and its r − 1rst derivative is Lipschitz.

The closed loop of (2.7) is, in this case:

ξ̇ = Aξξ +Bξη + Eξ1φ1 +Dξwξ

η̇ = Aηη + Eηξ +Dvwv (3.6)

φ1 = y −Kvη.

2If the output y includes some noise, the term wv would also include this noise, and its first r derivatives.
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Figure 3.3: Design choices of the case when the perturbations satisfy the Lipschitz condition
3.

For (3.6) either a relative degree one, or a r relative degree sliding surface can

be chosen, depending on the designer’s preference, or the application’s requirements, as is

illustrated in Figure 3.3

If an r order sliding variable is defined, as in section 2.4, then the closed loop

(2.9) has the form

ξ̇ = Aξξ +Bξη + Eξ1σ1 +Dξwξ

η̇ = Aηη + Eηξ +Dvwv (3.7)

σ̇ = Aσσ + Eσ1ξ + Eσ2η +Dσwσ +Bσu,

where wσ is also a combination of all wzi and their up to (r-1) derivatives.
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On the other hand, for a relative degree one sliding variable, recall the coordinates

φ of (2.10). In this perturbed case they are:

φ1 := y −Kvη = z1 −Kvη

φ2 := ẏ = z2 + wz1 (3.8)

φ3 := ÿ = z3 + ẇz1 + wz2

...

φr−1 := y(r−1) = zr−1 + w
(zr−2)
z1 + w

(zr−3)
z2 + wzr−1.

(3.9)

The sliding variable was defined as

σ = y(r) − cr−2 y
(r−1) − · · · − c2 ẏ − c1(y −Kvη).

Evidently its dynamics will be affected by a combination of the derivatives of the perturba-

tions, which will be grouped in the variable wσ, so the perturbed augmented system (2.11)

is

ξ̇ = Aξξ +Bξη + Eξ1φ1 +Dξwξ

η̇ = Aηη + Eηξ +Dvwv (3.10)

φ̇ = Aφφ+ Eφ1ξ + Eφ2η + Fφσ +Dφwφ

σ̇ = Aσσ + Eσ1ξ + Eσ2η + Fσφ+ wσ + u,

3.4 Parameter Choice and Design Tradeoff

In the past sections we have analyzed two different design paths that can be taken

when choosing the sliding surface for system (1.1), and also two different types of pertur-

bations admitted by the solution method. The combination of these cases lead to different

forms of the system’s equations. In this section we will establish a design methodology
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Figure 3.4: Block diagram with relative degree r sliding variable.

for the parameters of the virtual controller and the observer which were defined in sec-

tion 2.3, and also the parameters of the sliding surface3. In section 2.4 it was mentioned

that the closed loop of the sliding surface with the rest of the dynamics can be seen as

an interconnection of different subsystems. These interconnections can be represented by

the block diagrams of Figure 3.4 (for the case of relative degree r sliding surface), and

Figure 3.5 (for a relative degree one sliding variable). In both cases, a feedback loop is

present between the subsystems ξ and η. For the case of Figure 3.4 there also exists a

feedback loop between
[
ξ> η>

]>
, and subsystem σ. In the case of Figure 3.5,

[
ξ> η>

]>
is connected in feedback with φ, and then

[
ξ> η> φ>

]>
, with σ. Thus, it is not enough

to design the parameters of each subsystem such that it is stable in its nominal form, and

in the presence of each of their respective inputs, but it also should be guaranteed that the

stability is not compromised or even destroyed by the interconnections. A useful tool for

dealing with this kind of situations is the classical Small-Gain theorem [Khalil02], or it’s

non-linear version, presented in Theorem 2. This result will be used for the design of the

3From the definition of the sliding surface, it can be seen that some parameters must be defined only
in the case od a surface of relative degree one, i.e. the constants c1, . . . , cr−1. From now on, when the
parameters of the sliding surfaces are mentioned, it will be making reference to these mentioned constants.



38 Chapter 3: Perturbations and External Inputs

Figure 3.5: Block diagram with relative degree one sliding variable.

parameters and thus, the resulting interconnection will have the ISS property.

Two different options will be presented, from which the designer can choose,

depending on the objectives of the application, and the characteristics of the system. The

first will be referred to as priority to the control, and represents the case when the objective

is to keep the control signal relatively small, if the attenuation of the unmatched disturbance

is not a priority. The second option will be called priority to the state, and should be

deployed when it is preferred to guarantee an attenuation of the unmatched perturbations,

at the expense of possibly deploying a large control effort. This case is also known as the

cheap control strategy, which is used when the cost of the control effort is not a problem

for the implementation. The recommended combinations of the relative degree choice for

the sliding variable, and the design strategy are as follows:

• If the perturbation w satisfies the condition 2 (relative degree condition), a sliding

surface of relative degree one is recommended to avoid imposing an extra differentia-

bility condition on w. In this case it is up to the designer to choose between giving
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Figure 3.6: Design choices of the case when the perturbations satisfy the relative degree
condition 2.

Figure 3.7: Design choices of the unperturbed case.

priority to the control, or to the state (Figure 3.6). This is also the case for the

unperturbed case (Figure 3.7).

• If the perturbation w satisfies the condition 3 (Lipschitz condition), then the choice

of the relative degree of the sliding surface is free, but it is recommended to follow the

priority to the state path, since the perturbations may be present in every channel

of the state equations (Figure 3.8).
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Figure 3.8: Design choices of the case when the perturbations satisfy the Lipschitz condition
3.

3.4.1 Priority to the Control

If it is desired to give priority to the control, that is, to maintain the control

signal relatively low, the following procedure should be carried out. First, a new set of

coordinates will be defined, depending on whether the sliding surface is of relative degree

one or of relative degree r. To this end consider system (3.7), i.e. the perturbed closed

loop with a relative degree r sliding surface, and define

∆ :=

ξ
η

 , A∆ :=

Aξ Eξ

Eη Aη

 , E∆ :=

Eξ1
~0

 , D∆ :=

wξ
wη

 . (3.11)

For the case when a relative degree one sliding surface is chosen, the variable ∆ and its

corresponding matrices are defined as:

∆ :=


ξ

η

φ

 , A∆ :=


Aξ Bξ Eξ1 ~0

Eη Aη ~0 ~0

Eφ1 Eφ2 Fφ Aφ

 , E∆ :=

 ~0
Fφ

 , D∆ :=


wξ

wη

wφ

 , (3.12)

where wφ = 0 if the perturbations satisfy the relative degree condition of Assumption 2

and wφ 6= 0 otherwise.
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In both cases the following dynamics are obtained:

∆̇ = A∆∆ + E∆σ.+D∆w∆

σ̇ = Aσ + Eσ∆ + wσσ + u,

where Eσ =
[
Eσ1 Eσ2

]
. Note that ∆(∆, σ, w∆) and σ(σ,∆, wσ) are connected in feedback

form.

Recall that the parameters Eξ, Eη, Aη (and Aφ) are to be chosen by the designer, and note

that Eφ1, Eφ2, and Fφ will depend on a known combination of their values and those of

the system’s parameters. The following Lemma can be established:

Lemma 6 The nominal system ∆(∆, 0, 0), is ISS and therefore globally asymptotically

stable (GAS) if the constants Eξ, Eη, Aη (and Aφ) are chosen such that

Re{λ(A∆)} < 0.

Moreover, its ISS gain with respect to w∆ can be calculated as

γ∆ =
2λ2

max(P∆) ‖D∆‖
λmin(P∆)

,

where P∆ satisfies A∆P∆ + P∆A
>
∆ < I.

Remark 4 The design parameters of A∆ can be chosen in such a way that they not only

make the system matrix Hurwitz, but that the value of γ∆ is minimized. This can be

achieved by running a numeric minimization method with the gain function γ∆ as the

minimization target, and the inequalities A∆P∆ + P∆A
>
∆ < I and re{λ(A∆)} < 0 as

constraints.

If the conditions of Lemma 6 are satisfied, then system ∆ will be robust to the

perturbation vector

w =


wξ

wη

wφ

 ,
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and the ultimate bound for the state can be calculated as

|x| ≤ γ∆w sup |w∆|

where γ∆w =
2λ2

max(P∆) ‖D∆‖
λmin(P∆)

.

3.4.2 Priority to the State

This part of the solution focuses on the case when attenuating the unmatched

perturbation is a priority, at the expense of possibly needing a large control effort, i.e.,

when the cost of such an effort is not a problem because the control is cheap. To this

end, first, the parameters of the virtual controller and the observer (Bξ, Aη, Eη) should be

defined. Recall the form of the controllable and observable reduced order system

ξ =Aξξ + Eξ1uv + wξ

yv =Ezξ + wyv ,

where wyv is the perturbation that affects the virtual output in the case of Section 3.2 or

that of Section 3.3. Also, from the definition of η it can be seen that it recovers the form

of an observer constructed from a noisy output. The problem of determining the gains

Bξ, Aη, and Eη fits exactly into the LQG formulation in which an observer and a control

are designed for a perturbed system with a noisy output. This problem can also be solved

through an H∞ minimization procedure for the case of full information that appears in

[Doyle89]. This last method will guarantee an ultimate bound of a transfer function that

maps the perturbation and the virtual control along with the state as ‖T
w,

[
ξ, uv

]‖∞ ≤ γ∞
for a given γ∞ <∞.

If a sliding surface of relative degree r has been chosen, then the vector ∆ can be

defined as

∆ :=

ξ
η

 ,
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and its dynamics will be driven by the matrices defined in (3.11). If a relative degree one

sliding surface is deployed, then an intermediate step is needed. To this end, define

∆1 :=

ξ
η

 , A∆1 :=

Aξ Bξ

Eη Aη

 , E∆1 :=

Eξ1 ~0

~0 ~0

 ,
and suppose that σ = 0 and wξ = wη = wφ = 0 as well. The following dynamics will be

obtained

∆̇1 = A∆1∆1 + E∆1φ (3.13)

φ̇ = Aφφ+ Eφ1ξ + Eφ2η. (3.14)

From the above paragraphs it is clear that A∆1 is already Hurwitz, so it follows that the

nominal ∆1 is GAS. Then, there exists a P∆1 = P>∆ > 0 that satisfies P∆1A∆1 +A>∆1P∆1 =

−Q∆1 for a Q∆1 > 0 and, being a linear system, it is easy to calculate its ISS gain with

respect to φ as

γ∆1 =
2λ2

max(P∆1) ‖E∆1‖
λmin(P∆1)

.

Recall that

Aφ =

~0 Ir−2

−Kφ


and consider the following linear matrix inequality

PφAφ +A>φPφ ≤ −Qφ

where Qφ > 0. The value of Pφ and Qφ and thus the value of their minimum and maximum

eigenvalues, will depend on the chosen constants c1 through cr−1. Now lets us define

∆ :=


ξ

η

φ


as in (3.12). This leads to the establishment of the following Lemma
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Lemma 7 The nominal system ∆, i.e. the zero response of the feedback interconnection

∆1 − φ, is ISS and therefore GAS if the constants Kφ are chosen such that the following

inequality holds
2λ2

max(Pφ) ‖Eφ1, Eφ2‖
λmin(Pφ)λmin(Qφ)

<
1

γ∆1
.

Moreover, its ISS gain with respect to w∆ can be calculated as

γ∆ =
2λ2

max(P∆) ‖D∆‖
λmin(P∆)λmin(Q∆)

.

where P∆, Q∆, and E∆ are defined as in the previous section.



Chapter 4

Sliding Mode Control with ISS

Properties

As was mentioned in the introduction one of the most appealing characteristics

of the sliding-mode controllers is their capability of forcing an output to converge to the

origin exactly, and in finite-time. This makes this kind of controllers a suitable choice for

the approach developed in this work, since what is necessary for the solution is to make

the designed sliding surface σ equal to zero, in order to guarantee that the virtual control

works as expected stabilizing the zero dynamics, and take the trajectories of (1.1) to the

origin, in absence of perturbations and to a neighborhood of the origin in presence of

matched and/or unmatched perturbations. On the other hand, another popular property

of the SMC is the possibility of rejecting matched perturbations, but a major downside is

that this robustness is severely compromised when a bound for the disturbance acting over

the system cannot be known, or when they are unmatched to the control input. This is

precisely the case of system (1.1), which has matched and unmatched perturbations. The

ISS property guarantees the robustness against any kind of bounded perturbations even

if the bound is unknown, but in general this property cannot be proved for the sliding-

mode controllers. This chapter will be devoted to the analysis of the ISS properties of

45
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two sliding-mode controllers, the first is a conventional sliding-mode controller to which a

linear term has been added, and the second one is the Super-Twisting algorithm (STA),

which provides not only finite-time convergence of the nominal sliding variable, but also

offers the possibility of implementing a continuous control signal.

In order to better illustrate the utility of exploring the ISS properties of SMC, the following

example will be presented:

Consider the system

ẋ = u+ w , x(0) = 0, (4.1)

where x is the state variable, u is the control input, and w is a growing disturbance.

Figure 4.1 illustrates the behavior of the trajectories of system (4.1) when the

control input is defined as u = −x (continuous line), u = − sign(x) (dotted line), and

u = −x − sign(x) (dashed line), as the input w grows. When the control is simply a

linear function of the state, the ultimate bound on the state starts to grow as soon as

the disturbance is different from zero. In the second case, when the control is only a

discontinuous function of the state, it is capable of forcing the trajectories to the origin for

some values of the perturbation, but once it surpasses a certain level (equal to one in our

example), the trajectories grow unboundedly. On the other hand, when the conventional

sliding-mode controller is combined with the linear term, the trajectories can remain at

the origin for some values of the disturbance, and then the ultimate bound grows with the

perturbation.
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Figure 4.1: Behavior of the trajectories of x in the presence of a growing input w with
different control laws.

4.1 Conventional Sliding Mode Controller with added linear

term

In this section a controller as the one mentioned in the motivational example will

be used to take the trajectories of (1.1) exactly to zero in absence of perturbations. It

will also be shown that the trajectories converge to a neighborhood of the origin when

bounded matched and/or unmatched perturbations are present, of which a bound is not

necessarily known, and that they remain there for all future time. In other words, this

controller should be able to take the sliding variable σ to zero. Evidently, this approach

will be used when σ is of relative degree one. The following theorem establishes conditions

for the gains of the controller and the parameters of the sliding variable that guarantee
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the GAS of system (1.1), and its ISS property in precense of bounded perturbations. This

theorem also summarizes the results obtained in the previous chapters.

Theorem 3 If for a linear, controllable and observable system (1.1), of dimension n, with

an output y of relative degree r ≤ n and an unknown, bounded, external input w of relative

degree rw, satisfying either Assumption 2 or Assumption 3, the control input is selected as

u = −klσ − kn sign(σ),

where the sliding variable is defined as

σ = zr − cr−1 zr−1 · · · − c2 z2 − c1 (z1 −Kvη),

and η̇ = Aηη−Bηyv, then, for every w ∈ L∞, there exist a K function γ and a KL function

β such that the norm of the solutions, for all t will remain in a neighborhood of the origin

given by [Sontag95]

‖x(t, x(0), w)‖ ≤ β(‖x(0)‖, t) + γ(‖w‖∞),

provided that the gains satisfy

kl >
2‖E∆‖ ‖Eσ‖λ2

max(P∆)

λmin(P∆)λmin(Q∆)
(4.2)

kn > ‖Dσ‖w̄σ, (4.3)

and the parameters Kv, Aη, Eη and c1, . . . , cr−1 are chosen according to either Lemma 6,

or 7

Proof Recall the coordinates defined in Section 3.4,

∆̇ = A∆∆ + E∆σ +D∆w∆

σ̇ = Aσσ + Eσ∆ + wσ + u,

and define the control signal

u = −klσ − kn sign(σ). (4.4)
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where kl = Aσ + cl. From Lemmas 6, and 7 it is known that the subsystem ∆(∆, 0, w∆)

can be made gas GAS when w∆ = 0 and ISS otherwise, if the parameters of the sliding

variable and thos of η adequately. A Lyapunov function for this system is

V∆ = ∆>P∆∆

where P∆ satisfies A∆P∆ + P∆A
>
∆ < I. Function V∆ can be bounded as

λmin(P∆) ≤ V∆ ≤ λmin(P∆)

and, using Young’s inequality (Lemma 1), the derivative over the trajectories of ∆(∆, σ, 0)

satisfies

V̇∆ =− ‖∆‖2 + 2E>∆P∆σ∆

≤− 1

2
‖∆‖2 + 2λmax(P∆)σ2.

For subsystem σ(σ,∆, wσ, u)1 with (4.4), consider the Lyapunov candidate

Vσ =
1

2
σ2.

If the non linear gain is chosen according to the classic sliding-mode theory as

kn > ‖Dσ‖w̄σ,

where ‖wσ‖ ≤ w̄σ, and the constant w̄σ is known 2, the directional derivative of Vσ satisfies

V̇σ =σEσ

ρ
φ

+ σDσwσ + σ(−klσ − kn sign(σ))

≤
(‖Eσ‖

2
− kl

)
σ2 +

‖Eσ‖
2
‖∆‖2

1Note that wσ represents the matched component of the disturbance w in the sliding variable. If the
disturbances satisfy the relative degree condition, then wσ = wz.

2In most of the sliding-mode literature, the knowledge of an upper bound of the matched disturbance
is required for the gain design. In this work we consider the case when w̄σ is indeed known, and take it
into account for the design, but we also consider the case when this constant is not known. In a real-life
case, the designer can make an educated guess of the value of w̄σ, depending on the specific application
and use this for the design without worrying that a miscalculation could destroy the stability achieved by
the virtual control and the rest of the design, since an ISS behavior of the complete system with respect to
the disturbance w will be present.
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Defining four class K∞ functions

a∆(τ) :=
1

λmax(P∆)
τ

θ∆(τ) :=4‖P∆‖ τ

aσ(τ) :=

(‖Eσ‖
2
− kl

)
τ

θσ(τ) :=
‖Eσ‖

2λmin(P∆)
τ,

the derivatives of Vσ and V∆ can be expressed as

V̇∆ ≤− a∆(V∆) + θ∆(Vσ)

V̇σ ≤− aσ(Vσ) + θσ(V∆).

From Corollary 1 of Theorem 2, the condition (4.2) for the linear gain kl is obtained.

4.1.1 Example and Numerical Simulations

Consider a damped double mass-spring system as the one shown in Figure 4.2.

Figure 4.2: Perturbed Damped Double Mass-Spring.

The state space representation of this system can be written as
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Parameter Value Parameter Value

m1 0.8 k1 0.4
m2 0.5 k2 0.5
b 0.6 k3 0.4

Table 4.1: Parameters for system (5.8)


ẋ1

ẋ2

ẋ3

ẋ4

 =



0 1 0 0

−k1 + k2

m1
− b

m1

k2

m1

b

m1

0 0 0 1

k2

m2

b

m2
−k2 + k3

m2
− b

m2




x1

x2

x3

x4

+



0
1

m1

0

0


u+


1 0

0 0

0 0

0 1


w1

w2

 , (4.5)

y =
[
1 0 0 0

]

x1

x2

x3

x4

 ,

where x1 and x2 represent the position of each of the carts, x3 and x4 their respective

velocity, y is the measured output and w1 and w2 are a pair of bounded unknown inputs.

This system clearly has relative degree ru = 2, and the perturbations satisfy the relative

degree condition. Suppose that the system has the parameters shown in Table 4.1. For

simplicity of this academic example it is assumed that all the units of the parameters are

normalized so only its magnitudes are provided. A transformation

ξ
z

 = Tx , T =


0 0 1 0

−1.2 0 0 1

1 0 0 0

0 1 0 0


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takes the system to its Output Normal Form


ξ̇1

ξ̇2

ż1

ż2

 =


0 1 01.2 0

−1.8 −1.2 −0.44 0

0 0 0 1

0.62 1.5 0.67 −0.75




ξ1

ξ2

z1

z2

+


0

0

0

1.25

u+


0 1

0 0

0 0

1 0


w1

w2



y = z1.

System (5.8) is controllable and observable for the parameters of Table 4.1. Then,

a controllable and observable reduced order system derived from it is

ξ̇1

ξ̇2

 =

 0 1

−1.8 −1.2

ξ1

ξ2

+

 01.2

−0.44

uv +

w1

0


yv =

[
0.62 1.5

]ξ1

ξ2

+ w2.
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The closed loop (2.7), for the example of system (5.8) has the form

ξ̇1

ξ̇2

 =

 0 1

−1.8, −1.2

ξ1

ξ2

+

 1.2 kv1 1.2 kv2

−0.44 kv1 −0.44 kv2

η1

η2

+

+

 01.2

−0.44

φ1 +

 0

w2


η̇1

η̇2

 =

aη11 aη12

aη21 aη22

η1

η2

+

0.62 bη1 1.5 bη1

0.62 bη2 1.5 bη2

ξ1

ξ2

+

bη1w1

bη2w1


φ̇1 =− c1φ1 +

−0.62 bη1 kv1 − 0.62 bη2 kv2

−1.5 bη1 kv1 − 1.5 bη2 kv2

> ξ1

ξ2

+

+

−aη11 kv1 − aη21 kv2

−aη12 kv1 − aη22 kv2

> η1

η2

+ σ

σ̇ =(c1 − 0.75)σ +

0.62− 0.62 bη2 c1 kv2 − 0.62 bη1 c1 kv1

1.5− 1.5 bη2 c1 kv2 − 1.5 bη1 c1 kv1

> ξ1

ξ2

+

+

0.68 kv1 − aη11 c1 kv1 − aη21 c1 kv2

0.68 kv2 − aη12 c1 kv1 − aη22 c1 kv2

> η1

η2

+

+ (0.68− c2
1 − 0.75 c1)φ+ u+ w1,

A sliding surface of relative one is chosen for the example of system (5.8), that is,

σ = ż1 − c1

z1 −
[
kv1 kv2

]η1

η2

 .

Then the augmented system (2.11) is
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ξ̇1

ξ̇2

 =

 0 1

−1.8, −1.2

ξ1

ξ2

+

 1.2 kv1 1.2 kv2

−0.44 kv1 −0.44 kv2

η1

η2

+

 01.2

−0.44

φ1

η̇1

η̇2

 =

aη11 aη12

aη21 aη22

η1

η2

+

0.62 bη1 1.5 bη1

0.62 bη2 1.5 bη2

ξ1

ξ2


φ̇1 = −c1φ1 +

−0.62 bη1 kv1 − 0.62 bη2 kv2

−1.5 bη1 kv1 − 1.5 bη2 kv2

> ξ1

ξ2

+

+

−aη11 kv1 − aη21 kv2

−aη12 kv1 − aη22 kv2

> η1

η2

+ σ

σ̇ = (c1 − 0.75)σ +

0.62− 0.62 bη2 c1 kv2 − 0.62 bη1 c1 kv1

1.5− 1.5 bη2 c1 kv2 − 1.5 bη1 c1 kv1

> ξ1

ξ2

+

+

0.68 kv1 − aη11 c1 kv1 − aη21 c1 kv2

0.68 kv2 − aη12 c1 kv1 − aη22 c1 kv2

> η1

η2

+ (0.68− c2
1 − 0.75 c1)φ+ u,

For this example the priority to the state option will be chosen. Then, the param-

eters Kv, Aη, and Eη will be defined through an H∞ minimization of a transfer function

‖T
w,

[
ξ, uv

]‖∞ , which will be achieved by the resolution of a pair of Riccati equations. This

minimization gives the following values for the mentioned parameters

Aη =

−0.54 1.4

−2.05 −2.41

 , Bη =

−0.28

1.29

 , Kv =
[
−0.23 0.03

]
This defines the parameters of system ∆1 as

A∆1 =


0 1 −0.27 0.032

−1.8 −1.2 0.1 −0.012

−0.18 −0.42 −0.54 1.4

0.81 1.9 −2.0 −2.4

 E∆1 =

 1.2

−0.44

 .
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The eigenvalues of A∆1 are

λ(A∆1) =


−1.3− 1.3i

−1.3 + 1.3i

−0.79− 1.2i

−0.79 + 1.2i


and the ISS gain of the nominal ∆1 is

γ∆1 = 33

Choosing c1 = 15, the conditions of Lemma 7 are satisfied with

0.0281 =
2λ2

max(Pφ) ‖Eφ1, Eφ2‖
λmin(Pφ)λmin(Qφ)

<
1

γ∆1
=

1

33

and the ISS gain of the complete system ∆ is

γ∆ = 162.59.

A bound for the perturbation w2 will be assumed as w̄2 = 1.5. If the gains for

the controller (4.4) are chosen as

kn = 1.6, and kl = 188,

the conditions of Theorem 3 are satisfied. This is validated through the following simulation

results

The disturbance signals for the numerical simulations were chosen as w1 = 1.2 +

0.6 sin(t) and w2 = 0.8 + 0.5 sin(t). The initial conditions were chosen as x1 = 1, x2 = 0.6

x3 = 0.5, and x4 = .6.

Figure 4.3 shows how the trajectories of the system remain in a bounded neigh-

borhood of the origin, in presence of the matched and also the unmatched disturbances.

Figure 4.4 shows the control signal which is discontinuous for most of the simulation time,

and the zoom shows the period of time where the linear term acts, before reaching the
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Figure 4.3: State trajectories of the damped double mass-spring system (5.8).
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Figure 4.4: Control signal u = −188σ − 1.6 sign(σ), from time 0s to 1s which illustrates
the action of the linear part of u.
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Figure 4.5: Trajectory of the sliding variable σ, from time 0s to 1s which illustrates the
behavior before reaching the sliding mode.
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sliding-mode. Figure 4.5 shows the sliding surface converging to zero. The reaching time

shown in the zoom coincides with the period of time where the linear control acts.

Next, the perturbations were augmented (w1 = 12 + 6 sin(t), w2 = 8 + 5 sin(t)),

and both the linear and the non-linear selected gains were maintained the same as be-

fore. This scenario would be problematic for a first-order sliding-mode controller with the

selected gain, but Figure 4.6(a) shows that the combination of the linear term and the

discontinuous one can still maintain the trajectories of the system in a neighborhood of

the origin, showing an ISS behavior. Figure 4.6(b) shows the control signal. It can be

seen that the control signal alternates between the discontinuous term and the linear one.

This switching corresponds to the moments where the sliding-mode is lost and regained,

as shown in Figure 4.6(c).

4.2 Super Twisting Controller

The Super-Twisting (ST), a very popular second-order sliding-mode algorithm,

was introduced in [Levant93], which is one of the most cited works in the sliding-mode

literature, with over 1500 mentions. The algorithm has been used for control, differenti-

ation and observation numerous times. Its two most popular properties are that it offers

a continuous control signal and that it is robust against matched perturbations that are

bounded by a known constant L, provided that its gains are chosen adequately, depending

on the value of this L. The downside of the implementation of the STA is that up until re-

cently the available stability proofs were done by geometrical methods [Levant07], using the

homogeneity of a special form of the algorithm [Levant05], or non-differentiable Lyapunov

functions [Moreno12]. Very few years ago an absolutely differentiable Lyapunov function

for the STA appeared in [Sánchez14] which opened the possibility of proving, among other

properties, the ISS. In this section we will consider the STA as a control law for (1.1) and

it will be shown that if its gains satisfy certain conditions, the trajectories of the system

will go to zero in absence of perturbations, and to a neighborhood of the origin in presence
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Figure 4.6: System’s behavior with perturbations whose magnitude surpasses the magni-
tude of the non linear gain (w1 = 12 + 6 sin(t), w2 = 8 + 5 sin(t)): (a) State trajectories of
(5.8). (b) Control signal. (c) Trajectory of the sliding variable
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of matched and/or unmatched disturbances that satisfy either condition 2 or 3 when the

sliding surface is adequately chosen. The following theorem states such conditions:

Theorem 4 If for a linear, controllable and observable system (1.1), of dimension n, with

an output y of relative degree r ≤ n and an unknown, bounded, external input w of relative

degree rw, satisfying either Assumption 2 or Assumption 3, the control input is selected as

u =−Aσσ − k1dσc
1
2 + ν (4.6)

ν̇ =− k2dσc0

where the sliding variable is defined as

σ = zr − cr−1 zr−1 · · · − c2 z2 − c1 (z1 −Kvη),

and η̇ = Aηη−Bηyv, then, for every w ∈ L∞, there exist a K function γ and a KL function

β such that the norm of the solutions, for all t will remain in a neighborhood of the origin

given by [Sontag95]

‖x(t, x(0), w)‖ ≤ β(‖x(0)‖, t) + γ(‖w‖∞),

provided that the gains satisfy

2 γ̄ ‖E∆‖ ‖Eσ‖λ2
max(P∆)

(
ε1
ε2

) 1
3

θ λmin(P∆)λmin(Q∆) min{δ̄1,
¯̄δ2, d1, d2} < 1 (4.7)

and the parameters Kv, Aη, Eη and c1, . . . , cr−1 are chosen according to either Lemma 6,

or 7.

Proof Recall the coordinates

∆̇ = A∆∆ + E∆σ +D∆w∆

σ̇ = Aσσ + Eσ∆ + wz + u,
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and consider the control law (4.6).The closed loop is

∆̇ = A∆∆ + E∆σ +D∆w∆

σ̇ = Eσ∆ + wz − k1dσc
1
2 + ν (4.8)

ν̇ = −k2dσc0.

The Lyapunov function proposed in [Sánchez14] is

Vσ = α1|σ|
3
2 − α12bσebνe+ α2|ν|3, (4.9)

and its derivative over the trajectories of (4.8) when ∆ = 0, and wz = 0 is

∂V

∂t
f(σ, ν, 0, 0) = (−γ1 k1 − γ12 k2) |σ|+ (γ1 + γ12 k1)dσc 12 ν − γ12 |ν|2+

− γ2 k2 sign(σν) |ν|2

=−W (σ, ν).

In the same work it is proven that (4.9) and W (σ, ν) are positive definite if the following

inequalities are satisfied:

3γ1k1 >γ12k2

γ2 > γ12 >3γ2k2

γ1 >2γ12 (4.10)

4γ12 + 12γ2k2 >3γ12γ12k2

3γ1k1 + 6γ2k2 + 2γ12 >6γ1 + γ12k2.

If ∆ 6= 0, and wz = w∆ = 0, i.e. the unperturbed case, the time derivative of

(4.9) over the trajectories of (4.8) is

V̇σ =γ1 dσc
1
2 sign(σ)

(
Eσ ∆− k1 dσc

1
2 + ν

)
− γ12 dσc

(
−k2 dσc0

)
+

− γ12 dνc
(
Eσ ∆− k1 dσc

1
2 + ν

)
+ γ2 |ν|2 sign(σ)

(
−k2 dσc0

)
=−W (σ, ν) +

(
γ1 dσc

1
2 − γ12 ν

)
Eσ∆
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By means of homogeneous norms, the Cauchy-Schwartz inequality and some algebraic

manipulation, it can be proved that

V̇σ ≤ −(1− θ)W (σ, ν), ∀ σ, ν

if

‖dσc 12 , ν‖ ≥ γ̄ ‖Eσ‖
θ min{δ̄1,

¯̄δ2, d1, d2}
|∆|

where

γ̄ = ‖γ1, γ12‖ θ = (0, 1) (4.11)

d1 = λmin


 δ1 − δ12

2

− δ12
2 δ2

 d2 = λmin


 δ̄1 − δ12

2

− δ12
2 δ̄2

 (4.12)

δ1 = γ1k1 − γ12k2 + γ12L δ2 = γ12 + γ2k2 − γ2L (4.13)

δ̄1 = γ1k1 − γ12k2 − γ12L δ̄2 = γ12 + γ2k2 + γ2L (4.14)

δ12 = γ1 + γ12k1
¯̄δ2 = γ12 − γ2k2 − γ2L (4.15)

also, using homogeneous norms, the function Vσ can be bounded as

ε1‖dσc
1
2 , ν‖3 ≤ Vσ ≤ ε2‖dσc

1
2 , ν‖3,

where

ε1 = min
s

(h(s)), ε2 = max
s

(h(s)), (4.16)

h(s) =
2

3
γ1(1− s2)

3
2 + γ12(1− s2)s+

1

3
γ2|s|3 (4.17)

Then, following definition 2, (4.9) is an ISS-Lyapunov function for (4.8), and the ISS gain

is given by

γσ(∆) =
γ̄ ‖Eσ‖

(
ε1
ε2

) 1
3

θ min{δ̄1,
¯̄δ2, d1, d2}

|∆|. (4.18)

Then, the feedback interconnection of ∆-σ can be made stable if the gains of each sub-

system, and the parameters γ1, γ12, γ2 are chosen such that the inequalities (4.10) are
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satisfied, as well as the small gain condition

γ∆γσ < 1,

where γ∆ is as in the proof of Theorem 3. From the above condition, (4.7) is obtained.

4.2.1 Example and Numerical Simulations

Consider the unstable system

ξ̇ = −9 ξ + 1.4x1 + w1

ẋ1 = x2 (4.19)

ẋ2 = 2.5x1 + 1.6x2 − 0.1 ξ + w2

y = x1. (4.20)

This system is in the ONF, of order 3, and the output has relative degree 2 with

respect to the input. A relative degree one sliding surface is chosen as

σ = x2 + c1 (y − kv η),

where, since the zero dynamics is of order one, the signal η is scalar and has the dynamics

η̇ = aη η + bη yv,

as well as the virtual control uv = kvη. The parameters of the observer η, the sliding

variable σ and the virtual controller are as:

aη = −9.7

bη = 20

kv = −0.7442,
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which leads to the augmented system

∆̇ =


−9 −1.0419 1.4

2 −9.7 0

1.4884 −7.2186 −10.7258

∆ +


0

0

1

σ +


w1

w2

0


σ̇ =

[
1 −79.1056 −181.5687

]
∆ + 12.3258σ + w2 + u.

This choice of parameters is made giving priority to the control, that is, some

values that make the nominal part of ∆ stable, while trying to minimize its ISS gain,

which can be calculated as:

γ∆ = 0.3189.

The control u is defined by the STA as:

u = −ue − k1dσc
1
2 + ν

ν̇ = −k2dσc0,

where ue = 12.3258σ. Assuming a bound for the perturbation |w1| < L as L = 1, a set of

gains for the controller, and parameters for the Lyapunov function (4.9) that satisfy the

set of inequalities (4.10) is

k1 = 3.4

k2 = 1.4

γ1 = 2.6

γ12 = 1

γ2 = 0.45.

From (4.18) the ISS gain of the closed loop of σ with the chosen control u can be

calculated as
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Figure 4.7: State trajectories of system (4.19) with the STA.
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Figure 4.8: Super-Twisting Algorithm

γσ = 2.7,

satisfying the conditions of Theorem 4. This is validated through the following simulation

results

The disturbance signals for the numerical simulations were chosen as w1 = 0.5 sin(t)

and w2 = 0.4+0.5 sin(t). The initial conditions were chosen as x1 = 0.5, x2 = 0.5 x3 = 0.5,

and x4 = 0.5.

Figure 4.7 shows how the trajectories of the system remain in a bounded neigh-

borhood of the origin, in presence of the matched and also the unmatched disturbances.

Figure 4.8 shows the control signal which is continuous. Figure 4.9 shows the sliding surface

converging to a neighborhood of the origin.
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Figure 4.9: Trajectory of the sliding variable σ.

Next, the perturbations were augmented (w1 = 12 + 6 sin(t), w2 = 8 + 5 sin(t)),

and the selected gains were maintained. Figure 4.10 shows that the STA is able to maintain

the trajectories of the system in a neighborhood of the origin, showing an ISS behavior.

Figure 4.6(b) shows the continuous control signal, and 4.6(c) shows the sliding surface σ.
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Figure 4.10: System’s behavior with perturbations whose magnitude surpasses the mag-
nitude of the non linear gain (w1 = 5 sin(t), w2 = 4 + 5 sin(t)): (a) State trajectories of
(4.19). (b) Control signal. (c) Trajectory of the sliding variable



Chapter 5

Stabilization of switched systems

by linear feedbacks and its ISS

properties

The study and implementation of systems that commute between different behav-

ior schemes are interesting mathematical and technical challenges. The theoretical results

appear in the literature gathered in the domains of variable structure, switched and hybrid

systems, and a survey on the existing stability criteria can be found in [Shorten07]. This

domain can be divided in two big groups: the systems whose switchings depend on the

time, and those that operate under state-dependent switching laws. The latter group can

also be divided in two: the systems with given switching laws, that need to be stabilized in

some way, or those for which the design of a stabilizing switching law is required. Numer-

ous works can be found that offer stability results based on different well-known strategies

where the most utilized are Linear Matrix Inequalities (LMIs) and Lyapunov methods

[Pettersson97, Johansson98, Wicks94]. In this chapter we will focus on state dependent

switching systems and, in particular, those whose switchings occur on the axes of its state

67
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coordinates, in other words, in the instant when the sign of the state variables changes.

The goal is to design a method for constructing a stabilizing control law for this class of

systems, and to analyze its ISS properties. The main contributions of this chapter are

• The establishment of sufficient conditions for a linear stabilizer that ensures the

stability of the switched system.

• The ISS gain based analysis of robustness against matched and unmatched pertur-

bations.

5.1 Stability of an n-dimensional system with n signs

A stability proof for a class of n-dimensional systems, whose dynamics consist of

the sum of a purely linear part and the signs of the state variables, will be developed in

this section. This kind of systems can be written in the following form

ẋ = A0x+A1
~sign(x), (5.1)

where x ∈ Rn is the state vector, ~sign(x) ∈ Rn is a column defined as ~sign
T

(x) :=[
sign(x1) . . . sign(xn)

]
and A0, A1 ∈ Rn×n are real constant matrices. The stability

check will be performed by establishing a sufficient LMI condition to construct a Lyapunov

function for (5.1). To this end, the matrices P ∈ Rn×n, G ∈ Rn×n, R ∈ Rn×n, r ∈ Rn×n

and M ∈ Rn×n, and a constant µ must be defined in the following manner:

P :=


p11 p12 . . . p1n

p12 p22 . . . p2n

...
. . .

. . .
...

p1n p2n . . . pnn

 , G :=


g1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 gn

 (5.2)

R := 2AT1 P +GA0, Rd := diag(R), M := Rd + |R~−Rd|,
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for some real constants gi, pij , i, j = 1, . . . , n. The following theorem establishes the

LMI conditions that the above defined parameters should satisfy in order to construct a

Lyapunov function for (5.1).

Theorem 5 Let the origin be the only equilibrium of (5.1), and the following pair of LMIs

be satisfied

AT0 P + PA0 = −Q, M~1(n×1)
~≤0,

for

P = P T > 0, Q = QT > 0, G ≥ 0, GA1 = 0.

Then, a function V : Rn → R defined as

V (x) := xTPx+

n∑
i=1

gi|xi| (5.3)

is a Lyapunov function for system (5.1), with a derivative estimate

V̇ ≤ −xTQx.

Proof Since the matrix P is positive definite and G is positive semidefinite, then V is also

positive definite and radially unbounded. The function V is locally Lipschitz continuous.

Then, by Rademacher’s theorem, it is differentiable almost everywhere in Rn, and the

derivative of V along the trajectories of (5.1) is

V̇ = xT (AT0 P + PA0)x+ ~sign
T

(x)(AT1 P +
1

2
GA0)x+ xT (PA1 +

1

2
AT0 G) ~sign(x)

= xT (AT0 P + PA0)x+ ~sign(x)TRx. (5.4)

The Lyapunov equation AT0 P+PA0 = −Q can be solved for P = P T > 0, with Q = QT > 0

if and only if A0 is a stable matrix. From the second part of (5.4) we have that

~sign(x)TRx =
n∑
i=1

[
xi

n∑
k=1

(sign(xk)Rk,i)

]

≤
n∑
i=1

Ri,i +
n∑

k 6=i, k=1

|Rk,i|

 |xi|

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and with M as defined above, we get

R(i,i) +
n∑
k 6=i
|R(k,i)| ≤ 0, ∀ 1 ≤ i ≤ n ⇔ MT ~1(n×1)

~≤0.

Thus,

V̇ ≤ −xTQx,

and if the conditions of Theorem 5 are satisfied, the function V is positive definite for all

x, and its derivative along the trajectories of (5.1) is negative definite.

Remark 5 In the case of a given switched system with dynamics

ẋ = Ā0sx+A1s
~sign(x) +Bu

y = x,

a linear control u = Kx can be designed such that the stability of the closed loop can be

checked with the conditions of Theorem 5, for A0s = (Ā0s + BK) and A1s. In this case,

the considered class of switching occurs in the axes of the n-dimensional space. Further in

this text it will also be considered the case when the switching surfaces are linear, but do

not lay exactly in the axes of the space.

5.2 Perturbation Analysis and Input to State Stability

In this section we will prove that if system (5.1) satisfies the conditions of The-

orem 5, it also admits the ISS property, which makes it robust to exogenous matched or

unmatched bounded perturbations. It is important to note that while the boundedness

of the external inputs is a fundamental condition for establishing the ISS property, the

knowledge of its supremmun norm is not necessary for the design. Consider system (5.1)

with an unknown input function ω : R≥0 → Rn:

ẋ = A0x+A1
~sign(x) + ω. (5.5)
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Theorem 6 If ω is essentially bounded, i.e. ω ∈ L∞, and the conditions of Theorem 5

are satisfied, then (5.5) is ISS with an asymptotic gain γ : R≥0 → R≥0 given by

γ(r) = α−1
1 ◦ α2 ◦ α−1

3 ◦ α4(r),

where

α1(r) :=λmin(P ) r2

α2(r) :=
(
λmax(P ) r +

√
nmax{gi}

)
r

α3(r) := (λmin(Q)− ε1λmax(P )) r

α4(r) :=

(
λmax(P )

ε1
r +
√
nmax{gi}

)
r.

Proof The derivative of (5.3) over the trajectories of (5.5) is

V̇ = −xTQx+ ~sign
T

(x)Rx+ 2xTPω + ~sign
T

(x)Gω.

For the above expression the following inequalities hold:

~sign
T

(x)Rx ≤0,

−xTQx ≤− λmin(Q)‖x‖2,

2xTPω ≤λmax(P )

(
ε1‖x‖2 +

‖ω‖2
ε1

)
∀ ε1 > 0,

~sign
T

(x)Gω ≤√nmax{gi}‖ω‖, i = 1, . . . , n.

From definition 5, V is an ISS-Lyapunov function for (5.5) with χ(r) = α−1
3 ◦ α4(r), since

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (5.6)

V̇ ≤ −α3(‖x‖) + α4(‖ω‖) (5.7)

with α1, α2, α3, α4 ∈ K∞, as defined in the theorem. Then, following the arguments of

[Sontag89], the system is ISS and the asymptotic gain function is γ(r).
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5.2.1 Example

Consider two interconnected mechanical systems whose positions are given by

variables x1 and x2 respectively, and suppose that the velocity of each of them can be

controlled. The state space representation of this system can be written asẋ1

ẋ2

 =

a11 a12

a21 a22

x1

x2

+

w1

w2

+

u1

u2

 (5.8)

y =

1 0

0 1

x1

x2

 .
System (5.8) is linear, and the switches will be added as control signals. Two perturbations

are considered, w1 ∈ R and w2 ∈ R, one on each of the systems. These perturbations are

assumed to be bounded, but the value of their suppremum norms is considered unknown.

Suppose that the parameters of (5.8) are a11 = −1, a12 = 0.5, a21 = 0.5 and a22 = −1. If

the control signals are chosen as

u1 = −2 sign(x1)− sign(x2) and u2 = − sign(x1)− 2 sign(x2), (5.9)

then (5.8) can be written in the form (5.1) with

A0 =

−1 0.5

0.5 −1

 , and A1 =

−2 −1

−1 −2


Matrix A0 is Hurwitz, so the Lyapunov equation can be satisfied for a positive definite

matrix P ∈ R(2×2), with Q = I2. Choosing g1 = g2 = 0, yields the product M
[
1 1

]>
=[

−0.67 −0.67
]>
, whose every element is clearly negative. The conditions of Theorem 5

are satisfied. The left-hand side of Figure 5.1 shows the simulation results of the closed

loop of (5.8) with (5.9), for the unperturbed case (upper-left), and when the perturbations

are chosen as w1 = 1 + 0.5 sin(t) and w2 = 1.5 + 1.5 cos(t) (lower-left). Note that the value

of these perturbations is not taken into account for the design. For comparison purposes,
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the right-hand side of Figure 5.1 shows the simulations results of the same system (5.8)

with and without perturbations, in closed loop with a linear feedback

u1

u2

 =

−2x1 − x2

−x1 − 2x2

 . (5.10)

The theoretical results are validated through the simulations, which show that the trajec-
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Figure 5.1: Simulations results of system (5.8) with control (5.9), and with control (5.10).

tories of the system converge to the origin for the unperturbed case, and to a vicinity of

the origin when the perturbations are present. Moreover, from the zooms it is noticeable

that they do this in finite-time, as opposed to the asymptotic convergence that the lin-

ear feedback achieves. Also, form the graph at the bottom-left it is noticeable that when

the perturbation is small, which is the case of the equation ẋ1, it is rejected by the sign

controller.
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5.3 Stabilization of chain of integrators by n-sign feedback

by the design of the switching surfaces

One of the simplest representations of a linear system’s dynamics is through a

chain of integrators with a control input u in the last equation, that is, a system in the

form

ẋ1 = x2, ẋ2 = x3 , . . . , ẋn = u. (5.11)

When the control input is defined as

u = −k1 sign(x1)− · · · − kn sign(xn),

the closed loop switches on the axis of each of the coordinates, which matches the descrip-

tion of the class of systems considered in the previous sections. As was mentioned in the

introduction, the global convergence of the solutions to the origin has only been proven

for orders n = 1 (conventional sliding mode controller [Utkin99]) and n = 2 (Twisting

controller [Levant93]) for which the convergence and robustness properties are well known.

However, in [Sánchez13] it has been proven that for n = 3, when none of the gains can

majorate the sum of the other two, and with certain initial conditions, the trajectories

converge to an equilibrium different from the origin and remain there for all future time.

This last result prevented the investigations for orders of the system higher than 2. In this

section we will consider the chain of integrators of n order, with fixed gains, when none of

them can majorate the sum of the others. For this case we will define a set of n switching

surfaces, as linear functions fi : Rn → R, i = 1, . . . n, of x. We will also show that when

the control input u is defined as

u = −k1 sign(f1(x))− · · · − kn sign(fn(x)),

the closed loop is equivalent to special case of system (5.1) (when A0 = Aintn , and A1 = ~0n−1×n

−k1 · · · − kn

 with fixed ki) and thus, the results of the previous sections can be used to
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prove the stability. Moreover, it will be shown that for the closed loop there exists a unique

equilibrium point, and it is located at the origin. This is achieved through a simple linear

coordinate transformation. To this end, we will start with a chain of integrators (5.11),

define the linear transformation that shows the equivalency to (5.1), and then develop the

structure of the surfaces and the controller and prove its convergence.

5.3.1 State transformation to a new set of coordinates

Define the coordinate transformation z := Tx for (5.11), with invertible T given

by

T =



1 0 . . . . . . . . . . . . 0

a1 1
. . .

...

a1a2 a1 + a2
. . .

. . .
...

a1a2a3 a1a2 + a2a3 + a1a3 S1,3
. . .

. . .
...

... S3,4 S2,4
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

. . . 0

Πn−1
i=1 ai Sn−2,n−1 . . . S3,n−1 S2,n−1 S1,n−1 1


, (5.12)

for some real constant scalars ai (i = 1 . . . n− 1), and with

S1,3 :=

3∑
i=1

ai = a1 + a2 + a3, S1,n−1 :=

n−1∑
i=1

ai,

S2,4 :=

j,k=1,...,4∑
j 6=k

ajak = a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4,

S2,n−1 :=

j,k=1,...,n−1∑
j 6=k

ajak,

S3,4 =

j,k,l=1,...,4∑
j 6=k 6=l

ajakal = a1a2a3 + a2a3a4 + a3a4a1 + a4a1a2,

S3,n−1 =

j,k,l=1,...,n−1∑
j 6=k 6=l

ajakal.
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Note that element Sn−2,n−1, following the established sequence, would be the sum of the

multiplication of n − 2 elements (ajakal . . . ), for j, k, l, · · · = 1, . . . , n − 1. For example,

for n = 7: Sn−2,n−1 = S5,6 = a1a2a3a4a5 + a2a3a4a5a6 + a3a4a5a6a1 + a4a5a6a1a2 +

a5a6a1a2a3 + a6a1a2a3a4. In the coordinates z the system has the form

ż1 = −a1z1 + z2

ż2 = −a2z2 + z3

...

żn−1 = −an−1zn−1 + zn

żn = C̄T z + u,

where C̄ :=
(
(TAintn T−1)T

)[n]
=
[
c1 . . . cn

]T
. If for the above system the control law is

selected as

u = −k1 sign(z1)− · · · − kn sign(zn), (5.13)

and defining vectors B, C ∈ Rn as

B =


0
...

0

1

 , C =


c1

...

cn−1

cn + an

 , (5.14)

it can be written in the form

ż = A0z +A1
~sign(z) +BCT z, (5.15)

where

A0 =



−a1 1 0 . . . 0

0 −a2 1
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 . . . . . . 0 −an


, A1 =

~0(n−1×n)

−K

 , (5.16)
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where K =
[
k1 . . . kn

]
. If C = 0 in (5.15), then the transformed system corresponds to

a special form of (5.1), and the term BCT z can be interpreted as a Lipschitz perturbation.

Remark 6 Note that each variable zi, ∀i = 1, . . . , n, is equivalent to a linear combination

of the states x of (5.11), given by zi = T̄ Ti x, where T̄i = (T T )[i], so the controller (5.13) is

equivalent to the form u = −k1 sign(f1(x))− · · · − kn sign(fn(x)) mentioned earlier, with

f1(x) = x1

f2(x) = a1x1 + x2

f3(x) = a1a2x1 + (a1 + a2)x2 + x3

...

where each of the fi represents one of the n surface on which the closed loop will switch.

Remark 7 In the case of a given switched system with dynamics

ẋ = Ã0sx+ Ã1s
~sign(Tsx) + B̃u

y = x,

where Tsx (Ts ∈ Rn×n nonsingular) determines the form of n linear switching surfaces,

defining the coordinates z = Tsx and carrying out a transformation as above, one gets the

equivalent system

ż = Ā0z +A1
~sign(z) +Bzu. (5.17)

Then, a linear control u = Kz can be designed for (5.17) such that the stability of the

closed loop can be checked with the conditions of Theorem 5 for A0 = (Āz0 +BzK) and A1.

5.3.2 Convergence to the origin of an n-signs controller

In the previous section a new set of switching surfaces z was defined, as well as

an n-sign controller for the chain of integrators (5.11), that switches on these surfaces. In
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the following theorem some conditions to guarantee the convergence to the origin of the

closed-loop system are established.

Theorem 7 If for the chain of integrators (5.11) a control law is selected as (5.13), then

every solution of the closed loop starting in the set

Ω = {z ∈ Rn : ‖z‖ < κ} ,

where

κ :=
1

2λmax(P )

[√
ng2

max + 4λmax(P )λmin(P )
µ2

α2
−√ngmax

]
,

α := λmin(Q)− 2λmax(P ) ~max{C},

gmax := max
1≤i≤n

{gi},

µ := ~max{M~1(n×1)}

and the matrices P , and Q, G = diag(g) come from Theorem 5 for the nominal system

(5.1), will asymptotically converge to the origin provided that the constants ai and ki are

strictly positive for all i = 1, . . . , n, and they satisfy

µ < 0,
n−2∑
i=1

ki < kn.

Remark 8 Note that the gains kn−1 does not appear in the condition for the gains, so the

case when none of the values of ki dominates the sum of the others is within the conditions

of the theorem.

Corollary 2 If, additionally,

~max{C} ≤ λmin(Q)

2λmax(P )
,

then every solution of the closed-loop system will asymptotically converge to the origin.
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Proof The term BCT z in (5.15) can be considered as a perturbation to the nominal one

(5.1). Therefore, first, the stability of the system for the case C = 0 will be shown and,

second, the set of invariance for C 6= 0 will be evaluated. For the first part of the proof we

will check the existence of a unique equilibrium at the origin, for the nominal system. To

this end the matrix A0 can be divided as A0 =

Au0 ∈ Rn−1×n

Al0 ∈ R1×n

, where the last line has

been separated because the signs appear for żn only. The structure of Au0 allows to express

its nth column A
u[n]
0 ∈ Rn−1 as

A
u[n]
0 =

n−1∑
i=1

αiA
u[i]
0 , ∀ αi 6= 0.

Now, let us define some variables q as qT =
[
q1 . . . qn

]
and look for the values of qi,

i = 1, . . . , n which annihilate Au0 (which would represent the coordinates of the equilibrium

point) that is

Au0b = 0

=
n∑
i=1

qiA
u[i]
0

=

n−1∑
i=1

qiA
u[i]
0 + qn

n−1∑
i=1

αiA
u[i]
0

=

n−1∑
i=1

(qi + qnαi)A
u[i]
0 .

For the above to hold, either

qn = 0 ⇒ qi = 0, ∀ i = 1, . . . , n− 1 (5.18)

or

qn 6= 0 ⇒ qi = −qnαi 6= 0, ∀ i = 1, . . . , n− 1. (5.19)

In the case of (5.18), the equilibrium point is at the origin. For the case of (5.19), since

the equality should hold for all αi 6= 0, then qn and all of the qi are different from zero. It
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follows necessarily that the arguments of all the signs in żn would be different from zero and

then it must hold that żn 6= 0. In this case the system has not reached an equilibrium, and

therefore, it has been proven that the only equilibrium point is at the origin. Now we will

check the boundedness, the region of attraction and the stability of the nominal system’s

solutions. To this end, consider the Lyapunov function (5.3) satisfying AT0 P +PA0 < −Q,

P = P T > 0, Q = QT > 0, and GA1 = 0 (see Theorem 5 for the details). From the

following expression,

λmin(P )‖z‖2 ≤ V (z) ≤ λmax(P )‖z‖2 + gmax‖z‖1,

we can see that since P is positive definite, V (z) > 0 ∀ x 6= 0, and that the function is

radially unbounded, i.e. V (z)→∞ as ‖z‖ → ∞. Using inequality (1.3), the derivative of

(5.3) along the nominal part of (5.15) can be expressed as

V̇ = −zTQz + ~sign
T

(z)Rz

≤ −λmin(Q)‖z‖2 + µ‖z‖1,

where µ has been defined in Theorem 7. Since µ < 0, which is equivalent to establishing

a strict inequality for the condition on M in Theorem 5, the derivative of the Lyapunov

function can be expressed as

V̇ ≤ −λmin(Q)‖z‖2 − |µ|‖z‖1

≤ −λmin(Q)‖z‖2 − |µ|‖z‖.

It is evident that in this case V̇ < 0 for all z 6= 0. From section 5.1 we have that M =

Rd + | ~R−Rd|, so µ is equal to the maximum of all the column sums of M . Since A0 is a

Metzler matrix, then the first condition of Theorem 5 can be solved for a diagonal P , then
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M , for ki > 0 has the form

M =



−a1g1 g1 0 . . . −2k1Pn,n

0 −a2g2 g2
. . .

...
...

. . .
. . .

. . . −2kn−2Pn,n
...

. . . −an−1gn−1 gn−1 − 2kn−1Pn,n

0 . . . . . . 0 −2knPn,n


.

The last element of the product MT~1(n×1) is

|gn−1 − 2kn−1Pn,n|+ 2Pn,n

n−2∑
i=1

ki − 2knPn,n.

Choosing gn−1 = 2kn−1Pn,n, µ can be made negative by satisfying

n−2∑
i=1

ki < kn

and

0 < gn−2 < an−1gn−1, 0 < gn−3 < an−2gn−2, . . . ,

0 < g1 < a2g2

for any choice of ai > 0. This also satisfies the LMI restriction G ≥ 0 of Theorem 5. The

last restriction, GA1 = 0 is achieved by simply choosing gn = 0. Thus, the nominal system

(5.1) with C = 0 has the only equilibrium at the origin, and if the LMIs of Theorem 5 are

satisfied, then the system is globally asymptotically stable. For the perturbed case, when

C 6= 0, assuming that µ < 0 the derivative of (5.3) along (5.15) is

V̇ (z) = −zTQz + zT
(
CBTP + PBCT

)
z

+ ~sign
T

(z)Rz + ~sign
T

(z)GBCT z

≤ −λmin(Q)‖z‖2 + 2λmax(P ) ~max{C}‖z‖2

−|µ|‖z‖1

≤ α‖z‖2 − |µ|‖z‖.
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Note that in the above expression, the term GBCT = 0, since by construction GA1 = 0

and BCT has the same structure as A1. First, consider the case when α > 0, and define

the set

Ω1 :=
{
z ∈ Rn : V̇ ≤ 0

}
=

{
z ∈ Rn : ‖z‖ ≤ |µ|

α

}
,

and V̇ < 0 in the interior of the set Ω1 for all z 6= 0. To find an invariant set inside Ω1,

recall the definition of V from which we have that

λmin(P )‖z‖2 ≤ V (z) ≤ λmax(P )‖z‖2 +
√
n gmax‖z‖,

and note that in order to have z ∈ Ω1 the following inequality has to be satisfied:

V (z) ≤ λmin(P )
µ2

α2
,

which is true if

λmax(P )‖z‖2 +
√
n gmax‖z‖ ≤ λmin(P )

µ2

α2
.

Solving the last inequality with respect to ‖z‖ we obtain

‖z‖ ≤ κ,

then Ω = {z ∈ Rn : ‖z‖ < κ} ⊂ Ω1 and every solution starting in Ω will remain inside in

Ω for all t ≥ 0, in addition

V̇ < 0 ∀z ∈ Ω \ {0},

therefore, all trajectories will converge to the origin for the initial conditions in Ω. Theorem

7 is proven. For the case when α ≤ 0, it is easy to see that V̇ (z) ≤ 0 for all z, and V̇ (z) = 0

only at the origin, so in this case the perturbed system is globally stable. For this, the

following inequality has to be satisfied

~max{C} ≤ λmin(Q)

2λmax(P )
,

which proves Corollary 2.
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5.3.3 Convergence to the origin of an n-sign controller with an added

linear term

The relevance of studying controllers that depend only on a sum of sign functions

has been mentioned earlier in this work but, in specific applications, it could also be the

case that the measurements of the states are reliable enough to use for control. Thus, the

design of a controller that contains a linear feedback is also interesting (mainly due to its

robustness with respect to unmatched disturbances). This section will explore this case,

and consider a control law that includes the signs of the functions defined in the previous

section, and also a linear combination of the states z (and, hence, of x). Such controller is

defined in the following theorem, which also establishes the conditions for its design that

guarantee the convergence of all solutions of (5.11) to the origin.

Theorem 8 If for the chain of integrators (5.11) a control law is selected as

u = −K ~sign(z)− Cz − anzn,

then every solution of the closed-loop system will converge to the origin asymptotically

provided that the constants ai and ki, for all i = 1, . . . , n are chosen strictly positive, and

the latter satisfy

µ < 0,

n−2∑
i=1

ki < kn.

Proof System (5.11) in closed loop with a controller u = −K ~sign(z) − C̄z − anzn takes

the form of (5.1) with

A0 =



−a1 1 0 . . . 0

0 −a2 1
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 . . . . . . 0 −an


, A1 =

~0(n−1×n)

−K

 ,
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which is the same as system (5.15) with C = 0. Next, the proof follows the arguments

demonstrated in the proof of Theorem 7.

5.3.4 Example

Consider a perturbed chain of four integrators

ẋ1 = x2, ẋ2 = x3, ẋ3 = x4 + w1 ẋ4 = u+ w2,

with control

u =
[
−2 −2 −2 −5

]
~sign(f) +

[
c1 c2 c3 c4

]
x (5.20)

Choosing parameters a1 = a2 = a3 = a4 = 1, the matrix T of (5.12) yields the form

T =


1 0 0 0

1 1 0 0

1 2 1 0

1 3 3 1

 .

Then, the switching surfaces are
f1

f2

f3

f4

 =


x1

x1 + x2

x1 + 2x2 + x3

x1 + 3x2 + 3x3 − x4

 .

The set of linear gains are chosen according to Theorem 8 as[
c1 c2 c3 c4

]
=
[
0 −1 −3 −3

]
In Fig. 5.2 the simulation results are shown, when the external input w1 is equal to zero

and w2 = 0.5 + sin(t), with a sampling step of 0.0001s and initial conditions

x1(0) = 20, x2(0) = −30, x3(0) = 25, x4(0) = −35. (5.21)
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For this case we have a fourth order chain of integrators subjected to a matched pertur-

bation, which is a standard consideration in the sliding-mode literature. From the zooms

made to the simulation results, it is again noticeable that the convergence to zero is in a

finite time. Now, for the same initial conditions (5.21), the simulation results are presented
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Figure 5.2: State trajectories of the perturbed quadruple integrator with the control (5.20)
and the initial conditions (5.21), when the external input w1 = 0 and w2 = 0.5 + sin(t)

in Fig. 5.3, when the disturbance w1 was chosen as a white noise signal and w2 = 0. In

this case it is worth to highlight that despite the system has an unknown and unmatched

external perturbation, which in this case is white noise, the state trajectories still converge

to a vicinity of the origin, as expected from the ISS property of the closed loop, described

in section 5.2. Even more, from the results developed in that section, it is easy to calculate

an upper bound of the norm of the state as

‖z(t)‖ ≤√
35.8685‖w‖4 + 640.9432‖w‖3 + 3264.2‖w‖2 + 3581.7‖w‖,
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Figure 5.3: State trajectories of the perturbed quadruple integrator with the control (5.20)
and the initial conditions (5.21), when the external input w1 is white noise and w2 = 0



Chapter 6

Conclusions

6.1 Concluding Remarks

In this work a solution for the output-feedback problem, with matched and un-

matched disturbances and unstable zero dynamics is presented. The approach overcomes

the relative degree one condition imposed on the output in the majority of the works

available in the literature. The methodology includes

• a generalized way of transforming a linear uncertain system with only part of the

state available in the output, regardless of its relative degree, into a special regular

form.

• a procedure for obtaining a reduced order system that maintains controllability and

observability properties

• the definition of a reduced order (virtual) controller, that depends on the dynamics

of an observer that is also designed.

• the proposal of a sliding variable such that, when it reaches zero, the zero dynamics

become stable and it is guaranteed that this controller acts as desired on the zero

dynamics.

87
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On the other hand, the ISS properties of two sliding-mode controllers was studied: firstly,

it was shown that the properties of a conventional sliding-mode controller can be combined

with those of a linear term, in order to achieve enhanced global robustness of the closed loop

against matched and unmatched perturbations. Moreover, it was shown that the closed

loop shows an ISS behavior with respect to the matched and unmatched disturbances. Af-

terwards, a continuous Lyapunov function that recently appeared in the literature was used

to prove the ISS property of the ST. For both cases sufficient conditions for the gains of

the controllers were derived using standard ISS tools such as ISS-Lyapunov functions and

the classical small gain theorem. With this, robustness against not only matched, but also

unmatched perturbations, of which an upper bound might not be known, is guaranteed,

overcoming the classical limitation of the sliding-modes controllers about the matchedness

of the perturbations, as well as the necessity of knowing the value for an upper bound for

them.

Another problem is considered in the last chapter of this document, this is the

stabilization problem of switched systems in which switchings occur on the axes of its state

coordinates. A stabilizing linear feedback, or a combination of the linear feedback and

a switching law were designed such that the stability of the closed loop can be checked

through the established linear matrix inequalities. Moreover, the ISS property of such

a class of systems has been quantified, guaranteeing robustness against matched and un

matched perturbations. As an auxiliary result, the stabilization problem of a chain of n

integrators with an n sign controller was considered, when the gains of the controller are

fixed, and none of them can dominate the sum of the others. For this case the switching

surfaces are designed such that the trajectories of the closed loop converge to an unique

equilibrium point at the origin, as opposed to what was shown in before for the orders

three and greater. In order to illustrate the results, two examples have been provided: a

triple integrator and a fourth order integrator, both controlled by as many signs as the
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order of the system, with fixed gains. The results of the simulations are consistent with

the theoreticall ones. Even though the proofs guarantee only asymptotic convergence to

the origin, the simulations show evidence that the convergence is actually achieved in a

finite time. Moreover, the ISS gain function of the system with respect to external inputs

has been explicitly calculated.

This work is the result of original research, and the results have undergone peer

reviews and then published in several prestigious conference proceedings and in a well-

known indexed journal. The methodology presented is a novel approach to the OFSM

problem, and thus it represents a significant contribution to the control theory.

6.2 List of Publications

During the development of this work the following publications were produced:

Accepted conference publications

• Dynamic surface for output feedback sliding modes, the case of relative degree two,

A. Aparicio Mart́ınez, F. Castaños and L. Fridman,

52nd IEEE Conference on Decision and Control, Firenze, 2013,

pp. 3578-3583.

doi: 10.1109/CDC.2013.6760433

Abstract: A general transformation that takes linear systems into their regular form,

for any relative degree is introduced. A sliding surface where unmatched unknown

inputs are attenuated via a reduced order H∞ control is designed, for the case of rel-

ative degree two. By a discontinuous control action, the surface is reached exactly in

finite time, guaranteeing the minimization of the unmatched disturbance. Complete

state measurements are not necessary.
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• ISS-Lyapunov functions for output feedback sliding modes,

A. Aparicio Mart́ınez, F. Castaños and L. Fridman,

53rd IEEE Conference on Decision and Control, Los Angeles, CA, 2014,

pp. 5536-5541.

doi: 10.1109/CDC.2014.7040255

Abstract: In this paper we address the problem of establishing conditions for global

asymptotic stability in output feedback sliding-mode control. The proposed method-

ology introduces a linear term in a first-order sliding-mode controller. This allows

to characterize the closed loop with the input-to-state stability property. Also, a

Lyapunov-based methodology to find the correct gains for this controller is presented.

• ISS properties of sliding-mode controllers for systems with matched and unmatched

disturbances,

A. A. Mart́ınez, F. Castaños and L. Fridman,

2015 European Control Conference (ECC), Linz, 2015,

pp. 2865-2870.

doi: 10.1109/ECC.2015.7330972

Abstract: In this paper we present a controller that achieves global input-to-state

stability for a linear system of arbitrary relative degree, subjected to matched and

unmatched disturbances. This controller combines the properties of a discontinuous

term, and a linear one, enforcing a conventional sliding mode using only partial state

information. A direct and simple way of choosing the gains for this controller is also

provided.

• ISS-Lyapunov functions for output feedback sliding modes,

A. Aparicio, D. Efimov and L. Fridman,

2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA,

2016,

pp. 7306-7311.
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doi: 10.1109/CDC.2016.7799397

Abstract: In this paper we revisit the problem of stabilizing a triple integrator using

a control that depends on the signs of the state variables. For a more general class

of linear systems it is shown that the stabilization by sign feedback is possible, de-

pending on some properties of the system’s matrix. The conditions for the stability

are established by means of linear matrix inequalities. For the triple integrator, the

domain of stability is evaluated. Also, the control law is augmented by a linear feed-

back and the stability properties for this case, checked. The results are illustrated by

numerical experiments for a chain of integrators of third order.

Published journal publications

• Output feedback sliding-mode control with unmatched disturbances, an ISS approach.

Aparicio, A., Castaños, F., and Fridman, L.

2016

Int. J. Robust. Nonlinear Control, 26: 4056–4071.

doi: 10.1002/rnc.3548.

Abstract: The robustness properties of a first-order sliding-mode controller are com-

bined with those of an added linear term in order to obtain a closed loop that shows

input-to-state stability with respect to matched and unmatched disturbances, of

which an upper bound might not be known, using only output information. The

output under consideration can have any relative degree. Also, a transformation

of the state into a novel output normal form is presented. The zero dynamics are

considered unstable and perturbed, so a methodology for defining an observer and a

virtual control for it is presented.

Submitted journal publications

• Stabilization of switched systems by linear feedbacks and its ISS properties

Andrea Aparicio, Leonid Fridman, Denis Efimov
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IET Control Theory & Applications

Abstract: The stabilization problem for switched systems in which switchings occur

on the axes of its state coordinates is considered. It is shown that a linear feedback,

or a combination of linear feedback and a switching law, can be design such that the

closed-loop is stable. The conditions of stability are expressed in the form of linear

matrix inequalities. The input-to-state stability property of the closed-loop system

is established, allowing to guarantee robustness against matched and unmatched

perturbations. The results are illustrated by numerical simulations.

Status: Under review

Manuscripts in preparation

• Continuous Output-Feedback Sliding-Mode Control with Unmatched Perturbations:

an ISS approach

Aparicio, A., Castaños, F., and Fridman, L.
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