

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Maestría y Doctorado en Ciencias Bioquímicas

Análisis termodinámico, fibrilogénico, y estructural de cadenas ligeras tipo λ VI implicadas en la amiloidosis AL

TESIS

QUE PARA OPTAR POR EL GRADO DE:

Doctor en Ciencias

PRESENTA: M. en C. Oscar Daniel Luna Martínez

TUTOR PRINCIPAL Dr. Baltazar Becerril Luján Instituto de Biotecnología, UNAM

MIEMBROS DEL COMITÉ TUTOR Dr. Joel Osuna Quintero Instituto de Biotecnología, UNAM Dra. Elba Villegas Villarreal Centro de Investigación en Biotecnología, UAEM

Cuernavaca. marzo, 2017

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

ÍNDICE

	Página
Índice de Figuras	III
Índice de Tablas	IV
Lista de Abreviaturas	IV
Agradecimientos	\mathbf{V}
Abstract	1
Resumen	2
Introducción	
Enfermedades derivadas del plegamiento anómalo de las proteínas	3
Amiloidosis	3
Asociación preferencial de la región variable de las cadenas ligeras λ VI en la amiloidosis AL	4
Antecedentes Directos del Proyecto	8
Análisis de redes como método de análisis	9
Hipótesis y Objetivos	11
Materiales y Métodos	
Estadística	12
Estructuras cristalográficas para la validación	12
Análisis de redes	12
Grado	13
Eigenvectores	13
Entropía de redes	14
Dinámica molecular	15
Entropía dinámica de la dinámica molecular	16
Mutantes de 6aJL2 y de AR	17
Desnaturalización térmica	17
Dicroísmo circular	18
Cristalización y recolección de datos	18
Determinación estructural y refinamiento	19

Página

Resultados

Parte I. Diferencias y similitudes estructurales de las cadenas ligeras λVI	
Determinación y comparación de las estructuras cristalográficas de AR y de 6a-R25G contra la estructura de 6aJL2	20
Aplicación de análisis de redes sobre 6aJL2 para identificar los residuos clave involucr en la estabilización de este dominio	ados 24
Propuesta y validación de una metodología para la jerarquización de residuos emplean proteínas evaluadas termodinámicamente con diferente estructura terciaria	ıdo 26
Evaluación de las estructuras de AR y de 6aJL2 con la metodología propuesta	37
Parte II Análisis termodinámico y estructural de AR	
Selección y análisis de tres residuos importantes en AR	42
Conservación de la estructura secundaria de las mutantes de AR	43
Estabilidad termodinámica de las mutantes de AR	44
Cinéticas de fibrilogénesis y visualización de las fibras por microscopía electrónica	47
Cambios detectables en el extremo N-terminal generados por la ausencia de Arg25	48
Generación de estructuras cuaternarias a partir de las estructuras cristalográficas	49
Discusión	
Amiloidosis AL λ VI	52
AR, la contraparte de 6aJL2	53
Convergencia de las estructuras octaméricas	55
Otros aspectos de las proteínas amiloidogénicas	56
Bibliografía	58
Anexo A. Jerarquización de los residuos de 6aJL2	68
Anexo B. Jerarquización de los residuos de AR	70
Anexo C. Artículos generados	72

Anexo C. Artículos generados

ÍNDICE DE FIGURAS

	Página
Figura 1. Proceso de maduración de una célula plasmática	6
Figura 2. Inmunoglobulina	6
Figura 3. Líneas germinales λ	7
Figura 4. Fibrilogénesis in vitro de rVL 6aJL2, JTO, WIL y R25G	8
Figura 5. Alineamiento de secuencias de cadenas ligeras $\lambda 6$	10
Figura 6. Matriz Hermitiana	13
Figura 7. Matriz estocástica	14
Figura 8. Traslape de estructuras	21
Figura 9. Convergencia entre las metodologías Grado, Eigenvectores, y Entropía de Re	edes 25
Figura 10. Contraste entre el parámetro Grado y valores experimentales	27
Figura 11. RMSD de la cadena principal	28
Figura 12. Visualización de los valores SDRI el extremo N-terminal intrínsecamente	
desestructurado de la región de interacción de la Janus Kinase.	30
Figura 13. Contraste entre los SDRIs y su posición en la secuencia	31
Figura 14. Gradiente de color	32
Figura 15. Contraste de los SDRIs contra sus correspondientes valores experimentales	34
Figura 16. Comparación de los SDRIs con las cinéticas de desnaturalización y renatura	lización
del inhibidor de quimiotripsina	35
Figura 17. Análisis del desorden intrínseco y la flexibilidad estructural	36
Figura 18. Comparación de SDRIs de 6aJL2 y AR	37
Figura 19. Cambios jerárquicos en AR	40
Figura 20. Cavidades	40
Figura 21. Efectos de la temperatura sobre la fluorescencia intrínseca	43
Figura 22. Espectros en UV lejano en estado nativo, desnaturalizado, y renaturalizado	44
Figura 23. Experimentos de desnaturalización	45
Figura 24. Fibrillogenesis in vitro	47
Figura 25. Microscopía de fibras amiloides	48
Figura 26. Extremos N-terminal	49
Figura 27. Dímeros de Bence-Jones	50
Figura 28. Octámeros	51

ÍNDICE DE TABLAS

Página

Tabla 1. Colección de datos y estadística del refinamiento estructural	20
Tabla 2. Interacciones intramoleculares	23
Tabla 3. Residuos de 6aJL2 mejor y peor calificados	25
Tabla 4. Estadística de la distribución valores teóricos – SDRIs	30
Tabla 5. Estadística de SDRIs contra datos experimentales	32
Tabla 6. Jerarquía de residuos de 6aJL2 y AR	38
Tabla 7. Comparación de Jerarquías	39
Tabla 8. Estabilidad termodinámica	46

ABREVIATURAS

ADN	Ácido Desoxirribonucléico
C _m	Concentración media de desnaturalizante
GndHCl	Cloruro de Guanidinio
ΔG^{o}	Energía libre de Gibbs
ΔH^{o}	Entalpía
ΔCp	Capacidad calórica
kcal	Kilocalorías
mM	Milimolar
μl	Microlitros
μm	Micrómetros
ns	Nanosegundos
NMR	Resonancia Magnética Nuclear
NPT	Ensamble isotérmico-isobárico.
PBS	Buffer de fosfatos
PDB	Protein DataBase
RMSD	Root Mean Square Deviation
RMSF	Root Mean Square Fluctuation
RSA	Área Expuesta al Solvente del Residuo (Residue Solvent Accesibility)
SPC	Agua tipo Simple Point Charge
SDRI	Structural-Determining Residue Identifier
ThT	Tioflavín T
T _m	Temperatura media de desnaturalización
C _L	Región constante de la cadena ligera
V_L	Región variable de cadena ligera
$\mathbf{J}_{ ext{L}}$	Segmento de unión entre C_L y V_L

AGRADECIMIENTOS

AGRADECIMIENTOS ACADÉMICOS

Al IBt, y a la UNAM por la diversidad cultural e intelectual que me permitieron ampliar los horizontes. Al laboratorio donde pasé un poco más de 10 años de vida, especialmente al Dr. Possani por su apoyo y por el café matutino. A mi jefe, Dr. Becerril, por su confianza para desarrollar una metodología para entender el tema de amiloidosis. Al Programa de Apoyo a los Estudios del Posgrado (PAEP) por el apoyo a los congresos. A Gloria, Toño, y Jalil de la Unidad de Docencia por siempre facilitar la tramitología. A CONACYT, por la beca número 177224; y a DGAPA IN 217510 por la financiación del proyecto.

A quienes estuvieron presentes en los comités de candidaturas, tutorales, tutorales ampliados, y a mis sinodales por sus valiosas sugerencias. Al Dr. Joel Osuna por todos los ánimos. Al Dr. Daniel Alejandro Fernández, Dr. Miguel Costas, Dra. Gloria Saab, y al Dr. Ramón Garduño por sus aportaciones y críticas puntuales. Al laboratorio Nacional de Estructura de Macromoléculas, a la Dra. Alejandra Hernández y la Dra. Adela Rodríguez por su apoyo para generar y analizar las estructuras cristalográficas. Al Dr. Vladimir Uversky por su invaluable propuesta.

A la Unidad de Síntesis y Secuenciación del IBt- Paul Gaytán, Eugenio López, Jorge Yáñez, y a Santiago Becerra, por tener los oligos a tiempo así como los momentos de análisis y convivencia. A los miembros de la Unidad de Cómputo- Arturo Ocádiz, Juan Manuel Hurtado, Roberto Rodríguez, y David Castañeda, por todas las atenciones prestadas.

AGRADECIMIENTOS NO ACADÉMICOS

Difícil mencionar a cada una de las personas que me apoyaron, convidaron, toleraron, auspiciaron, hostigaron, y brindaron amistad. A mis coterráneos en el laboratorio que hacían el día a día algo más llevadero como Zamudio, Gina Gurrola, Fredy, Tere, Jimena, Mary, Linda, etc. Con quienes tuve la oportunidad de convivir y hacer amistad en el IBt como Magda, Montse, Anilú, Abraham, etc. A todos los académicos y no académicos del IBt, como el Dr. Rudiño, Dra. Marcela, Adrián, etc. A Carmencici, Miryam, y Rosalba por compartir muchos momentos tanto dentro como fuera de la mesa de trabajo. A Cristina Torres, porque siempre me has ayudado cuando más lo he requerido. A Efrén, por ser un excelente amigo.

A la familia de Miryam, por todo el respaldo en esta última etapa. A mi adorada familia de Chicago, por brindar su aprecio incondicional a pesar de la distancia. A mi familia nuclearmi papá (**†**), mi mamá, mi hermana Nayeli, y a mi hermano Daniel, porque nos hemos mantenido unidos en diversas circunstancias, los quiero mil.

Esta etapa me inspira una de las frases de mi escritor favorito José Saramago: "En el fondo, todos tenemos la necesidad de decir quiénes somos y qué es lo que estamos haciendo, la necesidad de dejar algo hecho, porque esta vida no es eterna y dejar cosas hechas puede ser una forma de eternidad.".

ABSTRACT

Amyloidosis AL is a systemic disease where variable domains of some immunoglobulin light chain families' orderly aggregate into amyloid fibers. The multiorgan dysfunction irremediably leads to the death of the patient diagnosed with this disease. In our group, we have developed an experimental methodology that has helped us to study the molecular bases associated with the fibrillogenesis of one of the most implicated families in this disease, the germ line $\lambda 6a$. While 6aJL2 is a stable model protein, AR is an unstable variant obtained from a patient who died few months after being diagnosed with AL amyloidosis.

In the first part of this work, a theoretical methodology was proposed and validated in order to characterize globular protein structures, regardless their tertiary or quaternary assembly, through the hierarchization of each residue sequence according to its structural relevance related to thermodynamic parameters. This methodology was subsequently applied to 6aJL2 and AR structures depicting relevant differences between hierarchies, mainly in their anti-aggregation segments.

In the second part of this work, AR was mutated back to 6aJL2 in some selected residues and stabilizing effects were obtained with mutations located within hydrophobic core. Furthermore, a previous hypothesis about the influence of the residue in position 25 has been withdrawn because it was demonstrated its null influence in the folding of AR CDR1 segment. While, monomeric comparison among mutant 6a-R25G, 6aJL2, and AR not only showed both unique and shared interactions, slight modifications in the N-terminal segment might be contributing to enhance well-ordered aggregation. Additionally, the most remarkable data obtained from crystallographic structures was obtained through the generation of *in silico* assembled quaternary structures. Both octameric ensemble of 6a-R25G, which might be revealing a common assembling process throughout oligomer development, opening new perspectives about the influence of the destabilizing mutations.

RESUMEN

La amiloidosis AL es una enfermedad sistémica en la cual los dominios variables de ciertas familias de cadenas ligeras de inmunoglobulina se agregan ordenadamente en forma de fibras amiloides. La disfuncionalidad multiorgánica conduce irremediablemente a la muerte del paciente que es diagnosticado con esta enfermedad. En nuestro grupo, hemos desarrollado un sistema experimental que nos ha permitido estudiar algunas de las bases moleculares asociadas a la fibrilogenesis de una de las familias de cadenas ligeras mayormente implicadas en esta enfermedad, la línea germinal $\lambda 6a$. Mientras que 6aJL2 es una proteína modelo estable, AR es una variante altamente inestable, la cual fue obtenida de un paciente que falleció a los pocos meses después de haberlo diagnosticado con amiloidosis AL.

En la primera parte de este trabajo se propuso y se validó una metodología que permitiera evaluar las cualidades estructurales de proteínas globulares, irrespectivamente de su estructuración terciaria o cuaternaria, mediante la jerarquización de cada residuo en términos de su aportación para mantener una estabilidad estructural. Esta metodología fue posteriormente aplicada en las estructuras de 6aJL2 y en AR mostrando diferencias relevantes entre las jerarquías, principalmente en los segmentos de anti-agregación.

En la segunda parte de este trabajo, se mutó a AR de regreso a la secuencia de 6aJL2 en ciertos residuos seleccionados. Los resultados revelaron que sólo hubo efectos estabilizantes cuando los residuos localizados en el núcleo hidrofóbico fueron regresados a los correspondientes a la línea germinal. Además, de acuerdo con los resultados obtenidos, una hipótesis previamente planteada acerca del efecto estabilizador de un residuo de Arginina en la posición 25 fue rechazada ya que se demostró una nula influencia en la estabilización de la variante correspondiente a AR. La comparación entre monómeros de 6aJL2, su mutante 6a-R25G, y AR mostraron interacciones únicas y compartidas así como ligeras modificaciones en la estructuración de sus segmentos N-terminal que podrían contribuir con la aceleración de la agregación ordenada. A partir de los datos cristalográficos se generaron *in silico* estructuras octaméricas de 6aJL2 y de AR los cuales formaron ensambles coincidentes con en el octámero cristalográfico de 6a-R25G. Estos resultados pudieran sugerir un mecanismo de ensamble común durante la formación de oligómeros en el proceso de la formación de fibras, abriendo nuevas perspectivas sobre la influencia de las mutaciones desestabilizantes.

INTRODUCCIÓN

Enfermedades derivadas del plegamiento anómalo de las proteínas

Michel de Montaigne, filósofo humanista renacentista, escribió: "Mas tú no mueres porque estás enfermo, mueres porque eres vivo" (Montaigne, 2015). Bajo esta frase se puede aludir que aquellos que no seremos víctimas de asesinatos o accidentes, falleceremos como consecuencia de alguna de las tantas enfermedades, infecciosas o no, que aquejan a la humanidad. Dentro de todo el conjunto de enfermedades está descrito un subconjunto que engloba a las enfermedades derivadas por el plegamiento anómalo de las proteínas donde una o varias mutaciones conllevan a la pérdida de la función a diferentes niveles celulares (Gregersen, 2006). Por ejemplo, la fibrosis quística es una enfermedad de tipo hereditaria debido a mutaciones en distintas regiones que generan la pérdida de función de un canal transmembranal encargado principalmente de la difusión y el intercambio entre los iones cloro y bicarbonato (O'Sullivan & Freedman, 2009). Aunque órganos como el hígado, el tracto gastrointestinal, o el páncreas, entre otros, resultan seriamente afectados, la acumulación de cloro en los pulmones impide que la función de antibióticos innatos, como la β-defensina 1, actúen correctamente permitiendo que las bacterias se alojen y desarrollen (Goldman et al., 1997). Otra enfermedad derivada por el plegamiento anómalo de las proteínas es la fenilcetonuria. Este padecimiento de tipo hereditario es causado por un error metabólico derivado de mutaciones en el gen de la fenilalanina hidroxilasa, reduciendo o nulificando la actividad enzimática lo cual causa una acumulación de fenilalanina que por su toxicidad afecta al sistema nervioso central (Blau et al., 2010). Muchas de esas mutaciones afectan el dominio catalítico de esta enzima, y en menores porcentajes están afectados también los sitios de unión al cofactor tetrahidrobiopterina, al oxígeno molecular y al hierro, asimismo también las mutaciones afectan al dominio regulatorio y al dominio de homo-tetramerización (Zurflüh et al., 2008). Sin embargo, el grupo más grande de enfermedades derivadas del plegamiento anómalo de proteínas está asociado a las proteínas, o péptidos, que no sólo han perdido su función original sino también se agregan ordenadamente en forma de fibras (Chiti & Dobson, 2006).

Amiloidosis

Las amiloidosis son un grupo de enfermedades derivadas del plegamiento anómalo de las proteínas donde proteínas, o péptidos, se agregan en forma de fibras conocidas como amiloides pudiéndose depositar en uno o varios órganos (Chiti & Dobson, 2006). En las amiloidosis localizadas, en las que solo un órgano es afectado, podemos encontrar enfermedades neurodegenerativas como el Alzheimer, Parkinson, y Hungtington. En el grupo de amiloidosis localizadas no neurodegenerativas están enfermedades como la llamada catarata de los ojos y la diabetes tipo 2. El último grupo lo comprenden las amilodosis sistémicas en las cuales la agregación amiloide afecta a varios órganos como en el caso de la amilodosis derivada de la lisozima, del fibrinógeno, y la amilodosis de cadenas ligeras de inmunoglobulinas.

Antes de dirigir el siguiente texto hacia una descripción más detallada de la amiloidosis derivada de cadenas ligeras de inmunoglobulina, cabe resaltar que las proteínas involucradas en la formación de agregados amiloides carecen de alguna secuencia específica o alguna firma estructural que pudiera simplificar la búsqueda de proteínas susceptibles a la formación de fibras (Knowles *et al.*, 2014). Otra característica importante de las fibras amiloides, derivada de las observaciones de la microscopía electrónica, las describe como rectas, no ramificadas, con diámetros en el orden de los 10 nm y con longitudes desde los 100 nm hasta varias micras (Tycko, 2006). Adicionalmente, las fibras presentan un color verde manzana bajo luz polarizada después de haber sido teñidas con rojo Congo y se observa un aumento en la fluorescencia al ponerlas en contacto con Tioflavin T (Puchtler & Sweat, 1965; Levine, 1993). Por medio del dicroísmo circular y la difracción de rayos X, las fibras muestran un alto contenido de hojas β (Makin & Serpell, 2005).

En general, el resultado más interesante de la agregación amiloide es precisamente la formación de fibras con características estructurales en común a partir de una gran diversidad de secuencias. El efecto de los cambios estructurales puede involucrar desde un apilamiento directo, la interacción entre segmentos específicos, el intercambio de dominios, o hasta la reestructuración completa en el caso de los péptidos desestructurados (Nelson & Eisenberg, 2006). Además, estas rutas de agregación dependen de las mutaciones en la secuencia, la estabilidad termodinámica, y el ambiente químico celular (Fernandez-Escamilla *et al.*, 2004; Meng *et al.*, 2008). Una aproximación inicial para entender las causas de la amiloidosis AL, cuya complejidad está acentuada por el grado de diversidad de secuencias, se centra justo en entender la influencia de las mutaciones en el desarrollo de esta enfermedad.

Asociación preferencial de la región variable de las cadenas ligeras λVI en la amiloidosis AL

Las gammapatías monoclonales incluyen un grupo de enfermedades caracterizadas por la proliferación de clonas de células plasmáticas que producen un único tipo de cadena ligera y/o pesada (componente monoclonal) en cantidades excesivas (The International Myeloma Working Group, 2003). La amiloidosis AL es una gammapatía monoclonal causada por la agregación de fibras amiloides en forma sistémica, las cuales están conformadas por las regiones variables de cadenas ligeras (V_L) de algunas inmunoglobulinas. Por otro lado, sólo como dato complementario para reflejar la importancia de la amiloidosis AL, la amiloidosis AH se refiere a la agregación amiloide de fragmentos de cadenas pesadas de inmunoglobulinas aunque ésta es una enfermedad extraordinariamente inusual con una incidencia menor al 1% de las gammapatías monoclonales (Mai *et* al., 2003; Miyazaki *et al.*, 2008). La edad promedio en la que se manifiesta la amiloidosis AL es alrededor de los 65 años, siendo las dos terceras partes de los pacientes hombres y menos del 5% de ellos menores a 40 años (Makin & Serpell, 2005). Se ha reportado que la incidencia anual tan sólo en los Estados Unidos y en el Reino Unido puede variar desde 5 hasta 13 personas por cada millón de habitantes, sin contar aquellos casos diagnosticados erróneamente (Weiss *et al*, 2016; Nienhuis *et al.*, 2016). Esta enfermedad se caracteriza por ser de condición progresiva y sistémica donde cerca del 70% de los pacientes presentan dos o más órganos involucrados siendo los riñones, corazón, hígado, sistema nervioso periférico y el sistema nervioso autónomo los más afectados (Pepys, 2006). Dependiendo de los órganos afectados, las manifestaciones clínicas de la amiloidosis AL llegan a ser muy variadas además de que la sintomatología es poco específica como fatiga, edema y pérdida de peso, entre otras (Pepys, 2006).

Antes de abordar un enfoque orientado hacia la parte estructural sobre la amiloidosis AL, es importante conocer el origen y las características de las inmunoglobulinas. Una célula B plasmática secretora de anticuerpos es originada a partir de una célula totipotencial ubicada en la médula ósea después de varios procesos de maduración en diferentes órganos (Figura 1). Los anticuerpos son generados a partir de los genes de anticuerpos, conocidos como líneas germinales, los cuales maduran a través de un mecanismo conocido como hipermutación somática dándole así una gran versatilidad al sistema inmune adaptativo de los mamíferos Este proceso garantiza que el organismo pueda reconocer una gran cantidad de antígenos en la naturaleza (Benjamini et al., 2000; Janeway et al., 2001, Clark et al., 2006). La estructura típica de una inmunoglobulina tipo IgG, mostrada en la Figura 2, está compuesta de dos cadenas pesadas y dos cadenas ligeras (Schroeder et al., 2010). A su vez, la cadena ligera puede segmentarse en un dominio constante y en un dominio variable; siendo éste último el dominio implicado en la agregación amiloide (Figura 1B). Los dominios variables de las cadenas ligeras (V_1) pueden ser clasificados en $\kappa \circ \lambda$, dependiendo de su secuencia la cual hace referencia al locus cromosomal correspondiente (Meffre et al., 2000; Lefranc, 2001a; Lefranc, 2001b; Schroeder & Cavacini, 2010). Dada la naturaleza monoclonal de las V_L amiloidogénicas, se ha conjeturado que cada V_L procede de una célula B plasmática que ha pasado por todo el proceso de maduración celular pero que, hasta la fecha, se desconoce el tipo de discrasia celular que desencadena la sobre-excreción de estas V_L libres (Merlini & Stone, 2006). Una V_L está estructuralmente compuesta por dos regiones, las Regiones Marco (Framework Regions) que sirven como andamiaje para las Regiones Determinantes de Complementariedad (CDRs) las cuales se reconocen y se unen a su respectivo antígeno.

Figura 1. Proceso de maduración de una célula plasmática, adaptado de Schroeder *et al*, 2010. El desarrollo de una célula B mediante el rearreglo de la inmunoglobulina después de su nacimiento en la médula ósea y su estimulación previa antes de su estimulación ante el antígeno. Posterior al desarrollo, la célula B incrementa su dependencia al estímulo del antígeno. Las células B inmaduras abandonan la médula ósea, empiezan a expresar IgD, y circulan en la sangre hasta llevar a los órganos linfoides secundarios y la médula ósea. El encuentro con el antígeno cognado puede causar la transformación celular hacia una célula B de memoria o una célula plasmática. Los centros germinales (CG) son sitios dentro de los nódulos linfoides secundarios donde los linfocitos B profileran, se diferencian, y mutan sus genes (a través de la hipermutación somática), e intercambian el tipo de anticuerpo (IgG, IgA, o IgM) que producen durante la respuesta inmunológica normal a una infección.

Figura 2. Inmunoglobulina. Estructura general de una inmunoglobulina IgG, adaptado de LeFranc, 2001a. En morado se muestran los dominios constantes de las cadenas pesadas (C_{H1} , C_{H2} , C_{H3}) y en bermellón el dominio constante de las cadenas ligeras (C_L) Los dominios variables de las cadenas ligeras (V_L) en color salmón, y los dominios variables de las cadenas pesadas (V_H) en color verde.

La complejidad de estudiar la amiloidosis AL radica en que las V_L están expuestas al mecanismo de la hipermutación somática, generando así una gran variabilidad de secuencias (Meffre et al., 2000; Pieper et al., 2013). Sin embargo, a pesar de contar con una gran diversidad de líneas germinales, varios análisis de incidencia de amiloidosis mostraron que las V_L λ tuvieron una mayor incidencia con respecto a las $V_L \kappa$, en una proporción de 3:1; mientras que el uso preferencial de cadenas ligeras en un individuo sano es 1:2 (Perfetti et al., 2002; Abraham et al., 2003). Entonces, una de las cuestiones más importantes sobre esta enfermedad es conocer la razón del por qué las cadenas ligeras tipo λ tienen una alta incidencia en la amiloidosis AL a pesar de tener un menor uso preferencial. En la Figura 3 se muestra que las $V_L \lambda$ derivadas de los genes 3r y 6a se encuentran altamente asociadas con la amiloidosis AL (Perfetti et al., 2002). Un dato que llama la atención de la Figura 3 es que la expresión policional de la línea germinal 6a es considerablemente menor a su incidencia en la amiloidosis AL e, inclusive, menor con respecto a las otras líneas germinales. Otros trabajos también hacen referencia a la alta incidencia de esta línea germinal alcanzando desde un 20% hasta un 40% de las series de pacientes estudiados (Solomon et al., 1982; Solomon & Wiss, 1995; Perfetti et al., 1998). Con esta gran tendencia de las V_L derivadas de la línea germinal λ 6a a la agregación amiloide se empezó a formular la siguiente pregunta: ¿qué tiene de especial la línea germinal λ 6a que la hace susceptible a la agregación amiloide?

Figura 3. Líneas Germinales λ , tomado de Perfetti *et al*, 2002. Contraste de la expresión del repertorio de líneas germinales V λ de células plasmáticas de individuos sanos y la incidencia de la misma con V_L extraídas de pacientes con amiloidosis AL.

ANTECEDENTES DIRECTOS DEL PROYECTO

La manera en que inició la investigación para explicar la alta tendencia de las V_L derivadas de la línea germinal λ 6a con la amiloidosis AL fue con la hipótesis que alude a la amiloidogenicidad intrínseca del gen λ 6a, implicando que las V_L derivadas sean amiloidogénicas y que durante el proceso de hipermutación somática aumentaría esta tendencia. En nuestro grupo se planteó y se analizó esta hipótesis en el trabajo de Luis del Pozo (del Pozo *et al.*, 2008). En resumen, se sintetizó y se expresó el gen de la línea germinal *6a* junto con el segmento J λ 2, denominándose la proteína como 6aJL2. Para analizar las propiedades biofísicas de esta proteína modelo se determinó su estabilidad termodinámica y se analizó su cinética de formación de fibras, o fibrilogénesis *in vitro*. Los resultados mostraron que 6aJL2 era más estable que otras V_L derivadas de pacientes (AR, WIL y JTO), las cuales han sido utilizadas para estudiar el efecto de las mutaciones somáticas sobre sus propiedades amiloidogénicas (del Pozo *et al.*, 2008; González-Andrade, 2010). Además, Otros análisis con mutantes sitio específicas de esta proteína mostraron una correlación entre la estabilidad y la tendencia a formar fibras *in vitro* (del Pozo-Yauner *et al.*, 2008; González-Andrade, 2013; del Pozo-Yauner *et al.*, 2014).

Figura. 4. Fibrilogénesis *in vitro* de rV_L 6aJL2, JTO, WIL y R25G. El experimento se realizó a 37 °C, en un volumen de 3 mL, a una concentración de 100 μ g/mL de proteína en PBS 1X y ThT 20 μ M en agitación constante. Cada curva representa la variación de la intensidad de fluorescencia de ThT a 482nm con respecto al tiempo. Tabla interna. Se muestran la ΔG° , el tiempo *lag* y la constante de velocidad de las 5 rV_L,

Desde un punto muy general, todo lo anterior se asemeja al postulado de Jean-Jaques Rosseau que dice que el hombre es bueno por naturaleza y que la sociedad lo pervierte; análogamente se podría decir que 6aJL2 es estable y resistente a la formación de fibras pero que, durante el proceso de hipermutación somática, hay altas probabilidades de que las mutaciones generadas tengan como consecuencia una pérdida de la estabilidad termodinámica y una exacerbación de las propiedades fibrilogénicas. Uno de los datos más sorprendentes fue que, a pesar de que las mutaciones modificaron sustancialmente las propiedades termodinámicas y fibrilogénicas de 6aJL2, el traslape de las estructuras cristalográficas de varias mutantes sencillas contra 6aJL2, revela una alta similitud entre las cadenas principales (Hernández-Santoyo *et al.*, 2010; Maya-Martínez *et al.*, 2015). Una visión más global considerando un efecto compensatorio producto de las interacciones de las cadenas laterales, podría indicar cuáles segmentos de estas proteínas son los más afectados.

Análisis de redes como método de análisis

Así como el poema introductorio de la obra de Ernest Hemingway "Por Quién Doblan Las Campanas" que describe que nadie es una isla y que cada hombre es parte de un total, una de las maneras en las que se han estudiado las estructuras proteicas ha sido el considerarlas como una red interconectada donde cada residuo es considerado como un nodo y la relación entre cada par de residuos, ya sea a través de un enlace covalente o no covalente, puede ser considerado como un vértice (Watts & Strogatz, 1998; Vendruscolo *et al.*, 2002; Muppirila *et al.*, 2006). Otro tipo de vértice puede ser definido a partir de la distancia atómica que hay entre cada par de nodos; y uso de las distancias más cercanas ha permitido generar mapas de contactos. (Mirny *et al.*, 1996). En general se ha demostrado que modificaciones en los nodos altamente conectados causan cambios en las propiedades de la red en su conjunto. Por otro lado, estos análisis han mostrado que las redes tienen una mayor tolerancia a la perturbación en los nodos de bajo grado de conectividad (Albert *et al.*, 2000). Estas observaciones permiten suponer que aplicando un análisis de redes a una estructura proteica permitiría identificar residuos estructuralmente importantes.

La principal motivación para aplicar el análisis de redes a las estructuras correspondientes a las $V_L \lambda 6a$ es el identificar mutaciones aparentemente insignificantes pero, que en su conjunto, resultan relevantes especialmente si se altera la conectividad en los nodos importantes. Cabe señalar que el alineamiento de secuencias de V_L no mostró un patrón distintivo entre aquéllas que son amiloidogénicas de aquéllas que no lo son (Hurle *et al.*, 1994). Asimismo, el traslape de carbonos α entre las diferentes estructuras tampoco mostró algún cambio conformacional evidente (Hernández-Santoyo *et al.*, 2010). Mediante un análisis de redes aplicado a la estructura de 6aJL2 y de otras cadenas ligeras derivadas de la misma línea germinal, se podrían identificar los residuos determinantes de la estabilidad estructural correspondientes a las $V_L \lambda 6a$ además de los ya descritos para las inmunoglobulinas como el Trp35 y el puente disulfuro Cys23-Cys88 (Chothia *et al.*, 1998).

Para este trabajo, se optó por comparar estructuras cristalográficas y así identificar las diferencias que resultasen determinantes. Se seleccionó la cadena ligera AR para ser comparada contra 6aJL2 debido a que esta variante resultó ser la más inestable y la más fibrilogénica de todo el conjunto (González-Andrade *et al.*, 2013). AR tiene una característica particular en su secuencia de aminoácidos y es la presencia de una Gly en la posición 25 haciéndola similar a una mutante de 6aJL2 llamada 6a-R25G (Figura 5). La importancia de esta última variante radica en que hay indicios de que esta secuencia pudiera ser una variante alotípica de 6aJL2 donde una Gly está presente en 25% de las secuencias y en el otro 75%, una Arg ocupa esta posición (del Pozo *et al.*, 2008). Adicionalmente, los experimentos mostraron que la substitución Arg25Gly disminuyó significativamente la estabilidad del dominio 6aJL2.

Figura 5. Alineamiento de secuencias de cadenas ligeras λ6. Los aminoácidos están coloreados acorde a su conservación relativa usando el programa ALINE (Bond & Schüttelkopf, 2009) y numerados acorde a Kabat (Kabat *et al.*, 1991). La proteína 6aJL2 es comparada contra la mutante sencilla 6a-R25G y con la cadena ligera derivada de paciente AR. Las regiones de los Frameworks (FR) y de las Regiones Complementarias Determinantes (CDR) están marcadas.

En la primera parte de este trabajo se planteó la generación y el análisis de la estructura cristalográfica de AR y de 6a-R25G para su comparación con 6aJL2. Aunque se emplearon varias técnicas que consideran las estructuras de proteína como una red global de interacciones, se optó por generar y validar una propuesta metodológica para jerarquizar cada residuo acorde a su relevancia estructural (Luna-Martínez *et al.*, 2016). Se aplicó esta metodología para identificar las diferencias y similitudes en las estructuras de estas dos cadenas ligeras. En la segunda parte de este trabajo se retomó el análisis termodinámico de AR conducente a la generación de mutantes específicas, además de ampliar el análisis estructural entre 6aJL2, 6a-R25G y AR. Adelantando brevemente una de las cuestiones más importantes de esta parte, fue que se rechazó una hipótesis muy arraigada con respecto a las regiones variables de las cadenas ligeras de tipo λVI.

Sin más por el momento, y habiendo establecido el marco teórico de referencia así como los antecedentes directos de este proyecto, se dará pie a describir brevemente el análisis termodinámico y estructural para entender las propiedades biofísicas y fibrilogénicas de la región variable de las cadenas ligeras tipo λ VI.

HIPÓTESIS

Los residuos presentes en el dominio variable de cadenas ligeras correspondiente a la línea germinal 6aJL2 que mantienen una alta conectividad, pueden ser identificados de manera teórica siendo jerarquizables y diferentes con respecto a los residuos de la variante AR.

OBJETIVOS

General

• Analizar las diferencias estructurales entre las estructuras cristalográficas de 6aJL2 y AR para entender las propiedades biofísicas y fibrilogénicas de estos dominios variables de cadenas ligeras.

Específicos

- Determinar la estructura cristalográfica de AR y de 6a-R25G para contrastarla con la estructura de 6aJL2.
- Analizar la estructura cristalográfica de 6aJL2 mediante análisis de redes para identificar los residuos clave involucrados en la estabilización de este dominio variable de cadenas ligeras.
- Proponer y validar una metodología de jerarquización de residuos empleando proteínas evaluadas termodinámicamente con diferente estructura terciaria.
- Evaluar las estructuras de AR y 6aJL2 con la metodología propuesta.

METODOLOGÍA

Estadística

El análisis de componentes principales (PCA) fue realizado usando el programa R (R Core Development Team, 2013). Los análisis termodinámicos fueron realizados por triplicado.

Estructuras cristalográficas para la validación

El código PDB, el tamaño, y la clase de proteína de las estructuras seleccionadas son las siguientes: inhibidor de quimiotripsina (2CI2; 65 residuos; 16% α + 21% β); 6aJL2 (2W0K; chain A, 111 residuos; 5% α + 46% β); apoflavodoxina (1FTG; 168 residuos; 35% α + 19% β); represor dimérico Arc (1ARR; 108 residuos; $62\% \alpha + 9\%\beta$); dominio de unión al DNA del receptor de estrógeno humano α en complejo con su DNA de reconocimiento (1HCQ; cadenas A, B; 128 residuos; 26% α + 9%β, y cadenas C y D, 56 nucleótidos); proteína de choque térmico de Bacillus subtilis (1CSP; 67 residuos; 4% α + 55% β); proteína de choque térmico de B. caldolyticus (1C9O, 66 residuos; $4\% \alpha + 62\%\beta$); y el segmento N-terminal intrínsecamente desordenado del supresor de señalización de citosina 5 de mamífero. (2N34, 70 residuos; $12\% \alpha$). Se realizaron modificaciones estructurales menores en los archivos del PDB como el relleno de los extremos N-terminal y de las cadenas laterales usando el programa Swiss PDB (Guex & Peitsch, 1997). Además, todos los nodos fueron renumerados de manera continua para evitar repeticiones; por ejemplo, en el PDB 2CI2, la proteína inicia con el residuo 19. Consecuentemente, todos los residuos fueron sistemáticamente renumerados para que el primer residuo fuera identificado como el residuo 1 y así sucesivamente. El área expuesta al disolvente fue calculada con el programa NOC (Chen, Cang & Nymeyer, 2007).

Análisis de redes

El análisis de redes se basa en un parámetro fundamental que es la existencia de una relación entre diversos nodos. Para este trabajo se harán las siguientes consideraciones generales para la relación entre nodos (Bocaletti *et al.*, 2006).

1) **No dirigidas.** Las uniones no muestran una dirección implicando que cualquier relación representada será simétrica.

2) Jerarquizadas. Las uniones entre nodos tienen un valor.

3) Simples. Las uniones múltiples entre el mismo par de vértices no están permitidas.

4) **Dispersas.** Para una red no dirigida, el número máximo de uniones (M) es igual a la combinatoria del número de nodos n(n-1)/2. Por lo que una red dispersa tendrá una M mucho menor a n(n-1)/2.

5) **Conectadas.** Cualquier nodo puede relacionarse con otro nodo lejano mediante el trazo de una ruta con un número finito de nodos. No existen nodos aislados.

Grado

Los residuos pueden ser considerados como nodos y los contactos como vértices. Por lo tanto, un vértice puede ser definido cuando dos átomos, no Hidrógenos, de un par de residuos están dentro de una distancia de 5 Å (Li *et al.*, 2008). Para estudiar la topología de una red de contactos entre residuos, se midió el grado del nodo-*i, Ki*, como el número de vecinos del nodo-*i*. Se seleccionaron las cadenas A de las estructuras cristalográficas. En el caso de las estructuras cuaternarias, toda la estructura fue considerada para medir el grado de cada nodo pero únicamente se consideró para las comparaciones sucesivas.

Eigenvectores

Otra medida de centralidad más sofisticada son los eigenvectores. En general, un nodo conectado con nodos reconocidos como influyentes atribuirá un mayor peso a su centralidad que si estuviera conectado con nodos poco influyentes (Newman, 2008). Por lo tanto, la centralidad por eigenvectores puede ser también vista como la suma jerarquizada no solamente de las conexiones directas, sino también las conexiones indirectas. Matemáticamente, una red puede ser representada por una matriz llamada matriz de adyacencia A. Ésta es una matriz hermitiana simétrica n x n donde n es el número de nodos de la red y los elementos pueden ser las distancias mínimas entre cada residuo (Piziak & Odell, 2006). Dícese que una matriz es hermitiana cuando el elemento a_{ij} es igual al elemento a_{ji} de la matriz transpuesta conjugada. Dicho de otra manera, si **A** tiene números imaginarios, \overline{A} es la matriz con el cambio de signo de los números imaginarios de la matriz **A**; y \overline{A} * es la matriz transpuesta de \overline{A} (Figura 6).

$$A = \begin{bmatrix} 3 & 2+i \\ 2-i & 1 \end{bmatrix}$$

Figura 6. Matriz Hermitiana. La matriz transpuesta conjugada de A es igual a la misma matriz.

Formalmente, si **A** es una transformación lineal, un vector no-cero **x** multiplicado a la derecha de la matriz **A** es entonces el eigenvector derecho de A si existe un valor escalar λ que cumpla con la siguiente ecuación:

$$Ax = \lambda x$$
 (Ecuación 1)

Se dice que el escalar λ es el eigenvalor de A correspondiente al eigenvector x. El número total de eigenvalores y, por lo tanto, de eigenvectores (excluyendo al vector cero), es igual al número de nodos *n* por ser A una matriz simétrica. El conjunto de todos los eigenvalores posibles de A es llamado espectro de A. La elección de cuál eigenvalor, y su respectivo eigenvector, como factor de centralidad está sustentada en el teorema de Perron-Frobenius el cual afirma que una matriz cuadrada real (sin elementos con números imaginarios) y con todos sus elementos positivos, tiene un eigenvalor cuyo valor es real y es el mayor de todo el espectro de eigenvalores (Horn & Johnson, 1990; Piziak & Odell, 2006; Newman,

2008). De lo anterior, el eigenvector correspondiente a este eigenvalor tendrá estrictamente componentes positivos los cuales son la medida de la importancia y calidad del nodo. Además del teorema de Perron-Frobenius, otros trabajos han demostrado que la principal clasificación de los nodos por eigenvectores está mediada por el uso del mayor eigenvalor (Bonacich, 1972).

Para redes jerarquizadas, el valor de la unión podría interpretarse como la fuerza de la misma; a mayor valor, mayor fuerza (Newman, 2004). Lo anterior no modifica lo dicho para los eigenvectores como parámetro de clasificación de los nodos pero modificaría la forma de parametrizar las matrices de distancias entre residuos. El artilugio matemático para modificar las matrices de distancias sin afectar la relación es calculando el inverso del valor de la distancia. De esta manera, entre más cercana sea la interacción, mayor será su peso en el cálculo por eigenvectores.

Entropía de redes

En el trabajo de Manke & Demetrius, 2004, proponen una aproximación sistemática al análisis de redes basándose en otras teorías como mecánica estadística, teoría ergódica y teoría de la información. Ellos proponen que los procesos biológicos operan típicamente en un estado estacionario, donde las características macroscópicas observables permanecen constantes por periodos largos de tiempo. Esto no implica que los procesos microscópicos sean estáticos sino que su interacción compleja y continua resulta en un fenotipo estable que puede ser observado experimentalmente. En sus trabajos (Manke *et al.*, 2005; Manke *et al.*, 2006) usan datos provenientes de *knockonts* de genes y experimentos de RNA de interferencia de *Saccharomyces cerevisiae* y de *Caenorhabditis elegans*. El análisis muestra que los *knockonts* de proteínas con gran contribución a la entropía de redes son los más letales. Las matrices reportadas se basan en una matriz estocástica derecha donde la suma de las filas de la matriz cuadrada real tiene el valor de 1 (Figura 7).

$$P = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{21} \\ \dots & \dots & \dots & \dots \\ p_{n1} & p_{n2} & \dots & p_{nn} \end{bmatrix} \xrightarrow{\sum_{i=1}^{i=1} p_{1i} = 1}_{\text{donde}}$$

Figura 7. Matriz estocástica. La sumatoria de uno de los elementos de cada fila es igual a 1.

Se escogieron las matrices de adyacencia del inverso de las distancias de 5 Å de las estructuras. La razón por la cual se escogió esta conversión matemática es que, de manera similar a los eigenvectores, entre mayor sea la cercanía entre los residuos mayor será el impacto en caso de un cambio de la interacción entre estos. Se procedió a analizar esta matriz

estocástica usando la ecuación de la entropía dinámica de Shannon (Ecuación 2). La entropía dinámica de un proceso de Markov caracteriza la diversidad de caminos posibles y está relacionado con la respuesta del sistema a las perturbaciones (Horn & Johnson, 1990). El parámetro π i es un vector estacionario de probabilidad definido como un vector que no cambia bajo la aplicación de una matriz estocástica. También se define como el eigenvector izquierdo de la matriz estocástica de probabilidad.

$$H = -\sum_{i,j} \pi_i p_{ij} \log p_{ij}$$
 (Ecuación 2)

El primer dato necesario para el cálculo de entropía es la generación de una matriz estocástica a partir de la matriz de adyacencia del inverso de las distancias. Se suman los valores de las filas y cada valor de la fila se divide entre esta suma. Ahora la matriz del inverso de las distancias es una matriz estocástica. Con el programa Matcad 15^{TM} se calcularon los eigenvectores izquierdos correspondientes y se escogió aquel cuyo valor procedía del mayor eigenvalor. El vector generado es el vector π cuyo valor se multiplica al valor de la entropía de Shannon

Dinámica molecular

Las estructuras cristalográficas fueron preparadas usando el paquete Protein Preparation Wizard incluido en el programa Maestro 9.2 (Schrödinger LCC, NY, USA), y se depositaron en una caja de agua de 10 Å las cuales contenían 14513 moléculas de agua de Punto de Carga Sencilla (SPC, por sus siglas en inglés) para 2CI2, 16667 para 2W0K, 20051 para 1FTG, 20990 para 1ARR, 28142 para 1HCQ, 12219 para 1CSP, y 12033 para 1C9O. Se añadieron iones neutralizantes, y otros iones metálicos previamente presentes en la estructura cristalográfica fueron dejados en el mismo lugar. Los cálculos del alineamiento y el análisis de datos fueron hechos con los programas Desmond y Maestro, respectivamente (Maestro-Desmond Interoperability Tools, versión 3.0; Schrödinger, NY, USA). El campo de fuerza OPLS 2005 fue usado para cada dinámica molecular. Las condiciones periódicas cúbicas resultantes para cada proteína fueron (53.9 x 53.9 x 53.9 Å³ para 2CI2; 56.8 x 56.8 x 56.8 Å³ para 2W0K; 60.9 x 60.9 x 60.9 Å³ para 1FTG; 61.2 x 61.2 x 61.2 Å³ para 1ARR; 51.1 x 51.1 x 51.1 Å³ para 1CSP; y 50.8 x 50.8 x 50.8 para 1C9O); dado el tamaño del complejo 1HCQ, se utilizaron fronteras rectangulares (58.5 x 59 x 91 Å³). Cada simulación fue ajustada con un ensamble isotérmicoisobárico (NPT, donde se mantiene la cantidad de sustancia, presión, y temperatura) unido débilmente a un baño térmico a presión constante de 1 atm y un tiempo de relajación de 2 ps, regulado por el baróstato Berendsen (Berensen et al., 1984). Todas las interacciones fueron seguidas usando una distancia de corte de 9 Å, y para distancias de larga distancia (electrostáticas y de van der Waals), se utilizó el método de red de partícula suavizada de Ewald con una tolerancia de 1 x 10⁻⁹ (Essman et al., 1995). Para asegurarse que las simulaciones iniciaran de un mínimo local, se aplicó un algoritmo de alineamiento simultáneo. Este método inició con la simulación a una alta temperatura (400 K) para evitar barreras termodinámicas y conformacionales, seguido de un enfriamiento gradual (alineamiento) para alcanzar regímenes de baja energía. Éste es un método ampliamente usado para la optimización de estructuras provenientes de métodos experimentales, modelado comparativo de proteínas, o el estudio de plegamientos o desnaturalizaciones mediante dinámicas conformacionales de proteínas o péptidos (Mori & Okamoto, 2009). El sistema completo fue calentado a 10 K por 30 ps, 100 K por 100 ps, 300 K por 200 ps, 400 K por 300 ps, 400 K por 500 ps, y luego enfriado a 298 K por 1000 ps. Para asegurarse de que el calentado a 400 K no afectara la estructura de la proteína o proteína/ADN, se comparó el Root Mean Square Deviation (RMSD) de los átomos pesados (C, N, O, S, P) provenientes de la comparación entre la estructura del alineamiento y su correspondiente estructura cristalográfica. Si la desviación estándar del RMSD fuese ≤1.0 Å, se supuso que el alineamiento no modificó a la estructura o la desnaturalizó. De hecho, dado que el desplazamiento de los átomos pesados es mayor a 1 Å'se consideró como un cambio conformacional y que se encontró un mínimo local. El paso de la interpolación lineal entre dos puntos adyacentes de tiempo fue empleado. Después del sexto paso, se simularon 25 ns con un tiempo de integración de 1 fs. El análisis total fue realizado usando las coordenadas de la travectoria y las energías registradas cada 1.2 ps. Un modelo fue extraído cada 0.25 ns de simulación, y el total de 100 modelos fue guardado como un archivo tipo PDB.

Entropía dinámica de la dinámica molecular

Se generó un algoritmo codificado en lenguaje Perl que utiliza al archivo PDB de los 100 modelos. Como primer paso, el primer archivo de cada modelo contiene las coordenadas atómicas, sus correspondientes pesos moleculares, y los nombres de cada nodo (aminoácido o base nucleotídica). Para el segundo paso se calcularon las coordenadas del centro de masa del nodo. En el tercer paso se calculó la distancia entre los centros de masa de cada par de nodos y se normalizaron con la siguiente Ecuación (3)

$$\overline{d_{ij}} = \frac{d_{ij}}{r_{vdW_i} + r_{vdW_j}}$$
 Ecuación (3)

donde $\overline{d_{ij}}$ es la distancia normalizada, d_{ij} es la distancia entre los centros de masas del nodo *i* y el nodo *j*, y r_{vdW} es el radio de van der Waals del respectivo nodo considerando todos sus átomos. Para los aminoácidos, los valores del radio de van der Waals comprendiendo todo el residuo fueron obtenidos de Darby & Creighton, 1993. Para las bases de nucleótidos, estos valores fueron obtenidos de Voss & Gerstein, 2005. Se calculó la distancia promedio entre cada par de nodos de los 100 modelos extraídos. Dado que los siguientes pasos involucran las propiedades de los eigenvectores y eigenvalores, se calculó el valor inverso de la distancia promedio normalizada, para que así los valores más pequeños, distancias muy cercanas, tuvieran mayor peso.

Se construyó una matriz con estos valores donde A = $(a_{ij}) \ge 0$ de tamaño N x N, donde N es el número de nodos. En este caso, la matriz A es simétrica $(a_{ij} = a_{ji})$ y no dirigida. Siguiendo la estrategia matemática descrita por Demetrius & Manke, 2005, se supuso que el proceso estocástico está dado por una matriz de Markov P = p_{ij} donde $p_{ij} \ge 0$ y $\Sigma_j p_{ij} = 1$. La distribución estacionaria de la matriz P está descrita por la Ecuación (4),

$$\pi P = \pi$$
 (Ecuación 4)

donde π está definido como el eigenvector izquierdo asociado con el eigenvalor de mayor valor resuelto con el programa Mathcad 15TM. La entropía dinámica de este proceso para cada nodo, *Hi*, está descrito por la Ecuación (5),

$$H_i = -\Sigma_j \pi_{ij} p_{ij} \log p_{ij}$$
(Ecuación 5)

donde el término $p_{ij} \log p_{ij}$ es la entropía de Shannon.

Mutantes de 6aJL2 y de AR

Tanto la síntesis de mutantes de AR como de las mutantes sencillas de 6aJL2 (6a-R25H, 6a-I30G, 6a-Y36F, y 6a-Q6N) fue realizada usando PCR recursivo (Prodromou & Pearl, 1992). El gen obtenido fue clonado en el vector pSyn 1 (Schier *et al.*, 1995). Todas las contrucciones fueron verificadas usando secuenciación de nucleótidos (Sanger, Nicklen & Coulson, 1977). Todas las variantes fueron expresadas en *Escherichia coli* BL21 (DE3) y purificadas como se describió previamente (Luna-Martínez, 2009). La proteína purificada fue verificada mediante electroforesis SDS-PAGE, y la concentración de la proteína fue determinada espectrofotométricamente a 280 nm en buffer 6.5 M GndHCl en buffer de fosfato de sodio 20 mM, pH 7.5, usando coeficientes de extinción molar calculados con el programa ProtParam, del servidor ExPASy (Gasteiger *et al.*, 2005).

Desnaturalización térmica

Las muestras conteniendo 50 µg/ml de proteína en solución salina de fosfatos (PBS), pH 7.5, fueron colocadas en una celda de 3 ml. Los cambios de la fluorescencia del triptofano fueron medidas usando un espectrofluorímetro LS50B Perkin Elmer con una longitud de onda de excitación de 295 nm (2.5 mm de apertura) y una longitud de onda de emisión de 355 nm (5 mm de apertura). La solución fue calentada usando un baño de agua con un sistema de recirculación conectada al espectrofluorímetro y la temperatura de la solución fue medida con un termistor. Los datos de desnaturalización térmicos fueron analizados como se describió en

Pace *et al.*, 1989, suponiendo un proceso de dos estados y siguiendo la ecuación de van't Hoff (Ecuación 6).

$$\frac{d(\ln K_{app})}{d(1/T)} = -\frac{\Delta H_{app}}{R}$$
(Ecuación 6)

donde T es la temperatura, ΔH es la entalpía, y R es la constante de los gases. El valor de ΔG a temperatura ambiente fue determinada usando la ecuación 7,

$$\Delta G(T) = \Delta H_{\rm m} \left(1 - \frac{T}{T_{\rm m}} \right) - \Delta C_{\rm p} \left[(T_{\rm m} - T) + T \ln \left(\frac{T}{T_{\rm m}} \right) \right]$$
(Ecuación 7)

donde T está a 298 K, y C_p es el cambio en la capacidad calórica asociada con el proceso de desnaturalización, calculado teóricamente con el método descrito por Milardi *et al.*, 1997.

Dicroísmo circular

Los espectros de dicroísmo circular y los experimentos de desnaturalización térmica fueron registrados en un espectropolarímetro JASCO J-715 (JASCO INc., Easton, MD) equipado con un peltier enfriado con agua. Los espectros de UV lejano fueron registrados usando una celda de cuarzo de 0.1 cm de longitud de paso con una concentración de proteína a 400 μ g/ml en solución de 50 mM Na₂HPO4, 100 mM NaCl, pH 8.0.

Los datos crudos fueron convertidos a elipticidad molar usando la ecuación 8,

$$[\theta] = 100^* \theta / (C^* I)$$
 (Ecuación 8)

donde C es la concentración molar, e I es la longitud de paso de la celda en cm.

Cristalización y recolección de datos

Previo a las pruebas de cristalización, las proteínas de AR y de 6a-R25G fueron mantenidas en 40 mM Tris, 20 mM NaCl, pH 8.2. Ambas proteínas fueron cristalizadas usando la técnica de difusión de vapor con gota colgante a 18 °C. Para 6a-R25G, los mejores resultados fueron obtenidos a partir de gotas compuestas por mezclas de volúmenes iguales de 7 mg/ml de solución de proteína en 100 mM Mes, pH 6.5, con 0.1 M de cacodilato de sodio y 1.4 M de acetato de sodio como precipitantes. Para AR, se usó el mismo agente precipitante pero la proteína fue diluida en TrisHCl 100 mM, pH 7.5. Los datos de difracción fueron colectados con un ánodo rotatorio Rigaku MicroMax-007 HF (Cu $\kappa \alpha$, $\lambda = 1.5416$) a 100 K en un detector de imagen de placa R-AXIS IV++. La matriz incluyó glicerol al 30% como crioprotector. Los datos fueron indexados e integrados usando XDS (Kabsch, 2010), y las reflexiones fueron combinadas y escaladas usando el programa Scala en CCP4 (Collaborative Computational Project 4, 1994). Los grupos espaciales correctos fueron determinados con Pointless (McCoy, 2006).

Determinación estructural y refinamiento

Las estructuras 3D fueron resueltas usando reemplazo molecular con el programa Phaser (McCoy *et al.*, 2007) en Phenix (Adams *et al.*, 2010), usando las coordenadas atómicas de WIL (PDB 2CD0) como modelo. La inspección de los mapas y la construcción de los modelos fueron hechas en COOT (Emsley & Cowtan, 2004), y los modelos resultantes fueron refinados con phenix.refine (Afonine *et al.*, 2012). Las moléculas de agua fueron adicionadas al modelo al final del refinamiento mediante una búsqueda basada en los picos observados en las diferencias de los mapas con un criterio basado en la distancia. MolProbity fue usado para el análisis de la estereoquímica del modelo y su validación (Chen *et al.*, 2010). La presencia de la mutación fue confirmada a través de las diferencias de los mapas de Fourier usando la estructura nativa como base. Los análisis de la interfaz del dímero fueron hechos usando el servidor PISA (Krissinel & Henrick, 2007), y los alineamientos con 3d-SS (Sumathi *et al.*, 2006). Los modelos finales fueron dibujados con Chimera (Dundas *et al.*, 2006), y las interacciones residuo-residuo fueron llevados a cabo con el servidor PIC (Tina *et al.*, 2007). Las coordenadas atómicas y los factores estructurales de los modelos finales fueron depositadas en el Protein Data Bank, con los números de acceso 5IR3 para AR y 5C9K para 6a-R25G.

RESULTADOS

Parte I. Diferencias y similitudes estructurales de las cadenas ligeras λVI

Determinación y comparación de las estructuras cristalográficas de AR y de 6a-R25G contra la estructura de 6aJL2

En colaboración con la Dra. Adela Rodríguez Romero y de la Dra. Alejandra Hernández Santoyo del Instituto de Química de la UNAM, se generaron las estructuras cristalográficas de AR y de 6a-R25G. Los datos cristalográficos y la estadística de refinamiento para AR y 6a-R25G se muestran en la Tabla 1. Ambos cristales difractaron a una resolución de 1.7 Å y 1.92 Å respectivamente.

Proteína (PDB)	AR (5IR3)	6a-R25G (5C9K)
Colección de datos		
Longitud de onda (Å)	1.54	1.54
Temperatura (°K)	100	100
Grupo espacial	I4 ₁ 22	$C_{1}2_{1}$
Dimensiones de la celda		
<i>a, b, c</i> (Å)	a=71.11, b=71.11, c=96.23	a=104.56, b=95.63, c=102.58
Ángulos de la celda	$\alpha = \beta = \gamma = 90$	α =90.0, β =96.0, γ =90.0
Coeficiente de Matthews (Å ³ Da ⁻¹)	2.43	2.69
Límite de resolución (Å)	34.81-1.70	34.65-1.92
Reflexiones únicas ^a	13829(1338)	76562(11143)
R _{merge} ^b	0.089 (0.486)	0.073 (0.460)
I/σI	11.3 (3.3)	13.1 (3.2)
$CC_{1/2}$ (%)	99.6 (87.4)	99.7(80.0)
Integridad (%)	99.4 (99.4)	100.0 (100.0)
Multiplicidad	4.3 (4.3)	2.9 (2.8)
Wilson B Factor (Å ²)	12.20	19.56
Estadística de refinamiento		
$R_{\rm work}/R_{\rm free}$ ^c (%)	17.6/20.7	17.3/21.9
No. de átomos		
Proteína/solvente/acetato	1048/157/1	6687/1010/4
B-value promedio (Å ²)	18.05	23.0
RMSD de idealidad		
Longitud de enlace (Å)	0.006	0.011
Ángulo de enlace (°)	0.971	1.27
Gráfica de Ramachandran (%)		
Regiones permitidas	97.00	96.31
Regiones no permitidas	3.4	3.69
Regiones atípicas	0.0	0.0

Tabla 1. Colección de datos y estadística del refinamiento estructural.

a Valores en paréntesis corresponden a la última capa de resolución.

^b $R_{\text{merge}} = \sum_{j} \sum_{b} (|\mathbf{I}_{j,b} - \langle \mathbf{I}_{b} \rangle|) / \sum_{j} \sum_{b} (\langle \mathbf{I}_{b} \rangle)$, donde *b* es el índice único de reflexión, $\mathbf{I}_{j,b}$ es la intensidad de la simetría relacionada con la reflexión, e $\langle \mathbf{I}_{b} \rangle$ es la intensidad promedio.

 $c_R = \sum_b ||F_o|_b - |F_c|_b||/\sum_b |F_o|_b$ para todas las reflexiones, donde F_o y F_c son los factores estructurales observados y calculados, respectivamente, y *b* define las reflexiones únicas. R_{free} está calculado análogamente para examiner las reflexiones, seleccionadas aleatoriamente, y excluidas del refinamiento.

El reemplazo molecular ejecutado con el programa Phaser, incluido en el programa Phenix (Adams *et al.*, 2002), reportó un reemplazo exitoso acorde a sus respectivos valores LLG y TFZ (Tabla 1). El patrón de difracción mostró que los cristales de AR pertenecían al grupo espacial tetragonal I4₁22, mientras que los cristales de 6a-R25G pertenecían al grupo espacial monoclínico C_12_1 . El mapa final de densidad electrónica 2Fo-Fc muestra una buena calidad y una buena correlación en las regiones determinantes de complementariedad (CDR) y las regiones marco (FR), por lo que ambas estructuras conservan la estructura canónica de una V_L , es decir, un dominio tipo inmunoglobulina (β sándwich).

Las unidades asimétricas mostraron que AR difractó como un monómero mientras que 6a-R25G difractó como un octámero, los cuales se analizan en la página 49, a diferencia de la estructura dimérica reportada de 6aJL2 (PDB 2W0K). Los coeficientes de Matthews, definido como el volumen del cristal por unidad de masa molecular de proteína, estuvieron en el rango descrito para proteínas globulares del mismo peso molecular (Matthews, 1968; Kantardjieff & Rupp, 2003). De manera sorprendente, el traslape del monómero de AR contra los monómeros A de 6aJL2 y de 6a-R25G mostraron una alta similitud con diferencias de tan solo 0.45 Å y 0.35 Å, respectivamente (Figura 8A). Sin embargo, un efecto notorio fue la pérdida de interacciones generadas por la presencia de la Arg25 de 6aJL2 como la interacción catión- π formada con la Phe2 y varios puentes de hidrógeno a su alrededor (Figura 8B). En la ausencia de la Arg25, se observó que Phe2 se reorientó hacia el interior del núcleo hidrofóbico superior tanto en 6a-R25G como en AR (Figura 8C).

Como la comparación entre cadenas principales no evidenció cambios estructurales dramáticos pero se detectó una ligera rotación en un residuo, se procedió a analizar el efecto de la reorientación de las cadenas laterales y su impacto en la modificación en las interacciones intramoleculares. Se usó el servidor PIC (Tina *et al.*, 2007) para ubicar estas interacciones (hidrofóbicas, puentes salinos, apilamiento de anillos aromáticos, e interacciones catión– π), y en la Tabla 2 se muestran aquellas que resultaron diferentes entre 6aJL2, 6a-R25G, y AR. Para el caso de los puentes de hidrógeno, se seleccionaron los más relevantes.

Figure 8. Traslape de estructuras. Se muestra el traslape entre las cadenas principales de 6aJL2 (verde) sobre su mutante sencilla 6a-R25G (azul) y sobre AR (naranja). **A.** Traslape de AR y los monómeros A de 6aJL2, y 6a-R25G. **B.** Las interacciones alrededor de Arg25 en 6aJL2 abarcan los segmentos del CDR1, el extremo N-terminal, y el asa correspondiente al residuo 68. **C.** La mutación Arg25Gly indujo la rotación de Phe2 así como lo muestran las estructuras de 6a-R25G y AR.

Tabla 2. Interacciones intramoleculares. Se describen las interacciones intramoleculares hidrofóbicas, puentes de hidrógeno, iónicas, aromático-aromático, cation- π diferentes entre 6aJL2, 6a-R25G, y AR determinadas con el servidor Protein Interaction Server – PIC usando las distancias interatómicas predefinidas (Tina *et al.*, 2007). En guiones se muestran las interacciones ausentes con respecto a la otra proteína.

Interacciones Hidrofóbicas			
6aJL2	6a-R25G	AR	
- PRO15-LEU107 - ALA31-ILE66 TRP35-TYR86 - ILE48-PHE62 VAL106-LEU107	PHE2-ILE30 PRO7-VAL11 ILE21-LEU104 ILE21-ILE75 TRP35-TYR86 - -	PHE2-ILE30 - PRO15-LEU107 PHE21-VAL104 PHE21-ILE75 - ALA43-PRO44 -	
	Puentes de Hidrógeno		
6aJL2	6a-R25G	AR	
- ARG25(NE)-SER27(O) ARG25(NH1)-SER29(O) ARG25(NH1)-ASN31b(OD1) SER27(N)-ARG25(O) SER68a(OG)-ASP67(OD2) - SER68b(OG)-ASP67(OD2) SER68b(OG)-SER70(OG) ASN69(ND2)-ARG25(O) - - GLY100(N)-GLN6(OE1) - LEU104(N)-THR102(O)	GLN6(OE1)-CYS88(SG) - - - - - - - - - - - - - - - - - - -	GLN6(OE1)-CYS23(SG) GLN6(OE1)-CYS88(SG) - - - - - SER68a(N)-ASP67(OD1) - - - ASN69(ND2)-GLY25(O) SER70(N)-ALA68b(O) SER70(OG)-SER68b(OG) GLY99(N)-CYS88(SG) - THR102(N)-GLN6(NE2) VAL104(N)-THR102(O)	
	Interacciones iónicas		
6aJL2	6a-R25G	AR	
- ASP92-HIS95a	GLU13-LYS17 ARG39-GLU81 ASP92-HIS95a	GLU13-LYS17 ARG39-GLU81 -	
Interacciones Anillo aromático – Anillo aromático			
6aJL2	6a-R25G	AR	
-	-	PHE21-TRP35 PHE21-TYR86	
Interacciones Catión - π			
6aJL2	6a-R25G	AR	
PHE2-ARG25	-	-	

Fue interesante observar el impacto que tuvo una mutación sencilla, 6a-R25G, ya que la modificación en las interacciones no fue sólo en el segmento correspondiente sino en todo el dominio generando un efecto a distancia. Por otro lado, en AR, el residuo Phe21 está interactuando hidrofóbicamente con Ile30, Trp35, Ile75, y Tyr86, los cuales en conjunto forman parte del núcleo hidrofóbico característico de estos dominios variables de inmunoglobulina. Sin embargo, usando esta estrategia, un inconveniente muy importante a enfatizar fue la imposibilidad para jerarquizar la relevancia estructural de cada residuo así como el impacto global de las mutaciones de AR y, sobre todo, el efecto global que una mutación sencilla ocasionó como se puede apreciar en 6a-R25G.

Considerando que AR es el extremo opuesto de 6aJL2, desde un punto de vista termodinámico y fibrilogénico, las siguientes partes del trabajo se centrarán en estas dos proteínas. Por lo tanto, se decidió emplear una visión general que abarcara los cambios de orientación de las cadenas laterales aun cuando el traslape entre las cadenas principales fuese similar. Para ello se optó por la estrategia de análisis de redes como metodología descriptiva usando a 6aJL2 como modelo de prueba.

Aplicación de análisis de redes sobre 6aJL2 para identificar los residuos clave involucrados en la estabilización de este dominio

En años recientes se ha desarrollado una nueva estrategia para estudiar las estructuras proteicas vistas como una red social. Esta técnica se basa en la teoría de gráficas cuyo enfoque es analizar las estructuras como si fueran figuras. Las maneras en que se puede transformar la estructura terciaria de una proteína en una gráfica de redes es considerando a cada residuo como un nodo y su relación con otro residuo es representada mediante una línea de unión entre cada vértice (Muppirila *et al.*, 2006). El análisis de redes permite identificar los residuos que presentan un mayor grado de conectividad en toda la molécula. Los residuos más interconectados potencialmente estarían direccionando el plegamiento favoreciendo la estabilización de la estructura nativa (Albert *et al.*, 2000). Las estructuras entonces tendrían nodos "maestros" cuya afectación modificaría sustancialmente las propiedades de toda la red ya que estos se encuentran altamente conectados. Asimismo, habría otros nodos cuyas modificaciones serían compensadas por el resto de la red dado su bajo grado de conectividad (Albert *et al.*, 2000). La aplicación del análisis de redes a una estructura proteica ha permitido localizar residuos estructuralmente importantes que se encuentran altamente conectados.

Dentro de la diversidad de parámetros para caracterizar una red, se usó Grado, Eigenvectores, y Entropía de Redes para caracterizar primeramente la estructura de 6aJL2. Grado se definió como el número de vecinos que tiene un residuo dentro de un radio de 5 Å considerando cualquier átomo que no fuese Hidrógeno (Li *et al.*, 2008). La técnica de Eigenvectores evalúa la jerarquía de un nodo incrementándola si éste se encuentra aledaño a uno que está altamente conectado a partir de una matriz de contactos (Costa *et al.*, 2007); por lo que se consideraron todos los átomos que estuvieran a una distancia de 5 Å. La técnica de Entropía de Redes se apoya en la teoría de la información haciendo uso de la entropía de Shannon donde cada uno de los nodos es calificado con un valor probabilístico para afectar a la red (Demetrius & Manke, 2004). Para esta técnica se consideraron todas las distancias entre todos los átomos. En el apéndice A se encuentran enlistados los residuos acorde a estas tres técnicas. Se seleccionaron los quince residuos mejor y peor posicionados de 6aJL2 para cada técnica y en la Tabla 3 se muestra la convergencia de estos residuos entre estas tres técnicas. En la Figura 9 se muestra la ubicación de estos residuos en la estructura.

 Tabla 3. Residuos de 6aJL2 mejor y peor calificados. Se muestra la convergencia entre los 15 mejores y los 15 peores residuos de 6aJL2 usando diferentes parámetros de análisis de redes. Se calculó el porcentaje de Área Expuesta al Disolvente (*Residue Solvent Accesibility*, RSA) con el programa NOC.

Se observó una buena relación en la valoración de los residuos entre estos tres parámetros mostrando al Trp35 como residuo principal y aquellos reportados como estructuralmente importantes en este tipo de dominios tipo β -sándwich (Chothia *et al.*, 1998). Los residuos ubicados en el asa 40-60, en el asa de los residuos 68, 68a, y 68b, así como en los CDRs, fueron calificados como de baja conectividad. Sin embargo, hubo una consideración que se hizo para seleccionar al parámetro más adecuado y fue la base teórica en las que se sustentan estos tres parámetros. El parámetro Grado es, principalmente, una aproximación de tipo geométrica, por lo que un residuo de mayor tamaño tiene mayor posibilidad de tener más vecinos que aquellos de menor tamaño como es la glicina. Aunque las estrategias de Eigenvectores y la Entropía de Redes usan una estrategia matemática similar para su resolución, el cálculo de eigenvectores a partir de una matriz de contactos, la Entropía de Redes describe el valor resultante del nodo con un valor probabilístico de afectar la red (Demetrius & Manke, 2004). Por lo tanto, acorde a la Entropía de Redes, a mayor valor entrópico del nodo una mayor probabilidad de afectar la red.

Figura 9. Convergencia entre la metodología de Grado, Eigenvectores, y Entropía de Redes. A. Ubicación de los residuos mejor calificados marcados en ocre los cuales están apuntando hacia el interior hidrofóbico de la molécula. B. Ubicación de los residuos peor puntuados marcados en violeta, los cuales están apuntando hacia el exterior de la molécula, hidrofílicos, y capaces de interactuar con un supuesto antígeno.

Sin embargo, es importante mencionar que un parámetro no tomado en consideración en los análisis de redes es el dinamismo de las estructuras moleculares así como los movimientos que resultan ser críticos para su función (Dror *et al.*, 2012). Por lo tanto, se consideró importante el incorporar los resultados generados de una dinámica molecular con el parámetro de Entropía de Redes.

Propuesta y validación de una metodología para la jerarquización de residuos empleando proteínas evaluadas termodinámicamente con diferente estructura terciaria

Se decidió seleccionar otras proteínas cuya estructura fuese diferente de 6aJL2 y que tuvieran un amplio conjunto de mutaciones puntuales analizadas termodinámicamente. Las proteínas seleccionadas fueron el inhibidor de quimiotripsina (PDB 2CI2), apoflavodoxina (PDB 1FTG), represor dimérico Arc (PDB 1ARR), complejo del dominio de unión α del receptor humano de estrógeno reconociendo su secuencia de ADN (PDB 1HCQ), proteína de choque térmico de *Bacillus subtilis* (PDB 1CSP), y la proteína de choque térmico de *B. caldolyticus* (PDB 1C9O); sus análisis termodinámicos están previamente publicados (Milla *et al.*, 1994; Itzhaki *et al.*, 1995; Perl & Schmid, 2001; Banci *et al.*, 2004; Campos *et al.*, 2004a; Campos *et al.*, 2004b; Wunderlich *et al.*, 2005; Wunderlich & Schmid, 2006; Gribenko & Makhatadze, 2007; Del Pozo-Yauner *et al.*, 2008; Deegan *et al.*, 2010; Hernández-Santoyo *et al.*, 2010; Van den Bedem, 2013; Del Pozo-Yauner *et al.*, 2014). Por el contrario, Aunque el segmento desordenado del supresor de citosina (PDB 2N34) no fue analizado termodinámicamente (Chandrashekaran *et al.*, 2015), éste sirvió como modelo de comparación entre proteínas globulares y un dominio intrínsecamente desestructurado.

Primeramente se comparó el parámetro Grado contra los experimentos termodinámicos de mutaciones puntuales de las proteínas globulares (Figura 10). En el caso del dominio de unión al ADN del receptor α de estrógeno se midió la capacidad de reconocimiento del receptor dimérico al ADN. En el caso de 6aJL2, se generaron y se analizaron termodinámicamente varias mutantes puntuales (6a-Q6N, 6a-R25H, 6a-I30G). La Figura 10 muestra la correlación entre el parámetro Grado y el efecto sobre la estabilidad termodinámica de la proteína. Sin embargo, un detalle muy importante de remarcar es que con este parámetro no se puede jerarquizar cada residuo acorde a su importancia estructural ya que varios residuos pueden compartir el mismo número de vecinos.

Figura 10. Contraste entre el parámetro Grado y valores experimentales. Cada punto de la gráfica representa una mutación puntual de la proteína en cuestión posicionado en el número de contactos del residuo original. **A.** Inhibidor de quimiotripsina, **B.** 6aJL2, **C.** apoflavodoxina, **D.** represor dimérico Arc, **E.** dominio de unión al DNA del receptor α de estrógeno, **F.** proteína de choque térmico de *B. subtilis*, y **G.** proteína de choque térmico de *B. caldolyticus*.

Se buscó una metodología publicada que conjuntara el análisis de redes y la dinámica molecular pero la búsqueda resultó infructuosa. Por lo tanto, se optó por proponer y validar una metodología que integrara estas dos técnicas para obtener las ventajas de ambas (Luna-Martínez *et al*, 2016). Para dinamizar las proteínas globulares mencionadas anteriormente, éstas fueron preparadas con el comando *Protein Preparation Wizard* del programa Maestro (Schrödinger LCC, NY, USA), y colocadas en una caja de agua de 10 Å. Mediante el comando Desmond de este mismo programa (Maestro-Desmond Interoperability Tools, version 3.0; Schrödinger, NY, USA), las proteínas fueron colocadas en una caja de agua, calentadas rápidamente, y luego mantenidas a 25 °C durante 25 ns. Todo el proceso se analizó mediante el *Root Mean Square Deviation* (RMSD) de la cadena principal observándose la estabilización del dominio durante este período de tiempo (Figura 11). Un dato interesante observable del RMSD del represor dimérico Arc (Figura 11D), fue que esta proteína registró la mayor diferencia de RMSD con respecto a su estructura inicial debido a que la estructura cristalográfica es de baja calidad acorde al reporte del sitio del PDB. Además, otro factor a considerar es que este represor dimérico está encargado de reconocer a una secuencia de ADN por lo que requeriría mayor grado de libertad para lograrlo. En general, en este marco de tiempo, se puede decir que las moléculas están estabilizadas ya que no se registraron cambios abruptos en el valor de RMSD a diferencia, por ejemplo, de una dinámica molecular donde un β_2 -receptor adrenérgico está reconociendo a un β -bloqueador (Dror *et al.*, 2012).

Figura 11. RMSD de la cadena principal. La diferencia de RMSD de la cadena principal entre la estructura cristalográfica y la correspondiente estructura en el momento indicado de la dinámica molecular usando Desmond. Hay un cambio observable en los primeros picosegundos durante el "calentamiento" de la estructura, pero se mantiene estable después de ese momento. **A.** Inhibidor de quimiotripsina, **B.** 6aJL2, **C.** apoflavodoxina, **D.** represor dimérico Arc, **E.** dominio de unión al DNA del receptor α de estrógeno, **F.** proteína de choque térmico de *B. subtilis*, y **G.** proteína de choque térmico de *B. caldolyticus*.

Para conjuntar la dinámica molecular con el análisis de redes, se extrajeron 100 estructuras a lo largo del tiempo de la dinámica, se calculó el promedio de la distancia del centro normalizado de masas entre cada par de residuos, y se construyó una matriz cuadrada con estos valores. Esta matriz se resolvió con la metodología de la Entropía de Shannon cuyo valor resultante se interpreta como el grado de conectividad del residuo en un sentido probabilístico; por lo que, a mayor valor entrópico, mayor probabilidad de perturbar a la red en caso de una perturbación. El valor entrópico de cada nodo fue dividido entre su respectivo valor de fluctuación generado por la dinámica molecular calculado por el *Root Mean Square Fluctuation* (RMSF). Este nuevo parámetro que reúne conectividad y movimiento fue denominado como *Structural-Determining Residue Identifier* (SDRI).

Para el cálculo de los SDRIs del segmento desordenado se emplearon las veinte estructuras reportadas (Nicholson & Norton, 2015), y se empleó el RMSD (Figura 12A) y el RMSF (Figura 12B) calculado usando el servidor RCI considerando únicamente los átomos de la cadena principal (Berjanskii & Wishart, 2013). El RMSD de las estructuras del NMR fue superior al de las estructuras sometidas a dinámica molecular, >10 Å (Figura 9A). De estas estructuras se realizó el mismo tratamiento matemático descrito calculándose los valores SDRI coloreándose en gradiente sobre la estructura (Figura 12C).

En la Figura 13 se muestra la distribución de los SDRIs con respecto a su posición en la respectiva secuencia. La distribución de los SDRIs de las proteínas globulares es muy disímil al del dominio poco estructurado del supresor de citosina. Se puede observar que el comportamiento de los SDRIs está mejor distribuido en las proteínas globulares que en el segmento desordenado. Para corroborar el enunciado anterior se realizó un análisis estadístico de la distribución de valores utilizando la simetría, curtosis, y el análisis Shapiro-Wilk como parámetros descriptivos (Tabla 4). Si una distribución es simétrica, existe el mismo número de valores tanto a la derecha como a la izquierda de la media. La curtosis describe la concentración de valores alrededor de la media describiendo si la curva es puntiaguda o roma, siendo valores igual o cercanos a cero cuando se tiene una distribución normal. La prueba Shapiro-Wilk se usa para contrastar que los datos cumplen con una distribución normal (Shapiro & Wilk 1965). Resultó interesante que el segmento desordenado tuviera valores marcadamente disímiles con respecto a los valores de las proteínas globulares, además de que los valores estadísticos resultantes convergieran a una distribución normal.

Figura 12. Visualización de los valores SDRI el extremo N-terminal intrínsecamente desestructurado de la región de interacción de la Janus Kinase. A. Valores de RMSD al comparar cada estructura contra la primera del PDB 2N34. B. Valores de RMSF de cada residuo de la cadena principal mostrando que la horquilla es más rígida que el resto de la proteína. C. Gradiente de color donde el valor más alto de SDRI está en azul y el valor más bajo está en amarillo.

Tabla 4. Estadística de la distribución de valores teóricos – SDRIs. Se evaluaron la simetría, la curtosis, y la normalidad de las distribuciones medidas con la prueba Shapiro-Wilk. La distribución de los SDRIs de las proteínas globulares muestra una buena distribución a diferencia del segmento desordenado. El análisis fue hecho usando SigmaPlot 11.0 (Systat Software, San Jose, CA).

Proteína	Simetría	Curtosis	Shapiro-Wilk
Inhibidor de quimiotripsina	0.16	-0.59	0.98
6aJL2	0.74	-0.03	0.95
Apoflavodoxina	0.80	0.12	0.95
Represor dimérico Arc	0.51	0.02	0.97
Complejo Receptor Estrógeno/DNA	-0.11	-0.19	0.99
Proteína de choque térmico de B. subtilis	0.53	-0.67	0.94
Proteína de choque térmico de B. caldolyticus	0.61	-0.54	0.94
Segmento desordenado	1.75	2.15	0.71

Figura 13. Contraste entre los SDRIs y su posición en la secuencia. Cada punto de la gráfica representa el valor normalizado del SDRI proveniente del análisis teórico y su posición acorde a la secuencia. Valores cerca de 0 indican residuos muy flexibles y de baja conectividad y valores cercanos a 1 indican residuos rígidos con alta conectividad. **A.** Inhibidor de quimiotripsina, **B.** 6aJL2, **C.** apoflavodoxina, **D.** represor dimérico Arc, **E.** dominio de unión al DNA del receptor α de estrógeno, **F.** proteína de choque térmico de *B. subtilis*, **G.** proteína de choque térmico de *B. caldolyticus*, y **H.** el segmento desordenado del supresor de citosina.

Al colorear la posición de los SDRIs en las estructuras de las proteínas globulares se ubicaron los residuos acorde a su importancia estructural. Al observar la posición de los SDRIs en la estructura, se puede notar que los residuos de más alto puntaje recayeron mayoritariamente en residuos apuntando hacia el núcleo hidrofóbico de la molécula (Figura 14). En cambio, los residuos de menor puntaje fueron aquellos de mayor flexibilidad y menor conectividad los cuales fueron ubicados en segmentos encargados de reconocimiento a otras macromoléculas como el asa del inhibidor de quimiotripsina, los CDRs de 6aJL2, el asa superior de la apoflavodoxina, y los extremos amino del represor dimérico Arc. Por lo tanto, el algoritmo propuesto puede ser aplicado a cualquier tipo de estructura terciaria o cuaternaria.

Figura 14. Gradiente de color. El valor más alto de SDRI coloreado en azul representa el nodo más conectado con movimiento restringido, y el SDRI más bajo coloreado en amarillo exhibe al nodo con mayor movimiento y menor conectividad. Las estructuras fueron preparadas usando PyMol. A. Inhibidor de quimiotripsina (PDB 2CI2), **B.** 6aJL2 (PDB 2W0K), **C.** apoflavodoxina (PDB 1FTG), **D.** represor dimérico Arc (PDB 1ARR), **E.** dominio de unión al DNA del receptor α de estrógeno (PDB 1HCQ), **F.** proteína de choque térmico de *B. subtilis* (PDB 1CSP), y **G.** proteína de choque térmico de *B. caldolyticus* (PDB 1C9O).

Los SDRIs y los valores termodinámicos derivados de sus respectivas mutaciones sencillas fueron graficadas y analizadas estadísticamente mediante regresión lineal y con el coeficiente de correlación de Pearson (Tabla 5). A pesar de que estos parámetros de estadística lineal mostraban una baja relación entre los SDRIs y los datos experimentales, la inspección visual entre estos datos sugería fuertemente que seguían un patrón (Figura 15).

Tabla 5. Estadística de SDRIs contra datos experimentales. El coeficiente de determinación (R^2) y el coeficiente de correlación de Pearson describen la relación entre los valores teóricos SDRIs y los valores experimentales. El análisis fue realizado usando el programa SigmaPlot11.0 (Systat Software, SanJose, CA).

Proteína	R ²	Coeficiente de Correlación de Pearson
Inhibidor de Quimiotripsina	0.25	-0.50
6aJL2	0.22	-0.54
Apoflavodoxina	0.28	-0.55
Represor dimérico Arc	0.24	-0.50
Complejo Receptor/DNA	0.29	-0.54
Proteína de choque térmico B. subtilis	0.06	-0.12
Proteína de choque térmico B. caldolyticus	0.08	-0.21

Por consiguiente se realizó un análisis estadístico aplicando un Análisis de Componentes Principales (PCA) para identificar patrones de datos aparentemente no relacionados (Abdi & Williams, 2010). Los resultados fueron presentados como *biplots* circulares los cuales permitieron examinar la relación entre las variables SDRI y datos experimentales como vectores (Figura 15). Los *biplots* permiten el análisis de la interacción entre los datos y sus variables, por lo que el término *bi* se refiere a la muestra simultánea entre las filas y las columnas de la tabla, no a la bi-dimensionalidad de la gráfica; por lo *biplots* sólo muestran las dimensiones (variables) que reúnen la máxima cantidad de variación de la tabla. (Kroonenberg, 2007).

Basados en los *biplots* del PCA y dado el ángulo calculado entre ambas variables, se pudo mostrar que el presente método es capaz de estimar el efecto de una mutación sencilla en la estructura de la proteína dependiendo de la importancia de un dado residuo sin importar su posición. Los *biplots* del PCA mostraron una buena correlación entre los datos teóricos y los datos experimentales donde el porcentaje de la variable teórica (DIM1) puede explicar gran parte de los valores experimentales (DIM2) de las proteínas analizadas. Estos resultados confirmaron la hipótesis de que los residuos más conectados y más rígidos son los que tienen una mayor influencia en la estabilidad estructural sin importar el tipo estructuración. Sólo habría que recalcar que la razón por la cual la proteína de choque térmico de *B. subtilis* mostró un menor valor de relación con respecto a las otras, podría atribuirse a que las mutaciones sencillas fueron dirigidas hacia el aumento de la estabilidad termodinámica guiando los cambios hacia la variante termófila de *B. caldolyticus*.

En general se observó que a mayor valor de SDRI hay una mayor tendencia a desestabilizar sustancialmente la estructura como ocurrió en el caso del represor dimérico Arc (VA22, EA36, IA37, VA41, and FA45), donde estas mutantes mostraron poca o nula cooperación en los experimentos de desnaturalización (Milla, Brown & Sauer, 1994). Estas mutaciones fueron realizadas en residuos con valores altos de SDRI (6, 4, 1, 2, y 19, respectivamente). El siguiente efecto observado fue que aumentar la estabilidad termodinámica ocurrió en las mutaciones realizadas en los residuos con menor valor de SDRI como en el caso de la apoflavodoxina (Figura 15C) y en la proteína de choque térmico de *B. subtilis* (Figura 15F) donde se favoreció la generación de puentes salinos.

Figura 15. Contraste de los SDRIs contra sus correspondientes valores experimentales. Cada punto de las gráficas representa una mutación sencilla en la proteína de interés. En el caso de los homodímeros únicamente se evaluó la cadena A. Los datos estadísticos se muestran en términos de eigenvectores: Dim1 está referido a los SDRIs y Dim2 está referido a los valores experimentales. Se calculó el cambio de estabilidad termodinámica de la mutante sencilla con respecto a la proteína nativa en términos de $\Delta\Delta G$ (DDG). Para el caso del receptor de estrógeno, se midió la capacidad de reconocimiento del dímero a la secuencia de ADN en términos del porcentaje de diferencia de afinidad de la mutante con respecto a la nativa (%Difference). A. Inhibidor de quimiotripsina, B. 6aJL2, C. apoflavodoxina, D. represor dimérico Arc, E. dominio de unión al ADN del receptor α de estrógeno, F. proteína de choque térmico de *B. subtilis*, y G. proteína de choque térmico de *B. caldolyticus*

Continuando con la validación de la metodología, se analizó la relación de los SDRIs con el efecto cinético de renaturalización/desnaturalización que una mutación sencilla puede tener sobre una proteína (Figura 16). Los análisis estadísticos indicaron que los SDRIs tuvieron mayor relación con las cinéticas de desnaturalización (Figura 16A) que con los de la cinética de renaturalización (Figura 16B). El plegamiento es un rearreglo dinámico de la red, lo cual implicaría que se requerirían otras condiciones y tiempos más largos para tener dinámicas moleculares que involucren los procesos de replegamiento/desplegamiento.

Figura 16. Comparación de los SDRIs con las cinéticas de desnaturalización y renaturalización del inhibidor de quimiotripsina. Las cinéticas de desnaturalización mostraron una mejor correlación con los SDRIs como se muestra en los biplots circulares. DIM1 se refiere a los valores SDRIs y DIM2 a los valores experimentales, $\Delta\Delta G$ (DDG). A. $\Delta\Delta G$ de la cinética de desnaturalización, mostrado como uDDG en el *biplot* circular; B. $\Delta\Delta G$ de la cinética de renaturalización, mostrado como fDDG en el *biplot* circular.

Para finalizar la validación de la metodología, otro punto importante no contemplado inicialmente fue la ubicación de las regiones desestructuradas en cualquier región. En colaboración con el Dr. Vladimir Uversky se hizo una comparación de los SDRIs con los servidores PONDR® VSL2B y FlexPred. FlexPred predice las fluctuaciones absolutas por residuo de una estructura tridimensional usando los factores B de la proteína en cuestión (Jamroz, Kolinski & Kihara, 2012). La propensidad del desorden intrínseco del predictor PONDR® VSL2B es uno de los predictores más exactos (Fan & Kurgan, 2014; Peng *et al.*, 2005; Peng & Kurgan, 2012). Los resultados de estas comparaciones, mostrados en la Figura 17, muestran claramente que estas tres herramientas computacionales pueden "ver" diferentes, aunque relacionadas, propiedades de una proteína. Hay que hacer notar que se usó la función (1-SDRI) para representar los valores y resaltar el desorden intrínseco en lugar de la rigidez

estructural. Estos resultados sugieren que hay una convergencia entre los valores de flexibilidad estructural calculados a partir de la estructura cristalográfica y la propensión intrínseca de una proteína a preservar el desorden. Además, pareciera que los residuos esenciales para la preservación de la estabilidad global de la estructura de la proteína están típicamente localizados en los segmentos más ordenados y menos flexibles.

Figura 17. Análisis del desorden intrínseco y la flexibilidad estructural. Las distribuciones de la propensión al desorden intrínseco evaluado con PONDR® VSL2B (curvas en negro), flexibilidad estructural estimada con FlexPred (curvas en azul), y la función (1-SDRI) que jerarquiza los residuos (curvas rojas y rosas) para las proteínas evaluadas. A. Inhibidor de quimiotripsina, B. 6aJL2, C. apoflavodoxina, D. represor dimérico Arc, E. dominio de unión al DNA del receptor α de estrógeno, F. proteína de choque térmico de *B. subtilis*, G. proteína de choque térmico de *B. caldolyticus*, y H. el segmento desordenado del supresor de citosina. La propensión al desorden intrínseco y la función (1-SDRI) están normalizadas entre valores de 0 y 1. El represor dimérico Arc y el complejo estructural del receptor de estrógeno resultaron en una reducción dramática de la amplitud de la función (1-SDRI). Las figuras correspondientes (D y E) también incluyen las curvas expandidas (1-SDRI) coloreadas en rosa.

Describiendo un poco los espectros, la inspección visual de las gráficas mostradas en la Figura 17 sugiere que en la mayoría de los casos, la propensión al desorden intrínseco genera bandas anchas las cuales definen la apariencia global de las curvas, mientras que la función (1-SDRI) y FlexPred agregan una resolución más fina. Adicionalmente, para algunas regiones, hay poca convergencia entre estas tres herramientas que puede ser debido a las consideraciones particulares de cada herramienta. No obstante, todas estas observaciones importantes sugieren que el desorden intrínseco predicho por la secuencia de aminoácidos sirve como un fondo importante para definir la flexibilidad global de la estructura terciaria de la proteína, que también es modulada por interacciones a distancia en una molécula plegada. Finalmente, este resultado sugiere que el desorden intrínseco de una proteína está contenido a partir de la estructura primaria pero la estructura terciaria sólo expone ciertos segmentos desordenados para llevar a cabo su función.

Por lo tanto, la metodología teórica propuesta fue examinada y validada con diferentes proteínas cuyas estructuras fuesen diferentes a la de 6aJL2 (Luna-Martínez *et al.*, 2016). La metodología puede jerarquizar cada nodo, aminoácido o nucleótido, acorde a su importancia estructural independientemente del tipo de estructura terciaria o cuaternaria.

Evaluación de las estructuras de AR y 6aJL2 con la metodología propuesta

Una vez validada la metodología se procedió a aplicarla sobre las estructuras de 6aJL2 y AR. Los SDRIs fueron normalizados – e l valor más alto es igual a 1 y el valor más bajo igual a 0, y comparados para observar los cambios de comportamiento (Figura 18). Aunque el patrón de distribución de los SDRIs entre AR y 6aJL2 decribe un comportamiento similar entre estas estructuras, hay algunos cambios en los valores de algunos residuos que estarían afectando la importancia de otros residuos centrales ubicados a su alrededor.

Figura 18. Comparación de SDRIs de 6aJL2 y AR. Los valores SDRIs de cada residuo de cada estructura fueron normalizados. En negro se muestran los SDRIs de 6aJL2, en rojo los SDRIs de AR.

Para todas las estructuras, cada residuo se jerarquizó acorde a los SDRIs donde el valor más alto se asignó al residuo más importante. En el anexo A se muestra la jerarquización total de cada uno de los residuos de AR y de 6aJL2 en base a sus SDRIs, y en la Tabla 6 se muestran los 15 residuos mejor y peor calificados para cada estructura. Los residuos mejor calificados entre ambas estructuras son similares convergiendo con residuos propios del núcleo hidrofóbico. La diferencia más notoria entre ambas estructuras se observó en los residuos peor calificados indicando que la flexibilidad y la conectividad cambiaron en varios segmentos de AR.

Proteína	6aJL2	AR		
Residuos mejor puntuados SDRI	1. Tyr86 9. Ile48 2. Cys88 10. Val47 3. Thr102 11. Ala84 4. Trp35 12. Ile21 5. Cys23 13. Ser72 6. Leu73 14. Thr24 7. Gln6 15. Ser90	1. Cys88 9. Val33 2. Cys23 10. Thr24 3. Trp35 11. Ala84 4. Thr102 12. Ser90 5. Gln6 13. Val104 6. Tyr86 14. Thr5 7. Ala71 15. Ile75		
Residuos peor puntuados SDRI	97. Gly28 105. Ser94 98. His8 106. His95a 99. Ser42 107. Asn95 100. Ser68 108. Ser93 101. Ser68a 109. Asn1 102. Ser56 110. Gly41 103. Ser42 111. Leu107	97. His95 105. Ser56 98. Asp1 106. Ser42 99. Gly41 107. His8 100. Tyr49 108. Ser68a 101. Arg39 109. Asp68 102. Pro40 110. Asn94 103. His95a 111. Glu81		

Tabla 6. Jerarquía de residuos de 6aJL2 y AR. Se muestran los 15 residuos con los valores más altos de SDRIs y los 15 residuos con los valores más bajos.

Como cada residuo representa un nodo y cada nodo tiene una posición dentro de su respectiva jerarquía, se comparó la posición de cada nodo de AR con respecto a la posición en 6aJL2. Los cambios positivos apuntan a que el nodo aumentó de importancia dada la disminución de su flexibilidad y un incremento en el número de interacciones a su alrededor. Por el contrario, los cambios negativos apuntan a una pérdida de su importancia por el aumento en la flexibilidad del nodo así como una pérdida considerable en el número de contactos a su alrededor. En la Tabla 7 se muestran los diez cambios de jerarquía, tanto positivos como negativos, los cuales sugieren cambios compensatorios, o descompensatorios, con respecto a 6aJL2.

Tabla 7. Comparación de Jerarquías. Se tomó a la jerarquía de 6aJL2 como base para ser comparada contra AR (Apéndice A). Los cambios indican la variación en la importancia del respectivo nodo indistintamente de la presencia de una mutación en esa posición.

Comparación	Cambio Positivo	Cambio Negativo			
	1. Ala31Ala (45)	101. Leu73Leu (-19)			
	2. Gln34Gln (41)	102. Arg61Arg (-20)			
	3. Ile30Ile (40)	103. Val47Val (-21)			
	4. Tyr36Tyr (33)	104. Phe62Phe (-21)			
	5. Gly28Gly (30)	105. Arg39Arg (-22)			
6aJL2 vs AR	6. Ser26Ser (26)	106. Lys103Lys (-22)			
	7. Asp51Asp (25)	107. Val19Val (-26)			
	8. Gln89Gln (25)	108. Glu13Glu (-28)			
	9. Ser27Gly (23)	109. Gln37Gln (-33)			
	10. Asn69Asn (23)	110. Tyr49Tyr (-41)			

Si se analiza el efecto residuo por residuo, la Tabla 7 pareciera no tener tanta relevancia pero toma otra perspectiva cuando se conjunta toda la información y se pone en una perspectiva estructural. Globalmente se observa que los cambios positivos y los cambios negativos tuvieron lugar en conjunto aunque en distintas regiones de AR (Figura 19). Las regiones más afectadas fueron el extremo N-terminal y el asa 40-60 las cuales han sido descritas como dominios de anti-agregación (Richardson & Richardson, 2001). Por lo que se podría inferir que una perturbación en este tipo de dominios podría desembocar en un mayor número de interacciones intermoleculares inadecuadas. En contraste, el dominio del CDR1 de AR mejoró su conectividad y se redujo su flexibilidad, aumentando así su posición jerárquica acorde a los SDRIs. Una probable explicación al aparente aumento de rigidez del CDR1 de AR podría ser atribuido a un efecto protector de este segmento hacia la cavidad ocasionada por la ausencia de la Arg25, la cual es considerablemente mayor a la de 6aJL2, 160.3 Å³ y 23.4 Å³ respectivamente (Figura 20).

Figura 19. Cambios de jerarquía de AR. La jerarquía de residuos de 6aJL2 fue tomada como base para ser comparada con la jerarquía de residuos de AR. En gradiente de color, en verde están representados los residuos que aumentaron de jerarquía, en rojo los que disminuyeron, y en blanco los que no tuvieron cambio. A. Vista frontal de AR mostrándose el CDR1 y los extremos amino y carboxilo terminales, B. Vista posterior de AR mostrándose el CDR1 y el asa 40-60 rica en prolinas.

Figura 20. Cavidades. En naranja se muestran los residuos 2, 21, 25 y 104, y en morado se muestra la cavidad ubicada en la región del CDR1 determinada con el servidor CASTp (Dundas *et al.*, 2006). A. 6aJL2, B. AR

Sintetizando la primera parte de este trabajo, se propuso y se validó una metodología capaz de jerarquizar los nodos (aminoácidos o nucleótidos) en términos de la importancia estructural asociada a la estabilidad termodinámica independientemente de su tipo de estructuración. El requisito más importante para la aplicación de esta metodología es que el dominio a analizar debe de ser globular para obtener información útil. En el caso de un péptido intrínsecamente desestructurado no se generó información sustancial más allá de lo visualmente evidente.

Una ventaja que presentó esta metodología fue que, al comparar dos estructuras con alto grado de identidad, las diferencias fueron aún más evidentes aunque debemos tomar en cuenta que esto no excluye el uso de otras herramientas computacionales y técnicas experimentales para afinar la información generada. Al conjuntar los parámetros de conectividad y flexibilidad, cada residuo fue jerarquizado revelando su importancia estructural. La comparación entre las jerarquías de los residuos de AR y 6aJL2 mostraron cambios globales y locales. Por ejemplo, un residuo conservado entre ambas proteínas podría haber cambiado drásticamente su importancia estructural como en el caso de Ala31 que aumentó 45 posiciones su importancia jerárquica, o en el caso de Tyr49 que decreció 41 posiciones (ver Tabla 7). Los segmentos de AR donde se acumularon las pérdidas de jerarquías se ubicaron en segmentos descritos como importantes para evitar la agregación intermolecular (segmento N-terminal y el asa 40-60). La modificación de la interacción de estos segmentos podría ser apreciada bajo simulaciones a tiempos más largos en condiciones desnaturalizantes.

Por otro lado, el segmento que se rigidizó en AR fue el CDR1 (Figura 19). Hay que considerar que el aumento de rigidez de este segmento no implica que el resto del dominio se estabilice, así como lo muestran los datos termodinámicos. Una explicación al incremento de rigidez del CDR1 de AR es que podría estar protegiendo la cavidad generada por la ausencia de la Arginina en la posición 25 (Figura 20). Esta cavidad, que es considerablemente mayor que la ubicada en 6aJL2 en el mismo segmento, no sólo afectó la reorientación de la cadena lateral de la Phe2 sino también estaría alterando la reorientación de las cadenas de otros residuos sin alterar la orientación de la cadena principal.

Parte II.- Análisis termodinámico y estructural de AR

En la siguiente parte de este trabajo, el objetivo fue entender los efectos de los residuos que presentaron resultados desestabilizantes en todo el dominio de AR mediante la generación de mutaciones hacia la línea germinal, 6aJL2. Sólo hay que enfatizar que la importancia de estudiar estos detalles radica en el hecho de que el paciente "AR" falleció cinco meses después de ser diagnosticado y que ésta fue la primera cadena amiloidogénica λ VI reportada (Husby *et al.*, 1974; Sletten *et al.*, 1981). Como se mencionó anteriormente, AR tiene una identidad de secuencia cercana al 85% con respecto a 6aJL2 (Figura 5).

Selección y análisis de tres residuos importantes en AR

Comparado contra 6aJL2, seis mutaciones en AR fueron localizadas en los *frameworks* (FRs)- N1D, I21F, S43A, E68D, S68bA, y L104V; y ocho mutaciones fueron localizadas en las Regiones Determinantes de Complementariedad (CDRs), segmentos que reconocen el antígeno- R25G, G27S, S31bD, N32S, Y33F, E50D, D92N, S94NS, y N95H (Figura 5). Las mutaciones en los FRs son menos frecuentes porque el proceso de hipermutación somática está concentrado en los "*hot-spots*" del DNA de los CDRs (Monson *et al.*, 2000; Clark *et al.*, 2006). Destacadamente, las posiciones 21 y 104 han sido descritas como pertenecientes al núcleo hidrofóbico central junto con el Trp35 (Chothia *et al.*, 1998; Williams *et al.*, 1996). La relevancia del Trp35 es que también puede ser usado como reportero de la compactación del núcleo hidrofóbico ya que su fluorescencia está mediada tanto por la hidrofobicidad local como por la cercanía del puente disulfuro Cys23-Cys88 (Lakowicz J.R., 2006; Walters *et al.*, 2009).

Dada la gran diferencia de fluorescencia intrínseca de 6aJL2 y de AR a dos diferentes temperaturas (Figura 21), considerando que la eficiencia cuántica del triptófano no se ve afectada por la temperatura ya que este residuo se encuentra ubicado al interior de la proteína (Leach, 1969), y que los valores de Tm de la desnaturalización térmica son de 49.9 °C y 33 °C respectivamente (González-Andrade *et al.*, 2013), sospechamos que el núcleo hidrofóbico de AR no tiene una compactación adecuada. Además, la baja estabilidad termodinámica de AR calculada por González-Andrade *et al.*, de $\Delta G^{25^{\circ}C} = 1.7$ kcal mol⁻¹ podría ser atribuida a esta baja compactación.

Derivado de estas observaciones, nos enfocamos en los residuos que estuvieran afectando el núcleo hidrofóbico central de AR y que fueran diferentes de los de 6aJL2. Por lo tanto, se propusieron las mutantes AR-F21I y AR-V104L. Por otro lado, la mutación 6a-R25G pareciera una variante alotípica de la línea germinal *6a* (del Pozo *et al.*, 2008). Esta sustitución disminuyó sustancialmente la estabilidad termodinámica de 6aJL2 y, por ende, aumentó su propensión a la formación de fibras. Resulta lógico hipotetizar que la mutante AR-G25R tendrá efectos estabilizantes en esta proteína.

Figura 21. Efectos de la temperatura sobre la fluorescencia intrínseca. Tanto 6aJL2 como AR fueron incubadas a la temperatura indicada durante 10 minutos. 50 µg/ml de proteína fue excitada a 295 nm y se registró el espectro de emisión entre 310 y 410 nm. En línea roja se muestra a AR incubada a 37 °C y en naranja a 25 °C; en línea verde se muestra a 6aJL2 incubada a 37 °C y en azul a 25 °C.

Entonces, las mutaciones que se realizaron en AR tanto en versión sencilla como en su combinatoria fueron AR-F21I, AR-G25R, y AR-V104L. Las mutantes dobles y triples fueron nombradas acorde a la posición de los residuos mutados; por ejemplo, la triple mutante fue nombrada como AR-21/25/104. Todas las mutantes fueron expresadas y purificadas así como se describió en la sección de Materiales y Métodos. Contrario a lo que se esperaba, AR-G25R mostró prácticamente una nula expresión heteróloga y la variante AR-25/104 mostró una baja expresión, alrededor de 100 µg de proteína purificada por litro de cultivo. No obstante, la variante AR-21/104 generó más de 1.5 mg de proteína purificada.

Conservación de la estructura secundaria de las mutantes de AR

Se analizó la calidad de la estructura secundaria mediante dicroísmo circular de UV lejano (Figura 22). Todos los espectros de las mutantes de AR, 6aJL2, y la mutante 6a-R25G, mostraron un mínimo alrededor de 215 nm el cual es típico de una estructura rica en estructura tipo β. No obstante, no todas las mutantes de AR mostraron un mínimo marcado en 230 nm, característico de residuos aromáticos ópticamente activos, y este mínimo podría deberse a un rearreglo estructural interesante ya que sólo las mutantes conteniendo la mutación F21I tenían este mínimo. Otros espectros colectados fueron obtenidos a través de un calentamiento gradual de las muestras hasta los 70 °C. Posteriormente fueron enfriadas hasta 20 °C para así obtener los espectros de las proteínas desnaturalizadas y renaturalizadas. Estos espectros fueron muy similares entre sí, en su respectiva variante, sugiriendo que el proceso de desplegamiento es reversible.

Figura 22. Espectros en UV lejano en estado nativo, desnaturalizado, y renaturalizado. Las líneas continuas muestran los espectros de las proteínas nativas obtenidos a 20 °C; los espectros de las proteínas desnaturalizadas térmicamente a una velocidad de 1 K/min hasta 70 °C y mantenidas a esta temperatura durante 10 minutos se muestran en líneas con puntuado discontinuo (---); y los espectros de las proteínas renaturalizadas a 20 °C después del ciclo de calentamiento se muestran en líneas con cuadros (**DED**). **A.** 6aJL2, **B.** 6a-R25G, **C.** AR, **D.** AR-F21I, **E.** AR-V104L, **F.** AR-21/25, **G.** AR-21/104, **H.** AR-25/104, e **I.** AR-21/25/104.

Estabilidad termodinámica de las mutantes de AR

Las proteínas fueron analizadas mediante experimentos por desnaturalización química y térmica (Figura 23, Tabla 8). Notablemente, exceptuando la mutante AR-G25R, las proteínas siguieron un proceso de desnaturalización de dos estados. AR-F21I fue la mutante sencilla menos afectada reflejándose en la mejoría en los valores de la estabilidad termodinámica (ΔG°), el punto medio desnaturalización (C_m), y en la temperatura media (T_m). Aunque las mutantes sencillas AR-F21I y AR-V104L mostraron cambios de entalpía similares (ΔH°); AR-V104L no contribuyó importantemente a la estabilización como ocurrió con la mutante AR-F21I. La mutación G25R, como la mutante AR-21/25, difícilmente contribuyó a la estabilidad comparada con la mutante AR-F21I a pesar del notorio incremento en la ΔH° .

La mutante AR-25/104 mostró un ligero incremento en los valores ΔH° y de $\Delta \Delta G^{\circ}$ comparado con la mutante AR-V104L; sin embargo, en términos del aumento de la estabilidad de $\Delta \Delta G^{\circ}$, no fue significativo a comparación de la mutante AR-F21I.

Figura 23. Experimentos de desnaturalización. Los parámetros termodinámicos calculados están mostrados en la Tabla 8. **A.** Fracción de proteína desnaturalizada en función de la concentración del cloruro de guanidina. Las líneas sólidas representan el ajuste a un modelo de dos estados. **B.** Fracción de proteína desnaturalizada en función de la temperatura, calentada a una velocidad de 1 °C/min.

Aunque la mutante AR-21/104 mostró parámetros termodinámicos térmicos similares a la mutante AR-21/25, los parámetros derivados de los experimentos químicos muestran mejores valores en la mutante AR-21/104 sugiriendo un restablecimiento en el núcleo hidrofóbico. Notablemente, la triple mutante exhibió valores de estabilidad térmica similares a los de éstas dobles mutantes, indicando que la mutación Gly25Arg no tuvo una aportación sustancial al mejoramiento de la estabilidad termodinámica. Entonces, el anillo aromático de la Phe21 está perturbando enormemente interacciones importantes entre los residuos que conforman el núcleo hidrofóbico. Aun así, ni la más estable de las variantes de AR pudo igualar los parámetros termodinámicos de los de 6aJL2 (Tabla 8), sugiriendo que otros cambios no contemplados en este trabajo estarían previniendo la completa estabilización de AR.

Tabla 8. Estabilidad termodinámica. Los experimentos se realizaron por triplicado y el error mostrado es la desviación estándar. Para la desnaturalización térmica, se muestran los valores calculados a partir de las curvas de desnaturalización. Los valores de ΔΔG fueron calculados considerando a AR como la proteína nativa; los valores positivos indican una mayor estabilidad que la de AR La mutante AR-G25R fue una mutación deletérea y sus valores termodinámicos no fueron determinados. ^a Datos tomados de del Pozo-Yauner, 2008. ^b $\Delta\Delta G = (T_mMutante-T_mWildType)$ *(Δ H°WildType/T_mWildType) (Pace *et al.*, 1989). ^c $\Delta\Delta G = mWildType$ *($C_mMutante-C_mWildType$) (Pace *et al.*, 1989).

Parámetros Termodinámicos	AR (□)	AR-F21I (∆)	AR-V104L (°)	AR-21/25 (*)	AR-21/104 (會)	AR-25/104 (▽)	AR- 21/25/104 (◇)	6aJL2 ª (*)	6a-R25G ª
ΔH° _m kcal mol ⁻¹	51.8 ± 3.2	50.6 ± 4.0	58.3 ± 1.9	70.4 ± 1.4	69.5 ± 2.5	62.5 ± 0.2	69.4 ± 0.2	86.2	77.2
T _m °C	31.6 ± 0.3	40.4 ± 2.2	35.0 ± 0.3	43.5 ± 0.4	44.8 ± 0.4	36.8 ± 0.9	44.7 ± 0.1	49.9	44.2
ΔG ^{25 °C} kcal mol ⁻¹	1.2 ± 0.1	2.5 ± 0.2	1.9 ± 0.1	4.1 ± 0.1	4.3 ± 0.2	2.3 ± 0.2	4.3 ± 0.1	5.2	3.8
ΔΔG ^{o b} kcal mol ⁻¹	-	1.5	0.6	2.0	2.2	0.9	2.2	3.1	2.1
С _т [М]	0.4 ± 0.1	0.8 ± 0.1	0.4 ± 0.1	0.8 ± 0.1	1.2 ± 0.1	0.5 ± 0.1	1.0 ± 0.1	1.4	1.0
-m kcal mol ⁻¹	4.0 ± 0.2	3.2 ± 0.2	3.5 ± 0.5	3.5 ± 0.5	3.1 ± 0.4	4.5 ± 0.6	3.7 ± 0.3	3.6	3.8
ΔG° _{H2O} kcal mol ⁻¹	1.6 ± 0.3	2.6 ± 0.2	1.5 ± 0.2	2.9 ± 0.5	3.8 ± 0.3	2.1 ± 0.2	3.5 ± 0.2	5.2	3.7
ΔΔG ^{o c} kcal mol ⁻¹	-	1.5	0.1	1.7	3.2	0.2	2.1	4.0	2.4
t _{lag} h	0.4	1.0	0.5	2.7	10.5	0.9	7.5	14.2	2.0
Growth rate h ⁻¹	11	7.3	7.3	1.8	1.0	6.8	1.2	0.5	1.8

Cinéticas de fibrilogénesis y visualización de las fibras por microscopía electrónica

Los valores termodinámicos fueron comparados con la formación de fibras *in vitro*, experimentos conocidos como fibrilogénesis *in vitro* (Figura 24). Fue sorprendente observar que AR formó fibras en menos de 1 hora a 37 °C, mostrando el tiempo *lag* más corto y la velocidad de incorporación más rápida. Fue igualmente sorprendente que estos tiempos aumentaron cuando los experimentos se realizaron a 25 °C (Figura 24A).

Las mutantes también exhibieron tiempos *lag* muy diferentes entre sí pero acordes a su estabilidad termodinámica, con la excepción de la triple mutante AR-21/25/104 (Figura 24B). Aquellas con cinéticas de fibrilogénesis similares a las de AR fueron las mutantes menos estables como AR-V104L y AR-25/104, mostrando que la mutación V104L por sí sola no pudo contrarrestar el efecto desestabilizante de la Phe21. Por ende, las mutantes conteniendo la mutación F21I de AR mostraron una mayor resistencia a la formación de fibras. Interesantemente, la mutante AR-21/104 fue la mutante menos fibrilogénica.

Figura 24. Fibrillogenesis *in vitro*. Las muestras conteniendo 100 μg ml⁻¹ de proteína fueron incubadas en PBS 1X a 37 °C, a menos que otra temperatura esté indicada, y bajo agitación continua. La formación de fibras fue monitoreada mediante los cambios de fluorescencia del Tioflavín T. Los experimentos se repitieron por triplicado. **A.** AR incubada a 37 °C y and 25 °C mostrando diferentes tiempos *lag*. **B.** Fibrilogénesis de las mutantes de AR mostrando diferentes tiempos *lag* y diferentes velocidades de extensión de fibras, incubadas a 37 °C.

En colaboración con la Dra. Rosana Sánchez del Instituto de Biotecnología de la UNAM, la microscopía electrónica mostró cambios en la distribución poblacional entre fibras amiloides y lo que aparentemente son agregados amorfos (Figura 25). Como se puede apreciar en la microscopía de AR (Figura 25A), se encontró una gran cantidad de fibras definidas, pequeñas, y delgadas. Conforme la mutante de AR es más estable, la población de fibras va disminuyendo tanto en cantidad como en definición, al igual que van en aumento las regiones ligeramente turbias de las cuales podría decirse que toman la apariencia de agregados amorfos (Figura 25 B-G). En pocas palabras, podríase decir que las cinéticas de formación de fibras *in vitro* fueron afectadas conforme el aumento de la estabilidad.

Figura 25. Microscopía de fibras amiloides. La microscopía electrónica de las fibras, posterior a una incubación de 24 horas, se realizó a una magnificación de 50 K de muestras a una concentración de 200 μg ml⁻¹. **A.** AR, **B.** AR-F21I, **C.** AR-V104L, **D.** AR-25/104, **E.** AR-21/104, **F.** AR-21/25, y **G.** AR-21/25/104

Cambios detectables en el extremo N-terminal generados por la ausencia de Arg25

Debido a que previamente se había descrito en la Figura 8 una alta similitud estructural entre las cadenas principales de 6aJL2, su variante 6a-R25G, y AR, este resultado permitía suponer que la influencia que podría estar teniendo la posición 25 sobre la estructura en su conjunto resultaría sutil. Conjuntamente, la evidencia experimental derivada de las mutantes de AR sugiere que la arginina, proveniente de la mutación Gly25Arg, no se está acomodando adecuadamente y que, de alguna manera, el ambiente químico de AR en esta región está influyendo en una correcta orientación. Como la Phe2 mostró un cambio en su orientación, se conjeturó sobre la presencia de cambios mínimos en el extremo N-terminal. Asimismo, previamente se ha demostrado que mutar la Phe2 por otros residuos afecta la estabilidad del dominio de 6aJL2 (del Pozo *et al.*, 2015).

Por esas razones, se consideró importante poner atención en el segmento N-terminal entre los residuos 1 al 33 (Figura 26). Puesto que 6aJL2 cristalizó como un dímero, se compararon ambos monómeros, y se observó que la hebra β 1 estaba ausente en el monómero A pero presente en el monómero B (Figura 26A). Aun así, esta hebra de 6aJL2 resultó ser ligeramente más corta con respecto al monómero A de 6a-R25G, y, al mismo tiempo se observó que la hebra β 3 aumentó de longitud en 6a-R25G (Figura 26B). La similitud del segmento N-terminal entre 6a-R25G y el de AR es notorio (Figura 26C). Empero todas estas modificaciones en las hebras β 1 y β 3 entre estas variantes no afectó en lo más mínimo la longitud de la hebra β 2 (Figura 26D).

Figura 26. Extremos N-terminal. La longitud entre las hebras $\beta 1$ y $\beta 3$ y el número de puentes hidrógeno uniendo estas hebras son diferentes entre 6aJL2, 6a-R25G, y AR. **A.** En color oliva se muestra el monómero A de 6aJL2, y en azul rey el mismo segmento del monómero B. **B.** En verde se muestra este segmento del monómero A de 6aJL2, y en cian al mismo segmento del monómero A de 6a-R25G. **C.** En naranja se muestra este segmento del AR. **D.** Traslape de estos segmentos del monómero A de 6aJL2, 6a-R25G, y AR.

Todas estas modificaciones en la estructura secundaria (Figura 22), y de las interacciones entre residuos (Tabla 2), a pesar de la alta homología estructural, dieron pauta a hipotetizar si todo esto modificaría la estructuración cuaternaria. Por lo que se decidió analizar la estructuración cuaternaria más simple que, para este caso, son los dímeros de Bences-Jones.

Generación de estructuras cuaternarias a partir de las estructuras cristalográficas

Siguiendo sus propios parámetros de simetría se construyeron dímeros de Bence-Jones de 6aJL2, 6a-R25G, y AR y sus áreas de interfase usando el servidor PISA (Krissinel & Henrick, 2007). El traslape entre todos estos dímeros mostró una alta homología (Figura 27); asimismo, el área de interfase para los tres dímeros resultó similar con un valor de 623 Å. Sin embargo, el número de puentes de hidrógeno y de puentes salinos localizados en la interfase resultó diferente. En 6aJL2 se encontraron 6 puentes de hidrógeno y ningún puente salino; en

6a-R25G, 5 puentes de hidrógeno y 2 puentes salinos; y en AR, 4 puentes de hidrógeno y 4 puentes salinos. Lo anterior sugiere que, en caso de formarse en la orientación adecuada, los dímeros de Bence-Jones de AR tendrían interacciones muy fuertes en el área de interfase.

Figura 27. Dímeros de Bence-Jones. Estructuras diméricas generadas con el servidor PISA. El dímero en color gris pertenece a AR; en verde, 6aJL2. Los dímeros de 6a-R25G estuvieron organizados de la siguiente manera: en naranja se encuentra interactuando los monómeros A-G; en cian, los monómeros F-D; en rojo, los monómeros C-E; en azul rey, los monómeros H-B; y en rosa, los monómeros B-H.

Estos resultados se vuelven más interesantes cuando se incrementa el tamaño de la celda unitaria siguiendo sus parámetros de simetría sin seleccionar la generación de dímeros de Bence-Jones. Usando el programa Chimera UCSF (Pettersen et al., 2004), se generaron las estructuras octaméricas de 6aJL2 y de AR dado que la variante 6a-R25G cristalizó naturalmente como octámero (Figura 28). Considerando que AR presenta 14 mutaciones y una glicina extra comparada contra 6aJL2, el fenómeno más interesante fue que sus presuntas estructuras octaméricas se asemejaron al octámero cristalográfico de 6a-R25G (Figura 28A-C). Como el octámero de 6a-R25G no requirió el fenómeno de intercambio de segmentos o intercambio de dominios en esta multimerización, este resultado sugiere que el apilamiento directo es el mecanismo preferido para la agregación de las cadenas ligeras tipo λ VI (Nelson & Eisenberg, 2006). Al rotar el octaméro de 6a-R25G hacia una proyección transversal (Figura 28D), se puede observar que la organización de las cadenas principales permite un pequeño hueco donde están apuntando las cadenas laterales de aminoácidos polares como His8, Gln38, Ser42, y Tyr87 junto con Pro7 (Figura 28E). Estos mismos aminoácidos están presentes en los octámeros de 6aJL2 y de AR. De acuerdo con todos estos datos estructurales, podría sugerirse que el reajuste del extremo N-terminal podría considerarse irrelevante pero quizás se trate de un cambio significativo que facilite la asociación intermolecular.

Figura 28. Octámeros. Las estructuras homo-octaméricas fueron generadas usando el programa Chimera UCSF siguiendo los parámetros de simetría del cristal reportado de **A.** 6aJL2 (PDB 2W0K), y **B.** AR (PDB 51R3). **C.** Octámero cristalográfico de 6a-R25G (PDB 5C9K). **D.** Eje transversal del octámero de 6a-R25G, y **E.** residuos localizados en el interior del hueco.

DISCUSIÓN

Amiloidosis AL λVI

Muchos de nuestros esfuerzos en el laboratorio se han enfocado a explicar la alta asociación de la línea germinal *6a* con la amiloidosis AL, visto todo desde una perspectiva termodinámica y estructural. Aun cuando se haya construido y expresado a 6aJL2 junto con muchas mutantes sencillas, el proceso de hipermutación somática incrementa el grado de dificultad ya que durante este proceso difícilmente se produce una región variable de cadena ligera con una sola mutación. Se requerirían más de dos mil mutantes sencillas y un número exorbitante de mutaciones en su combinatoria a lo largo de los 111 residuos que comprende esta proteína.

Para solventar estas disyuntivas experimentales se han tomado otras alternativas como, por ejemplo, el analizar otras líneas germinales tipo λ , específicamente tipo λ III (Villalba-Velázquez *et al.*, 2015). Una de las conclusiones del trabajo de Villalba *et al.* fue que 6aJL2 resultó la línea germinal menos estable comparada con las otras líneas germinales aun cuando esta línea germinal es más estable que las V_L provenientes de ella. En conjunto con los otros trabajos donde se han generado mutaciones puntuales de 6aJL2 (del Pozo-Yauner *et al.*, 2008; Hernández-Santoyo *et al.*, 2010), esto nos orilla a suponer que esta línea germinal tiene una alta tendencia a la disminución de la estabilidad termodinámica. Desde un punto de vista evolutivo, hay indicios de que la línea germinal V_L λ 6 es una de las líneas germinales ancestrales ya que se han reportado genes ortólogos compartidos entre humanos, ratones, y tiburones (Marchalonis *et al.*, 1998). Sabiendo que el rearreglo de cadenas variables tipo κ ocurre antes que las tipo λ (Korsmeyer *et al.* 1981), y que a pesar que la línea germinal *6a* es de bajo uso preferencial en paciente sanos pero que en estado libre tiene una alta probabilidad de derivar en amiloidosis AL (Perfetti *et al.*, 2002), podría plantearse que el uso de esta línea germinal estaría restringido.

Otro de los datos más interesantes de la caracterización de 6aJL2 fue que su cinética de fibrilogénesis *in vitro* llegó a la máxima velocidad de incorporación y el menor tiempo *lag* al incubarse a la concentración media de desnaturalizante, apuntando a que esta proteína en un estado parcialmente desnaturalizado es más susceptible a la agregación (Blancas-Mejía *et al.*, 2009). Si bien se ha constatado la presencia de posibles segmentos pro-fibrilogénicos en la secuencia de 6aJL2 usando predictores como TANGO (Villalba-Velázquez *et al.*, 2015), estos no tienen las características adecuadas para favorecer la agregación amiloide. Por ejemplo, en la construcción para la línea germinal λ 3m, 3mJL2, se encontraron secuencias profibrilogénicas pero esta línea germinal no está implicada en la amiloidosis AL ni tampoco desarrolló fibras *in vitro* (Villalba-Velázquez *et al.*, 2015). En lo que a 6aJL2 concierne, el segmento pro-fibrilogénico detectado en el segmento pro-fibrilogénico mejor calificado está

localizado entre los residuos 35-40, varios de los cuales se ubican en los canales interiores de los octámeros (Figura 28).

Sin embargo, a pesar de todos estos análisis, es difícil extrapolar el efecto que una mutación puede tener en todo el dominio puesto que algunas mutaciones pueden ser compensatorias y otras desestabilizantes. Adicionalmente, analizar a 6aJL2 bajo la estrategia de mutaciones puntuales conllevaría un trabajo por demás arduo evaluando cada una de las dos mil variantes y, por demás extenuante, el análisis de la combinatoria global. Si bien, hay que recordar que toda esta área de investigación inició formalmente con el análisis termodinámico y mutagénico de una V_L derivada de paciente, relacionándose estos parámetros con experimentos de fibrilogénesis *in vitro* (Hurle *et al.*, 1994). Los resultados indican que una menor estabilidad termodinámica correspondía a una mayor tendencia a la formación de fibras, sugiriendo que esto podría servir como diagnóstico en la evolución de la enfermedad. Así como V_L REI, que es de isotipo κI, muchas otras VLs han sido caracterizadas para entender el por qué esta susceptibilidad a la agregación ordenada de fibras.

Consecuentemente, se seleccionó a AR, una V_L no caracterizada en el inicio de esta investigación con una característica en particular: la presencia de una glicina en la posición 25 la cual la hace análoga a la mutante 6a-R25G, una variante presumiblemente alotípica de 6aJL2. Otras V_L s tipo λ VI, como WIL y JTO, habían sido analizadas previamente pero éstas presentan una Arg25 en su secuencia (Wall *et al.*, 1999). Quedaba entonces la cuestión del papel que tenía esta mutación Arg25Gly en un contexto estructural.

AR, la contraparte de 6aJL2

Antes de analizar las implicaciones, comparaciones, o cualquier otra disertación derivadas del análisis termodinámico, fibrilogénico, o del análisis de redes, un dato no mencionado en la sección de resultados, porque sólo fueron resultados negativos pero que es necesario hacer hincapié, fue el intento de subclonar a AR y a sus mutantes del vector de baja expresión pSyn1 al vector de alta expresión pET22b para así solventar la cuestión de la baja expresión heteróloga. No se obtuvieron transformantes de *E. coli* aun utilizándose diferentes cepas como DH5 α , TG1, W3110, y XL-10Gold; así como tampoco de los procesos de subclonación ya que se usaron controles y se secuenció el vector pET22b. Únicamente usando el método PCR CloneJet de ThermoFischer se obtuvieron colonias; sin embargo, las secuencias mostraron pérdidas de nucleótidos entre el sitio de unión al ribosoma (rbs) y el péptido señal (pelB) ubicado río arriba de los sitios de clonación los sitios de clonación. No se pudo detectar proteína recombinante en *E. coli* BL21 o TG1 aun reduciendo la cantidad de inductor (IPTG). En conclusión, estos resultados indican que tanto AR como sus variantes pudieron haber resultado tóxicas para *E. coli*.

Volviendo a los resultados termodinámicos, AR es la V_L más inestable y la más fibrilogénica reportada hasta el momento. No es sorprendente, entonces, que el paciente haya fallecido en un tiempo significativamente menor al tiempo promedio después del diagnóstico considerando que la detección se haya realizado "oportunamente". Si existiese un banco de valores termodinámicos de estas VLs amiloidogénicas, se podría pronosticar un tiempo aproximado de sobrevivencia no considerando intervención médica como el trasplante de órganos afectados, el tratamiento con algún fármaco como heparán, o inclusive con quimioterapia (Gillmore & Hawkins, 2006).

Ahora bien, las estructuras secundarias y las estructuras cristalográficas de AR y de 6a-R25G mostraron que su estructuración era similar y que sus cadenas principales estaban altamente conservadas (Figuras 8 y 28); Cabe mencionar que estos resultados son frecuentes así como lo descrito en las mutantes de JTO (Wall *et al.*, 2004), las V_Ls tipo KI AL-09 y AL-103 (DiCostanzo *et al.*, 2012), las variantes analizadas de la línea germinal λ III (Villalba-Velázquez, 2015), e inclusive con varias mutantes de 6aJL2 (Hernández-Santoyo *et al.*, 2010). Uno de los puntos más dramáticos durante este proyecto fue el rechazo de una hipótesis muy enraizada en el grupo de investigación sobre la modificación en la estructura secundaria del CDR1 propiciada por el residuo ubicado en la posición 25 (del Pozo-Yauner *et al.*, 2006). Este dato no sólo modificó la visión del papel del CDR1 sino que nos obligó a considerar los efectos compensatorios de la rotación de las cadenas laterales en un entorno global (Tabla 2).

Durante estos años de investigación se generaron dos maneras para entender a AR, desde una perspectiva teórica y otra experimental. Brevemente, la perspectiva teórica involucró la propuesta de reunir el análisis de redes con las dinámicas moleculares, así como su validación con proteínas caracterizadas pero completamente ajenas a una V_L (Luna-Martínez *et al.*, 2016). Los datos teóricos correspondieron en buena medida con los datos termodinámicos así como con la ubicación de segmentos desestructurados (Figuras 12 y 14). A pesar de que cada proteína llevaría su respectivo vasto análisis, el objetivo de esta metodología era analizar a la estructura de manera global sin necesidad de emplear otras aproximaciones como la incorporación de la comparación filogenética de la secuencia o un análisis de una estructura de una proteína constituida por aminoácidos no comunes o con modificaciones post-traduccionales *sui generis* de un organismo (Liu & Schultz, 2010). De esta manera, si y sólo si esta proteína de *novo* contase con una estructura determinada experimentalmente, se podría analizar la influencia que cada nodo (residuo o nucleótido) está teniendo sobre la estructura.

Retornando al tema de la amiloidosis AL, el aplicar esta metodología en 6aJL2 y en AR, éstas mostraron diferencias no esperadas como que AR tuviera mayor número de interacciones en el CDR1 y una disminución de éstas en los extremos N-terminal y en el asa de prolinas 40-60 (Figura 19). Aparentemente esto va en contrasentido de lo dicho para el CDR1; sin embargo, este segmento estructural podría estar fungiendo como segmento protector al impedir la exposición del núcleo hidrofóbico superior (Figura 20). Esto podría explicar los resultados termodinámicos del por qué la mutación Gly25Arg no se comportó acorde a lo pronosticado. En otras palabras, el resultado de la rigidización del CDR1 de AR podría explicar el por qué las variantes de AR con la mutación Gly25Arg no incrementaron la estabilidad termodinámica del dominio. Con ello, no sólo implicaría que AR tuviera un ambiente químico diferente en el CDR1 con respecto al de 6aJL2, sino también que la aparente rigidización impidiera un correcto acomodo de la arginina.

Los resultados termodinámicos de las mutantes del núcleo hidrofóbico de AR indicaron que este dominio contiene un núcleo perturbado por un anillo aromático (Tabla 6). Sin embargo, considerando que AR es una V_L producto de los procesos de maduración de una célula B, hubiese sido interesante conocer la VH contraparte que le permitiese contrarrestar los efectos de esta baja estabilidad. Además, conociendo la V_H y la V_L , hasta se podría indagar qué antígeno o antígenos serían capaces de reconocer. Ahora bien, aun cuando AR es la variante más inestable, la estructura de AR *per se* muestra interacciones compensatorias repartidas en toda la estructura con respecto a 6aJL2.

Las cinéticas de fibrilogénesis de las mutantes de AR tuvieron muy buena relación con los datos termodinámicos pero las microscopías electrónicas mostraron un aumento en la población de agregados amorfos (Figura 25), sugiriendo que la estabilización estructural de AR estaría modificando las rutas de agregación. Éste es un dato que podría parecer evidente; sin embargo, en el caso de las mutantes de la línea germinal 3rJL2, las fibras dejaron de ser las típicas fibras rectas mostrando una curvatura no reportada previamente (Villalba *et al.*, 2015). Sabiendo que una mutación podría diversificar las propiedades estructurales de una fibra amén de las propiedades termodinámicas de la variante, se ha propuesto que los amiloides pueden ser utilizados como biomateriales (Peralta *et al.*, 2015).

Convergencia de las estructuras octaméricas

Contrastando la rigidización del CDR1, los segmentos que se flexibilizaron en AR (Figura 19) fueron segmentos descritos como importantes para evitar la agregación intermolecular como el extremo N-terminal y el asa de prolinas 40-60 (Richardson & Richardson, 2001). Cristalográficamente, también se encontraron cambios en el extremo N-terminal ya que la longitud de las hebras β 1 y β 3 aumentó en AR (Figura 26). Cambios mínimos podrían desencadenar cambios sustanciales a nivel de interacción intermolecular. Al generar estructuras diméricas de 6aJL2, 6a-R25G, y de AR, el área de interfaz también resultó diferente (Figura 27). Interesantemente, la convergencia de las estructuras octaméricas de 6aJL2 y AR con el octámero cristalográfico de 6a-R25G sugeriría fuertemente una ruta de agregación en común para las V₁s λ VI (Figura 28).

La relevancia de tener un octámero cristalográfico, como el de 6a-R25G, abre las puertas a generar estrategias racionales que permitan explicar los mecanismos de reconocimiento celular y los mecanismos plausibles una vez que los oligómeros se inserten en la membrana. Se ha demostrado que los oligómeros pueden inducir toxicidad celular a través de la generación de un tipo de canales iónicos (Demuro *et al.*, 2005; Kagan *et al.*, 2011). Conjuntamente, la interacción podría ser dependiente del tipo de receptores celulares o de la composición de las balsas lipídicas específicas (Morante *et al.*, 2015). Aunado a estos experimentos, hay evidencia que muestra que la internalización de la V_L es dependiente del tipo de V_L en cuestión y que, a su vez, disparan diferentes procesos de internalización celular y transformaciones fenotípicas (Keeling *et al.*, 2004; Teng *et al.*, 2014). Desde un punto de vista personal, la investigación relacionada con la amiloidosis AL debiera estar ahora más enfocada a los efectos celulares que generan estas V_L para así generar prognosis más acertadas así como también terapias personalizadas.

Otros aspectos de las proteínas amiloidogénicas

Contrario a lo señalado en este trabajo acerca de que las proteínas amiloidogénicas están excepcionalmente involucradas en enfermedades, está la contraparte de aquellos amiloides con funcionalidad biológica los cuales están distribuidas en muchos organismos conocidas como el amiloma (Chiti & Dobson, 2006; Goldschmidt *et al.*, 2010). En los humanos está descrita la proteína Pmel17, la cual está involucrada en la disminución del efecto de varios procesos citotóxicos como el daño por UV y el estrés oxidativo (Fowler *et al.*, 2006). Claro está que la biosíntesis de esta proteína es un proceso muy controlado ya que sus precursores son altamente citotóxicos (Fowler *et al.*, 2007). Entonces, las proteínas amiloides también tendrían un objetivo biológico ya que, evolutivamente, podrían considerarse como "las ovejas negras" de las proteínas.

Para finalizar, una de las cuestiones que siempre quedaron en duda era la utilidad biológica del péptido β -amiloide, el cual está directamente involucrado en el Alzheimer, ya que se desconocía la función biológica positiva. En fechas recientes, este péptido se relacionó con dos efectos biológicos *in vivo* muy importantes para los organismos; el primero a mencionar es la relación de este péptido con el sueño y el segundo es su relación como péptido antimicrobiano. Se analizó la generación de este péptido en ratones el cual resultó constitutivo durante el día, fungiendo como un supuesto neurotransmisor; pero que, durante la noche, las neuronas se compactan para que el líquido intersticial funja como líquido limpiador eliminando los desechos neuronales (Xie *et al.*, 2013). En otro trabajo en el cual usando ratones, el nemátodo *Caenorhabditis elegans*, y cultivos celulares, se observó un efecto antimicrobiano contra la meningitis ocasionada por *Salmonella entérica* serotipo Typhimurium (Kumar *et al.*, 2016).

Conjuntando todo lo mencionado acerca de las propiedades antimicrobianas de los amiloides, los diversos mecanismos de agregación, la alta regulación celular para producir amiloides funcionales, y las modificaciones en la geometría de las fibras influenciada por los efectos termodinámicos, da la impresión de que las proteínas amiloides tienen una alta versatilidad pero que deben ser controladas ya que pueden causar enfermedades crónicodegenerativas.

BIBLIOGRAFÍA

Abdi, H., and Williams, L.J. (2010) Principal component analysis. WIREs Computational Statistics. 2: 433-459. DOI: 10.1002/wics.101

Abraham, R.S., Geyer, S.M., Price-Troska, T.L., Allmer, C., Kile, R.A., Gertz, M.A. and Fonseca, R. (2003) Immunoglobulin light chain variable (V) region genes influence clinical presentation and outcome in light chain-associated amyloidosis (AL). *Blood* **101**: 3801–3808. DOI: 10.1182/blood-2002-09-2707

Adams, P.D., Afonine, P.V., Bunkóczi, V.B., Chen, I.W., Davis, N., Echols, J.J., Headd, L.W., Hung, G.J., Kapral, R.W., Grosse-Kunstleve, A.J., McCoy, N.W., Moriarty, R., Oeffner, R.J., Read, D.C., Richardson, J.S., Richardson, T.C., Terwilliger, T.C., and Zwart, P.H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr D Biol Crystallogr* **66**: 213-221. DOI: 10.1107/S0907444909052925

Afonine, P.V., Grosse-Kunstleve, R.W., Echols, N., Headd, J.J., Moriarty, N.W., Mustyakimov, M., Terwilliger, T.C., Urzhumtsev, A., Zwart, P.H., and Adams, P.D. (2012) Towards automated crystallographic structure refinement with phenix.refine. *Acta Crystallogr. D Biol Crystallogr* **68**: 352-367. DOI: 10.1107/S0907444912001308

Albert, R., Jeong, H., and Barabasi, A. (2000) Error and attack tolerance of complex networks *Nature*. **406:** 378 – 382. DOI: 10.1038/35019019

Banci, L., Bertini, I., Calderone, V., Cramaro, F., Del Conte, R., Fantoni, A., Mangani, S., Quattrone, A., and Viezzoli, M.S. (2004) A prokaryotic superoxide dismutase paralog lacking two Cu ligands: from largely unstructured in solution to ordered in the crystal. *Proc Natl Acad Sci U.S.A.* **102**: 7541-7546. DOI: 10.1073/pnas.0502450102

Benjamini, E., Coico, R., Sunshine, G. (2000) Immunology A Short Course. 4th Edition John Wiley & Sons Inc. ISBN 0-471-34890-2

Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., and Haak JR. (1984) Molecular dynamics with coupling to an external bath. *J Chem Phys* **81**: 3684–3690 DOI: 10.1063/1.448118

Berjanskii, M.V., and Wishart, D.S. (2013) A simple method to measure protein side-chain mobility using NMR chemical shifts. J Am Chem Soc. 135: 14536-14539. DOI: 10.1021/ja407509z

Blau, N., van Spronsen, F.J., and Levy, H.L. (2010) Phenylketonuria. Lancet. 376: 1417-14127. DOI: 10.1016/S0140-6736(10)60961-0.

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.-U. (2006) Complex networks: Structure and dynamics. *Physics Reports.* **424:** 175-308. DOI: 10.1016/j.physrep.2005.10.009

Bonacich, P. (1972) Factoring and Weighting approaches to status scores and clique identification. J Math Sociol 2: 113 – 120. DOI: 10.1080/0022250X.1972.9989806

Bond, C.S., and Schüttelkopf, A.W. (2009) ALINE: a WYSIWYG protein sequence alignment editor for publication-quality alignments. *Acta Crystallogr. D Biol. Crystallogr.* **65**: 510–512. DOI: 10.1107/S0907444909007835

Campos, L.A., Bueno, M., Lopez-Llano, J., Jiménez, M.A., and Sancho, J. (2004a) Structure of stable protein folding intermediates by equilibrium φ-analysis: the apoflavodoxin thermal intermediate. *J Mol Biol.* **344:** 239-255. DOI: 10.1016/j.jmb.2004.08.081

Campos, L.A., Garcia-Mira, M.M., Godoy-Ruiz, R., Sanchez-Ruiz, J.M., and Sancho J. (2004b) Do proteins always benefit from a stability increase? Relevant and residual stabilization in a three-state protein by charge optimization. *J Mol Biol.* **344**: 223-237. DOI: 10.1016/j.jmb.2004.09.047

Chandrashekaran, I.R., Mohanty, B., Linossi, E.M., Dagley, L.F., Leung, E.W.W., Murphy, J.M., Babon, J.J., Nicholson, S.E., and Norton, R.S. (2015) Structure and functional characterization of the conserved JAK interaction region in the intrinsically disordered N-terminus of SOCS5. *Biochemistry*. 54: 4672-4682. DOI: 10.1021/acs.biochem.5b00619

Chen, M.E., Cang, H.X., and Nymeyer, H.Dr. (2007) Nymeyer's Group, Inst. Mol. Biol., Florida State University. Available online at http://noch.sourceforge.net (accessed 27 Nov 2015).

Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. *Acta Crystallogr D Biol Crystallogr* **66**: 12-21. DOI: 10.1107/S0907444909042073

Chiti, F., and Dobson, C.M. (2006) Protein misfolding, functional amyloid, and human disease. *Annu Rev Biochem* **75:** 333-366. DOI: 10.1146/annurev.biochem.75.101304.123901

Chothia, C., Gelfand, I., and Kister, A. (1998) Structural determinants in the sequences of immunoglobulin variable domain. *J Mol Biol.* **278**: 457 – 479. DOI: 10.1006/jmbi.1998.1653

Clark, L.A., Ganesan, S., Papp, S., and van Vlijmen, H.W.T. (2006) Trends in antibody sequence changes during the somatic hypermutation process. *J Immun.* **177:** 333–340. DOI: 10.4049/jimmunol.177.1.333

Collaborative Computational Project 4. (1994) The CCP4 suite: programs for protein crystallography. *Acta Crystallogr D Biol Crystallogr* **50**: 760-763. DOI: 10.1107/S0907444994003112

Costa, L.F., Rodrigues, F.A., Travieso, G., and Villas-Boas, P.R. (2007) Characterization of complex networks: a survey of measurements. *Advances in Physics.* **56**: 167-242. DOI: 10.1080/00018730601170527

Darby, N.J., and Creighton TE. (1993) Protein structure. Oxford: IRL Press at Oxford University Press. p. 4. ISBN 019963310X

Deegan, B.J., Seldeen, K.L., McDonald, C.B., Bhat, V., and Farooq, A. (2010) Binding of the ERa nuclear receptor to DNA is coupled to proton uptake. *Biochemistry.* **49:** 5978-5988. DOI: 10.1021/bi1004359

del Pozo-Yauner, L., Ortiz, E., Sánchez, R., Sánchez-López, R., Güereca, L., Murphy, C.L., Allen, A., Wall, J.S., Fernández-Velasco, D.A., Solomon, A., and Becerril, B. (2008) Influence of the germline sequence on the thermodynamic stability and fibrillogenicity of human lambda 6 light chains. *Proteins*. **72:** 684-692. DOI: 10.1002/prot.21934.

del Pozo-Yauner, L., Wall, J.S., González-Andrade, M., Sánchez-López, R., Rodríguez-Ambriz, S.L., Pérez-Carreón, J.I., Ochoa-Leyva, A., and Fernández-Velasco, D.A. (2014) The N-terminal strand

modulates immunoglobulin light chain fibrillogenesis. *Biochem Biophys Res Commun.* 443: 495-499. DOI: 10.1016/j.bbrc.2013.11.123

Demetrius, L., and Manke, T. (2004) Robustness and network evolution – an entropic principle. *Physica* A 346: 682-696. DOI: 10.1016/j.physa.2004.07.011

Demuro A., Mina E., Kayed R., Milton S.C., Parker I., and Glabe C.G. (2005) Calcium dysrelgulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. *J Biol. Chem.* **280**: 17294 – 17300. DOI: 10.1074/jbc.M500997200

DiCostanzo, A.C., Thompson, J.R., Peterson, F.C., Volkman, B.F., and Ramirez-Alvarado, M. (2012) Tyrosine residues mediate fibril formation in a dynamic light chain dimer interface. *J. Biol. Chem.* **33**: 27997-28006. DOI: 10.1074/jbc.M112.362921

Dror, R., Mirks, R.M., Grossman, J.P., Huafen, X., and Shaw, D.E. (2012) Biomolecular simulation: A computational microscope for Molecular Biology. *Annu Rev Biophys.* 14: 429-452. DOI: 10.1146/annurev-biophys-042910-155245

Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., and Liang, J. (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. *Nucl Acids Res.* **34:** W116-W118. DOI: 10.1093/nar/gkl282

Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., and Liang, J. (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. *Nucleic Acids Research.* **34**: W116-W118. DOI: 10.1093/nar/gkl282.

Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. *Acta Crystallogr D Biol Crystallogr* 60: 2126-2132. DOI: 10.1107/S0907444904019158

Essman, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., and Pedersen LG. (1995) A smooth particle mesh Ewald method. *J Chem Phys* **103**: 8577–85933. DOI: 10.1063/1.470117

Fan, X., Kurgan, L. (2014) Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus. *J Biomol Struc Dyn.* **32**: 448-464. DOI: 10.1080/07391102.2013.775969

Fernandez-Escamilla, A.M., Rousseau, F., Schymkowitz, J., and Serrano, L. (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. *Nat Biotech.* 22: 1302-1306. DOI: 10.1016/j.jmb.2008.06.062.

Fowler, D.M., Koulov, A.V., Alory-Jost, C., Marks, M.S., Balch, W.E., and Kelly, J.W. (2006) Functional amyloid formation within mammalian tissue. *PLos Biology* **4**: e6. DOI: 10.1371/journal.pbio.0040006.

Fowler, D.M., Koulov, A.V., Balch, W.E., and Kelly, J.F. (2007) Functional amyloido – from bacteria to humans.

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., and Bairoch, A. (2005) Protein Identification and Analysis Tools on the ExPASy Server. The Proteomics Protocols Handbook. Humana Press. pp. 571–607. DOI: 10.1385/1-59259-890-0:571

Gillmore, J.D., and Hawkins, P.N. (2006) Drug insight: emerging therapies for amyloidosis. *Nat Clin Pract* **2**: 268-270. DOI:10.1038/ncpneph0169

Goldman, M.J., Anderson, G.M., Stolzenberg, E.D., Kari, U.P., Zasloff, M., and Wilson J.M. (1997) Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. *Cell* 88: 553–560. DOI: 10.1016/S0140-6736(09)60327-5

Goldschmidt, L., Teng, P.K., Riek, R., and Eisenberg, D. (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. *Proc Natl Acad Sci USA* **10**: 3487-3492. DOI: 10.1073/pnas.0915166107

González-Andrade, M., Becerril-Luján, B., Sánchez-López, R., Ceceña-Álvarez, H., Pérez-Carreón, J.I., Ortiz-Surí, E., Fernández-Velasco, D.A., and del Pozo-Yauner, L. (2013) Mutational and genetic determinants of $\lambda 6$ light chain amyloidogenesis. *FEBS J.* **280**: 6173-6183. DOI: 10.1111/febs.12538

Gregersen, N. (2006) Protein misfolding disorders: Pathogenesis and intervention. *J Inherit Metab Dis.* **29:** 456-470. DOI: 10.1007/s10545-006-0301-4

Gribenko, A.V., and Makhatadze, G.I. (2007) Role of the charge--charge interactions in defining stability and halophilicity of the CspB proteins. *J Mol Biol.* **366**: 842-856. DOI: 10.1016/j.jmb.2006.11.061

Guex, N., and Peitsch, M.C. (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. *Electrophoresis* **18**: 2714–2723. DOI: 10.1002/elps.1150181505

Hernández-Santoyo, A., del Pozo-Yauner, L., Fuentes-Silva, D., Ortiz, E., Rudiño-Piñera, E., Sánchez-López, R., Horjales, E., Becerril, B., and Rodríguez-Romero, A. (2010) A single mutation at the sheet switch region results in conformational changes favoring lambda6 light-chain fibrillogenesis. *J Mol Biol.* **396:** 280–292. DOI: 10.1016/j.jmb.2009.11.038

Horn, R.A. and Johnson, C.R. (1990) Matrix Analysis. Cambridge University Press. ISBN: 9780521386326

Hurle, M.R., Helms, L.R., Li, L., Chan, W., and Wetzel, R. (1994) A role for destabilizing amino acid replacements in light-chain amyloidosis. *Proc Natl Acad Sci USA*. **91:** 5446:5450. DOI: 10.1073/pnas.91.12.5446

Husby G., Natvig J.B., and Sletten K. (1974) New, third class of amyloid fibril protein. *The Journal of Experimental Medicine*. **139**: 773 – 778.

Jamroz, M., Kolinski, A., and Kihara, D. (2012) Structural features that predict real-value fluctuations of globular proteins. *Proteins: Structure, Function, and Bioinformatics.* **80:** 1425-1435. DOI: 10.1002/prot.24040

Janeway, C.H., Travers, P., Walport, M., and Shlomchik, M. (2001) Immunobiology The immune System in Health and Disease. 5th Edition Garland Publishing. ISBN-10: 0-8153-3642-X

Kabat, E.A., Wu, T.T., Perry, H.M., Gottesman, K.S., and Foeller, C. (1991) Sequences of proteins of Immunological Interest, Vol. 5th, National Institutes of Health, Bethesda, MD. ISBN: 094137565X

Kabsch, W. (2010) XDS. Acta Crystallogr D Biol Crystallogr 66: 125-132 DOI: 10.1107/S0907444909047337

Kagan B.L., Jang H., Capone R., Teran-Arce F., Ramachandran S., Lal R., and Nussinov R. (2012) Antimicrobial properties of amyloid peptides. *Mol. Pharm.* **9:** 708-717. DOI: 10.1021/mp200419b Kantardjieff, K.A, and Rupp, B. (2003) Matthews coefficient probabilities: Improved estimates for unit cell contents of proteins, DNA and protein-nucleic acid complex crystals. *Protein Science*. **12:** 1865–1871 DOI: 10.1110/ps.0350503

Keeling, J., Teng, J., and Herrera, G.A. (2004) AL-amyloidosis and light-chain deposition disease light chains induce divergent phenotypic transformations of human mesangial cells. *Lab. Inv.* 84: 1322-1338. DOI: 10.1038/labinvest.3700161.

Knowles, T.P.J., Vendruscolo, M., and Dobson, C.M. (2014) The amyloid state and its association with protein misfolding diseases. *Nat Rev Mol Cell Biol.* **15**:384-96. DOI: 10.1038/nrm3810.

Korsmeyer, S.J., Hieter, P.A., Ravetch, J.V., Poplack, D.G., Waldmann, T.A., and Leder, P. (1981) Developmental hierarchy of immunoglobulin gene rearrangements in human leukemic pre-B-cells. *Proc Natl Acad Sci USA*. **78**: 7096-7100. DOI: 10.1073/pnas.78.11.7096

Krissinel, E., and Henrick, K. (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol. **372:** 774 – 797. DOI: 10.1016/j.jmb.2007.05.022.

Kronenberg, P. (2007) Applied multiway data analysis – Appendix B Biplots and their interpretation. John Wiley & Sons, Inc. DOI: 10.1002/9780470238004

Kumar, D.K.V., Choi, S.H., Washicosky, K.J., Eimer, W.A., Tucker, S., Ghofrani, J., Lefkowitz, A., McColl, G., Goldstein, L.E., Tanzi, R.E., and Moir, R.D. (2016) Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer's disease. *Science Transl Med* **8**: 340ra72. DOI: 10.1126/scitranslmed.aaf1059.

Lakowicz, J.R. (2006). Principles of fluorescence spectroscopy (3rd ed.). New York, NY: LLC, Springer Science + Business Media. DOI: 10.1007/978-0-387-46312-4

Leach, S. (1969) Physical principles and techniques of protein chemistry, Part A. Chapter 4. Fluorescence of Proteins. pp. 225. Academic Press, New York. ISBN: 978-0-12-440101-3

Lefranc, M.P. (2001a) Nomenclature of the Human Immunoglobulin Kappa (IGκ) genes. *Exp Clin Immun.* **18:** 161 – 174. DOI: 10.1159/000049195

Lefranc, M.P. (2001b) Nomenclature of the Human Immunoglobulin Lambda (IGλ) genes. *Exp Clin Immun.* 18: 242 – 254. DOI: 10.1159/000049203

LeVine, H.III. (1993) Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: detection of amyloid aggregation in solution. *Protein Sci.* **2**: 404–410. DOI: 10.1002/pro.5560020312

Li J., Wang, J., and Wang, W (2008) Identifying folding nucleus based on residue contact networks of proteins. *Proteins* **71**: 1899–1907. DOI: 10.1002/prot.21891

Liu, C.C., and Schultz, P.G. (2010) Adding new chemistries to the genetic code. *Annu. Rev. Biochem.* **79**: 413-444. DOI: 10.1146/annurev.biochem.052308.105824

Luna-Martínez, O.D. (2009) Estudio de las bases estructurales y moleculares asociadas a las propiedades biofísicas y fibrilogénicas *in vitro* de la rV_L AR. (Tesis de Maestría) Universidad Nacional Autónoma de México.

Luna-Martínez, O.D., Vidal-Limón, A., Villalba-Velázquez, M.I., Sánchez-Alcalá R, Garduño-Juárez R, Uversky VN, & Becerril B. (2016) Simple approach for ranking structure determining residues. *PeerJ*. **4:**e2136. DOI: 10.7717/peerj.2136

Mai, H.L., Sheikh-Hamad, D., Herrera, G.A., Gu, X., and Truong, L.D. (2003) Immunoglobulin heavy chain can be amyloidogenic: morphologic characterization including immunoelectron microscopy. *Am J Surg Pathol.* **27:** 541-545.

Makin, O.S. and Serpell, L.C. (2005) Structures for amyloid fibrils. *FEBS J.* 272: 5950–5961. DOI: 10.1111/j.1742-4658.2005.05025.x

Manke T., Demetrius L., and Vingron, M. (2005) Lethality and Entropy of Protein Interaction Networks. *Genome Inform* 16: 159 – 163.

Manke T., Demetrius L., and Vingron, M. (2006) An entropic characterization of protein interaction networks and cellular robustness. *J R Soc Interface* **3**: 843 – 850. DOI: 10.1098/rsif.2006.0140

Marchalonis, J.J., Schluter, S.F., Bernstein, R.M., and Hohman, V.S. (1998) Antibodies of sharks: revolution and evolution. *Immu Rev.* **166:** 103-122. DOI: 10.1111/j.1600-065X.1998.tb01256.x

Matthews, B.W. (1968) Solvent content of protein crystals. J Mol Biol. 33: 491–497 DOI: 10.1016/0022-2836(68)90205-2

Maya-Martinez, R., Gil-Rodriguez, P., and Amero, C. (2015) Solution structure of 6aJL2 and 6aJL2-R24G amyloidogenics light chain proteins. *Biochem Biophys Res Commun.* **456**: 695 – 699. DOI: 10.1016/j.bbrc.2014.12.044

McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007) Phaser crystallographic software. *J Appl Crystallogr* 40: 658-674. DOI: 10.1107/S0021889807021206

Meffre, E., Casellas, R., and Nussenzweig, M.C. (2000) Antibody regulation of B cell development. *Nat Immunol.* **1**: 379-385. DOI: 10.1038/80816

Meng, X., Fink, A.L., and Uversky, V.N. (2008) The effect of membranes on the *in vitro* fibrillation of an amyloidogenic light-chain variable-domain SMA. *J Mol Biol.* **381:** 989-999. DOI: 10.1016/j.jmb.2008.06.062

Merlini, G., and Stone, M.J. (2006) Dangerous small B-cell clones. *Blood.* **108**: 2520-2530. DOI: 10.1182/blood-2006-03-001164

Milardi, D., la Rosa, C., Fasone, S., and Grasso D (1997) An alternative approach in the structure-based predictions of the thermodynamics of protein unfolding. *Biophys Chem* **69**: 43-51. DOI: 10.1016/S0301-4622(97)00071-9.

Milla, M.E., Brown, B.M., and Sauer, R.T. (1994) Protein stability effects of a complete set of alanine substitutions in Arc repressor. *Nat Structl & Mol Biol.* **1**:518-523. DOI: 10.1038/nsb0894-518

Mirny L., and Domany E. (1996). Protein fold recognition and dynamics in the space of contact maps. *Amino Acids*. **410**: 391-410. DOI: 10.1002/(SICI)1097-0134(199612)26:4<391::AID-PROT3>3.0.CO;2-F

Miyazaki, D., Yazaki, M., Gono, T., Kametani, F., Tsuchiya, A., Matsuda, M., Takenaka, Y., Hosh, Y.2nd., and Ikeda, S. (2008) AH amyloidosis associated with an immunoglobulin heavy chain variable region (VH1) fragment: a case report. *Amyloid.* **15**: 125-128. DOI: 10.1080/13506120802006229.

Monson, N.L., Dörner, T., and Lipsky, P.E. (2000) Targeting and selection in human V λ rearrangements. *European Journal of Immunology*. **30**: 1597 – 1605

Montaigne, M. (2015) Ensayos sobre educación / Michel de Montaigne. Capítulo XIII, pp. 156. Edición de Joan Lluís Llinàs; traducido por Ediciones Cátedra. Edición digital. Madrid: Biblioteca Nueva. ISBN 8416170274

Morante K., Caaveiro J.M.M., Tanaka K., González-Mañas J.M., and Tsumoto K. (2015) A poreforming toxin requires a specific residue for its activity in membranes with particular physicochemical properties. *J Biol. Chem.* **290:** 10850 – 10861. DOI: 10.1074/jbc.M114.615211

Mori, T., and Okamoto, Y. (2009) Folding simulations of gramicidin A into the β -helix conformations: Simulated annealing molecular dynamics study. *J Cheml Phys* **131**: 165103. DOI: 10.1063/1.3247578

Muppirila, U.K., Li, Z. (2006) A simple approach for protein structure discrimination based on the network pattern of conserved hydrophobic residues. *Protein Eng Des Sel.* **19:** 265 – 275. DOI: 10.1093/protein/gzl009

Nelson, R., Eisenberg, D. (2006) Recent atomic models of amyloid fibril structure. *Curr Opi Struct Biol.* **16:** 260 – 265. DOI: 10.1016/j.sbi.2006.03.007

Newman, M.E.J. (2004) Analysis of weighted networks. *Phys Rev E* **70**: 056131. DOI: 10.1103/PhysRevE.70.056131

Newman, M.E.J. (2008) The mathematics of networks. The New Palgrove Encyclpedia of Economics. Blume L.E. & Durlaf S.N. Palgrove Macmillan

Nicholson, S.E., and Norton, R.S. (2015) Structure and functional characterization of the conserved JAK interaction region in the intrinsically disordered N-Terminus of SOCS5. *Biochemistry*. **54**:4672–4682. DOI: 10.1021/acs.biochem.5b00619

Nienhuis, H.L.A., Bijzet, J., and Hazenberg, B.P.C. (2016) The prevalence and management of systemic amyloidosis in Western countries. *Kidney Dis.* **2:** 10-19. DOI: 10.1159/000444206

O'Sullivan, B.P., and Freedman, S.D. (2009) Cystic fibrosis. Lancet. 373: 1891-1904. DOI: 10.1016/S0140-6736(09)60327-5

Pace, C.N., Shirley, B.A., and Thompson, J.A. (1989) Measuring the conformational stability of a protein. In Protein Structure: A Practical Approach (Creighton, T. E., ed) pp. 311–330, IRL Press, Oxford, UK

Peng, K., Vucetic, S., Radivojac, P., Brown, C.J., Dunker, A.K., and Obradovic, Z. (2005) Optimizing long intrinsic disorder predictors with protein evolutionary information. *J Bioinf Comp Biol.* **3**: 35-60. DOI: 10.1142/S0219720005000886

Peng, Z.L., and Kurgan, L. (2012) Comprehensive comparative assessment of in-silico predictors of disordered regions. *Curr Prot Pept Sci.* 13: 6-18. DOI: 10.2174/138920312799277938

Pepys, M.B. (2006) Amyloidosis. *Annu Rev Med.* **57:** 223-241. DOI: 10.1146/annurev.med.57.121304.131243

Peralta, M.D., Karsai, A., Ngo, A., Sierra, C., Fong, K.T., Hayre, N.R., Mirzaee, N., Ravikumar, K.M., Kluber, A.J., Chen, X., Liu, G.Y., Toney, M.D., Singh, R.R., and Cox, D.L. (2015) Engineering amyloid

fibrils from β -solenoid proteins for biomaterials applications. *ACS Nano* **27:** 449-463. DOI: 10.1021/nn5056089

Perfetti, V., Casarini, S., Palladini, G., Vignarelli, M.C., Klersy, C., Diegoli, M., Ascari, E., and Merlini, G. (2002) Analysis of V λ -J λ expression in plasma cells from primary (AL) amyloidosis and normal bone marrow identifies 3r(IIII) as a new amyloid-associated germline gene segment. *Blood.* **100**: 948-953. DOI: 10.1182/blood-2002-01-0114

Perfetti, V., Ubbiali, P, Vignarelli, M.C., Diegoli, M., Fasani, R., Stoppini, M., Lisa, A., Mangione, P., Obici, L., Arbustini, E., and Merlini, G. (1998) Evidence that amyloidogenic light chains undergo antigen-driven selection. *Blood.* **91**: 2948-2954.

Perl, D., and Schmid, F.X. (2001) Electrostatic stabilization of a thermophilic cold shock protein. *J Mol Biol.* **313**: 343-357. DOI: 10.1006/jmbi.2001.5050

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E. (2004) UCSF Chimera--a visualization system for exploratory research and analysis. *J Comput Chem.* **25**: 1605-1612. DOI: 10.1002/jcc.20084

Pieper, K., Grimbacher, B., and Eibel, H. (2013) B-cell biology and development. J Allergy Clin Immunol. **131:** 959-971. DOI: 10.1016/j.jaci.2013.01.046

Piziak, R., and Odell, P.L. (2006) Matrix Theory: From Generalized Inverses to Jordan Form. Taylor & Francis Inc.

Prodromou, C., and Pearl, L.H. (1992) Recursive PCR: a novel technique for total gene synthesis. *Prot Eng* **5**: 827–829. DOI: 10.1093/protein/5.8.827

Puchtler, H. and Sweat, F. (1965) Congo red as a stain for fluorescence microscopy of amyloid. J Histochem Cytochem. 13: 693–694. DOI: 10.1177/13.8.693

R Core Development Team (2013) R: A language and environment for statistical computing Vienna, Austria. ISBN: 3-900051-07-0. Available online at http://R-project.org (accessed 27 Nov 2015).

Richardson, J.S., and Richardson, D.C. (2001) Natural β-sheet proteins use negative design to avoid edge-to-edge aggregation. *Proc Natl Acad Sci of U.S.A.* **99:** 2754-2759. DOI: 10.1073/pnas.052706099.

Sanger, F., Nicklen, S., and Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA **74:** 5463–5467.

Schier, R., Marks, J.D., Wolf, E.J., Apell, G., Wong, C., McCartney, J.E., Bookman, M.A., Huston, J.S., Houston, L.L., Weiner, L.M., and Adams, G.P. (1995) In vitro and in vivo characterization of a human anti-c-e-erbB-e single-chain Fv isolated from a filamentous phage antibody library. *Immunotechnology* **1**: 73–81. DOI: 10.1016/1380-2933(95)00007-0

Schroeder, H.W., and Cavacini,L. (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol. 125: S41-S52. DOI: 10.1016/j.jaci.2009.09.046

Shapiro, S.S.; and Wilk, M.B. (1965). An analysis of variance test for normality (complete samples). *Biometrika*. 52: 591–611. DOI:10.1093/biomet/52.3-4.591

Sletten, K., Natvig, J.B., Husby, G. and Juul, J. (1981) The complete amino acid sequence of a prototype immunoglobulin- λ light-chain-type amyloid-fibril protein AR. *The Biochemical Journal.* **195**: 561-572. DOI: 10.1042/bj1950561.
Solomon, A., and Weiss, D.T. (1995) Structural and functional properties of human λ -light chain variable-region subgroups. *Clin Diagn Lab Immunol.* **2:** 387-394. DOI:

Solomon, A., Frangione, B., and Franklin, E.C. (1982) Bence Jones proteins and light chains of immunoglobulins: Preferential association of the $V_{\lambda VI}$ subgroup of human light chains with amyloidosis AL(λ). *J Clin Invest.* **70**: 453-460. DOI: 10.1172/JCI110635

Sumathi, K., Ananthalakshmi, P., Roshan, M.N.A., and Sekar, K. (2006) 3dSS: 3D structural superposition. *Nucl Acids Res* 34: W128-W132. DOI: 10.1093/nar/gkl036

Teng, J., Turbat-Herrera, E.A., and Herrera, G.A. (2014) Extrusion of Amyloid Fibrils to the Extracellular Space in Experimental Mesangial AL-Amyloidosis: Transmission and Scanning Electron Microscopy Studies and Correlation with Renal Biopsy Observations. *Ultrastructural Pathology.* **38**: 104-115. DOI: 10.3109/01913123.2013.861568.

The International Myeloma Working Group (2003) Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. *British Journal of Haematology.* **121:** 749–757. DOI: 10.1046/j.1365-2141.2003.04355.x

Tina, K.G., Bhadra, R., and Srinivasan, N. (2007) PIC: protein interactions calculator. *Nucleic Acids Res* **35:** W473-W476. DOI: 10.1093/nar/gkm423

Tycko, R. (2006) Molecular structure of amyloid fibrils: insights from solid-state NMR. *Quarterly Reviews of Biophysics*. **39:** 1-55. DOI: 10.1017/S0033583506004173

Van den Bedem, H., Bhabha, G., Yan, K., Wright, P.E., and Fraser, J.S. (2013) Automated identification of functional dynamic contact networks from X-ray crystallography. *Nat Methods*. **10**: 896-902. DOI: 10.1038/nmeth.2592

Vendruscolo, M., Dokholyan, N.V., Paci, E., and Karplus, M. (2002) Small-world view of the amino acids that play a key role in protein folding. *Phys Rev E Stat Nonlin Soft Matter Phys.* **65**: 06910-1 – 06910-4. DOI: 10.1103/PhysRevE.65.061910

Voss, N.R., and Gerstein, M. (2005) Calculation of standard atomic volumes for RNA and comparison with proteins: RNA is packed more tightly. *J Mol Biol* **346**: 477–492. DOI: 10.1016/j.jmb.2004.11.072

Wall, J.S., Gupta, V., Wilkerson, M., Schell, M., Loris, R., Adams, P., Solomon, A., Stevens, F., and Dealwis, C. (2004) Structural basis of light chain amyloidogenity: comparison of the thermodynamic properties, fibrillogenic potential and tertiary structural features of four Vλ6 proteins. *J. Mol. Recog.* **17**: 323-331. DOI: 10.1002/jmr.681

Walters, J., Milan, S., and Clark, A.C. (2009) Practical approaches to protein folding and assembly: Spectroscopic strategies in thermodynamics and kinetics. *Methods in Enzymology*. **455**:1-39. DOI: 10.1016/S0076-6879(08)04201-8.

Watts, D.J., and Strogatz, S.H. (1998) Collective dynamics of 'small-world' networks. *Nature*. **393:** 440-442. DOI: 10.1038/30918

Weiss, B.M., Wong, S.W., and Comenzo, R.L. (2016) Beyond the plasma cell: emerging therapies for immunoglobulin light chain amyloidosis. *Blood.* **127**: 2275-2280. DOI: 10.1182/blood-2015-11-681650.

Wunderlich, M., Martin, A., Schmid, F.X. (2005) Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of coulombic interactions. *J Mol Biol.* **347:** 1063-1076. DOI: 10.1016/j.jmb.2005.02.014

Wunderlich, M., Schmid, F.X. (2006) The correlation between protein stability and dipole moment: a critical test. *Prot Eng Des Sel.* **19:** 355-358. DOI: 10.1093/protein/gzl019

Xie, L., Hang, H., Xu, Q., Chen, M.J., Liao, Y., Thiyagarajan, M., O'Donnell, J., Christensen, D.J., Nicholson, C., Iliff, J.J., Takano, T., Deane, R., and Nedergaard, M. (2013) Sleep drives metabolite clearance from the adult brain. *Science* **342**: 373-377. DOI: 10.1126/science.1241224.

Zurflüh, M.R., Zschocke, J., Lindner, M., Feillet, F., Chery, C., Burlina, a., Stevens, R.C., Thöny, B., and Blau, N. (2008) Molecular genetics of tetrahydrobiopterin responsive phenylalanine hydroxylase deficiency. *Hum Mutat.* **29:** 167–175. DOI: 10.1002/humu.20637

Residuo	SDRI x 10 ²	Jerarquía
Asn1	7.55	109
Phe2	18.47	71
Met3	15.09	83
Leu4	26.54	38
Thr5	33.74	24
Gln6	47.89	7
Pro7	36.99	16
His8	11.30	98
Ser9	25.04	45
Val11	25.09	44
Ser12	23.69	54
Glu13	25.62	43
Ser14	20.33	62
Pro15	21.48	60
Glv16	22.17	57
Lys17	16.75	78
<u>Thr18</u>	23.97	50
Val19	36.62	18
Thr20	27.31	37
Ile21	42.21	12
Ser22	31.67	28
<u>Cus23</u>	49.98	5
$\frac{Cys23}{Thr24}$	38.27	1/
1 m2+	24.15	14
Sor26	11.00	95
Ser27	9.57	104
<u>Clu29</u>	0.37	07
Sor 20	12.61	97
Jei29	10.54	94
11-21	19.54	00
Alasi	12.75	92
Sersia	13.54	89
Ash51b	24.33	4/
1 yr 52	10.81	20
Valss	31.03	30
GIn34	19.93	05
1rp35	50.21	4
1 yr 36	21.40	01
Gln3/	31.11	29
Gln38	18.27	/2
Arg39	13.93	85
Pro40	11.57	96
Gly41	7.22	110
Ser42	10.28	103
Ser43	11.07	99
Pro44	17.79	74
Thr45	25.78	42
Thr46	26.02	40
Val47	43.94	10
Ile48	45.02	9
Tyr49	19.33	67

Residuo	SDRI x 10 ²	Jerarquía
Glu50	12.62	93
Asp51	16.54	79
Asn52	21.78	58
Gln53	15.12	82
Arg54	22.63	56
Pro55	25.84	41
Ser56	10.71	102
Gly57	14.01	84
Val58	23.34	55
Pro59	24.63	46
Asp60	17.37	76
Arg61	36.90	17
Phe62	27.55	35
Ser63	35.65	20
Gly64	33.58	25
Ser65	26.43	39
Ile66	27.43	36
Asp67	15.17	81
Ser68	11.00	100
Ser68a	10.97	101
Ser68b	13.17	91
Asn69	13.57	88
Ser70	32.64	27
Ala71	45.25	8
Ser72	39.53	13
Leu73	48.13	6
Thr74	34.26	23
Ile75	36.45	19
Ser76	20.20	63
Gly77	21.70	59
Leu78	23.88	51
Lys79	18.72	69
Thr80	17.79	75
Glu81	13.60	87
Asp82	35.20	21
Glu83	19.26	68
Ala84	43.86	11
Asp85	30.60	31
Tyr86	55.21	1
Tyr87	29.00	34
Cys88	50.99	2
Gln89	20.14	64
Ser90	38.02	15
Tyr91	18.50	70
Asp92	13.18	90
Ser93	7.93	108
Ser94	8.48	105
Asn95	8.11	107
His95a	8.12	106
Val96	16.22	80

Anexo A. Jerarquización de los residuos de 6aJL2. La numeración de los residuos está en base a Chothia *et al.*,1998. Al valor más alto de SDRI le corresponde la posición más alta en la jerarquía. SDRIs tomados de Luna-Martínez *et al.*, 2016.

Cont. Anexo A. Jerarquización de los residuos de 6aJL2. La numeración de los residuos está en base a Chothia *et al.*,1998. Al valor más alto de SDRI le corresponde la posición más alta en la jerarquía. SDRIs tomados de Luna-Martínez *et al.*, 2016.

Residuo	SDRI x 10 ²	Jerarquía
Val97	23.87	52
Phe98	13.60	86
Gly99	29.39	32
Gly100	24.13	49
Gly101	33.10	26
Thr102	50.69	3
Lys103	23.83	53
Leu104	34.48	22
Thr105	29.03	33
Val106	18.24	73
Leu107	5.10	111

Anexo B. Jerarquización de los residuos de AR. La numeración de los residuos está en base a Chothia *et al.*,1998. Al valor más alto de SDRI le corresponde la posición más alta en la jerarquía. SDRIs tomados de Luna-Martínez *et al.*, 2016. Se comparó el cambio de jerarquía con respecto a la de 6aJL2.

Residuo	SDRI x 10 ²	Jerarquía	Cambio
Asp1	7.84	110	-1
Phe2	18.00	86	-15
Met3	18.79	82	1
Leu4	35.85	32	6
Thr5	43.17	14	10
Gln6	54.74	5	2
Pro7	40.70	21	-5
His8	11.95	101	-3
Ser9	27.69	50	-5
Val11	25.48	59	-15
Ser12	27.88	49	5
Glu13	22.12	71	-28
Ser14	22.58	70	-8
Pro15	23.34	66	-6
Gly16	24.98	61	-4
Lys17	15.73	93	-15
Thr18	31.61	40	10
Val19	30.89	44	-26
Thr20	40.40	22	15
Phe21	42.51	16	-4
Ser22	32.63	36	-8
Cys23	60.16	2	3
Thr24	44.90	10	4
Gly25	38.02	27	21
Ser26	22.86	69	26
Gly27	18.84	81	23
Gly28	23.33	67	30
Ser29	21.36	72	22
Ile30	38.98	26	40
Ala31	28.59	47	45
Asp31a	16.97	90	-1
Ser31b	30.22	46	1
Phe32	20.59	77	0
Val33	45.12	9	21
Gln34	40.17	24	41
Trp35	56.53	3	1
Tyr36	37.88	28	33
Gln37	24.73	62	-33
Gln38	17.99	87	-15
Arg39	9.07	107	-22
Pro40	9.46	106	-10
Gly41	8.30	109	1
Ser42	11.39	102	1
Ala43	14.66	95	4
Pro44	22.89	68	6
Thr45	28.25	48	-6
Thr46	31.01	42	-2
Val47	36.26	31	-21

Residuo	SDRI x 10 ²	Jerarquía	Cambio
Tyr49	8.84	108	-41
Asp50	16.62	92	1
Asp51	26.54	54	25
Asn52	26.47	55	3
Gln53	17.06	89	-7
Arg54	23.61	63	-7
Pro55	26.01	57	-16
Ser56	11.23	103	-1
Gly57	16.65	91	-7
Val58	26.79	53	2
Pro59	25.10	60	-14
Asp60	18.14	85	-9
Arg61	32.49	37	-20
Phe62	26.19	56	-21
Ser63	36.81	29	-9
Gly64	42.47	17	8
Ser65	33.61	34	5
Ile66	27.08	51	-15
Asp67	17.26	88	-7
Asp68	13.07	99	1
Ser68a	12.11	100	1
Ala68b	15.48	94	-3
Asn69	23.54	65	23
Ser70	36.41	30	-3
Ala71	51.74	7	1
Ser72	40.18	23	-10
Leu73	40.14	25	-19
Thr74	47.71	8	15
Ile75	42.91	15	4
Ser76	23.57	64	-1
Gly77	25.80	58	1
Leu78	30.97	43	8
Lys79	19.61	79	-10
Thr80	18.77	83	-8
Glu81	13.28	97	-10
Asp82	33.48	35	-14
Glu83	20.36	78	-10
Ala84	44.79	11	0
Asp85	30.88	45	-14
Tyr86	52.32	6	-5
Tyr87	27.03	52	-18
Cys88	64.18	1	1
Gln89	32.01	39	25
Ser90	44.02	12	3
Tyr91	18.97	80	-10
Asn92	20.74	76	14
Ser93	10.59	104	4
Asn94	13.18	98	7

Cont. Anexo B. Jerarquización de los residuos de AR. La numeración de los residuos está en base a Chothia et al.,1998. Al valor más alto de SDRI le corresponde la posición más alta en la jerarquía. SDRIs tomados de Luna-Martínez et al., 2016. Se comparó el cambio de jerarquía con respecto a la de 6aJL2.

Residuo	SDRI x 10 ²	Jerarquía	Cambio
His95	7.71	111	-4
His95a	9.65	105	1
Val96	21.12	74	6
Val97	31.24	41	11
Phe98	18.24	84	2
Gly99	41.65	18	14
Gly100	34.21	33	16
Gly101	40.83	19	7
Thr102	54.95	4	-1
Lys103	20.97	75	-22
Val104	43.39	13	9
Thr105	32.44	38	-5
Val106	21.33	73	0
Leu107	13.39	96	15

Peer

Simple approach for ranking structure determining residues

Oscar D. Luna-Martínez¹, Abraham Vidal-Limón², Miryam I. Villalba-Velázquez¹, Rosalba Sánchez-Alcalá¹, Ramón Garduño-Juárez³, Vladimir N. Uversky^{4,5,6} and Baltazar Becerril¹

¹Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico

- ² División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
- ³ Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- ⁴ Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, University of South Florida, Tampa, FL, United States

⁵ Institute for Biological Instrumentation, Russian Academy of Sciences, Puschino, Moscow Region, Russia

⁶ Laboratory of Structural Dynamics, Stability and Folding of Proteins, Russian Academy of Sciences,

ABSTRACT

Mutating residues has been a common task in order to study structural properties of the protein of interest. Here, we propose and validate a simple method that allows the identification of structural determinants; i.e., residues essential for preservation of the stability of global structure, regardless of the protein topology. This method evaluates all of the residues in a 3D structure of a given globular protein by ranking them according to their connectivity and movement restrictions without topology constraints. Our results matched up with sequence-based predictors that look up for intrinsically disordered segments, suggesting that protein disorder can also be described with the proposed methodology.

Subjects Biochemistry, Biophysics, Computational Biology, Molecular Biology **Keywords** Molecular dynamics, Shannon dynamical entropy, Intrinsic disorder, Thermodynamics

INTRODUCTION

It is widely known that highly conserved residues in multiple sequence alignments of proteins are considered as key residues essential for protein structure and function including protein folding, phylogeny and evolutionary processes (*Phillips, Janies & Wheeler, 2000; Edgar & Batzoglou, 2006; Pierri, Parisi & Porcelli, 2010*). Nevertheless, neutral mutations can accomplish great modifications to the structural properties of the protein by modifying its thermodynamic stability or biological function as seen in extremophiles in order to adapt to their environment (*Jaenicke & Böhm, 1998; Rothschild & Mancinelli, 2001; Reed et al., 2013*). Proteins can be considered as molecular entities with a tridimensional structure which are exposed to solvent and, frequently, interacting with other macromolecules. Each amino acid residue in a protein and each nucleotide base in a nucleic acid can be seen as a node and due to their high connectivity they represent hubs. Therefore, network analyses applied on protein structures attempt to assess the location of essential hubs

Submitted 7 December 2015 Accepted 25 May 2016 Published 22 June 2016

Corresponding author Baltazar Becerril, baltazar@ibt.unam.mx

Academic editor Rudiger Ettrich

Additional Information and Declarations can be found on page 18

DOI 10.7717/peerj.2136

© Copyright 2016 Luna-Martínez et al.

Distributed under Creative Commons CC-BY 4.0

OPEN ACCESS

St. Petersburg, Russia

that are necessary for the preservation of the stability of the global structure (*Vendruscolo et al., 2002*). Several mathematical approaches have been described which have helped to identify these hubs, each one employing different considerations such as geometrical approximations, thresholds, and information theory (*Costa et al., 2007*; *Böde et al., 2007*). Other approaches combine network parameters with protein properties, e.g., Relative Solvent Accesibility (RSA), to optimize the hierarchization of each residue within the structure (*Li, Wang & Wang, 2008*). In addition, the structural relevance of each residue can be assessed by ranking the theoretical scores obtained from mathematical approximations applied over protein structures (*Greene & Higman, 2003*; *Amitai et al., 2004*).

Because protein structures are not rigid molecular assemblies, X-ray structure determinations provide a "snapshot" of a "ground state," which is assumed to represent the lowest energy conformation in a crystal lattice (Karplus & Kuriyan, 2005; Rodríguez-*Rodríguez et al.*, 2012). Molecular dynamics simulations is an *in silico* tool that can provide information on detailed atomic motions at different time-scales, which have been increased through the development of more powerful hardware (Kepleis et al., 2009; Dror et al., 2012). Taking advantage of these technological advances, we sought to demonstrate that joining this important parameter with network analyses will allow the compilation of a simple method for ranking structure determining residues involved in protein stabilization. The problem of classifying each node according to its structural relevance is far from being trivial because of various reasons. For example, some residues that are not located at the hydrophobic core are known to have a long-distance effect on the structure, even in the case of a neutral mutation (Tokuriki et al., 2008; Pace et al., 2011). Our hypothesis is that the rigidness and the connectivity of each residue, irrespectively of its solvent exposure, can be associated to a specific theoretical score that can be used as a ranking parameter, where highly connected residues with restricted movement should have the greatest effects on the overall stability of globular proteins. Among all network descriptors, we selected Shannon dynamical entropy as a connectivity parameter (Demetrius & Manke, 2004; Costa et al., 2007). In this study, some well-known protein structures were unbiased chosen with the goal of developing a simple method to identify, in a hierarchical way, those amino acid residues that are determinant in the structural stability of a protein. This approach basically combines molecular dynamics with a network analysis based on the Shannon dynamical entropy.

MATERIALS AND METHODS

Statistics

Principal component analysis was performed using the R software (*R Core Development Team*, 2013). The thermal unfolding experiments of the 6aJL2 mutants were repeated in triplicate.

Crystallographic structures

The PDB codes, size, and protein class of the selected structures are as follows: chymotrypsin inhibitor (2CI2; 65 residues; 16% α + 21% β); 6aJL2 (2W0K; chain A, 111 residues; 5% α + 46% β); apoflavodoxin (1FTG; 168 residues; 35% α + 19% β); dimeric Arc repressor (1ARR; 108 residues; 62% α + 9% β); DNA-binding domain of human estrogen receptor

 α in complex with the estrogen response element DNA duplex (1HCQ; chains A, B; 128 residues; 26% α + 9% β , and chains C and D, 56 nucleotides); cold shock protein from *Bacillus subtilis* (1CSP; 67 residues; 4% α + 55% β); cold shock protein from *B. caldolyticus* (1C9O, 66 residues; 4% α + 62% β); and the largely disordered N-terminus of suppressor of cytokine signaling 5 mammalian suppressor of Janus Kinase interaction region (2N34, 70 residues; 12% α). Minor structural modifications were performed on PDB files such as fulfilling N-terminal domains and incomplete lateral chains by using Swiss PDB software (*Guex & Peitsch*, 1997). Furthermore, all nodes were renumbered in continuous order avoiding repetitions; i.e., in PDB 2CI2 the first residue begins as residue 19. Consequently, all residues were systematically renumbered so the first residue was identified as residue 1 and so forth. Solvent-exposed area was calculated with the NOC software (*Chen, Cang & Nymeyer*, 2007).

Grade

Residues can be regarded as nodes and contacts as edges. Hence, an edge was defined when any two non-hydrogen atoms from a pair of residues are within distance of 5 Å. To study the topology of the residue contact network, we measured the degree of node-*i*, *Ki*, as the number of neighbors of node-*i*. Chain A of crystallographic structures was selected. In the case of quaternary structures, all the structure was considered to measure the grade of each node but only chain A was selected for further comparisons.

Molecular dynamics

The query protein was prepared using the Protein Preparation Wizard in Maestro 9.2 package (Schrödinger LCC, NY, USA) and included in a 10-Å water box that contained 14513 SPC-type water molecules for 2CI2, 16667 for 6aJL2, 20051 for 1FTG, 20990 for 1ARR, 28142 for 1HCQ, 12219 for 1CSP, and 12033 for 1C9O. Neutralizing ions were added, and other metal ions already present in the protein structure were left at the same place. The simulated annealing calculations and data analysis were conducted using the Desmond and Maestro programs, respectively (Maestro-Desmond Interoperability Tools, version 3.0; Schrödinger, NY, USA). The OPLS_2005 force field was used for every molecular dynamics simulation. Cubic periodic boundary conditions were used for most of the proteins $(53.9 \times 53.9 \times 53.9 \text{ Å}^3 \text{ for 2CI2}, 56.8 \times 56.8 \times 56.8 \text{ Å}^3 \text{ for 6aJL2},$ $60.9 \times 60.9 \times 60.9$ Å³ for 1FTG, $61.2 \times 61.2.9 \times 61.2$ Å³ for 1ARR, $51.1 \times 51.1 \times 51.1$ Å³ for 1CSP, and 50.8 \times 50.8 \times 50.8 Å³ for 1C9O); due to the size of the complex 1HCQ, rectangular cuboid boundary conditions were used (58.5 \times 59 \times 91 Å³ for 1HCQ). Each simulation was adjusted with an NPT ensemble by weak coupling to an external bath temperature at constant pressure of 1 atm and relaxation time of 2 ps, regulated by Berendsen barostat (Berendsen et al., 1984). All short-range interactions were computed using a 9 Å cutoff, and for long-range interactions (electrostatic and Van der Waals), a smooth particle mesh Ewald method with a tolerance of 1×10^{-9} was applied (*Essmann et* al., 1995). To ensure that our simulations started from local minima, a simulated annealing algorithm was performed. This method started the simulation at high temperature (400 K) to overcome thermodynamic and conformational barriers, followed by gradual

cooling (annealing) to reach low energy regimes. It is widely used for the optimization of structures from experimental methods, comparative protein modeling, or studying the conformational dynamics of protein or peptide folding and unfolding (Mori & Okamoto, 2009). The full system was heated at 10 K for 30 ps, 100 K for 100 ps, 300 K for 200 ps, 400 K for 300 ps, and 400 K for 500 ps and then cooled to 298 K for 1,000 ps. To ensure that heating at 400 K did not affect protein or protein/DNA structure, the RMSD of heavy atoms (C, N, O, S, P) derived from the annealed structure was compared against corresponding crystallographic structure. If RMSD standard deviation was ≤ 1.0 Å, then it was assumed that the annealing algorithm did not changed the whole structure or denature it. In fact, since the displacement of heavy atoms above 1 Å is considered as a conformational change, the algorithm can be trusted in finding the local minimum. A lineal interpolation step between two adjacent time points was employed. After the sixth step, a production of 25 ns was achieved with an integration time of 1 fs. The entire analysis was performed using trajectory coordinates, and the energies were written to a disk every 1.2 ps. A frame was extracted every 0.25 ns throughout the simulation, and the overall frames were saved as a PDB file.

Dynamical entropy

An analytical algorithm encoded in the Perl language was developed to generate three files using the 100-frames PDB-file as the template. In the first step, a single file is generated for each model, and this single file contains the atom coordinates, the corresponding molecular weight, and the name of the node (amino acid or nucleotide base). The second step calculates the coordinates of the center of mass of the node. The third step calculates the distance between the center of mass of each pair of nodes and their normalized distance described by Eq. (1),

$$\overline{d_{ij}} = \frac{d_{ij}}{r_{vdW_i} + r_{vdW_j}} \tag{1}$$

where $\overline{d_{ij}}$ is the normalized distance, d_{ij} is the distance between the center of mass of node *i* and that of node *j*, and r_{vdW} is the Van der Waals radius of the respective node considering all their atoms. For amino acid residues, values of their Van der Waals radiuses comprehending the whole residue were obtained from *Darby & Creighton* (1993). For nucleotide bases, values were obtained from *Voss & Gerstein* (2005). The mean distance between each pair of nodes of the 100 structures sampled was calculated. Since the next steps involve eigenvector and eigenvalue measurement properties, the mean value of the inverse normalized distance was calculated, so the largest weight represents the closest distance between a pair of nodes and the smallest weight represents the longest distance.

A weighted adjacency matrix $A = (a_{ij}) \ge 0$ of size $N \times N$, where N is the number of nodes, was constructed. In this case, matrix A is symmetric $(a_{ij} = a_{ji})$ and undirected. Following the mathematical strategy described in *Demetrius & Manke* (2004) we now assume that the stochastic process is given by a Markov Matrix $P = p_{ij}$ where $p_{ij} \ge 0$ and $\sum_{i} p_{ij} = 1$. The stationary distribution of matrix P is described by Eq. (2),

$$\pi P = \pi \tag{2}$$

where π is defined as the left-hand eigenvector associated with the largest eigenvalue solved with Mathcad 15TM software. The dynamical entropy of this process of each node, H_i , is described by Eq. (3),

$$H_i = -\sum_j \pi_i p_{ij} \log p_{ij} \tag{3}$$

where the term $p_{ij}\log p_{ij}$ is the standard Shannon entropy.

6aJL2 mutants

The synthesis of single-point mutants of 6aJL2 (Arg25His, Ile30Gly, Tyr36Phe, and Gln6Asn) was performed using recursive PCR (*Prodromou & Pearl*, 1992). The obtained DNAs were cloned into the pSyn1 expression vector (*Schier et al.*, 1995). All of the constructions were verified by nucleotide sequencing (*Sanger, Nicklen & Coulson*, 1977). The variants were expressed in *Escherichia coli* BL21 (DE3) and purified as described previously (*Del Pozo-Yauner et al.*, 2008). The protein purity was verified using SDS-PAGE electrophoresis, and the protein concentration was determined spectrophotometrically at 280 nm in 6.5 M GdnHCl and 20 mM sodium phosphate buffer, pH 7.5, using molar extinction coefficients calculated from the amino acid sequence using the ProtParam software, which is available at the ExPASy website (*Artimo et al. al.*, 2012).

Unfolding

Samples containing 50 μ g/ml of protein in phosphate-buffered saline (PBS), pH 7.5, were placed into a 3-ml quartz cuvette. Changes in the tryptophan fluorescence were measured using a LS50B Perkin Elmer spectrofluorometer with an excitation wavelength of 295 nm (2.5-mm bandwidth) and an emission wavelength of 355 nm (5-mm bandwidth). The temperature was increased from 298 to 350 K at a rate of 1 K/min and then samples were cooled to 298 K at the same rate. The data were analyzed using the thermal unfolding Eq. (4), which was obtained from *Eftink* (1995).

$$F_{Trp} = \frac{(y_n + m_n T) + (y_d + m_d T)e^{\left(\frac{\Delta H_m}{RT_m} - \frac{\Delta H_m}{RT}\right)}}{1 + e^{\left(\frac{\Delta H_m}{RT_m} - \frac{\Delta H_m}{RT}\right)}}$$
(4)

where F_{Trp} is the tryptophan fluorescence, T is the temperature, T_m is the temperature of the midpoint, ΔH_m is the enthalpy at T_m , y_n and m_n describe the pre-transition phase, and y_d and m_d describe the post-transition phase. Non-linear regression was performed using the OriginPro8TM software. The change in the Gibbs energy of the wild-type versus the mutant ($\Delta \Delta G$) was calculated for temperature- and denaturant-induced unfolding processes using the following equations.

Thermal unfolding (Becktel & Schellman, 1987), Eq. (5):

$$\Delta \Delta G = \frac{\Delta H_{mWT}}{T_{mWT}} (T_{mMUT} - T_{mWT})$$
(5)

where WT refers to the wild-type values and MUT refers to the mutant values of the melting temperature T_m , and ΔH_m is the enthalpy value.

Chemical unfolding (Creighton, 1990), Eq. (6):

$$\Delta \Delta G = m_{\rm WT} (C_{m\rm MUT} - C_{m\rm WT}) \tag{6}$$

where m_{WT} is the transition slope of the wild-type, and C_m is the denaturant concentration at which $\Delta G = 0$.

RESULTS AND DISCUSSION

Many of the residues located at the hydrophobic core are considered essential (deleterious if mutated), but it is hard to identify which one will be lethal through simple visual inspection of a protein structure. In most cases reported so far, mutations increase the amount of unstable conformers, rendering a protein more susceptible to external perturbations; and this is more likely if the mutations are located at the inner core of the protein (*Jackson et al., 1993; Baldwin & Matthews, 1994; Lei & Duan, 2004; Kumar & Nussinov, 2001; Reed et al., 2013*). Additionally, evaluating the role of each position by replacing the corresponding residue with any other amino acid becomes a more challenging task as the protein becomes bigger. Therefore, we sought to generate a simple method to assess proteins independently of their structural complexity (secondary, tertiary or even quaternary structure).

We selected several proteins with diverse topologies that have been thermodynamically characterized to evaluate the effects of the incorporation of some single-point mutations near neutral pH. Chymotrypsin inhibitor, 6aJL2, apoflavodoxin, arc repressor, estrogen receptor/DNA estrogen/response element complex (ECR), cold shock protein of B. caldolyticus (Csp C), cold shock protein of B. subtillis (Csp S), and the largely disordered N-terminus domain of Janus Kinase interaction region were the representative proteins chosen for this study (see Methods section for PDB details). Not only these proteins were selected because they exhibit different folds, but also because they were analyzed using distinct experimental procedures that provided different thermodynamic parameters covering two-state and three state unfolding pathways. Most of the selected proteins have been thermodynamically evaluated elsewhere through denaturation experiments using single-point mutants (Milla, Brown & Sauer, 1994; Itzhaki, Otzen & Fersht, 1995; Perl & Schmid, 2001; Banci et al., 2004; Campos et al., 2004a; Campos et al., 2004b; Wunderlich, Martin & Schmid, 2005; Wunderlich & Schmid, 2006; Gribenko & Makhatadze, 2007; Del Pozo-Yauner et al., 2008; Deegan et al., 2010; Hernández-Santoyo et al., 2010; Van den Bedem, 2013; Del Pozo-Yauner et al., 2014). $\Delta\Delta G$ value represents the effect of a determined mutation on the stability compared to the wild-type protein structure. On the other hand, the estrogen receptor complex (ERC) was assessed by determining the affinity constant (K_D) against its target DNA. The percentage difference in terms of K_D determines the variation level in affinity between the wild-type ER homodimer and its mutant homodimer when binding to its target DNA sequence. Both, percentages lower than 100 in K_D and negative $\Delta \Delta G$ values indicate less stable structures.

We compared these experimental data with a network parameter- Grade (see File S1). This parameter is defined as the number of neighbors of each node when any two non-hydrogen atoms from residues *i* and *j* are within a cutoff distance (*Li*, *Wang* & *Wang*,

2008). According to Fig. 1, there is a higher probability to affect the stability if the selected node is highly surrounded in a cutoff distance of 5 Å. However, this parameter does not provide a full hierarchization of each node; some nodes can share same grade-value but exhibit a different impact on the stability. Another caveat is that size matters, because bigger residues, such as tryptophan or phenylalanine, tend to make more interactions than smaller residues, such as glycine or alanine (see File S1). Furthermore, proteins are not rigid structural assemblies since most of their contacts are in a dynamical condition. Thus, we suggest that the molecular dynamics of a protein should be gathered with more precise network analyses in order to properly assess the influence of determined mutations on the stability of the protein structure.

As a first step to assess this assumption, the crystallographic structures were subjected to 25 ns of molecular dynamics simulations as described in the Methods section. The completion of this process was confirmed by inspecting the Root Mean Square Deviation (RMSD) values of the main chain indicating the convergence to a stationary structural

Figure 2 Backbone RMSD. RMSD difference between the backbone of the crystallographic structure and the corresponding structure present at the indicated time of molecular dynamics; this difference was calculated using Desmond. There is an observable change after the first few nanoseconds of the dynamics simulations, during which the structure is "heated," but the protein remains stable after that moment. (A) Chymotrypsin inhibitor; (B) 6aJL2; (C) apoflavodoxin; (D) arc repressor; (E) DNA-binding domain of the estrogen receptor; (F) cold shock protein from *B. subtilis*; and (G) cold shock protein from *B. cal-dolyticus*.

movement at 300 K (Fig. 2). Every 0.25 ns, a structure was extracted by means of generating one hundred frames over all the simulation time in order to obtain a good representation of the possible movements of both the lateral and the main chains. Next, a network analysis was performed for each frame. In accordance with definitions, each protein residue and each nucleotide base were considered as individual nodes. The center of mass was calculated based on all of the atoms of the node. The interaction strength between a pair of nodes was measured in terms of the distance between their mass centers which was subsequently normalized by the summation of their Van der Waals radii considering all their atoms, as

Table 1Statistics of theoretical scores—SDRIs.Skewness, kurtosis, and the normality of the SDRI dis-
tribution measured with Shapiro–Wilk test.SDRI distribution of globular proteins shows a good distribu-
tion unlike unstructured peptide.Analysis was performed using SigmaPlot11.0 software (Systat Software,
San Jose, CA).

Protein	Skewness	Kurtosis	Shapiro–Wilk
Chymotrypsin inhibitor	0.16	-0.59	0.98
6aJL2	0.74	-0.03	0.95
Apoflavodoxin	0.80	0.12	0.95
Arc repressor	0.51	0.02	0.97
Complex estrogen/Receptor	-0.11	-0.19	0.99
Cold shock protein BS	0.53	-0.67	0.94
Cold shock protein BC	0.61	-0.54	0.94
Unstructured peptide	1.75	2.15	0.71

stated in Materials and Methods section (values less than 1 imply that the interaction is very strong).

We selected dynamical Shannon entropy as an approach to estimate connectivity being aware that the results describe probabilistic values. The next step in the calculation process included the use of eigenvector properties for which, the greater value, the more important interaction. The inverse value of the mean normalized distance for the 100 frames was calculated and rounded up to four decimals. At this point, we would like to emphasize that this strategy makes a cutoff distance unnecessary. Then, each of these values was incorporated into a square matrix that was, in turn, converted into a row stochastic matrix. Assuming that the microscopic process of the network is Markovian, the matrix was solved consistently using a dynamical entropy equation corresponding to a Markov process (Demetrius & Manke, 2004; Costa et al., 2007). Each node is now associated with a dynamical entropic value (H_i) , which can be interpreted as a connectivity parameter with a probabilistic character. We also presume that the movement restriction of each node, which is represented by its Root Mean Square Fluctuation (RMSF) value derived from the molecular dynamics, is associated with its dynamical entropic value. Therefore, each node was scored by dividing its entropic value by its respective RMSF value, and this score indicates the relative importance of each node within its respective structure (see File S2). These theoretical scores were identified as structural-determining residue identifier (SDRI). By normalizing SDRIs and plotting them against their sequence, SDRIs were distributed throughout the structure (Fig. 3). Distribution statistics- skewness, kurtosis, and Shapiro-Wilk test showed that globular proteins are near normal distribution unlike the unstructured peptide which is described hereinafter (Table 1). Interestingly, structures in complex—Arc repressor and Complex Receptor DNA, showed fewer residues with low SDRI values compared to the other analyzed structures, suggesting that both are notably less disordered.

We compared the distribution of the non-normalized SDRIs obtained in our study with scores from the structure-based flexibility as well as the sequence-based intrinsic disorder predisposition of the query proteins. The structural flexibility of these proteins was obtained

by utilizing the FlexPred tool that predicts the absolute fluctuations per-residue from a three-dimensional structure using the B-factors of a query protein (*Jamroz, Kolinski* & *Kihara, 2012*). The intrinsic disorder propensities per-residue of these proteins was obtained by using PONDR[®] VSL2B predictor, which is one of the more accurate standalone disorder predictors (*Fan & Kurgan, 2014; Peng et al., 2005; Peng & Kurgan, 2012*). Results of these comparisons are shown in Fig. 4 and clearly illustrated that these three computational tools, SDRI, FlexPred, and PONDR[®] VSL2B, can "see" different, although related, features in a protein. Note that we used (1–SDRI) function instead of SDRI when representing the SDRI values to compare data from these three tools "in phase" to highlight intrinsic disorder instead of structural rigidness. These results suggested that there is a good agreement between the structural flexibility calculated from the protein crystal structure and the propensity of a protein to preserve disorder. Furthermore, it seemed that residues essential for the preservation of the stability of global protein structure are typically located within highly ordered and less flexible domains. In terms of spectral analysis, the visual inspection of plots shown in Fig. 4 suggested that, in many cases, the propensity for intrinsic

Figure 4 Evaluating intrinsic disorder and structural flexibility. Distributions of predicted intrinsic disorder propensity evaluated by PONDR[®] VSL2B (black curves), predicted structural flexibility estimated by FlexPred (blue curves) and (1-SDRI) function ranking structure determining residues (red or pink curves) for a set of query proteins: (A) Chymotrypsin inhibitor; (B) 6aJL2; (C) apoflavodoxin; (D) arc repressor; (E) DNA-binding domain of the estrogen receptor α ; (F) cold shock protein from *B. subtilis*; (G) cold shock protein from *B. caldolyticus*; and (H) the JAK interaction region of SOCS5. Propensities for intrinsic disorder and (1-SDRI) function are scaled from 0 to 1. Since formation of two complexes—dimeric Arc repressor and a complex between the estrogen receptor DNA-binding domain and the DNA estrogen response element—resulted in a dramatic reduction of the amplitude of the (1-SDRI) function, corresponding plots (D and E) also include expanded (1-SDRI) curves shown in pink.

Figure 5 Contrasting of SDRIs against their corresponding experimental values. Each point in the graphics represents a single-mutation experiment compared with the scores from the theoretical analysis (see File S3). In the case of homodimers, only the values for chain A are shown. Statistical data is shown in terms of eigenvectors: DIM1 refers to SDRIs (H_{i^*} RMSF_i⁻¹), and DIM2 refers to the experimental values, $\Delta\Delta G$ (DDG) or KD percentage difference. (A) Chymotrypsin inhibitor; (B) 6aJL2; (C) apoflavodoxin; (D) arc repressor; (E) complex of estrogen receptor α /DNA estrogen response element; (F) cold shock protein from *B. subtilis*; and (G) cold shock protein from *B. caldolyticus*.

disorder results in broad bands that define global appearance of the curves, whereas the outputs of (1-SDRI) and FlexPred add fine structural resolution to the resulting plots. Additionally, for some regions, noticeable disagreements can be found among the outputs of these three tools, which can be attributed to the particular considerations of each tool. Nevertheless, these important observations suggested that intrinsic disorder propensity, predicted from amino acid sequence, serves as an important background defining global flexibility of a protein 3D-structure which is fine-tuned by long-distance interactions taking place in a folded molecule.

A more efficient way to exploit SDRIs was to visualize each node according to its theoretical score; the higher SDRI the more important is the residue to preserve the structure. In homodimeric domains (arc repressor and ERC) both monomers showed the same distribution. In our analysis, the residues with highest SDRI values corresponded to structure-determinant residues (Fig. 5). Complementarily, heat maps based on these values facilitated the localization of essential residues or segments involved in a protein's biological function (Fig. 6). Despite that linear statistics parameters (R-squared and Pearson Correlation Coefficient) showed low correlation between SDRIs and experimental values (Table 2), visual inspection of Fig. 5 strongly suggested that a pattern was followed. Therefore, we performed a statistical scrutiny applying Principal Component Analyses

Figure 6 Ranking heat map. The highest SDRI, representing a highly connected node with restricted movement, is shown in blue, and the lowest theoretically scored node, which is barely connected and exhibits a high degree of movement, is represented in yellow (see File S2). The structures were prepared using the PyMOL software. (A) Chymotrypsin inhibitor (PDB entry 2CI2); (B) 6aJL2 (PDB entry 2W0K); (C) apoflavodoxin (PDB entry 1FTG); (D) arc repressor (PDB entry 1ARR); (E) complex of estrogen receptor α /DNA estrogen response element (PDB entry 1HCQ); (F) cold shock protein from *B. subtilis*, and (G) cold shock protein from *B. caldolyticus*.

 Table 2
 Statistics of SDRIs versus experimental results. Coefficient of determination (R^2) and Pearson correlation coefficient analysis describe mild correlation between SDRIs and experimental values. Analysis was performed using SigmaPlot11.0 software (Systat Software, San Jose, CA).

Protein	<i>R</i> ²	Pearson correlation coefficient
Chymotrypsin inhibitor	0.25	-0.50
6aJL2	0.22	-0.54
Apoflavodoxin	0.28	-0.55
Arc repressor	0.24	-0.50
Complex estrogen/Receptor	0.29	-0.54
Cold shock protein BS	0.06	-0.12
Cold shock protein BC	0.08	-0.21

(PCA) to identify data patterns of apparently uncorrelated variables (*Abdi & Williams*, 2010). Results were represented as circular biplots allowing us to examine the correlation between variables SDRI and experimental data as vectors (see Fig. 5 and Fig. S2). Based on biplots from PCA results and due to the angle between variables SDRIs and thermodynamic data, it can be emphasized that the present method is able to estimate the effect of a single-point mutation on protein structure depending on the importance of a given residue irrespective of its position. The results confirmed our hypothesis that the most connected and the most rigid residues are the most influential on the structural stability of the protein

despite their involvement in any kind of structural organization. For example, the worst effects in Arc repressor were observed in five mutants (VA22, EA36, IA37, VA41, and FA45) that showed little or no cooperation in denaturation experiments (*Milla, Brown & Sauer, 1994*). Remarkably, these mutations were performed on residues that matched with high SDRI values (6, 4, 1, 2, and 19, respectively).

The next comparison was between the SDRIs of two structures that have different thermodynamic stability in spite of their high sequence and high structural homology. We selected the Cold shock protein from thermophilic *B. subtilis* (Csp S) and from hyperthermophilic *B. caldolyticus* (Csp C) bacteria. Csp C and Csp S share a sequence homology >80%, but the hyperthermophilic variant, Csp C, is more stable than its thermophilic counterpart. Perl and Schmidt generated mutants in Csp S by directing them to Csp C sequence (see Fig. S1) (*Perl & Schmid*, 2001). Our results show that Csp S stabilizing mutations were performed over low connected and highly flexible residues, residues with low SDRIs. Most stabilizing mutations of Csp S, that were directed to the sequence of the hyperthermophilic variant- Csp C, were those incorporated on the surface bonding flexible residues through the formation of salt bridges. Likewise, Tokuriki and Tawfik reported that mutations on surface residues of their analyzed proteins resulted in low destabilizing effects while mutations on core residues caused stronger destabilizing effects (*Tokuriki & Tawfik*, 2009).

We are particularly interested in the characterization of 6aJL2, an immunoglobulin light chain variable domain, based on the fact that 6a is the most implicated germ line in AL amyloidosis disease (Comenzo et al., 2001). Destabilizing mutations of 6aJL2 enhances its propensity to generate protein fibers. Strikingly, the crystallographic structures of destabilizing mutants exhibited a low RMSD difference when overlapped against the wild-type structure (Hernández-Santoyo et al., 2010). To experimentally demonstrate our hypothesis, we selected four residues with low RSA values but different SDRIs to perform single-point mutations: Gln6Asn, Arg24His, Tyr36Phe, and Ile29Gly (SDRIs 0.5055, 0.3273, 0.3274, and 0.2057, respectively). Despite that the greatest destabilization impact was detected when the size of the lateral chain was minimized, as observed with mutant Ile29Gly (RSA 2.2%, $\Delta\Delta G = -3.61$ kcal mol⁻¹), mutant Gln6Asn (RSA 12%, $\Delta\Delta G = -3.34 \text{ kcal mol}^{-1}$) was more relevant due to the neutrality of the change. The lateral chain size-reduction by one methylene had a remarkable impact on the protein stability. We selected residue Gln6 in 6aJL2 because it is a highly conserved residue in immunoglobulin light chains sequence alignments (Williams et al., 1996). Opposite to this neutral mutation, Tyr36Phe did not affect the structure suggesting that the hydroxyl group of the tyrosine is not playing a relevant role (RSA 0.6%, $\Delta\Delta G = -0.04$ kcal mol⁻¹). While Arg24His (RSA 10%, $\Delta\Delta G = -2.70$ kcal mol⁻¹) performed in this work was more destabilizing than reported mutation Arg24Gly ($\Delta\Delta G = -1.52$ kcal mol⁻¹) (*Del Pozo-Yauner et al.*, 2008), other effects should be considered like Phe2 reorientation to the upper hydrophobic core to compensate the absence of the Arg24 guanidinium group (*Del* Pozo-Yauner et al., 2014). Interestingly, Phe2 is not among the residues with higher SDRIs in 6aJL2 pointing out that compensatory effects might be attributable to the flexibility of the lateral chain.

This prompted us to assess about the role of residues or protein segments with the lowest SDRIs. Since proteins can interact with other proteins and other macromolecular, important residues not only maintain the connectivity along the tertiary structure but also maintaining quaternary structure as seen in the complex of the estrogen receptor with DNA by modifying the affinity (*Deegan et al., 2010*). We found that the most flexible and unconnected regions were associated with active site functions, as in the case of apoflavodoxin, to which the cofactor, flavin mononucleotide, binds (Genzor et al., 1996). In chymotrypsin inhibitor, the larger loop, which is flexible and unconnected, harbors the active site (Jackson et al., 1993). However, not all mutations can enhance the stability while preserving the original function of a protein. In the case of T4 lysozyme, some mutants were found to be more stable but resulted in losses of the protein's original function (Shoichet et al., 1995). If the purpose is to modify the function of a protein, potential mutations should be assessed by other means, such as evolutionary multiple sequence alignment (Alexander et al., 2009; Halabi et al., 2009). If the aim is only to increase the protein stability, a good approach could be locating the less structurally important residues and generating changes that benefit the formation of salt bridges as shown in apoflavodoxin. Mutations localized on the surface and designed to establish salt bridges were able to increase the overall stability in apoflavodoxin (*Campos et al.*, 2004b). Remarkably, these mutations were performed on the low-scored SDRI residues.

Since folding requires certain flexibility degree, we analyzed the relationship between kinetic data with SDRIs. Other experiments performed in chymotrypsin inhibitor were folding/unfolding kinetics (Fig. 7) (*Itzhaki*, *Otzen & Fersht*, 1995). In this case, the SDRIs showed a better correlation with the $\Delta\Delta G$ unfolding kinetic values (75% from the PCA analysis) than the $\Delta\Delta G$ folding kinetic values (57% from the PCA analysis). We would like to reiterate that folding is a dynamic rearrangement of the network because longer times and other conditions are required for better simulations of the protein folding/unfolding pathways.

Our last validation was performed over an intrinsically disordered peptide, resolved by NMR in solution, which only showed a small structured portion of the peptide (*Chandrashekaran et al.*, 2015). Before applying the network strategy described here, the RMSD of each one of the 20 frames was calculated by comparing them against the first frame (Fig. 8A). It was evident that there is a remarkable structural motion freedom at the N-terminus, even higher than those obtained by molecular dynamics of the other proteins described here (Figs. 2, 4 and 8B). In order to follow the methodology proposed here, RMSF values of the main chain of each residue were calculated using RCI server (*Berjanskii & Wishart*, 2013). An important difference compared to globular proteins was the distribution statistics of the SDRIs, having the highest value dispersion dissimilar to a normally distributed population (Table 1 and Fig. 4H). The most connected and less flexible residues were located in the hairpin, shown in Fig. 8C, which contributes to the scaffolding functionality allowing phosphorylation of Ser211. Also, the plasticity of the disordered N-terminus would enable this peptide to bind multiple components of the signaling pathway in which it is involved (*Chandrashekaran et al.*, 2015).

Figure 7 Comparison of SDRIs with the kinetic unfolding and kinetic refolding processes of the chymotrypsin inhibitor. Unfolding kinetics exhibited a better correlation with SDRIs as shown in circular biplots. DIM1 refers to SDRIs (H_{i^*} RMSF⁻¹_i), and DIM2 refers to the experimental values, $\Delta\Delta G$ (DDG) or KD percent difference (see File S3). (A) $\Delta\Delta G$ Unfolding kinetics, uDDG in circular biplot; (B) $\Delta\Delta G$ Refolding kinetics, fDDG in circular biplot.

It should be noticed that applying this methodology on proteins with high structural motion might not provide enough information to predict which residues will interact with ligands. Unstructured peptides can be analyzed by other means (*Kosol et al., 2013*; *Shaw et al., 2010*). We simulated the unbound estrogen receptor and, despite the drastic change on the ranking position and the SDRIs, it is not evident which segments of the estrogen receptor dimer will recognize precise DNA sequence (see File S4). Furthermore, we decided to extend 6aJL2 simulation time to 50 ns and we only detected subtle, but not significant, changes on SDRIs for this globular protein (see File S4). Thus, appropriate molecular dynamics simulation accomplished on globular proteins is an essential step for this methodology. Moreover, our results agreed with sequence-based predictors that look up for the intrinsically disordered segments regardless protein complexity. SDRI values displayed a versatile mathematical parameter since function (1-SDRI) might be applicable to highlight disordered segments. Such disordered segments may increase the

capability of organisms to tolerate environmental challenges by diversifying the properties of their proteins to recognize several molecular partners such as cofactors, DNA, or other proteins. Higher SDRI values imply higher probabilities to modify protein stability, but there is a higher tendency to destabilization. As reported by *Tokuriki & Tawfik (2009)*, one of the evolutionary implications of protein destabilization is that other functions or adaptations may be achieved. Finally, under the scenario of analyzing uncommon foldings or even structures bearing non-natural amino acids, our method might be suitable to assess structure stability since it does not depend on previous information such as an evolutionary multiple sequence alignment. In conclusion, we have validated a method for the analysis of globular proteins by ranking each one of their residues according to their structural relevance from a theoretical score- SDRI.

ACKNOWLEDGEMENTS

We thank J Osuna-Quintero, JL Martínez-Morales, and M Aldana-González for the valuable discussions and advice, C Torres-Duarte for critically reviewing the manuscript, the Oligonucleotide Synthesis Unit of the Institute of Biotechnology, T Olamendi-Portugal for the DNA sequencing, and G Corzo-Burguete for facilitating the use of the computer hardware that was used for the molecular dynamics simulations

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

ODLM and MIVV were supported by CONACYT 177224 and 185179, respectively. This work was supported by grants from DGAPA IN 217510. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors: CONACYT: 177224, 185179. DGAPA IN: 217510.

Competing Interests

Vladimir N. Uversky is an Academic Editor for PeerJ.

Author Contributions

- Oscar D. Luna-Martínez conceived and designed the experiments, performed the experiments, analyzed the data, wrote the paper, prepared figures and/or tables, reviewed drafts of the paper.
- Abraham Vidal-Limón performed the experiments, analyzed the data, contributed reagents/materials/analysis tools, reviewed drafts of the paper.
- Miryam I. Villalba-Velázquez performed the experiments, analyzed the data, reviewed drafts of the paper.
- Rosalba Sánchez-Alcalá performed the experiments.
- Ramón Garduño-Juárez analyzed the data, contributed reagents/materials/analysis tools, reviewed drafts of the paper.
- Vladimir N. Uversky analyzed the data, wrote the paper, prepared figures and/or tables, reviewed drafts of the paper.
- Baltazar Becerril analyzed the data, wrote the paper, reviewed drafts of the paper.

Data Availability

The following information was supplied regarding data availability:

The raw data has been supplied as Supplemental Information.

Supplemental Information

Supplemental information for this article can be found online at http://dx.doi.org/10.7717/ peerj.2136#supplemental-information.

REFERENCES

- Abdi H, Williams LJ. 2010. Principal component analysis. WIREs Computational Statistics 2:433–459 DOI 10.1002/wics.101.
- Alexander PA, He Y, Chen Y, Orban J, Bryan PN. 2009. A minimal sequence code for switching protein structure and function. *Proceedings of the National Academy of Sciences of the United States of America* 106:21149–21154 DOI 10.1073/pnas.0906408106.
- Amitai G, Shemesh A, Sitbon E, Shklar M, Netanely D, Venger I, Pietrokovski S. 2004. Network analysis of protein structures identifies functional residues. *Journal of Molecular Biology* 344:1135–1146 DOI 10.1016/j.jmb.2004.10.055.
- Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H. 2012. ExPASy: SIB bioinformatics resource portal. *Nucleic Acids Research* 40:W597–W603 DOI 10.1093/nar/gks400.
- Baldwin EP, Matthews BW. 1994. Core-packing constraints, hydrophobicity and protein design. *Current Opinion Biotechnology* 5:396–402 DOI 10.1016/0958-1669(94)90048-5.
- Banci L, Bertini I, Calderone V, Cramaro F, Del Conte R, Fantoni A, Mangani S, Quattrone A, Viezzoli MS. 2004. A prokaryotic superoxide dismutase paralog lacking two Cu ligands: from largely unstructured in solution to ordered in the crystal. *Proceedings of the National Academy of Sciences of the United States of America* 102:7541–7546 DOI 10.1073/pnas.0502450102.
- Becktel WJ, Schellman JA. 1987. Protein stability curves. *Biopolymers* 26:1859–1877 DOI 10.1002/bip.360261104.
- Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola AS, Haak JR. 1984. Molecular dynamics with coupling to an external bath. *The Journal of Chemical Physics* 81:3684–3690 DOI 10.1063/1.448118.
- Berjanskii MV, Wishart DS. 2013. A simple method to measure protein side-chain mobility using NMR chemical shifts. *Journal of the American Chemical Society* 135:14536–14539 DOI 10.1021/ja407509z.
- Böde C, Kovács IA, Szalay MS, Palotai R, Korcsmáros T, Csermely P. 2007. Network analysis of protein dynamics. *FEBS Letters* 581:2776–2782 DOI 10.1016/j.febslet.2007.05.021.
- **Campos LA, Bueno M, Lopez-Llano J, Jiménez MA, Sancho J. 2004a.** Structure of stable protein folding intermediates by equilibrium φ-analysis: the apoflavodoxin thermal intermediate. *Journal of Molecular Biology* **344**:239–255 DOI 10.1016/j.jmb.2004.08.081.
- Campos LA, Garcia-Mira MM, Godoy-Ruiz R, Sanchez-Ruiz JM, Sancho J. 2004b. Do proteins always benefit from a stability increase? Relevant and residual stabilization in a three-state protein by charge optimization. *Journal of Molecular Biology* 344:223–237 DOI 10.1016/j.jmb.2004.09.047.

- Chandrashekaran IR, Mohanty B, Linossi EM, Dagley LF, Leung EWW, Murphy JM, Babon JJ, Nicholson SE, Norton RS. 2015. Structure and functional characterization of the conserved JAK interaction region in the intrinsically disordered N-terminus of SOCS5. *Biochemistry* 54:4672–4682 DOI 10.1021/acs.biochem.5b00619.
- **Chen ME, Cang HX, Nymeyer H. 2007.** *Nymeyer's group. Inst. Mol. Biol.*, Florida State University. *Available at http://noch.sourceforge.net* (accessed 27 November 2015).
- **Comenzo RL, Zhang Y, Martinez C, Osman K, Herrera GA. 2001.** The tropism of organ involvement in primary systemic amyloidosis: contributions of Ig V(L) germ line gene use and clonal plasma cell burden. *Blood* **98**:714–720 DOI 10.1182/blood.V98.3.714.
- **Costa LF, Rodrigues FA, Travieso G, Villas Boas PR. 2007.** Characterization of complex networks: a survey of measurements. *Advances in Physics* **56**:167–242 DOI 10.1080/00018730601170527.
- Creighton TE. 1990. Protein structure: a practical approach. Oxford: IRL Press.
- **Darby N, Creighton TE. 1993.** Protein structure. In: *Focus*. New York: IRL Press, Oxford University Press Inc., p. 4.
- **Deegan BJ, Seldeen KL, McDonald CB, Bhat V, Farooq A. 2010.** Binding of the ER α nuclear receptor to DNA is coupled to proton uptake. *Biochemistry* **49**:5978–5988 DOI 10.1021/bi1004359.
- Del Pozo-Yauner L, Ortiz E, Sánchez R, Sánchez-López R, Güereca L, Murphy CL, Allen A, Wall JS, Fernández-Velasco DA, Solomon A, Becerril B. 2008. Influence of the germline sequence on the thermodynamic stability and fibrillogenicity of human lambda 6 light chains. *Proteins Structure Function and Bioinformatics* 72:684–692 DOI 10.1002/prot.21934.
- Del Pozo-Yauner L, Wall JS, González Andrade M, Sánchez-López R, Rodriguez-Ambriz SL, Pérez-Carreón JI, Ochoa-Leyva A, Fernández-Velasco DA. 2014. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis. *Biochemical and Biophysical Research Communications* 443:495–499 DOI 10.1016/j.bbrc.2013.11.123.
- **Demetrius L, Manke T. 2004.** Robustness and network evolution—an entropic principle. *Physica A* **346**:682–696 DOI 10.1016/j.physa.2004.07.011.
- Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE. 2012. Biolomolecular simulation: a computational microscope for molecular biology. *Annual Review of Biophysics* 41:429–452 DOI 10.1146/annurev-biophys-042910-155245.
- Edgar RC, Batzoglou S. 2006. Multiple sequence alignment. *Current Opinion in Structural Biology* 16:368–373 DOI 10.1016/j.sbi.2006.04.004.
- Eftink MR. 1995. Use of multiple spectroscopic methods to monitor equilibrium unfolding of proteins. *Methods in Enzymology* 259:487–512 DOI 10.1016/0076-6879(95)59058-7.
- Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. 1995. A smooth particle mesh Ewald method. *The Journal of Chemical Physics* 103:8577–85933 DOI 10.1063/1.470117.

- Fan X, Kurgan L. 2014. Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus. *Journal of Biomolecular Structure and Dynamics* 32:448–464 DOI 10.1080/07391102.2013.775969.
- Genzor CG, Perales-Alcón A, Sancho J, Romero A. 1996. Closure of a tyrosine/tryptophan aromatic gate leads to a compact fold in apoflavodoxin. *Nature Structural & Molecular Biology* 3:329–332 DOI 10.1038/nsb0496-329.
- Greene LH, Higman VA. 2003. Uncovering network systems within protein structures. *Journal of Molecular Biology* 334:781–791 DOI 10.1016/j.jmb.2003.08.061.
- Gribenko AV, Makhatadze GI. 2007. Role of the charge–charge interactions in defining stability and halophilicity of the CspB proteins. *Journal of Molecular Biology* 366:842–856 DOI 10.1016/j.jmb.2006.11.061.
- Guex N, Peitsch MC. 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. *Electrophoresis* 18:2714–2723 DOI 10.1002/elps.1150181505.
- Halabi N, Rivoire O, Leibler S, Ranganathan R. 2009. Protein sectors: evolutionary units of three-dimensional structure. *Cell* 138:774–786 DOI 10.1016/j.cell.2009.07.038.
- Hernández-Santoyo A, Del Pozo Yauner L, Fuentes-Silva D, Ortiz E, Rudiño-Piñera E, Sánchez-López R, Horjales E, Becerril B, Rodríguez-Romero A. 2010. A single mutation at the sheet switch region results in conformational changes favoring lambda6 light-chain fibrillogenesis. *Journal of Molecular Biology* **396**:280–292 DOI 10.1016/j.jmb.2009.11.038.
- Itzhaki LS, Otzen DE, Fersht AR. 1995. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding. *Journal of Molecular Biology* **254**:260–288 DOI 10.1006/jmbi.1995.0616.
- Jackson SE, Moracci M, ElMasry N, Dobson CM, Fersht AR. 1993. Effect of cavitycreating mutations in the hydrophobic core of chymotrypsin inhibitor 2. *Biochemistry* 32:11259–11269 DOI 10.1021/bi00093a001.
- Jaenicke R, Böhm G. 1998. The stability of proteins in extreme environments. *Current Opinion in Structural Biology* 8:738–748 DOI 10.1016/S0959-440X(98)80094-8.
- Jamroz M, Kolinski A, Kihara D. 2012. Structural features that predict real-value fluctuations of globular proteins. *Proteins: Structure, Function, and Bioinformatics* 80:1425–1435 DOI 10.1002/prot.24040.
- Karplus M, Kuriyan J. 2005. Molecular dynamics and protein function. *Proceedings of the National Academy of Sciences of the United States of America* 102:6679–6685 DOI 10.1073/pnas.0408930102.
- Kepleis JL, Lindorff-Larsen K, Dror RO, Shaw DE. 2009. Long-timescale molecular dynamics simulations of protein structure and function. *Current Opinion in Structural Biology* **19**:120–127 DOI 10.1016/j.sbi.2009.03.004.
- Kosol S, Contreras-Martos S, Cedeño C, Tompa P. 2013. Structural characterization of intrinsically disordered proteins by NMR spectroscopy. *Molecules* 18:10802–10828 DOI 10.3390/molecules180910802.

- Kumar S, Nussinov R. 2001. How do thermophilic proteins deal with heat? *Cellular and Molecular Life Sciences* 58:1216–1233 DOI 10.1007/PL00000935.
- Lei H, Duan Y. 2004. The role of plastic β -hairpin and weak hydrophobic core in the stability and unfolding of a full sequence design protein. *The Journal of Chemical Physics* 121:12104–12111 DOI 10.1063/1.1822916.
- Li J, Wang J, Wang W. 2008. Identifying folding nucleus based on residue contact networks of proteins. *Proteins: Structure, Function, and Bioinformatics* 71:1899–1907 DOI 10.1002/prot.21891.
- Milla ME, Brown BM, Sauer RT. 1994. Protein stability effects of a complete set of alanine substitutions in Arc repressor. *Nature Structural & Molecular Biology* 1:518–523 DOI 10.1038/nsb0894-518.
- **Mori T, Okamoto Y. 2009.** Folding simulations of gramicidin A into the β -helix conformations: simulated annealing molecular dynamics study. *The Journal of Chemical Physics* **131**:165103 DOI 10.1063/1.3247578.
- Pace CN, Fu H, Fryar KL, Landua J, Trevino SR, Shirley BA, McNutt Hendricks M, Iimura S, Gajiwala K, Scholtz JM, Grimsley GR. 2011. Contribution of hydrophobic interactions to protein stability. *Journal of Molecular Biology* 408:514–528 DOI 10.1016/j.jmb.2011.02.053.
- Peng ZL, Kurgan L. 2012. Comprehensive comparative assessment of in-silico predictors of disordered regions. *Current Protein & Peptide Science* 13:6–18 DOI 10.2174/138920312799277938.
- Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z. 2005. Optimizing long intrinsic disorder predictors with protein evolutionary information. *Journal of Bioinformatics and Computational Biology* 3:35–60 DOI 10.1142/S0219720005000886.
- Perl D, Schmid FX. 2001. Electrostatic stabilization of a thermophilic cold shock protein. *Journal of Molecular Biology* 313:343–357 DOI 10.1006/jmbi.2001.5050.
- Phillips A, Janies D, Wheeler W. 2000. Multiple sequence alignment in phylogenetic analysis. *Molecular Phylogenetics and Evolution* 16:317–330 DOI 10.1006/mpev.2000.0785.
- Pierri CL, Parisi G, Porcelli V. 2010. Computational approaches for protein function prediction: a combined strategy from multiple sequence alignment to molecular docking-based virtual screening. *Biochimica et Biophysica Acta* 1804:1695–1712 DOI 10.1016/j.bbapap.2010.04.008.
- **Prodromou C, Pearl LH. 1992.** Recursive PCR: a novel technique for total gene synthesis. *Protein Engineering* **5**:827–829 DOI 10.1093/protein/5.8.827.
- **R Core Development Team. 2013.** *R: a language environment for statistical computing*. Vienna: R Foundation for Statistical Computing. *Available at http://R-project.org* (accessed 27 November 2015).
- Reed CJ, Lewis H, Trejo E, Winston V, Caryn E. 2013. Protein adaptaptations in archaeal extremophiles. *Archaea* 2013: Article 373275 DOI 10.1155/2013/373275.
- Rodríguez-Rodríguez ER, Ledezma-Candanoza LM, Contreras-Ferrat LG, Olamendi-Portugal T, Possani LD, Becerril B, Riaño-Umbarila L. 2012. A single mutation

in framework 2 of the heavy variable domain improves the properties of a diabody and a related single chain antibody. *Journal of Molecular Biology* **423**:337–350 DOI 10.1016/j.jmb.2012.07.007.

- Rothschild LJ, Mancinelli RL. 2001. Life in extreme environments. *Nature* 409:1092–1101 DOI 10.1038/35059215.
- Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. *Proceedings of the National Academy of Sciences of the United States of America* 74:5463–5467 DOI 10.1073/pnas.74.12.5463.
- Schier R, Marks JD, Wolf EJ, Apell G, Wong C, McCartney JE, Bookman MA, Huston JS, Houston LL, Weiner LM, Adams GP. 1995. *In vitro* and *in vivo* characterization of a human anti-c-e-erbB-e single-chain Fv isolated from a filamentous phage antibody library. *Immunotechnology* 1:73–81 DOI 10.1016/1380-2933(95)00007-0.
- Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP, Bank JA, Jumper JM, Salmon JK, Yibing S, Wriggers W. 2010. Atomic-level characterization of the structural dynamics of proteins. *Science* 330:341–346 DOI 10.1126/science.1187409.
- Shoichet BK, Baase WA, Kuroki R, Matthews BW. 1995. A relationship between protein stability and protein function. *Proceedings of the National Academy of Sciences of the United States of America* 92:452–456 DOI 10.1073/pnas.92.2.452.
- Tokuriki N, Stricher F, Serrano L, Tawfik DS. 2008. How protein stability and new functions trade off. *PLoS Computational Biology* **4**(2):e1000002 DOI 10.1371/journal.pcbi.1000002.
- **Tokuriki N, Tawfik DS. 2009.** Stability effects of mutations and protein evolvability. *Current Opinion in Structural Biology* **19**:596–604 DOI 10.1016/j.sbi.2009.08.003.
- Van den Bedem H, Bhabha G, Yan K, Wright PE, Fraser JS. 2013. Automated identification of functional dynamic contact networks from X-ray crystallography. *Nature Methods* 10:896–902 DOI 10.1038/nmeth.2592.
- **Vendruscolo M, Dokholyan NV, Paci E, Karplus M. 2002.** Small-world view of the amino acids that play a key role in protein folding. *Physical Review E* **65**:061910 DOI 10.1103/PhysRevE.65.061910.
- Voss NR, Gerstein M. 2005. Calculation of standard atomic volumes for RNA and comparison with proteins: RNA is packed more tightly. *Journal of Molecular Biology* 346:477–492 DOI 10.1016/j.jmb.2004.11.072.
- Williams SC, Frippiat JP, Tomlinson IM, Ignatovich O, Lefranc MP, Winter G. 1996. Sequence evolution of the human germline Vλ repertoire. *Journal of Molecular Biology* 264:220–232 DOI 10.1006/jmbi.1996.0636.
- Wunderlich M, Martin A, Schmid FX. 2005. Stabilization of the cold shock protein CspB from *Bacillus subtilis* by evolutionary optimization of coulombic interactions. *Journal of Molecular Biology* 347:1063–1076 DOI 10.1016/j.jmb.2005.02.014.
- Wunderlich M, Schmid FX. 2006. The correlation between protein stability and dipole moment: a critical test. *Protein Engineering, Design and Selection* 19:355–358 DOI 10.1093/protein/gzl019.

Protein		Grade		
ZCIZ Posiduo		(Number of Neighbors)		
ASN	1	2		
I FU	2	4		
LYS	3	9		
THR	4	7		
GLU	5	8		
TRP	6	16		
PRO	7	7		
GLU	8	9		
LEU	9	11		
VAL	10	11		
GLY	11	7		
LYS	12	11		
SER	13	10		
VAL	14	11		
GLU	15	7		
GLU	16	8		
ALA	17	13		
LYS	18	12		
LYS	19	8		
VAL	20	12		
ILE	21	16		
LEU	22	12		
GLN	23	8		
ASP	24	9		
LYS	25	15		
PRO	26	7		
GLU	27	7		
ALA	28	9		
GLN	29	7		
ILE	30	9		
ILE	31	8		
VAL	32	7		
LEU	33	10		
PRO	34	7		
VAL	35	9		
GLY	36	6		
THR	37	7		
ILE	38	4		

Protein 2CI2		Grade (Number of
Resid	lue	Neighbors)
VAL	39	7
THR	40	6
MET	41	4
GLU	42	7
TYR	43	7
ARG	44	7
ILE	45	9
ASP	46	9
ARG	47	14
VAL	48	15
ARG	49	12
LEU	50	14
PHE	51	14
VAL	52	13
ASP	53	8
LYS	54	4
LEU	55	4
ASP	56	10
ASN	57	10
ILE	58	16
ALA	59	10
GLU	60	8
VAL	61	9
PRO	62	15
ARG	63	10
VAL	64	13
GLY	65	9

Mutant	Grada	Guanidinium chloride denaturation		
2CI2	(Number of Neighbors)	m UF (kcal mol ⁻¹)	Cm (M)	ΔΔG° (kcal mol ⁻¹)
Wild Type				
(WT)	-	1.9	4	-
KA3	9	1.77	3.72	-0.53
KM3	9	1.88	3.66	-0.65
TA4	7	1.83	3.56	-0.84
TV4	7	1.67	3.83	-0.32
TG4	7	1.95	3.4	-1.14
PA7	7	3.46	3.19	-1.54
EA8	9	1.75	3.76	-0.46
EQ8	9	1.91	3.68	-0.61
LA9	11	2.15	2.62	-2.62
KA12	11	1.52	4.22	0.42
SG13	10	2.1	3.59	-0.78
SA13	10	1.86	3.54	-0.87
EQ15	7	1.87	3.85	-0.29
ED15	7	1.83	3.73	-0.51
EN15	7	2.01	3.64	-0.68
EQ16	8	1.84	3.76	-0.46
ED16	8	2.2	3.62	-0.72
EN16	8	2.18	3.45	-1.05
AG17	13	1.8	3.44	-1.06
KA18	12	1.73	3.75	-0.48
KG18	12	1.99	2.8	-2.28
KA19	8	1.61	4.11	0.21
KG19	8	1.73	3.49	-0.97
VA20	12	2.01	3.75	-0.48
IV21	16	1.99	3.33	-1.27

Mutant	Grade	Guanidinium chloride denaturation		
2CI2	(Number of Neighbors)	m UF (kcal mol ⁻¹)	Cm (M)	∆∆G° (kcal mol ⁻¹)
LA22	12	1.93	3.32	-1.29
LG22	12	1.68	3.29	-1.35
QA23	8	1.77	3.99	-0.02
QG23	8	1.81	3.69	-0.59
DA24	9	1.87	3.51	-0.93
KA25	15	1.57	3.67	-0.63
KG25	15	1.75	2.36	-3.12
PA26	7	2.07	3.09	-1.73
EA27	7	1.78	3.83	-0.32
IV30	9	1.99	3.43	-1.08
IA30	9	2.07	1.99	-3.82
IV31	8	1.77	4.04	0.08
IA31	8	2.22	2.91	-2.07
IG31	8	2.13	2.19	-3.44
IT31	8	1.97	3.31	-1.31
LA32	7	2.11	2.78	-2.32
LI32	7	1.7	3.87	-0.25
LV32	7	1.76	3.74	-0.49
PA33	10	1.79	3.91	-0.17
VT34	7	1.65	3.47	-1.01
VA34	7	1.7	3.67	-0.63
VG34	7	2	2.75	-2.38
TS36	6	1.66	3.99	-0.02
TV36	6	1.67	3.61	-0.74
TA36	6	1.5	4.12	0.23
IA38	4	1.59	3.98	-0.04
VA39	7	2.14	3.24	-1.44

Reference. J. Mol. Biol. (1995) 254: 260-288 $\Delta\Delta G^{\circ} = mWT^{*}(C_{m}MUT-C_{m}WT)$

Mutant	Grada	Guanidinium chloride denaturati				
2CI2	(Number of Neighbors)	m UF	Cm	۵۵G°		
	· · · ·	(kcal mol ⁻¹)	(M)	(kcal mol ⁻¹)		
TA40	6	1.89	3.63	-0.70		
TD40	6	1.87	4.01	0.02		
EA42	7	1.78	3.64	-0.68		
RA44	7	1.78	3.7	-0.57		
DA46	14	1.83	3.59	-0.78		
VA48	15	1.76	1.46	-4.83		
LA50	14	1.98	2.02	-3.76		
FL51	14	1.95	2.91	-2.07		
FV51	14	2.24	2.77	-2.34		
FA51	14	2.17	2.02	-3.76		
VA52	13	2.15	2.98	-1.94		
DA53	8	1.99	2.24	-3.34		
DN53	8	1.6	4	0.00		
ND57	10	1.8	3.38	-1.18		
NA57	10	1.79	3.57	-0.82		
IV58	16	1.82	4.1	0.19		
IA58	16	1.93	1.79	-4.20		
AG59	10	2.19	3.03	-1.84		
VT61	9	1.63	3.8	-0.38		
VA61	9	1.92	3.22	-1.48		
VG61	9	2.61	2.33	-3.17		
PA62	15	1.8	2.28	-3.27		
VT64	13	1.79	3.41	-1.12		
VA64	13	1.95	3.25	-1.43		
VG64	13	2.1	2.2	-3.42		

Pro 6a.	tein JL2	Grade (Number of
Resi	due	Neighbors)
ASN	1	5
PHE	2	10
MET	3	8
LEU	4	15
THR	5	8
GLN	6	16
PRO	7	9
HIS	8	7
SER	9	6
VAL	10	11
SER	11	7
GLU	12	12
SER	13	8
PRO	14	8
GLY	15	7
LYS	16	10
THR	17	9
VAL	18	12
THR	19	9
ILE	20	14
SER	21	12
CYX	22	15
THR	23	11
ARG	24	17
SER	25	7
SER	26	7
GLY	27	6
SER	28	8
ILE	29	15
ALA	30	5
SER	31	6
ASN	32	12
TYR	33	9
VAL	34	14
GLN	35	13
TRP	36	22
TYR	37	13
GLN	38	15

Pro	tein	Grade
6a.	IL2	(Number of
Residue		Neighbors)
GLN	39	11
ARG	40	10
PRO	41	4
GLY	42	4
SER	43	6
SER	44	7
PRO	45	7
THR	46	8
THR	47	10
VAL	48	14
ILE	49	16
TYR	50	12
GLU	51	8
ASP	52	13
ASN	53	7
GLN	54	8
ARG	55	11
PRO	56	9
SER	57	4
GLY	58	4
VAL	59	9
PRO	60	6
ASP	61	7
ARG	62	12
PHE	63	15
SER	64	9
GLY	65	11
SER	66	10
ILE	67	11
ASP	68	9
SER	69	7
SER	70	4
SER	71	6
ASN	72	14
SER	73	13
ALA	74	14
SER	75	13
LEU	76	16
-		

Prot 6a.	tein JL2	Grade (Number of	
Resi	due	Neighbors)	
THR	77	13	
ILE	78	14	
SER	79	10	
GLY	80	9	
LEU	81	15	
LYS	82	9	
THR	83	7	
GLU	84	7	
ASP	85	16	
GLU	86	12	
ALA	87	10	
ASP	88	10	
TYR	89	19	
TYR	90	14	
CYX	91	13	
GLN	92	14	
SER	93	14	
TYR	94	13	
ASP	95	10	
SER	96	4	
SER	97	4	
ASN	98	7	
HIS	99	7	
VAL	100	7	
VAL	101	13	
PHE	102	10	
GLY	103	10	
GLY	104	7	
GLY	105	9	
THR	106	14	
LYS	107	12	
LEU	108	15	
THR	109	8	
VAL	110	11	
LEU	111	6	

		Thermal denaturation			
Mutant 6aJL2	Grade (Number of Neighbors)	Тт (К)	ΔH° (kcal mol⁻¹)	∆∆G° (kcal mol ⁻¹)	Reference
Wild Type (WT)	-	323.05	86.2	-	Biochem. Biophys. Res. Commun. (2014) 443: 495-499
Phe2Ser	10	316.95	73.6	-1.63	
Phe2Leu	10	318.85	76.1	-1.12	
Phe2Pro	10	316.75	73.7	-1.68	
Phe2Trp	10	319.15	81.3	-1.04	
Arg24Gly	17	317.35	77.2	-1.52	Proteins (2008) 72: 684-692
Pro7Ser	9	316.15	79.5	-1.84	
His8Pro	7	323.25	84.8	0.05	J. Mol. Biol. (2010) 396: 280-292
His8Ser	7	322.65	84.4	-0.11	
Arg24His	17	312.95 ± 1.15	56.47 ± 5.65	-2.70	This work
lle29Gly	15	309.53 ± 0.53	60.74 ± 2.55	-3.61	
Tyr37Phe	13	322.90 ± 0.31	87.23 ± 3.06	-0.04	
Gln6Asn	16	310.55 ± 0.30	10.39 ± 3.21	-3.34	

 $\Delta\Delta G^{\circ} = (T_m MUT - T_m WT)^* (\Delta H^{\circ} WT / T_m WT)$

File S1. Network parameter Grade compared to experimental data. For each residue of the protein, the number of neighbors surrounding heavy atoms (C, O, N, S, P), in a distance of 5 Å was measured. Grade values were compared to experimental data.

Prote 1FTC	in G	Grade (Number of
Resid	ue	Neighbors)
SER	1	10
LYS	2	7
LYS	3	9
ILE	4	15
GLY	5	11
LEU	6	13
PHE	7	16
TYR	8	15
GLY	9	13
THR	10	11
GLN	11	8
THR	12	5
GLY	13	7
LYS	14	12
THR	15	15
GLU	16	10
SER	17	8
VAL	18	14
ALA	19	13
GLU	20	9
ILE	21	10
ILE	22	16
ARG	23	12
ASP	24	7
GLU	25	9
PHE	26	15
GLY	27	9
ASN	28	4
ASP	29	7
VAL	30	11
VAL	31	12
THR	32	11
LEU	33	10
HIS	34	10
ASP	35	10
VAL	36	12
SER	37	6
GLN	38	6

Prote	Grade (Number of	
Resid	ue	Neighbors)
ALA	39	9
GLU	40	8
VAL	41	11
THR	42	6
ASP	43	11
LEU	44	15
ASN	45	9
ASP	46	7
TYR	47	15
GLN	48	9
TYR	49	9
LEU	50	15
ILE	51	16
ILE	52	14
GLY	53	11
CYS	54	16
PRO	55	12
THR	56	14
TRP	57	12
ASN	58	9
ILE	59	6
GLY	60	4
GLU	61	6
LEU	62	12
GLN	63	13
SER	64	6
ASP	65	11
TRP	66	16
GLU	67	10
GLY	68	8
LEU	69	13
TYR	70	12
SER	71	7
GLU	72	9
LEU	73	14
ASP	74	9
ASP	75	7
VAL	76	11

Prote 1FTC	Grade (Number of	
ASP	70	10
	70	14
	80	6
	81	16
	82	10
	83	12
	84	11
	85	17
	86	10
	87	12
	88	12
	89	12
	90	12
GLN	91	14
	92	14 Q
GLV	93	5
	94	13
	95	11
Δςρ	96	8
ASN	97	10
PHF	98	20
GLN	99	16
ASP	100	13
ALA	101	10
ILE	102	18
GLY	103	12
ILE	104	11
LEU	105	16
GLU	106	14
GLU	107	10
LYS	108	11
ILE	109	14
SER	110	11
GLN	111	8
ARG	112	13
GLY	113	10

Prote	in S	Grade (Number of
Resid	ue	Neighbors)
GLY	114	10
LYS	115	8
THR	116	10
VAL	117	12
GLY	118	12
TYR	119	14
TRP	120	16
SER	121	8
THR	122	10
ASP	123	4
GLY	124	7
TYR	125	15
ASP	126	6
PHE	127	11
ASN	128	7
ASP	129	11
SER	130	12
LYS	131	9
ALA	132	12
LEU	133	12
ARG	134	12
ASN	135	4
GLY	136	8
LYS	137	11
PHE	138	17
VAL	139	15
GLY	140	11
LEU	141	15
ALA	142	11
LEU	143	15
ASP	144	14
GLU	145	11
ASP	146	8
ASN	147	9
GLN	148	12
SER	149	8
ASP	150	5
LEU	151	8

Prote	in	Grade							
1FTC	3	(Number of							
Resid	ue	Neighbors)							
THR	152	13							
ASP	153	8							
ASP	154	8							
ARG	155	17							
ILE	156	15							
LYS	157	10							
SER	158	9							
TRP	159	20							
VAL	160	13							
ALA	161	9							
GLN	162	11							
LEU	163	14							
LYS	164	12							
SER	165	9							
GLU	166	10							
PHE	167	15							
GLY	168	6							
LEU	169	7							
Mutant	Grada		Thermal denaturation						
-------------------	-----------------------	------------	-----------------------------------	------------------------------------	------------	-----------------------------------	------------------------------------	---	-----------------------------------
1FTG	(Number of Neighbors)	Тт1 (К)	ΔH°1 (kcal mol ⁻¹)	ΔΔG°1 (kcal mol ⁻¹)	Tm2 (K)	DH°2 (kcal mol ⁻¹)	∆∆G°2 (kcal mol ⁻¹)	Total ∆∆G° (kcal mol ⁻¹)	Reference
Wild Type (WT)	-	312	22	-	326	60	-	-	
E20K	9	309.3	32.7	-0.19	331.2	66.2	0.96	0.77	
E40K	8	316.5	27	0.32	332.5	59.6	1.20	1.51	
E72K	9	312.8	2	0.06	333.6	68.4	1.40	1.46	J. Mol. Biol. (2004) 344: 223-237
D75K	7	314.8	28.3	0.20	330	54.3	0.74	0.93	
D126K	6	320	21.8	0.56	327.5	39.7	0.28	0.84	
D150K	5	305.8	25.1	-0.44	326.9	48	0.17	-0.27	
WT	-	317.3	33.9	-	329	52.7	-	-	
L6A	13	305.5	28.7	-1.26	319.1	23.8	-1.59	-2.85	
122V	16	311	33	-0.67	324.7	37.3	-0.69	-1.36	
V31A	12	312.6	30.9	-0.50	324.2	41.5	-0.77	-1.27	
D43A	11	317.7	34.1	0.04	329.6	49.5	0.10	0.14	
I51V	16	313.2	31.2	-0.44	324.3	38.8	-0.75	-1.19	-
152V	14	315.9	39.8	-0.15	324.9	54.5	-0.66	-0.81	-
S71A	7	316.3	34.5	-0.11	329.3	55	0.05	-0.06	-
A84G	11	313.3	34.4	-0.43	323.6	31.9	-0.86	-1.29	-
N97A	10	314.9	28.6	-0.26	328.3	48.7	-0.11	-0.37	J. Mol. Biol. (2004) 344: 239-255
Q99A	16	322.5	52.7	0.56	331.3	56.2	0.37	0.92	-
I104V	11	313.3	29.5	-0.43	327.9	54.5	-0.18	-0.60	-
S110A	11	315.6	32.5	-0.18	328.7	44.3	-0.05	-0.23	-
V117A	12	309.3	36.9	-0.85	322.6	33.7	-1.03	-1.88	
T122S	10	323.2	35.5	0.63	330.3	50.7	0.21	0.84	_
V139A	15	310.9	29	-0.68	327.5	50.8	-0.24	-0.92	
L143A	15	315.8	33.3	-0.16	328.9	50	-0.02	-0.18	
I156V	15	308.8	25.3	-0.91	320.3	29.9	-1.39	-2.30	
V160A	13	309.1	27.7	-0.88	322.4	49.2	-1.06	-1.93	

 $\Delta\Delta G = (TmMUT-TmWT)^*(\Delta HWT/TmWT)$

Total $\Delta\Delta G = \Delta\Delta G1 + \Delta\Delta G2$

	Protein 1ARR		Grade (Number of		Protein 1ARR		Grade (Number of			Grade (Number of	
Chain	Resi	due	Neighbors)	Chain	Resi	due	Neighbors)	Chain	Resi	due	Neighbors)
	MET	1	6		TYR	38	12		VAL	75	16
	LYS	2	4		GLN	39	9		ARG	76	11
	GLY	3	4		ARG	40	16		LYS	77	8
	MET	4	5		VAL	41	14		VAL	78	14
	SER	5	7		MET	42	10		ALA	79	13
	LYS	6	9		GLU	43	10		GLU	80	9
	MET	7	8		SER	44	12		GLU	81	11
	PRO	8	10	Δ	PHE	45	13		ASN	82	11
	GLN	9	7	~	LYS	46	6		GLY	83	7
	PHE	10	13		LYS	47	9		ARG	84	12
	ASN	11	9		GLU	48	10		SER	85	7
	LEU	12	12		GLY	49	7		VAL	86	12
	ARG	13	9		ARG	50	11		ASN	87	10
	TRP	14	16		ILE	51	13		SER	88	9
	PRO	15	10		GLY	52	8		GLU	89	16
	ARG	16	9		ALA	53	7	в	ILE	90	16
	GLU	17	7		MET	54	5	В	TYR	91	12
	VAL	18	12		LYS	55	4		GLN	92	9
А	LEU	19	12		GLY	56	4		ARG	93	18
	ASP	20	8		MET	57	5		VAL	94	13
	LEU	21	10		SER	58	6		MET	95	10
	VAL	22	15		LYS	59	9		FLU	96	10
	ARG	23	11		MET	60	8		SER	97	12
	LYS	24	9		PRO	61	10		PHE	98	13
	VAL	25	13		GLN	62	7		LYS	99	6
	ALA	26	13		PHE	63	11		LYS	100	10
	GLU	27	9	В	ASN	64	8		GLU	101	7
	GLU	28	9		LEU	65	11		GLY	102	6
	ASN	29	10		ARG	66	9		ARG	103	10
	GLY	30	7		TRP	67	16		ILE	104	13
	ARG	31	10		PRO	68	10		GLY	105	6
	SER	32	7		ARG	69	12		ALA	106	5
	VAL	33	10		GLU	70	8				
	ASN	34	9		VAL	71	11				
	SER	35	9		LEU	72	11				
	GLU	36	15		ASP	73	8				
	ILE	37	16		LEU	74	11				

		The	ermal denatura	tion		
Mutant 1ARR	Grade (Number of Neighbors Chain A)	Tm (K)	ΔH° (kcal mol ⁻¹)	ΔΔG° (kcal mol ⁻¹)	Reference	
WT-st6	-	332.15	62.3	-		
PA8	10	347.25	80.2	2.83		
SA35	9	336.55	57.1	0.83		
NA11	9	335.25	57.2	0.58		
KA6	9	332.75	59	0.11		
RA16	9	332.65	60	0.09		
VA25	13	332.45	58.3	0.06		
MA4	5	332.35	59.4	0.04		
EA27	9	331.95	61.6	-0.04		
KA2	4	331.85	57.2	-0.06		
QA9	7	331.55	59.5	-0.11		
GA3	4	331.25	60	-0.17	Nat. Struc. Biol (1994) 1. 516-525	
MA1	6	331.15	59.7	-0.19		
SA5	7	330.65	53.3	-0.28		
RA13	9	330.45	51.3	-0.32		
EA17	7	330.15	62.1	-0.38		
VA18	12	330.05	63.1	-0.39		
EA43	10	329.25	59.4	-0.54		
MA7	8	328.65	52.6	-0.66		
DA20	8	328.45	56.9	-0.69		
LA19	12	321.45	48.7	-2.01		
FA10	13	313.75	34.8	-3.45	1	
WT-st11	-	331.05	58.5	-		
NA34	9	336.15	57.1	0.90	Nat Struc Biol (1994) 1:518 522	
QA39	9	334.55	61.6	0.62	Nat. Struc. DIOI (1994) 1. 518-525	
GA52	8	334.05	57.7	0.53		

Mutant	Grade	Thermal denaturation			
1ARR	(Number of Neighbors Chain A)	Tm	ΔH°	ΔΔG°	Reference
		(K)	(kcal mol)	(kcal mol)	
KA46	6	330.25	52.9	-0.14	
RA23	11	329.85	56.5	-0.21	
KA24	9	329.45	59.9	-0.28	
EA28	9	328.85	52.1	-0.39	
IA51	13	324.05	47.4	-1.24	
GA49	7	321.85	45.8	-1.63	
GA30	7	321.05	48.8	-1.77	
RA50	11	321.05	41.9	-1.77	
КА47	9	320.35	41.2	-1.89	
PA15	10	319.75	38.1	-2.00	
SA44	12	319.45	41	-2.05	
NA29	10	318.45	44.2	-2.23	
VA33	10	317.25	39.7	-2.44	
EA48	10	316.35	29.3	-2.60	Nat. Struc. Biol (1994) 1: 518-523
LA12	12	315.45	40.4	-2.76	
LA21	10	312.75	36.7	-3.23	
RA31	10	310.25	34.2	-3.68	
MA42	10	308.75	26.1	-3.94	
SA32	7	306.65	24.4	-4.31	
YA38	12	306.15	24.1	-4.40	
WA14	16	304.65	25.3	-4.67	
RA40	16	304.35	13.6	-4.72	
VA22	9	UNF	-	-	
EA36	15	UNF	-	-	
IA37	16	UNF	-	-	
VA41	14	UNF	-	-	
FA45	13	UNF	-	-	

File S1. Network parameter Grade compared to experimental data. For each residue of the protein, the number of neighbors surrounding heavy atoms (C, O, N, S, P), in a distance of 5 Å was measured. Grade values were compared to experimental data.

	Protein 1HCQ		Grade (Number of		Protein 1HCQ		Grade (Number of		Protein 1HCQ		Grade (Number of
Chain	Resi	idue	Neighbors)	Chain	Residue		Neighbors)	Chain	Res	idue	Neighbors)
	MET	1	2		HIS	38	5		MET	75	7
	LYS	2	8		ASN	39	4		LYS	76	4
	GLU	3	10		ASP	40	5		GLU	77	11
	THR	4	11		TYR	41	9		THR	78	10
	ARG	5	9		MET	42	10		ARG	79	12
	TYR	6	6		CYS	43	13		TYR	80	13
	CYS	7	5		PRO	44	10		CYS	81	7
	ALA	8	5		ALA	45	11		ALA	82	5
	VAL	9	5		THR	46	11		VAL	83	8
	CYS	10	5		ASN	47	7		CYS	84	7
	ASN	11	7		GLN	48	10		ASN	85	12
	ASP	12	10		CYS	49	10		ASP	86	6
	TYR	13	13		THR	50	10		TYR	87	12
	ALA	14	10		ILE	51	10		ALA	88	7
	SER	15	7		ASP	52	8		SER	89	8
	GLY	16	6		LYS	53	10		GLY	90	7
	TYR	17	5		ASN	54	14		TYR	91	13
	HIS	18	4		ARG	55	14		HIS	92	16
А	TYR	19	2	А	ARG	56	6	В	TYR	93	10
	GLY	20	8		LYS	57	11		GLY	94	10
	VAL	21	10		SER	58	13		VAL	95	14
	TRP	22	9		CYS	59	15		TRP	96	12
	SER	23	9		GLN	60	15		SER	97	10
	CYS	24	6		ALA	61	15		CYX	98	12
	GLU	25	5		CYS	62	11		GLU	99	18
	GLY	26	5		ARG	63	16		GLY	100	14
	CYS	27	5		LEU	64	17		CYX	101	11
	LYS	28	5		ARG	65	11		LYS	102	12
	ALA	29	7		LYS	66	15		ALA	103	13
	PHE	30	11		CYS	67	16		PHE	104	10
	PHE	31	12		TYR	68	14		PHE	105	7
	LYS	32	10		GLU	69	13		LYS	106	9
	ARG	33	7		VAL	70	11		ARG	107	9
	SER	34	7		GLY	71	10		SER	108	14
	ILE	35	5		MET	72	8		ILE	109	5
	GLN	36	4		MET	73	6		GLN	110	5
	GLY	37	2		LYS	74	4		GLY	111	3

Chain	Protein 1HCQ Chain Residue		Grade (Number of	Chain	Protein 1HCQ Chain Residue			
Chain	Res	laue	Neighbors)	Chain	Kes	laue	Neighbors)	
	HIS	112	4		DC	149	4	
	ASN	113	4		DC	150	4	
	ASP	114	6		DA	151	10	
	TYR	115	9		DG	152	9	
	MET	116	9		DG	153	12	
	CYS	117	13		DT	154	13	
	PRO	118	10		DC	155	8	
	ALA	119	12		DA	156	5	
	THR	120	11	C	DC	157	8	
	ASN	121	8	C	DA	158	7	
	GLN	122	10		DG	159	12	
	CYS	123	10		DT	160	7	
	THR	124	10		DG	161	12	
	ILE	125	9		DA	162	7	
	ASP	126	8		DC	163	9	
	LYS	127	10		DC	164	7	
	ASN	128	14		DT	165	12	
	ARG	129	14		DG	166	18	
В	ARG	130	7		DC	167	10	
	LYS	131	11		DC	168	10	
	SER	132	13		DA	169	14	
	CYS	133	15		DG	170	13	
	GLN	134	15		DG	171	10	
	ALA	135	14		DT	172	13	
	CYS	136	11		DC	173	18	
	ARG	137	16		DA	174	13	
	LEU	138	17		DC	175	12	
	ARG	139	11	D	DT	176	12	
	LYS	140	15		DG	177	14	
	CYS	141	16		DT	178	10	
	TYR	142	14		DG	179	6	
	GUU	143	12			180	9	
		144	11			181	2 2	
	GIV	145	0			182	12	
		146	0 7			183	۲2 12	
		147	r F			184	0	
		1/18	0		DG	104	4	

Mutant 1HCQ	Grade (Number of Neighbors Chain A)	Dimer	recognition	Defense	
		Kd (nM)	Kd Difference (%)	Reference	
Wild Type (WT)	-	43	-		
D12A	10	67	-56		
H18A	4	190	-342		
E25A	5	172	-300		
S15A	7	102	-137	Biochemistry (2010) 49: 5978-	
Y19A	2	316	-635	5988	
S23A	9	119	-177		
K28A	5	313	-628		
K32A	10	326	-658		
R33A	7	745	-1633		

% K_d Difference = (K_d WT- K_d MUT)/ K_d WT*100

Pi	rotein 1CSP	Grade		
Re	esidue	(Number of Neighbors)		
MET	1	7		
LEU	2	10		
GLU	3	13		
GLY	4	12		
LYS	5	11		
VAL	6	14		
LYS	7	9		
TRP	8	8		
PHE	9	16		
ASN	10	8		
SER	11	7		
GLU	12	4		
LYS	13	6		
GLY	14	10		
PHE	15	11		
GLY	16	10		
PHE	17	12		
ILE	18	17		
GLU	19	11		
VAL	20	12		
GLU	21	5		
GLY	22	4		
GLN	23	7		
ASP	24	6		
ASP	25	8		
VAL	26	13		
PHE	27	11		
VAL	28	15		
HIS	29	10		
PHE	30	10		
SER	31	5		
ALA	32	10		
ILE	33	13		
GLN	34	9		
GLY	35	5		
GLU	36	4		
GLY	37	4		
PHE	38	5		

Р	rotein 1CSP	Grade		
R	esidue	(Number of Neighbors)		
LYS	39	8		
THR	40	8		
LEU	41	12		
GLU	42	7		
GLU	43	7		
GLY	44	6		
GLN	45	11		
ALA	46	11		
VAL	47	15		
SER	48	12		
PHE	49	15		
GLU	50	10		
ILE	51	12		
VAL	52	8		
GLU	53	6		
GLY	54	5		
ASN	55	4		
ARG	56	4		
GLY	57	7		
PRO	58	8		
GLN	59	10		
ALA	60	13		
ALA	61	9		
ASN	62	10		
VAL	63	14		
THR	64	9		
LYS	65	11		
GLU	66	8		
ALA	67	4		

		The	rmal denatura			
Protein 1CSP	Grade (Number of Neighbors)	Tm (K)	∆H° (kcal mol ⁻¹)	ΔΔG° (kcal mol ⁻¹)	Reference	
Csp S WT	-	53.6	46.13	-		
E3R	13	69.6	52.34	2.26		
E3L	13	62.7	47.80	1.28	JMB (2001) 313, 343-357	
A46E	11	48.6	39.67	-0.71		
E66L	8	66.4	53.54	1.81		
Csp S WT	-	53.8	46.13	-		
E3K	13	70.4	48.52	2.34		
K65I	11	62.4	48.04	1.21	INAR (2005) 247 1062 1076	
E66K	8	66.7	54.02	1.82	– JMB (2005) 347, 1063-1076 – –	
E43S	7	54.7	44.46	0.13		
A46K	11	62.2	51.63	1.19		
Csp S WT	-	52.3	39.20	-		
E3R	13	70.2	50.19	2.16		
E3Q	13	62.6	46.61	1.24		
K7E	9	UNF	-	-		
K7Q	9	UNF	-	-	INAR (2007) 266 942 956	
N10D	8	57.7	43.26	0.65	JIVIB (2007) 500, 842-850	
D25Q	8	44.2	29.16	-0.98		
S48E	12	53	38.00	0.08		
E50Q	10	42.6	34.18	-1.17		
R56Q	4	55.3	42.54	0.36		
Csp S WT*	-	55.3	38.24	-		
E3R*	13	71.6	49.95	1.90	INAR (2007) 266 842-856	
K5E*	11	22.2	14.58	-3.85	- JMB (2007) 366, 842-856 -	
K5Q*	11	38.6	29.88	-1.94		

 $\Delta\Delta G^{\circ} = (T_m MUT - T_m WT)^* (\Delta H^{\circ} WT / T_m WT)$

* means that the protein was cut from MHHHHHHML N-terminal sequence

Protein	Grade	Thermal denaturation			
1CSP	(Number of Neighbors)	Тт (К)	ΔH° (kcal mol ⁻¹)	ΔΔG° (kcal mol ⁻¹)	Reference
E12K**	4	50.2	37.76	-0.59	
K13E*	6	52.7	36.57	-0.30	
K13Q*	6	54	41.35	-0.15	
E19K*	11	50.5	37.28	-0.56	
E19Q*	11	53.7	39.91	-0.19	
V20Q*	12	39.5	29.64	-1.84	
V20E*	12	UNF	-	-	
V20K*	12	37.2	25.81	-2.11	
E21K*	5	54.3	43.26	-0.12	
E21Q*	5	52.5	34.89	-0.33	
D24K*	6	50.9	34.18	-0.51	
D24N*	6	48.4	31.07	-0.80	
D25K*	8	35	13.38	-2.36	JMB (2007) 366, 842-856
K39E*	8	52.8	35.85	-0.29	
K39Q*	8	54.9	35.37	-0.05	
E42K*	7	55.3	42.78	0.00	
E42Q*	7	54.1	35.61	-0.14	
E43K*	7	56.5	46.13	0.14	
S48K*	12	61.6	41.59	0.73	
E50K*	10	49.7	31.55	-0.65	
E53K*	6	53.7	40.15	-0.19	
E53Q*	6	56.6	43.74	0.15	
N55K*	4	54.3	37.76	-0.12	
N55D*	4	59.2	44.22	0.45	
K56E*	4	38.2	24.14	-1.99	
K65Q*	11	48	31.31	-0.85	

 $\Delta\Delta G^{\circ} = (T_m MUT - T_m WT)^* (\Delta H^{\circ} WT / T_m WT)$

* means that the protein was cut from MHHHHHHML N-terminal sequence

Prot 1CS	ein 90	Grade (Number of
Resi	due	Neighbors)
MET	1	6
GLN	2	8
ARG	3	10
GLY	4	11
LYS	5	12
VAL	6	15
LYS	7	9
TRP	8	8
PHE	9	16
ASN	10	8
ASN	11	8
GLU	12	4
LYS	13	5
GLY	14	10
TYR	15	11
GLY	16	10
PHE	17	12
ILE	18	17
GLU	19	9
VAL	20	12
GLU	21	5
GLY	22	4
GLY	23	5
SER	24	6
ASP	25	9
VAL	26	12
PHE	27	11
VAL	28	15
HIS	29	9
PHE	30	9
THR	31	4
ALA	32	10
ILE	33	13
GLN	34	8
GLY	35	5
GLU	36	5
GLY	37	4

Prot 1C	tein 90	Grade (Number of
Resi	due	Neighbors)
PHE	38	6
LYS	39	11
THR	40	8
LEU	41	12
GLU	42	7
GLU	43	7
GLY	44	6
GLN	45	11
GLU	46	11
VAL	47	15
SER	48	11
PHE	49	15
GLU	50	9
ILE	51	10
VAL	52	9
GLN	53	7
GLY	54	7
ASN	55	4
ARG	56	4
GLY	57	7
PRO	58	9
GLN	59	11
ALA	60	14
ALA	61	9
ASN	62	10
VAL	63	14
VAL	64	8
LYS	65	10
LEU	66	7

		Th	ermal denatu	ration	
Protein 1C9O	Grade (Number of Neighbors)	Тт (К)	ΔH° (kcal mol ⁻¹)	∆∆G° (kcal mol ⁻¹)	References
Csp C WT	-	76.9	58.56	-	
Q2L	8	80.9	57.84	0.67	
R3E	10	59.1	45.65	-2.98	
R3L	10	70.9	55.69	-1.00	
R3K	10	76.1	53.54	-0.13	
R3A	10	64.9	51.39	-2.01	
N11S	8	79.2	58.80	0.38	
Y15S	11	76.7	56.64	-0.03	IMP (2001) 212 242-257
E21A	5	75	57.84	-0.32	JND (2001) 313, 343-337
G23Q	5	74.7	59.51	-0.37	
S24D	6	77.8	61.66	0.15	
T31S	4	77.8	59.75	0.15	
E46A	11	75.4	57.60	-0.25	
Q53E	7	76.1	58.80	-0.13	
V64T	8	75.1	58.32	-0.30	
L66E	7	68.9	50.19	-1.34	
Csp C WT	-	76.9	58.56	-	
R56E	4	80	60.95	0.52	
H29E	9	73.5	105.88	-0.57	
E46K	11	74	106.84	-0.49	
E21K	5	75.4	49.00	-0.25	Prot Eng Des Sel (2006) 19, 355-358
N55K	4	77.7	55.21	0.13	
E36K	5	76	45.65	-0.15	
E50K	9	73.5	43.26	-0.57	
E12K	4	74.4	52.34	-0.42]

Prote 2CI	ein 2	Solvent Access	Dynamical entropy	Movement restriction	SDRI	Residue ranking
Resid	lue	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position
ASN	1	100	0.1568	3.46	0.0453	65
LEU	2	72.9	0.1726	2.20	0.0783	62
LYS	3	36.5	0.2167	0.89	0.2445	38
THR	4	39.8	0.2135	0.79	0.2710	34
GLU	5	42	0.2208	0.94	0.2342	44
TRP	6	0	0.2674	0.50	0.5339	3
PRO	7	47.2	0.2099	0.63	0.3331	22
GLU	8	46.9	0.2098	0.88	0.2389	41
LEU	9	1.7	0.2507	0.53	0.4727	5
VAL	10	45.2	0.2238	0.61	0.3644	17
GLY	11	56.7	0.1874	0.61	0.3065	26
LYS	12	36	0.2249	0.90	0.2499	37
SER	13	100	0.2086	0.69	0.3037	27
VAL	14	8.5	0.2401	0.73	0.3277	23
GLU	15	54.3	0.2026	1.11	0.1830	48
GLU	16	52.2	0.2004	1.12	0.1787	49
ALA	17	0	0.2310	0.65	0.3565	19
LYS	18	43.4	0.2367	0.98	0.2426	40
LYS	19	63.1	0.2077	1.20	0.1736	50
VAL	20	34.8	0.2236	0.65	0.3463	21
ILE	21	0	0.2600	0.48	0.5402	2
LEU	22	44.1	0.2234	0.71	0.3132	25
GLN	23	78.4	0.1882	1.24	0.1517	52
ASP	24	42.5	0.2040	0.69	0.2935	29
LYS	25	5.5	0.2356	0.56	0.4207	9

Prote	ein	Solvent	Dynamical	Movement	SDRI	Residue
2CI	2	Access	entropy	restriction	1	ranking
Resid	ue	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position
PRO	26	70.7	0.1891	0.68	0.2788	33
GLU	27	49.5	0.2013	0.77	0.2621	35
ALA	28	9.6	0.2161	0.57	0.3777	14
GLN	29	57.8	0.2190	0.99	0.2205	46
ILE	30	25	0.2485	0.67	0.3704	16
ILE	31	41.2	0.2429	0.67	0.3599	18
VAL	32	47.6	0.2322	0.62	0.3721	15
LEU	33	20.9	0.2417	0.84	0.2867	31
PRO	34	52.3	0.2070	0.73	0.2832	32
VAL	35	51.9	0.2090	0.93	0.2250	45
GLY	36	79.8	0.1644	1.29	0.1277	55
THR	37	40.3	0.1874	2.03	0.0922	59
ILE	38	93.1	0.1739	2.04	0.0851	61
VAL	39	41.8	0.1916	1.52	0.1256	56
THR	40	69.5	0.1664	1.83	0.0907	60
MET	41	98.9	0.1553	2.14	0.0724	63
GLU	42	50.3	0.1776	1.60	0.1109	57
TYR	43	68.3	0.1973	1.27	0.1558	51
ARG	44	45.5	0.2167	0.91	0.2388	42
ILE	45	60.5	0.1988	1.01	0.1977	47
ASP	46	23.1	0.2067	0.82	0.2516	36
ARG	47	14.6	0.2508	0.61	0.4103	10
VAL	48	0	0.2648	0.59	0.4466	6
ARG	49	19.2	0.2592	0.66	0.3927	12
LEU	50	0.3	0.2760	0.72	0.3860	13
PHE	51	16.8	0.2623	0.87	0.3015	28

Prote 2CI	ein 2	Solvent Access	Dynamical entropy	Movement restriction	SDRI	Residue ranking
Resid	ue	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position
VAL	52	9.5	0.2394	0.56	0.4309	8
ASP	53	39.9	0.1974	1.32	0.1493	53
LYS	54	95.6	0.1784	1.76	0.1015	58
LEU	55	77.7	0.1842	3.05	0.0605	64
ASP	56	47.5	0.2003	1.53	0.1312	54
ASN	57	27.6	0.2138	0.90	0.2372	43
ILE	58	2.4	0.2612	0.50	0.5275	4
ALA	59	44	0.2097	0.60	0.3498	20
GLU	60	39.7	0.2316	0.79	0.2925	30
VAL	61	27.9	0.2416	0.55	0.4397	7
PRO	62	1.3	0.2608	0.48	0.5453	1
ARG	63	47.3	0.2502	0.79	0.3150	24
VAL	64	18	0.2372	0.58	0.4074	11
GLY	65	8.2	0.2070	0.85	0.2445	39

Prot 2W	ein 0K	Solvent Access	Dynamical entropy	Movement restriction	SDRI	Residue ranking
Resi	due	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position
ASN	1	86.5	0.1430	1.6	0.0898	110
PHE	2	6.7	0.1898	0.7	0.2779	44
MET	3	62.5	0.1791	1.0	0.1839	80
LEU	4	9.4	0.2170	0.5	0.4032	16
THR	5	54.7	0.1933	0.5	0.3904	18
GLN	6	12.2	0.2218	0.4	0.5055	6
PRO	7	37.7	0.1959	0.5	0.3799	20
HIS	8	79.3	0.1760	1.6	0.1129	102
SER	9	100	0.1731	0.7	0.2430	55
VAL	10	17	0.1992	0.8	0.2634	48
SER	11	100	0.1667	0.7	0.2237	63
GLU	12	28.7	0.1737	0.7	0.2431	54
SER	13	100	0.1546	0.7	0.2135	69
PRO	14	46.8	0.1550	0.7	0.2332	57
GLY	15	55.2	0.1433	0.6	0.2304	60
LYS	16	53.9	0.1676	1.0	0.1692	82
THR	17	47.1	0.1787	0.8	0.2217	64
VAL	18	5.7	0.2050	0.6	0.3617	25
THR	19	52.1	0.2002	0.6	0.3249	33
ILE	20	0.7	0.2346	0.6	0.4207	15
SER	21	100	0.2044	0.6	0.3483	27
CYX	22	0.5	0.2217	0.4	0.5445	4

Solvent Dynamical Movement Protein Residue SDRI 2W0K Access entropy restriction ranking $H_i^* RMSF_i^{-1}$ % RSA Hį RMSF (Å) Residue position 23 37.4 0.2012 0.5 THR 0.4027 17 24 31 ARG 10.1 0.2034 0.6 0.3273 25 SER 100 0.1621 1.2 0.1385 93 26 0.1499 SER 100 1.6 0.0919 109 27 0.1495 GLY 57.1 95 1.1 0.1351 28 SER 100 0.1657 1.2 0.1348 96 29 ILE 2.2 0.2103 1.0 0.2057 73 30 97 ALA 64.4 0.1663 1.2 0.1333 31 0.1622 SER 100 87 1.1 0.1493 32 ASN 0.1960 37 22.3 0.6 0.3055 33 TYR 47.7 0.1908 0.9 0.2157 67 34 VAL 1.8 0.2219 0.5 0.4477 13 35

0.2180

0.2575

0.2205

0.2160

0.1953

0.1892

0.1590

0.1287

0.1521

0.1528

0.1752

0.1894

1.0

0.4

0.7

0.6

0.9

1.4

1.3

1.4

1.1

1.0

0.8

0.6

8.7

0.6

16.9

14.1

23.9

37.3

87.1

100

100

100

46.8

44.5

70

1

34

19

61

94

100

107

98

88

59

38

0.2107

0.6100

0.3204

0.3896

0.2257

0.1381

0.1255

0.0927

0.1327

0.1491

0.2310

0.3009

File S2. SDRI. For each residue of the protein, it is shown its solvent access, Shannon dynamical entropy, RMSF, and its ranking position according to the theoretical scores.

GLN

TRP

TYR

GLN

GLN

ARG

PRO

GLY

SER

SER

PRO

THR

36

37

38

39

40

41

42

43

44

45

46

Prot 2W	ein 0K	Solvent Access	Dynamical entropy	Movement restriction	SDRI	Residue ranking
Resi	due	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position
THR	47	33.9	0.1976	0.7	0.2911	39
VAL	48	3.2	0.2219	0.5	0.4647	10
ILE	49	0	0.2280	0.5	0.4828	9
TYR	50	37	0.1974	0.9	0.2082	72
GLU	51	41.8	0.1796	1.1	0.1640	83
ASP	52	19.9	0.1955	0.9	0.2082	71
ASN	53	49.7	0.1875	0.8	0.2242	62
GLN	54	42.3	0.1832	1.0	0.1829	81
ARG	55	39.3	0.1934	0.9	0.2206	65
PRO	56	21.7	0.1807	0.7	0.2514	51
SER	57	100	0.1472	1.3	0.1125	103
GLY	58	91.7	0.1427	0.9	0.1549	86
VAL	59	20.1	0.1881	0.6	0.2898	40
PRO	60	34.7	0.1765	0.7	0.2621	49
ASP	61	71	0.1596	0.9	0.1858	78
ARG	62	12.4	0.2004	0.5	0.3798	21
PHE	63	2.9	0.2214	0.7	0.3072	36
SER	64	100	0.1956	0.6	0.3437	29
GLY	65	17.5	0.1875	0.5	0.3634	24
SER	66	100	0.1936	0.7	0.2759	46
ILE	67	34.5	0.2055	0.7	0.2880	41
ASP	68	39.4	0.1745	1.1	0.1602	84
SER	69	100	0.1524	1.2	0.1279	99
SER	70	100	0.1407	1.2	0.1152	101

Dynamical Solvent Movement Protein Residue SDRI 2W0K Access entropy restriction ranking $H_i^* RMSF_i^{-1}$ % RSA Hį RMSF (Å) Residue position 71 0.1586 92 SER 100 1.1 0.1407 72 17.9 85 ASN 0.1782 1.1 0.1554 73 SER 100 0.1927 0.5 0.3653 23 74 0.2094 8 ALA 0.8 0.4 0.4915 75 0.2100 SER 100 0.5 14 0.4262 76 LEU 0 0.2425 0.5 0.4964 7 77 THR 21.8 0.2095 0.7 0.3152 35 78 0 0.2251 ILE 0.6 0.3603 26 79 0.1783 0.2138 SER 100 68 0.8 GLY 80 31.3 0.1594 0.7 56 0.2355 81 LEU 2.9 0.1992 0.8 0.2440 52 82 75 38.3 LYS 0.1801 0.9 0.1955 83 77 THR 70.8 0.1600 0.9 0.1862 84 57.1 0.1668 0.1409 91 GLU 1.2 85 0.1968 0.5 22 ASP 2.2 0.3723 86 GLU 38.7 0.1865 76 1.0 0.1905 87 4.5 ALA 0.1967 0.4 0.4596 12 88 0.2011 ASP 30.4 0.6 0.3298 30 89 TYR 0 0.2427 0.5847 3 0.4 90 TYR 21.2 0.2244 0.8 0.2794 43 91 CYX 0.1 0.2265 0.4 0.5887 2 92 GLN 2.3 0.2156 0.8 0.2585 50 93 SER 100 0.2007 0.4 0.4640 11 94 TYR 34.6 0.1944 0.8 0.2311 58

File S2. SDRI. For each residue of the protein, it is shown its solvent access, Shannon dynamical entropy, RMSF, and its ranking position according to the theoretical scores.

Prot 2W	ein 0K	Solvent Access	Dynamical entropy	Movement restriction	SDRI	Residue
Resi	due	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position
ASP	95	6.9	0.1692	1.1	0.1488	89
SER	96	100	0.1399	1.3	0.1081	105
SER	97	100	0.1414	1.3	0.1085	104
ASN	98	69.8	0.1444	1.5	0.0974	106
HIS	99	57.1	0.1641	1.8	0.0923	108
VAL	100	55.5	0.1747	0.9	0.1857	79
VAL	101	9.6	0.1944	0.7	0.2738	47
PHE	102	48.3	0.1999	1.4	0.1471	90
GLY	103	5.4	0.1852	0.7	0.2776	45
GLY	104	75.9	0.1752	0.8	0.2185	66
GLY	105	11.8	0.1869	0.6	0.3251	32
THR	106	0.3	0.2175	0.4	0.5365	5
LYS	107	34.6	0.1994	0.8	0.2438	53
LEU	108	0	0.2168	0.6	0.3483	28
THR	109	35.2	0.1781	0.6	0.2841	42
VAL	110	14.2	0.1773	0.9	0.1985	74
LEU	111	60.8	0.1507	3.0	0.0497	111

Prot	ein	Solvent	Dynamical entropy	Movement	SDRI	Residue
Resi	due	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position
SER	1	100	0.1221	5.00	0.0244	169
LYS	2	80.6	0.1436	3.55	0.0405	168
LYS	3	52	0.1587	1.83	0.0866	162
ILE	4	1	0.1824	0.72	0.2544	52
GLY	5	0	0.1694	0.48	0.3539	20
LEU	6	0	0.2008	0.73	0.2737	43
PHE	7	0.2	0.2010	0.75	0.2679	47
TYR	8	6.7	0.1989	0.75	0.2662	48
GLY	9	0	0.1679	0.70	0.2408	63
THR	10	22.1	0.1677	0.91	0.1835	92
GLN	11	59.3	0.1508	1.82	0.0829	163
THR	12	71.1	0.1419	1.29	0.1102	154
GLY	13	29.4	0.1391	1.09	0.1277	141
LYS	14	20.2	0.1702	1.31	0.1300	138
THR	15	0.8	0.1835	0.90	0.2046	78
GLU	16	32.3	0.1658	1.16	0.1425	132
SER	17	100	0.1569	0.92	0.1703	105
VAL	18	4.2	0.1877	0.75	0.2501	56
ALA	19	0	0.1742	0.65	0.2685	45
GLU	20	41.9	0.1611	1.09	0.1478	126
ILE	21	38.9	0.1741	0.69	0.2530	54
ILE	22	0.4	0.1942	0.65	0.2987	38
ARG	23	28.5	0.1716	1.12	0.1535	120
ASP	24	62.9	0.1454	1.24	0.1171	149

Dynamical Protein Solvent Movement Residue SDRI 1FTG Access entropy restriction ranking H_i*RMSF_i⁻¹ position Residue % RSA RMSF (Å) Hi 25 32.5 GLU 0.1565 1.01 0.1554 118 26 4.2 PHE 0.1761 1.02 0.1727 102 27 GLY 21 0.1320 0.94 134 0.1404 28 ASN 95.2 0.1303 1.71 0.0760 165 29 ASP 61.2 0.1324 1.37 0.0969 160 30 VAL 11 0.1558 1.05 0.1491 123 31 VAL 2.5 0.1734 0.86 0.2008 80 32 21.6 THR 0.1629 0.83 0.1951 83 33 31.2 LEU 82 0.1765 0.90 0.1957 HIS 34 21.5 0.1764 0.94 0.1870 90 35 ASP 22.9 0.1611 1.10 0.1464 129 36 5 VAL 0.1784 0.68 0.2641 50 37 0.1455 SER 100 0.85 0.1716 103 38 80.9 0.1415 0.1002 158 GLN 1.41 39 ALA 23 0.1496 0.81 0.1840 91 40 GLU 62.6 0.1431 1.23 0.1159 150 41 8.2 VAL 0.1559 1.01 0.1539 119 42 THR 55.5 0.1385 1.06 0.1302 137 43 0.1518 ASP 25.1 1.18 0.1284 140 44 0.1806 LEU 0.7 1.03 0.1753 100 45 ASN 46.5 0.1497 1.25 0.1194 146 46 ASP 74.9 0.1434 1.24 151 0.1154 47 TYR 12.9 0.1781 0.72 0.2475 59 48 47.5 GLN 0.1607 1.30 0.1240 144

Prot 1F1	ein G	Solvent Access	Dynamical entropy	Movement restriction	SDRI	Residue ranking
Resi	due	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position
TYR	49	32	0.1781	0.78	0.2273	70
LEU	50	0.2	0.2008	0.67	0.2978	39
ILE	51	0	0.2100	0.45	0.4664	5
ILE	52	0.4	0.2149	0.53	0.4069	13
GLY	53	0	0.1862	0.40	0.4712	2
CYS	54	0	0.2013	0.55	0.3681	18
PRO	55	3.5	0.1922	0.55	0.3474	22
THR	56	3.6	0.1852	0.48	0.3849	16
TRP	57	18.7	0.1855	0.81	0.2292	69
ASN	58	31.7	0.1546	1.23	0.1256	142
ILE	59	73.7	0.1478	0.97	0.1524	121
GLY	60	86.5	0.1474	0.76	0.1949	85
GLU	61	61.2	0.1588	0.93	0.1715	104
LEU	62	5.9	0.1832	0.74	0.2487	58
GLN	63	5.7	0.1809	0.67	0.2680	46
SER	64	100	0.1479	0.84	0.1759	99
ASP	65	31.6	0.1609	0.85	0.1899	88
TRP	66	0.4	0.2078	0.61	0.3416	24
GLU	67	37.7	0.1590	0.98	0.1617	114
GLY	68	50.9	0.1368	0.77	0.1775	97
LEU	69	7.8	0.1761	0.91	0.1934	86
TYR	70	25.6	0.1766	0.89	0.1978	81
SER	71	100	0.1388	0.92	0.1517	122
GLU	72	43.3	0.1453	1.12	0.1292	139

Dynamical Protein Solvent Movement Residue SDRI 1FTG Access entropy restriction ranking H_i*RMSF_i⁻¹ position Residue % RSA RMSF (Å) Hi 73 LEU 0.4 0.1715 1.38 0.1246 143 74 45.8 ASP 0.1346 2.20 0.0611 166 75 ASP 74.6 0.1301 2.49 0.0523 167 76 VAL 1.8 0.1558 1.40 0.1111 153 77 ASP 54 0.1429 1.32 0.1080 155 78 PHE 0.3 0.1801 0.87 0.2058 77 79 ASN 62.1 0.1388 1.06 0.1311 136 80 GLY 60.8 0.1343 0.83 0.1611 115 81 4.3 0.2377 LYS 0.1755 0.74 65 82 0.2727 LEU 21.1 0.1805 0.66 44 83 VAL 0.8 0.1963 0.56 0.3507 21 84 0 ALA 0.1923 0.41 0.4669 4 85 0.2190 TYR 0.5 0.40 0.5452 1 86 PHE 0.5 0.2196 0.47 0.4695 3 87 0.1858 GLY 0.4 0.65 0.2864 42 88 THR 1.7 0.1942 57 0.78 0.2497 89 30 GLY 1.3 0.1650 0.51 0.3254 90 ASP 15.6 0.1599 0.61 0.2612 51 91 GLN 4.6 0.1620 0.77 0.2091 75 92 ILE 64.9 0.1427 0.78 0.1823 95 93 GLY 64.2 0.1295 0.66 0.1950 84 94 TYR 25 0.1668 1.04 116 0.1596 95 22.6 ALA 0.1423 0.60 0.2367 66 96 ASP 53.1 0.1404 0.84 0.1676 108

Prot	ein	Solvent	Dynamical	Movement	SDRI	Residue
1F1	ГG	Access	entropy	restriction	5514	ranking
Resi	due	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position
ASN	97	20.1	0.1602	0.52	0.3062	35
PHE	98	0.5	0.1911	0.52	0.3680	19
GLN	99	0.5	0.2028	0.59	0.3449	23
ASP	100	5.6	0.1803	0.45	0.3969	14
ALA	101	3.9	0.1853	0.43	0.4302	9
ILE	102	0.3	0.2144	0.46	0.4624	7
GLY	103	0.2	0.1698	0.53	0.3201	33
ILE	104	26.6	0.1832	0.56	0.3251	31
LEU	105	0.2	0.1990	0.75	0.2643	49
GLU	106	6.8	0.1855	0.65	0.2870	41
GLU	107	62.7	0.1615	1.09	0.1479	125
LYS	108	16.4	0.1699	1.03	0.1657	110
ILE	109	1.8	0.1873	0.63	0.2988	37
SER	110	100	0.1564	0.70	0.2247	72
GLN	111	62.5	0.1459	1.43	0.1022	157
ARG	112	25.6	0.1584	1.41	0.1126	152
GLY	113	23.2	0.1384	0.73	0.1889	89
GLY	114	12.6	0.1516	0.62	0.2454	60
LYS	115	58.5	0.1700	1.02	0.1671	109
THR	116	17.2	0.1767	0.53	0.3354	27
VAL	117	9.4	0.1853	0.55	0.3388	25
GLY	118	1.6	0.1680	0.50	0.3360	26
TYR	119	45	0.1856	0.74	0.2505	55
TRP	120	16.3	0.1942	0.59	0.3308	28

Prot 1F	ein G	Solvent Access	Dynamical entropy	Movement restriction	SDRI	Residue ranking
Resi	due	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position
SER	121	100	0.1521	0.76	0.2012	79
THR	122	21.7	0.1541	0.64	0.2422	61
ASP	123	79.9	0.1392	1.19	0.1173	148
GLY	124	51.2	0.1300	0.77	0.1683	107
TYR	125	13.7	0.1758	0.78	0.2248	71
ASP	126	64.4	0.1344	1.02	0.1315	135
PHE	127	18.4	0.1626	0.69	0.2365	67
ASN	128	66.1	0.1321	0.93	0.1418	133
ASP	129	50.6	0.1450	0.79	0.1831	93
SER	130	100	0.1603	0.49	0.3241	32
LYS	131	52.1	0.1719	1.05	0.1636	113
ALA	132	0	0.1761	0.47	0.3756	17
LEU	133	24.9	0.1717	0.71	0.2404	64
ARG	134	36.7	0.1768	0.75	0.2363	68
ASN	135	85	0.1333	1.36	0.0977	159
GLY	136	49.2	0.1303	0.88	0.1482	124
LYS	137	45	0.1677	0.99	0.1697	106
PHE	138	0.2	0.1939	0.47	0.4162	12
VAL	139	0	0.1964	0.45	0.4397	8
GLY	140	0	0.1790	0.43	0.4179	11
LEU	141	0.1	0.2077	0.45	0.4648	6
ALA	142	0.2	0.1831	0.47	0.3878	15
LEU	143	0.5	0.2006	0.61	0.3300	29
ASP	144	0.1	0.1710	0.59	0.2899	40

Prot 1FT	ein ГG	Solvent Access	Dynamical entropy	Movement restriction	SDRI	Residue ranking
Resi	due	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position
GLU	145	27.9	0.1697	0.96	0.1765	98
ASP	146	55.5	0.1432	0.98	0.1468	128
ASN	147	41.3	0.1448	0.76	0.1905	87
GLN	148	15	0.1580	0.73	0.2161	73
SER	149	100	0.1431	0.87	0.1646	112
ASP	150	76.6	0.1324	1.13	0.1174	147
LEU	151	36.6	0.1560	1.06	0.1471	127
THR	152	4.2	0.1673	0.80	0.2102	74
ASP	153	59.8	0.1499	0.82	0.1824	94
ASP	154	67.1	0.1478	0.82	0.1798	96
ARG	155	9.6	0.1806	0.71	0.2544	53
ILE	156	1.9	0.1875	0.61	0.3094	34
LYS	157	52.2	0.1609	1.11	0.1451	130
SER	158	100	0.1503	0.72	0.2085	76
TRP	159	0	0.2055	0.48	0.4275	10
VAL	160	0.6	0.1782	0.59	0.3029	36
ALA	161	50.7	0.1454	0.83	0.1742	101
GLN	162	27	0.1613	1.53	0.1056	156
LEU	163	0	0.1872	0.78	0.2408	62
LYS	164	26.3	0.1628	1.03	0.1581	117
SER	165	100	0.1369	0.95	0.1445	131
GLU	166	38.7	0.1590	1.30	0.1223	145
PHE	167	3.3	0.1805	1.09	0.1650	111
GLY	168	71.6	0 1258	1.37	0.0916	161

Prot 1FT	ein IG	Solvent Access	Dynamical entropy	Movement restriction	SDRI	Residue ranking	
Resi	due	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position	
LEU	169	56.1	0.1455	1.87	0.0777	164	

	Prote 1ARI	in R	Solvent Access	Dynamical entropy	Movement restriction	SDRI	Ranking whole	Chain A Residue
Resi	due	Chain	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	structure	position
MET	1		77.4	0.1203	7.97	0.0151	106	53
LYS	2		80.3	0.1218	6.82	0.0179	105	52
GLY	3		70	0.1128	4.01	0.0281	102	51
MET	4		70.6	0.1314	4.04	0.0325	100	50
SER	5		100	0.1388	3.09	0.0449	95	47
LYS	6		71.9	0.1476	3.44	0.0429	97	48
MET	7		85.5	0.1805	1.95	0.0927	69	31
PRO	8		77.1	0.1766	1.68	0.1052	59	26
GLN	9		97.2	0.1835	2.01	0.0911	70	32
PHE	10		79.2	0.2176	1.87	0.1167	54	24
ASN	11		72.3	0.1875	1.83	0.1026	62	28
LEU	12		52.9	0.2212	1.57	0.1413	40	17
ARG	13		77.6	0.1965	1.96	0.1004	64	30
TRP	14		46.3	0.2417	1.24	0.1946	12	5
PRO	15		58.1	0.1989	1.56	0.1278	50	22
ARG	16		68.4	0.1851	2.32	0.0798	78	38
GLU	17	•	71.7	0.1773	2.19	0.0809	76	36
VAL	18	A	42	0.2131	1.43	0.1492	30	9
LEU	19		29.7	0.2169	1.48	0.1462	37	14
ASP	20		41	0.1805	1.74	0.1036	60	27
LEU	21		59.3	0.2065	1.45	0.1426	39	16
VAL	22		15.5	0.2207	1.27	0.1732	20	6
ARG	23		47.5	0.1972	2.29	0.0861	74	34
LYS	24		63.7	0.1846	1.83	0.1008	63	29
VAL	25		30.8	0.1998	1.34	0.1488	32	11
ALA	26		0.2	0.1853	1.40	0.1327	46	20
GLU	27		69.9	0.1668	2.07	0.0806	77	37
GLU	28		76.6	0.1628	2.07	0.0787	79	39
ASN	29		44.3	0.1744	1.92	0.0906	71	33
GLY	30		81.4	0.1470	1.88	0.0784	80	40
ARG	31		34	0.2077	1.52	0.1367	44	18
SER	32		100	0.1851	1.62	0.1140	56	25
VAL	33		37.8	0.2152	1.45	0.1483	33	12
ASN	34		79.7	0.2117	1.44	0.1473	35	13

	Prote 1ARI	in R	Solvent Access	Dynamical entropy	Movement restriction	SDRI	Ranking	Chain A Residue
Resi	due	Chain	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	whole structure	ranking position
SER	35		100	0.1990	1.34	0.1490	31	10
GLU	36		11.6	0.2245	1.08	0.2077	9	4
ILE	37		28	0.2444	0.98	0.2484	5	1
TYR	38		63.2	0.2260	1.37	0.1647	23	7
GLN	39		23	0.2079	1.44	0.1441	38	15
ARG	40		42.5	0.2338	1.03	0.2267	8	3
VAL	41		47.9	0.2321	0.94	0.2476	6	2
MET	42		44.9	0.2116	1.63	0.1299	47	21
GLU	43		51.2	0.1919	1.59	0.1210	53	23
SER	44	А	100	0.1930	1.27	0.1514	29	8
PHE	45		45.7	0.2148	1.59	0.1352	45	19
LYS	46		80.7	0.1779	2.18	0.0818	75	35
LYS	47		61.2	0.1731	2.69	0.0644	86	43
GLU	48		77	0.1398	3.51	0.0399	99	49
GLY	49		67.9	0.1311	2.86	0.0458	94	46
ARG	50		83.7	0.1646	2.92	0.0564	90	45
ILE	51		39.5	0.1901	2.91	0.0653	85	42
GLY	52		41.5	0.1676	2.39	0.0702	83	41
ALA	53		96.5	0.1608	2.69	0.0597	89	44
MET	54		75.7	0.1564	8.68	0.0180	104	-
LYS	55		80.4	0.1422	7.47	0.0190	103	-
GLY	56		68.8	0.1405	4.65	0.0302	101	-
MET	57		71.5	0.1828	4.30	0.0425	98	-
SER	58		100	0.1467	3.14	0.0467	93	-
LYS	59		67.6	0.1550	2.99	0.0519	91	-
MET	60		86.5	0.1918	1.50	0.1278	49	-
PRO	61	В	70.2	0.1787	1.28	0.1390	42	-
GLN	62		98.3	0.1792	1.56	0.1145	55	-
PHE	63		77.5	0.2214	1.46	0.1520	28	-
ASN	64		75.9	0.1953	1.39	0.1405	41	-
LEU	65		60	0.2274	1.15	0.1969	10	-
ARG	66		81.1	0.1973	1.61	0.1224	52	-
TRP	67		42.3	0.2376	1.03	0.2315	7	-
PRO	68		59.7	0.1869	1.26	0.1480	34	-

	Prote 1ARI	in R	Solvent Access	Dynamical entropy	Movement restriction	SDRI	Ranking	Chain A Residue
Resi	due	Chain	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	whole structure	ranking position
ARG	69		72.5	0.1886	2.03	0.0927	68	-
GLU	70		71.9	0.1715	1.95	0.0880	73	-
VAL	71		44.8	0.2068	1.23	0.1675	21	-
LEU	72		28.4	0.2145	1.36	0.1582	26	-
ASP	73		38.2	0.1824	1.46	0.1254	51	-
LEU	74		55.8	0.2087	1.30	0.1605	25	-
VAL	75		19.6	0.2232	1.15	0.1936	14	-
ARG	76		51.5	0.1974	2.07	0.0952	66	-
LYS	77		63.3	0.1868	1.69	0.1106	57	-
VAL	78		34.5	0.2078	1.19	0.1740	19	-
ALA	79		0.7	0.1915	1.09	0.1755	18	-
GLU	80		71.7	0.1728	1.73	0.0998	65	-
GLU	81		81.3	0.1722	1.85	0.0931	67	-
ASN	82		37.8	0.1765	1.65	0.1070	58	-
GLY	83		82.5	0.1510	1.47	0.1026	61	-
ARG	84		28.4	0.2139	1.21	0.1768	17	-
SER	85	Б	100	0.1891	1.24	0.1522	27	-
VAL	86	D	35.7	0.2175	1.14	0.1901	15	-
ASN	87		80.5	0.2137	1.10	0.1951	11	-
SER	88		100	0.2032	1.05	0.1937	13	-
GLU	89		11.7	0.2287	0.89	0.2578	3	-
ILE	90		31.2	0.2446	0.81	0.3003	1	-
TYR	91		62.5	0.2282	1.21	0.1881	16	-
GLN	92		25.7	0.2120	1.28	0.1655	22	-
ARG	93		37.1	0.2358	0.94	0.2512	4	-
VAL	94		45.2	0.2321	0.85	0.2732	2	-
MET	95		44.7	0.2119	1.53	0.1384	43	-
FLU	96		51.6	0.1940	1.50	0.1289	48	-
SER	97		100	0.1951	1.21	0.1617	24	-
PHE	98		50.8	0.2147	1.47	0.1465	36	-
LYS	99		74.7	0.1779	2.00	0.0890	72	-
LYS	100		64.2	0.1727	2.44	0.0709	82	-
GLU	101		75.1	0.1396	3.26	0.0429	96	-
GLY	102		37.7	0.1344	2.63	0.0511	92	-

	Prote 1AR	in R	Solvent Access	Dynamical entropy	Movement restriction	SDRI	Ranking	Chain A Residue
Resi	due	Chain	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	structure	ranking position
ARG	103		80.7	0.1685	2.64	0.0637	88	-
ILE	104	р	47.7	0.1709	2.68	0.0638	87	-
GLY	105	В	56.7	0.1615	2.16	0.0748	81	-
ALA	106		84.4	0.1701	2.52	0.0675	84	-

	Protei 1HCC	in Q	Solvent Access	Dynamical entropy	Movement restriction	SDRI	Ranking Whole	Ranking Dimer	Ranking
Resi	due	Chain	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	structure	structure	Chain A
MET	1		100	0.1143	7.99	0.0143	184	148	74
LYS	2		63.6	0.1141	7.41	0.0154	182	146	73
GLU	3		95.1	0.1177	5.10	0.0231	180	144	72
THR	4		35.6	0.1242	4.06	0.0306	173	141	71
ARG	5		43.4	0.1436	3.96	0.0363	168	136	68
TYR	6		44.8	0.1529	3.15	0.0485	145	117	58
CYS	7		1.6	0.1693	2.54	0.0666	88	67	34
ALA	8		34	0.1567	2.90	0.0540	128	101	50
VAL	9		0	0.1853	2.76	0.0672	84	63	30
CYS	10		1.2	0.1767	2.44	0.0724	65	47	22
ASN	11		65.9	0.1621	2.79	0.0580	116	91	45
ASP	12		19.9	0.1639	2.39	0.0685	82	62	29
TYR	13		62.3	0.1531	3.04	0.0503	138	111	54
ALA	14		20.2	0.1472	2.71	0.0544	126	100	49
SER	15		100	0.1389	2.91	0.0478	146	118	59
GLY	16		15.5	0.1340	2.75	0.0487	144	116	57
TYR	17	^	62	0.1455	3.40	0.0427	157	127	63
HIS	18	A	18.6	0.1565	3.11	0.0503	139	112	55
TYR	19		30.8	0.1634	2.72	0.0600	109	85	43
GLY	20		37.7	0.1278	3.10	0.0412	161	130	64
VAL	21		6.1	0.1580	2.97	0.0533	131	104	52
TRP	22		37.9	0.1582	3.04	0.0520	136	109	53
SER	23		0	0.1647	2.46	0.0670	85	64	31
CYS	24		3.5	0.1740	2.14	0.0812	43	30	16
GLU	25		51.4	0.1658	1.93	0.0859	36	23	12
GLY	26		30.9	0.1638	1.78	0.0920	24	13	7
CYS	27		0	0.1834	1.99	0.0919	25	14	8
LYS	28		31.4	0.1765	2.39	0.0740	58	41	20
ALA	29		23.8	0.1640	1.66	0.0987	12	6	2
PHE	30		3.2	0.1956	1.84	0.1065	6	2	1
PHE	31		0.7	0.1814	2.26	0.0803	44	31	17
LYS	32		43.7	0.1644	2.13	0.0772	51	36	18
ARG	33		52.4	0.1740	2.01	0.0865	33	21	11
SER	34		100	0.1618	1.94	0.0833	41	28	15

	Protei 1HCC	in 2	Solvent Access	Dynamical entropy	Movement restriction	SDRI	Ranking Whole	Ranking Dimer	Ranking Chain A
Resi	due	Chain	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	structure	structure	Residue
ILE	35		34	0.1577	2.46	0.0640	94	72	38
GLN	36		73.1	0.1432	2.67	0.0537	129	102	51
GLY	37		47.7	0.1364	2.05	0.0667	87	66	33
HIS	38		94.1	0.1763	1.96	0.0900	30	19	10
ASN	39		44.9	0.1588	2.39	0.0666	89	68	35
ASP	40		77.1	0.1554	2.56	0.0608	108	84	42
TYR	41		25.9	0.1905	2.02	0.0943	18	9	4
MET	42		75.1	0.1795	2.49	0.0721	66	48	23
CYS	43		22.3	0.1804	2.46	0.0733	62	45	21
PRO	44		71.5	0.1867	2.42	0.0772	52	37	19
ALA	45		60.4	0.1645	2.92	0.0564	119	94	47
THR	46		65.5	0.1543	3.59	0.0430	156	126	62
ASN	47		56.3	0.1630	3.31	0.0493	141	114	56
GLN	48		75.1	0.1609	3.56	0.0452	150	122	61
CYS	49		27.6	0.1780	2.81	0.0632	97	75	40
THR	50		53	0.1695	3.03	0.0559	120	95	48
ILE	51		7.7	0.1913	2.66	0.0720	67	49	24
ASP	52	А	24.3	0.1756	2.63	0.0667	86	65	32
LYS	53		50.2	0.1782	2.77	0.0643	93	71	37
ASN	54		79.4	0.1744	2.64	0.0661	91	70	36
ARG	55		48.7	0.1937	2.74	0.0706	73	55	26
ARG	56		14.1	0.2026	2.15	0.0940	19	10	5
LYS	57		70.9	0.1973	2.17	0.0911	27	16	9
SER	58		100	0.1859	2.19	0.0848	37	24	13
CYS	59		2.3	0.1918	2.27	0.0846	39	26	14
GLN	60		44.8	0.1987	2.04	0.0975	13	7	3
ALA	61		19.2	0.1737	2.44	0.0713	70	52	25
CYS	62		0.6	0.1799	2.60	0.0691	80	60	28
ARG	63		7.5	0.2066	2.23	0.0928	22	11	6
LEU	64		13.9	0.1846	2.64	0.0699	77	58	27
ARG	65		30.1	0.1761	3.12	0.0564	118	93	46
LYS	66		25.2	0.1798	3.07	0.0587	114	89	44
CYS	67		0	0.1702	2.79	0.0611	106	83	41
TYR	68		53.7	0.1585	3.98	0.0398	164	133	66
GLU	69		67.2	0.1452	3.63	0.0400	163	132	65

	Protei	in D	Solvent	Dynamical	Movement	SDRI	Ranking	Ranking	Ranking
Resi	due	Chain	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	structure	structure	Chain A
VAL	70		38.6	0.1549	3.26	0.0475	147	119	60
GLY	71		31.4	0.1306	3.31	0.0395	166	135	67
MET	72	А	5.4	0.1740	2.74	0.0635	96	74	39
MET	73		65.5	0.1423	3.93	0.0362	169	137	69
LYS	74		91.1	0.1407	4.06	0.0347	171	139	70
MET	75		100	0.1146	7.94	0.0144	183	147	-
LYS	76		87.1	0.1140	7.38	0.0155	181	145	-
GLU	77		83.7	0.1157	4.60	0.0252	178	143	-
THR	78		50.8	0.1263	3.97	0.0318	172	140	-
ARG	79		40.6	0.1394	3.50	0.0398	165	134	-
TYR	80		49.6	0.1551	2.93	0.0530	132	105	-
CYS	81		1.2	0.1714	2.32	0.0739	59	42	-
ALA	82		30.1	0.1588	2.68	0.0592	113	88	-
VAL	83		0.1	0.1874	2.48	0.0757	53	38	-
CYS	84		3.6	0.1789	2.24	0.0798	46	33	-
ASN	85		59.5	0.1600	2.55	0.0629	99	77	-
ASP	86		20	0.1638	2.20	0.0743	56	40	-
TYR	87		62	0.1531	2.68	0.0571	117	92	-
ALA	88		22.5	0.1473	2.40	0.0613	104	81	-
SER	89	D	100	0.1452	2.27	0.0639	95	73	-
GLY	90	D	14.9	0.1337	2.50	0.0534	130	103	-
TYR	91		61.8	0.1432	3.20	0.0447	152	124	-
HIS	92		17.9	0.1540	2.60	0.0593	112	87	-
TYR	93		31	0.1611	2.94	0.0549	124	98	-
GLY	94		45.6	0.1276	3.06	0.0417	160	129	-
VAL	95		5.7	0.1579	2.89	0.0546	125	99	-
TRP	96		35.8	0.1582	2.88	0.0550	123	97	-
SER	97		16.7	0.1644	2.34	0.0704	74	56	-
CYX	98		2	0.1739	2.02	0.0862	34	22	-
GLU	99		51.1	0.1659	1.96	0.0847	38	25	-
GLY	100		30.9	0.1638	1.80	0.0908	28	17	-
СҮХ	101		0	0.1832	2.00	0.0918	26	15	-
LYS	102		29.3	0.1785	2.26	0.0790	48	34	-
ALA	103		20.1	0.1640	1.99	0.0823	42	29	-
PHE	104		3.6	0.1955	2.02	0.0966	16	8	-

	Protei 1HCC	in Q	Solvent Access	Dynamical entropy	Movement restriction	SDRI	Ranking Whole	Ranking Dimer	Ranking
Resi	due	Chain	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	structure	structure	Chain A
PHE	105		1.8	0.1768	2.56	0.0692	79	59	-
LYS	106		42.6	0.1644	2.61	0.0630	98	76	-
ARG	107		54	0.1828	2.04	0.0898	31	20	-
SER	108		100	0.1578	2.53	0.0625	101	78	-
ILE	109		46	0.1513	3.07	0.0492	142	115	-
GLN	110		69.3	0.1453	3.11	0.0468	149	121	-
GLY	111		65.2	0.1280	3.02	0.0424	158	128	-
HIS	112		38.5	0.1612	2.76	0.0585	115	90	-
ASN	113		82.3	0.1555	2.97	0.0523	134	107	-
ASP	114		82.3	0.1532	2.91	0.0527	133	106	-
TYR	115		27.4	0.1882	2.25	0.0836	40	27	-
MET	116		74.6	0.1840	2.61	0.0704	75	57	-
CYS	117		14.6	0.1805	2.52	0.0717	68	50	-
PRO	118		73.3	0.1890	2.56	0.0738	60	43	-
ALA	119		59.1	0.1646	2.98	0.0551	122	96	-
THR	120		63.7	0.1544	3.30	0.0468	148	120	-
ASN	121		60.1	0.1631	3.28	0.0497	140	113	-
GLN	122	В	70.2	0.1653	3.17	0.0522	135	108	-
CYS	123		29.4	0.1781	2.60	0.0686	81	61	-
THR	124		61.4	0.1695	2.83	0.0600	110	86	-
ILE	125		12.3	0.1913	2.43	0.0786	49	35	-
ASP	126		20.5	0.1735	2.37	0.0733	61	44	-
LYS	127		47.1	0.1741	2.45	0.0711	71	53	-
ASN	128		63.5	0.1724	2.37	0.0729	63	46	-
ARG	129		51.1	0.1916	2.39	0.0802	45	32	-
ARG	130		11.9	0.2026	1.87	0.1085	4	1	-
LYS	131		68.5	0.1953	1.91	0.1022	8	4	-
SER	132		100	0.1859	2.02	0.0921	23	12	-
CYS	133		2.5	0.1918	2.12	0.0904	29	18	-
GLN	134		43.9	0.1989	1.92	0.1036	7	3	-
ALA	135		18	0.1738	2.44	0.0714	69	51	-
CYS	136		0.1	0.1822	2.45	0.0744	55	39	-
ARG	137		8.8	0.2067	2.05	0.1009	10	5	-
LEU	138		9	0.1825	2.58	0.0708	72	54	-
ARG	139		32.3	0.1762	2.88	0.0612	105	82	-

	Protei 1HCC	in D	Solvent Access	Dynamical entropy	Movement restriction	SDRI	Ranking	Ranking	Ranking
Resi	due	Chain	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	structure	structure	Chain A
LYS	140		27.4	0.1819	2.74	0.0665	90	69	-
CYS	141		0	0.1701	2.74	0.0621	102	79	-
TYR	142		52.5	0.1626	3.66	0.0444	154	125	-
GLU	143		71.8	0.1474	3.29	0.0448	151	123	-
VAL	144	В	34.3	0.1549	3.06	0.0505	137	110	-
GLY	145		32.5	0.1306	3.23	0.0404	162	131	-
MET	146		3.2	0.1716	2.77	0.0619	103	80	-
MET	147		66.2	0.1378	3.85	0.0358	170	138	-
LYS	148		98.8	0.1407	4.69	0.0300	175	142	-
DC	149		-	0.1010	3.31	0.0305	174	-	-
DC	150		-	0.1137	2.55	0.0446	153	-	-
DA	151		-	0.1269	1.81	0.0700	76	-	-
DG	152		-	0.1316	1.75	0.0752	54	-	-
DG	153		-	0.1321	1.82	0.0728	64	-	-
DT	154		-	0.1324	1.52	0.0870	32	-	-
DC	155		-	0.1327	1.68	0.0792	47	-	-
DA	156		-	0.1442	2.42	0.0596	111	-	-
DC	157	C	-	0.1489	1.73	0.0861	35	-	-
DA	158	C	-	0.1779	1.64	0.1085	5	-	-
DG	159		-	0.1867	1.66	0.1124	2	-	-
DT	160		-	0.1839	1.47	0.1254	1	-	-
DG	161		-	0.1789	1.60	0.1117	3	-	-
DA	162		-	0.1632	1.68	0.0970	14	-	-
DC	163		-	0.1386	1.87	0.0741	57	-	-
DC	164		-	0.1229	1.86	0.0660	92	-	-
DT	165		-	0.1139	2.59	0.0440	155	-	-
DG	166		-	0.1032	3.74	0.0276	177	-	-
DC	167		-	0.0966	3.86	0.0250	179	-	-
DC	168		-	0.1093	2.93	0.0374	167	-	-
DA	169		-	0.1225	2.49	0.0491	143	-	-
DG	170		-	0.1316	2.43	0.0542	127	-	-
DG	171		-	0.1386	2.27	0.0610	107	-	-
DT	172		-	0.1436	2.07	0.0693	78	-	-
DC	173		-	0.1374	2.19	0.0628	100	-	-
DA	174		-	0.1419	2.10	0.0674	83	-	-

	Protei 1HCC	in L	Solv-ent Access	Dynamical entropy	Movement restriction	SDRI	Ranking Whole	Ranking Dimer	Ranking
Resi	due	Chain	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	structure	structure	Chain A
DC	175		-	0.1508	1.61	0.0935	21	-	-
DT	176		-	0.1598	1.57	0.1020	9	-	-
DG	177		-	0.1754	1.87	0.0938	20	-	-
DT	178		-	0.1841	1.90	0.0969	15	-	-
DG	179	D	-	0.1788	1.89	0.0945	17	-	-
DA	180	D	-	0.1674	1.69	0.0988	11	-	-
DC	181		-	0.1494	1.93	0.0773	50	-	-
DC	182		-	0.1317	2.36	0.0559	121	-	-
DT	183		-	0.1204	2.85	0.0422	159	-	-
DG	184		-	0.1097	3.66	0.0299	176	-	-

Prote	ein P	Solvent Access	Dynamical entropy	Movement	SDRI	Residue ranking		Protein 1CSP		Solvent Access	Dynamical entropy	Movement restriction	SDRI	Residue ranking
Resid	lue	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position		Residue		% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position
MET	1	72.2	0.1973	1.09	0.1813	47		ASP	25	41	0.2153	0.91	0.2367	35
LEU	2	34.7	0.2150	0.93	0.2302	41		VAL	26	5.4	0.2501	0.71	0.3507	22
GLU	3	39.2	0.2044	1.20	0.1703	48		PHE	27	33.4	0.2444	0.56	0.4354	16
GLY	4	12.2	0.2382	0.49	0.4860	7		VAL	28	0	0.2687	0.42	0.6327	1
LYS	5	45.9	0.2222	0.96	0.2319	40		HIS	29	31.1	0.2299	0.60	0.3858	20
VAL	6	2.5	0.2500	0.40	0.6266	3		PHE	30	40.4	0.2166	0.91	0.2381	34
LYS	7	36.1	0.2159	0.65	0.3334	25		SER	31	100	0.2168	0.61	0.3552	21
TRP	8	39	0.2176	0.55	0.3989	19		ALA	32	10.1	0.2457	0.55	0.4484	13
PHE	9	13.4	0.2406	0.54	0.4417	14		ILE	33	4.6	0.2457	0.56	0.4391	15
ASN	10	33	0.2030	0.70	0.2892	28		GLN	34	41.3	0.2115	1.05	0.2018	45
SER	11	100	0.1961	1.05	0.1872	46		GLY	35	63.5	0.1912	1.25	0.1528	52
GLU	12	99	0.1627	1.45	0.1121	59		GLU	36	88.7	0.1607	2.65	0.0605	66
LYS	13	63.7	0.1820	1.18	0.1539	51		GLY	37	60.7	0.1695	1.85	0.0914	62
GLY	14	7.7	0.2213	0.65	0.3401	23		PHE	38	75.6	0.1777	1.71	0.1040	60
PHE	15	26	0.2216	0.87	0.2547	30		LYS	39	35.6	0.2111	0.93	0.2266	42
GLY	16	0	0.2544	0.40	0.6283	2		THR	40	22.4	0.2174	0.67	0.3231	27
PHE	17	28.7	0.2406	0.50	0.4805	8		LEU	41	5.2	0.2451	0.57	0.4318	17
ILE	18	0	0.2635	0.48	0.5489	5		GLU	42	66.6	0.2032	1.25	0.1619	50
GLU	19	47.9	0.2205	0.92	0.2408	32		GLU	43	76.2	0.1958	1.19	0.1652	49
VAL	20	8.9	0.2219	0.94	0.2349	37		GLY	44	42.5	0.2073	0.61	0.3372	24
GLU	21	77.4	0.1756	2.08	0.0846	63		GLN	45	19.7	0.2239	1.07	0.2102	44
GLY	22	90.1	0.1692	1.72	0.0985	61]	ALA	46	15.9	0.2250	0.50	0.4526	12
GLN	23	56.2	0.1890	1.63	0.1157	58		VAL	47	0	0.2544	0.45	0.5628	4
ASP	24	75.7	0.1917	1.31	0.1466	54		SER	48	100	0.2360	0.59	0.3997	18

Protein		Solvent	Dynamical	Movement	SDRI	Residue
Residue		% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position
PHE	PHE 49 0 0.25		0.2532	0.55	0.4610	11
GLU	GLU 50 39.5 0.213		0.2131	0.75	0.2831	29
ILE	51	32.4	0.2190	0.94	0.2319	39
VAL	52	51.8	0.2092	0.85	0.2451	31
GLU	53	70	0.1785	1.53	0.1163	57
GLY	54	58.6	0.1897	1.27	0.1494	53
ASN	55	100	0.1698	2.14	0.0795	64
ARG	56	96	0.1782	2.86	0.0624	65
GLY	57	26.3	0.1988	1.38	0.1443	55
PRO	58	54.2	0.2176	0.92	0.2354	36
GLN	59	44.5	0.2346	1.04	0.2249	43
ALA	60	4	0.2607	0.55	0.4725	10
ALA	61	18.3	0.2436	0.51	0.4749	9
ASN	62	42.8	0.2206	0.92	0.2407	33
VAL	63	0.1	0.2590	0.48	0.5432	6
THR	64	38.8	0.2294	0.70	0.3260	26
LYS	65	45.5	0.2180	0.94	0.2330	38
GLU	66	52.7	0.1953	1.62	0.1209	56
ALA	67	100	0.1676	2.92	0.0573	67

Protein 1C9O		Solvent Access	Dynamical entropy	Movement restriction	SDRI	Residue ranking
Resid	lue	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position
MET	T 1 70		0.1950	0.96	0.2028	46
GLN	2	36.9	0.2093	0.77	0.2715	35
ARG	3	65.8	0.2051	0.77	0.2662	37
GLY	4	4.8	0.2422	0.41	0.5978	7
LYS	5	33.1	0.2231	1.08	0.2062	45
VAL	6	1.8	0.2474	0.41	0.6047	6
LYS	7	37.8	0.2153	0.67	0.3196	31
TRP	8	39.7	0.2169	0.56	0.3886	19
PHE	9	14.7	0.2399	0.61	0.3952	17
ASN	10	31	0.2007	0.70	0.2857	33
ASN	11	49.3	0.1924	1.26	0.1527	56
GLU	12	90.4	0.1622	1.32	0.1225	61
LYS	13	57.7	0.1813	1.14	0.1597	53
GLY	14	6.8	0.2207	0.60	0.3693	20
TYR	15	30.3	0.2174	0.67	0.3242	28
GLY	16	0	0.2536	0.39	0.6579	2
PHE	17	28.1	0.2416	0.53	0.4530	13
ILE	18	0	0.2662	0.41	0.6563	3
GLU	19	45.8	0.2215	0.85	0.2620	39
VAL	20	18.1	0.2294	0.59	0.3920	18
GLU	21	91.4	0.1941	1.28	0.1510	57
GLY	22	100	0.1769	1.27	0.1391	59
GLY	23	45.9	0.1937	0.91	0.2129	44
SER	24	100	0.2007	1.06	0.1891	48

Protein		Solvent	Dynamical	Movement	SUDBI	Residue
1C90		Access	entropy	restriction	3011	ranking
Residue		% RSA	Hi	RMSF (Å)	H _i *RMSF _i ⁻¹	position
ASP	25	41.9	0.2161	0.76	0.2844	34
VAL	26	7	0.2509	0.45	0.5556	11
PHE	27	28.3	0.2452	0.48	0.5150	12
VAL	28	0	0.2678	0.39	0.6922	1
HIS	29	33.3	0.2291	0.54	0.4211	16
PHE	30	40.4	0.2141	0.85	0.2515	42
THR	31	68.7	0.2127	0.62	0.3455	24
ALA	32	11.3	0.2434	0.55	0.4429	15
ILE	33	5.8	0.2435	0.72	0.3401	25
GLN	34	45.7	0.2092	1.30	0.1606	52
GLY	35	66.8	0.1958	1.35	0.1451	58
GLU	36	98.9	0.1621	2.55	0.0637	65
GLY	37	53.7	0.1691	2.19	0.0771	64
PHE	38	72.9	0.1948	3.23	0.0603	66
LYS	39	31.6	0.1969	2.27	0.0867	63
THR	40	21.1	0.2183	1.10	0.1976	47
LEU	41	2.7	0.2443	0.66	0.3686	21
GLU	42	68.4	0.2026	1.28	0.1586	54
GLU	43	77.5	0.1935	1.25	0.1552	55
GLY	44	55.4	0.2084	0.63	0.3284	27
GLN	45	29.5	0.2234	0.83	0.2682	36
GLU	46	33.3	0.2087	0.82	0.2531	40
VAL	47	0	0.2521	0.42	0.6072	5
SER	48	100	0.2354	0.53	0.4449	14

Prote 1C9	ein O	Solvent Access	Dynamical entropy	Movement restriction	SDRI	Residue ranking
Residue		% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position
PHE	49	0	0.2542	0.41	0.6233	4
GLU	50	37.6	0.2125	0.66	0.3232	29
ILE	51	50.3	0.2200	0.62	0.3569	23
VAL	52	39	0.2104	0.67	0.3126	32
GLN	53	90.6	0.1841	1.14	0.1615	51
GLY	54	40.7	0.1902	0.81	0.2343	43
ASN	55	98.4	0.1728	1.32	0.1307	60
ARG	56	87.4	0.1932	1.68	0.1150	62
GLY	57	23.9	0.2008	0.76	0.2647	38
PRO	58	60.6	0.2149	0.65	0.3295	26
GLN	59	35	0.2369	0.65	0.3641	22
ALA	60	8.3	0.2618	0.44	0.5924	8
ALA	61	22.6	0.2428	0.42	0.5723	10
ASN	62	35.6	0.2182	0.86	0.2525	41
VAL	63	0	0.2582	0.44	0.5897	9
VAL	64	37.5	0.2271	0.71	0.3202	30
LYS	65	40.5	0.2118	1.25	0.1696	50
LEU	66	62.1	0.1951	1.03	0.1888	49

Protein 2N34		Solvent Access	Dynamical entropy	Movement restriction Main Chain	SDRI	Residue ranking	Prot 2N3	ein 34	Solvent Access	Dynamical entropy	Movement restriction Main Chain	SDRI	Residue ranking
Resid	due	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position	Resid	due	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position
ARG	1	100	0.0907	12.3	0.0074	70	SER	24	100	0.1703	8.4	0.0203	57
SER	2	100	0.0897	11.5	0.0078	69	LYS	25	90.3	0.1905	7.3	0.0261	49
LEU	3	76.5	0.1040	10.2	0.0102	68	PRO	26	76.2	0.1822	7.0	0.0261	48
ARG	4	80.9	0.1233	9.4	0.0131	67	LEU	27	82	0.1960	6.5	0.0300	39
GLN	5	86.6	0.1291	9.1	0.0143	66	PHE	28	85	0.1954	6.0	0.0324	35
ARG	6	89.1	0.1420	8.8	0.0161	64	SER	29	100	0.1883	6.4	0.0292	40
LEU	7	64.1	0.1485	6.9	0.0214	55	ASN	30	68.6	0.1981	7.3	0.0273	45
GLN	8	75.1	0.1552	5.0	0.0310	37	LYS	31	66.5	0.2115	7.6	0.0279	43
ASP	9	68.6	0.1512	3.2	0.0470	30	ARG	32	93.4	0.2139	7.7	0.0277	44
THR	10	85.7	0.1532	5.3	0.0288	41	LYS	33	68.3	0.2185	8.2	0.0267	46
VAL	11	79.2	0.1614	7.5	0.0214	54	ILE	34	54.7	0.2336	7.3	0.0319	36
GLY	12	56.6	0.1484	9.9	0.0151	65	HIS	35	69.4	0.2356	5.4	0.0434	31
LEU	13	87.9	0.1688	7.8	0.0216	53	LEU	36	96	0.2236	2.8	0.0794	26
CYS	14	84	0.1614	5.6	0.0286	42	SER	37	100	0.2221	2.0	0.1129	18
PHE	15	80.3	0.1701	3.4	0.0499	29	GLU	38	40.8	0.2477	1.9	0.1292	17
PRO	16	60.9	0.1649	6.2	0.0266	47	LEU	39	59.6	0.2540	2.6	0.0994	21
MET	17	78.5	0.1654	8.9	0.0186	61	MET	40	47.8	0.2545	3.2	0.0791	27
ARG	18	78.7	0.1706	10.4	0.0165	62	LEU	41	81.5	0.2626	3.3	0.0800	25
THR	19	74.9	0.1704	8.4	0.0203	56	GLU	42	79.7	0.2310	2.3	0.0997	20
TYR	20	76.6	0.1765	6.9	0.0255	50	LYS	43	61.2	0.2438	1.2	0.1977	13
SER	21	100	0.1664	7.3	0.0228	52	CYS	44	55.6	0.2408	0.6	0.4159	3
LYS	22	93	0.1804	8.9	0.0202	58	PRO	45	68.9	0.2252	1.0	0.2176	11
GLN	23	89.2	0.1795	9.2	0.0196	59	PHE	46	37	0.2546	1.4	0.1799	14
File S2. SDRI. For each residue of the protein, it is shown its solvent access, Shannon dynamical entropy, RMSF, and its ranking position according to the theoretical scores.

Protein Solvent 2N34 Access		Dynamical entropy	Movement restriction Main Chain	SDRI	Residue ranking	
Resid	due	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position
PRO	47	51	0.2130	1.9	0.1092	19
ALA	48	92	0.1955	2.1	0.0930	23
GLY	49	94.5	0.1856	1.9	0.0964	22
SER	50	100	0.2145	1.4	0.1483	15
ASP	51	68.8	0.2114	0.8	0.2607	9
LEU	52	58.5	0.2415	0.7	0.3683	4
ALA	53	12.6	0.2430	0.7	0.3517	6
GLN	54	66.6	0.2349	0.7	0.3181	7
LYS	55	63.2	0.2401	0.7	0.3617	5
TRP	56	16.4	0.2857	0.6	0.5006	1
HIS	57	64.4	0.2556	0.6	0.4282	2
LEU	58	65.9	0.2435	0.8	0.3077	8
ILE	59	50.7	0.2604	1.0	0.2600	10
LYS	60	45.3	0.2691	1.3	0.2067	12
GLN	61	35.5	0.2613	2.0	0.1338	16
HIS	62	83	0.2463	3.0	0.0827	24
THR	63	71.3	0.2433	4.7	0.0517	28
ALA	64	26.2	0.2266	5.9	0.0381	32
PRO	65	89.7	0.2218	6.4	0.0344	34
VAL	66	58	0.2194	6.2	0.0356	33
SER	67	100	0.1987	6.5	0.0305	38
PRO	68	88.9	0.1930	7.9	0.0245	51
HIS	69	95.2	0.1835	9.4	0.0196	60

Prot 2N3	ein 34	Solvent Access	Dynamical entropy	Movement restriction Main Chain	SDRI	Residue ranking
Resid	due	% RSA	H _i	RMSF (Å)	H _i *RMSF _i ⁻¹	position
SER	70	100	0.1647	10.2	0.0162	63

Guanidinium chloride denaturation Theoretical Mutant score m UF ΔΔG Cm 2CI2 $(H_i * RMSF_i^{-1})$ (kcal mol⁻¹) (kcal mol⁻¹) (M) Wild Type 1.9 4 (WT) KA3 1.77 -0.53 0.2445 3.72 KM3 1.88 3.66 -0.65 0.2445 TA4 1.83 3.56 -0.84 0.2710 TV4 1.67 3.83 -0.32 0.2710 TG4 1.95 3.4 -1.14 0.2710 PA7 3.46 -1.54 3.19 0.3331 3.76 EA8 1.75 -0.46 0.2389 1.91 -0.61 EQ8 3.68 0.2389 -2.62 0.4727 LA9 2.15 2.62 0.42 0.2499 KA12 1.52 4.22 SG13 2.1 3.59 -0.78 0.3037 -0.87 SA13 1.86 3.54 0.3037 -0.29 EQ15 1.87 3.85 0.1830 ED15 3.73 -0.51 0.1830 1.83 EN15 2.01 3.64 -0.68 0.1830 EQ16 1.84 3.76 -0.46 0.1787 ED16 2.2 3.62 -0.72 0.1787 EN16 2.18 3.45 -1.05 0.1787 AG17 1.8 3.44 -1.06 0.3565 0.2426 KA18 1.73 3.75 -0.48 KG18 1.99 2.8 -2.28 0.2426 KA19 1.61 0.21 0.1736 4.11 KG19 1.73 3.49 -0.97 0.1736 VA20 2.01 3.75 -0.48 0.3463

Mutant	Guanidinium	Theoretical		
2CI2	m UF (kcal mol ⁻¹)	Cm (M)	ΔΔG (kcal mol ⁻¹)	score (H _i *RMSF _i ⁻¹)
IV21	1.99	3.33	-1.27	0.5402
LA22	1.93	3.32	-1.29	0.3132
LG22	1.68	3.29	-1.35	0.3132
QA23	1.77	3.99	-0.02	0.1517
QG23	1.81	3.69	-0.59	0.1517
DA24	1.87	3.51	-0.93	0.2935
KA25	1.57	3.67	-0.63	0.4207
KG25	1.75	2.36	-3.12	0.4207
PA26	2.07	3.09	-1.73	0.2788
EA27	1.78	3.83	-0.32	0.2621
IV30	1.99	3.43	-1.08	0.3704
IA30	2.07	1.99	-3.82	0.3704
IV31	1.77	4.04	0.08	0.3599
IA31	2.22	2.91	-2.07	0.3599
IG31	2.13	2.19	-3.44	0.3599
IT31	1.97	3.31	-1.31	0.3599
LA32	2.11	2.78	-2.32	0.2867
LI32	1.7	3.87	-0.25	0.2867
LV32	1.76	3.74	-0.49	0.2867
PA33	1.79	3.91	-0.17	0.2832
VT34	1.65	3.47	-1.01	0.2250
VA34	1.7	3.67	-0.63	0.2250
VG34	2	2.75	-2.38	0.2250
TS36	1.66	3.99	-0.02	0.0922
TV36	1.67	3.61	-0.74	0.0922

Mutant	Guanidinium	Theoretical		
2CI2	m UF (kcal mol ⁻¹)	Cm (M)	ΔΔG (kcal mol ⁻¹)	score (H _i *RMSF _i -1)
TA36	1.5	4.12	0.23	0.0922
IA38	1.59	3.98	-0.04	0.0851
VA39	2.14	3.24	-1.44	0.1256
TA40	1.89	3.63	-0.70	0.0907
TD40	1.87	4.01	0.02	0.0907
EA42	1.78	3.64	-0.68	0.1109
RA44	1.78	3.7	-0.57	0.2388
DA46	1.83	3.59	-0.78	0.2516
VA48	1.76	1.46	-4.83	0.4466
LA50	1.98	2.02	-3.76	0.3860
FL51	1.95	2.91	-2.07	0.3015
FV51	2.24	2.77	-2.34	0.3015
FA51	2.17	2.02	-3.76	0.3015
VA52	2.15	2.98	-1.94	0.4309
DA53	1.99	2.24	-3.34	0.1493
DN53	1.6	4	0.00	0.1493
ND57	1.8	3.38	-1.18	0.2372
NA57	1.79	3.57	-0.82	0.2372
IV58	1.82	4.1	0.19	0.5275
IA58	1.93	1.79	-4.20	0.5275
AG59	2.19	3.03	-1.84	0.3498
VT61	1.63	3.8	-0.38	0.4397
VA61	1.92	3.22	-1.48	0.4397
VG61	2.61	2.33	-3.17	0.4397
PA62	1.8	2.28	-3.27	0.5453

Mutant	Guanidinium	Theoretical		
2CI2	m UF (kcal mol ⁻¹)	Cm (M)	ΔΔG (kcal mol ⁻¹)	score (H _i *RMSF _i ⁻¹)
VT64	1.79	3.41	-1.12	0.4074
VA64	1.95	3.25	-1.43	0.4074
VG64	2.1	2.2	-3.42	0.4074

	The	ermal unfolding		Theoretical		
Protein 2W0K	Тт (К)	ΔH° (kcal mol ⁻¹)	ΔΔG (kcal mol ⁻¹)	score (H _i *RMSF _i ⁻¹)	Reference	
Wild Type (WT)	323.05	86.2	-	-		
Phe2Ser	316.95	73.6	-1.63	0.2779	Biochem, Biophys, Res, Commun.	
Phe2Leu	318.85	76.1	-1.12	0.2779	(2014) 443: 495-499	
Phe2Pro	316.75	73.7	-1.68	0.2779		
Phe2Trp	319.15	81.3	-1.04	0.2779		
Arg24Gly	317.35	77.2	-1.52	0.3273	Proteins (2008) 72: 684-692	
Pro7Ser	316.15	79.5	-1.84	0.3799		
His8Pro	323.25	84.8	0.05	0.1129	J. Mol. Biol. (2010) 396: 280-292	
His8Ser	322.65	84.4	-0.11	0.1129		
Arg24His	312.95 ± 1.15	56.47 ± 5.65	-2.70	0.3273		
lle29Gly	309.53 ± 0.53	60.74 ± 2.55	-3.61	0.2057	This work	
Tyr37Phe	322.90 ± 0.31	87.23 ± 3.06	-0.04	0.3204		
GIn6Asn	310.55 ± 0.30	10.39 ± 3.21	-3.34	0.5055		

 $\Delta\Delta G = (T_m MUT - T_m WT)^* (\Delta HWT / TmWT)$

Drotoin	Thermal unfolding							Theoretical secure	
1FTG	Tm1	ΔH°1	ΔΔG1	Tm2	DH°2	ΔΔG2	Total ΔΔG°	(H _i *RMSF _i ⁻¹)	Reference
	(К)	(kcal mol ⁻⁺)	(kcal mol ⁻⁺)	(К)	(kcal mol ⁻⁺)	(kcal mol ⁻)	(kcal mol ⁻⁺)		
Wild Type (WT)	312	22	-	326	60	-	-	-	
E20K	309.3	32.7	-0.19	331.2	66.2	0.96	0.77	0.1478	
E40K	316.5	27	0.32	332.5	59.6	1.20	1.51	0.1159	
E72K	312.8	2	0.06	333.6	68.4	1.40	1.46	0.1292	J. Mol. Biol. (2004) 344: 223-237
D75K	314.8	28.3	0.20	330	54.3	0.74	0.93	0.0523	
D126K	320	21.8	0.56	327.5	39.7	0.28	0.84	0.1315	
D150K	305.8	25.1	-0.44	326.9	48	0.17	-0.27	0.1174	
WT	317.3	33.9	-	329	52.7	-	-	-	
L6A	305.5	28.7	-1.26	319.1	23.8	-1.59	-2.85	0.2737	
122V	311	33	-0.67	324.7	37.3	-0.69	-1.36	0.2987	
V31A	312.6	30.9	-0.50	324.2	41.5	-0.77	-1.27	0.2008	
D43A	317.7	34.1	0.04	329.6	49.5	0.10	0.14	0.1284	
I51V	313.2	31.2	-0.44	324.3	38.8	-0.75	-1.19	0.4664	
152V	315.9	39.8	-0.15	324.9	54.5	-0.66	-0.81	0.4069	
\$71A	316.3	34.5	-0.11	329.3	55	0.05	-0.06	0.1517	
A84G	313.3	34.4	-0.43	323.6	31.9	-0.86	-1.29	0.4669	
N97A	314.9	28.6	-0.26	328.3	48.7	-0.11	-0.37	0.3062	J. Mol. Biol. (2004) 344: 239-255
Q99A	322.5	52.7	0.56	331.3	56.2	0.37	0.92	0.3449	
I104V	313.3	29.5	-0.43	327.9	54.5	-0.18	-0.60	0.3251	
S110A	315.6	32.5	-0.18	328.7	44.3	-0.05	-0.23	0.2247	
V117A	309.3	36.9	-0.85	322.6	33.7	-1.03	-1.88	0.3388	
T122S	323.2	35.5	0.63	330.3	50.7	0.21	0.84	0.2422	
V139A	310.9	29	-0.68	327.5	50.8	-0.24	-0.92	0.4397	
L143A	315.8	33.3	-0.16	328.9	50	-0.02	-0.18	0.3300	
I156V	308.8	25.3	-0.91	320.3	29.9	-1.39	-2.30	0.3094	
V160A	309.1	27.7	-0.88	322.4	49.2	-1.06	-1.93	0.3029	

Duratalia		Theoretical		
1 A PP	Tm	ΔH°	ΔΔG	score
IANN	(К)	(kcal mol ⁻¹)	(kcal mol ⁻¹)	(H _i *RMSF _i ⁻¹)
WT-st6	332.15	62.3	-	-
PA8	347.25	80.2	2.83	0.1052
SA35	336.55	57.1	0.83	0.1490
NA11	335.25	57.2	0.58	0.1026
KA6	332.75	59	0.11	0.0429
RA16	332.65	60	0.09	0.0798
VA25	332.45	58.3	0.06	0.1488
MA4	332.35	59.4	0.04	0.0325
EA27	331.95	61.6	-0.04	0.0806
KA2	331.85	57.2	-0.06	0.0179
QA9	331.55	59.5	-0.11	0.0911
GA3	331.25	60	-0.17	0.0281
MA1	331.15	59.7	-0.19	0.0151
SA5	330.65	53.3	-0.28	0.0449
RA13	330.45	51.3	-0.32	0.1004
EA17	330.15	62.1	-0.38	0.0809
VA18	330.05	63.1	-0.39	0.1492
EA43	329.25	59.4	-0.54	0.1210
MA7	328.65	52.6	-0.66	0.0927
DA20	328.45	56.9	-0.69	0.1036
LA19	321.45	48.7	-2.01	0.1462
FA10	313.75	34.8	-3.45	0.1167
WT-st11	331.05	58.5	-	-
NA34	336.15	57.1	0.90	0.1473
QA39	334.55	61.6	0.62	0.1441
GA52	334.05	57.7	0.53	0.0702
KA46	330.25	52.9	-0.14	0.0818

Protoin		Theoretical		
1ARR	Tm	ΔH°	ΔΔG	score
	(K)	(kcal mol ⁻)	(kcal mol ⁻)	(H _i *RIVISF _i)
RA23	329.85	56.5	-0.21	0.0861
KA24	329.45	59.9	-0.28	0.1008
EA28	328.85	52.1	-0.39	0.0787
IA51	324.05	47.4	-1.24	0.0653
GA49	321.85	45.8	-1.63	0.0458
GA30	321.05	48.8	-1.77	0.0784
RA50	321.05	41.9	-1.77	0.0564
KA47	320.35	41.2	-1.89	0.0644
PA15	319.75	38.1	-2.00	0.1278
SA44	319.45	41	-2.05	0.1514
NA29	318.45	44.2	-2.23	0.0906
VA33	317.25	39.7	-2.44	0.1483
EA48	316.35	29.3	-2.60	0.0399
LA12	315.45	40.4	-2.76	0.1413
LA21	312.75	36.7	-3.23	0.1426
RA31	310.25	34.2	-3.68	0.1367
MA42	308.75	26.1	-3.94	0.1299
SA32	306.65	24.4	-4.31	0.1140
YA38	306.15	24.1	-4.40	0.1647
WA14	304.65	25.3	-4.67	0.1946
RA40	304.35	13.6	-4.72	0.2267
VA22	UNF	-	-	0.1732
EA36	UNF	-	-	0.2077
IA37	UNF	-	-	0.2484
VA41	UNF	-	-	0.2476
FA45	UNF	-	-	0.1352

 $\Delta\Delta G^{\circ} = (T_m MUT - T_m WT)^* (\Delta H^{\circ} WT / T_m WT)$ Total $\Delta\Delta G = \Delta\Delta G1 + \Delta\Delta G2$

Protein 1HCQ Dimer recognizing DNA K _d K _d Difference (nM) (%)		Theoretical score (Hi*RMSFi ⁻¹)	Reference	
Wild Type (WT)	43	-	-	
D12A	67	-56	0.0685	
H18A	190	-342	0.0503	
E25A	172	-300	0.0859	
S15A	102	-137	0.0478	Biochemistry (2010) 49: 5978-5988
Y19A	316	-635	0.0600	Biochemistry (2010) 43. 3378-3388
S23A	119	-177	0.0670	
K28A	313	-628	0.0740	
K32A	326	-658	0.0772	
R33A	745	-1633	0.0865	

% K_d Difference = (K_d WT- K_d MUT)/ K_d WT *100

Drotoin	-	Thermal unfol	ding	Theoretical score		
1CSP	Tm (K)	ΔH° (kcal mol ⁻¹)	$\Delta\Delta G$	(H _i *RMSF _i ⁻¹)	References	
Csn S WT	53.6	46.13				
F2D	69.6	52.24	2.26	0 1703	-	
E21	62.7	17 00	1.20	0.1702	IMB (2001) 313 343-357	
	19.6	20.67	0.71	0.1705	300 (2001) 313, 343 337	
	40.0	59.07	-0.71	0.4520	-	
	52.9	46.12	1.01	0.1209		
CSP 3 WI	55.0 70.4	40.15	-	- 0 1702	-	
	70.4	40.52	2.54	0.1705	-	
	62.4	48.04	1.21	0.2330	JMB (2005) 347, 1063-1076	
EDOK	56.7	54.02	1.82	0.1209	-	
E43S	54.7	44.46	0.13	0.1652	-	
A46K	62.2	51.63	1.19	0.4526		
Csp S WT	52.3	39.20	-	-	4	
E3R	70.2	50.19	2.16	0.1703	4	
E3Q	62.6	46.61	1.24	0.1703	_	
K7E	UNF	-	-			
K7Q	UNF	-	-		IMB (2007) 366 842-856	
N10D	57.7	43.26	0.65	0.2892	JWD (2007) 300, 842-830	
D25Q	44.2	29.16	-0.98	0.2367		
S48E	53	38.00	0.08	0.3997		
E50Q	42.6	34.18	-1.17	0.2831		
R56Q	55.3	42.54	0.36	0.0624		
Csp S WT*	55.3	38.24	-			
E3R*	71.6	49.95	1.90	0.1703		
K5E*	22.2	14.58	-3.85	0.2319		
K5Q*	38.6	29.88	-1.94	0.2319	אוען אואנ (2007) אוענ (2007) אוענ	
N10K*	41.1	27.49	-1.65	0.2892]	
E12K**	50.2	37.76	-0.59	0.1121		

Protein Thermal unfolding		ding	Theoretical score		
1CSP	Тт (К)	ΔH° (kcal mol ⁻¹)	∆∆G (kcal mol ⁻¹)	$(H_i * RMSF_i^{-1})$	Reference
K13E*	52.7	36.57	-0.30	0.1539	
K13Q*	54	41.35	-0.15	0.1539	
E19K*	50.5	37.28	-0.56	0.2408	
E19Q*	53.7	39.91	-0.19	0.2408	
V20Q*	39.5	29.64	-1.84	0.2349	
V20E*	UNF				
V20K*	37.2	25.81	-2.11	0.2349	
E21K*	54.3	43.26	-0.12	0.0846	
E21Q*	52.5	34.89	-0.33	0.0846	
D24K*	50.9	34.18	-0.51	0.1466	
D24N*	48.4	31.07	-0.80	0.1466	
D25K*	35	13.38	-2.36	0.2367	
K39E*	52.8	35.85	-0.29	0.2266	JMB (2007) 366, 842-856
K39Q*	54.9	35.37	-0.05	0.2266	
E42K*	55.3	42.78	0.00	0.1619	
E42Q*	54.1	35.61	-0.14	0.1619	
E43K*	56.5	46.13	0.14	0.1652	
S48K*	61.6	41.59	0.73	0.3997	
E50K*	49.7	31.55	-0.65	0.2831	
E53K*	53.7	40.15	-0.19	0.1163	
E53Q*	56.6	43.74	0.15	0.1163	
N55K*	54.3	37.76	-0.12	0.0795	
N55D*	59.2	44.22	0.45	0.0795	
K56E*	38.2	24.14	-1.99	0.0624	
K65Q*	48	31.31	-0.85	0.2330	

Drotoin	Thermal unfolding		Theoretical		
1C90	Тт (К)	ΔH° (kcal mol ⁻¹)	ΔΔG (kcal mol ⁻¹)	score (H _i *RMSF _i ⁻¹)	Reference
Csp C WT	76.9	58.56	-		
Q2L	80.9	57.84	0.67	0.2715	
R3E	59.1	45.65	-2.98	0.2662	
R3L	70.9	55.69	-1.00	0.2662	
R3K	76.1	53.54	-0.13	0.2662	
R3A	64.9	51.39	-2.01	0.2662	
N11S	79.2	58.80	0.38	0.1527	
Y15S	76.7	56.64	-0.03	0.3242	INAD (2001) 212 242 257
E21A	75	57.84	-0.32	0.1510	JIVIB (2001) 515, 545-557
G23Q	74.7	59.51	-0.37	0.2129	
S24D	77.8	61.66	0.15	0.1891	
T31S	77.8	59.75	0.15	0.3455	
E46A	75.4	57.60	-0.25	0.2531	
Q53E	76.1	58.80	-0.13	0.1615	
V64T	75.1	58.32	-0.30	0.3202	
L66E	68.9	50.19	-1.34	0.1888	
Csp C WT	76.9	58.56	-		
R56E	80	60.95	0.52	0.1150	
H29E	73.5	105.88	-0.57	0.4211	
E46K	74	106.84	-0.49	0.2531	
E21K	75.4	49.00	-0.25	0.1510	Prot Eng Des Sel (2006) 19, 355-358
N55K	77.7	55.21	0.13	0.1307	
E36K	76	45.65	-0.15	0.0637	
E50K	73.5	43.26	-0.57	0.3232	
E12K	74.4	52.34	-0.42	0.1225	

Thermodynamic data from unfolding kinetics			
Mutant 2Cl2	Theoretical score (H _i *RMSF _i ⁻¹)	ΔΔG _{H2O} (kcal mol ⁻¹)	
KA2	0.2445	-0.72	
KM2	0.2445	-0.47	
TA3	0.2710	-0.63	
TV3	0.2710	-0.27	
TG3	0.2710	-0.81	
PA6	0.3331	-0.84	
EA7	0.2389	-0.27	
LA8b	0.4727	-2.73	
KA11	0.2499	0.21	
SG12	0.3037	-0.36	
SA12	0.3037	-0.3	
EQ14	0.1830	-0.04	
ED14	0.1830	-0.16	
EN14	0.1830	-0.02	
EQ15	0.1787	-0.2	
ED15	0.1787	-0.45	
EN15	0.1787	-0.65	
AG16	0.3565	0.26	
KA17	0.2427	-0.72	
KG17	0.2427	-1.72	
KA18	0.1736	-0.09	
KG18	0.1736	-0.41	
VA19b	0.3463	-0.73	
IV20b	0.5402	-0.6	
LA21	0.3132	-0.95	
LG21	0.3132	-1.1	

Mutant 2CI2	Theoretical score (H _i *RMSF _i ⁻¹)	ΔΔG _{H2O} (kcal mol ⁻¹)
QA22	0.1517	-0.03
QG22	0.1517	-0.46
DA23	0.2935	-0.69
KA24	0.4207	-0.68
KG24	0.4207	-2.7
PA25	0.2788	-1.55
EA26	0.2621	-0.25
IV29b	0.3704	-0.62
IA29b	0.3704	-2.8
IV30	0.3599	-0.03
IA30	0.3599	-0.91
IG30	0.3599	-2.22
IT30	0.3599	-0.5
LA32	0.3599	-1.6
LI32	0.2867	-0.29
LV32	0.2867	-0.48
VT34	0.2250	-0.75
VA34	0.2250	-0.49
VG34	0.2250	-1.77
TV36	0.2250	-0.71
VA38	0.1257	-1.08
TA39c	0.0907	-0.38
TD39c	0.0907	0.15
EA41c	0.1109	-0.56
RA43	0.2388	-0.47
DA45	0.2516	-0.57
VA47b	0.4466	-3.53
LA49b	0.3860	-1.77

Mutant 2CI2	Theoretical score (H.*RMSE ⁻¹)	$\Delta\Delta G_{H2O}$ (kcal mol ⁻¹)
FL50	0.3015	-1.13
FV50	0.3015	-1.64
FA50	0.3015	-2.32
VA51b	0.4309	-1.09
DA52	0.1493	-2.9
DN52	0.1493	-0.07
ND56	0.2372	-0.66
NA56	0.2372	-0.55
IV57b	0.2372	0.16
IA57b	0.2372	-3.77
AG58	0.3498	-1.52
VT60	0.4397	-0.37
VA60	0.4397	-1.25
VG60	0.4397	-3.02
PA61	0.5453	-2.97
VT62	0.4074	-1
VA82	0.4074	-1.09
VG82	0.4074	-3

Thermodynamic data from refolding kinetics				
Mutant 2CI2	Theoretical score (H _i *RMSF _i ⁻¹)	ΔΔG (kcal mol ⁻¹)		
KA2	0.2445	-0.11		
KM2	0.2445	0.02		
TA3	0.2710	0.11		
TV3	0.2710	0.17		
TG3	0.2710	0.06		
PA6	0.3331	0.1		
EA7	0.2389	0.19		
LA8b	0.4727	0.4		
KA11	0.2499	0.26		
SG12	0.3037	0.23		
SA12	0.3037	0.38		
EQ14	0.1830	0.36		
ED14	0.1830	0.1		
EN14	0.1830	0.53		
EQ15	0.1787	0.25		
ED15	0.1787	0.16		
EN15	0.1787	0.57		
AG16	0.3565	1.15		
KA17	0.2427	0.14		
KG17	0.2427	0.87		
KA18	0.1736	0.08		
KG18	0.1736	0.68		
VA19b	0.3463	-0.13		
IV20b	0.5402	0.52		
LA21	0.3132	0.33		
LG21	0.3132	0.48		
QA22	0.1517	-0.12		

Mutant	Theoretical score	ΔΔG
2CI2	(H _i *RMSF _i ⁻¹)	(kcal mol ⁻¹)
QG22	0.1517	0.07
DA23	0.2935	-0.23
KA24	0.4207	-0.23
KG24	0.4207	0.31
PA25	0.2788	0.35
EA26	0.2621	0.14
IV29b	0.3704	0.19
IA29b	0.3704	0.98
IV30	0.3599	0.07
IA30	0.3599	0.65
IG30	0.3599	0.92
IT30	0.3599	0.47
LA32	0.2867	0.44
LI32	0.2867	-0.08
LV32	0.2867	-0.02
VT34	0.2250	0.24
VA34	0.2250	-0.01
VG34	0.2250	0.4
TV36	0.0922	0.14
VA38	0.1257	0.18
TA39c	0.0907	0.04
TD39c	0.2388	0.05
EA41c	0.2516	0.31
RA43	0.4466	1.02
DA45	0.3015	0.59
VA47b	0.3015	0.6
LA49b	0.3015	1.16
FL50	0.4309	0.49

Mutant	Theoretical score	$\Delta\Delta G$
2012		
FV50	0.1493	0.41
FA50	0.2372	0.23
VA51b	0.2372	0.07
DA52	0.5275	0.11
DN52	0.5275	0.36
ND56	0.3498	0.21
NA56	0.4397	0.19
IV57b	0.4397	-0.04
IA57b	0.4397	0.13
AG58	0.4074	0.09
VT60	0.4074	0.04
VA60	0.4074	0.1

Reference. J. Mol. Biol. (1995) 254: 260-288

File S4. Additional simulations. It is shown the RMSD, RMSF, and the hierarchy position of each residue in two different conditions. In Figure R1, we show the differences between the complex estrogen receptor bound with DNA after 25 ns molecular dynamics simulation and the estrogen receptor unbound from DNA after 50 ns simulation. In Figure R2, we show the convergence between simulating 25 ns and extending simulation to 50 ns of 6aJL2.

1- Human receptor estrogen alpha (1HCQ PDB code) is in complex with DNA in MD simulation. Does the experiment done in complex with DNA, too? It would be more informative if you could compare the crucial residues in this protein in the presence and absence of DNA.

Experiments detailed in Ref. Deegan *et al.*, 2010, where DNA was bound to the estrogen receptor and some of its mutants, concluded that mutants decreased the DNA recognition by estrogen receptor. To compare the crucial residues in the absence of DNA bound to the receptor, we performed a 50 ns molecular dynamics simulation under same conditions detailed in Materials and Methods. Results showed that the unbound dimer has different motion from motions of DNA-bound dimer as shown in RMSD and RMSF plots (Fig. R1A and Fig. R1B, respectively). By comparing normalized theoretical scores of the residues between these two simulations, there are notable changes on the contribution of each residue into the dimer (Fig. R1C).

Fig. R1. Comparison between free estrogen dimer and complexed with DNA. In yellow is shown the difference of the complex estrogen receptor bound with DNA after 25 ns molecular dynamics simulation; and in blue, the estrogen receptor unbound from DNA after 50 ns simulation. **A.** RMSD difference. **B.** RMSF values of each residue. **C.** Hierarchy position of each residue.

File S4. Additional simulations. It is shown the RMSD, RMSF, and the hierarchy position of each residue in two different conditions. In Figure R1, we show the differences between the complex estrogen receptor bound with DNA after 25 ns molecular dynamics simulation and the estrogen receptor unbound from DNA after 50 ns simulation. In Figure R2, we show the convergence between simulating 25 ns and extending simulation to 50 ns of 6aJL2.

All the results of simulating estrogen receptor bound to DNA generated data which were remarkably different from the results obtained for the dimer unbound to DNA. However, as stated in the text, we cannot predict which residues are going to recognize precisely interaction with its respective ligand.

2- Even though RMSD of most proteins show equilibrated state by 25ns simulation time, however it is still not enough time to consider as equilibration. I recommend authors select one of the proteins and continue the simulation for at least another 25ns and compare it with non-extended simulation.

We extended 6aJL2 (PDB 2W0K) simulation and compared theoretical scores as shown below. Trajectory maintained the same RMSD difference (Fig. R2A). Slight, but not significant changes could be detected in RMSF values (Fig. R2B). Also, theoretical scores as well as hierarchy were not dramatically affected by extending another 25 ns (Fig. R2C).

Fig. R2. Comparison between molecular time simulations. In yellow is shown the structure 6aJL2 after 25 ns molecular dynamics simulation; in blue, 6aJL2after extending simulation to 50 ns simulation. **A.** RMSD difference. **B.** RMSF values of each residue. **C.** Hierarchy position of each residue.

By extending simulation time 25 ns more, hierarchy position of each residue was not considerably modified.

Fig. S1. Overlapping between homologous structures. (A) Sequence aligning between cold shock proteins from *B. caldolyticus* (PDB-1C9O) and *B. subtilis* (PDB-1CSP). In green are remarked identical residues; in pink, similar residues; and in blue, sequence mismatch. (B) Despite that having different thermodynamic parameters, overlapping cold shock proteins shows high structural homology with a main chain RMSD of 0.5 Å calculated with PyMOL software

A

1C90	MQRGKVKWFNNEKGYGFIEVEGGSDVFVHFTAIQGEGFKTLEEGQAVSFEIVEGNRGPQAANVTKE
1CSP	.LESFQDSEQV.L

Fig. S2. Circular biplots. Detailed information of circular biplots indicating the position of each mutation of its respective protein is shown. Variables are shown as blue vectors, in Dim1 was measured SDRI scores and in Dim2 thermodynamic data. (A) Chymotrypsin inhibitor (PDB entry 2CI2); (B) 6aJL2 (PDB entry 2W0 K); (C) apoflavodoxin (PDB entry 1FTG); (D) arc repressor (PDB entry 1ARR); (E) DNA-binding domain of the estrogen receptor α (PDB entry 1HCQ); (F) cold shock protein from *B. subtilis*; (G) cold shock protein from *B. caldolyticus*; and (H) the JAK interaction region of SOCS5 (PDB entry 2N34).

#!/usr/bin/perl 1 2 # Simple Approach for Ranking Structure Determining Residues open (ARCH, "100 estructuras.pdb") or die "Cannot open file \n"; 3 4 5 \$Model = 1; 6 while (\$linea = <ARCH>) 7 { if (\$linea =~ "^MODEL") 8 9 10 \$Num res = 0;11 \$Comparar num res = 0; 12 \$Continuidad conteo = 0; 13 do { 14 shift (@baseline molecule); 15 \$vaciar push = @baseline molecule; 16 } until (\$vaciar push == 0); 17 do 18 { 19 shift (@baseline VM molecule); 20 \$vaciar_push = @baseline_VM_molecule; 21 } until (\$vaciar push == 0); 22 do 23 shift (@baseline residue); \$vaciar push = @baseline residue; 24 25 } until (\$vaciar push == 0); 26 do 27 shift (@baseline VM residue); 28 \$vaciar push = @baseline VM residue; 29 } until (\$vaciar push == 0); 30 do { 31 shift (@Num_res); 32 \$vaciar push = @Num res; 33 } until (\$vaciar push == 0); 34 \$Archsal = "Model_\$Model.pl"; open (ARCHSAL, ">\$Archsal")||die "Cannot open file \n"; 35 print ARCHSAL "#Model \$Model\n"; 36 \$baseline molecule = "molecule = ("; 37 38 @baseline molecule = split (", \$baseline molecule); unshift (@baseline_molecule, "@"); 39

40	\$baseline_PM_molecule = "PM_molecule = (";
41	<pre>@baseline_PM_molecule = split (", \$baseline_PM_molecule);</pre>
42	unshift (@baseline_PM_molecule, "@");
43	\$baseline_VM_molecule = "VM_molecule = (";
44	<pre>@baseline_VM_molecule = split ('', \$baseline_VM_molecule);</pre>
45	unshift (@baseline_VM_molecule, "@");
46	}
47	if (\$linea =~ "^TER")
48	{
49	\$Continuidad_conteo = \$Num_res;
50	}
51	if (\$linea =~ "^ENDMDL")
52	{
53	pop @baseline_residue;
54	push (@baseline_residue, ");\n");
55	\$Temporal_3 = join (",@baseline_residue);
56	print ARCHSAL "\$Temporal_3";
57	pop @baseline_PM_residue;
58	push (@baseline_PM_residue, ");\n");
59	\$Temporal_33 = join ('',@baseline_PM_residue);
60	print ARCHSAL "\$Temporal_33";
61	push (@baseline_VM_residue, ";\n");
62	\$Temporal_33 = join ('',@baseline_VM_residue);
63	print ARCHSAL "\$Temporal_33";
64	\$n=1;
65	do {
66	print ARCHSAL '\$count_atm_res_[',(\$n-1),"] = ",(\$count_atm_res_[\$n]-1), ";\n" ;
67	\$n++;
68	} until (\$n> \$Num_res);
69	\$n= 0;
70	do {
71	<pre>\$count_atm_res_[\$n] = 0;</pre>
/2	Şn++;
/3	} until (\$n> \$Num_res);
/4 75	pop @baseline_molecule;
/5	push (@baseline_molecule, ");\n");
/b 77	<pre>\$ i emporal_4 = join (",@baseline_molecule);</pre>
//	print AKCHSAL "\$Temporal_4";
78	pop @baseline_PM_molecule;

79	push (@baseline_PM_molecule, ");\n");
80	\$Temporal_44 = join ('',@baseline_PM_molecule);
81	print ARCHSAL "\$Temporal 44";
82	pop @baseline_VM_molecule;
83	push (@baseline_VM_molecule, ");\n");
84	\$Temporal 44 = join (",@baseline VM molecule);
85	print ARCHSAL "\$Temporal_44";
86	print ARCHSAL '\$',"Model = \$Model;\n";
87	\$matrix_salida = "matrix_center_mass_\$Model.csv";
88	@matrix_salida = split ('', \$matrix_salida);
89	unshift (@matrix_salida, '>');
90	unshift (@matrix_salida, '''');
91	unshift (@matrix_salida, ',');
92	unshift (@matrix_salida, "'");
93	unshift (@matrix_salida, '''');
94	unshift (@matrix_salida, "'");
95	unshift (@matrix_salida, ',');
96	unshift (@matrix_salida, '''');
97	push (@matrix_salida, '"');
98	push (@matrix_salida, ',');
99	push (@matrix_salida, """);
100	push (@matrix_salida, '"');
101	push (@matrix_salida, "'");
102	push (@matrix_salida, ',');
103	push (@matrix_salida, '"');
104	\$matrix_salida = join ('',@matrix_salida);
105	print ARCHSAL '\$Num_res = ',(\$Num_res-1),";\n";
106	print ARCHSAL "\n";
107	print ARCHSAL "open (ARCHSAL, ",'"',">center_mass_model_\$Model.pl",'"',") die ",'"',"Cannot open file ",'\\',"n",'"',";\n";
108	print ARCHSAL '\$',"j= 0;\n";
109	print ARCHSAL " do\n";
110	print ARCHSAL" {\n";
111	print ARCHSAL' \$',"SMX = 0; ",'\$',"SMY = 0; ",'\$',"SMZ = 0; ",'\$',"SMT = 0;\n";
112	print ARCHSAL' \$',"k= 0;\n";
113	print ARCHSAL" do\n";
114	print ARCHSAL " {\n";
115	print ARCHSAL '\$',"SMX= ",'\$',"SMX+(",'\$',"PM_molecule[",'\$',"j][",'\$',"k]*",'\$',"molecule[",'\$',"j][",'\$',"k][0]);\n";
116	print ARCHSAL '\$',"SMY= ",'\$',"SMY+(",'\$',"PM_molecule[",'\$',"j][",'\$',"k]*",'\$',"molecule[",'\$',"j][",'\$',"k][1]);\n";
117	print ARCHSAL' \$',"SMZ= ",'\$',"SMZ+(",'\$',"PM_molecule[",'\$',"j][",'\$',"k]*",'\$',"molecule[",'\$',"j][",'\$',"k][2]);\n";

118	print ARCHSAL '	\$',"SMT=",'\$',"SMT+(",'\$',"PM_molecule[",'\$',"j][",'\$',"k]);\n";
119	print ARCHSAL '	\$',"k++;\n";
120	print ARCHSAL "	} until (",'\$',"k> ",'\$',"count_atm_res_[",'\$',"j]);\n";
121	print ARCHSAL '	\$',"CMX = sprintf ",'"',"%",".4f",'", ','\$',"SMX/",'\$',"SMT;\n";
122	print ARCHSAL '	\$',"CMY = sprintf ",'"',"%",".4f",'", ','\$',"SMY/",'\$',"SMT;\n";
123	print ARCHSAL '	\$',"CMZ = sprintf ",'"',"%",".4f",", ','\$',"SMZ/",'\$',"SMT;\n";
124	print ARCHSAL '	\$',"impresion = ",'\$',"j+1;\n";
125	print ARCHSAL '	\$',"baseline_CM_residue = ",'"',"CM_residue_",'\$',"impresion = (",'"',";\n";
126	print ARCHSAL '	@',"baseline_CM_residue = split ('', ",'\$',"baseline_CM_residue); # Transformo la linea en un arreglo\n";
127	print ARCHSAL "	unshift (",'@',"baseline_CM_residue, ",'"@"',");\n";
128	print ARCHSAL "	push (",'@',"baseline_CM_residue, ",'"\$',"CMX, ",'\$',"CMY, ",'\$',"CMZ);",'\n")',";\n";
129	print ARCHSAL '	\$',"Temporal2 = join ('',",'@',"baseline_CM_residue);\n";
130	print ARCHSAL "	print ARCHSAL ",'"\$',"Temporal2","",";\n";
131	print ARCHSAL "	#Darby NJ, Creighton TE. 1993. Protein structure. Oxford University Press, New York. p. 4 ISBN 019963310X\n";
132	print ARCHSAL "	if (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"ALA",'"',")\n";
133	print ARCHSAL "	{\n";
134	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 2.52;\n";
135	print ARCHSAL "	}\n";
136	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"ARG",'"',")\n";
137	print ARCHSAL "	{\n";
138	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 3.28;\n";
139	print ARCHSAL "	}\n";
140	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"ASN",'"',")\n";
141	print ARCHSAL "	{\n";
142	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 2.84;\n";
143	print ARCHSAL "	}\n";
144	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"ASP",'"',")\n";
145	print ARCHSAL "	{\n";
146	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 2.79;\n";
147	print ARCHSAL "	}\n";
148	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"CYX",'"',")\n";
149	print ARCHSAL "	{\n";
150	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 2.74;\n";
151	print ARCHSAL "	}\n";
152	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"CYS",'"',")\n";
153	print ARCHSAL "	{\n";
154	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 2.74;\n";
155	print ARCHSAL "	}\n";
156	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"GLN",'"',")\n";

print ARCHSAL "	{\n";
print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 3.01;\n";
print ARCHSAL "	}\n";
print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"GLU",'"',")\n";
print ARCHSAL "	{\n";
print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 2.96;\n";
print ARCHSAL "	}\n";
print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"GLY",'"',")\n";
print ARCHSAL "	{\n";
print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 2.25;\n";
print ARCHSAL "	}\n";
print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"HIS",'"',")\n";
print ARCHSAL "	{\n";
print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 3.04;\n";
print ARCHSAL "	}\n";
print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"ILE",'"',")\n";
print ARCHSAL "	{\n";
print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 3.09;\n";
print ARCHSAL "	}\n";
print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"LEU",'"',")\n";
print ARCHSAL "	{\n";
print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 3.09;\n";
print ARCHSAL "	}\n";
print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"LYS",'"',")\n";
print ARCHSAL "	{\n";
print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 3.18;\n";
print ARCHSAL "	}\n";
print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"MET",'"',")\n";
print ARCHSAL "	{\n";
print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 3.09;\n";
print ARCHSAL "	}\n";
print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"PHE",'"',")\n";
print ARCHSAL "	{\n";
print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 3.18;\n";
print ARCHSAL "	}\n";
print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"PRO",'"',")\n";
print ARCHSAL "	{\n";
print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 2.78;\n";
print ARCHSAL "	}\n";
	print ARCHSAL " print ARCHSAL "

196	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"SER",'"',")\n";
197	print ARCHSAL "	{\n";
198	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 2.59;\n";
199	print ARCHSAL "	}\n";
200	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"THR",'"',")\n";
201	print ARCHSAL "	{\n";
202	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 2.81;\n";
203	print ARCHSAL "	}\n";
204	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"TRP",'"',")\n";
205	print ARCHSAL "	{\n";
206	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 3.39;\n";
207	print ARCHSAL "	}\n";
208	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"TYR",'"',")\n";
209	print ARCHSAL "	{\n";
210	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 3.23;\n";
211	print ARCHSAL "	}\n";
212	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"VAL",'"',")\n";
213	print ARCHSAL "	{\n";
214	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 2.93;\n";
215	print ARCHSAL "	}\n";
216	print ARCHSAL "	# Voss NR, Gerstein M. 2005. Calculation of standard atomic volumes for RNA and comparison with proteins: RNA is packed more
217	tightly. Journal of Molecular Biolog	gy 346:477–492. DOI: 10.1016/j.jmb.2004.11.072\n";
218	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"DG",'"',")\n";
219	print ARCHSAL "	{\n";
220	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 3.27;\n";
221	print ARCHSAL "	}\n";
222	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"DA",'"',")\n";
223	print ARCHSAL "	{\n";
224	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 3.22;\n";
225	print ARCHSAL "	}\n";
226	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"DC",'"',")\n";
227	print ARCHSAL "	{\n";
228	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 3.02;\n";
229	print ARCHSAL "	}\n";
230	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"DU",'"',")\n";
231	print ARCHSAL "	{\n";
232	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 2.98;\n";
233	print ARCHSAL "	}\n";
234	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"DT",'"',")\n";

235	print ARCHSAL "	{\n";
236	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 3.20;\n";
237	print ARCHSAL "	}\n";
238	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"G",'"',")\n";
239	print ARCHSAL "	{\n";
240	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 3.27;\n";
241	print ARCHSAL "	}\n";
242	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"A",'"',")\n";
243	print ARCHSAL "	{\n";
244	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 3.22;\n";
245	print ARCHSAL "	}\n";
246	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"C",'"',")\n";
247	print ARCHSAL "	{\n";
248	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 3.02;\n";
249	print ARCHSAL "	}\n";
250	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"U",'"',")\n";
251	print ARCHSAL "	{\n";
252	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 2.98;\n";
253	print ARCHSAL "	}\n";
254	print ARCHSAL "	elsif (",'\$',"VM_molecule[",'\$',"j][0] eq ",'"',"T",'"',")\n";
255	print ARCHSAL "	{\n";
256	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 3.20;\n";
257	print ARCHSAL "	}\n";
258	print ARCHSAL "	else\n ";
259	print ARCHSAL "	{\n";
260	print ARCHSAL '	\$',"VM_molecule[",'\$',"j][0] = 2.50;\n";
261	print ARCHSAL "	}\n";
262	print ARCHSAL "	print ARCHSAL ",'"\@',"VM_residue_",'\$',"impresion = ",'\$',"VM_molecule[",'\$',"j][0];",'\\',"n",'";';
263	print ARCHSAL "	\n";
264	print ARCHSAL'\$',"j	++;\n";
265	print ARCHSAL " } un	til (",'\$',"j>",'\$',"Num_res);\n";
266	print ARCHSAL "\n";	
267	print ARCHSAL "open	(ARCHSAL, ",'"',">>center_mass_model_\$Model.pl",'"',") die ",'"',"Cannot open file ",'\\',"n",'"',";\n";
268	print ARCHSAL "print	ARCHSAL ",'"',"open (ARCHSAL, \$matrix_salida);",'"',";\n";
269	print ARCHSAL "close	ARCHSAL;\n";
270	\$Model=++\$Model;	
271	close ARCHSAL;	
272	}	
273	if (\$linea =~ "^ATOM")	

274	{	
275		@linea_larga_atomo = split ('', \$linea);
276		<pre>\$baseline_coordinate = "coordinate_";</pre>
277		<pre>@baseline_coordinate = split (", \$baseline_coordinate);</pre>
278		unshift (@baseline_coordinate, "@");
279		do {
280		shift (@Num res);
281		\$vaciar push = @Num res;
282		} until (\$vaciar push == 0);
283		\$n=20;
284		do {
285		\$n=++\$n;
286		} until (\$linea larga atomo[\$n] =~ '\d');
287		do {
288		, push (@Num_res, "\$linea_larga_atomo[\$n]");
289		\$n=++\$n;
290		} until (\$linea_larga_atomo[\$n] =~ '\s');
291		\$Num_res = join (",@Num_res);
292		\$Num_res = \$Num_res + \$Continuidad_conteo;
293		push (@baseline_coordinate, \$Num_res);
294		push (@baseline_coordinate, "_");
295		\$n=11;
296		do {
297		\$n=++\$n;
298		} until (\$linea_larga_atomo[\$n] =~ '\w');
299		if (\$linea_larga_atomo[\$n] eq 'N')
300		{
301		\$PM_atomo = 14;
302		}
303		elsif (\$linea_larga_atomo[\$n] eq 'C')
304		{
305		\$PM_atomo = 12;
306		}
307		elsif (\$linea_larga_atomo[\$n] eq 'H')
308		{
309		\$PM_atomo = 1;
310		}
311		elsif (\$linea_larga_atomo[\$n] eq 'O')
312		{

\$PM_atomo = 16;
}
elsif (\$linea_larga_atomo[\$n] eq 'S')
{
\$PM_atomo = 32;
}
elsif (\$linea_larga_atomo[\$n] eq 'P')
{
\$PM_atomo = 31;
}
elsif (\$linea_larga_atomo[\$n] eq 'ZN')
{
\$PM_atomo = 65;
}
elsif (\$linea_larga_atomo[\$n] eq 'NA')
{
\$PM_atomo = 23;
}
do {
push (@baseline_coordinate, "\$linea_larga_atomo[\$n]");
\$n=++\$n;
} until (\$linea_larga_atomo[\$n] =~ '\W');
<pre>@Temporal_1 = @baseline_coordinate;</pre>
unshift (@Temporal_1, "\\");
if (\$Comparar_num_res == 0)
{
<pre>\$baseline_residue = "residue_";</pre>
<pre>@baseline_residue = split (", \$baseline_residue);</pre>
push (@baseline_residue, \$Num_res);
<pre>@Temporal_2 = @baseline_residue;</pre>
unshift (@Temporal_2, "\\@");
<pre>push (@baseline_molecule, @Temporal_2);</pre>
push (@baseline_molecule, ",");
unshift (@baseline_residue, "@");
push (@baseline_residue, " = (",@Temporal_1);
<pre>push (@baseline_residue, ",");</pre>
<pre>\$baseline_PM_residue = "PM_residue_";</pre>
<pre>@baseline_PM_residue = split (", \$baseline_PM_residue);</pre>
<pre>push (@baseline_PM_residue, \$Num_res);</pre>

352	<pre>@Temporal_22 = @baseline_PM_residue;</pre>
353	unshift (@Temporal_22, "\\@");
354	push (@baseline_PM_molecule, @Temporal_22);
355	push (@baseline_PM_molecule, ",");
356	unshift (@baseline_PM_residue, "@");
357	push (@baseline_PM_residue, " = (",\$PM_atomo);
358	<pre>push (@baseline_PM_residue, ",");</pre>
359	<pre>\$baseline_VM_residue = "VM_residue_";</pre>
360	<pre>@baseline_VM_residue = split (", \$baseline_VM_residue);</pre>
361	push (@baseline_VM_residue, \$Num_res);
362	<pre>@Temporal_22 = @baseline_VM_residue;</pre>
363	unshift (@Temporal_22, '\\@');
364	push (@baseline_VM_molecule, @Temporal_22);
365	push (@baseline_VM_molecule, ",");
366	unshift (@baseline_VM_residue, '@');
367	push (@baseline_VM_residue, ' = "');
368	\$n=14;
369	do {
370	\$n=++\$n;
371	} until (\$linea_larga_atomo[\$n] =~ '\w');
372	do {
373	push (@baseline_VM_residue, "\$linea_larga_atomo[\$n]");
374	\$n=++\$n;
375	} until (\$linea_larga_atomo[\$n] =~ '\W');
376	push (@baseline_VM_residue, '''');
377	\$Comparar_num_res = \$Num_res;
378	<pre>\$count_atm_res_[\$Num_res]++;</pre>
379	}
380	elsif (\$Num_res == \$Comparar_num_res)
381	{
382	\$Temporal_3 = join (",@Temporal_1);
383	push (@baseline_residue, "\$Temporal_3");
384	push (@baseline_residue, ",");
385	<pre>push (@baseline_PM_residue, "\$PM_atomo");</pre>
386	<pre>push (@baseline_PM_residue, ",");</pre>
387	\$count_atm_res_[\$Num_res]++;
388	} else
389	{
390	pop @baseline residue;

391	push (@baseline_residue, ");\n");	
392	\$Temporal_3 = join ('',@baseline_residue);	
393	print ARCHSAL "\$Temporal_3";	
394	pop @baseline_PM_residue;	
395	push (@baseline_PM_residue, ");\n");	
396	\$Temporal_33 = join ('',@baseline_PM_residue);	
397	print ARCHSAL "\$Temporal_33";	
398	push (@baseline_VM_residue, ";\n");	
399	\$Temporal_33 = join ('',@baseline_VM_residue);	
400	print ARCHSAL "\$Temporal_33";	
401	\$baseline_residue = "residue_";	
402	<pre>@baseline_residue = split ('', \$baseline_residue);</pre>	
403	unshift (@baseline_residue, "@");	
404	push (@baseline_residue, \$Num_res);	
405	<pre>@Temporal_2 = @baseline_residue;</pre>	
406	unshift (@Temporal_2, "\\");	
407	push (@baseline_molecule, @Temporal_2);	
408	push (@baseline_molecule, ",");	
409	push (@baseline_residue, " = (",@Temporal_1);	
410	push (@baseline_residue, ",");	
411	<pre>\$baseline_PM_residue = "PM_residue_";</pre>	
412	@baseline_PM_residue = split ('', \$baseline_PM_residue);	
413	push (@baseline_PM_residue, \$Num_res);	
414	<pre>@Temporal_22 = @baseline_PM_residue;</pre>	
415	unshift (@Temporal_22, "\\@");	
416	push (@baseline_PM_molecule, @Temporal_22);	
417	push (@baseline_PM_molecule, ",");	
418	unshift (@baseline_PM_residue, "@");	
419	push (@baseline_PM_residue, " = (",\$PM_atomo);	
420	push (@baseline_PM_residue, ",");	
421	\$baseline_VM_residue = "VM_residue_";	
422	@baseline_VM_residue = split ('', \$baseline_VM_residue);	
423	push (@baseline_VM_residue, \$Num_res);	
424	<pre>@Temporal_22 = @baseline_VM_residue;</pre>	
425	unshift (@Temporal_22, '\\@');	
426	push (@baseline_VM_molecule, @Temporal_22);	
427	push (@baseline_VM_molecule, ",");	
428	unshift (@baseline_VM_residue, '@');	
429	push (@baseline_VM_residue, ' = ''');	

430	\$n=14;	
431	do	{
432		\$n=++\$n;
433		} until (\$linea_larga_atomo[\$n] =~ '\w');
434	do {	
435		push (@baseline_VM_residue, "\$linea_larga_atomo[\$n]");
436		\$n=++\$n;
437		} until (\$linea_larga_atomo[\$n] =~ '\W');
438	push (@	Dbaseline_VM_residue, '''');
439	\$count	atm res [\$Num res]++;
440	\$Compa	arar num res = \$Num res;
441	}	
442	push (@	Dbaseline coordinate, " = (");
443	\$n=29;	
444	do	{
445		\$n=++\$n;
446		} until (\$linea larga atomo[\$n] =~ '\S');
447	do	{
448		push (@baseline_coordinate, "\$linea_larga_atomo[\$n]");
449		\$n=++\$n;
450		} until (\$linea_larga_atomo[\$n] =~ '\s');
451	push (@	Dbaseline_coordinate, ", ");
452	\$n=38;	
453	do	{
454		\$n=++\$n;
455		} until (\$linea larga atomo[\$n] =~ '\S');
456	do	{
457		push (@baseline_coordinate, "\$linea_larga_atomo[\$n]");
458		\$n=++\$n;
459		} until (\$linea larga atomo[\$n] =~ '\s');
460	push (@	Dbaseline coordinate, ", ");
461	\$n=46;	
462	do	{
463		\$n=++\$n;
464		} until (\$linea larga atomo[\$n] =~ '\S');
465	do	{
466		push (@baseline_coordinate, "\$linea_larga_atomo[\$n]");
467		\$n=++\$n;
468		} until (\$linea_larga_atomo[\$n] =~ '\s');

```
469
                               push (@baseline coordinate, ");");
470
                               $nombre corto = join (",@baseline coordinate);
471
                               print ARCHSAL ("\$nombre corto \n");
472
               }
473
       }
474
       close ARCHSAL;
475
       close ARCH;
476
        @filesModel = glob "Model*.pl";
477
       foreach $a (@filesModel){
478
       system ($a);
479
480
       $base2 CMmolecule = "molecule = (";
481
        @base2_CMmolecule = split (", $base2_CMmolecule);
482
       unshift (@base2 CMmolecule, "@");
483
       $base2 VMmolecule = "VM molecule = (";
484
        @base2_VMmolecule = split (", $base2_VMmolecule);
485
       unshift (@base2 VMmolecule, "@");
486
       $n = 1;
487
        do {
488
               $base2 CMresidue = "CM residue $n,";
489
               @base2 CMresidue = split (", $base2 CMresidue);
490
               unshift (@base2 CMresidue, '\@');
491
               push @base2 CMmolecule, @base2 CMresidue;
492
493
               $base2 VMresidue = "VM residue $n,";
494
               @base2 VMresidue = split (", $base2 VMresidue);
495
               unshift (@base2 VMresidue, \langle 0' \rangle;
496
               push @base2 VMmolecule, @base2 VMresidue;
497
               $n++;
498
               } until ($n>65);
499
        pop @base2_CMmolecule;
500
        push(@base2 CMmolecule, ");\n");
       $Temporal 55 = join(",@base2 CMmolecule);
501
502
       pop @base2_VMmolecule;
503
        push(@base2 VMmolecule, ");\n");
       $Temporal 66 = join(",@base2 VMmolecule);
504
505
        @filesCM = glob "center*.pl";
506
       foreach $b (@filesCM){
507
               open (ARCHSAL, '>>', $b);
```

508	print ARCHSAL "\n";
509	print ARCHSAL "\$Temporal_55"; print ARCHSAL "\$Temporal_66";
510	print ARCHSAL '\$',"Num_res = ",\$Num_res-1,";\n";
511	print ARCHSAL "print ARCHSAL ",'"',"Residue1,Residue2,Distance,Normalized_Distance,Inverse_Distance",'\n";',"\n";
512	print ARCHSAL '\$',"i=0;\n";
513	print ARCHSAL "while (",'\$',"i < ",'\$',"Num_res)\n";
514	print ARCHSAL" {\n";
515	print ARCHSAL ' \$',"distance_calculated = 0;\n";
516	print ARCHSAL' \$',"distance_normalized = 0;\n";
517	print ARCHSAL' \$',"distance_inverse = 0;\n";
518	print ARCHSAL' \$',"k=",'\$',"i+1;\n";
519	print ARCHSAL do\n";
520	print ARCHSAL " {\n";
521	print ARCHSAL ' \$',"distance_calculated = sprintf ",'"%',".4f",'",'," sqrt ((",'\$',"molecule[",'\$',"i][0]-
522	",'\$',"molecule[",'\$',"k][0])*(",'\$',"molecule[",'\$',"i][0]-",'\$',"molecule[",'\$',"k][0])+(",'\$',"molecule[",'\$',"i][1]-",'\$',"molecule[",'\$',"k][1])*(",'\$',"molecule[",'\$',"i][1]-
523	",'\$',"molecule[",'\$',"k][1])+(",'\$',"molecule[",'\$',"i][2]-",'\$',"molecule[",'\$',"k][2])*(",'\$',"molecule[",'\$',"i][2]-",'\$',"molecule[",'\$',"k][2]));\n";
524	print ARCHSAL ' \$',"distance_normalized = sprintf ",'"%',".4f",'",
525	','\$',"distance_calculated/(",'\$',"VM_molecule[",'\$',"i][0]+",'\$',"VM_molecule[",'\$',"k][0]);\n";
526	print ARCHSAL ' \$',"distance_inverse = sprintf ",'"%',".4f",'", 1/",'\$',"distance_normalized;\n";
527	print ARCHSAL " print ARCHSAL
528	",'\$',"i+1,","',",",(",'\$',"k+1),",'",\$',"distance_calculated",',\$',"distance_normalized",',\$',"distance_inverse",'\n"',";\n";
529	print ARCHSAL' \$',"k++;\n";
530	print ARCHSAL "} until (",'\$',"k>",'\$',"Num_res);\n";
531	print ARCHSAL '\$',"i++;\n";
532	print ARCHSAL "}\n";
533	close ARCHSAL;
534	system(\$b);
535	}
536	exit;
537	# Simple Approach for Ranking Structure Determining Residues

The FEBS Journal

Stabilizing an amyloidogenic $\lambda 6$ light chain variable domain

Journal:	The FEBS Journal
Manuscript ID	FJ-16-1024
Manuscript Type:	Regular Paper
Date Submitted by the Author:	29-Nov-2016
Complete List of Authors:	Luna-Martínez, Oscar; Universidad Nacional Autonoma de Mexico, Molecular Medicine & Bioprocesses, Institute of Biotechnology Hernández-Santoyo, Alejandra; Universidad Nacional Autonoma de Mexico, Chemistry of Biomacromolecules, Institute of Chemistry Villalba-Velázquez, Miryam; Universidad Nacional Autonoma de Mexico, Molecular Medicine & Bioprocesses, Institute of Biotechnology Sánchez-Alcalá, Rosalba; Universidad Nacional Autonoma de Mexico, Molecular Medicine & Bioprocesses, Biotechnology Institute Fernandez-Velasco, Alejandro; Universidad Nacional Autonoma de Mexico, Biochemistry, Faculty of Medicine Becerril, Baltazar; Universidad Nacional Autonoma de Mexico, Molecular Medicine & Bioprocesses, Institute of Biotechnology
Key Words:	
	·

SCHOLARONE[™] Manuscripts