

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS QUÍMICAS

"DESARROLLO DE UN POTENCIAL ESTADÍSTICO BASADO EN EL ANÁLISIS DE LOS PUENTES DE HIDRÓGENO PRESENTES EN PROTEÍNAS"

TESIS

PARA OPTAR POR EL GRADO DE

MAESTRO EN CIENCIAS

PRESENTA

Q.F.B. NORBERTO SÁNCHEZ CRUZ

TUTOR: DR. RAMÓN GARDUÑO JUÁREZ INSTITUTO DE CIENCIAS FÍSICAS, UNAM

CIUDAD UNIVERSITARIA, CD. MX., ENERO DE 2017

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

AGRADECIMIENTOS

Al Consejo Nacional de Ciencia y Tecnología (CONACyT) por el apoyo económico brindado durante mis estudios de maestría. Número de becario: 335997.

A la Universidad Nacional Autónoma de México (UNAM) por la educación que me ha brindado a lo largo de tantos años.

Al Instituto de Ciencias Físicas (ICF) por las facilidades otorgadas para la realización de este trabajo de Tesis.

Al Dr. Ramón Garduño Juárez por brindarme su asesoría y apoyo, tanto académico como personal, a lo largo de este tiempo.

Al jurado evaluador por sus valiosas opiniones acerca del presente trabajo.

A mis amigos, los de toda la vida y los que conocí en este camino, por dejarme compartir con ellos esta grata experiencia.

A mi familia, por ser la piedra angular de mi formación.

A mis padres David y Magdalena Todo lo que soy es gracias a ustedes

JURADO ASIGNADO:

Presidente:	Dr. Miguel Antonio Costas Basín
Vocal:	Dr. Andrés Hernández Arana
Vocal:	Dr. Enrique García Hernández
Vocal:	Dra. Alejandra Hernández Santoyo
Secretario:	Dra. Karina Martínez Mayorga

Lugar donde se realizó la tesis: Instituto de Ciencias Físicas, UNAM.

El contenido de este trabajo fue presentado de manera parcial, en la modalidad de poster, en los siguientes eventos:

- XIV Reunión Mexicana de Fisicoquímica Teórica. Desarrollo de un potencial estadístico basado en la geometría del puente de hidrógeno para la identificación de la estructura nativa de proteínas. Jalisco, México: Universidad de Guadalajara, Centro Universitario de Tonalá, 2015.
- Congreso de la Rama de Fisicoquímica, Estructura y Diseño de Proteínas de la SMB and 4th International Workshop Frontiers in Protein Folding, Evolution and Function. Development of a statistical potential based on the hydrogen bond geometry for identification of native structures in proteins. Oaxaca, México: Sociedad Mexicana de Bioquímica, 2015.

<u>ÍNDICE</u>

ÍNDICE DE FIGURAS	7
ÍNDICE DE TABLAS	8
ABREVIATURAS	9
I. INTRODUCCIÓN	10
II. ANTECEDENTES	12
1. LA ESTRUCTURA DE LAS PROTEÍNAS	12
1.1 ESTRUCTURA PRIMARIA	13
1.2 ESTRUCTURA SECUNDARIA	16
1.3 ESTRUCTURA TERCIARIA Y CUATERNARIA	21
1.4 FACTORES QUE AFECTAN LA ESTABILIDAD DE UNA PROTEÍNA NATIVA	21
2. PLEGAMIENTO DE PROTEÍNAS	24
2.1 PLEGAMIENTO IN VITRO	24
2.2 PLEGAMIENTO IN VIVO	27
3. DETERMINACIÓN EXPERIMENTAL DE ESTRUCTURAS DE PROTEÍNAS	28
3.1 DIFRACCIÓN DE RAYOS X	29
3.2 MICROSCOPÍA ELECTRÓNICA	30
3.3 Espectroscopia de Resonancia Magnética Nuclear	31
4. PREDICCIÓN DE ESTRUCTURA DE PROTEÍNAS	32
4.1 MÉTODOS AB INITIO	34

4.2 MÉTODOS BASADOS EN PLANTILLAS.	34
4.3 POTENCIALES ESTADÍSTICOS	36
III. TRABAJOS RELACIONADOS	40
IV. DESCRIPCIÓN DEL PUENTE DE HIDRÓGENO	42
V. SELECCIÓN DE LA MUESTRA	44
VI. POTENCIALES ESTADÍSTICOS H-ERX Y H-ERMN	52
1. GENERACIÓN DE LOS POTENCIALES	52
2. PRUEBAS DE DISCRIMINACIÓN DE SEÑUELOS	54
VII. POTENCIALES ESTADÍSTICOS H-ERX* Y H-ERMN*	62
1. UN NUEVO ANÁLISIS DE DATOS	62
2. GENERACIÓN DE LOS POTENCIALES	66
3. PRUEBAS DE DISCRIMINACIÓN DE SEÑUELOS	68
VIII. COMPARACIÓN CON OTROS POTENCIALES	71
IX. CONCLUSIONES	73
X. PERSPECTIVAS	75
XI. REFERENCIAS	76

ÍNDICE DE FIGURAS

Figura 1. Niveles de estructura en proteínas.	12
Figura 2. Estructura general de un aminoácido.	14
Figura 3. Formación de un enlace peptídico por condensación.	15
Figura 4. Modelo de bolas y palos de una hélice α.	17
Figura 5. Diagrama de cintas de una hélice α .	17
Figura 6. Esquema de puentes de hidrógeno para las distintas hélices.	18
Figura 7. Conformación β de las cadenas polipeptídicas.	19
Figura 8. Diagrama de cintas de una hoja eta con hebras antiparalelas.	20
Figura 9. Estructura del giro β.	20
Figura 10. Ruta de plegado simulada.	25
Figura 11. Termodinámica del proceso de plegado representada como un embudo de energía libre.	26
Figura 12. Versión resumida de un archivo pdb representativo (2CGA).	28
Figura 13. Representación esquemática de los parámetros usados por Kortemme y colaboradores para describir los puentes de hidrógeno.	40
Figura 14. Representación esquemática de los parámetros usados para describir los puentes de hidrógeno.	43
Figura 15. Distribuciones de frecuencias de los parámetros geométricos estudiados en los puentes de hidrógeno formados por la cadena principal de proteínas, en muestras experimentales.	46
Figura 16. Distribuciones de frecuencias de los parámetros geométricos estudiados en los puentes de hidrógeno formados por la cadena principal de proteínas en los grupos ERX + AMBER99SB y ERMN + AMBER99SB.	49
Figura 17. Estructura de las proteínas usadas para generar los conjuntos de señuelos I-TASSER.	54
Figura 18. Contribución por conectividad de los puentes de hidrógeno en las distribuciones de frecuencias de los parámetros geométricos estudiados en los grupos ERX* + AMBER99SB y ERMN + AMBER99SB.	63

ÍNDICE DE TABLAS

Tabla 1. Clasificación, convenciones y polaridad asociada a los veinteaminoácidos comunes.	14
Tabla 2. Puentes de hidrógeno preservados al sustituir los hidrógenos polares en estructuras experimentales, de acuerdo a los parámetros del campo de fuerza AMBER99SB.	48
Tabla 3. Desempeño de los potenciales H-ERX y H-ERMN en las pruebas de discriminación de señuelos en grupos cuya estructura nativa fue resuelta por resonancia magnética nuclear.	59
Tabla 4. Desempeño de los potenciales H-ERX y H-ERMN en las pruebas de discriminación de señuelos en grupos cuya estructura nativa fue resuelta por difracción de rayos X.	60
Tabla 5. Clasificación de los puentes de hidrógeno hallados en los grupos ERX* + AMBER99SB y ERMN + AMBER99SB de acuerdo a la conectividad residuo aceptor (CO)→ residuo donador (NH) que presentan con respecto a su secuencia.	62
Tabla 6. Desempeño de los potenciales H-ERX* y H-ERMN* en las pruebas de discriminación de señuelos en grupos cuya estructura nativa fue resuelta por resonancia magnética nuclear.	68
Tabla 7. Desempeño de los potenciales H-ERX* y H-ERMN* en las pruebas de discriminación de señuelos en grupos cuya estructura nativa fue resuelta por difracción de rayos X.	69
Tabla 8. Desempeño de distintos potenciales en los grupos de señuelos de I-TASSER.	72

ABREVIATURAS

kJ	Kilojoules
°C	Grados Celsius
PDB	Protein Data Bank
Å	Angstroms
RMN	Resonancia Magnética Nuclear
kDa	Kilodaltones
ERX	Estructuras resueltas por difracción de rayos X con una resolución mejor a 1.0 Å
ERMN	Estructuras resueltas por RMN
H-ERX	Potencial estadístico basado en la geometría de los puentes de hidrógeno en ERX
H-ERMN	Potencial estadístico basado en la geometría de los puentes de hidrógeno en ERMN
ERX*	Estructuras resueltas por difracción de rayos X con una resolución mejor a 1.5 Å
H-ERX*	Potencial estadístico basado en la geometría de los puentes de hidrógeno en ERX* que contempla la conectividad aceptor-donador
H-ERMN*	Potencial estadístico basado en la geometría de los puentes de hidrógeno en ERMN que contempla la conectividad aceptor- donador
u.a.	Unidades arbitrarias

I. INTRODUCCIÓN

Las proteínas son el grupo de macromoléculas biológicas que más abunda en cualquier célula y se encuentran en una gran variedad de formas y tamaños, desde péptidos relativamente pequeños hasta polímeros enormes. Además, las proteínas presentan una enorme diversidad en lo que se refiere a su función biológica, ya que actúan como catalizadores, transportan y almacenan otras moléculas como el oxígeno, proporcionan apoyo mecánico y protección inmunológica, generan movimiento, transmiten impulsos nerviosos y controlan el crecimiento y la diferenciación celular^{1–4}.

Durante los últimos años, el problema de la predicción de estructura de proteínas ha generado un enorme interés por parte de la comunidad científica, debido en parte al impacto que tendría la resolución de este problema en muchas áreas de la biología, ya que el conocimiento de la estructura terciaria de una proteína es esencial para entender tanto su función biológica como su mecanismo de acción.

El experimento de Anfinsen en la década de los 70, demostró que toda la información que una proteína necesita para plegarse adecuadamente se encuentra codificada en su secuencia de aminoácidos⁵, sugiriendo que, al menos en teoría, es posible predecir la estructura tridimensional de una proteína partiendo únicamente de su secuencia. Este problema ha sido denominado "el santo grial de la biología molecular" y considerado como equivalente a descifrar la segunda mitad del código genético⁶.

La importancia de la resolución computacional de estructuras de proteínas se está incrementando debido al rápido aumento en el número de genomas secuenciados y al crecimiento relativamente lento del número de estructuras de proteínas determinadas experimentalmente. No es de sorprender que la predicción de estructura de proteínas se haya vuelto una parte vital en los proyectos de genómica estructural en todo el mundo⁷.

Se han utilizado una gran variedad de métodos para tratar de resolver este problema. La mayoría de ellos se basa en la hipótesis termodinámica, la cual establece que el estado nativo de una proteína será aquél que posea la menor energía libre bajo condiciones fisiológicas⁵ e implica la necesidad de desarrollar funciones de energía que permitan distinguir la estructura nativa de una proteína dentro de un grupo de señuelos con conformaciones similares, siendo este uno de los problemas más retadores en el campo de la predicción de estructura de proteínas.

Existen dos tipos de funciones de energía: 1) las basadas en principios físicos^{8,9} y 2) los potenciales basados en el conocimiento (PBC)^{10–15} o potenciales estadísticos. Los segundos tienen la ventaja de ser más fáciles de calcular y que al ser extraídos a partir de estructuras conocidas, contienen de manera implícita una gran cantidad de información acerca de las interacciones que estabilizan la estructura de las proteínas.

Por otra parte, es bien sabido que las interacciones por puente de hidrógeno son abundantes en las proteínas y que son responsables de muchos fenómenos, como la estabilización de su estructura y el reconocimiento molecular^{16,17}, en el primer caso se trata de puentes de hidrógeno intramoleculares, siendo particularmente abundantes aquellos formados por la cadena principal de las proteínas. Por esta razón, el presente trabajo persigue dos objetivos: (1) construir potenciales estadísticos basados en la geometría de los puentes de hidrógeno intramoleculares de varias muestras de proteínas con estructura conocida y (2) evaluar los potenciales generados de acuerdo a su capacidad para identificar la estructura nativa de una proteína dentro de un conjunto de señuelos.

A continuación se presenta una breve revisión acerca de la estructura y el plegamiento de las proteínas, los métodos empleados para la determinación y predicción de su estructura y el papel de los potenciales estadísticos en estas tareas.

11

II. ANTECEDENTES

1. La estructura de las proteínas

Para entender y describir la estructura de moléculas tan grandes como las proteínas es necesario estudiarlas en distintos niveles de complejidad, ordenados en una especie de jerarquía conceptual. Comúnmente se definen cuatro niveles de organización estructural en las proteínas (**Fig. 1**):

- Estructura primaria: Es una descripción de todos los enlaces covalentes que unen a los residuos de aminoácidos en una cadena polipeptídica.
- Estructura secundaria: Se refiere a arreglos particularmente estables de aminoácidos que dan origen a patrones estructurales recurrentes.
- Estructura terciaria: Describe todos los aspectos del plegado tridimensional de un polipéptido.
- Estructura cuaternaria: Cuando una proteína está constituida por dos o más polipéptidos (llamados subunidades), es la descripción del arreglo espacial de estos.

Figura 1. Niveles de estructura en proteínas. La estructura primaria consiste en la secuencia de aminoácidos unidos por enlaces peptídicos. El polipéptido resultante puede ser enrollado en unidades de estructura secundaria, como la hélice α ; un polipéptido plegado consta de varias de estas unidades, dando lugar a lo que se conoce como estructura terciaria, que en ocasiones puede ser una de las subunidades que forman la estructura cuaternaria de una proteína, en este caso la hemoglobina¹.

El arreglo espacial de los residuos de aminoácido en una proteína es denominado conformación. Las posibles conformaciones de una proteína incluyen cualquier arreglo estructural que pueda ser alcanzado sin la ruptura de enlaces covalentes, por ejemplo, con la rotación de un enlace sencillo.

De las numerosas conformaciones teóricamente posibles en una proteína que contiene cientos de enlaces sencillos, existe una o unas cuantas que predominan bajo condiciones biológicas. Las conformaciones predominantes bajo un conjunto de condiciones son usualmente aquellas que son las más estables en términos termodinámicos, es decir, con la energía libre de Gibbs más baja. Las proteínas en cualquiera de estas conformaciones plegadas y funcionales se denominan proteínas nativas.

1.1 Estructura primaria

Las proteínas son polímeros de aminoácidos, con cada residuo de aminoácido unido a su vecino por un tipo específico de enlace covalente (el término residuo se refiere a la pérdida de los elementos que constituyen una molécula de agua cuando un aminoácido es unido a otro). Veinte aminoácidos diferentes son los que se encuentran comúnmente en proteínas: alanina, valina, leucina, isoleucina, glicina, prolina, cisteína, metionina, histidina, fenilalanina, tirosina, triptófano, asparagina, glutamina, serina, treonina, lisina, arginina, aspartato (ácido aspártico) y glutamato (ácido glutámico); siendo todos ellos estereoisómeros L.

Estos 20 aminoácidos comunes son α -aminoácidos, ya que poseen un grupo carboxilo y un grupo amino enlazados al mismo átomo de carbono (el carbono α) (**Fig. 2**). Difieren entre sí por sus cadenas laterales o grupos R, los cuales varían en estructura, tamaño y carga eléctrica, por lo que se pueden clasificar en grupos basados en su comportamiento ácido-base al ser disueltos en agua, o de acuerdo a su solubilidad en ella (**Tabla 1**).

Figura 2. Estructura general de un aminoácido. Esta estructura es común para todos los aminoácidos excepto la prolina, que es un aminoácido cíclico. El grupo R o cadena lateral (rojo) unido al carbono α (azul) es diferente en cada aminoácido¹.

Tabla 1. Clasificación, convenciones y polaridad asociada a los veinte aminoácidos comunes¹.

Aminoácido	Abreviación	Símbolo	Índice hidropático*		
Grupos R alifáticos, no					
polares					
Glicina	Gly	G	-0.4		
Alanina	Ala	А	1.8		
Prolina	Pro	Р	1.6		
Valina	Val	V	4.2		
Leucina	Leu	L	3.8		
Isoleucina	lle	I	4.5		
Metionina	Met	Μ	1.9		
Grupos R aromáticos					
Fenilalanina	Phe	F	2.8		
Tirosina	Tyr	Y	-1.3		
Triptófano	Trp	W	-0.9		
Grupos R no cargados,					
polares					
Serina	Ser	S	-0.8		
Treonina	Thr	Т	-0.7		
Cisteína	Cys	С	2.5		
Asparagina	Asn	Ν	-3.5		
Glutamina	Gln	Q	-3.5		
Grupos R cargados					
positivamente					
Lisina	Lys	K	-3.9		
Histidina	His	Н	-3.2		
Arginina	Arg	R	-4.5		
Grupos R cargados					
negativamente					
Aspartato	Asp	D	-3.5		
Glutamato	Glu	E	-3.5		

*Escala que combina la hidrofobicidad y la hidrofilicidad de las cadenas laterales, se puede emplear para medir la tendencia de un aminoácido por buscar un ambiente acuoso (valores negativos) o un ambiente hidrofóbico (valores positivos).

Además de estos 20 aminoácidos existen algunos otros no tan comunes, algunos de ellos son residuos modificados después de que una proteína es sintetizada; otros son aminoácidos presentes en los organismos vivos pero no como constituyentes de las proteínas^{18–24}.

Los péptidos son cadenas de aminoácidos. Dos moléculas de aminoácidos pueden unirse covalentemente a través de una reacción de condensación entre el grupo amino de un aminoácido y el grupo carboxilo del otro, liberando una molécula de agua y dando origen a un dipéptido. Este tipo de uniones entre aminoácidos se conoce como enlace peptídico (**Fig. 3**). Tres aminoácidos pueden unirse mediante dos enlaces peptídicos para formar un tripéptido; de manera similar se pueden formar tetrapéptidos, pentapéptidos y demás. Cuando diez o menos aminoácidos se encuentran unidos de esta manera, la estructura es denominada oligopéptido y cuando son más de diez aminoácidos los involucrados, el producto se denomina polipéptido. Las proteínas pueden contener cientos de residuos de aminoácidos.

Figura 3. Formación de un enlace peptídico por condensación. El grupo amino de un aminoácido (con cadena lateral R²) actúa como nucleófilo para desplazar el grupo hidroxilo de otro aminoácido (con cadena lateral R¹), formando un enlace peptídico (sombreado en amarillo). Los grupos amino son buenos nucleófilos, pero el grupo hidroxilo no es un buen grupo saliente, por lo que en condiciones fisiológicas esta reacción no ocurre de manera significativa¹.

1.2 Estructura secundaria

La estructura secundaria se refiere a la relación espacial que existe entre aminoácidos que se encuentran cercanos en la estructura primaria, normalmente refiriéndose a los patrones de plegamiento que adopta el esqueleto de una cadena polipeptídica. Las unidades básicas de la estructura secundaria son: las hélices α , las hebras β y los giros; el resto de las unidades de estructura secundaria conocida son variaciones de estos tres tipos. Todas las unidades de estructura secundaria secundaria son generadas por la formación de puentes de hidrógeno entre los distintos grupos carboxilo y amino de distintos residuos de aminoácidos.

1.2.1 Hélice α

El arreglo más simple que una cadena polipeptídica puede tomar con sus enlaces peptídicos rígidos es una estructura helicoidal, la cual Pauling y Corey²⁵ denominaron hélice α . En esta estructura, el esqueleto de la cadena polipeptídica se encuentra firmemente enrollada alrededor de un eje imaginario dibujado longitudinalmente a través de la hélice mientras que los grupos R de los residuos de aminoácidos sobresalen hacia la parte exterior de la hélice (**Fig. 4**). En diagramas esquemáticos de proteínas, las hélices α se representan como cintas torcidas o como cilindros (**Fig. 5**). Alrededor de una cuarta parte de los residuos en una cadena polipeptídica se encuentran en esta conformación, aunque la fracción exacta varía de una proteína a otra.

Esta estructura se encuentra estabilizada por puentes de hidrógeno formados entre el átomo de hidrógeno unido covalentemente al átomo de nitrógeno en un enlace peptídico y el átomo de oxígeno carbonílico del cuarto aminoácido del lado aminoterminal del enlace peptídico (**Fig. 6a**), de esta manera prácticamente todos los enlaces peptídicos participan en la formación de puentes de hidrógeno y todas estas interacciones combinadas le dan a la estructura helicoidal una estabilidad considerable.

Figura 4. Modelo de bolas y palos de una hélice α . La unidad repetida de este tipo de hélices es de 3.6 residuos¹.

Figura 5. Diagrama de cintas de una hélice α . Los grupos R (morado) sobresalen alrededor del eje de la cinta.

La hélice 3_{10}^{26} es una variación estructural de la hélice α encontrada en proteínas. Usualmente se encuentra cuando una hélice α es distorsionada por la presencia de residuos poco favorables, cerca de una región de giro o cuando secuencias cortas se pliegan en una conformación helicoidal. En la hélice 3_{10} los puentes de hidrógeno dominantes se forman entre el átomo de hidrógeno unido covalentemente al átomo de nitrógeno en un enlace peptídico y el átomo de oxígeno carbonílico del tercer aminoácido del lado amino-terminal del enlace peptídico (**Fig. 6b**).

Una tercera posibilidad de hélice es una que se encuentre enrollada de manera más libre que la hélice α , con puentes de hidrógeno formados entre el átomo de hidrógeno unido covalentemente al átomo de nitrógeno en un enlace peptídico y el átomo de oxígeno carbonílico del quinto aminoácido del lado amino-terminal del enlace peptídico (**Fig. 6c**). Esta estructura es la hélice π^{27} , que en un principio fue considerada como no ocurrente de manera natural, sin embargo en la actualidad se ha descrito esta estructura en algunas proteínas.

Figura 6. Esquema de puentes de hidrógeno para las distintas hélices. El puente de hidrógeno entre los grupo CO y NH se da de la siguiente manera i \rightarrow i+4 para la hélice α (a), i \rightarrow i+3 para la hélice 3_{10} (b) e i \rightarrow i+5 para la hélice π (c).

1.2.2 Ηοja β

Pauling y Corey²⁵ predijeron un segundo tipo de estructura repetitiva, la conformación β o hebra β , esta es una conformación más extendida de las cadenas polipeptídicas. En esta conformación, el esqueleto de una cadena polipeptídica se encuentra extendido en forma de zigzag más que en una forma helicoidal. Las cadenas polipeptídicas en zigzag pueden agruparse lado a lado para formar una estructura conocida como hoja β , en ella se forman puentes de hidrogeno entre segmentos adyacentes de una cadena polipeptídica. Los segmentos individuales que forman una hoja β se encuentran usualmente cerca en una cadena polipeptídica, pero también pueden encontrarse bastante distantes una de otra en

la estructura primaria de un polipéptido e incluso pueden ser segmentos de cadenas polipeptídicas distintas.

Los grupos R de los aminoácidos adyacentes sobresalen de la estructura zigzag, creando un patrón alternado al ver esta estructura de lado. Las cadenas polipeptídicas adyacentes en una hoja β pueden ser paralelas o antiparalelas, teniendo la misma orientación amino-carboxilo o la orientación opuesta, respectivamente (**Fig. 7**).

Figura 7. Conformación β **de las cadenas polipeptídicas.** La forma de las hojas β está definida por la planaridad de los enlaces peptídicos, los grupos R sobresalen de la hoja. Se muestran también los puentes de hidrógeno formados de acuerdo al tipo de cadenas presentes en la hoja: a) antiparalelas y b) paralelas¹.

En diagramas esquemáticos de proteínas, las hebras β se representan normalmente por flechas anchas apuntando hacia el extremo carboxilo-terminal para indicar el tipo de hojas β formadas (**Fig. 8**). Las estructuras son un tanto similares aunque el periodo de repetición es menor para la conformación paralela y los patrones para la conformación de puentes de hidrogeno son diferentes.

Figura 8. Diagrama de cintas de una hoja β con hebras antiparalelas. Los grupos R (morado) sobresalen de las cintas (4UBY).

Figura 9. Estructura del giro β . El más frecuente de los giros β es el tipo I. Se forma un puente de hidrógeno entre los residuos primero y cuarto del giro.

1.2.3 Giros

En proteínas globulares, que tienen una estructura plegada compacta, cerca de una tercera parte de los residuos de aminoácidos se encuentran en giros o bucles donde la cadena polipeptídica cambia de dirección²⁸. Estos son los elementos que conectan series sucesivas de hélices α o hebras β . Algunos particularmente comunes son los giros β (**Fig. 9**), que conectan dos segmentos adyacentes de una hoja β antiparalela. La estructura es un giro de 180° que involucra cuatro residuos de aminoácidos, con el oxígeno carbonílico del primer residuo formando un puente de hidrogeno con el hidrogeno del grupo amino del cuarto, mientras que los grupos peptídicos de los dos residuos de glicina y prolina ocurren de manera frecuente en los giros β , el primero porque es pequeño y flexible y el segundo porque los enlaces peptídicos que involucran el nitrógeno de la prolina adoptan fácilmente la configuración *cis*, una forma que es particularmente favorable a un giro cerrado. Un giro considerablemente menos común es el giro γ , un giro de tres residuos con un puente de hidrogeno entre el primero y el tercero de ellos.

1.3 Estructura Terciaria y Cuaternaria

La estructura terciaria de una proteína se refiere al arreglo tridimensional de todos los átomos en ella. Mientras que el término "estructura secundaria" se refiere al acomodo espacial de residuos de aminoácidos adyacentes en la estructura primaria, la estructura terciaria incluye aspectos de mayor distancia en la secuencia de aminoácidos. Aminoácidos que se encuentran ampliamente separados en la secuencia de un polipéptido y que pertenecen a distintos tipos de estructura secundaria pueden interactuar dentro de la estructura completamente plegada de una proteína. La ubicación de giros en la cadena polipeptídica y la dirección de estos están determinados por el número y ubicación de residuos específicos, segmentos interactuantes de una cadena polipeptídica son mantenidos en su posición terciaria característica por diferentes tipos de interacciones débiles y a veces por enlaces covalentes como un puente disulfuro.

Algunas proteínas contienen dos o más cadenas polipeptídicas separadas o subunidades, las cuales pueden ser idénticas o diferentes, el ordenamiento de estas subunidades en complejos tridimensionales constituyen la estructura cuaternaria.

1.4 Factores que afectan la estabilidad de una proteína nativa

Las proteínas nativas son marginalmente estables, ya que la energía libre de Gibbs que separa los estados plegado y desplegado es de entre 20 y 65 kJ/mol bajo condiciones fisiológicas. Una cadena polipeptídica dada puede adoptar múltiples conformaciones distintas, por lo que el estado desplegado de una proteína se caracteriza por un alto grado de entropía conformacional. Esta entropía y las interacciones por puente de hidrógeno que se presentan entre múltiples grupos de la cadena polipeptídica y las moléculas de agua del entorno tienden a mantener el estado desplegado. Las interacciones químicas que contrarrestan estos efectos y estabilizan la conformación nativa incluye a los puentes disulfuro y las interacciones no covalentes: puentes de hidrógeno intramoleculares, interacciones hidrofóbicas e interacciones coulómbicas. A continuación se describen brevemente cada una de estas interacciones^{1,3,16,29}.

- Puentes disulfuro: Los puentes disulfuro dictan el plegado de algunas proteínas por formación de enlaces covalentes entre los átomos de azufre de las cadenas laterales de cisteínas separadas en la secuencia primaria. Un puente de este estilo no puede ser formado entre residuos consecutivos, comúnmente los residuos que participan en la formación de este tipo de enlaces se encuentran separados por al menos 5 residuos. Estos enlaces pueden romperse a alta temperatura, pH ácido o en presencia de agentes reductores.
- Efecto hidrofóbico: Las sustancias no polares tienden a formar agregados al encontrarse en disolución acuosa, excluyendo de esta forma a las moléculas de agua de su interior y permitiéndoles formar puentes de hidrógeno entre sí. Como la mayoría de las proteínas se encuentran en un ambiente de este estilo, ocurre la formación de aglomerados de aminoácidos con cadena lateral no polar, entre los cuales el agua queda excluida, dejando en claro que este efecto contribuye significativamente al total de las interacciones intramoleculares presentes en una proteína.
- Interacciones coulombicas: Este tipo de interacciones se presentan entre partículas cargadas eléctricamente y son descritas en base a la ley de Coulomb; en el caso de las proteínas, participan en este tipo de interacciones los aminoácidos con cadenas laterales cargadas, así como los grupos amino (NH₃+) y carboxilo (COO -) terminales de las cadenas polipeptídicas. Como resultado del efecto hidrofóbico, los aminoácidos con cadenas laterales cargadas se encuentran normalmente en la superficie de las proteínas y su interacción con aminoácidos vecinos se ve debilitada por la presencia de moléculas de agua que provocan un efecto de apantallamiento.

- Interacciones de van der Waals: Existen fuerzas de van der Waals tanto atractivas como repulsivas que controlan las interacciones entre átomos sin carga y no enlazados entre sí. Estas fuerzas provienen de la inducción de dipolos en la molécula debido a la fluctuación de las densidades de carga entre los átomos. Las interacciones englobadas en este efecto y ordenadas de mayor a menor fuerza, son: la interacción entre dipolos permanentes, la interacción entre dipolos temporales y las fuerzas de dispersión de London.
- Puentes de hidrógeno: Son un tipo de interacción atractiva entre un átomo electronegativo y un átomo de hidrógeno unido covalentemente a otro átomo electronegativo. Este tipo de interacciones contribuyen significativamente a la estabilidad de las hélices α y a la interacción de las hebras β para la formación de hojas β. Como resultado, los puentes de hidrógeno contribuyen significativamente a la estabilidad total de la estructura terciaria de una proteína. La mayor parte de estas interacciones está dada por puentes de hidrógeno formados entre los grupos NH y CO de distintos enlaces peptídicos en la cadena principal, aunque también pueden darse entre las cadenas laterales de distintos aminoácidos, o entre la cadena principal de la proteína y las cadenas laterales de algunos residuos.

Se requieren alrededor de 200 a 460 kJ/mol para romper un enlace sencillo mientras que las interacciones no covalentes se pueden ver modificadas por entre 4 y 30 kJ/mol. Los enlaces covalentes individuales que contribuyen a mantener la conformación nativa de una proteína, como los puentes disulfuro, son claramente más fuertes que las interacciones no covalentes individuales. Sin embargo, las interacciones no covalentes son numerosas, por lo que, en conjunto, son estas las que contribuyen en mayor medida a la estabilización de la conformación nativa en una proteína. En general, la conformación de una proteína con la menor energía libre de Gibbs será aquella con el mayor número de interacciones no covalentes.

2. Plegamiento de proteínas

La estructura terciaria de una proteína está determinada por su secuencia de aminoácidos. La prueba más importante de esto está dada por experimentos que muestran que la desnaturalización de algunas proteínas es reversible. Un experimento clásico es la desnaturalización y renaturalización de la ribonucleasa, llevado a cabo por Anfinsen⁵ en la década de los 70, el cual proporcionó la primera evidencia de que la secuencia de aminoácidos de una cadena polipeptídica contiene toda la información necesaria para plegar dicha cadena en su estructura tridimensional nativa.

En las células, las proteínas son ensambladas a partir de aminoácidos a una velocidad muy alta, por ejemplo, células de *E. coli* pueden hacer una proteína completa de 100 residuos en aproximadamente cinco segundos a 37° C. Suponiendo que cada uno de estos residuos pueda tomar 10 distintas conformaciones en promedio, tendríamos 10^{100} conformaciones diferentes para el polipéptido. Suponiendo también que la proteína se pliega espontáneamente mediante un proceso aleatorio en el que prueba todas las posibles conformaciones hasta encontrar su estructura nativa y que cada conformación fuera muestreada en el tiempo más corto posible (~ 10^{-13} s, el tiempo requerido para una vibración molecular), tomaría alrededor de 10^{77} años muestrear todas las conformaciones y error. Este problema fue planteado por primera vez por Cyrus Levinthal³⁰ en 1968.

2.1 Plegamiento in vitro

La vía de plegamiento de una cadena polipeptídica es complicada y no todos los principios que guían este proceso han sido descubiertos. Sin embargo, diversos estudios han llevado al desarrollo de algunos modelos plausibles. En uno de ellos, el proceso de plegado es visto como jerárquico, en él, estructuras secundarias locales se forman primero; ciertas secuencias de aminoácidos se pliegan rápidamente en hélices α u hojas β , esto es seguido por interacciones de largo

alcance entre elementos de estructura secundaria. El proceso continúa hasta que el polipéptido completo se encuentra plegado (Fig. 10).

Figura 10. Ruta de plegado simulada. Simulación computacional de la ruta de plegado de un segmento de la villina³¹.

En un modelo alternativo, el plegado es iniciado por un colapso espontaneo de polipéptido en un estado compacto, mediado por interacciones hidrofóbicas entre residuos no polares. El estado resultante de este "colapso hidrofóbico" puede tener un gran contenido de estructura secundaria, pero muchas cadenas laterales de aminoácidos no se encuentran completamente fijas, este estado es conocido comúnmente como glóbulo fundido. Dentro de este glóbulo fundido se establecen interacciones de largo alcance entre los residuos, permitiendo la estabilización de la estructura terciaria y finalmente la de la estructura secundaria.

La mayoría de las proteínas probablemente se pliegan por un proceso que incorpora elementos de ambos modelos. En lugar de seguir una sola vía, una población de péptidos podría tomar una variedad de rutas hacia el mismo destino (nucleación o condensación), con el número de especies parcialmente plegadas distintas disminuyendo a medida que el plegado alcanza su terminación. Para muchas proteínas, especialmente aquellas con menos de 100 residuos, este modelo se ajusta bien con las evidencias experimentales^{32–34}.

Termodinámicamente el proceso de plegado puede ser visto como una especie de embudo de energía libre (Fig. 11). Los estados desplegados están caracterizados por un alto grado de entropía conformacional y energía libre relativamente alta. A medida que el plegado avanza el estrechamiento del embudo representa un decremento en el número de especies conformacionales presentes. Las pequeñas depresiones a lo largo del embudo de energía libre representan intermediarios semiestables que pueden alentar brevemente el proceso de plegado. En el fondo del embudo, un ensamble de intermediarios de plegado ha sido reducido a una única conformación nativa (o a una de un conjunto pequeño de conformaciones nativas)^{35,36}.

Figura 11. Termodinámica del proceso de plegado representada como un embudo de energía libre. A medida que el proceso de plegado avanza se reduce tanto el número de estados presentes (entropía) como la energía libre e incrementa la proporción de proteína en la conformación nativa.

2.2 Plegamiento <u>in vivo</u>

En una célula, la formación de intermediarios de plegado se dificulta debido a la gran cantidad de moléculas presentes en el medio, lo cual promueve las interacciones entre distintas macromoléculas que conllevarían a la formación de agregados entre ellas. Adicionalmente, el proceso de traducción de una proteína incrementa por sí mismo la probabilidad de un mal plegamiento debido a que cadenas polipeptídicas incompletas no pueden formar los intermediarios estables para alcanzar la conformación nativa de la proteína completa, por lo tanto, sería necesario que se sintetizara toda la proteína, o al menos una subunidad completa, antes de empezar el proceso de plegado. Es en este punto que intervienen las chaperonas moleculares, las cuales son proteínas que interactúan de manera paralela al proceso de traducción de una proteína con la finalidad de inhibir su plegamiento prematuro. Cabe resaltar que este tipo de proteínas no interactúan aportando información al proceso de plegado, simplemente contribuyen a la optimización de dicho proceso. Por otro lado, algunas proteínas poseen bajas eficiencias intrínsecas de plegado y esencialmente no pueden plegarse en ausencia de chaperonas debido a que, sin ayuda de estas, no pueden alcanzar la energía suficiente para modificar una conformación cinéticamente estable^{35,36}.

3. Determinación experimental de estructuras de proteínas

La manera más común de representar a una proteína es mediante el uso de listones planos a pesar de que esta no sea una representación totalmente fiel a su estructura. Esta y todas las formas de representar una proteína parten de archivos que contienen las coordenadas en tres dimensiones de cada átomo en la molécula. Estas coordenadas son obtenidas experimentalmente y almacenadas para su uso en el "Protein Data Bank" con la designación de archivo "pdb" (Fig. 12). Estas coordenadas atómicas pueden posteriormente ser representadas de distintas maneras^{3,4}.

HEADER	H	TOROL	SE (ZY	OGEN	*A					1	16-JJ	N-87	6	20GA		2CGA	3 4
SOURCE	BO	VINE	(BOS	STAU	RUS)	PAN	CREAL	s								2CGA	5
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	0	WANG,	W.BOL	E, R.1	HUBE	ĸ										2064	
JENL JENL		AUTH	D.W BOV	ANG,	N. BOO	DE, R	HUB	ER DGEN	•A.	X-RJ	AY CE	YET	LS	TRUC	TURE	2CGA	8
>>>>>>																	
REMARK	1															2CGA	14
REMARK	1 1	REFERI	INCE 1													2CGA	15
>>>>>>	1								-				_		-		-
SEQRES	1 1	A 245	CYS	GLY	VAL	PRO	ALA	ILE	GLN	PRO	VAL	LEU	SER	GLY	LEU	2CGA	71
SEGRES	2 .	A 245	SER	ARG	ILE	VAL	AEN	GLY	GLU	GLU	ALA	VAL	PRO	GLY	SER	2CGA	72
SEQRES	3 4	A 245	TRE	PRO	TRP	GLN	VAL	SER	LIKU	GLA	ASP	LIS	THE	GLI	PHE	2CLA	13
>>>>>>																	
SEGRES	17 1	8 245	LEU	VAL	CLY	ILE	VAL	SER	TRP	GLY	SER	SER	THR	CYS	SER	2CGA	106
SEGRES	18 1	8 245	THE	SER	THE	PRO	GLY	VAL	TYR	ALA	ARC	VAL	THR	ALA	LEU	2CGA	107
SEQRES	19 1	8 245	VAL	ASN	TRP	VAL	GLN	GLN	THR	LEU	ALA	ALA	ASN			2CGA	108
>>>>>>																	
CRYST1	59	. 300	77.1	00	110.1	100	90.0	00	90.00	9 90	0.00	P 21	21	21	B	2CGA	113
ORIGXI		1.000	0000	0.000	0000	0.0	00000	00		0.0	00000)				2CGA	114
ORIGX2		0.000	0000	1.000	0000	0.0	00000	00		0.0	00000)				2CGA	115
ORIGX3		0.000	0000	0.000	0000	1.0	0000	00		0.0	00000)				2CGA	116
SCALEI		.016	863	0.000	0000	0.0	00000	00		0.0	00000					2CGA	117
SCALE2		0.000	0000	.01:	2970	0.0	0000	00		0.0	00000	2				2CGA	118
SCALE3		0.000	0000	0.000	0000		00901	83		0.0	00000					2CGA	119
MIRIAL	-	. 98	700	.15	5000		11//	00		• • •	21700					ZCLA	120
MTRIX2	1	.022	2800	03	1400		9992	00		115.4	61600	2	1			2CGA	121
ATOM	1	N. 154	CVE A	. 70	/400	-10	CEC	EE	970	41	808		1 1	1 66		20025	122
ATCAL	-	-	CID P			-10	.020	55	340		343			1.00		20078	123
ATOM	-	~	CYE A	;		-10	076	50	122	42	421	10	0 1	1.00		2002	125
ATCM		õ	CVC A			-10	333	50	097	43	440			1 66		20075	126
ATOM	-	CB	CYS A			-10	807	57	718	40	066	1.0	0 1	1 66		2008	127
>>>>>>	-	-															
>>>>>>>																	
ATOM	744	N	ASN A	100		-13	152	77	.724	22	.378	1.0	0	8.65		2CGA	866
ATOM	745	CA	ASN A	100		-14	.213	76	.940	23	.011	1.0	0	8.65		2CGA	867
ATOM	746	C	ASN A	100		-14	.134	75	.441	22	.693	1.0	0	8.65		2CGA	868
ATOM	747	0	ASN A	100		-13	.706	75	.062	21	.563	1.0	0	8.65		2CGA	869
>>>>>>																	

ATOM	1461	N	VAL A	200		-9	.212	70	.793	39	.923	1.0	0	9.30		2CGA	1583
ATOM	1462	CA	VAL A	200		-9	.875	69	.689	40	.639	1.0	0	9.30		2CGA	1584
ATOM	1463	C	VAL A	200		-10	.634	70	.148	41	.868	1.0	0	9.30		2CGA	1585
ATOM	1464	0	VAL A	200		-10	.151	70	.985	42	.657	1.0	0	9.30		2CGA	1586

HETATM	3601	0	HOH	601		-20	.008	66	.224	26	.138	1.0	0 2	6.69		2CGA	3723
HETATM	3602	0	HOH	602		-21	. 333	66	.182	28	.756	1.0	0 1	8.10		2CGA	3724
HETATM	3603	0	HOH	603		-18	.000	68	.022	22	.774	1.0	0 3	4.03		2CCA	3725
MASTER		60	3	0	0		0	0	0	9	3927		2	0	38	2CGA	A 6
HETATM HETATM HETATM MASTER	3601 3602 3603	000	нон нон нон з	601 602 603 0	0	-20 -21 -18	.008 .333 .000	66 68 0	.224 .182 .022 0	26 28 22 9	.138 .756 .774 .3927	1.0	0 1 1 0 3 2	6.69 8.10 4.03 0	38	200A 200A 200A 200A	3723 3724 3725 A 6

Figura 12. Versión resumida de un archivo pdb representativo (2CGA). Los símbolos >>>>> indican ausencia de varios renglones semejantes³⁷

3.1 Difracción de rayos X

La primera estructura de una proteína, obtenida con resolución atómica, fue la de la mioglobina de cachalote (*Physeter macrocephalus*) en 1957³⁸. John Kendrew y Max Perutz recibieron el premio Nobel de química en 1962, tanto por esta contribución como por la primera estructura de la hemoglobina humana, publicada en 1960. La técnica de difracción de rayos X fue usada en la determinación de estas estructuras y actualmente sigue siendo la técnica más comúnmente usada para resolver nuevas estructuras de proteínas.

Dos grandes problemas que enfrentaron los primeros biólogos estructurales fueron: el cómo resolver estructuras de objetos separados entre sí por la distancia de un enlace covalente (alrededor de 1.5 Å) y cómo prevenir el promediado rotacional de la molécula durante la recolección de datos. El primer problema recae en el hecho de que la longitud de onda de la radiación usada para resolver objetos no puede ser mucho mayor que el tamaño del objeto en cuestión. Por lo tanto, para resolver objetos del orden de 1.5 Å, se necesita radiación con una longitud de onda cercana o menor a este valor. Los rayos X, que son fáciles de producir y relativamente inertes, cubren esta necesidad.

Cuando las moléculas se encuentran en disolución, existen en todas las formas de rotación y traslación posibles en su contenedor. Si esas moléculas fueran expuestas a rayos X, la imagen tomada estaría promediada rotacionalmente, perdiendo información de alta resolución acerca de las posiciones relativas de cada átomo. Para obtener una mejor imagen, las moléculas deben estar fijas en una o en un número pequeño de conformaciones, este requerimiento se cumple al utilizar monocristales en los estudios de difracción de rayos X. Las moléculas en un cristal están dispuestas en un arreglo fijo, regular y repetitivo que facilita la obtención de una imagen con resolución atómica.

En un experimento de difracción de rayos X, los patrones de dispersión de estos rayos, provenientes de un cristal de proteína, son comparados con cálculos de los

patrones que se esperarían para la proteína dentro de la misma red cristalina, una buena correlación entre los patrones de dispersión calculados y observados indica una estructura acertada. Una vez que se tiene disponible una muestra pura con una alta concentración de proteína, el límite para la capacidad de resolver estructuras macromoleculares por cristalografía de rayos X viene dado por la calidad de difracción de los cristales y no por el tamaño o la complejidad de la molécula.

3.2 Microscopía electrónica

Las proteínas que se encuentran naturalmente dentro de membranas biológicas son especialmente difíciles de cristalizar, ya que involucran la disolución de la membrana con detergentes, así como el aislamiento y cristalización del complejo detergente-proteína. Sin embargo, estás proteínas pueden formar arreglos bidimensionales dentro de la membrana, con lo cual pueden ser analizadas mediante el uso de microscopía electrónica. Dado que las moléculas en este arreglo bidimensional tienen la misma orientación, es posible calcular una "imagen promedio" de una molécula de proteína. Desafortunadamente, la resolución de dichas imágenes en la mayoría de los casos está limitada a entre 10 y 20 Å, la cual no es suficiente para determinar el esqueleto de la proteína.

Durante las últimas dos décadas se han realizado grandes avances en el uso de esta técnica, como lo es el desarrollo de la criomicroscopía electrónica, una técnica en la que la muestra es estudiada a temperaturas criogénicas, empleando nitrógeno líquido para congelar rápidamente las proteínas en disolución. Esta nueva técnica ha avanzado a tal punto que han sido determinadas varias estructuras de ribosomas de diferentes organismos, incluido el humano, con una resolución cercana a los 3 Å^{39,40}.

3.3 Espectroscopia de Resonancia Magnética Nuclear

Otra técnica adecuada para la determinación de estructuras de macromoléculas a nivel atómico es la espectroscopia de resonancia magnética nuclear (RMN). Esta se basa en el hecho de que los núcleos atómicos con un número impar de nucleones (¹H, ¹³C, ³¹P), o un número impar tanto de protones como de neutrones (¹⁴N) poseen un momento angular llamado espín. Este espín de un cuerpo cargado positivamente resulta en la generación de un pequeño campo magnético que puede ser medido por un espectrómetro de RMN.

Dado que el campo magnético de los núcleos es afectado por los electrones que rodean a los átomos, la espectroscopia de RMN puede medir el ambiente molecular único de cada núcleo, obteniendo así, información de los núcleos cercanos entre sí y así generar un conjunto de restricciones de distancia que existen entre los núcleos de la molécula. Resolver una estructura mediante RMN involucra la manipulación computacional de las conformaciones de un conjunto de átomos enlazados hasta encontrar una que se ajuste a los contactos observados. Dentro de las ventajas de la resonancia magnética nuclear para la resolución de estructuras moleculares está la capacidad de trabajar con una muestra en disolución en lugar de con una en estado cristalino, sin embargo, existe un límite de aproximadamente 50 kDa para el tamaño molecular que puede ser estudiado con resolución atómica.

4. Predicción de estructura de proteínas

Los primeros trabajos en el campo de la predicción de estructura terciaria de proteínas estuvieron enfocados en métodos basados en principios físicos, como un intento de entender el proceso de plegado^{41,42}. La idea básica del plegado computacional de una proteína es la de encontrar la estructura de menor energía libre para la secuencia de aminoácidos dada, basándose en la hipótesis termodinámica formulada por Anfinsen⁵, a través de su búsqueda en el exageradamente largo espacio conformacional de la proteína. Aunque esto representa la meta final del modelado de la estructura de una proteína, actualmente es una meta lejana, debido a lo enorme y complejo del espacio conformacional de una proteína, en comparación con los recursos computacionales disponibles actualmente.

Una alternativa es la de predecir únicamente la estructura final del proceso de plegado de una proteína, la cual resulta ser más atractiva ya que en la práctica el problema se vuelve más sencillo de resolver, además de que al enfocarse únicamente en la estructura estática final de un proceso de plegado complejo, se permite tomar ventaja de la gran cantidad de información disponible en las estructuras de proteínas previamente resueltas, lo que convierte al problema de la predicción de estructura de proteínas en un paradigma de predicción de estructura basado en plantillas⁴³.

Los métodos de predicción de estructura basados en plantillas, que van desde los métodos *de novo*, que usan plantillas estructurales relativamente pequeñas, hasta los métodos de modelado por homología, que usan una proteína completa como plantilla, han dado grandes pasos en la predicción de estructuras de proteínas en los últimos años y han sido empleados para realizar muchas predicciones de estructuras aún antes de que los datos experimentales estuvieran disponibles; posteriormente se demostró que estos métodos podían ser usados como guías útiles en el diseño experimental de estructuras de proteínas⁴⁴.

De manera general, las técnicas empleadas en la predicción de estructura de proteínas pueden ser clasificadas en tres categorías: métodos *ab initio*, hilvanado (threading) o reconocimiento del plegado y modelado por homología^{45,46}.

Los métodos *ab initio* predicen la estructura de una proteína sin el uso de ningún tipo de información estructural de proteínas previamente resueltas, en su lugar, se basan en los primeros principios de la física. El modelado por homología se basa en el alineamiento de secuencias entre la proteína en cuestión y una proteína plantilla, cuya estructura es conocida; por esta razón, la precisión de la predicción en esta clase de métodos depende en gran medida de la similitud en secuencia entre las dos proteínas. El hilvanado de proteínas representa una clase más general de técnicas de predicción de estructura que el modelado por homología, ya que usa tanto la similitud en secuencia como el ajuste estructural entre la proteína en cuestión y la proteína plantilla.

El modelado por homología ha sido ampliamente usado para una predicción de estructura con un alto nivel de detalle (todos los átomos pesados, por ejemplo) cuando la proteína problema tiene un homólogo cercano en el Protein Data Bank⁴⁷, mientras que el hilvanado de proteínas es usado frecuentemente para la predicción de la estructura de la cadena principal de una proteína cuando esta presenta remotos homólogos estructurales en el PDB. Los límites entre estas tres clases de técnicas se han vuelto difusos debido a que se han comenzado a integrar sus fortalezas para hacer de los métodos de predicción de estructura de proteínas más efectivos y con una aplicación más general⁴⁸.

4.1 Métodos ab initio

Los métodos de modelado ab initio tratan de construir modelos proteicos desde cero, basándose esencialmente en principios. De acuerdo a la hipótesis termodinámica, la estructura nativa de una proteína depende solo de su secuencia de aminoácidos, por lo que en principio debería ser posible predecir la estructura de una proteína sobre la base de sus propiedades fisicoquímicas. Existen bastantes procedimientos posibles que, o bien intentan imitar el plegado de proteínas, o bien aplican algún método estocástico para buscar posibles soluciones (por ejemplo, la optimización global de una función de energía apropiada). Un problema importante enfrentado por los métodos ab initio radica en que las cadenas polipeptídicas tienen cantidades astronómicas de conformaciones no nativas de baja energía, por lo que por el momento es bastante difícil, aún con las computadoras más rápidas disponibles, determinar la conformación polipeptídica de menor energía. No obstante, muchos algoritmos intensivos computarizados han conseguido buenos resultados en la predicción de la estructura de péptidos pequeños y un éxito esporádico en la predicción de los plegamientos de polipéptidos más grandes⁴⁹⁻⁵². Entre estos métodos están los algoritmos bioinspirados como la colonia de hormigas y el vuelo en enjambre, y los evolutivos como los genéticos. En consecuencia, la capacidad para predecir la estructura nativa de un polipéptido a partir de su secuencia aún es uno de los objetivos no alcanzados más importantes de la bioquímica.

4.2 Métodos basados en plantillas.

Las premisas básicas para la predicción de estructuras de proteínas basada en plantillas son tres:

- 1) Secuencias de aminoácidos similares adoptan estructuras similares⁵³.
- 2) Muchas secuencias no relacionadas se pliegan de manera similar⁵⁴.
- Existe solamente un pequeño número de plegados estructurales únicos, en comparación con el número de proteínas existentes en la naturaleza⁵⁵.

La primera observación es la base del modelado por homología, mientras que las dos siguientes son los fundamentos del hilvanado o reconocimiento del plegado. El primer modelo estructural obtenido utilizando la aproximación basada en plantillas fue construido en 1969 por Browne y colaboradores. El desarrollo computacional posterior ha provisto de herramientas importantes para el modelado comparativo de estructuras de proteínas⁵⁶ y desde el reporte de este primer modelo, la estructura de muchas proteínas importantes ha sido modelada mediante este tipo de métodos^{57–62}.

El desarrollo de la aproximación por hilvanado fue introducido por Jones y colaboradores en 1992⁶³. Este tipo de métodos estima teóricamente el número de plegados únicos presentes en la naturaleza basados en el hecho de que, en los últimos años, menos del 10% de estructuras depositadas en el PDB presentan nuevos tipos de plegado⁶⁴. Se ha encontrado también que muchas proteínas con secuencias no relacionadas se pliegan de manera similar y que especialmente algunos plegados parecen ser muy frecuentes, aún en proteínas con ninguna aparente similitud en secuencia^{65–68}. Con base en estas observaciones, las técnicas de hilvanado de proteínas han sido empleadas para resolver dos preguntas clave: ¿Qué plegado tomará una proteína dada, de los plegados conocidos? y ¿Dónde deben colocarse cada uno de los residuos de la proteína dada, en el plegado identificado?

Los métodos de predicción de estructura basados en plantillas generalmente consisten de cinco etapas:

- La identificación de plantillas estructurales a través de métodos basados tanto en estructura como en secuencia.
- 2) El alineamiento de la secuencia problema con la plantilla identificada.
- 3) La construcción del modelo, basándose en el alineamiento previo.
- 4) La evaluación del modelo.
- 5) El refinamiento del modelo.
La idea básica del hilvanado de proteínas es la de "enhebrar" los aminoácidos de una proteína dada, siguiendo su orden secuencial y permitiendo tanto inserciones como huecos, en las posiciones estructurales de una proteína plantilla, de una manera óptima, medida por una función de evaluación. Este procedimiento es repetido para cada una de las plantillas en una base de datos de estructuras de proteínas. La calidad del alineamiento es usualmente determinada empleando términos de energía, basados ya sea en parámetros estadísticos o en principios físicos.

4.3 Potenciales estadísticos

A diferencia de la energía física usada en los estudios de plegado de proteínas^{8,9}, las funciones empleadas para evaluar un alineamiento particular de estructurasecuencia en el hilvanado de proteínas están basadas principalmente en parámetros estadísticos, también conocidos como basados en el conocimiento. La idea de utilizar potenciales basados en el conocimiento reside en el hecho de que las estructuras determinadas experimentalmente contienen una gran cantidad de información acerca de las fuerzas que estabilizan la estructura de las proteínas. El análisis estadístico de estructuras de proteínas puede, en potencia, capturar las reglas subyacentes que gobiernan la estabilidad estructural de las proteínas y puede ser realizado confiando, de manera implícita o explícita en el principio de Boltzmann: estados frecuentemente observados corresponden a estados de baja energía del sistema⁶⁹.

La idea de generar potenciales basados en el conocimiento a partir de estructuras de proteínas conocidas fue previa a sus primeras aplicaciones en el hilvanado de proteínas. Por ejemplo, Tanaka y Scheraga¹¹ reportaron en 1976 un estudio acerca de los potenciales de interacción de mediano y largo alcance, así como su aplicación en la predicción de estructuras de proteínas; el cual fue seguido por numerosos estudios similares^{10,42,70,71}.

Las primeras aproximaciones de este tipo de potenciales generalmente ignoraban las similitudes en secuencia entre la secuencia problema y la proteína plantilla⁷², en su lugar, consideraban únicamente las preferencias de cada aminoácido en la proteína problema por un ambiente estructural particular. El término de energía en este tipo de potenciales puede ser calculado a partir de una base de datos de estructuras de proteínas utilizando la estadística de Boltzmann. La idea básica puede ser descrita de la siguiente forma: si un aminoácido es observado frecuentemente en un ambiente estructural particular, esto sugiere que ese ambiente es favorable para dicho aminoácido. Este término de energía puede ser escrito de la siguiente manera:

$$E_{(i,j)} = -\ln\left(\frac{f^{o}_{i,j}}{f^{E}_{i,j}}\right)$$
(1)

Donde $f^{O}_{i,j}$ es la frecuencia observada del aminoácido i en el ambiente estructural j, mientras que $f^{E}_{i,j}$ representa la frecuencia esperada del aminoácido i en el ambiente estructural j.

Otro tipo de función de energía es conocido como energía de pares de contactos, la cual describe la interacción entre dos residuos. En ella se mide la preferencia de que dos tipos de aminoácidos se encuentren cercanos entre sí. Jones y colaboradores aplicaron la función de energía desarrollada por Sippl^{10,63} en su estudio de reconocimiento del plegado. La idea básica de esta función de energía proviene de la mecánica estadística y puede ser escrita como sigue:

$$E_{(i,j)} = -kT \ln \left(\frac{f^o_{i,j}}{f^r_{i,j}} \right)$$
(2)

Donde k y T son la constante de Boltzmann y la temperatura absoluta, respectivamente. $f^{o}_{i,j}$ es la frecuencia observada de los residuos i y j a una distancia dada, donde la distancia es medida entre los carbonos β de ambos

residuos; y $f_{i,j}^r$ es la frecuencia con la que se presentan los residuos i y j a una distancia dada en un estado de referencia. Existen dos formas de calcular la energía de pares de contactos, dependientes de distancia e independientes de ella, observando que la primera forma provee de mejores resultados. Uno de los mayores problemas en este tipo de funciones es el de establecer un estado de referencia adecuado para estimar $f_{i,j}^r$, lo que ha dado origen a una gran cantidad de potenciales de este estilo^{10,12–15}.

Adicionalmente a estos potenciales con formas simples, existen funciones más sofisticadas que incluyen términos distintos a los descritos previamente, los cuales han mostrado una mejora en comparación con los métodos más simples, pero dada su complejidad, han vuelto más complicada su aplicación práctica.

La calidad de los potenciales basados en el conocimiento normalmente recae en su capacidad de reconocer la conformación nativa de una proteína dentro de un grupo de señuelos con conformaciones similares. Para medir la similitud de un señuelo dado se compara la posición de los átomos en el señuelo con la posición de los átomos en la estructura nativa. El método más empleado es el de medir la desviación cuadrática media entre las dos estructuras, el cual se calcula con base a los carbonos α de la cadena principal, aunque el uso de todos los átomos es más útil cuando se comparan modelos de muy alta calidad, es decir, con pequeñas diferencias entre sí. No es suficiente con identificar correctamente la estructura nativa de una proteína dentro de un conjunto de señuelos, para darle significancia estadística a la evaluación se recurre a métodos como el z-score, el cual determina la energía de la estructura nativa en unidades de desviación estándar relativas al promedio de energía de los señuelos⁷³. Es decir:

$$z = \frac{E - \bar{E}}{\sigma}$$
(3)

Donde \overline{E} y σ son el promedio y la desviación estándar de la distribución de energía resultante del conjunto de señuelos. Esta aproximación es ampliamente usada y efectiva hasta cierto punto, ya que supone una distribución normal para la energía de los señuelos. En la literatura existe una gran variedad de grupos de señuelos empleados para este fin^{74,75}.

III. TRABAJOS RELACIONADOS

El uso de potenciales estadísticos como una herramienta para la resolución del problema de la predicción de la estructura de una proteína fue iniciado por Tanaka y Scheraga¹¹. A partir de ese momento, han surgido una gran cantidad de aproximaciones similares^{12–15} que han sido empleadas en diversas aplicaciones, tales como la caracterización de interacciones proteína-proteína^{76–80} o proteína-ácido nucleico^{81,82}. Dentro de todos ellos y debido a la naturaleza del presente trabajo, cabe resaltar aquellos en los cuales se emplea la descripción de los puentes de hidrógeno intramoleculares.

Tal es el caso del potencial desarrollado en 2003 por Kortemme y colaboradores⁷⁶, en el cual emplean la descripción de cuatro parametros geometricos para describir los puentes de hidrógeno encontrados en proteínas, estos son: la distancia donadoraceptor, los angulos formados tanto en el átomo aceptor como en el hidrógeno involucrado en la formación del puente y el ángulo diedro formado por la rotación del enlace entre el átomo aceptor y su átomo base (**Fig. 13**). Se definió un puente de hidrógeno, como aquel en el que un átomo de hidrógeno polar estuviera a una distancia entre 1.4 y 2.6 Å de un átomo aceptor.

Figura 13. Representación esquemática de los parámetros usados por Kortemme y colaboradores⁷⁶ para describir los puentes de hidrógeno. δ_{HA} , distancia hidrógeno-aceptor; Ψ , ángulo al átomo aceptor; Θ , ángulo al átomo de hidrógeno y X, ángulo diedro en el enlace aceptor-hidrógeno.

En este caso, además de incluir los parámetros mencionados, se clasificaba los puentes de hidrógeno en: cadena principal-cadena principal, cadena lateral-cadena lateral; que a su vez eran distinguidos, en el primer caso de acuerdo a la estructura secundaria a la que pertenecían y en el segundo caso debido a la hibridación del átomo aceptor. Este potencial es acoplado a los cálculos de energía de los campos de fuerza, para sustituir los términos usados en el cálculo de la energía del puente de hidrógeno, mostrando una notable mejoría en el desempeño de los campos de fuerza.

Potenciales como el de Sánchez y colaboradores, basado en Beta-Complex⁸³, que usa la teoría de Beta-Shape y la cuasi-triangulación para la descripción de la estructura de las proteínas, han demostrado que incluso las descripciones geométricas simples del puente de hidrógeno formado por la cadena principal de proteínas (distancia hidrógeno-aceptor y ángulo al aceptor) proveen de mejoras significativas en el desempeño de potenciales complejos.

Por otro lado, los campos de fuerza utilizan seis parámetros geométricos de enlace para describir por completo las interacciones en las que participa un átomo dado, aunque los puentes de hidrógeno raramente son tomados en cuenta en esta descripción, ya que en la mayoría de los casos son tratados ya sea como una interacción coulómbica, una interacción de tipo van der Waals o una mezcla de ambas^{8,9}, que a pesar de ser una descripción formal de este tipo de interacciones, se ha visto superada por descripciones en forma de potenciales estadísticos⁷⁶.

Por estas razones el presente trabajo explora la idea de que el estudio de los seis parámetros geométricos que describen completamente las interacciones, en las que participan los átomos de hidrógeno formadores de puente en la cadena principal de proteínas, pueda, por sí solo, ser usado como un potencial estadístico que permita identificar la estructura nativa de una proteína dentro de un conjunto de señuelos.

IV. DESCRIPCIÓN DEL PUENTE DE HIDRÓGENO

El objetivo del presente trabajo es el desarrollo de un potencial estadístico, para lo cual es conveniente que la cantidad de datos a analizar sea lo más grande posible. Dentro de los puentes de hidrógeno intramoleculares presentes en proteínas resulta evidente que los más abundantes son aquellos formados por la cadena principal de las mismas. Aunque se podría pensar que al considerar sólo la cadena principal de estas se está obteniendo información únicamente acerca de su estructura secundaria, es necesario tomar en cuenta el hecho de que estos datos son tomados de estructuras experimentales y que bajo cualquiera de los modelos de plegamiento aceptados se puede establecer una relación entre la estructura secundaria y terciaria de una proteína, ya sea que la primera dicté la segunda o viceversa, por ello es posible suponer que con el análisis de los puentes de hidrógeno formados por la cadena principal se estaría obteniendo, de forma indirecta, información acerca de la estructura terciaria de las proteínas.

Por otra parte, cabe mencionar que el presente trabajo no busca estimar de manera precisa la energía de las interacciones por puente de hidrógeno presentes en proteínas, sino describir el comportamiento de dicha energía con respecto a distintos parámetros geométricos y utilizar esta descripción en la identificación de estructuras correctamente plegadas. Por esta razón no se emplean términos de tipo electrostático, Van der Waals o el efecto del disolvente en la descripción de los puentes de hidrógeno.

De esta manera, se establecieron seis parámetros geométricos para estudiar los puentes de hidrógeno formados por la cadena principal de proteínas, estos son: (a) la distancia hidrógeno-oxígeno, (b) el ángulo al átomo de hidrógeno, formado por el átomo de nitrógeno donador y el átomo de oxígeno aceptor, (c) el ángulo al átomo de oxígeno, formado por el átomo de hidrógeno y el átomo de carbono carbonílico, (d) el ángulo diedro que corresponde a la rotación del enlace carbono-oxígeno, (e) el ángulo diedro que corresponde a la rotación del puente de hidrógeno y (f) el ángulo diedro que corresponde a la rotación del enlace hidrógeno y (f) el ángulo diedro que corresponde a la rotación del enlace hidrógeno y (f) el ángulo diedro que corresponde a la rotación del enlace hidrógeno y (f) el ángulo diedro que corresponde a la rotación del enlace hidrógeno y (f) el

Para la medición de los parámetros establecidos se tiene contemplada la presencia explícita de los átomos de hidrógeno en las estructuras a estudiar, lo cual hace más sencilla la definición de los puentes de hidrógeno en comparación con descripciones que no incluyen estos átomos explícitamente, en las cuáles es necesario tomar en cuenta la orientación relativa tanto de los átomos donador y aceptor como de sus respectivas bases⁸⁴.

Bajo el nivel de descripción utilizado en este trabajo, se considera como un puente de hidrógeno a cualquier caso en el que un átomo de hidrógeno, en un grupo NH, estuviera a una distancia menor a 2.6 Å de un átomo de oxígeno, en un grupo CO.

Figura 14. Representación esquemática de los parámetros usados para describir los puentes de hidrógeno. (a) la distancia hidrógeno-oxígeno, (b) el ángulo al átomo de hidrógeno, (c) el ángulo al átomo de oxígeno (d) el ángulo diedro que corresponde a la rotación del enlace carbono-oxígeno, (e) el ángulo diedro que corresponde a la rotación del puente de hidrógeno y (f) el ángulo diedro que corresponde a la rotación del enlace hidrógeno y (f) el ángulo diedro que corresponde a la rotación del enlace hidrógeno.

Una vez establecidos estos parámetros, se desarrolló un programa en lenguaje Python (Fig. 1 – Anexo) que permitiera medirlos adecuadamente.

V. SELECCIÓN DE LA MUESTRA

Con la finalidad de obtener la muestra con la mayor cantidad de hidrógenos polares incluidos explícitamente, evitar la presencia de información proveniente de interacciones debidas a la estructura cuaternaria o a residuos de aminoácidos poco comunes y obtener una muestra lo más heterogénea posible, se seleccionaron y obtuvieron del Protein Data Bank estructuras de proteínas que cumplieran con las siguientes características: monoméricas, sin residuos modificados y con identidad de secuencia no mayor a 30%, para la posterior formación de los siguientes grupos:

- 73 estructuras resueltas por difracción de rayos X con una resolución de 1.0
 Å o mejor (ERX) (Tabla 1 Anexo).
- II. 4020 conjuntos de estructuras resueltas por resonancia magnética nuclear (ERMN), utilizando el primer confórmero reportado en ellos (Tabla 2 -Anexo).

Se midieron todos los puentes de hidrógeno presentes en cada una de las muestras y se obtuvieron, para su comparación, las distribuciones de frecuencias (normalizadas) de los seis parámetros geométricos establecidos **(Fig. 15)**; estableciendo para su creación intervalos de 0.05 Å para (a), de 5 grados para (b) y (c) y de 10 grados para (d), (e) y (f). Se obtuvieron un total de 9,042 puentes de hidrógeno para el grupo **ERX** y 236,576 para el grupo **ERMN.**

Dado que se desconoce el tipo de distribución de frecuencia que siguen los distintos parámetros analizados, las distribuciones obtenidas pueden ser comparadas utilizando una prueba no paramétrica como el contraste de Kolmogorov-Smirnov⁸⁵, el cual hace uso del siguiente estadístico:

$$D_{n_1,n_2} = \max |F_{n_1}(x) - F_{n_2}(x)|$$

Que se refiere a la mayor diferencia encontrada entre las distribuciones de frecuencia acumulada (*F*) para el parámetro *x* de dos muestras de tamaño n_1 y n_2 , dado un determinado número de intervalos.

Si las dos muestras proceden de la misma población, sus distribuciones de frecuencia acumulada no pueden ser muy distintas, por lo que el contraste es siempre de una cola y se rechaza la hipótesis de igual distribución si el estadístico toma un valor suficientemente grande. El valor crítico (λ) de dicho estadístico, con un nivel de confianza del 95%, puede aproximarse por:

$$\lambda = 1.22 \sqrt{\frac{n_1 + n_2}{n_1 n_2}}$$

Como se puede apreciar, este valor crítico se aproxima a cero a medida que aumenta el tamaño de las muestras, para las distribuciones obtenidas en el presente trabajo, el valor crítico de λ es de 0.0131. Con sólo observar las gráficas se puede notar que existen pares de intervalos cuya diferencia por si sola supera fácilmente este valor, por lo que se puede establecer que las distribuciones de frecuencia son distintas para todos los parámetros estudiados en los grupos **ERX** y **ERMN**, aun sin realizar el contraste.

Con un análisis general de estas distribuciones se puede notar que para todos los parámetros estudiados, el comportamiento es semejante entre los dos grupos, aunque existen diferencias importantes, como las posiciones de las frecuencias máximas y el hecho de que las distribuciones de frecuencias del grupo **ERMN** son, en su mayoría, más dispersas que las del grupo **ERX**, razón por la cual los máximos en frecuencia se encuentran a una altura menor en el grupo **ERMN**. Estas diferencias pueden ser explicadas con base en los métodos empleados para la determinación de las estructuras estudiadas en ambos grupos, ya que las estructuras obtenidas por difracción de rayos X provienen de un cristal, en el cuál el movimiento de las moléculas se encuentra restringido, a diferencia de las estructuras determinadas por resonancia magnética nuclear, en donde las moléculas se encuentran en disolución y tienen una mayor libertad de movimiento.

Figura 15. Distribuciones de frecuencias de los parámetros geométricos estudiados en los puentes de hidrógeno formados por la cadena principal de proteínas, en muestras experimentales. (a) la distancia hidrógeno-oxígeno, (b) el ángulo al átomo de hidrógeno, (c) el ángulo al átomo de oxígeno (d) el ángulo diedro que corresponde a la rotación del enlace carbono-oxígeno, (e) el ángulo diedro que corresponde a la rotación del puente de hidrógeno y (f) el ángulo diedro que corresponde a la rotación del enlace hidrógeno.

Los grupos de confórmeros en los que se prueban los potenciales estadísticos, al igual que la mayoría de las estructuras determinadas por cristalografía de rayos X, presentan el problema de no incluir los hidrógenos polares en las estructuras. Por esta razón, se hace necesario establecer una metodología para añadirlos de tal forma que al utilizar dicha metodología se obtengan datos, para los parámetros geométricos estudiados, que sean congruentes con los obtenidos de estructuras de alta resolución. Para realizar esta comparación y utilizando GROMACS 4.5, se sustituyeron estos hidrógenos en las estructuras de los grupos **ERX** y **ERMN** de acuerdo a los parámetros del campo de fuerza AMBER99SB⁸, se determinó la cantidad de puentes de hidrógeno encontrados y la cantidad de estos que correspondían a los observados en las estructuras obtenidas experimentalmente **(Tabla 2)**, así como las distribuciones de frecuencias (normalizadas) de los seis parámetros geométricos establecidos **(Fig. 16)**.

Tabla 2. Puentes de hidrógeno preservados al sustituir los hidrógenos polares en estructuras experimentales, de acuerdo a los parámetros del campo de fuerza AMBER99SB.

	ERX	ERX + AMBER99SB	ERMN	ERMN + AMBER99SB	
Puentes de hidrógeno totales	9042	9153	236,576	237,718	
Puentes de hidrógeno preservados (%)*	8308	8 (91.88)	232,762 (98.39)		
"Nuevos" puentes de hidrógeno (%)*	845	i (9.23)	4,956	8 (2.08)	

*El porcentaje de puentes de hidrógeno preservados es calculado con respecto al total encontrado en estructuras experimentales mientras que el porcentaje de "nuevos" puentes de hidrógeno se calcula con respecto al total encontrado al remplazar los hidrógenos polares con el campo de fuerza AMBER99SB, por esa razón la suma no es 100.

Al reemplazar los hidrógenos polares de las estructuras experimentales de acuerdo a los parámetros del campo de fuerza AMBER99SB se modifican considerablemente ambos grupos de estructuras, viéndose menos afectados los resultados observados en estructuras resueltas por RMN en comparación con aquellas resueltas por difracción de rayos X.

ERX + AMBER99SB

ERMN + AMBER99SB

0.25

Figura 16. Distribuciones de frecuencias de los parámetros geométricos estudiados en los puentes de hidrógeno formados por la cadena principal de proteínas en los grupos ERX + AMBER99SB y ERMN + AMBER99SB. (a) la distancia hidrógeno-oxígeno, (b) el ángulo al átomo de hidrógeno, (c) el ángulo al átomo de oxígeno (d) el ángulo diedro que corresponde a la rotación del enlace carbono-oxígeno, (e) el ángulo diedro que corresponde a la rotación del enlace carbono-oxígeno, (e) el ángulo diedro que corresponde a la rotación del enlace hidrógeno-oxígeno.

Al comparar los dos grupos de estructuras en los cuales se reemplazaron los hidrógenos polares, se puede apreciar que existen las mismas diferencias que entre los grupos antes de reemplazar los hidrógenos polares: las posiciones de las frecuencias máximas y la mayor dispersión de las distribuciones en el grupo **ERMN**.

Adicionalmente, comparando los grupos antes y después del reemplazo de los hidrógenos polares, aunque se respeta el comportamiento general de las distribuciones, se puede observar un incremento considerable de frecuencia en los siguientes intervalos: (a) arriba de los 2.3 Å, (b) alrededor de los 95 grados, (c) alrededor de los 85 grados, (d) y (e) alrededor de los 20 grados y (f) alrededor de los -30 grados; efecto debido al empleo del campo de fuerza AMBER99SB en el remplazo de los hidrógenos polares.

Aunque con el reemplazo de los hidrógenos polares se obtiene información que no concuerda completamente con los datos experimentales, más del 90% de estos datos pueden ser mapeados en las nuevas distribuciones, razón que los hace factibles de emplear en la construcción de potenciales estadísticos.

VI. POTENCIALES ESTADÍSTICOS H-ERX Y H-ERMN

1. Generación de los potenciales

Con base en las distribuciones de frecuencias presentadas en el capítulo IV para los grupos **ERX + AMBER99SB** y **ERMN + AMBER99SB** y tomando en cuenta los intervalos con una frecuencia relativa superior a 0.0001, se generaron dos potenciales estadísticos: **H-ERX**, **H-ERMN**, respectivamente (**Fig. 2 - Anexo**). Para ello, se calculó la energía asociada a cada intervalo *i*, dado un parámetro geométrico x ($E_{(x,i)}$) de acuerdo con la estadística de Boltzmann:

$$E_{(x,i)} = -\ln\left(\frac{f^{o}_{(x,i)}}{f^{r}_{(x,i)}}\right)$$
(4)

La constante de Boltzmann y la temperatura absoluta no fueron incluidas debido a que únicamente determinan la amplitud de la función de energía, más no su comportamiento; $f^{o}_{(x,i)}$ es la frecuencia relativa del *i-ésimo* intervalo asociado al parámetro *x*, observada en la muestra, y $f^{r}_{(x,i)}$ es la frecuencia relativa del mismo intervalo en una distribución aleatoria, calculada como:

$$f^r_{(x,i)} = \frac{1}{N_x} \tag{5}$$

Donde N_x es el número de intervalos asociados al parámetro geométrico *x*: 52 para (a) y 36 para (b), (c), (d), (e) y (f). A los intervalos con frecuencias relativas menores a 0.0001 se les asoció un valor de energía arbitrario de 6.0, el entero superior inmediato a la energía asociada a este valor de frecuencia relativa (**Tabla 3, Fig. 2** – **Anexo**).

Bajo este esquema, cada parámetro geométrico tiene una contribución independiente a la energía total de un puente de hidrógeno dado (E_{PH}) , por lo que la energía asociada a dicho puente, es la suma de las contribuciones asociadas a cada parámetro, esto es:

$$E_{PH} = E_{(a)} + E_{(b)} + E_{(c)} + E_{(d)} + E_{(e)} + E_{(f)}$$
(6)

Y la energía total asociada a una estructura es la suma de las energías asociadas a cada uno de los puentes de hidrógeno presentes en ella.

2. Pruebas de discriminación de señuelos

La habilidad de identificar la estructura nativa dentro de un conjunto de confórmeros es una de las metas buscadas en el desarrollo de los potenciales estadísticos. Actualmente existen para ello distintos grupos de confórmeros que han sido generados de diversas maneras, como simulaciones computacionales, variación manual de la estructura nativa o modelado por homología. Dentro de esos grupos de señuelos, los casos más realistas y retadores son aquellos generados por simulaciones moleculares, como lo es el caso de los señuelos generados por Zhang y colaboradores mediante I-TASSER (Iterative Threading ASSEmbly Refinement), usado para evaluar los potenciales generados en este trabajo.

El grupo de señuelos mencionado tiene como base la estructura de 56 subunidades de proteínas no homologas, variables tanto en longitud como en contenido de estructura secundaria y resueltas ya sea por difracción de rayos X o por resonancia magnética nuclear (Fig. 17). Tomando como base estas secuencias, se generaron estructuras cuyo esqueleto inicial fue modelado por hilvanado y sometido posteriormente a simulaciones de mecánica molecular a baja temperatura. Para cada una de las secuencias se obtuvieron un total de entre 12500 y 13200 modelos, de entre todas esas estructuras se seleccionaron por agrupamiento iterativo entre 300 y 500 confórmeros para cada grupo, de tal manera que las estructuras resultantes fueran lo más parecidas a la estructura nativa, con una desviación cuadrática promedio menor a los 4 Å^{86,87}.

Estructura nativa resuelta por Resonancia Magnética Nuclear

1gjxA

1gpt_

1ne3A

1tfi_

1of9A

2cr7A

1sro_

55

1mkyA3

1npsA

1thx_

0

1mn8A

1n0uA4

1no5A

1pgx_

1ten_

1tif_

1orgA

C

1tig_

Figura 17. Estructura de las proteínas usadas para generar los conjuntos de señuelos I-TASSER. Representación en forma de listones. Todas las imágenes fueron obtenidas usando el software CCP4MG.

Se evaluó el desempeño de los potenciales **H-ERX** y **H-ERMN** en base a: 1) su capacidad para identificar la estructura nativa en cada uno de los grupos de señuelos y 2) el z-score de la estructura nativa en cada uno de los grupos. La primera acción se realiza asignando un valor de energía a cada estructura de un grupo dado, de manera que al ordenarlas de menor a mayor, la estructura nativa debería quedar en la posición número uno, mientras que la segunda se calcula según la ecuación (3) presentada en el capítulo I. Estos resultados se agruparon de acuerdo al método experimental por el cual fue resuelta la estructura nativa en cada uno de los grupos de señuelos: resonancia magnética nuclear (Tabla 3) y difracción de rayos X (Tabla 4). Los modelos de los señuelos a los cuales se le asoció la energía más baja (cuando no se trataba de la estructura nativa) se pueden consultar en el material anexo a este trabajo (Fig. 3 y 4 – Anexo).

	H-ERX			H-ERMN		
Grupo de señuelos	Posición	Posición	z-score	Posición	Posición	z-score
		relativa			relativa	
1abv_	43	0.0814	-1.2853	12	0.0227	-2.1013
1ah9_	33	0.0645	-1.5596	35	0.0684	-1.6520
1aoy_	1	0.0019	-4.0043	2	0.0038	-2.9730
1dcjA_	1	0.0019	-5.2614	1	0.0019	-7.6265
1egxA	39	0.1102	-1.2748	1	0.0028	-3.9255
1fadA	5	0.0097	-3.5554	2	0.0039	-3.6952
1fo5A	26	0.0760	-1.4488	95	0.2778	-0.6555
1gjxA	233	0.4421	-0.1396	12	0.0228	-2.1401
1gpt_	4	0.0085	-3.1982	1	0.0021	-3.6211
1itpA	1	0.0019	-2.8567	1	0.0019	-4.8793
1kjs_	490	0.8909	1.1085	479	0.8709	0.7887
1kviA	17	0.0308	-2.0903	3	0.0054	-3.2674
1ne3A	36	0.0634	-1.6006	1	0.0018	-4.5844
1o2fB_	1	0.0020	-4.8479	1	0.0020	-4.8322
1of9A	504	0.9902	2.4519	301	0.5914	0.1765
1sro_	1	0.0019	-3.0299	1	0.0019	-3.6073
1tfi_	4	0.0117	-2.5449	22	0.0645	-1.6420
2cr7A	30	0.0554	-1.5856	115	0.2122	-0.7624
Estructuras nativas identificadas		5 / 18		7 /18		
correctamente		ļ	0710			7710
Estructuras nativas dentro del			9 / 18			12 /18
mejor 5% de estructuras			5710			12/10
z-score promedio			-2 0402			-2 8333
			-2.0402			-2.0333

 Tabla 3. Desempeño de los potenciales H-ERX y H-ERMN en las pruebas de discriminación de señuelos en grupos cuya estructura nativa fue resuelta por resonancia magnética nuclear.

		H-ERX			H-ERMN	
Grupo de señuelos	Posición	Posición	z-score	Posición	Posición	z-score
•		relativa			relativa	
1af7	1	0.0019	-5.6018	2	0.0038	-3.5436
1b4bA	1	0.0022	-6.4786	1	0.0022	-5.4267
1b72A	1	0.0019	-9.3010	1	0.0019	-6.8176
1bm8_	1	0.0030	-12.0942	1	0.0030	-11.3639
1bq9A	1	0.0017	-6.6952	1	0.0017	-6.8938
	1	0.0022	-3.8230	1	0.0022	-5.2810
	1	0.0035	-5.0900	1	0.0035	-4.1002
1cv54	1	0.0032	-7 1602	1	0.0032	-5.5174
1di2A	1	0.0030	-8 1228	1	0.0030	-6 1699
1dtiA	1	0.0035	-3 9099	2	0.0070	-2 6128
1q1cA	1	0.0032	-6.8675	1	0.0032	-6.2216
1gnuA	1	0.0018	-8.2476	1	0.0018	-6.3250
1gyvA	1	0.0029	-7.5302	1	0.0029	-5.0581
1hbkA	1	0.0033	-4.9776	4	0.0132	-2.6813
1jnuA	1	0.0037	-5.4016	1	0.0037	-4.3867
1mkyA3	1	0.0035	-8.6970	1	0.0035	-6.3974
1mla_2	1	0.0030	-8.6300	1	0.0030	-5.7519
1mn8A	1	0.0018	-9.9541	1	0.0018	-7.5005
1n0uA4	1	0.0033	-5.9186	1	0.0033	-4.5964
1no5A	1	0.0023	-6.1184	1	0.0023	-4.4764
	1	0.0021	-8.0121	1	0.0021	-0.2740
1orgA	1	0.0019	-7.0152	1	0.0019	-4.2000
100gA	1	0.0023	-6.4786	3 1	0.0008	-4.0120
1r69	1	0.0010	-9.3010	2	0.0068	-2 7410
1sfp	1	0.0032	-12.0942	3	0.0097	-2.7941
1shfĀ	1	0.0019	-6.6952	1	0.0019	-6.1518
1ten_	1	0.0034	-3.8230	1	0.0034	-4.7436
1thx_	1	0.0033	-5.6906	1	0.0033	-4.1558
1tif_	1	0.0018	-6.1014	1	0.0018	-7.2366
1tig_	1	0.0018	-7.1602	1	0.0018	-4.6349
1vcc_	1	0.0018	-8.1228	1	0.0018	-7.0232
256bA	1	0.0020	-3.9099	2	0.0039	-4.6469
2a0b_	1	0.0035	-6.8675	1	0.0035	-5.4844
2f3nA	1	0.0021	-8.2476	1	0.0021	-6.1481
2pcy_	1	0.0023	-7.5302	1	0.0023	-5.9835
Estructuras nativas id	entificadae	0.0016	-4.9770		0.0018	-4.0040
correctamente	entincauas		38 / 38			32 / 38
Estructuras nativas de	entro del		38/38			38 / 38
mejor 5% de estructur	as		50750			50750
z-score promedio			-7,1266			-5.3839
			1.1200			0.0000

Tabla 4. Desempeño de los potenciales H-ERX y H-ERMN en las pruebas de discriminación de señuelos en grupos cuya estructura nativa fue resuelta por difracción de rayos X.

En los grupos de señuelos donde la estructura nativa fue determinada por resonancia magnética nuclear, ambos potenciales tienen un desempeño pobre, ya que identifican adecuadamente la estructura nativa en menos de la mitad de los casos. Comparando entre ambos potenciales, es claro que, para estos grupos de señuelos, el potencial **H-ERMN** tiene un mejor desempeño que el potencial **H-ERX**, ya que identifica correctamente la estructura nativa en dos grupos más que el potencial **H-ERX**, obtiene un mayor número de predicciones dentro del 5% de mejores estructuras, así como un z-score promedio menor.

En los grupos de señuelos donde la estructura nativa fue determinada por difracción de rayos X, ambos potenciales tienen un buen desempeño, sin embargo, para estos grupos de señuelos, el potencial **H-ERX** es claramente superior, al identificar correctamente la estructura nativa en todos los casos (ocho más que **H-ERMN**) y presentar un z-score promedio menor.

VII. POTENCIALES ESTADÍSTICOS H-ERX* Y H-ERMN*

1. Un nuevo análisis de datos

Con la finalidad de incrementar la cantidad de datos a analizar en el grupo **ERX + AMBER99SB**, se tomó una nueva muestra del PDB, semejante al grupo **ERX** descrito en el capítulo IV y denominado grupo **ERX***. Este grupo fue conformado por 1981 estructuras de proteínas monoméricas sin residuos modificados y con identidad de secuencia no mayor a 30%, resueltas por difracción de rayos X con una resolución de 2.0 Å o mejor (**Tabla 4 - Anexo**). A esta muestra se añadieron los hidrógenos polares de acuerdo a los parámetros del campo de fuerza AMBER99SB y se contabilizaron un total de 274,358 puentes de hidrógeno, cantidad comparable con los 237,718 encontrados en el grupo **ERMN + AMBER99SB**.

Con la finalidad de describir con más detalle los puentes de hidrógeno encontrados en ambos grupos: **ERX* + AMBER99SB** y **ERMN + AMBER99SB**, se decidió clasificarlos de acuerdo a la conectividad residuo aceptor (CO) \rightarrow residuo donador (NH) que presentan con respecto a su secuencia (**Tabla 5**) y se obtuvieron las contribuciones de cada una de estas conectividades en las distribuciones de frecuencias de los seis parámetros geométricos establecidos (**Fig.18**).

Tabla 5. Clasificación de los puentes de hidrógeno hallados en los grupos ERX* + AMBER99SB y ERMN + AMBER99SB de acuerdo a la conectividad residuo aceptor (CO)→ residuo donador (NH) que presentan con respecto a su secuencia.

Conectividad residuo aceptor ➔ residuo donador	Estructura secundaria	Color en	Porcentaje de puentes de hidrógeno		
	que representa	18	ERX* + AMBER99SB	AMBER99SB	
i→i	+++		14.69	14.73	
i → i + 2	Giros y		1.49	7.20	
i → i + 3	Giros β y hélices 310		17.76	20.19	
i → i + 4	Hélices α		35.15	34.36	
i → i + 5	Hélices π		1.59	1.39	
Otras	Hojas β y otros		29.32	22.13	

+++ Este tipo de conectividad representa a los puentes de hidrógeno en los que el grupo CO aceptor y NH donador pertenecen al mismo residuo, aunque no representan ningún tipo de estructura secundaria, son un porcentaje considerable del total y corresponden a una conformación posible.

ERX* + AMBER99SB

ERMN + AMBER99SB

Figura 18. Contribución por conectividad de los puentes de hidrógeno en las distribuciones de frecuencias de los parámetros geométricos estudiados en los grupos ERX* + AMBER99SB y ERMN + AMBER99SB. (a) la distancia hidrógeno-oxígeno, (b) el ángulo al átomo de hidrógeno, (c) el ángulo al átomo de oxígeno (d) el ángulo diedro que corresponde a la rotación del enlace carbono-oxígeno, (e) el ángulo diedro que corresponde a la rotación del nelace carbono-oxígeno, (e) el ángulo diedro que corresponde a la rotación del nelace carbono-oxígeno, (e) el ángulo diedro que corresponde a la rotación del nelace hidrógeno y (f) el ángulo diedro que corresponde a la rotación del nelace hidrógeno. Código de colores según tabla 5.

Cada una de las conectividades presenta una prevalencia distinta en ambos grupos, se puede destacar el hecho de que estructuras cerradas, como los giros y las hélices 3_{10} , son considerablemente más frecuentes en el grupo **ERMN + AMBER99SB**, de manera opuesta a estructuras más libres como las hojas β , las cuales son más frecuentes en el grupo **ERX* + AMBER99SB**, lo cual puede ser una consecuencia directa del muestreo realizado o de las condiciones experimentales en las que se determinaron las estructuras, ya que la mayor libertad de movimiento que tienen las moléculas en solución, permite observar de mejor forma estados que energéticamente pudieran no ser tan favorables, como las estructuras cerradas.

Por otra parte, el análisis de las contribuciones de cada una de las conectividades en las distribuciones de frecuencia de los parámetros geométricos estudiados muestra ligeras diferencias en cuanto a la altura y posiciones de las frecuencias máximas para cada conectividad, por lo que cada una de estas conectividades debería tener una contribución diferente en la estabilización de la estructura nativa de una proteína. Además, el incremento de frecuencia observado en los siguientes intervalos: (a) arriba de los 2.3 Á, (b) alrededor de los 95 grados, (c) alrededor de los 85 grados, (d) y (e) alrededor de los 20 grados y (f) alrededor de los -30 grados, señalados en el capítulo IV, se debe esencialmente a los puentes de hidrógeno cuya conectividad es i \rightarrow i, es decir, aquellos en los que el grupo CO aceptor y NH donador pertenecen al mismo residuo, los que a la vez pueden ser asociados al campo de fuerza AMBER99SB, empleado en la sustitución o adición de los hidrógenos polares.

2. Generación de los potenciales

Con base en las distribuciones de frecuencias presentadas en este capítulo para los grupos **ERX* + AMBER99SB** y **ERMN + AMBER99SB** y tomando en cuenta los intervalos con una frecuencia relativa superior a 0.0001, se generaron dos potenciales estadísticos: **H-ERX***, **H-ERMN***, respectivamente. Para ello, se calculó, para cada una de las conectividades (k), la energía asociada a cada intervalo *i*, dado un parámetro geométrico $x (E_{(x,i)})$ de acuerdo con la estadística de Boltzmann:

$$E_{(\mathbf{k},x,i)} = -\ln\left(\frac{f^{o}_{(k,x,i)}}{f^{r}_{(k,x,i)}}\right)$$
(7)

De nueva cuenta, la constante de Boltzmann y la temperatura absoluta no fueron incluidas; $f^{o}_{(k,x,i)}$ es la frecuencia relativa del *i-ésimo* intervalo asociado al parámetro *x* de la conectividad k, observada en la muestra y $f^{r}_{(k,x,i)}$ es la frecuencia relativa del mismo intervalo en una distribución aleatoria, calculada como:

$$f^{r}_{(k,x,i)} = \left(\frac{1}{N_{k}}\right) \left(\frac{1}{N_{x}}\right) \tag{8}$$

Donde N_k es el número de conectividades posibles, seis, y N_x es el número de intervalos asociados al parámetro geométrico *x*: 52 para (a) y 36 para (b), (c), (d), (e) y (f). A los intervalos con frecuencias relativas menores a 0.0001 se les asoció un valor de energía arbitrario de 4.0, el entero superior inmediato a la energía asociada a este valor de frecuencia relativa (**Tabla 5 y 6, Fig. 5 – Anexo**).

Bajo este esquema, cada parámetro geométrico tiene una contribución independiente a la energía total de un puente de hidrógeno, la cual depende a su

vez de la conectividad de dicho puente (E_{PH}^{k}) , por lo que la energía asociada a dicho puente, es la suma de las contribuciones asociadas a cada parámetro, dada la conectividad, esto es:

$$E^{k}{}_{PH} = E^{k}{}_{(a)} + E^{k}{}_{(b)} + E^{k}{}_{(c)} + E^{k}{}_{(d)} + E^{k}{}_{(e)} + E^{k}{}_{(f)}$$
(9)

Y la energía total asociada a una estructura es la suma de las energías asociadas a cada uno de los puentes de hidrógeno presentes en ella. De esta manera, en lugar de utilizar un potencial estadístico para cada parámetro geométrico, se pueden emplear seis distintos, dependiendo de la conectividad que presente el puente de hidrógeno.

3. Pruebas de discriminación de señuelos

Para evaluar los potenciales **H-ERX*** y **H-ERMN*** se emplearon pruebas de discriminación de confórmeros utilizando los mismos 56 grupos de señuelos generados por I-TASSER descritos en el capítulo V. Al igual que en sus potenciales homólogos, **H-ERX** y **H-ERMN**, se evaluó el desempeño de los potenciales **H-ERX*** y **H-ERMN*** con base en: 1) su capacidad para identificar la estructura nativa en cada uno de los grupos de señuelos y 2) el z-score de la estructura nativa en cada uno de los grupos. Estos resultados se agruparon de acuerdo al método experimental por el cual fue resuelta la estructura nativa en cada uno de los grupos de señuelos a los cuales se le asoció la energía más baja (cuando no se trataba de la estructura nativa) se pueden consultar en el material anexo (**Fig. 6 y 7 – Anexo**).

Tabla 6. Desempeño de los potenciales H-ERX* y H-ERMN* en las pruebas de discriminación de señuelos en grupos cuya estructura nativa fue resuelta por resonancia magnética nuclear.						
	H-ERX*			H-ERMN*		
Grupo de señuelos	Posición	Posición	z-score	Posición	Posición	z-score
		relativa			relativa	
1abv_	12	0.0227	-2.3356	4	0.0076	-2.7606
1ah9_	206	0.4023	-0.2459	164	0.3203	-0.4160
1aoy_	1	0.0019	-3.6890	3	0.0056	-2.6932
1dcjA_	1	0.0019	-4.8945	1	0.0019	-5.6824
1egxA	1	0.0028	-3.9089	1	0.0028	-4.1571
1fadA	9	0.0174	-3.2954	3	0.0058	-3.2449
1fo5A	45	0.1316	-1.0775	54	0.1579	-1.0472
1gjxA	5	0.0095	-2.8298	4	0.0076	-2.7973
1gpt_	1	0.0021	-3.4177	1	0.0021	-3.5241
1itpA	1	0.0019	-4.6766	1	0.0019	-5.9998
1kjs_	515	0.9364	1.7440	500	0.9091	1.0997
1kviA	3	0.0054	-2.6939	2	0.0036	-3.5617
1ne3A	1	0.0018	-3.3533	1	0.0018	-3.7524
1o2fB_	1	0.0020	-5.0830	1	0.0020	-4.1215
1of9A	431	0.8468	0.8819	262	0.5147	-0.0644
1sro_	43	0.0832	-1.4716	6	0.0116	-2.2962
1tfi_	1	0.0029	-3.7173	2	0.0059	-2.5817
2cr7A	33	0.0609	-1.5268	63	0.1162	-1.0989
Estructuras nativas identificadas		9 / 19				6 /18
correctamente]	0710			0710
Estructuras nativas dentro del			12/18			13 /18
mejor 5% de estructuras			12/10			13/10
z-score promedio			-2.5444			-2.7055

		H-ERX*			H-ERMN*	
Grupo de señuelos	Posición	Posición	z-score	Posición	Posición	z-score
		relativa			relativa	
1af7	2	0.0038	-4.7835	2	0.0038	-3.0435
1b4bA	1	0.0022	-7.0470	1	0.0022	-5.0350
1b72A	1	0.0019	-7.5167	1	0.0019	-6.5052
1bm8_	1	0.0030	-11.4303	1	0.0030	-10.8764
1bq9A	1	0.0017	-5.3729	1	0.0017	-4.5587
1cewl	1	0.0022	-6.2774	1	0.0022	-5.9580
1cqkA	1	0.0035	-5.9776	1	0.0035	-4.2183
1csp_	1	0.0032	-6.4483	1	0.0032	-5.5857
1cy5A	1	0.0036	-6.5232	1	0.0036	-5.2468
1di2A_	1	0.0027	-7.2699	1	0.0027	-5.7598
1dtjA_	1	0.0035	-3.7275	2	0.0070	-2.4289
1g1cA	1	0.0032	-7.5009	1	0.0032	-5.9756
1gnuA	1	0.0018	-7.0906	1	0.0018	-5.7271
1gyvA	1	0.0029	-7.1393	1	0.0029	-4.6795
1hbkA	1	0.0033	-4.9004	1	0.0132	-2.7174
1jnuA	1	0.0037	-4.9058	1	0.0037	-4.4255
1mkyA3	1	0.0035	-6.8813	1	0.0035	-6.0749
1mla_2	1	0.0030	-7.4609	1	0.0030	-5.9195
1mn8A	1	0.0018	-8.3067	1	0.0018	-6.6654
1n0uA4	1	0.0033	-5.6996	1	0.0033	-3.9713
1no5A	1	0.0023	-5.5931	1	0.0023	-4.4861
InpsA	1	0.0021	-7.3013	1	0.0021	-5.4589
10gwA_	1	0.0019	-4.8114	1	0.0019	-3.6235
1orgA	1	0.0023	-6.2839	3	0.0068	-4.4251
1pgx_	1	0.0018	-8.6061	1	0.0018	-0.8363
169_	1	0.0034	-3.4877	3	0.0068	-2.1240
	1	0.0032	-0.5704	1	0.0097	-4.2455
15mA	1	0.0019	-8.2721	1	0.0019	-0.0209
1ten_	1	0.0034	-7.0110	1	0.0034	-3.7303
14if	1	0.0033	-5.0135	1	0.0033	-3.3000
1tig	1	0.0010	-7.7910	1	0.0018	-0.4721
110	1	0.0018	-0.3085	1	0.0018	-3.9023
256bA	1	0.0010	-7.0710	3	0.0010	3 8302
2300A 2a0b	1	0.0020	-6.0424	1	0.0035	-0.0092
2f3nΔ	1	0.0000	-6.0661	1	0.0000	-4.7150
2004	1	0.0021	-7 5558	1	0.0021	-5.8255
2reb 2	1	0.0020	-6 4901	1	0.0020	-4 7559
Estructuras nativas id	lentificadas	0.0010	0.1001	•	0.0010	
correctamente			37 / 38			33 / 38
Estructuras nativas de	entro del		39/20			39/20
mejor 5% de estructu	ras		30/38			30/38
z-score promedio			-6.5999			-5.1312
			0.0000			0.1012

Tabla 7. Desempeño de los potenciales H-ERX* y H-ERMN* en las pruebas de discriminación de señuelos en grupos cuya estructura nativa fue resuelta por difracción de rayos X.

Nuevamente, en los grupos de señuelos donde la estructura nativa fue determinada por resonancia magnética nuclear, ambos potenciales tienen un desempeño pobre, ya que la estructura nativa es identificada adecuadamente en menos de la mitad de los casos. Comparando entre ambos potenciales, aunque la diferencia no es tan grande, para estos grupos de señuelos, el potencial **H-ERMN*** tiene un desempeño ligeramente mejor que el potencial **H-ERX***, ya que, aunque éste identifica correctamente la estructura nativa en dos grupos menos que el potencial **H-ERX***, se obtiene un mayor número de predicciones dentro del 5% de mejores estructuras, así como un z-score promedio menor.

En los grupos de señuelos donde la estructura nativa fue determinada por difracción de rayos X, ambos potenciales tienen un buen desempeño, sin embargo, para estos grupos de señuelos, el potencial **H-ERX*** es claramente superior, al identificar correctamente la estructura nativa en 37 casos (cuatro más que **H-ERMN***) y presentar un z-score promedio menor.

Comparando los potenciales **H-ERX* y H-ERMN*** con sus predecesores, **H-ERX y H-ERMN** respectivamente, se puede notar una ligera mejoría en su desempeño en los grupos de señuelos donde la estructura nativa fue determinada por resonancia magnética nuclear, ya que en ambos casos se incrementó el número de predicciones dentro del 5% de mejores estructuras y se disminuyó el z-score promedio. En los grupos de señuelos donde la estructura nativa fue determinada por difracción de rayos X se observa el comportamiento opuesto en ambos casos, ya que, a pesar de que en todos los casos se obtienen predicciones dentro del 5% de mejores estructuras, el z-score promedio aumenta ligeramente.

VIII. COMPARACIÓN CON OTROS POTENCIALES

Finalmente se compararon los resultados obtenidos por los cuatro potenciales generados con los resultados obtenidos por otros potenciales probados en los mismos grupos de señuelos: como DOPE⁸⁸, DFIRE¹⁵, RWplus⁸⁶, DBNI⁸⁹, OPUS-PSP⁹⁰, Multi_well⁹¹, DOKB⁹², GOAP⁹³ y ROTAS⁹⁴ (**Tabla 8**). Las bases de estos potenciales se describen brevemente a continuación:

DOPE (Discrete Optimized Protein Energy) es un potencial dependiente de la distancia, derivado de la unión de las densidades de probabilidad de las coordenadas cartesianas de los átomos de una proteína y de las distancias entre ellos.

DFIRE (Distance-scaled, Finite Ideal-gas Reference State) es un potencial de pares de contacto de todos los átomos de una proteína, que usa como estado de referencia una distribución uniforme de puntos en una esfera finita, semejante a la distribución de un gas ideal en un espacio finito.

RWplus (Random walk) es un potencial de pares de contacto, dependiente de la orientación de las cadenas laterales de los residuos que constituyen una proteína, que usa como estado de referencia una cadena ideal generada por un movimiento aleatorio.

DBNI (Delaunay-Based Nonlocal Interactions) es un potencial de pares de contacto basado en las interacciones entre 167 tipos de átomos, separados entre sí por más de 5 aminoácidos, y determinadas en base a la triangulación de Delauney.

OPUS-PSP es un potencial de pares de contacto, dependiente de la orientación de los aminoácidos en contacto, representados como bloques.

Multi_well es un potencial de pares de contacto entre los átomos presentes en la estructura secundaría de una proteína que pretende identificar la topología nativa de dicha estructura entre todas las posibilidades existentes.
DOKB (Distance and Orientation dependent energy function of amino acid Key Blocks) es un potencial de pares de contacto, dependiente de la distancia y orientación de los aminoácidos en contacto, representados como bloques.

GOAP (Generalized Orientation-dependent All-atom Potential) es un potencial de pares de contacto que depende de la orientación relativa de los planos asociados a cada átomo pesado en los pares interactuantes.

ROTAS (ROTamer-dependent Atomic Statistical potential) es un potencial que toma en cuenta el papel de los estados rotaméricos de los residuos de aminoácidos en la especificidad de una interacción atómica dada.

Tabla 8. Desempeño de distint	os potenciales en los grupos de señuelos de I-TASSER.
Potencial	Estructuras nativas identificadas (z- score promedio)
DOPE	30 (-2.18)
DFIRE	48 (-5.03)
RWplus	56 (-5.77)
DBNI	42 (-3.63)
OPUS-PSP	49 (-5.40)
Multi_well	16 (n.r.)
DOKB	53 (n.r.)
GOAP	48 (-5.81)
ROTAS	49 (-7.31)
H-ERX	43 (-5.57)
H-ERMN	39 (-4.56)
H-ERX*	45 (-5.35)
H-ERMN*	39 (-4.33)
n.r. = no reportada	

Se puede notar que el mejor de los potenciales generados en este trabajo es el **H**-**ERX***, al ser el que identifica correctamente la mayor cantidad de estructuras nativas. Al compararlo con el desempeño de los otros potenciales, supera en el número de estructuras nativas identificadas a tres de los nueve presentados, pero en cuanto al z-score promedio, es comparable con los potenciales de mejor desempeño.

IX. CONCLUSIONES

Los resultados mostrados en el capítulo IV mostraron que, describiendo la estructura de las proteínas en base a la geometría de los puentes de hidrógeno formados por la cadena principal de estas, las estructuras resueltas por difracción de rayos X difieren considerablemente de aquellas resueltas por resonancia magnética nuclear. Se demostró también que el reemplazo de los hidrógenos polares en las estructuras experimentales, mediante el campo de fuerza AMBER99SB, modifica considerablemente las estructuras bajo el nivel de descripción usado en este trabajo, aunque permite mapear los datos experimentales en un 91% para las estructuras resueltas por difracción de rayos X y en un 98% para las estructuras por resonancia magnética nuclear.

Las pruebas de discriminación de señuelos realizadas con los potenciales estadísticos basados en la geometría de los puentes de hidrógeno presentes en proteínas, presentados en el capítulo V, mostraron que este tipo de potenciales se desempeñan muy bien en grupos de señuelos donde la estructura nativa fue determinada por difracción de rayos X, especialmente el potencial construido a partir de estructuras resueltas por este mismo método experimental, que identifica correctamente la estructura nativa en todos los casos probados. Esto se debe a que los parámetros geométricos estudiados presentan tendencias más claras para este grupo de proteínas en comparación con aquellas determinadas por resonancia magnética nuclear, lo que en cierta medida facilita la tarea de identificar una buena estructura.

En grupos de señuelos donde la estructura nativa fue determinada por resonancia magnética nuclear, el desempeño de este tipo de potenciales es pobre, donde el potencial construido a partir de estructuras resueltas por este mismo método experimental tiene el mejor desempeño al identificar correctamente la estructura nativa en 7 de los 18 casos probados.

Lo anterior permite establecer que el desempeño de este tipo de potenciales estadísticos en un grupo de señuelos dado, está influido por el método experimental con el que fueron determinadas las estructuras usadas para su construcción y que este tipo de potenciales es especialmente útil en pruebas de discriminación de señuelos en grupos donde la estructura nativa fue determinada por difracción de rayos X.

Las pruebas de discriminación de señuelos realizadas con los potenciales estadísticos basados en la geometría de los puentes de hidrógeno en proteínas que contemplan la conectividad de dichos puentes, presentados en el capítulo VI, confirman lo establecido en el párrafo anterior y por otro lado, demuestran que no existe una gran mejora al comparar su desempeño con los potenciales presentados en el capítulo V. Esto sugiere que la clasificación de los puentes de hidrógeno de acuerdo a su conectividad (o tipo de estructura secundaria que forman) no es crucial para tener una buena descripción al emplear potenciales estadísticos como los presentados en este trabajo, lo cual simplifica considerablemente (6 veces, en este caso particular) el cálculo de la energía para una estructura dada.

De acuerdo con los resultados presentados en el capítulo VII, los potenciales presentados en este trabajo distan de tener el mejor desempeño en cuanto al número de estructuras nativas identificadas correctamente, sin embargo es de resaltar el hecho de que su construcción es más simple que la del resto de potenciales comparados, ya que se emplea un solo tipo de interacción atómica: los puentes de hidrógeno formados por la cadena principal de proteínas. Este hecho limita en cierta forma al potencial para diferenciar cambios conformacionales en secciones sin estructura secundaria de una proteína o modificaciones en las cadenas laterales de los aminoácidos. Aun así, se obtienen z-score promedios bastante buenos, lo cual indica que el nivel de descripción de la estructura de proteínas empleado en este trabajo permite diferenciar ampliamente la estructura nativa de una proteína dentro de un conjunto de confórmeros.

X. PERSPECTIVAS

Los hallazgos presentados en este trabajo permiten sugerir algunos estudios que podrían ayudar a mejorar el desempeño de los potenciales estadísticos, entre ellos se pueden mencionar los siguientes:

Ya que las estructuras de proteínas determinadas por difracción de rayos X difieren considerablemente de aquellas determinadas por resonancia magnética nuclear a nivel de la geometría de los puentes de hidrógeno formados por la cadena principal, sería conveniente buscar y seleccionar un nivel de descripción que se asemeje más entre los dos grupos de estructuras.

Dado que el uso de los parámetros establecidos de acuerdo a un campo de fuerza (AMBER99SB) para la adición de los hidrógenos polares en la estructura de una proteína no es del todo comparable con las observaciones experimentales, sería de gran utilidad el reestablecer los parámetros usados para la adición de estos hidrógenos.

El desempeño de los potenciales estadísticos generados en este trabajo podría verse mejorado al incluir términos que consideren los puentes de hidrógeno en donde participan las cadenas laterales de los residuos de aminoácidos, así como la inclusión de parámetros geométricos para describir otro tipo de interacciones presentes en proteínas, como las interacciones de van der Waals.

Por otro lado, aunque los seis parámetros geométricos usados en la descripción de los puentes de hidrógeno lo describen completamente, sería conveniente determinar si todos ellos son necesarios para un buen desempeño del potencial o si es posible omitir algunos de ellos, para simplificar los cálculos de energía.

XI. REFERENCIAS

- 1. Boyle, J. Lehninger principles of biochemistry (4th ed.): Nelson, D., and Cox, M. Biochemistry and Molecular Biology Education **33**, (2005).
- 2. Berg, J. M., Tymoczko, J. L. & Stryer, L. *Biochemistry. W H Freeman* New York., (2002).
- 3. Fromm, H. & Hargrove, M. *Essentials of Biochemistry. Annual Review of Biochemistry* (2012). doi:10.1146/annurev.bi.74.052705.100003
- 4. Buxbaum, E. *Fundamentals of Protein Structure and Function*. (Springer US, 2007). doi:10.1007/978-0-387-68480-2
- 5. Anfinsen, C. B. Principles that Govern the Folding of Protein Chains. *Science* **181**, 223–230 (1973).
- 6. Kolata, G. Trying to crack the second half of the genetic code. *Science* **233**, 1037–1039 (1986).
- 7. Burley, S. K. *et al.* Structural genomics: beyond the Human Genome Project. *Nat. Genet.* **23**, 151–157 (1999).
- 8. Case, D. A. *et al.* The Amber biomolecular simulation programs. *Journal of Computational Chemistry* **26**, 1668–1688 (2005).
- 9. Brooks, B. R. *et al.* CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. *J. Comput. Chem.* **4**, 187–217 (1983).
- 10. Sippl, M. J. Calculation of conformational ensembles from potentials of mean force. *J. Mol. Biol.* **213**, 859–883 (1990).
- Tanaka, S. & Scheraga, H. A. Medium- and Long-Range Interaction Parameters between Amino Acids for Predicting Three-Dimensional Structures of Proteins. *Macromolecules* 9, 945–950 (1976).
- 12. DeWitte, R. S. & Shakhnovich, E. I. SMoG: de Novo Design Method Based on Simple, Fast, and Accurate Free Energy Estimates. 1. Methodology and Supporting Evidence. *J. Am. Chem. Soc.* **118**, 11733–11744 (1996).
- 13. Lu, H. & Skolnick, J. A distance-dependent atomic knowledge-based potential for improved protein structure selection. *Proteins Struct. Funct. Genet.* **44**, 223–232 (2001).
- Samudrala, R. & Moult, J. An all-atom distance-dependent conditional probability discriminatory function for protein structure prediction. *J. Mol. Biol.* 275, 895–916 (1998).
- 15. Zhou, H. & Zhou, Y. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. *Protein Sci.* **11**, 2714–2726 (2009).
- Bordo, D. & Argos, P. The Role of Side-chain Hydrogen Bonds in the Formation and Stabilization of Secondary Structure in Soluble Proteins. *J. Mol. Biol.* 243, 504–519 (1994).
- 17. Fersht, A. *Enzyme Structure and Mechanism. New York N.Y. : Freeman* (1985).
- 18. Gorres, K. L. & Raines, R. T. Prolyl 4-hydroxylase. *Crit. Rev. Biochem. Mol. Biol.* **45**, 106–124 (2010).
- 19. Van Slyke, D. D. & Hiller, A. An Unidentified Base among the Hydrolytic Products of Gelatin. *Proc. Natl. Acad. Sci.* **7**, 185–186 (1921).

- 20. Hardy, M. F., Harris, C. I., Perry, S. V & Stone, D. Occurrence and formation of the N(□)-methyl-lysines in myosin and the myofibrillar proteins. *Biochem. J.* **120**, 653–660 (1970).
- 21. Stenflo, J. & Suttie, J. W. Vitamin K-Dependent Formation of γ-Carboxyglutamic Acid. *Annu. Rev. Biochem.* **46**, 157–172 (1977).
- 22. Anwar, R. A. & Oda, G. The biosynthesis of desmosine and isodesmosine. *J. Biol. Chem.* **241**, 4638–4641 (1966).
- Johansson, L., Gafvelin, G. & Arnér, E. S. J. Selenocysteine in proteins properties and biotechnological use. *Biochim. Biophys. Acta - Gen. Subj.* 1726, 1–13 (2005).
- 24. Bronk, J. R. & Fisher, R. B. The role of ornithine and citrulline in urea synthesis. *Biochem. J.* 64, 111–118 (1956).
- 25. Pauling, L., Corey, R. B. & Branson, H. R. The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain. *Proc. Natl. Acad. Sci.* **37**, 205–211 (1951).
- Karpen, M. E., De Haseth, P. L. & Neet, K. E. Differences in the amino acid distributions of 3 10 -helices and α -helices. *Protein Sci.* 1, 1333–1342 (1992).
- Cooley, R. B., Arp, D. J. & Karplus, P. A. Evolutionary Origin of a Secondary Structure: π-Helices as Cryptic but Widespread Insertional Variations of α-Helices That Enhance Protein Functionality. *J. Mol. Biol.* 404, 232–246 (2010).
- 28. Rose, G. D., Glerasch, L. M. & Smith, J. A. in 1–109 (1985). doi:10.1016/S0065-3233(08)60063-7
- 29. Whitford, D. Proteins: Structure and Function. (2005).
- 30. Levinthal, C. Are there pathways for protein folding? *J. Chim. Phys. Physico-Chimie Biol.* **65**, 44–45 (1968).
- Freddolino, P. L., Liu, F., Gruebele, M. & Schulten, K. Ten-microsecond molecular dynamics simulation of a fast-folding WW domain. *Biophys. J.* 94, L75–L77 (2008).
- 32. Hausrath, A. C. A kinetic theory of tertiary contact formation coupled to the helix-coil transition in polypeptides. *J. Chem. Phys.* **125**, 84909 (2006).
- Bartlett, A. I. & Radford, S. E. An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms. *Nat. Struct. Mol. Biol.* 16, 582–588 (2009).
- 34. Brockwell, D. J. & Radford, S. E. Intermediates: ubiquitous species on folding energy landscapes? *Current Opinion in Structural Biology* **17**, 30–37 (2007).
- 35. Onuchic, J. N. & Wolynes, P. G. Theory of protein folding. *Curr. Opin. Struct. Biol.* **14**, 70–75 (2004).
- 36. Hartl, F. U. & Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo. *Nat. Struct. Mol. Biol.* **16**, 574–581 (2009).
- 37. Whitford, D. *Proteins: Structure and Function*. (John Wiley & Sons, 2005).
- 38. KENDREW, J. C. *et al.* A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis. *Nature* **181**, 662–666 (1958).
- 39. Amunts, A., Brown, A., Toots, J., Scheres, S. H. W. & Ramakrishnan, V. The structure of the human mitochondrial ribosome. *Science* **348**, 95 LP-98 (2015).

- 40. Khatter, H., Myasnikov, A. G., Natchiar, S. K. & Klaholz, B. P. Structure of the human 80S ribosome. *Nature* **520**, 640–645 (2015).
- 41. Levitt, M. & Warshel, A. Computer simulation of protein folding. *Nature* **253**, 694–698 (1975).
- 42. Levitt, M. A simplified representation of protein conformations for rapid simulation of protein folding. *J. Mol. Biol.* **104**, 59–107 (1976).
- 43. Contreras-Moreira, B., Ezkurdia, I., Tress, M. L. & Valencia, A. Empirical limits for template-based protein structure prediction: the CASP5 example. *FEBS Lett.* **579**, 1203–1207 (2005).
- Bajorath, J., Seyama, K., Nonoyama, S., Ochs, H. D. & Aruffo, A. Classification of mutations in the human CD40 ligand, gp39, that are associated with X-linked hyper IgM syndrome. *Protein Sci.* 5, 531–534 (2008).
- 45. Murzin, A. G. Progress in protein structure prediction. *Nat. Struct. Biol.* **8**, (2001).
- 46. Schonbrun, J., Wedemeyer, W. J. & Baker, D. Protein structure prediction in 2002. *Curr. Opin. Struct. Biol.* **12**, 348–354 (2002).
- 47. Berman, H. M. *et al.* The Protein Data Bank. *Nucleic Acids Research* **28**, 235–242 (2000).
- 48. Jones, D. T. Progress in protein structure prediction. *Curr. Opin. Struct. Biol.* **7**, 377–387 (1997).
- 49. Morales, L. B., Garduno, J. R. & Romero, D. Applications of simulated annealing to the multiple-minima problem in small peptides. *J Biomol Struct Dyn* **8**, 721–735 (1991).
- 50. Morales, L. B., Garduño-Juárez, R., Aguilar-Alvarado, J. M. & Riveros-Castro, F. J. A parallel tabu search for conformational energy optimization of oligopeptides. *J. Comput. Chem.* **21**, 147–156 (2000).
- 51. Garduno-Juarez, R. & Morales, L. B. A genetic algorithm with conformational memories for structure prediction of polypeptides. *J. Biomol. Struct. Dyn.* **21**, 65–87 (2003).
- Montero, M. R. Métodos Basados en Optimización por Colonia de Hormigas Aplicados al Modelo Hidrofóbico-Polar del Plegamiento de Proteínas,. (Instituto Nacional de Astrofísica, Óptica y Electrónica., 2009).
- 53. Chothia, C. & Lesk, A. M. The relation between the divergence of sequence and structure in proteins. *The EMBO Journal* **5**, 823–826 (1986).
- 54. Sippl, M. J. & Flöckner, H. Threading thrills and threats. *Structure* **4**, 15–19 (1996).
- 55. Wang, Z. X. A re-estimation for the total numbers of protein folds and superfamilies. *Protein Eng.* **11**, 621–626 (1998).
- 56. Ripka, W. C. Computer-assisted model building. Nature 321, 93–94 (1986).
- 57. Blundell, T. L., Bedarkar, S., Rinderknecht, E. & Humbel, R. E. Insulin-like growth factor: a model for tertiary structure accounting for immunoreactivity and receptor binding. *Proceedings of the National Academy of Sciences of the United States of America* **75**, 180–184 (1978).
- 58. Greer, J. Comparative model-building of the mammalian serine proteases. *J. Mol. Biol.* **153**, 1027–1042 (1981).

- 59. Blundell, T., Sibanda, B. L. & Pearl, L. Three-dimensional structure, specificity and catalytic mechanism of renin. *Nature* **304**, 273–275 (1983).
- 60. Greer, J. Model structure for the inflammatory protein C5a. *Science* **228**, 1055–1060 (1985).
- 61. Palmer, K. A., Scheraga, H. A., Riordan, J. F. & Vallee, B. L. A preliminary three-dimensional structure of angiogenin. *Proceedings of the National Academy of Sciences of the United States of America* **83**, 1965–1969 (1986).
- 62. Chothia, C. *et al.* The predicted structure of immunoglobulin D1.3 and its comparison with the crystal structure. *Science* **233**, 755–758 (1986).
- 63. Jones, D. T., Taylor, W. R. & Thornton, J. M. A new approach to protein fold recognition. *Nature* **358**, 86–89 (1992).
- 64. Chandonia, J.-M. & Brenner, S. E. The impact of structural genomics: expectations and outcomes. *Science* **311**, 347–351 (2006).
- 65. Orengo, C. A., Jones, D. T. & Thornton, J. M. Protein superfamilies and domain superfolds. *Nature* **372**, 631–634 (1994).
- 66. Murzin, A. G., Brenner, S. E., Hubbard, T. & Chothia, C. SCOP: A structural classification of proteins database for the investigation of sequences and structures. *J. Mol. Biol.* **247**, 536–540 (1995).
- 67. Govindarajan, S. & Goldstein, R. A. Why are some proteins structures so common? *Proc. Natl. Acad. Sci. U. S. A.* **93**, 3341–3345 (1996).
- 68. Orengo, C. *et al.* CATH a hierarchic classification of protein domain structures. *Structure* **5**, 1093–1109 (1997).
- Sippl, M. J. Knowledge-based potentials for proteins. *Curr. Opin. Struct. Biol.* 5, 229–235 (1995).
- 70. Miyazawa, S. & Jernigan, R. L. Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. *Macromolecules* **18**, 534–552 (1985).
- 71. Eisenberg, D. & McLachlan, A. D. Solvation energy in protein folding and binding. *Nature* **319**, 199–203 (1986).
- Miller, R. T., Jones, D. T. & Thornton, J. M. Protein fold recognition by sequence threading: tools and assessment techniques. *FASEB J.* **10**, 171–8 (1996).
- 73. Bryant, S. H. & Altschul, S. F. Statistics of sequence-structure threading. *Curr. Opin. Struct. Biol.* **5**, 236–244 (1995).
- 74. Samudrala, R. & Levitt, M. Decoys 'R' Us: A database of incorrect conformations to improve protein structure prediction. *Protein Sci.* **9**, 1399–1401 (2000).
- 75. John, B. & Sali, A. Comparative protein structure modeling by iterative alignment, model building and model assessment. *Nucleic Acids Research* **31**, 3982–3992 (2003).
- Kortemme, T., Morozov, A. V. & Baker, D. An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. *J. Mol. Biol.* **326**, 1239–1259 (2003).
- 77. Krüger, D. M., Garzón, J. I., Chacón, P. & Gohlke, H. DrugScorePPI knowledge-based potentials used as scoring and objective function in protein-protein docking. *PLoS One* **9**, (2014).

- Morozov, A. V. & Kortemme, T. Potential Functions for Hydrogen Bonds in Protein Structure Prediction and Design. *Adv. Protein Chem.* 72, 1–38 (2005).
- 79. Ma, X. H., Wang, C. X., Li, C. H. & Chen, W. Z. A fast empirical approach to binding free energy calculations based on protein interface information. *Protein Eng.* **15**, 677–681 (2002).
- 80. Moal, I. H. & Fernandez-Recio, J. Intermolecular contact potentials for protein-protein interactions extracted from binding free energy changes upon mutation. *J. Chem. Theory Comput.* **9**, 3715–3727 (2013).
- 81. Pokala, N. & Handel, T. M. Energy functions for protein design: Adjustment with protein-protein complex affinities, models for the unfolded state, and negative design of solubility and specificity. *J. Mol. Biol.* **347**, 203–227 (2005).
- 82. Chen, Y., Kortemme, T., Robertson, T., Baker, D. & Varani, G. A new hydrogen-bonding potential for the design of protein-RNA interactions predicts specific contacts and discriminates decoys. *Nucleic Acids Res.* **32**, 5147–5162 (2004).
- 83. Sánchez-González, G., Kim, J.-K., Kim, D.-S. & Garduño-Juárez, R. A betacomplex statistical four body contact potential combined with a hydrogen bond statistical potential recognizes the correct native structure from protein decoy sets. *Proteins Struct. Funct. Bioinforma.* **81**, 1420–1433 (2013).
- 84. Sticke, D. F., Presta, L. G., Dill, K. A. & Rose, G. D. Hydrogen bonding in globular proteins. *J. Mol. Biol.* **226**, 1143–1159 (1992).
- 85. DeGroot, M. H. *Probability and Statistics*. (Addison Wesley Publishing Company, 1986).
- 86. Zhang, J. & Zhang, Y. A Novel Side-Chain Orientation Dependent Potential Derived from Random-Walk Reference State for Protein Fold Selection and Structure Prediction. **5**, (2010).
- 87. Wu, S., Skolnick, J. & Zhang, Y. Ab initio modeling of small proteins by iterative TASSER simulations. *BMC Biol.* **5**, 17 (2007).
- Shen, M.-Y., Shen, M.-Y., Sali, A. & Sali, A. Statistical potential for assessment and prediction of protein structures. *Protein Sci. A Publ. Protein Soc.* 15, 2507–24 (2006).
- 89. Mirzaie, M. & Sadeghi, M. Delaunay-based nonlocal interactions are sufficient and accurate in protein fold recognition. *Proteins Struct. Funct. Bioinforma.* **82**, 415–423 (2014).
- 90. Jianpeng, M. Explicit orientation dependence in empirical potentials and its significance to side-chain modeling. *Acc. Chem. Res.* **42**, 1087–1096 (2009).
- 91. Sun, W. & He, J. Native secondary structure topology has near minimum contact energy among all possible geometrically constrained topologies. *Proteins Struct. Funct. Bioinforma.* **77**, 159–173 (2009).
- 92. Chen, L. & He, J. A distance- and orientation-dependent energy function of amino acid key blocks. *Biopolymers* **101**, 681–692 (2014).
- 93. Zhou, H. & Skolnick, J. GOAP: A generalized orientation-dependent, all-atom statistical potential for protein structure prediction. *Biophys. J.* **101**, 2043–2052 (2011).

94. Park, J. & Saitou, K. ROTAS: a rotamer-dependent, atomic statistical potential for assessment and prediction of protein structures. *BMC Bioinformatics* **15**, 307 (2014).

import Bio.PDB as bp from sys import argv import numpy

Lmporr numpy
D8 = [] #Åtomo base del åtomo donador (Carbono alfa)
D = [] #Åtomo base del åtomo donador (Carbono alfa)
DAT = [] #Tipo de àtomo donador
A8 = [] #Atomo base del àtomo aceptor (carbono carbontlico)
AR = [] #Atomo base del àtomo aceptor (carbono carbontlico)
AR = [] #Atomo aceptor (oxigeno carbontlico)
AA = [] #Atomo aceptor (oxigeno carbontlico)
AA = [] #Atomo aceptor (oxigeno carbontlico)
AA = [] #Atomo aceptor (carbono aceptor, para el calculo del àngulo diedro (carbono alfa)
A = [] #Atomo aceptor (oxigeno carbontlico)
AA = [] #Atomo aceptor (carbono aceptor (carbono alfa)
AF = [] #Atomo aceptor (carbono aceptor (carbono alfa)
AF = [] #Atomo aceptor (carbono aceptor [] #Tipo de residuo aceptor
ResDN = [] #Número del residuo aceptor (para calcular conectividad)
ResAN = [] #Número del residuo aceptor (para calcular conectividad)

#Este programa mide los siguientes parámetros en todos los hidrogenos polares de la cadena principal de proteínas que se encuentren a un distancia menor a 2.6 Angstroms de un átomo de oxígeno carbonilico de cadena principal: distancia H-A, angulos D-H-A y H-A-AB, y angulos diedros DB-D-H-A, D-H-A-AB y H-A-AB-AR

#5e genera una salida con lineas escritas de la siguiente manera: archivo de entrada, tipo de residuo donador, tipo de residuo aceptor, tipo de átomo donador, tipo de átomo aceptor, número del residuo donador, número del residuo aceptor, distancia H-A, ángulo D-H-A, ángulo H-A-AB, ángulo diedro DB-D-H-A, ángulo diedro D-H-A-AB, ángulo H-A-AB-AR. Donde cada uno de los datos se ubica en una columna diferente.

#Esta parte del código lee un pdb y toma todos los átomos presentes en el.

f = open(argv[1])
for line in f:
 if line[0:4] == "ATOM":
 Archivo.append(line) f.close()

for i in range(0, len(Archivo)):

#Esta parte del código identifica los hidrógeno polares y átomos donadores de hidrógeno en la cadena principal, así como sus referencias para el cálculo de los parámetros geométricos.

```
if Archivo[1][12:16] == " H " or Archivo[1][12:16] == " H1 " or Archivo[1][12:16] == " H2 "or Archivo[1][12:16] == " H3 ":
    For
```

#Esta parte del código identifica los átomos aceptores de hidrógeno en la cadena principal, así como sus referencias para el cálculo de los parámetros geométricos.

```
A.append([float((archivo[i][30:38]), float(Archivo[i][38:40]),
A8.append([float([30:38]), float([38:40]), float([46:54])])
AR.append([float(k]30:38]), float(k[38:46]), float(k[46:54])])
ResA.append(k[17:20])
ResA.append(int(k[22:26]))
AAT.append(Archivo[i][12:16])
#Esta parte del código selecciona los hidrógenos polares que se encuentran a menos de 2.6 Angstroms de un átomo de oxigeno carbonilico de 
cadena principal, calcula los paràmetros geometricos y genera la salida.
for i in range(8,len(HP)):
```

h = bp.vector(HP[1]) d = bp.vector(DB[1]) db = bp.vector(DB[1]) resd = ResD[1] resd = ResD[1] for j in range(0,ien(A)): resam = ResAN[j] at = AAT[j] if dat == " N " and resam != resdn+1: a = bp.vector(A[j]) ab = bp.vector(A[j]) ab = bp.vector(AR[j]) resa = ResA[j] Dif = bp.vector.norm(bp.vector. bp.Vector.norm(bp.Vector.__sub__(h,a)) Dif if Dif <= 2.5: AngDHA = bp.calc_angle(d,h,a)*180/numpy.pi AngDHA = bp.calc_angle(d,h,a)*180/numpy.pi AngDHA = bp.calc_angle(d,h,a)*180/numpy.pt AngDHA = bp.calc_angle(h,a,a)*180/numpy.pt DteBBHA = bp.calc_dthedral(d,h,a)*180/numpy.pt DteBHAAB = bp.calc_dthedral(d,h,a,a)*180/numpy.pt DteHAABA = bp.calc_dthedral(h,a,a,b)*180/numpy.pt DteHAABAR = bp.calc_dthedral(h,a,a,b)*180/numpy.pt DteHAABAR = bp.calc_dthedral(h,a,b,ar)*180/numpy.pt DteHAABAR = bp.calc_dthedral(h,a,b,ar)*180/numpy.pt print orgv[j], "\t", resd, "\t", resd, "\t", dat, "\t", str(resdn), "\t", str(resan), "\t", Dte, "\t", AngDHA, "\t", AngHAAB, "\t", DteDBDHA, "\t", DteDHAAB, "\t", DteHAABAR

Figura 1. Código del programa empleado para identificar y caracterizar geométricamente los puentes de hidrógeno formados por la cadena principal de proteínas en un archivo pdb.

Tabla 1. C	ódigos PDB	de las 73 prot	eínas que fori	maron parte o	lel grupo ERX	La letra que	se encuentra
frente al co	ódigo PDB es	el identificador	de la cadena	estudiada en e	el caso de que	este fuese dis	stinto de "A".
	U U						
1BXO	1CEX	1EJG	1G66	1GCI	1IXH	1JFB	1L9L
1M40	1MJ5	1MUW	1NQJ	107J	1RTQ	1TQG	1TT8
1UCS	1VYR	1X6Z	1YRI	2B97	2ERL	2FVY	2P5K
2RH2	2VB1	2XJP	2XU3	2Y78	3A38	3AJ4	3F1L
3GOE	3HYD	3IP0	304P	3QR7	3RWN	3TEU	3UI4
3V1A	3VOR	3W5H	3WCQ	3ZOJ	3ZUC	4ACJ	4AXO
4E0K	4E3Y	4EGU	4F1V	4G9S	4G9S_B	4GA2	4HNO
4HS1	4KQP	4LFS	4MZC	4NDS	4NPD	4NSV	4PNO
4R2X	4REK	4TXR	4TXR_B	4TXR_C	4U9H_L	4U9H_S	4WEE
4X5P							

Tabla 2. Cód	ligos PDB de	las 4020 prot	eínas que for	maron parte	del grupo ERI	MN. La letra q	ue se
encuentra fre	ente al código l	PDB es el ider	ntificador de la	cadena estud	iada en el cas	o de que este	fuese
distinto de "A	"						
1A1W	1A63	1A6S	1A7M	1A90	1AA3	1AB7	1ADR
1ADX	1ADZ	1AG4	1AGG	1AH2	1AH9	1AIW	1AJ3
1AJW	1ALE	1ALF	1ALG	1ANP	1ANS	1AOY	1AP0
1APF	1APJ	1APQ	1AQ5	1AQG	1AUU	1AUZ	1AWE
1AXH	1B03	1B22	1B2T	1B4R	1B64	1B75	1B8Q
1B8Q_B	1B8W	1B9P	1BA5	1BAK	1BAL	1BBA	1BBG
1BBI	1BC9	1BCT	1BDS	1BEG	1BF8	1BFM	1BGK
1BH7	1BHA	1BHI	1BHU	1BI6_H	1BI6_L	1BIP	1BJ8
1BL1	1BM4	1BMW	1BMX	1BO9	1BOE	1BPR	1BQ0
1BQZ	1BR0	1BRV	1BUY	1BV8	1BVM	1BW3	1BW6
1BY0	1BY1	1BY6	1BYM	1BYY	1BZG	1C01	1C05
1C3Y	1C54	1C89	1C8P	1CDB	1CDQ	1CE3	1CE4
1CEK	1CEU	1CFE	1CHL	1CI5	1CIX	1CKV	1CKW
1CMR	1CN7	1CO1	1COU	1CQ0	1CQU	1CS9	1CT6
1CW5	1CWW	1CWX	1CX1	1CXW	1CZ4	1CZ6	1D1D
1D1N	1D1R	1D2D	1D4B	1D5Q	1D6T	1D6X	1D7Q
1D7Q_B	1D8B	1D8J	1D8V	1D9A	1D9N	1DBD	1DCJ
1DDB	1DDF	1DDM	1DDM_B	1DE1	1DEC	1DEP	1DG4
1DGN	1DGQ	1DGU	1DJF	1DKC	1DL0	1DN3	1DNG
1DOQ	1DP3	1DSK	1DTC	1DU1	1DU6	1DV9	1DX0
1DZ7	1E0G	1E0N	1E0Q	1E17	1E52	1E5U	1E68
1E8P	1E8R	1E9K	1ECI	1ECI_B	1ED7	1EDP	1EDS
1EDV	1EDW	1EDX	1EF5	1EGT	1EHS	1EHX	1EI0
1EIJ	1EIK	1EIW	1EJ5	1EJQ	1EL0	1EMW	1EMX
1EMZ	1ENW	1EO0	1EOQ	1EQ1	1EQK	1EQX	1ERC
1ERD	1ERP	1ERY	1EV0	1EWI	1EWS	1EXE	1EXG
1EZE	1EZY	1F0Z	1F2H	1F3K	1F43	1F4I	1F53
1F5X	1F6G	1F6V	1F7E	1F7W	1FAC	1FAF	1FCT
1FDF	1FES	1FEX	1FGD	1FGE	1FGP	1FHO	1FHQ
1FHT	1FJ7	1FLI	1FME	1FMF	1FMY	1FOV	1FOY
1FQQ	1FR0	1FRY	1FSB	1FSH	1FU3	1FUL	1FUV
1FVY	1FW5	1FWO	1FWP	1FYB	1FYC	1FYJ	1FZT
1G03	1G10	1G2H	1G4F	1G5V	1G6E	1G6Z	1G7E
1G70	1G84	1G91	1G92	1G9L	1G9P	1GCF	1GD5
1GE9	1GH8	1GH9	1GHC	1GHH	1GHT	1GJJ	1GJS
1GJZ	1GM2	1GNA	1GNB	1GNC	1GO0	1GO5	1GP8
1GW3	1GWP	1GXE	1GXI	1GYZ	1H0Z	1H20	1H3Z
1H5P	1H67	1H7D	1H7J	1H8B	1H8B_B	1H8C	1H95
1H9E	1H9F	1HA8	1HA9	1HAE	1HBW	1HCE	1HD6

Tabla 2 (co	ntinuación).							
1HEH	1HF9	1HFF	1HFI	1HFN	1HHN	1HI7	1HIC	
1HJ0	1HK6	1HKS	1HKY	1HN3	1HN6	1HO7	1HO9	
1HP3	1HP8	1HP9	1HPW	1HQB	1HS7	1HTX	1HU5	
1HU6	1HU7	1HVW	1HVZ	1HX2	1HY9	1HYK	1H73	
1H7M	1116	1117	1115	1126	1135	11/11	115H B	
	1167	1190	110	1120	110.0			
	102	100		1100				
TIG6	THE	TIIJ	1110	TIJA	TIJZ	TILF	TILO	
1ILY	1IM1	1IMO	1INZ	11OJ	1100	1IPG	11QS	
1IRG	1IRL	1IRY	1IRZ	1ISK	1IT5	1ITP	1ITY	
1IUF	1IUR	1IUY	1IV0	1IVZ	1IW4	1IWF	1IX5	
1IXT	1IXU	1IYC	1IYG	1IYR	1IYY	1J0S	1J0T	
1J1H	1J26	1J2M	1J4M	1J4O	1J57	1J6Q	1J6Y	
1J7H	1J7M	1J7Q	1J8C	1J9I	1JBI	1JBL	1JBN	
1JCU	1JDM	1JEG	1JEG B	1JEI	1JFJ	1JFN	1JH3	
1JH4	1JH4 B	1JI8	1JJG [–]	1JJR	1JJS	1JLI	1JLZ	
1JMQ	1JMQ P	1JNS	1JO5	1JO6	1JOY	1JQ1	1JRJ	
1.IRM	1.JRU	1.JT8	1.IVR	1.JW3	1.IWF	1.IXC	1K0S	
1K0X	1K18	1K1V	1K17	1K36	1K3K	16/10	1K43	
1K5K	1K50	1K7B	1K8B	1K8H	1K8M	1K91	1699	
1100	1600					1101	1600	
11(30	11/15							
11/10				11/115	11/116			
			1/20	1/(0)	1/20			
1KZ2	1625	TLUM	1L11	1L1K	1L1P	1L2Z	ILZZ_B	
1L3G	1L3H	1L3Q	1L3Y	11.51	1L6H	1L6N	1161	
1L/B	1L8Y	1LB0	1LB7	1LBJ	1LCX	1LDL	1LDR	
1LEA	1LFC	1LG4	1LL8	1LMR	1LMZ	1LQC	1LR1	
1LS4	1LUP	1LV4	1LVQ	1LVR	1LVZ	1LWM	1LWR	
1LX8	1LY/	1LYP	1M02	1M23	1M2E	1M3G	1M4E	
1M4P	1M4P_B	1M5Z	1M62	1M/K	1M/L	1M8L	1M9G	
1M9L	1M9W	1MA2	1MA4	1MA5	1MA6	1MEQ	1MF6	
1MH6	1MH	1MJD	1MKC	1MKN	1MM0	1MM4	1MN I	
1MO7	1MOT	1MP1	1MPH	1MSZ	1MUZ	1MV3	1MVZ	
1MWY	1MYN	1MYU	1MZI	1MZK	1N2Y	1N3J	1N3K	
1N4C	1N4I	1N5G	1N5P	1N6T	1N6Z	1N87	1N88	
1N9J	1N9U	1N9V	1NCT	1ND9	1NE3	1NEI	1NEQ	
1NFA	1NG7	1NHO	1NI7	1NI8	1NIZ	1NJ0	1NKL	
1NLA	1NM4	1NMJ	1NMR	1NMV	1NNV	1NO8	1NQ4	
1NR3	1NS1	1NSO	1NTC	1NWB	1NXI	1NY4	1NY8	
1NY9	1NYJ	1NYN	1NYO	1NZ8	1NZP	101W	102F	
102F_B	1053	106W	106X	1078	107B	108R	108Y	
108Z	10CP	10DP	10EF	10EG	10EH	10EI	10F9	
10H1	10IG	10JG	10KD	10M2	10M2_B	10MQ	10N4	
10NB	10NV	1ONV_B	1009	1009_B	10P1	10P4	10QA	
10QK	10RX	10SX	10V2	10VQ	10VY	10W5	10WA	
10WT	10WX	10Y2	10YI	10ZZ	1P1D	1P23	1P4S	
1P4W	1P6R	1P6S	1P82	1P88	1P8B	1P94	1P9F	
1P9K	1PA4	1PAV	1PBA	1PBU	1PC0	1PC2	1PCE	
1PCP	1PD6	1PDC	1PE3	1PFL	1PFS	1PGY	1PJD	
1PJV	1PJZ	1PLO	1PLP	1PLS	1PLW	1PLX	1PM6	
1PN5	1PNB	1PNB B	1POG	1POQ	1POU	1PPQ	1PQN	
1PRB	1PSM	1PSY	1PU1	1PUL	1PUZ	1PV0	1PVE	
1PVZ	1PX9	1PYV	1PZQ	1PZR	1Q01	1Q0V	1Q1V	
1027	1Q2F	1Q2K	1027	1Q38	1Q3.J	1Q3T	1Q53	
1Q56	1Q59	1Q5F	1Q5L	1Q5L B	1Q80	1Q8K	1Q8L	

	Tabla 2 (con	tinuación).						
	1Q9P	1QCE	1QCM	1QEY	1QFN	1QFN B	1QG9	1QGP
	1QH2	10H2 B	10HK	10JT	1QK7	10K9	10KH	10KL
	1010	10MC		1006	10P6	10PM	10R.I	1057
	1010		10115	1016				101/1
					TQZE	TRU2		
	1R21	1R36	1R3B	1R48	1R4G	1R4K	1R41	1R4Y
	1R57	1R5E	1R5S	1R6R	1R73	1R7C	1R8T	1R9K
	1RAX	1RCH	1RDU	1RES	1RFA	1RFL	1RG3	1RG4
	1RG6	1RHW	1RHX	1RIJ	1RIK	1RIM	1RIP	1RJH
	1RJJ	1RJT	1RKL	1RL1	1RMJ	1RMK	1RO4	1R00
	1ROT	1RPB	1RPR	1RQ6	1RQ8	1RQS	1RQT	1RQU
Ì	1RRB	1RRZ	1RSF	1RSO	1RSO B	1RSW	1RSX	1RT0
l	1RVS	1RW2	1RW5	1RWU	1RY3	1RYJ	1RYK	1RYU
l	1RZS	1R7W	1S1N	1S2H	1S3A	1S4H	1S4.J	1S4T
	1S4W	1547	1S47 C	1562	1S6D	156	1S6W	1879
	1874	197E	187P	1902 1970 B	1SB6	1SBO	1SE7	1SE9
	1950	1965	1966	1960	1910			1960
	10/0	1993	1999	1900	1000	1001		1901
	1000	13LJ	101017		10100		1000	1301
	1500	1501	15P0	15P7	15PF	1508	15R2	1583
	1SRU	ISRZ	1553	1556	155E	1SSE_B	155F	155K
	1SSL	1SSN	1550	1510	1SUH	1501	1SUY	1SUY_C
	1SVQ	1SX0	1SXD	1SXL	1SZV	110C	110G	110V
	1T0Y	1T17	1T1H	1T2Y	1T3O	1T3V	1T4N	1T4Y
	1T50	1T5Q	1TBA	1TBA_B	1TCP	1TDP	1TE7	1TH5
	1TIZ	1TK7	1TKN	1TKV	1TLE	1TM9	1TMR	1TNS
	1TOR	1TOS	1TOZ	1TP4	1TPG	1TPM	1TQ1	1TQZ
	1TR4	1TRL	1TTE	1TTN	1TTY	1TUZ	1TVI	1TVM
l	1TVS	1TXP	1TYK	1TZ1	1U0I	1U0I B	1U2F	1U37
	1U3B	1U3N	1U3O	1U57	1U5M	1U6F	1U6U	1U6V
	1U7Q	1U89	1UAO	1UAP	1UAW	1UB1	1UC6	1UDK
	1UFO	1UF0	1UFG	1UFM	1UFN	1UF7	1UG2	1UG7
	1068	1UG.I	1UGI	1UHM	1UHS	1UHT	1UHU	10.11
	1111	11115	1111X	11165	1111 7			1URF
	1115T	11173			1UVF	1020		
	111VB	11/06	11/10	1V1D	1\/2\	1\/31	11/32	1\//6
	1\//₽	1\//7	11/54	1\/5M	1\/5D	1\/59	1\/61	1\/65
	1//66	1/60	1/60	1/00	11/02	1/05	1/0/	1\/0\/
	1/00	1000			1/07	1/95	1090	
		1005						
		TVIG					1025	
	1003D	10041	1VV4J	1004101	10060	1W9R	1WA8	100A8_B
	1VVAZ	1WCJ	1WCL	1VVEY	1006	10019	1WFD	1WFR
	1WFS	1VVFY	1WGH	1WGK	1WGM	1WGO	1WGP	1WGR
	1WGS	1WGW	1WH0	1WH2	1WH4	1WH9	1WHB	1WHN
	1WHR	1WHU	1WHV	1WI0	1WI5	1WI9	1WIB	1WIC
	1WID	1WIH	1WIJ	1WIK	1WIN	1WIT	1WIX	1WJ1
	1WJ4	1WJ5	1WJ6	1WJ7	1WJJ	1WJK	1WJN	1WJQ
	1WJR	1WJT	1WJU	1WJW	1WK1	1WKI	1WKT	1WLM
	1WLO	1WLP	1WLP_B	1WLX	1WM7	1WM8	1WMT	1WMV
	1WN4	1WN8	1WNJ	1WNK	1WNM	1WNN	1WO9	1WOT
	1WPI	1WQB	1WQD	1WQE	1WRF	1WRG	1WT8	1WU0
	1WUZ	1WVK	1WVO	1WWQ	1WWT	1WWY	1WXA	1WXM
	1WXP	1WXS	1WYJ	1WYO	1WZ4	1X0H	1X1F	1X32
	1X37	1X3A	1X3U	1X40	1X4Q	1X4R	1X4T	1X51
	1X52	1X53	1X57	1X58	1X5M	1X60	1X67	1X7K
	1X93	1X9B	1X9\/	1X9X	1XAX	1XC5		1XEE
	1XG1	1245	1X.11		1XKM	1XKM R		
	1X08	1X0Y	1XPN	1XPV	1XPW/	1X08	1XR0	1XR0 B
н	17.00	1/10/1				17.00	171110	

	Tabla 2 (con	tinuación).						
	1XRD	1XS3	1XSA	1XSF	1XSX	1XU6	1XUT	1XV3
	1XWE	1XX0	1XX3	1XZY	1Y00	1Y03	1Y1B	1Y29
I	1Y49	1Y5C	1Y6D	1Y6U	1Y76	1Y76 B	1Y7Q	1Y7X
l	1Y8M	1Y9.J	1Y90	1YBJ	1YDU	1YFI	1YF7	1YGM
	1760	1745	1YHP	1764	17NX	1204	1YOA	1785
	1755	1755	1VSM	1776				1700
	1///			1\(\\\\\\\		1770	1772	1774
						1170	1740	
				1710		1725		
		1210	1212	1223	1ZZF	1Z2G	1Z2K	1Z2Q
	1221	1Z3K	1Z4H	1Z6V	1Z/P	1287	1Z8S	1299
	1Z9B	1Z9E	1Z9I	1Z9Q	1Z9V	1ZAE	1ZAQ	1ZC1
l	1ZDA	1ZDV	1ZDX	1ZFI	1ZG2	1ZHC	1ZKH	1ZL8
	1ZL8_B	1ZO0	1ZRI	1ZRV	1ZRX	1ZTN	1ZTS	1ZU2
	1ZUF	1ZUG	1ZUV	1ZWT	1ZWV	1ZXA	1ZXF	1ZYI
	1ZZA	1ZZF	1ZZP	1ZZV	2A02	2A05	2A1C	2A2B
	2A2P	2A2Y	2A3D	2A3J	2A4H	2A63	2A7O	2A7U
	2A7U B	2A7Y	2AB9	2ABO	2ABY	2ACM	2ACM B	2ADL
ĺ	2ADZ	2AFD	2AFJ	2AGM	2AHQ	2AIV	2AJ0	2AJE
I	2AJJ	2AJW	2AKK	2AL3	2ALJ	2AMI	2AMN	2AN7
ĺ	2AP7	2APN	2AQ0	2AQA	2AQE	2ARI	2ARW	2ASY
l	2ATG		2AXI	2444	24YX	2AYY	2B0G	2B0H
l	2B0Y	2B19	2B1W	2B38	2B3A	2B3W	2B5B	2B5X
	2B7F	2B7T	2B7V	2B8F	2B9K	2B97	2BA3	2BAF
	2888	288I	2BBX	2BBV	2BEV	2BGO	2B/(0	2B IX
	2BL5	2BN5	2BN5 B	2001 28N8	2001 2804	2000 28TT		2B3/
				2010	2014	2011	2000	20112
				2003	2034	2000	2002	
		2000	2001	2000	2000	2000		2000
	2006	200E			2000	2000	2000	2023
	2000	2009			2001	2007	2008	2009
	ZCQA	ZCQJ		2CQL		2000		2CQY
	2CRU	2CR2	20R5	20R7	2CRB	2CRF	2CRI	2CRL
	2CRQ	2CRU	2CRV	2CRY	2054	2CSA	2CSF	2CSK
	2CSO	2CSW	2C16	2CU1	2CUJ	2CVR	2CW1	2CYK
	2CZN	2020	2CZY	2CZY_B	2D1U	2D35	2D3J	2D46
	2D49	2D56	2D5U	2D85	2D86	2D8B	2D8M	2D93
	2D9D	2D9F	2D9I	2D9O	2D9T	2D9W	2DAD	2DAE
	2DAF	2DAJ	2DAL	2DAM	2DAO	2DAV	2DAW	2DB2
l	2DB9	2DBA	2DBC	2DBD	2DBF	2DBH	2DCE	2DCI
l	2DCO	2DCP	2DCQ	2DCV	2DGR	2DGY	2DGZ	2DHM
	2DHS	2DHX	2DHZ	2DI0	2DIG	2DII	2DIR	2DIU
	2DIW	2DJM	2DJP	2DJV	2DK1	2DK3	2DK4	2DK6
	2DK7	2DK8	2DKS	2DKX	2DKY	2DKZ	2DL1	2DL6
	2DLL	2DLW	2DLX	2DME	2DMH	2DMW	2DNF	2DNT
	2DNW	2DNX	2DO1	2DO3	2DO5	2DO7	2DO9	2DOG
	2DRN	2DRN C	2DSM	2DT6	2DT7	2DT7 B	2DUN	2DUW
	2DW3	2DX2	2DX3	2DX4	2DY7	2DY8	2DYF	2DYF B
I	2DZJ	2DZK	2DZL	2DZM	2E0G	2E19	2E2F	2E2W
I	2E44	2E45	2E4E	2E4H	2E4H B	2E5I	2E5J	2E5N
ĺ	2E5O	2E5P	2E5T	2E5U	2E5Z	2E60	2E62	2E63
ĺ	2E6J	2E6N	2E6Z	2E70	2E71	2E7C	2E7G	2E7M
	2E8D	2E8J	2E8M	2E8O	2E8P	2E9G	2EAM	2EAP
	2EBI	2EBU	2EC1	2EC3	2EC4	2EDN	2EDO	2EDU
I	2FF1	2EE4	2EE7	2EEE	2EEI	2EEM	2FFI	2FF7
	2EH0	2EJE	2E.IM	2EJS	2E.IY	2E.IV B	2EKF	2EKI
	2EKK	2EKO	2EUN	2E00	2EU1	2E01_0		
I	2E02	2E00	200					
	2EQN	2E00	2E00	2EOR	2EQS	2EQU	2EQX	2EGM
		2230			2000	2200		

Tabla 2 (cor	ntinuación).						
2ES6	2ESX	2ESZ	2EVN	2EVQ	2EW9	2EXD	2EXN
2EYA	2EYV	2EYX	2EYY	2EZH	2EZK	2EZW	2F05
2F1F	2E3I	2E3.1	2F40	2E63	2E76	2FBU	2FCD
	2FCG	2550	2550	2FEB	2FFT	2FGX	2FH0
ZFJL				2FU8	ZFQA		2F51
2FTU	2FUI	2FV4	2FV4_B	2FXP	2FXY	ZEXZ	2FYH
2FYJ	2FZ0	2G0K	2G0Q	2G0U	2G1D	2G2B	2G2K
2G6U	2G7H	2G7J	2G9B	2G9L	2G9P	2GA5	2GAQ
2GBS	2GCC	2GCX	2GD3	2GD7	2GDL	2GF5	2GFU
2GGR	2GJF	2GJH	2GJI	2GLE	2GLW	2GM2	2GMG
2GMO	2GO9	2GOW	2GPQ	2GQB	2GQC	2GRG	2GTJ
2GUT	2GV1	2GVA	2GVP	2GW6	2GX1	2GYT	2GZO
2H1Z	2H2M	2H3J	2H3K	2H41	2H7A	2H7T	2H95
2HA1	2HAC	2HAJ	2HBP	2HC5	2HCC	2HD7	2HDE
2HDL	2HEQ	2HF6	2HFH	2HFI	2HFQ	2HFR	2HFV
2HG6	2HG7	2HGA	2HGC	2HGF	2HGK	2HGN	2HH2
2008	2HHI	2HI3	2HI6	2H.I.I	2H.IQ	2HLG	2HI U
2HI W	2HM2	2HM3	2HN8	2HO9	2HO3	2HOR	2HR.I
2HST	2452	2HTE	2HT I	2000	2HUG B	21101	2HW/0
	21107	20170	2100	2138	21100_0	21702	21100
2185	21170	21120	2101	2130	2141	2170 2181	2105
2105			21310	2190	2131		
		211/10		ZITA	ZIUE	2174	2172
210.0	2123	ZJUZ	2J48		2J5D	2350	2J5P
2J8J	2J8P	2JGW	2JM2	2JMB	2JMC	2JML	2JMM
2JMP	2JMR	2JMU	2JMV	2JMX	2JMX_B	2JMY	2JN4
2JN5	2JN6	2JN7	2JN8	2JN9	2JNA	2JNC	2JNH
2JNJ	2JNK	2JNQ	2JNS	2JNT	2JNV	2JNW	2JNW_B
2JNZ	2JO1	2JO6	2JO8	2JOA	2JOA_B	2JOB	2JOD
2JOD_B	2JOE	2JOG	2JOG_B	2JOI	2JOK	2JON	2JOO
2JOQ	2JOR	2JOS	2JOU	2JOV	2JOZ	2JP0	2JP1
2JP2	2JP3	2JP5	2JP6	2JP8	2JPB	2JPC	2JPD
2JPE	2JPF	2JPH	2JPI	2JPJ	2JPK	2JPN	2JPS
2JPU	2JPX	2JQ2	2JQ3	2JQ8	2JQA	2JQE	2JQF
2JQJ	2JQN	2JQO	2JQQ	2JQV	2JQW	2JQX	2JQY
2JQZ	2JR0	2JR1	2JR3	2JR5	2JR8	2JRA	2JRB
2JRF	2JRH	2JRM	2JRO	2JRR	2JRT	2JRV	2JRW
2.JR7	2JS1	2.153	2.185	2.159	2.ISN	2JSP	2.155
2.ISS B	2.ISW	2.15X	2.ISY	2.IT1	2.ITA	2.ITC	2.ITD
2.ITE	2.ITK	2.ITM	2.1TO	2.ITV	2.1TX	2.ITY	2.11.1
21115	2 11 14	2 II IB	2110	21115	2111G	2111	2001
2000	2007	2000	2000	2001	2000	20011	2001
2000	2300	2000	2001	2303	2001	202	2372
2372		2005	200	2377	2,1 \/\		
			ZJVG				2370
			23003	23000	ZJVVE	ZJVVG	
ZJVVK	ZJVVIN	ZJVVP	ZJVV Y	ZJXU	ZJX3	ZJX5	2JX8
2JXD	2JXF	2JXG	ZJXJ	2JXP	2JXI	2JXU	2JXVV
2JY0	2JY5	2JY9	2JYA	2JYB	2JYL	2JYN	2JYO
2JYP	2JYS	2JYT	2JZ0	2JZ1	2JZ2	2JZ4	2JZ5
2JZ6	2JZ7	2JZA	2JZB	2JZB_B	2JZC	2JZD	2JZM
2JZN	2JZN_C	2JZT	2JZX	2JZY	2K02	2K06	2K07
2K0L	2K0M	2K0N	2K0Q	2K0S	2K0Z	2K10	2K13
2K14	2K18	2K19	2K1G	2K1L	2K1M	2K1O	2K1S
2K1X	2K21	2K24	2K27	2K29	2K2B	2K2E	2K2J
2K2O	2K2P	2K2R	2K2R B	2K2S	2K2S B	2K2W	2K2X
2K2Y	2K2Z	2K32	2K35	2K36	2K37	2K3A	2K3D

Tabla 2 (coi	ntinuación).						
2K3F	2K3G	2K3I	2K3K	2K3N	2K3O	2K3P	2K3Q
2K3T	2K3W	2K3W B	2K3X	2K40	2K42	2K42 B	2K44
2K47	2K48	2K49	2K4B	2K4F	2K4F	2K4K	2K4M
2K4N	2K40	2K4T	2K4V	2K47	2K50	2651	2K52
21(41)	21(40)	21(41	21(4)	21(42	2K58 B	21(51	21(52
21(34		2100	2K39				
			ZKOJ	ZNON			2100
2K5V	2K5X	2K5X_B	2K6B	2K6G	2K6H	2K6I	2K6L
2K6M	2K6O	2K6P	2K6S	2K6U	2K6U_B	2K6V	2K6W
2K6X	2K72	2K73	2K75	2K76	2K77	2K7I	2K7K
2K7M	2K7N	2K7P	2K7Q	2K7V	2K7Y	2K7Z	2K84
2K85	2K87	2K88	2K89	2K8E	2K8H	2K8I	2K8J
2K8O	2K8P	2K8Q	2K8S	2K8V	2K8X	2K8Y	2K9A
2K9D	2K9F	2K9F B	2K9I	2K9K	2K9L	2K9M	2K9N
2K9O	2K9P	2K9Q	2K9S	2K9U	2K9U B	2K9X	2K9Y
2K97	2KA0	2KA1	2KA3	2KA5	2KA7	2KA9	2KA9 B
2644	2KAC	2KAF		264	2KAV	2KB1	2KB4
2688	2680			2KBG	2KBI		2KBS
			21101	2KC1			2KD5
2600	2KC7	ZNUO					
2KCM	2KCO	2KCT	2KCU	2KCV	ZKCW	ZKCX	2KCY
2KCZ	2KD3	2KD7	2KDC	2KDD	2KDI	2KDK	2KDR
2KDS	2KDV	2KDY	2KE3	2KE4	2KE7	2KEA	2KEB
2KEF	2KEG	2KEL	2KEN	2KEO	2KEP	2KEQ	2KER
2KES	2KEY	2KF2	2KF3	2KFD	2KFE	2KFK	2KFK_B
2KFP	2KFQ	2KFS	2KFV	2KFW	2KG4	2KG5	2KG7
2KG7 B	2KGF	2KGH	2KGJ	2KGL	2KGR	2KGT	2KGU
2KGY	2KH2	2KH2 B	2KHA	2KHC	2KHD	2KHE	2KHG
2KHH	2KHH B	2KHI	2KHJ	2KHK	2KHL	2KHN	2KHO
2KHQ	2KHR	2KHS	2KHS B	2KHT	2KHV	2KHX	2KH7
2KI0	2KI3	2618	2KI9	2614	2KIB	2KIC	
2KIG	2KU	2KIM	2KIO	21/17		2KIV	2KIM
	21(1)	21/11/1	21(10)	21(15			21(10)
			21(10				
2KKC	2KKE	2KKG	2KKL	2KKM			
2KKQ	2KKS	2KKU	2KKV	2KKX	2KKZ	2KL1	2KL2
2KL3	2KL4	2KL5	2KL7	2KLA	2KLB	2KLD	2KLL
2KLN	2KLO	2KLR	2KLU	2KLV	2KLX	2KLZ	2KM1
2KM2	2KM4	2KM6	2KM9	2KMA	2KMC	2KMG	2KML
2KMM	2KMO	2KMS	2KMT	2KMU	2KMW	2KMZ	2KN0
2KN4	2KN6	2KN8	2KNA	2KNC	2KNC_B	2KND	2KNG
2KNH	2KNH_B	2KNI	2KNJ	2KNO	2KNP	2KNQ	2KNR
2KNS	2KNU	2KNZ	2KO1	2KO2	2KO6	2KOB	2KOD
2KOE	2KOG	2KOK	2KOL	2KON	2KOU	2KOY	2KOZ
2KP2	2KP5	2KP6	2KP7	2KPA	2KPE	2KPF	2KPH
2KPJ	2KPK	2KPM	2KPP	2KPQ	2KPT	2KPY	2KP7
2KP7 B	2KO1	2KO2	2605	2K06	2KO8		2KOR
	2KOV	2KQ2	2KR0	2KQ0	2KR6		211011
					21(1)		
				21.50	2109	2009_0	
ZKSE		2636		ZNON	2KSL		ZKSN
ZKSR	ZKSV	ZKSW	2K10	2616	2K17	2K18	2K19
2KTA	2KTC	2KTE	2KTL	2KTM	2KTS	2KTU	2KU1
2KU7	2KUA	2KUB	2KUD	2KUE	2KUF	2KUI	2KUK
2KUM	2KUP	2KUP_B	2KUQ	2KUS	2KUT	2KUX	2KV2
2KV4	2KV5	2KV9	2KVE	2KVI	2KVO	2KVP	2KVR
2KVS	2KVT	2KVV	2KVX	2KVZ	2KW0	2KW1	2KW3

Tabla 2 (co	ntinuación).						
2KW3 C	2KW5	2KW6	2KW7	2KW8	2KW9	2KWA	2KWH
2KWT	2KWX	2KWY	2KWZ	2KX2	2KX4	2KX7	2KXD
2KXE	2KXG	2KXH	2KXH B	2621	2KX.I	2621	2620
2KXO	2KXO B		2KXS	2627	2622	2KXV	21000
21000			211/10	21001			21(15
2119							
			2615				2KZ3
2KZ4	2KZ6	2KZ7	2KZ7_B	2KZ7_C	2KZ8	2KZ9	ZKZA
2KZC	2KZF	2KZG	2KZH	2KZK	2KZN	2KZQ	2KZR
2KZT	2KZT_B	2KZU	2KZU_B	2KZV	2KZW	2KZX	2L01
2L03	2L04	2L05	2L07	2L08	2L09	2L0C	2L0G
2L0J	2L0K	2L0L	2L0N	2L0R	2L0S	2L10	2L14
2L14_B	2L16	2L17	2L1A	2L1I	2L1J	2L1L	2L1L_B
2L1N	2L1P	2L1Q	2L1S	2L1T	2L1X	2L22	2L25
2L26	2L27	2L27 B	2L28	2L2C	2L2D	2L2L	2L2L B
2L2M	2L2N	2L20	2L2Q	2L2R	2L34	2L36	2L37
2L38	2L3D	2L3F	2L3G	2L3I	2L3L	2L3N	2L3O
2L3P	2L3S	2L3T	2L3U	2L3X	2L3Y	2L40	2L42
21.48	21 49	2I 4A	21 4C	21.4F	21.4.1	2I 4M	2I 4N
2140	2L 4R	21 41 1	21.41/	21.4W	21.4X	21 54	21.55
21.57	21.50	21.50	2L-F	21.5G	215G B	21.51	21.51
2L57	2L5A 2L5D	21.50	2L51 2L5P	2L50 2L5T	21.63	21.66	21.67
21.64	21.68	21.60	21.65	21.61	21.6N	21.60	21.60
21.60	21.65	21.611	21.6\/	21.70	21.72	21.72	21.76
	2103					2173	
	2L/A					2L7J	
2L/N	2L/Q			2L/ Y	2181		2L83
2L89	2L8A	2L8B	2L8D	2L8K	2L8L	2L8N	2L85
2L81	2L8V	2L8X	2L8Y	2L91	2L92	2L93	2L95
2L97	2L99	2L9B	2L9B_B	2L9D	2L9F	2L9G	2L9J
2L9L	2L9M	2L9N	2L9R	2L9U	2L9W	2L9Y	2LA3
2LA4	2LA7	2LA8	2LAA	2LAE	2LAG	2LAG_B	2LAH
2LAI	2LAK	2LAT	2LAV	2LB6	2LB7	2LBB	2LBC
2LBF	2LBF_B	2LBG	2LBN	2LBO	2LBW	2LC0	2LC1
2LC2	2LC3	2LC4	2LC6	2LC9	2LCC	2LCH	2LCJ
2LCK	2LCL	2LCM	2LCR	2LCS	2LCS_B	2LCU	2LCV
2LCW	2LCX	2LD3	2LD4	2LD6	2LD7	2LD7_B	2LDE
2LDF	2LDS	2LDU	2LDY	2LE0	2LE1	2LE2	2LE3
2LE7	2LE8	2LE8_B	2LE9	2LE9_B	2LEH	2LEH_B	2LEK
2LEM	2LEN	2LEO	2LEQ	2LER	2LEY	2LEZ	2LF0
2LF2	2LF3	2LF6	2LF8	2LFB	2LFC	2LFE	2LFG
2LFH	2LFI	2LFJ	2LFK	2LFN	2LFP	2LFR	2LFU
2LFV	2LFW	2LFW B	2LG1	2LG4	2LG5	2LGC	2LGE
2LGH	2LGN	2LGO	2LGQ	2LGR	2LGW	2LGX	2LGY
2LGZ	2LH0	2LH9	2LHF	2LHR	2LHS	2LHT	2LHU
2LI5	2LI5 B	2L16	2LIE	2LIF	2LIO	2LIU	2LIX
21 IY	21.17	21.10	21.12	21.16	21.19	2LJB	2LJH
21.11	21.JK	2LJM	21 JP	21 JT	21.10	2L.IV	21.JW
21 K2	21 K4	21 K9	21 KB	21 KC	21 KF	21 KG	21 KI
21 KM	2 KM B	21 KN	21 KP	21 KQ	21 KS	21 KT	21 KY
21 K7	2111	2112	2113	2115	2116	2116 B	2110
211 5	2115	2110	2114	2116	2111	2LL0_D	2110
2118	2111	211.1/	211 8	2117			2LLF 2LM3
2LIN3	2LIN/						
2LNG		2LNJ		2LNK_C	2LNL		2LNS
2LNV	2LNX	2LNY	2LNZ	2100	2L01	2L07	2LOE
2LOH	2LOJ	2LOK	2LOL	2LOM	2LON	2L00	2LOQ

	Tabla 2 (con	tinuación).						
I	2LOR	2LOT	2LOY	2LOZ	2LOZ B	2LP1	2LP4	2LP4 Y
	21 P6	2LPB	2 PB B	21 PD	21 PF	21 PF	21 PK	21 PM
				21.00	21 01	2102	21 03	21.04
	2LQ5	2LQ7	ZLQ8	2LQ9	ZLQB	ZLQG	ZLQJ	2LQL
	2LQM	2LQN	2LQQ	2LQT	2LQV	2LQX	2LQY	2LR1
	2LR1_B	2LR2	2LR3	2LR4	2LR6	2LR7	2LR8	2LRA
	2LRC	2LRD	2LRG	2LRJ	2LRK	2LRK_D	2LRQ	2LRS
I	2LRT	2LRU	2LRV	2LRX	2LS0	2LS1	2LS2	2LS3
	2I S4	2LS6	2I S7	21 58	21 S9	21 SA	2LSE	2LSH
	21.51	21.S.I.B	21.51	2LSM	2L SN	21.50	21.50	2LSR
		2LOU_D	2101		2167	2100		
			2130					
	2L19					ZLII	ZLIJ	ZLIK
	2LTL	2LTP	2LTR	2LTS	2L10	2LU1	2LU2	2LU3
	2LU6	2LU7	2LUD	2LUF	2LUG	2LUH	2LUH_B	2LUI
	2LUM	2LUO	2LUQ	2LUR	2LUS	2LUT	2LUV	2LUW
	2LUZ	2LV4	2LV5	2LVA	2LVC	2LVF	2LVG	2LVL
	2LVN	2LVS	2LVV	2LVW	2LVX	2LW1	2LW3	2LW4
İ	2LW5	2LW6	2LW7	2LW8	2LW9	2LWA	2LWB	2LWC
l	21 WD	21 WF	21 W.I	2I WI	2LWQ	2I.WS	2I WT	2I WU
l	21.W/V	21 W X	21 W/Y	21.W/Z	21 X0	21 X2	21 X4	21 X 5
	21.76							
ł								
	ZLY8	2LY9	ZLYC	ZLYD	ZLYD_B	2LYE		2LYH
	2LYI	2LYJ	2LYV	2LYX	2LYY	2LZ0	2LZ1	2LZ3
	2LZF	2LZI	2LZJ	2LZL	2LZN	2LZO	2LZP	2LZQ
	2M00	2M02	2M03	2M05	2M09	2M0A	2M0B	2M0C
	2M0M	2M0N	2M0Q	2M0R	2M0S	2M0T	2M0V	2M0V_B
	2M0W	2M0Y	2M19	2M1A	2M1B	2M1C	2M1H	2M1J
l	2M1L	2M1M	2M1N	2M1T	2M1U	2M1W	2M1Z	2M20
I	2M25	2M2A	2M2B	2M2D	2M2E	2M2F	2M2I	2M2J
	2M2K	2M2I	2M2Q	2M2T	2M2Y	2M35	2M36	2M37
	2M38	2M3A	2M3D	2M3E	2M3E	2M3 I	2M3K	2M3N
	21030	21/13/	2002	21/13	2M/1 B	211100	2001	21/131
ł		21013 0	210137		21014 I_D 2M41	210145	210140	210147
		21014 V		ZIVIDG			ZIVIOJ	
	2M5N	2M50	2M5S	2M5V	21/15/	2M5X	2M5Y	21/163
	2M64	2M66	2M6A	2M6I	2M6K	2M6O	2M6R	2M61
	2M6U	2M6Y	2M70	2M71	2M72	2M73	2M74	2M76
	2M77	2M78	2M79	2M7E	2M7F	2M7G	2M7K	2M7L
	2M7O	2M7S	2M7T	2M7W	2M7X	2M7Z	2M80	2M83
	2M86	2M86 B	2M88	2M8C	2M8E	2M8F	2M8G	2M8H
ĺ	2M8I	2M8N	2M8R	2M8S	2M8S B	2M8T	2M8W	2M8X
İ	2M94	2M99	2M9H	2M9K	2M9L	2M9M	2M9N	2M9O
l	2M9U	2M9V	2M9X	2MA0	2MA1	2MA2	2MA3	2MA4
	2MA8	2MA9	2MA9 B	2MA9 C	2MAA	2MAB	2MAH	2MA.I
l	2MAI	2MAM	2MAO	2MAR	20000	2111/10	2000	2MAZ
l			20080					
		210109		ZIVICE				
	2MCT	2MCY	2MD0	2MD1	2MD2	2MD3	2MD4	2MD5
	2MD6	2MDA	2MDC	2MDF	2MDJ	2MDK	2MDL	2MDN
	2MDR	2MDT	2MDU	2MDV	2MDW	2MDX	2MDZ	2ME1
	2ME8	2MEK	2MEL	2MEM	2MET	2MEW	2MEX	2MEY
	2MEZ	2MF2	2MF3	2MF4	2MF6	2MF7	2MF9	2MFI
	2MFJ	2MFK	2MFL	2MFN	2MFR	2MFS	2MFV	2MFZ
	2MG1	2MG2	2MGO	2MGQ	2MGR	2MGS	2MGV	2MGX
	2MH1	2MH2	2MH3	2MH9	2MHC	2MHD	2MHE	2MHF

I	Tabla 2 (con	tinuación).						
	2MHG	2MHH	2MHJ	2MHK	2MHL	2MHO	2MHO B	2MHP
	2MHS	2MHV	2MHW	2MHY	2MI1	2MI2	2MI5 _	2MI6
	2MI7	2MID	2MIF	2MIF	2MIG	2MIH	2MII	2MIM
	2MIT	2011	2MIZ	2M 11	2M 12	2M 13	2M 14	2M 16
	21111	21017	21112			2000		21/100
	2MK0	2MK2	2MK3	2MK4	2MK5	21/1/16	2MK9	2MKB
	2MKC	2MKC_B	2MKC_C	2MKF	2MKH	2MKL	2MKR	2MKR_B
l	2MKV	2MKX	2MKY	2MKZ	2ML5	2ML7	2ML8	2ML9
	2MLB	2MLD	2MLG	2MLH	2MLJ	2MLK	2MLO	2MLQ
l	2MLU	2MLW	2MLX	2MLX_B	2MM0	2MM4	2MM5	2MM8
	2MM9	2MMA	2MMA B	2MMB	2MMG	2MMM	2MMP	2MMU
	2MMW	2MMZ	2MN3	2MN4	2MNG	2MNH	2MNI	2MNU
İ	2MNU B	2MNW	2MO0	2MOD	2MOM	2MOQ	2MOU	2MOW
ĺ	2MOW B	2MOX	2MOZ	2MP4	2MP5	2MPB	2MPC	2MPE
ĺ	2MPF	2MPI	2MPN	2MPO	2MPQ	2MPU	2MPV	2MPW
	2MO2	2MO3	2MO4	2MO5	2MOB	2MOC		
	2000	2000		21000	21000			
	210150	ZIVISV	ZIVISVV					
	2MTG	2MTL	2MTN	2MTS	21/11/1	2MTY	2MU0	2MU1
	2MU2	2MU6	2MU7	2MU8	2MUB	2MUE	2MUH	2MUJ
	2MUK	2MUY	2MV0	2MV3	2MV6	2MVB	2MVC	2MVC_B
	2MVF	2MVM	2MVX	2MW1	2MW3	2MW5	2MW9	2MWD
	2MWF	2MWI	2MWL	2MWM	2MWN	2MWN_B	2MWR	2MXG
l	2MXH	2MXR	2MXT	2MY7	2MZ6	2MZD	2MZD_B	2MZY
	2NCM	2NEF	2NLW	2NOU	2NPB	2NPL	2NPU	2NR1
İ	2NRG	2NS4	2NS5	2NVJ	2NWM	2NWT	2NX6	2NX7
l	2NXU	2NZZ	200S	2020	203D	204E	20DC	20FG
	20FQ	20FQ B	20GH	20P7	20PU	20PV	2003	2009
l	200P	20RU	2056	20S6 B	20SR	20T2	2010	20TR
	200	201/6	2000 201/N	2000_0	2021	2072	2P01	2P00
	2001 203M	2010	2011	2000	2072	2027	2000	
l	20 51VI	2011		21 03 20 IU		201	200	
		2000						
		200						
	ZRLG		ZRLJ	ZRLU	ZRLVV			
l	ZRMG	ZRMH	ZRMJ	ZRML		2RMW	ZRN4	2RN7
	2RND	2RNG	2RNK	2RNL	2RNN	2RNO	2RNQ	2RNZ
	2RO0	2RO3	2ROH	2R00	2ROP	2ROQ	2ROV	2ROZ
ļ	2ROZ_B	2RP4	2RP5	2RPA	2RPB	2RPI	2RPJ	2RPS
ļ	2RPW	2RQ0	2RQ1	2RQ2	2RQ5	2RQ6	2RQ8	2RQE
	2RQG	2RQG_B	2RQL	2RQM	2RQP	2RQQ	2RQR	2RQX
l	2RR0	2RR6	2RR7	2RR8	2RRD	2RRE	2RRF	2RRI
	2RRK	2RRL	2RRN	2RRS	2RRU	2RS6	2RSC	2RSG
	2RSM	2RSO	2RST	2RSV	2RSW	2RSX	2RT3	2RT4
l	2RT6	2RTS	2RTT	2RTU	2RTX	2RTY	2RTZ	2RU0
	2RU1	2RU5	2RU8	2RU9	2RUC	2RUH	2RUM	2RUN
	2RUO	2RUP	2UWQ	2UZ5	2V0E	2V0F	2V1N	2V37
	2V67	2V9H	2VDA	2VDA B	2VIK	2VKC	2VXD	2VXF
	2\/XE	2W0N	2\//911	2WBR	2WCY	2WGN	2WG0	2WH9
	2WNM	2W/XC	2X43	2X8N	2XA6	2201	22100	2245
	2 1 1	211/0	2775	2/19	27/10	2701	22110	2710
		2/103	2775	2113	2140	2191		
				2100				
								2150
	2153	2154	ZYSR	2151	2482	2110	2118	2110
	2YTV	2YTW	2YU0	2YU3	2YUA	2YUD	2YUE	2YUF
I	2YUG	2YUH	2YUJ	2YUK	2YUM	2YW5	2YZ0	2Z4D

Tabla 2 (co	ntinuación).						
2Z5V	2ZAJ	3AIT	3CRD	3HSF	3LRI	3MRA	3MSP
3NCM	3NLA	3SAK	3ZBE	3ZD0	3ZEH	3ZG4	3ZGK
3ZPD	3ZPM	3ZQD	3ZUA	4A1M	4A53	4A54	4A54_B
4A5V	4AAI	4AKA	4AQZ	4AR0	4ASV	4AXP	4B19
4B2R	4B2U	4B2V	4B6V	4BF8	4BHP	4BIT	4BMF
4BWH	4BXL	4BXL_C	4BXU	4BXU_B	4C26	4CA9	4CH0
4CPG	4CRP	4CSQ	4ULL	4UQT	4UQT_B	4UZM	4UZW
4UZX	4V10	7HSC	8TFV				

Tabla 3. Valores de energía asociados a los parámetros establecidos en los potenciales H-ERX y H-ERMN. (a) la distancia hidrógeno-oxígeno, (b) el ángulo al átomo de hidrógeno, (c) el ángulo al átomo de oxígeno (d) el ángulo diedro que corresponde a la rotación del enlace carbono-oxígeno, (e) el ángulo diedro que corresponde a la rotación del puente de hidrógeno y (f) el ángulo diedro que corresponde a la rotación del enlace hidrógeno-nitrógeno.

			Energía (u.a.)			
Inte	rvalo de dista (Å)	ancia	H-ERX (a)	H-ERMN (a)		
0.00	-	1.00	6.0000	6.0000		
1.00	-	1.05	6.0000	6.0000		
1.05	-	1.10	6.0000	6.0000		
1.10	-	1.15	6.0000	6.0000		
1.15	-	1.20	6.0000	6.0000		
1.20	-	1.25	6.0000	6.0000		
1.25	-	1.30	6.0000	5.1695		
1.30	-	1.35	6.0000	4.4958		
1.35	-	1.40	6.0000	3.9058		
1.40	-	1.45	6.0000	3.1701		
1.45	-	1.50	6.0000	2.5443		
1.50	-	1.55	6.0000	1.8332		
1.55	-	1.60	6.0000	1.3526		
1.60	-	1.65	5.1706	0.8495		
1.65	-	1.70	4.4774	0.4544		
1.70	-	1.75	2.6857	0.0319		
1.75	-	1.80	0.6062	-0.6273		
1.80	-	1.85	-0.7563	-0.7904		
1.85	-	1.90	-1.4252	-0.9150		
1.90	-	1.95	-1.7983	-1.0257		
1.95	-	2.00	-1.8187	-1.1221		
2.00	-	2.05	-1.6890	-1.1236		
2.05	-	2.10	-1.4045	-1.0988		
2.10	-	2.15	-1.1393	-0.9899		
2.15	-	2.20	-0.9431	-0.9869		
2.20	-	2.25	-0.7348	-0.9469		
2.25	-	2.30	-0.7293	-1.0210		
2.30	-	2.35	-0.6816	-1.1032		
2.35	-	2.40	-0.7722	-1.1204		
2.40	-	2.45	-0.7774	-1.1615		
2.45	-	2.50	-0.7510	-1.2399		
2.50	-	2.55	-0.9800	-1.2886		
2.55	-	2.60	-0.8909	-1.3311		

Tabla 3 (continuación).									
				Energí					
Intervalo de ángulo (grados)		H-ERX (b)	H-ERMN (b)	H-ERX (c)	H-ERMN (c)				
0	-	5	6.0000	6.0000	6.0000	6.0000			
5	-	10	6.0000	6.0000	6.0000	6.0000			
10	-	15	6.0000	6.0000	6.0000	6.0000			
15	-	20	6.0000	6.0000	6.0000	6.0000			
20	-	25	6.0000	6.0000	6.0000	6.0000			
25	-	30	6.0000	6.0000	6.0000	6.0000			
30	-	35	6.0000	6.0000	6.0000	6.0000			
35	-	40	6.0000	6.0000	6.0000	6.0000			
40	-	45	6.0000	6.0000	6.0000	6.0000			
45	-	50	6.0000	6.0000	6.0000	6.0000			
50	-	55	6.0000	6.0000	6.0000	6.0000			
55	-	60	6.0000	6.0000	6.0000	4.0078			
60	-	65	6.0000	6.0000	6.0000	1.5306			
65	-	70	6.0000	5.6173	4.4397	1.1282			
70	-	75	6.0000	4.5758	2.9734	1.3325			
75	-	80	6.0000	2.5648	0.0959	0.3711			
80	-	85	2.3603	1.4270	-1.2740	-1.2027			
85	-	90	0.3622	0.2049	-0.4123	-0.8098			
90	-	95	-0.5709	-0.4967	0.6785	-0.2291			
95	-	100	-0.7825	-0.8418	0.1402	-0.3599			
100	-	105	-0.0564	-0.0867	0.1311	-0.3178			
105	-	110	1.3794	0.2690	-0.0712	-0.2299			
110	-	115	0.6330	-0.1055	-0.0414	-0.2247			
115	-	120	0.5547	-0.3457	-0.1036	-0.2613			
120	-	125	0.5616	-0.4121	0.0959	-0.2026			
125	-	130	0.4631	-0.4606	0.1492	-0.3101			
130	-	135	0.2301	-0.5861	-0.0527	-0.5724			
135	-	140	-0.0262	-0.7478	-0.6396	-0.8287			
140	-	145	-0.2847	-0.9520	-1.2596	-1.0377			
145	-	150	-0.7270	-1.0985	-1.5982	-1.1215			
150	-	155	-1.3171	-1.2059	-1.6045	-1.0362			
155	-	160	-1.7601	-1.2234	-1.2069	-0.8110			
160	-	165	-1.8281	-1.1256	-0.5043	-0.4755			
165	-	170	-1.4399	-0.8214	0.2602	-0.0383			
170	-	175	-0.6662	-0.3165	0.9232	0.5431			
175	-	180	0.7261	0.8088	2.0726	1.6438			

Tabla 3 (continuación).										
				Energía (u.a.)						
Intervalo de ángulo diedro (grados)		H-ERX (d)	H-ERMN (d)	H-ERX (e)	H-ERMN (e)	H-ERX (f)	H-ERMN (f)			
-180	-	-170	1.0840	0.6644	-0.5485	-0.9987	0.7508	1.0851		
-170	-	-160	0.7847	0.3505	-0.7174	-1.1485	0.9534	1.0438		
-160	-	-150	0.5616	-0.0494	-0.6981	-0.8592	0.8844	0.9437		
-150	-	-140	-0.2143	-0.4193	0.0249	-0.2764	0.7934	0.8329		
-140	-	-130	-0.8849	-0.7448	0.4694	0.2069	0.8939	0.6819		
-130	-	-120	-1.2882	-0.9858	0.8198	0.5220	1.0610	0.4437		
-120	-	-110	-1.2674	-1.1923	0.8844	0.7610	0.9844	0.1114		
-110	-	-100	-1.0724	-1.0021	0.9232	0.9854	1.0840	0.5964		
-100	-	-90	-1.0506	-1.2420	1.0057	1.1092	1.1316	0.5669		
-90	-	-80	-0.4481	-1.0677	1.1316	1.2468	0.9331	0.0653		
-80	-	-70	0.7180	-0.0432	1.3042	1.3898	-0.3450	-0.6895		
-70	-	-60	0.8655	0.6133	1.4112	1.4169	-0.2237	-0.7460		
-60	-	-50	0.6941	0.8326	1.6263	1.4213	0.0049	-0.2260		
-50	-	-40	0.7508	0.9297	1.6465	1.3412	-0.3394	-0.2419		
-40	-	-30	0.5210	0.9733	1.4274	1.1712	-0.7000	-0.5581		
-30	-	-20	0.4821	0.8263	1.2208	0.8452	-0.8751	-0.5806		
-20	-	-10	0.3234	0.3810	0.4025	0.4085	-0.4506	-0.3270		
-10	-	0	-0.2906	-0.1162	-0.3110	0.0049	-0.0452	0.0335		
0	-	10	-0.6981	-0.4189	-0.5598	-0.2611	0.4203	0.3430		
10	-	20	-0.7606	-0.4498	-0.4123	-0.3006	0.7100	0.4908		
20	-	30	-0.5439	-0.1445	0.0089	-0.0759	0.5144	0.5274		
30	-	40	0.1134	0.4425	0.8021	0.3460	0.3509	0.3824		
40	-	50	0.6257	0.9168	1.1689	0.9574	0.2808	0.1275		
50	-	60	0.8378	0.8866	1.5493	1.3540	-0.1621	-0.1431		
60	-	70	1.1689	0.8505	1.3639	1.3115	-0.3366	-0.3389		
70	-	80	1.1689	0.9534	1.1689	1.2384	-0.7842	-0.4950		
80	-	90	1.1689	0.9070	0.8378	1.1333	-0.9232	-0.5706		
90	-	100	1.0057	0.9036	0.8749	0.9359	-0.8882	-0.5756		
100	-	110	1.0165	0.9813	0.5896	0.7973	-0.5439	-0.4620		
110	-	120	1.0385	0.7578	0.4203	0.5315	-0.1487	-0.3523		
120	-	130	1.1945	1.1032	0.2450	0.2433	-0.0338	-0.1205		
130	-	140	1.5680	1.2833	-0.2547	-0.1731	0.0873	0.2492		
140	-	150	1.4953	1.3389	-0.9984	-0.6334	0.4757	0.5518		
150	-	160	1.3952	1.3065	-1.5118	-1.0332	0.5967	0.8225		
160	-	170	1.4112	1.1586	-1.3472	-1.1864	0.7020	0.9629		
170	-	180	1.1316	0.9737	-0.7788	-1.0517	0.5411	1.0833		

ANEXO - "DESARROLLO DE UN POTENCIAL ESTADÍSTICO BASADO EN EL ANÁLISIS DE LOS PUENTES DE HIDRÓGENO PRESENTES EN PROTEÍNAS"

Figura 2. Componentes de energía asociados a los parámetros establecidos en los potenciales H-ERX y H-ERMN. (a) la distancia hidrógeno-oxígeno, (b) el ángulo al átomo de hidrógeno, (c) el ángulo al átomo de oxígeno (d) el ángulo diedro que corresponde a la rotación del enlace carbono-oxígeno, (e) el ángulo diedro que corresponde a la rotación del puente de hidrógeno y (f) el ángulo diedro que corresponde a la rotación del enlace hidrógeno-nitrógeno.

Figura 3. Modelos identificados como estructura nativa por el potencial H-ERX. El número debajo del modelo indica su desviación cuadrática media con respecto a la estructura nativa.

Figura 4. Modelos identificados como estructura nativa por el potencial H-ERMN. El número debajo del modelo indica su desviación cuadrática media con respecto a la estructura nativa.

Tabla 4. Códigos PDB de las 1981 proteínas que formaron parte del grupo ERX*. La letra que se encuentra frente al código PDB es el identificador de la cadena estudiada en el caso de que este fuese distinto de "A".

1110	4 4 0 4	4 4 41 1	4 4 71 1	4450	4401	1100	4 4 11
TATZ	TAJA	1A4U	1A/U	TAE9	TAGJ	TAGQ	TAIL
1AK1	1AKO	1AMX	1ATZ	1AYI	1B2P	1B65	1BGF
1BHE	1B I7	1RK7				1BVR	1R7/
	1007				IDQU		
1C02	1C3C	1C3P	1C44	1C48	1CEM	1CEO	1CEX
1CHD	1CJD	1003	1CQY	1CRW G	1CWY	1CY9	1D4T
	1000	1000			1000	1010	
1D41_B	1DD3	1DD3_C	1DEU	1DF4	1DQ0	1015	1DUN
1DVO	1E15	1E4F T	1E5M	1EDG	1EDQ	1EG4	1EG4 P
1516		1507	1595	1ETY			1570
			1200				
1F21	1F21_B	1⊢41	1F46	1F4Q	1F5Z	1F60	1F60_B
1FAZ	1FCG	1FCQ	1FE6	1FL0	1FO9	1FPO	1FSF
1FTR	1005	1620	1C/F	1061	1684	1680	100\/
	1000	1020		1001		1000	1030
IG9W_B	IGAK	IGCU	IGKO	IGO3_E	1GO3_F	IGOU	IGPP
1GQN	1GQZ	1GS9	1GSM	1GSO	1GVJ	1GXN	1GY7
1GYU	1GYV	1H03 P	1H13	1H1N	1H4A X	1H4Y	1H6K
	1010		41100	411845			4107
			1199	CIVINI			1107
1 1J	1I2T	117K	1I9Y	1IDP	1IGQ	1IHJ	1IHJ_C
1IIB	1IJB	11.JQ	1I.IY	1INI	1IRQ	11U1	111.18
1 11	1 102	1 107	1 12 A	1 1/0	1.170	1 102	1100
IJII	1323	IJZ/	IJ3A	1340	1376	IJD3	IJCD
1JDH_B	1JFL	1JHS	1JVW	1JY2_N	1JY2_0	1JY2_P	1JYH
1K1B	1K30	1K6A	1KHI	1KLX	1KMT	1KMZ	1KNG
	1KDT	11/10	11/110				1KVE D
		11(19					
1KZF	1KZQ	1L2H	1L3K	1L6P	1L/A	1L/R	1LBW
1LM5	1LN4	1LOU	1LTU	1LU4	1LU9	1LZL	1M0Z
1M17	1M3S	1M45	1M45 B	11/14/	1MBY	1ME7	1MG6
							111100
TMG7	TMHN	TIMIX	TIMJS	1IVIK4	TIMKB	TIMKK	TIMIN8
1MR7	1MS3	1MSI	1MTP	1MTP_B	1MTZ	1MY7	1MZL
1N1.I	1N1.L B	1N7O	1N93 X	1NC5	1NG2	1NG5	1NG6
11110		11000	11100_7		1 1 1 1 1		10014/
11034		INUG			INVVA		10000
108X	109Z	10A4	10AI	10AI_B	10BQ	10CK	10GH
10GM X	1017	10JQ	10JX	10K7	10K7 C	10NR	10QW
10R7 C	10TK	1011	10W1	10X3	10X.	1079	1P3C
1011	1011	1001	1000	1000	10/10	1020	
	1991		IPCF	IPDO	IPE9	IPEF	IPEV
1PGV	1PM4	1PQE	1PXZ	1PZC	1Q5Z	1Q8I	1QB5_D
1QCX	1QNT	1Q07	1QTO	1QU1	1QWD	1QWK	1QYA
1071	107N	1R0M	1R0\/	1 R 1T	1220	1R57	1R62
		1000		1000	1020	1000	
1R//	IR/J	1880	IK80_B	TR9H	1890	TRC9	TREG_X
1RFY	1RGX	1RI6	1RJ1	1RL0	1RW0	1RWR	1RWZ
1S2T	1SAU	1SDO	1SGV	1SGZ	1SH8	1SJY	1SLL
1944	19NT	1905	19110	19111	1T06	1T1D	1111
	10111			1000	4750		47711
1110	1121	113Y	114D	1150	115R	116F	117H
1TC5	1TCZ	1TGR	1TH7	1TJ6	1TJE	1TJV	1TK1
1TKI	1TKS	1TLU	1TM2	1TP5	1TP5 B	1TP6	1TQJ
1111		1100	1T\/N	1110	17\//1	1110	1771/
TIUA	TIOD	1100		11009		1110	1120
1007	1009	101S	1U2K	1053	1079	1UAI	1UAJ
1UAN	1UEB	1UEK	1UFB	1UGN	1UGQ	1UGQ B	1UH9
11111		111111	11118	111 IN		11 II K	11 II N
		1010	1000	1001	1000	1001	
IULR	TUNP	TUUK	1001	IUSE	1056	IUSM	IUXZ
1UZ3	1V05	1V0S	1V1H	1V6T	1V8E	1V8H	1V8I
1VAV	1VAX	1VC1	1VDH	1VE2	1VF8	1VH5	1VJK
11/15	1\/KA	1\/1.2	1\/L /			11/03	1\/R6
1000							
10030	10041	1W5R	1W/B	1VV8Z	IWDJ	10019	IWKA
1WKO	1WKU	1WKX	1WLG	1WLT	1WLY	1WLZ	1WMH
1WMH B	1WMW	1WNH	1WNY	1WOH	1WOS	1WOU	1WT.I
1\//10	1\W\\/H	1WYC	1W/73	1X13	1X10	1X21	1256

Tabla 4 (continuación).								
1X6Q	1X91	1XDZ	1XFK	1XIX	1XKR	1XLY	1XQO	
1XSZ	1XTE	1XX2	1XXO	1XYF	1Y2T	1Y7Y	1Y9U	
1YAC	1YBI		1YDL B	1YGA	1YHH	1YIF	1Y.IP	
1745	17N3		1101_0	1705				
1/11	1/10		1705	111.5		1//71		
	1704	1705_A		1700				
				1290				
1ZEQ_X	1ZHV	1ZKR	1ZMM	1ZRS	1ZVA	1ZVB	1ZVG	
1ZVT	1ZXT	1ZZG	2A10	2A35	2A4A	2A6Z	2A8F	
2AAG	2AHF	2AHN	2AKA	2AKA_B	2AKA_L	2AN1	2AO9	
2B0A	2B0J	2B1E	2B1K	2B1L	2B2H	2B3M	2B8I	
2B9V	2BAY	2BCE	2BCM B	2BF5	2BJQ	2BK8	2BN3	
2BN3 B	2BOE X	2BPT	2BPT B	2BQX	2BT2	2BV9	2BZV	
2C2X	2C46	2C61	2CAR	2CG7	2CGH	2CGQ	2CHC	
2013	2010	2C.I.I	2CKX	2CL3	2003	2COV D	20115	
2010	2CWC	2CWI	2CWR	2CWX	2005	2CXC	2D4P	
2000	20110	2D5W/ C	2D5W/D	2068	2070	20X0	2D88	
2000	2000	2030_0	2001/	2000	2073	2002		
	2059		20010	2031		2013		
	2EU1	2E01	2E10	2E3D				
2E/A	2E7V	2E8F	2E8G	2E9Y	ZEBB	ZEBE	ZECE	
2ECR	2EEN	2EEY	2EGJ	2EGU	2EHG	2EIF	2EJ8	
2EKC	2ENG	2EPI	2ERF	2ERW	2ETX	2EX0	2F1N	
2F1S	2F51	2F5G	2F6E	2F6L	2FB5	2FBN	2FBQ	
2FC3	2FD5	2FE7	2FEZ	2FH7	2FHZ	2FHZ_B	2FI9	
2FJ8	2FJR	2FJZ	2FK9	2FL4	2FL7	2FLU_P	2FLU_X	
2FN9	2FQ3	2FR2	2FRG P	2FUK	2FVH	2FW7	2FXQ	
2FZP	2G30	2G30 P	2G30 S	2G40	2G5X	2G69	2G7O	
2GAI	2GAS	2GDG	2GEC	2GKG	2GKT I	2GMY	2GOM	
2600	2GQV	2GR8	2GRR	2GRR B	2GT1	2GTD	2GUB	
2686	2674	2676	2H00	2H2R	2H27	2H3I	2H70	
2H8E	2021	2020		2HE7	21122	2HLR	2111 0	
		2004	2000		21137	211213		
			2110	2110101	211007	21113		
			2149			2191		
	2106		ZIGD			211/19		
ZIPR	21Q5	ZIRU	2101	2105				
2149	2126	2J2J	2J5Y	2J6B	2J/1	2J/V	2J8B	
2J9W	2JCP	2JEM	2JJF	2JK9	2JK9_B	2JLJ	2LIS	
2NML	2NNU	2NNU_B	2NPT_B	2NRR	2NV0	2NWD_X	2NX2	
2NX4	2NXC	2NYC	202K	204X	2O4X_B	2O5U	206X	
2070	207M	209V	2O9V_B	20CH	20CT	20EB	20EI	
20EI_B	20F3	20G3	20G4	20GQ	20HW	20KT	20LX	
20MP	20MZ	20MZ_B	20N9	20NW_X	20NX	20R2	20U1	
20VA	20Y7	2P1G	2P2O	2P3E	2P3W	2P4H_X	2P4X	
2P52	2P5D	2P5K	2P65	2P6O	2PA6	2PB7	2PBO	
2PBQ	2PE3	2PET	2PFB	2PGE	2PLC	2PN8	2PND	
2PO4	2PPO	2PSF	2PST X	2PTH	2PV2	2PV2 E	2Q5X	
2080	208R F	20.91/	20BW	20BW B	2QEV	20HT	20IY	
201Y C	20N4	2001	20.PW	2005	2014	20VK	20XV	
20XV B	2R0F	2R2V	2860	28611	2R77	2RB8	28CI	
	2001		2000	200		2003	2001	
			21113	21/175	21(30	21(1(3)	21(13)	
		20101	2010	2015	$2 \sqrt{6}$			
	ZVGA		2000			ZVII_B		
20200	2748	2000G		ZWIR	20010	ZVVZA	2VV4E	
2W61	2W6A	2WB3	2WEV	2WEV_B	2WFW	2VVJ5	2WMF	
2WN4	2WNK	2WP7	2WPG	2WUJ	2WUX	2WWE	2WWX	
2WWX_B	2WZ9	2X1Q	2X35	2X36	2X3M	2X4J	2X4L	
2X5P	2X5Y	2X8X_X	2XBG	2XF7	2XHF	2XJ4	2XMZ	
2XPP	2XPP B	2XTY	2XWS	2XWX	2XX6	2XXN	2XXN B	

Tabla 4 (continuación).								
2XZE	2XZE_Q	2Y0T	2Y2C	2Y2Z	2Y32	2Y3K	2Y3V	
2Y3W	2Y72	2Y7S	2Y7Y	2Y9F	2YGS	2YLB	2YLE	
2YLE B	2YMI	2YMU	2YNY	2Y\/A	2YVS	2777	270M	
270T	2714	271E	2737	2743	2784	2747	27CN	
2700	2752	221L 27EV	2701	22-5		2705	2705	
2200			22.01	2230	2230_0	2200		
				JAZZ	3A4C	3A34	3A37	
3A5P	3A/L	3AAP	3ABD	3ABD_X	3ADO	3AD Y	3AEH	
3AFF	3AG7	3AGY	3AGY_C	3AKJ	3AMC	3APQ	3AQ2	
3AQY	3AU4	3AU4_B	3AUB	3B02	3B4D	3B7H	3B8F	
3BA1	3BB7	3BBC	3BCI	3BF7	3BHS	3BOI	3BOK	
3BOR	3BQE	3BQO	3BQO_B	3BQQ_C	3BS4	3BS4_B	3BZG	
3BZT	3BZZ	3BZZ B	3C1D	3C4S	3C57	3C5V	3C8I	
3C8P	3C8X	3CA7	3CAI	3CE7	3CGI	3CI9	3CIV	
3CJ1	3CJW	3CKF	3CL6	3CNU	3CO1	3000	3COU	
3COT	3CRM	3CSG	3CSP	3CSR	3CT6	3CTB	3CWV	
30X2	3CVP B	3077	3D1B	3024	3070	30012	3040	
3DAC M		3022			3050	3001	3061	
		2DKM				2049	3003	
SDGP						301013		
3DQG	JURF	JURF_B	3DRZ	3054	3054_1	3DSH		
3DVV V	3DXE	3DXE_B	3E17	3E1R	3E1R_C	3E21	3E3M	
3E4H	3E57	3E/H	3E7P	3E/R_L	3E96	3ECH	3ECH_C	
3ECY	3EFY	3EG4	3EJ9	3EJ9_B	3EJF	3EJG	3EMF	
3EMI	3ENB	3ENU	3EO5	3EOI	3ER6	3ERB	3ERJ	
3ETZ	3EW1	3EWI	3EXR	3EXV	3EYE	3F2G	3F6F	
3FAU	3FB9	3FFV	3FG7	3FH2	3FKE	3FLG	3FN7	
3FPN	3FPN B	3FPO	3FRR	3FSO	3FTD	3FTJ	3FTK	
3FTL	3FVA	3FX7	3FY3	3FZE	3G19	3G19 C	3G1S	
3G39	3G40	3G98	3GAX	3GD0	3GDM	3GGY	3GMG	
3GMS	3GPG	3GRF	3GRH	3GSZ	3GV3	3GW3	3H04	
3H2G	3451	3461	3440	SHAK	3HC7	3404	SHDE	
3455	3455 B	3450	3460	3007	3007	31104	3HKM	
			2007	2001		2002		
3153	3858	3H58_P			3100	3IZZ_B	3140	
3185			3ID4		3ILC	JILS		
SIOY	3IPF	311Y	3100	3105	3100		3IXR	
3JRR	3JSN	3JSY	3JU0	3JXG	3JXO	3JZZ	3K1H	
3K3V	3K6U	3K6Y	3K86	3K8U	3K8W	3KBE	3KCI	
3KCW	3KDG	3KF6	3KF6_B	3KG4	3KG9	3KGK	3KH8	
3KJT	3KP8	3KQ5	3KSN	3KT2	3KT9	3KUG	3KZD	
3L18	3L32	3L3B	3L40	3L78	3L7O	3L8U	3L9U	
3LAA	3LE4	3LET	3LFG	3LFH	3LFJ	3LFP	3LIG	
3LLB	3LOZ	3LPZ	3LS0	3LTJ	3LWG	3LWT X	3LY7	
3M5B	3M5R	3M66	3M6N	3M7D	3M8J	3M91	3M91 B	
3M9J	3M9Q	3MAB	3MD4	3MD5	3ME8	3MEW	3MGK	
3MGM	3ML3	3MM4	3MQ0	3MRF B	3MRF P	3MX7	3N0K	
3N11	3N2T	3N3E	3N77		3NDD B	3NE0	3NFI	
3NEL E	SNET	3NGG					3NDH B	
			31150		20100		3000	
3010	3017	302	3020 0	3048	3055	3050	3071	
2010	2000	2000		3040	303E	303F	2010	
3081	3090	30BQ	JOBQ_B	3066	3019	3014	3019	
JONH	JONJ	3058	3017	32100	3P4L	3261	3281	
3P9A	3PBN	3PC6	3PD7	3PG4	3PH9	3PHG	3PHS	
3PID	3PIW	3PKV	3PM2	3PNO	3PS0	3PST	3PTE	
3PTL	3PUB	3PVE	3PXM	3PZ9	3PZF	3PZZ	3Q0H	
3Q1C	3Q49_B	3Q49_C	3Q6B	3Q6S	3Q6S_E	3Q8T	3Q9D	
3Q9V	3QAS B	3QBP	3QC7	3QF2	3QH4	3QHP	3QIT	
3QMQ	3QNE	3QSQ	3QT5	3QUW	3QWG	3QYJ	3R1W	
Tabla 4 (co	ntinuación).							
-------------	--------------	---------	--------------	---------	---------	----------	--------	--
3R42	3R42 B	3R4Y	3R87	3RDJ	3RDY	3RFF	3RFI	
3RGI	3RGR	3R.IP	3RJS	3RK6	3RKC	3RLS	3RMH	
3RNO	3RNO B	3RDD	3800	3RRS	3PT2	381/1		
		2000		2000	2000			
JRZY	350A	3560	3504	3508	3565	3584	3581	
3SIH	3SK9	3SO6	3SO6_Q	3SQF	3SR3	3SRI	3SRI_B	
3SSW_R	3SUK	3SUM	3SWY	3SXU	3SXU_B	3SXU_C	3SXW	
3SXY	3SZ7	3SZH	3T0H	3T30 B	3T3K	3T43	3T47	
3T4C	3T7H	3TC2	3TCH	3TCO	3TCV	3TDN	3TE8	
STEE	3TC7	STID	3TOW	3703	3704	STOT	37113	
	2107			3153		3101		
3103_B	STUA	3171	31VI_B	3172	3000	3028	3028_B	
3028_C	303B	3080	3UAH	3UC9	3UCI	3UCS	3UCS_C	
3UEK	3UFB	3UGU	3UID	3UN7	3UR6	3UR8	3US6	
3UTK	3UTM	3UTM C	3UV0	3UV9	3V1Q	3V32 B	3V46	
3V4G	3V55	3V6G	3VBA	3VBC	3VDJ	3VDM	3VFI	
3VHO	31/.18	31/.17	3VK0	3VI 1	3VN0	3VN5	31/00	
3\/P7	3\/01	31/58	3\/\/M	3\/\/\/	3\/70 B	3\/70	3\/7H	
20012		214/011	210/04	214/41			211	
3004Q	30090	30090	SVVAT	SVVAI	SVVDF	SVVFI	SWHU	
3WHR	3WHR_B	30010	3VVJE	3001011	3WINI_B	30025	300 P8	
3WP9	3WPQ	3WVZ	3WWF	3WX4	3WYD	3ZBD	3ZCD	
3ZHI	3ZIB	3ZIH	3ZIT	3ZK0	3ZLC	3ZO8	3ZRD	
3ZRX	3ZSL	3ZSS	3ZVQ	3ZVQ B	3ZXY	3ZYL	3ZZY	
3ZZY C	4A5U	4A5U B	4A8X	4A8X B	4A8X C	4ACO	4AD1	
44F7	44FV	4AGH	4AGK	44K9	4AM1	44NN	440M	
		44.00	4/ 77	4000		4P6C	4000	
	47.01	4410	4822			4000	4001	
4889	4891	4B9G	4B9I	4BFH	4BI8	4BI8_B	4BK6	
4BL7	4BL7_B	4BMW	4BOU	4B19	4B19_C	4BVK	4BXP	
4C2E	4C5E_E	4C8X	4CAY	4CAY_B	4CAY_C	4CBE	4CFI	
4CIL	4CKK	4CP6	4CQ4	4CRH	4CVD	4CYA	4CZ5	
4CZI	4D0K	4D0K B	4D5R	4D8L	4D9O	4D9S	4DAM	
4DB6	4DD5	4DDP	4DEX	4DEX B	4DJG	4DK2	4DLH	
4DM7		4DOT	4007		4DT4	4DYO	4F1P	
4000		4601	40Q7 4E5D	1001				
4EZA	4620			4203	4696	4090	460	
4EG1	4EJQ	4EJR	4EKX_B	4EL0	4ELL	4ELO		
4EO0	4EQ6	4EQA	4EQA_C	4EQY	4ERN	4ERY	4ERY_D	
4ES1	4ES9	4EVM	4EYC	4EZA	4F01	4F3J	4F80	
4F8K	4FBR	4FCC	4FD6	4FD9	4FGQ	4FH3	4FHR	
4FHR B	4FML	4FNV	4FQN	4FW1	4FZO	4G08	4G2E	
4G3N	4G3O	4G54	4G5X	4G6C	4G6T	4G6T B	4G7X	
4G7X B	4G94 B	4G9M	4GA0	4GCO	4GDO	4GEI	4GE3	
4GE3 B	AGEK	4660	4GLE	4GMO	4GOM		4G\/B	
							1000	
					4095		4003	
		4003	4005	4HJP			4052	
4H11	4HYE	4HZA	4121	4161	416X	4184	4IBN	
4IC4	4ID3	4IDH	4IGI	4IHE	4IKN	4IKN_B	4IL7	
4ILF	4ILH	4ILH_B	4ILY	4IMH	4INK	4INO	4IPC	
4IPV	4IQH	4IQM	4IRF	4IRG	4IUJ	4IZB	4IZO	
4J0U	4J0W	4J11	4J2C	4J2C B	4J2P	4J4R	4J5O	
4.150	4.178	4.178 B	4.I7A	4.187	4.185	4.18S B	4.1AK	
4.100	4.IG2	4.IHN	4.11F	4.IIF B	4.115	4.1.10	4.IM7	
	4 1012	4106		400	4105	4 1714		
4 1 1 1 1	4JNU	4000	4JU6_1	4170	4JQF	4J I IVI	4300	
43000	4JYP	4JZ5	4JZC	4JZQ	4K02	4K12	4K12_B	
4K5A	4K5A_B	4K5Q	4K82	4K8L	4K8Y	4K8Y_B	4KDU	
4KEF	4KG4	4KN8	4KT6	4KT6_B	4KTI	4KUE	4KV2	
4L00	4L0N	4L4Q	4L4Y	4L6W	4L9E	4L9R	4LA5	
4LD8	4LDM	4LE3	4LEB	4LEB B	4LF0	4LFQ	4LJ1	
41 KU	4110	411 D B	4110	4110 B	4LN2	41 N2 B	4I TT	
4M1F	4M1H	4M23	4M67	4M6R	4M6B C	4M85	4M91	

Tabla 4 (cor	ntinuación).						
4M91_B	4M98	4M9K	4M9P	4ME2	4MFI	4MGP	4MGS
4MH4	4MHP	4MKX	4ML1	4MLS	4MLS_B	4MNO	4MOA
4MOD	4MQ3	4MQV	4MQV_B	4MT8	4MUO	4MUP	4MYL
4MYZ	4MZ2	4MZ6	4MZ6_E	4MZD	4MZZ	4N1D	4N1L
4N30	4N3X	4N5Q	4N6L	4N6T	4N77	4N7F	4N8K
4NAC	4NCU	4NFB	4NG0	4NI6	4NIO	4NIP	4NJ8
4NMI	4NP8	4NPF_Y	4NPN	4NUU	4NUU_C	4NZZ	400Q
405S	406G	407Q	40D6	40GD	40HJ	40IX	40NK
40Q1	40QZ	40RD	4OS3	40SN	40UH	40UQ	40WI
4OX6	40X8	40ZW	40ZX	4P09	4P2I	4P2K	4P47
4P5U	4P61	4P6B	4P7T	4P93	4P9I	4PA1	4PAS
4PAS_B	4PBO	4PD0	4PEK	4PGR	4PK9	4PQD	4PRS
4PSD	4PSF	4PSJ	4PU7_B	4PUH	4PUI	4PWE	4PWQ_B
4PYU	4PYU_C	4PZ9	4Q2Q	4Q2S	4Q4N	4Q9B	4Q9P
4QB4	4QCJ	4QFT	4QMI	4QS8	4QXX_Z	4QYX	4R0P
4R0U	4R3Q	4R6F	4R8R	4R9P	4RDJ	4RF6	4RJV
4RL1	4RMB	4RTH	4RVC	4RWH	4RWU	4RWZ	4RXV
4TJX	4TJX_B	4TQ1	4TQ1_B	4TRK	4TTL	4TVE	4TX1
4U0C_B	4U1E_B	4U1E_G	4U1E_I	4U3V	4U5H	4U7E	4U7E_B
4U9C	4UED	4UED_B	4ULW	4UMG	4UMI	4UML	4UOS
4UQY	4UQY_B	4UUC	4UWW	4UYI	4W4R	4W5X_B	4WDC
4WE2	4WFI	4WIL	4WJS	4WUM	4WY4	4WY4_B	4WY4_C
4WY4 D	4X0J	4XEH	4Y65	4YUD			

Tabla 5. Valores de energía asociados a los parámetros de cada conectividad establecidos en el potencial H-ERX*. (a) la distancia hidrógeno-oxígeno, (b) el ángulo al átomo de hidrógeno, (c) el ángulo al átomo de oxígeno (d) el ángulo diedro que corresponde a la rotación del enlace carbono-oxígeno, (e) el ángulo diedro que corresponde a la rotación del enlace hidrógeno que corresponde a la rotación del puente de hidrógeno y (f) el ángulo diedro que corresponde a la rotación del enlace hidrógeno-nitrógeno.

			Energía (u.a.) H-ERX* (a)							
Inte di	ervalo istanc (Å)	de lia	i→i	i → i + 2	i → i + 3	i → i + 4	i → i + 5	Otras		
0.00	-	1.00	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
1.00	-	1.05	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
1.05	-	1.10	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
1.10	-	1.15	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
1.15	-	1.20	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
1.20	-	1.25	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
1.25	-	1.30	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
1.30	-	1.35	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
1.35	-	1.40	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
1.40	-	1.45	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
1.45	-	1.50	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
1.50	-	1.55	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
1.55	-	1.60	4.0000	4.0000	4.0000	4.0000	4.0000	2.7902		
1.60	-	1.65	4.0000	4.0000	4.0000	3.1416	4.0000	1.5643		
1.65	-	1.70	4.0000	4.0000	3.4470	1.8665	4.0000	0.3240		
1.70	-	1.75	4.0000	4.0000	2.6048	0.8130	3.1416	-0.7969		
1.75	-	1.80	4.0000	3.1957	1.6916	-0.4405	2.3018	-1.7117		
1.80	-	1.85	4.0000	2.6203	0.8259	-1.4415	1.5481	-2.3523		
1.85	-	1.90	4.0000	2.0343	0.0084	-2.2030	0.9651	-2.6447		
1.90	-	1.95	4.0000	1.8163	-0.7258	-2.6570	0.6567	-2.6583		
1.95	-	2.00	4.0000	1.5427	-1.1681	-2.8076	0.5507	-2.5127		
2.00	-	2.05	4.0000	1.3196	-1.4249	-2.7452	0.6159	-2.2219		
2.05	-	2.10	2.2794	1.2537	-1.4888	-2.5503	0.5706	-1.8645		
2.10	-	2.15	1.4960	1.1771	-1.5189	-2.2575	0.8738	-1.4651		
2.15	-	2.20	0.4477	1.1197	-1.4554	-1.9200	1.0556	-1.0500		
2.20	-	2.25	-0.1831	1.1624	-1.3426	-1.5795	1.4085	-0.7208		
2.25	-	2.30	-0.8653	1.2340	-1.2401	-1.2734	1.5062	-0.4316		
2.30	-	2.35	-1.3643	1.2070	-1.1543	-0.9671	1.6259	-0.1878		
2.35	-	2.40	-1.6500	1.1128	-1.1710	-0.7113	1.9429	0.0015		
2.40	-	2.45	-1.8606	1.2458	-1.2208	-0.5063	2.0256	0.1591		
2.45	-	2.50	-2.0368	1.0888	-1.2883	-0.3461	2.3248	0.3462		
2.50	-	2.55	-2.1586	0.9473	-1.5073	-0.2428	2.1942	0.4162		
2.55	-	2.60	-2.2367	0.6415	-1.7456	-0.1266	2.3603	0.4951		

Tabla (5 (con	tinuaciór	ı).					
					Energía (u.a	.) H-ERX* (b)		
Interva	lo de (Å)	ángulo	i→i	i → i + 2	i → i + 3	i → i + 4	i → i + 5	Otras
0	-	5	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
5	-	10	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
10	-	15	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
15	-	20	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
20	-	25	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
25	-	30	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
30	-	35	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
35	-	40	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
40	-	45	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
45	-	50	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
50	-	55	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
55	-	60	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
60	-	65	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
65	-	70	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
70	-	75	5.0675	4.0000	4.0000	4.0000	4.0000	4.0000
75	-	80	2.5219	4.0000	4.0000	4.0000	4.0000	4.0000
80	-	85	0.2862	4.0000	4.0000	4.0000	4.0000	4.0000
85	-	90	-1.5109	4.0000	4.0000	4.0000	4.0000	4.0000
90	-	95	-2.3733	3.2151	4.0000	5.0675	4.0000	4.0000
95	-	100	-2.4547	2.4374	4.0000	3.2551	4.0000	4.0000
100	-	105	-1.3278	2.2794	3.0865	2.2871	4.0000	3.7796
105	-	110	1.7951	1.8946	0.5566	1.4103	4.0000	3.0865
110	-	115	3.5360	1.6295	-0.9517	0.9464	3.7129	2.2124
115	-	120	4.0000	1.3268	-1.2220	0.7351	3.7129	1.7763
120	-	125	4.0000	1.1782	-0.9389	0.4159	3.0198	1.3600
125	-	130	4.0000	1.0006	-0.7098	-0.0286	2.5722	0.8628
130	-	135	4.0000	0.9125	-0.5863	-0.4032	2.3186	0.2462
135	-	140	4.0000	0.7839	-0.6707	-0.8120	1.9540	-0.2640
140	-	145	4.0000	0.7220	-0.8780	-1.2828	1.4770	-0.8311
145	-	150	4.0000	1.3121	-1.1820	-1.8678	1.0354	-1.3922
150	-	155	4.0000	2.8984	-1.5727	-2.4686	0.5802	-1.9588
155	-	160	4.0000	4.0000	-1.7838	-2.8411	0.3935	-2.4044
160	-	165	4.0000	4.0000	-1.5588	-2.7878	0.5831	-2.6385
165	-	170	4.0000	4.0000	-0.5624	-2.2751	0.9752	-2.4773
170	-	175	4.0000	4.0000	0.8969	-1.2616	1.6254	-2.0025
175	-	180	4.0000	4.0000	2.8565	0.3579	2.9573	-0.8815

Tabla (5 (con	tinuaciór	ı).					
					Energía (u.a	.) H-ERX* (c)		
Interva	lo de (Å)	ángulo	i→i	i → i + 2	i → i + 3	i → i + 4	i → i + 5	Otras
0	-	5	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
5	-	10	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
10	-	15	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
15	-	20	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
20	-	25	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
25	-	30	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
30	-	35	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
35	-	40	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
40	-	45	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
45	-	50	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
50	-	55	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
55	-	60	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
60	-	65	4.0000	2.2949	4.0000	4.0000	4.0000	4.0000
65	-	70	4.0000	1.4840	4.0000	4.0000	4.0000	4.0000
70	-	75	1.4909	1.6746	4.0000	4.0000	4.0000	4.0000
75	-	80	-1.0932	2.2416	4.0000	4.0000	4.0000	4.0000
80	-	85	-2.9389	2.1565	2.3429	4.0000	4.0000	4.0000
85	-	90	-2.2519	2.0655	-0.1101	4.0000	4.0000	4.0000
90	-	95	2.4374	1.6457	-1.4699	4.0000	4.0000	4.0000
95	-	100	4.0000	0.9628	-1.6129	4.0000	4.0000	3.1039
100	-	105	4.0000	0.5566	-1.5139	3.0038	4.0000	2.6583
105	-	110	4.0000	0.5175	-1.5910	2.4284	4.0000	1.8486
110	-	115	4.0000	0.8226	-1.6234	1.8739	4.0000	1.2361
115	-	120	4.0000	1.9540	-1.5278	1.4071	4.0000	0.6131
120	-	125	4.0000	4.0000	-1.2047	0.9047	3.6206	-0.0054
125	-	130	4.0000	4.0000	-0.6208	0.2543	2.5518	-0.5457
130	-	135	4.0000	4.0000	-0.1157	-0.8207	1.6538	-1.0987
135	-	140	4.0000	4.0000	0.0925	-1.8568	1.0244	-1.5771
140	-	145	4.0000	4.0000	0.2737	-2.6801	0.7044	-1.9889
145	-	150	4.0000	4.0000	0.7787	-2.9973	0.5242	-2.2870
150	-	155	4.0000	4.0000	1.8637	-2.8501	0.5416	-2.3776
155	-	160	4.0000	4.0000	3.2151	-2.2319	0.7156	-2.2462
160	-	165	4.0000	4.0000	4.0000	-1.1249	1.1186	-1.9605
165	-	170	4.0000	4.0000	4.0000	0.0951	1.8288	-1.4681
170	-	175	4.0000	4.0000	4.0000	1.4874	2.3847	-0.7721
175	-	180	4.0000	4.0000	4.0000	2.8842	3.7796	0.4661

Tabla 5	(contin	uación).						
					Energía (u.a	.) H-ERX* (d)		
Interva	alo de a diedro (Å)	ángulo	i≯i	i → i + 2	i → i + 3	i → i+4	i → i + 5	Otras
-180	-	-170	4.0000	4.0000	3.4092	-0.0720	3.5093	0.1205
-170	-	-160	4.0000	2.8702	2.8565	-0.4001	3.5916	0.0176
-160	-	-150	4.0000	1.4136	2.0843	-0.8880	4.0000	-0.1809
-150	-	-140	4.0000	0.4207	1.1356	-1.6782	4.0000	-0.3857
-140	-	-130	4.0000	0.0977	0.3557	-2.5275	4.0000	-0.5615
-130	-	-120	4.0000	0.6684	-0.4450	-3.0095	4.0000	-0.5985
-120	-	-110	4.0000	0.8516	-1.3394	-2.8102	4.0000	-0.5221
-110	-	-100	4.0000	4.0000	-2.2115	-2.0154	3.7129	-0.3836
-100	-	-90	4.0000	4.0000	-2.6026	-1.0534	3.6206	-0.2586
-90	-	-80	4.0000	4.0000	-1.9293	-0.3061	4.0000	-0.2371
-80	-	-70	4.0000	4.0000	1.7045	0.0822	3.6504	-0.3216
-70	-	-60	4.0000	4.0000	4.0000	0.3842	4.0000	-0.5123
-60	-	-50	4.0000	4.0000	4.0000	0.7600	4.0000	-0.7887
-50	-	-40	4.0000	4.0000	4.0000	1.4168	3.3402	-0.9922
-40	-	-30	2.4835	4.0000	4.0000	2.4556	3.4333	-1.0906
-30	-	-20	0.7822	4.0000	4.0000	3.2349	2.9725	-1.1074
-20	-	-10	-0.3049	4.0000	4.0000	3.3857	2.5722	-1.1110
-10	-	0	-1.4282	4.0000	4.0000	4.0000	1.9821	-1.0861
0	-	10	-2.1493	4.0000	4.0000	3.5634	1.7353	-1.0275
10	-	20	-2.1894	4.0000	4.0000	4.0000	1.7308	-1.0648
20	-	30	-1.8372	4.0000	4.0000	4.0000	1.7533	-1.0922
30	-	40	-0.5277	4.0000	4.0000	4.0000	1.7998	-1.0802
40	-	50	1.8486	4.0000	4.0000	4.0000	1.8894	-1.0082
50	-	60	4.0000	4.0000	4.0000	4.0000	1.8337	-0.7706
60	-	70	4.0000	4.0000	4.0000	4.0000	1.9936	-0.5198
70	-	80	4.0000	4.0000	4.0000	4.0000	1.8142	-0.2956
80	-	90	4.0000	4.0000	3.3627	3.1039	1.8688	-0.1616
90	-	100	4.0000	4.0000	0.8030	2.7775	1.7624	-0.1400
100	-	110	4.0000	4.0000	0.5005	3.1766	1.6295	-0.1276
110	-	120	4.0000	1.9105	0.8969	3.2151	1.3912	-0.1352
120	-	130	4.0000	2.3762	1.5522	2.7902	1.3880	-0.0844
130	-	140	4.0000	2.9274	2.0780	2.6251	1.6704	0.0192
140	-	150	4.0000	3.1579	2.4464	2.1771	2.1100	0.1438
150	-	160	4.0000	4.0000	3.0865	1.4431	2.6361	0.1724
160	-	170	4.0000	4.0000	3.0526	0.8778	2.7161	0.2342
170	-	180	4.0000	4.0000	3.2151	0.3523	2.9573	0.1837

	(contin	iuacion).								
luton v	olo do .	án au la	Energía (u.a.) H-ERX* (e)							
Interva	diedro (Å)	angulo	i→i	i → i + 2	i → i + 3	i → i + 4	i → i + 5	Otras		
-180	-	-170	4.0000	4.0000	-1.2949	-1.2472	2.7775	-1.4263		
-170	-	-160	4.0000	4.0000	-2.1155	-0.5217	2.8294	-1.3792		
-160	-	-150	4.0000	4.0000	-2.0210	0.1923	2.8565	-1.2660		
-150	-	-140	4.0000	4.0000	-0.6097	0.8388	2.8294	-1.1551		
-140	-	-130	4.0000	1.6916	0.4838	1.4299	2.9880	-1.0024		
-130	-	-120	4.0000	2.0780	1.2861	1.8486	2.8842	-0.8601		
-120	-	-110	4.0000	2.7525	1.6375	2.3511	2.8162	-0.7377		
-110	-	-100	4.0000	2.8031	2.0052	2.3594	2.6361	-0.5907		
-100	-	-90	4.0000	2.9422	1.9821	2.8294	2.4835	-0.4840		
-90	-	-80	4.0000	2.8162	2.1565	2.8842	2.4020	-0.3447		
-80	-	-70	4.0000	3.0198	2.2717	3.3857	2.2794	-0.2628		
-70	-	-60	4.0000	2.5619	2.5122	3.4580	2.2717	-0.1080		
-60	-	-50	3.7457	2.5219	2.9880	3.5634	2.3847	0.0602		
-50	-	-40	2.5722	2.3594	3.4092	4.0000	2.2053	0.2737		
-40	-	-30	1.5748	1.8386	4.0000	4.0000	2.3347	0.4291		
-30	-	-20	0.4303	1.5978	4.0000	4.0000	2.1363	0.4219		
-20	-	-10	-0.8297	1.2361	4.0000	4.0000	2.1430	0.5268		
-10	-	0	-1.7043	1.1259	4.0000	4.0000	2.0971	0.6146		
0	-	10	-2.1484	1.0135	4.0000	4.0000	2.2343	0.5268		
10	-	20	-2.0358	1.1210	4.0000	4.0000	2.1841	0.6030		
20	-	30	-1.5237	1.4365	4.0000	4.0000	2.4464	0.5215		
30	-	40	-0.5337	2.2416	3.2349	3.8147	2.5619	0.4099		
40	-	50	0.9066	3.0038	2.4195	3.5634	2.4284	0.3182		
50	-	60	3.3627	3.5634	1.8894	3.5093	2.5219	0.3010		
60	-	70	4.0000	3.5634	1.2776	3.0526	2.4835	0.2472		
70	-	80	4.0000	3.8888	0.7500	2.8565	2.4374	0.1169		
80	-	90	4.0000	3.7796	0.4425	2.3594	2.3847	-0.0316		
90	-	100	4.0000	4.0114	0.1521	1.7624	2.2343	-0.1913		
100	-	110	4.0000	3.2151	-0.0247	1.1630	2.2124	-0.3569		
110	-	120	4.0000	3.0360	-0.1630	0.4953	1.8288	-0.5420		
120	-	130	4.0000	2.7043	-0.1900	-0.2414	1.9484	-0.7086		
130	-	140	4.0000	4.0000	-0.2457	-1.1456	1.8637	-0.9044		
140	-	150	4.0000	4.0000	-0.3836	-2.3139	2.0532	-1.1244		
150	-	160	4.0000	4.0000	-0.5646	-3.1528	2.0170	-1.2388		
160	-	170	4.0000	4.0000	-0.7578	-3.0310	2.3186	-1.3527		
170	-	180	4.0000	4.0000	-0.9656	-2.1446	2.5826	-1.4049		

rabla 5	(contir	iuación).						
					Energía (u.a	.) H-ERX* (f)		
Interva	alo de diedro (Å)	ángulo)	i→i	i → i + 2	i → i + 3	i → i + 4	i → i + 5	Otras
-180	-	-170	4.0000	2.3847	4.0000	2.8031	3.4092	-0.8854
-170	-	-160	4.0000	2.4195	4.0000	3.3402	3.0198	-0.8103
-160	-	-150	4.0000	2.4741	4.0000	3.2349	2.7161	-0.8200
-150	-	-140	4.0000	2.3678	4.0000	3.1039	2.5122	-0.8068
-140	-	-130	4.0000	2.1497	4.0000	3.7129	2.4195	-0.8085
-130	-	-120	4.0000	1.6580	4.0000	3.1766	2.1982	-0.8127
-120	-	-110	4.0000	1.8842	4.0000	3.2551	2.2124	-0.7125
-110	-	-100	4.0000	4.0000	4.0000	2.9128	2.2641	-0.6187
-100	-	-90	4.0000	4.0000	2.8428	3.0526	2.0655	-0.4625
-90	-	-80	4.0000	4.0000	0.6715	2.6471	1.8142	-0.3026
-80	-	-70	4.0000	4.0000	-1.9588	2.7043	1.7763	-0.1926
-70	-	-60	4.0000	4.0000	-1.9702	2.5826	1.7998	-0.1262
-60	-	-50	1.1731	4.0000	-1.4225	2.1911	1.5901	0.0461
-50	-	-40	-1.0829	4.0000	-1.1378	1.9879	1.6096	0.2154
-40	-	-30	-2.1396	4.0000	-0.9101	1.6704	1.6416	0.2706
-30	-	-20	-2.2237	4.0000	-0.6981	1.3631	1.8586	0.4486
-20	-	-10	-1.8093	4.0000	-0.5461	1.0762	1.9266	0.5268
-10	-	0	-1.0646	4.0000	-0.4011	0.7483	2.1100	0.5677
0	-	10	0.1932	4.0000	-0.3147	0.5110	2.3594	0.5175
10	-	20	1.0354	4.0000	-0.2470	0.1999	2.1363	0.4940
20	-	30	1.4736	4.0000	-0.2252	-0.1400	2.3594	0.4661
30	-	40	1.8046	4.0000	-0.2371	-0.5291	2.5518	0.3490
40	-	50	2.3678	4.0000	-0.2055	-0.9849	2.5826	0.2342
50	-	60	3.3402	4.0000	-0.0224	-1.5297	2.9128	0.0249
60	-	70	4.0000	4.0000	0.3000	-2.0629	2.9725	-0.1115
70	-	80	4.0000	4.0000	1.3388	-2.5341	2.8984	-0.3436
80	-	90	4.0000	4.0000	2.7649	-2.7329	2.7043	-0.6028
90	-	100	4.0000	4.0000	4.0000	-2.5445	2.6926	-0.8615
100	-	110	4.0000	4.0000	4.0000	-2.0123	2.5122	-1.1079
110	-	120	4.0000	1.8436	4.0000	-1.1647	2.6361	-1.2459
120	-	130	4.0000	0.5242	4.0000	-0.3663	2.8565	-1.3278
130	-	140	4.0000	0.4851	4.0000	0.3193	3.1766	-1.2591
140	-	150	4.0000	0.8703	4.0000	0.9484	3.2757	-1.1449
150	-	160	4.0000	1.3755	4.0000	1.5121	3.5360	-1.0869
160	-	170	4.0000	1.6789	4.0000	2.0532	3.4333	-0.9911
170	-	180	4.0000	1.9821	4.0000	2.6251	3.1396	-0.9224

Tabla 6. Valores de energía asociados a los parámetros de cada conectividad establecidos en el potencial H-ERMN*. (a) la distancia hidrógeno-oxígeno, (b) el ángulo al átomo de hidrógeno, (c) el ángulo al átomo de oxígeno (d) el ángulo diedro que corresponde a la rotación del enlace carbono-oxígeno, (e) el ángulo diedro que corresponde a la rotación del enlace hidrógeno que corresponde a la rotación del puente de hidrógeno y (f) el ángulo diedro que corresponde a la rotación del enlace hidrógeno-nitrógeno.

			Energía (u.a.) H-ERMN* (a)							
Inte di	ervalo istanc (Å)	o de sia	i→i	i → i + 2	i → i + 3	i → i + 4	i → i + 5	Otras		
0.00	-	1.00	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
1.00	-	1.05	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
1.05	-	1.10	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
1.10	-	1.15	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
1.15	-	1.20	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
1.20	-	1.25	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
1.25	-	1.30	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
1.30	-	1.35	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
1.35	-	1.40	4.0000	4.0000	4.0000	3.0757	4.0000	4.0000		
1.40	-	1.45	4.0000	4.0000	4.0000	2.3969	4.0000	3.2988		
1.45	-	1.50	4.0000	3.1345	2.8468	1.5373	4.0000	2.0461		
1.50	-	1.55	4.0000	2.7392	2.2366	0.7421	4.0000	1.5684		
1.55	-	1.60	4.0000	2.4263	1.7038	0.3927	4.0000	1.0438		
1.60	-	1.65	4.0000	1.9125	1.3787	-0.1012	3.1345	0.3085		
1.65	-	1.70	4.0000	1.3787	0.9407	-0.4532	2.7809	-0.2275		
1.70	-	1.75	4.0000	0.9820	0.7933	-0.8306	2.3270	-0.7137		
1.75	-	1.80	4.0000	0.5129	0.2241	-1.5660	1.8107	-1.4652		
1.80	-	1.85	4.0000	0.3734	-0.2697	-1.8532	1.3277	-1.6670		
1.85	-	1.90	4.0000	0.1743	-0.4698	-1.9583	1.2329	-1.7241		
1.90	-	1.95	4.0000	0.1312	-0.7092	-2.0191	1.2465	-1.6962		
1.95	-	2.00	3.0201	0.0190	-0.8854	-2.1146	1.2792	-1.6456		
2.00	-	2.05	2.2243	0.0686	-1.1000	-2.2139	1.1588	-1.7494		
2.05	-	2.10	1.6543	-0.1142	-1.2206	-2.0773	1.2604	-1.5532		
2.10	-	2.15	0.9042	-0.0321	-1.2599	-2.0200	1.3377	-1.4081		
2.15	-	2.20	0.2907	-0.0988	-1.2681	-1.8625	1.4161	-1.2741		
2.20	-	2.25	-0.3303	-0.0940	-1.3987	-1.9015	1.3787	-1.2766		
2.25	-	2.30	-0.7561	-0.2390	-1.4308	-1.6678	1.5434	-1.1044		
2.30	-	2.35	-1.3541	-0.2677	-1.4970	-1.7788	1.4215	-1.2372		
2.35	-	2.40	-1.7175	-0.3811	-1.5479	-1.4470	1.6071	-0.9165		
2.40	-	2.45	-1.9136	-0.4624	-1.6020	-1.3596	1.5190	-0.7878		
2.45	-	2.50	-2.0387	-0.6688	-1.6542	-1.1683	1.7257	-0.6175		
2.50	-	2.55	-2.1100	-0.7696	-1.7647	-1.2543	1.6406	-0.7233		
2.55	-	2.60	-2.1653	-0.8789	-1.8576	-0.9980	1.5941	-0.4490		

Tabla 6	6 (con	tinuación	ı).					
					Energía (u.a.)) H-ERMN* (b)		
Interva	lo de (Å)	ángulo	i→i	i → i + 2	i → i + 3	i → i + 4	i → i + 5	Otras
0	-	5	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
5	-	10	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
10	-	15	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
15	-	20	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
20	-	25	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
25	-	30	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
30	-	35	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
35	-	40	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
40	-	45	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
45	-	50	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
50	-	55	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
55	-	60	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
60	-	65	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
65	-	70	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000
70	-	75	4.0000	2.8716	4.0000	4.0000	4.0000	4.0000
75	-	80	3.0285	1.0879	4.0000	4.0000	4.0000	4.0000
80	-	85	0.6961	0.4434	4.0000	3.2146	4.0000	3.6315
85	-	90	-1.2514	0.5626	4.0000	2.8244	4.0000	3.4434
90	-	95	-2.0856	0.5404	1.9881	2.1546	4.0000	2.9383
95	-	100	-2.4938	0.3934	0.9029	1.5916	4.0000	2.0359
100	-	105	-1.8160	0.3166	0.0271	1.1757	3.4434	1.5349
105	-	110	-0.2224	0.0094	-0.7969	0.8333	2.9383	1.0907
110	-	115	1.8340	-0.0250	-1.3510	0.2943	2.5101	0.7315
115	-	120	3.4152	-0.1119	-1.6318	-0.0170	2.5328	0.2606
120	-	125	4.0000	-0.1882	-1.5898	-0.4284	2.0220	-0.0938
125	-	130	4.0000	-0.1836	-1.4104	-0.8185	1.8748	-0.4513
130	-	135	4.0000	-0.3434	-1.2646	-1.2057	1.7054	-0.8225
135	-	140	4.0000	-0.4635	-1.1471	-1.5240	1.5392	-1.0520
140	-	145	4.0000	-0.4583	-1.1351	-1.8535	1.3050	-1.3479
145	-	150	4.0000	-0.1866	-1.1174	-2.1061	1.1581	-1.5950
150	-	155	4.0000	0.7663	-1.1334	-2.3327	1.0665	-1.7914
155	-	160	4.0000	2.1625	-0.9549	-2.3946	1.1669	-1.8932
160	-	165	4.0000	3.4434	-0.5274	-2.3202	1.1182	-1.8884
165	-	170	4.0000	4.0000	0.0196	-2.0257	1.4115	-1.6674
170	-	175	4.0000	4.0000	0.7353	-1.4966	1.8226	-1.2326
175	-	180	4.0000	4.0000	1.9050	-0.3658	3.0669	-0.1527

Tabla 6	6 (con	tinuación	ı).							
					Energía (u.a.) H-ERMN* (c)					
Interva	lo de (Å)	ángulo	i→i	i → i + 2	i → i + 3	i → i + 4	i → i + 5	Otras		
0	-	5	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
5	-	10	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
10	-	15	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
15	-	20	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
20	-	25	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
25	-	30	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
30	-	35	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
35	-	40	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
40	-	45	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
45	-	50	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
50	-	55	4.0000	4.0000	4.0000	4.0000	4.0000	4.0000		
55	-	60	4.0000	2.8091	4.0000	4.0000	4.0000	4.0000		
60	-	65	4.0000	-0.0737	4.0000	4.0000	4.0000	4.0000		
65	-	70	3.1486	-0.6911	4.0000	4.0000	4.0000	4.0000		
70	-	75	0.6374	-0.2833	3.5975	4.0000	4.0000	3.7406		
75	-	80	-1.3253	0.1853	1.8571	4.0000	4.0000	3.4724		
80	-	85	-2.9657	0.3485	0.0403	4.0000	4.0000	2.8879		
85	-	90	-2.0791	0.3331	-1.1791	3.1921	4.0000	2.3448		
90	-	95	3.0867	0.3166	-1.8206	2.6680	4.0000	1.7105		
95	-	100	4.0000	0.1081	-1.9724	2.2196	4.0000	1.2462		
100	-	105	4.0000	-0.0617	-1.8818	1.5607	4.0000	0.8375		
105	-	110	4.0000	-0.2730	-1.6460	1.0098	3.2375	0.3628		
110	-	115	4.0000	-0.6180	-1.3653	0.5065	2.8091	-0.0488		
115	-	120	4.0000	-0.7345	-1.1248	-0.0660	2.3936	-0.3964		
120	-	125	4.0000	0.3079	-0.7981	-0.6993	2.0151	-0.7141		
125	-	130	4.0000	1.9050	-0.4738	-1.1788	1.6422	-1.0343		
130	-	135	4.0000	4.0000	-0.1297	-1.7072	1.3428	-1.2853		
135	-	140	4.0000	4.0000	0.2570	-2.1052	1.0879	-1.4281		
140	-	145	4.0000	4.0000	0.6220	-2.4019	1.0934	-1.6152		
145	-	150	4.0000	4.0000	1.0249	-2.5088	0.9681	-1.6688		
150	-	155	4.0000	4.0000	1.5477	-2.4215	1.1043	-1.6840		
155	-	160	4.0000	4.0000	2.0643	-2.1037	1.1816	-1.6226		
160	-	165	4.0000	4.0000	2.7361	-1.6407	1.4266	-1.4398		
165	-	170	4.0000	4.0000	3.7799	-1.0589	1.9815	-1.1552		
170	-	175	4.0000	4.0000	4.2262	-0.3746	2.4555	-0.6777		
175	-	180	4.0000	4.0000	4.6009	0.7881	3.6665	0.4434		

Tabla 6	(contir	nuación).						
					Energía (u.a.)	H-ERMN* (d)		
Interva	alo de diedro (Å)	ángulo	i→i	i → i + 2	i → i + 3	i → i + 4	i → i+5	Otras
-180	-	-170	4.0000	0.6943	2.9914	-0.4828	2.9557	0.7585
-170	-	-160	4.0000	0.2086	2.7646	-0.9532	3.0867	0.5310
-160	-	-150	4.0000	-0.2289	2.0571	-1.3602	2.8556	0.4167
-150	-	-140	4.0000	-0.4152	1.4190	-1.7882	3.0285	0.1722
-140	-	-130	4.0000	-0.4343	0.8397	-2.2195	3.1069	-0.0188
-130	-	-120	4.0000	-0.7092	0.0261	-2.4303	3.2375	-0.1306
-120	-	-110	4.0000	-1.4880	-0.8779	-2.4415	3.3352	-0.2632
-110	-	-100	4.0000	1.5016	-1.8317	-2.1218	3.2375	-0.3038
-100	-	-90	4.0000	4.0000	-2.5960	-1.6070	3.2375	-0.3834
-90	-	-80	4.0000	4.0000	-2.6423	-1.0589	3.7029	-0.4128
-80	-	-70	4.0000	4.0000	-1.2168	-0.5582	3.4724	-0.4951
-70	-	-60	4.0000	4.0000	0.5279	-0.1425	3.6315	-0.5122
-60	-	-50	4.0000	4.0000	3.5648	0.1391	3.4434	-0.5258
-50	-	-40	3.7029	4.0000	4.0000	0.4349	3.1921	-0.5144
-40	-	-30	1.5694	4.0000	4.0000	0.7146	3.0098	-0.4490
-30	-	-20	0.3343	4.0000	4.0000	0.9924	2.5561	-0.3865
-20	-	-10	-0.7928	4.0000	4.0000	1.3711	2.4989	-0.3421
-10	-	0	-1.5563	4.0000	4.0000	1.7784	2.2113	-0.3317
0	-	10	-2.1004	4.0000	4.0000	1.6281	2.2030	-0.4349
10	-	20	-2.0790	4.0000	4.0000	2.1704	2.3166	-0.4037
20	-	30	-1.6961	4.0000	4.0000	2.2625	2.1235	-0.5095
30	-	40	-0.6947	4.0000	4.0000	2.2452	2.1704	-0.6307
40	-	50	1.3220	4.0000	4.0000	1.8868	2.1546	-0.6902
50	-	60	4.0000	4.0000	4.0000	2.0643	2.0571	-0.7940
60	-	70	4.0000	4.0000	4.0000	1.9362	2.1389	-0.8229
70	-	80	4.0000	4.0000	2.7792	1.8513	2.0935	-0.6961
80	-	90	4.0000	4.0000	1.6006	1.8748	1.9362	-0.6562
90	-	100	4.0000	4.0000	1.0665	1.6660	1.9425	-0.5535
100	-	110	4.0000	3.1486	0.9467	1.4575	1.8989	-0.3362
110	-	120	4.0000	0.0233	1.4894	1.2654	2.0083	-0.1480
120	-	130	4.0000	0.6726	2.2030	1.1639	2.0289	0.0910
130	-	140	4.0000	0.9420	2.5920	0.9467	2.1235	0.3104
140	-	150	4.0000	1.1997	2.7792	0.6780	2.1467	0.5886
150	-	160	4.0000	1.3084	2.9914	0.3280	2.4770	0.6426
160	-	170	4.0000	1.0586	3.4434	0.0432	2.3936	0.7922
170	-	180	4.0000	0.9326	3.4152	-0.2743	2.5679	0.7702

			Energía (u.a.) H-ERMN* (e)								
Intervalo de ángulo diedro (Å)			i→i	i → i + 2	i → i + 3	i → i + 4	i → i + 5	Otras			
-180	-	-170	4.0000	4.0000	-1.6128	-1.7759	2.2892	-1.0981			
-170	-	-160	4.0000	4.0000	-2.4040	-1.3845	2.3544	-1.1117			
-160	-	-150	4.0000	4.0000	-2.2932	-0.9137	2.1785	-0.9271			
-150	-	-140	4.0000	0.0634	-1.2682	-0.5001	2.1235	-0.6856			
-140	-	-130	4.0000	-0.2398	-0.1683	-0.0600	2.1159	-0.5226			
-130	-	-120	4.0000	0.2547	0.6068	0.3017	2.1467	-0.4260			
-120	-	-110	4.0000	0.5357	1.1846	0.6655	1.9881	-0.2547			
-110	-	-100	4.0000	0.7053	1.8002	0.9633	2.1625	-0.0754			
-100	-	-90	4.0000	0.7526	2.1084	1.2057	2.5444	-0.0312			
-90	-	-80	4.0000	0.7861	2.1947	1.3533	2.6549	0.0990			
-80	-	-70	4.0000	0.9777	2.4770	1.5307	2.8399	0.1339			
-70	-	-60	4.0000	0.8917	2.9734	1.6143	2.7503	0.3104			
-60	-	-50	2.6167	0.8829	3.1069	1.9236	2.8556	0.3420			
-50	-	-40	1.5434	0.7392	3.1486	1.8571	2.8879	0.4520			
-40	-	-30	0.5172	0.6426	3.1069	2.0571	3.0669	0.6002			
-30	-	-20	-0.3051	0.6514	3.1921	2.0289	3.2146	0.6816			
-20	-	-10	-0.9864	0.4870	3.2611	2.1947	2.9383	0.6514			
-10	-	0	-1.5212	0.4057	3.3099	2.1009	3.0475	0.6409			
0	-	10	-1.9714	0.1986	3.1486	2.0500	3.2146	0.6708			
10	-	20	-1.9167	0.1454	2.9557	2.0500	3.2852	0.6708			
20	-	30	-1.5788	0.1657	2.9557	1.9618	3.1486	0.6426			
30	-	40	-0.9472	0.1657	2.4138	1.7206	3.1275	0.6136			
40	-	50	0.2943	0.4826	2.0429	1.6097	2.7503	0.5562			
50	-	60	1.9881	0.7546	1.8868	1.6143	2.8556	0.4885			
60	-	70	4.0000	0.9561	1.4497	1.2850	2.6167	0.4335			
70	-	80	4.0000	1.2883	1.1552	1.0665	2.5328	0.2430			
80	-	90	4.0000	1.5520	0.7881	0.8895	2.4661	0.2030			
90	-	100	4.0000	1.7309	0.5968	0.5357	2.4879	0.0683			
100	-	110	4.0000	1.9683	0.4796	0.2211	2.4989	-0.0788			
110	-	120	4.0000	1.8688	0.3280	-0.2296	2.2625	-0.2820			
120	-	130	4.0000	1.7004	0.3615	-0.7467	2.0429	-0.5193			
130	-	140	4.0000	1.2590	0.2349	-1.4037	2.1312	-0.6647			
140	-	150	4.0000	1.3463	0.1329	-2.0249	2.0500	-0.9253			
150	-	160	4.0000	4.0000	-0.1714	-2.5326	2.1235	-1.0938			
160	-	170	4.0000	4.0000	-0.4918	-2.6482	2.1785	-1.1745			
170	-	180	4.0000	4.0000	-0.9723	-2.3603	2.2802	-1.2356			

i abla 6	(contir	nuacion).									
				Energía (u.a.) H-ERMN* (f)							
Intervalo de ángulo diedro (Å)			i→i	i → i + 2	i → i + 3	i → i + 4	i → i + 5	Otras			
-180	-	-170	4.0000	0.8084	3.8207	0.7902	3.1921	0.0168			
-170	-	-160	4.0000	0.6136	4.0000	0.7742	3.0285	-0.1322			
-160	-	-150	4.0000	0.4462	4.0000	0.9120	2.8556	-0.2121			
-150	-	-140	4.0000	0.2980	4.0000	0.8653	2.6043	-0.2840			
-140	-	-130	4.0000	0.1809	3.6665	0.8229	2.4138	-0.4600			
-130	-	-120	4.0000	-0.1904	3.4434	0.8187	2.1312	-0.6428			
-120	-	-110	4.0000	-0.8269	2.7221	0.7565	2.0935	-0.7965			
-110	-	-100	4.0000	0.6409	1.9489	0.7278	1.9815	-0.7384			
-100	-	-90	4.0000	3.4434	0.2500	0.6690	2.0571	-0.6190			
-90	-	-80	4.0000	4.0000	-1.1011	0.6237	2.1467	-0.4420			
-80	-	-70	4.0000	4.0000	-2.1722	0.5467	2.0788	-0.2929			
-70	-	-60	4.0000	4.0000	-2.3775	0.5126	2.2452	-0.1322			
-60	-	-50	1.6954	4.0000	-1.7433	0.4420	2.5328	-0.0522			
-50	-	-40	-0.8974	4.0000	-1.1491	0.3537	2.4879	0.0196			
-40	-	-30	-1.9537	4.0000	-0.6628	0.3498	2.5920	0.1690			
-30	-	-20	-2.1121	4.0000	-0.1904	0.2665	2.6420	0.2761			
-20	-	-10	-1.8233	4.0000	0.0556	0.2337	2.9557	0.2846			
-10	-	0	-1.3302	4.0000	0.3017	0.1071	2.7646	0.3104			
0	-	10	-0.7441	4.0000	0.3356	-0.1193	2.5920	0.1941			
10	-	20	0.0980	4.0000	0.3694	-0.2956	2.7221	0.2109			
20	-	30	0.8784	4.0000	0.4195	-0.5078	2.9383	0.2761			
30	-	40	1.4813	4.0000	0.4635	-0.8384	2.7083	0.1497			
40	-	50	1.7947	4.0000	0.4650	-1.1872	2.6549	-0.0206			
50	-	60	2.9212	4.0000	0.4112	-1.5276	2.7941	-0.1566			
60	-	70	4.0000	4.0000	0.2943	-1.8122	2.3738	-0.2561			
70	-	80	4.0000	4.0000	0.5594	-2.0133	2.3544	-0.4508			
80	-	90	4.0000	4.0000	0.8851	-2.1003	2.1159	-0.5566			
90	-	100	4.0000	3.3612	1.5434	-2.1231	2.2113	-0.6032			
100	-	110	4.0000	1.4773	2.3448	-1.9340	2.1704	-0.7213			
110	-	120	4.0000	-0.5850	2.9557	-1.5484	2.3166	-0.7583			
120	-	130	4.0000	-0.7292	3.3352	-1.0349	2.4036	-0.6249			
130	-	140	4.0000	-0.3205	3.3878	-0.5809	2.4240	-0.4589			
140	-	150	4.0000	0.0076	4.0000	-0.1813	2.8716	-0.3251			
150	-	160	4.0000	0.3217	3.6315	0.1820	2.9212	-0.1377			
160	-	170	4.0000	0.5886	4.0000	0.4448	2.8879	-0.1551			
170	-	180	4.0000	0.7072	4.0000	0.5853	3.2852	-0.0821			

ANEXO - "DESARROLLO DE UN POTENCIAL ESTADÍSTICO BASADO EN EL ANÁLISIS DE LOS PUENTES DE HIDRÓGENO PRESENTES EN PROTEÍNAS" H-ERMN* H-ERMN

Figura 5. Componentes de energía asociados a los parámetros establecidos en los potenciales H-ERX* y H-ERMN*. (a) la distancia hidrógeno-oxígeno, (b) el ángulo al átomo de hidrógeno, (c) el ángulo al átomo de oxígeno (d) el ángulo diedro que corresponde a la rotación del enlace carbono-oxígeno, (e) el ángulo diedro que corresponde a la rotación del puente de hidrógeno y (f) el ángulo diedro que corresponde a la rotación del enlace corresponde a la rotación del enlace hidrógeno.

Conectividad residuo aceptor → residuo donador

 $i \rightarrow i$ $i \rightarrow i + 2$ $i \rightarrow i + 3$ $i \rightarrow i + 4$ $i \rightarrow i + 5$ Otras

Figura 6. Modelos identificados como estructura nativa por el potencial H-ERX*. El número debajo del modelo indica su desviación cuadrática media con respecto a la estructura nativa.

Figura 7. Modelos identificados como estructura nativa por el potencial H-ERMN*. El número debajo del modelo indica su desviación cuadrática media con respecto a la estructura nativa.